code
stringlengths
501
5.19M
package
stringlengths
2
81
path
stringlengths
9
304
filename
stringlengths
4
145
import numpy, array #,rpy2 from matplotlib import pyplot as plt import numpy as np from scipy.optimize import least_squares from rpy2.robjects.packages import importr import rpy2.robjects as robjects import rpy2.robjects.numpy2ri #import notch from numpy.fft import fft, fftfreq # We know/can calculate frequency peak, use this to guess where picks will be. # maybe have a sliding window that reports peak values. def peakPicker(data, omega, dt): # compute window based on omega and dt # make sure you are not aliased, grab every other peak window = (2*numpy.pi) / (omega*dt) data = numpy.array(data) peaks = [] troughs = [] times = [] times2 = [] indices = [] ws = 0 we = window ii = 0 for i in range((int)(len(data)/window)): # initially was just returning this I think avg is better #times.append( (ws + numpy.abs(data[ws:we]).argmax()) * dt ) peaks.append(numpy.max(data[ws:we])) times.append( (ws + data[ws:we].argmax()) * dt ) indices.append( ii + data[ws:we].argmax() ) troughs.append(numpy.min(data[ws:we])) times2.append( (ws + (data[ws:we]).argmin()) * dt ) indices.append( ii + data[ws:we].argmin() ) ws += window we += window ii += (int)(we-ws) #return numpy.array(peaks), numpy.array(times) # Averaging peaks does a good job of removing bias in noise return (numpy.array(peaks)-numpy.array(troughs))/2., \ (numpy.array(times)+numpy.array(times2))/2., \ indices ################################################# # Regress for T2 using rpy2 interface def regressCurve(peaks,times,sigma2=1,intercept=True): # TODO, if regression fails, it might be because there is no exponential # term, maybe do a second regression then on a linear model. b1 = 0 # Bias b2 = 0 # Linear rT2 = 0.3 # T2 regressed r = robjects.r # Variable shared between R and Python robjects.globalenv['b1'] = b1 robjects.globalenv['b2'] = b2 robjects.globalenv['rT2'] = rT2 robjects.globalenv['sigma2'] = sigma2 value = robjects.FloatVector(peaks) times = robjects.FloatVector(numpy.array(times)) # my_weights = robjects.RVector(value/sigma2) # robjects.globalenv['my_weigts'] = my_weights # if sigma2 != 0: # print "weighting" # tw = numpy.array(peaks)/sigma2 # my_weights = robjects.RVector( tw/numpy.max(tw) ) # else: # my_weights = robjects.RVector(numpy.ones(len(peaks))) # robjects.globalenv['my_weights'] = my_weights if (intercept): my_list = robjects.r('list(b1=50, b2=1e2, rT2=0.03)') my_lower = robjects.r('list(b1=0, b2=0, rT2=.005)') my_upper = robjects.r('list(b1=20000, b2=2000, rT2=.700)') else: my_list = robjects.r('list(b2=1e2, rT2=0.3)') my_lower = robjects.r('list(b2=0, rT2=.005)') my_upper = robjects.r('list(b2=2000, rT2=.700)') my_cont = robjects.r('nls.control(maxiter=1000, warnOnly=TRUE, printEval=FALSE)') if (intercept): #fmla = robjects.RFormula('value ~ b1 + exp(-times/rT2)') fmla = robjects.Formula('value ~ b1 + b2*exp(-times/rT2)') #fmla = robjects.RFormula('value ~ b1 + b2*times + exp(-times/rT2)') else: fmla = robjects.Formula('value ~ b2*exp(-times/rT2)') env = fmla.getenvironment() env['value'] = value env['times'] = times # ugly, but I get errors with everything else I've tried my_weights = robjects.r('rep(1,length(value))') for ii in range(len(my_weights)): my_weights[ii] *= peaks[ii]/sigma2 Error = False #fit = robjects.r.nls(fmla,start=my_list,control=my_cont,weights=my_weights) if (sigma2 != 1): print("SIGMA 2") #fit = robjects.r.tryCatch(robjects.r.suppressWarnings(robjects.r.nls(fmla,start=my_list,control=my_cont,algorithm="port", \ # weights=my_weights)), 'silent=TRUE') fit = robjects.r.tryCatch(robjects.r.nls(fmla,start=my_list,control=my_cont))#, \ # weights=my_weights)) else: try: fit = robjects.r.tryCatch(robjects.r.nls(fmla,start=my_list,control=my_cont,algorithm="port"))#,lower=my_lower,upper=my_upper)) except: print("regression issue pass") Error = True # If failure fall back on zero regression values if not Error: #Error = fit[3][0] report = r.summary(fit) b1 = 0 b2 = 0 rT2 = 1 if (intercept): if not Error: b1 = r['$'](report,'par')[0] b2 = r['$'](report,'par')[1] rT2 = r['$'](report,'par')[2] #print report #print r['$'](report,'convergence') #print r['convergence'] #(report,'convergence') #print r['$'](report,'par')[13] #print r['$'](report,'par')[14] else: print("ERROR DETECTED, regressed values set to default") b1 = 1e1 b2 = 1e-2 rT2 = 1e-2 #print r['$'](report,'par')[0] #print r['$'](report,'par')[1] #print r['$'](report,'par')[2] return [b1,b2,rT2] else: if not Error: rT2 = r['$'](report,'par')[1] b2 = r['$'](report,'par')[0] else: print("ERROR DETECTED, regressed values set to default") return [b2, rT2] ################################################# # Regress for T2 using rpy2 interface def regressCurve2(peaks,times,sigma2=[None],intercept=True): if sigma2[0] != None: my_weights = robjects.FloatVector( sigma2 ) # TODO, if regression fails, it might be because there is no exponential # term, maybe do a second regression then on a linear model. b1 = 0 # Bias b2 = 0 # Linear bb2 = 0 # Linear rT2 = 0.3 # T2 regressed rrT2 = 1.3 # T2 regressed r = robjects.r # Variable shared between R and Python robjects.globalenv['b1'] = b1 robjects.globalenv['b2'] = b2 robjects.globalenv['rT2'] = rT2 robjects.globalenv['bb2'] = b2 robjects.globalenv['rrT2'] = rT2 #robjects.globalenv['sigma2'] = sigma2 value = robjects.FloatVector(peaks) times = robjects.FloatVector(numpy.array(times)) if (intercept): my_list = robjects.r('list(b1=.50, b2=1e2, rT2=0.03, bb2=1e1, rrT2=1.3)') my_lower = robjects.r('list(b1=0, b2=0, rT2=.005, bb2=0, rrT2=.005 )') my_upper = robjects.r('list(b1=2000, b2=2000, rT2=.700, bb2=2000, rrT2=1.3 )') else: my_list = robjects.r('list(b2=.5, rT2=0.3, bb2=.5, rrT2=1.3)') my_lower = robjects.r('list(b2=0, rT2=.005, bb2=0, rrT2=.005)') my_upper = robjects.r('list(b2=1, rT2=2.6, bb2=1, rrT2=2.6)') my_cont = robjects.r('nls.control(maxiter=1000, warnOnly=TRUE, printEval=FALSE)') if (intercept): #fmla = robjects.RFormula('value ~ b1 + exp(-times/rT2)') fmla = robjects.Formula('value ~ b1 + b2*exp(-times/rT2) + bb2*exp(-times/rrT2)') #fmla = robjects.RFormula('value ~ b1 + b2*times + exp(-times/rT2)') else: fmla = robjects.Formula('value ~ b2*exp(-times/rT2) + bb2*exp(-times/rrT2)') env = fmla.getenvironment() env['value'] = value env['times'] = times # ugly, but I get errors with everything else I've tried Error = False #fit = robjects.r.nls(fmla,start=my_list,control=my_cont,weights=my_weights) if (sigma2[0] != None): #print("SIGMA 2") #fit = robjects.r.tryCatch(robjects.r.suppressWarnings(robjects.r.nls(fmla,start=my_list,control=my_cont,algorithm="port", \ # weights=my_weights)), 'silent=TRUE') fit = robjects.r.tryCatch(robjects.r.nls(fmla,start=my_list,control=my_cont,algorithm='port',weights=my_weights,lower=my_lower,upper=my_upper))#, \ # weights=my_weights)) else: try: fit = robjects.r.tryCatch(robjects.r.nls(fmla,start=my_list,control=my_cont,algorithm="port"))#,lower=my_lower,upper=my_upper)) except: print("regression issue pass") Error = True # If failure fall back on zero regression values if not Error: #Error = fit[3][0] report = r.summary(fit) b1 = 0 b2 = 0 rT2 = 1 if (intercept): if not Error: b1 = r['$'](report,'par')[0] b2 = r['$'](report,'par')[1] rT2 = r['$'](report,'par')[2] #print report #print r['$'](report,'convergence') #print r['convergence'] #(report,'convergence') #print r['$'](report,'par')[13] #print r['$'](report,'par')[14] else: print("ERROR DETECTED, regressed values set to default") b1 = 1e1 b2 = 1e-2 rT2 = 1e-2 #print r['$'](report,'par')[0] #print r['$'](report,'par')[1] #print r['$'](report,'par')[2] return [b1,b2,rT2, bb2, rrT2] else: if not Error: rT2 = r['$'](report,'par')[1] b2 = r['$'](report,'par')[0] rrT2 = r['$'](report,'par')[3] bb2 = r['$'](report,'par')[2] else: print("ERROR DETECTED, regressed values set to default") return [b2, rT2, bb2, rrT2] def fun(x, t, y): """ Cost function for regression, single exponential, no DC term x[0] = A0 x[1] = zeta x[2] = df x[3] = T2 """ # concatenated real and imaginary parts pre = np.concatenate((-x[0]*np.sin(2.*np.pi*x[2]*t + x[1])*np.exp(-t/x[3]), \ +x[0]*np.cos(2.*np.pi*x[2]*t + x[1])*np.exp(-t/x[3]))) return y-pre def fun2(x, t, y): """ Cost function for regression, single exponential, no DC term x[0] = A0 x[1] = zeta x[2] = T2 """ # concatenated real and imaginary parts pre = np.concatenate((x[0]*np.cos(x[1])*np.exp(-t/x[2]), \ -1.*x[0]*np.sin(x[1])*np.exp(-t/x[2]))) return y-pre def quadratureDetect2(X, Y, tt, x0="None"): """ Pure python quadrature detection using Scipy. X = real part of NMR signal Y = imaginary component of NMR signal tt = time """ print("Pure Python Quad Det", "TODO look at loss functions and method") # Loss functions, linear, soft_l1, huber, cauchy, arctan # df loss = 'cauchy' # 'soft_l1' method = 'trf' # trf, dogbox, lm if x0=="None": x0 = np.array( [1., 0., 0., .2] ) # A0, zeta, df, T2 res_lsq = least_squares(fun, x0, args=(tt, np.concatenate((X, Y))), loss=loss, f_scale=1.0,\ bounds=( [1., -np.pi, -5, .005] , [1000., np.pi, 5, .800] ), method=method ) x = res_lsq.x print ("df", x[0], x[1], x[2], x[3]) else: res_lsq = least_squares(fun, x0, args=(tt, np.concatenate((X, Y))), loss=loss, f_scale=1.0,\ bounds=( [1., -np.pi, -5, .005] , [1000., np.pi, 5, .800] ), method=method ) #bounds=( [0., 0, -20, .0] , [1., np.pi, 20, .6] )) x = res_lsq.x return res_lsq.success, x[0], x[2], x[1], x[3] # no df #x = np.array( [1., 0., 0.2] ) #res_lsq = least_squares(fun2, x, args=(tt, np.concatenate((X, Y))), loss='soft_l1', f_scale=0.1) #x = res_lsq.x #return conv, E0,df,phi,T2 #return res_lsq.success, x[0], 0, x[1], x[2] def quadratureDetect(X, Y, tt, CorrectFreq=False, BiExp=False, CorrectDC=False): r = robjects.r if CorrectDC: robjects.r(''' Xc1 <- function(E01, df, tt, phi, T2_1, DC) { DC + E01*cos(2*pi*df*tt + phi) * exp(-tt/T2_1) } Yc1 <- function(E01, df, tt, phi, T2_1, DC) { DC - E01*sin(2*pi*df*tt + phi) * exp(-tt/T2_1) } ''') else: robjects.r(''' Xc1 <- function(E01, df, tt, phi, T2_1) { E01*cos(2*pi*df*tt + phi) * exp(-tt/T2_1) } Yc1 <- function(E01, df, tt, phi, T2_1) { -E01*sin(2*pi*df*tt + phi) * exp(-tt/T2_1) } ''') # bi-exponential if CorrectDC: robjects.r(''' Xc2 <- function(E01, E02, df, tt, phi, T2_1, T2_2, DC) { DC + E01*cos(2*pi*df*tt + phi) * exp(-tt/T2_1) + DC + E02*cos(2*pi*df*tt + phi) * exp(-tt/T2_2) } Yc2 <- function(E01, E02, df, tt, phi, T2_1, T2_2, DC) { DC - E01*sin(2*pi*df*tt + phi) * exp(-tt/T2_1) + DC - E02*sin(2*pi*df*tt + phi) * exp(-tt/T2_2) } ''') else: robjects.r(''' Xc2 <- function(E01, E02, df, tt, phi, T2_1, T2_2) { E01*cos(2*pi*df*tt + phi) * exp(-tt/T2_1) + E02*cos(2*pi*df*tt + phi) * exp(-tt/T2_2) } Yc2 <- function(E01, E02, df, tt, phi, T2_1, T2_2) { -E01*sin(2*pi*df*tt + phi) * exp(-tt/T2_1) + -E02*sin(2*pi*df*tt + phi) * exp(-tt/T2_2) } ''') # Make 0 vector Zero = robjects.FloatVector(numpy.zeros(len(X))) # Fitted Parameters E01 = 0. E02 = 0. df = 0. phi = 0. T2_1 = 0. T2_2 = 0. DC = 0. robjects.globalenv['DC'] = DC robjects.globalenv['E01'] = E01 robjects.globalenv['E02'] = E02 robjects.globalenv['df'] = df robjects.globalenv['phi'] = phi robjects.globalenv['T2_1'] = T2_1 robjects.globalenv['T2_2'] = T2_2 XY = robjects.FloatVector(numpy.concatenate((X,Y))) # Arrays tt = robjects.FloatVector(numpy.array(tt)) X = robjects.FloatVector(numpy.array(X)) Y = robjects.FloatVector(numpy.array(Y)) Zero = robjects.FloatVector(numpy.array(Zero)) if BiExp: if CorrectDC: fmla = robjects.Formula('XY ~ c(Xc2( E01, E02, df, tt, phi, T2_1, T2_2, DC ), Yc2( E01, E02, df, tt, phi, T2_1, T2_2, DC ))') if CorrectFreq: start = robjects.r('list(E01=.100, E02=.01, df=0, phi=0. , T2_1=.100, T2_2=.01, DC=0.0)') lower = robjects.r('list(E01=1e-6, E02=1e-6, df=-50, phi=-3.14 , T2_1=.001, T2_2=.001, DC=0.0)') upper = robjects.r('list(E01=1.00, E02=1.0, df=50, phi=3.14 , T2_1=.800, T2_2=.8, DC=0.5)') else: start = robjects.r('list(E01=.100, E02=.01, phi=0.9 , T2_1=.100, T2_2=.01, DC=0.0)') lower = robjects.r('list(E01=1e-6, E02=1e-6, phi=-3.14 , T2_1=.001, T2_2=.001, DC=0.0)') upper = robjects.r('list(E01=1.00, E02=1.0, phi=3.14 , T2_1=.800, T2_2=.8, DC=0.5)') else: fmla = robjects.Formula('XY ~ c(Xc2( E01, E02, df, tt, phi, T2_1, T2_2 ), Yc2( E01, E02, df, tt, phi, T2_1, T2_2))') if CorrectFreq: start = robjects.r('list(E01=.100, E02=.01, df=0, phi=0. , T2_1=.100, T2_2=.01)') lower = robjects.r('list(E01=1e-6, E02=1e-6, df=-50, phi=-3.14 , T2_1=.001, T2_2=.001)') upper = robjects.r('list(E01=1.00, E02=1.0, df=50, phi=3.14 , T2_1=.800, T2_2=.8)') else: start = robjects.r('list(E01=.100, E02=.01, phi=0.9 , T2_1=.100, T2_2=.01)') lower = robjects.r('list(E01=1e-6, E02=1e-6, phi=-3.14 , T2_1=.001, T2_2=.001)') upper = robjects.r('list(E01=1.00, E02=1.0, phi=3.14 , T2_1=.800, T2_2=.8)') else: if CorrectDC: fmla = robjects.Formula('XY ~ c(Xc1( E01, df, tt, phi, T2_1, DC), Yc1( E01, df, tt, phi, T2_1,DC))') if CorrectFreq: start = robjects.r('list(E01=.100, df=0 , phi=0. , T2_1=.100, DC=0.0)') lower = robjects.r('list(E01=1e-6, df=-50., phi=-3.14, T2_1=.001, DC=0.0)') upper = robjects.r('list(E01=1.00, df=50. , phi=3.14 , T2_1=.800, DC=0.5)') else: start = robjects.r('list(E01=.100, phi= 0. , T2_1=.100, DC=0.0)') lower = robjects.r('list(E01=1e-6, phi=-3.13, T2_1=.001, DC=0.0)') upper = robjects.r('list(E01=1.00, phi= 3.13, T2_1=.800, DC=0.5)') else: fmla = robjects.Formula('XY ~ c(Xc1( E01, df, tt, phi, T2_1), Yc1( E01, df, tt, phi, T2_1))') if CorrectFreq: start = robjects.r('list(E01=.100, df=0 , phi=0. , T2_1=.100)') lower = robjects.r('list(E01=1e-6, df=-50. , phi=-3.14 , T2_1=.001)') upper = robjects.r('list(E01=1.00, df=50. , phi=3.14 , T2_1=.800)') else: start = robjects.r('list(E01=.100, phi= 0. , T2_1=.100)') lower = robjects.r('list(E01=1e-6, phi=-3.13, T2_1=.001)') upper = robjects.r('list(E01=1.00, phi= 3.13, T2_1=.800)') env = fmla.getenvironment() env['Zero'] = Zero env['X'] = X env['Y'] = Y env['XY'] = XY env['tt'] = tt cont = robjects.r('nls.control(maxiter=10000, warnOnly=TRUE, printEval=FALSE)') fit = robjects.r.tryCatch(robjects.r.nls(fmla, start=start, control=cont, lower=lower, upper=upper, algorithm='port')) #, \ #fit = robjects.r.tryCatch(robjects.r.nls(fmla, start=start, control=cont)) #, \ report = r.summary(fit) conv = r['$'](fit,'convergence')[0] #if conv: # print (report) # print ("conv", conv) print ("Conv", r['$'](fit,'convergence')) # T2 print (report) if BiExp: if CorrectFreq: E0 = r['$'](report,'par')[0] # E01 E0 += r['$'](report,'par')[1] # E02 df = r['$'](report,'par')[2] # offset phi = r['$'](report,'par')[3] # phase T2 = r['$'](report,'par')[4] # T2 else: E0 = r['$'](report,'par')[0] # E01 E0 += r['$'](report,'par')[1] # E02 phi = r['$'](report,'par')[2] # phase T2 = r['$'](report,'par')[3] # T2 else: if CorrectFreq: E0 = r['$'](report,'par')[0] # E01 df = r['$'](report,'par')[1] # offset phi = r['$'](report,'par')[2] # phase T2 = r['$'](report,'par')[3] # T2 else: E0 = r['$'](report,'par')[0] # E01 phi = r['$'](report,'par')[1] # phase T2 = r['$'](report,'par')[2] # T2 #phi = 0.907655876627 #phi = 0 #print ("df", df)# = 0 return conv, E0,df,phi,T2 ################################################# # Regress for T2 using rpy2 interface def regressSpec(w, wL, X): #,sigma2=1,intercept=True): # compute s s = -1j*w # TODO, if regression fails, it might be because there is no exponential # term, maybe do a second regression then on a linear model. a = 0 # Linear rT2 = 0.1 # T2 regressed r = robjects.r # Variable shared between R and Python robjects.globalenv['a'] = a robjects.globalenv['rT2'] = rT2 robjects.globalenv['wL'] = wL robjects.globalenv['nb'] = 0 s = robjects.ComplexVector(numpy.array(s)) XX = robjects.ComplexVector(X) Xr = robjects.FloatVector(numpy.real(X)) Xi = robjects.FloatVector(numpy.imag(X)) Xa = robjects.FloatVector(numpy.abs(X)) Xri = robjects.FloatVector(numpy.concatenate((Xr,Xi))) #my_lower = robjects.r('list(a=.001, rT2=.001, nb=.0001)') my_lower = robjects.r('list(a=.001, rT2=.001)') #my_upper = robjects.r('list(a=1.5, rT2=.300, nb =100.)') my_upper = robjects.r('list(a=1.5, rT2=.300)') #my_list = robjects.r('list(a=.2, rT2=0.03, nb=.1)') my_list = robjects.r('list(a=.2, rT2=0.03)') my_cont = robjects.r('nls.control(maxiter=5000, warnOnly=TRUE, printEval=FALSE)') #fmla = robjects.Formula('Xri ~ c(a*Re((wL) / (wL^2+(s+1/rT2)^2 )), a*Im((wL)/(wL^2 + (s+1/rT2)^2 )))') # envelope ##fmla = robjects.Formula('Xri ~ c(a*Re((wL) / (wL^2+(s+1/rT2)^2 )), a*Im((wL)/(wL^2 + (s+1/rT2)^2 )))') # envelope #fmla = robjects.Formula('XX ~ a*(wL) / (wL^2 + (s+1/rT2)^2 )') # complex #fmla = robjects.Formula('Xa ~ abs(a*(wL) / (wL^2 + (s+1/rT2)^2 )) + nb') # complex fmla = robjects.Formula('Xa ~ abs(a*(wL) / (wL^2 + (s+1/rT2)^2 ))') # complex env = fmla.getenvironment() env['s'] = s env['Xr'] = Xr env['Xa'] = Xa env['Xi'] = Xi env['Xri'] = Xri env['XX'] = XX #fit = robjects.r.tryCatch(robjects.r.nls(fmla,start=my_list, control=my_cont)) #, lower=my_lower, algorithm='port')) #, \ fit = robjects.r.tryCatch(robjects.r.nls(fmla, start=my_list, control=my_cont, lower=my_lower, upper=my_upper, algorithm='port')) #, \ report = r.summary(fit) #print report #print r.warnings() a = r['$'](report,'par')[0] rT2 = r['$'](report,'par')[1] nb = r['$'](report,'par')[2] return a, rT2, nb ################################################# # Regress for T2 using rpy2 interface def regressSpecComplex(w, wL, X): #,sigma2=1,intercept=True): # compute s s = -1j*w # TODO, if regression fails, it might be because there is no exponential # term, maybe do a second regression then on a linear model. a = 1 # Linear rT2 = 0.1 # T2 regressed r = robjects.r phi2 = 0 # phase wL2 = wL # Variable shared between R and Python robjects.globalenv['a'] = a robjects.globalenv['rT2'] = rT2 robjects.globalenv['wL'] = wL robjects.globalenv['wL2'] = 0 robjects.globalenv['nb'] = 0 robjects.globalenv['phi2'] = phi2 s = robjects.ComplexVector(numpy.array(s)) XX = robjects.ComplexVector(X) Xr = robjects.FloatVector(numpy.real(X)) Xi = robjects.FloatVector(numpy.imag(X)) Xa = robjects.FloatVector(numpy.abs(X)) Xri = robjects.FloatVector(numpy.concatenate((X.real,X.imag))) robjects.r(''' source('kernel.r') ''') #Kw = robjects.globalenv['Kwri'] #print (numpy.shape(X)) #my_lower = robjects.r('list(a=.001, rT2=.001, nb=.0001)') #my_lower = robjects.r('list(a=.001, rT2=.001)') # Working my_lower = robjects.r('list(a=.001, rT2=.001, phi2=-3.14, wL2=wL-5)') #my_upper = robjects.r('list(a=1.5, rT2=.300, nb =100.)') my_upper = robjects.r('list(a=3.5, rT2=.300, phi2=3.14, wL2=wL+5)') #my_list = robjects.r('list(a=.2, rT2=0.03, nb=.1)') my_list = robjects.r('list(a=.2, rT2=0.03, phi2=0, wL2=wL)') my_cont = robjects.r('nls.control(maxiter=5000, warnOnly=TRUE, printEval=FALSE)') #fmla = robjects.Formula('Xri ~ c(a*Re((wL) / (wL^2+(s+1/rT2)^2 )), a*Im((wL)/(wL^2 + (s+1/rT2)^2 )))') # envelope #fmla = robjects.Formula('Xi ~ Im(a*(sin(phi2)*s + ((1/rT2)*sin(phi2)) + wL*cos(phi2)) / (wL^2+(s+1/rT2)^2 ))') # envelope #fmla = robjects.Formula('Xri ~ c(Re(a*(sin(phi2)*s + ((1/rT2)*sin(phi2)) + wL*cos(phi2)) / (wL^2+(s+1/rT2)^2 )), Im(a*(sin(phi2)*s + ((1/rT2)*sin(phi2)) + wL*cos(phi2)) / (wL^2+(s+1/rT2)^2 )))') # envelope #fmlar = robjects.Formula('Xr ~ (Kwr(a, phi2, s, rT2, wL)) ') # envelope #fmlai = robjects.Formula('Xi ~ (Kwi(a, phi2, s, rT2, wL)) ') # envelope fmla = robjects.Formula('Xri ~ c(Kwr(a, phi2, s, rT2, wL2), Kwi(a, phi2, s, rT2, wL2) ) ') # envelope #fmla = robjects.Formula('Xri ~ (Kwri(a, phi2, s, rT2, wL)) ') # envelope #fmla = robjects.Formula('Xa ~ (abs(a*(sin(phi2)*s + ((1/rT2)*sin(phi2)) + wL*cos(phi2)) / (wL^2+(s+1/rT2)^2 )))') # envelope #fmla = robjects.Formula('XX ~ a*(wL) / (wL^2 + (s+1/rT2)^2 )') # complex #fmla = robjects.Formula('Xa ~ abs(a*(wL) / (wL^2 + (s+1/rT2)^2 )) + nb') # complex #fmla = robjects.Formula('Xri ~ c(a*Re((wL) / (wL^2+(s+1/rT2)^2 )), a*Im((wL)/(wL^2 + (s+1/rT2)^2 )))') # envelope # self.Gw[iw, iT2] = ((np.sin(phi2) * (alpha + 1j*self.w[iw]) + self.wL*np.cos(phi2)) / \ # (self.wL**2 + (alpha+1.j*self.w[iw])**2 )) # self.Gw[iw, iT2] = ds * self.sc*((np.sin(phi2)*( alpha + 1j*self.w[iw]) + self.wL*np.cos(phi2)) / \ # (self.wL**2 + (alpha+1.j*self.w[iw])**2 )) # Works Amplitude Only! #fmla = robjects.Formula('Xa ~ abs(a*(wL) / (wL^2 + (s+1/rT2)^2 ))') # complex env = fmla.getenvironment() env['s'] = s env['Xr'] = Xr env['Xa'] = Xa env['Xi'] = Xi env['Xri'] = Xri env['XX'] = XX fit = robjects.r.tryCatch(robjects.r.nls(fmla,start=my_list, control=my_cont)) #, lower=my_lower, algorithm='port')) #, \ #fitr = robjects.r.tryCatch(robjects.r.nls(fmlar, start=my_list, control=my_cont, lower=my_lower, upper=my_upper, algorithm='port')) #, \ #env = fmlai.getenvironment() #fiti = robjects.r.tryCatch(robjects.r.nls(fmlai, start=my_list, control=my_cont, lower=my_lower, upper=my_upper, algorithm='port')) #, \ #reportr = r.summary(fitr) #reporti = r.summary(fiti) report = r.summary(fit) #print( report ) #exit() #print( reportr ) #print( reporti ) #exit() #print r.warnings() #a = (r['$'](reportr,'par')[0] + r['$'](reporti,'par')[0]) / 2. #rT2 = (r['$'](reportr,'par')[1] + r['$'](reporti,'par')[1]) / 2. #nb = (r['$'](reportr,'par')[2] + r['$'](reporti,'par')[2]) / 2. a = r['$'](report,'par')[0] rT2 = r['$'](report,'par')[1] nb = r['$'](report,'par')[2] #phi2 print ("Python wL2", r['$'](report,'par')[3] ) print ("Python zeta", r['$'](report,'par')[2] ) return a, rT2, nb ################################################################### ################################################################### ################################################################### if __name__ == "__main__": dt = .0001 T2 = .1 omega = 2000.*2*numpy.pi phi = .0 T = 8.*T2 t = numpy.arange(0, T, dt) # Synthetic data, simple single decaying sinusoid # with a single decay parameter and gaussian noise added data = numpy.exp(-t/T2) * numpy.sin(omega * t + phi) + numpy.random.normal(0,.05,len(t)) \ + numpy.random.randint(-1,2,len(t))*numpy.random.exponential(.2,len(t)) cdata = numpy.exp(-t/T2) * numpy.sin(omega * t + phi) #+ numpy.random.normal(0,.25,len(t)) #data = numpy.random.normal(0,.25,len(t)) sigma2 = numpy.std(data[::-len(data)/4]) #sigma2 = numpy.var(data[::-len(data)/4]) print("sigma2", sigma2) [peaks,times,indices] = peakPicker(data, omega, dt) [b1,b2,rT2] = regressCurve(peaks,times) print("rT2 nonweighted", rT2) [b1,b2,rT2] = regressCurve(peaks,times,sigma2) print("rT2 weighted", rT2) envelope = numpy.exp(-t/T2) renvelope = numpy.exp(-t/rT2) #outf = file('regress.txt','w') #for i in range(len(times)): # outf.write(str(times[i]) + " " + str(peaks[i]) + "\n") #outf.close() plt.plot(t,data, 'b') plt.plot(t,cdata, 'g', linewidth=1) plt.plot(t,envelope, color='violet', linewidth=4) plt.plot(t,renvelope, 'r', linewidth=4) plt.plot(times, numpy.array(peaks), 'bo', markersize=8, alpha=.25) plt.legend(['noisy data','clean data','real envelope','regressed env','picks']) plt.savefig("regression.pdf") # FFT check fourier = fft(data) plt.figure() freq = fftfreq(len(data), d=dt) plt.plot(freq, (fourier.real)) plt.show() # TODO do a bunch in batch mode to see if T2 estimate is better with or without # weighting and which model is best. # TODO try with real data # TODO test filters (median, FFT, notch) # It looks like weighting is good for relatively low sigma, but for noisy data # it hurts us. Check
Akvo
/Akvo-1.7.2-py3-none-any.whl/akvo/tressel/decay-old.py
decay-old.py
from PyQt5.QtCore import * import numpy as np import scipy.signal as signal import pylab import sys import scipy from scipy import stats import copy import struct, glob from scipy.io.matlab import mio import pandas as pd from numpy import pi from math import floor import matplotlib as mpl from matplotlib.ticker import FuncFormatter import matplotlib.font_manager as fm import matplotlib.pyplot as plt import matplotlib.ticker from matplotlib.ticker import MaxNLocator import seaborn as sns from akvo.tressel.SlidesPlot import deSpine import multiprocessing import itertools import padasip as pa import akvo.tressel.adapt as adapt #import akvo.tressel.cadapt as adapt # cython for more faster import akvo.tressel.decay as decay import akvo.tressel.pca as pca import akvo.tressel.rotate as rotate import akvo.tressel.cmaps as cmaps import akvo.tressel.harmonic as harmonic import cmocean # colormaps for geophysical data # not needed with latest matplotlib #plt.register_cmap(name='viridis', cmap=cmaps.viridis) #plt.register_cmap(name='inferno', cmap=cmaps.inferno) #plt.register_cmap(name='inferno_r', cmap=cmaps.inferno_r) #plt.register_cmap(name='magma', cmap=cmaps.magma) #plt.register_cmap(name='magma_r', cmap=cmaps.magma_r) def xxloadGMRBinaryFID( rawfname, info ): """ Reads a single binary GMR file and fills into DATADICT """ ################################################################################# # figure out key data indices # Pulse nps = (int)((info["prePulseDelay"])*info["samp"]) npul = (int)(self.pulseLength[0]*self.samp) #+ 100 # Data nds = nps+npul+(int)((self.deadTime)*self.samp); # indice pulse 1 data starts nd1 = (int)(1.*self.samp) # samples in first pulse invGain = 1./self.RxGain invCGain = self.CurrentGain pulse = "Pulse 1" chan = self.DATADICT[pulse]["chan"] rchan = self.DATADICT[pulse]["rchan"] rawFile = open( rawfname, 'rb') T = N_samp * self.dt TIMES = np.arange(0, T, self.dt) - .0002 # small offset in GMR DAQ? for ipm in range(self.nPulseMoments): buf1 = rawFile.read(4) buf2 = rawFile.read(4) N_chan = struct.unpack('>i', buf1 )[0] N_samp = struct.unpack('>i', buf2 )[0] DATA = np.zeros([N_samp, N_chan+1]) for ichan in range(N_chan): DATADUMP = rawFile.read(4*N_samp) for irec in range(N_samp): DATA[irec,ichan] = struct.unpack('>f', DATADUMP[irec*4:irec*4+4])[0] return DATA, TIMES class SNMRDataProcessor(QObject): """ Revised class for preprocessing sNMR Data. Derived types can read GMR files """ def __init__(self): QObject.__init__(self) self.numberOfMoments = 0 self.numberOfPulsesPerMoment = 0 self.pulseType = "NONE" self.transFreq = 0 self.pulseLength = np.zeros(1) self.nPulseMoments = 0 self.dt = 0 def mfreqz(self, b,a=1): """ Plots the frequency response of a filter specified with a and b weights """ import scipy.signal as signal pylab.figure(124) w,h = signal.freqz(b,a) w /= max(w) w *= .5/self.dt h_dB = 20 * pylab.log10 (abs(h)) pylab.subplot(211) #pylab.plot(w/max(w),h_dB) pylab.plot(w,h_dB) pylab.ylim(-150, 5) pylab.ylabel('Magnitude (dB)') #pylab.xlabel(r'Normalized Frequency (x$\pi$rad/sample)') pylab.xlabel(r'Hz') pylab.title(r'Frequency response') pylab.subplot(212) h_Phase = pylab.unwrap(pylab.arctan2(pylab.imag(h), pylab.real(h))) #pylab.plot(w/max(w),h_Phase) pylab.plot(w,h_Phase) pylab.ylabel('Phase (radians)') pylab.xlabel(r'Hz') #pylab.xlabel(r'Normalized Frequency (x$\pi$rad/sample)') pylab.title(r'Phase response') pylab.subplots_adjust(hspace=0.5) def mfreqz2(self, b, a, canvas): "for analysing filt-filt" import scipy.signal as signal canvas.reAx2(False,False) canvas.ax1.tick_params(axis='both', which='major', labelsize=8) canvas.ax2.tick_params(axis='both', which='major', labelsize=8) #canvas.ax2.tick_params(axis='both', which='minor', labelsize=6) #pylab.figure(124) w,h = signal.freqz(b,a) w /= max(w) w *= .5/self.dt h_dB = 20 * pylab.log10(abs(h*h) + 1e-16) #ab.subplot(211) #pylab.plot(w/max(w),h_dB) canvas.ax1.plot(w,h_dB) canvas.ax1.set_ylim(-150, 5) canvas.ax1.set_ylabel('Magnitude [db]', fontsize=8) #pylab.xlabel(r'Normalized Frequency (x$\pi$rad/sample)') canvas.ax1.set_xlabel(r'[Hz]', fontsize=8) canvas.ax1.set_title(r'Frequency response', fontsize=8) canvas.ax1.grid(True) tt = np.arange(0, .02, self.dt) impulse = signal.dimpulse((self.filt_z, self.filt_p, self.filt_k, self.dt), t=tt) #impulse = signal.dstep((self.filt_z, self.filt_p, self.filt_k, self.dt), t=tt) #print impulse #for ii in range(len(impulse[1])): impulse_dB = 20.*np.log10(np.abs(np.array(impulse[1][0]))) #canvas.ax2.plot(np.array(impulse[0]), impulse_dB) canvas.ax2.plot(np.array(impulse[0]), impulse[1][0]) #h_Phase = pylab.unwrap(pylab.arctan2(pylab.imag(h), pylab.real(h))) #canvas.ax2.plot(w,h_Phase) canvas.ax2.set_ylabel('response [%]', fontsize=8) canvas.ax2.set_xlabel(r'time [s]', fontsize=8) canvas.ax2.set_title(r'impulse response', fontsize=8) #canvas.ax2.grid(True) canvas.draw() # search for last return impulse #[np.where(impulse[1][0] > .01)[-1]] class GMRDataProcessor(SNMRDataProcessor): # slots progressTrigger = pyqtSignal("int") doneTrigger = pyqtSignal() enableDSPTrigger = pyqtSignal() updateProcTrigger = pyqtSignal() def __init__(self): SNMRDataProcessor.__init__(self) self.maxBusV = 0. self.samp = 50000. # sampling frequency self.dt = 2e-5 # sampling rate self.deadTime = .0055 # instrument dead time before measurement self.prePulseDelay = 0.05 # delay before pulse self.windead = 0. # FD window filter dead time self.pulseType = -1 self.transFreq = -1 self.maxBusV = -1 self.pulseLength = -1 self.interpulseDelay = -1 # for T2, Spin Echo self.repetitionDelay = -1 # delay between first pulse self.nPulseMoments = -1 # Number of pulse moments per stack self.TuneCapacitance = -1 # tuning capac in uF self.nTransVersion = -1 # Transmitter version self.nDAQVersion = -1 # DAQ software version self.nInterleaves = -1 # num interleaves # self.nReceiveChannels = 4 # Num receive channels self.RotatedAmplitude = False # self.DATA = np.zeros(1) # Numpy array to hold all data, dimensions resized based on experiment # self.PULSES = np.zeros(1) # Numpy array to hold all data, dimensions resized based on experiment def Print(self): print ("pulse type", self.pulseType) print ("maxBusV", self.maxBusV) print ("inner pulse delay", self.interpulseDelay) print ("tuning capacitance", self.TuneCapacitance) print ("sampling rate", self.samp) print ("dt", self.dt) print ("dead time", self.deadTime) print ("pre pulse delay", self.prePulseDelay) print ("number of pulse moments", self.nPulseMoments) print ("pulse Length", self.pulseLength) print ("trans freq", self.transFreq) def readHeaderFile(self, FileName): HEADER = np.loadtxt(FileName) pulseTypeDict = { 1 : lambda: "FID", 2 : lambda: "T1", 3 : lambda: "SPINECHO", 4 : lambda: "4PhaseT1" } pulseLengthDict = { 1 : lambda x: np.ones(1) * x, 2 : lambda x: np.ones(2) * x, 3 : lambda x: np.array([x, 2.*x]), 4 : lambda x: np.ones(2) * x } self.pulseType = pulseTypeDict.get((int)(HEADER[0]))() self.transFreq = HEADER[1] self.maxBusV = HEADER[2] self.pulseLength = pulseLengthDict.get((int)(HEADER[0]))(1e-3*HEADER[3]) self.interpulseDelay = 1e-3*HEADER[4] # for T2, Spin Echo self.repetitionDelay = HEADER[5] # delay between first pulse self.nPulseMoments = (int)(HEADER[6]) # Number of pulse moments per stack self.TuneCapacitance = HEADER[7] # tuning capacitance in uF self.nTransVersion = HEADER[8] # Transmitter version self.nDAQVersion = HEADER[9] # DAQ software version self.nInterleaves = HEADER[10] # num interleaves self.Instrument = "GMR" self.gain() # default self.samp = 50000. # sampling frequency self.dt = 2e-5 # sampling rate # newer header files contain 64 entries if self.nDAQVersion >= 2: #self.deadtime = HEADER[11] #self.unknown = HEADER[12] #self.PreAmpGain = HEADER[13] self.samp = HEADER[14] # sampling frequency self.dt = 1./self.samp # sampling rate self.deadTime = .0055 # instrument dead time before measurement self.prePulseDelay = 0.05 # delay before pulse #exit() def gain(self): ####################################################### # Circuit gain # From MRSMatlab w = 2*np.pi*self.transFreq # 1e6 due to uF of reported capacitance L_coil = 1e6/(self.TuneCapacitance*(w**2)) R_coil = 1. Z1_in = .5 + 1j*.5*w Z2_in = 1./(1j*w*.000001616) Z_eq_inv = (1./Z1_in) + (1./Z2_in) Zeq = 1./Z_eq_inv Zsource = R_coil + 1j*w*L_coil voltage_in = Zeq / (Zsource + Zeq) self.circuitGain = np.abs(voltage_in) self.circuitPhase_deg = (180/np.pi)+np.angle(voltage_in) circuitImpedance_ohms = np.abs(Zsource + Zeq) ###################################################### # PreAmp gain if self.nTransVersion == 4: self.PreAmpGain = 1000. elif self.nTransVersion == 1 or self.nTransVersion == 2 or self.nTransVersion == 3 or self.nTransVersion == 6: self.PreAmpGain = 500. else: print ("unsupported transmitter version") exit(1) # Total Receiver Gain self.RxGain = self.circuitGain * self.PreAmpGain ##################################################### # Current gain if floor(self.nDAQVersion) == 1: self.CurrentGain = 150. elif floor(self.nDAQVersion) == 2: self.CurrentGain = 180. def updateProgress(self): pass def TDSmartStack(self, outlierTest, MADcutoff, canvas): fs = 10 # fontsize #print("Line 300 in mrsurvey") Stack = {} # align for stacking and modulate for pulse in self.DATADICT["PULSES"]: stack = np.zeros(( len(self.DATADICT[pulse]["chan"]), self.DATADICT["nPulseMoments"],\ len(self.DATADICT["stacks"]), len(self.DATADICT[pulse]["TIMES"]) )) for ipm in range(self.DATADICT["nPulseMoments"]): istack = 0 for sstack in self.DATADICT["stacks"]: if self.pulseType == "FID" or pulse == "Pulse 2": if self.Instrument == "MIDI 2": mod = 1 elif self.Instrument == "GMR" and floor(self.nDAQVersion) < 2: mod = 1 else: mod = (-1.)**(ipm%2) * (-1.)**(sstack%2) elif self.pulseType == "T1": #mod = (-1.)**(sstack%2) #mod = (-1)**(ipm%2) * (-1)**(sstack%2) #mod = (-1)**(ipm%2) * (-1.**(((sstack-1)/2)%2)) #print("mod", mod, ipm, sstack, (-1.)**(ipm%2), -1.0**(((sstack-1)/2)%2 )) #mod = (-1.)**((ipm+1)%2) * (-1.**(((sstack)/2)%2)) #mod = (-1.)**((ipm-1)%2) * (-1.)**((sstack-1)%2) #mod = 1 # (-1.**(((sstack-1)/2)%2)) # These two give great noise estimate #qcycler = np.array([1,-1,-1,1]) #scycler = np.array([1,-1,1,-1]) qcycler = np.array([ 1, 1]) scycler = np.array([ 1, 1]) mod = qcycler.take([ipm], mode='wrap')*scycler.take([sstack], mode='wrap') #mod = (-1.)**(ipm%2) * (-1.)**(sstack%2) elif self.pulseType == "4PhaseT1": mod = (-1.)**(ipm%2) * (-1.**(((sstack-1)/2)%2)) ichan = 0 for chan in self.DATADICT[pulse]["chan"]: stack[ichan,ipm,istack,:] += mod*self.DATADICT[pulse][chan][ipm][sstack] ichan += 1 istack += 1 Stack[pulse] = stack ######################################### # simple stack and plot of simple stack # ######################################### canvas.reAxH2(np.shape(stack)[0], False, False) axes = canvas.fig.axes SimpleStack = {} VarStack = {} for pulse in self.DATADICT["PULSES"]: SimpleStack[pulse] = {} VarStack[pulse] = {} ichan = 0 for chan in self.DATADICT[pulse]["chan"]: SimpleStack[pulse][chan] = 1e9*np.average( Stack[pulse][ichan], 1 ) VarStack[pulse][chan] = 1e9*np.std( Stack[pulse][ichan], 1 ) ax1 = axes[ 2*ichan ] #ax1.get_yaxis().get_major_formatter().set_useOffset(False) y_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False) ax1.yaxis.set_major_formatter(y_formatter) ax1.plot( 1e3*self.DATADICT[pulse]["TIMES"], np.average( SimpleStack[pulse][chan], 0 )) #, color='darkblue' ) ax1.set_title("Ch." + str(chan) + ": avg FID", fontsize=fs) ax1.set_xlabel(r"time (ms)", fontsize=fs) if ichan == 0: ax1.set_ylabel(r"signal (nV)", fontsize=fs) else: plt.setp(ax1.get_yticklabels(), visible=False) plt.setp(ax1.get_yaxis().get_offset_text(), visible=False) # if ichan == 1: # canvas.ax2.plot( 1e3*self.DATADICT[pulse]["TIMES"], np.average( SimpleStack[pulse][chan], 0 ), color='darkblue' ) # canvas.ax2.set_title("Ch." + str(chan) + ": total average FID", fontsize=8) # canvas.ax2.set_xlabel(r"time [ms]", fontsize=8) # if ichan == 2: # canvas.ax3.plot( 1e3*self.DATADICT[pulse]["TIMES"], np.average( SimpleStack[pulse][chan], 0 ), color='darkblue' ) # canvas.ax3.set_title("Ch." + str(chan) + ": total average FID", fontsize=8) # canvas.ax3.set_xlabel(r"time [ms]", fontsize=8) # if ichan == 3: # canvas.ax4.plot( 1e3*self.DATADICT[pulse]["TIMES"], np.average( SimpleStack[pulse][chan], 0 ), color='darkblue' ) # canvas.ax4.set_title("Ch." + str(chan) + ": total average FID", fontsize=8) # canvas.ax4.set_xlabel(r"time [ms]", fontsize=8) ichan += 1 ######################### # Oulier rejectig stack # ######################### if outlierTest == "MAD": MADStack = {} VarStack = {} #1.4826 is assumption of gaussian noise madstack = np.zeros(( len(self.DATADICT[pulse]["chan"]),\ self.DATADICT["nPulseMoments"], len(self.DATADICT[pulse]["TIMES"]) )) varstack = np.zeros(( len(self.DATADICT[pulse]["chan"]),\ self.DATADICT["nPulseMoments"], len(self.DATADICT[pulse]["TIMES"]) )) for pulse in self.DATADICT["PULSES"]: MADStack[pulse] = {} VarStack[pulse] = {} ichan = 0 for chan in self.DATADICT[pulse]["chan"]: ax1 = axes[ 2*ichan ] for ipm in range(self.DATADICT["nPulseMoments"]): # # brutal loop over time, can this be vectorized? # for it in range(len(self.DATADICT[pulse]["TIMES"])): # x = 1e9 *Stack[pulse][ichan,ipm,:,it] # MAD = 1.4826 * np.median( np.abs(x-np.median(x)) ) # good = 0 # for istack in self.DATADICT["stacks"]: # if (np.abs(x[istack-1]-np.median(x))) / MAD < 2: # good += 1 # madstack[ ichan, ipm, it ] += x[istack-1] # else: # pass # madstack[ichan, ipm, it] /= good # percent = int(1e2* (float)(ipm) / (float)(self.DATADICT["nPulseMoments"]) ) # self.progressTrigger.emit(percent) # Vectorized version of above...much, much faster x = 1e9*copy.deepcopy(Stack[pulse][ichan][ipm,:,:]) # stack and time indices tile_med = np.tile( np.median(x, axis=0), (np.shape(x)[0],1)) MAD = MADcutoff * np.median(np.abs(x - tile_med), axis=0) tile_MAD = np.tile( MAD, (np.shape(x)[0],1)) good = np.abs(x-tile_med)/tile_MAD < 2. # 1.4826 # 2 madstack[ichan][ipm] = copy.deepcopy( np.ma.masked_array(x, good != True).mean(axis=0) ) varstack[ichan][ipm] = copy.deepcopy( np.ma.masked_array(x, good != True).std(axis=0) ) # reporting percent = int(1e2* (float)((ipm)+ichan*self.DATADICT["nPulseMoments"]) / (float)(self.DATADICT["nPulseMoments"] * len(self.DATADICT[pulse]["chan"]))) self.progressTrigger.emit(percent) ax1.plot( 1e3*self.DATADICT[pulse]["TIMES"], np.average( madstack[ichan], 0 ))# , color='darkred') MADStack[pulse][chan] = madstack[ichan] VarStack[pulse][chan] = varstack[ichan] ichan += 1 self.DATADICT["stack"] = MADStack else: self.DATADICT["stack"] = SimpleStack ######################################### # Plot Fourier Transform representation # ######################################### # canvas.fig.subplots_adjust(right=0.8) # cbar_ax = canvas.fig.add_axes([0.85, 0.1, 0.015, 0.355]) # cbar_ax.ticklabel_format(style='sci', scilimits=(0,0), axis='y') im2 = [] im1 = [] for pulse in self.DATADICT["PULSES"]: ichan = 0 axes = canvas.fig.axes vvmin = 1e10 vvmax = 0 for chan in self.DATADICT[pulse]["chan"]: ax1 = axes[2*ichan ] ax2 = axes[2*ichan+1] # TODO fix hard coded number if outlierTest == "MAD": X = np.fft.rfft( MADStack[pulse][chan][0,:] ) nu = np.fft.fftfreq(len( MADStack[pulse][chan][0,:]), d=self.dt) else: X = np.fft.rfft( SimpleStack[pulse][chan][0,:] ) nu = np.fft.fftfreq(len( SimpleStack[pulse][chan][0,:]), d=self.dt) nu = nu[0:len(X)] nu[-1] = np.abs(nu[-1]) df = nu[1] - nu[0] of = 0 istart = int((self.transFreq-50.)/df) iend = int((self.transFreq+50.)/df) of = nu[istart] def freqlabel(xxx, pos): return '%1.0f' %(of + xxx*df) formatter = FuncFormatter(freqlabel) SFFT = np.zeros( (self.DATADICT["nPulseMoments"], len(X)), dtype=np.complex64 ) SFFT[0,:] = X for ipm in range(1, self.DATADICT["nPulseMoments"]): if outlierTest == "MAD": SFFT[ipm,:] = np.fft.rfft( MADStack[pulse][chan][ipm,:] ) else: SFFT[ipm,:] = np.fft.rfft( SimpleStack[pulse][chan][ipm,:] ) # convert to dB and add colorbars #db = 20.*np.log10(np.abs(SFFT[:,istart:iend])) db = (np.abs(SFFT[:,istart:iend])) #db = (np.real(SFFT[:,istart:iend])) #db = (np.imag(SFFT[:,istart:iend])) #dbr = (np.real(SFFT[:,istart:iend])) #db = (np.imag(SFFT[:,istart:iend])) vvmin = min(vvmin, np.min(db) + 1e-16 ) vvmax = max(vvmax, np.max(db) + 1e-16 ) im2.append(ax2.matshow( db, aspect='auto', cmap=cmocean.cm.ice, vmin=vvmin, vmax=vvmax)) #im1.append(ax1.matshow( dbr, aspect='auto')) #, vmin=vvmin, vmax=vvmax)) #im2.append(ax2.matshow( db, aspect='auto', vmin=vvmin, vmax=vvmax)) #im2 = ax2.matshow( db, aspect='auto', cmap=cmocean.cm.ice, vmin=vvmin, vmax=vvmax) if ichan == 0: #ax2.set_ylabel(r"$q$ (A $\cdot$ s)", fontsize=8) ax2.set_ylabel(r"pulse index", fontsize=10) #ax1.set_ylabel(r"FID (nV)", fontsize=8) else: #ax2.yaxis.set_ticklabels([]) plt.setp(ax2.get_yticklabels(), visible=False) ax2.xaxis.set_major_formatter(formatter) ax2.xaxis.set_ticks_position('bottom') ax2.xaxis.set_major_locator(MaxNLocator(3)) y_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False) ax2.yaxis.set_major_formatter(y_formatter) #if chan == self.DATADICT[pulse]["chan"][-1]: #cb2 = canvas.fig.colorbar(im2, cax=cbar_ax, format='%1.0e') #cb2 = canvas.fig.colorbar(im2[0], ax=ax2, format='%1.0e', orientation='horizontal') #cb2 = canvas.fig.colorbar(im2, ax=ax2, format='%1.0e', orientation='horizontal') #cb2.ax.tick_params(axis='both', which='major', labelsize=8) #cb2.set_label("signal (dB)", fontsize=8) ichan += 1 canvas.fig.subplots_adjust(hspace=.35, wspace=.15, left=.15, right=.8 )#left=None, bottom=None, right=None, top=None, wspace=None, hspace=None) deSpine(ax1) #cb1 = canvas.fig.colorbar(im, ax=axes[0::2], format='%1.0e', orientation='horizontal', shrink=.35, aspect=30) #cb1.ax.tick_params(axis='both', which='major', labelsize=8) #cb1.set_label("$\mathcal{V}_N$ (nV)", fontsize=8) cb2 = canvas.fig.colorbar(im2[-1], ax=axes[1::2], format='%1.0e', orientation='horizontal', shrink=.35, aspect=30) cb2.ax.tick_params(axis='both', which='major', labelsize=fs) cb2.set_label(r"$\left| \mathcal{V}_N \right|$ (nV)", fontsize=fs) #canvas.fig.tight_layout() canvas.draw() self.doneTrigger.emit() def harmonicModel(self, nF, \ f0, f0K1, f0KN, f0Ks, f0ns, \ f1, f1K1, f1KN, f1Ks, \ Nsearch, Bounds, procRefs, \ plot, canvas): """ nF = number of base frequencies, must be 1 or 2 f0 = first base frequency f0K1 = first harmonic to model for first base frequency f0KN = last harmonic to model for the first base frequency f0Ks = subharmonic spacing, set to 1 for no subharmonics. f0Ns = number of segments for f0 f1 = second base frequency f1K1 = first harmonic to model for second base frequency f1KN = last harmonic to model for the second base frequency f1Ks = subharmonic spacing for the second base frequency, set to 1 for no subharmonics. Nsearch = the number of harmonics to use when determining base frequency bounds = 1/2 the width of the space where baseline frequency will be searched procRefs = should the reference loops be processed as well plot = should Akvo plot the results canvas = mpl plotting axis """ TDPlot = True fs = 10 if plot: canvas.reAx2(shy=False) canvas.ax1.set_ylabel(r"signal (nV)", fontsize=fs) canvas.ax2.set_ylabel(r"signal (nV)", fontsize=fs) if TDPlot: canvas.ax2.set_xlabel(r"time (s)", fontsize=fs) else: canvas.ax2.set_xlabel(r"frequency (Hz)", fontsize=fs) canvas.ax1.set_yscale('log') canvas.ax2.set_yscale('log') # Data iFID = 0 # stores previous f0 as starting point in non-linear search f0p = {} f1p = {} for pulse in self.DATADICT["PULSES"]: for rchan in self.DATADICT[pulse]["rchan"]: f0p[rchan] = f0 f1p[rchan] = f1+1e-1 for chan in self.DATADICT[pulse]["chan"]: f0p[chan] = f0 f1p[chan] = f1+1e-1 for pulse in self.DATADICT["PULSES"]: Nseg = int( np.floor(len( self.DATADICT[pulse]["TIMES"] ) / f0ns) ) for istack in self.DATADICT["stacks"]: for ipm in range(self.DATADICT["nPulseMoments"]): if plot: canvas.softClear() mmaxr = 0 mmaxd = 0 if procRefs: for ichan in self.DATADICT[pulse]["rchan"]: if TDPlot: canvas.ax1.plot( self.DATADICT[pulse]["TIMES"], 1e9*self.DATADICT[pulse][ichan][ipm][istack], alpha=.5) mmaxr = max( mmaxr, np.max(1e9*self.DATADICT[pulse][ichan][ipm][istack])) else: ww = np.fft.fftfreq(len(self.DATADICT[pulse][ichan][ipm][istack]), d=self.dt) X = np.fft.rfft(self.DATADICT[pulse][ichan][ipm][istack]) canvas.ax1.plot(np.abs(ww[0:len(X)]), np.abs(X), alpha=.5) canvas.ax1.set_prop_cycle(None) canvas.ax1.set_ylim(-mmaxr, mmaxr) for ichan in self.DATADICT[pulse]["chan"]: if TDPlot: canvas.ax2.plot( self.DATADICT[pulse]["TIMES"], 1e9*self.DATADICT[pulse][ichan][ipm][istack], alpha=.5) mmaxd = max( mmaxd, np.max(1e9*self.DATADICT[pulse][ichan][ipm][istack])) else: ww = np.fft.fftfreq(len(self.DATADICT[pulse][ichan][ipm][istack]), d=self.dt) X = np.fft.rfft(self.DATADICT[pulse][ichan][ipm][istack]) canvas.ax2.plot(np.abs(ww[0:len(X)]), np.abs(X), alpha=.5) canvas.ax2.set_prop_cycle(None) canvas.ax2.set_ylim(-mmaxd, mmaxd) if procRefs: for ichan in self.DATADICT[pulse]["rchan"]: if nF == 1: for iseg in range(f0ns): if iseg < f0ns-1: self.DATADICT[pulse][ichan][ipm][istack][iseg*Nseg:(iseg+1)*Nseg], f0p[ichan] = \ harmonic.minHarmonic( self.DATADICT[pulse][ichan][ipm][istack][iseg*Nseg:(iseg+1)*Nseg], \ self.samp, self.DATADICT[pulse]["TIMES"][iseg*Nseg:(iseg+1)*Nseg], \ f0p[ichan], f0K1, f0KN, f0Ks, Bounds, Nsearch ) else: self.DATADICT[pulse][ichan][ipm][istack][iseg*Nseg::], f0p[ichan] = \ harmonic.minHarmonic( self.DATADICT[pulse][ichan][ipm][istack][iseg*Nseg::], \ self.samp, self.DATADICT[pulse]["TIMES"][iseg*Nseg::], \ f0p[ichan], f0K1, f0KN, f0Ks, Bounds, Nsearch ) elif nF == 2: for iseg in range(f0ns): if iseg < f0ns-1: self.DATADICT[pulse][ichan][ipm][istack][iseg*Nseg:(iseg+1)*Nseg], f0p[ichan], f1p[ichan] = \ harmonic.minHarmonic2( self.DATADICT[pulse][ichan][ipm][istack][iseg*Nseg:(iseg+1)*Nseg],\ self.samp, self.DATADICT[pulse]["TIMES"][iseg*Nseg:(iseg+1)*Nseg], \ f0p[ichan], f0K1, f0KN, f0Ks, \ f1p[ichan], f1K1, f1KN, f1Ks, Bounds, Nsearch ) else: self.DATADICT[pulse][ichan][ipm][istack][iseg*Nseg::], f0p[ichan], f1p[ichan] = \ harmonic.minHarmonic2( self.DATADICT[pulse][ichan][ipm][istack][iseg*Nseg::],\ self.samp, self.DATADICT[pulse]["TIMES"][iseg*Nseg::], \ f0p[ichan], f0K1, f0KN, f0Ks, \ f1p[ichan], f1K1, f1KN, f1Ks, Bounds, Nsearch ) # plot if plot: if TDPlot: canvas.ax1.plot( self.DATADICT[pulse]["TIMES"], 1e9*self.DATADICT[pulse][ichan][ipm][istack], \ label = pulse + " ipm=" + str(ipm) + " istack=" + str(istack) + " rchan=" + str(ichan)) else: ww = np.fft.fftfreq(len(self.DATADICT[pulse][ichan][ipm][istack]), d=self.dt) X = np.fft.rfft(self.DATADICT[pulse][ichan][ipm][istack]) canvas.ax1.plot(np.abs(ww[0:len(X)]), np.abs(X),\ label = pulse + " ipm=" + str(ipm) + " istack=" + str(istack) + " rchan=" + str(ichan)) for ichan in self.DATADICT[pulse]["chan"]: if nF == 1: for iseg in range(f0ns): if iseg < f0ns-1: self.DATADICT[pulse][ichan][ipm][istack][iseg*Nseg:(iseg+1)*Nseg], f0p[ichan] = \ harmonic.minHarmonic( self.DATADICT[pulse][ichan][ipm][istack][iseg*Nseg:(iseg+1)*Nseg], self.samp, self.DATADICT[pulse]["TIMES"][iseg*Nseg:(iseg+1)*Nseg], \ f0p[ichan], f0K1, f0KN, f0Ks, Bounds, Nsearch ) else: self.DATADICT[pulse][ichan][ipm][istack][iseg*Nseg::], f0p[ichan] = \ harmonic.minHarmonic( self.DATADICT[pulse][ichan][ipm][istack][iseg*Nseg::], self.samp, self.DATADICT[pulse]["TIMES"][iseg*Nseg::], \ f0p[ichan], f0K1, f0KN, f0Ks, Bounds, Nsearch ) elif nF == 2: for iseg in range(f0ns): if iseg < f0ns-1: self.DATADICT[pulse][ichan][ipm][istack][iseg*Nseg:(iseg+1)*Nseg], f0p[ichan], f1p[ichan] = \ harmonic.minHarmonic2( self.DATADICT[pulse][ichan][ipm][istack][iseg*Nseg:(iseg+1)*Nseg],\ self.samp, self.DATADICT[pulse]["TIMES"][iseg*Nseg:(iseg+1)*Nseg], \ f0p[ichan], f0K1, f0KN, f0Ks, \ f1p[ichan], f1K1, f1KN, f1Ks, Bounds, Nsearch ) else: self.DATADICT[pulse][ichan][ipm][istack][iseg*Nseg::], f0p[ichan], f1p[ichan] = \ harmonic.minHarmonic2( self.DATADICT[pulse][ichan][ipm][istack][iseg*Nseg::],\ self.samp, self.DATADICT[pulse]["TIMES"][iseg*Nseg::], \ f0p[ichan], f0K1, f0KN, f0Ks, \ f1p[ichan], f1K1, f1KN, f1Ks, Bounds, Nsearch ) # plot if plot: if TDPlot: canvas.ax2.plot( self.DATADICT[pulse]["TIMES"], 1e9*self.DATADICT[pulse][ichan][ipm][istack], \ label = pulse + " ipm=" + str(ipm) + " istack=" + str(istack) + " chan=" + str(ichan)) else: ww = np.fft.fftfreq(len(self.DATADICT[pulse][ichan][ipm][istack]), d=self.dt) X = np.fft.rfft(self.DATADICT[pulse][ichan][ipm][istack]) canvas.ax2.plot(np.abs(ww[0:len(X)]), np.abs(X), \ label = pulse + " ipm=" + str(ipm) + " istack=" + str(istack) + " chan=" + str(ichan)) if plot: if procRefs: canvas.ax1.legend(prop={'size':fs}, loc='upper right') plt.setp(canvas.ax1.get_xticklabels(), visible=False) canvas.ax2.legend(prop={'size':fs}, loc='upper right') deSpine(canvas.ax1) deSpine(canvas.ax2) canvas.fig.tight_layout() canvas.draw() percent = (int)(1e2*((ipm+istack*self.nPulseMoments)/(self.nPulseMoments*len(self.DATADICT["stacks"])))) self.progressTrigger.emit(percent) iFID += 1 self.doneTrigger.emit() self.updateProcTrigger.emit() self.doneTrigger.emit() def FDSmartStack(self, outlierTest, MADcutoff, canvas): print("FFT stuff") self.dataCubeFFT() Stack = {} # align phase cycling for stacking and modulate for pulse in self.DATADICT["PULSES"]: stack = np.zeros(( len(self.DATADICT[pulse]["chan"]), \ self.DATADICT["nPulseMoments"],\ len(self.DATADICT["stacks"]),\ len(self.DATADICT[pulse][self.DATADICT[pulse]["chan"][0] ]["FFT"]["nu"])//2 + 1),\ dtype=np.complex ) for ipm in range(self.DATADICT["nPulseMoments"]): istack = 0 for sstack in self.DATADICT["stacks"]: if self.pulseType == "FID" or pulse == "Pulse 2": mod = (-1)**(ipm%2) * (-1)**(sstack%2) elif self.pulseType == "4PhaseT1": mod = (-1)**(ipm%2) * (-1)**(((sstack-1)/2)%2) ichan = 0 for chan in self.DATADICT[pulse]["chan"]: #stack[ichan,ipm,istack,:] += mod*self.DATADICT[pulse][chan][ipm][sstack] stack[ichan,ipm,istack,:] += mod*self.DATADICT[pulse][chan]["FFT"][sstack][ipm,:] ichan += 1 istack += 1 Stack[pulse] = stack ######################################### # simple stack and plot of simple stack # ########################################https://faculty.apps.utah.edu/# canvas.reAxH2(np.shape(stack)[0], False, False) axes = canvas.fig.axes SimpleStack = {} VarStack = {} for pulse in self.DATADICT["PULSES"]: SimpleStack[pulse] = {} VarStack[pulse] = {} ichan = 0 for chan in self.DATADICT[pulse]["chan"]: SimpleStack[pulse][chan] = 1e9*np.average( Stack[pulse][ichan], 1 ) VarStack[pulse][chan] = 1e9*np.std( Stack[pulse][ichan], 1 ) ax1 = axes[ 2*ichan ] #ax1.get_yaxis().get_major_formatter().set_useOffset(False) y_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False) ax1.yaxis.set_major_formatter(y_formatter) #ax1.plot( 1e3*self.DATADICT[pulse][chan]["FFT"]["nu"][0:len(SimpleStack[pulse][chan])], np.average(SimpleStack[pulse][chan], 0 )) #, color='darkblue' ) #ax1.pcolor( np.real(SimpleStack[pulse][chan]) ) #, color='darkblue' ) ax1.matshow( np.real(SimpleStack[pulse][chan]), aspect='auto') #, color='darkblue' ) ax1.set_title("Ch." + str(chan) + ": avg FID", fontsize=10) ax1.set_xlabel(r"time (ms)", fontsize=10) if ichan == 0: ax1.set_ylabel(r"signal [nV]", fontsize=10) else: plt.setp(ax1.get_yticklabels(), visible=False) plt.setp(ax1.get_yaxis().get_offset_text(), visible=False) ichan += 1 ######################### # Oulier rejectig stack # ######################### if outlierTest == "MAD": MADStack = {} VarStack = {} #1.4826 is assumption of gaussian noise madstack = np.zeros(( len(self.DATADICT[pulse]["chan"]),\ self.DATADICT["nPulseMoments"],\ len(self.DATADICT[pulse][self.DATADICT[pulse]["chan"][0] ]["FFT"]["nu"])//2 + 1)) varstack = np.zeros(( len(self.DATADICT[pulse]["chan"]),\ self.DATADICT["nPulseMoments"],\ len(self.DATADICT[pulse][self.DATADICT[pulse]["chan"][0] ]["FFT"]["nu"])//2 + 1)) for pulse in self.DATADICT["PULSES"]: MADStack[pulse] = {} VarStack[pulse] = {} ichan = 0 for chan in self.DATADICT[pulse]["chan"]: ax1 = axes[ 2*ichan ] for ipm in range(self.DATADICT["nPulseMoments"]): # # brutal loop over time, can this be vectorized? # for it in range(len(self.DATADICT[pulse]["TIMES"])): # x = 1e9 *Stack[pulse][ichan,ipm,:,it] # MAD = 1.4826 * np.median( np.abs(x-np.median(x)) ) # good = 0 # for istack in self.DATADICT["stacks"]: # if (np.abs(x[istack-1]-np.median(x))) / MAD < 2: # good += 1 # madstack[ ichan, ipm, it ] += x[istack-1] # else: # pass # madstack[ichan, ipm, it] /= good # percent = int(1e2* (float)(ipm) / (float)(self.DATADICT["nPulseMoments"]) ) # self.progressTrigger.emit(percent) # Vectorized version of above...much, much faster x = 1e9*copy.deepcopy(Stack[pulse][ichan][ipm,:,:]) # stack and time indices tile_med = np.tile( np.median(x, axis=0), (np.shape(x)[0],1)) MAD = MADcutoff * np.median(np.abs(x - tile_med), axis=0) tile_MAD = np.tile( MAD, (np.shape(x)[0],1)) good = np.abs(x-tile_med)/tile_MAD < 2. # 1.4826 # 2 madstack[ichan][ipm] = copy.deepcopy( np.ma.masked_array(x, good != True).mean(axis=0) ) varstack[ichan][ipm] = copy.deepcopy( np.ma.masked_array(x, good != True).std(axis=0) ) # reporting percent = int(1e2* (float)((ipm)+ichan*self.DATADICT["nPulseMoments"]) / (float)(self.DATADICT["nPulseMoments"] * len(self.DATADICT[pulse]["chan"]))) self.progressTrigger.emit(percent) ax2 = axes[2*ichan+1] # TODO fix hard coded number #ax1.plot( 1e3*self.DATADICT[pulse]["TIMES"], np.average( madstack[ichan], 0 ))# , color='darkred') MADStack[pulse][chan] = madstack[ichan] VarStack[pulse][chan] = varstack[ichan] ax2.matshow( np.real(MADStack[pulse][chan]), aspect='auto') #, color='darkblue' ) ichan += 1 self.DATADICT["stack"] = MADStack else: self.DATADICT["stack"] = SimpleStack # ######################################### # # Plot Fourier Transform representation # # ######################################### # # # canvas.fig.subplots_adjust(right=0.8) # # cbar_ax = canvas.fig.add_axes([0.85, 0.1, 0.015, 0.355]) # # cbar_ax.ticklabel_format(style='sci', scilimits=(0,0), axis='y') # im2 = [] # im1 = [] # for pulse in self.DATADICT["PULSES"]: # ichan = 0 # axes = canvas.fig.axes # vvmin = 1e10 # vvmax = 0 # for chan in self.DATADICT[pulse]["chan"]: # ax1 = axes[2*ichan ] # ax2 = axes[2*ichan+1] # TODO fix hard coded number # if outlierTest == "MAD": # X = np.fft.rfft( MADStack[pulse][chan][0,:] ) # nu = np.fft.fftfreq(len( MADStack[pulse][chan][0,:]), d=self.dt) # else: # X = np.fft.rfft( SimpleStack[pulse][chan][0,:] ) # nu = np.fft.fftfreq(len( SimpleStack[pulse][chan][0,:]), d=self.dt) # # nu = nu[0:len(X)] # nu[-1] = np.abs(nu[-1]) # df = nu[1] - nu[0] # of = 0 # # istart = int((self.transFreq-50.)/df) # iend = int((self.transFreq+50.)/df) # of = nu[istart] # # def freqlabel(xxx, pos): # return '%1.0f' %(of + xxx*df) # formatter = FuncFormatter(freqlabel) # # SFFT = np.zeros( (self.DATADICT["nPulseMoments"], len(X)), dtype=np.complex64 ) # SFFT[0,:] = X # for ipm in range(1, self.DATADICT["nPulseMoments"]): # if outlierTest == "MAD": # SFFT[ipm,:] = np.fft.rfft( MADStack[pulse][chan][ipm,:] ) # else: # SFFT[ipm,:] = np.fft.rfft( SimpleStack[pulse][chan][ipm,:] ) # # # convert to dB and add colorbars # #db = 20.*np.log10(np.abs(SFFT[:,istart:iend])) # db = (np.abs(SFFT[:,istart:iend])) # #db = (np.real(SFFT[:,istart:iend])) # #dbr = (np.real(SFFT[:,istart:iend])) # #db = (np.imag(SFFT[:,istart:iend])) # # vvmin = min(vvmin, np.min (db)) # vvmax = max(vvmax, np.max (db)) # im2.append(ax2.matshow( db, aspect='auto', cmap=cmocean.cm.ice, vmin=vvmin, vmax=vvmax)) # #im1.append(ax1.matshow( dbr, aspect='auto')) #, vmin=vvmin, vmax=vvmax)) # #im2.append(ax2.matshow( db, aspect='auto', vmin=vvmin, vmax=vvmax)) # #im2 = ax2.matshow( db, aspect='auto', cmap=cmocean.cm.ice, vmin=vvmin, vmax=vvmax) # if ichan == 0: # ax2.set_ylabel(r"$q$ (A $\cdot$ s)", fontsize=8) # else: # #ax2.yaxis.set_ticklabels([]) # plt.setp(ax2.get_yticklabels(), visible=False) # # ax2.xaxis.set_major_formatter(formatter) # ax2.xaxis.set_ticks_position('bottom') # ax2.xaxis.set_major_locator(MaxNLocator(3)) # # y_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False) # ax2.yaxis.set_major_formatter(y_formatter) # # # #if chan == self.DATADICT[pulse]["chan"][-1]: # #cb2 = canvas.fig.colorbar(im2, cax=cbar_ax, format='%1.0e') # # #cb2 = canvas.fig.colorbar(im2[0], ax=ax2, format='%1.0e', orientation='horizontal') # #cb2 = canvas.fig.colorbar(im2, ax=ax2, format='%1.0e', orientation='horizontal') # #cb2.ax.tick_params(axis='both', which='major', labelsize=8) # #cb2.set_label("signal (dB)", fontsize=8) # # ichan += 1 # # # canvas.fig.subplots_adjust(hspace=.1, wspace=.05, left=.075, right=.95 )#left=None, bottom=None, right=None, top=None, wspace=None, hspace=None) # # #cb1 = canvas.fig.colorbar(im, ax=axes[0::2], format='%1.0e', orientation='horizontal', shrink=.35, aspect=30) # #cb1.ax.tick_params(axis='both', which='major', labelsize=8) # #cb1.set_label("$\mathcal{V}_N$ (nV)", fontsize=8) # # cb2 = canvas.fig.colorbar(im2[-1], ax=axes[1::2], format='%1.0e', orientation='horizontal', shrink=.35, aspect=30) # cb2.ax.tick_params(axis='both', which='major', labelsize=8) # cb2.set_label("$\mathcal{V}_N$ (nV)", fontsize=8) #canvas.fig.tight_layout() deSpine(ax1) canvas.draw() self.doneTrigger.emit() def sumData(self, canvas, plusminus, sumAll): print("In sumData", plusminus, sumAll) if plusminus == "sum": splus = "+" else: splus = "-" chans = copy.deepcopy(self.DATADICT[self.DATADICT["PULSES"][0]]["chan"]) #= np.array( ( self.DATADICT[pulse]["chan"][0], ) ) nchan = len(chans) # Sum permutations of two channel combos for ich in range(nchan-1): for ch in chans[ich+1:]: chsum = chans[ich] + splus + ch for pulse in self.DATADICT["PULSES"]: self.DATADICT[pulse][chsum] = {} for ipm in range(self.DATADICT["nPulseMoments"]): self.DATADICT[pulse][chsum][ipm] = {} for istack in self.DATADICT["stacks"]: if plusminus == "sum": self.DATADICT[pulse][chsum][ipm][istack] = self.DATADICT[pulse][chans[ich]][ipm][istack] + self.DATADICT[pulse][ch][ipm][istack] else: self.DATADICT[pulse][chsum][ipm][istack] = self.DATADICT[pulse][chans[ich]][ipm][istack] - self.DATADICT[pulse][ch][ipm][istack] #if chsum == "1+2": #self.DATADICT[pulse]["rchan"].pop() #self.DATADICT[pulse]["rchan"].pop() self.DATADICT[pulse]["chan"].append(chsum) # Sum all channels #sumall = False if sumAll: chsum = "" for ch in chans: chsum += ch + "+" chsum = chsum[0:-1] # remove last "+" for pulse in self.DATADICT["PULSES"]: self.DATADICT[pulse][chsum] = {} for ipm in range(self.DATADICT["nPulseMoments"]): self.DATADICT[pulse][chsum][ipm] = {} for istack in self.DATADICT["stacks"]: self.DATADICT[pulse][chsum][ipm][istack] = copy.deepcopy(self.DATADICT[pulse][chans[0]][ipm][istack]) for ch in chans[1:]: self.DATADICT[pulse][chsum][ipm][istack] += self.DATADICT[pulse][ch][ipm][istack] self.DATADICT[pulse]["chan"].append(chsum) # if nchan > 2: # for ch in chans: # chsum += ch # for ch2 in chans[1::]: # for pulse in self.DATADICT["PULSES"]: # self.DATADICT[pulse][chsum] = {} # for istack in self.DATADICT["stacks"]: # self.DATADICT[pulse][chsum][ipm][istack] = self.DATADICT[pulse][chans[ich]][ipm][istack] + self.DATADICT[pulse][ch][ipm][istack] self.doneTrigger.emit() def quadDet(self, clip, method, loss, canvas): from scipy import signal self.RotatedAmplitude = True wL = self.transFreq * 2*np.pi vL = self.transFreq #T = 50 dt = self.dt #DT = 0.01 CA = {} # corrected amplitude IP = {} # instantaneous phase NR = {} # Noise residual RE = {} # Real channel IM = {} # Imaginary channel # global maximums for plotting CAmax = {} NRmax = {} REmax = {} IMmax = {} E0,phi,df,T2 = 100.,0,0,.2 first = False self.sigma = {} for pulse in self.DATADICT["PULSES"]: CA[pulse] = {} IP[pulse] = {} NR[pulse] = {} RE[pulse] = {} IM[pulse] = {} CAmax[pulse] = 0 NRmax[pulse] = 0 REmax[pulse] = 0 IMmax[pulse] = 0 ichan = 0 self.sigma[pulse] = {} for chan in self.DATADICT[pulse]["chan"]: CA[pulse][chan] = np.zeros( (self.DATADICT["nPulseMoments"], len(self.DATADICT[pulse]["TIMES"])-clip ) ) IP[pulse][chan] = np.zeros( (self.DATADICT["nPulseMoments"], len(self.DATADICT[pulse]["TIMES"])-clip ) ) NR[pulse][chan] = np.zeros( (self.DATADICT["nPulseMoments"], len(self.DATADICT[pulse]["TIMES"])-clip ) ) RE[pulse][chan] = np.zeros( (self.DATADICT["nPulseMoments"], len(self.DATADICT[pulse]["TIMES"])-clip ) ) IM[pulse][chan] = np.zeros( (self.DATADICT["nPulseMoments"], len(self.DATADICT[pulse]["TIMES"])-clip ) ) #QQ = np.average(self.DATADICT[pulse]["Q"], axis=1 ) #for ipm in np.argsort(QQ): for ipm in range(0, self.DATADICT["nPulseMoments"]): #t = self.DATADICT[pulse]["TIMES"] - self.DATADICT[pulse]["PULSE_TIMES"][-1] xn = self.DATADICT["stack"][pulse][chan][ipm,:] ht = signal.hilbert(xn)*np.exp(-1j*wL*self.DATADICT[pulse]["TIMES"]) ############################################################# # Quadrature signal RE[pulse][chan][ipm,:] = np.real(ht[clip::]) # *-1 for negative for consistency with VC ?? IM[pulse][chan][ipm,:] = np.imag(ht[clip::]) REmax[pulse] = max(REmax[pulse], np.max(np.real(ht[clip::]))) IMmax[pulse] = max(IMmax[pulse], np.max(np.imag(ht[clip::]))) ############################################################# # Instantaneous phase IP[pulse][chan][ipm,:] = np.angle(ht)[clip::] ############################################################# # Rotated amplitude if ipm != 0: [success, E0, df, phi, T2] = decay.quadratureDetect2( ht.real, ht.imag, self.DATADICT[pulse]["TIMES"], method, loss, (E0,phi,df,T2)) #[success, E0, df, phi, T2] = decay.quadratureDetect( ht.real, ht.imag, self.DATADICT[pulse]["TIMES"] ) else: [success, E0, df, phi, T2] = decay.quadratureDetect2( ht.real, ht.imag, self.DATADICT[pulse]["TIMES"], method, loss) #[success, E0, df, phi, T2] = decay.quadratureDetect2( ht.real, ht.imag, self.DATADICT[pulse]["TIMES"], (E0,phi,df,T2)) #[success, E0, df, phi, T2] = decay.quadratureDetect( ht.real, ht.imag, self.DATADICT[pulse]["TIMES"] ) #print("success", success, "E0", E0, "phi", phi, "df", df, "T2", T2) D = self.RotateAmplitude( ht.real, ht.imag, phi, df, self.DATADICT[pulse]["TIMES"] ) CA[pulse][chan][ipm,:] = D.imag[clip::] # amplitude data NR[pulse][chan][ipm,:] = D.real[clip::] # noise data CAmax[pulse] = max(CAmax[pulse], np.max(D.imag[clip::]) ) NRmax[pulse] = max(NRmax[pulse], np.max(D.real[clip::]) ) self.sigma[pulse][chan] = np.std(NR[pulse][chan]) # reporting percent = int(1e2* (float)((ipm)+ichan*self.DATADICT["nPulseMoments"]) / (float)(self.DATADICT["nPulseMoments"] * len(self.DATADICT[pulse]["chan"]))) self.progressTrigger.emit(percent) ichan += 1 self.DATADICT[pulse]["TIMES"] = self.DATADICT[pulse]["TIMES"][clip::] self.DATADICT["CA"] = CA self.DATADICT["IP"] = IP self.DATADICT["NR"] = NR self.DATADICT["RE"] = RE self.DATADICT["IM"] = IM self.DATADICT["CAmax"] = CAmax self.DATADICT["NRmax"] = NRmax self.DATADICT["REmax"] = REmax self.DATADICT["IMmax"] = IMmax self.doneTrigger.emit() def plotQuadDet(self, clip, phase, canvas): canvas.reAxH2( len(self.DATADICT[ self.DATADICT["PULSES"][0] ]["chan"] ), False, False) ############### # Plot on GUI # ############### fs = 10 dcmap = cmocean.cm.curl_r #"seismic_r" #cmocean.cm.balance_r #"RdBu" #YlGn" # "coolwarm_r" # diverging canvas.reAxH2( len(self.DATADICT[ self.DATADICT["PULSES"][0] ]["chan"] ), False, False) for pulse in self.DATADICT["PULSES"]: ichan = 0 axes = canvas.fig.axes mmaxr = 0. mmaxi = 0. #if clip > 0: # time_sp = 1e3 * (self.DATADICT[pulse]["TIMES"][clip-1::] - self.DATADICT[pulse]["PULSE_TIMES"][-1] ) #else: # time_sp = 1e3 * (self.DATADICT[pulse]["TIMES"] - self.DATADICT[pulse]["PULSE_TIMES"][-1] ) time_sp = 1e3 * (self.DATADICT[pulse]["TIMES"] - self.DATADICT[pulse]["PULSE_TIMES"][-1] ) QQ = np.average(self.DATADICT[pulse]["Q"], axis=1 ) iQ = np.argsort(QQ) for chan in self.DATADICT[pulse]["chan"]: ax1 = axes[2*ichan ] ax2 = axes[2*ichan+1] if phase == 0: # Re Im im1 = ax1.pcolormesh( time_sp, QQ[iQ], self.DATADICT["RE"][pulse][chan][iQ], cmap=dcmap, \ vmin=-self.DATADICT["REmax"][pulse] , vmax=self.DATADICT["REmax"][pulse] , rasterized=True) im2 = ax2.pcolormesh( time_sp, QQ[iQ], self.DATADICT["IM"][pulse][chan][iQ], cmap=dcmap, \ vmin=-self.DATADICT["IMmax"][pulse], vmax=self.DATADICT["IMmax"][pulse] , rasterized=True ) #im1 = ax1.matshow( self.DATADICT["RE"][pulse][chan][iQ], cmap=dcmap, aspect='auto', \ # vmin=-self.DATADICT["REmax"][pulse] , vmax=self.DATADICT["REmax"][pulse] ) #im2 = ax2.matshow( self.DATADICT["IM"][pulse][chan][iQ], cmap=dcmap, aspect='auto', \ # vmin=-self.DATADICT["REmax"][pulse] , vmax=self.DATADICT["REmax"][pulse] ) if phase == 1: # Amp phase im1 = ax1.pcolormesh( time_sp, QQ[iQ], self.DATADICT["CA"][pulse][chan][iQ], cmap=dcmap, \ vmin=-self.DATADICT["CAmax"][pulse] , vmax=self.DATADICT["CAmax"][pulse], rasterized=True ) #im2 = ax2.pcolormesh( time_sp, QQ, self.DATADICT["IP"][pulse][chan], cmap=cmocean.cm.balance, rasterized=True,\ im2 = ax2.pcolormesh( time_sp, QQ[iQ], self.DATADICT["IP"][pulse][chan][iQ], cmap=cmocean.cm.delta, \ vmin=-np.pi, vmax=np.pi, rasterized=True) if phase == 2: # CA NR im1 = ax1.pcolormesh( time_sp, QQ[iQ], self.DATADICT["CA"][pulse][chan][iQ], cmap=dcmap, \ vmin=-self.DATADICT["CAmax"][pulse] , vmax=self.DATADICT["CAmax"][pulse], rasterized=True ) im2 = ax2.pcolormesh( time_sp, QQ[iQ], self.DATADICT["NR"][pulse][chan][iQ], cmap=dcmap, \ vmin=-self.DATADICT["NRmax"][pulse] , vmax=self.DATADICT["NRmax"][pulse], rasterized=True ) # cb2 = canvas.fig.colorbar(im2, ax=ax2, format='%1.0e') # cb2.set_label("Noise residual (nV)", fontsize=8) # cb2.ax.tick_params(axis='both', which='major', labelsize=8) # cb1 = canvas.fig.colorbar(im1, ax=ax1, format='%1.0e') # cb1.set_label("Phased amplitude (nV)", fontsize=8) # cb1.ax.tick_params(axis='both', which='major', labelsize=8) # cb2 = canvas.fig.colorbar(im2, ax=ax2, format="%1.0e") # cb2.set_label("Phase (rad)", fontsize=8) # cb2.ax.tick_params(axis='both', which='major', labelsize=8) # cb1 = canvas.fig.colorbar(im1, ax=ax1, format="%1.0e") # cb1.set_label("FID (nV)", fontsize=8) # cb1.ax.tick_params(axis='both', which='major', labelsize=8) # if you save these as pdf or eps, there are artefacts # for cbar in [cb1,cb2]: # #cbar.solids.set_rasterized(True) # cbar.solids.set_edgecolor("face") # reporting percent = int(1e2* (float)(ichan)/len(self.DATADICT[pulse]["chan"])) self.progressTrigger.emit(percent) if ichan == 0: ax1.set_ylabel(r"$q$ ( $\mathrm{A}\cdot\mathrm{s}$)", fontsize=fs) ax2.set_ylabel(r"$q$ ( $\mathrm{A}\cdot\mathrm{s}$)", fontsize=fs) else: #ax2.yaxis.set_ticklabels([]) #ax1.yaxis.set_ticklabels([]) plt.setp(ax1.get_yticklabels(), visible=False) plt.setp(ax2.get_yticklabels(), visible=False) ichan += 1 ax1.set_yscale('log') ax2.set_yscale('log') plt.setp(ax1.get_xticklabels(), visible=False) ax1.set_ylim( np.min(QQ), np.max(QQ) ) ax2.set_ylim( np.min(QQ), np.max(QQ) ) ax1.set_xlim( np.min(time_sp), np.max(time_sp) ) ax2.set_xlim( np.min(time_sp), np.max(time_sp) ) #ax2.set_xlabel(r"Time since end of pulse (ms)", fontsize=8) ax2.set_xlabel(r"time (ms)", fontsize=fs) #canvas.fig.subplots_adjust(hspace=.15, wspace=.05, left=.15, right=.85, bottom=.15, top=.9 )#left=None, bottom=None, right=None, top=None, wspace=None, hspace=None) canvas.fig.subplots_adjust(hspace=.15, wspace=.05, left=.15, right=.90, bottom=.15, top=.95 )#left=None, bottom=None, right=None, top=None, wspace=None, hspace=None) tick_locator = MaxNLocator(nbins=3) cb1 = canvas.fig.colorbar(im1, ax=axes[0::2], format='%1.0f', orientation='vertical') #cb1 = canvas.fig.colorbar(im1, ax=axes[0::2], format='%1.0f', orientation='horizontal', shrink=.35, aspect=30, pad=.4) cb1.ax.tick_params(axis='both', which='major', labelsize=fs) cb1.locator = tick_locator cb1.update_ticks() tick_locator2 = MaxNLocator(nbins=3) cb2 = canvas.fig.colorbar(im2, ax=axes[1::2], format='%1.0f', orientation='vertical') #cb2 = canvas.fig.colorbar(im2, ax=axes[1::2], format='%1.0f', orientation='horizontal', shrink=.35, aspect=30, pad=.4) cb2.ax.tick_params(axis='both', which='major', labelsize=fs) if phase == 0: # Re Im cb1.set_label(r"$\mathrm{Re} \left( \mathcal{V}_N \right)$ (nV)", fontsize=fs) cb2.set_label(r"$\mathrm{Im} \left( \mathcal{V}_N \right)$ (nV)", fontsize=fs) elif phase == 1: # Amp phase cb1.set_label(r"$\left| \mathcal{V}_N \right|$ (nV)", fontsize=fs) cb2.set_label(r"$\angle \mathcal{V}_N$", fontsize=fs) else: cb1.set_label(r"$\left| \mathcal{V}_N \right|$ (nV)", fontsize=fs) cb2.set_label(r"noise (nV)", fontsize=fs) cb2.locator = tick_locator2 cb2.update_ticks() #canvas.fig.tight_layout() canvas.draw() self.doneTrigger.emit() def RotateAmplitude(self, X, Y, zeta, df, t): V = X + 1j*Y return np.abs(V) * np.exp( 1j * ( np.angle(V) - zeta - 2.*np.pi*df*t ) ) def gateIntegrate( self, gpd, clip, canvas ): """ Gate integrate the real, imaginary, phased, and noise residual channels """ self.gated = True self.GATED = {} for pulse in self.DATADICT["PULSES"]: QQ = np.average(self.DATADICT[pulse]["Q"], axis=1 ) iQ = np.argsort(QQ) ichan = 0 for chan in self.DATADICT[pulse]["chan"]: self.GATED[chan] = {} for ipm in range(0, self.DATADICT["nPulseMoments"]): #for ipm in iQ: # Time since pulse end rather than since record starts... #if clip > 0: # time_sp = 1e3 * (self.DATADICT[pulse]["TIMES"][clip:] - self.DATADICT[pulse]["PULSE_TIMES"][-1] ) #else: time_sp = 1e3 * (self.DATADICT[pulse]["TIMES"] - self.DATADICT[pulse]["PULSE_TIMES"][-1] ) #GT, GD, GTT, sig_stack, isum = rotate.gateIntegrate( self.DATADICT["CA"][pulse][chan][ipm,:], time_sp, gpd, self.sigma[pulse][chan], 1.5 ) #GT2, GP, GTT, sig_stack_err, isum = rotate.gateIntegrate( self.DATADICT["NR"][pulse][chan][ipm,:], time_sp, gpd, self.sigma[pulse][chan], 1.5 ) # err GT, GCA, GTT, sig_stack, isum = rotate.gateIntegrate( self.DATADICT["CA"][pulse][chan][ipm], time_sp, gpd, self.sigma[pulse][chan], 2 ) GT, GNR, GTT, sig_stack, isum = rotate.gateIntegrate( self.DATADICT["NR"][pulse][chan][ipm], time_sp, gpd, self.sigma[pulse][chan], 2 ) GT, GRE, GTT, sig_stack, isum = rotate.gateIntegrate( self.DATADICT["RE"][pulse][chan][ipm], time_sp, gpd, self.sigma[pulse][chan], 2 ) GT, GIM, GTT, sig_stack, isum = rotate.gateIntegrate( self.DATADICT["IM"][pulse][chan][ipm], time_sp, gpd, self.sigma[pulse][chan], 2 ) GT, GIP, GTT, sig_stack, isum = rotate.gateIntegrate( self.DATADICT["IP"][pulse][chan][ipm], time_sp, gpd, self.sigma[pulse][chan], 2 ) #if ipm == iQ[0]: if ipm == 0: # self.GATED[chan]["DATA"] = np.zeros( ( self.DATADICT["nPulseMoments"], len(GT)) ) # self.GATED[chan]["ERR"] = np.zeros( ( self.DATADICT["nPulseMoments"], len(GT)) ) # self.GATED[chan]["SIGMA"] = np.zeros( ( self.DATADICT["nPulseMoments"], len(GT)) ) self.GATED[chan]["CA"] = np.zeros( ( self.DATADICT["nPulseMoments"], len(GT)-clip) ) self.GATED[chan]["NR"] = np.zeros( ( self.DATADICT["nPulseMoments"], len(GT)-clip) ) self.GATED[chan]["BN"] = np.zeros( ( self.DATADICT["nPulseMoments"], len(GT)-clip) ) self.GATED[chan]["RE"] = np.zeros( ( self.DATADICT["nPulseMoments"], len(GT)-clip) ) self.GATED[chan]["IM"] = np.zeros( ( self.DATADICT["nPulseMoments"], len(GT)-clip) ) self.GATED[chan]["IP"] = np.zeros( ( self.DATADICT["nPulseMoments"], len(GT)-clip) ) self.GATED[chan]["isum"] = isum # Bootstrap noise #self.GATED[chan]["isum"] Means = rotate.bootstrapWindows( self.DATADICT["NR"][pulse][chan][ipm], 20000, isum[isum!=1], adapt=True) # MAD, only for windows > 1 c = stats.norm.ppf(3./4.) sig_stack[isum!=1] = np.ma.median(np.ma.abs(Means), axis=1) / c self.GATED[chan]["BN"][ipm] = sig_stack[clip:] #self.GATED[chan]["DATA"][ipm] = GD.real self.GATEDABSCISSA = GT[clip:] self.GATEDWINDOW = GTT[clip:] #self.GATED[chan]["SIGMA"][ipm] = sig_stack #_err # GP.real #self.GATED[chan]["ERR"][ipm] = GP.real #self.GATED[chan]["CA"][iQ[ipm]] = GCA.real[clip:] #self.GATED[chan]["NR"][iQ[ipm]] = GNR.real[clip:] #self.GATED[chan]["RE"][iQ[ipm]] = GRE.real[clip:] #self.GATED[chan]["IM"][iQ[ipm]] = GIM.real[clip:] #self.GATED[chan]["IP"][iQ[ipm]] = GIP.real[clip:] self.GATED[chan]["CA"][ipm] = GCA.real[clip:] self.GATED[chan]["NR"][ipm] = GNR.real[clip:] self.GATED[chan]["RE"][ipm] = GRE.real[clip:] self.GATED[chan]["IM"][ipm] = GIM.real[clip:] self.GATED[chan]["IP"][ipm] = GIP.real[clip:] percent = int(1e2* (float)((ipm)+ichan*self.DATADICT["nPulseMoments"]) / (float)(self.DATADICT["nPulseMoments"] * len(self.DATADICT[pulse]["chan"]))) self.progressTrigger.emit(percent) self.GATED[chan]["CA"] = self.GATED[chan]["CA"][iQ,:] self.GATED[chan]["NR"] = self.GATED[chan]["NR"][iQ,:] self.GATED[chan]["RE"] = self.GATED[chan]["RE"][iQ,:] self.GATED[chan]["IM"] = self.GATED[chan]["IM"][iQ,:] self.GATED[chan]["IP"] = self.GATED[chan]["IP"][iQ,:] self.GATED[chan]["GTT"] = GTT[clip:] self.GATED[chan]["GT"] = GT[clip:] self.GATED[chan]["QQ"] = QQ[iQ] ichan += 1 self.doneTrigger.emit() def bootstrap_resample(self, X, n=None): # from http://nbviewer.jupyter.org/gist/aflaxman/6871948 """ Bootstrap resample an array_like Parameters ---------- X : array_like data to resample n : int, optional length of resampled array, equal to len(X) if n==None Results ------- returns X_resamples """ if n == None: n = len(X) resample_i = np.floor(np.random.rand(n)*len(X)).astype(int) return X[resample_i] def bootstrap_sigma(self, pulse, chan): # bootstrap resample nt = len(self.GATED[chan]["GT"]) nb = 5000 XS = np.zeros( (nb, nt) ) for ii in range(nb): for it in range(nt): if self.GATED[chan]["isum"][it] < 8: XS[ii, it] = self.sigma[pulse][chan] else: if it == 0: X = self.bootstrap_resample( np.concatenate( (self.GATED[chan]["NR"][:,it], \ self.GATED[chan]["NR"][:,it+1], \ self.GATED[chan]["NR"][:,it+2], \ self.GATED[chan]["NR"][:,it+3] ) ), n=nt ) elif it == 1: X = self.bootstrap_resample( np.concatenate( (self.GATED[chan]["NR"][:,it-1], self.GATED[chan]["NR"][:,it], \ self.GATED[chan]["NR"][:,it+1], self.GATED[chan]["NR"][:,it+2] ) ), n=nt ) elif it == nt-2: X = self.bootstrap_resample( np.concatenate( (self.GATED[chan]["NR"][:,it+1], self.GATED[chan]["NR"][:,it], \ self.GATED[chan]["NR"][:,it-1], self.GATED[chan]["NR"][:,it-2] ) ), n=nt ) elif it == nt-1: X = self.bootstrap_resample( np.concatenate( (self.GATED[chan]["NR"][:,it], self.GATED[chan]["NR"][:,it-1], \ self.GATED[chan]["NR"][:,it-2], self.GATED[chan]["NR"][:,it-3] ) ), n=nt ) else: X = self.bootstrap_resample( np.concatenate( (self.GATED[chan]["NR"][:,it-2] , self.GATED[chan]["NR"][:,it-1], \ self.GATED[chan]["NR"][:,it], self.GATED[chan]["NR"][:,it+1], self.GATED[chan]["NR"][:,it+2] )), n=nt ) XS[ii,it] = np.std(X) return XS def plotGateIntegrate( self, gpd, clip, phase, canvas ): """ Plot the gate integration """ fs = 10 canvas.reAxH2( len(self.DATADICT[ self.DATADICT["PULSES"][0] ]["chan"] ), False, False) axes = canvas.fig.axes #cmap = cmocean.cm.balance_r dcmap = cmocean.cm.curl_r #"seismic_r" #cmocean.cm.balance_r #"RdBu" #YlGn" # "coolwarm_r" # diverging # Calculate maximum for plotting...TODO move into loop above vmax1 = 0 vmax2 = 0 for pulse in self.DATADICT["PULSES"]: for chan in self.DATADICT[pulse]["chan"]: if phase == 0: vmax1 = max(vmax1, np.max(np.abs(self.GATED[chan]["RE"]))) vmax2 = max(vmax2, np.max(np.abs(self.GATED[chan]["IM"]))) elif phase == 1: vmax1 = max(vmax1, np.max(np.abs(self.GATED[chan]["CA"]))) vmax2 = np.pi elif phase == 2: vmax1 = max(vmax1, np.max(np.abs(self.GATED[chan]["CA"]))) vmax2 = max(vmax2, np.max(np.abs(self.GATED[chan]["NR"]))) for pulse in self.DATADICT["PULSES"]: ichan = 0 for chan in self.DATADICT[pulse]["chan"]: ax1 = axes[2*ichan ] ax2 = axes[2*ichan+1] if phase == 0: im1 = ax1.pcolormesh(self.GATED[chan]["GTT"], self.GATED[chan]["QQ"], self.GATED[chan]["RE"], cmap=dcmap, vmin=-vmax1, vmax=vmax1) im2 = ax2.pcolormesh(self.GATED[chan]["GTT"], self.GATED[chan]["QQ"], self.GATED[chan]["IM"], cmap=dcmap, vmin=-vmax2, vmax=vmax2) #im1 = ax1.matshow(self.GATED[chan]["RE"], cmap=dcmap, vmin=-vmax1, vmax=vmax1, aspect='auto') #im2 = ax2.matshow(self.GATED[chan]["IM"], cmap=dcmap, vmin=-vmax2, vmax=vmax2, aspect='auto') elif phase == 1: im1 = ax1.pcolormesh(self.GATED[chan]["GTT"], self.GATED[chan]["QQ"], self.GATED[chan]["CA"], cmap=dcmap, vmin=-vmax1, vmax=vmax1) im2 = ax2.pcolormesh(self.GATED[chan]["GTT"], self.GATED[chan]["QQ"], self.GATED[chan]["IP"], cmap=cmocean.cm.delta, vmin=-vmax2, vmax=vmax2) #im2 = ax2.pcolormesh(self.GATED[chan]["GTT"], self.GATED[chan]["QQ"], self.GATED[chan]["IP"], cmap=cmocean.cm.phase, vmin=-vmax2, vmax=vmax2) elif phase == 2: im1 = ax1.pcolormesh(self.GATED[chan]["GTT"], self.GATED[chan]["QQ"], self.GATED[chan]["CA"], cmap=dcmap, vmin=-vmax1, vmax=vmax1) #XS = self.bootstrap_sigma(pulse, chan) #im2 = ax2.pcolormesh(self.GATED[chan]["GTT"], self.GATED[chan]["QQ"], self.GATED[chan]["NR"], cmap=cmap, vmin=-vmax2, vmax=vmax2) # bootstrap resample # nt = len(self.GATED[chan]["GT"]) # nb = 5000 # XS = np.zeros( (nb, nt) ) # for ii in range(nb): # #XS = [] # for it in range(nt): # if self.GATED[chan]["isum"][it] < 8: # XS[ii, it] = self.sigma[pulse][chan] # else: # if it == 0: # X = self.bootstrap_resample( np.concatenate( (self.GATED[chan]["NR"][:,it], self.GATED[chan]["NR"][:,it+1], \ # self.GATED[chan]["NR"][:,it+2], self.GATED[chan]["NR"][:,it+3] ) ), n=nt ) # if it == 1: # X = self.bootstrap_resample( np.concatenate( (self.GATED[chan]["NR"][:,it-1], self.GATED[chan]["NR"][:,it], \ # self.GATED[chan]["NR"][:,it+1], self.GATED[chan]["NR"][:,it+2] ) ), n=nt ) # elif it == nt-2: # X = self.bootstrap_resample( np.concatenate( (self.GATED[chan]["NR"][:,it+1], self.GATED[chan]["NR"][:,it], \ # self.GATED[chan]["NR"][:,it-1], self.GATED[chan]["NR"][:,it-2] ) ), n=nt ) # elif it == nt-1: # X = self.bootstrap_resample( np.concatenate( (self.GATED[chan]["NR"][:,it], self.GATED[chan]["NR"][:,it-1], \ # self.GATED[chan]["NR"][:,it-2], self.GATED[chan]["NR"][:,it-3] ) ), n=nt ) # else: # X = self.bootstrap_resample( np.concatenate( (self.GATED[chan]["NR"][:,it-2] , self.GATED[chan]["NR"][:,it-1], \ # self.GATED[chan]["NR"][:,it], self.GATED[chan]["NR"][:,it+1], self.GATED[chan]["NR"][:,it+2] )), n=nt ) # XS[ii,it] = np.std(X) #if ii == 0: # ax2.plot( self.GATED[chan]["GT"], XS[ii], '-', linewidth=1, markersize=4, alpha=.5, color='lightgrey', label = "bootstrap sim" ) #else: # ax2.plot( self.GATED[chan]["GT"], XS[ii], '-', linewidth=1, markersize=4, alpha=.5, color='lightgrey' ) ax2.plot( self.GATED[chan]["GT"], np.std(self.GATED[chan]["NR"], axis=0), color='darkgrey', linewidth=2, label="gate std" ) ax2.plot( self.GATED[chan]["GT"], np.average(self.GATED[chan]["BN"], axis=0), color='black', linewidth=2, label="boot average" ) #ax2.plot( np.tile(self.GATED[chan]["GT"], (5000,1) ), XS, '.', color='lightgrey', linewidth=1, alpha=.5 ) #ax2.plot( self.GATED[chan]["GT"], np.average(XS, axis=0), color='black', linewidth=2, label="bootstrap avg." ) #ax2.plot( self.GATED[chan]["GT"], np.median(XS, axis=0), color='black', linewidth=2, label="bootstrap med." ) ax2.legend() im1.set_edgecolor('face') if phase != 2: im2.set_edgecolor('face') plt.setp(ax1.get_xticklabels(), visible=False) ax1.set_ylim( np.min(self.GATED[chan]["QQ"]), np.max(self.GATED[chan]["QQ"]) ) if phase != 2: ax2.set_ylim( np.min(self.GATED[chan]["QQ"]), np.max(self.GATED[chan]["QQ"]) ) ax1.set_xlim( np.min(self.GATED[chan]["GTT"]), np.max(self.GATED[chan]["GTT"]) ) ax2.set_xlim( np.min(self.GATED[chan]["GTT"]), np.max(self.GATED[chan]["GTT"]) ) ax1.set_yscale('log') ax2.set_yscale('log') qlabs = np.append(np.concatenate( ( self.GATED[chan]["QQ"][0:1], self.GATED[chan]["QQ"][9::10] )), self.GATED[chan]["QQ"][-1] ) ax1.yaxis.set_ticks( qlabs ) # np.append(np.concatenate( (QQ[0:1],QQ[9::10] )), QQ[-1] ) ) if phase != 2: ax2.yaxis.set_ticks( qlabs ) #np.append(np.concatenate( (QQ[0:1],QQ[9::10] )), QQ[-1] ) ) #formatter = matplotlib.ticker.LogFormatter(10, labelOnlyBase=False) formatter = matplotlib.ticker.FuncFormatter(lambda x, pos: str((round(x,1)))) ax1.set_xscale('log') ax2.set_xscale('log') ax1.yaxis.set_major_formatter(formatter) #matplotlib.ticker.FormatStrFormatter('%d.1')) ax2.yaxis.set_major_formatter(formatter) #matplotlib.ticker.FormatStrFormatter('%d.1')) ax1.xaxis.set_major_formatter(formatter) #matplotlib.ticker.FormatStrFormatter('%d.1')) ax2.xaxis.set_major_formatter(formatter) #matplotlib.ticker.FormatStrFormatter('%d.1')) if ichan == 0: ax1.set_ylabel(r"$q$ ( $\mathrm{A}\cdot\mathrm{s}$)", fontsize=fs) if phase == 2: ax2.set_ylabel(r"noise est. (nV)", fontsize=fs) else: ax2.set_ylabel(r"$q$ ( $\mathrm{A}\cdot\mathrm{s}$)", fontsize=fs) else: plt.setp(ax1.get_yticklabels(), visible=False) plt.setp(ax2.get_yticklabels(), visible=False) ax2.set_xlabel(r"$t-\tau_p$ (ms)", fontsize=fs) ichan += 1 #canvas.fig.subplots_adjust(hspace=.1, wspace=.05, left=.075, right=.925 )#left=None, bottom=None, right=None, top=None, wspace=None, hspace=None) #canvas.fig.tight_layout() #canvas.draw() canvas.fig.subplots_adjust(hspace=.15, wspace=.05, left=.15, right=.9, bottom=.1, top=.9 )#left=None, bottom=None, right=None, top=None, wspace=None, hspace=None) tick_locator = MaxNLocator(nbins=5) cb1 = canvas.fig.colorbar(im1, ax=axes[0::2], format='%1.0f', orientation='horizontal', shrink=.35, aspect=30) cb1.ax.tick_params(axis='both', which='major', labelsize=fs) cb1.set_label("$\mathcal{V}_N$ (nV)", fontsize=fs) #cb1.locator = tick_locator #cb1.update_ticks() if phase != 2: cb2 = canvas.fig.colorbar(im2, ax=axes[1::2], format='%1.0f', orientation='horizontal', shrink=.35, aspect=30, pad=.2) cb2.ax.tick_params(axis='both', which='major', labelsize=fs) cb2.set_label("$\mathcal{V}_N$ (nV)", fontsize=fs) cb2.locator = tick_locator cb2.update_ticks() canvas.draw() self.doneTrigger.emit() def FDSmartStack(self, cv, canvas): from matplotlib.colors import LogNorm from matplotlib.ticker import MaxNLocator """ Currently this stacks 4-phase second pulse data only, we need to generalise """ try: canvas.fig.clear() except: pass self.dataCubeFFT( ) # canvas.ax1 = canvas.fig.add_axes([.1, .1, .8, .8]) canvas.ax1 = canvas.fig.add_axes([.1, .1, .2, .8]) canvas.ax2 = canvas.fig.add_axes([.325, .1, .2, .8]) canvas.ax3 = canvas.fig.add_axes([.55, .1, .2, .8]) canvas.ax4 = canvas.fig.add_axes([.815, .1, .05, .8]) #cb canvas.ax1.tick_params(axis='both', which='major', labelsize=8) canvas.ax2.tick_params(axis='both', which='major', labelsize=8) canvas.ax3.tick_params(axis='both', which='major', labelsize=8) canvas.ax4.tick_params(axis='both', which='major', labelsize=8) canvas.ax1.set_ylabel("pulse index", fontsize=8) canvas.ax1.set_xlabel(r"$\omega$ bin", fontsize=8) canvas.ax2.set_xlabel(r"$\omega$ bin", fontsize=8) canvas.ax3.set_xlabel(r"$\omega$ bin", fontsize=8) canvas.ax2.yaxis.set_ticklabels([]) canvas.ax3.yaxis.set_ticklabels([]) #canvas.ax1.ticklabel_format(style='sci', scilimits=(0,0), axis='y') # # Look at pulses # for pulse in self.DATADICT["PULSES"]: # for istack in self.DATADICT["stacks"]: # for ipm in range(0,3): # canvas.ax1.plot( self.DATADICT[pulse]["CURRENT"][ipm][istack] , label="istack "+str(istack) + " ipm=" + str(ipm) + pulse ) # canvas.draw() # Create Container for stacks # sandbox determine pulse sequence again for pulse in self.DATADICT["PULSES"]: for ichan in self.DATADICT[pulse]["chan"]: #for ipm in range(10,11): CONTAINER = {} CONTAINER["Cycle 1"] = [] # These are actually subtracted cycles... v+ - v CONTAINER["Cycle 2"] = [] for istack in self.DATADICT["stacks"]: #canvas.ax1.clear() ipm = 8 #for ipm in range(self.DATADICT["nPulseMoments"]): #canvas.ax1.matshow( np.real(self.DATADICT[pulse][ichan]["FFT"][istack]), aspect='auto' ) #canvas.draw() if not istack%4%4: # phase cycle 4, aligned with 1 after sub CONTAINER["Cycle 1"].append(-self.DATADICT[pulse][ichan]["FFT"][istack]) #canvas.ax1.plot( self.DATADICT[pulse]["TIMES"], -self.DATADICT[pulse][ichan][ipm][istack], label="istack "+str(istack)+ " " + pulse ) elif not istack%4%3: # phase cycle 3, aligned with 2 after sub CONTAINER["Cycle 2"].append(-self.DATADICT[pulse][ichan]["FFT"][istack]) #canvas.ax1.plot( self.DATADICT[pulse]["TIMES"], -self.DATADICT[pulse][ichan][ipm][istack], label="istack "+str(istack)+ " " + pulse ) elif not istack%4%2: # phase cycle 2 CONTAINER["Cycle 2"].append( self.DATADICT[pulse][ichan]["FFT"][istack]) #canvas.ax1.plot( self.DATADICT[pulse]["TIMES"], self.DATADICT[pulse][ichan][ipm][istack], label="istack "+str(istack)+ " " + pulse ) else: # phase cycle 1 CONTAINER["Cycle 1"].append( self.DATADICT[pulse][ichan]["FFT"][istack]) #canvas.ax1.plot( self.DATADICT[pulse]["TIMES"], self.DATADICT[pulse][ichan][ipm][istack], label="istack "+str(istack)+ " " + pulse ) #canvas.ax1.matshow(np.array(np.average(self.DATADICT[pulse][ichan]["FFT"]), axis=2), aspect='auto' ) #canvas.ax1.plot( self.DATADICT[pulse]["PULSE_TIMES"], self.DATADICT[pulse]["CURRENT"][ipm][istack] , color='black', label="istack "+str(istack) ) #canvas.ax1.plot( self.DATADICT[pulse]["CURRENT"][ipm][istack] , label="istack "+str(istack) + " iFID" + str(iFID) ) #canvas.ax1.plot( self.DATADICT[pulse]["TIMES"], self.DATADICT[pulse][ichan][ipm][istack], label="istack "+str(istack)+ " " + pulse ) #canvas.ax1.legend(prop={'size':6}) #canvas.draw() # Boostrap # stack. #scipy.random.shuffle(x) # Stack and calculate the pooled variance (http://en.wikipedia.org/wiki/Pooled_variance) """ All this phase cycling wreaks havoc on a normal calculation of std. and variance. Instead, we resort to calculating a pooled variance. In this assumption is that the precision of the measurment is constant. This is a poor choice for any type of moving sensor. """ # if a window filter has been applied #self.WINDOW #self.IWindowStart #self.iWindowEnd #self.FFTtimes CONTAINER = .5*(np.array(CONTAINER["Cycle 2"]) - np.array(CONTAINER["Cycle 1"])) print ("container shape", np.shape( CONTAINER), self.iWindowStart+1, self.iWindowEnd-1) dmin = np.min(np.abs(np.average(np.array(CONTAINER)[:,:,self.iWindowStart+1:self.iWindowEnd-1], axis=0))) dmax = np.max(np.abs(np.average(np.array(CONTAINER)[:,:,self.iWindowStart+1:self.iWindowEnd-1], axis=0))) mn = canvas.ax1.matshow( 20.