code
stringlengths
501
5.19M
package
stringlengths
2
81
path
stringlengths
9
304
filename
stringlengths
4
145
# DeepSpeed Team import sys import types import json from typing import Optional, Union import torch from torch.optim import Optimizer from torch.optim.lr_scheduler import _LRScheduler from packaging import version as pkg_version from . import ops from . import module_inject from .accelerator import get_accelerator from .runtime.engine import DeepSpeedEngine, DeepSpeedOptimizerCallable, DeepSpeedSchedulerCallable from .runtime.engine import ADAM_OPTIMIZER, LAMB_OPTIMIZER from .runtime.hybrid_engine import DeepSpeedHybridEngine from .runtime.pipe.engine import PipelineEngine from .inference.engine import InferenceEngine from .inference.config import DeepSpeedInferenceConfig from .runtime.lr_schedules import add_tuning_arguments from .runtime.config import DeepSpeedConfig, DeepSpeedConfigError from .runtime.activation_checkpointing import checkpointing from .ops.transformer import DeepSpeedTransformerLayer, DeepSpeedTransformerConfig from .module_inject import replace_transformer_layer, revert_transformer_layer from .utils import log_dist, OnDevice, logger from .comm.comm import init_distributed from .runtime import zero from .runtime import DeepSpeedOptimizer, ZeROOptimizer from .pipe import PipelineModule from .git_version_info import version, git_hash, git_branch def _parse_version(version_str): '''Parse a version string and extract the major, minor, and patch versions.''' ver = pkg_version.parse(version_str) return ver.major, ver.minor, ver.micro # Export version information __version__ = version __version_major__, __version_minor__, __version_patch__ = _parse_version(__version__) __git_hash__ = git_hash __git_branch__ = git_branch # Set to torch's distributed package or deepspeed.comm based inside DeepSpeedEngine init dist = None def initialize(args=None, model: torch.nn.Module = None, optimizer: Optional[Union[Optimizer, DeepSpeedOptimizerCallable]] = None, model_parameters: Optional[torch.nn.Module] = None, training_data: Optional[torch.utils.data.Dataset] = None, lr_scheduler: Optional[Union[_LRScheduler, DeepSpeedSchedulerCallable]] = None, mpu=None, dist_init_required: Optional[bool] = None, collate_fn=None, config=None, config_params=None): """Initialize the DeepSpeed Engine. Arguments: args: an object containing local_rank and deepspeed_config fields. This is optional if `config` is passed. model: Required: nn.module class before apply any wrappers optimizer: Optional: a user defined Optimizer or Callable that returns an Optimizer object. This overrides any optimizer definition in the DeepSpeed json config. model_parameters: Optional: An iterable of torch.Tensors or dicts. Specifies what Tensors should be optimized. training_data: Optional: Dataset of type torch.utils.data.Dataset lr_scheduler: Optional: Learning Rate Scheduler Object or a Callable that takes an Optimizer and returns a Scheduler object. The scheduler object should define a get_lr(), step(), state_dict(), and load_state_dict() methods mpu: Optional: A model parallelism unit object that implements get_{model,data}_parallel_{rank,group,world_size}() dist_init_required: Optional: None will auto-initialize torch distributed if needed, otherwise the user can force it to be initialized or not via boolean. collate_fn: Optional: Merges a list of samples to form a mini-batch of Tensor(s). Used when using batched loading from a map-style dataset. config: Optional: Instead of requiring args.deepspeed_config you can pass your deepspeed config as an argument instead, as a path or a dictionary. config_params: Optional: Same as `config`, kept for backwards compatibility. Returns: A tuple of ``engine``, ``optimizer``, ``training_dataloader``, ``lr_scheduler`` * ``engine``: DeepSpeed runtime engine which wraps the client model for distributed training. * ``optimizer``: Wrapped optimizer if a user defined ``optimizer`` is supplied, or if optimizer is specified in json config else ``None``. * ``training_dataloader``: DeepSpeed dataloader if ``training_data`` was supplied, otherwise ``None``. * ``lr_scheduler``: Wrapped lr scheduler if user ``lr_scheduler`` is passed, or if ``lr_scheduler`` specified in JSON configuration. Otherwise ``None``. """ log_dist("DeepSpeed info: version={}, git-hash={}, git-branch={}".format(__version__, __git_hash__, __git_branch__), ranks=[0]) # Disable zero.Init context if it's currently enabled zero.partition_parameters.shutdown_init_context() assert model is not None, "deepspeed.initialize requires a model" global dist from deepspeed import comm as dist dist_backend = get_accelerator().communication_backend_name() dist.init_distributed(dist_backend=dist_backend, dist_init_required=dist_init_required) # Set config using config_params for backwards compat if config is None and config_params is not None: config = config_params # Check for deepscale_config for backwards compat if hasattr(args, "deepscale_config") and args.deepscale_config is not None: logger.warning("************ --deepscale_config is deprecated, please use --deepspeed_config ************") if hasattr(args, "deepspeed_config"): assert (args.deepspeed_config is None), "Not sure how to proceed, we were given both a deepscale_config and deepspeed_config" args.deepspeed_config = args.deepscale_config args.deepscale_config = None # Check that we have only one config passed if hasattr(args, "deepspeed_config") and args.deepspeed_config is not None: assert config is None, "Not sure how to proceed, we were given deepspeed configs in the deepspeed arguments and deepspeed.initialize() function call" config = args.deepspeed_config assert config != None, "DeepSpeed requires --deepspeed_config to specify configuration file" if not isinstance(model, PipelineModule): config_class = DeepSpeedConfig(config, mpu) if config_class.hybrid_engine.enabled: engine = DeepSpeedHybridEngine(args=args, model=model, optimizer=optimizer, model_parameters=model_parameters, training_data=training_data, lr_scheduler=lr_scheduler, mpu=mpu, dist_init_required=dist_init_required, collate_fn=collate_fn, config=config, config_class=config_class) else: engine = DeepSpeedEngine(args=args, model=model, optimizer=optimizer, model_parameters=model_parameters, training_data=training_data, lr_scheduler=lr_scheduler, mpu=mpu, dist_init_required=dist_init_required, collate_fn=collate_fn, config=config, config_class=config_class) else: assert mpu is None, "mpu must be None with pipeline parallelism" mpu = model.mpu() config_class = DeepSpeedConfig(config, mpu) engine = PipelineEngine(args=args, model=model, optimizer=optimizer, model_parameters=model_parameters, training_data=training_data, lr_scheduler=lr_scheduler, mpu=mpu, dist_init_required=dist_init_required, collate_fn=collate_fn, config=config, config_class=config_class) return_items = [engine, engine.optimizer, engine.training_dataloader, engine.lr_scheduler] return tuple(return_items) def _add_core_arguments(parser): r"""Helper (internal) function to update an argument parser with an argument group of the core DeepSpeed arguments. The core set of DeepSpeed arguments include the following: 1) --deepspeed: boolean flag to enable DeepSpeed 2) --deepspeed_config <json file path>: path of a json configuration file to configure DeepSpeed runtime. This is a helper function to the public add_config_arguments() Arguments: parser: argument parser Return: parser: Updated Parser """ group = parser.add_argument_group('DeepSpeed', 'DeepSpeed configurations') group.add_argument('--deepspeed', default=False, action='store_true', help='Enable DeepSpeed (helper flag for user code, no impact on DeepSpeed backend)') group.add_argument('--deepspeed_config', default=None, type=str, help='DeepSpeed json configuration file.') group.add_argument('--deepscale', default=False, action='store_true', help='Deprecated enable DeepSpeed (helper flag for user code, no impact on DeepSpeed backend)') group.add_argument('--deepscale_config', default=None, type=str, help='Deprecated DeepSpeed json configuration file.') group.add_argument('--deepspeed_mpi', default=False, action='store_true', help="Run via MPI, this will attempt to discover the necessary variables to initialize torch " "distributed from the MPI environment") return parser def add_config_arguments(parser): r"""Update the argument parser to enabling parsing of DeepSpeed command line arguments. The set of DeepSpeed arguments include the following: 1) --deepspeed: boolean flag to enable DeepSpeed 2) --deepspeed_config <json file path>: path of a json configuration file to configure DeepSpeed runtime. Arguments: parser: argument parser Return: parser: Updated Parser """ parser = _add_core_arguments(parser) return parser def default_inference_config(): """ Return a default DeepSpeed inference configuration dictionary. """ return DeepSpeedInferenceConfig().dict() def init_inference(model, config=None, **kwargs): """Initialize the DeepSpeed InferenceEngine. Description: all four cases are valid and supported in DS init_inference() API. # Case 1: user provides no config and no kwargs. Default config will be used. .. code-block:: python generator.model = deepspeed.init_inference(generator.model) string = generator("DeepSpeed is") print(string) # Case 2: user provides a config and no kwargs. User supplied config will be used. .. code-block:: python generator.model = deepspeed.init_inference(generator.model, config=config) string = generator("DeepSpeed is") print(string) # Case 3: user provides no config and uses keyword arguments (kwargs) only. .. code-block:: python generator.model = deepspeed.init_inference(generator.model, mp_size=world_size, dtype=torch.half, replace_with_kernel_inject=True) string = generator("DeepSpeed is") print(string) # Case 4: user provides config and keyword arguments (kwargs). Both config and kwargs are merged and kwargs take precedence. .. code-block:: python generator.model = deepspeed.init_inference(generator.model, config={"dtype": torch.half}, replace_with_kernel_inject=True) string = generator("DeepSpeed is") print(string) Arguments: model: Required: original nn.module object without any wrappers config: Optional: instead of arguments, you can pass in a DS inference config dict or path to JSON file Returns: A deepspeed.InferenceEngine wrapped model. """ log_dist("DeepSpeed info: version={}, git-hash={}, git-branch={}".format(__version__, __git_hash__, __git_branch__), ranks=[0]) # Load config_dict from config first if config is None: config = {} if isinstance(config, str): with open(config, "r") as f: config_dict = json.load(f) elif isinstance(config, dict): config_dict = config else: raise ValueError(f"'config' argument expected string or dictionary, got {type(config)}") # Update with values from kwargs, ensuring no conflicting overlap between config and kwargs overlap_keys = set(config_dict.keys()).intersection(kwargs.keys()) # If there is overlap, error out if values are different for key in overlap_keys: if config_dict[key] != kwargs[key]: raise ValueError(f"Conflicting argument '{key}' in 'config':{config_dict[key]} and kwargs:{kwargs[key]}") config_dict.update(kwargs) ds_inference_config = DeepSpeedInferenceConfig(**config_dict) engine = InferenceEngine(model, config=ds_inference_config) return engine
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/__init__.py
__init__.py
# DeepSpeed Team import copy from numpy import BUFSIZE import json import subprocess import sys import threading import time import base64 import os import hjson from tqdm import tqdm from ..utils import logger from .constants import AUTOTUNING, AUTOTUNING_METRIC_PATH from .utils import get_val_by_key, search_error, was_interruptted """ thread-0: loop over experiment queue dispatching experiments if they become available thread-N: start each experiment in its own thread """ from deepspeed import comm as dist TIMEOUT = 5 class ResourceManager: def __init__(self, args, hosts, num_gpus_per_node, results_dir, exps_dir, arg_mappings): self.results_dir = results_dir self.exps_dir = exps_dir self.nodes = [] self.num_gpus_per_node = num_gpus_per_node for host in hosts: self.nodes.append(Node(host, num_gpus_per_node)) self.experiment_queue = [] self.running_experiments = {} self.finished_experiments = {} self.experiment_count = 0 self.exp_paths = set() self.args = args self.arg_mappings = {} if arg_mappings is not None: for k, v in arg_mappings.items(): k = k.strip() v = v.strip() if k not in self.arg_mappings: self.arg_mappings[k] = v def schedule_experiments(self, exp_paths): for exp_path in exp_paths: if exp_path in self.exp_paths: continue else: self.exp_paths.add(exp_path) with open(exp_path, "r") as fd: exp = hjson.load(fd) exp["exp_id"] = self.experiment_count self.experiment_count += 1 result_dir = exp["result_dir"] = os.path.join(self.results_dir, exp['name']) if AUTOTUNING in exp["ds_config"]: metric_file = os.path.join(result_dir, "metrics.json") exp["ds_config"][AUTOTUNING][AUTOTUNING_METRIC_PATH] = metric_file stderr_file = os.path.join(result_dir, "stderr.log") model_info_file = os.path.join(result_dir, "model_info.json") metric_file = os.path.join(result_dir, "metrics.json") # skip existing experiments (except for the ones that were interrupted) if os.path.exists(result_dir) and os.path.exists(stderr_file): if not was_interruptted(stderr_file): err = search_error(stderr_file) exp_id = exp["exp_id"] self.finished_experiments[exp_id] = (exp, err) if err or os.path.exists(metric_file) or os.path.exists(model_info_file): logger.info(f"Skipping exp {exp['name']} whose result already exists") continue self.experiment_queue.append(exp) def run_job(self, exp: dict, reservations): exp_id = exp["exp_id"] exp["master_port"] = self.args.master_port + exp_id exp["result_dir"] = os.path.join(self.results_dir, exp['name']) user_script = self.args.user_script user_args = self.args.user_args # overwrite the user arg in the arg_mappings for key, val in self.arg_mappings.items(): nval = get_val_by_key(exp, key) if nval and str(nval) != "auto": if val in user_args: idx = user_args.index(val) user_args[idx + 1] = str(nval) else: user_args.append(val) user_args.append(str(nval)) t = threading.Thread(target=run_experiment, args=(exp, reservations, user_script, user_args)) t.start() self.running_experiments[exp_id] = (t, exp, reservations, time.time()) def experiment_check(self, pbar): finished_exps = [] for exp_id, exp_data in self.running_experiments.items(): thread, exp_json, reservations, start_time = exp_data logger.debug(f"Checking exp_id = {exp_id}, alive = {thread.is_alive()}") thread.join(timeout=TIMEOUT) if not thread.is_alive(): exp_dir = exp_json["result_dir"] stderr_file = os.path.join(exp_dir, "stderr.log") err = search_error(stderr_file) finished_exps.append((exp_id, reservations)) self.finished_experiments[exp_id] = (exp_json, err) duration = time.time() - start_time logger.debug(f"Finished exp_id = {exp_id}, duration={duration:.2f} sec") pbar.update(len(finished_exps)) for exp_id, reservations in finished_exps: for reservation in reservations: reservation.restore_slots() self.running_experiments.pop(exp_id) time.sleep(TIMEOUT) def resource_request(self, exp): num_gpus, num_nodes = exp['num_gpus'], exp['num_nodes'] slot_request = num_gpus reservations = [] for node in self.nodes: if num_nodes == 0: break slots = node.reserve_slots(slot_request=slot_request) if slots: reservations.append(Reservation(node=node, slots=slots)) num_nodes -= 1 if num_nodes == 0: # request satisfied return reservations else: # request not satisfied for reservation in reservations: reservation.restore_slots() def status(self): status = "" for node in self.nodes: status += f"{node.host} ({len(node.idle_slots)} idle gpus), " return status[:-1] def run(self): pbar = tqdm(total=len(self.experiment_queue)) while len(self.experiment_queue) > 0: exp = self.experiment_queue.pop(0) logger.debug(f'Popped exp_id = {exp["exp_id"]} from the queue') logger.debug(f'Resource status: {self.status()}') reservations = self.resource_request(exp) if not reservations: logger.debug(f'Unable to schedule exp_id = {exp["exp_id"]}') self.experiment_queue.insert(0, exp) logger.debug(f'Put exp_id = {exp["exp_id"]} back into the queue') self.experiment_check(pbar) else: desc = "" for reservation in reservations: reservation.slots.sort() slots = ",".join(map(str, reservation.slots)) desc += f"{reservation.node.host}:{slots}@" desc = desc[:-1] logger.debug(f'Running exp_id = {exp["exp_id"]} on {desc}') self.run_job(exp, reservations) # All pending experiments are scheduled, waiting for them to complete while len(self.running_experiments) > 0: self.experiment_check(pbar) def save_exp_results_to_database(self, message, ranks=None, path=None): """Print message when one of following condition meets + not dist.is_initialized() + dist.get_rank() in ranks if ranks is not None or ranks = [-1] Args: message (str) ranks (list) path (str) """ should_log = not dist.is_initialized() ranks = ranks or [] my_rank = dist.get_rank() if dist.is_initialized() else -1 if ranks and not should_log: should_log = ranks[0] == -1 should_log = should_log or (my_rank in set(ranks)) logger.debug(f"*** Should log: {should_log}") if should_log: message['rank'] = my_rank with open(path, 'a') as outfile: json.dump(message, outfile) outfile.write('\n') def parse_results(self, metric): """ Parses the metric file of the finished experiments to select the optimal DeepSpeed configuration. Args: finished_experiments (dcit): a dictionary of experiment id and experiment description. Returns: The path to the result folder of the experiment with the optimal configuration. """ max_throughput = sys.float_info.min best_exp_id = -1 for exp_id, (exp, err) in self.finished_experiments.items(): if err: logger.info( f"The experiment exp_id = {exp_id}, exp_name = {exp['name']}, did not run successfully with error = {err}, thus a metrics.txt does not exist for it. Check the stderr.log in {exp['result_dir']}" ) continue metric_file = exp["ds_config"][AUTOTUNING][AUTOTUNING_METRIC_PATH] if os.path.exists(metric_file): with open(metric_file, 'r') as f: results = hjson.load(f) curr_throughput = results[metric] if curr_throughput > max_throughput: max_throughput = curr_throughput best_exp_id = exp_id exp['results'] = results if best_exp_id != -1: best_exp, _ = self.finished_experiments[best_exp_id] return best_exp, max_throughput return exp, None def clear(self): """Clear experiment queues, does not reset self.experiment_count """ self.experiment_queue = [] # clean up the running experiments for exp_id, exp_data in self.running_experiments.items(): thread, exp_json, reservations, start_time = exp_data clean_up(exp_json, reservations) self.running_experiments = {} self.finished_experiments = {} self.exp_paths = set() class Node: def __init__(self, host, max_slots): self.host = host self.max_slots = max_slots self.idle_slots = list(range(max_slots)) def reserve_slots(self, slot_request: int) -> list: if len(self.idle_slots) >= slot_request: return [self.idle_slots.pop(0) for _ in range(slot_request)] def restore_slots(self, slots: list): self.idle_slots += slots class Reservation: def __init__(self, node, slots): self.node = node self.slots = slots def restore_slots(self): self.node.restore_slots(self.slots) def desc(self): slots = ",".join(map(str, self.slots)) return f"{self.node.host}:{slots}@" def get_job_id(): # Infrastructure-specific job-id infra_job_id = None if "DLWS_JOB_ID" in os.environ: infra_job_id = os.environ["DLWS_JOB_ID"] elif "DLTS_JOB_ID" in os.environ: infra_job_id = os.environ["DLTS_JOB_ID"] else: infra_job_id = "unknown-job-id" return infra_job_id def get_user(): user = None if "USER" in os.environ: user = os.environ["USER"] else: user = "unknown-user" return user def run_experiment(exp: dict, reservations, user_script, user_args): include_str = "" for reservation in reservations: reservation.slots.sort() slots = ",".join(map(str, reservation.slots)) include_str += f"{reservation.node.host}:{slots}@" include_str = include_str[:-1] master_port = exp["master_port"] exp["launcher_args"] = [ "--include", f"{include_str}", "--master_port", str(master_port), ] logger.debug(f'launcher args={exp["launcher_args"]}') exp["user"] = get_user() exp["job_id"] = get_job_id() exp_dir = exp["result_dir"] os.makedirs(exp_dir, exist_ok=True) ds_config_path = os.path.join(exp_dir, "ds_config.json") exp["ds_config_path"] = ds_config_path ds_config = copy.deepcopy(exp["ds_config"]) ds_config_json = json.dumps(ds_config).encode('utf-8') exp["ds_config_base64"] = base64.urlsafe_b64encode(ds_config_json).decode('utf-8') with open(exp["ds_config_path"], "w", buffering=BUFSIZE) as fd: json.dump(ds_config, fd) fd.flush() os.fsync(fd) path = exp["ds_config_path"] logger.info(f"Scheduler wrote ds_config to {path}, {os.path.abspath(path)}") with open(os.path.join(exp_dir, "exp.json"), "w", buffering=BUFSIZE) as fd: json.dump(exp, fd) fd.flush() os.fsync(fd) path = os.path.join(exp_dir, "exp.json") logger.info(f"Scheduler wrote exp to {path}, {os.path.abspath(path)}") # remove "--deepspeed_config ds_config.json" from user_args if user_args: if "--deepspeed_config" in user_args: idx = user_args.index("--deepspeed_config") # "--deepspeed_config" is omitted in HF elif "--deepspeed" in user_args: idx = user_args.index("--deepspeed") assert idx < len(user_args), "there is no ds_config file specified after --deepspeed_config or --deepspeed" # user_args[idx + 1] = exp["ds_config_path"] # pass base64 serialized ds_config to launcher user_args[idx + 1] = exp["ds_config_base64"] exp["user_script"] = user_script exp["user_args"] = user_args cmd = ["deepspeed"] + exp["launcher_args"] + [user_script] + user_args assert len(exp["launcher_args"]) > 0, "must provide launcher args" with open(os.path.join(exp_dir, "cmd.txt"), "w", buffering=BUFSIZE) as fd: fd.write(" ".join(cmd)) fd.write("\n") fd.flush() os.fsync(fd) logger.info( f"Launching exp_id = {exp['exp_id']}, exp_name = {exp['name']}, with resource = {include_str}, and ds_config = {os.path.abspath(ds_config_path)}" ) with open(os.path.join(exp_dir, "stdout.log"), "wb") as out, open(os.path.join(exp_dir, "stderr.log"), "wb") as err: result = subprocess.Popen(cmd, stdout=out, stderr=err) result.wait() out.flush() err.flush() os.fsync(out) os.fsync(err) clean_up(exp, reservations) logger.info(f"Done running exp_id = {exp['exp_id']}, exp_name = {exp['name']}, with resource = {include_str}") PDSH_MAX_FAN_OUT = 1024 def clean_up(exp: dict, reservations): env = os.environ.copy() env['PDSH_RCMD_TYPE'] = 'ssh' nodes_str = "" for reservation in reservations: nodes_str += f"{reservation.node.host}," nodes_str = nodes_str[:-1] logger.debug(f"Cleaning up exp_id = {exp['exp_id']} on the following workers: {nodes_str}") # PDSH flags for max node fan out and specific hosts to launch on # See https://linux.die.net/man/1/pdsh for flag details pdsh_cmd = ['pdsh', '-f', str(PDSH_MAX_FAN_OUT), '-w', nodes_str] kill_cmd = [ 'pkill', '-f', exp['name'], ] cmd = pdsh_cmd + kill_cmd logger.debug("cmd = {}".format(' '.join(cmd))) result = subprocess.Popen(cmd, env=env) result.wait() # In case of failure must propagate the error-condition back to the caller (usually shell). The # actual error and traceback should have been printed in the subprocess, so in order to avoid # unnecessary noise we just quietly exit here with the same code as the subprocess if result.returncode > 0: sys.exit(result.returncode) logger.info(f"Done cleaning up exp_id = {exp['exp_id']} on the following workers: {nodes_str}")
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/autotuning/scheduler.py
scheduler.py
# DeepSpeed Team ######################################### # autotunner implementation constants ######################################### import os DEFAULT_TEMPLATE_PATH_ZERO_0 = os.path.join(os.path.dirname(os.path.realpath(__file__)), "config_templates", "template_zero0.json") DEFAULT_TEMPLATE_PATH_ZERO_1 = os.path.join(os.path.dirname(os.path.realpath(__file__)), "config_templates", "template_zero1.json") DEFAULT_TEMPLATE_PATH_ZERO_2 = os.path.join(os.path.dirname(os.path.realpath(__file__)), "config_templates", "template_zero2.json") DEFAULT_TEMPLATE_PATH_ZERO_3 = os.path.join(os.path.dirname(os.path.realpath(__file__)), "config_templates", "template_zero3.json") METRIC_PERCENT_DIFF_CONST = 0.05 DS_CONFIG = "ds_config" BUFSIZE = 1 # line buffer size for writing files ######################################### # autotuner configuration constants ######################################### # Autotuner. By default, this feature is not enabled. # Users can configure in ds_config.json as below example: AUTOTUNING_FORMAT = """ autotuner should be enabled as: "session_params": { "autotuning": { "enabled": true, "start_step": 5, "end_step": 15 } } """ AUTOTUNING = "autotuning" AUTOTUNING_ENABLED = "enabled" AUTOTUNING_ENABLED_DEFAULT = False AUTOTUNING_FAST = "fast" AUTOTUNING_FAST_DEFAULT = True AUTOTUNING_RESULTS_DIR = "results_dir" AUTOTUNING_RESULTS_DIR_DEFAULT = "autotuning_results" AUTOTUNING_EXPS_DIR = "exps_dir" AUTOTUNING_EXPS_DIR_DEFAULT = "autotuning_exps" AUTOTUNING_OVERWRITE = "overwrite" AUTOTUNING_OVERWRITE_DEFAULT = True AUTOTUNING_START_PROFILE_STEP = "start_profile_step" AUTOTUNING_START_PROFILE_STEP_DEFAULT = 3 AUTOTUNING_END_PROFILE_STEP = "end_profile_step" AUTOTUNING_END_PROFILE_STEP_DEFAULT = 5 AUTOTUNING_METRIC_PATH = "metric_path" AUTOTUNING_METRIC_PATH_DEFAULT = None AUTOTUNING_TUNER_TYPE = "tuner_type" AUTOTUNING_TUNER_GRIDSEARCH = "gridsearch" AUTOTUNING_TUNER_RANDOM = "random" AUTOTUNING_TUNER_MODELBASED = "model_based" AUTOTUNING_TUNER_TYPE_DEFAULT = AUTOTUNING_TUNER_GRIDSEARCH AUTOTUNING_TUNER_EARLY_STOPPING = "tuner_early_stopping" AUTOTUNING_TUNER_EARLY_STOPPING_DEFAULT = 5 AUTOTUNING_TUNER_NUM_TRIALS = "tuner_num_trials" AUTOTUNING_TUNER_NUM_TRIALS_DEFAULT = 50 AUTOTUNING_ARG_MAPPINGS = "arg_mappings" AUTOTUNING_ARG_MAPPINGS_DEFAULT = None AUTOTUNING_MAX_TRAIN_BATCH_SIZE = "max_train_batch_size" AUTOTUNING_MAX_TRAIN_BATCH_SIZE_DEFAULT = None AUTOTUNING_MIN_TRAIN_BATCH_SIZE = "min_train_batch_size" AUTOTUNING_MIN_TRAIN_BATCH_SIZE_DEFAULT = 1 AUTOTUNING_MAX_TRAIN_MICRO_BATCH_SIZE_PER_GPU = "max_train_micro_batch_size_per_gpu" AUTOTUNING_MAX_TRAIN_MICRO_BATCH_SIZE_PER_GPU_DEFAULT = 1024 AUTOTUNING_MIN_TRAIN_MICRO_BATCH_SIZE_PER_GPU = "min_train_micro_batch_size_per_gpu" AUTOTUNING_MIN_TRAIN_MICRO_BATCH_SIZE_PER_GPU_DEFAULT = 1 AUTOTUNING_NUM_TUNING_MICRO_BATCH_SIZES = "num_tuning_micro_batch_sizes" AUTOTUNING_NUM_TUNING_MICRO_BATCH_SIZES_DEFAULT = 3 AUTOTUNING_MP_SIZE = "mp_size" AUTOTUNING_MP_SIZE_DEFAULT = 1 AUTOTUNING_METRIC = "metric" AUTOTUNING_METRIC_LATENCY = "latency" AUTOTUNING_METRIC_THROUGHPUT = "throughput" AUTOTUNING_METRIC_FLOPS = "flops" AUTOTUNING_METRIC_FORWARD = "forward" AUTOTUNING_METRIC_BACKWRAD = "flops" AUTOTUNING_METRIC_STEPS = "step" AUTOTUNING_METRIC_DEFAULT = AUTOTUNING_METRIC_THROUGHPUT ######################################### # MODEL INFO ######################################### AUTOTUNING_MODEL_INFO_PATH = "model_info_path" AUTOTUNING_MODEL_INFO_PATH_DEFAULT = None MODEL_INFO_FORMAT = ''' "model_info": { "num_params": 1000000000, "hidden_size": 10, "num_layers": 12, } ''' MODEL_INFO = "model_info" MODEL_INFO_PROFILE = "profile" MODEL_INFO_PROFILE_DEFAULT = False MODEL_INFO_NUM_PARAMS = "num_params" MODEL_INFO_NUM_PARAMS_DEFAULT = None MODEL_INFO_HIDDEN_SIZE = "hideen_size" MODEL_INFO_HIDDEN_SIZE_DEFAULT = None MODEL_INFO_NUM_LAYERS = "num_layers" MODEL_INFO_NUM_LAYERS_DEFAULT = None MODEL_INFO_KEY_DEFAULT_DICT = { MODEL_INFO_PROFILE: MODEL_INFO_PROFILE_DEFAULT, MODEL_INFO_NUM_PARAMS: MODEL_INFO_NUM_PARAMS_DEFAULT, MODEL_INFO_HIDDEN_SIZE: MODEL_INFO_HIDDEN_SIZE_DEFAULT, MODEL_INFO_NUM_LAYERS: MODEL_INFO_NUM_LAYERS_DEFAULT } ######################################### # autotunner search space constants ######################################### DEFAULT_HF_CONFIG = { "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto", "gradient_accumulation_steps": "auto", } DEFAULT_MIN_MEM_CONFIG = { "train_micro_batch_size_per_gpu": 1, "zero_optimization": { "stage": 3 }, "memory_break_down": False } DEFAULT_TUNING_SPACE_ZERO_0 = {"zero_optimization": {"stage": 0}} DEFAULT_TUNING_SPACE_ZERO_1 = { "zero_optimization": { "stage": 1, "reduce_bucket_size": [5e7, 5e8, 1e9], "allgather_bucket_size": [5e7, 5e8, 1e9], } } DEFAULT_TUNING_SPACE_ZERO_2 = { "zero_optimization": { "stage": 2, "overlap_comm": [True, False], "reduce_scatter": [False, True], "reduce_bucket_size": [5e7, 5e8, 1e9], "allgather_bucket_size": [5e7, 5e8, 1e9], "contiguous_gradients": [False, True] }, } DEFAULT_TUNING_SPACE_ZERO_3 = { "zero_optimization": { "stage": 3, "overlap_comm": [True, False], "reduce_scatter": [False, True], "reduce_bucket_size": [5e7, 5e8, 1e9], "allgather_partitions": [True, False], "allgather_bucket_size": [5e7, 5e8, 1e9], "contiguous_gradients": [False, True] }, } GLOBAL_TUNING_SPACE = 'global' # TUNING_MICRO_BATCH_SIZE_PREFIX="tune_micro_batch_size_z" TUNING_MICRO_BATCH_SIZE_PREFIX = "z"
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/autotuning/constants.py
constants.py
# DeepSpeed Team from deepspeed.runtime.config_utils import get_scalar_param, get_dict_param, DeepSpeedConfigObject from deepspeed.autotuning.constants import * class DeepSpeedAutotuningConfig(DeepSpeedConfigObject): def __init__(self, param_dict): super(DeepSpeedAutotuningConfig, self).__init__() self.enabled = None self.start_step = None self.end_step = None self.metric_path = None self.arg_mappings = None self.metric = None self.model_info = None self.results_dir = None self.exps_dir = None self.overwrite = None if param_dict and AUTOTUNING in param_dict.keys(): autotuning_dict = param_dict[AUTOTUNING] else: autotuning_dict = {} self._initialize(autotuning_dict) def _initialize(self, autotuning_dict): self.enabled = get_scalar_param(autotuning_dict, AUTOTUNING_ENABLED, AUTOTUNING_ENABLED_DEFAULT) self.fast = get_scalar_param(autotuning_dict, AUTOTUNING_FAST, AUTOTUNING_FAST_DEFAULT) self.results_dir = get_scalar_param(autotuning_dict, AUTOTUNING_RESULTS_DIR, AUTOTUNING_RESULTS_DIR_DEFAULT) assert self.results_dir, "results_dir cannot be empty" self.exps_dir = get_scalar_param(autotuning_dict, AUTOTUNING_EXPS_DIR, AUTOTUNING_EXPS_DIR_DEFAULT) assert self.exps_dir, "exps_dir cannot be empty" self.overwrite = get_scalar_param(autotuning_dict, AUTOTUNING_OVERWRITE, AUTOTUNING_OVERWRITE_DEFAULT) self.start_profile_step = get_scalar_param(autotuning_dict, AUTOTUNING_START_PROFILE_STEP, AUTOTUNING_START_PROFILE_STEP_DEFAULT) self.end_profile_step = get_scalar_param(autotuning_dict, AUTOTUNING_END_PROFILE_STEP, AUTOTUNING_END_PROFILE_STEP_DEFAULT) self.metric = get_scalar_param(autotuning_dict, AUTOTUNING_METRIC, AUTOTUNING_METRIC_DEFAULT) self.metric_path = get_scalar_param(autotuning_dict, AUTOTUNING_METRIC_PATH, AUTOTUNING_METRIC_PATH_DEFAULT) self.tuner_type = get_scalar_param(autotuning_dict, AUTOTUNING_TUNER_TYPE, AUTOTUNING_TUNER_TYPE_DEFAULT) self.tuner_early_stopping = get_scalar_param(autotuning_dict, AUTOTUNING_TUNER_EARLY_STOPPING, AUTOTUNING_TUNER_EARLY_STOPPING_DEFAULT) self.tuner_num_trials = get_scalar_param(autotuning_dict, AUTOTUNING_TUNER_NUM_TRIALS, AUTOTUNING_TUNER_NUM_TRIALS_DEFAULT) self.arg_mappings = get_dict_param(autotuning_dict, AUTOTUNING_ARG_MAPPINGS, AUTOTUNING_ARG_MAPPINGS_DEFAULT) self.model_info = get_model_info_config(autotuning_dict) self.model_info_path = get_scalar_param(autotuning_dict, AUTOTUNING_MODEL_INFO_PATH, AUTOTUNING_MODEL_INFO_PATH_DEFAULT) self.mp_size = get_scalar_param(autotuning_dict, AUTOTUNING_MP_SIZE, AUTOTUNING_MP_SIZE_DEFAULT) self.max_train_batch_size = get_dict_param(autotuning_dict, AUTOTUNING_MAX_TRAIN_BATCH_SIZE, AUTOTUNING_MAX_TRAIN_BATCH_SIZE_DEFAULT) self.min_train_batch_size = get_dict_param(autotuning_dict, AUTOTUNING_MIN_TRAIN_BATCH_SIZE, AUTOTUNING_MIN_TRAIN_BATCH_SIZE_DEFAULT) self.max_train_micro_batch_size_per_gpu = get_dict_param( autotuning_dict, AUTOTUNING_MAX_TRAIN_MICRO_BATCH_SIZE_PER_GPU, AUTOTUNING_MAX_TRAIN_MICRO_BATCH_SIZE_PER_GPU_DEFAULT) self.min_train_micro_batch_size_per_gpu = get_dict_param( autotuning_dict, AUTOTUNING_MIN_TRAIN_MICRO_BATCH_SIZE_PER_GPU, AUTOTUNING_MIN_TRAIN_MICRO_BATCH_SIZE_PER_GPU_DEFAULT) self.num_tuning_micro_batch_sizes = get_dict_param(autotuning_dict, AUTOTUNING_NUM_TUNING_MICRO_BATCH_SIZES, AUTOTUNING_NUM_TUNING_MICRO_BATCH_SIZES_DEFAULT) def get_model_info_config(param_dict): if MODEL_INFO in param_dict and param_dict[MODEL_INFO] is not None: model_info_config = {} for key, default_value in MODEL_INFO_KEY_DEFAULT_DICT.items(): model_info_config[key] = get_scalar_param(param_dict[MODEL_INFO], key, default_value) return model_info_config return None def get_default_model_info_config(): return MODEL_INFO_KEY_DEFAULT_DICT
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/autotuning/config.py
config.py
# DeepSpeed Team import shutil import subprocess import time import datetime import math import hjson from ..runtime.config_utils import dict_raise_error_on_duplicate_keys from ..runtime.constants import * from ..runtime.zero.config import ZERO_OPTIMIZATION, ZeroStageEnum from ..utils import logger from .config import DeepSpeedAutotuningConfig from .constants import * from .scheduler import ResourceManager from .tuner import GridSearchTuner, RandomTuner, ModelBasedTuner from .utils import * from deepspeed.accelerator import get_accelerator try: from tabulate import tabulate except ImportError: tabulate = None try: import mlflow has_mlflow = True except Exception as e: has_mlflow = False ZERO_OPTIMIZATION_STAGE = "stage" OFFLOAD_OPTIMIZER = "offload_optimizer" OFFLOAD_PARAM = "offload_param" ZERO_OPTIMIZATION_STAGE_DEFAULT = ZeroStageEnum.disabled class Autotuner: """The DeepSpeed Autotuner automatically discovers the optimal DeepSpeed configuration that delivers good training speed. The Autotuner uses model information, system information, and heuristics to efficiently tune system knobs that affect compute and memory efficiencies, such as ZeRO optimization stages, micro-batch sizes, and many other ZeRO optimization configurations. It not only reduces the time and resources user spend on tuning, but also can discover configurations better than hand-tuned methods. Autotuning with DeepSpeed requires no code change from DeepSpeed users. Please refer to the README for usage details. """ def __init__(self, args, active_resources): self.args = args self.selected_exp_dir = None assert tabulate is not None, "Missing required package `tabulate`, please install with `pip install deepspeed[autotuning]`." logger.debug(f"autotunning args={args}") self.user_config = self._get_user_config(args.user_args) assert self.user_config is not None, "DeepSpeed configuration is not provided" self.autotuning_config = DeepSpeedAutotuningConfig(self.user_config) if self.user_config[AUTOTUNING]: if AUTOTUNING_EXPS_DIR in self.user_config[AUTOTUNING].keys(): del self.user_config[AUTOTUNING][AUTOTUNING_EXPS_DIR] if AUTOTUNING_RESULTS_DIR in self.user_config[AUTOTUNING].keys(): del self.user_config[AUTOTUNING][AUTOTUNING_RESULTS_DIR] self.exps_dir = self.autotuning_config.exps_dir if self.autotuning_config.overwrite and os.path.exists(self.exps_dir): shutil.rmtree(self.exps_dir, ignore_errors=True) if not os.path.exists(self.exps_dir): try: os.makedirs(self.exps_dir, exist_ok=True) logger.info(f"Created autotuning experiments directory: {self.exps_dir}") except: logger.error( f"Failed to create {self.exps_dir}, please check `exps_dir` in the autotuning config file is accessible by all the nodes in the job." ) exit(-1) self.results_dir = self.autotuning_config.results_dir if self.autotuning_config.overwrite and os.path.exists(self.results_dir): shutil.rmtree(self.results_dir, ignore_errors=True) if not os.path.exists(self.results_dir): try: os.makedirs(self.results_dir, exist_ok=True) logger.info(f"Created autotuning results directory: {self.exps_dir}") except: logger.error( f"Failed to create {self.results_dir}, please check `results_dir` in the autotuning config file is accessible by all the nodes in the job." ) exit(-1) # set the active resource for the autotuner resource manager self.rm = self._get_resource_manager(active_resources) # get resource requirement for each autotuning experiment self.exp_num_nodes, self.exp_num_gpus = self._get_exp_resources(args) assert self.exp_num_gpus <= self.rm.num_gpus_per_node, "num_gpus in the autotuning configuration must not be less than the --num_gpus value in the train script if any" assert self.exp_num_nodes <= len( self.rm.nodes ), "num_nodes in the autotuning configuration must not be less than the --num_nodes value in the train script if any" self.records = {} self.optimal_cmd = None self.optmal_ds_config = None self.mlflow_parent_id = None def print_tuning_results(self): """Print the autotuning results in tabular format. """ best_space_records = self.get_best_space_records() tab = [] if best_space_records: for key, val in best_space_records.items(): if not val: continue row = [] row.append(key) num_exps = 0 if key == GLOBAL_TUNING_SPACE: cnt = 0 for k, v in best_space_records.items(): if k != GLOBAL_TUNING_SPACE: cnt += v[2] num_exps = cnt else: num_exps = val[2] row.append(num_exps) row.append(val[1]) row.append(val[0]['name']) tab.append(row) summary = tabulate(tab, headers=["tuning_space", "num_experiments", "best_metric_val", "best_exp_name"], tablefmt="pipe") print(summary) with open(os.path.join(self.results_dir, 'summary.txt'), 'w', buffering=BUFSIZE) as fd: fd.write(summary) fd.flush() os.fsync(fd) if GLOBAL_TUNING_SPACE in best_space_records: best_exp, best_metric_val, total_num_exps = best_space_records[GLOBAL_TUNING_SPACE] if best_exp: logger.info( f"{best_exp['name']} is the optimal setup after tuning. The exp result is at {best_exp['result_dir']}." ) else: logger.info(f"No optimal setup is found. Please check that experiments were run successfully.") tuning_duration = datetime.timedelta(seconds=(time.time() - self.start_time)) logger.info(f"Tuning completed in {tuning_duration}") with open(os.path.join(self.results_dir, 'summary.txt'), 'a') as f: f.write( f"\n\nTuning completed in {tuning_duration}. Total number of experiments: {self.rm.experiment_count - 1}." ) f.flush() def _get_user_config(self, user_args): """Get DeepSpeed configuration from the user arguments passed to the launcher. Args: user_args ([list]): user arguments passed to the DeepSpeed launcher Returns: [dict]: DeepSpeed configuration dictionary """ user_config_file = None if "--deepspeed_config" in user_args: idx = user_args.index("--deepspeed_config") assert ".json" in user_args[ idx + 1], "DeepSpeed --deepspeed_config requires a json file to specify the configuration" user_config_file = user_args[idx + 1] elif "--deepspeed" in user_args: idx = user_args.index("--deepspeed") if ".json" in user_args[idx + 1]: user_config_file = user_args[idx + 1] logger.debug(f"user_config_file = {user_config_file}") if user_config_file is not None: assert os.path.isfile(user_config_file), "DeepSpeed configuration file: {} is not an existing file".format( user_config_file) if os.path.exists(user_config_file): return json.load(open(user_config_file, "r"), object_pairs_hook=dict_raise_error_on_duplicate_keys) return None def _get_resource_manager(self, active_resources): """Initialize and return a resource manager Args: active_resources ([dict]): A dictionary of hostname and its slots (GPUs), e.g. {"worker-0": "0,1,2,3,4,5,6,7,8"} Raises: RuntimeError: raises the error if no GPU is available Returns: [ResourceManager]: A resource manager that schedules and runs autotuning experiments. """ logger.info(f"active_resources = {active_resources}") hosts = [] ngpus_per_node = 100 for hostname, slots in active_resources.items(): hosts.append(hostname) ngpus_per_node = min(len(slots), ngpus_per_node) assert ngpus_per_node > 0, "no gpu is available" return ResourceManager(args=self.args, hosts=hosts, num_gpus_per_node=ngpus_per_node, results_dir=self.results_dir, exps_dir=self.exps_dir, arg_mappings=self.autotuning_config.arg_mappings) def _get_exp_resources(self, args): """Get resource requirement for each autotuning experiment Args: args (dict): user args Returns: num_nodes, num_gpus: the number of gpus and number of nodes used in the autotuning experiments """ if args.num_nodes > 0: num_nodes = args.num_nodes else: num_nodes = len(self.rm.nodes) if args.num_gpus > 0: num_gpus = args.num_gpus else: num_gpus = self.rm.num_gpus_per_node return num_nodes, num_gpus def metric(self): return self.autotuning_config.metric def fast_enabled(self): return self.autotuning_config.fast def max_train_batch_size(self): return self.autotuning_config.max_train_batch_size def mp_size(self): return self.autotuning_config.mp_size def max_train_micro_batch_size_per_gpu(self): if self.max_train_batch_size( ) and self.max_train_batch_size() > 0: # if the user specifies a max_train_batch_size max_train_micro_batch_size = self.max_train_batch_size() * self.mp_size() // ( self.exp_num_gpus * self.exp_num_nodes) # gradient accumulation steps >=1 return min(self.autotuning_config.max_train_micro_batch_size_per_gpu, max_train_micro_batch_size) else: return self.autotuning_config.max_train_micro_batch_size_per_gpu def min_train_micro_batch_size_per_gpu(self): return self.autotuning_config.min_train_micro_batch_size_per_gpu def num_tuning_micro_batch_sizes(self): return self.autotuning_config.num_tuning_micro_batch_sizes def fp16_enabled(self): if FP16 in self.user_config.keys(): return self.user_config[FP16].get(FP16_ENABLED, FP16_ENABLED_DEFAULT) else: return False def get_gpu_memory_info(self): return get_accelerator().total_memory() def get_activation_memory_per_gpu(self): if self.model_info and "activation_mem_per_gpu" in self.model_info: return self.model_info["activation_mem_per_gpu"] def get_instantiation_memory_required_per_gpu(self, zero_stage): num_params = self.get_model_num_params() total_gpus = self.exp_num_nodes * self.exp_num_gpus fp16_enabled = self.fp16_enabled() if not num_params: return 0 # assume the model uses Adam optimizer # ZeroStageEnum.disabled: params_mem = num_params * (2 if fp16_enabled else 4) gradients_mem = num_params * (2 if fp16_enabled else 4) optimizer_mem = num_params * (16 if fp16_enabled else 8) if zero_stage >= ZeroStageEnum.optimizer_states: optimizer_mem = optimizer_mem / total_gpus if zero_stage >= ZeroStageEnum.gradients: gradients_mem = gradients_mem / total_gpus if zero_stage >= ZeroStageEnum.weights: params_mem = params_mem / total_gpus mem_per_gpu = (params_mem + gradients_mem + optimizer_mem) / self.mp_size() return mem_per_gpu def _generate_experiments(self, tuning_space, max_train_batch_size_per_gpu): """Generates a list of autotuning experiments given a tuning_space. The corresponding parameter values are replaced by user-defined values in the DeepSpeed configuration file. Args: tuning_space ([dict]): A DeepSpeed configuration dictionary where a value can be a list (called a tuning parameter). For example, { "zero_optimization": { "stage": 1, "reduce_bucket_size": [5e7, 5e8, 1e9], "allgather_bucket_size": [5e7, 5e8, 1e9], } } reduce_bucket_size and allgather_bucket_size are the tuning parameters in this tuning space. Returns: [list]: a list of experiments generated by taking combinations of values of the tuning space. The above tuning space generates 3*3 = 9 experiments if the user DeepSpeed configuration file does not overwrite the two tuning parameters or define more tuning parameters. """ exps = [] # each zero stage uses a different template configuration file config_zero = tuning_space.get(ZERO_OPTIMIZATION, {}) stage = config_zero.get(ZERO_OPTIMIZATION_STAGE, ZERO_OPTIMIZATION_STAGE_DEFAULT) template_config = {} if stage == 0: template_path = DEFAULT_TEMPLATE_PATH_ZERO_0 template_config = hjson.load(open(template_path, 'r')) prefix = "z0_" elif stage == 1: template_path = DEFAULT_TEMPLATE_PATH_ZERO_1 template_config = hjson.load(open(template_path, 'r')) prefix = "z1_" elif stage == 2: template_path = DEFAULT_TEMPLATE_PATH_ZERO_2 template_config = hjson.load(open(template_path, 'r')) prefix = "z2_" elif stage == 3: template_path = DEFAULT_TEMPLATE_PATH_ZERO_3 template_config = hjson.load(open(template_path, 'r')) model_info = self.model_info if model_info and "hidden_size" in model_info: hs = model_info["hidden_size"] template_config[ZERO_OPTIMIZATION]['reduce_bucket_size'] = hs * hs template_config[ZERO_OPTIMIZATION]['stage3_prefetch_bucket_size'] = 0.9 * hs * hs template_config[ZERO_OPTIMIZATION]['stage3_param_persistence_threshold'] = 10 * hs prefix = "z3_" else: return exps # replace the corresponding parameter values if the user specifies them in the DeepSpeed configuration file replace_dict(tuning_space, self.user_config, [ZERO_OPTIMIZATION, TRAIN_MICRO_BATCH_SIZE_PER_GPU]) logger.debug(f"tuning_space = {json.dumps(tuning_space)}") all_configs = get_all_configs(tuning_space, ignore_keys=["optimizer"]) tuning_keys = get_tuning_keys(tuning_space) logger.debug(f"tuning_keys = {tuning_keys}") logger.debug(f"before pruning total configs = {len(all_configs)}") pruned_list = prune_configs(all_configs) logger.debug(f"after pruning total configs = {len(pruned_list)}") for config in pruned_list: exp_config = copy.deepcopy(template_config) # fill the template with the expr config replace_dict(exp_config, config) # if the config does not use offloading, remove the offloading section config_zero = config.get(ZERO_OPTIMIZATION, None) if config_zero: if OFFLOAD_OPTIMIZER not in config_zero and OFFLOAD_OPTIMIZER in exp_config[ZERO_OPTIMIZATION]: del exp_config[ZERO_OPTIMIZATION][OFFLOAD_OPTIMIZER] if OFFLOAD_PARAM not in config_zero and OFFLOAD_PARAM in exp_config[ZERO_OPTIMIZATION]: del exp_config[ZERO_OPTIMIZATION][OFFLOAD_PARAM] # set gradient accumulation steps according to max_train_batch_size_per_gpu mbs = exp_config[TRAIN_MICRO_BATCH_SIZE_PER_GPU] gas = max_train_batch_size_per_gpu // mbs exp_config[GRADIENT_ACCUMULATION_STEPS] = gas exp_config[TRAIN_BATCH_SIZE] = mbs * gas * \ self.exp_num_gpus * self.exp_num_nodes // self.mp_size() exp = {} # generate the expr name exp_name = canonical_name(exp_config, tuning_keys, prefix) exp['name'] = exp_name exp[DS_CONFIG] = exp_config exp['num_gpus'] = self.exp_num_gpus exp['num_nodes'] = self.exp_num_nodes exps.append(exp) return exps def tune(self): """ Tunes Zero stages, micro batch size per GPU, and other Zero configurations. Performance metrics of different tuning spaces are recorded in self.records. """ if has_mlflow: self.mlflow_parent_id = os.environ['MLFLOW_RUN_ID'] mlflow.start_run(run_id=self.mlflow_parent_id) self.start_time = time.time() if self.fast_enabled(): logger.info(f"Fast mode is enabled. Tuning micro batch size only.") # model info profile run with DEFAULT_MIN_MEM_CONFIG model_info = self.model_info_profile_run() if model_info: self.model_info = model_info else: return logger.info(f"The model has {number_to_string(self.get_model_num_params())} parameters.") self.gpu_mem = self.get_gpu_memory_info() logger.info(f"Memory per GPU in the system is {memory_to_string(self.gpu_mem, postfix='B')}.") self.activation_mem = self.get_activation_memory_per_gpu() logger.info( f"The model requires at least {memory_to_string(self.activation_mem, postfix='B')} activation memory for micro batch size 1." ) #TODO: FIX THIS stage = self.user_config.get(ZERO_OPTIMIZATION, {}).get(ZERO_OPTIMIZATION_STAGE, "all") stage = "all" user_zero_stages = [stage] if not isinstance(stage, list) else stage logger.info(f"User-defined zero stages are {stage}.") mbs = 0 max_mbs = 0 metric_val = 0 required_gpu_mem = self.get_instantiation_memory_required_per_gpu(ZeroStageEnum.disabled) + self.activation_mem if self.gpu_mem > required_gpu_mem: if "all" in user_zero_stages or ZeroStageEnum.disabled in user_zero_stages: logger.info( f"The model might be runable with ZERO 0 (which requires at least {memory_to_string(required_gpu_mem, postfix='B')} memory with mbs = 1), adding DEFAULT_TUNING_SPACE_ZERO_0 to the global tuning space" ) next_max_mbs, next_mbs, next_metric_val = self.tune_space(DEFAULT_TUNING_SPACE_ZERO_0) if next_mbs > mbs: mbs = next_mbs max_mbs = next_max_mbs metric_val = next_metric_val if has_mlflow: mlflow.log_metric(f"z0{self.metric()}", next_metric_val) else: logger.info( f"The model is not runable with ZERO stage {ZeroStageEnum.disabled} (which requires at least {memory_to_string(required_gpu_mem, postfix='B')} memory with mbs = 1)" ) required_gpu_mem = self.get_instantiation_memory_required_per_gpu( ZeroStageEnum.optimizer_states) + self.activation_mem if self.gpu_mem > required_gpu_mem: if "all" in user_zero_stages or ZeroStageEnum.optimizer_states in user_zero_stages: logger.info( f"The model might be runable with ZERO 1 (which requires at least {memory_to_string(required_gpu_mem, postfix='B')} memory), adding DEFAULT_TUNING_SPACE_ZERO_1 to the global tuning space" ) next_max_mbs, next_mbs, next_metric_val = self.tune_space(DEFAULT_TUNING_SPACE_ZERO_1, prev_max_mbs=max_mbs, prev_best_mbs=mbs, prev_best_metric_val=metric_val) if next_mbs > mbs: mbs = next_mbs max_mbs = next_max_mbs metric_val = next_metric_val if has_mlflow: mlflow.log_metric(f"z1{self.metric()}", next_metric_val) else: logger.info( f"The model is not runable with ZERO stage {ZeroStageEnum.optimizer_states} (which requires at least {memory_to_string(required_gpu_mem, postfix='B')} memory with mbs = 1)" ) required_gpu_mem = self.get_instantiation_memory_required_per_gpu( ZeroStageEnum.gradients) + self.activation_mem if self.gpu_mem > required_gpu_mem: if "all" in user_zero_stages or ZeroStageEnum.gradients in user_zero_stages: logger.info( f"The model might be runable with ZERO 2 (which requires at least {memory_to_string(required_gpu_mem, postfix='B')} memory), adding DEFAULT_TUNING_SPACE_ZERO_2 to the global tuning space" ) next_max_mbs, next_mbs, next_metric_val = self.tune_space(DEFAULT_TUNING_SPACE_ZERO_2, prev_max_mbs=max_mbs, prev_best_mbs=mbs, prev_best_metric_val=metric_val) if next_mbs > mbs: mbs = next_mbs max_mbs = next_max_mbs metric_val = next_metric_val if has_mlflow: mlflow.log_metric(f"z2{self.metric()}", next_metric_val) else: logger.info( f"The model is not runable with ZERO stage {ZeroStageEnum.gradients} (which requires at least {memory_to_string(required_gpu_mem, postfix='B')} memory with mbs = 1)" ) required_gpu_mem = self.get_instantiation_memory_required_per_gpu(ZeroStageEnum.weights) + self.activation_mem if self.gpu_mem > required_gpu_mem: if "all" in user_zero_stages or ZeroStageEnum.weights in user_zero_stages: logger.info( f"The model might be runable with ZERO 3 (which requires at least {memory_to_string(required_gpu_mem, postfix='B')} memory), adding DEFAULT_TUNING_SPACE_ZERO_3 to the global tuning space" ) _, _, next_metric_val = self.tune_space(DEFAULT_TUNING_SPACE_ZERO_3, prev_max_mbs=max_mbs, prev_best_mbs=mbs, prev_best_metric_val=metric_val) if has_mlflow: mlflow.log_metric(f"z3{self.metric()}", next_metric_val) else: logger.info( f"The model has {self.get_model_num_params()} parameters and requires at least {memory_to_string(required_gpu_mem, postfix='B')} memory per GPU with DeepSpeed Zero stage {ZeroStageEnum.weights} optimization. Memory per GPU in system is {memory_to_string(self.gpu_mem)}. No tuning is performed." ) return if has_mlflow: mlflow.end_run() def tune_space(self, tuning_space, prev_max_mbs=0, prev_best_mbs=0, prev_best_metric_val=0): config_zero = tuning_space.get(ZERO_OPTIMIZATION, {}) stage = config_zero.get(ZERO_OPTIMIZATION_STAGE, None) tuning_space_name = TUNING_MICRO_BATCH_SIZE_PREFIX + str(stage) tuning_micro_batch_sizes = [] max_train_batch_size_per_gpu = 0 tuning_micro_batch_sizes_overwritten = False # calculate max micro batch size using gpu memory, model instantiation memory and activation memory # calculated_max_micro_batch_size = (memory_per_gpu - instantiation_memory) // activation_memory_micro_batch_size_1 calculated_max_micro_batch_size = int( self.gpu_mem - self.get_instantiation_memory_required_per_gpu(stage)) // self.activation_mem logger.info( f"Start tuning for space {tuning_space_name}, calculated_max_micro_batch_size = {calculated_max_micro_batch_size}" ) if calculated_max_micro_batch_size < prev_max_mbs: logger.info(f"No need to tune Zero stage {stage}. End tuning for space {tuning_space_name}") return 0, 0, 0 if TRAIN_MICRO_BATCH_SIZE_PER_GPU in self.user_config and isinstance( self.user_config[TRAIN_MICRO_BATCH_SIZE_PER_GPU], list): # user-specified micro batch size per gpu is a list which overwrites the default tuning behavior tuning_micro_batch_sizes = [ s for s in self.user_config[TRAIN_MICRO_BATCH_SIZE_PER_GPU] if isinstance(s, int) ] gas = self.get_gas_from_user_config() min_micro_batch_size = min(tuning_micro_batch_sizes) max_micro_batch_size = max(tuning_micro_batch_sizes) max_train_batch_size_per_gpu = max_micro_batch_size * gas tuning_micro_batch_sizes_overwritten = True else: # auto-detects the list of micro batch sizes to tune min_micro_batch_size, max_micro_batch_size = self.get_min_max_micro_batch_size( stage, prev_max_mbs, calculated_max_micro_batch_size) if max_micro_batch_size < prev_max_mbs: logger.info(f"No need to tune Zero stage {stage}. End tuning for space {tuning_space_name}") return 0, 0, 0 tuning_micro_batch_sizes, max_train_batch_size_per_gpu = self.get_tuning_micro_batch_size_list( min_micro_batch_size, max_micro_batch_size, num_tuning_micro_batch_sizes=self.num_tuning_micro_batch_sizes()) logger.info( f"tuning_micro_batch_sizes = {tuning_micro_batch_sizes}, max_train_batch_size_per_gpu = {max_train_batch_size_per_gpu}" ) # return if the tuning_micro_batch_sizes list is empty if not tuning_micro_batch_sizes: logger.info(f"End tuning for space {tuning_space_name}") return 0, 0, 0 # tune micro batch sizes and gradient accumulation steps given max_train_batch_size_per_gpu tuning_micro_batch_sizes = self.run_tuning_micro_batch_sizes(tuning_micro_batch_sizes, max_train_batch_size_per_gpu, min_micro_batch_size, stage, tuning_micro_batch_sizes_overwritten) fast_best_record = self.get_best_space_record(tuning_space_name) fast_best_metric_val = fast_best_record[1] if fast_best_record else 0 fast_best_mbs = fast_best_record[0][DS_CONFIG][TRAIN_MICRO_BATCH_SIZE_PER_GPU] if fast_best_record else 0 logger.info(f"fast_best_mbs = {fast_best_mbs}, name = {fast_best_record[0]['name']}") if self.fast_enabled() or stage == 0: logger.info(f"End tuning for space: {tuning_space_name}") return max_micro_batch_size, fast_best_mbs, fast_best_metric_val # if the best metric or the micro batch size for that best metric in the current Zero stage after tuning micro batch size is less than the corresponding value in the previous Zero stage, return, do not tune other Zero configuration parameters if stage > 0: if fast_best_mbs <= prev_best_mbs or fast_best_metric_val < prev_best_metric_val: logger.info( f"End tuning for space: {tuning_space_name}. No need to tune other Zero configuration parameters.") return max_micro_batch_size, fast_best_mbs, fast_best_metric_val tuning_space[TRAIN_MICRO_BATCH_SIZE_PER_GPU] = tuning_micro_batch_sizes tuning_space_name = canonical_name(tuning_space, tuning_keys=get_tuning_keys(tuning_space), prefix="z" + str(stage) + "_", omit_val=True) logger.info(f'Tuning space is {tuning_space}') logger.info(f'Tuning space name is {tuning_space_name}') exps = self._generate_experiments(tuning_space, max_train_batch_size_per_gpu) logger.info(f'Tuner type is {self.autotuning_config.tuner_type}') if self.autotuning_config.tuner_type == AUTOTUNING_TUNER_MODELBASED: t = ModelBasedTuner(exps, self.rm, self.metric(), tuning_space) elif self.autotuning_config.tuner_type == AUTOTUNING_TUNER_RANDOM: t = RandomTuner(exps, self.rm, self.metric()) else: t = GridSearchTuner(exps, self.rm, self.metric()) sample_size = len(self.rm.nodes) * self.rm.num_gpus_per_node // (self.exp_num_gpus * self.exp_num_nodes) num_exps = t.tune(sample_size=sample_size, n_trials=self.autotuning_config.tuner_num_trials, early_stopping=self.autotuning_config.tuner_early_stopping) exp = t.best_exp metric_val = t.best_metric_val if exp: self.update_records(tuning_space_name, exp, metric_val, num_exps) full_best_record = self.get_best_space_record(tuning_space_name) full_best_metric_val = full_best_record[1] if full_best_record else -1 if full_best_metric_val > fast_best_metric_val: best_metric_val = full_best_metric_val best_mbs = full_best_record[0][DS_CONFIG][TRAIN_MICRO_BATCH_SIZE_PER_GPU] if full_best_record else -1 else: best_metric_val = fast_best_metric_val best_mbs = fast_best_mbs logger.info(f"End tuning for space: {tuning_space_name}") return max_micro_batch_size, best_mbs, best_metric_val def get_plauteu_mbs(self, tuning_space_name): if tuning_space_name not in self.records: return 0 space_records = self.records[tuning_space_name] sorted_space_records = sorted(space_records, key=lambda x: x[0][DS_CONFIG][TRAIN_MICRO_BATCH_SIZE_PER_GPU]) prev_metric_val = None prev_micro_batch_size = 0 for (exp, metric_val, _) in sorted_space_records: if prev_metric_val: if metric_val < prev_metric_val: break if (metric_val >= prev_metric_val and (metric_val - prev_metric_val) / prev_metric_val < METRIC_PERCENT_DIFF_CONST): break prev_metric_val = metric_val prev_micro_batch_size = exp[DS_CONFIG][TRAIN_MICRO_BATCH_SIZE_PER_GPU] plateau_mbs = prev_micro_batch_size return plateau_mbs def get_model_num_params(self): if self.model_info and "num_params" in self.model_info: return self.model_info["num_params"] def model_info_profile_run(self): """Does a model information profling experiment that collects the number of model parameters and activation memory.\ The experiment produces a "profile_model_info" folder under self.results_dir. Returns: [dict]: a model information dictionary, e.g., {"num_params": 335144976, "trainable_num_params": 335144976, "activation_mem_per_gpu": 324358144, "rank": 0} """ logger.info("Starting model info profile run.") model_info = self.autotuning_config.model_info if model_info and MODEL_INFO_NUM_PARAMS in model_info: return model_info ds_config = copy.deepcopy(self.user_config) replace_dict(ds_config, DEFAULT_MIN_MEM_CONFIG) model_info_path = os.path.join(self.results_dir, "profile_model_info", "model_info.json") ds_config[AUTOTUNING] = {"enabled": True, "model_info_path": model_info_path, "model_info": {"profile": True}} exp_config = {} exp_name = "profile_model_info" exp_config['name'] = exp_name exp_config[DS_CONFIG] = ds_config exp_config['num_gpus'] = self.exp_num_gpus exp_config['num_nodes'] = self.exp_num_nodes exp_path = os.path.join(self.exps_dir, f'{exp_name}.json') with open(exp_path, 'w', buffering=BUFSIZE) as fd: json.dump(exp_config, fd) fd.flush() os.fsync(fd) self.rm.schedule_experiments([exp_path]) self.rm.run() for exp_id, (exp_json, err) in self.rm.finished_experiments.items(): self.rm.clear() if err: logger.error(f"The model is not runnable with DeepSpeed with error = {err}") return None if os.path.exists(model_info_path): with open(model_info_path, 'r') as f: model_info = hjson.load(f) return model_info def update_records(self, space_name, exp, metric_val, num_exps): if space_name not in self.records: self.records[space_name] = [(exp, metric_val, num_exps)] else: self.records[space_name].append((exp, metric_val, num_exps)) def get_best_space_record(self, space_name): if space_name not in self.records: return None space_records = self.records[space_name] best_space_record = None space_num_exps = 0 for (exp, metric_val, num_exps) in space_records: space_num_exps += num_exps if best_space_record is None or metric_val > best_space_record[1]: best_space_record = (exp, metric_val) if best_space_record: best_space_record = best_space_record + (space_num_exps, ) return best_space_record def get_best_space_records(self): best_space_records = {} global_best_record = None for space_name, space_records in self.records.items(): best_space_record = self.get_best_space_record(space_name) if best_space_record: best_space_records[space_name] = best_space_record if not global_best_record or best_space_record[1] > global_best_record[1]: global_best_record = best_space_record if global_best_record: best_space_records[GLOBAL_TUNING_SPACE] = global_best_record return best_space_records def run_tuning_micro_batch_sizes(self, tuning_micro_batch_sizes, max_train_batch_size_per_gpu, min_micro_batch_size, stage, tuning_micro_batch_sizes_overwritten): assert tuning_micro_batch_sizes, "the tuning micro batch size list is empty" tuning_micro_batch_sizes.sort() max_micro_batch_size = tuning_micro_batch_sizes[-1] max_micro_batch_size_metric_val = 0 ds_config = get_first_config(self.user_config) ds_config[ZERO_OPTIMIZATION] = {ZERO_OPTIMIZATION_STAGE: stage} tuning_space_name = TUNING_MICRO_BATCH_SIZE_PREFIX + str(stage) exp_paths = [] for mbs in tuning_micro_batch_sizes: ds_config[TRAIN_MICRO_BATCH_SIZE_PER_GPU] = mbs gas = max_train_batch_size_per_gpu // mbs ds_config[GRADIENT_ACCUMULATION_STEPS] = gas ds_config[TRAIN_BATCH_SIZE] = mbs * gas * \ self.exp_num_gpus * self.exp_num_nodes // self.mp_size() exp_name = tuning_space_name + "_gas" + str(gas) + "_tmbspg" + str(mbs) exp_config = {} exp_config['name'] = exp_name exp_config[DS_CONFIG] = ds_config exp_config['num_gpus'] = self.exp_num_gpus exp_config['num_nodes'] = self.exp_num_nodes exp_path = os.path.join(self.exps_dir, f'{exp_name}.json') with open(exp_path, 'w', buffering=BUFSIZE) as fd: json.dump(exp_config, fd) fd.flush() os.fsync(fd) exp_paths.append(exp_path) self.rm.schedule_experiments(exp_paths) self.rm.run() for exp_id, (exp, err) in self.rm.finished_experiments.items(): if exp: metric_file = exp[DS_CONFIG][AUTOTUNING][AUTOTUNING_METRIC_PATH] if os.path.exists(metric_file): with open(metric_file, 'r') as f: results = hjson.load(f) metric_val = results[self.metric()] self.update_records(tuning_space_name, exp, metric_val, 1) if max_micro_batch_size == exp[DS_CONFIG][TRAIN_MICRO_BATCH_SIZE_PER_GPU]: max_micro_batch_size_metric_val = metric_val if has_mlflow: os.environ.pop('MLFLOW_RUN_ID') mlflow.start_run(nested=True, run_name=exp['name']) for metric in results: mlflow.log_metric(metric, results[metric]) mlflow.end_run() os.environ['MLFLOW_RUN_ID'] = self.mlflow_parent_id else: self.update_records(tuning_space_name, exp, 0, 1) else: mbs = exp[DS_CONFIG][TRAIN_MICRO_BATCH_SIZE_PER_GPU] logger.info(f"micro batch size = {mbs} was not run successfully") self.rm.clear() if tuning_micro_batch_sizes_overwritten: return tuning_micro_batch_sizes # in a auto-detected tuning_micro_batch_sizs list, max_micro_batch_size might not be performant as the memory consumption is close to max # try smaller values while gas stays the same # if finding a more performant mbs value, use it to replace max_micro_batch_size in the list min_micro_batch_size_with_same_gas = (tuning_micro_batch_sizes[-2] + 1) if len(tuning_micro_batch_sizes) > 1 else min_micro_batch_size prev_best_metric_val = max_micro_batch_size_metric_val prev_best_mbs = max_micro_batch_size stride = (max_micro_batch_size - min_micro_batch_size_with_same_gas) // 3 if stride == 0: stride = 1 for mbs in reversed(range(min_micro_batch_size_with_same_gas, max_micro_batch_size, stride)): ds_config[TRAIN_MICRO_BATCH_SIZE_PER_GPU] = mbs gas = max_train_batch_size_per_gpu // mbs ds_config[GRADIENT_ACCUMULATION_STEPS] = gas ds_config[TRAIN_BATCH_SIZE] = mbs * gas * \ self.exp_num_gpus * self.exp_num_nodes // self.mp_size() exp_name = tuning_space_name + "_gas" + str(gas) + "_tmbspg" + str(mbs) exp, metric_val = self.run_ds_config(ds_config, exp_name) if metric_val: with open(metric_file, 'r') as f: results = hjson.load(f) metric_val = results[self.metric()] if has_mlflow: os.environ.pop('MLFLOW_RUN_ID') mlflow.start_run(nested=True, run_name=exp_name) for metric in results: mlflow.log_metric(metric, results[metric]) mlflow.end_run() os.environ['MLFLOW_RUN_ID'] = self.mlflow_parent_id self.update_records(tuning_space_name, exp, metric_val, 1) if metric_val > prev_best_metric_val * (1 + METRIC_PERCENT_DIFF_CONST): prev_best_metric_val = metric_val prev_best_mbs = mbs else: break else: self.update_records(tuning_space_name, exp, 0, 1) break if prev_best_mbs != max_micro_batch_size: tuning_micro_batch_sizes[-1] = prev_best_mbs return tuning_micro_batch_sizes def get_min_max_micro_batch_size(self, stage, min_micro_batch_size, calculated_max_micro_batch_size): # get min and max micro batch size with gradient accumulation steps = 1 if min_micro_batch_size > calculated_max_micro_batch_size: return -1, -1 used_micro_batch_sizes = [] tuning_space_name = TUNING_MICRO_BATCH_SIZE_PREFIX + str(stage) ds_config = get_first_config(self.user_config) ds_config[ZERO_OPTIMIZATION] = {ZERO_OPTIMIZATION_STAGE: stage} gas = self.get_gas_from_user_config() ds_config[GRADIENT_ACCUMULATION_STEPS] = gas # search for the min micro batch size if min_micro_batch_size < 1: if TRAIN_MICRO_BATCH_SIZE_PER_GPU in self.user_config and isinstance( self.user_config[TRAIN_MICRO_BATCH_SIZE_PER_GPU], int): # user specifies train_micro_batch_size_per_gpu as an int mbs = int(self.user_config[TRAIN_MICRO_BATCH_SIZE_PER_GPU]) else: # user does not specify train_micro_batch_size_per_gpu or sets it to "auto" when using Hugging Face val = self.get_val_from_user_args(TRAIN_MICRO_BATCH_SIZE_PER_GPU) if val: mbs = int(val) else: mbs = 1 assert mbs > 0, "The micro batch size per GPU must be greater than 0." ds_config[TRAIN_MICRO_BATCH_SIZE_PER_GPU] = mbs ds_config[GRADIENT_ACCUMULATION_STEPS] = gas ds_config[TRAIN_BATCH_SIZE] = mbs * gas * \ self.exp_num_gpus * self.exp_num_nodes // self.mp_size() exp_name = tuning_space_name + "_gas" + str(gas) + "_tmbspg" + str(mbs) exp, metric_val = self.run_ds_config(ds_config, exp_name) if metric_val: self.update_records(tuning_space_name, exp, metric_val, 1) used_micro_batch_sizes.append(mbs) min_micro_batch_size = mbs else: self.update_records(tuning_space_name, exp, 0, 1) logger.info(f"User-specified micro batch size per GPU {mbs} does not run") if self.min_train_micro_batch_size_per_gpu() == mbs: return -1, -1 mbs = self.min_train_micro_batch_size_per_gpu() ds_config[TRAIN_MICRO_BATCH_SIZE_PER_GPU] = mbs ds_config[GRADIENT_ACCUMULATION_STEPS] = gas ds_config[TRAIN_BATCH_SIZE] = mbs * gas * \ self.exp_num_gpus * self.exp_num_nodes // self.mp_size() exp_name = tuning_space_name + "_gas" + str(gas) + "_tmbspg" + str(mbs) exp, metric_val = self.run_ds_config(ds_config, exp_name) if not metric_val: self.update_records(tuning_space_name, exp, 0, 1) logger.info(f"min_train_micro_batch_size_per_gpu {mbs} is not runnable.") return -1, -1 self.update_records(tuning_space_name, exp, metric_val, 1) min_micro_batch_size = mbs used_micro_batch_sizes.append(mbs) else: ds_config[TRAIN_MICRO_BATCH_SIZE_PER_GPU] = min_micro_batch_size ds_config[GRADIENT_ACCUMULATION_STEPS] = gas ds_config[TRAIN_BATCH_SIZE] = min_micro_batch_size * gas * \ self.exp_num_gpus * self.exp_num_nodes // self.mp_size() exp_name = tuning_space_name + "_gas" + str(gas) + "_tmbspg" + str(min_micro_batch_size) exp, metric_val = self.run_ds_config(ds_config, exp_name) if metric_val: self.update_records(tuning_space_name, exp, metric_val, 1) used_micro_batch_sizes.append(min_micro_batch_size) else: self.update_records(tuning_space_name, exp, 0, 1) return -1, -1 # search for the max micro batch size max_micro_batch_size = min(calculated_max_micro_batch_size, self.max_train_micro_batch_size_per_gpu()) for mbs in [math.ceil(1.05 * max_micro_batch_size), max_micro_batch_size, int(0.95 * max_micro_batch_size)]: if mbs > self.max_train_micro_batch_size_per_gpu(): continue if mbs in used_micro_batch_sizes: return min_micro_batch_size, mbs ds_config[TRAIN_MICRO_BATCH_SIZE_PER_GPU] = mbs ds_config[TRAIN_BATCH_SIZE] = mbs * gas * \ self.exp_num_gpus * self.exp_num_nodes // self.mp_size() exp_name = tuning_space_name + "_gas" + str(gas) + "_tmbspg" + str(mbs) exp, metric_val = self.run_ds_config(ds_config, exp_name) if metric_val: logger.info(f"mbs = {mbs} is found as max mbs") self.update_records(tuning_space_name, exp, metric_val, 1) used_micro_batch_sizes.append(mbs) return min_micro_batch_size, mbs else: self.update_records(tuning_space_name, exp, 0, 1) space_records = self.records[tuning_space_name] if tuning_space_name in self.records else [] if space_records: prev_idx = min(range(len(space_records)), key=lambda i: abs(space_records[i][0][DS_CONFIG][TRAIN_MICRO_BATCH_SIZE_PER_GPU] - min_micro_batch_size)) prev_metric_val = space_records[prev_idx][1] else: prev_metric_val = None low = min_micro_batch_size high = max_micro_batch_size # binary search until low is the smallest micro batch size that OOMs. while low <= high: mid = int((low + high) // 2) logger.debug(f"trying mbs = {mid}, low = {low}, high = {high}") if mid not in used_micro_batch_sizes: ds_config[TRAIN_MICRO_BATCH_SIZE_PER_GPU] = mid ds_config[TRAIN_BATCH_SIZE] = mid * gas * \ self.exp_num_gpus * self.exp_num_nodes // self.mp_size() exp_name = tuning_space_name + "_gas" + str(gas) + "_tmbspg" + str(mid) exp, metric_val = self.run_ds_config(ds_config, exp_name) if metric_val: low = mid + 1 self.update_records(tuning_space_name, exp, metric_val, 1) used_micro_batch_sizes.append(mid) if prev_metric_val and ( (metric_val - prev_metric_val) / prev_metric_val) < METRIC_PERCENT_DIFF_CONST: logger.info(f"performance plateaus at mbs = {low}") break prev_metric_val = metric_val else: self.update_records(tuning_space_name, exp, 0, 1) high = mid - 1 else: low = mid + 1 max_micro_batch_size = low - 1 logger.info(f"min_micro_batch_size = {min_micro_batch_size}, max_micro_batch_size = {max_micro_batch_size}.") return min_micro_batch_size, max_micro_batch_size def get_gas_from_user_config(self): gas = 1 if GRADIENT_ACCUMULATION_STEPS in self.user_config: gas_in_config = self.user_config[GRADIENT_ACCUMULATION_STEPS] if isinstance(gas_in_config, int): gas = gas_in_config elif gas_in_config == "auto": # GRADIENT_ACCUMULATION_STEPS: "auto" val = self.get_val_from_config(GRADIENT_ACCUMULATION_STEPS) if val: gas = int(val) elif isinstance(gas_in_config, list): logger.info( f"Specifying a list of {GRADIENT_ACCUMULATION_STEPS} to tune is not supported. 1 would be used.") assert gas > 0, "Gradient accumulation steps must be positive." return gas def get_val_from_user_args(self, ds_name): arg_mappings = self.autotuning_config.arg_mappings user_args = self.args.user_args if arg_mappings and ds_name in arg_mappings: arg_name = arg_mappings[ds_name] if arg_name in user_args: idx = user_args.index(arg_name) if user_args[idx + 1].isnumeric(): return (user_args[idx + 1]) return None def get_tuning_micro_batch_size_list(self, min_micro_batch_size, max_micro_batch_size, num_tuning_micro_batch_sizes): """Get a list of micro batch sizes to tune based on min and max values, as well as the size of the list. Args: min_micro_batch_size ([int]): min micro batch size per GPU max_micro_batch_size ([int]): max micro batch size per GPU num_tuning_micro_batch_sizes (int): the number of items in the returned list Returns: [list]: a list of micro batch sizes to tune. """ if min_micro_batch_size <= 0 or max_micro_batch_size <= 0: logger.info( f"min_micro_batch_size = {min_micro_batch_size}, max_micro_batch_size = {max_micro_batch_size}") return [], 0 # NUM_GPUS=$(( ${NUM_WORKERS} * ${NUM_GPUS_PER_WORKER} )) # DP_SIZE=$(( ${NUM_GPUS} / (${PP_SIZE} * ${MP_SIZE}) )) # GRAD_ACC_STEPS=$(( ${TARGET_GLOBAL_BATCH_SIZE} / (${BATCH_SIZE} * ${DP_SIZE}) )) if self.max_train_batch_size( ) and self.max_train_batch_size() > 0: # if the user specifies a max_train_batch_size max_train_batch_size_per_gpu = self.max_train_batch_size() * self.mp_size() // (self.exp_num_gpus * self.exp_num_nodes) else: gas = self.get_gas_from_user_config() max_train_batch_size_per_gpu = max_micro_batch_size * gas // self.mp_size() logger.info(f"max_train_batch_size_per_gpu = {max_train_batch_size_per_gpu}") if min_micro_batch_size < max_micro_batch_size // 2: min_micro_batch_size = max_micro_batch_size // 2 # constant stride stride = (max_micro_batch_size - min_micro_batch_size) // num_tuning_micro_batch_sizes if stride == 0: stride = 1 ls = [] min_gas = max_train_batch_size_per_gpu // max_micro_batch_size # if gas is the same as min_gas, do not add mbs to the tuning list for mbs in range(min_micro_batch_size, max_micro_batch_size, stride): if max_train_batch_size_per_gpu // mbs != min_gas: ls.append(mbs) ls.append(max_micro_batch_size) return ls, max_train_batch_size_per_gpu def run_ds_config(self, ds_config, exp_name): exp_config = {} exp_config['name'] = exp_name exp_config[DS_CONFIG] = ds_config exp_config['num_gpus'] = self.exp_num_gpus exp_config['num_nodes'] = self.exp_num_nodes exp_path = os.path.join(self.exps_dir, f'{exp_name}.json') logger.debug(f'run_ds_config exp_name = {exp_name}') with open(exp_path, 'w', buffering=BUFSIZE) as fd: json.dump(exp_config, fd) fd.flush() os.fsync(fd) self.rm.schedule_experiments([exp_path]) self.rm.run() exp, metric_val = self.rm.parse_results(self.metric()) self.rm.clear() return exp, metric_val def write_optimal_config(self): best_space_records = self.get_best_space_records() if GLOBAL_TUNING_SPACE not in best_space_records: return best_exp, best_metric_val, _ = best_space_records[GLOBAL_TUNING_SPACE] if best_exp: exp_dir = best_exp["result_dir"] cmd = None with open(os.path.join(exp_dir, "cmd.txt"), "r") as f: cmd = [str(i) for i in f.read().split()] ds_config = hjson.load(open(os.path.join(exp_dir, "ds_config.json"), "r")) ds_config.pop(AUTOTUNING) ds_config_path = os.path.join(self.results_dir, "ds_config_optimal.json") json.dump(ds_config, open(ds_config_path, "w")) cmd_path = os.path.join(self.results_dir, "cmd_optimal.txt") with open(cmd_path, "w") as fd: fd.write(" ".join(cmd)) fd.write("\n") fd.flush() self.optimal_cmd = cmd self.optmal_ds_config = ds_config logger.info( f"Wrote the optimal DeepSpeed configuration found by autotuning to {ds_config_path}, and the corresponding DeepSpeed command to {cmd_path}" ) def run_after_tuning(self): """ Launches the training with the optimal DeepSpeed configuration found through the autotuning process. "ds_config_optimal.json" describing the optmimal DeepSpeed configuration as well the command used to launch training "cmd_optimal.txt" are saved to self.results_dir. """ if self.optimal_cmd: result = subprocess.Popen(self.optimal_cmd) result.wait() logger.info(f"Done running with the optimal DeepSpeed configuration using {self.optimal_cmd}") else: logger.info(f"No optimal DeepSpeed configuration found by autotuning.")
