code
stringlengths
501
5.19M
package
stringlengths
2
81
path
stringlengths
9
304
filename
stringlengths
4
145
import sys,os from os import path sys.path.append((os.path.dirname(path.dirname(__file__)))) from ctypes import * import sys import time from commFunction import global_result,getip params = [1, 16000, 16, 99, 1, 16000, 16, 99, 1, 1, 0.2, 1, 0, 1, 0, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] # for WB 16K sample rate params = [1, 16000, 16, 99, 1, 16000, 16, 99, 1, 1, 0.2, 1, 0, 1, 0, -1, -1, -1, -1, -1, -1, 0, 2, 0, 3, 0, 0, 0, 0, 0] connect_flag = False stop_flag = False stop_flag1 = False VQTdll = cdll.LoadLibrary(sys.prefix + '/VQTDll.dll') def VQTLogfunc(msg): # print('VQTLogfunc : Start') c_s = msg.decode() # cs = str(c_s,'utf-8') cs = str(c_s) print(cs) global connect_flag global stop_flag1 if 'Connected' in cs or 'Message sent' in cs: connect_flag = True stop_flag1 = True def VQTMSGfunc(msg): c_s = string_at(msg) cs = str(c_s, 'utf-8') print(cs) global stop_flag if 'VQT PAMS/PSQM Test Failed' in cs: mosFailedFlag = True else: if 'POLQA:' in cs: global_result.mosResult['mos'] = cs.split('POLQA:')[1].strip() if 'Speech Level Gain:' in cs: global_result.mosResult['Speech Level Gain'] = cs.split('Speech Level Gain:')[1].strip() if 'Noise Level Gain:' in cs: global_result.mosResult['Noise Level Gain'] = cs.split('Noise Level Gain:')[1].strip() def startvqt(srcFile=None, degFile=None, samplerate=48000): params = [1, 0, 16, 99, 1, 0, 16, 99, 1, 1, 0.2, 1, 0, 1, 0, 2] params = [1, 16000, 16, 99, 1, 16000, 16, 99, 1, 1, 0.2, 1, 0, 1, 0, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] params = [1, 16000, 16, 99, 1, 16000, 16, 99, 1, 1, 0.2, 1, 0, 1, 0, -1, -1, -1, -1, -1, -1, 0, 2, 0, 3, 0, 0, 0, 0, 0] params[1], params[5] = samplerate, samplerate params = (c_float * len(params))(*params) if connect_flag == False: vip = getip() try: VQTdll.ConnectPort(c_char_p(vip.encode('utf_8')), 6666) while connect_flag == False: pass except Exception as e: print(str(e)) VQTdll.RunVQTPAMSPSQM(0, 0, c_char_p(srcFile.encode('utf_8')), c_char_p(degFile.encode('utf_8')), 1, params) time.sleep(5) pass def vqtDisConnect(): VQTdll.Disconnect() callback_type = CFUNCTYPE(None, c_char_p) callback_login = callback_type(VQTLogfunc) VQTdll.SetVQTLogMessage(callback_login) # TODO 初始化放到init里 callback_type1 = CFUNCTYPE(None, c_wchar_p) callback = callback_type1(VQTMSGfunc) VQTdll.SetVQTRecvDBResponse(callback) def test_polqa(file_name, count): f = file_name mode = ['_music', '_speech'] for m in mode: bps = ['20kbps', '28kbps', '32kbps', '40kbps', '48kbps', '64kbps'] for b in bps: for i in range(count): input = 'E:\\weiwei\\data_for_opus\\input\\' + f + str(i) + '.wav' output = 'E:\\weiwei\\data_for_opus\\output\\' + f + '_comp5_' + b + m + str(i) + '.wav' # print(input, output) startvqt(srcFile=input, degFile=output, samplerate=48000) print(output, mosResult['mos']) if __name__ == '__main__': input = r'E:\01_MOS_AUTO_TESTER\testSrcFiles\Speech_16000\female\femalePolqaWB.pcm' output = r'E:\02_POLQA_RESULT\testDstFiles\NERTC_honor8x_iphone11_V4.3.0\L\Speech_16000\NONE\female\femalePolqaWB\femalePolqaWB_20210601201611_O_ManualTest_My Phone2_20210601201611_p_0.0.pcm' output2 = r'E:\02_POLQA_RESULT\testDstFiles\NERTC_honor8x_iphone11_V4.3.0\L\Speech_16000\NONE\female\femalePolqaWB\femalePolqaWB_20210601201541_O_ManualTest_My Phone2_20210601201541_p_4.19.pcm' output3 = r'E:\02_POLQA_RESULT\testDstFiles\123.pcm' startvqt(srcFile=input, degFile=output3, samplerate=16000) print(global_result.mosResult['mos']) VQTdll.Disconnect()
AlgorithmLib
/AlgorithmLib-4.0.3.tar.gz/AlgorithmLib-4.0.3/algorithmLib/POLQA/POLQA.py
POLQA.py
import copy import sys,os from os import path sys.path.append(os.path.dirname(path.dirname(__file__))) sys.path.append(path.dirname(__file__)) from commFunction import getip,log_time,global_result,sftp_connect,sftp_put,sftp_disconnect,get_rms import shutil from socketClient import SocketClient import numpy as np def polqa_client_test(src,test,samplerate,mode=0): curip = getip() curtime = log_time() curpath = str(curip) + '_'+str(curtime) os.mkdir(curpath) if mode == 1: f = open(test, "rb") curaudiodata = np.fromfile(f, dtype=np.int16) curaudiodata = curaudiodata.astype(np.float64) currms = get_rms(curaudiodata) adjustlevel = -26 - currms factor = 10 ** (adjustlevel / 20) urframe = curaudiodata * factor urframe = urframe.astype(np.int16) urframe.tofile(test) f.close() curdata = global_result.get_data() curdata['module'] = 'clientA' curdata['method'] = 'requestA' curdata['samplerate'] = samplerate curdata['token'] = curpath curdata['srcFile'] = os.path.basename(src) curdata['testFile'] = os.path.basename(test) #ssh shutil.copy(src,curpath) shutil.copy(test, curpath) dstpath = '/home/netease/polqa' # stfp client,sftp = sftp_connect(global_result.username,global_result.password,global_result.HOST,port=global_result.sftpPort) sftp_put(sftp,curpath, dstpath) sftp_disconnect(client) shutil.rmtree(curpath) # get result socket = SocketClient(global_result.machost,global_result.PORT) try: result = socket.sender(curdata) print(result['result']) except: socket.close() return None return result['result'] if __name__ == '__main__': import platform print(platform.uname()) print(sys.platform) polqa_client_test(src='src.pcm',test='test.pcm',samplerate=48000,mode=0) exit(0) # client, sftp = sftp_connect(username, password, serverIP, port=port) # sftp_get(sftp, '/home/netease/polqa_result/' + '192.168.1.3_2021-08-18-17-52-35' + '.ress', 'result') src = r'D:\0\speech_cn_minus_13.pcm' test1 = r'D:\0\mixDstFile_minus_13.pcm' test2 = r'D:\0\mixDstFile_minus_13_-6.pcm' refout = r'E:\AIVAD\OTHER\ref_out0_01.pcm' file = r'E:\AIVAD\OTHER\reverse0_01.pcm' info = polqa_client_test(src, test1, 48000) info = polqa_client_test(src, test2, 48000) exit(0) path = r'E:\02_POLQA_RESULT\testDstFiles\NERTC_iphone11_honor8x_V4.3.0\L\Speech_48000\NONE\female\femalePOLQASWB' src = r'E:\01_MOS_AUTO_TESTER\testSrcFiles\Speech_48000\female\femalePOLQASWB.pcm' filelist = [] f = open('time.txt','w') get_file_path(path,filelist,[]) print(filelist) #print(exists_remote('10.219.33.45','/home/netease/polqa_result/455.ss')) for a in range (1000): for file in filelist: print('*****************************************************') print('curent testfile name is {0},srcfile name is {1}'.format(file,src)) begin_time = datetime.datetime.now() info = polqa_client_test(src, file,48000) end_time = datetime.datetime.now() duration = end_time - begin_time print('time duration is {}'.format(duration)) f.writelines('*****************************************************\n') f.writelines('file name is {}\n'.format(file)) f.writelines('result is {}\n'.format(str(info))) f.writelines('time duration is {}\n'.format(duration)) f.close() #vqtDisConnect # for a in range(100): # polqa_client_test(srcfile,testfile)
AlgorithmLib
/AlgorithmLib-4.0.3.tar.gz/AlgorithmLib-4.0.3/algorithmLib/POLQA/polqa_client.py
polqa_client.py
import ctypes,platform import librosa from ctypes import * from formatConvert import pcm2wav import sys sys.path.append('../') from commFunction import get_data_array,get_rms from PCC.Pearson_CC import get_max_cc_by_dll from scipy import signal import numpy as np def get_my_dll(): """ :return: """ mydll = None cur_paltform = platform.platform().split('-')[0] if cur_paltform == 'Windows': mydll = ctypes.windll.LoadLibrary(sys.prefix + '/pcc.dll') if cur_paltform == 'macOS': mydll = CDLL(sys.prefix + '/pcc.dylib') if cur_paltform == 'Linux': mydll = CDLL(sys.prefix + '/pcc.so') return mydll def cal_fullref_echo(reffile, testfile): """""" echoThreshold = 0.5 target_fs = 8000 framehLenth = int(0.2 * target_fs) frameshift = int(0.1 * target_fs) searchRange = int(1.8 * target_fs) lowf = 100 hif = 7000 #use_section = [[16.,18.74],[19.09,21.76],[22.13,24.64],[25.11,27.85],[28.32,31]] use_section = [[1.62, 3.84], [4.33, 6.8], [7.28, 10.2], [10.56, 13.23], [13.635, 16.57]] refdata,fs1,ch = get_data_array(reffile) testdata,fs2,ch = get_data_array(testfile) refdata = band_pass_filter(lowf,hif,refdata,fs1) testdata = band_pass_filter(lowf,hif,testdata,fs2) refdata = librosa.resample(refdata.astype(np.float32), orig_sr=fs1 ,target_sr=target_fs) testdata = librosa.resample(testdata.astype(np.float32), orig_sr=fs2 ,target_sr=target_fs) suspectItems = [] for subsection in use_section: startpoint = int(target_fs * subsection[0]) endpoint = int(target_fs * subsection[1]) caltimes = (endpoint - startpoint-framehLenth) // frameshift for a in range(caltimes): relstart = startpoint+frameshift * a currefdata = refdata[relstart:relstart + framehLenth] curtestdata = testdata[relstart:relstart + framehLenth+searchRange] currefrms = get_rms(currefdata) curitem = [currefdata, curtestdata, relstart / target_fs,currefrms,relstart] suspectItems.append(curitem) for suspectitem in suspectItems: maxCoin, startpot = get_max_cc_by_dll(suspectitem[0], suspectitem[1], get_my_dll(), 3) refeng = suspectitem[3] testeng = get_rms(suspectitem[1][startpot:startpot+len((suspectitem[0]))]) echoTime = (suspectitem[-1]+startpot)/target_fs srcTime = suspectitem[2] if maxCoin > echoThreshold and refeng > -45 and testeng > -35: print('An echo was detected at the {}-second mark of the file with a magnitude of {} dB.'.format(echoTime, testeng)) return True return False def band_pass_filter(lowfre,hifre,data,fs): f1 = lowfre # 带通滤波器的下截止频率 f2 = hifre # 带通滤波器的上截止频率 Wn = [f1 / (fs / 2), f2 / (fs / 2)] b, a = signal.butter(4, Wn, btype='band') # 4阶Butterworth带通滤波器 # 使用滤波器对信号进行滤波 filtered_data = signal.filtfilt(b, a, data) return filtered_data # 绘制滤波前后的信号图像 if __name__ == '__main__': print('>>>>>>>>>>>>>') ref = 'src_bak.wav' test = 'pc_1.wav' cal_fullref_echo(pcm2wav(ref),pcm2wav(test)) print('>>>>>>>>>>>>>') ref = 'src_bak.wav' test = 'pc_8.wav' cal_fullref_echo(pcm2wav(ref),pcm2wav(test)) print('>>>>>>>>>>>>>') # ref = 'src_bak.wav' # test = '3.wav' # cal_fullref_echo(pcm2wav(ref),pcm2wav(test)) # print('>>>>>>>>>>>>>') # ref = 'src_bak.wav' # test = '4.wav' # cal_fullref_echo(pcm2wav(ref), pcm2wav(test)) # print('>>>>>>>>>>>>>') pass
AlgorithmLib
/AlgorithmLib-4.0.3.tar.gz/AlgorithmLib-4.0.3/algorithmLib/AEC_EVALUATION/FR_ECHO_DETECT.py
FR_ECHO_DETECT.py
import sys,os from os import path sys.path.append('../') from ctypes import * from commFunction import emxArray_real_T,get_data_of_ctypes_ import ctypes import platform # * ------------------------------------------------------------------------- # * Arguments : const emxArray_real_T *sig_mic # * const emxArray_real_T *sig_far # * const emxArray_real_T *sig_ref # * double fs_mic # * double fs_far # * double type # * double *ERLE # * double *output_std # * double *residual_avgdB # * double *err # * Return Type : void # */ # void ERLE_estimation(const emxArray_real_T *sig_mic, const emxArray_real_T # *sig_far, const emxArray_real_T *sig_ref, double fs_mic, # double fs_far, double type, double *ERLE, double # *output_std, double *residual_avgdB, double *err) def cal_erle(micFile = None,testFile =None, refFile =None,targetType=0): """ % type- input signal type: % 0:Chiness % 1:English % 2:Single Digit % 3:Music Parameters ---------- inFile output refFile targetType Returns ------- """ instruct,insamplerate,_ = get_data_of_ctypes_(micFile,True) teststruct,outsamplerate,_ = get_data_of_ctypes_(testFile,True) refstruct, refsamplerate, _ = get_data_of_ctypes_(refFile,True) # if refsamplerate != testsamplerate : # raise TypeError('Different format of ref and test files!') mydll = None cur_paltform = platform.platform().split('-')[0] if cur_paltform == 'Windows': mydll = ctypes.windll.LoadLibrary(sys.prefix + '/ERLE_estimation.dll') if cur_paltform == 'macOS': mydll = CDLL(sys.prefix + '/ERLE_estimation.dylib') if cur_paltform == 'Linux': mydll = CDLL(sys.prefix + '/ERLE_estimation.so') mydll.ERLE_estimation.argtypes = [POINTER(emxArray_real_T),POINTER(emxArray_real_T),POINTER(emxArray_real_T),c_double,c_double,c_double,POINTER(c_double),POINTER(c_double),POINTER(c_double),POINTER(c_double)] data_format = c_double*11 gain_table = data_format() DR = data_format() ERLE,output_std,err,residual_avgdB = c_double(0.0),c_double(0.0),c_double(0.0),c_double(0.0) mydll.ERLE_estimation(byref(instruct),byref(teststruct),byref(refstruct),c_double(insamplerate),c_double(outsamplerate),c_double(targetType),byref(ERLE),byref(output_std),byref(residual_avgdB),byref(err)) print(err.value) print(ERLE.value,output_std.value,residual_avgdB.value) #if err.value == 0.0: return ERLE.value,output_std.value,residual_avgdB.value # else: # return None,None,None if __name__ == '__main__': import platform print(platform.platform().split('-')[0]) # micfile = r'C:\Users\vcloud_avl\Documents\我的POPO\0\stdRefFile.wav' # test = r'C:\Users\vcloud_avl\Documents\我的POPO\0\mixDstFile.wav' # ref = R'C:\Users\vcloud_avl\Documents\我的POPO\0\ref_cn.wav' micfile = r'D:\MARTIN\audiotestalgorithm-master\algorithmLib\AEC_EVALUATION\agoraTestCase_03_None_None\agora_near\0\stdRefFile.wav' test = r'D:\MARTIN\audiotestalgorithm-master\algorithmLib\AEC_EVALUATION\agoraTestCase_03_None_None\agora_near\0\mixDstFile.wav' ref = r'D:\MARTIN\audiotestalgorithm-master\algorithmLib\AEC_EVALUATION\agoraTestCase_03_None_None\agora_near\0\ref_cn.wav' ERLE,output_std,residual_avgdB = cal_erle(micFile=micfile,testFile=test,refFile=ref,targetType=0) print('ERLE:{},output_std:{},residual_avgdB:{}'.format(ERLE,output_std,residual_avgdB))
AlgorithmLib
/AlgorithmLib-4.0.3.tar.gz/AlgorithmLib-4.0.3/algorithmLib/AEC_EVALUATION/ERLE_ETSIMATION.py
ERLE_ETSIMATION.py
import sys,os from os import path sys.path.append('../') from ctypes import * from commFunction import emxArray_real_T,get_data_of_ctypes_,write_ctypes_data_2_file_,get_none_data_of_ctypes_ import ctypes,platform def MATCH_AEC(refFile=None, testFile=None, caliFile=None,outFile=None,targetType=0): """ % type- input signal type: % 0:Chiness % 1:English % 2:Single Digit % 3:Music """ refstruct,refsamplerate,reflen = get_data_of_ctypes_(refFile) teststruct,testsamplerate,testlen = get_data_of_ctypes_(testFile) calistruct,calisamplerate,_ = get_data_of_ctypes_(caliFile) outlen = max(reflen, testlen) outStruct = get_none_data_of_ctypes_(outlen) if refsamplerate != testsamplerate or testsamplerate!= calisamplerate: raise TypeError('Different format of ref and test files!') mydll = None cur_paltform = platform.platform().split('-')[0] if cur_paltform == 'Windows': mydll = ctypes.windll.LoadLibrary(sys.prefix + '/matchsig_aec.dll') if cur_paltform == 'macOS': mydll = CDLL(sys.prefix + '/matchsig_aec.dylib') if cur_paltform == 'Linux': mydll = CDLL(sys.prefix + '/matchsig_aec.so') mydll.matchsig_aec.argtypes = [POINTER(emxArray_real_T),POINTER(emxArray_real_T),POINTER(emxArray_real_T),c_double,c_double,POINTER(emxArray_real_T),POINTER(c_double)] err,fs_out,type = c_double(0.0),c_double(refsamplerate),c_double(targetType) mydll.matchsig_aec(byref(teststruct),byref(refstruct),byref(calistruct),refsamplerate,type,byref(outStruct),byref(err)) if err.value == 0.0: if outFile is not None: write_ctypes_data_2_file_(outFile, outStruct,refsamplerate) return True else: return False if __name__ == '__main__': path = r'D:\AudioPublicWork\3a_auto_test_porject\3a_auto_test_porject\08_TestDstFiles\sdk_zego_vivo_y3hf_music_V_shengbo_compare\aec\Speech\TestCase_01_None_None\near_cn' ref = path +'\\' +'far_cn.wav' test = path +'\\' + 'mixDstFile.wav' cali = path +'\\' + 'mixDstFile.wav' outFile = r'C:\Users\vcloud_avl\Downloads\Speech\TestCase_01_None_None\near_cn\target.wav' delay = MATCH_AEC(refFile=ref,testFile=test,caliFile=cali,outFile=outFile,targetType=0) print(delay) pass
AlgorithmLib
/AlgorithmLib-4.0.3.tar.gz/AlgorithmLib-4.0.3/algorithmLib/AEC_EVALUATION/MATCH_AEC.py
MATCH_AEC.py
import sys,os from ctypes import * import ctypes import numpy as np # * ------------------------------------------------------------------------- # * Arguments : const emxArray_real_T *ref_in # * const emxArray_real_T *sig_in # * double fs # * double *delay # * double *err # * Return Type : void # */ # void delay_estimation_15s(const emxArray_real_T *ref_in, const emxArray_real_T # *sig_in, double fs, double *delay, double *err) def cal_PCC(refData, testData,calSize,mydll): """ """ refstruct = np.ascontiguousarray(refData, dtype=c_double).ctypes.data_as(ctypes.POINTER(c_double)) teststruct = np.ascontiguousarray(testData, dtype=c_double).ctypes.data_as(ctypes.POINTER(c_double)) mydll.Pearson_Correlation.argtypes = [POINTER(c_double),POINTER(c_double),c_long,POINTER(c_double)] pcc= c_double(0.0) mydll.Pearson_Correlation(refstruct,teststruct,c_long(calSize),byref(pcc)) return pcc.value def get_max_cc_by_dll(refData, testData,mydll,step): """ (double *x, double *y,long xLenth,long yLenth,long step,double *maxcc,long *startPoint) """ refstruct = np.ascontiguousarray(refData, dtype=c_double).ctypes.data_as(ctypes.POINTER(c_double)) teststruct = np.ascontiguousarray(testData, dtype=c_double).ctypes.data_as(ctypes.POINTER(c_double)) mydll.get_max_pcc.argtypes = [POINTER(c_double),POINTER(c_double),c_long,c_long,c_long,POINTER(c_double),POINTER(c_long)] max_cc,start_point = c_double(0.0),c_long(0) mydll.get_max_pcc(refstruct,teststruct,c_long(len(refData)),c_long(len(testData)),c_long(step),byref(max_cc),byref(start_point)) return max_cc.value,start_point.value if __name__ == '__main__': ref = r'C:\Users\vcloud_avl\Documents\我的POPO\src.wav' test = r'C:\Users\vcloud_avl\Documents\我的POPO\test.wav' from commFunction import get_data_array_double import platform,time newdata,fs,ch = get_data_array_double(ref) refdata,fs,ch = get_data_array_double(test) newdata = newdata[:10000] refdata = refdata[:10000] mydll = None cur_paltform = platform.platform().split('-')[0] if cur_paltform == 'Windows': mydll = ctypes.windll.LoadLibrary(sys.prefix + '/pcc.dll') if cur_paltform == 'macOS': mydll = CDLL(sys.prefix + '/pcc.dylib') if cur_paltform == 'Linux': mydll = CDLL(sys.prefix + '/pcc.so') #mydll.Pearson_Correlation.argtypes = [POINTER(c_double), POINTER(c_double), c_long, POINTER(c_double)] # newdata = np.arange(0,20000,2) # refdata = np.arange(10000,30000,2) # print(len(newdata),len(refdata)) # print(time.time()) # print(np.corrcoef(refdata,newdata)) # print(time.time()) # print(cal_PCC(refdata,newdata,10000,mydll)) # print(time.time()) suma,sumb = 0,0 for e in range(10000): a = time.time() res = np.corrcoef(refdata, newdata) print(res) b = time.time() suma += b - a c = time.time() res = cal_PCC(refdata, newdata, 10000, mydll) print(res) d = time.time() sumb += d - c print(suma/10000) print(sumb/10000) pass
AlgorithmLib
/AlgorithmLib-4.0.3.tar.gz/AlgorithmLib-4.0.3/algorithmLib/PCC/Pearson_CC.py
Pearson_CC.py
import sys,os from os import path sys.path.append(os.path.dirname(path.dirname(__file__))) from ctypes import * from commFunction import emxArray_real_T,get_data_of_ctypes_ import ctypes import platform # void SNR_transient(const emxArray_real_T *ref, const emxArray_real_T *ref_noise, # const emxArray_real_T *sig, double fs, double *SNR, double # *noise_dB, double *err) # void attackrelease_estimation(const emxArray_real_T *ref, const emxArray_real_T * # sig, double fs_ref, double fs_sig, double *time_attack, double *time_release, # double *err) def cal_attack_release(refFile=None, testFile=None): """ """ refstruct,refsamplerate,_ = get_data_of_ctypes_(refFile,True) teststruct,testsamplerate,_ = get_data_of_ctypes_(testFile,True) if refsamplerate != testsamplerate : raise TypeError('Different format of ref and test files!') mydll = None cur_paltform = platform.platform().split('-')[0] if cur_paltform == 'Windows': mydll = ctypes.windll.LoadLibrary(sys.prefix + '/attackrelease.dll') if cur_paltform == 'macOS': mydll = CDLL(sys.prefix + '/attackrelease.dylib') if cur_paltform == 'linux': mydll = CDLL(sys.prefix + '/attackrelease.so') mydll.attackrelease_estimation.argtypes = [POINTER(emxArray_real_T),POINTER(emxArray_real_T),c_double,c_double, POINTER(c_double),POINTER(c_double),POINTER(c_double)] time_attack,time_release,err = c_double(0.0),c_double(0.0),c_double(0.0) mydll.attackrelease_estimation(byref(refstruct),byref(teststruct),c_double(refsamplerate),c_double(refsamplerate),byref(time_attack),byref(time_release),byref(err)) if err.value == 0.0: return time_attack.value,time_release.value else: return None if __name__ == '__main__': file = r'C:\Users\vcloud_avl\Documents\我的POPO\0\speech_attackrelease.wav' test = r'C:\Users\vcloud_avl\Documents\我的POPO\0\speech_attackrelease.wav' print(cal_attack_release(refFile=file,testFile=test)) pass
AlgorithmLib
/AlgorithmLib-4.0.3.tar.gz/AlgorithmLib-4.0.3/algorithmLib/AGC_EVALUATION/CAL_ATTACK_RELEASE.py
CAL_ATTACK_RELEASE.py
import sys,os from os import path sys.path.append(os.path.dirname(path.dirname(__file__))) from ctypes import * from commFunction import emxArray_real_T,get_data_of_ctypes_ import ctypes # void gaintable_estimation(const emxArray_real_T *ref, const emxArray_real_T *sig, # double fs_ref, double fs_sig, double type, double gain_table[11], double DR[11], # double *limiter, double *err) def cal_gain_table(refFile=None, testFile=None,targetType=0): ''' Parameters ---------- refFile testFile targetType 0:speech,1:music Returns ------- ''' refstruct,refsamplerate,_ = get_data_of_ctypes_(refFile,True) teststruct,testsamplerate,_ = get_data_of_ctypes_(testFile,True) if refsamplerate != testsamplerate : raise TypeError('Different format of ref and test files!') import platform mydll = None cur_paltform = platform.platform().split('-')[0] if cur_paltform == 'Windows': mydll = ctypes.windll.LoadLibrary(sys.prefix + '/gaintable.dll') if cur_paltform == 'macOS': mydll = CDLL(sys.prefix + '/gaintable.dylib') if cur_paltform == 'Linux': mydll = CDLL(sys.prefix + '/gaintable.so') mydll.gaintable_estimation.argtypes = [POINTER(emxArray_real_T),POINTER(emxArray_real_T),c_double,c_double,c_double,POINTER(c_double),POINTER(c_double),POINTER(c_double),POINTER(c_double)] data_format = c_double*11 gain_table = data_format() DR = data_format() limiter,err = c_double(0.0),c_double(0.0) mydll.gaintable_estimation(byref(refstruct),byref(teststruct),c_double(refsamplerate),c_double(refsamplerate),c_double(targetType),gain_table,DR,byref(limiter),byref(err)) if err.value == 0.0: return limiter.value,gain_table,DR else: return None if __name__ == '__main__': file = r'C:\Users\vcloud_avl\Documents\我的POPO\0\speech_gaintable.wav' test = r'C:\Users\vcloud_avl\Documents\我的POPO\0\speech_gaintable.wav' lim,gain_table,DR = cal_gain_table(refFile=file,testFile=test,targetType=0) print(lim,gain_table[0],DR[2]) print(gain_table,DR) for a in gain_table: print(a) for a in DR: print(a) pass
AlgorithmLib
/AlgorithmLib-4.0.3.tar.gz/AlgorithmLib-4.0.3/algorithmLib/AGC_EVALUATION/CAL_GAIN_TABLE.py
CAL_GAIN_TABLE.py
import sys,os from os import path sys.path.append(os.path.dirname(path.dirname(__file__))) from commFunction import get_rms,make_out_file,get_ave_rms,get_peak_rms import numpy as np from SNR_ESTIMATION.MATCH_SIG import match_sig from timeAligment.time_align import cal_fine_delay_of_specific_section,cal_fine_delay from commFunction import get_data_array import scipy.signal as sg speechSection = [12, 15] noiseSection = [0, 10] FRAME_LEN = 9600 frame_shift = 4800 def get_maxima(values:np.ndarray): """极大值""" max_index = sg.argrelmax(values)[0] return max_index,values[max_index] def get_minima(values:np.ndarray): """极小值""" min_index = sg.argrelmin(values)[0] return min_index,values[min_index] def get_data_pairs(srcFile=None,testFile=None): """ Parameters ---------- srcFile testFile Returns ------- """ #samples = match_sig(refFile=srcFile, testFile=testFile) samples = cal_fine_delay_of_specific_section(srcFile, testFile, speech_section=[[12.3,14.5]], targetfs=8000, outfile=None) if samples is None: return None dataSrc, fs, chn = get_data_array(srcFile) dataTest, fs2, chn2 = get_data_array(testFile) print(dataTest,dataSrc,samples) assert fs == fs2 assert chn2 == chn assert samples > 0 dataTest = dataTest[int(samples*fs):] M,N = len(dataSrc),len(dataTest) targetLen = min(M,N) return dataSrc[:targetLen],dataTest[:targetLen],fs,chn def cal_noise_converge(dataSrc,dataTest,fs,chn): """ Parameters ---------- dataSrc dataTest Returns ------- """ srcSpeechLevel = get_rms(dataSrc[fs*speechSection[0]:fs*speechSection[1]]) curSpeechLevel = get_rms(dataTest[fs*speechSection[0]:fs*speechSection[1]]) # log(V1 / V2) = X/20 gain = np.power(10,(srcSpeechLevel - curSpeechLevel)/20) newData = dataTest.astype(np.float32) * gain make_out_file('source.wav', dataSrc.astype(np.int16), fs, chn) make_out_file('target.wav',newData.astype(np.int16),fs,chn) n_sengen = len(newData) // FRAME_LEN MAX_RMS = -120 for a in range(n_sengen): curLevel = get_rms(newData[a*FRAME_LEN:(a+1)*FRAME_LEN]) print(MAX_RMS,curLevel) if curLevel > MAX_RMS: MAX_RMS = curLevel if curLevel < MAX_RMS - 12: break converge = a * FRAME_LEN / fs if converge >= noiseSection[1]: nsLevel = 0.0 else: nsLevel = get_ave_rms(dataSrc[int(converge * fs) :noiseSection[1]* fs]) - get_ave_rms(newData[int(converge * fs) :noiseSection[1]* fs]) return converge, nsLevel #TODO 收敛时间 #TODO 降噪量 def cal_transient_noise_Supp_by_ref(srcFile,testFile,speechSection,musicMode=False): """ :return: """ # FRAME_LEN = 9600 # frame_shift = 4800 if musicMode: before_point = 13 end_point = 32 else: before_point = 13 end_point = 26.5 srcdata, fs, ch = get_data_array(srcFile) testdata, fs, ch = get_data_array(testFile) FRAME_LEN = fs*1 cal_level = 999 # 计算录音文件和原始文件的差,做补偿 for singleSection in speechSection: start = int(fs*singleSection[0]) end = int(fs*singleSection[1]) curPeakSrc = get_peak_rms(srcdata[start:end]) curPeakDst = get_peak_rms(testdata[start:end]) curdiv =curPeakSrc -curPeakDst if cal_level > curdiv: cal_level = curdiv factor = 10 ** (cal_level / 20) AdjustTestData = testdata * factor AdjustTestData = AdjustTestData.astype(np.int16) print(cal_level) n_sengen = (len(srcdata)) // FRAME_LEN startPoint = speechSection[0][0] endPoint = speechSection[-1][1] init_Level,init_cnt = 0,0 before_speech_level,before_sppech_cnt = 0,0 before_speech_floor = 0 after_speech_level, after_sppech_cnt = 0, 0 in_speech_level,in_speech_cnt = 0,0 between_speech_level,bwtween_speech_cnt = 0,0 convert_index = 0 std_sample_list = [] for a in range(n_sengen): cursrcLevel = get_rms(srcdata[a * FRAME_LEN:a * FRAME_LEN + FRAME_LEN]) curdstLevel = get_rms(AdjustTestData[a * FRAME_LEN:a * FRAME_LEN + FRAME_LEN]) curdstlevel_real = get_rms(testdata[a * FRAME_LEN:a * FRAME_LEN + FRAME_LEN]) curdiv = curdstLevel - cursrcLevel if (a * FRAME_LEN) > before_point * fs and (a * FRAME_LEN) + FRAME_LEN < startPoint*fs: std_sample_list.append(curdstlevel_real) if (a * FRAME_LEN) > endPoint * fs and (a * FRAME_LEN) + FRAME_LEN < end_point*fs: std_sample_list.append(curdstlevel_real) if a >= 0 and a <= 2: init_Level += curdiv init_cnt += 1 if (a * FRAME_LEN) > (startPoint-1) * fs and (a * FRAME_LEN) + FRAME_LEN < startPoint*fs: before_speech_level += curdiv before_speech_floor += curdstlevel_real before_sppech_cnt += 1 if (a * FRAME_LEN) > (endPoint) * fs: after_speech_level += curdiv after_sppech_cnt += 1 for scnt in speechSection: if (a * FRAME_LEN) > scnt[0] * fs and (a * FRAME_LEN) + FRAME_LEN < scnt[1] * fs: in_speech_level += curdiv in_speech_cnt += 1 if len(speechSection) > 1: for i,scnt in enumerate(speechSection): if i == 0: continue if (a * FRAME_LEN) > speechSection[i-1][1] * fs and (a * FRAME_LEN) + FRAME_LEN < \ speechSection[i][0] * fs: between_speech_level += curdiv bwtween_speech_cnt += 1 init_Level = init_Level/init_cnt before_speech_level = before_speech_level/before_sppech_cnt after_speech_level = after_speech_level/after_sppech_cnt in_speech_level = in_speech_level/in_speech_cnt before_speech_floor = before_speech_floor/before_sppech_cnt if bwtween_speech_cnt != 0: between_speech_level = between_speech_level/bwtween_speech_cnt else: between_speech_level = None for a in range(n_sengen): cursrcLevel = get_rms(srcdata[a * FRAME_LEN:a * FRAME_LEN + FRAME_LEN]) curdstLevel = get_rms(AdjustTestData[a * FRAME_LEN:a * FRAME_LEN + FRAME_LEN]) curdiv = curdstLevel - cursrcLevel print(curdiv) if a >= 1 and curdiv < init_Level - 6: break converage = (a * FRAME_LEN)/fs print(before_speech_floor) print(converage) if init_Level - before_speech_level < 3: if before_speech_floor < -65: converage = 0.0 post_std = np.std(std_sample_list, ddof=1) noise_floor = sum(std_sample_list)/len(std_sample_list) print(init_Level,before_speech_level,after_speech_level,in_speech_level,between_speech_level,before_speech_floor,converage,post_std,noise_floor) return converage, before_speech_level, after_speech_level, in_speech_level, between_speech_level, post_std,noise_floor def cal_noise_Supp_by_ref(srcFile,testFile,speechSection,musicMode=False): """ :return: """ FRAME_LEN = 9600 frame_shift = 4800 if musicMode: before_point = 13 end_point = 32 else: before_point = 13 end_point = 26.5 srcdata, fs, ch = get_data_array(srcFile) testdata, fs, ch = get_data_array(testFile) cal_level = 999 # 计算录音文件和原始文件的差,做补偿 for singleSection in speechSection: start = int(fs*singleSection[0]) end = int(fs*singleSection[1]) curPeakSrc = get_peak_rms(srcdata[start:end]) curPeakDst = get_peak_rms(testdata[start:end]) curdiv =curPeakSrc -curPeakDst if cal_level > curdiv: cal_level = curdiv factor = 10 ** (cal_level / 20) AdjustTestData = testdata * factor AdjustTestData = AdjustTestData.astype(np.int16) print(cal_level) n_sengen = (len(srcdata) - FRAME_LEN) // frame_shift startPoint = speechSection[0][0] endPoint = speechSection[-1][1] init_Level,init_cnt = 0,0 before_speech_level,before_sppech_cnt = 0,0 before_speech_floor = 0 after_speech_level, after_sppech_cnt = 0, 0 in_speech_level,in_speech_cnt = 0,0 between_speech_level,bwtween_speech_cnt = 0,0 convert_index = 0 std_sample_list = [] for a in range(n_sengen): cursrcLevel = get_rms(srcdata[a * frame_shift:a * frame_shift + FRAME_LEN]) curdstLevel = get_rms(AdjustTestData[a * frame_shift:a * frame_shift + FRAME_LEN]) curdstlevel_real = get_rms(testdata[a * frame_shift:a * frame_shift + FRAME_LEN]) curdiv = curdstLevel - cursrcLevel if (a * frame_shift) > before_point * fs and (a * frame_shift) + FRAME_LEN < startPoint*fs: std_sample_list.append(curdstlevel_real) if (a * frame_shift) > endPoint * fs and (a * frame_shift) + FRAME_LEN < end_point*fs: std_sample_list.append(curdstlevel_real) if a >= 1 and a <= 3: init_Level += curdiv init_cnt += 1 if (a * frame_shift) > (startPoint-1) * fs and (a * frame_shift) + FRAME_LEN < startPoint*fs: before_speech_level += curdiv before_speech_floor += curdstlevel_real before_sppech_cnt += 1 if (a * frame_shift) > (endPoint) * fs: after_speech_level += curdiv after_sppech_cnt += 1 for scnt in speechSection: if (a * frame_shift) > scnt[0] * fs and (a * frame_shift) + FRAME_LEN < scnt[1] * fs: in_speech_level += curdiv in_speech_cnt += 1 if len(speechSection) > 1: for i,scnt in enumerate(speechSection): if i == 0: continue if (a * frame_shift) > speechSection[i-1][1] * fs and (a * frame_shift) + FRAME_LEN < \ speechSection[i][0] * fs: between_speech_level += curdiv bwtween_speech_cnt += 1 init_Level = init_Level/init_cnt before_speech_level = before_speech_level/before_sppech_cnt after_speech_level = after_speech_level/after_sppech_cnt in_speech_level = in_speech_level/in_speech_cnt before_speech_floor = before_speech_floor/before_sppech_cnt if bwtween_speech_cnt != 0: between_speech_level = between_speech_level/bwtween_speech_cnt else: between_speech_level = None for a in range(n_sengen): cursrcLevel = get_rms(srcdata[a * frame_shift:a * frame_shift + FRAME_LEN]) curdstLevel = get_rms(AdjustTestData[a * frame_shift:a * frame_shift + FRAME_LEN]) curdiv = curdstLevel - cursrcLevel print(curdiv) if a >= 1 and curdiv < init_Level - 6: break converage = (a * frame_shift)/fs print(before_speech_floor) print(converage) if init_Level - before_speech_level < 3: if before_speech_floor < -65: converage = 0.0 post_std = np.std(std_sample_list, ddof=1) noise_floor = sum(std_sample_list)/len(std_sample_list) print(init_Level,before_speech_level,after_speech_level,in_speech_level,between_speech_level,before_speech_floor,converage,post_std,noise_floor) return converage, before_speech_level, after_speech_level, in_speech_level, between_speech_level, post_std,noise_floor def cal_noise_Supp(srcFile,testFile,nslabmode=False,start=0.2,end=15.8,noiseType='None'): """ Parameters ---------- data Returns ------- """ nosieVariable = {'bubble': 4, 'car': 4.5, 'restaurant': 7,'white':3,'traffic':4,'metro':3.5,'None':4} if nslabmode: #确定计算边界 dataSrc, fs, chn = get_data_array(testFile) overallLen = len(dataSrc) lowTmp,upperTmp = 0,overallLen if start is None or start < 0.1: dataFloor = dataSrc[0:int(0.1*fs)] Floor = get_rms(dataFloor) else: # 计算src noise lowTmp = int(start * fs) dataFloor = dataSrc[0:lowTmp] Floor = get_rms(dataFloor) if end is None: dataDegrad = dataSrc[overallLen-fs:overallLen] else: upperTmp = int(end*fs) dataDegrad = dataSrc[int((end-2)*fs):upperTmp] Degrad = get_rms(dataDegrad) # 计算rms求最大值 dataSrc = dataSrc[lowTmp:upperTmp] datanew = dataSrc.astype(np.float32) n_sengen = (len(datanew)-FRAME_LEN)//frame_shift MAX_RMS,maxindex,MIN_RMS,minindex = -120,0,0,0 index = 0 x,y = [],[] for a in range(n_sengen): index += 1 curLevel = get_rms(datanew[a * frame_shift:a * frame_shift + FRAME_LEN]) if curLevel > MAX_RMS: MAX_RMS = curLevel maxindex = index x.append(index*frame_shift/fs) y.append(curLevel) # 找到第一个拐点 for i,curlel in enumerate(y): if i < maxindex: continue else: if curlel < MAX_RMS - nosieVariable[noiseType]/2-3: break firindex = i firstconvertime = (i) * frame_shift / fs #计算先验噪声 lastindex = (len(datanew) - 2 * fs)/frame_shift post = y[int(lastindex):] pre_std = np.std(post, ddof=1) #计算最小值 index = 0 for a in range(n_sengen): index += 1 curLevel = get_rms(datanew[a * frame_shift:a * frame_shift + FRAME_LEN]) if curLevel < MIN_RMS and index > firindex: MIN_RMS = curLevel minindex = index # 求极小值 minimadex,minmavalue = get_minima(np.array(y)) for a in range (len(minimadex)): if minmavalue[a] < MIN_RMS + 2 and minimadex[a] < minindex: MIN_RMS = minmavalue[a] minindex = minimadex[a] break #找到第二个拐点 revers = y[::-1] for i,curlel in enumerate(revers): if i < len(y)-minindex: continue if curlel > MIN_RMS + 2*pre_std: break secondConvertime = (len(y)-i) * frame_shift / fs #计算后验噪声 postdata = y[int(len(y)-i):] post_std = np.std(postdata, ddof=1) post_Degrad = get_rms(datanew[int(secondConvertime*fs):]) noise_src = MAX_RMS - nosieVariable[noiseType] / 2 post_src = get_rms(datanew[:int(firstconvertime*fs)]) # print('firstconvertime is {}'.format(firstconvertime)) # print('secondConvertime is {}'.format(secondConvertime)) # print('prestd is {}'.format(pre_std)) # print('poststd is {}'.format(post_std)) # print('noise src is {}'.format(noise_src)) # print('post noise src is {}'.format(post_src)) # print('noise floor is {}'.format(Floor)) # print('noise Degrad is {}'.format(Degrad)) # print('post noise Degrad is {}'.format(post_Degrad)) # print('ns gain is {}'.format(post_src-post_Degrad)) # import matplotlib.pyplot as plt # plt.plot(x,y) # plt.show() return firstconvertime,secondConvertime,Floor,post_src,post_Degrad,post_std else: result = get_data_pairs(srcFile=srcFile, testFile=testFile) if result is not None: srcdata, dstdata, fs, chn = result return cal_noise_converge(srcdata,dstdata,fs,chn) else: return result if __name__ == '__main__': src = 'car_noise_speech.wav' dst = 'speech_cn.wav' dst2 = 'mixDstFile3.wav' # dur = cal_noise_Supp(src,dst2,nslabmode=True) speech_cn = r'music_piano.wav' testfile = r'mixDstFile.wav' mixfile = r'mixFile.wav' # delay = cal_fine_delay(reffile=speech_cn,testfile=testfile,outfile='out.wav') # dur = cal_noise_Supp_by_ref(srcFile=mixfile,testFile='out.wav',speechSection=[[17.32, 28.856]]) # dur = cal_noise_Supp_by_ref(srcFile='mixFile.wav', testFile='mixDstFile_noise_rematch.wav', # speechSection=[[17.32, 28.856]],musicMode=True) # filepath = r'D:/MARTIN/归档/' # from commFunction import get_file_path # noiseList = [] # get_file_path(filepath,noiseList,[]) # print(noiseList) # for subfile in noiseList: # curdata,fs,ch=get_data_array(subfile) # curbase = os.path.basename(subfile)[:-4] # overallarray = np.array([]) # for index in range(27): # overallarray = np.concatenate((overallarray,curdata)) # outfile = "noise4speech/" + curbase + '_-20_20s.wav' # make_out_file(outfile,overallarray,fs,ch) # # factor = 10 ** (-5 / 20) # overallarray = overallarray * factor # outfile = "noise4speech/" + curbase + '_-25_20s.wav' # make_out_file(outfile,overallarray,fs,ch) # # overallarray = overallarray * factor # outfile = "noise4speech/" + curbase + '_-30_20s.wav' # make_out_file(outfile,overallarray,fs,ch) # # overallarray = np.array([]) # for index in range(33): # overallarray = np.concatenate((overallarray,curdata)) # outfile = 'noise4music/' +curbase + '_-20_20s.wav' # make_out_file(outfile,overallarray,fs,ch) # # factor = 10 ** (-5 / 20) # overallarray = overallarray * factor # outfile = "noise4music/" + curbase + '_-25_20s.wav' # make_out_file(outfile, overallarray, fs, ch) # # overallarray = overallarray * factor # outfile = "noise4music/" + curbase + '_-30_20s.wav' # make_out_file(outfile, overallarray, fs, ch) pass
AlgorithmLib
/AlgorithmLib-4.0.3.tar.gz/AlgorithmLib-4.0.3/algorithmLib/Noise_Suppression/noiseFuction.py
noiseFuction.py
import sys import os import time from os import path import sys,os from os import path sys.path.append(os.path.dirname(path.dirname(__file__))) from formatConvert.wav_pcm import wav2pcm,pcm2wav from G160.G160 import cal_g160 from P563.P563 import cal_563_mos from PESQ.PESQ import cal_pesq from POLQA.polqa_client import polqa_client_test from SDR.SDR import cal_sdr from STI.cal_sti import cal_sti from STOI.STOI import cal_stoi from PEAQ.PEAQ import cal_peaq from resample.resampler import resample,restruct from timeAligment.time_align import cal_fine_delay,cal_fine_delay_of_specific_section import os import wave import numpy as np from ctypes import * from SNR_ESTIMATION.MATCH_SIG import match_sig from SNR_ESTIMATION.SNR_MUSIC import cal_snr_music from SNR_ESTIMATION.SNR_TRANSIENT import cal_snr_transient from AGC_EVALUATION.CAL_GAIN_TABLE import cal_gain_table from AGC_EVALUATION.CAL_ATTACK_RELEASE import cal_attack_release from AGC_EVALUATION.CAL_MUSIC_STABILITY import cal_music_stablility from AGC_EVALUATION.CAL_DELAY import cal_DELAY from AEC_EVALUATION.MATCH_AEC import MATCH_AEC from AEC_EVALUATION.ERLE_ETSIMATION import cal_erle from AEC_MOS.aecmos import cal_aec_mos from MOS_INFER.run_predict import cal_mos_infer from FUNCTION.audioFunction import isSlience,audioFormat,get_rms_level,get_effective_spectral,cal_pitch,cal_EQ from Noise_Suppression.noiseFuction import cal_noise_Supp from CLIPPING_DETECTION.audio_clip_detection import cal_clip_index from AEC_EVALUATION.FR_ECHO_DETECT import cal_fullref_echo allMetrics = ['G160','P563','POLQA','PESQ','STOI','STI','PEAQ','SDR', 'SII','LOUDNESS','MUSIC','TRANSIENT','MATCH','GAINTABLE', 'ATTACKRELEASE','MUSICSTA','AGCDELAY','SLIENCE','FORMAT', 'MATCHAEC','ERLE','AECMOS','AIMOS','TRMS','ARMS','NOISE','CLIP','DELAY','ECHO','SPEC','PITCH','EQ','MATCH2','MATCH3'] class computeAudioQuality(): def __init__(self,**kwargs): """ :param kwargs: """ #print(**kwargs) self.__parse_para(**kwargs) self.__chcek_valid() pass def __parse_para(self,**kwargs): """ :param kwargs: :return: """ self.mertic = kwargs['metrics'] self.testFile = kwargs['testFile'] self.refFile = kwargs['refFile'] self.micFile = kwargs['micFile'] self.cleFile = kwargs['cleFile'] self.noiseFile = kwargs['noiseFile'] self.caliFile = kwargs['aecCaliFile'] self.outFile = kwargs['outFile'] self.samplerate = kwargs['samplerate'] self.bitwidth = kwargs['bitwidth'] self.channel = kwargs['channel'] self.refOffset = kwargs['refOffset'] self.testOffset = kwargs['refOffset'] self.maxComNLevel = kwargs['maxComNLevel'] self.speechPauseLevel = kwargs['speechPauseLevel'] self.audioType = kwargs["audioType"] self.aecStartPoint = kwargs['aecStartPoint'] self.aecScenario = kwargs['aecScenario'] self.aecTargetType = kwargs["aecTargetType"] self.rmsCalsection = kwargs["rmsCalsection"] self.polqaMode = kwargs["polqaMode"] self.pitchLogMode = kwargs["pitchLogMode"] self.fineDelaySection = kwargs["fineDelaySection"] #maxComNLevel=c_double(-48.0),speechPauseLevel=c_double(-35.0) def __chcek_valid(self): """ :return: """ if self.mertic not in allMetrics: raise ValueError('matrix must betwin ' + str(allMetrics)) def __check_format(self,curWav): """ :param curWav: :return: """ curType = os.path.splitext(curWav)[-1] if curType !='.wav': return self.channel,self.bitwidth,self.samplerate wavf = wave.open(curWav,'rb') curChannel = wavf.getnchannels() cursamWidth = wavf.getsampwidth() cursamplerate = wavf.getframerate() wavf.close() if curChannel != 1: raise ValueError('wrong type of channel' + curWav) if cursamWidth != 2: raise ValueError('wrong type of samWidth' + curWav) return curChannel,cursamWidth,cursamplerate def __double_end_check(self): """ :return: """ if self.refFile is None or self.testFile is None: raise EOFError('lack of inputfiles!') if self.__check_format(self.testFile) != self.__check_format(self.refFile): raise TypeError('there are different parametre in inputfiles!') def __data_convert(self,ref,test): """ :return: """ with open(wav2pcm(ref), 'rb') as ref: pcmdata = ref.read() with open(wav2pcm(test), 'rb') as ref: indata = ref.read() ref = np.frombuffer(pcmdata, dtype=np.int16) ins = np.frombuffer(indata, dtype=np.int16) lenth = min(len(ref),len(ins)) return ref[:lenth],ins[:lenth] def G160(self): """ :return: # g160 无采样率限制 # WAV/PCM 输入 """ if self.cleFile is None or self.refFile is None or self.testFile is None: raise EOFError('lack of inputfiles!') if self.__check_format(self.testFile) != self.__check_format(self.refFile) or \ self.__check_format(self.testFile) != self.__check_format(self.cleFile): raise TypeError('there are different parametre in inputfiles!') return cal_g160(pcm2wav(self.cleFile,sample_rate=self.samplerate),pcm2wav(self.refFile,sample_rate=self.samplerate),pcm2wav(self.testFile,sample_rate=self.samplerate),self.refOffset,self.testOffset,maxComNLevel=self.maxComNLevel,speechPauseLevel=self.speechPauseLevel) def P563(self): """ # P 563 PCM输入 、 8Khz # • Sampling frequency: 8000 Hz # If higher frequencies are used for recording, a separate down-sampling by using a high # quality flat low pass filter has to be applied. Lower sampling frequencies are not allowed. # • Amplitude resolution: 16 bit linear PCM # • Minimum active speech in file: 3.0 s # • Maximum signal length: 20.0 s # • Minimum speech activity ratio: 25% # • Maximum speech activity ratio: 75% :return: """ if self.testFile is None: raise EOFError('lack of inputfiles!') curCH,curBwidth,curSR = self.__check_format(self.testFile) #TODO 将采样率 if curSR != 8000: print('file will be resampled to 8k!') finalName = wav2pcm(resample(pcm2wav(self.testFile,sample_rate=self.samplerate),8000)) return cal_563_mos(finalName) def POLQA(self): """ #POLQA 窄带模式 8k 超宽带模式 48k # pcm输入 :return: """ self.__double_end_check() curCH,curBwidth,curSR = self.__check_format(self.testFile) result = polqa_client_test(wav2pcm(self.refFile),wav2pcm(self.testFile),curSR,mode=self.polqaMode) time.sleep(2) return result def PESQ(self): """ # PESQ 窄带模式8K 宽带模式 16k # 数据块输入 :return: """ self.__double_end_check() curCH,curBwidth,curSR = self.__check_format(self.testFile) if curSR < 16000: print('file will be resampled to 8k!') finalrefName = wav2pcm(resample(pcm2wav(self.refFile, curSR), 8000)) finaltestName = wav2pcm(resample(pcm2wav(self.testFile, curSR), 8000)) return cal_pesq(finalrefName, finaltestName, 8000) else: print('file will be resampled to 16k!') finalrefName = wav2pcm(resample(pcm2wav(self.refFile, sample_rate=curSR), 16000)) finaltestName = wav2pcm(resample(pcm2wav(self.testFile, sample_rate=curSR), 16000)) return cal_pesq(finalrefName,finaltestName,16000) def STOI(self): """ #STOI #数据块输入 #采样率 16000 :return: """ self.__double_end_check() ref, ins = self.__data_convert(wav2pcm(resample(pcm2wav(self.refFile),16000)),wav2pcm(resample(pcm2wav(self.testFile),16000))) result = cal_stoi(ref,ins,sr=16000) return result pass def STI(self): """ #sti #wav输入 采样率无关 :return: """ self.__double_end_check() return cal_sti(pcm2wav(self.refFile,sample_rate=self.samplerate),pcm2wav(self.testFile,sample_rate=self.samplerate)) pass def SII(self): """ Returns ------- """ pass def PEAQ(self): """ # wav输入 :return: """ self.__double_end_check() curCH,curBwidth,curSR = self.__check_format(self.testFile) if curSR not in [8000,16000]: #TODO 采样率 pass #TODO 计算peaq return cal_peaq(pcm2wav(self.refFile,sample_rate=self.samplerate),pcm2wav(self.testFile,sample_rate=self.samplerate)) pass def SDR(self): """ #SDR #数据块输入 采样率无关 :return: """ self.__double_end_check() ref, ins = self.__data_convert(wav2pcm(resample(pcm2wav(self.refFile),16000)),wav2pcm(resample(pcm2wav(self.testFile),16000))) result = cal_sdr(ref,ins,sr=16000) return result pass def MUSIC(self): """ # MUSIC SNR # 无采样率限制 # WAV/PCM 输入 :return: """ self.__double_end_check() return cal_snr_music(refFile=pcm2wav(self.refFile,sample_rate=self.samplerate),testFile=pcm2wav(self.testFile,sample_rate=self.samplerate)) def TRANSIENT(self): """ # Transient noise SNR # 无采样率限制 # WAV/PCM 输入 :return: """ if self.cleFile is None or self.testFile is None or self.noiseFile is None: raise EOFError('lack of inputfiles!') if self.__check_format(self.cleFile) != self.__check_format(self.testFile) or \ self.__check_format(self.testFile) != self.__check_format(self.noiseFile): raise TypeError('there are different parametre in inputfiles!') return cal_snr_transient(pcm2wav(self.cleFile,sample_rate=self.samplerate),pcm2wav(self.noiseFile,sample_rate=self.samplerate),pcm2wav(self.testFile,sample_rate=self.samplerate)) def MATCH(self): """ # MATCH SIG # 无采样率限制 # 可选择是否输出文件 # WAV/PCM 输入 :return: """ self.__double_end_check() return match_sig(pcm2wav(self.refFile,sample_rate=self.samplerate), pcm2wav(self.testFile,sample_rate=self.samplerate), self.outFile,self.audioType) def MATCH2(self): """ """ self.__double_end_check() return cal_fine_delay(pcm2wav(self.refFile,sample_rate=self.samplerate), pcm2wav(self.testFile,sample_rate=self.samplerate), outfile=self.outFile) def MATCH3(self): """ """ self.__double_end_check() return cal_fine_delay_of_specific_section(pcm2wav(self.refFile,sample_rate=self.samplerate), pcm2wav(self.testFile,sample_rate=self.samplerate), outfile=self.outFile,speech_section=self.fineDelaySection) def LOUDNESS(self): """ Returns ------- """ pass def __cal_sii__(self): ''' Returns ------- ''' #return cal_sii() pass def GAINTABLE(self): """ AGC PARA 1 计算agc的gain table :return: """ self.__double_end_check() return cal_gain_table(refFile=pcm2wav(self.refFile, sample_rate=self.samplerate), testFile=pcm2wav(self.testFile, sample_rate=self.samplerate),targetType=self.audioType) def ATTACKRELEASE(self): """ AGC PARA 2 计算agc的attack release :return: """ self.__double_end_check() return cal_attack_release(refFile=pcm2wav(self.refFile, sample_rate=self.samplerate), testFile=pcm2wav(self.testFile, sample_rate=self.samplerate)) def MUSICSTA(self): """ AGC PARA 3 计算music 信号稳定性 :return: """ self.__double_end_check() return cal_music_stablility(refFile=pcm2wav(self.refFile, sample_rate=self.samplerate), testFile=pcm2wav(self.testFile, sample_rate=self.samplerate)) def AGCDELAY(self): """ AGC PARA 3 计算文件延时 :return: """ self.__double_end_check() return cal_DELAY(refFile=pcm2wav(self.refFile, sample_rate=self.samplerate), testFile=pcm2wav(self.testFile, sample_rate=self.samplerate)) def AECMOS(self): """ Returns ------- """ if self.refFile is None or self.micFile is None or self.testFile is None: raise EOFError('lack of inputfiles!') if self.__check_format(self.refFile) != self.__check_format(self.micFile) or \ self.__check_format(self.micFile) != self.__check_format(self.testFile): raise TypeError('there are different parametre in inputfiles!') return cal_aec_mos(pcm2wav(self.refFile,sample_rate=self.samplerate),pcm2wav(self.micFile,sample_rate=self.samplerate),pcm2wav(self.testFile,sample_rate=self.samplerate),scenario=self.aecScenario,startPoint=self.aecStartPoint,SAMPLE_RATE=self.samplerate) def AIMOS(self): """ Returns ------- """ if self.testFile is None: raise EOFError('lack of inputfiles!') finalName = pcm2wav(self.testFile,sample_rate=self.samplerate) return cal_mos_infer(finalName) def ERLE(self): """ Returns ------- """ if self.refFile is None or self.micFile is None or self.testFile is None: raise EOFError('lack of inputfiles!') if self.__check_format(self.refFile) != self.__check_format(self.micFile) or \ self.__check_format(self.micFile) != self.__check_format(self.testFile): raise TypeError('there are different parametre in inputfiles!') return cal_erle(refFile=pcm2wav(self.refFile,sample_rate=self.samplerate),micFile=pcm2wav(self.micFile,sample_rate=self.samplerate),testFile=pcm2wav(self.testFile,sample_rate=self.samplerate),targetType=self.aecTargetType) def MATCHAEC(self): """ Returns ------- """ if self.caliFile is None or self.refFile is None or self.testFile is None: raise EOFError('lack of inputfiles!') if self.__check_format(self.caliFile) != self.__check_format(self.refFile) or \ self.__check_format(self.caliFile) != self.__check_format(self.testFile): raise TypeError('there are different parametre in inputfiles!') return MATCH_AEC(pcm2wav(self.refFile,sample_rate=self.samplerate),pcm2wav(self.testFile,sample_rate=self.samplerate),pcm2wav(self.caliFile,sample_rate=self.samplerate),self.outFile,targetType=self.aecTargetType) def SLIENCE(self): """ Returns ------- """ if self.testFile is None: raise EOFError('lack of inputfiles!') return isSlience(self.testFile,sample_rate=self.samplerate,bits=self.bitwidth,channels=self.channel,section=self.rmsCalsection) def FORMAT(self): """ Returns ------- """ if self.testFile is None: raise EOFError('lack of inputfiles!') return audioFormat(self.testFile) def TRMS(self): """ Returns ------- # (wavFileName=None,rmsMode='total',startTime=0,endTime=1): """ if self.testFile is None: raise EOFError('lack of inputfiles!') return get_rms_level(wavFileName=pcm2wav(self.testFile,sample_rate=self.samplerate),rmsMode='total',section=self.rmsCalsection) def ARMS(self): """ Returns ------- """ if self.testFile is None: raise EOFError('lack of inputfiles!') return get_rms_level(wavFileName=pcm2wav(self.testFile,sample_rate=self.samplerate),rmsMode='average',section=self.rmsCalsection) def NOISE(self): """ Returns ------- """ self.__double_end_check() return cal_noise_Supp(pcm2wav(self.refFile, sample_rate=self.samplerate), pcm2wav(self.testFile, sample_rate=self.samplerate)) def CLIP(self): """ Returns ------- """ return cal_clip_index(pcm2wav(self.testFile, sample_rate=self.samplerate)) def ECHO(self): """ Returns ------- """ self.__double_end_check() return cal_fullref_echo(pcm2wav(self.refFile, sample_rate=self.samplerate), pcm2wav(self.testFile, sample_rate=self.samplerate)) def SPEC(self): """ Returns ------- """ if self.testFile is None: raise EOFError('lack of inputfiles!') return get_effective_spectral(pcm2wav(self.testFile, sample_rate=self.samplerate)) def PITCH(self): """ Returns ------- """ self.__double_end_check() return cal_pitch(pcm2wav(self.refFile, sample_rate=self.samplerate), pcm2wav(self.testFile, sample_rate=self.samplerate),pitchlogMode=self.pitchLogMode) def EQ(self): """ Returns ------- """ self.__double_end_check() return cal_EQ(pcm2wav(self.refFile, sample_rate=self.samplerate), pcm2wav(self.testFile, sample_rate=self.samplerate))
AlgorithmLib
/AlgorithmLib-4.0.3.tar.gz/AlgorithmLib-4.0.3/algorithmLib/computeAudioQuality/mainProcess.py
mainProcess.py