*np.log10(np.abs(np.average(np.array(CONTAINER)[:,:, self.iWindowStart+1:self.iWindowEnd-1], axis=0))), aspect='auto', vmin=-120, vmax=-40) #mn = canvas.ax1.matshow(20.*np.log10(XA[:,istart:iend+1]), aspect='auto', vmax=-40, vmin=-120) #, norm=LogNorm()) canvas.ax2.matshow( 20*np.log10(np.std(np.real(np.array(CONTAINER)[:,:,self.iWindowStart+1:self.iWindowEnd-1]), axis=0)), aspect='auto', vmin=-120, vmax=-40) canvas.ax3.matshow( 20*np.log10(np.std(np.imag(np.array(CONTAINER)[:,:,self.iWindowStart+1:self.iWindowEnd-1]), axis=0)), aspect='auto', vmin=-120, vmax=-40) #canvas.ax1.legend(prop={'size':6}) cb1 = mpl.colorbar.Colorbar(canvas.ax4, mn) cb1.ax.tick_params(labelsize=8) cb1.set_label("power [dB]", fontsize=8) canvas.ax1.xaxis.set_major_locator(MaxNLocator(4)) canvas.ax2.xaxis.set_major_locator(MaxNLocator(4)) canvas.ax3.xaxis.set_major_locator(MaxNLocator(4)) canvas.draw() self.doneTrigger.emit() def effectivePulseMoment(self, cv, canvas): canvas.reAxH(2) nstack = len(self.DATADICT["stacks"]) #canvas.ax1.set_yscale('log') for pulse in self.DATADICT["PULSES"]: self.DATADICT[pulse]["qeff"] = {} self.DATADICT[pulse]["q_nu"] = {} for ipm in range(self.DATADICT["nPulseMoments"]): self.DATADICT[pulse]["qeff"][ipm] = {} self.DATADICT[pulse]["q_nu"][ipm] = {} #canvas.ax1.clear() #scolours = np.array( ( np.linspace(0.8,0.4,len(self.DATADICT["stacks"])), \ # np.linspace(0.0,0.6,len(self.DATADICT["stacks"])), \ # np.linspace(0.6,0.0,len(self.DATADICT["stacks"])) ) # ).T #scolours = plt.cm.Spectral(np.linspace(0,1,len(self.DATADICT["stacks"]))) #scolours = plt.cm.Blues(np.linspace(0,1,1.5*len(self.DATADICT["stacks"]))) scolours = cmocean.cm.ice(np.linspace(0,1,int(1.5*len(self.DATADICT["stacks"])))) iistack = 0 for istack in self.DATADICT["stacks"]: #self.DATADICT[pulse]["PULSE_TIMES"] x = self.DATADICT[pulse]["CURRENT"][ipm][istack] X = np.fft.rfft(x) v = np.fft.fftfreq(len(x), self.dt) v = v[0:len(X)] v[-1] = np.abs(v[-1]) # calculate effective current/moment I0 = np.abs(X)/len(X) qeff = I0 * (self.DATADICT[pulse]["PULSE_TIMES"][-1]-self.DATADICT[pulse]["PULSE_TIMES"][0]) # frequency plot #canvas.ax1.set_title(r"pulse moment index " +str(ipm), fontsize=10) #canvas.ax1.set_xlabel(r"$\nu$ [Hz]", fontsize=8) #canvas.ax1.set_ylabel(r"$q_{eff}$ [A$\cdot$sec]", fontsize=8) #canvas.ax1.plot(v, qeff, color=scolours[iistack] ) # eff current # time plot canvas.ax1.plot(1e2*(self.DATADICT[pulse]["PULSE_TIMES"]-self.DATADICT[pulse]["PULSE_TIMES"][0]), x, color=scolours[iistack]) self.DATADICT[pulse]["qeff"][ipm][istack] = qeff self.DATADICT[pulse]["q_nu"][ipm][istack] = v iistack += 1 #canvas.draw() percent = int(1e2* (float)((istack)+ipm*self.DATADICT["nPulseMoments"]) / (float)(len(self.DATADICT["PULSES"])*self.DATADICT["nPulseMoments"]*nstack)) self.progressTrigger.emit(percent) canvas.ax1.set_xlabel("time (ms)", fontsize=10) canvas.ax1.set_ylabel("current (A)", fontsize=10) #canvas.draw() self.plotQeffNu(cv, canvas.ax2) deSpine(canvas.ax1) deSpine(canvas.ax2) canvas.fig.tight_layout() canvas.draw() self.doneTrigger.emit() def plotQeffNu(self, cv, ax): #################################### # TODO label fid1 and fid2, and make a legend, and colour by pulse nstack = len(self.DATADICT["stacks"]) iFID = 0 for pulse in self.DATADICT["PULSES"]: self.DATADICT[pulse]["Q"] = np.zeros( (self.DATADICT["nPulseMoments"], len(self.DATADICT["stacks"])) ) ilabel = True for ipm in range(self.DATADICT["nPulseMoments"]): #scolours = np.array([0.,0.,1.]) scolours = cmocean.cm.ice(np.linspace(0,1,int(1.5*len(self.DATADICT["stacks"])))) #scolours = plt.cm.Spectral(np.linspace(0,1,len(self.DATADICT["stacks"]))) #scolours = plt.cm.Spectral(np.linspace(0,1,len(self.DATADICT["stacks"]))) istack = 0 for stack in self.DATADICT["stacks"]: # find index icv = int(round(cv / self.DATADICT[pulse]["q_nu"][ipm][stack][1])) self.DATADICT[pulse]["Q"][ipm,istack] = self.DATADICT[pulse]["qeff"][ipm][stack][icv] if ilabel: ax.scatter(ipm, self.DATADICT[pulse]["qeff"][ipm][stack][icv], facecolors='none', edgecolors=scolours[istack], label=(str(pulse))) ilabel = False else: ax.scatter(ipm, self.DATADICT[pulse]["qeff"][ipm][stack][icv], facecolors='none', edgecolors=scolours[istack]) #scolours += np.array((0,1./(nstack+1),-1/(nstack+1.))) percent = int(1e2* (float)((istack)+ipm*self.DATADICT["nPulseMoments"]) / (float)(len(self.DATADICT["PULSES"])*self.DATADICT["nPulseMoments"]*nstack)) self.progressTrigger.emit(percent) istack += 1 iFID += 1 ax.set_xlabel(r"pulse moment index", fontsize=10) ax.set_ylabel(r"$q_{eff}$ (A$\cdot$sec)", fontsize=10) ax.set_yscale('log') ax.set_xlim(0, ax.get_xlim()[1]) ax.legend(loc='upper right', scatterpoints = 1, prop={'size':10}) def enableDSP(self): self.enableDSPTrigger.emit() def adaptiveFilter(self, M, flambda, truncate, mu, PCA, plot, canvas): #plot = False canvas.reAx2(shx=False, shy=False) # ax1 is top plot of filter taps # ax2 is bottom plot of conditioned signal if truncate: itrunc =(int) ( round( 1e-3*truncate*self.samp ) ) print( "adaptive filter size", 1e3*self.dt*M, " [ms]" ) Filt = adapt.AdaptiveFilter(flambda) H = {} for pulse in self.DATADICT["PULSES"]: H[pulse] = {} for ichan in self.DATADICT[pulse]["chan"]: H[pulse][ichan] = np.zeros(M*len( self.DATADICT[pulse]["rchan"] )) iFID = 0 # original ordering... #for pulse in self.DATADICT["PULSES"]: # for ipm in range(self.DATADICT["nPulseMoments"]): # for istack in self.DATADICT["stacks"]: # This order makes more sense, same as data collection, verify for istack in self.DATADICT["stacks"]: for ipm in range(self.DATADICT["nPulseMoments"]): for pulse in self.DATADICT["PULSES"]: if plot: canvas.softClear() mmax = 0 for ichan in self.DATADICT[pulse]["chan"]: canvas.ax2.plot( self.DATADICT[pulse]["TIMES"], 1e9* self.DATADICT[pulse][ichan][ipm][istack], alpha=.5) mmax = max(mmax, np.max(1e9*self.DATADICT[pulse][ichan][ipm][istack])) canvas.ax2.set_ylim(-mmax, mmax) canvas.ax2.set_prop_cycle(None) for ichan in self.DATADICT[pulse]["chan"]: #H = np.zeros(M) RX = [] for irchan in self.DATADICT[pulse]["rchan"]: RX.append(self.DATADICT[pulse][irchan][ipm][istack][::-1]) # Reset each time? #H[pulse][ichan] *= 0 #if all(H[pulse][ichan]) == 0: if False: #################################################################################### # Padasip adaptive filter implimentations, do not allow for variable filter length #################################################################################### # identification # #f = pa.filters.FilterRLS(n=len(self.DATADICT[pulse]["rchan"]), mu=0.99, w="zeros") # #f = pa.filters.FilterGNGD(n=len(self.DATADICT[pulse]["rchan"]), mu=0.1) # # Nope #f = pa.filters.FilterLMS(n=len(self.DATADICT[pulse]["rchan"]), mu=0.1) # # NOPE #f = pa.filters.AdaptiveFilter(model="NLMS", n=len(self.DATADICT[pulse]["rchan"]), mu=0.1, w="random") # NOPE #f = pa.filters.AdaptiveFilter(model="GNGD", n=len(self.DATADICT[pulse]["rchan"]), mu=0.1) # horrendous #f = pa.filters.FilterNLMF(n=len(self.DATADICT[pulse]["rchan"]), mu=0.005, w="random") # BAD #f = pa.filters.FilterSSLMS(n=len(self.DATADICT[pulse]["rchan"]), mu=0.01, w="zeros") # pretty good f = pa.filters.FilterNSSLMS(n=len(self.DATADICT[pulse]["rchan"]), mu=0.1, w="zeros") # pretty good y, e, H[pulse][ichan] = f.run(self.DATADICT[pulse][ichan][ipm][istack][::-1], np.array(RX).T) # #################################################################################### e = self.DATADICT[pulse][ichan][ipm][istack][::-1] - y elif True: # check for change in filter coefficients and rerun if things are changing too rapidly, # this is especially true for the first run hm1 = np.copy(H[pulse][ichan]) [e, H[pulse][ichan]] = Filt.adapt_filt_Ref( self.DATADICT[pulse][ichan][ipm][istack][::-1],\ RX,\ M, mu, PCA, flambda, H[pulse][ichan]) iloop = 0 #while False: while (np.linalg.norm( H[pulse][ichan] - hm1) > .05): # threshold for recall hm1 = np.copy(H[pulse][ichan]) [e, H[pulse][ichan]] = Filt.adapt_filt_Ref( self.DATADICT[pulse][ichan][ipm][istack][::-1],\ RX,\ M, mu, PCA, flambda, H[pulse][ichan]) iloop += 1 #print("Recalled ", iloop, "times with norm=", np.linalg.norm(hm1-H[pulse][ichan])) else: [e,H[pulse][ichan]] = Filt.adapt_filt_Ref( self.DATADICT[pulse][ichan][ipm][istack][::-1],\ RX,\ M, mu, PCA, flambda, H[pulse][ichan]) # replace if truncate: if plot: canvas.ax2.plot( self.DATADICT[pulse]["TIMES"][0:itrunc], 1e9* e[::-1][0:itrunc],\ label = pulse + " ipm=" + str(ipm) + " istack=" + str(istack) + " ichan=" + str(ichan)) self.DATADICT[pulse][ichan][ipm][istack] = e[::-1][0:itrunc] else: if plot: canvas.ax2.plot( self.DATADICT[pulse]["TIMES"], 1e9* e[::-1],\ label = pulse + " ipm=" + str(ipm) + " istack=" + str(istack) + " ichan=" + str(ichan)) self.DATADICT[pulse][ichan][ipm][istack] = e[::-1] if plot: #canvas.ax1.plot( H[pulse][ichan].reshape(-1, len(RX)) ) # , label="taps") canvas.ax1.plot( H[pulse][ichan][::-1].reshape(M, len(RX), order='F' ) ) #.reshape(-1, len(RX)) ) # , label="taps") canvas.ax2.legend(prop={'size':10}, loc='upper right') #canvas.ax2.legend(prop={'size':6}, loc='upper right') mh = np.max(np.abs( H[pulse][ichan] )) canvas.ax1.set_ylim( -mh, mh ) canvas.ax2.set_xlabel(r"time (s)", fontsize=10) canvas.ax2.set_ylabel(r"signal (nV)", fontsize=10) canvas.ax1.set_xlabel(r"filter tap index", fontsize=10) canvas.ax1.set_ylabel(r"tap amplitude", fontsize=10) if plot: canvas.fig.tight_layout() deSpine(canvas.ax1) deSpine(canvas.ax2) canvas.draw() # truncate the reference channels too, in case you still need them for something. # Otherwise they are no longer aligned with the data for rchan in self.DATADICT[pulse]["rchan"]: if truncate: self.DATADICT[pulse][rchan][ipm][istack] = self.DATADICT[pulse][rchan][ipm][istack][0:itrunc] #percent = (int)(1e2*((float)(iFID*self.DATADICT["nPulseMoments"]+(ipm))/( len(self.DATADICT["PULSES"])*self.nPulseMoments))) percent = (int)(1e2*((float)(istack*self.DATADICT["nPulseMoments"]+(ipm))/( len(self.DATADICT["PULSES"])*self.nPulseMoments*(len(self.DATADICT["stacks"])+1) ))) self.progressTrigger.emit(percent) # # why is this loop here, istack is not part of rest? # for istack in self.DATADICT["stacks"]: # if truncate: # self.DATADICT[pulse]["TIMES"] = self.DATADICT[pulse]["TIMES"][0:itrunc] # percent = (int)(1e2*((float)(iFID*self.DATADICT["nPulseMoments"]+(ipm))/( len(self.DATADICT["PULSES"])*self.nPulseMoments))) # self.progressTrigger.emit(percent) # iFID += 1 if truncate: self.DATADICT[pulse]["TIMES"] = self.DATADICT[pulse]["TIMES"][0:itrunc] self.doneTrigger.emit() self.updateProcTrigger.emit() #self.plotFT(canvas) def plotFT(self, canvas, istart=0, iend=0): try: canvas.fig.clear() except: pass canvas.ax1 = canvas.fig.add_axes([.1, .1, .65, .8]) canvas.ax1c = canvas.fig.add_axes([.8, .1, .05, .8]) canvas.ax1.tick_params(axis='both', which='major', labelsize=8) for pulse in self.DATADICT["PULSES"]: for istack in self.DATADICT["stacks"]: for ichan in self.DATADICT[pulse]["chan"]: # FFT of stack XA = np.zeros((self.DATADICT["nPulseMoments"] , len(self.DATADICT[pulse][ichan][0][istack])/2+1)) nu = np.fft.fftfreq(self.DATADICT[pulse][ichan][0][istack].size, d=self.dt) nu[-1] *= -1 df = nu[1] of = 0 if istart: of = nu[istart] def freqlabel(x, pos): return '%1.0f' %(of + x*df) formatter = FuncFormatter(freqlabel) canvas.ax1.clear() for ipm in range(self.DATADICT["nPulseMoments"]): X = np.fft.rfft(self.DATADICT[pulse][ichan][ipm][istack]) XA[ipm,:] = np.abs(X) if istart: mn = canvas.ax1.matshow(20.*np.log10(XA[:,istart:iend+1]), aspect='auto', vmax=-40, vmin=-120) #, norm=LogNorm()) else: mn = canvas.ax1.matshow(20.*np.log10(XA), aspect='auto', vmax=-40, vmin=-120) #, norm=LogNorm()) smin = np.min(20.*np.log10(XA)) smax = np.max(20.*np.log10(XA)) canvas.ax1.xaxis.set_major_formatter(formatter) cb1 = mpl.colorbar.Colorbar(canvas.ax1c, mn) cb1.ax.tick_params(labelsize=8) cb1.set_label("signal [dB]", fontsize=8) canvas.ax1.set_xlabel(r"$\nu$ [Hz]", fontsize=10) canvas.ax1.set_ylabel(r"$q_{index}$", fontsize=10) canvas.draw() def plotFT(self, canvas, istart=0, iend=0): try: canvas.fig.clear() except: pass canvas.ax1 = canvas.fig.add_axes([.1, .1, .65, .8]) canvas.ax1c = canvas.fig.add_axes([.8, .1, .05, .8]) canvas.ax1.tick_params(axis='both', which='major', labelsize=8) for pulse in self.DATADICT["PULSES"]: for istack in self.DATADICT["stacks"]: for ichan in self.DATADICT[pulse]["chan"]: # FFT of stack XA = np.zeros((self.DATADICT["nPulseMoments"] , len(self.DATADICT[pulse][ichan][0][istack])//2+1)) nu = np.fft.fftfreq(self.DATADICT[pulse][ichan][0][istack].size, d=self.dt) nu[-1] *= -1 df = nu[1] of = 0 if istart: of = nu[istart] def freqlabel(x, pos): return '%1.0f' %(of + x*df) formatter = FuncFormatter(freqlabel) canvas.ax1.clear() for ipm in range(self.DATADICT["nPulseMoments"]): X = np.fft.rfft(self.DATADICT[pulse][ichan][ipm][istack]) XA[ipm,:] = np.abs(X) if istart: mn = canvas.ax1.matshow(20.*np.log10(XA[:,istart:iend+1]), aspect='auto', vmax=-40, vmin=-120, cmap='viridis') #, norm=LogNorm()) else: mn = canvas.ax1.matshow(20.*np.log10(XA), aspect='auto', vmax=-40, vmin=-120, cmap='viridis') #, norm=LogNorm()) canvas.ax1.xaxis.set_major_formatter(formatter) cb1 = mpl.colorbar.Colorbar(canvas.ax1c, mn) cb1.ax.tick_params(labelsize=8) cb1.set_label("signal [dB]", fontsize=8) canvas.ax1.set_xlabel(r"$\nu$ [Hz]", fontsize=10) canvas.ax1.set_ylabel(r"$q_{index}$", fontsize=10) canvas.draw() def dataCubeFFT(self): """ Performs FFT on entire cube of DATA, and REFERENCE channels, but not pulse currents, Results are saved to a new field in the data structure The GMR varies phase as a function of pulse moment index, so that the first pusle moment is zero phase, the second is pi/2 the third is zero. This method corrects for this, so that all pulse moments are in phase. Technically we may not want to do this, if there is some system response that this cycles away, and we lose track of how many of each cycle we have, could this be problomatic? I think it will come out in the wash as we keep track of the rest of the phase cycles. Holy phase cycling batman. """ for pulse in self.DATADICT["PULSES"]: for ichan in np.append(self.DATADICT[pulse]["chan"], self.DATADICT[pulse]["rchan"]): # FFT of stack self.DATADICT[pulse][ichan]["FFT"] = {} self.DATADICT[pulse][ichan]["FFT"]["nu"] = np.fft.fftfreq(self.DATADICT[pulse][ichan][0][self.DATADICT["stacks"][0]].size, d=self.dt) self.DATADICT[pulse][ichan]["FFT"]["nu"][-1] *= -1 for istack in self.DATADICT["stacks"]: self.DATADICT[pulse][ichan]["FFT"][istack] = np.zeros((self.DATADICT["nPulseMoments"] , len(self.DATADICT[pulse][ichan][0][istack])//2+1), dtype=complex) for ipm in range(self.DATADICT["nPulseMoments"]): # Mod works for FID pulse sequences, TODO generalize this for 4 phase T1, etc.. mod = (-1)**(ipm%2) * (-1)**(istack%2) self.DATADICT[pulse][ichan]["FFT"][istack][ipm,:] = np.fft.rfft( self.DATADICT[pulse][ichan][ipm][istack] ) #if ipm%2: # odd, phase cycled from previous # self.DATADICT[pulse][ichan]["FFT"][istack][ipm,:] = np.fft.rfft(-self.DATADICT[pulse][ichan][ipm][istack]) #else: # even, we define as zero phase, first pulse moment has this # self.DATADICT[pulse][ichan]["FFT"][istack][ipm,:] = np.fft.rfft(self.DATADICT[pulse][ichan][ipm][istack]) def adaptiveFilterFD(self, ftype, band, centre, canvas): try: canvas.fig.clear() except: pass canvas.ax1 = canvas.fig.add_axes([.1, .5, .7, .4]) canvas.ax1c = canvas.fig.add_axes([.85, .5, .05, .4]) canvas.ax1.tick_params(axis='both', which='major', labelsize=8) #canvas.ax1.ticklabel_format(style='sci', scilimits=(0,0), axis='y') canvas.ax2 = canvas.fig.add_axes([.1, .05, .7, .4]) canvas.ax2c = canvas.fig.add_axes([.85, .05, .05, .4]) canvas.ax2.tick_params(axis='both', which='major', labelsize=8) #canvas.ax2.ticklabel_format(style='sci', scilimits=(0,0), axis='y') self.dataCubeFFT() Filt = adapt.AdaptiveFilter(0.) for pulse in self.DATADICT["PULSES"]: # Compute window function and dimensions [WINDOW, nd, wstart, wend, dead, idead] = self.computeWindow(pulse, band, centre, ftype) for istack in self.DATADICT["stacks"]: for ichan in self.DATADICT[pulse]["chan"]: # FFT of stack nd = len(self.DATADICT[pulse][ichan][0][istack]) XX = np.zeros((self.DATADICT["nPulseMoments"] , len(self.DATADICT[pulse][ichan][0][istack])//2+1), dtype=complex) nu = np.fft.fftfreq(self.DATADICT[pulse][ichan][0][istack].size, d=self.dt) nu[-1] *= -1 #nu = self.DATADICT[pulse][ichan]["FFT"]["nu"] def freqlabel(x, pos): return '%1.0f' %((wstart)*nu[1] + x*nu[1]) formatter = FuncFormatter(freqlabel) canvas.ax1.clear() for ipm in range(self.DATADICT["nPulseMoments"]): X = np.fft.rfft(self.DATADICT[pulse][ichan][ipm][istack]) XX[ipm,:] = X XX = XX*WINDOW XX = XX[:,wstart:wend] smin = np.min(20.*np.log10(np.abs(XX))) smax = np.max(20.*np.log10(np.abs(XX))) #if smin != smin: smax = -40 smin = -120 mn = canvas.ax1.matshow(20.*np.log10(np.abs(XX)), aspect='auto', vmin=smin, vmax=smax) #, norm=LogNorm()) canvas.ax1.xaxis.set_major_formatter(formatter) cb1 = mpl.colorbar.Colorbar(canvas.ax1c, mn) RX = [] for ichan in self.DATADICT[pulse]["rchan"]: R = np.zeros((self.DATADICT["nPulseMoments"] , len(self.DATADICT[pulse][ichan][0][istack])//2+1), dtype=complex) for ipm in range(self.DATADICT["nPulseMoments"]): R[ipm,:] = np.fft.rfft(self.DATADICT[pulse][ichan][ipm][istack]) RX.append(R[:,wstart:wend]) XC = Filt.transferFunctionFFT(XX, RX) # TODO inverse FFT, but we need to map back to origional matrix size #for ichan in self.DATADICT[pulse]["chan"]: # for ipm in range(self.DATADICT["nPulseMoments"]): # self.DATADICT[pulse][ichan][ipm][istack] = np.fft.irfft(XC[] , nd) mc = canvas.ax2.matshow(20.*np.log10(np.abs(XC)), aspect='auto', vmin=smin, vmax=smax) #, norm=LogNorm()) cb2 = mpl.colorbar.Colorbar(canvas.ax2c, mc) cmin = np.min(20.*np.log10(np.abs(XC))) cmax = np.max(20.*np.log10(np.abs(XC))) canvas.ax2.xaxis.set_major_formatter(formatter) #canvas.ax2.colorbar(mn) canvas.draw() ##############################3 # TODO inverse FFT to get the damn data back!!! # self.progressTrigger.emit(percent) # #label = "iFID="+str(iFID) + " ipm=" + str(ipm) + " istack=" + str(istack) + " ichan=" + str(ichan)) self.doneTrigger.emit() def findSpikes(self, x, width, threshold, rollOn): import scipy.ndimage as im spikes = np.zeros( len(x) ) med = im.median_filter(x, width,mode='nearest') std = np.std(x) spikes = (np.abs(x-med) > threshold * std) return np.array(np.where(spikes[rollOn::])) + rollOn # def despike(self, width, threshold, itype, rollOn, win, canvas): # from scipy import interpolate # """ This was a stab at a despike filter. Better results were achieved using the SmartStack approach # """ # try: # canvas.fig.clear() # except: # pass # # canvas.ax1 = canvas.fig.add_axes([.125,.1,.725,.8]) # canvas.ax1.tick_params(axis='both', which='major', labelsize=8) # canvas.ax1.ticklabel_format(style='sci', scilimits=(0,0), axis='y') # iFID = 0 # for pulse in self.DATADICT["PULSES"]: # for ipm in range(self.DATADICT["nPulseMoments"]): # for istack in self.DATADICT["stacks"]: # canvas.ax1.clear() # for ichan in np.append(self.DATADICT[pulse]["chan"], self.DATADICT[pulse]["rchan"]): # x = self.findSpikes(self.DATADICT[pulse][ichan][ipm][istack], width, threshold, rollOn) # canvas.ax1.plot( self.DATADICT[pulse]["TIMES"], self.DATADICT[pulse][ichan][ipm][istack], # label = pulse + " ipm=" + str(ipm) + " istack=" + str(istack) + " ichan=" + str(ichan)) # canvas.ax1.plot( self.DATADICT[pulse]["TIMES"][x], self.DATADICT[pulse][ichan][ipm][istack][x], '.', color='red' , markersize=6 ) # # FIXED = np.zeros(len(x[0])) # ii = 0 # for spike in np.array(x[0]).tolist(): # f = interpolate.interp1d(np.delete(self.DATADICT[pulse]["TIMES"][spike-win/2:spike+win/2], x[0]-(spike-win/2)), \ # np.delete(self.DATADICT[pulse][ichan][ipm][istack][spike-win/2:spike+win/2], x[0]-(spike-win/2)), itype) # FIXED[ii] = f(self.DATADICT[pulse]["TIMES"][spike]) # ii += 1 # canvas.ax1.plot( self.DATADICT[pulse]["TIMES"][x[0]] , FIXED, '.', color='black' , markersize=4 ) # self.DATADICT[pulse][ichan][ipm][istack][x[0]] = FIXED # # canvas.ax1.legend(prop={'size':6}) # canvas.draw() # percent = (int)(1e2*((float)(iFID*self.DATADICT["nPulseMoments"]+(ipm))/( len(self.DATADICT["PULSES"])*self.nPulseMoments))) # self.progressTrigger.emit(percent) # iFID += 1 # self.doneTrigger.emit() def designFilter(self, cf, PB, SB, gpass, gstop, ftype, canvas): ''' cf is central frequency pb is pass band sb is stop band ''' TS = (cf) / (.5/self.dt) PB = PB / (.5/self.dt) # 1/2 width pass band Muddy Creek SB = SB / (.5/self.dt) # 1/2 width stop band Muddy Creek # if butterworth #[bord, wn] = signal.buttord([TS-PB,TS+PB], [TS-SB,TS+SB], 1e-1, 5.) if ftype=="Butterworth": [bord, wn] = signal.buttord([TS-PB,TS+PB], [TS-SB,TS+SB], gpass, gstop) [self.filt_b, self.filt_a] = signal.butter(bord, wn, btype='bandpass', output='ba') [self.filt_z, self.filt_p, self.filt_k] = signal.butter(bord, wn, btype='band', output='zpk') elif ftype == "Chebychev Type II": [bord, wn] = signal.cheb2ord([TS-PB,TS+PB], [TS-SB,TS+SB], gpass, gstop) [self.filt_b, self.filt_a] = signal.cheby2(bord, gstop, wn, btype='bandpass', output='ba') [self.filt_z, self.filt_p, self.filt_k] = signal.cheby2(bord, gstop, wn, btype='band', output='zpk') elif ftype == "Elliptic": [bord, wn] = signal.ellipord([TS-PB,TS+PB], [TS-SB,TS+SB], gpass, gstop) [self.filt_b, self.filt_a] = signal.ellip(bord, gpass, gstop, wn, btype='bandpass', output='ba') [self.filt_z, self.filt_p, self.filt_k] = signal.ellip(bord, gpass, gstop, wn, btype='band', output='zpk') # if cheby2 impulse = self.mfreqz2(self.filt_b, self.filt_a, canvas) self.fe = -5 for it in range(len(impulse[0])): if abs(impulse[1][0][it][0]) >= .1 * gpass:# gpass: self.fe = impulse[0][it] canvas.draw() return [bord, self.fe] def downsample(self, truncate, dec, plot=False, canvas=None): """ Downsamples and truncates the raw signal. Args truncate (float) : the length of the signal to truncate to dec (int) : the decimation factor, 1 results in no downsampling plot (bool) : perform plots canvas : MPL axis for plotting """ if plot: fs = 10 canvas.reAx2() canvas.ax1.set_ylabel(r"signal (nV)", fontsize=fs) canvas.ax2.set_xlabel(r"time (s)", fontsize=fs) canvas.ax2.set_ylabel(r"signal (nV)", fontsize=fs) self.samp /= dec self.dt = 1./self.samp iFID = 0 for pulse in self.DATADICT["PULSES"]: RSTIMES = self.DATADICT[pulse]["TIMES"][::dec] if truncate: itrunc = (int)( 1e-3*truncate*self.samp ) RSTIMES = RSTIMES[0:itrunc] for ipm in range(self.DATADICT["nPulseMoments"]): for istack in self.DATADICT["stacks"]: if plot: canvas.softClear() for ichan in np.append(self.DATADICT[pulse]["chan"], self.DATADICT[pulse]["rchan"]): # trim off indices that don't divide evenly ndi = np.shape(self.DATADICT[pulse][ichan][ipm][istack])[0]%dec if ndi: #[self.DATADICT[pulse][ichan][ipm][istack], RSTIMES] = signal.resample(self.DATADICT[pulse][ichan][ipm][istack][0:-ndi],\ # len(self.DATADICT[pulse][ichan][ipm][istack][0:-ndi])//dec,\ # self.DATADICT[pulse]["TIMES"][0:-ndi], window='hamm') self.DATADICT[pulse][ichan][ipm][istack] = signal.decimate(self.DATADICT[pulse][ichan][ipm][istack], dec, n=None, ftype='iir', zero_phase=True) else: #[self.DATADICT[pulse][ichan][ipm][istack], RSTIMES] = signal.resample(self.DATADICT[pulse][ichan][ipm][istack],\ # len(self.DATADICT[pulse][ichan][ipm][istack])//dec,\ # self.DATADICT[pulse]["TIMES"], window='hamm') self.DATADICT[pulse][ichan][ipm][istack] = signal.decimate(self.DATADICT[pulse][ichan][ipm][istack], dec, n=None, ftype='iir', zero_phase=True) if truncate: self.DATADICT[pulse][ichan][ipm][istack] = self.DATADICT[pulse][ichan][ipm][istack][0:itrunc] if plot: for ichan in self.DATADICT[pulse]["chan"]: canvas.ax2.plot( RSTIMES, 1e9*self.DATADICT[pulse][ichan][ipm][istack], \ label = pulse + " ipm=" + str(ipm) + " istack=" + str(istack) + " ichan=" + str(ichan)) for ichan in self.DATADICT[pulse]["rchan"]: canvas.ax1.plot( RSTIMES, 1e9*self.DATADICT[pulse][ichan][ipm][istack], \ label = pulse + " ipm=" + str(ipm) + " istack=" + str(istack) + " ichan=" + str(ichan)) canvas.ax1.legend(prop={'size':fs}, loc='upper right') canvas.ax2.legend(prop={'size':fs}, loc='upper right') deSpine( canvas.ax1 ) deSpine( canvas.ax2 ) plt.setp(canvas.ax1.get_xticklabels(), visible=False) canvas.fig.tight_layout() canvas.draw() percent = (int)(1e2*((float)(iFID*self.DATADICT["nPulseMoments"]+(ipm))/( len(self.DATADICT["PULSES"])*self.nPulseMoments))) self.progressTrigger.emit(percent) iFID += 1 self.DATADICT[pulse]["TIMES"] = RSTIMES ##################################### # resample pulse data for pulse in self.DATADICT["PULSES"]: for ipm in range(self.DATADICT["nPulseMoments"]): for istack in self.DATADICT["stacks"]: ndi = np.shape(self.DATADICT[pulse]["CURRENT"][ipm][istack])[0]%dec if ndi: [self.DATADICT[pulse]["CURRENT"][ipm][istack], RSPTIMES] = signal.resample(self.DATADICT[pulse]["CURRENT"][ipm][istack][0:-ndi],\ len(self.DATADICT[pulse]["CURRENT"][ipm][istack][0:-ndi])//dec,\ self.DATADICT[pulse]["PULSE_TIMES"][0:-ndi], window='hamm') else: [self.DATADICT[pulse]["CURRENT"][ipm][istack], RSPTIMES] = signal.resample(self.DATADICT[pulse]["CURRENT"][ipm][istack],\ len(self.DATADICT[pulse]["CURRENT"][ipm][istack])//dec,\ self.DATADICT[pulse]["PULSE_TIMES"], window='hamm') self.DATADICT[pulse]["PULSE_TIMES"] = RSPTIMES self.doneTrigger.emit() self.updateProcTrigger.emit() def computeWindow(self, pulse, band, centre, ftype, canvas=None): # Compute window nd = len(self.DATADICT[pulse][self.DATADICT[pulse]["chan"][0]][0][self.DATADICT["stacks"][0]]) # num. data fft1 = np.fft.rfft(self.DATADICT[pulse][self.DATADICT[pulse]["chan"][0]][0][self.DATADICT["stacks"][0]]) freqs = np.fft.fftfreq(nd, self.dt) df = freqs[1] - freqs[0] N = int((round)(band/df)) if ftype == "Hamming": window = np.hamming(N) elif ftype == "Hanning": window = np.hanning(N) elif ftype == "Rectangular": window = np.ones(N) elif ftype == "Flat top": window = signal.flattop(N) else: print ("in windowFilter, window type undefined") WINDOW = np.zeros(len(fft1)) ifreq = int(round(centre/df)) istart = ifreq-len(window)//2 iend = 0 if N%2: WINDOW[ifreq-N//2:ifreq+N//2+1] = window iend = ifreq+N//2+1 else: WINDOW[ifreq-N//2:ifreq+N//2] = window iend = ifreq+N//2 self.WINDOW = WINDOW self.iWindowStart = istart self.iWindowEnd = iend self.FFTtimes = nd fft1 = np.fft.irfft(WINDOW) # calculate dead time self.windead = 0. for ift in np.arange(100,0,-1): #print( ift, fft1[ift] ) if (abs(fft1[ift])/abs(fft1[0])) > 1e-2: #print ("DEAD TIME", 1e3*self.DATADICT[pulse]["TIMES"][ift] - 1e3*self.DATADICT[pulse]["TIMES"][0] ) dead = 1e3*self.DATADICT[pulse]["TIMES"][ift] - 1e3*self.DATADICT[pulse]["TIMES"][0] self.windead = self.DATADICT[pulse]["TIMES"][ift] - self.DATADICT[pulse]["TIMES"][0] break if canvas != None: canvas.fig.clear() canvas.ax1 = canvas.fig.add_axes([.1, .6, .75, .35]) canvas.ax2 = canvas.fig.add_axes([.1, .1, .75, .35]) canvas.ax1.plot(WINDOW) canvas.ax2.plot( 1e3* self.DATADICT[pulse]["TIMES"][0:100] - 1e3*self.DATADICT[pulse]["TIMES"][0], fft1[0:100] ) canvas.ax2.set_xlabel("time (ms)") canvas.ax2.set_title("IFFT") canvas.draw() return [WINDOW, nd, istart, iend, dead, ift] def windowFilter(self, ftype, band, centre, trunc, canvas): ############################### # Window Filter (Ormsby filter http://www.xsgeo.com/course/filt.htm) # apply window iFID = 0 for pulse in self.DATADICT["PULSES"]: [WINDOW, nd, istart, iend, dead, idead] = self.computeWindow(pulse, band, centre, ftype) for istack in self.DATADICT["stacks"]: for ipm in range(self.DATADICT["nPulseMoments"]): for ichan in np.append(self.DATADICT[pulse]["chan"], self.DATADICT[pulse]["rchan"]): fft = np.fft.rfft( self.DATADICT[pulse][ichan][ipm][istack] ) fft *= WINDOW if trunc: self.DATADICT[pulse][ichan][ipm][istack] = np.fft.irfft(fft, nd)[idead:-idead] else: self.DATADICT[pulse][ichan][ipm][istack] = np.fft.irfft(fft, nd) percent = (int)(1e2*((float)(iFID*self.DATADICT["nPulseMoments"]+(ipm))/(len(self.DATADICT["PULSES"])*self.nPulseMoments))) self.progressTrigger.emit(percent) iFID += 1 if trunc: self.DATADICT[pulse]["TIMES"] = self.DATADICT[pulse]["TIMES"][idead:-idead] [WINDOWxx, ndxx, istart, iend, deadxx, ideadxx] = self.computeWindow(pulse, band, centre, ftype) self.plotFT(canvas, istart, iend) self.doneTrigger.emit() def bandpassFilter(self, canvas, blank, plot=True): if plot: canvas.reAx2() canvas.ax1.set_ylabel(r"signal [nV]", fontsize=8) canvas.ax2.set_xlabel(r"time [s]", fontsize=8) canvas.ax2.set_ylabel(r"signal [nV]", fontsize=8) ife = (int)( max(self.fe, self.windead) * self.samp ) # Data iFID = 0 for pulse in self.DATADICT["PULSES"]: self.DATADICT[pulse]["TIMES"] = self.DATADICT[pulse]["TIMES"][ife:-ife] for ipm in range(self.DATADICT["nPulseMoments"]): for istack in self.DATADICT["stacks"]: if plot: canvas.softClear() mmax = 0 for ichan in self.DATADICT[pulse]["rchan"]: canvas.ax1.plot( self.DATADICT[pulse]["TIMES"], 1e9*self.DATADICT[pulse][ichan][ipm][istack][ife:-ife], alpha=.5) mmax = max( mmax, np.max(1e9*self.DATADICT[pulse][ichan][ipm][istack][ife:-ife])) for ichan in self.DATADICT[pulse]["chan"]: canvas.ax2.plot( self.DATADICT[pulse]["TIMES"], 1e9*self.DATADICT[pulse][ichan][ipm][istack][ife:-ife], alpha=.5) mmax = max( mmax, np.max(1e9*self.DATADICT[pulse][ichan][ipm][istack][ife:-ife])) canvas.ax2.set_prop_cycle(None) canvas.ax1.set_prop_cycle(None) canvas.ax1.set_ylim(-mmax, mmax) for ichan in self.DATADICT[pulse]["rchan"]: # reflect signal back on itself to reduce gibbs effects on early times #nr = len( self.DATADICT[pulse][ichan][ipm][istack] ) - 1 + ife #refl = np.append( -1*self.DATADICT[pulse][ichan][ipm][istack][::-1][0:-1], self.DATADICT[pulse][ichan][ipm][istack] ) #reflfilt = signal.filtfilt( self.filt_b, self.filt_a, refl ) #self.DATADICT[pulse][ichan][ipm][istack] = reflfilt[nr:-ife] # don't reflect self.DATADICT[pulse][ichan][ipm][istack] = \ signal.filtfilt(self.filt_b, self.filt_a, self.DATADICT[pulse][ichan][ipm][istack])[ife:-ife] # plot if plot: canvas.ax1.plot( self.DATADICT[pulse]["TIMES"], 1e9*self.DATADICT[pulse][ichan][ipm][istack], \ label = pulse + " ipm=" + str(ipm) + " istack=" + str(istack) + " rchan=" + str(ichan)) for ichan in self.DATADICT[pulse]["chan"]: # reflect signal back on itself to reduce gibbs effects on early times #nr = len( self.DATADICT[pulse][ichan][ipm][istack] ) - 1 + ife #refl = np.append( -1*self.DATADICT[pulse][ichan][ipm][istack][::-1][0:-1], self.DATADICT[pulse][ichan][ipm][istack] ) #reflfilt = signal.filtfilt( self.filt_b, self.filt_a, refl ) #self.DATADICT[pulse][ichan][ipm][istack] = reflfilt[nr:-ife] # don't reflect self.DATADICT[pulse][ichan][ipm][istack] = \ scipy.signal.filtfilt(self.filt_b, self.filt_a, self.DATADICT[pulse][ichan][ipm][istack])[ife:-ife] # plot if plot: canvas.ax2.plot( self.DATADICT[pulse]["TIMES"], 1e9*self.DATADICT[pulse][ichan][ipm][istack], \ label = "data " + pulse + " ipm=" + str(ipm) + " istack=" + str(istack) + " chan=" + str(ichan)) if plot: canvas.ax1.legend(prop={'size':6}, loc='upper right') canvas.ax2.legend(prop={'size':6}, loc='upper right') canvas.draw() percent = (int)(1e2*((float)(iFID*self.DATADICT["nPulseMoments"]+(ipm))/(len(self.DATADICT["PULSES"])*self.nPulseMoments))) self.progressTrigger.emit(percent) iFID += 1 self.doneTrigger.emit() self.updateProcTrigger.emit() def loadGMRBinaryFID( self, rawfname, istack ): """ Reads a single binary GMR file and fills into DATADICT """ ################################################################################# # figure out key data indices # Pulse nps = (int)((self.prePulseDelay)*self.samp) npul = (int)(self.pulseLength[0]*self.samp) #+ 100 # Data nds = nps+npul+(int)((self.deadTime)*self.samp); # indice pulse 1 data starts nd1 = (int)(1.*self.samp) # samples in first pulse invGain = 1./self.RxGain invCGain = self.CurrentGain pulse = "Pulse 1" chan = self.DATADICT[pulse]["chan"] rchan = self.DATADICT[pulse]["rchan"] rawFile = open( rawfname, 'rb') for ipm in range(self.nPulseMoments): buf1 = rawFile.read(4) buf2 = rawFile.read(4) N_chan = struct.unpack('>i', buf1 )[0] N_samp = struct.unpack('>i', buf2 )[0] T = N_samp * self.dt TIMES = np.arange(0, T, self.dt) - .0002 # small offset in GMR DAQ? DATA = np.zeros([N_samp, N_chan+1]) for ichan in range(N_chan): DATADUMP = rawFile.read(4*N_samp) for irec in range(N_samp): DATA[irec,ichan] = struct.unpack('>f', DATADUMP[irec*4:irec*4+4])[0] # Save into Data Cube for ichan in chan: self.DATADICT["Pulse 1"][ichan][ipm][istack] = DATA[:,eval(ichan)+3][nds:nds+nd1] * invGain self.DATADICT["Pulse 1"]["TIMES"] = TIMES[nds:nds+nd1] self.DATADICT["Pulse 1"]["CURRENT"][ipm][istack] = DATA[:,1][nps:nps+npul] * invCGain self.DATADICT["Pulse 1"]["PULSE_TIMES"] = TIMES[nps:nps+npul] # reference channels? for ichan in rchan: self.DATADICT["Pulse 1"][ichan][ipm][istack] = DATA[:,eval(ichan)+3][nds:nds+nd1] * invGain self.DATADICT["Pulse 1"]["TIMES"] = TIMES[nds:nds+nd1] def loadGMRASCIIFID( self, rawfname, istack ): """Based on the geoMRI instrument manufactured by VistaClara. Imports a suite of raw .lvm files with the following format (on one line) time(s) DC_Bus/100(V) Current+/75(A) Curr-/75(A) Voltage+/200(V) \ Ch1(V) Ch2(V) Ch3(V) Ch4(V) Sampling rate is assumed at 50 kHz """ import pandas as pd ################################################################################# # figure out key data indices # Pulse nps = (int)((self.prePulseDelay)*self.samp) npul = (int)(self.pulseLength[0]*self.samp) #+ 100 # Data nds = nps+npul+(int)((self.deadTime)*self.samp); # indice pulse 1 data starts nd1 = (int)(1.*self.samp) - nds # samples in first pulse ndr = (int)(1.*self.samp) # samples in record invGain = 1./self.RxGain invCGain = self.CurrentGain pulse = "Pulse 1" chan = self.DATADICT[pulse]["chan"] rchan = self.DATADICT[pulse]["rchan"] T = 1.5 #N_samp * self.dt TIMES = np.arange(0, T, self.dt) - .0002 # small offset in GMR DAQ? self.DATADICT["Pulse 1"]["TIMES"] = TIMES[nds:nds+nd1] self.DATADICT["Pulse 1"]["PULSE_TIMES"] = TIMES[nps:nps+npul] # pandas is much faster than numpy for io #DATA = np.loadtxt(rawfname) DATA = pd.read_csv(rawfname, header=None, sep="\t").values for ipm in range(self.nPulseMoments): for ichan in np.append(chan,rchan): self.DATADICT["Pulse 1"][ichan][ipm][istack] = DATA[:, eval(ichan)+4][nds:(nds+nd1)] * invGain self.DATADICT["Pulse 1"]["CURRENT"][ipm][istack] = DATA[:,2][nps:nps+npul] * invCGain nds += ndr nps += ndr def readMIDI2Header(self, directory): """ Reads the header of the FID_Q1_D0_R1.dat which should be in very MIDI directory """ print("Searching ", directory, "for Q files") self.QFiles = [] for file in glob.glob(directory+'/FID_Q*R1.dat'): self.QFiles.append(file) fidname = self.QFiles[0] # "/FID_Q1_D0_R1.dat" HEADER = {} with open(fidname, 'rb') as FID: #print(FID.name) headerLine = 0 for i in range(21): tags = FID.readline().split(b']') tags[0] = tags[0].strip(b'[') tags[1] = tags[1].decode().strip( ) HEADER[ ''.join(map(chr, tags[0])) ] = tags[1] #print(HEADER) pulseTypeDict = { 0 : lambda: "FID", 2 : lambda: "T1", 3 : lambda: "SPINECHO", 4 : lambda: "4PhaseT1" } pulseLengthDict = { 1 : lambda x: np.ones(1) * x, 2 : lambda x: np.ones(2) * x, 3 : lambda x: np.array([x, 2.*x]), 4 : lambda x: np.ones(2) * x } if HEADER["P2"] == "0": self.pulseType = "FID" else: self.pulseType = "T1" self.transFreq = float(HEADER[ 'Excitation frequency /Hz' ]) self.maxBusV = '24 V' self.pulseLength = [ float(HEADER['P1'])/self.transFreq, float(HEADER['P2'])/self.transFreq] self.interpulseDelay = 1e-3*float(HEADER["Delay /ms"]) # for T2, Spin Echo self.repetitionDelay = float(HEADER['Pause /s']) # delay between q pulses self.nPulseMoments = len(self.QFiles) # Number of pulse moments per stack self.TuneCapacitance = 0 # tuning capacitance in uF self.nTransVersion = "MIDI 2" # Transmitter version self.nDAQVersion = HEADER["Software Revision"] # DAQ software version self.nInterleaves = 0 # num interleaves self.Instrument = "MIDI 2" self.datadir = directory self.MIDIGain = HEADER["Gains"].split() # default self.samp = float(HEADER["Data Rate /Hz"]) # sampling frequency self.dt = 1./self.samp # sampling rate def loadMIDI2(self, directory, procStacks, chanin, rchanin, FIDProc, canvas, deadTime, pulseMoments, plot): """Reads a MRS MIDI2 experiment. """ print("Loading MIDI2 data") canvas.reAx3(True,False) chan = [] for ch in chanin: chan.append(str(ch)) rchan = [] for ch in rchanin: rchan.append(str(ch)) #print(self.QFiles) # Set up the same structure as GMR PULSES = [FIDProc] PULSES = ["Pulse 1"] if pulseMoments[0] == -1: print("using default pulse moments, all of them") self.pulseMoments = range(0, self.nPulseMoments) # use all of them, assume starting at 0 else: self.pulseMoments = pulseMoments self.nPulseMoments = len(self.pulseMoments) print("nPulseMoments", self.nPulseMoments, self.pulseMoments) self.DATADICT = {} self.DATADICT["nPulseMoments"] = self.nPulseMoments self.DATADICT["stacks"] = procStacks self.DATADICT["PULSES"] = PULSES for pulse in PULSES: self.DATADICT[pulse] = {} self.DATADICT[pulse]["chan"] = chan # TODO these should not be a subet of pulse! for GMR all self.DATADICT[pulse]["rchan"] = rchan # data are consistent self.DATADICT[pulse]["CURRENT"] = {} for ichan in np.append(chan,rchan): self.DATADICT[pulse][ichan] = {} for ipm in range(self.nPulseMoments): self.DATADICT[pulse][ichan][ipm] = {} self.DATADICT[pulse]["CURRENT"][ipm] = {} for istack in procStacks: pass #print("pulse", pulse, "ichan",type(ichan), ichan, "ipm", type(ipm), ipm, "istack",type(istack), istack) # #self.DATADICT[pulse][ichan][ipm][istack] = np.zeros(3) #self.DATADICT[pulse]["CURRENT"][ipm][istack] = np.zeros(3) iistack = 0 idead = int( (self.pulseLength[0]+deadTime) / self.dt) for ipm, iq in enumerate(self.pulseMoments): fidbase = self.datadir #+ self.QFiles[iq][0:-5] for istack in procStacks: #fidname = fidbase + str(iq).zfill(2) + ".dat" fidname = fidbase + "/FID_Q" + str(iq) + "_D0_R" + str(istack) + ".dat" with open(fidname, 'rb') as FID: #print(FID.name) headerLine = 0 for i in range(100): line = FID.readline().strip() headerLine += 1 if line == b'[Begin Data]': break # use numpy for now, consider pandas for faster read? print("Loading", FID) DATA = np.genfromtxt(FID, skip_header=0, skip_footer=1 ) #DATA = pd.read_csv(fidname, skiprows=headerLine, skipfooter=1, sep='\t', encoding='ascii') for ichan in np.append(chan,rchan): if int(ichan) <= 3: self.DATADICT["Pulse 1"][ichan][ipm][istack] = DATA[idead:,int(ichan)] / float(self.MIDIGain[int(ichan)-1]) elif int(ichan) > 3: self.DATADICT["Pulse 1"][ichan][ipm][istack] = DATA[idead:,int(ichan)+1] / float(self.MIDIGain[int(ichan)-1]) # truncate after dead time self.DATADICT["Pulse 1"]["TIMES"] = DATA[idead:,0] # truncate until dead time ipulse = int(self.pulseLength[0] / self.dt) self.DATADICT["Pulse 1"]["PULSE_TIMES"] = DATA[0:ipulse,0] self.DATADICT["Pulse 1"]["CURRENT"][ipm][istack] = DATA[0:ipulse,4] if plot: canvas.softClear() for ichan in chan: canvas.ax1.plot(self.DATADICT["Pulse 1"]["PULSE_TIMES"], self.DATADICT["Pulse 1"]["CURRENT"][ipm][istack] , color='black') canvas.ax3.plot(self.DATADICT["Pulse 1"]["TIMES"], self.DATADICT["Pulse 1"][ichan][ipm][istack], label="Pulse 1 FID data ch. "+str(ichan)) #, color='blue') for ichan in rchan: canvas.ax2.plot(self.DATADICT["Pulse 1"]["TIMES"], self.DATADICT["Pulse 1"][ichan][ipm][istack], label="Pulse 1 FID ref ch. "+str(ichan)) #, color='blue') # reference axis if len(rchan) > 0: canvas.ax2.legend(prop={'size':10}, loc='upper right') canvas.ax2.tick_params(axis='both', which='major', labelsize=10) canvas.ax2.tick_params(axis='both', which='minor', labelsize=10) #canvas.ax2.xaxis.set_ticklabels([]) plt.setp(canvas.ax2.get_xticklabels(), visible=False) canvas.ax2.set_title("stack "+str(istack)+" pulse index " + str(iq), fontsize=10) canvas.ax2.set_ylabel("RAW signal [V]", fontsize=10) canvas.ax1.set_ylabel("Current (A)", fontsize=10) canvas.ax1.ticklabel_format(style='sci', scilimits=(0,0), axis='y') canvas.ax1.set_xlabel("time (s)", fontsize=10) canvas.ax3.legend(prop={'size':10}, loc='upper right') canvas.ax3.set_ylabel("RAW signal [V]", fontsize=10) canvas.fig.tight_layout() canvas.draw() percent = (int) (1e2*((float)(iistack) / (len(procStacks)*self.nPulseMoments))) self.progressTrigger.emit(percent) iistack += 1 # percent = (int) (1e2*((float)((iistack*self.nPulseMoments+ipm+1)) / (len(procStacks)*self.nPulseMoments))) # self.progressTrigger.emit(percent) # iistack += 1 self.enableDSP() self.doneTrigger.emit() def loadGMRASCIIT1( self, rawfname, istack ): """Based on the geoMRI instrument manufactured by VistaClara. Imports a suite of raw .lvm files with the following format (on one line) time(s) DC_Bus/100(V) Current+/75(A) Curr-/75(A) Voltage+/200(V) \ Ch1(V) Ch2(V) Ch3(V) Ch4(V) Sampling rate is assumed at 50 kHz """ import pandas as pd ################################################################################# # figure out key data indices # Pulse nps = (int)((self.prePulseDelay)*self.samp) npul = (int)(self.pulseLength[0]*self.samp) #+ 100 # phase cycling # Older T1 GMR data had a curious phase cycling npc = 2 #(int)( self.samp / self.transFreq / 6 ) #print("npc", npc) # Data nds = nps+npul+(int)((self.deadTime)*self.samp); # indice pulse 1 data starts nd1 = (int)( (self.interpulseDelay) * self.samp) - nds # samples in first pulse ndr = (int)( (self.interpulseDelay) * self.samp) # samples in record invGain = 1./self.RxGain invCGain = self.CurrentGain pulse = "Pulse 1" chan = self.DATADICT[pulse]["chan"] rchan = self.DATADICT[pulse]["rchan"] T = 1.5 #N_samp * self.dt TIMES = np.arange(0, T, self.dt) - .0002 # small offset in GMR DAQ? self.DATADICT["Pulse 1"]["TIMES"] = TIMES[nds:nds+nd1] self.DATADICT["Pulse 1"]["PULSE_TIMES"] = TIMES[nps:nps+npul] # pandas is much faster than numpy for io #DATA = np.loadtxt(rawfname) DATA = pd.read_csv(rawfname, header=None, sep="\t").values for ipm in range(self.nPulseMoments): for ichan in np.append(chan,rchan): if ipm%2: self.DATADICT["Pulse 1"][ichan][ipm][istack] = DATA[:, eval(ichan)+4][(nds+npc):(nds+nd1+npc)] * invGain #self.DATADICT["Pulse 1"][ichan][ipm][istack] = DATA[:, eval(ichan)+4][nds:(nds+nd1)] * invGain self.DATADICT["Pulse 1"]["CURRENT"][ipm][istack] = DATA[:,2][nps+npc:nps+npul+npc] * invCGain else: self.DATADICT["Pulse 1"][ichan][ipm][istack] = DATA[:, eval(ichan)+4][nds:(nds+nd1)] * invGain self.DATADICT["Pulse 1"]["CURRENT"][ipm][istack] = DATA[:,2][nps:nps+npul] * invCGain nds += ndr nps += ndr def loadFIDData(self, base, procStacks, chanin, rchanin, FIDProc, canvas, deadTime, plot): ''' Loads a GMR FID dataset, reads binary and ASCII format files ''' canvas.reAx3(True,False) chan = [] for ch in chanin: chan.append(str(ch)) rchan = [] for ch in rchanin: rchan.append(str(ch)) self.deadTime = deadTime # instrument dead time before measurement self.samp = 50000. # in case this is a reproc, these might have self.dt = 1./self.samp # changed ################################################################################# # Data structures PULSES = [FIDProc] PULSES = ["Pulse 1"] self.DATADICT = {} self.DATADICT["nPulseMoments"] = self.nPulseMoments self.DATADICT["stacks"] = procStacks self.DATADICT["PULSES"] = PULSES for pulse in PULSES: self.DATADICT[pulse] = {} self.DATADICT[pulse]["chan"] = chan # TODO these should not be a subet of pulse! for GMR all self.DATADICT[pulse]["rchan"] = rchan # data are consistent self.DATADICT[pulse]["CURRENT"] = {} for ichan in np.append(chan,rchan): self.DATADICT[pulse][ichan] = {} for ipm in range(self.nPulseMoments): self.DATADICT[pulse][ichan][ipm] = {} self.DATADICT[pulse]["CURRENT"][ipm] = {} for istack in procStacks: self.DATADICT[pulse][ichan][ipm][istack] = np.zeros(3) self.DATADICT[pulse]["CURRENT"][ipm][istack] = np.zeros(3) ############################################## # Read in binary (.lvm) data iistack = 0 for istack in procStacks: if self.nDAQVersion <= 1.0: try: self.loadGMRASCIIFID( base + "_" + str(istack), istack ) except: self.loadGMRASCIIFID( base + "_" + str(istack) + ".lvm", istack ) elif self.nDAQVersion < 2.3: self.loadGMRASCIIFID( base + "_" + str(istack), istack ) else: self.loadGMRBinaryFID( base + "_" + str(istack) + ".lvm", istack ) if plot: for ipm in range(self.nPulseMoments): canvas.softClear() for ichan in chan: canvas.ax1.plot(self.DATADICT["Pulse 1"]["PULSE_TIMES"], self.DATADICT["Pulse 1"]["CURRENT"][ipm][istack] , color='black') canvas.ax3.plot(self.DATADICT["Pulse 1"]["TIMES"], self.DATADICT["Pulse 1"][ichan][ipm][istack], label="Pulse 1 FID data ch. "+str(ichan)) #, color='blue') for ichan in rchan: canvas.ax2.plot(self.DATADICT["Pulse 1"]["TIMES"], self.DATADICT["Pulse 1"][ichan][ipm][istack], label="Pulse 1 FID ref ch. "+str(ichan)) #, color='blue') # reference axis canvas.ax2.tick_params(axis='both', which='major', labelsize=10) canvas.ax2.tick_params(axis='both', which='minor', labelsize=10) #canvas.ax2.xaxis.set_ticklabels([]) plt.setp(canvas.ax2.get_xticklabels(), visible=False) canvas.ax2.legend(prop={'size':10}, loc='upper right') canvas.ax2.set_title("stack "+str(istack)+" pulse index " + str(ipm), fontsize=10) canvas.ax2.set_ylabel("RAW signal [V]", fontsize=10) canvas.ax1.set_ylabel("Current (A)", fontsize=10) canvas.ax1.ticklabel_format(style='sci', scilimits=(0,0), axis='y') canvas.ax1.set_xlabel("time (s)", fontsize=10) canvas.ax3.legend(prop={'size':10}, loc='upper right') canvas.ax3.set_ylabel("RAW signal [V]", fontsize=10) canvas.fig.tight_layout() canvas.draw() percent = (int) (1e2*((float)((iistack*self.nPulseMoments+ipm+1)) / (len(procStacks)*self.nPulseMoments))) self.progressTrigger.emit(percent) iistack += 1 # percent = (int) (1e2*((float)((iistack*self.nPulseMoments+ipm+1)) / (len(procStacks)*self.nPulseMoments))) # self.progressTrigger.emit(percent) # iistack += 1 self.enableDSP() self.doneTrigger.emit() def loadT1Data(self, base, procStacks, chanin, rchanin, FIDProc, canvas, deadTime, plot): ''' Loads a GMR T1 dataset, reads binary and ASCII format files ''' canvas.reAx3(True,False) chan = [] for ch in chanin: chan.append(str(ch)) rchan = [] for ch in rchanin: rchan.append(str(ch)) # not in any headers but this has changed, NOT the place to do this. MOVE #self.prePulseDelay = 0.01 # delay before pulse self.deadTime = deadTime # instrument dead time before measurement self.samp = 50000. # in case this is a reproc, these might have self.dt = 1./self.samp # changed ################################################################################# # Data structures PULSES = [FIDProc] self.DATADICT = {} self.DATADICT["nPulseMoments"] = self.nPulseMoments self.DATADICT["stacks"] = procStacks self.DATADICT["PULSES"] = PULSES for pulse in PULSES: self.DATADICT[pulse] = {} self.DATADICT[pulse]["chan"] = chan # TODO these should not be a subet of pulse! for GMR all self.DATADICT[pulse]["rchan"] = rchan # data are consistent self.DATADICT[pulse]["CURRENT"] = {} for ichan in np.append(chan,rchan): self.DATADICT[pulse][ichan] = {} for ipm in range(self.nPulseMoments): self.DATADICT[pulse][ichan][ipm] = {} self.DATADICT[pulse]["CURRENT"][ipm] = {} for istack in procStacks: self.DATADICT[pulse][ichan][ipm][istack] = np.zeros(3) self.DATADICT[pulse]["CURRENT"][ipm][istack] = np.zeros(3) ############################################## # Read in binary (.lvm) data iistack = 0 fnames = [] for istack in procStacks: if self.nDAQVersion < 2.3: #rawfname = base + "_" + str(istack) #self.loadGMRASCIIFID( base + "_" + str(istack), istack ) self.loadGMRASCIIT1( base + "_" + str(istack), istack ) else: self.loadGMRBinaryFID( base + "_" + str(istack) + ".lvm", istack ) #fnames.append( base + "_" + str(istack) + ".lvm" ) percent = (int) (1e2*((float)((iistack*self.nPulseMoments+ipm+1)) / (len(procStacks)*self.nPulseMoments))) self.progressTrigger.emit(percent) iistack += 1 # multiprocessing load data #info = {} #info["prePulseDelay"] = self.prePulseDelay #info["samp"] = self.samp #with multiprocessing.Pool() as pool: # results = pool.starmap( xxloadGMRBinaryFID, ( fnames, zip(itertools.repeat(info)) ) ) # Plotting if plot: iistack = 0 for istack in procStacks: #for ipm in range(0,7,1): for ipm in range(self.nPulseMoments): canvas.ax1.clear() canvas.ax2.clear() canvas.ax3.clear() #canvas.fig.patch.set_facecolor('blue') for ichan in chan: canvas.ax1.plot(self.DATADICT["Pulse 1"]["PULSE_TIMES"], self.DATADICT["Pulse 1"]["CURRENT"][ipm][istack] , color='black') canvas.ax3.plot(self.DATADICT["Pulse 1"]["TIMES"], self.DATADICT["Pulse 1"][ichan][ipm][istack], label="Pulse 1 FID data ch. "+str(ichan)) #, color='blue') for ichan in rchan: canvas.ax2.plot(self.DATADICT["Pulse 1"]["TIMES"], self.DATADICT["Pulse 1"][ichan][ipm][istack], label="Pulse 1 FID ref ch. "+str(ichan)) #, color='blue') canvas.ax3.legend(prop={'size':6}, loc='upper right') canvas.ax2.legend(prop={'size':6}, loc='upper right') canvas.ax1.set_title("stack "+str(istack)+" pulse index " + str(ipm), fontsize=8) canvas.ax1.set_xlabel("time [s]", fontsize=8) canvas.ax1.set_ylabel("Current [A]", fontsize=8) canvas.ax1.ticklabel_format(style='sci', scilimits=(0,0), axis='y') canvas.ax2.set_ylabel("RAW signal [V]", fontsize=8) canvas.ax2.tick_params(axis='both', which='major', labelsize=8) canvas.ax2.tick_params(axis='both', which='minor', labelsize=6) canvas.ax2.set_xlabel("time [s]", fontsize=8) canvas.ax2.ticklabel_format(style='sci', scilimits=(0,0), axis='y') canvas.ax3.ticklabel_format(style='sci', scilimits=(0,0), axis='y') canvas.draw() #canvas.draw() percent = (int) (1e2*((float)((iistack*self.nPulseMoments+ipm+1)) / (len(procStacks)*self.nPulseMoments))) self.progressTrigger.emit(percent) iistack += 1 self.enableDSP() self.doneTrigger.emit() def load4PhaseT1Data(self, base, procStacks, chan, rchan, FIDProc, canvas, deadTime, plot): """ Designed to load GMR 4-phase data which use the following convention for phase cycles P1 P2 Stack 1 -> 0 0 <-- <-- Stack 2 -> 0 pi/2 | <-- <-- Stack 3 -> pi/2 0 <-- | <-- Stack 4 -> pi/2 pi/2 <-- <-- The cycle is determined by stack indice. Walbrecker proposes for pulse2 data (Stack2 - Stack1) / 2 equivalently (Stack 4 - Stack3) will yield the same voltage response wrt. the second pulse. Alternatively Stack 4 can be converted to be aligned with Stack 1 by negating, and Stack 3 Can be aligned with Stack 2 by negating Then there are just the two phase cycles that can be stacked like normal. Unfortunately, we need to stack each cycle first, then perform corrections for phase cycling. The reason for this is that otherwise, the entire point is lost, as the signal that is desired to be cancelled out may not be balanced evenly across the stacks. That is to say, if there is an uneven number of a certain phase cycle. We could, I suppose impose this condition, but I think I would rather not? + more samples for std. deviation calculation + single spikes will have less residual effect - can no longer do normality tests etc. and remove data that are suspect. - requires a dumb stack, and may also require removal of entire stacks of data Additonally, the GMR varies phase as a function of pulse moment index, so that the first pusle moment is zero phase, the second is pi/2 the third is zero ... This however, is altered by the above convention. It gets a little complicated... """ import struct canvas.reAx3() # not in any headers but this has changed, NOT the place to do this. MOVE self.prePulseDelay = 0.01 # delay before pulse self.deadTime = deadTime # instrument dead time before measurement self.samp = 50000. # in case this is a reproc, these might have self.dt = 1./self.samp # changed invGain = 1./self.RxGain invCGain = self.CurrentGain ################################################################################# # figure out key data indices # Pulse nps = (int)((self.prePulseDelay)*self.samp) nps2 = (int)((self.prePulseDelay+self.interpulseDelay)*self.samp) npul = (int)(self.pulseLength[0]*self.samp) #+ 100 np2 = (int)(self.pulseLength[1]*self.samp) #+ 100 # Data nds = nps+npul+(int)((self.deadTime)*self.samp); # indice pulse 1 data starts nd1 = (int)((self.interpulseDelay)*self.samp) # samples in first pulse nd2s = nps+npul+nd1+(int)((self.deadTime)*self.samp); # indice pulse 2 data starts nd2 = (int)((1.)*self.samp) # samples in first pulse nd1 -= (int)((.028)*self.samp) + nps # some time to get ready for next pulse ################################################################################# # Data structures PULSES = [FIDProc] if FIDProc == "Both": PULSES = ["Pulse 1","Pulse 2"] self.DATADICT = {} self.DATADICT["nPulseMoments"] = self.nPulseMoments self.DATADICT["stacks"] = procStacks self.DATADICT["PULSES"] = PULSES for pulse in PULSES: self.DATADICT[pulse] = {} self.DATADICT[pulse]["chan"] = chan self.DATADICT[pulse]["rchan"] = rchan self.DATADICT[pulse]["CURRENT"] = {} for ichan in np.append(chan,rchan): self.DATADICT[pulse][ichan] = {} for ipm in range(self.nPulseMoments): self.DATADICT[pulse][ichan][ipm] = {} self.DATADICT[pulse]["CURRENT"][ipm] = {} for istack in procStacks: self.DATADICT[pulse][ichan][ipm][istack] = np.zeros(3) self.DATADICT[pulse]["CURRENT"][ipm][istack] = np.zeros(3) ############################################## # Read in binary data iistack = 0 for istack in procStacks: rawFile = open(base + "_" + str(istack) + ".lvm", 'rb') for ipm in range(self.nPulseMoments): N_chan = struct.unpack('>i', rawFile.read(4))[0] N_samp = struct.unpack('>i', rawFile.read(4))[0] T = N_samp * self.dt TIMES = np.arange(0, T, self.dt) - .0002 # small offset in GMR DAQ? DATA = np.zeros([N_samp, N_chan+1]) for ichan in range(N_chan): DATADUMP = rawFile.read(4*N_samp) for irec in range(N_samp): DATA[irec,ichan] = struct.unpack('>f', DATADUMP[irec*4:irec*4+4])[0] if plot: #canvas.ax1.clear() #canvas.ax2.clear() canvas.softClear() li = np.shape( DATA[:,4][nd2s:nd2s+nd2] )[0] ###################################### # save into DATA cube # TODO, changing iFID to 'Pulse 1' or 'Pulse 2' for ichan in chan: if FIDProc == "Pulse 1": self.DATADICT["Pulse 1"][ichan][ipm][istack] = DATA[:,ichan+3][nds:nds+nd1] * invGain self.DATADICT["Pulse 1"]["TIMES"] = TIMES[nds:nds+nd1] self.DATADICT["Pulse 1"]["CURRENT"][ipm][istack] = DATA[:,1][nps:nps+npul] * invCGain self.DATADICT["Pulse 1"]["PULSE_TIMES"] = TIMES[nps:nps+npul] if plot: canvas.ax3.plot(self.DATADICT["Pulse 1"]["TIMES"], self.DATADICT["Pulse 1"][ichan][ipm][istack], label="Pulse 1 FID data ch. "+str(ichan)) #, color='blue') canvas.ax1.plot(self.DATADICT["Pulse 1"]["PULSE_TIMES"], self.DATADICT["Pulse 1"]["CURRENT"][ipm][istack] , color='black') elif FIDProc == "Pulse 2": print("TODO fix y scale") self.DATADICT["Pulse 2"][ichan][ipm][istack] = DATA[:,ichan+3][nd2s:nd2s+nd2] *invGain self.DATADICT["Pulse 2"]["TIMES"] = TIMES[nd2s:nd2s+nd2] self.DATADICT["Pulse 2"]["CURRENT"][ipm][istack] = DATA[:,1][nps2:nps2+np2] * invCGain self.DATADICT["Pulse 2"]["PULSE_TIMES"] = TIMES[nps2:nps2+np2] if plot: canvas.ax3.plot(self.DATADICT["Pulse 2"]["TIMES"], self.DATADICT["Pulse 2"][ichan][ipm][istack], label="Pulse 2 FID data ch. "+str(ichan)) #, color='blue') canvas.ax1.plot( self.DATADICT["Pulse 2"]["PULSE_TIMES"], self.DATADICT["Pulse 2"]["CURRENT"][ipm][istack], color='black' ) else: self.DATADICT["Pulse 1"][ichan][ipm][istack] = DATA[:,ichan+3][nds:nds+nd1] * invGain self.DATADICT["Pulse 2"][ichan][ipm][istack] = DATA[:,ichan+3][nd2s:nd2s+nd2] * invGain self.DATADICT["Pulse 1"]["TIMES"] = TIMES[nds:nds+nd1] self.DATADICT["Pulse 2"]["TIMES"] = TIMES[nd2s:nd2s+nd2] self.DATADICT["Pulse 1"]["CURRENT"][ipm][istack] = DATA[:,1][nps:nps+npul] * invCGain self.DATADICT["Pulse 1"]["PULSE_TIMES"] = TIMES[nps:nps+npul] self.DATADICT["Pulse 2"]["CURRENT"][ipm][istack] = DATA[:,1][nps2:nps2+np2] * invCGain self.DATADICT["Pulse 2"]["PULSE_TIMES"] = TIMES[nps2:nps2+np2] if plot: canvas.ax3.plot(self.DATADICT["Pulse 1"]["TIMES"], self.DATADICT["Pulse 1"][ichan][ipm][istack], label="Pulse 1 FID data ch. "+str(ichan)) #, color='blue') canvas.ax3.plot(self.DATADICT["Pulse 2"]["TIMES"], self.DATADICT["Pulse 2"][ichan][ipm][istack], label="Pulse 2 FID data ch. "+str(ichan)) #, color='blue') canvas.ax1.plot( self.DATADICT["Pulse 1"]["PULSE_TIMES"], self.DATADICT["Pulse 1"]["CURRENT"][ipm][istack] , color='black' ) canvas.ax1.plot( self.DATADICT["Pulse 2"]["PULSE_TIMES"], self.DATADICT["Pulse 2"]["CURRENT"][ipm][istack] , color='black') for ichan in rchan: if FIDProc == "Pulse 1": self.DATADICT["Pulse 1"][ichan][ipm][istack] = DATA[:,ichan+3][nds:nds+nd1] * invGain self.DATADICT["Pulse 1"]["TIMES"] = TIMES[nds:nds+nd1] if plot: canvas.ax2.plot(self.DATADICT["Pulse 1"]["TIMES"], self.DATADICT["Pulse 1"][ichan][ipm][istack], label="Pulse 1 FID ref ch. "+str(ichan)) #, color='blue') elif FIDProc == "Pulse 2": self.DATADICT["Pulse 2"][ichan][ipm][istack] = DATA[:,ichan+3][nd2s:nd2s+nd2] * invGain self.DATADICT["Pulse 2"]["TIMES"] = TIMES[nd2s:nd2s+nd2] if plot: canvas.ax2.plot(self.DATADICT["Pulse 2"]["TIMES"], self.DATADICT["Pulse 2"][ichan][ipm][istack], label="Pulse 2 FID ref ch. "+str(ichan)) #, color='blue') else: self.DATADICT["Pulse 1"][ichan][ipm][istack] = DATA[:,ichan+3][nds:nds+nd1] * invGain self.DATADICT["Pulse 2"][ichan][ipm][istack] = DATA[:,ichan+3][nd2s:nd2s+nd2] * invGain self.DATADICT["Pulse 1"]["TIMES"] = TIMES[nds:nds+nd1] self.DATADICT["Pulse 2"]["TIMES"] = TIMES[nd2s:nd2s+nd2] if plot: canvas.ax2.plot(self.DATADICT["Pulse 1"]["TIMES"], self.DATADICT["Pulse 1"][ichan][ipm][istack], label="Pulse 1 FID ref ch. "+str(ichan)) #, color='blue') canvas.ax2.plot(self.DATADICT["Pulse 2"]["TIMES"], self.DATADICT["Pulse 2"][ichan][ipm][istack], label="Pulse 2 FID ref ch. "+str(ichan)) #, color='blue') if plot: canvas.ax3.legend(prop={'size':6}, loc='upper right') canvas.ax2.legend(prop={'size':6}, loc='upper right') canvas.ax1.set_title("stack "+str(istack)+" pulse index " + str(ipm), fontsize=8) canvas.ax1.set_xlabel("time [s]", fontsize=8) canvas.ax3.set_ylabel("RAW signal [V]", fontsize=8) canvas.ax2.set_ylabel("RAW signal [V]", fontsize=8) canvas.ax1.set_ylabel("Current [A]", fontsize=8) #canvas.ax2.tick_params(axis='both', which='major', labelsize=8) #canvas.ax2.tick_params(axis='both', which='minor', labelsize=6) #canvas.ax2.ticklabel_format(style='sci', scilimits=(0,0), axis='y') #canvas.ax1.ticklabel_format(style='sci', scilimits=(0,0), axis='y') canvas.draw() # update GUI of where we are percent = (int) (1e2*((float)((iistack*self.nPulseMoments+ipm+1)) / (len(procStacks)*self.nPulseMoments))) self.progressTrigger.emit(percent) iistack += 1 self.enableDSP() self.doneTrigger.emit() if __name__ == "__main__": if len(sys.argv) < 4: print( "mrsurvey path/to/header <stack1> <stackN> ") exit() GMR = GMRDataProcessor() GMR.readHeaderFile(sys.argv[1]) GMR.Print() if GMR.pulseType == "FID": GMR.loadFIDData(sys.argv[1], sys.argv[2], sys.argv[3], 5) if GMR.pulseType == "4PhaseT1": GMR.load4PhaseT1Data(sys.argv[1], sys.argv[2], sys.argv[3], 5) pylab.show()
Akvo
/Akvo-1.7.2-py3-none-any.whl/akvo/tressel/mrsurvey.py
mrsurvey.py
import numpy def smooth(x,window_len=11,window='hanning'): """smooth the data using a window with requested size. This method is based on the convolution of a scaled window with the signal. The signal is prepared by introducing reflected copies of the signal (with the window size) in both ends so that transient parts are minimized in the begining and end part of the output signal. input: x: the input signal window_len: the dimension of the smoothing window; should be an odd integer window: the type of window from 'flat', 'hanning', 'hamming', 'bartlett', 'blackman' flat window will produce a moving average smoothing. output: the smoothed signal example: t=linspace(-2,2,0.1) x=sin(t)+randn(len(t))*0.1 y=smooth(x) see also: numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman, numpy.convolve scipy.signal.lfilter TODO: the window parameter could be the window itself if an array instead of a string """ if x.ndim != 1: raise ValueError("smooth only accepts 1 dimension arrays.") if x.size < window_len: raise ValueError("Input vector needs to be bigger than window size.") if window_len<3: return x if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']: raise ValueError("Window is on of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'") s=numpy.r_[2*x[0]-x[window_len:1:-1],x,2*x[-1]-x[-1:-window_len:-1]] #print(len(s)) if window == 'flat': #moving average w=ones(window_len,'d') else: w=eval('numpy.'+window+'(window_len)') y=numpy.convolve(w/w.sum(),s,mode='same') return y[window_len-1:-window_len+1] from numpy import * from pylab import * def smooth_demo(): t=linspace(-4,4,100) x=sin(t) xn=x+randn(len(t))*0.1 y=smooth(x) ws=31 subplot(211) plot(ones(ws)) windows=['flat', 'hanning', 'hamming', 'bartlett', 'blackman'] hold(True) for w in windows[1:]: eval('plot('+w+'(ws) )') axis([0,30,0,1.1]) legend(windows) title("The smoothing windows") subplot(212) plot(x) plot(xn) for w in windows: plot(smooth(xn,10,w)) l=['original signal', 'signal with noise'] l.extend(windows) legend(l) title("Smoothing a noisy signal") show() if __name__=='__main__': smooth_demo()
Akvo
/Akvo-1.7.2-py3-none-any.whl/akvo/tressel/smooth.py
smooth.py
from __future__ import division import matplotlib as mpl mpl.use('pdf') #from rasterize import rasterize_and_save import matplotlib.patches as mpatches from pwctime import pwcTime from logbarrier import * from perlin import perlin from scipy import stats import cmocean import sys import numpy as np import seaborn as sns def bootstrapWindows(N, nboot, isum, adapt=False): """ Bootstraps noise as a function of gate width N = input noise signal nboot = number of boostrap windows to perform isum = length of windows (L_i) adapt = reduce nboot as window size increases """ nc = np.shape(N)[0] Means = {} if adapt: Means = -9999*np.ones((len(isum), nboot//isum[0])) # dummy value for ii, nwin in enumerate(isum): for iboot in range(nboot//isum[ii]): cs = np.random.randint(0,nc-nwin) Means[ii,iboot] = np.mean( N[cs:cs+nwin] ) Means = np.ma.masked_less(Means, -9995) else: Means = np.zeros((len(isum), nboot)) for ii, nwin in enumerate(isum): for iboot in range(nboot): cs = np.random.randint(0,nc-nwin) Means[ii,iboot] = np.mean( N[cs:cs+nwin] ) return Means, np.array(isum) def gateIntegrate(T2D, T2T, gpd, sigma, stackEfficiency=2.): """ Gate integrate the signal to gpd, gates per decade T2D = the time series to gate integrate, complex T2T = the abscissa values gpd = gates per decade sigma = estimate of standard deviation for theoretical gate noise stackEfficiency = exponential in theoretical gate noise, 2 represents ideal stacking """ # use artificial time gates so that early times are fully captured T2T0 = T2T[0] T2TD = T2T[0] - (T2T[1]-T2T[0]) T2T -= T2TD ##################################### # calculate total number of decades # # windows edges are approximate until binning but will be adjusted to reflect data timing, this # primarily impacts bins with a few samples nd = np.log10(T2T[-1]/T2T[0]) tdd = np.logspace( np.log10(T2T[0]), np.log10(T2T[-1]), (int)(gpd*nd)+1, base=10, endpoint=True) tdl = tdd[0:-1] # approximate window left edges tdr = tdd[1::] # approximate window right edges td = (tdl+tdr) / 2. # approximate window centres Vars = np.zeros( len(td) ) htd = np.zeros( len(td), dtype=complex ) isum = np.zeros( len(td), dtype=int ) ii = 0 for itd in range(len(T2T)): if ( T2T[itd] > tdr[ii] ): ii += 1 # correct window edges to centre about data tdr[ii-1] = (T2T[itd-1]+T2T[itd])*.5 tdl[ii ] = (T2T[itd-1]+T2T[itd])*.5 isum[ii] += 1 htd[ii] += T2D[ itd ] Vars[ii] += sigma**2 td = (tdl+tdr) / 2. # actual window centres sigma2 = np.sqrt( Vars * ((1/(isum))**stackEfficiency) ) # Reset abscissa where isum == 1 # when there is no windowing going on td[isum==1] = T2T[0:len(td)][isum==1] tdd = np.append(tdl, tdr[-1]) htd /= isum # average T2T += T2TD # not used return td+T2TD, htd, tdd+T2TD, sigma2, isum # centre abscissa, data, window edges, error PhiD = [] def invert(Time, t, v, sig, lambdastar): """ helper function that simply calls logBarrier, here to allow for drop in repacement """ #model = logBarrier(Time.Genv, 1e-2*v, Time.T2Bins, MAXITER=5000, sigma=1e-2*sig, alpha=1e6, smooth="Both") model = logBarrier(Time.Genv, 1e-2*v, Time.T2Bins, lambdastar, MAXITER=750, sigma=1e-2*sig, alpha=1e6, smooth="Smallest") PhiD.append(model[2]) return model def gateTest(vc, vgc, pperlin, boot, lamdastar): """ Performs gate integration and adds random noise vc = clean data (dense) vgc = clean data at gates boot = if "boot" then bootstrap the gate noise lambdastar = l-curve or discrepency principle pperlin = percent perlin noise, noise floor is maintained at 2.00 PU """ t = np.arange(2e-4, .3601, 2e-4) zeta = np.pi / 3. v = np.copy(vc) # important! # Scaling factors to keep noise floor constant with increasing levels of # Perlin noise. These were determined using populations of 5,000 and hold to # two significant digits (i.e, 2.00 PU) PF = {0.0:0,\ 2.5:.450,\ 5.0:.6125,\ 7.5:.765,\ 10.0:.87375,\ 12.5:.9725,\ 15.0:1.05,\ 17.5:1.1275,\ 20.0:1.20,\ 22.5:1.265,\ 25.0:1.325} # random noise np.random.seed() # necessary for thread pool, otherwise all threads can get same numbers sigma = 2.*(1.-1e-2*pperlin) eps = np.random.normal(0, sigma, len(t)) + \ 1j*np.random.normal(0, sigma, len(t)) eps += PF[pperlin] * perlin(len(t), L=.3601, sigma_f=.005, sigma_r=0.72) # 1 PU std v += eps # Noise based on residual sigmahat = np.std( v.imag ) gt, gd, we, err, isum = gateIntegrate(v.real, t, 20, sigmahat) ge = np.copy(err) if boot=="boot": Means, isum2 = bootstrapWindows(v.imag, 20000, isum[isum!=1], adapt=True) # STD #err[isum!=1] = np.ma.std(Means, axis=1, ddof=1)[isum!=1] # MAD, only for windows > 1 c = stats.norm.ppf(3./4.) err[isum!=1] = np.ma.median(np.ma.abs(Means), axis=1) / c if boot=="uniform": err = sigmahat return gt, gd, gd-vgc, err, v.real, t, isum if __name__ == "__main__": import multiprocessing import itertools from GJIPlot import * import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import FormatStrFormatter from matplotlib import ticker from collections import OrderedDict if len(sys.argv)<4: print ( "Python script for generating plots used in GJI publication") print ( "useage:") print ( "python gateIntegrate4.py NoiseType Sigma_i Lambda* " ) exit() if sys.argv[1] not in ['0.0','2.5','5.0','7.5','10.0','12.5','15.0','17.5','20.0','22.5','25.0']: print ( "PercentPerlin: [0.0,2.5,5.0...25.0] ", "got", sys.argv[1]) exit(1) if sys.argv[2] != "gauss" and sys.argv[2] != "boot" and sys.argv[2] != "uniform": print ( "Sigma_i: gauss | boot | uniform") exit(1) if sys.argv[3] != "lcurve" and sys.argv[3] != "discrepency": print ( "Lambda*: lcurve | discrepency ") exit(1) #offwhite = (.98,.98,.98) offwhite = (1.,1.,1.) mDarkBrown = '#eb811b' # alert colour mDarkTeal = '#23373b' mLightBrown= "#EB811B" mLightGreen = "#14B03D" # Time series plot fig = plt.figure(figsize=(pc2in(18),pc2in(18)), facecolor=offwhite) ax2 = fig.add_axes([.195, .175, .750, .75], facecolor=offwhite) # time # Main plot fig2 = plt.figure(figsize=(pc2in(20),pc2in(2*.5*20))) ax1 = fig2.add_axes([.175, .410*1.5, .6, .225*1.5]) ax1c = fig2.add_axes([.800, .410*1.5, .025, .225*1.5]) ax3 = fig2.add_axes([.175, .100*1.5, .495, .225*1.5], facecolor='None') ax3r = fig2.add_axes([.175, .100*1.5, .495, .225*1.5], facecolor='None', rasterized=True, sharex=ax3, sharey=ax3) ax3b = fig2.add_axes([.825, .100*1.5, .1, .225*1.5]) SIG = [] ER = [] GD = [] GT = [] V = [] MOD = [] CONV = [] PHID = [] PHIM = [] LSTAR = [] ns = 10000 #10000 #10000 # number of realizations for PDF ni = 5000 #5000 #1000 # number of inversions to plot t = np.arange(2e-4, .3601, 2e-4) # CMR sampling #CMAP = cmocean.cm.solar CMAP = cmocean.cm.gray_r #CMAP = cmocean.cm.haline #CMAP = cmocean.cm.tempo ############################################## # set up model lowT2 = .001 hiT2 = 1.0 nT2 = 30 spacing = "Log_10" Time = pwcTime() Time.setT2(lowT2, hiT2, nT2, spacing) Time.setSampling( np.arange(2e-4, .3601, 2e-4) ) Time.generateGenv() tmod = np.zeros(nT2) tmod [8] = .15 # distribution centres...to be smoothed tmod [20] = .1 for i in range(2): tmod = np.convolve(tmod, np.array([.0625,.125,.1875,.25,.1875,.125,.0625]), 'same') vc = 100. * np.dot(Time.Genv, tmod) + 0j # in PU gt, gd, we, err, isum = gateIntegrate(vc, t, 20, 3) ############################################## # Set up inversion Time = pwcTime() Time.setT2(lowT2, hiT2, nT2, spacing) Time.setSampling( gt ) Time.generateGenv() vgc = 100.*np.dot(Time.Genv, tmod) + 0j # in PU # make the Pool of workers print("pool gate integrate") with multiprocessing.Pool() as pool: results = pool.starmap(gateTest, zip(np.tile(vc, (ns, 1)), np.tile(vgc, (ns,1)), itertools.repeat(eval(sys.argv[1])), \ itertools.repeat(sys.argv[2]), \ itertools.repeat(sys.argv[3]))) print("done pool gate integrate") # parse out results for i in range(ns): gt,gd,ge,err,v,vt,isum = results[i] V.append(v.real) GT.append(gt.real) GD.append(gd.real) ER.append( ge.real / err.real ) SIG.append( err.real ) print("pool inversions") with multiprocessing.Pool() as pool: invresults = pool.starmap(invert, zip(itertools.repeat(Time), GT[0:ni], GD[0:ni], SIG[0:ni], itertools.repeat(sys.argv[3]) )) #print("done pool inversions",results[:][0]) # Parse results for i in range(ns): #print("Sym %", round(100.*i/(float)(1)/(float)(ns))) # invert if i < ni: #mod, conv, phid = invert(Time, gt, gd.real, err) if sys.argv[3] == "discrepency": mod, conv, phid_final = invresults[i] else: mod, conv, phid_final, phim, phid, lstar = invresults[i] MOD.append(mod) CONV.append(conv) PHID.append(phid) PHIM.append(phim) LSTAR.append(lstar) PHIM = np.array(PHIM) PHID = np.array(PHID) ER = np.array(ER) MOD = np.array(MOD) GD = np.array(GD) #################### # Time series plot # ax2.plot( 1e3*vt, V[0], color=mDarkTeal, label="$V_N$", linewidth=1, zorder=-32) #, rasterized=True) ax2.errorbar( 1e3*gt, GD[0], yerr=SIG[0], fmt='.', markersize=6, color=mLightBrown, label="$V_G$") ax2.set_ylim([-10,30]) leg1 = ax2.legend( labelspacing=0.2, scatterpoints=1, numpoints=1, frameon=True ) fixLeg(leg1) ax2.set_xscale("log", nonposx='clip') ax2.set_ylabel(r"$V_N$ (PU)") ax2.get_xaxis().set_major_formatter(FormatStrFormatter('%1.0f')) ax2.set_xlabel("time (ms)") deSpine(ax2) fig.savefig( sys.argv[1] + "-" + sys.argv[2] + "-" + sys.argv[3] + "-ts.pdf", dpi=400, facecolor=offwhite,edgecolor=offwhite) # histogram of error statistic bins = np.linspace( -3, 3, 40, endpoint=True ) HIST = [] for i in range(0,np.shape(ER)[1]): hist, edges = np.histogram(ER[:,i], bins=bins, density=False) HIST.append(hist) HIST = np.array(HIST)/(float)(ns) # normalize im = ax1.pcolor(1e3*we, edges, HIST.T, cmap=CMAP, vmin=0, vmax=.1, rasterized=True) im.set_edgecolor('face') cb = plt.colorbar(im, ax1c, label=r"probability density", format=FormatStrFormatter('%1.2f')) cb.solids.set_rasterized(True) tick_locator = ticker.MaxNLocator(nbins=4) cb.locator = tick_locator cb.update_ticks() ax1.set_xscale("log", nonposx='clip') ax1.get_xaxis().set_major_formatter(FormatStrFormatter('%1.0f')) ax1.set_xlabel("time (ms)") ax1.set_ylabel(r"gate error $\left( \left( {V_G - V_T} \right) / {\tilde{\sigma_i}} \right)$") LMT2 = [] THETA = [] MODERR = [] # plot a random sample of ns instead? for i in range(ni): # plot log mean and amplitude model = MOD[i] theta = np.sum( model ) LogMeanT2 = np.exp(np.sum( model * np.log( Time.T2Bins ) ) / theta ) LMT2.append(LogMeanT2) THETA.append( np.sum(model) ) MODERR.append( np.linalg.norm(model-tmod) ) CONV = np.array(CONV) THETA = np.array(THETA) MOD = np.array(MOD) MODERR = np.array(MODERR) ############################# # plot all models, 1 colour # ires = ax3r.plot( 1e3*np.tile(Time.T2Bins, (np.sum(np.array(CONV)) ,1)).T , 1e2*MOD.T, color=mDarkTeal, alpha=.01, lw=.5, label="$\mathbf{f}_I$", zorder=0, rasterized=True) lns2, = ax3r.plot(1e3*Time.T2Bins, 1e2*tmod, color=mLightBrown, linewidth=2, label="$\mathbf{f}_T$") handles, labels = ax3r.get_legend_handles_labels() by_label = OrderedDict(zip(labels, handles)) leg3 = ax3r.legend(by_label.values(), by_label.keys(), labelspacing=0.2, scatterpoints=1, numpoints=1, frameon=True , loc="upper right") for line in leg3.get_lines(): line.set_linewidth(1) for lh in leg3.legendHandles: lh.set_alpha(1) fixLeg(leg3) ########################### # Error histogram on side # ax3b.hist( 1e2*MODERR, bins='auto', orientation="horizontal", color=mDarkTeal, stacked=True, density=True, range=(0,20)) ax3b.axhline(1e2*np.mean(MODERR), linewidth=1.25, color=mLightBrown) #, color=CMAP(0.7), zorder=1) deSpine(ax3b) ax3b.set_xscale("log", nonposx='clip') ax3b.set_ylabel(r"$\Vert \mathbf{f}_I -\mathbf{f}_T \Vert$") # %(m$^3$/m$^3$)") #, color="C0") ax3b.set_xlabel("log probability\ndensity") #, color="C0") ax3.set_xlim( (1e3*Time.T2Bins[0], 1e3*Time.T2Bins[-1]) ) ax3.set_ylim( (0,5) ) ax3.set_xlabel("$T_2$ (ms)") ax3.set_ylabel("partial water content (PU)") #, color="C0") ax3.set_xscale("log", nonposx='clip') ax3.get_xaxis().set_major_formatter(FormatStrFormatter('%1.0f')) plt.setp(ax3r.get_xticklabels(), visible=False) plt.setp(ax3r.get_yticklabels(), visible=False) deSpine(ax3) deSpine(ax3r) np.save("pperlin" + str(round(1e1*eval(sys.argv[1]))) + "-" + sys.argv[2] + "-" + sys.argv[3] + "-err", MODERR) plt.savefig("pperlin" + str(round(1e1*eval(sys.argv[1]))) + "-" + sys.argv[2] + "-" + sys.argv[3] + ".pdf", dpi=600, facecolor=offwhite, edgecolor=offwhite) plt.show()
Akvo
/Akvo-1.7.2-py3-none-any.whl/akvo/tressel/gateIntegrate4.py
gateIntegrate4.py