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/autotuning/autotuner.py
autotuner.py
# DeepSpeed Team import re import collections.abc import os import json from deepspeed.runtime.constants import GRADIENT_ACCUMULATION_STEPS, TRAIN_MICRO_BATCH_SIZE_PER_GPU import itertools import copy from ..utils import logger def search_error(filename): if not os.path.exists(filename): return "stderr.log does not exist" with open(filename) as f: for line in f: for s in ["Error", "error", "ERROR"]: idx = line.find(s) if idx != -1: return line[idx + len(s):].lstrip(": ") return None def was_interruptted(filename): if not os.path.exists(filename): return "stderr.log does not exist" with open(filename) as f: for line in f: s = "KeyboardInterrupt" idx = line.find(s) if idx != -1: return True return False def find_replace_str(value, replace_dict): if not isinstance(value, str): return str(value) matches = re.findall(r"\$[A-Za-z0-9_]+", value) for var in matches: var_key = var.replace("$", "").lower() if var_key == "nvme_path": continue assert var_key in replace_dict, f"unknown var key: {var_key}, in {replace_dict}" if isinstance(replace_dict[var_key], str): value = value.replace(var, replace_dict[var_key]) else: assert len(matches) == 1, "unable to replace multiple non-string matches" value = replace_dict[var_key] return value def find_replace(target, replace_dict): if isinstance(target, dict): for key, value in target.items(): if isinstance(value, str): target[key] = find_replace_str(value, replace_dict) if isinstance(value, list): for i in range(len(value)): value[i] = find_replace_str(value[i], replace_dict) if isinstance(value, dict): find_replace(value, replace_dict) elif isinstance(target, list): for i in range(len(target)): target[i] = str(find_replace_str(target[i], replace_dict)) def get_list(val): if not isinstance(val, list): return [val] else: return val def combine_dict(d, u): for k, v in u.items(): if isinstance(v, collections.abc.Mapping): d[k] = combine_dict(d.get(k, {}), v) else: if k not in d: d[k] = v else: if not isinstance(d[k], list): d[k] = [d[k]] d[k].extend(i for i in get_list(v) if i not in d[k]) return d def del_if_exists(t, d): """Deletes a key from a dictionary if it exists. Args: t (string): target key to delete d (dict): dictionary to delete from """ if t in d: del d[t] return for k, v in d.items(): if isinstance(v, collections.abc.Mapping): del_if_exists(t, v) def replace_dict(d, u, ignored_keys=[]): """Replaces values in dict d with values in dict u. Args: d (dict): the target dict to overwrite u (dict): the dict containing the values to overwrite the target dict Returns: dict d with values overwritten by the corresponding ones in dict u. """ if u is not None: for k, v in u.items(): if k not in ignored_keys: if v is None: del_if_exists(k, d) continue if isinstance(v, collections.abc.Mapping): d[k] = replace_dict(d.get(k, {}), v, ignored_keys) else: d[k] = v return d def get_val_by_key(d: dict, k): if k in d: return d[k] for v in d.values(): if isinstance(v, dict): return get_val_by_key(v, k) return None def set_val_by_key(d: dict, k, vv): if k in d: d[k] = vv for v in d.values(): if isinstance(v, dict): set_val_by_key(v, k, vv) def fetch_hostfile(hostfile_path): if not os.path.isfile(hostfile_path): logger.warning("Unable to find hostfile, will proceed with training " "with local resources only.") return None # e.g., worker-0 slots=16 with open(hostfile_path, 'r') as fd: resource_pool = collections.OrderedDict() for line in fd.readlines(): line = line.strip() if line == '': # skip empty lines continue try: hostname, slots = line.split() _, slot_count = slots.split("=") slot_count = int(slot_count) except ValueError as err: logger.error("Hostfile is not formatted correctly, unable to " "proceed with training.") raise err if hostname in resource_pool: logger.error("Hostfile contains duplicate hosts, unable to " "proceed with training.") raise ValueError("host {} is already defined".format(hostname)) resource_pool[hostname] = slot_count return resource_pool def validate_ds_config(config: dict): def is_False(config: dict, key): if config is None: return False return bool(config.get(key)) config_zero = config.get("zero_optimization", {}) if not config_zero: return True stage = config_zero.get("stage") offload = False if stage == 1: return True elif stage == 2: if is_False(config_zero, "cpu_offload") and is_False(config_zero, "cpu_offload_params"): return False elif stage == 3: offload_devices = ["cpu", "nvme"] if config_zero.get("offload_optimizer", {}).get("device") in offload_devices: offload = True if config_zero.get("offload_param", {}).get("device") in offload_devices: offload = True else: return True # HF requires that "ZeRO Offload can only work with DeepSpeed optimizers" if offload and not config.get("optimizer"): return False return True def remove_dupe_dicts(l): """ Removes duplicate dictionaries from a list. Uses list comprehension and the json library to sort and stringify each dictionary and the set data type to ensure unique values. Works with nested data structures. Args: l (list): a list of (nested) data structures. Returns: A list of unique values. """ list_of_strings = [json.dumps(d, sort_keys=True) for d in l] list_of_strings = set(list_of_strings) return [json.loads(s) for s in list_of_strings] def prune_config(config, ignored_keys=[]): """ Prunes the input configurations Args: configs (dict): A configuration dictionary. ignored_keys (list, optional): the keys of the sections to delete. Defaults to []. Returns: A configuration dictionary. """ if ignored_keys: for k in ignored_keys: def find_del_key(d: dict, k: str): if k in d: del d[k] else: for dd in d.values(): if isinstance(dd, dict): find_del_key(dd, k) find_del_key(config, k) def prune_configs(configs, ignored_keys=[]): """ Prunes the input list of configurations Args: configs (list): A list of configuration dictionaries. ignored_keys (list, optional): the keys of the sections to delete. Defaults to []. Returns: A list of valid and unique configuration dictionaries. """ pruned_list = [] for config in configs: prune_config(config, ignored_keys) pruned_list.append(config) return remove_dupe_dicts(pruned_list) def get_tuning_keys(tuning_space: dict): """Outputs the list of tunnable parameters in the tuning space dict. Args: tuning_space (dict): a configuration dictionary containing tunable parameters as lists of values. Returns: A list of strings """ tuning_keys = [] for key, val in tuning_space.items(): if isinstance(val, dict): tuning_keys.extend(get_tuning_keys(val)) if isinstance(val, list) and len(val) > 1: tuning_keys.append(key) return tuning_keys def get_all_configs(tuning_space: dict, ignore_keys=None): """ Splits the tuning space dictionary to result in all combinations of values. Args: tuning_space (dict): the tuning space where tunable parameters are lists of values. """ def gen_combinations(d: dict): keys, values = d.keys(), d.values() for v in values: if not isinstance(v, list): v = [v] values_choices = (gen_combinations(v) if isinstance(v, dict) else get_list(v) for v in values) for comb in itertools.product(*values_choices): yield dict(zip(keys, comb)) all_configs = [] ignored_key_vals = {} for ik in ignore_keys: ignored_key_vals[ik] = tuning_space.get(ik, {}) del_if_exists(ik, tuning_space) for c in gen_combinations(tuning_space): replace_dict(c, ignored_key_vals) all_configs.append(c) return all_configs def canonical_name(config: dict, tuning_keys=None, prefix="", omit_val=False): """ Generates a name from the acronyms of the tuning keys in the config dict. TRAIN_MICRO_BATCH_SIZE_PER_GPU is always included in the tuning keys. Args: config (dict): the config dict used to generate the name tuning_keys (list, optional): the tuning keys used to generate the name. Defaults to None. prefix (str, optional): a string added to the beginning of the name. Defaults to None. """ if TRAIN_MICRO_BATCH_SIZE_PER_GPU not in tuning_keys: tuning_keys.append(TRAIN_MICRO_BATCH_SIZE_PER_GPU) if GRADIENT_ACCUMULATION_STEPS not in tuning_keys: tuning_keys.append(GRADIENT_ACCUMULATION_STEPS) tuning_keys.sort() def get_offload_name(offload_config): cname = "" if offload_config is None: return "None_" for key, val in offload_config.items(): key = "".join(map(lambda c: c[0], key.split('_'))) if (isinstance(val, int) or isinstance(val, float)) and val > 9000: cname += key + '{:.1e}'.format(val) + "_" else: if isinstance(val, bool): val = "T" if val else "F" cname += f"{key}{val}_" return cname def get_name_by_keys(config: dict, tuning_keys=None, omit_val=False): cname = "" if not tuning_keys or config is None: return cname for key, val in config.items(): # skip the arg_mappings section when naming the exp file if key == "arg_mappings": continue if key == "offload_param": cname += "op_" if not omit_val: cname += get_offload_name(val) continue if key == "offload_optimizer": cname += "oo_" if not omit_val: cname += get_offload_name(val) continue # recursively call the func to get name for the child dicts if isinstance(val, dict): n = get_name_by_keys(val, tuning_keys, omit_val=omit_val) if n != "": cname += n + "_" if tuning_keys and key not in tuning_keys: continue key_str = "".join(map(lambda c: c[0], key.split('_'))) if not omit_val: if (isinstance(val, int) or isinstance(val, float)) and val > 9000: cname += key_str + '{:.1e}'.format(val) + "_" else: if isinstance(val, bool): val = "T" if val else "F" cname += f"{key_str}{val}_" else: cname += key_str + "_" return cname[:-1] name = get_name_by_keys(config, tuning_keys, omit_val=omit_val) return prefix + (name if name != "" else "exp") def get_first_config(config: dict): if not config: return None cfg = copy.deepcopy(config) for key, val in cfg.items(): if isinstance(val, dict): if key == "optimizer": # use user defined optimizer which might have lists of values as params cfg[key] = val else: cfg[key] = get_first_config(val) if isinstance(val, list) and len(val) > 0: cfg[key] = val[0] return cfg def write_experiments(exps: list, exps_dir: str): exp_paths = [] for exp in exps: exp_name = exp['name'] # write the expr config to a json file exp_path = os.path.join(exps_dir, f'{exp_name}.json') with open(exp_path, 'w') as fd: json.dump(exp, fd) exp_paths.append(exp_path) return exp_paths def memory_to_string(n, postfix="", units=None, precision=2): if units is None: if n // 10**12 > 0: return str(round(n / 1024**4, precision)) + " T" + postfix if n // 10**9 > 0: return str(round(n / 1024**3, precision)) + " G" + postfix elif n // 10**6 > 0: return str(round(n / 1024**2, precision)) + " M" + postfix elif n // 10**3 > 0: return str(round(n / 1014, precision)) + " K" + postfix else: return str(n) + " " else: if units == "T": return str(round(n / 1024**4, precision)) + " " + units if units == "G" + postfix: return str(round(n / 1024**3, precision)) + " " + units elif units == "M" + postfix: return str(round(n / 1024**2, precision)) + " " + units elif units == "K" + postfix: return str(round(n / 1024, precision)) + " " + units else: return str(n) + " " def number_to_string(n, postfix="", units=None, precision=2): if units is None: if n // 10**9 > 0: return str(round(n / 1000**3, precision)) + " B" + postfix if n // 10**6 > 0: return str(round(n / 1000**2, precision)) + " M" + postfix elif n // 10**3 > 0: return str(round(n / 1000**1, precision)) + " K" + postfix else: return str(n) + " " else: if units == "B" + postfix: return str(round(n / 1000**3, precision)) + " " + units elif units == "M" + postfix: return str(round(n / 1000**2, precision)) + " " + units elif units == "K" + postfix: return str(round(n / 1000**1, precision)) + " " + units else: return str(n) + " "
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/autotuning/utils.py
utils.py
# DeepSpeed Team import numpy as np import itertools from ..utils import * import collections.abc def index_to_feature(p, dims): """convert index form (single integer) to feature form (vector)""" feature = [] for dim in dims: feature.append(p % dim) p //= dim return feature def feature_to_index(feature, dims): """convert feature form (vector) to index form (single integer)""" p = 0 for j, k in enumerate(feature): print("j:", "k:", k, "dims", dims[:j]) p += int(np.prod(dims[:j])) * k return p def dict_to_dims(tuning_space): dims = [] for key, val in tuning_space.items(): if isinstance(val, dict): dims.extend(dict_to_dims(val)) elif isinstance(val, list): dims.append(len(val)) else: dims.append(1) return dims def gen_combinations(d: dict): keys, values = d.keys(), d.values() for v in values: if not isinstance(v, list): v = [v] values_choices = (gen_combinations(v) if isinstance(v, dict) else get_list(v) for v in values) for comb in itertools.product(*values_choices): yield dict(zip(keys, comb)) def flatten(d, parent_key='', sep='_'): items = [] for k, v in d.items(): new_key = parent_key + sep + k if parent_key else k if isinstance(v, collections.abc.MutableMapping): items.extend(flatten(v, new_key, sep=sep).items()) else: items.append((new_key, v)) return dict(items) def dict_to_feature(feature_dict, keys, max_value=None): """Extract values from dict""" feature = [] for key, val in feature_dict.items(): # First level if key not in keys: continue if val is None or val == "auto" or key == "autotuning" or val == "": continue if isinstance(val, dict): feature.append(dict_to_feature(val, max_value)) else: feature.append(float(val)) # normalization, should not matter in tree models if max_value is not None: norm_feature = [] for f, mv in zip(feature, max_value): norm_feature.append(f / mv) feature = norm_feature return feature
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/autotuning/tuner/utils.py
utils.py
# DeepSpeed Team import sys from deepspeed.autotuning.constants import * from deepspeed.autotuning.utils import write_experiments from deepspeed.utils import logger class BaseTuner: def __init__(self, exps, resource_manager, metric): self.all_exps = exps self.rm = resource_manager self.best_iter = 0 self.best_exp = None self.best_metric_val = None self.metric = metric if metric else AUTOTUNING_METRIC_DEFAULT logger.info(f"total number of exps = {len(self.all_exps)}") def has_next(self): """Whether there exists more configurations for evaluation""" if len(self.all_exps) > 0: return True else: return False def next_batch(self, sample_size): """Select the next batch of configurations for evaluation""" raise NotImplementedError def update(self): """"Update the tuner with what configurations have been evaluated and their performance results""" def tune(self, sample_size=1, n_trials=1000, early_stopping=None): i = 0 try: while i < n_trials and self.has_next(): # Select the next batch of configuratiosn for evaluation sampled_exps = self.next_batch(sample_size) # Generate experiments for measurement of performance exp_paths = write_experiments(sampled_exps, self.rm.exps_dir) self.rm.schedule_experiments(exp_paths) self.rm.run() exp, metric_val = self.rm.parse_results(self.metric) if self.best_exp == None or self.best_metric_val == None or (metric_val and metric_val > self.best_metric_val): # logger.info(f"tuner finds better = {exp}") self.best_exp = exp self.best_metric_val = metric_val self.best_iter = i i += len(sampled_exps) # Update the tuner with evaluated performance results self.update() self.rm.clear() # Early stop if no more promising configurations are likely to be found if early_stopping and i >= self.best_iter + early_stopping: logger.info( f"Tuner early stopped at iteration {i}. Best iteration is {self.best_iter}. Early stopping threshold is {early_stopping}" ) break return i except: logger.info("Tunner Error:", sys.exc_info()[0]) return i
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/autotuning/tuner/base_tuner.py
base_tuner.py
# DeepSpeed Team import hjson from ..constants import AUTOTUNING, AUTOTUNING_METRIC_PATH from .base_tuner import BaseTuner from .cost_model import XGBoostCostModel from .utils import * from ..utils import * import numbers from ..constants import AUTOTUNING_METRIC_LATENCY INIT_NUM = 2 class ModelBasedTuner(BaseTuner): """Exploring the search space with a cost model""" def __init__(self, exps: list, resource_manager, metric, tuning_sapce): super().__init__(exps, resource_manager, metric) self.tuning_space = tuning_sapce self.best_iter = 0 self.all_configs = [e['ds_config'] for e in exps] self.num_all_configs = len(self.all_configs) self.dims = dict_to_dims(self.tuning_space) logger.info(f"Create config dim: {self.dims}, all configs: {self.num_all_configs}") self.visited = set([]) self.trials = [] self.trial_pt = 0 init_num = min(INIT_NUM, self.num_all_configs) for _ in range(init_num): exp_feature = np.random.randint(self.num_all_configs) exp_feature = 0 while exp_feature in self.visited: exp_feature = np.random.randint(self.num_all_configs) self.trials.append(exp_feature) self.visited.add(exp_feature) self.cost_model = XGBoostCostModel("rank") self.evaluated_configs = [] self.evaluated_perf = [] self.train_ct = 0 self.random_exploration_ratio = 0.2 # do random exploration def find_estimated_top_configs(self): """Use the cost model to predict the estimated performance of configurations and find the top ones for the next round of evaluation""" configs = [] for c in self.all_configs: flattened_ds_config = flatten(c) feature_val = [] for k, v in flattened_ds_config.items(): if isinstance(v, numbers.Number): feature_val.append(v) configs.append(feature_val) # print(configs) # TODO the current implementation requires that all configs have the same shape. configs = np.array(configs, dtype=np.float32) estimates = self.cost_model.predict(configs) n = len(estimates) top_idx = np.argsort(estimates) top_idx_ret = top_idx if self.metric == AUTOTUNING_METRIC_LATENCY else top_idx[::-1][:n] # top_configs = [self.all_configs[i] for i in top_idx] return top_idx_ret def next_batch(self, sample_size): sampled_batch = [] counter = 0 while counter < sample_size: if len(self.visited) >= self.num_all_configs: break while self.trial_pt < len(self.trials): logger.debug(f"trials: {self.trials}") # Select top promising trials index = self.trials[self.trial_pt] if index not in self.visited: break self.trial_pt += 1 # To avoid over-exploitation, randomly select one that has not been explored. rand = np.random.rand() if rand < self.random_exploration_ratio: # Do normal selection feature = np.random.choice(self.trials) while index in self.visited: index = np.random.randint(self.num_all_configs) # Need to track both the sampled configs and indices sampled_batch.append(self.all_exps[index]) self.visited.add(index) counter += 1 return sampled_batch def has_next(self): return len(self.visited) < self.num_all_configs def update(self): for exp_id, (exp, err) in self.rm.finished_experiments.items(): feature_val = [] if err: logger.info( f"Skipping exp_id = {exp_id}, exp_name = {exp['name']}, the experiment did not run successfully with error = {err}, thus a metrics.txt does not exist for it. Please check the stderr.log in {exp['result_dir']}" ) ds_config = exp["ds_config"] flattened_ds_config = flatten(ds_config) for k, v in flattened_ds_config.items(): if isinstance(v, numbers.Number): feature_val.append(v) self.evaluated_configs.append(feature_val) self.evaluated_perf.append(0.0) continue p = exp["ds_config"][AUTOTUNING][AUTOTUNING_METRIC_PATH] with open(p, 'r') as f: results = hjson.load(f) curr_iter = results[self.metric] logger.debug(f"parsing the results for {exp_id}, Result is {curr_iter}") ds_config = exp["ds_config"] flattened_ds_config = flatten(ds_config) for k, v in flattened_ds_config.items(): if isinstance(v, numbers.Number): feature_val.append(v) self.evaluated_configs.append(feature_val) self.evaluated_perf.append(curr_iter) logger.debug(f"**Evaluated configs: {len(self.evaluated_configs)}, evaluated perf: {self.evaluated_perf}") self.cost_model.fit(self.evaluated_configs, self.evaluated_perf) estimated_top_configs = self.find_estimated_top_configs() self.trials = estimated_top_configs self.trial_pt = 0 self.train_ct += 1
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/autotuning/tuner/model_based_tuner.py
model_based_tuner.py
# DeepSpeed Team """ DeepSpeed launcher, this is similar to torch's distributed.launch but supports additional features such as arbitrary gpu exclusion. deepspeed.launcher.launch is intended to be run on a single worker node and will spawn several worker sub-processes depending on how many devices/ranks are on the worker. """ import sys import subprocess import os import json import base64 import time import signal import psutil import distutils from collections import defaultdict from typing import Dict from argparse import ArgumentParser, REMAINDER from ..constants import TORCH_DISTRIBUTED_DEFAULT_PORT from ..nebula.constants import DLTS_POD_ENV_PATH from ..utils import logger from ..elasticity import is_torch_elastic_compatible from .constants import ELASTIC_TRAINING_ID_DEFAULT PID_FILE_BASEPATH = "/tmp" def parse_args(): parser = ArgumentParser(description="DeepSpeed distributed training launch" " utility that creates multiple distributed" " processes on a single node") # Optional arguments for the launch helper parser.add_argument("--node_rank", type=int, default=0, help="The rank of the node for multi-node distributed " "training") parser.add_argument("--master_addr", default="127.0.0.1", type=str, help="Master node (rank 0)'s address, should be either" " the IP address or the hostname of node 0, for" " single node multi-proc training, the" " --master_addr can simply be 127.0.0.1") parser.add_argument("--master_port", default=TORCH_DISTRIBUTED_DEFAULT_PORT, type=int, help="Master node (rank 0)'s free port that needs to " "be used for communication during distributed " "training") parser.add_argument("--world_info", default="None", type=str, help="world info base64 encoded dictionary") parser.add_argument("--module", action="store_true", help="Change each process to interpret the launch " "script as a Python module, executing with the same " "behavior as 'python -m'.") parser.add_argument("--no_python", action="store_true", help="Skip prepending the training script with " "'python' - just execute it directly.") parser.add_argument("--enable_elastic_training", action="store_true", help="Enable elastic training support.") parser.add_argument("--min_elastic_nodes", type=int, default=-1, help="Min number of nodes in elastic training.") parser.add_argument("--max_elastic_nodes", type=int, default=-1, help="Max number of nodes in elastic training.") parser.add_argument("--no_local_rank", action="store_true", help="Do not pass local_rank as an argument when calling " "the user's training script.") parser.add_argument("--save_pid", type=int, default=0, help="main launching process pid, for internal pid tracking") parser.add_argument("--enable_each_rank_log", default="None", type=str, help="redirect the stdout and stderr from each rank into different log files") parser.add_argument("--bind_cores_to_rank", action="store_true", help="Bind each rank to different cores of the host. " "This improves host efficiency especially for CPU backend") parser.add_argument("--bind_core_list", type=str, default=None, help="List of cores to bind to with comma separated list of " "numbers and range. i.e. 1,3-5,7 => [1,3,4,5,7]. When not " "specified, all cores on system would be used rank binding") # positional parser.add_argument("training_script", type=str, help="The full path to the single GPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script") # rest from the training program parser.add_argument('training_script_args', nargs=REMAINDER) return parser.parse_args() # Adapted from https://psutil.readthedocs.io/en/latest/#kill-process-tree def terminate_process_tree(pid): process = psutil.Process(pid) children = process.children(recursive=True) children.append(process) for child in children: try: child.terminate() except psutil.NoSuchProcess: pass gone, alive = psutil.wait_procs(children, timeout=30) for p in alive: p.kill() def parse_range(rng): try: value = int(rng) return range(value, value + 1) except ValueError: # value is not a single number parts = rng.split('-') if len(parts) != 2: raise ValueError("Bad range: '%s', range must be either a number or two number separated by dash" % (rng, )) start = int(parts[0]) end = int(parts[1]) if start > end: raise ValueError("Bad range: '%s', range end must larger than or equal to start" % (rng, )) return range(start, end + 1) # parse comma and dash separated range list into list # i.e. "0,2-4,6" --> [0, 2, 3, 4, 6] # rules: # 1. Range list numser be comma sepeaated, each item are either a single number, # or a range marked by two numbers (both number are included in the range) # 2. Sub ranges must be in ascend order and not overlap with each other # 3. No space in the range expression def parse_range_list(range_str): number_list = [] last = -1 range_list = range_str.split(',') for sub_range in range_list: sub_number_list = parse_range(sub_range) if sub_number_list[0] <= last: raise ValueError( "Bad range: '%s', sub ranges must not overlap with each other and should be in ascend order" % (range_str, )) last = sub_number_list[-1] number_list.extend(sub_number_list) return number_list # return a list of list for cores to numa mapping # [ # [ cores for numa 0 ] # [ cores belong to numa 1 ] # ... # ] def get_numa_cores(): ret = [] output = subprocess.check_output(['numactl', '--hardware']).decode("utf-8") lines = output.split('\n') for line in lines: if line.startswith('available:'): num_numas = int(line.split(' ')[1]) break for numa in range(num_numas): for line in lines: if line.startswith(f'node {numa} cpus:'): cores = line.split(' ')[3:] ret.append([int(core) for core in cores]) return ret def check_for_numactl_pkg(): libs = dict( dpkg=["-l", "numactl", "apt"], pacman=["-Q", "numactl", "pacman"], rpm=["-q", "numactl", "yum"], ) found = False for pkgmgr, data in libs.items(): flag, lib, tool = data path = distutils.spawn.find_executable(pkgmgr) if path is not None: cmd = f"{pkgmgr} {flag} {lib}" result = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) if result.wait() == 0: found = True else: print(f"please install the {lib} package with {tool}") break return found def main(): args = parse_args() current_env = os.environ.copy() for k in current_env.keys(): if "NCCL" in k: logger.info(f"{args.node_rank} {k}={current_env[k]}") if args.world_info == "None": raise ValueError("world_info can not be None") world_info = base64.urlsafe_b64decode(args.world_info) world_info = json.loads(world_info) logger.info(f"WORLD INFO DICT: {world_info}") node_list = list(world_info.keys()) args.nnodes = len(node_list) local_node = node_list[args.node_rank] local_gpu_ids = world_info[local_node] num_local_procs = len(local_gpu_ids) logger.info(f"nnodes={args.nnodes}, num_local_procs={num_local_procs}, node_rank={args.node_rank}") global_rank_mapping = defaultdict(list) curr_global_rank = 0 dist_world_size = 0 for node_id in node_list: gids = world_info[node_id] dist_world_size += len(gids) for gid in gids: global_rank_mapping[node_id].append(curr_global_rank) curr_global_rank += 1 logger.info(f"global_rank_mapping={global_rank_mapping}") logger.info(f"dist_world_size={dist_world_size}") current_env["CUDA_VISIBLE_DEVICES"] = ",".join(map(str, local_gpu_ids)) logger.info(f"Setting CUDA_VISIBLE_DEVICES={current_env['CUDA_VISIBLE_DEVICES']}") # set PyTorch distributed related environmental variables current_env["MASTER_ADDR"] = args.master_addr current_env["MASTER_PORT"] = str(args.master_port) current_env["WORLD_SIZE"] = str(dist_world_size) current_env["CROSS_RANK"] = str(args.node_rank) current_env["CROSS_SIZE"] = str(args.nnodes) current_env["LOCAL_SIZE"] = str(num_local_procs) if args.save_pid: print(f"launcher pid: {os.getpid()}") pid_file = None if args.save_pid: launcher_pid = os.getpid() pid_file = os.path.join(PID_FILE_BASEPATH, f"{args.save_pid}.deepspeed") assert not os.path.isfile(pid_file), "pid file exists but shouldn't" with open(pid_file, 'w') as fd: fd.write(f"{launcher_pid}") if not is_torch_elastic_compatible(): if args.enable_elastic_training: logger.info(f"Disabling elastic training support as \ PyTorch version should be greater than 1.11.x") args.enable_elastic_training = False if os.path.exists(DLTS_POD_ENV_PATH): with open(DLTS_POD_ENV_PATH) as file: lines = file.readlines() lines = [line.rstrip() for line in lines] for line in lines: if line.startswith('export FC_TASKROLE_NAME') or line.startswith('export FC_TASK_INDEX'): key_val = line.split()[1] key, val = key_val.split('=') current_env[key] = val processes = [] cmd = [] if not args.enable_elastic_training: if args.enable_each_rank_log != "None": # prepare the log path and the file name prefix if os.path.isfile(args.enable_each_rank_log): raise ValueError(f"{args.enable_each_rank_log} should not be a file, it should be a directory.") if not os.path.exists(args.enable_each_rank_log): try: os.makedirs(args.enable_each_rank_log) except Exception as e: print(e) raise ValueError(f"unable to create directory {args.enable_each_rank_log} for each rank log.") log_name_prefix = time.strftime("%Y%m%d%H%M%S", time.localtime()) for local_rank in range(0, num_local_procs): # each process's rank dist_rank = global_rank_mapping[local_node][local_rank] current_env["RANK"] = str(dist_rank) current_env["LOCAL_RANK"] = str(local_rank) # spawn the processes cmd = [] if args.bind_cores_to_rank: check_for_numactl_pkg() if 'KMP_AFFINITY' in os.environ.keys(): raise ValueError("Environment variable KMP_AFFINITY conflicts with numactl " "because it interfere with how many CPU cores numactl can set. " "Unset KMP_AFFINITY before launching deepspeed.\n\n" "\t$ unset KMP_AFFINITY\n" "\t$ deepspeed <deepspeed command parameters>") if args.bind_core_list != None: core_list = parse_range_list(args.bind_core_list) total_cores = len(core_list) else: total_cores = psutil.cpu_count(logical=False) core_list = range(total_cores) cores_per_rank = total_cores // num_local_procs assert cores_per_rank >= 1, "At least one core needs to be assigned to each rank" core_list_for_rank = core_list[cores_per_rank * local_rank:cores_per_rank * (local_rank + 1)] current_env["OMP_NUM_THREADS"] = f"{cores_per_rank}" cmd.append("numactl") # check if all cores belong to same numa, if true, bind process to that numa domain with -m parameter numa_cores = get_numa_cores() num_numas = len(numa_cores) for i in range(num_numas): if set(core_list_for_rank) <= set(numa_cores[i]): cmd.append("-m") cmd.append(f"{i}") break cmd.append("-C") core_list_str = f"{core_list_for_rank[0]}" for core_id in core_list_for_rank[1:]: core_list_str = f"{core_list_str},{core_id}" cmd.append(f"{core_list_str}") if not args.no_python: cmd.append(sys.executable) cmd.append("-u") if args.module: cmd.append("-m") else: if args.module: raise ValueError("Don't use both the '--no_python' flag" " and the '--module' flag at the same time.") cmd.append(args.training_script) # A user may not want to pass local_rank as a keyword arg so we make this optional. if not args.no_local_rank: cmd.append(f"--local_rank={local_rank}") cmd += args.training_script_args if args.enable_each_rank_log != "None": log_file = os.path.join(args.enable_each_rank_log, f"{log_name_prefix}_rank{dist_rank}.log") log_fd = open(log_file, 'w') process = subprocess.Popen(cmd, env=current_env, stdout=log_fd, stderr=log_fd) else: process = subprocess.Popen(cmd, env=current_env) processes.append(process) else: from ..elasticity import DSElasticAgent from torch.distributed.elastic.rendezvous import RendezvousParameters from torch.distributed.elastic.agent.server.api import WorkerSpec import torch.distributed.elastic.rendezvous.registry as rdzv_registry from torch.distributed.elastic.multiprocessing import Std if args.min_elastic_nodes == -1: args.min_elastic_nodes = 1 if args.max_elastic_nodes == -1: args.max_elastic_nodes = args.nnodes assert args.max_elastic_nodes > 0 and args.min_elastic_nodes > 0, "Max and Min nodes should be positive" current_env["NCCL_ASYNC_ERROR_HANDLING"] = str(1) # Get config and arguments cmd = [] if not args.no_python: cmd = [sys.executable, "-u"] if args.module: cmd.append("-m") else: if args.module: raise ValueError("Don't use both the '--no_python' flag" " and the '--module' flag at the same time.") cmd.append(args.training_script) cmd += args.training_script_args cmd_args = cmd[1:] rdzv_configs: Dict[str, str] = {'timeout': 100} run_id = os.environ.get("ELASTIC_RUN_ID", ELASTIC_TRAINING_ID_DEFAULT) # Creating config for rendezvous class rdzv_parameters = RendezvousParameters(backend='c10d', endpoint=args.master_addr + ":" + str(args.master_port), run_id=run_id, min_nodes=args.min_elastic_nodes, max_nodes=args.max_elastic_nodes, **rdzv_configs) spec = WorkerSpec( role='trainer', local_world_size=num_local_procs, entrypoint=cmd[0], args=cmd[1:], rdzv_handler=rdzv_registry.get_rendezvous_handler(rdzv_parameters), max_restarts=100, monitor_interval=5, redirects=Std.from_str("0"), tee=Std.from_str("0"), master_addr=None, master_port=None, ) agent = DSElasticAgent(spec, current_env) agent.run() sig_names = {2: "SIGINT", 15: "SIGTERM"} last_return_code = None def sigkill_handler(signum, frame): for process in processes: logger.info(f"Killing subprocess {process.pid}") try: terminate_process_tree(process.pid) except Exception: pass if last_return_code is not None: logger.error(f"{cmd} exits with return code = {last_return_code}") sys.exit(last_return_code) if signum in sig_names: logger.info(f"Main process received {sig_names[signum]}, exiting") if args.save_pid: if os.path.isfile(pid_file): os.remove(pid_file) sys.exit(1) # pass SIGINT/SIGTERM to children if the parent is being terminated signal.signal(signal.SIGINT, sigkill_handler) signal.signal(signal.SIGTERM, sigkill_handler) alive_processes = set(processes) while len(alive_processes): finished_processes = [] for process in alive_processes: if process.poll() is None: # the process is still running continue else: if process.returncode != 0: last_return_code = process.returncode # for sigkill_handler sigkill_handler(signal.SIGTERM, None) # not coming back else: # exited cleanly logger.info(f"Process {process.pid} exits successfully.") finished_processes.append(process) alive_processes = set(alive_processes) - set(finished_processes) time.sleep(1) if __name__ == "__main__": main()
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/launcher/launch.py
launch.py
# DeepSpeed Team """ DeepSpeed runner is the main front-end to launching multi-worker training jobs with DeepSpeed. By default this uses pdsh to parallel ssh into multiple worker nodes and launch all the necessary processes per rank for training. """ import os import re import sys import json import base64 import argparse import subprocess import collections from copy import deepcopy import signal import time from .multinode_runner import PDSHRunner, OpenMPIRunner, MVAPICHRunner, SlurmRunner, MPICHRunner from .constants import PDSH_LAUNCHER, OPENMPI_LAUNCHER, MVAPICH_LAUNCHER, SLURM_LAUNCHER, MPICH_LAUNCHER from ..constants import TORCH_DISTRIBUTED_DEFAULT_PORT from ..nebula.constants import NEBULA_EXPORT_ENVS from ..utils import logger from ..autotuning import Autotuner from deepspeed.accelerator import get_accelerator DLTS_HOSTFILE = "/job/hostfile" EXPORT_ENVS = ['MLFLOW', 'NCCL', 'PYTHON', 'MV2', 'UCX'] EXPORT_ENVS += NEBULA_EXPORT_ENVS DEEPSPEED_ENVIRONMENT_NAME = ".deepspeed_env" DEEPSPEED_ENVIRONMENT_PATHS = [os.path.expanduser("~"), '.'] PDSH_MAX_FAN_OUT = 1024 def parse_args(args=None): parser = argparse.ArgumentParser(description="DeepSpeed runner to help launch distributed " "multi-node/multi-gpu training jobs.", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("-H", "--hostfile", type=str, default=DLTS_HOSTFILE, help="Hostfile path (in MPI style) that defines the " "resource pool available to the job (e.g., " "worker-0 slots=4)") parser.add_argument("-i", "--include", type=str, default="", help='''Specify hardware resources to use during execution. String format is NODE_SPEC[@NODE_SPEC ...], where NODE_SPEC=NAME[:SLOT[,SLOT ...]]. If :SLOT is omitted, include all slots on that host. Example: -i "worker-0@worker-1:0,2" will use all slots on worker-0 and slots [0, 2] on worker-1. ''') parser.add_argument("-e", "--exclude", type=str, default="", help='''Specify hardware resources to NOT use during execution. Mutually exclusive with --include. Resource formatting is the same as --include. Example: -e "worker-1:0" will use all available resources except slot 0 on worker-1. ''') parser.add_argument("--num_nodes", type=int, default=-1, help="Total number of worker nodes to run on, this will use " "the top N hosts from the given hostfile.") parser.add_argument("--min_elastic_nodes", type=int, default=-1, help="Minimum number of nodes to run elastic training on. " "Default is 1 when elastic training is enabled") parser.add_argument("--max_elastic_nodes", type=int, default=-1, help="Maximum number of nodes to run elastic training on. " "Default is num_nodes when elastic training is enabled") parser.add_argument("--num_gpus", type=int, default=-1, help="Max number of GPUs to use on each node, will use " "[0:N) GPU ids on each node.") parser.add_argument("--master_port", default=TORCH_DISTRIBUTED_DEFAULT_PORT, type=int, help="(optional) Port used by PyTorch distributed for " "communication during training.") parser.add_argument("--master_addr", default="", type=str, help="(optional) IP address of node 0, will be " "inferred via 'hostname -I' if not specified.") parser.add_argument("--launcher", default=PDSH_LAUNCHER, type=str, help="(optional) choose launcher backend for multi-node " "training. Options currently include PDSH, OpenMPI, MVAPICH, SLURM, MPICH.") parser.add_argument("--launcher_args", default="", type=str, help="(optional) pass launcher specific arguments as a " "single quoted argument.") parser.add_argument("--module", action="store_true", help="Change each process to interpret the launch " "script as a Python module, executing with the same " "behavior as 'python -m'.") parser.add_argument("--no_python", action="store_true", help="Skip prepending the training script with " "'python' - just execute it directly.") parser.add_argument("--no_local_rank", action="store_true", help="Do not pass local_rank as an argument when calling " "the user's training script.") parser.add_argument("--no_ssh_check", action="store_true", help="Do not perform ssh check in multi-node launcher model") parser.add_argument("--force_multi", action="store_true", help="Force multi-node launcher mode, helps in cases where user " "wants to launch on single remote node.") parser.add_argument("--save_pid", action="store_true", help="Save file containing launcher process id (pid) at /tmp/<main-pid>.ds, " "where <main-pid> is the pid of the first process that invoked `deepspeed`. " "Useful when launching deepspeed processes programmatically.") parser.add_argument("--enable_each_rank_log", default="None", type=str, help="redirect the stdout and stderr from each rank into different log files") parser.add_argument("--autotuning", default="", choices=["tune", "run"], type=str, help="Run DeepSpeed autotuner to discover optimal configuration parameters " "before running job.") parser.add_argument("--elastic_training", action="store_true", help="Enable elastic training support in DeepSpeed.") parser.add_argument("user_script", type=str, help="User script to launch, followed by any required " "arguments.") parser.add_argument('user_args', nargs=argparse.REMAINDER) parser.add_argument("--bind_cores_to_rank", action="store_true", help="Bind each rank to different cores of the host") parser.add_argument("--bind_core_list", type=str, default=None, help="List of cores to bind to with comma separated list of " "numbers and range. i.e. 1,3-5,7 => [1,3,4,5,7]. When not " "specified, all cores on system would be used rank binding") return parser.parse_args(args=args) def fetch_hostfile(hostfile_path): if not os.path.isfile(hostfile_path): logger.warning("Unable to find hostfile, will proceed with training " "with local resources only.") return None # e.g., worker-0 slots=16 with open(hostfile_path, 'r') as fd: hostfile_text = fd.readlines() return _parse_hostfile(hostfile_text) def _parse_hostfile(hostfile_lines): # Regex matches one or more non-whitespace characters (\S+) at the start of # the line, followed by one or more whitespace characters (\s+), followed # by the string "slots=", followed by one or more digits (\d+). pattern = r'^(\S+)\s+slots=(\d+)' resource_pool = collections.OrderedDict() for line in hostfile_lines: line = line.strip() match = re.search(pattern, line) if line.startswith("#") or line == "": # hostfile comment or empty line, ignore continue elif match: host = match.group(1) num_slots = int(match.group(2)) if host in resource_pool: logger.error(f"Bad hostfile text: {hostfile_lines}") raise ValueError(f"Hostfile contains multiple entries for {host}, unable to proceed with launching") resource_pool[host] = num_slots else: logger.error(f"Bad hostfile text: {hostfile_lines}") raise ValueError("Hostfile contains a bad entry: {line}, unable to proceed with launching") if len(resource_pool) == 0: logger.error(f"Bad hostfile text: {hostfile_lines}") raise ValueError("Hostfile is empty or not formatted correctly, unable to proceed with launching.") return resource_pool def _stable_remove_duplicates(data): # Create a new list in the same order as original but with duplicates # removed, should never be more than ~16 elements so simple is best new_list = [] for x in data: if x not in new_list: new_list.append(x) return new_list def parse_resource_filter(host_info, include_str="", exclude_str=""): '''Parse an inclusion or exclusion string and filter a hostfile dictionary. String format is NODE_SPEC[@NODE_SPEC ...], where NODE_SPEC = NAME[:SLOT[,SLOT ...]]. If :SLOT is omitted, include/exclude all slots on that host. Examples: include_str="worker-0@worker-1:0,2" will use all slots on worker-0 and slots [0, 2] on worker-1. exclude_str="worker-1:0" will use all available resources except slot 0 on worker-1. ''' # Constants that define our syntax NODE_SEP = '@' SLOT_LIST_START = ':' SLOT_SEP = ',' # Ensure include/exclude are mutually exclusive if (include_str != "") and (exclude_str != ""): raise ValueError('include_str and exclude_str are mutually exclusive.') # no-op if (include_str == "") and (exclude_str == ""): return host_info # Either build from scratch or remove items filtered_hosts = dict() if include_str: parse_str = include_str if exclude_str != "": filtered_hosts = deepcopy(host_info) parse_str = exclude_str # foreach node in the list for node_config in parse_str.split(NODE_SEP): # Node can either be alone or node:slot,slot,slot if SLOT_LIST_START in node_config: hostname, slots = node_config.split(SLOT_LIST_START) slots = [int(x) for x in slots.split(SLOT_SEP)] # sanity checks if hostname not in host_info: raise ValueError(f"Hostname '{hostname}' not found in hostfile") for slot in slots: if slot not in host_info[hostname]: raise ValueError(f"No slot '{slot}' specified on host '{hostname}'") # If include string, build the list from here if include_str: filtered_hosts[hostname] = slots elif exclude_str: for slot in slots: logger.info(f'removing {slot} from {hostname}') filtered_hosts[hostname].remove(slot) # User just specified the whole node else: hostname = node_config # sanity check hostname if hostname not in host_info: raise ValueError(f"Hostname '{hostname}' not found in hostfile") if include_str: filtered_hosts[hostname] = host_info[hostname] elif exclude_str: filtered_hosts[hostname] = [] # Post-processing to remove duplicates and empty nodes del_keys = [] for hostname in filtered_hosts: # Remove duplicates filtered_hosts[hostname] = _stable_remove_duplicates(filtered_hosts[hostname]) # Remove empty hosts if len(filtered_hosts[hostname]) == 0: del_keys.append(hostname) for name in del_keys: del filtered_hosts[name] # Lastly, go over filtered_hosts and convert to a OrderedDict() to ensure # we map ranks to nodes correctly by maintaining host_info ordering. ordered_hosts = collections.OrderedDict() for host in host_info: if host in filtered_hosts: ordered_hosts[host] = filtered_hosts[host] return ordered_hosts def parse_inclusion_exclusion(resource_pool, inclusion, exclusion): active_resources = collections.OrderedDict() for hostname, slots in resource_pool.items(): active_resources[hostname] = list(range(slots)) return parse_resource_filter(active_resources, include_str=inclusion, exclude_str=exclusion) def encode_world_info(world_info): world_info_json = json.dumps(world_info).encode('utf-8') world_info_base64 = base64.urlsafe_b64encode(world_info_json).decode('utf-8') return world_info_base64 def run_autotuning(args, active_resources): tuner = Autotuner(args, active_resources) logger.info("[Start] Running autotuning") tuner.tune() tuner.print_tuning_results() logger.info("[End] Running autotuning") tuner.write_optimal_config() if args.autotuning == "run": tuner.run_after_tuning() def parse_num_nodes(str_num_nodes: str, elastic_training: bool): node_list = str_num_nodes.split(":") if len(node_list) == 1: min_nodes, max_nodes = int(node_list[0]), -1 elif len(node_list) == 2 and elastic_training: min_nodes, max_nodes = int(node_list[0]), int(node_list[1]) elif len(node_list) == 2 and not elastic_training: raise RuntimeError("MIN:MAX format is only supported in elastic training") else: raise RuntimeError("num_nodes {} is not in MIN:MAX format".format(str_num_nodes)) return min_nodes, max_nodes def main(args=None): args = parse_args(args) if args.elastic_training: assert args.master_addr != "", "Master Addr is required when elastic training is enabled" resource_pool = fetch_hostfile(args.hostfile) # respect CUDA_VISIBLE_DEVICES for a single node and no explicit resource filters cuda_visible_devices = os.environ.get("CUDA_VISIBLE_DEVICES", "") if not resource_pool and len(cuda_visible_devices): detected_str = f"Detected CUDA_VISIBLE_DEVICES={cuda_visible_devices}" if len(args.include) or len(args.exclude) or args.num_nodes > 1 or args.num_gpus > 0: print( f"{detected_str} but ignoring it because one or several of --include/--exclude/--num_gpus/--num_nodes cl args were used. If you want to use CUDA_VISIBLE_DEVICES don't pass any of these arguments to deepspeed." ) else: args.include = f"localhost:{cuda_visible_devices}" print(f"{detected_str}: setting --include={args.include}") del os.environ["CUDA_VISIBLE_DEVICES"] if args.num_nodes >= 0 or args.num_gpus >= 0: if args.include != "" or args.exclude != "": raise ValueError("Cannot specify num_nodes/gpus with include/exclude") multi_node_exec = True if not resource_pool: resource_pool = {} device_count = get_accelerator().device_count() if device_count == 0: raise RuntimeError("Unable to proceed, no GPU resources available") resource_pool['localhost'] = device_count args.master_addr = "127.0.0.1" multi_node_exec = False if not multi_node_exec and args.num_nodes > 1: raise ValueError("Num nodes is >1 but no extra nodes available via hostfile") active_resources = parse_inclusion_exclusion(resource_pool, args.include, args.exclude) env = os.environ.copy() # validate that passwordless-ssh is workly properly with this hostfile if multi_node_exec and not args.no_ssh_check: first_host = list(active_resources.keys())[0] try: subprocess.check_call(f'ssh -o PasswordAuthentication=no {first_host} hostname', stderr=subprocess.DEVNULL, stdout=subprocess.DEVNULL, shell=True) except subprocess.CalledProcessError: raise RuntimeError( f"Using hostfile at {args.hostfile} but host={first_host} was not reachable via ssh. If you are running with a single node please remove {args.hostfile} or setup passwordless ssh." ) if not args.master_addr: assert multi_node_exec first_host = list(active_resources.keys())[0] hostname_cmd = [f"ssh {first_host} hostname -I"] try: result = subprocess.check_output(hostname_cmd, shell=True) except subprocess.CalledProcessError as err: logger.error( "Unable to detect suitable master address via `hostname -I`, please manually specify one via --master_addr" ) raise err args.master_addr = result.decode('utf-8').split()[0] if not args.master_addr: raise RuntimeError( f"Unable to detect suitable master address via `hostname -I`, please manually specify one via --master_addr" ) logger.info(f"Using IP address of {args.master_addr} for node {first_host}") if args.autotuning != "": run_autotuning(args, active_resources) return if args.num_nodes > 0: updated_active_resources = collections.OrderedDict() for count, hostname in enumerate(active_resources.keys()): if args.num_nodes == count: break updated_active_resources[hostname] = active_resources[hostname] active_resources = updated_active_resources if args.num_gpus > 0: updated_active_resources = collections.OrderedDict() for hostname in active_resources.keys(): updated_active_resources[hostname] = list(range(args.num_gpus)) active_resources = updated_active_resources if args.elastic_training: assert not args.no_local_rank, "--no_local_rank argument is not supported in Elastic training" # encode world info as base64 to make it easier to pass via command line world_info_base64 = encode_world_info(active_resources) multi_node_exec = args.force_multi or len(active_resources) > 1 if not multi_node_exec: deepspeed_launch = [ sys.executable, "-u", "-m", "deepspeed.launcher.launch", f"--world_info={world_info_base64}", f"--master_addr={args.master_addr}", f"--master_port={args.master_port}" ] if args.no_python: deepspeed_launch.append("--no_python") if args.module: deepspeed_launch.append("--module") if args.no_local_rank: deepspeed_launch.append("--no_local_rank") if args.save_pid: deepspeed_launch += ["--save_pid", f"{os.getpid()}"] if args.enable_each_rank_log: deepspeed_launch.append(f"--enable_each_rank_log={args.enable_each_rank_log}") if args.elastic_training: deepspeed_launch.append("--enable_elastic_training") deepspeed_launch.append(f"--max_elastic_nodes={args.max_elastic_nodes}") deepspeed_launch.append(f"--min_elastic_nodes={args.min_elastic_nodes}") if args.bind_cores_to_rank: deepspeed_launch.append("--bind_cores_to_rank") if args.bind_core_list != None: deepspeed_launch.append(f"--bind_core_list={args.bind_core_list}") cmd = deepspeed_launch + [args.user_script] + args.user_args else: args.launcher = args.launcher.lower() if args.launcher == PDSH_LAUNCHER: runner = PDSHRunner(args, world_info_base64) elif args.launcher == OPENMPI_LAUNCHER: runner = OpenMPIRunner(args, world_info_base64, resource_pool) elif args.launcher == MPICH_LAUNCHER: runner = MPICHRunner(args, world_info_base64, resource_pool) elif args.launcher == MVAPICH_LAUNCHER: runner = MVAPICHRunner(args, world_info_base64, resource_pool) elif args.launcher == SLURM_LAUNCHER: runner = SlurmRunner(args, world_info_base64, resource_pool) else: raise NotImplementedError(f"Unknown launcher {args.launcher}") if not runner.backend_exists(): raise RuntimeError(f"launcher '{args.launcher}' not installed.") curr_path = os.path.abspath('.') if 'PYTHONPATH' in env: env['PYTHONPATH'] = curr_path + ":" + env['PYTHONPATH'] else: env['PYTHONPATH'] = curr_path exports = "" for var in env.keys(): if any([var.startswith(name) for name in EXPORT_ENVS]): runner.add_export(var, env[var]) for environ_path in DEEPSPEED_ENVIRONMENT_PATHS: environ_file = os.path.join(environ_path, DEEPSPEED_ENVIRONMENT_NAME) if os.path.isfile(environ_file): with open(environ_file, 'r') as fd: for var in fd.readlines(): key, val = var.split('=', maxsplit=1) runner.add_export(key, val) if args.launcher == PDSH_LAUNCHER: cmd, kill_cmd = runner.get_cmd(env, active_resources) else: cmd = runner.get_cmd(env, active_resources) logger.info(f"cmd = {' '.join(cmd)}") result = subprocess.Popen(cmd, env=env) def sigkill_handler(signum, frame): result.send_signal(signal.SIGINT) time.sleep(0.1) result.send_signal(signal.SIGTERM) result_kill = subprocess.Popen(kill_cmd, env=env) result_kill.wait() time.sleep(1) sys.exit(1) if args.launcher == PDSH_LAUNCHER: signal.signal(signal.SIGINT, sigkill_handler) result.wait() # In case of failure must propagate the error-condition back to the caller (usually shell). The # actual error and traceback should have been printed in the subprocess, so in order to avoid # unnecessary noise we just quietly exit here with the same code as the subprocess if result.returncode > 0: sys.exit(result.returncode) if __name__ == "__main__": main()
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/launcher/runner.py
runner.py
# DeepSpeed Team import os import sys import shutil import subprocess import warnings from shlex import split from abc import ABC, abstractmethod from deepspeed.accelerator import get_accelerator from ..utils import logger from .constants import PDSH_MAX_FAN_OUT, MVAPICH_TMP_HOSTFILE class MultiNodeRunner(ABC): def __init__(self, args, world_info_base64): self.args = args self.validate_args() self.user_arguments = self.parse_user_args() self.user_script = args.user_script self.world_info_base64 = world_info_base64 self.exports = {} @abstractmethod def backend_exists(self): """Return whether the corresponding backend exists""" @abstractmethod def get_cmd(self, environment, active_resources): """Return the command to execute on node""" def add_export(self, key, var): self.exports[key.strip()] = var.strip() def parse_user_args(self): return self.args.user_args @property def name(self): """Return the name of the backend""" return self.__class__.__name__ def validate_args(self): """Validate self.args""" class PDSHRunner(MultiNodeRunner): def __init__(self, args, world_info_base64): super().__init__(args, world_info_base64) def backend_exists(self): return shutil.which('pdsh') @property def name(self): return "pdsh" def parse_user_args(self): return list(map(lambda x: x if x.startswith("-") else f"'{x}'", self.args.user_args)) def get_cmd(self, environment, active_resources): environment['PDSH_RCMD_TYPE'] = 'ssh' active_workers = ",".join(active_resources.keys()) logger.info("Running on the following workers: %s" % active_workers) # PDSH flags for max node fan out and specific hosts to launch on # See https://linux.die.net/man/1/pdsh for flag details pdsh_cmd_args = ['pdsh', '-S', '-f', str(PDSH_MAX_FAN_OUT), '-w', active_workers] + split( self.args.launcher_args) exports = "" for key, val in self.exports.items(): exports += "export {}={}; ".format(key, val) # https://linux.die.net/man/1/pdsh # %n will be replaced by pdsh command deepspeed_launch = [ exports, f"cd {os.path.abspath('.')};", sys.executable, "-u", "-m", "deepspeed.launcher.launch", f'--world_info={self.world_info_base64}', "--node_rank=%n", f"--master_addr={self.args.master_addr}", f"--master_port={self.args.master_port}" ] if self.args.no_python: deepspeed_launch.append("--no_python") if self.args.module: deepspeed_launch.append("--module") if self.args.no_local_rank: deepspeed_launch.append("--no_local_rank") if self.args.save_pid: deepspeed_launch += ["--save_pid", f"{os.getpid()}"] if self.args.elastic_training: deepspeed_launch.append("--enable_elastic_training") deepspeed_launch.append(f"--max_elastic_nodes={self.args.max_elastic_nodes}") deepspeed_launch.append(f"--min_elastic_nodes={self.args.min_elastic_nodes}") cmd_to_search = [i + "\\" for i in deepspeed_launch[2:6]] kill_command = pdsh_cmd_args + ["pkill -f ", " ".join(cmd_to_search)[:-2]] return pdsh_cmd_args + deepspeed_launch + [self.user_script] + self.user_arguments, kill_command class OpenMPIRunner(MultiNodeRunner): def __init__(self, args, world_info_base64, resource_pool): super().__init__(args, world_info_base64) self.resource_pool = resource_pool self.add_export('UCX_TLS', 'tcp') def backend_exists(self): #TODO: if IB is available we should suggestion mvapich return shutil.which('ompi_info') @property def name(self): return "openmpi" def validate_args(self): super().validate_args() #TODO: Allow for include/exclude at node-level but not gpu-level if self.args.include != "" or self.args.exclude != "": raise ValueError(f"{self.name} backend does not support worker include/exclusion") if self.args.num_nodes != -1 or self.args.num_gpus != -1: raise ValueError(f"{self.name} backend does not support limiting num nodes/gpus") def get_cmd(self, environment, active_resources): total_process_count = sum(self.resource_pool.values()) mpirun_cmd = [ 'mpirun', '-n', f'{total_process_count}', '-hostfile', f'{self.args.hostfile}', '--mca', 'btl', '^openib', '--mca', 'btl_tcp_if_include', 'eth0', ] + split(self.args.launcher_args) export_cmd = [] for k, v in self.exports.items(): export_cmd += ['-x', "{}={}".format(k, v)] python_exec = [] if not self.args.no_python: python_exec = [sys.executable, "-u"] if self.args.module: python_exec.append("-m") return mpirun_cmd + export_cmd + python_exec + [self.user_script] + self.user_arguments class MPICHRunner(MultiNodeRunner): def __init__(self, args, world_info_base64, resource_pool): super().__init__(args, world_info_base64) self.resource_pool = resource_pool def backend_exists(self): #TODO: if IB is available we should suggestion mpich return shutil.which('mpirun') #mpich_info @property def name(self): return "mpich" def validate_args(self): super().validate_args() #TODO: Allow for include/exclude at node-level but not gpu-level if self.args.include != "" or self.args.exclude != "": raise ValueError(f"{self.name} backend does not support worker include/exclusion") if self.args.num_nodes != -1 or self.args.num_gpus != -1: raise ValueError(f"{self.name} backend does not support limiting num nodes/gpus") def get_cmd(self, environment, active_resources): devices_per_node = self.resource_pool.values() total_process_count = sum(devices_per_node) process_per_node = list(devices_per_node)[0] hosts = "" for i, host in enumerate(self.resource_pool.keys()): if i == 0: hosts = f"{host}" else: hosts += f",{host}" mpirun_cmd = [ 'mpirun', '-n', f'{total_process_count}', '-ppn', f'{process_per_node}', '-hosts', f'{hosts}', ] + split(self.args.launcher_args) export_cmd = [] for k, v in self.exports.items(): export_cmd += ['-genv', "{}={}".format(k, v)] python_exec = [] if not self.args.no_python: python_exec = [sys.executable, "-u"] if self.args.module: python_exec.append("-m") return mpirun_cmd + export_cmd + python_exec + [self.user_script] + self.user_arguments class SlurmRunner(MultiNodeRunner): def __init__(self, args, world_info_base64, resource_pool): super().__init__(args, world_info_base64) self.resource_pool = resource_pool def backend_exists(self): return shutil.which('sinfo') @property def name(self): return 'slurm' def get_cmd(self, environment, active_resources): assert not getattr(self.args, 'detect_nvlink_pairs', False), "slurm backend does not support remapping visible devices" total_process_count = sum(self.resource_pool.values()) srun_cmd = [ 'srun', '-n', f'{total_process_count}', ] + split(self.args.launcher_args) if getattr(self.args, 'slurm_comment', ''): srun_cmd += ['--comment', self.args.slurm_comment] if self.args.include != "": srun_cmd.append('--include') srun_cmd.append(f'{self.args.include}') if self.args.exclude != "": srun_cmd.append('--exclude') srun_cmd.append(f'{self.args.exclude}') if self.args.num_nodes > 0: srun_cmd.append('--nodes') srun_cmd.append(f'{self.args.num_nodes}') if self.args.num_gpus > 0: srun_cmd.append('--gpus') srun_cmd.append(f'{self.args.num_gpus}') exports = '--export=ALL' for key, val in self.exports.items(): exports += f",{key}={val}" python_exec = [sys.executable, "-u"] command = srun_cmd + [exports] + python_exec + [self.user_script] + self.user_arguments return command class MVAPICHRunner(MultiNodeRunner): def __init__(self, args, world_info_base64, resource_pool): super().__init__(args, world_info_base64) self.resource_pool = resource_pool # Disable the CMA kernel module, not available on Ubuntu systems self.add_export('MV2_SMP_USE_CMA', '0') # If we fail this will output more verbose logging self.add_export('MV2_DEBUG_SHOW_BACKTRACE', '1') # Enabled cuda-aware communication if get_accelerator().device_name() == 'cuda': self.add_export('MV2_USE_CUDA', '1') # Support deep learning frameworks: http://hidl.cse.ohio-state.edu/userguide/horovod/ self.add_export('MV2_SUPPORT_DL', '1') # Support MPI_THREAD_MULTIPLE self.add_export('MV2_ENABLE_AFFINITY', '0') # Performance tuning flags for allgather self.add_export('MV2_INTER_ALLGATHER_TUNING', '5') self.add_export('MV2_CUDA_USE_NAIVE', '0') def backend_exists(self): #TODO: if IB is available we should suggestion mvapich mpiname_exists = shutil.which('mpiname') exists = False if not mpiname_exists: warnings.warn("mpiname does not exist, mvapich is not installed properly") else: results = subprocess.check_output('mpiname', shell=True) mpiname_results = results.decode('utf-8').strip() if "MVAPICH2-GDR" in mpiname_results: exists = True else: warnings.warn(f"Expected MVAPICH2-GDR as return for mpiname but received {mpiname_results}") return exists @property def name(self): return "mvapich" def validate_args(self): super().validate_args() #TODO: Allow for include/exclude at node-level but not gpu-level if self.args.include != "" or self.args.exclude != "": raise ValueError(f"{self.name} backend does not support worker include/exclusion") if self.args.num_nodes != -1 or self.args.num_gpus != -1: raise ValueError(f"{self.name} backend does not support limiting num nodes/gpus") def get_cmd(self, environment, active_resources): devices_per_node = self.resource_pool.values() total_process_count = sum(devices_per_node) process_per_node = list(devices_per_node)[0] if not all([n == process_per_node for n in devices_per_node]): raise ValueError("mvapich requires same number of devices per node") with open(MVAPICH_TMP_HOSTFILE, 'w') as fd: for host in self.resource_pool.keys(): fd.write(f'{host}\n') mpirun_cmd = [ 'mpirun', '-np', f'{total_process_count}', '-ppn', f'{process_per_node}', '--hostfile', f'{MVAPICH_TMP_HOSTFILE}', ] + split(self.args.launcher_args) export_cmd = [] for k, v in self.exports.items(): export_cmd += ['-env', "{}={}".format(k, v)] python_exec = [] if not self.args.no_python: python_exec = [sys.executable, "-u"] if self.args.module: python_exec.append("-m") return mpirun_cmd + export_cmd + python_exec + [self.user_script] + self.user_arguments
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/launcher/multinode_runner.py
multinode_runner.py
# DeepSpeed Team import time import torch import torch.nn as nn import torch.nn.functional as F from functools import partial from typing import List, Optional from collections import OrderedDict import numpy as np from deepspeed.accelerator import get_accelerator Tensor = torch.Tensor module_flop_count = [] module_mac_count = [] old_functions = {} class FlopsProfiler(object): """Measures the latency, number of estimated floating-point operations and parameters of each module in a PyTorch model. The flops-profiler profiles the forward pass of a PyTorch model and prints the model graph with the measured profile attached to each module. It shows how latency, flops and parameters are spent in the model and which modules or layers could be the bottleneck. It also outputs the names of the top k modules in terms of aggregated latency, flops, and parameters at depth l with k and l specified by the user. The output profile is computed for each batch of input. The DeepSpeed flops profiler can be used with the DeepSpeed runtime or as a standalone package. When using DeepSpeed for model training, the flops profiler can be configured in the deepspeed_config file and no user code change is required. If using the profiler as a standalone package, one imports the flops_profiler package and use the APIs. Here is an example for usage in a typical training workflow: .. code-block:: python model = Model() prof = FlopsProfiler(model) for step, batch in enumerate(data_loader): if step == profile_step: prof.start_profile() loss = model(batch) if step == profile_step: flops = prof.get_total_flops(as_string=True) params = prof.get_total_params(as_string=True) prof.print_model_profile(profile_step=profile_step) prof.end_profile() loss.backward() optimizer.step() To profile a trained model in inference, use the `get_model_profile` API. Args: object (torch.nn.Module): The PyTorch model to profile. """ def __init__(self, model, ds_engine=None): self.model = model self.ds_engine = ds_engine self.started = False self.func_patched = False def start_profile(self, ignore_list=None): """Starts profiling. Extra attributes are added recursively to all the modules and the profiled torch.nn.functionals are monkey patched. Args: ignore_list (list, optional): the list of modules to ignore while profiling. Defaults to None. """ self.reset_profile() _patch_functionals() _patch_tensor_methods() def register_module_hooks(module, ignore_list): if ignore_list and type(module) in ignore_list: return # if computing the flops of a module directly if type(module) in MODULE_HOOK_MAPPING: if not hasattr(module, "__flops_handle__"): module.__flops_handle__ = module.register_forward_hook(MODULE_HOOK_MAPPING[type(module)]) return # if computing the flops of the functionals in a module def pre_hook(module, input): module_flop_count.append([]) module_mac_count.append([]) if not hasattr(module, "__pre_hook_handle__"): module.__pre_hook_handle__ = module.register_forward_pre_hook(pre_hook) def post_hook(module, input, output): if module_flop_count: module.__flops__ += sum([elem[1] for elem in module_flop_count[-1]]) module_flop_count.pop() module.__macs__ += sum([elem[1] for elem in module_mac_count[-1]]) module_mac_count.pop() if not hasattr(module, "__post_hook_handle__"): module.__post_hook_handle__ = module.register_forward_hook(post_hook) def start_time_hook(module, input): get_accelerator().synchronize() module.__start_time__ = time.time() if not hasattr(module, "__start_time_hook_handle"): module.__start_time_hook_handle__ = module.register_forward_pre_hook(start_time_hook) def end_time_hook(module, input, output): get_accelerator().synchronize() module.__duration__ += time.time() - module.__start_time__ if not hasattr(module, "__end_time_hook_handle__"): module.__end_time_hook_handle__ = module.register_forward_hook(end_time_hook) self.model.apply(partial(register_module_hooks, ignore_list=ignore_list)) self.started = True self.func_patched = True def stop_profile(self): """Stop profiling. All torch.nn.functionals are restored to their originals. """ if self.started and self.func_patched: _reload_functionals() _reload_tensor_methods() self.func_patched = False def remove_profile_attrs(module): if hasattr(module, "__pre_hook_handle__"): module.__pre_hook_handle__.remove() del module.__pre_hook_handle__ if hasattr(module, "__post_hook_handle__"): module.__post_hook_handle__.remove() del module.__post_hook_handle__ if hasattr(module, "__flops_handle__"): module.__flops_handle__.remove() del module.__flops_handle__ if hasattr(module, "__start_time_hook_handle__"): module.__start_time_hook_handle__.remove() del module.__start_time_hook_handle__ if hasattr(module, "__end_time_hook_handle__"): module.__end_time_hook_handle__.remove() del module.__end_time_hook_handle__ self.model.apply(remove_profile_attrs) def reset_profile(self): """Resets the profiling. Adds or resets the extra attributes. """ def add_or_reset_attrs(module): module.__flops__ = 0 module.__macs__ = 0 module.__params__ = sum(p.numel() for p in module.parameters()) module.__start_time__ = 0 module.__duration__ = 0 self.model.apply(add_or_reset_attrs) def end_profile(self): """Ends profiling. The added attributes and handles are removed recursively on all the modules. """ if not self.started: return self.stop_profile() self.started = False def remove_profile_attrs(module): if hasattr(module, "__flops__"): del module.__flops__ if hasattr(module, "__macs__"): del module.__macs__ if hasattr(module, "__params__"): del module.__params__ if hasattr(module, "__start_time__"): del module.__start_time__ if hasattr(module, "__duration__"): del module.__duration__ self.model.apply(remove_profile_attrs) def get_total_flops(self, as_string=False): """Returns the total flops of the model. Args: as_string (bool, optional): whether to output the flops as string. Defaults to False. Returns: The number of multiply-accumulate operations of the model forward pass. """ total_flops = get_module_flops(self.model) return num_to_string(total_flops) if as_string else total_flops def get_total_macs(self, as_string=False): """Returns the total MACs of the model. Args: as_string (bool, optional): whether to output the flops as string. Defaults to False. Returns: The number of multiply-accumulate operations of the model forward pass. """ total_macs = get_module_macs(self.model) return macs_to_string(total_macs) if as_string else total_macs def get_total_duration(self, as_string=False): """Returns the total duration of the model forward pass. Args: as_string (bool, optional): whether to output the duration as string. Defaults to False. Returns: The latency of the model forward pass. """ total_duration = get_module_duration(self.model) return duration_to_string(total_duration) if as_string else total_duration def get_total_params(self, as_string=False): """Returns the total parameters of the model. Args: as_string (bool, optional): whether to output the parameters as string. Defaults to False. Returns: The number of parameters in the model. """ return params_to_string(self.model.__params__) if as_string else self.model.__params__ def print_model_profile(self, profile_step=1, module_depth=-1, top_modules=1, detailed=True, output_file=None): """Prints the model graph with the measured profile attached to each module. Args: profile_step (int, optional): The global training step at which to profile. Note that warm up steps are needed for accurate time measurement. module_depth (int, optional): The depth of the model to which to print the aggregated module information. When set to -1, it prints information from the top to the innermost modules (the maximum depth). top_modules (int, optional): Limits the aggregated profile output to the number of top modules specified. detailed (bool, optional): Whether to print the detailed model profile. output_file (str, optional): Path to the output file. If None, the profiler prints to stdout. """ if not self.started: return import sys import os.path original_stdout = None f = None if output_file and output_file != "": dir_path = os.path.dirname(os.path.abspath(output_file)) if not os.path.exists(dir_path): os.makedirs(dir_path) original_stdout = sys.stdout f = open(output_file, "w") sys.stdout = f total_flops = self.get_total_flops() total_macs = self.get_total_macs() total_duration = self.get_total_duration() total_params = self.get_total_params() self.flops = total_flops self.macs = total_macs self.params = total_params print("\n-------------------------- DeepSpeed Flops Profiler --------------------------") print(f'Profile Summary at step {profile_step}:') print( "Notations:\ndata parallel size (dp_size), model parallel size(mp_size),\nnumber of parameters (params), number of multiply-accumulate operations(MACs),\nnumber of floating-point operations (flops), floating-point operations per second (FLOPS),\nfwd latency (forward propagation latency), bwd latency (backward propagation latency),\nstep (weights update latency), iter latency (sum of fwd, bwd and step latency)\n" ) if self.ds_engine: print('{:<60} {:<8}'.format('world size: ', self.ds_engine.world_size)) print('{:<60} {:<8}'.format('data parallel size: ', self.ds_engine.dp_world_size)) print('{:<60} {:<8}'.format('model parallel size: ', self.ds_engine.mp_world_size)) print('{:<60} {:<8}'.format('batch size per GPU: ', self.ds_engine.train_micro_batch_size_per_gpu())) print('{:<60} {:<8}'.format('params per gpu: ', params_to_string(total_params))) print('{:<60} {:<8}'.format( 'params of model = params per GPU * mp_size: ', params_to_string(total_params * ((self.ds_engine.mp_world_size) if self.ds_engine else 1)))) print('{:<60} {:<8}'.format('fwd MACs per GPU: ', macs_to_string(total_macs))) print('{:<60} {:<8}'.format('fwd flops per GPU: ', num_to_string(total_flops))) print('{:<60} {:<8}'.format( 'fwd flops of model = fwd flops per GPU * mp_size: ', num_to_string(total_flops * ((self.ds_engine.mp_world_size) if self.ds_engine else 1)))) fwd_latency = self.get_total_duration() if self.ds_engine and self.ds_engine.wall_clock_breakdown(): fwd_latency = self.ds_engine.timers('forward').elapsed(False) / 1000.0 print('{:<60} {:<8}'.format('fwd latency: ', duration_to_string(fwd_latency))) print('{:<60} {:<8}'.format('fwd FLOPS per GPU = fwd flops per GPU / fwd latency: ', flops_to_string(total_flops / fwd_latency))) if self.ds_engine and self.ds_engine.wall_clock_breakdown(): bwd_latency = self.ds_engine.timers('backward').elapsed(False) / 1000.0 step_latency = self.ds_engine.timers('step').elapsed(False) / 1000.0 print('{:<60} {:<8}'.format('bwd latency: ', duration_to_string(bwd_latency))) print('{:<60} {:<8}'.format('bwd FLOPS per GPU = 2 * fwd flops per GPU / bwd latency: ', flops_to_string(2 * total_flops / bwd_latency))) print('{:<60} {:<8}'.format('fwd+bwd FLOPS per GPU = 3 * fwd flops per GPU / (fwd+bwd latency): ', flops_to_string(3 * total_flops / (fwd_latency + bwd_latency)))) print('{:<60} {:<8}'.format('step latency: ', duration_to_string(step_latency))) iter_latency = fwd_latency + bwd_latency + step_latency print('{:<60} {:<8}'.format('iter latency: ', duration_to_string(iter_latency))) print('{:<60} {:<8}'.format('FLOPS per GPU = 3 * fwd flops per GPU / iter latency: ', flops_to_string(3 * total_flops / iter_latency))) samples_per_iter = self.ds_engine.train_micro_batch_size_per_gpu() * self.ds_engine.world_size print('{:<60} {:<8.2f}'.format('samples/second: ', samples_per_iter / iter_latency)) def flops_repr(module): params = module.__params__ flops = get_module_flops(module) macs = get_module_macs(module) items = [ params_to_string(params), "{:.2%} Params".format(params / total_params if total_params else 0), macs_to_string(macs), "{:.2%} MACs".format(0.0 if total_macs == 0 else macs / total_macs), ] duration = get_module_duration(module) items.append(duration_to_string(duration)) items.append("{:.2%} latency".format(0.0 if total_duration == 0 else duration / total_duration)) items.append(flops_to_string(0.0 if duration == 0 else flops / duration)) items.append(module.original_extra_repr()) return ", ".join(items) def add_extra_repr(module): flops_extra_repr = flops_repr.__get__(module) if module.extra_repr != flops_extra_repr: module.original_extra_repr = module.extra_repr module.extra_repr = flops_extra_repr assert module.extra_repr != module.original_extra_repr def del_extra_repr(module): if hasattr(module, "original_extra_repr"): module.extra_repr = module.original_extra_repr del module.original_extra_repr self.model.apply(add_extra_repr) print("\n----------------------------- Aggregated Profile per GPU -----------------------------") self.print_model_aggregated_profile(module_depth=module_depth, top_modules=top_modules) if detailed: print("\n------------------------------ Detailed Profile per GPU ------------------------------") print( "Each module profile is listed after its name in the following order: \nparams, percentage of total params, MACs, percentage of total MACs, fwd latency, percentage of total fwd latency, fwd FLOPS" ) print( "\nNote: 1. A module can have torch.nn.module or torch.nn.functional to compute logits (e.g. CrossEntropyLoss). They are not counted as submodules, thus not to be printed out. However they make up the difference between a parent's MACs (or latency) and the sum of its submodules'.\n2. Number of floating-point operations is a theoretical estimation, thus FLOPS computed using that could be larger than the maximum system throughput.\n3. The fwd latency listed in the top module's profile is directly captured at the module forward function in PyTorch, thus it's less than the fwd latency shown above which is captured in DeepSpeed.\n" ) print(self.model) self.model.apply(del_extra_repr) print("------------------------------------------------------------------------------") if output_file: sys.stdout = original_stdout f.close() def print_model_aggregated_profile(self, module_depth=-1, top_modules=1): """Prints the names of the top top_modules modules in terms of aggregated time, flops, and parameters at depth module_depth. Args: module_depth (int, optional): the depth of the modules to show. Defaults to -1 (the innermost modules). top_modules (int, optional): the number of top modules to show. Defaults to 1. """ info = {} if not hasattr(self.model, "__flops__"): print("no __flops__ attribute in the model, call this function after start_profile and before end_profile") return def walk_module(module, curr_depth, info): if curr_depth not in info: info[curr_depth] = {} if module.__class__.__name__ not in info[curr_depth]: info[curr_depth][module.__class__.__name__] = [ 0, 0, 0, ] # macs, params, time info[curr_depth][module.__class__.__name__][0] += get_module_macs(module) info[curr_depth][module.__class__.__name__][1] += module.__params__ info[curr_depth][module.__class__.__name__][2] += get_module_duration(module) has_children = len(module._modules.items()) != 0 if has_children: for child in module.children(): walk_module(child, curr_depth + 1, info) walk_module(self.model, 0, info) depth = module_depth if module_depth == -1: depth = len(info) - 1 print(f'Top {top_modules} modules in terms of params, MACs or fwd latency at different model depths:') for d in range(depth): num_items = min(top_modules, len(info[d])) sort_macs = { k: macs_to_string(v[0]) for k, v in sorted(info[d].items(), key=lambda item: item[1][0], reverse=True)[:num_items] } sort_params = { k: params_to_string(v[1]) for k, v in sorted(info[d].items(), key=lambda item: item[1][1], reverse=True)[:num_items] } sort_time = { k: duration_to_string(v[2]) for k, v in sorted(info[d].items(), key=lambda item: item[1][2], reverse=True)[:num_items] } print(f"depth {d}:") print(f" params - {sort_params}") print(f" MACs - {sort_macs}") print(f" fwd latency - {sort_time}") def _prod(dims): p = 1 for v in dims: p *= v return p def _linear_flops_compute(input, weight, bias=None): out_features = weight.shape[0] macs = input.numel() * out_features return 2 * macs, macs def _relu_flops_compute(input, inplace=False): return input.numel(), 0 def _prelu_flops_compute(input: Tensor, weight: Tensor): return input.numel(), 0 def _elu_flops_compute(input: Tensor, alpha: float = 1.0, inplace: bool = False): return input.numel(), 0 def _leaky_relu_flops_compute(input: Tensor, negative_slope: float = 0.01, inplace: bool = False): return input.numel(), 0 def _relu6_flops_compute(input: Tensor, inplace: bool = False): return input.numel(), 0 def _silu_flops_compute(input: Tensor, inplace: bool = False): return input.numel(), 0 def _gelu_flops_compute(input, **kwargs): return input.numel(), 0 def _pool_flops_compute(input, kernel_size, stride=None, padding=0, dilation=None, ceil_mode=False, count_include_pad=True, divisor_override=None, return_indices=None): return input.numel(), 0 def _conv_flops_compute(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1): assert weight.shape[1] * groups == input.shape[1] batch_size = input.shape[0] in_channels = input.shape[1] out_channels = weight.shape[0] kernel_dims = list(weight.shape[2:]) input_dims = list(input.shape[2:]) length = len(input_dims) paddings = padding if type(padding) is tuple else (padding, ) * length strides = stride if type(stride) is tuple else (stride, ) * length dilations = dilation if type(dilation) is tuple else (dilation, ) * length output_dims = [] for idx, input_dim in enumerate(input_dims): output_dim = (input_dim + 2 * paddings[idx] - (dilations[idx] * (kernel_dims[idx] - 1) + 1)) // strides[idx] + 1 output_dims.append(output_dim) filters_per_channel = out_channels // groups conv_per_position_macs = int(_prod(kernel_dims)) * in_channels * filters_per_channel active_elements_count = batch_size * int(_prod(output_dims)) overall_conv_macs = conv_per_position_macs * active_elements_count overall_conv_flops = 2 * overall_conv_macs bias_flops = 0 if bias is not None: bias_flops = out_channels * active_elements_count return int(overall_conv_flops + bias_flops), int(overall_conv_macs) def _conv_trans_flops_compute( input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1, ): batch_size = input.shape[0] in_channels = input.shape[1] out_channels = weight.shape[0] kernel_dims = list(weight.shape[2:]) input_dims = list(input.shape[2:]) length = len(input_dims) paddings = padding if type(padding) is tuple else (padding, ) * length strides = stride if type(stride) is tuple else (stride, ) * length dilations = dilation if type(dilation) is tuple else (dilation, ) * length output_dims = [] for idx, input_dim in enumerate(input_dims): output_dim = (input_dim + 2 * paddings[idx] - (dilations[idx] * (kernel_dims[idx] - 1) + 1)) // strides[idx] + 1 output_dims.append(output_dim) paddings = padding if type(padding) is tuple else (padding, padding) strides = stride if type(stride) is tuple else (stride, stride) dilations = dilation if type(dilation) is tuple else (dilation, dilation) filters_per_channel = out_channels // groups conv_per_position_macs = int(_prod(kernel_dims)) * in_channels * filters_per_channel active_elements_count = batch_size * int(_prod(input_dims)) overall_conv_macs = conv_per_position_macs * active_elements_count overall_conv_flops = 2 * overall_conv_macs bias_flops = 0 if bias is not None: bias_flops = out_channels * batch_size * int(_prod(output_dims)) return int(overall_conv_flops + bias_flops), int(overall_conv_macs) def _batch_norm_flops_compute( input, running_mean, running_var, weight=None, bias=None, training=False, momentum=0.1, eps=1e-05, ): has_affine = weight is not None if training: # estimation return input.numel() * (5 if has_affine else 4), 0 flops = input.numel() * (2 if has_affine else 1) return flops, 0 def _layer_norm_flops_compute( input: Tensor, normalized_shape: List[int], weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, eps: float = 1e-5, ): has_affine = weight is not None # estimation return input.numel() * (5 if has_affine else 4), 0 def _group_norm_flops_compute(input: Tensor, num_groups: int, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, eps: float = 1e-5): has_affine = weight is not None # estimation return input.numel() * (5 if has_affine else 4), 0 def _instance_norm_flops_compute( input: Tensor, running_mean: Optional[Tensor] = None, running_var: Optional[Tensor] = None, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, use_input_stats: bool = True, momentum: float = 0.1, eps: float = 1e-5, ): has_affine = weight is not None # estimation return input.numel() * (5 if has_affine else 4), 0 def _upsample_flops_compute(input, **kwargs): size = kwargs.get('size', None) if size is not None: if isinstance(size, tuple) or isinstance(size, list): return int(_prod(size)), 0 else: return int(size), 0 scale_factor = kwargs.get('scale_factor', None) assert scale_factor is not None, "either size or scale_factor should be defined" flops = input.numel() if isinstance(scale_factor, tuple) and len(scale_factor) == len(input): flops * int(_prod(scale_factor)) else: flops * scale_factor**len(input) return flops, 0 def _softmax_flops_compute(input, dim=None, _stacklevel=3, dtype=None): return input.numel(), 0 def _embedding_flops_compute( input, weight, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, ): return 0, 0 def _dropout_flops_compute(input, p=0.5, training=True, inplace=False): return 0, 0 def _matmul_flops_compute(input, other, *, out=None): """ Count flops for the matmul operation. """ macs = _prod(input.shape) * other.shape[-1] return 2 * macs, macs def _addmm_flops_compute(input, mat1, mat2, *, beta=1, alpha=1, out=None): """ Count flops for the addmm operation. """ macs = _prod(mat1.shape) * mat2.shape[-1] return 2 * macs + _prod(input.shape), macs def _einsum_flops_compute(equation, *operands): """ Count flops for the einsum operation. """ equation = equation.replace(" ", "") input_shapes = [o.shape for o in operands] # Re-map equation so that same equation with different alphabet # representations will look the same. letter_order = OrderedDict((k, 0) for k in equation if k.isalpha()).keys() mapping = {ord(x): 97 + i for i, x in enumerate(letter_order)} equation = equation.translate(mapping) np_arrs = [np.zeros(s) for s in input_shapes] optim = np.einsum_path(equation, *np_arrs, optimize="optimal")[1] for line in optim.split("\n"): if "optimized flop" in line.lower(): flop = int(float(line.split(":")[-1])) return flop, 0 raise NotImplementedError("Unsupported einsum operation.") def _tensor_addmm_flops_compute(self, mat1, mat2, *, beta=1, alpha=1, out=None): """ Count flops for the tensor addmm operation. """ macs = _prod(mat1.shape) * mat2.shape[-1] return 2 * macs + _prod(self.shape), macs def _mul_flops_compute(input, other, *, out=None): return _elementwise_flops_compute(input, other) def _add_flops_compute(input, other, *, alpha=1, out=None): return _elementwise_flops_compute(input, other) def _elementwise_flops_compute(input, other): if not torch.is_tensor(input): if torch.is_tensor(other): return _prod(other.shape), 0 else: return 1, 0 elif not torch.is_tensor(other): return _prod(input.shape), 0 else: dim_input = len(input.shape) dim_other = len(other.shape) max_dim = max(dim_input, dim_other) final_shape = [] for i in range(max_dim): in_i = input.shape[i] if i < dim_input else 1 ot_i = other.shape[i] if i < dim_other else 1 if in_i > ot_i: final_shape.append(in_i) else: final_shape.append(ot_i) flops = _prod(final_shape) return flops, 0 def wrapFunc(func, funcFlopCompute): oldFunc = func name = func.__str__ old_functions[name] = oldFunc def newFunc(*args, **kwds): flops, macs = funcFlopCompute(*args, **kwds) if module_flop_count: module_flop_count[-1].append((name, flops)) if module_mac_count and macs: module_mac_count[-1].append((name, macs)) return oldFunc(*args, **kwds) newFunc.__str__ = func.__str__ return newFunc def _patch_functionals(): # FC F.linear = wrapFunc(F.linear, _linear_flops_compute) # convolutions F.conv1d = wrapFunc(F.conv1d, _conv_flops_compute) F.conv2d = wrapFunc(F.conv2d, _conv_flops_compute) F.conv3d = wrapFunc(F.conv3d, _conv_flops_compute) # conv transposed F.conv_transpose1d = wrapFunc(F.conv_transpose1d, _conv_trans_flops_compute) F.conv_transpose2d = wrapFunc(F.conv_transpose2d, _conv_trans_flops_compute) F.conv_transpose3d = wrapFunc(F.conv_transpose3d, _conv_trans_flops_compute) # activations F.relu = wrapFunc(F.relu, _relu_flops_compute) F.prelu = wrapFunc(F.prelu, _prelu_flops_compute) F.elu = wrapFunc(F.elu, _elu_flops_compute) F.leaky_relu = wrapFunc(F.leaky_relu, _leaky_relu_flops_compute) F.relu6 = wrapFunc(F.relu6, _relu6_flops_compute) if hasattr(F, "silu"): F.silu = wrapFunc(F.silu, _silu_flops_compute) F.gelu = wrapFunc(F.gelu, _gelu_flops_compute) # Normalizations F.batch_norm = wrapFunc(F.batch_norm, _batch_norm_flops_compute) F.layer_norm = wrapFunc(F.layer_norm, _layer_norm_flops_compute) F.instance_norm = wrapFunc(F.instance_norm, _instance_norm_flops_compute) F.group_norm = wrapFunc(F.group_norm, _group_norm_flops_compute) # poolings F.avg_pool1d = wrapFunc(F.avg_pool1d, _pool_flops_compute) F.avg_pool2d = wrapFunc(F.avg_pool2d, _pool_flops_compute) F.avg_pool3d = wrapFunc(F.avg_pool3d, _pool_flops_compute) F.max_pool1d = wrapFunc(F.max_pool1d, _pool_flops_compute) F.max_pool2d = wrapFunc(F.max_pool2d, _pool_flops_compute) F.max_pool3d = wrapFunc(F.max_pool3d, _pool_flops_compute) F.adaptive_avg_pool1d = wrapFunc(F.adaptive_avg_pool1d, _pool_flops_compute) F.adaptive_avg_pool2d = wrapFunc(F.adaptive_avg_pool2d, _pool_flops_compute) F.adaptive_avg_pool3d = wrapFunc(F.adaptive_avg_pool3d, _pool_flops_compute) F.adaptive_max_pool1d = wrapFunc(F.adaptive_max_pool1d, _pool_flops_compute) F.adaptive_max_pool2d = wrapFunc(F.adaptive_max_pool2d, _pool_flops_compute) F.adaptive_max_pool3d = wrapFunc(F.adaptive_max_pool3d, _pool_flops_compute) # upsample F.upsample = wrapFunc(F.upsample, _upsample_flops_compute) F.interpolate = wrapFunc(F.interpolate, _upsample_flops_compute) # softmax F.softmax = wrapFunc(F.softmax, _softmax_flops_compute) # embedding F.embedding = wrapFunc(F.embedding, _embedding_flops_compute) def _patch_tensor_methods(): torch.matmul = wrapFunc(torch.matmul, _matmul_flops_compute) torch.Tensor.matmul = wrapFunc(torch.Tensor.matmul, _matmul_flops_compute) torch.mm = wrapFunc(torch.mm, _matmul_flops_compute) torch.Tensor.mm = wrapFunc(torch.Tensor.mm, _matmul_flops_compute) torch.bmm = wrapFunc(torch.bmm, _matmul_flops_compute) torch.Tensor.bmm = wrapFunc(torch.Tensor.bmm, _matmul_flops_compute) torch.addmm = wrapFunc(torch.addmm, _addmm_flops_compute) torch.Tensor.addmm = wrapFunc(torch.Tensor.addmm, _tensor_addmm_flops_compute) torch.mul = wrapFunc(torch.mul, _mul_flops_compute) torch.Tensor.mul = wrapFunc(torch.Tensor.mul, _mul_flops_compute) torch.add = wrapFunc(torch.add, _add_flops_compute) torch.Tensor.add = wrapFunc(torch.Tensor.add, _add_flops_compute) torch.einsum = wrapFunc(torch.einsum, _einsum_flops_compute) torch.baddbmm = wrapFunc(torch.baddbmm, _tensor_addmm_flops_compute) def _reload_functionals(): # torch.nn.functional does not support importlib.reload() F.linear = old_functions[F.linear.__str__] F.conv1d = old_functions[F.conv1d.__str__] F.conv2d = old_functions[F.conv2d.__str__] F.conv3d = old_functions[F.conv3d.__str__] F.conv_transpose1d = old_functions[F.conv_transpose1d.__str__] F.conv_transpose2d = old_functions[F.conv_transpose2d.__str__] F.conv_transpose3d = old_functions[F.conv_transpose3d.__str__] F.relu = old_functions[F.relu.__str__] F.prelu = old_functions[F.prelu.__str__] F.elu = old_functions[F.elu.__str__] F.leaky_relu = old_functions[F.leaky_relu.__str__] F.relu6 = old_functions[F.relu6.__str__] if hasattr(F, "silu"): F.silu = old_functions[F.silu.__str__] F.gelu = old_functions[F.gelu.__str__] F.batch_norm = old_functions[F.batch_norm.__str__] F.layer_norm = old_functions[F.layer_norm.__str__] F.instance_norm = old_functions[F.instance_norm.__str__] F.group_norm = old_functions[F.group_norm.__str__] F.avg_pool1d = old_functions[F.avg_pool1d.__str__] F.avg_pool2d = old_functions[F.avg_pool2d.__str__] F.avg_pool3d = old_functions[F.avg_pool3d.__str__] F.max_pool1d = old_functions[F.max_pool1d.__str__] F.max_pool2d = old_functions[F.max_pool2d.__str__] F.max_pool3d = old_functions[F.max_pool3d.__str__] F.adaptive_avg_pool1d = old_functions[F.adaptive_avg_pool1d.__str__] F.adaptive_avg_pool2d = old_functions[F.adaptive_avg_pool2d.__str__] F.adaptive_avg_pool3d = old_functions[F.adaptive_avg_pool3d.__str__] F.adaptive_max_pool1d = old_functions[F.adaptive_max_pool1d.__str__] F.adaptive_max_pool2d = old_functions[F.adaptive_max_pool2d.__str__] F.adaptive_max_pool3d = old_functions[F.adaptive_max_pool3d.__str__] F.upsample = old_functions[F.upsample.__str__] F.interpolate = old_functions[F.interpolate.__str__] F.softmax = old_functions[F.softmax.__str__] F.embedding = old_functions[F.embedding.__str__] def _reload_tensor_methods(): torch.matmul = old_functions[torch.matmul.__str__] torch.Tensor.matmul = old_functions[torch.Tensor.matmul.__str__] torch.mm = old_functions[torch.mm.__str__] torch.Tensor.mm = old_functions[torch.Tensor.mm.__str__] torch.bmm = old_functions[torch.matmul.__str__] torch.Tensor.bmm = old_functions[torch.Tensor.bmm.__str__] torch.addmm = old_functions[torch.addmm.__str__] torch.Tensor.addmm = old_functions[torch.Tensor.addmm.__str__] torch.mul = old_functions[torch.mul.__str__] torch.Tensor.mul = old_functions[torch.Tensor.mul.__str__] torch.add = old_functions[torch.add.__str__] torch.Tensor.add = old_functions[torch.Tensor.add.__str__] torch.einsum = old_functions[torch.einsum.__str__] torch.baddbmm = old_functions[torch.baddbmm.__str__] def _rnn_flops(flops, rnn_module, w_ih, w_hh, input_size): # matrix matrix mult ih state and internal state flops += w_ih.shape[0] * w_ih.shape[1] # matrix matrix mult hh state and internal state flops += w_hh.shape[0] * w_hh.shape[1] if isinstance(rnn_module, (nn.RNN, nn.RNNCell)): # add both operations flops += rnn_module.hidden_size elif isinstance(rnn_module, (nn.GRU, nn.GRUCell)): # hadamard of r flops += rnn_module.hidden_size # adding operations from both states flops += rnn_module.hidden_size * 3 # last two hadamard _product and add flops += rnn_module.hidden_size * 3 elif isinstance(rnn_module, (nn.LSTM, nn.LSTMCell)): # adding operations from both states flops += rnn_module.hidden_size * 4 # two hadamard _product and add for C state flops += rnn_module.hidden_size + rnn_module.hidden_size + rnn_module.hidden_size # final hadamard flops += rnn_module.hidden_size + rnn_module.hidden_size + rnn_module.hidden_size return flops def _rnn_forward_hook(rnn_module, input, output): flops = 0 # input is a tuple containing a sequence to process and (optionally) hidden state inp = input[0] batch_size = inp.shape[0] seq_length = inp.shape[1] num_layers = rnn_module.num_layers for i in range(num_layers): w_ih = rnn_module.__getattr__("weight_ih_l" + str(i)) w_hh = rnn_module.__getattr__("weight_hh_l" + str(i)) if i == 0: input_size = rnn_module.input_size else: input_size = rnn_module.hidden_size flops = _rnn_flops(flops, rnn_module, w_ih, w_hh, input_size) if rnn_module.bias: b_ih = rnn_module.__getattr__("bias_ih_l" + str(i)) b_hh = rnn_module.__getattr__("bias_hh_l" + str(i)) flops += b_ih.shape[0] + b_hh.shape[0] flops *= batch_size flops *= seq_length if rnn_module.bidirectional: flops *= 2 rnn_module.__flops__ += int(flops) def _rnn_cell_forward_hook(rnn_cell_module, input, output): flops = 0 inp = input[0] batch_size = inp.shape[0] w_ih = rnn_cell_module.__getattr__("weight_ih") w_hh = rnn_cell_module.__getattr__("weight_hh") input_size = inp.shape[1] flops = _rnn_flops(flops, rnn_cell_module, w_ih, w_hh, input_size) if rnn_cell_module.bias: b_ih = rnn_cell_module.__getattr__("bias_ih") b_hh = rnn_cell_module.__getattr__("bias_hh") flops += b_ih.shape[0] + b_hh.shape[0] flops *= batch_size rnn_cell_module.__flops__ += int(flops) MODULE_HOOK_MAPPING = { # RNN nn.RNN: _rnn_forward_hook, nn.GRU: _rnn_forward_hook, nn.LSTM: _rnn_forward_hook, nn.RNNCell: _rnn_cell_forward_hook, nn.LSTMCell: _rnn_cell_forward_hook, nn.GRUCell: _rnn_cell_forward_hook, } def num_to_string(num, precision=2): if num // 10**9 > 0: return str(round(num / 10.0**9, precision)) + " G" elif num // 10**6 > 0: return str(round(num / 10.0**6, precision)) + " M" elif num // 10**3 > 0: return str(round(num / 10.0**3, precision)) + " K" else: return str(num) def macs_to_string(macs, units=None, precision=2): if units is None: if macs // 10**9 > 0: return str(round(macs / 10.0**9, precision)) + " GMACs" elif macs // 10**6 > 0: return str(round(macs / 10.0**6, precision)) + " MMACs" elif macs // 10**3 > 0: return str(round(macs / 10.0**3, precision)) + " KMACs" else: return str(macs) + " MACs" else: if units == "GMACs": return str(round(macs / 10.0**9, precision)) + " " + units elif units == "MMACs": return str(round(macs / 10.0**6, precision)) + " " + units elif units == "KMACs": return str(round(macs / 10.0**3, precision)) + " " + units else: return str(macs) + " MACs" def number_to_string(num, units=None, precision=2): if units is None: if num // 10**9 > 0: return str(round(num / 10.0**9, precision)) + " G" elif num // 10**6 > 0: return str(round(num / 10.0**6, precision)) + " M" elif num // 10**3 > 0: return str(round(num / 10.0**3, precision)) + " K" else: return str(num) + " " else: if units == "G": return str(round(num / 10.0**9, precision)) + " " + units elif units == "M": return str(round(num / 10.0**6, precision)) + " " + units elif units == "K": return str(round(num / 10.0**3, precision)) + " " + units else: return str(num) + " " def flops_to_string(flops, units=None, precision=2): if units is None: if flops // 10**12 > 0: return str(round(flops / 10.0**12, precision)) + " TFLOPS" if flops // 10**9 > 0: return str(round(flops / 10.0**9, precision)) + " GFLOPS" elif flops // 10**6 > 0: return str(round(flops / 10.0**6, precision)) + " MFLOPS" elif flops // 10**3 > 0: return str(round(flops / 10.0**3, precision)) + " KFLOPS" else: return str(flops) + " FLOPS" else: if units == "TFLOPS": return str(round(flops / 10.0**12, precision)) + " " + units if units == "GFLOPS": return str(round(flops / 10.0**9, precision)) + " " + units elif units == "MFLOPS": return str(round(flops / 10.0**6, precision)) + " " + units elif units == "KFLOPS": return str(round(flops / 10.0**3, precision)) + " " + units else: return str(flops) + " FLOPS" def params_to_string(params_num, units=None, precision=2): if units is None: if params_num // 10**6 > 0: return str(round(params_num / 10**6, 2)) + " M" elif params_num // 10**3: return str(round(params_num / 10**3, 2)) + " k" else: return str(params_num) else: if units == "M": return str(round(params_num / 10.0**6, precision)) + " " + units elif units == "K": return str(round(params_num / 10.0**3, precision)) + " " + units else: return str(params_num) def duration_to_string(duration, units=None, precision=2): if units is None: if duration > 1: return str(round(duration, precision)) + " s" elif duration * 10**3 > 1: return str(round(duration * 10**3, precision)) + " ms" elif duration * 10**6 > 1: return str(round(duration * 10**6, precision)) + " us" else: return str(duration) else: if units == "us": return str(round(duration * 10.0**6, precision)) + " " + units elif units == "ms": return str(round(duration * 10.0**3, precision)) + " " + units else: return str(round(duration, precision)) + " s" # can not iterate over all submodules using self.model.modules() # since modules() returns duplicate modules only once def get_module_flops(module): sum = module.__flops__ # iterate over immediate children modules for child in module.children(): sum += get_module_flops(child) return sum def get_module_macs(module): sum = module.__macs__ # iterate over immediate children modules for child in module.children(): sum += get_module_macs(child) return sum def get_module_duration(module): duration = module.__duration__ if duration == 0: # e.g. ModuleList for m in module.children(): duration += m.__duration__ return duration def get_model_profile( model, input_shape=None, args=[], kwargs={}, print_profile=True, detailed=True, module_depth=-1, top_modules=1, warm_up=1, as_string=True, output_file=None, ignore_modules=None, ): """Returns the total floating-point operations, MACs, and parameters of a model. Example: .. code-block:: python model = torchvision.models.alexnet() batch_size = 256 flops, macs, params = get_model_profile(model=model, input_shape=(batch_size, 3, 224, 224))) Args: model ([torch.nn.Module]): the PyTorch model to be profiled. input_shape (tuple): input shape to the model. If specified, the model takes a tensor with this shape as the only positional argument. args (list): list of positional arguments to the model. kwargs (dict): dictionary of keyword arguments to the model. print_profile (bool, optional): whether to print the model profile. Defaults to True. detailed (bool, optional): whether to print the detailed model profile. Defaults to True. module_depth (int, optional): the depth into the nested modules. Defaults to -1 (the inner most modules). top_modules (int, optional): the number of top modules to print in the aggregated profile. Defaults to 3. warm_up (int, optional): the number of warm-up steps before measuring the latency of each module. Defaults to 1. as_string (bool, optional): whether to print the output as string. Defaults to True. output_file (str, optional): path to the output file. If None, the profiler prints to stdout. ignore_modules ([type], optional): the list of modules to ignore during profiling. Defaults to None. Returns: The number of floating-point operations, multiply-accumulate operations (MACs), and parameters in the model. """ assert isinstance(model, nn.Module), "model must be a PyTorch module" prof = FlopsProfiler(model) model.eval() if input_shape is not None: assert type(input_shape) is tuple, "input_shape must be a tuple" assert len(input_shape) >= 1, "input_shape must have at least one element" try: input = torch.ones(()).new_empty( (*input_shape, ), dtype=next(model.parameters()).dtype, device=next(model.parameters()).device, ) except StopIteration: input = torch.ones(()).new_empty((*input_shape, )) args = [input] assert (len(args) > 0) or (len(kwargs) > 0), "args and/or kwargs must be specified if input_shape is None" for _ in range(warm_up): if kwargs: _ = model(*args, **kwargs) else: _ = model(*args) prof.start_profile(ignore_list=ignore_modules) if kwargs: _ = model(*args, **kwargs) else: _ = model(*args) flops = prof.get_total_flops() macs = prof.get_total_macs() params = prof.get_total_params() if print_profile: prof.print_model_profile(profile_step=warm_up, module_depth=module_depth, top_modules=top_modules, detailed=detailed, output_file=output_file) prof.end_profile() if as_string: return number_to_string(flops), macs_to_string(macs), params_to_string(params) return flops, macs, params
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/profiling/flops_profiler/profiler.py
profiler.py
# DeepSpeed Team """ Various symbolic constants used for model checkpointing """ ######################################### # Optimizer checkpoint keys ######################################### OPTIMIZER_STATE_DICT = "optimizer_state_dict" FP32_GROUPS = "fp32_groups" FP32_FLAT_GROUPS = 'fp32_flat_groups' BASE_OPTIMIZER_STATE = 'base_optimizer_state' SINGLE_PARTITION_OF_FP32_GROUPS = "single_partition_of_fp32_groups" GROUP_PADDINGS = 'group_paddings' PARTITION_COUNT = 'partition_count' ZERO_STAGE = 'zero_stage' CLIP_GRAD = 'clip_grad' FP32_WEIGHT_KEY = "fp32" ######################################### # Module checkpoint keys ######################################### PARAM = 'param' PARAM_SHAPES = 'param_shapes' BUFFER_NAMES = 'buffer_names' FROZEN_PARAM_SHAPES = 'frozen_param_shapes' FROZEN_PARAM_FRAGMENTS = 'frozen_param_fragments' ######################################### # Checkpoint naming constants ######################################### MODEL_FILE_PREFIX = 'mp_rank_' ZERO_FILE_PREFIX = 'zero_pp_rank_' OPTIM_FILE_SUFFIX = '_optim_states.pt' MODEL_FILE_SUFFIX = '_model_states.pt' LAYER_FILE_PREFIX = 'layer_' BF16_ZERO_FILE_PREFIX = 'bf16_' + ZERO_FILE_PREFIX FP16_ZERO_FILE_PREFIX = 'fp16_' + ZERO_FILE_PREFIX ######################################### # Checkpoint utility keys ######################################### DS_VERSION = 'ds_version' ######################################### # Universal Checkpoint keys ######################################### UNIVERSAL_CHECKPOINT_INFO = 'universal_checkpoint_info' UNIVERSAL_CHECKPOINT_VERSION_KEY = 'universal_checkpoint_version' # Reserve version 0.1 for the hardcoded logic used in BLOOM-176B training UNIVERSAL_CHECKPOINT_VERSION_VALUE = 0.2 # Vocabulary padding VOCAB_DIVISIBILITY_PADDING_TENSOR = 'vocab_divisibility_padding_tensor' PADDED_VOCAB_SIZE = 'padded_vocab_size' ORIGINAL_VOCAB_SIZE = 'original_vocab_size' # Parameter splitting/merging PARAM_SLICE_MAPPINGS = 'param_slice_mappings' CAT_DIM = "cat_dim" # Regex list of parameters that require special handling VOCABULARY_PARAMETER_PATTERNS = 'vocabulary_parameter_patterns' PIPELINE_REPLICATED_PARAMETER_PATTERNS = 'pipeline_replicated_parameter_patterns' PARAMETER_TO_AVERAGE_PATTERNS = 'parameter_to_average_patterns' PARAMETER_WITH_ROW_PARALLELISM_PATTERNS = 'parameter_with_row_parallelism_patterns'
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/checkpoint/constants.py
constants.py
# DeepSpeed Team from .reshape_utils import partition_data class meg_2d_parallel_map(object): def __init__(self, pp_degree, tp_degree): self.pp_degree = pp_degree self.tp_degree = tp_degree self.map = {} def simple_init(self): self.map = { self._make_key(i // self.tp_degree, i % self.tp_degree): [i] for i in range(self.pp_degree * self.tp_degree) } def add_data(self, pp_index, tp_index, data): self._validate_indices(pp_index, tp_index) assert type(data) is list key = self._make_key(pp_index, tp_index) if not key in self.map.keys(): self.map[key] = [] self.map[key] += data def get_data(self, pp_index=None, tp_index=None): self._validate_indices(pp_index, tp_index) pp_indices = list(range(self.pp_degree)) if pp_index is None else [pp_index] tp_indices = list(range(self.tp_degree)) if tp_index is None else [tp_index] result = [] for i in pp_indices: for j in tp_indices: result += self.map[self._make_key(i, j)] return result def print_data(self, tag): print(f'{tag}') for key, value in self.map.items(): print(f'{key} = {value}') def _validate_indices(self, pp_index, tp_index): assert pp_index is None or pp_index < self.pp_degree assert tp_index is None or tp_index < self.tp_degree def _make_key(self, i, j): return f'{i},{j}' def _reshape_tp_dimension(old_2d_map, new_tp_degree): old_pp_degree = old_2d_map.pp_degree new_2d_map = meg_2d_parallel_map(old_pp_degree, new_tp_degree) for i in range(old_pp_degree): ranks_for_pp_index = old_2d_map.get_data(pp_index=i, tp_index=None) split_ranks = partition_data(ranks_for_pp_index, new_tp_degree) for j in range(new_tp_degree): new_2d_map.add_data(i, j, split_ranks[j]) return new_2d_map def _reshape_pp_dimension(old_2d_map, new_pp_degree): old_tp_degree = old_2d_map.tp_degree new_2d_map = meg_2d_parallel_map(new_pp_degree, old_tp_degree) for i in range(old_tp_degree): ranks_for_tp_index = old_2d_map.get_data(pp_index=None, tp_index=i) split_ranks = partition_data(ranks_for_tp_index, new_pp_degree) for j in range(new_pp_degree): new_2d_map.add_data(j, i, split_ranks[j]) return new_2d_map def reshape_meg_2d_parallel(old_pp_degree, old_tp_degree, new_pp_degree, new_tp_degree, verbose=False): assert new_pp_degree <= old_pp_degree assert new_tp_degree <= old_tp_degree old_2d_map = meg_2d_parallel_map(old_pp_degree, old_tp_degree) old_2d_map.simple_init() if verbose: old_2d_map.print_data(f'original_2d_map:') if old_tp_degree != new_tp_degree: new_tp_map = _reshape_tp_dimension(old_2d_map, new_tp_degree) else: new_tp_map = old_2d_map if verbose: new_tp_map.print_data(f'after_tp_reshape:') if old_pp_degree != new_pp_degree: final_map = _reshape_pp_dimension(new_tp_map, new_pp_degree) else: final_map = new_tp_map if verbose: final_map.print_data(f'final_2d_map:') return final_map def get_mpu_ranks(tp_size=1, pp_size=1, dp_size=1, virtual_pp_size=None): """ Initialize model data parallel groups. Arguments: tp_size: number of GPUs used to parallelize model tensor. pp_size: number of GPUs used to parallelize model pipeline. dp_size: number of GPUs used to parallelize model data. Let's say we have a total of 16 GPUs denoted by g0 ... g15 and we use 2 GPUs to parallelize the model tensor, and 4 GPUs to parallelize the model pipeline. The present function will create 8 tensor model-parallel groups, 4 pipeline model-parallel groups and 8 data-parallel groups as: 8 data_parallel groups: [g0, g2], [g1, g3], [g4, g6], [g5, g7], [g8, g10], [g9, g11], [g12, g14], [g13, g15] 8 tensor model-parallel groups: [g0, g1], [g2, g3], [g4, g5], [g6, g7], [g8, g9], [g10, g11], [g12, g13], [g14, g15] 4 pipeline model-parallel groups: [g0, g4, g8, g12], [g1, g5, g9, g13], [g2, g6, g10, g14], [g3, g7, g11, g15] Note that for efficiency, the caller should make sure adjacent ranks are on the same DGX box. For example if we are using 2 DGX-1 boxes with a total of 16 GPUs, rank 0 to 7 belong to the first box and ranks 8 to 15 belong to the second box. """ world_size = tp_size * pp_size * dp_size print(f"\n\n*** tp={tp_size}, pp={pp_size}, dp={dp_size}, world={world_size}") tensor_model_parallel_size = min(tp_size, world_size) pipeline_model_parallel_size = min(pp_size, world_size) data_parallel_size = world_size // (tensor_model_parallel_size * pipeline_model_parallel_size) num_tensor_model_parallel_groups = world_size // tensor_model_parallel_size num_pipeline_model_parallel_groups = world_size // pipeline_model_parallel_size num_data_parallel_groups = world_size // data_parallel_size # Build the data-parallel groups. all_dp_group_ranks = [] for i in range(pipeline_model_parallel_size): start_rank = i * num_pipeline_model_parallel_groups end_rank = (i + 1) * num_pipeline_model_parallel_groups for j in range(tensor_model_parallel_size): ranks = range(start_rank + j, end_rank, tensor_model_parallel_size) all_dp_group_ranks.append(list(ranks)) print("DP", all_dp_group_ranks) # Build the model-parallel groups. all_pp_group_ranks = [] for i in range(data_parallel_size): ranks = [data_parallel_group_ranks[i] for data_parallel_group_ranks in all_dp_group_ranks] all_pp_group_ranks.append(list(ranks)) print(f"PP", all_pp_group_ranks) # Build the tensor model-parallel groups. all_tp_group_ranks = [] for i in range(num_tensor_model_parallel_groups): ranks = range(i * tensor_model_parallel_size, (i + 1) * tensor_model_parallel_size) all_tp_group_ranks.append(list(ranks)) print(f"TP", all_tp_group_ranks) return all_tp_group_ranks, all_pp_group_ranks, all_dp_group_ranks # # Build the pipeline model-parallel groups and embedding groups # # (first and last rank in each pipeline model-parallel group). # for i in range(num_pipeline_model_parallel_groups): # ranks = range(i, world_size, # num_pipeline_model_parallel_groups) # print(f"EMB{i}", list(ranks)) def reshape(src, tgt): """ reshape([tp_size_src, pp_size_src, dp_size_src], [tp_size_tgt, pp_size_tgt, dp_size_tgt]) """ print(f"\n\n*** Reshaping: {src} => {tgt}") tp_size_src, pp_size_src, dp_size_src = src tp_size_tgt, pp_size_tgt, dp_size_tgt = tgt tp_ranks1, pp_ranks1, dp_ranks1 = get_mpu_ranks(tp_size=tp_size_src, pp_size=pp_size_src, dp_size=dp_size_src) tp_ranks2, pp_ranks2, dp_ranks2 = get_mpu_ranks(tp_size=tp_size_tgt, pp_size=pp_size_src, dp_size=dp_size_src) tp_ranks3, pp_ranks3, dp_ranks3 = get_mpu_ranks(tp_size=tp_size_tgt, pp_size=pp_size_tgt, dp_size=dp_size_src) # handle tp contraction first print("\n*** TP contraction:") for i, r in enumerate(tp_ranks1): print(f'{tp_ranks1[i]} => {tp_ranks2[i]}') # handle pp contraction next print("\n*** PP contraction:") for i, r in enumerate(pp_ranks1): print(f'{pp_ranks2[i]} => {pp_ranks3[i]}') # easy #reshape([2,2,1],[1,1,1]) # probably need more logic to suggest how to pack #reshape([4,4,1],[2,2,1]) #reshape([2,4,2], [8,32,1]) # get_mpu_ranks(2,2,2) # get_mpu_ranks(4,2,1) # get_mpu_ranks(2,4,1) # get_mpu_ranks(1,1,8)
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/checkpoint/reshape_meg_2d.py
reshape_meg_2d.py
# DeepSpeed Team from .reshape_utils import (get_files, get_files_with_prefix, partition_data, get_zero_files) from .constants import (MODEL_FILE_PREFIX, LAYER_FILE_PREFIX) from .reshape_meg_2d import (reshape_meg_2d_parallel, meg_2d_parallel_map) PP_DIM = 'PP' TP_DIM = 'TP' DP_DIM = 'DP' class model_3d_desc(object): def __init__(self, pp_degree=1, tp_degree=1, dp_degree=1): self.pp_degree = pp_degree self.tp_degree = tp_degree self.dp_degree = dp_degree def reshape(self, target_3d_desc, verbose=False): valid_reshape, reshape_errors = self.can_reshape(target_3d_desc) assert valid_reshape, ','.join(reshape_errors) tgt_2d_map = reshape_meg_2d_parallel(old_pp_degree=self.pp_degree, old_tp_degree=self.tp_degree, new_pp_degree=target_3d_desc.pp_degree, new_tp_degree=target_3d_desc.tp_degree, verbose=verbose) flat_3d_map = flatten_dp_dimension(meg_2d_map=tgt_2d_map, src_2d_size=self.pp_degree * self.tp_degree, dp_degree=self.dp_degree) return unflatten_dp_dimension(meg_2d_map=flat_3d_map, dp_degree=target_3d_desc.dp_degree) def get_desc(self): return f'{PP_DIM},{TP_DIM},{DP_DIM} = ({self.pp_degree}, {self.tp_degree}, {self.dp_degree})' def world_size(self): return self.pp_degree * self.tp_degree * self.dp_degree def is_valid(self, pp_index, tp_index, dp_index): err_msg = [] valid = True for index, degree, dim_name in [(pp_index, self.pp_degree, PP_DIM), (tp_index, self.tp_degree, TP_DIM), (dp_index, self.dp_degree, DP_DIM)]: if index >= degree: valid = False err_msg.append(f'{dim_name} indexing error: index {index} >= degree {degree}') return valid, err_msg def can_reshape(self, target_3d_desc): err_msg = [] if target_3d_desc.pp_degree > self.pp_degree: err_msg.append( f'Expansion reshape not supported - {PP_DIM}: {self.pp_degree} ---> {target_3d_desc.pp_degree}') if target_3d_desc.tp_degree > self.tp_degree: err_msg.append( f'Expansion reshape not supported - {TP_DIM}: {self.tp_degree} ---> {target_3d_desc.tp_degree}') if target_3d_desc.dp_degree > self.dp_degree: err_msg.append( f'Expansion reshape not supported - {DP_DIM}: {self.dp_degree} ---> {target_3d_desc.dp_degree}') return len(err_msg) == 0, err_msg def get_model_3d_descriptor(dir): file_list = get_files(dir) zero_file_list = get_zero_files(dir) num_pp0_files = len(get_files_with_prefix(file_list, f'{LAYER_FILE_PREFIX}01')) if num_pp0_files > 0: tp_degree = num_pp0_files pp_degree = len(get_files_with_prefix(file_list, MODEL_FILE_PREFIX)) // tp_degree dp_degree = max(1, len(zero_file_list) // (pp_degree * tp_degree)) else: tp_degree = len(get_files_with_prefix(file_list, MODEL_FILE_PREFIX)) dp_degree = max(1, len(zero_file_list) // tp_degree) pp_degree = 0 return model_3d_desc(pp_degree, tp_degree, dp_degree) def flatten_dp_dimension(meg_2d_map, src_2d_size, dp_degree): new_meg_2d_map = meg_2d_parallel_map(meg_2d_map.pp_degree, meg_2d_map.tp_degree) for pp_index in range(meg_2d_map.pp_degree): for tp_index in range(meg_2d_map.tp_degree): dp0_indices = meg_2d_map.get_data(pp_index, tp_index) for idx in dp0_indices: dpX_indices = [idx + (i * src_2d_size) for i in range(dp_degree)] new_meg_2d_map.add_data(pp_index, tp_index, dpX_indices) return new_meg_2d_map def unflatten_dp_dimension(meg_2d_map, dp_degree): pp_degree = meg_2d_map.pp_degree tp_degree = meg_2d_map.tp_degree meg_2d_map_list = [meg_2d_parallel_map(pp_degree=pp_degree, tp_degree=tp_degree) for _ in range(dp_degree)] for pp_index in range(pp_degree): for tp_index in range(tp_degree): flat_dp_indices = meg_2d_map.get_data(pp_index, tp_index) partitioned_dp_indices = partition_data(flat_dp_indices, dp_degree) for dp_indices, _2d_map in zip(partitioned_dp_indices, meg_2d_map_list): _2d_map.add_data(pp_index, tp_index, dp_indices) return meg_2d_map_list
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/checkpoint/reshape_3d_utils.py
reshape_3d_utils.py
# DeepSpeed Team import os from typing import Dict import torch from .reshape_3d_utils import model_3d_desc from .reshape_utils import (basic_folder_validation, merge_state, partition_data, get_files, get_files_with_prefix) from .constants import (MODEL_FILE_PREFIX, LAYER_FILE_PREFIX) from .reshape_meg_2d import reshape_meg_2d_parallel, meg_2d_parallel_map from .zero_checkpoint import ZeROCheckpoint from .constants import * EMBEDDING_LAYER_INDEX = 0 FINAL_LAYER_NORM_INDEX = -1 ARGS_KEY = 'args' CHECKPOINT_INFO_KEY = 'checkpoint_info' ITERATION_KEY = 'iteration' SEQUENTIAL_LAYERS = [ 'input_layernorm.weight', 'input_layernorm.bias', 'self_attention.dense.bias', 'post_attention_layernorm.weight', 'post_attention_layernorm.bias', 'mlp.dense_4h_to_h.bias', 'position_embeddings.weight' ] LAYER_CONCAT_DIM = {'self_attention.dense.weight': 1, 'mlp.dense_4h_to_h.weight': 1} class DeepSpeedCheckpoint(object): def __init__(self, dir, tp_degree=None, pp_degree=None, dp_degree=None): self.dir = dir self._validate_folder(dir) self.zero_checkpoint = ZeROCheckpoint(dir) self.file_list = get_files(dir) self.layer_files = get_files_with_prefix(self.file_list, LAYER_FILE_PREFIX) self.mp_rank_files = get_files_with_prefix(self.file_list, MODEL_FILE_PREFIX) self.layer_keys = self._get_layer_keys() self.layer_count = len(self.layer_keys) self.tp_degree = self.zero_checkpoint.get_src_tp_degree() if tp_degree is None else tp_degree self.pp_degree = self.zero_checkpoint.get_src_pp_degree() if pp_degree is None else pp_degree self.dp_degree = self.zero_checkpoint.get_src_dp_degree() if dp_degree is None else dp_degree self.original_world_size = self.zero_checkpoint.get_src_tp_degree() * self.zero_checkpoint.get_src_pp_degree( ) * self.zero_checkpoint.get_src_dp_degree() self.world_size = self.tp_degree * self.pp_degree * self.dp_degree self.old_2d_map = meg_2d_parallel_map(self.zero_checkpoint.get_src_pp_degree(), self.zero_checkpoint.get_src_tp_degree()) self.old_2d_map.simple_init() self.new_2d_map = reshape_meg_2d_parallel(old_pp_degree=self.zero_checkpoint.get_src_pp_degree(), old_tp_degree=self.zero_checkpoint.get_src_tp_degree(), new_pp_degree=self.pp_degree, new_tp_degree=self.tp_degree) if self.is_change_pp_degree() or self.is_change_tp_degree() or self.is_change_dp_degree(): self.zero_checkpoint.reshape(model_3d_desc(self.pp_degree, self.tp_degree, self.dp_degree)) self.global_state = {} self._sanity_check() self.pp_to_transformer_map = self._build_pp_transformer_map() self.transformer_file_map = self._build_transformer_file_map() self.tp_to_embedding_map = self._build_tp_other_layer_map(EMBEDDING_LAYER_INDEX) self.tp_to_final_norm_map = self._build_tp_other_layer_map(FINAL_LAYER_NORM_INDEX) self._build_global_state() def is_change_tp_degree(self): return self.tp_degree != self.zero_checkpoint.get_src_tp_degree() def is_change_pp_degree(self): return self.pp_degree != self.zero_checkpoint.get_src_pp_degree() def is_change_dp_degree(self): return self.dp_degree != self.zero_checkpoint.get_src_dp_degree() def show_2d_mapping(self): print(f'reshaped 2d map ---- begin') for i in range(self.pp_degree): for j in range(self.tp_degree): file_list = self.get_2d_parallel_files(pp_index=i, tp_index=j) print(f'[{i}, {j}] = {file_list}') print(f'reshaped 2d map ---- end') def show_tp_embedding_map(self): self._dump_mapping(self.tp_to_embedding_map, 'tp_to_embedding_layers') def show_tp_final_norm_map(self): self._dump_mapping(self.tp_to_final_norm_map, 'tp_to_final_norm_layers') def show_pp_tranformer_map(self): self._dump_mapping(self.pp_to_transformer_map, 'pp_to_tranformer_layers') def show_transformer_file_map(self): self._dump_mapping(self.transformer_file_map, 'rank_to_tranformer_files') def _build_global_state(self): sd = torch.load(self.mp_rank_files[0], map_location=torch.device('cpu')) self.global_state[ITERATION_KEY] = sd.get(ITERATION_KEY, 0) self.global_state[ARGS_KEY] = sd.get(ARGS_KEY, None) def get_zero_checkpoint_state(self, pp_index, tp_index, dp_index) -> dict: return self.zero_checkpoint.get_state_for_rank(pp_index=pp_index, tp_index=tp_index, dp_index=dp_index, keys_to_ignore=[PARAM_SHAPES]) def get_zero_files(self, pp_index, tp_index, dp_index) -> list: return self.zero_checkpoint.get_files_for_rank(pp_index=pp_index, tp_index=tp_index, dp_index=dp_index) def get_embedding_layer_id(self): return self.layer_keys[EMBEDDING_LAYER_INDEX] def get_final_norm_layer_id(self): return self.layer_keys[FINAL_LAYER_NORM_INDEX] def get_iteration(self): if not ITERATION_KEY in self.global_state: sd = torch.load(self.mp_rank_files[0], map_location=torch.device('cpu')) self.global_state[ITERATION_KEY] = sd.get(ITERATION_KEY, 0) return self.global_state[ITERATION_KEY] def get_embedding_state(self, tp_index: int) -> Dict: assert tp_index in self.tp_to_embedding_map.keys() sd_list = [torch.load(fname, map_location=torch.device('cpu')) for fname in self.tp_to_embedding_map[tp_index]] sd = self._merge_state_dicts(sd_list) return sd def get_embedding_files(self, tp_index: int) -> list: assert tp_index in self.tp_to_embedding_map.keys() return self.tp_to_embedding_map[tp_index] def _get_checkpoint_value(self, key): if not key in self.global_state: sd = torch.load(self.mp_rank_files[0], map_location=torch.device('cpu')) self.global_state[key] = sd.get(key, None) return self.global_state[key] def get_args(self): return self._get_checkpoint_value(ARGS_KEY) def get_checkpoint_info(self, info_key=CHECKPOINT_INFO_KEY): return self._get_checkpoint_value(info_key) def get_2d_parallel_state(self, tp_index: int, pp_index: int) -> dict: assert tp_index < self.tp_degree assert pp_index < self.pp_degree fname_list = self.get_2d_parallel_files(tp_index=tp_index, pp_index=pp_index) sd_list = [torch.load(fname, map_location=torch.device('cpu')) for fname in fname_list] merged_sd = None for sd in sd_list: if merged_sd is None: merged_sd = sd else: merged_sd = merge_state(merged_sd, sd) return merged_sd def get_transformer_state(self, tp_index: int, pp_index: int) -> list: assert tp_index < self.tp_degree assert pp_index < self.pp_degree t_list = [] for fname_list in self.transformer_file_map[(tp_index, pp_index)]: sd_list = [torch.load(fname, map_location=torch.device('cpu')) for fname in fname_list] sd = self._merge_state_dicts(sd_list) t_list.append(sd) return t_list def get_pp_transformer_map(self, pp_index: int) -> list: assert pp_index < self.pp_degree return self.pp_to_transformer_map[pp_index] def get_final_norm_state(self, tp_index: int) -> Dict: assert tp_index in self.tp_to_final_norm_map.keys() sd = torch.load(self.tp_to_final_norm_map[tp_index][0], map_location=torch.device('cpu')) return sd def get_final_norm_files(self, tp_index: int) -> list: assert tp_index in self.tp_to_final_norm_map.keys() return self.tp_to_final_norm_map[tp_index] def _build_tp_other_layer_map(self, layer_index: int): assert layer_index < len(self.layer_files) layer_files = get_files_with_prefix(self.layer_files, self.layer_keys[layer_index]) layer_file_partitions = partition_data(layer_files, self.tp_degree) data_map = {i: flist for i, flist in enumerate(layer_file_partitions)} return data_map def get_2d_parallel_files(self, tp_index: int, pp_index: int) -> list: assert tp_index < self.tp_degree assert pp_index < self.pp_degree file_indices = self.new_2d_map.get_data(pp_index=pp_index, tp_index=tp_index) return [self.mp_rank_files[i] for i in file_indices] def _build_pp_transformer_map(self): data_map = {} transformer_layers = self.layer_keys[1:-1] layers_per_pp = len(transformer_layers) // self.pp_degree data_map = {i: transformer_layers[i * layers_per_pp:(i + 1) * layers_per_pp] for i in range(0, self.pp_degree)} return data_map def _dump_mapping(self, data_map, map_tag=None): if map_tag is not None: print(f'Dump mapping: {map_tag}') for k, v in data_map.items(): print(f'{k} = {v}') def _build_transformer_file_map(self): transformer_layer_keys = self.layer_keys[1:-1] file_map = {} # XXX: this is not guaranteed layers_per_pp = len(transformer_layer_keys) // self.pp_degree if layers_per_pp == 0: layers_per_pp = 1 #print(f"{transformer_layer_keys} {layers_per_pp}") for key_index, layer_key in enumerate(transformer_layer_keys): pp_index = key_index // layers_per_pp layer_files = get_files_with_prefix(self.layer_files, layer_key) layer_file_partitions = partition_data(layer_files, self.tp_degree) for tp_index in range(self.tp_degree): map_key = (tp_index, pp_index) if not map_key in file_map.keys(): file_map[map_key] = [] file_map[map_key].append(layer_file_partitions[tp_index]) return file_map def _sanity_check(self): assert len(self.mp_rank_files) % self.tp_degree == 0 assert len(self.layer_keys) > 2 assert self.zero_checkpoint.num_files % (self.pp_degree * self.tp_degree) == 0 # XXX: fix me - isn't always the case # only true with --pp-partition-method 'type:transformer|embedding' \ # assert (len(self.layer_keys) - 2) % self.pp_degree == 0 def validate_files(self): for file in self.file_list: if not os.path.isfile(file): print(f'Error: {file} is not existent') def _get_layer_keys(self): key_set = set() key_len = len(LAYER_FILE_PREFIX) + 2 for file_path in self.layer_files: _, fname = os.path.split(file_path) key_set.add(fname[:key_len]) return sorted(list(key_set)) def _merge_state_dicts(self, sd_list): merged_sd = {} for key in sd_list[0].keys(): if not key in SEQUENTIAL_LAYERS: cat_dim = LAYER_CONCAT_DIM.get(key, 0) merged_sd[key] = torch.cat([sd[key] for sd in sd_list], dim=cat_dim) else: merged_sd[key] = sd_list[0][key] return merged_sd def _validate_folder(self, dir): basic_folder_validation(dir) file_list = get_files(dir) for file_prefix in [MODEL_FILE_PREFIX, LAYER_FILE_PREFIX, f'{LAYER_FILE_PREFIX}01']: ckpt_files = get_files_with_prefix(file_list, file_prefix) assert len( ckpt_files ) > 0, f'{dir} seems a bogus DeepSpeed checkpoint folder: Cannot find {file_prefix}* files in there.'