import os import multiprocessing import copy import math import librosa as lb import numpy as np import pandas as pd; pd.options.mode.chained_assignment = None import matplotlib.pyplot as plt from tqdm import tqdm from scipy.stats import pearsonr, spearmanr from scipy.optimize import minimize import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.utils.rnn import pad_packed_sequence from torch.nn.utils.rnn import pack_padded_sequence from torch.utils.data import DataLoader from torch.utils.data import Dataset import sys,os from os import path #%% Models # class NISQA(nn.Module): ''' NISQA: The main speech quality model without speech quality dimension estimation (MOS only). The module loads the submodules for framewise modelling (e.g. CNN), time-dependency modelling (e.g. Self-Attention or LSTM), and pooling (e.g. max-pooling or attention-pooling) ''' def __init__(self, ms_seg_length=15, ms_n_mels=48, cnn_model='adapt', cnn_c_out_1=16, cnn_c_out_2=32, cnn_c_out_3=64, cnn_kernel_size=3, cnn_dropout=0.2, cnn_pool_1=[24,7], cnn_pool_2=[12,5], cnn_pool_3=[6,3], cnn_fc_out_h=None, td='self_att', td_sa_d_model=64, td_sa_nhead=1, td_sa_pos_enc=None, td_sa_num_layers=2, td_sa_h=64, td_sa_dropout=0.1, td_lstm_h=128, td_lstm_num_layers=1, td_lstm_dropout=0, td_lstm_bidirectional=True, td_2='skip', td_2_sa_d_model=None, td_2_sa_nhead=None, td_2_sa_pos_enc=None, td_2_sa_num_layers=None, td_2_sa_h=None, td_2_sa_dropout=None, td_2_lstm_h=None, td_2_lstm_num_layers=None, td_2_lstm_dropout=None, td_2_lstm_bidirectional=None, pool='att', pool_att_h=128, pool_att_dropout=0.1, ): super().__init__() self.name = 'NISQA' self.cnn = Framewise( cnn_model, ms_seg_length=ms_seg_length, ms_n_mels=ms_n_mels, c_out_1=cnn_c_out_1, c_out_2=cnn_c_out_2, c_out_3=cnn_c_out_3, kernel_size=cnn_kernel_size, dropout=cnn_dropout, pool_1=cnn_pool_1, pool_2=cnn_pool_2, pool_3=cnn_pool_3, fc_out_h=cnn_fc_out_h, ) self.time_dependency = TimeDependency( input_size=self.cnn.model.fan_out, td=td, sa_d_model=td_sa_d_model, sa_nhead=td_sa_nhead, sa_pos_enc=td_sa_pos_enc, sa_num_layers=td_sa_num_layers, sa_h=td_sa_h, sa_dropout=td_sa_dropout, lstm_h=td_lstm_h, lstm_num_layers=td_lstm_num_layers, lstm_dropout=td_lstm_dropout, lstm_bidirectional=td_lstm_bidirectional ) self.time_dependency_2 = TimeDependency( input_size=self.time_dependency.fan_out, td=td_2, sa_d_model=td_2_sa_d_model, sa_nhead=td_2_sa_nhead, sa_pos_enc=td_2_sa_pos_enc, sa_num_layers=td_2_sa_num_layers, sa_h=td_2_sa_h, sa_dropout=td_2_sa_dropout, lstm_h=td_2_lstm_h, lstm_num_layers=td_2_lstm_num_layers, lstm_dropout=td_2_lstm_dropout, lstm_bidirectional=td_2_lstm_bidirectional ) self.pool = Pooling( self.time_dependency_2.fan_out, output_size=1, pool=pool, att_h=pool_att_h, att_dropout=pool_att_dropout, ) def forward(self, x, n_wins): x = self.cnn(x, n_wins) x, n_wins = self.time_dependency(x, n_wins) x, n_wins = self.time_dependency_2(x, n_wins) x = self.pool(x, n_wins) return x # class NISQA_MULTITASK(nn.Module): ''' NISQA_DIM: The main speech quality model with speech quality dimension estimation (MOS, Noisiness, Coloration, Discontinuity, and Loudness). The module loads the submodules for framewise modelling (e.g. CNN), time-dependency modelling (e.g. Self-Attention or LSTM), and pooling (e.g. max-pooling or attention-pooling) ''' def __init__(self, ms_seg_length=15, ms_n_mels=48, cnn_model='adapt', cnn_c_out_1=16, cnn_c_out_2=32, cnn_c_out_3=64, cnn_kernel_size=3, cnn_dropout=0.2, cnn_pool_1=[24, 7], cnn_pool_2=[12, 5], cnn_pool_3=[6, 3], cnn_fc_out_h=None, td='self_att', td_sa_d_model=64, td_sa_nhead=1, td_sa_pos_enc=None, td_sa_num_layers=2, td_sa_h=64, td_sa_dropout=0.1, td_lstm_h=128, td_lstm_num_layers=1, td_lstm_dropout=0, td_lstm_bidirectional=True, td_2='skip', td_2_sa_d_model=None, td_2_sa_nhead=None, td_2_sa_pos_enc=None, td_2_sa_num_layers=None, td_2_sa_h=None, td_2_sa_dropout=None, td_2_lstm_h=None, td_2_lstm_num_layers=None, td_2_lstm_dropout=None, td_2_lstm_bidirectional=None, pool='att', pool_att_h=128, pool_att_dropout=0.1, ): super().__init__() self.name = 'NISQA_MULTITASK' self.cnn = Framewise( cnn_model, ms_seg_length=ms_seg_length, ms_n_mels=ms_n_mels, c_out_1=cnn_c_out_1, c_out_2=cnn_c_out_2, c_out_3=cnn_c_out_3, kernel_size=cnn_kernel_size, dropout=cnn_dropout, pool_1=cnn_pool_1, pool_2=cnn_pool_2, pool_3=cnn_pool_3, fc_out_h=cnn_fc_out_h, ) self.time_dependency = TimeDependency( input_size=self.cnn.model.fan_out, td=td, sa_d_model=td_sa_d_model, sa_nhead=td_sa_nhead, sa_pos_enc=td_sa_pos_enc, sa_num_layers=td_sa_num_layers, sa_h=td_sa_h, sa_dropout=td_sa_dropout, lstm_h=td_lstm_h, lstm_num_layers=td_lstm_num_layers, lstm_dropout=td_lstm_dropout, lstm_bidirectional=td_lstm_bidirectional ) self.time_dependency_2 = TimeDependency( input_size=self.time_dependency.fan_out, td=td_2, sa_d_model=td_2_sa_d_model, sa_nhead=td_2_sa_nhead, sa_pos_enc=td_2_sa_pos_enc, sa_num_layers=td_2_sa_num_layers, sa_h=td_2_sa_h, sa_dropout=td_2_sa_dropout, lstm_h=td_2_lstm_h, lstm_num_layers=td_2_lstm_num_layers, lstm_dropout=td_2_lstm_dropout, lstm_bidirectional=td_2_lstm_bidirectional ) pool = Pooling( self.time_dependency.fan_out, output_size=1, pool=pool, att_h=pool_att_h, att_dropout=pool_att_dropout, ) self.pool_layers = self._get_clones(pool, 2) def _get_clones(self, module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) def forward(self, x, n_wins): # import pdb; pdb.set_trace() x = self.cnn(x, n_wins) x, n_wins = self.time_dependency(x, n_wins) x, n_wins = self.time_dependency_2(x, n_wins) out = [mod(x, n_wins) for mod in self.pool_layers] out = torch.cat(out, dim=1) return out # class NISQA_DIM(nn.Module): ''' NISQA_DIM: The main speech quality model with speech quality dimension estimation (MOS, Noisiness, Coloration, Discontinuity, and Loudness). The module loads the submodules for framewise modelling (e.g. CNN), time-dependency modelling (e.g. Self-Attention or LSTM), and pooling (e.g. max-pooling or attention-pooling) ''' def __init__(self, ms_seg_length=15, ms_n_mels=48, cnn_model='adapt', cnn_c_out_1=16, cnn_c_out_2=32, cnn_c_out_3=64, cnn_kernel_size=3, cnn_dropout=0.2, cnn_pool_1=[24,7], cnn_pool_2=[12,5], cnn_pool_3=[6,3], cnn_fc_out_h=None, td='self_att', td_sa_d_model=64, td_sa_nhead=1, td_sa_pos_enc=None, td_sa_num_layers=2, td_sa_h=64, td_sa_dropout=0.1, td_lstm_h=128, td_lstm_num_layers=1, td_lstm_dropout=0, td_lstm_bidirectional=True, td_2='skip', td_2_sa_d_model=None, td_2_sa_nhead=None, td_2_sa_pos_enc=None, td_2_sa_num_layers=None, td_2_sa_h=None, td_2_sa_dropout=None, td_2_lstm_h=None, td_2_lstm_num_layers=None, td_2_lstm_dropout=None, td_2_lstm_bidirectional=None, pool='att', pool_att_h=128, pool_att_dropout=0.1, ): super().__init__() self.name = 'NISQA_DIM' self.cnn = Framewise( cnn_model, ms_seg_length=ms_seg_length, ms_n_mels=ms_n_mels, c_out_1=cnn_c_out_1, c_out_2=cnn_c_out_2, c_out_3=cnn_c_out_3, kernel_size=cnn_kernel_size, dropout=cnn_dropout, pool_1=cnn_pool_1, pool_2=cnn_pool_2, pool_3=cnn_pool_3, fc_out_h=cnn_fc_out_h, ) self.time_dependency = TimeDependency( input_size=self.cnn.model.fan_out, td=td, sa_d_model=td_sa_d_model, sa_nhead=td_sa_nhead, sa_pos_enc=td_sa_pos_enc, sa_num_layers=td_sa_num_layers, sa_h=td_sa_h, sa_dropout=td_sa_dropout, lstm_h=td_lstm_h, lstm_num_layers=td_lstm_num_layers, lstm_dropout=td_lstm_dropout, lstm_bidirectional=td_lstm_bidirectional ) self.time_dependency_2 = TimeDependency( input_size=self.time_dependency.fan_out, td=td_2, sa_d_model=td_2_sa_d_model, sa_nhead=td_2_sa_nhead, sa_pos_enc=td_2_sa_pos_enc, sa_num_layers=td_2_sa_num_layers, sa_h=td_2_sa_h, sa_dropout=td_2_sa_dropout, lstm_h=td_2_lstm_h, lstm_num_layers=td_2_lstm_num_layers, lstm_dropout=td_2_lstm_dropout, lstm_bidirectional=td_2_lstm_bidirectional ) pool = Pooling( self.time_dependency.fan_out, output_size=1, pool=pool, att_h=pool_att_h, att_dropout=pool_att_dropout, ) self.pool_layers = self._get_clones(pool, 5) def _get_clones(self, module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) def forward(self, x, n_wins): x = self.cnn(x, n_wins) x, n_wins = self.time_dependency(x, n_wins) x, n_wins = self.time_dependency_2(x, n_wins) out = [mod(x, n_wins) for mod in self.pool_layers] out = torch.cat(out, dim=1) return out # class NISQA_DE(nn.Module): ''' NISQA: The main speech quality model for double-ended prediction. The module loads the submodules for framewise modelling (e.g. CNN), time-dependency modelling (e.g. Self-Attention or LSTM), time-alignment, feature fusion and pooling (e.g. max-pooling or attention-pooling) ''' def __init__(self, ms_seg_length=15, ms_n_mels=48, cnn_model='adapt', cnn_c_out_1=16, cnn_c_out_2=32, cnn_c_out_3=64, cnn_kernel_size=3, cnn_dropout=0.2, cnn_pool_1=[24,7], cnn_pool_2=[12,5], cnn_pool_3=[6,3], cnn_fc_out_h=None, td='self_att', td_sa_d_model=64, td_sa_nhead=1, td_sa_pos_enc=None, td_sa_num_layers=2, td_sa_h=64, td_sa_dropout=0.1, td_lstm_h=128, td_lstm_num_layers=1, td_lstm_dropout=0, td_lstm_bidirectional=True, td_2='skip', td_2_sa_d_model=None, td_2_sa_nhead=None, td_2_sa_pos_enc=None, td_2_sa_num_layers=None, td_2_sa_h=None, td_2_sa_dropout=None, td_2_lstm_h=None, td_2_lstm_num_layers=None, td_2_lstm_dropout=None, td_2_lstm_bidirectional=None, pool='att', pool_att_h=128, pool_att_dropout=0.1, de_align = 'dot', de_align_apply = 'hard', de_fuse_dim = None, de_fuse = True, ): super().__init__() self.name = 'NISQA_DE' self.cnn = Framewise( cnn_model, ms_seg_length=ms_seg_length, ms_n_mels=ms_n_mels, c_out_1=cnn_c_out_1, c_out_2=cnn_c_out_2, c_out_3=cnn_c_out_3, kernel_size=cnn_kernel_size, dropout=cnn_dropout, pool_1=cnn_pool_1, pool_2=cnn_pool_2, pool_3=cnn_pool_3, fc_out_h=cnn_fc_out_h, ) self.time_dependency = TimeDependency( input_size=self.cnn.model.fan_out, td=td, sa_d_model=td_sa_d_model, sa_nhead=td_sa_nhead, sa_pos_enc=td_sa_pos_enc, sa_num_layers=td_sa_num_layers, sa_h=td_sa_h, sa_dropout=td_sa_dropout, lstm_h=td_lstm_h, lstm_num_layers=td_lstm_num_layers, lstm_dropout=td_lstm_dropout, lstm_bidirectional=td_lstm_bidirectional ) self.align = Alignment( de_align, de_align_apply, q_dim=self.time_dependency.fan_out, y_dim=self.time_dependency.fan_out, ) self.fuse = Fusion( in_feat=self.time_dependency.fan_out, fuse_dim=de_fuse_dim, fuse=de_fuse, ) self.time_dependency_2 = TimeDependency( input_size=self.fuse.fan_out, td=td_2, sa_d_model=td_2_sa_d_model, sa_nhead=td_2_sa_nhead, sa_pos_enc=td_2_sa_pos_enc, sa_num_layers=td_2_sa_num_layers, sa_h=td_2_sa_h, sa_dropout=td_2_sa_dropout, lstm_h=td_2_lstm_h, lstm_num_layers=td_2_lstm_num_layers, lstm_dropout=td_2_lstm_dropout, lstm_bidirectional=td_2_lstm_bidirectional ) self.pool = Pooling( self.time_dependency_2.fan_out, output_size=1, pool=pool, att_h=pool_att_h, att_dropout=pool_att_dropout, ) def _split_ref_deg(self, x, n_wins): (x, y) = torch.chunk(x, 2, dim=2) (n_wins_x, n_wins_y) = torch.chunk(n_wins, 2, dim=1) n_wins_x = n_wins_x.view(-1) n_wins_y = n_wins_y.view(-1) return x, y, n_wins_x, n_wins_y def forward(self, x, n_wins): x, y, n_wins_x, n_wins_y = self._split_ref_deg(x, n_wins) x = self.cnn(x, n_wins_x) y = self.cnn(y, n_wins_y) x, n_wins_x = self.time_dependency(x, n_wins_x) y, n_wins_y = self.time_dependency(y, n_wins_y) y = self.align(x, y, n_wins_y) x = self.fuse(x, y) x, n_wins_x = self.time_dependency_2(x, n_wins_x) x = self.pool(x, n_wins_x) return x #%% Framewise class Framewise(nn.Module): ''' Framewise: The main framewise module. It loads either a CNN or feed-forward network for framewise modelling of the Mel-spec segments. This module can also be skipped by loading the SkipCNN module. There are two CNN modules available. AdaptCNN with adaptive maxpooling and the StandardCNN module. However, they could also be replaced with new modules, such as PyTorch implementations of ResNet or Alexnet. ''' def __init__( self, cnn_model, ms_seg_length=15, ms_n_mels=48, c_out_1=16, c_out_2=32, c_out_3=64, kernel_size=3, dropout=0.2, pool_1=[24,7], pool_2=[12,5], pool_3=[6,3], fc_out_h=None, ): super().__init__() if cnn_model=='adapt': self.model = AdaptCNN( input_channels=1, c_out_1=c_out_1, c_out_2=c_out_2, c_out_3=c_out_3, kernel_size=kernel_size, dropout=dropout, pool_1=pool_1, pool_2=pool_2, pool_3=pool_3, fc_out_h=fc_out_h, ) elif cnn_model=='standard': assert ms_n_mels == 48, "ms_n_mels is {} and should be 48, use adaptive model or change ms_n_mels".format(ms_n_mels) assert ms_seg_length == 15, "ms_seg_len is {} should be 15, use adaptive model or change ms_seg_len".format(ms_seg_length) assert ((kernel_size == 3) or (kernel_size == (3,3))), "cnn_kernel_size is {} should be 3, use adaptive model or change cnn_kernel_size".format(kernel_size) self.model = StandardCNN( input_channels=1, c_out_1=c_out_1, c_out_2=c_out_2, c_out_3=c_out_3, kernel_size=kernel_size, dropout=dropout, fc_out_h=fc_out_h, ) elif cnn_model=='dff': self.model = DFF(ms_seg_length, ms_n_mels, dropout, fc_out_h) elif (cnn_model is None) or (cnn_model=='skip'): self.model = SkipCNN(ms_seg_length, ms_n_mels, fc_out_h) elif cnn_model == 'res': self.model = ResCNN(input_channels=1, c_out_1=c_out_1, c_out_2=c_out_2, c_out_3=c_out_3, kernel_size=kernel_size, dropout=dropout, pool_1=pool_1, pool_2=pool_2, pool_3=pool_3, fc_out_h=fc_out_h,) else: raise NotImplementedError('Framwise model not available') def forward(self, x, n_wins): (bs, length, channels, height, width) = x.shape x_packed = pack_padded_sequence( x, n_wins.cpu(), batch_first=True, enforce_sorted=False ) x = self.model(x_packed.data) x = x_packed._replace(data=x) x, _ = pad_packed_sequence( x, batch_first=True, padding_value=0.0, total_length=n_wins.max()) return x class SkipCNN(nn.Module): ''' SkipCNN: Can be used to skip the framewise modelling stage and directly apply an LSTM or Self-Attention network. ''' def __init__( self, cnn_seg_length, ms_n_mels, fc_out_h ): super().__init__() self.name = 'SkipCNN' self.cnn_seg_length = cnn_seg_length self.ms_n_mels = ms_n_mels self.fan_in = cnn_seg_length*ms_n_mels self.bn = nn.BatchNorm2d( 1 ) if fc_out_h is not None: self.linear = nn.Linear(self.fan_in, fc_out_h) self.fan_out = fc_out_h else: self.linear = nn.Identity() self.fan_out = self.fan_in def forward(self, x): x = self.bn(x) x = x.view(-1, self.fan_in) x = self.linear(x) return x class DFF(nn.Module): ''' DFF: Deep Feed-Forward network that was used as baseline framwise model as comparision to the CNN. ''' def __init__(self, cnn_seg_length, ms_n_mels, dropout, fc_out_h=4096, ): super().__init__() self.name = 'DFF' self.dropout_rate = dropout self.fc_out_h = fc_out_h self.fan_out = fc_out_h self.cnn_seg_length = cnn_seg_length self.ms_n_mels = ms_n_mels self.fan_in = cnn_seg_length*ms_n_mels self.lin1 = nn.Linear(self.fan_in, self.fc_out_h) self.lin2 = nn.Linear(self.fc_out_h, self.fc_out_h) self.lin3 = nn.Linear(self.fc_out_h, self.fc_out_h) self.lin4 = nn.Linear(self.fc_out_h, self.fc_out_h) self.bn1 = nn.BatchNorm2d(1) self.bn2 = nn.BatchNorm1d( self.fc_out_h ) self.bn3 = nn.BatchNorm1d( self.fc_out_h ) self.bn4 = nn.BatchNorm1d( self.fc_out_h ) self.bn5 = nn.BatchNorm1d( self.fc_out_h ) self.dropout = nn.Dropout(p=dropout) def forward(self, x): x = self.bn1(x) x = x.view(-1, self.fan_in) x = F.relu( self.bn2( self.lin1(x) ) ) x = self.dropout(x) x = F.relu( self.bn3( self.lin2(x) ) ) x = self.dropout(x) x = F.relu( self.bn4( self.lin3(x) ) ) x = self.dropout(x) x = F.relu( self.bn5( self.lin4(x) ) ) return x class AdaptCNN(nn.Module): ''' AdaptCNN: CNN with adaptive maxpooling that can be used as framewise model. Overall, it has six convolutional layers. This CNN module is more flexible than the StandardCNN that requires a fixed input dimension of 48x15. ''' def __init__(self, input_channels, c_out_1, c_out_2, c_out_3, kernel_size, dropout, pool_1, pool_2, pool_3, fc_out_h=20, ): super().__init__() self.name = 'CNN_adapt' self.input_channels = input_channels self.c_out_1 = c_out_1 self.c_out_2 = c_out_2 self.c_out_3 = c_out_3 self.kernel_size = kernel_size self.pool_1 = pool_1 self.pool_2 = pool_2 self.pool_3 = pool_3 self.dropout_rate = dropout self.fc_out_h = fc_out_h self.dropout = nn.Dropout2d(p=self.dropout_rate) if isinstance(self.kernel_size, int): self.kernel_size = (self.kernel_size, self.kernel_size) # Set kernel width of last conv layer to last pool width to # downsample width to one. self.kernel_size_last = (self.kernel_size[0], self.pool_3[1]) # kernel_size[1]=1 can be used for seg_length=1 -> corresponds to # 1D conv layer, no width padding needed. if self.kernel_size[1] == 1: self.cnn_pad = (1,0) else: self.cnn_pad = (1,1) self.conv1 = nn.Conv2d( self.input_channels, self.c_out_1, self.kernel_size, padding = self.cnn_pad) self.bn1 = nn.BatchNorm2d( self.conv1.out_channels ) self.conv2 = nn.Conv2d( self.conv1.out_channels, self.c_out_2, self.kernel_size, padding = self.cnn_pad) self.bn2 = nn.BatchNorm2d( self.conv2.out_channels ) self.conv3 = nn.Conv2d( self.conv2.out_channels, self.c_out_3, self.kernel_size, padding = self.cnn_pad) self.bn3 = nn.BatchNorm2d( self.conv3.out_channels ) self.conv4 = nn.Conv2d( self.conv3.out_channels, self.c_out_3, self.kernel_size, padding = self.cnn_pad) self.bn4 = nn.BatchNorm2d( self.conv4.out_channels ) self.conv5 = nn.Conv2d( self.conv4.out_channels, self.c_out_3, self.kernel_size, padding = self.cnn_pad) self.bn5 = nn.BatchNorm2d( self.conv5.out_channels ) self.conv6 = nn.Conv2d( self.conv5.out_channels, self.c_out_3, self.kernel_size_last, padding = (1,0)) self.bn6 = nn.BatchNorm2d( self.conv6.out_channels ) if self.fc_out_h: self.fc = nn.Linear(self.conv6.out_channels * self.pool_3[0], self.fc_out_h) self.fan_out = self.fc_out_h else: self.fan_out = (self.conv6.out_channels * self.pool_3[0]) def forward(self, x): x = F.relu( self.bn1( self.conv1(x) ) ) x = F.adaptive_max_pool2d(x, output_size=(self.pool_1)) x = F.relu( self.bn2( self.conv2(x) ) ) x = F.adaptive_max_pool2d(x, output_size=(self.pool_2)) x = self.dropout(x) x = F.relu( self.bn3( self.conv3(x) ) ) x = self.dropout(x) x = F.relu( self.bn4( self.conv4(x) ) ) x = F.adaptive_max_pool2d(x, output_size=(self.pool_3)) x = self.dropout(x) x = F.relu( self.bn5( self.conv5(x) ) ) x = self.dropout(x) x = F.relu( self.bn6( self.conv6(x) ) ) x = x.view(-1, self.conv6.out_channels * self.pool_3[0]) if self.fc_out_h: x = self.fc( x ) return x class StandardCNN(nn.Module): ''' StandardCNN: CNN with fixed maxpooling that can be used as framewise model. Overall, it has six convolutional layers. This CNN module requires a fixed input dimension of 48x15. ''' def __init__( self, input_channels, c_out_1, c_out_2, c_out_3, kernel_size, dropout, fc_out_h=None ): super().__init__() self.name = 'CNN_standard' self.input_channels = input_channels self.c_out_1 = c_out_1 self.c_out_2 = c_out_2 self.c_out_3 = c_out_3 self.kernel_size = kernel_size self.pool_size = 2 self.dropout_rate = dropout self.fc_out_h = fc_out_h self.output_width = 2 # input width 15 pooled 3 times self.output_height = 6 # input height 48 pooled 3 times self.dropout = nn.Dropout2d(p=self.dropout_rate) self.pool_first = nn.MaxPool2d( self.pool_size, stride = self.pool_size, padding = (0,1)) self.pool = nn.MaxPool2d( self.pool_size, stride = self.pool_size, padding = 0) self.conv1 = nn.Conv2d( self.input_channels, self.c_out_1, self.kernel_size, padding = 1) self.bn1 = nn.BatchNorm2d( self.conv1.out_channels ) self.conv2 = nn.Conv2d( self.conv1.out_channels, self.c_out_2, self.kernel_size, padding = 1) self.bn2 = nn.BatchNorm2d( self.conv2.out_channels ) self.conv3 = nn.Conv2d( self.conv2.out_channels, self.c_out_3, self.kernel_size, padding = 1) self.bn3 = nn.BatchNorm2d( self.conv3.out_channels ) self.conv4 = nn.Conv2d( self.conv3.out_channels, self.c_out_3, self.kernel_size, padding = 1) self.bn4 = nn.BatchNorm2d( self.conv4.out_channels ) self.conv5 = nn.Conv2d( self.conv4.out_channels, self.c_out_3, self.kernel_size, padding = 1) self.bn5 = nn.BatchNorm2d( self.conv5.out_channels ) self.conv6 = nn.Conv2d( self.conv5.out_channels, self.c_out_3, self.kernel_size, padding = 1) self.bn6 = nn.BatchNorm2d( self.conv6.out_channels ) if self.fc_out_h: self.fc_out = nn.Linear(self.conv6.out_channels * self.output_height * self.output_width, self.fc_out_h) self.fan_out = self.fc_out_h else: self.fan_out = (self.conv6.out_channels * self.output_height * self.output_width) def forward(self, x): x = F.relu( self.bn1( self.conv1(x) ) ) x = self.pool_first( x ) x = F.relu( self.bn2( self.conv2(x) ) ) x = self.pool( x ) x = self.dropout(x) x = F.relu( self.bn3( self.conv3(x) ) ) x = self.dropout(x) x = F.relu( self.bn4( self.conv4(x) ) ) x = self.pool( x ) x = self.dropout(x) x = F.relu( self.bn5( self.conv5(x) ) ) x = self.dropout(x) x = F.relu( self.bn6( self.conv6(x) ) ) x = x.view(-1, self.conv6.out_channels * self.output_height * self.output_width) if self.fc_out_h: x = self.fc_out( x ) return x class ResBlock(nn.Module): def __init__(self, in_channels: int, out_channels: int, leaky_relu_slope=0.01): super().__init__() self.downsample = in_channels != out_channels # BN / LReLU / MaxPool layer before the conv layer - see Figure 1b in the paper self.pre_conv = nn.Sequential( nn.BatchNorm2d(num_features=in_channels), nn.LeakyReLU(leaky_relu_slope, inplace=True), # nn.MaxPool2d(kernel_size=(1, 2)), # apply downsampling on the y axis only ) # conv layers self.conv = nn.Sequential( nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(out_channels), nn.LeakyReLU(leaky_relu_slope, inplace=True), nn.Conv2d(out_channels, out_channels, 3, padding=1, bias=False), ) # 1 x 1 convolution layer to match the feature dimensions self.conv1by1 = None if self.downsample: self.conv1by1 = nn.Conv2d(in_channels, out_channels, 1, bias=False) def forward(self, x): x = self.pre_conv(x) if self.downsample: x = self.conv(x) + self.conv1by1(x) else: x = self.conv(x) + x return x class ResCNN(nn.Module): def __init__( self, input_channels, c_out_1, c_out_2, c_out_3, kernel_size, dropout, pool_1, pool_2, pool_3, fc_out_h=20, ): super().__init__() self.name = 'CNN_res' self.input_channels = input_channels self.c_out_1 = c_out_1 self.c_out_2 = c_out_2 self.c_out_3 = c_out_3 self.kernel_size = kernel_size self.pool_1 = pool_1 self.pool_2 = pool_2 self.pool_3 = pool_3 self.dropout_rate = dropout self.fc_out_h = fc_out_h self.conv_block = nn.Sequential( nn.Conv2d(in_channels=input_channels, out_channels=c_out_1, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(num_features=c_out_1), nn.LeakyReLU(0.01, inplace=True), nn.Conv2d(c_out_1, c_out_1, 3, padding=1, bias=False), ) # res blocks self.res_block1 = ResBlock(in_channels=c_out_1, out_channels=c_out_2) self.res_block2 = ResBlock(in_channels=c_out_2, out_channels=c_out_3) self.res_block3 = ResBlock(in_channels=c_out_3, out_channels=c_out_3) self.post_conv_block = nn.Sequential( nn.Conv2d(in_channels=c_out_3, out_channels=c_out_3, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(num_features=c_out_3), nn.LeakyReLU(0.01, inplace=True), nn.Conv2d(c_out_3, c_out_3, 3, padding=(1,0), bias=False), ) if self.fc_out_h: self.fc = nn.Linear(c_out_3 * self.pool_3[0], self.fc_out_h) self.fan_out = self.fc_out_h else: self.fan_out = (c_out_3 * self.pool_3[0]) def forward(self, x): x = self.conv_block(x) x = self.res_block1(x) x = F.adaptive_max_pool2d(x, output_size=(self.pool_1)) x = self.res_block2(x) x = F.adaptive_max_pool2d(x, output_size=(self.pool_2)) x = self.res_block3(x) x = F.adaptive_max_pool2d(x, output_size=(self.pool_3)) x = self.post_conv_block(x) x = x.view(-1, self.c_out_3 * self.pool_3[0]) if self.fc_out_h: x = self.fc(x) # import pdb; pdb.set_trace() return x #%% Time Dependency class TimeDependency(nn.Module): ''' TimeDependency: The main time-dependency module. It loads either an LSTM or self-attention network for time-dependency modelling of the framewise features. This module can also be skipped. ''' def __init__(self, input_size, td='self_att', sa_d_model=512, sa_nhead=8, sa_pos_enc=None, sa_num_layers=6, sa_h=2048, sa_dropout=0.1, lstm_h=128, lstm_num_layers=1, lstm_dropout=0, lstm_bidirectional=True, ): super().__init__() if td=='self_att': self.model = SelfAttention( input_size=input_size, d_model=sa_d_model, nhead=sa_nhead, pos_enc=sa_pos_enc, num_layers=sa_num_layers, sa_h=sa_h, dropout=sa_dropout, activation="relu" ) self.fan_out = sa_d_model elif td=='lstm': self.model = LSTM( input_size, lstm_h=lstm_h, num_layers=lstm_num_layers, dropout=lstm_dropout, bidirectional=lstm_bidirectional, ) self.fan_out = self.model.fan_out elif (td is None) or (td=='skip'): self.model = self._skip self.fan_out = input_size else: raise NotImplementedError('Time dependency option not available') def _skip(self, x, n_wins): return x, n_wins def forward(self, x, n_wins): x, n_wins = self.model(x, n_wins) return x, n_wins class LSTM(nn.Module): ''' LSTM: The main LSTM module that can be used as a time-dependency model. ''' def __init__(self, input_size, lstm_h=128, num_layers=1, dropout=0.1, bidirectional=True ): super().__init__() self.lstm = nn.LSTM( input_size = input_size, hidden_size = lstm_h, num_layers = num_layers, dropout = dropout, batch_first = True, bidirectional = bidirectional ) if bidirectional: num_directions = 2 else: num_directions = 1 self.fan_out = num_directions*lstm_h def forward(self, x, n_wins): x = pack_padded_sequence( x, n_wins.cpu(), batch_first=True, enforce_sorted=False ) self.lstm.flatten_parameters() x = self.lstm(x)[0] x, _ = pad_packed_sequence( x, batch_first=True, padding_value=0.0, total_length=n_wins.max()) return x, n_wins class SelfAttention(nn.Module): ''' SelfAttention: The main SelfAttention module that can be used as a time-dependency model. ''' def __init__(self, input_size, d_model=512, nhead=8, pool_size=3, pos_enc=None, num_layers=6, sa_h=2048, dropout=0.1, activation="relu" ): super().__init__() encoder_layer = SelfAttentionLayer(d_model, nhead, pool_size, sa_h, dropout, activation) self.norm1 = nn.LayerNorm(d_model) self.linear = nn.Linear(input_size, d_model) self.layers = self._get_clones(encoder_layer, num_layers) self.num_layers = num_layers self.d_model = d_model self.nhead = nhead if pos_enc: self.pos_encoder = PositionalEncoding(d_model, dropout) else: self.pos_encoder = nn.Identity() self._reset_parameters() def _get_clones(self, module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) def _reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def forward(self, src, n_wins=None): src = self.linear(src) output = src.transpose(1,0) output = self.norm1(output) output = self.pos_encoder(output) for mod in self.layers: output, n_wins = mod(output, n_wins=n_wins) return output.transpose(1,0), n_wins class SelfAttentionLayer(nn.Module): ''' SelfAttentionLayer: The SelfAttentionLayer that is used by the SelfAttention module. ''' def __init__(self, d_model, nhead, pool_size=1, sa_h=2048, dropout=0.1, activation="relu"): super().__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) self.linear1 = nn.Linear(d_model, sa_h) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(sa_h, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.activation = self._get_activation_fn(activation) def _get_activation_fn(self, activation): if activation == "relu": return F.relu elif activation == "gelu": return F.gelu def forward(self, src, n_wins=None): if n_wins is not None: mask = ~((torch.arange(src.shape[0])[None, :]).to(src.device) < n_wins[:, None].to(torch.long).to(src.device)) else: mask = None src2 = self.self_attn(src, src, src, key_padding_mask=mask)[0] src = src + self.dropout1(src2) src = self.norm1(src) src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) src = src + self.dropout2(src2) src = self.norm2(src) return src, n_wins class PositionalEncoding(nn.Module): ''' PositionalEncoding: PositionalEncoding taken from the PyTorch Transformer tutorial. Can be applied to the SelfAttention module. However, it did not improve the results in previous experiments. ''' def __init__(self, d_model, dropout=0.1, max_len=3000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:x.size(0), :] return self.dropout(x) #%% Pooling class Pooling(nn.Module): ''' Pooling: Main Pooling module. It can load either attention-pooling, average pooling, maxpooling, or last-step pooling. In case of bidirectional LSTMs last-step-bi pooling should be used instead of last-step pooling. ''' def __init__(self, d_input, output_size=1, pool='att', att_h=None, att_dropout=0, ): super().__init__() if pool=='att': if att_h is None: self.model = PoolAtt(d_input, output_size) else: self.model = PoolAttFF(d_input, output_size, h=att_h, dropout=att_dropout) elif pool=='last_step_bi': self.model = PoolLastStepBi(d_input, output_size) elif pool=='last_step': self.model = PoolLastStep(d_input, output_size) elif pool=='max': self.model = PoolMax(d_input, output_size) elif pool=='avg': self.model = PoolAvg(d_input, output_size) else: raise NotImplementedError('Pool option not available') def forward(self, x, n_wins): return self.model(x, n_wins) class PoolLastStepBi(nn.Module): ''' PoolLastStepBi: last step pooling for the case of bidirectional LSTM ''' def __init__(self, input_size, output_size): super().__init__() self.linear = nn.Linear(input_size, output_size) def forward(self, x, n_wins=None): x = x.view(x.shape[0], n_wins.max(), 2, x.shape[-1]//2) x = torch.cat( (x[torch.arange(x.shape[0]), n_wins.type(torch.long)-1, 0, :], x[:,0,1,:]), dim=1 ) x = self.linear(x) return x class PoolLastStep(nn.Module): ''' PoolLastStep: last step pooling can be applied to any one-directional sequence. ''' def __init__(self, input_size, output_size): super().__init__() self.linear = nn.Linear(input_size, output_size) def forward(self, x, n_wins=None): x = x[torch.arange(x.shape[0]), n_wins.type(torch.long)-1] x = self.linear(x) return x class PoolAtt(torch.nn.Module): ''' PoolAtt: Attention-Pooling module. ''' def __init__(self, d_input, output_size): super().__init__() self.linear1 = nn.Linear(d_input, 1) self.linear2 = nn.Linear(d_input, output_size) def forward(self, x, n_wins): att = self.linear1(x) att = att.transpose(2,1) mask = torch.arange(att.shape[2])[None, :] < n_wins[:, None].to('cpu').to(torch.long) att[~mask.unsqueeze(1)] = float("-Inf") att = F.softmax(att, dim=2) x = torch.bmm(att, x) x = x.squeeze(1) x = self.linear2(x) return x class PoolAttFF(torch.nn.Module): ''' PoolAttFF: Attention-Pooling module with additonal feed-forward network. ''' def __init__(self, d_input, output_size, h, dropout=0.1): super().__init__() self.linear1 = nn.Linear(d_input, h) self.linear2 = nn.Linear(h, 1) self.linear3 = nn.Linear(d_input, output_size) self.activation = F.relu self.dropout = nn.Dropout(dropout) def forward(self, x, n_wins): att = self.linear2(self.dropout(self.activation(self.linear1(x)))) att = att.transpose(2,1) mask = torch.arange(att.shape[2])[None, :] < n_wins[:, None].to('cpu').to(torch.long) att[~mask.unsqueeze(1)] = float("-Inf") att = F.softmax(att, dim=2) x = torch.bmm(att, x) x = x.squeeze(1) x = self.linear3(x) return x class PoolAvg(torch.nn.Module): ''' PoolAvg: Average pooling that consideres masked time-steps. ''' def __init__(self, d_input, output_size): super().__init__() self.linear = nn.Linear(d_input, output_size) def forward(self, x, n_wins): mask = torch.arange(x.shape[1])[None, :] < n_wins[:, None].to('cpu').to(torch.long) mask = ~mask.unsqueeze(2).to(x.device) x.masked_fill_(mask, 0) x = torch.div(x.sum(1), n_wins.unsqueeze(1)) x = self.linear(x) return x class PoolMax(torch.nn.Module): ''' PoolMax: Max-pooling that consideres masked time-steps. ''' def __init__(self, d_input, output_size): super().__init__() self.linear = nn.Linear(d_input, output_size) def forward(self, x, n_wins): mask = torch.arange(x.shape[1])[None, :] < n_wins[:, None].to('cpu').to(torch.long) mask = ~mask.unsqueeze(2).to(x.device) x.masked_fill_(mask, float("-Inf")) x = x.max(1)[0] x = self.linear(x) return x #%% Alignment class Alignment(torch.nn.Module): ''' Alignment: Alignment module for the double-ended NISQA_DE model. It supports five different alignment mechanisms. ''' def __init__(self, att_method, apply_att_method, q_dim=None, y_dim=None, ): super().__init__() # Attention method -------------------------------------------------------- if att_method=='bahd': self.att = AttBahdanau( q_dim=q_dim, y_dim=y_dim) elif att_method=='luong': self.att = AttLuong( q_dim=q_dim, y_dim=y_dim) elif att_method=='dot': self.att = AttDot() elif att_method=='cosine': self.att = AttCosine() elif att_method=='distance': self.att = AttDistance() elif (att_method=='none') or (att_method is None): self.att = None else: raise NotImplementedError # Apply method ---------------------------------------------------------- if apply_att_method=='soft': self.apply_att = ApplySoftAttention() elif apply_att_method=='hard': self.apply_att = ApplyHardAttention() else: raise NotImplementedError def _mask_attention(self, att, y, n_wins): mask = torch.arange(att.shape[2])[None, :] < n_wins[:, None].to('cpu').to(torch.long) mask = mask.unsqueeze(1).expand_as(att) att[~mask] = float("-Inf") def forward(self, query, y, n_wins_y): if self.att is not None: att_score, sim = self.att(query, y) self._mask_attention(att_score, y, n_wins_y) att_score = F.softmax(att_score, dim=2) y = self.apply_att(y, att_score) return y class AttDot(torch.nn.Module): ''' AttDot: Dot attention that can be used by the Alignment module. ''' def __init__(self): super().__init__() def forward(self, query, y): att = torch.bmm(query, y.transpose(2,1)) sim = att.max(2)[0].unsqueeze(1) return att, sim class AttCosine(torch.nn.Module): ''' AttCosine: Cosine attention that can be used by the Alignment module. ''' def __init__(self): super().__init__() self.pdist = nn.CosineSimilarity(dim=3) def forward(self, query, y): att = self.pdist(query.unsqueeze(2), y.unsqueeze(1)) sim = att.max(2)[0].unsqueeze(1) return att, sim class AttDistance(torch.nn.Module): ''' AttDistance: Distance attention that can be used by the Alignment module. ''' def __init__(self, dist_norm=1, weight_norm=1): super().__init__() self.dist_norm = dist_norm self.weight_norm = weight_norm def forward(self, query, y): att = (query.unsqueeze(1)-y.unsqueeze(2)).abs().pow(self.dist_norm) att = att.mean(dim=3).pow(self.weight_norm) att = - att.transpose(2,1) sim = att.max(2)[0].unsqueeze(1) return att, sim class AttBahdanau(torch.nn.Module): ''' AttBahdanau: Attention according to Bahdanau that can be used by the Alignment module. ''' def __init__(self, q_dim, y_dim, att_dim=128): super().__init__() self.q_dim = q_dim self.y_dim = y_dim self.att_dim = att_dim self.Wq = nn.Linear(self.q_dim, self.att_dim) self.Wy = nn.Linear(self.y_dim, self.att_dim) self.v = nn.Linear(self.att_dim, 1) def forward(self, query, y): att = torch.tanh( self.Wq(query).unsqueeze(1) + self.Wy(y).unsqueeze(2) ) att = self.v(att).squeeze(3).transpose(2,1) sim = att.max(2)[0].unsqueeze(1) return att, sim class AttLuong(torch.nn.Module): ''' AttLuong: Attention according to Luong that can be used by the Alignment module. ''' def __init__(self, q_dim, y_dim): super().__init__() self.q_dim = q_dim self.y_dim = y_dim self.W = nn.Linear(self.y_dim, self.q_dim) def forward(self, query, y): att = torch.bmm(query, self.W(y).transpose(2,1)) sim = att.max(2)[0].unsqueeze(1) return att, sim class ApplyHardAttention(torch.nn.Module): ''' ApplyHardAttention: Apply hard attention for the purpose of time-alignment. ''' def __init__(self): super().__init__() def forward(self, y, att): self.idx = att.argmax(2) y = y[torch.arange(y.shape[0]).unsqueeze(-1), self.idx] return y class ApplySoftAttention(torch.nn.Module): ''' ApplySoftAttention: Apply soft attention for the purpose of time-alignment. ''' def __init__(self): super().__init__() def forward(self, y, att): y = torch.bmm(att, y) return y class Fusion(torch.nn.Module): ''' Fusion: Used by the double-ended NISQA_DE model and used to fuse the degraded and reference features. ''' def __init__(self, fuse_dim=None, in_feat=None, fuse=None): super().__init__() self.fuse_dim = fuse_dim self.fuse = fuse if self.fuse=='x/y/-': self.fan_out = 3*in_feat elif self.fuse=='+/-': self.fan_out = 2*in_feat elif self.fuse=='x/y': self.fan_out = 2*in_feat else: raise NotImplementedError if self.fuse_dim: self.lin_fusion = nn.Linear(self.fan_out, self.fuse_dim) self.fan_out = fuse_dim def forward(self, x, y): if self.fuse=='x/y/-': x = torch.cat((x, y, x-y), 2) elif self.fuse=='+/-': x = torch.cat((x+y, x-y), 2) elif self.fuse=='x/y': x = torch.cat((x, y), 2) else: raise NotImplementedError if self.fuse_dim: x = self.lin_fusion(x) return x #%% Evaluation # def predict_mos(model, ds, bs, dev, num_workers=0): ''' predict_mos: predicts MOS of the given dataset with given model. Used for NISQA and NISQA_DE model. ''' dl = DataLoader(ds, batch_size=bs, shuffle=False, drop_last=False, pin_memory=False, num_workers=num_workers) model.to(dev) model.eval() with torch.no_grad(): import time start = time.time() y_hat_list = [ [model(xb.to(dev), n_wins.to(dev)).cpu().numpy(), yb.cpu().numpy()] for xb, yb, (idx, n_wins), yb_std, yb_votes in dl] end = time.time() proc_time = end - start print('total processing time: %.3f sec' % proc_time ) yy = np.concatenate( y_hat_list, axis=1 ) y_hat = yy[0,:,0].reshape(-1,1) y = yy[1,:,0].reshape(-1,1) ds.df['mos_pred'] = y_hat.astype(dtype=float) return y_hat, y # def predict_mos_multitask(model, ds, bs, dev, num_workers=0): ''' predict_mos_multitask: predicts MOS and MOS std of the given dataset with given model. ''' dl = DataLoader(ds, batch_size=bs, shuffle=False, drop_last=False, pin_memory=False, num_workers=num_workers) model.to(dev) model.eval() with torch.no_grad(): import time start = time.time() y_hat_list = [ [model(xb.to(dev), n_wins.to(dev)).cpu().numpy(), np.concatenate((yb, yb_std), axis=1)] for xb, yb, (idx, n_wins), yb_std, yb_votes in dl] end = time.time() proc_time = end - start print('total processing time: %.3f sec' % proc_time ) # import pdb; pdb.set_trace() yy = np.concatenate( y_hat_list, axis=1 ) y_hat = yy[0,:,:] y = yy[1,:,:] ds.df['mos_pred'] = y_hat[:,0].reshape(-1,1) ds.df['std_pred'] = y_hat[:,1].reshape(-1,1) return y_hat, y # def predict_mos_multifeature(model, ds, bs, dev, num_workers=0): ''' predict_mos: predicts MOS of the given dataset with given model. Used for NISQA and NISQA_DE model. ''' dl = DataLoader(ds, batch_size=bs, shuffle=False, drop_last=False, pin_memory=False, num_workers=num_workers) model.to(dev) model.eval() with torch.no_grad(): y_hat_list = [ [model(torch.cat((xb, ssl), -2).to(dev), n_wins.to(dev)).cpu().numpy(), yb.cpu().numpy()] for xb, ssl, yb, (idx, n_wins), yb_std, yb_votes in dl] yy = np.concatenate( y_hat_list, axis=1 ) y_hat = yy[0,:,0].reshape(-1,1) y = yy[1,:,0].reshape(-1,1) ds.df['mos_pred'] = y_hat.astype(dtype=float) return y_hat, y # def predict_mos_multiresolution(model_1, model_2, model_3, ds, bs, dev, num_workers=0): ''' predict_mos: predicts MOS of the given dataset with given model. Used for NISQA and NISQA_DE model. ''' dl = DataLoader(ds, batch_size=bs, shuffle=False, drop_last=False, pin_memory=False, num_workers=num_workers) model_1.to(dev) model_2.to(dev) model_3.to(dev) model_1.eval() model_2.eval() model_3.eval() with torch.no_grad(): y_hat_list = [ [(model_1(xb1.to(dev), n_wins1.to(dev)).cpu().numpy() + model_2(xb2.to(dev), n_wins2.to(dev)).cpu().numpy() + model_3(xb3.to(dev), n_wins3.to(dev)).cpu().numpy())/3, yb.cpu().numpy()] for xb1, xb2, xb3, yb, (idx, n_wins1, n_wins2, n_wins3), yb_std, yb_votes in dl] yy = np.concatenate( y_hat_list, axis=1 ) y_hat = yy[0,:,0].reshape(-1,1) y = yy[1,:,0].reshape(-1,1) ds.df['mos_pred'] = y_hat.astype(dtype=float) return y_hat, y # def predict_mos_multiscale(model_1, model_2, model_3, ds, bs, dev, num_workers=0): ''' predict_mos: predicts MOS of the given dataset with given model. Used for NISQA and NISQA_DE model. ''' dl = DataLoader(ds, batch_size=bs, shuffle=False, drop_last=False, pin_memory=False, num_workers=num_workers) model_1.to(dev) model_2.to(dev) model_3.to(dev) model_1.eval() model_2.eval() model_3.eval() y_hat_list = [] with torch.no_grad(): for sr, xb1, xb2, xb3, yb, (idx, n_wins1, n_wins2, n_wins3), yb_std, yb_votes in dl: if sr == 48000 or sr == 44100: y_hat_list.append([(model_1(xb1.to(dev), n_wins1.to(dev)).cpu().numpy() + model_2(xb2.to(dev), n_wins2.to(dev)).cpu().numpy() + model_3(xb3.to(dev), n_wins3.to(dev)).cpu().numpy())/3, yb.cpu().numpy()]) elif sr == 16000 or sr == 32000: y_hat_list.append([(model_2(xb2.to(dev), n_wins2.to(dev)).cpu().numpy() + model_3(xb3.to(dev), n_wins3.to(dev)).cpu().numpy())/2, yb.cpu().numpy()]) else: y_hat_list.append([(model_3(xb3.to(dev), n_wins3.to(dev)).cpu().numpy()), yb.cpu().numpy()]) yy = np.concatenate( y_hat_list, axis=1 ) y_hat = yy[0,:,0].reshape(-1,1) y = yy[1,:,0].reshape(-1,1) ds.df['mos_pred'] = y_hat.astype(dtype=float) return y_hat, y # def predict_dim(model, ds, bs, dev, num_workers=0): # ''' predict_dim: predicts MOS and dimensions of the given dataset with given model. Used for NISQA_DIM model. ''' dl = DataLoader(ds, batch_size=bs, shuffle=False, drop_last=False, pin_memory=False, num_workers=num_workers) model.to(dev) model.eval() with torch.no_grad(): y_hat_list = [ [model(xb.to(dev), n_wins.to(dev)).cpu().numpy(), yb.cpu().numpy()] for xb, yb, (idx, n_wins) in dl] yy = np.concatenate( y_hat_list, axis=1 ) y_hat = yy[0,:,:] y = yy[1,:,:] ds.df['mos_pred'] = y_hat[:,0].reshape(-1,1) ds.df['noi_pred'] = y_hat[:,1].reshape(-1,1) ds.df['dis_pred'] = y_hat[:,2].reshape(-1,1) ds.df['col_pred'] = y_hat[:,3].reshape(-1,1) ds.df['loud_pred'] = y_hat[:,4].reshape(-1,1) return y_hat, y def is_const(x): if np.linalg.norm(x - np.mean(x)) < 1e-13 * np.abs(np.mean(x)): return True elif np.all(x==x[0]): return True else: return False # def calc_eval_metrics(y, y_hat, y_hat_map=None, d=None, ci=None): ''' Calculate RMSE, mapped RMSE, mapped RMSE* and Pearson's correlation. See ITU-T P.1401 for details on RMSE*. ''' r = { 'pcc': np.nan, 'srcc': np.nan, 'rmse': np.nan, 'rmse_map': np.nan, 'rmse_star_map': np.nan, } if is_const(y_hat) or any(np.isnan(y)): r['pcc'] = np.nan else: r['pcc'] = pearsonr(y, y_hat)[0] if is_const(y_hat) or any(np.isnan(y)): r['srcc'] = np.nan else: r['srcc'] = spearmanr(y, y_hat)[0] r['rmse'] = calc_rmse(y, y_hat) if y_hat_map is not None: r['rmse_map'] = calc_rmse(y, y_hat_map, d=d) if ci is not None: r['rmse_star_map'] = calc_rmse_star(y, y_hat_map, ci, d)[0] return r def calc_rmse(y_true, y_pred, d=0): if d==0: rmse = np.sqrt(np.mean(np.square(y_true-y_pred))) else: N = y_true.shape[0] if (N-d)<1: rmse = np.nan else: rmse = np.sqrt( 1/(N-d) * np.sum( np.square(y_true-y_pred) ) ) # Eq (7-29) P.1401 return rmse def calc_rmse_star(mos_sub, mos_obj, ci, d): N = mos_sub.shape[0] error = mos_sub-mos_obj if np.isnan(ci).any(): p_error = np.nan rmse_star = np.nan else: p_error = (abs(error)-ci).clip(min=0) # Eq (7-27) P.1401 if (N-d)<1: rmse_star = np.nan else: rmse_star = np.sqrt( 1/(N-d) * sum(p_error**2) ) # Eq (7-29) P.1401 return rmse_star, p_error, error def calc_mapped(x, b): N = x.shape[0] order = b.shape[0]-1 A = np.zeros([N,order+1]) for i in range(order+1): A[:,i] = x**(i) return A @ b def fit_first_order(y_con, y_con_hat): A = np.vstack([np.ones(len(y_con_hat)), y_con_hat]).T b = np.linalg.lstsq(A, y_con, rcond=None)[0] return b def fit_second_order(y_con, y_con_hat): A = np.vstack([np.ones(len(y_con_hat)), y_con_hat, y_con_hat**2]).T b = np.linalg.lstsq(A, y_con, rcond=None)[0] return b def fit_third_order(y_con, y_con_hat): A = np.vstack([np.ones(len(y_con_hat)), y_con_hat, y_con_hat**2, y_con_hat**3]).T b = np.linalg.lstsq(A, y_con, rcond=None)[0] p = np.poly1d(np.flipud(b)) p2 = np.polyder(p) rr = np.roots(p2) r = rr[np.imag(rr)==0] monotonic = all( np.logical_or(r>max(y_con_hat),r<min(y_con_hat)) ) if monotonic==False: print('Not monotonic!!!') return b def fit_monotonic_third_order( dfile_db, dcon_db=None, pred=None, target_mos=None, target_ci=None, mapping=None): ''' Fits third-order function with the constrained to be monotonically. increasing. This function may not return an optimal fitting. ''' y = dfile_db[target_mos].to_numpy() y_hat = dfile_db[pred].to_numpy() if dcon_db is None: if target_ci in dfile_db: ci = dfile_db[target_ci].to_numpy() else: ci = 0 else: y_con = dcon_db[target_mos].to_numpy() if target_ci in dcon_db: ci = dcon_db[target_ci].to_numpy() else: ci = 0 x = y_hat y_hat_min = min(y_hat) - 0.01 y_hat_max = max(y_hat) + 0.01 def polynomial(p, x): return p[0]+p[1]*x+p[2]*x**2+p[3]*x**3 def constraint_2nd_der(p): return 2*p[2]+6*p[3]*x def constraint_1st_der(p): x = np.arange(y_hat_min, y_hat_max, 0.1) return p[1]+2*p[2]*x+3*p[3]*x**2 def objective_con(p): x_map = polynomial(p, x) dfile_db['x_map'] = x_map x_map_con = dfile_db.groupby('con').mean().x_map.to_numpy() err = x_map_con-y_con if mapping=='pError': p_err = (abs(err)-ci).clip(min=0) return (p_err**2).sum() elif mapping=='error': return (err**2).sum() else: raise NotImplementedError def objective_file(p): x_map = polynomial(p, x) err = x_map-y if mapping=='pError': p_err = (abs(err)-ci).clip(min=0) return (p_err**2).sum() elif mapping=='error': return (err**2).sum() else: raise NotImplementedError cons = dict(type='ineq', fun=constraint_1st_der) if dcon_db is None: res = minimize( objective_file, x0=np.array([0., 1., 0., 0.]), method='SLSQP', constraints=cons, ) else: res = minimize( objective_con, x0=np.array([0., 1., 0., 0.]), method='SLSQP', constraints=cons, ) b = res.x return b def calc_mapping( dfile_db, mapping=None, dcon_db=None, target_mos=None, target_ci=None, pred=None, ): ''' Computes mapping between subjective and predicted MOS. ''' if dcon_db is not None: y = dcon_db[target_mos].to_numpy() y_hat = dfile_db.groupby('con').mean().get(pred).to_numpy() else: y = dfile_db[target_mos].to_numpy() y_hat = dfile_db[pred].to_numpy() if mapping==None: b = np.array([0,1,0,0]) d_map = 0 elif mapping=='first_order': b = fit_first_order(y, y_hat) d_map = 1 elif mapping=='second_order': b = fit_second_order(y, y_hat) d_map = 3 elif mapping=='third_order_not_monotonic': b = fit_third_order(y, y_hat) d_map = 4 elif mapping=='third_order': b = fit_monotonic_third_order( dfile_db, dcon_db=dcon_db, pred=pred, target_mos=target_mos, target_ci=target_ci, mapping='error', ) d_map = 4 else: raise NotImplementedError return b, d_map def eval_results( df, dcon=None, target_mos = 'mos', target_ci = 'mos_ci', pred = 'mos_pred', mapping = None, do_print = False, do_plot = False ): ''' Evaluates a trained model on given dataset. ''' # Loop through databases db_results_df = [] df['y_hat_map'] = np.nan for db_name in df.database.astype("category").cat.categories: df_db = df.loc[df.database==db_name] if dcon is not None: dcon_db = dcon.loc[dcon.database==db_name] else: dcon_db = None # per file ----------------------------------------------------------- y = df_db[target_mos].to_numpy() if np.isnan(y).any(): r = {'pcc': np.nan,'srcc': np.nan,'rmse': np.nan, 'rmse_map': np.nan} else: y_hat = df_db[pred].to_numpy() b, d = calc_mapping( df_db, mapping=mapping, target_mos=target_mos, target_ci=target_ci, pred=pred ) y_hat_map = calc_mapped(y_hat, b) r = calc_eval_metrics(y, y_hat, y_hat_map=y_hat_map, d=d) r.pop('rmse_star_map') r = {f'{k}_file': v for k, v in r.items()} # per con ------------------------------------------------------------ r_con = {'pcc': np.nan,'srcc': np.nan,'rmse': np.nan, 'rmse_map': np.nan} if (dcon_db is not None) and ('con' in df_db): y_con = dcon_db[target_mos].to_numpy() y_con_hat = df_db.groupby('con').mean().get(pred).to_numpy() if not np.isnan(y_con).any(): if target_ci in dcon_db: ci_con = dcon_db[target_ci].to_numpy() else: ci_con = None b_con, d = calc_mapping( df_db, dcon_db=dcon_db, mapping=mapping, target_mos=target_mos, target_ci=target_ci, pred=pred ) df_db['y_hat_map'] = calc_mapped(y_hat, b_con) df['y_hat_map'].loc[df.database==db_name] = df_db['y_hat_map'] y_con_hat_map = df_db.groupby('con').mean().get('y_hat_map').to_numpy() r_con = calc_eval_metrics(y_con, y_con_hat, y_hat_map=y_con_hat_map, d=d, ci=ci_con) r_con = {f'{k}_con': v for k, v in r_con.items()} r = {**r, **r_con} # --------------------------------------------------------------------- db_results_df.append({'database': db_name, **r}) # Plot ------------------------------------------------------------------ if do_plot and (not np.isnan(y).any()): xx = np.arange(0, 6, 0.01) yy = calc_mapped(xx, b) plt.figure(figsize=(3.0, 3.0), dpi=300) plt.clf() plt.plot(y_hat, y, 'o', label='Original data', markersize=2) plt.plot([0, 5], [0, 5], 'gray') plt.plot(xx, yy, 'r', label='Fitted line') plt.axis([1, 5, 1, 5]) plt.gca().set_aspect('equal', adjustable='box') plt.grid(True) plt.xticks(np.arange(1, 6)) plt.yticks(np.arange(1, 6)) plt.title(db_name + ' per file') plt.ylabel('Subjective ' + target_mos.upper()) plt.xlabel('Predicted ' + target_mos.upper()) # plt.savefig('corr_diagram_fr_' + db_name + '.pdf', dpi=300, bbox_inches="tight") plt.show() if (dcon_db is not None) and ('con' in df_db): xx = np.arange(0, 6, 0.01) yy = calc_mapped(xx, b_con) plt.figure(figsize=(3.0, 3.0), dpi=300) plt.clf() plt.plot(y_con_hat, y_con, 'o', label='Original data', markersize=3) plt.plot([0, 5], [0, 5], 'gray') plt.plot(xx, yy, 'r', label='Fitted line') plt.axis([1, 5, 1, 5]) plt.gca().set_aspect('equal', adjustable='box') plt.grid(True) plt.xticks(np.arange(1, 6)) plt.yticks(np.arange(1, 6)) plt.title(db_name + ' per con') plt.ylabel('Sub ' + target_mos.upper()) plt.xlabel('Pred ' + target_mos.upper()) # plt.savefig(db_name + '.pdf', dpi=300, bbox_inches="tight") plt.show() # import pdb; pdb.set_trace() # Print ------------------------------------------------------------------ if do_print and (not np.isnan(y).any()): if (dcon_db is not None) and ('con' in df_db): print('%-30s pcc_file: %0.2f, rmse_map_file: %0.2f, pcc_con: %0.2f, rmse_map_con: %0.2f, ' % (db_name+':', r['pcc_file'], r['rmse_map_file'], r['pcc_con'], r['rmse_map_con'])) else: print('%-30s pcc_file: %0.2f, srcc_file: %0.2f, rmse_map_file: %0.2f' % (db_name+':', r['pcc_file'], r['srcc_file'], r['rmse_map_file'])) # Save individual database results in DataFrame db_results_df = pd.DataFrame(db_results_df) r_average = {} r_average['pcc_mean_file'] = db_results_df.pcc_file.mean() r_average['srcc_mean_file'] = db_results_df.srcc_file.mean() r_average['rmse_mean_file'] = db_results_df.rmse_file.mean() r_average['rmse_map_mean_file'] = db_results_df.rmse_map_file.mean() if dcon_db is not None: r_average['pcc_mean_con'] = db_results_df.pcc_con.mean() r_average['rmse_mean_con'] = db_results_df.rmse_con.mean() r_average['rmse_map_mean_con'] = db_results_df.rmse_map_con.mean() r_average['rmse_star_map_mean_con'] = db_results_df.rmse_star_map_con.mean() else: r_average['pcc_mean_con'] = np.nan r_average['rmse_mean_con'] = np.nan r_average['rmse_map_mean_con'] = np.nan r_average['rmse_star_map_mean_con'] = np.nan # Get overall per file results y = df[target_mos].to_numpy() y_hat = df[pred].to_numpy() r_total_file = calc_eval_metrics(y, y_hat) r_total_file = {'pcc_all': r_total_file['pcc'], 'srcc_all': r_total_file['srcc'], 'rmse_all': r_total_file['rmse'],} overall_results = { **r_total_file, **r_average } return db_results_df, overall_results #%% Loss class biasLoss(object): ''' Bias loss class. Calculates loss while considering database bias. ''' def __init__(self, db, anchor_db=None, mapping='first_order', min_r=0.7, loss_weight=0.0, do_print=True): self.db = db self.mapping = mapping self.min_r = min_r self.anchor_db = anchor_db self.loss_weight = loss_weight self.do_print = do_print self.b = np.zeros((len(db),4)) self.b[:,1] = 1 self.do_update = False self.apply_bias_loss = True if (self.min_r is None) or (self.mapping is None): self.apply_bias_loss = False def get_loss(self, yb, yb_hat, idx): if self.apply_bias_loss: b = torch.tensor(self.b, dtype=torch.float).to(yb_hat.device) b = b[idx,:] yb_hat_map = (b[:,0]+b[:,1]*yb_hat[:,0]+b[:,2]*yb_hat[:,0]**2+b[:,3]*yb_hat[:,0]**3).view(-1,1) loss_bias = self._nan_mse(yb_hat_map, yb) loss_normal = self._nan_mse(yb_hat, yb) loss = loss_bias + self.loss_weight * loss_normal else: loss = self._nan_mse(yb_hat, yb) return loss def update_bias(self, y, y_hat): if self.apply_bias_loss: y_hat = y_hat.reshape(-1) y = y.reshape(-1) if not self.do_update: r = pearsonr(y[~np.isnan(y)], y_hat[~np.isnan(y)])[0] if self.do_print: print('--> bias update: min_r {:0.2f}, pcc {:0.2f}'.format(r, self.min_r)) if r>self.min_r: self.do_update = True if self.do_update: if self.do_print: print('--> bias updated') for db_name in self.db.unique(): db_idx = (self.db==db_name).to_numpy().nonzero() y_hat_db = y_hat[db_idx] y_db = y[db_idx] if not np.isnan(y_db).any(): if self.mapping=='first_order': b_db = self._calc_bias_first_order(y_hat_db, y_db) else: raise NotImplementedError if not db_name==self.anchor_db: self.b[db_idx,:len(b_db)] = b_db def _calc_bias_first_order(self, y_hat, y): A = np.vstack([np.ones(len(y_hat)), y_hat]).T btmp = np.linalg.lstsq(A, y, rcond=None)[0] b = np.zeros((4)) b[0:2] = btmp return b def _nan_mse(self, y, y_hat): err = (y-y_hat).view(-1) idx_not_nan = ~torch.isnan(err) nan_err = err[idx_not_nan] return torch.mean(nan_err**2) #%% Early stopping class earlyStopper(object): ''' Early stopping class. Training is stopped if neither RMSE or Pearson's correlation is improving after "patience" epochs. ''' def __init__(self, patience): self.best_rmse = 1e10 self.best_r_p = -1e10 self.cnt = -1 self.patience = patience self.best = False def step(self, r): self.best = False if r['pcc_mean_file'] > self.best_r_p: self.best_r_p = r['pcc_mean_file'] self.cnt = -1 if r['rmse_map_mean_file'] < self.best_rmse: self.best_rmse = r['rmse_map_mean_file'] self.cnt = -1 self.best = True self.cnt += 1 if self.cnt >= self.patience: stop_early = True return stop_early else: stop_early = False return stop_early class earlyStopper_multitask(object): ''' Early stopping class for multi-task model. Training is stopped if neither RMSE or Pearson's correlation is improving after "patience" epochs. ''' def __init__(self, patience): self.best_rmse = 1e10 self.best_rmse_std = 1e10 self.best_r_p = -1e10 self.best_r_p_std = -1e10 self.cnt = -1 self.patience = patience self.best = False def step(self, r): self.best = False if r['pcc_mean_file'] > self.best_r_p: self.best_r_p = r['pcc_mean_file'] self.cnt = -1 if r['pcc_mean_file_std'] > self.best_r_p_std: self.best_r_p_std = r['pcc_mean_file_std'] self.cnt = -1 if r['rmse_map_mean_file'] < self.best_rmse: self.best_rmse = r['rmse_map_mean_file'] self.cnt = -1 self.best = True if r['rmse_map_mean_file_std'] < self.best_rmse_std: self.best_rmse_std = r['rmse_map_mean_file_std'] self.cnt = -1 self.cnt += 1 if self.cnt >= self.patience: stop_early = True return stop_early else: stop_early = False return stop_early class earlyStopper_dim(object): ''' Early stopping class for dimension model. Training is stopped if neither RMSE or Pearson's correlation is improving after "patience" epochs. ''' def __init__(self, patience): self.best_rmse = 1e10 self.best_rmse_noi = 1e10 self.best_rmse_col = 1e10 self.best_rmse_dis = 1e10 self.best_rmse_loud = 1e10 self.best_r_p = -1e10 self.best_r_p_noi = -1e10 self.best_r_p_col = -1e10 self.best_r_p_dis = -1e10 self.best_r_p_loud = -1e10 self.cnt = -1 self.patience = patience self.best = False def step(self, r): self.best = False if r['pcc_mean_file'] > self.best_r_p: self.best_r_p = r['pcc_mean_file'] self.cnt = -1 if r['pcc_mean_file_noi'] > self.best_r_p_noi: self.best_r_p_noi = r['pcc_mean_file_noi'] self.cnt = -1 if r['pcc_mean_file_col'] > self.best_r_p_col: self.best_r_p_col = r['pcc_mean_file_col'] self.cnt = -1 if r['pcc_mean_file_dis'] > self.best_r_p_dis: self.best_r_p_dis = r['pcc_mean_file_dis'] self.cnt = -1 if r['pcc_mean_file_loud'] > self.best_r_p_loud: self.best_r_p_loud = r['pcc_mean_file_loud'] self.cnt = -1 if r['rmse_map_mean_file'] < self.best_rmse: self.best_rmse = r['rmse_map_mean_file'] self.cnt = -1 self.best = True if r['rmse_map_mean_file_noi'] < self.best_rmse_noi: self.best_rmse_noi = r['rmse_map_mean_file_noi'] self.cnt = -1 if r['rmse_map_mean_file_col'] < self.best_rmse_col: self.best_rmse_col = r['rmse_map_mean_file_col'] self.cnt = -1 if r['rmse_map_mean_file_dis'] < self.best_rmse_dis: self.best_rmse_dis = r['rmse_map_mean_file_dis'] self.cnt = -1 if r['rmse_map_mean_file_loud'] < self.best_rmse_loud: self.best_rmse_loud = r['rmse_map_mean_file_loud'] self.cnt = -1 self.cnt += 1 if self.cnt >= self.patience: stop_early = True return stop_early else: stop_early = False return stop_early def get_lr(optimizer): ''' Get current learning rate from Pytorch optimizer. ''' for param_group in optimizer.param_groups: return param_group['lr'] #%% Dataset # class SpeechQualityDataset(Dataset): ''' Dataset for Speech Quality Model. ''' def __init__( self, df, df_con=None, data_dir='', folder_column='', filename_column='filename', mos_column='MOS', seg_length=15, max_length=None, to_memory=False, to_memory_workers=0, transform=None, seg_hop_length=1, ms_n_fft = 1024, ms_hop_length = 80, ms_win_length = 170, ms_n_mels=32, ms_sr=48e3, ms_fmax=16e3, ms_channel=None, double_ended=False, filename_column_ref=None, dim=False, mos_std_column=None, votes_column=None, task_type = 0, ): self.df = df self.df_con = df_con self.data_dir = data_dir self.folder_column = folder_column self.filename_column = filename_column self.filename_column_ref = filename_column_ref self.mos_column = mos_column self.seg_length = seg_length self.seg_hop_length = seg_hop_length self.max_length = max_length self.transform = transform self.to_memory_workers = 0 self.ms_n_fft = ms_n_fft self.ms_hop_length = ms_hop_length self.ms_win_length = ms_win_length self.ms_n_mels = ms_n_mels self.ms_sr = ms_sr self.ms_fmax = ms_fmax self.ms_channel = ms_channel self.double_ended = double_ended self.dim = dim self.mos_std_column = mos_std_column self.votes_column = votes_column self.task_type = task_type # if True load all specs to memory self.to_memory = False self._to_memory() def _to_memory_multi_helper(self, idx): return [self._load_spec(i) for i in idx] def _to_memory(self): if self.to_memory_workers==0: if self.task_type == 0: self.mem_list = [self._load_spec(idx) for idx in tqdm(range(len(self)))] elif self.task_type == 1: self.mem_list = [self._load_spec_multi_task(idx) for idx in tqdm(range(len(self)))] elif self.task_type == 2: self.mem_list = [self._load_spec_multi_feature(idx) for idx in tqdm(range(len(self)))] elif self.task_type == 3: self.mem_list = [self._load_spec_multi_resolution(idx) for idx in tqdm(range(len(self)))] elif self.task_type == 4: self.mem_list = [self._load_spec_multi_scale(idx) for idx in tqdm(range(len(self)))] # import pdb; pdb.set_trace() else: buffer_size = 128 idx = np.arange(len(self)) n_bufs = int(len(idx)/buffer_size) idx = idx[:buffer_size*n_bufs].reshape(-1,buffer_size).tolist() + idx[buffer_size*n_bufs:].reshape(1,-1).tolist() pool = multiprocessing.Pool(processes=self.to_memory_workers) mem_list = [] for out in tqdm(pool.imap(self._to_memory_multi_helper, idx), total=len(idx)): mem_list = mem_list + out self.mem_list = mem_list pool.terminate() pool.join() self.to_memory=True # import pdb; pdb.set_trace() def _load_spec(self, index): # Load spec file_path = os.path.join(self.data_dir, self.df[self.filename_column].iloc[index]) feature_path = file_path[:-4] + '_mel80_center.npy' try: spec = np.load(feature_path) except: spec = get_librosa_melspec( file_path, sr = self.ms_sr, n_fft=self.ms_n_fft, hop_length=self.ms_hop_length, win_length=self.ms_win_length, n_mels=self.ms_n_mels, fmax=self.ms_fmax, ms_channel=self.ms_channel ) np.save(feature_path, spec) # import pdb; pdb.set_trace() return spec def _load_spec_multi_task(self, index): # Load spec file_path = os.path.join(self.data_dir, self.df[self.filename_column].iloc[index]) feature_path = file_path[:-4] + '_mel48.npy' try: spec = np.load(feature_path) except: spec = get_librosa_melspec( file_path, sr = self.ms_sr, n_fft=self.ms_n_fft, hop_length=self.ms_hop_length, win_length=self.ms_win_length, n_mels=self.ms_n_mels, fmax=self.ms_fmax, ms_channel=self.ms_channel ) np.save(feature_path, spec) # import pdb; pdb.set_trace() return spec ''' # Load spec file_path = './test/' + self.df['db'].iloc[index] + '/' + self.df['deg_wav'].iloc[index] feature_path = file_path[:-4] + '_mel48.npy' # import pdb; pdb.set_trace() try: spec = np.load(feature_path) except: spec = get_librosa_melspec( file_path, sr = self.ms_sr, n_fft=self.ms_n_fft, hop_length=self.ms_hop_length, win_length=self.ms_win_length, n_mels=self.ms_n_mels, fmax=self.ms_fmax, ms_channel=self.ms_channel ) np.save(feature_path, spec) # import pdb; pdb.set_trace() return spec ''' def _load_spec_multi_feature(self, index): # Load spec file_path = os.path.join(self.data_dir, self.df[self.filename_column].iloc[index]) feature_path = file_path[:-4] + '_mel80.npy' try: spec = np.load(feature_path) except: spec = get_librosa_melspec( file_path, sr=None, n_fft=int(source_sr*0.04), hop_length=0.02, win_length=0.04, n_mels=80, fmax=20000, ms_channel=None, ) np.save(feature_path, spec) feature_path = file_path[:-4] + '_xlsr16k.npy' try: features = np.load(feature_path) except: signal, source_sr = sf.read(file_path) sr = 16000 singal_16k = librosa.resample(signal, source_sr, sr) F = np.reshape(singal_16k,(1,singal_16k.shape[0])) F = torch.from_numpy(F).float().to("cpu") features = self.model_ssl(F, features_only=True, mask=False)['x'] features = features.detach().numpy() features = features.squeeze(0) features = features.transpose(1,0) np.save(feature_path, features) frames = min(features.shape[1], spec.shape[1]) features = features[:,0:frames] spec = spec[:,0:frames] assert features.shape[1] == spec.shape[1], "ssl feature frames not equal to spectrum feature frames" # import pdb; pdb.set_trace() return spec, features def _load_spec_multi_resolution(self, index): # Load spec file_path = os.path.join(self.data_dir, self.df[self.filename_column].iloc[index]) feature_path = file_path[:-4] + '_mr_2_10.npy' try: spec1 = np.load(feature_path) except: spec1 = get_librosa_melspec( file_path, sr=None, n_fft=4096, hop_length=0.002, win_length=0.010, n_mels=80, fmax=20000, ms_channel=None, ) np.save(feature_path, spec1) feature_path = file_path[:-4] + '_mr_5_25.npy' try: spec2 = np.load(feature_path) except: spec2 = get_librosa_melspec( file_path, sr=None, n_fft=4096, hop_length=0.005, win_length=0.025, n_mels=80, fmax=20000, ms_channel=None, ) np.save(feature_path, spec2) feature_path = file_path[:-4] + '_mr_10_50.npy' try: spec3 = np.load(feature_path) except: spec3 = get_librosa_melspec( file_path, sr=None, n_fft=4096, hop_length=0.010, win_length=0.050, n_mels=80, fmax=20000, ms_channel=None, ) np.save(feature_path, spec3) # import pdb; pdb.set_trace() return spec1, spec2, spec3 def _load_spec_multi_scale(self, index): # Load spec file_path = os.path.join(self.data_dir, self.df[self.filename_column].iloc[index]) feature_path = file_path[:-4] + '_sr.npy' sr = np.load(feature_path) if sr == 48000 or sr == 44100: feature_path = file_path[:-4] + '_ms_48k.npy' try: spec1 = np.load(feature_path) except: spec1 = get_librosa_melspec( file_path, sr=48000, n_fft=4096, hop_length=0.01, win_length=0.02, n_mels=80, fmax=20000, ms_channel=None, ) np.save(feature_path, spec1) feature_path = file_path[:-4] + '_ms_16k.npy' try: spec2 = np.load(feature_path) except: spec2 = get_librosa_melspec( file_path, sr=16000, n_fft=4096, hop_length=0.01, win_length=0.02, n_mels=80, fmax=7200, ms_channel=None, ) np.save(feature_path, spec2) feature_path = file_path[:-4] + '_ms_8k.npy' try: spec3 = np.load(feature_path) except: spec3 = get_librosa_melspec( file_path, sr=8000, n_fft=4096, hop_length=0.01, win_length=0.02, n_mels=80, fmax=3600, ms_channel=None, ) np.save(feature_path, spec3) if sr == 16000 or sr == 32000: spec1 = sr feature_path = file_path[:-4] + '_ms_16k.npy' try: spec2 = np.load(feature_path) except: spec2 = get_librosa_melspec( file_path, sr=16000, n_fft=4096, hop_length=0.01, win_length=0.02, n_mels=80, fmax=7200, ms_channel=None, ) np.save(feature_path, spec2) feature_path = file_path[:-4] + '_ms_8k.npy' try: spec3 = np.load(feature_path) except: spec3 = get_librosa_melspec( file_path, sr=8000, n_fft=4096, hop_length=0.01, win_length=0.02, n_mels=80, fmax=3600, ms_channel=None, ) np.save(feature_path, spec3) if sr == 8000: spec1 = sr spec2 = sr feature_path = file_path[:-4] + '_ms_8k.npy' try: spec3 = np.load(feature_path) except: spec3 = get_librosa_melspec( file_path, sr=8000, n_fft=4096, hop_length=0.01, win_length=0.02, n_mels=80, fmax=3600, ms_channel=None, ) np.save(feature_path, spec3) # import pdb; pdb.set_trace() return sr, spec1, spec2, spec3 def __getitem__(self, index): assert isinstance(index, int), 'index must be integer (no slice)' # import pdb; pdb.set_trace() if self.to_memory: data = self.mem_list[index] else: if self.task_type == 0: data = self._load_spec(index) elif self.task_type == 1: data = self._load_spec_multi_task(index) elif self.task_type == 2: data = self._load_spec_multi_feature(index) elif self.task_type == 3: data = self._load_spec_multi_resolution(index) elif self.task_type == 4: data = self._load_spec_multi_scale(index) # Segment specs file_path = os.path.join(self.data_dir, self.df[self.filename_column].iloc[index]) # file_path = './test/' + self.df['db'].iloc[index] + '/' + self.df['deg_wav'].iloc[index] if self.seg_length is not None: # added 20220307 if self.task_type == 0: spec = data x_spec_seg, n_wins = segment_specs(file_path, spec, self.seg_length, self.seg_hop_length, self.max_length) elif self.task_type == 1: spec = data x_spec_seg, n_wins = segment_specs(file_path, spec, self.seg_length, self.seg_hop_length, self.max_length) elif self.task_type == 2: spec, ssl = data x_spec_seg, n_wins = segment_specs(file_path, spec, self.seg_length, self.seg_hop_length, self.max_length) x_spec_seg_ssl, n_wins = segment_specs(file_path, ssl, self.seg_length, self.seg_hop_length, self.max_length) elif self.task_type == 3: spec1 ,spec2, spec3 = data x_spec_seg_1, n_wins_1 = segment_specs(file_path, spec1, self.seg_length, self.seg_hop_length, self.max_length) x_spec_seg_2, n_wins_2 = segment_specs(file_path, spec2, self.seg_length, self.seg_hop_length, self.max_length) x_spec_seg_3, n_wins_3 = segment_specs(file_path, spec3, self.seg_length, self.seg_hop_length, self.max_length) elif self.task_type == 4: sr, spec1 ,spec2, spec3 = data if sr == 48000 or sr == 44100: x_spec_seg_1, n_wins_1 = segment_specs(file_path, spec1, self.seg_length, self.seg_hop_length, self.max_length) x_spec_seg_2, n_wins_2 = segment_specs(file_path, spec2, self.seg_length, self.seg_hop_length, self.max_length) x_spec_seg_3, n_wins_3 = segment_specs(file_path, spec3, self.seg_length, self.seg_hop_length, self.max_length) elif sr == 16000 or sr == 32000: x_spec_seg_2, n_wins_2 = segment_specs(file_path, spec2, self.seg_length, self.seg_hop_length, self.max_length) x_spec_seg_3, n_wins_3 = segment_specs(file_path, spec3, self.seg_length, self.seg_hop_length, self.max_length) x_spec_seg_1, n_wins_1 = np.zeros(x_spec_seg_2.shape), np.zeros(n_wins_3.shape, dtype=n_wins_3.dtype) elif sr == 8000: x_spec_seg_3, n_wins_3 = segment_specs(file_path, spec3, self.seg_length, self.seg_hop_length, self.max_length) x_spec_seg_1, n_wins_1 = np.zeros(x_spec_seg_3.shape), np.zeros(n_wins_3.shape, dtype=n_wins_3.dtype) x_spec_seg_2, n_wins_2 = np.zeros(x_spec_seg_3.shape), np.zeros(n_wins_3.shape, dtype=n_wins_3.dtype) else: x_spec_seg = spec n_wins = spec.shape[1] if self.max_length is not None: x_padded = np.zeros((x_spec_seg.shape[0], self.max_length)) x_padded[:,:n_wins] = x_spec_seg x_spec_seg = np.expand_dims(x_padded.transpose(1,0), axis=(1, 3)) if not torch.is_tensor(x_spec_seg): x_spec_seg = torch.tensor(x_spec_seg, dtype=torch.float) # Get MOS (apply NaN in case of prediction only mode) if self.dim: if self.mos_column=='predict_only': y = np.full((5,1), np.nan).reshape(-1).astype('float32') else: y_mos = self.df['mos'].iloc[index].reshape(-1).astype('float32') y_noi = self.df['noi'].iloc[index].reshape(-1).astype('float32') y_dis = self.df['dis'].iloc[index].reshape(-1).astype('float32') y_col = self.df['col'].iloc[index].reshape(-1).astype('float32') y_loud = self.df['loud'].iloc[index].reshape(-1).astype('float32') y = np.concatenate((y_mos, y_noi, y_dis, y_col, y_loud), axis=0) else: if self.mos_column=='predict_only': y = np.full(1, np.nan).reshape(-1).astype('float32') y1 = np.full(1, np.nan).reshape(-1).astype('float32') y2 = np.full(1, np.nan).reshape(-1).astype('float32') else: y = self.df[self.mos_column].iloc[index].reshape(-1).astype('float32') y1 = self.df[self.mos_std_column].iloc[index].reshape(-1).astype('float32') y2 = self.df[self.votes_column].iloc[index].reshape(-1).astype('int16') # import pdb; pdb.set_trace() if self.task_type == 0 or self.task_type == 1 : return x_spec_seg, y, (index, n_wins), y1, y2 elif self.task_type == 2: return x_spec_seg, x_spec_seg_ssl, y, (index, n_wins), y1, y2 elif self.task_type == 3: return x_spec_seg_1, x_spec_seg_2, x_spec_seg_3, y, (index, n_wins_1, n_wins_2, n_wins_3), y1, y2 elif self.task_type == 4 : if not torch.is_tensor(sr): sr = torch.tensor(sr) if not torch.is_tensor(x_spec_seg_1): x_spec_seg_1 = torch.tensor(x_spec_seg_1, dtype=torch.float32) if not torch.is_tensor(x_spec_seg_2): x_spec_seg_2 = torch.tensor(x_spec_seg_2, dtype=torch.float32) return sr, x_spec_seg_1, x_spec_seg_2, x_spec_seg_3, y, (index, n_wins_1, n_wins_2, n_wins_3), y1, y2 def __len__(self): return len(self.df) #%% Spectrograms def segment_specs(file_path, x, seg_length, seg_hop=1, max_length=None): ''' Segment a spectrogram into "seg_length" wide spectrogram segments. Instead of using only the frequency bin of the current time step, the neighboring bins are included as input to the CNN. For example for a seg_length of 7, the previous 3 and the follwing 3 frequency bins are included. A spectrogram with input size [H x W] will be segmented to: [W-(seg_length-1) x C x H x seg_length], where W is the width of the original mel-spec (corresponding to the length of the speech signal), H is the height of the mel-spec (corresponding to the number of mel bands), C is the number of CNN input Channels (always one in our case). ''' if seg_length % 2 == 0: raise ValueError('seg_length must be odd! (seg_lenth={})'.format(seg_length)) if not torch.is_tensor(x): x = torch.tensor(x) n_wins = x.shape[1]-(seg_length-1) # broadcast magic to segment melspec idx1 = torch.arange(seg_length) idx2 = torch.arange(n_wins) idx3 = idx1.unsqueeze(0) + idx2.unsqueeze(1) x = x.transpose(1,0)[idx3,:].unsqueeze(1).transpose(3,2) if seg_hop>1: x = x[::seg_hop,:] n_wins = int(np.ceil(n_wins/seg_hop)) if max_length is not None: if max_length < n_wins: raise ValueError('n_wins {} > max_length {} --- {}. Increase max window length ms_max_segments!'