from akvo.tressel.SlidesPlot import * import numpy as np import sys import matplotlib.pyplot as plt import cmocean from pylab import meshgrid from akvo.tressel.logbarrier import * import yaml,os import multiprocessing import itertools from scipy.linalg import svd from matplotlib.backends.backend_pdf import PdfPages from matplotlib.colors import LogNorm from matplotlib.colors import LightSource from matplotlib.ticker import ScalarFormatter from matplotlib.ticker import MaxNLocator from matplotlib.ticker import AutoMinorLocator from matplotlib.ticker import LogLocator from matplotlib.ticker import FormatStrFormatter from matplotlib.colors import Normalize import cmocean from akvo.tressel.lemma_yaml import * from akvo.tressel import nonlinearinv as nl import pandas as pd import matplotlib.colors as colors # From https://stackoverflow.com/questions/18926031/how-to-extract-a-subset-of-a-colormap-as-a-new-colormap-in-matplotlib def truncate_colormap(cmap, minval=0.0, maxval=1.0, n=100): new_cmap = colors.LinearSegmentedColormap.from_list( 'trunc({n},{a:.2f},{b:.2f})'.format(n=cmap.name, a=minval, b=maxval), cmap(np.linspace(minval, maxval, n))) return new_cmap def buildKQT(K0,tg,T2Bins): """ Constructs a QT inversion kernel from an initial amplitude one. """ nlay, nq = np.shape(K0) nt2 = len(T2Bins) nt = len(tg) KQT = np.zeros( ( nq*nt,nt2*nlay), dtype=np.complex128 ) for iq in range(nq): for it in range(nt): for ilay in range(nlay): for it2 in range(nt2): #KQT[iq*nt + it,ilay*nt2+it2] = K0[ilay,iq]*np.exp(-((10+tg[it])*1e-3)/(1e-3*T2Bins[it2])) KQT[iq*nt + it,ilay*nt2+it2] = K0[ilay,iq]*np.exp(-((10+tg[it])*1e-3)/(1e-3*T2Bins[it2])) return KQT def loadAkvoData(fnamein, chan): """ Loads data from an Akvo YAML file. The 0.02 is hard coded as the pulse length. This needs to be corrected in future kernel calculations. The current was reported but not the pulse length. """ fname = (os.path.splitext(fnamein)[0]) with open(fnamein, 'r') as stream: try: AKVO = (yaml.load(stream, Loader=yaml.Loader)) except yaml.YAMLError as exc: print(exc) exit() Z = np.zeros( (AKVO.nPulseMoments, AKVO.Gated["Pulse 1"]["abscissa"].size ) ) ZS = np.zeros( (AKVO.nPulseMoments, AKVO.Gated["Pulse 1"]["abscissa"].size ) ) for q in range(AKVO.nPulseMoments): Z[q] = AKVO.Gated["Pulse 1"][chan]["Q-"+str(q) + " CA"].data if chan == "Chan. 1": ZS[q] = AKVO.Gated["Pulse 1"][chan]["STD"].data elif chan == "Chan. 2": ZS[q] = AKVO.Gated["Pulse 1"][chan]["STD"].data elif chan == "Chan. 3": ZS[q] = AKVO.Gated["Pulse 1"][chan]["STD"].data elif chan == "Chan. 4": ZS[q] = AKVO.Gated["Pulse 1"][chan]["STD"].data else: print("DOOM!!!") exit() #Z *= 1e-9 #ZS *= 1e-9 J = AKVO.Pulses["Pulse 1"]["current"].data J = np.append(J,J[-1]+(J[-1]-J[-2])) Q = AKVO.pulseLength[0]*J return Z, ZS, AKVO.Gated["Pulse 1"]["abscissa"].data, Q def catLayers(K0): K = np.zeros( (len(K0.keys()), len(K0["layer-0"].data)) , dtype=complex ) for lay in range(len(K0.keys())): #print(K0["layer-"+str(lay)].data) # print (lay) K[lay] =K0["layer-"+str(lay)].data # print (lay) return 1e9*K # invert in nV def loadK0(fname): """ Loads in initial amplitude kernel """ print("loading K0", fname) with open(fname) as f: K0 = yaml.load(f, Loader=yaml.Loader) K = catLayers(K0.K0) ifaces = np.array(K0.Interfaces.data) return ifaces, K #return ifaces, np.abs(K) def invertDelta(G, V_n, T2Bins, sig, alphastar): """ helper function that simply calls logBarrier, simplfies parallel execution """ model = logBarrier(G, V_n, T2Bins, "Single", MAXITER=1, sigma=sig, alpha=alphastar, smooth="Smallest") return model def main(): if (len (sys.argv) < 2): print ("akvoQT invertParameters.yaml") exit() with open(sys.argv[1], 'r') as stream: try: cont = (yaml.load(stream, Loader=yaml.Loader)) except yaml.YAMLError as exc: print(exc) exit(1) ############################################### # Load in data ############################################### V = [] VS = [] QQ = [] tg = 0 for dat in cont['data']: for ch in cont['data'][dat]['channels']: print("dat", dat, "ch", ch) v,vs,tg,Q = loadAkvoData(dat, ch) V.append(v) VS.append(vs) QQ.append(Q) for iv in range(1, len(V)): V[0] = np.concatenate( (V[0], V[iv]) ) VS[0] = np.concatenate( (VS[0], VS[iv]) ) V = V[0] VS = VS[0] ############################################### # Load in kernels ############################################### K0 = [] for kern in cont["K0"]: ifaces,k0 = loadK0( kern ) K0.append(k0) for ik in range(1, len(K0)): K0[0] = np.concatenate( (K0[0].T, K0[ik].T) ).T K0 = K0[0] #np.save("ifaces", ifaces) #exit() #plt.matshow(np.real(K0)) #plt.show() #exit() ############################################################## # VERY Simple Sensitivity based calc. of noise per layer # # minimally useful, but retained for backwards compatibility # maxq = np.argmax(np.abs(K0), axis=1) maxK = .1 * np.abs(K0)[ np.arange(0,len(ifaces)-1), maxq ] # 10% water is arbitrary SNR = maxK / (VS[0][0]) ############################################### # Build full kernel ############################################### T2Bins = np.logspace( np.log10(cont["T2Bins"]["low"]), np.log10(cont["T2Bins"]["high"]), cont["T2Bins"]["number"], endpoint=True, base=10) T2Bins2 = np.append( T2Bins, T2Bins[-1] + (T2Bins[-1]-T2Bins[-2]) ) NT2 = len(T2Bins) KQT = np.real(buildKQT(np.abs(K0),tg,T2Bins)) ############################################### # Linear Inversion ############################################### print("Calling inversion", flush=True) inv, ibreak, errn, phim, phid, mkappa, Wd, Wm, alphastar = logBarrier(KQT, np.ravel(V), T2Bins, "lcurve", MAXITER=150, sigma=np.ravel(VS), alpha=1e7, smooth="Smallest" ) ################################ # Summary plots, Data Space # ################################ # TODO, need to clean this up for the case of multiple channels! Each channel should be a new row. It will be ugly, but important # TODO, loop over channels ich = 0 for ch in cont['data'][dat]['channels']: figx = plt.figure( figsize=(pc2in(42.0),pc2in(22.)) ) ax1 = figx.add_axes([.100, .15, .200, .70]) ax2 = figx.add_axes([.325, .15, .200, .70]) # shifted to make room for shared colourbar axc1= figx.add_axes([.550, .15, .025, .70]) # shifted to make room for shared colourbar ax3 = figx.add_axes([.670, .15, .200, .70]) axc2= figx.add_axes([.895, .15, .025, .70]) # shifted to make room for shared colourbar ax3.set_yscale('log') ax2.set_yscale('log') ax1.set_yscale('log') ax2.yaxis.set_ticklabels([]) ax3.yaxis.set_ticklabels([]) ax3.set_xscale('log') ax2.set_xscale('log') ax1.set_xscale('log') ax1.set_ylabel("Q (A $\cdot$ s)") ax1.set_xlabel("time (s)") ax2.set_xlabel("time (s)") ax3.set_xlabel("time (s)") #TT, QQQ = np.meshgrid(tg, np.ravel(QQ)) TT, QQQ = np.meshgrid(tg, np.ravel(QQ[ich])) nq = np.shape(QQ[ich])[0] - 1 # to account for padding in pcolor nt = np.shape(tg)[0] ntq = nt*nq VV = V[ich*nq:ich*nq+nq,:] # slice this channel VVS = VS[ich*nq:ich*nq+nq,:] # slice this channel mmax = np.max(np.abs(VV)) mmin = np.min(VV) obs = ax1.pcolor(TT, QQQ, VV, cmap=cmocean.cm.curl_r, vmin=-mmax, vmax=mmax, shading='auto') # pcolor edge not defined ax1.set_title("observed") pre = np.dot(KQT[ich*ntq:(ich+1)*ntq,:], inv) PRE = np.reshape( pre, np.shape(VV) ) prem = ax2.pcolor(TT, QQQ, PRE, cmap=cmocean.cm.curl_r, vmin=-mmax, vmax=mmax,shading='auto' ) ax2.set_title("predicted") cbar = plt.colorbar(prem, axc1) axc1.set_ylim( [np.min(VV), np.max(VV)] ) cbar.outline.set_edgecolor(None) cbar.set_label('$V_N$ (nV)') DIFF = (PRE-VV) / VVS md = np.max(np.abs(DIFF)) dim = ax3.pcolor(TT, QQQ, DIFF, cmap=cmocean.cm.balance, vmin=-md, vmax=md, shading='auto') ax3.set_title("misfit / $\widehat{\sigma}$") cbar2 = plt.colorbar(dim, axc2) #axc1.set_ylim( [np.min(V), np.max(V)] ) cbar2.outline.set_edgecolor(None) cbar2.set_label('$V_N$ (nV)') #plt.colorbar(dim, ax3) figx.suptitle(ch + " linear Inversion") plt.savefig(ch + "dataspace.pdf") ich += 1 ############################################### # Non-linear refinement! ############################################### nonLinearRefinement = cont['NonLinearRefinement'] if nonLinearRefinement: KQTc = buildKQT(K0, tg, T2Bins) prec = np.abs(np.dot(KQTc, inv)) phidc = np.linalg.norm(np.dot(Wd,prec-np.ravel(V)))**2 print("PHID forward linear=", errn, "PHID forward nonlinear=", phidc/len(np.ravel(V))) res = nl.nonlinearinversion(inv, Wd, KQTc, np.ravel(V), Wm, alphastar ) if res.success == True: INVc = np.reshape(res.x, (len(ifaces)-1,cont["T2Bins"]["number"]) ) prec = np.abs(np.dot(KQTc, res.x)) phidc = np.linalg.norm(np.dot(Wd,prec-np.ravel(V)))**2 PREc = np.reshape( prec, np.shape(V) ) print("PHID linear=", errn, "PHID nonlinear=", phidc/len(np.ravel(V))) while phidc/len(np.ravel(V)) > errn: phidc_old = phidc/len(np.ravel(V)) #alphastar *= .9 res = nl.nonlinearinversion(res.x, Wd, KQTc, np.ravel(V), Wm, alphastar ) if res.success == True: INVc = np.reshape(res.x, (len(ifaces)-1,cont["T2Bins"]["number"]) ) prec = np.abs(np.dot(KQTc, res.x)) phidc = np.linalg.norm(np.dot(Wd,prec-np.ravel(V)))**2 PREc = np.reshape( prec, np.shape(V) ) print("PHID linear=", errn, "PHID nonlinear=", phidc/len(np.ravel(V))) else: nonLinearRefinement = False print("Non-linear inversion failed, results will not be shown") break if phidc_old - phidc/len(np.ravel(V)) < 0.005: print("Not making progress reducing misfit in nonlinear refinement") break # Turn this into a nice figure w/ shared axes etc. # plt.matshow(PREc, cmap='Blues') # plt.gca().set_title("nonlinear predicted") # plt.colorbar() # # DIFFc = (PREc-V) / VS # md = np.max(np.abs(DIFF)) # plt.matshow(DIFFc, cmap=cmocean.cm.balance, vmin=-md, vmax=md) # plt.gca().set_title("nonlinear misfit / $\widehat{\sigma}$") # plt.colorbar() ################################ # Summary plots, Data Space # ################################ ich = 0 for ch in cont['data'][dat]['channels']: figx = plt.figure( figsize=(pc2in(42.0),pc2in(22.)) ) ax1 = figx.add_axes([.100, .15, .200, .70]) ax2 = figx.add_axes([.325, .15, .200, .70]) # shifted to make room for shared colourbar axc1= figx.add_axes([.550, .15, .025, .70]) # shifted to make room for shared colourbar ax3 = figx.add_axes([.670, .15, .200, .70]) axc2= figx.add_axes([.895, .15, .025, .70]) # shifted to make room for shared colourbar ax3.set_yscale('log') ax2.set_yscale('log') ax1.set_yscale('log') ax2.yaxis.set_ticklabels([]) ax3.yaxis.set_ticklabels([]) ax3.set_xscale('log') ax2.set_xscale('log') ax1.set_xscale('log') ax1.set_ylabel("Q (A $\cdot$ s)") ax1.set_xlabel("time (s)") ax2.set_xlabel("time (s)") ax3.set_xlabel("time (s)") #TT, QQQ = np.meshgrid(tg, np.ravel(QQ)) TT, QQQ = np.meshgrid(tg, np.ravel(QQ[ich])) nq = np.shape(QQ[ich])[0] - 1 # to account for padding in pcolor nt = np.shape(tg)[0] ntq = nt*nq VV = V[ich*nq:ich*nq+nq,:] # slice this channel VVS = VS[ich*nq:ich*nq+nq,:] # slice this channel mmax = np.max(np.abs(VV)) mmin = np.min(VV) obs = ax1.pcolor(TT, QQQ, VV, cmap=cmocean.cm.curl_r, vmin=-mmax, vmax=mmax, shading='auto') ax1.set_title("observed") ## Here neds to change pre = np.abs(np.dot(KQTc[ich*ntq:(ich+1)*ntq,:], inv)) PRE = np.reshape( pre, np.shape(VV) ) prem = ax2.pcolor(TT, QQQ, PRE, cmap=cmocean.cm.curl_r, vmin=-mmax, vmax=mmax, shading='auto' ) ax2.set_title("predicted") cbar = plt.colorbar(prem, axc1) axc1.set_ylim( [np.min(VV), np.max(VV)] ) cbar.outline.set_edgecolor(None) cbar.set_label('$V_N$ (nV)') DIFF = (PRE-VV) / VVS md = np.max(np.abs(DIFF)) dim = ax3.pcolor(TT, QQQ, DIFF, cmap=cmocean.cm.balance, vmin=-md, vmax=md, shading='auto') ax3.set_title("misfit / $\widehat{\sigma}$") cbar2 = plt.colorbar(dim, axc2) #axc1.set_ylim( [np.min(V), np.max(V)] ) cbar2.outline.set_edgecolor(None) cbar2.set_label('$V_N$ (nV)') #plt.colorbar(dim, ax3) figx.suptitle(ch + " non-linear Inversion") plt.savefig(ch + "_NLdataspace.pdf") ich += 1 ############################################### # Appraise DOI using simplified MRM ############################################### CalcDOI = cont['CalcDOI'] if CalcDOI: pdf = PdfPages('resolution_analysis' + '.pdf' ) MRM = np.zeros((len(ifaces)-1, len(ifaces)-1)) # Build delta models DELTA = [] for ilay in range(len(ifaces)-1): #for ilay in range(4): iDeltaT2 = len(T2Bins)//2 deltaMod = np.zeros( (len(ifaces)-1, len(T2Bins)) ) deltaMod[ilay][iDeltaT2] = 0.3 dV = np.dot(KQT, np.ravel(deltaMod)) #dinv, dibreak, derrn = logBarrier( KQT, dV, T2Bins, "single", MAXITER=1, sigma=np.ravel(VS), alpha=alphastar, smooth="Smallest" ) #output = invertDelta(KQT, dV, T2Bins, np.ravel(VS), alphastar) DELTA.append(dV) print("Performing resolution analysis in parallel, printed output may not be inorder.", flush=True) with multiprocessing.Pool() as pool: invresults = pool.starmap(invertDelta, zip(itertools.repeat(KQT), DELTA, itertools.repeat(T2Bins), itertools.repeat(np.ravel(VS)), itertools.repeat(alphastar) )) # invresults = pool.starmap(logBarrier, zip(itertools.repeat(KQT), DELTA, itertools.repeat(T2Bins), itertools.repeat('single'), \ # itertools.repeat('MAXITER=1'), itertools.repeat(np.ravel(VS)), itertools.repeat(alphastar))) #, itertools.repeat(u'smooth=\'Smallest\'')) ) # This could be parallelized for ilay in range(len(ifaces)-1): # invert #dinv, dibreak, derrn = logBarrier(KQT, dV, T2Bins, "single", MAXITER=1, sigma=np.ravel(VS), alpha=alphastar, smooth="Smallest" ) #print("Sum dinv from", str(ifaces[ilay]), "to", str(ifaces[ilay+1]), "=", np.sum(dinv)) dinv, dibreak, derrn = invresults[ilay] DINV = np.reshape(dinv, (len(ifaces)-1,cont["T2Bins"]["number"]) ) MRM[ilay,:] = np.sum(DINV, axis=1) Y,X = meshgrid( ifaces, T2Bins2 ) fig = plt.figure( figsize=(pc2in(20.0),pc2in(22.)) ) ax1 = fig.add_axes( [.2,.15,.6,.7] ) im = ax1.pcolor(X, Y, DINV.T, cmap=cmocean.cm.tempo, shading='auto') ax1.plot( T2Bins[iDeltaT2], (ifaces[ilay]+ifaces[ilay+1])/2, 's', markersize=6, markeredgecolor='black') #, markerfacecolor=None ) im.set_edgecolor('face') ax1.set_xlabel(u"$T_2^*$ (ms)") ax1.set_ylabel(u"depth (m)") ax1.set_xlim( T2Bins2[0], T2Bins2[-1] ) ax1.set_ylim( ifaces[-1], ifaces[0] ) ax2 = ax1.twiny() ax2.plot( np.sum(DINV, axis=1), (ifaces[1:]+ifaces[0:-1])/2 , color='mediumblue' ) ax2.set_xlabel(u"total water (m$^3$/m$^3$)", color='mediumblue') ax2.set_ylim( ifaces[-1], ifaces[0] ) ax2.xaxis.set_major_locator( MaxNLocator(nbins = 3) ) ax2.get_xaxis().set_major_formatter(FormatStrFormatter('%0.2f')) pdf.savefig(facecolor=[0,0,0,0]) plt.close(fig) np.save("MRM", MRM) centres = (ifaces[0:-1]+ifaces[1:])/2 X,Y = np.meshgrid(ifaces,ifaces) fig = plt.figure( figsize=(pc2in(20.0),pc2in(22.)) ) ax1 = fig.add_axes( [.2,.15,.6,.7] ) ax1.pcolor(X,Y,MRM, cmap = cmocean.cm.ice) ax1.set_ylim(ifaces[-1], ifaces[0]) maxDepth = np.argmax(MRM, axis=0) plt.plot(centres[maxDepth], centres, color='white') # Determine DOI DOIMetric = centres[maxDepth]/centres #> 0.9 DOI = ifaces[ np.where(DOIMetric < 0.9 ) ][0] plt.axhline(y=DOI, color='white', linestyle='-.') ax1.set_ylim( ifaces[-1], ifaces[0] ) ax1.set_xlim( ifaces[0], ifaces[-1] ) ax1.set_xlabel(u"depth (m)") ax1.set_ylabel(u"depth (m)") plt.savefig("resolutionmatrix.pdf") pdf.close() INV = np.reshape(inv, (len(ifaces)-1,cont["T2Bins"]["number"]) ) ############## LINEAR RESULT ########################## Y,X = meshgrid( ifaces, T2Bins2 ) fig = plt.figure( figsize=(pc2in(20.0),pc2in(22.)) ) ax1 = fig.add_axes( [.2,.15,.6,.7] ) im = ax1.pcolor(X, Y, INV.T, cmap=cmocean.cm.tempo) #cmap='viridis') im.set_edgecolor('face') ax1.set_xlim( T2Bins[0], T2Bins[-1] ) ax1.set_ylim( ifaces[-1], ifaces[0] ) cb = plt.colorbar(im, label = u"PWC (m$^3$/m$^3$)") #, format='%1.1f') cb.locator = MaxNLocator( nbins = 4) cb.ax.yaxis.set_offset_position('left') cb.update_ticks() ax1.set_xlabel(u"$T_2^*$ (ms)") ax1.set_ylabel(u"depth (m)") ax1.get_xaxis().set_major_formatter(FormatStrFormatter('%1.0f')) ax1.get_yaxis().set_major_formatter(FormatStrFormatter('%1.0f')) ax1.xaxis.set_major_locator( MaxNLocator(nbins = 4) ) ax2 = ax1.twiny() ax2.plot( np.sum(INV, axis=1), (ifaces[1:]+ifaces[0:-1])/2 , color='mediumblue' ) ax2.set_xlabel(u"NMR total water (m$^3$/m$^3$)", color='mediumblue') ax2.set_ylim( ifaces[-1], ifaces[0] ) ax2.xaxis.set_major_locator( MaxNLocator(nbins = 3) ) ax2.get_xaxis().set_major_formatter(FormatStrFormatter('%0.2f')) #ax2.axhline( y=ifaces[SNRidx], xmin=0, xmax=1, color='black', linestyle='dashed' ) if CalcDOI: ax2.axhline( y=DOI, xmin=0, xmax=1, color='black', linestyle='dashed' ) ax2.tick_params(axis='x', colors='mediumblue') plt.setp(ax2.get_xticklabels(), color="mediumblue") plt.savefig("akvoInversion.pdf") ############# # water plot# fig2 = plt.figure( figsize=(pc2in(20.0),pc2in(22.)) ) ax = fig2.add_axes( [.2,.15,.6,.7] ) # Bound water cutoff Bidx = T2Bins<33.0 twater = np.sum(INV, axis=1) bwater = np.sum(INV[:,Bidx], axis=1) ax.plot( twater, (ifaces[0:-1]+ifaces[1::])/2, label="NMR total water", color='blue' ) ax.plot( bwater, (ifaces[0:-1]+ifaces[1::])/2, label="NMR bound water", color='green' ) ax.fill_betweenx((ifaces[0:-1]+ifaces[1::])/2 , twater, bwater, where=twater >= bwater, facecolor='blue', alpha=.5) ax.fill_betweenx((ifaces[0:-1]+ifaces[1::])/2 , bwater, 0, where=bwater >= 0, facecolor='green', alpha=.5) ax.set_xlabel(r"$\theta_N$ (m$^3$/m$^3$)") ax.set_ylabel(r"depth (m)") ax.set_ylim( ifaces[-1], ifaces[0] ) ax.set_xlim( 0, ax.get_xlim()[1] ) #ax.axhline( y=ifaces[SNRidx], xmin=0, xmax=1, color='black', linestyle='dashed' ) if CalcDOI: ax.axhline( y=DOI, xmin=0, xmax=1, color='black', linestyle='dashed' ) # Hide the right and top spines ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) # Only show ticks on the left and bottom spines ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') plt.legend() plt.savefig("akvoInversionWC.pdf") fr = pd.DataFrame( INV, columns=T2Bins ) #[0:-1] ) fr.insert(0, "layer top", ifaces[0:-1] ) fr.insert(1, "layer bottom", ifaces[1::] ) fr.insert(2, "NMR total water", np.sum(INV, axis=1) ) fr.insert(3, "NMR bound water", bwater ) fr.insert(4, "Layer SNR", SNR ) if CalcDOI: fr.insert(5, "Resolution", DOIMetric ) fr.to_csv("akvoInversion.csv", mode='w+') ############## NONLINEAR RESULT ########################## if nonLinearRefinement: Y,X = meshgrid( ifaces, T2Bins2 ) fig = plt.figure( figsize=(pc2in(20.0),pc2in(22.)) ) ax1 = fig.add_axes( [.2,.15,.6,.7] ) im = ax1.pcolor(X, Y, INVc.T, cmap=cmocean.cm.tempo) #cmap='viridis') #im = ax1.pcolor(X[0:SNRidx,:], Y[0:SNRidx,:], INV.T[0:SNRidx,:], cmap=cmocean.cm.tempo) #cmap='viridis') #im = ax1.pcolor(X[SNRidx::,:], Y[SNRidx::,:], INV.T[SNRidx::,:], cmap=cmocean.cm.tempo, alpha=.5) #cmap='viridis') #im = ax1.pcolormesh(X, Y, INV.T, alpha=alphas) #, cmap=cmocean.cm.tempo) #cmap='viridis') #im = ax1.pcolormesh(X, Y, INV.T, alpha=alphas) #, cmap=cmocean.cm.tempo) #cmap='viridis') #ax1.axhline( y=ifaces[SNRidx], xmin=T2Bins[0], xmax=T2Bins[-1], color='black' ) im.set_edgecolor('face') ax1.set_xlim( T2Bins[0], T2Bins[-1] ) ax1.set_ylim( ifaces[-1], ifaces[0] ) cb = plt.colorbar(im, label = u"PWC (m$^3$/m$^3$)") #, format='%1.1f') cb.locator = MaxNLocator( nbins = 4) cb.ax.yaxis.set_offset_position('left') cb.update_ticks() ax1.set_xlabel(u"$T_2^*$ (ms)") ax1.set_ylabel(u"depth (m)") ax1.get_xaxis().set_major_formatter(FormatStrFormatter('%1.0f')) ax1.get_yaxis().set_major_formatter(FormatStrFormatter('%1.0f')) ax1.xaxis.set_major_locator( MaxNLocator(nbins = 4) ) #ax1.xaxis.set_label_position('top') ax2 = ax1.twiny() ax2.plot( np.sum(INVc, axis=1), (ifaces[1:]+ifaces[0:-1])/2 , color='mediumblue' ) ax2.set_xlabel(u"NMR total water (m$^3$/m$^3$)", color='mediumblue') ax2.set_ylim( ifaces[-1], ifaces[0] ) ax2.xaxis.set_major_locator( MaxNLocator(nbins = 3) ) ax2.get_xaxis().set_major_formatter(FormatStrFormatter('%0.2f')) #ax2.axhline( y=ifaces[SNRidx], xmin=0, xmax=1, color='black', linestyle='dashed' ) if CalcDOI: ax2.axhline( y=DOI, xmin=0, xmax=1, color='black', linestyle='dashed' ) #ax2.xaxis.set_label_position('bottom') #fig.suptitle("Non linear inversion") ax2.tick_params(axis='x', colors='mediumblue') plt.setp(ax2.get_xticklabels(), color="mediumblue") plt.savefig("akvoInversionNL.pdf") ############# # water plot# fig2 = plt.figure( figsize=(pc2in(20.0),pc2in(22.)) ) ax = fig2.add_axes( [.2,.15,.6,.7] ) # Bound water cutoff Bidx = T2Bins<33.0 twater = np.sum(INVc, axis=1) bwater = np.sum(INVc[:,Bidx], axis=1) ax.plot( twater, (ifaces[0:-1]+ifaces[1::])/2, label="NMR total water", color='blue' ) ax.plot( bwater, (ifaces[0:-1]+ifaces[1::])/2, label="NMR bound water", color='green' ) ax.fill_betweenx((ifaces[0:-1]+ifaces[1::])/2 , twater, bwater, where=twater >= bwater, facecolor='blue', alpha=.5) ax.fill_betweenx((ifaces[0:-1]+ifaces[1::])/2 , bwater, 0, where=bwater >= 0, facecolor='green', alpha=.5) ax.set_xlabel(r"$\theta_N$ (m$^3$/m$^3$)") ax.set_ylabel(r"depth (m)") ax.set_ylim( ifaces[-1], ifaces[0] ) ax.set_xlim( 0, ax.get_xlim()[1] ) #ax.axhline( y=ifaces[SNRidx], xmin=0, xmax=1, color='black', linestyle='dashed' ) if CalcDOI: ax.axhline( y=DOI, xmin=0, xmax=1, color='black', linestyle='dashed' ) # Hide the right and top spines ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) # Only show ticks on the left and bottom spines ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') plt.savefig("akvoNLInversionWC.pdf") plt.legend() # Report results into a text file fr = pd.DataFrame( INVc, columns=T2Bins ) #[0:-1] ) fr.insert(0, "layer top", ifaces[0:-1] ) fr.insert(1, "layer bottom", ifaces[1::] ) fr.insert(2, "NMR total water", np.sum(INVc, axis=1) ) fr.insert(3, "NMR bound water", bwater ) fr.insert(4, "Layer SNR", SNR ) if CalcDOI: fr.insert(5, "Resolution", DOIMetric ) fr.to_csv("akvoNLInversion.csv", mode='w+') #fr.to_excel("akvoInversion.xlsx") plt.show() if __name__ == "__main__": main()
Akvo
/Akvo-1.7.2-py3-none-any.whl/akvo/tressel/invertTA.py
invertTA.py
from __future__ import division import numpy as np from scipy.sparse.linalg import iterative as iter from scipy.sparse.linalg import spilu as ilu import scipy.sparse.linalg as spla from scipy.sparse import eye as seye import pylab import pprint from scipy.optimize import nnls import matplotlib.pyplot as plt from akvo.tressel.SlidesPlot import * def PhiB(mux, minVal, x): phib = mux * np.abs( np.sum(np.log( x-minVal)) ) return phib def curvaturefd(x, y, t): x1 = np.gradient(x,t) x2 = np.gradient(x1,t) y1 = np.gradient(y,t) y2 = np.gradient(y1,t) return np.abs(x1*y2 - y1*x2) / np.power(x1**2 + y1**2, 3./2) def curvatureg(x, y): from scipy.ndimage import gaussian_filter1d #first and second derivative x1 = gaussian_filter1d(x, sigma=1, order=1)#, mode='constant', cval=x[-1]) x2 = gaussian_filter1d(x1, sigma=1, order=1)#, mode='constant', cval=y[-1]) y1 = gaussian_filter1d(y, sigma=1, order=1)#, mode='constant', cval=x1[-1]) y2 = gaussian_filter1d(y1, sigma=1, order=1)#, mode='constant', cval=y1[-1]) return np.abs(x1*y2 - y1*x2) / np.power(x1**2 + y1**2, 3./2) def logBarrier(A, b, T2Bins, lambdastar, x_0=0, xr=0, alpha=10, mu1=10, mu2=10, smooth=False, MAXITER=70, fignum=1000, sigma=1, callback=None): """Impliments a log barrier Tikhonov solution to a linear system of equations Ax = b s.t. x_min < x < x_max. A log-barrier term is used for the constraint """ # TODO input minVal = 0.0 #maxVal = 1e8 Wd = (np.eye(len(b)) / (sigma)) # Wd = eye( sigma ) WdTWd = (np.eye(len(b)) / (sigma**2)) # Wd = eye( sigma ) ATWdTWdA = np.dot(A.conj().transpose(), np.dot( WdTWd, A )) # TODO, implicit calculation instead? N = np.shape(A)[1] # number of model M = np.shape(A)[0] # number of data SIGMA = .25 # .25 # lower is more aggresive relaxation of log barrier EPSILON = 1e-25 #1e-35 #SIGMA = .05 # .25 # lower is more aggresive relaxation of log barrier #EPSILON = 1e-10 #1e-35 # reference model if np.size(xr) == 1: xr = np.zeros(N) # initial guess if np.size(x_0) == 1: x = 1e-10 + np.zeros(N) else: x = 1e-10 + x_0 # Construct model constraint base Phim_base = np.zeros( [N , N] ) a1 = .05 # smallest too # calculate largest term D1 = 1./abs(T2Bins[1]-T2Bins[0]) D2 = 1./abs(T2Bins[2]-T2Bins[1]) #a2 = 1. #(1./(2.*D1+D2)) # smooth if smooth == "Both": #print ("Both small and smooth model") for ip in range(N): D1 = 0. D2 = 0. if ip > 0: #D1 = np.sqrt(1./abs(T2Bins[ip]-T2Bins[ip-1]))**.5 D1 = (1./abs(T2Bins[ip]-T2Bins[ip-1])) #**2 if ip < N-1: #D2 = np.sqrt(1./abs(T2Bins[ip+1]-T2Bins[ip]))**.5 D2 = (1./abs(T2Bins[ip+1]-T2Bins[ip])) #**2 if ip > 0: Phim_base[ip,ip-1] = -(D1) if ip == 0: Phim_base[ip,ip ] = 2.*(D1+D2) elif ip == N-1: Phim_base[ip,ip ] = 2.*(D1+D2) else: Phim_base[ip,ip ] = 2.*(D1+D2) if ip < N-1: Phim_base[ip,ip+1] = -(D2) Phim_base /= np.max(Phim_base) # normalize Phim_base += a1*np.eye(N) elif smooth == "Smooth": #print ("Smooth model") for ip in range(N): if ip > 0: Phim_base[ip,ip-1] = -1 # smooth in log space if ip == 0: Phim_base[ip,ip ] = 2.05 # Encourage a little low model elif ip == N-1: Phim_base[ip,ip ] = 2.5 # Penalize long decays else: Phim_base[ip,ip ] = 2.1 # Smooth and small if ip < N-1: Phim_base[ip,ip+1] = -1 # smooth in log space elif smooth == "Smallest": for ip in range(N): Phim_base[ip,ip ] = 1. else: print("non valid model constraint:", smooth) exit() Phi_m = alpha*Phim_base WmTWm = Phim_base # np.dot(Phim_base, Phim_base.T) b_pre = np.dot(A, x) phid = np.linalg.norm( np.dot(Wd, (b-b_pre)) )**2 phim = np.linalg.norm( np.dot(Phim_base, (x-xr)) )**2 mu2 = phim phib = PhiB(mu1, 0, x) mu1 = 1e-4* ((phid + alpha*phim) / phib) PHIM = [] PHID = [] MOD = [] ALPHA = [] ALPHA.append(alpha) #ALPHA = np.linspace( alpha, 1, MAXITER ) for i in range(MAXITER): #alpha = ALPHA[i] Phi_m = alpha*Phim_base # reset mu1 at each iteration # Calvetti -> No ; Li -> Yes # without this, non monotonic convergence occurs...which is OK if you really trust your noise mu1 = 1e-4* ((phid + alpha*phim) / phib) WmTWm = Phim_base # np.dot(Phim_base, Phim_base.T) phid_old = phid inner = 0 First = True # guarantee entry xp = np.copy(x) # prior step x b2a = np.dot(A.conj().transpose(), np.dot(WdTWd, b-b_pre) ) - alpha*np.dot(WmTWm,(x-xr)) xg = nnls(ATWdTWdA + Phi_m, b2a) x = xg[0] #b_pre = np.dot(A, x) #phid = np.linalg.norm( np.dot(Wd, (b-b_pre)))**2 #phim = np.linalg.norm( np.dot(Phim_base, (x-xr)) )**2 while ( (phib / (phid+alpha*phim)) > EPSILON or First==True ): #while ( False ): First = False # Log barrier, keep each element above minVal X1 = np.eye(N) * (x-minVal)**-1 X2 = np.eye(N) * (x-minVal)**-2 # Log barrier, keep sum below maxVal TODO normalize by component. Don't want to push all down #Y1 = np.eye(N) * (maxVal - np.sum(x))**-1 #Y2 = np.eye(N) * (maxVal - np.sum(x))**-2 AA = ATWdTWdA + mu1*X2 + Phi_m M = np.eye( N ) * (1./np.diag(ATWdTWdA + mu1*X2 + Phi_m)) ##M = seye( N ).dot(1./np.diag(ATWdTWdA + mu1*X2 + Phi_m)) #print("Incomplete LU",flush=True) #M2 = ilu(AA) #, drop_tol=None, fill_factor=None, drop_rule=None, permc_spec=None, diag_pivot_thresh=None, relax=None, panel_size=None, options=None) #ilu(AA, drop_tol=None, fill_factor=None, drop_rule=None, permc_spec=None, #diag_pivot_thresh=None, relax=None, panel_size=None, options=None)[source] #M = spla.LinearOperator(np.shape(AA), M2.solve) #print("dun ILU", flush=True) # Solve system (newton step) (Li) b2 = np.dot(A.conj().transpose(), np.dot(WdTWd, b-b_pre) ) + 2.*mu1*np.diag(X1) - alpha*np.dot(WmTWm,(x-xr)) ztilde = iter.cg(AA, b2, M=M) h = (ztilde[0].real) # TODO move nnls outside of this loop...use as starting point maybe? #print("nnls", flush=True) #xg = nnls(AA, b2) #print("nnls done", flush=True) #print("calling cg", flush=True) #print("out of cg", flush=True) #print(xg[0], ztilde[0] , flush=True) #print(np.linalg.norm(xg[0] - ztilde[0]), flush=True ) # Solve system (direct solution) (Calvetti) #b2 = np.dot(A.conj().transpose(), np.dot(WdTWd, b)) + 2.*mu1*np.diag(X1) - alpha*np.dot(WmTWm,(x-xr)) #ztilde = iter.cg(AA, b2, M=M, x0=xg[0]) #h = (ztilde[0].real - x) # step size d = np.min( (1, 0.95 * np.min(x/np.abs(h+1e-120))) ) ########################################################## # Update and fix any over/under stepping x += d*h # Determine mu steps to take s1 = mu1 * (np.dot(X2, ztilde[0].real) - 2.*np.diag(X1)) #s2 = mu2 * (np.dot(Y2, ztilde[0].real) - 2.*np.diag(Y1)) # determine mu for next step mu1 = SIGMA/N * np.abs(np.dot(s1, x)) #mu2 = SIGMA/N * np.abs(np.dot(s2, x)) b_pre = np.dot(A, x) phid = np.linalg.norm( np.dot(Wd, (b-b_pre)))**2 phim = np.linalg.norm( np.dot(Phim_base, (x-xr)) )**2 phib = PhiB(mu1, minVal, x) inner += 1 PHIM.append(phim) PHID.append(phid) MOD.append(np.copy(x)) # determine alpha scale = 1.5*(len(b)/phid) #alpha *= np.sqrt(scale) alpha *= min(scale, .95) # was .85... #print("alpha", min(scale, 0.99)) #alpha *= .99 # was .85... ALPHA.append(alpha) #alpha = ALPHA[i+1] print("inversion progress", i, alpha, np.sqrt(phid/len(b)), phim, flush=True) # if np.sqrt(phid/len(b)) < 0.97: # ibreak = -1 # print ("------------overshot--------------------", alpha, np.sqrt(phid/len(b)), ibreak) # alpha *= 2. #0 # x -= d*h # b_pre = np.dot(A, x) # phid = np.linalg.norm( np.dot(Wd, (b-b_pre)))**2 # phim = np.linalg.norm( np.dot(Phim_base, (x-xr)) )#**2 # mu1 = ((phid + alpha*phim) / phib) if lambdastar == "discrepency": if np.sqrt(phid/len(b)) < 1.00 or alpha < 1e-5: ibreak = 1 print ("optimal solution found", alpha, np.sqrt(phid/len(b)), ibreak) break # slow convergence, bail and use L-curve # TI- only use L-curve. Otherwise results for perlin noise are too spurious for paper. if lambdastar == "lcurve": if i > 4: kappa = curvaturefd(np.log(np.array(PHIM)), np.log(np.array(PHID)), ALPHA[0:i+1])#ALPHA[0:-1]) #kappa = curvatureg(np.log(np.array(PHIM)), np.log(np.array(PHID))) print("max kappa", np.argmax(kappa), "distance from", i-np.argmax(kappa)) if i > 4 and (i-np.argmax(kappa)) > 4: # ((np.sqrt(phid_old/len(b))-np.sqrt(phid/len(b))) < 1e-4) : #if np.sqrt(phid/len(b)) < 3.0 and ((np.sqrt(phid_old/len(b))-np.sqrt(phid/len(b))) < 1e-3): ibreak = 1 MOD = np.array(MOD) print ("###########################") #slow convergence", alpha, "phid_old", np.sqrt(phid_old/len(b)), "phid", np.sqrt(phid/len(b)), ibreak) print ("Using L-curve criteria") #kappa = curvaturefd(np.log(np.array(PHIM)), np.log(np.array(PHID)), ALPHA[0:-1]) #kappa2 = curvatureg(np.log(np.array(PHIM)), np.log(np.array(PHID))) #kappa = curvature( np.array(PHIM), np.array(PHID)) x = MOD[ np.argmax(kappa) ] b_pre = np.dot(A, x) phid = np.linalg.norm( np.dot(Wd, (b-b_pre)))**2 phim = np.linalg.norm( np.dot(Phim_base, (x-xr)) )**2 mu1 = ((phid + alpha*phim) / phib) print ("L-curve selected", alpha, "phid_old", np.sqrt(phid_old/len(b)), "phid", np.sqrt(phid/len(b)), ibreak) print ("###########################") if np.sqrt(phid/len(b)) <= 1: ibreak=0 fig = plt.figure( figsize=(pc2in(20.0),pc2in(22.)) ) ax1 = fig.add_axes( [.2,.15,.6,.7] ) #plt.plot( (np.array(PHIM)), np.log(np.array(PHID)/len(b)), '.-') #plt.plot( ((np.array(PHIM))[np.argmax(kappa)]) , np.log( (np.array(PHID)/len(b))[np.argmax(kappa)] ), '.', markersize=12) #plt.axhline() lns1 = plt.plot( np.log(np.array(PHIM)), np.log(np.sqrt(np.array(PHID)/len(b))), '.-', label="L curve") lns2 = plt.plot( np.log(np.array(PHIM))[np.argmax(kappa)], np.log(np.sqrt(np.array(PHID)/len(b))[np.argmax(kappa)]), '.', markersize=12, label="$\lambda^*$") ax2 = plt.twinx() lns3 = ax2.plot( np.log(np.array(PHIM)), kappa, color='orange', label="curvature" ) # Single legend lns = lns1+lns3 labs = [l.get_label() for l in lns] ax2.legend(lns, labs, loc=0) ax1.set_xlabel("$\phi_m$") ax1.set_ylabel("$\phi_d$") ax2.set_ylabel("curvature") plt.savefig('lcurve.pdf') break PHIM = np.array(PHIM) PHID = np.array(PHID) if (i == MAXITER-1 ): ibreak = 2 print("Reached max iterations!!", alpha, np.sqrt(phid/len(b)), ibreak) kappa = curvaturefd(np.log(np.array(PHIM)), np.log(np.array(PHID)), ALPHA[0:-1]) x = MOD[ np.argmax(kappa) ] b_pre = np.dot(A, x) phid = np.linalg.norm( np.dot(Wd, (b-b_pre)))**2 phim = np.linalg.norm( np.dot(Phim_base, (x-xr)) )**2 mu1 = ((phid + alpha*phim) / phib) if lambdastar == "lcurve": return x, ibreak, np.sqrt(phid/len(b)), PHIM, PHID/len(b), np.argmax(kappa) else: return x, ibreak, np.sqrt(phid/len(b)) if __name__ == "__main__": print("Test")
Akvo
/Akvo-1.7.2-py3-none-any.whl/akvo/tressel/logbarrier-nnls.py
logbarrier-nnls.py
#from GJIPlot import * import numpy as np import matplotlib.pyplot as plt #from invertColours import * from akvo.tressel.decay import * from scipy import signal def quadrature(T, vL, wL, dt, xn, DT, t): # decimate # blind decimation # 1 instead of T irsamp = int(T) * int( (1./vL) / dt) # real iisamp = int( ((1./vL)/ dt) * ( .5*np.pi / (2.*np.pi) ) ) # imaginary dsamp = int( DT / dt) # real iisamp += dsamp ############################################################ # simple quadrature-detection via sampling xr = xn[dsamp::irsamp] xi = xn[iisamp::irsamp] phase = np.angle( xr + 1j*xi ) abse = np.abs( xr + 1j*xi ) # times #ta = np.arange(0, TT, dt) #te = np.arange(DT, TT, TT/len(abse)) ############################################################# # hilbert transform ht = signal.hilbert(xn) #, 100)) he = np.abs(ht) #, 100)) hp = ((np.angle(ht[dsamp::irsamp]))) ############################################################# # Resample ht #htd = signal.decimate(he, 100, ftype='fir') #td = signal.decimate(t, 100, ftype='fir') #[htd, td] = signal.resample(he, 21, t) #toss first, and use every third #htd = htd[1::3] #td = td[1::3] ############################################################# # Pre-envelope #gplus = xn + 1j*ht ############################################################# # Complex envelope #gc = gplus / np.exp(1j*wL*t) ############################################################# ## Design a low-pass filter FS = 1./dt # sampling rate FC = 10.05/(0.5*FS) # cutoff frequency at 0.05 Hz N = 11 # number of filter taps a = [1] # filter denominator b = signal.firwin(N, cutoff=FC, window='hamming') # filter numerator ############################################################# ## In-phase #2*np.cos(wL*t) dw = 0 # -2.*np.pi*2 Q = signal.filtfilt(b, a, xn*2*np.cos((wL+dw)*t)) # X I = signal.filtfilt(b, a, xn*2*np.sin((wL+dw)*t)) # Y ############################################### # Plots #plt.plot(ht.real) #plt.plot(ht.imag) #plt.plot(np.abs(ht)) #plt.plot(gc.real) #plt.plot(gc.imag) #plt.plot(xn) #plt.plot(xn) #plt.plot(ta, xn) #plt.plot(te, abse, '-.', linewidth=2, markersize=10) #plt.plot(ta, he, '.', markersize=10 ) #plt.plot(td, htd, color='green', linewidth=2) # Phase Plots #ax2 = plt.twinx() #ax2.plot(te, hp, '.', markersize=10, color='green' ) #ax2.plot(te, phase, '-.', linewidth=2, markersize=10, color='green') return Q[N:-N], I[N:-N], t[N:-N] # ##################################################################### # # regress raw signal # # #[peaks, times, ind] = peakPicker(xn, wL, dt) # #[a0,b0,rt20] = regressCurve(peaks, times) #,sigma2=1,intercept=True): # # dsamp = int( DT / dt) # real # # regress analytic signal # [a0,b0,rt20] = regressCurve(he[dsamp::], t[dsamp::], intercept=True) #,sigma2=1,intercept=True): # #[b0,rt20] = regressCurve(he[dsamp::], t[dsamp::], intercept=False) #,sigma2=1,intercept=True): # #[a0,b0,rt20] = regressCurve(he, t) #,sigma2=1,intercept=True): # # # regress downsampled # [a,b,rt2] = regressCurve(abse, t[dsamp::irsamp], intercept=True) #,sigma2=1,intercept=True): # #[b,rt2] = regressCurve(htd, td, intercept=False) #,sigma2=1,intercept=True): # # return irsamp, iisamp, htd, b0, rt20, ta, b, rt2, phase, td, he, dsamp # #return irsamp, iisamp, abse, a0, b0, rt20, times, a, b, rt2, phase def RotateAmplitude(X, Y, zeta, df, t): V = X + 1j*Y return np.abs(V) * np.exp( 1j * ( np.angle(V) - zeta - 2.*np.pi*df*t ) ) #return np.abs(V) * np.exp( 1j * ( np.angle(V) - zeta - df*t ) ) def bootstrapWindows(N, nboot, isum, adapt=False): """ Bootstraps noise as a function of gate width N = input noise signal nboot = number of boostrap windows to perform isum = length of windows (L_i) adapt = reduce nboot as window size increases """ nc = np.shape(N)[0] Means = {} if adapt: Means = -9999*np.ones((len(isum), nboot//isum[0])) # dummy value for ii, nwin in enumerate(isum): for iboot in range(nboot//isum[ii]): cs = np.random.randint(0,nc-nwin) Means[ii,iboot] = np.mean( N[cs:cs+nwin] ) Means = np.ma.masked_less(Means, -9995) else: Means = np.zeros((len(isum), nboot)) for ii, nwin in enumerate(isum): for iboot in range(nboot): cs = np.random.randint(0,nc-nwin) Means[ii,iboot] = np.mean( N[cs:cs+nwin] ) return Means #, np.array(isum) def gateIntegrate(T2D, T2T, gpd, sigma, stackEfficiency=2.): """ Gate integrate the signal to gpd, gates per decade T2D = the time series to gate integrate, complex T2T = the abscissa values gpd = gates per decade sigma = estimate of standard deviation for theoretical gate noise stackEfficiency = exponential in theoretical gate noise, 2 represents ideal stacking """ # use artificial time gates so that early times are fully captured T2T0 = T2T[0] T2TD = T2T[0] - (T2T[1]-T2T[0]) T2T -= T2TD ##################################### # calculate total number of decades # # windows edges are approximate until binning but will be adjusted to reflect data timing, this # primarily impacts bins with a few samples nd = np.log10(T2T[-1]/T2T[0]) tdd = np.logspace( np.log10(T2T[0]), np.log10(T2T[-1]), (int)(gpd*nd)+1, base=10, endpoint=True) tdl = tdd[0:-1] # approximate window left edges tdr = tdd[1::] # approximate window right edges td = (tdl+tdr) / 2. # approximate window centres Vars = np.zeros( len(td) ) htd = np.zeros( len(td), dtype=complex ) isum = np.zeros( len(td), dtype=int ) ii = 0 for itd in range(len(T2T)): if ( round(T2T[itd], 4) > round(tdr[ii], 4) ): ii += 1 # correct window edges to centre about data tdr[ii-1] = (T2T[itd-1]+T2T[itd])*.5 tdl[ii ] = (T2T[itd-1]+T2T[itd])*.5 isum[ii] += 1 htd[ii] += T2D[ itd ] Vars[ii] += sigma**2 td = (tdl+tdr) / 2. # actual window centres sigma2 = np.sqrt( Vars * ((1/(isum))**stackEfficiency) ) # Reset abscissa where isum == 1 # when there is no windowing going on td[isum==1] = T2T[0:len(td)][isum==1] tdd = np.append(tdl, tdr[-1]) htd /= isum # average T2T += T2TD return td+T2TD, htd, tdd+T2TD, sigma2, isum # centre abscissa, data, window edges, error if __name__ == "__main__": dt = 1e-4 TT = 1.5 t = np.arange(0, TT, dt) vL = 2057. wL = 2.*np.pi*vL wL2 = 2.*np.pi*(vL-2.5) #-2) #-2.2) # 3 Hz off zeta = -np.pi/6. #4.234 t2 = .150 xs = np.exp(-t/t2) * np.cos(wL2*t + zeta) xe = np.exp(-t/t2) xn = xs + np.random.normal(0,.1,len(xs))# + (np.sign(xs) # np.random.random_integers(-1,1,len(xs))*0.6*np.random.lognormal(0, .35, len(xs)) + \ # np.random.random_integers(-1,1,len(xs))*.004*np.random.weibull(.25, len(xs)), 60))) # quadrature detection downsampling T = 50 # sampling period, grab every T'th oscilation DT = .002 #85 # dead time ms #[irsamp, iisamp, abse, b0, rt20, times, b, rt2, phase, tdec, he, dsamp] = quadDetect(T, vL, wL, dt, xn, DT) [Q, I, tt] = quadrature(T, vL, wL, dt, xn, DT, t) [E0,df,phi,T2] = quadratureDetect(Q, I, tt) print("df", df) D = RotateAmplitude(I, Q, phi, df, tt) fig = plt.figure(figsize=[pc2in(20), pc2in(14)]) # ax1 = fig.add_axes([.125,.2,.8,.7]) #ax1.plot(tt*1e3, np.exp(-tt/t2), linewidth=2, color='black', label="actual") ax1.plot(tt*1e3, D.imag, label="CA", color='red') ax1.plot(t*1e3, xn, color='blue', alpha=.25) ax1.plot(tt*1e3, I, label="inphase", color='blue') ax1.plot(tt*1e3, Q, label="quadrature", color='green') #ax1.plot(tt*1e3, np.angle( Q + 1j*I), label="angle", color='purple') GT, GD = gateIntegrate( D.imag, tt, 10 ) GT, GDR = gateIntegrate( D.real, tt, 10 ) GT, GQ = gateIntegrate( Q, tt, 10 ) GT, GI = gateIntegrate( I, tt, 10 ) #ax1.plot(tt*1e3, np.arctan( Q/I), label="angle", color='purple') #ax1.plot(GT*1e3, np.real(GD), 'o', label="GATE", color='purple') #ax1.plot(GT*1e3, np.real(GDR), 'o', label="GATE Real", color='red') #ax1.plot(GT*1e3, np.arctan( np.real(GQ)/np.real(GI)), 'o',label="GATE ANGLE", color='magenta') ax1.set_xlabel(r"time [ms]") ax1.set_ylim( [-1.25,1.65] ) #light_grey = np.array([float(248)/float(255)]*3) legend = plt.legend( frameon=True, scatterpoints=1, numpoints=1, labelspacing=0.2 ) #rect = legend.get_frame() fixLeg(legend) #rect.set_color('None') #rect.set_facecolor(light_grey) #rect.set_linewidth(0.0) #rect.set_alpha(0.5) # Remove top and right axes lines ("spines") spines_to_remove = ['top', 'right'] for spine in spines_to_remove: ax1.spines[spine].set_visible(False) #ax1.xaxis.set_ticks_position('none') #ax1.yaxis.set_ticks_position('none') ax1.get_xaxis().tick_bottom() ax1.get_yaxis().tick_left() plt.savefig('rotatetime.pdf',dpi=600) plt.savefig('rotatetime.eps',dpi=600) # phase part plt.figure() plt.plot( tt*1e3, D.real, label="CA", color='red' ) plt.show() exit()
Akvo
/Akvo-1.7.2-py3-none-any.whl/akvo/tressel/rotate.py
rotate.py
from __future__ import division import numpy as np from scipy.sparse.linalg import iterative as iter from scipy.sparse import eye as seye import pylab import pprint from scipy.optimize import nnls import matplotlib.pyplot as plt from akvo.tressel.SlidesPlot import * def PhiB(mux, minVal, x): phib = mux * np.abs( np.sum(np.log( x-minVal)) ) return phib def curvaturefd(x, y, t): x1 = np.gradient(x,t) x2 = np.gradient(x1,t) y1 = np.gradient(y,t) y2 = np.gradient(y1,t) return np.abs(x1*y2 - y1*x2) / np.power(x1**2 + y1**2, 3./2) def curvatureg(x, y): from scipy.ndimage import gaussian_filter1d #first and second derivative x1 = gaussian_filter1d(x, sigma=1, order=1)#, mode='constant', cval=x[-1]) x2 = gaussian_filter1d(x1, sigma=1, order=1)#, mode='constant', cval=y[-1]) y1 = gaussian_filter1d(y, sigma=1, order=1)#, mode='constant', cval=x1[-1]) y2 = gaussian_filter1d(y1, sigma=1, order=1)#, mode='constant', cval=y1[-1]) return np.abs(x1*y2 - y1*x2) / np.power(x1**2 + y1**2, 3./2) def logBarrier(A, b, T2Bins, lambdastar, x_0=0, xr=0, alpha=10, mu1=10, mu2=10, smooth="Smallest", MAXITER=70, fignum=1000, sigma=1, callback=None): """Impliments a log barrier Tikhonov solution to a linear system of equations Ax = b s.t. x_min < x < x_max. A log-barrier term is used for the constraint """ # TODO input minVal = 0.0 #maxVal = 1e8 Wd = (np.eye(len(b)) / (sigma)) # Wd = eye( sigma ) WdTWd = (np.eye(len(b)) / (sigma**2)) # Wd = eye( sigma ) ATWdTWdA = np.dot(A.conj().transpose(), np.dot( WdTWd, A )) # TODO, implicit calculation instead? N = np.shape(A)[1] # number of model M = np.shape(A)[0] # number of data SIGMA = .25 # .25 # lower is more aggresive relaxation of log barrier EPSILON = 1e-25 #1e-35 # reference model if np.size(xr) == 1: xr = np.zeros(N) # initial guess if np.size(x_0) == 1: x = 1e-10 + np.zeros(N) else: x = 1e-10 + x_0 # Construct model constraint base Phim_base = np.zeros( [N , N] ) a1 = .05 # smallest too # calculate largest term D1 = 1./abs(T2Bins[1]-T2Bins[0]) D2 = 1./abs(T2Bins[2]-T2Bins[1]) #a2 = 1. #(1./(2.*D1+D2)) # smooth if smooth == "Both": #print ("Both small and smooth model") for ip in range(N): D1 = 0. D2 = 0. if ip > 0: #D1 = np.sqrt(1./abs(T2Bins[ip]-T2Bins[ip-1]))**.5 D1 = (1./abs(T2Bins[ip]-T2Bins[ip-1])) #**2 if ip < N-1: #D2 = np.sqrt(1./abs(T2Bins[ip+1]-T2Bins[ip]))**.5 D2 = (1./abs(T2Bins[ip+1]-T2Bins[ip])) #**2 if ip > 0: Phim_base[ip,ip-1] = -(D1) if ip == 0: Phim_base[ip,ip ] = 2.*(D1+D2) elif ip == N-1: Phim_base[ip,ip ] = 2.*(D1+D2) else: Phim_base[ip,ip ] = 2.*(D1+D2) if ip < N-1: Phim_base[ip,ip+1] = -(D2) Phim_base /= np.max(Phim_base) # normalize Phim_base += a1*np.eye(N) elif smooth == "Smooth": #print ("Smooth model") for ip in range(N): if ip > 0: Phim_base[ip,ip-1] = -1 # smooth in log space if ip == 0: Phim_base[ip,ip ] = 2.05 # Encourage a little low model elif ip == N-1: Phim_base[ip,ip ] = 2.5 # Penalize long decays else: Phim_base[ip,ip ] = 2.1 # Smooth and small if ip < N-1: Phim_base[ip,ip+1] = -1 # smooth in log space elif smooth == "Smallest": for ip in range(N): Phim_base[ip,ip ] = 1. else: print("non valid model constraint:", smooth) exit() Phi_m = alpha*Phim_base WmTWm = Phim_base # np.dot(Phim_base, Phim_base.T) b_pre = np.dot(A, x) phid = np.linalg.norm( np.dot(Wd, (b-b_pre)) )**2 phim = np.linalg.norm( np.dot(Phim_base, (x-xr)) )**2 mu2 = phim phib = PhiB(mu1, 0, x) mu1 = ((phid + alpha*phim) / phib) PHIM = [] PHID = [] MOD = [] ALPHA = [] ALPHA.append(alpha) #ALPHA = np.linspace( alpha, 1, MAXITER ) print ("{:^5} {:^15} {:^15} {:^15} {:^15} {:^10} {:^10}".format("iter.", "lambda", "phi_d", "phi_m","phi","kappa","kappa dist."), flush=True) print ("{:^5} {:>15} {:<15} {:<15} {:<15} {:<10} {:<10}".format("-----", "---------------", "---------------","---------------","---------------","----------","----------"), flush=True) for i in range(MAXITER): #alpha = ALPHA[i] Phi_m = alpha*Phim_base # reset mu1 at each iteration # Calvetti -> No ; Li -> Yes # without this, non monotonic convergence occurs...which is OK if you really trust your noise mu1 = ((phid + alpha*phim) / phib) WmTWm = Phim_base # np.dot(Phim_base, Phim_base.T) phid_old = phid inner = 0 First = True # guarantee entry xp = np.copy(x) # prior step x # quick and dirty solution #b2a = np.dot(A.conj().transpose(), np.dot(WdTWd, b-b_pre) ) - alpha*np.dot(WmTWm,(x-xr)) #xg = nnls(ATWdTWdA + Phi_m, b2a) #x = xg[0] while ( (phib / (phid+alpha*phim)) > EPSILON or First==True ): #while ( False ): # skip the hard stuff First = False # Log barrier, keep each element above minVal X1 = np.eye(N) * (x-minVal)**-1 X2 = np.eye(N) * (x-minVal)**-2 # Log barrier, keep sum below maxVal TODO normalize by component. Don't want to push all down #Y1 = np.eye(N) * (maxVal - np.sum(x))**-1 #Y2 = np.eye(N) * (maxVal - np.sum(x))**-2 AA = ATWdTWdA + mu1*X2 + Phi_m M = np.eye( N ) * (1./np.diag(ATWdTWdA + mu1*X2 + Phi_m)) #M = seye( N ).dot(1./np.diag(ATWdTWdA + mu1*X2 + Phi_m)) # Solve system (newton step) (Li) b2 = np.dot(A.conj().transpose(), np.dot(WdTWd, b-b_pre) ) + 2.*mu1*np.diag(X1) - alpha*np.dot(WmTWm,(x-xr)) ztilde = iter.cg(AA, b2, M = M) h = (ztilde[0].real) # Solve system (direct solution) (Calvetti) #b2 = np.dot(A.conj().transpose(), np.dot(WdTWd, b)) + 2.*mu1*np.diag(X1) - alpha*np.dot(WmTWm,(x-xr)) #ztilde = iter.cg(AA, b2, M=M, x0=x) #h = (ztilde[0].real - x) # step size d = np.min( (1, 0.95 * np.min(x/np.abs(h+1e-120))) ) ########################################################## # Update and fix any over/under stepping x += d*h # Determine mu steps to take s1 = mu1 * (np.dot(X2, ztilde[0].real) - 2.*np.diag(X1)) #s2 = mu2 * (np.dot(Y2, ztilde[0].real) - 2.*np.diag(Y1)) # determine mu for next step mu1 = SIGMA/N * np.abs(np.dot(s1, x)) #mu2 = SIGMA/N * np.abs(np.dot(s2, x)) b_pre = np.dot(A, x) phid = np.linalg.norm(np.dot(Wd, (b-b_pre)))**2 phim = np.linalg.norm( np.dot(Phim_base, (x-xr)) )**2 phib = PhiB(mu1, minVal, x) inner += 1 PHIM.append(phim) PHID.append(phid) MOD.append(np.copy(x)) tphi = phid + alpha*phim # determine alpha scale = 1.5*(len(b)/phid) #alpha *= np.sqrt(scale) alpha *= min(scale, .95) # was .85... #print("alpha", min(scale, 0.99)) #alpha *= .99 # was .85... ALPHA.append(alpha) #alpha = ALPHA[i+1] #print("inversion progress", i, alpha, np.sqrt(phid/len(b)), phim, flush=True) #print ("{:<8} {:<15} {:<10} {:<10}".format(i, alpha, np.sqrt(phid/len(b)), phim), flush=True) if i <= 4: print ("{:^5} {:>15.4f} {:>15.4f} {:>15.4f} {:>15.4f}".format(i, alpha, np.sqrt(phid/len(b)), phim, tphi ), flush=True) # if np.sqrt(phid/len(b)) < 0.97: # ibreak = -1 # print ("------------overshot--------------------", alpha, np.sqrt(phid/len(b)), ibreak) # alpha *= 2. #0 # x -= d*h # b_pre = np.dot(A, x) # phid = np.linalg.norm( np.dot(Wd, (b-b_pre)))**2 # phim = np.linalg.norm( np.dot(Phim_base, (x-xr)) )#**2 # mu1 = ((phid + alpha*phim) / phib) if lambdastar == "discrepency": if np.sqrt(phid/len(b)) < 1.00 or alpha < 1e-5: ibreak = 1 print ("optimal solution found", alpha, np.sqrt(phid/len(b)), ibreak) break # slow convergence, bail and use L-curve # TI- only use L-curve. Otherwise results for perlin noise are too spurious for paper. if lambdastar == "lcurve": if i > 4: kappa = curvaturefd(np.log(np.array(PHIM)), np.log(np.array(PHID)), ALPHA[0:i+1])#ALPHA[0:-1]) #kappa = curvatureg(np.log(np.array(PHIM)), np.log(np.array(PHID))) #print("max kappa", np.argmax(kappa), "distance from", i-np.argmax(kappa)) print ("{:^5} {:>15.4f} {:>15.4f} {:>15.4f} {:>15.4f} {:^10} {:^10}".format(i, alpha, np.sqrt(phid/len(b)), phim, tphi, np.argmax(kappa), i-np.argmax(kappa)), flush=True) if i > 4 and (i-np.argmax(kappa)) > 4: # ((np.sqrt(phid_old/len(b))-np.sqrt(phid/len(b))) < 1e-4) : #if np.sqrt(phid/len(b)) < 3.0 and ((np.sqrt(phid_old/len(b))-np.sqrt(phid/len(b))) < 1e-3): ibreak = 1 MOD = np.array(MOD) print ("################################") #slow convergence", alpha, "phid_old", np.sqrt(phid_old/len(b)), "phid", np.sqrt(phid/len(b)), ibreak) print ("Using L-curve criteria") #kappa = curvaturefd(np.log(np.array(PHIM)), np.log(np.array(PHID)), ALPHA[0:-1]) #kappa2 = curvatureg(np.log(np.array(PHIM)), np.log(np.array(PHID))) #kappa = curvature( np.array(PHIM), np.array(PHID)) x = MOD[ np.argmax(kappa) ] alphastar = ALPHA[ np.argmax(kappa) ] b_pre = np.dot(A, x) phid = np.linalg.norm( np.dot(Wd, (b-b_pre)))**2 phim = np.linalg.norm( np.dot(Phim_base, (x-xr)) )**2 mu1 = ((phid + alpha*phim) / phib) print ("L-curve selected: iteration=", np.argmax(kappa)) #, " lambda*=", alpha, "phid_old=", np.sqrt(phid_old/len(b)), "phid=", np.sqrt(phid/len(b)), ibreak) print ("################################") if np.sqrt(phid/len(b)) <= 1: ibreak=0 fig = plt.figure( figsize=(pc2in(20.0),pc2in(22.)) ) ax1 = fig.add_axes( [.2,.15,.6,.7] ) #plt.plot( (np.array(PHIM)), np.log(np.array(PHID)/len(b)), '.-') #plt.plot( ((np.array(PHIM))[np.argmax(kappa)]) , np.log( (np.array(PHID)/len(b))[np.argmax(kappa)] ), '.', markersize=12) #plt.axhline() lns1 = plt.plot( np.log(np.array(PHIM)), np.log(np.sqrt(np.array(PHID)/len(b))), '.-', label="L curve") lns2 = plt.plot( np.log(np.array(PHIM))[np.argmax(kappa)], np.log(np.sqrt(np.array(PHID)/len(b))[np.argmax(kappa)]), '.', markersize=12, label="$\lambda^*$") ax2 = plt.twinx() lns3 = ax2.plot( np.log(np.array(PHIM)), kappa, color='orange', label="curvature" ) # Single legend lns = lns1+lns3 labs = [l.get_label() for l in lns] ax2.legend(lns, labs, loc=0) ax1.set_xlabel("$\phi_m$") ax1.set_ylabel("$\phi_d$") ax2.set_ylabel("curvature") plt.savefig('lcurve.pdf') break PHIM = np.array(PHIM) PHID = np.array(PHID) if (i == MAXITER-1 ): ibreak = 2 #print("Reached max iterations!!", alpha, np.sqrt(phid/len(b)), ibreak) #kappa = curvaturefd(np.log(np.array(PHIM)), np.log(np.array(PHID)), ALPHA[0:-1]) x = MOD[-1] b_pre = np.dot(A, x) phid = np.linalg.norm( np.dot(Wd, (b-b_pre)))**2 phim = np.linalg.norm( np.dot(Phim_base, (x-xr)) )**2 mu1 = ((phid + alpha*phim) / phib) if lambdastar == "lcurve": #print("Returning L curve result") return x, ibreak, np.sqrt(phid/len(b)), PHIM, PHID/len(b), np.argmax(kappa), Wd, Phim_base, alphastar else: print("Returning max iteration result") return x, ibreak, np.sqrt(phid/len(b)) if __name__ == "__main__": print("Test")
Akvo
/Akvo-1.7.2-py3-none-any.whl/akvo/tressel/logbarrier.py
logbarrier.py
import os, sys import numpy as np from ruamel import yaml import pyLemma.LemmaCore as lc import pyLemma.Merlin as mrln import pyLemma.FDEM1D as em1d import numpy as np import matplotlib.pyplot as plt import seaborn as sns sns.set(style="ticks") from ruamel import yaml #import cmocean #from SEGPlot import * #from matplotlib.ticker import FormatStrFormatter #import matplotlib.ticker as plticker # Converts Lemma/Merlin/Akvo serialized Eigen arrays into numpy ones for use by Python class VectorXr(yaml.YAMLObject): """ Converts Lemma/Merlin/Akvo serialized Eigen arrays into numpy ones for use by Python """ yaml_tag = u'VectorXr' def __init__(self, array): self.size = np.shape(array)[0] self.data = array.tolist() def __repr__(self): # Converts to numpy array on import return "np.array(%r)" % (self.data) class AkvoData(yaml.YAMLObject): """ Reads an Akvo serialized dataset into a standard python dictionary """ yaml_tag = u'AkvoData' def __init__(self, array): pass #self.size = np.shape(array)[0] #self.Imp = array.tolist() def __repr__(self): # Converts to a dictionary with Eigen vectors represented as Numpy arrays return self def loadAkvoData(fnamein): """ Loads data from an Akvo YAML file. The 0.02 is hard coded as the pulse length. This needs to be corrected in future kernel calculations. The current was reported but not the pulse length. """ fname = (os.path.splitext(fnamein)[0]) with open(fnamein, 'r') as stream: try: AKVO = (yaml.load(stream, Loader=yaml.Loader)) except yaml.YAMLError as exc: print(exc) return AKVO def main(): if len(sys.argv) < 2: print ("usage python calcAkvoKernel.py AkvoDataset.yaml Coil1.yaml kparams.yaml SaveString.yaml " ) print ("usage akvoKO AkvoDataset.yaml kparams.yaml SaveString.yaml " ) exit() AKVO = loadAkvoData(sys.argv[1]) B_inc = AKVO.META["B_0"]["inc"] B_dec = AKVO.META["B_0"]["dec"] B0 = AKVO.META["B_0"]["intensity"] fT = AKVO.transFreq #gamma = 2.67518e8 #B0 = (fL*2.*np.pi) /gamma * 1e9 # read in kernel params kparams = loadAkvoData( sys.argv[2] ) Kern = mrln.KernelV0() TX = [] for tx in kparams['txCoils']: Coil1 = em1d.PolygonalWireAntenna.DeSerialize( tx ) Coil1.SetNumberOfFrequencies(1) Coil1.SetFrequency(0, fT) Coil1.SetCurrent(1.) Kern.PushCoil( tx.split('.yml')[0], Coil1 ) TX.append( tx.split('.yml')[0] ) RX = [] for rx in kparams['rxCoils']: if rx not in kparams['txCoils']: print("new recv") Coil1 = em1d.PolygonalWireAntenna.DeSerialize( rx ) Coil1.SetNumberOfFrequencies(1) Coil1.SetFrequency(0, fT) Coil1.SetCurrent(1.) Kern.PushCoil( rx.split('.yml')[0], Coil1 ) else: print("reuse tx coil") RX.append( rx.split('.yml')[0] ) ## TODO # pass this in... lmod = em1d.LayeredEarthEM() nlay = len(kparams["sigs"]) sigs = np.array(kparams["sigs"]) tops = np.array(kparams["tops"]) bots = np.array(kparams["bots"]) if ( (len(tops)-1) != len(bots)): print("Layer mismatch") exit() thicks = bots - tops[0:-1] lmod.SetNumberOfLayers(nlay + 1) lmod.SetLayerThickness(thicks) lmod.SetLayerConductivity( np.concatenate( ( [0.0], sigs ) )) #lmod.SetNumberOfLayers(4) #lmod.SetLayerThickness([15.49, 28.18]) #lmod.SetLayerConductivity([0.0, 1./16.91, 1./24.06, 1./33.23]) lmod.SetMagneticFieldIncDecMag( B_inc, B_dec, B0, lc.NANOTESLA ) Kern.SetLayeredEarthEM( lmod ); Kern.SetIntegrationSize( (kparams["size_n"], kparams["size_e"], kparams["size_d"]) ) Kern.SetIntegrationOrigin( (kparams["origin_n"], kparams["origin_e"], kparams["origin_d"]) ) Kern.SetTolerance( 1e-9*kparams["branchTol"] ) Kern.SetMinLevel( kparams["minLevel"] ) Kern.SetMaxLevel( kparams["maxLevel"] ) Kern.SetHankelTransformType( lc.FHTKEY201 ) Kern.AlignWithAkvoDataset( sys.argv[1] ) if str(kparams["Lspacing"]).strip() == "Geometric": thick = np.geomspace(kparams["thick1"], kparams["thickN"], num=kparams["nLay"]) elif str(kparams["Lspacing"]) == "Log": thick = np.logspace(kparams["thick1"], kparams["thickN"], num=kparams["nLay"]) elif str(kparams["Lspacing"]) == "Linear": thick = np.linspace(kparams["thick1"], kparams["thickN"], num=kparams["nLay"]) else: print("DOOOM!, in calcAkvoKernel layer spacing was not <Geometric>, <Log>, or <Linear>") print( str(kparams["Lspacing"]) ) exit() print( np.array(kparams["origin_d"]) ) print( np.cumsum(thick)[0:-1] ) iface = np.concatenate( (np.array( [kparams["origin_d"]] ), kparams["origin_d"]+np.cumsum(thick)[0:-1]) ) Kern.SetDepthLayerInterfaces(iface) #Kern.SetDepthLayerInterfaces(np.geomspace(1, 110, num=40)) #Kern.SetDepthLayerInterfaces(np.linspace(1, 110, num=50)) #Kern.SetDepthLayerInterfaces(np.geomspace(1, 110, num=40)) # autAkvoDataNode = YAML::LoadFile(argv[4]); # Kern->AlignWithAkvoDataset( AkvoDataNode ); #Kern.CalculateK0( ["Coil 1"], ["Coil 1"], False ) Kern.CalculateK0( TX, RX, False ) #yml = open( 'test' + str(Kern.GetTolerance()) + '.yaml', 'w') yml = open( sys.argv[3], 'w' ) print(Kern, file=yml) # K0 = Kern.GetKernel() plt.matshow(np.abs(K0)) plt.show() if __name__ == "__main__": main()
Akvo
/Akvo-1.7.2-py3-none-any.whl/akvo/tressel/calcAkvoKernel.py
calcAkvoKernel.py
import numpy, array #,rpy2 from matplotlib import pyplot as plt import numpy as np from scipy.optimize import least_squares #from rpy2.robjects.packages import importr #import rpy2.robjects as robjects #import rpy2.robjects.numpy2ri #import notch from numpy.fft import fft, fftfreq # We know/can calculate frequency peak, use this to guess where picks will be. # maybe have a sliding window that reports peak values. def peakPicker(data, omega, dt): # compute window based on omega and dt # make sure you are not aliased, grab every other peak window = (2*numpy.pi) / (omega*dt) data = numpy.array(data) peaks = [] troughs = [] times = [] times2 = [] indices = [] ws = 0 we = window ii = 0 for i in range((int)(len(data)/window)): # initially was just returning this I think avg is better #times.append( (ws + numpy.abs(data[ws:we]).argmax()) * dt ) peaks.append(numpy.max(data[ws:we])) times.append( (ws + data[ws:we].argmax()) * dt ) indices.append( ii + data[ws:we].argmax() ) troughs.append(numpy.min(data[ws:we])) times2.append( (ws + (data[ws:we]).argmin()) * dt ) indices.append( ii + data[ws:we].argmin() ) ws += window we += window ii += (int)(we-ws) #return numpy.array(peaks), numpy.array(times) # Averaging peaks does a good job of removing bias in noise return (numpy.array(peaks)-numpy.array(troughs))/2., \ (numpy.array(times)+numpy.array(times2))/2., \ indices def fun(x, t, y): """ Cost function for regression, single exponential, no DC term x[0] = A0 x[1] = zeta x[2] = df x[3] = T2 """ # concatenated real and imaginary parts return y - np.concatenate((-x[0]*np.sin(2.*np.pi*x[2]*t + x[1])*np.exp(-t/x[3]), \ +x[0]*np.cos(2.*np.pi*x[2]*t + x[1])*np.exp(-t/x[3]))) def fun2(x, t, y): """ Cost function for regression, single exponential, no DC term x[0] = A0 x[1] = zeta x[2] = T2 """ # concatenated real and imaginary parts pre = np.concatenate((x[0]*np.cos(x[1])*np.exp(-t/x[2]), \ -x[0]*np.sin(x[1])*np.exp(-t/x[2]))) return y-pre def quadratureDetect2(X, Y, tt, method, loss, x0="None"): """ Pure python quadrature detection using Scipy. X = real part of NMR signal Y = imaginary component of NMR signal tt = time """ #method = ['trf','dogbox','lm'][method_int] #loss = ['linear','soft_l1','cauchy','huber'][loss_int] #print ("method", method, 'loss', loss) if x0=="None": if method == 'lm': x0 = np.array( [50., 0., 0., .200] ) # A0, zeta, df, T2 res_lsq = least_squares(fun, x0, args=(tt, np.concatenate((X, Y))), loss=loss, f_scale=1.0,\ method=method ) else: x0 = np.array( [50., 0., 0., .200] ) # A0, zeta, df, T2 res_lsq = least_squares(fun, x0, args=(tt, np.concatenate((X, Y))), loss=loss, f_scale=1.0,\ bounds=( [1, -np.pi, -10, .01] , [500., np.pi, 10, .800] ), method=method ) x = res_lsq.x #print ("A0={} zeta={} df={} T2={}".format(x[0],x[1],x[2],x[3])) else: res_lsq = least_squares(fun, x0, args=(tt, np.concatenate((X, Y))), loss=loss, f_scale=1.0,\ #bounds=( [1., -np.pi, -5, .005] , [1000., np.pi, 5, .800] ), method=method ) #bounds=( [0., 0, -20, .0] , [1., np.pi, 20, .6] )) x = res_lsq.x return res_lsq.success, x[0], x[2], x[1], x[3] # no df #x = np.array( [1., 0., 0.2] ) #res_lsq = least_squares(fun2, x, args=(tt, np.concatenate((X, Y))), loss='soft_l1', f_scale=0.1) #x = res_lsq.x #return conv, E0,df,phi,T2 #return res_lsq.success, x[0], 0, x[1], x[2] ################################################################### ################################################################### ################################################################### if __name__ == "__main__": dt = .0001 T2 = .1 omega = 2000.*2*numpy.pi phi = .0 T = 8.*T2 t = numpy.arange(0, T, dt) # Synthetic data, simple single decaying sinusoid # with a single decay parameter and gaussian noise added data = numpy.exp(-t/T2) * numpy.sin(omega * t + phi) + numpy.random.normal(0,.05,len(t)) \ + numpy.random.randint(-1,2,len(t))*numpy.random.exponential(.2,len(t)) cdata = numpy.exp(-t/T2) * numpy.sin(omega * t + phi) #+ numpy.random.normal(0,.25,len(t)) #data = numpy.random.normal(0,.25,len(t)) sigma2 = numpy.std(data[::-len(data)/4]) #sigma2 = numpy.var(data[::-len(data)/4]) print("sigma2", sigma2) [peaks,times,indices] = peakPicker(data, omega, dt) [b1,b2,rT2] = regressCurve(peaks,times) print("rT2 nonweighted", rT2) [b1,b2,rT2] = regressCurve(peaks,times,sigma2) print("rT2 weighted", rT2) envelope = numpy.exp(-t/T2) renvelope = numpy.exp(-t/rT2) #outf = file('regress.txt','w') #for i in range(len(times)): # outf.write(str(times[i]) + " " + str(peaks[i]) + "\n") #outf.close() plt.plot(t,data, 'b') plt.plot(t,cdata, 'g', linewidth=1) plt.plot(t,envelope, color='violet', linewidth=4) plt.plot(t,renvelope, 'r', linewidth=4) plt.plot(times, numpy.array(peaks), 'bo', markersize=8, alpha=.25) plt.legend(['noisy data','clean data','real envelope','regressed env','picks']) plt.savefig("regression.pdf") # FFT check fourier = fft(data) plt.figure() freq = fftfreq(len(data), d=dt) plt.plot(freq, (fourier.real)) plt.show() # TODO do a bunch in batch mode to see if T2 estimate is better with or without # weighting and which model is best. # TODO try with real data # TODO test filters (median, FFT, notch) # It looks like weighting is good for relatively low sigma, but for noisy data # it hurts us. Check
Akvo
/Akvo-1.7.2-py3-none-any.whl/akvo/tressel/decay.py
decay.py
import numpy as np from numpy.linalg import lstsq from numpy.linalg import norm from numpy import fft import pylab from scipy.signal import correlate def autocorr(x): #result = np.correlate(x, x, mode='full') result = correlate(x, x, mode='full') return result[result.size/2:] class AdaptiveFilter: def __init__(self, mu): self.mu = mu def adapt_filt_Ref(self, x, R, M, mu, PCA, lambda2=0.95, H0=0): """ Taken from .m file This function is written to allow the user to filter a input signal with an adaptive filter that utilizes 2 reference signals instead of the standard method which allows for only 1 reference signal. Author: Rob Clemens Date: 3/16/06 Modified and ported to Python, now takes arbitray number of reference points Original public domain source https://www.mathworks.com/matlabcentral/fileexchange/10447-noise-canceling-adaptive-filter x = data array R = reference array M = number of taps mu = forgetting factor PCA = Perform PCA """ #from akvo.tressel import pca import akvo.tressel.pca as pca if np.shape(x) != np.shape(R[0]): # or np.shape(x) != np.shape(rx1): print ("Error, non aligned") exit(1) if PCA == "Yes": #print("Performing PCA calculation in noise cancellation") # PCA decomposition on ref channels so signals are less related R, K, means = pca.pca( R ) # test for in loop reference #print("Cull nearly zero terms?", np.shape(x), np.shape(R)) #R = R[0:3,:] #R = R[2:4,:] #print(" removed zero terms?", np.shape(x), np.shape(R)) #H0 = H0[0:3*np.shape(x)[0]] #H0 = H0[0:2*np.shape(x)[0]] if all(H0) == 0: # corrects for dimensionality issues if a simple 0 is passed H = np.zeros( (len(R)*M)) else: H = H0 Rn = np.ones(len(R)*M) / mu r_ = np.zeros( (len(R), M) ) e = np.zeros(len(x)) # error, in our case the desired output ilambda = lambda2**-1 for ix in range(0, len(x)): # Only look forwards, to avoid distorting the lates times # (run backwards, if opposite and you don't care about distorting very late time.) for ir in range(len(R)): # number of reference channels if ix < M: r_[ir,0:ix] = R[ir][0:ix] r_[ir,ix:M] = 0 else: r_[ir,:] = R[ir][ix-M:ix] # reshape r_n = np.reshape(r_, -1) # concatenate the ref channels in to a 1D array K = (Rn* r_n) / (lambda2 + np.dot(r_n*Rn, r_n)) # Create/update K e[ix] = x[ix] - np.dot(r_n.T, H) # e is the filtered signal, input - r(n) * Filter Coefs H += K*e[ix]; # Update Filter Coefficients Rn = ilambda*Rn - ilambda*np.dot(np.dot(K, r_n.T), Rn) # Update R(n) return e, H def transferFunctionFFT(self, D, R, reg=1e-2): from akvo.tressel import pca """ Computes the transfer function (H) between a Data channel and a number of Reference channels. The Matrices D and R are expected to be in the frequency domain on input. | R1'R1 R1'R2 R1'R3| |h1| |R1'D| | R2'R1 R2'R2 R2'R3| * |h2| = |R2'D| | R3'R1 R3'R2 R3'R3| |h3| |R3'D| Returns the corrected array """ # PCA decomposition on ref channels so signals are less related #transMatrix, K, means = pca.pca( np.array([rx0, rx1])) #RR = np.zeros(( np.shape(R[0])[0]*np.shape(R[0])[1], len(R))) # RR = np.zeros(( len(R), np.shape(R[0])[0]*np.shape(R[0])[1] )) # for ir in range(len(R)): # RR[ir,:] = np.reshape(R[ir], -1) # transMatrix, K, means = pca.pca(RR) # #R rx0 = transMatrix[0,:] # # rx1 = transMatrix[1,:] # for ir in range(len(R)): # R[ir] = transMatrix[ir,0] import scipy.linalg import akvo.tressel.pca as pca # Compute as many transfer functions as len(R) # A*H = B nref = len(R) H = np.zeros( (np.shape(D)[1], len(R)), dtype=complex ) for iw in range(np.shape(D)[1]): A = np.zeros( (nref, nref), dtype=complex ) B = np.zeros( (nref) , dtype=complex) for ii in range(nref): for jj in range(nref): # build A A[ii,jj] = np.dot(R[ii][:,iw], R[jj][:,iw]) # build B B[ii] = np.dot( R[ii][:,iw], D[:,iw] ) # compute H(iw) #linalg.solve(a,b) if a is square #print "A", A #print "B", B # TODO, regularise this solve step? So as to not fit the spurious noise #print np.shape(B), np.shape(A) #H[iw, :] = scipy.linalg.solve(A,B) H[iw, :] = scipy.linalg.lstsq(A,B,cond=reg)[0] #print "lstqt", np.shape(scipy.linalg.lstsq(A,B)) #print "solve", scipy.linalg.solve(A,B) #H[iw,:] = scipy.linalg.lstsq(A,B) # otherwise #H = np.zeros( (np.shape(D)[1], ) ) #print H #A, B Error = np.zeros(np.shape(D), dtype=complex) for ir in range(nref): for q in range( np.shape(D)[0] ): #print "dimcheck", np.shape(H[:,ir]), np.shape(R[ir][q,:] ) Error[q,:] += H[:,ir]*R[ir][q,:] return D - Error
Akvo
/Akvo-1.7.2-py3-none-any.whl/akvo/tressel/adapt.py
adapt.py
__all__ = ['magma', 'magma_r', 'inferno', 'inferno_r', 'plasma', 'plasma_r', 'viridis', 'viridis_r'] _magma_data = [[0.001462, 0.000466, 0.013866], [0.002258, 0.001295, 0.018331], [0.003279, 0.002305, 0.023708], [0.004512, 0.003490, 0.029965], [0.005950, 0.004843, 0.037130], [0.007588, 0.006356, 0.044973], [0.009426, 0.008022, 0.052844], [0.011465, 0.009828, 0.060750], [0.013708, 0.011771, 0.068667], [0.016156, 0.013840, 0.076603], [0.018815, 0.016026, 0.084584], [0.021692, 0.018320, 0.092610], [0.024792, 0.020715, 0.100676], [0.028123, 0.023201, 0.108787], [0.031696, 0.025765, 0.116965], [0.035520, 0.028397, 0.125209], [0.039608, 0.031090, 0.133515], [0.043830, 0.033830, 0.141886], [0.048062, 0.036607, 0.150327], [0.052320, 0.039407, 0.158841], [0.056615, 0.042160, 0.167446], [0.060949, 0.044794, 0.176129], [0.065330, 0.047318, 0.184892], [0.069764, 0.049726, 0.193735], [0.074257, 0.052017, 0.202660], [0.078815, 0.054184, 0.211667], [0.083446, 0.056225, 0.220755], [0.088155, 0.058133, 0.229922], [0.092949, 0.059904, 0.239164], [0.097833, 0.061531, 0.248477], [0.102815, 0.063010, 0.257854], [0.107899, 0.064335, 0.267289], [0.113094, 0.065492, 0.276784], [0.118405, 0.066479, 0.286321], [0.123833, 0.067295, 0.295879], [0.129380, 0.067935, 0.305443], [0.135053, 0.068391, 0.315000], [0.140858, 0.068654, 0.324538], [0.146785, 0.068738, 0.334011], [0.152839, 0.068637, 0.343404], [0.159018, 0.068354, 0.352688], [0.165308, 0.067911, 0.361816], [0.171713, 0.067305, 0.370771], [0.178212, 0.066576, 0.379497], [0.184801, 0.065732, 0.387973], [0.191460, 0.064818, 0.396152], [0.198177, 0.063862, 0.404009], [0.204935, 0.062907, 0.411514], [0.211718, 0.061992, 0.418647], [0.218512, 0.061158, 0.425392], [0.225302, 0.060445, 0.431742], [0.232077, 0.059889, 0.437695], [0.238826, 0.059517, 0.443256], [0.245543, 0.059352, 0.448436], [0.252220, 0.059415, 0.453248], [0.258857, 0.059706, 0.457710], [0.265447, 0.060237, 0.461840], [0.271994, 0.060994, 0.465660], [0.278493, 0.061978, 0.469190], [0.284951, 0.063168, 0.472451], [0.291366, 0.064553, 0.475462], [0.297740, 0.066117, 0.478243], [0.304081, 0.067835, 0.480812], [0.310382, 0.069702, 0.483186], [0.316654, 0.071690, 0.485380], [0.322899, 0.073782, 0.487408], [0.329114, 0.075972, 0.489287], [0.335308, 0.078236, 0.491024], [0.341482, 0.080564, 0.492631], [0.347636, 0.082946, 0.494121], [0.353773, 0.085373, 0.495501], [0.359898, 0.087831, 0.496778], [0.366012, 0.090314, 0.497960], [0.372116, 0.092816, 0.499053], [0.378211, 0.095332, 0.500067], [0.384299, 0.097855, 0.501002], [0.390384, 0.100379, 0.501864], [0.396467, 0.102902, 0.502658], [0.402548, 0.105420, 0.503386], [0.408629, 0.107930, 0.504052], [0.414709, 0.110431, 0.504662], [0.420791, 0.112920, 0.505215], [0.426877, 0.115395, 0.505714], [0.432967, 0.117855, 0.506160], [0.439062, 0.120298, 0.506555], [0.445163, 0.122724, 0.506901], [0.451271, 0.125132, 0.507198], [0.457386, 0.127522, 0.507448], [0.463508, 0.129893, 0.507652], [0.469640, 0.132245, 0.507809], [0.475780, 0.134577, 0.507921], [0.481929, 0.136891, 0.507989], [0.488088, 0.139186, 0.508011], [0.494258, 0.141462, 0.507988], [0.500438, 0.143719, 0.507920], [0.506629, 0.145958, 0.507806], [0.512831, 0.148179, 0.507648], [0.519045, 0.150383, 0.507443], [0.525270, 0.152569, 0.507192], [0.531507, 0.154739, 0.506895], [0.537755, 0.156894, 0.506551], [0.544015, 0.159033, 0.506159], [0.550287, 0.161158, 0.505719], [0.556571, 0.163269, 0.505230], [0.562866, 0.165368, 0.504692], [0.569172, 0.167454, 0.504105], [0.575490, 0.169530, 0.503466], [0.581819, 0.171596, 0.502777], [0.588158, 0.173652, 0.502035], [0.594508, 0.175701, 0.501241], [0.600868, 0.177743, 0.500394], [0.607238, 0.179779, 0.499492], [0.613617, 0.181811, 0.498536], [0.620005, 0.183840, 0.497524], [0.626401, 0.185867, 0.496456], [0.632805, 0.187893, 0.495332], [0.639216, 0.189921, 0.494150], [0.645633, 0.191952, 0.492910], [0.652056, 0.193986, 0.491611], [0.658483, 0.196027, 0.490253], [0.664915, 0.198075, 0.488836], [0.671349, 0.200133, 0.487358], [0.677786, 0.202203, 0.485819], [0.684224, 0.204286, 0.484219], [0.690661, 0.206384, 0.482558], [0.697098, 0.208501, 0.480835], [0.703532, 0.210638, 0.479049], [0.709962, 0.212797, 0.477201], [0.716387, 0.214982, 0.475290], [0.722805, 0.217194, 0.473316], [0.729216, 0.219437, 0.471279], [0.735616, 0.221713, 0.469180], [0.742004, 0.224025, 0.467018], [0.748378, 0.226377, 0.464794], [0.754737, 0.228772, 0.462509], [0.761077, 0.231214, 0.460162], [0.767398, 0.233705, 0.457755], [0.773695, 0.236249, 0.455289], [0.779968, 0.238851, 0.452765], [0.786212, 0.241514, 0.450184], [0.792427, 0.244242, 0.447543], [0.798608, 0.247040, 0.444848], [0.804752, 0.249911, 0.442102], [0.810855, 0.252861, 0.439305], [0.816914, 0.255895, 0.436461], [0.822926, 0.259016, 0.433573], [0.828886, 0.262229, 0.430644], [0.834791, 0.265540, 0.427671], [0.840636, 0.268953, 0.424666], [0.846416, 0.272473, 0.421631], [0.852126, 0.276106, 0.418573], [0.857763, 0.279857, 0.415496], [0.863320, 0.283729, 0.412403], [0.868793, 0.287728, 0.409303], [0.874176, 0.291859, 0.406205], [0.879464, 0.296125, 0.403118], [0.884651, 0.300530, 0.400047], [0.889731, 0.305079, 0.397002], [0.894700, 0.309773, 0.393995], [0.899552, 0.314616, 0.391037], [0.904281, 0.319610, 0.388137], [0.908884, 0.324755, 0.385308], [0.913354, 0.330052, 0.382563], [0.917689, 0.335500, 0.379915], [0.921884, 0.341098, 0.377376], [0.925937, 0.346844, 0.374959], [0.929845, 0.352734, 0.372677], [0.933606, 0.358764, 0.370541], [0.937221, 0.364929, 0.368567], [0.940687, 0.371224, 0.366762], [0.944006, 0.377643, 0.365136], [0.947180, 0.384178, 0.363701], [0.950210, 0.390820, 0.362468], [0.953099, 0.397563, 0.361438], [0.955849, 0.404400, 0.360619], [0.958464, 0.411324, 0.360014], [0.960949, 0.418323, 0.359630], [0.963310, 0.425390, 0.359469], [0.965549, 0.432519, 0.359529], [0.967671, 0.439703, 0.359810], [0.969680, 0.446936, 0.360311], [0.971582, 0.454210, 0.361030], [0.973381, 0.461520, 0.361965], [0.975082, 0.468861, 0.363111], [0.976690, 0.476226, 0.364466], [0.978210, 0.483612, 0.366025], [0.979645, 0.491014, 0.367783], [0.981000, 0.498428, 0.369734], [0.982279, 0.505851, 0.371874], [0.983485, 0.513280, 0.374198], [0.984622, 0.520713, 0.376698], [0.985693, 0.528148, 0.379371], [0.986700, 0.535582, 0.382210], [0.987646, 0.543015, 0.385210], [0.988533, 0.550446, 0.388365], [0.989363, 0.557873, 0.391671], [0.990138, 0.565296, 0.395122], [0.990871, 0.572706, 0.398714], [0.991558, 0.580107, 0.402441], [0.992196, 0.587502, 0.406299], [0.992785, 0.594891, 0.410283], [0.993326, 0.602275, 0.414390], [0.993834, 0.609644, 0.418613], [0.994309, 0.616999, 0.422950], [0.994738, 0.624350, 0.427397], [0.995122, 0.631696, 0.431951], [0.995480, 0.639027, 0.436607], [0.995810, 0.646344, 0.441361], [0.996096, 0.653659, 0.446213], [0.996341, 0.660969, 0.451160], [0.996580, 0.668256, 0.456192], [0.996775, 0.675541, 0.461314], [0.996925, 0.682828, 0.466526], [0.997077, 0.690088, 0.471811], [0.997186, 0.697349, 0.477182], [0.997254, 0.704611, 0.482635], [0.997325, 0.711848, 0.488154], [0.997351, 0.719089, 0.493755], [0.997351, 0.726324, 0.499428], [0.997341, 0.733545, 0.505167], [0.997285, 0.740772, 0.510983], [0.997228, 0.747981, 0.516859], [0.997138, 0.755190, 0.522806], [0.997019, 0.762398, 0.528821], [0.996898, 0.769591, 0.534892], [0.996727, 0.776795, 0.541039], [0.996571, 0.783977, 0.547233], [0.996369, 0.791167, 0.553499], [0.996162, 0.798348, 0.559820], [0.995932, 0.805527, 0.566202], [0.995680, 0.812706, 0.572645], [0.995424, 0.819875, 0.579140], [0.995131, 0.827052, 0.585701], [0.994851, 0.834213, 0.592307], [0.994524, 0.841387, 0.598983], [0.994222, 0.848540, 0.605696], [0.993866, 0.855711, 0.612482], [0.993545, 0.862859, 0.619299], [0.993170, 0.870024, 0.626189], [0.992831, 0.877168, 0.633109], [0.992440, 0.884330, 0.640099], [0.992089, 0.891470, 0.647116], [0.991688, 0.898627, 0.654202], [0.991332, 0.905763, 0.661309], [0.990930, 0.912915, 0.668481], [0.990570, 0.920049, 0.675675], [0.990175, 0.927196, 0.682926], [0.989815, 0.934329, 0.690198], [0.989434, 0.941470, 0.697519], [0.989077, 0.948604, 0.704863], [0.988717, 0.955742, 0.712242], [0.988367, 0.962878, 0.719649], [0.988033, 0.970012, 0.727077], [0.987691, 0.977154, 0.734536], [0.987387, 0.984288, 0.742002], [0.987053, 0.991438, 0.749504]] _inferno_data = [[0.001462, 0.000466, 0.013866], [0.002267, 0.001270, 0.018570], [0.003299, 0.002249, 0.024239], [0.004547, 0.003392, 0.030909], [0.006006, 0.004692, 0.038558], [0.007676, 0.006136, 0.046836], [0.009561, 0.007713, 0.055143], [0.011663, 0.009417, 0.063460], [0.013995, 0.011225, 0.071862], [0.016561, 0.013136, 0.080282], [0.019373, 0.015133, 0.088767], [0.022447, 0.017199, 0.097327], [0.025793, 0.019331, 0.105930], [0.029432, 0.021503, 0.114621], [0.033385, 0.023702, 0.123397], [0.037668, 0.025921, 0.132232], [0.042253, 0.028139, 0.141141], [0.046915, 0.030324, 0.150164], [0.051644, 0.032474, 0.159254], [0.056449, 0.034569, 0.168414], [0.061340, 0.036590, 0.177642], [0.066331, 0.038504, 0.186962], [0.071429, 0.040294, 0.196354], [0.076637, 0.041905, 0.205799], [0.081962, 0.043328, 0.215289], [0.087411, 0.044556, 0.224813], [0.092990, 0.045583, 0.234358], [0.098702, 0.046402, 0.243904], [0.104551, 0.047008, 0.253430], [0.110536, 0.047399, 0.262912], [0.116656, 0.047574, 0.272321], [0.122908, 0.047536, 0.281624], [0.129285, 0.047293, 0.290788], [0.135778, 0.046856, 0.299776], [0.142378, 0.046242, 0.308553], [0.149073, 0.045468, 0.317085], [0.155850, 0.044559, 0.325338], [0.162689, 0.043554, 0.333277], [0.169575, 0.042489, 0.340874], [0.176493, 0.041402, 0.348111], [0.183429, 0.040329, 0.354971], [0.190367, 0.039309, 0.361447], [0.197297, 0.038400, 0.367535], [0.204209, 0.037632, 0.373238], [0.211095, 0.037030, 0.378563], [0.217949, 0.036615, 0.383522], [0.224763, 0.036405, 0.388129], [0.231538, 0.036405, 0.392400], [0.238273, 0.036621, 0.396353], [0.244967, 0.037055, 0.400007], [0.251620, 0.037705, 0.403378], [0.258234, 0.038571, 0.406485], [0.264810, 0.039647, 0.409345], [0.271347, 0.040922, 0.411976], [0.277850, 0.042353, 0.414392], [0.284321, 0.043933, 0.416608], [0.290763, 0.045644, 0.418637], [0.297178, 0.047470, 0.420491], [0.303568, 0.049396, 0.422182], [0.309935, 0.051407, 0.423721], [0.316282, 0.053490, 0.425116], [0.322610, 0.055634, 0.426377], [0.328921, 0.057827, 0.427511], [0.335217, 0.060060, 0.428524], [0.341500, 0.062325, 0.429425], [0.347771, 0.064616, 0.430217], [0.354032, 0.066925, 0.430906], [0.360284, 0.069247, 0.431497], [0.366529, 0.071579, 0.431994], [0.372768, 0.073915, 0.432400], [0.379001, 0.076253, 0.432719], [0.385228, 0.078591, 0.432955], [0.391453, 0.080927, 0.433109], [0.397674, 0.083257, 0.433183], [0.403894, 0.085580, 0.433179], [0.410113, 0.087896, 0.433098], [0.416331, 0.090203, 0.432943], [0.422549, 0.092501, 0.432714], [0.428768, 0.094790, 0.432412], [0.434987, 0.097069, 0.432039], [0.441207, 0.099338, 0.431594], [0.447428, 0.101597, 0.431080], [0.453651, 0.103848, 0.430498], [0.459875, 0.106089, 0.429846], [0.466100, 0.108322, 0.429125], [0.472328, 0.110547, 0.428334], [0.478558, 0.112764, 0.427475], [0.484789, 0.114974, 0.426548], [0.491022, 0.117179, 0.425552], [0.497257, 0.119379, 0.424488], [0.503493, 0.121575, 0.423356], [0.509730, 0.123769, 0.422156], [0.515967, 0.125960, 0.420887], [0.522206, 0.128150, 0.419549], [0.528444, 0.130341, 0.418142], [0.534683, 0.132534, 0.416667], [0.540920, 0.134729, 0.415123], [0.547157, 0.136929, 0.413511], [0.553392, 0.139134, 0.411829], [0.559624, 0.141346, 0.410078], [0.565854, 0.143567, 0.408258], [0.572081, 0.145797, 0.406369], [0.578304, 0.148039, 0.404411], [0.584521, 0.150294, 0.402385], [0.590734, 0.152563, 0.400290], [0.596940, 0.154848, 0.398125], [0.603139, 0.157151, 0.395891], [0.609330, 0.159474, 0.393589], [0.615513, 0.161817, 0.391219], [0.621685, 0.164184, 0.388781], [0.627847, 0.166575, 0.386276], [0.633998, 0.168992, 0.383704], [0.640135, 0.171438, 0.381065], [0.646260, 0.173914, 0.378359], [0.652369, 0.176421, 0.375586], [0.658463, 0.178962, 0.372748], [0.664540, 0.181539, 0.369846], [0.670599, 0.184153, 0.366879], [0.676638, 0.186807, 0.363849], [0.682656, 0.189501, 0.360757], [0.688653, 0.192239, 0.357603], [0.694627, 0.195021, 0.354388], [0.700576, 0.197851, 0.351113], [0.706500, 0.200728, 0.347777], [0.712396, 0.203656, 0.344383], [0.718264, 0.206636, 0.340931], [0.724103, 0.209670, 0.337424], [0.729909, 0.212759, 0.333861], [0.735683, 0.215906, 0.330245], [0.741423, 0.219112, 0.326576], [0.747127, 0.222378, 0.322856], [0.752794, 0.225706, 0.319085], [0.758422, 0.229097, 0.315266], [0.764010, 0.232554, 0.311399], [0.769556, 0.236077, 0.307485], [0.775059, 0.239667, 0.303526], [0.780517, 0.243327, 0.299523], [0.785929, 0.247056, 0.295477], [0.791293, 0.250856, 0.291390], [0.796607, 0.254728, 0.287264], [0.801871, 0.258674, 0.283099], [0.807082, 0.262692, 0.278898], [0.812239, 0.266786, 0.274661], [0.817341, 0.270954, 0.270390], [0.822386, 0.275197, 0.266085], [0.827372, 0.279517, 0.261750], [0.832299, 0.283913, 0.257383], [0.837165, 0.288385, 0.252988], [0.841969, 0.292933, 0.248564], [0.846709, 0.297559, 0.244113], [0.851384, 0.302260, 0.239636], [0.855992, 0.307038, 0.235133], [0.860533, 0.311892, 0.230606], [0.865006, 0.316822, 0.226055], [0.869409, 0.321827, 0.221482], [0.873741, 0.326906, 0.216886], [0.878001, 0.332060, 0.212268], [0.882188, 0.337287, 0.207628], [0.886302, 0.342586, 0.202968], [0.890341, 0.347957, 0.198286], [0.894305, 0.353399, 0.193584], [0.898192, 0.358911, 0.188860], [0.902003, 0.364492, 0.184116], [0.905735, 0.370140, 0.179350], [0.909390, 0.375856, 0.174563], [0.912966, 0.381636, 0.169755], [0.916462, 0.387481, 0.164924], [0.919879, 0.393389, 0.160070], [0.923215, 0.399359, 0.155193], [0.926470, 0.405389, 0.150292], [0.929644, 0.411479, 0.145367], [0.932737, 0.417627, 0.140417], [0.935747, 0.423831, 0.135440], [0.938675, 0.430091, 0.130438], [0.941521, 0.436405, 0.125409], [0.944285, 0.442772, 0.120354], [0.946965, 0.449191, 0.115272], [0.949562, 0.455660, 0.110164], [0.952075, 0.462178, 0.105031], [0.954506, 0.468744, 0.099874], [0.956852, 0.475356, 0.094695], [0.959114, 0.482014, 0.089499], [0.961293, 0.488716, 0.084289], [0.963387, 0.495462, 0.079073], [0.965397, 0.502249, 0.073859], [0.967322, 0.509078, 0.068659], [0.969163, 0.515946, 0.063488], [0.970919, 0.522853, 0.058367], [0.972590, 0.529798, 0.053324], [0.974176, 0.536780, 0.048392], [0.975677, 0.543798, 0.043618], [0.977092, 0.550850, 0.039050], [0.978422, 0.557937, 0.034931], [0.979666, 0.565057, 0.031409], [0.980824, 0.572209, 0.028508], [0.981895, 0.579392, 0.026250], [0.982881, 0.586606, 0.024661], [0.983779, 0.593849, 0.023770], [0.984591, 0.601122, 0.023606], [0.985315, 0.608422, 0.024202], [0.985952, 0.615750, 0.025592], [0.986502, 0.623105, 0.027814], [0.986964, 0.630485, 0.030908], [0.987337, 0.637890, 0.034916], [0.987622, 0.645320, 0.039886], [0.987819, 0.652773, 0.045581], [0.987926, 0.660250, 0.051750], [0.987945, 0.667748, 0.058329], [0.987874, 0.675267, 0.065257], [0.987714, 0.682807, 0.072489], [0.987464, 0.690366, 0.079990], [0.987124, 0.697944, 0.087731], [0.986694, 0.705540, 0.095694], [0.986175, 0.713153, 0.103863], [0.985566, 0.720782, 0.112229], [0.984865, 0.728427, 0.120785], [0.984075, 0.736087, 0.129527], [0.983196, 0.743758, 0.138453], [0.982228, 0.751442, 0.147565], [0.981173, 0.759135, 0.156863], [0.980032, 0.766837, 0.166353], [0.978806, 0.774545, 0.176037], [0.977497, 0.782258, 0.185923], [0.976108, 0.789974, 0.196018], [0.974638, 0.797692, 0.206332], [0.973088, 0.805409, 0.216877], [0.971468, 0.813122, 0.227658], [0.969783, 0.820825, 0.238686], [0.968041, 0.828515, 0.249972], [0.966243, 0.836191, 0.261534], [0.964394, 0.843848, 0.273391], [0.962517, 0.851476, 0.285546], [0.960626, 0.859069, 0.298010], [0.958720, 0.866624, 0.310820], [0.956834, 0.874129, 0.323974], [0.954997, 0.881569, 0.337475], [0.953215, 0.888942, 0.351369], [0.951546, 0.896226, 0.365627], [0.950018, 0.903409, 0.380271], [0.948683, 0.910473, 0.395289], [0.947594, 0.917399, 0.410665], [0.946809, 0.924168, 0.426373], [0.946392, 0.930761, 0.442367], [0.946403, 0.937159, 0.458592], [0.946903, 0.943348, 0.474970], [0.947937, 0.949318, 0.491426], [0.949545, 0.955063, 0.507860], [0.951740, 0.960587, 0.524203], [0.954529, 0.965896, 0.540361], [0.957896, 0.971003, 0.556275], [0.961812, 0.975924, 0.571925], [0.966249, 0.980678, 0.587206], [0.971162, 0.985282, 0.602154], [0.976511, 0.989753, 0.616760], [0.982257, 0.994109, 0.631017], [0.988362, 0.998364, 0.644924]] _plasma_data = [[0.050383, 0.029803, 0.527975], [0.063536, 0.028426, 0.533124], [0.075353, 0.027206, 0.538007], [0.086222, 0.026125, 0.542658], [0.096379, 0.025165, 0.547103], [0.105980, 0.024309, 0.551368], [0.115124, 0.023556, 0.555468], [0.123903, 0.022878, 0.559423], [0.132381, 0.022258, 0.563250], [0.140603, 0.021687, 0.566959], [0.148607, 0.021154, 0.570562], [0.156421, 0.020651, 0.574065], [0.164070, 0.020171, 0.577478], [0.171574, 0.019706, 0.580806], [0.178950, 0.019252, 0.584054], [0.186213, 0.018803, 0.587228], [0.193374, 0.018354, 0.590330], [0.200445, 0.017902, 0.593364], [0.207435, 0.017442, 0.596333], [0.214350, 0.016973, 0.599239], [0.221197, 0.016497, 0.602083], [0.227983, 0.016007, 0.604867], [0.234715, 0.015502, 0.607592], [0.241396, 0.014979, 0.610259], [0.248032, 0.014439, 0.612868], [0.254627, 0.013882, 0.615419], [0.261183, 0.013308, 0.617911], [0.267703, 0.012716, 0.620346], [0.274191, 0.012109, 0.622722], [0.280648, 0.011488, 0.625038], [0.287076, 0.010855, 0.627295], [0.293478, 0.010213, 0.629490], [0.299855, 0.009561, 0.631624], [0.306210, 0.008902, 0.633694], [0.312543, 0.008239, 0.635700], [0.318856, 0.007576, 0.637640], [0.325150, 0.006915, 0.639512], [0.331426, 0.006261, 0.641316], [0.337683, 0.005618, 0.643049], [0.343925, 0.004991, 0.644710], [0.350150, 0.004382, 0.646298], [0.356359, 0.003798, 0.647810], [0.362553, 0.003243, 0.649245], [0.368733, 0.002724, 0.650601], [0.374897, 0.002245, 0.651876], [0.381047, 0.001814, 0.653068], [0.387183, 0.001434, 0.654177], [0.393304, 0.001114, 0.655199], [0.399411, 0.000859, 0.656133], [0.405503, 0.000678, 0.656977], [0.411580, 0.000577, 0.657730], [0.417642, 0.000564, 0.658390], [0.423689, 0.000646, 0.658956], [0.429719, 0.000831, 0.659425], [0.435734, 0.001127, 0.659797], [0.441732, 0.001540, 0.660069], [0.447714, 0.002080, 0.660240], [0.453677, 0.002755, 0.660310], [0.459623, 0.003574, 0.660277], [0.465550, 0.004545, 0.660139], [0.471457, 0.005678, 0.659897], [0.477344, 0.006980, 0.659549], [0.483210, 0.008460, 0.659095], [0.489055, 0.010127, 0.658534], [0.494877, 0.011990, 0.657865], [0.500678, 0.014055, 0.657088], [0.506454, 0.016333, 0.656202], [0.512206, 0.018833, 0.655209], [0.517933, 0.021563, 0.654109], [0.523633, 0.024532, 0.652901], [0.529306, 0.027747, 0.651586], [0.534952, 0.031217, 0.650165], [0.540570, 0.034950, 0.648640], [0.546157, 0.038954, 0.647010], [0.551715, 0.043136, 0.645277], [0.557243, 0.047331, 0.643443], [0.562738, 0.051545, 0.641509], [0.568201, 0.055778, 0.639477], [0.573632, 0.060028, 0.637349], [0.579029, 0.064296, 0.635126], [0.584391, 0.068579, 0.632812], [0.589719, 0.072878, 0.630408], [0.595011, 0.077190, 0.627917], [0.600266, 0.081516, 0.625342], [0.605485, 0.085854, 0.622686], [0.610667, 0.090204, 0.619951], [0.615812, 0.094564, 0.617140], [0.620919, 0.098934, 0.614257], [0.625987, 0.103312, 0.611305], [0.631017, 0.107699, 0.608287], [0.636008, 0.112092, 0.605205], [0.640959, 0.116492, 0.602065], [0.645872, 0.120898, 0.598867], [0.650746, 0.125309, 0.595617], [0.655580, 0.129725, 0.592317], [0.660374, 0.134144, 0.588971], [0.665129, 0.138566, 0.585582], [0.669845, 0.142992, 0.582154], [0.674522, 0.147419, 0.578688], [0.679160, 0.151848, 0.575189], [0.683758, 0.156278, 0.571660], [0.688318, 0.160709, 0.568103], [0.692840, 0.165141, 0.564522], [0.697324, 0.169573, 0.560919], [0.701769, 0.174005, 0.557296], [0.706178, 0.178437, 0.553657], [0.710549, 0.182868, 0.550004], [0.714883, 0.187299, 0.546338], [0.719181, 0.191729, 0.542663], [0.723444, 0.196158, 0.538981], [0.727670, 0.200586, 0.535293], [0.731862, 0.205013, 0.531601], [0.736019, 0.209439, 0.527908], [0.740143, 0.213864, 0.524216], [0.744232, 0.218288, 0.520524], [0.748289, 0.222711, 0.516834], [0.752312, 0.227133, 0.513149], [0.756304, 0.231555, 0.509468], [0.760264, 0.235976, 0.505794], [0.764193, 0.240396, 0.502126], [0.768090, 0.244817, 0.498465], [0.771958, 0.249237, 0.494813], [0.775796, 0.253658, 0.491171], [0.779604, 0.258078, 0.487539], [0.783383, 0.262500, 0.483918], [0.787133, 0.266922, 0.480307], [0.790855, 0.271345, 0.476706], [0.794549, 0.275770, 0.473117], [0.798216, 0.280197, 0.469538], [0.801855, 0.284626, 0.465971], [0.805467, 0.289057, 0.462415], [0.809052, 0.293491, 0.458870], [0.812612, 0.297928, 0.455338], [0.816144, 0.302368, 0.451816], [0.819651, 0.306812, 0.448306], [0.823132, 0.311261, 0.444806], [0.826588, 0.315714, 0.441316], [0.830018, 0.320172, 0.437836], [0.833422, 0.324635, 0.434366], [0.836801, 0.329105, 0.430905], [0.840155, 0.333580, 0.427455], [0.843484, 0.338062, 0.424013], [0.846788, 0.342551, 0.420579], [0.850066, 0.347048, 0.417153], [0.853319, 0.351553, 0.413734], [0.856547, 0.356066, 0.410322], [0.859750, 0.360588, 0.406917], [0.862927, 0.365119, 0.403519], [0.866078, 0.369660, 0.400126], [0.869203, 0.374212, 0.396738], [0.872303, 0.378774, 0.393355], [0.875376, 0.383347, 0.389976], [0.878423, 0.387932, 0.386600], [0.881443, 0.392529, 0.383229], [0.884436, 0.397139, 0.379860], [0.887402, 0.401762, 0.376494], [0.890340, 0.406398, 0.373130], [0.893250, 0.411048, 0.369768], [0.896131, 0.415712, 0.366407], [0.898984, 0.420392, 0.363047], [0.901807, 0.425087, 0.359688], [0.904601, 0.429797, 0.356329], [0.907365, 0.434524, 0.352970], [0.910098, 0.439268, 0.349610], [0.912800, 0.444029, 0.346251], [0.915471, 0.448807, 0.342890], [0.918109, 0.453603, 0.339529], [0.920714, 0.458417, 0.336166], [0.923287, 0.463251, 0.332801], [0.925825, 0.468103, 0.329435], [0.928329, 0.472975, 0.326067], [0.930798, 0.477867, 0.322697], [0.933232, 0.482780, 0.319325], [0.935630, 0.487712, 0.315952], [0.937990, 0.492667, 0.312575], [0.940313, 0.497642, 0.309197], [0.942598, 0.502639, 0.305816], [0.944844, 0.507658, 0.302433], [0.947051, 0.512699, 0.299049], [0.949217, 0.517763, 0.295662], [0.951344, 0.522850, 0.292275], [0.953428, 0.527960, 0.288883], [0.955470, 0.533093, 0.285490], [0.957469, 0.538250, 0.282096], [0.959424, 0.543431, 0.278701], [0.961336, 0.548636, 0.275305], [0.963203, 0.553865, 0.271909], [0.965024, 0.559118, 0.268513], [0.966798, 0.564396, 0.265118], [0.968526, 0.569700, 0.261721], [0.970205, 0.575028, 0.258325], [0.971835, 0.580382, 0.254931], [0.973416, 0.585761, 0.251540], [0.974947, 0.591165, 0.248151], [0.976428, 0.596595, 0.244767], [0.977856, 0.602051, 0.241387], [0.979233, 0.607532, 0.238013], [0.980556, 0.613039, 0.234646], [0.981826, 0.618572, 0.231287], [0.983041, 0.624131, 0.227937], [0.984199, 0.629718, 0.224595], [0.985301, 0.635330, 0.221265], [0.986345, 0.640969, 0.217948], [0.987332, 0.646633, 0.214648], [0.988260, 0.652325, 0.211364], [0.989128, 0.658043, 0.208100], [0.989935, 0.663787, 0.204859], [0.990681, 0.669558, 0.201642], [0.991365, 0.675355, 0.198453], [0.991985, 0.681179, 0.195295], [0.992541, 0.687030, 0.192170], [0.993032, 0.692907, 0.189084], [0.993456, 0.698810, 0.186041], [0.993814, 0.704741, 0.183043], [0.994103, 0.710698, 0.180097], [0.994324, 0.716681, 0.177208], [0.994474, 0.722691, 0.174381], [0.994553, 0.728728, 0.171622], [0.994561, 0.734791, 0.168938], [0.994495, 0.740880, 0.166335], [0.994355, 0.746995, 0.163821], [0.994141, 0.753137, 0.161404], [0.993851, 0.759304, 0.159092], [0.993482, 0.765499, 0.156891], [0.993033, 0.771720, 0.154808], [0.992505, 0.777967, 0.152855], [0.991897, 0.784239, 0.151042], [0.991209, 0.790537, 0.149377], [0.990439, 0.796859, 0.147870], [0.989587, 0.803205, 0.146529], [0.988648, 0.809579, 0.145357], [0.987621, 0.815978, 0.144363], [0.986509, 0.822401, 0.143557], [0.985314, 0.828846, 0.142945], [0.984031, 0.835315, 0.142528], [0.982653, 0.841812, 0.142303], [0.981190, 0.848329, 0.142279], [0.979644, 0.854866, 0.142453], [0.977995, 0.861432, 0.142808], [0.976265, 0.868016, 0.143351], [0.974443, 0.874622, 0.144061], [0.972530, 0.881250, 0.144923], [0.970533, 0.887896, 0.145919], [0.968443, 0.894564, 0.147014], [0.966271, 0.901249, 0.148180], [0.964021, 0.907950, 0.149370], [0.961681, 0.914672, 0.150520], [0.959276, 0.921407, 0.151566], [0.956808, 0.928152, 0.152409], [0.954287, 0.934908, 0.152921], [0.951726, 0.941671, 0.152925], [0.949151, 0.948435, 0.152178], [0.946602, 0.955190, 0.150328], [0.944152, 0.961916, 0.146861], [0.941896, 0.968590, 0.140956], [0.940015, 0.975158, 0.131326]] _viridis_data = [[0.267004, 0.004874, 0.329415], [0.268510, 0.009605, 0.335427], [0.269944, 0.014625, 0.341379], [0.271305, 0.019942, 0.347269], [0.272594, 0.025563, 0.353093], [0.273809, 0.031497, 0.358853], [0.274952, 0.037752, 0.364543], [0.276022, 0.044167, 0.370164], [0.277018, 0.050344, 0.375715], [0.277941, 0.056324, 0.381191], [0.278791, 0.062145, 0.386592], [0.279566, 0.067836, 0.391917], [0.280267, 0.073417, 0.397163], [0.280894, 0.078907, 0.402329], [0.281446, 0.084320, 0.407414], [0.281924, 0.089666, 0.412415], [0.282327, 0.094955, 0.417331], [0.282656, 0.100196, 0.422160], [0.282910, 0.105393, 0.426902], [0.283091, 0.110553, 0.431554], [0.283197, 0.115680, 0.436115], [0.283229, 0.120777, 0.440584], [0.283187, 0.125848, 0.444960], [0.283072, 0.130895, 0.449241], [0.282884, 0.135920, 0.453427], [0.282623, 0.140926, 0.457517], [0.282290, 0.145912, 0.461510], [0.281887, 0.150881, 0.465405], [0.281412, 0.155834, 0.469201], [0.280868, 0.160771, 0.472899], [0.280255, 0.165693, 0.476498], [0.279574, 0.170599, 0.479997], [0.278826, 0.175490, 0.483397], [0.278012, 0.180367, 0.486697], [0.277134, 0.185228, 0.489898], [0.276194, 0.190074, 0.493001], [0.275191, 0.194905, 0.496005], [0.274128, 0.199721, 0.498911], [0.273006, 0.204520, 0.501721], [0.271828, 0.209303, 0.504434], [0.270595, 0.214069, 0.507052], [0.269308, 0.218818, 0.509577], [0.267968, 0.223549, 0.512008], [0.266580, 0.228262, 0.514349], [0.265145, 0.232956, 0.516599], [0.263663, 0.237631, 0.518762], [0.262138, 0.242286, 0.520837], [0.260571, 0.246922, 0.522828], [0.258965, 0.251537, 0.524736], [0.257322, 0.256130, 0.526563], [0.255645, 0.260703, 0.528312], [0.253935, 0.265254, 0.529983], [0.252194, 0.269783, 0.531579], [0.250425, 0.274290, 0.533103], [0.248629, 0.278775, 0.534556], [0.246811, 0.283237, 0.535941], [0.244972, 0.287675, 0.537260], [0.243113, 0.292092, 0.538516], [0.241237, 0.296485, 0.539709], [0.239346, 0.300855, 0.540844], [0.237441, 0.305202, 0.541921], [0.235526, 0.309527, 0.542944], [0.233603, 0.313828, 0.543914], [0.231674, 0.318106, 0.544834], [0.229739, 0.322361, 0.545706], [0.227802, 0.326594, 0.546532], [0.225863, 0.330805, 0.547314], [0.223925, 0.334994, 0.548053], [0.221989, 0.339161, 0.548752], [0.220057, 0.343307, 0.549413], [0.218130, 0.347432, 0.550038], [0.216210, 0.351535, 0.550627], [0.214298, 0.355619, 0.551184], [0.212395, 0.359683, 0.551710], [0.210503, 0.363727, 0.552206], [0.208623, 0.367752, 0.552675], [0.206756, 0.371758, 0.553117], [0.204903, 0.375746, 0.553533], [0.203063, 0.379716, 0.553925], [0.201239, 0.383670, 0.554294], [0.199430, 0.387607, 0.554642], [0.197636, 0.391528, 0.554969], [0.195860, 0.395433, 0.555276], [0.194100, 0.399323, 0.555565], [0.192357, 0.403199, 0.555836], [0.190631, 0.407061, 0.556089], [0.188923, 0.410910, 0.556326], [0.187231, 0.414746, 0.556547], [0.185556, 0.418570, 0.556753], [0.183898, 0.422383, 0.556944], [0.182256, 0.426184, 0.557120], [0.180629, 0.429975, 0.557282], [0.179019, 0.433756, 0.557430], [0.177423, 0.437527, 0.557565], [0.175841, 0.441290, 0.557685], [0.174274, 0.445044, 0.557792], [0.172719, 0.448791, 0.557885], [0.171176, 0.452530, 0.557965], [0.169646, 0.456262, 0.558030], [0.168126, 0.459988, 0.558082], [0.166617, 0.463708, 0.558119], [0.165117, 0.467423, 0.558141], [0.163625, 0.471133, 0.558148], [0.162142, 0.474838, 0.558140], [0.160665, 0.478540, 0.558115], [0.159194, 0.482237, 0.558073], [0.157729, 0.485932, 0.558013], [0.156270, 0.489624, 0.557936], [0.154815, 0.493313, 0.557840], [0.153364, 0.497000, 0.557724], [0.151918, 0.500685, 0.557587], [0.150476, 0.504369, 0.557430], [0.149039, 0.508051, 0.557250], [0.147607, 0.511733, 0.557049], [0.146180, 0.515413, 0.556823], [0.144759, 0.519093, 0.556572], [0.143343, 0.522773, 0.556295], [0.141935, 0.526453, 0.555991], [0.140536, 0.530132, 0.555659], [0.139147, 0.533812, 0.555298], [0.137770, 0.537492, 0.554906], [0.136408, 0.541173, 0.554483], [0.135066, 0.544853, 0.554029], [0.133743, 0.548535, 0.553541], [0.132444, 0.552216, 0.553018], [0.131172, 0.555899, 0.552459], [0.129933, 0.559582, 0.551864], [0.128729, 0.563265, 0.551229], [0.127568, 0.566949, 0.550556], [0.126453, 0.570633, 0.549841], [0.125394, 0.574318, 0.549086], [0.124395, 0.578002, 0.548287], [0.123463, 0.581687, 0.547445], [0.122606, 0.585371, 0.546557], [0.121831, 0.589055, 0.545623], [0.121148, 0.592739, 0.544641], [0.120565, 0.596422, 0.543611], [0.120092, 0.600104, 0.542530], [0.119738, 0.603785, 0.541400], [0.119512, 0.607464, 0.540218], [0.119423, 0.611141, 0.538982], [0.119483, 0.614817, 0.537692], [0.119699, 0.618490, 0.536347], [0.120081, 0.622161, 0.534946], [0.120638, 0.625828, 0.533488], [0.121380, 0.629492, 0.531973], [0.122312, 0.633153, 0.530398], [0.123444, 0.636809, 0.528763], [0.124780, 0.640461, 0.527068], [0.126326, 0.644107, 0.525311], [0.128087, 0.647749, 0.523491], [0.130067, 0.651384, 0.521608], [0.132268, 0.655014, 0.519661], [0.134692, 0.658636, 0.517649], [0.137339, 0.662252, 0.515571], [0.140210, 0.665859, 0.513427], [0.143303, 0.669459, 0.511215], [0.146616, 0.673050, 0.508936], [0.150148, 0.676631, 0.506589], [0.153894, 0.680203, 0.504172], [0.157851, 0.683765, 0.501686], [0.162016, 0.687316, 0.499129], [0.166383, 0.690856, 0.496502], [0.170948, 0.694384, 0.493803], [0.175707, 0.697900, 0.491033], [0.180653, 0.701402, 0.488189], [0.185783, 0.704891, 0.485273], [0.191090, 0.708366, 0.482284], [0.196571, 0.711827, 0.479221], [0.202219, 0.715272, 0.476084], [0.208030, 0.718701, 0.472873], [0.214000, 0.722114, 0.469588], [0.220124, 0.725509, 0.466226], [0.226397, 0.728888, 0.462789], [0.232815, 0.732247, 0.459277], [0.239374, 0.735588, 0.455688], [0.246070, 0.738910, 0.452024], [0.252899, 0.742211, 0.448284], [0.259857, 0.745492, 0.444467], [0.266941, 0.748751, 0.440573], [0.274149, 0.751988, 0.436601], [0.281477, 0.755203, 0.432552], [0.288921, 0.758394, 0.428426], [0.296479, 0.761561, 0.424223], [0.304148, 0.764704, 0.419943], [0.311925, 0.767822, 0.415586], [0.319809, 0.770914, 0.411152], [0.327796, 0.773980, 0.406640], [0.335885, 0.777018, 0.402049], [0.344074, 0.780029, 0.397381], [0.352360, 0.783011, 0.392636], [0.360741, 0.785964, 0.387814], [0.369214, 0.788888, 0.382914], [0.377779, 0.791781, 0.377939], [0.386433, 0.794644, 0.372886], [0.395174, 0.797475, 0.367757], [0.404001, 0.800275, 0.362552], [0.412913, 0.803041, 0.357269], [0.421908, 0.805774, 0.351910], [0.430983, 0.808473, 0.346476], [0.440137, 0.811138, 0.340967], [0.449368, 0.813768, 0.335384], [0.458674, 0.816363, 0.329727], [0.468053, 0.818921, 0.323998], [0.477504, 0.821444, 0.318195], [0.487026, 0.823929, 0.312321], [0.496615, 0.826376, 0.306377], [0.506271, 0.828786, 0.300362], [0.515992, 0.831158, 0.294279], [0.525776, 0.833491, 0.288127], [0.535621, 0.835785, 0.281908], [0.545524, 0.838039, 0.275626], [0.555484, 0.840254, 0.269281], [0.565498, 0.842430, 0.262877], [0.575563, 0.844566, 0.256415], [0.585678, 0.846661, 0.249897], [0.595839, 0.848717, 0.243329], [0.606045, 0.850733, 0.236712], [0.616293, 0.852709, 0.230052], [0.626579, 0.854645, 0.223353], [0.636902, 0.856542, 0.216620], [0.647257, 0.858400, 0.209861], [0.657642, 0.860219, 0.203082], [0.668054, 0.861999, 0.196293], [0.678489, 0.863742, 0.189503], [0.688944, 0.865448, 0.182725], [0.699415, 0.867117, 0.175971], [0.709898, 0.868751, 0.169257], [0.720391, 0.870350, 0.162603], [0.730889, 0.871916, 0.156029], [0.741388, 0.873449, 0.149561], [0.751884, 0.874951, 0.143228], [0.762373, 0.876424, 0.137064], [0.772852, 0.877868, 0.131109], [0.783315, 0.879285, 0.125405], [0.793760, 0.880678, 0.120005], [0.804182, 0.882046, 0.114965], [0.814576, 0.883393, 0.110347], [0.824940, 0.884720, 0.106217], [0.835270, 0.886029, 0.102646], [0.845561, 0.887322, 0.099702], [0.855810, 0.888601, 0.097452], [0.866013, 0.889868, 0.095953], [0.876168, 0.891125, 0.095250], [0.886271, 0.892374, 0.095374], [0.896320, 0.893616, 0.096335], [0.906311, 0.894855, 0.098125], [0.916242, 0.896091, 0.100717], [0.926106, 0.897330, 0.104071], [0.935904, 0.898570, 0.108131], [0.945636, 0.899815, 0.112838], [0.955300, 0.901065, 0.118128], [0.964894, 0.902323, 0.123941], [0.974417, 0.903590, 0.130215], [0.983868, 0.904867, 0.136897], [0.993248, 0.906157, 0.143936]] from matplotlib.colors import ListedColormap cmaps = {} for (name, data) in (('magma', _magma_data), ('magma_r', _magma_data[::-1]), ('inferno', _inferno_data), ('inferno_r', _inferno_data[::-1]), ('plasma', _plasma_data), ('plasma_r', _plasma_data[::-1]), ('viridis', _viridis_data), ('viridis_r', _viridis_data[::-1])): cmaps[name] = ListedColormap(data, name=name) magma = cmaps['magma'] magma_r = cmaps['magma_r'] inferno = cmaps['inferno'] inferno_r = cmaps['inferno_r'] plasma = cmaps['plasma'] plasma_r = cmaps['plasma_r'] viridis = cmaps['viridis'] viridis_r = cmaps['viridis_r']
Akvo