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/checkpoint/deepspeed_checkpoint.py
deepspeed_checkpoint.py
# DeepSpeed Team import os import torch import types from .constants import (FP32_WEIGHT_KEY, PARAM, VOCAB_DIVISIBILITY_PADDING_TENSOR, CAT_DIM) def load_hp_checkpoint_state(self, folder, tp_rank, tp_world_size): hp_mapping = self._hp_mapping optim_state_keys = hp_mapping.get_optim_state_keys() hp_keys = [FP32_WEIGHT_KEY] + optim_state_keys checkpoint_files = {key: os.path.join(folder, f"{key}.pt") for key in hp_keys} for file in checkpoint_files.values(): assert os.path.isfile(file), f'{file} is not a valid file' for key in hp_keys: ckpt_file = checkpoint_files[key] ckpt_dict = torch.load(ckpt_file) full_hp_param = ckpt_dict[PARAM] # need to deal with slices that were averaged. # the opposite of averaging here becomes an exact copy of the first slice # I thought of 2 ways: # implementation a. find a way for a client to pass a dict with patterns # if any(re.search(pattern, folder) for pattern in WEIGHTS_TO_AVERAGE_PATTERNS): # tp_rank = 0 # tp_world_size = 1 # the other approach is to assume that the saved data is correct and if full_hp_param.shape == # self.shape that means we automatically copy? # implementation b. # this version requires no additional data passed from the client # if the shapes already match it must be slices that were averaged - so we just hack around those if full_hp_param.shape == self.shape: tp_rank = 0 tp_world_size = 1 # special case for word_embeddings weights which get padded differently depending on TP degree. # the converter to universal currently strips the original padding completely so the saved # weight is padding-free and we just need to add new padding depending on the target TP # degree vocab_divisibility_padding_tensor = ckpt_dict.get(VOCAB_DIVISIBILITY_PADDING_TENSOR, None) if vocab_divisibility_padding_tensor is not None: # In the absence of data passed from the user wrt new padded vocab specific to tp degree # we can again derive that data by reverse engineering the target shapes like so: padded_target_vocab_size = self.shape[0] * tp_world_size if padded_target_vocab_size > full_hp_param.shape[0]: # Need to expand padding_size = padded_target_vocab_size - full_hp_param.shape[0] # Implement the following concat in efficient way using pad #full_hp_param = torch.cat((full_hp_param, padding_tensor), 0) full_hp_param = torch.nn.functional.pad(full_hp_param, (0, 0, 0, padding_size), "constant", 0) full_hp_param[:-padding_size, :] = vocab_divisibility_padding_tensor else: # Need to shrink or keep the same full_hp_param = full_hp_param[:padded_target_vocab_size, :] full_param_numel = full_hp_param.numel() tp_slice_numel = self.numel() # if key == FP32_WEIGHT_KEY and 'word_embeddings.weight' in folder: # print_rank_0(f'{full_hp_param[:10]=}', force=True) assert full_param_numel == tp_world_size * tp_slice_numel, \ f'Loading {ckpt_file} full param numel {full_param_numel} != tensor slice numel {tp_slice_numel} * tp_world_size {tp_world_size}' dst_tensor = hp_mapping.hp_fragment if key == FP32_WEIGHT_KEY else hp_mapping.get_optim_state_fragment(key) # print(f"{full_hp_param.shape=} {full_param_numel=} {folder=}") # print(f"{dst_tensor.shape=} {dst_tensor.numel()=}{folder=}") # since when we do many to 1 on tp we cat sometimes on dim=0 and other times on dim=1 we have to do exactly the same in reverse chunk_dim = ckpt_dict.get(CAT_DIM, 0) # this performs the opposite of cat when merging TP slices tp_hp_slice = full_hp_param.chunk(tp_world_size, chunk_dim)[tp_rank] tp_hp_slice = tp_hp_slice.flatten() lp_frag_address = hp_mapping.lp_fragment_address tp_hp_fragment = tp_hp_slice.narrow(0, lp_frag_address.start, lp_frag_address.numel) assert dst_tensor.numel() == lp_frag_address.numel, \ f'Load checkpoint {key} dst_tensor numel {dst_tensor.numel()} != src numel {lp_frag_address.numel}' # print(f"{key} SHAPE: {tp_hp_slice.shape=}") # print(f"{key} SHAPE: {dst_tensor.shape=}") # print(f"{key} SHAPE: {tp_hp_fragment.shape=}") dst_tensor.data.copy_(tp_hp_fragment.data) def enable_universal_checkpoint(param_list): for param in param_list: param.load_hp_checkpoint_state = types.MethodType(load_hp_checkpoint_state, param)
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/checkpoint/universal_checkpoint.py
universal_checkpoint.py
# DeepSpeed Team import torch from .constants import (BASE_OPTIMIZER_STATE, GROUP_PADDINGS, OPTIMIZER_STATE_DICT, PARTITION_COUNT) from .reshape_utils import (basic_folder_validation, get_zero_files, merge_state) from .reshape_3d_utils import (model_3d_desc, get_model_3d_descriptor) GROUP_STATE_KEY = 'state' class ZeROCheckpoint(object): def __init__(self, dir): basic_folder_validation(dir) self.dir = dir self.file_list = get_zero_files(dir) self.num_files = len(self.file_list) assert self.num_files > 0, f'No ZeRO files found in {dir}' self.src_3d = get_model_3d_descriptor(dir) self.target_3d = model_3d_desc(pp_degree=self.src_3d.pp_degree, tp_degree=self.src_3d.tp_degree, dp_degree=self.src_3d.dp_degree) self._3d_file_map = self.src_3d.reshape(self.target_3d) def get_src_world_size(self): return self.src_3d.world_size() def get_src_tp_degree(self): return self.src_3d.tp_degree def get_src_pp_degree(self): return self.src_3d.pp_degree def get_src_dp_degree(self): return self.src_3d.dp_degree def get_file_indices_for_rank(self, pp_index, tp_index, dp_index): assert dp_index < len(self._3d_file_map), f'DP index {dp_index} >= DP degree {len(self._3d_file_map)}' dp_2d_map = self._3d_file_map[dp_index] return dp_2d_map.get_data(pp_index, tp_index) def get_files_for_rank(self, pp_index, tp_index, dp_index): file_idx_list = self.get_file_indices_for_rank(pp_index, tp_index, dp_index) return [self.file_list[idx] for idx in file_idx_list] def get_state_for_rank(self, pp_index, tp_index, dp_index, keys_to_ignore=[], strip_tensor_paddings=True): state_file_list = self.get_files_for_rank(pp_index, tp_index, dp_index) merged_sd = None for state_file in state_file_list: sd = torch.load(state_file, map_location=torch.device('cpu')) for key in keys_to_ignore: sd.pop(key, None) if strip_tensor_paddings: self._strip_tensor_paddings(sd) if merged_sd is None: merged_sd = sd else: merged_sd = merge_state(merged_sd, sd) self._update_partition_count(merged_sd) if strip_tensor_paddings: self._clear_group_paddings(merged_sd) return merged_sd def print_3d_index_map(self, tag=None): if tag: print(f'3D index map: {tag}') for dp_index, _2d_map in enumerate(self._3d_file_map): _2d_map.print_data(f'dp = {dp_index}') def print_3d_file_map(self, tag=None): if tag: print(f'3D file map: {tag}') for dp_index, _2d_map in enumerate(self._3d_file_map): for pp_index in _2d_map.pp_degree: for tp_index in _2d_map.tp_degree: file_index_list = _2d_map.get_data(pp_index, tp_index) file_list = [self.file_list[idx] for idx in file_index_list] print(f'{pp_index}, {tp_index}, {dp_index} => {file_list}') def reshape(self, target_3d_desc: model_3d_desc): self.target_3d = target_3d_desc self._3d_file_map = self.src_3d.reshape(self.target_3d) def _strip_tensor_paddings(self, sd): param_group_states = self._get_param_group_states(sd) if param_group_states is None: return group_paddings = self._get_optimizer_state(sd, GROUP_PADDINGS) if group_paddings is None: return for key, group_state in param_group_states.items(): if group_paddings[key] == 0: continue for state_name, state_value in group_state.items(): if torch.is_tensor(state_value): raw_length = state_value.numel() - group_paddings[key] group_state[state_name] = torch.narrow(state_value, 0, 0, raw_length).clone() def _clear_group_paddings(self, sd): group_paddings = self._get_optimizer_state(sd, GROUP_PADDINGS) if group_paddings: num_groups = len(group_paddings) sd[OPTIMIZER_STATE_DICT][GROUP_PADDINGS] = [0] * num_groups def _get_optimizer_state(self, sd, state_key): optimizer_state = sd.get(OPTIMIZER_STATE_DICT, None) if optimizer_state is None: return None return optimizer_state.get(state_key, None) def _get_param_group_states(self, sd): optimizer_state = sd.get(OPTIMIZER_STATE_DICT, None) if optimizer_state is None: return None base_optimizer_state = optimizer_state.get(BASE_OPTIMIZER_STATE, None) if base_optimizer_state is None: return None return base_optimizer_state.get(GROUP_STATE_KEY, None) def _update_partition_count(self, sd): partition_counts = self._get_optimizer_state(sd, PARTITION_COUNT) if partition_counts: num_groups = len(partition_counts) sd[OPTIMIZER_STATE_DICT][PARTITION_COUNT] = [self.target_3d.dp_degree] * num_groups
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/checkpoint/zero_checkpoint.py
zero_checkpoint.py
# DeepSpeed Team import os import torch from collections import OrderedDict from .constants import (ZERO_FILE_PREFIX, FP16_ZERO_FILE_PREFIX, BF16_ZERO_FILE_PREFIX) def basic_folder_validation(dir): assert os.path.exists(dir), f'{dir} path does not exist' assert os.path.isdir(dir), f'{dir} is not a folder' def get_files_with_prefix(all_files, prefix): file_list = [] for file_path in all_files: _, fname = os.path.split(file_path) if fname.startswith(prefix): file_list.append(file_path) return sorted(file_list) def validate_files(file_list): for file in file_list: if not os.path.isfile(file): print(f'Error: {file} is not existent') def get_files(dir): file_list = [] for root, _, files in os.walk(dir): for file in files: file_list.append(os.path.join(root, file)) return file_list def get_zero_files(dir): file_list = get_files(dir) for prefix in [ZERO_FILE_PREFIX, FP16_ZERO_FILE_PREFIX, BF16_ZERO_FILE_PREFIX]: zero_files = get_files_with_prefix(file_list, prefix) if len(zero_files) > 0: return zero_files return [] def partition_data(data_list, num_partitions): num_elems = len(data_list) assert num_elems % num_partitions == 0 partition_size = num_elems // num_partitions partitions_list = [data_list[i:i + partition_size] for i in range(0, num_elems, partition_size)] return partitions_list def _key_list_to_string(key_list): return '.'.join(key_list) def merge_state_dict(dict_a, dict_b, key_list): merged_dict = type(dict_a)({}) for key, value in dict_b.items(): if key in dict_a.keys(): merged_dict[key] = merge_state(dict_a[key], dict_b[key], [str(key)]) else: merged_dict[key] = value return merged_dict def merge_state_list(list_a, list_b, key_list): if len(list_a) != len(list_b): print(f'{_key_list_to_string(key_list)}') raise ValueError(f'Cannot merge lists of different lengths, a = {len(list_a)} b = {len(list_b)}') return [merge_state(a, b, key_list) for a, b in zip(list_a, list_b)] def merge_state(state_a, state_b, key_list=[]): if type(state_a) != type(state_b): key_list_string = _key_list_to_string(key_list) print(f'key_list = {key_list_string}') raise ValueError(f'Cannot merge two states of types {type(state_a)} and type {type(state_b)}') if type(state_a) in (dict, OrderedDict): return merge_state_dict(state_a, state_b, key_list) elif type(state_a) in (list, tuple): return type(state_a)(merge_state_list(state_a, state_b, key_list)) elif torch.is_tensor(state_a): return torch.cat([state_a, state_b], 0) else: return state_a
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/checkpoint/reshape_utils.py
reshape_utils.py
# DeepSpeed Team import torch from ..features.cuda_graph import CUDAGraph class DSUNet(CUDAGraph, torch.nn.Module): def __init__(self, unet, enable_cuda_graph=True): super().__init__(enable_cuda_graph=enable_cuda_graph) self.unet = unet # SD pipeline accesses this attribute self.in_channels = unet.in_channels self.device = self.unet.device self.dtype = self.unet.dtype self.config = self.unet.config self.fwd_count = 0 self.unet.requires_grad_(requires_grad=False) self.unet.to(memory_format=torch.channels_last) self.cuda_graph_created = False def _graph_replay(self, *inputs, **kwargs): for i in range(len(inputs)): if torch.is_tensor(inputs[i]): self.static_inputs[i].copy_(inputs[i]) for k in kwargs: if torch.is_tensor(kwargs[k]): self.static_kwargs[k].copy_(kwargs[k]) self._cuda_graphs.replay() return self.static_output def forward(self, *inputs, **kwargs): if self.enable_cuda_graph: if self.cuda_graph_created: outputs = self._graph_replay(*inputs, **kwargs) else: self._create_cuda_graph(*inputs, **kwargs) outputs = self._graph_replay(*inputs, **kwargs) return outputs else: return self._forward(*inputs, **kwargs) def _create_cuda_graph(self, *inputs, **kwargs): # warmup to create the workspace and cublas handle cuda_stream = torch.cuda.Stream() cuda_stream.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(cuda_stream): for i in range(3): ret = self._forward(*inputs, **kwargs) torch.cuda.current_stream().wait_stream(cuda_stream) # create cuda_graph and assign static_inputs and static_outputs self._cuda_graphs = torch.cuda.CUDAGraph() self.static_inputs = inputs self.static_kwargs = kwargs with torch.cuda.graph(self._cuda_graphs): self.static_output = self._forward(*self.static_inputs, **self.static_kwargs) self.cuda_graph_created = True def _forward(self, sample, timestamp, encoder_hidden_states, return_dict=True, cross_attention_kwargs=None): if cross_attention_kwargs: return self.unet(sample, timestamp, encoder_hidden_states, return_dict, cross_attention_kwargs=cross_attention_kwargs) else: return self.unet(sample, timestamp, encoder_hidden_states, return_dict)
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/model_implementations/diffusers/unet.py
unet.py
# DeepSpeed Team import torch from ..features.cuda_graph import CUDAGraph class DSVAE(CUDAGraph, torch.nn.Module): def __init__(self, vae, enable_cuda_graph=True): super().__init__(enable_cuda_graph=enable_cuda_graph) self.vae = vae self.config = vae.config self.device = self.vae.device self.dtype = self.vae.dtype self.vae.requires_grad_(requires_grad=False) self.decoder_cuda_graph_created = False self.encoder_cuda_graph_created = False self.all_cuda_graph_created = False def _graph_replay_decoder(self, *inputs, **kwargs): for i in range(len(inputs)): if torch.is_tensor(inputs[i]): self.static_decoder_inputs[i].copy_(inputs[i]) for k in kwargs: if torch.is_tensor(kwargs[k]): self.static_decoder_kwargs[k].copy_(kwargs[k]) self._decoder_cuda_graph.replay() return self.static_decoder_output def _decode(self, x, return_dict=True): return self.vae.decode(x, return_dict=return_dict) def _create_cuda_graph_decoder(self, *inputs, **kwargs): # warmup to create the workspace and cublas handle cuda_stream = torch.cuda.Stream() cuda_stream.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(cuda_stream): for i in range(3): ret = self._decode(*inputs, **kwargs) torch.cuda.current_stream().wait_stream(cuda_stream) # create cuda_graph and assign static_inputs and static_outputs self._decoder_cuda_graph = torch.cuda.CUDAGraph() self.static_decoder_inputs = inputs self.static_decoder_kwargs = kwargs with torch.cuda.graph(self._decoder_cuda_graph): self.static_decoder_output = self._decode(*self.static_decoder_inputs, **self.static_decoder_kwargs) self.decoder_cuda_graph_created = True def decode(self, *inputs, **kwargs): if self.enable_cuda_graph: if self.decoder_cuda_graph_created: outputs = self._graph_replay_decoder(*inputs, **kwargs) else: self._create_cuda_graph_decoder(*inputs, **kwargs) outputs = self._graph_replay_decoder(*inputs, **kwargs) return outputs else: return self._decode(*inputs, **kwargs) def _graph_replay_encoder(self, *inputs, **kwargs): for i in range(len(inputs)): if torch.is_tensor(inputs[i]): self.static_encoder_inputs[i].copy_(inputs[i]) for k in kwargs: if torch.is_tensor(kwargs[k]): self.static_encoder_kwargs[k].copy_(kwargs[k]) self._encoder_cuda_graph.replay() return self.static_encoder_output def _encode(self, x, return_dict=True): return self.vae.encode(x, return_dict=return_dict) def _create_cuda_graph_encoder(self, *inputs, **kwargs): # warmup to create the workspace and cublas handle cuda_stream = torch.cuda.Stream() cuda_stream.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(cuda_stream): for i in range(3): ret = self._encode(*inputs, **kwargs) torch.cuda.current_stream().wait_stream(cuda_stream) # create cuda_graph and assign static_inputs and static_outputs self._encoder_cuda_graph = torch.cuda.CUDAGraph() self.static_encoder_inputs = inputs self.static_encoder_kwargs = kwargs with torch.cuda.graph(self._encoder_cuda_graph): self.static_encoder_output = self._encode(*self.static_encoder_inputs, **self.static_encoder_kwargs) self.encoder_cuda_graph_created = True def encode(self, *inputs, **kwargs): if self.enable_cuda_graph: if self.encoder_cuda_graph_created: outputs = self._graph_replay_encoder(*inputs, **kwargs) else: self._create_cuda_graph_encoder(*inputs, **kwargs) outputs = self._graph_replay_encoder(*inputs, **kwargs) return outputs else: return self._encode(*inputs, **kwargs) def _graph_replay(self, *inputs, **kwargs): for i in range(len(inputs)): if torch.is_tensor(inputs[i]): self.static_inputs[i].copy_(inputs[i]) for k in kwargs: if torch.is_tensor(kwargs[k]): self.static_kwargs[k].copy_(kwargs[k]) self._all_cuda_graph.replay() return self.static_output def forward(self, *inputs, **kwargs): if self.enable_cuda_graph: if self.cuda_graph_created: outputs = self._graph_replay(*inputs, **kwargs) else: self._create_cuda_graph(*inputs, **kwargs) outputs = self._graph_replay(*inputs, **kwargs) return outputs else: return self._forward(*inputs, **kwargs) def _create_cuda_graph(self, *inputs, **kwargs): # warmup to create the workspace and cublas handle cuda_stream = torch.cuda.Stream() cuda_stream.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(cuda_stream): for i in range(3): ret = self._forward(*inputs, **kwargs) torch.cuda.current_stream().wait_stream(cuda_stream) # create cuda_graph and assign static_inputs and static_outputs self._all_cuda_graph = torch.cuda.CUDAGraph() self.static_inputs = inputs self.static_kwargs = kwargs with torch.cuda.graph(self._all_cuda_graph): self.static_output = self._forward(*self.static_inputs, **self.static_kwargs) self.all_cuda_graph_created = True def _forward(self, sample, timestamp, encoder_hidden_states, return_dict=True): return self.vae(sample, timestamp, encoder_hidden_states, return_dict)
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/model_implementations/diffusers/vae.py
vae.py
# DeepSpeed Team import torch from deepspeed.accelerator import get_accelerator from ..features.cuda_graph import CUDAGraph class DSClipEncoder(CUDAGraph, torch.nn.Module): def __init__(self, enc, enable_cuda_graph=False): super().__init__(enable_cuda_graph=enable_cuda_graph) enc.text_model._build_causal_attention_mask = self._build_causal_attention_mask self.enc = enc self.device = self.enc.device self.dtype = self.enc.dtype self.cuda_graph_created = [False, False] self.static_inputs = [None, None] self.static_kwargs = [None, None] self.static_output = [None, None] self._cuda_graphs = [None, None] self.iter = 0 self.config = self.enc.config def _build_causal_attention_mask(self, bsz, seq_len, dtype): mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype, device=get_accelerator().current_device_name()) mask.fill_(torch.tensor(torch.finfo(dtype).min)) mask.triu_(1) mask = mask.unsqueeze(1) return mask def _graph_replay(self, *inputs, **kwargs): for i in range(len(inputs)): if torch.is_tensor(inputs[i]): self.static_inputs[self.iter][i].copy_(inputs[i]) for k in kwargs: if torch.is_tensor(kwargs[k]): self.static_kwargs[self.iter][k].copy_(kwargs[k]) self._cuda_graphs[self.iter].replay() return self.static_output[self.iter] def forward(self, *inputs, **kwargs): if self.enable_cuda_graph: if self.cuda_graph_created[self.iter]: outputs = self._graph_replay(*inputs, **kwargs) else: self._create_cuda_graph(*inputs, **kwargs) outputs = self._graph_replay(*inputs, **kwargs) self.iter = (self.iter + 1) % 2 return outputs else: return self.enc(*inputs, **kwargs) def _create_cuda_graph(self, *inputs, **kwargs): # warmup to create the workspace and cublas handle cuda_stream = torch.cuda.Stream() cuda_stream.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(cuda_stream): for i in range(3): ret = self._forward(*inputs, **kwargs) torch.cuda.current_stream().wait_stream(cuda_stream) # create cuda_graph and assign static_inputs and static_outputs self._cuda_graphs[self.iter] = torch.cuda.CUDAGraph() self.static_inputs[self.iter] = inputs self.static_kwargs[self.iter] = kwargs with torch.cuda.graph(self._cuda_graphs[self.iter]): self.static_output[self.iter] = self._forward(*self.static_inputs[self.iter], **self.static_kwargs[self.iter]) self.cuda_graph_created[self.iter] = True def _forward(self, *inputs, **kwargs): return self.enc(*inputs, **kwargs)
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/model_implementations/transformers/clip_encoder.py
clip_encoder.py
# DeepSpeed Team import torch import torch.nn as nn from deepspeed import comm as dist from deepspeed.utils.logging import log_dist from deepspeed.ops.transformer.inference.ds_mlp import DeepSpeedMLP from deepspeed.ops.transformer.inference.ds_attention import DeepSpeedSelfAttention, BloomSelfAttention from deepspeed.accelerator import get_accelerator from deepspeed.ops.op_builder import InferenceBuilder inference_cuda_module = None class DeepSpeedTransformerInference(nn.Module): """Initialize the DeepSpeed Transformer Layer. Arguments: layer_id: The layer index starting from 0, e.g. if model has 24 transformer layers, layer_id will be 0,1,2...23 when each layer object is instantiated config: An object of DeepSpeedInferenceConfig mp_group: Model parallelism group initialized on the modeling side. quantize_scales: This argument groups all the layers' scales used for quantization quantize_groups: Number of groups used for quantizing the model merge_count: Shows the number of model-parallel checkpoints merged before running inference. We use this argument to control the quantization scale for the model parameters if a bigger quantize-grouping than 1 is used. mlp_extra_grouping: This flag is used to show a 2x higher number of groups used for the MLP part of a Transformer layer. We use this feature for quantization to reduce the convergence impact for specific downstream tasks. """ layer_id = 0 def __init__(self, config, mp_group=None, quantize_scales=None, quantize_groups=1, merge_count=1, mlp_extra_grouping=False): super(DeepSpeedTransformerInference, self).__init__() self.config = config self.config.layer_id = DeepSpeedTransformerInference.layer_id DeepSpeedTransformerInference.layer_id += 1 data_type = torch.half if config.fp16 else torch.float global inference_cuda_module if inference_cuda_module is None: builder = InferenceBuilder() inference_cuda_module = builder.load() if DeepSpeedTransformerInference.layer_id == 1: log_dist(f"DeepSpeed-Inference config: {self.config.__dict__}", [0]) if self.config.bigscience_bloom: self.attention = BloomSelfAttention(self.config, mp_group, quantize_scales, quantize_groups, merge_count) else: self.attention = DeepSpeedSelfAttention(self.config, mp_group, quantize_scales, quantize_groups, merge_count) self.mlp = DeepSpeedMLP(self.config, mp_group, quantize_scales, quantize_groups, merge_count, mlp_extra_grouping) device = get_accelerator().current_device_name() # if config.bigscience_bloom else 'cpu' if self.config.set_empty_params: self.norm_w = None self.norm_b = None else: self.norm_w = nn.Parameter(torch.empty(self.config.hidden_size, dtype=data_type, device=device), requires_grad=False) self.norm_b = nn.Parameter(torch.empty(self.config.hidden_size, dtype=data_type, device=device), requires_grad=False) self.layer_past = None self.allocate_workspace = inference_cuda_module.allocate_workspace_fp32 if (not config.fp16) else \ inference_cuda_module.allocate_workspace_fp16 self._alloc_workspace = True @classmethod def reset_cache(cls): if inference_cuda_module is not None: inference_cuda_module.reset_cache() def forward( self, input=None, input_mask=None, attention_mask=None, attn_mask=None, head_mask=None, layer_past=None, get_key_value=False, get_present=False, encoder_output=None, enc_dec_attn_mask=None, x=None, encoder_hidden_states=None, encoder_attention_mask=None, use_cache=False, alibi=None, output_attentions=False, # TODO(arashb): 'layer_head_mask' and 'past_key_value' are only added to satisfy the OPT models API. # This needs to be redesigned later! layer_head_mask=None, past_key_value=None, **kwargs): if x is not None: input = x if "hidden_states" in kwargs: input = kwargs["hidden_states"] input_mask = (input_mask if attn_mask is None else attn_mask) if attention_mask is None else attention_mask # Allocate memory only on first layer forward if self.config.layer_id == 0 and self._alloc_workspace: self.allocate_workspace(self.config.hidden_size, self.config.heads, input.size()[1], input.size()[0], DeepSpeedTransformerInference.layer_id, self.config.mp_size, self.config.bigscience_bloom, dist.get_rank() if dist.is_initialized() else 0, self.config.max_out_tokens, self.config.min_out_tokens) self._alloc_workspace = False get_present = (get_present or get_key_value or use_cache) input_mask = input_mask if attention_mask is None else attention_mask # We set the prev key/value to None when there is a prompt if input.shape[1] > 1: self.layer_past = None layer_past = layer_past if layer_past is not None else self.layer_past head_mask = layer_head_mask if layer_head_mask is not None else head_mask attn_mask = None if isinstance(input, tuple): attn_mask = input[1] input = input[0] input_type = input.dtype if (self.config.fp16 or self.config.q_int8) \ and input.dtype == torch.float: input = input.half() with torch.no_grad(): attention_output, key, value, context_outputtn_ctx, inp_norm = \ self.attention(input, input_mask, head_mask, layer_past, get_present, encoder_hidden_states, encoder_attention_mask, output_attentions, self.norm_w, self.norm_b, alibi) presents = (key, value) self.layer_past = presents if layer_past is None else None output = self.mlp(attention_output, input, inp_norm, self.attention.attn_ob) if not self.config.pre_layer_norm: output = inference_cuda_module.layer_norm(output, self.norm_w, self.norm_b, self.config.epsilon) output = output.to(input_type) if get_present: output = (output, presents) if self.config.return_single_tuple: return (output, ) elif self.config.return_tuple: return output if type(output) is tuple else (output, attn_mask) else: return output
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/model_implementations/transformers/ds_transformer.py
ds_transformer.py
# DeepSpeed Team import torch from deepspeed import comm as dist from torch import nn from torch.nn import functional as F from torch.nn.parameter import Parameter from deepspeed.accelerator import get_accelerator class LinearAllreduce(nn.Module): def __init__(self, weight, bias=None, mp_group=None): super(LinearAllreduce, self).__init__() self.weight = weight self.bias = bias self.mp_group = mp_group def forward(self, input): output = torch.matmul(input, self.weight.transpose(-1, -2)) if self.mp_group is not None: dist.all_reduce(output, group=self.mp_group) if self.bias is not None: output += self.bias return output class LinearLayer(nn.Module): def __init__(self, weight_shape=None, dtype=torch.half, weight=None, bias=None): super(LinearLayer, self).__init__() if weight is not None: self.weight = weight self.bias = bias else: self.weight = Parameter( torch.empty(weight_shape, dtype=dtype, device=get_accelerator().current_device_name())) self.bias = Parameter( torch.empty(weight_shape[0], dtype=dtype, device=get_accelerator().current_device_name())) \ if bias is not None else None def forward(self, input): output = torch.matmul(input, self.weight.transpose(-1, -2)) if self.bias is not None: output += self.bias return output class Normalize(nn.Module): def __init__(self, dim=None, dtype=torch.float, eps=1e-5, weight=None, bias=None): super(Normalize, self).__init__() if weight is not None: self.weight = weight self.bias = bias else: self.norm = nn.LayerNorm(dim, eps=eps).to(dtype).to(get_accelerator().current_device_name()) self.weight = self.norm.weight self.bias = self.norm.bias self.eps = eps def forward(self, input): return nn.functional.layer_norm(input, input.shape[-1:], self.weight, self.bias, eps=self.eps) class EmbeddingLayer(nn.Module): def __init__(self, weight_shape=None, dtype=torch.half, weight=None, bias=None): super(EmbeddingLayer, self).__init__() if weight is None: self.weight = Parameter( torch.empty(weight_shape[0], weight_shape[1], dtype=dtype, device=get_accelerator().current_device_name())) else: self.weight = weight def forward(self, input): return F.embedding(input, self.weight) class OPTEmbedding(EmbeddingLayer): """ This module learns positional embeddings up to a fixed maximum size. """ def __init__(self, weight_shape=None, weight=None, bias=None): # OPT is set up so that if padding_idx is specified then offset the embedding ids by 2 # and adjust num_embeddings appropriately. Other models don't have this hack self.offset = 2 super().__init__(weight_shape, weight=weight) def forward(self, attention_mask: torch.LongTensor, past_key_values_length: int = 0): """`input_ids_shape` is expected to be [bsz x seqlen].""" attention_mask = attention_mask.long() # create positions depending on attention_mask positions = (torch.cumsum(attention_mask, dim=1).type_as(attention_mask) * attention_mask).long() - 1 # cut positions if `past_key_values_length` is > 0 positions = positions[:, past_key_values_length:] return super().forward(positions + self.offset)
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/module_inject/layers.py
layers.py
# DeepSpeed Team import torch def quantize_transformer_layer(orig_layer_impl, model, megatron=False, preln=False): """ Quantize bert-style transformer layers with DeepSpeed's transformer layer Arguments: orig_layer_impl (torch.nn.Module): the original transformer layer implementation to look for, e.g., transformers.modeling_bert.BertLayer. model (torch.nn.Module): user's nn.module representing their model megatron (bool): megatron model-parallel implementation (this is supported for inference only) preln (bool): does the original layer implementation do pre or post layer norm? Note: For Bert kind of models, we inject based on the DeepSpeed-Example models, if not setting huggingface flag. Returns: Updated nn.module with quantized transformer layers """ def quantize_weight(weight): return weight.to(torch.int8) def megatron_layer_quantize(layer): layer.attention.query_key_value.weight.data = quantize_weight(layer.attention.query_key_value.weight.data) layer.attention.dense.weight.data = quantize_weight(layer.attention.dense.weight.data) layer.mlp.dense_h_to_4h.weight.data = quantize_weight(layer.mlp.dense_h_to_4h.weight.data) layer.mlp.dense_4h_to_h.weight.data = quantize_weight(layer.mlp.dense_4h_to_h.weight.data) def bert_layer_quantize(layer): layer.attention.self.query.weight.data = quantize_weight(layer.attention.self.query.weight.data) layer.attention.self.key.weight.data = quantize_weight(layer.attention.self.key.weight.data) layer.attention.self.value.weight.data = quantize_weight(layer.attention.self.value.weight.data) layer.attention.output.dense.weight.data = quantize_weight(layer.attention.output.dense.weight.data) if preln: layer.intermediate.dense_act.weight.data = quantize_weight(layer.intermediate.dense_act.weight.data) else: layer.intermediate.dense.weight.data = quantize_weight(layer.intermediate.dense.weight.data) layer.output.dense.weight.data = quantize_weight(layer.output.dense.weight.data) def quantize_fn(child): if megatron: # Quantize megatron GPT2 / GPT3 trained model megatron_layer_quantize(child) else: # Quantize either DeepSpeed or HuggingFace trained model bert_layer_quantize(child) return child return quantize_module(model=model, orig_class=orig_layer_impl, quantize_fn=quantize_fn) def quantize_module(model, orig_class, quantize_fn): policy = {orig_class: quantize_fn} return _quantize_module(model, policy) def _quantize_module(model, policies): for name, child in model.named_children(): if child.__class__ in policies: orig = repr(child) setattr(model, name, policies[child.__class__](child)) new = getattr(model, name) else: _quantize_module(child, policies) return model
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/module_inject/module_quantize.py
module_quantize.py
# DeepSpeed Team import copy import torch from deepspeed.ops.transformer import DeepSpeedTransformerLayer, DeepSpeedTransformerConfig def module_inject(layer_obj, model, config, micro_batch_size, max_seq_length, seed, preln, fp16=True): for name, child in model.named_children(): if isinstance(child, layer_obj): print('REPLACING BertLayer') cuda_config = DeepSpeedTransformerConfig(batch_size=micro_batch_size, max_seq_length=max_seq_length, hidden_size=config.hidden_size, heads=config.num_attention_heads, attn_dropout_ratio=config.attention_probs_dropout_prob, hidden_dropout_ratio=config.hidden_dropout_prob, num_hidden_layers=config.num_hidden_layers, initializer_range=config.initializer_range, seed=seed, fp16=fp16, pre_layer_norm=preln) new_module = DeepSpeedTransformerLayer(cuda_config) # copy relevant state from child -> new module qw = child.attention.self.query.weight qb = child.attention.self.query.bias kw = child.attention.self.key.weight kb = child.attention.self.key.bias vw = child.attention.self.value.weight vb = child.attention.self.value.bias qkvw = torch.cat((qw, kw, vw), 0) qkvb = torch.cat((qb, kb, vb), 0) new_module.attn_qkvw.data = qkvw new_module.attn_qkvb.data = qkvb new_module.attn_ow.data = child.attention.output.dense.weight new_module.attn_ob.data = child.attention.output.dense.bias if preln: attention_layerNorm = child.PostAttentionLayerNorm else: attention_layerNorm = child.attention.output.LayerNorm new_module.attn_nw.data = attention_layerNorm.weight new_module.attn_nb.data = attention_layerNorm.bias if preln: intermediate_FF = child.intermediate.dense_act else: intermediate_FF = child.intermediate.dense new_module.inter_w.data = intermediate_FF.weight new_module.inter_b.data = intermediate_FF.bias new_module.output_w.data = child.output.dense.weight new_module.output_b.data = child.output.dense.bias if preln: transformer_LayerNorm = child.PreAttentionLayerNorm else: transformer_LayerNorm = child.output.LayerNorm new_module.norm_w.data = transformer_LayerNorm.weight new_module.norm_b.data = transformer_LayerNorm.bias setattr(model, name, copy.deepcopy(new_module)) else: module_inject(layer_obj, child, config, micro_batch_size, max_seq_length, seed, preln, fp16) return model def test_hi(): from turing.nvidia_modelingpreln import BertConfig as BertConfigPreLN from turing.nvidia_modelingpreln import BertForQuestionAnswering as BertForQuestionAnsweringPreLN from turing.nvidia_modelingpreln import BertLayer bert_model_config = { "vocab_size_or_config_json_file": 119547, "hidden_size": 1024, "num_hidden_layers": 1, "num_attention_heads": 16, "intermediate_size": 4096, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "attention_probs_dropout_prob": 0.1, "hidden_dropout_prob": 0.1, "attention_probs_dropout_prob": 0.1, "max_position_embeddings": 512, "type_vocab_size": 2, "initializer_range": 0.02 } bert_config = BertConfigPreLN(**bert_model_config) base_model = BertForQuestionAnsweringPreLN(bert_config, args=None) #base_model = LinearStack() test_model = copy.deepcopy(base_model) test_model = module_inject(BertLayer, test_model, bert_config, 4, 384, 1234) print('BASE', base_model) print('TEST', test_model) #base_model.eval() #test_model.eval() #test_input = torch.rand(1, base_model.input_dim) #base_output = base_model(test_input) #test_output = test_model(test_input) # #assert torch.allclose(base_output, test_output, atol=3e-8)
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/module_inject/inject.py
inject.py
# DeepSpeed Team import os import torch import tqdm import deepspeed import deepspeed.ops.transformer as transformer_inference from deepspeed.ops.transformer.inference.diffusers_attention import DeepSpeedDiffusersAttention from deepspeed.ops.transformer.inference.diffusers_transformer_block import DeepSpeedDiffusersTransformerBlock from deepspeed.ops.transformer.inference.diffusers_2d_transformer import Diffusers2DTransformerConfig from deepspeed.accelerator import get_accelerator from .replace_policy import HFGPT2LayerPolicy from .replace_policy import replace_policies, generic_policies from deepspeed import comm as dist from torch import nn from .layers import LinearAllreduce, LinearLayer from .load_checkpoint import load_model_with_checkpoint import time from .utils import policy_to_ds_container class ReplaceWithTensorSlicing: def __init__(self, mp_group=None, mp_size=1, out_dim=1, in_dim=0): if mp_group is not None: self.gpu_index = dist.get_rank(group=mp_group) else: self.gpu_index = 0 self.out_dim = out_dim self.in_dim = in_dim self.mp_size = mp_size def merge_assert(self, dim1, dim2): assert dim1 > dim2, \ 'Merging tensors is not allowed here! Please use deepspeed load_checkpoint\ for merging your checkpoints before replacing the transformer layer with\ inference-kernels' def qkv_copy(self, dst, src, int8=False, allocat_tensor=False): if src is None: return src src_shape = src.shape dst_shape = dst.shape outer_dim = 0 if int8 else -1 inner_dim = -1 if int8 else 0 if allocat_tensor: dst = torch.empty_like(dst) src_split = torch.split(src.data, src.shape[outer_dim] // 3, dim=outer_dim) if (len(src_shape) == 2 and len(dst_shape) == 2): if src_shape[outer_dim] == dst_shape[self.out_dim]: dst = dst.reshape(-1).data.copy_(src.data.reshape(-1)).reshape(src.shape) dst = torch.nn.parameter.Parameter(dst, requires_grad=False) if hasattr(src, 'scale'): dst.scale = src.scale return dst self.merge_assert(src_shape[outer_dim], dst_shape[self.out_dim]) qkv_size = dst_shape[self.out_dim] // 3 qkv_split = [torch.split(src_s, qkv_size, dim=outer_dim) for src_s in src_split] weight_split = [ torch.cat([qkv_s[i] for qkv_s in qkv_split], axis=outer_dim) for i in range(len(qkv_split[0])) ] dst = dst.reshape(-1).data.copy_(weight_split[self.gpu_index].contiguous().reshape(-1)).reshape( weight_split[self.gpu_index].shape) else: if src_shape[0] == dst_shape[0]: return torch.nn.parameter.Parameter(src) qkv_size = dst_shape[0] // 3 qkv_split = [torch.split(src_s, qkv_size, dim=0) for src_s in src_split] bias_split = [torch.cat([qkv_s[i] for qkv_s in qkv_split], axis=0) for i in range(len(qkv_split[0]))] dst.data.copy_(bias_split[self.gpu_index].contiguous()) dst = torch.nn.parameter.Parameter(dst, requires_grad=False) if hasattr(src, 'scale'): dst.scale = src.scale return dst def copy(self, dst, src, int8=False, allocat_tensor=False): if src is None: return src assert not dst.data.is_meta # the torch.Tensor.copy_ method used below will silently fail on meta tensors if allocat_tensor: dst = torch.empty_like(dst) outer_dim = 0 if int8 else 1 inner_dim = 1 if int8 else 0 src_shape = src.shape dst_shape = dst.shape if (len(src_shape) == 2 and len(dst_shape) == 2): if src_shape[inner_dim] == dst_shape[self.in_dim] and src_shape[outer_dim] == dst_shape[self.out_dim]: dst = dst.reshape(-1).data.copy_(src.data.reshape(-1)).reshape(src.shape) else: if src_shape[inner_dim] != dst_shape[self.in_dim]: self.merge_assert(src_shape[inner_dim], dst_shape[self.in_dim]) dst.data.copy_(src[:, self.gpu_index * dst_shape[self.in_dim]: (self.gpu_index + 1) * dst_shape[self.in_dim]] if inner_dim == 1 else \ src[self.gpu_index * dst_shape[self.in_dim]: (self.gpu_index + 1) * dst_shape[self.in_dim], :]) else: self.merge_assert(src_shape[outer_dim], dst_shape[self.out_dim]) dst.data.copy_(src[:, self.gpu_index * dst_shape[self.out_dim]: (self.gpu_index + 1) * dst_shape[self.out_dim]] if outer_dim == 1 else \ src[self.gpu_index * dst_shape[self.out_dim]: (self.gpu_index + 1) * dst_shape[self.out_dim], :]) else: if src_shape[0] == dst_shape[0]: dst = src else: dst.data.copy_(src[self.gpu_index * dst_shape[-1]:(self.gpu_index + 1) * dst_shape[-1]]) dst = torch.nn.parameter.Parameter(dst, requires_grad=False) if hasattr(src, 'scale'): dst.scale = src.scale return dst def get_transformer_name(replaced_module): from .containers import supported_models from torch.nn import ModuleList transformer_name = '' for n, c in replaced_module.named_children(): if c.__class__ in supported_models: transformer_name += n + '.' for name, child in c.named_children(): if child.__class__ is ModuleList: transformer_name += name break break return transformer_name class GroupQuantizer: def __init__(self, q_int8=True, group_size=1, num_bits=8, num_groups=0): self.group_size = group_size self.num_bits = num_bits self.q_int8 = q_int8 self.num_groups = num_groups def quantize(self, inputs, qkv=True, count=1, parallel_dim=0): if not self.q_int8 or not qkv: inputs = torch.nn.Parameter(inputs, requires_grad=False) inputs.scale = torch.empty(1) return inputs q_range = 2**self.num_bits num_groups = self.num_groups if self.num_groups > 0 else inputs.shape[0] // self.group_size inputs = inputs.to(get_accelerator().current_device_name()) input_flat = inputs.reshape(num_groups, -1).contiguous() input_min = torch.min(input_flat, dim=1, keepdim=True)[0].float() input_max = torch.max(input_flat, dim=1, keepdim=True)[0].float() scale = torch.max(input_min.abs(), input_max.abs()) * 2.0 / (q_range) input_flat = (input_flat / scale).round().clamp(-q_range // 2, q_range // 2 - 1) inputs_q = input_flat.reshape(inputs.shape).to(torch.int8).contiguous() out = torch.nn.Parameter(inputs_q, requires_grad=False) inputs_split = inputs.split(inputs.shape[parallel_dim] // 2, dim=parallel_dim) input_flat = [inputs_split[i].reshape(num_groups, -1).contiguous() for i in range(2)] input_min = [torch.min(input_flat[i], dim=1, keepdim=True)[0].float() for i in range(2)] input_max = [torch.max(input_flat[i], dim=1, keepdim=True)[0].float() for i in range(2)] scale1 = [(torch.max(input_min[i].abs(), input_max[i].abs()) * 2.0 / (q_range)).squeeze().unsqueeze(0) for i in range(2)] out.scale = torch.cat([scale.squeeze().unsqueeze(0), scale1[0], scale1[1]], dim=0).reshape(num_groups, -1).contiguous() return out def _module_match(module): for policy in generic_policies: policy = policy() if policy.match(module): return policy return None def generic_injection(module, fp16=False, enable_cuda_graph=True): def replace_attn(child, policy): policy_attn = policy.attention(child) if policy_attn is None: return child if len(policy_attn) == 5: qkvw, attn_ow, attn_ob, hidden_size, heads = policy_attn else: qw, kw, vw, attn_ow, attn_ob, hidden_size, heads = policy_attn config = transformer_inference.DeepSpeedInferenceConfig( hidden_size=hidden_size, heads=heads, fp16=fp16, triangular_masking=False, max_out_tokens=4096, ) attn_module = DeepSpeedDiffusersAttention(config) def transpose(data): data = data.contiguous() data.reshape(-1).copy_(data.transpose(-1, -2).contiguous().reshape(-1)) data = data.reshape(data.shape[-1], data.shape[-2]) data.to(get_accelerator().current_device_name()) return data if len(policy_attn) == 5: attn_module.attn_qkvw.data = transpose(qkvw.data) else: attn_module.attn_qkvw = None attn_module.attn_qw.data = transpose(qw.data) attn_module.attn_kw.data = transpose(kw.data) attn_module.attn_vw.data = transpose(vw.data) attn_module.attn_qkvb = None attn_module.attn_ow.data = transpose(attn_ow.data) attn_module.attn_ob.data.copy_(attn_ob.data.to(get_accelerator().current_device_name())) return attn_module def replace_attn_block(child, policy): config = Diffusers2DTransformerConfig() return DeepSpeedDiffusersTransformerBlock(child, config) if isinstance(module, torch.nn.Module): pass else: if fp16 is False: raise ValueError("Generic injection only supported with FP16") try: import diffusers if hasattr(diffusers.models.attention, 'CrossAttention'): cross_attention = diffusers.models.attention.CrossAttention else: cross_attention = diffusers.models.attention_processor.Attention attention_block = diffusers.models.attention.BasicTransformerBlock new_policies = { cross_attention: replace_attn, attention_block: replace_attn_block, } except ImportError: new_policies = {} #replace_transformer_layer(None, # module.text_encoder, # training=False, # replace_with_kernel_inject=True, # triangular_masking=True, # max_out_tokens=8192) from ..model_implementations.transformers.clip_encoder import DSClipEncoder cg_encoder = DSClipEncoder(module.text_encoder, enable_cuda_graph=enable_cuda_graph) setattr(module, 'text_encoder', cg_encoder) for name in module.__dict__.keys(): sub_module = getattr(module, name) policy = _module_match(sub_module) if policy is not None: def _replace_module(module, policy): for name, child in module.named_children(): _replace_module(child, policy) if child.__class__ in new_policies: replaced_module = new_policies[child.__class__](child, policy) setattr(module, name, replaced_module) _replace_module(sub_module, policy) new_module = policy.apply(sub_module, enable_cuda_graph=enable_cuda_graph) print(f"**** found and replaced {name} w. {type(new_module)}") setattr(module, name, new_module) container_g = None def replace_transformer_layer(orig_layer_impl, model, checkpoint_dict, config, model_config): """ Replace bert-style transformer layers with DeepSpeed's transformer layer Arguments: orig_layer_impl (torch.nn.Module): the original transformer layer implementation to look for, e.g., transformers.modeling_bert.BertLayer. model (torch.nn.Module): user's nn.module representing their model checkpoint_dict: Dictionary for checkpoint passed from the Inference Engine config: top-level DS Inference config defined in inference/config.py model_config: HuggingFace model config passed from the inference/engine.py Returns: Updated nn.module with replaced transformer layers """ # defining globals as internally defined functions inherit these everywhere fp16 = (config.dtype == torch.float16 or config.dtype == torch.int8) quantize = (config.dtype == torch.int8) # todo: Refactor later. In future, let's minimize the style used above and use config.** instead linear_layer_setting = None ''' linear_layer_setting (tuple of modules) [Optional]: shows which two classes are used for linear layers and embedding layers ''' micro_batch_size = -1 seed = -1 local_rank = -1 mp_replace = ReplaceWithTensorSlicing(mp_group=config.tensor_parallel.tp_group, mp_size=config.tensor_parallel.tp_size) #, out_dim=0, in_dim=1) def replace_with_policy(child, policy_cls, triangular_masking, inference=False, layer_id=0): policy = policy_cls(child, inference=inference) if not policy.cuda_graph_supported: # policy says cuda graph is not supported raise an error if set assert not config.enable_cuda_graph, "cuda graph is not supported with this model, please disable" from deepspeed.moe.layer import MoE moe = False if hasattr(child, 'mlp') and isinstance(child.mlp, MoE): num_experts = child.mlp.num_experts moe = True # 1. Create a model-specific container object using the policy object. _container = policy_to_ds_container(policy=policy, config=config, model_config=model_config, layer_id=layer_id, child=child) _container.set_dtype(fp16) _container.set_moe(moe) # 2. Set the tensor parallelism config _container.set_tensor_parallel_config(config.tensor_parallel.tp_size, config.tensor_parallel.tp_group) # 3. Initialize tensors _container.initialize_tensors() # 4. deal with data types -- needs refactor to use dtype instead of fp16 if fp16: _container.convert_to_required_dtype(dtype=torch.half) # 5. Set the quantization config quantizer = GroupQuantizer(q_int8=quantize) _container.set_quantization_config(quantize, quantizer) # 6. create a DS Inference config object _container.create_ds_model_config() # 7. use the config and create the module _container.create_module() # 8. transpose the weights and bias if needed _container.transpose() # 9. deal with tensor parallelism. _container.apply_tensor_parallelism(mp_replace) # 10. copy the tensors from the model-specific container to the new module _container.copy_data_to_new_module() # 11. set global for generic checkpoint loading global container_g if container_g is None: container_g = _container return _container.module def replace_wo_policy(module, all_reduce_linears): mp_size = config.tensor_parallel.tp_size mp_group = config.tensor_parallel.tp_group def _replace(child, name, conv_linear_layer): mp_replace = ReplaceWithTensorSlicing(mp_group=mp_group) weight_shape = child.weight.shape if name in all_reduce_linears: new_weight = torch.empty(( weight_shape[1] if conv_linear_layer else weight_shape[0], (weight_shape[0] if conv_linear_layer else weight_shape[1]) // mp_size, ), device=child.weight.device, dtype=child.weight.dtype) if conv_linear_layer: child.weight.data = child.weight.data.transpose(-1, -2).contiguous() data = mp_replace.copy(new_weight, child.weight.data) new_bias = torch.empty((weight_shape[0]), device=child.weight.device, dtype=child.weight.dtype) if child.bias is not None: new_bias.data.copy_(child.bias.data) return LinearAllreduce(data, child.bias if child.bias is None else \ torch.nn.parameter.Parameter(new_bias.to(get_accelerator().current_device_name())), mp_group) else: new_weight = torch.empty(( (weight_shape[1] if conv_linear_layer else weight_shape[0]) // mp_size, weight_shape[0] // mp_size if conv_linear_layer else weight_shape[1], ), device=child.weight.device, dtype=child.weight.dtype) if conv_linear_layer: child.weight.data = child.weight.data.transpose(-1, -2).contiguous() data = mp_replace.copy(new_weight, child.weight.data) new_bias = torch.empty((weight_shape[0] // mp_size), device=child.weight.device, dtype=child.weight.dtype) bias_data = None if child.bias is None else mp_replace.copy(new_bias, child.bias.data).to( get_accelerator().current_device_name()) return LinearLayer(weight=data.to(get_accelerator().current_device_name()), bias=bias_data) def _slice_embedding(child, name, conv_linear_layer): mp_replace = ReplaceWithTensorSlicing(mp_group=mp_group) new_weight = torch.empty((child.weight.shape[0], child.weight.shape[1] // mp_size), device=child.weight.device, dtype=child.weight.dtype) data = mp_replace.copy(new_weight, child.weight.ds_tensor.data if hasattr(child.weight, 'ds_tensor') else \ child.weight.data) new_embedding = nn.Embedding(child.weight.shape[0], child.weight.shape[1] // mp_size) new_embedding.weight.data.copy_(data) return new_embedding def update_mp_params(child): if hasattr(child, 'n_heads'): assert child.n_heads % mp_size == 0, "n_heads ({}) must be divisible by mp_size ({})".format( child.n_heads, mp_size) child.n_heads = child.n_heads // mp_size if hasattr(child, 'inner_dim'): assert child.inner_dim % mp_size == 0, "inner_dim ({}) must be divisible by mp_size ({})".format( child.inner_dim, mp_size) child.inner_dim = child.inner_dim // mp_size if hasattr(child, 'num_heads'): assert child.num_heads % mp_size == 0, "num_heads ({}) must be divisible by mp_size ({})".format( child.num_heads, mp_size) child.num_heads = child.num_heads // mp_size if hasattr(child, 'num_attention_heads'): assert child.num_attention_heads % mp_size == 0, "num_attention_heads ({}) must be divisible by mp_size ({})".format( child.num_attention_heads, mp_size) child.num_attention_heads = child.num_attention_heads // mp_size if hasattr(child, 'num_attn_heads'): assert child.num_attn_heads % mp_size == 0, "num_attn_heads ({}) must be divisible by mp_size ({})".format( child.num_attn_heads, mp_size) child.num_attn_heads = child.num_attn_heads // mp_size if hasattr(child, 'all_head_size'): assert child.all_head_size % mp_size == 0, "all_head_size ({}) must be divisible by mp_size ({})".format( child.all_head_size, mp_size) child.all_head_size = child.all_head_size // mp_size if hasattr(child, 'embed_dim'): assert child.embed_dim % mp_size == 0, "embed_dim must ({}) be divisible by mp_size ({})".format( child.embed_dim, mp_size) child.embed_dim = child.embed_dim // mp_size if hasattr(child, 'hidden_size'): assert child.hidden_size % mp_size == 0, "hidden_size ({}) must be divisible by mp_size ({})".format( child.hidden_size, mp_size) child.hidden_size = child.hidden_size // mp_size conv_linear_layer = False if linear_layer_setting is not None: linear_policies = {linear_layer_setting[0]: _replace} if len(linear_layer_setting) == 2: linear_policies.update({linear_layer_setting[1]: _slice_embedding}) else: if orig_layer_impl is HFGPT2LayerPolicy._orig_layer_class: try: import transformers conv_linear_layer = True linear_policies = {transformers.model_utils.Conv1D: _replace} except ImportError: linear_policies = {nn.Linear: _replace} else: linear_policies = {nn.Linear: _replace, nn.Embedding: _slice_embedding} def _replace_module(r_module, prev_name=''): for name, child in r_module.named_children(): if child.__class__ in linear_policies: setattr(r_module, name, linear_policies[child.__class__](child, prev_name + '.' + name, conv_linear_layer)) else: update_mp_params(child) _replace_module(child, name) return r_module return _replace_module(module) def replace_fn(child, _policy, layer_id=0): training = False # todo: refactor this part to go in the config if training: # copy relevant state from child -> new module new_module = replace_with_policy(child, _policy, config.triangular_masking) else: # copy relevant state from child -> new module if config.replace_with_kernel_inject: new_module = replace_with_policy(child, _policy, config.triangular_masking, inference=True, layer_id=layer_id) else: new_module = replace_wo_policy(child, _policy) return new_module replaced_module = replace_module(model=model, orig_class=orig_layer_impl, replace_fn=replace_fn, _replace_policy=config.injection_policy_tuple) quantizer = GroupQuantizer(q_int8=quantize) world_size = dist.get_world_size() if dist.is_initialized() else 1 rank = dist.get_rank() if dist.is_initialized() else 0 if checkpoint_dict is not None: assert container_g.ckpt_load_enabled, \ f"Meta Tensor checkpoint loading not supported in {container_g.__class__.__name__} container" start_time = time.time() checkpoint = checkpoint_dict['checkpoints'] ckpt_list = checkpoint["tp"] if type(checkpoint) is dict else checkpoint ckpt_type = checkpoint_dict.get('parallelization', 'pp') ckpt_mp_size = checkpoint_dict.get('tp_size', len(ckpt_list)) ckpt_mp_size = checkpoint_dict.get('mp_size', ckpt_mp_size) base_dir1 = checkpoint_dict.get('base_dir', config.base_dir) if ckpt_type == 'pp' and type(checkpoint) is list: pbar = tqdm.tqdm(total=len(checkpoint), desc=f"Loading {len(checkpoint)} checkpoint shards") for i in range(len(checkpoint)): sd = [torch.load(os.path.join(base_dir1, checkpoint[i]), map_location='cpu')] load_model_with_checkpoint(replaced_module, sd, mp_replace, ckpt_type, ckpt_mp_size, quantizer, container=container_g) pbar.update(1) else: import gc num_checkpoints = len(ckpt_list) // ckpt_mp_size tp_split_size = (world_size / ckpt_mp_size) sd_offset = int(rank / tp_split_size) sd_count = int((rank + max(1, tp_split_size)) / tp_split_size) - sd_offset pbar = tqdm.tqdm(total=num_checkpoints, desc=f"Loading {num_checkpoints} checkpoint shards") for i in range(num_checkpoints): pbar.update(1) ckpt_index = i * ckpt_mp_size + sd_offset ckpt_files = [ os.path.join(base_dir1, ckpt_list[ckpt_index + j]) if base_dir1 else ckpt_list[ckpt_index + j] for j in range(sd_count) ] sds = [torch.load(ckpt_file, map_location='cpu') for ckpt_file in ckpt_files] load_model_with_checkpoint(replaced_module, sds, mp_replace, ckpt_type, ckpt_mp_size, quantizer, int(rank % tp_split_size), container=container_g) sds = [None for _ in sds] gc.collect() if "non_tp" in checkpoint: pbar = tqdm.tqdm(total=len(checkpoint["non_tp"]), desc=f"Loading {len(checkpoint['non_tp'])} checkpoint shards") for i in range(len(checkpoint["non_tp"])): pbar.update(1) ckpt_file = os.path.join(base_dir1, checkpoint["non_tp"][i]) if base_dir1 else checkpoint["non_tp"][i] sds = [torch.load(ckpt_file, map_location='cpu')] load_model_with_checkpoint(replaced_module, sds, mp_replace, ckpt_type, ckpt_mp_size, quantizer, int(rank % tp_split_size), container=container_g) sds = [None for _ in sds] gc.collect() print(f"checkpoint loading time at rank {rank}: {time.time()-start_time} sec") if config.save_mp_checkpoint_path is not None: from collections import OrderedDict import json num_partitions = 8 if checkpoint_dict is None: ckpt_name = "ds_model" try: from transformers.models.bloom.modeling_bloom import BloomForCausalLM if isinstance(model, BloomForCausalLM): ckpt_name = "bloom" except ImportError: ckpt_name = "ds_model" else: ckpt_name = checkpoint_dict['type'] if dist.is_initialized(): dist.barrier() transformer_name = get_transformer_name(replaced_module) non_tp_ckpt_name = f'non-tp.pt' ckpt_files = [non_tp_ckpt_name] os.makedirs(config.save_mp_checkpoint_path, exist_ok=True) if not dist.is_initialized() or dist.get_rank() == 0: print("Saving tp-sharded checkpoints") torch.save( OrderedDict({k: v for k, v in dict(replaced_module.state_dict()).items() if transformer_name not in k}), f'{config.save_mp_checkpoint_path}/{non_tp_ckpt_name}') ckpt_config = json.dumps({ 'type': ckpt_name, 'base_dir': f'{config.save_mp_checkpoint_path}', 'checkpoints': { "non_tp": ckpt_files, "tp": [f'tp_{r:0>2d}_{m:0>2d}.pt' for m in range(num_partitions) for r in range(world_size)] }, 'version': 1.0, 'parallelization': 'tp', 'tp_size': world_size, 'dtype': 'int8' if quantize else ('float16' if fp16 else 'float32') }) with open(f"{config.save_mp_checkpoint_path}/ds_inference_config.json", "w") as cfg: cfg.write(ckpt_config) rep_sd = replaced_module.state_dict() for n, p in replaced_module.named_parameters(): if hasattr(p, 'scale'): rep_sd[n] = [p, p.scale] keys = list(rep_sd.keys()) partition_size = (len(keys) // num_partitions + 1) for m in range(num_partitions): torch.save( OrderedDict({ k: [rep_sd[k], rep_sd[k].scale] if hasattr(rep_sd[k], 'scale') else rep_sd[k] for k in keys[m * partition_size:(m + 1) * partition_size] if transformer_name in k }), f'{config.save_mp_checkpoint_path}/tp_{rank:0>2d}_{m:0>2d}.pt') return replaced_module def revert_transformer_layer(orig_layer_impl, model, config, preln=False): """ Revert DeepSpeed's transformer layer back to original bert-style transformer layer Arguments: orig_layer_impl (torch.nn.Module): the original transformer layer implementation that was replaced, e.g., transformers.modeling_bert.BertLayer. model (torch.nn.Module): user's nn.module representing their model config (dict): model config containing hidden size, attention heads, etc. Returns: Updated nn.module with original bert-style transformer layers """ def replace_fn(child, _replace_policy, layer_id): #from turing.nvidia_modelingpreln import BertLayer orig_module = orig_layer_impl(config) # copy relevant state from child -> original module qkvw = child.attn_qkvw.data qkvb = child.attn_qkvb.data qw, kw, vw = torch.chunk(qkvw, 3, axis=0) qb, kb, vb = torch.chunk(qkvb, 3, axis=0) orig_module.attention.self.query.weight.data = qw orig_module.attention.self.query.bias.data = qb orig_module.attention.self.key.weight.data = kw orig_module.attention.self.key.bias.data = kb orig_module.attention.self.value.weight.data = vw orig_module.attention.self.value.bias.data = vb orig_module.attention.output.dense.weight.data = child.attn_ow.data orig_module.attention.output.dense.bias.data = child.attn_ob.data attn_ln_w = child.attn_nw.data attn_ln_b = child.attn_nb.data if preln: orig_module.PostAttentionLayerNorm.weight.data = attn_ln_w orig_module.PostAttentionLayerNorm.bias.data = attn_ln_b else: orig_module.attention.output.LayerNorm.weight.data = attn_ln_w orig_module.attention.output.LayerNorm.bias.data = attn_ln_b inter_ff_w = child.inter_w.data inter_ff_b = child.inter_b.data if preln: orig_module.intermediate.dense_act.weight.data = inter_ff_w orig_module.intermediate.dense_act.bias.data = inter_ff_b else: orig_module.intermediate.dense.weight.data = inter_ff_w orig_module.intermediate.dense.bias.data = inter_ff_b orig_module.output.dense.weight.data = child.output_w.data orig_module.output.dense.bias.data = child.output_b.data transformer_ln_w = child.norm_w.data transformer_ln_b = child.norm_b.data if preln: orig_module.PreAttentionLayerNorm.weight.data = transformer_ln_w orig_module.PreAttentionLayerNorm.bias.data = transformer_ln_b else: orig_module.output.LayerNorm.weight.data = transformer_ln_w orig_module.output.LayerNorm.bias.data = transformer_ln_b return orig_module return replace_module(model=model, orig_class=deepspeed.DeepSpeedTransformerLayer, replace_fn=replace_fn, _replace_policy=None) def replace_module(model, orig_class, replace_fn, _replace_policy): """ Scan the model for instances of ``orig_clas:`` to replace using ``replace_fn``. Arguments: model (torch.nn.Module): the model to augment orig_class (torch.nn.Module): the module to search for replace_fn (method): a method to convert instances of ``orig_class`` to the desired type and return a new instance. Returns: A modified ``model``. """ policy = {} if orig_class is not None: policy.update({orig_class: (replace_fn, _replace_policy)}) else: for plcy in replace_policies: # instantiate a throw-away policy in order to populate the _orig_layer_class _ = plcy(None) if isinstance(plcy._orig_layer_class, list): for orig_layer_class in plcy._orig_layer_class: policy.update({orig_layer_class: (replace_fn, plcy)}) elif plcy._orig_layer_class is not None: policy.update({plcy._orig_layer_class: (replace_fn, plcy)}) assert len(policy.items()) > 0,\ "No default policy found! Please specify your policy injection_policy (like {BertLayer:HFBEertLayerPolicy})." +\ "You can find some samples here: https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/module_inject/replace_policy.py" replaced_module, _ = _replace_module(model, policy) return replaced_module from ..pipe import PipelineModule def _replace_module(model, policies, layer_id=0): """ Traverse model's children recursively and apply any transformations in ``policies``. Arguments: model (torch.nn.Module): model to augment policies (dict): Mapping of source class to replacement function. Returns: Modified ``model``. """ for name, child in model.named_children(): if child.__class__ in policies: replaced_module = policies[child.__class__][0](child, policies[child.__class__][-1], layer_id) setattr(model, name, replaced_module) if isinstance(model, PipelineModule): assert hasattr(model, 'forward_funcs'),\ "we require pipe-module to have the list of fwd_functions" model.forward_funcs[model.fwd_map[name]] = replaced_module layer_id += 1 else: _, layer_id = _replace_module(child, policies, layer_id=layer_id) # Add the reset_cache func to the model, so that it can be called in the beginning of text-generation. model.reset_cache = transformer_inference.DeepSpeedTransformerInference.reset_cache return model, layer_id
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/module_inject/replace_module.py
replace_module.py
# DeepSpeed Team # Automatic Tensor Parallelism import re from torch import nn from .replace_policy import replace_policies class AutoTP(): def in_module_list(module, module_list): for item in module_list: if type(item).__name__ == type(module).__name__: return True return False def get_module_list(model): mlist = [] for child in model.children(): if isinstance(child, nn.ModuleList): for module in child.children(): if not mlist: mlist = [module] elif not AutoTP.in_module_list(module, mlist): mlist = mlist + [module] else: mlist = mlist + AutoTP.get_module_list(child) return mlist def supported(model): unsupported = ['codegen', 'deberta', 'flaubert', 'fsmt', 'gpt2', 'led', 'longformer', 'xlm', 'xlnet'] model = str(model) key = re.search(r": (.*?)Model", model) if key is None: key = re.search(r": (.*?)Stack", model) if key is None: key = re.match(r"(.*?)Model", model) assert key is not None, "Not able to determine model policy automatically. Please provide policy." if key.group(1).lower() in unsupported: return False return True def get_layers(parent, module): layer_list = [] for key, submodule in module._modules.items(): if isinstance(submodule, nn.Linear): layer_list = layer_list + [parent + "." + key] elif isinstance(submodule, nn.LayerNorm) or key == 'LayerNorm' or key == 'layer_norm': layer_list = layer_list + ["ln"] else: layer_list = layer_list + AutoTP.get_layers(key, submodule) return layer_list def update_policy_list(policy_list, new_module, new_gems): if len(policy_list): for i, policy in enumerate(policy_list): # if module already exists in policy, combine gems and remove duplicates if policy[0] == type(new_module): new_gems = set(new_gems + policy[1]) policy_list[i] = tuple([type(new_module), new_gems]) return policy_list policy_list.append(tuple([type(new_module), new_gems])) return policy_list def kernel_supported(module_list): policy = [] for plcy in replace_policies: # instantiate a throw-away policy in order to populate the _orig_layer_class _ = plcy(None) if isinstance(plcy._orig_layer_class, list): for orig_layer_class in plcy._orig_layer_class: policy.append(orig_layer_class) elif plcy._orig_layer_class is not None: policy.append(plcy._orig_layer_class) for child in module_list: if child.__class__ in policy: return True return False def tp_parser(model): policy_list = [] module_list = [] layer_list = [] gem_list = [] module_list = AutoTP.get_module_list(model) assert AutoTP.supported(model), "AutoTP not supported for model. Please use kernel injection since container policy for model exists." \ if AutoTP.kernel_supported(module_list) else "AutoTP not supported for model. Please provide policy." for module in module_list: for key, submodule in module._modules.items(): if isinstance(submodule, nn.Linear): layer_list = layer_list + ["." + key] elif isinstance(submodule, nn.LayerNorm) or key == 'LayerNorm' or key == 'layer_norm': layer_list = layer_list + ["ln"] else: layer_list = layer_list + AutoTP.get_layers(key, submodule) for i, layer in enumerate(layer_list): if layer == 'ln': if layer_list[i - 1] != 'ln': gem_list = gem_list + [layer_list[i - 1]] elif 'out_proj' in layer: gem_list = gem_list + [layer] layer_list = [] if gem_list != []: gem_list = list(set(gem_list)) policy_list = AutoTP.update_policy_list(policy_list, module, gem_list) gem_list = [] assert len(policy_list), "AutoTP not supported for model. Please use kernel injection since container policy for model exists." \ if AutoTP.kernel_supported(module_list) else "Not able to determine model policy automatically. Please provide policy." return policy_list
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/module_inject/auto_tp.py
auto_tp.py
# DeepSpeed Team from abc import ABC, abstractmethod from deepspeed.utils.types import ActivationFuncType import torch from deepspeed.accelerator import get_accelerator transformer_param_names = ( 'attn_qkvw', \ 'attn_qkvb', \ 'attn_ow' , \ 'attn_ob', \ 'inter_w', \ 'inter_b', \ 'output_w', \ 'output_b', \ 'attn_nw', \ 'attn_nb', \ 'norm_w', \ 'norm_b') class DSPolicy(ABC): _orig_layer_class = None def __init__(self): self.cuda_graph_supported = False @abstractmethod def attention(self): """ Returns attention qkv and dense parameters weight: (3*hidden, hidden) and (hidden, hidden) bias: (3*hidden) and (hidden) """ raise NotImplementedError class TransformerPolicy(DSPolicy): # a static class variable containing the HuggingFace model configuration. # see e.g., transformers.models.opt.configuration_opt.OPTConfig hf_model_config = None def __init__( self, inference=True, linear_layer=True, scale_attention=True, megatron_v2=False, use_mup=False, # the type of activation function used in MLP mlp_act_func_type=ActivationFuncType.GELU, # applies layer norm before attention if `pre_attn_norm` is set to True pre_attn_norm=True, # this flag shows whether or not using prefix in loading the checkpoint use_load_prefix=False, # whether or not the qkv is stored in the split-format split_qkv=True): super().__init__() self.cuda_graph_supported = False self.inference = inference self.linear_layer = linear_layer self.scale_attention = scale_attention self.is_megatron_v2 = megatron_v2 self.use_mup = use_mup self.mlp_act_func_type = mlp_act_func_type self.pre_attn_norm = pre_attn_norm self.use_load_prefix = use_load_prefix self.split_qkv = split_qkv @abstractmethod def attention(self, enable_training=False): """ Returns attention qkv and dense parameters weight: (3*hidden, hidden) and (hidden, hidden) bias: (3*hidden) and (hidden) """ raise NotImplementedError @abstractmethod def get_q_k_v(self): """ return all q,k,v parameters without merging them together """ raise NotImplementedError @abstractmethod def get_hidden_heads(self): """ return hidden_size and number of heads """ raise NotImplementedError @abstractmethod def mlp(self): """ Returns mlp intermediate and output weight: (intermediate, hidden) and (hidden, intermediate) bias: (intermediate) and (hidden) """ raise NotImplementedError @abstractmethod def layernorm(self): """ Returns LayerNorms used in transformer layer Post-Attention and pre/post layer norm gamma and beta with shape: (hidden) """ raise NotImplementedError @abstractmethod def get_lora_params(self): """ Returns lora parameters used in transformer layer """ raise NotImplementedError # TODO (lekurile): This function exists in base container as well, consolidate as some point def transpose(data): with torch.no_grad(): data = data.contiguous() data1 = data.transpose(-1, -2).reshape(-1) data.reshape(-1).copy_(data1) data1 = None return data.reshape(data.shape[-1], data.shape[-2]) # TODO (lekurile): This function exists in megatron feature container as well, consolidate as some point def _transpose(x, heads=1, mp_replace=None): heads = heads // mp_replace.mp_size outer_dim = -1 attention_head_size = x.shape[outer_dim] // heads new_x_shape = x.size()[:outer_dim] + (heads, attention_head_size) x_1 = x.view(*new_x_shape) (q, k, v) = torch.split(x_1, (x_1.shape[-1] // 3), dim=-1) if len(q.shape) > 2: new_shape = (q.shape[0], ) + (-1, ) return torch.cat((q.reshape(new_shape), k.reshape(new_shape), v.reshape(new_shape)), dim=outer_dim).reshape(x.shape) else: return torch.cat((q.reshape(-1), k.reshape(-1), v.reshape(-1)), dim=-1).reshape(x.shape) # This checks if the parameter exits in the checkpoint file and maybe copies it into the corresponding destination tensor. # Note that not all parameters are saved in one checkpoint, that's why we always need to check if they exist! def maybe_copy(module, sd, weight_quantizer, mp_replace, dst_name, src_name, qkv=False, megatron_v2=False, split_qkv=False, heads=1): if src_name in sd: dst = getattr(module, dst_name) tmp = sd[src_name] if len(dst.shape) == 1: if split_qkv: dst = mp_replace.qkv_copy(dst, tmp) else: dst = mp_replace.copy(dst, tmp) if qkv and megatron_v2: dst = torch.nn.parameter.Parameter(_transpose(dst, heads=heads, mp_replace=mp_replace).contiguous()) else: if split_qkv: dst = mp_replace.qkv_copy(dst, weight_quantizer.quantize(tmp if weight_quantizer.q_int8 else \ (transpose(tmp).contiguous())), int8=weight_quantizer.q_int8) else: if qkv and megatron_v2: tmp = _transpose(transpose(tmp), heads=heads, mp_replace=mp_replace).contiguous() if weight_quantizer.q_int8: tmp = transpose(tmp) dst = mp_replace.copy(dst, weight_quantizer.quantize(tmp if weight_quantizer.q_int8 else \ transpose(tmp)), int8=weight_quantizer.q_int8) setattr(module, dst_name, dst) # Extending the maybe_copy function for when the q, k, and v are in separate parameters! def maybe_copy_qkv(module, sd, weight_quantizer, mp_replace, dst_name, src_names, split_qkv=False): if src_names[0] in sd: q = sd[src_names[0]] k = sd[src_names[1]] v = sd[src_names[2]] qkv_data = torch.cat((q, k, v), dim=0) dst = getattr(module, dst_name) if len(dst.shape) == 1: if split_qkv: dst = mp_replace.qkv_copy(dst, qkv_data.contiguous()) else: dst = mp_replace.copy(dst, qkv_data) else: if split_qkv: dst = mp_replace.qkv_copy(dst, weight_quantizer.quantize(qkv_data.to(get_accelerator().device_name()) if weight_quantizer.q_int8 else \ ((transpose(qkv_data)).contiguous())), int8=weight_quantizer.q_int8) else: dst = mp_replace.copy(dst, weight_quantizer.quantize(qkv_data.to(get_accelerator().device_name()) if weight_quantizer.q_int8 else \ transpose(qkv_data)), int8=weight_quantizer.q_int8) setattr(module, dst_name, dst) def pack_lora_weights(p): return [ p.lora_right_weight, \ p.lora_left_weight, \ p.lora_scaling ] def maybe_get_lora(p): if hasattr(p, 'lora_right_weight'): lora_param = pack_lora_weights(p) else: lora_param = [] return lora_param
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/module_inject/policy.py
policy.py
# DeepSpeed Team from torch import nn from deepspeed.model_implementations.transformers.ds_bloom import DeepSpeedBloomInference from deepspeed.model_implementations.transformers.ds_gpt import DeepSpeedGPTInference from deepspeed.model_implementations.transformers.ds_bert import DeepSpeedBERTInference from deepspeed.model_implementations.transformers.ds_megatron_gpt import DeepSpeedMegatronGPTInference from deepspeed.model_implementations.transformers.ds_opt import DeepSpeedOPTInference import deepspeed.ops.transformer as transformer_inference from .layers import LinearLayer, Normalize, EmbeddingLayer, OPTEmbedding import torch import gc from deepspeed.accelerator import get_accelerator import re def load_model_with_checkpoint(r_module, sd, mp_replace, ckpt_type, ckpt_mp_size, weight_quantizer=None, rank=0, container=None): error_msgs = [] def prefix_check(): # if keys start with 'model.', don't skip level 0 prefix for key in sd[0].keys(): if re.match("^model[.]", key): return False return True skip_level_0_prefix = prefix_check() and container.policy.use_load_prefix def transpose(data): with torch.no_grad(): data = data.contiguous() data1 = data.transpose(-1, -2).reshape(-1) data.reshape(-1).copy_(data1) data1 = None return data.reshape(data.shape[-1], data.shape[-2]) def load(module, prefix): args = (sd[0], prefix, {}, True, [], [], error_msgs) if hasattr(module, 'weight'): module.weight = mp_replace.copy(module.weight.data, sd[0][prefix + 'weight']) if prefix + 'bias' in sd[0].keys(): if module.bias.data.is_meta: # meta tensor cannot be casted or copied to, so we need to replace it with a normal tensor here module.bias = torch.nn.parameter.Parameter(data=torch.empty_like(module.bias.data, device="cpu"), requires_grad=module.bias.data.requires_grad) module.bias = mp_replace.copy(module.bias.data, sd[0][prefix + 'bias']) args = None gc.collect() def load_transformer_layer(module, prefix): if ckpt_type == "tp": def load_parameters(module, prefix): for n, p in module.named_parameters(): if prefix + n in sd[0] and len(n.split('.')) == 1: if type(sd[0][prefix + n]) is list: tmp_data, scale = sd[0][prefix + n] tmp_data = tmp_data scale = scale.to(get_accelerator().current_device_name()) # set the quantizer number of groups using the checkpoint scale shape weight_quantizer.num_groups = scale.shape[0] else: tmp_data = sd[0][prefix + n].to(get_accelerator().current_device_name()) scale = None src_shape = tmp_data.shape dst_shape = p.shape inner_dim = 1 if tmp_data.dtype == torch.int8 else 0 outer_dim = 0 if tmp_data.dtype == torch.int8 else 1 if (len(src_shape) == 2 and len(dst_shape) == 2): if (src_shape[inner_dim] == dst_shape[0] and src_shape[outer_dim] == dst_shape[1]): if tmp_data.dtype != torch.int8: p = weight_quantizer.quantize( transpose(tmp_data) if weight_quantizer.q_int8 else tmp_data) else: p = torch.nn.parameter.Parameter(tmp_data, requires_grad=False) p.scale = scale setattr(module, n, p) else: dim = inner_dim if src_shape[inner_dim] != dst_shape[0] else outer_dim dim1 = 0 if src_shape[inner_dim] != dst_shape[0] else 1 if src_shape[dim] > dst_shape[dim1]: weight_partition = torch.split(tmp_data, dst_shape[dim1], dim=dim)[rank].to( get_accelerator().current_device_name()) assert tmp_data.dtype != torch.int8 or scale.numel() > weight_quantizer.num_groups * (rank+1), \ '''ERROR: We require the quantization scales for larger TP-size when loading INT8 checkpoint!\ Please use the FP16 checkpoint to generate INT8 checkpoint with the sharding parameters!''' scale = scale.view(-1)[weight_quantizer.num_groups * (rank + 1):].reshape( weight_quantizer.num_groups, -1).contiguous() else: assert tmp_data.dtype != torch.int8, \ '''Merging of the checkpoints are not supported when using INT8 checkpoint! \ Please use a as many GPUs as TP-size for the checkpoint''' all_data = [ sd[j][prefix + n] if type(sd[j][prefix + n]) is list else sd[j][prefix + n].to( get_accelerator().current_device_name()) for j in range(len(sd)) ] # Check if the weight tensor is for the QKV parameter if src_shape[1] == (3 * src_shape[0]) // ckpt_mp_size: qkv_size = src_shape[outer_dim] // 3 src_split = [ torch.split(src[0].data, qkv_size, dim=outer_dim) for src in all_data ] weight_partition = torch.cat([ torch.cat([qkv_s[i] for qkv_s in src_split], axis=outer_dim) for i in range(len(src_split[0])) ], dim=dim) else: weight_partition = torch.cat([ ad[0].to(get_accelerator().current_device_name()) if type(ad) is list else ad for ad in all_data ], dim=dim) if tmp_data.dtype == torch.int8: scale = torch.cat( [ad[1].to(get_accelerator().current_device_name()) for ad in all_data], dim=dim) if tmp_data.dtype != torch.int8: weight_partition = weight_quantizer.quantize( transpose(weight_partition), \ parallel_dim=(0 if dim == 1 else 1)) if weight_quantizer.q_int8 else \ weight_quantizer.quantize(weight_partition) else: weight_partition = torch.nn.parameter.Parameter(weight_partition, requires_grad=False) weight_partition.scale = scale setattr(module, n, weight_partition) else: if src_shape[0] == dst_shape[0]: p.data.copy_(tmp_data) else: if src_shape[0] > dst_shape[0]: bias_split = torch.split(tmp_data, dst_shape[-1])[rank].to( get_accelerator().current_device_name()).contiguous() p.data.copy_(bias_split) else: # Check if the weight tensor is for the QKV parameter if src_shape[0] == (3 * r_module.config.hidden_size) // ckpt_mp_size: qkv_size = src_shape[0] // 3 src_split = [ torch.split(sd[j][prefix + n], qkv_size, dim=0) for j in range(len(sd)) ] p.data.copy_( torch.cat([ torch.cat([qkv_s[i] for qkv_s in src_split], axis=0) for i in range(len(src_split[0])) ], dim=0).to(get_accelerator().current_device_name()).contiguous()) else: p.data.copy_( torch.cat([sd[j][prefix + n] for j in range(len(sd))], dim=0).to(get_accelerator().current_device_name()).contiguous()) load_parameters(module, prefix) for n, child in module.named_children(): load_parameters(child, prefix + n + '.') else: container.load_params(module, sd[0], weight_quantizer, mp_replace, prefix) try: import transformers OPTLearnedPositionalEmbedding = transformers.models.opt.modeling_opt.OPTLearnedPositionalEmbedding except: OPTLearnedPositionalEmbedding = None layer_policies = { nn.Linear: load, nn.Embedding: load, nn.LayerNorm: load, EmbeddingLayer: load, LinearLayer: load, Normalize: load, transformer_inference.DeepSpeedTransformerInference: load_transformer_layer, DeepSpeedBloomInference: load_transformer_layer, DeepSpeedGPTInference: load_transformer_layer, DeepSpeedBERTInference: load_transformer_layer, DeepSpeedMegatronGPTInference: load_transformer_layer, DeepSpeedOPTInference: load_transformer_layer, OPTLearnedPositionalEmbedding: load, OPTEmbedding: load } all_ds_ids = {} def load_module_recursive(module, prefix='', level=0): for name, child in module.named_children(): if child.__class__ in layer_policies: checking_key = prefix + name + '.' if not any(checking_key in item for item in sd[0].keys()): if hasattr(child, 'weight') and \ (hasattr(child.weight, 'ds_id') and \ child.weight.ds_id in all_ds_ids): prefix1 = all_ds_ids[child.weight.ds_id] if child.__class__ is nn.Linear: child = LinearLayer(weight=all_ds_ids[child.weight.ds_id]) setattr(module, name, child) continue child_params = list(child.parameters()) if len(child_params) > 0 and (child_params[0].numel() == 0 or child_params[0].is_meta): if child.weight.is_meta: ds_shape = child.weight.shape else: ds_shape = child.weight.ds_shape if child.__class__ is nn.LayerNorm: child = Normalize(dim=ds_shape[-1], dtype=child.weight.dtype, eps=child.eps) setattr(module, name, child) elif child.__class__ is nn.Linear: child = LinearLayer(weight_shape=child.weight.shape, bias=child.bias) setattr(module, name, child) elif child.__class__ is OPTLearnedPositionalEmbedding: child = OPTEmbedding(weight_shape=ds_shape) setattr(module, name, child) else: ds_id = None if hasattr(child.weight, 'ds_id'): ds_id = child.weight.ds_id child = EmbeddingLayer(weight_shape=ds_shape, dtype=child.weight.dtype) if ds_id is not None: all_ds_ids[ds_id] = child.weight setattr(module, name, child) layer_policies[child.__class__](child, prefix + name + '.') else: load_module_recursive( child, prefix if (level == 0 and ckpt_type == 'pp') and skip_level_0_prefix else \ prefix + name + '.', level + 1) load_module_recursive(r_module) embedding_weight = None for n, p in r_module.named_parameters(): if "word_embeddings." in n or "embed_tokens." in n or "wte." in n: embedding_weight = p if embedding_weight is not None and r_module.lm_head.weight.is_meta: r_module.lm_head.weight = embedding_weight for sd_ in sd: del sd_ sd = None gc.collect()
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/module_inject/load_checkpoint.py
load_checkpoint.py
# DeepSpeed Team from .base import * from deepspeed.model_implementations.transformers.ds_gpt import DeepSpeedGPTInference from ..policy import TransformerPolicy class DS_GPT2Container(BaseTransformerContainer): def __init__(self, **kwargs): super().__init__(**kwargs) # All model specific things should be defined here instead of the base class. def create_module(self, config=None): _config = config if config is not None else self.ds_model_config self.module = DeepSpeedGPTInference(_config, mp_group=self.mp_group) self.module.config.scale_attention = self.scale_attention return self.module class HFGPT2LayerPolicy(TransformerPolicy): _orig_layer_class = None def __init__(self, client_module, inference=True): # HuggingFace GPT2 uses convolutional layer instead of linear layer super().__init__(inference, linear_layer=False) self.client_module = client_module try: import transformers HFGPT2LayerPolicy._orig_layer_class = transformers.models.gpt2.modeling_gpt2.GPT2Block except: HFGPT2LayerPolicy._orig_layer_class = None def get_hidden_heads(self): return self.client_module.attn.embed_dim, \ self.client_module.attn.num_heads, \ self.client_module.ln_1.eps def get_q_k_v(self): return None def attention(self, enable_training=False): return self.client_module.attn.c_attn.weight, \ self.client_module.attn.c_attn.bias, \ self.client_module.attn.c_proj.weight, \ self.client_module.attn.c_proj.bias def mlp(self): return self.client_module.mlp.c_fc.weight, \ self.client_module.mlp.c_fc.bias, \ self.client_module.mlp.c_proj.weight, \ self.client_module.mlp.c_proj.bias def layernorm(self): return self.client_module.ln_2.weight, \ self.client_module.ln_2.bias, \ self.client_module.ln_1.weight, \ self.client_module.ln_1.bias def get_lora_params(self): return []
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/module_inject/containers/gpt2.py
gpt2.py
# DeepSpeed Team from .base import * from .features.meta_tensor import MetaTensorContainer from deepspeed.model_implementations.transformers.ds_gpt import DeepSpeedGPTInference import torch from torch.nn.parameter import Parameter from ..policy import TransformerPolicy from ..policy import transformer_param_names from ..policy import maybe_copy from ..policy import maybe_copy_qkv from ..policy import maybe_get_lora class DS_GPTNEOContainer(MetaTensorContainer, BaseTransformerContainer): def __init__(self, **kwargs): super().__init__(**kwargs) # All model specific things should be defined here instead of the base class. def create_module(self, config=None): _config = config if config is not None else self.ds_model_config self.module = DeepSpeedGPTInference(_config, mp_group=self.mp_group) self.module.config.scale_attention = self.scale_attention return self.module def load_params(self, module, sd, weight_quantizer, mp_replace, prefix): param_names = ( 'attn.attention.q_proj.weight', \ 'attn.attention.k_proj.weight', \ 'attn.attention.v_proj.weight', \ 'attn.attention.out_proj.weight', \ 'attn.attention.out_proj.bias', \ 'mlp.c_fc.weight', \ 'mlp.c_fc.bias', \ 'mlp.c_proj.weight', \ 'mlp.c_proj.bias', \ 'ln_2.weight', \ 'ln_2.bias', \ 'ln_1.weight', \ 'ln_1.bias' ) maybe_copy_qkv(module.attention, sd, weight_quantizer, mp_replace, 'attn_qkvw', [prefix + param_names[0], prefix + param_names[1], prefix + param_names[2]], split_qkv=self.policy.split_qkv) for i in range(3, 5): maybe_copy(module.attention, sd, weight_quantizer, mp_replace, transformer_param_names[i - 1], prefix + param_names[i]) for i in range(5, 11): maybe_copy(module.mlp, sd, weight_quantizer, mp_replace, transformer_param_names[i - 1], prefix + param_names[i]) for i in range(11, 13): maybe_copy(module, sd, weight_quantizer, mp_replace, transformer_param_names[i - 1], prefix + param_names[i]) class HFGPTNEOLayerPolicy(TransformerPolicy): def __init__(self, client_module, inference=True): super().__init__(inference, scale_attention=False) self.client_module = client_module try: import transformers HFGPTNEOLayerPolicy._orig_layer_class = transformers.models.gpt_neo.modeling_gpt_neo.GPTNeoBlock except: HFGPTNEOLayerPolicy._orig_layer_class = None def get_hidden_heads(self): return self.client_module.attn.attention.embed_dim, \ self.client_module.attn.attention.num_heads, \ self.client_module.ln_1.eps def get_q_k_v(self): return self.client_module.attn.attention.q_proj.weight, \ None, \ self.client_module.attn.attention.k_proj.weight, \ None, \ self.client_module.attn.attention.v_proj.weight, \ None def attention(self, enable_training=False): qw = self.client_module.attn.attention.q_proj.weight kw = self.client_module.attn.attention.k_proj.weight vw = self.client_module.attn.attention.v_proj.weight qkvw = Parameter(torch.cat((qw, kw, vw), dim=0), requires_grad=enable_training) return qkvw, \ None, \ self.client_module.attn.attention.out_proj.weight, \ self.client_module.attn.attention.out_proj.bias def mlp(self): return self.client_module.mlp.c_fc.weight, \ self.client_module.mlp.c_fc.bias, \ self.client_module.mlp.c_proj.weight, \ self.client_module.mlp.c_proj.bias def layernorm(self): return self.client_module.ln_2.weight, \ self.client_module.ln_2.bias, \ self.client_module.ln_1.weight, \ self.client_module.ln_1.bias def get_lora_params(self): all_lora_params = [] for p in [ self.client_module.mlp.c_fc, \ self.client_module.mlp.c_proj, \ self.client_module.attn.attention.q_proj, \ self.client_module.attn.attention.k_proj, \ self.client_module.attn.attention.v_proj, \ self.client_module.attn.attention.out_proj, \ ]: all_lora_params.append(maybe_get_lora(p)) return all_lora_params
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/module_inject/containers/gptneo.py
gptneo.py
# DeepSpeed Team from .base import * from .features.meta_tensor import MetaTensorContainer from deepspeed.model_implementations.transformers.ds_gpt import DeepSpeedGPTInference import torch from torch.nn.parameter import Parameter from ..policy import TransformerPolicy from ..policy import transformer_param_names from ..policy import maybe_copy from ..policy import maybe_copy_qkv from ..policy import maybe_get_lora class DS_GPTJContainer(MetaTensorContainer, BaseTransformerContainer): def __init__(self, **kwargs): super().__init__(**kwargs) # All model specific things should be defined here instead of the base class. def create_module(self, config=None): _config = config if config is not None else self.ds_model_config self.module = DeepSpeedGPTInference(_config, mp_group=self.mp_group) self.module.config.scale_attention = self.scale_attention return self.module def load_params(self, module, sd, weight_quantizer, mp_replace, prefix): param_names = ( 'attn.q_proj.weight', \ 'attn.k_proj.weight', \ 'attn.v_proj.weight', \ 'attn.out_proj.weight', \ 'mlp.fc_in.weight', \ 'mlp.fc_in.bias', \ 'mlp.fc_out.weight', \ 'mlp.fc_out.bias', \ 'ln_1.weight', \ 'ln_1.bias' ) maybe_copy_qkv(module.attention, sd, weight_quantizer, mp_replace, 'attn_qkvw', [prefix + param_names[0], prefix + param_names[1], prefix + param_names[2]], split_qkv=self.policy.split_qkv) for i in range(3, 4): maybe_copy(module.attention, sd, weight_quantizer, mp_replace, transformer_param_names[i - 1], prefix + param_names[i]) for i in range(4, 8): maybe_copy(module.mlp, sd, weight_quantizer, mp_replace, transformer_param_names[i], prefix + param_names[i]) for i in range(8, 10): maybe_copy(module, sd, weight_quantizer, mp_replace, transformer_param_names[i + 2], prefix + param_names[i]) class HFGPTJLayerPolicy(TransformerPolicy): _orig_layer_class = None def __init__(self, client_module, inference=True): super().__init__(inference, scale_attention=True) self.client_module = client_module try: import transformers HFGPTJLayerPolicy._orig_layer_class = transformers.models.gptj.modeling_gptj.GPTJBlock except: HFGPTJLayerPolicy._orig_layer_class = None def get_hidden_heads(self): return self.client_module.attn.embed_dim, \ self.client_module.attn.num_attention_heads, \ self.client_module.ln_1.eps def get_q_k_v(self): return self.client_module.attn.q_proj.weight, \ None, \ self.client_module.attn.k_proj.weight, \ None, \ self.client_module.attn.v_proj.weight, \ None def attention(self, enable_training=False): qw = self.client_module.attn.q_proj.weight kw = self.client_module.attn.k_proj.weight vw = self.client_module.attn.v_proj.weight qkvw = Parameter(torch.cat((qw, kw, vw), dim=0), requires_grad=enable_training) return qkvw, \ None, \ self.client_module.attn.out_proj.weight, \ None, def mlp(self): return self.client_module.mlp.fc_in.weight, \ self.client_module.mlp.fc_in.bias, \ self.client_module.mlp.fc_out.weight, \ self.client_module.mlp.fc_out.bias def layernorm(self): return None, \ None, \ self.client_module.ln_1.weight, \ self.client_module.ln_1.bias def get_lora_params(self): all_lora_params = [] for p in [ self.client_module.mlp.fc_in, \ self.client_module.mlp.fc_out, \ self.client_module.attn.q_proj, \ self.client_module.attn.k_proj, \ self.client_module.attn.v_proj, \ self.client_module.attn.out_proj, \ ]: all_lora_params.append(maybe_get_lora(p)) return all_lora_params
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/module_inject/containers/gptj.py
gptj.py
# DeepSpeed Team from .base import * from .features.meta_tensor import MetaTensorContainer from deepspeed.model_implementations.transformers.ds_opt import DeepSpeedOPTInference import torch from torch.nn.parameter import Parameter from ..policy import TransformerPolicy from ..policy import transformer_param_names from ..policy import maybe_copy from ..policy import maybe_copy_qkv from ..policy import maybe_get_lora from deepspeed.utils.types import ActivationFuncType class DS_OPTContainer(MetaTensorContainer, BaseTransformerContainer): def __init__(self, **kwargs): super().__init__(**kwargs) # All model specific things should be defined here instead of the base class. def create_module(self, config=None): _config = config if config is not None else self.ds_model_config self.module = DeepSpeedOPTInference(_config, mp_group=self.mp_group) self.module.config.scale_attention = self.scale_attention return self.module def load_params(self, module, sd, weight_quantizer, mp_replace, prefix): param_names = ( 'self_attn.q_proj.weight', \ 'self_attn.k_proj.weight', \ 'self_attn.v_proj.weight', \ 'self_attn.q_proj.bias', \ 'self_attn.k_proj.bias', \ 'self_attn.v_proj.bias', \ 'self_attn.out_proj.weight', \ 'self_attn.out_proj.bias', \ 'fc1.weight', \ 'fc1.bias', \ 'fc2.weight', \ 'fc2.bias', \ 'final_layer_norm.weight', \ 'final_layer_norm.bias', \ 'self_attn_layer_norm.weight', \ 'self_attn_layer_norm.bias' ) for i in range(0, 6, 3): maybe_copy_qkv(module.attention, sd, weight_quantizer, mp_replace, transformer_param_names[i // 3], [prefix + param_names[i], prefix + param_names[i + 1], prefix + param_names[i + 2]], split_qkv=self.policy.split_qkv) for i in range(6, 8): maybe_copy(module.attention, sd, weight_quantizer, mp_replace, transformer_param_names[i - 4], prefix + param_names[i]) for i in range(8, 14): maybe_copy(module.mlp, sd, weight_quantizer, mp_replace, transformer_param_names[i - 4], prefix + param_names[i]) for i in range(14, 16): maybe_copy(module, sd, weight_quantizer, mp_replace, transformer_param_names[i - 4], prefix + param_names[i]) class HFOPTLayerPolicy(TransformerPolicy): _orig_layer_class = None def __init__(self, client_module, inference=True, use_load_prefix=True): super().__init__(inference, linear_layer=True, pre_attn_norm=True, use_load_prefix=use_load_prefix) self.client_module = client_module try: import transformers HFOPTLayerPolicy._orig_layer_class = transformers.models.opt.modeling_opt.OPTDecoderLayer except: HFOPTLayerPolicy._orig_layer_class = None if hasattr(TransformerPolicy, "hf_model_config") and hasattr(TransformerPolicy.hf_model_config, "activation_function"): if TransformerPolicy.hf_model_config.activation_function == "relu": self.mlp_act_func_type = ActivationFuncType.ReLU elif TransformerPolicy.hf_model_config.activation_function in ["gelu", "gelu_new"]: self.mlp_act_func_type = ActivationFuncType.GELU else: raise ValueError("Unsupported activation function: {}".format( TransformerPolicy.hf_model_config.activation_function)) else: self.mlp_act_func_type = ActivationFuncType.ReLU # default def get_hidden_heads(self): return self.client_module.self_attn.embed_dim, \ self.client_module.self_attn.num_heads, \ self.client_module.self_attn_layer_norm.eps def get_q_k_v(self): return self.client_module.self_attn.q_proj.weight, \ self.client_module.self_attn.q_proj.bias, \ self.client_module.self_attn.k_proj.weight, \ self.client_module.self_attn.k_proj.bias, \ self.client_module.self_attn.v_proj.weight, \ self.client_module.self_attn.v_proj.bias def attention(self, enable_training=False): qw = self.client_module.self_attn.q_proj.weight qb = self.client_module.self_attn.q_proj.bias kw = self.client_module.self_attn.k_proj.weight kb = self.client_module.self_attn.k_proj.bias vw = self.client_module.self_attn.v_proj.weight vb = self.client_module.self_attn.v_proj.bias qkvw = Parameter(torch.cat((qw, kw, vw), dim=0), requires_grad=enable_training) qkvb = Parameter(torch.cat((qb, kb, vb), dim=0), requires_grad=enable_training) return qkvw, \ qkvb, \ self.client_module.self_attn.out_proj.weight, \ self.client_module.self_attn.out_proj.bias def mlp(self): return self.client_module.fc1.weight, \ self.client_module.fc1.bias, \ self.client_module.fc2.weight, \ self.client_module.fc2.bias def layernorm(self): return self.client_module.final_layer_norm.weight, \ self.client_module.final_layer_norm.bias, \ self.client_module.self_attn_layer_norm.weight, \ self.client_module.self_attn_layer_norm.bias def get_lora_params(self): all_lora_params = [] for p in [ self.client_module.fc1, \ self.client_module.fc2, \ self.client_module.self_attn.q_proj, \ self.client_module.self_attn.k_proj, \ self.client_module.self_attn.v_proj, \ self.client_module.self_attn.out_proj, \ ]: all_lora_params.append(maybe_get_lora(p)) return all_lora_params
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/module_inject/containers/opt.py