.format(n_wins, max_length, file_path)) x_padded = torch.zeros((max_length, x.shape[1], x.shape[2], x.shape[3])) x_padded[:n_wins,:] = x x = x_padded return x, np.array(n_wins) def get_librosa_melspec( file_path, sr=48e3, n_fft=1024, hop_length=80, win_length=170, n_mels=32, fmax=16e3, ms_channel=None, ): ''' Calculate mel-spectrograms with Librosa. ''' # Calc spec try: if ms_channel is not None: y, sr = lb.load(file_path, sr=sr, mono=False) if len(y.shape)>1: y = y[ms_channel, :] else: y, sr = lb.load(file_path, sr=sr) except: raise ValueError('Could not load file {}'.format(file_path)) hop_length = int(sr * hop_length) win_length = int(sr * win_length) S = lb.feature.melspectrogram( y=y, sr=sr, S=None, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window='hann', center=True, pad_mode='reflect', power=1.0, n_mels=n_mels, fmin=0.0, fmax=fmax, htk=False, norm='slaney', ) spec = lb.core.amplitude_to_db(S, ref=1.0, amin=1e-4, top_db=80.0) return spec
AlgorithmLib
/AlgorithmLib-4.0.3.tar.gz/AlgorithmLib-4.0.3/algorithmLib/MOS_INFER/NISQA_lib.py
NISQA_lib.py
import os import datetime import pandas as pd; pd.options.mode.chained_assignment=None import torch import torch.nn as nn from MOS_INFER import NISQA_lib as NL import sys,os from os import path class nisqaModel(object): ''' nisqaModel: Main class that loads the model and the datasets. Contains the training loop, prediction, and evaluation function. ''' def __init__(self, args): self.args = args self.runinfos = {} self._getDevice() self._loadModel() self._loadDatasets() self.args['now'] = datetime.datetime.today() def predict(self): print('---> Predicting ...') if self.args['tr_parallel']: self.model = nn.DataParallel(self.model) if self.args['dim']==True: y_val_hat, y_val = NL.predict_dim( self.model, self.ds_val, self.args['tr_bs_val'], self.dev, num_workers=self.args['tr_num_workers']) else: if self.args['task_type'] == 0: y_val_hat, y_val = NL.predict_mos( self.model, self.ds_val, self.args['tr_bs_val'], self.dev, num_workers=self.args['tr_num_workers']) elif self.args['task_type'] == 1: y_val_hat, y_val = NL.predict_mos_multitask( self.model, self.ds_val, self.args['tr_bs_val'], self.dev, num_workers=self.args['tr_num_workers']) elif self.args['task_type'] == 2: y_val_hat, y_val = NL.predict_mos_multifeature( self.model, self.ds_val, self.args['tr_bs_val'], self.dev, num_workers=self.args['tr_num_workers']) elif self.args['task_type'] == 3: y_val_hat, y_val = NL.predict_mos_multiresolution( self.model_1, self.model_2, self.model_3, self.ds_val, self.args['tr_bs_val'], self.dev, num_workers=self.args['tr_num_workers']) elif self.args['task_type'] == 4: y_val_hat, y_val = NL.predict_mos_multiscale( self.model_1, self.model_2, self.model_3, self.ds_val, self.args['tr_bs_val'], self.dev, num_workers=self.args['tr_num_workers']) # import pdb; pdb.set_trace() if self.args['output_dir']: self.ds_val.df['model'] = self.args['name'] self.ds_val.df.to_csv( os.path.join(self.args['output_dir'], 'test.csv'), index=False) # print(self.ds_val.df.to_string(index=False)) if self.args['task_type'] == 1: r_mos = NL.calc_eval_metrics(y_val[:,0].squeeze(), y_val_hat[:,0].squeeze()) r_std = NL.calc_eval_metrics(y_val[:,1].squeeze(), y_val_hat[:,1].squeeze()) print('mos') print(r_mos) print('std') print(r_std) else: r = NL.calc_eval_metrics(y_val.squeeze(), y_val_hat.squeeze()) print(r) return self.ds_val.df def _loadDatasets(self): if self.args['mode']=='predict_file': self._loadDatasetsFile() elif self.args['mode']=='predict_dir': self._loadDatasetsFolder() elif self.args['mode']=='predict_csv': self._loadDatasetsCSVpredict() elif self.args['mode']=='main': self._loadDatasetsCSV() else: raise NotImplementedError('mode not available') def _loadDatasetsFile(self): data_dir = os.path.dirname(self.args['deg']) file_name = os.path.basename(self.args['deg']) df_val = pd.DataFrame([file_name], columns=['deg']) # creating Datasets --------------------------------------------------- self.ds_val = NL.SpeechQualityDataset( df_val, df_con=None, data_dir = data_dir, filename_column = 'deg', mos_column = 'predict_only', seg_length = self.args['ms_seg_length'], max_length = self.args['ms_max_segments'], to_memory = None, to_memory_workers = None, seg_hop_length = self.args['ms_seg_hop_length'], transform = None, ms_n_fft = self.args['ms_n_fft'], ms_hop_length = self.args['ms_hop_length'], ms_win_length = self.args['ms_win_length'], ms_n_mels = self.args['ms_n_mels'], ms_sr = self.args['ms_sr'], ms_fmax = self.args['ms_fmax'], ms_channel = self.args['ms_channel'], double_ended = self.args['double_ended'], dim = self.args['dim'], filename_column_ref = None, mos_std_column = 'mos_std', votes_column = 'votes', task_type = self.args['task_type'], ) def _loadModel(self): ''' Loads the Pytorch models with given input arguments. ''' # if True overwrite input arguments from pretrained model # import pdb; pdb.set_trace() if self.args['pretrained_model']: # if os.path.isabs(self.args['pretrained_model']): # model_path = os.path.join(self.args['pretrained_model']) # else: # model_path = os.path.join(os.getcwd(), self.args['pretrained_model']) #model_path = os.path.join(sys.prefix, self.args['pretrained_model']) model_path = sys.prefix + '//'+ self.args['pretrained_model'] print(sys.prefix,model_path) if self.args['task_type'] == 3 or self.args['task_type'] == 4: checkpoint = torch.load(model_path[:-4] + '_1.tar', map_location=self.dev) checkpoint_2 = torch.load(model_path[:-4] + '_2.tar', map_location=self.dev) checkpoint_3 = torch.load(model_path[:-4] + '_3.tar', map_location=self.dev) else: checkpoint = torch.load(model_path, map_location=self.dev) # update checkpoint arguments with new arguments checkpoint['args'].update(self.args) self.args = checkpoint['args'] if self.args['model']=='NISQA_DIM': self.args['dim'] = True self.args['csv_mos'] = None # column names hardcoded for dim models else: self.args['dim'] = False if self.args['model']=='NISQA_DE': self.args['double_ended'] = True else: self.args['double_ended'] = False self.args['csv_ref'] = None # Load Model self.model_args = { 'ms_seg_length': self.args['ms_seg_length'], 'ms_n_mels': self.args['ms_n_mels'], 'cnn_model': self.args['cnn_model'], 'cnn_c_out_1': self.args['cnn_c_out_1'], 'cnn_c_out_2': self.args['cnn_c_out_2'], 'cnn_c_out_3': self.args['cnn_c_out_3'], 'cnn_kernel_size': self.args['cnn_kernel_size'], 'cnn_dropout': self.args['cnn_dropout'], 'cnn_pool_1': self.args['cnn_pool_1'], 'cnn_pool_2': self.args['cnn_pool_2'], 'cnn_pool_3': self.args['cnn_pool_3'], 'cnn_fc_out_h': self.args['cnn_fc_out_h'], 'td': self.args['td'], 'td_sa_d_model': self.args['td_sa_d_model'], 'td_sa_nhead': self.args['td_sa_nhead'], 'td_sa_pos_enc': self.args['td_sa_pos_enc'], 'td_sa_num_layers': self.args['td_sa_num_layers'], 'td_sa_h': self.args['td_sa_h'], 'td_sa_dropout': self.args['td_sa_dropout'], 'td_lstm_h': self.args['td_lstm_h'], 'td_lstm_num_layers': self.args['td_lstm_num_layers'], 'td_lstm_dropout': self.args['td_lstm_dropout'], 'td_lstm_bidirectional': self.args['td_lstm_bidirectional'], 'td_2': self.args['td_2'], 'td_2_sa_d_model': self.args['td_2_sa_d_model'], 'td_2_sa_nhead': self.args['td_2_sa_nhead'], 'td_2_sa_pos_enc': self.args['td_2_sa_pos_enc'], 'td_2_sa_num_layers': self.args['td_2_sa_num_layers'], 'td_2_sa_h': self.args['td_2_sa_h'], 'td_2_sa_dropout': self.args['td_2_sa_dropout'], 'td_2_lstm_h': self.args['td_2_lstm_h'], 'td_2_lstm_num_layers': self.args['td_2_lstm_num_layers'], 'td_2_lstm_dropout': self.args['td_2_lstm_dropout'], 'td_2_lstm_bidirectional': self.args['td_2_lstm_bidirectional'], 'pool': self.args['pool'], 'pool_att_h': self.args['pool_att_h'], 'pool_att_dropout': self.args['pool_att_dropout'], } if self.args['double_ended']: self.model_args.update({ 'de_align': self.args['de_align'], 'de_align_apply': self.args['de_align_apply'], 'de_fuse_dim': self.args['de_fuse_dim'], 'de_fuse': self.args['de_fuse'], }) print('Model architecture: ' + self.args['model']) if self.args['model']=='NISQA': if self.args['task_type'] == 0: self.model = NL.NISQA(**self.model_args) elif self.args['task_type'] == 1: self.model = NL.NISQA_MULTITASK(**self.model_args) elif self.args['task_type'] == 2: self.model = NL.NISQA(**self.model_args) elif self.args['task_type'] == 3: self.model_1 = NL.NISQA(**self.model_args) self.model_2 = NL.NISQA(**self.model_args) self.model_3 = NL.NISQA(**self.model_args) elif self.args['task_type'] == 4: self.model_1 = NL.NISQA(**self.model_args) self.model_2 = NL.NISQA(**self.model_args) self.model_3 = NL.NISQA(**self.model_args) elif self.args['model']=='NISQA_DIM': self.model = NL.NISQA_DIM(**self.model_args) elif self.args['model']=='NISQA_DE': self.model = NL.NISQA_DE(**self.model_args) else: raise NotImplementedError('Model not available') # Load weights if pretrained model is used ------------------------------------ if self.args['pretrained_model']: if self.args['task_type'] == 3 or self.args['task_type'] == 4: missing_keys, unexpected_keys = self.model_1.load_state_dict(checkpoint['model_state_dict'], strict=True) missing_keys, unexpected_keys = self.model_2.load_state_dict(checkpoint_2['model_state_dict'], strict=True) missing_keys, unexpected_keys = self.model_3.load_state_dict(checkpoint_3['model_state_dict'], strict=True) else: missing_keys, unexpected_keys = self.model.load_state_dict(checkpoint['model_state_dict'], strict=True) print('Loaded pretrained model from ' + self.args['pretrained_model']) if missing_keys: print('missing_keys:') print(missing_keys) if unexpected_keys: print('unexpected_keys:') print(unexpected_keys) # para_num = sum([p.numel() for p in self.model.parameters()]) # para_size = para_num * 4 / 1024 # import pdb; pdb.set_trace() def _getDevice(self): ''' Train on GPU if available. ''' if torch.cuda.is_available(): self.dev = torch.device("cuda") else: self.dev = torch.device("cpu") if "tr_device" in self.args: if self.args['tr_device']=='cpu': self.dev = torch.device("cpu") elif self.args['tr_device']=='cuda': self.dev = torch.device("cuda") print('Device: {}'.format(self.dev)) if "tr_parallel" in self.args: if (self.dev==torch.device("cpu")) and self.args['tr_parallel']==True: self.args['tr_parallel']==False print('Using CPU -> tr_parallel set to False')
AlgorithmLib
/AlgorithmLib-4.0.3.tar.gz/AlgorithmLib-4.0.3/algorithmLib/MOS_INFER/NISQA_model.py
NISQA_model.py
import ctypes,os,platform import sys,librosa from ctypes import * from formatConvert import pcm2wav import numpy as np import sys,os from os import path sys.path.append('../') from commFunction import get_data_array,make_out_file from VAD_NN.hubconf import silero_vad from PCC.Pearson_CC import get_max_cc_by_dll import numpy as np def merge_intervals(intervals, N): new_intervals = [] for i in range(len(intervals)): a, b = intervals[i][0], intervals[i][1] if i == 0: continue if i == 1: new_intervals.append([0, (intervals[i][0] + intervals[i - 1][1]) // 2]) else: new_intervals.append([(intervals[i-1][0]+intervals[i-2][1])//2+1, (intervals[i-1][1]+intervals[i][0])//2]) new_intervals.append([(intervals[-2][1] + intervals[-1][0]) // 2 + 1, N - 1]) return new_intervals def shift_array_by_interval(arr, intervals, offsets): """ 对numpy数组按照多个区间和偏移进行重新排列顺序 参数: arr: 一维numpy数组 intervals: 区间列表,格式为[[start1, end1], [start2, end2], ...] offsets: 偏移列表,格式为[offset1, offset2, ...] 返回值: 排序后的新数组 """ if offsets >= 0: base_point = intervals[0] - offsets arr1 = arr[:base_point] arr2 = arr[intervals[0]:] arr3 = arr[base_point:intervals[0]] new_arr = np.concatenate((arr1, arr2, arr3)) if offsets <= 0: base_point = intervals[0] - offsets arr1 = arr[:intervals[0]] arr2 = arr[intervals[0]:base_point] arr3 = arr[intervals[0]:] new_arr = np.concatenate((arr1, arr2, arr3)) # 返回新数组 return new_arr def replace_none(arr): """ 将数组arr中的None元素替换为周围两个元素的平均值 参数: arr: 一维数组,包含None和数字元素 返回值: 替换后的新数组 """ n = len(arr) result = [] if all(x is None for x in arr): result = None else: val = arr[0] if arr[0] is not None else arr[1] for i in range(n): if arr[i] is None: if i == n - 1 or arr[i + 1] is None: val = val else: k = i + 1 while k < n and arr[k] is None: k += 1 if k == n: val = val elif k == i + 1: val = arr[k] else: val = (arr[i - 1] + arr[k]) / 2 else: val = arr[i] result.append(val) val = val if arr[i] is None else arr[i] return result def shift_array(arr, n): """ 将数组arr中的前n个元素补到最后 参数: arr: 一维numpy数组 n: 指定的元素数量 返回值: 补全前n个元素后的新数组 """ # 使用切片语法将数组分为前n个元素和从第n个元素开始的元素 arr1 = arr[:n] arr2 = arr[n:] # 使用concatenate函数拼接数组 new_arr = np.concatenate((arr2, arr1)) # 返回新数组 return new_arr def get_my_dll(): """ :return: """ mydll = None cur_paltform = platform.platform().split('-')[0] if cur_paltform == 'Windows': mydll = ctypes.windll.LoadLibrary(sys.prefix + '/pcc.dll') if cur_paltform == 'macOS': mydll = CDLL(sys.prefix + '/pcc.dylib') if cur_paltform == 'Linux': mydll = CDLL(sys.prefix + '/pcc.so') return mydll def cal_fine_delay_of_specific_section(reffile, testfile,speech_section=None,targetfs=8000,outfile=None): """""" if speech_section is None: speech_section = silero_vad(reffile) #speech_section = [[0.941, 3.712], [4.7, 7.5]] delaysearchRange = 4 delayThreshhold = 0.3 single_frame_size = 0.5 frameshift = 0.4 ref_orgin_data,fs,ch = get_data_array(reffile) test_orgin_data,fs,ch = get_data_array(testfile) refdata = librosa.resample(ref_orgin_data.astype(np.float32), orig_sr=fs ,target_sr=targetfs) testdata = librosa.resample(test_orgin_data.astype(np.float32), orig_sr=fs ,target_sr=targetfs) maxsearchlen = len(testdata) delay_list = [] int_intervers = [[int(x*fs) for x in inner_arr] for inner_arr in speech_section] for point in speech_section: startpoint,endpoint = int(point[0]*targetfs),int(point[1]*targetfs) cal_len = endpoint - startpoint last_start_point,last_end_point = startpoint,endpoint caltimes = (cal_len - (single_frame_size) * targetfs) // (frameshift * targetfs) caltimes = int(caltimes) assert caltimes > 0 cc_list = [] for times in range(caltimes): start = int(startpoint + times * frameshift * targetfs) srcblock = refdata[start:start + int(single_frame_size*targetfs)] limit = min(maxsearchlen,int(start+(single_frame_size+delaysearchRange)*targetfs)) dstbloack = testdata[start:limit] maxCoin, startPoint = get_max_cc_by_dll(srcblock, dstbloack, get_my_dll(), 3) if maxCoin > delayThreshhold: cc_list.append(round((startPoint / targetfs), 8)) if len(cc_list) == 0: curDealy = None else: curDealy = sum(cc_list)/len(cc_list) delay_list.append(curDealy) delay_list = replace_none(delay_list) if delay_list is None: return None delay_list = [int(x*fs) for x in delay_list] result = [delay_list[0]] prev = delay_list[0] for i in range(1, len(delay_list)): diff = delay_list[i] - prev result.append(diff) prev = delay_list[i] base = shift_array(test_orgin_data, result[0]) if len(delay_list) == 1: if outfile is not None: make_out_file(outfile, base, fs, ch) return sum(delay_list) / len(delay_list) / fs intervals = merge_intervals(int_intervers,len(test_orgin_data)) for i in range(len(result)): if i == 0: continue else: base = shift_array_by_interval(base,intervals[i],result[i]) if outfile is not None: make_out_file(outfile, base, fs, ch) if len(delay_list) == 0: return None else: return sum(delay_list)/len(delay_list)/fs def cal_fine_delay(reffile, testfile,targetfs=8000,outfile=None): """""" delaysearchRange = 4 delayThreshhold = 0.3 single_frame_size = 1 reforgindata,fs,ch = get_data_array(reffile) testorigndata,fs,ch = get_data_array(testfile) refdata = librosa.resample(reforgindata.astype(np.float32), orig_sr=fs ,target_sr=targetfs) testdata = librosa.resample(testorigndata.astype(np.float32), orig_sr=fs ,target_sr=targetfs) cal_len = min(len(refdata),len(testdata)) caltimes = (cal_len - (delaysearchRange + single_frame_size) * targetfs) // (single_frame_size * targetfs) caltimes = int(caltimes) assert caltimes > 0 cc_list = [] for times in range(caltimes): start = int(times * single_frame_size * targetfs) srcblock = refdata[start:start + single_frame_size*targetfs] dstbloack = testdata[start:start + (single_frame_size+delaysearchRange)*targetfs] maxCoin, startPoint = get_max_cc_by_dll(srcblock, dstbloack, get_my_dll(), 3) print(maxCoin) if maxCoin > delayThreshhold: cc_list.append(round((startPoint / targetfs), 8)) if len(cc_list) == 0: return None else: finaldelay = sum(cc_list)/len(cc_list) if outfile is not None: make_out_file(outfile,shift_array(testorigndata,int(fs*finaldelay)),fs,ch) return finaldelay if __name__ == '__main__': ref = 'speech_cn.wav' test = 'mixDstFile_minus_13.wav' test2 = 'mixFile.wav' #a = cal_fine_delay_of_specific_section(pcm2wav(ref),pcm2wav(test),outfile='out.wav',speech_section=([16.467,18.769],[19.6,21.2],[22,24.2])) a = cal_fine_delay_of_specific_section(pcm2wav(ref), pcm2wav(test), outfile='out2.wav') #b = cal_fine_delay(pcm2wav(ref),pcm2wav(test2)) #a = cal_fine_delay(pcm2wav(ref), pcm2wav(test),outfile='out.wav') print(a) pass
AlgorithmLib
/AlgorithmLib-4.0.3.tar.gz/AlgorithmLib-4.0.3/algorithmLib/timeAligment/time_align.py
time_align.py
import cv2 import numpy as np from Algorithms.image_processing.utils import read_image, rgb_min_image, min_filter class DarkPrior(): def __init__(self, epsilon=10**-8): self.epsilon = epsilon def dark_channel(self, image): # output the dark channel as the image new_image = image.copy() # perfroming the 15 x 15 min filter min_image = min_filter(new_image) # perfroming the color min operation dark_prior = rgb_min_image(min_image) return dark_prior def transmission_map(self, image,A,w): #finds the transmission map for the image image_new = np.divide(image,A).astype(float) # finding the dark channel of the divide image new_dark = self.dark_channel(image_new) # Saling and subtracting the image transmission = 1 - w*new_dark return transmission def a_estimator(self, image,dark_prior): #Used the information extracted from the dark prior #find a value for A image_copy = image.copy() [row,col,dem] = image_copy.shape dark_copy = dark_prior.copy() # finding the number of 0.01% values num = np.round(row*col*0.001).astype(int) j = sorted(np.asarray(dark_copy).reshape(-1), reverse=True)[:num] # getting the location of the top 0.01% ind = np.unravel_index(j[0], dark_copy.shape) # Pefroming a search for the max value in the group max_val = image_copy[ind[0],ind[1],:] for element in j: ind = np.unravel_index(element, dark_copy.shape) if sum(max_val[:]) < sum(image_copy[ind[0],ind[1],:]): max_val[:] = image_copy[ind[0],ind[1],:] # creating a color image of the max value A = image_copy A[:,:,:] = max_val[:] return A def Radience_cal(self, image, A, transmission_map, t_not): #Used information from the transmit map to remove haze from the image. image_copy = image.copy() transmission_map_copy = (transmission_map.copy()).astype(float) # Pefroming the min operation between Ttransmission map and 0.1 divisor = np.maximum(transmission_map_copy,t_not) radience = (image.copy()).astype(float) # Perfroming the eqution 3 for every color channel for i in range(3): radience[:,:,i] = np.divide( ((image_copy[:,:,i]).astype(float) - A[0,0,i]), divisor) + A[0,0,i] # Capping all of the out of bound values #radience = radience - np.min(radience) #radience = 255*(radience/np.max(radience)) radience[radience>255]=255 radience[radience<0]=0 return radience.astype('uint8') def guided_filter(self, image,guide,diameter,epsilon): w_size = diameter+1 # Exatrcation the mean of the image by blurring meanI=cv2.blur(image,(w_size,w_size)) mean_Guide=cv2.blur(guide,(w_size,w_size)) # Extracting the auto correlation II=image**2 corrI=cv2.blur(II,(w_size,w_size)) # Finding the correlation between image and guide I_guide=image*guide corrIG=cv2.blur(I_guide,(w_size,w_size)) # using the mean of the image to find the variance of each point varI=corrI-meanI**2 covIG=corrIG-meanI*mean_Guide #covIG normalized with a epsilon factor a=covIG/(varI+epsilon) #a is used to find the b b=mean_Guide-a*meanI meanA=cv2.blur(a,(w_size,w_size)) meanB=cv2.blur(b,(w_size,w_size)) # using the mean of a b to fix refine the transmission map transmission_rate=meanA*image+meanB # normalizaing of the transimational map transmission_rate = transmission_rate/np.max(transmission_rate) return transmission_rate def haze_remover(self, path=None, image=None): ''' This function is used to dehaze a image from an image path or from a cv2 image object ''' if path is None and image is None: print("There is not path and image enter to the function. Please add a image or a path to the model") return None else: if image is None: image = read_image(path) min_image = min_filter(image) dark_prior = rgb_min_image(min_image) A = self.a_estimator(image,dark_prior) img_gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) Transmition_image = self.transmission_map(image,A,0.95) refine_Transmission_image = self.guided_filter(img_gray.astype(np.float32),Transmition_image.astype(np.float32),100,self.epsilon) refine_radience_image = self.Radience_cal(image,A,refine_Transmission_image,0.1) self.output = {'Input':image, 'Min_Image':min_image, 'A':A ,'Gray_Image':img_gray, 'Transmition_Map':Transmition_image, 'Refine_Transmition_Map':refine_Transmission_image, 'DeHaze_Image':refine_radience_image} return self.output def save_image(self, path='output.jpg', key='DeHaze_Image'): ''' Input is path/filename Key is the file you want to save key = [Input, Min_Image, A, Gray_Image, Transmition_Map, Refine_Transmition_Map, DeHaze_Image] saves the image to the path ''' cv2.imwrite(path,self.output[key]) print('file name {} has been saved').format(path)
Algorithms-abhay
/Algorithms-abhay-0.0.1.tar.gz/Algorithms-abhay-0.0.1/Image_Processing/Dehazing.py
Dehazing.py
from __future__ import absolute_import import pickle import numpy as np from .decision_stamp import decision_stamp class ada_boost(): def __init__(self, n_estimators=10, clf=decision_stamp): self.clf = clf self.n_estimators = n_estimators self.alpha = list() self.scores = list() self.weights = list() self.weak_clf = list() self.label_pred = list() self.weight_error = list() def get_params(self): return{'n_estimators':self.n_estimators} def set_parmas(self, **parameters): for parameter, value in parameters.items(): setattr(self, parameter, value) return self def weight_cal(self, epsolan, weight, label, prediction): label_pred = -1*np.multiply(label,prediction) self.label_pred.append(label_pred) # Alpha epsolan/=sum(weight) alpha_m = 0.5*np.log((1-epsolan)/epsolan) # New weights weight_new = np.multiply(weight,np.exp([float(x) * alpha_m for x in label_pred])) self.alpha.append(alpha_m) return weight_new def predict(self,data): row, _ = data.shape sum_y_pred = np.zeros((row)) for i, clf in enumerate(self.weak_clf): sum_y_pred += self.alpha[i]*clf.predict(data) y_pred = np.sign(sum_y_pred) return y_pred def fit(self, data,label,weight= None): row,col = data.shape if weight is None: labels, counts = np.unique(label, return_counts=True) counts = 0.5*(1/np.array(counts)) new_init_weight = [counts[np.where(labels == l)[0][0]] for l in list(label)] weight = np.array(new_init_weight) weight = np.ones(row)/row for i in range(self.n_estimators): self.weights.append(weight) curr_clf = self.clf() curr_clf.fit(data,label,weight) curr_pred = curr_clf.predict(data) weight_error = sum([w*(p != l) for p, l, w in zip(curr_pred, label, weight)]) weight = self.weight_cal(weight_error,weight,label,curr_pred) self.weak_clf.append(curr_clf) self.scores.append(self.score(data,label)) def score(self,data,label): pred = self.predict(data) equality_check = lambda y1,y2: y1 == y2 total = sum(map(equality_check, label, pred)) score = total/len(list(label)) return score def save(self, path): model = { "clf" : self.clf, "n_estimators" : self.n_estimators, "alpha" : self.alpha, "weak_clf" : self.weak_clf, "scores" : self.scores } pickle.dump(model,open(path, 'wb')) def load(self, path): model = pickle.load(open(path, 'rb')) self.clf = model['clf'] self.n_estimators = model['n_estimators'] self.alpha = model['alpha'] self.scores = model['scores'] self.weak_clf = model['weak_clf']
Algorithms-abhay
/Algorithms-abhay-0.0.1.tar.gz/Algorithms-abhay-0.0.1/Machine_Learning/adaboost.py
adaboost.py
import numpy as np class decision_stamp(): def __init__(self): # The index of the feature used to make classification self.feature_index = None # The threshold value that the feature should be measured against self.threshold = 0 # Pairity of the threshold self.pairty = 1 self.weight_error = 0 self.weights = None def get_params(self): parameters = {"feature_index": self.feature_index, "threshold":self.threshold, "pairty":self.pairty, "weight_error":self.weight_error} return parameters def fit(self, data=None, label=None, weight=None): ''' X, y, W should all be numpy array X shape = [N,M] Y shape = [1,N] W shape = [1,N] ''' if (data is None and label is None): print("Improper input in the function") else: f_star = float('inf') [row, col] = data.shape labels, counts = np.unique(label, return_counts=True) if (counts[0] > counts[1]): label = -1*label self.pairty = -1 if weight is None: counts = (1/labels.shape[0])*(1/np.array(counts)) new_init_weight = [counts[np.where(labels == l)[0][0]] for l in list(label)] weight = np.array(new_init_weight) for j in range(col): index = data[:,j].argsort() x_j = data[:,j][index] y_j = label[index] d_j = weight[index] f_curr = sum(d_j[y_j == 1]) if f_curr<f_star: f_star = f_curr theta_star = x_j[0] - 1 j_star = j for i in range(0,row-1): f_curr -= y_j[i]*d_j[i] if (f_curr<f_star and x_j[i]!=x_j[i+1]): f_star = f_curr theta_star= 0.5*((x_j[i] + x_j[i+1])) j_star=j self.feature_index = j_star self.threshold = theta_star self.weight_error = f_star self.weights = weight return self def predict(self, data): if self.pairty == -1: prediction = (data[:,self.feature_index] > self.threshold).astype(int) else : prediction = (data[:,self.feature_index] <= self.threshold).astype(int) prediction = 2*prediction - 1 return prediction def score(self, label, prediction): same_check = lambda y1,y2: y1 == y2 total = sum(map(same_check, label, prediction)) score = total/len(list(label)) return score
Algorithms-abhay
/Algorithms-abhay-0.0.1.tar.gz/Algorithms-abhay-0.0.1/Machine_Learning/decision_stamp.py
decision_stamp.py
## 一、安装 ``` shell # 本地安装 pip install AliFCWeb # fun安装 fun install --save --runtime python3 --package-type pip AliFCWeb ``` ## 二、快速入门 ### 1. 本地配置fun 由于AliFCWeb是第三方库,所以需要自己上传,为了使用方便,我们使用阿里云官方调试工具fun进行代码编写和调试。 - 安装fun,安装教程参考[官方文档](https://github.com/alibaba/funcraft/blob/master/docs/usage/installation-zh.md?spm=a2c4g.11186623.2.18.30a8130772dyyb&file=installation-zh.md) - 配置fun环境 - 配置方法1:在命令台键入 fun config,然后按照提示,依次配置 Account ID、Access Key Id、Secret Access Key、 Default Region Name - 配置方法2:在C:\Users\当前用户\\.fcli文件夹下创建config.yaml文件并输入以下内容(注意将其中的配置替换成你自己的配置) ```yaml endpoint: 'https://AccountID.RegionName.fc.aliyuncs.com' api_version: '2016-08-15' access_key_id: AccessKeyId access_key_secret: SecretAccessKey security_token: '' debug: false timeout: 10 retries: 3 sls_endpoint: RegionName.fc.aliyuncs.com report: true ``` ### 2. 编写HelloWorld - 本地创建test目录,用于存放所有的demo - 在test目录下创建demo01 - 在demo01目录下创建template.yml,内容如下: ```yaml ROSTemplateFormatVersion: '2015-09-01' Transform: 'Aliyun::Serverless-2018-04-03' Resources: fcweb-demo: Type: 'Aliyun::Serverless::Service' Properties: Description: '函数计算fcweb框架demo' demo01: Type: 'Aliyun::Serverless::Function' Properties: Description: 'HelloWorld' Handler: index.handler Runtime: python3 CodeUri: '.' Timeout: 30 Events: httpTrigger: Type: HTTP Properties: AuthType: ANONYMOUS Methods: - GET - POST - PUT - DELETE ``` - 在demo01目录下创建index.py,代码如下: ```python import json import logging from AliFCWeb import fcIndex, get, post, put, delete, ResponseEntity @fcIndex() def handler(environ, start_response): pass @get() def testFC(data): return ResponseEntity.ok('Hello World!') ``` - 引包,控制台执行命令 ```shell fun install --save --runtime python3 --package-type pip AliFCWeb ``` ![目录结构](./img//demo01/01.png) - 上传,控制台执行命令 ```shell fun deploy ``` - 进入函数计算控制台,点击执行查看运行结果 ![Hello World执行结果](./img//demo01/02.png) ## 三、获取参数 ### 1. 获取地址栏参数 - 复制demo01,重命名为demo02 - 修改template.yml ```yaml ROSTemplateFormatVersion: '2015-09-01' Transform: 'Aliyun::Serverless-2018-04-03' Resources: fcweb-demo: Type: 'Aliyun::Serverless::Service' Properties: Description: '函数计算fcweb框架demo' demo02: Type: 'Aliyun::Serverless::Function' Properties: Description: '获取地址栏参数' Handler: index.handler Runtime: python3 CodeUri: '.' Timeout: 30 Events: httpTrigger: Type: HTTP Properties: AuthType: ANONYMOUS Methods: - GET - POST - PUT - DELETE ``` - 修改index.py ```python import json import logging from AliFCWeb import fcIndex, get, post, put, delete, ResponseEntity @fcIndex(debug=True) def handler(environ, start_response): pass @get() def testFC(data): print('前端传来的参数:') print(data) return ResponseEntity.ok(data) ``` - 上传代码 ```shell fun deploy ``` - 测试,在控制台随便传递几个参数 ![](./img//demo02/01.png) ![](./img//demo02/02.png) ### 2. 获取body参数 - 复制demo02,重命名为demo03 - 修改template.yml文件 ```yaml ROSTemplateFormatVersion: '2015-09-01' Transform: 'Aliyun::Serverless-2018-04-03' Resources: fcweb-demo: Type: 'Aliyun::Serverless::Service' Properties: Description: '函数计算fcweb框架demo' demo03: Type: 'Aliyun::Serverless::Function' Properties: Description: '获取body参数' Handler: index.handler Runtime: python3 CodeUri: '.' Timeout: 30 Events: httpTrigger: Type: HTTP Properties: AuthType: ANONYMOUS Methods: - GET - POST - PUT - DELETE ``` - 修改index.py文件 ```python import json import logging from AliFCWeb import fcIndex, get, post, put, delete, ResponseEntity @fcIndex(debug=True) def handler(environ, start_response): pass # 改为post请求 @post() def testFC(data): print('前端传来的参数:') print(data) return ResponseEntity.ok(data) ``` - 上传代码 ```shell fun deploy ``` - 测试执行 ![](./img//demo03/01.png) ![](./img//demo03/02.png) ### 3. 获取摸板参数 - 复制demo03,重命名为demo04 - 修改template.yml文件 ```yaml ROSTemplateFormatVersion: '2015-09-01' Transform: 'Aliyun::Serverless-2018-04-03' Resources: fcweb-demo: Type: 'Aliyun::Serverless::Service' Properties: Description: '函数计算fcweb框架demo' demo04: Type: 'Aliyun::Serverless::Function' Properties: Description: '获取摸板参数' Handler: index.handler Runtime: python3 CodeUri: '.' Timeout: 30 Events: httpTrigger: Type: HTTP Properties: AuthType: ANONYMOUS Methods: - GET - POST - PUT - DELETE ``` - 修改index.py文件 ```python import json import logging from AliFCWeb import fcIndex, get, post, put, delete, ResponseEntity @fcIndex(debug=True) def handler(environ, start_response): pass @get('/demo04/{name}') def testFC(data): print('前端传来的参数:') print(data) return ResponseEntity.ok(data) ``` - 上传代码 ```shell fun deploy ``` - 测试执行 ![](./img//demo04/01.png) ![](./img//demo04/02.png) ### 4. 获取混合参数 - 复制demo04,重命名为demo05 - 修改template.yml文件 ```yaml ROSTemplateFormatVersion: '2015-09-01' Transform: 'Aliyun::Serverless-2018-04-03' Resources: fcweb-demo: Type: 'Aliyun::Serverless::Service' Properties: Description: '函数计算fcweb框架demo' demo05: Type: 'Aliyun::Serverless::Function' Properties: Description: '获取混合参数' Handler: index.handler Runtime: python3 CodeUri: '.' Timeout: 30 Events: httpTrigger: Type: HTTP Properties: AuthType: ANONYMOUS Methods: - GET - POST - PUT - DELETE ``` - 修改index.py文件 ```python import json import logging from AliFCWeb import fcIndex, get, post, put, delete, ResponseEntity @fcIndex(debug=True) def handler(environ, start_response): pass @post('/demo05/{name}') def testFC(data): print('前端传来的参数:') print(data) return ResponseEntity.ok(data) ``` - 上传代码 ```shell fun deploy ``` - 测试执行(为了方便查看结果,此处我们使用类似postman的工具进行测试) ![](./img//demo05/01.png) ![](./img//demo05/02.png) ## 四、使用配置中心 为了解决函数计算的配置问题,提供一个默认的配置中心,可以将配置统一写在这个配置中心供其他函数调用。 ### 1. 创建配置中心 创建默认的配置中心只需要以下几个步骤 - 创建函数 - 创建config目录 - 在config目录下创建index.py,使用configCenter装饰器装饰handler函数 ```python from AliFCWeb import configCenter @configCenter() def handler(environ, start_response): pass ``` - 在config目录下创建template.yml ```yaml ROSTemplateFormatVersion: '2015-09-01' Transform: 'Aliyun::Serverless-2018-04-03' Resources: fcweb-demo: Type: 'Aliyun::Serverless::Service' Properties: Description: '函数计算fcweb框架demo' config: Type: 'Aliyun::Serverless::Function' Properties: Description: '配置中心' Handler: index.handler Runtime: python3 CodeUri: '.' Timeout: 30 Events: httpTrigger: Type: HTTP Properties: AuthType: ANONYMOUS Methods: - GET - POST - PUT - DELETE ``` - 引入AliFCWeb包 ```shell fun install --save --runtime python3 --package-type pip AliFCWeb ``` - 添加配置文件,配置中心只需要一个application.py的配置文件用于存放配置 - 在config目录创建application.py文件即可,创建后结构如下: ![](./img/config/01.png) ### 2. 使用配置中心 - 在application.py中新增一些配置 ```python mysql = { 'url': 'localhost', 'username': 'root', 'password': 'fcweb', 'charset': 'utf-8' } ``` - 向配置中心发送请求获取配置 ![](./img/config/02.png) ### 3. 为配置中心设置密码 - 在配置中心的application.py文件中设置pwd的值 ![](./img/config/03.png) - 测试 ![](./img/config/04.png) ![](./img/config/05.png) ### 4. 在其他函数计算中获取配置 - 复制前面的demo05,重命名为demo06 - 修改template.yml中的函数名为demo06 ```yaml ROSTemplateFormatVersion: '2015-09-01' Transform: 'Aliyun::Serverless-2018-04-03' Resources: fcweb-demo: Type: 'Aliyun::Serverless::Service' Properties: Description: '函数计算fcweb框架demo' demo06: Type: 'Aliyun::Serverless::Function' Properties: Description: '获取配置' Handler: index.handler Runtime: python3 CodeUri: '.' Timeout: 30 Events: httpTrigger: Type: HTTP Properties: AuthType: ANONYMOUS Methods: - GET - POST - PUT - DELETE ``` - 添加application.py文件 ```python conf_center = { # 配置中心url,可以是全路径如:https://xxx.cn-hangzhou.fc.aliyuncs.com/2016-08-15/proxy/fcweb-demo/config/ 'url': '/fcweb-demo/config/', # 配置中心密码 'pwd': 'abc123' } ``` - 修改index.py ```python import json import logging from AliFCWeb import fcIndex, get, post, put, delete, ResponseEntity # 引入获取配置的方法 from AliFCWeb import getConfByName @fcIndex(debug=True) def handler(environ, start_response): pass @get() def testFC(data): # 获取配置 mysqlConf = getConfByName('mysql') return ResponseEntity.ok(mysqlConf) ``` - 验证结果 ![](./img/demo06/01.png) ### 5. 一次性获取多个配置 上面已经用geyConfByName方法获取了mysql的配置,该方法每次会先从本地缓存寻找配置,如果没有则会去配置中心拉取。优点是使用方便,缺点是只能一次获取一个配置。如果想批量获取,可以使用getConfigFromConfCenter方法 - 复制demo06,重命名为demo07 - 修改template.yml文件 ```yaml ROSTemplateFormatVersion: '2015-09-01' Transform: 'Aliyun::Serverless-2018-04-03' Resources: fcweb-demo: Type: 'Aliyun::Serverless::Service' Properties: Description: '函数计算fcweb框架demo' demo07: Type: 'Aliyun::Serverless::Function' Properties: Description: '批量获取配置' Handler: index.handler Runtime: python3 CodeUri: '.' Timeout: 30 Events: httpTrigger: Type: HTTP Properties: AuthType: ANONYMOUS Methods: - GET - POST - PUT - DELETE ``` - 修改index.py文件 ```python import json import logging from AliFCWeb import fcIndex, get, post, put, delete, ResponseEntity from AliFCWeb import getConfByName, CONF_CENTER_NAME # 引入getConfigFromConfCenter方法 # 该方法在AliFCWeb.fcutils包下 from AliFCWeb.fcutils import getConfigFromConfCenter @fcIndex(debug=True) def handler(environ, start_response): pass @get() def testFC(data): # 先获取配置中心url centerConfig = getConfByName(CONF_CENTER_NAME) # 获取配置 myConf = getConfigFromConfCenter(centerConfig['url'], ['mysql', 'postgresql'], centerConfig['pwd']) return ResponseEntity.ok(myConf.text) ``` - 测试 - 在配置中心(/feweb-demo/config/)的application.py文件中添加postgresql的配置信息 ```python postgresql = { 'dbname': 'cofree', 'user': 'postgres', 'password': '123456', 'host': 'localhost' } ``` - 测试demo07 ![](./img/demo07/01.png) ## 五、自定义返回格式 ### 1. ResponseEntity类 在前面我们使用了ResponseEntity类进行返回,该类已经对返回结果进行了处理和封装。你可以直接new一个ResponseEntity,也可以通过内置的常用静态方法快速获取一个ResponseEntity实例,下面是**部分**内置方法 | 方法名 | 方法说明 | 备注 | | --------------------------- | -------------- | --------- | | ResponseEntity.ok() | 操作正确时返回 | 返回码200 | | ResponseEntity.badRequest() | 错误时返回 | 返回码400 | | ResponseEntity.notFound() | 返回404 | | | ResponseEntity.serverError()| 服务器发生错误 | 返回码500 | | ResponseEntity.unauthorized() | 权限不足 | 返回码401 | ### 2. 自定义返回格式 - 更改ResponseEntity类的build()方法即可更改返回结果,但是不建议你这做 - 更好的方式是继承ResponseEntity类并重写build()方法 - 新建demo08,并创建index.py,template.yml文件,导入AliFCWeb库 - 在demo08目录下新建myResponseEntity.py文件,内容如下 ```python from AliFCWeb import ResponseEntity from AliFCWeb import getConfByName, FC_START_RESPONSE class MyResponseEntity(ResponseEntity): def build(self, token = None): # 设置请求头和请求code # 这一步必须要 start_response = getConfByName(FC_START_RESPONSE) start_response(self.statusCode, self.response_headers) # self.res中储存了要返回的数据 res = 'Hello ' + self.res return [res.encode()] ``` - 修改index.py文件 ```python import json import logging from AliFCWeb import fcIndex, get, post, put, delete # 引入自定义的ResponseEntity from myResponseEntity import MyResponseEntity @fcIndex(debug=True) def handler(environ, start_response): pass @get() def testFC(data): res = MyResponseEntity('200', data.get('name', 'World')) return res ``` - 上传并测试 ![](./img/demo08/01.png) ## 六、安全和权限验证 ### 1. 登录验证 在get, post, put, delete四种请求方式中都可以设置login,auth和uToken三个参数 - login:验证是否登录,需要引入pyjwt包并在配置中心配置密钥,前端需要在请求头中携带3RD_SESSION参数 - auth:权限验证,传入一个方法,框架会调用该方法并将3RD_SESSION作为参数传递给该方法。返回True则代表鉴权成功,否则鉴权失败 - uToken:是否自动更新token #### 1.1 配置密钥 在配置中心配置RSA密钥,密钥可以找在线网站生成或者使用本地工具生成 修改配置中心的application.py文件,添加密钥 ```python # 公钥 rsa_public_key = '''-----BEGIN PUBLIC KEY----- MFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBANyrRZamov8MEpJf70ljWNrZxa7HbUhR mTulmdc64tQ5Cjp5iIiJefAI8l9sJdj4RGwmJVuIVZJ4inWs0QRme1MCAwEAAQ== -----END PUBLIC KEY----- ''' # 私钥 rsa_private_key = '''-----BEGIN PRIVATE KEY----- MIIBVgIBADANBgkqhkiG9w0BAQEFAASCAUAwggE8AgEAAkEA3KtFlqai/wwSkl/v SWNY2tnFrsdtSFGZO6WZ1zri1DkKOnmIiIl58AjyX2wl2PhEbCYlW4hVkniKdazR BGZ7UwIDAQABAkEA05di9a65EmgIEtTshGk/lTJF7G6LalHb5abH2eo8ABMd3LOx Uu080HisRqMP7lRDYIl+pIvbn3JD3qQEU/6mWQIhAO51C3nzF+kcuAtxf6UBAAil D+IbajDyeVnnTqb5H9wlAiEA7Oc3LMviG91RuNAhhnSojkbHqJPHXvn6kqL9Xxra pBcCIQDkHsTj3VM6h2bqS6I5UEOgAYi4XlGwkcbV4xqzUhDQoQIgVqLMA77gBq6u dzbuO7yn87ggxh6dF7e1kjC3FjO856sCIQChK4bPN58V2shUFSvxyNbcjzljajC2 KWhUrhfmSsmj0g== -----END PRIVATE KEY-----''' ``` #### 1.2 编写测试demo - 新建demo09 - 创建index.py文件和application.py文件以及template.yml文件 - 在demo09目录下打开控制台执行以下命令 ```python fun install --save --runtime python3 --package-type pip AliFCWeb fun install --save --runtime python3 --package-type pip pyjwt ``` - 修改index.py文件 ```python import json import logging from AliFCWeb import fcIndex, get, post, put, delete, ResponseEntity from AliFCWeb import getPayloadFromHeader _log = logging.getLogger() @fcIndex(debug=True) def handler(environ, start_response): pass @get() def testFC(data): password = data['password'] if password == 123456: # 获取Token userId = data.get('id', 1) return ResponseEntity.ok('登录成功!').setToken({'user_id': userId}) else: return ResponseEntity.unauthorized('密码错误!') @post(login=True) def testPost(data): token = getPayloadFromHeader() _log.info(token) return ResponseEntity.ok('操作成功') ``` #### 1.3 模拟登录 - 先用get请求模拟登录 ![](./img/demo09/01.png) - 登录成功后后端会返回加密的token - 以后每次请求将token放在请求头(名字为3RD_SESSION)即可 - 用post请求验证登录 - 设置post请求的login=True ![](./img/demo09/02.png) - 你可以将一些有用的信息存入token,然后在代码中使用getPayloadFromHeader()方法获取了token中的信息 - 你也可以用getTokenFromHeader()方法获取token,两个方法的返回结果是完全一样的,区别在于getTokenFromHeader()需要对token进行鉴定。 - 如果设置了login=True参数建议使用getPayloadFromHeader()获取,效率更高。 - 如果没有设置login=True建议使用getTokenFromHeader()以保证安全。 ### 2. 权限验证 - 复制demo09为demo10,修改template.yml文件 - 修改index文件 ```python import json import logging from AliFCWeb import fcIndex, get, post, put, delete, ResponseEntity _log = logging.getLogger() @fcIndex(debug=True) def handler(environ, start_response): pass @post(login=True, auth=myAuth) def testPost(data): return ResponseEntity.ok('操作成功') def myAuth(token): if token['user_id'] == 1: return True return False ``` - 上传并测试 - 先去demo09里面获取一个id为2的token ![](./img/demo10/01.png) ![](./img/demo10/02.png) - 再去demo09里面获取一个id为1的token ![](./img/demo10/03.png) ![](./img/demo10/04.png) ## 七、使用数据库 - 本示例使用mysql数据库,框架同时支持postgresql,使用方法完全一样,只需要配置好对应的配置文件即可 - 你需要先去配置中心配置好mysql的参数以供使用 - 使用mysql数据库只需要使用mysqlConn获取连接即可 - 使用postgresql数据库只需要使用postgresqlConn获取连接即可 - 需要引入对应的包 ```shell # mysql fun install --save --runtime python3 --package-type pip pymysql # postgresql fun install --save --runtime python3 --package-type pip psycopg2 ``` - 需要引入以下两个类 ```python from AliFCWeb.fcorm import Orm, Example ``` ### 1. 准备工作 - 这里默认你已经在配置中心配置好了mysql的配置信息 ```python mysql = { 'url': '', 'username': '', 'password': '', 'database': '', 'charset': 'utf8' } ``` - 在数据库中创建一张user表用作测试 ```sql CREATE TABLE `user` ( `id` int(11) NOT NULL AUTO_INCREMENT, `name` varchar(255) DEFAULT NULL, `age` int(11) DEFAULT NULL, PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8; ``` ### 2. 使用ORM类 #### 2.1 新增数据 - 新建demo11,配置好template.yml,application.py - 修改index.py文件如下: ```python import json import logging from AliFCWeb.fcorm import Orm, Example from AliFCWeb import fcIndex, get, post, put, delete, mysqlConn, ResponseEntity _log = logging.getLogger() _conn = mysqlConn @fcIndex(debug=True) def handler(environ, start_response): pass @post() def testFC(data): ''' ''' orm = Orm(_conn, 'user') userId = orm.insertData(data) return ResponseEntity.ok('新增用户成功,你的id:{}'.format(userId)) ``` - 测试结果 ![](./img/demo11/01.png) insertData()方法可以用于插入数据,该方法接收以下几种类型的参数(以user表为例) | 参数一 | 参数二 | 参数说明 | | ------------------------- | ------------------------- | ----------------------------------------- | | {'name':'张三', 'age':18} | 无 | 向数据库中插入一条数据 | | ['name', 'age'] | [['张三', 18], ['李四', 19]] | 向数据库中插入多条数据,参数一和参数二要一一对应 | | [{'name':'张三', 'age':18}, {'name':'李四', 'age':19}] | 无 | 向数据库中插入多条数据,每条数据的字段要一致 | | ['name', 'age'] | {'name':'张三', 'age':18} | 参数一表示插入哪些字段,参数二表示要插入的数据,该方法可以过滤掉多余字段,比如你可以给参数二传入{'name':'张三', 'age':18, 'delete': '1'}其中的delete字段会被过滤掉,数据库依然不会报错 | #### 2.2 修改数据 - 复制demo11为demo12,修改对应的template.yml - 修改index.py代码 ```python import json import logging from AliFCWeb.fcorm import Orm, Example from AliFCWeb import fcIndex, get, post, put, delete, mysqlConn, ResponseEntity _log = logging.getLogger() _conn = mysqlConn @fcIndex(debug=True) def handler(environ, start_response): pass @post() def testFC(data): orm = Orm(_conn, 'user') userId = orm.updateByPrimaryKey({'age': 20}, 1) user = orm.selectByPrimaeyKey(1) return ResponseEntity.ok(user) ``` - 运行测试 ![](./img/demo12/01.png) updateByPrimaryKey()接收两个参数 - data:要更新的数据 - id:要更新的数据的键,如果为空则会去data中寻找键。比如使用orm.updateByPrimaryKey({'age': 20, 'id':1})也是一样的效果 #### 2.3 删除数据 - 复制demo12为demo13,修改对应的template.yml - 修改index.py代码 ```python import json import logging from AliFCWeb.fcorm import Orm, Example from AliFCWeb import fcIndex, get, post, put, delete, mysqlConn, ResponseEntity _log = logging.getLogger() _conn = mysqlConn @fcIndex(debug=True) def handler(environ, start_response): pass @post() def testFC(data): orm = Orm(_conn, 'user') userId = orm.deleteByPrimaryKey(1) users = orm.selectAll() return ResponseEntity.ok(users) ``` - 运行测试 ![](./img/demo13/01.png) deleteByPrimaryKey()接收一个参数 - id:要更新的数据的键, 这里还使用了selectAll()方法,该方法可以返回该表中的所有数据,同时你可以看到,如果返回的数据是一个列表会自动添加num,你也可以通过ResponseEntity类的setNum()方法指定num,这在分页查询中十分有用 ### 3. 使用Example类进行高级查询 前面我们已经使用过selectByPrimaeyKey()和selectAll()两个方法进行查询操作了,如果想要更高级的查询,则需要使用Example类 - 在数据库新建一张表house ```sql CREATE TABLE `house` ( `id` int(11) NOT NULL AUTO_INCREMENT, `user_id` int(11) DEFAULT NULL, `address` varchar(255) DEFAULT NULL, `price` int(10) DEFAULT NULL, PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8; ``` - 复制demo13重命名为demo14 - 修改demo14的template.yml文件 - 修改index.py文件 ```python import json import logging from AliFCWeb.fcorm import Orm, Example from AliFCWeb import fcIndex, get, post, put, delete, mysqlConn, ResponseEntity _log = logging.getLogger() _conn = mysqlConn @fcIndex(debug=True) def handler(environ, start_response): pass @get() def testFC(data): try: res = testFC1(data) _conn.commit() return res except Exception as e: _conn.rollback() _log.error(e) return ResponseEntity.badRequest(e) def testFC1(data): # 关闭自动提交 userOrm = Orm(_conn, 'user', auto_commit=False) houseOrm = Orm(_conn, 'house', auto_commit=False) print('==============插入数据==============') userId = userOrm.insertData({'name':'张三', 'age':18}) houseOrm.insertData(['user_id', 'address', 'price'], [[userId, '成都市武侯区', 100], [userId, '成都市高新区', 200], [userId, '北京市东城区', 300], [userId, '北京市西城区', 400], [userId, '北京市朝阳区', 500]]) print('==============所有user数据==============') users = userOrm.selectAll() print(users) print('==============所有house数据==============') houses = houseOrm.selectAll() print(houses) print('==============所有位于成都的house数据==============') houses = houseOrm.selectByExample(Example().andLike('address', '成都%')) print(houses) print('==============所有不在成都的house数据==============') houses = houseOrm.selectByExample(Example().andNotLike('address', '成都%')) print(houses) print('==============所有user_id为1的house数据==============') houses = houseOrm.selectByExample(Example().andEqualTo({'user_id': 1})) print(houses) print('==============连接查询==============') userOrm.leftJoin('house', 'house.user_id=user.id') houses = userOrm.selectByExample(Example().andEqualTo({'price': 100})) print(houses) print('==============清除缓存==============') userOrm.clear() print('==============所有售价大于200小于400的house数据==============') houses = houseOrm.selectByExample(Example().andBetween('price', 200, 400)) print(houses) print('==============所有北京的房子涨价10==============') houseOrm.updateByExample({'price': '+10'}, Example().andLike('address', '北京%')) houses = houseOrm.selectAll() print(houses) print('==============分页查询==============') num, houses = houseOrm.selectPageByExample(Example().andEqualTo({'user_id': userId}), 2, 3) print('符合条件的总条数:{}'.format(num)) print('本页数据:') print(houses) print('==============多值查询==============') houses = houseOrm.selectByExample(Example().andInValues('price', [100, 200])) print(houses) return ResponseEntity.ok('请查看控制台日志') ``` ## 八、自定义锚点 在使用数据库时,我们用到的mysqlConn、redisConn和postgresqlConn其实就是锚点。锚点的作用是在运行时加载全局变量。**当你需要在全局变量中使用environ中的数据或者在全局变量中使用配置中心时可以派上用场。** - 拷贝demo14重命名为demo15 - 修改template.yml文件 - 新增锚点文件mySign.py - 首先引入 ```python from AliFCWeb.sign import Sign ``` - 新建MySign类并继承Sign重写replace()方法即可 - 修改index.py文件 ```python import json import logging from AliFCWeb import fcIndex, get, post, put, delete, ResponseEntity from mySign import MySign _log = logging.getLogger() @fcIndex(debug=True) def handler(environ, start_response): pass # 使用锚点 @MySign def getUrl(): pass @get() def testFC(data): return ResponseEntity.ok(getUrl) ``` - 测试结果 ![](./img/demo15/01.png)
AliFCWeb
/AliFCWeb-1.1.1.tar.gz/AliFCWeb-1.1.1/README.md
README.md