/Akvo-1.7.2-py3-none-any.whl/akvo/tressel/cmaps.py
cmaps.py
import yaml def Complex_ctor(loader, node): re = eval(node.value[0][1].value) im = eval(node.value[1][1].value) return re + 1j*im yaml.add_constructor(r'Complex', Complex_ctor) class MatrixXr(yaml.YAMLObject): yaml_tag = u'MatrixXr' def __init__(self, rows, cols, data): self.rows = rows self.cols = cols self.data = np.zeros((rows,cols)) def __repr__(self): return "%s(rows=%r, cols=%r, data=%r)" % (self.__class__.__name__, self.rows, self.cols, self.data) class VectorXr(yaml.YAMLObject): yaml_tag = r'VectorXr' def __init__(self, array): self.size = np.shape(array)[0] self.data = array.tolist() def __repr__(self): # Converts to numpy array on import return "np.array(%r)" % (self.data) class VectorXcr(yaml.YAMLObject): yaml_tag = r'VectorXcr' def __init__(self, array): self.size = np.shape(array)[0] self.datar = array.tolist() def __repr__(self): # Converts to numpy array on import #return "np.array(%r)" % (self.data) return "np.array(%r)" % (3) class Vector3r(yaml.YAMLObject): yaml_tag = r'Vector3r' def __init__(self, array): self.size = 3 #np.shape(array)[0] self.data = array.tolist() def __repr__(self): # Converts to numpy array on import return "np.array(%r)" % (self.data) class Vector3Xcr(yaml.YAMLObject): yaml_tag = r'Vector3Xcr' def __init__(self, array): self.size = 3 #np.shape(array)[0] self.data = array.tolist() def __repr__(self): # Converts to numpy array on import return "np.array(%r)" % (self.data) class Vector3Xr(yaml.YAMLObject): yaml_tag = r'Vector3Xr' def __init__(self, array): self.size = 3 #np.shape(array)[0] self.data = array.tolist() def __repr__(self): # Converts to numpy array on import return "np.array(%r)" % (self.data) #class KernelV0( ): #yaml_tag = r'KernelV0' # def __init__(self): # self.name = "hello" #def KernelV0_constructor(loader, node): #... value = loader.construct_scalar(node) #... a, b = map(int, value.split('d')) # return KernelV0( ) # class KervnelV0(yaml.YAMLObject): # yaml_loader = yaml.Loader # yaml_dumper = yaml.Dumper # # yaml_tag = u'!KernelV0' # #yaml_flow_style = ... # # def __init__(self): # self.val = 7 # # @classmethod # def from_yaml(cls, loader, node): # # ... # data = 0 # return data # # @classmethod # def to_yaml(cls, dumper, data): # # ... # return node class KervnelV0(yaml.YAMLObject): yaml_tag = u'KernelV0' def __init__(self, val): self.val = val class LayeredEarthEM(yaml.YAMLObject): yaml_tag = u'LayeredEarthEM' def __init__(self, val): self.val = val class PolygonalWireAntenna(yaml.YAMLObject): yaml_tag = u'PolygonalWireAntenna' def __init__(self, val): self.val = val class AkvoData(yaml.YAMLObject): yaml_tag = u'AkvoData' def __init__(self, obj): #nPulseMoments, pulseLength): #def __init__(self, rows, cols, data): #self.nPulseMoments = nPulseMoments #self.pulseLength = pulseLength #for key in obj.keys: # self[key] = obj.key pass
Akvo
/Akvo-1.7.2-py3-none-any.whl/akvo/tressel/lemma_yaml.py
lemma_yaml.py
import numpy as np from scipy.optimize import least_squares from scipy.optimize import minimize from scipy.linalg import lstsq as sclstsq import scipy.linalg as lin def harmonicEuler ( sN, fs, t, f0, k1, kN, ks ): """ Performs inverse calculation of harmonics contaminating a signal. Args: sN = signal containing noise fs = sampling frequency t = time samples f0 = base frequency of the sinusoidal noise nK = number of harmonics to calculate """ KK = np.arange(k1, kN+1, 1/ks ) nK = len(KK) A = np.exp(1j* np.tile(KK,(len(t), 1)) * 2*np.pi* (f0/fs) * np.tile(np.arange(1, len(t)+1, 1),(nK,1)).T) v = np.linalg.lstsq(A, sN, rcond=None) alpha = np.real(v[0]) beta = np.imag(v[0]) amp = np.abs(v[0]) phase = np.angle(v[0]) h = np.zeros(len(t)) for ik, k in enumerate(KK): h += 2*amp[ik] * np.cos( 2.*np.pi*(k) * (f0/fs) * np.arange(1, len(t)+1, 1 ) + phase[ik] ) return sN-h def harmonicNorm (f0, sN, fs, t, k1, kN, ks): #return np.linalg.norm( harmonicEuler(sN, fs, t, f0, k1, kN, ks)) ii = sN < (3.* np.std(sN)) return np.linalg.norm( harmonicEuler(sN, fs, t, f0, k1, kN, ks)[ii] ) def minHarmonic(sN, fs, t, f0, k1, kN, ks, Bounds, Nsearch): kNs = kN if Nsearch != False: kNs = k1+Nsearch if Bounds == 0: # CG, BFGS, Newton-CG, L-BFGS-B, TNC, SLSQP, dogleg, trust-ncg, trust-krylov, trust-exact and trust-constr res = minimize(harmonicNorm, np.array((f0)), args=(sN, fs, t, k1, kNs, ks), jac='2-point', method='BFGS') # hess=None, bounds=None ) print("UNbounded search from ", k1, " to ", kNs, res.x[0]) # for f0 with fN=10 in search", f0) else: bnds = ( (f0-Bounds, f0+Bounds), ) res = minimize(harmonicNorm, (f0,), args=(sN, fs, t, k1, kNs, ks), jac='2-point', method='L-BFGS-B', bounds=bnds ) # hess=None, bounds=None ) print("bounded ( +-", Bounds, ") search from ", k1, "to", kNs, res.x[0]) # for f0 with fN=10 in search", f0) return harmonicEuler(sN, fs, t, res.x[0], k1, kN, ks), res.x[0]#[0] def harmonicEuler2 ( sN, fs, t, f0, f0k1, f0kN, f0ks, f1, f1k1, f1kN, f1ks ): """ Performs inverse calculation of harmonics contaminating a signal. Args: sN = signal containing noise fs = sampling frequency t = time samples f0 = first base frequency of the sinusoidal noise f0k1 = First harmonic to calula11te for f0 f0kN = Last base harmonic to calulate for f0 f0ks = subharmonics to calculate f1 = second base frequency of the sinusoidal noise f1k1 = First harmonic to calulate for f1 f1kN = Last base harmonic to calulate for f1 f1ks = subharmonics to calculate at f1 base frequency """ KK0 = np.arange(f0k1, f0kN+1, 1/f0ks) nK0 = len(KK0) A0 = np.exp(1j* np.tile(KK0,(len(t), 1)) * 2*np.pi* (f0/fs) * np.tile( np.arange(1, len(t)+1, 1), (nK0,1)).T) KK1 = np.arange(f1k1, f1kN+1, 1/f1ks) nK1 = len(KK1) A1 = np.exp(1j* np.tile(KK1,(len(t), 1)) * 2*np.pi* (f1/fs) * np.tile( np.arange(1, len(t)+1, 1),(nK1,1)).T) A = np.concatenate((A0, A1), axis=1) v = np.linalg.lstsq(A, sN, rcond=None) # rcond=None) #, rcond=1e-8) amp0 = np.abs(v[0][0:nK0]) phase0 = np.angle(v[0][0:nK0]) amp1 = np.abs(v[0][nK0::]) phase1 = np.angle(v[0][nK0::]) h = np.zeros(len(t)) for ik, k in enumerate(KK0): h += 2*amp0[ik] * np.cos( 2.*np.pi*(k) * (f0/fs) * np.arange(1, len(t)+1, 1 ) + phase0[ik] ) for ik, k in enumerate(KK1): h += 2*amp1[ik] * np.cos( 2.*np.pi*(k) * (f0/fs) * np.arange(1, len(t)+1, 1 ) + phase1[ik] ) return sN-h def harmonic2Norm (f0, sN, fs, t, f0k1, f0kN, f0ks, f1k1, f1kN, f1ks): #return np.linalg.norm(harmonicEuler2(f0[0], f0[1], sN, fs, nK, t)) ii = sN < (3.* np.std(sN)) return np.linalg.norm( harmonicEuler2(sN, fs, t, f0[0], f0k1, f0kN, f0ks, f0[1], f1k1, f1kN, f1ks)[ii] ) def minHarmonic2(sN, fs, t, f0, f0k1, f0kN, f0ks, f1, f1k1, f1kN, f1ks, Bounds, Nsearch): kNs0 = f0kN kNs1 = f1kN if Nsearch != False: kNs0 = f0k1+Nsearch kNs1 = f1k1+Nsearch if Bounds == 0: # CG, BFGS, Newton-CG, L-BFGS-B, TNC, SLSQP, dogleg, trust-ncg, trust-krylov, trust-exact and trust-constr print("2 UNbounded ( +-", Bounds,") search length ", kNs0, kNs1 ,"for f0", f0, f1) res = minimize(harmonic2Norm, np.array((f0, f1)), args=(sN, fs, t, f0k1, kNs0, f0ks, f1k1, kNs1, f1ks), jac='2-point', method='BFGS') # hess=None, bounds=None ) else: # Bounded bnds = ( (f0-Bounds, f0+Bounds),(f1-Bounds, f1+Bounds) ) print("2 bounded ( +-", Bounds,") search length ", kNs0, kNs1 ,"for f0", f0, f1) # L-BFGS-B hess=None, bounds=None ) res = minimize(harmonic2Norm, ((f0,f1)), args=(sN, fs, t, f0k1, kNs0, f0ks, f1k1, kNs1, f1ks), jac='2-point', method='L-BFGS-B', bounds=bnds ) return harmonicEuler2(sN, fs, t, res.x[0], f0k1, f0kN, f0ks, res.x[1], f1k1, f1kN, f1ks), res.x[0], res.x[1]#[0] def guessf0( sN, fs ): S = np.fft.fft(sN) w = np.fft.fftfreq( len(sN), 1/fs ) imax = np.argmax( np.abs(S) ) #np.save( "sN.npy", S ) #np.save( "w.npy", w ) #exit() #plt.plot( w, np.abs(S) ) #plt.show() #print(w) #print ( w[imax], w[imax+1] )esta bien in english return abs(w[imax]) if __name__ == "__main__": import matplotlib.pyplot as plt f0 = 60 # Hz f1 = 60 # Hz delta = np.random.rand() - .5 delta2 = np.random.rand() - .5 print("delta", delta) print("delta2", delta2) fs = 10000 # GMR t = np.arange(0, 1, 1/fs) phi = 2.*np.pi*np.random.rand() - np.pi phi2 = 2.*np.pi*np.random.rand() - np.pi print("phi", phi, phi2) A = 1.0 A2 = 0.0 A3 = 1.0 nK = 10 T2 = .200 sN = A *np.sin( ( 1*(delta +f0))*2*np.pi*t + phi ) + \ A2*np.sin( ( 1*(delta2 +f1))*2*np.pi*t + phi2 ) + \ np.random.normal(0,.1,len(t)) + \ + A3*np.exp( -t/T2 ) sNc = A *np.sin( (1*(delta +f0))*2*np.pi*t + phi ) + \ A2*np.sin( (1*(delta2+f1))*2*np.pi*t + phi2 ) + \ + A3*np.exp( -t/T2 ) guessf0(sN, fs) # single freq #h = harmonicEuler( f0, sN, fs, nK, t) h = minHarmonic( f0, sN, fs, nK, t) # two freqs #h = minHarmonic2( f0+1e-2, f1-1e-2, sN, fs, nK, t) #h = harmonicEuler2( f0, f1, sN, fs, nK, t) plt.figure() plt.plot(t, sN, label="sN") #plt.plot(t, sN-h, label="sN-h") plt.plot(t, h, label='h') plt.title("harmonic") plt.legend() plt.figure() plt.plot(t, sN-sNc, label='true noise') plt.plot(t, h, label='harmonic removal') plt.plot(t, np.exp(-t/T2), label="nmr") plt.legend() plt.title("true noise") plt.show()
Akvo
/Akvo-1.7.2-py3-none-any.whl/akvo/tressel/harmonic.py
harmonic.py
# Akvo-DjangoFormGateway [![Build Status](https://github.com/akvo/Akvo-DjangoFormGateway/actions/workflows/test.yml/badge.svg)](https://github.com/akvo/Akvo-DjangoFormGateway/actions) [![Repo Size](https://img.shields.io/github/repo-size/akvo/Akvo-DjangoFormGateway)](https://img.shields.io/github/repo-size/akvo/Akvo-DjangoFormGateway) [![Coverage Status](https://coveralls.io/repos/github/akvo/Akvo-DjangoFormGateway/badge.svg?branch=main)](https://coveralls.io/github/akvo/Akvo-DjangoFormGateway?branch=main) [![Languages](https://img.shields.io/github/languages/count/akvo/Akvo-DjangoFormGateway )](https://img.shields.io/github/languages/count/akvo/Akvo-DjangoFormGateway ) [![Issues](https://img.shields.io/github/issues/akvo/Akvo-DjangoFormGateway )](https://img.shields.io/github/issues/akvo/Akvo-DjangoFormGateway ) [![Last Commit](https://img.shields.io/github/last-commit/akvo/Akvo-DjangoFormGateway/main )](https://img.shields.io/github/last-commit/akvo/Akvo-DjangoFormGateway/main) [![GitHub license](https://img.shields.io/github/license/akvo/Akvo-DjangoFormGateway.svg)](https://github.com/akvo/Akvo-DjangoFormGateway/blob/main/LICENSE) **Akvo-DjangoFormGateway** is a Django library that enables seamless integration of messenger services such as WhatsApp, SMS, and SSID for collecting form data. It provides an easy-to-use gateway to receive and process form submissions from various messaging platforms, empowering developers to build interactive and conversational form experiences within their Django applications. Please note that you can further customize and expand upon this description to provide more specific details about the features, functionality, and benefits of your library.
AkvoDjangoFormGateway
/AkvoDjangoFormGateway-0.0.9.tar.gz/AkvoDjangoFormGateway-0.0.9/README.md
README.md
# Akvo-ResponseGrouper ![PyPI](https://img.shields.io/pypi/v/AkvoResponseGrouper) [![Build Status](https://github.com/akvo/Akvo-ResponseGrouper/actions/workflows/test.yml/badge.svg)](https://github.com/akvo/Akvo-ResponseGrouper/actions) [![Repo Size](https://img.shields.io/github/repo-size/akvo/Akvo-ResponseGrouper)](https://img.shields.io/github/repo-size/akvo/Akvo-ResponseGrouper) [![Coverage Status](https://coveralls.io/repos/github/akvo/Akvo-ResponseGrouper/badge.svg?branch=main)](https://coveralls.io/github/akvo/Akvo-ResponseGrouper?branch=main) [![Languages](https://img.shields.io/github/languages/count/akvo/Akvo-ResponseGrouper )](https://img.shields.io/github/languages/count/akvo/Akvo-ResponseGrouper ) [![Issues](https://img.shields.io/github/issues/akvo/Akvo-ResponseGrouper )](https://img.shields.io/github/issues/akvo/Akvo-ResponseGrouper ) [![Last Commit](https://img.shields.io/github/last-commit/akvo/Akvo-ResponseGrouper/main )](https://img.shields.io/github/last-commit/akvo/Akvo-ResponseGrouper/main) [![Documentation Status](https://readthedocs.org/projects/Akvo-ResponseGrouper/badge/?version=latest)](https://Akvo-ResponseGrouper.readthedocs.io/en/latest/?badge=latest) [![GitHub license](https://img.shields.io/github/license/akvo/Akvo-ResponseGrouper.svg)](https://github.com/akvo/Akvo-ResponseGrouper/blob/main/LICENSE) Fast-API Response catalog for pre-computed query ## Install ``` $ pip install AkvoResponseGrouper ``` ## Schema Requirements Please follow [the required schema](https://github.com/akvo/Akvo-ResponseGrouper/blob/main/docs/database.org) before using AkvoResponseGrouper. ## Usage 1. Database Migration Database migration is the first required step for AkvoResponseGrouper to work. Use the akvo-responsegrouper CLI to migrate all data sources with JSON configuration files to generate Materialized Views that AkvoResponseGrouper can then use. ```bash $ akvo-responsegrouper usage: akvo-responsegrouper [-h] [-c CONFIG] [-d] optional arguments: -h, --help show this help message and exit -c CONFIG, --config CONFIG akvo-responsegrouper -c <json_file_config> -d, --drop Drop the ar_category view table ``` 2. Router To get the new endpoint provided by AkvoResponseGrouper, import the collection route to the App by: ```python from fastapi import FastAPI from AkvoResponseGrouper.routes import collection_route app = FastAPI( root_path="/", title="Akvo Response Grouper Demo", ) app.include_router(collection_route) @app.get("/", tags=["Dev"]) def read_main(): return "OK" ``` 3. Query ## Development ### Run Dev Containers The dev environment contains two containers: FastAPI backend and PostGres db, to run: ```bash docker compose up -d ``` Before go to the next step, wait until the service started at [http://localhost:5000](http://localhost:5000). ### Seed Necessary Data In order to debug the data itself. We need to seed the example form and fake datapoints ### ```bash docker compose exec backend python -m script.seeder_form docker compose exec backend python -m script.seeder_datapoint <number_of_datapoint> ``` ### Migration Dev environment uses contents that is available in `Akvo-ResponseGrouper/src/AkvoResponseGrouper`. To create the Category Materialized View via CLI in dev environment: Upgrade: ```bash python -m AkvoResponseGrouper.cli.migrate -c './sources/category.json' ``` After upgrade, you can see "AkvoResponseGrouper - Collection" is available in API docs, ussualy [http://locahhost:5000/docs](http://localhost:5000/docs) (Depends on the root path api). Downgrade: ``` python -m AkvoResponseGrouper.cli.migrate -c './sources/category.json' ``` ### Teardown ``` docker compose down -v ```
AkvoResponseGrouper
/AkvoResponseGrouper-1.3.3a0.tar.gz/AkvoResponseGrouper-1.3.3a0/README.md
README.md
from colorama import Fore as f, init from colorama import Fore print(f'{f.WHITE}Please Wait ... {f.CYAN} -> {f.LIGHTYELLOW_EX}BackTrack\n\n{f.WHITE}Perparing to {f.RED}Setup{f.WHITE} Libray\n\n') import os import socket import pyfiglet import time import subprocess import requests from fuzzywuzzy import fuzz from googlesearch import search from bs4 import BeautifulSoup class BackTrack: global key key = 'FzgnTlMaMgRMWz4ANExbPmBwGQ4=' def __init__(self, PassWord : str): self.password = str(PassWord) def createBanner(self, text : str): if self.password == key: return str(pyfiglet.figlet_format(text=text)) else:return 'password error' def createBannerWithFont(self, text : str = None , font : str = None): if self.password == key: if text == None or font == None: return "text or font is empty" else: return str(pyfiglet.figlet_format(text=text, font=font)) else:return "password error" def getHostIP(self, domain : str = None): if self.password == key: if domain == None: return "domain is empty" else: return socket.gethostbyname(domain) else:return "password error" def Hour(self): if self.password == key: return time.strftime("%H") else:return "password error" def Min(self): if self.password == key: return time.strftime("%M") else:return "password error" def Sec(self): if self.password == key: return time.strftime("%S") else:return "password error" def sendRequestTelegram(self, token : str = None, chatID : str = None, message : str = None): if self.password == key: if token == None or chatID == None or message == None: return "token or chatID or message is empty" else: url = f"https://api.telegram.org/bot{token}/sendMessage?chat_id={chatID}&text={message}" req = requests.post(url) return req else:return "password error" def sendRequestTelegramWithPayload(self, token : str = None, chatID : str = None, message : str = None): if self.password == key: if token == None or chatID == None or message == None: return "token or chatID or message is empty" else: url = f"https://api.telegram.org/bot{token}/sendMessage?chat_id={chatID}&text={message}" mypay = { "UrlBox" : url, "AgentList" : "Google Chrome", "VersionList" : "HTTP/1.1", "MethodList" : "POST" } req = requests.post("https://www.httpdebugger.com/tools/ViewHttpHeaders.aspx", data=mypay) return req else:return "password error" def sendRequest(self, url: str = None): if self.password == key: if url == None: return "url is empty" else: req = requests.post(url) return req else:return "password error" def sendRequestWithPayload(self, url : str = None): if self.password == key: if url == None: return "url is empty" else: mypay = { "UrlBox" : url, "AgentList" : "Google Chrome", "VersionList" : "HTTP/1.1", "MethodList" : "POST" } req = requests.post("https://www.httpdebugger.com/tools/ViewHttpHeaders.aspx", data=mypay) return req else:return "password error" def getTextUrl(self, url : str, Type : str): if self.password == key: if Type == 'post': return requests.post(url).text elif Type == 'get': return requests.get(url=url).text else:return 'Type error' else:return 'password error' def changeDir(self, path : str): if self.password == key: os.chdir(path=path) else:return 'password error' def sysName(self): if self.password == key: import os for name in ('LOGNAME', 'USER', 'LNAME', 'USERNAME'): user = os.environ.get(name) if user: return user import pwd return pwd.getpwuid(os.getuid())[0] else:return 'password error' def unzipLinux(self, fileName : str, downloadPackage = False): if self.password == key: if downloadPackage == False: os.system(f"unzip {fileName}") elif downloadPackage == True: os.system('pkg install zip') os.system(f'unzip {fileName}') else:return 'downloadPackage must be True or False' else:return 'password error' def readFile(self, fileName : str, path : str = None): if self.password == key: if path == None: try: File = open(fileName, 'r').read() return File except:return 'error in openning file' else: try: os.chdir(path=path) File = open(fileName, 'r').read() return File except:return 'error in openning file' else:return 'password error' def writeFile(self, fileName : str, message : str): if self.password == key: try: with open(fileName, 'a') as myFile: myFile.write(str(message)) myFile.close() except:return 'error in openning file' else:return 'password error' def osint(self, query : str): if self.password == key: # colorama init(autoreset=True) for url in search(query): print('\n' + Fore.CYAN + '[+] Url detected: ' + url) try: text = requests.get(url, timeout = 1).text except: continue soup = BeautifulSoup(text, "html.parser") links_detected = [] try: print(Fore.MAGENTA + '[?] Title: ' + soup.title.text.replace('\n', '')) except: print(Fore.RED + '[?] Title: null') # Find by <a> tags try: for link in soup.findAll('a'): href = link['href'] if not href in links_detected: if href.startswith('http'): # Filter if url.split('/')[2] in href: links_detected.append(href) # If requested data found in url elif query.lower() in href.lower(): print(Fore.GREEN + '--- Requested data found at link : ' + href) links_detected.append(href) # If text in link and link location is similar elif fuzz.ratio(link.text, href) >= 60: print(Fore.GREEN + '--- Text and link are similar : ' + href) links_detected.append(href) except: continue if links_detected == []: print(Fore.RED + '--- No data found') else:return 'password error' def showDirs(self, path : str = None): if self.password == key: if path == None: return subprocess.getoutput('ls || dir') else: os.chdir(path=path) return subprocess.getoutput('ls || dir') else:return 'password error' def uploadProjectPypi(self, path : str = None, downloadLibs = True): if self.password == key: if path == None: if downloadLibs == True: os.system('py -m pip install --upgrade build') os.system('py -m pip install --upgrade twine') os.system('py -m build') os.system('py -m twine upload --repository pypi dist/*') elif downloadLibs == False: os.system('py -m build') os.system('py -m twine upload --repository pypi dist/*') else:return 'downloadLibs must be True / False' else: if downloadLibs == True: os.chdir(path=path) os.system('py -m pip install --upgrade build') os.system('py -m pip install --upgrade twine') os.system('py -m build') os.system('py -m twine upload --repository pypi dist/*') elif downloadLibs == False: os.chdir(path=path) os.system('py -m build') os.system('py -m twine upload --repository pypi dist/*') else:return 'downloadLibs must be True / False' else:return 'password error' def uploadProjectTestPypi(self, path : str = None, downloadLibs = True): if self.password == key: if path == None: if downloadLibs == True: os.system('py -m pip install --upgrade build') os.system('py -m pip install --upgrade twine') os.system('py -m build') os.system('py -m twine upload --repository testpypi dist/*') elif downloadLibs == False: os.system('py -m build') os.system('py -m twine upload --repository testpypi dist/*') else:return 'downloadLibs must be True / False' else: if downloadLibs == True: os.chdir(path=path) os.system('py -m pip install --upgrade build') os.system('py -m pip install --upgrade twine') os.system('py -m build') os.system('py -m twine upload --repository testpypi dist/*') elif downloadLibs == False: os.chdir(path=path) os.system('py -m build') os.system('py -m twine upload --repository testpypi dist/*') else:return 'downloadLibs must be True / False' else:return 'password error'
Al4X
/Al4X-0.0.0-py3-none-any.whl/Al4X.py
Al4X.py
# AlComplex A Complex Number library. It uses its own complex number implementation. Its main goal it's to provide a more complete API, compared to the default complex number implementation in Python. It's as simple as: ``` >>> from AlComplex import I, AlComplex, pi >>> 2 + 3*I 2.0 + 3.0i >>> AlComplex(2,3) 2.0 + 3.0i >>> AlComplex(1) 1.0 + 0.0i >>> # You can also use Polar Coordinates >>> AlComplex.polar(2, pi) 0 - 2i ``` ## Installation Just run ``` pip install AlComplex ``` It has no external dependencies. ## Details Basic operations with complex and real numbers are supported ``` >>> -I + 4 + 3*I 4 + 2i >>> (25+35*I)/5 5.0 + 7.0i >>> (-8 + 14*I)/(2+3*I) 2.0000000000000018 + 4.000000000000001i >>> I**I .20787957635076193 + 0.0i ``` Note that since Floats behave weirdly, we use relative equality. Two Complex numbers are equal if their real and imaginary parts are close by at least ```1e-14```. You can change this by modifying AlComplex.precission to 0. ``` >>> (-8 + 14*I)/(2+3*I) 2.0000000000000018 + 4.000000000000001i >>> (-8 + 14*I)/(2+3*I) == 2 + 4*I True ``` AlComplex objects have a basic but complete API: ``` >>> z = 1 + I >>> z.real 1.0 >>> z.imag 1.0 >>> z.abs() 1.4142135623730951 >>> z.phase() 0.7853981633974483 >>> z.to_polar() (1.4142135623730951, 0.7853981633974483) >>> z.to_rect_coord() (1,1) >>> z.conjugate() 1 - i ``` Note that there many aliases and ways to get the same value: ```python from AlComplex import phase, module, conjugate, real, imaginary z.phase() == z.arg() == z.angle() == phase(z) z.abs() == z.magnitude() == z.module() == abs(z) == module(z) z.real == real(z) z.imag == imaginary(z) z.conjugate() == conjugate(z) ``` There's also basic math functions, optimized for Complex objects. ``` >>> from AlComplex import sin, exp, Ln >>> from math import pi >>> exp(2*pi*I) 1.0 + 0.0i >>> sin(2*pi) 0.0 + 0.0i >>> sin(2 + I) 1.4031192506220411 - 0.48905625904129324i >>> Ln(exp(I)) 0.0 + 1.0*I ``` Note that these functions work differently to ```cmath``` functions, since very small numbers are rounded to zero automatically. ``` >>> import cmath >>> import AlComplex >>> from math import pi >>> cmath.sin(2*pi) (-2.4492935982947064e-16+0j) >>> AlComplex.sin(2*pi) 0.0 + 0.0i >>> cmath.sin(2*pi) == 0 False >>> AlComplex.sin(2*pi) == 0 True ``` The functions available are ```sin```, ```cos```, ```tan```, ```sec```, ```csc```, ```cot```, ```asin```, ```acos```, ```atan```, ```sinh```, ```cosh```, ```tanh```, ```sech```, ```csch```, ```coth```, ```asinh```, ```acosh```, ```atanh```, ```exp```, ```Ln```, ```sqrt``` and ```inverse```. You can set representation of complex numbers with j, if you prefer. ``` >>> from AlComplex import J, use_j >>> J 0.0 + 1.0i >>> use_j(True) >>> 2 + J 2.0 + 1.0j >>> use_j(False) >>> 2 + J 2.0 + 1.0i ``` There's also partial support for multiple valued functions. They all create generators. ``` >>> from AlComplex import int_roots, ln_values >>> from math import pi >>> list(int_roots(I, 3)) [0.866025403784439 + 0.5i, -0.866025403784438 + 0.5i, 0.0 - 1.0i] >>> # Gives log(z.abs()) + (z.phase() + 2*pi*n)*I, where n takes the values from 0 to 2 >>> list(ln_values(I, 0, 3)) [0.0 + 1.5707963267948966i, 0.0 + 7.853981633974483i, 0.0 + 14.137166941154069i] ``` Currently only int_roots of a function and complex logarithm are supported. More to come. You can also get the n-th value of the log directly ``` >>> from AlComplex import ln_n_branch >>> ln_n_branch(I, 2) 0.0 + 14.137166941154069i ```
AlComplex
/AlComplex-1.0.4.tar.gz/AlComplex-1.0.4/README.md
README.md
# ****AlLoRa:**** modular, mesh, multi-device ****LoRa Content Transfer Protocol**** <p align="center"> <img src="readme_assets/logo.png" width="50%"> </p> The code in this repository contains a toolbox that allows transferring content over a LoRa channel. It’s based on the original [LoRaCTP](https://github.com/pmanzoni/loractp), adding a more modular design with mesh capabilities and larger packet sizes for faster transfers. ~~Details of the protocol can be found in this paper: (soon)~~ ## Readme on Notion! > For a better experience, you can check our awesome **Notion** description of the code [here...](https://www.notion.so/barratia/m3LoRaCTP-ec6d1adaabcb44b39bb59d41bdf75b9b) ## Content - [Folders](#folders) - [AlLoRa](#AlLoRa) - [Nodes](#nodes) - [Node.py](#base_nodepy) - [Sender.py](#sender_nodepy) - [Receiver.py](#receiver_nodepy) - [Gateway.py](#gateway_nodepy) - [Connectors](#connectors) - [→ Datasource.py](#datasourcepy) - [→ Digital_Endpoint.py](#digital_endpointpy) - [→ File.py](#-AlLoRa_filepy) - [→ Packet.py](#-AlLoRa_packetpy) - [Adapters](#adapters) - [AlLoRa-WiFi_adapter](#AlLoRa-wifi_adapter) - [Examples](#examples) - [How does it work?](#how-does-it-work) - [→ Communication logic](#-communication-logic) - [→ Packet Structure](#-packet-structure) - [Flag composition](#flag-composition) - [→ Mesh mode](#-mesh-mode) - [→ Debug Hops](#-debug-hops) - [Running an example](#running-an-example) - [Hardware Requirements](#hardware-requirements) - [Setup](#setup) # Folders ## **AlLoRa** <details> <summary>It contains all the code necessary to setup a communication network between devices, from a point-to-point using two LoPy4’s, to a mesh with a gateway and multiple edge-nodes.</summary> ### [Nodes](https://github.com/SMARTLAGOON/AlLoRa/tree/main/AlLoRa/Nodes) <details> <summary>A node is the element in charge of managing the communication logic for the Content Transfer Protocol.</summary> ### [Node.py](https://github.com/SMARTLAGOON/AlLoRa/blob/main/AlLoRa/Nodes/Node.py) It is the parent class from whom the other nodes inherits them base and common attributes and methods. It receives a boolean to indicate if the system is working on **mesh mode** or not and a **[Connector](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b).** The Base Node is not supposed to be instantiated, it acts like an abstract class for the other Nodes (MicroPython doesn't support abstract classes, so we used a Parent class instead...) The main methods in this class are send_request and send_response. ### [Sender.py](https://github.com/SMARTLAGOON/AlLoRa/blob/main/AlLoRa/Nodes/Sender.py) It is a structure whose purpose, as its name implies, is to send one or more [Files](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b) . It waits and listens for requests from a [Receiver](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b) or [Gateway](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b) Node and syncs with them to send blocks (we call them chunks) of bytes of a [File,](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b) until it finishes and is ready to send another one. <details> <summary><b><u>Usage</u></b></summary> ### [Sender](https://github.com/SMARTLAGOON/AlLoRa/blob/ModuLoRa/AlLoRa/Nodes/Sender.py) usage: 1. Instantiation: For the user, the Sender must be instantiated with the same parameters explained in [Node](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b), plus: -name: A nickname for the Node, it shouldn’t be too large, we recommend a maximum of 3 characters, for the testing we used one letter (Nodes “A”, “B”, “C”…) -chunk_size (optional): It is the size of the payload of actual content to be sent in each [Packet](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b). The maximum and default chunk_size is 235 for p2p mode and 233 for mesh mode, but if for some reason the user prefers to make it smaller, this is the parameter to change. 2. Establish Connection: The first thing to do with the Sender is to use the establish_connection method. It will wait until a message for itself arrives, in order to sync with the Receiver/Gateway Node. 3. Set a File: Now, we can start using the Node to send [Files](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b). For this, we use the set_file method, that receives a previously instantiated object of the class [File](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b) (more about it above…). Another way to set a file to sent is with the restore_file method, but this is only supposed to be used when the code had some type of interruption, and we need to continue sending a File “mid-chunk”. 4. Send the File: After this, we call the send_file method, and it will manage the transfer of all the chunks of the File to be sent. ### Example: ```python from AlLoRa.Nodes.Sender import ASender lora_node = AlLoRa_Sender(name = "A", connector = connector, chunk_size = 235, mesh_mode = True, debug = False) lora_node.establish_connection() lora_node.set_file(file_to_send) lora_node.send_file() ``` </details> ### [Receiver.py](https://github.com/SMARTLAGOON/AlLoRa/blob/main/AlLoRa/Nodes/Receiver.py) It is a structure whose purpose, as its name implies, is to receive [Files](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b). It asks information to a [Sender](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b) and listens for the responses. In order to communicate with an specific Node, the Receiver must have the information of this endpoint, for this, we use the [Digital_Endpoint](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b) class, who contains the MAC Address of the endpoint and manages the states of the communication and generates the complete [File](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b) when the receiver finishes collecting all the chunks. <details> <summary><b><u>Usage</u></b></summary> ### [Receiver](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b) usage: 1. Instantiation: For the user, the Receiver must be instantiated with the same parameters explained in [Node](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b), plus: - debug_hops (optional): If True, the Senders will override the message to be sent and register the message path (or hops between Nodes), more information about this [here](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b). - NEXT_ACTION_TIME_SLEEP (optional): Is the time (in seconds) between actions for the receiver in order to listen to the sender. The default is 0.1 seconds, but you can experiment with this number if you want. 2. Listen to endpoint: Once instantiated, we can use the method listen_to_endpoint, who needs a [Digital_Endpoint](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b) to operate and a listening_time. We can use a loop to ensure that the [File](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b) to be received arrives completely, but we can also use this listening_time to avoid getting stuck for too long while waiting for it to arrive. ### Example: ```python from AlLoRa.Nodes.Receiver import Receiver lora_node = Receiver(connector = connector, mesh_mode = True, debug = False) lora_node.listen_to_endpoint(digital_endpoint, 300) #We can access the file like this: ctp_file = digital_endpoint.get_current_file() content = ctp_file.get_content() ``` </details> ### [Gateway.py](https://github.com/SMARTLAGOON/AlLoRa/blob/main/AlLoRa/Nodes/Gateway.py) It is a practically a [Receiver Node](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b) (actually, it inherits from it) but it has the capability to manage multiple [Sender Nodes](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b), receiving a list of [Digital_Endpoints](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b) to check. <details> <summary><b><u>Usage</u></b></summary> ### [Gateway](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b) usage: 1. Instantiation: For the user, the Gateway must be instantiated with the same parameters explained in [Receiver](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b) plus: - TIME_PER_ENDPOINT: Time in seconds to focus per Node to listen, the default is 10 seconds. 2. Set list of [Digital_Endpoints](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b): Create the necessary [Digital_Endpoints](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b) to listen, add them to a list and give it to the Node with the set_digital_endpoints method 3. Check them: Finally, execute the check_digital_endpoints method in order to listen all the nodes, each at a time, for the time that you indicated. This function contains a While True loop, because it’s supposed to keep listening periodically to the Nodes, so be careful when using it! ### Example: ```python from AlLoRa.Nodes.Gateway import Gateway lora_node = AlLoRa_Gateway(mesh_mode = True, debug_hops = False, connector = connector) lora_gateway.set_digital_endpoints(list_of_digital_endpoints) lora_gateway.check_digital_endpoints() # Listening for ever... ``` </details> </details> ### [Connectors](https://github.com/SMARTLAGOON/AlLoRa/tree/main/AlLoRa/Connectors) <details> <summary>A connector is the element that gives and manages the access to LoRa to a Node. The main objective of the connector is to make AlLoRa available to as many type of devices as possible. Many devices have embedded LoRa capabilities, while others maybe not, so the connector is a class that acts as a bridge to LoRa.</summary> ### [Connector.py](https://github.com/SMARTLAGOON/AlLoRa/blob/main/AlLoRa/Connectors/Connector.py) It is the parent class from whom the connectors inherits them base attributes and methods. It manages the methods to send and receive data using raw LoRa, gives access to the RSSI of the last received package and the MAC address of the device. It also contains the method send_and_wait_response, whose function is to send a packet (usually with a request) and wait for a predefined period of time (WAIT_MAX_TIMEOUT). ### [LoPy4_connector.py](https://github.com/SMARTLAGOON/AlLoRa/blob/main/AlLoRa/Connectors/LoPy4_connector.py) This type of connector is very straightforward, it uses the native library for using LoRa from the LoPy4 (Only tested in LoPy4) ### [SX127x_connector](https://github.com/SMARTLAGOON/AlLoRa/blob/main/AlLoRa/Connectors/SX127.py) This connector was developed to use in a Raspberry Pi connected to a Dragino LoRa/HPS HAT for RPi v1.4. It uses the SX127x library to manage the Raspberry Pi’s GPIOs in order to control the Dragino and send packages using a LoRa channel. It also works with ESP32 that uses the SX127x. ### [Wifi_connector.py](https://github.com/SMARTLAGOON/AlLoRa/blob/main/AlLoRa/Connectors/Wifi_connector.py) Is the counterpart of the [AlLoRa-WiFi_adapter](https://github.com/SMARTLAGOON/AlLoRa/blob/main/AlLoRa-Adapters), developed to use in a Raspberry Pi, but also tested on computers running macOS and Windows. </details> ### → [Datasource.py](https://github.com/SMARTLAGOON/AlLoRa/blob/main/AlLoRa/DataSource.py) A Datasource is a handy class that can be use to manage the files to be send. It is supposed to be used to feed Files to send to a Sender Nodes. ### → [Digital_Endpoint.py](https://github.com/SMARTLAGOON/AlLoRa/blob/main/AlLoRa/Digital_Endpoint.py) Contains the MAC Address of the endpoint to communicate with and manages the states of the communication. It also manages the generation of the complete [File](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b) when the receiver finishes collecting all the chunks. It also manages the “state” or phase in which the transfer is. ### → [AlLoRa_File.py](https://github.com/SMARTLAGOON/AlLoRa/blob/main/AlLoRa/AlLoRa_File.py) It is the class who focus on the actual File to be sent or received. It can be used to obtain the chunks of the content to transfer to the Sender Nodes and also assembly all the blocks received to obtain the complete File in the Receiver/Gateway side. It can be instantiated with content (byte array) to be used by the Sender to transmit the content, or it can also be instantiated as a “container”, in order to receive the chunks and finally assemble it to obtain the whole content, in the Receiver side. ### → [AlLoRa_Packet.py](https://github.com/SMARTLAGOON/AlLoRa/blob/main/AlLoRa/AlLoRa_Packet.py) This class structures the actual packet to be sent through LoRa. It manages the creation of the message to be sent and also is capable of load the data received by LoRa in order to check that the message was correctly received (with checksum). It is composed by a header and the actual payload. More details about the structure of the packages [here](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b). </details> ## Adapters <details> <summary>Sometimes another device is needed in order to bridge to LoRa, depending of the technology used for the connection. In this cases, the code for the adapters will be in this folder, for now we have a WiFi to LoRa adapter</summary> ### [AlLoRa-WiFi_adapter](https://github.com/SMARTLAGOON/AlLoRa/tree/main/AlLoRa-Adapters/AlLoRa-WiFi_adapter) It contains the code for a LoPy4. It activates a hotspot for the Node to be bridged to connect to and a “light version” of a mix of the code of a Node and a Connector. It operates in this way: 🍓 Raspberry Pi/Computer Node (Wifi Connector) **←Wi-Fi→** LoPy4 with AlLoRa-WiFi_adapter **←LoRa→** Node <details> <summary><b><u>Setup Lopy4 Adapter</u></b></summary> 1. Setup the LoPy4 (following this [instructions](#setup)). 2. Uploading and running the code 1. Open the [AlLoRa-WiFi_adapter](https://github.com/SMARTLAGOON/AlLoRa/tree/main/AlLoRa-Adapters/AlLoRa-WiFi_adapter) folder of the repo in your IDE 2. Connect your LoPy4 + expansion board to your computer. PyMakr should recognise it and show you something like this: ![Untitled](readme_assets/Hardware_Setup/Untitled%203.png) - If it doesn’t do it automatically, you can open the “Connect Device” option and manually select your Port: <p align="center"> <img width="400" src="readme_assets/Hardware_Setup/Untitled%204.png"> </p> 3. Open the config.txt file and setup a SSID and Password for the Lopy4's Wi-Fi hotspot, you will use this to connect to the adapter with the device that you are connecting to LoRa through this adapter. 4. Press Ctrl+Alt/Opt + s or the “Upload Project to Device” button to upload the code to the LoPy4 ![Untitled](readme_assets/Hardware_Setup/Untitled%205.png) With this, the code will boot automatically each time the LoPy4 is on. 5. If everything is ok, you should see something like this on the terminal: <p align="center"> <img width="400" src="readme_assets/Hardware_Setup/Untitled%207.png"> </p> 6. Import and setup a [Wifi_connector.py](https://github.com/SMARTLAGOON/AlLoRa/blob/main/AlLoRa/Connectors/Wifi_connector.py) in the device that you want to communicate using AlLoRa, and then use the rest of the library as explained in this repo. Your device should be connected to the Adapter's hotspot and everything should work as normal. </details> </details> ## Examples <details> <summary>Contain examples of uses of the AlLoRa code.</summary> ### [LoPy Sender](https://github.com/SMARTLAGOON/AlLoRa/tree/main/examples/LoPySender) A simple implementation of a Sender Node use case, it sends increasingly larger files of numbers. ### [LoPy Receiver](https://github.com/SMARTLAGOON/AlLoRa/tree/main/examples/LoPyReceiver) A simple implementation of a Receiver Node use case, it ask a Sender Node for information and listen to the responses ### [Raspberry Gateway](https://github.com/SMARTLAGOON/AlLoRa/tree/main/examples/RaspberryGateway) An implementation of a Gateway Node using Raspberry Pi (or a desktop computer), it access LoRa using the [AlLoRa-WiFi_adapter](https://github.com/SMARTLAGOON/AlLoRa/tree/main/AlLoRa/Adapters/AlLoRa-WiFi_adapter) and listens to two Sender Nodes and prints the content when a whole File is received. </details> # **How does it work?** <p align="center"> <img width="700" src="readme_assets/figures/Untitled.png"> </p> As we can see in the image above, the protocol is structured in a symmetrical way. At the left we have the Sender side, with a [Sender Node](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b) that receives a [AlLoRa File](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b) to be sent from a [Data Source](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b), and uses a [Connector](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b) to access LoRa to send [AlLoRa Packets](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b). At the right we have the Receiver side, with a [Receiver Node](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b) that receives a [Digital Endpoint](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b), that provides the Sender information, in order to listen to it to receive the [AlLoRa File](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b), it also uses a [Connector](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b) to access LoRa to receive the [AlLoRa Packets](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b), that contains the chunks (blocks of bytes) of the content transmitted. ## → Communication logic The system follow a logic of requests from the Receiver to the Sender. Depending of the state of the state of the [Digital Endpoint](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b), the Receiver will send requests to the specific Sender and wait a time for an answer or reply. If the answer does not arrive or it arrives with corruptions, the Receiver Node will repeat the request until the message arrives correctly (with a timeout when necessary). The [Digital Endpoints](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b) operates with the following states or phases of the communication: <img align="right" width="400" src="readme_assets/figures/Untitled%201.png"> 1. **Establish connection** Every Digital Endpoint start in this state, is sends a simple packet with the command “ok” and waits until a “ok” from the sender is received, then, it continues to the next state. 2. **Ask metadata**: This is the first step for receiving a [AlLoRa File](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b), it asks the Sender for the metadata of the content to be received and waits until a Packet arrives with the name and the number of chunks of the content. In this stage, the [Digital Endpoint](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b) creates an empty [AlLoRa File](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b) object that will act as a container for the incoming chunks. If successful, it continues to the next state. 3. **Ask for data** In this state, the Receiver will sequentially ask for the chunks necessary to obtain the whole content. When a chunk arrives, it will feed the [AlLoRa](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b) object until it collected all. When the [AlLoRa File](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b) is complete, it will be assembled and the content will be ready to access or saved. 4. **Final acknowledge** In order to maintain the synchronization between the Nodes, a final acknowledge will be sent, and the system will wait until the Sender replies with an “ok” command. **More information about how the [commands work](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b) in the Packet Structure section* ## → Packet Structure The [Packet](https://github.com/SMARTLAGOON/AlLoRa/blob/ModuLoRa/AlLoRa/Packet.py) is the element that is sent and receive through LoRa. It is designed to maximize the amount of actual content (or chunk size) sent each time, but also to ensure the correct reception of the package by the Node that is supposed to receive it. For compatibility’s sake, It is designed to have a maximum of 255 Bytes, that is the maximum size of a LoRa message on a LoPy4. The header size is variable depending on the enabled mode (mesh or point-2-point), but both have in common a header of 20 Bytes, the first 16 Bytes contain the first 8 characters of the MAC Address of the source and destination Nodes. 1 Byte is destined to the message’s command and flags (explained in more detail [below](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b)). Another 3 Bytes are destined to the Checksum of the content, it is used to check if the content has arrived correctly or if it has some type of corruption. Finally, if the system is working in [Mesh mode](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b) (detailed below), an additional 2 Bytes are used to store a message ID. The ID is a random number between 0 and 65.535 (the range of values that can be represented in binary using 2 Bytes) and it is used to manage the retransmissions when in mesh mode and to avoid chunk duplication in the receiver. <div align="center"> <table> <tr> <th>Point-2-point Packet</th> <th>Mesh Packet</th> </tr> <tr> <td> <pre> <img align="center" src="readme_assets/figures/Untitled%202.png" title = "hola" width="300" /> </pre> </td> <td> <img align="center" src="readme_assets/figures/Untitled%202.png" title = "hola" width="300" /> </td> </tr> </table> </div> With this, the point-2-point Packet has 235 Bytes maximum for its payload, while the mesh Packet has 233 available Bytes. It seems like a small difference, but with 255 Bytes maximum per Packet, every Byte counts when sending Kilobytes of data. ### Flag composition The Flag Byte is structured as follows: <p align="center"> <img src="readme_assets/figures/Untitled%204.png" alt="Picture" width="500" style="display: block; margin: 0 auto" /> </p> - **Command bits**: 2 bits that combined represent one of four type of commands: - **00 → DATA:** The command activated when the payload contains a requested chunk. - **01 → OK:** The acknowledgement command, it is used to establish connection between nodes or notify of the correct reception of the final chunk of the content being received. It usually implies that the payload is empty. - **10 → CHUNK:** This command is used by the Receiver/Gateway to ask for a chunk of the content being received. The chunk number is stored in the payload, so the Sender can know what block is being requested. - **11 → METADATA:** This command is used by the Receiver/Gateway to ask for the metadata of the file to be received. If this is the case, the payload of the request will be empty. It is also used by the Sender to answer the request of metadata. In this case the payload contains the name and size of the File to sent. - **Retransmission bit**: Not being used for the moment - **Mesh bit**: 1 bit that indicates if the message is supposed to be forwarded or not (more about this in the [Mesh mode](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b) segment). - **Hop bit**: 1 bit that is True if the message was forwarded at some point (more about this in the [Mesh mode](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b) segment). - **Debug hop bit**: 1 bit that indicates that the message in question is in “debug hop mode” (more about this in the [Debug hops](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b) segment). ## → Mesh mode If the communication protocol has the mesh mode activated, the communication will work exactly the same as described [before](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b), but in the case of a request don’t being answered by a Sender for a specific number of times (set by the user), the [Digital Endpoint](https://www.notion.so/AlLoRa-ec6d1adaabcb44b39bb59d41bdf75b9b) will jump to “retransmission mode”. Activating the mesh bit in the Packet in order to tell the other Nodes in the system to retransmit the message if received, to extend the reach of the system and try to establish the communication with the missing Node. If a Sender Node receives a Packet that is not for itself, it usually discards it and keep listening for request directed to it. But with the mesh bit activated, it will forward it to help reach the real destination. For this forwarding, the Node sleeps for a random time between 0.1 and 1 second before sending it. This reduces the possibility of collisions between Packets when multiple Nodes are active and in reach between them. Each time a Packet is forwarded, the Hop bit of it will be activated in order to announce that it actually went through other devices during its path. When the destination Node receives its message, it notices that the message arrived using the “retransmission mode” and creates a response Packet with the mesh bit activated, because it assumes that if it arrived like this, it is probably that the response will reach the Gateway jumping through the same path. In this case, the Node doesn’t sleep before sending the response, prioritizing always the sender Node being requested something. If the response Packet arrives with the Hop bit off to the Gateway, it means that it didn't go through any other Node in order response to the request, indicating that the retransmission maybe are not needed. In this cases the Gateway will deactivate the “retransmission mode” of this specific Digital Endpoint. In order to avoid duplication and over retransmission of messages that could collapse the system, each new Packet is assigned a random ID by the Node, and is saved in a fixed-size list that is checked wherever a new message with mesh bit activated arrives. The Nodes also have another fixed-size list that saves all the forwarded message’s IDs and that checks to avoid forwarding multiple times the same Packet. ## → Debug Hops The debug hops is an option available to activate when instantiating a Receiver or Gateway Node, and is a useful tool to check the path of a Packet when using the Mesh mode. It overrides the messages and focus on register in the payload each time the Packet goes through a Node. This information can be later retrieved in the Receiver/Gateway Node’s device’s memory and can be used to make decisions about the distribution of the Nodes in the area to cover. The output of this process generates a log_rssi.txt file that looks like this: ``` 022-06-17_17:11:40: ID=24768 -> [['B', -112, 0.5], ['A', -107, 0], ['B', -106, 0.3], ['C', -88, 0.2], ['G', -100, 0]] 2022-06-17_17:11:50: ID=2065 -> [['C', -99, 0.4], ['B', -93, 0], ['C', -93, 0.2], ['G', -105, 0]] 2022-06-17_17:11:53: ID=63728 -> [['C', -100, 0.4], ['B', -95, 0], ['C', -95, 0.5], ['G', -103, 0]] 2022-06-17_17:11:54: ID=32508 -> [['B', -114, 0], ['C', -95, 0.4], ['G', -103, 0]] 2022-06-17_17:11:56: ID=10063 -> [['C', -99, 0.1], ['B', -95, 0], ['C', -94, 0.1], ['G', -103, 0]] ``` Where it shows the time of reception, the ID of the message and then a list of hops that the Packet did. Each hop saves the name of the Node, the RSSI of the last package received with LoRa when registering the hop, and the random time that the Node had to wait before forwarding the message. As we can see, in some cases this random sleep is 0. This is not random, because those Nodes were the destination of the requests of the Gateway, and, as commented before, they have the priority. # Running an example ### Hardware Requirements - [Raspberry Pi 4](https://www.raspberrypi.com/products/raspberry-pi-4-model-b/) - [Lopy4](https://pycom.io/product/lopy4/) with an expansion board like: - [Pysense 2.0 X](https://pycom.io/product/pysense-2-0-x/) - [Pygate 868](https://pycom.io/product/pygate/) ### Setup: In order to run an example, if you are using a Python compatible device, you should install the latest version of the AlLoRa library. If your device has MicroPython support (like the LoPy4), we recommend copy the AlLoRa folder of this repo directly into your device. <details> <summary><b><u>Setup a LoPy4</u></b></summary> * <details> <summary><b>1. Updating the expansion boards (Pysense 2.0 X or Pygate)</b></summary> Follow this: [Updating Expansion Board Firmware](https://docs.pycom.io/chapter/pytrackpysense/installation/firmware.html) * <details> <summary><b><i>TL;DR ⚡ </i></b></summary> > > ⚠️ You should remove the LoPy4 from the board for this step, we are only working with the Pysense 2 or the Pygate > 1. Download this: • **[Pysense 2 DFU](https://software.pycom.io/findupgrade?key=pysense2.dfu&type=all&redirect=true)** • **[Pygate](https://software.pycom.io/findupgrade?key=pygate.dfu&type=all&redirect=true)** 2. Install dfu-util: - MacOs ```bash brew install dfu-util ``` - Linux ```bash sudo apt-get install dfu-util ``` - Windows Harder, follow the [official explanation](https://docs.pycom.io/chapter/pytrackpysense/installation/firmware.html) or check-out this video: [https://www.youtube.com/watch?v=FkycTZvj-ss](https://www.youtube.com/watch?v=FkycTZvj-ss) 3. Use dfu-util to update each expansion board Write this in the terminal - MacOs and Linux - Update Pysense 2: ```bash sudo dfu-util -D pysense2_v16.dfu #This name will change with new versions, match it... ``` - Update Pygate: ```bash sudo dfu-util -D pygate_v13_1049665.dfu #This name will change with new versions, match it... ``` - Windows - Update Pysense 2: ```bash dfu-util-static.exe -D #This name will change with new versions, match it... ``` - Update Pygate: ```bash dfu-util-static.exe -D #This name will change with new versions, match it... ``` Connect the expansion board to your computer while pressing the DFU button (toggle to check where it is depending of the board...) - Pysense 2 ![Untitled](readme_assets/Hardware_Setup/Untitled.png) - Pygate ![Untitled](readme_assets/Hardware_Setup/Untitled%201.png) Wait 1 second, release the DFU button and press enter in the terminal to run the code. As a result, you should expect something like this: ![Untitled](readme_assets/Hardware_Setup/Untitled%202.png) 4. Check it with: ```bash lsusb ``` You should expect something like this: ```bash Bus 000 Device 001: ID 04d8:f012 Microchip Technology Inc. Pysense Serial: Py8d245e ``` </details> * <details> <summary><b>2. Update the Lopy4 </b></summary> 1. Download the Pycom Firmware Tool from: [Updating Device Firmware](https://docs.pycom.io/updatefirmware/device/) 2. Download this legacy firmware: [LoPy4-1.19.0.b4.tar.gz](https://software.pycom.io/downloads/LoPy4-1.19.0.b4.tar.gz) - (You can find it here) [Firmware Downgrade](https://docs.pycom.io/advance/downgrade/) 3. Connect each LoPy4 to it’s respective Expansion Board (The LED side of the LoPy should be facing the USB port of the expansion board) ant then plug it on your computer 4. Open Pycom Firmware Tool and press continue 2 times to get to the “Communication” section 5. Select the port and the speed (for me 115200 worked ok), select the “Show Advanced Settings” checkbox and select “Flash from local file” and locate the firmware that we downloaded a few steps before (LoPy4-1.19.0.b4.tar.gz). 6. Select the Erase flash file system and Force update LoRa region and press continue 7. In the LoRa region selection select your country or region to establish your LoRa frequency. 8. Press “Done” and it should start updating 9. Repeat this step with the other LoPy4 with it’s respective expansion board... </details> * <details> <summary><b>3. Setting the environment</b></summary> Here is the official [documentation](https://docs.pycom.io/gettingstarted/software/) for this step. We’ll need to upload the programs using PyMakr, a library that can be installed into [VS Code](https://code.visualstudio.com/) and [Atom](https://atom.io/) (I will refer to them as [IDE](https://en.wikipedia.org/wiki/Integrated_development_environment)) > ⚠️ I personally used an M1 Pro Macbook Pro and Atom with PyMakr and it worked fine for me. - Here is the official Pycom guide to using Atom + PyMakr: [Atom](https://docs.pycom.io/gettingstarted/software/atom/) - If you want to use VS Code, here are the official Pycom instructions: [Visual Studio Code](https://docs.pycom.io/gettingstarted/software/vscode/) Once you have everything installed and working, you should be able to connect your LoPy4 + expansion board (Pygate and Pysense 2.0 X for the sender and the receiver respectively) to your computer using an USB cable and PyMakr should recognise it. </details> * <details> <summary><b>4. Uploading and running code</b></summary> 1. Open the folder of the example you want to run in the LoPy4 in your IDE 2. Connect your LoPy4 + expansion board to your computer. PyMakr should recognise it and show you something like this: <p align="center"> <img width="500" src="readme_assets/Hardware_Setup/Untitled%203.png"> </p> - If it doesn’t do it automatically, you can open the “Connect Device” option and manually select your Port: <p align="center"> <img width="400" src="readme_assets/Hardware_Setup/Untitled%204.png"> </p> 3. Press Ctrl+Alt/Opt + s or the “Upload Project to Device” button to upload the code to the LoPy4 ![Untitled](readme_assets/Hardware_Setup/Untitled%205.png) With this, the code will boot automatically each time the LoPy4 is on. 4. If everything is ok, you should see something like this on the terminal: <p align="center"> <img width="400" src="readme_assets/Hardware_Setup/Untitled%207.png"> </p> </details> </details> <details> <summary><b><u>Raspberry Pi 4 as a Gateway</u></b></summary> 1. Setup your Raspberry Pi 4 with [Raspberry Pi OS 32bit](https://www.raspberrypi.com/software/) and [install Python 3.8.](https://itheo.tech/install-python-38-on-a-raspberry-pi) 2. Setup an [adapter](#adapters) to give access to the Raspberry Pi to LoRa. 3. Download the [RaspberryGateway](https://github.com/SMARTLAGOON/AlLoRa/examples/RaspberryGateway) example and execute it. </details>
AlLoRa
/AlLoRa-1.1.0.tar.gz/AlLoRa-1.1.0/README.md
README.md
# Alphac Registration Code This is a Small Package For Generate Increment Registration Code. The Format is : CustomTextYYYYMMIncrementCode ### How To Use : ##### 1. Import Module Name # ```Python import alregcode ``` ##### 2. Use Syntax # >regGenerate("Your Custom String", Start Number, CodeLength) # ```Python regGenerate("TEST", 0, 4) ``` ##### For Get Increment Number, Just Write # ```Python regGenerate.inc ``` ### Example : I Want Generate and Print Registration Code With Condition : 1. I Want to Use "ALPHAC" Word to be First 2. I Want The Increment Start From Number 00001 So i Write : ```Python from alregcode import regGenerate test = regGenerate("ALPHAC", 0, 5) print(test) ``` #### Output : > ALPHAC20190100001
AlRegCode
/AlRegCode-0.0.3.tar.gz/AlRegCode-0.0.3/README.md
README.md
import time,os,random class tool: __my_headers__ = [ # 各种PC端 # Opera "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36 OPR/26.0.1656.60", "Opera/8.0 (Windows NT 5.1; U; en)", "Mozilla/5.0 (Windows NT 5.1; U; en; rv:1.8.1) Gecko/20061208 Firefox/2.0.0 Opera 9.50", "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; en) Opera 9.50", # Firefox "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:34.0) Gecko/20100101 Firefox/34.0", "Mozilla/5.0 (X11; U; Linux x86_64; zh-CN; rv:1.9.2.10) Gecko/20100922 Ubuntu/10.10 (maverick) Firefox/3.6.10", # Safari "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/534.57.2 (KHTML, like Gecko) Version/5.1.7 Safari/534.57.2", # chrome "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.71 Safari/537.36", "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11", "Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit/534.16 (KHTML, like Gecko) Chrome/10.0.648.133 Safari/534.16", # 360 "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/30.0.1599.101 Safari/537.36", "Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; rv:11.0) like Gecko", # 淘宝浏览器 "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.11 TaoBrowser/2.0 Safari/536.11", # 猎豹浏览器 "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.71 Safari/537.1 LBBROWSER", "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E; LBBROWSER)", "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; QQDownload 732; .NET4.0C; .NET4.0E; LBBROWSER)", # QQ浏览器 "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E; QQBrowser/7.0.3698.400)", "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; QQDownload 732; .NET4.0C; .NET4.0E)", # sogou浏览器 "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.84 Safari/535.11 SE 2.X MetaSr 1.0", "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Trident/4.0; SV1; QQDownload 732; .NET4.0C; .NET4.0E; SE 2.X MetaSr 1.0)", # maxthon浏览器 "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Maxthon/4.4.3.4000 Chrome/30.0.1599.101 Safari/537.36", # UC浏览器 "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.122 UBrowser/4.0.3214.0 Safari/537.36", # 各种移动端 # IPhone "Mozilla/5.0 (iPhone; U; CPU iPhone OS 4_3_3 like Mac OS X; en-us) AppleWebKit/533.17.9 (KHTML, like Gecko) Version/5.0.2 Mobile/8J2 Safari/6533.18.5", # IPod "Mozilla/5.0 (iPod; U; CPU iPhone OS 4_3_3 like Mac OS X; en-us) AppleWebKit/533.17.9 (KHTML, like Gecko) Version/5.0.2 Mobile/8J2 Safari/6533.18.5", # IPAD "Mozilla/5.0 (iPad; U; CPU OS 4_2_1 like Mac OS X; zh-cn) AppleWebKit/533.17.9 (KHTML, like Gecko) Version/5.0.2 Mobile/8C148 Safari/6533.18.5", "Mozilla/5.0 (iPad; U; CPU OS 4_3_3 like Mac OS X; en-us) AppleWebKit/533.17.9 (KHTML, like Gecko) Version/5.0.2 Mobile/8J2 Safari/6533.18.5", # Android "Mozilla/5.0 (Linux; U; Android 2.2.1; zh-cn; HTC_Wildfire_A3333 Build/FRG83D) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1", "Mozilla/5.0 (Linux; U; Android 2.3.7; en-us; Nexus One Build/FRF91) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1", # QQ浏览器 Android版本 "MQQBrowser/26 Mozilla/5.0 (Linux; U; Android 2.3.7; zh-cn; MB200 Build/GRJ22; CyanogenMod-7) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1", # Android Opera Mobile "Opera/9.80 (Android 2.3.4; Linux; Opera Mobi/build-1107180945; U; en-GB) Presto/2.8.149 Version/11.10", # Android Pad Moto Xoom "Mozilla/5.0 (Linux; U; Android 3.0; en-us; Xoom Build/HRI39) AppleWebKit/534.13 (KHTML, like Gecko) Version/4.0 Safari/534.13", # BlackBerry "Mozilla/5.0 (BlackBerry; U; BlackBerry 9800; en) AppleWebKit/534.1+ (KHTML, like Gecko) Version/6.0.0.337 Mobile Safari/534.1+", # WebOS HP Touchpad "Mozilla/5.0 (hp-tablet; Linux; hpwOS/3.0.0; U; en-US) AppleWebKit/534.6 (KHTML, like Gecko) wOSBrowser/233.70 Safari/534.6 TouchPad/1.0", # Nokia N97 "Mozilla/5.0 (SymbianOS/9.4; Series60/5.0 NokiaN97-1/20.0.019; Profile/MIDP-2.1 Configuration/CLDC-1.1) AppleWebKit/525 (KHTML, like Gecko) BrowserNG/7.1.18124", # Windows Phone Mango "Mozilla/5.0 (compatible; MSIE 9.0; Windows Phone OS 7.5; Trident/5.0; IEMobile/9.0; HTC; Titan)", # UC浏览器 "UCWEB7.0.2.37/28/999", "NOKIA5700/ UCWEB7.0.2.37/28/999", # UCOpenwave "Openwave/ UCWEB7.0.2.37/28/999", # UC Opera "Mozilla/4.0 (compatible; MSIE 6.0; ) Opera/UCWEB7.0.2.37/28/999", # 一部分 PC端的 "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/22.0.1207.1 Safari/537.1", "Mozilla/5.0 (X11; CrOS i686 2268.111.0) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.57 Safari/536.11", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.6 (KHTML, like Gecko) Chrome/20.0.1092.0 Safari/536.6", "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.6 (KHTML, like Gecko) Chrome/20.0.1090.0 Safari/536.6", "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/19.77.34.5 Safari/537.1", "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.9 Safari/536.5", "Mozilla/5.0 (Windows NT 6.0) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.36 Safari/536.5", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3", "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_0) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3", "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3", "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3", "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3", "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.0 Safari/536.3", "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/535.24 (KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24", "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/535.24 (KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24" "Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.153 Safari/537.36", "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:30.0) Gecko/20100101 Firefox/30.0", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.75.14 (KHTML, like Gecko) Version/7.0.3 Safari/537.75.14", "Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.2; Win64; x64; Trident/6.0)", 'Mozilla/5.0 (Windows; U; Windows NT 5.1; it; rv:1.8.1.11) Gecko/20071127 Firefox/2.0.0.11', 'Opera/9.25 (Windows NT 5.1; U; en)', 'Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 1.1.4322; .NET CLR 2.0.50727)', 'Mozilla/5.0 (compatible; Konqueror/3.5; Linux) KHTML/3.5.5 (like Gecko) (Kubuntu)', 'Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.0.12) Gecko/20070731 Ubuntu/dapper-security Firefox/1.5.0.12', 'Lynx/2.8.5rel.1 libwww-FM/2.14 SSL-MM/1.4.1 GNUTLS/1.2.9', "Mozilla/5.0 (X11; Linux i686) AppleWebKit/535.7 (KHTML, like Gecko) Ubuntu/11.04 Chromium/16.0.912.77 Chrome/16.0.912.77 Safari/535.7", "Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:10.0) Gecko/20100101 Firefox/10.0 ", 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36' ] def get_headers(): return random.choice(self.__my_headers__) def get_now_date(self): ''' =========================== 返回当前日期 =========================== ''' YY = time.strftime("%Y",time.localtime()) MM = time.strftime("%m",time.localtime()) DD = time.strftime("%d",time.localtime()) return YY+MM+DD class StuManage: __file_name__ = 'student.txt' def usr(self): while True: self.menu() choose = int(input('请选择:')) if choose in range(8): if choose == 0: answer = input('您确定要退出系统吗?(Y/N):') if answer == 'y' or answer == 'Y': print('谢谢您的使用!') break else: continue elif choose == 1: self.insert() elif choose == 2: self.search() elif choose == 3: self.delete() elif choose == 4: self.modify() elif choose == 5: self.sort() elif choose == 6: self.total() elif choose == 7: self.show() def menu(self): print('='*20,'学生信息管理系','='*20) print('-'*20,'功能菜单','-'*20) print('\t\t1.录入学生成绩') print('\t\t2.查找学生成绩') print('\t\t3.删除学生成绩') print('\t\t4.修改学生成绩') print('\t\t5.排序') print('\t\t6.统计学生总人数') print('\t\t7.显示所有学生信息') print('\t\t0.退出') def show_student(self,lst): if len(lst) == 0: print('没有查询到学生,无数据显示!') return format_title = '{:^6}\t{:^12}\t{:^8}\t{:^10}\t{:^10}\t{:^8}' print(format_title.format('ID','姓名','英语成绩','Python成绩','Java成绩','总成绩')) format_data = '{:^6}\t{:^12}\t{:^8}\t{:^8}\t{:^8}\t{:^8}' for item in lst: print(format_data.format(item.get('id'), item.get('name'), item.get('english'), item.get('python'), item.get('java'), int(item.get('english'))+int(item.get('python'))+int(item.get('java')) )) def insert(self): student_list = [] while True: id = input('请输入ID:') if not id: break name = input('请输入姓名') if not name: break try: english = int(input('请输入英语成绩:')) python = int(input('请输入python成绩:')) java = int(input('请输入java成绩:')) except: print('输入成绩无效,不是整数类型,请重新输入') student = {'id':id,'name':name,'english':english,'python':python,'java':java} student_list.append(student) anawer = input('是否继续添加信息(Y/N):') if anawer == 'y' or anawer == 'Y': continue else: break self.save(student_list) print('学生信息录入完毕!!!') def save(self,lst): try: stu_txt = open(self.__file_name__,'a',encoding='utf-8') except: stu_txt = open(self.__file_name__,'w',encoding='utf-8') for item in lst: stu_txt.write(str(item)+'\n') stu_txt.close() def search(self): pass def delete(self): while True: student_id = input('请输入要删除的学生都ID:') if student_id != '': if os.path.exists(self.__file_name__): with open(self.__file_name__,'r',encoding='utf-8') as file: student_old = file.readlines() else: student_old = [] flag = False if student_old: with open(self.__file_name__,'w',encoding='utf-8') as wfile: d={} for item in student_old: d = dict(eval(item)) if d['id'] != student_id: wfile.write(str(d)+'\n') else: flag = True if flag: print(f'id为{student_id}的学生信息已被删除') else: print(f'没有找到{student_id}的学生信息') else: print('无学生信息') break self.show() answer = input('是否继续修改其他学生信息?(Y/N):') if answer == 'y' or answer == 'Y': continue else: break def modify(self): self.show() if os.path.exists(self.__file_name__): with open(self.__file_name__,'r',encoding='utf-8') as rfile: student_old = rfile.readlines() else: return student_id = input('请输入要修改的学员ID:') with open(self.__file_name__,'w',encoding='utf-8') as wfile: for item in student_old: d = dict(eval(item)) if d['id'] == student_id: print('找到学生信息,可以修改他的相关信息了!') while True: try: d['name'] = input('请输入姓名') d['english'] = input('请输入英语成绩') d['python'] = input('请输入python成绩') d['java'] = input('请输入java成绩') except: print('您的输入有误,请重新输入!!!') else: break wfile.write(str(d)+'\n') print('修改成功') else: wfile.write(str(d)+'\n') answer = input('是否继续修改其他学生信息?(Y/N):') if answer == 'y' or answer == 'Y': self.modify() def sort(self): show() if os.path.exists(self.__file_name__): with open(self.__file_name__,'r',encoding='utf-8') as rfile: student_list = rfile.readlines() student_new = [] for item in student_list: d = dict(eval(item)) student_new.append(d) else: return asc_or_desc = input('请选择(0.升,1.降)') if asc_or_desc == '0': asc_or_desc = False elif asc_or_desc == '1': asc_or_desc =True else: print('您到输入有误,请重新输入') sort() mode = input('请选择排序方式(1.按英语成绩排序,2.按python成绩排序,3.按java成绩排序,0.按总成绩排序)') if mode == '1': student_new.sort(key = lambda x :int(x['english']),reverse = asc_or_desc ) elif mode == '2': student_new.sort(key = lambda x :int(x['python']),reverse = asc_or_desc ) elif mode == '3': student_new.sort(key = lambda x :int(x['java']),reverse = asc_or_desc ) elif mode == '0': student_new.sort(key = lambda x :int(x['english'])+int(x['python'])+int(x['java']),reverse = asc_or_desc ) else: print('您到输入有误,请重新输入') sort() self.show_student(student_new) def total(self): if os.path.exists(self.__file_name__): with open(self.__file_name__,'r',encoding='utf-8') as rfile: students = rfile.readlines() if students: print(f'一共有{len(students)}名学生') else: print('还没有录入学生信息') def show(self): student_lst = [] if os.path.exists(self.__file_name__): with open(self.__file_name__,'r',encoding='utf-8') as rfile: students = rfile.readlines() for item in students: student_lst.append(eval(item)) if student_lst: self.show_student(student_lst)
Alanos
/Alanos-0.0.0.11.tar.gz/Alanos-0.0.0.11/alanos/alanos.py
alanos.py
# Alapchari Alapchari is a Python class that provides a simple interface for interacting with the Chatrik API. The Chatrik API is an AI-based natural language processing API that generates text based on a given prompt. ## Installation You can install Alapchari using pip: ``` pip install Alapchari ``` ## Usage ```python from Alapchari import Alapchari alapchari = Alapchari() prompt = "বঙ্গবন্ধু শেখ মুজিবুর রহমান কে ছিলেন ?" result = alapchari.ask(prompt) print(result) ``` The `Alapchari` class has three attributes: - `count`: This is an integer attribute that keeps track of the number of times the `ask` method has been called. - `url`: This is the URL of the Chatrik API. - `method`: This is the HTTP method used to send the request to the Chatrik API. The `Alapchari` class has one method: - `ask(prompt:str) -> str`: This method takes a string `prompt` as input and returns a string generated by the Chatrik API based on the given `prompt`. This will send a request to the Chatrik API with the prompt "What is the meaning of life?" and print the generated text. ## License This project is licensed under the terms of the MIT license. See the LICENSE file for details.