opt.py
# DeepSpeed Team # Create a container object to save model-specific tensors using the policy file above. from abc import ABC import torch from deepspeed.ops.transformer.inference.config import DeepSpeedInferenceConfig from deepspeed.accelerator import get_accelerator class BaseConvolutionContainer(ABC): # not implemented def __init__(self): pass class BaseTransformerContainer(ABC): def __init__(self, policy, config, model_config, layer_id, child): self.policy = policy self.config = config self.model_config = model_config self.layer_id = layer_id self.child = child self.megatron_v2 = self.policy.is_megatron_v2 self.scale_attention = self.policy.scale_attention self.ckpt_load_enabled = False # configuration for models. todo: can this be moved to a pydantic model config? self.hidden_size = None self.num_attention_heads = None self.mp_size = self.config.tensor_parallel.tp_size self.pre_layer_norm = self.model_config.do_layer_norm_before if \ hasattr(self.model_config, 'do_layer_norm_before') else self.policy.pre_attn_norm self.fp16 = False self.attn_linear_layer = self.policy.linear_layer self.mlp_linear_layer = self.policy.linear_layer self.return_tuple = self.config.return_tuple self.triangular_masking = True self.local_attention = ((self.model_config.attention_layers[self.layer_id] == "local") if hasattr( self.model_config, 'attention_layers') else False) self.window_size = getattr(self.model_config, "window_size", 1) self.mlp_act_func_type = self.policy.mlp_act_func_type self.training_mp_size = self.config.training_mp_size self.bigscience_bloom = False self.max_out_tokens = self.config.max_out_tokens self.min_out_tokens = self.config.min_out_tokens self.scale_attn_by_inverse_layer_idx = getattr(self.config, "scale_attn_by_inverse_layer_idx", False) self.use_mup = self.policy.use_mup self.return_single_tuple = False self.rotary_dim = self.model_config.rotary_dim if hasattr(self.model_config, 'rotary_dim') \ else self.child.attention.rotary_ndims if \ hasattr(self.child, 'attention') and hasattr(self.child.attention,'rotary_ndims') else -1 self.mlp_after_attn = (self.rotary_dim is None or self.rotary_dim < 0) # Attention tensors self.qkvw = None self.qkvb = None self.dense_w = None self.dense_b = None # MLP tensors self._h4h_w = None self._h4h_b = None self._4hh_w = None self._4hh_b = None # LayerNorm tensors self.attn_nw = None self.attn_nb = None self.input_nw = None self.input_nb = None self.mp_group = None def create_ds_model_config(self): self.set_hidden_heads(*self.policy.get_hidden_heads()) assert self.num_attention_heads % self.mp_size == 0,\ "To run the model parallel across the GPUs, the attention_heads require to be divisible by the world_size!" +\ "This is because the attention computation is partitioned evenly among the parallel GPUs." self.ds_model_config = DeepSpeedInferenceConfig( hidden_size=self.hidden_size, heads=self.num_attention_heads, layer_norm_eps=self.layernorm_epsilon, fp16=self.fp16, pre_layer_norm=self.pre_layer_norm, mp_size=self.mp_size, q_int8=self.quantize if hasattr(self, 'quantize') else False, return_tuple=self.return_tuple, triangular_masking=self.triangular_masking, local_attention=self.local_attention, window_size=self.window_size, rotary_dim=self.rotary_dim, mlp_after_attn=self.mlp_after_attn, mlp_act_func_type=self.mlp_act_func_type, training_mp_size=self.training_mp_size, bigscience_bloom=self.bigscience_bloom, max_out_tokens=self.max_out_tokens, min_out_tokens=self.min_out_tokens, scale_attn_by_inverse_layer_idx=self.scale_attn_by_inverse_layer_idx, use_mup=self.use_mup, return_single_tuple=self.return_single_tuple, set_empty_params=self.config.set_empty_params, transposed_mode=self.config.transposed_mode) return self.ds_model_config def initialize_tensors(self, enable_training=False): # Set the tensors from policy (user module) to container (DS module) self.set_attention(*self.policy.attention(enable_training=enable_training)) self.set_mlp(*self.policy.mlp()) self.set_layernorm(*self.policy.layernorm()) self.set_lora_params(self.policy.get_lora_params()) self.q_k_v = self.policy.get_q_k_v() if self.q_k_v is not None: self.set_q_k_v(*self.q_k_v) def convert_to_required_dtype(self, dtype): # Note: converting tensors to fp16 requires that we do it in-place using self.__dict__ and not make a list/dict copy if dtype == torch.half: for k, v in self.__dict__.items(): # The list comprehension is used for MoE tensor lists if isinstance(v, list) and all((isinstance(tensor, torch.Tensor) \ or isinstance(tensor, torch.nn.Parameter)) for tensor in v): self.__dict__[k] = [moe_tensor.half() for moe_tensor in v] if isinstance(v, torch.Tensor) or isinstance(v, torch.nn.Parameter): self.__dict__[k] = v.half() def set_dtype(self, fp16=False): self.fp16 = fp16 def set_moe(self, moe=False): self.moe = moe def set_tensor_parallel_config(self, mp_size, mp_group): self.mp_size = mp_size self.mp_group = mp_group def set_quantization_config(self, quantize, quantizer): self.quantize = quantize self.quantizer = quantizer def set_hidden_heads(self, hidden_size, num_attention_heads, epsilon): self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads self.layernorm_epsilon = epsilon def set_attention(self, qkvw, qkvb, dense_w, dense_b): self.qkvw = qkvw self.qkvb = qkvb self.dense_w = dense_w self.dense_b = dense_b def set_lora_params(self, lora_params): self.lora_params = lora_params def set_q_k_v(self, qw, qb, kw, kb, vw, vb): self.qw = qw self.qb = qb self.kw = kw self.kb = kb self.vw = vw self.vb = vb def set_mlp(self, _h4h_w, _h4h_b, _4hh_w, _4hh_b): self._h4h_w = _h4h_w self._h4h_b = _h4h_b self._4hh_w = _4hh_w self._4hh_b = _4hh_b def set_layernorm(self, attn_nw, attn_nb, input_nw, input_nb): self.attn_nw = attn_nw self.attn_nb = attn_nb self.input_nw = input_nw self.input_nb = input_nb def apply_weight_quantization(self): # quantize attention weights self.attention_quantization() # quantize mlp weights self.mlp_quantization() def attention_quantization(self): self.module.attention.attn_qkvw = self.quantizer.quantize(self.module.attention.attn_qkvw) self.module.attention.attn_ow = self.quantizer.quantize(self.module.attention.attn_ow) def mlp_quantization(self): self.module.mlp.inter_w = self.quantizer.quantize(self.module.mlp.inter_w) self.module.mlp.output_w = self.quantizer.quantize(self.module.mlp.output_w) def apply_tensor_parallelism(self, mp_replace=None, mp_group=None, tp_size=None): reversed_dim = False if mp_replace is None: from deepspeed.module_inject import ReplaceWithTensorSlicing mp_replace = ReplaceWithTensorSlicing(mp_group=mp_group, mp_size=tp_size, out_dim=0, in_dim=1) reversed_dim = True # setup the new Attention module if self.module.attention.attn_qkvw is None: self.attention_q_k_v_mp(mp_replace, reversed_dim=reversed_dim) else: self.attention_qkv_mp(mp_replace, reversed_dim=reversed_dim) self.attention_o_mp(mp_replace, reversed_dim=reversed_dim) # setup the new MLP module self.mlp_inter_mp(mp_replace, reversed_dim=reversed_dim) self.mlp_output_mp(mp_replace, reversed_dim=reversed_dim) # Apply weight quantization #self.apply_weight_quantization() def attention_qkv_mp(self, mp_replace, reversed_dim=False): if reversed_dim: self.module.attention.attn_qkvw = mp_replace.qkv_copy( self.module.attention.attn_qkvw[:self.qkvw.shape[0] // mp_replace.mp_size], self.qkvw, int8=reversed_dim) self.module.attention.attn_qkvb = mp_replace.qkv_copy( self.module.attention.attn_qkvb[:self.qkvw.shape[0] // mp_replace.mp_size], self.qkvb, int8=reversed_dim) else: self.module.attention.attn_qkvw = mp_replace.qkv_copy(self.module.attention.attn_qkvw, self.qkvw, int8=reversed_dim) self.module.attention.attn_qkvb = mp_replace.qkv_copy(self.module.attention.attn_qkvb, self.qkvb, int8=reversed_dim) def attention_q_k_v_mp(self, mp_replace, reversed_dim=False): self.module.attention.attn_qw = mp_replace.copy(self.module.attention.attn_qw[:self.qw.shape[0] // mp_replace.mp_size], self.qw, int8=reversed_dim, allocat_tensor=reversed_dim) self.module.attention.attn_kw = mp_replace.copy(self.module.attention.attn_kw[:self.qw.shape[0] // mp_replace.mp_size], self.kw, int8=reversed_dim, allocat_tensor=reversed_dim) self.module.attention.attn_vw = mp_replace.copy(self.module.attention.attn_vw[:self.qw.shape[0] // mp_replace.mp_size], self.vw, int8=reversed_dim, allocat_tensor=reversed_dim) self.module.attention.attn_qb = mp_replace.copy( self.module.attention.attn_qb[:self.qw.shape[0] // mp_replace.mp_size], self.qb, int8=reversed_dim, allocat_tensor=reversed_dim) if self.module.attention.attn_qb is not None else None self.module.attention.attn_kb = mp_replace.copy( self.module.attention.attn_kb[:self.qw.shape[0] // mp_replace.mp_size], self.kb, int8=reversed_dim, allocat_tensor=reversed_dim) if self.module.attention.attn_kb is not None else None self.module.attention.attn_vb = mp_replace.copy( self.module.attention.attn_vb[:self.qw.shape[0] // mp_replace.mp_size], self.vb, int8=reversed_dim, allocat_tensor=reversed_dim) if self.module.attention.attn_vb is not None else None def attention_o_mp(self, mp_replace, reversed_dim=False): if reversed_dim: self.module.attention.attn_ow = mp_replace.copy(self.module.attention.attn_ow[:, :self.dense_w.shape[1] // mp_replace.mp_size], self.dense_w, int8=reversed_dim, allocat_tensor=reversed_dim) else: self.module.attention.attn_ow = mp_replace.copy(self.module.attention.attn_ow, self.dense_w, int8=reversed_dim) self.module.attention.attn_ob = mp_replace.copy(self.module.attention.attn_ob, self.dense_b, int8=reversed_dim, allocat_tensor=reversed_dim) def mlp_inter_mp(self, mp_replace, reversed_dim=False): if reversed_dim: self.module.mlp.inter_w = mp_replace.copy(self.module.mlp.inter_w[:self._h4h_w.shape[0] // mp_replace.mp_size], self._h4h_w, int8=reversed_dim, allocat_tensor=reversed_dim) self.module.mlp.inter_b = mp_replace.copy( self.module.mlp.inter_b[:self._h4h_w.shape[0] // mp_replace.mp_size], self._h4h_b, int8=reversed_dim, allocat_tensor=reversed_dim) if self.module.mlp.inter_b is not None else None else: self.module.mlp.inter_w = mp_replace.copy(self.module.mlp.inter_w, self._h4h_w, int8=reversed_dim) self.module.mlp.inter_b = mp_replace.copy(self.module.mlp.inter_b, self._h4h_b, int8=reversed_dim) def mlp_output_mp(self, mp_replace, reversed_dim=False): if reversed_dim: self.module.mlp.output_w = mp_replace.copy(self.module.mlp.output_w[:, :self._4hh_w.shape[1] // mp_replace.mp_size], self._4hh_w, int8=reversed_dim, allocat_tensor=reversed_dim) else: self.module.mlp.output_w = mp_replace.copy(self.module.mlp.output_w, self._4hh_w, int8=reversed_dim) self.module.mlp.output_b = mp_replace.copy(self.module.mlp.output_b, self._4hh_b, int8=reversed_dim, allocat_tensor=reversed_dim) def release_qkv(self): del self.module.attention.attn_qkvw del self.module.attention.attn_qkvb self.module.attention.attn_qkvw = self.qkvw self.module.attention.attn_qkvb = self.qkvb if self.module.attention.attn_qw is not None: qkv_data = [self.module.attention.attn_qw.data, \ self.module.attention.attn_qb.data if self.module.attention.attn_qb is not None else None, \ self.module.attention.attn_kw.data, \ self.module.attention.attn_kb.data if self.module.attention.attn_kb is not None else None, \ self.module.attention.attn_vw.data, \ self.module.attention.attn_vb.data if self.module.attention.attn_vb is not None else None] for data in qkv_data: del data self.module.attention.attn_qw = self.qw self.module.attention.attn_qb = self.qb self.module.attention.attn_kw = self.kw self.module.attention.attn_kb = self.kb self.module.attention.attn_vw = self.vw self.module.attention.attn_vb = self.vb def release_memory(self): self.release_qkv() del self.module.attention.attn_ow del self.module.attention.attn_ob self.module.attention.attn_ow = self.dense_w self.module.attention.attn_ob = self.dense_b del self.module.mlp.inter_w del self.module.mlp.inter_b del self.module.mlp.output_w del self.module.mlp.output_b self.module.mlp.inter_w = self._h4h_w self.module.mlp.inter_b = self._h4h_b self.module.mlp.output_w = self._4hh_w self.module.mlp.output_b = self._4hh_b def copy_data_to_new_module(self): if self.attn_nw is None: self.module.mlp.attn_nw = self.attn_nw self.module.mlp.attn_nb = self.attn_nb else: self.module.mlp.attn_nw.data.copy_(self.attn_nw.to(get_accelerator().current_device_name())) self.module.mlp.attn_nb.data.copy_(self.attn_nb.to(get_accelerator().current_device_name())) self.module.norm_w.data.copy_(self.input_nw.to(get_accelerator().current_device_name())) self.module.norm_b.data.copy_(self.input_nb.to(get_accelerator().current_device_name())) def align_merged_qkv(self): if hasattr(self, '_align_merged_qkv'): self._align_merged_qkv() def partition_merged_qkv(self): if hasattr(self, '_partition_merged_qkv'): self._partition_merged_qkv() def transpose(self): self.transpose_attention() self.transpose_mlp() def transpose_attention(self): if self.attn_linear_layer: self.qkvw = self.transpose_impl(self.qkvw.data) self.dense_w = self.transpose_impl(self.dense_w.data) def transpose_mlp(self): if self.mlp_linear_layer: self._h4h_w = self.transpose_impl(self._h4h_w.data) self._4hh_w = self.transpose_impl(self._4hh_w.data) def transpose_impl(self, data): data = data.contiguous() data.reshape(-1).copy_(data.transpose(-1, -2).contiguous().reshape(-1)) data = data.reshape(data.shape[-1], data.shape[-2]) data.to(get_accelerator().current_device_name()) return data def reset_qkv_experimental(self): if self.module.attention.attn_qkvw is None: self.module.attention.attn_qkvw = torch.empty(self.qw.shape[0] * 3, self.qw.shape[0], dtype=self.qw.dtype, device=self.qw.device) self.module.attention.attn_qkvb = torch.empty(self.qw.shape[0] * 3, dtype=self.qw.dtype, device=self.qw.device) self.module.attention.attn_qkvw.data[:self.qw.shape[0]] = self.qw.data self.module.attention.attn_qkvb.data[:self.qw.shape[0]] = self.qb.data self.module.attention.attn_qkvw.data[self.qw.shape[0]:2 * self.qw.shape[0]] = self.kw.data self.module.attention.attn_qkvb.data[self.qw.shape[0]:2 * self.qw.shape[0]] = self.kb.data self.module.attention.attn_qkvw.data[2 * self.qw.shape[0]:] = self.vw.data self.module.attention.attn_qkvb.data[2 * self.qw.shape[0]:] = self.vb.data qkv_data = [self.qw.data, \ self.qb.data, \ self.kw.data, \ self.kb.data, \ self.vw.data, \ self.vb.data] self.qw.data = self.module.attention.attn_qkvw.data[:self.qw.shape[0]] self.qb.data = self.module.attention.attn_qkvb.data[:self.qw.shape[0]] self.kw.data = self.module.attention.attn_qkvw.data[self.qw.shape[0]:2 * self.qw.shape[0]] self.kb.data = self.module.attention.attn_qkvb.data[self.qw.shape[0]:2 * self.qw.shape[0]] self.vw.data = self.module.attention.attn_qkvw.data[2 * self.qw.shape[0]:] self.vb.data = self.module.attention.attn_qkvb.data[2 * self.qw.shape[0]:] for data in qkv_data: del data def reset_qkv(self): self.qkvw.data[:self.qw.shape[0]] = self.qw.data self.qkvw.data[self.qw.shape[0]:2 * self.qw.shape[0]] = self.kw.data self.qkvw.data[2 * self.qw.shape[0]:] = self.vw.data if self.qkvb is not None: self.qkvb.data[:self.qw.shape[0]] = self.qb.data self.qkvb.data[self.qw.shape[0]:2 * self.qw.shape[0]] = self.kb.data self.qkvb.data[2 * self.qw.shape[0]:] = self.vb.data qkv_data = [self.qw.data, \ self.qb.data if self.qb is not None else None, \ self.kw.data, \ self.kb.data if self.kb is not None else None, \ self.vw.data, \ self.vb.data if self.vb is not None else None] self.qw.data = self.qkvw.data[:self.qw.shape[0]] self.kw.data = self.qkvw.data[self.qw.shape[0]:2 * self.qw.shape[0]] self.vw.data = self.qkvw.data[2 * self.qw.shape[0]:] if self.qkvb is not None: self.qb.data = self.qkvb.data[:self.qw.shape[0]] self.kb.data = self.qkvb.data[self.qw.shape[0]:2 * self.qw.shape[0]] self.vb.data = self.qkvb.data[2 * self.qw.shape[0]:] for data in qkv_data: del data def set_params_wo_copy(self, Z3_enabled=False): self.module.mlp.attn_nw = self.attn_nw self.module.mlp.attn_nb = self.attn_nb self.module.norm_w = self.input_nw self.module.norm_b = self.input_nb self.module.mlp.inter_w = self._h4h_w self.module.mlp.inter_b = self._h4h_b self.module.mlp.output_w = self._4hh_w self.module.mlp.output_b = self._4hh_b self.module.attention.attn_ow = self.dense_w self.module.attention.attn_ob = self.dense_b if not Z3_enabled or self.q_k_v is None: self.module.attention.attn_qkvw = self.qkvw self.module.attention.attn_qkvb = self.qkvb if self.q_k_v is not None: if Z3_enabled: self.module.attention.attn_qw = self.qw self.module.attention.attn_qb = self.qb self.module.attention.attn_kw = self.kw self.module.attention.attn_kb = self.kb self.module.attention.attn_vw = self.vw self.module.attention.attn_vb = self.vb else: self.qw.data = self.qkvw[:self.qw.shape[0], :] self.kw.data = self.qkvw[self.qw.shape[0]:2 * self.qw.shape[0], :] self.vw.data = self.qkvw[self.qw.shape[0] * 2:, :] if self.qkvb is not None: self.qb.data = self.qkvb[:self.qw.shape[0]] self.kb.data = self.qkvb[self.qw.shape[0]:2 * self.qw.shape[0]] self.vb.data = self.qkvb[self.qw.shape[0] * 2:] def get_lora_params(self): return self.lora_params def get_all_params(self): if self.q_k_v is not None: return [ self.attn_nw, self.attn_nb, self.input_nw, self.input_nb, self._h4h_w, self._h4h_b, self._4hh_w, self._4hh_b, self.qw, self.qb, self.kw, self.kb, self.vw, self.vb, self.dense_w, self.dense_b ] else: return [ self.attn_nw, self.attn_nb, self.input_nw, self.input_nb, self._h4h_w, self._h4h_b, self._4hh_w, self._4hh_b, self.qkvw, self.qkvb, self.dense_w, self.dense_b ]
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/module_inject/containers/base.py
base.py
# DeepSpeed Team from .base import * from deepspeed.model_implementations.transformers.ds_bert import DeepSpeedBERTInference import torch from torch.nn.parameter import Parameter from ..policy import TransformerPolicy class DS_BERTContainer(BaseTransformerContainer): def __init__(self, **kwargs): super().__init__(**kwargs) # All model specific things should be defined here instead of the base class. self.return_tuple = True self.triangular_masking = False def create_module(self, config=None): _config = config if config is not None else self.ds_model_config self.module = DeepSpeedBERTInference(_config, mp_group=self.mp_group) self.module.config.scale_attention = self.scale_attention return self.module class HFBertLayerPolicy(TransformerPolicy): def __init__(self, client_module, inference=False): super().__init__(inference, pre_attn_norm=False) self.client_module = client_module self.cuda_graph_supported = True if HFBertLayerPolicy._orig_layer_class is None: try: import transformers HFBertLayerPolicy._orig_layer_class = [ transformers.models.bert.modeling_bert.BertLayer, transformers.models.roberta.modeling_roberta.RobertaLayer ] except: HFBertLayerPolicy._orig_layer_class = None def get_hidden_heads(self): if self.pre_attn_norm: attention_layernorm = self.client_module.PostAttentionLayerNorm else: attention_layernorm = self.client_module.attention.output.LayerNorm return self.client_module.attention.self.query.weight.shape[1], \ self.client_module.attention.self.num_attention_heads, \ attention_layernorm.eps def get_q_k_v(self): return None def attention(self, enable_training=False): qw = self.client_module.attention.self.query.weight qb = self.client_module.attention.self.query.bias kw = self.client_module.attention.self.key.weight kb = self.client_module.attention.self.key.bias vw = self.client_module.attention.self.value.weight vb = self.client_module.attention.self.value.bias qkvw = Parameter(torch.cat((qw, kw, vw), dim=0), requires_grad=enable_training) qkvb = Parameter(torch.cat((qb, kb, vb), dim=0), requires_grad=enable_training) return qkvw, \ qkvb, \ self.client_module.attention.output.dense.weight, \ self.client_module.attention.output.dense.bias, \ def mlp(self): if self.pre_attn_norm: intermediate_ff = self.client_module.intermediate.dense_act else: intermediate_ff = self.client_module.intermediate.dense return intermediate_ff.weight, intermediate_ff.bias, \ self.client_module.output.dense.weight, \ self.client_module.output.dense.bias def layernorm(self): if self.pre_attn_norm: attention_layernorm = self.client_module.PostAttentionLayerNorm transformer_layernorm = self.client_module.PreAttentionLayerNorm else: attention_layernorm = self.client_module.attention.output.LayerNorm transformer_layernorm = self.client_module.output.LayerNorm return attention_layernorm.weight, \ attention_layernorm.bias, \ transformer_layernorm.weight, \ transformer_layernorm.bias def get_lora_params(self): return []
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/module_inject/containers/bert.py
bert.py
# DeepSpeed Team from .base import * from .base_moe import * from .features.megatron import MegatronContainer from deepspeed.model_implementations.transformers.ds_megatron_gpt import DeepSpeedMegatronGPTInference import torch from .megatron_gpt import MegatronLayerPolicy from packaging import version as pkg_version class DS_MegatronGPTMoEContainer(MegatronContainer, BaseTransformerMoEContainer): def __init__(self, policy, config, model_config, layer_id): super().__init__(policy, config, model_config, layer_id) # All model specific things should be defined here instead of the base class. def create_module(self, config=None): _config = config if config is not None else self.ds_model_config self.module = DeepSpeedMegatronGPTInference(_config, mp_group=self.mp_group) self.module.config.scale_attention = self.scale_attention if self.megatron_v2: self.module.config.rotate_half = True self.module.config.rotate_every_two = False return self.module # TODO: Megatron GPT MoE inherits from Megatron policy and replaces mlp # TODO: Generalize MoE overall goal, expand beyond Megatron class MegatronMoELayerPolicy(MegatronLayerPolicy): _orig_layer_class = None version = 0 moe_type = 'standard' num_experts = 1 def __init__(self, client_module, inference=True): super().__init__(inference) self.client_module = client_module # we use megatron version to differentiate between the old and new # megatron-lm source code if MegatronMoELayerPolicy._orig_layer_class is None: if pkg_version.parse(torch.__version__) <= pkg_version.parse("1.2"): MegatronMoELayerPolicy._orig_layer_class = None else: try: from megatron.model.transformer import ParallelTransformerLayer MegatronMoELayerPolicy._orig_layer_class = ParallelTransformerLayer except ImportError: MegatronMoELayerPolicy._orig_layer_class = None def get_num_experts(self): return self.num_experts def mlp(self, moe_type='standard'): # for now, all of this is tightly coupled to megatron-deepspeed moe implementation # todo: think and refactor this to be more general #from deepspeed.moe.utils import has_moe_layers #moe, _ = has_moe_layers(self.client_module) moe_experts = self.client_module.mlp.deepspeed_moe.experts.deepspeed_experts if moe_type == 'standard' else \ self.client_module.mlp.moe.deepspeed_moe.experts.deepspeed_experts num_experts = len(moe_experts) self.num_experts = num_experts if moe_type == 'standard': return [moe_experts[i].dense_h_to_4h.weight for i in range(num_experts)], \ [moe_experts[i].dense_h_to_4h.bias for i in range(num_experts)], \ [moe_experts[i].dense_4h_to_h.weight for i in range(num_experts)], \ [moe_experts[i].dense_4h_to_h.bias for i in range(num_experts)] else: return [moe_experts[i].dense_h_to_4h.weight for i in range(num_experts)], \ [moe_experts[i].dense_h_to_4h.bias for i in range(num_experts)], \ [moe_experts[i].dense_4h_to_h.weight for i in range(num_experts)], \ [moe_experts[i].dense_4h_to_h.bias for i in range(num_experts)], \ self.client_module.mlp.mlp.dense_h_to_4h.weight, \ self.client_module.mlp.mlp.dense_h_to_4h.bias, \ self.client_module.mlp.mlp.dense_4h_to_h.weight, \ self.client_module.mlp.mlp.dense_4h_to_h.bias, \ self.client_module.mlp.coefficient.weight
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/module_inject/containers/megatron_gpt_moe.py
megatron_gpt_moe.py
# DeepSpeed Team from .base import * from .features.megatron import MegatronContainer from deepspeed.model_implementations.transformers.ds_megatron_gpt import DeepSpeedMegatronGPTInference import torch from ..policy import TransformerPolicy from packaging import version as pkg_version class DS_MegatronGPTContainer(MegatronContainer, BaseTransformerContainer): def __init__(self, **kwargs): super().__init__(**kwargs) # All model specific things should be defined here instead of the base class. def create_module(self, config=None): _config = config if config is not None else self.ds_model_config self.module = DeepSpeedMegatronGPTInference(_config, mp_group=self.mp_group) self.module.config.scale_attention = self.scale_attention if self.megatron_v2: self.module.config.rotate_half = True self.module.config.rotate_every_two = False return self.module # TODO: Megatron GPT MoE inherits from Megatron policy and replaces mlp # TODO: Generalize MoE overall goal, expand beyond Megatron class MegatronLayerPolicy(TransformerPolicy): _orig_layer_class = None version = 0 moe_type = 'standard' megatron_v2 = True use_mup = False def __init__(self, client_module, inference=True): super().__init__(inference, megatron_v2=MegatronLayerPolicy.megatron_v2, use_mup=MegatronLayerPolicy.use_mup) self.client_module = client_module # we use megatron version to differentiate between the old and new # megatron-lm source code if MegatronLayerPolicy._orig_layer_class is None: if pkg_version.parse(torch.__version__) <= pkg_version.parse("1.2"): MegatronLayerPolicy._orig_layer_class = None else: try: from megatron.model.transformer import ParallelTransformerLayer MegatronLayerPolicy._orig_layer_class = ParallelTransformerLayer except ImportError: MegatronLayerPolicy._orig_layer_class = None def get_hidden_heads(self): return self.client_module.attention.query_key_value.weight.shape[1], \ self.client_module.attention.num_attention_heads, \ self.client_module.input_layernorm.eps def get_q_k_v(self): return None def attention(self, enable_training=False): if self.inference: if MegatronLayerPolicy.version == 0: attention = self.client_module.attention else: attention = self.client_module.self_attention return attention.query_key_value.weight, \ attention.query_key_value.bias, \ attention.dense.weight, \ attention.dense.bias def mlp(self, moe_type='standard'): from deepspeed.moe.utils import has_moe_layers moe, _ = has_moe_layers(self.client_module) if moe: moe_experts = self.client_module.mlp.deepspeed_moe.experts.deepspeed_experts if moe_type == 'standard' else \ self.client_module.mlp.moe.deepspeed_moe.experts.deepspeed_experts num_experts = len(moe_experts) if moe_type == 'standard': return [moe_experts[i].dense_h_to_4h.weight for i in range(num_experts)], \ [moe_experts[i].dense_h_to_4h.bias for i in range(num_experts)], \ [moe_experts[i].dense_4h_to_h.weight for i in range(num_experts)], \ [moe_experts[i].dense_4h_to_h.bias for i in range(num_experts)] else: return [moe_experts[i].dense_h_to_4h.weight for i in range(num_experts)], \ [moe_experts[i].dense_h_to_4h.bias for i in range(num_experts)], \ [moe_experts[i].dense_4h_to_h.weight for i in range(num_experts)], \ [moe_experts[i].dense_4h_to_h.bias for i in range(num_experts)], \ self.client_module.mlp.mlp.dense_h_to_4h.weight, \ self.client_module.mlp.mlp.dense_h_to_4h.bias, \ self.client_module.mlp.mlp.dense_4h_to_h.weight, \ self.client_module.mlp.mlp.dense_4h_to_h.bias, \ self.client_module.mlp.coefficient.weight else: return self.client_module.mlp.dense_h_to_4h.weight, \ self.client_module.mlp.dense_h_to_4h.bias, \ self.client_module.mlp.dense_4h_to_h.weight, \ self.client_module.mlp.dense_4h_to_h.bias def layernorm(self): return self.client_module.post_attention_layernorm.weight, \ self.client_module.post_attention_layernorm.bias, \ self.client_module.input_layernorm.weight, \ self.client_module.input_layernorm.bias def get_lora_params(self): return []
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/module_inject/containers/megatron_gpt.py
megatron_gpt.py
# DeepSpeed Team from .base import * from .features.meta_tensor import MetaTensorContainer from deepspeed.model_implementations.transformers.ds_bloom import DeepSpeedBloomInference from ..policy import TransformerPolicy from ..policy import transformer_param_names from ..policy import maybe_copy from ..policy import maybe_get_lora supported_models = {None} class DS_BloomContainer(MetaTensorContainer, BaseTransformerContainer): def __init__(self, **kwargs): super().__init__(**kwargs) # All model specific things should be defined here instead of the base class. self.bigscience_bloom = True def create_module(self, config=None): _config = config if config is not None else self.ds_model_config self.module = DeepSpeedBloomInference(_config, mp_group=self.mp_group) self.module.config.scale_attention = self.scale_attention return self.module def attention_qkv_mp(self, mp_replace, reversed_dim=False): self.module.attention.attn_qkvw = mp_replace.copy(self.module.attention.attn_qkvw, self.qkvw) self.module.attention.attn_qkvb = mp_replace.copy(self.module.attention.attn_qkvb, self.qkvb) def load_params(self, module, sd, weight_quantizer, mp_replace, prefix): param_names = ( 'self_attention.query_key_value.weight', \ 'self_attention.query_key_value.bias', \ 'self_attention.dense.weight', \ 'self_attention.dense.bias', \ 'mlp.dense_h_to_4h.weight', \ 'mlp.dense_h_to_4h.bias', \ 'mlp.dense_4h_to_h.weight', \ 'mlp.dense_4h_to_h.bias', \ 'post_attention_layernorm.weight', \ 'post_attention_layernorm.bias', \ 'input_layernorm.weight', \ 'input_layernorm.bias' ) for i in range(0, 2): maybe_copy(module.attention, sd, weight_quantizer, mp_replace, transformer_param_names[i], prefix + param_names[i], qkv=True, megatron_v2=self.policy.is_megatron_v2, split_qkv=self.policy.split_qkv) for i in range(2, 4): maybe_copy(module.attention, sd, weight_quantizer, mp_replace, transformer_param_names[i], prefix + param_names[i]) for i in range(4, 10): maybe_copy(module.mlp, sd, weight_quantizer, mp_replace, transformer_param_names[i], prefix + param_names[i]) for i in range(10, 12): maybe_copy(module, sd, weight_quantizer, mp_replace, transformer_param_names[i], prefix + param_names[i]) class BLOOMLayerPolicy(TransformerPolicy): _orig_layer_class = None def __init__(self, client_module, inference=True, use_load_prefix=True, split_qkv=False): super().__init__(inference, linear_layer=True, use_load_prefix=use_load_prefix, split_qkv=split_qkv) self.client_module = client_module try: import transformers BLOOMLayerPolicy._orig_layer_class = transformers.models.bloom.modeling_bloom.BloomBlock global supported_models supported_models.update({transformers.models.bloom.modeling_bloom.BloomModel}) except Exception as e: print(f"WARNING! Setting BLOOMLayerPolicy._orig_layer_class to None due to Exception: {e}") BLOOMLayerPolicy._orig_layer_class = None def get_hidden_heads(self): return self.client_module.self_attention.hidden_size, \ self.client_module.self_attention.num_heads, \ self.client_module.input_layernorm.eps def get_q_k_v(self): return None def attention(self, enable_training=False): return self.client_module.self_attention.query_key_value.weight, \ self.client_module.self_attention.query_key_value.bias, \ self.client_module.self_attention.dense.weight, \ self.client_module.self_attention.dense.bias, def mlp(self): return self.client_module.mlp.dense_h_to_4h.weight, \ self.client_module.mlp.dense_h_to_4h.bias, \ self.client_module.mlp.dense_4h_to_h.weight, \ self.client_module.mlp.dense_4h_to_h.bias def layernorm(self): return self.client_module.post_attention_layernorm.weight, \ self.client_module.post_attention_layernorm.bias, \ self.client_module.input_layernorm.weight, \ self.client_module.input_layernorm.bias def get_lora_params(self): all_lora_params = [] for p in [ self.client_module.mlp.dense_h_to_4h, \ self.client_module.mlp.dense_4h_to_h, \ self.client_module.self_attention.query_key_value, \ self.client_module.self_attention.dense ]: all_lora_params.append(maybe_get_lora(p)) return all_lora_params
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/module_inject/containers/bloom.py
bloom.py
# DeepSpeed Team # Create a container object to save model-specific tensors using the policy file above. from .base import * from deepspeed import comm as dist import deepspeed.ops.transformer as transformer_inference from deepspeed.accelerator import get_accelerator class BaseTransformerMoEContainer(BaseTransformerContainer): def __init__(self, **kwargs): # Call the init function of the parent class to initialize the tensors and configs from parent class super().__init__(**kwargs) self.num_experts = self.policy.get_num_experts() self.ep_world_size = dist.get_world_size() self.local_ep_size = 1 if self.num_experts < self.ep_world_size else self.num_experts // self.ep_world_size self.layer_norm_eps = self.config.layer_norm_eps if hasattr(self.config, 'layer_norm_eps') else 1e-12, # MoE models will have a list of mlp related tensors self._h4h_w = [] self._h4h_b = [] self._4hh_w = [] self._4hh_b = [] # Residual MoE needs extra parameters self._res_h4h_w = None self._res_h4h_b = None self._res_4hh_w = None self._res_4hh_b = None self._res_coef = None def create_ds_model_config(self): self.set_hidden_heads(*self.policy.get_hidden_heads()) assert self.num_attention_heads % self.mp_size == 0,\ "To run the model parallel across the GPUs, the attention_heads require to be divisible by the world_size!" +\ "This is because the attention computation is partitioned evenly among the parallel GPUs." self.ds_model_config = transformer_inference.DeepSpeedMoEInferenceConfig( hidden_size=self.hidden_size, heads=self.num_attention_heads, layer_norm_eps=self.layer_norm_eps, fp16=self.fp16, pre_layer_norm=self.pre_layer_norm, mp_size=self.mp_size, q_int8=self.quantize, moe_experts=self.local_ep_size, global_experts=self.num_experts, mlp_type=self.config.moe.type, scale_attn_by_inverse_layer_idx=self.scale_attn_by_inverse_layer_idx, ) return self.ds_model_config def initialize_tensors(self): # Set the tensors from policy (user module) to container (DS module) self.set_attention(*self.policy.attention()) self.set_mlp(self.config.moe.type) self.set_layernorm(*self.policy.layernorm()) def set_mlp(self, config_moe_type): if config_moe_type == 'standard': self._h4h_w, self._h4h_b, \ self._4hh_w, self._4hh_b = self.policy.mlp() else: self._h4h_w, self._h4h_b, self._4hh_w, \ self._4hh_b, self._res_h4h_w, self._res_h4h_b, \ self._res_4hh_w, self._res_4hh_b, \ self._res_coef = self.policy.mlp(config_moe_type) def transpose(self): self.transpose_attention() self.transpose_mlp() if self.config.moe.type == 'residual': self.transpose_residual() def transpose_mlp(self): self._h4h_w = [self.transpose_impl(moe_w1.data) for moe_w1 in self._h4h_w] self._4hh_w = [self.transpose_impl(moe_w1.data) for moe_w1 in self._4hh_w] def transpose_residual(self): self._res_h4h_w.data = self.transpose_impl(self._res_h4h_w.data) self._res_4hh_w.data = self.transpose_impl(self._res_4hh_w.data) self._res_coef.data = self.transpose_impl(self._res_coef.data) def apply_tensor_parallelism(self, mp_replace): # setup the new Attention module self.attention_qkv_mp(mp_replace) self.attention_o_mp(mp_replace) # quantize attention weights self.attention_quantization() # setup the new MLP module self.mlp_mp() def mlp_mp(self): gpu_index = dist.get_rank() for ep_index in range(self.local_ep_size): # mlp inter self.module.mlp[ep_index].inter_w.data = self._h4h_w[gpu_index * self.local_ep_size + ep_index].to( get_accelerator().current_device_name()) self.module.mlp[ep_index].inter_b.data = self._h4h_b[gpu_index * self.local_ep_size + ep_index].to( get_accelerator().current_device_name()) # mlp output self.module.mlp[ep_index].output_w.data = self._4hh_w[gpu_index * self.local_ep_size + ep_index].to( get_accelerator().current_device_name()) self.module.mlp[ep_index].output_b.data = self._4hh_b[gpu_index * self.local_ep_size + ep_index].to( get_accelerator().current_device_name()) def copy_data_to_new_module(self): self.module.attn_nw.data = self.attn_nw.to(get_accelerator().current_device_name()) self.module.attn_nb.data = self.attn_nb.to(get_accelerator().current_device_name()) self.module.norm_w.data.copy_(self.input_nw.to(get_accelerator().current_device_name())) self.module.norm_b.data.copy_(self.input_nb.to(get_accelerator().current_device_name())) if self.config.moe.type == 'residual': self.module.res_mlp.inter_w.data = self._res_h4h_w.to(get_accelerator().current_device_name()) self.module.res_mlp.inter_b.data = self._res_h4h_b.to(get_accelerator().current_device_name()) self.module.res_mlp.output_w.data = self._res_4hh_w.to(get_accelerator().current_device_name()) self.module.res_mlp.output_b.data = self._res_4hh_b.to(get_accelerator().current_device_name()) self.module.res_coef.data = self._res_coef.to(get_accelerator().current_device_name())
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/module_inject/containers/base_moe.py
base_moe.py
# DeepSpeed Team from .base import * from deepspeed.model_implementations.transformers.ds_bert import DeepSpeedBERTInference import torch from torch.nn.parameter import Parameter from ..policy import TransformerPolicy class DS_DistilBERTContainer(BaseTransformerContainer): def __init__(self, **kwargs): super().__init__(**kwargs) # All model specific things should be defined here instead of the base class. self.triangular_masking = False self.return_single_tuple = True def create_module(self, config=None): _config = config if config is not None else self.ds_model_config self.module = DeepSpeedBERTInference(_config, mp_group=self.mp_group) self.module.config.scale_attention = self.scale_attention return self.module class HFDistilBertLayerPolicy(TransformerPolicy): _orig_layer_class = None def __init__(self, client_module, inference=False, preln=False): super().__init__(inference) self.client_module = client_module self.preln = preln self.cuda_graph_supported = True if HFDistilBertLayerPolicy._orig_layer_class is None: try: import transformers HFDistilBertLayerPolicy._orig_layer_class = [ transformers.models.distilbert.modeling_distilbert.TransformerBlock, ] except: HFDistilBertLayerPolicy._orig_layer_class = None def get_hidden_heads(self): return self.client_module.attention.q_lin.weight.shape[1], \ self.client_module.attention.n_heads, \ self.client_module.sa_layer_norm.eps def get_q_k_v(self): return None def attention(self, enable_training=False): qw = self.client_module.attention.q_lin.weight qb = self.client_module.attention.q_lin.bias kw = self.client_module.attention.k_lin.weight kb = self.client_module.attention.k_lin.bias vw = self.client_module.attention.v_lin.weight vb = self.client_module.attention.v_lin.bias qkvw = Parameter(torch.cat((qw, kw, vw), dim=0), requires_grad=enable_training) qkvb = Parameter(torch.cat((qb, kb, vb), dim=0), requires_grad=enable_training) return qkvw, \ qkvb, \ self.client_module.attention.out_lin.weight, \ self.client_module.attention.out_lin.bias def mlp(self): intermediate_ff = self.client_module.ffn.lin1 return intermediate_ff.weight, intermediate_ff.bias, \ self.client_module.ffn.lin2.weight, \ self.client_module.ffn.lin2.bias def layernorm(self): attention_layernorm = self.client_module.sa_layer_norm transformer_layernorm = self.client_module.output_layer_norm return attention_layernorm.weight, \ attention_layernorm.bias, \ transformer_layernorm.weight, \ transformer_layernorm.bias def get_lora_params(self): return []
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/module_inject/containers/distil_bert.py
distil_bert.py
# DeepSpeed Team from .base import * from deepspeed.model_implementations.transformers.ds_gpt import DeepSpeedGPTInference import torch from torch.nn.parameter import Parameter from ..policy import TransformerPolicy class DS_CLIPContainer(BaseTransformerContainer): def __init__(self, **kwargs): super().__init__(**kwargs) # All model specific things should be defined here instead of the base class. def create_module(self, config=None): _config = config if config is not None else self.ds_model_config self.module = DeepSpeedGPTInference(_config, mp_group=self.mp_group) self.module.config.scale_attention = self.scale_attention return self.module class HFCLIPLayerPolicy(TransformerPolicy): def __init__(self, client_module, inference=False): super().__init__(inference, pre_attn_norm=True, scale_attention=True) self.client_module = client_module self.cuda_graph_supported = True if HFCLIPLayerPolicy._orig_layer_class is None: try: import transformers HFCLIPLayerPolicy._orig_layer_class = transformers.models.clip.modeling_clip.CLIPEncoderLayer except: HFCLIPLayerPolicy._orig_layer_class = None def get_hidden_heads(self): return self.client_module.self_attn.q_proj.weight.shape[1], \ self.client_module.self_attn.num_heads, \ self.client_module.layer_norm1.eps def get_q_k_v(self): return None def attention(self): qw = self.client_module.self_attn.q_proj.weight qb = self.client_module.self_attn.q_proj.bias kw = self.client_module.self_attn.k_proj.weight kb = self.client_module.self_attn.k_proj.bias vw = self.client_module.self_attn.v_proj.weight vb = self.client_module.self_attn.v_proj.bias qkvw = Parameter(torch.cat((qw, kw, vw), dim=0), requires_grad=False) qkvb = Parameter(torch.cat((qb, kb, vb), dim=0), requires_grad=False) return qkvw, \ qkvb, \ self.client_module.self_attn.out_proj.weight, \ self.client_module.self_attn.out_proj.bias def mlp(self): return self.client_module.mlp.fc1.weight, \ self.client_module.mlp.fc1.bias, \ self.client_module.mlp.fc2.weight, \ self.client_module.mlp.fc2.bias def layernorm(self): return self.client_module.layer_norm2.weight, \ self.client_module.layer_norm2.bias, \ self.client_module.layer_norm1.weight, \ self.client_module.layer_norm1.bias def get_lora_params(self): return []
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/module_inject/containers/clip.py
clip.py
# DeepSpeed Team from .base import * from .features.meta_tensor import MetaTensorContainer from .features.megatron import MegatronContainer from deepspeed.model_implementations.transformers.ds_gpt import DeepSpeedGPTInference import torch from ..policy import TransformerPolicy from ..policy import transformer_param_names from ..policy import maybe_copy from packaging import version as pkg_version from ..policy import maybe_get_lora class DS_GPTNEOXContainer(MetaTensorContainer, MegatronContainer, BaseTransformerContainer): def __init__(self, **kwargs): super().__init__(**kwargs) # All model specific things should be defined here instead of the base class. def create_module(self, config=None): _config = config if config is not None else self.ds_model_config self.module = DeepSpeedGPTInference(_config, mp_group=self.mp_group) self.module.config.scale_attention = self.scale_attention if self.megatron_v2: self.module.config.rotate_half = True self.module.config.rotate_every_two = False return self.module def load_params(self, module, sd, weight_quantizer, mp_replace, prefix): param_names = ( 'attention.query_key_value.weight', \ 'attention.query_key_value.bias', \ 'attention.dense.weight', \ 'attention.dense.bias', \ 'mlp.dense_h_to_4h.weight', \ 'mlp.dense_h_to_4h.bias', \ 'mlp.dense_4h_to_h.weight', \ 'mlp.dense_4h_to_h.bias', \ 'post_attention_layernorm.weight', \ 'post_attention_layernorm.bias', \ 'input_layernorm.weight', \ 'input_layernorm.bias' ) for i in range(0, 2): maybe_copy(module.attention, sd, weight_quantizer, mp_replace, transformer_param_names[i], prefix + param_names[i], qkv=True, megatron_v2=self.policy.is_megatron_v2, split_qkv=self.policy.split_qkv, heads=self.policy.client_module.attention.num_attention_heads) for i in range(2, 4): maybe_copy(module.attention, sd, weight_quantizer, mp_replace, transformer_param_names[i], prefix + param_names[i]) for i in range(4, 10): maybe_copy(module.mlp, sd, weight_quantizer, mp_replace, transformer_param_names[i], prefix + param_names[i]) for i in range(10, 12): maybe_copy(module, sd, weight_quantizer, mp_replace, transformer_param_names[i], prefix + param_names[i]) class GPTNEOXLayerPolicy(TransformerPolicy): _orig_layer_class = None version = 0 def __init__(self, client_module, inference=True, megatron_v2=True, split_qkv=False): super().__init__(inference, megatron_v2=megatron_v2, split_qkv=split_qkv) self.client_module = client_module if GPTNEOXLayerPolicy._orig_layer_class is None: if pkg_version.parse(torch.__version__) <= pkg_version.parse("1.2"): GPTNEOXLayerPolicy._orig_layer_class = None else: try: from transformers import GPTNeoXLayer GPTNEOXLayerPolicy._orig_layer_class = GPTNeoXLayer except ImportError: GPTNEOXLayerPolicy._orig_layer_class = None def get_hidden_heads(self): if GPTNEOXLayerPolicy.version == 0: attention = self.client_module.attention else: attention = self.client_module.self_attention return self.client_module.attention.hidden_size, \ self.client_module.attention.num_attention_heads, \ self.client_module.input_layernorm.eps def get_q_k_v(self): return None def attention(self, enable_training=False): if GPTNEOXLayerPolicy.version == 0: attention = self.client_module.attention else: attention = self.client_module.self_attention return attention.query_key_value.weight, \ attention.query_key_value.bias, \ attention.dense.weight, \ attention.dense.bias def mlp(self): return self.client_module.mlp.dense_h_to_4h.weight, \ self.client_module.mlp.dense_h_to_4h.bias, \ self.client_module.mlp.dense_4h_to_h.weight, \ self.client_module.mlp.dense_4h_to_h.bias def layernorm(self): return self.client_module.post_attention_layernorm.weight, \ self.client_module.post_attention_layernorm.bias, \ self.client_module.input_layernorm.weight, \ self.client_module.input_layernorm.bias def get_lora_params(self): if GPTNEOXLayerPolicy.version == 0: attention = self.client_module.attention else: attention = self.client_module.self_attention all_lora_params = [] for p in [ self.client_module.mlp.dense_h_to_4h, \ self.client_module.mlp.dense_4h_to_h, \ attention.query_key_value, \ attention.dense ]: all_lora_params.append(maybe_get_lora(p)) return all_lora_params
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/module_inject/containers/gptneox.py
gptneox.py
# DeepSpeed Team import torch from abc import ABC class MegatronContainer(ABC): def __init__(self, **kwargs): super().__init__(**kwargs) self.megatron_v2 = self.policy.is_megatron_v2 def _align_qkv_transposed(self, x): attention_head_size = x.shape[-1] // self.num_attention_heads new_x_shape = x.size()[:-1] + (self.num_attention_heads, attention_head_size) x_1 = x.view(*new_x_shape) (q, k, v) = torch.split(x_1, (x_1.shape[-1] // 3), dim=(x_1.dim() - 1)) if len(q.shape) > 2: return torch.cat((q.reshape(q.shape[0], -1), k.reshape(q.shape[0], -1), v.reshape(q.shape[0], -1)), dim=-1).reshape(x.shape) else: return torch.cat((q.reshape(-1), k.reshape(-1), v.reshape(-1)), dim=-1).reshape(x.shape) def _align_qkv(self, x): attention_head_size = x.shape[0] // self.num_attention_heads new_x_shape = (self.num_attention_heads, attention_head_size) + x.size()[1:] x_1 = x.view(*new_x_shape) div_dim = len(x_1.size()) - 2 if len(x.shape) == 2 else -1 (q, k, v) = torch.split(x_1, (x_1.shape[div_dim] // 3), dim=div_dim) if len(q.shape) > 2: x.data.copy_( torch.cat((q.reshape(-1, q.shape[-1]), k.reshape(-1, q.shape[-1]), v.reshape(-1, q.shape[-1])), dim=0).reshape(x.shape)) else: x.data.copy_(torch.cat((q.reshape(-1), k.reshape(-1), v.reshape(-1)), dim=-1).reshape(x.shape)) def _align_merged_qkv(self): if hasattr(self.qkvw, 'ds_id'): from deepspeed.runtime.zero import GatheredParameters from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus param_list = [self.qkvw, self.qkvb] non_active_params = [param for param in param_list if (hasattr(param, 'ds_id') and \ param.ds_status == ZeroParamStatus.NOT_AVAILABLE)] with GatheredParameters(non_active_params): self._align_qkv(self.qkvw) self._align_qkv(self.qkvb) else: self._align_qkv(self.qkvw) self._align_qkv(self.qkvb) def _partition_qkv(self, x): q_k_v = torch.split(x, (x.shape[0] // 3), dim=0) attention_head_size = q_k_v[0].shape[0] // self.num_attention_heads new_x_shape = (self.num_attention_heads, attention_head_size) + x.size()[1:] q, k, v = [data.view(*new_x_shape) for data in q_k_v] if len(q.shape) > 2: x.data.copy_(torch.cat((q, k, v), dim=-2).reshape(-1, q.shape[-1])) else: x.data.copy_(torch.cat((q, k, v), dim=-1).reshape(-1)) def _partition_merged_qkv(self): if hasattr(self.qkvw, 'ds_id'): from deepspeed.runtime.zero import GatheredParameters from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus param_list = [self.qkvw, self.qkvb] non_active_params = [param for param in param_list if (hasattr(param, 'ds_id') and \ param.ds_status == ZeroParamStatus.NOT_AVAILABLE)] with GatheredParameters(non_active_params): self._partition_qkv(self.qkvw) self._partition_qkv(self.qkvb) else: self._partition_qkv(self.qkvw) self._partition_qkv(self.qkvb) def transpose(self): super().transpose() if self.megatron_v2: self.qkvw = torch.nn.parameter.Parameter(self._align_qkv_transposed(self.qkvw).contiguous()) self.qkvb = torch.nn.parameter.Parameter(self._align_qkv_transposed(self.qkvb).contiguous())
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/module_inject/containers/features/megatron.py
megatron.py
# DeepSpeed Team from abc import ABC, abstractmethod class MetaTensorContainer(ABC): def __init__(self, **kwargs): super().__init__(**kwargs) self.is_meta = False self.ckpt_load_enabled = True def initialize_tensors(self, enable_training=False): super().initialize_tensors(enable_training=enable_training) self.is_meta = self.qkvw.is_meta def apply_tensor_parallelism(self, mp_replace=None, mp_group=None, tp_size=None): if self.is_meta: if self.qkvb is None: self.module.attention.attn_qkvb = None if self.dense_b is None: self.module.attention.attn_ob = None else: super().apply_tensor_parallelism(mp_replace, mp_group, tp_size) def copy_data_to_new_module(self): if self.is_meta: if self.attn_nw is None: self.module.mlp.attn_nw = self.attn_nw self.module.mlp.attn_nb = self.attn_nb else: super().copy_data_to_new_module() def transpose(self): if not self.is_meta: super().transpose() @abstractmethod def load_params(self, module, sd, weight_quantizer, mp_replace, prefix): """ Load all the transformer parameter from the checkpoint file (sd). In addition to the parameter names, we require two more parameters to help read the the data correctly from the checkpoint and split the qkv heads in the right order: 1. `use_load_prefix` (Default: False): this specifies whether we need to use the name of first abstraction layer of the model for searching the parameter's name in a checkpoint file. For more information of how this is used please see https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/module_inject/load_checkpoint.py 2. `split_qkv` (Default: True): we use this flag when splitting the qkv parameter into heads. If it is False, it means the heads of q, k, and v are stored together and needs to split in the DeepSpeed-Inference API. """ raise NotImplementedError("A load_params() function must be defined in the model container \ when inheriting the MetaTensorContainer feature")
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/module_inject/containers/features/meta_tensor.py
meta_tensor.py
# DeepSpeed Team import torch from deepspeed.runtime.config_utils import DeepSpeedConfigModel from deepspeed.runtime.zero.config import DeepSpeedZeroConfig from pydantic import Field from pydantic import validator from typing import Dict, Union from enum import Enum class DtypeEnum(Enum): # The torch dtype must always be the first value (so we return torch.dtype) fp16 = torch.float16, "torch.float16", "fp16", "float16", "half" fp32 = torch.float32, "torch.float32", "fp32", "float32", "float" int8 = torch.int8, "torch.int8", "int8" # bf16 not supported # bf16 = torch.bfloat16, "torch.bfloat16", "bf16", "bfloat16" # Copied from https://stackoverflow.com/a/43210118 # Allows us to use multiple values for each Enum index and returns first # listed value when Enum is called def __new__(cls, *values): obj = object.__new__(cls) # first value is canonical value obj._value_ = values[0] for other_value in values[1:]: cls._value2member_map_[other_value] = obj obj._all_values = values return obj def __repr__(self): return "<%s.%s: %s>" % ( self.__class__.__name__, self._name_, ", ".join([repr(v) for v in self._all_values]), ) class MoETypeEnum(str, Enum): residual = "residual" standard = "standard" class DeepSpeedTPConfig(DeepSpeedConfigModel): """ Configure tensor parallelism settings """ enabled: bool = True """ Turn tensor parallelism on/off. """ tp_size: int = 1 """ Number of devices to split the model across using tensor parallelism. """ mpu: object = None """ A model parallelism unit object that implements ``get_{model,data}_parallel_{rank,group,world_size}()``. """ tp_group: object = None class DeepSpeedMoEConfig(DeepSpeedConfigModel): """ Sets parameters for MoE """ enabled: bool = True ep_size: int = 1 """ The expert-parallelism size which is used for partitioning the experts across the GPUs in the expert-parallel group. """ moe_experts: list = Field([1], alias="num_experts") """ The global number of experts used in an MoE layer. """ type: MoETypeEnum = MoETypeEnum.standard """ Specify the type of MoE layer. We have two types of MoE layer: 'Standard' and 'Residual'. """ ep_mp_group: object = None ep_group: object = Field(None, alias="expert_group") class QuantTypeEnum(str, Enum): asym = "asymmetric" sym = "symmetric" class BaseQuantConfig(DeepSpeedConfigModel): enabled = True num_bits = 8 q_type: QuantTypeEnum = QuantTypeEnum.sym q_groups: int = 1 class WeightQuantConfig(BaseQuantConfig): enabled = True class ActivationQuantConfig(BaseQuantConfig): enabled = True class QKVQuantConfig(DeepSpeedConfigModel): enabled = True class QuantizationConfig(DeepSpeedConfigModel): enabled: bool = True activation: ActivationQuantConfig = ActivationQuantConfig() weight: WeightQuantConfig = WeightQuantConfig() qkv: QKVQuantConfig = QKVQuantConfig() # todo: brainstorm on how to do ckpt loading for DS inference class InferenceCheckpointConfig(DeepSpeedConfigModel): checkpoint_dir: str = None save_mp_checkpoint_path: str = None base_dir: str = None class DeepSpeedInferenceConfig(DeepSpeedConfigModel): """ Sets parameters for DeepSpeed Inference Engine. """ replace_with_kernel_inject: bool = Field(False, alias="kernel_inject") """ Set to true to inject inference kernels for models such as, Bert, GPT2, GPT-Neo and GPT-J. Otherwise, the injection_dict provides the names of two linear layers as a tuple: `(attention_output projection, transformer output projection)` """ dtype: DtypeEnum = torch.float16 """ Desired model data type, will convert model to this type. Supported target types: `torch.half`, `torch.int8`, `torch.float` """ tensor_parallel: DeepSpeedTPConfig = Field({}, alias="tp") """ Configuration for tensor parallelism used to split the model across several GPUs. Expects a dictionary containing values for :any:`DeepSpeedTPConfig`. """ enable_cuda_graph: bool = False """ Use this flag for capturing the CUDA-Graph of the inference ops, so that it can run faster using the graph replay method. """ zero: DeepSpeedZeroConfig = {} """ ZeRO configuration to use with the Inference Engine. Expects a dictionary containing values for :any:`DeepSpeedZeroConfig`. """ triangular_masking: bool = Field(True, alias="tm") """ Controls the type of masking for attention scores in transformer layer. Note that the masking is application specific. """ moe: Union[bool, DeepSpeedMoEConfig] = {} """ Specify if the type of Transformer is MoE. Expects a dictionary containing values for :any:`DeepSpeedMoEConfig`. """ quant: QuantizationConfig = {} """ NOTE: only works for int8 dtype. Quantization settings used for quantizing your model using the MoQ. The setting can be one element or a tuple. If one value is passed in, we consider it as the number of groups used in quantization. A tuple is passed in if we want to mention that there is extra-grouping for the MLP part of a Transformer layer (e.g. (True, 8) shows we quantize the model using 8 groups for all the network except the MLP part that we use 8 extra grouping). Expects a dictionary containing values for :any:`QuantizationConfig`. """ #todo: refactor the following 3 into the new checkpoint_config checkpoint: str = None """ Path to deepspeed compatible checkpoint or path to JSON with load policy. """ base_dir: str = None """ This shows the root directory under which all the checkpoint files exists. This can be passed through the json config too. """ set_empty_params: bool = False """ specifying whether the inference-module is created with empty or real Tensor """ save_mp_checkpoint_path: str = None """ The path for which we want to save the loaded model with a checkpoint. This feature is used for adjusting the parallelism degree to help alleviate the model loading overhead. It does not save any new checkpoint if no path is passed. """ checkpoint_config: InferenceCheckpointConfig = Field({}, alias="ckpt_config") """ TODO: Add docs. Expects a dictionary containing values for :any:`InferenceCheckpointConfig`. """ return_tuple: bool = True """ Specify whether or not the transformer layers need to return a tuple or a Tensor. """ training_mp_size: int = 1 """ If loading a checkpoint this is the mp size that it was trained with, it may be different than what the mp size that you want to use during inference. """ replace_method: str = Field( "auto", deprecated=True, deprecated_msg="This parameter is no longer needed, please remove from your call to DeepSpeed-inference") injection_policy: Dict = Field(None, alias="injection_dict") """ Dictionary mapping a client nn.Module to its corresponding injection policy. e.g., `{BertLayer : deepspeed.inference.HFBertLayerPolicy}` """ injection_policy_tuple: tuple = None """ TODO: Add docs """ config: Dict = Field(None, alias="args") # todo: really no need for this field if we can refactor max_out_tokens: int = Field(1024, alias="max_tokens") """ This argument shows the maximum number of tokens inference-engine can work with, including the input and output tokens. Please consider increasing it to the required token-length required for your use-case. """ min_out_tokens: int = Field(1, alias="min_tokens") """ This argument communicates to the runtime the minimum number of tokens you expect you will need to generate. This will cause the runtime to error if it unable to provide this and provide context on the memory pressure rather than seg-faulting or providing corrupted output. """ transposed_mode: bool = Field(False, alias="transposed_mode") mp_size: int = Field(1, deprecated=True, new_param="tensor_parallel.tp_size") """ Desired model parallel size, default is 1 meaning no model parallelism. Deprecated, please use the ``tensor_parallel` config to control model parallelism. """ mpu: object = Field(None, deprecated=True, new_param="tensor_parallel.mpu") ep_size: int = Field(1, deprecated=True, new_param="moe.ep_size") ep_group: object = Field(None, alias="expert_group", deprecated=True, new_param="moe.ep_group") ep_mp_group: object = Field(None, alias="expert_mp_group", deprecated=True, new_param="moe.ep_mp_group") moe_experts: list = Field([1], deprecated=True, new_param="moe.moe_experts") moe_type: MoETypeEnum = Field(MoETypeEnum.standard, deprecated=True, new_param="moe.type") @validator("moe") def moe_backward_compat(cls, field_value, values): if isinstance(field_value, bool): return DeepSpeedMoEConfig(moe=field_value) return field_value class Config: # Get the str representation of the datatype for serialization json_encoders = {torch.dtype: lambda x: str(x)}
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/inference/config.py
config.py
# DeepSpeed Team import torch import time import os from deepspeed import comm as dist from deepspeed.utils.logging import log_dist from torch.nn.modules import Module from packaging import version as pkg_version from deepspeed.runtime.checkpoint_engine.torch_checkpoint_engine import TorchCheckpointEngine from deepspeed.utils.timer import SynchronizedWallClockTimer from ..runtime.state_dict_factory import SDLoaderFactory from ..runtime.weight_quantizer import WeightQuantization from ..module_inject import replace_transformer_layer, generic_injection from ..comm.comm import init_distributed from ..pipe import PipelineModule from ..moe.utils import has_moe_layers from ..module_inject import LinearAllreduce, LinearLayer, Normalize, ReplaceWithTensorSlicing from deepspeed.accelerator import get_accelerator from ..module_inject.policy import TransformerPolicy from ..module_inject.auto_tp import AutoTP from ..module_inject.replace_policy import generic_policies DS_INFERENCE_ENABLED = False from torch import nn INFERENCE_MODEL_TIMER = "model-forward-inference" def build_bloom_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor: """ Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value `softmax(l+a) = softmax(l)`. Based on https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742 TODO @thomasw21 this doesn't work as nicely due to the masking strategy, and so masking varies slightly. Args: Returns tensor shaped (batch_size * num_heads, 1, max_seq_len) attention_mask (`torch.Tensor`): Token-wise attention mask, this should be of shape (batch_size, max_seq_len). num_heads (`int`, *required*): number of heads dtype (`torch.dtype`, *optional*, default=`torch.bfloat16`): dtype of the output tensor """ import math batch_size, seq_length = attention_mask.shape closest_power_of_2 = 2**math.floor(math.log2(num_heads)) base = torch.tensor(2**(-(2**-(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32) powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32) slopes = torch.pow(base, powers) if closest_power_of_2 != num_heads: extra_base = torch.tensor(2**(-(2**-(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32) num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2) extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32) slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0) # Note: alibi will added to the attention bias that will be applied to the query, key product of attention # => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length) # => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length) # => the query_length dimension will then be broadcasted correctly # This is more or less identical to T5's relative position bias: # https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527 arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :] alibi = slopes[..., None] * arange_tensor if dist.is_initialized(): num_heads_per_rank = int(num_heads / dist.get_world_size()) offset = dist.get_rank() * num_heads_per_rank alibi = alibi.view(batch_size, num_heads, 1, seq_length) alibi = alibi[:, offset:num_heads_per_rank + offset, :, :] return alibi.reshape(batch_size * num_heads_per_rank, 1, seq_length).to(dtype) else: return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype) class InferenceEngine(Module): inference_mp_group = None inference_ep_group = None expert_mp_group = None def __init__(self, model, config): """ Args: model: torch.nn.Module config: DeepSpeedInferenceConfig """ global DS_INFERENCE_ENABLED DS_INFERENCE_ENABLED = True super().__init__() self.module = model self._config = config self._get_model_config_generate(config) # keep for weird backward compatibility # patch model generate with ours if model uses it if hasattr(self.module, "generate"): self.generate = self._generate if hasattr(self.module, "config"): TransformerPolicy.hf_model_config = self.module.config # todo: keep this self.injection_dict because we don't use to change config.injection_policy API # todo: this will get changed when Molly's PR on auto injection dict is merged self.injection_dict = config.injection_policy # todo: refactor the mp_group and mp_size related in the next refactor self.mp_group = config.tensor_parallel.tp_group self.mpu = config.tensor_parallel.mpu #self._validate_args(self.mpu, config.replace_with_kernel_inject) self.quantize_merge_count = 1 self.quantization_scales = None # these are not needed in the config as we are creating them ourselves in the inference engine self.ep_group = None # config.moe.ep_group self.expert_mp_group = None # config.moe.ep_mp_group self.cuda_graph_created = False self.checkpoint_engine = TorchCheckpointEngine() quantization_setting = None self._init_quantization_setting( quantization_setting) # todo: update with the new quant config for weight quant self.model_profile_enabled = False self._model_times = [] if not self.injection_dict and config.replace_with_kernel_inject: # This is a hack to remove the prepare_mask function on HF side for BLOOM architecture self.remove_mask_prepare_for_bloom() if self.injection_dict or not config.replace_with_kernel_inject: # This is a hack to redefine the alibi func due to TP if config.tensor_parallel.tp_size > 1: self.build_alibi_tensor() if get_accelerator().device_name() == 'cuda' and config.enable_cuda_graph: assert pkg_version.parse(torch.__version__) >= pkg_version.parse("1.10"), \ "If you want to use cuda graph, please upgrade torch to at least v1.10" if config.checkpoint and not config.replace_with_kernel_inject: self._load_checkpoint(config.checkpoint) # convert model to intended dtype if config.dtype: self._convert_to_dtype(config) if self.mpu: config.tensor_parallel.tp_size = dist.get_world_size(group=self.mpu.get_model_parallel_group()) self.mp_group = self.mpu.get_model_parallel_group() elif config.tensor_parallel.tp_size > 1: self._create_model_parallel_group(config) config.tensor_parallel.tp_group = self.mp_group if isinstance(self.module, torch.nn.Module): moe, _ = has_moe_layers(self.module) else: moe = False if moe and dist.get_world_size() > 1: self._create_ep_parallel_group(config.moe.moe_experts) # retain this from the old conditional argument being passed to apply_injection_policy() if not config.replace_with_kernel_inject: config.checkpoint = None # We only support three modes: 1) user specified policy for tensor-parallelism, 2) kernel injection (replace_with_kernel_inject), and 3) automatic tensor parallelism. if self.injection_dict: # 1. User specified Tensor Parallelism assert not config.replace_with_kernel_inject, "Cannot use both user specified injection policy and kernel injection" for client_module, injection_policy in self.injection_dict.items(): # construct the tuple and pass that instead of a string or dict. if isinstance(injection_policy, str): config.injection_policy_tuple = (injection_policy, ) else: config.injection_policy_tuple = injection_policy self._apply_injection_policy(config, client_module) else: if config.replace_with_kernel_inject: # 2. DeepSpeed Kernel Injection self._apply_injection_policy(config) else: # 3. Automatic Tensor Parallelism parser_dict = AutoTP.tp_parser(model) print("AutoTP: ", parser_dict) for client_module, injection_policy in parser_dict: if isinstance(injection_policy, str): config.injection_policy_tuple = (injection_policy, ) else: config.injection_policy_tuple = injection_policy self._apply_injection_policy(config, client_module) device = get_accelerator().current_device_name() self.module.to(device) if config.tensor_parallel.tp_size > 1: _rng_state = get_accelerator().get_rng_state().to(get_accelerator().current_device_name()) dist.broadcast(_rng_state, 0) get_accelerator().set_rng_state(_rng_state.cpu()) if config.tensor_parallel.tp_size > 1: assert not config.enable_cuda_graph, "Cuda graph is not supported for model parallelism" # Check if local CUDA graphs can be created in replacement modules self.local_cuda_graph = self._local_cuda_graph_used(self.module) def profile_model_time(self, use_cuda_events=True): if not self.model_profile_enabled and not self._config.enable_cuda_graph: self.module.register_forward_pre_hook(self._pre_forward_hook) self.module.register_forward_hook(self._post_forward_hook) self.model_profile_enabled = True self.use_cuda_events = use_cuda_events if self.use_cuda_events: self.timers = SynchronizedWallClockTimer() # todo: remove this once all the config dicts are centralized from top level pydantic config def _get_model_config_generate(self, config): # this is being passed to replace_transformer_layer(config=self.user_model_config_dict) self.config = getattr(self.module, 'config', None) if config.config is None else config.config def remove_mask_prepare_for_bloom(self): if hasattr(self.module, 'transformer'): if hasattr(self.module.transformer, '_prepare_attn_mask'): self.module.transformer._prepare_attn_mask = lambda attention_mask, *args, **kwargs: attention_mask def build_alibi_tensor(self): if hasattr(self.module, 'transformer'): if hasattr(self.module.transformer, 'build_alibi_tensor'): self.module.transformer.build_alibi_tensor = build_bloom_alibi_tensor def _pre_forward_hook(self, module, *inputs, **kwargs): if self.use_cuda_events: self.timers(INFERENCE_MODEL_TIMER).start() else: get_accelerator().synchronize() self._start = time.time() def _post_forward_hook(self, module, input, output): if self.use_cuda_events: self.timers(INFERENCE_MODEL_TIMER).stop() elapsed_time = self.timers(INFERENCE_MODEL_TIMER).elapsed(reset=True) else: get_accelerator().synchronize() self._end = time.time() elapsed_time = self._end - self._start self._model_times.append(elapsed_time) def _create_model_parallel_group(self, config): # Call the init process if InferenceEngine.inference_mp_group is None: init_distributed() local_rank = int(os.getenv('LOCAL_RANK', '0')) get_accelerator().set_device(local_rank) ranks = [i for i in range(config.tensor_parallel.tp_size)] self.mp_group = dist.new_group(ranks) InferenceEngine.inference_mp_group = self.mp_group else: self.mp_group = InferenceEngine.inference_mp_group def _create_ep_parallel_group(self, moe_experts): # Call the init process self.ep_group = {} self.expert_mp_group = {} moe_experts = moe_experts if type(moe_experts) is list else [moe_experts] for e in moe_experts: self.ep_group.update({e: None}) self.expert_mp_group.update({e: None}) for moe_ep_size in self.ep_group.keys(): num_ep_groups = dist.get_world_size() // moe_ep_size for i in range(num_ep_groups): ep_cnt = i * moe_ep_size size = dist.get_world_size() if moe_ep_size > dist.get_world_size() else moe_ep_size ranks = list(range(ep_cnt, ep_cnt + size)) _ep_group = dist.new_group(ranks) if dist.get_rank() in ranks: self.ep_group.update({moe_ep_size: _ep_group}) if dist.get_world_size() > moe_ep_size: num_expert_mp_groups = dist.get_world_size() // num_ep_groups expert_mp_size = dist.get_world_size() // moe_ep_size for i in range(num_expert_mp_groups): expert_mp_comm_ranks = [i + nr * moe_ep_size for nr in range(expert_mp_size)] _expert_mp_group = dist.new_group(expert_mp_comm_ranks) if dist.get_rank() in expert_mp_comm_ranks: self.expert_mp_group.update({moe_ep_size: _expert_mp_group}) def _init_quantization_setting(self, quantization_setting): self.quantize_bits = 8 self.mlp_extra_grouping = False self.quantize_groups = 1 if type(quantization_setting) is tuple: self.mlp_extra_grouping, \ self.quantize_groups = quantization_setting elif quantization_setting is not None: self.quantize_groups = quantization_setting log_dist( f"quantize_bits = {self.quantize_bits} " f"mlp_extra_grouping = {self.mlp_extra_grouping}, " f"quantize_groups = {self.quantize_groups}", [0]) # TODO: remove this function and add this functionality to pydantic config checking def _validate_args(self, mpu, replace_with_kernel_inject): # TODO: to support SD pipeline we need to avoid this check for now if replace_with_kernel_inject and not isinstance(self.module, Module): raise ValueError(f"model must be a torch.nn.Module, got {type(self.module)}") if not isinstance(self._config.tensor_parallel.tp_size, int) or self._config.tensor_parallel.tp_size < 1: raise ValueError(f"mp_size must be an int >= 1, got {self._config.tensor_parallel.tp_size}") if mpu: methods = ["get_model_parallel_group", "get_data_parallel_group"] for method in methods: if not hasattr(mpu, method): raise ValueError(f"mpu is missing {method}") if self._config.checkpoint is not None and not isinstance(self._config.checkpoint, (str, dict)): raise ValueError(f"checkpoint must be None, str or dict, got {type(self._config.checkpoint)}") supported_dtypes = [None, torch.half, torch.int8, torch.float] if self._config.dtype not in supported_dtypes: raise ValueError(f"{self._config.dtype} not supported, valid dtype: {supported_dtypes}") if self.injection_dict is not None and not isinstance(self.injection_dict, dict): raise ValueError(f"injection_dict must be None or a dict, got: {self.injection_dict}") def load_model_with_checkpoint(self, r_module): self.mp_replace = ReplaceWithTensorSlicing( mp_group=self.mp_group, mp_size=self._config.tensor_parallel.tp_size) #, out_dim=0, in_dim=1) error_msgs = [] def load(module, state_dict, prefix): args = (state_dict, prefix, {}, True, [], [], error_msgs) if hasattr(module, 'weight'): if 'query_key_value' in prefix: module.weight = self.mp_replace.qkv_copy(module.weight.data, state_dict[prefix + 'weight']) else: module.weight = self.mp_replace.copy(module.weight.data, state_dict[prefix + 'weight']) else: module.norm.weight = self.mp_replace.copy(module.norm.weight.data, state_dict[prefix + 'weight']) if prefix + 'bias' in self.key_list: if hasattr(module, 'norm'): module.norm.bias = self.mp_replace.copy(module.norm.bias, state_dict[prefix + 'bias']) else: data = state_dict[prefix + 'bias'] data = data.to(get_accelerator().current_device_name()) module.bias = self.mp_replace.copy(module.bias, data) layer_policies = { nn.Linear: load, nn.Embedding: load, nn.LayerNorm: load, LinearLayer: load, LinearAllreduce: load } def load_module_recursive(module, prefix='', level=0): for name, child in module.named_children(): if child.__class__ in layer_policies: checking_key = prefix + name + '.' if not any(checking_key in item for item in self.key_list): continue if len(list(child.parameters())) > 0 and list(child.parameters())[0].numel() == 0: if len(child.weight.ds_shape) == 1: child = Normalize(dim=child.weight.ds_shape[-1], dtype=child.weight.dtype, eps=child.eps) setattr(module, name, child) load(child, self.sd, prefix + name + '.') else: load_module_recursive(child, prefix if level == 0 else prefix + name + '.', level + 1) load_module_recursive(r_module) def _apply_injection_policy(self, config, client_module=None): # client_module is only passed when using the injection_dict method. checkpoint_dir = config.checkpoint checkpoint = SDLoaderFactory.get_sd_loader_json(checkpoint_dir, self.checkpoint_engine) if checkpoint_dir is not None else None generic_injection(self.module, fp16=(config.dtype == torch.half) or (config.dtype == torch.int8), enable_cuda_graph=config.enable_cuda_graph) if isinstance(self.module, torch.nn.Module): # config is our DeepSpeedInferenceConfig and self.config is the HF model config replace_transformer_layer(client_module, self.module, checkpoint, config, self.config) def _get_all_ckpt_names(self, checkpoints_path, tag): ckpt_file_pattern = self._get_ckpt_name(checkpoints_path, tag, mp_placeholder="*") import glob ckpt_files = glob.glob(ckpt_file_pattern) ckpt_files.sort() return ckpt_files def _get_ckpt_name(self, checkpoints_path, tag, mp_placeholder=None): if mp_placeholder is not None: mp_rank_str = mp_placeholder else: mp_rank = 0 if self.mpu is None else self.mpu.get_model_parallel_rank() mp_rank_str = "{:02d}".format(mp_rank) ckpt_name = os.path.join( checkpoints_path, "mp_rank_" + mp_rank_str + "_model_states.pt", ) return ckpt_name def _load_checkpoint(self, load_dir, load_module_strict=True, tag=None): is_pipe_parallel = isinstance(self.module, PipelineModule) if is_pipe_parallel: raise RuntimeError('pipeline parallelism is currently not supported in inference.') if not isinstance(load_dir, dict) and os.path.isdir(load_dir): if tag is None: latest_path = os.path.join(load_dir, "latest") if os.path.isfile(latest_path): with open(latest_path, "r") as fd: tag = fd.read().strip() ckpt_list = self._get_all_ckpt_names(load_dir, tag) sd_loader = SDLoaderFactory.get_sd_loader(ckpt_list, self.checkpoint_engine) else: sd_loader = SDLoaderFactory.get_sd_loader_json(load_dir, self.checkpoint_engine) if type(sd_loader) is list: self.sd = torch.load(sd_loader[0], map_location='cpu') self.key_list = list(self.sd.keys()) self.load_model_with_checkpoint(self.module) for i in range(1, len(sd_loader)): if not dist.is_initialized() or dist.get_rank() == 0: print(f"loading checkpoint ({i})") self.sd = torch.load(sd_loader[i], map_location=get_accelerator().device_name()) self.key_list = list(self.sd.keys()) self.load_model_with_checkpoint(self.module) else: mp_rank = 0 if self.mpu is None else self.mpu.get_model_parallel_rank() load_path, checkpoint, quantize_config = sd_loader.load(self._config.tensor_parallel.tp_size, mp_rank, is_pipe_parallel=is_pipe_parallel, quantize=(self._config.dtype is torch.int8), quantize_groups=self.quantize_groups, mlp_extra_grouping=self.mlp_extra_grouping) self.quantization_scales, self.quantize_merge_count = quantize_config moe, _ = has_moe_layers(self.module) if moe: from deepspeed.runtime.engine import DeepSpeedEngine old_moe_load = False if not isinstance(checkpoint['num_experts'], list): old_moe_load = True DeepSpeedEngine.load_moe_state_dict(load_dir, tag, state_dict=checkpoint[self._choose_module_key(checkpoint)], old_moe_load=old_moe_load, model=self.module, mpu=self.mpu, checkpoint_engine=self.checkpoint_engine) self.module.load_state_dict(state_dict=checkpoint[self._choose_module_key(checkpoint)], strict=load_module_strict) def _choose_module_key(self, sd): assert not ('module' in sd and 'model' in sd), "checkpoint has both 'model' and 'module' keys, not sure how to proceed" assert 'module' in sd or 'model' in sd, "checkpoint contains neither 'model' or 'module' keys, not sure how to proceed" if 'module' in sd: return 'module' elif 'model' in sd: return 'model' def _convert_to_dtype(self, config): if not isinstance(self.module, torch.nn.Module): return if False: #config.dtype is torch.int8 and self.quantization_scales is None: quantizer = WeightQuantization(mlp_extra_grouping=self.mlp_extra_grouping) model, self.quantization_scales = quantizer.model_quantize(self.module, self.injection_dict, self.quantize_bits, self.quantize_groups) elif config.dtype == torch.half: self.module.half() elif config.dtype == torch.bfloat16: self.module.bfloat16() elif config.dtype == torch.float: self.module.float() def _create_cuda_graph(self, *inputs, **kwargs): # warmup to create the workspace and cublas handle cuda_stream = get_accelerator().Stream() cuda_stream.wait_stream(get_accelerator().current_stream()) with get_accelerator().stream(cuda_stream): for i in range(3): ret = self.module(*inputs, **kwargs) get_accelerator().current_stream().wait_stream(cuda_stream) # create cuda_graph and assign static_inputs and static_outputs self._cuda_graphs = torch.cuda.CUDAGraph() self.static_inputs = inputs self.static_kwargs = kwargs with torch.cuda.graph(self._cuda_graphs): self.static_output = self.module(*self.static_inputs, **self.static_kwargs) self.cuda_graph_created = True def _graph_replay(self, *inputs, **kwargs): for i in range(len(inputs)): if torch.is_tensor(inputs[i]): self.static_inputs[i].copy_(inputs[i]) for k in kwargs: if torch.is_tensor(kwargs[k]): self.static_kwargs[k].copy_(kwargs[k]) self._cuda_graphs.replay() return self.static_output def model_times(self): assert self.model_profile_enabled, "model profiling is not enabled" model_times = self._model_times if self._config.enable_cuda_graph and len(self._model_times) == 0: raise ValueError("Model times are empty and cuda graph is enabled. If " "this is a GPT-style model this combo is not supported. If this is a " "BERT-style model this is a bug, please report it. " f"Model type is: {type(self.module)}") self._model_times = [] return model_times def _module_match(self, module): for policy in generic_policies: policy = policy() if policy.match_replaced(module): return True return False def _local_cuda_graph_used(self, module): if isinstance(module, torch.nn.Module): return False else: sub_module_cuda_graph = False for name in module.__dict__.keys(): sub_module = getattr(module, name) if self._module_match(sub_module) and hasattr(sub_module, "enable_cuda_graph"): sub_module_cuda_graph = True return sub_module_cuda_graph def forward(self, *inputs, **kwargs): """Execute forward propagation Arguments: *inputs: Variable length input list **kwargs: variable length keyword arguments """ start = None if self.model_profile_enabled and get_accelerator().device_name() == 'cuda' and self._config.enable_cuda_graph: get_accelerator().synchronize() start = time.time() if get_accelerator().device_name() == 'cuda' and self._config.enable_cuda_graph and not self.local_cuda_graph: if self.cuda_graph_created: outputs = self._graph_replay(*inputs, **kwargs) else: self._create_cuda_graph(*inputs, **kwargs) outputs = self._graph_replay(*inputs, **kwargs) else: outputs = self.module(*inputs, **kwargs) if self.model_profile_enabled and self._config.enable_cuda_graph: get_accelerator().synchronize() duration = time.time() - start self._model_times.append(duration) return outputs def _generate(self, *inputs, **kwargs): # Reset KV-cache at the beginning of generate if hasattr(self.module, 'reset_cache'): self.module.reset_cache() num_beams = 1 if "generation_config" in kwargs: gen_config = kwargs["generation_config"] num_beams = getattr(gen_config, "num_beams", 1) if "num_beams" in kwargs: num_beams = kwargs["num_beams"] if num_beams > 1: raise NotImplementedError("DeepSpeed does not support `num_beams` > 1, if this is important to you please " "add your request to: https://github.com/microsoft/DeepSpeed/issues/2506") return self.module.generate(*inputs, **kwargs)
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/inference/engine.py
engine.py
# DeepSpeed Team ######################################### # nebula ######################################### # Nebula. By default, this feature is not enabled. # Users can configure in ds_config.json as below example: NEBULA_FORMAT = ''' nebula should be enabled as: "session_params": { "nebula": { "enabled": true, "persistent_storage_path": "/foo/bar", "persistent_time_interval": 100, "num_of_version_in_retention": 2, "enable_nebula_load": true } } ''' NEBULA = "nebula" NEBULA_ENABLED = "enabled" NEBULA_ENABLED_DEFAULT = False # There is a case where customer want to load the checkpoint saved # by raw torch. Because nebula cannot load torch checkpoint directly # as they have different folder structures to bring the gap for # loading(the data are totaly same in bytes for torch and enbula s # aving). # In this case, we must disable nebula load to use raw torch load. # Customer can just set NEBULA_ENABLE_NEBULA_LOAD to False. Then use # original way of deepspeed to load, i.e. set the value of "--load". NEBULA_ENABLE_NEBULA_LOAD = "enable_nebula_load" NEBULA_ENABLE_NEBULA_LOAD_DEFAULT = True # When you want to resume the previous checkpoint saved by nebula, # you can set NEBULA_LOAD_PATH as the parent folder of checkpoint. # If NEBULA_LOAD_PATH is None, the NEBULA_PERSISTENT_STORAGE_PATH # will be the default path to load. NEBULA_LOAD_PATH = "nebula_load_path" NEBULA_LOAD_PATH_DEFAULT = None # Nebula will save the checkpoint under NEBULA_LOAD_PATH in the # asynchronous way. NEBULA_PERSISTENT_STORAGE_PATH = "persistent_storage_path" NEBULA_PERSISTENT_STORAGE_PATH_DEFAULT = None # Time interval to trigger the nebula persistence. NEBULA_PERSISTENT_TIME_INTERVAL = "persistent_time_interval" NEBULA_PERSISTENT_TIME_INTERVAL_DEFAULT = 100 # Checkpoint number which will be kept in memory. Let us say, # if the value is 2. Then we have checkpoints 1 and 2 are ready # now. When it comes to checkpoint 3, the 1 will be removed if # 1 has been persisted to disk. NEBULA_NUM_OF_VERSION_IN_RETENTION = "num_of_version_in_retention" NEBULA_NUM_OF_VERSION_IN_RETENTION_DEFAULT = 2 # Neubla envs NEBULA_EXPORT_ENVS = [ 'DLTS_JOB_ID', 'DLTS_NUM_WORKER', 'NEBULA_PERSISTENT_STORAGE_PATH', 'NEBULA_PERSISTENT_TIME_INTERVAL', 'AML_RUN_ID', 'AZUREML_RUN_TOKEN', 'AZUREML_WORKSPACE_SCOPE', 'AZUREML_EXPERIMENT_SCOPE', 'AZUREML_RUN_HISTORY_SERVICE_ENDPOINT', 'AZUREML_RUN_ID', 'NEBULA_MEMORY_BUFFER_SIZE', 'AZUREML_PARAMETER_ITPJOB_NAME', 'FC_TASKROLE_NAME', 'FC_TASK_INDEX', 'MASTER_HOST', 'LOCAL_HOST', 'AZUREML_BLOB_ACCOUNT_NAME', 'AZUREML_BLOB_ACCOUNT_KEY' ] # ITP env files DLTS_POD_ENV_PATH = '/dlts-runtime/env/pod.env'
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/nebula/constants.py
constants.py
# DeepSpeed Team import os import pkgutil import importlib from .abstract_accelerator import DeepSpeedAccelerator # During setup stage torch may not be installed, pass on no torch will # allow op builder related API to be executed. try: import torch.cuda except ImportError: pass class CUDA_Accelerator(DeepSpeedAccelerator): def __init__(self): self._name = 'cuda' self._communication_backend_name = 'nccl' # begin initialize for create_op_builder() # put all valid class name <--> class type mapping into class_dict op_builder_dir = self.op_builder_dir() op_builder_module = importlib.import_module(op_builder_dir) for _, module_name, _ in pkgutil.iter_modules([os.path.dirname(op_builder_module.__file__)]): # avoid self references if module_name != 'all_ops' and module_name != 'builder': module = importlib.import_module("{}.{}".format(op_builder_dir, module_name)) for member_name in module.__dir__(): if member_name.endswith( 'Builder' ) and member_name != "OpBuilder" and member_name != "CUDAOpBuilder" and member_name != "TorchCPUOpBuilder": # avoid abstract classes if not member_name in self.class_dict: self.class_dict[member_name] = getattr(module, member_name) # end initialize for create_op_builder() # Device APIs def device_name(self, device_index=None): if device_index == None: return 'cuda' return 'cuda:{}'.format(device_index) def device(self, device_index=None): return torch.cuda.device(device_index) def set_device(self, device_index): torch.cuda.set_device(device_index) def current_device(self): return torch.cuda.current_device() def current_device_name(self): return 'cuda:{}'.format(torch.cuda.current_device()) def device_count(self): return torch.cuda.device_count() def synchronize(self, device_index=None): return torch.cuda.synchronize(device_index) # RNG APIs def random(self): return torch.random def set_rng_state(self, new_state, device_index=None): if device_index is None: return torch.cuda.set_rng_state(new_state) return torch.cuda.set_rng_state(new_state, device_index) def get_rng_state(self, device_index=None): if device_index is None: return torch.cuda.get_rng_state() return torch.cuda.get_rng_state(device_index) def manual_seed(self, seed): return torch.cuda.manual_seed(seed) def manual_seed_all(self, seed): return torch.cuda.manual_seed_all(seed) def initial_seed(self, seed): return torch.cuda.initial_seed(seed) def default_generator(self, device_index): return torch.cuda.default_generators[device_index] # Streams/Events @property def Stream(self): return torch.cuda.Stream def stream(self, stream): return torch.cuda.stream(stream) def current_stream(self, device_index=None): return torch.cuda.current_stream(device_index) def default_stream(self, device_index=None): return torch.cuda.default_stream(device_index) @property def Event(self): return torch.cuda.Event # Memory management def empty_cache(self): return torch.cuda.empty_cache() def memory_allocated(self, device_index=None): return torch.cuda.memory_allocated(device_index) def max_memory_allocated(self, device_index=None): return torch.cuda.max_memory_allocated(device_index) def reset_max_memory_allocated(self, device_index=None): return torch.cuda.reset_max_memory_allocated(device_index) def memory_cached(self, device_index=None): return torch.cuda.memory_cached(device_index) def max_memory_cached(self, device_index=None): return torch.cuda.max_memory_cached(device_index) def reset_max_memory_cached(self, device_index=None): return torch.cuda.reset_max_memory_cached(device_index) def memory_stats(self, device_index=None): if hasattr(torch.cuda, 'memory_stats'): return torch.cuda.memory_stats(device_index) def reset_peak_memory_stats(self, device_index=None): if hasattr(torch.cuda, 'reset_peak_memory_stats'): return torch.cuda.reset_peak_memory_stats(device_index) def memory_reserved(self, device_index=None): if hasattr(torch.cuda, 'memory_reserved'): return torch.cuda.memory_reserved(device_index) def max_memory_reserved(self, device_index=None): if hasattr(torch.cuda, 'max_memory_reserved'): return torch.cuda.max_memory_reserved(device_index) def total_memory(self, device_index=None): return torch.cuda.get_device_properties(device_index).total_memory # Data types def is_bf16_supported(self): return torch.cuda.is_bf16_supported() def is_fp16_supported(self): major, _ = torch.cuda.get_device_capability() if major >= 7: return True else: return False # Misc def amp(self): if hasattr(torch.cuda, 'amp'): return torch.cuda.amp return None def is_available(self): return torch.cuda.is_available() def range_push(self, msg): if hasattr(torch.cuda.nvtx, 'range_push'): return torch.cuda.nvtx.range_push(msg) def range_pop(self): if hasattr(torch.cuda.nvtx, 'range_pop'): return torch.cuda.nvtx.range_pop() def lazy_call(self, callback): return torch.cuda._lazy_call(callback) def communication_backend_name(self): return self._communication_backend_name # Tensor operations @property def BFloat16Tensor(self): return torch.cuda.BFloat16Tensor @property def ByteTensor(self): return torch.cuda.ByteTensor @property def DoubleTensor(self): return torch.cuda.DoubleTensor @property def FloatTensor(self): return torch.cuda.FloatTensor @property def HalfTensor(self): return torch.cuda.HalfTensor @property def IntTensor(self): return torch.cuda.IntTensor @property def LongTensor(self): return torch.cuda.LongTensor def pin_memory(self, tensor): return tensor.pin_memory() def on_accelerator(self, tensor): device_str = str(tensor.device) if device_str.startswith('cuda:'): return True else: return False def op_builder_dir(self): try: # is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed # if successful this also means we're doing a local install and not JIT compile path from op_builder import __deepspeed__ # noqa: F401 return "op_builder" except ImportError: return "deepspeed.ops.op_builder" # dict that holds class name <--> class type mapping i.e. # 'AsyncIOBuilder': <class 'op_builder.async_io.AsyncIOBuilder'> # this dict will be filled at init stage class_dict = {} # create an instance of op builder and return, name specified by class_name def create_op_builder(self, class_name): if class_name in self.class_dict: return self.class_dict[class_name]() else: return None # return an op builder class, name specified by class_name def get_op_builder(self, class_name): if class_name in self.class_dict: return self.class_dict[class_name] else: return None def build_extension(self): from torch.utils.cpp_extension import BuildExtension return BuildExtension
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/accelerator/cuda_accelerator.py
cuda_accelerator.py
# DeepSpeed Team import abc from abc import ABC class DeepSpeedAccelerator(ABC): def __init__(self): self._name = None self._communication_backend_name = None # Device APIs @abc.abstractmethod def device_name(self, device_index): ... @abc.abstractmethod def device(self, device_index): ... @abc.abstractmethod def set_device(self, device_index): ... @abc.abstractmethod def current_device(self): ... @abc.abstractmethod def current_device_name(self): ... @abc.abstractmethod def device_count(self): ... @abc.abstractmethod def synchronize(self, device_index=None): ... # RNG APIs @abc.abstractmethod def random(self): ... @abc.abstractmethod def set_rng_state(self, new_state, device_index=None): ... @abc.abstractmethod def get_rng_state(self, device_index=None): ... @abc.abstractmethod def manual_seed(self, seed): ... @abc.abstractmethod def manual_seed_all(self, seed): ... @abc.abstractmethod def initial_seed(self, seed): ... @abc.abstractmethod def default_generator(self, device_index): ... # Streams/Events @property @abc.abstractmethod def Stream(self): ... @abc.abstractmethod def stream(self, stream): ... @abc.abstractmethod def current_stream(self, device_index=None): ... @abc.abstractmethod def default_stream(self, device_index=None): ... @property @abc.abstractmethod def Event(self): ... # Memory management @abc.abstractmethod def empty_cache(self): ... @abc.abstractmethod def memory_allocated(self, device_index=None): ... @abc.abstractmethod def max_memory_allocated(self, device_index=None): ... @abc.abstractmethod def reset_max_memory_allocated(self, device_index=None): ... @abc.abstractmethod def memory_cached(self, device_index=None): ... @abc.abstractmethod def max_memory_cached(self, device_index=None): ... @abc.abstractmethod def reset_max_memory_cached(self, device_index=None): ... @abc.abstractmethod def memory_stats(self, device_index=None): ... @abc.abstractmethod def reset_peak_memory_stats(self, device_index=None): ... @abc.abstractmethod def memory_reserved(self, device_index=None): ... @abc.abstractmethod def max_memory_reserved(self, device_index=None): ... @abc.abstractmethod def total_memory(self, device_index=None): ... # Data types @abc.abstractmethod def is_bf16_supported(self): ... @abc.abstractmethod def is_fp16_supported(self): ... # Misc @abc.abstractmethod def amp(self): ... @abc.abstractmethod def is_available(self): ... @abc.abstractmethod def range_push(self, msg): ... @abc.abstractmethod def range_pop(self): ... @abc.abstractmethod def lazy_call(self, callback): ... @abc.abstractmethod def communication_backend_name(self): ... # Tensor operations @property @abc.abstractmethod def BFloat16Tensor(self): ... @property @abc.abstractmethod def ByteTensor(self): ... @property @abc.abstractmethod def DoubleTensor(self): ... @property @abc.abstractmethod def FloatTensor(self): ... @property @abc.abstractmethod def HalfTensor(self): ... @property @abc.abstractmethod def IntTensor(self): ... @property @abc.abstractmethod def LongTensor(self): ... @abc.abstractmethod def pin_memory(self, tensor): ... @abc.abstractmethod def on_accelerator(self, tensor): ... @abc.abstractmethod def op_builder_dir(self): ... # create an instance of op builder, specified by class_name @abc.abstractmethod def create_op_builder(self, class_name): ... # return an op builder class, specified by class_name @abc.abstractmethod def get_op_builder(self, class_name): ... @abc.abstractmethod def build_extension(self): ...