import argparse import math import os import random from subprocess import call import sys from textwrap import TextWrapper import webbrowser import praw #Reddit API Wrapper __version__ = "0.3.2" USER_AGENT = 'AlienFeed v'+__version__+' by u/jw989 seen on ' \ 'Github http://github.com/jawerty/AlienFeed' #Reddit object accessed via praw r = praw.Reddit(user_agent=USER_AGENT) #Color codes used to make the display pretty class TerminalColor(object): HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' SUBTEXT = '\033[90m' INFO = '\033[96m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' color = TerminalColor() #Tags to describe each link class LinkType(object): NSFW = '[NSFW]' POST = '[POST]' PIC = '[PIC]' PICS = '[PICS]' VIDEO = '[VIDEO]' def get_link_types(link): types = [] # When the image's link ends with image_types or comes from the imagehosts # then it will append the link types (e.g. [NSFW], [POST], [VIDEO]) image_types = ('jpg', 'jpeg', 'gif', 'png') image_hosts = ('imgur', 'imageshack', 'photobucket', 'beeimg') if link.url == link.permalink: types.append(color.INFO + LinkType.POST + color.ENDC) elif link.url.split('.')[-1].lower() in image_types: types.append(color.OKGREEN + LinkType.PIC + color.ENDC) elif link.domain.split('.')[-2].lower() in image_hosts: types.append(color.OKGREEN + LinkType.PICS + color.ENDC) elif link.media: types.append(color.OKGREEN + LinkType.VIDEO + color.ENDC) if link.over_18: types.append(color.FAIL + LinkType.NSFW + color.ENDC) return ' '.join(types) class _parser(argparse.ArgumentParser): # the parsing object for argparse -- used to initialize argparse. def error(self, message): sys.stderr.write(color.FAIL + '\nAlienFeed error: %s\n' % (message + color.ENDC)) self.print_help() sys.exit(2) #method to display the generated links from submission_getter def subreddit_viewer(generator): links = submission_getter(generator, verbose=True) # submission_getter - Used to gather the praw generated input and # create the AlienFeed output log utilizing the TerminalCOlors object 'color' def submission_getter(generator, memo=[], verbose=False): links = [] scores = [] subreddits = set() for x, link in enumerate(generator): memo.append(link.url) if verbose: links.append(link) scores.append(link.score) subreddits.add(str(link.subreddit)) if not verbose: return memo # aligning all of the arrows ' -> ' for the AlienFeed output count_width = int(math.log(len(links), 10)) + 1 score_width = len(str(max(scores))) fmt = {'arrow': ' -> '} indent = ' ' * (count_width + len(fmt['arrow']) + score_width + 1) try: _, terminal_width = os.popen('stty size', 'r').read().split() terminal_width = int(terminal_width) except: terminal_width = 80 wrapper = TextWrapper(subsequent_indent=indent, width=terminal_width) for i, link in enumerate(links): fmt['count'] = color.OKGREEN + str(i + 1).rjust(count_width) fmt['score'] = color.WARNING + str(link.score).rjust(score_width) fmt['title'] = color.OKBLUE + link.title fmt['tags'] = get_link_types(link) if len(subreddits) > 1: fmt['title'] += color.SUBTEXT + u' ({0})'.format(link.subreddit) wrap = wrapper.wrap( u'{count}{arrow}{score} {title} {tags}'.format(**fmt)) for line in wrap: print line return memo #The generated ouput to be displayed to the user # method to output color text def print_colorized(text): print color.HEADER, text, color.ENDC # warning for AlienFeed def print_warning(text, exc=None, exc_details=None): if exc and exc_details: print color.FAIL, exc, exc_details print color.WARNING, text , color.ENDC def main(): # argparse argument management parser = _parser(description='''AlienFeed, by Jared Wright, is a commandline application made for displaying and interacting with recent Reddit links. I DO NOT HAVE ANY AFILIATION WITH REDDIT, I AM JUST A HACKER''') parser.add_argument("-l", "--limit", type=int, default=10, help='Limits output (default output is 10 links)') parser.add_argument("subreddit", default='front', help="Returns top links from subreddit 'front' " "returns the front page") parser.add_argument("-o", "--open", type=int, help='Opens one link that matches the number ' 'inputted. Chosen by number') parser.add_argument("-r", "--random", action='store_true', help='Opens a random link (must be the only ' 'optional argument)') parser.add_argument("-U", "--update", action='store_true', help='Automatically updates AlienFeed via pip') parser.add_argument("-v", "--version",action='store_true', help='Displays version of AlienFeed.') if len(sys.argv) == 1: parser.print_help() sys.exit(1) args=parser.parse_args() subm_gen = None # returns current version of AlienFeed if args.version: print "AlienFeed version: "+__version__ # random automatically opens the link, therefore -o interferes with -r if args.open and args.random: print_warning("You cannot use [-o OPEN] with [-r RANDOM]") sys.exit(1) # if random is present, it ignores the other arguments for the sake of simplicity if args.random: if args.limit == 10: if args.subreddit == 'front': front = r.get_front_page(limit=200) links = submission_getter(front) else: # Only deals with random 'top' posts on the front page top = r.get_subreddit(args.subreddit).get_top(limit=200) new = r.get_subreddit(args.subreddit).get_new(limit=200) hot = r.get_subreddit(args.subreddit).get_hot(limit=200) links = submission_getter(top) links = submission_getter(new, links) links = submission_getter(hot, links) try: webbrowser.open( random.choice(links) ) #opens in default web browser print_colorized("\nviewing a random submission\n") except IndexError, e: print_warning("There was an error with your input. " "Hint: Perhaps the subreddit you chose was " "too small to run through the program", "IndexError:", e) else: print_warning("You cannot use [-l LIMIT] with [-r RANDOM] " "(unless the limit is 10)") sys.exit(1) elif args.open: try: subr = (r.get_subreddit(args.subreddit).get_hot(limit=args.limit) if args.subreddit != 'front' else r.get_front_page(limit=args.limit)) links = submission_getter(subr) webbrowser.open( links[args.open - 1] ) print '\nviewing submission\n' except IndexError, e: print_warning("The number you typed in was out of the feed's range" " (try to pick a number between 1-10 or add" " --limit {0}".format(e), "IndexError:", e) except praw.errors.InvalidSubreddit, e: print_warning("I'm sorry but the subreddit '{0}' does not exist; " "try again.".format(args.subreddit), "InvalidSubreddit:", e) else: if args.subreddit == 'front': subm_gen = r.get_front_page(limit=args.limit) print_colorized('Top {0} front page links:'.format(args.limit)) else: subm_gen = r.get_subreddit(args.subreddit).get_hot(limit=args.limit) print_colorized('Top {0} /r/{1} links:'.format( args.limit, args.subreddit)) try: if subm_gen: subreddit_viewer(subm_gen) except praw.errors.InvalidSubreddit, e: print_warning("I'm sorry but the subreddit '{0}' does not exist; " "try again.".format(args.subreddit), "InvalidSubreddit:", e) # When argument is added, pip will automatically run as a child process (optional) if args.update == True: try: print "Upgrading AlienFeed..." call(['pip', 'install', 'alienfeed', '--upgrade', '--quiet']) except OSError, e: print_warning("You cannot use -U without having pip installed.") if __name__ == '__main__': main()
AlienFeed
/AlienFeed-0.3.2.tar.gz/AlienFeed-0.3.2/alienfeed/alien.py
alien.py
import pygame class Ship: """A class to manage the behaviour of the player's ship.""" def __init__(self, ai_settings, screen): """Initialize the ship and set its starting position.""" self.screen = screen # Load the ship image and get its rect. self.image = pygame.image.load('../images/ship.bmp') self.image = pygame.transform.rotate(self.image, -90) self.rect = self.image.get_rect() self.screen_rect = screen.get_rect() self.ai_settings = ai_settings # Start each new ship at the left center of the screen. self.rect.centery = self.screen_rect.centery self.rect.left = self.screen_rect.left # Store a decimal value for the ship's center. self.centerx = float(self.rect.centerx) self.centery = float(self.rect.centery) # Movement flag self.moving_right = False self.moving_left = False self.moving_up = False self.moving_down = False def update(self): """Update the ship's position based on the movement flag.""" # Update the ship's center value, not the rect. # if self.moving_right and self.rect.right < self.screen_rect.right: # self.centerx += self.ai_settings.ship_speed_factor # # if self.moving_left and self.rect.left > self.screen_rect.left: # self.centerx -= self.ai_settings.ship_speed_factor if self.moving_up and self.rect.top > self.screen_rect.top: self.centery -= self.ai_settings.ship_speed_factor if self.moving_down and self.rect.bottom < self.screen_rect.bottom: self.centery += self.ai_settings.ship_speed_factor # Update rect object from self.center self.rect.centerx = self.centerx self.rect.centery = self.centery def blitme(self): """Draw the ship at its current location.""" self.screen.blit(self.image, self.rect) def center_ship(self): """Center the ship on the screen.""" self.centery = self.screen_rect.centery
AlienInvasion-Raph692
/AlienInvasion_Raph692-0.1.0-py3-none-any.whl/sideways_shooter/ss_ship.py
ss_ship.py
import sys import pygame from ss_bullet import Bullet from ss_target import Target from time import sleep def check_keydown_events(event, ss_settings, screen, stats, ship, bullets, target): """Responding to keypresses.""" # Move the ship to the left or right if event.key == pygame.K_RIGHT: ship.moving_right = True elif event.key == pygame.K_LEFT: ship.moving_left = True elif event.key == pygame.K_UP: ship.moving_up = True elif event.key == pygame.K_DOWN: ship.moving_down = True elif event.key == pygame.K_SPACE: fire_bullet(ss_settings, screen, ship, bullets) elif event.key == pygame.K_p and not stats.game_active: start_game(ss_settings, stats, ship, bullets, target) elif event.key == pygame.K_q: sys.exit() def fire_bullet(ai_settings, screen, ship, bullets): """Fire a bullet if limit not reached yet.""" # Create a new bullet and add it to the bullets group. if len(bullets) < ai_settings.bullets_allowed: new_bullet = Bullet(ai_settings, screen, ship) bullets.add(new_bullet) def check_keyup_events(event, ship): """Responding to key releases.""" # Stop moving the ship when releasing arrow keys. if event.key == pygame.K_RIGHT: ship.moving_right = False elif event.key == pygame.K_LEFT: ship.moving_left = False elif event.key == pygame.K_UP: ship.moving_up = False elif event.key == pygame.K_DOWN: ship.moving_down = False def check_events(ss_settings, screen, stats, ship, bullets, target, play_button): """Respond to key presses and mouse events.""" for event in pygame.event.get(): if event.type == pygame.QUIT: sys.exit() elif event.type == pygame.MOUSEBUTTONDOWN: mouse_x, mouse_y = pygame.mouse.get_pos() check_play_button(ss_settings, stats, play_button, ship, bullets, target, mouse_y, mouse_x) elif event.type == pygame.KEYDOWN: check_keydown_events(event, ss_settings, screen, stats, ship, bullets, target) elif event.type == pygame.KEYUP: check_keyup_events(event, ship) def check_play_button(ss_settings, stats, play_button, ship, bullets, target, mouse_y, mouse_x): """Start a new game when the player clicks Play.""" button_clicked = play_button.rect.collidepoint(mouse_x, mouse_y) if button_clicked and not stats.game_active: # Restart game start_game(ss_settings, stats, ship, bullets, target) def start_game(ss_settings, stats, ship, bullets, target): """Start a new game.""" # Reset the game settings. ss_settings.initialize_dynamic_settings() # Hide the mouse cursor. pygame.mouse.set_visible(False) # Reset the game statistics. stats.reset_stats() stats.game_active = True # Empty the list of bullets bullets.empty() # Center the ship and target. target.center_target() ship.center_ship() def update_screen(ai_settings, screen, stats, ship, bullets, target, play_button): """Update images on the screen and flip to the new screen.""" # Redraw the screen during each pass through the loop. screen.fill(ai_settings.bg_color) # Redraw all bullets behind ship and aliens. for bullet in bullets.sprites(): bullet.draw_bullet() ship.blitme() # Redraw target target.draw_target() # Draw the play button when the game is inactive. if not stats.game_active: play_button.draw_button() # Make the most recently drawn screen visible. pygame.display.flip() def update_bullets(ss_settings, screen, stats, bullets, target): """Update position of bullets and get rid of old bullets.""" # Update bullet positions. bullets.update() # Get rid of bullets that have disappeared. screen_rect = screen.get_rect() for bullet in bullets.copy(): if bullet.rect.left >= screen_rect.right: check_bullet_edges(stats, bullets) # Check for target-bullet collisions if pygame.sprite.spritecollideany(target, bullets): target_hit(ss_settings, bullets) def check_bullet_edges(stats, bullets,): """Check if a bullet has missed the target.""" if stats.ships_left > 0: # Decrement ships left stats.ships_left -= 1 # Empty the list of bullets. bullets.empty() # # Pause. # sleep(0.2) else: stats.game_active = False pygame.mouse.set_visible(True) def check_target_edges(ss_settings, target): """Check if the target has reached the top of bottom of the screen.""" if target.check_edges(): ss_settings.target_direction *= -1 def target_hit(ss_settings, bullets): """Respond to the target being hit by a bullet.""" # ToDo add scores for hitting target # Empty the list of bullets. bullets.empty() # Increase speed settings. ss_settings.increase_speed() def update_target(ss_settings, target): """Check if the target is at an edge and then update its position on the screen.""" check_target_edges(ss_settings, target) target.update() # def create_target(ss_settings, screen): # """Create a target place it on the center right.""" # target = Target(ss_settings, screen) # target.center_target() # return target
AlienInvasion-Raph692
/AlienInvasion_Raph692-0.1.0-py3-none-any.whl/sideways_shooter/ss_game_functions.py
ss_game_functions.py
import pygame.font from pygame.sprite import Group from ship import Ship class ScoreBoard: """A class to report scoring information.""" def __init__(self, ai_settings, screen, stats): """Initialize score-keeping attributes.""" self.screen = screen self.screen_rect = screen.get_rect() self.ai_settings = ai_settings self.stats = stats # Font settings for scoring information. self.text_color = (30, 30, 30) self.font = pygame.font.SysFont(None, 48) # Prepare the initial score images. self.prep_images(ai_settings, screen) def prep_images(self, ai_settings, screen): """Prepare the score images.""" self.prep_score() self.prep_high_score() self.prep_level() self.prep_ships(ai_settings, screen) def prep_score(self): """Turn the score into a rendered image.""" # Round scores and include comma separator rounded_score = round(self.stats.score, -1) score_str = "{:,}".format(rounded_score) self.score_image = self.font.render(score_str, True, self.text_color, self.ai_settings.bg_color) # Display the score at the top right of the screen. self.score_rect = self.score_image.get_rect() self.score_rect.right = self.screen_rect.right - 20 self.score_rect.top = 20 def prep_high_score(self): """Turn the high score into a rendered image.""" rounded_high_score = round(self.stats.high_score, -1) high_score_str = "{:,}".format(rounded_high_score) self.high_score_image = self.font.render(high_score_str, True, self.text_color, self.ai_settings.bg_color) # Display the high score at the top center of the screen. self.high_score_rect = self.high_score_image.get_rect() self.high_score_rect.centerx = self.screen_rect.centerx self.high_score_rect.top = self.screen_rect.top def prep_level(self): """Turn the level into a rendered image.""" level_str = str(self.stats.level) self.level_image = self.font.render(level_str, True, self.text_color, self.ai_settings.bg_color) # Display the level at the top left of the screen. self.level_rect = self.level_image.get_rect() self.level_rect.right = self.score_rect.right self.level_rect.top = self.score_rect.bottom + 10 def prep_ships(self, ai_settings, screen): """Show how many ships are left.""" self.ships = Group() for ship_number in range(self.stats.ships_left): ship = Ship(ai_settings, screen) ship.rect.x = 10 + ship_number * ship.rect.width ship.rect.y = 10 self.ships.add(ship) def show_score(self): """Draw score to the screen.""" self.screen.blit(self.score_image, self.score_rect) self.screen.blit(self.high_score_image, self.high_score_rect) self.screen.blit(self.level_image, self.level_rect) self.ships.draw(self.screen)
AlienInvasion-Raph692
/AlienInvasion_Raph692-0.1.0-py3-none-any.whl/scripts/scoreboard.py
scoreboard.py
import pygame from pygame.sprite import Sprite class Ship(Sprite): """A class to manage the behaviour of the player's ship.""" def __init__(self, ai_settings, screen): """Initialize the ship and set its starting position.""" super(Ship, self).__init__() self.screen = screen self.ai_settings = ai_settings # Load the ship image and get its rect. self.image = pygame.image.load('../images/ship.bmp') # self.image = pygame.image.load('images/dick_small.bmp') # change size to 60x60 pixels in GIMP self.rect = self.image.get_rect() self.screen_rect = screen.get_rect() # Start each new ship at the bottom center of the screen. self.rect.centerx = self.screen_rect.centerx self.rect.bottom = self.screen_rect.bottom # Store a decimal value for the ship's center. self.centerx = float(self.rect.centerx) self.centery = float(self.rect.centery) self.bottom = float(self.rect.bottom) # Movement flag self.moving_right = False self.moving_left = False self.moving_up = False self.moving_down = False def update(self): """Update the ship's position based on the movement flag.""" # Update the ship's center value, not the rect. if self.moving_right and self.rect.right < self.screen_rect.right: self.centerx += self.ai_settings.ship_speed_factor if self.moving_left and self.rect.left > self.screen_rect.left: self.centerx -= self.ai_settings.ship_speed_factor if self.moving_up and self.rect.top > self.screen_rect.top: self.centery -= self.ai_settings.ship_speed_factor if self.moving_down and self.rect.bottom < self.screen_rect.bottom: self.centery += self.ai_settings.ship_speed_factor # Update rect object from self.center self.rect.centerx = self.centerx self.rect.centery = self.centery def blitme(self): """Draw the ship at its current location.""" self.screen.blit(self.image, self.rect) def center_ship(self): """Center the ship on the screen.""" self.centerx = self.screen_rect.centerx self.centery = self.screen_rect.bottom - 20
AlienInvasion-Raph692
/AlienInvasion_Raph692-0.1.0-py3-none-any.whl/scripts/ship.py
ship.py
import sys import pygame import json from bullet import Bullet from alien import Alien from time import sleep from star import Star from random import randint def check_keydown_events(event, ai_settings, screen, stats, sb, ship, aliens, bullets): """Responding to keypresses.""" # Move the ship to the left or right if event.key == pygame.K_RIGHT: ship.moving_right = True elif event.key == pygame.K_LEFT: ship.moving_left = True elif event.key == pygame.K_UP: ship.moving_up = True elif event.key == pygame.K_DOWN: ship.moving_down = True elif event.key == pygame.K_SPACE: fire_bullet(ai_settings, screen, ship, bullets) elif event.key == pygame.K_p and not stats.game_active: start_game(ai_settings, screen, stats, sb, ship, aliens, bullets) elif event.key == pygame.K_q: write_high_score(stats) sys.exit() def fire_bullet(ai_settings, screen, ship, bullets): """Fire a bullet if limit not reached yet.""" # Create a new bullet and add it to the bullets group. if len(bullets) < ai_settings.bullets_allowed: new_bullet = Bullet(ai_settings, screen, ship) bullets.add(new_bullet) def check_keyup_events(event, ship): """Responding to key releases.""" # Stop moving the ship when releasing arrow keys. if event.key == pygame.K_RIGHT: ship.moving_right = False elif event.key == pygame.K_LEFT: ship.moving_left = False elif event.key == pygame.K_UP: ship.moving_up = False elif event.key == pygame.K_DOWN: ship.moving_down = False def check_events(ai_settings, screen, stats, sb, ship, aliens, bullets, play_button): """Respond to key presses and mouse events.""" for event in pygame.event.get(): if event.type == pygame.QUIT: write_high_score(stats) sys.exit() elif event.type == pygame.MOUSEBUTTONDOWN: mouse_x, mouse_y = pygame.mouse.get_pos() check_play_button(ai_settings, screen, stats, sb, play_button, ship, aliens, bullets, mouse_y, mouse_x) elif event.type == pygame.KEYDOWN: check_keydown_events(event, ai_settings, screen, stats, sb, ship, aliens, bullets) elif event.type == pygame.KEYUP: check_keyup_events(event, ship) def write_high_score(stats): """Writing the high score to a file.""" if stats.score >= stats.high_score: filename = 'high_score.json' with open(filename, 'w') as f_obj: json.dump(stats.high_score, f_obj) def check_play_button(ai_settings, screen, stats, sb, play_button, ship, aliens, bullets, mouse_y, mouse_x): """Start a new game when the player clicks Play.""" button_clicked = play_button.rect.collidepoint(mouse_x, mouse_y) if button_clicked and not stats.game_active: # Restart game. start_game(ai_settings, screen, stats, sb, ship, aliens, bullets) def start_game(ai_settings, screen, stats, sb, ship, aliens, bullets): """Start a new game.""" # Reset the game settings. ai_settings.initialize_dynamic_settings() # Hide the mouse cursor. pygame.mouse.set_visible(False) # Reset the game statistics. stats.reset_stats() stats.game_active = True # Empty the list of bullets and aliens. bullets.empty() aliens.empty() # Create a new fleet and center the ship. create_fleet(ai_settings, screen, ship, aliens) ship.center_ship() # Reset the score board images. sb.prep_images(ai_settings, screen) def update_screen(ai_settings, screen, stats, sb, ship, aliens, bullets, play_button, stars): """Update images on the screen and flip to the new screen.""" # Redraw the screen during each pass through the loop. screen.fill(ai_settings.bg_color) # Redraw all bullets behind ship and aliens. for bullet in bullets.sprites(): bullet.draw_bullet() # bullet.blitme() # change bullets to drops # Redraw ship ship.blitme() # Redraw fleet of aliens aliens.draw(screen) # Redraw group of stars stars.draw(screen) # Show the score sb.show_score() # Draw the play button when the game is inactive. if not stats.game_active: play_button.draw_button() # Make the most recently drawn screen visible. pygame.display.flip() def check_high_score(stats, sb): """Check to see if there's a new high score.""" if stats.score > stats.high_score: stats.high_score = stats.score sb.prep_score() def update_bullets(bullets): """Update position of bullets and get rid of old bullets.""" # Update bullet positions. bullets.update() # Get rid of bullets that have disappeared. for bullet in bullets.copy(): if bullet.rect.bottom <= 0: bullets.remove(bullet) def check_bullet_alien_collisions(ai_settings, screen, stats, sb, ship, bullets, aliens): """Responding to bullet-alien collisions.""" # Remove any bullets and aliens that have collided # Python returns a collisions dictionary when bullet hits alien. collisions = pygame.sprite.groupcollide(bullets, aliens, True, True) if collisions: # loop through dict to award points for each alien hit. # each value is a list of aliens hit by a single bullet (key). for aliens in collisions.values(): stats.score += ai_settings.alien_points * len(aliens) sb.prep_score() check_high_score(stats, sb) # Repopulate the alien fleet if it has been shot down. if len(aliens) < 1: # If the entire fleet is destroyed, start a new level. start_new_level(ai_settings, screen, stats, sb, ship, aliens, bullets) def start_new_level(ai_settings, screen, stats, sb, ship, aliens, bullets): """Start a new level when the entire alien fleet is destroyed.""" bullets.empty() ai_settings.increase_speed() # Increase level stats.level += 1 sb.prep_level() create_fleet(ai_settings, screen, ship, aliens) def change_fleet_direction(ai_settings, aliens): """Drop the entire fleet and change the fleet's direction.""" for alien in aliens.sprites(): alien.rect.y += ai_settings.fleet_drop_speed ai_settings.fleet_direction *= -1 def check_fleet_edges(ai_settings, aliens): """Respond appropriately if any aliens have reached an edge.""" for alien in aliens.sprites(): if alien.check_edges(): change_fleet_direction(ai_settings, aliens) break def ship_hit(ai_settings, stats, screen, sb, ship, aliens, bullets): """Respond to ship being hit by an alien.""" if stats.ships_left > 0: # Decrement ships left. stats.ships_left -= 1 sb.prep_ships(ai_settings, screen) # Empty the list of bullets and aliens. bullets.empty() aliens.empty() # Create a new fleet and center the ship. create_fleet(ai_settings, screen, ship, aliens) ship.center_ship() # Pause sleep(0.2) else: stats.game_active = False pygame.mouse.set_visible(True) def check_aliens_bottom(ai_settings, stats, screen, sb, ship, aliens, bullets): """Check if any aliens have reached the bottom.""" screen_rect = screen.get_rect() for alien in aliens.sprites(): if alien.rect.bottom >= screen_rect.bottom: ship_hit(ai_settings, stats, screen, sb, ship, aliens, bullets) break def update_aliens(ai_settings, stats, screen, sb, aliens, ship, bullets): """ Check if the fleet is at an edge, and then update the position of all aliens in the fleet. """ check_fleet_edges(ai_settings, aliens) # Check if any aliens have reached the bottom check_aliens_bottom(ai_settings, stats, screen, sb, ship, aliens, bullets) aliens.update() # Look for alien-ship collisions. if pygame.sprite.spritecollideany(ship, aliens): ship_hit(ai_settings, stats, screen, sb, ship, aliens, bullets) # def check_stars_edges(stars): # """Respond appropriately when stars/raindrops disappear off the bottom of the screen.""" # for star in stars.sprites(): # star.check_bottom() # # # def update_stars(stars): # """Update the position of all stars/raindrops.""" # check_stars_edges(stars) # stars.update() def get_number_aliens_x(ai_settings, alien_width): """Determine the number of aliens that fit in a row.""" available_space_x = ai_settings.screen_width - alien_width * 2 number_aliens_x = int(available_space_x / (2 * alien_width)) return number_aliens_x # def get_number_stars_x(ai_settings, star_width): # """Determine the number of stars that fit in a row.""" # available_space_x = ai_settings.screen_width - 2 * star_width # number_stars_x = int(available_space_x / (2 * star_width)) # return number_stars_x def get_number_rows(ai_settings, ship_height, alien_height): """Determine the number of rows of aliens that fit on the screen.""" available_space_y = ai_settings.screen_height - 3 * alien_height - ship_height number_rows = int(available_space_y / (2 * alien_height)) return number_rows # def get_number_rows_star(ai_settings, star_height): # """Determine the number of rows of stars that fit on the screen.""" # number_rows = int(ai_settings.screen_height / (2 * star_height)) # return number_rows def create_alien(ai_settings, screen, aliens, alien_number, row_number): """Create an alien and place it in a row.""" alien = Alien(ai_settings, screen) alien_width = alien.rect.width alien.x = alien_width + alien_width * 2 * alien_number alien.rect.x = alien.x alien.rect.y = alien.rect.height + 2 * alien.rect.height * row_number aliens.add(alien) # def create_star(ai_settings, screen, stars, row_number): # """Create a star and place it in a row.""" # star = Star(ai_settings, screen) # star_width = star.rect.width # # # Introduce randomness when placing stars # random_number = randint(-10, 10) # (-30, 30) for stars and *4 in row below # star.x = star_width + star_width * 2 * random_number # star.rect.x = star.x # star.rect.y = star.rect.height + 2 * star.rect.height * row_number # stars.add(star) def create_fleet(ai_settings, screen, ship, aliens): """Create a full fleet of aliens.""" # Create an alien and find the number of aliens in a row. alien = Alien(ai_settings, screen) num_aliens_x = get_number_aliens_x(ai_settings, alien.rect.width) num_rows = get_number_rows(ai_settings, ship.rect.height, alien.rect.height) # Create the fleet of aliens. for row_number in range(num_rows): for alien_number in range(num_aliens_x): create_alien(ai_settings, screen, aliens, alien_number, row_number) # def create_stars(ai_settings, screen, stars): # """Create a group of stars.""" # star = Star(ai_settings, screen) # num_stars_x = get_number_stars_x(ai_settings, star.rect.width) # num_rows = get_number_rows_star(ai_settings, star.rect.height) # # # Create stars # for row_number in range(num_rows): # for star_number in range(num_stars_x): # create_star(ai_settings, screen, stars, row_number)
AlienInvasion-Raph692
/AlienInvasion_Raph692-0.1.0-py3-none-any.whl/scripts/game_functions.py
game_functions.py
# AlignQC See wiki for the most up-to-date manual. [https://github.com/jason-weirather/AlignQC/wiki](https://github.com/jason-weirather/AlignQC/wiki) **Generate a report** on sequencing alignments to understand read alignments vs read sizes, error patterns in reads, annotations and rarefractions. **Share your reports** with anyone who has an internet browser. Ultimately this software should be suitable for assessing alignments of from a variety of sequencing platforms and a variety of sequence types. The focus for the first version of this software is on the transcriptome analysis of third generation sequencing data outputs. ##### Report Generation Requirements - Linux - R - python 2.7+ ##### Report Viewing Requirements - Mozilla Firefox or Google Chrome Browser ##### Installation (optional) You can add the `AlignQC/bin` directory to your path if you want to call `alignqc` directly from the command line. If you require a path for python 2.7+ other than `/usr/bin/python`, you can modify `AlignQC/bin/alignqc` to reflect this. If you prefer to invoke AlignQC directly from python you can, i.e., `python AlignQC/bin/alignqc` By default `Rscript` should be installed in your path, if it is not, you can specify a location during the `analysis` command with the `--rscript_path` option. ##### Fast start The following command should be sufficient for assessing a long read alignment. `alignqc analysis long_reads.bam -r ref_genome.fa -a ref_transcriptome.gpd -o long_reads.alignqc.xhtml` If you don't readily have your reference genome or reference annotation available you can try the following. `alignqc analysis long_reads.bam --no_reference --no_annotation -o long_reads.alignqc.xhtml` ## AlignQC programs Currently AlignQC only offers the `analysis` program. ## Analysis `alignqc analysis` The analysis command is the most basic command for assessing an alignment. It provides reports and plots in xhtml format. ### Inputs A complete list of optional commands for each sub command is available with the `-h` option. `alignqc analysis -h` Will report all analysis required and optional inputs. #### 1. BAM format alignment file The preferred format for transcriptome analysis is GMAP output (the 'samse') format. Default output, or an output that can produce multiple alignment paths for a read is recommended if you want the ability to assess chimeric reads. You can convert the SAM output of GMAP into BAM format using Samtools. http://www.htslib.org/ Any properly formated BAM file should work however this software has only been tested with GMAP and hisat outputs at the moment. http://samtools.github.io/hts-specs/SAMv1.pdf Please note that analyzing very large hiseq datasets has not been tested and memory requirements have not been optimized for this type of run. If you want to check error patterns of HISEQ downsampling the data is advised. #### (optional) 2. Genome fasta file The reference genome these sequences were aligned to, in fasta format, can allows you to assess the error rates and error patterns in the alignments. If you choose not to use a reference genome you must explicitly specify `--no_reference` #### (optional) 3. GenePred format annotation file Providing an annotation file provides context such as known transcripts, and exons, introns, and intergenic regions to help describe the data. It is also necessary for rarefraction curves. If you choose not to use a reference annotation you must explicitly specify `--no_annotation` The genePred format is described here. http://www.healthcare.uiowa.edu/labs/au/IDP/IDP_gpd_format.asp And it is also described here as "Gene Predictions and RefSeq Genes with Gene Names" genePred format described by UCSC. https://genome.ucsc.edu/FAQ/FAQformat.html#format9 - geneName - name - chrom - strand - txStart - txEnd - cdsStart - cdsEnd - exoncount - exonStarts - exonEnds ### Outputs At least one output format must be specified. To view the output xhtml Mozilla Firefox or Google Chrome browser is recommend. Since the recommended output type contains large URI data embedded in the xhtml page, Internet Explorer will likely not be compatible. The memory requirements of the regular output may strain some systems. If you only want to share the visual results with others we recommend the `--portable_output` option because this version contains only the main text and png files. If accessing the embedded data in the xhtml is a problem, you can output the data in a folder format `--output_folder`, which can provide you more convenient access. #### (option 1) Standard xhtml output `-o` or `--output` The recommended output of this software is a single xhtml file that contains all the relevant files from the analysis embeded as base64 encoded URI data. This means you can click any of the links in the document and the browser will download the data of interest (i.e. PDF format versions of a figure) from within the document. Bed tracks compatible with the UCSC genome browser are also provided. #### (option 2) Portable xhtml output `--portable_output` This output is recommended if you want to email these results or share them over a bandwidth limited connection. This format only has the png images and webpage text. Links are disabled. #### (option 3) Output folder `--output_folder` Store an output folder that contains all the data and figures. An xhtml file is still available in this folder.
AlignQC
/AlignQC-2.0.5.tar.gz/AlignQC-2.0.5/README.md
README.md
import sys, argparse, re, gzip, inspect, os from seqtools.statistics import average def main(args): #define read name programs #ONT basecalls #ont matches a uuid4 ont_prog = re.compile('^[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}_Basecall_2D_(.*)$') pacbio_prog = re.compile('^(m[^\/]+)\/(\d+)\/(ccs|\d+_\d+)') inf = None if re.search('\.gz$',args.input): inf = gzip.open(args.input) else: inf = open(args.input) unclassified = {'aligned':0,'unaligned':0} classified = {} pb_cell = {} #pb_mol = set() for line in inf: f = line.rstrip().split("\t") name = f[0] m_ont = ont_prog.match(name) m_pb = pacbio_prog.match(name) if m_ont: if 'ONT' not in classified: classified['ONT'] = {} type = m_ont.group(1) if type not in classified['ONT']: classified['ONT'][type] = {'aligned':0,'unaligned':0} if f[1] != 'unaligned': classified['ONT'][type]['aligned']+=1 else: classified['ONT'][type]['unaligned']+=1 elif m_pb: cell = m_pb.group(1) mol = int(m_pb.group(2)) if cell not in pb_cell: pb_cell[cell] = {'molecules':set(),'reads':0,'molecules_aligned':set()} pb_cell[cell]['molecules'].add(mol) pb_cell[cell]['reads'] += 1 #pb_mol.add(mol) if 'PacBio' not in classified: classified['PacBio'] = {} type = 'ccs' if m_pb.group(3) != 'ccs': type = 'subread' if type not in classified['PacBio']: classified['PacBio'][type] = {'aligned':0,'unaligned':0} if f[1] != 'unaligned': classified['PacBio'][type]['aligned']+=1 pb_cell[cell]['molecules_aligned'].add(mol) else: classified['PacBio'][type]['unaligned']+=1 else: if f[1] != 'unaligned': unclassified['aligned']+=1 else: unclassified['unaligned']+=1 inf.close() # Finished reading the reads now we can make a report of = open(args.output_base,'w') if len(classified.keys()) > 0: of.write("SP\n") for classification in sorted(classified.keys()): for subclass in sorted(classified[classification].keys()): dat = classified[classification][subclass] of.write("GN\t"+classification+"\t"+subclass+"\t"+str(sum(dat.values()))+"\t"+str(dat['aligned'])+"\t"+str(dat['unaligned'])+"\n") of.write("GN\tUnclassified\t\t"+str(sum(unclassified.values()))+"\t"+str(unclassified['aligned'])+"\t"+str(unclassified['unaligned'])+"\n") if 'PacBio' in classified: of.write("PB\tCell Count\t"+str(len(pb_cell.keys()))+"\n") of.write("PB\tMolecule Count\t"+str(sum([len(pb_cell[x]['molecules']) for x in pb_cell.keys()]))+"\n") of.write("PB\tAligned Molecule Count\t"+str(sum([len(pb_cell[x]['molecules_aligned']) for x in pb_cell.keys()]))+"\n") of.write("PB\tMax Reads Per Cell\t"+str(max([pb_cell[x]['reads'] for x in pb_cell.keys()]))+"\n") of.write("PB\tAvg Reads Per Cell\t"+str(average([pb_cell[x]['reads'] for x in pb_cell.keys()]))+"\n") of.write("PB\tMin Reads Per Cell\t"+str(min([pb_cell[x]['reads'] for x in pb_cell.keys()]))+"\n") of.write("PB\tMax Molecules Per Cell\t"+str(max([len(pb_cell[x]['molecules']) for x in pb_cell.keys()]))+"\n") of.write("PB\tAvg Molecules Per Cell\t"+str(average([len(pb_cell[x]['molecules']) for x in pb_cell.keys()]))+"\n") of.write("PB\tMin Molecules Per Cell\t"+str(min([len(pb_cell[x]['molecules']) for x in pb_cell.keys()]))+"\n") of.write("PB\tMax Aligned Molecules Per Cell\t"+str(max([len(pb_cell[x]['molecules_aligned']) for x in pb_cell.keys()]))+"\n") of.write("PB\tAvg Aligned Molecules Per Cell\t"+str(average([len(pb_cell[x]['molecules_aligned']) for x in pb_cell.keys()]))+"\n") of.write("PB\tMin Aligned Molecules Per Cell\t"+str(min([len(pb_cell[x]['molecules_aligned']) for x in pb_cell.keys()]))+"\n") mols = [[len(pb_cell[x]['molecules_aligned']),len(pb_cell[x]['molecules'])] for x in pb_cell.keys()] smols = sorted(mols,key=lambda x: x[0]) of.write("PB\tMolecules Per Cell Distro\t"+",".join(['/'.join([str(x[0]),str(x[1])]) for x in smols])+"\n") of1 = open(args.output_base+'.pacbio','w') for val in smols: of1.write(str(val[0])+"\t"+str(val[1])+"\n") of1.close() of.close() def do_args(): parser = argparse.ArgumentParser(description="",formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('input',help="input lengths table") parser.add_argument('output_base',help="output file basename") args = parser.parse_args() return args def external_cmd(cmd): cache_argv = sys.argv sys.argv = cmd args = do_args() main(args) sys.argv = cache_argv if __name__=="__main__": args = do_args() main(args)
AlignQC
/AlignQC-2.0.5.tar.gz/AlignQC-2.0.5/alignqc/get_platform_report.py
get_platform_report.py
import argparse, sys, os, gzip, pickle, zlib, base64 from shutil import rmtree, copy from multiprocessing import cpu_count, Pool, Lock from tempfile import mkdtemp, gettempdir from subprocess import Popen, PIPE from seqtools.format.sam.bam.files import BAMFile from seqtools.range import GenomicRange import seqtools.cli.utilities.bam_bgzf_index as bam_bgzf_index ## The purpose of this script is to read through a bam alignment and record as much information as possible from it. ## ## The bam should be indexed ahead of time in our index format. gfinished = None gtotal = None glock = Lock() g_count = 0 g_sortpipe = None def do_chunk(ilines,infile,args): """Takes in a the lines from the index file to work on in array form, and the bam file name, and the arguments returns a list of the necessary data for chimera detection ready for sorting """ ilines = [x.rstrip().split("\t") for x in ilines] coord = [int(x) for x in ilines[0][2:4]] bf = BAMFile(infile,BAMFile.Options(blockStart=coord[0],innerStart=coord[1])) results = [] for i in range(0,len(ilines)): flag = int(ilines[i][5]) e = bf.read_entry() #if not e: break value = None if e.is_aligned(): tx = e.get_target_transcript(args.minimum_intron_size) value = {'qrng':e.actual_original_query_range.get_range_string(),'tx':tx.get_gpd_line(),'flag':flag,'qlen':e.original_query_sequence_length,'aligned_bases':e.get_aligned_bases_count()} results.append(e.entries.qname+"\t"+base64.b64encode( zlib.compress( pickle.dumps(value)))) #results.append([e.value('qname'),zlib.compress(pickle.dumps(value))]) else: value = {'qrng':'','tx':'','flag':flag,'qlen':e.original_query_sequence_length,'aligned_bases':0} results.append(e.entries.qname+"\t"+base64.b64encode( zlib.compress( pickle.dumps(value)))) #results.append([e.value('qname'),zlib.compress(pickle.dumps(value))]) return results def process_chunk(res): global glock glock.acquire() #global g_preordered global g_sortpipe global g_count g_count += len(res) for val in res: g_sortpipe.stdin.write(val+"\n") sys.stderr.write(str(g_count)+" \r") glock.release() def main(args): bind_path = args.input+'.bgi' if not os.path.isfile(bind_path): bind_path = args.tempdir+'/myindex.bgi' cmd = ["bam_bgzf_index.py",args.input,"-o",bind_path,"--threads",str(args.threads)] bam_bgzf_index.external_cmd(cmd) #call(cmd.split()) #parallel_thread = '' #if args.threads > 1: parallel_thread = ' --parallel='+str(args.threads)+' ' #cmd1 = 'sort '+parallel_thread+' -k1,1 -T '+args.tempdir+'/' if args.threads > 1: cmd1 = ['sort','-k1,1','-T',args.tempdir+'/', '--parallel='+str(args.threads)] else: cmd1 = ['sort','-k1,1','-T',args.tempdir+'/'] cmd2 = 'gzip' global g_sortpipe global g_count g_count = 0 of = open(args.output,'wb') if os.name != 'nt': gzippipe = Popen(cmd2.split(),stdout=of,stdin=PIPE,close_fds=True) g_sortpipe = Popen(cmd1,stdout=gzippipe.stdin,stdin=PIPE,close_fds=True) else: sys.stderr.write("WARNING: Windows OS detected. operating in single thread mode.\n") if args.threads > 1: raise ValueError('Error. --threads must be 1 for windows operation') gzippipe = Popen(cmd2,stdout=of,stdin=PIPE, shell=True) g_sortpipe = Popen(cmd1,stdout=gzippipe.stdin,stdin=PIPE, shell=True) inf = gzip.open(bind_path) chunksize = args.chunk_size buffer = [] if args.threads > 1: p = Pool(processes=args.threads) for line in inf: buffer.append(line) if len(buffer)>=chunksize: if args.threads > 1: p.apply_async(do_chunk,args=(buffer[:],args.input,args),callback=process_chunk) else: r = do_chunk(buffer[:],args.input,args) process_chunk(r) buffer = [] if len(buffer) > 0: if args.threads > 1: p.apply_async(do_chunk,args=(buffer[:],args.input,args),callback=process_chunk) else: r= do_chunk(buffer[:],args.input,args) process_chunk(r) if args.threads > 1: p.close() p.join() inf.close() sys.stderr.write("\n") g_sortpipe.communicate() gzippipe.communicate() of.close() def do_inputs(): # Setup command line inputs parser=argparse.ArgumentParser(description="",formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('input',help="BAMFILE input") parser.add_argument('-o','--output',help="gzipped output",required=True) parser.add_argument('--threads',type=int,default=cpu_count(),help="INT number of threads to run. Default is system cpu count") parser.add_argument('--minimum_intron_size',type=int,default=68) parser.add_argument('--chunk_size',type=int,default=10000,help="number of alignments to process at a time") # Temporary working directory step 1 of 3 - Definition group = parser.add_mutually_exclusive_group() group.add_argument('--tempdir',default=gettempdir(),help="The temporary directory is made and destroyed here.") group.add_argument('--specific_tempdir',help="This temporary directory will be used, but will remain after executing.") args = parser.parse_args() # Temporary working directory step 2 of 3 - Creation setup_tempdir(args) return args def setup_tempdir(args): if args.specific_tempdir: if not os.path.exists(args.specific_tempdir): os.makedirs(args.specific_tempdir.rstrip('/')) args.tempdir = args.specific_tempdir.rstrip('/') if not os.path.exists(args.specific_tempdir.rstrip('/')): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() else: args.tempdir = mkdtemp(prefix="weirathe.",dir=args.tempdir.rstrip('/')) if not os.path.exists(args.tempdir.rstrip('/')): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() if not os.path.exists(args.tempdir): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() return def external_cmd(cmd): #need to save arguments cache_argv = sys.argv sys.argv = cmd args = do_inputs() main(args) #need to set the arguments back to what they were sys.argv = cache_argv return if __name__=="__main__": #do our inputs args = do_inputs() main(args)
AlignQC
/AlignQC-2.0.5.tar.gz/AlignQC-2.0.5/alignqc/bam_preprocess.py
bam_preprocess.py
import argparse, sys, os, gzip, itertools, inspect, pickle, zlib, base64 from shutil import rmtree from multiprocessing import cpu_count, Pool, Lock from tempfile import mkdtemp, gettempdir from subprocess import Popen, PIPE from seqtools.range import GenomicRangeFromString from seqtools.range.multi import ranges_to_coverage from seqtools.format.gpd import GPD, SortedOutputFile as SortedGPDOutputFile from seqtools.stream import GZippedOutputFile ## The purpose of this script is to read through a bam alignment and record as much information as possible from it. ## ## The bam should be indexed ahead of time in our index format. glock = Lock() g_done = None g_lines = None best_gpd = None chimera_gpd = None technical_chimera_gpd = None technical_atypical_chimera_gpd = None gapped_gpd = None gpd_total = None g_lengths = None def process_buffer_output(results): #print results global glock glock.acquire() global best_gpd global g_lengths global chimera_gpd global gapped_gpd global technical_chimera_gpd global technical_atypical_chimera global g_done global g_lines g_done += len(results['lengths']) g_lines += results['buffer_quantity'] sys.stderr.write(str(g_lines)+" alignments "+str(g_done)+" reads \r") for v in results['best']: best_gpd.write(v+"\n") for v in results['lengths']: g_lengths.write(v+"\n") for v in results['chimera']: chimera_gpd.write(v+"\n") for v in results['gapped']: gapped_gpd.write(v+"\n") for v in results['technical_chimera']: technical_chimera_gpd.write(v+"\n") for v in results['technical_atypical_chimera']: technical_atypical_chimera_gpd.write(v+"\n") #'original_count':original_count,'gapped_count':gapped_count,'technical_atypical_chimera_count':technical_atypical_chimera_count,'techinical_chimera_count':technical_chimera_count,'chimera_count':chimera_count} glock.release() def do_buffer(buffer,args): lengths = [] best = [] chimera = [] technical_chimera = [] gapped = [] technical_atypical_chimera = [] chimera_count = 0 technical_chimera_count = 0 gapped_count = 0 technical_atypical_chimera_count = 0 original_count = 0 results = [] buffer_quantity = 0 for qname in sorted(buffer.keys()): buffer_quantity += len(buffer[qname]) dat = [pickle.loads(zlib.decompress(base64.b64decode(x))) for x in buffer[qname]] for i in range(0,len(dat)): if dat[i]['aligned_bases'] > 0: dat[i]['tx'] = GPD(dat[i]['tx']) dat[i]['qrng'] = GenomicRangeFromString(dat[i]['qrng']) else: dat[i]['tx'] = None dat[i]['qrng'] = None unaligned = [x for x in dat if x['aligned_bases'] == 0] aligned = [x for x in dat if x['aligned_bases'] > 0] #now dat should be set up with anything we need if len(aligned)==0: lengths.append(qname+"\tunaligned\t0\t0\t"+str(unaligned[0]['qlen'])) continue #if len([x for x in aligned if x['flag'] & 2304==0])==0: # lengths.append(qname+"\tunaligned\t0\t0\t"+str(aligned[0]['qlen'])) # continue if len(aligned)==1: if dat[0]['aligned_bases'] > 0: lengths.append(qname+"\toriginal\t"+str(dat[0]['aligned_bases'])+"\t"+str(dat[0]['aligned_bases'])+"\t"+str(dat[0]['qlen'])) best.append(dat[0]['tx'].get_gpd_line()) original_count += 1 continue # we have multiple paths too look for qlen = max([x['qlen'] for x in aligned]) #print aligned #print [x['tx'].get_gene_name() for x in aligned] best_possible = [i for i in range(0,len(aligned)) if aligned[i]['flag'] & 2304 == 0] best_ind = 0 if len(best_possible) == 0: ## only secondary alignments to look at longest = 0 for i in range(0,len(aligned)): if aligned[i]['aligned_bases'] > longest: longest = aligned[i]['aligned_bases'] longind = i else: best_ind= best_possible[0] best.append(dat[best_ind]['tx'].get_gpd_line()) v = check_paths(aligned,best_ind,args) o_qlen = dat[best_ind]['qrng'].length v_qlen = v['qlen'] if v['type'] == 'chimera': chimera_count += 1 for p in v['path']: chimera.append(p['tx'].get_gpd_line()) elif v['type'] == 'self-chimera': technical_chimera_count += 1 for p in v['path']: technical_chimera.append(p['tx'].get_gpd_line()) elif v['type'] == 'self-chimera-atypical': technical_atypical_chimera_count += 1 for p in v['path']: technical_atypical_chimera.append(p['tx'].get_gpd_line()) elif v['type'] == 'gapped': gapped_count += 1 for p in v['path']: gapped.append(p['tx'].get_gpd_line()) elif v['type'] == 'original': original_count +=1 else: sys.stderr.write("WARNING unaccounted for type\n") lengths.append(qname+"\t"+v['type']+"\t"+str(o_qlen)+"\t"+str(v_qlen)+"\t"+str(max([x['qlen'] for x in aligned]))) return {'lengths':lengths,'gapped':gapped,'chimera':chimera,'best':best,'technical_chimera':technical_chimera,'technical_atypical_chimera':technical_atypical_chimera,'original_count':original_count,'gapped_count':gapped_count,'technical_atypical_chimera_count':technical_atypical_chimera_count,'technical_chimera_count':technical_chimera_count,'chimera_count':chimera_count,'buffer_quantity':buffer_quantity} def main(args): chunksize = args.chunk_size inf = gzip.open(args.input) args.output = args.output.rstrip('/') if not os.path.exists(args.output): os.makedirs(args.output) buffer = {} prev = None global g_done global g_lines g_done = 0 g_lines = 0 global best_gpd best_gpd = SortedGPDOutputFile(args.output+'/best.sorted.gpd.gz',tempdir=args.tempdir) global g_lengths g_lengths = GZippedOutputFile(args.output+'/lengths.txt.gz') #cmd = "gzip" #lof = open(args.output+'/lengths.txt.gz','w') #plen = Popen(cmd.split(),stdout=lof,stdin=PIPE,close_fds=True) #g_lengths = plen.stdin global chimera_gpd chimera_gpd = GZippedOutputFile(args.output+'/chimera.gpd.gz') global technical_chimera_gpd technical_chimera_gpd = GZippedOutputFile(args.output+'/technical_chimeras.gpd.gz') global technical_atypical_chimera_gpd technical_atypical_chimera_gpd = GZippedOutputFile(args.output+'/technical_atypical_chimeras.gpd.gz') global gapped_gpd gapped_gpd = GZippedOutputFile(args.output+'/gapped.gpd.gz') global gpd_total gpd_total = {'original_count':0,'gapped_count':0,'technical_atypical_chimera_count':0,'techinical_chimera_count':0,'chimera_count':0,'unaligned':0} if args.threads > 1: p = Pool(processes=args.threads) z = 0 for line in inf: (qname, data) = line.rstrip().split("\t") if qname!=prev: buftot = len(buffer.keys()) if buftot >= chunksize: if args.threads > 1: p.apply_async(do_buffer,args=(buffer,args),callback=process_buffer_output) else: r = do_buffer(buffer,args) process_buffer_output(r) buffer = {} if qname not in buffer: buffer[qname] = [] buffer[qname].append(data) prev = qname if len(buffer.keys()) > 0: if args.threads > 1: p.apply_async(do_buffer,args=(buffer,args),callback=process_buffer_output) else: r = do_buffer(buffer,args) process_buffer_output(r) if args.threads > 1: p.close() p.join() sys.stderr.write("\n") best_gpd.close() chimera_gpd.close() technical_chimera_gpd.close() technical_atypical_chimera_gpd.close() gapped_gpd.close() g_lengths.close() #plen.communicate() #lof.close() inf.close() # Temporary working directory step 3 of 3 - Cleanup if not args.specific_tempdir: rmtree(args.tempdir) # path # aligned_bases - bases aligned not counting any deltions or insertions # indecies - # type - original/chimera/self-chimera/gapped # qlen - range spanned by query alignments def check_paths(path_data,best_ind,args): #other_inds = [x for x in range(0,len(path_data)) if x != best_ind] possibles = get_index_sets(len(path_data)) new_best = [path_data[best_ind]] new_bases = path_data[best_ind]['aligned_bases'] new_inds = set([best_ind]) new_type = 'original' new_qlen = path_data[best_ind]['qrng'].length for possible_path in possibles: if best_ind not in possible_path: continue # only consider path sets that have our best index in it res = evaluate_path(path_data,possible_path,best_ind,args) if res['any']: bases = sum([x['aligned_bases'] for x in res['path']]) if bases > new_bases: new_best = res['path'] new_bases = bases new_inds = set(possible_path) qrngs = [res['path'][0]['qrng']] for i in range(1,len(res['path'])): if qrngs[-1].overlaps(res['path'][i]['qrng']): qrngs[-1] = qrngs[-1].merge(res['path'][i]['qrng']) else: qrngs.append(res['path'][i]['qrng']) #new_qlen = sum([x.length() for x in qrngs]) new_qlen = sum([x.length for x in ranges_to_coverage(qrngs)]) if res['gapped']: new_type = 'gapped' elif res['chimera']: new_type = 'chimera' elif res['self-chimera']: new_type = 'self-chimera' elif res['self-chimera-atypical']: new_type = 'self-chimera-atypical' else: sys.stderr.write("WARNING: Unaccounted for type\n") return {'path':new_best, 'aligned_bases':new_bases, 'indecies':new_inds,'type':new_type,'qlen':new_qlen} #print path_data[best_ind] # Create a dictionary with the follwing information # path: a list of alignments order by query placement # gapped: is it a gapped alignment # chimera: is it a fusion-like # self-chimera: is it a + - of an overlapping target sequence def evaluate_path(path_data,possible_path,best_ind,args): pord = sorted([path_data[i] for i in possible_path],key=lambda x: x['qrng'].start) best_bases = path_data[best_ind]['aligned_bases'] bases = sum([x['aligned_bases'] for x in pord]) res = {'path':pord,'gapped':False,'chimera':False,'self-chimera':False,'self-chimera-atypical':False,'any':False} if len(path_data) <= 1: return res if bases+bases*args.required_fractional_improvement < best_bases: return res for p in pord: if p['aligned_bases'] < args.min_aligned_bases: return res # check for query overlaps ... not a useful build for i in range(0,len(pord)): for j in range(i+1,len(pord)): if args.max_query_gap: if pord[i]['qrng'].distance(pord[j]['qrng']) > args.max_query_gap: return res if pord[i]['qrng'].overlap_size(pord[j]['qrng']) > args.max_query_overlap: return res chrcount = len(set([x['tx'].range.chr for x in pord])) # check for target overlaps ... not gapped or chimera but maybe self-chimera for i in range(0,len(pord)): for j in range(i+1,len(pord)): if pord[i]['tx'].overlap_size(pord[j]['tx']) > args.max_target_overlap: #res['gapped'] = False #res['chimera'] = False if pord[i]['tx'].strand != pord[j]['tx'].strand and chrcount == 1: res['self-chimera'] = True res['any'] = True else: res['self-chimera-atypical'] = True res['any'] = True return res for i in range(0,len(pord)): for j in range(i+1,len(pord)): if args.max_target_gap: dist = pord[i]['tx'].range.distance(pord[j]['tx'].range) if dist > args.max_target_gap or dist == -1: res['chimera'] = True res['gapped'] = False res['any'] = True if len(pord) > 1 and not res['self-chimera'] and not res['chimera']: res['gapped'] = True res['any'] = True return res def get_index_sets(indlen): r = [] inds = range(0,indlen) for l in range(1,len(inds)+1): for subset in itertools.combinations(inds,l): r.append(subset) return r def do_inputs(): # Setup command line inputs parser=argparse.ArgumentParser(description="",formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('input',help="use bam_preprocess result as input") parser.add_argument('-o','--output',help="OUTPUTDIR",required=True) parser.add_argument('--threads',type=int,default=cpu_count(),help="INT number of threads to run. Default is system cpu count") parser.add_argument('--minimum_intron_size',type=int,default=68) parser.add_argument('--chunk_size',type=int,default=10000,help="number of reads to do at once") # Arguments for finding alternate multi alignment paths parser.add_argument('--min_aligned_bases',type=int,default=50,help="Don't consider very short alignments") parser.add_argument('--max_query_overlap',type=int,default=10,help="Consider two alignments incompatible if greater overlap than this") parser.add_argument('--max_target_overlap',type=int,default=10,help="Consider two alignments incompatible if greater overlap than this") parser.add_argument('--max_target_gap',type=int,default=500000,help="Not a gapped alignment if gap is greater than this") parser.add_argument('--max_query_gap',type=int,default=500000,help="Consider a gapped alignment incompatible if greater thant this") parser.add_argument('--required_fractional_improvement',type=float,default=0.2,help="combination path should be this much better than best single alignment") # Temporary working directory step 1 of 3 - Definition group = parser.add_mutually_exclusive_group() group.add_argument('--tempdir',default=gettempdir(),help="The temporary directory is made and destroyed here.") group.add_argument('--specific_tempdir',help="This temporary directory will be used, but will remain after executing.") args = parser.parse_args() # Temporary working directory step 2 of 3 - Creation setup_tempdir(args) return args def setup_tempdir(args): if args.specific_tempdir: if not os.path.exists(args.specific_tempdir): os.makedirs(args.specific_tempdir.rstrip('/')) args.tempdir = args.specific_tempdir.rstrip('/') if not os.path.exists(args.specific_tempdir.rstrip('/')): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() else: args.tempdir = mkdtemp(prefix="weirathe.",dir=args.tempdir.rstrip('/')) if not os.path.exists(args.tempdir.rstrip('/')): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() if not os.path.exists(args.tempdir): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() return def external_cmd(cmd): #need to save arguments cache_argv = sys.argv sys.argv = cmd args = do_inputs() main(args) #need to set the arguments back to what they were sys.argv = cache_argv return if __name__=="__main__": #do our inputs args = do_inputs() main(args)
AlignQC
/AlignQC-2.0.5.tar.gz/AlignQC-2.0.5/alignqc/traverse_preprocessed.py
traverse_preprocessed.py