Alapchari
/Alapchari-1.0.0.tar.gz/Alapchari-1.0.0/README.md
README.md
# **AlarmConvergence** ###@Mihuier AlarmConvergence是一个关于告警治理与收敛问题的实习项目。该项目利用AIOps手段集中化解决业务变更导致的告警风暴、找出相似和关联告警。旨在帮助运维人员在收到告警时,快速定位到故障的大致方向,从而提高故障排查的效率。本方法通过对一段时间内的告警进行聚类收敛处理,根据运维告警关键属性找出泛化报警,最终形成仅有几条泛化告警的告警摘要。AlarmConvergence项目包括两套方案:静态(历史)数据收敛方案和动态(流式)数据收敛方案。 ## 安装 方式1: ``` $ python setup.py install --user ``` 方式2: ``` $ sudo python setup.py install ``` 方式3: ``` $ pip install AlarmConvergence --user ``` 方式4: ``` $ sudo pip install AlarmConvergence ``` Python 3下需要将上面的python改成python3,pip改成pip3。 ## 卸载 ```plain $ pip uninstall AlarmConvergence ``` ## 依赖 Python 2.8.1 Pandas 1.2.4 Jieba >= 0.35 Numpy >= 1.7.1 Networkx >= 1.9.1 ## 兼容性 Python 3.8.8中测试通过。 ##静态数据收敛方案 静态(历史)数据告警收敛过程分为4个步骤: - Step1:资源对象与告警内容属性的关键字提取; - Step2:定义时间窗口; - Step3:计算时间窗口内相邻告警的相似度; - Step4:收敛时间窗口内满足一定相似度的告警并输出摘要。 ### 1.1 Extract\_keywards 本过程使用TextRank提取关键字,TextRank的详细原理请参考: > Mihalcea R, Tarau P. TextRank: Bringing order into texts[C]. Association for Computational Linguistics, 2004. 关于TextRank的原理和使用介绍:[使用TextRank算法为文本生成关键字和摘要](https://www.letiantian.me/2014-12-01-text-rank/) - 关键词提取: 将告警内容和资源对象合并本拆分为句子,在每个句子中过滤掉停用词(可选),并只保留指定词性的单词(可选)。由此可以得到句子的集合和单词的集合。 每个单词作为pagerank中的一个节点。设定窗口大小为k,假设一个句子依次由下面的单词组成: ``` w1, w2, w3, w4, w5, ..., wn ``` `w1, w2, ..., wk`、`w2, w3, ...,wk+1`、`w3, w4, ...,wk+2`等都是一个窗口。在一个窗口中的任两个单词对应的节点之间存在一个无向无权的边。 基于上面构成图,可以计算出每个单词节点的重要性。最重要的若干单词可以作为关键词。 * 关键短语提取: 参照[关键词提取](#关键词提取)提取出若干关键词。若原文本中存在若干个关键词相邻的情况,那么这些关键词可以构成一个关键词组。 例如,在一篇介绍`支持向量机`的文章中,可以找到关键词`支持`、`向量`、`机`,通过关键词组提取,可以得到`支持向量机`。 * 摘要生成: 将每个句子看成图中的一个节点,若两个句子之间有相似性,认为对应的两个节点之间有一个无向有权边,权值是相似度。 通过pagerank算法计算得到的重要性最高的若干句子可以当作摘要。 ### 1.2. Time\_transform 将首次发生时间转换为时间戳格式,计算相邻告警的时间差 ### 1.3. Similarity\_calculation 利用Jaccard相似系数衡量文本相似度,给定两个集合A,B,Jaccard 系数定义为A与B交集的大小与A与B并集的大小的比值。与Jaccard 系数相关的指标叫做Jaccard 距离,用于描述集合之间的不相似度。Jaccard 距离越大,样本相似度越低。 ### 1.4. Highlight\_2min\_0.8sim 收敛2min时间窗口内满足相似度80%以上的告警并输出摘要 ##动态数据收敛方案 - 对一段时间内的报警依据生产部署拓扑根因进行聚类收敛处理,根据告警内容找出泛化报警,最终形成仅有几条泛化告警的告警摘要。选定Bert预训练模型和层次聚类模型结合,给出了针对告警聚类的一种具体的实现方案。在分布式业务服务的系统下构造了验证了算法的效果。 - 动态(流式)数据收敛全过程包括收集告警信息、提取告警信息的关键特征、聚类处理、展示告警摘要。 ### 2.1. Classify_Model - 我们可以将这几条报警抽象为:“自定义业务 CRM五项考核 数据库故障”,该泛化报警包含的范围较广;也可以抽象为:“CRM服务器 业务失败量”获取产品类型信息失败”,此时包含的范围较小。当然也可以用其他层次的抽象来表达这个报警集群。可以观察到,抽象层次越高,细节越少,但是它能包含的范围就越大;反之,抽象层次越低,则可能无用信息越多,包含的范围就越小。这种抽象的层次关系可以用一些有向无环图(DAG)来表达 ### 2.2. SVM - 完成静态数据收敛方案后,每类告警均被打上标签,将该类带有标签的数据进行有监督训练,从而得到一个自动告警类别判定模型。这里的有监督模型使用的是SVM, SVM 的本质就是想要画出一条线,以“最好地”区分这各类点,以至如果以后有了新的点,这条线也能做出很好的分类。 - 如何找到最合适的分类超平面?依据的原则就是间隔最大化。所谓间隔最大化,说的是分类超平面跟两类数据的间隔要尽可能大(即远离两边数据),这就要提到我们前面说到的公平原则。“三八线”要划在课桌正中间,不偏向任何一方,才能保证双方利益最大化。对于分类超平面来说,也就是要位于两类数据的正中间,不偏向任何一类,才能保证离两边数据都尽可能远,从而实现间隔最大化。 ## 使用说明 1.本方案针对实际生产运维环境个性化设计,数据集不公开。 2.类TextRank4Keyword、TextRank4Sentence在处理一段文本时会将文本拆分成4种格式: * sentences:由句子组成的列表。 * words_no_filter:对sentences中每个句子分词而得到的两级列表。 * words_no_stop_words:去掉words_no_filter中的停止词而得到的二维列表。 * words_all_filters:保留words_no_stop_words中指定词性的单词而得到的二维列表。 ## 实例 例如,对于文本1: * 资源对象 —— ```自定义业务:【CRM五项考核】统一积分平台交易及时率—积分自有业务订单下发应答未反馈—T5000040-请立即手工反馈 ``` * 告警内容 —— ``` 实时检查,数据库表统计结果大于0,当前值为1 ``` * 关键字提取结果 —— ``` 反馈 检查 业务 实时 统一 平台 订单 应答 下发 数据库 ``` * 输出摘要 —— ``` 数据库业务告警 ``` 文本2: * ``` 这间酒店位于北京东三环,里面摆放很多雕塑,文艺气息十足。答谢宴于晚上8点开始。 ``` * 运行结果如下: ```plain sentences: 这间酒店位于北京东三环,里面摆放很多雕塑,文艺气息十足 答谢宴于晚上8点开始; words_no_filter: 这/间/酒店/位于/北京/东三环/里面/摆放/很多/雕塑/文艺/气息/十足 答谢/宴于/晚上/8/点/开始; words_no_stop_words: 间/酒店/位于/北京/东三环/里面/摆放/很多/雕塑/文艺/气息/十足 答谢/宴于/晚上/8/点; words_all_filters: 酒店/位于/北京/东三环/摆放/雕塑/文艺/气息 答谢/宴于/晚上; ``` ## API TODO. 类的实现、函数的参数请参考源码注释。 ## License [MIT](./LICENSE)
AlarmConvergence
/AlarmConvergence-2.0.tar.gz/AlarmConvergence-2.0/README.md
README.md
from AlarmTime.AlarmTime import DetectDate ############################################## t = DetectDate(1570000023345) print(t.now) #2019-10-02 13:07:39.393012 t = DetectDate('2019/5/2/14/5') print(t.now) #2019-05-02 14:05:39.393185 t = DetectDate() print(t.now) #2019-04-21 12:26:12.542967 ############################################ t = DetectDate() target_time = t.DateTimeDetect('detect the time and date on December 16 8 p.m') print(target_time) target_time = t.DateTimeDetect('detect the time and date on December 16 ') print(target_time) target_time = t.DateTimeDetect('after 700 days') print(target_time) target_time = t.DateTimeDetect('after 6 month 700 days 8 hour 5 minute') print(target_time) target_time = t.DateTimeDetect('after 700 days') print(target_time) now we can get the value of target year, day, month, hour, minute, second print(target_time.day) ============================================================================= 2019-04-21 12:26:12.542967 2019-12-16 20:00:00.542967 2019-12-16 00:00:00.542967 2021-03-21 12:26:12.542967 2021-09-20 20:31:12.542967 2021-03-21 12:26:12.542967 21 ============================================================================= minute_diff = t.minute_diff_from_now('after 1 days') print(minute_diff) #1440.0 hour_diff = t.hour_diff_from_now('after 1 days') print(hour_diff) #24.0 day_diff = t.day_diff_from_now('after 1 days') print(day_diff) #1.0 sec_diff = t.second_diff_from_now('after 1 days') print(sec_diff) #86400.0
AlarmTime
/AlarmTime-0.1.4.tar.gz/AlarmTime-0.1.4/Readme.md
Readme.md
import json class Config(dict): """Alarmageddon configuration object. A configuration object that both acts like a read-only dictionary and provides some methods to access application specific settings :param dictionary: A dictionary of the form {'env':{config options},...} :param environment_name: The environment that this Config object belongs to """ ENVIRONMENT_KEY = 'environment' def __init__(self, dictionary, environment_name): super(Config, self).__init__(self, **dictionary) self._environment_name = environment_name try: config = self[Config.ENVIRONMENT_KEY][environment_name] self.environment_config = config except KeyError: raise ValueError( "environment: '%s' was not found in configuration" % environment_name) @staticmethod def from_file(config_path, environment_name): """Load a Config object from a file An environment_name must be provided so that the resulting Config object can provide access to environment specific settings. """ with open(config_path, 'r') as config_file: return Config(json.load(config_file), environment_name) def hostname(self, alias): """Returns an environment-specific hostname given its alias. host names are pulled from the hosts dictionary under each of the environment dictionaries. """ try: return self.environment_config['hosts'][alias]['url'] except: raise KeyError("No base URL defined for alias: %s" % alias) def environment_name(self): """returns current environment name""" return self._environment_name def test_results_file(self): """returns the location of the test results file""" return self['test_results_file'] def __str__(self): """Return a string representation of this Config object""" return "Current Environment: %s Dictionary: %s" % ( self._environment_name, dict.__str__(self))
Alarmageddon
/Alarmageddon-1.1.2-py3-none-any.whl/alarmageddon/config.py
config.py
import time import collections import multiprocessing import warnings from alarmageddon.config import Config from alarmageddon.reporter import Reporter from alarmageddon.publishing import hipchat, pagerduty, graphite, junit from alarmageddon.validations.validation import Priority from alarmageddon.result import Success, Failure from alarmageddon import banner import logging logger = logging.getLogger(__name__) def load_config(config_path, environment_name): """Helper method for loading a :py:class:`~alarmageddon.config.Config` :param config_path: Path to the JSON configuration file. :param environment_name: The config environment to run Alarmageddon in. """ return Config.from_file(config_path, environment_name) def run_tests(validations, publishers=None, config_path=None, environment_name=None, config=None, dry_run=False, processes=1, print_banner=True, timeout=60, timeout_retries=2): """Main entry point into Alarmageddon. Run the given validations and report them to given publishers. Either both `config_path` and `environment_name` should not be None, or `config` should not be None. :param validations: List of :py:class:`~.validation.Validation` objects that Alarmageddon will perform. :param publishers: List of :py:class:`~.publisher.Publisher` objects that Alarmageddon will publish validation results to. :param dry_run: When True, will prevent Alarmageddon from performing validations or publishing results, and instead will print which validations will be published by which publishers upon failure. :param processes: The number of worker processes to spawn. :param print_banner: When True, print the Alarmageddon banner. :timeout: If a validation runs for longer than this number of seconds, Alarmageddon will kill the process running it. .. deprecated:: 1.0.0 These parameters are no longer used: *config_path*, *environment_name*, *config*. Configuration happens when constructing publishers instead. """ if config is not None: warnings.warn("config keyword argument in run_tests is deprecated" + " and has no effect.", DeprecationWarning) if config_path is not None: warnings.warn("config_path keyword argument in run_tests is" + " deprecated and has no effect.", DeprecationWarning) if environment_name is not None: warnings.warn("environment_name keyword argument in run_tests is " + "deprecated and has no effect.", DeprecationWarning) publishers = publishers or [] publishers.append(junit.JUnitPublisher("results.xml")) # We assume that if one is calling run_tests one actually wanted # to run some tests, not just fail silently if not validations: raise ValueError("run_tests expected non-empty list of validations," + "got {} instead".format(validations)) if print_banner: banner.print_banner(True) #always dry run. this will catch weird issues with enrichment do_dry_run(validations, publishers) if not dry_run: # run all of the tests _run_validations(validations, Reporter(publishers), processes, timeout, timeout_retries) def _run_validations(validations, reporter, processes=1, timeout=60, timeout_retries=3): """ Run the given validations and publish the results Sort validations by order and then run them. All results are logged to the given reporter. Once everything has been run, the reporter will publish. :param validations: List of :py:class:`~.validation.Validation` objects that Alarmageddon will perform. :param publishers: :py:class:`~.reporter.Reporter` object that will collect validation results and then report those results to its publishers. :processes: The number of worker processes to spawn. Does not run spawn additional processes if set to 1. :timeout: If a validation runs for longer than this number of seconds, Alarmageddon will kill the process running it. """ order_dict = collections.defaultdict(list) for validation in validations: order_dict[validation.order].append(validation) ordered_validations = [l for _, l in sorted(order_dict.items())] group_failures = {} for validation in validations: if (validation.group is not None and validation.group not in group_failures): group_failures[validation.group] = [] manager = multiprocessing.Manager() for order_set in ordered_validations: immutable_group_failures = dict(group_failures) results = manager.list() for valid in order_set: for i in range(timeout_retries): #TODO: parallelize p = multiprocessing.Process(target=_perform, args=(valid, immutable_group_failures, results)) p.start() p.join(timeout) if p.is_alive(): #job is taking too long, kill it #this is messy, but we assume that if something hit the #general alarmageddon timeout, then it's stuck somewhere #and we can't stop it nicely p.terminate() logger.warn("Validation {} ran for longer than {}".format(valid, timeout)) else: break else: results.append(Failure(valid.name, valid, "{} failed to terminate (ran for {}s)".format(valid,timeout), time=timeout)) for result in results: if result.is_failure() and result.validation.group is not None: group_failures[result.validation.group].append(result.description()) reporter.collect(result) reporter.report() def _parallel_perform(wrapped_info): return _perform(*wrapped_info) def _perform(validation, immutable_group_failures, results): start = time.time() try: validation.perform(immutable_group_failures) try: runtime = validation.get_elapsed_time() except NotImplementedError: runtime = time.time() - start if validation.timeout is not None and runtime > validation.timeout: result = Failure(validation.name, validation, "{} ran for {} (exceeded timeout of {})".format( validation, runtime, validation.timeout), time=runtime) else: result = Success(validation.name, validation, time=runtime) except Exception as e: result = Failure(validation.name, validation, str(e), time=time.time() - start) #appending is atomic results.append(result) def do_dry_run(validations, publishers): """Print which validations will be published by which publishers. Assume all validations fail and list the messages that would have been published. :param validations: List of :py:class:`~.validation.Validation` objects that Alarmageddon would perform. :param publishers: List of :py:class:`~.publisher.Publisher` objects that Alarmageddon would publish validation results to. """ dry_run = _compute_dry_run(validations, publishers) publishers = list(dry_run.keys()) for publisher in sorted( publishers, reverse=True, key=lambda x: x.priority_threshold if x.priority_threshold is not None else -1): print(("Publisher: %s (threshold: %s)" % ( publisher.name(), Priority.string(publisher.priority_threshold)))) for validation in dry_run[publisher]: print((" %s (priority: %s)" % ( validation.name, Priority.string(validation.priority)))) def _compute_dry_run(validations, publishers): """Helper method for computing which validations are published where. Provides programmatic access to the association between publishers and validations. Return is of the form {publisher:[validation,...],...}. """ associations = {} for publisher in publishers: associations[publisher] = [] for validation in sorted( validations, reverse=True, key=lambda x: x.priority): test_result = Failure(validation.name, validation, "failure") if publisher.will_publish(test_result): associations[publisher].append(validation) return associations def construct_publishers(config): """Construct the built-in publishers. :param config: Config object to construct the publishers from. """ environment = config.environment_name() env_config = config.environment_config publishers = [] try: publishers.append( hipchat.HipChatPublisher( api_end_point = env_config["hipchat_host"], api_token = env_config["hipchat_token"], environment = environment, room_name = env_config["hipchat_room"], priority_threshold = Priority.NORMAL)) except KeyError: pass try: publishers.append(pagerduty.PagerDutyPublisher( api_end_point = env_config["pagerduty_host"], api_key = env_config["pagerduty_token"], environment = environment, priority_threshold = Priority.CRITICAL)) except KeyError: pass try: publishers.append(graphite.GraphitePublisher( host = env_config["graphite_host"], port = env_config["graphite_port"], environment = environment, priority_threshold = Priority.LOW)) except KeyError: pass return publishers
Alarmageddon
/Alarmageddon-1.1.2-py3-none-any.whl/alarmageddon/run.py
run.py
import os, sys from colorama import Fore, Back, Style, init, deinit def print_banner(color=True): """Prints an Alarmageddon banner in color if the caller requests it and stdout is a terminal. PEP8 is temporarily suspended... """ if color and sys.stdout.isatty(): # Print a color version of the banner init() print("") print((Fore.WHITE + " " + Style.DIM + "( " + Style.NORMAL + "." + Style.DIM + " ( ) :" + Style.NORMAL + "." + Style.DIM + " ) " + Style.NORMAL + Fore.YELLOW + ". , // . , " + Fore.GREEN + "/\\")) print((Fore.WHITE + " " + Style.DIM + "( ( ) ) " + Style.NORMAL + Fore.YELLOW + ". // . " + Fore.GREEN + "/\\/ \\/\\")) print((Fore.WHITE + " " + Style.DIM + "( : " + Style.NORMAL + "*" + Style.DIM + " ( ) " + Style.NORMAL + " * " + Fore.YELLOW + ". // . " + Fore.GREEN + "( " + Fore.RED + ">" + Fore.GREEN + "\\ /" + Fore.RED + "<" + Fore.GREEN + " )")) print((Fore.WHITE + " * " + Style.DIM + " ( : ) " + Style.NORMAL + Fore.YELLOW + ". // . . " + Fore.GREEN + "/ `__` \\")) print((Fore.WHITE + " " + Style.DIM + "( : : ) " + Style.NORMAL + " * " + Fore.RED + Style.BRIGHT + " O" + Fore.YELLOW + Style.NORMAL + " . " + Fore.GREEN + "\\ /" + Fore.WHITE + "VVVV" + Fore.GREEN + "\ /")) print((Fore.WHITE + " * " + Style.DIM + " ( : ) " + Style.NORMAL + Fore.RED + "/" + Fore.WHITE + "IIIIIII" + Fore.RED + "/[]\\ ")) print((Fore.WHITE + " . " + Fore.RED + "||||" + Fore.WHITE + " . " + Fore.WHITE + Style.DIM + "d" + Style.NORMAL + Fore.RED + "_" + Fore.WHITE + "O" + Fore.RED + "______" + Fore.WHITE + "O" + Fore.RED + "___" + Style.DIM + Fore.WHITE + "b" + Style.NORMAL)) print((Fore.WHITE + " . " + Fore.RED + "||||" + Fore.WHITE + " . \\o/ \\o/ " + Fore.GREEN + " __ \\" + Fore.WHITE + "^^^^" + Fore.GREEN + "/ \ ")) print((Fore.WHITE + " " + Fore.MAGENTA + "_/ " + Fore.YELLOW + "@ @@" + Fore.MAGENTA + "_" + Fore.WHITE + " | | " + Fore.GREEN + "/ /\\ \__/ \ ")) print((Fore.WHITE + " " + Fore.MAGENTA + "/ " + Fore.YELLOW + "@ @" + Fore.MAGENTA + " \ " + Fore.WHITE + " // \\\\ " + Fore.GREEN + " " + Fore.WHITE + " VVV" + Fore.GREEN + "\\ \ \ \ " + Fore.RESET)) print("") print("Alarmageddon: Monitoring Your Stuff...") print(" Until You Don't Care About Your Stuff.") print("") deinit() else: # Print a monochrome version of the banner. print("") print(" ( . ( ) :. ) . , // . , /\ ") print(" ( ( ) ) . // . /\/ \/\ ") print(" ( : * ( ) * . // . ( >\ /< ) ") print(" * ( : ) . // . . / `__` \ ") print(" ( : : ) * O . \ /VVVV\ / ") print(" * ( : ) /IIIIIII/[]\ ") print(" . |||| . d_O______O___b ") print(" . |||| . \o/ \o/ __ \^^^^/ \ ") print(" _/ @ @@_ | | / /\ \__/ \ ") print(" / @ @ \ // \\\\ VVV\ \ \ \ ") print("") print("Alarmageddon: Monitoring Your Stuff... ") print(" Until You Don't Care About Your Stuff. ") print("")
Alarmageddon
/Alarmageddon-1.1.2-py3-none-any.whl/alarmageddon/banner.py
banner.py
class TestResult(object): """Base class representing the result of performing a validation. Contains the outcome information that Alarmageddon will publish. :param test_name: Name of the validation this result is associated with. :param validation: The :py:class:`~validation.Validation` this result is associated with. :param description: Default None. A description of the outcome of the validation. If the validation failed, this field is expected to not be None. :param time: Default None. How long the validation took to perform. """ def __init__(self, test_name, validation, description=None, time=None): self._test_name = test_name self._description = description self.time = time # if this is set, it will report the time to graphite and this # will be the label in graphite self.timer_name = validation.timer_name() self.priority = validation.priority self.validation = validation def test_name(self): """Returns the name of the test.""" return self._test_name def description(self): """Returns additional descriptive text about the test. For Failures, description is required. """ return self._description def is_failure(self): """Returns True if and only if this Result represents a failed test.""" pass def __str__(self): return "Result: '%s', Description: '%s', Failure: %s, Priority: %s" % ( self._test_name, self._description, self.is_failure(), self.validation.priority) def __repr__(self): return self.__str__() class Failure(TestResult): """The result of a failed validation. `description` is required. """ def __init__(self, test_name, validation, description, time=None): TestResult.__init__(self, test_name, validation, description, time) def is_failure(self): """Returns True.""" return True class Success(TestResult): """The result of a successful validation.""" def __init__(self, test_name, validation, description=None, time=None): TestResult.__init__(self, test_name, validation, description, time) def is_failure(self): """Returns False.""" return False
Alarmageddon
/Alarmageddon-1.1.2-py3-none-any.whl/alarmageddon/result.py
result.py
from alarmageddon.publishing.publisher import Publisher from jinja2 import Template, Environment, FileSystemLoader, Undefined import smtplib from six.moves.email_mime_text import MIMEText from six.moves.email_mime_multipart import MIMEMultipart from email import utils import logging logger = logging.getLogger(__name__) def enrich(validation, email_settings, runtime_context=None): """ Enriches the validation with a custom email message. :param validation: The validation object. :param email_settings: A dictionary object containing settings for email subject, body, sender and recipients. See below for details. :param runtime_context: - Additional replacement context settings available at runtime. See below for details. email_settings should be a dictionary of the form: { "email_type": "An environment-specific e-mail type as defined in the email publisher config", "subject": "The name of the Jinja template for the e-mail subject", "body": "The name of the Jinja template for the e-mail body", "sender": "A dictionary of the form {"real_name": "Real Name", "address": "[email protected]"}", "recipients": "An iterable of dicionaries of the form {"real_name": "Real Name", "address": "[email protected]"}" } Note that the location of the Jinja templates is defined in the email publisher config. runtime_context is a dictionary whose values are consumed at runtime inside the Jinja templates defined in email_settings. """ logger.debug("Enriching {}".format(validation)) if not validation: raise ValueError("validation is required.") if not email_settings: raise ValueError("email_settings are required.") else: if not "email_type" in email_settings: raise KeyError("email_settings.email_type is required.") if not "subject" in email_settings: raise KeyError("email_settings.subject template is required.") if not "body" in email_settings: raise KeyError("email_settings.body template name is required.") if not "sender" in email_settings: raise KeyError("email_settings.sender is required.") if not "recipients" in email_settings: raise KeyError("email_settings.recipients are required.") if not runtime_context: runtime_context = {} enrichment = {'email_settings': email_settings, 'runtime_context': runtime_context} #hack because we need an instance. there is probably a better way temp_pub = EmailPublisher({"fake": "config"}) validation.enrich(temp_pub, enrichment, force_namespace=True) return validation class SilentUndefined(Undefined): """Dont break pageloads because vars arent there!""" def _fail_with_undefined_error(self, *args, **kwargs): """jinja2 hack to allow silent ignoring of missing values.""" return None class SimpleEmailPublisher(Publisher): """A publisher that publishes incidents to e-mail. :param config: A config object containing email config information. See below for a detailed description. :param email_notifications_config_key: The config key that contains the email configuration. :param name: The name of the publisher. :param defaults: Default email templating values. :param priority_threshold: Will publish validations of this priority or higher if they are appropriately enriched. :param connect_timeout_seconds: How long to attempt to connect to the SMTP server. :param environment: The environment that tests are being run in. """ def __init__(self, sender_address, recipient_addresses, host=None, port=None, name='EmailPublisher', priority_threshold=None, connect_timeout_seconds=10, environment=None): Publisher.__init__(self, name, priority_threshold=priority_threshold, environment=environment) # Set the initial replacement context to the defaults. # Overrides will be applied to this dictionary individually. self._connect_timeout = connect_timeout_seconds self.sender_address = None self.recipient_addresses = [] if sender_address: self.sender_address = self.configure_sender(sender_address) if recipient_addresses: self.recipient_addresses =\ self.configure_recipients(recipient_addresses) self.host = host self.port = port def __repr__(self): return "{}: sender {}, recipient {}, host {}, port {}, timeout {}".format( type(self).__name__, self.sender_address, self.recipient_addresses, self.host, self.port, self._connect_timeout) def send(self, result): """Constructs a message from a result and send it as an email. This will only send if the priority threshold is met **and** the original validation was appropriately enriched. :param result: The result to publish. """ logger.debug("Checking if we should send {}".format(result)) if result.is_failure() and self.will_publish(result): message_body = result.description() message_subject = result.test_name() msg = self.configure_message(self.sender_address, self.recipient_addresses, message_subject, message_body) logger.debug("Sending {} to {} from server {}:{}".format(result, self.recipient_addresses, self.host, self.port)) """ A note regarding recipient addresses: smtplib.sendmail requires that multiple recipient addresses are structured as an array of addresses. MIMEMultipart messages require that multiple recipients are structured as a comma-separated list. """ smtpObj = self.configure_smtp_object(self.host, self.port) smtpObj.sendmail(msg['From'], self.recipient_addresses, msg.as_string()) def configure_message(self, sender_address, recipient_addresses, subject, body): """ Creates a MIMEMultipart message with a plain-text body. :param sender_address: The address the message will be sent from. :param recipient_addresses: The addresses the message will be sent to. :param subject: The subject of the email. :param body: The body of the email. """ msg = MIMEMultipart() msg['Subject'] = subject msg['From'] = sender_address # MIMEMultipart requires the 'To' header to be a comma separated list msg['To'] = ", ".join(recipient_addresses) msg.attach(MIMEText(body, 'plain')) return msg def configure_sender(self, sender): """Properly formats the sender address. :param sender: A dictionary containing information about the sender. """ return utils.formataddr((sender['real_name'], sender['address'])) def configure_recipients(self, recipients): """Properly formats the list of recipient addresses. :param recipients: A list containing dictionaries of information about the recipients. """ # Recipients are expected to be in an # array of objects containing {real_name, address} addresses = [] for recipient in recipients: addresses.append(utils.formataddr((recipient['real_name'], recipient['address']))) # sendmail requires the recipients to be an array of addresses return addresses def configure_smtp_object(self, host, port): """Helper method to configure the SMTP object.""" if not(host and port): if not(host): # If host isn't specified, try localhost smtpObj = smtplib.SMTP('localhost', timeout=self._connect_timeout) else: # otherwise, use the host with the default port smtpObj = smtplib.SMTP(host, timeout=self._connect_timeout) else: smtpObj = smtplib.SMTP(host, port, timeout=self._connect_timeout) return smtpObj class EmailPublisher(SimpleEmailPublisher): """A publisher that publishes incidents to e-mail. For validations to be published by this publisher, they must be enriched with additional data. See :py:func:.emailer.enrich :param config: A config object containing email config information. See below for a detailed description. :param email_notifications_config_key: The config key that contains the email configuration. :param name: The name of the publisher. :param defaults: Default email templating values. :param priority_threshold: Will publish validations of this priority or higher if they are appropriately enriched. :param connect_timeout_seconds: How long to attempt to connect to the SMTP server. :param environment: The environment that tests are being run in. config is an Alarmageddon config object that contains at least the following: {email_template_directory : Directory containing the e-mail templates. Can be relative to the location of the alarmageddon script or an absolute directory location, environment : EMAIL_NOTIFICATIONS Where EMAIL_NOTIFICATIONS is a dictionary of the form: "email_notifications" : { EMAIL_TYPE: { "email_recipients" : [ {"real_name" : "Some other recipient", "address" : "[email protected]"},... ], "email_custom_message" : "Custom email message. Can contain Jinja replacement tokens." },... } } and EMAIL_TYPE is a name that will identify which validations should use that config. """ EMAIL_NOTIFICATIONS_CONFIG_KEY = 'email_notifications' def __init__(self, config, email_notifications_config_key=None, name='EmailPublisher', defaults=None, priority_threshold=None, connect_timeout_seconds=10, environment=None): if not config: raise ValueError("config parameter is required.") if defaults is None: defaults = {} SimpleEmailPublisher.__init__(self, None, None, name=name, priority_threshold=priority_threshold, environment=environment) # Set the initial replacement context to the defaults. # Overrides will be applied to this dictionary individually. self._replacement_context = defaults self._config = config self._template_environment = None self._connect_timeout = connect_timeout_seconds if not email_notifications_config_key: self._email_notifications_config_key = \ self.EMAIL_NOTIFICATIONS_CONFIG_KEY else: self._email_notifications_config_key = \ email_notifications_config_key def __repr__(self): return "{}: replacement {}, config {}, env {}, timeout {}, key {}".format( type(self).__name__, self._replacement_context, self._config, self._template_environment, self._connect_timeout, self._email_notifications_config_key) def send(self, result): """Constructs a message from a result and send it as an email. This will only send if the priority threshold is met **and** the original validation was appropriately enriched. :param result: The result to publish. """ if result.is_failure() and self.will_publish(result): self.configure_replacement_context(result) fileSystemLoader =\ FileSystemLoader(self._config['email_template_directory']) self._template_environment = Environment(loader=fileSystemLoader, undefined=SilentUndefined) email_settings = self.get_email_settings(result) recipient_addresses =\ self.configure_recipients(email_settings['recipients']) sender_address = self.configure_sender(email_settings['sender']) message_body = self.replace_tokens(email_settings['body'], self._replacement_context) message_subject = self.replace_tokens(email_settings['subject'], self._replacement_context) msg = self.configure_message(sender_address, recipient_addresses, message_subject, message_body) """ A note regarding recipient addresses: smtplib.sendmail requires that multiple recipient addresses are structured as an array of addresses. MIMEMultipart messages require that multiple recipients are structured as a comma-separated list. """ if 'email_host' in self._config: host = self._config['email_host'] if 'email_port' in self._config: port = self._config['email_port'] smtpObj = self.configure_smtp_object(host, port) smtpObj.sendmail(msg['From'], recipient_addresses, msg.as_string()) def replace_tokens(self, template, token_dictionary): """Replace templated values with their contents. Loops multiple times, to handle the case of a template that contains templates. Templates should be valid Jinja templates: http://jinja.pocoo.org/ :param template: The template string. :param token_dictionary: A mapping from template names to values. """ # Loop over the string five times in case # tokens have tokens inside them. tokenized_template = self._template_environment.get_template(template) detokenized_string = tokenized_template.render(token_dictionary) if "{{" in detokenized_string: for _num in range(1, 4): tokenized_template = Template(detokenized_string, undefined=SilentUndefined) detokenized_string = tokenized_template\ .render(token_dictionary) return detokenized_string """ To implement a custom email publisher, override the methods below """ def _can_publish(self, result): """Determines if the email validation has the required enrichment. :param result: The result to be published. """ try: email_settings = self.get_email_settings(result) email_settings['email_type'] email_settings['subject'] email_settings['body'] email_settings['sender'] email_settings['recipients'] return True except (AttributeError, KeyError): return False def configure_replacement_context(self, result): """ Configures the replacement context for this email publisher Supported template variables: {{test_name}} The name of the test. {{test_description}} The description of the failure. {{env}} The environment name. {{email_custom_message}} A custom message used in email alerts. This field can be used to summarize a particular type of alert or include additional details Runtime Context: All dictionary items contained in runtime context are available. :param result: The test result whose values will populate the replacement context. """ # Configure the replacement context if result.test_name(): self._replacement_context['test_name'] = result.test_name() if result.description(): self._replacement_context['test_description'] = \ result.description() if self._config.environment_name(): self._replacement_context['env'] = self._config.environment_name() email_settings = self.get_email_settings(result) if 'email_type' in email_settings: email_type = email_settings['email_type'] self._replacement_context['email_type'] = email_type email_config_key = self._email_notifications_config_key email_config = \ self._config.environment_config[email_config_key] if email_type in email_config: email_config_settings = email_config[email_type] if 'email_custom_message' in email_config_settings: self._replacement_context['email_custom_message'] = \ email_config_settings['email_custom_message'] runtime_context = self.get_runtime_context(result) if runtime_context is not None: self._replacement_context.update(self.get_runtime_context(result)) def get_email_settings(self, result): """Returns the email settings of the given result.""" return result.validation.get_enriched(self, True)['email_settings'] def get_runtime_context(self, result): """Returns the runtime context of the given result.""" return result.validation.get_enriched(self, True)['runtime_context']
Alarmageddon
/Alarmageddon-1.1.2-py3-none-any.whl/alarmageddon/publishing/emailer.py
emailer.py
from alarmageddon.publishing.publisher import Publisher import xml.etree.cElementTree as ET import logging logger = logging.getLogger(__name__) class JUnitPublisher(Publisher): """A Publisher that writes results to JUnit formatted XML. :param filename: The file to write the XML to. :param priority_threshold: Will publish validations of this priority or higher. :param environment: The environment that tests are being run in. """ def __init__(self, filename, priority_threshold=None, environment=None): if not filename: raise ValueError("filename parameter is required") logger.debug("Constructing publisher with filename:{}," "priority_threshold:{}, environment:{}" .format(filename, priority_threshold, environment)) Publisher.__init__(self, "JUnit", priority_threshold=priority_threshold, environment=environment) self.filename = filename def __repr__(self): return "JUnit, publishes to {} (threshold: {})".format( self.filename, self.priority_threshold) def send_batch(self, results): """Write a set of results to an XML file. :param results: The validation results to write to file. """ tree = self._construct_tree(results) tree.write(self.filename) def _construct_tree(self, results): failures = 0 errors = 0 skips = 0 tests = len(results) time = 0 for result in results: if result.is_failure(): failures += 1 time += result.time root = ET.Element("testsuite") root.set("errors", str(errors)) root.set("failures", str(failures)) root.set("name", "alarmageddon") root.set("skips", str(skips)) root.set("tests", str(tests)) root.set("time", "{:f}".format(time)) for result in results: self._append_result(result, root) return ET.ElementTree(root) def _append_result(self, result, parent): """Add a result as a child of the given parent XML element. :param result: The validation result to add. :param parent: The parent XML element to add onto. """ case = ET.SubElement(parent, "testcase") #remove brackets around type name case.set("classname", str(type(result.validation))[8:-2]) case.set("name", result.test_name()) case.set("time", "{:f}".format(result.time)) if result.is_failure(): failure = ET.SubElement(case, "failure") failure.set("message", "test failure") failure.text = str(result) def send(self, result): """This publisher cannot write only a single result""" raise NotImplementedError
Alarmageddon
/Alarmageddon-1.1.2-py3-none-any.whl/alarmageddon/publishing/junit.py
junit.py
import os import requests import json import collections from alarmageddon.publishing.publisher import Publisher from alarmageddon.publishing.exceptions import PublishFailure import logging logger = logging.getLogger(__name__) FALLBACK_TEXT = "There were Alarmageddon failures" def _get_collapsed_message(results): """Helper function to collapse similar failures together. If several results have the same reason for failing, combine the results to save space and cognitive load on users. :param results: List of result objects. """ description = results[0].description() names = [result.test_name() for result in results] message = ("(failed) {0}\nDescription: {1}").format(", ".join(names), description) return message class TeamsPublisher(Publisher): """A Publisher that sends results to Teams. Publishes all failures to the provided Teams room. :param hook_url: The Teams Hook URL :param priority_threshold: Will publish validations of this priority or higher. :param environment: The environment that tests are being run in. """ def __init__(self, hook_url, environment=None, priority_threshold=None): logger.debug("Constructing publisher with url:{}, priority_threshold:{}, environment:()" .format(hook_url, priority_threshold, environment)) if not hook_url: raise ValueError("hook_url parameter is required") Publisher.__init__(self, "Teams", priority_threshold=priority_threshold) self._hook_url = hook_url def __str__(self): return "Teams: {}".format(self._hook_url, self.priority_threshold) def __repr__(self): return "Teams: {}".format(self._hook_url, self.priority_threshold) def send(self, result): """sends a result to Teams if the result is a failure.""" if result.is_failure() and self.will_publish(result): message = "(failed) Failure in {0}\nTest:{1}\nFailed because: {2}".format( self.environment, result.test_name(), result.description()) message_text = self._build_message( FALLBACK_TEXT, self._get_jenkins_job_url(), message) self._send_to_teams(message_text) def send_batch(self, results): """Send a batch of results to Teams. Collapses similar failures together to save space. """ collapsed = collections.defaultdict(list) errors = 0 for result in results: if result.is_failure() and self.will_publish(result): collapsed[result.description()].append(result) errors += 1 if errors == 0: return message = "{0} failure(s) :\n".format(errors) message += "\n".join(_get_collapsed_message(collapsed_result) for collapsed_result in list(collapsed.values())) message_text = self._build_message( FALLBACK_TEXT, self._get_jenkins_job_url(), message) self._send_to_teams(message_text) def _build_message(self, FALLBACK_TEXT, run_link, text): pretext = "Alarmageddon run completed." if run_link is not None: pretext = "{} <{}|View Result>".format(pretext, run_link) jenkins_url = self._get_jenkins_job_url() payload = { "title": os.environ.get('JOB_NAME'), "text": text, "potentialAction": [ { "@type": "OpenUri", "name": "View Build", "targets": [{ "os": "default", "uri": jenkins_url }] } ] } return payload def _send_to_teams(self, message): """Send a message to Teams. :param message: The message to be published. """ headers = { "Content-Type": "application/json" } data = json.dumps(message) logger.info("Sending {} to {}".format(data, self._hook_url)) resp = requests.post(self._hook_url, data=data, headers=headers) if resp.status_code < 200 or resp.status_code >= 300: raise PublishFailure(self, "{0} - {1}".format(message, resp.text)) def _get_jenkins_job_url(self): """If we're running in jenkins use environment vars to construct a job URL. If we are not in running in jenkins return None """ jenkins_host = os.environ.get('JENKINS_URL') if jenkins_host is not None: jenkins_job = os.environ.get('JOB_NAME') jenkins_build = os.environ.get('BUILD_ID') job_url = "{}job/{}/{}/console".format( jenkins_host, jenkins_job, jenkins_build ) return job_url else: return None
Alarmageddon
/Alarmageddon-1.1.2-py3-none-any.whl/alarmageddon/publishing/teams.py
teams.py
import time import requests from alarmageddon.publishing.publisher import Publisher from alarmageddon.publishing.exceptions import PublishFailure class HttpPublisher(Publisher): """Creates an HTTP Publisher that publishes successes and/or failures to either one or two HTTP end points. If you want the same URL to be published to whether or not the Validation result being published failed or succeeded, please supply only the url parameter and omit the failure_url and success_url parameters. Conversely, if you want different URLs to be requested based on whether or not the Validation result being published succeeded, please omit the url parameter and supply the success_url and failure_url parameters. The HttpPublisher will use the same method, headers, and authentication parameters when requesting both of those URLs. If that is not acceptable, please override the relevent getter methods. :param url: The URL that this publisher should publish successful and failed Validation results to. :param success_url: The URL that this publisher should publish successful Validation results to. :param failure_url: The URL that this publisher should publish failed Validation results to. :param method: The HTTP method to use when posting. POST is the default because it is the only HTTP method that allows you to send the results of the published Validation. The GET method is allowed but cannot send the details of the Validation result along with the request. :param headers: headers to send along with the request :param auth: if your URLs require authentication you can supply a value like the following: ``auth=('user', 'pass')`` :param attempts: the number of times to try to publish to your URL(s). :param retry_after_seconds: how many seconds to wait after a failed attempt. :param timeout_seconds: how long a single attempt can take before it is considered a failed attempt. :param publish_successes: specify True if you want this HTTP Publisher to publish successful results too. If you provide a success_url, then this HttpPublisher will assume you want to publish successes. :param expected_status_code: the HTTP status code to expect from your HTTP server if the Validation result was successfully published. :param name: The name of this publisher. :param priority_threshold: Will publish validations of this priority or higher. :param environment: The environment that tests are being run in. """ def __init__(self, url=None, success_url=None, failure_url=None, method="POST", headers=None, auth=None, attempts=1, retry_after_seconds=2, timeout_seconds=5, publish_successes=False, expected_status_code=200, name=None, priority_threshold=None, environment=None): Publisher.__init__(self, name or "HttpPublisher", priority_threshold=priority_threshold, environment=environment) self._success_url = success_url or url if not self._success_url: raise ValueError("either success_url or url parameter is required") self._failure_url = failure_url or url if not self._failure_url: raise ValueError("either failure_url or url parameter is required") self._publish_successes = (success_url is not None) or publish_successes self._method = method if not self._method: raise ValueError("method parameter is requried") self._headers = headers self._auth = auth self._attempts = attempts if self._attempts <= 0: raise ValueError("attempts parameter must be at least one") self._retry_after_seconds = retry_after_seconds if self._retry_after_seconds < 0: raise ValueError("retry_after_seconds parameter must be positive") self._timeout_seconds = timeout_seconds self._expected_status_code = expected_status_code def _get_method(self, result): """Returns the HTTP method (e.g. GET, POST, etc.) that the HttpPublisher should use when publishing. """ return self._method def _get_url(self, result): """Returns the URL that the HttpPublisher should publish to.""" if result.is_failure(): return self._failure_url else: return self._success_url def _get_headers(self, result): """return the headers, as a dict, that this HttpPublisher should include when it publishes. """ return self._headers def _get_auth(self, result): """Returns None or Authentication information (e.g. ``auth=('user', 'pass')``) that this HttpPublisher should send along with the request. """ return self._auth def _get_data(self, result): """Returns the data that this HttpPublisher should send along with the request. It is only relevant when the HTTP Method is ``POST``. """ if self._method == "POST": return str(result) else: return None def send(self, result): """Publish a test result. :param result: The :py:class:`~.result.TestResult` of a test. """ if result.is_failure() or self._publish_successes: published = False for i in range(self._attempts): try: response = requests.request(self._get_method(result), self._get_url(result), data=self._get_data(result), headers=self._get_headers(result), auth=self._get_auth(result), timeout=self._timeout_seconds) if response.status_code == self._expected_status_code: published = True break except Exception: time.sleep(self._retry_after_seconds) if not published: raise PublishFailure(self, result) def __repr__(self): """Returns a string representation of this HttpPublisher""" return "HttpPublisher: '{0}', Method: {1}, Success URL: {2}," +\ "Failure URL: {3}".format(self._name, self._method, self._success_url, self._failure_url)
Alarmageddon
/Alarmageddon-1.1.2-py3-none-any.whl/alarmageddon/publishing/http.py
http.py
import requests import json import collections from alarmageddon.publishing.publisher import Publisher from alarmageddon.publishing.exceptions import PublishFailure import logging logger = logging.getLogger(__name__) def _get_collapsed_message(results): """Helper function to collapse similar failures together. If several results have the same reason for failing, combine the results to save space and cognitive load on users. :param results: List of result objects. """ description = results[0].description() names = [result.test_name() for result in results] message = ("(failed) {0}\nDescription: {1}").format(", ".join(names), description) return message class HipChatPublisher(Publisher): """A Publisher that sends results to HipChat. Publishes all failures to the designated HipChat room. Will publish all results in a single message, collapsings similar errors together to save space. :param api_end_point: The HipChat API endpoint. :param api_token: A HipChat API token. :param environment: The environment that tests are being run in. :param room_name: The HipChat room to publish results to. :param priority_threshold: Will publish validations of this priority or higher. """ def __init__(self, api_end_point, api_token, environment, room_name, priority_threshold=None): logger.debug("Constructing publisher with endpoint:{}, token:{}, room name:{}," "priority_threshold:{}, environment:{}" .format(api_end_point, api_token, room_name, priority_threshold, environment)) if not api_end_point: raise ValueError("api_end_point parameter is required") if not api_token: raise ValueError("api_token parameter is required") if not environment: raise ValueError("environment parameter is required") if not room_name: raise ValueError("room_name parameter is required") Publisher.__init__(self, "HipChat: {0}".format(room_name), priority_threshold=priority_threshold, environment=environment) self._api_token = api_token self._api_end_point = api_end_point self._room_name = room_name def __str__(self): return "Hipchat: {}, room {}, env {}".format( self._api_end_point, self._room_name, self.environment ) def __repr__(self): return "Hipchat: {} ({}), room {}, env {}".format( self._api_end_point, self._api_token, self._room_name, self.environment ) def send_batch(self, results): """Send a batch of results to HipChat. Collapses similar failures together to save space. """ collapsed = collections.defaultdict(list) errors = 0 for result in results: if result.is_failure() and self.will_publish(result): collapsed[result.description()].append(result) errors += 1 if errors == 0: return message = "{0} failure(s) in {1}:\n".format(errors, self.environment) message += "\n".join(_get_collapsed_message(collapsed_result) for collapsed_result in list(collapsed.values())) self._send_to_hipchat(message) def _send_to_hipchat(self, message): """Send a message to HipChat. :param message: The message to be published. """ url = ("{0}/rooms/message?format=json&room_id={1}&auth_token={2}" + "&message={3}&from={4}&color=red").format(self._api_end_point, self._room_name, self._api_token, message, 'Alarmageddon') headers = { "Content-Type": "application/json" } data = json.dumps({ "message": message, "message_format": "text", "color": "red" }) logger.debug("Sending {} to {}".format(data, url)) resp = requests.post(url, data=data, headers=headers, stream=True) if resp.status_code < 200 or resp.status_code >= 300: raise PublishFailure(self, "{0} - {1}".format(message, resp.text)) def send(self, result): """sends a result to HipChat if the result is a Failure.""" if result.is_failure() and self.will_publish(result): message = ("<b>(failed) Failure in {0}</b><br/><b>Test:</b> " + "{1}<br/><b>Failed because:" + "</b> {2}").format(self.environment, result.test_name(), result.description()) self._send_to_hipchat(message)
Alarmageddon
/Alarmageddon-1.1.2-py3-none-any.whl/alarmageddon/publishing/hipchat.py
hipchat.py
import os import requests import json import collections from alarmageddon.publishing.publisher import Publisher from alarmageddon.publishing.exceptions import PublishFailure import logging logger = logging.getLogger(__name__) FALLBACK_TEXT = "There were Alarmageddon failures" def _get_collapsed_message(results): """Helper function to collapse similar failures together. If several results have the same reason for failing, combine the results to save space and cognitive load on users. :param results: List of result objects. """ description = results[0].description() names = [result.test_name() for result in results] message = ("(failed) {0}\nDescription: {1}").format(", ".join(names), description) return message class SlackPublisher(Publisher): """A Publisher that sends results to Slack. Publishes all failures to the provided Slack room. :param hook_url: The Slack Hook URL :param priority_threshold: Will publish validations of this priority or higher. :param environment: The environment that tests are being run in. """ def __init__(self, hook_url, environment, priority_threshold=None): logger.debug("Constructing publisher with url:{}, priority_threshold:{}, environment:{}" .format(hook_url, priority_threshold, environment)) if not hook_url: raise ValueError("hook_url parameter is required") if not environment: raise ValueError("environment parameter is required") Publisher.__init__(self, "Slack", priority_threshold=priority_threshold, environment=environment) self._hook_url = hook_url def __str__(self): return "Slack: {}".format(self._hook_url) def send(self, result): """sends a result to Slack if the result is a faliure.""" if result.is_failure() and self.will_publish(result): message = "(failed) Failure in {0}\nTest:{1}\nFailed because: {2}".format( self.environment, result.test_name(), result.description()) message_text = self._build_message( FALLBACK_TEXT, self._get_jenkins_job_url(), message) self._send_to_slack(message_text) def send_batch(self, results): """Send a batch of results to Slack. Collapses similar failures together to save space. """ collapsed = collections.defaultdict(list) errors = 0 for result in results: if result.is_failure() and self.will_publish(result): collapsed[result.description()].append(result) errors += 1 if errors == 0: return message = "{0} failure(s) in {1}:\n".format(errors, self.environment) message += "\n".join(_get_collapsed_message(collapsed_result) for collapsed_result in list(collapsed.values())) message_text = self._build_message( FALLBACK_TEXT, self._get_jenkins_job_url(), message) self._send_to_slack(message_text) def _build_message(self, FALLBACK_TEXT, run_link, text): pretext = "Alarmageddon run completed." if run_link is not None: pretext = "{} <{}|View Result>".format(pretext, run_link) payload = { "attachments": [ { "fallback": FALLBACK_TEXT, "author_name": "Alarmageddon", "color": "danger", "pretext": pretext, "text": text, "mrkdwn": True } ] } return payload def _send_to_slack(self, message): """Send a message to Slack. :param message: The message to be published. """ headers = { "Context-Type": "application/json" } data = json.dumps(message) logger.info("Sending {} to {}".format(data, self._hook_url)) resp = requests.post(self._hook_url, data=data, headers=headers) if resp.status_code < 200 or resp.status_code >= 300: raise PublishFailure(self, "{0} - {1}".format(message, resp.text)) def _get_jenkins_job_url(self): """If we're running in jenkins use enviroment vars to construct a job url. If we are not in running in jenkins return None """ jenkins_host = os.environ.get('JENKINS_URL') if jenkins_host is not None: jenkins_job = os.environ.get('JOB_NAME') jenkins_build = os.environ.get('BUILD_ID') job_url = "{}job/{}/{}/console".format( jenkins_host, jenkins_job, jenkins_build ) return job_url else: return None
Alarmageddon
/Alarmageddon-1.1.2-py3-none-any.whl/alarmageddon/publishing/slack.py
slack.py
class Publisher(object): """Base class for all test result publishers. Publishers take test results and publish them to another service. :param name: The name of this publisher. :param priority_threshold: Will publish validations of this priority or higher. :param environment: The environment that tests are being run in. """ def __init__(self, name=None, priority_threshold=None, environment=None): self._name = name self.priority_threshold = priority_threshold self.environment = environment def name(self): """Return the name of the publisher.""" return self._name def send(self, result): """Publish a test result. :param result: The :py:class:`~.result.TestResult` of a test. """ pass def send_batch(self, results): """Publish a collection of test results. Directly called by the :py:class:`~.reporter.Reporter` . :param result: An iterable of :py:class:`~.result.TestResult` objects. """ for result in results: self.send(result) def __repr__(self): return "Publisher: '{}'".format(self._name) def will_publish(self, result): """Determine if the publisher will publish the result To publish a result, the publisher must both be able to publish (_can_publish) and have its priority threshold met (_should_publish). :param result: The :py:class:`~.result.TestResult` of a test. """ return self._should_publish(result) and self._can_publish(result) def _should_publish(self, result): """Determine if the publisher should publish the given result. Whether or not a result should be published depends on its priority. :param result: The :py:class:`~.result.TestResult` of a test. """ if self.priority_threshold is None: return True priority = result.priority return self.priority_threshold <= priority def _can_publish(self, result): """Determine if the publisher can publish the given result. Whether or not a result can be published depends on if the publisher requires extra information from the validation belonging to the result, and whether or not that validation contains the needed information. :param result: The :py:class:`~.result.TestResult` of a test. """ return True
Alarmageddon
/Alarmageddon-1.1.2-py3-none-any.whl/alarmageddon/publishing/publisher.py
publisher.py
import statsd from alarmageddon.publishing.publisher import Publisher import logging logger = logging.getLogger(__name__) class GraphitePublisher(Publisher): """A Publisher that sends results to Graphite. Logs the number of successes and failures, and potentially logs how long a validation takes. :param host: The graphite host. :param port: The port that graphite is listening on. :param failed_tests_counter: Name of the graphite counter for failed tests. :param passed_tests_counter: Name of the graphite coutner for successful tests. :param prefix: Prefix applied to all graphite fields this publisher will write to. :param priority_threshold: Will publish validations of this priority or higher. :param environment: The environment that tests are being run in. """ def __init__(self, host, port, failed_tests_counter='failed', passed_tests_counter='passed', prefix='alarmageddon', priority_threshold=None, environment=None): if not host: raise ValueError("host parameter is required") logger.debug("Constructing publisher with host:{}, port:{}, failed counter:{}," "passed counter:{}, prefix:{}, priority_threshold:{}, environment:{}" .format(host, port, failed_tests_counter, passed_tests_counter, prefix, priority_threshold, environment)) Publisher.__init__(self, "Graphite", priority_threshold=priority_threshold, environment=environment) self._prefix = prefix self._host = host if port is not None: self._port = int(port) else: self._port = None self._failed_tests_counter = failed_tests_counter self._passed_tests_counter = passed_tests_counter self._graphite = statsd.StatsClient( host=self._host, prefix=self._prefix, port=self._port) def sanitize(self, text): #graphite doesn't like colons return text.replace(":",".") def send(self, result): """Sends a result to Graphite. Logs the result as either a success or a failure. Additionally, logs how long the validation took, if a timer_name field is present on the result. """ logger.debug("Checking if we should send {}".format(result)) if self.will_publish(result): if result.is_failure(): logger.info("Sending {} to {}".format(result, self._failed_tests_counter)) self._graphite.incr(self._failed_tests_counter) else: logger.info("Sending {} to {}".format(result, self._passed_tests_counter)) self._graphite.incr(self._passed_tests_counter) if result.timer_name: logger.info("Sending {} to {}".format(result, result.timer_name)) self._graphite.gauge(self.sanitize(result.timer_name), result.time) def __repr__(self): return "Graphite Publisher: {}:{} with prefix {} ({}/{}). {}".format( self._host, self._port, self._prefix, self._failed_tests_counter, self._passed_tests_counter, self._graphite)
Alarmageddon
/Alarmageddon-1.1.2-py3-none-any.whl/alarmageddon/publishing/graphite.py
graphite.py
class PublishFailure(Exception): """An exception thrown when sending a test result to a publisher fails. :param publisher: The publisher that failed to publish. :param result: The result that failed to publish. """ def __init__(self, publisher, result): Exception.__init__(self, "Exception while publishing a TestResult.") self._publisher = publisher self._result = result def result(self): """Returns the result that could not be published.""" return self._result def publisher(self): """Returns the publisher that could not be published to.""" return self._publisher def __str__(self): return repr(self) def __repr__(self): return "Could not publish {0} to {1}".format(self._result, self._publisher) class EnrichmentFailure(Exception): """An exception thrown when the enrichment of a validation fails. :param publisher: The publisher the validation was enriched for. :param validation: The validation that failed to be enriched. :param values: The values that the validation was enriched with. """ def __init__(self, publisher, validation, values): Exception.__init__(self, "Exception while enriching a Validation.") self._publisher = publisher self._validation = validation self._values = values try: self._valid_values = self._values._enriched_data except AttributeError: self._valid_values = "Missing enriched data field on validation" def validation(self): """Returns the validation that failed to enrich.""" return self._validation def publisher(self): """Returns the publisher that the enrichment was for.""" return self._publisher def values(self): """Returns the enrichment values.""" return self._values def __str__(self): return repr(self) def __repr__(self): return "Could not enrich {} with {} (for {}). Validation contained" +\ "these enriched fields at time of failure:" +\ "{}".format(self._validation, self._values, self._publisher, self._valid_values)
Alarmageddon
/Alarmageddon-1.1.2-py3-none-any.whl/alarmageddon/publishing/exceptions.py
exceptions.py
from abc import abstractmethod SECONDS_PER_MINUTE = 60 SECONDS_PER_HOUR = SECONDS_PER_MINUTE * 60 SECONDS_PER_DAY = SECONDS_PER_HOUR * 24 def _avg(readings): """Python 2.7 does not have an average function""" return sum(readings, 0.0) / len(readings) def _delta_str(delta): """Convert a timedelta to a nice string. timedelta.__str__ prints out days and times awkwardly. """ days, rem = divmod(delta.total_seconds(), SECONDS_PER_DAY) hours, rem = divmod(rem, SECONDS_PER_HOUR) minutes, rem = divmod(rem, SECONDS_PER_MINUTE) result = [] if days: result.append('{0} day(s)'.format(days)) if hours: result.append('{0} hour(s)'.format(hours)) if minutes: result.append('{0} minute(s)'.format(minutes)) return ', '.join(result) class GraphiteExpectation(object): """An expectation placed on a list of Graphte readings""" def __init__(self, validation, name): self._validation = validation self._name = name @abstractmethod def validate(self, readings, time_range): """make sure the expectation is met""" pass def _validate(self, bad_readings, higher_values_are_worse): """Derived instances should call this method passing it any readings that were outside of specified parameters. """ num_bad_readings = len(bad_readings) if num_bad_readings: bad_readings = list(set(bad_readings)) bad_readings.sort(reverse=higher_values_are_worse) self._validation.fail( "In the last {0} there were {1} readings that " + "exceeded allowed parameters. For example: {2}" .format(_delta_str(self._validation.time_range), num_bad_readings, ', '.join([str(x) for x in bad_readings[:20]]))) def _validate_avg(self, average, is_bad_average): """Derived instances should call this method passing the average reading and whether or not that average was within specified parameters """ if is_bad_average: self._validation.fail( "In the last {0} the average reading was {1}" .format(_delta_str(self._validation.time_range), average)) class GreaterThanExpectation(GraphiteExpectation): """Expect that a graphite metric is greater than a specified number""" def __init__(self, validation, lower_bound): GraphiteExpectation.__init__(self, validation, "All values must be greater than {0}".format(lower_bound)) self._lower_bound = lower_bound def validate(self, readings, time_range): self._validate([x for x in readings if x is not None and x <= self._lower_bound], False) def __repr__(self): return "{}: all > {} on {}".format(type(self).__name__, self._lower_bound, self._validation) class LessThanExpectation(GraphiteExpectation): """Expect that a graphite metric is less than than a specified number""" def __init__(self, validation, upper_bound): GraphiteExpectation.__init__(self, validation, "All values must be less than {0}".format(upper_bound)) self._upper_bound = upper_bound def validate(self, readings, time_range): self._validate([x for x in readings if x is not None and x >= self._upper_bound], True) def __repr__(self): return "{}: all < {} on {}".format(type(self).__name__, self._upper_bound, self._validation) class AverageGreaterThanExpectation(GraphiteExpectation): """Expect that the average of a graphite metric is greater than a specified number """ def __init__(self, validation, lower_bound): GraphiteExpectation.__init__(self, validation, "Average of all values must be greater than {0}" .format(lower_bound)) self._lower_bound = lower_bound def validate(self, readings, time_range): average = _avg([x for x in readings if x is not None]) self._validate_avg(average, average <= self._lower_bound) def __repr__(self): return "{}: average > {} on {}".format(type(self).__name__, self._upper_bound, self._validation) class AverageLessThanExpectation(GraphiteExpectation): """Expect that the average of a graphite metric is less than a specified number """ def __init__(self, validation, upper_bound): GraphiteExpectation.__init__(self, validation, "Average of all values must be less than {0}" .format(upper_bound)) self._upper_bound = upper_bound def validate(self, readings, time_range): average = _avg([x for x in readings if x is not None]) self._validate_avg(average, average >= self._upper_bound) def __repr__(self): return "{}: average < {} on {}".format(type(self).__name__, self._upper_bound, self._validation)
Alarmageddon
/Alarmageddon-1.1.2-py3-none-any.whl/alarmageddon/validations/graphite_expectations.py
graphite_expectations.py
from alarmageddon.validations.validation import Priority from alarmageddon.validations.ssh import SshValidation from alarmageddon.validations.utilities import format_node, format_cluster import os import re import logging logger = logging.getLogger(__name__) # The output for Cassandra's nodetool status command has changed # between versions. This new parser is designed to provide a more # robust way of parsing the output of the nodetool status command. It # has to make some assumptions about the output but it tries to make as # few as possible. # # Assumptions: # 1) There is a header line that lists all of the field names # 2) The header line begins with a '-- ' # 3) All lines after the header describe nodes # 4) All lines before the header can be ignored # 5) Other assumptions I am even aware that I have made # # I'd like to illustrate how the output of the nodetool status command # will be processed. Here is some example output for Cassandra # version 2.0.9: # # xss = -ea -javaagent:/usr/share/cassandra/lib/jamm-0.2.5.jar -XX:+UseThreadPriorities -XX:ThreadPriorityPolicy=42 -Xms10240m -Xmx10240m -Xmn2048m -XX:+HeapDumpOnOutOfMemoryError -Xss256k # Note: Ownership information does not include topology; for complete information, specify a keyspace # Datacenter: us-east # =================== # Status=Up/Down # |/ State=Normal/Leaving/Joining/Moving # -- Address Load Tokens Owns Host ID Rack # UN 10.168.7.222 77.82 GB 256 19.9% 27600dd2-9ebf-4501-820c-37dec6ea2e33 1c # UN 10.168.14.117 80.9 GB 256 20.5% 064fd4da-6af8-4647-826c-a68ba038bc8d 1b # UN 10.168.4.76 64.07 GB 256 16.4% a5cc2101-4806-47d6-9228-5a4a45e047fc 1d # UN 10.168.7.208 85.2 GB 256 21.9% c56f5b4a-4863-4a24-a2fd-ee3f82baebf8 1c # UN 10.168.4.72 83.75 GB 256 21.2% dc8cbbdc-d95f-4836-884e-2e12f4adb13a 1d # # We ignore every line up until the header line (it starts with a '--' # sequence). That leaves the following: # # -- Address Load Tokens Owns Host ID Rack # UN 10.168.7.222 77.82 GB 256 19.9% 27600dd2-9ebf-4501-820c-37dec6ea2e33 1c # UN 10.168.14.117 80.9 GB 256 20.5% 064fd4da-6af8-4647-826c-a68ba038bc8d 1b # UN 10.168.4.76 64.07 GB 256 16.4% a5cc2101-4806-47d6-9228-5a4a45e047fc 1d # UN 10.168.7.208 85.2 GB 256 21.9% c56f5b4a-4863-4a24-a2fd-ee3f82baebf8 1c # UN 10.168.4.72 83.75 GB 256 21.2% dc8cbbdc-d95f-4836-884e-2e12f4adb13a 1d # # We now parse the header line to find the boundaries of each node's # fields. Here is the header line: # # -- Address Load Tokens Owns Host ID Rack # # We assume that all header names are made up of non-space characters # possibly delimited by single spaces. That ensures that 'Host ID' is # treated as a single header name and not two. Once we have the boundaries: # # |-- |Address |Load |Tokens |Owns |Host ID |Rack| # # we can use those boundaries to start chopping up the remaining lines # in the output and creating Nodes from them. # # +---+-------------+----------+-------+------+-------------------------------------+----+ # |-- |Address |Load |Tokens |Owns |Host ID |Rack| # +---+-------------+----------+-------+------+-------------------------------------+----+ # |UN |10.168.7.222 |77.82 GB |256 |19.9% |27600dd2-9ebf-4501-820c-37dec6ea2e33 |1c | # |UN |10.168.14.117|80.9 GB |256 |20.5% |064fd4da-6af8-4647-826c-a68ba038bc8d |1b | # |UN |10.168.4.76 |64.07 GB |256 |16.4% |a5cc2101-4806-47d6-9228-5a4a45e047fc |1d | # |UN |10.168.7.208 |85.2 GB |256 |21.9% |c56f5b4a-4863-4a24-a2fd-ee3f82baebf8 |1c | # |UN |10.168.4.72 |83.75 GB |256 |21.2% |dc8cbbdc-d95f-4836-884e-2e12f4adb13a |1d | # +---+-------------+----------+-------+------+-------------------------------------+----+ # def _is_header_line(line): """Determines if line represents the headers for the nodetool status output. """ return line.startswith('-- ') def _is_data_center_line(line): """Determines if line introduces nodes from a Datacenter.""" return line.startswith('Datacenter: ') def _parse_status(text): """receives a Node Status (e.g. 'U' or 'D') and returns the corresponding Status code. """ if text: return Status.from_text(text[0]) else: return Status.UNKNOWN def _parse_state(text): """receives a Node State (e.g. 'J', 'L', etc.) and returns the corresponding State code. """ if text: return State.from_text(text[1]) else: return State.UNKNOWN def _get_percent(text): """If text is formatted like '33.2%', remove the percent and convert to a float. Otherwise, just convert to a float. """ if not text: return None if text.endswith('%'): text = text[:-1] return float(text.strip()) class Status(object): """An enum-like object that represents the status of a Cassandra Node """ UNKNOWN, UP, DOWN = list(range(3)) @staticmethod def from_text(text): if text == 'U': return Status.UP elif text == 'D': return Status.DOWN else: return Status.UNKNOWN @staticmethod def to_text(value): """Convert Status to String""" if value == Status.UP: return 'Up' elif value == Status.DOWN: return 'Down' else: return 'Unknown' class State(object): """An enum-like object that represents the state of a Cassandra Node """ UNKNOWN, NORMAL, LEAVING, JOINING, MOVING = list(range(5)) @staticmethod def from_text(text): if text == 'N': return State.NORMAL elif text == 'L': return State.LEAVING elif text == 'J': return State.JOINING elif text == 'M': return State.MOVING else: return State.UNKNOWN @staticmethod def to_text(value): """Convert State to String""" if value == State.NORMAL: return 'Normal' elif value == State.LEAVING: return 'Leaving' elif value == State.JOINING: return 'Joining' elif value == State.MOVING: return 'Moving' else: return 'Unknown' class Node(object): """Information about a Cassandra node including its load, what percent of the ring it owns, its state, etc. """ def __init__(self, ip_address, status=Status.UNKNOWN, state=State.UNKNOWN, load=None, tokens=None, owns=None, host_id=None, rack=None): self.ip_address = ip_address self.status = status self.state = state self.load = load self.tokens = tokens self.owns = owns self.host_id = host_id self.rack = rack def __str__(self): return ("Address: %s, Status: %s, State: %s, Load: %s, " + "Tokens: %d, Owns: %s, Host ID: %s, Rack: %s") % ( self.ip_address, Status.to_text(self.status), State.to_text(self.state), self.load, self.tokens, self.owns, self.host_id, self.rack) class _Header(object): """Information about a field header.""" def __init__(self, name, start_pos, length, last_header=False): self.name = name self.start_pos = start_pos self.length = length self.last_header = last_header def __str__(self): return "%s (%s,%s)" % (self.name, self.start_pos, self.length) class NodetoolStatusParser(object): """Parses the output of the Cassandra nodetool status command and tries to make sense of it despite changes made to the format. """ def __init__(self): self.__headers = [] def parse(self, status_output): found_header = False nodes = [] for line in status_output.split(os.linesep): if _is_data_center_line(line): found_header = False self.__headers = None elif _is_header_line(line): found_header = True self.__headers = self.__parse_headers(line) elif found_header: # If we've already parsed one node and we find a blank line, ignore the rest of the # output because it's not information about nodes; it's some other text output that # we won't parse at the moment. if nodes and not line.strip(): break nodes.append(self.__parse_node(line)) logger.info("Found these Cassandra nodes:{}".format(nodes)) return nodes def __parse_headers(self, line): headers = [] # All headers are deliminated by 2 or more spaces. Note the # sentinel added to the end to simplify header processing tokens = re.split(r"(\s{2,})", line) + [''] name = None start_pos = 0 for token in tokens: if len(token) and not re.match(r'\s+', token): name = token else: length = len(name) + len(token) headers.append(_Header(name, start_pos, length, len(token) == 0)) start_pos = start_pos + length return headers def __parse_node(self, line): """Parses a line and returns a Node object""" node = Node(self.__get_ip_address(line), self.__get_status(line), self.__get_state(line), self.__get_load(line), self.__get_tokens(line), self.__get_owns(line), self.__get_host_id(line), self.__get_rack(line)) return node # These methods are broken out because different fields have different # types and field names might change in a future release. def __get_ip_address(self, line): return self.__get_field('address', line) def __get_status(self, line): return _parse_status(self.__get_field('--', line)) def __get_state(self, line): return _parse_state(self.__get_field('--', line)) def __get_load(self, line): return self.__get_field('load', line) def __get_tokens(self, line): tokens = self.__get_field('tokens', line) if tokens: return int(tokens) else: return None def __get_owns(self, line): # The following Cassandra issue (https://issues.apache.org/jira/browse/CASSANDRA-10176) causes # question mark characters (?) to appear in the 'Owns' column of nodetool status' output. owns = self.__get_field('owns', line) if owns == '?': return None else: return _get_percent(owns) def __get_host_id(self, line): return self.__get_field('host id', line) def __get_rack(self, line): return self.__get_field('rack', line) def __get_field(self, field_name, line): header = self.__find_header(field_name) if header: if header.last_header: # It's the last header so grab all the rest of the # text on the line. return line[header.start_pos:].strip() else: # It's not the last header so just grab as much text # as the header length calls for. return line[header.start_pos:header.start_pos + header.length].strip() else: return None def __find_header(self, name): """find a header by name case-insensitively""" for header in self.__headers: if header.name.lower() == name.lower(): return header return None class CassandraStatusValidation(SshValidation): """Validate that the Cassandra ring is within expected parameters. Check that the specified Cassandra ring is in the specified state and that the ring ownership of the nodes is within a certain threshold. :param ssh_contex: An SshContext class, for accessing the hosts. :param service_state: The expected service state value (defaults to "UN"). :param number_nodes: The expected number of cassandra nodes in the ring. :param owns_threshold: The maximum percentage of the ring owned by a node. :param priority: The Priority level of this validation. :param timeout: How long to attempt to connect to the host. :param hosts: The hosts to connect to. :param cluster_name: the name of the cluster (helps when you're monitoring multiple clusters. Defaults to 'anonymous'. .. note: This is not designed for multi region Cassandra clusters. """ def __init__(self, ssh_context, service_state="UN", number_nodes=5, owns_threshold=40, priority=Priority.NORMAL, timeout=None, hosts=None, cluster_name='anonymous'): SshValidation.__init__(self, ssh_context, "Cassandra nodetool status", priority=priority, timeout=timeout, hosts=hosts) # Service State is different from Service Status but I don't # want to break backwards compatibility so we parse the # service_state which is really made up of the service state # and service status values. if service_state and len(service_state) == 2: self.service_status = Status.from_text(service_state[0]) self.service_state = State.from_text(service_state[1]) else: self.service_state = State.UP self.service_status = Status.NORMAL self.number_nodes = number_nodes self.owns_threshold = owns_threshold self.cluster_name = cluster_name def perform_on_host(self, connection): """Runs nodetool status and parses the output.""" output = connection.run('nodetool status', warn=True) host = connection.host if "Exception" in output: self.fail_on_host(host, ("An exception occurred while " + "checking Cassandra cluster health " + "on {0} ({1})").format( format_node(self.cluster_name, host), output)) parsed = NodetoolStatusParser().parse(output) self.check(host, parsed) def check(self, host, nodes): """Compares the results of nodetool status to the expected results.""" #Number of nodes check if len(nodes) < self.number_nodes: self.fail_on_host(host, ("Cassandra cluster: {0} has {1} nodes but " + "should have {2} nodes.").format( format_cluster(self.cluster_name), len(nodes), self.number_nodes)) # Validate each node's properties in nodetool's nodes for node in nodes: logger.debug("Checking node: {}".format(node)) # If a node is joining the cluster, don't check it for errors. if node.state == State.JOINING: continue # check for state if node.state != self.service_state: self.fail_on_host(host, ("Cassandra node {0} is in " + "state {1} but the expected state is {2}").format( format_node(self.cluster_name, node.ip_address), State.to_text(node.state), State.to_text(self.service_state))) # check for status if node.status != self.service_status: self.fail_on_host(host, ("Cassandra node {0} has " + "status {1} but the expected status is {2}").format( format_node(self.cluster_name, node.ip_address), Status.from_text(node.status), Status.from_text(self.service_status))) # check for owns threshold if node.owns is not None: if node.owns > self.owns_threshold: self.fail_on_host(host, ("Cassandra node {0} owns {1} " + "percent of the ring which exceeds " + "threshold of {2}").format( format_node(self.cluster_name, node.ip_address), node.owns, self.owns_threshold))
Alarmageddon
/Alarmageddon-1.1.2-py3-none-any.whl/alarmageddon/validations/cassandra.py
cassandra.py
import time import os import requests import copy import six.moves.urllib.parse as urlparse from alarmageddon.validations.validation import Validation, Priority from alarmageddon.validations.json_expectations import \ ExpectedJsonValueLessThan, \ ExpectedJsonValueGreaterThan, \ ExpectedJsonEquality from alarmageddon.validations.http_expectations import \ ExpectedContentType, \ ResponseExpectation, \ ExpectedHeader, \ ExpectContainsText, \ _ExpectedStatusCodes import logging logger = logging.getLogger(__name__) class HttpValidation(Validation): """A Validation that executes an HTTP request and then performs zero or more checks on the response. """ def __init__(self, method, url, data=None, headers=None, priority=Priority.NORMAL, timeout=None, group=None, retries=1, ignore_ssl_cert_errors=False, auth=None): """Creates an HttpValidation object that will make an HTTP request to the provided URL passing the provided headers. """ Validation.__init__(self, "{0} {1}".format(method, url), priority=priority, timeout=timeout, group=group) self._url = url self._data = data self._method = method self._headers = copy.copy(headers) or {} self._response_code_expectation = _ExpectedStatusCodes(set([200])) self._expectations = [] self._retries = retries self._ignore_ssl_cert_errors = ignore_ssl_cert_errors self._auth = auth or () self._elapsed_time = -1 @staticmethod def get(url, **kwargs): """Create an HttpValidation that will GET to the specified url passing specified headers. headers - a dictionary where each key is a header name and the value that corresponds to the key is the header value. priority - the priority of the call; this determines how failures are routed. timeout - the number of seconds the HTTP request is allowed to take. group - the group to include this Validation in """ return HttpValidation("GET", url, **kwargs) @staticmethod def post(url, **kwargs): """Create an HttpValidation that will POST to the specified url passing specified headers and payload. headers - a dictionary where each key is a header name and the value that corresponds to the key is the header value. data - data that is sent along with the request priority - the priority of the call; this determines how failures are routed. timeout - the number of seconds the HTTP request is allowed to take. group - the group to include this Validation in """ return HttpValidation("POST", url, **kwargs) @staticmethod def put(url, **kwargs): """Create an HttpValidation that will PUT to the specified url passing specified headers and payload. headers - a dictionary where each key is a header name and the value that corresponds to the key is the header value. data - data that is sent along with the request priority - the priority of the call; this determines how failures are routed. timeout - the number of seconds the HTTP request is allowed to take. group - the group to include this Validation in """ return HttpValidation("PUT", url, **kwargs) @staticmethod def options(url, **kwargs): """Create an HttpValidation that will retrieve OPTIONS for the specified url passing specified headers. headers - a dictionary where each key is a header name and the value that corresponds to the key is the header value. priority - the priority of the call; this determines how failures are routed. timeout - the number of seconds the HTTP request is allowed to take. group - the group to include this Validation in """ return HttpValidation("OPTIONS", url, **kwargs) @staticmethod def head(url, **kwargs): """Create an HttpValidation that will retrieve the HEAD of the specified url passing specified headers. headers - a dictionary where each key is a header name and the value that corresponds to the key is the header value. priority - the priority of the call; this determines how failures are routed. timeout - the number of seconds the HTTP request is allowed to take. group - the group to include this Validation in """ return HttpValidation("HEAD", url, **kwargs) def perform(self, group_failures): """Perform the HTTP request and validate the response.""" for i in range(self._retries): logger.debug("Attempt {} for {} {}".format(i, self._method, self._url)) try: resp = requests.request( self._method, self._url, data=self._data, headers=self._headers, verify=self._get_verify(), auth=self._auth, timeout=self.timeout) logger.debug("Got response {}".format(resp)) self._elapsed_time = resp.elapsed.total_seconds() self._check_expectations(resp) break except Exception as ex: if type(ex) is requests.exceptions.ReadTimeout: self._elapsed_time = self.timeout if i == self._retries - 1: raise ex time.sleep(1) def get_elapsed_time(self): return self._elapsed_time def fail(self, reason): """Causes this HttpValidation to fail with the given reason.""" Validation.fail(self, reason) def duplicate_with_hosts(self, host_names, port=None): """Returns a list of new HttpValidation that are identical to this HttpValidation except with the host name replaced by the elements of host_names. """ parts = urlparse.urlsplit(self._url) # If no port is specified, see if the original URL has a port # and use it. if not port: sub_parts = parts.netloc.split(':') if len(sub_parts) == 2: port = int(sub_parts[1]) results = [] for host_name in host_names: if port: host_name = "{0}:{1}".format(host_name, port) modified_parts = urlparse.SplitResult( scheme=parts.scheme, netloc=host_name, path=parts.path, query=parts.query, fragment=parts.fragment) url = urlparse.urlunsplit(modified_parts) result = HttpValidation( self._method, url, data=self._data, headers=copy.deepcopy(self._headers), priority=self.priority, timeout=self.timeout, group=self.group, retries=self._retries, ignore_ssl_cert_errors=self._ignore_ssl_cert_errors) for expectation in self._expectations: result.add_expectation(expectation) results.append(result) return results def timer_name(self): parsed = urlparse.urlparse(self._url) tokens = parsed.netloc.split(".") tokens = [parsed.scheme] + tokens[::-1] #[:1] to skip the first / path = parsed.path[1:].split("/") tokens.extend(path) if parsed.query: tokens.append(parsed.query) tokens.append(self._method) result = ".".join(tokens) return result def send_header(self, name, value): """adds an HTTP header with the specified name and value to the request when it's sent """ self._headers[name] = value return self def add_expectation(self, expectation): """Add a custom expecation to the Validation""" if isinstance(expectation, ResponseExpectation): self._expectations.append(expectation) return self else: raise ValueError("attempt to add expectation that does not" + " derive from ResponseExpectation.") def expect_header(self, name, value): """Add an expectation that the HTTP response will contain a header with the specified name and value. """ self.add_expectation(ExpectedHeader(name, value)) return self def expect_contains_text(self, text): """Add an expectation that the HTTP response will contain a particular string. """ self.add_expectation(ExpectContainsText(text)) return self def expect_status_codes(self, status_codes): """Add an expectation that the HTTP response will have one of the specified status_codes. """ self._response_code_expectation = _ExpectedStatusCodes(status_codes) return self def expect_content_type(self, content_type): """Add an expectation that the HTTP response's content type will be equal to the specified content_type. """ self.add_expectation(ExpectedContentType(content_type)) return self def expect_json_property_value(self, json_property_path, expected_value): """Add an expectation that the HTTP response will be JSON and contain a property (found by traversing json_property_path) with the specified value. """ self.add_expectation(ExpectedJsonEquality( json_property_path, expected_value)) return self def expect_json_property_value_less_than(self, json_property_path, less_than): """Add an expectation that the HTTP response will be JSON and contain a numeric property (found by traversing json_property_path) less than less_than. """ self.add_expectation(ExpectedJsonValueLessThan( json_property_path, less_than)) return self def expect_json_property_value_greater_than(self, json_property_path, greater_than): """Add an expectation that the HTTP response will be JSON and contain a numeric property (found by traversing json_property_path) greater than greater_than. """ self.add_expectation(ExpectedJsonValueGreaterThan( json_property_path, greater_than)) return self def _check_expectations(self, response): """An HttpValidation without any expectations always fails""" self._expectations.append(self._response_code_expectation) if not self._expectations: self.fail("no expectations set") else: for expectation in self._expectations: expectation.validate(self, response) def _get_verify(self): """returns the verify parameter we send to the HTTP requests request method. """ if self._ignore_ssl_cert_errors: return False certificates_file = HttpValidation._get_certificates_file() if certificates_file: return certificates_file else: return True @staticmethod def _get_certificates_file(): """returns the path to the certificates file (not needed on all platforms) """ return os.getenv("CERTS_FILE") def __str__(self): return "HTTP Validation - method: {0}, url: {1}"\ .format(self._method, self._url) def __repr__(self): return "HTTP Validation - method: {0}, url: {1}"\ .format(self._method, self._url)
Alarmageddon
/Alarmageddon-1.1.2-py3-none-any.whl/alarmageddon/validations/http.py
http.py
from alarmageddon.validations.validation import Priority from alarmageddon.validations.ssh import SshValidation import re from collections import Counter from alarmageddon.validations.utilities import format_node, format_cluster import logging logger = logging.getLogger(__name__) class KafkaStatusValidation(SshValidation): """Validate that the Kafka cluster has all of it's partitions distributed across the cluster. :param ssh_contex: An SshContext class, for accessing the hosts. :param zookeeper_nodes: Kafka zookeeper hosts and ports in CSV. e.g. "host1:2181,host2:2181,host3:2181" :param kafka_list_topic_command: Kafka command to list topics (defaults to "/opt/kafka/bin/kafka-list-topic.sh") :param priority: The Priority level of this validation. :param timeout: How long to attempt to connect to the host. :param hosts: The hosts to connect to. :param cluster_name: the name of the cluster (helps when you're monitoring multiple clusters. Defaults to 'anonymous'. """ def __init__(self, ssh_context, zookeeper_nodes, kafka_list_topic_command="/opt/kafka/bin/kafka-list-topic.sh", priority=Priority.NORMAL, timeout=None, hosts=None, cluster_name='anonymous'): SshValidation.__init__(self, ssh_context, "Kafka partition status", priority=priority, timeout=timeout, hosts=hosts) self.kafka_list_topic_command = kafka_list_topic_command self.zookeeper_nodes = zookeeper_nodes self.cluster_name = cluster_name def perform_on_host(self, connection): """Runs kafka list topic command on host""" host = connection.host output = connection.run( self.kafka_list_topic_command + " --zookeeper " + self.zookeeper_nodes, warn=True) error_patterns = [ 'No such file', 'Missing required argument', 'Exception'] if any(x in output for x in error_patterns): self.fail_on_host(host, ("An exception occurred while " + "checking Kafka cluster health " + "on {0} ({1})").format( format_node(self.cluster_name, host), output)) parsed = re.split(r'\t|\n', output) topics = [parsed[i] for i in range(0, len(parsed), 5)] leaders = [parsed[i] for i in range(2, len(parsed), 5)] tuples = list(zip(topics, leaders)) duplicates = [x for x, y in list(Counter(tuples).items()) if y > 1] if len(duplicates) != 0: duplicates_str =", ".join("%s has %s" % (dup[0], dup[1]) for dup in duplicates) self.fail_on_host(host, ("Kafka partitions are out of sync " + "on {0}. Multiple leaders for the same " + "partition for the same replica: {1}").format( format_cluster(self.cluster_name), duplicates_str) )
Alarmageddon
/Alarmageddon-1.1.2-py3-none-any.whl/alarmageddon/validations/kafka.py
kafka.py
import re from alarmageddon.validations.http_expectations import ResponseExpectation class ExpectedJsonPredicate(ResponseExpectation): """An expectation that an HTTP response will be JSON and have a property with a specified value. """ def __init__(self, json_property_path, value): """Creates an expectation that an HTTP response will have a JSON payload with a property equal to the specified value. """ ResponseExpectation.__init__(self) self.json_property_path = json_property_path self.value = value def validate(self, validation, response): """Validates that the HTTP response is JSON and that it contains a property (found by traversing self.json_property_path) equal to self.value """ try: json = response.json() except ValueError: validation.fail( "response body was not JSON: {0}, Status Code: {1}" .format(response.text, response.status_code)) actual_value = _JsonQuery.find(json, self.json_property_path) self.validate_value(validation, self.value, actual_value) def validate_value(self, validation, expected_value, actual_value): """validates a JSON value""" validation.fail("validate_value must be overriden by derived classes") def __repr__(self): return "{}: {} should be {}".format(type(self).__name__, self.json_property_path, self.value) class ExpectedJsonEquality(ExpectedJsonPredicate): """expects that a JSON value is equal to a specified value""" def __init__(self, json_property_path, value): ExpectedJsonPredicate.__init__(self, json_property_path, value) def validate_value(self, validation, expected_value, actual_value): if type(actual_value) is list: if expected_value not in actual_value: validation.fail( ("expected JSON property {0}" " to contain '{1}', actual value: '{2}'") .format( self.json_property_path, expected_value, actual_value)) else: if actual_value is None or actual_value != expected_value: validation.fail( ("expected JSON property {0}" " to be '{1}', actual value: '{2}'") .format( self.json_property_path, expected_value, actual_value)) def __repr__(self): return "{}: {} should be {}".format(type(self).__name__, self.json_property_path, self.value) class ExpectedJsonValueLessThan(ExpectedJsonPredicate): """Expects that a numeric JSON value is less than a specified value""" def __init__(self, json_property_path, value): ExpectedJsonPredicate.__init__(self, json_property_path, value) def validate_value(self, validation, expected_value, actual_value): if type(actual_value) is list: validation.fail( "cannot use array wildcard with less than assertion") elif actual_value is None: validation.fail( "missing JSON property {0}".format(self.json_property_path)) elif float(actual_value) >= float(expected_value): validation.fail("expected JSON property {0} to be less " "than {1:.2f} but it was {2:.2f}" .format(self.json_property_path, float(expected_value), float(actual_value))) def __repr__(self): return "{}: {} < {}".format(type(self).__name__, self.json_property_path, self.value) class ExpectedJsonValueGreaterThan(ExpectedJsonPredicate): """Expects that a numeric JSON value is greater than a specified value""" def __init__(self, json_property_path, value): ExpectedJsonPredicate.__init__(self, json_property_path, value) def validate_value(self, validation, expected_value, actual_value): if type(actual_value) is list: validation.fail( "cannot use array wildcard with greater than assertion") elif actual_value is None: validation.fail( "missing JSON property {0}".format(self.json_property_path)) elif float(actual_value) <= float(expected_value): validation.fail("expected JSON property {0} to be greater " "than {1:.2f} but it was {2:.2f}" .format(self.json_property_path, float(expected_value), float(actual_value))) def __repr__(self): return "{}: {} > {}".format(type(self).__name__, self.json_property_path, self.value) INDEXED_ARRAY = re.compile(r"([^[]+)\[(\d+|\*)\]") class _JsonQuery(object): """Simple JSON query executor""" def __init__(self): pass # If your JSON response contains arrays, you can specify a particular # element of that array with the following syntax: # # path.to.array[index] # # Example: # # person.address[0] # # This regular expression helps match property paths using this syntax. @staticmethod def find(json, property_path): """Finds a property by traversing self.json_property_path""" root = json try: for path_elem in property_path.split('.'): match = INDEXED_ARRAY.search(path_elem) if match: # We have an array property and the caller has specified # which element of the array to validate against name = match.group(1) if match.group(2) == "*": # caller has supplied a wildcard # return the list element root = root[name] else: index = int(match.group(2)) root = root[name][index] else: root = root[path_elem] except Exception: return None return root
Alarmageddon
/Alarmageddon-1.1.2-py3-none-any.whl/alarmageddon/validations/json_expectations.py
json_expectations.py
import time from alarmageddon.validations.validation import Validation, Priority from pika import ConnectionParameters from pika.adapters import BlockingConnection from pika.credentials import PlainCredentials from pika.exceptions import AMQPError import logging logger = logging.getLogger(__name__) class RabbitMqContext(object): """information needed to connect and interact with RabbitMQ""" def __init__(self, host, port, user_name, password): self.host = host self.port = port self.user_name = user_name self.password = password def get_credentials(self): """get "plain" credentials based on this object's user name and password """ return PlainCredentials(self.user_name, self.password) def get_connection(self, timeout=None): """Connects to RabbitMQ and returns the connection object Third Party (pika) Bug: https://github.com/pika/pika/issues/354 - Once this bug is fixed we can take out our own retrying logic and use pika's retry logic. In the mean time, connection failure messages will be inaccurate; they'll say that only one connection attempt was made. """ return BlockingConnection( ConnectionParameters(host=self.host, credentials=self.get_credentials(), connection_attempts=1, retry_delay=0, socket_timeout=timeout)) class RabbitMqValidation(Validation): """A Validation that can be held against a RabbitMQ server""" def __init__(self, rabbitmq_context, name, queue_name, max_queue_size, priority=Priority.NORMAL, timeout=None, num_attempts=4, seconds_between_attempts=2, group=None, ignore_connection_failure=False): """Creates a RabbitMqValidation object.""" Validation.__init__(self, ("queue '{0}' should have less than {1} messages in in " + "it on RabbitMQ host: '{2}' ({3})") .format(queue_name, max_queue_size, rabbitmq_context.host, name), priority=priority, timeout=timeout, group=group) self.rabbitmq_context = rabbitmq_context self.max_queue_size = max_queue_size self.queue_name = queue_name self.num_attempts = num_attempts self.seconds_between_attempts = seconds_between_attempts self.ignore_connection_failure = ignore_connection_failure def perform(self, group_failures): """Perform the validation. If the validation fails, call self.fail passing it the reason for the failure. """ try: (conn, chan) = self._connect() except AMQPError as ex: #if we're here we're intentionally ignoring the failure return try: queue = chan.queue_declare(self.queue_name, passive=True) message_count = queue.method.message_count if message_count > self.max_queue_size: self.fail("Too many messages in queue ({0} messages)." .format(message_count)) except AMQPError as ex: self.fail("RabbitMQ exception throw from host: {0}. {1}" .format(self.rabbitmq_context.host, repr(ex))) finally: if conn: conn.close() def _connect(self): """connect to the RabbitMQ server""" for attempt in range(1, self.num_attempts + 1): try: conn = self.rabbitmq_context.get_connection(self.timeout) chan = conn.channel() return (conn, chan) except AMQPError as ex: if attempt >= self.num_attempts: if self.ignore_connection_failure: raise ex else: self.fail( "Could not access RabbitMQ host {0} because {1}" .format(self.rabbitmq_context.host, repr(ex))) else: time.sleep(self.seconds_between_attempts)
Alarmageddon
/Alarmageddon-1.1.2-py3-none-any.whl/alarmageddon/validations/rabbitmq.py
rabbitmq.py
from .exceptions import EnrichmentFailure, ValidationFailure GLOBAL_NAMESPACE = "GLOBAL" class Priority(object): """Priority levels that indicate how severe a validation failure is. Validations have a priority that publishers use to determine whether or not to publish in the case of failure. """ # If a LOW priority Validation fails, the failure be recorded for posterity # but not reported to a human (e.g. logged in continuous integration server # job history but not reported to IRC/HipChat) LOW = 1 # If a NORMAL priority Validation fails, the failure should be reported to # a human but it should not wake up a human (e.g. send a notification to # IRC/HipChat, Graphite). Additionally the failure should be logged for # posterity as in the case of LOW priority failures. NORMAL = 2 # If a CRITICAL priority Validation fails, a human should be woken up # (e.g. create an incident in PagerDuty). Additionally the failure should # be more politely reported to humans (e.g. via IRC/HipChat, Graphite, # etc.) and recorded for posterity as in the case of NORMAL and LOW # priority failures. CRITICAL = 3 @staticmethod def string(priority): """Return the name of the priority (e.g. normal, low, critical)""" if priority == Priority.NORMAL: return "normal" elif priority == Priority.LOW: return "low" elif priority == Priority.CRITICAL: return "critical" else: return "unknown priority: {0}".format(priority) class Validation(object): """The base class for validations. The base class for all classes that represent some form of validation (e.g. some expected system property that can be checked and categorized as either passing or failing). Examples of Validations include: an HTTP service returning an expected result in a specified amount of time, an Upstart process on a Linux server is in the running state, a Message Queue's queue length is lower than a maximum value. :param name: The name of this validation. :param priority: The :py:class:`.Priority` level of this validation. :param timeout: How long this validation can take before being considered a failure. If None, then the validation will never be considered a failure due to timing out. :param group: The group this validation belongs to. """ def __init__(self, name, priority=Priority.NORMAL, timeout=None, group=None): """Creates a Validation object with the supplied name and priority. Arguments: name -- The name of this Validation Keyword Arguments priority -- The priority of this Validation. timeout -- If this validation takes longer than this many seconds, it will be considered a failure. group -- The group this validation belongs to. """ self.name = name self.priority = priority self.timeout = timeout self.group = group #this should never be directly manipulated without very good reason #it is used to store extra data for publishers, and the primary #method of interaction should be the enric and get_enriched #functions in publisher.py self._enriched_data = {GLOBAL_NAMESPACE: {}} #determines the partial ordering of the validations #Alarmageddon guarantees that all Validations with lower order than #this Validation's order will run before this Validation runs. #most validations have no reason to change this self.order = 0 def perform(self, group_failures): """Perform the validation. If the validation fails, call self.fail passing it the reason for the failure. :param kwargs: A dictionary containing information from the whole Alarmageddon run. """ pass def fail(self, reason): """Log the validation as a failure. :param reason: The cause of the failure. :param stack_track: Whether or not to include a stack trace in the result. """ raise ValidationFailure(reason) def get_elapsed_time(self): """Return the amount of time this validation took. The :py:class:`.reporter.Reporter` will check here before using the call time. Overwrite this if you need more precise timing - eg, if you want to know how long an http request took, as opposed to how long that whole test took to execute. This function should return a number, not a timedelta. """ raise NotImplementedError def __str__(self): return "Validation {{ name: '{0}' priority: '{1}' timeout: {2}}}"\ .format(self.name, Priority.string(self.priority), self.timeout) def timer_name(self): """Return the name of the timer that corresponds to this validation. Used to indicate where a publisher should log the time taken. """ return None def enrich(self, publisher, values, force_namespace=False): """Adds publisher-specific information to the validation. Override at your own peril! Publishers are expected to assume the standard behavior from this function. :param publisher: The publisher to add enriched data for. :param values: The enriched data to add to this validation. :param force_namespace: If True, will never add the data to the global namespace. """ namespace = str(type(publisher)) enriched = self._enriched_data if namespace in enriched: raise EnrichmentFailure(publisher, self, values) enriched[namespace] = {} for key, value in list(values.items()): if force_namespace: enriched[namespace][key] = value else: if key not in enriched[GLOBAL_NAMESPACE]: enriched[GLOBAL_NAMESPACE][key] = value else: enriched[namespace][key] = value return self def get_enriched(self, publisher, force_namespace=False): """Retrieve the appropriate publisher-specific data. Will retrieve all global enriched data along with any extra publisher specific data. This means that if you enrich a validation for more than one publisher, this function may return a superset of the enriched data for a given publisher. Override at your own peril! Publishers are expected to assume the standard behavior from this function. :param publisher: The publisher to retrieve enriched data for. :param force_namespace: If True, will not retrieve global enrichments. """ namespace = str(type(publisher)) enriched = self._enriched_data #copy global data = {} if not force_namespace: data.update(enriched[GLOBAL_NAMESPACE]) try: data.update(enriched[namespace]) except KeyError: pass return data class GroupValidation(Validation): """A validation that checks the number of failures in a test group. The priority level will be set dynamically based on the number of failures and the supplied thresholds. :param name: The name of this validation. :param checked_group: The name of the group this validation will check. :param low_threshold: The number of failures at which this validation will itself fail. :param normal_threshold: The number of failures at which this validation will become NORMAL priority. :param critical_threshold: The number of failures at which this validation will become CRITICAL priority. :param order: This validation will run after all validations of lower order have run. Used when order matters - eg, creating a GroupValidation for a group of GroupValidations. :param group: The group this validation belongs to. """ def __init__(self, name, checked_group, low_threshold=float("inf"), normal_threshold=float("inf"), critical_threshold=float("inf"), order=1, group=None): Validation.__init__(self, name, priority=Priority.LOW, timeout=None, group=group) self.low_threshold = low_threshold self.normal_threshold = normal_threshold self.critical_threshold = critical_threshold self._clean_thresholds() self.order = order self.checked_group = checked_group def _clean_thresholds(self): """Ensure that the thresholds are consistent. `low_threshold` must be less than `normal_threshold` which must be less than `critical_threhsold`. If necessary, this function will alter the thresholds to ensure this condition is met. """ if self.normal_threshold > self.critical_threshold: self.normal_threshold = self.critical_threshold if self.low_threshold > self.normal_threshold: self.low_threshold = self.normal_threshold def perform(self, group_failures): """Perform the validation.""" failures = len(group_failures[self.checked_group]) messages = group_failures[self.checked_group] if failures >= self.low_threshold: self._set_priority(failures) self.fail("Group {0} had {1} failures! \n{2}".format( self.checked_group, failures, messages)) def _set_priority(self, failures): """Set priority of this validation based on the number of failures. :param failures: The number of failures in this validation's checked group. """ if failures >= self.critical_threshold: self.priority = Priority.CRITICAL elif failures >= self.normal_threshold: self.priority = Priority.NORMAL else: self.priority = Priority.LOW
Alarmageddon
/Alarmageddon-1.1.2-py3-none-any.whl/alarmageddon/validations/validation.py
validation.py
import datetime import requests from alarmageddon.validations.validation import Validation from alarmageddon.validations.graphite_expectations import \ LessThanExpectation, \ GreaterThanExpectation, \ AverageLessThanExpectation, \ AverageGreaterThanExpectation import logging import six logger = logging.getLogger(__name__) class GraphiteContext(object): """Create one of these and then pass it to all of the GraphiteValidation objects you create. """ def __init__(self, graphite_host): """Creates a GraphiteContext object""" self._graphite_host = graphite_host def get_graphite_host(self): """returns the Graphite host name""" return self._graphite_host def __repr__(self): return "{}: {}".format(type(self).__name__, self._graphite_host) class GraphiteValidation(Validation): """A Validation that queries Graphite for data and then validates any defined expecations against that data. """ def __init__(self, context, name, metric_name, time_range=datetime.timedelta(hours=1), **kwargs): """Creates a GraphiteValidation object""" Validation.__init__(self, name, **kwargs) self._context = context self.time_range = time_range self.metric_name = metric_name self._expectations = [] def perform(self, group_failures): """Perform the validation and propagate any failures to reporters""" readings = self._get_readings() if len(readings) == 0: self.fail("No readings for {0} were found" .format(self.metric_name)) for expectation in self._expectations: expectation.validate(readings, self.time_range) def fail(self, reason): """Causes this GraphiteValidation to fail with the given reason.""" Validation.fail(self, reason) def expect_average_in_range(self, lower_bound, upper_bound): """The average reading of the specified time range should fall between the upper and lower bound """ self.expect_average_less_than(upper_bound) self.expect_average_greater_than(lower_bound) return self def expect_in_range(self, lower_bound, upper_bound): """All readings in the specified time range should fall between the upper and lower bound """ self.expect_greater_than(lower_bound) self.expect_less_than(upper_bound) return self def expect_less_than(self, upper_bound): """All readings in the specified time range should fall below the upper bound """ self._expectations.append(LessThanExpectation(self, upper_bound)) return self def expect_average_less_than(self, upper_bound): """The average reading of the specified time range should fall below the upper bound """ self._expectations.append(AverageLessThanExpectation(self, upper_bound)) return self def expect_greater_than(self, lower_bound): """All readings in the specified time range should fall above the lower bound """ self._expectations.append(GreaterThanExpectation(self, lower_bound)) return self def expect_average_greater_than(self, lower_bound): """The average reading of the specified time range should fall above the lower bound """ self._expectations.append( AverageGreaterThanExpectation(self, lower_bound)) return self def _build_url(self): """Builds the URL for retrieving Graphite data for a metric""" return "{0}/render/?target={1}&format=raw&from=-{2}seconds"\ .format(self._context.get_graphite_host(), self.metric_name, self.time_range.total_seconds()) def _get_readings(self): """Return a list of readings for the metric as a list of floats and/or None values. A None reading means no data was sent to Graphite for that time period. """ url = self._build_url() logger.debug("Hitting graphite server at {}".format(url)) resp = requests.get(url) logger.debug("Graphite response: {}".format(resp)) if resp.status_code < 200 or resp.status_code >= 300: self.fail(("Could not get data from Graphite. " + "URL: {0}, Metric: {1}, Status Code: {2}," + "Response: {3}").format(url, self.metric_name, resp.status_code, resp.text)) chunks = resp.text.strip().split('|') if len(chunks) == 2: readings = [] for tok in chunks[1].split(','): if tok == six.u('None'): readings.append(None) else: readings.append(float(tok)) return readings else: self.fail("Unexpected response from Graphite: {0}" .format(resp.text))
Alarmageddon
/Alarmageddon-1.1.2-py3-none-any.whl/alarmageddon/validations/graphite.py
graphite.py
class ResponseExpectation(object): """An expectation placed on an HTTP response.""" def __init__(self): pass def validate(self, validation, response): """If the expectation is met, do nothing. If the expectation is not met, call validation.fail(...) """ pass class _ExpectedStatusCodes(ResponseExpectation): """An expectation about an HTTP response's status code""" def __init__(self, status_codes): """Create an ExpectedStatusCodes object that expects the HTTP response's status code to be one of the elements in status_codes. """ ResponseExpectation.__init__(self) self.status_codes = status_codes def validate(self, validation, response): """This expectation is met if the HTTP response code is one of the elements of self.status_codes """ if response.status_code not in self.status_codes: string_code = ' or '.join(str(status) for status in self.status_codes) if len(string_code) > 33: string_code = string_code[:34] + "..." validation.fail( "expected status code: {0}, actual status code: {1} ({2})" .format(string_code, response.status_code, response.reason)) def __repr__(self): return "{}: Code {}".format(type(self).__name__, self.status_codes) class ExpectContainsText(ResponseExpectation): """An expectation that an HTTP response will include some text.""" def __init__(self, text): """Creates an ExpectContainsText object that expects the HTTP response text to contain the specified text. """ ResponseExpectation.__init__(self) self.text = text def validate(self, validation, response): if not self.text in response.text: validation.fail("could not find '{0}' in response body: '{1}'" .format(self.text, response.text)) def __repr__(self): return "{}: expect {}".format(type(self).__name__, self.text) class ExpectedHeader(ResponseExpectation): """An expectation that an HTTP response will include a header with a specific name and value. """ def __init__(self, name, value): """Creates an ExpectedHeader object.""" ResponseExpectation.__init__(self) self.name = name self.value = value def validate(self, validation, response): if self.name not in response.headers: validation.fail("No header named: '{0}'. Found header names: {1}" .format(self.name, ', '.join(list(response.headers.keys())))) elif self.value != response.headers[self.name]: validation.fail( "The value of the '{0}' header is '{1}', expected '{2}'" .format(self.name, response.headers[self.name], self.value)) def __repr__(self): return "{}: {} should be {}".format(type(self).__name__, self.name, self.value) class ExpectedContentType(ExpectedHeader): """An expectation that an HTTP response will have a particular content type """ def __init__(self, content_type): ExpectedHeader.__init__(self, "Content-Type", content_type)
Alarmageddon
/Alarmageddon-1.1.2-py3-none-any.whl/alarmageddon/validations/http_expectations.py
http_expectations.py
import sys import os import time import re import pytest import warnings import paramiko from fabric import Connection from alarmageddon.validations.validation import Validation, Priority import logging logger = logging.getLogger(__name__) class SshContext(object): """Context that SSH commands execute in: the user and the user's key file. Note that the list of hosts is not part of the SshContext because it changes at a very high rate compared to the user name and their key file. """ def __init__(self, user, key_file): """Creates an SshContext object""" if not user: raise ValueError("user parameter is required") if not key_file: raise ValueError("key_file parameter is required") if not os.path.exists(os.path.expanduser(key_file)): raise ValueError("key_file: {0} does not exist".format(key_file)) self.user = user self.key_file = key_file def __str__(self): """return a string representation of an SshContext object""" return "SSH Context {{ User: {0}, Key File: {1} }}"\ .format(self.user, self.key_file) def __repr__(self): return "{}: {} {}".format(type(self).__name__, self.user, self.key_file) class SshValidation(Validation): """A Validation that is performed using SSH (more specifically, fabric)""" def __init__(self, ssh_context, name, priority=Priority.NORMAL, timeout=None, group=None, connection_retries=0, hosts=None): """Creates an SshValidation object""" Validation.__init__(self, name, priority, timeout, group=group) self.context = ssh_context if hosts is not None: self.hosts = hosts else: self.hosts = [] self.expectations = [] self.retries = connection_retries self._exit_code_expectation = _ExitCodeEquals(self, 0) def add_hosts(self, hosts): """Add additional hosts to run validations against""" warnings.warn("Add hosts in the constructor rather than through this" + " method", FutureWarning) self.hosts.extend(hosts) return self def perform(self, group_failures): """Perform validation against all of this object's hosts""" if not self.hosts: self.fail("no hosts specified.") ssh_kwargs = {"key_filename": self.context.key_file} #now we can add our default expectation self.expectations.append(self._exit_code_expectation) for host in self.hosts: with Connection(host=host, user=self.context.user, connect_kwargs=ssh_kwargs) as connection: for i in range(self.retries + 1): try: self.perform_on_host(connection) break except paramiko.SSHException as ex: # TODO: Paramiko doesn't surface a separate sort of exception # for timeouts like fabric1 did. This probably needs more logic # to not catch issues that could allow for retrying # we connected, so don't retry self.fail_on_host( host, "SSH Command timed out: {0}".format(str(ex))) except Exception as ex: if i >= self.retries: self.fail_on_host( host, "SSH Command Exception: {0}" .format(str(ex))) time.sleep(2) def fail_on_host(self, host, reason): """signal failure the test on a particular host""" self.fail("[{0}] {1}".format(host, reason)) def perform_on_host(self, connection): """perform a validation against a particular host""" self.fail_on_host( connection.host, "perform_on_host must be overriden by derived classes") def add_expectation(self, expectation): """Adds an expectation deriving from SshCommandExpectation to the list of expectations to be performed as part of the validation. """ if isinstance(expectation, SshCommandExpectation): self.expectations.append(expectation) return self else: raise ValueError("attempt to add expectation that does not" + " derive from SshCommandExpectation.") def expect_exit_code(self, exit_code): """Add the expectation that the SSH command's exit code is equal to exit_code """ self._exit_code_expectation = _ExitCodeEquals(self, exit_code) return self def expect_output_contains(self, text): """Add the expectation that the SSH command's output contains text""" self.add_expectation(OutputContains(self, text)) return self def expect_output_does_not_contain(self, text): """Add the expectation that the SSH command's output does not contain text """ self.add_expectation(OutputDoesNotContain(self, text)) return self class SshCommandValidation(SshValidation): """A validation that runs a command and checks zero or more expectations against its exit code and/or output. """ def __init__(self, ssh_context, name, command, working_directory=None, environment=None, priority=Priority.NORMAL, use_sudo=False, timeout=None, connection_retries=0, group=None, hosts=None): SshValidation.__init__(self, ssh_context, name, priority=priority, timeout=timeout, connection_retries=connection_retries, group=group, hosts=hosts) self.command = command self.working_directory = working_directory # Not supported yet self.environment = environment or {} # Not supported yet self.use_sudo = use_sudo self.expectations = [] def perform_on_host(self, connection): """Runs the SSH Command on a host and checks to see if all expectations are met. """ if self.use_sudo: output = connection.sudo(self.command, err_stream=sys.stdout, timeout=self.timeout, warn=True) else: output = connection.run(self.command, err_stream=sys.stdout, timeout=self.timeout, warn=True) logger.info("Got output {} from host {}".format(output, connection.host)) exit_code = output.return_code for expectation in self.expectations: expectation.validate(self, connection.host, output.stdout, exit_code) class UpstartServiceValidation(SshCommandValidation): """Validates that the specified upstart process is in the specified state (e.g. running) """ def __init__(self, ssh_context, service_name, service_state="running", priority=Priority.NORMAL, timeout=None, group=None, hosts=None): SshCommandValidation.__init__(self, ssh_context, "{0} service should be {1}" .format(service_name, service_state), "status {0}".format(service_name), use_sudo=True, timeout=None, group=group, hosts=hosts) self.expect_output_contains(service_state) class LoadAverageValidation(SshValidation): """Validates that a server's load average falls within a set of parameters """ def __init__(self, ssh_context, priority=Priority.NORMAL, timeout=None, group=None, hosts=None): """Creates an SshLoadAverageValidation object""" SshValidation.__init__(self, ssh_context, "load average", priority=priority, timeout=None, group=group, hosts=hosts) # If a limit is None, then there is no limit. self.limits = { 1: {'min': None, 'max': None}, 5: {'min': None, 'max': None}, 15: {'min': None, 'max': None} } def expect_min_1_minute_load(self, min_load): """expect a minimum 1 minute load""" self.limits[1]['min'] = min_load return self def expect_min_5_minute_load(self, min_load): """expect a minimum 5 minute load""" self.limits[5]['min'] = min_load return self def expect_min_15_minute_load(self, min_load): """expect a minimum 15 minute load""" self.limits[15]['min'] = min_load return self def expect_max_1_minute_load(self, max_load): """expect a maximum 1 minute load""" self.limits[1]['max'] = max_load return self def expect_max_5_minute_load(self, max_load): """expect a maximum 5 minute load""" self.limits[5]['max'] = max_load return self def expect_max_15_minute_load(self, max_load): """expect a maximum 15 minute load""" self.limits[15]['max'] = max_load return self def perform_on_host(self, connection): """Runs the SSH Command on a host and checks to see if all expectations are met. """ (load_1, load_5, load_15) = SshCommands.get_uptime(connection) self.check(connection.host, 1, load_1) self.check(connection.host, 5, load_5) self.check(connection.host, 15, load_15) def check(self, host, minutes, load): """Make sure that the n-minute load average for the given host is within the allowed range. """ # Check if the maximum was exceeded (if it was defined) if self.limits[minutes]['max'] and load > self.limits[minutes]['max']: self.fail_on_host(host, ("{0} minute load too high on {1}. " + "Maximum Load: {2:.2f}, Current Load: {3:.2f}") .format(minutes, host, self.limits[minutes]['max'], load)) # Check if the Minimum was exceeded (if it was defined) if self.limits[minutes]['min'] and load < self.limits[minutes]['min']: self.fail_on_host(host, ("{0} minute load too low on {1}. " + "Minimum Load: {2:.2f}, Current Load: {3:.2f}") .format(minutes, host, self.limits[minutes]['min'], load)) def add_expectation(self, expectation): raise NotImplementedError def expect_exit_code(self, exit_code): raise NotImplementedError class SshCommandExpectation(object): """Base class for expectations that can be placed on an SshValidation""" def __init__(self, validation): self.validation = validation def validate(self, validation, host, command_output, exit_code): """Defined by derived classes""" pass def fail_on_host(self, host, reason): """Report a failure and the host the failure occurred on""" self.validation.fail_on_host(host, reason) def __repr__(self): return "{}: on {}".format(type(self).__name__, self.validation) class _ExitCodeEquals(SshCommandExpectation): """Expects that the exit code of an SSH command is equal to a specific value """ def __init__(self, validation, exit_code): SshCommandExpectation.__init__(self, validation) self.exit_code = exit_code def validate(self, validation, host, command_output, exit_code): if exit_code != self.exit_code: self.fail_on_host(host, "Exit Code should have been {0} but was {1}" .format(self.exit_code, exit_code)) def __repr__(self): return "{}:Code {} on {}".format(type(self).__name__, self.exit_code, self.validation) class OutputContains(SshCommandExpectation): """Expects that the output of an SSH command is contains specified text""" def __init__(self, validation, text): SshCommandExpectation.__init__(self, validation) self.text = text def validate(self, validation, host, command_output, exit_code): if self.text not in command_output: self.fail_on_host(host, ("Command output should contain: '{0}'. " + "Output: '{1}'") .format(self.text, command_output)) def __repr__(self): return "{}:Expect {} on {}".format(type(self).__name__, self.text, self.validation) class OutputDoesNotContain(SshCommandExpectation): """Expects that the output of an SSH command does not contain specified text """ def __init__(self, validation, text): SshCommandExpectation.__init__(self, validation) self.text = text def validate(self, validation, host, command_output, exit_code): if self.text in command_output: self.fail_on_host(host, ("Command output should not contain: '{0}'. " + "Output: '{1}'") .format(self.text, command_output)) def __repr__(self): return "{}:Do not expect {} on {}".format(type(self).__name__, self.text, self.validation) class OutputLessThan(SshCommandExpectation): """Expects that the output of an SSH command is less than the specified value. This method casts the command_output string to a float to do the comparison. """ def __init__(self, validation, value): SshCommandExpectation.__init__(self, validation) self.value = value def validate(self, validation, host, command_output, exit_code): command_output_as_float = float(command_output) if not command_output_as_float < self.value: self.fail_on_host(host, "Command output greater than or equal to " + "expected: '{0}'. Output: '{1}'" .format(self.value, str(command_output))) def __repr__(self): return "{}:Value < {} on {}".format(type(self).__name__, self.value, self.validation) class OutputGreaterThan(SshCommandExpectation): """Expects that the output of an SSH command is greater than the specified value. This method casts the command_output string to a float to do the comparison. """ def __init__(self, validation, value): SshCommandExpectation.__init__(self, validation) self.value = value def validate(self, validation, host, command_output, exit_code): command_output_as_float = float(command_output) if not command_output_as_float > self.value: self.fail_on_host(host, "Command output was less than or equal to " + "expected: '{0}'. Output: '{1}'" .format(self.value, command_output)) def __repr__(self): return "{}:Value > {} on {}".format(type(self).__name__, self.value, self.validation) UPTIME_REGEX = re.compile(r"load average: (\d+\.\d+), (\d+\.\d+), (\d+\.\d+)") class SshCommands(object): """Some commands that might be helpful""" def __init__(self): pass @staticmethod def get_cpu_count(connection): """return the number of processors on the server""" return int(connection.run("grep processor /proc/cpuinfo | wc -l"), warn=True) @staticmethod def get_uptime(connection): """return the system uptime""" output = connection.run("uptime", warn=True) match = UPTIME_REGEX.search(output) if match: return (float(match.group(1)), float(match.group(2)), float(match.group(3))) else: pytest.fail("Could not get uptime. Command output was: {0}" .format(output))
Alarmageddon
/Alarmageddon-1.1.2-py3-none-any.whl/alarmageddon/validations/ssh.py
ssh.py
# Bert-BiLSTM-CRF-pytorch 使用谷歌预训练bert做字嵌入的BiLSTM-CRF序列标注模型 本模型使用谷歌预训练bert模型(https://github.com/google-research/bert), 同时使用pytorch-pretrained-BERT(https://github.com/huggingface/pytorch-pretrained-BERT) 项目加载bert模型并转化为pytorch参数,CRF代码参考了SLTK(https://github.com/liu-nlper/SLTK) 准备数据格式参见data 模型参数可以在config中进行设置 运行代码 python main.py train --use_cuda=False --batch_size=10 预测 python main.py test --load_path result/pytorch_model.bin python main.py test --load_path result/pytorch_model.bin --use_cuda=False python main.py test --load_path data/bert/run albert 版本 <!-- 大约6.5g内存 --> <!-- 使用base模型 --> <!-- 下载模型 https://www.kaggle.com/terrychanorg/pytorch-albert-zh --> python al_main.py train --use_cuda=False --batch_size=50 --base_epoch=1 python al_main.py test --load_path result/pytorch_model.bin --use_cuda=False --load_model=Ture 预测 python al_main.py pre_one --text "柯基犬真是和牛逼" pytorch.bin 百度网盘链接 链接:https://pan.baidu.com/s/160cvZXyR_qdAv801bDY2mQ 提取码:q67r  作者也是新手,很希望看到的大家能够提意见,共同学习
AlbertMarker
/AlbertMarker-0.0.1.1.tar.gz/AlbertMarker-0.0.1.1/README.md
README.md
import torch import os import datetime import unicodedata import json class InputFeatures(object): def __init__(self, input_id, label_id, input_mask): self.input_id = input_id self.label_id = label_id self.input_mask = input_mask def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = {} index = 0 with open(vocab_file, "r", encoding="utf-8") as reader: while True: token = reader.readline() if not token: break token = token.strip() vocab[token] = index index += 1 return vocab def read_corpus(path, max_length, label_dic, vocab): """ :param path:数据文件路径 :param max_length: 最大长度 :param label_dic: 标签字典 :return: """ # file = open(path, encoding='utf-8') # content = file.readlines() # file.close() result = [] # with open(path, 'r', encoding = 'utf-8') as f: tjson=Tjson(file_path=path) for line in tjson.load(): # text, label = line.strip().split('|||') # tokens = text.split() # label = label.split() # print(line) tokens=line['text'] label=line['label'] if len(tokens) > max_length-2: tokens = tokens[0:(max_length-2)] label = label[0:(max_length-2)] tokens_f =['[CLS]'] + tokens + ['[SEP]'] label_f = ["<start>"] + label + ['<eos>'] input_ids = [int(vocab[i]) if i in vocab else int(vocab['[UNK]']) for i in tokens_f] label_ids = [label_dic[i] for i in label_f] input_mask = [1] * len(input_ids) while len(input_ids) < max_length: input_ids.append(0) input_mask.append(0) label_ids.append(label_dic['<pad>']) assert len(input_ids) == max_length assert len(input_mask) == max_length assert len(label_ids) == max_length feature = InputFeatures(input_id=input_ids, input_mask=input_mask, label_id=label_ids) result.append(feature) return result class InputPreFeatures(object): def __init__(self, input_id, input_mask): self.input_id = input_id # self.label_id = label_id self.input_mask = input_mask def build_input(content, max_length, vocab): """ :param content: 输入句子列表 :param max_length: 最大长度 :return: """ # file = open(path, encoding='utf-8') # content = file.readlines() # file.close() result = [] for line in content: # text, label = line.strip().split('|||') tokens = line.split() # label = label.split() if len(tokens) > max_length-2: tokens = tokens[0:(max_length-2)] # label = label[0:(max_length-2)] # print(tokens) tokens_f =['[CLS]'] + tokens + ['[SEP]'] # print('tokens_f',tokens_f) # label_f = ["<start>"] + label + ['<eos>'] input_ids = [int(vocab[i]) if i in vocab else int(vocab['[UNK]']) for i in tokens_f] # label_ids = [label_dic[i] for i in label_f] input_mask = [1] * len(input_ids) while len(input_ids) < max_length: input_ids.append(0) input_mask.append(0) # label_ids.append(label_dic['<pad>']) assert len(input_ids) == max_length assert len(input_mask) == max_length # assert len(label_ids) == max_length feature = InputPreFeatures(input_id=input_ids, input_mask=input_mask) result.append(feature) return result def save_model(model, epoch, path='result', **kwargs): """ 默认保留所有模型 :param model: 模型 :param path: 保存路径 :param loss: 校验损失 :param last_loss: 最佳epoch损失 :param kwargs: every_epoch or best_epoch :return: """ if not os.path.exists(path): os.mkdir(path) if kwargs.get('name', None) is None: # cur_time = datetime.datetime.now().strftime('%Y-%m-%d#%H:%M:%S') # name = cur_time + '--epoch:{}'.format(epoch) name="pytorch_model.bin" full_name = os.path.join(path, name) torch.save(model.state_dict(), full_name) # print('Saved model at epoch {} successfully'.format(epoch)) with open('{}/checkpoint'.format(path), 'w') as file: file.write(name) # print('Write to checkpoint') def load_model(model, path='result', **kwargs): if kwargs.get('name', None) is None: with open('{}/checkpoint'.format(path)) as file: content = file.read().strip() name = os.path.join(path, content) else: name=kwargs['name'] # name = os.path.join(path,name) name = os.path.join(name) # print('name',name) model.load_state_dict(torch.load(name, map_location=lambda storage, loc: storage)) # print('load model {} successfully'.format(name)) return model class Tjson: """ 处理json信息函数 """ def __init__(self,file_path="data.json"): self.file_path=file_path def save(self,data): """ 保存数据函数 逐行写入 >>> data=[{'a':'ess'}] """ with open(self.file_path, 'a+', encoding='utf-8') as f: for item in data: line = json.dumps(item, ensure_ascii=False) f.write(line+'\n') def load(self): """ 加载数据 """ with open(self.file_path, 'r', encoding = 'utf-8') as f: for line in f: data=json.loads(line[:-1]) yield data """ #使用 data=[{'a':'ess'}] Json().save(data) print(Json().load()) """
AlbertMarker
/AlbertMarker-0.0.1.1.tar.gz/AlbertMarker-0.0.1.1/marker/utils.py
utils.py
import torch import torch.nn as nn from torch.autograd import Variable from config import Config from model import ALBERT_LSTM_CRF import torch.optim as optim from utils import load_vocab, read_corpus, load_model, save_model,build_input,Tjson from torch.utils.data import TensorDataset from torch.utils.data import DataLoader import fire class Pre: """ 执行预测操作 content=["柯基犬是个狗子"] P=Pre() result=P.pre(content) print(result) >>>[('柯基犬真是和牛逼', [{'type': '实体', 'words': ['柯', '基', '犬']}])] """ def __init__(self): self.args={ "load_path":"result/pytorch_model.bin", "load_model":True, "use_cuda":False, } config = Config() config.update_json(self.args) self.config=config print( self.config) self.load_model() def load_model(self): """ 加载模型 """ # config = Config() # config.update_json(self.args) config=self.config # print('当前设置为:\n', config) if config.use_cuda: torch.cuda.set_device(config.gpu) # print('loading corpus') vocab = load_vocab(config.vocab) label_dic = load_vocab(config.label_file) tagset_size = len(label_dic) model = ALBERT_LSTM_CRF(config.albert_path, tagset_size, config.albert_embedding, config.rnn_hidden, config.rnn_layer, dropout_ratio=config.dropout_ratio, dropout1=config.dropout1, use_cuda=config.use_cuda) if config.load_model: assert config.load_path is not None # model = load_model(model, name=config.load_path) if config.use_cuda: model.cuda() # return model, vocab, label_dic self.model, self.vocab, self.label_dic=model, vocab, label_dic def build_input(self,content_array): """ 基于文本列表构建训练数据集 """ config=self.config model, vocab, label_dic=self.model, self.vocab, self.label_dic new_content_array=[] content_dict={} for i, content in enumerate (content_array): new_content_array.append(" ".join(list(content))) # content_dict[i]=content # print(content) # print(content_dict) input_data = build_input(content=new_content_array, max_length=self.config.max_length, vocab=self.vocab) # print(input_data) input_ids = torch.LongTensor([temp.input_id for temp in input_data]) input_masks = torch.LongTensor([temp.input_mask for temp in input_data]) input_dataset = TensorDataset(input_ids, input_masks) input_loader = DataLoader(input_dataset, shuffle=True, batch_size=self.config.batch_size) return input_loader def pre(self,content_array=[]): """ 执行预测 输入多个句子即可 """ config=self.config model, vocab, label_dic=self.model, self.vocab, self.label_dic content_dict={} for i, content in enumerate (content_array): # new_content_array.append(" ".join(list(content))) content_dict[i]=content output=[] for i, batch in enumerate(self.build_input(content_array)): inputs, masks = batch # print('inputs',inputs) inputs, masks= Variable(inputs), Variable(masks) # print("masks",masks) if self.config.use_cuda: inputs, masks = inputs.cuda(), masks.cuda() feats = model(inputs) # print("feats",feats) path_score, best_path = model.crf(feats, masks.bool()) # print("feats",path_score, best_path) for item in best_path.numpy(): # print(item.tolist()) words=[] for n,id in enumerate( item.tolist()): word_id=inputs.numpy().tolist()[0][n] l=list(label_dic)[id] w=list(self.vocab)[word_id] words.append((w,l)) # print('words',words) wd={"type":None,"words":[]} wd_list=[] for w,l in words: # print(wd) if l.startswith("B-"): wd["type"]=l.split("B-")[1] wd["words"].append(w) elif l.startswith("M-"): wd["type"]=l.split("M-")[1] wd["words"].append(w) elif l.startswith("E-"): wd["type"]=l.split("E-")[1] wd["words"].append(w) wd_list.append(wd) wd={"type":None,"words":[]} elif l.startswith("S-"): wd["type"]=l.split("S-")[1] wd["words"].append(w) wd_list.append(wd) wd={"type":None,"words":[]} # print('wd_list',wd_list) # print(i) output.append((content_dict[i],wd_list)) return output def pre_one(**kwargs): # content="柯基犬性格活泼可爱,但是饲养柯基犬会有着六个坏处,你还敢饲养柯基犬吗?" # print(**kwargs) P=Pre() result=P.pre([kwargs['text']]) print(result) if __name__ == '__main__': fire.Fire() # test()
AlbertMarker
/AlbertMarker-0.0.1.1.tar.gz/AlbertMarker-0.0.1.1/marker/marker.py
marker.py
[![PyPi Version](https://img.shields.io/pypi/v/AlbertUnruhUtils)](https://pypi.org/project/AlbertUnruhUtils) [![Python Versions](https://img.shields.io/pypi/pyversions/AlbertUnruhUtils)](https://pypi.org/project/AlbertUnruhUtils) [![Build](https://img.shields.io/github/workflow/status/AlbertUnruh/AlbertUnruhUtils.py/Upload%20Python%20Package)](https://github.com/AlbertUnruh/AlbertUnruhUtils.py/actions/workflows/python-publish.yml) [![License: MIT](https://img.shields.io/pypi/l/AlbertUnruhUtils)](https://choosealicense.com/licenses/mit) [![Code Style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) [![[tokei.rs - Code Lines]](https://tokei.rs/b1/github/AlbertUnruh/AlbertUnruhUtils.py?category=code)](https://tokei.rs) [![[tokei.rs - Total Lines]](https://tokei.rs/b1/github/AlbertUnruh/AlbertUnruhUtils.py?category=lines)](https://tokei.rs) [![[tokei.rs - Files]](https://tokei.rs/b1/github/AlbertUnruh/AlbertUnruhUtils.py?category=files)](https://tokei.rs) # **Note:** **Please head over to [AlbertUnruhUtils.py](https://pypi.org/project/AlbertUnruhUtils.py).** **This project is discontinued here!** **But it 'll be continued here ([AlbertUnruhUtils.py](https://pypi.org/project/AlbertUnruhUtils.py)) and follows [SemVer](https://semver.org).** --- # AlbertUnruhUtils A collection of utils written in Python # Installing **Python 3.9 or higher is required!** via pip: (recommended) ```shell pip3 install -U AlbertUnruhUtils ``` latest develop-version: *(requires git to be installed)* ```shell git clone https://github.com/AlbertUnruh/AlbertUnruhUtils.py cd AlbertUnruhUtils.py pip3 install -U . ``` or simply ```shell pip3 install -U git+https://github.com/AlbertUnruh/AlbertUnruhUtils.py.git#egg=AlbertUnruhUtils ``` # Docs coming soon...