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/accelerator/abstract_accelerator.py
abstract_accelerator.py
# DeepSpeed Team try: from accelerator.abstract_accelerator import DeepSpeedAccelerator as dsa1 except ImportError as e: dsa1 = None try: from deepspeed.accelerator.abstract_accelerator import DeepSpeedAccelerator as dsa2 except ImportError as e: dsa2 = None ds_accelerator = None def _validate_accelerator(accel_obj): # because abstract_accelerator has different path during # build time (accelerator.abstract_accelerator) # and run time (deepspeed.accelerator.abstract_accelerator) # and extension would import the # run time abstract_accelerator/DeepSpeedAccelerator as its base # class, so we need to compare accel_obj with both base class. # if accel_obj is instance of DeepSpeedAccelerator in one of # accelerator.abstractor_accelerator # or deepspeed.accelerator.abstract_accelerator, consider accel_obj # is a conforming object if not ((dsa1 != None and isinstance(accel_obj, dsa1)) or (dsa2 != None and isinstance(accel_obj, dsa2))): raise AssertionError(f'{accel_obj.__class__.__name__} accelerator is not subclass of DeepSpeedAccelerator') # TODO: turn off is_available test since this breaks tests #assert accel_obj.is_available(), \ # f'{accel_obj.__class__.__name__} accelerator fails is_available() test' def get_accelerator(): global ds_accelerator if ds_accelerator is None: try: from intel_extension_for_deepspeed import XPU_Accelerator except ImportError as e: pass else: ds_accelerator = XPU_Accelerator() _validate_accelerator(ds_accelerator) return ds_accelerator from .cuda_accelerator import CUDA_Accelerator ds_accelerator = CUDA_Accelerator() _validate_accelerator(ds_accelerator) return ds_accelerator def set_accelerator(accel_obj): global ds_accelerator _validate_accelerator(accel_obj) ds_accelerator = accel_obj ''' -----------[code] test_get.py ----------- from deepspeed.accelerator import get_accelerator my_accelerator = get_accelerator() print(f'{my_accelerator._name=}') print(f'{my_accelerator._communication_backend=}') print(f'{my_accelerator.HalfTensor().device=}') print(f'{my_accelerator.total_memory()=}') -----------[code] test_get.py ----------- ---[output] python test_get.py--------- my_accelerator.name()='cuda' my_accelerator.communication_backend='nccl' my_accelerator.HalfTensor().device=device(type='cuda', index=0) my_accelerator.total_memory()=34089730048 ---[output] python test_get.py--------- ************************************************************************** -----------[code] test_set.py ----------- from deepspeed.accelerator.cuda_accelerator import CUDA_Accelerator cu_accel = CUDA_Accelerator() print(f'{id(cu_accel)=}') from deepspeed.accelerator import set_accelerator, get_accelerator set_accelerator(cu_accel) my_accelerator = get_accelerator() print(f'{id(my_accelerator)=}') print(f'{my_accelerator._name=}') print(f'{my_accelerator._communication_backend=}') print(f'{my_accelerator.HalfTensor().device=}') print(f'{my_accelerator.total_memory()=}') -----------[code] test_set.py ----------- ---[output] python test_set.py--------- id(cu_accel)=139648165478304 my_accelerator=<deepspeed.accelerator.cuda_accelerator.CUDA_Accelerator object at 0x7f025f4bffa0> my_accelerator.name='cuda' my_accelerator.communication_backend='nccl' my_accelerator.HalfTensor().device=device(type='cuda', index=0) my_accelerator.total_memory()=34089730048 ---[output] python test_set.py--------- '''
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/accelerator/real_accelerator.py
real_accelerator.py
# DeepSpeed Team import torch from deepspeed.ops.op_builder import CPUAdagradBuilder from deepspeed.utils.logging import should_log_le class DeepSpeedCPUAdagrad(torch.optim.Optimizer): optimizer_id = 0 def __init__(self, model_params, lr=1e-2, eps=1e-10, weight_decay=0, amsgrad=False, fp32_optimizer_states=True): default_args = dict(lr=lr, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad) super(DeepSpeedCPUAdagrad, self).__init__(model_params, default_args) self.opt_id = DeepSpeedCPUAdagrad.optimizer_id DeepSpeedCPUAdagrad.optimizer_id = DeepSpeedCPUAdagrad.optimizer_id + 1 self.fp32_optimizer_states = fp32_optimizer_states self.ds_opt_adagrad = CPUAdagradBuilder().load() self.ds_opt_adagrad.create_adagrad(self.opt_id, lr, eps, weight_decay, should_log_le("info")) def __del__(self): # need to destroy the C++ object explicitly to avoid a memory leak when deepspeed.initialize # is used multiple times in the same process (notebook or pytest worker) self.ds_opt_adagrad.destroy_adagrad(self.opt_id) def __setstate__(self, state): super(DeepSpeedCPUAdagrad, self).__setstate__(state) for group in self.param_groups: group.setdefault('amsgrad', False) @torch.no_grad() def step(self, closure=None, fp16_param_groups=None): """Update the model parameters. .. note:: This method will be called internally by ZeRO-Offload. DeepSpeed users should still use ``engine.step()`` as shown in the `Getting Started <https://www.deepspeed.ai/getting-started/#training>`_ guide. Args: closure (callable, optional): closure to compute the loss. Defaults to ``None``. fp16_param_groups: FP16 GPU parameters to update. Performing the copy here reduces communication time. Defaults to ``None``. Returns: loss: if ``closure`` is provided. Otherwise ``None``. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() # intended device for step device = torch.device('cpu') for group_id, group in enumerate(self.param_groups): for param_id, p in enumerate(group['params']): if p.grad is None: continue assert p.device == device, f"CPUAdagrad param is on {p.device} and must be 'cpu', make " \ "sure you enabled 'offload_optimizer': 'cpu' in your ZeRO config." state = self.state[p] # State initialization if len(state) == 0: #print(f'group {group_id} param {param_id} = {p.numel()}') state['step'] = 0 #use full precision by default unless self.fp32_optimizer_states is off state_dtype = torch.float if self.fp32_optimizer_states else p.dtype #memory_format=torch.preserve_format) # gradient variances state['exp_avg_sq'] = torch.zeros_like(p.data, dtype=state_dtype, device='cpu') #memory_format=torch.preserve_format) state['step'] += 1 if p.grad.is_sparse == True: sparse_param = p.sparse_mask(p.grad) sparse_exp_avg_sq = state['exp_avg_sq'].sparse_mask(p.grad) self.ds_opt_adagrad.adagrad_update(self.opt_id, state['step'], group['lr'], group['eps'], group['weight_decay'], sparse_param.values(), p.grad.values(), sparse_exp_avg_sq.values()) p[sparse_param.indices()] = sparse_param.values() state['exp_avg_sq'][sparse_exp_avg_sq.indices()] = sparse_exp_avg_sq.values() if fp16_param_groups is not None: fp16_param_groups[group_id][param_id][sparse_param.indices()] = sparse_param.values() else: if fp16_param_groups is not None: self.ds_opt_adagrad.adagrad_update_copy(self.opt_id, state['step'], group['lr'], group['eps'], group['weight_decay'], p.data, p.grad.data, state['exp_avg_sq'], fp16_param_groups[group_id][param_id].data) else: self.ds_opt_adagrad.adagrad_update(self.opt_id, state['step'], group['lr'], group['eps'], group['weight_decay'], p.data, p.grad.data, state['exp_avg_sq']) return loss
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/ops/adagrad/cpu_adagrad.py
cpu_adagrad.py
# DeepSpeed Team import json import math import torch from torch import nn from torch.autograd import Function from deepspeed.accelerator import get_accelerator from deepspeed.ops.op_builder import TransformerBuilder, StochasticTransformerBuilder # Cuda modules will be imported if needed transformer_cuda_module = None stochastic_transformer_cuda_module = None class TransformerConfig(): def __init__(self, batch_size, hidden_size, intermediate_size, heads, attn_dropout_ratio, hidden_dropout_ratio, num_hidden_layers, initializer_range): self.layer_id = -1 self.batch_size = batch_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.heads = heads self.attn_dropout_ratio = attn_dropout_ratio self.hidden_dropout_ratio = hidden_dropout_ratio self.num_hidden_layers = num_hidden_layers self.initializer_range = initializer_range class DeepSpeedTransformerConfig(TransformerConfig): """Initialize the DeepSpeed Transformer Config. Arguments: batch_size: The maximum batch size used for running the kernel on each GPU hidden_size: The hidden size of the transformer layer intermediate_size: The intermediate size of the feed-forward part of transformer layer heads: The number of heads in the self-attention of the transformer layer attn_dropout_ratio: The ratio of dropout for the attention's output hidden_dropout_ratio: The ratio of dropout for the transformer's output num_hidden_layers: The number of transformer layers initializer_range: BERT model's initializer range for initializing parameter data local_rank: Optional: The rank of GPU running the transformer kernel, it is not required to use if the model already set the current device, otherwise need to set it so that the transformer kernel can work on the right device seed: The random seed for the dropout layers fp16: Enable half-precision computation pre_layer_norm: Select between Pre-LN or Post-LN transformer architecture normalize_invertible: Optional: Enable invertible LayerNorm execution (dropping the input activation), default is False gelu_checkpoint: Optional: Enable checkpointing of Gelu activation output to save memory, default is False adjust_init_range: Optional: Set as True (default) if the model adjusts the weight initial values of its self-attention output and layer output, False keeps the initializer_range no change. See the adjustment below: output_std = self.config.initializer_range / math.sqrt(2.0 * num_layers) attn_dropout_checkpoint: Optional: Enable checkpointing of attention dropout to save memory, default is False stochastic_mode: Enable for high performance, please note that this flag has some level of non-determinism and can produce different results on different runs. However, we have seen that by enabling it, the pretraining tasks such as BERT are not affected and can obtain a high accuracy level. On the other hand, for the downstream tasks, such as fine-tuning, we recommend to turn it off in order to be able to reproduce the same result through the regular kernel execution. return_tuple: Enable if using the return_tuple interface style for sending out the forward results. training: Enable for training rather than inference. """ def __init__(self, batch_size=-1, hidden_size=-1, intermediate_size=-1, heads=-1, attn_dropout_ratio=-1, hidden_dropout_ratio=-1, num_hidden_layers=-1, initializer_range=-1, layer_norm_eps=1e-12, local_rank=-1, seed=-1, fp16=False, pre_layer_norm=True, normalize_invertible=False, gelu_checkpoint=False, adjust_init_range=True, attn_dropout_checkpoint=False, stochastic_mode=False, return_tuple=False, training=True): super(DeepSpeedTransformerConfig, self).__init__(batch_size, hidden_size, (intermediate_size if intermediate_size > 0 else 4 * hidden_size), heads, attn_dropout_ratio, hidden_dropout_ratio, num_hidden_layers, initializer_range) self.fp16 = fp16 self.pre_layer_norm = pre_layer_norm self.local_rank = local_rank self.seed = seed self.normalize_invertible = normalize_invertible self.gelu_checkpoint = gelu_checkpoint # True: if higher batch size is required self.adjust_init_range = adjust_init_range self.test_gemm = False self.layer_norm_eps = layer_norm_eps self.training = training self.is_grad_enabled = True self.attn_dropout_checkpoint = attn_dropout_checkpoint self.stochastic_mode = stochastic_mode self.return_tuple = return_tuple @classmethod def from_dict(cls, json_object): config = DeepSpeedTransformerConfig() for key, value in json_object.items(): config.__dict__[key] = value return config @classmethod def from_json_file(cls, json_file): with open(json_file, "r", encoding='utf-16') as reader: text = reader.read() return cls.from_dict(json.loads(text)) class DeepSpeedTransformerFunction(Function): @staticmethod def forward(ctx, input, input_mask, self, grads, layer_id, attn_qkvw, attn_qkvb, attn_ow, attn_ob, attn_nw, attn_nb, inter_w, inter_b, output_w, output_b, norm_w, norm_b, config): cuda_module = stochastic_transformer_cuda_module if config.stochastic_mode else transformer_cuda_module forward_func = cuda_module.forward_fp16 if config.fp16 else cuda_module.forward_fp32 inp_size = input.size() if inp_size[1] % 16 != 0: input = torch.cat( (input, torch.randn( (inp_size[0], (16 - (inp_size[1] % 16)), inp_size[2]), device=input.device, dtype=input.dtype)), 1) input_mask = torch.cat((input_mask, torch.ones((inp_size[0], input_mask.shape[1], input_mask.shape[2], \ (16 - (inp_size[1] % 16))), device=input_mask.device, dtype=input_mask.dtype) * -10000), 3) (output, inp_norm, qkv_tf, soft_inp, ctx_bufB, attn_o_inp, add_res, ff1_inp, gelu_inp, ff2_inp, attn_prob_dropout_mask, attn_output_dropout_mask, layer_output_dropout_mask, attn_layer_norm_var, attn_layer_norm_mean, layer_norm_var, layer_norm_mean) = forward_func( config.layer_id, input, input_mask, attn_qkvw, attn_qkvb, attn_ow, attn_ob, attn_nw, attn_nb, inter_w, inter_b, output_w, output_b, norm_w, norm_b, config.training and config.is_grad_enabled, config.pre_layer_norm, config.attn_dropout_checkpoint, config.normalize_invertible, config.gelu_checkpoint) # For testing only. if grads is not None: for i in [2]: attn_qkvw.register_hook(lambda x, i=i, self=self: grads.append([ x[i * attn_ow.size(0):(i + 1) * attn_ow.size(0)], ("Q_W" if i == 0 else "K_W" if i == 1 else "V_W") ])) for i in [2]: attn_qkvb.register_hook(lambda x, i=i, self=self: grads.append([ x[i * attn_ow.size(0):(i + 1) * attn_ow.size(0)], ("Q_B" if i == 0 else "K_B" if i == 1 else "V_B") ])) attn_ow.register_hook(lambda x, self=self: grads.append([x, "O_W"])) attn_ob.register_hook(lambda x, self=self: grads.append([x, "O_B"])) attn_nw.register_hook(lambda x, self=self: grads.append([x, "N2_W"])) attn_nb.register_hook(lambda x, self=self: grads.append([x, "N2_B"])) inter_w.register_hook(lambda x, self=self: grads.append([x, "int_W"])) inter_b.register_hook(lambda x, self=self: grads.append([x, "int_B"])) output_w.register_hook(lambda x, self=self: grads.append([x, "out_W"])) output_b.register_hook(lambda x, self=self: grads.append([x, "out_B"])) norm_w.register_hook(lambda x, self=self: grads.append([x, "norm_W"])) norm_b.register_hook(lambda x, self=self: grads.append([x, "norm_B"])) if config.is_grad_enabled and config.training: if (config.pre_layer_norm and config.normalize_invertible): ctx.save_for_backward(input_mask, attn_qkvw, attn_qkvb, attn_ow, attn_ob, attn_nw, attn_nb, inter_w, inter_b, output_w, output_b, norm_w, norm_b) else: ctx.save_for_backward(output, input, input_mask, attn_qkvw, attn_qkvb, attn_ow, attn_ob, attn_nw, attn_nb, inter_w, inter_b, output_w, output_b, norm_w, norm_b) ctx.config = config if (config.pre_layer_norm or not config.normalize_invertible): ctx.inp_norm = inp_norm ctx.qkv_tf = qkv_tf ctx.soft_inp = soft_inp if not config.attn_dropout_checkpoint: ctx.ctx_bufB = ctx_bufB ctx.attn_o_inp = attn_o_inp if not config.normalize_invertible: ctx.add_res = add_res ctx.attn_layer_norm_mean = attn_layer_norm_mean ctx.layer_norm_mean = layer_norm_mean ctx.ff1_inp = ff1_inp if not config.gelu_checkpoint: ctx.gelu_inp = gelu_inp ctx.ff2_inp = ff2_inp ctx.attn_prob_dropout_mask = attn_prob_dropout_mask ctx.attn_output_dropout_mask = attn_output_dropout_mask ctx.layer_output_dropout_mask = layer_output_dropout_mask ctx.attn_layer_norm_var = attn_layer_norm_var ctx.layer_norm_var = layer_norm_var if inp_size[1] % 16 != 0: output = torch.narrow(output, 1, 0, inp_size[1]) if config.return_tuple: return (output, ) # outputs -> (output) : outputs[0] = output else: return output @staticmethod def backward(ctx, grad_output): bsz = grad_output.shape[0] grad_output_shape = grad_output.size() if grad_output_shape[1] % 16 != 0: grad_output = torch.cat((grad_output, torch.zeros((bsz, (16 - (grad_output_shape[1] % 16)), \ grad_output_shape[2]), device=grad_output.device, dtype=grad_output.dtype)), 1) assert ctx.config.training if (ctx.config.pre_layer_norm and ctx.config.normalize_invertible): (input_mask, attn_qkvw, attn_qkvb, attn_ow, attn_ob, attn_nw, attn_nb, inter_w, inter_b, output_w, output_b, norm_w, norm_b) = ctx.saved_tensors else: (output, input, input_mask, attn_qkvw, attn_qkvb, attn_ow, attn_ob, attn_nw, attn_nb, inter_w, inter_b, output_w, output_b, norm_w, norm_b) = ctx.saved_tensors cuda_module = stochastic_transformer_cuda_module if ctx.config.stochastic_mode else transformer_cuda_module backward_func = cuda_module.backward_fp16 if ctx.config.fp16 else cuda_module.backward_fp32 (grad_input, grad_attn_qkvw, grad_attn_qkvb, grad_attn_ow, grad_attn_ob, grad_attn_nw, grad_attn_nb, grad_inter_w, grad_inter_b, grad_output_w, grad_output_b, grad_norm_w, grad_norm_b) = backward_func( ctx.config.layer_id, grad_output, (ctx.inp_norm if (ctx.config.pre_layer_norm and ctx.config.normalize_invertible) else output), (ctx.inp_norm if (ctx.config.pre_layer_norm or not ctx.config.normalize_invertible) else input), ctx.qkv_tf, ctx.soft_inp, (ctx.soft_inp if ctx.config.attn_dropout_checkpoint else ctx.ctx_bufB), ctx.attn_o_inp, (ctx.ff1_inp if ctx.config.normalize_invertible else ctx.add_res), ctx.ff1_inp, (ctx.ff2_inp if ctx.config.gelu_checkpoint else ctx.gelu_inp), ctx.ff2_inp, ctx.attn_prob_dropout_mask, ctx.attn_output_dropout_mask, ctx.layer_output_dropout_mask, ctx.attn_layer_norm_var, ctx.attn_layer_norm_mean, ctx.layer_norm_var, ctx.layer_norm_mean, (ctx.inp_norm if (ctx.config.pre_layer_norm and ctx.config.normalize_invertible) else input), input_mask, attn_qkvw, attn_qkvb, attn_ow, attn_ob, attn_nw, attn_nb, inter_w, inter_b, output_w, output_b, norm_w, norm_b) # This appears to be an effective way to release context memory ctx.qkv_tf = None ctx.soft_inp = None ctx.ctx_bufB = None ctx.gelu_inp = None ctx.ff2_inp = None ctx.attn_o_inp = None ctx.ff1_inp = None ctx.add_res = None ctx.inp_norm = None ctx.config = None ctx.attn_layer_norm_mean = None ctx.layer_norm_mean = None ctx.attn_prob_dropout_mask = None ctx.attn_output_dropout_mask = None ctx.layer_output_dropout_mask = None ctx.attn_layer_norm_var = None ctx.layer_norm_var = None if grad_output_shape[1] % 16 != 0: grad_input = torch.narrow(grad_input, 1, 0, grad_output_shape[1]) return (grad_input, None, None, None, None, grad_attn_qkvw, grad_attn_qkvb, grad_attn_ow, grad_attn_ob, grad_attn_nw, grad_attn_nb, grad_inter_w, grad_inter_b, grad_output_w, grad_output_b, grad_norm_w, grad_norm_b, None) class DeepSpeedTransformerLayer(nn.Module): """Initialize the DeepSpeed Transformer Layer. Static variable: layer_id: The layer-index counter starting from 0 and incrementing by 1 every time a layer object is instantiated, e.g. if a model has 24 transformer layers, layer_id goes from 0 to 23. Arguments: config: An object of DeepSpeedTransformerConfig initial_weights: Optional: Only used for unit test initial_biases: Optional: Only used for unit test """ layer_id = 0 def __init__(self, config, initial_weights=None, initial_biases=None): super(DeepSpeedTransformerLayer, self).__init__() self.config = config self.config.layer_id = DeepSpeedTransformerLayer.layer_id DeepSpeedTransformerLayer.layer_id = DeepSpeedTransformerLayer.layer_id + 1 print("DeepSpeed Transformer config is ", self.config.__dict__) if self.config.local_rank >= 0: get_accelerator().set_device(self.config.local_rank) if initial_weights is None and initial_biases is None: self.attn_qkvw = nn.Parameter(torch.Tensor(self.config.hidden_size * 3, self.config.hidden_size)) self.attn_qkvb = nn.Parameter(torch.Tensor(self.config.hidden_size * 3)) self.attn_ow = nn.Parameter(torch.Tensor(self.config.hidden_size, self.config.hidden_size)) self.attn_ob = nn.Parameter(torch.Tensor(self.config.hidden_size)) self.attn_nw = nn.Parameter(torch.Tensor(self.config.hidden_size)) self.attn_nb = nn.Parameter(torch.Tensor(self.config.hidden_size)) self.inter_w = nn.Parameter(torch.Tensor(self.config.intermediate_size, self.config.hidden_size)) self.inter_b = nn.Parameter(torch.Tensor(self.config.intermediate_size)) self.output_w = nn.Parameter(torch.Tensor(self.config.hidden_size, self.config.intermediate_size)) self.output_b = nn.Parameter(torch.Tensor(self.config.hidden_size)) self.norm_w = nn.Parameter(torch.Tensor(self.config.hidden_size)) self.norm_b = nn.Parameter(torch.Tensor(self.config.hidden_size)) self.init_transformer_weights(self.config.adjust_init_range) else: # For testing only. q = initial_weights[0].data k = initial_weights[1].data v = initial_weights[2].data self.attn_qkvw = nn.Parameter(torch.cat((q, k, v))) #self.attn_qkvw[i * self.config.hidden_size:(i + 1) * self.config.hidden_size] = \ # initial_weights[i].clone() #torch.empty_like(initial_weights[i]).data.copy_(initial_weights[i].data) self.attn_qkvb = nn.Parameter(torch.Tensor(self.config.hidden_size * 3)) self.attn_qkvb.data.zero_() self.attn_ow = initial_weights[3] self.attn_ob = initial_biases[3] self.attn_nw = initial_weights[4] self.attn_nb = initial_biases[4] self.inter_w = initial_weights[5] self.inter_b = initial_biases[5] self.output_w = initial_weights[6] self.output_b = initial_biases[6] self.norm_w = initial_weights[7] self.norm_b = initial_biases[7] # Load cuda modules if needed global transformer_cuda_module, stochastic_transformer_cuda_module if transformer_cuda_module is None and not self.config.stochastic_mode: transformer_cuda_module = TransformerBuilder().load() if stochastic_transformer_cuda_module is None and self.config.stochastic_mode: stochastic_transformer_cuda_module = StochasticTransformerBuilder().load() # create the layer in cuda kernels. cuda_module = stochastic_transformer_cuda_module if self.config.stochastic_mode else transformer_cuda_module create_layer_func = cuda_module.create_transformer_layer_fp16 if self.config.fp16 else cuda_module.create_transformer_layer_fp32 create_layer_func(self.config.layer_id, self.config.batch_size, self.config.hidden_size, self.config.heads, self.config.intermediate_size, self.config.attn_dropout_ratio, self.config.hidden_dropout_ratio, self.config.layer_norm_eps, self.config.seed, self.config.pre_layer_norm, self.config.test_gemm, self.config.attn_dropout_checkpoint, self.config.normalize_invertible, self.config.gelu_checkpoint, self.config.stochastic_mode) def init_transformer_weights(self, adjust_init_range=False): num_layers = self.config.num_hidden_layers output_std = self.config.initializer_range if adjust_init_range and self.config.local_rank == 0: print("Accounting for accumulation on the residual path") output_std = self.config.initializer_range / math.sqrt(2.0 * num_layers) self.attn_qkvw.data.normal_(mean=0.0, std=self.config.initializer_range) self.attn_qkvb.data.zero_() self.attn_ow.data.normal_(mean=0.0, std=output_std) self.attn_ob.data.zero_() self.attn_nw.data.fill_(1.0) self.attn_nb.data.zero_() self.inter_w.data.normal_(mean=0.0, std=self.config.initializer_range) self.inter_b.data.zero_() self.output_w.data.normal_(mean=0.0, std=output_std) self.output_b.data.zero_() self.norm_w.data.fill_(1.0) self.norm_b.data.zero_() def forward(self, hidden_states, attention_mask=None, head_mask=None, layer_head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, grads=None): self.config.is_grad_enabled = torch.is_grad_enabled() self.config.training = self.training return DeepSpeedTransformerFunction.apply(hidden_states, attention_mask, self, grads, self.config.layer_id, self.attn_qkvw, self.attn_qkvb, self.attn_ow, self.attn_ob, self.attn_nw, self.attn_nb, self.inter_w, self.inter_b, self.output_w, self.output_b, self.norm_w, self.norm_b, self.config)
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/ops/transformer/transformer.py
transformer.py
# DeepSpeed Team import json from deepspeed.utils.types import ActivationFuncType class TransformerConfig(): def __init__(self, hidden_size, intermediate_size, heads, num_hidden_layers): self.layer_id = -1 self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.heads = heads self.num_hidden_layers = num_hidden_layers class DeepSpeedInferenceConfig(TransformerConfig): """Initialize the DeepSpeed Transformer Config. Arguments: hidden_size: The hidden size of the transformer layer intermediate_size: The intermediate size of the feed-forward part of transformer layer heads: The number of heads in the self-attention of the transformer layer num_hidden_layers: The number of transformer layers layer_norm_eps: The epsilon value for the layer norm local_rank: Optional: The rank of GPU running the transformer kernel, it is not required to use if the model already set the current device, otherwise need to set it so that the transformer kernel can work on the right device mp_size (optional): This argument is mainly used to create the parameters on the kernel side using model-parallel architecture. If the client model already takes care of this, there is no need to pass this argument. fp16: Enable half-precision computation pre_layer_norm: Select between Pre-LN or Post-LN transformer architecture stochastic_mode: Enable for high performance, please note that this flag has some level of non-determinism and can produce different results on different runs. However, we have seen that by enabling it, the pretraining tasks such as BERT are not affected and can obtain a high accuracy level. On the other hand, for the downstream tasks, such as fine-tuning, we recommend to turn it off in order to be able to reproduce the same result through the regular kernel execution. scale_attention: If true, both q and k are scaled by 1/sqrt(attention_heads) before attention computation. return_tuple: if True, returns the transformer output as a tuple, otherwise returns as a tensor bigscience_bloom: This flag is added temporarily for supporting the BLOOM-176B model architecture. """ def __init__(self, hidden_size=-1, intermediate_size=-1, heads=-1, num_hidden_layers=-1, layer_norm_eps=1e-12, local_rank=-1, mp_size=1, fp16=False, q_int8=False, pre_layer_norm=True, stochastic_mode=False, scale_attention=True, triangular_masking=True, local_attention=False, window_size=256, rotary_dim=-1, rotate_half=False, rotate_every_two=True, return_tuple=True, mlp_after_attn=True, mlp_act_func_type=ActivationFuncType.GELU, training_mp_size=1, bigscience_bloom=False, max_out_tokens=1024, min_out_tokens=1, enable_qkv_quantization=False, use_mup=False, scale_attn_by_inverse_layer_idx=False, return_single_tuple=False, set_empty_params=False, transposed_mode=False): super(DeepSpeedInferenceConfig, self).__init__(hidden_size, (intermediate_size if intermediate_size > 0 else 4 * hidden_size), heads, num_hidden_layers) self.fp16 = fp16 self.pre_layer_norm = pre_layer_norm self.local_rank = local_rank self.stochastic_mode = stochastic_mode self.epsilon = layer_norm_eps self.mp_size = mp_size self.q_int8 = q_int8 self.scale_attention = scale_attention self.triangular_masking = triangular_masking self.local_attention = local_attention self.window_size = window_size self.rotary_dim = rotary_dim self.rotate_half = rotate_half self.rotate_every_two = rotate_every_two self.return_tuple = return_tuple self.mlp_after_attn = mlp_after_attn self.mlp_act_func_type = mlp_act_func_type self.specialized_mode = False self.training_mp_size = training_mp_size self.bigscience_bloom = bigscience_bloom self.max_out_tokens = max_out_tokens self.min_out_tokens = min_out_tokens self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx self.enable_qkv_quantization = enable_qkv_quantization self.use_mup = use_mup self.return_single_tuple = return_single_tuple self.set_empty_params = set_empty_params self.transposed_mode = transposed_mode @classmethod def from_dict(cls, json_object): config = DeepSpeedInferenceConfig() for key, value in json_object.items(): config.__dict__[key] = value return config @classmethod def from_json_file(cls, json_file): with open(json_file, "r", encoding='utf-8') as reader: text = reader.read() return cls.from_dict(json.loads(text))
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/ops/transformer/inference/config.py
config.py
# DeepSpeed Team import math import torch import torch.nn as nn from deepspeed import comm as dist from deepspeed.accelerator import get_accelerator from .op_binding import MLPGemmOp, VectorMatMulOp, GELUGemmOp, ResidualAddOp class DeepSpeedMLP(nn.Module): def __init__(self, config, mp_group=None, q_scales=None, q_groups=1, merge_count=1, mlp_extra_grouping=False): super(DeepSpeedMLP, self).__init__() self.config = config data_type = torch.int8 if config.q_int8 else torch.half if config.fp16 else torch.float data_type_fp = torch.half if config.fp16 else torch.float device = get_accelerator().current_device_name() if self.config.set_empty_params: self.attn_nw = None self.attn_nb = None self.inter_w = None self.inter_b = None self.output_w = None self.output_b = None else: self.attn_nw = nn.Parameter(torch.empty(self.config.hidden_size, dtype=data_type_fp, device=device), requires_grad=False) self.attn_nb = nn.Parameter(torch.empty(self.config.hidden_size, dtype=data_type_fp, device=device), requires_grad=False) intm_size_per_partition = self.config.intermediate_size // self.config.mp_size self.inter_w = nn.Parameter(torch.empty(self.config.hidden_size, intm_size_per_partition, dtype=data_type, device=device), requires_grad=False) self.inter_b = nn.Parameter(torch.empty(intm_size_per_partition, dtype=data_type_fp, device=device), requires_grad=False) self.output_w = nn.Parameter(torch.empty(intm_size_per_partition, self.config.hidden_size, dtype=data_type, device=device), requires_grad=False) self.output_b = nn.Parameter(torch.empty(self.config.hidden_size, dtype=data_type_fp, device=device), requires_grad=False) # used for quantization self.q_scales = q_scales self.q_groups = q_groups * 2 if mlp_extra_grouping else q_groups self.merge_count = int(math.log2(merge_count)) self.mp_group = mp_group self.mlp_gemm_func = MLPGemmOp(config) self.vector_matmul_func = VectorMatMulOp(config) self.fused_gemm_gelu = GELUGemmOp(config) self.residual_add_func = ResidualAddOp(config) def forward(self, input, residual, residual_norm, bias): residual_add = None if self.attn_nw is None: output = self.fused_gemm_gelu(input=residual_norm, weight=self.inter_w, bias=self.inter_b, weight_out=self.output_w) else: output, residual_add = self.mlp_gemm_func(input=input, residual=residual, input_bias=bias, weight_interm=self.inter_w, weight_out=self.output_w, bias=self.inter_b, gamma=self.attn_nw, beta=self.attn_nb) residual = self.residual_add_func(hidden_state=output, residual=residual, attention_output=input, attention_bias=bias if bias is not None else self.output_b, final_bias=self.output_b, add_bias=bias is not None, residual_add=residual_add) if self.mp_group is not None and dist.get_world_size(group=self.mp_group) > 1: dist.all_reduce(residual, group=self.mp_group) return residual
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/ops/transformer/inference/ds_mlp.py
ds_mlp.py
# DeepSpeed Team import torch import torch.nn as nn from deepspeed import module_inject from .diffusers_attention import DeepSpeedDiffusersAttention from .bias_add import nhwc_bias_add from .diffusers_2d_transformer import Diffusers2DTransformerConfig from deepspeed.ops.op_builder import InferenceBuilder, SpatialInferenceBuilder # Ops will be loaded on demand transformer_cuda_module = None spatial_cuda_module = None def load_transformer_module(): global transformer_cuda_module if transformer_cuda_module is None: transformer_cuda_module = InferenceBuilder().load() return transformer_cuda_module def load_spatial_module(): global spatial_cuda_module if spatial_cuda_module is None: spatial_cuda_module = SpatialInferenceBuilder().load() return spatial_cuda_module class DeepSpeedDiffusersTransformerBlock(nn.Module): def __init__(self, equivalent_module: nn.Module, config: Diffusers2DTransformerConfig): super(DeepSpeedDiffusersTransformerBlock, self).__init__() self.quantizer = module_inject.GroupQuantizer(q_int8=config.int8_quantization) # Ensure ops are built by the time we start running self.config = config self.ff1_w = self.quantizer.quantize( nn.Parameter(equivalent_module.ff.net[0].proj.weight.data, requires_grad=False)) self.ff1_b = nn.Parameter(equivalent_module.ff.net[0].proj.bias.data, requires_grad=False) self.ff2_w = self.quantizer.quantize(nn.Parameter(equivalent_module.ff.net[2].weight.data, requires_grad=False)) self.ff2_b = nn.Parameter(equivalent_module.ff.net[2].bias.data, requires_grad=False) self.norm1_g = nn.Parameter(equivalent_module.norm1.weight.data, requires_grad=False) self.norm1_b = nn.Parameter(equivalent_module.norm1.bias.data, requires_grad=False) self.norm1_eps = equivalent_module.norm1.eps self.norm2_g = nn.Parameter(equivalent_module.norm2.weight.data, requires_grad=False) self.norm2_b = nn.Parameter(equivalent_module.norm2.bias.data, requires_grad=False) self.norm2_eps = equivalent_module.norm2.eps self.norm3_g = nn.Parameter(equivalent_module.norm3.weight.data, requires_grad=False) self.norm3_b = nn.Parameter(equivalent_module.norm3.bias.data, requires_grad=False) self.norm3_eps = equivalent_module.norm3.eps self.attn_1 = equivalent_module.attn1 self.attn_2 = equivalent_module.attn2 # Pull the bias in if we can if isinstance(self.attn_1, DeepSpeedDiffusersAttention): self.attn_1.do_out_bias = False self.attn_1_bias = self.attn_1.attn_ob else: self.attn_1_bias = nn.Parameter(torch.zeros_like(self.norm2_g), requires_grad=False) # Pull the bias in if we can if isinstance(self.attn_2, DeepSpeedDiffusersAttention): self.attn_2.do_out_bias = False self.attn_2_bias = self.attn_2.attn_ob else: self.attn_2_bias = nn.Paramaeter(torch.zeros_like(self.norm3_g), requires_grad=False) self.transformer_cuda_module = load_transformer_module() load_spatial_module() def forward(self, hidden_states, context=None, timestep=None, **kwargs): # In v0.12.0 of diffuser, several new kwargs were added. Capturing # those with kwargs to maintain backward compatibility # In v0.11.0 of diffusers, the kwarg was changed from 'context' to 'encoder_hidden_states' # This is so we can support older and newer versions of diffusers if "encoder_hidden_states" in kwargs and kwargs["encoder_hidden_states"] != None: context = kwargs["encoder_hidden_states"] out_norm_1 = self.transformer_cuda_module.layer_norm(hidden_states, self.norm1_g, self.norm1_b, self.norm1_eps) out_attn_1 = self.attn_1(out_norm_1) out_norm_2, out_attn_1 = self.transformer_cuda_module.layer_norm_residual_store_pre_ln_res( out_attn_1, self.attn_1_bias, hidden_states, self.norm2_g, self.norm2_b, self.norm2_eps) out_attn_2 = self.attn_2(out_norm_2, context=context) out_norm_3, out_attn_2 = self.transformer_cuda_module.layer_norm_residual_store_pre_ln_res( out_attn_2, self.attn_2_bias, out_attn_1, self.norm3_g, self.norm3_b, self.norm3_eps) out_ff1 = nn.functional.linear(out_norm_3, self.ff1_w) out_geglu = self.transformer_cuda_module.bias_geglu(out_ff1, self.ff1_b) out_ff2 = nn.functional.linear(out_geglu, self.ff2_w) return nhwc_bias_add(out_ff2, self.ff2_b, other=out_attn_2)
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/ops/transformer/inference/diffusers_transformer_block.py
diffusers_transformer_block.py
# DeepSpeed Team """ Inspired by original Triton implementation: https://github.com/openai/triton/blob/b244db06da24a87453a40ad35b085ee37dac3705/python/tutorials/06-fused-attention.py """ import torch import triton import triton.language as tl @triton.jit def _fwd_kernel( Q, K, V, sm_scale, TMP, Out, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_oz, stride_oh, stride_om, stride_on, Z, H, N_CTX, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, ): start_m = tl.program_id(0) off_hz = tl.program_id(1) # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) offs_d = tl.arange(0, BLOCK_DMODEL) off_q = off_hz * stride_qh + offs_m[:, None] * stride_qm + offs_d[None, :] * stride_qk off_k = off_hz * stride_kh + offs_n[:, None] * stride_kn + offs_d[None, :] * stride_kk off_v = off_hz * stride_vh + offs_n[:, None] * stride_qm + offs_d[None, :] * stride_qk # Initialize pointers to Q, K, V q_ptrs = Q + off_q k_ptrs = K + off_k v_ptrs = V + off_v # initialize pointer to m and l t_ptrs = TMP + off_hz * N_CTX + offs_m m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") l_i = tl.zeros([BLOCK_M], dtype=tl.float32) acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) # load q: it will stay in SRAM throughout q = tl.load(q_ptrs) # loop over k, v and update accumulator for start_n in range(0, N_CTX, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) # -- compute qk ---- k = tl.load(k_ptrs + start_n * stride_kn) qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) qk += tl.dot(q, k, trans_b=True) qk *= sm_scale # -- compute m_ij, p, l_ij m_ij = tl.max(qk, 1) p = tl.exp(qk - m_ij[:, None]) l_ij = tl.sum(p, 1) # -- update m_i and l_i m_i_new = tl.maximum(m_i, m_ij) alpha = tl.exp(m_i - m_i_new) beta = tl.exp(m_ij - m_i_new) l_i_new = alpha * l_i + beta * l_ij # -- update output accumulator -- # scale p p_scale = beta / l_i_new p = p * p_scale[:, None] # scale acc acc_scale = l_i / l_i_new * alpha tl.store(t_ptrs, acc_scale) acc_scale = tl.load(t_ptrs) # BUG: have to store and immediately load acc = acc * acc_scale[:, None] # update acc v = tl.load(v_ptrs + start_n * stride_vk) p = p.to(tl.float16) acc += tl.dot(p, v) # update m_i and l_i l_i = l_i_new m_i = m_i_new # initialize pointers to output offs_n = tl.arange(0, BLOCK_DMODEL) off_o = off_hz * stride_oh + offs_m[:, None] * stride_om + offs_n[None, :] * stride_on out_ptrs = Out + off_o tl.store(out_ptrs, acc) class triton_flash_attn(torch.nn.Module): def __init__(self, ): super(triton_flash_attn, self).__init__() def forward(self, q, k, v, sm_scale, block_128=True): BLOCK = 128 if block_128 else 64 # shape constraints Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1] o = torch.empty_like(q) grid = (triton.cdiv(q.shape[2], BLOCK), q.shape[0] * q.shape[1]) tmp = torch.empty((q.shape[0] * q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32) num_warps = 4 if Lk <= 64 else 8 _fwd_kernel[grid]( q, k, v, sm_scale, tmp, o, q.stride(0), q.stride(1), q.stride(2), q.stride(3), k.stride(0), k.stride(1), k.stride(2), k.stride(3), v.stride(0), v.stride(1), v.stride(2), v.stride(3), o.stride(0), o.stride(1), o.stride(2), o.stride(3), k.shape[0], k.shape[1], k.shape[2], BLOCK_M=BLOCK, BLOCK_N=BLOCK, BLOCK_DMODEL=Lk, num_warps=num_warps, num_stages=1, ) return o
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/ops/transformer/inference/triton_ops.py
triton_ops.py
# DeepSpeed Team import json import math import torch from torch.autograd import Function #from ...inference.engine import inference_cuda_module, specialized_mode # Cuda modules will be imported if needed inference_cuda_module = None specialized_mode = None import torch.nn as nn from .ds_attention import DeepSpeedSelfAttention from .config import DeepSpeedInferenceConfig from ....moe.sharded_moe import TopKGate from deepspeed import comm as dist from deepspeed.accelerator import get_accelerator from deepspeed.ops.op_builder import InferenceBuilder class DeepSpeedMoEInferenceConfig(DeepSpeedInferenceConfig): """Initialize the DeepSpeed Transformer Config. Arguments: hidden_size: The hidden size of the transformer layer intermediate_size: The intermediate size of the feed-forward part of transformer layer heads: The number of heads in the self-attention of the transformer layer num_hidden_layers: The number of transformer layers layer_norm_eps: The epsilon value for the layer norm local_rank: Optional: The rank of GPU running the transformer kernel, it is not required to use if the model already set the current device, otherwise need to set it so that the transformer kernel can work on the right device mp_size (optional): This argument is mainly used to create the parameters on the kernel side using model-parallel architecture. If the client model already takes care of this, there is no need to pass this argument. fp16: Enable half-precision computation pre_layer_norm: Select between Pre-LN or Post-LN transformer architecture stochastic_mode: Enable for high performance, please note that this flag has some level of non-determinism and can produce different results on different runs. However, we have seen that by enabling it, the pretraining tasks such as BERT are not affected and can obtain a high accuracy level. On the other hand, for the downstream tasks, such as fine-tuning, we recommend to turn it off in order to be able to reproduce the same result through the regular kernel execution. scale_attention: If true, both q and k are scaled by 1/sqrt(attention_heads) before attention computation. return_tuple: if True, returns the transformer output as a tuple, otherwise returns as a tensor """ def __init__(self, hidden_size=-1, intermediate_size=-1, heads=-1, num_hidden_layers=-1, layer_norm_eps=1e-12, local_rank=-1, mp_size=1, fp16=False, q_int8=False, pre_layer_norm=True, stochastic_mode=False, scale_attention=True, triangular_masking=True, local_attention=False, window_size=256, return_tuple=True, moe_experts=1, global_experts=1, k=1, capacity_factor=1., eval_capacity_factor=1., min_capacity=1, noisy_gate_policy=None, drop_tokens=True, use_rts=False, mlp_type='standard', scale_attn_by_inverse_layer_idx=False): super(DeepSpeedMoEInferenceConfig, self).__init__(hidden_size, (intermediate_size if intermediate_size > 0 else 4 * hidden_size), heads, num_hidden_layers, layer_norm_eps, local_rank, mp_size, fp16, q_int8, pre_layer_norm, stochastic_mode, scale_attention, triangular_masking, local_attention, window_size, return_tuple) self.moe_experts = moe_experts self.k = k self.capacity_factor = capacity_factor self.eval_capacity_factor = eval_capacity_factor self.min_capacity = min_capacity self.noisy_gate_policy = noisy_gate_policy self.drop_tokens = drop_tokens self.use_rts = use_rts self.global_experts = global_experts self.mlp_type = mlp_type self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx @classmethod def from_dict(cls, json_object): config = DeepSpeedInferenceConfig() for key, value in json_object.items(): config.__dict__[key] = value return config @classmethod def from_json_file(cls, json_file): with open(json_file, "r", encoding='utf-8') as reader: text = reader.read() return cls.from_dict(json.loads(text)) class DeepSpeedMLPFunction(Function): @staticmethod def forward(ctx, input, inter_w, inter_b, config, output_b, output_w, q_scales, q_groups, merge_count, mp_group, async_op): if config.q_int8: intermediate = inference_cuda_module.fused_gemm_gelu_int8(input, inter_w, inter_b, config.epsilon, q_scales[2], (q_groups * (2**merge_count)), config.pre_layer_norm) output = inference_cuda_module.vector_matmul_int8(intermediate, output_w, q_scales[3], q_groups, (merge_count)) else: mlp_gemm_func = inference_cuda_module.fused_gemm_gelu_fp16 if config.fp16 else \ inference_cuda_module.fused_gemm_gelu_fp32 output = mlp_gemm_func(input, inter_w, inter_b, output_w, config.epsilon, config.pre_layer_norm, async_op) if mp_group is not None and dist.get_world_size(group=mp_group) > 1: dist.all_reduce(output, group=mp_group, async_op=async_op) return output + output_b @staticmethod def backward(ctx, grad_output): raise RuntimeError('You are running with DeepSpeed Inference mode. \ Please switch to Training mode for running backward!') class DeepSpeedMoEMLP(nn.Module): def __init__(self, config, q_scales=None, q_groups=1, merge_count=1, mlp_extra_grouping=False, mp_group=None): super(DeepSpeedMoEMLP, self).__init__() self.config = config self.attn_nw = nn.Parameter(torch.Tensor(self.config.hidden_size)) self.attn_nb = nn.Parameter(torch.Tensor(self.config.hidden_size)) interm_size = self.config.intermediate_size // (1 if mp_group is None else dist.get_world_size(group=mp_group)) self.inter_w = nn.Parameter(torch.Tensor(self.config.hidden_size, interm_size)) self.inter_b = nn.Parameter(torch.Tensor(interm_size)) self.output_w = nn.Parameter(torch.Tensor((interm_size), self.config.hidden_size)) self.output_b = nn.Parameter(torch.Tensor(self.config.hidden_size)) # used for quantization self.q_scales = q_scales self.q_groups = q_groups * 2 if mlp_extra_grouping else q_groups self.merge_count = int(math.log2(merge_count)) self.mp_group = mp_group def forward(self, input, async_op=False): return DeepSpeedMLPFunction.apply(input, self.inter_w, self.inter_b, self.config, self.output_b, self.output_w, self.q_scales, self.q_groups, self.merge_count, self.mp_group, async_op) class DeepSpeedMoEInference(nn.Module): """Initialize the DeepSpeed MoE Transformer Layer. Arguments: layer_id: The layer index starting from 0, e.g. if model has 24 transformer layers, layer_id will be 0,1,2...23 when each layer object is instantiated config: An object of DeepSpeedInferenceConfig mp_group: Model parallelism group initialized on the modeling side. quantize_scales: This argument groups all the layers' scales used for quantization quantize_groups: Number of groups used for quantizing the model merge_count: Shows the number of model-parallel checkpoints merged before running inference. We use this argument to control the quantization scale for the model parameters if a bigger quantize-grouping than 1 is used. mlp_extra_grouping: This flag is used to show a 2x higher number of groups used for the MLP part of a Transformer layer. We use this feature for quantization to reduce the convergence impact for specific downstream tasks. """ layer_id = 0 def __init__(self, config, mp_group=None, ep_group=None, expert_mp_group=None, quantize_scales=None, quantize_groups=1, merge_count=1, mlp_extra_grouping=False): super(DeepSpeedMoEInference, self).__init__() self.config = config self.config.layer_id = DeepSpeedMoEInference.layer_id global inference_cuda_module global specialized_mode if inference_cuda_module is None: specialized_mode = False # InferenceSpecializedBuilder is not among DeepSpeed provided builder yet, so we infer by builder name string builder = get_accelerator().create_op_builder("InferenceSpecializedBuilder") if builder != None and builder.is_compatible(): inference_cuda_module = builder.load() specialized_mode = True else: inference_cuda_module = InferenceBuilder().load() self.config.specialized_mode = specialized_mode DeepSpeedMoEInference.layer_id += 1 self.attention = DeepSpeedSelfAttention(self.config, mp_group, quantize_scales, quantize_groups, merge_count) self.attn_nw = nn.Parameter(torch.Tensor(self.config.hidden_size)) self.attn_nb = nn.Parameter(torch.Tensor(self.config.hidden_size)) self.norm_w = nn.Parameter(torch.Tensor(self.config.hidden_size)) self.norm_b = nn.Parameter(torch.Tensor(self.config.hidden_size)) if config.mlp_type == 'residual': self.res_mlp = DeepSpeedMoEMLP(config, quantize_scales, quantize_groups, merge_count, mlp_extra_grouping, mp_group) self.res_coef = nn.Parameter(torch.Tensor(self.config.hidden_size, 2)) self.coef_func = inference_cuda_module.softmax_fp16 if self.config.fp16 or self.config.q_int8 else \ inference_cuda_module.softmax_fp32 self.vector_matmul_func = inference_cuda_module.vector_matmul_fp16 if config.fp16 else \ inference_cuda_module.vector_matmul_fp32 config.mp_size = 1 self.mlp = nn.ModuleList( DeepSpeedMoEMLP(config, quantize_scales, quantize_groups, merge_count, mlp_extra_grouping, expert_mp_group) for i in range(self.config.moe_experts)) self.moe_gate = TopKGate(self.config.hidden_size, self.config.global_experts, self.config.k, self.config.capacity_factor, self.config.eval_capacity_factor, self.config.min_capacity, self.config.noisy_gate_policy, self.config.drop_tokens, self.config.use_rts) self.ep_group = ep_group self.mp_group = mp_group self.expert_mp_group = expert_mp_group print("DeepSpeed MoE Transformer Inference config is ", self.config.__dict__) self.bias_residual_func = inference_cuda_module.bias_residual_fp16 if config.fp16 or config.q_int8 else \ inference_cuda_module.bias_residual_fp32 self.ds_layernorm = inference_cuda_module.layer_norm_fp16 if self.config.fp16 or self.config.q_int8 else \ inference_cuda_module.layer_norm_fp32 self.einsum_sec_sm_ecm = inference_cuda_module.einsum_sec_sm_ecm_fp16 if self.config.fp16 or self.config.q_int8 else \ inference_cuda_module.einsum_sec_sm_ecm_fp32 def res_coef_func(self, inp, async_op): inp = self.vector_matmul_func(inp, self.res_coef, async_op) return self.coef_func(inp, torch.empty(1), False, False, False, 256, async_op) def moe_gate_einsum(self, attention_output): _, combined_weights, dispatch_mask, _ = self.moe_gate( attention_output.view(-1, self.config.hidden_size), None, ) dispatched_attention = self.einsum_sec_sm_ecm(dispatch_mask.type_as(attention_output), attention_output.view(-1, self.config.hidden_size)) return dispatched_attention, combined_weights def expert_exec(self, dispatched_input): dispatched_input = dispatched_input.reshape(self.config.global_experts // self.config.moe_experts, self.config.moe_experts, -1, self.config.hidden_size) chunks = dispatched_input.chunk(self.config.moe_experts, dim=1) expert_outputs = torch.empty(( self.config.moe_experts, chunks[0].shape[0], ) + chunks[0].shape[2:], dtype=dispatched_input.dtype, device=dispatched_input.device) for chunk, expert in zip(chunks, range(len(self.mlp))): expert_outputs[expert] = self.mlp[expert](chunk.view(-1, dispatched_input.shape[-2], dispatched_input.shape[-1])) return expert_outputs def _alltoall(self, dispatched_attention): if dist.get_world_size(group=self.ep_group) > 1: dispatched_input = torch.empty_like(dispatched_attention) dist.all_to_all_single(dispatched_input, dispatched_attention, group=self.ep_group) return dispatched_input else: return dispatched_attention def scale_expert_output(self, attention_output, expert_output, combined_weights): combined_output = torch.matmul( combined_weights.type_as(attention_output).reshape(combined_weights.shape[0], -1), expert_output.reshape(-1, expert_output.shape[-1])) return combined_output.reshape(attention_output.shape) def forward(self, input, input_mask=None, attention_mask=None, head_mask=None, layer_past=None, get_key_value=False, get_present=False, encoder_output=None, enc_dec_attn_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, use_cache=False, output_attentions=False): get_present = (get_present or get_key_value or use_cache) input_mask = input_mask if attention_mask is None else attention_mask input_type = input.dtype if (self.config.fp16 or self.config.q_int8) \ and input.dtype == torch.float: input = input.half() with torch.no_grad(): attention_output = self.attention(input, input_mask, head_mask, layer_past, get_present, encoder_hidden_states, encoder_attention_mask, output_attentions, self.norm_w, self.norm_b) if get_present: attention_output, p_key, p_value = attention_output[0:3] presents = (p_key, p_value) elif output_attentions: attention_output, _, _, context_output = attention_output[0:4] else: attention_output = attention_output[0] residual_add = attention_output + self.attention.attn_ob attention_output = self.ds_layernorm(residual_add, self.attn_nw, self.attn_nb, self.config.epsilon) if self.config.mlp_type == 'residual': res_mlp_out = self.res_mlp(attention_output, async_op=True) res_coef_out = self.res_coef_func(attention_output, async_op=True) if self.expert_mp_group is not None: tensor_list = [ torch.empty_like(attention_output) for _ in range(dist.get_world_size(group=self.expert_mp_group)) ] tensor_list[dist.get_rank(group=self.expert_mp_group)] = attention_output dist.all_gather(tensor_list, attention_output, group=self.expert_mp_group) attention_output = torch.cat(tensor_list).contiguous() ############## MoE Gating + Experts ############### dispatched_attention, combined_weights = self.moe_gate_einsum(attention_output) dispatched_input = self._alltoall(dispatched_attention) expert_outputs = self.expert_exec(dispatched_input) expert_output = self._alltoall(expert_outputs) output = self.scale_expert_output(attention_output, expert_output, combined_weights) ################################################ if self.expert_mp_group is not None: output = output.split(output.shape[0] // dist.get_world_size(group=self.expert_mp_group), dim=0)[dist.get_rank(group=self.expert_mp_group)] if self.config.mlp_type == 'residual': inference_cuda_module.moe_res_matmul(res_mlp_out, res_coef_out, output) output = self.bias_residual_func(output, residual_add, torch.empty(1)) if not self.config.pre_layer_norm: output = self.ds_layernorm(output, self.norm_w, self.norm_b, self.config.epsilon) if input_type != output.dtype: output = output.to(input_type) if get_present: output = (output, presents) if self.config.return_tuple: return output if type(output) is tuple else (output, ) else: return output
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/ops/transformer/inference/moe_inference.py
moe_inference.py
# DeepSpeed Team import math import torch import torch.nn as nn from deepspeed import comm as dist from deepspeed.accelerator import get_accelerator from .op_binding import LinearOp, VectorMatMulOp, SoftmaxContextOp, QKVGemmOp, SoftmaxOp minus_inf = -10000.0 class DeepSpeedSelfAttention(nn.Module): num_layers = 0 _qkv_buffers = [] def __init__(self, config, mp_group=None, q_scales=None, q_groups=1, merge_count=1): super(DeepSpeedSelfAttention, self).__init__() self.config = config data_type = torch.int8 if config.q_int8 else torch.half if config.fp16 else torch.float data_type_fp = torch.half if config.fp16 else torch.float self.config.layer_id = DeepSpeedSelfAttention.num_layers DeepSpeedSelfAttention.num_layers = DeepSpeedSelfAttention.num_layers + 1 device = get_accelerator().current_device_name() #if config.bigscience_bloom else 'cpu' if self.config.set_empty_params: self.attn_qw = None self.attn_qb = None self.attn_kw = None self.attn_kb = None self.attn_vw = None self.attn_vb = None self.attn_qkvw = None self.attn_qkvb = None self.attn_ow = None self.attn_ob = None else: qkv_size_per_partition = (self.config.hidden_size // self.config.mp_size) * 3 self.attn_qkvw = nn.Parameter(torch.empty(self.config.hidden_size, qkv_size_per_partition, dtype=data_type, device=device), requires_grad=False) self.attn_qkvb = nn.Parameter(torch.empty(qkv_size_per_partition, dtype=data_type_fp, device=device), requires_grad=False) out_size_per_partition = self.config.hidden_size // self.config.mp_size self.attn_ow = nn.Parameter(torch.empty(out_size_per_partition, self.config.hidden_size, dtype=data_type, device=device), requires_grad=False) self.attn_ob = nn.Parameter(torch.empty(self.config.hidden_size, dtype=data_type_fp, device=device), requires_grad=False) self.num_attention_heads_per_partition = self.config.heads // self.config.mp_size self.hidden_size_per_partition = self.config.hidden_size // self.config.mp_size self.hidden_size_per_attention_head = self.config.hidden_size // self.config.heads self.mp_group = mp_group # used for quantization self.q_scales = q_scales self.q_groups = q_groups self.merge_count = int(math.log2(merge_count)) self.norm_factor = math.sqrt(self.config.hidden_size // self.config.heads) if not config.use_mup: self.norm_factor = math.sqrt(self.norm_factor) if self.config.scale_attn_by_inverse_layer_idx is True: self.norm_factor *= math.sqrt(self.config.layer_id + 1) # https://github.com/huggingface/transformers/blob/v4.24.0/src/transformers/models/gpt2/modeling_gpt2.py#L191 self.qkv_func = QKVGemmOp(config) self.score_context_func = SoftmaxContextOp(config) self.linear_func = LinearOp(config) self.vector_matmul_func = VectorMatMulOp(config) if len(DeepSpeedSelfAttention._qkv_buffers) == 0: DeepSpeedSelfAttention._qkv_buffers = [ torch.empty(self.hidden_size_per_partition * 3, self.config.hidden_size, dtype=data_type_fp, device=device), torch.empty(self.hidden_size_per_partition * 3, dtype=data_type_fp, device=device) ] def compute_attention(self, qkv_out, input_mask, layer_past, alibi): if isinstance(qkv_out, list): qkv_out = qkv_out[0] no_masking = input_mask is None if no_masking: input_mask = torch.empty(1) attn_key_value = self.score_context_func( query_key_value=qkv_out, attn_mask=((1 - input_mask).to(qkv_out.dtype) * minus_inf) if input_mask.dtype == torch.int64 else input_mask, heads=self.num_attention_heads_per_partition, norm_factor=(1 / self.norm_factor if self.config.scale_attention else 1.0), no_masking=no_masking, layer_id=self.config.layer_id, num_layers=DeepSpeedSelfAttention.num_layers, alibi=alibi) context_layer, key_layer, value_layer = attn_key_value return context_layer, key_layer, value_layer def _merge_qkv(self): qvkw = DeepSpeedSelfAttention._qkv_buffers[0] qvkw[:self.hidden_size_per_partition, :] = self.attn_qw qvkw[self.hidden_size_per_partition:2 * self.hidden_size_per_partition, :] = self.attn_kw qvkw[2 * self.hidden_size_per_partition:, :] = self.attn_vw if self.attn_qb is not None: qvkb = DeepSpeedSelfAttention._qkv_buffers[1] qvkb[:self.hidden_size_per_partition] = self.attn_qb qvkb[self.hidden_size_per_partition:2 * self.hidden_size_per_partition] = self.attn_kb qvkb[2 * self.hidden_size_per_partition:] = self.attn_vb return DeepSpeedSelfAttention._qkv_buffers def forward(self, input, input_mask, head_mask=None, layer_past=None, get_present=False, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions=False, norm_w=None, norm_b=None, alibi=None): if self.attn_qkvw is None: self._attn_qkvw, self._attn_qkvb = self._merge_qkv() else: self._attn_qkvw = self.attn_qkvw self._attn_qkvb = self.attn_qkvb if not self.config.pre_layer_norm: qkv_out = self.linear_func(input=input, weight=self._attn_qkvw, bias=self._attn_qkvb, add_bias=self.attn_qkvb is not None, do_flash_attn=False, num_heads=self.num_attention_heads_per_partition, num_layers=DeepSpeedSelfAttention.num_layers) else: qkv_out = self.qkv_func(input=input, weight=self._attn_qkvw, bias=(self._attn_qkvb if self._attn_qkvb is not None else norm_b), gamma=norm_w, beta=norm_b, add_bias=(self.attn_qkvb is not None), num_layers=DeepSpeedSelfAttention.num_layers, num_heads=self.num_attention_heads_per_partition) context_layer, key_layer, value_layer = self.compute_attention(qkv_out=qkv_out, input_mask=input_mask, layer_past=layer_past, alibi=alibi) output = self.vector_matmul_func(input=context_layer, weight=self.attn_ow) inp_norm = qkv_out[-1] if self.config.mlp_after_attn and self.mp_group is not None and dist.get_world_size(group=self.mp_group) > 1: dist.all_reduce(output, group=self.mp_group) return (output, key_layer, value_layer, context_layer, inp_norm) class BloomSelfAttention(DeepSpeedSelfAttention): def __init__(self, *args, **kwargs): super(BloomSelfAttention, self).__init__(*args, **kwargs) self.softmax_func = SoftmaxOp(self.config) ########### This part is taken/modified form the HF modeling_bloom.py ################ # Reference: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py def _transpose_for_context(self, x): x = x.permute(0, 2, 1, 3).contiguous() new_x_layer_shape = x.size()[:-2] + \ (self.hidden_size_per_partition,) return x.view(*new_x_layer_shape).contiguous() def _split_tensor_along_last_dim(self, tensor, num_partitions, contiguous_split_chunks=True): """Split a tensor along its last dimension. Args: tensor: ([`torch.tensor`], *required*): input tensor to split num_partitions ([`int`], *required*): number of partitions to split the tensor contiguous_split_chunks ([`bool`], *optional*, default=`False`):: If True, make each chunk contiguous in memory. """ # Get the size and dimension. last_dim = tensor.dim() - 1 numerator, denominator = tensor.size()[last_dim], num_partitions if not (numerator % denominator == 0): raise ValueError(f"{numerator} is not divisible by {denominator}") last_dim_size = numerator // denominator # Split. tensor_list = torch.split(tensor, last_dim_size, dim=last_dim) # Note: torch.split does not create contiguous tensors by default. if contiguous_split_chunks: return tuple(chunk.contiguous() for chunk in tensor_list) return tensor_list def compute_attention(self, qkv_out, input_mask, layer_past, alibi): if isinstance(qkv_out, list): qkv_out = qkv_out[0] no_masking = input_mask is None if no_masking: input_mask = torch.empty(1) mixed_x_layer = qkv_out alibi = alibi.to(get_accelerator().current_device_name()) head_dim = self.hidden_size_per_partition // self.num_attention_heads_per_partition new_tensor_shape = mixed_x_layer.size()[:-1] + (self.num_attention_heads_per_partition, 3 * head_dim) mixed_x_layer = mixed_x_layer.view(*new_tensor_shape) query_layer, key_layer, value_layer = self._split_tensor_along_last_dim(mixed_x_layer, 3) # [batch_size, head_dim, q_length, k_length] output_size = (query_layer.size(0), query_layer.size(2), query_layer.size(1), key_layer.size(1)) # [batch_size, q_length, num_heads, head_dim] -> [q_length, batch_size * num_heads, head_dim] query_layer = query_layer.transpose(1, 2).reshape(output_size[0] * output_size[1], output_size[2], -1) # [batch_size, k_length, num_heads, head_dim] -> [k_length, batch_size * num_heads, head_dim] key_layer = key_layer.transpose(1, 2).reshape(output_size[0] * output_size[1], output_size[3], -1).transpose(-1, -2) value_layer = value_layer.transpose(1, 2).reshape(output_size[0] * output_size[1], output_size[3], -1) if layer_past is not None: past_key, past_value = layer_past # concatenate along seq_length dimension -> [batch_size, qk_length, num_heads, head_dim] key_layer = torch.cat((past_key.type_as(key_layer), key_layer), dim=-1) value_layer = torch.cat((past_value.type_as(value_layer), value_layer), dim=-2) presents = (key_layer, value_layer) # Raw attention scores. [batch_size * num_heads, q_length, k_length] matmul_result = torch.matmul(query_layer, key_layer) # change view to [batch_size, num_heads, q_length, k_length] attention_scores = matmul_result.view(output_size[0], output_size[1], output_size[2], -1) offset = dist.get_rank() * self.num_attention_heads_per_partition if dist.is_initialized() else 0 attention_probs = self.softmax_func(attn_scores=attention_scores, attn_mask=((1 - input_mask).half() * minus_inf), alibi=alibi, triangular=(self.config.triangular_masking and (attention_scores.shape[-2] > 1)), recompute=False, local_attention=False, window_size=1, async_op=False, layer_scale=1 / (self.norm_factor * self.norm_factor), head_offset=offset) # change view [batch_size x num_heads, q_length, k_length] attention_probs_reshaped = attention_probs.view(*matmul_result.shape) # matmul: [batch_size * num_heads, q_length, head_dim] context_layer = torch.bmm(attention_probs_reshaped, value_layer) # change view [batch_size, num_heads, q_length, head_dim] context_layer = context_layer.view( context_layer.size(0) // self.num_attention_heads_per_partition, self.num_attention_heads_per_partition, context_layer.size(1), context_layer.shape[-1]) context_layer = self._transpose_for_context(context_layer) key_layer = presents[0] value_layer = presents[1] return context_layer, key_layer, value_layer ###################### End of HF modeling_bloom addition ########################
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/ops/transformer/inference/ds_attention.py
ds_attention.py
# DeepSpeed Team import math import torch from torch.autograd import Function import torch.nn as nn from packaging import version as pkg_version from deepspeed.utils.logging import log_dist from deepspeed.accelerator import get_accelerator from deepspeed.ops.op_builder import InferenceBuilder # Cuda modules will be imported if needed inference_cuda_module = None minus_inf = -10000.0 triton_flash_attn = None def load_triton_flash_attn(): global triton_flash_attn try: import triton except ImportError: raise ImportError("Please install triton 2.0+ or `pip install deepspeed[sd]`") if pkg_version.parse(triton.__version__) < pkg_version.parse("2.0"): raise ImportError("Please install triton 2.0+ or `pip install deepspeed[sd]`") from .triton_ops import triton_flash_attn class DeepSpeedDiffusersAttentionFunction(Function): @staticmethod def forward(ctx, input, context, input_mask, config, attn_qkvw, attn_qw, attn_kw, attn_vw, attn_qkvb, num_attention_heads_per_partition, norm_factor, hidden_size_per_partition, attn_ow, attn_ob, do_out_bias, score_context_func, linear_func, triton_flash_attn_kernel): def _transpose_for_context(x): x = x.permute(0, 2, 1, 3) new_x_layer_shape = x.size()[:-2] + \ (hidden_size_per_partition,) return x.reshape(*new_x_layer_shape) def _transpose_for_scores(x): attention_head_size = x.shape[-1] // num_attention_heads_per_partition new_x_shape = x.size()[:-1] + (num_attention_heads_per_partition, attention_head_size) x = x.reshape(*new_x_shape) x = x.permute(0, 2, 1, 3) return x.contiguous() def selfAttention_fp(input, context, input_mask): if config.fp16 and input.dtype == torch.float32: input = input.half() head_size = input.shape[-1] // config.heads do_flash_attn = (head_size <= 128) scale = (1 / norm_factor) * (1 / norm_factor) if do_flash_attn and context == None: qkv_out = linear_func(input, attn_qkvw, attn_qkvb if attn_qkvb is not None else attn_qkvw, attn_qkvb is not None, do_flash_attn, config.heads, False) context_layer = triton_flash_attn_kernel(qkv_out[0], qkv_out[1], qkv_out[2], scale, input.shape[-2] % 128 == 0) context_layer = _transpose_for_context(context_layer[:, :, :, :head_size]) else: do_flash_attn = False if context is not None: query = torch.matmul(input, attn_qw) key = torch.matmul(context, attn_kw) value = torch.matmul(context, attn_vw) else: qkv = torch.matmul(input, attn_qkvw) query, key, value = qkv.chunk(3, dim=-1) query = query.contiguous() key = key.contiguous() value = value.contiguous() query, key, value = inference_cuda_module.pad_transform_fp16(query, key, value, config.heads, do_flash_attn) attention_scores = (torch.matmul(query, key.transpose(-1, -2)) * scale).softmax(dim=-1) context_layer = _transpose_for_context(torch.matmul(attention_scores, value)) output = linear_func(context_layer, attn_ow, attn_ob, do_out_bias, False, config.heads, False) return output output = selfAttention_fp(input, context, input_mask) return output @staticmethod def backward(ctx, grad_output, grad_output1, grad_output2, grad_output3): raise RuntimeError('You are running with DeepSpeed Inference mode. \ Please switch to Training mode for running backward!') class DeepSpeedDiffusersAttention(nn.Module): """Initialize the DeepSpeed Transformer Layer. Arguments: layer_id: The layer index starting from 0, e.g. if model has 24 transformer layers, layer_id will be 0,1,2...23 when each layer object is instantiated config: An object of DeepSpeedInferenceConfig """ layer_id = 0 def __init__( self, config, ): super(DeepSpeedDiffusersAttention, self).__init__() self.config = config self.config.layer_id = DeepSpeedDiffusersAttention.layer_id DeepSpeedDiffusersAttention.layer_id += 1 device = get_accelerator().current_device_name() if config.bigscience_bloom else 'cpu' qkv_size_per_partition = (self.config.hidden_size // self.config.mp_size) * 3 data_type = torch.int8 if config.q_int8 else torch.half if config.fp16 else torch.float data_type_fp = torch.half if config.fp16 else torch.float global inference_cuda_module if inference_cuda_module is None: builder = InferenceBuilder() inference_cuda_module = builder.load() if DeepSpeedDiffusersAttention.layer_id == 1: log_dist(f"DeepSpeed-Attention config: {self.config.__dict__}", [0]) self.attn_qkvw = nn.Parameter(torch.empty(self.config.hidden_size, qkv_size_per_partition, dtype=data_type, device=device), requires_grad=False) self.attn_kw = nn.Parameter(torch.empty(self.config.hidden_size, self.config.hidden_size, dtype=data_type, device=device), requires_grad=False) self.attn_vw = nn.Parameter(torch.empty(self.config.hidden_size, self.config.hidden_size, dtype=data_type, device=device), requires_grad=False) self.attn_qw = nn.Parameter(torch.empty(self.config.hidden_size, self.config.hidden_size, dtype=data_type, device=device), requires_grad=False) self.attn_qkvb = nn.Parameter(torch.empty(qkv_size_per_partition, dtype=data_type_fp, device=device), requires_grad=False) out_size_per_partition = self.config.hidden_size // self.config.mp_size self.attn_ow = nn.Parameter(torch.empty(out_size_per_partition, self.config.hidden_size, dtype=data_type, device=device), requires_grad=False) self.attn_ob = nn.Parameter(torch.empty(self.config.hidden_size, dtype=data_type_fp, device=device), requires_grad=False) self.do_out_bias = True if triton_flash_attn is None: load_triton_flash_attn() self.triton_flash_attn_kernel = triton_flash_attn() self.num_attention_heads_per_partition = self.config.heads // self.config.mp_size self.hidden_size_per_partition = self.config.hidden_size // self.config.mp_size self.hidden_size_per_attention_head = self.config.hidden_size // self.config.heads self.norm_factor = math.sqrt(math.sqrt(self.config.hidden_size // self.config.heads)) if self.config.scale_attn_by_inverse_layer_idx is True: self.norm_factor *= math.sqrt(self.config.layer_id + 1) # https://github.com/huggingface/transformers/blob/v4.24.0/src/transformers/models/gpt2/modeling_gpt2.py#L191 self.score_context_func = inference_cuda_module.softmax_context_fp32 if (not config.fp16) else \ inference_cuda_module.softmax_context_fp16 self.linear_func = inference_cuda_module.linear_layer_fp16 if config.fp16 else \ inference_cuda_module.linear_layer_fp32 self.allocate_workspace = inference_cuda_module.allocate_workspace_fp32 if not (config.fp16) else \ inference_cuda_module.allocate_workspace_fp16 def forward(self, input, context=None, input_mask=None): if self.config.layer_id == 0: self.allocate_workspace(self.config.hidden_size, self.config.heads, input.size()[1], input.size()[0], DeepSpeedDiffusersAttention.layer_id, self.config.mp_size, False, 0, self.config.max_out_tokens, self.config.min_out_tokens) output = DeepSpeedDiffusersAttentionFunction.apply(input, context, input_mask, self.config, self.attn_qkvw, self.attn_qw, self.attn_kw, self.attn_vw, self.attn_qkvb, self.num_attention_heads_per_partition, self.norm_factor, self.hidden_size_per_partition, self.attn_ow, self.attn_ob, self.do_out_bias, self.score_context_func, self.linear_func, self.triton_flash_attn_kernel) return output
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/ops/transformer/inference/diffusers_attention.py
diffusers_attention.py
# DeepSpeed Team import torch from deepspeed.ops.op_builder import RandomLTDBuilder """ Returns: sampled_indices: [layers, batch_size, reserved_length] new_mask: [batch_size, 1, reserved_length, reserved_length] """ random_ltd_module = None def gpt_sample_tokens(reserved_length: int, seq_length: int, batch_size: int, layers: int = 1, device: str = 'cpu', attn_mask: torch.Tensor = None): prob_dist = torch.ones((layers * batch_size, seq_length), device=device) sampled_indices = torch.multinomial(prob_dist, reserved_length) sampled_indices = sampled_indices.reshape(layers, batch_size, reserved_length).to(torch.int32) global random_ltd_module if random_ltd_module is None: random_ltd_module = RandomLTDBuilder().load() sampled_indices = random_ltd_module.token_sort_(sampled_indices, seq_length) # Not certain the optimized kernel is actually better here, cause it kind of screws # with alignment right if the sequence length is not divisble by like 16 # new_mask = random_ltd_module.mask_gather_gpt(attn_mask, reserved_length) if attn_mask is not None: new_mask = attn_mask[:, :, :reserved_length, :reserved_length] else: new_mask = None return sampled_indices, new_mask """ Returns: sampled_indices: [layers, batch_size, reserved_length] new_mask: [layers, batch_size, 1, reserved_length, reserved_length] """ def bert_sample_tokens(reserved_length: int, seq_length: int, batch_size: int, layers: int = 1, device: str = 'cpu', attn_mask: torch.Tensor = None): assert attn_mask is not None prob_dist = torch.ones((layers * batch_size, seq_length), device=device) sampled_indices = torch.multinomial(prob_dist, reserved_length) sampled_indices = sampled_indices.reshape(layers, batch_size, reserved_length).to(torch.int32) global random_ltd_module if random_ltd_module is None: random_ltd_module = RandomLTDBuilder().load() sampled_indices = random_ltd_module.token_sort_(sampled_indices, seq_length) dtype = sampled_indices.dtype sampled_indices = sampled_indices.to(torch.long) new_mask = [] for l in range(layers): tmp_mask_list = [] for i in range(batch_size): mask_tmp = attn_mask[i:i + 1, :, sampled_indices[l][i], :] tmp_mask_list.append(mask_tmp[:, :, :, sampled_indices[l][i]]) new_mask.append(torch.cat(tmp_mask_list, dim=0)) return sampled_indices.to(dtype), new_mask class GatherTokens(torch.autograd.Function): @staticmethod def forward(ctx, activations: torch.Tensor, sorted_indices: torch.Tensor, batch_first: bool): global random_ltd_module if random_ltd_module is None: random_ltd_module = RandomLTDBuilder().load() ctx.save_for_backward(activations, sorted_indices) ctx.batch_first = batch_first return activations, random_ltd_module.token_gather(activations, sorted_indices, batch_first) @staticmethod def backward(ctx, a_gradients: torch.Tensor, g_gradients: torch.Tensor): g_gradients = g_gradients.contiguous() global random_ltd_module if random_ltd_module is None: random_ltd_module = RandomLTDBuilder().load() activations, sorted_indices = ctx.saved_tensors batch_first = ctx.batch_first return random_ltd_module.token_scatter_(a_gradients, g_gradients, sorted_indices, batch_first), None, None class ScatterTokens(torch.autograd.Function): @staticmethod def forward(ctx, all_activations: torch.Tensor, layer_activations: torch.Tensor, sorted_indices: torch.Tensor, batch_first: bool): global random_ltd_module if random_ltd_module is None: random_ltd_module = RandomLTDBuilder().load() scatter_results = random_ltd_module.token_scatter_(all_activations.clone(), layer_activations, sorted_indices, batch_first) ctx.save_for_backward(sorted_indices) ctx.batch_first = batch_first return scatter_results @staticmethod def backward(ctx, out_gradients: torch.Tensor): out_gradients = out_gradients.contiguous() global random_ltd_module if random_ltd_module is None: random_ltd_module = RandomLTDBuilder().load() sorted_indices, = ctx.saved_tensors batch_first = ctx.batch_first ret_val = random_ltd_module.token_gather(out_gradients, sorted_indices, batch_first) return out_gradients, ret_val, None, None
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/ops/random_ltd/dropping_utils.py
dropping_utils.py
# DeepSpeed Team import torch from cpuinfo import get_cpu_info from deepspeed.utils import logger from deepspeed.utils.logging import should_log_le from deepspeed.ops.op_builder import CPUAdamBuilder class DeepSpeedCPUAdam(torch.optim.Optimizer): optimizer_id = 0 def __init__(self, model_params, lr=1e-3, bias_correction=True, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, adamw_mode=True, fp32_optimizer_states=True): """Fast vectorized implementation of two variations of Adam optimizer on CPU: * Adam: A Method for Stochastic Optimization: (https://arxiv.org/abs/1412.6980); * AdamW: Fixing Weight Decay Regularization in Adam (https://arxiv.org/abs/1711.05101) DeepSpeed CPU Adam(W) provides between 5x to 7x speedup over torch.optim.adam(W). In order to apply this optimizer, the model requires to have its master parameter (in FP32) reside on the CPU memory. To train on a heterogeneous system, such as coordinating CPU and GPU, DeepSpeed offers the ZeRO-Offload technology which efficiently offloads the optimizer states into CPU memory, with minimal impact on training throughput. DeepSpeedCPUAdam plays an important role to minimize the overhead of the optimizer's latency on CPU. Please refer to ZeRO-Offload tutorial (https://www.deepspeed.ai/tutorials/zero-offload/) for more information on how to enable this technology. For calling step function, there are two options available: (1) update optimizer's states and (2) update optimizer's states and copy the parameters back to GPU at the same time. We have seen that the second option can bring 30% higher throughput than the doing the copy separately using option one. .. note:: We recommend using our `config <https://www.deepspeed.ai/docs/config-json/#optimizer-parameters>`_ to allow :meth:`deepspeed.initialize` to build this optimizer for you. Arguments: model_params (iterable): iterable of parameters to optimize or dicts defining parameter groups. lr (float, optional): learning rate. (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square. (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability. (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ (default: False) NOT SUPPORTED in DeepSpeed CPUAdam! adamw_mode: select between Adam and AdamW implementations (default: AdamW) full_precision_optimizer_states: creates momementum and variance in full precision regardless of the precision of the parameters (default: True) """ default_args = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, bias_correction=bias_correction, amsgrad=amsgrad) super(DeepSpeedCPUAdam, self).__init__(model_params, default_args) cpu_info = get_cpu_info() self.cpu_vendor = cpu_info["vendor_id_raw"].lower() if "vendor_id_raw" in cpu_info else "unknown" if "amd" in self.cpu_vendor: for group_id, group in enumerate(self.param_groups): for param_id, p in enumerate(group['params']): if p.dtype == torch.half: logger.warning("FP16 params for CPUAdam may not work on AMD CPUs") break else: continue break self.opt_id = DeepSpeedCPUAdam.optimizer_id DeepSpeedCPUAdam.optimizer_id = DeepSpeedCPUAdam.optimizer_id + 1 self.adam_w_mode = adamw_mode self.fp32_optimizer_states = fp32_optimizer_states self.ds_opt_adam = CPUAdamBuilder().load() self.ds_opt_adam.create_adam(self.opt_id, lr, betas[0], betas[1], eps, weight_decay, adamw_mode, should_log_le("info")) def __del__(self): # need to destroy the C++ object explicitly to avoid a memory leak when deepspeed.initialize # is used multiple times in the same process (notebook or pytest worker) self.ds_opt_adam.destroy_adam(self.opt_id) def __setstate__(self, state): super(DeepSpeedCPUAdam, self).__setstate__(state) for group in self.param_groups: group.setdefault('amsgrad', False) @torch.no_grad() def step(self, closure=None, fp16_param_groups=None): """Update the model parameters. .. note:: This method will be called internally by ZeRO-Offload. DeepSpeed users should still use ``engine.step()`` as shown in the `Getting Started <https://www.deepspeed.ai/getting-started/#training>`_ guide. Args: closure (callable, optional): closure to compute the loss. Defaults to ``None``. fp16_param_groups: FP16 GPU parameters to update. Performing the copy here reduces communication time. Defaults to ``None``. Returns: loss: if ``closure`` is provided. Otherwise ``None``. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() # intended device for step device = torch.device('cpu') # converting the fp16 params to a group of parameter if type(fp16_param_groups) is list: if type(fp16_param_groups[0]) is not list: fp16_param_groups = [fp16_param_groups] elif fp16_param_groups is not None: fp16_param_groups = [[fp16_param_groups]] for group_id, group in enumerate(self.param_groups): for param_id, p in enumerate(group['params']): if p.grad is None: continue assert p.device == device, f"CPUAdam param is on {p.device} and must be 'cpu', make " \ "sure you enabled 'offload_optimizer': 'cpu' in your ZeRO config." state = self.state[p] # State initialization if len(state) == 0: #print(f'group {group_id} param {param_id} = {p.numel()}') state['step'] = 0 #use full precision by default unless self.fp32_optimizer_states is off state_dtype = torch.float if self.fp32_optimizer_states else p.dtype # gradient momentums state['exp_avg'] = torch.zeros_like(p.data, dtype=state_dtype, device=device) #memory_format=torch.preserve_format) # gradient variances state['exp_avg_sq'] = torch.zeros_like(p.data, dtype=state_dtype, device=device) #memory_format=torch.preserve_format) state['step'] += 1 beta1, beta2 = group['betas'] if fp16_param_groups is not None: self.ds_opt_adam.adam_update_copy(self.opt_id, state['step'], group['lr'], beta1, beta2, group['eps'], group['weight_decay'], group['bias_correction'], p.data, p.grad.data, state['exp_avg'], state['exp_avg_sq'], fp16_param_groups[group_id][param_id].data) else: self.ds_opt_adam.adam_update(self.opt_id, state['step'], group['lr'], beta1, beta2, group['eps'], group['weight_decay'], group['bias_correction'], p.data, p.grad.data, state['exp_avg'], state['exp_avg_sq']) return loss
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/ops/adam/cpu_adam.py
cpu_adam.py
# DeepSpeed Team """ Copyright NVIDIA/apex This file is adapted from fused adam in NVIDIA/apex, commit a109f85 """ import torch from .multi_tensor_apply import MultiTensorApply multi_tensor_applier = MultiTensorApply(2048 * 32) from deepspeed.accelerator import get_accelerator from deepspeed.ops.op_builder import FusedAdamBuilder class FusedAdam(torch.optim.Optimizer): """Implements Adam algorithm. Currently GPU-only. This version of fused Adam implements 2 fusions. * Fusion of the Adam update's elementwise operations * A multi-tensor apply launch that batches the elementwise updates applied to all the model's parameters into one or a few kernel launches. Adam was been proposed in `Adam: A Method for Stochastic Optimization`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups. lr (float, optional): learning rate. (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square. (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability. (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ (default: False) NOT SUPPORTED in FusedAdam! adam_w_mode (boolean, optional): Apply L2 regularization or weight decay True for decoupled weight decay(also known as AdamW) (default: True) set_grad_none (bool, optional): whether set grad to None when zero_grad() method is called. (default: True) .. _Adam - A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__(self, params, lr=1e-3, bias_correction=True, betas=(0.9, 0.999), eps=1e-8, adam_w_mode=True, weight_decay=0., amsgrad=False, set_grad_none=True): if amsgrad: raise RuntimeError('FusedAdam does not support the AMSGrad variant.') defaults = dict(lr=lr, bias_correction=bias_correction, betas=betas, eps=eps, weight_decay=weight_decay) super(FusedAdam, self).__init__(params, defaults) self.adam_w_mode = 1 if adam_w_mode else 0 self.set_grad_none = set_grad_none fused_adam_cuda = FusedAdamBuilder().load() # Skip buffer self._dummy_overflow_buf = get_accelerator().IntTensor([0]) self.multi_tensor_adam = fused_adam_cuda.multi_tensor_adam def zero_grad(self): if self.set_grad_none: for group in self.param_groups: for p in group['params']: p.grad = None else: super(FusedAdam, self).zero_grad() def step(self, closure=None, grads=None, output_params=None, scale=None, grad_norms=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. The remaining arguments are deprecated, and are only retained (for the moment) for error-checking purposes. """ if any(p is not None for p in [grads, output_params, scale, grad_norms]): raise RuntimeError( 'FusedAdam has been updated. Simply initialize it identically to torch.optim.Adam, and call step() with no arguments.' ) loss = None if closure is not None: loss = closure() for group in self.param_groups: bias_correction = 1 if group['bias_correction'] else 0 beta1, beta2 = group['betas'] if 'step' not in group: group['step'] = 0 # create lists for multi-tensor apply g_16, p_16, m_16, v_16 = [], [], [], [] g_32, p_32, m_32, v_32 = [], [], [], [] for p in group['params']: if p.grad is None: continue if p.grad.data.is_sparse: raise RuntimeError( 'FusedAdam does not support sparse gradients, please consider SparseAdam instead') state = self.state[p] # State initialization if len(state) == 0: # DeepSpeed ZeRO 3 processes each subgroup a time, so we need to keep tracking step count for each tensor separately. # While this is not an issue for ZeRO 1 & 2, since they apply a single optimizatin step to the whole param group at the same time. # In order to keep backward compatibility for the existing checkpoints, we use group['state'] to initialize state['step'] if it exists. state['step'] = group.get('step', 0) # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p.data) if p.dtype == torch.float16: g_16.append(p.grad.data) p_16.append(p.data) m_16.append(state['exp_avg']) v_16.append(state['exp_avg_sq']) elif p.dtype == torch.float32: g_32.append(p.grad.data) p_32.append(p.data) m_32.append(state['exp_avg']) v_32.append(state['exp_avg_sq']) else: raise RuntimeError('FusedAdam only support fp16 and fp32.') if (len(g_16) > 0): state['step'] += 1 multi_tensor_applier(self.multi_tensor_adam, self._dummy_overflow_buf, [g_16, p_16, m_16, v_16], group['lr'], beta1, beta2, group['eps'], state['step'], self.adam_w_mode, bias_correction, group['weight_decay']) if (len(g_32) > 0): state['step'] += 1 multi_tensor_applier(self.multi_tensor_adam, self._dummy_overflow_buf, [g_32, p_32, m_32, v_32], group['lr'], beta1, beta2, group['eps'], state['step'], self.adam_w_mode, bias_correction, group['weight_decay']) return loss
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/ops/adam/fused_adam.py
fused_adam.py
# DeepSpeed Team """ Copyright NVIDIA/apex This file is adapted from NVIDIA/apex/optimizer/fused_adam and implements the LAMB optimizer """ import types import torch from deepspeed.ops.op_builder import FusedLambBuilder class FusedLamb(torch.optim.Optimizer): """Implements the LAMB algorithm. Currently GPU-only. LAMB was proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes. https://arxiv.org/abs/1904.00962 Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups. lr (float, optional): learning rate. (default: 1e-3) bias_correction (bool, optional): bias correction (default: True) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square. (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability. (default: 1e-8) eps_inside_sqrt (boolean, optional): in the 'update parameters' step, adds eps to the bias-corrected second moment estimate before evaluating square root instead of adding it to the square root of second moment estimate as in the original paper. (default: False) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) max_grad_norm (float, optional): value used to clip global grad norm (default: 0.0) max_coeff(float, optional): maximum value of the lamb coefficient (default: 10.0) min_coeff(float, optional): minimum value of the lamb coefficient (default: 0.01) amsgrad (boolean, optional): NOT SUPPORTED in FusedLamb! """ def __init__(self, params, lr=1e-3, bias_correction=True, betas=(0.9, 0.999), eps=1e-8, eps_inside_sqrt=False, weight_decay=0., max_grad_norm=0., max_coeff=10.0, min_coeff=0.01, amsgrad=False): self.fused_lamb_cuda = FusedLambBuilder().load() if amsgrad: raise RuntimeError('FusedLamb does not support the AMSGrad variant.') defaults = dict(lr=lr, bias_correction=bias_correction, betas=betas, eps=eps, weight_decay=weight_decay, max_grad_norm=max_grad_norm, max_coeff=max_coeff, min_coeff=min_coeff) super(FusedLamb, self).__init__(params, defaults) self.eps_mode = 0 if eps_inside_sqrt else 1 self.lamb_coeffs = [] def step(self, closure=None, grads=None, output_params=None, scale=1., grad_norms=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. grads (list of tensors, optional): weight gradient to use for the optimizer update. If gradients have type torch.half, parameters are expected to be in type torch.float. (default: None) output params (list of tensors, optional): A reduced precision copy of the updated weights written out in addition to the regular updated weights. Have to be of same type as gradients. (default: None) scale (float, optional): factor to divide gradient tensor values by before applying to weights. (default: 1) """ loss = None if closure is not None: loss = closure() if grads is None: grads_group = [None] * len(self.param_groups) # backward compatibility # assuming a list/generator of parameter means single group elif isinstance(grads, types.GeneratorType): grads_group = [grads] elif type(grads[0]) != list: grads_group = [grads] else: grads_group = grads if output_params is None: output_params_group = [None] * len(self.param_groups) elif isinstance(output_params, types.GeneratorType): output_params_group = [output_params] elif type(output_params[0]) != list: output_params_group = [output_params] else: output_params_group = output_params if grad_norms is None: grad_norms = [None] * len(self.param_groups) #remove the previous coeffs del self.lamb_coeffs[:] for group, grads_this_group, output_params_this_group, grad_norm_group in zip( self.param_groups, grads_group, output_params_group, grad_norms): if grads_this_group is None: grads_this_group = [None] * len(group['params']) if output_params_this_group is None: output_params_this_group = [None] * len(group['params']) if grad_norm_group is None: grad_norm_group = [None] * len(group['params']) elif not isinstance(grad_norm_group, list): grad_norm_group = [grad_norm_group] bias_correction = 1 if group['bias_correction'] else 0 for p, grad, output_param, grad_norm in zip(group['params'], grads_this_group, output_params_this_group, grad_norm_group): # compute combined scale factor for this group combined_scale = scale if group['max_grad_norm'] > 0: # norm is in fact norm*scale clip = ((grad_norm / scale) + 1e-6) / group['max_grad_norm'] if clip > 1: combined_scale = clip * scale #note: p.grad should not ever be set for correct operation of mixed precision optimizer that sometimes sends None gradients if p.grad is None and grad is None: continue if grad is None: grad = p.grad.data if grad.is_sparse: raise RuntimeError('FusedLamb does not support sparse gradients') state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p.data) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['betas'] max_coeff = group['max_coeff'] min_coeff = group['min_coeff'] state['step'] += 1 out_p = torch.tensor([], dtype=torch.float) if output_param is None else output_param lamb_coeff = self.fused_lamb_cuda.lamb(p.data, out_p, exp_avg, exp_avg_sq, grad, group['lr'], beta1, beta2, max_coeff, min_coeff, group['eps'], combined_scale, state['step'], self.eps_mode, bias_correction, group['weight_decay']) self.lamb_coeffs.append(lamb_coeff) return loss def get_lamb_coeffs(self): lamb_coeffs = [lamb_coeff.item() for lamb_coeff in self.lamb_coeffs] return lamb_coeffs
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/ops/lamb/fused_lamb.py
fused_lamb.py
# DeepSpeed Team import torch from torch.nn import functional as F from deepspeed.ops.sparse_attention import BertSparseSelfAttention, SparsityConfig ''' This file contains few utility functions to handle adapting pretrained model with sparse self-attention module. ''' class SparseAttentionUtils: """This class provides some utility functions that are use integrating sparse attention into transformer models. Such utilities include extending position embeddings, replacing current self-attention layer with sparse attention, padding sequences to multiple of block size, etc. """ @staticmethod def extend_position_embedding(model, max_position): """This function extends the position embedding weights of a model loaded from a checkpoint. It assumes the new max position is bigger than the original max length. Arguments: model: required: a transformer model max_position: required: an integer determining new position embedding size Return: model: updated model; in which position embedding weights have been extended based on new size """ if hasattr(model, 'bert'): original_max_position = model.bert.embeddings.position_embeddings.weight.size(0) assert max_position > original_max_position extend_multiples = max(1, max_position // original_max_position) model.bert.embeddings.position_embeddings.weight.data = model.bert.embeddings.position_embeddings.weight.repeat( extend_multiples, 1) elif hasattr(model, 'roberta'): # RoBERTa has positions 0 & 1 reserved, so embedding size is max position + 2 original_max_position, embed_size = model.roberta.embeddings.position_embeddings.weight.shape original_max_position -= 2 extend_multiples = max(1, max_position // original_max_position) assert max_position > original_max_position max_position += 2 extended_position_embedding = model.roberta.embeddings.position_embeddings.weight.new_empty( max_position, embed_size) k = 2 for i in range(extend_multiples): extended_position_embedding[k:( k + original_max_position)] = model.roberta.embeddings.position_embeddings.weight[2:] k += original_max_position model.roberta.embeddings.position_embeddings.weight.data = extended_position_embedding else: raise ValueError( 'Please extend \"extend_position_embedding\" function to support your model type. It currently only supports \"bert\" & \"roberta\"!' ) model.config.max_position_embeddings = max_position print(f'Extended position embeddings to {original_max_position * extend_multiples}') return model @staticmethod def update_tokenizer_model_max_length(tokenizer, max_position): """This function updates the position embedding length of a tokenizer to a new max position. Arguments: tokenizer: required: a transformer tokenizer max_position: required: an integer determining new position embedding size Return: tokenizer: updated tokenizer; in which model maximum length has been extended based on new size """ tokenizer.model_max_length = max_position tokenizer.init_kwargs['model_max_length'] = max_position print(f'updated tokenizer model max imum length to {max_position}') return tokenizer @staticmethod def replace_model_self_attention_with_sparse_self_attention( model, max_position, # SparsityConfig parameters needs to be set accordingly sparsity_config=SparsityConfig(num_heads=4)): """This function replaces the self attention layers in model encoder with sparse self attention. It currently supports bert and roberta model and can be easily extended to any other models following similar steps here. For sparsityConfig, refer to the config class. Arguments: model: required: a transformer model max_position: required: an integer determining new position embedding size sparsity_config: optional: this parameter determines sparsity pattern configuration; it is based on SparsityConfig class Return: model: updated model; in which self attention layer has been replaced with DeepSpeed Sparse Self Attention layer. """ if hasattr(model, 'bert'): model.config.max_position_embeddings = max_position model.replace_self_attention_layer_with_sparse_self_attention_layer(model.config, model.bert.encoder.layer, sparsity_config) elif hasattr(model, 'roberta'): model.config.max_position_embeddings = max_position + 2 model.replace_self_attention_layer_with_sparse_self_attention_layer(model.config, model.roberta.encoder.layer, sparsity_config) else: raise ValueError( 'Please extend \"update_model_self_attention_to_sparse_self_attention\" function to support \ your model type. It currently only supports \"bert\" & \"roberta\"!') return model @staticmethod def replace_self_attention_layer_with_sparse_self_attention_layer( config, layers, # SparsityConfig parameters needs to be set accordingly sparsity_config=SparsityConfig(num_heads=4)): """This function replaces the self attention layers in attention layer with sparse self attention. For sparsityConfig, refer to the config class. Arguments: config: required: transformer model config layers: required: transformer model attention layers sparsity_config: optional: this parameter determines sparsity pattern configuration; it is based on SparsityConfig class Return: layers: updated attention layers; in which self attention layers have been replaced with DeepSpeed Sparse Self Attention layer. """ for layer in layers: deepspeed_sparse_self_attn = BertSparseSelfAttention(config, sparsity_config) deepspeed_sparse_self_attn.query = layer.attention.self.query deepspeed_sparse_self_attn.key = layer.attention.self.key deepspeed_sparse_self_attn.value = layer.attention.self.value layer.attention.self = deepspeed_sparse_self_attn return layers @staticmethod def pad_to_block_size(block_size, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds, pad_token_id, model_embeddings): """This function pads input tokens and attention mask on sequence length dimension to be multiple of block size. This is a requirement for Sparse Transformer in which the self attention layer works on sequences of length multiple of block size. It needs to be called in your model, such as BertModel, right before you calculate the embedding outputs. Note) 1- instead of passing your embedding layer to this function, you can simply add this function to your model. It can be more simplified if given attention_mask and/or token_type_ids are none. 2- you need to call unpad function before returning your model output to unpad the encoder sequence output. Arguments: block_size: required: an integer determining the block size of sparsity config. pad_token_id: required: an integer determining the pad token from the model config; such as bert.config.pad_token_id. input_ids: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary attention_mask: a torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max input sequence length in the current batch. It's the mask that we typically use for attention when a batch has varying length sentences. token_type_ids: a torch.LongTensor of shape [batch_size, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details). position_ids: a torch.LongTensor of shape [batch_size, sequence_length] with the indices of positions of each input sequence tokens in the position embeddings. inputs_embeds: an optional torch.FloatTensor of shape [batch_size, sequence_length, hidden_size] that contains embedded representation and can be passed instead of input_ids directly. model_embeddings: an optional object. If inputs_embeds are not none, this will be your model embeddings such as BertEmbeddings from your model such as BertModel. You can move this function inside your model and use self.embeddings instead of passing this parameter. Return: pad_len: an integer determining how much inputs have been padded to transfer sequence length dimension to multiple of block size. input_ids: if input_ids are not none padded input_ids otherwise none. attention_mask: if attention_mask is not none padded attention_mask otherwise none. token_type_ids: if token_type_ids are not none padded token_type_ids otherwise none. position_ids: if position_ids are not none padded position_ids otherwise none. inputs_embeds: if inputs_embeds are not none padded inputs_embeds otherwise none. """ batch_size, seq_len = input_ids.shape if input_ids is not None else inputs_embeds.shape[:-1] pad_len = (block_size - seq_len % block_size) % block_size if pad_len > 0: if inputs_embeds is not None: pad_input_ids = inputs_embeds.new_full((batch_size, pad_len), pad_token_id, dtype=torch.long) pad_inputs_embeds = model_embeddings(pad_input_ids) inputs_embeds = torch.cat([inputs_embeds, pad_inputs_embeds], dim=-2) # may not be needed as input_ids are not used if inputs_embeds are given if input_ids is not None: input_ids = F.pad(input_ids, (0, pad_len), value=pad_token_id) if position_ids is not None: # pad position_id with pad_token_id position_ids = F.pad(position_ids, (0, pad_len), value=pad_token_id) # pad attention mask without attention on the padding tokens attention_mask = F.pad(attention_mask, (0, pad_len), value=False) # pad token_type_ids with token_type_id = 0 token_type_ids = F.pad(token_type_ids, (0, pad_len), value=0) return pad_len, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds @staticmethod def unpad_sequence_output(pad_len, sequence_output): """This function unpads sequence output if inputs of the model were padded. This is a requirement for Sparse Transformer in which the self attention layer works on sequences of length multiple of block size. It needs to be called in your model, such as BertModel, right before you return the model outputs. Arguments: pad_len: required: an integer determining how much model inputs have been padded to transfer sequence length dimension to multiple of block size. sequence_output: required: sequence output of the encoder layer. Return: sequence_output: unpaded sequence output of the encoder layer. """ if (pad_len > 0): sequence_output = sequence_output[:, :-pad_len] return sequence_output
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/ops/sparse_attention/sparse_attention_utils.py
sparse_attention_utils.py