import sys, argparse, gzip, re, os, inspect, itertools from multiprocessing import Pool, cpu_count from seqtools.format.gpd import GPDStream from seqtools.range.multi import merge_ranges, subtract_ranges, BedArrayStream, sort_ranges from seqtools.range import GenomicRange from seqtools.stream import MultiLocusStream def main(args): inf = None chrlens = {} chrbed = [] if re.search('\.gz$',args.chromosome_lengths): inf = gzip.open(args.chromosome_lengths) else: inf = open(args.chromosome_lengths) for line in inf: f = line.rstrip().split("\t") chrlens[f[0]] = int(f[1]) chrbed.append(GenomicRange(f[0],1,int(f[1]))) inf.close() inf = None exonbed = [] txbed = [] sys.stderr.write("Reading Exons\n") if re.search('\.gz$',args.annotation_gpd): inf = gzip.open(args.annotation_gpd) else: inf = open(args.annotation_gpd) gs = GPDStream(inf) for gpd in gs: exonbed += [x.range for x in gpd.exons] txbed.append(gpd.range) inf.close() sys.stderr.write("Merging "+str(len(txbed))+" transcripts\n") txbed = merge_ranges(txbed) sys.stderr.write(str(len(txbed))+" transcripts after merging\n") sys.stderr.write("Finding intergenic\n") intergenicbed = subtract_ranges(chrbed,txbed) sys.stderr.write("Found "+str(len(intergenicbed))+" intergenic regions\n") intergenicbp = sum([x.length for x in intergenicbed]) sys.stderr.write("Intergenic size: "+str(intergenicbp)+"\n") sys.stderr.write("Merging "+str(len(exonbed))+" exons\n") exonbed = merge_ranges(exonbed) sys.stderr.write(str(len(exonbed))+" exons after merging\n") sys.stderr.write("Finding introns\n") intronbed = subtract_ranges(txbed,exonbed) sys.stderr.write("Found "+str(len(intronbed))+" introns\n") chrbp = sum([x.length for x in chrbed]) sys.stderr.write("Genome size: "+str(chrbp)+"\n") txbp = sum([x.length for x in txbed]) sys.stderr.write("Tx size: "+str(txbp)+"\n") exonbp = sum([x.length for x in exonbed]) sys.stderr.write("Exon size: "+str(exonbp)+"\n") intronbp = sum([x.length for x in intronbed]) sys.stderr.write("Intron size: "+str(intronbp)+"\n") #sys.stderr.write(str(txbp+intergenicbp)+"\n") if args.output_beds: if not os.path.exists(args.output_beds): os.makedirs(args.output_beds) with open(args.output_beds+'/chrs.bed','w') as of1: for rng in chrbed: of1.write("\t".join([str(x) for x in rng.get_bed_array()])+"\n") with open(args.output_beds+'/exon.bed','w') as of1: for rng in exonbed: of1.write("\t".join([str(x) for x in rng.get_bed_array()])+"\n") with open(args.output_beds+'/intron.bed','w') as of1: for rng in intronbed: of1.write("\t".join([str(x) for x in rng.get_bed_array()])+"\n") with open(args.output_beds+'/intergenic.bed','w') as of1: for rng in intergenicbed: of1.write("\t".join([str(x) for x in rng.get_bed_array()])+"\n") with open(args.output_beds+'/tx.bed','w') as of1: for rng in txbed: of1.write("\t".join([str(x) for x in rng.get_bed_array()])+"\n") inf = None if re.search('\.gz$',args.reads_gpd): inf = gzip.open(args.reads_gpd) else: inf = open(args.reads_gpd) reads = {} gs = GPDStream(inf) for gpd in gs: reads[gpd.gene_name] = {} sys.stderr.write("Checking "+str(len(reads.keys()))+" Aligned Reads\n") #now we know all features we can annotate reads sys.stderr.write("Read through our reads and bed entries\n") sys.stderr.write("Annotate intron\n") intron = annotate_gpds(args,intronbed) intronnames = set(intron.keys()) sys.stderr.write("Annotate intergenic\n") intergenic = annotate_gpds(args,intergenicbed) intergenicnames = set(intergenic.keys()) sys.stderr.write("Annotate exons\n") exons = annotate_gpds(args,exonbed) exonnames = set(exons.keys()) allnames = exonnames|intronnames|intergenicnames sys.stderr.write(str(len(allnames))+" reads attributed to a feature\n") vals = set(reads.keys())-allnames if len(vals) > 0: sys.stderr.write("WARNING unable to ascribe annotation to "+str(len(vals))+" reads\n") donenames = set() of = sys.stdout if args.output: if re.search('\.gz$',args.output): of = gzip.open(args.output,'w') else: of = open(args.output,'w') for name in allnames: exonfrac = 0 intronfrac = 0 intergenicfrac = 0 readlen = 0 exoncount = 0 if name in exons: exonfrac = float(exons[name][1])/float(exons[name][0]) readlen = exons[name][0] exoncount = exons[name][2] if name in intron: intronfrac = float(intron[name][1])/float(intron[name][0]) readlen = intron[name][0] exoncount = intron[name][2] if name in intergenic: intergenicfrac = float(intergenic[name][1])/float(intergenic[name][0]) readlen = intergenic[name][0] exoncount = intergenic[name][2] vals = {'exon':exonfrac,'intron':intronfrac,'intergenic':intergenicfrac} type = None if exonfrac >= 0.5: type = 'exon' elif intronfrac >= 0.5: type = 'intron' elif intergenicfrac >= 0.5: type = 'intergenic' else: type = sorted(vals.keys(),key=lambda x: vals[x])[-1] if vals[type] == 0: sys.stderr.write("WARNING trouble setting type\n") if not type: continue of.write(name+"\t"+type+"\t"+str(exoncount)+"\t"+str(readlen)+"\n") of.close() def generate_locus(mls): for es in mls: [gpds,inbeds] = es.payload if len(gpds) == 0 or len(inbeds) == 0: continue yield es def annotate_gpds(args,inputbed): if args.threads > 1: p = Pool(processes=args.threads) bas = BedArrayStream(sort_ranges(inputbed)) inf = None if re.search('\.gz$',args.reads_gpd): inf = gzip.open(args.reads_gpd) else: inf = open(args.args.reads_gpd) gs = GPDStream(inf) mls = MultiLocusStream([gs,bas]) results = {} # try and implement as a multiprocessing map function csize = 100 #control how many jobs to send to one thread at a time if args.threads > 1: results2 = p.imap_unordered(func=annotate_inner,iterable=generate_locus(mls),chunksize=csize) else: results2 = itertools.imap(annotate_inner,generate_locus(mls)) for chunk in results2: for res in chunk: results[res[0]] = res[1:] inf.close() return results def annotate_inner(es): results = [] [gpds,inbeds] = es.payload for gpd in gpds: orig = gpd.length tot = 0 for rng1 in [x.range for x in gpd.exons]: tot += sum([y.overlap_size(rng1) for y in inbeds]) if tot > 0: results.append([gpd.gene_name,orig,tot,gpd.get_exon_count()]) return results def do_inputs(): parser = argparse.ArgumentParser(description="Assign genomic features to reads based on where they majority of the read lies. In the event of a tie prioritize exon over intron and intron over intergenic.",formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('reads_gpd',help="reads gpd") parser.add_argument('annotation_gpd',help="reference annotations gpd") parser.add_argument('chromosome_lengths',help="reference lengths table") parser.add_argument('--output_beds',help="save features") parser.add_argument('-o','--output',help="output results") parser.add_argument('--threads',default=cpu_count(),type=int,help="number of threads default cpu_count()") args = parser.parse_args() return args def external_cmd(cmd): cache_argv = sys.argv sys.argv = cmd args = do_inputs() main(args) sys.argv = cache_argv if __name__=="__main__": args = do_inputs() main(args)
AlignQC
/AlignQC-2.0.5.tar.gz/AlignQC-2.0.5/alignqc/annotate_from_genomic_features.py
annotate_from_genomic_features.py
"""Get information at the locus level. Good if you have no gene annotation""" import argparse, sys, os, re, gzip, inspect, os from random import shuffle from shutil import rmtree from multiprocessing import cpu_count, Pool, Lock from tempfile import mkdtemp, gettempdir from seqtools.format.gpd import GPDStream from seqtools.stream import LocusStream from seqtools.structure.gene import TranscriptLoci, TranscriptLociMergeRules, TranscriptGroup glock = Lock() last_range = None def main(args): # Setup inputs inf = sys.stdin if args.input != '-': if re.search('\.gz$',args.input): inf = gzip.open(args.input) else: inf = open(args.input) of = sys.stdout # Setup outputs if args.output: if re.search('\.gz$',args.output): of = gzip.open(args.output,'w') else: of = open(args.output,'w') mr = TranscriptLociMergeRules('is_any_overlap') mr.set_use_junctions(False) if args.threads > 1: p = Pool(processes=args.threads) results = [] z = 0 for locus in LocusStream(GPDStream(inf)): vals = locus.payload if args.downsample: if len(vals) > args.downsample: shuffle(vals) vals = vals[0:args.downsample] locus.set_payload(vals) if args.threads <= 1: tls = Queue(do_locus(locus,mr,z,args,verbose=True)) results.append(tls) else: tls = p.apply_async(do_locus,args=(locus,mr,z,args,False),callback=process_output) results.append(tls) z += len(locus.payload) if args.threads > 1: p.close() p.join() #sys.exit() sys.stderr.write("\n") sys.stderr.write("Outputing results\n") if args.output_loci: if re.search('\.gz$',args.output_loci): ofl = gzip.open(args.output_loci,'w') else: ofl = open(args.output_loci,'w') lnum = 0 for res in sorted([y for y in [r.get() for r in results] if y],key=lambda x: (x.chr,x.start,x.end)): rng = res.get_range_string() rngout = res.copy() tls = res.payload for tl in sorted(tls,key=lambda x: (x.range.chr,x.range.start,x.range.end)): lnum += 1 txs = sorted(tl.get_transcripts(),key=lambda x: (x.range.chr,x.range.start,x.range.end)) tlrng = [str(x) for x in tl.range.get_bed_array()] ofl.write("\t".join(tlrng)+"\t"+str(lnum)+"\t"+str(len(txs))+"\n") for tx in txs: cov = tx.payload[1] of.write("\t".join(tlrng)+"\t"+str(lnum)+"\t"+str(len(txs))+"\t"+str(tx.payload[0])+"\t"+str(z)+"\t"+tx.gene_name+"\t"+str(cov['average_coverage'])+"\t"+str(cov['fraction_covered'])+"\t"+str(cov['mindepth'])+"\n") if args.output_loci: ofl.close() inf.close() of.close() # Temporary working directory step 3 of 3 - Cleanup #if not args.specific_tempdir: # rmtree(args.tempdir) def process_output(curr_range): global last_range global glock if not curr_range: return None if len(curr_range.payload)==0: return None glock.acquire() if curr_range: if not last_range: last_range = curr_range sys.stderr.write("Pos: "+curr_range.get_range_string()+" \r") elif curr_range.cmp(last_range) == 1: last_range = curr_range sys.stderr.write("Pos: "+last_range.get_range_string()+" \r") glock.release() return curr_range def do_locus(locus,mr,curline,args,verbose=True): txl = TranscriptLoci() txl.set_merge_rules(mr) z = 0 tot = len(locus.payload) for gpd in locus.payload: z += 1 curline+=1 gpd.set_payload([curline,None]) if verbose: sys.stderr.write("adding transcript: "+str(z)+'/'+str(tot)+" \r") if gpd.get_exon_count() < args.min_exon_count: continue txl.add_transcript(gpd) if len(txl.get_transcripts()) > 0: covs = txl.get_depth_per_transcript() remove_list = [] for g in txl.get_transcripts(): if g.id not in covs: continue x = covs[g.id] g.payload[1] = x if x['average_coverage'] < args.min_depth: remove_list.append(g.id) elif args.min_depth > 1 and x['fraction_covered'] < args.min_coverage_at_depth: remove_list.append(g.id) for tx_id in remove_list: txl.remove_transcript(tx_id) if verbose: sys.stderr.write("\n") if verbose: if txl.range: sys.stderr.write(txl.range.get_range_string()+"\n") #sys.stderr.write('partition locus'+"\n") tls = txl.partition_loci(verbose=verbose) curr_range = None for tl in tls: if not curr_range: curr_range = tl.range curr_range = curr_range.merge(tl.range) if not curr_range: return None curr_range.set_payload(tls) return curr_range # Let us handle an output with get command like apply_async class Queue: def __init__(self,val): self.val = val def get(self): return self.val def do_inputs(): # Setup command line inputs parser=argparse.ArgumentParser(description="Read SORTED genepred as input. Output stuff about loci.",formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('input',help="INPUT FILE or '-' for STDIN") parser.add_argument('-o','--output',help="OUTPUTFILE or STDOUT if not set") parser.add_argument('--output_loci',help="Only describe the loci") parser.add_argument('--threads',type=int,default=cpu_count(),help="INT number of threads to run. Default is system cpu count") parser.add_argument('--downsample',type=int,help="downsample to this number as maximum locus parsed") # Run specific arguments parser.add_argument('--min_depth',type=float,default=1,help="Only consider reads with averge coverage this much or higher") parser.add_argument('--min_coverage_at_depth',type=float,default=0.8,help="Only consider reads covered at 'min_depth' at this fraction or greater.") parser.add_argument('--min_exon_count',type=float,default=1,help="Only construct loci from reads with this many or more exons") ## Temporary working directory step 1 of 3 - Definition #group = parser.add_mutually_exclusive_group() #group.add_argument('--tempdir',default=gettempdir(),help="The temporary directory is made and destroyed here.") #group.add_argument('--specific_tempdir',help="This temporary directory will be used, but will remain after executing.") args = parser.parse_args() # Temporary working directory step 2 of 3 - Creation #setup_tempdir(args) return args def setup_tempdir(args): if args.specific_tempdir: if not os.path.exists(args.specific_tempdir): os.makedirs(args.specific_tempdir.rstrip('/')) args.tempdir = args.specific_tempdir.rstrip('/') if not os.path.exists(args.specific_tempdir.rstrip('/')): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() else: args.tempdir = mkdtemp(prefix="weirathe.",dir=args.tempdir.rstrip('/')) if not os.path.exists(args.tempdir.rstrip('/')): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() if not os.path.exists(args.tempdir): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() return def external_cmd(cmd): cache_argv = sys.argv sys.argv = cmd args = do_inputs() main(args) sys.argv = cache_argv if __name__=="__main__": #do our inputs args = do_inputs() main(args)
AlignQC
/AlignQC-2.0.5.tar.gz/AlignQC-2.0.5/alignqc/gpd_loci_analysis.py
gpd_loci_analysis.py
"""measure distances of junctions to references junctions""" import argparse, sys, os, gzip from shutil import rmtree from tempfile import mkdtemp, gettempdir from time import sleep from multiprocessing import cpu_count, Pool from seqtools.format.gpd import GPD, GPDStream from seqtools.range import GenomicRange, GenomicRangeFromString from seqtools.range.multi import sort_ranges, BedArrayStream, BedStream from seqtools.stream import MultiLocusStream rcnt = 0 def main(args): # Start by reading in our reference GPD exon_start_strings = set() exon_end_strings = set() inf = None if args.reference[-3:] == '.gz': inf = gzip.open(args.reference) else: inf = open(args.reference) z = 0 for line in inf: z += 1 if z%1000 == 0: sys.stderr.write("ref transcripts: "+str(z)+" starts: "+str(len(exon_start_strings))+" ends: "+str(len(exon_end_strings))+" \r") gpd = GPD(line) if gpd.get_exon_count() < 2: continue for j in gpd.junctions: exon_start_strings.add(j.right.get_range_string()) exon_end_strings.add(j.left.get_range_string()) inf.close() sys.stderr.write("\n") # Now convert each start or end to list of ranges to overlap sys.stderr.write("finding start windows\n") starts = get_search_ranges_from_strings(exon_start_strings,args) sh = BedArrayStream(starts) ofst = open(args.tempdir+'/starts.bed','w') for v in sh: ofst.write("\t".join([str(x) for x in v.get_bed_array()]+[v.payload.get_range_string()])+"\n") ofst.close() starts = None sh = None sys.stderr.write("finding end windows\n") ends = get_search_ranges_from_strings(exon_end_strings,args) eh = BedArrayStream(ends) ofen = open(args.tempdir+'/ends.bed','w') for v in eh: ofen.write("\t".join([str(x) for x in v.get_bed_array()]+[v.payload.get_range_string()])+"\n") ofen.close() # switch to file based operations to save some memory ends = None eh = None sleep(10) # give garbage collection time to flush these big memory objects sinf = open(args.tempdir+'/starts.bed') einf = open(args.tempdir+'/ends.bed') sh = BedStream(sinf) eh = BedStream(einf) # now stream in our reads sys.stderr.write("working through reads\n") inf = sys.stdin if args.input != '-': if args.input[-3:] == '.gz': inf = gzip.open(args.input) else: inf = open(args.input) gh = GPDStream(inf) mls = MultiLocusStream([gh,sh,eh]) z = 0 global rcnt rcnt = 0 #start_distances = [] #end_distances = [] buffer = [] max_buffer = 100 tos = open(args.tempdir+'/starts.txt','w') toe = open(args.tempdir+'/ends.txt','w') p = Pool(processes=args.threads) csize=10 results = p.imap_unordered(process_locus,gen_locus(mls,args),chunksize=csize) for r in results: if len(r[0]) > 0: tos.write("\n".join([str(x) for x in r[0]])+"\n") if len(r[1]) > 0: toe.write("\n".join([str(x) for x in r[1]])+"\n") tos.close() toe.close() inf.close() sys.stderr.write("\n") # now we have the distance, we don't actually know if a start is a start or an end from what have distances = {} sys.stderr.write("Reading start distances\n") inf = open(args.tempdir+'/starts.txt') for line in inf: d = int(line.rstrip()) if d not in distances: distances[d] = 0 distances[d] += 1 inf.close() sys.stderr.write("Reading end distances\n") inf = open(args.tempdir+'/ends.txt') for line in inf: d = int(line.rstrip()) if d not in distances: distances[d] = 0 distances[d] += 1 inf.close() # now output results of = sys.stdout if args.output: of = open(args.output,'w') for d in sorted(distances.keys()): of.write(str(d)+"\t"+str(distances[d])+"\n") of.close() # Temporary working directory step 3 of 3 - Cleanup if not args.specific_tempdir: rmtree(args.tempdir) def gen_locus(mls,args): global rcnt z = 0 for es in mls: z += 1 if z%1000 == 0: sys.stderr.write(es.get_range_string()+" locus: "+str(z)+" reads: "+str(rcnt)+" \r") if len(es.payload[0]) == 0: continue rcnt += len(es.payload[0]) yield [es,args] class Queue: def __init__(self,val): self.val = [val] def get(self): return self.pop(0) def process_locus(vals): (es,args) = vals out_start_distances = [] out_end_distances = [] streams = es.payload reads = streams[0] starts = streams[1] for i in range(0,len(starts)): v = starts[i].payload starts[i].set_payload(GenomicRangeFromString(v)) ends = streams[2] for i in range(0,len(ends)): v = ends[i].payload ends[i].set_payload(GenomicRangeFromString(v)) #if len(starts) == 0 and len(ends) == 0: continue for read in reads: if read.get_exon_count() < 2: continue # multi exon for j in read.junctions: ex_start = j.right ex_end = j.left # we can look for evidence for each #sys.exit() evstart = [x.payload.start-ex_start.start for x in starts if x.overlaps(ex_start) and x.payload.distance(ex_start) <= args.window] if len(evstart) > 0: # get the best distance min_dist = args.window+10 num = None for v in evstart: if abs(v) < min_dist: min_dist = abs(v) num = v if num is not None: out_start_distances.append(num) evend = [ex_end.end-x.payload.end for x in ends if x.overlaps(ex_end) and x.payload.distance(ex_end) <= args.window] if len(evend) > 0: # get the best distance min_dist = args.window+10 num = None for v in evend: if abs(v) < min_dist: min_dist = abs(v) num = v if num is not None: out_end_distances.append(num) return [out_start_distances,out_end_distances] def get_search_ranges_from_strings(position_strings,args): results = [] for pstr in position_strings: rng = GenomicRangeFromString(pstr) rngw = rng.copy() rngw.start = max(rng.start-args.window,1) rngw.end =rng.start+args.window rngw.set_payload(rng) results.append(rngw) return sort_ranges(results) def do_inputs(): # Setup command line inputs parser=argparse.ArgumentParser(description="Given your SORTED read mappings in GPD format, how do the junction sites differ from the nearest known reference?",formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('input',help="INPUT reads GPD or '-' for STDIN") parser.add_argument('-r','--reference',required=True,help="Reference GPD") parser.add_argument('-o','--output',help="OUTPUTFILE or STDOUT if not set") parser.add_argument('--threads',type=int,default=cpu_count(),help="INT number of threads to run. Default is system cpu count") parser.add_argument('-w','--window',type=int,default=30,help="Window for how far to search for a nearby reference") # Temporary working directory step 1 of 3 - Definition group = parser.add_mutually_exclusive_group() group.add_argument('--tempdir',default=gettempdir(),help="The temporary directory is made and destroyed here.") group.add_argument('--specific_tempdir',help="This temporary directory will be used, but will remain after executing.") args = parser.parse_args() # Temporary working directory step 2 of 3 - Creation setup_tempdir(args) return args def setup_tempdir(args): if args.specific_tempdir: if not os.path.exists(args.specific_tempdir): os.makedirs(args.specific_tempdir.rstrip('/')) args.tempdir = args.specific_tempdir.rstrip('/') if not os.path.exists(args.specific_tempdir.rstrip('/')): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() else: args.tempdir = mkdtemp(prefix="weirathe.",dir=args.tempdir.rstrip('/')) if not os.path.exists(args.tempdir.rstrip('/')): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() if not os.path.exists(args.tempdir): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() return def external_cmd(cmd): cache_argv = sys.argv sys.argv = cmd args = do_inputs() main(args) sys.argv = cache_argv if __name__=="__main__": args = do_inputs() main(args)
AlignQC
/AlignQC-2.0.5.tar.gz/AlignQC-2.0.5/alignqc/gpd_to_junction_variance.py
gpd_to_junction_variance.py
"""Look for bias across the 5' to 3' of annotated transcripts""" import sys, argparse, re, gzip, os, inspect from subprocess import PIPE, Popen from multiprocessing import Pool, cpu_count from tempfile import mkdtemp, gettempdir from shutil import rmtree from seqtools.format.gpd import GPDStream from seqtools.range import GenomicRange, GenomicRangeFromString from seqtools.range.multi import ranges_to_coverage from seqtools.statistics import average from seqtools.stream import LocusStream, MultiLocusStream def main(args): sort_annot(args) sort_ref(args) inf0 = open(args.tempdir+'/annot.sorted.txt') anns = AnnotStream(inf0) ls0 = LocusStream(anns) inf1 = open(args.tempdir+'/ref.sorted.gpd') gs1 = GPDStream(inf1) ls1 = LocusStream(gs1) sys.stderr.write("reading read genepred\n") inf2 = None if is_gzip(args.read_genepred): inf2 = gzip.open(args.read_genepred) else: inf2 = open(args.read_genepred) gs2 = GPDStream(inf2) ls2 = LocusStream(gs2) mls = MultiLocusStream([ls0,ls1,ls2]) sys.stderr.write("stream loci\n") z = 0 totals = [] for l in mls: z += 1 [l0,l1,l2] = l.payload if args.minimum_read_count > len(l0): continue if args.minimum_read_count > len(l2): continue rvals = do_locus(l0,l1,l2,args) for rval in rvals: totals.append(rval) sys.stderr.write(str(z)+" "+l.get_range_string()+" "+str([len(x) for x in l.payload])+" "+str(len(totals))+" proccessed \r") sys.stderr.write("\n") #results = {} #for i in range(1,101): # results[str(i)] = [] read_total = 0 ############ outs = [] for v in totals: if not v: continue bins = sorted([int(x) for x in v[0].keys()]) outs.append([0 for x in range(1,101)]) read_total+=v[1] for i in range(1,101): if str(i) in v[0]: #results[str(i)].append(v[0][str(i)]) outs[-1][i-1] = v[0][str(i)] of = sys.stdout if args.output and re.search('\.gz',args.output): of = gzip.open(args.output,'w') elif args.output: of = open(args.output,'w') tot = len(outs) #for i in range(1,101): # ostr = str(i) # tot = len(results[str(i)]) # for j in results[str(i)]: # ostr += "\t"+str(j) # of.write(ostr+"\n") tnum = 0 for o in outs: tnum += 1 of.write(str(tnum)+"\t"+"\t".join([str(x) for x in o])+"\n") of.close() if args.output_counts: of = open(args.output_counts,'w') of.write(str(tot)+"\t"+str(read_total)+"\n") of.close() sys.stderr.write(str(tot)+" total transcripts \t"+str(read_total)+" total reads\n") if not args.specific_tempdir: rmtree(args.tempdir) def spawn_jobs(mls,args): z = 0 for l in mls: z += 1 [l0,l1,l2] = l.payload if args.minimum_read_count > len(l0): continue if args.minimum_read_count > len(l2): continue vals = do_locus(l0,l1,l2,args) for v in vals: yield v def do_locus(annots,refs,reads,args): read_to_tx = {} tx_to_read = {} for a in annots: for b in [x.get_value() for x in a.payload]: if b['matching_exon_count'] < args.minimum_matched_exons: continue if b['read_length'] < args.minimum_read_length: continue read_to_tx[b['read_name']] = b['tx_name'] if b['tx_name'] not in tx_to_read: tx_to_read[b['tx_name']] = {} tx_to_read[b['tx_name']][b['read_name']] = '' for tx in tx_to_read.keys(): if len(tx_to_read[tx]) < args.minimum_read_count: del tx_to_read[tx] tx_to_ref = {} for ref in refs: for gpd in ref.payload: tx = gpd.entries.name tx_to_ref[tx] = gpd for read in reads: for b in read.payload: if b.entries.name not in read_to_tx: continue tx = read_to_tx[b.entries.name] if tx not in tx_to_read: continue if tx not in tx_to_ref: continue tx_to_read[tx][b.entries.name] = b rvals = [] for tx in tx_to_read: try: # so bad rvals.append(do_tx_line([tx_to_ref[tx],tx_to_read[tx].values(),args])) except: continue return rvals def sort_ref(args): sys.stderr.write("Sorting in reference genePred\n") if args.threads > 1: cmd = ['sort','-S2G','-k3,3','-k5,5n','-k6,6n', '--parallel='+str(args.threads)] else: cmd = ['sort','-S2G','-k3,3','-k5,5n','-k6,6n'] of = open(args.tempdir+'/ref.sorted.gpd','w') p = Popen(cmd,stdin=PIPE,stdout=of) refgpd = {} if args.ref_genepred[-3:] == '.gz': inf = gzip.open(args.ref_genepred) else: inf = open(args.ref_genepred) #gs = GPDStream(inf) z = 0 for line in inf: z += 1 if z%1000==0: sys.stderr.write(str(z)+" \r") #if z not in refcnt: continue #if refcnt[z] < args.minimum_read_count: continue p.stdin.write(line) #refgpd[z] = gpd p.communicate() sys.stderr.write("\n") inf.close() def sort_annot(args): sys.stderr.write("Sorting read annotations\n") cmd = ['sort','-S2G','-k1,1','-k2,2n','-k3,3n'] cmd2 = 'cut -f 4-' of0 = open(args.tempdir+'/annot.sorted.txt','w') p1 = Popen(cmd2.split(),stdin=PIPE,stdout=of0) p0 = Popen(cmd,stdin=PIPE,stdout=p1.stdin) inf = None if is_gzip(args.annotations): inf = gzip.open(args.annotations) else: inf = open(args.annotations) k = 0 for line in inf: k+=1 if k%1000==0: sys.stderr.write(str(k)+" \r") f = line.rstrip().split("\t") r = GenomicRangeFromString(f[13]) #r.set_payload(parse_annot(f)) p0.stdin.write(r.chr+"\t"+str(r.start)+"\t"+str(r.end)+"\t"+line) sys.stderr.write("\n") of0.close() p0.communicate() p1.communicate() inf.close() def do_tx_line(vals): (ref_gpd,reads,args) = vals allbits = [] read_count = 0 outrange = reads[-1].range for read in reads: if not args.allow_overflowed_matches and read.range.start < ref_gpd.range.start: continue if not args.allow_overflowed_matches and read.range.end > ref_gpd.range.end: continue v = ref_gpd.union(read) for e in [x.range for x in v.exons]: allbits.append(e) read_count += 1 if len(allbits)==0: return None if read_count < args.minimum_read_count: return None cov = ranges_to_coverage(allbits) #print [x.get_payload() for x in cov] curr = 0 bps = [] for i in range(0,ref_gpd.length): bps.append(0) for rng1 in [x.range for x in ref_gpd.exons]: overs = [[z[0],z[1].payload] for z in [[y.merge(rng1),y] for y in cov] if z[0]] for ov in overs: dist1 = ov[0].start - rng1.start+curr dist2 = ov[0].end - rng1.start+curr for i in range(dist1,dist2+1): try: # so bad bps[i]+=ov[1] except: continue curr+=rng1.length trimmedbps = bps if args.only_covered_ends: start = 0 finish = len(bps)-1 for i in range(0,len(bps)): if bps[i] != 0: start = i break for i in reversed(range(0,len(bps))): if bps[i] != 0: finish = i break trimmedbps = bps[start:finish+1] exp = float(sum(trimmedbps))/float(len(trimmedbps)) if ref_gpd.strand=='-': trimmedbps = list(reversed(trimmedbps)) if len(trimmedbps) < args.minimum_read_count: return None #bin the results vals = {} for dat in [[str(1+int(100*float(i)/float(len(trimmedbps)))),float(trimmedbps[i])/float(read_count)] for i in range(0,len(trimmedbps))]: if dat[0] not in vals: vals[dat[0]] = [] vals[dat[0]].append(dat[1]) for num in vals: vals[num] = average(vals[num]) return [vals, read_count, exp, len(trimmedbps),ref_gpd.get_exon_count(),outrange.get_range_string()] def is_gzip(name): if re.search('\.gz$',name): return True return False def do_inputs(): parser = argparse.ArgumentParser(description="Generate a coverage per bin over the length of a molecule to observe bias in the 5' to 3' mapping of reads",formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('read_genepred',help="Input genepred") parser.add_argument('ref_genepred',help="Reference genepred") parser.add_argument('annotations',help="Input annotations") parser.add_argument('--threads',type=int,default=cpu_count(),help="Threads count") parser.add_argument('--full',action='store_true',help="only consider full length matched reads") parser.add_argument('--only_covered_ends',action='store_true',help="remove ends with zero coverage") parser.add_argument('--allow_overflowed_matches',action='store_true',help="by default we don't consider matches that arent fully within the bounds of their annotated transcript.") parser.add_argument('--minimum_read_count',type=int,default=5,help="minimum number of reads") parser.add_argument('--minimum_read_length',type=int,default=100,help="at least this many bp") parser.add_argument('--minimum_matched_exons',type=int,default=2,help="require reads matched at least this many exons") parser.add_argument('-o','--output',help="write output to file") parser.add_argument('--output_counts',help="write number of transcripts and reads used") # Temporary working directory step 1 of 3 - Definition group = parser.add_mutually_exclusive_group() group.add_argument('--tempdir',default=gettempdir(),help="The temporary directory is ") group.add_argument('--specific_tempdir',help="This temporary directory will be used") args = parser.parse_args() setup_tempdir(args) return args def parse_annot(f): res={ 'read_line':int(f[0]),\ 'read_name':f[1],\ 'gene_name':f[2],\ 'tx_name':f[3],\ 'type':f[4],\ 'matching_exon_count':int(f[5]),\ 'consecutive_exons':int(f[6]),\ 'read_exons':int(f[7]),\ 'tx_exons':int(f[8]),\ 'overlap':int(f[9]),\ 'read_length':int(f[10]),\ 'tx_length':int(f[11])} return res class Annot: def __init__(self,line): f = line.rstrip().split("\t") self.value = parse_annot(f) self._range = GenomicRangeFromString(f[13]) @property def range(self): return self._range def get_value(self): return self.value class AnnotStream: def __init__(self,fh): self.fh = fh def read_entry(self): line = self.fh.readline() if not line: return False a = Annot(line) return a def next(self): r = self.read_entry() if not r: raise StopIteration else: return r def __iter__(self): return self def setup_tempdir(args): if args.specific_tempdir: if not os.path.exists(args.specific_tempdir): os.makedirs(args.specific_tempdir.rstrip('/')) args.tempdir = args.specific_tempdir.rstrip('/') if not os.path.exists(args.specific_tempdir.rstrip('/')): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() else: args.tempdir = mkdtemp(prefix="weirathe.",dir=args.tempdir.rstrip('/')) if not os.path.exists(args.tempdir.rstrip('/')): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() if not os.path.exists(args.tempdir): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() return def external_cmd(cmd): cache_argv = sys.argv sys.argv = cmd args = do_inputs() main(args) sys.argv = cache_argv if __name__=="__main__": args = do_inputs() main(args)
AlignQC
/AlignQC-2.0.5.tar.gz/AlignQC-2.0.5/alignqc/annotated_read_bias_analysis.py
annotated_read_bias_analysis.py
import argparse, sys, os, re, gzip from shutil import rmtree, copyfile from multiprocessing import cpu_count from tempfile import mkdtemp, gettempdir import dump from seqtools.statistics import average, N50, median, standard_deviation g_version = None def main(args): #do our inputs args.output = args.output.rstrip('/') if not os.path.exists(args.output): os.makedirs(args.output) all_files = [] z = 0 sys.stderr.write("Collecting information regarding available inputs\n") for infile in args.xhtml_inputs: z += 1 outfile = args.tempdir+'/'+str(z)+'.list' cmd = ['dump.py',infile,'-l','-o',outfile] dump.external_cmd(cmd) res = {'fname':infile,'xlist':set(),'index':z} with open(outfile) as inf: for line in inf: line= line.rstrip() primary = re.match('(\S+)',line).group(1) res['xlist'].add(primary) m = re.match('\S+\s+\[(.+)\]',line) if m: alts = m.group(1).split(' ') for alt in alts: res['xlist'].add(alt) all_files.append(res) sys.stderr.write("Extracting data for comparison\n") for file in all_files: sys.stderr.write(" Extracting for "+str(file['fname'])+" "+str(file['index'])+"\n") if 'alignment_stats.txt' in file['xlist']: ofile = args.tempdir+'/'+str(file['index'])+'.alignment_stats.txt' cmd = ['dump.py',file['fname'],'-e','alignment_stats.txt','-o',ofile] dump.external_cmd(cmd) file['alignment_stats'] = {} with open(ofile) as inf: for line in inf: f = line.rstrip().split("\t") file['alignment_stats'][f[0]] = int(f[1]) if 'error_stats.txt' in file['xlist']: ofile = args.tempdir+'/'+str(file['index'])+'.error_stats.txt' cmd = ['dump.py',file['fname'],'-e','error_stats.txt','-o',ofile] dump.external_cmd(cmd) file['error_stats'] = {} with open(ofile) as inf: for line in inf: f = line.rstrip().split("\t") file['error_stats'][f[0]] = f[1] if 'lengths.txt.gz' in file['xlist']: ofile = args.tempdir+'/'+str(file['index'])+'.lengths.txt.gz' cmd = ['dump.py',file['fname'],'-e','lengths.txt.gz','-o',ofile] dump.external_cmd(cmd) file['lengths'] = {'average':'','median':'','N50':'','stddev':'','average_aligned':'','median_aligned':'','N50_aligned':'','stddev_aligned':''} inf = gzip.open(ofile) lengths = [] for line in inf: f = line.rstrip().split("\t") lengths.append([int(f[3]),int(f[4])]) if len(lengths) > 0: file['lengths']['average']=average([x[1] for x in lengths]) file['lengths']['median']=median([x[1] for x in lengths]) file['lengths']['N50']=N50([x[1] for x in lengths]) if len([x[0] for x in lengths if x[0] != 0]) > 0: file['lengths']['average_aligned']=average([x[0] for x in lengths if x[0] != 0]) file['lengths']['median_aligned']=median([x[0] for x in lengths if x[0] != 0]) file['lengths']['N50_aligned']=N50([x[0] for x in lengths if x[0] != 0]) if len(lengths) > 2: file['lengths']['stddev']=standard_deviation([x[1] for x in lengths]) if len([x[0] for x in lengths if x[0] != 0]) > 2: file['lengths']['stddev_aligned']=standard_deviation([x[0] for x in lengths if x[0] != 0]) # Now we can output table ofname = args.tempdir+'/stats_table.txt' of = open(ofname,'w') header = 'File'+"\t" #Basic header += 'Reads'+"\t" header += 'Avg_Read_Length'+"\t" header += 'Median_Read_Length'+"\t" header += 'N50_Read_Length'+"\t" header += 'Stddev_Read_Length'+"\t" header += 'Aligned_Read_Count'+"\t" header += 'Aligned_Reads'+"\t" header += 'Avg_Aligned_Length'+"\t" header += 'Median_Aligned_Length'+"\t" header += 'N50_Aligned_Length'+"\t" header += 'Stddev_Aligned_Length'+"\t" header += 'Chimeric_Total_Reads'+"\t" header += 'Chimeric_Trans_Reads'+"\t" header += 'Chimeric_Self_Reads'+"\t" header += 'Bases'+"\t" header += 'Bases_Aligned'+"\t" # Error header += 'Error_Rate'+"\t" header += 'Mismatches'+"\t" header += 'Deletions_Total'+"\t" header += 'Deletions_Homopolymer'+"\t" header += 'Insertions_Total'+"\t" header += 'Insertions_Homopolymer' of.write(header+"\n") for file in all_files: of.write(file['fname']+"\t") basic = get_basic(file) of.write("\t".join([str(x) for x in basic])) of.write("\t") error = get_error(file) of.write("\t".join([str(x) for x in error])) of.write("\n") of.close() copyfile(args.tempdir+'/stats_table.txt',args.output+'/stats_table.txt') # Temporary working directory step 3 of 3 - Cleanup if not args.specific_tempdir: rmtree(args.tempdir) # File is the dict that has the 'fname' and 'alignment_stats' and 'error_stats' # if there is error stats return the array to output def get_error(file): error = ['' for x in range(0,7)] if 'error_stats' not in file: return error dat = file['error_stats'] if dat['ALIGNMENT_BASES'] > 0: error[0] = float(dat['ANY_ERROR'])/float(dat['ALIGNMENT_BASES']) if dat['ALIGNMENT_BASES'] > 0: error[1] = float(dat['MISMATCHES'])/float(dat['ALIGNMENT_BASES']) if dat['ALIGNMENT_BASES'] > 0: error[2] = float(dat['ANY_DELETION'])/float(dat['ALIGNMENT_BASES']) if dat['ANY_DELETION'] > 0: error[3] = float(dat['HOMOPOLYMER_DELETION'])/float(dat['ANY_DELETION']) if dat['ALIGNMENT_BASES'] > 0: error[4] = float(dat['ANY_INSERTION'])/float(dat['ALIGNMENT_BASES']) if dat['ANY_INSERTION'] > 0: error[5] = float(dat['HOMOPOLYMER_INSERTION'])/float(dat['ANY_INSERTION']) return error # File is the dict that has the 'fname' and 'alignment_stats' and 'error_stats' # if there is alignment stats return the array to output def get_basic(file): basic = ['' for x in range(0,16)] if 'alignment_stats' not in file: return basic dat = file['alignment_stats'] basic[0] = dat['TOTAL_READS'] basic[1] = file['lengths']['average'] basic[2] = file['lengths']['median'] basic[3] = file['lengths']['N50'] basic[4] = file['lengths']['stddev'] basic[5] = dat['ALIGNED_READS'] if dat['TOTAL_READS'] > 0: basic[6] = float(dat['ALIGNED_READS'])/float(dat['TOTAL_READS']) basic[7] = file['lengths']['average_aligned'] basic[8] = file['lengths']['median_aligned'] basic[9] = file['lengths']['N50_aligned'] basic[10] = file['lengths']['stddev_aligned'] if dat['ALIGNED_READS'] > 0: basic[11] = float(dat['CHIMERA_ALIGN_READS'])/float(dat['ALIGNED_READS']) if dat['CHIMERA_ALIGN_READS'] > 0: basic[12] = float(dat['TRANSCHIMERA_ALIGN_READS'])/float(dat['CHIMERA_ALIGN_READS']) if dat['CHIMERA_ALIGN_READS'] > 0: basic[13] = float(dat['SELFCHIMERA_ALIGN_READS'])/float(dat['CHIMERA_ALIGN_READS']) basic[14] = dat['TOTAL_BASES'] if dat['TOTAL_BASES'] > 0: basic[15] = float(dat['ALIGNED_BASES'])/float(dat['TOTAL_BASES']) return basic def external_cmd(cmd,version=None): #set version by input global g_version g_version = version cache_argv = sys.argv sys.argv = cmd args = do_inputs() main(args) sys.argv = cache_argv def do_inputs(): # Setup command line inputs parser=argparse.ArgumentParser(description="",formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('xhtml_inputs',nargs='+',help="xhtml analysis files") parser.add_argument('-o','--output',required=True,help="OUTPUT directory") parser.add_argument('--threads',type=int,default=cpu_count(),help="INT number of threads to run. Default is system cpu count") # Temporary working directory step 1 of 3 - Definition group = parser.add_mutually_exclusive_group() group.add_argument('--tempdir',default=gettempdir(),help="The temporary directory is made and destroyed here.") group.add_argument('--specific_tempdir',help="This temporary directory will be used, but will remain after executing.") args = parser.parse_args() # Temporary working directory step 2 of 3 - Creation setup_tempdir(args) return args def setup_tempdir(args): if args.specific_tempdir: if not os.path.exists(args.specific_tempdir): os.makedirs(args.specific_tempdir.rstrip('/')) args.tempdir = args.specific_tempdir.rstrip('/') if not os.path.exists(args.specific_tempdir.rstrip('/')): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() else: args.tempdir = mkdtemp(prefix="weirathe.",dir=args.tempdir.rstrip('/')) if not os.path.exists(args.tempdir.rstrip('/')): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() if not os.path.exists(args.tempdir): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() return if __name__=="__main__": args = do_inputs() main(args)
AlignQC
/AlignQC-2.0.5.tar.gz/AlignQC-2.0.5/alignqc/compare.py
compare.py
import argparse, sys, os, gzip from shutil import rmtree from multiprocessing import cpu_count from tempfile import mkdtemp, gettempdir def main(args): chrcovs = {} total = {} inf = gzip.open(args.input) for line in inf: f = line.rstrip().split("\t") chr = f[0] start = int(f[1]) finish = int(f[2]) depth = int(f[3]) if chr not in chrcovs: chrcovs[chr] = {} if depth not in chrcovs[chr]: chrcovs[chr][depth] = 0 chrcovs[chr][depth] += finish-start if depth not in total: total[depth] = 0 total[depth] += finish-start inf.close() chrlens = {} with open(args.reflens) as inf: for line in inf: f = line.rstrip().split("\t") chrlens[f[0]]=int(f[1]) total_len = sum(chrlens.values()) cov_len = sum(total.values()) print total_len print cov_len depths = sorted(total.keys()) #bases = total_len-cov_len prev = total_len-cov_len oflpt = gzip.open(args.output+"/line_plot_table.txt.gz",'w') for d in depths: oflpt.write(str(d)+"\t"+str(prev+1)+"\t"+str(total_len)+"\n") oflpt.write(str(d)+"\t"+str(prev+total[d])+"\t"+str(total_len)+"\n") prev = prev+total[d] oflpt.close() oftdt = gzip.open(args.output+"/total_distro_table.txt.gz",'w') for d in depths: oftdt.write(str(d)+"\t"+str(total[d])+"\t"+str(cov_len)+"\t"+str(total_len)+"\n") oftdt.close() ofcdt = gzip.open(args.output+"/chr_distro_table.txt.gz",'w') for chr in sorted(chrcovs.keys()): covered_bases = sum(chrcovs[chr].values()) for depth in sorted(chrcovs[chr].keys()): ofcdt.write(chr + "\t" + str(depth)+"\t"+str(chrcovs[chr][depth])+"\t"+str(covered_bases)+"\t"+str(chrlens[chr])+"\n") ofcdt.close() def do_inputs(): # Setup command line inputs parser=argparse.ArgumentParser(description="",formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('input',help="depth INPUT FILE") parser.add_argument('reflens',help="reflens INPUT FILE") parser.add_argument('-o','--output',help="OUTPUT directory") args = parser.parse_args() return args def external_cmd(cmd): cache_argv = sys.argv sys.argv = cmd args = do_inputs() main(args) sys.argv = cache_argv if __name__=="__main__": #do our inputs args = do_inputs() main(args)
AlignQC
/AlignQC-2.0.5.tar.gz/AlignQC-2.0.5/alignqc/depth_to_coverage_report.py
depth_to_coverage_report.py
import sys, argparse, base64, re, os def main(args): of = sys.stdout if args.output: of = open(args.output,'w') filecontents = open(args.input).read() imgs = [] for m in re.finditer('(<\s*.*img.*>)',filecontents): imgs.append([m.start(),m.end()]) prev = 0 newcontents = '' for i in range(len(imgs)): newcontents += filecontents[prev:imgs[i][0]] newcontents += do_image_tag(filecontents[imgs[i][0]:imgs[i][1]],args) prev = imgs[i][1] newcontents += filecontents[prev:] filecontents = newcontents if args.all: a = [] for m in re.finditer('(<a.*>)',filecontents): a.append([m.start(),m.end()]) prev = 0 newcontents = '' for i in range(len(a)): newcontents += filecontents[prev:a[i][0]] newcontents += do_a_tag(filecontents[a[i][0]:a[i][1]],args) prev = a[i][1] newcontents += filecontents[prev:] filecontents = newcontents styles = [] for m in re.finditer('(<\s*.*type.*text/css.*>)',filecontents): styles.append([m.start(),m.end()]) prev = 0 for i in range(len(styles)): of.write(filecontents[prev:styles[i][0]]+"\n") of.write(do_style_sheet(filecontents[styles[i][0]:styles[i][1]],args)+"\n") prev = styles[i][1] of.write(filecontents[prev:]+"\n") of.close() def do_style_sheet(style_sheet,args): m=re.match('^(.*)(href\s*=\s*["\'][^"\']*["\'])(.*)$',style_sheet) if not m: return style_sheet #cant replace for some reason start = m.group(1) finish = m.group(3) src_full = m.group(2) m = re.match('href\s*=\s*["\']([^"\']+)["\']',src_full) if not m: return style_sheet #cant replace for some reason srcpathpart = m.group(1) srcpath = os.path.dirname(args.input)+'/'+srcpathpart if not re.search('\.css',srcpath): return style_sheet if not os.path.isfile(srcpath): return style_sheet encoded = base64.b64encode(open(srcpath,'rb').read()) disabler = "\n" if not args.all: disabler = "a {\n pointer-events: none;\n}\n" return '<style type="text/css">'+disabler+"\n"+open(srcpath,'rb').read()+'</style>' def do_a_tag(a_tag,args): m=re.match('^(.*)(href\s*=\s*["\'][^"\']*["\'])(.*)$',a_tag) #print m.group(2) if not m: return a_tag #cant replace for some reason start = m.group(1) finish = m.group(3) src_full = m.group(2) m = re.match('href\s*=\s*["\']([^"\']+)["\']',src_full) if not m: return a_tag #cant replace for some reason srcpathpart = m.group(1) srcpath = os.path.dirname(args.input)+'/'+srcpathpart #if not re.search('\.png',srcpath): return img_tag if not os.path.isfile(srcpath): return a_tag #sys.stderr.write(srcpath+"\n") #sys.exit() encoded = base64.b64encode(open(srcpath,'rb').read()) if re.search('\.pdf$',srcpath): return start+' href="data:application/pdf;base64,'+encoded+'" '+finish if re.search('\.gz$',srcpath): return start+' href="data:application/x-gzip;base64,'+encoded+'" '+finish return start+' href="data:text/plain;base64,'+encoded+'" '+finish def do_image_tag(img_tag,args): m=re.match('^(.*)(src\s*=\s*["\'][^"\']*["\'])(.*)$',img_tag) if not m: return img_tag #cant replace for some reason start = m.group(1) finish = m.group(3) src_full = m.group(2) m = re.match('src\s*=\s*["\']([^"\']+)["\']',src_full) if not m: return img_tag #cant replace for some reason srcpathpart = m.group(1) srcpath = os.path.dirname(args.input)+'/'+srcpathpart if not re.search('\.png',srcpath): return img_tag if not os.path.isfile(srcpath): return img_tag encoded = base64.b64encode(open(srcpath,'rb').read()) return start+' src="data:image/png;base64,'+encoded+'" '+finish def do_inputs(): parser = argparse.ArgumentParser(description="Put css style sheets and PNG images into html file",formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('input',help="Input file") parser.add_argument('-o','--output',help="output file") parser.add_argument('-a','--all',action="store_true",help="replace other files as well") args = parser.parse_args() return args # for calling from another python script def external(args): main(args) def external_cmd(cmd): cache_argv = sys.argv sys.argv = cmd args = do_inputs() main(args) sys.argv = cache_argv if __name__=="__main__": args = do_inputs() main(args)
AlignQC
/AlignQC-2.0.5.tar.gz/AlignQC-2.0.5/alignqc/make_solo_html.py
make_solo_html.py
import argparse, sys, os, random, inspect, os, time, gc, gzip from shutil import rmtree from multiprocessing import cpu_count from tempfile import mkdtemp, gettempdir from subprocess import call from seqtools.format.sam.bam.files import BAMFile from seqtools.format.sam.bam.bamindex import BAMIndexRandomAccessPrimary as BIRAP from seqtools.errors import ErrorProfileFactory from seqtools.format.fasta import FASTAData # Take the bam file as an input and produce plots and data file for context errors. def main(args): # make our error profile report sys.stderr.write("Reading reference fasta\n") if args.reference[-3:] == '.gz': ref = FASTAData(gzip.open(args.reference).read()) else: ref = FASTAData(open(args.reference).read()) sys.stderr.write("Reading index\n") epf = ErrorProfileFactory() bf = BAMFile(args.input,BAMFile.Options(reference=ref)) bind = None if args.random: if args.input_index: bind = BIRAP(index_file=args.input_index,alignment_file=args.input) else: bind = BIRAP(index_file=args.input+'.bgi',alignment_file=args.input) z = 0 strand = 'target' if args.query: strand = 'query' con = 0 while True: #rname = random.choice(bf.index.get_names()) #print rname #coord = bf.index.get_longest_target_alignment_coords_by_name(rname) #print coord coord = bind.get_random_coord() if not coord: continue e = bf.fetch_by_coord(coord) if not e.is_aligned(): continue epf.add_alignment(e) z+=1 if z%100==1: con = epf.get_min_context_count(strand) sys.stderr.write(str(z)+" alignments, "+str(con)+" min context coverage\r") if args.max_alignments <= z: break if args.stopping_point <= con: break else: z = 0 strand = 'target' if args.query: strand = 'query' con = 0 for e in bf: if e.is_aligned(): epf.add_alignment(e) z+=1 if z%100==1: con = epf.get_min_context_count(strand) sys.stderr.write(str(z)+" alignments, "+str(con)+" min context coverage\r") if args.max_alignments <= z: break if args.stopping_point <= con: break sys.stderr.write("\n") #if bf.index: # bf.index.destroy() bf = None if bind: bind.destroy() sys.stderr.write('working with:'+"\n") sys.stderr.write(str(z)+" alignments, "+str(con)+" min context coverage"+"\n") epf.write_context_error_report(args.tempdir+'/err.txt',strand) for ofile in args.output: cmd = [args.rscript_path, os.path.dirname(os.path.realpath(__file__))+'/plot_base_error_context.r', args.tempdir+'/err.txt',ofile] if args.scale: cmd += [str(x) for x in args.scale] sys.stderr.write(" ".join(cmd)+"\n") call(cmd) sys.stderr.write("finished\n") if args.output_raw: of = open(args.output_raw,'w') with open(args.tempdir+"/err.txt") as inf: for line in inf: of.write(line) epf.close() time.sleep(5) gc.collect() time.sleep(5) # Temporary working directory step 3 of 3 - Cleanup if not args.specific_tempdir: rmtree(args.tempdir) def do_inputs(): # Setup command line inputs parser=argparse.ArgumentParser(description="",formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('input',help="INPUT FILE or '-' for STDIN") parser.add_argument('--input_index',help="Index file for bam if other than default location") parser.add_argument('-r','--reference',required=True,help="Reference Genome") parser.add_argument('-o','--output',nargs='+',required=True,help="OUTPUTFILE(s)") parser.add_argument('--output_raw',help="Save the raw data") parser.add_argument('--scale',type=float,nargs=6,help="<insertion_min> <insertion_max> <mismatch_min> <mismatch_max> <deletion_min> <deletion_max>") parser.add_argument('--max_alignments',type=int,default=10000000000,help="The maximum number of alignments to scan") parser.add_argument('--stopping_point',type=int,default=1000,help="Stop after you see this many of each context") #parser.add_argument('--threads',type=int,default=cpu_count(),help="INT number of threads to run. Default is system cpu count") # Temporary working directory step 1 of 3 - Definition group1 = parser.add_mutually_exclusive_group(required=True) group1.add_argument('--target',action='store_true',help="Context on the target sequence") group1.add_argument('--query',action='store_true',help="Context on the query sequence") group = parser.add_mutually_exclusive_group() group.add_argument('--tempdir',default=gettempdir(),help="The temporary directory is made and destroyed here.") group.add_argument('--specific_tempdir',help="This temporary directory will be used, but will remain after executing.") parser.add_argument('--random',action='store_true',help="Randomly select alignments, requires an indexed bam") parser.add_argument('--rscript_path',default='Rscript',help="Path to Rscript") args = parser.parse_args() # Temporary working directory step 2 of 3 - Creation setup_tempdir(args) return args def setup_tempdir(args): if args.specific_tempdir: if not os.path.exists(args.specific_tempdir): os.makedirs(args.specific_tempdir.rstrip('/')) args.tempdir = args.specific_tempdir.rstrip('/') if not os.path.exists(args.specific_tempdir.rstrip('/')): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() else: args.tempdir = mkdtemp(prefix="weirathe.",dir=args.tempdir.rstrip('/')) if not os.path.exists(args.tempdir.rstrip('/')): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() if not os.path.exists(args.tempdir): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() return def external_cmd(cmd): cache_argv = sys.argv sys.argv = cmd args = do_inputs() main(args) sys.argv = cache_argv if __name__=="__main__": #do our inputs args = do_inputs() main(args)
AlignQC
/AlignQC-2.0.5.tar.gz/AlignQC-2.0.5/alignqc/bam_to_context_error_plot.py
bam_to_context_error_plot.py
import argparse, sys, os, time, re, gzip, locale, inspect from shutil import rmtree, copy, copytree from tempfile import mkdtemp, gettempdir from seqtools.range.multi import BedStream from seqtools.format.gpd import GPDStream import make_solo_html # global g_version = None locale.setlocale(locale.LC_ALL,'') #default locale def main(args): # Create the output HTML make_html(args) udir = os.path.dirname(os.path.realpath(__file__)) # Make the portable output cmd = [udir+'/make_solo_html.py',args.tempdir+'/report.xhtml', '-o',args.tempdir+'/portable_report.xhtml'] sys.stderr.write(" ".join(cmd)+"\n") make_solo_html.external_cmd(cmd) # Make the full output cmd = [udir+'/make_solo_html.py',args.tempdir+'/report.xhtml', '-o',args.tempdir+'/output_report.xhtml','--all'] sys.stderr.write(" ".join(cmd)+"\n") make_solo_html.external_cmd(cmd) if args.output_folder: copytree(args.tempdir,args.output_folder) if args.portable_output: copy(args.tempdir+'/portable_report.xhtml',args.portable_output) if args.output: copy(args.tempdir+'/output_report.xhtml',args.output) ## Temporary working directory step 3 of 3 - Cleanup #if not args.specific_tempdir: # rmtree(args.tempdir) def make_html(args): global g_version #read in our alignment data mydate = time.strftime("%Y-%m-%d") a = {} with open(args.tempdir+'/data/alignment_stats.txt') as inf: for line in inf: (name,numstr)=line.rstrip().split("\t") a[name]=int(numstr) #read in our special read analysis special = {} with open(args.tempdir+'/data/special_report') as inf: for line in inf: f = line.rstrip().split("\t") if f[0] not in special: special[f[0]] = [] special[f[0]].append(f[1:]) #Only have error stats if we are using it e = {} if args.genome: #read in our error data with open(args.tempdir+'/data/error_stats.txt') as inf: for line in inf: (name,numstr)=line.rstrip().split("\t") e[name]=int(numstr) # read in our coverage data coverage_data = {} # this one will be set in annotation on section tx_to_gene = {} coverage_data['genome_total'] = 0 with open(args.tempdir+'/data/chrlens.txt') as inf: for line in inf: f = line.rstrip().split("\t") coverage_data['genome_total']+=int(f[1]) inf = gzip.open(args.tempdir+'/data/depth.sorted.bed.gz') coverage_data['genome_covered'] = 0 bs = BedStream(inf) for rng in bs: f = line.rstrip().split("\t") coverage_data['genome_covered'] += rng.length inf.close() # The annotation section if args.gpd: inf = open(args.tempdir+'/data/beds/exon.bed') coverage_data['exons_total'] = 0 bs = BedStream(inf) for rng in bs: f = line.rstrip().split("\t") coverage_data['exons_total'] += rng.length inf.close() inf = open(args.tempdir+'/data/beds/intron.bed') coverage_data['introns_total'] = 0 bs = BedStream(inf) for rng in bs: f = line.rstrip().split("\t") coverage_data['introns_total'] += rng.length inf.close() inf = open(args.tempdir+'/data/beds/intergenic.bed') coverage_data['intergenic_total'] = 0 bs = BedStream(inf) for rng in bs: f = line.rstrip().split("\t") coverage_data['intergenic_total'] += rng.length inf.close() inf = gzip.open(args.tempdir+'/data/exondepth.bed.gz') coverage_data['exons_covered'] = 0 bs = BedStream(inf) for rng in bs: f = line.rstrip().split("\t") coverage_data['exons_covered'] += rng.length inf.close() inf = gzip.open(args.tempdir+'/data/introndepth.bed.gz') coverage_data['introns_covered'] = 0 bs = BedStream(inf) for rng in bs: f = line.rstrip().split("\t") coverage_data['introns_covered'] += rng.length inf.close() inf = gzip.open(args.tempdir+'/data/intergenicdepth.bed.gz') coverage_data['intergenic_covered'] = 0 bs = BedStream(inf) for rng in bs: f = line.rstrip().split("\t") coverage_data['intergenic_covered'] += rng.length inf.close() # deal with annotations ref_genes = {} ref_transcripts = {} if args.gpd[-3:] == '.gz': gs = GPDStream(gzip.open(args.gpd)) else: gs = GPDStream(open(args.gpd)) #gs = GPDStream(inf) for gpd in gs: tx_to_gene[gpd.transcript_name] = gpd.gene_name ref_genes[gpd.gene_name] = [0,0] ref_transcripts[gpd.transcript_name] = [0,0] inf = gzip.open(args.tempdir+'/data/annotbest.txt.gz') for line in inf: f = line.rstrip().split("\t") gene = f[2] tx = f[3] if f[4]=='partial': ref_genes[gene][0] += 1 elif f[4]=='full': ref_genes[gene][1] += 1 if f[4]=='partial': ref_transcripts[tx][0] += 1 elif f[4]=='full': ref_transcripts[tx][1] += 1 inf.close() #get our locus count if args.do_loci: inf = gzip.open(args.tempdir+'/data/loci.bed.gz') locuscount = 0 for line in inf: locuscount += 1 inf.close() #get our annotation counts if args.gpd: genefull = 0 geneany = 0 txfull = 0 txany = 0 inf = gzip.open(args.tempdir+'/data/annotbest.txt.gz') genes_f = {} genes_a = {} txs_f = {} txs_a = {} for line in inf: f = line.rstrip().split("\t") g = f[2] t = f[3] if g not in genes_a: genes_a[g] = 0 genes_a[g]+=1 if t not in txs_a: txs_a[t] = 0 txs_a[t]+=1 if f[4] == 'full': if g not in genes_f: genes_f[g] = 0 genes_f[g]+=1 if t not in txs_f: txs_f[t] = 0 txs_f[t]+=1 inf.close() genefull = len(genes_f.keys()) geneany = len(genes_a.keys()) txfull = len(txs_f.keys()) txany = len(txs_a.keys()) # still in args.gpd required #Get evidence counts for bias bias_tx_count = None bias_read_count = None if os.name != 'nt' and sys.platform != 'darwin': with open(args.tempdir+'/data/bias_counts.txt') as inf: for line in inf: f = line.rstrip().split("\t") bias_tx_count = int(f[0]) bias_read_count = int(f[1]) #make our css directory if not os.path.exists(args.tempdir+'/css'): os.makedirs(args.tempdir+'/css') udir = os.path.dirname(os.path.realpath(__file__)) #copy css into that directory copy(udir+'/data/mystyle.css',args.tempdir+'/css/mystyle.css') of = open(args.tempdir+'/report.xhtml','w') ostr = ''' <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <link rel="stylesheet" type="text/css" href="css/mystyle.css" /> <title>Long Read Alignment and Error Report</title> </head> <body> ''' of.write(ostr) ######################################### # 1. TOP BLOCK ostr = ''' <div class="result_block"> <div class="top_block"> <div> Generated on: </div> <div class="input_value"> ''' of.write(ostr) of.write(mydate) ostr = ''' </div> </div> <div class="top_block"> <div> Version: </div> <div class="input_value">''' of.write(ostr) of.write(str(g_version)) ostr = ''' </div> </div> <div class="top_block"> <div>Execution parmeters:</div> <div class="input_value"> <a id="params.txt" href="data/params.txt">params.txt</a> </div> </div> <div class="top_block"> <div>Long read alignment and error report for:</div> <div class="input_value" id="filename">''' of.write(ostr+"\n") of.write(args.input) ostr = ''' </div> </div> <div class="clear"></div> <div class="top_block"> <div> Reference Genome: </div> <div class="input_value">''' of.write(ostr) of.write(str(args.genome)) #else: # of.write('&#xA0;'*20) ostr = ''' </div> </div> <div class="top_block"> <div> Reference Transcriptome: </div> <div class="input_value">''' of.write(ostr) if args.gtf: of.write(str(args.gtf)) else: of.write(str(args.gpd)) #else: # of.write('&#xA0;'*20) ostr = ''' </div> </div> </div> <div class="clear"></div> <hr /> ''' of.write(ostr) ################################## # 2. ALIGNMENT ANALYSIS ## This block should be in every output. Generated from the BAM ostr = ''' <div class="result_block"> <div class="subject_title"> <table><tr><td class="c1">Alignment analysis</td><td class="c2"><span class="highlight">''' of.write(ostr) reads_aligned = perc(a['ALIGNED_READS'],a['TOTAL_READS'],1) of.write(reads_aligned) ostr = ''' </span></td><td class="c2"><span class="highlight2">reads aligned</span></td><td class="c2"><span class="highlight">''' of.write(ostr) bases_aligned = perc(a['ALIGNED_BASES'],a['TOTAL_BASES'],1) of.write(bases_aligned) ostr = ''' </span></td><td class="c2"><span class="highlight2">bases aligned <i>(of aligned reads)</i></span></td></tr></table> </div> <div class="one_third left"> <table class="data_table"> <tr class="rhead"><td colspan="3">Read Stats</td></tr>''' of.write(ostr+"\n") total_read_string = '<tr><td>Total reads</td><td>'+str(addcommas(a['TOTAL_READS']))+'</td><td></td></tr>' of.write(total_read_string+"\n") unaligned_read_string = '<tr><td>- Unaligned reads</td><td>'+str(addcommas(a['UNALIGNED_READS']))+'</td><td>'+perc(a['UNALIGNED_READS'],a['TOTAL_READS'],1)+'</td></tr>' of.write(unaligned_read_string+"\n") aligned_read_string = '<tr><td>- Aligned reads</td><td>'+str(addcommas(a['ALIGNED_READS']))+'</td><td>'+perc(a['ALIGNED_READS'],a['TOTAL_READS'],1)+'</td></tr>' of.write(aligned_read_string+"\n") single_align_read_string = '<tr><td>--- Single-align reads</td><td>'+str(addcommas(a['SINGLE_ALIGN_READS']))+'</td><td>'+perc(a['SINGLE_ALIGN_READS'],a['TOTAL_READS'],1)+'</td></tr>' of.write(single_align_read_string+"\n") gapped_align_read_string = '<tr><td>--- Gapped-align reads</td><td>'+str(addcommas(a['GAPPED_ALIGN_READS']))+'</td><td>'+perc(a['GAPPED_ALIGN_READS'],a['TOTAL_READS'],2)+'</td></tr>' of.write(gapped_align_read_string+"\n") gapped_align_read_string = '<tr><td>--- Chimeric