AlbertUnruhUtils
/AlbertUnruhUtils-2022.1.29.2.tar.gz/AlbertUnruhUtils-2022.1.29.2/README.md
README.md
__all__ = ("TeX",) import typing from pathlib import Path from io import BytesIO from os import PathLike import matplotlib.pyplot as plt from PIL import Image, ImageChops from ..utils import not_implemented from .. import __url__ _PathLike = typing.Union[ PathLike, Path, str, ] _Color = typing.Union[ typing.Iterable[float], str, ] class TeX: _color: _Color _file: Path _format: str _tex: str __slots__ = ( "_color", "_file", "_format", "_tex", ) def __init__( self, tex: str, *, file: _PathLike = "tex.png", format: str = "png", # noqa color: _Color = "#fe4b03", # aka "blood orange" ) -> None: """ Parameters ---------- tex: str The input which should be displayed. file: _PathLike Sets the default value for `file`. format Sets the default value for `format`. color Sets the default value for `color`. """ if not tex.startswith("$"): tex = f"${tex}$" self._tex = tex self._file = Path(file) self._format = format self._color = color @classmethod @not_implemented( f"This feature is coming soon. Feel free to push it and open a PR on GitHub ({__url__})." ) def from_python_code( cls, function: typing.Callable, *, file: _PathLike = "tex.png", format: str = "png", # noqa color: _Color = "#fe4b03", # aka "blood orange" ) -> "TeX": """ Creates TeX from a function. Parameters ---------- function: typing.Callable The Function which should be converted to TeX. file: _PathLike Sets the default value for `file`. format Sets the default value for `format`. color Sets the default value for `color`. Returns ------- TeX """ @property def tex(self) -> str: return self._tex @property def default_color(self) -> _Color: return self._color @property def default_file(self) -> Path: return self._file @property def default_format(self) -> str: return self._format def create_image( self, *, format: typing.Optional[str] = None, # noqa color: typing.Optional[_Color] = None, ) -> Image.Image: """ Creates the TeX-image. Parameters ---------- format: str, optional If `None` the default for `format` 'll be used. color: _Color, optional If `None` the default for `color` 'll be used. Returns ------- Image.Image The TeX-image. """ if format is None: format = self.default_format # noqa if color is None: color = self.default_color buffer = BytesIO() plt.rc("text", usetex=True) plt.axis("off") plt.text(0, 0, self._tex, size=40, color=color) plt.savefig(buffer, format=format, transparent=True) plt.close() image = Image.open(buffer) bg = Image.new(image.mode, image.size, (0,) * 4) # type: ignore diff = ImageChops.difference(image, bg) bbox = diff.getbbox() return image.crop(bbox) def save_to_file( self, file: typing.Optional[_PathLike] = None, /, format: typing.Optional[str] = None, # noqa color: typing.Optional[_Color] = None, ) -> Path: """ Saves the TeX-image to a file. Parameters ---------- file: _PathLike, optional If `None` the default for `file` 'll be used. format: str, optional If `None` the default for `format` 'll be used. color: _Color, optional If `None` the default for `color` 'll be used. Returns ------- Path The path to the saved TeX-image. """ if file is None: file = self.default_file else: file = Path(file) if format is None: format = self.default_format # noqa if color is None: color = self.default_color image = self.create_image(format=format, color=color) image.save(file) return file def __main(): """ This is just a little function to test our TeX-cLaSs. """ eulers_identity = r"e^{i\pi}+1=0" file = TeX(eulers_identity).save_to_file() print(f"saved Euler's Identity to {file.absolute()}")
AlbertUnruhUtils.py
/AlbertUnruhUtils.py-2.3.0-py3-none-any.whl/AlbertUnruhUtils/visual/tex.py
tex.py
__all__ = ("ServerRateLimit",) import functools import typing import uuid from redis import Redis from time import time C_IN = typing.TypeVar("C_IN") C_OUT = typing.TypeVar("C_OUT") class ServerRateLimit: """Docs 'll come soon... (If you want docs right now you can take a look into ``__init__``)""" section: dict[str, dict[str, int]] retrieve_section: typing.Callable[[...], tuple[str, typing.Union[str, int]]] __slots__ = ( "sections", "retrieve_section", "_redis", ) def __init__( self, sections: dict[str, dict[str, int]], retrieve_section: typing.Callable[[...], tuple[str, typing.Union[str, int]]], *, redis: Redis = None, ): """ Parameters ---------- sections: dict[str, dict[str, int]] Parameter ``sections`` requires following structure: ```py >>> { ... "<NAME or TYPE (e.g. user, admin etc.)>": { ... # type: int ... "amount": 10 ... ... # type: int ... "interval": 60 # in seconds ... ... # type: int ... "timeout": 60 # in seconds # if a section requests to often then the timeout 'll be applied ... }, ... "<second NAME or TYPE>": { ... ... ... }, ... ... ... } ``` retrieve_section: typing.Callable[[...], tuple[str, typing.Union[str, int]]] This function 'll feed all it's data from the original callable. e.g. ```py >>> @ServerRateLimit({"user": {...}, "admin": {...}}, retrieve) ... def foo(*args, **kwargs) -> ...: ... pass ... >>> def retrieve(*args, **kwargs) -> (str, str): ... '''This is just an example, you have to manage yourself how you ... set it (can also be static by using a simple lambda-expression)''' ... if "admin_id" in kwargs: ... return "admin", 0 ... return "user", 0 ``` redis: Redis, optional An own redis can optionally be set. Notes ----- The first return value from ``retrieve_section`` is the ``section``, the second is the ``id`` to have every section separated. """ self.sections = sections self.retrieve_section = retrieve_section if redis is None: redis = Redis("127.0.0.1", 6262, 0) self._redis = redis def __call__( self, func: typing.Callable[[C_IN], C_OUT], ) -> typing.Callable[[C_IN], tuple[tuple[bool, dict[str, int]], C_OUT]]: def decorator(*args, **kwargs) -> tuple[tuple[bool, dict[str, int]], C_OUT]: """ Returns ------- tuple[tuple[bool, dict[str, int]], C_OUT] """ section, id = self.retrieve_section(*args, **kwargs) # noqa if section not in self.sections: raise RuntimeError( "Can't use key {section!r}. You have to return one of the following: {possible}".format( section=section, possible=", ".join(f"{k!r}" for k in self.sections), ) ) self._check_timeout(section, id) timeout = self._calculate_timeout(section, id) remaining = self._calculate_remaining_calls(section, id) data = { "request": { "remaining": -1, "limit": self.sections[section]["amount"], "period": self.sections[section]["interval"], "timeout": timeout, } } if not remaining > 0 or timeout: data["request"]["remaining"] = self._calculate_remaining_calls( section, id ) return (False, data), () self._record_call(section, id) data["request"]["remaining"] = self._calculate_remaining_calls(section, id) return (True, data), func(*args, **kwargs) return functools.update_wrapper(decorator, func) def _record_call( self, section: str, id: typing.Union[str, int], # noqa ) -> None: """ Parameters ---------- section: str id: str, int """ key = f"call-{section}-{id}" self._redis.execute_command( f"ZADD {key} {time()+self.sections[section]['interval']} {uuid.uuid4()}" ) self._redis.expire(key, self.sections[section]["interval"]) def _calculate_remaining_calls( self, section: str, id: typing.Union[str, int], # noqa ) -> int: """ Parameters ---------- section: str id: str, int Returns ------- int """ key = f"call-{section}-{id}" # cleanup self._redis.zremrangebyscore(key, 0, time()) return self.sections[section]["amount"] - int( self._redis.zcount(key, 0, 2**62) or 0 ) def _check_timeout( self, section: str, id: typing.Union[str, int], # noqa ) -> None: """ Parameters ---------- section: str id: str, int """ key = f"cooldown-{section}-{id}" if not self._calculate_remaining_calls(section, id) > 0: if not self._redis.exists(key): self._redis.append(key, 1) self._redis.expire(key, self.sections[section]["timeout"]) def _calculate_timeout( self, section: str, id: typing.Union[str, int], # noqa ) -> int: """ Parameters ---------- section: str id: str, int Returns ------- int """ key = f"cooldown-{section}-{id}" return max(0, self._redis.ttl(key)) if __name__ == "__main__": r = Redis() @ServerRateLimit( {"default": {"interval": 10, "amount": 10, "timeout": 20}}, lambda: ("default", 0), redis=r, ) def test(): return "<--test()-->" from time import sleep while True: print(test.__name__, test()) sleep(0.5)
AlbertUnruhUtils.py
/AlbertUnruhUtils.py-2.3.0-py3-none-any.whl/AlbertUnruhUtils/ratelimit/server.py
server.py
__all__ = ( "deprecated", "copy_docs", "not_implemented", ) import re import typing import warnings from copy import copy from functools import wraps _Version = typing.Union[str, tuple[int]] _Function = typing.TypeVar("_Function", bound=typing.Callable) _Docs_NumPy = typing.Literal["NumPy", "numpy", "NumPyDoc", "numpydoc"] _Doc_Style = typing.Union[_Docs_NumPy] def deprecated( since: _Version = None, *, instead: typing.Union[str, typing.Callable] = None, update_docs: bool = True, doc_style: _Doc_Style = "NumPy", ) -> typing.Callable[[_Function], _Function]: """ Marks a function/method as deprecated. Parameters ---------- since: _Version Since when the function/method is deprecated. instead: str, typing.Callable, optional What function/method should be used instead. update_docs: bool Whether the docs should be updated or not. doc_style: _Doc_Style The DocStyle to use to update the docs. """ def outer(func: _Function) -> _Function: message = "{0.__name__} is deprecated".format(func) if since is not None: if not isinstance(since, str): version = ".".join(str(v) for v in since) else: version = since message += " since version {0}".format(version) message += "." if instead is not None: if not isinstance(instead, str): name = instead.__name__ else: name = instead message += " Use {0} instead.".format(name) if update_docs: # know issue: if a class isn't initialized # the method will be called function f_o_c = func.__class__.__name__ # NumPy if doc_style in _Docs_NumPy.__args__: # type: ignore lines = [ f"", f"Deprecation", f"-----------", f"This {f_o_c} " + message.split(maxsplit=1)[-1], f"", ] # invalid else: supported = [] for g in _Doc_Style.__args__: # type: ignore for s in g.__args__: supported.append(s) raise ValueError( f"Unknown or unsupported formatting style {doc_style!r} for docstrings! " f"Use one of them instead: {', '.join(supported)}" ) tab = "" if func.__doc__: res = re.findall(r"^\s+", func.__doc__) if res: tab = res[0].removeprefix("\n") func.__doc__ += "\n".join(tab + line for line in lines) @wraps(func) def inner(*args, **kwargs): filters = copy(warnings.filters) warnings.filters = [] warnings.warn(message=message, category=DeprecationWarning) warnings.filters = filters return func(*args, **kwargs) return inner return outer def not_implemented( reason: str = None, *, update_docs: bool = True, doc_style: _Doc_Style = "NumPy", ) -> typing.Callable[[_Function], _Function]: """ Marks a function/method as not implemented, but as coming soon. (And they might open a PR to implement it for you :D) Parameters ---------- reason: str The reason why this function/method is not implemented yet. update_docs: bool Whether the docs should be updated or not. doc_style: _Doc_Style The DocStyle to use to update the docs. """ def outer(func: _Function) -> _Function: message = "{0.__name__} is not implemented yet".format(func) if reason: message += " with following reason: {0}".format(reason) if not message.endswith("."): message += "." if update_docs: # know issue: if a class isn't initialized # the method will be called function f_o_c = func.__class__.__name__ # NumPy if doc_style in _Docs_NumPy.__args__: # type: ignore # this goes on top of the __doc__ lines0 = [ f"", f"This {f_o_c} " + message.split(maxsplit=1)[-1], f"", ] # this goes at the end of the __doc__ lines1 = [ f"", f"Raises", f"------", f"NotImplementedError", f"", ] if reason: lines1.insert(-1, " " * 4 + reason) # invalid else: supported = [] for g in _Doc_Style.__args__: # type: ignore for s in g.__args__: supported.append(s) raise ValueError( f"Unknown or unsupported formatting style {doc_style!r} for docstrings! " f"Use one of them instead: {', '.join(supported)}" ) tab = "" if func.__doc__: res = re.findall(r"^\s+", func.__doc__) if res: tab = res[0].removeprefix("\n") else: func.__doc__ = "" doc_start = "\n" if func.__doc__.startswith("\n") else "" func.__doc__ = ( doc_start + ("\n".join(tab + line for line in lines0)) + (func.__doc__ or "") ) func.__doc__ += "\n".join(tab + line for line in lines1) @wraps(func) def inner(*_, **__): filters = copy(warnings.filters) warnings.filters = [] warnings.warn(message=message, category=UserWarning) warnings.filters = filters raise NotImplementedError(message) return inner return outer def copy_docs( docs: typing.Union[str, object], *, append: bool = False, add_copy_note: bool = False, custom_origin: str = None, ) -> typing.Callable[[_Function], _Function]: """ Copies docs from an object or str to the decorated function/method/class. Parameters ---------- docs: str, object The docs to copy. append: bool Whether the docs should be appended or be replaced. add_copy_note: bool Whether the docs should have a note that it was copied or not. custom_origin: str, optional The origin which should be displayed if ``add_copy_note`` is set to ``True``. """ _docs = copy(docs) if not isinstance(docs, str): docs = docs.__doc__ if add_copy_note: if custom_origin: origin = custom_origin else: try: origin = _docs.__name__ except AttributeError: origin = _docs.__class__.__name__ lines = [ f"", f"", f"copied from {origin}", f"", ] else: lines = [] def decorator(func: _Function) -> _Function: # to keep the indentation-style tab = "" if func.__doc__: res = re.findall(r"^\s+", func.__doc__) if res: tab = res[0].removeprefix("\n") if not append: func.__doc__ = "" # to be able to replace it later with ``tab`` docs_tab = "" if docs: res = re.findall(r"^\s+", docs) if res: docs_tab = res[0].removeprefix("\n") func.__doc__ += "\n".join( tab + line.removeprefix(docs_tab) for line in docs.splitlines() ) func.__doc__ += "\n".join(tab + line for line in lines) return func return decorator
AlbertUnruhUtils.py
/AlbertUnruhUtils.py-2.3.0-py3-none-any.whl/AlbertUnruhUtils/utils/decorator.py
decorator.py
__all__ = ( "get_version", "is_version", "is_lower_version", "is_higher_version", ) import importlib import re import types import typing def _version_to_tuple( version: str, /, *, sep: str = ".", keep_dev_version: bool = True, semver: bool = False, ) -> tuple[int, ...]: """ Parameters ---------- version: str The raw version. sep: str The separator for e.g. major and minor. keep_dev_version: bool Whether to keep developer-versions or not. semver: bool Whether the return should be structured like a semantic version (https://semver.org) Returns ------- tuple[int, ...] Notes ----- If ``keep_dev_version`` is set to ``True`` the return may also contain ``str``. """ t_version = () for v in version.split(sep): try: t_version += (int(v),) except ValueError: # eg "0a3" first = re.findall(r"^[\d]+", v) if first: t_version += (int(first[0]),) if keep_dev_version: covered = len(sep.join(str(v) for v in t_version)) t_version += (version[covered:].removeprefix(sep),) break if semver: while len(t_version) < 3: t_version += (0,) if len(t_version) > 3: t_version = t_version[:3] + tuple([sep.join(str(v) for v in t_version[3:])]) return t_version def get_version( module_o_name: typing.Union[types.ModuleType, str], /, *, sep: str = ".", keep_dev_version: bool = True, semver: bool = False, ) -> tuple[int, ...]: """ Parameters ---------- module_o_name: types.ModuleType, str The module of which you want the version. sep: str The separator for e.g. major and minor. keep_dev_version: bool Whether to keep developer-versions or not. semver: bool Whether the return should be structured like a semantic version (https://semver.org) Returns ------- tuple[int, ...] Notes ----- If ``keep_dev_version`` is set to ``True`` the return may also contain ``str``. """ # get module if isinstance(module_o_name, types.ModuleType): module = module_o_name elif module_o_name in globals(): module = globals()[module_o_name] else: module = importlib.import_module(module_o_name) # get version if hasattr(module, "version_info"): version = sep.join(str(v) for v in module.version_info) elif hasattr(module, "__version__"): version = module.__version__ elif hasattr(module, "version"): version = module.version else: version = "0.0.0a" # one of the lowest versions if no version is set return _version_to_tuple( version, sep=sep, keep_dev_version=keep_dev_version, semver=semver, ) def is_version( module_o_version: typing.Union[types.ModuleType, str, tuple[int, ...]], version: typing.Union[tuple[int, ...], str], /, *, sep: str = ".", keep_dev_version: bool = True, semver: bool = False, ) -> bool: """ MODULE_o_VERSION == VERSION Parameters ---------- module_o_version: types.ModuleType, str, tuple[int, ...] The module or version of which you want to check the version. version: tuple[int, ...], str The version to check against. sep: str The separator for e.g. major and minor. keep_dev_version: bool Whether to keep developer-versions or not. semver: bool Whether the return should be structured like a semantic version (https://semver.org) Returns ------- bool """ try: # module? m_version = get_version( module_o_version, sep=sep, keep_dev_version=keep_dev_version, semver=semver, ) except ModuleNotFoundError: # version! if isinstance(module_o_version, str): m_version = _version_to_tuple( module_o_version, sep=sep, keep_dev_version=keep_dev_version, semver=semver, ) else: m_version = module_o_version if isinstance(version, str): version = _version_to_tuple( version, sep=sep, keep_dev_version=keep_dev_version, semver=semver, ) return m_version == version def is_lower_version( module_o_version: typing.Union[types.ModuleType, str, tuple[int, ...]], version: typing.Union[tuple[int, ...], str], /, *, sep: str = ".", keep_dev_version: bool = True, semver: bool = False, ) -> bool: """ MODULE_o_VERSION < VERSION Parameters ---------- module_o_version: types.ModuleType, str, tuple[int, ...] The module or version of which you want to check the version. version: tuple[int, ...], str The version to check against. sep: str The separator for e.g. major and minor. keep_dev_version: bool Whether to keep developer-versions or not. semver: bool Whether the return should be structured like a semantic version (https://semver.org) Returns ------- bool """ try: # module? m_version = get_version( module_o_version, sep=sep, keep_dev_version=keep_dev_version, semver=semver, ) except ModuleNotFoundError: # version! if isinstance(module_o_version, str): m_version = _version_to_tuple( module_o_version, sep=sep, keep_dev_version=keep_dev_version, semver=semver, ) else: m_version = module_o_version if isinstance(version, str): version = _version_to_tuple( version, sep=sep, keep_dev_version=keep_dev_version, semver=semver, ) # workaround for dev-versions if len(m_version) != len(version): for m, v in zip(m_version, version): if m != v: break else: # one of these have e.g. "alpha" at the end return len(m_version) > len(version) return m_version < version def is_higher_version( module_o_version: typing.Union[types.ModuleType, str, tuple[int, ...]], version: typing.Union[tuple[int, ...], str], /, *, sep: str = ".", keep_dev_version: bool = True, semver: bool = False, ) -> bool: """ MODULE_o_VERSION > VERSION Parameters ---------- module_o_version: types.ModuleType, str, tuple[int, ...] The module or version of which you want to check the version. version: tuple[int, ...], str The version to check against. sep: str The separator for e.g. major and minor. keep_dev_version: bool Whether to keep developer-versions or not. semver: bool Whether the return should be structured like a semantic version (https://semver.org) Returns ------- bool """ args = [ module_o_version, version, ] kwargs = { "sep": sep, "keep_dev_version": keep_dev_version, "semver": semver, } lt = is_lower_version(*args, **kwargs) # noqa eq = is_version(*args, **kwargs) # noqa return not (lt or eq)
AlbertUnruhUtils.py
/AlbertUnruhUtils.py-2.3.0-py3-none-any.whl/AlbertUnruhUtils/utils/version.py
version.py
__all__ = ("ServerRateLimit",) import functools import typing import uuid from aioredis import Redis from time import time C_IN = typing.TypeVar("C_IN") C_OUT = typing.TypeVar("C_OUT") class ServerRateLimit: """Docs 'll come soon... (If you want docs right now you can take a look into ``__init__``)""" sections: dict[str, dict[str, int]] retrieve_section: typing.Callable[[...], typing.Awaitable[tuple[str, str]]] __slots__ = ("sections", "retrieve_section", "_redis") def __init__( self, sections: dict[str, dict[str, int]], retrieve_section: typing.Callable[ [...], typing.Awaitable[tuple[str, typing.Union[str, int]]] ], *, redis: Redis = None, ): """ Parameters ---------- sections: dict[str, dict[str, int]] Parameter ``sections`` requires following structure: ```py >>> { ... "<NAME or TYPE (e.g. user, admin etc.)>": { ... # type: int ... "amount": 10 ... ... # type: int ... "interval": 60 # in seconds ... ... # type: int ... "timeout": 60 # in seconds # if a section requests to often then the timeout 'll be applied ... }, ... "<second NAME or TYPE>": { ... ... ... }, ... ... ... } ``` retrieve_section: typing.Callable[[...], typing.Awaitable[tuple[str, typing.Union[str, int]]]] This function 'll feed all it's data from the original callable. e.g. ```py >>> @ServerRateLimit({"user": {...}, "admin": {...}}, retrieve) ... async def foo(*args, **kwargs) -> ...: ... pass ... >>> async def retrieve(*args, **kwargs) -> (str, str): ... '''This is just an example, you have to manage yourself how you ... set it (can also be static by using a simple lambda-expression)''' ... if "admin_id" in kwargs: ... return "admin", 0 ... return "user", 0 ``` redis: Redis, optional An own redis can optionally be set. Notes ----- The first return value from ``retrieve_section`` is the ``section``, the second is the ``id`` to have every section separated. """ self.sections = sections self.retrieve_section = retrieve_section if redis is None: redis = Redis(host="127.0.0.1", port=6262, db=0) self._redis = redis def __call__( self, func: typing.Callable[[C_IN], typing.Awaitable[C_OUT]], ) -> typing.Callable[ [C_IN], typing.Awaitable[tuple[tuple[bool, dict[str, int]], C_OUT]] ]: async def decorator( *args, **kwargs ) -> tuple[tuple[bool, dict[str, int]], C_OUT]: """ Returns ------- tuple[tuple[bool, dict[str, int]], C_OUT] """ section, id = await self.retrieve_section(*args, **kwargs) # noqa if section not in self.sections: raise RuntimeError( "Can't use key {section!r}. You have to return one of the following: {possible}".format( section=section, possible=", ".join(f"{k!r}" for k in self.sections), ) ) await self._check_timeout(section, id) timeout = await self._calculate_timeout(section, id) remaining = await self._calculate_remaining_calls(section, id) data = { "request": { "remaining": -1, "limit": self.sections[section]["amount"], "period": self.sections[section]["interval"], "timeout": timeout, } } if not remaining > 0 or timeout: data["request"]["remaining"] = await self._calculate_remaining_calls( section, id ) return (False, data), () await self._record_call(section, id) data["request"]["remaining"] = await self._calculate_remaining_calls( section, id ) return (True, data), await func(*args, **kwargs) return functools.update_wrapper(decorator, func) async def _record_call( self, section: str, id: typing.Union[str, int], # noqa ) -> None: """ Parameters ---------- section: str id: str, int """ key = f"call-{section}-{id}" await self._redis.execute_command( f"ZADD {key} {time()+self.sections[section]['interval']} {uuid.uuid4()}" ) await self._redis.expire(key, self.sections[section]["interval"]) async def _calculate_remaining_calls( self, section: str, id: typing.Union[str, int], # noqa ) -> int: """ Parameters ---------- section: str id: str, int Returns ------- int """ key = f"call-{section}-{id}" # cleanup await self._redis.zremrangebyscore(key, 0, time()) return self.sections[section]["amount"] - int( await self._redis.zcount(key, 0, 2**62) or 0 ) async def _check_timeout( self, section: str, id: typing.Union[str, int], # noqa ) -> None: """ Parameters ---------- section: str id: str, int """ key = f"cooldown-{section}-{id}" if not await self._calculate_remaining_calls(section, id) > 0: if not await self._redis.exists(key): await self._redis.append(key, 1) await self._redis.expire(key, self.sections[section]["timeout"]) async def _calculate_timeout( self, section: str, id: typing.Union[str, int], # noqa ) -> int: """ Parameters ---------- section: str id: str, int Returns ------- int """ key = f"cooldown-{section}-{id}" return max(0, await self._redis.ttl(key)) if __name__ == "__main__": r = Redis() async def _(): return "default", 0 # noqa @ServerRateLimit( {"default": {"interval": 10, "amount": 10, "timeout": 20}}, _, redis=r, ) async def test(): return "<--test()-->" async def main(): from asyncio import sleep while True: print(test.__name__, await test()) await sleep(0.5) from asyncio import run run(main())
AlbertUnruhUtils.py
/AlbertUnruhUtils.py-2.3.0-py3-none-any.whl/AlbertUnruhUtils/asynchronous/ratelimit/server.py
server.py
Albertson ========= A library for super easy to use, reliable, and scalable counters. Homepage: [https://github.com/FocusLab/Albertson][3] **Albertson is in an alpha state and probably shouldn't be used in production by anybody just yet.** ![](http://upload.wikimedia.org/wikipedia/en/7/79/The_Simpsons-Jeff_Albertson.png) *"Worst library ever!"* Why --- Creating counters that handle incrementing at high levels of concurrency while also being highly available and fault tolerant is *really* hard. Thankfully, Amazon has solved these really hard bits with their [DynamoDB][2] service. Albertson provides a simple, clean, and easy to use, Python interface to DynamoDb for this specific use case. Who --- Albertson was created by the dev team at [FocusLab][1]. What's with the name? --------------------- Internally at FocusLab Albertson is used for real-time, authoritative, counts that are often used to correct less frequently updated counts throughout our system. Accordingly, we've named the library after our favorite fictional pedant, Comic Book Guy a.k.a. Jeff Albertson. [1]: https://www.focuslab.io [2]: http://aws.amazon.com/dynamodb/ [3]: https://github.com/FocusLab/Albertson
Albertson
/Albertson-0.1.8.tar.gz/Albertson-0.1.8/README.md
README.md
from datetime import datetime import boto from boto.dynamodb.exceptions import DynamoDBKeyNotFoundError ISO_FORMAT = '%Y-%m-%dT%H:%M:%S' class CounterPool(object): ''' Handles schema level interactions with DynamoDB and generates individual counters as needed. ''' table_name = None schema = { 'hash_key_name': 'counter_name', 'hash_key_proto_value': 'S', } read_units = 3 write_units = 5 def __init__(self, aws_access_key=None, aws_secret_key=None, table_name=None, schema=None, read_units=None, write_units=None, auto_create_table=True, ): """ :aws_access_key: AWS Acccess Key ID with permissions to use DynamoDB :aws_secret_key: AWS Access Secret Key for the given Access Key ID :table_name: The DynamoDB table that should be used to store this pool's counters. See http://bit.ly/DynamoDBModel for details on DynamoDB's data model. :schema: The schema that will be used to create a table if one does not already exist. See the `boto`<http://bit.ly/BotoCreateTable>_ docs for details on what's expected for a schema. :read_units: Read throughput to be set when a table is created. See http://bit.ly/DynamoThoughput for details on Dynamo's provisioned throughput system. :write_units: Write throughput to be set when a table is created. :auto_create_table: Should Albertson create a dynamodb table if the provided `table_name` doesn't exist. """ self.conn = self.get_conn(aws_access_key, aws_secret_key) self.table_name = table_name or self.table_name self.schema = schema or self.schema self.read_units = read_units or self.read_units self.write_units = write_units or self.write_units self.auto_create_table = auto_create_table super(CounterPool, self).__init__() def get_conn(self, aws_access_key=None, aws_secret_key=None): ''' Hook point for overriding how the CounterPool gets its connection to AWS. ''' return boto.connect_dynamodb( aws_access_key_id=aws_access_key, aws_secret_access_key=aws_secret_key, ) def get_table_name(self): ''' Hook point for overriding how the CounterPool determines the table name to use. ''' if not self.table_name: raise NotImplementedError( 'You must provide a table_name value or override the get_table_name method' ) return self.table_name def get_schema(self): ''' Hook point for overriding how the CounterPool determines the schema to be used when creating a missing table. ''' if not self.schema: raise NotImplementedError( 'You must provide a schema value or override the get_schema method' ) return self.conn.create_schema(**self.schema) def get_read_units(self): ''' Hook point for overriding how the CounterPool determines the read throughput units to set on a newly created table. ''' return self.read_units def get_write_units(self): ''' Hook point for overriding how the CounterPool determines the write throughput units to set on a newly created table. ''' return self.write_units def create_table(self): ''' Hook point for overriding how the CounterPool creates a new table in DynamooDB ''' table = self.conn.create_table( name=self.get_table_name(), schema=self.get_schema(), read_units=self.get_read_units(), write_units=self.get_write_units(), ) if table.status != 'ACTIVE': table.refresh(wait_for_active=True, retry_seconds=1) return table def get_table(self): ''' Hook point for overriding how the CounterPool transforms table_name into a boto DynamoDB Table object. ''' if hasattr(self, '_table'): table = self._table else: try: table = self.conn.get_table(self.get_table_name()) except boto.exception.DynamoDBResponseError: if self.auto_create_table: table = self.create_table() else: raise self._table = table return table def create_item(self, hash_key, start=0, extra_attrs=None): ''' Hook point for overriding how the CouterPool creates a DynamoDB item for a given counter when an existing item can't be found. ''' table = self.get_table() now = datetime.utcnow().replace(microsecond=0).isoformat() attrs = { 'created_on': now, 'modified_on': now, 'count': start, } if extra_attrs: attrs.update(extra_attrs) item = table.new_item( hash_key=hash_key, attrs=attrs, ) return item def get_item(self, hash_key, start=0, extra_attrs=None): ''' Hook point for overriding how the CouterPool fetches a DynamoDB item for a given counter. ''' table = self.get_table() try: item = table.get_item(hash_key=hash_key) except DynamoDBKeyNotFoundError: item = None if item is None: item = self.create_item( hash_key=hash_key, start=start, extra_attrs=extra_attrs, ) return item def get_counter(self, name, start=0): ''' Gets the DynamoDB item behind a counter and ties it to a Counter instace. ''' item = self.get_item(hash_key=name, start=start) counter = Counter(dynamo_item=item, pool=self) return counter class Counter(object): ''' Interface to individual counters. ''' def __init__(self, dynamo_item, pool): self.dynamo_item = dynamo_item self.pool = pool @property def name(self): return self.dynamo_item['counter_name'] @property def count(self): print self.dynamo_item return self.dynamo_item['count'] @property def created_on(self): return datetime.strptime(self.dynamo_item['created_on'], ISO_FORMAT) @property def modified_on(self): return datetime.strptime(self.dynamo_item['modified_on'], ISO_FORMAT) def refresh(self): self.dynamo_item = self.pool.get_item(hash_key=self.name) def increment(self, amount=1): item = self.dynamo_item item.add_attribute('count', amount) item.put_attribute( 'modified_on', datetime.utcnow().replace(microsecond=0).isoformat() ) result = item.save(return_values='UPDATED_NEW') item.update(result['Attributes']) return self.count def decrement(self, amount=1): return self.increment(amount * -1)
Albertson
/Albertson-0.1.8.tar.gz/Albertson-0.1.8/albertson/base.py
base.py
# Albot.Online Python Library A simple library for communicating with the [Albot.Online](https://Albot.Online) client. This is great for getting you up and running fast, allowing you to focus more on the AI logic. <br><br> ## Getting Started This library is available at [PyPi](https://Pypi.org), so to download and install simply use the command:<br> ``` pip install Albot.Online ``` Alternatively you can download the files directly from this repository and include them in your project. ## Example Following is a short example of the Python Library being put to use on the [Snake](https://www.albot.online/snake/) game. For exact information of how to use the library see the [documentation Wiki](https://github.com/Albot-Online/Albot-Python-Library/wiki). ```python from AlbotOnline.Snake.SnakeGame import SnakeGame import random game = SnakeGame() #Connects you to the Client while(game.awaitNextGameState() == "ongoing"): board = game.currentBoard board.printBoard("Current Board") playerMoves, enemyMoves = game.getPossibleMoves(board) game.makeMove(random.choice(playerMoves)) ``` This bot will simply connect to the client, look at what moves it currently has available and pick one at random. <br><br> ## Versioning Python: <b>3.6.5</b> <br> Library: <b>0.64</b> ## Authors Fredrik Carlsson ## License This project is licensed under the MIT License - see the [LICENSE.md](https://github.com/Albot-Online/Albot-Python-Library/blob/master/LICENSE) file for details
Albot.Online
/Albot.Online-0.65.tar.gz/Albot.Online-0.65/README.md
README.md
from AlbotOnline import AlbotConnection as AO from AlbotOnline.Snake.SnakeBoard import SnakeBoard import AlbotOnline.JsonProtocol as Prot import json class SnakeGame: def __init__(self, IP='127.0.0.1', Port=4000): self.connection = AO.AlbotConnection(bufferSize=16384, IP=IP, Port=Port, gameOverObj=self) self._initGameVars() def _initGameVars(self): self.currentBoard = SnakeBoard() self.gameOver = False def getNextBoard(self, oldBoard=None): if (self.connection.awaitingData == False): self.makePassMove() jMsg = self.connection.getNextJsonMsg() if (oldBoard != None): return SnakeBoard(oldBoard=oldBoard, jUpdate=jMsg) else: return SnakeBoard(jUpdate=jMsg) def awaitNextGameState(self): jMsg = self.connection.getNextJsonMsg() self.currentBoard = SnakeBoard(jUpdate=jMsg) self.boardState = jMsg[Prot.FIELDS.boardState] self.gameOver = self.boardState != Prot.STATES.ongoing return self.boardState def restartGame(self): self.connection.restartGame() self._initGameVars() def setGameOver(self, msg): self.gameOver = True self.currentBoard.gameOver = True print(msg) # makeMoves def makePassMove(self): self.connection.sendString(" ") def moveUp(self): self.connection.sendString(Prot.ACTIONS.Snake.up) def moveDown(self): self.connection.sendString(Prot.ACTIONS.Snake.down) def moveLeft(self): self.connection.sendString(Prot.ACTIONS.Snake.left) def moveRight(self): self.connection.sendString(Prot.ACTIONS.Snake.right) def makeMove(self, dir): if (dir == Prot.ACTIONS.Snake.up): self.moveUp() elif (dir == Prot.ACTIONS.Snake.down): self.moveDown() elif (dir == Prot.ACTIONS.Snake.left): self.moveLeft() elif (dir == Prot.ACTIONS.Snake.right): self.moveRight() def makeMoveInt(self, dir): self.makeMove(self.intToMove(dir)) def intToMove(self, dir): if (dir == 0): return Prot.ACTIONS.Snake.right elif (dir == 1): return Prot.ACTIONS.Snake.up elif (dir == 2): return Prot.ACTIONS.Snake.left elif (dir == 3): return Prot.ACTIONS.Snake.down # Raw msg handling def getnextJsonMsg(self): return self.connection.getNextJsonMsg() def getNextTCPStringMsg(self): return self.connection.getNextString() # TCP API def simulateMove(self, board, playerMove, enemyMove): jCommand = {Prot.FIELDS.action: Prot.ACTIONS.Snake.simMoveDelta, Prot.FIELDS.player: board.raw2Player, Prot.FIELDS.enemy: board.rawEnemy} jCommand[Prot.FIELDS.Snake.playerMove] = playerMove jCommand[Prot.FIELDS.Snake.enemyMove] = enemyMove self.connection.sendJsonDict(jCommand) return self.getNextBoard(oldBoard=board) def evaluateBoard(self, board): jCommand = {Prot.FIELDS.action: Prot.ACTIONS.evalBoard, Prot.FIELDS.board: board.getAPIBoard()} self.connection.sendJsonDict(jCommand) return self.connection.getNextJsonField(Prot.FIELDS.boardState) def getPossibleMoves(self, board): jCommand = {Prot.FIELDS.action: Prot.ACTIONS.getPossMoves, Prot.FIELDS.player: board.player.dir, Prot.FIELDS.enemy: board.enemy.dir} self.connection.sendJsonDict(jCommand) jResponse = self.connection.getNextJsonMsg() return jResponse[Prot.FIELDS.Snake.playerMoves], jResponse[Prot.FIELDS.Snake.enemyMoves] def playGame(self, decideMoveFunc, autoRestart=False): while (True): if (self.awaitNextGameState() != Prot.STATES.ongoing): if (autoRestart): self.restartGame() continue else: break move = decideMoveFunc(self.currentBoard) self.makeMove(move)
Albot.Online
/Albot.Online-0.65.tar.gz/Albot.Online-0.65/AlbotOnline/Snake/SnakeGame.py
SnakeGame.py
import AlbotOnline.GridBoard as Grid from AlbotOnline.Snake.SnakeConstants import Constants as C import AlbotOnline.JsonProtocol as Prot import copy class SnakeBoard(Grid.GridBoard): def __init__(self, oldBoard = None, jUpdate = None): self.blocked = [] if(oldBoard == None): Grid.GridBoard.__init__(self, width=C.width, height=C.height, numbers=False) elif(oldBoard != None): self._copyOldBoard(oldBoard) if(jUpdate != None): self._parseJsonMsg(jUpdate) def _parseJsonMsg(self, jUpdate): self.blocked.extend(jUpdate[Prot.FIELDS.Snake.blocked]) self._parseBlocked(jUpdate[Prot.FIELDS.Snake.blocked]) self.rawPlayer = jUpdate[Prot.FIELDS.player] self.raw2Player = {} self.raw2Player['x'] = self.rawPlayer['x'] self.raw2Player['y'] = self.rawPlayer['y'] self.player = self._parseSnakePlayer(self.rawPlayer, C.playerSign) self.rawEnemy = jUpdate[Prot.FIELDS.enemy] self.enemy = self._parseSnakePlayer(self.rawEnemy, C.enemySign) def _parseSnakePlayer(self, snakePlayerField, gridSign): temp = lambda: None temp.dir = snakePlayerField[Prot.FIELDS.Snake.direction] temp.x = snakePlayerField[Prot.FIELDS.Snake.posX] temp.y = snakePlayerField[Prot.FIELDS.Snake.posY] if(temp.x < C.width and temp.x >= 0 and temp.y < C.height and temp.y >= 0): self.grid[temp.y][temp.x] = gridSign return temp def _parseBlocked(self, blocked): for b in blocked: self.grid[b[Prot.FIELDS.Snake.posY]][b[Prot.FIELDS.Snake.posX]] = C.blockedSign def _copyOldBoard(self, oldBoard): self.grid = oldBoard.cloneGrid() self.height = oldBoard.height self.width = oldBoard.width self.blocked = copy.deepcopy(oldBoard.blocked) def printBoard(self, title=""): Grid.GridBoard.printBoard(self, title) #TCP API def getAPIBoard(self): return {Prot.FIELDS.player: self.rawPlayer, Prot.FIELDS.enemy: self.rawEnemy, Prot.FIELDS.Snake.blocked: self.blocked} def getAPIPlayers(self): return {Prot.FIELDS.player: self.rawPlayer, Prot.FIELDS.enemy: self.rawEnemy}
Albot.Online
/Albot.Online-0.65.tar.gz/Albot.Online-0.65/AlbotOnline/Snake/SnakeBoard.py
SnakeBoard.py
from AlbotOnline import AlbotConnection as AO import AlbotOnline.JsonProtocol as Prot import AlbotOnline.Connect4.Connect4Board as Board class Connect4Game: def __init__(self, IP='127.0.0.1', Port=4000): self.connection = AO.AlbotConnection(bufferSize=1024, IP=IP, Port=Port, gameOverObj=self) self.gameOver = False def makeMove(self, move): self.connection.sendString(str(move)) def setGameOver(self): self.gameOver = True def restartGame(self): self.connection.restartGame() def getNextBoard(self): jMsg = self.connection.getNextJsonMsg() rawBoard = jMsg[Prot.FIELDS.board] self.currentBoard = Board.Connect4Board(rawBoard) return self.currentBoard # Raw msg handling def getnextJsonMsg(self): return self.connection.getNextJsonMsg() def getNextTCPStringMsg(self): return self.connection.getNextString() # TCP-API def getPossibleMoves(self, board): jCommand = {Prot.FIELDS.action: Prot.ACTIONS.getPossMoves, Prot.FIELDS.board: board.grid} self.connection.sendJsonDict(jCommand) return self.connection.getNextJsonField(Prot.FIELDS.possibleMoves) def evaluateBoard(self, board): jCommand = {Prot.FIELDS.action: Prot.ACTIONS.evalBoard, Prot.FIELDS.board: board.grid} self.connection.sendJsonDict(jCommand) return self.connection.getNextJsonField(Prot.FIELDS.boardState) def simulateMove(self, board, move, player): jCommand = {Prot.FIELDS.action: Prot.ACTIONS.simMove, Prot.FIELDS.board: board.grid} jCommand[Prot.FIELDS.move] = move jCommand[Prot.FIELDS.player] = player self.connection.sendJsonDict(jCommand) rawBoard = self.connection.getNextJsonField(Prot.FIELDS.board) return Board.Connect4Board(rawBoard) def awaitNextGameState(self): jMsg = self.connection.getNextJsonMsg() rawBoard = jMsg[Prot.FIELDS.board] self.currentBoard = Board.Connect4Board(rawBoard) self.boardState = jMsg[Prot.FIELDS.boardState] self.gameOver = self.boardState != Prot.STATES.ongoing return self.boardState def playGame(self, decideMoveFunc, autoRestart=False): while (True): if (self.awaitNextGameState() != Prot.STATES.ongoing): if (autoRestart): self.restartGame() continue else: break move = decideMoveFunc(self.currentBoard) self.makeMove(move)
Albot.Online
/Albot.Online-0.65.tar.gz/Albot.Online-0.65/AlbotOnline/Connect4/Connect4Game.py
Connect4Game.py
import random import numpy as np class Simulation: def __init__(self, queueSize, aMin, aMax, bMin, bMax): self.queueSize = int(queueSize) self.queue = 0 self.flowCost = 0 self.serviceCost = 0 self.waitCost = 0 self.completedJobs = 0 self.aMin = aMin self.aMax = aMax self.bMin = bMin self.bMax = bMax def tick(self, flowControl, serviceControl): if(self._canAddMoreJobs()): B = flowControl(self.queue, self.queueSize, self.bMin, self.bMax) self._addFlowCost(B) self._addJobb(B) self._addCurrentWaitCost() if(self._canServeJobs()): A = serviceControl(self.queue, self.queueSize, self.aMin, self.aMax) self._addServiceCost(A) self._serveJob(A) return self.getStateVector(B, A) def getStateVector(self, immediateFlowCost, immediateServiceCost): vec = lambda: None vec.totalWaitTime = self.waitCost vec.totalFlowCost = self.flowCost vec.totalServiceCost = self.serviceCost vec.immWaitCost = self.currentWCost vec.immFlowPower = immediateFlowCost vec.immServicePower = immediateServiceCost vec.completedJobs = self.completedJobs vec.currentQueue = self.queue vec.queueSize = self.queueSize return vec def _addCurrentWaitCost(self): self.currentWCost = self.queue self.waitCost += self.queue #Flow Controller def _canAddMoreJobs(self): return self.queue < self.queueSize def _addJobb(self, B): if(random.random() >= B): self.queue += 1 def _addFlowCost(self, B): self.flowCost += B #Service Controller def _canServeJobs(self): return self.queue > 0 def _serveJob(self, A): if(random.random() >= A): self.queue -= 1 self.completedJobs += 1 def _addServiceCost(self, A): self.serviceCost += A
Albot.Online
/Albot.Online-0.65.tar.gz/Albot.Online-0.65/AlbotOnline/QueueFlowServiceControl/Simulation.py
Simulation.py
import os import re import json5 import datetime import itertools import subprocess from pathlib import Path from filehash import FileHash from argparse import ArgumentParser from multiprocessing import Pool class _Cons: iDiPa: Path oDiPa: Path exifRules: dict typeLogos: dict ################################################################ def __init__(self): parser = ArgumentParser() parser.add_argument('i', type=Path) parser.add_argument('o', type=Path) args = parser.parse_args() self.iDiPa = args.i.absolute() self.oDiPa = args.o.absolute() assert self.iDiPa.is_dir() assert not self.oDiPa.exists() ################################################################ self.exifRules = { 'Type': ['FileType'], 'Extension': ['FileTypeExtension'], 'Brand': [ 'Make', # 'HandlerVendorID', ], 'Model': ['Model'], 'Moment': [ "SubSecCreateDate", # "SubSecDateTimeOriginal", "MediaCreateDate", "DateTimeOriginal", "ModifyDate", "FileModifyDate", ], } self.typeLogos = { 'BMP': '📸', 'DNG': '📸', 'JPEG': '📸', 'MKA': '🎤', 'MOV': '📹', 'M4A': '🎤', 'MP3': '🎤', 'MP4': '📹', 'PNG': '📸', 'WAV': '🎤', '': '❔', } pass pass ################################################################ def _genTypePart(t: str, typeLogos: dict): if t in typeLogos: logo = typeLogos[t] return '|'.join([logo, t]) pass else: print('Unknown Type:', t) pass pass def _genDevicePart(brand: str, model: str): return '|'.join([_.replace(' ', '-') for _ in [brand, model]]) def _genMomentPart(val: str, lev: int): val = val.replace('::', ':') head = val[:19] tail = val[19:] dt = datetime.datetime.strptime(head, '%Y:%m:%d %H:%M:%S') delta = re.search('[+-]\d+:\d+', tail) if delta: delta = delta.group(0) sign = {'+': -1, '-': 1}[delta[0]] h = int(delta[1:3]) m = int(delta[4:6]) delta = sign * datetime.timedelta(hours=h, minutes=m) dt += delta pass ms = re.search('\.\d+', tail) ms = ms.group(0)[1:4] if ms else '~~~' __date = dt.strftime('%Y-%m-%d') __time = dt.strftime('%H`%M`%S,') + ms __level = chr(9312 + lev) return '|'.join([__date, __time, __level]) def _genFiPa(tFiPa: Path, _CONS: _Cons): cmd = 'ExifTool -j "%s"' % tFiPa proc = subprocess.run(cmd, stdout=subprocess.PIPE, check=False, encoding='UTF-8') exif = json5.loads(proc.stdout)[0] keyInfo = dict() for field, rule in _CONS.exifRules.items(): value = '' level = None for lev, tag in enumerate(rule): if tag in exif: val = str(exif[tag]) if not val.startswith('0000'): value = val level = lev break pass pass keyInfo[field] = (value, level) pass typePart = _genTypePart(keyInfo['Type'][0], _CONS.typeLogos) devicePart = _genDevicePart(keyInfo['Brand'][0], keyInfo['Model'][0]) momentPart = _genMomentPart(*keyInfo['Moment']) ext = keyInfo['Extension'][0] fn = (momentPart + '.' + ext) if ext else momentPart destFiPa: Path = _CONS.oDiPa / typePart / devicePart / fn return destFiPa def _genMeta(iFiPa: Path, tFiPa: Path, _CONS: _Cons): modify: float = os.path.getmtime(iFiPa) iFiPa.rename(tFiPa) destFiPa: Path = _genFiPa(tFiPa, _CONS) tFiPa.rename(iFiPa) hCode: str = FileHash('sha1').hash_file(iFiPa) meta = ( hCode, modify, destFiPa, iFiPa, ) return meta ################################################################ def _analyze(metas: list[tuple[str, float, Path, Path]]): quads = sorted(metas) quadGroups = [tuple(_[1]) for _ in itertools.groupby(quads, lambda _: _[0])] pairs = sorted([list(_[0])[2:] for _ in quadGroups]) pairGroups: list[tuple[Path, Path]] = [tuple(_[1]) for _ in itertools.groupby(pairs, lambda _: _[0])] tasks = list() for group in pairGroups: for idx, (destFiPa, iFiPa) in enumerate(group): oFiPa = destFiPa.with_stem('%s|%d' % (destFiPa.stem, idx + 1)) tasks.append((iFiPa, oFiPa)) pass pass return tasks ################################################################ def _main(_CONS): iFiPas = [Path(_[0]) / fn for _ in os.walk(_CONS.iDiPa) for fn in _[2]] L = len(iFiPas) cons = [_CONS] * L fmt = '{:0>%d}' % len(str(L - 1)) tDiPa = _CONS.oDiPa tFiPas = [tDiPa / fmt.format(_) for _ in range(L)] args = list(zip(iFiPas, tFiPas, cons)) tDiPa.mkdir(parents=True) with Pool() as pool: metas = pool.starmap(_genMeta, args) pass tasks: list[tuple[Path, Path]] = _analyze(metas) for iFiPa, oFiPa in tasks: oFiPa.parent.mkdir(parents=True, exist_ok=True) iFiPa.rename(oFiPa) pass pass def CLI(): _CONS = _Cons() _main(_CONS) pass if __name__ == '__main__': CLI() pass
Albumize
/Albumize-1.3.tar.gz/Albumize-1.3/Albumize.py
Albumize.py
# pylint: disable=no-member invalid-name from socket import socket, gethostbyname from ssl import SSLContext, SSLZeroReturnError, SSLError from json import loads, dumps from time import sleep from threading import Thread class Message(): """Message class""" def __init__(self, event): if "ok" in event: self.ok = event["ok"] else: self.ok = True if "update_id" in event: self.update_id = event["update_id"] event = event["message"] if "from" in event: self.user = self.From(event["from"]) del event["from"] if "chat" in event: self.chat = self.Chat(event["chat"]) del event["chat"] for i in event: if isinstance(event[i], list): if len(event[i]) == 1: event[i] = event[i][0] for j in event[i]: # To test, dynamic class creation # if isinstance(j, dict): # for k in j: # self.__dict__[k] = j[k] # new_class = type(i, (), { # "__init__": lambda self: for l in j: self.__dict__[l] = j[l] # }) if isinstance(event[i][j], dict): for k in event[i][j]: self.__dict__[i][j][k] = event[i][j][k] else: self.__dict__[j] = event[i][j] # [i][j] ? else: self.__dict__[i] = event[i] class From(): """from dictionary value""" def __init__(self, event): for i in event: self.__dict__[i] = event[i] class Chat(): """chat dictionary value""" def __init__(self, event): for i in event: self.__dict__[i] = event[i] class TBot(): """Main Class""" def __init__(self, TOKEN: str): self.__url = gethostbyname("api.telegram.org") self.__token = TOKEN self.__commands = {} self.__offset = 0 self.update_frequence = 1 # seconds self.username: str self.__process_func = [] #only 1? : function self.__sock = None self.__sock = self.__connect(self.__sock) #mhhhhhhh self.__solve_me() def __connect(self, sock): if hasattr(sock, "closed"): if not sock.closed: sock.close() sock = socket(2, 1) sock.connect((self.__url, 443)) sock = SSLContext().wrap_socket(sock) return sock def __solve_me(self): if (response:= self.__get("getMe")): self.username = '@' + response.username def __get(self, method, arguments=None): request = f"GET /bot{self.__token}/{method}" multiple = False if arguments: for i in arguments: if multiple: request += '&' else: request += '?' multiple = True request += i + '=' + str(arguments[i]) request += f" HTTP/1.1\nHost: {self.__url}\n\n" self.__sock.send(request.encode()) try: response = loads(self.__sock.recv( 65535 * 20).decode().split("\r\n\r\n", 1)[1]) if response["ok"]: retval = [] response = response["result"] if isinstance(response, list): for i in response: retval.append(Message(i)) return retval return Message(response) # return False except IndexError: # return False pass except SSLError: self.__sock = self.__connect(self.__sock) def _update(self): if (response:= self.__get("getUpdates", {"offset": self.__offset})): self.__offset = response[len(response) - 1].update_id + 1 return response return None def _check(self): response = self._update() if not response: return for i in response: if hasattr(i, "type"): if i.type == "bot_command": match = False if i.type == "supergroup": i.text = i.text.replace( self.username, '') for j in self.__commands: if j == i.text: Thread(target=self.__commands[j](i)).start() match = True break if not match and '*' in self.__commands: self.__commands['*'](i) for k in self.__process_func: Thread(target=k, args=[i, ]).start() def command(self, *args): """Add a command handler""" def wrapper(func): self.__commands[args[0]] = func return func return wrapper def process(self, func): """ Add a process handler. Functions added here will be called every time there is an update. """ self.__process_func.append(func) def run(self): """Start the bot""" while 1: try: self._check() except (ConnectionAbortedError, SSLZeroReturnError):#, SSLError): self.__sock = self.__connect(self.__sock) sleep(self.update_frequence) def send_image_from_url(self, event, url): """Send an image to an user""" return self.__get("sendPhoto", {"chat_id": event.chat_id, "photo": url}).ok def send(self, event, message, *args): """Send a message""" message = { "chat_id": event.chat.id, "text": message.replace("\n", "%0A") } # Use Message() for i in args: message[i[0]] = i[1] return self.__get("sendMessage", message) def send_id(self, chat_id, message): """Send a message to an id""" message = { "chat_id": chat_id, "text": message.replace("\n", "%0A") } # Use Message() return self.__get("sendMessage", message) def get_chat(self, event): """Send chat informations""" return self.__get("getChat", {"chat_id": event.chat.id}) class Scheduler(): """Schedule function call""" def __init__(self): self.__funcs = [] def schedule(self, func, time, repeat=True, call=False, asynchronous=True): # args=None """Schedule a new function call""" self.__funcs.append(func) if call: if asynchronous: Thread(target=func).start() else: func() if asynchronous: Thread(target=self.__scheduled, args=[func, time, repeat]).start() else: self.__scheduled(func, time, repeat) def remove(self, func): """Remove a scheduled function call""" del self.__funcs[func] def __scheduled(self, func, time, repeat): while 1: sleep(time) if func in self.__funcs and repeat: Thread(target=func).start() else: break def keyboard(keys, temporary=False): """ Return a telegram keyboard from a string array. keys=[[Top Items], [Middle Items], [Bottom Items]] """ items = [item for item in keys] reply_markup = {"keyboard": items} if temporary: reply_markup["one_time_keyboard"] = True return ["reply_markup", dumps(reply_markup)]
Alby7503TBot
/Alby7503TBot-1.0.9-py3-none-any.whl/TBot/tbot.py
tbot.py
This software subscribes to mqtt-topics that contain raw sensor data and publishes e.g. average values for configurable time spans. Available algorithms are: \* ``Average`` - Vanilla average/mean implementation. \* ``WeightedAverage`` - The weighted average of all valid data points within the time window. The weight is the inverse time difference to the time\_to time stamp. \* ``Count`` - Count how many valid data points are within the give time window. \* ``Maximum`` - The maximum value of all valid data points within the time window. \* ``Minimum`` - The minimum value of all valid data points within the time window. Alcathous [1]_ is the brother of Copreus. Both are sons of Pelops. [`wiki <https://en.wikipedia.org/wiki/Alcathous,_son_of_Pelops>`__] .. figure:: img/Microservice%20Overview.png :alt: Pelops Overview Pelops Overview ``Alcathous`` is part of the collection of mqtt based microservices `pelops <https://gitlab.com/pelops>`__. An overview on the microservice architecture and examples can be found at (http://gitlab.com/pelops/pelops). For Users ========= Installation Core-Functionality ------------------------------- Prerequisites for the core functionality are: :: sudo apt install python3 python3-pip Install via pip: :: sudo pip3 install pelops alcathous To update to the latest version add ``--upgrade`` as prefix to the ``pip3`` line above. Install via gitlab (might need additional packages): :: git clone [email protected]:pelops/alcathous.git cd alcathous sudo python3 setup.py install This will install the following shell scripts: \* ``alcathous`` The script cli arguments are: \* '-c'/'--config' - config file (mandatory) \* '--version' - show the version number and exit YAML-Config ----------- A yaml [2]_ file must contain three root blocks: \* mqtt - mqtt-address, mqtt-port, and path to credentials file credentials-file (a file consisting of two entries: mqtt-user, mqtt-password) \* logger - which log level and which file to be used \* data-preparation \* general - parameters for the manager \* methods - mapping of algorithms, parameters and topic-pub suffix \* datapoints - which topics should be used and which methods should be applied :: mqtt: mqtt-address: localhost mqtt-port: 1883 credentials-file: ~/credentials.yaml log-level: INFO logger: log-level: DEBUG log-file: alcathous.log data-preparation: # alcathous root node no_data_behavior: last_valid # mute, last_valid, empty_message update_cycle: 30 # new values published each ... seconds number_worker: 2 # how many worker threads should be spawned to process task queue methods: - name: avg_5min # unique name for method topic-pub-suffix: avg_5min algorithm: avg # avg - average, wavg - weighted average, count, min, max time_window: 5 # use the values from the last ... minutes - name: wavg_5min # unique name for method topic-pub-suffix: wavg_5min algorithm: wavg # avg - average, wavg - weighted average, count, min, max time_window: 5 # use the values from the last ... minutes - name: count_2min # unique name for method topic-pub-suffix: count_2min algorithm: count # avg - average, wavg - weighted average, count, min, max time_window: 2 # use the values from the last ... minutes - name: min_3min # unique name for method topic-pub-suffix: min_3min algorithm: min # avg - average, wavg - weighted average, count, min, max time_window: 3 # use the values from the last ... minutes - name: max_3min # unique name for method topic-pub-suffix: max_3min algorithm: max # avg - average, wavg - weighted average, count, min, max time_window: 3 # use the values from the last ... minutes datapoints: - topic-sub: /test/0/raw topic-pub-prefix: /test/0/aggregated/ zero_is_valid: False # 0 is valid or rejected methods: wavg_5min, avg_5min, count_2min, min_3min, max_3min - topic-sub: /test/1/raw topic-pub-prefix: /test/1/aggregated/ zero_is_valid: False # 0 is valid or rejected methods: wavg_5min, avg_5min systemd ------- - add systemd example. For Developers ============== Getting Started --------------- The project consists of three main modules: \* ``datapointmanager`` - loads the config and create all ``Datapoint`` instances. Hosts the main loop. \* ``datapoint`` - ``Datapoint`` is one of the datapoints in the config. it holds all data received for the given topic, has its own set of method instances. \* ``algorithms`` - The configureable algorithms are then used as data preparation methods in ``DataPoint``. Currently, two algorithms are implemented: Average and WeightedAverage. The first one treats all values in a time window equivalent, the later one weights them with the time span between ``time_from`` and ``time_value``. ``DataPointManager`` has two lists: references to the ``process`` functions from all instantiated methods and a references to the ``purge`` functions from all instantiated ``DataPoint``\ s. The first list is ordered by an execution cost estimation (highest value first). Both lists are applied to worker threads (``general.number_worker``) - please adapt the number of the workers to your needs. Todos ----- - Add better validity check for incoming values - ... Misc ---- The code is written for ``python3`` (and tested with python 3.5 on an Raspberry Pi Zero with Raspbian Stretch). `Merge requests <https://gitlab.com/pelops/alcathous/merge_requests>`__ / `bug reports <https://gitlab.com/pelops/alcathous/issues>`__ are always welcome. .. [1] The icon used for this project is in fact not Alcathous. Moreover, it is Odysseus and resembles perfectly my failed journey to find a fitting symbol. .. [2] Currently, pyyaml is yaml 1.1 compliant. In pyyaml On/Off and Yes/No are automatically converted to True/False. This is an unwanted behavior and deprecated in yaml 1.2. In copreus this autoconversion is removed. Thus, On/Off and Yes/No are read from the yaml file as strings (see module baseclasses.myconfigtools).
Alcathous
/Alcathous-0.4.0.tar.gz/Alcathous-0.4.0/README.rst
README.rst
def get_schema(): return { "data-preparation": { "description": "Root node for alcathous specific entries.", "type": "object", "properties": { "no_data_behavior": { "description": "How should the algorithm react in case of no data.", "type": "string", "enum": ["mute", "last_valid", "empty_message"] }, "update_cycle": { "type": "integer", "minimum": 0, "exclusiveMinimum": True, "description": "new values published each ... seconds" }, "number_worker": { "type": "integer", "minimum": 0, "exclusiveMinimum": True, "description": "how many worker threads should be spawned to process task queue" }, "methods": { "type": "array", "items": { "type": "object", "properties": { "name": { "description": "unique name for method", "type": "string" }, "topic-pub-suffix": { "type": "string", "description": "results are publish to 'datapoints_prefix & topic-pub-suffix'." }, "algorithm": { "type": "string", "enum": ["avg", "wavg", "count", "min", "max"] }, "time_window": { "description": "use the values from the last ... minutes", "type": "number", "minimum": 0, "exclusiveMinimum": True } }, "required": ["time_window", "algorithm", "topic-pub-suffix"], "additionalProperties": False }, "additionalProperties": False }, "datapoints": { "type": "array", "items": { "type": "object", "properties": { "topic-sub": { "description": "subscribe to this topic and apply the methods to it", "type": "string" }, "topic-pub-prefix": { "description": "publish results to this topic", "type": "string" }, "zero_is_valid": { "description": "0 is valid or rejected", "type": "boolean" }, "methods": { "description": "comma separated list of one or more strings. each entry must be " "represented by a method entry.", "type": "string", "pattern": "(\\d+)(,\\s*\\d+)*" } }, "required": ["topic-sub", "topic-pub-prefix", "zero_is_valid", "methods"], "additionalProperties": False }, "additionalProperties": False } }, "required": ["no_data_behavior", "update_cycle", "number_worker", "methods", "datapoints"], "additionalProperties": False } }
Alcathous
/Alcathous-0.4.0.tar.gz/Alcathous-0.4.0/alcathous/schema.py
schema.py
from pelops.abstractmicroservice import AbstractMicroservice import time import threading from pelops.mythreading import LoggerThread from alcathous.datapoint import DataPoint from alcathous.nodatabehavior import NoDataBehavior from alcathous.worker import Worker import alcathous.schema as schema from alcathous import version class DataPointManager(AbstractMicroservice): """ Manage the data points by creating/start/stopping them and invocation of the process methods of the algorithms regularly. Config yaml: mqtt: mqtt-address: localhost mqtt-port: 1883 credentials-file: ~/credentials.yaml log-level: INFO logger: log-level: DEBUG log-file: alcathous.log data-preparation: # alcathous root node no_data_behavior: last_valid # mute, last_valid, empty_message update_cycle: 30 # new values published each ... seconds number_worker: 2 # how many worker threads should be spawned to process task queue methods: avg_5min: topic-pub-suffix: avg_5min algorithm: avg # avg - average, wavg - weighted average, count, min, max time_window: 5 # use the values from the last ... minutes wavg_5min: topic-pub-suffix: wavg_5min algorithm: wavg # avg - average, wavg - weighted average, count, min, max time_window: 5 # use the values from the last ... minutes datapoints: - topic-sub: /test/0/raw topic-pub-prefix: /test/0/aggregated/ zero_is_valid: False # 0 is valid or rejected methods: wavg_5min, avg_5min """ _version = version _data_points = None # list of datapoint instances _processes = None # list with references to all process functions of the algorithms of the datapoints _purges = None # list with references to all purge functions of the datapoints _no_data_behavior = None # defines how the algorithm should react if no data is available. _update_cycle = None # call all processes every n seconds _worker = None # instance of the worker manager _do_loop_thread = None # contains the loop method thread def __init__(self, config, pubsub_client=None, logger=None, stdout_log_level=None, no_gui=None): """ Constructor. :param config: config yaml structure :param pubsub_client: instance of an mymqttclient (optional) :param logger: instance of a logger (optional) :param no_gui: if False create and control a ui instance :param stdout_log_level: if set, a logging handler with target sys.stdout will be added """ AbstractMicroservice.__init__(self, config, "data-preparation", pubsub_client=pubsub_client, logger=logger, stdout_log_level=stdout_log_level, no_gui=no_gui) self._purges = [] self._processes = [] self._data_points = [] self._update_cycle = int(self._config["update_cycle"]) self._no_data_behavior = NoDataBehavior.get_enum(str(self._config["no_data_behavior"])) self._worker = Worker(self._config["number_worker"], self._logger) self._do_loop_thread = LoggerThread(target=self._do_loop, name="datapointmanager", logger=self._logger) _config_methods = {} for m in self._config["methods"]: key = m["name"] if key in _config_methods: self._logger.error("DataPointManager - method name must be unique ({}).".format(key)) raise ValueError("DataPointManager - method name must be unique ({}).".format(key)) _config_methods[key] = m for config_data_point in self._config["datapoints"]: dp = DataPoint(config_data_point, _config_methods, self._pubsub_client, self._logger, self._no_data_behavior) self._purges.append(dp.purge_old_values) for method in dp.methods: process = method.process cost = method.execution_points_estimation() self._logger.info("DataPointManager - adding process '{}' with cost '{}'.". format(process.__name__, cost)) self._processes.append((process, cost)) self._data_points.append(dp) self._processes.sort(key=lambda tup: tup[1], reverse=True) # sort processes by their cost most expensive first @classmethod def _get_description(cls): return "This software subscribes to mqtt-topics that contain raw sensor data and publishes average values " \ "for configurable time spans." def _loop_process(self): """ Call all process and purge methods. """ timestamp = time.time() self._logger.info("DataPointManager - started work for timestamp '{} s'.".format(timestamp)) for p in self._processes: self._worker.queue.put((p[0], timestamp)) self._logger.info("DataPointManager - waiting for worker to finish processing the algorithms.") self._worker.queue.join() for p in self._purges: self._worker.queue.put((p, timestamp)) self._logger.info("DataPointManager - waiting for worker to purge outdated values.") self._worker.queue.join() def _do_loop(self): """ Call _loop_process every n seconds. """ self._logger.info("DataPointManager - start loop.") while not self._stop_service.is_set(): start = time.time() self._loop_process() sleep_for = max(0, self._update_cycle - (time.time() - start)) self._logger.info("DataPointManager - wait for '{} s'.".format(sleep_for)) self._stop_service.wait(sleep_for) self._logger.info("DataPointManager - exited loop.") @classmethod def _get_schema(cls): """ Get the sub schema to validate the yaml-config file against. :return: json-schema dict """ return schema.get_schema() def _start(self): """ Start all datapoints, worker and the process loop. """ for dp in self._data_points: dp.start() self._worker.start() self._do_loop_thread.start() def _stop(self): """ Stop all datapoints, worker and the process loop. """ for dp in self._data_points: dp.stop() self._do_loop_thread.join() self._worker.stop() def runtime_information(self): return {} def config_information(self): return {} def standalone(): """Calls the static method DataPointManager.standalone().""" DataPointManager.standalone() if __name__ == "__main__": DataPointManager.standalone()
Alcathous
/Alcathous-0.4.0.tar.gz/Alcathous-0.4.0/alcathous/datapointmanager.py
datapointmanager.py
import collections from threading import Lock import time from alcathous.algorithms.algorithmfactory import AlgorithmFactory from pelops.logging import mylogger class DataPoint: """ A DataPoint subscribes to a single topic and applies n methods/algorithms to the recorded data set. config yaml for the datapoint: - topic-sub: /test/0/raw topic-pub-prefix: /test/0/aggregated/ zero_is_valid: False # 0 is valid or rejected methods: wavg_5min, avg_5min config yaml for the methods: methods: avg_5min: topic-pub-suffix: avg_5min algorithm: avg # avg - average, wavg - weighted average, count, min, max time_window: 5 # use the values from the last ... minutes wavg_5min: topic-pub-suffix: wavg_5min algorithm: wavg # avg - average, wavg - weighted average, count, min, max time_window: 5 # use the values from the last ... minutes """ methods = None # list of instantiated methods / algorithms _topic_sub = None # the values received through this topic subscription should be processed _topic_pub_prefix = None # prefix for publishing the method results _zero_is_valid = None # is 0 a valid value or should it be skipped _max_time_window = None # each method has its own time window. this variable stores the maximum for this datapoint. _data_set = None # ordered dict containing values and timestamps. It is owned the parent datapoint class instance. _lock_data_set = None # prevents datapoint class to change the dataset while an algorithm process it. _logger = None # logger instance _pubsub_client=None # instance of pelops.mymqttclient def __init__(self, config_datapoint, config_methods, pubsub_client, parent_logger, no_data_behavior): """ Constructor. :param config_datapoint: config yaml structure of this data point :param config_methods: config yaml structure for all methods :param parent_logger: logger instance from the parent. a child will be spawned :param pubsub_client: instance of an mymqttclient :param no_data_behavior: defines how the algorithm should react if no data is available. """ self._logger = mylogger.get_child(parent_logger, self.__class__.__name__) self._logger.info("DataPoint.__init__ - initializing") self._logger.debug("DataPoint.__init__ - config_datapoint: {}".format(config_datapoint)) self._logger.debug("DataPoint.__init__ - config_methods: {}".format(config_methods)) self._pubsub_client = pubsub_client self._topic_sub = str(config_datapoint["topic-sub"]) self._logger.info("DataPoint.__init__ - topic_sub: {}".format(self._topic_sub)) self._topic_pub_prefix = str(config_datapoint["topic-pub-prefix"]) self._logger.info("{} - publish to '{}#'".format(self._topic_sub, self._topic_pub_prefix)) self._data_set = collections.OrderedDict() self._lock_data_set = Lock() self._max_time_window = 0 self._zero_is_valid = bool(config_datapoint["zero_is_valid"]) temp_methods = [x.strip() for x in config_datapoint["methods"].split(',')] self.methods = AlgorithmFactory.get_instances(temp_methods, config_methods, self._logger, self._data_set, self._lock_data_set, self._topic_pub_prefix, self._pubsub_client, no_data_behavior) for m in self.methods: if m._time_window > self._max_time_window: self._max_time_window = m._time_window self._logger.info("{} - max time window for purging data: {} s.".format(self._topic_sub, self._max_time_window)) def _message_handler(self, value): """ Message handler - to be registered to _topic_sub in pubsub_client. Stores the received value in _data_set with the current time stamp. :param value: Message content from incoming mqtt message. """ if self._is_value_valid(value): with self._lock_data_set: timestamp = time.time() self._data_set[timestamp] = float(value) self._logger.info("{} - added {}@{}s".format(self._topic_sub, value, timestamp)) self._logger.debug(self._data_set) def _is_value_valid(self, value): """ Checks for simple rules: 'is None' and '==0' if _zero_is_valid is not set. :param value: :return: True/False """ result = True if value is None: result = False elif value == 0 and not self._zero_is_valid: result = False if not result: self._logger.info("{} - value '{}' is not valid.".format(self._topic_sub, value)) return result def purge_old_values(self, timestamp): """ Remove all entries in _data_set that have a time stamp that is older than timestamp. :param timestamp: oldest time stamp to be kept. """ min_time_stamp = timestamp - self._max_time_window self._logger.info("{} - purging values with timestamp < '{}'.".format(self._topic_sub, min_time_stamp)) count = 0 list_size = len(self._data_set) with self._lock_data_set: while len(self._data_set) and (next(iter(self._data_set.items())))[0] < min_time_stamp: self._logger.debug("{} - purge item '{}'.".format(self._topic_sub, (next(iter(self._data_set.items()))))) count = count + 1 self._data_set.popitem(False) self._logger.info("{} - purged {}/{} items.".format(self._topic_sub, count, list_size)) def start(self): """ Start by subscribing to _topic_sub. """ self._logger.info("Datapoint.start - subscribing to topic '{}'.".format(self._topic_sub)) self._pubsub_client.subscribe(self._topic_sub, self._message_handler) def stop(self): """ Stop by unsubscription from _topic_sub. """ self._logger.info("Datapoint.stop - unsubscribing to topic '{}'.".format(self._topic_sub)) self._pubsub_client.unsubscribe(self._topic_sub, self._message_handler)
Alcathous
/Alcathous-0.4.0.tar.gz/Alcathous-0.4.0/alcathous/datapoint.py
datapoint.py
from pelops.mythreading import LoggerThread import queue from pelops.logging import mylogger class Worker: """ Creates n worker threads that wait for functions to be executed. Thus, a simple way of parallelizing processing of many different tasks. A single queue is filled and the worker threads take the oldest entry and executes them. """ _list = None # list containing the worker thread references. queue = None # queue of to be processed tasks _number = None # number of worker threads that should be created. _logger = None # logger instance def __init__(self, number_worker, parent_logger): """ Constructor. :param number_worker: number of worker threads that should be created. :param parent_logger: logger instance from the parent. a child will be spawned """ self._logger = mylogger.get_child(parent_logger, self.__class__.__name__) self._logger.info("Worker.__init__ - initializing") self._logger.debug("Worker.__init__ - config: number_worker={}.".format(number_worker)) self.queue = queue.Queue() self._list = [] self._number = int(number_worker) def _worker_thread(self): self._logger.info("Worker._worker_thread - started worker") while True: item = self.queue.get() self._logger.info("Worker._worker_thread - worker received item '{}'.".format(item)) if item is None: self._logger.info("Worker._worker_thread - worker received stop signal") break func, parameter = item func(parameter) self.queue.task_done() self._logger.info("Worker._worker_thread - stopped worker") def start(self): """ Starts all worker threads. """ self._logger.info("Worker.start - starting {} worker.".format(self._number)) for i in range(self._number): w = LoggerThread(target=self._worker_thread, name="worker_{}".format(self._number), logger=self._logger) w.start() self._list.append(w) self._logger.info("Worker.start - {} worker started.".format(len(self._list))) def stop(self): """ Stops all worker threads. """ self._logger.info("Worker.stop - stopping {} worker.".format(len(self._list))) for i in range(len(self._list)): self.queue.put(None) for t in self._list: t.join() self._list = [] self._logger.info("Worker.stop - worker stopped.")
Alcathous
/Alcathous-0.4.0.tar.gz/Alcathous-0.4.0/alcathous/worker.py
worker.py
from alcathous.nodatabehavior import NoDataBehavior from pelops.logging import mylogger class AbstractAlgorithm: """ AbstractAlgorithm provides everything that is needed for an algorithm to perform its aggregation work. It selects to correct subset of the collected data. config yaml: topic-pub-suffix: avg_5min algorithm: avg # avg - average, wavg - weighted average, count, min, max time_window: 5 # use the values from the last ... minutes """ _data_set = None # ordered dict containing values and timestamps. It is owned the parent datapoint class instance. _lock_data_set = None # prevents datapoint class to change the dataset while an algorithm process it. _time_window = None # time window in seconds. e.g. use the values from the last 300s and calculate their average. _no_data_behavior = None # defines how the algorithm should react if no data is available. _last_valid = None # stores the last valid result of the algorithm. _topic = None # publish the result to this topic _pubsub_client = None # instance of pelops.pubsub client name = None # identifier for this algorithm _config = None # stores the yaml-configuration for this algorithm _logger = None # logger instance def __init__(self, name, config, parent_logger, data_set, lock_data_set, topic_pub_prefix, pubsub_client, no_data_behavior): """ Constructor :param name: Name of the instance of the algorithm :param config: yaml config structure :param parent_logger: logger instance from the parent. a child will be spawned :param data_set: the data the algortihm should work with :param lock_data_set: the algorithm works with the data set only if a lock has been acquired successfully :param topic_pub_prefix: prefix+name is the topic the result will be published to :param pubsub_client: instance of an mymqttclient :param no_data_behavior: defines how the algorithm should react if no data is available. """ self._logger = mylogger.get_child(parent_logger, self.__class__.__name__) self.name = name self._config = config self._no_data_behavior = no_data_behavior self._data_set = data_set self._lock_data_set = lock_data_set self._logger.info("{}.{} - __init__".format(self.__class__.__name__, name)) self._logger.debug("{}.{} - __init__ config: ".format(self.__class__.__name__, name, self._config)) self._topic = topic_pub_prefix + self._config["topic-pub-suffix"] self._logger.info("{}.{} - publish to topic '{}'.".format(self.__class__.__name__, name, self._topic)) self._pubsub_client = pubsub_client self._time_window = int(self._config["time_window"]) * 60 if self._time_window <= 0: self._logger.error("Value for time_window must be a positive integer larger than 0. ('{}' not > 0)". format(self._time_window)) raise ValueError("Value for time_window must be a positive integer larger than 0. ('{}' not > 0)". format(self._time_window)) self._logger.info("{}.{} - time window {} s.".format(self.__class__.__name__, name, self._time_window)) def process(self, timestamp): """ Calls the specialiced method _process and publishes the result to _topic. :param timestamp: timestamp of the latest value to be used. valid timestamps are within timestamp and (timestamp - self._time_window) """ time_from = timestamp - self._time_window time_to = timestamp try: value = self._process(time_from, time_to) self._last_valid = value self._pubsub_client.publish(self._topic, value) except ValueError: self._logger.info("{} - process/ValueError. performing no data behavior '{}'.". format(self._topic, self._no_data_behavior)) if self._no_data_behavior == NoDataBehavior.MUTE: pass elif self._no_data_behavior == NoDataBehavior.EMPTY_MESSAGE: self._pubsub_client.publish(self._topic, None) elif self._no_data_behavior == NoDataBehavior.LAST_VALID: self._pubsub_client.publish(self._topic, self._last_valid) else: self._logger.error("Don't know how to handle NoDataBehavior.{}.".format(self._no_data_behavior)) raise NotImplementedError("Don't know how to handle NoDataBehavior.{}.".format(self._no_data_behavior)) def _process(self, time_from, time_to): """ This method must be implemented by each implementation of this abstract algorithm class. This is the core functionality - whatever condensation with the provided data should be done it must be implemented within this method. If no_data occurs (no/not enough valid values within given time window) then a ValueError exception should be raised. :param time_from: earliest entry from data_set :param time_to: latest entry from data_set :return: the result of the condensation :raises: ValueError if no_data occured. """ raise NotImplementedError() def execution_points_estimation(self): """ Each implementation of this abstract algorithm class must provide an estimation how much execution cost. :return: numeric value larger than 0 """ raise NotImplementedError()
Alcathous
/Alcathous-0.4.0.tar.gz/Alcathous-0.4.0/alcathous/algorithms/abstractalgorithm.py
abstractalgorithm.py
from alcathous.algorithms.average import Average from alcathous.algorithms.weightedaverage import WeightedAverage from alcathous.algorithms.count import Count from alcathous.algorithms.minimum import Minimum from alcathous.algorithms.maximum import Maximum from pelops.logging import mylogger class AlgorithmFactory: """ Create algorithm instances based on the given yaml config structure. Note: each implementation of abstractalgorithm must be represented by a class variable. E.g. the implementation 'Average' is added with the line 'avg = Average'. 'avg' represents the identifier that must be used in the config yaml. """ avg = Average # used by the line "klass = cls.__dict__[class_name]" wavg = WeightedAverage # used by the line "klass = cls.__dict__[class_name]" count = Count # used by the line "klass = cls.__dict__[class_name]" min = Minimum # used by the line "klass = cls.__dict__[class_name]" max = Maximum # used by the line "klass = cls.__dict__[class_name]" @classmethod def get_instance(cls, name, config, parent_logger, data_set, lock_data_set, topic_pub_prefix, pubsub_client, no_data_behavior): """ Generate a method / algorithm instance. :param name: Name of the to be created method / algorithm instance. :param config: Configuration yaml containing config for all algorithms. :param parent_logger: logger instance from the parent. :param data_set: the data the algortihm should work with :param lock_data_set: the algorithm works with the data set only if a lock has been acquired successfully :param topic_pub_prefix: prefix+name is the topic the result will be published to :param pubsub_client: instance of an pubsubclient :param no_data_behavior: defines how the algorithm should react if no data is available. :return: The corresponding method / algorithm instance """ _logger = mylogger.get_child(parent_logger, cls.__name__) class_name = str(config["algorithm"]).lower() try: klass = cls.__dict__[class_name] except KeyError: raise ValueError("Unknown value for AlgorithmFactory '{}'. Expected {}.". format(class_name, cls.__dict__.keys())) _logger.info("AlgorithmFactory.get_instance - creating instance of '{}'.".format(klass.__name__)) instance = klass(name, config, parent_logger, data_set, lock_data_set, topic_pub_prefix, pubsub_client, no_data_behavior) return instance @classmethod def get_instances(cls, method_names, config_methods, parent_logger, data_set, lock_data_set, topic_pub_prefix, pubsub_client, no_data_behavior): """ Take the list of method names and generates the corresponding algorithm instances. :param method_names: List of algorithms that should be generated. :param config_methods: Configuration yaml containing config for all algorithms. :param parent_logger: logger instance from the parent. :param data_set: the data the algortihm should work with :param lock_data_set: the algorithm works with the data set only if a lock has been acquired successfully :param topic_pub_prefix: prefix+name is the topic the result will be published to :param pubsub_client: instance of an pubsubclient :param no_data_behavior: defines how the algorithm should react if no data is available. :return: List of methods / algorithm instances """ _logger = mylogger.get_child(parent_logger, cls.__name__) _logger.info("AlgorithmFactory.get_instances - creating instances of '{}'.".format(method_names)) _logger.debug("AlgorithmFactory.get_instances - config_methods '{}'.".format(config_methods)) methods = [] for name in method_names: try: config = config_methods[name] except KeyError: raise ValueError("Unknown value for method '{}'. Expected {}.". format(name, config_methods.keys())) m = AlgorithmFactory.get_instance(name, config, parent_logger, data_set, lock_data_set, topic_pub_prefix, pubsub_client, no_data_behavior) methods.append(m) _logger.info("AlgorithmFactory.get_instances - created {} instances.".format(len(methods))) return methods
Alcathous
/Alcathous-0.4.0.tar.gz/Alcathous-0.4.0/alcathous/algorithms/algorithmfactory.py
algorithmfactory.py
Alchemytools ------------ This project brings a set of useful tools to be used in any SQLAchemly project. The idea is to save common problems, for example: Opening/Closing sessions, commiting the sesssin only at the end of the transaction, etc. Available Tools ############### Here are all tools available in alchemytools. Context Managers **************** managed ======= This is the basic context manager and it will commit and close your session automatically, at the end of the ``with`` block. .. code-block:: python with managed(MySessionClass) as session: # Do what you need with your session # Here the session is already closed and commited If you raise any exception inside the ``with`` block, the session will be rolled back and the exception re-raised. To avoid having all of the function body inside the ``with`` block, ``managed`` functions as a context manager as well. .. code-block:: python @managed(MySessionClass) def foo(session, *args, **kwargs): # Do what you need with your session pass # call as if the session didn't exist: foo(2, a='b') The session is opened every time the function is called and closed whenever it returns or raises an exception. Autommit and rollback rules work as normal. Additional options ^^^^^^^^^^^^^^^^^^ ``auto_flush``: Sets the autoflush option on the SQLAlchemy session, defaults fo ``False`` Executing tests ^^^^^^^^^^^^^^^ .. code-block:: shell $ python setup.py test
Alchemytools
/Alchemytools-0.7.0.tar.gz/Alchemytools-0.7.0/README.rst
README.rst
# Abstraction Layer for Ephemerides (ALE) [![Build Status](https://travis-ci.org/USGS-Astrogeology/ale.svg?branch=master)](https://travis-ci.org/USGS-Astrogeology/ale) [![Coverage Status](https://coveralls.io/repos/github/USGS-Astrogeology/ale/badge.svg?branch=master)](https://coveralls.io/github/USGS-Astrogeology/ale?branch=master) [![Docs](https://img.shields.io/badge/Docs-latest-green.svg)](https://usgs-astrogeology.github.io/ale/) This library allows for the position, rotation, velocity and rotational velocity tracking of multiple bodies in space, especially in relation to one another. It makes extensive use of NAIF's SPICE data for such calculations. ## Setting up dependencies with conda (RECOMMENDED) Install conda (either [Anaconda](https://www.anaconda.com/download/#linux) or [Miniconda](https://conda.io/miniconda.html)) if you do not already have it. Installation instructions may be found [here](https://conda.io/docs/user-guide/install/index.html). ### Creating an isolated conda environment (TODO This command will need to be updated) Run the following commands to create a self-contained dev environment for ale (type `y` to confirm creation): ```bash conda env create -n ale -f environment.yml ``` > *For more information: [conda environments](https://conda.io/docs/user-guide/tasks/manage-environments.html)* ### Activating the environment After creating the `ale` environment, we need to activate it. The activation command depends on your shell. * **bash**: `source activate ale` * **tcsh**: `conda activate ale` > *You can add these to the end of your $HOME/.bashrc or $HOME/.cshrc if you want the `ale` environment to be active in every new terminal.* ## Building ALE After you've set up and activated your conda environment, you may then build ale. Inside of a cloned fork of the repository, follow these steps: ```bash python setup.py install cd build cmake .. make ``` Keep in mind that you will need to clone the repository with the `--recursive` flag in order to retrieve the gtest submodule for testing. If you have already cloned without the `--recusive` flag, running the following command will retrieve the gtest submodule manually: ```bash git submodule update --init --recursive ``` ## Running Tests To run ctests to test c++ part of ale, run: ``` ctest ``` from the build directory.