# DeepSpeed Team # DeepSpeed note, code taken & adapted from commit 9aa94789f13ada713af36cfd8cca2fc9a7f6b79a # https://github.com/ptillet/torch-blocksparse/blob/master/torch_blocksparse/matmul.py import torch import triton import triton.language as tl def next_power_of_2(n): n -= 1 n |= n >> 1 n |= n >> 2 n |= n >> 4 n |= n >> 8 n |= n >> 16 n += 1 return n def num_warps(n): if n < 512: return 4 if n < 2048: return 8 return 16 @triton.heuristics({'num_warps': lambda *args, **meta: num_warps(args[6] * meta['BLOCK'])}) @triton.heuristics({'TN': lambda *args, **meta: next_power_of_2(args[6] * meta['BLOCK'])}) @triton.jit def _forward(X, scale, LUT, RPE, KP_M, ATTN_M, sizemax, stride_zx, stride_zrpe, stride_hrpe, stride_srpe, stride_zkpm, stride_zattnm, **meta): TN = meta['TN'] BLOCK = meta['BLOCK'] pidhm = tl.program_id(0) pidz = tl.program_id(1) # create index ranges rxm = pidhm % BLOCK rbm = pidhm // BLOCK rxn = tl.arange(0, TN) % BLOCK rbn = tl.arange(0, TN) // BLOCK # extract information from LUT header = LUT + rbm * 2 size = tl.load(header + 0) offset = tl.load(header + 1) check = rbn < size rbmn = tl.where(check, rbn, size - 1) # block id and column id blockid = tl.load(LUT + offset + rbmn * 4 + 0) columnid = tl.load(LUT + offset + rbmn * 4 + 1) rowid = tl.load(LUT + offset + rbmn * 4 + 2) headid = tl.load(LUT + offset + rbmn * 4 + 3) # pointers to X px = X + pidz * stride_zx + blockid * BLOCK * BLOCK + rxm * BLOCK + rxn x = tl.load(px, mask=check, other=-float('inf')) x = x.to(tl.float32) # apply scale if meta['APPLY_SCALE']: x = x * scale # apply RPE if meta['APPLY_RPE']: prpe = RPE + pidz * stride_zrpe + headid * stride_hrpe + columnid * BLOCK + rowid * BLOCK * stride_srpe + rxm * stride_srpe + rxn rpe = tl.load(prpe, mask=check, other=0) x = x + rpe # apply key-padding mask if meta['APPLY_KP_MASK']: pkp_m = KP_M + pidz * stride_zkpm + columnid * BLOCK + rxn kp_m = tl.load(pkp_m, mask=check, other=-float('inf')) if meta['KP_MASK_MUL']: kp_m = tl.where(kp_m == 0, -float('inf'), 0.) x = x + kp_m # apply attention mask if meta['APPLY_ATTN_MASK']: pattn_m = ATTN_M + columnid * BLOCK + rowid * BLOCK * stride_zattnm + rxm * stride_zattnm + rxn attn_m = tl.load(pattn_m, mask=check, other=-float('inf')) if meta['ATTN_MASK_MUL']: attn_m = tl.where(attn_m == 0, -float('inf'), 0.) x = x + attn_m # computation x = tl.softmax(x) tl.store(px, x, mask=check) @triton.heuristics({'num_warps': lambda *args, **meta: num_warps(args[4] * meta['BLOCK'])}) @triton.heuristics({'TN': lambda *args, **meta: next_power_of_2(args[4]) * meta['BLOCK']}) @triton.jit def _backward(X, scale, DX, LUT, sizemax, stride_zx, stride_zdx, **meta): pidhm = tl.program_id(0) pidz = tl.program_id(1) TN = meta['TN'] BLOCK = meta['BLOCK'] # create index ranges rxm = pidhm % BLOCK rbm = pidhm // BLOCK rxn = tl.arange(0, TN) % BLOCK rbn = tl.arange(0, TN) // BLOCK # extract information from look-up table header = LUT + rbm * 2 size = tl.load(header + 0) offset = tl.load(header + 1) # bounds checking on lut check = rbn < size rbmn = tl.where(check, rbn, size - 1) # initialize pointers to block-sparse input blockid = tl.load(LUT + offset + rbmn * 4) X = X + pidz * stride_zx + blockid * BLOCK * BLOCK + rxm * BLOCK + rxn DX = DX + pidz * stride_zdx + blockid * BLOCK * BLOCK + rxm * BLOCK + rxn # compute fused softmax backward x = tl.load(X, mask=check, other=0) dx = tl.load(DX, mask=check, other=0) x = x.to(tl.float32) dx = dx.to(tl.float32) y = x * (dx - tl.sum(x * dx, 0)) * scale tl.store(DX, y, mask=check) class _sparse_softmax(torch.autograd.Function): bwd_kernels = dict() @staticmethod def make_lut(layout, block, device): _empty = torch.tensor([], dtype=torch.int64, device=layout.device) sizes = _empty.clone() # sizes along rows for h in range(layout.shape[0]): sizes = torch.cat((sizes, layout[h, :, :].sum(-1))) # offsets in block format offsets = torch.zeros_like(sizes) offsets[1:] = torch.cumsum(sizes[:-1], dim=0) # block indices idx = torch.arange(layout.sum()) head = layout.nonzero()[:, 0] rows = layout.nonzero()[:, 1] columns = layout.nonzero()[:, 2] core = torch.stack((idx, columns, rows, head), dim=1).view(-1) # construct look-up table offsets = offsets * 4 + 2 * sizes.numel() header = torch.stack((sizes, offsets), dim=1).view(-1) lut = torch.cat((header, core)).type(torch.int32).to(device) return lut, int(sizes.max()) @staticmethod def forward(ctx, x, scale, rpe, key_padding_mask, attn_mask, kp_mask_mode, attn_mask_mode, spdims, block, lut, num_blocks, maxlut, bench, time): apply_scale = False if scale == 1.0 else True # handle None rpe if rpe is None: apply_rpe = False stride_zrpe, stride_hrpe, stride_srpe = 0, 0, 0 rpe = torch.empty(0, dtype=x.dtype, device=x.device) else: apply_rpe = True stride_zrpe, stride_hrpe, stride_srpe = rpe.stride(0), rpe.stride(1), rpe.stride(2) # handle None key_padding_mask if key_padding_mask is None: apply_kp_mask = False stride_zkpm = 0 key_padding_mask = torch.empty(0, dtype=x.dtype, device=x.device) else: apply_kp_mask = True stride_zkpm = key_padding_mask.stride(0) # handle None attention_mask if attn_mask is None: apply_attn_mask = False stride_zattnm = 0 attn_mask = torch.empty(0, dtype=x.dtype, device=x.device) else: apply_attn_mask = True stride_zattnm = attn_mask.stride(0) # run kernel M = x.shape[0] meta = { 'BLOCK': block, 'APPLY_SCALE': apply_scale, 'APPLY_RPE': apply_rpe, 'APPLY_KP_MASK': apply_kp_mask, 'APPLY_ATTN_MASK': apply_attn_mask, 'KP_MASK_MUL': kp_mask_mode == 'mul', 'ATTN_MASK_MUL': attn_mask_mode == 'mul', } grid = lambda opt: [spdims[0] * spdims[1] * block, M] _forward[grid](x, scale, lut, rpe, key_padding_mask, attn_mask, maxlut, x.stride(0),\ stride_zrpe, stride_hrpe, stride_srpe, stride_zkpm, stride_zattnm, **meta) # save to context ctx.mark_dirty(x) ctx.save_for_backward(x, lut) ctx.spdims = spdims ctx.block = block ctx.maxlut = maxlut ctx.scale = scale ctx.apply_scale = apply_scale ctx.apply_rpe = apply_rpe ctx.apply_kp_mask = apply_kp_mask ctx.apply_attn_mask = apply_attn_mask ctx.kp_mask_mode = kp_mask_mode ctx.attn_mask_mode = attn_mask_mode return x @staticmethod def backward(ctx, dx): # retrieve from context x, lut = ctx.saved_tensors # run kernel M = x.shape[0] grid = lambda opt: [ctx.spdims[0] * ctx.spdims[1] * ctx.block, M] _backward[grid](x, ctx.scale, dx, lut, ctx.maxlut, x.stride(0), dx.stride(0), BLOCK=ctx.block) return dx, None, None, None, None, None, None, None, None, None, None, None, None, None, None class Softmax: """Block-Sparse Softmax class; this class computes softmax on a block sparse matrix. It is also able to apply either/all of the following masks: - relative position embedding - key padding mask - attention mask For more details about sparsity config, please see `Generative Modeling with Sparse Transformers`: https://arxiv.org/abs/1904.10509 """ def sparse_softmax(*args, **kwargs): return _sparse_softmax.apply(*args, **kwargs) def make_lut(self, device): """Generates the sparsity layout used in block-sparse softmax """ key = (device, ) if key not in self.lut_cache: self.lut_cache[key] = _sparse_softmax.make_lut(self.layout, self.block, device) return self.lut_cache[key] def __init__(self, layout, block, bench=False): """Initialize the Block-Sparse Softmax class. Arguments: layout: required: sparsity layout tensor block: required: an integer determining the block size. bench: optional: set if you want to do benchmarking """ self.num_blocks = layout.sum().item() self.spdims = layout.shape self.layout = layout self.block = block self.bench = bench self.lut_cache = dict() def __call__(self, x, scale=1., rpe=None, key_padding_mask=None, attn_mask=None, key_padding_mask_mode='add', attn_mask_mode='add'): """Applies softmax on a Block-Sparse input tensor. For more details about sparsity config, please see `Generative Modeling with Sparse Transformers`: https://arxiv.org/abs/1904.10509 Arguments: x: required: a block-sparse tensor that softmax is applied on it; computation will be in place and result will be returned in the same tensor scale: optional: a float value; x values will be multiplied by this value before normalization. Default value is 1.0. rpe: optional: a tensor same dimension as x that is used as relative position embedding key_padding_mask: optional: a mask tensor of size (BatchSize X SequenceLength) attn_mask: optional: a mask tensor of size (SequenceLength X SequenceLength); currently only 2D is supported key_padding_mask_mode: optional: a boolean determining if key_padding_mask needs to be added or multiplied attn_mask_mode: optional: a boolean determining if attn_mask needs to be added or multiplied Return: x: a block-sparse tensor contains normalized input x using softmax; and masks applied if given """ time_y = [None] if rpe is not None and rpe.dtype != x.dtype: raise ValueError('relative position embedding must be %s' % x.dtype) if attn_mask is not None and attn_mask.dtype != x.dtype: raise ValueError('Attention mask must be %s' % x.dtype) if key_padding_mask is not None and key_padding_mask.dtype != x.dtype: raise ValueError('Key padding mask must be %s' % x.dtype) lut, maxlut = self.make_lut(x.device) x = Softmax.sparse_softmax(x, scale, rpe, key_padding_mask, attn_mask, key_padding_mask_mode, attn_mask_mode, self.spdims, self.block, lut, self.num_blocks, maxlut, self.bench, time_y) self.time_y = time_y[0] return x
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/ops/sparse_attention/softmax.py
softmax.py
# DeepSpeed Team from torch import nn from deepspeed.ops.sparse_attention import SparseSelfAttention, FixedSparsityConfig class BertSparseSelfAttention(nn.Module): """Implements Sparse Self Attention layer of Bert model based on https://github.com/microsoft/DeepSpeedExamples/blob/master/bing_bert/nvidia/modelingpreln.py#L373 For more information please see, TODO DeepSpeed Sparse Transformer. For usage example please see, TODO DeepSpeed Sparse Transformer Tutorial. """ def __init__( self, config, # SparsityConfig parameters needs to be set accordingly sparsity_config=FixedSparsityConfig(num_heads=4)): """Initialize the bert sparse self attention layer. Note) you can use any of the provided sparsity configs or simply add yours! Arguments: config: required: Bert model config sparsity_config: optional: this parameter determines sparsity pattern configuration; it is based on FixedSparsityConfig class. """ super(BertSparseSelfAttention, self).__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError("The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.sparse_self_attention = SparseSelfAttention(sparsity_config) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, attention_mask): """Applies forward phase of bert sparse self attention Arguments: hidden_states: required: hidden_states tensor of the bert model attn_mask: required: a mask tensor of size (SequenceLength X SequenceLength); currently only 2D is supported Return: context_layer: a dense tensor containing attention context """ mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) context_layer = self.sparse_self_attention(query_layer, key_layer, value_layer, key_padding_mask=attention_mask) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size, ) context_layer = context_layer.view(*new_context_layer_shape) return context_layer
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/ops/sparse_attention/bert_sparse_self_attention.py
bert_sparse_self_attention.py
# DeepSpeed Team import torch.nn as nn import torch from torch import distributed as dist from deepspeed.ops.sparse_attention import SparsityConfig class SparseSelfAttention(nn.Module): """Implements an efficient Sparse Self Attention of Transformer layer based on `Generative Modeling with Sparse Transformers`: https://arxiv.org/abs/1904.10509 For more information please see, TODO DeepSpeed Sparse Transformer. For usage example please see, TODO DeepSpeed Sparse Transformer Tutorial. """ def __init__( self, # SparsityConfig parameters needs to be set accordingly sparsity_config=SparsityConfig(num_heads=4), key_padding_mask_mode='add', attn_mask_mode='mul', max_seq_length=2048): """Initialize the sparse self attention layer. Arguments: sparsity_config: optional: this parameter determines sparsity pattern configuration; it is based on SparsityConfig class. key_padding_mask_mode: optional: a string determining if key padding mask needs to be added, `add`, or be multiplied, `mul`. attn_mask_mode: optional: a string determining if attention mask needs to be added, `add`, or be multiplied, `mul`. max_seq_length: optional: the maximum sequence length this sparse attention module will be applied to; it controls the size of the master_layout. """ super().__init__() # sparsity information self.sparsity_config = sparsity_config # initialize sparse layout and register as buffer master_layout = self.sparsity_config.make_layout(max_seq_length) self.register_buffer("master_layout", master_layout) self._need_layout_synchronization = True # mask modes self.key_padding_mask_mode = key_padding_mask_mode self.attn_mask_mode = attn_mask_mode ops = dict() def get_layout(self, L): # if layout is never synchronized across GPUs, broadcast the layout from global rank 0 if self._need_layout_synchronization and dist.is_initialized(): dist.broadcast(self.master_layout, src=0) self._need_layout_synchronization = False if (L % self.sparsity_config.block != 0): raise ValueError( f'Sequence Length, {L}, needs to be dividable by Block size {self.sparsity_config.block}!') num_blocks = L // self.sparsity_config.block return self.master_layout[..., :num_blocks, :num_blocks].cpu() # layout needs to be a CPU tensor # add to cache def get_ops(self, H, L): from deepspeed.ops.sparse_attention.matmul import MatMul from deepspeed.ops.sparse_attention.softmax import Softmax if L not in SparseSelfAttention.ops: sparsity_layout = self.get_layout(L) sparse_dot_sdd_nt = MatMul(sparsity_layout, self.sparsity_config.block, 'sdd', trans_a=False, trans_b=True) sparse_dot_dsd_nn = MatMul(sparsity_layout, self.sparsity_config.block, 'dsd', trans_a=False, trans_b=False) sparse_softmax = Softmax(sparsity_layout, self.sparsity_config.block) SparseSelfAttention.ops[L] = (sparse_dot_sdd_nt, sparse_dot_dsd_nn, sparse_softmax) return SparseSelfAttention.ops[L] def transpose_key_for_scores(self, x, L): bsz, num_heads, seq_len, head_dim = x.size() if seq_len != L: return x.permute(0, 1, 3, 2) return x def transpose_mask_for_sparse(self, qtype, x, is_key_padding_mask=False): x = x.type(qtype) if is_key_padding_mask: xdim = x.dim() for d in range(xdim - 1, 0, -1): x = x.squeeze(dim=d) return x return x.squeeze() # forward pass def forward(self, query, key, value, rpe=None, key_padding_mask=None, attn_mask=None): """Applies forward phase of sparse self attention Arguments: query: required: query tensor key: required: key tensor value: required: value tensor rpe: optional: a tensor same dimension as x that is used as relative position embedding key_padding_mask: optional: a mask tensor of size (BatchSize X SequenceLength) attn_mask: optional: a mask tensor of size (SequenceLength X SequenceLength); currently only 2D is supported key_padding_mask_mode: optional: a boolean determining if key_padding_mask needs to be added or multiplied attn_mask_mode: optional: a boolean determining if attn_mask needs to be added or multiplied Return: attn_output: a dense tensor containing attention context """ assert query.dtype == torch.half, "sparse attention only supports training in fp16 currently, please file a github issue if you need fp32 support" bsz, num_heads, tgt_len, head_dim = query.size() # transpose back key if it is already transposed key = self.transpose_key_for_scores(key, tgt_len) # check that operation is supported if query.shape != key.shape or key.shape != value.shape: raise NotImplementedError('only self-attention is supported for now') # squeeze key_padding_mask if it is given if key_padding_mask is not None: key_padding_mask = self.transpose_mask_for_sparse(query.dtype, key_padding_mask, is_key_padding_mask=True) # squeeze attn_mask if it is given if attn_mask is not None: attn_mask = self.transpose_mask_for_sparse(query.dtype, attn_mask) # cache look-up table computations etc sparse_dot_sdd_nt, sparse_dot_dsd_nn, sparse_softmax = self.get_ops(num_heads, tgt_len) scaling = float(head_dim)**-0.5 # attention scores attn_output_weights = sparse_dot_sdd_nt(query, key) attn_output_weights = sparse_softmax(attn_output_weights, scale=scaling, rpe=rpe, key_padding_mask=key_padding_mask, attn_mask=attn_mask, key_padding_mask_mode=self.key_padding_mask_mode, attn_mask_mode=self.attn_mask_mode) # outputs attn_output = sparse_dot_dsd_nn(attn_output_weights, value) return attn_output
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/ops/sparse_attention/sparse_self_attention.py
sparse_self_attention.py
# DeepSpeed Team import torch import random class SparsityConfig: """Abstract Configuration class to store `sparsity configuration of a self attention layer`. It contains shared property of different block-sparse sparsity patterns. However, each class needs to extend it based on required property and functionality. """ def __init__(self, num_heads, block=16, different_layout_per_head=False): """Initialize the Sparsity Pattern Config. For usage example please see, TODO DeepSpeed Sparse Transformer Tutorial Arguments: num_heads: required: an integer determining number of attention heads of the layer. block: optional: an integer determining the block size. Current implementation of sparse self-attention is based on blocked sparse matrices. In which this parameter defines size of such blocks, `Block X Block`. different_layout_per_head: optional: a boolean determining if each head should be assigned a different sparsity layout; default is false and this will be satisfied based on availability. """ self.num_heads = num_heads self.block = block self.different_layout_per_head = different_layout_per_head self.num_layout_heads = num_heads if different_layout_per_head else 1 def setup_layout(self, seq_len): """Create layout tensor for the given sequence length Arguments: seq_len: required: an integer determining number of attention heads of the layer. Return: layout: a tensor of dimension (num_heads, num_blocks, num_blocks) for sparsity layout of all head; initialized with zero """ if (seq_len % self.block != 0): raise ValueError(f'Sequence Length, {seq_len}, needs to be dividable by Block size {self.block}!') num_blocks = seq_len // self.block # TODO Currently we allocate layout per head; needs to be updated if heads share a single layout. layout = torch.zeros((self.num_heads, num_blocks, num_blocks), dtype=torch.int64) return layout def check_and_propagate_first_head_layout(self, layout): """If all heads require same sparsity layout, it propagate first head layout to all heads Arguments: layout: required: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head; may not be completely set at this step Return: layout: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head """ if not self.different_layout_per_head: layout[1:self.num_heads, :, :] = layout[0, :, :] return layout class DenseSparsityConfig(SparsityConfig): """Configuration class to store `Dense` configuration. In reality, this is not sparse and all blocks are used. We keep it for the sake of comparison and comprehension. """ def __init__(self, num_heads, block=16, different_layout_per_head=False): """Initialize the Dense Sparsity Pattern Config. In reality, this is not sparse and all blocks are used. We keep it for the sake of comparison and comprehension. Arguments: num_heads: required: an integer determining number of attention heads of the layer. seq_len: required: an integer determining number of attention heads of the layer. different_layout_per_head: optional: this is just for the sake of consistency with other sparsity formats; can ignore it for DenseSparsityConfig """ super().__init__(num_heads, block, different_layout_per_head) def make_layout(self, seq_len): """Set 1 to all blocks of the layout meanins the pattern is dense; not sparse. Arguments: seq_len: required: an integer determining the underling sequence length; must be <= max sequence length Return: layout: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head; for dense everything is 1 """ layout = self.setup_layout(seq_len) layout[:, :, :] = 1 return layout class FixedSparsityConfig(SparsityConfig): """Configuration class to store `Fixed` sparsity configuration. For more details about this sparsity config, please see `Generative Modeling with Sparse Transformers`: https://arxiv.org/abs/1904.10509; this has been customized. This class extends parent class of `SparsityConfig` and customizes it for `Fixed` sparsity. """ def __init__(self, num_heads, block=16, different_layout_per_head=False, num_local_blocks=4, num_global_blocks=1, attention='bidirectional', horizontal_global_attention=False, num_different_global_patterns=1): """Initialize `Fixed` Sparsity Pattern Config. For usage example please see, TODO DeepSpeed Sparse Transformer Tutorial Arguments: num_heads: required: an integer determining number of attention heads of the layer. block: optional: an integer determining the block size. Current implementation of sparse self-attention is based on blocked sparse matrices. In which this parameter defines size of such blocks, `Block X Block`. different_layout_per_head: optional: a boolean determining if each head should be assigned a different sparsity layout; default is false and this will be satisfied based on availability. num_local_blocks: optional: an integer determining the number of blocks in local attention window. num_global_blocks: optional: an integer determining how many consecutive blocks in a local window is used as the representative of the window for global attention. attention: optional: a string determining attention type. Attention can be `unidirectional`, such as autoregressive models, in which tokens attend only to tokens appear before them in the context. Considering that, the upper triangular of attention matrix is empty as above figure. Or it can be `bidirectional`, such as BERT, in which tokens can attend to any other tokens before or after them. Then, the upper triangular part of the attention matrix is mirror of the lower triangular in the above figure. horizontal_global_attention: optional: a boolean determining if blocks that are global representative of a local window, also attend to all other blocks. This is valid only if attention type is `bidirectional`. Looking at the attention matrix, that means global attention not only includes the vertical blocks, but also horizontal blocks. num_different_global_patterns: optional: an integer determining number of different global attentions layouts. While global attention can be fixed by which block/s are representative of any local window, since there are multi-heads, each head can use a different global representative. For example, with 4 blocks local window and global attention size of 1 block, we can have 4 different versions in which the first, Second, third, or forth block of each local window can be global representative of that window. This parameter determines how many of such patterns we want. Of course, there is a limitation based on num_local_blocks and num_global_blocks. """ super().__init__(num_heads, block, different_layout_per_head) self.num_local_blocks = num_local_blocks if (num_local_blocks % num_global_blocks != 0): raise ValueError( f'Number of blocks in a local window, {num_local_blocks}, must be dividable by number of global blocks, {num_global_blocks}!' ) self.num_global_blocks = num_global_blocks if (attention != 'unidirectional' and attention != 'bidirectional'): raise NotImplementedError('only \"uni/bi-directional\" attentions are supported for now!') self.attention = attention if (attention != 'bidirectional' and horizontal_global_attention): raise ValueError('only \"bi-directional\" attentions can support horizontal global attention!') self.horizontal_global_attention = horizontal_global_attention if (num_different_global_patterns > 1 and not different_layout_per_head): raise ValueError( f'Number of different layouts cannot be more than one when you have set a single layout for all heads! Set different_layout_per_head to True.' ) if (num_different_global_patterns > (num_local_blocks // num_global_blocks)): raise ValueError( f'Number of layout versions (num_different_global_patterns), {num_different_global_patterns}, cannot be larger than number of local window blocks divided by number of global blocks, {num_local_blocks} / {num_global_blocks} = {num_local_blocks//num_global_blocks}!' ) self.num_different_global_patterns = num_different_global_patterns def set_local_layout(self, h, layout): """Sets local attention layout used by the given head in the sparse attention. Arguments: h: required: an integer determining head index layout: required: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head; may not be completely set at this step Return: layout: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head in which local layout is set """ num_blocks = layout.shape[1] for i in range(0, num_blocks, self.num_local_blocks): end = min(i + self.num_local_blocks, num_blocks) for row in range(i, end): for col in range(i, (row + 1 if self.attention == 'unidirectional' else end)): layout[h, row, col] = 1 return layout def set_global_layout(self, h, layout): """Sets global attention layout used by the given head in the sparse attention. Currently we set global blocks starting from the last block of a local window to the first one. That means if a local window consists of 4 blocks and global attention size is one block, we use block #4 in each local window as global. If we have different layout per head, then other heads will get #3, #2, and #1. And if we have more heads (and different layout has set) than num of global attentions, multiple head may have same global attentions. Note) if horizontal_global_attention is set, global blocks will be set both horizontally and vertically. Arguments: h: required: an integer determining head index layout: required: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head; may not be completely set at this step Return: layout: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head in which global layout is set """ num_blocks = layout.shape[1] first_global_block_idx = self.num_local_blocks - ( 1 + h % self.num_different_global_patterns) * self.num_global_blocks # set all global blocks except the last one if (in last local window) end = num_blocks - (num_blocks % self.num_local_blocks) for i in range(first_global_block_idx, end, self.num_local_blocks): # vertical global attention first_row = 0 if self.attention == 'bidirectional' else i #(((i // self.num_local_blocks) + 1) * self.num_local_blocks) #if (first_row < num_blocks): layout[h, first_row:, i:i + self.num_global_blocks] = 1 # horizontal global attention; only in bidirectional attention if (self.horizontal_global_attention): layout[h, i:i + self.num_global_blocks, :] = 1 # set last global blocks; handle possible short last local window if (end < num_blocks): start = min(end + first_global_block_idx, num_blocks - self.num_global_blocks) end = start + self.num_global_blocks # vertical global attention first_row = 0 if self.attention == 'bidirectional' else start #(((start // self.num_local_blocks) + 1) * self.num_local_blocks) #if (first_row < num_blocks): layout[h, first_row:, start:end] = 1 # horizontal global attention if (self.horizontal_global_attention): layout[h, start:end, :] = 1 return layout def make_layout(self, seq_len): """Generates `Fixed` sparsity layout used by each head in the sparse attention. Arguments: seq_len: required: an integer determining number of attention heads of the layer. Return: layout: a tensor of dimension (num_heads, num_blocks, num_blocks) containing `Fixed` sparsity layout of all head """ layout = self.setup_layout(seq_len) for h in range(0, self.num_layout_heads): layout = self.set_local_layout(h, layout) layout = self.set_global_layout(h, layout) layout = self.check_and_propagate_first_head_layout(layout) return layout class VariableSparsityConfig(SparsityConfig): """Configuration class to store `Variable` sparsity configuration. This layout is an extension of FixedSparsityConfig in which: - user can set random layout; default value is zero means no random block - user can provide a list of local block sizes - user can provide a list of global block indices. For more details about `Fixed` sparsity config, please see `Generative Modeling with Sparse Transformers`: https://arxiv.org/abs/1904.10509; this has been customized. This class extends parent class of `SparsityConfig` and customizes it for `Fixed` sparsity. """ def __init__(self, num_heads, block=16, different_layout_per_head=False, num_random_blocks=0, local_window_blocks=[4], global_block_indices=[0], global_block_end_indices=None, attention='bidirectional', horizontal_global_attention=False): """Initialize `Variable` Sparsity Pattern Config. For usage example please see, TODO DeepSpeed Sparse Transformer Tutorial Arguments: num_heads: required: an integer determining number of attention heads of the layer. block: optional: an integer determining the block size. Current implementation of sparse self-attention is based on blocked sparse matrices. In which this parameter defines size of such blocks, `Block X Block`. different_layout_per_head: optional: a boolean determining if each head should be assigned a different sparsity layout; default is false and this will be satisfied based on availability. Currently this sparsity config can only assign single layout to all heads; needs to be extended for different layout per head. num_random_blocks: optional: an integer determining the number of random blocks in each block row. local_window_blocks: optional: a list of integers determining the number of blocks in each local attention window. It assumes first number determines # of blocks in the first local window, second the second window, ..., and the last number determines the number of blocks in the remaining local windows. global_block_indices: optional: a list of integers determining which blocks are considered as global attention. Given indices, determine the blocks that all other token blocks attend to and they attend to all other token blocks. Default value is only index 0. Notice that if global_block_end_indices parameter is set, this parameter is used as starting index of each global window. global_block_end_indices: optional: a list of integers determining end indices of global window blocks. By default this is not used. But if it is set, it must have the same size of global_block_indices parameter, and combining this two parameters, for each index i, blocks from global_block_indices[i] to global_block_end_indices[i] (exclusive) are considered as global attention. num_global_blocks: optional: an integer determining how many consecutive blocks in a local window is used as the representative of the window for global attention. attention: optional: a string determining attention type. Attention can be `unidirectional`, such as autoregressive models, in which tokens attend only to tokens appear before them in the context. Considering that, the upper triangular of attention matrix is empty as above figure. Or it can be `bidirectional`, such as BERT, in which tokens can attend to any other tokens before or after them. Then, the upper triangular part of the attention matrix is mirror of the lower triangular in the above figure. horizontal_global_attention: optional: a boolean determining if blocks that are global representative of a local window, also attend to all other blocks. This is valid only if attention type is `bidirectional`. Looking at the attention matrix, that means global attention not only includes the vertical blocks, but also horizontal blocks. """ super().__init__(num_heads, block, different_layout_per_head) self.num_random_blocks = num_random_blocks self.local_window_blocks = local_window_blocks self.global_block_indices = global_block_indices if (global_block_end_indices is not None): if (len(global_block_indices) != len(global_block_end_indices)): raise ValueError( f'Global block start indices length, {len(global_block_indices)}, must be same as global block end indices length, {len(global_block_end_indices)}!' ) for _, (start_idx, end_idx) in enumerate(zip(global_block_indices, global_block_end_indices)): if start_idx >= end_idx: raise ValueError( f'Global block start index, {start_idx}, must be smaller than global block end index, {end_idx}!' ) self.global_block_end_indices = global_block_end_indices if (attention != 'unidirectional' and attention != 'bidirectional'): raise NotImplementedError('only \"uni/bi-directional\" attentions are supported for now!') self.attention = attention if (attention != 'bidirectional' and horizontal_global_attention): raise ValueError('only \"bi-directional\" attentions can support horizontal global attention!') self.horizontal_global_attention = horizontal_global_attention def set_random_layout(self, h, layout): """Sets random attention layout used by the given head in the sparse attention. Note) By default, it assumes there will be a unique random block layout for all heads; unless `different_layout_per_head` parameter is set in which each head can have a different random layout. Arguments: h: required: an integer determining head index layout: required: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head; may not be completely set at this step Return: layout: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head in which random layout is set """ num_blocks = layout.shape[1] if (num_blocks < self.num_random_blocks): raise ValueError( f'Number of random blocks, {self.num_random_blocks}, must be smaller than overall number of blocks in a row, {num_blocks}!' ) for row in range(0, num_blocks): rnd_cols = random.sample(range(0, num_blocks), self.num_random_blocks) layout[h, row, rnd_cols] = 1 return layout def set_local_layout(self, h, layout): """Sets local attention layout used by the given head in the sparse attention. Arguments: h: required: an integer determining head index layout: required: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head; may not be completely set at this step Return: layout: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head in which local layout is set """ num_blocks = layout.shape[1] start_block_idx = 0 end_block_idx = 0 for block_size in self.local_window_blocks: end_block_idx += block_size end_block_idx = min(end_block_idx, num_blocks) for row in range(start_block_idx, end_block_idx): for col in range(start_block_idx, (row + 1 if self.attention == 'unidirectional' else end_block_idx)): layout[h, row, col] = 1 start_block_idx += block_size # if there is any remaining not attended part, use the lats local window block size as local window for the remaining applicable local windows for i in range(start_block_idx, num_blocks, block_size): end_block_idx = min(i + block_size, num_blocks) for row in range(i, end_block_idx): for col in range(i, (row + 1 if self.attention == 'unidirectional' else end_block_idx)): layout[h, row, col] = 1 return layout def set_global_layout(self, h, layout): """Sets global attention layout used by the given head in the sparse attention. Arguments: h: required: an integer determining head index layout: required: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head; may not be completely set at this step Return: layout: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head in which global layout is set """ num_blocks = layout.shape[1] if (self.global_block_end_indices is None): for idx in self.global_block_indices: # if global block idx is in the range of the sequence blocks if (idx < num_blocks): #global rows if (self.horizontal_global_attention): layout[h, idx, :] = 1 #global columns first_row = 0 if self.attention == 'bidirectional' else idx layout[h, first_row:, idx] = 1 else: for _, (start_idx, end_idx) in enumerate(zip(self.global_block_indices, self.global_block_end_indices)): # if global block idx is in the range of the sequence blocks if (start_idx < num_blocks): end_idx = min(end_idx, num_blocks) #global rows if (self.horizontal_global_attention): layout[h, start_idx:end_idx, :] = 1 #global columns first_row = 0 if self.attention == 'bidirectional' else start_idx layout[h, first_row:, start_idx:end_idx] = 1 return layout def make_layout(self, seq_len): """Generates `Variable` sparsity layout used by each head in the sparse attention. Arguments: seq_len: required: an integer determining number of attention heads of the layer. Return: layout: a tensor of dimension (num_heads, num_blocks, num_blocks) containing `Variable` sparsity layout of all head """ layout = self.setup_layout(seq_len) for h in range(0, self.num_layout_heads): layout = self.set_random_layout(h, layout) layout = self.set_local_layout(h, layout) layout = self.set_global_layout(h, layout) layout = self.check_and_propagate_first_head_layout(layout) return layout class BigBirdSparsityConfig(SparsityConfig): """Configuration class to store `BigBird` sparsity configuration. For more details about this sparsity config, please see `Big Bird: Transformers for Longer Sequences`: https://arxiv.org/pdf/2007.14062.pdf This class extends parent class of `SparsityConfig` and customizes it for `BigBird` sparsity. """ def __init__(self, num_heads, block=16, different_layout_per_head=False, num_random_blocks=1, num_sliding_window_blocks=3, num_global_blocks=1, attention='bidirectional'): """Initialize the BigBird Sparsity Pattern Config. For usage example please see, TODO DeepSpeed Sparse Transformer Tutorial Arguments: num_heads: required: an integer determining number of attention heads of the layer. block: optional: an integer determining the block size. Current implementation of sparse self-attention is based on blocked sparse matrices. In which this parameter defines size of such blocks, `Block X Block`. different_layout_per_head: optional: a boolean determining if each head should be assigned a different sparsity layout; default is false and this will be satisfied based on availability. num_random_blocks: optional: an integer determining the number of random blocks in each block row. num_sliding_window_blocks: optional: an integer determining the number of blocks in sliding local attention window. num_global_blocks: optional: an integer determining how many consecutive blocks, starting from index 0, are considered as global attention. Global block tokens will be attended by all other block tokens and will attend to all other block tokens as well. attention: optional: a string determining attention type. Attention can be `unidirectional`, such as autoregressive models, in which tokens attend only to tokens appear before them in the context. Considering that, the upper triangular of attention matrix is empty as above figure. Or it can be `bidirectional`, such as BERT, in which tokens can attend to any other tokens before or after them. Then, the upper triangular part of the attention matrix is mirror of the lower triangular in the above figure. """ super().__init__(num_heads, block, different_layout_per_head) self.num_random_blocks = num_random_blocks self.num_sliding_window_blocks = num_sliding_window_blocks self.num_global_blocks = num_global_blocks if (attention != 'unidirectional' and attention != 'bidirectional'): raise NotImplementedError('only \"uni/bi-directional\" attentions are supported for now!') self.attention = attention def set_random_layout(self, h, layout): """Sets random attention layout used by the given head in the sparse attention. Note) By default, it assumes there will be a unique random block layout for all heads; unless `different_layout_per_head` parameter is set in which each head can have a different random layout. Arguments: h: required: an integer determining head index layout: required: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head; may not be completely set at this step Return: layout: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head in which random layout is set """ num_blocks = layout.shape[1] if (num_blocks < self.num_random_blocks): raise ValueError( f'Number of random blocks, {self.num_random_blocks}, must be smaller than overall number of blocks in a row, {num_blocks}!' ) for row in range(0, num_blocks): sample_range = range(0, num_blocks) if self.attention == 'bidirectional' else range(0, row + 1) rnd_cols = random.sample(sample_range, self.num_random_blocks) layout[h, row, rnd_cols] = 1 return layout def set_sliding_window_layout(self, h, layout): """Sets sliding local attention layout used by the given head in the sparse attention. Arguments: h: required: an integer determining head index layout: required: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head; may not be completely set at this step Return: layout: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head in which local sliding window layout is set """ num_blocks = layout.shape[1] if (num_blocks < self.num_sliding_window_blocks): raise ValueError( f'Number of sliding window blocks, {self.num_sliding_window_blocks}, must be smaller than overall number of blocks in a row, {num_blocks}!' ) w = self.num_sliding_window_blocks // 2 for row in range(0, num_blocks): start = max(0, row - w) end = min(row + w + 1, num_blocks) layout[h, row, start:end] = 1 return layout def set_global_layout_itc(self, h, layout): """Sets global attention layout used by the given head in the sparse attention. Arguments: h: required: an integer determining head index layout: required: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head; may not be completely set at this step Return: layout: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head in which global layout is set """ num_blocks = layout.shape[1] if (num_blocks < self.num_global_blocks): raise ValueError( f'Number of global blocks, {self.num_global_blocks}, must be smaller than overall number of blocks in a row, {num_blocks}!' ) #global rows layout[h, 0:self.num_global_blocks, :] = 1 #global columns layout[h, :, 0:self.num_global_blocks] = 1 if self.attention == 'unidirectional': # zero out anything attending to the future layout = torch.tril(layout) return layout def make_layout(self, seq_len): """Generates `BigBird` sparsity layout used by each head in the sparse attention. Arguments: seq_len: required: an integer determining number of attention heads of the layer. Return: layout: a tensor of dimension (num_heads, num_blocks, num_blocks) containing `BigBird` sparsity layout of all head """ layout = self.setup_layout(seq_len) for h in range(0, self.num_layout_heads): layout = self.set_random_layout(h, layout) layout = self.set_sliding_window_layout(h, layout) layout = self.set_global_layout_itc(h, layout) layout = self.check_and_propagate_first_head_layout(layout) return layout class BSLongformerSparsityConfig(SparsityConfig): """Configuration class to store edited `Longformer` sparsity configuration. Note) this is a block-sparse version of the Longformer which is slightly different than original Longformer; which is element-wise sparsity. For more details about this sparsity config, please see `Longformer: The Long-Document Transformer`: https://arxiv.org/pdf/2004.05150.pdf This class extends parent class of `SparsityConfig` and customizes it for `Longformer` sparsity. """ def __init__(self, num_heads, block=16, different_layout_per_head=False, num_sliding_window_blocks=3, global_block_indices=[0], global_block_end_indices=None, attention='bidirectional'): """Initialize the edited `Longformer` Sparsity Pattern Config. For usage example please see, TODO DeepSpeed Sparse Transformer Tutorial Arguments: num_heads: required: an integer determining number of attention heads of the layer. block: optional: an integer determining the block size. Current implementation of sparse self-attention is based on blocked sparse matrices. In which this parameter defines size of such blocks, `Block X Block`. different_layout_per_head: optional: a boolean determining if each head should be assigned a different sparsity layout; default is false and this will be satisfied based on availability. num_sliding_window_blocks: optional: an integer determining the number of blocks in sliding local attention window. global_block_indices: optional: a list of integers determining which blocks are considered as global attention. Given indices, determine the blocks that all other token blocks attend to and they attend to all other token blocks. Default value is only index 0. Notice that if global_block_end_indices parameter is set, this parameter is used as starting index of each global window. global_block_end_indices: optional: a list of integers determining end indices of global window blocks. By default this is not used. But if it is set, it must have the same size of global_block_indices parameter, and combining this two parameters, for each index i, blocks from global_block_indices[i] to global_block_end_indices[i] (exclusive) are considered as global attention. attention: optional: a string determining attention type. Attention can be `unidirectional`, such as autoregressive models, in which tokens attend only to tokens appear before them in the context. Considering that, the upper triangular of attention matrix is empty as above figure. Or it can be `bidirectional`, such as BERT, in which tokens can attend to any other tokens before or after them. Then, the upper triangular part of the attention matrix is mirror of the lower triangular in the above figure. """ super().__init__(num_heads, block, different_layout_per_head) self.num_sliding_window_blocks = num_sliding_window_blocks self.global_block_indices = global_block_indices self.attention = attention if (global_block_end_indices is not None): if (len(global_block_indices) != len(global_block_end_indices)): raise ValueError( f'Global block start indices length, {len(global_block_indices)}, must be same as global block end indices length, {len(global_block_end_indices)}!' ) for _, (start_idx, end_idx) in enumerate(zip(global_block_indices, global_block_end_indices)): if start_idx >= end_idx: raise ValueError( f'Global block start index, {start_idx}, must be smaller than global block end index, {end_idx}!' ) self.global_block_end_indices = global_block_end_indices def set_sliding_window_layout(self, h, layout): """Sets sliding local attention layout used by the given head in the sparse attention. Arguments: h: required: an integer determining head index layout: required: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head; may not be completely set at this step Return: layout: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head in which local sliding window layout is set """ num_blocks = layout.shape[1] if (num_blocks < self.num_sliding_window_blocks): raise ValueError( f'Number of sliding window blocks, {self.num_sliding_window_blocks}, must be smaller than overall number of blocks in a row, {num_blocks}!' ) w = self.num_sliding_window_blocks // 2 for row in range(0, num_blocks): start = max(0, row - w) end = min(row + w + 1, num_blocks) layout[h, row, start:end] = 1 return layout def set_global_layout(self, h, layout): """Sets global attention layout used by the given head in the sparse attention. Arguments: h: required: an integer determining head index layout: required: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head; may not be completely set at this step Return: layout: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head in which global layout is set """ num_blocks = layout.shape[1] if (self.global_block_end_indices is None): for idx in self.global_block_indices: # if global block idx is in the range of the sequence blocks if (idx < num_blocks): #global rows layout[h, idx, :] = 1 #global columns layout[h, :, idx] = 1 else: for _, (start_idx, end_idx) in enumerate(zip(self.global_block_indices, self.global_block_end_indices)): # if global block idx is in the range of the sequence blocks if (start_idx < num_blocks): end_idx = min(end_idx, num_blocks) #global rows layout[h, start_idx:end_idx, :] = 1 #global columns layout[h, :, start_idx:end_idx] = 1 if self.attention == 'unidirectional': layout = torch.tril(layout) return layout def make_layout(self, seq_len): """Generates edited `Longformer` sparsity layout used by each head in the sparse attention. Arguments: seq_len: required: an integer determining number of attention heads of the layer. Return: layout: a tensor of dimension (num_heads, num_blocks, num_blocks) containing `BSLongformer` sparsity layout of all head """ layout = self.setup_layout(seq_len) for h in range(0, self.num_layout_heads): layout = self.set_sliding_window_layout(h, layout) layout = self.set_global_layout(h, layout) layout = self.check_and_propagate_first_head_layout(layout) return layout class LocalSlidingWindowSparsityConfig(SparsityConfig): """Configuration class to store `Local Sliding Window` sparsity configuration - a purely-local sliding window attention. This class extends parent class of `SparsityConfig` and customizes it for `Local` sparsity. """ def __init__(self, num_heads, block=16, num_sliding_window_blocks=3, attention='unidirectional'): """Initialize the Local Sliding Window Sparsity Pattern Config. For usage example please see, TODO DeepSpeed Sparse Transformer Tutorial Arguments: num_heads: required: an integer determining number of attention heads of the layer. block: optional: an integer determining the block size. Current implementation of sparse self-attention is based on blocked sparse matrices. In which this parameter defines size of such blocks, `Block X Block`. num_sliding_window_blocks: optional: an integer determining the number of blocks in sliding local attention window. attention: optional: a string determining attention type. Attention can be `unidirectional`, such as autoregressive models, in which tokens attend only to tokens appear before them in the context. Considering that, the upper triangular of attention matrix is empty as above figure. Or it can be `bidirectional`, such as BERT, in which tokens can attend to any other tokens before or after them. Then, the upper triangular part of the attention matrix is mirror of the lower triangular in the above figure. """ super().__init__(num_heads, block) self.num_sliding_window_blocks = num_sliding_window_blocks self.attention = attention def set_sliding_window_layout(self, h, layout): """Sets sliding local attention layout used by the given head in the sparse attention. Arguments: h: required: an integer determining head index layout: required: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head; may not be completely set at this step Return: layout: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head in which local sliding window layout is set """ num_blocks = layout.shape[1] if (num_blocks < self.num_sliding_window_blocks): raise ValueError( f'Number of sliding window blocks, {self.num_sliding_window_blocks}, must be smaller than overal number of blocks in a row, {num_blocks}!' ) w = self.num_sliding_window_blocks // 2 for row in range(0, num_blocks): start = max(0, row - w) end = min(row + w + 1, num_blocks) if self.attention == "bidirectional" else row + 1 layout[h, row, start:end] = 1 return layout def make_layout(self, seq_len): """Generates `Local Sliding Window` sparsity layout used by each head in the sparse attention. Arguments: seq_len: required: an integer determining number of attention heads of the layer. Return: layout: a tensor of dimension (num_heads, num_blocks, num_blocks) containing `BigBird` sparsity layout of all head """ layout = self.setup_layout(seq_len) for h in range(0, self.num_layout_heads): layout = self.set_sliding_window_layout(h, layout) layout = self.check_and_propagate_first_head_layout(layout) return layout
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/ops/sparse_attention/sparsity_config.py
sparsity_config.py
# DeepSpeed Team # DeepSpeed note, code taken & adapted from commit 9aa94789f13ada713af36cfd8cca2fc9a7f6b79a # https://github.com/ptillet/torch-blocksparse/blob/master/torch_blocksparse/matmul.py import importlib import torch import triton import triton.language as tl import triton._C.libtriton as libtriton from deepspeed.accelerator import get_accelerator @triton.jit def _kernel(A, B, C, stride_za, stride_ha, stride_ma, stride_ka, stride_zb, stride_hb, stride_kb, stride_nb, stride_zc, stride_hc, stride_mc, stride_nc, DS0, DS1, SDD_K, SDD_off_width, lut, locks, nlocks, **meta): TM = meta['TM'] TN = meta['TN'] TK = meta['TK'] TZ = meta['TZ'] BLOCK = meta['BLOCK'] #------------# #- Prologue -# #------------# pid0 = tl.program_id(0) pid1 = tl.program_id(1) pidz = tl.program_id(2) if meta['SDD']: pid1 = pid1 + SDD_off_width blockidm = tl.arange(0, TM) // BLOCK blockidn = tl.arange(0, TN) // BLOCK offlutm = blockidm * (TN // BLOCK) * 4 offlutn = blockidn * 4 header = lut + pid1 * (TM // BLOCK) * (TN // BLOCK) * 4 z = tl.load(header + 0) i = tl.load(header + 1 + offlutm) j = tl.load(header + 2 + offlutn) AS1 = SDD_K // TZ lockid = tl.where(TZ > 1, 1, 0) offka = pid0 * AS1 offkb = pid0 * AS1 offmc = 0 offnc = 0 offpa = 0 offpb = 0 maxid = TZ offhc = 0 offha = z offhb = z ram = i * BLOCK + (tl.arange(0, TM) % BLOCK) rbn = j * BLOCK + (tl.arange(0, TN) % BLOCK) else: header = lut + pid0 * 6 offset = tl.load(header + 0) AS1 = tl.load(header + 1) column = tl.load(header + 2) depth = tl.load(header + 3) lockid = tl.load(header + 4) maxid = tl.load(header + 5) pinc = lut + offset offhc = depth if meta['DSD']: # output offset offnc = pid1 * TN offmc = column * TM offpc = 0 # dense input offset offnb = pid1 * TN offkb = tl.load(pinc) offkb = tl.multiple_of(offkb, 8) # compiler hint offpb = 0 # sparse input offset offma = 0 offka = 0 offpa = tl.load(pinc + 1) offpa = tl.multiple_of(offpa, 8) # compiler hint offpa = offpa * BLOCK * BLOCK offha = 0 offhb = depth else: # output offset offmc = pid1 * TM offnc = column * TN offpc = 0 # dense input offset offma = pid1 * TM offka = tl.load(pinc) offka = tl.multiple_of(offka, 8) # compiler hint offpa = 0 # sparse input offset offnb = 0 offkb = 0 offpb = tl.load(pinc + 1) offpb = tl.multiple_of(offpb, 8) # compiler hint offpb = offpb * BLOCK * BLOCK offha = depth offhb = 0 ram = offma + tl.arange(0, TM) rbn = offnb + tl.arange(0, TN) # initialize a, b pointers rka = offka + tl.arange(0, TK) rkb = offkb + tl.arange(0, TK) pa = A + pidz * stride_za + offha * stride_ha + offpa + ram[:, None] * stride_ma + rka[None, :] * stride_ka pb = B + pidz * stride_zb + offhb * stride_hb + offpb + rbn[None, :] * stride_nb + rkb[:, None] * stride_kb if meta['DDS']: checkam = ram[:, None] < DS0 else: checkam = AS1 > 0 if meta['DSD']: checkbn = rbn[None, :] < DS0 else: checkbn = AS1 > 0 a = tl.load(pa, mask=checkam, other=0.) b = tl.load(pb, mask=checkbn, other=0.) ## ---------------- ## ## Inner Loop ## ## ---------------- ## acc = tl.zeros((TM, TN), dtype=tl.float32) for k in range(AS1, 0, -TK): acc += tl.dot(a, b) if meta['SDD']: inc_a = TK * stride_ka inc_b = TK * stride_kb else: pinc += 2 if meta['DSD']: inc_b = tl.load(pinc) inc_a = tl.load(pinc + 1) inc_b = tl.multiple_of(inc_b, 8) inc_a = tl.multiple_of(inc_a, 8) inc_b = inc_b * stride_kb if meta['DDS']: inc_a = tl.load(pinc) inc_b = tl.load(pinc + 1) inc_a = tl.multiple_of(inc_a, 8) inc_b = tl.multiple_of(inc_b, 8) inc_a = inc_a * stride_ka pa += inc_a pb += inc_b # pre-fetch checkak = k > TK checkbk = k > TK checka = checkam & checkak checkb = checkbn & checkbk a = tl.load(pa, mask=checka) b = tl.load(pb, mask=checkb) c = acc.to(C.dtype.element_ty) if meta['SDD']: checkc = True rr_blockidm = tl.arange(0, TM) // BLOCK rr_blockidn = tl.arange(0, TN) // BLOCK rr_offlutm = rr_blockidm * (TN // BLOCK) * 4 rr_offlutn = rr_blockidn * 4 off_bkid = 3 + rr_offlutm[:, None] + rr_offlutn[None, :] bkid = tl.load(header + off_bkid) offpc = bkid * BLOCK * BLOCK rcm = tl.arange(0, TM) % BLOCK rcn = tl.arange(0, TN) % BLOCK else: rcm = offmc + tl.arange(0, TM) rcn = offnc + tl.arange(0, TN) if meta['DSD']: checkc = rcn[None, :] < DS0 if meta['DDS']: checkc = rcm[:, None] < DS0 pc = C + offpc + offhc * stride_hc + pidz * stride_zc + rcm[:, None] * stride_mc + rcn[None, :] * stride_nc # write-back directly if lockid == 0: tl.store(pc, c, mask=checkc) # accumulate partial results using spin-locks else: plock = locks + tl.program_id(2) * nlocks * tl.num_programs(1) + tl.program_id(1) * nlocks + lockid - 1 pcount = plock + tl.num_programs(2) * tl.num_programs(1) * nlocks while tl.atomic_cas(plock, 0, 1) == 1: pass count = tl.load(pcount) if count == 0: tl.store(pc, c, mask=checkc) else: d = tl.load(pc, mask=checkc) tl.store(pc, d + c, mask=checkc) tl.atomic_xchg(pcount, (count + 1) % maxid) tl.atomic_xchg(plock, 0) ############## # MAIN API # ############## class _sparse_matmul(torch.autograd.Function): sdd_cache = dict() dsd_cache = dict() dds_cache = dict() locks = dict() # Given an array sizes representing reduction size for each # column of a block-mode matrix multiplication, # performs load-balancing to achieve more smaller reductions # between `seg_size` elements @staticmethod def load_balance(sizes, block): #global triton #if triton is None: # triton = importlib.import_module('triton') # segment size # heuristics taken from OpenAI blocksparse code # https://github.com/openai/blocksparse/blob/master/blocksparse/matmul.py#L95 max_size = sizes.max() min_size = sizes[sizes != 0].min() #if max_size > min_size * 2.0: # seg_max = max(triton.cdiv(max_size, 4), min_size*2) #else: # seg_max = max_size seg_max = max_size seg_min = max(triton.cdiv(seg_max, 4), 4) # split reduction into segments div = sizes // seg_max rem = sizes % seg_max packs = div + (sizes < seg_min).long() + (rem >= seg_min).long() width = packs.sum() segments = torch.empty(width, dtype=sizes.dtype) column = torch.empty_like(segments) lockid = torch.zeros_like(segments) maxid = torch.zeros_like(segments) nlocks = 0 current = 0 col_idx = 0 for i in range(len(sizes)): d, r = div[i], rem[i] isempty = sizes[i] < seg_min last = current + d + (r >= seg_min) + isempty # column id column[current:last] = col_idx # lock id if d > 1 or (d == 1 and r >= seg_min): nlocks += 1 lockid[current:last] = nlocks maxid[current:last] = last - current # segment size segments[current:current + d] = seg_max if r < seg_min and not isempty: segments[current + d - 1] += r if r >= seg_min or isempty: segments[current + d] = r current = last col_idx += 1 offsets = torch.zeros_like(segments) offsets[1:] = torch.cumsum(segments[:-1], dim=0) return segments, column, lockid, maxid, offsets @staticmethod def get_locks(size, dev): if dev not in _sparse_matmul.locks or \ size > _sparse_matmul.locks[dev].size(0): _sparse_matmul.locks[dev] = torch.zeros(size, dtype=torch.int32, device=dev) return _sparse_matmul.locks[dev] ########################## # SPARSE = DENSE x DENSE # ########################## @staticmethod def make_sdd_lut(layout, block, dtype, device): #_sparse_matmul._load_utils() #start_width = 64 // block #segmented = _sparse_matmul.sdd_segment(layout.type(torch.int32), start_width) start_width = (128 if block > 16 else 32) // block layout = layout.type(torch.int32) segmented = libtriton.superblock(layout.data_ptr(), layout.shape[0], layout.shape[1], layout.shape[2], start_width) luts, widths, packs = [], [], [] for size, nnz in segmented: """ width = nnz.shape[0] // (size * size) h = nnz[:, 0] i = nnz[:, 1] j = nnz[:, 2] b = nnz[:, 3] lut = torch.stack((h, i, j, b), dim=1).view(-1).contiguous() luts.append(lut.type(torch.int32).to(device)) widths.append(width) packs.append(size) """ nnz = nnz.reshape(-1, 4) width = nnz.shape[0] // (size * size) luts.append(torch.from_numpy(nnz).type(torch.int32).to(device)) widths.append(width) packs.append(size) # create locks return luts, None, widths, packs @staticmethod def _sdd_matmul(a, b, trans_a, trans_b, trans_c, spdims, block, luts, num_locks, widths, packs, bench, time): if trans_c: a, b = b, a trans_a, trans_b = not trans_b, not trans_a AS0 = a.size(0) # Shape check a_dim = -2 if trans_a else -1 b_dim = -1 if trans_b else -2 a_inner, b_inner = a.shape[a_dim], b.shape[b_dim] if a_inner != b_inner: raise ValueError(f"Size of tensor A along the {a_dim} dim ({a_inner}) must match size " f"of tensor B along the {b_dim} dim ({b_inner})") if a_inner % 16 != 0: raise ValueError('Reduction size for SDD must be a multiple of 16') batch_size = a.size(0) a_outer = a.size(3 if trans_a else 2) dtype = a.dtype is_16_multiple = a_inner % 16 == 0 is_32_multiple = a_inner % 32 == 0 is_64_multiple = a_inner % 64 == 0 if not is_16_multiple: raise ValueError('Reduction size for SDD must be a multiple of 16') device = a.device # create kernel total_width = sum([width * pack * pack for width, pack in zip(widths, packs)]) c = torch.empty((batch_size, total_width, block, block), dtype=dtype, device=a.device) for lut, width, pack in zip(luts, widths, packs): F32TK = [8, 16] F16TK = [16] F16TK += [32] if is_32_multiple else [] F16TK += [64] if is_64_multiple else [] TK = {torch.float32: F32TK, torch.float16: F16TK}[dtype] num_lock = 1 meta = { 'TM': block * pack, 'TN': block * pack, 'BLOCK': block, 'TK': TK[0], 'TZ': 1, 'SDD': True, 'DSD': False, 'DDS': False } # create output locks = _sparse_matmul.get_locks(2 * width * AS0 * num_lock, a.device) # maximum grid size is 65535 # so operation might be decomposed into multiple # kernel calls max_width = 49152 total = 0 if bench else None for off_width in range(0, width, max_width): grid = lambda meta: [meta['TZ'], min(max_width, width - off_width), batch_size] _kernel[grid](a, b, c, a.stride(0), a.stride(1), a.stride(3 if trans_a else 2), a.stride(2 if trans_a else 3), b.stride(0), b.stride(1), b.stride(3 if trans_b else 2), b.stride(2 if trans_b else 3), c.stride(0), c.stride(0), c.stride(2), c.stride(3), a_outer, a_outer, a_inner, off_width, lut, locks, num_lock, num_warps=4, **meta) # save for backward pass return c ########################## # DENSE = DENSE x SPARSE # ########################## # Given a binary layout of 0s and 1s, # Construct look-up table for efficient execution on GPUs @staticmethod def make_dxx_lut(layout, block, step, trans, device, transform=lambda idx: idx): # load-balancing _empty = torch.tensor([], dtype=torch.int64, device=layout.device) segments = _empty.clone() column = _empty.clone() depth = _empty.clone() lockid = _empty.clone() maxid = _empty.clone() offsets = _empty.clone() current_offset = 0 current_maxid = 0 for z in range(layout.size(0)): if trans: sizes = torch.sum(layout[z, :, :], 1) else: sizes = torch.sum(layout[z, :, :], 0) z_segments, z_column, z_lockid, z_maxid, z_offsets = _sparse_matmul.load_balance(sizes, block) z_depth = z * torch.ones_like(z_segments) z_lockid[z_lockid > 0] += current_maxid current_maxid = z_lockid.max() # concatenate depth segments = torch.cat((segments, z_segments)) column = torch.cat((column, z_column)) depth = torch.cat((depth, z_depth)) maxid = torch.cat((maxid, z_maxid)) offsets = torch.cat((offsets, current_offset + z_offsets)) lockid = torch.cat((lockid, z_lockid)) current_offset += layout[z, :, :].sum() segments *= step # pointer increments if trans: nnz = layout.nonzero() else: nnz = layout.transpose(1, 2).nonzero() num_blocks = nnz.size(0) offsets = torch.min(offsets, (num_blocks - 1) * torch.ones_like(offsets)) idx = transform(nnz[:, 2] * block) xincs = idx.clone() xincs[1:] -= idx[:-1] # divide block into multiple steps div = block // step xincs = xincs.view(-1, 1).repeat(1, div) xincs[:, 1:] = step xincs[:, 0] -= (div - 1) * step # first increment for each reduction is actually the offset xincs[offsets[segments > 0], 0] = idx[offsets[segments > 0]] xincs = xincs.view(-1) # block-mode input increments if trans: widx = torch.arange(num_blocks) else: widx = _empty.clone() current_offset = 0 for z in range(layout.size(0)): layoutw = layout[z, :, :].clone() msum = layoutw.sum() layoutw[layoutw > 0] = 1 + torch.arange(msum) widx = torch.cat((widx, current_offset + layoutw.T[layoutw.T > 0] - 1)) current_offset += msum widx = widx wincs = widx * block * block wincs[1:] -= widx[:-1] * block * block wincs = wincs.view(-1, 1).repeat(1, div) if trans: wincs[:, 1:] = step wincs[:, 0] -= (div - 1) * step else: wincs[:, 1:] = step * block wincs[:, 0] -= (div - 1) * step * block wincs[offsets[segments > 0], 0] = widx[offsets[segments > 0]] wincs = wincs.view(-1) # adjust offset and segment size offsets *= 2 * div segments *= div # create header width = column.size(0) offsets += 6 * width header = torch.stack((offsets, segments, column, depth, lockid, maxid), dim=1).view(-1).contiguous() incs = torch.stack((xincs, wincs), dim=1).view(-1).contiguous() incs = torch.cat((incs, torch.zeros(2, device=incs.device, dtype=incs.dtype))) # create lut lut = torch.cat((header, incs)) lut = lut.type(torch.int32).to(device) # create locks num_locks = max(1, lockid.max()) return lut, num_locks, width, None @staticmethod def _dds_matmul(a, b, trans_a, trans_b, trans_c, spdims, block, lut, num_locks, width, packs, bench, time): global triton if triton is None: triton = importlib.import_module('triton') # shapes / dtypes AS0 = a.size(0) AS1 = a.size(1) AS2 = a.size(3 if trans_a else 2) AS3 = a.size(2 if trans_a else 3) BS0 = spdims[0] BS1 = block * spdims[2 if trans_b else 1] BS2 = block * spdims[1 if trans_b else 2] dtype = a.dtype # kernel meta = {'TN': block, 'TM': 128, 'TK': 16, 'BLOCK': block, 'TZ': 1, 'SDD': False, 'DSD': False, 'DDS': True} # output CS0 = AS0 CS1 = AS1 CS2 = BS2 if trans_c else AS2 CS3 = AS2 if trans_c else BS2 locks = _sparse_matmul.get_locks(2 * AS0 * AS2 // 32 * num_locks, a.device) c = torch.empty((CS0, CS1, CS2, CS3), dtype=dtype, device=a.device) grid = lambda meta: [width, triton.cdiv(AS2, meta['TM']), AS0] _kernel[grid](a, b, c, a.stride(0), a.stride(1), a.stride(3 if trans_a else 2), a.stride(2 if trans_a else 3), b.stride(0), b.stride(1), b.stride(3 if trans_b else 2), b.stride(2 if trans_b else 3), c.stride(0), c.stride(1), c.stride(3 if trans_c else 2), c.stride(2 if trans_c else 3), AS2, BS2, 0, 0, lut, locks, num_locks, num_warps=4, **meta) return c @staticmethod def _dsd_matmul(a, b, trans_a, trans_b, trans_c, spdims, block, lut, num_locks, width, packs, bench, time): global triton if triton is None: triton = importlib.import_module('triton') # shapes / dtypes AS0 = spdims[0] AS1 = block * spdims[2 if trans_a else 1] AS2 = block * spdims[1 if trans_a else 2] BS0 = b.size(0) BS1 = b.size(1) BS2 = b.size(3 if trans_b else 2) BS3 = b.size(2 if trans_b else 3) dtype = a.dtype # kernel meta = {'TM': block, 'TN': 128, 'TK': 16, 'BLOCK': block, 'TZ': 1, 'SDD': False, 'DSD': True, 'DDS': False} # output CS0 = BS0 CS1 = BS1 CS2 = BS3 if trans_c else AS1 CS3 = AS1 if trans_c else BS3 locks = _sparse_matmul.get_locks(2 * BS0 * BS3 // 32 * num_locks, a.device) c = torch.empty((CS0, CS1, CS2, CS3), dtype=dtype, device=a.device) grid = lambda meta: [width, triton.cdiv(BS3, meta['TN']), BS0] _kernel[grid](a, b, c, a.stride(0), a.stride(1), a.stride(3 if trans_a else 2), a.stride(2 if trans_a else 3), b.stride(0), b.stride(1), b.stride(3 if trans_b else 2), b.stride(2 if trans_b else 3), c.stride(0), c.stride(1), c.stride(2), c.stride(3), BS3, AS1, 0, 0, lut, locks, num_locks, num_warps=4, **meta) return c fn = {'sdd': _sdd_matmul.__get__(object), 'dsd': _dsd_matmul.__get__(object), 'dds': _dds_matmul.__get__(object)} @staticmethod def forward(ctx, a, b, trans_a, trans_b, trans_c, mode, spdims, block, c_lut, c_num_locks, c_width, c_packs, c_bench, c_time, da_lut, da_num_locks, da_width, da_packs, da_bench, da_time, db_lut, db_num_locks, db_width, db_packs, db_bench, db_time): c = _sparse_matmul.fn[mode](a, b, trans_a, trans_b, trans_c, spdims, block, c_lut, c_num_locks, c_width, c_packs, c_bench, c_time) # save for backward ctx.save_for_backward(a, b) ctx.da_num_locks = da_num_locks ctx.da_lut = da_lut ctx.da_width = da_width ctx.da_packs = da_packs ctx.da_bench = da_bench ctx.da_time = da_time ctx.db_lut = db_lut ctx.db_num_locks = db_num_locks ctx.db_width = db_width ctx.db_bench = db_bench ctx.db_packs = db_packs ctx.db_time = db_time ctx.mode = mode ctx.spdims = spdims ctx.block = block ctx.trans_a = trans_a ctx.trans_b = trans_b return c @staticmethod def backward(ctx, dc): # saved for backward a, b = ctx.saved_tensors mode = ctx.mode # gradients w.r.t. a if ctx.needs_input_grad[0]: mode_da = mode[1] + mode[0] + mode[2] da = _sparse_matmul.fn[mode_da](dc, b, False, not ctx.trans_b, ctx.trans_a, ctx.spdims, ctx.block, ctx.da_lut, ctx.da_num_locks, ctx.da_width, ctx.da_packs, ctx.da_bench, ctx.da_time) # gradients w.r.t. b if ctx.needs_input_grad[1]: mode_db = mode[2] + mode[1] + mode[0] db = _sparse_matmul.fn[mode_db](a, dc, not ctx.trans_a, False, ctx.trans_b, ctx.spdims, ctx.block, ctx.db_lut, ctx.db_num_locks, ctx.db_width, ctx.db_packs, ctx.db_bench, ctx.db_time) return da, db, None, None, None,\ None, None, None, None,\ None, None, None, None, None, None,\ None, None, None, None, None, None,\ None, None, None, None, None, None class MatMul: """Block-Sparse MatMul class; this class handles three types of matrix-multiplication: - sparse = dense X dense - dense = sparse X dense - dense = dense X sparse For more details about sparsity config, please see `Generative Modeling with Sparse Transformers`: https://arxiv.org/abs/1904.10509 """ def make_lut(self, dtype, device): """Generates the sparsity layout/s used in block-sparse matmul """ key = (dtype, device) if key in self.lut_cache: return self.lut_cache[key] # C look-up table layout, block = self.layout, self.block step = 16 if self.mode == 'sdd': c_lut, c_num_locks, c_width, c_packs = _sparse_matmul.make_sdd_lut(layout, block, dtype, device) elif self.mode == 'dsd': c_lut, c_num_locks, c_width, c_packs = _sparse_matmul.make_dxx_lut(layout, block, step, not self.trans_a, device) elif self.mode == 'dds': c_lut, c_num_locks, c_width, c_packs = _sparse_matmul.make_dxx_lut(layout, block, step, self.trans_b, device) # DA look-up table if self.mode == 'sdd': da_lut, da_num_locks, da_width, da_packs = _sparse_matmul.make_dxx_lut(layout, block, step, True, device) elif self.mode == 'dsd': da_lut, da_num_locks, da_width, da_packs = _sparse_matmul.make_sdd_lut(layout, block, dtype, device) elif self.mode == 'dds': da_lut, da_num_locks, da_width, da_packs = _sparse_matmul.make_dxx_lut(layout, block, step, not self.trans_b, device) # DB look-up table if self.mode == 'sdd': db_lut, db_num_locks, db_width, db_packs = _sparse_matmul.make_dxx_lut(layout, block, step, False, device) elif self.mode == 'dsd': db_lut, db_num_locks, db_width, db_packs = _sparse_matmul.make_dxx_lut(layout, block, step, self.trans_a, device) elif self.mode == 'dds': db_lut, db_num_locks, db_width, db_packs = _sparse_matmul.make_sdd_lut(layout, block, dtype, device) self.lut_cache[key] = (c_lut, c_num_locks, c_width, c_packs,\ da_lut, da_num_locks, da_width, da_packs,\ db_lut, db_num_locks, db_width, db_packs) return self.lut_cache[key] def __init__(self, layout, block, mode, trans_a=False, trans_b=False, bench=False): """Initialize the Block-Sparse MatMul class. Arguments: layout: required: sparsity layout tensor block: required: an integer determining the block size. mode: required: a string determining type of matmul; ('sdd') sparse = dense X dense, ('dsd') dense = sparse X dense, ('dds') dense = dense X sparse trans_a: optional: a boolean determining if multiplication needs to be applied on transpose of input a; default is false trans_b: optional: a boolean determining if multiplication needs to be applied on transpose of input b; default is false bench: optional: set if you want to do benchmarking """ if mode not in ['sdd', 'dsd', 'dds']: raise NotImplementedError('Supported modes are: sdd, dsd, dds') # look-up table cache self.lut_cache = dict() # attributes self.trans_a = trans_a self.trans_b = trans_b self.mode = mode self.block = block self.layout = layout layout_dim = layout.ndim assert layout_dim in (2, 3), "Layout should be a 2 or 3 dimensional tensor of 0s and 1s" if not mode == 'sdd': # Dims to be reduced on the 'inside' of the matmul, either -1 or -2 trans_dense, trans_sparse, sparse_inner = (trans_b, trans_a, -1) if mode == 'dsd' else (trans_a, trans_b, -2) self.dense_inner_dim = -((sparse_inner % 2) + 1) if not trans_dense else sparse_inner sparse_inner = sparse_inner if not trans_sparse else -((sparse_inner % 2) + 1) # Inner dim of the dense input should be equal to the inner dim of the sparse input self.dense_inner_size = layout.shape[sparse_inner] * block # Expected shape for sparse inputs self.sparse_shape = (layout.sum().item(), block, block) # Support using the same layout across attention heads etc. if layout_dim == 2: layout = layout.unsqueeze(0) layout = layout.long() # Above code assumes the layout tensor is an integral type self.spdims = layout.shape # timings self.bench = bench self.time_c = None self.time_da = None self.time_db = None # pad shapes of a tensor to make it # compatible with kernel calls @staticmethod def _pad_shape(x, is_sparse): max_dim = 3 if is_sparse else 4 for i in range(max_dim - x.dim()): x = x.unsqueeze(0) return x def __call__(self, a, b): """Applies Block-Sparse MatMul. For more details about sparsity config, please see `Generative Modeling with Sparse Transformers`: https://arxiv.org/abs/1904.10509 Arguments: a: required: a dense/block-sparse tensor; first input of mat-mul b: required: a dense/block-sparse tensor; second input of mat-mul Return: c: a dense/block-sparse tensor result of a X b """ c_lut, c_num_locks, c_width, c_packs,\ da_lut, da_num_locks, da_width, da_packs,\ db_lut, db_num_locks, db_width, db_packs = self.make_lut(a.dtype, a.device) # timings time_c = [None] time_da = [None] time_db = [None] original_dims = max(a.ndim, b.ndim) a, b = self._validate_inputs(a, b) # pad shapes with ones a = MatMul._pad_shape(a, self.mode == 'dsd') b = MatMul._pad_shape(b, self.mode == 'dds') # execute c = _sparse_matmul.apply(a, b, self.trans_a, self.trans_b, False, self.mode, self.spdims, self.block, c_lut, c_num_locks, c_width, c_packs, self.bench, time_c, da_lut, da_num_locks, da_width, da_packs, self.bench, time_da, db_lut, db_num_locks, db_width, db_packs, self.bench, time_db) # This removes any leading singleton dimensions we may have added to the tensor that weren't in the input dims_to_trim = c.ndim - original_dims for _ in range(dims_to_trim): c = c.squeeze(0) self.time_c = time_c[0] self.time_da = time_da[0] self.time_db = time_db[0] return c def _validate_inputs(self, a, b): if a.device != b.device: raise ValueError(f"Inputs must be on the same device; got {a.device} for tensor A " f"and {b.device} for tensor B") if not get_accelerator().on_accelerator(a): raise ValueError("Only GPU devices are supported for now") # When autocast is enabled, torch.matmul autocasts to float16, so we do the same here if torch.is_autocast_enabled(): a, b = a.half(), b.half() elif a.dtype != b.dtype: raise ValueError(f"Inputs must be the same dtype; got {a.dtype} for A and {b.dtype} for B") mode, trans_a, trans_b = self.mode, self.trans_a, self.trans_b if mode != 'sdd': # One input is sparse dense, dense_name, sparse, sparse_name = (a, 'A', b, 'B') if mode == 'dds' else (b, 'B', a, 'A') dense_inner = dense.shape[self.dense_inner_dim] if dense_inner != self.dense_inner_size: raise ValueError(f"Expected tensor {dense_name} to have size {self.dense_inner_size} at dim " f"{self.dense_inner_dim % dense.ndim}, got {dense_inner}.") if sparse.shape[-len(self.sparse_shape):] != self.sparse_shape: raise ValueError(f"Expected tensor with trailing dimensions of shape {self.sparse_shape} for argument " f"{sparse_name}, got {sparse.shape}") def add_extra_dims(x): # Add extra leading singleton dimensions if needed dims_needed = 4 - x.ndim if dims_needed > 0: singletons = [1] * dims_needed x = x.view(*singletons, *x.shape) elif dims_needed < 0: raise ValueError("Tensors with more than 4 dimensions are not currently supported") return x # Pad shapes with leading singleton dimensions a = add_extra_dims(a) b = add_extra_dims(b) return a, b
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/ops/sparse_attention/matmul.py
matmul.py
# DeepSpeed Team from .builder import CUDAOpBuilder, installed_cuda_version class InferenceBuilder(CUDAOpBuilder): BUILD_VAR = "DS_BUILD_TRANSFORMER_INFERENCE" NAME = "transformer_inference" def __init__(self, name=None): name = self.NAME if name is None else name super().__init__(name=name) def absolute_name(self): return f'deepspeed.ops.transformer.inference.{self.NAME}_op' def is_compatible(self, verbose=True): try: import torch except ImportError: self.warning("Please install torch if trying to pre-compile inference kernels") return False cuda_okay = True if not self.is_rocm_pytorch() and torch.cuda.is_available(): sys_cuda_major, _ = installed_cuda_version() torch_cuda_major = int(torch.version.cuda.split('.')[0]) cuda_capability = torch.cuda.get_device_properties(0).major if cuda_capability < 6: self.warning("NVIDIA Inference is only supported on Pascal and newer architectures") cuda_okay = False if cuda_capability >= 8: if torch_cuda_major < 11 or sys_cuda_major < 11: self.warning("On Ampere and higher architectures please use CUDA 11+") cuda_okay = False return super().is_compatible(verbose) and cuda_okay def filter_ccs(self, ccs): ccs_retained = [] ccs_pruned = [] for cc in ccs: if int(cc[0]) >= 6: ccs_retained.append(cc) else: ccs_pruned.append(cc) if len(ccs_pruned) > 0: self.warning(f"Filtered compute capabilities {ccs_pruned}") return ccs_retained def sources(self): return [ 'csrc/transformer/inference/csrc/pt_binding.cpp', 'csrc/transformer/inference/csrc/gelu.cu', 'csrc/transformer/inference/csrc/relu.cu', 'csrc/transformer/inference/csrc/layer_norm.cu', 'csrc/transformer/inference/csrc/softmax.cu', 'csrc/transformer/inference/csrc/dequantize.cu', 'csrc/transformer/inference/csrc/apply_rotary_pos_emb.cu', 'csrc/transformer/inference/csrc/transform.cu', ] def extra_ldflags(self): if not self.is_rocm_pytorch(): return ['-lcurand'] else: return [] def include_paths(self): return ['csrc/transformer/inference/includes', 'csrc/includes']
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/ops/op_builder/transformer_inference.py
transformer_inference.py
# DeepSpeed Team import distutils.spawn import subprocess from .builder import OpBuilder class AsyncIOBuilder(OpBuilder): BUILD_VAR = "DS_BUILD_AIO" NAME = "async_io" def __init__(self): super().__init__(name=self.NAME) def absolute_name(self): return f'deepspeed.ops.aio.{self.NAME}_op' def sources(self): return [ 'csrc/aio/py_lib/deepspeed_py_copy.cpp', 'csrc/aio/py_lib/py_ds_aio.cpp', 'csrc/aio/py_lib/deepspeed_py_aio.cpp', 'csrc/aio/py_lib/deepspeed_py_aio_handle.cpp', 'csrc/aio/py_lib/deepspeed_aio_thread.cpp', 'csrc/aio/common/deepspeed_aio_utils.cpp', 'csrc/aio/common/deepspeed_aio_common.cpp', 'csrc/aio/common/deepspeed_aio_types.cpp', 'csrc/aio/py_lib/deepspeed_pin_tensor.cpp' ] def include_paths(self): return ['csrc/aio/py_lib', 'csrc/aio/common'] def cxx_args(self): # -O0 for improved debugging, since performance is bound by I/O CPU_ARCH = self.cpu_arch() SIMD_WIDTH = self.simd_width() return [ '-g', '-Wall', '-O0', '-std=c++14', '-shared', '-fPIC', '-Wno-reorder', CPU_ARCH, '-fopenmp', SIMD_WIDTH, '-laio', ] def extra_ldflags(self): return ['-laio'] def check_for_libaio_pkg(self): libs = dict( dpkg=["-l", "libaio-dev", "apt"], pacman=["-Q", "libaio", "pacman"], rpm=["-q", "libaio-devel", "yum"], ) found = False for pkgmgr, data in libs.items(): flag, lib, tool = data path = distutils.spawn.find_executable(pkgmgr) if path is not None: cmd = f"{pkgmgr} {flag} {lib}" result = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) if result.wait() == 0: found = True else: self.warning(f"{self.NAME}: please install the {lib} package with {tool}") break return found def is_compatible(self, verbose=True): # Check for the existence of libaio by using distutils # to compile and link a test program that calls io_submit, # which is a function provided by libaio that is used in the async_io op. # If needed, one can define -I and -L entries in CFLAGS and LDFLAGS # respectively to specify the directories for libaio.h and libaio.so. aio_compatible = self.has_function('io_submit', ('aio', )) if verbose and not aio_compatible: self.warning(f"{self.NAME} requires the dev libaio .so object and headers but these were not found.") # Check for the libaio package via known package managers # to print suggestions on which package to install. self.check_for_libaio_pkg() self.warning( "If libaio is already installed (perhaps from source), try setting the CFLAGS and LDFLAGS environment variables to where it can be found." ) return super().is_compatible(verbose) and aio_compatible
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/ops/op_builder/async_io.py
async_io.py
# DeepSpeed Team from .builder import OpBuilder try: from packaging import version as pkg_version except ImportError: pkg_version = None class SparseAttnBuilder(OpBuilder): BUILD_VAR = "DS_BUILD_SPARSE_ATTN" NAME = "sparse_attn" def __init__(self): super().__init__(name=self.NAME) def absolute_name(self): return f'deepspeed.ops.sparse_attention.{self.NAME}_op' def sources(self): return ['csrc/sparse_attention/utils.cpp'] def cxx_args(self): return ['-O2', '-fopenmp'] def is_compatible(self, verbose=True): # Check to see if llvm and cmake are installed since they are dependencies #required_commands = ['llvm-config|llvm-config-9', 'cmake'] #command_status = list(map(self.command_exists, required_commands)) #deps_compatible = all(command_status) if self.is_rocm_pytorch(): self.warning(f'{self.NAME} is not compatible with ROCM') return False try: import torch except ImportError: self.warning(f"unable to import torch, please install it first") return False # torch-cpu will not have a cuda version if torch.version.cuda is None: cuda_compatible = False self.warning(f"{self.NAME} cuda is not available from torch") else: major, minor = torch.version.cuda.split('.')[:2] cuda_compatible = (int(major) == 10 and int(minor) >= 1) or (int(major) >= 11) if not cuda_compatible: self.warning(f"{self.NAME} requires CUDA version 10.1+") TORCH_MAJOR = int(torch.__version__.split('.')[0]) TORCH_MINOR = int(torch.__version__.split('.')[1]) torch_compatible = (TORCH_MAJOR == 1 and TORCH_MINOR >= 5) if not torch_compatible: self.warning( f'{self.NAME} requires a torch version >= 1.5 and < 2.0 but detected {TORCH_MAJOR}.{TORCH_MINOR}') try: import triton except ImportError: # auto-install of triton is broken on some systems, reverting to manual install for now # see this issue: https://github.com/microsoft/DeepSpeed/issues/1710 self.warning(f"please install triton==1.0.0 if you want to use sparse attention") return False if pkg_version: installed_triton = pkg_version.parse(triton.__version__) triton_mismatch = installed_triton != pkg_version.parse("1.0.0") else: installed_triton = triton.__version__ triton_mismatch = installed_triton != "1.0.0" if triton_mismatch: self.warning(f"using untested triton version ({installed_triton}), only 1.0.0 is known to be compatible") return False return super().is_compatible(verbose) and torch_compatible and cuda_compatible
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/ops/op_builder/sparse_attn.py
sparse_attn.py
# DeepSpeed Team import os import sys import time import importlib from pathlib import Path import subprocess import shlex import shutil import tempfile import distutils.ccompiler import distutils.log import distutils.sysconfig from distutils.errors import CompileError, LinkError from abc import ABC, abstractmethod from typing import List YELLOW = '\033[93m' END = '\033[0m' WARNING = f"{YELLOW} [WARNING] {END}" DEFAULT_TORCH_EXTENSION_PATH = "/tmp/torch_extensions" DEFAULT_COMPUTE_CAPABILITIES = "6.0;6.1;7.0" try: import torch except ImportError: print(f"{WARNING} unable to import torch, please install it if you want to pre-compile any deepspeed ops.") else: TORCH_MAJOR = int(torch.__version__.split('.')[0]) TORCH_MINOR = int(torch.__version__.split('.')[1]) def installed_cuda_version(name=""): import torch.utils.cpp_extension cuda_home = torch.utils.cpp_extension.CUDA_HOME assert cuda_home is not None, "CUDA_HOME does not exist, unable to compile CUDA op(s)" # Ensure there is not a cuda version mismatch between torch and nvcc compiler output = subprocess.check_output([cuda_home + "/bin/nvcc", "-V"], universal_newlines=True) output_split = output.split() release_idx = output_split.index("release") release = output_split[release_idx + 1].replace(',', '').split(".") # Ignore patch versions, only look at major + minor cuda_major, cuda_minor = release[:2] return int(cuda_major), int(cuda_minor) def get_default_compute_capabilities(): compute_caps = DEFAULT_COMPUTE_CAPABILITIES import torch.utils.cpp_extension if torch.utils.cpp_extension.CUDA_HOME is not None and installed_cuda_version()[0] >= 11: if installed_cuda_version()[0] == 11 and installed_cuda_version()[1] == 0: # Special treatment of CUDA 11.0 because compute_86 is not supported. compute_caps += ";8.0" else: compute_caps += ";8.0;8.6" return compute_caps # list compatible minor CUDA versions - so that for example pytorch built with cuda-11.0 can be used # to build deepspeed and system-wide installed cuda 11.2 cuda_minor_mismatch_ok = { 10: [ "10.0", "10.1", "10.2", ], 11: ["11.0", "11.1", "11.2", "11.3", "11.4", "11.5", "11.6", "11.7", "11.8"], } def assert_no_cuda_mismatch(name=""): cuda_major, cuda_minor = installed_cuda_version(name) sys_cuda_version = f'{cuda_major}.{cuda_minor}' torch_cuda_version = ".".join(torch.version.cuda.split('.')[:2]) # This is a show-stopping error, should probably not proceed past this if sys_cuda_version != torch_cuda_version: if (cuda_major in cuda_minor_mismatch_ok and sys_cuda_version in cuda_minor_mismatch_ok[cuda_major] and torch_cuda_version in cuda_minor_mismatch_ok[cuda_major]): print(f"Installed CUDA version {sys_cuda_version} does not match the " f"version torch was compiled with {torch.version.cuda} " "but since the APIs are compatible, accepting this combination") return True raise Exception(f">- DeepSpeed Op Builder: Installed CUDA version {sys_cuda_version} does not match the " f"version torch was compiled with {torch.version.cuda}, unable to compile " "cuda/cpp extensions without a matching cuda version.") return True class OpBuilder(ABC): _rocm_version = None _is_rocm_pytorch = None def __init__(self, name): self.name = name self.jit_mode = False self.build_for_cpu = False self.error_log = None @abstractmethod def absolute_name(self): ''' Returns absolute build path for cases where the op is pre-installed, e.g., deepspeed.ops.adam.cpu_adam will be installed as something like: deepspeed/ops/adam/cpu_adam.so ''' pass @abstractmethod def sources(self): ''' Returns list of source files for your op, relative to root of deepspeed package (i.e., DeepSpeed/deepspeed) ''' pass def hipify_extension(self): pass @staticmethod def validate_torch_version(torch_info): install_torch_version = torch_info['version'] current_torch_version = ".".join(torch.__version__.split('.')[:2]) if install_torch_version != current_torch_version: raise RuntimeError("PyTorch version mismatch! DeepSpeed ops were compiled and installed " "with a different version than what is being used at runtime. " f"Please re-install DeepSpeed or switch torch versions. " f"Install torch version={install_torch_version}, " f"Runtime torch version={current_torch_version}") @staticmethod def validate_torch_op_version(torch_info): if not OpBuilder.is_rocm_pytorch(): current_cuda_version = ".".join(torch.version.cuda.split('.')[:2]) install_cuda_version = torch_info['cuda_version'] if install_cuda_version != current_cuda_version: raise RuntimeError("CUDA version mismatch! DeepSpeed ops were compiled and installed " "with a different version than what is being used at runtime. " f"Please re-install DeepSpeed or switch torch versions. " f"Install CUDA version={install_cuda_version}, " f"Runtime CUDA version={current_cuda_version}") else: current_hip_version = ".".join(torch.version.hip.split('.')[:2]) install_hip_version = torch_info['hip_version'] if install_hip_version != current_hip_version: raise RuntimeError("HIP version mismatch! DeepSpeed ops were compiled and installed " "with a different version than what is being used at runtime. " f"Please re-install DeepSpeed or switch torch versions. " f"Install HIP version={install_hip_version}, " f"Runtime HIP version={current_hip_version}") @staticmethod def is_rocm_pytorch(): if OpBuilder._is_rocm_pytorch is not None: return OpBuilder._is_rocm_pytorch _is_rocm_pytorch = False try: import torch except ImportError: pass else: if TORCH_MAJOR > 1 or (TORCH_MAJOR == 1 and TORCH_MINOR >= 5): _is_rocm_pytorch = hasattr(torch.version, 'hip') and torch.version.hip is not None if _is_rocm_pytorch: from torch.utils.cpp_extension import ROCM_HOME _is_rocm_pytorch = ROCM_HOME is not None OpBuilder._is_rocm_pytorch = _is_rocm_pytorch return OpBuilder._is_rocm_pytorch @staticmethod def installed_rocm_version(): if OpBuilder._rocm_version: return OpBuilder._rocm_version ROCM_MAJOR = '0' ROCM_MINOR = '0' if OpBuilder.is_rocm_pytorch(): from torch.utils.cpp_extension import ROCM_HOME rocm_ver_file = Path(ROCM_HOME).joinpath(".info/version-dev") if rocm_ver_file.is_file(): with open(rocm_ver_file, 'r') as file: ROCM_VERSION_DEV_RAW = file.read() elif "rocm" in torch.__version__: ROCM_VERSION_DEV_RAW = torch.__version__.split("rocm")[1] else: assert False, "Could not detect ROCm version" assert ROCM_VERSION_DEV_RAW != "", "Could not detect ROCm version" ROCM_MAJOR = ROCM_VERSION_DEV_RAW.split('.')[0] ROCM_MINOR = ROCM_VERSION_DEV_RAW.split('.')[1] OpBuilder._rocm_version = (int(ROCM_MAJOR), int(ROCM_MINOR)) return OpBuilder._rocm_version def include_paths(self): ''' Returns list of include paths, relative to root of deepspeed package (i.e., DeepSpeed/deepspeed) ''' return [] def nvcc_args(self): ''' Returns optional list of compiler flags to forward to nvcc when building CUDA sources ''' return [] def cxx_args(self): ''' Returns optional list of compiler flags to forward to the build ''' return [] def is_compatible(self, verbose=True): ''' Check if all non-python dependencies are satisfied to build this op ''' return True def extra_ldflags(self): return [] def libraries_installed(self, libraries): valid = False check_cmd = 'dpkg -l' for lib in libraries: result = subprocess.Popen(f'dpkg -l {lib}', stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) valid = valid or result.wait() == 0 return valid def has_function(self, funcname, libraries, verbose=False): ''' Test for existence of a function within a tuple of libraries. This is used as a smoke test to check whether a certain library is available. As a test, this creates a simple C program that calls the specified function, and then distutils is used to compile that program and link it with the specified libraries. Returns True if both the compile and link are successful, False otherwise. ''' tempdir = None # we create a temporary directory to hold various files filestderr = None # handle to open file to which we redirect stderr oldstderr = None # file descriptor for stderr try: # Echo compile and link commands that are used. if verbose: distutils.log.set_verbosity(1) # Create a compiler object. compiler = distutils.ccompiler.new_compiler(verbose=verbose) # Configure compiler and linker to build according to Python install. distutils.sysconfig.customize_compiler(compiler) # Create a temporary directory to hold test files. tempdir = tempfile.mkdtemp() # Define a simple C program that calls the function in question prog = "void %s(void); int main(int argc, char** argv) { %s(); return 0; }" % (funcname, funcname) # Write the test program to a file. filename = os.path.join(tempdir, 'test.c') with open(filename, 'w') as f: f.write(prog) # Redirect stderr file descriptor to a file to silence compile/link warnings. if not verbose: filestderr = open(os.path.join(tempdir, 'stderr.txt'), 'w') oldstderr = os.dup(sys.stderr.fileno()) os.dup2(filestderr.fileno(), sys.stderr.fileno()) # Workaround for behavior in distutils.ccompiler.CCompiler.object_filenames() # Otherwise, a local directory will be used instead of tempdir drive, driveless_filename = os.path.splitdrive(filename) root_dir = driveless_filename[0] if os.path.isabs(driveless_filename) else '' output_dir = os.path.join(drive, root_dir) # Attempt to compile the C program into an object file. cflags = shlex.split(os.environ.get('CFLAGS', "")) objs = compiler.compile([filename], output_dir=output_dir, extra_preargs=self.strip_empty_entries(cflags)) # Attempt to link the object file into an executable. # Be sure to tack on any libraries that have been specified. ldflags = shlex.split(os.environ.get('LDFLAGS', "")) compiler.link_executable(objs, os.path.join(tempdir, 'a.out'), extra_preargs=self.strip_empty_entries(ldflags), libraries=libraries) # Compile and link succeeded return True except CompileError: return False except LinkError: return False except: return False finally: # Restore stderr file descriptor and close the stderr redirect file. if oldstderr is not None: os.dup2(oldstderr, sys.stderr.fileno()) if filestderr is not None: filestderr.close() # Delete the temporary directory holding the test program and stderr files. if tempdir is not None: shutil.rmtree(tempdir) def strip_empty_entries(self, args): ''' Drop any empty strings from the list of compile and link flags ''' return [x for x in args if len(x) > 0] def cpu_arch(self): try: from cpuinfo import get_cpu_info except ImportError as e: cpu_info = self._backup_cpuinfo() if cpu_info is None: return "-march=native" try: cpu_info = get_cpu_info() except Exception as e: self.warning(f"{self.name} attempted to use `py-cpuinfo` but failed (exception type: {type(e)}, {e}), " "falling back to `lscpu` to get this information.") cpu_info = self._backup_cpuinfo() if cpu_info is None: return "-march=native" if cpu_info['arch'].startswith('PPC_'): # gcc does not provide -march on PowerPC, use -mcpu instead return '-mcpu=native' return '-march=native' def is_cuda_enable(self): try: assert_no_cuda_mismatch(self.name) return '-D__ENABLE_CUDA__' except BaseException: print(f"{WARNING} {self.name} cuda is missing or is incompatible with installed torch, " "only cpu ops can be compiled!") return '-D__DISABLE_CUDA__' return '-D__DISABLE_CUDA__' def _backup_cpuinfo(self): # Construct cpu_info dict from lscpu that is similar to what py-cpuinfo provides if not self.command_exists('lscpu'): self.warning(f"{self.name} attempted to query 'lscpu' after failing to use py-cpuinfo " "to detect the CPU architecture. 'lscpu' does not appear to exist on " "your system, will fall back to use -march=native and non-vectorized execution.") return None result = subprocess.check_output('lscpu', shell=True) result = result.decode('utf-8').strip().lower() cpu_info = {} cpu_info['arch'] = None cpu_info['flags'] = "" if 'genuineintel' in result or 'authenticamd' in result: cpu_info['arch'] = 'X86_64' if 'avx512' in result: cpu_info['flags'] += 'avx512,' elif 'avx512f' in result: cpu_info['flags'] += 'avx512f,' if 'avx2' in result: cpu_info['flags'] += 'avx2' elif 'ppc64le' in result: cpu_info['arch'] = "PPC_" return cpu_info def simd_width(self): try: from cpuinfo import get_cpu_info except ImportError as e: cpu_info = self._backup_cpuinfo() if cpu_info is None: return '-D__SCALAR__' try: cpu_info = get_cpu_info() except Exception as e: self.warning(f"{self.name} attempted to use `py-cpuinfo` but failed (exception type: {type(e)}, {e}), " "falling back to `lscpu` to get this information.") cpu_info = self._backup_cpuinfo() if cpu_info is None: return '-D__SCALAR__' if cpu_info['arch'] == 'X86_64': if 'avx512' in cpu_info['flags'] or 'avx512f' in cpu_info['flags']: return '-D__AVX512__' elif 'avx2' in cpu_info['flags']: return '-D__AVX256__' return '-D__SCALAR__' def command_exists(self, cmd): if '|' in cmd: cmds = cmd.split("|") else: cmds = [cmd] valid = False for cmd in cmds: result = subprocess.Popen(f'type {cmd}', stdout=subprocess.PIPE, shell=True) valid = valid or result.wait() == 0 if not valid and len(cmds) > 1: print(f"{WARNING} {self.name} requires one of the following commands '{cmds}', but it does not exist!") elif not valid and len(cmds) == 1: print(f"{WARNING} {self.name} requires the '{cmd}' command, but it does not exist!") return valid def warning(self, msg): self.error_log = f"{msg}" print(f"{WARNING} {msg}") def deepspeed_src_path(self, code_path): if os.path.isabs(code_path): return code_path else: return os.path.join(Path(__file__).parent.parent.absolute(), code_path) def builder(self): from torch.utils.cpp_extension import CppExtension return CppExtension(name=self.absolute_name(), sources=self.strip_empty_entries(self.sources()), include_dirs=self.strip_empty_entries(self.include_paths()), extra_compile_args={'cxx': self.strip_empty_entries(self.cxx_args())}, extra_link_args=self.strip_empty_entries(self.extra_ldflags())) def load(self, verbose=True): from deepspeed.git_version_info import installed_ops, torch_info if installed_ops[self.name]: # Ensure the op we're about to load was compiled with the same # torch/cuda versions we are currently using at runtime. self.validate_torch_version(torch_info) if torch.cuda.is_available() and isinstance(self, CUDAOpBuilder): self.validate_torch_op_version(torch_info) return importlib.import_module(self.absolute_name()) else: return self.jit_load(verbose) def jit_load(self, verbose=True): if not self.is_compatible(verbose): raise RuntimeError( f"Unable to JIT load the {self.name} op due to it not being compatible due to hardware/software issue. {self.error_log}" ) try: import ninja # noqa: F401 except ImportError: raise RuntimeError(f"Unable to JIT load the {self.name} op due to ninja not being installed.") if isinstance(self, CUDAOpBuilder) and not self.is_rocm_pytorch(): try: assert_no_cuda_mismatch(self.name) self.build_for_cpu = False except BaseException: self.build_for_cpu = True self.jit_mode = True from torch.utils.cpp_extension import load start_build = time.time() sources = [self.deepspeed_src_path(path) for path in self.sources()] extra_include_paths = [self.deepspeed_src_path(path) for path in self.include_paths()] # Torch will try and apply whatever CCs are in the arch list at compile time, # we have already set the intended targets ourselves we know that will be # needed at runtime. This prevents CC collisions such as multiple __half # implementations. Stash arch list to reset after build. torch_arch_list = None if "TORCH_CUDA_ARCH_LIST" in os.environ: torch_arch_list = os.environ.get("TORCH_CUDA_ARCH_LIST") os.environ["TORCH_CUDA_ARCH_LIST"] = "" op_module = load(name=self.name, sources=self.strip_empty_entries(sources), extra_include_paths=self.strip_empty_entries(extra_include_paths), extra_cflags=self.strip_empty_entries(self.cxx_args()), extra_cuda_cflags=self.strip_empty_entries(self.nvcc_args()), extra_ldflags=self.strip_empty_entries(self.extra_ldflags()), verbose=verbose) build_duration = time.time() - start_build if verbose: print(f"Time to load {self.name} op: {build_duration} seconds") # Reset arch list so we are not silently removing it for other possible use cases if torch_arch_list: os.environ["TORCH_CUDA_ARCH_LIST"] = torch_arch_list return op_module class CUDAOpBuilder(OpBuilder): def compute_capability_args(self, cross_compile_archs=None): """ Returns nvcc compute capability compile flags. 1. `TORCH_CUDA_ARCH_LIST` takes priority over `cross_compile_archs`. 2. If neither is set default compute capabilities will be used 3. Under `jit_mode` compute capabilities of all visible cards will be used plus PTX Format: - `TORCH_CUDA_ARCH_LIST` may use ; or whitespace separators. Examples: TORCH_CUDA_ARCH_LIST="6.1;7.5;8.6" pip install ... TORCH_CUDA_ARCH_LIST="6.0 6.1 7.0 7.5 8.0 8.6+PTX" pip install ... - `cross_compile_archs` uses ; separator. """ ccs = [] if self.jit_mode: # Compile for underlying architectures since we know those at runtime for i in range(torch.cuda.device_count()): CC_MAJOR, CC_MINOR = torch.cuda.get_device_capability(i) cc = f"{CC_MAJOR}.{CC_MINOR}" if cc not in ccs: ccs.append(cc) ccs = sorted(ccs) ccs[-1] += '+PTX' else: # Cross-compile mode, compile for various architectures # env override takes priority cross_compile_archs_env = os.environ.get('TORCH_CUDA_ARCH_LIST', None) if cross_compile_archs_env is not None: if cross_compile_archs is not None: print( f"{WARNING} env var `TORCH_CUDA_ARCH_LIST={cross_compile_archs_env}` overrides `cross_compile_archs={cross_compile_archs}`" ) cross_compile_archs = cross_compile_archs_env.replace(' ', ';') else: if cross_compile_archs is None: cross_compile_archs = get_default_compute_capabilities() ccs = cross_compile_archs.split(';') ccs = self.filter_ccs(ccs) if len(ccs) == 0: raise RuntimeError( f"Unable to load {self.name} op due to no compute capabilities remaining after filtering") args = [] for cc in ccs: num = cc[0] + cc[2] args.append(f'-gencode=arch=compute_{num},code=sm_{num}') if cc.endswith('+PTX'): args.append(f'-gencode=arch=compute_{num},code=compute_{num}') return args def filter_ccs(self, ccs: List[str]): """ Prune any compute capabilities that are not compatible with the builder. Should log which CCs have been pruned. """ return ccs def version_dependent_macros(self): # Fix from apex that might be relevant for us as well, related to https://github.com/NVIDIA/apex/issues/456 version_ge_1_1 = [] if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR > 0): version_ge_1_1 = ['-DVERSION_GE_1_1'] version_ge_1_3 = [] if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR > 2): version_ge_1_3 = ['-DVERSION_GE_1_3'] version_ge_1_5 = [] if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR > 4): version_ge_1_5 = ['-DVERSION_GE_1_5'] return version_ge_1_1 + version_ge_1_3 + version_ge_1_5 def is_compatible(self, verbose=True): return super().is_compatible(verbose) def builder(self): try: assert_no_cuda_mismatch(self.name) self.build_for_cpu = False except BaseException: self.build_for_cpu = True if self.build_for_cpu: from torch.utils.cpp_extension import CppExtension as ExtensionBuilder else: from torch.utils.cpp_extension import CUDAExtension as ExtensionBuilder compile_args = {'cxx': self.strip_empty_entries(self.cxx_args())} if self.build_for_cpu else \ {'cxx': self.strip_empty_entries(self.cxx_args()), \ 'nvcc': self.strip_empty_entries(self.nvcc_args())} cuda_ext = ExtensionBuilder(name=self.absolute_name(), sources=self.strip_empty_entries(self.sources()), include_dirs=self.strip_empty_entries(self.include_paths()), libraries=self.strip_empty_entries(self.libraries_args()), extra_compile_args=compile_args) if self.is_rocm_pytorch(): # hip converts paths to absolute, this converts back to relative sources = cuda_ext.sources curr_file = Path(__file__).parent.parent # ds root for i in range(len(sources)): src = Path(sources[i]) if src.is_absolute(): sources[i] = str(src.relative_to(curr_file)) else: sources[i] = str(src) cuda_ext.sources = sources return cuda_ext def hipify_extension(self): if self.is_rocm_pytorch(): from torch.utils.hipify import hipify_python hipify_python.hipify( project_directory=os.getcwd(), output_directory=os.getcwd(), header_include_dirs=self.include_paths(), includes=[os.path.join(os.getcwd(), '*')], extra_files=[os.path.abspath(s) for s in self.sources()], show_detailed=True, is_pytorch_extension=True, hipify_extra_files_only=True, ) def cxx_args(self): if sys.platform == "win32": return ['-O2'] else: return ['-O3', '-std=c++14', '-g', '-Wno-reorder'] def nvcc_args(self): if self.build_for_cpu: return [] args = ['-O3'] if self.is_rocm_pytorch(): ROCM_MAJOR, ROCM_MINOR = self.installed_rocm_version() args += [ '-std=c++14', '-U__HIP_NO_HALF_OPERATORS__', '-U__HIP_NO_HALF_CONVERSIONS__', '-U__HIP_NO_HALF2_OPERATORS__', '-DROCM_VERSION_MAJOR=%s' % ROCM_MAJOR, '-DROCM_VERSION_MINOR=%s' % ROCM_MINOR ] else: cuda_major, _ = installed_cuda_version() args += [ '-allow-unsupported-compiler' if sys.platform == "win32" else '', '--use_fast_math', '-std=c++17' if sys.platform == "win32" and cuda_major > 10 else '-std=c++14', '-U__CUDA_NO_HALF_OPERATORS__', '-U__CUDA_NO_HALF_CONVERSIONS__', '-U__CUDA_NO_HALF2_OPERATORS__' ] if os.environ.get('DS_DEBUG_CUDA_BUILD', '0') == '1': args.append('--ptxas-options=-v') args += self.compute_capability_args() return args def libraries_args(self): if self.build_for_cpu: return [] if sys.platform == "win32": return ['cublas', 'curand'] else: return [] class TorchCPUOpBuilder(CUDAOpBuilder): def extra_ldflags(self): if self.build_for_cpu: return ['-fopenmp'] if not self.is_rocm_pytorch(): return ['-lcurand'] return [] def cxx_args(self): import torch args = [] if not self.build_for_cpu: if not self.is_rocm_pytorch(): CUDA_LIB64 = os.path.join(torch.utils.cpp_extension.CUDA_HOME, "lib64") else: CUDA_LIB64 = os.path.join(torch.utils.cpp_extension.ROCM_HOME, "lib") args += super().cxx_args() args += [ f'-L{CUDA_LIB64}', '-lcudart', '-lcublas', '-g', ] CPU_ARCH = self.cpu_arch() SIMD_WIDTH = self.simd_width() CUDA_ENABLE = self.is_cuda_enable() args += [ CPU_ARCH, '-fopenmp', SIMD_WIDTH, CUDA_ENABLE, ] return args
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/ops/op_builder/builder.py