reads</td><td>'+str(addcommas(a['CHIMERA_ALIGN_READS']))+'</td><td>'+perc(a['CHIMERA_ALIGN_READS'],a['TOTAL_READS'],2)+'</td></tr>' of.write(gapped_align_read_string+"\n") gapped_align_read_string = '<tr><td>----- Trans-chimeric reads</td><td>'+str(addcommas(a['TRANSCHIMERA_ALIGN_READS']))+'</td><td>'+perc(a['TRANSCHIMERA_ALIGN_READS'],a['TOTAL_READS'],2)+'</td></tr>' of.write(gapped_align_read_string+"\n") gapped_align_read_string = '<tr><td>----- Self-chimeric reads</td><td>'+str(addcommas(a['SELFCHIMERA_ALIGN_READS']))+'</td><td>'+perc(a['SELFCHIMERA_ALIGN_READS'],a['TOTAL_READS'],2)+'</td></tr>' of.write(gapped_align_read_string+"\n") ostr=''' <tr class="rhead"><td colspan="3">Base Stats <i>(of aligned reads)</i></td></tr>''' of.write(ostr+"\n") total_bases_string = '<tr><td>Total bases</td><td>'+str(addcommas(a['TOTAL_BASES']))+'</td><td></td></tr>' of.write(total_bases_string+"\n") unaligned_bases_string = '<tr><td>- Unaligned bases</td><td>'+str(addcommas(a['UNALIGNED_BASES']))+'</td><td>'+perc(a['UNALIGNED_BASES'],a['TOTAL_BASES'],1)+'</td></tr>' of.write(unaligned_bases_string+"\n") aligned_bases_string = '<tr><td>- Aligned bases</td><td>'+str(addcommas(a['ALIGNED_BASES']))+'</td><td>'+perc(a['ALIGNED_BASES'],a['TOTAL_BASES'],1)+'</td></tr>' of.write(aligned_bases_string+"\n") single_align_bases_string = '<tr><td>--- Single-aligned bases</td><td>'+str(addcommas(a['SINGLE_ALIGN_BASES']))+'</td><td>'+perc(a['SINGLE_ALIGN_BASES'],a['TOTAL_BASES'],1)+'</td></tr>' of.write(single_align_bases_string+"\n") gapped_align_bases_string = '<tr><td>--- Other-aligned bases</td><td>'+str(addcommas(a['GAPPED_ALIGN_BASES']))+'</td><td>'+perc(a['GAPPED_ALIGN_BASES'],a['TOTAL_BASES'],2)+'</td></tr>' of.write(gapped_align_bases_string+"\n") ostr = ''' </table> <table class="right"> <tr><td>Unaligned</td><td><div id="unaligned_leg" class="legend_square"></div></td></tr> <tr><td>Trans-chimeric alignment</td><td><div id="chimeric_leg" class="legend_square"></div></td></tr> <tr><td>Self-chimeric alignment</td><td><div id="selfchimeric_leg" class="legend_square"></div></td></tr> <tr><td>Gapped alignment</td><td><div id="gapped_leg" class="legend_square"></div></td></tr> <tr><td>Single alignment</td><td><div id="single_leg" class="legend_square"></div></td></tr> </table> </div> <div class="two_thirds right"> <div class="rhead">Summary [<a download="alignments.pdf" href="plots/alignments.pdf">pdf</a>]</div> <img src="plots/alignments.png" alt="alignments_png" /> </div> <div class="clear"></div> <div class="two_thirds right"> <div class="rhead">Exon counts of best alignments [<a download="exon_size_distro.pdf" href="plots/exon_size_distro.pdf">pdf</a>]</div> <img src="plots/exon_size_distro.png" alt="exon_size_distro_png" /> </div> ''' of.write(ostr) if len(special['GN']) > 1: ostr = ''' <div class="one_half left"> <table class="one_half data_table"> <tr class="rhead"><td colspan="5">Long read name information</td></tr> <tr><td>Type</td><td>Sub-type</td><td>Reads</td><td>Aligned</td><td>Fraction</td></tr> ''' of.write(ostr) for f in [x for x in special['GN'] if x[0] != 'Unclassified' or int(x[2])>0]: of.write(' <tr><td>'+f[0]+'</td><td>'+f[1]+'</td><td>'+addcommas(int(f[2]))+'</td><td>'+addcommas(int(f[3]))+'</td><td>'+perc(int(f[3]),int(f[2]),2)+'</td></tr>'+"\n") ostr = ''' </table> ''' of.write(ostr) if 'PB' in special: # We have pacbio specific report pb = {} for f in special['PB']: pb[f[0]]=f[1] if re.search('\.',f[1]): pb[f[0]]=float(f[1]) ostr = ''' <div class="rhead">PacBio SMRT Cells [<a download="pacbio.pdf" href="/plots/pacbio.pdf">pdf</a>]</div> <img src="plots/pacbio.png" alt="pacbio_png" /> <table class="horizontal_legend right"> <tr><td>Aligned</td><td><div class="legend_square pacbio_aligned_leg"></div></td><td>Unaligned</td><td><div class="legend_square pacbio_unaligned_leg"></div></td></tr> </table> <table class="data_table one_half"> <tr class="rhead"><td colspan="4">PacBio Stats</td></tr> ''' of.write(ostr) of.write(' <tr><td>Total Cell Count</td><td colspan="3">'+addcommas(int(pb['Cell Count']))+'</td></tr>') of.write(' <tr><td>Total Molecule Count</td><td colspan="3">'+addcommas(int(pb['Molecule Count']))+'</td></tr>') of.write(' <tr><td>Total Molecules Aligned</td><td colspan="3">'+addcommas(int(pb['Aligned Molecule Count']))+' ('+perc(pb['Aligned Molecule Count'],pb['Molecule Count'],2)+')</td></tr>') of.write(' <tr class="rhead"><td>Per-cell Feature</td><td>Min</td><td>Avg</td><td>Max</td></tr>') of.write(' <tr><td>Reads</td><td>'+addcommas(int(pb['Min Reads Per Cell']))+'</td><td>'+addcommas(int(pb['Avg Reads Per Cell']))+'</td><td>'+addcommas(int(pb['Max Reads Per Cell']))+'</td></tr>') of.write(' <tr><td>Molecules</td><td>'+addcommas(int(pb['Min Molecules Per Cell']))+'</td><td>'+addcommas(int(pb['Avg Molecules Per Cell']))+'</td><td>'+addcommas(int(pb['Max Molecules Per Cell']))+'</td></tr>') of.write(' <tr><td>Aligned Molecules</td><td>'+addcommas(int(pb['Min Aligned Molecules Per Cell']))+'</td><td>'+addcommas(int(pb['Avg Aligned Molecules Per Cell']))+'</td><td>'+addcommas(int(pb['Max Aligned Molecules Per Cell']))+'</td></tr>') ostr = ''' </table> ''' of.write(ostr) ostr = ''' </div> ''' of.write(ostr) ostr = ''' </div> <div class="clear"></div> <hr /> ''' of.write(ostr) ################################### # 3. ANNOTATION ANALYSIS ### This block should only be done when we have annotations if args.gpd: ostr = ''' <div class="result_block"> <div class="subject_title">Annotation Analysis</div> <div class="one_half left"> <div class="rhead">Distribution of reads among genomic features [<a download="read_genomic_features.pdf" href="plots/read_genomic_features.pdf">pdf</a>]</div> <img src="plots/read_genomic_features.png" alt="read_genomic_features_png" /> <table class="one_half right horizontal_legend"> <tr> <td>Exons</td><td><div class="exon_leg legend_square"></div></td><td></td> <td>Introns</td><td><div class="intron_leg legend_square"></div></td><td></td> <td>Intergenic</td><td><div class="intergenic_leg legend_square"></div></td><td></td> </tr> </table> </div> <div class="one_half right"> <div class="rhead">Distribution of annotated reads [<a download="annot_lengths.pdf" href="plots/annot_lengths.pdf">pdf</a>]</div> <img src="plots/annot_lengths.png" alt="annot_lengths_png" /> <table class="one_half right horizontal_legend"> <tr> <td>Partial annotation</td><td><div class="partial_leg legend_square"></div></td><td></td> <td>Full-length</td><td><div class="full_leg legend_square"></div></td><td></td> <td>Unannotated</td><td><div class="unannotated_leg legend_square"></div></td><td></td> </tr> </table> </div> <div class="clear"></div> <div class="one_half right"> <div class="rhead">Distribution of identified reference transcripts [<a download="transcript_distro.pdf" href="plots/transcript_distro.pdf">pdf</a>]</div> <img src="plots/transcript_distro.png" alt="transcript_distro_png" /> <table class="one_half right horizontal_legend"> <tr> <td>Partial annotation</td><td><div class="partial_leg legend_square"></div></td><td></td> <td>Full-length</td><td><div class="full_leg legend_square"></div></td><td></td> </tr> </table> </div> <div class="one_half left"> <table class="data_table one_half"> <tr class="rhead"><td colspan="5">Annotation Counts</td></tr> <tr><td>Feature</td><td>Evidence</td><td>Reference</td><td>Detected</td><td>Percent</td></tr> ''' of.write(ostr) cnt = len([x for x in ref_genes.keys() if sum(ref_genes[x])>0]) of.write(' <tr><td>Genes</td><td>Any match</td><td>'+addcommas(len(ref_genes.keys()))+'</td><td>'+addcommas(cnt)+'</td><td>'+perc(cnt,len(ref_genes.keys()),2)+'</td></tr>'+"\n") cnt = len([x for x in ref_genes.keys() if ref_genes[x][1]>0]) of.write(' <tr><td>Genes</td><td>Full-length</td><td>'+addcommas(len(ref_genes.keys()))+'</td><td>'+addcommas(cnt)+'</td><td>'+perc(cnt,len(ref_genes.keys()),2)+'</td></tr>'+"\n") cnt = len([x for x in ref_transcripts.keys() if sum(ref_transcripts[x])>0]) of.write(' <tr><td>Transcripts</td><td>Any match</td><td>'+addcommas(len(ref_transcripts.keys()))+'</td><td>'+addcommas(cnt)+'</td><td>'+perc(cnt,len(ref_transcripts.keys()),2)+'</td></tr>'+"\n") cnt = len([x for x in ref_transcripts.keys() if ref_transcripts[x][1]>0]) of.write(' <tr><td>Transcripts</td><td>Full-length</td><td>'+addcommas(len(ref_transcripts.keys()))+'</td><td>'+addcommas(cnt)+'</td><td>'+perc(cnt,len(ref_transcripts.keys()),2)+'</td></tr>'+"\n") ostr = ''' </table> <table class="data_table one_half"> <tr class="rhead"><td colspan="4">Top Genes</td></tr> <tr><td>Gene</td><td>Partial</td><td>Full-length</td><td>Total Reads</td></tr> ''' of.write(ostr) # get our top genes vs = reversed(sorted(ref_genes.keys(),key=lambda x: sum(ref_genes[x]))[-5:]) for v in vs: of.write(' <tr><td>'+v+'</td><td>'+addcommas(ref_genes[v][0])+'</td><td>'+addcommas(ref_genes[v][1])+'</td><td>'+addcommas(sum(ref_genes[v]))+'</td></tr>'+"\n") ostr=''' </table> <table class="data_table one_half"> <tr class="rhead"><td colspan="5">Top Transcripts</td></tr> <tr><td>Transcript</td><td>Gene</td><td class="smaller_text">Partial</td><td class="smaller_text">Full- length</td><td class="smaller_text">Total Reads</td></tr> ''' of.write(ostr) vs = reversed(sorted(ref_transcripts.keys(),key=lambda x: sum(ref_transcripts[x]))[-5:]) for v in vs: of.write(' <tr><td class="smaller_text">'+v+'</td><td class="smaller_text">'+tx_to_gene[v]+'</td><td class="smaller_text">'+addcommas(ref_transcripts[v][0])+'</td><td class="smaller_text">'+addcommas(ref_transcripts[v][1])+'</td><td class="smaller_text">'+addcommas(sum(ref_transcripts[v]))+'</td></tr>'+"\n") ostr = ''' </table> </div> <div class="clear"></div> </div> <hr /> ''' of.write(ostr) # still in conditional for if we have annotation ################################## # 4. COVERAGE ANALYSIS ### For Coverage we can do part of it without annotations ostr = ''' <div class="result_block"> <div class="subject_title">Coverage analysis &#xA0;&#xA0;&#xA0;&#xA0; <span class="highlight">''' of.write(ostr+"\n") of.write(perc(coverage_data['genome_covered'],coverage_data['genome_total'],2)+"\n") ostr = ''' </span><span class="highlight2">reference sequences covered</span> </div> <div class="one_half left"> <div class="rhead">Coverage of reference sequences [<a download="covgraph.pdf" href="plots/covgraph.pdf">pdf</a>]</div> <img src="plots/covgraph.png" alt="covgraph_png" /> </div> <div class="one_half left"> <div class="rhead">Coverage distribution [<a download="perchrdepth.pdf" href="plots/perchrdepth.pdf">pdf</a>]</div> <img src="plots/perchrdepth.png" alt="perchrdepth_png" /> </div> <div class="clear"></div> ''' of.write(ostr) ### The next part of coverage requires annotations if args.gpd: ostr = ''' <div class="one_half left"> <table class="data_table one_half"> <tr class="rhead"><td colspan="4">Coverage statistics</td></tr> <tr><td>Feature</td><td>Feature (bp)</td><td>Coverage (bp)</td><td>Fraction</td></tr> ''' # still in annotation conditional of.write(ostr) of.write(' <tr><td>Genome</td><td>'+addcommas(coverage_data['genome_total'])+'</td><td>'+addcommas(coverage_data['genome_covered'])+'</td><td>'+perc(coverage_data['genome_covered'],coverage_data['genome_total'],2)+'</td></tr>') of.write(' <tr><td>Exons</td><td>'+addcommas(coverage_data['exons_total'])+'</td><td>'+addcommas(coverage_data['exons_covered'])+'</td><td>'+perc(coverage_data['exons_covered'],coverage_data['exons_total'],2)+'</td></tr>') of.write(' <tr><td>Introns</td><td>'+addcommas(coverage_data['introns_total'])+'</td><td>'+addcommas(coverage_data['introns_covered'])+'</td><td>'+perc(coverage_data['introns_covered'],coverage_data['introns_total'],2)+'</td></tr>') of.write(' <tr><td>Intergenic</td><td>'+addcommas(coverage_data['intergenic_total'])+'</td><td>'+addcommas(coverage_data['intergenic_covered'])+'</td><td>'+perc(coverage_data['intergenic_covered'],coverage_data['intergenic_total'],2)+'</td></tr>') ostr = ''' </table> </div> <div class="one_half right"> <div class="rhead">Annotated features coverage [<a download="feature_depth.pdf" href="plots/feature_depth.pdf">pdf</a>]</div> <img src="plots/feature_depth.png" alt="feature_depth_png" /> <table class="one_third right"> <tr><td>Genome</td><td><div class="legend_square genome_cov_leg"></div></td> <td>Exons</td><td><div class="legend_square exon_cov_leg"></div></td> <td>Introns</td><td><div class="legend_square intron_cov_leg"></div></td> <td>Intergenic</td><td><div class="legend_square intergenic_cov_leg"></div></td></tr> </table> </div> ''' of.write(ostr) if os.name != 'nt' and sys.platform != 'darwin': ostr = ''' <div class="one_half left"> <div class="rhead">Bias in alignment to reference transcripts [<a download="bias.pdf" href="plots/bias.pdf">pdf</a>]</div> <table> ''' of.write(ostr) # still in conditional for annotation requirement of.write('<tr><td colspan="2">Evidence from:</td></tr>') of.write('<tr><td>Total Transcripts</td><td>'+str(addcommas(bias_tx_count))+'</td></tr>'+"\n") of.write('<tr><td>Total reads</td><td>'+str(addcommas(bias_read_count))+'</td></tr>'+"\n") ostr=''' </table> ''' of.write(ostr) ostr=''' <img src="plots/bias.png" alt="bias_png" /> ''' if bias_read_count > 0: of.write(ostr) ostr=''' </div> ''' of.write(ostr) ostr = ''' <div class="clear"></div> ''' # still in annotations check of.write(ostr) # done with annotations check ostr = ''' </div> <hr /> ''' of.write(ostr) ############################################# # 5. RAREFRACTION ANALYSIS ### Rarefraction analysis block requires do_loci or annotations if args.do_loci or args.gpd: ostr = ''' <div class="subject_title"><table><tr><td class="c1">Rarefraction analysis</td> ''' of.write(ostr) if args.gpd: ostr = ''' <td class="c2"><span class="highlight"> ''' # still in do_loci or annotations conditional of.write(ostr) of.write(str(addcommas(geneany))+"\n") ostr = ''' </span></td><td class="c3"><span class="highlight2">Genes detected</span></td><td class="c4"><span class="highlight"> ''' # still in do_loci or annotations conditional of.write(ostr) of.write(str(addcommas(genefull))+"\n") ostr = ''' </span></td><td class="c5"><span class="highlight2">Full-length genes</span></td> ''' # still in do_loci or annotations conditional of.write(ostr) ostr = ''' </tr></table> </div> <div class="result_block"> <div class="one_half left"> ''' of.write(ostr) if args.gpd: ostr = ''' <div class="rhead">Gene detection rarefraction [<a download="gene_rarefraction.pdf" href="plots/gene_rarefraction.pdf">pdf</a>]</div> <img src="plots/gene_rarefraction.png" alt="gene_rarefraction_png" /> </div> <div class="one_half left"> <div class="rhead">Transcript detection rarefraction [<a download="transcript_rarefraction" href="plots/transcript_rarefraction.pdf">pdf</a>]</div> <img src="plots/transcript_rarefraction.png" alt="transcript_rarefraction_png" /> </div> <div class="clear"></div> ''' # still in args.gpd of.write(ostr) #done with args.anotation ostr = ''' <div class="one_half left"> <table class="data_table one_third"> <tr><td class="rhead" colspan="3">Rarefraction stats</td></tr> <tr class="bold"><td>Feature</td><td>Criteria</td><td>Count</td></tr> ''' # still in do_loci or annotations conditional of.write(ostr+"\n") if args.gpd: of.write('<tr><td>Gene</td><td>full-length</td><td>'+str(addcommas(genefull))+'</td></tr>') of.write('<tr><td>Gene</td><td>any match</td><td>'+str(addcommas(geneany))+'</td></tr>') of.write('<tr><td>Transcript</td><td>full-length</td><td>'+str(addcommas(txfull))+'</td></tr>') of.write('<tr><td>Transcript</td><td>any match</td><td>'+str(addcommas(txany))+'</td></tr>') if args.do_loci: of.write('<tr><td>Locus</td><td></td><td>'+str(addcommas(locuscount))+'</td></tr>') ostr=''' </table> <table id="rarefraction_legend"> <tr><td>Any match</td><td><div class="rareany_leg legend_square"></div></td></tr> <tr><td>full-length</td><td><div class="rarefull_leg legend_square"></div></td></tr> <tr><td class="about" colspan="2">vertical line height indicates 5%-95% CI of sampling</td></tr> </table> </div> ''' # still in do_loci or annotations conditional of.write(ostr) if args.do_loci: ostr = ''' <div class="one_half left"> <div class="rhead">Locus detection rarefraction [<a download="locus_rarefraction.pdf" href="plots/locus_rarefraction.pdf">pdf</a>]</div> <img src="plots/locus_rarefraction.png" alt="locus_rarefraction_png" /> </div> ''' # in do_loci condition of.write(ostr) # still in do_loci or annotations conditional ostr = ''' </div> <div class="clear"></div> <hr /> ''' # still in do_loci or annotations conditional of.write(ostr) # Finished do_loci or annotations conditional ################################### # 6. ERROR PATTERN # We need a reference in order to do error pattern analysis if args.genome or args.gpd: ostr = ''' <div class="subject_title">Error pattern analysis &#xA0;&#xA0;&#xA0;&#xA0;<span class="highlight"> ''' of.write(ostr) if not args.genome and args.gpd: # We don't have any information to fill in the header about errror rates ostr = ''' </span></div> ''' of.write(ostr) if args.genome: # We do have error rate information error_rate = perc(e['ANY_ERROR'],e['ALIGNMENT_BASES'],3) of.write(error_rate) ostr=''' </span> <span class="highlight2">error rate</span></div> <div class="subject_subtitle">&#xA0; &#xA0; &#xA0; based on aligned segments</div> <div class="result_block"> <div class="full_length right"> <div class="rhead">Error rates, given a target sequence [<a download="context_plot.pdf" href="plots/context_plot.pdf">pdf</a>]</div> <img src="plots/context_plot.png" alt="context_plot_png" /> </div> <div class="clear"></div> <table class="data_table one_third left"> <tr class="rhead"><td colspan="3">Alignment stats</td></tr> ''' of.write(ostr+"\n") best_alignments_sampled_string = '<tr><td>Best alignments sampled</td><td>'+str(e['ALIGNMENT_COUNT'])+'</td><td></td></tr>' of.write(best_alignments_sampled_string+"\n") ostr = ''' <tr class="rhead"><td colspan="3">Base stats</td></tr> ''' of.write(ostr+"\n") bases_analyzed_string = '<tr><td>Bases analyzed</td><td>'+str(addcommas(e['ALIGNMENT_BASES']))+'</td><td></td></tr>' of.write(bases_analyzed_string+"\n") correctly_aligned_string = '<tr><td>- Correctly aligned bases</td><td>'+str(addcommas(e['ALIGNMENT_BASES']-e['ANY_ERROR']))+'</td><td>'+perc((e['ALIGNMENT_BASES']-e['ANY_ERROR']),e['ALIGNMENT_BASES'],1)+'</td></tr>' of.write(correctly_aligned_string+"\n") total_error_string = '<tr><td>- Total error bases</td><td>'+str(addcommas(e['ANY_ERROR']))+'</td><td>'+perc(e['ANY_ERROR'],e['ALIGNMENT_BASES'],3)+'</td></tr>' of.write(total_error_string+"\n") mismatched_string = '<tr><td>--- Mismatched bases</td><td>'+str(addcommas(e['MISMATCHES']))+'</td><td>'+perc(e['MISMATCHES'],e['ALIGNMENT_BASES'],3)+'</td></tr>' of.write(mismatched_string+"\n") deletion_string = '<tr><td>--- Deletion bases</td><td>'+str(addcommas(e['ANY_DELETION']))+'</td><td>'+perc(e['ANY_DELETION'],e['ALIGNMENT_BASES'],3)+'</td></tr>' of.write(deletion_string+"\n") complete_deletion_string = '<tr><td>----- Complete deletion bases</td><td>'+str(addcommas(e['COMPLETE_DELETION']))+'</td><td>'+perc(e['COMPLETE_DELETION'],e['ALIGNMENT_BASES'],3)+'</td></tr>' of.write(complete_deletion_string+"\n") homopolymer_deletion_string = '<tr><td>----- Homopolymer deletion bases</td><td>'+str(addcommas(e['HOMOPOLYMER_DELETION']))+'</td><td>'+perc(e['HOMOPOLYMER_DELETION'],e['ALIGNMENT_BASES'],3)+'</td></tr>' of.write(homopolymer_deletion_string+"\n") insertion_string = '<tr><td>--- Insertion bases</td><td>'+str(addcommas(e['ANY_INSERTION']))+'</td><td>'+perc(e['ANY_INSERTION'],e['ALIGNMENT_BASES'],3)+'</td></tr>' of.write(insertion_string+"\n") complete_insertion_string = '<tr><td>----- Complete insertion bases</td><td>'+str(addcommas(e['COMPLETE_INSERTION']))+'</td><td>'+perc(e['COMPLETE_INSERTION'],e['ALIGNMENT_BASES'],3)+'</td></tr>' of.write(complete_insertion_string+"\n") homopolymer_insertion_string = '<tr><td>----- Homopolymer insertion bases</td><td>'+str(addcommas(e['HOMOPOLYMER_INSERTION']))+'</td><td>'+perc(e['HOMOPOLYMER_INSERTION'],e['ALIGNMENT_BASES'],3)+'</td></tr>' of.write(homopolymer_insertion_string+"\n") ostr = ''' </table> <div class="full_length left"> <div class="rhead">Alignment-based error rates [<a download="alignment_error_plot.pdf" href="plots/alignment_error_plot.pdf">pdf</a>]</div> <img class="square_image" src="plots/alignment_error_plot.png" alt="alignment_error_plot_png" /> </div> </div> <div class="clear"></div> ''' of.write(ostr) if args.gpd and os.name != 'nt' and sys.platform != 'darwin': # We can output the junction variance plot ostr = ''' <div class="left full_length"> <div class="rhead">Distance of observed junctions from reference junctions [<a download="junvar.pdf" href="plots/junvar.pdf">pdf</a>]</div> <img src="plots/junvar.png" alt="junvar_png" /> </div> <div class="clear"></div> ''' of.write(ostr) #close error box if we have a reason to be here if args.genome or args.gpd: ostr = ''' <hr /> ''' of.write(ostr) # finished with args.genome condition ############################## # 8. Raw data block ostr = ''' <div id="bed_data"> <table class="header_table"> <tr><td class="rhead" colspan="2">Browser-ready Bed data</td></tr> <tr> <td>Best Alignments:</td> <td class="raw_files"><a download="best.sorted.bed.gz" href="data/best.sorted.bed.gz">best.sorted.bed.gz</a></td> </tr> <tr> <td>Gapped Alignments:</td> <td class="raw_files"><a download="gapped.bed.gz" href="data/gapped.bed.gz">gapped.bed.gz</a></td> </tr> <tr> <td>Trans-chimeric Alignments:</td> <td class="raw_files"><a download="chimera.bed.gz" href="data/chimera.bed.gz">chimera.bed.gz</a></td> </tr> <tr> <td>Self-chimeric Alignments:</td> <td class="raw_files"><a download="technical_chimeras.bed.gz" href="data/technical_chimeras.bed.gz">technical_chimeras.bed.gz</a></td> </tr> <tr> <td>Other-chimeric Alignments:</td> <td class="raw_files"><a download="techinical_atypical_chimeras.bed.gz" href="data/technical_atypical_chimeras.bed.gz">techinical_atypical_chimeras.bed.gz</a></td> </tr> </table> </div> <div id="raw_data"> <table class="header_table"> <tr><td class="rhead" colspan="2">Raw data</td></tr> <tr> <td>Alignments stats raw report:</td> <td class="raw_files"><a id="alignment_stats.txt" href="data/alignment_stats.txt">alignment_stats.txt</a></td> </tr> <tr> <td>Read lengths:</td> <td class="raw_files"><a download="lengths.txt.gz" href="data/lengths.txt.gz">lengths.txt.gz</a></td> </tr> <tr> <td>Reference sequence lengths:</td> <td class="raw_files"><a id="chrlens.txt" href="data/chrlens.txt">chrlens.txt</a></td> </tr> <tr> <td>Coverage bed:</td> <td class="raw_files"><a download="depth.sorted.bed.gz" href="data/depth.sorted.bed.gz">depth.sorted.bed.gz</a></td> </tr> ''' of.write(ostr) if args.do_loci: of.write('<tr> <td>Loci basics bed:</td><td class="raw_files"><a download="loci.bed.gz" href="data/loci.bed.gz">loci.bed.gz</a></td></tr>'+"\n") of.write('<tr><td>Locus read data bed:</td><td class="raw_files"><a download="loci-all.bed.gz" href="data/loci-all.bed.gz">loci-all.bed.gz</a></td></tr>'+"\n") of.write('<tr><td>Locus rarefraction:</td><td class="raw_files"><a download="locus_rarefraction.txt" href="data/locus_rarefraction.txt">locus_rarefraction.txt</a></td></tr>'+"\n") if args.gpd: ostr = ''' <tr> <td>Read annotations:</td> <td class="raw_files"><a download="annotbest.txt.gz" href="data/annotbest.txt.gz">annotbest.txt.gz</a></td> </tr> <tr> <td>Read genomic features:</td> <td class="raw_files"><a download="read_genomic_features.txt.gz" href="data/read_genomic_features.txt.gz">read_genomic_features.txt.gz</a></td> </tr> <tr> <td>Annotation status and read lengths:</td> <td class="raw_files"><a download="annot_lengths.txt.gz" href="data/annot_lengths.txt.gz">annot_lengths.txt.gz</a></td> </tr> <tr> <td>Gene any match rarefraction:</td> <td class="raw_files"><a download="gene_rarefraction.txt" href="data/gene_rarefraction.txt">gene_rarefraction.txt</a></td> </tr> <tr> <td>Gene full-length rarefraction:</td> <td class="raw_files"><a download="gene_full_rarefraction.txt" href="data/gene_full_rarefraction.txt">gene_full_rarefraction.txt</a></td> </tr> <tr> <td>Transcript any match rarefraction:</td> <td class="raw_files"><a download="transcript_rarefraction.txt" href="data/transcript_rarefraction.txt">transcript_rarefraction.txt</a></td> </tr> <tr> <td>Transcript full-length rarefraction:</td> <td class="raw_files"><a download="transcript_full_rarefraction.txt" href="data/transcript_full_rarefraction.txt">transcript_full_rarefraction.txt</a></td> </tr> ''' of.write(ostr) ostr = ''' <tr> <td>Bias table:</td> <td class="raw_files"><a download="bias_table.txt.gz" href="data/bias_table.txt.gz">bias_table.txt.gz</a></td> </tr> ''' if os.name != 'nt' and sys.platform != 'darwin': of.write(ostr) ostr = ''' <tr> <td>Junction variance table:</td> <td class="raw_files"><a download="junvar.txt" href="data/junvar.txt">junvar.txt</a></td> </tr> ''' # if args.gpd if os.name != 'nt' and sys.platform != 'darwin': of.write(ostr) # done with args.gpd #output data that depends on reference if args.genome: ostr = ''' <tr> <td>Alignment errors data:</td> <td class="raw_files"><a download="error_data.txt" href="data/error_data.txt">error_data.txt</a></td> </tr> <tr> <td>Alignment error report:</td> <td class="raw_files"><a download="error_stats.txt" href="data/error_stats.txt">error_stats.txt</a></td> </tr> <tr> <td>Contextual errors data:</td> <td class="raw_files"><a download="context_error_data.txt" href="data/context_error_data.txt">context_error_data.txt</a></td> </tr> ''' # if args.genome of.write(ostr) # back to any condition ostr = ''' </table> </div> </body> </html> ''' of.write(ostr) #Pre: numerator and denominator #Post: percentage string def perc(num,den,decimals=0): s = "{0:."+str(decimals)+"f}%" if float(den) == 0: return 'NA' return s.format(100*float(num)/float(den)) def addcommas(val): return locale.format("%d",val,grouping=True) #def do_inputs(): # # Setup command line inputs # parser=argparse.ArgumentParser(description="Create an output report",formatter_class=argparse.ArgumentDefaultsHelpFormatter) # parser.add_argument('input',help="INPUT FILE or '-' for STDIN") # parser.add_argument('-o','--output',help="OUTPUT Folder or STDOUT if not set") # parser.add_argument('--portable_output',help="OUTPUT file in a portable html format") # group1 = parser.add_mutually_exclusive_group(required=True) # group1.add_argument('-r','--reference',help="Reference Fasta") # group1.add_argument('--no_reference',action='store_true',help="No Reference Fasta") # parser.add_argument('--annotation',help="Reference annotation genePred") # parser.add_argument('--threads',type=int,default=1,help="INT number of threads to run. Default is system cpu count") # # Temporary working directory step 1 of 3 - Definition # parser.add_argument('--tempdir',required=True,help="This temporary directory will be used, but will remain after executing.") # # ### Parameters for alignment plots # parser.add_argument('--min_aligned_bases',type=int,default=50,help="for analysizing alignment, minimum bases to consider") # parser.add_argument('--max_query_overlap',type=int,default=10,help="for testing gapped alignment advantage") # parser.add_argument('--max_target_overlap',type=int,default=10,help="for testing gapped alignment advantage") # parser.add_argument('--max_query_gap',type=int,help="for testing gapped alignment advantge") # parser.add_argument('--max_target_gap',type=int,default=500000,help="for testing gapped alignment advantage") # parser.add_argument('--required_fractional_improvement',type=float,default=0.2,help="require gapped alignment to be this much better (in alignment length) than single alignment to consider it.") # # ### Parameters for locus analysis # parser.add_argument('--min_depth',type=float,default=1.5,help="require this or more read depth to consider locus") # parser.add_argument('--min_coverage_at_depth',type=float,default=0.8,help="require at leas this much of the read be covered at min_depth") # parser.add_argument('--min_exon_count',type=int,default=2,help="Require at least this many exons in a read to consider assignment to a locus") # # ### Params for alignment error plot # parser.add_argument('--alignment_error_scale',nargs=6,type=float,help="<ins_min> <ins_max> <mismatch_min> <mismatch_max> <del_min> <del_max>") # parser.add_argument('--alignment_error_max_length',type=int,default=100000,help="The maximum number of alignment bases to calculate error from") # # ### Params for context error plot # parser.add_argument('--context_error_scale',nargs=6,type=float,help="<ins_min> <ins_max> <mismatch_min> <mismatch_max> <del_min> <del_max>") # parser.add_argument('--context_error_stopping_point',type=int,default=1000,help="Sample at least this number of each context") # args = parser.parse_args() # # # Temporary working directory step 2 of 3 - Creation # setup_tempdir(args) # return args #def setup_tempdir(args): # if not os.path.exists(args.tempdir): # os.makedirs(args.tempdir.rstrip('/')) # if not os.path.exists(args.tempdir): # sys.stderr.write("ERROR: Problem creating temporary directory\n") # sys.exit() # return def external(args,version=None): #set our global by the input version global g_version g_version = version main(args) if __name__=="__main__": sys.stderr.write("calling create html as main\n") #do our inputs #args = do_inputs() #main(args)
AlignQC
/AlignQC-2.0.5.tar.gz/AlignQC-2.0.5/alignqc/create_html.py
create_html.py
import argparse, os, inspect, sys, gzip from subprocess import Popen, PIPE from tempfile import mkdtemp, gettempdir from shutil import rmtree from distutils.spawn import find_executable from seqtools.format.gtf import GTFFile import prepare_all_data import create_html g_version = None def main(args): if not args.output and not args.portable_output and not args.output_folder: sys.stderr.write("ERROR: must specify some kind of output\n") sys.exit() ## Check and see if directory for outputs exists if args.output_folder: if os.path.isdir(args.output_folder): sys.stderr.write("ERROR: output directory already exists. Remove it to to use this location\n") sys.exit() global g_version #Make sure rscript is installed try: cmd = args.rscript_path+' --version' prscript = Popen(cmd.split(),stdout=PIPE,stderr=PIPE) rline = prscript.communicate() sys.stderr.write("Using Rscript version:\n") sys.stderr.write(rline[1].rstrip()+"\n") except: sys.stderr.write("ERROR: Rscript not installed\n") sys.exit() if args.no_genome: sys.stderr.write("WARNING: No reference specified. Will be unable to report error profile\n") if args.no_transcriptome: sys.stderr.write("WARNING: No annotation specified. Will be unable to report feature specific outputs\n") #Do the conversion of gtf as early as possible if we have one if args.gtf: if args.gtf[-3:] == '.gz': ginf = gzip.open(args.gtf) else: ginf = gzip.open(args.gtf) gobj = GTFFile(ginf) of = open(args.tempdir+'/txome.gpd','w') gobj.write_genepred(of) of.close() args.gpd = args.tempdir+'/txome.gpd' prepare_all_data.external(args) create_html.external(args,version=g_version) # Temporary working directory step 3 of 3 - Cleanup if not args.specific_tempdir: if os.name != 'nt': rmtree(args.tempdir) def setup_tempdir(args): if args.specific_tempdir: if not os.path.exists(args.specific_tempdir): os.makedirs(args.specific_tempdir.rstrip('/')) args.tempdir = args.specific_tempdir.rstrip('/') if not os.path.exists(args.specific_tempdir.rstrip('/')): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() else: args.tempdir = mkdtemp(prefix="weirathe.",dir=args.tempdir.rstrip('/')) if not os.path.exists(args.tempdir.rstrip('/')): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() if not os.path.exists(args.tempdir): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() return def external_cmd(cmd,version=None): #set version by input global g_version g_version = version cache_argv = sys.argv sys.argv = cmd args = do_inputs() main(args) sys.argv = cache_argv def do_inputs(): parser=argparse.ArgumentParser(description="Create an output report",formatter_class=argparse.ArgumentDefaultsHelpFormatter) label1 = parser.add_argument_group(title="Input parameters",description="Required BAM file. If reference or annotation is not set, use --no_reference or --no_annotation respectively to continue.") label1.add_argument('input',help="INPUT BAM file") group1 = label1.add_mutually_exclusive_group(required=True) group1.add_argument('-g','--genome',help="Reference Fasta") group1.add_argument('--no_genome',action='store_true',help="No Reference Fasta") group2 = label1.add_mutually_exclusive_group(required=True) group2.add_argument('-t','--gtf',help="Reference transcriptome in GTF format, assumes gene_id and transcript_id are defining gene and transcript names") group2.add_argument('--gpd',help="Reference transcriptome in genePred format") group2.add_argument('--no_transcriptome',action='store_true',help="No annotation is available") # output options label2 = parser.add_argument_group(title="Output parameters",description="At least one output parameter must be set") label2.add_argument('-o','--output',help="OUTPUT xhtml with data") label2.add_argument('--portable_output',help="OUTPUT file in a small xhtml format") label2.add_argument('--output_folder',help="OUTPUT folder of all data") label3 = parser.add_argument_group(title="Performance parameters") label3.add_argument('--threads',type=int,default=1,help="INT number of threads to run. Default is system cpu count") # Temporary working directory step 1 of 3 - Definition label4 = parser.add_argument_group(title="Temporary folder parameters") group = label4.add_mutually_exclusive_group() group.add_argument('--tempdir',default=gettempdir(),help="The temporary directory is made and destroyed here.") group.add_argument('--specific_tempdir',help="This temporary directory will be used, but will remain after executing.") ### Parameters for alignment plots label5 = parser.add_argument_group(title="Alignment plot parameters") label5.add_argument('--min_intron_size',type=int,default=68,help="minimum intron size when smoothing indels") label5.add_argument('--min_aligned_bases',type=int,default=50,help="for analysizing alignment, minimum bases to consider") label5.add_argument('--max_query_overlap',type=int,default=10,help="for testing gapped alignment advantage") label5.add_argument('--max_target_overlap',type=int,default=10,help="for testing gapped alignment advantage") label5.add_argument('--max_query_gap',type=int,help="for testing gapped alignment advantge") label5.add_argument('--max_target_gap',type=int,default=500000,help="for testing gapped alignment advantage") label5.add_argument('--required_fractional_improvement',type=float,default=0.2,help="require gapped alignment to be this much better (in alignment length) than single alignment to consider it.") ### Parameters for locus analysis label6 = parser.add_argument_group(title="Locus parameters",description="Optionally produce plots and data regarding clusters of sequences") label6.add_argument('--do_loci',action='store_true',help="this analysis is time consuming at the moment\n") label6.add_argument('--min_depth',type=float,default=1.5,help="require this or more read depth to consider locus") label6.add_argument('--min_coverage_at_depth',type=float,default=0.8,help="require at leas this much of the read be covered at min_depth") label6.add_argument('--min_exon_count',type=int,default=2,help="Require at least this many exons in a read to consider assignment to a locus") label6.add_argument('--locus_downsample',type=int,default=100,help="Limit how deep to search loci\n") ### Params for alignment error plot label7 = parser.add_argument_group(title="Alignment error parameters") label7.add_argument('--alignment_error_scale',nargs=6,type=float,help="<ins_min> <ins_max> <mismatch_min> <mismatch_max> <del_min> <del_max>") label7.add_argument('--alignment_error_max_length',type=int,default=1000000,help="The maximum number of alignment bases to calculate error from") ### Params for context error plot label8 = parser.add_argument_group(title="Context error parameters") label8.add_argument('--context_error_scale',nargs=6,type=float,help="<ins_min> <ins_max> <mismatch_min> <mismatch_max> <del_min> <del_max>") label8.add_argument('--context_error_stopping_point',type=int,default=5000,help="Sample at least this number of each context") ## Params for rarefraction plots label9 = parser.add_argument_group(title="Rarefraction plot parameters") label9.add_argument('--samples_per_xval',type=int,default=10) ### Parameters for bias plots label10 = parser.add_argument_group(title="Bias parameters") label10.add_argument('--max_bias_data',type=int,default=500000,help="Bias does not need too large of a dataset. By default data will be downsampled for large datasets.") label11 = parser.add_argument_group(title="Path parameters") label11.add_argument('--rscript_path',default='Rscript',help="The location of the Rscript executable. Default is installed in path") args = parser.parse_args() if args.output_folder: if os.path.exists(args.output_folder): parser.error("output folder already exists. will not overwrite output folder") setup_tempdir(args) ex = find_executable(args.rscript_path) if not ex: parser.error("Rscript is required and could not located in '"+args.rscript_path+"' its best if you just have it installed in your path by installing the base R program. Or you can specify its location with the --rscript_path option") ex = find_executable('sort') if not ex: parser.error("sort as a command utility is required but could not be located. Perhaps you are not working in an environment with utilities in it") ex = find_executable('zcat') if not ex: parser.error("zcat as a command utility is required but could not be located. Perhaps you are not working in an environment with utilities in it") ex = find_executable('gzip') if not ex: parser.error("gzip as a command utility is required but could not be located. Perhaps you are not working in an environment with utilities in it") if os.name == 'nt' and args.threads > 1: args.threads = 1 sys.stderr.write("WARNING: Windows OS detected. Operating in single thread mode. close_fds dependencies need resolved before multi-thread windows mode is enabled.\n") if sys.platform == 'darwin' and args.threads > 1: args.threads = 1 sys.stderr.write("WARNING: Mac OS detected. Operating in single thread mode. close_fds dependencies need resolved before multi-thread windows mode is enabled.\n") return args if __name__=='__main__': do_inputs() main(args)
AlignQC
/AlignQC-2.0.5.tar.gz/AlignQC-2.0.5/alignqc/analyze.py
analyze.py
import sys, argparse, gzip, re, random, collections, inspect, os from multiprocessing import Pool, cpu_count from seqtools.statistics import average, median def main(args): inf = sys.stdin if args.input != '-': if re.search('\.gz$',args.input): inf = gzip.open(args.input) else: inf = open(args.input) of = sys.stdout if args.output: of = open(args.output,'w') vals = [] for line in inf: f = line.rstrip().split("\t") if args.full and f[4] != 'full': vals.append(None) continue if args.gene: vals.append(f[2]) elif args.transcript: vals.append(f[3]) if args.original_read_count: if len(vals) > args.original_read_count: sys.stderr.write("ERROR: cant have a read count greater than the original read count\n") sys.exit() vals += [None]*(args.original_read_count-len(vals)) # vals now holds an array to select from total = len(vals) xvals = make_sequence(total) # make shuffled arrays to use for each point qsvals = [] if args.threads > 1: p = Pool(processes=args.threads) for i in range(0,args.samples_per_xval): if args.threads > 1: qsvals.append(p.apply_async(get_shuffled_array,args=(vals,))) else: qsvals.append(Queue(get_shuffled_array(vals))) if args.threads > 1: p.close() p.join() svals = [x.get() for x in qsvals] second_threads = 1 if second_threads > 1: p = Pool(processes=second_threads) results = [] for xval in xvals: if second_threads > 1: r = p.apply_async(analyze_x,args=(xval,svals,args)) results.append(r) else: r = Queue(analyze_x(xval,svals,args)) results.append(r) if second_threads > 1: p.close() p.join() for r in [x.get() for x in results]: of.write("\t".join([str(x) for x in r])+"\n") inf.close() of.close() class Queue: def __init__(self,val): self.val = val def get(self): return self.val def get_shuffled_array(val): random.shuffle(val) return val[:] # vals contains the annotation for each read def analyze_x(xval,svals,args): s = args.samples_per_xval #cnts = sorted( # [len( # [k for k in collections.Counter([z for z in [random.choice(vals) for y in range(0,xval)] if z]).values() if k >= args.min_depth] # ) # for j in range(0,s)] # ) cnts = [] for j in range(0,s): vals = svals[j][0:xval] cnts.append(len([x for x in collections.Counter([k for k in vals if k]).values() if x >= args.min_depth])) cnts = sorted(cnts) lower = float(cnts[int(len(cnts)*0.05)]) mid = median(cnts) upper = float(cnts[int(len(cnts)*0.95)]) #print len(vals) #print len([x for x in vals if x >0]) #print cnts[0:5] #print cnts[-5:] #print [xval, lower, mid, upper] return [xval, lower, mid, upper] def make_sequence(total): start = [1,2,3,4,5,10] while True: start += [x*10 for x in start[-5:]] if start[-1] > total: break return [x for x in start if x < total]+[total] def do_inputs(): parser = argparse.ArgumentParser(description="Take a locus bed file (bed) followed by locus id followed by read count. Generate a rarefraction.",formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('input',help="Use - for STDIN") parser.add_argument('-o','--output',help="Write output here") parser.add_argument('--threads',type=int,default=cpu_count(),help="INT threads to use") parser.add_argument('--original_read_count',type=int,help="INT allows accounting for unmapped reads not included here.") parser.add_argument('--samples_per_xval',type=int,default=1000,help="Sample this many times") parser.add_argument('--min_depth',type=int,default=1,help="Require at least this depth to count as a hit.") parser.add_argument('--full',action='store_true',help="Return full length matchs only") group1 = parser.add_mutually_exclusive_group(required=True) group1.add_argument('--gene',action='store_true',help="Gene based output") group1.add_argument('--transcript',action='store_true',help="Gene based output") args = parser.parse_args() return args def external_cmd(cmd): cache_argv = sys.argv sys.argv = cmd args = do_inputs() main(args) sys.argv = cache_argv if __name__=="__main__": args = do_inputs() main(args)
AlignQC
/AlignQC-2.0.5.tar.gz/AlignQC-2.0.5/alignqc/gpd_annotation_to_rarefraction.py
gpd_annotation_to_rarefraction.py
"""Calculate non-context based errors""" import argparse, sys, os, time, gc, gzip from shutil import rmtree from tempfile import mkdtemp, gettempdir from subprocess import call from seqtools.format.sam.bam.files import BAMFile from seqtools.errors import ErrorProfileFactory from seqtools.format.fasta import FASTAData from seqtools.format.sam.bam.bamindex import BAMIndexRandomAccessPrimary as BIRAP def main(args): sys.stderr.write("Reading our reference Fasta\n") if args.reference[-3:] == '.gz': ref = FASTAData(gzip.open(args.reference).read()) else: ref = FASTAData(open(args.reference).read()) sys.stderr.write("Finished reading our reference Fasta\n") bf = BAMFile(args.input,BAMFile.Options(reference=ref)) bind = None epf = ErrorProfileFactory() if args.random: sys.stderr.write("Reading index\n") if args.input_index: bind = BIRAP(index_file=args.input_index,alignment_file=args.input) else: bind = BIRAP(index_file=args.input+'.bgi',alignment_file=args.input) z = 0 while True: coord = bind.get_random_coord() if not coord: continue e = bf.fetch_by_coord(coord) if not e.is_aligned(): continue epf.add_alignment(e) z+=1 #print z if z %100==1: con = epf.get_alignment_errors().alignment_length if args.max_length <= con: break sys.stderr.write(str(con)+"/"+str(args.max_length)+" bases from "+str(z)+" alignments\r") sys.stderr.write("\n") else: z = 0 for e in bf: if e.is_aligned(): epf.add_alignment(e) z+=1 #print z if z %100==1: con = epf.get_alignment_errors().alignment_length if args.max_length <= con: break sys.stderr.write(str(con)+"/"+str(args.max_length)+" bases from "+str(z)+" alignments\r") sys.stderr.write("\n") of = open(args.tempdir+'/report.txt','w') of.write(epf.get_alignment_errors().get_report()) of.close() for ofile in args.output: cmd = [args.rscript_path, os.path.dirname(os.path.realpath(__file__))+'/plot_alignment_errors.r', args.tempdir+'/report.txt',ofile] if args.scale: cmd += [str(x) for x in args.scale] sys.stderr.write(" ".join(cmd)+"\n") call(cmd) if args.output_raw: of = open(args.output_raw,'w') with open(args.tempdir+"/report.txt") as inf: for line in inf: of.write(line) of.close() if args.output_stats: of = open(args.output_stats,'w') of.write(epf.get_alignment_errors().get_stats()) of.close() sys.stderr.write("finished\n") if bind: bind.destroy() bf = None epf.close() time.sleep(5) gc.collect() time.sleep(5) # Temporary working directory step 3 of 3 - Cleanup if not args.specific_tempdir: rmtree(args.tempdir) def do_inputs(): # Setup command line inputs parser=argparse.ArgumentParser(description="",formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('input',help="BAMFILE input") parser.add_argument('--input_index',help="BAMFILE index") parser.add_argument('-r','--reference',help="Fasta reference file",required=True) parser.add_argument('--scale',type=float,nargs=6,help="<ins_min> <ins_max> <mismatch_min> <mismatch_max> <del_min> <del_max>") parser.add_argument('-o','--output',nargs='+',help="OUTPUTFILE for pdf plot",required=True) parser.add_argument('--output_stats',help="OUTPUTFILE for a stats report") parser.add_argument('--output_raw',help="OUTPUTFILE for the raw data") parser.add_argument('--random',action='store_true',help="randomly select alignments, requires indexed file") parser.add_argument('--max_length',type=int,default=100000,help="maximum number of alignment bases to use") # Temporary working directory step 1 of 3 - Definition group = parser.add_mutually_exclusive_group() group.add_argument('--tempdir',default=gettempdir(),help="The temporary directory is made and destroyed here.") group.add_argument('--specific_tempdir',help="This temporary directory will be used, but will remain after executing.") parser.add_argument('--rscript_path',default='Rscript',help="Rscript path") args = parser.parse_args() # Temporary working directory step 2 of 3 - Creation setup_tempdir(args) return args def setup_tempdir(args): if args.specific_tempdir: if not os.path.exists(args.specific_tempdir): os.makedirs(args.specific_tempdir.rstrip('/')) args.tempdir = args.specific_tempdir.rstrip('/') if not os.path.exists(args.specific_tempdir.rstrip('/')): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() else: args.tempdir = mkdtemp(prefix="weirathe.",dir=args.tempdir.rstrip('/')) if not os.path.exists(args.tempdir.rstrip('/')): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() if not os.path.exists(args.tempdir): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() return def external_cmd(cmd): cache_argv = sys.argv sys.argv = cmd args = do_inputs() main(args) sys.argv = cache_argv if __name__=="__main__": #do our inputs args = do_inputs() main(args)
AlignQC
/AlignQC-2.0.5.tar.gz/AlignQC-2.0.5/alignqc/bam_to_alignment_error_plot.py
bam_to_alignment_error_plot.py
import sys, argparse, gzip, re, random, collections, inspect, os from multiprocessing import Pool, cpu_count from seqtools.statistics import average, median def main(args): inf = sys.stdin if args.input != '-': if re.search('\.gz$',args.input): inf = gzip.open(args.input) else: inf = open(args.input) of = sys.stdout if args.output: of = open(args.output,'w') vals = [] for line in inf: f = line.rstrip().split("\t") lid = int(f[3]) txcnt = int(f[4]) vals += [lid]*txcnt if args.original_read_count: if len(vals) > args.original_read_count: sys.stderr.write("ERROR: cant have a read count greater than the original read count\n") sys.exit() vals += [None]*(args.original_read_count-len(vals)) # vals now holds an array to select from qsvals = [] if args.threads > 1: p = Pool(processes=args.threads) for i in range(0,args.samples_per_xval): if args.threads > 1: qsvals.append(p.apply_async(get_rand,args=(vals,))) else: qsvals.append(Queue(get_rand(vals))) if args.threads > 1: p.close() p.join() svals = [x.get() for x in qsvals] total = len(vals) xvals = make_sequence(total) second_threads = 1 if second_threads > 1: p = Pool(processes=args.threads) results = [] for xval in xvals: if second_threads > 1: r = p.apply_async(analyze_x,args=(xval,svals,args)) results.append(r) else: r = Queue(analyze_x(xval,svals,args)) results.append(r) if second_threads > 1: p.close() p.join() for r in [x.get() for x in results]: of.write("\t".join([str(x) for x in r])+"\n") inf.close() of.close() def get_rand(vals): random.shuffle(vals) return vals[:] class Queue: def __init__(self,val): self.val = val def get(self): return self.val def analyze_x(xval,svals,args): s = args.samples_per_xval #cnts = sorted([len([k for k in collections.Counter([z for z in [random.choice(vals) for y in range(0,xval)] if z]).values() if k >= args.min_depth]) for j in range(0,s)]) cnts = [] for i in range(0,s): vals = svals[i][0:xval] res = len([y for y in collections.Counter([x for x in vals if x]).values() if y >= args.min_depth]) cnts.append(res) cnts = sorted(cnts) lower = float(cnts[int(len(cnts)*0.05)]) mid = median(cnts) upper = float(cnts[int(len(cnts)*0.95)]) return [xval, lower, mid, upper] def make_sequence(total): start = [1,2,3,4,5,10] while True: start += [x*10 for x in start[-5:]] if start[-1] > total: break return [x for x in start if x < total]+[total] def do_inputs(): parser = argparse.ArgumentParser(description="Take a locus bed file (bed) followed by locus id followed by read count. Generate a rarefraction.",formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('input',help="Use - for STDIN") parser.add_argument('-o','--output',help="Write output here") parser.add_argument('--threads',type=int,default=cpu_count(),help="INT threads to use") parser.add_argument('--original_read_count',type=int,help="INT allows accounting for unmapped reads not included here.") parser.add_argument('--samples_per_xval',type=int,default=1000,help="Sample this many times") parser.add_argument('--min_depth',type=int,default=1,help="Require at least this depth to count as a hit.") args = parser.parse_args() return args def external_cmd(cmd): cache_argv = sys.argv sys.argv = cmd args = do_inputs() main(args) sys.argv = cache_argv if __name__=="__main__": args = do_inputs() main(args)
AlignQC
/AlignQC-2.0.5.tar.gz/AlignQC-2.0.5/alignqc/locus_bed_to_rarefraction.py
locus_bed_to_rarefraction.py
import argparse, sys, os, gzip, re from shutil import rmtree, copy from multiprocessing import cpu_count from tempfile import mkdtemp, gettempdir from subprocess import call def main(args): udir = os.path.dirname(os.path.realpath(__file__)) #sys.stderr.write("Making text report\n") sys.stderr.write("making plot\n") for ofile in args.output: cmd = [args.rscript_path,udir+'/plot_gapped_alignment_statistics.r', args.input,ofile] sys.stderr.write(" ".join(cmd)+"\n") call(cmd) if args.output_stats: do_stats(args) sys.stderr.write("Finished.\n") # Temporary working directory step 3 of 3 - Cleanup if not args.specific_tempdir: rmtree(args.tempdir) def do_stats(args): total_reads = 0 unaligned_reads = 0 aligned_reads = 0 single_align_reads = 0 gapped_align_reads = 0 chimera_align_reads = 0 selfchimera_align_reads = 0 transchimera_align_reads = 0 total_bases = 0 unaligned_bases = 0 aligned_bases = 0 single_align_bases = 0 gapped_align_bases = 0 chimera_align_bases = 0 selfchimera_align_bases = 0 transchimera_align_bases = 0 inf = None if re.search('\.gz',args.input): inf = gzip.open(args.input) else: inf = open(args.input) for line in inf: (name, type, single, both, rlen) = line.rstrip().split("\t") single = int(single) both = int(both) rlen = int(rlen) total_reads += 1 if type=="unaligned": unaligned_reads += 1 else: aligned_reads += 1 if type=="original": single_align_reads +=1 if type=="gapped": gapped_align_reads += 1 gapped_align_bases += both-single if type=="chimera": transchimera_align_reads += 1 transchimera_align_bases += both-single if type=="self-chimera" or type=="self-chimera-atypical": selfchimera_align_reads += 1 selfchimera_align_bases += both-single if re.search('chimera',type): chimera_align_reads +=1 chimera_align_bases += both-single if type!="unaligned": total_bases += rlen unaligned_bases += (rlen-both) aligned_bases += both single_align_bases += single of = open(args.output_stats,'w') of.write("TOTAL_READS\t"+str(total_reads)+"\n") of.write("UNALIGNED_READS\t"+str(unaligned_reads)+"\n") of.write("ALIGNED_READS\t"+str(aligned_reads)+"\n") of.write("SINGLE_ALIGN_READS\t"+str(single_align_reads)+"\n") of.write("GAPPED_ALIGN_READS\t"+str(gapped_align_reads)+"\n") of.write("CHIMERA_ALIGN_READS\t"+str(chimera_align_reads)+"\n") of.write("TRANSCHIMERA_ALIGN_READS\t"+str(transchimera_align_reads)+"\n") of.write("SELFCHIMERA_ALIGN_READS\t"+str(selfchimera_align_reads)+"\n") of.write("TOTAL_BASES\t"+str(total_bases)+"\n") of.write("UNALIGNED_BASES\t"+str(unaligned_bases)+"\n") of.write("ALIGNED_BASES\t"+str(aligned_bases)+"\n") of.write("SINGLE_ALIGN_BASES\t"+str(single_align_bases)+"\n") of.write("GAPPED_ALIGN_BASES\t"+str(gapped_align_bases)+"\n") of.write("CHIMERA_ALIGN_BASES\t"+str(chimera_align_bases)+"\n") of.write("TRANSCHIMERA_ALIGN_BASES\t"+str(transchimera_align_bases)+"\n") of.write("SELFCHIMERA_ALIGN_BASES\t"+str(selfchimera_align_bases)+"\n") of.close() inf.close() def do_inputs(): # Setup command line inputs parser=argparse.ArgumentParser(description="",formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('input',help="INPUT lengths.txt file") parser.add_argument('-o','--output',nargs='+',help="OUTPUT FILE can put multiple") parser.add_argument('--output_stats',help="Save some summary statistics") parser.add_argument('--rscript_path',default='Rscript',help="Path of Rscript") # Temporary working directory step 1 of 3 - Definition group = parser.add_mutually_exclusive_group() group.add_argument('--tempdir',default=gettempdir(),help="The temporary directory is made and destroyed here.") group.add_argument('--specific_tempdir',help="This temporary directory will be used, but will remain after executing.") args = parser.parse_args() # Temporary working directory step 2 of 3 - Creation setup_tempdir(args) return args def setup_tempdir(args): if args.specific_tempdir: if not os.path.exists(args.specific_tempdir): os.makedirs(args.specific_tempdir.rstrip('/')) args.tempdir = args.specific_tempdir.rstrip('/') if not os.path.exists(args.specific_tempdir.rstrip('/')): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() else: args.tempdir = mkdtemp(prefix="weirathe.",dir=args.tempdir.rstrip('/')) if not os.path.exists(args.tempdir.rstrip('/')): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() if not os.path.exists(args.tempdir): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() return def external_cmd(cmd): cache_argv = sys.argv sys.argv = cmd #do our inputs args = do_inputs() main(args) sys.argv = cache_argv if __name__=="__main__": #do our inputs args = do_inputs() main(args)
AlignQC
/AlignQC-2.0.5.tar.gz/AlignQC-2.0.5/alignqc/make_alignment_plot.py
make_alignment_plot.py