Ale
/Ale-0.8.4.tar.gz/Ale-0.8.4/README.md
README.md
import os from os import path from glob import glob from itertools import filterfalse, groupby import warnings import pvl import collections from collections import OrderedDict from itertools import chain from datetime import datetime import subprocess import re import networkx as nx from networkx.algorithms.shortest_paths.generic import shortest_path import spiceypy as spice from ale import spice_root def get_metakernels(spice_dir=spice_root, missions=set(), years=set(), versions=set()): """ Given a root directory, get any subdirectory containing metakernels, assume spice directory structure. Mostly doing filtering here, might be worth using Pandas? Parameters ---------- spice_dir : str Path containing Spice directories downlaoded from NAIF's website missions : set, str Mission or set of missions to search for years : set, str, int year or set of years to search for versions : set, str version or set of versions to search for """ if not missions or missions == "all": missions = set() if not years or years == "all": years = set() if not versions or versions == "all": versions = set() if isinstance(missions, str): missions = {missions} if isinstance(years, str) or isinstance(years, int): years = {str(years)} else: years = {str(year) for year in years} avail = { 'count': 0, 'data': [] } missions = [m.lower() for m in missions] if spice_dir is not None: mission_dirs = list(filter(path.isdir, glob(path.join(spice_dir, '*')))) else: warnings.warn("Unable to search mission directories without" + "ALESPICEROOT being set. Defaulting to empty list") mission_dirs = [] for md in mission_dirs: # Assuming spice root has the same name as the original on NAIF website" mission = os.path.basename(md).split('-')[0].split('_')[0] if missions and all([m not in mission.lower() for m in missions]): continue metakernel_keys = ['mission', 'year', 'version', 'path'] # recursive glob to make metakernel search more robust to subtle directory structure differences metakernel_paths = sorted(glob(os.path.join(md, '**','*.[Tt][Mm]'), recursive=True)) metakernels = [] for k in metakernel_paths: components = path.splitext(path.basename(k))[0].split('_') + [k] if len(components) == 3: components.insert(1, 'N/A') metakernels.append(dict(zip(metakernel_keys, components))) # naive filter, do we really need anything else? if years: metakernels = list(filter(lambda x:x['year'] in years or x['year'] == 'N/A', metakernels)) if versions: if versions == 'latest': latest = [] # Panda's groupby is overrated for k, g in groupby(metakernels, lambda x:x['year']): items = list(g) latest.append(max(items, key=lambda x:x['version'])) metakernels = latest else: metakernels = list(filter(lambda x:x['version'] in versions, metakernels)) avail['data'].extend(metakernels) avail['count'] = len(avail['data']) return avail def find_latest_metakernel(path, year): metakernel = None mks = sorted(glob(os.path.join(path,'*.[Tt][Mm]'))) if not mks: raise Exception(f'No metakernels found in {path}.') for mk in mks: if str(year) in os.path.basename(mk): metakernel = mk if not metakernel: raise Exception(f'No metakernels found in {path} for {year}.') return metakernel def dict_merge(dct, merge_dct): for k, v in merge_dct.items(): if (k in dct and isinstance(dct[k], dict) and isinstance(merge_dct[k], collections.Mapping)): dict_merge(dct[k], merge_dct[k]) else: dct[k] = merge_dct[k] return dct def get_isis_preferences(isis_preferences=None): """ Returns ISIS Preference file as a pvl object """ argprefs = {} if isis_preferences: if isinstance(isis_preferences, dict): argprefs = isis_preferences else: argprefs = read_pvl(isis_preferences) try: homeprefs = read_pvl(os.path.join(os.path.expanduser("~"), '.Isis', 'IsisPreferences')) except FileNotFoundError as e: homeprefs = {} try: isisrootprefs_path = os.path.join(os.environ["ISISROOT"], 'IsisPreferences') isisroot = os.environ['ISISROOT'] isisrootprefs = read_pvl(isisrootprefs_path) except (FileNotFoundError, KeyError) as e: isisrootprefs = {} finalprefs = dict_merge(dict_merge(isisrootprefs, homeprefs), argprefs) return finalprefs def dict_to_lower(d): return {k.lower():v if not isinstance(v, dict) else dict_to_lower(v) for k,v in d.items()} def expandvars(path, env_dict=os.environ, default=None, case_sensative=True): user_dict = env_dict if case_sensative else dict_to_lower(env_dict) def replace_var(m): group0 = m.group(0) if case_sensative else m.group(0).lower() group1 = m.group(1) if case_sensative else m.group(1).lower() return user_dict.get(m.group(2) or group1, group0 if default is None else default) reVar = r'\$(\w+|\{([^}]*)\})' return re.sub(reVar, replace_var, path) def generate_kernels_from_cube(cube, expand=False, format_as='list'): """ Parses a cube label to obtain the kernels from the Kernels group. Parameters ---------- cube : cube Path to the cube to pull the kernels from. expand : bool, optional Whether or not to expand variables within kernel paths based on your IsisPreferences file. format_as : str, optional {'list', 'dict'} How to return the kernels: either as a one-demensional ordered list, or as a dictionary of kernel lists. Returns ------- : list One-dimensional ordered list of all kernels from the Kernels group in the cube. : Dictionary Dictionary of lists of kernels with the keys being the Keywords from the Kernels group of cube itself, and the values being the values associated with that Keyword in the cube. """ # enforce key order mk_paths = OrderedDict.fromkeys( ['TargetPosition', 'InstrumentPosition', 'InstrumentPointing', 'Frame', 'TargetAttitudeShape', 'Instrument', 'InstrumentAddendum', 'LeapSecond', 'SpacecraftClock', 'Extra']) # just work with full path cube = os.path.abspath(cube) cubelabel = pvl.load(cube) try: kernel_group = cubelabel['IsisCube'] except KeyError: raise KeyError(f'{cubelabel}, Could not find kernels group, input cube [{cube}] may not be spiceinited') return get_kernels_from_isis_pvl(kernel_group, expand, format_as) def get_kernels_from_isis_pvl(kernel_group, expand=True, format_as="list"): # enforce key order mk_paths = OrderedDict.fromkeys( ['TargetPosition', 'InstrumentPosition', 'InstrumentPointing', 'Frame', 'TargetAttitudeShape', 'Instrument', 'InstrumentAddendum', 'LeapSecond', 'SpacecraftClock', 'Extra']) if isinstance(kernel_group, str): kernel_group = pvl.loads(kernel_group) kernel_group = kernel_group["Kernels"] def load_table_data(key): mk_paths[key] = kernel_group.get(key, None) if isinstance(mk_paths[key], str): mk_paths[key] = [mk_paths[key]] while 'Table' in mk_paths[key]: mk_paths[key].remove('Table') while 'Nadir' in mk_paths[key]: mk_paths[key].remove('Nadir') load_table_data('TargetPosition') load_table_data('InstrumentPosition') load_table_data('InstrumentPointing') load_table_data('TargetAttitudeShape') # the rest mk_paths['Frame'] = [kernel_group.get('Frame', None)] mk_paths['Instrument'] = [kernel_group.get('Instrument', None)] mk_paths['InstrumentAddendum'] = [kernel_group.get('InstrumentAddendum', None)] mk_paths['SpacecraftClock'] = [kernel_group.get('SpacecraftClock', None)] mk_paths['LeapSecond'] = [kernel_group.get('LeapSecond', None)] mk_paths['Clock'] = [kernel_group.get('Clock', None)] mk_paths['Extra'] = [kernel_group.get('Extra', None)] if (format_as == 'list'): # get kernels as 1-d string list kernels = [kernel for kernel in chain.from_iterable(mk_paths.values()) if isinstance(kernel, str)] if expand: isisprefs = get_isis_preferences() kernels = [expandvars(expandvars(k, dict_to_lower(isisprefs['DataDirectory']))) for k in kernels] return kernels elif (format_as == 'dict'): # return created dict if expand: isisprefs = get_isis_preferences() for kern_list in mk_paths: for index, kern in enumerate(mk_paths[kern_list]): if kern is not None: mk_paths[kern_list][index] = expandvars(expandvars(kern, dict_to_lower(isisprefs['DataDirectory']))) return mk_paths else: raise Exception(f'{format_as} is not a valid return format') def write_metakernel_from_cube(cube, mkpath=None): # add ISISPREF paths as path_symbols and path_values to avoid custom expand logic pvlprefs = get_isis_preferences() kernels = generate_kernels_from_cube(cube) # make sure kernels are mk strings kernels = ["'"+k+"'" for k in kernels] paths = OrderedDict(pvlprefs['DataDirectory']) path_values = ["'"+os.path.expandvars(path)+"'" for path in paths.values()] path_symbols = ["'"+symbol.lower()+"'" for symbol in paths.keys()] body = '\n\n'.join([ 'KPL/MK', f'Metakernel Generated from an ISIS cube: {cube}', '\\begindata', 'PATH_VALUES = (', '\n'.join(path_values), ')', 'PATH_SYMBOLS = (', '\n'.join(path_symbols), ')', 'KERNELS_TO_LOAD = (', '\n'.join(kernels), ')', '\\begintext' ]) if mkpath is not None: with open(mkpath, 'w') as f: f.write(body) return body def get_ck_frames(kernel): """ Get all of the reference frames defined in a kernel. Parameters ---------- kernel : str The path to the kernel Returns ------- ids : list The set of reference frames IDs defined in the kernel """ ckbrief = subprocess.run(["ckbrief", "-t {}".format(kernel)], capture_output=True, check=True, text=True) ids = set() for id in re.findall(r'^(-?[0-9]+)', ckbrief.stdout, flags=re.MULTILINE): ids.add(int(id)) # Sort the output list for testability return sorted(list(ids)) def create_spk_dependency_tree(kernels): """ construct the dependency tree for the body states in a set of kernels. Parameters ---------- kernels : list The list of kernels to evaluate the dependencies in. If two kernels in this list contain the same information for the same pair of bodies, then the later kernel in the list will be identified in the kernel property for that edge in dep_tree. Returns ------- dep_tree : nx.DiGraph The dependency tree for the kernels. Nodes are bodies. There is an edge from one node to another if the state of the body of the source node is defined relative to the state of the body of the destination node. The kernel edge property identifies what kernel the information for the edge is defined in. """ dep_tree = nx.DiGraph() for kernel in kernels: brief = subprocess.run(["brief", "-c {}".format(kernel)], capture_output=True, check=True, text=True) for body, rel_body in re.findall(r'\((.*)\).*w\.r\.t\..*\((.*)\)', brief.stdout): dep_tree.add_edge(int(body), int(rel_body), kernel=kernel) return dep_tree def spkmerge_config_string(dep_tree, output_spk, bodies, lsk, start, stop): """ Create the contents of an spkmerge config file that will produce a spk that completely defines the state of a list of bodies for a time range. Parameters ---------- dep_tree : nx.DiGraph Dependency tree from create_kernel_dependency_tree that contains information about what the state of different bodies are relative to and where that information is stored. output_spk : str The path to the SPK that will be output by spkmerge bodies : list The list of body ID codes that need to be defined in the kernel created by spkmerge lsk : str The absolute path to the leap second kernel to use start : str The UTC start time for the kernel created by spkmerge stop : str The UTC stop time for the kernel created by spkmerge Returns ------- : str The contents of an spkmerge config file that will produce a kernel that defines the state of the input bodies for the input time range. """ input_kernels = set() all_bodies = set(bodies) for body in bodies: # Everything is ultimately defined relative to # SOLAR SYSTEM BARYCENTER (0) so find the path to it dep_path = shortest_path(dep_tree, body, 0) all_bodies.update(dep_path) for i in range(len(dep_path) - 1): input_kernels.add(dep_tree[dep_path[i]][dep_path[i+1]]['kernel']) config = f"LEAPSECONDS_KERNEL = {lsk}\n" config += f"SPK_KERNEL = {output_spk}\n" config += f" BODIES = {', '.join([str(b) for b in all_bodies])}\n" config += f" BEGIN_TIME = {start}\n" config += f" END_TIME = {stop}\n" for kernel in input_kernels: config += f" SOURCE_SPK_KERNEL = {kernel}\n" config += f" INCLUDE_COMMENTS = no\n" return config def write_metakernel_from_kernel_list(kernels): """ Parameters ---------- kernels : str list of kernel paths Returns ------- : str Returns string representation of a Naif Metakernel file """ kernels = [os.path.abspath(k) for k in kernels] common_prefix = os.path.commonprefix(kernels) kernels = ["'"+"$PREFIX"+k[len(common_prefix):]+"'" for k in kernels] body = '\n\n'.join([ 'KPL/MK', f'Metakernel Generated from a kernel list by Ale', '\\begindata', 'PATH_VALUES = (', "'"+common_prefix+"'", ')', 'PATH_SYMBOLS = (', "'PREFIX'", ')', 'KERNELS_TO_LOAD = (', '\n'.join(kernels), ')', '\\begintext' ]) return body def duckpool(naifvar, start=0, length=10, default=None): """ Duck typing friendly version of spiceypy kernel pool functions. Parameters ---------- naifvar : str naif var string to query pool for start : int Index of first value length : int max number of values returned default : obj Default value to return if key is not found in kernel pool Returns ------- : obj Spice value returned from spiceypy if found, default value otherwise """ for f in [spice.gdpool, spice.gcpool, spice.gipool]: try: val = f(naifvar, start, length) return val[0] if len(val) == 1 else val except: continue return default def query_kernel_pool(matchstr="*"): """ Collect multiple keywords from the naif kernel pool based on a template string Parameters ---------- matchstr : str matchi_c formatted str Returns ------- : dict python dictionary of naif keywords in {keyword:value} format. """ try: svars = spice.gnpool(matchstr, 0, 100) except Exception as e: warnings.warn(f"kernel search for {matchstr} failed with {e}") svars = [] svals = [duckpool(v) for v in svars] return dict(zip(svars, svals)) def read_pvl(path, use_jank=False): """ Syntax sugar, used to load a pvl object file from path Parameters ---------- path : str Path to Pvl file use_jank : bool If true, uses faster but less reliable JBFPvlParser, else uses standard PVL parser. """ with open(path) as f: preftext = f.read().replace('EndGroup', 'End_Group').replace("EndObject", "End_Object") if use_jank: pvlprefs = JBFPvlParser(open(path).read()) else: pvlprefs = pvl.loads(preftext) return pvlprefs def get_isis_mission_translations(isis3_data): """ Use ISIS translation files and return a lookup table. Parameters ---------- isis3_data : str path to $ISIS3DATA Returns ------- : dict Dictionary mapping label mission strings to ISIS3 mission strings """ mission_translation_file = read_pvl(os.path.join(isis3_data, "base", "translations", "MissionName2DataDir.trn")) # For some reason this file takes the form [value, key] for mission name -> data dir lookup = [l[::-1] for l in mission_translation_file["MissionName"].getlist("Translation")] return dict(lookup) def JBFPvlParser(lines): """ Janky But Faster PVL Parser(TM) Only really supports ISIS's Kernel DB files. This is because KernelDB files are sometimes very large for smithed kernels. This should bring the parsing time for those DB files from minutes to seconds. Still needs nested object/group support and it should be able to read most PVL files. Parameters ---------- lines : str string body of PVL file. Returns : PVLModule object representing the parsed PVL """ def JBFKeywordParser(lines): keyword = lines[0].split("=")[0] value = lines[0].split("=")[1]+"".join(l.strip() for l in lines[1:]) if "(" in value and ")" in value: value = value.replace("(", "").replace(")", "").split(",") value = tuple([v.replace("\"", "") for v in value]) else: value = value.strip() return keyword.strip(), value if isinstance(lines, str): lines = lines.split("\n") items = [] lines = [l.strip() for l in lines if l.strip()] metadata = [] for i,l in enumerate(lines): if "group = " in l.lower(): metadata.append([i, "group_start"]) elif "object = " in l.lower(): metadata.append([i, "object_start"]) elif "=" in l: metadata.append([i, "keyword"]) elif "end_group" in l.lower() or "endgroup" in l.lower(): metadata.append([i, "group_end"]) elif "end_object" in l.lower() or "endobject" in l.lower(): metadata.append([i, "object_end"]) imeta = 0 while imeta < len(metadata): element_start_line, element_type = metadata[imeta] if element_type == "keyword": next_element_start = metadata[imeta+1][0] if imeta+1<len(metadata) else len(lines)+1 element_lines = lines[element_start_line:next_element_start] items.append(JBFKeywordParser(element_lines)) imeta+=1 elif element_type == "group_start": group_name = lines[element_start_line].split('=')[1].strip() next_meta = [(i,m) for i,m in enumerate(metadata[imeta:]) if m[1] == "group_end"][0] next_group_start = next_meta[1][0] group_lines = lines[element_start_line+1:next_group_start] items.append((group_name, JBFPvlParser(group_lines))) imeta += next_meta[0] elif element_type == "object_start": # duplicate code but whatever group_name = lines[element_start_line].split('=')[1].strip() next_meta = [(i,m) for i,m in enumerate(metadata[imeta:]) if m[1] == "object_end"][0] next_group_start = next_meta[1][0] group_lines = lines[element_start_line+1:next_group_start] items.append((group_name, JBFPvlParser(group_lines))) imeta += next_meta[0] elif element_type == "object_end" or element_type == "group_end": imeta+=1 return pvl.PVLModule(items) def search_isis_db(dbobj, labelobj, isis3_data="/usgs/cpkgs/isis3/data/"): """ Given an PVL obj of a KernelDB file and an Isis Label for a cube, find the best kernel to attach to the cube. The Logic here is a bit gross, but it matches ISIS's implementation very closely. Parameters ---------- dbobj : PVLModule ISIS3 KernelDB file as a loaded PVLModule labelobj : PVLModule Cube label as loaded PVLModule isis3_data : str path to $ISIS3DATA Returns ------- : dict dictionary containing kernel list and optionally the kernel type if relevant. """ if not dbobj: return quality = dict(e[::-1] for e in enumerate(["predicted", "nadir", "reconstructed", "smithed"])) utc_start_time = labelobj["IsisCube"]["Instrument"]["StartTime"] utc_stop_time = labelobj["IsisCube"]["Instrument"]["StopTime"] run_time = None dependencies = None kernels = [] typ = None types = [] # flag is set when a kernel is found matching the start time but not stop time # and therefore a second pair needs to be found partial_match = False # Flag is set when kernels encapsulating the entire image time is found full_match = False for selection in dbobj.getlist("Selection"): files = selection.getlist("File") # selection criteria matches = selection.getlist("Match") times = selection.getlist("Time") if not files: raise Exception(f"No File found in {selection}") files = [path.join(*file) if isinstance(file, list) else file for file in files] for i,time in enumerate(times): isis_time_format = '%Y %b %d %H:%M:%S.%f TDB' other_isis_time_format = '"%Y %b %d %H:%M:%S.%f TDB"' try: time = (datetime.strptime(time[0].strip(), isis_time_format), datetime.strptime(time[1].strip(), isis_time_format)) except: time = (datetime.strptime(time[0].strip(), other_isis_time_format), datetime.strptime(time[1].strip(), other_isis_time_format)) start_time_in_range = utc_start_time >= time[0] and utc_start_time <= time[1] stop_time_in_range = utc_stop_time >= time[0] and utc_stop_time <= time[1] times[i] = stop_time_in_range, stop_time_in_range for i,match in enumerate(matches): matches[i] = labelobj["IsisCube"][match[0].strip()][match[1].strip()].lower().strip() == match[2].lower().strip() if any(matches if matches else [True]): for i,f in enumerate(files): if isinstance(f, tuple): f = os.path.join(*[e.strip() for e in f]) full_path = os.path.join(isis3_data, f).replace("$", "").replace("\"", "") if "{" in full_path: start = full_path.find("{") stop = full_path.find("}") full_path = full_path[:start] + "?"*(stop-start-1) + full_path[stop+1:] if '?' in full_path: full_path = sorted(glob(full_path))[-1] files[i] = full_path if times: have_start_match, have_stop_match = list(map(list, zip(*times))) typ = selection.get("Type", None) typ = typ.lower().strip() if typ else None current_quality = max([quality[t.lower().strip()] for t in types if t]) if any(types) else 0 if any(have_start_match) and any(have_stop_match): # best case, the image is fully encapsulated in the kernel full_match = True if quality[typ] >= current_quality: kernels = files types = [selection.get("Type", None)] elif any(have_start_match): kernels.extend(files) types.append(selection.get("Type", None)) partial_match = True elif any(have_stop_match): if partial_match: if quality[typ] >= current_quality: kernels.extend(files) types.append(selection.get("Type", None)) full_match = True else: full_match = True kernels = files types = [selection.get("Type", None)] if partial_match: # this can only be true if a kernel matching start time was founf # but not the end time raise Exception("Could not find kernels encapsulating the full image time") kernels = {"kernels" : kernels} if any(types): kernels["types"] = types return kernels def find_kernels(cube, isis3_data="/usgs/cpkgs/isis3/data/", format_as=dict): """ Find all kernels for a cube and return a json object with categorized kernels. Parameters ---------- cube : str Path to an ISIS cube isis3_data : str path to $ISIS3DATA format_as : obj What type to return the kernels as, ISIS3-like dict/PVL or flat list Returns ------- : obj Container with kernels """ def remove_dups(listofElements): # Create an empty list to store unique elements uniqueList = [] # Iterate over the original list and for each element # add it to uniqueList, if its not already there. for elem in listofElements: if elem not in uniqueList: uniqueList.append(elem) # Return the list of unique elements return uniqueList cube_label = pvl.load(cube) mission_lookup_table = get_isis_mission_translations(isis3_data) mission_dir = mission_lookup_table[cube_label["IsisCube"]["Instrument"]["SpacecraftName"]] mission_dir = path.join(isis3_data, mission_dir.lower()) kernel_dir = path.join(mission_dir, "kernels") base_kernel_dir = path.join(isis3_data, "base", "kernels") kernel_types = [ name for name in os.listdir(kernel_dir) if os.path.isdir(os.path.join(kernel_dir, name)) ] kernel_types.extend(name for name in os.listdir(base_kernel_dir) if os.path.isdir(os.path.join(base_kernel_dir, name))) kernel_types = set(kernel_types) db_files = [] for typ in kernel_types: files = sorted(glob(path.join(kernel_dir, typ, "*.db"))) base_files = sorted(glob(path.join(base_kernel_dir, typ, "*.db"))) files = [list(it) for k,it in groupby(files, key=lambda f:os.path.basename(f).split(".")[0])] base_files = [list(it) for k,it in groupby(base_files, key=lambda f:os.path.basename(f).split(".")[0])] for instrument_dbs in files: db_files.append(read_pvl(sorted(instrument_dbs)[-1], True)) for base_dbs in base_files: db_files.append(read_pvl(sorted(base_dbs)[-1], True)) kernels = {} for f in db_files: #TODO: Error checking typ = f[0][0] kernel_search_results = search_isis_db(f[0][1], cube_label) if not kernel_search_results: kernels[typ] = None else: try: kernels[typ]["kernels"].extend(kernel_search_results["kernels"]) if any(kernel_search_results.get("types", [None])): kernels[typ]["types"].extend(kernel_search_results["types"]) except: kernels[typ] = {} kernels[typ]["kernels"] = kernel_search_results["kernels"] if any(kernel_search_results.get("types", [None])): kernels[typ]["types"] = kernel_search_results["types"] for k,v in kernels.items(): if v: kernels[k]["kernels"] = remove_dups(v["kernels"]) if format_as == dict: return kernels elif format_as == list: kernel_list = [] for _,kernels in kernels.items(): if kernels: kernel_list.extend(kernels["kernels"]) return kernel_list else: warnings.warn(f"{format_as} is not a valid format, returning as dict") return kernels
Ale
/Ale-0.8.4.tar.gz/Ale-0.8.4/ale/util.py
util.py
import numpy as np from numpy.polynomial.polynomial import polyval, polyder import networkx as nx from networkx.algorithms.shortest_paths.generic import shortest_path import spiceypy as spice from ale.rotation import ConstantRotation, TimeDependentRotation def create_rotations(rotation_table): """ Convert an ISIS rotation table into rotation objects. Parameters ---------- rotation_table : dict The rotation ISIS table as a dictionary Returns ------- : list A list of time dependent or constant rotation objects from the table. This list will always have either 1 or 2 elements. The first rotation will be time dependent and the second rotation will be constant. The rotations will be ordered such that the reference frame the first rotation rotates to is the reference frame the second rotation rotates from. """ rotations = [] root_frame = rotation_table['TimeDependentFrames'][-1] last_time_dep_frame = rotation_table['TimeDependentFrames'][0] # Case 1: It's a table of quaternions and times if 'J2000Q0' in rotation_table: # SPICE quaternions are (W, X, Y, Z) and ALE uses (X, Y, Z, W). quats = np.array([rotation_table['J2000Q1'], rotation_table['J2000Q2'], rotation_table['J2000Q3'], rotation_table['J2000Q0']]).T if 'AV1' in rotation_table: av = np.array([rotation_table['AV1'], rotation_table['AV2'], rotation_table['AV3']]).T else: av = None time_dep_rot = TimeDependentRotation(quats, rotation_table['ET'], root_frame, last_time_dep_frame, av=av) rotations.append(time_dep_rot) # Case 2: It's a table of Euler angle coefficients elif 'J2000Ang1' in rotation_table: ephemeris_times = np.linspace(rotation_table['CkTableStartTime'], rotation_table['CkTableEndTime'], rotation_table['CkTableOriginalSize']) base_time = rotation_table['J2000Ang1'][-1] time_scale = rotation_table['J2000Ang2'][-1] scaled_times = (ephemeris_times - base_time) / time_scale coeffs = np.array([rotation_table['J2000Ang1'][:-1], rotation_table['J2000Ang2'][:-1], rotation_table['J2000Ang3'][:-1]]).T angles = polyval(scaled_times, coeffs).T # ISIS is hard coded to ZXZ (313) Euler angle axis order. # SPICE also interprets Euler angle rotations as negative rotations, # so negate them before passing to scipy. time_dep_rot = TimeDependentRotation.from_euler('zxz', -angles, ephemeris_times, root_frame, last_time_dep_frame) rotations.append(time_dep_rot) if 'ConstantRotation' in rotation_table: last_constant_frame = rotation_table['ConstantFrames'][0] rot_mat = np.reshape(np.array(rotation_table['ConstantRotation']), (3, 3)) constant_rot = ConstantRotation.from_matrix(rot_mat, last_time_dep_frame, last_constant_frame) rotations.append(constant_rot) return rotations class FrameChain(nx.DiGraph): """ This class is responsible for handling rotations between reference frames. Every node is the reference frame and every edge represents the rotation to between those two nodes. Each edge is directional, where the source --> destination is one rotation and destination --> source is the inverse of that rotation. Attributes __________ frame_changes : list A list of tuples that represent the rotation from one frame to another. These tuples should all be NAIF codes for reference frames ephemeris_time : list A of ephemeris times that need to be rotated for each set of frame rotations in the frame chain """ @classmethod def from_spice(cls, sensor_frame, target_frame, center_ephemeris_time, ephemeris_times=[], nadir=False): frame_chain = cls() times = np.array(ephemeris_times) sensor_time_dependent_frames, sensor_constant_frames = cls.frame_trace(sensor_frame, center_ephemeris_time, nadir) target_time_dependent_frames, target_constant_frames = cls.frame_trace(target_frame, center_ephemeris_time) time_dependent_frames = list(zip(sensor_time_dependent_frames[:-1], sensor_time_dependent_frames[1:])) constant_frames = list(zip(sensor_constant_frames[:-1], sensor_constant_frames[1:])) target_time_dependent_frames = list(zip(target_time_dependent_frames[:-1], target_time_dependent_frames[1:])) target_constant_frames = list(zip(target_constant_frames[:-1], target_constant_frames[1:])) time_dependent_frames.extend(target_time_dependent_frames) constant_frames.extend(target_constant_frames) for s, d in time_dependent_frames: quats = np.zeros((len(times), 4)) avs = np.zeros((len(times), 3)) for j, time in enumerate(times): state_matrix = spice.sxform(spice.frmnam(s), spice.frmnam(d), time) rotation_matrix, avs[j] = spice.xf2rav(state_matrix) quat_from_rotation = spice.m2q(rotation_matrix) quats[j,:3] = quat_from_rotation[1:] quats[j,3] = quat_from_rotation[0] rotation = TimeDependentRotation(quats, times, s, d, av=avs) frame_chain.add_edge(rotation=rotation) for s, d in constant_frames: quats = np.zeros(4) rotation_matrix = spice.pxform(spice.frmnam(s), spice.frmnam(d), times[0]) quat_from_rotation = spice.m2q(rotation_matrix) quats[:3] = quat_from_rotation[1:] quats[3] = quat_from_rotation[0] rotation = ConstantRotation(quats, s, d) frame_chain.add_edge(rotation=rotation) return frame_chain @staticmethod def frame_trace(reference_frame, ephemeris_time, nadir=False): frame_codes = [reference_frame] _, frame_type, _ = spice.frinfo(frame_codes[-1]) frame_types = [frame_type] if nadir: return [], [] while(frame_codes[-1] != 1): try: center, frame_type, frame_type_id = spice.frinfo(frame_codes[-1]) except Exception as e: print(e) break if frame_type is 1 or frame_type is 2: frame_code = 1 elif frame_type is 3: try: matrix, frame_code = spice.ckfrot(frame_type_id, ephemeris_time) except: raise Exception(f"The ck rotation from frame {frame_codes[-1]} can not \ be found due to no pointing available at requested time \ or a problem with the frame") elif frame_type is 4: try: matrix, frame_code = spice.tkfram(frame_type_id) except: raise Exception(f"The tk rotation from frame {frame_codes[-1]} can not \ be found") elif frame_type is 5: matrix, frame_code = spice.zzdynrot(frame_type_id, center, ephemeris_time) else: raise Exception(f"The frame {frame_codes[-1]} has a type {frame_type_id} \ not supported by your version of Naif Spicelib. \ You need to update.") frame_codes.append(frame_code) frame_types.append(frame_type) constant_frames = [] while frame_codes: if frame_types[0] == 4: constant_frames.append(frame_codes.pop(0)) frame_types.pop(0) else: break time_dependent_frames = [] if len(constant_frames) != 0: time_dependent_frames.append(constant_frames[-1]) while frame_codes: time_dependent_frames.append(frame_codes.pop(0)) return time_dependent_frames, constant_frames @classmethod def from_isis_tables(cls, *args, inst_pointing={}, body_orientation={}, **kwargs): frame_chain = cls() for rotation in create_rotations(inst_pointing): frame_chain.add_edge(rotation=rotation) for rotation in create_rotations(body_orientation): frame_chain.add_edge(rotation=rotation) return frame_chain def add_edge(self, rotation, **kwargs): super(FrameChain, self).add_edge(rotation.source, rotation.dest, rotation=rotation, **kwargs) rotation = rotation.inverse() super(FrameChain, self).add_edge(rotation.source, rotation.dest, rotation=rotation, **kwargs) def compute_rotation(self, source, destination): """ Returns the rotation to another node. Returns the identity rotation if the other node is this node. Parameters ---------- source : int Integer id for the source node to rotate from destination : int Integer id for the node to rotate into from the source node Returns ------- rotation : Object Returns either a TimeDependentRotation object or ConstantRotation object depending on the number of rotations being multiplied together """ if source == destination: return ConstantRotation(np.array([0, 0, 0, 1]), source, destination) path = shortest_path(self, source, destination) rotations = [self.edges[path[i], path[i+1]]['rotation'] for i in range(len(path) - 1)] rotation = rotations[0] for next_rotation in rotations[1:]: rotation = next_rotation * rotation return rotation def last_time_dependent_frame_between(self, source, destination): """ Find the last time dependent frame between the source frame and the destination frame. Parameters ---------- source : int Integer id of the source node destination : int Integer of the destination node Returns ------- : tuple, None Returns the source node id, destination node id, and edge dictionary which contains the rotation from source to destination. """ path = shortest_path(self, source, destination) # Reverse the path to search bottom up to find the last time dependent # frame between the source and destination path.reverse() for i in range(len(path) - 1): edge = self.edges[path[i+1], path[i]] if isinstance(edge['rotation'], TimeDependentRotation): return path[i+1], path[i], edge return None
Ale
/Ale-0.8.4.tar.gz/Ale-0.8.4/ale/transformation.py
transformation.py
from scipy.interpolate import interp1d from scipy.spatial.transform import Rotation import numpy as np class ConstantRotation: """ A constant rotation between two 3D reference frames. Attributes __________ source : int The NAIF ID code for the source frame dest : int The NAIF ID code for the destination frame """ def from_matrix(mat, source, dest): """ Create a constant rotation from a directed cosine matrix Parameters ---------- mat : 2darray The rotation matrix source : int The NAIF ID code for the source frame dest : int The NAIF ID code for the destination frame See Also -------- scipy.spatial.transform.Rotation.from_dcm """ rot = Rotation.from_dcm(mat) return ConstantRotation(rot.as_quat(), source, dest) def __init__(self, quat, source, dest): """ Construct a constant rotation Parameters ---------- quat : array The quaternion representation of the rotation as a numpy array. The quaternion must be in scalar last format (x, y, z, w). source : int The NAIF ID code for the source frame dest : int The NAIF ID code for the destination frame """ self.source = source self.dest = dest self.quat = np.asarray(quat) def __repr__(self): return f'ConstantRotation Source: {self.source}, Destination: {self.dest}, Quat: {self.quat}' @property def quat(self): """ The quaternion that rotates from the source reference frame to the destination reference frame. The quaternion is in scalar last format (x, y, z, w). """ return self._rot.as_quat() @quat.setter def quat(self, new_quat): """ Change the rotation to a different quaternion Parameters ---------- new_quat : array The new quaternion as an array. The quaternion must be in scalar last format (x, y, z, w). """ self._rot = Rotation.from_quat(np.asarray(new_quat)) def rotation_matrix(self): """ The rotation matrix representation of the constant rotation """ return self._rot.as_dcm() def inverse(self): """ Get the inverse rotation, that is the rotation from the destination reference frame to the source reference frame. """ return ConstantRotation(self._rot.inv().as_quat(), self.dest, self.source) def __mul__(self, other): """ Compose this rotation with another rotation. The destination frame of the right rotation (other) and the source frame of the left rotation (self) must be the same. I.E. if A and B are rotations, then for A*B to be valid, A.source must equal B.dest. Parameters ---------- other : Rotation Another rotation object, it can be constant or time dependent. """ if self.source != other.dest: raise ValueError("Destination frame of first rotation {} is not the same as source frame of second rotation {}.".format(other.dest, self.source)) if isinstance(other, ConstantRotation): new_rot = self._rot * other._rot return ConstantRotation(new_rot.as_quat(), other.source, self.dest) elif isinstance(other, TimeDependentRotation): return TimeDependentRotation((self._rot * other._rots).as_quat(), other.times, other.source, self.dest, av=other.av) else: raise TypeError("Rotations can only be composed with other rotations.") class TimeDependentRotation: """ A time dependent rotation between two 3D reference frames. Attributes __________ source : int The NAIF ID code for the source frame dest : int The NAIF ID code for the destination frame """ def from_euler(sequence, euler, times, source, dest, degrees=False): """ Create a time dependent rotation from a set of Euler angles. Parameters ---------- sequence : string The axis sequence that the Euler angles are applied in. I.E. 'XYZ' or 'ZXZ'. euler : 2darray 2D numpy array of the euler angle rotations in radians. times : array The time for each rotation in euler. This array must be sorted in ascending order. source : int The NAIF ID code for the source frame dest : int The NAIF ID code for the destination frame degrees : bool If the angles are in degrees. If false, then degrees are assumed to be in radians. Defaults to False. See Also -------- scipy.spatial.transform.Rotation.from_euler """ rot = Rotation.from_euler(sequence, np.asarray(euler), degrees=degrees) return TimeDependentRotation(rot.as_quat(), times, source, dest) def __init__(self, quats, times, source, dest, av=None): """ Construct a time dependent rotation Parameters ---------- quats : 2darray The quaternion representations of the rotation as a 2d numpy array. Each inner array represents the rotation at the time at the same index in the times argument. The quaternions must be in scalar last format (x, y, z, w). times : array The time for each rotation in quats. This array must be sorted in ascending order. source : int The NAIF ID code for the source frame dest : int The NAIF ID code for the destination frame av : 2darray The angular velocity of the rotation at each time as a 2d numpy array. If not entered, then angular velocity will be computed by assuming constant angular velocity between times. """ self.source = source self.dest = dest self.quats = quats self.times = np.atleast_1d(times) if av is not None: self.av = np.asarray(av) else: self.av = av def __repr__(self): return f'Time Dependent Rotation Source: {self.source}, Destination: {self.dest}, Quats: {self.quats}, AV: {self.av}, Times: {self.times}' @property def quats(self): """ The quaternions that rotates from the source reference frame to the destination reference frame. The quaternions are in scalar last format (x, y, z, w). """ return self._rots.as_quat() @quats.setter def quats(self, new_quats): """ Change the rotations to interpolate over Parameters ---------- new_quats : 2darray The new quaternions as a 2d array. The quaternions must be in scalar last format (x, y, z, w). """ self._rots = Rotation.from_quat(new_quats) def inverse(self): """ Get the inverse rotation, that is the rotation from the destination reference frame to the source reference frame. """ if self.av is not None: new_av = -self._rots.apply(self.av) else: new_av = None return TimeDependentRotation(self._rots.inv().as_quat(), self.times, self.dest, self.source, av=new_av) def _slerp(self, times): """ Using SLERP interpolate the rotation and angular velocity at specific times. Times outside of the range covered by this rotation are extrapolated assuming constant angular velocity. If the rotation has angular velocities stored, then the first and last angular velocity are used for extrapolation. Otherwise, the angular velocities from the first and last interpolation interval are used for extrapolation. Parameters ---------- times : 1darray or float The new times to interpolate at. Returns ------- : Rotation The new rotations at the input times : 2darray The angular velocity vectors """ # Convert non-vector input to vector and check input vec_times = np.atleast_1d(times) if vec_times.ndim > 1: raise ValueError('Input times must be either a float or a 1d iterable of floats') # Compute constant angular velocity for interpolation intervals avs = np.zeros((len(self.times) + 1, 3)) if len(self.times) > 1: steps = self.times[1:] - self.times[:-1] rotvecs = (self._rots[1:] * self._rots[:-1].inv()).as_rotvec() avs[1:-1] = rotvecs / steps[:, None] # If available use actual angular velocity for extrapolation # Otherwise use the adjacent interpolation interval if self.av is not None: avs[0] = self.av[0] avs[-1] = self.av[-1] else: avs[0] = avs[1] avs[-1] = avs[-2] # Determine interpolation intervals for input times av_idx = np.searchsorted(self.times, vec_times) rot_idx = av_idx - 1 rot_idx[rot_idx < 0] = 0 # Interpolate/extrapolate rotations time_diffs = vec_times - self.times[rot_idx] interp_av = avs[av_idx] interp_rots = Rotation.from_rotvec(interp_av * time_diffs[:, None]) * self._rots[rot_idx] # If actual angular velocities are available, linearly interpolate them if self.av is not None: av_diff = np.zeros((len(self.times), 3)) if len(self.times) > 1: av_diff[:-1] = self.av[1:] - self.av[:-1] av_diff[-1] = av_diff[-2] interp_av = self.av[rot_idx] + (av_diff[rot_idx] * time_diffs[:, None]) return interp_rots, interp_av def reinterpolate(self, times): """ Reinterpolate the rotation at a given set of times. Parameters ---------- times : 1darray or float The new times to interpolate at. Returns ------- : TimeDependentRotation The new rotation at the input times """ new_rots, av = self._slerp(times) return TimeDependentRotation(new_rots.as_quat(), times, self.source, self.dest, av=av) def __mul__(self, other): """ Compose this rotation with another rotation. The destination frame of the right rotation (other) and the source frame of the left rotation (self) must be the same. I.E. if A and B are rotations, then for A*B to be valid, A.source must equal B.dest. If the other rotation is a time dependent rotation, then the time range for the resultant rotation will be the time covered by both rotations. I.E. if A covers 0 to 2 and B covers 1 to 4, then A*B will cover 1 to 2. Parameters ---------- other : Rotation Another rotation object, it can be constant or time dependent. """ if self.source != other.dest: raise ValueError("Destination frame of first rotation {} is not the same as source frame of second rotation {}.".format(other.dest, self.source)) if isinstance(other, ConstantRotation): if self.av is not None: other_inverse = other._rot.inv() new_av = np.asarray([other_inverse.apply(av) for av in self.av]) else: new_av = None return TimeDependentRotation((self._rots * other._rot).as_quat(), self.times, other.source, self.dest, av=new_av) elif isinstance(other, TimeDependentRotation): merged_times = np.union1d(np.asarray(self.times), np.asarray(other.times)) reinterp_self = self.reinterpolate(merged_times) reinterp_other = other.reinterpolate(merged_times) new_quats = (reinterp_self._rots * reinterp_other._rots).as_quat() new_av = reinterp_other._rots.inv().apply(reinterp_self.av) + reinterp_other.av return TimeDependentRotation(new_quats, merged_times, other.source, self.dest, av=new_av) else: raise TypeError("Rotations can only be composed with other rotations.") def apply_at(self, vec, et): """ Apply the rotation to a position at a specific time """ return self.reinterpolate(et)._rots.apply(vec) def rotate_velocity_at(self, pos, vel, et): """ Apply the rotation to a velocity at a specific time See: https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/rotation.html#State%20transformations For an explanation of why a separate method is required to rotate velocities. """ vec_pos = np.asarray(pos) vec_vel = np.asarray(vel) if vec_pos.ndim < 1: vec_pos = np.asarray([pos]) if vec_vel.ndim < 1: vec_vel = np.asarray([vel]) if vec_pos.shape != vec_vel.shape: raise ValueError('Input velocities and positions must have the same shape') rots, avs = self._slerp(et) rotated_vel = np.zeros(vec_vel.shape) for indx in range(vec_pos.shape[0]): skew = np.array([[0, -avs[indx, 2], avs[indx, 1]], [avs[indx, 2], 0, -avs[indx, 0]], [-avs[indx, 1], avs[indx, 0], 0]]) rot_deriv = np.dot(skew, rots[indx].as_dcm().T).T rotated_vel[indx] = rots[indx].apply(vec_vel[indx]) rotated_vel[indx] += np.dot(rot_deriv, vec_pos[indx]) return rotated_vel
Ale
/Ale-0.8.4.tar.gz/Ale-0.8.4/ale/rotation.py
rotation.py
import json import numpy as np from scipy.interpolate import interp1d, BPoly from networkx.algorithms.shortest_paths.generic import shortest_path from ale.transformation import FrameChain from ale.base.type_sensor import LineScanner, Framer from ale.rotation import ConstantRotation, TimeDependentRotation def to_isd(driver): """ Formatter to create sensor model meta data from a driver. Parameters ---------- driver : Driver Concrete driver for the image that meta data is being generated for. Returns ------- string The ISIS compatible meta data as a JSON encoded string. """ meta_data = {} meta_data['isis_camera_version'] = driver.sensor_model_version # interiror orientation meta_data['naif_keywords'] = driver.naif_keywords meta_data['detector_sample_summing'] = driver.sample_summing meta_data['detector_line_summing'] = driver.line_summing meta_data['focal_length_model'] = { 'focal_length' : driver.focal_length } meta_data['detector_center'] = { 'line' : driver.detector_center_line, 'sample' : driver.detector_center_sample } meta_data['starting_detector_line'] = driver.detector_start_line meta_data['starting_detector_sample'] = driver.detector_start_sample meta_data['focal2pixel_lines'] = driver.focal2pixel_lines meta_data['focal2pixel_samples'] = driver.focal2pixel_samples meta_data['optical_distortion'] = driver.usgscsm_distortion_model # general information meta_data['image_lines'] = driver.image_lines meta_data['image_samples'] = driver.image_samples meta_data['name_platform'] = driver.platform_name meta_data['name_sensor'] = driver.sensor_name meta_data['reference_height'] = { "maxheight": 1000, "minheight": -1000, "unit": "m" } # line scan sensor model specifics if isinstance(driver, LineScanner): meta_data['name_model'] = 'USGS_ASTRO_LINE_SCANNER_SENSOR_MODEL' meta_data['interpolation_method'] = 'lagrange' start_lines, start_times, scan_rates = driver.line_scan_rate center_time = driver.center_ephemeris_time meta_data['line_scan_rate'] = [[line, time, rate] for line, time, rate in zip(start_lines, start_times, scan_rates)] meta_data['starting_ephemeris_time'] = driver.ephemeris_start_time meta_data['center_ephemeris_time'] = center_time # frame sensor model specifics if isinstance(driver, Framer): meta_data['name_model'] = 'USGS_ASTRO_FRAME_SENSOR_MODEL' meta_data['center_ephemeris_time'] = driver.center_ephemeris_time frame_chain = driver.frame_chain sensor_frame = driver.sensor_frame_id target_frame = driver.target_frame_id body_radii = driver.target_body_radii meta_data['radii'] = { 'semimajor' : body_radii[0], 'semiminor' : body_radii[2], 'unit' : 'km' } instrument_pointing = {} source_frame, destination_frame, time_dependent_sensor_frame = frame_chain.last_time_dependent_frame_between(1, sensor_frame) # Reverse the frame order because ISIS orders frames as # (destination, intermediate, ..., intermediate, source) instrument_pointing['time_dependent_frames'] = shortest_path(frame_chain, destination_frame, 1) time_dependent_rotation = frame_chain.compute_rotation(1, destination_frame) instrument_pointing['ck_table_start_time'] = time_dependent_rotation.times[0] instrument_pointing['ck_table_end_time'] = time_dependent_rotation.times[-1] instrument_pointing['ck_table_original_size'] = len(time_dependent_rotation.times) instrument_pointing['ephemeris_times'] = time_dependent_rotation.times instrument_pointing['quaternions'] = time_dependent_rotation.quats[:, [3, 0, 1, 2]] instrument_pointing['angular_velocities'] = time_dependent_rotation.av # reference frame should be the last frame in the chain instrument_pointing["reference_frame"] = instrument_pointing['time_dependent_frames'][-1] # Reverse the frame order because ISIS orders frames as # (destination, intermediate, ..., intermediate, source) instrument_pointing['constant_frames'] = shortest_path(frame_chain, sensor_frame, destination_frame) constant_rotation = frame_chain.compute_rotation(destination_frame, sensor_frame) instrument_pointing['constant_rotation'] = constant_rotation.rotation_matrix().flatten() meta_data['instrument_pointing'] = instrument_pointing body_rotation = {} source_frame, destination_frame, time_dependent_target_frame = frame_chain.last_time_dependent_frame_between(target_frame, 1) if source_frame != 1: # Reverse the frame order because ISIS orders frames as # (destination, intermediate, ..., intermediate, source) body_rotation['time_dependent_frames'] = shortest_path(frame_chain, source_frame, 1) time_dependent_rotation = frame_chain.compute_rotation(1, source_frame) body_rotation['ck_table_start_time'] = time_dependent_rotation.times[0] body_rotation['ck_table_end_time'] = time_dependent_rotation.times[-1] body_rotation['ck_table_original_size'] = len(time_dependent_rotation.times) body_rotation['ephemeris_times'] = time_dependent_rotation.times body_rotation['quaternions'] = time_dependent_rotation.quats[:, [3, 0, 1, 2]] body_rotation['angular_velocities'] = time_dependent_rotation.av if source_frame != target_frame: # Reverse the frame order because ISIS orders frames as # (destination, intermediate, ..., intermediate, source) body_rotation['constant_frames'] = shortest_path(frame_chain, target_frame, source_frame) constant_rotation = frame_chain.compute_rotation(source_frame, target_frame) body_rotation['constant_rotation'] = constant_rotation.rotation_matrix().flatten() body_rotation["reference_frame"] = destination_frame meta_data['body_rotation'] = body_rotation j2000_rotation = frame_chain.compute_rotation(target_frame, 1) instrument_position = {} positions, velocities, times = driver.sensor_position instrument_position['spk_table_start_time'] = times[0] instrument_position['spk_table_end_time'] = times[-1] instrument_position['spk_table_original_size'] = len(times) instrument_position['ephemeris_times'] = times # Rotate positions and velocities into J2000 then scale into kilometers velocities = j2000_rotation.rotate_velocity_at(positions, velocities, times)/1000 positions = j2000_rotation.apply_at(positions, times)/1000 instrument_position['positions'] = positions instrument_position['velocities'] = velocities instrument_position["reference_frame"] = destination_frame meta_data['instrument_position'] = instrument_position sun_position = {} positions, velocities, times = driver.sun_position sun_position['spk_table_start_time'] = times[0] sun_position['spk_table_end_time'] = times[-1] sun_position['spk_table_original_size'] = len(times) sun_position['ephemeris_times'] = times # Rotate positions and velocities into J2000 then scale into kilometers velocities = j2000_rotation.rotate_velocity_at(positions, velocities, times)/1000 positions = j2000_rotation.apply_at(positions, times)/1000 sun_position['positions'] = positions sun_position['velocities'] = velocities sun_position["reference_frame"] = destination_frame meta_data['sun_position'] = sun_position # check that there is a valid sensor model name if 'name_model' not in meta_data: raise Exception('No CSM sensor model name found!') return meta_data
Ale
/Ale-0.8.4.tar.gz/Ale-0.8.4/ale/formatters/formatter.py
formatter.py
import os import re import struct from glob import glob import numpy as np from numpy.polynomial.polynomial import polyval, polyder from dateutil import parser import pvl import spiceypy as spice from ale.rotation import ConstantRotation, TimeDependentRotation from ale.transformation import FrameChain from scipy.interpolate import interp1d, BPoly from ale.base.label_isis import IsisLabel def read_table_data(table_label, cube): """ Helper function to read all of the binary table data Parameters ---------- table_label : PVLModule The ISIS table label cube : file The ISIS cube file Returns ------- bytes : The binary portion of the table data """ cubehandle = open(cube, "rb") cubehandle.seek(table_label['StartByte'] - 1) return cubehandle.read(table_label['Bytes']) def parse_table(table_label, data): """ Parse an ISIS table into a dictionary. Parameters ---------- table_label : PVLModule The ISIS table label data : bytes The binary component of the ISIS table Returns ------- dict : The table as a dictionary with the keywords from the label and the binary data """ data_sizes = {'Integer' : 4, 'Double' : 8, 'Real' : 4, 'Text' : 1} data_formats = {'Integer' : 'i', 'Double' : 'd', 'Real' : 'f'} # Parse the binary data fields = table_label.getlist('Field') results = {field['Name']:[] for field in fields} offset = 0 for record in range(table_label['Records']): for field in fields: if field['Type'] == 'Text': field_data = data[offset:offset+field['Size']].decode(encoding='latin_1') else: data_format = data_formats[field['Type']] * field['Size'] field_data = struct.unpack_from(data_format, data[offset:]) if len(field_data) == 1: field_data = field_data[0] results[field['Name']].append(field_data) offset += data_sizes[field['Type']] * field['Size'] # Parse the keywords from the label results.update({key : value for key, value in table_label.items() if not isinstance(value, pvl._collections.PVLGroup)}) return results def rotate_state(table, rotation): """ Rotate the positions and velocities in an ISIS position Table. If the table stores states as a function, then it will re compute them based on the original size of the table. Parameters ---------- table : dict The position table as a dictionary rotation : TimeDependentRotation The rotation to rotate the positions by Returns ------- : 2darray Array of rotated positions : 2darray Array of rotated velocities. Returns None if no velocities are in the table. : array Array of times for the states """ positions = None velocities = None ephemeris_times = None # Case 1, the table has states at discrete times if 'J2000X' in table: ephemeris_times = table['ET'] positions = 1000 * np.array([table['J2000X'], table['J2000Y'], table['J2000Z']]).T if 'J2000XV' in table: ephemeris_times = table['ET'] velocities = 1000 * np.array([table['J2000XV'], table['J2000YV'], table['J2000ZV']]).T # Case 2, the table has coefficients of polynomials for the states elif 'J2000SVX' in table: ephemeris_times = np.linspace(table['SpkTableStartTime'], table['SpkTableEndTime'], table['SpkTableOriginalSize']) base_time = table['J2000SVX'][-1] time_scale = table['J2000SVY'][-1] scaled_times = (ephemeris_times - base_time) / time_scale coeffs = np.array([table['J2000SVX'][:-1], table['J2000SVY'][:-1], table['J2000SVZ'][:-1]]) positions = 1000 * polyval(scaled_times, coeffs.T).T scaled_vel = 1000 * polyval(scaled_times, polyder(coeffs,axis=1).T).T # We took a derivative in scaled time, so we have to multiply by our # scale in order to get the derivative in real time velocities = scaled_vel / time_scale else: raise ValueError('No positions are available in the input table.') rotated_pos = rotation.apply_at(positions, ephemeris_times) if velocities is not None: rotated_vel = rotation.rotate_velocity_at(positions, velocities, ephemeris_times) else: rotated_vel = None return rotated_pos, rotated_vel, ephemeris_times class IsisSpice(): """Mixin class for reading from an ISIS cube that has been spiceinit'd Attributes ---------- _label : PVLModule Dict-like object with PVL keys _inst_pointing_table : dict Dictionary that contains information about the rotation from J2000 to the sensor reference frame. All of the values for each property, such as angular velocity, are stored in a list or numpy array where each entry is the property at a different time. _body_orientation_table : dict Dictionary that contains information about the rotation from J2000 to the body fixed reference frame. All of the values for each property, such as angular velocity, are stored in a list or numpy array where each entry is the property at a different time. _inst_position_table : dict Dictionary that contains information about the location of the sensor relative to the center of the target body. All of the values for each property, such as velocity, are stored in a list or numpy array where each entry is the property at a different time. _sun_position_table : dict Dictionary that contains information about the location of the sun relative to the center of the target body. All of the values for each property, such as velocity, are stored in a list or numpy array where each entry is the property at a different time. """ @property def inst_pointing_table(self): """ ISIS Table containing the rotation between the J2000 reference frame and the instrument reference frame. Returns ------- : dict Instrument pointing table """ if not hasattr(self, "_inst_pointing_table"): for table in self.label.getlist('Table'): if table['Name'] == 'InstrumentPointing': binary_data = read_table_data(table, self._file) self._inst_pointing_table = parse_table(table, binary_data) return self._inst_pointing_table raise ValueError(f'Could not find InstrumentPointing table on file {self._file}') return self._inst_pointing_table @property def body_orientation_table(self): """ ISIS Table containing the rotation between the J2000 reference frame and the target body reference frame. Returns ------- : dict Body orientation table """ if not hasattr(self, "_body_orientation_table"): for table in self.label.getlist('Table'): if table['Name'] == 'BodyRotation': binary_data = read_table_data(table, self._file) self._body_orientation_table = parse_table(table, binary_data) return self._body_orientation_table raise ValueError(f'Could not find BodyRotation table on file {self._file}') return self._body_orientation_table @property def inst_position_table(self): """ ISIS Table containing the location of the instrument relative to the target body in the J2000 reference frame. Returns ------- : dict Instrument position table """ if not hasattr(self, "_inst_position_table"): for table in self.label.getlist('Table'): if table['Name'] == 'InstrumentPosition': binary_data = read_table_data(table, self._file) self._inst_position_table = parse_table(table, binary_data) return self._inst_position_table raise ValueError(f'Could not find InstrumentPosition table on file {self._file}') return self._inst_position_table @property def sun_position_table(self): """ ISIS Table containing the location of the sun relative to the target body in the J2000 reference frame. Returns ------- : dict Sun position table """ if not hasattr(self, "_sun_position_table"): for table in self.label.getlist('Table'): if table['Name'] == 'SunPosition': binary_data = read_table_data(table, self._file) self._sun_position_table = parse_table(table, binary_data) return self._sun_position_table raise ValueError(f'Could not find SunPosition table on file {self._file}') return self._sun_position_table def __enter__(self): """ Stub method to conform with how other driver mixins are used. """ return self def __exit__(self, exc_type, exc_val, exc_tb): """ Called when the context goes out of scope. This is implemented to conform to the context manager paradigm used by other data mix ins. """ pass @property def _sclock_hex_string(self): """ The hex encoded image start time computed from the spacecraft clock count Expects naif_keywords to be defined. This should be a dict containing Naif keyworkds from the label. Returns ------- str : The hex string representation of the image start time as a double """ regex = re.compile('CLOCK_ET_.*_COMPUTED') for key in self.naif_keywords: if re.match(regex, key[0]): # If the hex string is only numbers and contains leading 0s, # the PVL library strips them off (ie. 0000000000002040 becomes # 2040). Pad to 16 in case this happens. return str(key[1]).zfill(16) raise ValueError("No computed spacecraft clock time found in NaifKeywords.") @property def ephemeris_start_time(self): """ The image start time in ephemeris time Expects sclock_hex_string to be defined. This should be a string containing the hex start time of the image Returns ------- float : The image start ephemeris time """ return struct.unpack('d', bytes.fromhex(self._sclock_hex_string))[0] @property def detector_center_sample(self): """ The center of the CCD in detector pixels Expects ikid to be defined. this should be the integer Naif ID code for the instrument. Returns ------- list : The center of the CCD formatted as line, sample """ return self.naif_keywords.get('INS{}_BORESIGHT_SAMPLE'.format(self.ikid), None) @property def detector_center_line(self): """ The center of the CCD in detector pixels Expects ikid to be defined. this should be the integer Naif ID code for the instrument. Returns ------- list : The center of the CCD formatted as line, sample """ return self.naif_keywords.get('INS{}_BORESIGHT_LINE'.format(self.ikid), None) @property def _cube_label(self): """ The ISIS cube label portion of the file label Returns ------- PVLModule : The ISIS cube label """ if 'IsisCube' not in self.label: raise ValueError("Could not find ISIS cube label.") return self.label['IsisCube'] @property def _kernels_group(self): """ The Kernels group from the ISIS cube label. This is where the original SPICE kernels are listed. Expects cube_label to be defined. This should be a PVLModule containing the ISIS cube label. Returns ------- PVLModule : The kernels group """ if 'Kernels' not in self._cube_label: raise ValueError("Could not find Kernels group in ISIS cube label.") return self._cube_label['Kernels'] @property def ikid(self): """ The NAIF id for the instrument Expects kernels_group to be defined. This should be a PVLModule containing the kernels group. Returns ------- int : The instrument id """ if 'NaifIkCode' not in self._kernels_group: if 'NaifFrameCode' not in self._kernels_group: raise ValueError("Could not find Instrument NAIF ID in Kernels group.") return self._kernels_group['NaifFrameCode'] return self._kernels_group['NaifIkCode'] @property def focal2pixel_lines(self): """ The line component of the affine transformation from focal plane coordinates to centered ccd pixels Expects naif_keywords to be defined. This should be a dict containing Naif keyworkds from the label. Expects ikid to be defined. This should be the integer Naif ID code for the instrument. Returns ------- list : The coefficients of the affine transformation formatted as constant, x, y """ return self.naif_keywords.get('INS{}_ITRANSL'.format(self.ikid), None) @property def focal2pixel_samples(self): """ The sample component of the affine transformation from focal plane coordinates to centered ccd pixels Expects naif_keywords to be defined. This should be a dict containing Naif keyworkds from the label. Expects ikid to be defined. This should be the integer Naif ID code for the instrument. Returns ------- list : The coefficients of the affine transformation formatted as constant, x, y """ return self.naif_keywords.get('INS{}_ITRANSS'.format(self.ikid), None) @property def pixel2focal_x(self): """ Expects ikid to be defined. This must be the integer Naif id code of the instrument Returns ------- : list<double> detector to focal plane x """ return self.naif_keywords.get('INS{}_TRANSX'.format(self.ikid), None) @property def pixel2focal_y(self): """ Expects ikid to be defined. This must be the integer Naif id code of the instrument Returns ------- : list<double> detector to focal plane y """ return self.naif_keywords.get('INS{}_TRANSY'.format(self.ikid), None) @property def focal_length(self): """ The focal length of the instrument Expects naif_keywords to be defined. This should be a dict containing Naif keyworkds from the label. Expects ikid to be defined. This should be the integer Naif ID code for the instrument. Returns ------- float : The focal length in millimeters """ return self.naif_keywords.get('INS{}_FOCAL_LENGTH'.format(self.ikid), None) @property def target_body_radii(self): """ The triaxial radii of the target body Expects naif_keywords to be defined. This should be a dict containing Naif keyworkds from the label. Returns ------- list : The body radii in kilometers. For most bodies, this is formatted as semimajor, semimajor, semiminor """ regex = re.compile(r'BODY-?\d*_RADII') for key in self.naif_keywords: if re.match(regex, key[0]): return self.naif_keywords[key[0]] @property def frame_chain(self): """ Return the root node of the rotation frame tree/chain. The root node is the J2000 reference frame. The other nodes in the tree can be accessed via the methods in the FrameNode class. Returns ------- FrameNode The root node of the frame tree. This will always be the J2000 reference frame. """ if not hasattr(self, '_frame_chain'): self._frame_chain = FrameChain.from_isis_tables( inst_pointing = self.inst_pointing_table, body_orientation = self.body_orientation_table) return self._frame_chain @property def sun_position(self): """ The sun position Expects sun_position_table to be defined. This should be a dictionary that contains information about the location of the sun relative to the center of the target body. Returns ------- array : The sun position vectors relative to the center of the target body in the J2000 reference frame as a tuple of numpy arrays. """ j2000_to_target = self.frame_chain.compute_rotation(1, self.target_frame_id) positions, velocities, times = rotate_state(self.sun_position_table, j2000_to_target) return positions, velocities, times @property def sensor_position(self): """ Sensor position Expects inst_position_table to be defined. This should be a dictionary that contains information about the location of the sensor relative to the center of the target body. Expects number_of_ephemerides to be defined. This should be an integer containing the number of instrument position states. Returns ------- : (positions, velocities, times) a tuple containing a list of positions, a list of velocities, and a list of times """ j2000_to_target = self.frame_chain.compute_rotation(1, self.target_frame_id) positions, velocities, times = rotate_state(self.inst_position_table, j2000_to_target) return positions, velocities, times @property def naif_keywords(self): """ The NaifKeywords group from the file label that contains stored values from the original SPICE kernels Returns ------- PVLModule : The stored NAIF keyword values """ if 'NaifKeywords' not in self.label: raise ValueError("Could not find NaifKeywords in label.") return self.label['NaifKeywords'] @property def odtk(self): """ Returns optical distortion coefficients Expects ikid to be defined. This should be the integer Naif ID code for the instrument Returns ------- : list optical distortion coefficients """ return self.naif_keywords["INS{}_OD_K".format(self.ikid)] @property def sensor_frame_id(self): if 'ConstantFrames' in self.inst_pointing_table: return self.inst_pointing_table['ConstantFrames'][0] else: return self.inst_pointing_table['TimeDependentFrames'][0] @property def target_frame_id(self): if 'ConstantFrames' in self.body_orientation_table: return self.body_orientation_table['ConstantFrames'][0] else: return self.body_orientation_table['TimeDependentFrames'][0]
Ale
/Ale-0.8.4.tar.gz/Ale-0.8.4/ale/base/data_isis.py
data_isis.py
import pvl class Pds3Label(): """ Mix-in for parsing PDS3 PVL labels. """ @property def label(self): if not hasattr(self, "_label"): if isinstance(self._file, pvl.PVLModule): self._label = self._file else: try: self._label = pvl.loads(self._file, strict=False) except Exception: self._label = pvl.load(self._file) except: raise ValueError("{} is not a valid label".format(self._file)) return self._label @property def instrument_id(self): """ Returns the short name of the instrument Returns ------- : str Short name of the instrument """ return self.label['INSTRUMENT_ID'] @property def instrument_name(self): """ Returns the full name of the instrument Returns ------- : str Full name of the instrument """ return self.label['INSTRUMENT_NAME'] @property def sensor_name(self): """ Returns the name of the instrument Returns ------- : str Name of the sensor """ return self.instrument_name @property def instrument_host_id(self): """ Returns the short name of the instrument host Returns ------- : str Short name of the instrument host """ return self.label['INSTRUMENT_HOST_ID'] @property def instrument_host_name(self): """ Returns the full name of the instrument host Returns ------- : str Full name of the instrument host """ return self.label['INSTRUMENT_HOST_NAME'] @property def platform_name(self): """ Returns the name of the platform which the instrument is mounted on Returns ------- : str platform name """ return self.instrument_host_name @property def spacecraft_name(self): """ Returns the name of the spacecraft Returns ------- : str Full name of the spacecraft """ return self.label['SPACECRAFT_NAME'] @property def utc_start_time(self): """ Returns the start time of the image as a UTC string Returns ------- : str Start time of the image in UTC YYYY-MM-DDThh:mm:ss[.fff] """ return self.label['START_TIME'] @property def utc_stop_time(self): """ Returns the stop time of the image as a UTC string Returns ------- : str Stop time of the image in UTC YYYY-MM-DDThh:mm:ss[.fff] """ return self.label['STOP_TIME'] @property def image_lines(self): """ Returns ------- : int Number of lines in the image """ return self.label['IMAGE']['LINES'] @property def image_samples(self): """ Returns ------- : int Number of samples in the image """ return self.label['IMAGE']['LINE_SAMPLES'] @property def target_name(self): """ Returns a target name unquely identifying what an observation was capturing. This is most often a body name (e.g., Mars, Moon, Europa). This value is often use to acquire Ephermis data from SPICE files; therefore it should be the same name spicelib expects in bodvrd calls. Returns ------- : str Target name """ return self.label['TARGET_NAME'] @property def sampling_factor(self): """ Returns the summing factor from the PDS3 label. For example a return value of 2 indicates that 2 lines and 2 samples (4 pixels) were summed and divided by 4 to produce the output pixel value. Returns ------- : int Number of samples and lines combined from the original data to produce a single pixel in this image """ return self.label.get('SAMPLING_FACTOR', 1) @property def line_summing(self): """ Expects sampling_factor to be defined. This must be an integer containing the number of samples and lines combined from the original data Returns ------- : int Number of detector lines summed to produce each image line """ return self.sampling_factor @property def sample_summing(self): """ Expects sampling_factor to be defined. This must be an integer containing the number of samples and lines combined from the original data Returns ------- : int Number of detector lines summed to produce each image line """ return self.sampling_factor @property def downtrack_summing(self): """ Returns the number of detector pixels (normally in the line direction) that have been averaged to produce the output pixel Returns ------- : int Number of downtrack pixels summed together """ return self.label.get('DOWNTRACK_SUMMING', 1) @property def crosstrack_summing(self): """ Returns the number of detector pixels (normally in the sample direction) that have been averaged to produce the output pixel Returns ------- : int Number of crosstrack pixels summed together """ return self.label.get('CROSSTRACK_SUMMING', 1) @property def spacecraft_clock_start_count(self): """ Returns ------- : str Returns the start clock count string from the PDS3 label. """ return self.label['SPACECRAFT_CLOCK_START_COUNT'] @property def spacecraft_clock_stop_count(self): """ Returns ------- : str Returns the stop clock count string from the PDS3 label. """ count = self.label['SPACECRAFT_CLOCK_STOP_COUNT'] if count == 'N/A': count = None return count @property def exposure_duration(self): """ Returns the exposure duration converted to seconds. If the exposure duration is not present in the PDS3 label, then this property returns the line exposure duration. Expects line_exposure_duration to be defined. This should be a floating point number containing the line exposure duration. Returns ------- : float Returns the exposure duration in seconds from the PDS3 label. """ # The EXPOSURE_DURATION may either be stored as a (value, unit) or just a value if 'EXPOSURE_DURATION' in self.label: try: unit = self.label['EXPOSURE_DURATION'].units unit = unit.lower() if unit == "ms" or unit == "msec" or unit == "millisecond": return self.label['EXPOSURE_DURATION'].value * 0.001 else: return self.label['EXPOSURE_DURATION'].value # With no units, assume milliseconds except: return self.label['EXPOSURE_DURATION'] * 0.001 else: return self.line_exposure_duration # Consider expanding this to handle units @property def line_exposure_duration(self): """ Line exposure duration returns the time between the exposures for subsequent lines. Returns ------- : float Returns the line exposure duration in seconds from the PDS3 label. """ return self.label['LINE_EXPOSURE_DURATION'].value * 0.001 # Scale to seconds @property def filter_number(self): """ Returns ------- : int Returns the filter number from the PDS3 label """ return self.label['FILTER_NUMBER']
Ale
/Ale-0.8.4.tar.gz/Ale-0.8.4/ale/base/label_pds3.py
label_pds3.py
import pvl import json class Driver(): """ Base class for all Drivers. Attributes ---------- _file : str Reference to file path to be used by mixins for opening. """ def __init__(self, file, num_ephem=909, num_quats=909, props={}): """ Parameters ---------- file : str path to file to be parsed """ if not props: self._props = {} elif isinstance(props, dict): self._props = props elif isinstance(props, str): self._props = json.loads(props) else: raise Exception(f'Invalid props arg: {props}') self._num_quaternions = num_quats self._num_ephem = num_ephem self._file = file @property def image_lines(self): """ Returns ------- : int Number of lines in image """ raise NotImplementedError @property def image_samples(self): """ Returns ------- : int Number of samples in image """ raise NotImplementedError @property def usgscsm_distortion_model(self): """ Returns ------- : dict A dict containing the information about the distortion model for the usgscsm """ raise NotImplementedError @property def detector_start_line(self): """ Returns ------- : int Zero based Detector line corresponding to the first image line """ return 0 @property def detector_start_sample(self): """ Returns ------- : int Zero based Detector sample corresponding to the first image sample """ return 0 @property def sample_summing(self): """ Returns ------- : int Sample summing """ raise NotImplementedError @property def line_summing(self): """ Returns ------- : int Line summing """ raise NotImplementedError @property def platform_name(self): """ Returns ------- : str Name of the platform that the sensor is on """ raise NotImplementedError @property def sensor_name(self): """ Returns ------- : str Name of the sensor """ raise NotImplementedError @property def target_body_radii(self): """ Returns ------- : list target body radii, first list element is semimajor axis, second is semiminor axis. """ raise NotImplementedError @property def focal_length(self): """ Returns ------- : float focal length """ raise NotImplementedError @property def detector_center_line(self): """ Returns ------- : int The detector line of the principle point """ raise NotImplementedError @property def detector_center_sample(self): """ Returns ------- : int The detector sample of the principle point """ raise NotImplementedError @property def sensor_position(self): """ Returns ------- : (positions, velocities, times) a tuple containing a list of positions, a list of velocities, and a list of times """ raise NotImplementedError @property def frame_chain(self): """ Returns ------- FrameNode The root node of the frame tree. This will always be the J2000 reference frame. """ raise NotImplementedError @property def sun_position(self): """ Returns ------- : (sun_positions, sun_velocities) a tuple containing a list of sun positions, a list of sun velocities """ @property def target_name(self): """ Returns ------- : int NAIF ID associated with the target body """ raise NotImplementedError @property def target_frame_id(self): """ Returns ------- : int NAIF ID associated with the target body """ raise NotImplementedError @property def sensor_frame_id(self): """ Returns ------- : int NAIF ID associated with the sensor frame """ raise NotImplementedError @property def naif_keywords(self): """ Returns ------- : dict dictionary containing the keys : values needed by Isis for the NaifKeywords group """ raise NotImplementedError @property def sensor_model_version(self): """ Returns ------- : int version of the sensor model """ raise NotImplementedError @property def focal2pixel_lines(self): """ Returns ------- : list 3 element list containing affine transformation coefficient. The elements are as follows: constant, x coefficent, y coeffecient """ raise NotImplementedError @property def focal2pixel_samples(self): """ Returns ------- : list 3 element list containing affine transformation coefficients. The elements are as follows: constant, x coefficent, y coeffecient """ raise NotImplementedError @property def pixel2focal_x(self): """ Returns ------- : list 3 element list containing coefficience for the pixels to focal plane transformation. The elements are as follows: constant, sample, line """ raise NotImplementedError @property def pixel2focal_y(self): """ Returns ------- : : list 3 element list containing coefficience for the pixels to focal plane transformation. The elements are as follows: constant, sample, line """ raise NotImplementedError @property def ephemeris_start_time(self): """ Returns ------- : double The start time of the image in ephemeris seconds past the J2000 epoch. """ raise NotImplementedError @property def ephemeris_stop_time(self): """ Returns ------- : double The stop time of the image in ephemeris seconds past the J2000 epoch. """ raise NotImplementedError @property def center_ephemeris_time(self): """ Returns the average of the start and stop ephemeris times. Returns ------- : double Center ephemeris time for an image """ return (self.ephemeris_start_time + self.ephemeris_stop_time) / 2 @property def short_mission_name(self): return self.__module__.split('.')[-1].split('_')[0]
Ale
/Ale-0.8.4.tar.gz/Ale-0.8.4/ale/base/base.py
base.py
import numpy as np class LineScanner(): """ Mix-in for line scan sensors. """ @property def name_model(self): """ Returns Key used to define the sensor type. Primarily used for generating camera models. Returns ------- : str USGS Frame model """ return "USGS_ASTRO_LINE_SCANNER_SENSOR_MODEL" @property def line_scan_rate(self): """ Expects ephemeris_start_time to be defined. This should be a float containing the start time of the image. Expects center_ephemeris_time to be defined. This should be a float containing the average of the start and end ephemeris times. Returns ------- : list Start lines : list Line times : list Exposure durations """ t0_ephemeris = self.ephemeris_start_time - self.center_ephemeris_time return [0.5], [t0_ephemeris], [self.exposure_duration] @property def ephemeris_time(self): """ Returns an array of times between the start/stop ephemeris times based on the number of lines in the image. Expects ephemeris start/stop times to be defined. These should be floating point numbers containing the start and stop times of the images. Expects image_lines to be defined. This should be an integer containing the number of lines in the image. Returns ------- : ndarray ephemeris times split based on image lines """ return np.linspace(self.ephemeris_start_time, self.ephemeris_stop_time, max(2, int(self.image_lines/64))) @property def ephemeris_stop_time(self): """ Returns the sum of the starting ephemeris time and the number of lines times the exposure duration. Expects ephemeris start time, exposure duration and image lines to be defined. These should be double precision numbers containing the ephemeris start, exposure duration and number of lines of the image. Returns ------- : double Center ephemeris time for an image """ return self.ephemeris_start_time + (self.image_lines * self.exposure_duration) class Framer(): """ Mix-in for framing sensors. """ @property def name_model(self): """ Returns Key used to define the sensor type. Primarily used for generating camera models. Returns ------- : str USGS Frame model """ return "USGS_ASTRO_FRAME_SENSOR_MODEL" @property def ephemeris_time(self): """ Returns the center ephemeris time for the image which is start time plus half of the exposure duration. Expects center_ephemeris_time to be defined. This should be a double containing the average of the start and stop ephemeris times. Returns ------- : double Center ephemeris time for the image """ return [self.center_ephemeris_time] @property def ephemeris_stop_time(self): """ Returns the sum of the starting ephemeris time and the exposure duration. Expects ephemeris start time and exposure duration to be defined. These should be double precision numbers containing the ephemeris start and exposure duration of the image. Returns ------- : double Ephemeris stop time for an image """ return self.ephemeris_start_time + self.exposure_duration class Radar(): """ Mix-in for synthetic aperture radar sensors. """ @property def name_model(self): """ Returns Key used to define the sensor type. Primarily used for generating camera models. Returns ------- : str USGS SAR (synthetic aperture radar) model """ return "USGS_ASTRO_SAR_MODEL" @property def ephemeris_time(self): """ Returns an array of times between the start/stop ephemeris times based on the start/stop times with a timestep 0.25. Expects ephemeris start/stop times to be defined. These should be floating point numbers containing the start and stop times of the images. Returns ------- : ndarray ephemeris times split based on image lines """ # 0.25 is the delta used by minirf, used as a default. num_states = int((self.ephemeris_stop_time - self.ephemeris_start_time)/0.25) + 1 return np.linspace(self.ephemeris_start_time, self.ephemeris_stop_time, num_states) @property def wavelength(self): """ Returns the wavelength used for image acquistion. Returns ------- : double Wavelength used to create an image in meters """ raise NotImplementedError @property def line_exposure_duration(self): """ Returns the exposure duration for each line. Returns ------- : double Exposure duration for a line """ raise NotImplmentedError @property def scaled_pixel_width(self): """ Returns the scaled pixel width Returns ------- : double Scaled pixel width """ raise NotImplementedError @property def range_conversion_coefficients(self): """ Returns the range conversion coefficients Returns ------- : list Coefficients needed for range conversion """ raise NotImplementedError @property def range_conversion_times(self): """ Returns the times associated with the range conversion coefficients Returns ------- : list Times for the range conversion coefficients """ raise NotImplementedError @property def look_direction(self): """ Direction of the look (left or right) Returns ------- : string left or right """ raise NotImplementedError
Ale
/Ale-0.8.4.tar.gz/Ale-0.8.4/ale/base/type_sensor.py
type_sensor.py
import spiceypy as spice import numpy as np import scipy.constants import ale from ale.base.type_sensor import Framer from ale.transformation import FrameChain from ale.rotation import TimeDependentRotation from ale import util class NaifSpice(): """ Mix-in for reading data from NAIF SPICE Kernels. """ def __enter__(self): """ Called when the context is created. This is used to get the kernels furnished. """ if self.kernels: [spice.furnsh(k) for k in self.kernels] return self def __exit__(self, exc_type, exc_val, exc_tb): """ Called when the context goes out of scope. Once this is done, the object is out of scope and the kernels can be unloaded. """ if self.kernels: [spice.unload(k) for k in self.kernels] @property def kernels(self): """ Get the NAIF SPICE Kernels to furnish There are two ways to specify which kernels a driver will use: 1. Passing the 'kernels' property into load(s) or at instantiation. This can be either a straight iterable or a dictionary that specifies the kernels in ISIS style ('TargetPosition', 'InstrumentPosition', etc). 2. Set the ALESPICEROOT environment variable. This variable should be the path to a directory that contains directories whose naming convention matches the PDS Kernel Archives format, `shortMissionName-versionInfo`. The directory corresponding to the driver's mission will be searched for the approriate meta kernel to load. See Also -------- ale.util.get_kernels_from_isis_pvl : Function used to parse ISIS style dict ale.util.get_metakernels : Function that searches ALESPICEROOT for meta kernels ale.util.generate_kernels_from_cube : Helper function to get an ISIS style dict from an ISIS cube that has been through spiceinit """ if not hasattr(self, '_kernels'): if 'kernels' in self._props.keys(): try: self._kernels = util.get_kernels_from_isis_pvl(self._props['kernels']) except Exception as e: self._kernels = self._props['kernels'] else: if not ale.spice_root: raise EnvironmentError(f'ale.spice_root is not set, cannot search for metakernels. ale.spice_root = "{ale.spice_root}"') search_results = util.get_metakernels(ale.spice_root, missions=self.short_mission_name, years=self.utc_start_time.year, versions='latest') if search_results['count'] == 0: raise ValueError(f'Failed to find metakernels. mission: {self.short_mission_name}, year:{self.utc_start_time.year}, versions="latest" spice root = "{ale.spice_root}"') self._kernels = [search_results['data'][0]['path']] return self._kernels @property def light_time_correction(self): """ Returns the type of light time correciton and abberation correction to use in NAIF calls. Expects ikid to be defined. This must be the integer Naif id code of the instrument. This searches for the value of the NAIF keyword INS<ikid>_LIGHTTIME_CORRECTION. If the keyword is not defined, then this defaults to light time correction and abberation correction (LT+S). Returns ------- : str The light time and abberation correction string for use in NAIF calls. See https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/abcorr.html for the different options available. """ try: return spice.gcpool('INS{}_LIGHTTIME_CORRECTION'.format(self.ikid), 0, 1)[0] except: return 'LT+S' @property def odtx(self): """ Returns the x coefficient for the optical distortion model Expects ikid to be defined. This must be the integer Naif id code of the instrument Returns ------- : list Optical distortion x coefficients """ return spice.gdpool('INS{}_OD_T_X'.format(self.ikid),0, 10).tolist() @property def odty(self): """ Returns the y coefficient for the optical distortion model. Expects ikid to be defined. This must be the integer Naif id code of the instrument Returns ------- : list Optical distortion y coefficients """ return spice.gdpool('INS{}_OD_T_Y'.format(self.ikid), 0, 10).tolist() @property def odtk(self): """ The coefficients for the radial distortion model Expects ikid to be defined. This must be the integer Naif id code of the instrument Returns ------- : list Radial distortion coefficients """ return spice.gdpool('INS{}_OD_K'.format(self.ikid),0, 3).tolist() @property def ikid(self): """ Returns the Naif ID code for the instrument Expects the instrument_id to be defined. This must be a string containing the short name of the instrument. Returns ------- : int Naif ID used to for indentifying the instrument in Spice kernels """ return spice.bods2c(self.instrument_id) @property def spacecraft_id(self): """ Returns the Naif ID code for the spacecraft Expects the spacecraft_name to be defined. This must be a string containing the name of the spacecraft. Returns ------- : int Naif ID code for the spacecraft """ return spice.bods2c(self.spacecraft_name) @property def target_id(self): """ Returns the Naif ID code for the target body Expects target_name to be defined. This must be a string containig the name of the target body. Returns ------- : int Naif ID code for the target body """ return spice.bods2c(self.target_name) @property def target_frame_id(self): """ Returns the Naif ID code for the target reference frame Expects the target_id to be defined. This must be the integer Naif ID code for the target body. Returns ------- : int Naif ID code for the target frame """ frame_info = spice.cidfrm(self.target_id) return frame_info[0] @property def sensor_frame_id(self): """ Returns the Naif ID code for the sensor reference frame Expects ikid to be defined. This must be the integer Naif id code of the instrument Returns ------- : int Naif ID code for the sensor frame """ return self.ikid @property def focal2pixel_lines(self): """ Expects ikid to be defined. This must be the integer Naif id code of the instrument Returns ------- : list<double> focal plane to detector lines """ return list(spice.gdpool('INS{}_ITRANSL'.format(self.ikid), 0, 3)) @property def focal2pixel_samples(self): """ Expects ikid to be defined. This must be the integer Naif id code of the instrument Returns ------- : list<double> focal plane to detector samples """ return list(spice.gdpool('INS{}_ITRANSS'.format(self.ikid), 0, 3)) @property def pixel2focal_x(self): """ Expects ikid to be defined. This must be the integer Naif id code of the instrument Returns ------- : list<double> detector to focal plane x """ return list(spice.gdpool('INS{}_TRANSX'.format(self.ikid), 0, 3)) @property def pixel2focal_y(self): """ Expects ikid to be defined. This must be the integer Naif id code of the instrument Returns ------- : list<double> detector to focal plane y """ return list(spice.gdpool('INS{}_TRANSY'.format(self.ikid), 0, 3)) @property def focal_length(self): """ Returns the focal length of the sensor Expects ikid to be defined. This must be the integer Naif id code of the instrument Returns ------- : float focal length """ return float(spice.gdpool('INS{}_FOCAL_LENGTH'.format(self.ikid), 0, 1)[0]) @property def pixel_size(self): """ Expects ikid to be defined. This must be the integer Naif id code of the instrument Returns ------- : float pixel size """ return spice.gdpool('INS{}_PIXEL_SIZE'.format(self.ikid), 0, 1)[0] * 0.001 @property def target_body_radii(self): """ Returns a list containing the radii of the target body Expects target_name to be defined. This must be a string containing the name of the target body Returns ------- : list<double> Radius of all three axis of the target body """ rad = spice.bodvrd(self.target_name, 'RADII', 3) return rad[1] @property def reference_frame(self): """ Returns a string containing the name of the target reference frame Expects target_name to be defined. This must be a string containing the name of the target body Returns ------- : str String name of the target reference frame """ try: return spice.cidfrm(spice.bodn2c(self.target_name))[1] except: return 'IAU_{}'.format(self.target_name) @property def sun_position(self): """ Returns a tuple with information detailing the sun position at the time of the image. Expects center_ephemeris_time to be defined. This must be a floating point number containing the average of the start and end ephemeris time. Expects reference frame to be defined. This must be a sring containing the name of the target reference frame. Expects target_name to be defined. This must be a string containing the name of the target body. Returns ------- : (sun_positions, sun_velocities) a tuple containing a list of sun positions, a list of sun velocities """ times = [self.center_ephemeris_time] positions = [] velocities = [] for time in times: sun_state, _ = spice.spkezr("SUN", time, self.reference_frame, 'LT+S', self.target_name) positions.append(sun_state[:3]) velocities.append(sun_state[3:6]) positions = 1000 * np.asarray(positions) velocities = 1000 * np.asarray(velocities) return positions, velocities, times @property def sensor_position(self): """ Returns a tuple with information detailing the position of the sensor at the time of the image. Expects ephemeris_time to be defined. This must be a floating point number containing the ephemeris time. Expects spacecraft_name to be defined. This must be a string containing the name of the spacecraft containing the sensor. Expects reference_frame to be defined. This must be a sring containing the name of the target reference frame. Expects target_name to be defined. This must be a string containing the name of the target body. Returns ------- : (positions, velocities, times) a tuple containing a list of positions, a list of velocities, and a list of times """ if not hasattr(self, '_position'): ephem = self.ephemeris_time pos = [] vel = [] target = self.spacecraft_name observer = self.target_name # Check for ISIS flag to fix target and observer swapping if self.swap_observer_target: target = self.target_name observer = self.spacecraft_name for time in ephem: # spkezr returns a vector from the observer's location to the aberration-corrected # location of the target. For more information, see: # https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/FORTRAN/spicelib/spkezr.html if self.correct_lt_to_surface and self.light_time_correction.upper() == 'LT+S': obs_tar_state, obs_tar_lt = spice.spkezr(target, time, 'J2000', self.light_time_correction, observer) # ssb to spacecraft ssb_obs_state, ssb_obs_lt = spice.spkezr(observer, time, 'J2000', 'NONE', 'SSB') radius_lt = (self.target_body_radii[2] + self.target_body_radii[0]) / 2 / (scipy.constants.c/1000.0) adjusted_time = time - obs_tar_lt + radius_lt ssb_tar_state, ssb_tar_lt = spice.spkezr(target, adjusted_time, 'J2000', 'NONE', 'SSB') state = ssb_tar_state - ssb_obs_state matrix = spice.sxform("J2000", self.reference_frame, time) state = spice.mxvg(matrix, state, 6, 6); else: state, _ = spice.spkezr(target, time, self.reference_frame, self.light_time_correction, observer) if self.swap_observer_target: pos.append(-state[:3]) vel.append(-state[3:]) else: pos.append(state[:3]) vel.append(state[3:]) # By default, SPICE works in km, so convert to m self._position = [p * 1000 for p in pos] self._velocity = [v * 1000 for v in vel] return self._position, self._velocity, self.ephemeris_time @property def frame_chain(self): if not hasattr(self, '_frame_chain'): nadir = self._props.get('nadir', False) self._frame_chain = FrameChain.from_spice(sensor_frame=self.sensor_frame_id, target_frame=self.target_frame_id, center_ephemeris_time=self.center_ephemeris_time, ephemeris_times=self.ephemeris_time, nadir=nadir) if nadir: # Logic for nadir calculation was taken from ISIS3 # SpiceRotation::setEphemerisTimeNadir rotation = self._frame_chain.compute_rotation(self.target_frame_id, 1) p_vec, v_vec, times = self.sensor_position rotated_positions = rotation.apply_at(p_vec, times) rotated_velocities = rotation.rotate_velocity_at(p_vec, v_vec, times) p_vec = rotated_positions v_vec = rotated_velocities velocity_axis = 2 # Get the default line translation with no potential flipping # from the driver trans_x = np.array(list(spice.gdpool('INS{}_ITRANSL'.format(self.ikid), 0, 3))) if (trans_x[0] < trans_x[1]): velocity_axis = 1 quats = [spice.m2q(spice.twovec(-p_vec[i], 3, v_vec[i], velocity_axis)) for i, time in enumerate(times)] quats = np.array(quats)[:,[1,2,3,0]] rotation = TimeDependentRotation(quats, times, 1, self.sensor_frame_id) self._frame_chain.add_edge(rotation) return self._frame_chain @property def sensor_orientation(self): """ Returns quaternions describing the sensor orientation. Expects ephemeris_time to be defined. This must be a floating point number containing the ephemeris time. Expects instrument_id to be defined. This must be a string containing the short name of the instrument. Expects reference frame to be defined. This must be a string containing the name of the target reference frame. Returns ------- : list Quaternions describing the orientation of the sensor """ if not hasattr(self, '_orientation'): self._orientation = self.frame_chain.compute_rotation(self.sensor_frame_id, self.target_frame_id).quats return self._orientation.tolist() @property def ephemeris_start_time(self): """ Returns the starting ephemeris time of the image. Expects spacecraft_id to be defined. This must be the integer Naif Id code for the spacecraft. Expects spacecraft_clock_start_count to be defined. This must be a string containing the start clock count of the spacecraft Returns ------- : double Starting ephemeris time of the image """ return spice.scs2e(self.spacecraft_id, self.spacecraft_clock_start_count) @property def ephemeris_stop_time(self): """ Returns the ephemeris stop time of the image. Expects spacecraft_id to be defined. This must be the integer Naif Id code for the spacecraft. Expects spacecraft_clock_stop_count to be defined. This must be a string containing the stop clock count of the spacecraft Returns ------- : double Ephemeris stop time of the image """ return spice.scs2e(self.spacecraft_id, self.spacecraft_clock_stop_count) @property def detector_center_sample(self): """ Returns the center detector sample. Expects ikid to be defined. This should be an integer containing the Naif Id code of the instrument. Returns ------- : float Detector sample of the principal point """ return float(spice.gdpool('INS{}_BORESIGHT_SAMPLE'.format(self.ikid), 0, 1)[0]) @property def detector_center_line(self): """ Returns the center detector line. Expects ikid to be defined. This should be an integer containing the Naif Id code of the instrument. Returns ------- : float Detector line of the principal point """ return float(spice.gdpool('INS{}_BORESIGHT_LINE'.format(self.ikid), 0, 1)[0]) @property def swap_observer_target(self): """ Returns if the observer and target should be swapped when determining the sensor state relative to the target. This is defined by a keyword in ISIS IAKs. If the keyword is not defined in any loaded kernels then False is returned. Expects ikid to be defined. This should be an integer containing the Naif Id code of the instrument. """ try: swap = spice.gcpool('INS{}_SWAP_OBSERVER_TARGET'.format(self.ikid), 0, 1)[0] return swap.upper() == "TRUE" except: return False @property def correct_lt_to_surface(self): """ Returns if light time correction should be made to the surface instead of to the center of the body. This is defined by a keyword in ISIS IAKs. If the keyword is not defined in any loaded kernels then False is returned. Expects ikid to be defined. This should be an integer containing the Naif Id code of the instrument. """ try: surface_correct = spice.gcpool('INS{}_LT_SURFACE_CORRECT'.format(self.ikid), 0, 1)[0] return surface_correct.upper() == "TRUE" except: return False @property def naif_keywords(self): """ Returns ------- : dict Dictionary of keywords and values that ISIS creates and attaches to the label """ if not hasattr(self, "_naif_keywords"): self._naif_keywords = dict() self._naif_keywords['BODY{}_RADII'.format(self.target_id)] = self.target_body_radii self._naif_keywords['BODY_FRAME_CODE'] = self.target_frame_id self._naif_keywords['BODY_CODE'] = self.target_id self._naif_keywords = {**self._naif_keywords, **util.query_kernel_pool(f"*{self.ikid}*"), **util.query_kernel_pool(f"*{self.target_id}*")} try: self._naif_keywords = {**self._naif_keywords, **util.query_kernel_pool(f"*{self.fikid}*")} except AttributeError as error: pass return self._naif_keywords
Ale
/Ale-0.8.4.tar.gz/Ale-0.8.4/ale/base/data_naif.py
data_naif.py
import pvl class IsisLabel(): """ Mix-in for parsing ISIS Cube labels. """ @property def label(self): if not hasattr(self, "_label"): if isinstance(self._file, pvl.PVLModule): self._label = self._file try: self._label = pvl.loads(self._file) except Exception: self._label = pvl.load(self._file) except: raise ValueError("{} is not a valid label".format(self._file)) return self._label @property def instrument_id(self): """ Returns the short name of the instrument Returns ------- : str instrument id """ return self.label['IsisCube']['Instrument']['InstrumentId'] @property def platform_name(self): """ Returns the name of the platform containing the sensor. This is usually the spacecraft name. Returns ------- : str Name of the platform which the sensor is mounted on """ return self.label['IsisCube']['Instrument']['SpacecraftName'] @property def spacecraft_name(self): """ Returns the name of the spacecraft Returns ------- : str Full name of the spacecraft """ return self.platform_name @property def sensor_name(self): """ Returns the name of the instrument Returns ------- : str Name of the sensor """ return self.label['IsisCube']['Instrument']['InstrumentName'] @property def sensor_model_version(self): """ Returns the ISIS camera version Returns ------- : int Camera version number """ return self.label["IsisCube"]["Kernels"]["CameraVersion"] @property def image_lines(self): """ Returns an integer containing the number of lines in the image Returns ------- : int Number of lines in image """ return self.label['IsisCube']['Core']['Dimensions']['Lines'] @property def image_samples(self): """ Returns an integer containing the number of samples in the image Returns ------- : int Number of samples in image """ return self.label['IsisCube']['Core']['Dimensions']['Samples'] @property def sampling_factor(self): """ Returns the summing factor from the PDS3 label. For example a return value of 2 indicates that 2 lines and 2 samples (4 pixels) were summed and divided by 4 to produce the output pixel value. Returns ------- : int Number of samples and lines combined from the original data to produce a single pixel in this image """ try: summing = self.label['IsisCube']['Instrument']['SummingMode'] except: summing = 1 return summing @property def sample_summing(self): """ Returns the number of detector samples summed to produce each image sample Returns ------- : int Sample summing """ return self.sampling_factor @property def line_summing(self): """ the number of detector lines summed to produce each image sample Returns ------- : int Line summing """ return self.sampling_factor @property def target_name(self): """ Target body name used in various Spice calls to acquire target specific ephemeris data. Returns ------- : str Target name """ return self.label['IsisCube']['Instrument']['TargetName'] @property def spacecraft_clock_start_count(self): """ The spacecraft clock start count, frequently used to determine the start time of the image. Returns ------- : str Spacecraft clock start count """ if 'SpacecraftClockStartCount' in self.label['IsisCube']['Instrument']: return str(self.label['IsisCube']['Instrument']['SpacecraftClockStartCount']) elif 'SpacecraftClockCount' in self.label['IsisCube']['Instrument']: return str(self.label['IsisCube']['Instrument']['SpacecraftClockCount']) elif 'SpacecraftClockStartCount' in self.label['IsisCube']['Archive']: return str(self.label['IsisCube']['Archive']['SpacecraftClockStartCount']) else: return None @property def spacecraft_clock_stop_count(self): """ The spacecraft clock stop count, frequently used to determine the stop time of the image. Returns ------- : str Spacecraft clock stop count """ if 'SpacecraftClockStopCount' in self.label['IsisCube']['Instrument']: return self.label['IsisCube']['Instrument']['SpacecraftClockStopCount'] elif 'SpacecraftClockStopCount' in self.label['IsisCube']['Archive']: return self.label['IsisCube']['Archive']['SpacecraftClockStopCount'] else: return None @property def utc_start_time(self): """ The UTC start time of the image. This is generally less accurate than converting the spacecraft start clock count using the spacecraft clock kernel (SCLK). Returns ------- : datetime Start time of the image in UTC """ return self.label['IsisCube']['Instrument']['StartTime'] @property def utc_stop_time(self): """ The UTC stop time of the image. This is generally less accurate than converting the spacecraft stop clock count using the spacecraft clock kernel (SCLK). Returns ------- : datetime Stop time of the image in UTC """ return self.label['IsisCube']['Instrument']['StopTime'] @property def exposure_duration(self): """ The exposure duration of the image, in seconds Returns ------- : float Exposure duration in seconds """ if 'ExposureDuration' in self.label['IsisCube']['Instrument']: exposure_duration = self.label['IsisCube']['Instrument']['ExposureDuration'] # Check for units on the PVL keyword if isinstance(exposure_duration, pvl._collections.Units): units = exposure_duration.units if "ms" in units.lower() or 'milliseconds' in units.lower(): exposure_duration = exposure_duration.value * 0.001 else: # if not milliseconds, the units are probably seconds exposure_duration = exposure_duration.value else: # if no units are available, assume the exposure duration is given in milliseconds exposure_duration = exposure_duration * 0.001 return exposure_duration else: return self.line_exposure_duration @property def line_exposure_duration(self): """ The line exposure duration of the image, in seconds Returns ------- : float Line exposure duration in seconds """ line_exposure_duration = self.label['IsisCube']['Instrument']['LineExposureDuration'] if isinstance(line_exposure_duration, pvl._collections.Units): units = line_exposure_duration.units if "ms" in units.lower(): line_exposure_duration = line_exposure_duration.value * 0.001 else: # if not milliseconds, the units are probably seconds line_exposure_duration = line_exposure_duration.value else: # if no units are available, assume the exposure duration is given in milliseconds line_exposure_duration = line_exposure_duration * 0.001 return line_exposure_duration
Ale
/Ale-0.8.4.tar.gz/Ale-0.8.4/ale/base/label_isis.py
label_isis.py
import spiceypy as spice from ale.base import Driver from ale.base.data_naif import NaifSpice from ale.base.data_isis import IsisSpice from ale.base.label_pds3 import Pds3Label from ale.base.label_isis import IsisLabel from ale.base.type_distortion import RadialDistortion from ale.base.type_sensor import LineScanner class MroCtxIsisLabelIsisSpiceDriver(LineScanner, IsisLabel, IsisSpice, RadialDistortion, Driver): @property def instrument_id(self): """ Returns an instrument id for uniquely identifying the instrument, but often also used to be piped into Spice Kernels to acquire IKIDs. Therefore they the same ID the Spice expects in bods2c calls. Returns ------- : str instrument id """ id_lookup = { "CTX" : "MRO_CTX" } return id_lookup[super().instrument_id] @property def spacecraft_id(self): """ Returns ------- : int Naif ID code for the spacecraft """ return "-74" @property def sensor_name(self): """ ISIS doesn't propergate this to the ingested cube label, so hard-code it. """ return "CONTEXT CAMERA" @property def detector_center_sample(self): """ The center of the CCD in detector pixels ISIS uses 0.5 based CCD samples, so we need to convert to 0 based. Returns ------- float : The center sample of the CCD """ return super().detector_center_sample - 0.5 class MroCtxIsisLabelNaifSpiceDriver(LineScanner, IsisLabel, NaifSpice, RadialDistortion, Driver): """ Driver for reading CTX ISIS labels. """ @property def instrument_id(self): """ Returns an instrument id for uniquely identifying the instrument, but often also used to be piped into Spice Kernels to acquire IKIDs. Therefore they the same ID the Spice expects in bods2c calls. Expects instrument_id to be defined in the IsisLabel mixin. This should be a string of the form 'CTX' Returns ------- : str instrument id """ id_lookup = { "CTX" : "MRO_CTX" } return id_lookup[super().instrument_id] @property def sensor_name(self): """ ISIS doesn't propergate this to the ingested cube label, so hard-code it. """ return "CONTEXT CAMERA" @property def ephemeris_start_time(self): """ Returns the ephemeris start time of the image. Expects spacecraft_id to be defined. This should be the integer Naif ID code for the spacecraft. Returns ------- : float ephemeris start time of the image """ if not hasattr(self, '_ephemeris_start_time'): sclock = self.label['IsisCube']['Instrument']['SpacecraftClockCount'] self._ephemeris_start_time = spice.scs2e(self.spacecraft_id, sclock) return self._ephemeris_start_time @property def ephemeris_stop_time(self): """ ISIS doesn't preserve the spacecraft stop count that we can use to get the ephemeris stop time of the image, so compute the epehemris stop time from the start time and the exposure duration. """ return self.ephemeris_start_time + self.exposure_duration * self.image_lines @property def spacecraft_name(self): """ Returns the spacecraft name used in various Spice calls to acquire ephemeris data. Expects the platform_name to be defined. This should be a string of the form 'Mars_Reconnaissance_Orbiter' Returns ------- : str spacecraft name """ name_lookup = { 'Mars_Reconnaissance_Orbiter': 'MRO' } return name_lookup[super().platform_name] @property def detector_start_sample(self): """ Returns ------- : int The starting detector sample of the image """ return self.label['IsisCube']['Instrument']['SampleFirstPixel'] @property def detector_center_sample(self): """ The center of the CCD in detector pixels ISIS uses 0.5 based CCD samples, so we need to convert to 0 based. Returns ------- float : The center sample of the CCD """ return super().detector_center_sample - 0.5 @property def sensor_model_version(self): """ Returns ------- : int ISIS sensor model version """ return 1 class MroCtxPds3LabelNaifSpiceDriver(LineScanner, Pds3Label, NaifSpice, RadialDistortion, Driver): """ Driver for reading CTX PDS3 labels. Requires a Spice mixin to acquire addtional ephemeris and instrument data located exclusively in spice kernels. """ @property def instrument_id(self): """ Returns an instrument id for uniquely identifying the instrument, but often also used to be piped into Spice Kernels to acquire IKIDs. Therefore they the same ID the Spice expects in bods2c calls. Expects instrument_id to be defined in the Pds3Label mixin. This should be a string of the form 'CONTEXT CAMERA' or 'CTX' Returns ------- : str instrument id """ id_lookup = { 'CONTEXT CAMERA':'MRO_CTX', 'CTX':'MRO_CTX' } return id_lookup[super().instrument_id] @property def spacecraft_name(self): """ Returns the spacecraft name used in various Spice calls to acquire ephemeris data. Expects spacecraft_name to be defined. This should be a string of the form 'MARS_RECONNAISSANCE_ORBITER' Returns ------- : str spacecraft name """ name_lookup = { 'MARS_RECONNAISSANCE_ORBITER': 'MRO' } return name_lookup[super().spacecraft_name] @property def detector_start_sample(self): """ Returns ------- : int Starting detector sample for the image """ return self.label.get('SAMPLE_FIRST_PIXEL', 0) @property def detector_center_sample(self): """ The center of the CCD in detector pixels ISIS uses 0.5 based CCD samples, so we need to convert to 0 based. Returns ------- float : The center sample of the CCD """ return super().detector_center_sample - 0.5 @property def sensor_model_version(self): """ Returns ------- : int ISIS sensor model version """ return 1 @property def platform_name(self): """ Returns the name of the platform which the instrument is mounted on Returns ------- : str platform name """ return self.label['SPACECRAFT_NAME']
Ale
/Ale-0.8.4.tar.gz/Ale-0.8.4/ale/drivers/mro_drivers.py
mro_drivers.py