builder.py
# DeepSpeed Team import torch from dataclasses import dataclass from deepspeed import comm as dist @dataclass class fragment_address: numel: int start: int @dataclass class tensor_fragment: lp_fragment: torch.Tensor lp_fragment_address: fragment_address hp_fragment: torch.Tensor hp_fragment_address: fragment_address optim_fragment: {} gradient_dict: {} offload_gradient_dict: {} use_offload: bool param_group_index: int def update_hp(self): self.hp_fragment.data.copy_(self.lp_fragment.data) def update_lp(self): self.lp_fragment.data.copy_(self.hp_fragment.data) def get_optim_state_fragment(self, key): if key in self.optim_fragment: return self.optim_fragment[key] else: raise ValueError(f'{key} not found in optimizer state fragment') def get_hp_fragment_address(self): return self.hp_fragment_address def get_optim_state_keys(self): return list(self.optim_fragment.keys()) def get_full_hp_param(self, optim_state_key=None): reduce_buffer = torch.zeros_like(self, dtype=torch.float32).flatten() if self._hp_mapping is not None: lp_frag_address = self._hp_mapping.lp_fragment_address reduce_fragment = torch.narrow(reduce_buffer, 0, lp_frag_address.start, lp_frag_address.numel) if optim_state_key is None: hp_fragment = self._hp_mapping.hp_fragment else: hp_fragment = self._hp_mapping.get_optim_state_fragment(optim_state_key) reduce_fragment.data.copy_(hp_fragment.data) dist.all_reduce(reduce_buffer, group=self._dp_group) return reduce_buffer.reshape_as(self) def get_full_hp_grad(self): reduce_buffer = torch.zeros_like(self, dtype=torch.float32).flatten() if self._hp_mapping is not None: hp_mapping = self._hp_mapping if hp_mapping.use_offload: gradient_dict = hp_mapping.offload_gradient_dict else: gradient_dict = hp_mapping.gradient_dict if hp_mapping.param_group_index not in gradient_dict or gradient_dict[hp_mapping.param_group_index] is None: raise ValueError("Gradients are only available immediately after backward and before engine step") lp_grad_fragment = gradient_dict[hp_mapping.param_group_index][self._index_in_param_group] hp_grad_fragment = lp_grad_fragment.to(torch.float32).flatten() lp_frag_address = self._hp_mapping.lp_fragment_address reduce_fragment = torch.narrow(reduce_buffer, 0, lp_frag_address.start, lp_frag_address.numel) if self.view(-1).shape == hp_grad_fragment.shape: reduce_buffer.data.copy_(hp_grad_fragment.data) else: reduce_fragment.data.copy_(hp_grad_fragment.data) dist.all_reduce(reduce_buffer, group=self._dp_group) return reduce_buffer.reshape_as(self) def safe_get_full_fp32_param(param): """Assemble and return the fp32 parameter of a low-precision (e.g., fp16) parameter. Args: param (``torch.nn.Parameter``): A model parameter """ # ZeRO stage 3 param if hasattr(param, 'ds_id'): return param._z3_optimizer.get_full_hp_param(param) # ZeRO stage 1, 2, and bf16_optimizer params if hasattr(param, '_hp_mapping'): return param.get_full_hp_param() return None def safe_get_full_optimizer_state(param, optim_state_key): """Assemble and return the fp32 optimizer state of a low-precision (e.g., fp16) parameter. Args: param (``torch.nn.Parameter``): A model parameter """ # ZeRO stage 3 param if hasattr(param, 'ds_id'): return param._z3_optimizer.get_full_hp_param(param, optim_state_key) # ZeRO stage 1, 2, and bf16_optimizer params if hasattr(param, '_hp_mapping'): return param.get_full_hp_param(optim_state_key) return None # TODO: Figure out the correct return dtype def safe_get_full_grad(param): """Assemble and return the fp32 gradient of a low-precision (e.g., fp16) parameter. Args: param (``torch.nn.Parameter``): A model parameter """ if param.grad is not None: return param.grad # ZeRO stage 3 param if hasattr(param, 'ds_id'): return param._z3_optimizer.get_fp32_grad_for_param(param) # ZeRO stage 1, 2, and bf16_optimizer params if hasattr(param, '_hp_mapping'): return param.get_full_hp_grad() return None def get_hp_fragment_mapping(lp_param, lp_start, flat_hp_partition, gradient_dict, offload_gradient_dict, use_offload, param_group_index, partition_start, partition_size, optimizer_state_dict): lp_end = lp_param.numel() + lp_start hp_start = partition_start hp_end = partition_start + partition_size fragment_start = max(lp_start, hp_start) fragment_end = min(lp_end, hp_end) assert fragment_start < fragment_end, \ f'fragment start {fragment_start} should be < fragment_end {fragment_end}' fragment_numel = fragment_end - fragment_start hp_frag_address = fragment_address(start=fragment_start - hp_start, numel=fragment_numel) hp_fragment_tensor = flat_hp_partition.narrow(0, hp_frag_address.start, hp_frag_address.numel) optim_fragment = { key: value.narrow(0, hp_frag_address.start, hp_frag_address.numel) for key, value in optimizer_state_dict.items() if torch.is_tensor(value) and value.shape == flat_hp_partition.shape } lp_frag_address = fragment_address(start=fragment_start - lp_start, numel=fragment_numel) lp_fragment_tensor = lp_param.flatten().narrow(0, lp_frag_address.start, lp_frag_address.numel) return tensor_fragment(lp_fragment=lp_fragment_tensor, lp_fragment_address=lp_frag_address, hp_fragment=hp_fragment_tensor, hp_fragment_address=hp_frag_address, optim_fragment=optim_fragment, gradient_dict=gradient_dict, offload_gradient_dict=offload_gradient_dict, use_offload=use_offload, param_group_index=param_group_index) ''' Logic for lp_param to hp_param mapping lp lp0 lp1 lp2 lp3 lp4 <------- indices/names lp [ ][ ][ ][ ][ ] <-------- tensors flat_lp [ ] <-------- flat lp params flat_hp [ ] <------------------ flat hp partition on current rank full_hp [ ] <------- full flat hp params lp2 full numel = 16 lp_frag numel = 12 frag_start = 3 frag_end = 15 hp_frag numel = 12 frag_start = 0 frag_end = 11 hp_frag.copy_(lp_frag) lp3: full numel = 4 lp_frag numel = 4 start = 0 end = 3 hp_frag numel = 4 start = 12 end = 15 lp4: full numel = 12 lp_frag numel = 4 start = 0 end = 3 hp_frag numel = 4 start = 16 end = 19 Visual depiction of above lp { } flat_lp [ ] flat_hp ( ) flat_lp [ { ( } ) ] lx hx ly hy ly-hx lp { } flat_lp [ ] flat_hp ( ) flat_lp [ ( { ) } ] hx lx hy ly hy-lx lp { } flat_lp [ ] flat_hp ( ) flat_lp [ ( { } ) ] hx lx ly hy ly-lx lp -> (lx, hy) flat_hp -> (hx, hy) '''
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/utils/tensor_fragment.py
tensor_fragment.py
# DeepSpeed Team import time from numpy import mean from deepspeed.utils.logging import log_dist from deepspeed.accelerator import get_accelerator from deepspeed import comm as dist try: import psutil PSUTILS_INSTALLED = True except ImportError: PSUTILS_INSTALLED = False pass class CudaEventTimer(object): def __init__(self, start_event: get_accelerator().Event, end_event: get_accelerator().Event): self.start_event = start_event self.end_event = end_event def get_elapsed_msec(self): get_accelerator().current_stream().wait_event(self.end_event) self.end_event.synchronize() return self.start_event.elapsed_time(self.end_event) class SynchronizedWallClockTimer: """Group of timers. Borrowed from Nvidia Megatron code""" class Timer: """Timer.""" def __init__(self, name): self.name_ = name self.started_ = False self.event_timers = [] self.start_event = None self.elapsed_records = None def start(self): """Start the timer.""" assert not self.started_, f"{self.name_} timer has already been started" self.start_event = get_accelerator().Event(enable_timing=True) self.start_event.record() self.started_ = True def stop(self, reset=False, record=False): """Stop the timer.""" assert self.started_, "timer is not started" end_event = get_accelerator().Event(enable_timing=True) end_event.record() self.event_timers.append(CudaEventTimer(self.start_event, end_event)) self.start_event = None self.started_ = False def _get_elapsed_msec(self): self.elapsed_records = [et.get_elapsed_msec() for et in self.event_timers] self.event_timers.clear() return sum(self.elapsed_records) def reset(self): """Reset timer.""" self.started_ = False self.start_event = None self.elapsed_records = None self.event_timers.clear() def elapsed(self, reset=True): """Calculate the elapsed time.""" started_ = self.started_ # If the timing in progress, end it first. if self.started_: self.stop() # Get the elapsed time. elapsed_ = self._get_elapsed_msec() # Reset the elapsed time if reset: self.reset() # If timing was in progress, set it back. if started_: self.start() return elapsed_ def mean(self): self.elapsed(reset=False) return trim_mean(self.elapsed_records, 0.1) def __init__(self): self.timers = {} def get_timers(self): return self.timers def __call__(self, name): if name not in self.timers: self.timers[name] = self.Timer(name) return self.timers[name] @staticmethod def memory_usage(): alloc = "mem_allocated: {:.4f} GB".format(get_accelerator().memory_allocated() / (1024 * 1024 * 1024)) max_alloc = "max_mem_allocated: {:.4f} GB".format(get_accelerator().max_memory_allocated() / (1024 * 1024 * 1024)) cache = "cache_allocated: {:.4f} GB".format(get_accelerator().memory_cached() / (1024 * 1024 * 1024)) max_cache = "max_cache_allocated: {:.4f} GB".format(get_accelerator().max_memory_cached() / (1024 * 1024 * 1024)) return " | {} | {} | {} | {}".format(alloc, max_alloc, cache, max_cache) def log(self, names, normalizer=1.0, reset=True, memory_breakdown=False, ranks=None): """Log a group of timers.""" assert normalizer > 0.0 string = f"rank={dist.get_rank()} time (ms)" for name in names: if name in self.timers: elapsed_time = (self.timers[name].elapsed(reset=reset) / normalizer) string += " | {}: {:.2f}".format(name, elapsed_time) log_dist(string, ranks=ranks or [0]) def get_mean(self, names, normalizer=1.0, reset=True): """Get the mean of a group of timers.""" assert normalizer > 0.0 means = {} for name in names: if name in self.timers: elapsed_time = (self.timers[name].mean() * 1000.0 / normalizer) means[name] = elapsed_time return means class ThroughputTimer: def __init__( self, batch_size, start_step=2, steps_per_output=50, monitor_memory=False, logging_fn=None, ): from deepspeed.utils import logger self.start_time = 0 self.end_time = 0 self.started = False self.batch_size = 1 if batch_size is None else batch_size self.start_step = start_step self.epoch_count = 0 self.micro_step_count = 0 self.global_step_count = 0 self.total_elapsed_time = 0 self.step_elapsed_time = 0 self.steps_per_output = steps_per_output self.monitor_memory = monitor_memory self.logging = logging_fn if self.logging is None: self.logging = logger.info self.initialized = False if self.monitor_memory and not PSUTILS_INSTALLED: raise ImportError("Unable to import 'psutils', please install package") def update_epoch_count(self): self.epoch_count += 1 self.micro_step_count = 0 def _init_timer(self): self.initialized = True def start(self): self._init_timer() self.started = True if self.global_step_count >= self.start_step: get_accelerator().synchronize() self.start_time = time.time() def stop(self, global_step=False, report_speed=True): if not self.started: return self.started = False self.micro_step_count += 1 if global_step: self.global_step_count += 1 if self.start_time > 0: get_accelerator().synchronize() self.end_time = time.time() duration = self.end_time - self.start_time self.total_elapsed_time += duration self.step_elapsed_time += duration if global_step: if report_speed and self.global_step_count % self.steps_per_output == 0: self.logging( "epoch={}/micro_step={}/global_step={}, RunningAvgSamplesPerSec={}, CurrSamplesPerSec={}, " "MemAllocated={}GB, MaxMemAllocated={}GB".format( self.epoch_count, self.micro_step_count, self.global_step_count, self.avg_samples_per_sec(), self.batch_size / self.step_elapsed_time, round(get_accelerator().memory_allocated() / 1024**3, 2), round(get_accelerator().max_memory_allocated() / 1024**3, 2), )) if self.monitor_memory: virt_mem = psutil.virtual_memory() swap = psutil.swap_memory() self.logging("epoch={}/micro_step={}/global_step={}, vm %: {}, swap %: {}".format( self.epoch_count, self.micro_step_count, self.global_step_count, virt_mem.percent, swap.percent, )) self.step_elapsed_time = 0 def avg_samples_per_sec(self): if self.global_step_count > 0: total_step_offset = self.global_step_count - self.start_step avg_time_per_step = self.total_elapsed_time / total_step_offset # training samples per second return self.batch_size / avg_time_per_step return float("-inf") def trim_mean(data, trim_percent): """Compute the trimmed mean of a list of numbers. Args: data (list): List of numbers. trim_percent (float): Percentage of data to trim. Returns: float: Trimmed mean. """ assert trim_percent >= 0.0 and trim_percent <= 1.0 n = len(data) # Account for edge case of empty list if len(data) == 0: return 0 data.sort() k = int(round(n * (trim_percent))) return mean(data[k:n - k])
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/utils/timer.py
timer.py
# DeepSpeed Team import functools import logging import sys import os log_levels = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } class LoggerFactory: @staticmethod def create_logger(name=None, level=logging.INFO): """create a logger Args: name (str): name of the logger level: level of logger Raises: ValueError is name is None """ if name is None: raise ValueError("name for logger cannot be None") formatter = logging.Formatter("[%(asctime)s] [%(levelname)s] " "[%(filename)s:%(lineno)d:%(funcName)s] %(message)s") logger_ = logging.getLogger(name) logger_.setLevel(level) logger_.propagate = False ch = logging.StreamHandler(stream=sys.stdout) ch.setLevel(level) ch.setFormatter(formatter) logger_.addHandler(ch) return logger_ logger = LoggerFactory.create_logger(name="DeepSpeed", level=logging.INFO) @functools.lru_cache(None) def warning_once(*args, **kwargs): """ This method is identical to `logger.warning()`, but will emit the warning with the same message only once Note: The cache is for the function arguments, so 2 different callers using the same arguments will hit the cache. The assumption here is that all warning messages are unique across the code. If they aren't then need to switch to another type of cache that includes the caller frame information in the hashing function. """ logger.warning(*args, **kwargs) logger.warning_once = warning_once def print_configuration(args, name): logger.info("{}:".format(name)) for arg in sorted(vars(args)): dots = "." * (29 - len(arg)) logger.info(" {} {} {}".format(arg, dots, getattr(args, arg))) def log_dist(message, ranks=None, level=logging.INFO): from deepspeed import comm as dist """Log message when one of following condition meets + not dist.is_initialized() + dist.get_rank() in ranks if ranks is not None or ranks = [-1] Args: message (str) ranks (list) level (int) """ should_log = not dist.is_initialized() ranks = ranks or [] my_rank = dist.get_rank() if dist.is_initialized() else -1 if ranks and not should_log: should_log = ranks[0] == -1 should_log = should_log or (my_rank in set(ranks)) if should_log: final_message = "[Rank {}] {}".format(my_rank, message) logger.log(level, final_message) def print_json_dist(message, ranks=None, path=None): from deepspeed import comm as dist """Print message when one of following condition meets + not dist.is_initialized() + dist.get_rank() in ranks if ranks is not None or ranks = [-1] Args: message (str) ranks (list) path (str) """ should_log = not dist.is_initialized() ranks = ranks or [] my_rank = dist.get_rank() if dist.is_initialized() else -1 if ranks and not should_log: should_log = ranks[0] == -1 should_log = should_log or (my_rank in set(ranks)) if should_log: message['rank'] = my_rank import json with open(path, 'w') as outfile: json.dump(message, outfile) os.fsync(outfile) def get_current_level(): """ Return logger's current log level """ return logger.getEffectiveLevel() def should_log_le(max_log_level_str): """ Args: max_log_level_str: maximum log level as a string Returns ``True`` if the current log_level is less or equal to the specified log level. Otherwise ``False``. Example: ``should_log_le("info")`` will return ``True`` if the current log level is either ``logging.INFO`` or ``logging.DEBUG`` """ if not isinstance(max_log_level_str, str): raise ValueError(f"{max_log_level_str} is not a string") max_log_level_str = max_log_level_str.lower() if max_log_level_str not in log_levels: raise ValueError(f"{max_log_level_str} is not one of the `logging` levels") return get_current_level() <= log_levels[max_log_level_str]
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/utils/logging.py
logging.py
# DeepSpeed Team # For lazy import with printflock() fcntl = None # for debug purposes map module and param objects to their fully qualified names module_names = {} param_names = {} def debug_extract_module_and_param_names(model): # extract the fully qualified names as soon as the model is acquired global module_names global param_names # XXX: can probably make a map of param2module and vice-versa module_names = {module: name for name, module in model.named_modules()} param_names = {param: name for name, param in model.named_parameters()} def debug_module2name(module): if module in module_names: return module_names[module] else: return "unknown" def debug_module2name_id(module): return f"name={debug_module2name(module)} id={module.id}" def debug_module2name_class(module): return f"name={debug_module2name(module)} {module.__class__.__name__}" def debug_param2name(param): if param in param_names: return param_names[param] else: return "unknown" def debug_param2name_id(param): return f"name={debug_param2name(param)} id={param.ds_id}" def debug_param2name_id_shape(param): return f"name={debug_param2name(param)} id={param.ds_id} shape={param.data.shape}" def debug_param2name_id_shape_device(param): return f"name={debug_param2name(param)} id={param.ds_id} shape={param.data.shape} device={param.device}" def debug_param2name_id_numel(param): return f"name={debug_param2name(param)} id={param.ds_id} numel={param.numel()}" def debug_param2name_id_shape_status(param): return f"name={debug_param2name(param)} id={param.ds_id} shape={param.data.shape} status={param.ds_status}" def printflock(*msgs): """ For printing messages for all concurrent gpus w/o getting interleaved text. This is useful when debugging issues where multi-gpus don't sync. 1. Enable the force debug in say partitioning and zero3 files 2. Override the usual versions with :: def print_rank_0(message, debug=False, force=False): rank = deepspeed.comm.get_rank() printflock(f"[{rank}] {message}") 3. run the program and you get both logs non-interleaved But this makes it very difficult to make sense of the output, so the ``log_rank_file`` helper function might be more useful, as it's easier to send each log stream into a separate file and then compare those. """ global fcntl if fcntl == None: import fcntl with open(__file__, "r") as fh: fcntl.flock(fh, fcntl.LOCK_EX) try: print(*msgs) finally: fcntl.flock(fh, fcntl.LOCK_UN) fh = None def log_rank_file(rank, *msgs): """ Print to a log file of the given rank This is useful for debugging hanging in sync processes. Here is a possible workflow: 1. Enable the force debug in say partitioning and zero3 files 2. Override the usual versions of print_rank_0 in those files with :: def print_rank_0(message, debug=False, force=False): rank = deepspeed.comm.get_rank() log_rank_file(rank, message) 3. run the program 4. fix up the expected differences, e.g. different cuda numbers :: perl -pi -e 's|cuda:1|cuda:0|' log_rank_* 5. now diff and see where names and ids diverge - you will find where the gpus don't do the same work (e.g. when some layers get conditionally skipped on one gpu but not all) diff -u log_rank_0.txt log_rank_1.txt | less """ global fh if fh is None: fh = open(f"log_rank_{rank}.txt", "w") for m in msgs: fh.write(f"{m}\n") fh.flush() def print_backward_tensors(tensor): def _print_bwd_tensors(grad_fn): print(f"Backward tensors in {grad_fn}") for funcs in grad_fn.next_functions: if funcs[0]: try: tensor = getattr(funcs[0], 'variable') print(funcs[0]) print(f"Tensor - id: {id(tensor)}, shape: {tensor.shape}, data: {tensor}, grad: {tensor.grad}") except AttributeError as e: _print_bwd_tensors(funcs[0]) if hasattr(tensor, 'grad_fn'): _print_bwd_tensors(tensor.grad_fn)
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/utils/debug.py
debug.py
# DeepSpeed Team # The file has been adapted from https://github.com/NVIDIA/Megatron-LM and retains the following license from the original file # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Support different forms of parallelism in DeepSpeed using multiple process groups. Given that there are multiple scenarios and use-cases, this file is going to be updated frequently. For now, the group creation needed for the training scenario is being implemented. For inference and other new scenarios, the code will be either reused or added to this file. """ from deepspeed import comm as dist from deepspeed.utils import log_dist from deepspeed.utils.exceptions import DeprecatedException # Expert parallel group that the current rank belongs to. _EXPERT_PARALLEL_GROUP = {} # Expert data parallel group that the current rank belongs to. _EXPERT_DATA_PARALLEL_GROUP = {} # dist world group needs to be cloned for some cases _WORLD_GROUP = None # global object to maintain mpu object if passed by a Megatron client mpu = None # global object that stores tensor parallel world size for experts expert_tensor_parallel_world_size = 1 # Deprecated groups initialize function. def initialize(ep_size=1, mpu=None): """ Deprecated function. Retained to inform the users.""" raise DeprecatedException( "Please do not use the groups.initialize() API as it is deprecated. Instead, pass the desired ep_size to deepspeed.moe.layer.MoE(..,ep_size,..)" ) def _ensure_divisibility(numerator, denominator): """Ensure that numerator is divisible by the denominator.""" assert numerator % denominator == 0, '{} is not divisible by {}'.format(numerator, denominator) # Not currently used. Helper function to create a model (tensor) parallel group. def _create_model_parallel(model_parallel_size_): """ Initialize model data parallel groups. Arguments: model_parallel_size: number of GPUs used to parallelize model. Returns: Tuple of data parallel group and model parallel group Let's say we have a total of 8 GPUs denoted by g0 ... g7 and we use 2 GPUs to parallelize the model. The present function will create 4 model parallel groups and 2 data parallel groups as: 4 model parallel groups: [g0, g1], [g2, g3], [g4, g5], [g6, g7] 2 data parallel groups: [g0, g2, g4, g6], [g1, g3, g5, g7] Note that for efficiency, the caller should make sure adjacent ranks are on the same DGX box. For example if we are using 2 DGX-1 boxes with a total of 16 GPUs, rank 0 to 7 belong to the first box and ranks 8 to 15 belong to the second box. """ log_dist(f'Creating model parallel group with size {model_parallel_size_}', ranks=[0]) # Get world size and rank. Ensure some consistencies. assert dist.is_initialized() world_size = dist.get_world_size() model_parallel_size = min(model_parallel_size_, world_size) _ensure_divisibility(world_size, model_parallel_size) rank = dist.get_rank() _DATA_PARALLEL_GROUP = None _MODEL_PARALLEL_GROUP = None # Build the data parallel groups. for i in range(model_parallel_size): ranks = range(i, world_size, model_parallel_size) group = dist.new_group(ranks) if i == (rank % model_parallel_size): _DATA_PARALLEL_GROUP = group # Build the model parallel groups. for i in range(world_size // model_parallel_size): ranks = range(i * model_parallel_size, (i + 1) * model_parallel_size) group = dist.new_group(ranks) if i == (rank // model_parallel_size): _MODEL_PARALLEL_GROUP = group return _DATA_PARALLEL_GROUP, _MODEL_PARALLEL_GROUP def _create_expert_and_data_parallel(expert_parallel_size_): """ Create expert and data parallel groups. Note: Caller of this function is responsible to check if the groups already exist. Example - E + D parallel world_size = 16 expert_parallel_size = 2 # number of experts in same group expert_data_parallel_group = [0,2,4,6,8,10,12,14], [1,3,5,7,9,11,13,15] - all reduce is only on MoE params expert_parallel_group = [0, 1], [2,3], [4,5], [6,7], [8,9] - no all reduce, but all to all data_parallel_group = [0,1,...,15] - all reduce is only on non-MoE """ assert dist.is_initialized() log_dist(f'Creating expert and data parallel groups with size {expert_parallel_size_}', ranks=[0]) world_size = dist.get_world_size() rank = dist.get_rank() _ensure_divisibility(world_size, expert_parallel_size_) group_name = f"ep_size_{expert_parallel_size_}" # Build the expert data parallel groups. global _EXPERT_DATA_PARALLEL_GROUP # Only create group if it does not already exist if group_name not in _EXPERT_DATA_PARALLEL_GROUP: for i in range(expert_parallel_size_): ranks = range(i, world_size, expert_parallel_size_) group = dist.new_group(ranks) log_dist(f'Creating expert data parallel process group named {group_name} with ranks: {list(ranks)}', [0]) if i == (rank % expert_parallel_size_): _EXPERT_DATA_PARALLEL_GROUP[group_name] = group # Build the expert parallel groups. global _EXPERT_PARALLEL_GROUP # Only create group if it does not already exist if group_name not in _EXPERT_PARALLEL_GROUP: for i in range(world_size // expert_parallel_size_): ranks = range(i * expert_parallel_size_, (i + 1) * expert_parallel_size_) group = dist.new_group(ranks) log_dist(f'creating expert parallel process group named {group_name} with ranks: {list(ranks)}', [0]) if i == (rank // expert_parallel_size_): _EXPERT_PARALLEL_GROUP[group_name] = group def _get_expert_parallel_ranks(world_size, model_parallel_size_, expert_parallel_size_): """Generate expert parallel and expert data parallel group ranks list. Example - E + M + D parallel world_size = 16 model_degree = 2 expert_degree = 4 # number of experts in same group mp_group = [0, 1], [2,3], [4,5] ... data_parallel_group =[0,2,4,6,8,10, 12,14], [1,3,5,7,9,11,13,15] expert_parallel_group = [0,2,4,6], [8,10,12,14] [1,3,5,7], [9,11,13,15] expert_data_parallel_group = [0,8],[2,10],[4,12],[6,14], [1,9],[3,11],[5,13],[7,15] Args: world_size (int): Distributed world size. model_parallel_size_ (int): Model parallel group size. expert_parallel_size_ (int): Expert parallel group size. Returns: Expert parallel group ranks and Expert data parallel group ranks list. """ _ensure_divisibility(world_size, model_parallel_size_) dp_world_size = world_size // model_parallel_size_ _ensure_divisibility(dp_world_size, expert_parallel_size_) # Generate data parallel groups data_parallel_groups = [] dp_group_size = model_parallel_size_ for i in range(dp_group_size): data_parallel_groups.append(list(range(i, world_size, dp_group_size))) expert_parallel_groups = [] expert_data_parallel_groups = [] for dp_ranks in data_parallel_groups: # partition of expert parallel groups, e.g. [0,2,4,6], [8,10,12,14] part_ep_groups = [] for i in range(0, dp_world_size, expert_parallel_size_): part_ep_groups.append(dp_ranks[i:i + expert_parallel_size_]) expert_parallel_groups.extend(part_ep_groups) # zip part_ep_groups get expert data parallel ranks, e.g [0,8],[2,10],[4,12],[6,14] for expert_dp_ranks in zip(*part_ep_groups): expert_data_parallel_groups.append(list(expert_dp_ranks)) return expert_parallel_groups, expert_data_parallel_groups def _create_expert_data_and_model_parallel(expert_parallel_size_, mpu): """ Create expert and data parallel groups based on MPU (model parallel) group. Note: Caller of this function is responsible to check if the groups already exist. Example - E + M + D parallel world_size = 16 model_degree = 2 expert_degree = 4 # number of experts in same group mp_group = [0, 1], [2,3], [4,5] ... data_parallel_group =[0,2,4,6,8,10, 12,14], [1,3,5,7,9,11,13,15] expert_parallel_group = [0,2,4,6], [8,10,12,14] [1,3,5,7], [9,11,13,15] expert_data_parallel_group = [0,8],[2,10],[4,12],[6,14], [1,9],[3,11],[5,13],[7,15] """ assert dist.is_initialized(), "dist is not initialized" model_parallel_size_ = mpu.get_model_parallel_world_size() global expert_tensor_parallel_world_size expert_tensor_parallel_world_size = model_parallel_size_ world_size = dist.get_world_size() rank = dist.get_rank() dp_world_size = mpu.get_data_parallel_world_size() dp_rank = mpu.get_data_parallel_rank() _ensure_divisibility(world_size, model_parallel_size_) _ensure_divisibility(dp_world_size, expert_parallel_size_) log_dist( f"Creating deepspeed groups with model parallel size {model_parallel_size_}, expert parallel size {expert_parallel_size_}, world size {world_size}, dp world size {dp_world_size}", [0]) global _EXPERT_PARALLEL_GROUP, _EXPERT_DATA_PARALLEL_GROUP # Get world size and rank. Ensure some consistencies. _DATA_PARALLEL_GROUP = mpu.get_data_parallel_group() _MODEL_PARALLEL_GROUP = mpu.get_model_parallel_group() group_name = f"ep_size_{expert_parallel_size_}" # Only create groups if they don't already exist # Need to check conditions outside the group creation loop because of the way torch.dist group creation works if group_name not in _EXPERT_DATA_PARALLEL_GROUP and group_name not in _EXPERT_PARALLEL_GROUP: expert_parallel_groups, expert_data_parallel_groups = _get_expert_parallel_ranks( world_size, model_parallel_size_, expert_parallel_size_) for ranks in expert_parallel_groups: group = dist.new_group(ranks) if rank in list(ranks): _EXPERT_PARALLEL_GROUP[group_name] = group for ranks in expert_data_parallel_groups: group = dist.new_group(ranks) if rank in list(ranks): _EXPERT_DATA_PARALLEL_GROUP[group_name] = group def _get_max_expert_size(): """Get the maximum ep_size from all the created groups.""" assert _EXPERT_PARALLEL_GROUP is not None, "Warning! Process group not initialized" keylist = [] for key in _EXPERT_PARALLEL_GROUP.keys(): # index 2 is ep_size in the group name: ep_size_<ep_size> index = 2 keylist.append(int(key.split('_')[index])) return max(keylist) if len(keylist) > 0 else None def _get_max_expert_size_name(): """Get the name of the group with max. ep_size""" return f'ep_size_{_get_max_expert_size()}' def _get_max_expert_parallel_group(): """Get the max expert parallel size.""" return _get_expert_parallel_group(_get_max_expert_size_name()) def _get_expert_parallel_group(group_name): """Get the expert parallel group the caller rank belongs to.""" assert group_name in _EXPERT_PARALLEL_GROUP, \ 'expert parallel group is not initialized' return _EXPERT_PARALLEL_GROUP[group_name] def _get_expert_parallel_group_dict(): """Get the expert parallel group dict.""" return _EXPERT_PARALLEL_GROUP def _get_expert_data_parallel_group(group_name): """Get the expert data parallel group the caller rank belongs to.""" assert group_name in _EXPERT_DATA_PARALLEL_GROUP, \ 'expert data parallel group is not initialized' return _EXPERT_DATA_PARALLEL_GROUP[group_name] def _get_expert_data_parallel_group_dict(): """Get the expert data parallel group dict.""" return _EXPERT_DATA_PARALLEL_GROUP def _clone_world_group(): """Create a clone of the world group Note: We need to clone the dist world group because we use dist.get_global_rank() utility function in DeepSpeed at many places. As that function does not work on dist.group.WORLD, we need to keep a clone of it. """ assert dist.is_initialized(), "dist is not initialized" global _WORLD_GROUP if _WORLD_GROUP is None: # If not cloned already, clone the world group _WORLD_GROUP = dist.new_group(ranks=range(dist.get_world_size())) return _WORLD_GROUP def _get_data_parallel_group(): """Get the data parallel group the caller rank belongs to.""" assert dist.is_initialized(), \ 'dist is not initialized' global mpu if mpu is not None: return mpu.get_data_parallel_group() # Return the clone of dist world group return _clone_world_group() def _get_broadcast_src_rank(): return dist.get_global_rank(_get_data_parallel_group(), 0) def _get_expert_broadcast_src_rank(group_name): return dist.get_global_rank(_get_expert_data_parallel_group(group_name), 0) def _get_expert_parallel_world_size(group_name): """Return world size for the expert parallel group.""" return dist.get_world_size(group=_get_expert_parallel_group(group_name)) def _get_expert_data_parallel_world_size(group_name): """Return world size for the expert data parallel group.""" return dist.get_world_size(group=_get_expert_data_parallel_group(group_name)) def _get_expert_parallel_rank(group_name): """Return my rank for the expert parallel group.""" return dist.get_rank(group=_get_expert_parallel_group(group_name)) def _get_expert_parallel_src_rank(group_name): """Calculate the global rank corresponding to a local rank zero in the expert parallel group.""" global_rank = dist.get_rank() local_world_size = _get_expert_parallel_world_size(group_name) return (global_rank // local_world_size) * local_world_size def _get_expert_data_parallel_rank(group_name): """Return my rank for the expert data parallel group.""" return dist.get_rank(group=_get_expert_data_parallel_group(group_name)) def _get_data_parallel_world_size(): """Return world size for the data parallel group.""" global mpu if mpu is not None: return mpu.get_data_parallel_world_size() return dist.get_world_size(group=_get_data_parallel_group()) def _get_model_parallel_world_size(): """Return world size for the model parallel group.""" global mpu if mpu is not None: return mpu.get_model_parallel_world_size() return 1 def _get_data_parallel_rank(): """Return my rank for the data parallel group.""" global mpu if mpu is not None: return mpu.get_data_parallel_rank() return dist.get_rank(group=_get_data_parallel_group()) def _get_expert_model_parallel_world_size(): global expert_tensor_parallel_world_size return expert_tensor_parallel_world_size
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/utils/groups.py
groups.py
# DeepSpeed Team import math from deepspeed.utils import log_dist def get_caller_func(frame=3): import sys return sys._getframe(frame).f_code.co_name # Helper function to pretty-print message sizes def convert_size(size_bytes): if size_bytes == 0: return "0B" size_name = ("B", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB") i = int(math.floor(math.log(size_bytes, 1024))) p = math.pow(1024, i) s = round(size_bytes / p, 2) return "%s %s" % (s, size_name[i]) # Helper function to calculate algbw and busbw. # See https://gist.github.com/jeffra/b5e80466b4c86be00ea3b6f130fb7a36 and https://github.com/NVIDIA/nccl-tests/blob/master/doc/PERFORMANCE.md def calc_bw_log(comm_op, size, duration): import deepspeed.comm as dist n = dist.get_world_size() tput = 0 busbw = 0 if comm_op == "all_to_all_single": tput = (size / duration) busbw = (size / duration) * ((n - 1) / n) elif comm_op == "all_gather" or comm_op == "all_gather_into_tensor" or comm_op == "reduce_scatter" or comm_op == "reduce_scatter_tensor": size *= n tput = (size / duration) busbw = (size / duration) * ((n - 1) / n) elif comm_op == "all_reduce": tput = (size * 2 / duration) busbw = (size / duration) * (2 * (n - 1) / n) elif comm_op == "send" or comm_op == "recv" or comm_op == "isend" or comm_op == "irecv" or comm_op == "broadcast" or comm_op == "reduce" or comm_op == "gather" or comm_op == "scatter" or comm_op == "barrier": tput = (size / duration) busbw = tput else: print_rank_0("wrong comm_op specified") # noqa: F821 exit(0) # convert to Gbps tput *= 8 busbw *= 8 tput /= 1e6 busbw /= 1e6 return tput, busbw class CommsLogger: def __init__(self): from deepspeed.comm.constants import COMMS_LOGGER_VERBOSE_DEFAULT, COMMS_LOGGER_DEBUG_DEFAULT, COMMS_LOGGER_PROF_OPS_DEFAULT, COMMS_LOGGER_PROF_ALL_DEFAULT, COMMS_LOGGER_ENABLED_DEFAULT self.comms_dict = {} self.verbose = COMMS_LOGGER_VERBOSE_DEFAULT self.debug = COMMS_LOGGER_DEBUG_DEFAULT self.prof_ops = COMMS_LOGGER_PROF_OPS_DEFAULT self.prof_all = COMMS_LOGGER_PROF_ALL_DEFAULT self.enabled = COMMS_LOGGER_ENABLED_DEFAULT def configure(self, comms_config): self.enabled = comms_config.comms_logger_enabled if self.enabled: self.verbose = comms_config.comms_logger.verbose self.debug = comms_config.comms_logger.debug self.prof_ops = comms_config.comms_logger.prof_ops self.prof_all = comms_config.comms_logger.prof_all # There are three settings for the op profiler: # - Global profiling (profile all comms) # - Op-type profiling (e.g. profile all all_reduce comms) # - Op profiling (e.g. profile a specific all_reduce op) def start_profiling_comms(self): self.prof_all = True def stop_profiling_comms(self): self.prof_all = True # E.g. start_profiling_op('all_reduce') def start_profiling_op(self, op_name_list): self.prof_ops = list(set(self.prof_ops) | set(op_name_list)) def stop_profiling_op(self, op_name_list): self.prof_ops = [op for op in self.prof_ops if op not in op_name_list] # Add log entry def append(self, raw_name, record_name, latency, msg_size): import deepspeed.comm as dist algbw, busbw = calc_bw_log(raw_name, msg_size, latency) if record_name in self.comms_dict.keys(): # If this comm_op has already been logged with this message size, just add to existing record if msg_size in self.comms_dict[record_name].keys(): self.comms_dict[record_name][msg_size][0] += 1 self.comms_dict[record_name][msg_size][1].append(latency) self.comms_dict[record_name][msg_size][2].append(algbw) self.comms_dict[record_name][msg_size][3].append(busbw) # If this is a new message size for this comm_op, add new record under existing comm_op else: self.comms_dict[record_name][msg_size] = [1, [latency], [algbw], [busbw]] else: # Create entirely new record self.comms_dict[record_name] = {msg_size: [1, [latency], [algbw], [busbw]]} # If verbose, print every comm op # TODO: Add to tensorboard if self.verbose: n = dist.get_world_size() log_str = f"rank={dist.get_rank()} | comm op: " + record_name + " | time (ms): {:.2f}".format(latency) log_str += " | msg size: " + convert_size(msg_size) log_str += " | algbw (Gbps): {:.2f} ".format(algbw) log_str += " | busbw (Gbps): {:.2f} ".format(busbw) log_dist(log_str, [0]) # Print summary at end of iteration, epoch, or training def log_all(self): from deepspeed.utils.timer import trim_mean print( f"{'Comm. Op': <20}{'Message Size': <20}{'Count': <20}{'Total Latency(ms)': <20}{'Avg Latency(ms)': <20}{'tput_avg (Gbps)': <20}{'busbw_avg (Gbps)': <20}" ) for record_name in self.comms_dict.keys(): print(record_name) for msg_size, vals in sorted(self.comms_dict[record_name].items()): # vals[0] is the count for each msg size count = vals[0] # vals[1] is a list of latency records for each msg size total_lat = sum(vals[1]) # vals[2] and vals[3] are the lists of algbw and busbw, respectively # Get rid of outliers when we print avg_lat = trim_mean(vals[1], 0.1) avg_algbw = trim_mean(vals[2], 0.1) avg_busbw = trim_mean(vals[3], 0.1) print( f"{' ': <20}{convert_size(msg_size): <20}{count: <20}{total_lat: <20.2f}{avg_lat: <20.2f}{avg_algbw: <20.2f}{avg_busbw: <20.2f}" )
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/utils/comms_logging.py
comms_logging.py
# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team # This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in # the future. Once extracted, the weights don't require DeepSpeed and can be used in any # application. # # example: python zero_to_fp32.py . pytorch_model.bin import argparse import torch import glob import math import os import re from collections import OrderedDict from dataclasses import dataclass # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with # DeepSpeed data structures it has to be available in the current python environment. from deepspeed.utils import logger from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) @dataclass class zero_model_state: buffers: dict() param_shapes: dict() shared_params: list ds_version: int frozen_param_shapes: dict() frozen_param_fragments: dict() debug = 0 # load to cpu device = torch.device('cpu') def atoi(text): return int(text) if text.isdigit() else text def natural_keys(text): ''' alist.sort(key=natural_keys) sorts in human order http://nedbatchelder.com/blog/200712/human_sorting.html (See Toothy's implementation in the comments) ''' return [atoi(c) for c in re.split(r'(\d+)', text)] def get_model_state_file(checkpoint_dir, zero_stage): if not os.path.isdir(checkpoint_dir): raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") # there should be only one file if zero_stage == 2: file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") elif zero_stage == 3: file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") if not os.path.exists(file): raise FileNotFoundError(f"can't find model states file at '{file}'") return file def get_checkpoint_files(checkpoint_dir, glob_pattern): # XXX: need to test that this simple glob rule works for multi-node setup too ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) if len(ckpt_files) == 0: raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") return ckpt_files def get_optim_files(checkpoint_dir): return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") def get_model_state_files(checkpoint_dir): return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") def parse_model_states(files): zero_model_states = [] for file in files: state_dict = torch.load(file, map_location=device) if BUFFER_NAMES not in state_dict: raise ValueError(f"{file} is not a model state checkpoint") buffer_names = state_dict[BUFFER_NAMES] if debug: print("Found buffers:", buffer_names) # recover just the buffers while restoring them to fp32 if they were saved in fp16 buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} param_shapes = state_dict[PARAM_SHAPES] # collect parameters that are included in param_shapes param_names = [] for s in param_shapes: for name in s.keys(): param_names.append(name) # update with frozen parameters frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) if frozen_param_shapes is not None: if debug: print(f"Found frozen_param_shapes: {frozen_param_shapes}") param_names += list(frozen_param_shapes.keys()) # handle shared params shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] ds_version = state_dict.get(DS_VERSION, None) frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) z_model_state = zero_model_state(buffers=buffers, param_shapes=param_shapes, shared_params=shared_params, ds_version=ds_version, frozen_param_shapes=frozen_param_shapes, frozen_param_fragments=frozen_param_fragments) zero_model_states.append(z_model_state) return zero_model_states def parse_optim_states(files, ds_checkpoint_dir): total_files = len(files) state_dicts = [] for f in files: state_dicts.append(torch.load(f, map_location=device)) if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: raise ValueError(f"{files[0]} is not a zero checkpoint") zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] # For ZeRO-2 each param group can have different partition_count as data parallelism for expert # parameters can be different from data parallelism for non-expert parameters. So we can just # use the max of the partition_count to get the dp world_size. if type(world_size) is list: world_size = max(world_size) if world_size != total_files: raise ValueError( f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." ) # the groups are named differently in each stage if zero_stage == 2: fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS elif zero_stage == 3: fp32_groups_key = FP32_FLAT_GROUPS else: raise ValueError(f"unknown zero stage {zero_stage}") if zero_stage == 2: fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] elif zero_stage == 3: # if there is more than one param group, there will be multiple flattened tensors - one # flattened tensor per group - for simplicity merge them into a single tensor # # XXX: could make the script more memory efficient for when there are multiple groups - it # will require matching the sub-lists of param_shapes for each param group flattened tensor fp32_flat_groups = [ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts)) ] return zero_stage, world_size, fp32_flat_groups def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir): """ Returns fp32 state_dict reconstructed from ds checkpoint Args: - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) """ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") optim_files = get_optim_files(ds_checkpoint_dir) zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") model_files = get_model_state_files(ds_checkpoint_dir) zero_model_states = parse_model_states(model_files) print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') if zero_stage == 2: return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states) elif zero_stage == 3: return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states) def _zero2_merge_frozen_params(state_dict, zero_model_states): if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: return frozen_param_shapes = zero_model_states[0].frozen_param_shapes frozen_param_fragments = zero_model_states[0].frozen_param_fragments if debug: num_elem = sum(s.numel() for s in frozen_param_shapes.values()) print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') wanted_params = len(frozen_param_shapes) wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) print(f'Frozen params: Have {avail_numel} numels to process.') print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') total_params = 0 total_numel = 0 for name, shape in frozen_param_shapes.items(): total_params += 1 unpartitioned_numel = shape.numel() total_numel += unpartitioned_numel state_dict[name] = frozen_param_fragments[name] if debug: print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): param_shapes = zero_model_states[0].param_shapes # Reconstruction protocol: # # XXX: document this if debug: for i in range(world_size): for j in range(len(fp32_flat_groups[0])): print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") # XXX: memory usage doubles here (zero2) num_param_groups = len(fp32_flat_groups[0]) merged_single_partition_of_fp32_groups = [] for i in range(num_param_groups): merged_partitions = [sd[i] for sd in fp32_flat_groups] full_single_fp32_vector = torch.cat(merged_partitions, 0) merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) avail_numel = sum( [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) if debug: wanted_params = sum([len(shapes) for shapes in param_shapes]) wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) # not asserting if there is a mismatch due to possible padding print(f"Have {avail_numel} numels to process.") print(f"Need {wanted_numel} numels in {wanted_params} params.") # params # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support # out-of-core computing solution total_numel = 0 total_params = 0 for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): offset = 0 avail_numel = full_single_fp32_vector.numel() for name, shape in shapes.items(): unpartitioned_numel = shape.numel() total_numel += unpartitioned_numel total_params += 1 if debug: print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) offset += unpartitioned_numel # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex # paddings performed in the code it's almost impossible to predict the exact numbers w/o the # live optimizer object, so we are checking that the numbers are within the right range align_to = 2 * world_size def zero2_align(x): return align_to * math.ceil(x / align_to) if debug: print(f"original offset={offset}, avail_numel={avail_numel}") offset = zero2_align(offset) avail_numel = zero2_align(avail_numel) if debug: print(f"aligned offset={offset}, avail_numel={avail_numel}") # Sanity check if offset != avail_numel: raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states): state_dict = OrderedDict() # buffers buffers = zero_model_states[0].buffers state_dict.update(buffers) if debug: print(f"added {len(buffers)} buffers") _zero2_merge_frozen_params(state_dict, zero_model_states) _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) # recover shared parameters for pair in zero_model_states[0].shared_params: if pair[1] in state_dict: state_dict[pair[0]] = state_dict[pair[1]] return state_dict def zero3_partitioned_param_info(unpartitioned_numel, world_size): remainder = unpartitioned_numel % world_size padding_numel = (world_size - remainder) if remainder else 0 partitioned_numel = math.ceil(unpartitioned_numel / world_size) return partitioned_numel, padding_numel def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: return if debug: for i in range(world_size): num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') frozen_param_shapes = zero_model_states[0].frozen_param_shapes wanted_params = len(frozen_param_shapes) wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size print(f'Frozen params: Have {avail_numel} numels to process.') print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') total_params = 0 total_numel = 0 for name, shape in zero_model_states[0].frozen_param_shapes.items(): total_params += 1 unpartitioned_numel = shape.numel() total_numel += unpartitioned_numel param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) if debug: print( f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" ) print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): param_shapes = zero_model_states[0].param_shapes avail_numel = fp32_flat_groups[0].numel() * world_size # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each # param, re-consolidating each param, while dealing with padding if any # merge list of dicts, preserving order param_shapes = {k: v for d in param_shapes for k, v in d.items()} if debug: for i in range(world_size): print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") wanted_params = len(param_shapes) wanted_numel = sum(shape.numel() for shape in param_shapes.values()) # not asserting if there is a mismatch due to possible padding avail_numel = fp32_flat_groups[0].numel() * world_size print(f"Trainable params: Have {avail_numel} numels to process.") print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") # params # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support # out-of-core computing solution offset = 0 total_numel = 0 total_params = 0 for name, shape in param_shapes.items(): unpartitioned_numel = shape.numel() total_numel += unpartitioned_numel total_params += 1 partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) if debug: print( f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" ) # XXX: memory usage doubles here state_dict[name] = torch.cat( tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)), 0).narrow(0, 0, unpartitioned_numel).view(shape) offset += partitioned_numel offset *= world_size # Sanity check if offset != avail_numel: raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states): state_dict = OrderedDict() # buffers buffers = zero_model_states[0].buffers state_dict.update(buffers) if debug: print(f"added {len(buffers)} buffers") _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) # recover shared parameters for pair in zero_model_states[0].shared_params: if pair[1] in state_dict: state_dict[pair[0]] = state_dict[pair[1]] return state_dict def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None): """ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example via a model hub. Args: - ``checkpoint_dir``: path to the desired checkpoint folder - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` Returns: - pytorch ``state_dict`` Note: this approach may not work if your application doesn't have sufficient free CPU memory and you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with the checkpoint. A typical usage might be :: from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint # do the training and checkpoint saving state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu model = model.cpu() # move to cpu model.load_state_dict(state_dict) # submit to model hub or save the model to share with others In this example the ``model`` will no longer be usable in the deepspeed context of the same application. i.e. you will need to re-initialize the deepspeed engine, since ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. """ if tag is None: latest_path = os.path.join(checkpoint_dir, 'latest') if os.path.isfile(latest_path): with open(latest_path, 'r') as fd: tag = fd.read().strip() else: raise ValueError(f"Unable to find 'latest' file at {latest_path}") ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) if not os.path.isdir(ds_checkpoint_dir): raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir) def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None): """ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. Args: - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin) - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` """ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) print(f"Saving fp32 state dict to {output_file}") torch.save(state_dict, output_file) def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): """ 1. Put the provided model to cpu 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` 3. Load it into the provided model Args: - ``model``: the model object to update - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` Returns: - ``model`: modified model Make sure you have plenty of CPU memory available before you call this function. If you don't have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it conveniently placed for you in the checkpoint folder. A typical usage might be :: from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) # submit to model hub or save the model to share with others Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context of the same application. i.e. you will need to re-initialize the deepspeed engine, since ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. """ logger.info(f"Extracting fp32 weights") state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) logger.info(f"Overwriting model with fp32 weights") model = model.cpu() model.load_state_dict(state_dict, strict=False) return model if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("checkpoint_dir", type=str, help="path to the desired checkpoint folder, e.g., path/checkpoint-12") parser.add_argument( "output_file", type=str, help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)") parser.add_argument("-d", "--debug", action='store_true', help="enable debug") args = parser.parse_args() debug = args.debug convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/utils/zero_to_fp32.py
zero_to_fp32.py
# DeepSpeed Team import torch from typing import Callable from torch import Tensor from packaging import version as pkg_version class OnDevice(object): """ Create modules/tensors w. specific devices and dtypes. Examples: Create MyModule which consists of many different sub-modules and parameters. In this case we can create MyModule as a collection of 'meta' tensors by passing `device='meta'` or we can create the module _directly_ on a CUDA device by passing `device=f'cuda:{local_rank}'` (where `local_rank` is the local GPU id. with OnDevice(dtype=torch.float16, device='meta'): model = MyModel() with OnDevice(dtype=torch.float16, device=f'cuda:{local_rank}'): model = MyModel() """ _orig_torch_empty = torch.empty _orig_torch_zeros = torch.zeros _orig_torch_ones = torch.ones _orig_torch_full = torch.full def __init__(self, dtype, device="meta", enabled=True): self.dtype = dtype self.enabled = enabled self.device = device if device == "meta": if pkg_version.parse('1.10') > pkg_version.parse(torch.__version__): raise NotImplementedError("Meta tensor support is not available, please upgrade to torch 1.10+") def fp_tensor_constructor(self, fn: Callable, target_fp_dtype: torch.dtype) -> Callable: def wrapped_fn(*args, **kwargs) -> Tensor: if kwargs.get("device", None) is None: kwargs['device'] = self.device tensor: Tensor = fn(*args, **kwargs) if tensor.is_floating_point(): tensor = tensor.to(target_fp_dtype) return tensor return wrapped_fn def get_new_tensor_fn_for_dtype(self, dtype: torch.dtype) -> Callable: def new_tensor(cls, *args) -> Tensor: tensor = OnDevice._orig_torch_empty(0, device=self.device).new_empty(*args) if tensor.is_floating_point(): tensor = tensor.to(dtype) return tensor return new_tensor def __enter__(self): if not self.enabled: return torch.Tensor.__old_new__ = torch.Tensor.__new__ torch.Tensor.__new__ = self.get_new_tensor_fn_for_dtype(self.dtype) torch.empty = self.fp_tensor_constructor(self._orig_torch_empty, self.dtype) torch.zeros = self.fp_tensor_constructor(self._orig_torch_zeros, self.dtype) torch.ones = self.fp_tensor_constructor(self._orig_torch_ones, self.dtype) torch.full = self.fp_tensor_constructor(self._orig_torch_full, self.dtype) def __exit__(self, exc_type, exc_value, traceback): if not self.enabled: return torch.Tensor.__new__ = torch.Tensor.__old_new__ torch.empty = self._orig_torch_empty torch.zeros = self._orig_torch_zeros torch.ones = self._orig_torch_ones torch.full = self._orig_torch_full
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/utils/init_on_device.py
init_on_device.py
# DeepSpeed Team from torch.distributed.elastic.agent.server.local_elastic_agent import LocalElasticAgent from typing import Any, Dict, Optional, Tuple from datetime import datetime from torch.distributed.elastic.agent.server.api import log, _get_socket_with_port from torch.distributed.elastic.metrics import put_metric from torch.distributed.elastic.agent.server.api import ( RunResult, WorkerGroup, WorkerSpec, WorkerState, ) from torch.distributed import Store import time import os from torch.distributed.elastic.multiprocessing import start_processes from torch.distributed.elastic.utils import macros import shutil import copy from contextlib import closing import subprocess class DSElasticAgent(LocalElasticAgent): def __init__( self, spec: WorkerSpec, env: Dict, start_method="spawn", exit_barrier_timeout: float = 300, log_dir: Optional[str] = None, ): super().__init__(spec, start_method, exit_barrier_timeout, log_dir) self.ds_env = env @staticmethod def _set_master_addr_port(store: Store, master_addr: Optional[str], master_port: Optional[int]): if master_port is None: sock = _get_socket_with_port() with closing(sock): master_port = sock.getsockname()[1] if master_addr is None: # master_addr = _get_fq_hostname() result = subprocess.check_output("hostname -I", shell=True) master_addr = result.decode('utf-8').split()[0] store.set("MASTER_ADDR", master_addr.encode(encoding="UTF-8")) store.set("MASTER_PORT", str(master_port).encode(encoding="UTF-8")) def _start_workers(self, worker_group: WorkerGroup) -> Dict[int, Any]: spec = worker_group.spec store = worker_group.store assert store is not None master_addr, master_port = super()._get_master_addr_port(store) restart_count = spec.max_restarts - self._remaining_restarts use_agent_store = spec.rdzv_handler.get_backend() == "static" args: Dict[int, Tuple] = {} envs: Dict[int, Dict[str, str]] = {} for worker in worker_group.workers: local_rank = worker.local_rank worker_env_ds = copy.deepcopy(self.ds_env) worker_env_elastic = { "LOCAL_RANK": str(local_rank), "RANK": str(worker.global_rank), "GROUP_RANK": str(worker_group.group_rank), "ROLE_RANK": str(worker.role_rank), "ROLE_NAME": spec.role, "LOCAL_WORLD_SIZE": str(spec.local_world_size), "WORLD_SIZE": str(worker.world_size), "GROUP_WORLD_SIZE": str(worker_group.group_world_size), "ROLE_WORLD_SIZE": str(worker.role_world_size), "MASTER_ADDR": master_addr, "MASTER_PORT": str(master_port), "TORCHELASTIC_RESTART_COUNT": str(restart_count), "TORCHELASTIC_MAX_RESTARTS": str(spec.max_restarts), "TORCHELASTIC_RUN_ID": spec.rdzv_handler.get_run_id(), "TORCHELASTIC_USE_AGENT_STORE": str(use_agent_store), "NCCL_ASYNC_ERROR_HANDLING": os.getenv("NCCL_ASYNC_ERROR_HANDLING", str(1)), } worker_env_ds.update(worker_env_elastic) if "OMP_NUM_THREADS" in os.environ: worker_env_ds["OMP_NUM_THREADS"] = os.environ["OMP_NUM_THREADS"] envs[local_rank] = worker_env_ds worker_args = list(spec.args) worker_args = macros.substitute(worker_args, str(local_rank)) args[local_rank] = tuple(worker_args) # scaling events do not count towards restarts (gets same attempt #) # remove existing log dir if this restart is due to a scaling event attempt_log_dir = os.path.join(self._log_dir, f"attempt_{restart_count}") shutil.rmtree(attempt_log_dir, ignore_errors=True) os.makedirs(attempt_log_dir) assert spec.entrypoint is not None self._pcontext = start_processes( name=spec.role, entrypoint=spec.entrypoint, args=args, envs=envs, log_dir=attempt_log_dir, start_method=self._start_method, redirects=spec.redirects, tee=spec.tee, ) return self._pcontext.pids() def _invoke_run(self, role: str = "default") -> RunResult: # NOTE: currently only works for a single role spec = self._worker_group.spec role = spec.role log.info(f"[{role}] starting workers for entrypoint: {spec.get_entrypoint_name()}") self._initialize_workers(self._worker_group) monitor_interval = spec.monitor_interval rdzv_handler = spec.rdzv_handler participants = rdzv_handler._state_holder.state.participants while True: assert self._worker_group.state != WorkerState.INIT time.sleep(monitor_interval) run_result = self._monitor_workers(self._worker_group) state = run_result.state self._worker_group.state = state expire_time = datetime.utcnow() - (rdzv_handler._settings.keep_alive_interval * rdzv_handler._settings.keep_alive_max_attempt) _dead_nodes = [ node for node, last_heartbeat in rdzv_handler._state_holder.state.last_heartbeats.items() if last_heartbeat < expire_time ] put_metric(f"workers.{role}.remaining_restarts", self._remaining_restarts) put_metric(f"workers.{role}.{state.name.lower()}", 1) if state == WorkerState.SUCCEEDED: log.info(f"[{role}] worker group successfully finished." f" Waiting {self._exit_barrier_timeout} seconds for other agents to finish.") self._exit_barrier() return run_result elif state in {WorkerState.UNHEALTHY, WorkerState.FAILED } or len(participants) > len(rdzv_handler._state_holder.state.participants): if self._remaining_restarts > 0: log.info(f"[{role}] Worker group {state.name}. " f"{self._remaining_restarts}/{spec.max_restarts} attempts left;" f" will restart worker group") self._remaining_restarts -= 1 # rdzv_handler._state_holder.state.restart = False self._restart_workers(self._worker_group) participants = rdzv_handler._state_holder.state.participants else: self._stop_workers(self._worker_group) self._worker_group.state = WorkerState.FAILED self._exit_barrier() return run_result elif state == WorkerState.HEALTHY: # membership changes do not count as retries num_nodes_waiting = rdzv_handler.num_nodes_waiting() group_rank = self._worker_group.group_rank if num_nodes_waiting > 0: log.info(f"[{role}] Detected {num_nodes_waiting} " f"new nodes from group_rank={group_rank}; " f"will restart worker group") self._restart_workers(self._worker_group) participants = rdzv_handler._state_holder.state.participants else: raise Exception(f"[{role}] Worker group in {state.name} state")
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/elasticity/elastic_agent.py
elastic_agent.py
# DeepSpeed Team import os import json import numpy as np import math from packaging import version as pkg_version from .config import ElasticityConfig, ElasticityConfigError, ElasticityError, \ ElasticityIncompatibleWorldSize from .constants import ELASTICITY, ENABLED, ENABLED_DEFAULT, LATEST_ELASTICITY_VERSION, \ MINIMUM_DEEPSPEED_VERSION, DEEPSPEED_ELASTICITY_CONFIG from ..git_version_info import version as __version__ from ..utils import logger # Thirty eight smallest highly composite numbers. The list should # be enough to support up to 720K batch size. HCN_LIST = [ 1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560, 10080, 15120, 20160, 25200, 27720, 45360, 50400, 55440, 83160, 110880, 166320, 221760, 277200, 332640, 498960, 554400, 665280, 720720 ] def get_candidate_batch_sizes(base_list, max_acceptable_batch_size): candidate_batch_size = [] for base in base_list: if base >= max_acceptable_batch_size: candidate_batch_size.append(base) else: value = max_acceptable_batch_size // base index = np.argmax(np.asarray(HCN_LIST) > value) candidate_batch_size.append(HCN_LIST[index - 1] * base) candidate_batch_size = list(set(candidate_batch_size)) logger.info(f"Candidate batch size: {candidate_batch_size}") return candidate_batch_size def get_valid_gpus(batch_size, micro_batches, min_valid_gpus, max_valid_gpus): valid_gpus = [] for micro_batch in micro_batches: if batch_size % micro_batch == 0: max_gpus = batch_size // micro_batch if max_gpus >= min_valid_gpus and max_gpus <= max_valid_gpus: valid_gpus.append(max_gpus) # find all factors less than max_gpus / 2 for i in range(1, max_gpus // 2 + 1): if i > max_valid_gpus: break if i < min_valid_gpus: continue if max_gpus % i == 0: valid_gpus.append(i) valid_gpus = set(valid_gpus) valid_gpus = sorted(list(valid_gpus)) return valid_gpus def get_best_candidates(candidate_batch_sizes, micro_batches, min_gpus, max_gpus, prefer_larger): max_valid_gpus = 0 valid_gpus = None final_batch_size = int(min(micro_batches)) for batch_size in candidate_batch_sizes: current_valid_gpus = get_valid_gpus(batch_size, micro_batches, min_gpus, max_gpus) if (len(current_valid_gpus) > max_valid_gpus or (len(current_valid_gpus) == max_valid_gpus and ((prefer_larger and batch_size > final_batch_size) or (not prefer_larger and batch_size < final_batch_size)))): max_valid_gpus = len(current_valid_gpus) valid_gpus = current_valid_gpus final_batch_size = batch_size return final_batch_size, valid_gpus def _get_compatible_gpus_v01(micro_batches, max_acceptable_batch_size, min_gpus=None, max_gpus=None, prefer_larger=True): '''We use two heuristics to compute the batch size 1. We use the Lowest Common Multiple of the micro-batches as the base batch size and scale it by a HCN such that the result is the largest batch size less than the max_acceptable batch size 2. We use each of the micro batches as a base and scale it by a HCN such that the result is the largest batch size less than the max_acceptable batch size. We then use brute force to count the number of compatible GPU count for each of the aforementioned cases, and return the batch size with the most number of compatible GPU counts in the min-max GPU range if provided, other wise we return the batch size with the most number of total compatible GPU counts. Returns: final_batch_size valid_gpus ''' min_gpus = min_gpus or 1 max_gpus = max_gpus or max_acceptable_batch_size // min(micro_batches) if not all(mb <= max_acceptable_batch_size for mb in micro_batches): raise ValueError(f"All micro batches must be less than \ or equal to max_acceptable_batch_size: {max_acceptable_batch_size}") lcm = np.lcm.reduce(micro_batches) base_list = [] base_list.extend(micro_batches) base_list.append(lcm) candidate_batch_sizes = get_candidate_batch_sizes(base_list, max_acceptable_batch_size) final_batch_size, valid_gpus = get_best_candidates(candidate_batch_sizes, micro_batches, min_gpus, max_gpus, prefer_larger) return final_batch_size, valid_gpus def _get_compatible_gpus_v02(micro_batches, max_acceptable_batch_size, current_num_gpus, min_gpus=None, max_gpus=None, prefer_larger=True, num_gpus_per_node=1, model_parallel_size=1): ''' Returns: final_batch_size valid_gpus micro-batch size ''' if num_gpus_per_node % model_parallel_size != 0: raise ElasticityError( f"In Elasticity v0.2, number of GPUs per node:" \ f"{num_gpus_per_node} should be divisible by " \ f"model parallel size {model_parallel_size}") def get_microbatch(final_batch_size): candidate_microbatch = None for micro_batch in micro_batches: if final_batch_size // current_num_gpus % micro_batch == 0: if candidate_microbatch == None: candidate_microbatch = micro_batch if prefer_larger and candidate_microbatch < micro_batch: candidate_microbatch = micro_batch return candidate_microbatch dp_size_per_node = num_gpus_per_node // model_parallel_size final_batch_size, valid_world_size = _get_compatible_gpus_v01( micro_batches, int(max_acceptable_batch_size / dp_size_per_node), int(min_gpus / num_gpus_per_node), int(max_gpus / num_gpus_per_node), # Passing number of max nodes as Elasticity v2 works at node level prefer_larger=prefer_larger) final_batch_size = int(final_batch_size) * dp_size_per_node valid_dp_world_size = [i * dp_size_per_node for i in valid_world_size] if current_num_gpus // model_parallel_size in valid_dp_world_size: candidate_microbatch = get_microbatch(final_batch_size) return final_batch_size, valid_dp_world_size, candidate_microbatch current_dp_size = (current_num_gpus / num_gpus_per_node) * dp_size_per_node candidate_batch_sizes = [] for micro_batch in micro_batches: min_batch_size = micro_batch * current_dp_size factor = math.floor(max_acceptable_batch_size / float(min_batch_size)) candidate_batch_sizes.append(factor * min_batch_size) used_microbatch = None if prefer_larger: candidate_batch_size = max(candidate_batch_sizes) else: candidate_batch_size = min(candidate_batch_sizes) candidate_microbatch = get_microbatch(candidate_batch_size) return candidate_batch_size, [int(current_dp_size)], candidate_microbatch def _compatible_ds_version_check(target_deepspeed_version: str): min_version = pkg_version.parse(MINIMUM_DEEPSPEED_VERSION) target_version = pkg_version.parse(target_deepspeed_version) err_str = f"Target deepspeed version of {target_deepspeed_version} is not compatible " \ f"with minimum version {MINIMUM_DEEPSPEED_VERSION} supporting elasticity." if target_version < min_version: raise ElasticityError(err_str) return True def elasticity_enabled(ds_config: dict): if ELASTICITY not in ds_config: return False return ds_config[ELASTICITY].get(ENABLED, ENABLED_DEFAULT) def ensure_immutable_elastic_config(runtime_elastic_config_dict: dict): """ Ensure the resource scheduler saw the same elastic config we are using at runtime """ if DEEPSPEED_ELASTICITY_CONFIG in os.environ: scheduler_elastic_config_dict = json.loads(os.environ[DEEPSPEED_ELASTICITY_CONFIG]) scheduler_elastic_config = ElasticityConfig(scheduler_elastic_config_dict) runtime_elastic_config = ElasticityConfig(runtime_elastic_config_dict) err_str = "Elastic config '{}={}' seen by resource scheduler does not match config passed to runtime {}={}" if runtime_elastic_config.max_acceptable_batch_size != scheduler_elastic_config.max_acceptable_batch_size: raise ElasticityConfigError( err_str.format('max_acceptable_batch_size', scheduler_elastic_config.max_acceptable_batch_size, 'max_acceptable_batch_size', runtime_elastic_config.max_acceptable_batch_size)) if runtime_elastic_config.micro_batches != scheduler_elastic_config.micro_batches: raise ElasticityConfigError( err_str.format('micro_batches', scheduler_elastic_config.micro_batches, 'micro_batches', runtime_elastic_config.micro_batches)) if runtime_elastic_config.version != scheduler_elastic_config.version: raise ElasticityConfigError( err_str.format('version', scheduler_elastic_config.version, 'version', runtime_elastic_config.version)) else: logger.warning("Unable to find DEEPSPEED_ELASTICITY_CONFIG environment variable, cannot " \ "guarantee resource scheduler will scale this job using compatible GPU counts.") def compute_elastic_config(ds_config: dict, target_deepspeed_version: str, world_size=0, return_microbatch=False): """Core deepspeed elasticity API. Given an elastic config (similar to the example below) DeepSpeed will compute a total train batch size corresponding valid GPU count list that provides a high level of elasticity. Elasticity in this case means we are safe to scale the training job up/down across the GPU count list *without* any negative impacts on training convergence. This is achievable primarily due to DeepSpeed's gradient accumulation feature which allows us to decompose a global training batch size into: micro-batch-size * gradient-accumulation-steps * world-size. "elasticity": { "enabled": true, "max_train_batch_size": 2000, "micro_batch_sizes": [2,4,6], "min_gpus": 1, "max_gpus" : 10000 "min_time": 20 "version": 0.1 } Intended to be called both by scheduling infrastructure and deepspeed runtime. For the same `ds_config` we should return deterministic results. Args: ds_config (dict): DeepSpeed config dictionary/json target_deepspeed_version (str): When called from scheduling infrastructure we want to ensure that the target deepspeed version is compatible with the elasticity version used in the backend. world_size (int, optional): Intended/current DP world size, will do some sanity checks to ensure world size is actually valid with the config. return_microbatch (bool, optional): whether to return micro batch size or not. Raises: ElasticityConfigError: Missing required elasticity config or elasticity disabled ElasticityError: If target deepspeed version is not compatible with current version Returns: final_batch_size (int): total batch size used for training valid_gpus (list(int)): list of valid GPU counts with this config micro_batch_size (int, optional): if world_size is provided will return specific micro batch size """ if not isinstance(ds_config, dict): raise ValueError("Expected ds_config to be a dictionary but received " \ f"a {type(ds_config)}, containing: {ds_config}") if ELASTICITY not in ds_config: raise ElasticityConfigError(f"'{ELASTICITY}' is missing from config json," \ " please add it if running an elastic training job.") elastic_config_dict = ds_config[ELASTICITY] if not elastic_config_dict.get(ENABLED, ENABLED_DEFAULT): raise ElasticityConfigError("Elasticity is disabled, please enable it " \ "('enabled':true) if running an elastic training job.") elastic_config = ElasticityConfig(elastic_config_dict) model_parallel_size = elastic_config.model_parallel_size num_gpus_per_node = elastic_config.num_gpus_per_node if model_parallel_size > 1 and float(elastic_config.version) != 0.2: raise ElasticityConfigError(f"Elasticity V{elastic_config.version} " \ f"does not support model-parallel training. Given model-parallel size: " \ f"{model_parallel_size}") if float(elastic_config.version) > LATEST_ELASTICITY_VERSION: raise ElasticityConfigError("Attempting to run elasticity version " \ f"{elastic_config.version} but runtime only supports up " \ f"to {LATEST_ELASTICITY_VERSION}") # Ensure target deepspeed version works with intended elasticity version if not _compatible_ds_version_check(target_deepspeed_version): raise ElasticityError("Unable to run elasticity on target deepspeed version of" \ f" {target_deepspeed_version}, currently {__version__}") if float(elastic_config.version) == 0.1: final_batch_size, valid_gpus = _get_compatible_gpus_v01( micro_batches=elastic_config.micro_batches, max_acceptable_batch_size=elastic_config.max_acceptable_batch_size, min_gpus=elastic_config.min_gpus, max_gpus=elastic_config.max_gpus, prefer_larger=elastic_config.prefer_larger_batch_size) # ensure batch size is int dtype final_batch_size = int(final_batch_size) elif float(elastic_config.version) == 0.2: if world_size != 0: current_num_gpus = world_size else: if "WORLD_SIZE" in os.environ and \ os.getenv('WORLD_SIZE').isnumeric(): current_num_gpus = int(os.getenv('WORLD_SIZE')) else: WORLD_SIZE = os.getenv('WORLD_SIZE') raise ElasticityConfigError( 'Elasticity V 0.2 needs WORLD_SIZE '\ 'to compute valid batch size. '\ 'Either give it as argument to function compute_elastic_config '\ 'or set it as an environment variable. '\ f'Value of WORLD_SIZE as environment variable is {WORLD_SIZE}') final_batch_size, valid_gpus, candidate_microbatch_size = _get_compatible_gpus_v02( micro_batches=elastic_config.micro_batches, max_acceptable_batch_size=elastic_config.max_acceptable_batch_size, current_num_gpus=current_num_gpus, min_gpus=elastic_config.min_gpus, max_gpus=elastic_config.max_gpus, prefer_larger=elastic_config.prefer_larger_batch_size, num_gpus_per_node=num_gpus_per_node, model_parallel_size=model_parallel_size) # ensure batch size is int dtype final_batch_size = int(final_batch_size) else: raise NotImplementedError(f"Unable to find elastic logic for version: {elastic_config.version}") logger.info(f"Valid World Size (GPUs / Model Parallel Size): {valid_gpus}") if world_size > 0: if world_size not in valid_gpus: raise ElasticityIncompatibleWorldSize(f"World size ({world_size}) is not valid " \ f"with the current list of valid GPU counts: {valid_gpus}") # Pick largest valid micro batch size micro_batch_size = None for mbsz in sorted(list(set(elastic_config.micro_batches)), reverse=True): if final_batch_size // world_size % mbsz == 0: micro_batch_size = mbsz break assert micro_batch_size is not None, "Unable to find divisible micro batch size" \ f" world_size={world_size}, final_batch_size={final_batch_size}, and " \ f" micro_batches={elastic_config.micro_batches}." return final_batch_size, valid_gpus, micro_batch_size if return_microbatch: # Pick a valid micro batch size if float(elastic_config.version) == 0.2: return final_batch_size, valid_gpus, candidate_microbatch_size else: micro_batch_size = None for mbsz in sorted(list(set(elastic_config.micro_batches)), reverse=True): if final_batch_size // world_size % mbsz == 0: micro_batch_size = mbsz break assert micro_batch_size is not None, "Unable to find divisible micro batch size" \ f" world_size={world_size}, final_batch_size={final_batch_size}, and " \ f" micro_batches={elastic_config.micro_batches}." return final_batch_size, valid_gpus, micro_batch_size return final_batch_size, valid_gpus
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/elasticity/elasticity.py
elasticity.py
# DeepSpeed Team ######################################### # Elasticity ######################################### ''' Elasticity Utility in DeepSpeed can be used to create highly elastic jobs compatible with a large number of GPUs. For elastic jobs, DeepSpeed will provide a batch size that can support a large number of GPUs based on the user specified parameters ''' FORMAT = ''' Elasticity should be enabled as: "elasticity": { "enabled": true, "max_train_batch_size": 2000, "micro_batch_sizes": [2,4,6], "min_gpus": 1, "max_gpus" : 10000, "min_time": 20, "prefer_larger_batch": true, "ignore_non_elastic_batch_info": false, "version": 0.1 } ''' ELASTICITY = 'elasticity' # Current elasticity version LATEST_ELASTICITY_VERSION = 0.2 ENABLED = 'enabled' ENABLED_DEFAULT = False # Max acceptable train_batch_size MAX_ACCEPTABLE_BATCH_SIZE = 'max_train_batch_size' MAX_ACCEPTABLE_BATCH_SIZE_DEFAULT = 2000 # Acceptable micro batch sizes, same as train_micro_batch_size_per_gpu MICRO_BATCHES = 'micro_batch_sizes' MICRO_BATCHES_DEFAULT = [2, 4, 6] # Min/max of GPUs to search over MIN_GPUS = 'min_gpus' MIN_GPUS_DEFAULT = 1 MAX_GPUS = 'max_gpus' MAX_GPUS_DEFAULT = 10000 NUM_GPUS_PER_NODE = 'num_gpus_per_node' NUM_GPUS_PER_NODE_DEFAULT = 1 MODEL_PARLLEL_SIZE = "model_parallel_size" MODEL_PARLLEL_SIZE_DEFAULT = 1 # Minimum running time (minutes) before the scheduler will scale us, 0 implies it's unknown MIN_TIME = "min_time" MIN_TIME_DEFAULT = 0 # When finding a suitable batch size, attempt to find one that is closest # to the max train batch size given. PREFER_LARGER_BATCH = 'prefer_larger_batch' PREFER_LARGER_BATCH_DEFAULT = True # In order to reduce confusion, if elastic mode is enabled we # require (via assert) that no batch info is set outside of the # elastic config. You can turn off this assert via this config # but keep in mind that all batch info defined outside the # elastic mode *will be ignored*. IGNORE_NON_ELASTIC_BATCH_INFO = 'ignore_non_elastic_batch_info' IGNORE_NON_ELASTIC_BATCH_INFO_DEFAULT = False # Version of elastic logic to use VERSION = "version" VERSION_DEFAULT = LATEST_ELASTICITY_VERSION # Minimum deepspeed version to use elasticity MINIMUM_DEEPSPEED_VERSION = "0.3.8" # Environment variable storing elastic config from resource scheduler DEEPSPEED_ELASTICITY_CONFIG = "DEEPSPEED_ELASTICITY_CONFIG"
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/elasticity/constants.py
constants.py
# DeepSpeed Team import json from .constants import * class ElasticityError(Exception): """ Base exception for all elasticity related errors """ class ElasticityConfigError(ElasticityError): """ Elasticity configuration error """ class ElasticityIncompatibleWorldSize(ElasticityError): """ Attempting to run a world size that is incompatible with a given elastic config """ class ElasticityConfig: """ Elastic config object, constructed from a param dictionary that only contains elastic config parameters, example below: If elasticity is enabled, user must specify (at least) max_train_batch_size and micro_batch_sizes. { "enabled": true, "max_train_batch_size": 2000, "micro_batch_sizes": [2,4,6], "min_gpus": 1, "max_gpus" : 10000 "min_time": 20 "ignore_non_elastic_batch_info": false "version": 0.1 } """ def __init__(self, param_dict): self.enabled = param_dict.get(ENABLED, ENABLED_DEFAULT) if self.enabled: if MAX_ACCEPTABLE_BATCH_SIZE in param_dict: self.max_acceptable_batch_size = param_dict[MAX_ACCEPTABLE_BATCH_SIZE] else: raise ElasticityConfigError(f"Elasticity config missing {MAX_ACCEPTABLE_BATCH_SIZE}") if MICRO_BATCHES in param_dict: self.micro_batches = param_dict[MICRO_BATCHES] else: raise ElasticityConfigError(f"Elasticity config missing {MICRO_BATCHES}") else: self.max_acceptable_batch_size = param_dict.get(MAX_ACCEPTABLE_BATCH_SIZE, MAX_ACCEPTABLE_BATCH_SIZE_DEFAULT) self.micro_batches = param_dict.get(MICRO_BATCHES, MICRO_BATCHES_DEFAULT) if not isinstance(self.micro_batches, list): raise ElasticityConfigError( f"Elasticity expected value of {MICRO_BATCHES} to be a " f"list of micro batches, instead is: {type(self.micro_batches)}, containing: {self.micro_batches}") if not all(map(lambda m: isinstance(m, int), self.micro_batches)): raise ElasticityConfigError(f"Elasticity expected {MICRO_BATCHES} to only contain a list of integers, " f"instead contains: f{self.micro_batches}") if not all(map(lambda m: m > 0, self.micro_batches)): raise ElasticityConfigError(f"Elasticity expected {MICRO_BATCHES} to only contain positive integers, " f"instead contains: f{self.micro_batches}") self.min_gpus = param_dict.get(MIN_GPUS, MIN_GPUS_DEFAULT) self.max_gpus = param_dict.get(MAX_GPUS, MAX_GPUS_DEFAULT) if self.min_gpus < 1 or self.max_gpus < 1: raise ElasticityConfigError("Elasticity min/max gpus must be > 0, " f"given min_gpus: {self.min_gpus}, max_gpus: {self.max_gpus}") if self.max_gpus < self.min_gpus: raise ElasticityConfigError("Elasticity min_gpus cannot be greater than max_gpus, " f"given min_gpus: {self.min_gpus}, max_gpus: {self.max_gpus}") self.model_parallel_size = param_dict.get(MODEL_PARLLEL_SIZE, MODEL_PARLLEL_SIZE_DEFAULT) if self.model_parallel_size < 1: raise ElasticityConfigError("Model-Parallel size cannot be less than 1, " f"given model-parallel size: {self.model_parallel_size}") self.num_gpus_per_node = param_dict.get(NUM_GPUS_PER_NODE, NUM_GPUS_PER_NODE_DEFAULT) if self.num_gpus_per_node < 1: raise ElasticityConfigError("Number of GPUs per node cannot be less than 1, " f"given number of GPUs per node: {self.num_gpus_per_node}") self.min_time = param_dict.get(MIN_TIME, MIN_TIME_DEFAULT) if self.min_time < 0: raise ElasticityConfigError(f"Elasticity min time needs to be >= 0: given {self.min_time}") self.version = param_dict.get(VERSION, VERSION_DEFAULT) self.prefer_larger_batch_size = param_dict.get(PREFER_LARGER_BATCH, PREFER_LARGER_BATCH_DEFAULT) self.ignore_non_elastic_batch_info = param_dict.get(IGNORE_NON_ELASTIC_BATCH_INFO, IGNORE_NON_ELASTIC_BATCH_INFO_DEFAULT) def repr(self): return self.__dict__ def __repr__(self): return json.dumps(self.__dict__, sort_keys=True, indent=4)
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/elasticity/config.py
config.py
# DeepSpeed Team from .utils import check_tb_availability from .monitor import Monitor import os import deepspeed.comm as dist class TensorBoardMonitor(Monitor): def __init__(self, tensorboard_config): super().__init__(tensorboard_config) check_tb_availability() self.summary_writer = None self.enabled = tensorboard_config.enabled self.output_path = tensorboard_config.output_path self.job_name = tensorboard_config.job_name if self.enabled and dist.get_rank() == 0: self.get_summary_writer() def get_summary_writer(self, base=os.path.join(os.path.expanduser("~"), "tensorboard")): if self.enabled and dist.get_rank() == 0: from torch.utils.tensorboard import SummaryWriter if self.output_path is not None: log_dir = os.path.join(self.output_path, self.job_name) # NOTE: This code path currently is never used since the default output_path is an empty string and not None. Saving it in case we want this functionality in the future. else: if "DLWS_JOB_ID" in os.environ: infra_job_id = os.environ["DLWS_JOB_ID"] elif "DLTS_JOB_ID" in os.environ: infra_job_id = os.environ["DLTS_JOB_ID"] else: infra_job_id = "unknown-job-id" summary_writer_dir_name = os.path.join(infra_job_id, "logs") log_dir = os.path.join(base, summary_writer_dir_name, self.output_path) os.makedirs(log_dir, exist_ok=True) self.summary_writer = SummaryWriter(log_dir=log_dir) return self.summary_writer def write_events(self, event_list, flush=True): if self.enabled and self.summary_writer is not None and dist.get_rank() == 0: for event in event_list: self.summary_writer.add_scalar(*event) if flush: self.summary_writer.flush() def flush(self): if self.enabled and self.summary_writer is not None and dist.get_rank() == 0: self.summary_writer.flush()
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/monitor/tensorboard.py
tensorboard.py
# DeepSpeed Team from .monitor import Monitor import os import deepspeed.comm as dist class csvMonitor(Monitor): def __init__(self, csv_config): super().__init__(csv_config) self.filenames = [] self.enabled = csv_config.enabled self.output_path = csv_config.output_path self.job_name = csv_config.job_name self.log_dir = self.setup_log_dir() def setup_log_dir(self, base=os.path.join(os.path.expanduser("~"), "csv_monitor")): if self.enabled and dist.get_rank() == 0: if self.output_path is not None: log_dir = os.path.join(self.output_path, self.job_name) # NOTE: This code path currently is never used since the default tensorboard_output_path is an empty string and not None. Saving it in case we want this functionality in the future. else: if "DLWS_JOB_ID" in os.environ: infra_job_id = os.environ["DLWS_JOB_ID"] elif "DLTS_JOB_ID" in os.environ: infra_job_id = os.environ["DLTS_JOB_ID"] else: infra_job_id = "unknown-job-id" csv_monitor_dir_name = os.path.join(infra_job_id, "logs") log_dir = os.path.join(base, csv_monitor_dir_name, self.job_name) os.makedirs(log_dir, exist_ok=True) return log_dir def write_events(self, event_list): if self.enabled and dist.get_rank() == 0: import csv # We assume each event_list element is a tensorboard-style tuple in the format: (log_name: String, value, step: Int) for event in event_list: log_name = event[0] value = event[1] step = event[2] # Set the header to the log_name # Need this check because the deepspeed engine currently formats log strings to separate with '/' if '/' in log_name: record_splits = log_name.split('/') header = record_splits[len(record_splits) - 1] else: header = log_name # sanitize common naming conventions into filename filename = log_name.replace('/', '_').replace(' ', '_') fname = self.log_dir + '/' + filename + '.csv' # Open file and record event. Insert header if this is the first time writing with open(fname, 'a+') as csv_monitor_file: csv_monitor_writer = csv.writer(csv_monitor_file) if filename not in self.filenames: self.filenames.append(filename) csv_monitor_writer.writerow(['step', header]) csv_monitor_writer.writerow([step, value])
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/monitor/csv_monitor.py
csv_monitor.py
# DeepSpeed Team from pydantic import root_validator from deepspeed.runtime.config_utils import DeepSpeedConfigModel def get_monitor_config(param_dict): monitor_dict = {key: param_dict.get(key, {}) for key in ("tensorboard", "wandb", "csv_monitor")} return DeepSpeedMonitorConfig(**monitor_dict) class TensorBoardConfig(DeepSpeedConfigModel): """Sets parameters for TensorBoard monitor.""" enabled: bool = False """ Whether logging to Tensorboard is enabled. Requires `tensorboard` package is installed. """ output_path: str = "" """ Path to where the Tensorboard logs will be written. If not provided, the output path is set under the training script’s launching path. """ job_name: str = "DeepSpeedJobName" """ Name for the current job. This will become a new directory inside `output_path`. """ class WandbConfig(DeepSpeedConfigModel): """Sets parameters for WandB monitor.""" enabled: bool = False """ Whether logging to WandB is enabled. Requires `wandb` package is installed. """ group: str = None """ Name for the WandB group. This can be used to group together runs. """ team: str = None """ Name for the WandB team. """ project: str = "deepspeed" """ Name for the WandB project. """ class CSVConfig(DeepSpeedConfigModel): """Sets parameters for CSV monitor.""" enabled: bool = False """ Whether logging to local CSV files is enabled. """ output_path: str = "" """ Path to where the csv files will be written. If not provided, the output path is set under the training script’s launching path. """ job_name: str = "DeepSpeedJobName" """ Name for the current job. This will become a new directory inside `output_path`. """ class DeepSpeedMonitorConfig(DeepSpeedConfigModel): """Sets parameters for various monitoring methods.""" tensorboard: TensorBoardConfig = {} """ TensorBoard monitor, requires `tensorboard` package is installed. """ wandb: WandbConfig = {} """ WandB monitor, requires `wandb` package is installed. """ csv_monitor: CSVConfig = {} """ Local CSV output of monitoring data. """ @root_validator def check_enabled(cls, values): values["enabled"] = False if (values.get("tensorboard").enabled or values.get("wandb").enabled or values.get("csv_monitor").enabled): values["enabled"] = True return values
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/monitor/config.py
config.py
# DeepSpeed Team import torch from deepspeed.utils import log_dist from deepspeed.utils import groups from .sharded_moe import MOELayer, TopKGate from .experts import Experts import typing class MoE(torch.nn.Module): """Initialize an MoE layer. Arguments: hidden_size (int): the hidden dimension of the model, importantly this is also the input and output dimension. expert (torch.nn.Module): the torch module that defines the expert (e.g., MLP, torch.linear). num_experts (int, optional): default=1, the total number of experts per layer. ep_size (int, optional): default=1, number of ranks in the expert parallel world or group. k (int, optional): default=1, top-k gating value, only supports k=1 or k=2. capacity_factor (float, optional): default=1.0, the capacity of the expert at training time. eval_capacity_factor (float, optional): default=1.0, the capacity of the expert at eval time. min_capacity (int, optional): default=4, the minimum capacity per expert regardless of the capacity_factor. use_residual (bool, optional): default=False, make this MoE layer a Residual MoE (https://arxiv.org/abs/2201.05596) layer. noisy_gate_policy (str, optional): default=None, noisy gate policy, valid options are 'Jitter', 'RSample' or 'None'. drop_tokens (bool, optional): default=True, whether to drop tokens - (setting to False is equivalent to infinite capacity). use_rts (bool, optional): default=True, whether to use Random Token Selection. use_tutel (bool, optional): default=False, whether to use Tutel optimizations (if installed). enable_expert_tensor_parallelism (bool, optional): default=False, whether to use tensor parallelism for experts """ def __init__(self, hidden_size, expert, num_experts=1, ep_size=1, k=1, capacity_factor=1., eval_capacity_factor=1., min_capacity=4, use_residual=False, noisy_gate_policy: typing.Optional[str] = None, drop_tokens: bool = True, use_rts=True, use_tutel: bool = False, enable_expert_tensor_parallelism: bool = False): super(MoE, self).__init__() self.use_residual = use_residual self.enable_expert_tensor_parallelism = enable_expert_tensor_parallelism assert num_experts % ep_size == 0, f"Number of experts ({num_experts}) should be divisible by expert parallel size ({ep_size})" self.ep_size = ep_size self.expert_group_name = f"ep_size_{self.ep_size}" self.num_experts = num_experts self.num_local_experts = num_experts // self.ep_size log_dist( f'Creating MoE layer with num_experts: {num_experts} | num_local_experts: {self.num_local_experts} | expert_parallel_size: {self.ep_size}', [0]) assert noisy_gate_policy is None or noisy_gate_policy in ['None', 'Jitter', 'RSample'], \ 'Unsupported noisy_gate_policy: ' + noisy_gate_policy experts = Experts(expert, self.num_local_experts, self.expert_group_name) self.deepspeed_moe = MOELayer(TopKGate(hidden_size, num_experts, k, capacity_factor, eval_capacity_factor, min_capacity, noisy_gate_policy, drop_tokens, use_rts), experts, self.expert_group_name, self.ep_size, self.num_local_experts, use_tutel=use_tutel) if self.use_residual: self.mlp = expert # coefficient is used for weighted sum of the output of expert and mlp self.coefficient = torch.nn.Linear(hidden_size, 2) def set_deepspeed_parallelism(self): self._create_process_groups() def _create_process_groups(self): # Create process group for a layer if needed if self.expert_group_name not in groups._get_expert_parallel_group_dict(): print(f"No existing process group found, creating a new group named: {self.expert_group_name}") if (groups.mpu is None) or (not self.enable_expert_tensor_parallelism): # Condition 1 - no groups.mpu means no tensor parallelism # Condition 2 - disabling expert tensor parallelism on purpose groups._create_expert_and_data_parallel(self.ep_size) else: # expert tensor parallelism is enabled groups._create_expert_data_and_model_parallel(self.ep_size, mpu=groups.mpu) # Set the group handle for the MOELayer (deepspeed_moe) object self.deepspeed_moe._set_ep_group(groups._get_expert_parallel_group(self.expert_group_name)) def forward(self, hidden_states, used_token=None): """ MoE forward Arguments: hidden_states (Tensor): input to the layer used_token (Tensor, optional): default: None, mask only used tokens Returns: A tuple including output, gate loss, and expert count. * output (Tensor): output of the model * l_aux (Tensor): gate loss value * exp_counts (int): expert count """ output = self.deepspeed_moe(hidden_states, used_token) if self.use_residual: # Residual MoE output_mlp = self.mlp(hidden_states) if type(output_mlp) is tuple: output_mlp = output_mlp[0] # Ignore the bias term for now coef = self.coefficient(hidden_states) coef = torch.nn.functional.softmax(coef, dim=-1) output = output * coef[..., 0:1] + output_mlp * coef[..., 1:] return output, self.deepspeed_moe.l_aux, self.deepspeed_moe.exp_counts
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/moe/layer.py
layer.py