"""This script will call most of the individual modules analyzing the data""" import argparse, sys, os, time, re, gzip, locale, inspect, time from subprocess import Popen, PIPE # BAM imports import bam_preprocess import traverse_preprocessed import bam_to_chr_lengths import get_platform_report import gpd_loci_analysis import gpd_to_exon_distro import make_alignment_plot import depth_to_coverage_report import locus_bed_to_rarefraction # BAM + reference imports import bam_to_context_error_plot import bam_to_alignment_error_plot # BAM + annotation import annotate_from_genomic_features import get_depth_subset import annotated_length_analysis import gpd_annotation_to_rarefraction import annotated_read_bias_analysis import gpd_to_junction_variance # BAM from seqtools.cli.utilities.gpd_to_bed_depth import external_cmd as gpd_to_bed_depth from seqtools.cli.utilities.bed_depth_to_stratified_coverage import external_cmd as bed_depth_to_stratified_coverage from seqtools.cli.utilities.gpd_to_UCSC_bed12 import external_cmd as gpd_to_UCSC_bed12 # BAM + annotation from seqtools.cli.utilities.gpd_annotate import external_cmd as gpd_annotate # read count rcnt = -1 tlog = None def main(args): if not os.path.exists(args.tempdir+'/plots'): os.makedirs(args.tempdir+'/plots') if not os.path.exists(args.tempdir+'/data'): os.makedirs(args.tempdir+'/data') if not os.path.exists(args.tempdir+'/logs'): os.makedirs(args.tempdir+'/logs') if not os.path.exists(args.tempdir+'/temp'): os.makedirs(args.tempdir+'/temp') global tlog tlog = TimeLog(args.tempdir+'/logs/time.log') ## Extract data that can be realized from the bam make_data_bam(args) ## Extract data that can be realized from the bam and reference if args.genome: make_data_bam_reference(args) ## Extract data that can be realized from bam and reference annotation if args.gpd: make_data_bam_annotation(args) # Write params file of = open(args.tempdir+'/data/params.txt','w') for arg in vars(args): of.write(arg+"\t"+str(getattr(args,arg))+"\n") of.close() class TimeLog: def __init__(self,fname): self.fh = open(fname,'w') self.recording = False self.st = time.time() def start(self,msg): self.st = time.time() self.fh.write(msg+"\n") self.fh.flush() def write(self,msg): self.fh.write('$ '+msg+"\n") def stop(self): self.fh.write("--- "+str(time.time()-self.st)+ " seconds ---\n") self.fh.flush() def make_data_bam(args): global tlog # Get the data necessary for making tables and reports tlog.start("traverse bam and preprocess") # 1. Traverse bam and store alignment mappings ordered by query name udir = os.path.dirname(os.path.realpath(__file__)) cmd = [udir+'/bam_preprocess.py',args.input,'--minimum_intron_size', str(args.min_intron_size),'-o',args.tempdir+'/temp/alndata.txt.gz', '--threads',str(args.threads),'--specific_tempdir', args.tempdir+'/temp/'] sys.stderr.write("Creating initial alignment mapping data\n") sys.stderr.write(" ".join(cmd)+"\n") bam_preprocess.external_cmd(cmd) tlog.write(" ".join(cmd)) tlog.stop() tlog.start("traverse preprocessed") # 2. Describe the alignments by traversing the previously made file cmd = [udir+'/traverse_preprocessed.py',args.tempdir+'/temp/alndata.txt.gz', '-o',args.tempdir+'/data/','--specific_tempdir',args.tempdir+'/temp/', '--threads',str(args.threads)] if args.min_aligned_bases: cmd += ['--min_aligned_bases',str(args.min_aligned_bases)] if args.max_query_overlap: cmd += ['--max_query_overlap',str(args.max_query_overlap)] if args.max_target_overlap: cmd += ['--max_target_overlap',str(args.max_target_overlap)] if args.max_query_gap: cmd += ['--max_query_gap',str(args.max_query_gap)] if args.max_target_gap: cmd += ['--max_target_gap',str(args.max_target_gap)] if args.required_fractional_improvement: cmd += ['--required_fractional_improvement', str(args.required_fractional_improvement)] sys.stderr.write("Traverse bam for alignment analysis\n") sys.stderr.write(" ".join(cmd)+"\n") traverse_preprocessed.external_cmd(cmd) tlog.write(" ".join(cmd)) tlog.stop() tlog.start("get chromosome lengths from bam") # 3. get chromosome lengths from bam cmd = [udir+'/bam_to_chr_lengths.py',args.input, '-o',args.tempdir+'/data/chrlens.txt'] sys.stderr.write("Writing chromosome lengths from header\n") sys.stderr.write(" ".join(cmd)+"\n") bam_to_chr_lengths.external_cmd(cmd) tlog.write(" ".join(cmd)) tlog.stop() tlog.start("look for platform specific read names") # Now we can find any known reads # 4. Go through read names to find if there are platform-specific read names present sys.stderr.write("Can we find any known read types\n") cmd = [udir+'/get_platform_report.py',args.tempdir+'/data/lengths.txt.gz', args.tempdir+'/data/special_report'] sys.stderr.write(" ".join(cmd)+"\n") get_platform_report.external_cmd(cmd) tlog.write(" ".join(cmd)) tlog.stop() tlog.start("check for pacbio in case we make a special graph") # Check for pacbio to see if we need to make a graph for it do_pb = False with open(args.tempdir+'/data/special_report') as inf: for line in inf: f = line.rstrip().split("\t") if f[0]=='PB': do_pb = True break if do_pb: cmd = [args.rscript_path,udir+'/plot_pacbio.r', args.tempdir+'/data/special_report.pacbio', args.tempdir+'/plots/pacbio.png'] sys.stderr.write(" ".join(cmd)+"\n") mycall(cmd,args.tempdir+'/logs/special_report_pacbio_png') cmd = [args.rscript_path,udir+'/plot_pacbio.r', args.tempdir+'/data/special_report.pacbio', args.tempdir+'/plots/pacbio.pdf'] sys.stderr.write(" ".join(cmd)+"\n") mycall(cmd,args.tempdir+'/logs/special_report_pacbio_pdf') tlog.write(" ".join(cmd)) tlog.stop() tlog.start("get a depth for our best alignments") # 5. Go through the genepred file and get a depth bed for our best alignments sys.stderr.write("Go through genepred best alignments and make a bed depth file\n") cmd = ["gpd_to_bed_depth.py",args.tempdir+'/data/best.sorted.gpd.gz', '-o',args.tempdir+'/data/depth.sorted.bed.gz',"--threads", str(args.threads)] sys.stderr.write("Generate the depth bed for the mapped reads\n") sys.stderr.write(" ".join(cmd)+"\n") gpd_to_bed_depth(cmd) sys.stderr.write("Stratify the depth to make it plot quicker and cleaner\n") cmd = ["bed_depth_to_stratified_coverage.py", args.tempdir+'/data/depth.sorted.bed.gz','-l', args.tempdir+"/data/chrlens.txt", '-o',args.tempdir+'/temp/depth.coverage-strata.sorted.bed.gz', '--output_key',args.tempdir+'/temp/coverage-strata.key', '--minimum_coverage','100000'] bed_depth_to_stratified_coverage(cmd) global rcnt #read count rcnt = 0 tinf = gzip.open(args.tempdir+'/data/lengths.txt.gz') for line in tinf: rcnt += 1 tinf.close() tlog.write(" ".join(cmd)) tlog.stop() # For now reporting loci will be optional until it can be tested and optimized. if args.do_loci: tlog.start("do locus search") # 6. Go through the best alignments and look for loci sys.stderr.write("Approximate loci and mapped read distributions among them.\n") cmd = [udir+"/gpd_loci_analysis.py", args.tempdir+'/data/best.sorted.gpd.gz','-o', args.tempdir+'/data/loci-all.bed.gz','--output_loci', args.tempdir+'/data/loci.bed.gz','--downsample', str(args.locus_downsample),'--threads',str(args.threads)] if args.min_depth: cmd += ['--min_depth',str(args.min_depth)] if args.min_depth: cmd += ['--min_coverage_at_depth',str(args.min_coverage_at_depth)] if args.min_exon_count: cmd += ['--min_exon_count',str(args.min_exon_count)] sys.stderr.write(" ".join(cmd)+"\n") gpd_loci_analysis.external_cmd(cmd) cmd = [udir+"/locus_bed_to_rarefraction.py", args.tempdir+'/data/loci.bed.gz','-o', args.tempdir+'/data/locus_rarefraction.txt','--threads', str(args.threads),'--original_read_count',str(rcnt)] sys.stderr.write("Make rarefraction curve\n") sys.stderr.write(" ".join(cmd)+"\n") locus_bed_to_rarefraction.external_cmd(cmd) sys.stderr.write("Make locus rarefraction plot\n") for ext in ['png','pdf']: cmd = [args.rscript_path,udir+'/plot_annotation_rarefractions.r', args.tempdir+'/plots/locus_rarefraction.'+ext,'locus', args.tempdir+'/data/locus_rarefraction.txt','#FF000088'] sys.stderr.write(" ".join(cmd)+"\n") mycall(cmd,args.tempdir+'/logs/plot_locus_rarefraction_'+ext) tlog.write(" ".join(cmd)) tlog.stop() tlog.start("get ready for alignment plot") # 7. Alignment plot preparation sys.stderr.write("Get ready for alignment plot\n") cmd = [udir+'/make_alignment_plot.py',args.tempdir+'/data/lengths.txt.gz', '--rscript_path',args.rscript_path,'--output_stats', args.tempdir+'/data/alignment_stats.txt','--output', args.tempdir+'/plots/alignments.png', args.tempdir+'/plots/alignments.pdf'] sys.stderr.write("Make alignment plots\n") sys.stderr.write(" ".join(cmd)+"\n") make_alignment_plot.external_cmd(cmd) tlog.write(" ".join(cmd)) tlog.stop() tlog.start("make depth reports") # 8. Make depth reports sys.stderr.write("Making depth reports\n") cmd = [udir+'/depth_to_coverage_report.py', args.tempdir+'/data/depth.sorted.bed.gz', args.tempdir+'/data/chrlens.txt','-o',args.tempdir+'/data'] sys.stderr.write(" ".join(cmd)+"\n") depth_to_coverage_report.external_cmd(cmd) tlog.write(" ".join(cmd)) tlog.stop() tlog.start("make coverage plots") # do the depth graphs sys.stderr.write("Making coverage plots\n") cmd = [args.rscript_path,udir+'/plot_chr_depth.r', args.tempdir+'/data/line_plot_table.txt.gz', args.tempdir+'/data/total_distro_table.txt.gz', args.tempdir+'/data/chr_distro_table.txt.gz', args.tempdir+'/plots/covgraph.png'] sys.stderr.write(" ".join(cmd)+"\n") mycall(cmd,args.tempdir+'/logs/covgraph_png') cmd = [args.rscript_path,udir+'/plot_chr_depth.r', args.tempdir+'/data/line_plot_table.txt.gz', args.tempdir+'/data/total_distro_table.txt.gz', args.tempdir+'/data/chr_distro_table.txt.gz', args.tempdir+'/plots/covgraph.pdf'] sys.stderr.write(" ".join(cmd)+"\n") mycall(cmd,args.tempdir+'/logs/covgraph_pdf') tlog.write(" ".join(cmd)) tlog.stop() tlog.start("make chr depth plots") # do depth plots sys.stderr.write("Making chr depth plots\n") cmd = [args.rscript_path,udir+'/plot_depthmap.r', args.tempdir+'/temp/depth.coverage-strata.sorted.bed.gz', args.tempdir+'/data/chrlens.txt', args.tempdir+'/temp/coverage-strata.key', args.tempdir+'/plots/perchrdepth.png'] sys.stderr.write(" ".join(cmd)+"\n") mycall(cmd,args.tempdir+'/logs/perchr_depth_png') cmd = [args.rscript_path,udir+'/plot_depthmap.r', args.tempdir+'/temp/depth.coverage-strata.sorted.bed.gz', args.tempdir+'/data/chrlens.txt', args.tempdir+'/temp/coverage-strata.key', args.tempdir+'/plots/perchrdepth.pdf'] sys.stderr.write(" ".join(cmd)+"\n") mycall(cmd,args.tempdir+'/logs/perchr_depth_pdf') tlog.write(" ".join(cmd)) tlog.stop() tlog.start("get the exon size distribution") #Get the exon distribution sys.stderr.write("Get the exon distributions\n") cmd = [udir+'/gpd_to_exon_distro.py',args.tempdir+'/data/best.sorted.gpd.gz', '-o',args.tempdir+'/data/exon_size_distro.txt.gz','--threads', str(args.threads)] sys.stderr.write(" ".join(cmd)+"\n") gpd_to_exon_distro.external_cmd(cmd) tlog.write(" ".join(cmd)) tlog.stop() tlog.start("plot exon distro") cmd = [args.rscript_path,udir+'/plot_exon_distro.r', args.tempdir+'/data/exon_size_distro.txt.gz', args.tempdir+'/plots/exon_size_distro.png'] sys.stderr.write(" ".join(cmd)+"\n") mycall(cmd,args.tempdir+'/logs/exon_size_distro_png') cmd = [args.rscript_path,udir+'/plot_exon_distro.r', args.tempdir+'/data/exon_size_distro.txt.gz', args.tempdir+'/plots/exon_size_distro.pdf'] sys.stderr.write(" ".join(cmd)+"\n") mycall(cmd,args.tempdir+'/logs/exon_size_distro_pdf') tlog.write(" ".join(cmd)) tlog.stop() tlog.start("make bed file") # Make a UCSC compatible bed file sys.stderr.write("Make a UCSC genome browser compatible bed file\n") cmd = ['gpd_to_UCSC_bed12.py','--headername',args.input+':best', args.tempdir+'/data/best.sorted.gpd.gz','-o', args.tempdir+'/data/best.sorted.bed.gz','--color','red'] sys.stderr.write(" ".join(cmd)+"\n") gpd_to_UCSC_bed12(cmd) tlog.write(" ".join(cmd)) tlog.stop() tlog.start("make bed file") cmd = ['gpd_to_UCSC_bed12.py','--headername',args.input+':trans-chimera', args.tempdir+'/data/chimera.gpd.gz','-o', args.tempdir+'/data/chimera.bed.gz','--color','blue'] sys.stderr.write(" ".join(cmd)+"\n") gpd_to_UCSC_bed12(cmd) tlog.write(" ".join(cmd)) tlog.stop() tlog.start("make bed file") cmd = ['gpd_to_UCSC_bed12.py','--headername',args.input+':gapped', args.tempdir+'/data/gapped.gpd.gz','-o', args.tempdir+'/data/gapped.bed.gz','--color','orange'] sys.stderr.write(" ".join(cmd)+"\n") gpd_to_UCSC_bed12(cmd) tlog.write(" ".join(cmd)) tlog.stop() cmd = ['gpd_to_UCSC_bed12.py','--headername',args.input+':self-chimera', args.tempdir+'/data/technical_chimeras.gpd.gz','-o', args.tempdir+'/data/technical_chimeras.bed.gz','--color','green'] sys.stderr.write(" ".join(cmd)+"\n") gpd_to_UCSC_bed12(cmd) tlog.write(" ".join(cmd)) tlog.stop() tlog.start("make bed file") cmd = ['gpd_to_UCSC_bed12.py','--headername',args.input+':self-atypical', args.tempdir+'/data/technical_atypical_chimeras.gpd.gz','-o', args.tempdir+'/data/technical_atypical_chimeras.bed.gz','--color', 'purple'] sys.stderr.write(" ".join(cmd)+"\n") gpd_to_UCSC_bed12(cmd) tlog.write(" ".join(cmd)) tlog.stop() def make_data_bam_reference(args): global tlog # make the context error plots udir = os.path.dirname(os.path.realpath(__file__)) # Find the index file that was generated earlier. indfile = None if os.path.exists(args.tempdir+'/temp/myindex.bgi'): indfile = args.tempdir+'/temp/myindex.bgi' tlog.start("Get context error") # 1. Context error cmd = [udir+'/bam_to_context_error_plot.py',args.input,'-r',args.genome, '--target','--output_raw',args.tempdir+'/data/context_error_data.txt', '-o',args.tempdir+'/plots/context_plot.png', args.tempdir+'/plots/context_plot.pdf','--rscript_path', args.rscript_path,'--random','--specific_tempdir', args.tempdir+'/temp'] if args.context_error_scale: cmd += ['--scale']+[str(x) for x in args.context_error_scale] if args.context_error_stopping_point: cmd += ['--stopping_point',str(args.context_error_stopping_point)] if indfile: cmd += ['--input_index',indfile] sys.stderr.write("Making context plot\n") sys.stderr.write(" ".join(cmd)+"\n") bam_to_context_error_plot.external_cmd(cmd) tlog.write(" ".join(cmd)) tlog.stop() time.sleep(3) #gc.collect() tlog.start("alignment based error") # 2. Alignment overall error cmd = [udir+'/bam_to_alignment_error_plot.py',args.input,'-r', args.genome,'--output_stats',args.tempdir+'/data/error_stats.txt', '--output_raw',args.tempdir+'/data/error_data.txt','-o', args.tempdir+'/plots/alignment_error_plot.png', args.tempdir+'/plots/alignment_error_plot.pdf','--rscript_path', args.rscript_path] if args.alignment_error_scale: cmd += ['--scale']+[str(x) for x in args.alignment_error_scale] if args.alignment_error_max_length: cmd += ['--max_length',str(args.alignment_error_max_length)] if indfile: cmd += ['--input_index',indfile] cmd += ['--random'] cmd += ['--specific_tempdir',args.tempdir+'/temp'] sys.stderr.write("Making alignment error plot\n") sys.stderr.write(" ".join(cmd)+"\n") bam_to_alignment_error_plot.external_cmd(cmd) tlog.write(" ".join(cmd)) tlog.stop() time.sleep(3) #gc.collect() return def make_data_bam_annotation(args): global tlog udir = os.path.dirname(os.path.realpath(__file__)) tlog.start("identify genomic features exon intron integenic") # 1. Use annotations to identify genomic features (Exon, Intron, Intergenic) # And assign membership to reads # Stores the feature bed files in a beds folder cmd = [udir+'/annotate_from_genomic_features.py','--output_beds', args.tempdir+'/data/beds',args.tempdir+'/data/best.sorted.gpd.gz', args.gpd,args.tempdir+'/data/chrlens.txt','-o', args.tempdir+'/data/read_genomic_features.txt.gz','--threads', str(args.threads)] sys.stderr.write("Finding genomic features and assigning reads membership\n") sys.stderr.write(" ".join(cmd)+"\n") tlog.write(" ".join(cmd)) annotate_from_genomic_features.external_cmd(cmd) tlog.stop() time.sleep(3) tlog.start("get per-exon depth") # 2. Get depth distributions for each feature subset # now get depth subsets sys.stderr.write("get depths of features\n") cmd = [udir+'/get_depth_subset.py',args.tempdir+'/data/depth.sorted.bed.gz', args.tempdir+'/data/beds/exon.bed','-o', args.tempdir+'/data/exondepth.bed.gz'] sys.stderr.write(" ".join(cmd)+"\n") get_depth_subset.external_cmd(cmd) tlog.write(" ".join(cmd)) tlog.stop() tlog.start("get per-intron subset") cmd = [udir+'/get_depth_subset.py',args.tempdir+'/data/depth.sorted.bed.gz', args.tempdir+'/data/beds/intron.bed','-o', args.tempdir+'/data/introndepth.bed.gz'] sys.stderr.write(" ".join(cmd)+"\n") get_depth_subset.external_cmd(cmd) tlog.write(" ".join(cmd)) tlog.stop() tlog.start("get per intergenic depth") cmd = [udir+'/get_depth_subset.py',args.tempdir+'/data/depth.sorted.bed.gz', args.tempdir+'/data/beds/intergenic.bed','-o', args.tempdir+'/data/intergenicdepth.bed.gz'] sys.stderr.write(" ".join(cmd)+"\n") get_depth_subset.external_cmd(cmd) tlog.write(" ".join(cmd)) tlog.stop() tlog.start("plot feature depth png") # 3. Plot the feature depth cmd = [args.rscript_path,udir+'/plot_feature_depth.r', args.tempdir+'/data/depth.sorted.bed.gz', args.tempdir+'/data/exondepth.bed.gz', args.tempdir+'/data/introndepth.bed.gz', args.tempdir+'/data/intergenicdepth.bed.gz', args.tempdir+'/plots/feature_depth.png'] sys.stderr.write(" ".join(cmd)+"\n") mycall(cmd,args.tempdir+'/logs/featuredepth_png') tlog.write(" ".join(cmd)) tlog.stop() tlog.start("plot feature depth pdf") cmd = [args.rscript_path,udir+'/plot_feature_depth.r', args.tempdir+'/data/depth.sorted.bed.gz', args.tempdir+'/data/exondepth.bed.gz', args.tempdir+'/data/introndepth.bed.gz', args.tempdir+'/data/intergenicdepth.bed.gz', args.tempdir+'/plots/feature_depth.pdf'] sys.stderr.write(" ".join(cmd)+"\n") mycall(cmd,args.tempdir+'/logs/featuredepth_pdf') tlog.write(" ".join(cmd)) tlog.stop() tlog.start("generate plots of which reads correspont to which features png") # 4. Generate plots from reads assigend to features sys.stderr.write("Plot read assignment to genomic features\n") cmd = [args.rscript_path,udir+'/plot_annotated_features.r', args.tempdir+'/data/read_genomic_features.txt.gz', args.tempdir+'/plots/read_genomic_features.png'] sys.stderr.write(" ".join(cmd)+"\n") mycall(cmd,args.tempdir+'/logs/read_genomic_features_png') tlog.write(" ".join(cmd)) tlog.stop() tlog.start("generate plots of which reads correspont to which features pdf") cmd = [args.rscript_path,udir+'/plot_annotated_features.r', args.tempdir+'/data/read_genomic_features.txt.gz', args.tempdir+'/plots/read_genomic_features.pdf'] sys.stderr.write(" ".join(cmd)+"\n") mycall(cmd,args.tempdir+'/logs/read_genomic_features_pdf') tlog.write(" ".join(cmd)) tlog.stop() tlog.start("annotate the reads") # 5. annotated the best mappend read mappings cmd = ['gpd_annotate.py',args.tempdir+'/data/best.sorted.gpd.gz','-r', args.gpd,'-o',args.tempdir+'/data/annotbest.txt.gz'] if args.threads: cmd += ['--threads',str(args.threads)] sys.stderr.write("Annotating reads\n") sys.stderr.write(" ".join(cmd)+"\n") gpd_annotate(cmd) tlog.write(" ".join(cmd)) tlog.stop() time.sleep(3) tlog.start("plot by transcript length png") # 6. Make plots of the transcript lengths sys.stderr.write("Make plots from transcript lengths\n") cmd = [args.rscript_path,udir+'/plot_transcript_lengths.r', args.tempdir+'/data/annotbest.txt.gz', args.tempdir+'/plots/transcript_distro.png'] sys.stderr.write(" ".join(cmd)+"\n") mycall(cmd,args.tempdir+'/logs/transcript_distro_png') tlog.write(" ".join(cmd)) tlog.stop() tlog.start("plot by transcript length png") sys.stderr.write("Make plots from transcript lengths\n") cmd = [args.rscript_path,udir+'/plot_transcript_lengths.r', args.tempdir+'/data/annotbest.txt.gz', args.tempdir+'/plots/transcript_distro.pdf'] sys.stderr.write(" ".join(cmd)+"\n") mycall(cmd,args.tempdir+'/logs/transcript_distro_pdf') tlog.write(" ".join(cmd)) tlog.stop() tlog.start("make length distribution from annotations") # 7. Make length distributions for plotting sys.stderr.write("making length distributions from annotations\n") cmd = [udir+'/annotated_length_analysis.py', args.tempdir+'/data/best.sorted.gpd.gz', args.tempdir+'/data/annotbest.txt.gz', '-o',args.tempdir+'/data/annot_lengths.txt.gz'] sys.stderr.write(" ".join(cmd)+"\n") annotated_length_analysis.external_cmd(cmd) tlog.write(" ".join(cmd)) tlog.stop() tlog.start("plot annot length distro png") # 8. Plot length distributions cmd = [args.rscript_path,udir+'/plot_annotation_analysis.r', args.tempdir+'/data/annot_lengths.txt.gz', args.tempdir+'/plots/annot_lengths.png'] sys.stderr.write(" ".join(cmd)+"\n") mycall(cmd,args.tempdir+'/logs/annot_lengths_png') tlog.write(" ".join(cmd)) tlog.stop() tlog.start("plot annot length distro png") cmd = [args.rscript_path,udir+'/plot_annotation_analysis.r', args.tempdir+'/data/annot_lengths.txt.gz', args.tempdir+'/plots/annot_lengths.pdf'] sys.stderr.write(" ".join(cmd)+"\n") mycall(cmd,args.tempdir+'/logs/annot_lengths_pdf') tlog.write(" ".join(cmd)) tlog.stop() # 9. Get rarefraction curve data global rcnt if rcnt < 0: sys.stderr.write("Getting read count\n") rcnt = 0 tinf = gzip.open(args.tempdir+'/data/lengths.txt.gz') for line in tinf: rcnt += 1 tinf.close() tlog.start("get rarefraction gene") sys.stderr.write("Writing rarefraction curves\n") cmd = [udir+'/gpd_annotation_to_rarefraction.py', args.tempdir+'/data/annotbest.txt.gz', '--samples_per_xval',str(args.samples_per_xval), '--original_read_count',str(rcnt),'--threads',str(args.threads), '--gene','-o',args.tempdir+'/data/gene_rarefraction.txt'] sys.stderr.write(" ".join(cmd)+"\n") gpd_annotation_to_rarefraction.external_cmd(cmd) tlog.write(" ".join(cmd)) tlog.stop() tlog.start("rarefraction transcript") cmd = [udir+'/gpd_annotation_to_rarefraction.py', args.tempdir+'/data/annotbest.txt.gz','--samples_per_xval', str(args.samples_per_xval),'--original_read_count',str(rcnt), '--threads',str(args.threads),'--transcript','-o', args.tempdir+'/data/transcript_rarefraction.txt'] sys.stderr.write(" ".join(cmd)+"\n") gpd_annotation_to_rarefraction.external_cmd(cmd) tlog.write(" ".join(cmd)) tlog.stop() tlog.start("rarefraction gene full") cmd = [udir+'/gpd_annotation_to_rarefraction.py', args.tempdir+'/data/annotbest.txt.gz','--samples_per_xval', str(args.samples_per_xval),'--original_read_count',str(rcnt), '--threads',str(args.threads),'--full','--gene','-o', args.tempdir+'/data/gene_full_rarefraction.txt'] sys.stderr.write(" ".join(cmd)+"\n") gpd_annotation_to_rarefraction.external_cmd(cmd) tlog.write(" ".join(cmd)) tlog.stop() tlog.start("rarefraction gene full") cmd = [udir+'/gpd_annotation_to_rarefraction.py', args.tempdir+'/data/annotbest.txt.gz','--samples_per_xval', str(args.samples_per_xval),'--original_read_count',str(rcnt), '--threads',str(args.threads),'--full','--transcript','-o', args.tempdir+'/data/transcript_full_rarefraction.txt'] sys.stderr.write(" ".join(cmd)+"\n") gpd_annotation_to_rarefraction.external_cmd(cmd) tlog.write(" ".join(cmd)) tlog.stop() tlog.start("plot multiple rarefractions") # 10. Plot the rarefraction curves for type in ['gene','transcript']: for ext in ['png','pdf']: cmd = [args.rscript_path,udir+'/plot_annotation_rarefractions.r', args.tempdir+'/plots/'+type+'_rarefraction.'+ext,type, args.tempdir+'/data/'+type+'_rarefraction.txt','#FF000088', args.tempdir+'/data/'+type+'_full_rarefraction.txt','#0000FF88'] sys.stderr.write(" ".join(cmd)+"\n") mycall(cmd,args.tempdir+'/logs/plot_'+type+'_rarefraction_'+ext) tlog.write(" ".join(cmd)) tlog.stop() if os.name == 'nt' or sys.platform == 'darwin': return ## For the bias data we need to downsample ## Using some system utilities to accomplish this sys.stderr.write("downsampling mappings for bias calculation\n") cmd0 = 'zcat' if args.threads > 1: cmd1 = ['sort','-R','-S1G','-T', args.tempdir+'/temp','--parallel='+str(args.threads)] else: cmd1 = ['sort','-R','-S1G','-T',args.tempdir+'/temp'] cmd2 = 'head -n '+str(args.max_bias_data) if args.threads > 1: cmd3 = ['sort','-k3,3','-k5,5n','-k','6,6n','-S1G','-T', args.tempdir+'/temp --parallel='+str(args.threads)] else: cmd3 = ['sort','-k3,3','-k5,5n','-k','6,6n','-S1G','-T', args.tempdir+'/temp'] inf = open(args.tempdir+'/data/best.sorted.gpd.gz') of = gzip.open(args.tempdir+'/temp/best.random.sorted.gpd.gz','w') if os.name != 'nt': p0 = Popen(cmd0.split(),stdin=inf,stdout=PIPE) p1 = Popen(cmd1,stdin=p0.stdout,stdout=PIPE) p2 = Popen(cmd2.split(),stdin=p1.stdout,stdout=PIPE) p3 = Popen(cmd3,stdin=p2.stdout,stdout=PIPE) else: sys.stderr.write("WARNING: Windows OS detected. using shell.") p0 = Popen(cmd0,stdin=inf,stdout=PIPE,shell=True) p1 = Popen(" ".join(cmd1),stdin=p0.stdout,stdout=PIPE,shell=True) p2 = Popen(cmd2,stdin=p1.stdout,stdout=PIPE,shell=True) p3 = Popen(" ".join(cmd3),stdin=p2.stdout,stdout=PIPE,shell=True) for line in p3.stdout: of.write(line) p3.communicate() p2.communicate() p1.communicate() p0.communicate() of.close() inf.close() # now downsample annotations sys.stderr.write("Downsampling annotations for bias\n") inf = gzip.open(args.tempdir+'/temp/best.random.sorted.gpd.gz') rnames = set() for line in inf: f = line.rstrip().split("\t") rnames.add(f[0]) inf.close() of = gzip.open(args.tempdir+'/temp/annotbest.random.txt.gz','w') inf = gzip.open(args.tempdir+'/data/annotbest.txt.gz') for line in inf: f = line.rstrip().split("\t") if f[1] in rnames: of.write(line) inf.close() of.close() tlog.start("use annotations to check for 5' to 3' biase") # 11. Use annotation outputs to check for bias sys.stderr.write("Prepare bias data\n") cmd = [udir+'/annotated_read_bias_analysis.py', args.tempdir+'/temp/best.random.sorted.gpd.gz',args.gpd, args.tempdir+'/temp/annotbest.random.txt.gz','-o', args.tempdir+'/data/bias_table.txt.gz','--output_counts', args.tempdir+'/data/bias_counts.txt','--allow_overflowed_matches', '--threads',str(args.threads),'--specific_tempdir',args.tempdir+'/temp'] sys.stderr.write(" ".join(cmd)+"\n") annotated_read_bias_analysis.external_cmd(cmd) tlog.write(" ".join(cmd)) tlog.stop() tlog.start("plot bias png") # 12. Plot bias cmd = [args.rscript_path,udir+'/plot_bias.r', args.tempdir+'/data/bias_table.txt.gz', args.tempdir+'/plots/bias.png'] sys.stderr.write(" ".join(cmd)+"\n") mycall(cmd,args.tempdir+'/logs/bias_png.log') tlog.write(" ".join(cmd)) tlog.stop() tlog.start("plot bias pdf") cmd = [args.rscript_path,udir+'/plot_bias.r', args.tempdir+'/data/bias_table.txt.gz', args.tempdir+'/plots/bias.pdf'] sys.stderr.write(" ".join(cmd)+"\n") mycall(cmd,args.tempdir+'/logs/bias_pdf.log') tlog.write(" ".join(cmd)) tlog.stop() tlog.start("Prepare junction variance data") # 13. Get distances of observed junctions from reference junctions cmd = [udir+'/gpd_to_junction_variance.py','-r',args.gpd, args.tempdir+'/temp/best.random.sorted.gpd.gz', '--specific_tempdir',args.tempdir+'/temp','-o', args.tempdir+'/data/junvar.txt','--threads',str(args.threads)] sys.stderr.write(" ".join(cmd)+"\n") gpd_to_junction_variance.external_cmd(cmd) tlog.write(" ".join(cmd)) tlog.stop() tlog.start("plot junvar png") # 14. Junction distances cmd = [args.rscript_path,udir+'/plot_junvar.r', args.tempdir+'/data/junvar.txt', args.tempdir+'/plots/junvar.png'] sys.stderr.write(" ".join(cmd)+"\n") mycall(cmd,args.tempdir+'/logs/junvar_png.log') tlog.write(" ".join(cmd)) tlog.stop() tlog.start("plot junvar pdf") cmd = [args.rscript_path,udir+'/plot_junvar.r', args.tempdir+'/data/junvar.txt', args.tempdir+'/plots/junvar.pdf'] sys.stderr.write(" ".join(cmd)+"\n") mycall(cmd,args.tempdir+'/logs/junvar_pdf.log') tlog.write(" ".join(cmd)) tlog.stop() return def mycall(cmd,lfile): ofe = open(lfile+'.err','w') ofo = open(lfile+'.out','w') p = Popen(cmd,stderr=ofe,stdout=ofo) p.communicate() ofe.close() ofo.close() return #def do_inputs(): # # Setup command line inputs # parser=argparse.ArgumentParser(description="Create an output report",formatter_class=argparse.ArgumentDefaultsHelpFormatter) # parser.add_argument('input',help="INPUT FILE or '-' for STDIN") # parser.add_argument('-o','--output',help="OUTPUT Folder or STDOUT if not set") # parser.add_argument('--portable_output',help="OUTPUT file in a portable html format") # group1 = parser.add_mutually_exclusive_group(required=True) # group1.add_argument('-r','--reference',help="Reference Fasta") # group1.add_argument('--no_reference',action='store_true',help="No Reference Fasta") # parser.add_argument('--annotation',help="Reference annotation genePred") # parser.add_argument('--threads',type=int,default=1,help="INT number of threads to run. Default is system cpu count") # # Temporary working directory step 1 of 3 - Definition # parser.add_argument('--tempdir',required=True,help="This temporary directory will be used, but will remain after executing.") # # ### Parameters for alignment plots # parser.add_argument('--min_aligned_bases',type=int,default=50,help="for analysizing alignment, minimum bases to consider") # parser.add_argument('--max_query_overlap',type=int,default=10,help="for testing gapped alignment advantage") # parser.add_argument('--max_target_overlap',type=int,default=10,help="for testing gapped alignment advantage") # parser.add_argument('--max_query_gap',type=int,help="for testing gapped alignment advantge") # parser.add_argument('--max_target_gap',type=int,default=500000,help="for testing gapped alignment advantage") # parser.add_argument('--required_fractional_improvement',type=float,default=0.2,help="require gapped alignment to be this much better (in alignment length) than single alignment to consider it.") # # ### Parameters for locus analysis # parser.add_argument('--do_loci',action='store_true',help="This analysis is time consuming at the moment so don't do it unless necessary") # parser.add_argument('--min_depth',type=float,default=1.5,help="require this or more read depth to consider locus") # parser.add_argument('--min_coverage_at_depth',type=float,default=0.8,help="require at leas this much of the read be covered at min_depth") # parser.add_argument('--min_exon_count',type=int,default=2,help="Require at least this many exons in a read to consider assignment to a locus") # parser.add_argument('--locus_downsample',type=int,default=100,help="Only include up to this many long reads in a locus\n") # # ### Params for alignment error plot # parser.add_argument('--alignment_error_scale',nargs=6,type=float,help="<ins_min> <ins_max> <mismatch_min> <mismatch_max> <del_min> <del_max>") # parser.add_argument('--alignment_error_max_length',type=int,default=100000,help="The maximum number of alignment bases to calculate error from") # # ### Params for context error plot # parser.add_argument('--context_error_scale',nargs=6,type=float,help="<ins_min> <ins_max> <mismatch_min> <mismatch_max> <del_min> <del_max>") # parser.add_argument('--context_error_stopping_point',type=int,default=1000,help="Sample at least this number of each context") # # ## Params for rarefraction plots # parser.add_argument('--samples_per_xval',type=int,default=500) # # args = parser.parse_args() # # Temporary working directory step 2 of 3 - Creation # setup_tempdir(args) # return args def setup_tempdir(args): if not os.path.exists(args.tempdir): os.makedirs(args.tempdir.rstrip('/')) if not os.path.exists(args.tempdir): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() return def external(args): main(args) if __name__=="__main__": sys.stderr.write("excute as prepare all data as main\n") #do our inputs # Can disable calling as main #args = do_inputs() #main(args)
AlignQC
/AlignQC-2.0.5.tar.gz/AlignQC-2.0.5/alignqc/prepare_all_data.py
prepare_all_data.py
import argparse, sys, os, re, base64, zlib, gzip, StringIO from shutil import rmtree from multiprocessing import cpu_count from tempfile import mkdtemp, gettempdir from xml.etree import ElementTree from seqtools.format.bed import Bed12 g_version = None def fixtag(ns, tag, nsmap): return '{'+nsmap[ns]+'}'+tag def main(args): of = sys.stdout if args.output != '-': of = open(args.output,'w') names = {} tree = ElementTree.parse(args.xhtml_input) if args.verbose: sys.stderr.write("Traversing xhtml\n") for v in [x for x in tree.iter() if x.tag=='{http://www.w3.org/1999/xhtml}a']: data = v.attrib name = None if 'download' in data: name = data['download'] elif 'id' in data: name = data['id'] if not name: if args.verbose: sys.stderr.write("warning no name for linked data\n") continue info = data['href'] m = re.match('data:[^,]+base64,',info) if not m: continue if args.list: names[name] = '' m = re.match('data:[^,]+base64,(.*)$',info) if not m: sys.stderr.write("warning unable to get base64 string") continue v = base64.b64decode(m.group(1)) names[name] = v if args.verbose: sys.stderr.write("Finished traversing xhtml\n") if args.list: for name in sorted(names.keys()): newname = name if name[-3:]=='.gz': newname = name[:-3] if is_ucsc_bed(newname): of.write(name+" ["+newname+" "+newname[:-4]+".gpd]\n") else: if name[-3:]=='.gz': of.write(name +" ["+newname+"]\n") else: of.write(newname+"\n") return shortnames = {} for name in names: if name[-3:] == '.gz': shortnames[name[:-3]] = name else: shortnames[name] = name ### if we are still here we must be doing an extract exname = args.extract out_gzipped = False if args.extract[-3:]=='.gz': out_gzipped = True exname = args.extract[:-3] #handle case of a gpd conversion if is_ucsc_gpd(exname): oname = exname[:-4]+'.bed.gz' if oname not in names: sys.stderr.write("ERROR '"+args.extract+"' is not found. Use --list option to see what is available\n") sys.exit() sio = StringIO.StringIO(zlib.decompress(names[oname],15+32)) header = sio.readline() for v in sio: b = Bed12(v) print b.get_gpd_line() return # figure out what the stored name is oname = shortnames[exname] in_gzipped = False if oname[-3:]=='.gz': in_gzipped = True if exname not in shortnames: sys.stderr.write("ERROR '"+args.extract+"' is not found. Use --list option to see what is available\n") sys.exit() if in_gzipped and not out_gzipped: of.write(zlib.decompress(names[oname],15+32)) #special for gzip format else: of.write(names[oname]) #of.write(names[args.extract]) of.close() # Temporary working directory step 3 of 3 - Cleanup if not args.specific_tempdir: rmtree(args.tempdir) def is_ucsc_bed(newname): if newname == 'best.sorted.bed' or \ newname== 'chimera.bed' or \ newname== 'gapped.bed' or \ newname== 'techinical_chimeras.bed' or \ newname == 'techinical_atypical_chimeras.bed': return True return False def is_ucsc_gpd(newname): if newname == 'best.sorted.gpd' or \ newname== 'chimera.gpd' or \ newname== 'gapped.gpd' or \ newname== 'technical_chimeras.gpd' or \ newname == 'technical_atypical_chimeras.gpd': return True return False def external_cmd(cmd,version=None): #set version by input global g_version g_version = version cache_argv = sys.argv sys.argv = cmd args = do_inputs() main(args) sys.argv = cache_argv def do_inputs(): # Setup command line inputs parser=argparse.ArgumentParser(description="Extract data from xhtml output of alignqc through the command line",formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('xhtml_input',help="INPUT XHTML FILE") parser.add_argument('-o','--output',default='-',help="OUTPUTFILE or STDOUT if not set") parser.add_argument('-v','--verbose',action='store_true',help="Show all stderr messages\n") group1 = parser.add_mutually_exclusive_group(required=True) group1.add_argument('-l','--list',action='store_true',help='show available data') group1.add_argument('-e','--extract',help='dump this data') #parser.add_argument('--threads',type=int,default=cpu_count(),help="INT number of threads to run. Default is system cpu count") # Temporary working directory step 1 of 3 - Definition group = parser.add_mutually_exclusive_group() group.add_argument('--tempdir',default=gettempdir(),help="The temporary directory is made and destroyed here.") group.add_argument('--specific_tempdir',help="This temporary directory will be used, but will remain after executing.") args = parser.parse_args() # Temporary working directory step 2 of 3 - Creation setup_tempdir(args) return args def setup_tempdir(args): if args.specific_tempdir: if not os.path.exists(args.specific_tempdir): os.makedirs(args.specific_tempdir.rstrip('/')) args.tempdir = args.specific_tempdir.rstrip('/') if not os.path.exists(args.specific_tempdir.rstrip('/')): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() else: args.tempdir = mkdtemp(prefix="weirathe.",dir=args.tempdir.rstrip('/')) if not os.path.exists(args.tempdir.rstrip('/')): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() if not os.path.exists(args.tempdir): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() return if __name__=="__main__": main()
AlignQC
/AlignQC-2.0.5.tar.gz/AlignQC-2.0.5/alignqc/dump.py
dump.py
import argparse, sys, os, gzip, inspect from shutil import rmtree, copy from multiprocessing import cpu_count from tempfile import mkdtemp, gettempdir from subprocess import PIPE, Popen from Bio.Format.GPD import GPDStream from Bio.Stream import LocusStream import classify_reads #bring in the folder to the path for our utilities #pythonfolder_loc = "../pyutil" pythonfolder_loc = "../../Au-public/iron/utilities" cmd_subfolder = os.path.realpath(os.path.abspath(os.path.join(os.path.split(inspect.getfile(inspect.currentframe() ))[0],pythonfolder_loc))) if cmd_subfolder not in sys.path: sys.path.insert(0,cmd_subfolder) import gpd_to_nr import gpd_annotate def main(): #do our inputs args = do_inputs() # first we need to run the classify classify_reads.external_cmd('classify_reads.py '+args.input_annot+' '+args.input_gpd+' -o '+args.tempdir+'/classify.txt.gz') get_novel_sets(args.tempdir+'/classify.txt.gz',args.input_gpd,args.tempdir+'/novel_isoform_reads.gpd.gz',args.tempdir+'/novel_locus_reads.gpd.gz',args) # Now we can make a new non-redundant set of genpreds from the novel isoforms sys.stderr.write("making NR novel isoforms\n") cmd = 'gpd_to_nr.py '+args.tempdir+'/novel_isoform_reads.gpd.gz '+\ ' -j '+str(args.junction_tolerance)+' --threads '+str(args.threads)+\ ' --minimum_junction_end_support '+str(args.minimum_junction_end_support)+\ ' --minimum_support '+str(args.minimum_support)+\ ' --gene_names '+\ ' -o '+args.tempdir+'/novel_isoforms_nr.gpd.gz' gpd_to_nr.external_cmd(cmd) sys.stderr.write("reannotating novel based on our new gpd\n") # Now we reannotate the novel based on the these newly annotated isoforms cmd = 'gpd_anntotate.py '+args.tempdir+'/novel_locus_reads.gpd.gz '+\ ' --threads '+str(1)+' '+\ ' -r '+args.tempdir+'/novel_isoforms_nr.gpd.gz '+\ ' -o '+args.tempdir+'/novel_locus_reads.annot.txt.gz' gpd_annotate.external_cmd(cmd) # now this new annotation should be classified # the new isoform will be in novel_isoform_reads.gpd.gz cmd = 'classify_reads.py '+args.tempdir+'/novel_locus_reads.annot.txt.gz '+args.tempdir+'/novel_locus_reads.gpd.gz -o '+args.tempdir+'/classify_novel.txt.gz' sys.stderr.write(cmd+"\n") classify_reads.external_cmd(cmd) get_novel_sets(args.tempdir+'/classify_novel.txt.gz',args.tempdir+'/novel_locus_reads.gpd.gz',args.tempdir+'/novel_isoform_reads2.gpd.gz',args.tempdir+'/novel_locus_reads2.gpd.gz',args) # now lets combine our novel isoform reads making sure to sort them of = open(args.tempdir+'/new_novel_isoform_reads.gpd.gz','w') cmd2 = 'gzip' p2 = Popen(cmd2.split(),stdout=of,stdin=PIPE) cmd1 = 'sort -k3,3 -k5,5n -k6,6n' p1 = Popen(cmd1.split(),stdout=p2.stdin,stdin=PIPE) inf = gzip.open(args.tempdir+'/novel_isoform_reads.gpd.gz') for line in inf: p1.stdin.write(line) inf.close() inf = gzip.open(args.tempdir+'/novel_isoform_reads2.gpd.gz') for line in inf: p1.stdin.write(line) inf.close() p1.communicate() p2.communicate() of.close() # Now we can make a new non-redundant set of genpreds from the novel isoforms sys.stderr.write("making NR novel isoforms\n") cmd = 'gpd_to_nr.py '+args.tempdir+'/new_novel_isoform_reads.gpd.gz '+\ ' -j '+str(args.junction_tolerance)+' --threads '+str(args.threads)+\ ' --minimum_junction_end_support '+str(args.minimum_junction_end_support)+\ ' --minimum_support '+str(args.minimum_support)+\ ' --gene_names '+\ ' -o '+args.tempdir+'/novel_isoforms_nr2.gpd.gz' gpd_to_nr.external_cmd(cmd) #Only need to reannotate if we are interested in whats left over #sys.stderr.write("reannotating novel based on our new gpd\n") ## Now we reannotate the novel based on the these newly annotated isoforms #cmd = 'gpd_anntotate.py '+args.tempdir+'/novel_locus_reads.gpd.gz '+\ # ' --threads '+str(args.threads)+' '+\ # ' -r '+args.tempdir+'/novel_isoforms_nr2.gpd.gz '+\ # ' -o '+args.tempdir+'/novel_locus_reads.annot.txt.gz' #gpd_annotate.external_cmd(cmd) sys.stderr.write("now work on the novel loci\n") # Now lets work on the novel locus of = open(args.tempdir+'/sorted_novel_locus_reads.gpd.gz','w') cmd2 = 'gzip' p2 = Popen(cmd2.split(),stdout=of,stdin=PIPE) cmd1 = 'sort -k3,3 -k5,5n -k6,6n' p1 = Popen(cmd1.split(),stdout=p2.stdin,stdin=PIPE) inf = gzip.open(args.tempdir+'/novel_locus_reads2.gpd.gz') for line in inf: p1.stdin.write(line) inf.close() p1.communicate() p2.communicate() of.close() sys.stderr.write("making NR novel loci\n") cmd = 'gpd_to_nr.py '+args.tempdir+'/sorted_novel_locus_reads.gpd.gz '+\ ' -j '+str(args.junction_tolerance)+' --threads '+str(args.threads)+\ ' --minimum_junction_end_support '+str(args.minimum_junction_end_support)+\ ' --minimum_support '+str(args.minimum_support)+\ ' -o '+args.tempdir+'/novel_locus_nr.gpd.gz' gpd_to_nr.external_cmd(cmd) sys.stderr.write("sort the novel isoforms\n") of = open(args.tempdir+'/novel_isoforms_nr.sorted.gpd.gz','w') cmd2 = 'gzip' p2 = Popen(cmd2.split(),stdout=of,stdin=PIPE) cmd1 = 'sort -k3,3 -k5,5n -k6,6n' p1 = Popen(cmd1.split(),stdout=p2.stdin,stdin=PIPE) inf = gzip.open(args.tempdir+'/novel_isoforms_nr2.gpd.gz') for line in inf: p1.stdin.write(line) inf.close() p1.communicate() p2.communicate() of.close() sys.stderr.write("sort the novel loci\n") of = open(args.tempdir+'/novel_loci_nr.sorted.gpd.gz','w') cmd2 = 'gzip' p2 = Popen(cmd2.split(),stdout=of,stdin=PIPE) cmd1 = 'sort -k3,3 -k5,5n -k6,6n' p1 = Popen(cmd1.split(),stdout=p2.stdin,stdin=PIPE) inf = gzip.open(args.tempdir+'/novel_locus_nr.gpd.gz') for line in inf: p1.stdin.write(line) inf.close() p1.communicate() p2.communicate() of.close() # Now we can rename totally novel genes based on locus overlap of = open(args.tempdir+'/novel_loci_nr_named.sorted.gpd.gz','w') cmd2 = 'gzip' p2 = Popen(cmd2.split(),stdout=of,stdin=PIPE) cmd1 = 'sort -k3,3 -k5,5n -k6,6n' p1 = Popen(cmd1.split(),stdout=p2.stdin,stdin=PIPE) inf = gzip.open(args.tempdir+'/novel_loci_nr.sorted.gpd.gz') gs = GPDStream(inf) ls = LocusStream(gs) z = 0 for rng in ls: z+=1 rng_string = rng.get_range_string() gpds = rng.get_payload() for gpd in gpds: gene_name = 'LOC'+str(z)+'|'+str(len(gpds))+'|'+rng_string f = gpd.get_gpd_line().rstrip().split("\t") f[0] = gene_name gpd_line = "\t".join(f) p1.stdin.write(gpd_line+"\n") p1.communicate() p2.communicate() of.close() # we are almost done but we need to make sure these genepreds aren't subsets of known genes sys.stderr.write("reannotating novel-isoform by reference\n") cmd = 'gpd_anntotate.py '+args.tempdir+'/novel_isoforms_nr.sorted.gpd.gz '+\ ' --threads '+str(1)+' '+\ ' -r '+args.reference_annotation_gpd+\ ' -o '+args.tempdir+'/novel_isoforms_nr.annot.txt.gz' gpd_annotate.external_cmd(cmd) cmd = 'classify_reads.py '+args.tempdir+'/novel_isoforms_nr.annot.txt.gz '+args.tempdir+'/novel_isoforms_nr.sorted.gpd.gz -o '+args.tempdir+'/classify_novel_isoform_ref.txt.gz' sys.stderr.write(cmd+"\n") classify_reads.external_cmd(cmd) # now we can screen to make sure things in the novel isoform file really are novel isoforms blacklist = set() finf = gzip.open(args.tempdir+'/classify_novel_isoform_ref.txt.gz') for line in finf: f = line.rstrip().split("\t") if f[2]=='subset' or f[2]=='full': blacklist.add(f[0]) finf.close() fof = gzip.open(args.tempdir+'/novel_isoforms_nr.filtered.sorted.gpd.gz','w') finf = gzip.open(args.tempdir+'/novel_isoforms_nr.sorted.gpd.gz') for line in finf: f = line.rstrip().split("\t") if f[1] in blacklist: continue fof.write(line) finf.close() fof.close() sys.stderr.write("reannotating novel-locus by reference\n") cmd = 'gpd_anntotate.py '+args.tempdir+'/novel_loci_nr_named.sorted.gpd.gz '+\ ' --threads '+str(1)+' '+\ ' -r '+args.reference_annotation_gpd+\ ' -o '+args.tempdir+'/novel_loci_nr_named.annot.txt.gz' gpd_annotate.external_cmd(cmd) cmd = 'classify_reads.py '+args.tempdir+'/novel_loci_nr_named.annot.txt.gz '+args.tempdir+'/novel_loci_nr_named.sorted.gpd.gz -o '+args.tempdir+'/classify_novel_loci.txt.gz' sys.stderr.write(cmd+"\n") classify_reads.external_cmd(cmd) # now we can screen to make sure things in the novel isoform file really are novel isoforms blacklist = set() finf = gzip.open(args.tempdir+'/classify_novel_loci.txt.gz') for line in finf: f = line.rstrip().split("\t") if f[2]=='subset' or f[2]=='full': blacklist.add(f[0]) finf.close() fof = gzip.open(args.tempdir+'/novel_loci_nr_named.filtered.sorted.gpd.gz','w') finf = gzip.open(args.tempdir+'/novel_loci_nr_named.sorted.gpd.gz') for line in finf: f = line.rstrip().split("\t") if f[1] in blacklist: continue fof.write(line) finf.close() fof.close() if not os.path.exists(args.output): os.makedirs(args.output) copy(args.tempdir+'/novel_loci_nr_named.filtered.sorted.gpd.gz',args.output+'/novel_loci_nr_named.sorted.gpd.gz') copy(args.tempdir+'/novel_isoforms_nr.filtered.sorted.gpd.gz',args.output+'/novel_isoforms_nr.sorted.gpd.gz') # Temporary working directory step 3 of 3 - Cleanup if not args.specific_tempdir: rmtree(args.tempdir) def get_novel_sets(classification,input_gpd,out_iso,out_locus,args): # now we want to create a non redundant version of the novel isoforms novel_isoforms = set() novel_isoform_genes = {} novel_loci = set() inf = gzip.open(classification) for line in inf: f = line.rstrip().split("\t") if f[2] == 'novel-isoform': novel_isoforms.add(f[0]) novel_isoform_genes[f[0]]=f[1] # save the gene name elif f[2] == 'novel-locus': novel_loci.add(f[0]) inf.close() sys.stderr.write("outputing novel isoforms to a file\n") tof = gzip.open(out_iso,'w') lof = gzip.open(out_locus,'w') inf_gpd = None; if input_gpd[-3:]=='.gz': inf_gpd = gzip.open(input_gpd) else: inf_gpd = open(input_gpd) z = 0 for line in inf_gpd: z += 1 if z % 1000 == 0: sys.stderr.write(str(z)+" reads processed\r") f = line.rstrip().split("\t") if f[1] in novel_isoforms: f[0] = novel_isoform_genes[f[0]] newline = "\t".join(f) tof.write(newline+"\n") elif f[1] in novel_loci: lof.write(line) inf_gpd.close() tof.close() lof.close() sys.stderr.write("\n") def do_inputs(): # Setup command line inputs parser=argparse.ArgumentParser(description="",formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('input_annot',help="<input annotbest.txt>") parser.add_argument('input_gpd',help="<input best.sorted.gpd>") parser.add_argument('-a','--reference_annotation_gpd',required=True,help="Reference annotation GPD") parser.add_argument('-o','--output',required=True,help="OUTPUT DIRECTORY") parser.add_argument('--threads',type=int,default=cpu_count(),help="INT number of threads to run. Default is system cpu count") # Run parameters parser.add_argument('-j','--junction_tolerance',type=int,default=10,help="number of bp to tolerate junction mismatch on either side") parser.add_argument('--minimum_junction_end_support',type=int,default=2,help="minimum coverage of end exons") parser.add_argument('--minimum_support',type=int,default=2,help="minimum supporting reads") # Temporary working directory step 1 of 3 - Definition group = parser.add_mutually_exclusive_group() group.add_argument('--tempdir',default=gettempdir(),help="The temporary directory is made and destroyed here.") group.add_argument('--specific_tempdir',help="This temporary directory will be used, but will remain after executing.") args = parser.parse_args() # Temporary working directory step 2 of 3 - Creation setup_tempdir(args) return args def setup_tempdir(args): if args.specific_tempdir: if not os.path.exists(args.specific_tempdir): os.makedirs(args.specific_tempdir.rstrip('/')) args.tempdir = args.specific_tempdir.rstrip('/') if not os.path.exists(args.specific_tempdir.rstrip('/')): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() else: args.tempdir = mkdtemp(prefix="weirathe.",dir=args.tempdir.rstrip('/')) if not os.path.exists(args.tempdir.rstrip('/')): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() if not os.path.exists(args.tempdir): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() return if __name__=="__main__": main()
AlignQC
/AlignQC-2.0.5.tar.gz/AlignQC-2.0.5/scripts/alignqc_to_novel_transcriptome.py
alignqc_to_novel_transcriptome.py
import argparse, sys, os from shutil import rmtree from multiprocessing import cpu_count from tempfile import mkdtemp, gettempdir from subprocess import Popen, PIPE def main(): #do our inputs args = do_inputs() for name in args.inputs: cmd = 'alignqc dump '+name+' -e lengths.txt' p = Popen(cmd.split(),stdout=PIPE) lengths = [] for line in p.stdout: f = line.rstrip().split("\t") l = int(f[4]) lengths.append(l) print name +"\t"+"\t".join([str(x) for x in sorted(lengths)]) p.communicate() # Temporary working directory step 3 of 3 - Cleanup if not args.specific_tempdir: rmtree(args.tempdir) def do_inputs(): # Setup command line inputs parser=argparse.ArgumentParser(description="Convert a list of xhtmls from alignqc into a list of read lengths for each file",formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('inputs',nargs='+',help="INPUT xhtml FILEs") parser.add_argument('-o','--output',help="OUTPUTFILE or STDOUT if not set") parser.add_argument('--threads',type=int,default=cpu_count(),help="INT number of threads to run. Default is system cpu count") # Temporary working directory step 1 of 3 - Definition group = parser.add_mutually_exclusive_group() group.add_argument('--tempdir',default=gettempdir(),help="The temporary directory is made and destroyed here.") group.add_argument('--specific_tempdir',help="This temporary directory will be used, but will remain after executing.") args = parser.parse_args() # Temporary working directory step 2 of 3 - Creation setup_tempdir(args) return args def setup_tempdir(args): if args.specific_tempdir: if not os.path.exists(args.specific_tempdir): os.makedirs(args.specific_tempdir.rstrip('/')) args.tempdir = args.specific_tempdir.rstrip('/') if not os.path.exists(args.specific_tempdir.rstrip('/')): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() else: args.tempdir = mkdtemp(prefix="weirathe.",dir=args.tempdir.rstrip('/')) if not os.path.exists(args.tempdir.rstrip('/')): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() if not os.path.exists(args.tempdir): sys.stderr.write("ERROR: Problem creating temporary directory\n") sys.exit() return if __name__=="__main__": main()
AlignQC
/AlignQC-2.0.5.tar.gz/AlignQC-2.0.5/scripts/alignqcs_to_read_lengths.py
alignqcs_to_read_lengths.py
import sys, argparse, gzip #from Bio.Format.GPD import GPD def main(args): rinf = None if args.read_annotations[-3:] == '.gz': rinf = gzip.open(args.read_annotations) else: rinf = open(args.read_annotations) ginf = None if args.best_gpd[-3:] == '.gz': ginf = gzip.open(args.best_gpd) else: ginf = open(args.best_gpd) of = sys.stdout if args.output: if args.output[-3:] == '.gz': of = gzip.open(args.output,'w') else: of = open(args.output,'w') seen_reads = set() sys.stderr.write("traversing annotations\n") for line in rinf: f = line.rstrip().split("\t") read_name = f[1] gene_name = f[2] match_type = f[4] matching_exons = int(f[5]) consecutive_exons = int(f[6]) read_exons = int(f[7]) if read_exons < 2: continue seen_reads.add(read_name) if match_type == 'full': of.write(read_name+"\t"+gene_name+"\tfull"+"\n") elif consecutive_exons == read_exons: of.write(read_name+"\t"+gene_name+"\tsubset"+"\n") else: of.write(read_name+"\t"+gene_name+"\tnovel-isoform"+"\n") sys.stderr.write("traversing reads\n") z = 0 for line in ginf: z+=1 if z%1000 == 0: sys.stderr.write(str(z)+" reads processed\r") #gpd = GPD(line) f = line.rstrip().split("\t") if f[1] in seen_reads: continue if int(f[8]) < 2: continue of.write(f[1]+"\t"+"\tnovel-locus"+"\n") sys.stderr.write("\n") def do_inputs(): parser = argparse.ArgumentParser(description="",formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('read_annotations',help="annotbest from alignqc is sufficient") parser.add_argument('best_gpd',help="best gpd from alignqc is sufficient") parser.add_argument('-o','--output',help="output the refined read classifications") args = parser.parse_args() return args def external_cmd(cmd): cache_argv = sys.argv sys.argv = cmd.split() args = do_inputs() main(args) sys.argv = cache_argv return if __name__=="__main__": args = do_inputs() main(args)
AlignQC
/AlignQC-2.0.5.tar.gz/AlignQC-2.0.5/scripts/classify_reads.py
classify_reads.py
import sys, argparse, gzip from Bio.Format.GPD import GPD from Bio.Range import ranges_to_coverage def main(): parser = argparse.ArgumentParser(description="",formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('input',help="Use - for STDIN") parser.add_argument('genepred',help="the genepred used for this alignqc") parser.add_argument('--min_exons',type=int,default=1,help="At least this number of exons") parser.add_argument('--full',action='store_true',help="only use full matches") parser.add_argument('-o','--output',help="OUTPUT file or nothing for STDOUT") args = parser.parse_args() inf = sys.stdin if args.input != '-': if args.input[-3:]=='.gz': inf = gzip.open(args.input) else: inf = open(args.input) genes = {} sys.stderr.write("Reading annotation file\n") for line in inf: f = line.rstrip().split("\t") gene = f[2] tx = f[3] type = f[4] if args.full and type != 'full': continue if gene not in genes: genes[gene] = {} genes[gene]['transcripts'] = {} genes[gene]['cnt'] = 0 if tx not in genes[gene]['transcripts']: genes[gene]['transcripts'][tx] = 0 genes[gene]['cnt'] += 1 genes[gene]['transcripts'][tx] += 1 inf.close() txs = {} sys.stderr.write("Reading genepred file\n") z = 0 with open(args.genepred) as inf: for line in inf: z +=1 if z%1000==0: sys.stderr.write(str(z)+" \r") gpd = GPD(line) exs = [] for ex in gpd.exons: exs.append(ex.range) txs[gpd.get_transcript_name()] = exs sys.stderr.write("\n") vals = [] sys.stderr.write("Traversing annotation file\n") for gene in genes: for tx in genes[gene]['transcripts']: v = genes[gene]['transcripts'][tx] exons = txs[tx] if len(exons) < args.min_exons: continue for i in range(0,v): vals += exons[:] sys.stderr.write("Generating coverage file "+str(len(vals))+"\n") of = sys.stdout if args.output: if args.output[-3:]=='.gz': of = gzip.open(args.output,'w') else: of = open(args.output,'w') covs = ranges_to_coverage(vals) for v in covs: of.write(v.chr+"\t"+str(v.start-1)+"\t"+str(v.end)+"\t"+str(v.get_payload())+"\n") # of.write(tx+"\t"+gene+"\t"+str(genes[gene]['transcripts'][tx])+"\t"+str(genes[gene]['cnt'])+"\n") of.close() if __name__=="__main__": main()
AlignQC
/AlignQC-2.0.5.tar.gz/AlignQC-2.0.5/scripts/alignqc_annotation_to_bed_depth.py
alignqc_annotation_to_bed_depth.py
import sys, argparse, re, os from subprocess import Popen, PIPE from Bio.Statistics import average, median, standard_deviation def main(): parser = argparse.ArgumentParser(description="Assume standard pacbio ccs and subread read name formats, and ONT name formats where _pass_2D _pass_tem _pass_com _fail_2D _fail_tem or _fail_com have been appended to the name.",formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('inputs',nargs='+',help="Specify xhtml files") parser.add_argument('--aligned',action='store_true',help="restrict output to aligned reads only") args = parser.parse_args() p_pbccs = re.compile('^m[^\/]+\/\d+\/ccs$') p_pbsub = re.compile('^m[^\/]+\/\d+\/\d+_\d+$') p_ontpass2D = re.compile('^\S+_pass_2D$') p_ontpasstem = re.compile('^\S+_pass_tem$') p_ontpasscom = re.compile('^\S+_pass_com$') p_ontfail2D = re.compile('^\S+_fail_2D$') p_ontfailtem = re.compile('^\S+_fail_tem$') p_ontfailcom = re.compile('^\S+_fail_com$') results = [] for fname in args.inputs: sys.stderr.write("processing "+fname+"\n") c = { 'pacbio':0, 'ont':0, 'ccs':0, 'sub':0, 'ontpass2D':0, 'ontpasstem':0, 'ontpasscom':0, 'ontfail2D':0, 'ontfailtem':0, 'ontfailcom':0, 'ontpass':0, 'ontfail':0, 'ont2D':0, 'ont1D':0, 'other':0 } cmd = 'alignqc dump '+fname+' -e lengths.txt' p = Popen(cmd.split(),stdout=PIPE) for line in p.stdout: f = line.rstrip().split("\t") bp = int(f[3]) if args.aligned and bp == 0: continue rname = f[0] if p_pbccs.match(rname): c['ccs']+=1 c['pacbio']+=1 elif p_pbsub.match(rname): c['sub'] += 1 c['pacbio']+=1 elif p_ontpass2D.match(rname): c['ontpass2D'] += 1 c['ont2D'] += 1 c['ont']+=1 c['ontpass']+=1 elif p_ontpasstem.match(rname): c['ontpasstem'] += 1 c['ont1D'] += 1 c['ont']+=1 c['ontpass']+=1 elif p_ontpasscom.match(rname): c['ontpasscom'] += 1 c['ont1D'] += 1 c['ont']+=1 c['ontpass']+=1 elif p_ontfail2D.match(rname): c['ontfail2D'] += 1 c['ont2D'] += 1 c['ont']+=1 c['ontfail']+=1 elif p_ontfailtem.match(rname): c['ontfailtem'] += 1 c['ont1D'] += 1 c['ont']+=1 c['ontfail']+=1 elif p_ontfailcom.match(rname): c['ontfailcom'] += 1 c['ont1D'] += 1 c['ont']+=1 c['ontfail']+=1 else: c['other']+=1 p.communicate() results.append(c) k = results[0].keys() print "feature\tsum\tmedian\taverage\tstandard deviation" for feature in sorted(k): arr = [x[feature] for x in results] print feature+"\t"+str(sum(arr))+"\t"+str(median(arr))+"\t"+str(average(arr))+"\t"+str(standard_deviation(arr)) if __name__=="__main__": main()
AlignQC
/AlignQC-2.0.5.tar.gz/AlignQC-2.0.5/scripts/alignqcs_to_read_type_count_per_cell_statistics.py
alignqcs_to_read_type_count_per_cell_statistics.py
# AlignmentReporter A tool for DM to easily make __Alignment Change Graphs__ for their Campaigns, __with a save system__ to switch between parties. Originally just a part of a larger toolbox, I am currently making it a standalone project. It is a bit old and need some changes (mainly using coroutines and C compilation). The tool is quite simple in its way, but I will add a tutorial later. For testing, simply launche the __init__.py at the root directory and enter a save file name. It will automatically load any existing file in the data folder if it exists. I have **already created two save files from personal games** (accessible with the names "**Celtaidd**" and "**Volac**"). The generated images are in the "***AlignmentReporter/out/***" directory, but a preview is loaded in the tool after each image generation. ## System recommendations This tool has been tested with the following setups. Please share any working or non-working setup you may use to use this tool. - *OS:* - ***Windows 10 (19041.928)*** - ***Linux Mint 20.1 (Xfce)*** - *Python **3.8.5*** ## Installation: in the root directory ``` python setup.py install ``` ## Typical usages: ### Python: ```python import AlignmentReporter as AR; AR.launch() ``` ### in terminal: ``` AlignR-Launch ``` ## Typical Output ![Volac savefile output](./AlignmentReporter/out/volac_s_stupid_freaks.png) ## Tutorial *To be implemented* ## Known Issues - GUI still freezes in Windows 10 when generating the image - Color implementation will sometimes accept wrong inputs or refuse correct ones. ## Licence notice Every ***.UI*** file contained in this project has been created with the **QtDesigner** software from the **Qt Company** under the **GPL-3.0 License**. *(see the [Official Qt website](https://www.qt.io/) for more informations)*.