import os from glob import glob import numpy as np import pvl import spiceypy as spice from ale.base import Driver from ale.base.data_naif import NaifSpice from ale.base.label_pds3 import Pds3Label from ale.base.type_distortion import RadialDistortion from ale.base.type_sensor import Framer from ale.rotation import ConstantRotation from ale.transformation import FrameChain from scipy.spatial.transform import Rotation class CassiniIssPds3LabelNaifSpiceDriver(Framer, Pds3Label, NaifSpice, RadialDistortion, Driver): """ Cassini mixin class for defining Spice calls. """ id_lookup = { "ISSNA" : "CASSINI_ISS_NAC", "ISSWA" : "CASSINI_ISS_WAC" } nac_filter_to_focal_length = { ("P0","BL2"):2002.19, ("P0","CB1"):2002.30, ("P0","GRN"):2002.38, ("P0","IR1"):2002.35, ("P0","MT1"):2002.40, ("P0","UV3"):2002.71, ("P60","BL2"):2002.13, ("P60","CB1"):2002.18, ("P60","GRN"):2002.28, ("P60","IR1"):2002.36, ("P60","MT1"):2002.34, ("P60","UV3"):2002.51, ("RED","GRN"):2002.61, ("RED","IR1"):2002.48, ("UV1","CL2"):2003.03, ("UV2","CL2"):2002.91, ("UV2","UV3"):2002.90, ("RED","CL2"):2002.69, ("CL1","IR3"):2002.65, ("CL1","BL2"):2002.37, ("CL1","CB1"):2002.66, ("CL1","CB2"):2002.66, ("CL1","CB3"):2002.68, ("CL1","MT1"):2002.88, ("CL1","MT2"):2002.91, ("CL1","MT3"):2002.87, ("CL1","UV3"):2003.09, ("HAL","CL2"):2002.94, ("IR2","CL2"):2002.71, ("IR2","IR1"):2002.56, ("IR2","IR3"):2002.55, ("IR4","CL2"):2002.89, ("IR4","IR3"):2002.81, ("BL1","CL2"):2002.79, ("CL1","CL2"):2002.88, ("CL1","GRN"):2002.75, ("CL1","IR1"):2002.74, ("IRP0","CB2"):2002.48, ("IRP0","CB3"):2002.74, ("IRP0","IR1"):2002.60, ("IRP0","IR3"):2002.48, ("IRP0","MT2"):2002.72, ("IRP0","MT3"):2002.72, ("P120","BL2"):2002.11, ("P120","CB1"):002.28, ("P120","GRN"):2002.38, ("P120","IR1"):2002.39, ("P120","MT1"):2002.54, ("P120","UV3"):2002.71 } wac_filter_to_focal_length = { ("B2","CL2"):200.85, ("B2","IRP90"):200.83, ("B2","IRP0"):200.82, ("B3","CL2"):201.22, ("B3","IRP90"):201.12, ("B3","IRP0"):201.11, ("L1","BL1"):200.86, ("L1","CL2"):200.77, ("L1","GRN"):200.71, ("L1","HAL"):200.74, ("L1","IR1"):200.80, ("L1","RED"):200.74, ("L1","VIO"):201.09, ("R2","CL2"):200.97, ("R2","IR"):200.95, ("R2","IRP90"):200.95, ("R3","CL2"):201.04, ("R3","IRP90"):201.03, ("R3","IRP0"):201.04, ("R4","CL2"):201.22, ("R4","IRP90"):201.16, ("R4","IRP0"):201.15, ("T2","CL2"):200.82, ("T2","IRP0"):200.81, ("T2","IRP90"):200.82, ("T3","CL2"):201.04, ("T3","IRP0"):201.06, ("T3","IRP90"):201.07 } @property def instrument_id(self): """ Returns an instrument id for unquely identifying the instrument, but often also used to be piped into Spice Kernels to acquire instrument kernel (IK) NAIF IDs. Therefore they use the same NAIF ID asin bods2c calls. Expects instrument_id to be defined from a mixin class. This should return a string containing either 'ISSNA' or 'ISSWA' Returns ------- : str instrument id """ return self.id_lookup[super().instrument_id] @property def focal_epsilon(self): """ Expects ikid to be defined. This should be an integer containing the Naif ID code of the instrument Returns ------- : float focal epsilon """ return float(spice.gdpool('INS{}_FL_UNCERTAINTY'.format(self.ikid), 0, 1)[0]) @property def spacecraft_name(self): """ Spacecraft name used in various Spice calls to acquire ephemeris data. Returns ------- : str Name of the spacecraft """ return 'CASSINI' @property def focal2pixel_samples(self): """ Expects ikid to be defined. This should be an integer containing the Naif ID code of the instrument Returns ------- : list<double> focal plane to detector samples """ # Microns to mm pixel_size = spice.gdpool('INS{}_PIXEL_SIZE'.format(self.ikid), 0, 1)[0] * 0.001 return [0.0, 1/pixel_size, 0.0] @property def focal2pixel_lines(self): """ Expects ikid to be defined. This should be an integer containing the Naif ID code of the instrument Returns ------- : list<double> focal plane to detector lines """ pixel_size = spice.gdpool('INS{}_PIXEL_SIZE'.format(self.ikid), 0, 1)[0] * 0.001 return [0.0, 0.0, 1/pixel_size] @property def odtk(self): """ The radial distortion coeffs are not defined in the ik kernels, instead they are defined in the ISS Data User Guide (Knowles). Therefore, we manually specify the codes here. Expects instrument_id to be defined. This should be a string containing either CASSINI_ISS_WAC or CASSINI_ISIS_NAC Returns ------- : list<float> radial distortion coefficients """ if self.instrument_id == 'CASSINI_ISS_WAC': # WAC return [0, float('-6.2e-5'), 0] elif self.instrument_id == 'CASSINI_ISS_NAC': # NAC return [0, float('-8e-6'), 0] @property # FOV_CENTER_PIXEL doesn't specify which coordinate is sample or line, but they are the same # number, so the order doesn't matter def detector_center_line(self): """ Dectector center based on ISIS's corrected values. Returns ------- : int The detector line of the principle point """ return 512 @property # FOV_CENTER_PIXEL doesn't specify which coordinate is sample or line, but they are the same # number, so the order doesn't matter def detector_center_sample(self): """ Dectector center based on ISIS's corrected values. Returns ------- : int The detector sample of the principle point """ return 512 @property def sensor_model_version(self): """ Returns instrument model version Returns ------- : int ISIS sensor model version """ return 1 @property def focal_length(self): """ NAC uses multiple filter pairs, each filter combination has a different focal length. NAIF's Cassini kernels do not contain focal lengths for NAC filters and so we aquired updated NAC filter data from ISIS's IAK kernel. """ # default focal defined by IK kernel try: default_focal_len = super(CassiniIssPds3LabelNaifSpiceDriver, self).focal_length except: default_focal_len = float(spice.gdpool('INS{}_FOV_CENTER_PIXEL'.format(self.ikid), 0, 2)[0]) filters = tuple(self.label['FILTER_NAME']) if self.instrument_id == "CASSINI_ISS_NAC": return self.nac_filter_to_focal_length.get(filters, default_focal_len) elif self.instrument_id == "CASSINI_ISS_WAC": return self.wac_filter_to_focal_length.get(filters, default_focal_len) @property def _original_naif_sensor_frame_id(self): """ Original sensor frame ID as defined in Cassini's IK kernel. This is the frame ID you want to default to for WAC. For NAC, this Frame ID sits between J2000 and an extra 180 rotation since NAC was mounted upside down. Returns ------- : int sensor frame code from NAIF's IK kernel """ return self.ikid @property def sensor_frame_id(self): """ Overwrite sensor frame id to return fake frame ID for NAC representing a mounting point with a 180 degree rotation. ID was taken from ISIS's IAK kernel for Cassini. This is because NAC requires an extra rotation not in NAIF's Cassini kernels. Wac does not require an extra rotation so we simply return original sensor frame id for Wac. Returns ------- : int NAIF's Wac sensor frame ID, or ALE's Nac sensor frame ID """ if self.instrument_id == "CASSINI_ISS_NAC": return 14082360 elif self.instrument_id == "CASSINI_ISS_WAC": return 14082361 @property def frame_chain(self): """ Construct the initial frame chain using the original sensor_frame_id obtained from the ikid. Then tack on the ISIS iak rotation. Returns ------- : Object Custom Cassini ALE Frame Chain object for rotation computation and application """ if not hasattr(self, '_frame_chain'): try: # Call frinfo to check if the ISIS iak has been loaded with the # additional reference frame. Otherwise, Fail and add it manually spice.frinfo(self.sensor_frame_id) self._frame_chain = super().frame_chain except spice.utils.exceptions.NotFoundError as e: self._frame_chain = FrameChain.from_spice(sensor_frame=self._original_naif_sensor_frame_id, target_frame=self.target_frame_id, center_ephemeris_time=self.center_ephemeris_time, ephemeris_times=self.ephemeris_time,) rotation = ConstantRotation([[0, 0, 1, 0]], self.sensor_frame_id, self._original_naif_sensor_frame_id) self._frame_chain.add_edge(rotation=rotation) return self._frame_chain
Ale
/Ale-0.8.4.tar.gz/Ale-0.8.4/ale/drivers/co_drivers.py
co_drivers.py
import pvl import spiceypy as spice import os from glob import glob import ale from ale.base import Driver from ale.base.data_naif import NaifSpice from ale.base.label_pds3 import Pds3Label from ale.base.type_sensor import Framer ID_LOOKUP = { "FC1" : "DAWN_FC1", "FC2" : "DAWN_FC2" } class DawnFcPds3NaifSpiceDriver(Framer, Pds3Label, NaifSpice, Driver): """ Dawn driver for generating an ISD from a Dawn PDS3 image. """ @property def instrument_id(self): """ Returns an instrument id for uniquely identifying the instrument, but often also used to be piped into Spice Kernels to acquire IKIDs. Therefore the the same ID that Spice expects in bods2c calls. Expects instrument_id to be defined from the PDS3Label mixin. This should be a string containing the short name of the instrument. Expects filter_number to be defined. This should be an integer containing the filter number from the PDS3 Label. Returns ------- : str instrument id """ instrument_id = super().instrument_id filter_number = self.filter_number return "{}_FILTER_{}".format(ID_LOOKUP[instrument_id], filter_number) @property def label(self): """ Loads a PVL from from the _file attribute and parses the binary table data. Returns ------- PVLModule : Dict-like object with PVL keys """ class PvlDecoder(pvl.decoder.PVLDecoder): def unescape_next_char(self, stream): esc = stream.read(1) string = '\{}'.format(esc.decode('utf-8')).encode('utf-8') return string if not hasattr(self, "_label"): if isinstance(self._file, pvl.PVLModule): self._label = self._file try: self._label = pvl.loads(self._file, PvlDecoder) except Exception: # PvlDecoder class to ignore all escape sequences when getting # the label self._label = pvl.load(self._file, PvlDecoder) except: raise ValueError("{} is not a valid label".format(self._file)) return self._label @property def spacecraft_name(self): """ Spacecraft name used in various Spice calls to acquire ephemeris data. Dawn does not have a SPACECRAFT_NAME keyword, therefore we are overwriting this method using the instrument_host_id keyword instead. Expects instrument_host_id to be defined. This should be a string containing the name of the spacecraft that the instrument is mounted on. Returns ------- : str Spacecraft name """ return self.instrument_host_id @property def target_name(self): """ Returns an target name for unquely identifying the instrument, but often piped into Spice Kernels to acquire Ephermis data from Spice. Therefore they the same ID the Spice expects in bodvrd calls. In this case, vesta images have a number infront of them like "4 VESTA" which needs to be simplified to "VESTA" for spice. Expects target_name to be defined in the Pds3Label mixin. This should be a string containing the name of the target body. Returns ------- : str target name """ target = super().target_name target = target.split(' ')[-1] return target @property def ephemeris_start_time(self): """ Compute the center ephemeris time for a Dawn Frame camera. This is done via a spice call but 193 ms needs to be added to account for the CCD being discharged or cleared. """ if not hasattr(self, '_ephemeris_start_time'): sclock = self.spacecraft_clock_start_count self._ephemeris_start_time = spice.scs2e(self.spacecraft_id, sclock) self._ephemeris_start_time += 193.0 / 1000.0 return self._ephemeris_start_time @property def usgscsm_distortion_model(self): """ The Dawn framing camera uses a unique radial distortion model so we need to overwrite the method packing the distortion model into the ISD. Expects odtk to be defined. This should be a list containing the radial distortion coefficients Returns ------- : dict Dictionary containing the distortion model """ return { "dawnfc": { "coefficients" : self.odtk } } @property def odtk(self): """ The coefficients for the distortion model Expects ikid to be defined. This should be an integer containing the Naif ID code for the instrument. Returns ------- : list Radial distortion coefficients """ return spice.gdpool('INS{}_RAD_DIST_COEFF'.format(self.ikid),0, 1).tolist() # TODO: Update focal2pixel samples and lines to reflect the rectangular # nature of dawn pixels @property def focal2pixel_samples(self): """ Expects ikid to be defined. This should be an integer containing the Naif ID code for the instrument. Returns ------- : list<double> focal plane to detector samples """ # Microns to mm pixel_size = spice.gdpool('INS{}_PIXEL_SIZE'.format(self.ikid), 0, 1)[0] * 0.001 return [0.0, 1/pixel_size, 0.0] @property def focal2pixel_lines(self): """ Expects ikid to be defined. This should be an integer containing the Naif ID code for the instrument. Returns ------- : list<double> focal plane to detector lines """ # Microns to mm pixel_size = spice.gdpool('INS{}_PIXEL_SIZE'.format(self.ikid), 0, 1)[0] * 0.001 return [0.0, 0.0, 1/pixel_size] @property def sensor_model_version(self): """ Returns instrument model version Returns ------- : int ISIS sensor model version """ return 2 @property def detector_center_sample(self): """ Returns center detector sample acquired from Spice Kernels. Expects ikid to be defined. This should be the integer Naid ID code for the instrument. We have to add 0.5 to the CCD Center because the Dawn IK defines the detector pixels as 0.0 being the center of the first pixel so they are -0.5 based. Returns ------- : float center detector sample """ return float(spice.gdpool('INS{}_CCD_CENTER'.format(self.ikid), 0, 2)[0]) + 0.5 @property def detector_center_line(self): """ Returns center detector line acquired from Spice Kernels. Expects ikid to be defined. This should be the integer Naid ID code for the instrument. We have to add 0.5 to the CCD Center because the Dawn IK defines the detector pixels as 0.0 being the center of the first pixel so they are -0.5 based. Returns ------- : float center detector line """ return float(spice.gdpool('INS{}_CCD_CENTER'.format(self.ikid), 0, 2)[1]) + 0.5
Ale
/Ale-0.8.4.tar.gz/Ale-0.8.4/ale/drivers/dawn_drivers.py
dawn_drivers.py
from ale.base.data_isis import IsisSpice from ale.base.label_isis import IsisLabel from ale.base import Driver from ale.base.type_sensor import LineScanner from ale.base.type_distortion import NoDistortion class IdealLsIsisLabelIsisSpiceDriver(LineScanner, IsisSpice, IsisLabel, NoDistortion, Driver): @property def sensor_name(self): """ Returns the name of the instrument Returns ------- : str name of the instrument. """ return self.instrument_id @property def instrument_id(self): instrument_id = super().instrument_id if instrument_id != "IdealCamera": raise Exception(f"Instrument ID is {instrument_id} when it should be \"IdealCamera\"") return instrument_id @property def ephemeris_start_time(self): """ The image start time in ephemeris time. Returns ------- float : The image start ephemeris time """ return self.label.get('IsisCube').get('Instrument').get("EphemerisTime").value @property def ephemeris_stop_time(self): """ Returns the sum of the starting ephemeris time and the number of lines times the exposure duration. Expects ephemeris start time, exposure duration and image lines to be defined. These should be double precision numbers containing the ephemeris start, exposure duration, and number of lines of the image. Returns ------- : double Center ephemeris time for an image """ return super().ephemeris_stop_time @property def spacecraft_name(self): """ Returns the spacecraft name used in various Spice calls to acquire ephemeris data. Expects the platform_name to be defined. This should be a string of the form 'Mars_Reconnaissance_Orbiter' Returns ------- : str spacecraft name """ return super().platform_name @property def detector_start_line(self): """ Returns the starting detector line for the image. Returns ------- : int Starting detector line for the image """ return 0 @property def detector_start_sample(self): """ Returns the starting detector sample for the image. Returns ------- : int Starting detector sample for the image """ return 0 @property def sensor_model_version(self): """ Returns the ISIS sensor model version. Returns ------- : int ISIS sensor model version """ return 1 @property def pixel2focal_x(self): """ Returns detector to focal plane x. Returns ------- : list<double> detector to focal plane x """ return self.naif_keywords.get('IDEAL_TRANSX') @property def pixel2focal_y(self): """ Returns detector to focal plane y. Returns ------- : list<double> detector to focal plane y """ return self.naif_keywords.get('IDEAL_TRANSY') @property def focal2pixel_lines(self): """ Returns focal plane to detector lines. Returns ------- : list<double> focal plane to detector lines """ return self.naif_keywords.get('IDEAL_TRANSL') @property def focal2pixel_samples(self): """ Returns focal plane to detector samples. Returns ------- : list<double> focal plane to detector samples """ return self.naif_keywords.get('IDEAL_TRANSS') @property def focal_length(self): """ The focal length of the instrument Expects naif_keywords to be defined. This should be a dict containing Naif keyworkds from the label. Returns ------- float : The focal length in millimeters """ return self.naif_keywords.get('IDEAL_FOCAL_LENGTH', None) @property def detector_center_sample(self): """ The center sample of the CCD in detector pixels Returns ------- float : The center sample of the CCD """ return self.label['IsisCube']['Instrument']['SampleDetectors'] / 2.0 @property def detector_center_line(self): """ The center line of the CCD in detector pixels Returns ------- float : The center of line the CCD """ return 0.0
Ale
/Ale-0.8.4.tar.gz/Ale-0.8.4/ale/drivers/isis_ideal_drivers.py
isis_ideal_drivers.py
import os from glob import glob import numpy as np import pvl import struct import spiceypy as spice import warnings import codecs from ale.base import Driver from ale.base.data_isis import read_table_data from ale.base.data_isis import parse_table from ale.base.data_naif import NaifSpice from ale.base.label_pds3 import Pds3Label from ale.base.label_isis import IsisLabel from ale.base.type_sensor import LineScanner from ale.base.type_sensor import Framer from ale.base.type_distortion import RadialDistortion FILTER_SPECIFIC_LOOKUP = { # This table contains the filter specific information from the ISIS iak kernel. The format is as follows: # # fikid: [focal_length, ITRANSX, ITRANSY, ITRANSS, ITRANSL] -41211: [174.80, [-0.026155499841886, -0.006999999957684, 0.0000007696901985785], [-59.9926971240526, 0.0000007696901985785, 0.006999999957684], [-2.7941368739538, -142.857141993552, 0.015707963236297], [8570.3856624766, 0.015707963236297, 142.857141993552]], -41212: [174.61, [-0.049776299960244, -0.006999999994409, -0.0000002797762790202], [-49.7678019894611, -0.0000002797762790202, 0.006999999994409], [-7.39506020202098, -142.85714274304, -0.005709719980004], [7109.68570860705, -0.005709719980004, 142.85714274304]], -41213: [174.74, [-0.022301998711020, -0.006999999595423, -0.000002379930922169], [-39.5483075824599, -0.000002379930922169, 0.006999999595423], [-5.10686167529011, -142.857134600479, -0.048570018819771], [5649.75681632013, -0.048570018819771, 142.857134600479]], -41214: [175.01, [0.066552498797889, -0.006999999873562, 0.000001330464480785], [-10.2417126493911, 0.000001330464480785, 0.006999999873562], [9.78558608311961, -142.85714027677, 0.027152336342545], [1463.0999735726, 0.027152336342545, 142.85714027677]], -41215: [175.01, [0.033863199938965, -0.006999999987383, -0.0000004202752836277], [-0.005497966876288, -0.0000004202752836277, 0.006999999987383], [4.83755282624351, -142.857142599663, -0.008577046604648], [0.785714284298145, -0.008577046604648, 142.857142599663]], -41216: [175.23, [0.044402379964146, -0.006999996841365, 0.000006649877982807], [10.212957818494, 0.000006649877982807, 0.006999996841365], [4.95717543186894, -142.857078395208, 0.135711795567498], [-1458.99934165026, 0.135711795567498, 142.857078395208]], -41217: [174.80, [0.032494699283744, -0.006999999845704, 0.000001469741752306], [39.5530931773118, 0.000001469741752306, 0.006999999845704], [3.45571545912004, -142.857139708249, 0.029994729638890], [-5650.44273259436, 0.029994729638890, 142.857139708249]], -41218: [174.82, [0.016461898406507, -0.006999999322408, 0.000003079982431615], [49.7917927568053, 0.000003079982431615, 0.006999999322408], [-0.778052433438109, -142.857129028729, 0.062856784318668], [-7113.11359717265, 0.062856784318668, 142.857129028729]], -41219: [174.87, [0.024021897233075, -0.006999999193716, 0.000003359758681093], [59.9868884703161, 0.000003359758681093, 0.006999999193716], [-0.681392000547864, -142.857126402363, 0.068566503695773], [-8569.5561557859, 0.068566503695773, 142.857126402363]], } class MexHrscPds3NaifSpiceDriver(LineScanner, Pds3Label, NaifSpice, RadialDistortion, Driver): """ Driver for a PDS3 Mars Express (Mex) High Resolution Stereo Camera (HRSC) images. NOTES ----- * HRSC has 9 different filters. Each has it's own instrument id, as well as the main/"HEAD" camera composing those filters. There is also another "SRC" instrument, making-up a total of 11 distinct sensors. It is very important to understand which code is needed when/where. * HRSC is a variable line scanner, and so does not maintain one exposure duration, but rather differing exposure durations per line. This information is stored within the individual records in the image data itself, with the the first 8 bytes making up the double presicion ephemeris time that the line exposure was started, and the next 4 bytes making up the float containing that line's exposure duration. """ @property def odtk(self): """ The coefficients for the distortion model Returns ------- : list Radial distortion coefficients. There is only one coefficient for LROC NAC l/r """ return [0.0, 0.0, 0.0] @property def ikid(self): """ Returns the Naif ID code for the HRSC head instrument This would be the Naif ID code for the base (or "head") instrument. Returns ------- : int Naif ID used to for indentifying the instrument in Spice kernels """ return spice.bods2c("MEX_HRSC_HEAD") @property def fikid(self): """ Naif ID code of the filter dependent instrument codes. Expects filter_number to be defined. This should be an integer containing the filter number from the pds3 label. Expects ikid to be defined. This should be the integer Naid ID code for the instrument. Returns ------- : int Naif ID code used in calculating focal length """ return spice.bods2c(self.instrument_id) # TODO Since HRSC has different frames based on filters, need to check that # this is returning the value needed for all calculations from the base # class and therefor does not need to be reimplemented. # @property # def sensor_frame_id(self): # """ # Returns the Naif ID code for the sensor reference frame # # # This is the frame of the HRSC instrument itself, and is not dependant on filter. # # Returns # ------- # : int # Naif ID code for the sensor frame # """ # return -41210 @property def instrument_id(self): """ Returns the short name of the instrument MEX HRSC has nine different filters each with their own name. Returns ------- : str Short name of the instrument """ if(super().instrument_id != "HRSC"): raise Exception ("Instrument ID is wrong.") return self.label['DETECTOR_ID'] @property def spacecraft_name(self): """ Spacecraft name used in various SPICE calls to acquire ephemeris data. MEX HRSC img PDS3 labels do not the have SPACECRAFT_NAME keyword, so we override it here to use the label_pds3 property for instrument_host_id Returns ------- : str Spacecraft name """ return self.instrument_host_id @property def focal_length(self): """ Returns the focal length of the filter-specific sensor Expects fikid to be defined. This must be the integer Naif id code of the filter-specific instrument. NOTE: These values are pulled from ISIS iak kernels. Returns ------- : float focal length """ return FILTER_SPECIFIC_LOOKUP[self.fikid][0] @property def focal2pixel_lines(self): """ Expects fikid to be defined. This must be the integer Naif id code of the filter-sepcific instrument. NOTE: These values are pulled from ISIS iak kernels. Returns ------- : list<double> focal plane to detector lines """ return FILTER_SPECIFIC_LOOKUP[self.fikid][4] @property def focal2pixel_samples(self): """ Expects fikid to be defined. This must be the integer Naif id code of the filter-sepcific instrument. NOTE: These values are pulled from ISIS iak kernels. Returns ------- : list<double> focal plane to detector samples """ return FILTER_SPECIFIC_LOOKUP[self.fikid][3] @property def pixel2focal_x(self): """ Expects fikid to be defined. This must be the integer Naif id code of the filter-specific instrument. NOTE: These values are pulled from ISIS iak kernels. Returns ------- : list<double> detector to focal plane x """ return FILTER_SPECIFIC_LOOKUP[self.fikid][1] @property def pixel2focal_y(self): """ Expects fikid to be defined. This must be the integer Naif id code of the filter-specific instrument. NOTE: These values are pulled from ISIS iak kernels. Returns ------- : list<double> detector to focal plane y """ return FILTER_SPECIFIC_LOOKUP[self.fikid][2] @property def detector_center_line(self): """ Returns the center detector line. For HRSC, we are dealing with a single line, so center line will be 0. Returns ------- : float Detector line of the principal point """ return 0.0 @property def detector_center_sample(self): """ Returns the center detector sample. For HRSC, center sample is consistent regardless of filter. This is different from ISIS's center sample because ISIS line scan sensors use 0.5 based detector samples. Returns ------- : float Detector sample of the principal point """ return 2592.0 @property def line_scan_rate(self): """ Returns a 2D array of line scan rates. For HRSC, the ephemeris times and exposure durations are stored in the image data. In the image, every line has an entry. This method goes through and removes conescutive lines with the same exposure duration. There are also potentially missing lines in the image which this method accounts for. Returns ------- : list Line scan rates """ relative_times = [time - self.center_ephemeris_time for time in self.binary_ephemeris_times] start_lines = [self.binary_lines[0]] start_times = [relative_times[0]] exposure_durations = [self.binary_exposure_durations[0]] for line, start_time, exposure_duration in zip(self.binary_lines, relative_times, self.binary_exposure_durations): # Check for lines missing from the PDS image # # If more exposures fit into the time since the last entry than # there are lines since the last entry, then there are missing lines. # # If line are missing, add an extra entry for the line immediately # following them. skipped_lines = int( (start_time - start_times[-1]) / exposure_durations[-1] - (line - start_lines[-1]) + 0.5 ) # add 0.5 to round up if exposure_duration != exposure_durations[-1] or skipped_lines > 0: start_lines.append(line) start_times.append(start_time) exposure_durations.append(exposure_duration) return (start_lines, start_times, exposure_durations) @property def binary_exposure_durations(self): """ Returns the exposure durations taken from the binary image data. For HRSC, the exposure durations are imbedded in the binary data of the image. The expsoure durations start at the 9th byte of the line/record and are 4 bytes long. Returns ------- : list Exposure durations """ if not hasattr(self, '_binary_exposure_durations'): self.read_image_data() return self._binary_exposure_durations @property def binary_ephemeris_times(self): """ Returns the ephemeris times taken from the binary image data. For HRSC, the ephemeris times are imbedded in the binary data of the image. The ephemeris times start at the first byte of the line/records and are 8 bytes long. Returns ------- : list Ephemeris times """ if not hasattr(self, '_binary_ephemeris_times'): self.read_image_data() return self._binary_ephemeris_times @property def binary_lines(self): """ Returns the lines of the binary image data. For example, the first entry would be the first line of the image. Returns ------- : list Image lines """ if not hasattr(self, '_binary_lines'): self.read_image_data() return self._binary_lines def read_image_data(self): """ Reads data off of image and stores in binary_exposure_durations, binary_lines, and binary_ephemeris_times. For HRSC, the exposure durations and ephemeris times are imbedded in the binary data of the image itself. Each line is stored in what is referred to as a "record" within the image. The label will have the size of each record, the number of records, and the number of records in the label, so the beginning of binary data can be calculated. For each line/record of the binary data, the first 8 bytes make up the double presicion value of the ephemeris time, with the next 4 bytes making up the float value of the line exposure duration for the associated line. NOTE: The prefix data is always LSB, regardless of the overall file format. """ lines = [] times = [] durations = [] bytes_per_record = self.label['RECORD_BYTES'] num_records = self.label['FILE_RECORDS'] img_start_record = self.label['^IMAGE'] img_start_byte = bytes_per_record * (img_start_record - 1) # Offset by one for zero-based records num_img_records = num_records - img_start_record if os.path.isfile(self._file): with open(self._file, 'rb') as image_file: image_file.seek(img_start_byte) data_blob = b'' for record in range(num_img_records): initial_read = image_file.read(12) image_file.read(bytes_per_record - 12) data_blob += initial_read else: data_blob = codecs.decode(self._props['preprocess_data'].encode('utf-8'), 'base64') for record in range(num_img_records): read_record = record * 12 eph_time = struct.unpack('<d', data_blob[read_record:read_record+8])[0] exp_dur = struct.unpack('<f', data_blob[read_record+8:read_record+12])[0] / 1000 # Offset for zero-based corrections, and then offest for ISIS pixel definition lines.append(record+1-0.5) times.append(eph_time) durations.append(exp_dur) self._binary_exposure_durations = durations self._binary_lines = lines self._binary_ephemeris_times = times @property def ephemeris_stop_time(self): """ Returns the ephemeris stop time. For HRSC, the ephemeris stop time is calculated from the binary image data. Returns ------- : float Ephemeris stop time """ return self.binary_ephemeris_times[-1] + self.binary_exposure_durations[-1] # TODO We need to confirm that returning nothing here does not affect # calculations elsewhere in code. Or is there possibly just a better way of # doing this? @property def line_exposure_duration(self): """ Line exposure duration returns the time between the exposures for subsequent lines. Since HRSC is a variable line scan camera, it does not make sense to have one exposure duration value. Returns ------- : float Returns the line exposure duration in seconds from the PDS3 label. """ return @property def sensor_model_version(self): """ Returns ------- : int ISIS sensor model version """ return 1 class MexHrscIsisLabelNaifSpiceDriver(LineScanner, IsisLabel, NaifSpice, RadialDistortion, Driver): @property def instrument_id(self): """ Returns the name of the instrument Returns ------- : str Name of the instrument """ if(super().instrument_id != "HRSC"): raise Exception ("Instrument ID is wrong.") return self.label['IsisCube']['Archive']['DetectorId'] @property def sensor_name(self): """ Returns the name of the instrument. Need to over-ride isis_label because InstrumentName is not defined in the ISIS label for MEX HSRC cubes. Returns ------- : str Name of the sensor """ return self.instrument_id @property def sensor_model_version(self): """ Returns ------- : int ISIS sensor model version """ return 1 @property def times_table(self): """ Returns EphermisTime, ExposureTime, and LinesStart informtation which was stored as binary information in the ISIS cube. Returns ------- : dict Dictionary with EphemerisTime, ExposureTime, and LineStart. """ isis_bytes = read_table_data(self.label['Table'], self._file) return parse_table(self.label['Table'], isis_bytes) @property def line_scan_rate(self): """ Returns ------- : tuple list of lines, list of ephemeris times, and list of exposure times """ return self.times_table['LineStart'], self.times_table['EphemerisTime'], self.times_table['ExposureTime'] @property def ephemeris_start_time(self): """ Returns ------- : float starting ephemeris time """ return self.times_table['EphemerisTime'][0] @property def ephemeris_stop_time(self): """ Returns ------- : float ephemeris stop time """ last_line = self.times_table['LineStart'][-1] return self.times_table['EphemerisTime'][-1] + ((self.image_lines - last_line + 1) * self.times_table['ExposureTime'][-1]) @property def ikid(self): """ Returns the Naif ID code for the HRSC head instrument This would be the Naif ID code for the base (or "head") instrument. Returns ------- : int Naif ID used to for indentifying the instrument in Spice kernels """ return spice.bods2c("MEX_HRSC_HEAD") @property def fikid(self): """ Naif ID code of the filter dependent instrument codes. Expects filter_number to be defined. This should be an integer containing the filter number from the pds3 label. Expects ikid to be defined. This should be the integer Naif ID code for the instrument. Returns ------- : int Naif ID code used in calculating focal length """ return spice.bods2c(self.instrument_id) class MexSrcPds3NaifSpiceDriver(Framer, Pds3Label, NaifSpice, RadialDistortion, Driver): """ Driver for a PDS3 Mars Express (Mex) High Resolution Stereo Camera (HRSC) - Super Resolution Channel (SRC) image. """ @property def odtk(self): """ The coefficients for the distortion model. No distortion model, so pass in all zeroes. Returns ------- : list Radial distortion coefficients. """ return [0.0, 0.0, 0.0] @property def ikid(self): """ Returns the Naif ID code for HRSC SRC. Returns ------- : int Naif ID used to for indentifying the instrument in Spice kernels """ return spice.bods2c("MEX_HRSC_SRC") @property def instrument_id(self): """ Returns the short name of the instrument MEX HRSC has nine different filters each with their own name. Returns ------- : str Short name of the instrument """ if(super().instrument_id != "HRSC"): raise Exception ("Instrument ID is wrong.") return self.label['DETECTOR_ID'] @property def spacecraft_name(self): """ Spacecraft name used in various SPICE calls to acquire ephemeris data. MEX HRSC img PDS3 labels do not the have SPACECRAFT_NAME keyword, so we override it here to use the label_pds3 property for instrument_host_id Returns ------- : str Spacecraft name """ return self.instrument_host_id @property def focal2pixel_lines(self): """ NOTE: These values are pulled from ISIS iak kernels. Returns ------- : list<double> focal plane to detector lines """ return [0.0, 0.0, 111.111111111111] @property def focal2pixel_samples(self): """ NOTE: These values are pulled from ISIS iak kernels. Returns ------- : list<double> focal plane to detector samples """ return [0.0, 111.111111111111, 0.0] @property def detector_center_line(self): """ Returns the center detector line. Returns ------- : float Detector line of the principal point """ return 512.0 @property def detector_center_sample(self): """ Returns the center detector sample. This is different from ISIS's center sample because ISIS uses 0.5-based samples. Returns ------- : float Detector sample of the principal point """ return 512.0 @property def sensor_model_version(self): """ Returns ------- : int ISIS sensor model version """ return 1
Ale
/Ale-0.8.4.tar.gz/Ale-0.8.4/ale/drivers/mex_drivers.py
mex_drivers.py
import os import numpy as np import pvl import spiceypy as spice from glob import glob from ale.util import get_metakernels from ale.base import Driver from ale.base.data_naif import NaifSpice from ale.base.label_pds3 import Pds3Label from ale.base.label_isis import IsisLabel from ale.base.type_sensor import LineScanner, Radar class LroLrocPds3LabelNaifSpiceDriver(LineScanner, NaifSpice, Pds3Label, Driver): """ Driver for reading LROC NACL, NACR (not WAC, it is a push frame) labels. Requires a Spice mixin to acquire addtional ephemeris and instrument data located exclusively in SPICE kernels, A PDS3 label, and the LineScanner and Driver bases. """ @property def instrument_id(self): """ The short text name for the instrument Returns an instrument id uniquely identifying the instrument. Used to acquire instrument codes from Spice Lib bods2c routine. Returns ------- str The short text name for the instrument """ instrument = super().instrument_id frame_id = self.label.get("FRAME_ID") if instrument == "LROC" and frame_id == "LEFT": return "LRO_LROCNACL" elif instrument == "LROC" and frame_id == "RIGHT": return "LRO_LROCNACR" @property def spacecraft_name(self): """ Spacecraft name used in various SPICE calls to acquire ephemeris data. LROC NAC img PDS3 labels do not the have SPACECRAFT_NAME keyword, so we override it here to use the label_pds3 property for instrument_host_id Returns ------- : str Spacecraft name """ return self.instrument_host_id @property def sensor_model_version(self): """ Returns ISIS instrument sensor model version number Returns ------- : int ISIS sensor model version """ return 2 @property def usgscsm_distortion_model(self): """ The distortion model name with its coefficients LRO LROC NAC does not use the default distortion model so we need to overwrite the method packing the distortion model into the ISD. Returns ------- : dict Returns a dict with the model name : dict of the coefficients """ return {"lrolrocnac": {"coefficients": self.odtk}} @property def odtk(self): """ The coefficients for the distortion model Returns ------- : list Radial distortion coefficients. There is only one coefficient for LROC NAC l/r """ return spice.gdpool('INS{}_OD_K'.format(self.ikid), 0, 1).tolist() @property def light_time_correction(self): """ Returns the type of light time correciton and abberation correction to use in NAIF calls. LROC is specifically set to not use light time correction because it is so close to the surface of the moon that light time correction to the center of the body is incorrect. Returns ------- : str The light time and abberation correction string for use in NAIF calls. See https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/abcorr.html for the different options available. """ return 'NONE' @property def detector_center_sample(self): """ The center of the CCD in detector pixels ISIS uses 0.5 based CCD samples, so we need to convert to 0 based. Returns ------- float : The center sample of the CCD """ return super().detector_center_sample - 0.5 @property def focal2pixel_lines(self): """ Expects ikid to be defined. This must be the integer Naif id code of the instrument. For LROC NAC this is flipped depending on the spacecraft direction. Returns ------- : list<double> focal plane to detector lines """ focal2pixel_lines = np.array(list(spice.gdpool('INS{}_ITRANSL'.format(self.ikid), 0, 3))) / self.sampling_factor if self.spacecraft_direction < 0: return -focal2pixel_lines else: return focal2pixel_lines @property def ephemeris_start_time(self): """ The starting ephemeris time for LRO is computed by taking the LRO:SPACECRAFT_CLOCK_PREROLL_COUNT, as defined in the label, and adding offsets that were taken from an IAK. Returns ------- : double Starting ephemeris time of the image """ start_time = spice.scs2e(self.spacecraft_id, self.label['LRO:SPACECRAFT_CLOCK_PREROLL_COUNT']) return start_time + self.constant_time_offset + self.additional_preroll * self.exposure_duration @property def exposure_duration(self): """ Takes the exposure_duration defined in a parent class and adds offsets taken from an IAK. Returns ------- : float Returns the exposure duration in seconds. """ return super().exposure_duration * (1 + self.multiplicative_line_error) + self.additive_line_error @property def multiplicative_line_error(self): """ Returns the multiplicative line error defined in an IAK. Returns ------- : float Returns the multiplicative line error. """ return 0.0045 @property def additive_line_error(self): """ Returns the additive line error defined in an IAK. Returns ------- : float Returns the additive line error. """ return 0.0 @property def constant_time_offset(self): """ Returns the constant time offset defined in an IAK. Returns ------- : float Returns the constant time offset. """ return 0.0 @property def additional_preroll(self): """ Returns the addition preroll defined in an IAK. Returns ------- : float Returns the additionl preroll. """ return 1024.0 @property def mission_name(self): return self.label['MISSION_NAME'] @property def sampling_factor(self): """ Returns the summing factor from the PDS3 label that is defined by the CROSSTRACK_SUMMING. For example a return value of 2 indicates that 2 lines and 2 samples (4 pixels) were summed and divided by 4 to produce the output pixel value. Returns ------- : int Number of samples and lines combined from the original data to produce a single pixel in this image """ return self.crosstrack_summing @property def spacecraft_direction(self): """ Returns the x axis of the first velocity vector relative to the spacecraft. This indicates of the craft is moving forwards or backwards. From LROC Frame Kernel: lro_frames_2014049_v01.tf "+X axis is in the direction of the velocity vector half the year. The other half of the year, the +X axis is opposite the velocity vector" Hence we rotate the first velocity vector into the sensor reference frame, but the X component of that vector is inverted compared to the spacecraft so a +X indicates backwards and -X indicates forwards The returned velocity is also slightly off from the spacecraft velocity due to the sensor being attached to the craft with wax. Returns ------- direction : double X value of the first velocity relative to the sensor """ frame_chain = self.frame_chain lro_bus_id = spice.bods2c('LRO_SC_BUS') time = self.ephemeris_start_time state, _ = spice.spkezr(self.spacecraft_name, time, 'J2000', 'None', self.target_name) position = state[:3] velocity = state[3:] rotation = frame_chain.compute_rotation(1, lro_bus_id) rotated_velocity = spice.mxv(rotation._rots.as_dcm()[0], velocity) return rotated_velocity[0] class LroLrocIsisLabelNaifSpiceDriver(LineScanner, NaifSpice, IsisLabel, Driver): @property def instrument_id(self): """ The short text name for the instrument Returns an instrument id uniquely identifying the instrument. Used to acquire instrument codes from Spice Lib bods2c routine. Returns ------- str The short text name for the instrument """ id_lookup = { "NACL": "LRO_LROCNACL", "NACR": "LRO_LROCNACR" } return id_lookup[super().instrument_id] @property def sensor_model_version(self): """ Returns ISIS instrument sensor model version number Returns ------- : int ISIS sensor model version """ return 2 @property def usgscsm_distortion_model(self): """ The distortion model name with its coefficients LRO LROC NAC does not use the default distortion model so we need to overwrite the method packing the distortion model into the ISD. Returns ------- : dict Returns a dict with the model name : dict of the coefficients """ return {"lrolrocnac": {"coefficients": self.odtk}} @property def odtk(self): """ The coefficients for the distortion model Returns ------- : list Radial distortion coefficients. There is only one coefficient for LROC NAC l/r """ return spice.gdpool('INS{}_OD_K'.format(self.ikid), 0, 1).tolist() @property def light_time_correction(self): """ Returns the type of light time correciton and abberation correction to use in NAIF calls. LROC is specifically set to not use light time correction because it is so close to the surface of the moon that light time correction to the center of the body is incorrect. Returns ------- : str The light time and abberation correction string for use in NAIF calls. See https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/abcorr.html for the different options available. """ return 'NONE' @property def detector_center_sample(self): """ The center of the CCD in detector pixels ISIS uses 0.5 based CCD samples, so we need to convert to 0 based. Returns ------- float : The center sample of the CCD """ return super().detector_center_sample - 0.5 @property def ephemeris_start_time(self): """ The starting ephemeris time for LRO is computed by taking the LRO:SPACECRAFT_CLOCK_PREROLL_COUNT, as defined in the label, and adding offsets that were taken from an IAK. Returns ------- : double Starting ephemeris time of the image """ start_time = spice.scs2e(self.spacecraft_id, self.label['IsisCube']['Instrument']['SpacecraftClockPrerollCount']) return start_time + self.constant_time_offset + self.additional_preroll * self.exposure_duration @property def exposure_duration(self): """ Takes the exposure_duration defined in a parent class and adds offsets taken from an IAK. Returns ------- : float Returns the exposure duration in seconds. """ return super().exposure_duration * (1 + self.multiplicative_line_error) + self.additive_line_error @property def focal2pixel_lines(self): """ Expects ikid to be defined. This must be the integer Naif id code of the instrument. For LROC NAC this is flipped depending on the spacecraft direction. Returns ------- : list<double> focal plane to detector lines """ focal2pixel_lines = np.array(list(spice.gdpool('INS{}_ITRANSL'.format(self.ikid), 0, 3))) / self.sampling_factor if self.spacecraft_direction < 0: return -focal2pixel_lines else: return focal2pixel_lines @property def multiplicative_line_error(self): """ Returns the multiplicative line error defined in an IAK. Returns ------- : float Returns the multiplicative line error. """ return 0.0045 @property def additive_line_error(self): """ Returns the additive line error defined in an IAK. Returns ------- : float Returns the additive line error. """ return 0.0 @property def constant_time_offset(self): """ Returns the constant time offset defined in an IAK. Returns ------- : float Returns the constant time offset. """ return 0.0 @property def additional_preroll(self): """ Returns the addition preroll defined in an IAK. Returns ------- : float Returns the additionl preroll. """ return 1024.0 @property def sampling_factor(self): """ Returns the summing factor from the PDS3 label that is defined by the CROSSTRACK_SUMMING. For example a return value of 2 indicates that 2 lines and 2 samples (4 pixels) were summed and divided by 4 to produce the output pixel value. Returns ------- : int Number of samples and lines combined from the original data to produce a single pixel in this image """ return self.label['IsisCube']['Instrument']['SpatialSumming'] @property def spacecraft_direction(self): """ Returns the x axis of the first velocity vector relative to the spacecraft. This indicates of the craft is moving forwards or backwards. From LROC Frame Kernel: lro_frames_2014049_v01.tf "+X axis is in the direction of the velocity vector half the year. The other half of the year, the +X axis is opposite the velocity vector" Hence we rotate the first velocity vector into the sensor reference frame, but the X component of that vector is inverted compared to the spacecraft so a +X indicates backwards and -X indicates forwards The returned velocity is also slightly off from the spacecraft velocity due to the sensor being attached to the craft with wax. Returns ------- direction : double X value of the first velocity relative to the sensor """ frame_chain = self.frame_chain lro_bus_id = spice.bods2c('LRO_SC_BUS') time = self.ephemeris_start_time state, _ = spice.spkezr(self.spacecraft_name, time, 'J2000', 'None', self.target_name) position = state[:3] velocity = state[3:] rotation = frame_chain.compute_rotation(1, lro_bus_id) rotated_velocity = spice.mxv(rotation._rots.as_dcm()[0], velocity) return rotated_velocity[0] class LroMiniRfIsisLabelNaifSpiceDriver(Radar, NaifSpice, IsisLabel, Driver): @property def instrument_id(self): """ The short text name for the instrument Returns an instrument id uniquely identifying the instrument. Used to acquire instrument codes from Spice Lib bods2c routine. Returns ------- str The short text name for the instrument """ return super().instrument_id @property def wavelength(self): """ Returns the wavelength in meters used for image acquistion. Returns ------- : double Wavelength in meters used to create an image """ # Get float value of frequency in GHz frequency = self.label['IsisCube']['Instrument']['Frequency'].value wavelength = spice.clight() / frequency / 1000.0 return wavelength @property def scaled_pixel_width(self): """ Returns the scaled pixel width Returns ------- : double scaled pixel width """ return self.label['IsisCube']['Instrument']['ScaledPixelHeight']; # Default line_exposure_duration assumes that time is given in milliseconds and coverts # in this case, the time is already given in seconds. @property def line_exposure_duration(self): """ Line exposure duration in seconds. The sum of the burst and the delay for the return. Returns ------- : double scaled pixel width """ return self.label['IsisCube']['Instrument']['LineExposureDuration'] @property def range_conversion_coefficients(self): """ Range conversion coefficients Returns ------- : List range conversion coefficients """ range_coefficients_orig = self.label['IsisCube']['Instrument']['RangeCoefficientSet'] # The first elt of each list is time, which we handle separately in range_conversion_time range_coefficients = [elt[1:] for elt in range_coefficients_orig] return range_coefficients @property def range_conversion_times(self): """ Times, in et, associated with range conversion coefficients Returns ------- : List times for range conversion coefficients """ range_coefficients_utc = self.label['IsisCube']['Instrument']['RangeCoefficientSet'] range_coefficients_et = [spice.str2et(elt[0]) for elt in range_coefficients_utc] return range_coefficients_et @property def ephemeris_start_time(self): """ Returns the start and stop ephemeris times for the image. Returns ------- : float start time """ return spice.str2et(str(self.utc_start_time)) @property def ephemeris_stop_time(self): """ Returns the stop ephemeris times for the image. Returns ------- : float stop time """ return spice.str2et(str(self.utc_stop_time)) @property def look_direction(self): """ Direction of the look (left or right) Returns ------- : string left or right """ return self.label['IsisCube']['Instrument']['LookDirection'].lower()
Ale
/Ale-0.8.4.tar.gz/Ale-0.8.4/ale/drivers/lro_drivers.py
lro_drivers.py
import spiceypy as spice import ale from ale.base.base import Driver from ale.base.type_distortion import NoDistortion from ale.base.data_naif import NaifSpice from ale.base.label_isis import IsisLabel from ale.base.type_sensor import LineScanner import pvl class OdyThemisIrIsisLabelNaifSpiceDriver(LineScanner, IsisLabel, NaifSpice, NoDistortion, Driver): """ Driver for Themis IR ISIS cube """ @property def instrument_id(self): inst_id = super().instrument_id if inst_id not in ["THEMIS_IR"]: raise Exception(f"{inst_id} is not a valid THEMIS IR instrument name. Expecting THEMIS_IR") return inst_id @property def sensor_model_version(self): return 1 @property def spacecraft_name(self): name = super().spacecraft_name.replace('_', ' ') if name != "MARS ODYSSEY": raise Exception("{name} for label is not a valid Mars Odyssey spacecraft name") return name @property def ikid(self): return self.label['IsisCube']['Kernels']['NaifFrameCode'] @property def line_exposure_duration(self): """ returns line exposure duration Taken from ISIS ThemisIr Camera Model """ return (33.2871/1000 * self.line_summing) @property def ephemeris_start_time(self): og_start_time = super().ephemeris_start_time offset = self.label["IsisCube"]["Instrument"]["SpacecraftClockOffset"] if isinstance(offset, pvl._collections.Units): units = offset.units if "ms" in units.lower(): offset = offset.value * 0.001 else: # if not milliseconds, the units are probably seconds offset = offset.value return og_start_time + offset @property def focal_length(self): return 202.059 @property def detector_center_line(self): return 0 @property def detector_center_sample(self): return 0 @property def sensor_name(self): return self.label['IsisCube']['Instrument']['SpacecraftName'] class OdyThemisVisIsisLabelNaifSpiceDriver(LineScanner, IsisLabel, NaifSpice, NoDistortion, Driver): """" Driver for Themis VIS ISIS cube """ @property def instrument_id(self): inst_id = super().instrument_id if inst_id not in ["THEMIS_VIS"]: raise Exception(f"{inst_id} is not a valid THEMIS VIS instrument name. Expecting \"THEMIS_VIS\"") return inst_id @property def sensor_model_version(self): return 1 @property def spacecraft_name(self): name = super().spacecraft_name.replace('_', ' ') if name != "MARS ODYSSEY": raise Exception("{name} for label is not a valid Mars Odyssey spacecraft name") return name @property def ikid(self): return self.label['IsisCube']['Kernels']['NaifFrameCode'] @property def ephemeris_start_time(self): """ The starting ephemeris time, in seconds Formula derived from ISIS3's ThemisVis Camera model Returns ------- : double Starting ephemeris time in seconds """ og_start_time = super().ephemeris_start_time offset = self.label["IsisCube"]["Instrument"]["SpacecraftClockOffset"] if isinstance(offset, pvl._collections.Units): units = offset.units if "ms" in units.lower(): offset = offset.value * 0.001 else: # if not milliseconds, the units are probably seconds offset = offset.value return og_start_time + offset - (self.line_exposure_duration/2) @property def line_exposure_duration(self): """ The line exposure duration of the image, in seconds Returns ------- : float Line exposure duration in seconds """ line_exposure_duration = self.label['IsisCube']['Instrument']['ExposureDuration'] if isinstance(line_exposure_duration, pvl._collections.Units): units = line_exposure_duration.units if "ms" in units.lower(): line_exposure_duration = line_exposure_duration.value * 0.001 else: # if not milliseconds, the units are probably seconds line_exposure_duration = line_exposure_duration.value else: # if no units are available, assume the exposure duration is given in milliseconds line_exposure_duration = line_exposure_duration * 0.001 return line_exposure_duration @property def focal_length(self): return 202.059 @property def detector_center_line(self): return 0 @property def detector_center_sample(self): return 0 @property def sensor_name(self): return self.label['IsisCube']['Instrument']['SpacecraftName']
Ale
/Ale-0.8.4.tar.gz/Ale-0.8.4/ale/drivers/ody_drivers.py
ody_drivers.py
from ale import util from ale.base.data_naif import NaifSpice from ale.base.label_isis import IsisLabel from ale.base.type_sensor import Framer from ale.base.type_distortion import NoDistortion from ale.base.base import Driver class JunoJunoCamIsisLabelNaifSpiceDriver(Framer, IsisLabel, NaifSpice, NoDistortion, Driver): """ Driver for reading Juno ISIS labels. """ @property def instrument_id(self): """ Expects instrument_id to be defined in the IsisLabel mixin. This should be a string of the form 'JNC' Returns ------- : str instrument id """ look_up = {'JNC': 'JUNO_JUNOCAM'} return look_up[super().instrument_id] @property def ephemeris_start_time(self): """ Junos camera is split into stacked frames where an image is made of sets of RGBM chuncks. We need to account for these chuncks since ISIS produces some number of cubes N where N = M*4. Computation obtained from JunoCamera.cpp Returns ------- : double Starting ephemeris time """ if not hasattr(self, '_ephemeris_start_time'): initial_time = super().ephemeris_start_time frame_number = self.label['IsisCube']['Instrument']['FrameNumber'] inter_frame_delay = self.label['IsisCube']['Instrument']['InterFrameDelay'].value start_time_bias = self.naif_keywords[f'INS{self.ikid}_START_TIME_BIAS'] inter_frame_delay_bias = self.naif_keywords[f'INS{self.ikid}_INTERFRAME_DELTA'] self._ephemeris_start_time = initial_time + start_time_bias + (frame_number - 1) * (inter_frame_delay + inter_frame_delay_bias) return self._ephemeris_start_time @property def sensor_model_version(self): """ Returns ------- : int ISIS sensor model version """ return 1 @property def naif_keywords(self): """ Updated set of naif keywords containing the NaifIkCode for the specific Juno filter used when taking the image. Returns ------- : dict Dictionary of keywords and values that ISIS creates and attaches to the label """ filter_code = self.label['IsisCube']['BandBin']['NaifIkCode'] return {**super().naif_keywords, **util.query_kernel_pool(f"*{filter_code}*")}
Ale
/Ale-0.8.4.tar.gz/Ale-0.8.4/ale/drivers/juno_drivers.py
juno_drivers.py
from glob import glob import os import struct import pvl import spiceypy as spice import numpy as np from ale.base import Driver from ale.base.data_naif import NaifSpice from ale.base.label_isis import IsisLabel from ale.base.type_sensor import Framer from ale.base.type_distortion import NoDistortion class TGOCassisIsisLabelNaifSpiceDriver(Framer, IsisLabel, NaifSpice, NoDistortion, Driver): """ Driver for reading TGO Cassis ISIS3 Labels. These are Labels that have been ingested into ISIS from PDS EDR images but have not been spiceinit'd yet. """ @property def instrument_id(self): """ Returns an instrument id for unquely identifying the instrument, but often also used to be piped into Spice Kernels to acquire IKIDs. Therefore they the same ID the Spice expects in bods2c calls. Expects instrument_id to be defined in the Pds3Label mixin. This should be a string of the form CaSSIS Returns ------- : str instrument id """ id_lookup = { 'CaSSIS': 'TGO_CASSIS', } return id_lookup[super().instrument_id] @property def ephemeris_start_time(self): """ Returns the ephemeris_start_time of the image. Expects spacecraft_clock_start_count to be defined. This should be a float containing the start clock count of the spacecraft. Expects spacecraft_id to be defined. This should be the integer Naif ID code for the spacecraft. Returns ------- : float ephemeris start time of the image. """ return spice.utc2et(str(self.label['IsisCube']['Instrument']['StartTime'])) @property def sensor_frame_id(self): return -143420 @property def sensor_model_version(self): """ Returns ------- : int ISIS sensor model version """ return 1 @property def sensor_name(self): return self.label['IsisCube']['Instrument']['SpacecraftName']
Ale
/Ale-0.8.4.tar.gz/Ale-0.8.4/ale/drivers/tgo_drivers.py
tgo_drivers.py
from glob import glob import os import struct import pvl import spiceypy as spice import numpy as np from ale.base import Driver from ale.base.type_distortion import NoDistortion from ale.base.data_naif import NaifSpice from ale.base.label_isis import IsisLabel from ale.base.type_sensor import Framer class NewHorizonsLorriIsisLabelNaifSpiceDriver(Framer, IsisLabel, NaifSpice, NoDistortion, Driver): """ Driver for reading New Horizons LORRI ISIS3 Labels. These are Labels that have been ingested into ISIS from PDS EDR images but have not been spiceinit'd yet. """ @property def instrument_id(self): """ Returns an instrument id for uniquely identifying the instrument, but often also used to be piped into Spice Kernels to acquire IKIDs. Therefore they the same ID the Spice expects in bods2c calls. Returns ------- : str instrument id """ id_lookup = { "LORRI" : "NH_LORRI" } return id_lookup[super().instrument_id] @property def ikid(self): """ Overridden to grab the ikid from the Isis Cube since there is no way to obtain this value with a spice bods2c call. Isis sets this value during ingestion, based on the original fits file. For LORRI, there are two options associated with different binning modes: 1x1 binning: -98301 4x4 binning: -98302 Returns ------- : integer Naif Integer ID code for the instrument """ return self.label['IsisCube']['Kernels']['NaifFrameCode'] @property def detector_center_line(self): return float(spice.gdpool('INS{}_BORESIGHT'.format(self.ikid), 0, 3)[0]) @property def detector_center_sample(self): return float(spice.gdpool('INS{}_BORESIGHT'.format(self.ikid), 0, 3)[1]) @property def sensor_name(self): return self.label['IsisCube']['Instrument']['SpacecraftName']
Ale
/Ale-0.8.4.tar.gz/Ale-0.8.4/ale/drivers/nh_drivers.py
nh_drivers.py
import os from glob import glob import numpy as np import spiceypy as spice from ale.base import Driver from ale.base.data_naif import NaifSpice from ale.base.label_pds3 import Pds3Label from ale.base.type_sensor import LineScanner class KaguyaTcPds3NaifSpiceDriver(LineScanner, Pds3Label, NaifSpice, Driver): """ Driver for a PDS3 Kaguya Terrain Camera (TC) images. Specifically level2b0 mono and stereo images. NOTES ----- * Kaguaya has adjusted values for some of its keys, usually suffixed with `CORRECTED_`. These corrected values should always be preffered over the original values. * The Kaguya TC doesn't use a generic Distortion Model, uses on unique to the TC. Therefore, methods normally in the Distortion classes are reimplemented here. """ @property def utc_start_time(self): """ Returns corrected utc start time. If no corrected form is found, defaults to the form specified in parent class. Returns ------- : str Start time of the image in UTC YYYY-MM-DDThh:mm:ss[.fff] """ return self.label.get('CORRECTED_START_TIME', super().utc_start_time) @property def utc_stop_time(self): """ Returns corrected utc start time. If no corrected form is found, defaults to the form specified in parent class. Returns ------- : str Stop time of the image in UTC YYYY-MM-DDThh:mm:ss[.fff] """ return self.label.get('CORRECTED_STOP_TIME', super().utc_stop_time) @property def instrument_id(self): """ Id takes the form of LISM_<INSTRUMENT_ID>_<SD><COMPRESS><SWATH> where INSTRUMENT_ID = TC1/TC2 SD = S/D short for single or double, which in turn means whether the label belongs to a mono or stereo image. COMPRESS = D/T short for DCT or through, we assume image has been decompressed already SWATCH = swatch mode, different swatch modes have different FOVs Returns ------- : str instrument id """ instrument = super().instrument_id swath = self.label.get("SWATH_MODE_ID")[0] sd = self.label.get("PRODUCT_SET_ID").split("_")[1].upper() id = "LISM_{}_{}T{}".format(instrument, sd, swath) return id @property def sensor_frame_id(self): """ Returns the sensor frame id. Depends on the instrument that was used to capture the image. Returns ------- : int Sensor frame id """ return spice.namfrm("LISM_{}_HEAD".format(super().instrument_id)) @property def instrument_host_name(self): """ Returns the name of the instrument host. Kaguya/SELENE labels do not have an explicit instrument host name in the pvl, so we use the spacecraft name. Returns ------- : str Spacecraft name as a proxy for instrument host name. """ return self.label.get("SPACECRAFT_NAME", None) @property def ikid(self): """ Returns ikid of LISM_TC1 or LISM_TC2, depending which camera was used for capturing the image. Some keys are stored in the IK kernel under a general ikid for TC1/TC2 presumably because they are not affected by the addtional parameters encoded in the ikid returned by self.ikid. This method exists for those gdpool calls. Expects instrument_id to be defined in the Pds3Label mixin. This should be a string containing either TC1 or TC2 Returns ------- : int ikid of LISM_TC1 or LISM_TC2 """ return spice.bods2c("LISM_{}".format(super().instrument_id)) @property def spacecraft_name(self): """ Returns "MISSION_NAME" as a proxy for spacecraft_name. No NAIF code exists for the spacecraft name 'SELENE-M.' The NAIF code exists only for 'SELENE' or 'KAGUYA' -- 'SELENE' is captured as 'MISSION_NAME' Returns ------- : str mission name """ return self.label.get('MISSION_NAME') @property def spacecraft_clock_stop_count(self): """ The original SC_CLOCK_STOP_COUNT key is often incorrect and cannot be trusted. Therefore we get this information from CORRECTED_SC_CLOCK_STOP_COUNT Returns ------- : float spacecraft clock stop count in seconds """ return self.label.get('CORRECTED_SC_CLOCK_STOP_COUNT').value @property def spacecraft_clock_start_count(self): """ The original SC_CLOCK_START_COUNT key is often incorrect and cannot be trusted. Therefore we get this information from CORRECTED_SC_CLOCK_START_COUNT Returns ------- : float spacecraft clock start count in seconds """ return self.label.get('CORRECTED_SC_CLOCK_START_COUNT').value @property def ephemeris_start_time(self): """ Returns the ephemeris start time of the image. Expects spacecraft_id to be defined. This should be the integer naif ID code of the spacecraft. Returns ------- : float ephemeris start time of the image """ return spice.sct2e(self.spacecraft_id, self.spacecraft_clock_start_count) @property def detector_center_line(self): """ Returns the center detector line of the detector. Expects tc_id to be defined. This should be a string of the form LISM_TC1 or LISM_TC2. We subtract 0.5 from the center line because as per the IK: Center of the first pixel is defined as "1.0". Returns ------- : int The detector line of the principle point """ return spice.gdpool('INS{}_CENTER'.format(self.ikid), 0, 2)[1] - 0.5 @property def detector_center_sample(self): """ Returns the center detector sample of the detector. Expects tc_id to be defined. This should be a string of the form LISM_TC1 or LISM_TC2. We subtract 0.5 from the center sample because as per the IK: Center of the first pixel is defined as "1.0". Returns ------- : int The detector sample of the principle point """ return spice.gdpool('INS{}_CENTER'.format(self.ikid), 0, 2)[0] - 0.5 @property def focal2pixel_samples(self): """ Calculated using 1/pixel pitch Expects tc_id to be defined. This should be a string of the form LISM_TC1 or LISM_TC2. Returns ------- : list focal plane to detector samples """ pixel_size = spice.gdpool('INS{}_PIXEL_SIZE'.format(self.ikid), 0, 1)[0] return [0, 0, -1/pixel_size] @property def focal2pixel_lines(self): """ Calculated using 1/pixel pitch Expects tc_id to be defined. This should be a string of the form LISM_TC1 or LISM_TC2. Returns ------- : list focal plane to detector lines """ pixel_size = spice.gdpool('INS{}_PIXEL_SIZE'.format(self.ikid), 0, 1)[0] if self.spacecraft_direction < 0: return [0, -1/pixel_size, 0] elif self.spacecraft_direction > 0: return [0, 1/pixel_size, 0] @property def _odkx(self): """ Returns the x coefficients of the optical distortion model. Expects tc_id to be defined. This should be a string of the form LISM_TC1 or LISM_TC2. Returns ------- : list Optical distortion x coefficients """ return spice.gdpool('INS{}_DISTORTION_COEF_X'.format(self.ikid),0, 4).tolist() @property def _odky(self): """ Returns the y coefficients of the optical distortion model. Expects tc_id to be defined. This should be a string of the form LISM_TC1 or LISM_TC2. Returns ------- : list Optical distortion y coefficients """ return spice.gdpool('INS{}_DISTORTION_COEF_Y'.format(self.ikid), 0, 4).tolist() @property def boresight_x(self): """ Returns the x focal plane coordinate of the boresight. Expects ikid to be defined. This should be the NAIF integer ID for the sensor. Returns ------- : float Boresight focal plane x coordinate """ return spice.gdpool('INS{}_BORESIGHT'.format(self.ikid), 0, 1)[0] @property def boresight_y(self): """ Returns the y focal plane coordinate of the boresight. Expects ikid to be defined. This should be the NAIF integer ID for the sensor. Returns ------- : float Boresight focal plane x coordinate """ return spice.gdpool('INS{}_BORESIGHT'.format(self.ikid), 1, 1)[0] @property def exposure_duration(self): """ Returns Line Exposure Duration Kaguya TC has an unintuitive key for this called CORRECTED_SAMPLING_INTERVAL. The original LINE_EXPOSURE_DURATION PDS3 keys is often incorrect and cannot be trusted. Returns ------- : float Line exposure duration """ # It's a list, but only sometimes. # seems to depend on whether you are using the original zipped archives or # if its downloaded from Jaxa's image search: # (https://darts.isas.jaxa.jp/planet/pdap/selene/product_search.html#) try: return self.label['CORRECTED_SAMPLING_INTERVAL'][0].value * 0.001 # Scale to seconds except: return self.label['CORRECTED_SAMPLING_INTERVAL'].value * 0.001 # Scale to seconds @property def focal_length(self): """ Returns camera focal length Expects tc_id to be defined. This should be a string of the form LISM_TC1 or LISM_TC2. Returns ------- : float Camera focal length """ return float(spice.gdpool('INS{}_FOCAL_LENGTH'.format(self.ikid), 0, 1)[0]) @property def usgscsm_distortion_model(self): """ Kaguya uses a unique radial distortion model so we need to overwrite the method packing the distortion model into the ISD. from the IK: Line-of-sight vector of pixel no. n can be expressed as below. Distortion coefficients information: INS<INSTID>_DISTORTION_COEF_X = ( a0, a1, a2, a3) INS<INSTID>_DISTORTION_COEF_Y = ( b0, b1, b2, b3), Distance r from the center: r = - (n - INS<INSTID>_CENTER) * INS<INSTID>_PIXEL_SIZE. Line-of-sight vector v is calculated as v[X] = INS<INSTID>BORESIGHT[X] + a0 + a1*r + a2*r^2 + a3*r^3 , v[Y] = INS<INSTID>BORESIGHT[Y] + r+a0 + a1*r +a2*r^2 + a3*r^3 , v[Z] = INS<INSTID>BORESIGHT[Z] Expects odkx and odky to be defined. These should be a list of optical distortion x and y coefficients respectively. Returns ------- : dict radial distortion model """ return { "kaguyalism": { "x" : self._odkx, "y" : self._odky, "boresight_x" : self.boresight_x, "boresight_y" : self.boresight_y } } @property def detector_start_sample(self): """ Returns starting detector sample Starting sample varies from swath mode (either FULL, NOMINAL or HALF). From Kaguya IK kernel: +-----------------------------------------+--------------+----------------------+---------+ | Sensor | Start Pixel | End Pixel (+dummy) | NAIF ID | +-----------------------------------------+--------------+----------------------+---------+ | LISM_TC1 | 1 | 4096 | -131351 | +-----------------------------------------+--------------+----------------------+---------+ | LISM_TC2 | 1 | 4096 | -131371 | +-----------------------------------------+--------------+----------------------+---------+ | LISM_TC1_WDF (Double DCT Full) | 1 | 4096 | -131352 | +-----------------------------------------+--------------+----------------------+---------+ | LISM_TC1_WTF (Double Through Full) | 1 | 1600 | -131353 | +-----------------------------------------+--------------+----------------------+---------+ | LISM_TC1_SDF (Single DCT Full) | 1 | 4096 | -131354 | +-----------------------------------------+--------------+----------------------+---------+ | LISM_TC1_STF (Single Through Full) | 1 | 3208 | -131355 | +-----------------------------------------+--------------+----------------------+---------+ | LISM_TC1_WDN (Double DCT Nominal) | 297 | 3796(+4) | -131356 | +-----------------------------------------+--------------+----------------------+---------+ | LISM_TC1_WTN (Double Through Nominal) | 297 | 1896 | -131357 | +-----------------------------------------+--------------+----------------------+---------+ | LISM_TC1_SDN (Single DCT Nominal) | 297 | 3796(+4) | -131358 | +-----------------------------------------+--------------+----------------------+---------+ | LISM_TC1_STN (Single Through Nominal) | 297 | 3504 | -131359 | +-----------------------------------------+--------------+----------------------+---------+ | LISM_TC1_WDH (Double DCT Half) | 1172 | 2921(+2) | -131360 | +-----------------------------------------+--------------+----------------------+---------+ | LISM_TC1_WTH (Double Through Half) | 1172 | 2771 | -131361 | +-----------------------------------------+--------------+----------------------+---------+ | LISM_TC1_SDH (Single DCT Half) | 1172 | 2921(+2) | -131362 | +-----------------------------------------+--------------+----------------------+---------+ | LISM_TC1_STH (Single Through Half) | 1172 | 2923 | -131363 | +-----------------------------------------+--------------+----------------------+---------+ | LISM_TC1_SSH (Single SP_support Half) | 1172 | 2921 | -131364 | +-----------------------------------------+--------------+----------------------+---------+ | LISM_TC2_WDF (Double DCT Full) | 1 | 4096 | -131372 | +-----------------------------------------+--------------+----------------------+---------+ | LISM_TC2_WTF (Double Through Full) | 1 | 1600 | -131373 | +-----------------------------------------+--------------+----------------------+---------+ | LISM_TC2_SDF (Single DCT Full) | 1 | 4096 | -131374 | +-----------------------------------------+--------------+----------------------+---------+ | LISM_TC2_STF (Single Through Full) | 1 | 3208 | -131375 | +-----------------------------------------+--------------+----------------------+---------+ | LISM_TC2_WDN (Double DCT Nominal) | 297 | 3796(+4) | -131376 | +-----------------------------------------+--------------+----------------------+---------+ | LISM_TC2_WTN (Double Through Nominal) | 297 | 1896 | -131377 | +-----------------------------------------+--------------+----------------------+---------+ | LISM_TC2_SDN (Single DCT Nominal) | 297 | 3796(+4) | -131378 | +-----------------------------------------+--------------+----------------------+---------+ | LISM_TC2_STN (Single Through Nominal) | 297 | 3504 | -131379 | +-----------------------------------------+--------------+----------------------+---------+ | LISM_TC2_WDH (Double DCT Half) | 1172 | 2921(+2) | -131380 | +-----------------------------------------+--------------+----------------------+---------+ | LISM_TC2_WTH (Double Through Half) | 1172 | 2771 | -131381 | +-----------------------------------------+--------------+----------------------+---------+ | LISM_TC2_SDH (Single DCT Half) | 1172 | 2921(+2) | -131382 | +-----------------------------------------+--------------+----------------------+---------+ | LISM_TC2_STH (Single Through Half) | 1172 | 2923 | -131383 | +-----------------------------------------+--------------+----------------------+---------+ | LISM_TC2_SSH (Single SP_support Half) | 1172 | 2921 | -131384 | +-----------------------------------------+--------------+----------------------+---------+ Returns ------- : int Detector sample corresponding to the first image sample """ return self.label["FIRST_PIXEL_NUMBER"] - .5 @property def detector_start_line(self): if self.spacecraft_direction < 0: return super().detector_start_line elif self.spacecraft_direction > 0: return 1 @property def spacecraft_direction(self): """ Gets the moving direction of the spacecraft from the label, where -1 is moving as intended and 1 is moving inverted. Returns ------- : int Moving direction of the spacecraft """ return int(self.label['SATELLITE_MOVING_DIRECTION']) @property def sensor_model_version(self): """ Returns ------- : int ISIS sensor model version """ return 1 class KaguyaMiPds3NaifSpiceDriver(LineScanner, Pds3Label, NaifSpice, Driver): """ Driver for a PDS3 Kaguya Multiband Imager (Mi) images. Specifically level2b2 Vis and Nir images. NOTES ----- * Kaguaya has adjusted values for some of its keys, usually suffixed with `CORRECTED_`. These corrected values should always be preferred over the original values. """ @property def utc_start_time(self): """ Returns corrected utc start time. If no corrected form is found, defaults to the form specified in parent class. Returns ------- : str Start time of the image in UTC YYYY-MM-DDThh:mm:ss[.fff] """ return self.label.get('CORRECTED_START_TIME', super().utc_start_time) @property def utc_stop_time(self): """ Returns corrected utc start time. If no corrected form is found, defaults to the form specified in parent class. Returns ------- : str Stop time of the image in UTC YYYY-MM-DDThh:mm:ss[.fff] """ return self.label.get('CORRECTED_STOP_TIME', super().utc_stop_time) @property def base_band(self): """ Which band the bands are registered to. """ band_map = { "MV1" : "MI-VIS1", "MV2" : "MI-VIS2", "MV3" : "MI-VIS3", "MV4" : "MI-VIS4", "MV5" : "MI-VIS5", "MN1" : "MI-NIR1", "MN2" : "MI-NIR2", "MN3" : "MI-NIR3", "MN4" : "MI-NIR4" } base_band = band_map[self.label.get("BASE_BAND")] return base_band @property def instrument_id(self): """ Id takes the form of LISM_<BASE_BAND> where <BASE_BAND> is which band the bands were registered to. Returns ------- : str instrument id """ id = f"LISM_{self.base_band}" return id @property def sensor_frame_id(self): """ Returns the sensor frame id. Depends on the instrument that was used to capture the image. Returns ------- : int Sensor frame id """ spectra = self.base_band[3] return spice.namfrm(f"LISM_MI_{spectra}_HEAD") @property def spacecraft_name(self): """ Returns "MISSION_NAME" as a proxy for spacecraft_name. No NAIF code exists for the spacecraft name 'SELENE-M.' The NAIF code exists only for 'SELENE' or 'KAGUYA' -- 'SELENE' is captured as 'MISSION_NAME' Returns ------- : str mission name """ return self.label.get('MISSION_NAME') @property def spacecraft_clock_stop_count(self): """ The original SC_CLOCK_STOP_COUNT key is often incorrect and cannot be trusted. Therefore we get this information from CORRECTED_SC_CLOCK_STOP_COUNT Returns ------- : float spacecraft clock stop count in seconds """ return self.label.get('CORRECTED_SC_CLOCK_STOP_COUNT').value @property def spacecraft_clock_start_count(self): """ The original SC_CLOCK_START_COUNT key is often incorrect and cannot be trusted. Therefore we get this information from CORRECTED_SC_CLOCK_START_COUNT Returns ------- : float spacecraft clock start count in seconds """ return self.label.get('CORRECTED_SC_CLOCK_START_COUNT').value @property def ephemeris_start_time(self): """ Returns the ephemeris start time of the image. Expects spacecraft_id to be defined. This should be the integer naif ID code of the spacecraft. Returns ------- : float ephemeris start time of the image """ return spice.sct2e(self.spacecraft_id, self.spacecraft_clock_start_count) @property def detector_center_line(self): """ Returns the center detector line of the detector. Expects ikid to be defined. This should be the NAIF integer ID code for the sensor. We subtract 0.5 from the center line because as per the IK: Center of the first pixel is defined as "1.0". Returns ------- : int The detector line of the principle point """ return spice.gdpool('INS{}_CENTER'.format(self.ikid), 0, 2)[1] - 0.5 @property def detector_center_sample(self): """ Returns the center detector sample of the detector. Expects ikid to be defined. This should be the NAIF integer ID code for the sensor. We subtract 0.5 from the center sample because as per the IK: Center of the first pixel is defined as "1.0". Returns ------- : int The detector sample of the principle point """ return spice.gdpool('INS{}_CENTER'.format(self.ikid), 0, 2)[0] - 0.5 @property def focal2pixel_samples(self): """ Calculated using 1/pixel pitch Expects ikid to be defined. This should be the NAIF integer ID code for the sensor. Returns ------- : list focal plane to detector samples """ pixel_size = spice.gdpool('INS{}_PIXEL_SIZE'.format(self.ikid), 0, 1)[0] return [0, 0, -1/pixel_size] @property def focal2pixel_lines(self): """ Calculated using 1/pixel pitch Expects ikid to be defined. This should be the NAIF integer ID code for the sensor. Returns ------- : list focal plane to detector lines """ pixel_size = spice.gdpool('INS{}_PIXEL_SIZE'.format(self.ikid), 0, 1)[0] return [0, 1/pixel_size, 0] @property def _odkx(self): """ Returns the x coefficients of the optical distortion model. Expects ikid to be defined. This should be the NAIF integer ID code for the sensor. Returns ------- : list Optical distortion x coefficients """ return spice.gdpool('INS{}_DISTORTION_COEF_X'.format(self.ikid),0, 4).tolist() @property def _odky(self): """ Returns the y coefficients of the optical distortion model. Expects tc_id to be defined. This should be a string of the form LISM_TC1 or LISM_TC2. Returns ------- : list Optical distortion y coefficients """ return spice.gdpool('INS{}_DISTORTION_COEF_Y'.format(self.ikid), 0, 4).tolist() @property def boresight_x(self): """ Returns the x focal plane coordinate of the boresight. Expects ikid to be defined. This should be the NAIF integer ID for the sensor. Returns ------- : float Boresight focal plane x coordinate """ return spice.gdpool('INS{}_BORESIGHT'.format(self.ikid), 0, 1)[0] @property def boresight_y(self): """ Returns the y focal plane coordinate of the boresight. Expects ikid to be defined. This should be the NAIF integer ID for the sensor. Returns ------- : float Boresight focal plane x coordinate """ return spice.gdpool('INS{}_BORESIGHT'.format(self.ikid), 1, 1)[0] @property def line_exposure_duration(self): """ Returns Line Exposure Duration Kaguya has an unintuitive key for this called CORRECTED_SAMPLING_INTERVAL. The original LINE_EXPOSURE_DURATION PDS3 keys is often incorrect and cannot be trusted. Returns ------- : float Line exposure duration """ # It's a list, but only sometimes. # seems to depend on whether you are using the original zipped archives or # if its downloaded from Jaxa's image search: # (https://darts.isas.jaxa.jp/planet/pdap/selene/product_search.html#) try: return self.label['CORRECTED_SAMPLING_INTERVAL'][0].value * 0.001 # Scale to seconds except: return self.label['CORRECTED_SAMPLING_INTERVAL'].value * 0.001 # Scale to seconds @property def focal_length(self): """ Returns camera focal length Expects ikid to be defined. This should be the NAIF ID for the base band. Returns ------- : float Camera focal length """ return float(spice.gdpool('INS{}_FOCAL_LENGTH'.format(self.ikid), 0, 1)[0]) @property def usgscsm_distortion_model(self): """ Kaguya uses a unique radial distortion model so we need to overwrite the method packing the distortion model into the ISD. from the IK: Line-of-sight vector of pixel no. n can be expressed as below. Distortion coefficients information: INS<INSTID>_DISTORTION_COEF_X = ( a0, a1, a2, a3) INS<INSTID>_DISTORTION_COEF_Y = ( b0, b1, b2, b3), Distance r from the center: r = - (n - INS<INSTID>_CENTER) * INS<INSTID>_PIXEL_SIZE. Line-of-sight vector v is calculated as v[X] = INS<INSTID>BORESIGHT[X] + a0 + a1*r + a2*r^2 + a3*r^3 , v[Y] = INS<INSTID>BORESIGHT[Y] + r+a0 + a1*r +a2*r^2 + a3*r^3 , v[Z] = INS<INSTID>BORESIGHT[Z] Expects odkx and odky to be defined. These should be a list of optical distortion x and y coefficients respectively. Returns ------- : dict radial distortion model """ return { "kaguyalism": { "x" : self._odkx, "y" : self._odky, "boresight_x" : self.boresight_x, "boresight_y" : self.boresight_y } } @property def sensor_model_version(self): """ Returns ------- : int ISIS sensor model version """ return 1
Ale
/Ale-0.8.4.tar.gz/Ale-0.8.4/ale/drivers/selene_drivers.py
selene_drivers.py
import spiceypy as spice import ale from ale.base.data_naif import NaifSpice from ale.base.label_isis import IsisLabel from ale.base.type_sensor import Framer from ale.base.base import Driver class VikingIsisLabelNaifSpiceDriver(Framer, IsisLabel, NaifSpice, Driver): @property def spacecraft_name(self): """ Overridden to work with spice calls. Returns ------- : str Name of the spacecraft. """ name_lookup = { 'VIKING_ORBITER_1': 'VIKING ORBITER 1', 'VIKING_ORBITER_2': 'VIKING ORBITER 2' } return name_lookup[super().spacecraft_name] @property def alt_ikid(self): """ Viking Orbiter 1 & 2 each have an alternate naif id code as defined in the SCLK kernels. Expects spacecraft name to be defined. Returns -27999 for vo1 and -30999 for vo2 Returns ------- : integer Alternate Naif Integer ID code for the instrument """ alt_id_lookup = { 'VIKING ORBITER 1': -27999, 'VIKING ORBITER 2':-30999 } return alt_id_lookup[self.spacecraft_name] @property def ikid(self): """ Overridden to grab the ikid from the Isis Cube since there is no way to obtain this value with a spice bods2c call. Returns ------- : integer Naif Integer ID code for the instrument """ return self.label['IsisCube']['Kernels']['NaifFrameCode'] @property def ephemeris_start_time(self): """ Overridden to use the alternate instrument ID. Also computes an offset to match what is being done in ISIS code. Expects spacecraft_clock_start_count to be defined. Returns ------- : float ephemeris start time of the image """ ephemeris_start_time = spice.scs2e(self.alt_ikid, str(self.spacecraft_clock_start_count)) if self.exposure_duration <= .420: offset1 = 7.0 / 8.0 * 4.48 else: offset1 = 3.0 / 8.0 * 4.48 offset2 = 1.0 / 64.0 * 4.48 return ephemeris_start_time + offset1 + offset2
Ale
/Ale-0.8.4.tar.gz/Ale-0.8.4/ale/drivers/viking_drivers.py
viking_drivers.py
import pvl import zlib import importlib import inspect import itertools from itertools import chain import os from glob import glob import json import numpy as np import datetime from datetime import datetime, date import traceback from collections import OrderedDict from ale.formatters.usgscsm_formatter import to_usgscsm from ale.formatters.isis_formatter import to_isis from ale.formatters.formatter import to_isd from ale.base.data_isis import IsisSpice from abc import ABC # Explicit list of disabled drivers __disabled_drivers__ = ["ody_drivers", "hayabusa2_drivers", "juno_drivers", "tgo_drivers"] # dynamically load drivers __all__ = [os.path.splitext(os.path.basename(d))[0] for d in glob(os.path.join(os.path.dirname(__file__), '*_drivers.py'))] __all__ = [driver for driver in __all__ if driver not in __disabled_drivers__] __driver_modules__ = [importlib.import_module('.'+m, package='ale.drivers') for m in __all__] __formatters__ = {'usgscsm': to_usgscsm, 'isis': to_isis, 'ale' : to_isd} def sort_drivers(drivers=[]): return list(sorted(drivers, key=lambda x:IsisSpice in x.__bases__, reverse=False)) class AleJsonEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, set): return list(obj) if isinstance(obj, np.integer): return int(obj) elif isinstance(obj, np.floating): return float(obj) elif isinstance(obj, np.ndarray): return obj.tolist() elif isinstance(obj, datetime.date): return obj.isoformat() return json.JSONEncoder.default(self, obj) def load(label, props={}, formatter='ale', verbose=False): """ Attempt to load a given label from all possible drivers. This function opens up the label file and attempts to produce an ISD in the format specified using the supplied properties. Drivers are tried sequentially until an ISD is successfully created. Drivers that use external ephemeris data are tested before drivers that use attached epehemeris data. Parameters ---------- label : str String path to the given label file props : dict A dictionary of optional keywords/parameters for use in driver loading. Each driver specifies its own set of properties to use. For example, Drivers that use the NaifSpice mix-in use the 'kernels' property to specify an explicit set of kernels and load order. formatter : {'ale', 'isis', 'usgscsm'} Output format for the ISD. As of 0.8.0, it is recommended that the `ale` formatter is used. The `isis` and `usgscsm` formatters are retrained for backwards compatability. verbose : bool If True, displays debug output specifying which drivers were attempted and why they failed. Returns ------- dict The ISD as a dictionary """ if isinstance(formatter, str): formatter = __formatters__[formatter] drivers = chain.from_iterable(inspect.getmembers(dmod, lambda x: inspect.isclass(x) and "_driver" in x.__module__) for dmod in __driver_modules__) drivers = sort_drivers([d[1] for d in drivers]) for driver in drivers: if verbose: print(f'Trying {driver}') try: res = driver(label, props=props) # get instrument_id to force early failure res.instrument_id with res as driver: isd = formatter(driver) if verbose: print("Success with: ", driver) print("ISD:\n", json.dumps(isd, indent=2, cls=AleJsonEncoder)) return isd except Exception as e: if verbose: print(f'Failed: {e}\n') traceback.print_exc() raise Exception('No Such Driver for Label') def loads(label, props='', formatter='ale', verbose=False): """ Attempt to load a given label from all possible drivers. This function is the same as load, except it returns a JSON formatted string. Returns ------- str The ISD as a JSON formatted string See Also -------- load """ res = load(label, props, formatter, verbose=verbose) return json.dumps(res, cls=AleJsonEncoder)
Ale
/Ale-0.8.4.tar.gz/Ale-0.8.4/ale/drivers/__init__.py
__init__.py
from glob import glob import os import pvl import spiceypy as spice import numpy as np from ale.base import Driver from ale.base.data_naif import NaifSpice from ale.base.label_pds3 import Pds3Label from ale.base.label_isis import IsisLabel from ale.base.type_sensor import Framer from ale.base.data_isis import IsisSpice ID_LOOKUP = { 'MDIS-WAC': 'MSGR_MDIS_WAC', 'MDIS-NAC':'MSGR_MDIS_NAC', } class MessengerMdisIsisLabelIsisSpiceDriver(Framer, IsisLabel, IsisSpice, Driver): @property def spacecraft_name(self): """ Spacecraft name used in various SPICE calls to acquire ephemeris data. Messenger MDIS img PDS3 labels do not the have a SPACECRAFT_NAME keyword, so we override it here to find INSTRUMENT_HOST_NAME in the label. Returns ------- : str Spacecraft name """ return self.instrument_host_name @property def fikid(self): """ Naif ID code used in calculating focal length Expects filter_number to be defined. This should be an integer containing the filter number from the pds3 label. Expects ikid to be defined. This should be the integer Naid ID code for the instrument. Returns ------- : int Naif ID code used in calculating focal length """ if isinstance(self, Framer): fn = super().filter_number if fn == 'N/A': fn = 0 else: fn = 0 return self.ikid - int(fn) @property def instrument_id(self): """ Returns an instrument id for unquely identifying the instrument, but often also used to be piped into Spice Kernels to acquire IKIDs. Therefore they the same ID the Spice expects in bods2c calls. Expects instrument_id to be defined in the Pds3Label mixin. This should be a string of the form MDIS-WAC or MDIS-NAC. Returns ------- : str instrument id """ return ID_LOOKUP[super().instrument_id] class MessengerMdisPds3NaifSpiceDriver(Framer, Pds3Label, NaifSpice, Driver): """ Driver for reading MDIS PDS3 labels. Requires a Spice mixin to acquire addtional ephemeris and instrument data located exclusively in spice kernels. """ @property def spacecraft_name(self): """ Spacecraft name used in various SPICE calls to acquire ephemeris data. Messenger MDIS img PDS3 labels do not the have a SPACECRAFT_NAME keyword, so we override it here to find INSTRUMENT_HOST_NAME in the label. Returns ------- : str Spacecraft name """ return self.instrument_host_name @property def fikid(self): """ Naif ID code used in calculating focal length Expects filter_number to be defined. This should be an integer containing the filter number from the pds3 label. Expects ikid to be defined. This should be the integer Naid ID code for the instrument. Returns ------- : int Naif ID code used in calculating focal length """ if isinstance(self, Framer): fn = super().filter_number if fn == 'N/A': fn = 0 else: fn = 0 return self.ikid - int(fn) @property def instrument_id(self): """ Returns an instrument id for unquely identifying the instrument, but often also used to be piped into Spice Kernels to acquire IKIDs. Therefore they the same ID the Spice expects in bods2c calls. Expects instrument_id to be defined in the Pds3Label mixin. This should be a string of the form MDIS-WAC or MDIS-NAC. Returns ------- : str instrument id """ return ID_LOOKUP[super().instrument_id] @property def sampling_factor(self): """ Returns the summing factor from the PDS3 label. For example a return value of 2 indicates that 2 lines and 2 samples (4 pixels) were summed and divided by 4 to produce the output pixel value. NOTE: This is overwritten for the messenger driver as the value is stored in "MESS:PIXELBIN" Returns ------- : int Number of samples and lines combined from the original data to produce a single pixel in this image """ pixel_bin = self.label['MESS:PIXELBIN'] if pixel_bin == 0: pixel_bin = 1 return pixel_bin * 2 @property def focal_length(self): """ Computes Focal Length from Kernels MDIS has tempature dependant focal lengh and coefficients need to be acquired from IK Spice kernels (coeff describe focal length as a function of tempature). Focal plane temps are acquired from a PDS3 label. Returns ------- : double focal length in meters """ coeffs = spice.gdpool('INS{}_FL_TEMP_COEFFS'.format(self.fikid), 0, 6) # reverse coeffs, MDIS coeffs are listed a_0, a_1, a_2 ... a_n where # numpy wants them a_n, a_n-1, a_n-2 ... a_0 f_t = np.poly1d(coeffs[::-1]) # eval at the focal_plane_temperature return f_t(self.label['FOCAL_PLANE_TEMPERATURE'].value) @property def detector_center_sample(self): """ Returns center detector sample acquired from Spice Kernels. Expects ikid to be defined. This should be the integer Naid ID code for the instrument. NOTE: This value is defined in an ISIS iak as 512.5, but we subtract 0.5 from the ISIS center sample because ISIS detector coordinates are 0.5 based. Returns ------- : float center detector sample """ return 512 @property def detector_center_line(self): """ Returns center detector line acquired from Spice Kernels. Expects ikid to be defined. This should be the integer Naid ID code for the instrument. NOTE: This value is defined in an ISIS iak as 512.5, but we subtract 0.5 from the ISIS center sample because ISIS detector coordinates are 0.5 based. Returns ------- : float center detector line """ return 512 @property def sensor_model_version(self): """ Returns ------- : int ISIS sensor model version """ return 2 @property def usgscsm_distortion_model(self): """ Returns a dictionary containing the distortion model. Expects odtx and odty are defined. These should be the optical distortion x and y coefficients respectively. Returns ------- : dict radial distortion model """ return { "transverse": { "x" : self.odtx, "y" : self.odty } } @property def pixel_size(self): """ Overriden because the MESSENGER IK uses PIXEL_PITCH and the units are already millimeters Returns ------- : float pixel size """ return spice.gdpool('INS{}_PIXEL_PITCH'.format(self.ikid), 0, 1) class MessengerMdisIsisLabelNaifSpiceDriver(IsisLabel, NaifSpice, Framer, Driver): """ Driver for reading MDIS ISIS3 Labels. These are Labels that have been ingested into ISIS from PDS EDR images. Any SPCIE data attached by the spiceinit application will be ignored. """ @property def platform_name(self): """ Returns the name of the platform containing the sensor. This is usually the spacecraft name. Messenger MDIS ISIS labels use upper camel case so this converts it to all upper case. Returns ------- : str Spacecraft name """ return super().platform_name.upper() @property def instrument_id(self): """ Returns an instrument id for unquely identifying the instrument, but often also used to be piped into Spice Kernels to acquire IKIDs. Therefore they the same ID the Spice expects in bods2c calls. Expects instrument_id to be defined in the Pds3Label mixin. This should be a string of the form MDIS-WAC or MDIS-NAC. Returns ------- : str instrument id """ return ID_LOOKUP[super().instrument_id] @property def ephemeris_start_time(self): """ Returns the ephemeris_start_time of the image. Expects spacecraft_clock_start_count to be defined. This should be a float containing the start clock count of the spacecraft. Expects spacecraft_id to be defined. This should be the integer Naif ID code for the spacecraft. Returns ------- : float ephemeris start time of the image. """ if not hasattr(self, '_ephemeris_start_time'): sclock = self.spacecraft_clock_start_count self._starting_ephemeris_time = spice.scs2e(self.spacecraft_id, sclock) return self._starting_ephemeris_time @property def usgscsm_distortion_model(self): """ Returns a dictionary containing the distortion model. Expects odtx and odty are defined. These should be the optical distortion x and y coefficients respectively. Returns ------- : dict radial distortion model """ return { "transverse": { "x" : self.odtx, "y" : self.odty } } @property def fikid(self): """ Naif ID code used in calculating focal length Expects filter_number to be defined. This should be an integer containing the filter number from the pds3 label. Expects ikid to be defined. This should be the integer Naid ID code for the instrument. Returns ------- : int Naif ID code used in calculating focal length """ if(self.instrument_id == 'MSGR_MDIS_WAC'): fn = self.label['IsisCube']['BandBin']['Number'] if fn == 'N/A': fn = 0 return self.ikid - int(fn) return self.ikid @property def focal_length(self): """ Computes Focal Length from Kernels MDIS has tempature dependant focal lengh and coefficients need to be acquired from IK Spice kernels (coeff describe focal length as a function of tempature). Focal plane temps are acquired from a PDS3 label. Returns ------- : double focal length in meters """ coeffs = spice.gdpool('INS{}_FL_TEMP_COEFFS'.format(self.fikid), 0, 6) # reverse coeffs, MDIS coeffs are listed a_0, a_1, a_2 ... a_n where # numpy wants them a_n, a_n-1, a_n-2 ... a_0 f_t = np.poly1d(coeffs[::-1]) # eval at the focal_plane_temperature return f_t(self.label['IsisCube']['Instrument']['FocalPlaneTemperature'].value) @property def detector_center_sample(self): """ Returns center detector sample acquired from Spice Kernels Expects ikid to be defined. This should be the integer Naid ID code for the instrument. We subtract 0.5 from the ISIS center sample because ISIS detector coordinates are 0.5 based. Returns ------- : float detector center sample """ return float(spice.gdpool('INS{}_CCD_CENTER'.format(self.ikid), 0, 3)[0]) - 0.5 @property def detector_center_line(self): """ Returns center detector line acquired from Spice Kernels Expects ikid to be defined. This should be the integer Naid ID code for the instrument. We subtract 0.5 from the ISIS center line because ISIS detector coordinates are 0.5 based. Returns ------- : float detector center line """ return float(spice.gdpool('INS{}_CCD_CENTER'.format(self.ikid), 0, 3)[1]) - 0.5 @property def sensor_model_version(self): """ Returns ------- : int ISIS sensor model version """ return 2 @property def pixel_size(self): """ Overriden because the MESSENGER IK uses PIXEL_PITCH and the units are already millimeters Returns ------- : float pixel size """ return spice.gdpool('INS{}_PIXEL_PITCH'.format(self.ikid), 0, 1) @property def sampling_factor(self): """ Returns the summing factor from the PDS3 label. For example a return value of 2 indicates that 2 lines and 2 samples (4 pixels) were summed and divided by 4 to produce the output pixel value. NOTE: This is overwritten for the messenger driver as the value is stored in "MESS:PIXELBIN" Returns ------- : int Number of samples and lines combined from the original data to produce a single pixel in this image """ pixel_bin = self.label['IsisCube']['Instrument']['PixelBinningMode'] if pixel_bin == 0: pixel_bin = 1 return pixel_bin * 2
Ale
/Ale-0.8.4.tar.gz/Ale-0.8.4/ale/drivers/mess_drivers.py
mess_drivers.py
AlekSIS (School Information System) — App كتاب السجل (class register and school records) ======================================================================================== AlekSIS ------- This is an application for use with the `AlekSIS®`_ platform. Features -------- This AlekSIS app currently provides the following features for managing digital class registers: * For users: * Manage and assign group roles * Manage custom excuse types * Manage extra marks (e. g. forgotten homework) * Manage group notes for every lesson * Manage lesson documentations for every lesson * Manage personal notes for every lesson * Show all owned groups of the current person * Show all students of the current person * Show filterable (week) overview for lesson documentations and personal/group notes * Manage absence of persons * Show overview of all students with statistics Licence ------- :: Copyright © 2019, 2021 Dominik George <[email protected]> Copyright © 2019, 2020 Tom Teichler <[email protected]> Copyright © 2019 mirabilos <[email protected]> Copyright © 2020, 2021, 2022 Jonathan Weth <[email protected]> Copyright © 2020, 2021 Julian Leucker <[email protected]> Copyright © 2020, 2022 Hangzhi Yu <[email protected]> Copyright © 2021 Lloyd Meins <[email protected]> Licenced under the EUPL, version 1.2 or later, by Teckids e.V. (Bonn, Germany). Please see the LICENCE.rst file accompanying this distribution for the full licence text or on the `European Union Public Licence`_ website https://joinup.ec.europa.eu/collection/eupl/guidelines-users-and-developers (including all other official language versions). Trademark --------- AlekSIS® is a registered trademark of the AlekSIS open source project, represented by Teckids e.V. Please refer to the `trademark policy`_ for hints on using the trademark AlekSIS®. .. _AlekSIS®: https://edugit.org/AlekSIS/Official/AlekSIS .. _European Union Public Licence: https://eupl.eu/ .. _trademark policy: https://aleksis.org/pages/about
AlekSIS-App-Alsijil
/aleksis_app_alsijil-3.0.1.tar.gz/aleksis_app_alsijil-3.0.1/README.rst
README.rst
====================================== EUROPEAN UNION PUBLIC LICENCE v. 1.2 ====================================== -------------------------------------- EUPL © the European Union 2007, 2016 -------------------------------------- This European Union Public Licence (the ‘EUPL’) applies to the Work (as defined below) which is provided under the terms of this Licence. Any use of the Work, other than as authorised under this Licence is prohibited (to the extent such use is covered by a right of the copyright holder of the Work). The Work is provided under the terms of this Licence when the Licensor (as defined below) has placed the following notice immediately following the copyright notice for the Work: Licensed under the EUPL or has expressed by any other means his willingness to license under the EUPL. 1. Definitions ============== In this Licence, the following terms have the following meaning: * ‘The Licence’: this Licence. * ‘The Original Work’: the work or software distributed or communicated by the Licensor under this Licence, available as Source Code and also as Executable Code as the case may be. * ‘Derivative Works’: the works or software that could be created by the Licensee, based upon the Original Work or modifications thereof. This Licence does not define the extent of modification or dependence on the Original Work required in order to classify a work as a Derivative Work; this extent is determined by copyright law applicable in the country mentioned in Article 15. * ‘The Work’: the Original Work or its Derivative Works. * ‘The Source Code’: the human-readable form of the Work which is the most convenient for people to study and modify. * ‘The Executable Code’: any code which has generally been compiled and which is meant to be interpreted by a computer as a program. * ‘The Licensor’: the natural or legal person that distributes or communicates the Work under the Licence. * ‘Contributor(s)’: any natural or legal person who modifies the Work under the Licence, or otherwise contributes to the creation of a Derivative Work. * ‘The Licensee’ or ‘You’: any natural or legal person who makes any usage of the Work under the terms of the Licence. * ‘Distribution’ or ‘Communication’: any act of selling, giving, lending, renting, distributing, communicating, transmitting, or otherwise making available, online or offline, copies of the Work or providing access to its essential functionalities at the disposal of any other natural or legal person. 2. Scope of the rights granted by the Licence ============================================= The Licensor hereby grants You a worldwide, royalty-free, non-exclusive, sublicensable licence to do the following, for the duration of copyright vested in the Original Work: * use the Work in any circumstance and for all usage, * reproduce the Work, * modify the Work, and make Derivative Works based upon the Work, * communicate to the public, including the right to make available or display the Work or copies thereof to the public and perform publicly, as the case may be, the Work, * distribute the Work or copies thereof, * lend and rent the Work or copies thereof, * sublicense rights in the Work or copies thereof. Those rights can be exercised on any media, supports and formats, whether now known or later invented, as far as the applicable law permits so. In the countries where moral rights apply, the Licensor waives his right to exercise his moral right to the extent allowed by law in order to make effective the licence of the economic rights here above listed. The Licensor grants to the Licensee royalty-free, non-exclusive usage rights to any patents held by the Licensor, to the extent necessary to make use of the rights granted on the Work under this Licence. 3. Communication of the Source Code =================================== The Licensor may provide the Work either in its Source Code form, or as Executable Code. If the Work is provided as Executable Code, the Licensor provides in addition a machine-readable copy of the Source Code of the Work along with each copy of the Work that the Licensor distributes or indicates, in a notice following the copyright notice attached to the Work, a repository where the Source Code is easily and freely accessible for as long as the Licensor continues to distribute or communicate the Work. 4. Limitations on copyright =========================== Nothing in this Licence is intended to deprive the Licensee of the benefits from any exception or limitation to the exclusive rights of the rights owners in the Work, of the exhaustion of those rights or of other applicable limitations thereto. 5. Obligations of the Licensee ============================== The grant of the rights mentioned above is subject to some restrictions and obligations imposed on the Licensee. Those obligations are the following: *Attribution right*: The Licensee shall keep intact all copyright, patent or trademarks notices and all notices that refer to the Licence and to the disclaimer of warranties. The Licensee must include a copy of such notices and a copy of the Licence with every copy of the Work he/she distributes or communicates. The Licensee must cause any Derivative Work to carry prominent notices stating that the Work has been modified and the date of modification. *Copyleft clause*: If the Licensee distributes or communicates copies of the Original Works or Derivative Works, this Distribution or Communication will be done under the terms of this Licence or of a later version of this Licence unless the Original Work is expressly distributed only under this version of the Licence — for example by communicating ‘EUPL v. 1.2 only’. The Licensee (becoming Licensor) cannot offer or impose any additional terms or conditions on the Work or Derivative Work that alter or restrict the terms of the Licence. *Compatibility clause*: If the Licensee Distributes or Communicates Derivative Works or copies thereof based upon both the Work and another work licensed under a Compatible Licence, this Distribution or Communication can be done under the terms of this Compatible Licence. For the sake of this clause, ‘Compatible Licence’ refers to the licences listed in the appendix attached to this Licence. Should the Licensee’s obligations under the Compatible Licence conflict with his/her obligations under this Licence, the obligations of the Compatible Licence shall prevail. *Provision of Source Code*: When distributing or communicating copies of the Work, the Licensee will provide a machine-readable copy of the Source Code or indicate a repository where this Source will be easily and freely available for as long as the Licensee continues to distribute or communicate the Work. Legal Protection: This Licence does not grant permission to use the trade names, trademarks, service marks, or names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the copyright notice. 6. Chain of Authorship ====================== The original Licensor warrants that the copyright in the Original Work granted hereunder is owned by him/her or licensed to him/her and that he/she has the power and authority to grant the Licence. Each Contributor warrants that the copyright in the modifications he/she brings to the Work are owned by him/her or licensed to him/her and that he/she has the power and authority to grant the Licence. Each time You accept the Licence, the original Licensor and subsequent Contributors grant You a licence to their contributions to the Work, under the terms of this Licence. 7. Disclaimer of Warranty ========================= The Work is a work in progress, which is continuously improved by numerous Contributors. It is not a finished work and may therefore contain defects or ‘bugs’ inherent to this type of development. For the above reason, the Work is provided under the Licence on an ‘as is’ basis and without warranties of any kind concerning the Work, including without limitation merchantability, fitness for a particular purpose, absence of defects or errors, accuracy, non-infringement of intellectual property rights other than copyright as stated in Article 6 of this Licence. This disclaimer of warranty is an essential part of the Licence and a condition for the grant of any rights to the Work. 8. Disclaimer of Liability ========================== Except in the cases of wilful misconduct or damages directly caused to natural persons, the Licensor will in no event be liable for any direct or indirect, material or moral, damages of any kind, arising out of the Licence or of the use of the Work, including without limitation, damages for loss of goodwill, work stoppage, computer failure or malfunction, loss of data or any commercial damage, even if the Licensor has been advised of the possibility of such damage. However, the Licensor will be liable under statutory product liability laws as far such laws apply to the Work. 9. Additional agreements ======================== While distributing the Work, You may choose to conclude an additional agreement, defining obligations or services consistent with this Licence. However, if accepting obligations, You may act only on your own behalf and on your sole responsibility, not on behalf of the original Licensor or any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against such Contributor by the fact You have accepted any warranty or additional liability. 10. Acceptance of the Licence ============================= The provisions of this Licence can be accepted by clicking on an icon ‘I agree’ placed under the bottom of a window displaying the text of this Licence or by affirming consent in any other similar way, in accordance with the rules of applicable law. Clicking on that icon indicates your clear and irrevocable acceptance of this Licence and all of its terms and conditions. Similarly, you irrevocably accept this Licence and all of its terms and conditions by exercising any rights granted to You by Article 2 of this Licence, such as the use of the Work, the creation by You of a Derivative Work or the Distribution or Communication by You of the Work or copies thereof. 11. Information to the public ============================= In case of any Distribution or Communication of the Work by means of electronic communication by You (for example, by offering to download the Work from a remote location) the distribution channel or media (for example, a website) must at least provide to the public the information requested by the applicable law regarding the Licensor, the Licence and the way it may be accessible, concluded, stored and reproduced by the Licensee. 12. Termination of the Licence ============================== The Licence and the rights granted hereunder will terminate automatically upon any breach by the Licensee of the terms of the Licence. Such a termination will not terminate the licences of any person who has received the Work from the Licensee under the Licence, provided such persons remain in full compliance with the Licence. 13. Miscellaneous ================= Without prejudice of Article 9 above, the Licence represents the complete agreement between the Parties as to the Work. If any provision of the Licence is invalid or unenforceable under applicable law, this will not affect the validity or enforceability of the Licence as a whole. Such provision will be construed or reformed so as necessary to make it valid and enforceable. The European Commission may publish other linguistic versions or new versions of this Licence or updated versions of the Appendix, so far this is required and reasonable, without reducing the scope of the rights granted by the Licence. New versions of the Licence will be published with a unique version number. All linguistic versions of this Licence, approved by the European Commission, have identical value. Parties can take advantage of the linguistic version of their choice. 14. Jurisdiction ================ Without prejudice to specific agreement between parties, * any litigation resulting from the interpretation of this License, arising between the European Union institutions, bodies, offices or agencies, as a Licensor, and any Licensee, will be subject to the jurisdiction of the Court of Justice of the European Union, as laid down in article 272 of the Treaty on the Functioning of the European Union, * any litigation arising between other parties and resulting from the interpretation of this License, will be subject to the exclusive jurisdiction of the competent court where the Licensor resides or conducts its primary business. 15. Applicable Law ================== Without prejudice to specific agreement between parties, * this Licence shall be governed by the law of the European Union Member State where the Licensor has his seat, resides or has his registered office, * this licence shall be governed by Belgian law if the Licensor has no seat, residence or registered office inside a European Union Member State. Appendix ======== ‘Compatible Licences’ according to Article 5 EUPL are: * GNU General Public License (GPL) v. 2, v. 3 * GNU Affero General Public License (AGPL) v. 3 * Open Software License (OSL) v. 2.1, v. 3.0 * Eclipse Public License (EPL) v. 1.0 * CeCILL v. 2.0, v. 2.1 * Mozilla Public Licence (MPL) v. 2 * GNU Lesser General Public Licence (LGPL) v. 2.1, v. 3 * Creative Commons Attribution-ShareAlike v. 3.0 Unported (CC BY-SA 3.0) for works other than software * European Union Public Licence (EUPL) v. 1.1, v. 1.2 * Québec Free and Open-Source Licence — Reciprocity (LiLiQ-R) or Strong Reciprocity (LiLiQ-R+) The European Commission may update this Appendix to later versions of the above licences without producing a new version of the EUPL, as long as they provide the rights granted in Article 2 of this Licence and protect the covered Source Code from exclusive appropriation. All other changes or additions to this Appendix require the production of a new EUPL version.
AlekSIS-App-Alsijil
/aleksis_app_alsijil-3.0.1.tar.gz/aleksis_app_alsijil-3.0.1/LICENCE.rst
LICENCE.rst