# DeepSpeed Team """ The file has been adapted from two fairscale files: (1) https://github.com/facebookresearch/fairscale/blob/master/fairscale/nn/moe/moe_layer.py (2) https://github.com/facebookresearch/fairscale/blob/master/fairscale/nn/moe/top2gate.py Git commit hash: 34df606902a240567a0d898037ece55c2f1336cf We retain the following license from the original files: """ # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from deepspeed.utils.timer import SynchronizedWallClockTimer from deepspeed.utils import logger from typing import Callable, Dict, TYPE_CHECKING, Any, Optional, Tuple import torch from torch import Tensor from torch.nn import Module import torch.nn.functional as F from deepspeed.utils import groups from .mappings import drop_tokens, gather_tokens if TYPE_CHECKING: Base = Module[Tensor] else: Base = Module uniform_map: Dict[torch.device, Callable] = {} gumbel_map: Dict[torch.device, Callable] = {} exp_selection_uniform_map: Dict[torch.device, Callable] = {} try: # To enable Tutel MoE optimizations: # python3 -m pip install --user --upgrade git+https://github.com/microsoft/[email protected] from tutel import moe as tutel_moe TUTEL_INSTALLED = True except: # Fail silently so we don't spam logs unnecessarily if user isn't using tutel TUTEL_INSTALLED = False pass def multiplicative_jitter(x, device: torch.device, epsilon=1e-2): """ Modified from switch transformer paper. mesh transformers Multiply values by a random number between 1-epsilon and 1+epsilon. Makes models more resilient to rounding errors introduced by bfloat16. This seems particularly important for logits. Args: x: a torch.tensor device: torch.device epsilon: a floating point value Returns: a jittered x. """ if epsilon == 0: return x uniform = uniform_map.get(device) if uniform is None: uniform = torch.distributions.uniform.Uniform(low=torch.tensor(1.0 - epsilon, device=device), high=torch.tensor(1.0 + epsilon, device=device)).rsample # type: ignore uniform_map[device] = uniform return x * uniform(x.shape) def gumbel_rsample(shape: Tuple, device: torch.device) -> Tensor: gumbel = gumbel_map.get(device) if gumbel is None: one = torch.tensor(1.0, device=device) zero = torch.tensor(0.0, device=device) gumbel = torch.distributions.gumbel.Gumbel(zero, one).rsample # type: ignore gumbel_map[device] = gumbel return gumbel(shape) from deepspeed import comm as dist # einsum dimensions: (g)roup, (s)equence, (e)xpert, (m)odel, (c)apacity # See https://arxiv.org/pdf/2006.16668.pdf for details. # Based on https://github.com/pytorch/pytorch/pull/40762 class _AllToAll(torch.autograd.Function): @staticmethod def forward( ctx: Any, # TODO: replace with DS process group group: torch.distributed.ProcessGroup, input: Tensor) -> Tensor: # type: ignore ctx.group = group input = input.contiguous() output = torch.empty_like(input) dist.all_to_all_single(output, input, group=group) return output @staticmethod def backward(ctx: Any, *grad_output: Tensor) -> Tuple[None, Tensor]: return (None, _AllToAll.apply(ctx.group, *grad_output)) # einsum rewrites are on par or more performant # switch can be bubbled up in future USE_EINSUM = True # einsum dimensions: (g)roup, (s)equence, (e)xpert, (m)odel, (c)apacity # See https://arxiv.org/pdf/2006.16668.pdf for details. def einsum(rule, a, b): if USE_EINSUM: return torch.einsum(rule, a, b) elif rule == 's,se->se': return a.reshape(a.shape[0], -1) * b elif rule == 'se,sc->sec': return a.unsqueeze(2) * b.unsqueeze(1) elif rule == 'se,se->s': return torch.bmm(a.unsqueeze(1), b.unsqueeze(2)).reshape(-1) elif rule == 'sec,sm->ecm': s = a.shape[0] e = a.shape[1] c = a.shape[2] m = b.shape[1] return torch.matmul(a.reshape(s, -1).t(), b).reshape(e, c, m) elif rule == 'sec,ecm->sm': return torch.matmul(a.reshape(a.shape[0], -1), b.reshape(-1, b.shape[-1])) elif rule == 'ks,ksm->sm': k = b.shape[0] s = b.shape[1] m = b.shape[2] # [k, s] -> [s, k] -> [s, 1, k] a = a.t().unsqueeze(1) # [k,s,m] -> [k, sm] -> [sm, k] -> [s, m, k] b = b.reshape(k, -1).t().reshape(s, m, k) # bmm([s, 1, k], [s, m, k]^t) -> [s, m, 1] return torch.bmm(a, b.transpose(1, 2)).squeeze(2) else: return torch.einsum(rule, a, b) # The following functions are extracted and scripted # because otherwise during a torch.jit.trace, the non-Tensor # values used in the calculations get recorded as constants. # torch.jit.script coerces them into Tensors and preserves # their dynamic shapes. This enables ONNX export. # We can't script the entire top1gating function because it # includes stateful caching logic which is incompatible with ONNX. @torch.jit.script def _capacity(gates: Tensor, capacity_factor: Tensor, min_capacity: Tensor) -> Tensor: # gates has shape of SE num_tokens = gates.shape[0] num_experts = gates.shape[1] # to(torch.int64) works around a bug in torch.onnx.export: # it should cast k to int64 when converting torch.topk but it doesn't. capacity = torch.ceil((num_tokens / num_experts) * capacity_factor).to(torch.int64) if capacity < min_capacity: capacity = min_capacity.to(torch.int64) return capacity @torch.jit.script def _top_idx(source, k): return torch.topk(source, k=k, dim=0)[1] @torch.jit.script def _one_hot_to_float(x, num_classes): return F.one_hot(x, num_classes=num_classes).float() def top1gating(logits: Tensor, capacity_factor: float, min_capacity: int, used_token: Tensor = None, noisy_gate_policy: Optional[str] = None, drop_tokens: bool = True, use_rts: bool = True, use_tutel: bool = False) -> Tuple[Tensor, Tensor, Tensor, Tensor]: """Implements Top1Gating on logits.""" if noisy_gate_policy == 'RSample': logits_w_noise = logits + gumbel_rsample(logits.shape, device=logits.device) # everything is in fp32 in this function gates = F.softmax(logits, dim=1) capacity = _capacity(gates, torch.tensor(capacity_factor), torch.tensor(min_capacity)) # Create a mask for 1st's expert per token # noisy gating indices1_s = torch.argmax(logits_w_noise if noisy_gate_policy == 'RSample' else gates, dim=1) num_experts = int(gates.shape[1]) mask1 = F.one_hot(indices1_s, num_classes=num_experts) # mask only used tokens if used_token is not None: mask1 = einsum("s,se->se", used_token, mask1) # gating decisions exp_counts = torch.sum(mask1, dim=0).detach().to('cpu') # if we don't want to drop any tokens if not drop_tokens: new_capacity = torch.max(exp_counts).to(logits.device) dist.all_reduce(new_capacity, op=dist.ReduceOp.MAX, group=dist.get_world_group()) capacity = new_capacity # Compute l_aux me = torch.mean(gates, dim=0) ce = torch.mean(mask1.float(), dim=0) l_aux = torch.sum(me * ce) * num_experts # Random Token Selection if use_rts: uniform = exp_selection_uniform_map.get(logits.device) if uniform is None: uniform = torch.distributions.uniform.Uniform(low=torch.tensor(0.0, device=logits.device), high=torch.tensor(1.0, device=logits.device)).rsample exp_selection_uniform_map[logits.device] = uniform mask1_rand = mask1 * uniform(mask1.shape) else: mask1_rand = mask1 assert logits.shape[ 0] >= min_capacity, "No. of tokens (batch-size) should be greater than min_capacity. Either set min_capacity to 0 or increase your batch size." top_idx = _top_idx(mask1_rand, capacity) new_mask1 = mask1 * torch.zeros_like(mask1).scatter_(0, top_idx, 1) mask1 = new_mask1 if use_tutel: # Tutel doesn't support index values masked with zero # so we need to replace masked indices with -1 indices_mask = mask1.sum(dim=1) * num_experts - 1 indices1_s = torch.min(indices1_s, indices_mask) # Compute locations in capacity buffer if use_tutel: locations1 = tutel_moe.fast_cumsum_sub_one(mask1) else: locations1 = torch.cumsum(mask1, dim=0) - 1 if use_tutel: gates1_s = (gates * mask1).sum(dim=1) locations1_s = torch.sum(locations1 * mask1, dim=1) return l_aux, capacity, num_experts, [ indices1_s, ], [ locations1_s, ], [ gates1_s, ], exp_counts # Store the capacity location for each token locations1_s = torch.sum(locations1 * mask1, dim=1) # Normalize gate probabilities mask1_float = mask1.float() gates = gates * mask1_float locations1_sc = _one_hot_to_float(locations1_s, capacity) combine_weights = einsum("se,sc->sec", gates, locations1_sc) dispatch_mask = combine_weights.bool() return l_aux, combine_weights, dispatch_mask, exp_counts def top2gating(logits: Tensor, capacity_factor: float, min_capacity: int) -> Tuple[Tensor, Tensor, Tensor, Tensor]: """Implements Top2Gating on logits.""" # everything is in fp32 in this function gates = F.softmax(logits, dim=1) capacity = _capacity(gates, torch.tensor(capacity_factor * 2), torch.tensor(min_capacity)) # Create a mask for 1st's expert per token indices1_s = torch.argmax(gates, dim=1) num_experts = int(gates.shape[1]) mask1 = F.one_hot(indices1_s, num_classes=num_experts) # Create a mask for 2nd's expert per token using Gumbel-max trick # https://timvieira.github.io/blog/post/2014/07/31/gumbel-max-trick/ logits_w_noise = logits + gumbel_rsample(logits.shape, device=logits.device) # Replace top-expert with min value logits_except1 = logits_w_noise.masked_fill(mask1.bool(), float("-inf")) indices2_s = torch.argmax(logits_except1, dim=1) mask2 = F.one_hot(indices2_s, num_classes=num_experts) # Compute locations in capacity buffer locations1 = torch.cumsum(mask1, dim=0) - 1 locations2 = torch.cumsum(mask2, dim=0) - 1 # Update 2nd's location by accounting for locations of 1st locations2 += torch.sum(mask1, dim=0, keepdim=True) # gating decisions exp_counts = torch.sum(mask1, dim=0).detach().to('cpu') # Compute l_aux me = torch.mean(gates, dim=0) ce = torch.mean(mask1.float(), dim=0) l_aux = torch.mean(me * ce) * num_experts * num_experts # Remove locations outside capacity from mask mask1 *= torch.lt(locations1, capacity) mask2 *= torch.lt(locations2, capacity) # Store the capacity location for each token locations1_s = torch.sum(locations1 * mask1, dim=1) locations2_s = torch.sum(locations2 * mask2, dim=1) # Normalize gate probabilities mask1_float = mask1.float() mask2_float = mask2.float() gates1_s = einsum("se,se->s", gates, mask1_float) gates2_s = einsum("se,se->s", gates, mask2_float) denom_s = gates1_s + gates2_s # Avoid divide-by-zero denom_s = torch.clamp(denom_s, min=torch.finfo(denom_s.dtype).eps) gates1_s /= denom_s gates2_s /= denom_s # Calculate combine_weights and dispatch_mask gates1 = einsum("s,se->se", gates1_s, mask1_float) gates2 = einsum("s,se->se", gates2_s, mask2_float) locations1_sc = _one_hot_to_float(locations1_s, capacity) locations2_sc = _one_hot_to_float(locations2_s, capacity) combine1_sec = einsum("se,sc->sec", gates1, locations1_sc) combine2_sec = einsum("se,sc->sec", gates2, locations2_sc) combine_weights = combine1_sec + combine2_sec dispatch_mask = combine_weights.bool() return l_aux, combine_weights, dispatch_mask, exp_counts class TopKGate(Module): """Gate module which implements Top2Gating as described in Gshard_. :: gate = TopKGate(model_dim, num_experts) l_aux, combine_weights, dispatch_mask = gate(input) .. Gshard_: https://arxiv.org/pdf/2006.16668.pdf Args: model_dim (int): size of model embedding dimension num_experts (ints): number of experts in model """ wg: torch.nn.Linear def __init__(self, model_dim: int, num_experts: int, k: int = 1, capacity_factor: float = 1.0, eval_capacity_factor: float = 1.0, min_capacity: int = 8, noisy_gate_policy: Optional[str] = None, drop_tokens: bool = True, use_rts: bool = True) -> None: super().__init__() # Only top-1 and top-2 are supported at the moment. if k != 1 and k != 2: raise ValueError('Only top-1 and top-2 gatings are supported.') self.wg = torch.nn.Linear(model_dim, num_experts, bias=False).float() self.k = k self.capacity_factor = capacity_factor self.eval_capacity_factor = eval_capacity_factor self.min_capacity = min_capacity self.noisy_gate_policy = noisy_gate_policy self.timers = SynchronizedWallClockTimer() self.wall_clock_breakdown = False self.gate_time = 0.0 self.drop_tokens = drop_tokens self.use_rts = use_rts def forward(self, input: torch.Tensor, used_token: torch.Tensor = None, use_tutel: bool = False) -> Tuple[Tensor, Tensor, Tensor]: # type: ignore if self.wall_clock_breakdown: self.timers('TopKGate').start() if self.wg.weight.dtype != torch.float32: self.wg = self.wg.float() input_fp32 = input.float() # input jittering if self.noisy_gate_policy == 'Jitter' and self.training: input_fp32 = multiplicative_jitter(input_fp32, device=input.device) logits = self.wg(input_fp32) if self.k == 1: gate_output = top1gating(logits, self.capacity_factor if self.training else self.eval_capacity_factor, self.min_capacity, used_token, self.noisy_gate_policy if self.training else None, self.drop_tokens, self.use_rts, use_tutel) else: gate_output = top2gating(logits, self.capacity_factor if self.training else self.eval_capacity_factor, self.min_capacity) if self.wall_clock_breakdown: self.timers('TopKGate').stop() self.gate_time = self.timers('TopKGate').elapsed(reset=False) return gate_output class MOELayer(Base): """MOELayer module which implements MixtureOfExperts as described in Gshard_. :: gate = TopKGate(model_dim, num_experts) moe = MOELayer(gate, expert) output = moe(input) l_aux = moe.l_aux .. Gshard_: https://arxiv.org/pdf/2006.16668.pdf Args: gate (torch.nn.Module): gate network expert (torch.nn.Module): expert network """ def __init__(self, gate: Module, experts: Module, ep_group_name, ep_size, num_local_experts: int, use_tutel: bool = False) -> None: super().__init__() self.gate = gate self.experts = experts self.ep_group = None self.ep_size = ep_size self.ep_group_name = ep_group_name self.num_local_experts = num_local_experts self.time_falltoall = 0.0 self.time_salltoall = 0.0 self.time_moe = 0.0 self.timers = SynchronizedWallClockTimer() self.wall_clock_breakdown = False self.use_tutel = use_tutel and TUTEL_INSTALLED and gate.k == 1 if self.use_tutel: logger.info('Using Tutel optimizations.') elif use_tutel and not TUTEL_INSTALLED: logger.warning("Tutel optimization requested but not installed. " "Proceeding without Tutel.") elif use_tutel and TUTEL_INSTALLED and gate.k != 1: logger.warning("To enable Tutel optimization, use top-1 instead of top-2 gate. " "Proceeding without Tutel.") def _set_ep_group(self, ep_group): self.ep_group = ep_group def forward(self, *input: Tensor, **kwargs: Any) -> Tensor: if self.wall_clock_breakdown: self.timers('moe').start() # Implement Algorithm 2 from GShard paper. d_model = input[0].shape[-1] # Initial implementation -> Reshape into S tokens by dropping sequence dimension. # Reshape into G groups so that each group can distribute tokens equally # group_size = kwargs['group_size'] if 'group_size' in kwargs.keys() else 1 reshaped_input = input[0].reshape(-1, d_model) if self.use_tutel: self.l_aux, C, E, indices_, locations_, gates_, self.exp_counts = self.gate(reshaped_input, input[1], True) S, M = reshaped_input.size(0), reshaped_input.size(1) if not hasattr(self, '_tutel_dispatcher'): self._tutel_dispatcher = tutel_moe.fast_dispatcher(E, C, M, dispatch_dtype=reshaped_input.dtype) self._tutel_dispatcher.update(indices_, locations_, gates_, capacity=C) dispatched_input = self._tutel_dispatcher.encode(reshaped_input) else: self.l_aux, combine_weights, dispatch_mask, self.exp_counts = self.gate(reshaped_input, input[1]) dispatched_input = einsum("sec,sm->ecm", dispatch_mask.type_as(input[0]), reshaped_input) if self.wall_clock_breakdown: self.timers('falltoall').start() if groups._get_expert_model_parallel_world_size() == 1: # If the non-expert is tensor-parallel, it will create # duplicate tokens on the tensor-parallel ranks. # Since our experts are not tensor-parallel, these duplicates # need to be dropped to ensure correctness. # this also doubles up as a communication optimization as we are # reducing the all-to-all communication volume. dispatched_input = drop_tokens(dispatched_input, dim=1) dispatched_input = _AllToAll.apply(self.ep_group, dispatched_input) if self.wall_clock_breakdown: self.timers('falltoall').stop() self.time_falltoall = self.timers('falltoall').elapsed(reset=False) # Re-shape after all-to-all: ecm -> gecm dispatched_input = dispatched_input.reshape(self.ep_size, self.num_local_experts, -1, d_model) expert_output = self.experts(dispatched_input) if self.wall_clock_breakdown: self.timers('salltoall').start() expert_output = _AllToAll.apply(self.ep_group, expert_output) if self.wall_clock_breakdown: self.timers('salltoall').stop() self.time_salltoall = self.timers('salltoall').elapsed(reset=False) # Re-shape back: gecm -> ecm expert_output = expert_output.reshape(self.ep_size * self.num_local_experts, -1, d_model) if groups._get_expert_model_parallel_world_size() == 1: # the dropped duplicate tokens need to be gathered on each # tensor parallel rank again for the tensor-parallel # non-expert of the next layer. expert_output = gather_tokens(expert_output, dim=1) if self.use_tutel: combined_output = self._tutel_dispatcher.decode(expert_output.view(E * C, M)) else: combined_output = einsum("sec,ecm->sm", combine_weights.type_as(input[0]), expert_output) a = combined_output.reshape(input[0].shape) if self.wall_clock_breakdown: self.timers('moe').stop() self.time_moe = self.timers('moe').elapsed(reset=False) return a
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/moe/sharded_moe.py
sharded_moe.py
# DeepSpeed Team from typing import List, Tuple, Dict import torch from .layer import MoE def has_moe_layers(m): has_moe = False num_experts = 0 for _, module in m.named_modules(): if isinstance(module, MoE): has_moe = True num_experts = module.num_experts break return has_moe, num_experts def is_moe_param(param: torch.Tensor) -> bool: if hasattr(param, "allreduce") and not param.allreduce: return True return False def split_params_into_shared_and_expert_params( params: List[torch.nn.Parameter]) -> Tuple[torch.nn.Parameter, torch.nn.Parameter]: shared_params, expert_params = [], [] for p in params: if is_moe_param(p): expert_params.append(p) else: shared_params.append(p) return shared_params, expert_params def split_params_grads_into_shared_and_expert_params( group: List[torch.nn.Parameter]) -> Tuple[torch.nn.Parameter, torch.nn.Parameter]: """Split grad of parameters into grads of non-expert params and grads of expert params. This is useful while computing grad-norms for clipping and overflow detection group (List[torch.nn.Parameter]): Args: The group of parameters to split Returns: Tuple[List[torch.nn.Parameter], List[torch.nn.Parameter]]: list of gradients for non MoE params, list of gradients of MoE params """ expert_grads = [] shared_grads = [] for p in group: if p.grad is not None: if is_moe_param(p): expert_grads.append(p.grad.to(p.dtype)) else: shared_grads.append(p.grad.to(p.dtype)) return shared_grads, expert_grads def split_params_into_different_moe_groups_for_optimizer(param_groups: Tuple[Dict], max_group_size=178956971) -> Tuple[Dict]: """Split parameters into different MoE groups for optimizer Args: param_groups (Tuple[Dict]): The list of parameter groups to split Returns: Tuple[Dict]: list of MoE/non-MoE groups for optimizer """ if isinstance(param_groups, tuple): param_groups = list(param_groups) # Tuple cannot be modified elif isinstance(param_groups, dict): param_groups = [param_groups] elif not isinstance(param_groups, list): raise ValueError(f"Unknown param group type of {type(param_groups)}") # gather all data parallel group names data_parallel_group_names = set() for param_group in param_groups: for param in param_group["params"]: if is_moe_param(param): data_parallel_group_names.add(param.group_name) data_parallel_group_names = list(data_parallel_group_names) group_moe = {} # Create the param MoE groups, leave param assign to next step for param_group in param_groups: group_moe[param_group['name']] = {} for key in data_parallel_group_names: group_moe[param_group['name']][key] = {} group_moe[param_group['name']][key]['name'] = key group_moe[param_group['name']][key]['moe'] = True for ori_key in param_group.keys(): if ori_key != 'name': if ori_key == 'params': group_moe[param_group['name']][key][ori_key] = [] else: group_moe[param_group['name']][key][ori_key] = param_group[ori_key] # Assign param for param_group in param_groups: new_params = [] for param in param_group['params']: if is_moe_param(param): group_moe[param_group['name']][param.group_name]['params'].append(param) # param_group['params'].remove(param) else: new_params.append(param) param_group['params'] = new_params # Flatten the moe groups if max_group_size is not None: for k, v in group_moe.items(): for k1, v1 in v.items(): cur_group = [] all_groups = [] size_of_cur_group = 0 for param in v1['params']: if size_of_cur_group + param.numel() <= max_group_size: cur_group.append(param) size_of_cur_group += param.numel() else: all_groups.append(cur_group) cur_group = [param] size_of_cur_group = param.numel() if cur_group: all_groups.append(cur_group) for group in all_groups: new_dict = {} for key, val in v1.items(): if key != 'params': new_dict[key] = val new_dict['params'] = group param_groups.append(new_dict) else: for k, v in group_moe.items(): for k1, v1 in v.items(): param_groups.append(v1) return tuple(param_groups)
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/moe/utils.py
utils.py
# DeepSpeed Team # The file has been adapted from the following Megatron-LM file: # https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/mpu/mappings.py # Git commit hash: 9dc3c42a84aa656f583703cf8b6b4f79f712b796 # We retain the following copyright from the original files: # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import deepspeed def _gather_tokens(input_, dim=0): """Gather tensors and concatenate them along a dimension""" mpu = deepspeed.utils.groups.mpu input_ = input_.contiguous() # Size and dimension. rank = mpu.get_tensor_model_parallel_rank() tensor_list = [torch.empty_like(input_) for _ in range(mpu.get_tensor_model_parallel_world_size())] tensor_list[rank] = input_ deepspeed.comm.all_gather(tensor_list, input_, group=mpu.get_tensor_model_parallel_group()) # Note: torch.cat already creates a contiguous tensor. output = torch.cat(tensor_list, dim=dim).contiguous() return output def _drop_tokens(input_, dim=0): """Divide a tensor among the tensor parallel ranks""" mpu = deepspeed.utils.groups.mpu total_chunks = mpu.get_tensor_model_parallel_world_size() this_chunk = mpu.get_tensor_model_parallel_rank() assert input_.shape[ dim] % total_chunks == 0, f"input dimension {dim} ({input_.shape[dim]}) is not divisible by tensor parallel world size ({total_chunks})" chunk_size = input_.shape[dim] // total_chunks return torch.narrow(input_, dim, this_chunk * chunk_size, chunk_size) class _GatherTokens(torch.autograd.Function): """All gather tokens among the tensor parallel ranks""" @staticmethod def symbolic(graph, input_, dim): return _gather_tokens(input_, dim) @staticmethod def forward(ctx, input_, dim): ctx.dim = dim return _gather_tokens(input_, dim) @staticmethod def backward(ctx, grad_output): return _drop_tokens(grad_output, ctx.dim), None class _DropTokens(torch.autograd.Function): "Divide tokens equally among the tensor parallel ranks" @staticmethod def symbolic(graph, input_, dim): return _drop_tokens(input_, dim) @staticmethod def forward(ctx, input_, dim): ctx.dim = dim return _drop_tokens(input_, dim) @staticmethod def backward(ctx, input_): return _gather_tokens(input_, ctx.dim), None def gather_tokens(input_, dim=0): mpu = deepspeed.utils.groups.mpu if mpu is None or mpu.get_tensor_model_parallel_world_size() == 1: # no tensor parallelism for non-experts return input_ return _GatherTokens.apply(input_, dim) def drop_tokens(input_, dim=0): mpu = deepspeed.utils.groups.mpu if mpu is None or mpu.get_tensor_model_parallel_world_size() == 1: # no tensor parallelism for non-experts return input_ return _DropTokens.apply(input_, dim)
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/moe/mappings.py
mappings.py
# DeepSpeed Team import torch import os import copy import collections import json from abc import ABC, abstractmethod from deepspeed.utils import logger from deepspeed.runtime.checkpoint_engine.torch_checkpoint_engine import TorchCheckpointEngine from .weight_quantizer import WeightQuantization AUTO_MODULE_KEY = 'auto' class SDLoaderFactory: @staticmethod def get_sd_loader_json(json_file, checkpoint_engine): if isinstance(json_file, str): with open(json_file) as f: data = json.load(f) else: assert isinstance(json_file, dict) data = json_file sd_type = data['type'] ckpt_list = data['checkpoints'] version = data['version'] ckpt_type = data.get('parallelization', 'pp') mp_size = data.get('mp_size', 0) if sd_type.lower() in ['bloom', 'ds_model']: return data return SDLoaderFactory.get_sd_loader(ckpt_list, checkpoint_engine, sd_type, version) @staticmethod def get_sd_loader(ckpt_list, checkpoint_engine, sd_type='Megatron', version=None): if sd_type == 'Megatron': return MegatronSDLoader(ckpt_list, version, checkpoint_engine) else: assert False, '{} checkpoint type is not supported'.format(sd_type) class SDLoaderBase(ABC): def __init__(self, ckpt_list, version, checkpoint_engine): self.module_key = None self.ckpt_list = ckpt_list self.version = version self.checkpoint_engine = TorchCheckpointEngine() if checkpoint_engine is None else checkpoint_engine self.check_ckpt_list() def load(self, mp_world_size, mp_rank, module_key=AUTO_MODULE_KEY, is_pipe_parallel=False, quantize=False, quantize_bits=8, quantize_groups=64, mlp_extra_grouping=True): self.module_key = module_key num_ckpt = len(self.ckpt_list) idx = mp_rank * num_ckpt // mp_world_size """ We have multiple cases to handle here for both training and inference: 1. PipeModule loading mp_rank_*.pt files, is_pipe_parallel=True, module_key is not None a. if no mp_size/pp_size resizing occurs, for both training & inference, loading the mp_rank related checkpoint directly. b. if has mp_size/pp_size resizing, only Megatron model inference is supported, in this case each mp_rank_*.pt have same content, we will load the first checkpoint file (idx=0), to avoid idx exceeding file list boundary. 2. PipeModule loading layer_*.pt files, is_pipe_parallel=True, module_key is None a. if no mp_size resizing occurs, for both training & inference, loading the mp_rank related checkpoint directly. b. if has mp_size resizing, only Megatron model inference is supported, checkpoint file(s) will be merged/split according to mp_rank, mp_world_size and checkpoint file list. 3. Non-PipeModule loading mp_rank_*.pt files, is_pipe_parallel=False Same with case (2). """ if is_pipe_parallel and module_key is not None and mp_world_size != num_ckpt: mp_world_size = num_ckpt idx = 0 load_path = self.ckpt_list[idx] merge_count = 1 if num_ckpt == mp_world_size: assert os.path.exists(load_path) #logger.info(f'rank: {mp_rank} loading checkpoint: {load_path}') sd = self.checkpoint_engine.load(load_path, map_location=lambda storage, \ loc: storage) if quantize: quantizer = WeightQuantization(mlp_extra_grouping=mlp_extra_grouping, mp_size=mp_world_size) sd_module, all_scales = quantizer.sd_quantize_megatron(self.get_module(sd), quantize_bits, quantize_groups) self.set_module(sd, sd_module) else: all_scales = None elif num_ckpt > mp_world_size: sd, all_scales, merge_count = self.merge_state_dict(mp_world_size, mp_rank, quantize, \ quantize_bits, quantize_groups, mlp_extra_grouping) else: sd, all_scales = self.split_state_dict(mp_world_size, mp_rank, quantize, quantize_bits, \ quantize_groups, mlp_extra_grouping) return load_path, sd, (all_scales, merge_count) def get_merge_state_dicts(self, mp_world_size, mp_rank): num_ckpt = len(self.ckpt_list) assert num_ckpt % mp_world_size == 0, 'Invalid checkpoints and world size for sd merge' num_to_merge = num_ckpt // mp_world_size ckpt_list = [self.ckpt_list[i] for i in range(num_to_merge * mp_rank, num_to_merge * (mp_rank + 1))] logger.info(f"mp_rank: {mp_rank}, ckpt_list: {ckpt_list}") sd_list = [self.checkpoint_engine.load(ckpt, map_location=lambda storage, loc: storage) for ckpt in ckpt_list] return sd_list def get_split_state_dict(self, mp_world_size, mp_rank): num_ckpt = len(self.ckpt_list) assert mp_world_size % num_ckpt == 0, 'Invalid checkpoints and world size for sd split' num_to_split = mp_world_size // num_ckpt ckpt_index = mp_rank // num_to_split ckpt_offset = mp_rank % num_to_split logger.info(f"mp_rank: {mp_rank}, ckpt_list: {self.ckpt_list[ckpt_index]}, offset: {ckpt_offset}") sd = self.checkpoint_engine.load(self.ckpt_list[ckpt_index], map_location=lambda storage, loc: storage) return sd, num_to_split, ckpt_offset def _choose_module_key(self, sd): assert not ('module' in sd and 'model' in sd), "checkpoint has both 'model' and 'module' keys, not sure how to proceed" assert 'module' in sd or 'model' in sd, "checkpoint contains neither 'model' or 'module' keys, not sure how to proceed" if 'module' in sd: return 'module' elif 'model' in sd: return 'model' def get_module(self, sd): if self.module_key is None: return sd elif self.module_key == AUTO_MODULE_KEY: return sd[self._choose_module_key(sd)] else: return sd[self.module_key] def set_module(self, sd, module): if self.module_key is None: sd = module elif self.module_key == AUTO_MODULE_KEY: sd[self._choose_module_key(sd)] = module else: sd[self.module_key] = module return sd def check_ckpt_list(self): #logger.info(f'checkpoint file list: {self.ckpt_list}') assert len(self.ckpt_list) > 0 sd = self.checkpoint_engine.load(self.ckpt_list[0], map_location=lambda storage, loc: storage) # check checkpoint count is same with saved mp_world_size if 'mp_world_size' in sd.keys(): assert len(self.ckpt_list) == sd[ 'mp_world_size'], f"checkpoint count {len(self.ckpt_list)} is different from saved mp_world_size {sd['mp_world_size']}" @abstractmethod def merge_state_dict(self, mp_world_size, mp_rank, quantize, quantize_bits, groups, mlp_extra_grouping): pass @abstractmethod def split_state_dict(self, mp_world_size, mp_rank, quantize, quantize_bits, groups, mlp_extra_grouping): pass @abstractmethod def sanity_check(self, ckpt_file_name): pass class MegatronSDLoader(SDLoaderBase): def __init__(self, ckpt_list, version, checkpoint_engine): super().__init__(ckpt_list, version, checkpoint_engine) """ ## Q/K/V data need special processing key: transformer.layers.0.attention.query_key_value.weight, shape: torch.Size([3192, 4256]) key: transformer.layers.0.attention.query_key_value.bias, shape: torch.Size([3192]) ## merge or split on axis=0 key: word_embeddings.weight, shape: torch.Size([12672, 4256]) key: transformer.layers.0.mlp.dense_h_to_4h.bias, shape: torch.Size([4256]) key: transformer.layers.0.mlp.dense_h_to_4h.weight, shape: torch.Size([4256, 4256]) ## merge or split on axis=1 key: transformer.layers.0.attention.dense.weight, shape: torch.Size([4256, 1064]) key: transformer.layers.0.mlp.dense_4h_to_h.weight, shape: torch.Size([4256, 4256]) ## no change required key: transformer.layers.0.mlp.dense_4h_to_h.bias, shape: torch.Size([4256]) key: transformer.final_layernorm.weight, shape: torch.Size([4256]) key: transformer.final_layernorm.bias, shape: torch.Size([4256]) key: transformer.layers.0.attention.dense.bias, shape: torch.Size([4256]) key: transformer.layers.0.post_attention_layernorm.weight, shape: torch.Size([4256]) key: transformer.layers.0.post_attention_layernorm.bias, shape: torch.Size([4256]) key: transformer.layers.0.input_layernorm.weight, shape: torch.Size([4256]) key: transformer.layers.0.input_layernorm.bias, shape: torch.Size([4256]) key: position_embeddings.weight, shape: torch.Size([1024, 4256]) """ def merge_query_key_value(self, param_list, ckpt_ver): """ Up to now we found 3 Q/K/V parameter formats in different Megatron checkpoint versions: 1. version 0, there is no version information saved in checkpoint. format: [(3 * np * hn), h] 2. version 1.0 format: [(np * hn * 3), h] 3. version 2.0 format: [(np * 3 * hn), h] h: hidden size n: number of attention heads p: number of model parallel partitions np: n/p hn: h/n """ new_qkv = None if ckpt_ver == 0: # [(3 * np * hn), h] assert param_list[0].shape[0] % 3 == 0 size_qkv = param_list[0].shape[0] // 3 split_tensors = [torch.split(param, size_qkv, dim=0) for param in param_list] tensors = [] for i in range(3): tensor_tuple = [t[i] for t in split_tensors] tensors.append(torch.cat(tensor_tuple, axis=0)) new_qkv = torch.cat(tensors, axis=0) elif ckpt_ver == 1.0 or ckpt_ver == 2.0: # [(np * hn * 3), h] or [(np * 3 * hn), h] new_qkv = torch.cat(param_list, axis=0) else: assert False, f'checkpoint version: {ckpt_ver} is not supported' return new_qkv def split_query_key_value(self, param, num_to_split, offset, ckpt_ver): """ Up to now we found 3 Q/K/V parameter formats in different Megatron checkpoint versions: 1. version 0, there is no version information saved in checkpoint. format: [(3 * np * hn), h] 2. version 1.0 format: [(np * hn * 3), h] 3. version 2.0 format: [(np * 3 * hn), h] h: hidden size n: number of attention heads p: number of model parallel partitions np: n/p hn: h/n """ new_qkv = None if ckpt_ver == 0: # [(3 * np * hn), h] assert param.shape[0] % 3 == 0 size_qkv = param.shape[0] // 3 split_tensors = torch.split(param, size_qkv, dim=0) assert split_tensors[0].shape[0] % num_to_split == 0 split_size = split_tensors[0].shape[0] // num_to_split tensors = [] for i in range(3): tensors.append(torch.split(split_tensors[i], split_size, dim=0)[offset]) new_qkv = torch.cat(tensors, axis=0) elif ckpt_ver == 1.0 or ckpt_ver == 2.0: # [(np * hn * 3), h] or [(np * 3 * hn), h] assert param.shape[0] % num_to_split == 0 size_qkv = param.shape[0] // num_to_split split_tensors = torch.split(param, size_qkv, dim=0) new_qkv = split_tensors[offset] else: assert False, f'checkpoint version: {ckpt_ver} is not supported' return new_qkv def merge_state_dict(self, mp_world_size, mp_rank, quantize=False, quantize_bits=8, groups=64, mlp_extra_grouping=True): self.sanity_check(self.ckpt_list[0]) sd_list = self.get_merge_state_dicts(mp_world_size, mp_rank) ds_sd = copy.deepcopy(sd_list[0]) new_client_sd = collections.OrderedDict() client_sd_list = [self.get_module(sd) for sd in sd_list] keys = client_sd_list[0].keys() ckpt_ver = self.get_checkpoint_version(ds_sd) logger.info(f"checkpoint version: {ckpt_ver}") if quantize: quantizer = WeightQuantization(mlp_extra_grouping=mlp_extra_grouping, mp_size=mp_world_size) for key in keys: value_list = [sd[key] for sd in client_sd_list] if "attention.dense.weight" in key or "mlp.dense_4h_to_h.weight" in key: if quantize: value_list = quantizer.Quantize(value_list, quantize_bits, groups, key=key, merge_dim=1) new_client_sd[key] = torch.cat(value_list, axis=1) elif "attention.query_key_value" in key: if quantize and "attention.query_key_value.weight" in key: value_list = quantizer.Quantize(value_list, quantize_bits, groups, key=key) new_client_sd[key] = torch.cat(value_list, axis=0) else: if quantize: new_client_sd[key] = torch.cat(value_list, axis=0) else: new_client_sd[key] = self.merge_query_key_value(value_list, ckpt_ver) elif "mlp.dense_h_to_4h.weight" in key or "word_embeddings.weight" in key or "mlp.dense_h_to_4h.bias" in key: if quantize and "mlp.dense_h_to_4h.weight" in key: value_list = quantizer.Quantize(value_list, quantize_bits, groups, key=key) new_client_sd[key] = torch.cat(value_list, axis=0) else: new_client_sd[key] = value_list[0] if quantize: all_scales = quantizer.merge_scales() ds_sd = self.set_module(ds_sd, new_client_sd) return ds_sd, (all_scales if quantize else None), len(client_sd_list) def split_state_dict(self, mp_world_size, mp_rank, quantize=False, quantize_bits=8, groups=64, mlp_extra_grouping=True): #self.sanity_check(self.ckpt_list[0]) sd, num_to_split, ckpt_offset = self.get_split_state_dict(mp_world_size, mp_rank) ds_sd = copy.deepcopy(sd) new_client_sd = collections.OrderedDict() client_sd = self.get_module(sd) ckpt_ver = self.get_checkpoint_version(ds_sd) logger.info(f"checkpoint version: {ckpt_ver}") if quantize: quantizer = WeightQuantization(mlp_extra_grouping=mlp_extra_grouping, mp_size=mp_world_size) for key in client_sd.keys(): value = client_sd[key] if "attention.dense.weight" in key or "mlp.dense_4h_to_h.weight" in key: assert value.shape[1] % num_to_split == 0 split_size = value.shape[1] // num_to_split if quantize: q_vals = quantizer.Quantize([value], quantize_bits, groups, key) value = q_vals[0] new_client_sd[key] = torch.split(value, split_size, dim=1)[ckpt_offset] elif "attention.query_key_value" in key: if quantize and "attention.query_key_value.weight" in key: q_vals = quantizer.Quantize([value], quantize_bits, groups, key) value = q_vals[0] new_client_sd[key] = self.split_query_key_value(value, num_to_split, ckpt_offset, ckpt_ver) elif "mlp.dense_h_to_4h.weight" in key or "word_embeddings.weight" in key or "mlp.dense_h_to_4h.bias" in key or "final_linear.weight" in key: assert value.shape[0] % num_to_split == 0 split_size = value.shape[0] // num_to_split if quantize and "mlp.dense_h_to_4h.weight" in key: q_vals = quantizer.Quantize([value], quantize_bits, groups, key) value = q_vals[0] new_client_sd[key] = torch.split(value, split_size, dim=0)[ckpt_offset] else: new_client_sd[key] = value if quantize: all_scales = quantizer.merge_scales_split(num_to_split) ds_sd = self.set_module(ds_sd, new_client_sd) return ds_sd, (all_scales if quantize else None) def sanity_check(self, ckpt_file_name): keys_to_check = [ "attention.dense.weight", "mlp.dense_4h_to_h.weight", "attention.query_key_value", "mlp.dense_h_to_4h.weight", "mlp.dense_h_to_4h.bias" ] sd = self.checkpoint_engine.load(ckpt_file_name, map_location=lambda storage, loc: storage) # partial_key is a sub-string of one key in the sd def check_key_exist(partial_key, sd): keys = sd.keys() found = False for k in keys: if partial_key in k: found = True break return found for key in keys_to_check: assert check_key_exist(key, self.get_module(sd)), f'key: {key} is not found in the checkpoint {ckpt_file_name}' def get_checkpoint_version(self, state_dict): # Use 0 if version info doesn't exist return self.version if self.version is not None else state_dict.get('checkpoint_version', 0)
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/runtime/state_dict_factory.py
state_dict_factory.py
# DeepSpeed Team """ Collection of DeepSpeed configuration utilities """ import json import collections import collections.abc from functools import reduce from pydantic import BaseModel from deepspeed.utils import logger class DeepSpeedConfigModel(BaseModel): """ This class should be used as a base for all DeepSpeed configs. It extends pydantic.BaseModel to allow for deprecated fields. To enable this feature, add deprecated=True to pydantic.Field: my_dep_field: int = Field(0, deprecated=True) Deprecated Field kwargs: - deprecated: [True|False], default False Enables / Disables deprecated fields - deprecated_msg: str, default "" Message to include with deprecation warning - new_param: str, default "" Name of the field replacing the deprecated field - set_new_param: [True|False], default True If new_param is provided, enables setting the value of that param with deprecated field value - new_param_fn: callable, default (lambda x: x) If new_param is provided and set_new_param is True, this function will modify the value of the deprecated field before placing that value in the new_param field Example: my_new_field is replacing a deprecated my_old_field. The expected type for my_new_field is int while the expected type for my_old_field is str. We want to maintain backward compatibility with our configs, so we define the fields with: class MyExampleConfig(DeepSpeedConfigModel): my_new_field: int = 0 my_old_field: str = Field('0', deprecated=True, new_param='my_new_field', new_param_fn=(lambda x: int(x))) """ def __init__(self, strict=False, **data): if (not strict): # This is temporary until we refactor all DS configs, allows HF to load models data = {k: v for k, v in data.items() if (v != "auto" or k == "replace_method")} super().__init__(**data) self._deprecated_fields_check(self) def _process_deprecated_field(self, pydantic_config, field): # Get information about the deprecated field fields_set = pydantic_config.__fields_set__ dep_param = field.name kwargs = field.field_info.extra new_param_fn = kwargs.get("new_param_fn", lambda x: x) param_value = new_param_fn(getattr(pydantic_config, dep_param)) new_param = kwargs.get("new_param", "") dep_msg = kwargs.get("deprecated_msg", "") if dep_param in fields_set: logger.warning(f"Config parameter {dep_param} is deprecated" + (f" use {new_param} instead" if new_param else "") + (f". {dep_msg}" if dep_msg else "")) # Check if there is a new param and if it should be set with a value if new_param and kwargs.get("set_new_param", True): # Remove the deprecate field if there is a replacing field try: delattr(pydantic_config, dep_param) except Exception as e: logger.error(f"Tried removing deprecated '{dep_param}' from config") raise e # Set new param value new_param_nested = new_param.split(".") if len(new_param_nested) > 1: # If the new param exists in a subconfig, we need to get # the fields set for that subconfig pydantic_config = reduce(getattr, new_param_nested[:-1], pydantic_config) fields_set = pydantic_config.__fields_set__ new_param_name = new_param_nested[-1] assert ( new_param_name not in fields_set ), f"Cannot provide deprecated parameter '{dep_param}' and replacing parameter '{new_param}' together" # A custom function for converting the old param value to new param value can be provided try: setattr(pydantic_config, new_param_name, param_value) except Exception as e: logger.error(f"Tried setting value for '{new_param}' with value from deprecated '{dep_param}'") raise e def _deprecated_fields_check(self, pydantic_config): fields = pydantic_config.__fields__ for field in fields.values(): if field.field_info.extra.get("deprecated", False): self._process_deprecated_field(pydantic_config, field) class Config: validate_all = True validate_assignment = True use_enum_values = True allow_population_by_field_name = True extra = "forbid" arbitrary_types_allowed = True def get_config_default(config, field_name): assert field_name in config.__fields__, f"'{field_name}' is not a field in {config}" assert not config.__fields__.get( field_name).required, f"'{field_name}' is a required field and does not have a default value" return config.__fields__.get(field_name).default class pp_int(int): """ A wrapper for integers that will return a custom string or comma-formatted string of the integer. For example, print(pp_int(1e5)) will return "10,000". This is useful mainly for auto-generated documentation purposes. """ def __new__(cls, val, custom_print_str=None): inst = super().__new__(cls, val) inst.custom_print_str = custom_print_str return inst def __repr__(self): if self.custom_print_str: return self.custom_print_str return f"{self.real:,}" # adapted from https://stackoverflow.com/a/50701137/9201239 class ScientificNotationEncoder(json.JSONEncoder): """ This class overrides ``json.dumps`` default formatter. This version keeps everything as normal except formats numbers bigger than 1e3 using scientific notation. Just pass ``cls=ScientificNotationEncoder`` to ``json.dumps`` to activate it """ def iterencode(self, o, _one_shot=False, level=0): indent = self.indent if self.indent is not None else 4 prefix_close = " " * level * indent level += 1 prefix = " " * level * indent if isinstance(o, bool): return "true" if o else "false" elif isinstance(o, float) or isinstance(o, int): if o > 1e3: return f"{o:e}" else: return f"{o}" elif isinstance(o, collections.abc.Mapping): x = [f'\n{prefix}"{k}": {self.iterencode(v, level=level)}' for k, v in o.items()] return "{" + ", ".join(x) + f"\n{prefix_close}" + "}" elif isinstance(o, collections.abc.Sequence) and not isinstance(o, str): return f"[{ f', '.join(map(self.iterencode, o)) }]" return "\n, ".join(super().iterencode(o, _one_shot)) class DeepSpeedConfigObject(object): """ For json serialization """ def repr(self): return self.__dict__ def __repr__(self): return json.dumps( self.__dict__, sort_keys=True, indent=4, cls=ScientificNotationEncoder, ) def get_scalar_param(param_dict, param_name, param_default_value): return param_dict.get(param_name, param_default_value) def get_list_param(param_dict, param_name, param_default_value): return param_dict.get(param_name, param_default_value) def get_dict_param(param_dict, param_name, param_default_value): return param_dict.get(param_name, param_default_value) def dict_raise_error_on_duplicate_keys(ordered_pairs): """Reject duplicate keys.""" d = dict((k, v) for k, v in ordered_pairs) if len(d) != len(ordered_pairs): counter = collections.Counter([pair[0] for pair in ordered_pairs]) keys = [key for key, value in counter.items() if value > 1] raise ValueError("Duplicate keys in DeepSpeed config: {}".format(keys)) return d
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/runtime/config_utils.py
config_utils.py
# DeepSpeed Team """ Implementation of learning rate schedules. Taken and modified from PyTorch v1.0.1 source https://github.com/pytorch/pytorch/blob/v1.1.0/torch/optim/lr_scheduler.py """ import argparse from torch.optim import Optimizer import math from deepspeed.utils import logger LR_SCHEDULE = 'lr_schedule' LR_RANGE_TEST = 'LRRangeTest' ONE_CYCLE = 'OneCycle' WARMUP_LR = 'WarmupLR' WARMUP_DECAY_LR = 'WarmupDecayLR' VALID_LR_SCHEDULES = [LR_RANGE_TEST, ONE_CYCLE, WARMUP_LR, WARMUP_DECAY_LR] LR_RANGE_TEST_MIN_LR = 'lr_range_test_min_lr' LR_RANGE_TEST_STEP_RATE = 'lr_range_test_step_rate' LR_RANGE_TEST_STEP_SIZE = 'lr_range_test_step_size' LR_RANGE_TEST_STAIRCASE = 'lr_range_test_staircase' EDGE_VALUE = 'edge_value' MID_VALUE = 'mid_value' CYCLE_FIRST_STEP_SIZE = 'cycle_first_step_size' CYCLE_FIRST_STAIR_COUNT = 'cycle_first_stair_count' CYCLE_SECOND_STEP_SIZE = 'cycle_second_step_size' CYCLE_SECOND_STAIR_COUNT = 'cycle_second_stair_count' DECAY_STEP_SIZE = 'decay_step_size' CYCLE_MIN_LR = 'cycle_min_lr' CYCLE_MAX_LR = 'cycle_max_lr' DECAY_LR_RATE = 'decay_lr_rate' CYCLE_MIN_MOM = 'cycle_min_mom' CYCLE_MAX_MOM = 'cycle_max_mom' DECAY_MOM_RATE = 'decay_mom_rate' WARMUP_MIN_LR = 'warmup_min_lr' WARMUP_MAX_LR = 'warmup_max_lr' WARMUP_NUM_STEPS = 'warmup_num_steps' WARMUP_TYPE = 'warmup_type' WARMUP_LOG_RATE = 'log' WARMUP_LINEAR_RATE = 'linear' TOTAL_NUM_STEPS = 'total_num_steps' def add_tuning_arguments(parser): group = parser.add_argument_group('Convergence Tuning', 'Convergence tuning configurations') # LR scheduler group.add_argument('--lr_schedule', type=str, default=None, help='LR schedule for training.') # Learning rate range test group.add_argument("--lr_range_test_min_lr", type=float, default=0.001, help='Starting lr value.') group.add_argument("--lr_range_test_step_rate", type=float, default=1.0, help='scaling rate for LR range test.') group.add_argument("--lr_range_test_step_size", type=int, default=1000, help='training steps per LR change.') group.add_argument("--lr_range_test_staircase", type=bool, default=False, help='use staircase scaling for LR range test.') # OneCycle schedule group.add_argument("--cycle_first_step_size", type=int, default=1000, help='size of first step of 1Cycle schedule (training steps).') group.add_argument("--cycle_first_stair_count", type=int, default=-1, help='first stair count for 1Cycle schedule.') group.add_argument("--cycle_second_step_size", type=int, default=-1, help='size of second step of 1Cycle schedule (default first_step_size).') group.add_argument("--cycle_second_stair_count", type=int, default=-1, help='second stair count for 1Cycle schedule.') group.add_argument("--decay_step_size", type=int, default=1000, help='size of intervals for applying post cycle decay (training steps).') # 1Cycle LR group.add_argument("--cycle_min_lr", type=float, default=0.01, help='1Cycle LR lower bound.') group.add_argument("--cycle_max_lr", type=float, default=0.1, help='1Cycle LR upper bound.') group.add_argument("--decay_lr_rate", type=float, default=0.0, help='post cycle LR decay rate.') # 1Cycle Momentum group.add_argument('--cycle_momentum', default=False, action='store_true', help='Enable 1Cycle momentum schedule.') group.add_argument("--cycle_min_mom", type=float, default=0.8, help='1Cycle momentum lower bound.') group.add_argument("--cycle_max_mom", type=float, default=0.9, help='1Cycle momentum upper bound.') group.add_argument("--decay_mom_rate", type=float, default=0.0, help='post cycle momentum decay rate.') # Warmup LR group.add_argument('--warmup_min_lr', type=float, default=0, help='WarmupLR minimum/initial LR value') group.add_argument('--warmup_max_lr', type=float, default=0.001, help='WarmupLR maximum LR value.') group.add_argument('--warmup_num_steps', type=int, default=1000, help='WarmupLR step count for LR warmup.') group.add_argument('--warmup_type', type=str, default=WARMUP_LOG_RATE, help='WarmupLR increasing function during warmup') return parser def parse_arguments(): parser = argparse.ArgumentParser() parser = add_tuning_arguments(parser) lr_sched_args, unknown_args = parser.parse_known_args() return lr_sched_args, unknown_args def override_lr_range_test_params(args, params): if hasattr(args, LR_RANGE_TEST_MIN_LR) and args.lr_range_test_min_lr is not None: params[LR_RANGE_TEST_MIN_LR] = args.lr_range_test_min_lr if hasattr(args, LR_RANGE_TEST_STEP_RATE) and args.lr_range_test_step_rate is not None: params[LR_RANGE_TEST_STEP_RATE] = args.lr_range_test_step_rate if hasattr(args, LR_RANGE_TEST_STEP_SIZE) and args.lr_range_test_step_size is not None: params[LR_RANGE_TEST_STEP_SIZE] = args.lr_range_test_step_size if hasattr(args, LR_RANGE_TEST_STAIRCASE) and args.lr_range_test_staircase is not None: params[LR_RANGE_TEST_STAIRCASE] = args.lr_range_test_staircase def override_1cycle_params(args, params): if hasattr(args, CYCLE_FIRST_STEP_SIZE) and args.cycle_first_step_size is not None: params[CYCLE_FIRST_STEP_SIZE] = args.cycle_first_step_size if hasattr(args, CYCLE_FIRST_STAIR_COUNT) and args.cycle_first_stair_count is not None: params[CYCLE_FIRST_STAIR_COUNT] = args.cycle_first_stair_count if hasattr(args, CYCLE_SECOND_STEP_SIZE) and args.cycle_second_step_size is not None: params[CYCLE_SECOND_STEP_SIZE] = args.cycle_second_step_size if hasattr(args, CYCLE_SECOND_STAIR_COUNT) and args.cycle_second_stair_count is not None: params[CYCLE_SECOND_STAIR_COUNT] = args.cycle_second_stair_count if hasattr(args, DECAY_STEP_SIZE) and args.decay_step_size is not None: params[DECAY_STEP_SIZE] = args.decay_step_size # 1Cycle LR params if hasattr(args, CYCLE_MIN_LR) and args.cycle_min_lr is not None: params[CYCLE_MIN_LR] = args.cycle_min_lr if hasattr(args, CYCLE_MAX_LR) and args.cycle_max_lr is not None: params[CYCLE_MAX_LR] = args.cycle_max_lr if hasattr(args, DECAY_LR_RATE) and args.decay_lr_rate is not None: params[DECAY_LR_RATE] = args.decay_lr_rate # 1Cycle MOM params if hasattr(args, CYCLE_MIN_MOM) and args.cycle_min_mom is not None: params[CYCLE_MIN_MOM] = args.cycle_min_mom if hasattr(args, CYCLE_MAX_MOM) and args.cycle_max_mom is not None: params[CYCLE_MAX_MOM] = args.cycle_max_mom if hasattr(args, DECAY_MOM_RATE) and args.decay_mom_rate is not None: params[DECAY_MOM_RATE] = args.decay_mom_rate def override_warmupLR_params(args, params): if hasattr(args, WARMUP_MIN_LR) and args.warmup_min_lr is not None: params[WARMUP_MIN_LR] = args.warmup_min_lr if hasattr(args, WARMUP_MAX_LR) and args.warmup_max_lr is not None: params[WARMUP_MAX_LR] = args.warmup_max_lr if hasattr(args, WARMUP_NUM_STEPS) and args.warmup_num_steps is not None: params[WARMUP_NUM_STEPS] = args.warmup_num_steps if hasattr(args, WARMUP_TYPE) and args.warmup_type is not None: params[WARMUP_TYPE] = args.warmup_type def override_params(args, params): # LR range test params override_lr_range_test_params(args, params) # 1Cycle params override_1cycle_params(args, params) # WarmupLR params override_warmupLR_params(args, params) def get_config_from_args(args): if not hasattr(args, LR_SCHEDULE) or args.lr_schedule is None: return None, '--{} not specified on command line'.format(LR_SCHEDULE) if not args.lr_schedule in VALID_LR_SCHEDULES: return None, '{} is not supported LR schedule'.format(args.lr_schedule) config = {} config['type'] = args.lr_schedule config['params'] = {} if args.lr_schedule == LR_RANGE_TEST: override_lr_range_test_params(args, config['params']) elif args.lr_schedule == ONE_CYCLE: override_1cycle_params(args, config['params']) else: override_warmupLR_params(args, config['params']) return config, None def get_lr_from_config(config): if not 'type' in config: return None, 'LR schedule type not defined in config' if not 'params' in config: return None, 'LR schedule params not defined in config' lr_schedule = config['type'] lr_params = config['params'] if not lr_schedule in VALID_LR_SCHEDULES: return None, '{} is not a valid LR schedule'.format(lr_schedule) if lr_schedule == LR_RANGE_TEST: return lr_params[LR_RANGE_TEST_MIN_LR], '' if lr_schedule == ONE_CYCLE: return lr_params[CYCLE_MAX_LR], '' # Warmup LR return lr_params[WARMUP_MAX_LR], '' """ Only optimizers that are subclass of torch.optim.Optimizer are supported. So check the passed optimizer and wrapped optimizer to see if requirement is satisfied. TODO: Looking under the hood to examine the wrapped optimizer is a hack that requires a better long-term fix. """ def get_torch_optimizer(optimizer): if isinstance(optimizer, Optimizer): return optimizer if hasattr(optimizer, 'optimizer') and isinstance(optimizer.optimizer, Optimizer): return optimizer.optimizer raise TypeError('{} is not a subclass of torch.optim.Optimizer'.format(type(optimizer).__name__)) class LRRangeTest(object): """Sets the learning rate of each parameter group according to learning rate range test (LRRT) policy. The policy increases learning rate starting from a base value with a constant frequency, as detailed in the paper `A disciplined approach to neural network hyper-parameters: Part1`_. LRRT policy is used for finding maximum LR that trains a model without divergence, and can be used to configure the LR boundaries for Cyclic LR schedules. LRRT changes the learning rate after every batch. `step` should be called after a batch has been used for training. Args: optimizer (Optimizer): Wrapped optimizer. lr_range_test_min_lr (float or list): Initial learning rate which is the lower boundary in the range test for each parameter group. lr_range_test_step_size (int): Interval of training steps to increase learning rate. Default: 2000 lr_range_test_step_rate (float): Scaling rate for range test. Default: 1.0 lr_range_test_staircase (bool): Scale in staircase fashion, rather than continuous. Default: False. last_batch_iteration (int): The index of the last batch. This parameter is used when resuming a training job. Since `step()` should be invoked after each batch instead of after each epoch, this number represents the total number of *batches* computed, not the total number of epochs computed. When last_batch_iteration=-1, the schedule is started from the beginning. Default: -1 Example: >>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) >>> scheduler = LRRangeTest(optimizer) >>> data_loader = torch.utils.data.DataLoader(...) >>> for epoch in range(10): >>> for batch in data_loader: >>> train_batch(...) >>> scheduler.step() _A disciplined approach to neural network hyper-parameters: Part 1 -- learning rate, batch size, momentum, and weight decay: https://arxiv.org/abs/1803.09820 """ def __init__(self, optimizer: Optimizer, lr_range_test_min_lr: float = 1e-3, lr_range_test_step_size: int = 2000, lr_range_test_step_rate: float = 1.0, lr_range_test_staircase: bool = False, last_batch_iteration: int = -1): self.optimizer = get_torch_optimizer(optimizer) if isinstance(lr_range_test_min_lr, list) or isinstance(lr_range_test_min_lr, tuple): if len(lr_range_test_min_lr) != len(self.optimizer.param_groups): raise ValueError("expected {} lr_range_test_min_lr, got {}".format(len(self.optimizer.param_groups), len(lr_range_test_min_lr))) self.min_lr = list(lr_range_test_min_lr) else: self.min_lr = [lr_range_test_min_lr] * len(self.optimizer.param_groups) self.step_size = lr_range_test_step_size self.step_rate = lr_range_test_step_rate self.last_batch_iteration = last_batch_iteration self.staircase = lr_range_test_staircase self.interval_fn = self._staircase_interval if lr_range_test_staircase else self._continuous_interval if last_batch_iteration == -1: self._update_optimizer(self.min_lr) def _staircase_interval(self): return math.floor(float(self.last_batch_iteration + 1) / self.step_size) def _continuous_interval(self): return float(self.last_batch_iteration + 1) / self.step_size def _get_increase(self): return (1 + self.step_rate * self.interval_fn()) def get_lr(self): lr_increase = self._get_increase() return [lr_range_test_min_lr * lr_increase for lr_range_test_min_lr in self.min_lr] def get_last_lr(self): """ Return last computed learning rate by current scheduler. """ assert getattr(self, '_last_lr', None) is not None, "need to call step() first" return self._last_lr def _update_optimizer(self, group_lrs): for param_group, lr in zip(self.optimizer.param_groups, group_lrs): param_group['lr'] = lr def step(self, batch_iteration=None): if batch_iteration is None: batch_iteration = self.last_batch_iteration + 1 self.last_batch_iteration = batch_iteration self._update_optimizer(self.get_lr()) self._last_lr = [group['lr'] for group in self.optimizer.param_groups] def state_dict(self): return {'last_batch_iteration': self.last_batch_iteration} def load_state_dict(self, sd): self.last_batch_iteration = sd['last_batch_iteration'] class OneCycle(object): """Sets the learning rate of each parameter group according to 1Cycle learning rate policy (1CLR). 1CLR is a variation of the Cyclical Learning Rate (CLR) policy that involves one cycle followed by decay. The policy simultaneously cycles the learning rate (and momentum) between two boundaries with a constant frequency, as detailed in the paper `A disciplined approach to neural network hyper-parameters`_. 1CLR policy changes the learning rate after every batch. `step` should be called after a batch has been used for training. This implementation was adapted from the github repo: `pytorch/pytorch`_ Args: optimizer (Optimizer): Wrapped optimizer. cycle_min_lr (float or list): Initial learning rate which is the lower boundary in the cycle for each parameter group. cycle_max_lr (float or list): Upper learning rate boundaries in the cycle for each parameter group. Functionally, it defines the cycle amplitude (cycle_max_lr - cycle_min_lr). The lr at any cycle is the sum of cycle_min_lr and some scaling of the amplitude; therefore cycle_max_lr may not actually be reached depending on scaling function. decay_lr_rate(float): Decay rate for learning rate. Default: 0. cycle_first_step_size (int): Number of training iterations in the increasing half of a cycle. Default: 2000 cycle_second_step_size (int): Number of training iterations in the decreasing half of a cycle. If cycle_second_step_size is None, it is set to cycle_first_step_size. Default: None cycle_first_stair_count(int): Number of stairs in first half of cycle phase. This means lr/mom are changed in staircase fashion. Default 0, means staircase disabled. cycle_second_stair_count(int): Number of stairs in second half of cycle phase. This means lr/mom are changed in staircase fashion. Default 0, means staircase disabled. decay_step_size (int): Intervals for applying decay in decay phase. Default: 0, means no decay. cycle_momentum (bool): If ``True``, momentum is cycled inversely to learning rate between 'cycle_min_mom' and 'cycle_max_mom'. Default: True cycle_min_mom (float or list): Initial momentum which is the lower boundary in the cycle for each parameter group. Default: 0.8 cycle_max_mom (float or list): Upper momentum boundaries in the cycle for each parameter group. Functionally, it defines the cycle amplitude (cycle_max_mom - cycle_min_mom). The momentum at any cycle is the difference of cycle_max_mom and some scaling of the amplitude; therefore cycle_min_mom may not actually be reached depending on scaling function. Default: 0.9 decay_mom_rate (float): Decay rate for momentum. Default: 0. last_batch_iteration (int): The index of the last batch. This parameter is used when resuming a training job. Since `step()` should be invoked after each batch instead of after each epoch, this number represents the total number of *batches* computed, not the total number of epochs computed. When last_batch_iteration=-1, the schedule is started from the beginning. Default: -1 Example: >>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) >>> scheduler = OneCycle(optimizer, 0.0001, 0.0010) >>> data_loader = torch.utils.data.DataLoader(...) >>> for epoch in range(10): >>> for batch in data_loader: >>> train_batch(...) >>> scheduler.step() .. _A disciplined approach to neural network hyper-parameters: Part 1 -- learning rate, batch size, momentum, and weight decay: https://arxiv.org/abs/1803.09820 """ def __init__(self, optimizer, cycle_min_lr, cycle_max_lr, decay_lr_rate=0., cycle_first_step_size=2000, cycle_second_step_size=None, cycle_first_stair_count=0, cycle_second_stair_count=None, decay_step_size=0, cycle_momentum=True, cycle_min_mom=0.8, cycle_max_mom=0.9, decay_mom_rate=0., last_batch_iteration=-1): self.optimizer = get_torch_optimizer(optimizer) # Initialize cycle shape self._initialize_cycle(cycle_first_step_size, cycle_second_step_size, cycle_first_stair_count, cycle_second_stair_count, decay_step_size) # Initialize cycle lr self._initialize_lr(self.optimizer, cycle_min_lr, cycle_max_lr, decay_lr_rate, last_batch_iteration) # Initialize cyclic momentum self.cycle_momentum = cycle_momentum if cycle_momentum: self._initialize_momentum(self.optimizer, cycle_min_mom, cycle_max_mom, decay_mom_rate, last_batch_iteration) # Initialize batch iteration tracker self.last_batch_iteration = last_batch_iteration # Configure cycle shape def _initialize_cycle(self, cycle_first_step_size, cycle_second_step_size, cycle_first_stair_count, cycle_second_stair_count, decay_step_size): cycle_first_step_size = float(cycle_first_step_size) cycle_second_step_size = float( cycle_second_step_size) if cycle_second_step_size is not None else cycle_first_step_size self.total_size = cycle_first_step_size + cycle_second_step_size self.step_ratio = cycle_first_step_size / self.total_size self.first_stair_count = cycle_first_stair_count self.second_stair_count = cycle_first_stair_count if cycle_second_stair_count is None else cycle_second_stair_count self.decay_step_size = decay_step_size if math.isclose(self.decay_step_size, 0): self.skip_lr_decay = True self.skip_mom_decay = True else: self.skip_lr_decay = False self.skip_mom_decay = False # Configure lr schedule def _initialize_lr(self, optimizer, cycle_min_lr, cycle_max_lr, decay_lr_rate, last_batch_iteration): self.min_lrs = [cycle_min_lr] * len(optimizer.param_groups) if last_batch_iteration == -1: for lr, group in zip(self.min_lrs, optimizer.param_groups): group['lr'] = lr self.max_lrs = [cycle_max_lr] * len(optimizer.param_groups) self.decay_lr_rate = decay_lr_rate if math.isclose(self.decay_lr_rate, 0): self.skip_lr_decay = True # Configure momentum schedule def _initialize_momentum(self, optimizer, cycle_min_mom, cycle_max_mom, decay_mom_rate, last_batch_iteration): if 'betas' not in optimizer.defaults: optimizer_name = type(optimizer).__name__ logger.warn( f"cycle_momentum is disabled because optimizer {optimizer_name} does not support momentum, no betas attribute in defaults" ) self.cycle_momentum = False return self.decay_mom_rate = decay_mom_rate self.min_moms = [(cycle_min_mom, 0.99)] * len(optimizer.param_groups) self.max_moms = [(cycle_max_mom, 0.99)] * len(optimizer.param_groups) if last_batch_iteration == -1: for momentum, group in zip(self.min_moms, optimizer.param_groups): group['betas'] = momentum if math.isclose(self.decay_mom_rate, 0): self.skip_mom_decay = True def _get_scale_factor(self): batch_iteration = (self.last_batch_iteration + 1) cycle = math.floor(1 + batch_iteration / self.total_size) x = 1. + batch_iteration / self.total_size - cycle if x <= self.step_ratio: scale_factor = x / self.step_ratio else: scale_factor = (x - 1) / (self.step_ratio - 1) return scale_factor def _get_cycle_mom(self): scale_factor = self._get_scale_factor() momentums = [] for base_betas, max_betas in zip(self.min_moms, self.max_moms): cycle_min_mom = base_betas[0] cycle_max_mom = max_betas[0] base_height = (cycle_max_mom - cycle_min_mom) * scale_factor momentum = cycle_max_mom - base_height momentums.append((momentum, base_betas[1])) return momentums def _get_cycle_lr(self): scale_factor = self._get_scale_factor() lrs = [] for cycle_min_lr, cycle_max_lr in zip(self.min_lrs, self.max_lrs): base_height = (cycle_max_lr - cycle_min_lr) * scale_factor lr = cycle_min_lr + base_height lrs.append(lr) return lrs def _get_decay_mom(self, decay_batch_iteration): if self.skip_mom_decay: return self.max_moms decay_interval = decay_batch_iteration / self.decay_step_size mom_decay_factor = (1 + self.decay_mom_rate * decay_interval) momentums = [(beta0 * mom_decay_factor, beta1) for beta0, beta1 in self.max_moms] return momentums def _get_decay_lr(self, decay_batch_iteration): """Calculates the learning rate at batch index. This function is used after the cycle completes and post cycle decaying of lr/mom is enabled. This function treats `self.last_batch_iteration` as the last batch index. """ if self.skip_lr_decay: return self.min_lrs decay_interval = decay_batch_iteration / self.decay_step_size lr_decay_factor = (1 + self.decay_lr_rate * decay_interval) lrs = [cycle_min_lr / lr_decay_factor for cycle_min_lr in self.min_lrs] return lrs def get_lr(self): """Calculates the learning rate at batch index. This function treats `self.last_batch_iteration` as the last batch index. """ if self.last_batch_iteration < self.total_size: return self._get_cycle_lr() return self._get_decay_lr(self.last_batch_iteration - self.total_size + 1) def get_mom(self): """Calculates the momentum at batch index. This function treats `self.last_batch_iteration` as the last batch index. """ if not self.cycle_momentum: return None if self.last_batch_iteration < self.total_size: return self._get_cycle_mom() return self._get_decay_mom(self.last_batch_iteration - self.total_size + 1) def get_last_lr(self): """ Return last computed learning rate by current scheduler. """ assert getattr(self, '_last_lr', None) is not None, "need to call step() first" return self._last_lr def step(self, batch_iteration=None): """ Updates the optimizer with the learning rate for the last batch index. `self.last_batch_iteration` is treated as the last batch index. If self.cycle_momentum is true, also updates optimizer momentum. """ if batch_iteration is None: batch_iteration = self.last_batch_iteration + 1 self.last_batch_iteration = batch_iteration for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()): param_group['lr'] = lr self._last_lr = [group['lr'] for group in self.optimizer.param_groups] if self.cycle_momentum: momentums = self.get_mom() for param_group, momentum in zip(self.optimizer.param_groups, momentums): param_group['betas'] = momentum def state_dict(self): return {'last_batch_iteration': self.last_batch_iteration} def load_state_dict(self, sd): self.last_batch_iteration = sd['last_batch_iteration'] class WarmupLR(object): """Increase the learning rate of each parameter group from min lr to max lr over warmup_num_steps steps, and then fix at max lr. Args: optimizer (Optimizer): Wrapped optimizer. warmup_min_lr (float or list): minimum learning rate. Default: 0 warmup_max_lr (float or list): maximum learning rate. Default: 0.001 warmup_num_steps (int): number of steps to warm up from min_lr to max_lr. Default: 1000 warmup_type {‘log’, ‘linear’}: increasing function from min_lr to max_lr during warmup. Default: log last_batch_iteration (int): The index of the last batch. Default: -1. Example: >>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) >>> scheduler = WarmupLR(optimizer) >>> data_loader = torch.utils.data.DataLoader(...) >>> for epoch in range(10): >>> for batch in data_loader: >>> train_batch(...) >>> scheduler.step() """ def __init__(self, optimizer: Optimizer, warmup_min_lr: float = 0.0, warmup_max_lr: float = 0.001, warmup_num_steps: int = 1000, warmup_type: str = WARMUP_LOG_RATE, last_batch_iteration: int = -1): self.optimizer = get_torch_optimizer(optimizer) self.min_lrs = self._format_param(self.optimizer, warmup_min_lr, "min_lr") self.max_lrs = self._format_param(self.optimizer, warmup_max_lr, "max_lr") self.delta_lrs = [big - small for big, small in zip(self.max_lrs, self.min_lrs)] self.warmup_num_steps = max(2, warmup_num_steps) # Currently only support linear and log function if warmup_type not in {WARMUP_LOG_RATE, WARMUP_LINEAR_RATE}: logger.warning(f"Using unknown warmup_type: {warmup_type}. The increasing function " f"is set to default (log)") warmup_type = WARMUP_LOG_RATE self.warmup_type = warmup_type self.inverse_log_warm_up = 1.0 / math.log(self.warmup_num_steps) self.last_batch_iteration = last_batch_iteration def get_lr(self): if self.last_batch_iteration < 0: logger.warning("Attempting to get learning rate from scheduler before it has started") return [0.0] gamma = self._get_gamma() return [min_lr + (delta_lr * gamma) for min_lr, delta_lr in zip(self.min_lrs, self.delta_lrs)] def get_last_lr(self): """ Return last computed learning rate by current scheduler. """ assert getattr(self, '_last_lr', None) is not None, "need to call step() first" return self._last_lr def step(self, last_batch_iteration=None): if last_batch_iteration is None: last_batch_iteration = self.last_batch_iteration + 1 self.last_batch_iteration = last_batch_iteration for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()): param_group['lr'] = lr self._last_lr = [group['lr'] for group in self.optimizer.param_groups] def state_dict(self): return {'last_batch_iteration': self.last_batch_iteration} def load_state_dict(self, sd): self.last_batch_iteration = sd['last_batch_iteration'] def _get_gamma(self): if self.last_batch_iteration < self.warmup_num_steps: if self.warmup_type == WARMUP_LOG_RATE: return self.inverse_log_warm_up * math.log(self.last_batch_iteration + 1) elif self.warmup_type == WARMUP_LINEAR_RATE: return self.last_batch_iteration / self.warmup_num_steps return 1.0 def _format_param(self, optimizer, param_value, param_name): if isinstance(param_value, list) or isinstance(param_value, tuple): if len(param_value) != len(optimizer.param_groups): raise ValueError("expected {} value for {}, got {}".format(len(optimizer.param_groups), param_name, FileNotFoundError(param_value))) return list(param_value) return [param_value] * len(optimizer.param_groups) class WarmupDecayLR(WarmupLR): """Increase the learning rate of each parameter group from min lr to max lr over warmup_num_steps steps, and then decay at linear rate over the remaining training steps. Args: optimizer (Optimizer): Wrapped optimizer. total_num_steps (int): total number of training steps warmup_min_lr (float or list): minimum learning rate. Default: 0 warmup_max_lr (float or list): maximum learning rate. Default: 0.001 warmup_num_steps (int): number of steps to warm up from min_lr to max_lr. Default: 1000 warmup_type {‘log’, ‘linear’}: increasing function from min_lr to max_lr during warmup. Default: log last_batch_iteration (int): The index of the last batch. Default: -1. Example: >>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) >>> scheduler = WarmupDecayLR(optimizer, 1000000) >>> data_loader = torch.utils.data.DataLoader(...) >>> for epoch in range(10): >>> for batch in data_loader: >>> train_batch(...) >>> scheduler.step() """ def __init__(self, optimizer: Optimizer, total_num_steps: int, warmup_min_lr: float = 0.0, warmup_max_lr: float = 0.001, warmup_num_steps: int = 1000, warmup_type: str = WARMUP_LOG_RATE, last_batch_iteration: int = -1): self.total_num_steps = total_num_steps super(WarmupDecayLR, self).__init__(optimizer, warmup_min_lr, warmup_max_lr, warmup_num_steps, warmup_type, last_batch_iteration) if self.total_num_steps < self.warmup_num_steps: logger.warning('total_num_steps {} is less than warmup_num_steps {}'.format( total_num_steps, warmup_num_steps)) def _get_gamma(self): if self.last_batch_iteration < self.warmup_num_steps: if self.warmup_type == WARMUP_LOG_RATE: return self.inverse_log_warm_up * math.log(self.last_batch_iteration + 1) elif self.warmup_type == WARMUP_LINEAR_RATE: return self.last_batch_iteration / self.warmup_num_steps return max( 0.0, float(self.total_num_steps - self.last_batch_iteration) / float(max(1.0, self.total_num_steps - self.warmup_num_steps)))
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/runtime/lr_schedules.py
lr_schedules.py
# DeepSpeed Team ############################################# # Routes ############################################# ROUTE_TRAIN = "train" ROUTE_EVAL = "eval" ROUTE_PREDICT = "predict" ROUTE_ENCODE = "encode" ############################################# # Batch size ############################################# TRAIN_BATCH_SIZE = "train_batch_size" TRAIN_BATCH_SIZE_DEFAULT = None ############################################# # Sparse attention ############################################# SPARSE_ATTENTION = "sparse_attention" SPARSE_DENSE_MODE = "dense" SPARSE_FIXED_MODE = "fixed" SPARSE_VARIABLE_MODE = "variable" SPARSE_BIGBIRD_MODE = "bigbird" SPARSE_BSLONGFORMER_MODE = "bslongformer" SPARSE_MODE = "mode" SPARSE_MODE_DEFAULT = SPARSE_FIXED_MODE SPARSE_BLOCK = "block" SPARSE_BLOCK_DEFAULT = 16 SPARSE_DIFFERENT_LAYOUT_PER_HEAD = "different_layout_per_head" SPARSE_DIFFERENT_LAYOUT_PER_HEAD_DEFAULT = False SPARSE_NUM_LOCAL_BLOCKS = "num_local_blocks" SPARSE_NUM_LOCAL_BLOCKS_DEFAULT = 4 SPARSE_NUM_GLOBAL_BLOCKS = "num_global_blocks" SPARSE_NUM_GLOBAL_BLOCKS_DEFAULT = 1 SPARSE_ATTENTION_TYPE = "attention" SPARSE_ATTENTION_TYPE_DEFAULT = "bidirectional" SPARSE_HORIZONTAL_GLOBAL_ATTENTION = "horizontal_global_attention" SPARSE_HORIZONTAL_GLOBAL_ATTENTION_DEFAULT = False SPARSE_NUM_DIFFERENT_GLOBAL_PATTERNS = "num_different_global_patterns" SPARSE_NUM_DIFFERENT_GLOBAL_PATTERNS_DEFAULT = 1 SPARSE_NUM_RANDOM_BLOCKS = "num_random_blocks" SPARSE_NUM_RANDOM_BLOCKS_DEFAULT = 0 SPARSE_LOCAL_WINDOW_BLOCKS = "local_window_blocks" SPARSE_LOCAL_WINDOW_BLOCKS_DEFAULT = [4] SPARSE_GLOBAL_BLOCK_INDICES = "global_block_indices" SPARSE_GLOBAL_BLOCK_INDICES_DEFAULT = [0] SPARSE_GLOBAL_BLOCK_END_INDICES = "global_block_end_indices" SPARSE_GLOBAL_BLOCK_END_INDICES_DEFAULT = None SPARSE_NUM_SLIDING_WINDOW_BLOCKS = "num_sliding_window_blocks" SPARSE_NUM_SLIDING_WINDOW_BLOCKS_DEFAULT = 3 ############################################# # Optimizer and lr scheduler ############################################# OPTIMIZER = "optimizer" OPTIMIZER_TYPE_DEFAULT = None OPTIMIZER_PARAMS = "params" TYPE = "type" LEGACY_FUSION = "legacy_fusion" LEGACY_FUSION_DEFAULT = False SCHEDULER = "scheduler" SCHEDULER_TYPE_DEFAULT = None SCHEDULER_PARAMS = "params" MAX_GRAD_NORM = 'max_grad_norm' ############################################# # Optimizer and lr scheduler ############################################# ZERO_ALLOW_UNTESTED_OPTIMIZER = "zero_allow_untested_optimizer" ZERO_ALLOW_UNTESTED_OPTIMIZER_DEFAULT = False ZERO_FORCE_DS_CPU_OPTIMIZER = "zero_force_ds_cpu_optimizer" ZERO_FORCE_DS_CPU_OPTIMIZER_DEFAULT = True # Steps STEPS_PER_PRINT = "steps_per_print" STEPS_PER_PRINT_DEFAULT = 10 ######################################### # Training micro batch size per GPU ######################################### # Batch size for one training step. This is used when the # TRAIN_BATCH_SIZE cannot fit in GPU memory to determine # the number of gradient accumulation steps. By default, this # is set to None. Users can configure in ds_config.json as below example: TRAIN_MICRO_BATCH_SIZE_PER_GPU = ''' TRAIN_MICRO_BATCH_SIZE_PER_GPU is defined in this format: "train_micro_batch_size_per_gpu": 1 ''' TRAIN_MICRO_BATCH_SIZE_PER_GPU = "train_micro_batch_size_per_gpu" TRAIN_MICRO_BATCH_SIZE_PER_GPU_DEFAULT = None ######################################### # Gradient Accumulation ######################################### # Gradient accumulation feature. By default, this feature is not enabled. # Users can configure in ds_config.json as below example: GRADIENT_ACCUMULATION_FORMAT = ''' Gradient Accumulation should be of the format: "gradient_accumulation_steps": 1 ''' GRADIENT_ACCUMULATION_STEPS = "gradient_accumulation_steps" GRADIENT_ACCUMULATION_STEPS_DEFAULT = None # DeepSpeed CSR gradient sparsity SPARSE_GRADIENTS = "sparse_gradients" SPARSE_GRADIENTS_DEFAULT = False ######################################### # BFLOAT16 support ######################################### # BFLOAT16 feature. By default, this feature is not enabled. # Users can configure in ds_config.json as below example: BFLOAT16_FORMAT = ''' BFLOAT16 parameters should be of the format: "bf16": { "enabled": true } ''' BFLOAT16 = "bf16" BFLOAT16_OLD = "bfloat16" # keeping for backwards compatibility BFLOAT16_ENABLED = "enabled" BFLOAT16_ENABLED_DEFAULT = False ######################################### # FP16 support ######################################### # FP16 feature. By default, this feature is not enabled. # Users can configure in ds_config.json as below example: FP16_FORMAT = ''' FP16 parameters should be of the format: "fp16": { "enabled": true, "auto_cast": false, "loss_scale": 0, "initial_scale_power": 16, "loss_scale_window": 1000, "hysteresis": 2, "min_loss_scale": 1 } ''' FP16 = "fp16" FP16_ENABLED = "enabled" FP16_ENABLED_DEFAULT = False # FP16 loss scale, zero means using dynamic scaling FP16_LOSS_SCALE = "loss_scale" FP16_LOSS_SCALE_DEFAULT = 0 FP16_AUTO_CAST = "auto_cast" FP16_AUTO_CAST_DEFAULT = False # FP16 initial dynamic scale loss power FP16_INITIAL_SCALE_POWER = "initial_scale_power" FP16_INITIAL_SCALE_POWER_DEFAULT = 16 # FP16 loss scale window FP16_LOSS_SCALE_WINDOW = "loss_scale_window" FP16_LOSS_SCALE_WINDOW_DEFAULT = 1000 # FP16 hysteresis FP16_HYSTERESIS = "hysteresis" FP16_HYSTERESIS_DEFAULT = 2 # FP16 min loss scale FP16_MIN_LOSS_SCALE = "min_loss_scale" FP16_MIN_LOSS_SCALE_DEFAULT = 1 # FP16 master and grads FP16_MASTER_WEIGHTS_AND_GRADS = "fp16_master_weights_and_grads" FP16_MASTER_WEIGHTS_AND_GRADS_DEFAULT = False ######################################### # Apex AMP support ######################################### # Use Apex AMP for mixed precision support, all parameters (other than 'enabled') will be passed to # amp.initialize(model, optimizer, **amp_params) # See apex documentation for supported parameters/features: https://nvidia.github.io/apex/amp.html#apex.amp.initialize AMP_FORMAT = ''' "amp" { "enabled: true, "opt_level": "O1", ... } ''' AMP = "amp" AMP_ENABLED = "enabled" AMP_ENABLED_DEFAULT = False ######################################### # Gradient clipping ######################################### # Gradient clipping. By default, this feature is not enabled. # Users can configure in ds_config.json as below example: GRADIENT_CLIPPING_FORMAT = ''' Gradient clipping should be enabled as: "gradient_clipping": 1.0 ''' GRADIENT_CLIPPING = 'gradient_clipping' GRADIENT_CLIPPING_DEFAULT = 0. ######################################### # Communication data type ######################################### # Supported types: ['none', 'fp16', 'fp32'] # By default, this feature is not enabled ('none' value) # Users can configure in ds_config.json as below example: COMMUNICATION_DATA_TYPE_FORMAT = ''' Communication data type should be set as: "communication_data_type": "fp32" ''' COMMUNICATION_DATA_TYPE = "communication_data_type" COMMUNICATION_DATA_TYPE_DEFAULT = None ######################################### # Scale/predivide gradients before allreduce ######################################### # Prescale gradients. By default, this feature is not enabled. # Users can configure in ds_config.json as below example: PRESCALE_GRADIENTS_FORMAT = ''' Gradient prescaling should be enabled as: "prescale_gradients": true ''' PRESCALE_GRADIENTS = "prescale_gradients" PRESCALE_GRADIENTS_DEFAULT = False GRADIENT_PREDIVIDE_FACTOR_FORMAT = ''' Gradient predivide factor should be enabled as: "gradient_predivide_factor": 1.0 ''' GRADIENT_PREDIVIDE_FACTOR = "gradient_predivide_factor" GRADIENT_PREDIVIDE_FACTOR_DEFAULT = 1.0 ######################################### # Disable AllGather ######################################### # Disable AllGather. By default, this feature is not enabled. # Users can configure in ds_config.json as below example: DISABLE_ALLGATHER_FORMAT = ''' Disable AllGather should be enabled as: "disable_allgather": true ''' DISABLE_ALLGATHER = "disable_allgather" DISABLE_ALLGATHER_DEFAULT = False ######################################### # Dump DeepSpeed state ######################################### # Dump State. By default, this feature is not enabled. # Users can configure in ds_config.json as below example: DUMP_STATE_FORMAT = ''' Dump state should be enabled as: "dump_state": true ''' DUMP_STATE = 'dump_state' DUMP_STATE_DEFAULT = False ######################################### # Vocabulary size ######################################### # Vocabulary size. # Users can configure in ds_config.json as below example: VOCABULARY_SIZE_FORMAT = ''' Vocabulary size can be specified as: "vocabulary_size": 1024 ''' VOCABULARY_SIZE = 'vocabulary_size' VOCABULARY_SIZE_DEFAULT = None ######################################### # Wall block breakdown ######################################### # Wall clock breakdown. By default, this feature is not enabled. # Users can configure in ds_config.json as below example: WALL_CLOCK_BREAKDOWN_FORMAT = ''' Wall block breakdown should be enabled as: "wall_clock_breakdown": true ''' WALL_CLOCK_BREAKDOWN = 'wall_clock_breakdown' WALL_CLOCK_BREAKDOWN_DEFAULT = False MEMORY_BREAKDOWN = 'memory_breakdown' MEMORY_BREAKDOWN_DEFAULT = False ######################################### # Eigenvalue ######################################### # Eigenvalue computation. By default, this feature is not enabled. # Users can configure in ds_config.json as below example: EIGENVALUE_FORMAT = ''' Tensorboard can be specified as: "eigenvalue": { "enabled": true, "verbose": true, "max_iter": 100, "tol": 1e-2, "stability": 1e-6 } ''' EIGENVALUE = "eigenvalue" # Tensorboard enable signal EIGENVALUE_ENABLED = "enabled" EIGENVALUE_ENABLED_DEFAULT = False EIGENVALUE_VERBOSE = "verbose" EIGENVALUE_VERBOSE_DEFAULT = False EIGENVALUE_MAX_ITER = "max_iter" EIGENVALUE_MAX_ITER_DEFAULT = 100 EIGENVALUE_TOL = "tol" EIGENVALUE_TOL_DEFAULT = 1e-2 EIGENVALUE_STABILITY = "stability" EIGENVALUE_STABILITY_DEFAULT = 1e-6 EIGENVALUE_GAS_BOUNDARY_RESOLUTION = "gas_boundary_resolution" EIGENVALUE_GAS_BOUNDARY_RESOLUTION_DEFAULT = 1 EIGENVALUE_LAYER_NAME = "layer_name" EIGENVALUE_LAYER_NAME_DEFAULT = "bert.encoder.layer" EIGENVALUE_LAYER_NUM = "layer_num" EIGENVALUE_LAYER_NUM_DEFAULT = 0 ######################################### # Progressive Layer Drop (PLD) ######################################### PROGRESSIVE_LAYER_DROP = "progressive_layer_drop" # PLD enable signal PLD_ENABLED = "enabled" PLD_ENABLED_DEFAULT = False PLD_THETA = "theta" PLD_THETA_DEFAULT = 1.0 PLD_GAMMA = "gamma" PLD_GAMMA_DEFAULT = 0.001 ######################################### # Validation modes ######################################### class ValidationMode: WARN = "WARN" IGNORE = "IGNORE" FAIL = "FAIL" ######################################### # Checkpoint config params ######################################### # "checkpoint": { # tag_validation=["Ignore"|"Warn"|"Fail"] # load_universal=false # use_node_local_storage=false # parallel_write: { # pipeline_stage: [True|False] # } # } CHECKPOINT = "checkpoint" CHECKPOINT_TAG_VALIDATION = "tag_validation" CHECKPOINT_TAG_VALIDATION_DEFAULT = ValidationMode.WARN CHECKPOINT_TAG_VALIDATION_MODES = [ValidationMode.WARN, ValidationMode.IGNORE, ValidationMode.FAIL] LOAD_UNIVERSAL_CHECKPOINT = "load_universal" LOAD_UNIVERSAL_CHECKPOINT_DEFAULT = False USE_NODE_LOCAL_STORAGE_CHECKPOINT = "use_node_local_storage" USE_NODE_LOCAL_STORAGE_CHECKPOINT_DEFAULT = False CHECKPOINT_PARALLEL_WRITE = "parallel_write" CHECKPOINT_PARALLEL_WRITE_PIPELINE_STAGE = "pipeline_stage" CHECKPOINT_PARALLEL_WRITE_PIPELINE_STAGE_DEFAULT = False ######################################### # Data types config params ######################################### # "data_types": { # grad_accum_dtype=["bf16"|"fp16"|"fp32"] # } # } DATA_TYPES = "data_types" GRAD_ACCUM_DTYPE = "grad_accum_dtype" GRAD_ACCUM_DTYPE_DEFAULT = None ######################################### # Drop the last incomplete Batch # ######################################### # dataloader_drop_last. By default, this feature is not enabled. # Users can configure in ds_config.json as below example: DATALOADER_DROP_LAST_FORMAT = ''' The last incomplete batch can be dropped by setting: "dataloader_drop_last": True ''' DATALOADER_DROP_LAST = "dataloader_drop_last" DATALOADER_DROP_LAST_DEFAULT = False ######################################### # PIPELINE PARALLELISM ######################################### PIPE_REPLICATED = 'ds_pipe_replicated' ######################################### # DATA PARALLELISM ######################################### DATA_PARALLEL_GROUP = "data_parallel_group" GLOBAL_RANK = "global_rank"
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/runtime/constants.py
constants.py
# DeepSpeed Team import torch from deepspeed.inference.config import DeepSpeedInferenceConfig from deepspeed.module_inject.replace_policy import replace_policies from deepspeed.module_inject.utils import policy_to_ds_container from .engine import DeepSpeedEngine from .utils import TLinear, get_inactive_params from deepspeed.runtime.zero import GatheredParameters import time import gc import math from deepspeed import comm as dist from deepspeed.accelerator import get_accelerator from torch import nn from deepspeed.utils import logger from deepspeed.ops.op_builder import InferenceBuilder from deepspeed.module_inject.layers import LinearLayer, Normalize, EmbeddingLayer, OPTEmbedding try: import transformers OPTLearnedPositionalEmbedding = transformers.models.opt.modeling_opt.OPTLearnedPositionalEmbedding except: OPTLearnedPositionalEmbedding = None inference_cuda_module = None class DeepSpeedHybridEngine(DeepSpeedEngine): r"""DeepSpeed engine for training and inference.""" inference_mp_group = None def __init__(self, args, model, **kwargs): super().__init__(args, model, **kwargs) # synch seed between all GPUs _rng_state = get_accelerator().get_rng_state().to(get_accelerator().current_device_name()) dist.broadcast(_rng_state, 0) get_accelerator().set_rng_state(_rng_state.cpu()) self.Z3_enabled = (self._config.zero_config.stage == 3) self.gather_all_layers = self._config.hybrid_engine.pin_parameters # inference containers / fwds self._inference_containers = [] self._orig_modules = [] self._orig_fwds = [] self.create_inference_module() # Performance stats self._t_start = None self._total_latency = 0 self._iters = 0 self._training_start_time = None self._generate_latency = 0 self._training_latency = 0 self._total_batch_size = None self._gather_latency = 0 global inference_cuda_module if inference_cuda_module is None: builder = InferenceBuilder() inference_cuda_module = builder.load() self.is_lora_fused = False def convert_to_linear_transposed(self, model): def _replace_linear_layer(r_module, parent_type=None, prev_type=None): for name, child in r_module.named_children(): if child.__class__ in [torch.nn.Linear] and \ (parent_type is torch.nn.ModuleList or prev_type is torch.nn.ModuleList): setattr(r_module, name, TLinear(child, name)) else: _replace_linear_layer(child, type(r_module), prev_type=parent_type) return r_module _replace_linear_layer(model) def new_inference_container(self, orig_layer, policy_cls, layer_id): policy = policy_cls(orig_layer, inference=True) _container = policy_to_ds_container( policy=policy, config=DeepSpeedInferenceConfig(set_empty_params=True, max_out_tokens=self._config.hybrid_engine.max_out_tokens, min_out_tokens=self._config.hybrid_engine.max_out_tokens, transposed_mode=True), model_config=self.module.config if hasattr(self.module, 'config') else None, layer_id=layer_id, child=orig_layer) _container.set_dtype(self._config.fp16_enabled) if self.mpu is not None: if hasattr(self.mpu, 'get_model_parallel_world_size'): _container.set_tensor_parallel_config(self.mpu.get_model_parallel_world_size(), self.mpu.get_model_parallel_group()) else: _container.set_tensor_parallel_config(self.mpu.get_tensor_model_parallel_world_size(), self.mpu.get_tensor_model_parallel_group()) else: _container.set_tensor_parallel_config(self._config.hybrid_engine.inference_tp_size, self.mp_group) _container.initialize_tensors(enable_training=True) _container.create_ds_model_config() _container.create_module() _container.set_params_wo_copy(Z3_enabled=self.Z3_enabled) return _container def populate_all_inference_policies(self): self.inference_policies = {} for plcy in replace_policies: _ = plcy(None) if isinstance(plcy._orig_layer_class, list): for orig_layer_class in plcy._orig_layer_class: self.inference_policies.update({orig_layer_class: (self.new_inference_container, plcy)}) elif plcy._orig_layer_class is not None: self.inference_policies.update({plcy._orig_layer_class: (self.new_inference_container, plcy)}) self.inference_policies.update({ nn.Linear: (LinearLayer, ), nn.Embedding: (EmbeddingLayer, ), nn.LayerNorm: (Normalize, ), OPTLearnedPositionalEmbedding: (OPTEmbedding, ) }) def _fuse_lora(self, params, lora_params): maybe_has_lora_params = [p for p in params if len(p.shape) > 1] for lora_param, weight in zip(lora_params, maybe_has_lora_params): if len(lora_param) == 3: lora_right_weight, \ lora_left_weight, \ lora_scaling = lora_param weight.data += lora_scaling * torch.matmul(lora_left_weight.t(), lora_right_weight.t()) def fuse_lora_weight(self): for layer_id in range(len(self.layer_params)): self._fuse_lora(self.layer_params[layer_id], self.lora_params[layer_id]) def _unfuse_lora(self, params, lora_params): maybe_has_lora_params = [p for p in params if len(p.shape) > 1] for lora_param, weight in zip(lora_params, maybe_has_lora_params): if len(lora_param) == 3: lora_right_weight, \ lora_left_weight, \ lora_scaling = lora_param weight.data -= lora_scaling * torch.matmul(lora_left_weight.t(), lora_right_weight.t()) def unfuse_lora_weight(self): for layer_id in range(len(self.layer_params)): self._unfuse_lora(self.layer_params[layer_id], self.lora_params[layer_id]) def unfuse_lora_weight_non_pinned(self): for layer_id in range(len(self.layer_params)): non_active_params = get_inactive_params(self.layer_params[layer_id]) non_active_lora_params = get_inactive_params(self.layer_lora_params[layer_id]) non_active_params.extend(non_active_lora_params) with GatheredParameters(non_active_params): self._unfuse_lora(self.layer_params[layer_id], self.lora_params[layer_id]) def retake_inference_cache(self): if self._config.hybrid_engine.release_inference_cache: retake_success = inference_cuda_module.retake_workspace() if not retake_success: logger.warning("Unable to acquire workspace on first attempt, emtpying cache and retrying.") gc.collect() get_accelerator().empty_cache() retake_success = inference_cuda_module.retake_workspace() if not retake_success: raise RuntimeError("Unable to retake inference workspace.") def generate(self, *inputs, **kwargs): if self._total_batch_size is None: bsz = inputs[0].shape[0] if len(inputs) > 0 else \ kwargs['input_ids'].shape[0] self._total_batch_size = bsz * dist.get_world_size() self._t0 = time.time() if self.Z3_enabled and self.gather_all_layers: if self._config.hybrid_engine.inference_tp_size > 1: non_tp_params = [] for other_layer in self._other_layers: non_tp_params.extend(list(other_layer.parameters())) partition_size = self._config.hybrid_engine.tp_gather_partition_size layer_groups = math.ceil(len(self.layer_params) / partition_size) for lg in range(layer_groups): non_active_params = [] non_active_lora_params = [] for layer_id in range(lg * partition_size, min(len(self.layer_params), (lg + 1) * partition_size), 1): non_tp_params.extend(self.layer_params[layer_id][:4]) non_active_params.extend(get_inactive_params(self.layer_params[layer_id])) non_active_params.extend(get_inactive_params(self.layer_lora_params[layer_id])) with GatheredParameters(non_active_params): for layer_id in range(lg * partition_size, min(len(self.layer_params), (lg + 1) * partition_size), 1): if len(self.all_lora_params) > 0: self._fuse_lora(self.layer_params[layer_id], self.lora_params[layer_id]) if self.mpu is not None: self._inference_containers[layer_id].apply_tensor_parallelism( mp_group=self.mp_group, tp_size=self._config.hybrid_engine.inference_tp_size) # TODO(cmikeh2) Evaluate if this can be deferred when release_inference_cache # is enabled. gc.collect() get_accelerator().empty_cache() self._gather_latency = time.time() - self._t0 input_shape = inputs[0].shape if len(inputs) > 0 else \ kwargs['input_ids'].shape output = torch.zeros( (input_shape[0] * self._config.hybrid_engine.inference_tp_size, ) + input_shape[1:], dtype=inputs[0].dtype if len(inputs) > 0 else kwargs['input_ids'].dtype, device=inputs[0].device if len(inputs) > 0 else kwargs['input_ids'].device) input_cont = inputs[0].contiguous() if len(inputs) > 0 else kwargs['input_ids'].contiguous() dist.all_gather_into_tensor(output, input_cont, group=self.mp_group) if len(inputs) > 0: inputs = (output, ) else: kwargs['input_ids'] = output self.retake_inference_cache() non_active_params = get_inactive_params(non_tp_params) with GatheredParameters(non_active_params): generate_ret_vals = self._generate(*inputs, **kwargs) for layer_id in range(len(self.layer_params)): self._inference_containers[layer_id].release_memory() rank = dist.get_rank(group=self.mp_group) generate_ret_vals = generate_ret_vals[input_shape[0] * rank:input_shape[0] * (rank + 1)] else: non_active_layers = get_inactive_params(self.all_layers_params) non_active_lora_params = get_inactive_params(self.all_lora_params) non_active_layers.extend(non_active_lora_params) with GatheredParameters(non_active_layers): self._gather_latency = time.time() - self._t0 if len(self.all_lora_params) > 0: self.fuse_lora_weight() self.retake_inference_cache() generate_ret_vals = self._generate(*inputs, **kwargs) if len(self.all_lora_params) > 0: self.unfuse_lora_weight() else: if len(self.all_lora_params) > 0 and (not self.Z3_enabled): self.fuse_lora_weight() self.retake_inference_cache() generate_ret_vals = self._generate(*inputs, **kwargs) if len(self.all_lora_params) > 0: if (not self.Z3_enabled): self.unfuse_lora_weight() else: self.unfuse_lora_weight_non_pinned() self.is_lora_fused = False if self._config.hybrid_engine.release_inference_cache: inference_cuda_module.release_workspace() gc.collect() get_accelerator().empty_cache() self._generate_latency = time.time() - self._t0 - self._gather_latency return generate_ret_vals def create_inference_containers(self, module, layer_id=0): for name, child in module.named_children(): if child.__class__ in self.inference_policies: if self.inference_policies[child.__class__][0] == self.new_inference_container: self._inference_containers.append(self.inference_policies[child.__class__][0]( child, self.inference_policies[child.__class__][-1], layer_id)) self._orig_modules.append(child) self._orig_fwds.append(child.forward) self.layer_params.append(self._inference_containers[layer_id].get_all_params()) self.lora_params.append(self._inference_containers[layer_id].get_lora_params()) self.layer_lora_params.append([]) for lora_param in self.lora_params[layer_id]: self.layer_lora_params[layer_id].extend(lora_param[:-1]) self.all_lora_params.extend(lora_param[:-1]) layer_id += 1 else: self._other_layers.append(self.inference_policies[child.__class__][0]( weight=child.weight, bias=child.bias if hasattr(child, 'bias') else None)) self._orig_modules_others.append(child) self._orig_fwds_others.append(child.forward) else: self.create_inference_containers(child, layer_id=layer_id) def create_inference_module(self): self.layer_params = [] self.layer_lora_params = [] self.lora_params = [] self.all_lora_params = [] self._other_layers = [] self._orig_modules_others = [] self._orig_fwds_others = [] if self._config.hybrid_engine.inference_tp_size > 1: if self.mpu is not None: global_rank = dist.get_rank() world_size = dist.get_world_size() mp_group_id = global_rank // self._config.hybrid_engine.inference_tp_size num_mp_groups = world_size // self._config.hybrid_engine.inference_tp_size for mp_group_id in range(num_mp_groups): ranks = list( range(mp_group_id * self._config.hybrid_engine.inference_tp_size, \ (mp_group_id + 1) * self._config.hybrid_engine.inference_tp_size, \ 1) ) mp_group = dist.new_group(ranks) if global_rank in ranks: self.mp_group = mp_group else: self.mp_group = self.mpu.get_model_parallel_group() if hasattr(self.mpu, 'get_model_parallel_group') else \ self.mpu.get_tensor_model_parallel_group() else: self.mp_group = None self.populate_all_inference_policies() self.all_layers_params = list(self.module.parameters()) self.create_inference_containers(self.module) if len(self._inference_containers) > 0: self._generate = self.module.generate self.module.generate = self.generate self._t0 = time.time() def _zero3_forward(self, layer_id): def run_forward(*inputs, **kwargs): non_active_params = get_inactive_params(self.layer_params[layer_id]) non_active_lora_params = get_inactive_params(self.layer_lora_params[layer_id]) non_active_params.extend(non_active_lora_params) with GatheredParameters(non_active_params): if len(self.all_lora_params) > 0: # Use the is_lora_fused flag to prevent multiple fusion in Z3 with non-pinned memory if not self.is_lora_fused: self._fuse_lora(self.layer_params[layer_id], self.lora_params[layer_id]) # Set the is_lora_fused to true when reaching the last layer if layer_id == len(self.layer_params) - 1: self.is_lora_fused = True return self._inference_containers[layer_id].module.forward(*inputs, **kwargs) return run_forward def eval(self): if self._t_start is not None: latency = time.time() - self._t_start self._total_latency = self._total_latency + latency self._iters = self._iters + 1 if not dist.is_initialized() or dist.get_rank() == 0: others = latency - (self._generate_latency + self._training_latency) print(f'|E2E latency={(latency):.2f}s ' + \ f'|Gather latency={self._gather_latency:.2f}s ({(self._gather_latency / latency * 100):.2f}%) ' f'|Generate time={(self._generate_latency):.2f}s ({(self._generate_latency / latency * 100):.2f}%) ' + \ f'|Training time={(self._training_latency):.2f}s ({(self._training_latency / latency * 100):.2f}%) ' + \ f'|Others={others:.2f} ({(others / latency * 100):.2f}%)' f'|CurSamplesPerSec={(1 / latency * self._total_batch_size):.2f} ' + \ f'|AvgSamplesPerSec={(1 / (self._total_latency / self._iters) * self._total_batch_size):.2f}') self._t_start = time.time() self._training_latency = 0 super().eval() if len(self._inference_containers) > 0: for i, (orig_module, inference_container) in enumerate(zip(self._orig_modules, self._inference_containers)): if self.Z3_enabled and not self.gather_all_layers: orig_module.forward = self._zero3_forward(i) else: orig_module.forward = inference_container.module.forward inference_container.align_merged_qkv() if not self.Z3_enabled or self.gather_all_layers: for orig_module, inference_layer in zip(self._orig_modules_others, self._other_layers): orig_module.forward = inference_layer.forward if self.Z3_enabled: gc.collect() get_accelerator().empty_cache() if self._t_start is None: self._t_start = time.time() def train(self, mode=True): if mode and len(self._orig_modules) > 0: for inference_container, orig_module, orig_fwd in zip(self._inference_containers, self._orig_modules, self._orig_fwds): inference_container.partition_merged_qkv() orig_module.forward = orig_fwd for orig_module, orig_fwd in zip(self._orig_modules_others, self._orig_fwds_others): orig_module.forward = orig_fwd super().train(mode) if mode: self._training_start_time = time.time() def step(self, lr_kwargs=None): super().step(lr_kwargs=lr_kwargs) if len(self._inference_containers) > 0: if(self._inference_containers[0].module.attention.attn_qkvw is not None and \ self._inference_containers[0].q_k_v is not None): for inference_container in self._inference_containers: inference_container.reset_qkv() if self._training_start_time is not None: self._training_latency += (time.time() - self._training_start_time) self._training_start_time = time.time()
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/runtime/hybrid_engine.py
hybrid_engine.py
# DeepSpeed Team import torch from ..module_inject.replace_policy import HFBertLayerPolicy, replace_policies from deepspeed.accelerator import get_accelerator class WeightQuantization(object): def __init__(self, mlp_extra_grouping=True, mp_size=1): self.dense_scales = [] self.qkv_scales = [] self.mlp4hh_scales = [] self.mlph4h_scales = [] self.mlp_extra_grouping = mlp_extra_grouping self.mp_size = mp_size def quantize_data(self, data, quantize_bits, groups, key=None): data_groups = torch.split(data.float().view(-1), data.numel() // groups) max_d = [max(g.max(), g.min().abs()) for g in data_groups] data_scale = [float(1 << quantize_bits) / (2 * mx + 1e-5) for mx in max_d] data_int = [(g * s) for g, s in zip(data_groups, data_scale)] data_int = [ di.round().clamp(-(1 << (quantize_bits - 1)), (((1 << (quantize_bits - 1)) - 1))) for di in data_int ] data_int = torch.cat(data_int).reshape(data.shape) data_int = data_int.to(torch.int8) data_scale = torch.cat([s.unsqueeze(0).unsqueeze(0) for s in data_scale]) return data_int, data_scale def is_mlp(self, data, merge_count=1): return ((self.mp_size *data.shape[0] * merge_count) / data.shape[1] == 4 or \ (self.mp_size *data.shape[1] * merge_count) / data.shape[0] == 4) def is_qkv(self, data): return ((self.mp_size * data.shape[0]) / data.shape[1] == 3 or \ (self.mp_size * data.shape[1]) / data.shape[0] == 3) def Quantize(self, value_list, quantize_bits, groups, key, merge_dim=0): if self.mlp_extra_grouping and self.is_mlp(value_list[0], merge_count=len(value_list)): groups *= 2 q_scale = [] index = 0 for data in value_list: data_int, data_scale = self.quantize_data(data, quantize_bits, groups, key) q_scale.append(data_scale) value_list[index] = data_int index += 1 q_scale = (1 / torch.cat(q_scale, dim=merge_dim).to(get_accelerator().current_device_name()).view(-1).unsqueeze(0)) if "mlp.dense_4h_to_h.weight" in key: self.mlp4hh_scales.append(q_scale) elif "mlp.dense_h_to_4h.weight" in key: self.mlph4h_scales.append(q_scale) elif "attention.query_key_value.weight" in key: self.qkv_scales.append(q_scale) else: self.dense_scales.append(q_scale) return value_list def merge_layer_scales(self, layer_scales): max_dim = max([s.shape[-1] for s in layer_scales]) layer_scales = [ torch.cat((s, torch.zeros((1, max_dim - s.shape[-1]), device=get_accelerator().current_device_name())), dim=-1) if s.shape[-1] < max_dim else s for s in layer_scales ] return torch.cat(layer_scales).unsqueeze(0) def merge_scales(self): all_scales = [] for dense_scale, qkv_scale, m4hh_scale, mh4h_scale in \ zip(self.dense_scales, self.qkv_scales, self.mlp4hh_scales, self.mlph4h_scales): all_scales.append(self.merge_layer_scales([qkv_scale, dense_scale, mh4h_scale, m4hh_scale])) return torch.cat(all_scales) def merge_scales_split(self, split_count): all_scales = [[] for _ in range(split_count)] for dense_scale, qkv_scale, m4hh_scale, mh4h_scale in \ zip(self.dense_scales, self.qkv_scales, self.mlp4hh_scales, self.mlph4h_scales): dense_scale = torch.split(dense_scale, dense_scale.numel() // split_count) qkv_scale = torch.split(qkv_scale, qkv_scale.numel() // split_count) m4hh_scale = torch.split(m4hh_scale, m4hh_scale.numel() // split_count) mh4h_scale = torch.split(mh4h_scale, mh4h_scale.numel() // split_count) for s in range(split_count): all_scales[s].append( torch.cat([ torch.cat((qkv_scale[s], torch.zeros_like(qkv_scale[s])), dim=1), torch.cat((dense_scale[s], torch.zeros_like(dense_scale[s])), dim=1), mh4h_scale[s], m4hh_scale[s] ]).unsqueeze(0)) for scales_a in all_scales: torch.cat(scales_a) return all_scales def sd_quantize_megatron(self, sd, quantize_bits, groups): keys = sd.keys() for key in keys: value_list = [sd[key]] if "attention.dense.weight" in key or "mlp.dense_4h_to_h.weight" in key or \ "mlp.dense_h_to_4h.weight" in key or "attention.query_key_value.weight" in key: value_list = self.Quantize(value_list, quantize_bits, groups, key=key) sd[key] = value_list[0] all_scales = self.merge_scales() return sd, all_scales def model_quantize(self, model, quantize_policy, quantize_bits, groups): all_scales = [] def quantize_fn(layer, policy_cls): policy = policy_cls(layer) _, qkvw, _, dense_w, _, _ = policy.attention() _, _h4h_w, _, _4hh_w, _ = policy.mlp() keys = [qkvw, dense_w, _h4h_w, _4hh_w] layer_scales = [] for key in range(len(keys)): if self.mlp_extra_grouping and self.is_mlp(keys[key]): data_quantized, data_scale = self.quantize_data(keys[key], quantize_bits, groups * 2) elif policy_cls is HFBertLayerPolicy and self.is_qkv(keys[key]): data_quantized, data_scale = self.quantize_data(keys[key], quantize_bits, groups * 3) else: data_quantized, data_scale = self.quantize_data(keys[key], quantize_bits, groups) keys[key].copy_(data_quantized) layer_scales.append((1 / data_scale.to(get_accelerator().current_device_name()).view(-1).unsqueeze(0))) all_scales.append(self.merge_layer_scales(layer_scales)) return layer def _quantize_module(model, policies): for name, child in model.named_children(): if child.__class__ in policies: quantize_fn, replace_policy = policies[child.__class__] setattr(model, name, quantize_fn(child, replace_policy)) else: _quantize_module(child, policies) return model policy = {} if quantize_policy is not None: for layer_name, replace_policy in quantize_policy.items(): policy.update({layer_name: (quantize_fn, replace_policy)}) else: for plcy in replace_policies: policy.update({plcy._orig_layer_class: (quantize_fn, plcy)}) quantized_module = _quantize_module(model, policy) return quantized_module, torch.cat(all_scales)
Adeepspeed
/Adeepspeed-0.9.2.tar.gz/Adeepspeed-0.9.2/deepspeed/runtime/weight_quantizer.py
weight_quantizer.py