AlignR
/AlignR-2.0.5.tar.gz/AlignR-2.0.5/README.md
README.md
import math import traceback as tr from typing import Dict, List, Any, Tuple import numpy as np import pandas as pd from matplotlib import pyplot as plt from scipy.interpolate import make_interp_spline, BSpline def map_to_circle(df): """ Remap DataFrame values to a circle of R=1 :param df: DataFrame with two columns "x" and "y" :type df: pandas.DataFrame :return: DataFrame with values remapped to a circle of R=1 :rtype: pandas.DataFrame """ for i, row in enumerate(df.values): x, y = row ratio1 = max(1e-15, math.sqrt(x ** 2 + y ** 2)) n_x, n_y = (abs(x / ratio1), abs(y / ratio1)) if ( math.tan(math.acos(n_x)) / max(1e-15, (1 / (max(1e-15, math.tan(math.acos(n_x)))))) <= 1.0 ): ratio2: float = math.sqrt(math.tan(math.acos(n_x)) ** 2 + 1) else: ratio2: float = math.sqrt( (1 / max(1e-15, math.tan(math.acos(n_x)))) ** 2 + 1 ) df.loc[i] = (x / ratio2, y / ratio2) return df def rotatematrix(array, kwargs, order=2.0, angle=180): """ Try to apply a rotation matrix to an existing array and plot the result :param array: input array or dataframe :param kwargs: kwargs for the plotting methods :param angle: (optional) angle in degree for the rotation matrix, default is 180 :param order: zorder for the plot() function :type order: float :type array: np.ndarray or pandas.DataFrame :type kwargs: dict[str, Any] :type angle: float """ angle: np.ndarray = np.radians(angle) rotation_matrix: np.ndarray = np.array( [[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]] ) new_array: List[np.ndarray] = list() for i, row in enumerate(array.reset_index().values): row: np.ndarray = np.array(row) rotated_matrix: np.ndarray = rotation_matrix * row for j, r in enumerate(rotated_matrix): row[j] = rotated_matrix[j].sum() new_array.append(row) array: pd.DataFrame = pd.DataFrame( np.array(new_array), columns=["x", "y"] ).sort_values(["x", "y"]) try: xnew: np.ndarray = np.linspace(array["x"].min(), array["x"].max(), 200) spl: BSpline = make_interp_spline(tuple(array["x"]), array["y"], k=2) power_smooth: np.ndarray = spl(xnew) plt.plot(xnew, power_smooth, zorder=order, **kwargs) except Exception: plt.plot(array["x"], array["y"], zorder=order, **kwargs) def plot_background(n=100, kwargs=None): """ Try to plot the line elements in bachground of the image, the circle and separation between alignment areas :param n: (optional) 'Quality' of the lines drawn, use carefully with high values, default is 100 :param kwargs: (optional) kwargs for the plotting methods, default is empty :type n: int :type kwargs: dict """ n: int = int(n) kwargs: Dict[str, Any] = dict() if not kwargs else kwargs try: plt.figure(figsize=(5, 5), constrained_layout=True) x: np.ndarray = np.linspace(-1.0, 1.0, n) x_small: np.ndarray = np.linspace(-1.0, 1.0, round(math.sqrt(n) * 2)) ax1: np.ndarray = np.linspace(1.0 / 3.0, 1.0, round(math.sqrt(n))) ax2: np.ndarray = np.zeros(round(math.sqrt(n))) + 1.0 / 3.0 bars: Tuple[Tuple[np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray]] = ( (ax1, ax2), (ax2, ax1), ) for bar in bars: df_no_mid: pd.DataFrame = map_to_circle( pd.DataFrame(np.array(bar).transpose(), columns=["x", "y"]) ).set_index("x") for angle in np.linspace(0, 270, 4): rotatematrix(df_no_mid, kwargs, order=1, angle=angle) y: np.ndarray = np.array([math.sqrt(1 - v ** 2) for v in x]) bkwards: Dict[str, Any] = kwargs.copy() bkwards["linewidth"] *= 2 plt.plot(x, y, zorder=1, **bkwards) plt.plot(x, -y, zorder=1, **bkwards) inner_circle: pd.DataFrame = pd.DataFrame( np.array( [ x_small / 3.0, np.array([math.sqrt((1.0 / 9.0) - v ** 2) for v in x_small / 3.0]), ] ).transpose(), columns=["x", "y"], ) plt.plot(inner_circle["x"], inner_circle["y"], zorder=1, **kwargs) plt.plot(inner_circle["x"], -inner_circle["y"], zorder=1, **kwargs) except Exception: tr.print_exc() def plot_foreground(tight=False, kwargs=dict()): """ Try to plot the text elements of the graph and everything that needs to be on top ov the rest :param tight: (optional) if True will call plt.tight_layout() at the end, default is False :param kwargs: (optional) kwargs for the plotting methods, default is empty :type tight: bool :type kwargs: dict """ try: df: pd.DataFrame = pd.DataFrame( np.array( [ [-2 / 3, 2 / 3], [0.0, 2 / 3], [2 / 3, 2 / 3], [-2 / 3, 0], [0.0, 0], [2 / 3, 0], [-2 / 3, -2 / 3], [0.0, -2 / 3], [2 / 3, -2 / 3], ] ) ) df = map_to_circle(df) plt.annotate( "LG", df.loc[0], ha="center", va="center", fontsize=kwargs["fontsize"], fontweight="bold", ) plt.annotate( "NG", df.loc[1], ha="center", va="center", fontsize=kwargs["fontsize"], fontweight="bold", ) plt.annotate( "CG", df.loc[2], ha="center", va="center", fontsize=kwargs["fontsize"], fontweight="bold", ) plt.annotate( "LN", df.loc[3], ha="left", va="center", fontsize=kwargs["fontsize"], fontweight="bold", ) plt.annotate( "TN", df.loc[4], ha="center", va="center", fontsize=kwargs["fontsize"], fontweight="bold", ) plt.annotate( "CN", df.loc[5], ha="center", va="center", fontsize=kwargs["fontsize"], fontweight="bold", ) plt.annotate( "LE", df.loc[6], ha="center", va="center", fontsize=kwargs["fontsize"], fontweight="bold", ) plt.annotate( "NE", df.loc[7], ha="center", va="center", fontsize=kwargs["fontsize"], fontweight="bold", ) plt.annotate( "CE", df.loc[8], ha="center", va="center", fontsize=kwargs["fontsize"], fontweight="bold", ) plt.axis("square") plt.axis("off") plt.xlim(-1.5, 1.5) plt.ylim(-1.5, 1.5) title: str = kwargs["title"] if kwargs["title"] else None if title: text: str = kwargs["title"] alignment: str = kwargs["alignment"] if kwargs["alignment"] else "center" plt.title( text, y=0.9, loc=alignment, fontsize=kwargs["fontsize"] * 1.1, fontweight="bold", ) if tight: plt.tight_layout() except Exception: tr.print_exc() # Endfile
AlignR
/AlignR-2.0.5.tar.gz/AlignR-2.0.5/AlignmentReporter/Vizualisation.py
Vizualisation.py
import time from typing import List, Tuple import numpy as np def compute_time(t): """ Function that convert a given time value into a string :param t: Time in second :type t: float :return: Time string :rtype: str """ force = False p = "Process took: " if t >= 60 ** 2: force = True h = int(t / 60 ** 2) if h > 1: p += "{:2} hours, ".format(h) else: p += "{:2} hour, ".format(h) t %= 60 ** 2 if t >= 60 or force: force = True m = int(t / 60) if m > 1: p += "{:2} minutes, ".format(m) else: p += "{:2} minute, ".format(m) t %= 60 if t > 1: p += "{} seconds".format(round(t, 2)) else: p += "{} second".format(round(t, 2)) return p def timeit(func): """ Decorator function computing the excecution time of a function :param func: Function to decorate :type func: function :return: wrapped func :rtype: function """ def inner(*args, **kwargs): inner.__doc__ = timeit.__doc__ start = time.time() result = func(*args, **kwargs) print(func.__name__ + " " + str(round(time.time() - start, 4))) return result return inner def alignment_to_position(entries, first_entry_weight=1): """ Transform a given list of string alignment entries into positional entries. Apply a weight modifier to the first entry of the list :param entries: 1D-array of string entries like ('LG', 'NG', 'CG', ...) :param first_entry_weight: (Optional) Weight of the first entry of the "entries" parameter :type entries: tuple or list or np.ndarray :return: List of positional values :rtype: Tuple[Tuple[float, float]] """ values: List[Tuple[float, float]] = [] value: List[str] = list() for i, old_value in enumerate(entries): x = [] y = [] if len(old_value) == 2: value = [ old_value[0], old_value[1], ] # jit forced manual list(str) conversion if value[0] == "N": value[0] = "T" elif len(old_value) == 1: value = [old_value[0]] for v in value: if v == "L": x.append(-1.0) elif v == "T": x.append(0.0) elif v == "C": x.append(1.0) elif v in ("G", "B"): y.append(1.0) elif v == "N": y.append(0.0) elif v in ("E", "M"): y.append(-1.0) if len(x) > len(y): for j in range(len(x) - len(y)): y.append(np.nan) elif len(y) > len(x): for j in range(len(y) - len(x)): x.append(np.nan) if i == 0: for j in range(0, max(0, first_entry_weight - 1)): values += list(zip(x, y)) values += tuple(list(zip(x, y))) return tuple(values)
AlignR
/AlignR-2.0.5.tar.gz/AlignR-2.0.5/AlignmentReporter/UI/py/funcutils.py
funcutils.py
import math import os import time import traceback as tr from typing import Tuple, Dict, Callable, Union, List import matplotlib.pyplot as plt import numpy as np import pandas as pd from PySide2.QtCore import Signal, QObject from PySide2.QtWidgets import QLabel import AlignmentReporter.Vizualisation as vis from AlignmentReporter.UI.py.default_parameters import ( BACKGROUND_KWARGS, PLOT_KWARGS, METADATA, ) from AlignmentReporter.UI.py.funcutils import alignment_to_position, compute_time from AlignmentReporter.UI.py.typed_dict import DataDict, PlayerDict class MyQLabel(QLabel): resized: Signal = Signal() def __init__(self): """ Simple subclass of QLabel that emits a Signal when resized """ super(MyQLabel, self).__init__() def resizeEvent(self, event): """ Override of the QWidget resizeEvent to add a custom QSignal.emit() """ self.resized.emit() super(MyQLabel, self).resizeEvent(event) class Worker(QObject): signal = Signal() finished = Signal() def __init__(self, data, *args, **kwargs): """ Subclass of QObject that generate an output image with given parameter data :param data: array containing the plotting data, output path, temp output path and the fontsize :param args: any positional argument given to QObject :param kwargs: any keyword argument given to QObject :type data: tuple[DataDict, str, str, int] """ super(Worker, self).__init__(*args, **kwargs) self.data = data @property def data(self): """ Method packing the attributes into a data tuple. (Unused) :return: tuple containing the plotting data, output path, temp output path and the fontsize :rtype: tuple[DataDict, str, str, int] """ return self.__data, self.__final_file, self.__temp_file, self.__fontsize @data.setter def data(self, data_list): """ Method unpacking the given data into the correct attributes :param data_list: array containing the plotting data, output path, temp output path and the fontsize :type data_list: tuple[DataDict, str, str, int] """ self.__data, self.__final_file, self.__temp_file, self.__fontsize = data_list def generate_image(self): try: data: DataDict = self.__data final_file: str = self.__final_file temp_file: str = self.__temp_file fontsize: int = self.__fontsize al: Tuple[ Tuple[str, str, str], Tuple[str, str, str], Tuple[str, str, str] ] = (("LG", "NG", "CG"), ("LN", "TN", "CN"), ("LE", "NE", "CE")) plt.close() t_start = time.time() players = data["players"] line_qual = int( 360 * (10 ** np.linspace(-0.5, 3.8, 100)[data["hs_line_quality"]]) ) vis.plot_background(n=line_qual, kwargs=BACKGROUND_KWARGS) for i in range(line_qual): # Fixme: Maybe not do that self.signal.emit() t = data["le_image_title"] if data["chb_image_title"] else False alignment = ( "left" if data["title_alignment"] == 0 else "right" if data["title_alignment"] == 2 else "center" ) pos_y = float(data["hs_legend_v_offset"] / 100.0) * 1.5 pos_x = data["hs_legend_h_offset"] * 0.015 stretch = float(data["hs_legend_stretch"] / 50.0) players_values: List[PlayerDict] = list(players.values()) if data["gb_add_auto_party"]: party_pos_list: Union[Tuple[float, float], List[float, float]] = list() if data["cob_party_starting_alignment"] != "Average": first_pos: np.array = np.array( *alignment_to_position( [data["cob_party_starting_alignment"]], 1, ) ) else: first_pos_list: List[np.ndarray] = list() for v in players.values(): first_pos_list += alignment_to_position([v["Entries"][0]]) first_pos: np.ndarray = np.array(first_pos_list).mean(axis=0) first_pos_list = list() for i in range(data["sb_first_entry_weight"]): first_pos_list.append(first_pos) party_func: Callable = np.mean if data["rb_average"] else np.sum party_name: str = data["le_party_name"] party_color: str = data["le_party_color"] party_all_entries: Union[ np.ndarray, List[Tuple[Tuple[float, float]]] ] = list() len_entries: Union[List[int], Tuple[int]] = list() for player in players.values(): party_all_entries.append( alignment_to_position(player["Entries"][1:]) ) len_entries.append(len(party_all_entries[-1])) party_array_values: np.ndarray = np.zeros( (max(len_entries), len(players.values()), 2) ) party_array_values[:, :, :] = 0.0 for i, array in enumerate(party_all_entries): party_array_values[: len_entries[i], i, :] = np.array(array) party_align_values = np.concatenate( (first_pos_list, party_func(party_array_values, axis=1)), axis=0 ) party_player: Dict[str, Union[np.ndarray, str]] = { "Color": party_color, "Entries": party_align_values, "Name": party_name, } players_values.append(party_player) players_pos: np.ndarray = np.array( list( zip( np.linspace(pos_x, pos_x, len(players_values)), np.linspace( pos_y, (pos_y - (stretch * len(players_values))), len(players_values), ), ) ) ) for player, pos in zip(players_values, players_pos): if len(player["Entries"]) > 0: color: str = player["Color"] if player is not players_values[-1]: a: np.ndarray = np.array(player["Entries"]) values: Tuple[Tuple[float, float]] = alignment_to_position( entries=a, first_entry_weight=data["sb_first_entry_weight"] ) else: values: Tuple[Tuple[float, float]] = player["Entries"] df_player = pd.DataFrame( np.array(values), columns=["x", "y"] ).fillna(np.array(values).mean()) mean_df_normal = ( df_player.fillna(value=df_player.mean()) .rolling(data["sb_rolling_window_size"], min_periods=1) .mean() .iloc[ max( 0, data["sb_rolling_window_size"] - data["sb_first_entry_weight"], ) :, :, ] ) mean_df = vis.map_to_circle(mean_df_normal) mean_df["alpha"] = np.logspace(-0.5, 0, mean_df.shape[0]) ha = ( "left" if data["legend_text_alignment"] == 0 else "center" if data["legend_text_alignment"] == 1 else "right" ) s = np.logspace(-1.2, 1.5, mean_df.shape[0]) * math.sqrt( (data["hs_scale"]) / 100.0 ) plt.plot(mean_df["x"], mean_df["y"], color=color, **PLOT_KWARGS) self.signal.emit() prev_markers: Tuple = ( "o", "x", "*", "+", "<", "^", ">", "v", "", "$" + data["le_previous_custom"] + "$", ) last_markers: Tuple = ( "o", "x", "*", "+", "<", "^", ">", "v", "", "$" + data["le_current_custom"] + "$", ) kwargs: Dict[str, str] = { "marker": prev_markers[data["previous_marker"]] } for i in range(mean_df.shape[0]): if i == mean_df.shape[0] - 1: kwargs["marker"]: str = last_markers[data["current_marker"]] row: pd.DataFrame = pd.DataFrame(mean_df.iloc[i, :]).transpose() for alpha, scale in zip( np.linspace(row["alpha"].values[-1], 0.0, 10) ** 8, np.linspace(s[i], s[i] * 1.1, 4), ): kwargs["alpha"]: float = alpha kwargs["s"]: float = scale if i == mean_df.shape[0] - 1: kwargs["marker"]: str = last_markers[ data["current_marker"] ] kwargs["s"]: float = ( scale * data["hs_current_scale"] / 10.0 ) plt.scatter(data=row, x="x", y="y", color=color, **kwargs) self.signal.emit() first_row: pd.DataFrame = pd.DataFrame( mean_df_normal.iloc[0, :] ).transpose() last_row: pd.DataFrame = pd.DataFrame( mean_df_normal.iloc[-1, :] ).transpose() if first_row["y"].values[0] >= 0.334: y_o = 0 elif first_row["y"].values[0] <= -0.334: y_o = 2 else: y_o = 1 if first_row["x"].values[0] <= -1.0 / 3.0: x_o = 0 elif first_row["x"].values[0] >= 1.0 / 3.0: x_o = 2 else: x_o = 1 if last_row["y"].values[0] >= 1.0 / 3.0: y = 0 elif first_row["y"].values[0] <= -1.0 / 3.0: y = 2 else: y = 1 if last_row["x"].values[0] <= -1.0 / 3.0: x = 0 elif last_row["x"].values[0] >= 1.0 / 3.0: x = 2 else: x = 1 p_o_al: Tuple[float, float] = al[y_o][x_o] p_al: Tuple[float, float] = al[y][x] plt.annotate( player["Name"] + ":\n{} -> {}".format(p_o_al, p_al), xy=pos, color=color, ha=ha, va="center", fontsize=fontsize, fontweight="semibold", ) vis.plot_foreground( tight=False, kwargs={"title": t, "alignment": alignment, "fontsize": fontsize * 1.1}, ) self.signal.emit() print(compute_time(time.time() - t_start)) title: str = ( data["le_image_title"].replace(" ", "_").lower() if data["chb_image_title"] else "party_players_alignment" ) new_title: str = "" for c in title: if "-123456789_abcdefghijklmnopqrstuvwxyz".find(c) != -1: new_title += c else: new_title += "_" title: str = new_title ext: str = ".png" if data["image_format"] < 2 else ".jpg" f_path = os.path.join(final_file, title + ext) print("Starting saving data") im_size: int = min(data["sb_image_dpi"], 720) self.savefig( temp_file, im_size, f_format="png", quality=6, transparency=True ) self.signal.emit() self.savefig(f_path) except Exception: tr.print_exc() def savefig(self, out, size=None, f_format=None, transparency=None, quality=None): """ Method that outputs the final version of the image into the output folder :param out: fullpath of the output file :param size: (optional) size value converted into dpi for the matplotlib.pyplot.savefig method :param f_format: (optional) ['png' or 'jpeg'] override output file format, default is based on user choice data :param transparency: (optional) override output transparency if file format is 'png', default is based on user choice data :param quality: (optional) [1 <-> 12] override jpeg file quality if file format is 'jpeg', default is based on user choice data :type out: str :type size: int :type f_format: str :type transparency: bool :type quality: int """ metadata: Dict[str, str] = METADATA metadata["Creation Time"]: str = time.ctime() dpi: float = ( size / (72 / 100 * 5.0) if size else self.__data["sb_image_dpi"] / (72 / 100 * 5.0) ) f_format = ( f_format if f_format else "png" if self.__data["image_format"] < 2 else "jpeg" ) transparency = ( transparency if transparency else True if self.__data["image_format"] == 1 else False ) quality = ( round(np.linspace(0, 95, 12)[quality - 1]) if quality else round(np.linspace(0, 95, 12)[self.__data["hs_jpeg_qual"] - 1]) ) plt.savefig( fname=out, dpi=dpi, format=f_format, transparent=transparency, pil_kwargs={"quality": int(round(quality)), "metadata": metadata}, ) try: self.finished.emit() except RuntimeError: pass # Worker already deleted
AlignR
/AlignR-2.0.5.tar.gz/AlignR-2.0.5/AlignmentReporter/UI/py/classutils.py
classutils.py
import json import os import pickle import sys import time import traceback as tr from typing import List, Dict import matplotlib.pyplot as plt import numpy as np from PySide2.QtCore import QFile, Qt, Signal, SIGNAL, SLOT, QThread from PySide2.QtGui import QPixmap, QIcon from PySide2.QtUiTools import QUiLoader from PySide2.QtWidgets import ( QSizePolicy, QMainWindow, QApplication, QLabel, QWidget, QLayout, QStyle, QLineEdit, ) import AlignmentReporter.UI.Qt.AlignmentReporterRessources as ar_r import AlignmentReporter.Vizualisation as vis from AlignmentReporter.UI.py.default_parameters import BACKGROUND_KWARGS, METADATA from AlignmentReporter.UI.py.classutils import MyQLabel, Worker from AlignmentReporter.UI.py.funcutils import ( timeit, compute_time, alignment_to_position, ) from AlignmentReporter.UI.py.typed_dict import DataDict, PlayerDict ar_r.qInitResources # avoid import optimization removing the previous line _path = __file__.split("UI")[0] _icon_path = os.path.join(_path, "UI", "Qt") with open(os.path.join(_path, "UI", "Qt", "style.css"), "r") as f: _style_sheet: str = f.read() class SettingWindow(QMainWindow): def __init__(self, parent=None): """ Subclass used for the child window with the graph customization parameters :param parent: (deprecated) Set the parent window instance for this subclass instance :type parent: QWidget or QMainWindow """ # Window setup super(SettingWindow, self).__init__() loader: QUiLoader = QUiLoader() file: QFile = QFile(os.path.join(_path, "UI", "Qt", "imageSettings.ui")) file.open(QFile.ReadOnly) self.centralWidget: QMainWindow = loader.load(file, self) file.close() # self.setParent(parent) self.setWindowTitle("Image Settings") self.setSizePolicy(QSizePolicy.Maximum, QSizePolicy.Minimum) # self.setMinimumSize(self.centralWidget.minimumSize()) self.setStyleSheet(_style_sheet) self.assignWidgets() self.setWindowFlags(Qt.Window) self.setWindowIcon( QIcon( os.path.join( os.path.dirname(os.path.dirname(os.path.realpath(__file__))), "AlignmentTool.ico", ) ) ) # Plugin setup # Custom variables # Init Widgets # Custom functions calls self.close() #################################################################################################################### # Default functions # #################################################################################################################### def assignWidgets(self): """ Link Widgets to functions """ pass #################################################################################################################### # Custom UI functions # #################################################################################################################### #################################################################################################################### # Custom Effective functions # #################################################################################################################### @staticmethod def print_click(): """ " PLACEHOLDER FUNCTION """ print("Button clicked") class MainWindow(QMainWindow): advanced: Signal = Signal() def __init__(self, savefile): """ Subclass used for the child window with the graph customization parameters :param savefile: name string for the saving file e.g: "Celtaidd" :type savefile: str """ # Window setup super(MainWindow, self).__init__() self.setStyleSheet(_style_sheet) loader: QUiLoader = QUiLoader() ui_file: QFile = QFile(os.path.join(_path, "UI", "Qt", "mainWindow.ui")) ui_file.open(QFile.ReadOnly) self.centralWidget = loader.load(ui_file, self) ui_file.close() self.setWindowIcon( QIcon( os.path.join( os.path.dirname(os.path.dirname(os.path.realpath(__file__))), "AlignmentTool.ico", ) ) ) self.settingsUI: SettingWindow = SettingWindow(self) self.setWindowTitle("Alignment Reporter v2.0") self.settingsUI.setWindowTitle("Image Settings") self.__save = savefile self.assignWidgets() self.setWindowFlags(Qt.Window) # Plugin setup # Custom variables self.datapath: str = os.path.join(_path, "data") self.savefile: str = os.path.join(self.datapath, self.__save + ".pkl") self.savefile_json: str = os.path.join(self.datapath, self.__save + ".json") self.data = dict() self.__TMP: str = os.path.join(self.datapath, "TMP.pkl") self.__Final: str = os.path.join( os.path.dirname(os.path.dirname(os.path.dirname(__file__))), "out" ) self.__player_data: dict = dict() self.__fontsize: int = 8 self.finished: bool = True self.loop: QThread = QThread() self.workers: List[QThread] = list() # Init Widgets self.mutate_widget(self.centralWidget.l_image) self.centralWidget.f_progress_bar.hide() self.centralWidget.prb_preview.setValue(0) self.centralWidget.l_image.resized.connect(self.resize_image) self.centralWidget.cob_players_select.setFocus() group = ( self.centralWidget.line, self.centralWidget.line_2, self.centralWidget.line_3, self.centralWidget.line_4, self.centralWidget.line_5, self.centralWidget.line_6, self.centralWidget.line_7, ) for widget in group: widget.setProperty( "holder", True ) # Stylesheet property for holding widgets # Custom functions calls self.show() #################################################################################################################### # Default functions # #################################################################################################################### def assignWidgets(self): """ Method used to connect QSignals to other Methods """ self.centralWidget.tb_settings.released.connect(self.settingsUI.show) self.centralWidget.pb_save_quit.released.connect(self.close) self.centralWidget.pb_set_color.released.connect(self.set_player_color) self.centralWidget.pb_set_party_color.released.connect(self.set_party_color) self.centralWidget.pb_set_name.released.connect(self.set_player_name) self.centralWidget.pb_set_party_name.released.connect(self.set_party_name) self.centralWidget.pb_set_title.released.connect(self.set_title) self.centralWidget.pb_add_player_entry.released.connect(self.add_entry) self.centralWidget.pb_delete_player_entry.released.connect(self.del_entry) self.centralWidget.pb_delete_player_all_entries.released.connect( self.clear_entries ) self.centralWidget.pb_save_player.released.connect(self.save_player) self.centralWidget.pb_del_player.released.connect(self.del_player) self.centralWidget.cob_players_select.currentIndexChanged.connect( self.update_player ) self.centralWidget.pb_generate.released.connect(self.run_generate_image) self.centralWidget.pb_save.released.connect(self.save) # self.centralWidget.gb_add_auto_party.toggled.connect(self.clicked_party_player) self.advanced.connect(self.progress_update) def change_signals_block_state(self, state): """ Method used to un/block QSignals on critical connections when an infinite loop is possible :param state: Set the parent window instance for this subclass instance :type state: bool """ self.centralWidget.cob_players_select.blockSignals(state) #################################################################################################################### # Custom functions # #################################################################################################################### @staticmethod def print_click(): """ " PLACEHOLDER FUNCTION """ print("Button clicked") def mutate_widget(self, old): """ Method used to "change" the class for the image label. The new instance emits a custom QSignal when it is resized. :param old: Widget used to hold the image preview :type old: QLabel """ layout: QLayout = old.parent().layout() old: QLabel = self.centralWidget.l_image old_name: str = old.objectName() old_style: QStyle = old.style() new_label: MyQLabel = MyQLabel() new_label.setPixmap(old.pixmap()) new_label.setSizePolicy(old.sizePolicy()) new_label.setMinimumSize(old.minimumSize()) new_label.setMaximumSize(old.maximumSize()) new_label.setParent(old.parent()) layout.replaceWidget(old, new_label) old.deleteLater() new_label.setObjectName(old_name) new_label.setStyle(old_style) new_label.setStyleSheet(old.styleSheet()) self.centralWidget.l_image = new_label def close(self): """ Method used to save data and close the window """ self.save() self.settingsUI.close() super(MainWindow, self).close() def show(self): """ Method used to show the window and load the image """ try: self.load() self.image = None except FileNotFoundError: pass super(MainWindow, self).show() def save(self, js=True): """ Method used to save data to a pickle file. :param js: (optional) If True a json will also be saved (mainly for debug and to read data without launching the tool), default is True :type js: bool """ self.update_data() try: with open(self.savefile, "wb") as f: try: pickle.dump(self.data, f) except TypeError: print(self.data) if js: with open(self.savefile_json, "w", encoding="utf-8") as save_file: json.dump(self.data, save_file, indent=4, sort_keys=True) except Exception: tr.print_exc() def save_player(self): """ Method used to save current player parameters data into the players' data dictionary """ self.update_data() c_widget: QWidget = self.centralWidget player: dict = self.data["player"] self.change_signals_block_state(True) if c_widget.cob_players_select.findText(player["Name"]) == -1: new_player_list: List[str] = list() new_player_list.append(player["Name"]) selected_player_name: str = c_widget.cob_players_select.currentText() for row in range(c_widget.cob_players_select.count()): text: str = c_widget.cob_players_select.itemText(row) if text != "New Player": new_player_list.append(text) try: del self.data["players"][ c_widget.cob_players_select.currentText() ] except KeyError: pass if selected_player_name != "New Player": new_player_list.remove(selected_player_name) new_player_list: List[str] = ["New Player"] + sorted(new_player_list) c_widget.cob_players_select.clear() for p in new_player_list: c_widget.cob_players_select.addItem(p) c_widget.cob_players_select.setCurrentIndex( c_widget.cob_players_select.findText(player["Name"]) ) elif ( c_widget.cob_players_select.findText(player["Name"]) is not c_widget.cob_players_select.currentIndex() ): c_widget.cob_players_select.setCurrentIndex( c_widget.cob_players_select.findText(player["Name"]) ) try: self.data["players"][player["Name"]] = player except KeyError: self.data["players"] = dict() self.data["players"][player["Name"]] = player self.change_signals_block_state(False) def del_player(self): """ Method used to remove all current player data """ try: c_widget: QWidget = self.centralWidget del self.data["players"][c_widget.cob_players_select.currentText()] c_widget.cob_players_select.removeItem( c_widget.cob_players_select.currentIndex() ) except KeyError: pass def update_player(self): """ Method used to switch to new selected player data """ try: c_widget: QWidget = self.centralWidget player_name: str = c_widget.cob_players_select.currentText() if player_name != "New Player": try: self.data["player"]: PlayerDict = self.data["players"][player_name] except KeyError: tr.print_exc() else: self.data["player"]: PlayerDict = { "Name": "Player Name", "Color": "Black", "Entries": list(), } self.update_ui() self.update_data() except Exception: tr.print_exc() def progress_update( self, set=False, start=None, stop=None, i=1, current=None, fullstop=False ): """ Method used to control the main QProgressbar and call the method 'show' and 'hide' of its QFrame container :param set: (optional) Reset the progress to 0 or given value :param start: (optional) If given and 'set=True', will set the minimum value for the progress bar, default is 0 :param stop: (optional) If given and 'set=True', will set the maximum value for the progress bar, default is 100 :param i: (optional) If given, will increase the current value by the given value, default is 1 :param current: (optional) If given, will hardwrite the current value :param fullstop: (optional) If given, will stop and hide the progress bar :type set: bool :type start: int or float :type stop: int or float :type i: int :type current: int or float :type fullstop: bool """ bar = self.centralWidget.prb_preview if set: if start: self.__start: int = start else: self.__start: int = 0 if stop: self.__stop: int = stop else: self.__stop: int = 100 self.__i = i if current: self.__current: int = current else: self.__current: int = self.__start else: self.__i: int = i if current: self.__current: int = current else: self.__current += self.__i bar.setMinimum(self.__start) bar.setMaximum(self.__stop) bar.setValue(self.__current) if bar.value() >= bar.maximum() or fullstop: self.centralWidget.f_progress_bar.hide() self.update() @property def current_player_data(self): """ Property that tries to return the current player data dictionary extracted from UI placeholderText values :return: Current player data dictionary :rtype: PlayerDict """ try: self.__player_data = { "Name": self.centralWidget.le_player_name.placeholderText(), "Color": self.centralWidget.le_player_color.placeholderText(), "Entries": [ self.centralWidget.lw_player_entries.item(entry).text() for entry in range(self.centralWidget.lw_player_entries.count()) ], } return self.__player_data except Exception: tr.print_exc() @current_player_data.setter def current_player_data(self, data=None): """ Property.setter that sets current player data dictionary values into UI placeholderText values :param data: (optional) override current player data and force given values :type data: PlayerDict """ if data: self.__player_data: Dict[str, List[str]] = data c_widget: QWidget = self.centralWidget c_widget.le_player_name.setText("") c_widget.le_player_name.setPlaceholderText( self.__player_data["Name"] if "Name" in self.__player_data.keys() else "Player Name" ) c_widget.lw_player_entries.clear() if "Entries" in self.__player_data.keys(): for entry in self.__player_data["Entries"]: self.add_entry(entry) c_widget.le_player_color.setText("") c_widget.le_player_color.setPlaceholderText( self.__player_data["Color"] if "Color" in self.__player_data.keys() else "Black" ) def load(self, js=True): """ Method that loads save data into UI :param js: (optional) Force json save file :type js: bool """ with open(self.savefile, "rb") as data_file: try: self.data = pickle.load(data_file) except EOFError: tr.print_exc() if js: try: with open(self.savefile_json, "r", encoding="utf-8") as data_file: self.data = json.load(data_file) except EOFError: tr.print_exc() try: self.update_ui(True) except KeyError: tr.print_exc() @property def data(self): """ Property that returns players data :return: Current players' data values :rtype: DataDict """ return self.__data @data.setter def data(self, data): """ Property.setter that override players data :param data: New players' data values :type data: DataDict """ self.__data = data.copy() @property def image(self): """ Property that returns the QLabel used to show the image preview :return: the QLabel holding the image preview :rtype: PySide2.QWidgets.QLabel """ return self.centralWidget.l_image @image.setter def image(self, img=None): """ Property that generate the preview image :param img: (optional) if given, will override the image preview with the one given :type img: np.ndarray """ # self.update_data() try: f_path = self.__TMP if not img: line_qual = int( 360 * (10 ** np.linspace(-0.5, 3.8, 100)[self.data["hs_line_quality"]]) ) t = ( self.data["le_image_title"] if self.data["chb_image_title"] else False ) alignment = ( "left" if self.data["title_alignment"] == 0 else "right" if self.data["title_alignment"] == 2 else "center" ) vis.plot_background(n=line_qual, kwargs=BACKGROUND_KWARGS) vis.plot_foreground( tight=False, kwargs={ "title": t, "alignment": alignment, "fontsize": self.__fontsize * 1.1, }, ) self.savefig( f_path, min(self.data["sb_image_dpi"], 500), "png", quality=6, transparency=True, ) self.centralWidget.l_image.setPixmap( QPixmap(f_path).scaled( np.array(self.centralWidget.l_image.size()) * 1, mode=Qt.SmoothTransformation, aspectMode=Qt.KeepAspectRatio, ) ) except KeyError: pass def resize_image(self): """ Method called by QSignal that generates a resized preview image """ self.centralWidget.l_image.setPixmap( QPixmap(self.__TMP).scaled( self.centralWidget.l_image.size() * 1, mode=Qt.SmoothTransformation, aspectMode=Qt.KeepAspectRatio, ) ) def savefig(self, out, size=None, f_format=None, transparency=None, quality=None): """ Method that outputs the final version of the image into the output folder :param out: absolute path of the output file :param size: (optional) size value converted into dpi for the matplotlib.pyplot.savefig method :param f_format: (optional) ['png' or 'jpeg'] override output file format, default is based on user choice data :param transparency: (optional) override output transparency if file format is 'png', default is based on user choice data :param q: (optional) [1 <-> 12] override jpeg file quality if file format is 'jpeg', default is based on user choice data :type out: str :type size: int :type f_format: str :type transparency: bool :type quality: int """ self.update_data() metadata = METADATA metadata["Creation Time"] = time.ctime() dpi = ( size / (72 / 100 * 5.0) if size else self.data["sb_image_dpi"] / (72 / 100 * 5.0) ) f_format = ( f_format if f_format else "png" if self.data["image_format"] < 2 else "jpeg" ) transparency = ( transparency if transparency else True if self.data["image_format"] == 1 else False ) quality = ( round(np.linspace(0, 95, 12)[quality - 1]) if quality else round(np.linspace(0, 95, 12)[self.data["hs_jpeg_qual"] - 1]) ) plt.savefig( fname=out, dpi=dpi, format=f_format, transparent=transparency, pil_kwargs={"quality": int(round(quality)), "metadata": metadata}, ) def update_data(self): """ Update data dictionary based on UI values """ try: data: DataDict = dict() c_widget: QWidget = self.centralWidget s_c_widget: QWidget = self.settingsUI.centralWidget data["chb_image_title"] = c_widget.chb_image_title.isChecked() data["le_image_title"] = c_widget.le_image_title.placeholderText() data["sb_first_entry_weight"] = c_widget.sb_first_entry_weight.value() data["sb_rolling_window_size"] = c_widget.sb_rolling_window_size.value() data["cob_players_select"] = c_widget.cob_players_select.currentIndex() data["gb_add_auto_party"] = c_widget.gb_add_auto_party.isChecked() data["le_party_color"] = c_widget.le_party_color.placeholderText() data["le_party_name"] = c_widget.le_party_name.placeholderText() data[ "cob_party_starting_alignment" ] = c_widget.cob_party_starting_alignment.currentText() data["rb_average"] = c_widget.rb_party_average.isChecked() data["out_path"] = ( os.path.realpath((s_c_widget.le_output_path.text())) if s_c_widget.le_output_path.text() else os.path.realpath((s_c_widget.le_output_path.placeholderText())) ) data["image_format"] = ( 0 if s_c_widget.rb_png.isChecked() else 1 if s_c_widget.rb_png_transparency.isChecked() else 2 ) data["hs_line_quality"] = s_c_widget.hs_line_quality.value() data["hs_jpeg_qual"] = s_c_widget.hs_jpeg_qual.value() data["sb_image_dpi"] = s_c_widget.sb_image_dpi.value() data["hs_current_scale"] = s_c_widget.hs_current_scale.value() data["hs_legend_h_offset"] = s_c_widget.hs_legend_h_offset.value() data["hs_legend_v_offset"] = s_c_widget.hs_legend_v_offset.value() data["hs_legend_v_offset"] = s_c_widget.hs_legend_v_offset.value() data["hs_legend_stretch"] = s_c_widget.hs_legend_stretch.value() data["hs_scale"] = s_c_widget.hs_scale.value() data["le_party_color"] = c_widget.le_party_color.placeholderText() data["le_party_name"] = c_widget.le_party_name.placeholderText() data["legend_text_alignment"] = ( 0 if s_c_widget.rb_legend_text_left.isChecked() else 1 if s_c_widget.rb_legend_text_center.isChecked() else 2 ) data["le_current_custom"] = s_c_widget.le_current_custom.text() data["current_marker"] = ( 0 if s_c_widget.rb_current_o.isChecked() else 1 if s_c_widget.rb_current_x.isChecked() else 2 if s_c_widget.rb_current_star.isChecked() else 3 if s_c_widget.rb_current_plus.isChecked() else 4 if s_c_widget.rb_current_left.isChecked() else 5 if s_c_widget.rb_current_up.isChecked() else 6 if s_c_widget.rb_current_right.isChecked() else 7 if s_c_widget.rb_current_down.isChecked() else 8 if s_c_widget.rb_current_none.isChecked() else 9 ) data["le_previous_custom"] = s_c_widget.le_previous_custom.text() data["previous_marker"] = ( 0 if s_c_widget.rb_previous_o.isChecked() else 1 if s_c_widget.rb_previous_x.isChecked() else 2 if s_c_widget.rb_previous_star.isChecked() else 3 if s_c_widget.rb_previous_plus.isChecked() else 4 if s_c_widget.rb_previous_left.isChecked() else 5 if s_c_widget.rb_previous_up.isChecked() else 6 if s_c_widget.rb_previous_right.isChecked() else 7 if s_c_widget.rb_previous_down.isChecked() else 8 if s_c_widget.rb_previous_none.isChecked() else 9 ) data["title_alignment"] = ( 0 if s_c_widget.rb_title_left.isChecked() else 1 if s_c_widget.rb_title_center.isChecked() else 2 ) data["player"] = self.current_player_data if "players" in self.data.keys(): data["players"] = self.data["players"] else: data["players"] = dict() self.data = data self.__Final = data["out_path"] except Exception: tr.print_exc() def update_ui(self, first_call=False): """ Override UI values safely :param bool first_call: (optional) Also call the method to update player values ui, default False :type first_call: bool """ self.change_signals_block_state(True) try: c_widget: QWidget = self.centralWidget s_c_widget: QWidget = self.settingsUI.centralWidget current_player: str = c_widget.cob_players_select.currentText() c_widget.chb_image_title.setChecked(self.data["chb_image_title"]) c_widget.cob_players_select.clear() c_widget.cob_players_select.addItem("New Player") for entry in sorted(self.data["players"]): c_widget.cob_players_select.addItem(entry) c_widget.cob_players_select.setCurrentIndex( c_widget.cob_players_select.findText(current_player) ) c_widget.le_image_title.setPlaceholderText( self.data["le_image_title"] if self.data["le_image_title"] else "Party Players Alignment Chart" ) c_widget.sb_first_entry_weight.setValue(self.data["sb_first_entry_weight"]) c_widget.sb_rolling_window_size.setValue( self.data["sb_rolling_window_size"] ) c_widget.gb_add_auto_party.setChecked(self.data["gb_add_auto_party"]) c_widget.cob_party_starting_alignment.setCurrentIndex( c_widget.cob_party_starting_alignment.findText( self.data["cob_party_starting_alignment"] ) ) if self.data["rb_average"]: c_widget.rb_party_average.setChecked(True) else: c_widget.rb_party_cumul.setChecked(True) c_widget.le_party_color.setPlaceholderText(self.data["le_party_color"]) c_widget.le_party_name.setPlaceholderText(self.data["le_party_name"]) if current_player in self.data["players"].keys(): p = self.data["players"][current_player] c_widget.le_player_color.setPlaceholderText(p["Color"]) c_widget.le_player_name.setPlaceholderText(p["Name"]) c_widget.lw_player_entries.clear() for entry in p["Entries"]: c_widget.lw_player_entries.addItem(entry) elif current_player == "New Player": c_widget.le_player_color.setPlaceholderText("Black") c_widget.le_player_name.setPlaceholderText("Player Name") c_widget.lw_player_entries.clear() s_c_widget.rb_png.setChecked(True) if self.data[ "image_format" ] == 0 else s_c_widget.rb_png_transparency.setChecked(True) if self.data[ "image_format" ] == 1 else s_c_widget.rb_jpeg.setChecked( True ) s_c_widget.hs_current_scale.setValue(self.data["hs_current_scale"]) s_c_widget.hs_line_quality.setValue(self.data["hs_line_quality"]) s_c_widget.hs_jpeg_qual.setValue(self.data["hs_jpeg_qual"]) s_c_widget.sb_image_dpi.setValue(self.data["sb_image_dpi"]) s_c_widget.hs_legend_h_offset.setValue(self.data["hs_legend_h_offset"]) s_c_widget.hs_legend_v_offset.setValue(self.data["hs_legend_v_offset"]) s_c_widget.hs_legend_stretch.setValue(self.data["hs_legend_stretch"]) s_c_widget.hs_scale.setValue(self.data["hs_scale"]) s_c_widget.le_current_custom.setText(self.data["le_current_custom"]) s_c_widget.le_output_path.setText(self.data["out_path"]) s_c_widget.rb_current_o.setChecked(True) if self.data[ "current_marker" ] == 0 else s_c_widget.rb_current_x.setChecked(True) if self.data[ "current_marker" ] == 1 else s_c_widget.rb_current_star.setChecked( True ) if self.data[ "current_marker" ] == 2 else s_c_widget.rb_current_plus.setChecked( True ) if self.data[ "current_marker" ] == 3 else s_c_widget.rb_current_left.setChecked( True ) if self.data[ "current_marker" ] == 4 else s_c_widget.rb_current_up.setChecked( True ) if self.data[ "current_marker" ] == 5 else s_c_widget.rb_current_right.setChecked( True ) if self.data[ "current_marker" ] == 6 else s_c_widget.rb_current_down.setChecked( True ) if self.data[ "current_marker" ] == 7 else s_c_widget.rb_current_none.setChecked( True ) if self.data[ "current_marker" ] == 8 else s_c_widget.rb_current_custom.setChecked( True ) s_c_widget.rb_previous_o.setChecked(True) if self.data[ "previous_marker" ] == 0 else s_c_widget.rb_previous_x.setChecked(True) if self.data[ "previous_marker" ] == 1 else s_c_widget.rb_previous_star.setChecked( True ) if self.data[ "previous_marker" ] == 2 else s_c_widget.rb_previous_plus.setChecked( True ) if self.data[ "previous_marker" ] == 3 else s_c_widget.rb_previous_left.setChecked( True ) if self.data[ "previous_marker" ] == 4 else s_c_widget.rb_previous_up.setChecked( True ) if self.data[ "previous_marker" ] == 5 else s_c_widget.rb_previous_right.setChecked( True ) if self.data[ "previous_marker" ] == 6 else s_c_widget.rb_previous_down.setChecked( True ) if self.data[ "previous_marker" ] == 7 else s_c_widget.rb_previous_none.setChecked( True ) if self.data[ "previous_marker" ] == 8 else s_c_widget.rb_previous_custom.setChecked( True ) s_c_widget.le_previous_custom.setText(self.data["le_previous_custom"]) s_c_widget.rb_title_left.setChecked(True) if self.data[ "title_alignment" ] == 0 else s_c_widget.rb_title_center.setChecked(True) if self.data[ "title_alignment" ] == 1 else s_c_widget.rb_title_right.setChecked( True ) s_c_widget.rb_legend_text_left.setChecked(True) if self.data[ "legend_text_alignment" ] == 0 else s_c_widget.rb_legend_text_center.setChecked(True) if self.data[ "legend_text_alignment" ] == 1 else s_c_widget.rb_legend_text_right.setChecked( True ) s_c_widget.le_output_path.setText(self.__Final) self.current_player_data = ( self.data["player"] if "player" in self.data.keys() else None ) if first_call: self.update_player() except KeyError: pass except Exception: tr.print_exc() self.change_signals_block_state(False) def set_color(self, in_le): """ Method that verifies if the color value entered in the given QLineEdit is valid, if so update QLabel placeholder value and change focus :param in_le: A QLineEdit widget to test :type in_le: QLineEdit """ colors = ( "black", "blue", "brown", "cyan", "darkblue", "darkcyan", "darkgray", "darkgrey", "darkgreen", "darkmagenta", "darkred", "gray", "grey", "green", "lightblue", "lightcyan", "lightgray", "lightgrey", "lightgreen", "lightmagenta", "lightred", "magenta", "orange", "red", "white", "yellow", "pink", "", ) # FIXME: Some colors return an error, they need to be checked and possibly extended if in_le is self.centralWidget.le_player_color: if self.centralWidget.le_player_color.text().lower() in colors: if self.centralWidget.le_player_color.text(): self.centralWidget.le_player_color.setPlaceholderText( self.centralWidget.le_player_color.text().capitalize() ) self.centralWidget.le_player_color.setText("") self.centralWidget.le_player_entry.setFocus() elif in_le is self.centralWidget.le_party_color: if self.centralWidget.le_party_color.text().lower() in colors: if self.centralWidget.le_party_color.text(): self.centralWidget.le_party_color.setPlaceholderText( self.centralWidget.le_party_color.text().capitalize() ) self.centralWidget.le_party_color.setText("") self.centralWidget.le_player_name.setFocus() self.update_data() def set_player_color(self): """ Check and change the current player name in the GUI """ self.set_color(self.centralWidget.le_player_color) def set_party_color(self): """ Check and change the party name in the GUI """ self.set_color(self.centralWidget.le_party_color) def set_name(self, le_name): """ Method that checks a given QLineEdit for a new inputted value, then changes focus :param le_name: A QLineEdit that may have a new text value :type le_name: QLineEdit """ if le_name is self.centralWidget.le_player_name: if self.centralWidget.le_player_name.text(): self.centralWidget.le_player_name.setPlaceholderText( self.centralWidget.le_player_name.text() ) self.centralWidget.le_player_name.setText("") self.centralWidget.le_player_color.setFocus() elif le_name is self.centralWidget.le_party_name: if self.centralWidget.le_party_name.text(): self.centralWidget.le_party_name.setPlaceholderText( self.centralWidget.le_party_name.text() ) self.centralWidget.le_party_name.setText("") self.centralWidget.le_party_color.setFocus() self.update_data() def set_party_name(self): """ Method that updates the party name if a new entry was given """ self.set_name(self.centralWidget.le_party_name) def set_player_name(self): """ Method that updates the current player name if a new entry was given """ self.set_name(self.centralWidget.le_player_name) def set_title(self): """ Method that updates the current party name if a new entry was given """ if self.centralWidget.le_image_title.text(): self.centralWidget.le_image_title.setPlaceholderText( self.centralWidget.le_image_title.text() ) self.centralWidget.le_image_title.setText("") self.centralWidget.le_player_name.setFocus() self.update_data() def add_entry(self, entry=None): """ Method that verifies if new alignment entry is valid, if so adds it to the QListWidget :param entry: (optional) Overrides new entry value, default is None :type entry: str """ alignement = ( "LG", "LB", "NG", "NB", "CG", "CB", "LN", "TN", "CN", "LE", "LM", "NE", "NM", "CE", "CM", "L", "N", "T", "C", "G", "B", "E", "M", ) if not entry: entry = self.centralWidget.le_player_entry.text().upper() if entry in alignement: self.centralWidget.lw_player_entries.addItem(entry) self.centralWidget.le_player_entry.clear() self.update_data() def del_entry(self): """ Method that deletes the selected entry (or the last if none is selected) of the QListWidget """ if self.centralWidget.lw_player_entries.currentItem(): self.centralWidget.lw_player_entries.takeItem( self.centralWidget.lw_player_entries.currentRow() ) else: self.centralWidget.lw_player_entries.takeItem( self.centralWidget.lw_player_entries.count() - 1 ) def clear_entries(self): """ Method that clear all current QListWidget entries """ self.centralWidget.lw_player_entries.clear() def run_generate_image(self): """ Method that tries to render the output image of the graph and update the progress bar """ if self.finished: self.finished = False self.update_data() data: DataDict = self.data players: Dict[str, PlayerDict] = data["players"] line_qual = int( 360 * (10 ** np.linspace(-0.5, 3.8, 100)[data["hs_line_quality"]]) ) tasks = 0 for play in players: player: PlayerDict = players[play] tasks += ( max( 0, data["sb_first_entry_weight"] - data["sb_rolling_window_size"], ) ) * 2 tasks += (len(player["Entries"]) - 1) * 2 tasks += ( max(0, data["sb_first_entry_weight"] - data["sb_rolling_window_size"]) ) * 2 + 2 self.progress_update(True, 0, 60 + tasks + line_qual, 1, 0) try: self.centralWidget.pb_generate.setEnabled(False) worker: Worker = Worker( (self.data, self.__Final, self.__TMP, self.__fontsize) ) worker.moveToThread(self.loop) worker.finished.connect(self.get_generated_image, Qt.QueuedConnection) worker.signal.connect(self.progress_update, Qt.QueuedConnection) worker.finished.connect(worker.deleteLater, Qt.QueuedConnection) self.loop.started.connect(worker.generate_image, Qt.QueuedConnection) self.loop.finished.connect(self.loop.quit, Qt.QueuedConnection) self.loop.start() self.loop.setPriority(QThread.LowPriority) self.update() self.workers.append(worker) except Exception: tr.print_exc() self.centralWidget.pb_generate.setEnabled(True) def get_generated_image(self): """ Method called when a QThread worker is done. Assign the image and return to the "default" GUI look """ self.update() self.finished = True self.loop.quit() time.sleep(0.2) self.image = self.__TMP self.progress_update(fullstop=True) self.centralWidget.pb_generate.setEnabled(True) self.update() PATH = __file__.split("__init__")[0] def launch(): """ Instantiate a new QAplication and mainWindow classes and takes stdin input for savefile name :param app: (optional) If given, will not generate a new instance but use the one given, default is None :param win: (optional) if given, will not generate a new instance but use the one given, default is None :type app: PySide2.QtWidgets.QApplication :type app: PySide2.QtWidgets.QMainWindow """ global app try: app = QApplication(sys.argv) app.setApplicationName("partyAlignmentChartTool") app.setApplicationDisplayName("Party Alignment Chart Tool") app.setApplicationVersion("1.0.2") app.setOrganizationName("Julien Alardot") win = MainWindow(input("Savefile Name: ")) win.resize(0, 0) app.setWindowIcon(QIcon(os.path.join(PATH, "UI", "AlignmentTool.icon"))) app.connect(app, SIGNAL("lastWindowClosed()"), app, SLOT("quit()")) app.setActiveWindow(win) app.focusWindow() app.exec_() app.deleteLater() del app except Exception: tr.print_exc()
AlignR
/AlignR-2.0.5.tar.gz/AlignR-2.0.5/AlignmentReporter/UI/py/__init__.py
__init__.py
from PySide2 import QtCore qt_resource_data = b"\ \x00\x00%>\ \x89\ PNG\x0d\x0a\x1a\x0a\x00\x00\x00\x0dIHDR\x00\ \x00\x02\x00\x00\x00\x02\x00\x08\x06\x00\x00\x00\xf4x\xd4\xfa\ \x00\x00\x00\x04sBIT\x08\x08\x08\x08|\x08d\x88\ \x00\x00\x00\x09pHYs\x00\x00\x0b\x13\x00\x00\x0b\x13\ \x01\x00\x9a\x9c\x18\x00\x00 \x00IDATx\x9c\xed\ \xddy\x98\x5ce\x99\xf7\xf1o'!\x1b\x09K\x02\x02\ J\xd8\x12\x04\xc2\xbe\x08\x08((\x8c\x22\xa0\x80\x0a.\ \xb8\xa3\xa33\xa3(0\x8e\x8a0\xea\xa02\x88\xe22\ \x8e\xa3\xa2\x82\x0a.\x0c\x0a\x8c\x08\x0a\x8a\xb8!;J\ \x22\xfb\x0eB\x12BB\x84@\xd2I\xba\xdf?\x9e\xea\ 7E\xe8\xa4\xbb\xba\xce9\xf7Y\xbe\x9f\xeb\xfa]\x1d\ \x01\xab\xef\xaa\xd4\xa9\xfb\xae\xb3<\x07$I\x92$I\ \x92$I\x92$I\x92$I\x92$I\x92$I\x92\ $I\x92$I\x92$I\x92$I\x92$I\x92$\ I\x92$I\x92$I\x92$I\x92$I\x92$I\ \x92$I\x92$I\x92$I\x92$I\x92$I\x92\ $I\x92$I\x92$I\x92$I\x92$I\x92$\ I\x92$I\x92$I\x92$I\x92$I\x92$I\ \x92$I\x92$I\x92$I\x92$I\x92$I\x92\ $I\x92$I\x92$I\x92$I\x92$I\x92$\ I\x92$I\x92$I\x92$I\x92$I\x92$I\ \x92$I-=\xd1\x05H\x92TQ\xa3\x81\x99\xc0\xd6\ \xc0\xf3\x81uI}\xf5i`\x1ep\x1f0\x1bX\x14\ U\xa0$I\xca\xc6\x86\xc0\x07\x80\xcb\x81\xc5@\xff\x10\ \xe9#\x0d\x01g\x02\xfb\x04\xd4+I\x92\xba\xb0=p\ \x1e\xd0\xcb\xd0M\x7fM\xb9\x138\x0e\x98Pl\xf9\x92\ $\xa9\x13\xeb\x03\xdf\x04V\xd0]\xe3_5\x8f\x00\xef\ \xc4C\xf1\x92$\x95\xce\xcb\x81\xbf\x91m\xe3_5\xbf\ \x01\xa6\x15\xf5\x84$I\xd2\x9a}\x00XN\xbe\xcd\x7f\ \xf3I\xc3\x86$I\x0a\xf4I\x8ai\xfc\xed\xe9\x05\ \x8e.\xe0\xb9I\x92\xa4A\x9cJ\xf1\xcd\x7f \xcb\x81\ \xc3\xf3\x7f\x8a\x92$\xa9]d\xf3\x1f\xc83\xc0ny\ ?QI\x92\x94\x94\xa1\xf9\x0f\xe4^`R\xbeOW\ \x92$\x95\xa9\xf9\x0f\xe4\xab\xb9>cI\x92\x1a\xae\x8c\ \xcd\xbf\x9ft>\xc0\x0e9>oI\x92\x1a\xab\xac\xcd\ \x7f \xe7\xe7\xf7\xd4]\x81Hj\xba\xc9\xa4\xb5\xcd7\ X\xe5\xe7\x94\xd6\xbf\x9bL:\x16\xd9\xfesm`<\ 0f5\x19E\xfa\xf0\xea#\xad\x9e\xb6\x82\xf4mf\ )\xb0\xa4\xed\xe7b\xe0\xa9\xb6<\x01,l\xcb\xe3\xa4\ \xeb\xa3\xe7\xb5\xe2\x0dU\x94\xa5S\x81\x93\xa3\x8b\x18B\ \x1f\xb0\x15\xf0@\x1e\x0f>&\x8f\x07\x95T\x0a\x1b\x02\ \x9b\x91V\x19\x1b,\x1b\x01\xe3r\xfa\xdd=\xa4;\xa5\ \x8dn\xfbg\x93\xbb|\xcc\xa5\xc0\x1c\xd2\xcal\x03y\ \x18x\x10\xb8\xbf\x95\xc7\xba\xfc\x1dj\x86*4\x7fH\ \xc3\xf4\xdbH\xf5f\xce=\x00R\xb5M%\xdd\x8a\xf4\ \x85\xad\x9f\x03\x99\x01\xac\x13XW\x94\xc5\xc0=\xc0]\ m\xb9\x03\xb8\x0dX\x10X\x97\xca\xa3*\xcd\x7f\xc0M\ \xc0\xeey<\xb0\x03\x80T\x0d\x13Iw#\xdb\x11\xd8\ \xa9\xf5sG\xd2\xb7|\x0d\xcf\x5c\xd2 \xf0W\xe0\x16\ \xe0/\xc0,\xd2\xbd\xdb\xd5\x0cUk\xfe\x90\x0e\xa7m\ H:$\x96)\x07\x00\xa9|&\x93&\xfe=\x81=\ \x80]I\xc7\x01GE\x16US}\xc0\xdd\xa4oY\ 7\xb4r#\xe9\x9c\x04\xd5K\x15\x9b\xff\x80W\x02\x97\ G\x17!)[cHM\xfe_\x80\xef\x02\xb7\x92\xfd\ mGMgY\x01\xcc\x06\xce\x02\xde\x05l\x8b_\x96\ \xaa\xae\xecg\xfb\x0f\x95\x0fe\xff\x92H*\xdax`\ \x7f\xe0\x14\xd2D\xff$\xf1\x1f.f\xe8\xcc\x07.\x06\ N \x0dl\xed'7\xaa\xdc\xaa\xde\xfc\xfb\x81/d\ \xfe\xaaH\xca\xddX\xe0e\xc0g\x80?\x90\xced\x8f\ \xfe01\xddg\x11\xf03\xe0\x83\xa4s3TNu\ h\xfe\xfd\xc0\xb7\xb3~a$\xe5c\x07\xe0x\xe0R\ \xd2\xb1\xe4\xe8\x0f\x0f\x93\x7f\x1e\x01\xce!\xdd\xceu=\ T\x06ui\xfe\xfd\xc0\x0f2~m$ed\x12\xf0\ :\xe0l\xd2\xb5\xe9\xd1\x1f\x16&6\xcbI{{>\ \x0a\xccD\x11\xea\xd4\xfc\xfb\x81\x1fe\xfb\xf2H\xea\xc6\ \xa6\xc0?\x03\x97\x91V\xb5\x8b\xfe\x800\xe5\xcd]\xa4\ c\xb8\xfb\xe1\x95\x1cE\xa8[\xf3\xef\xc7\x01@\x0a\xb7\ \x1d\xf0\xef\xa4K\xc6\xa2?\x10L5\xf3(\xf05\xe0\ \xe5x\x22a\x1e\xea\xd8\xfc\xfbq\x00\x90BlCj\ \xfa\xb3\x88\xff\x100\xf5\xca\x5c\xd2-_\xf7\xc1\xcb\x0c\ \xb3P\xd7\xe6\xdf\x8f\x03\x80T\x98\xe9\xa4\x05Cn!\ ~\xc37\xcd\xc8\xfd\xc0gIk\x0e\xa8sun\xfe\ \xfd8\x00H\xb9Z\x0fx/\xf0G\xe27v\xd3\xec\ \x5c\x03\xfc\x13\xb0>\x1a\x8e\xba7\xff~\x1c\x00\xa4\xcc\ \x8d\x01\x0e#\xdds\xfb\x19\xe27rc\xda\xf3\x0cp\ \x1ep\x00Z\x9d&4\xff~\x1c\x00\xa4\xcc\xcc\x00N\ '\xddZ6z\xc36f8\xb9\x13\xf80\xe9\xee\x8f\ J\x9a\xd2\xfc\xfbq\x00\x90\xba\xb2\x16i\x91\x96_\x93\ n\x00\x13\xbdA\x1b3\x92<C\xbag\xc4\x9e4[\ \x93\x9a\x7f?\x0e\x00\xd2\x88L'}\xdb\x9fK\xfcF\ lL\x96\xb9\x0ex3i\xb8m\x92\xa65\xff~\x1c\ \x00\xa4\x8e\x1cDZ\xab\xdd;\xeb\x99\xba\xe7a\xe0$\ `\x0a\xf5\xd7\xc4\xe6\xdf\x8f\x03\x804\xa4\x09\xc0{\xf0\ \x9a}\xd3\xcc<\x05|\x19\xd8\x9czjj\xf3\xef\xc7\ \x01@Z\xadMH\xd7P\xcf'~C5&:\xcb\ HW\x0f\xecH}4\xb9\xf9\xf7\xe3\x00 =\xc7\x0c\ \xe0\x9b\xb8\x16\xbf1\x83\xa5\x0f\xb8\x08\xd8\x9djkz\ \xf3\xef\xc7\x01@\xfa\xffv#]\xbb\xef\xf1}c\x86\ \x97K\xa9\xe6\x95\x036\xff\x14\x07\x005\xde\xfe\xc0\xe5\ \xc4o\x8c\xc6T5\x97\x90\x06\xe8*\xb0\xf9\xaf\x8c\x03\ \x80\x1a\xeb\xa5\xc0o\x88\xdf\x08\x8d\xa9K.\x04fR\ ^6\xffg\xc7\x01@\x8d\xb3\x1fi\xe1\x9e\xe8\x8d\xcf\ \x98:f9p6\xb0\x19\xe5b\xf3\x7fn\x1c\x00\xd4\ \x18/\x06\xae ~\xa33\xa6\x09Y\x02\x9cA\xba!\ V4\x9b\xff\xe0q\x00P\xed\xcd\x04.&~c3\ \xa6\x89\x99\x0f|\x80\xb8\x95\x05m\xfe\xabO.\x03\xc0\ \xa8<\x1eT\xea\xd04\xe0;\xc0-\xc0k\x82k\x91\ \x9aj*\xf0\x15`6ph\xc1\xbf\xfbT\xe0\xe4\x82\ \x7fg\xe39\x00(\xd2\xfa\xa4]\x8fw\x02\xef\x04F\ \xc7\x96#\x09x!\xe9j\x81\x9f\xb7\xfe\x9c7\x9b\x7f\ \x10\x07\x00E\x18\x03\x1c\x07\xdc\x03\xfc+0>\xb6\x1c\ I\x838\x84\xb47\xe0t`\xed\x9c~\x87\xcd?\x90\ \x03\x80\x8av0iW\xff\x97I{\x00$\x95\xd7Z\ \xc0\xbf\x01\xb7\x01\xaf\xcd\xf8\xb1m\xfe\xc1\x1c\x00T\x94\ mH\xbb\x14/\x03\xb6\x0b\xaeERg\xa6\x01?!\ m\xc3[f\xf0x6\xff\x12p\x00P\xde&\x03\x9f\ '\xdd\xa1\xef\x90\xe0Z$ug\xe0\xb0\xc0\x89\x8c\xfc\ \x9c\x1d\x9b\x7fI8\x00(OG\x91v\x1d\x9eH\xdc\ \xa5E\x92\xb25\x914\xd4_\x0b\xec\xda\xe1\xff\xd7\xe6\ _\x22\x0e\x00\xca\xc3t\xd2\xae\xfe\xf3\x81\x17\x04\xd7\x22\ )\x1f\xbb\x03\xd7\x01\x9f\x06\xc6\x0e\xe3\xbf\xb7\xf9\x97\x8c\ \x03\x80\xb24\x0e\xf8w\xd2.\xc2\x83\x83k\x91\x94\xbf\ 1\xc0\xc7\x81\x1b\x81=\xd6\xf0\xdf\xd9\xfcK\xc8\x01@\ Y\xd9\x07\xf83\xf0)\xbc\xacOj\x9a\x1d\x80kH\ \x8d~\xd5\xc3}6\xff\x92r\x00P\xb7\xd6&]\xd2\ \xf7{`\xdb\xe0Z$\xc5\x19Mj\xf4\x7fb\xe5\x95\ >6\xff\x12\x1b\x13]\x80*\xed \xe0,`\x8b\xe0\ :$\x95\xc7\xee\xc0M\xc0/\x81\xc3\x83k\xd1\x1a\xb8\ \x07@#\xb1\x0e\xf0-\xd2\x1d\xfb\xb6\x88-ER\x09\ \x8d\xc7\xe6_z\xee\x01P\xa7^\x06\x9cC\xf9\xee!\ .I\xea\x80{\x004\x5c\xe3\x813\x81_c\xf3\x97\ \xa4\xcas\x0f\x80\x86cW\xe0\x5c`ft!\x92\xa4\ l\xb8\x07@k2\x0a\xf8\x18i\xc5/\x9b\xbf$\xd5\ \x88{\x00\xb4:\x9b\x00\xdf\x07\x0e\x8c.D\x92\x94=\ \xf7\x00h0\x07\x93\x16\xf5\xb1\xf9KRM9\x00\xa8\ \xddZ\xc0\x19\xc0\xa5\xc0\xf3\x82k\x91$\xe5\xc8C\x00\ \x1a\xb0\x19\xe9\xe6={E\x17\x22I\xca\x9f{\x00\x04\ \xf0\x0f\xa4\x95\xbbl\xfe\x92\xd4\x10\x0e\x00\xcd\xd6CZ\ \xa7\xfb\x17\xc0\xd4\xe0Z$I\x05\xf2\x10@s\xad\x07\ |\x0fxut!\x92\xa4\xe29\x004\xd3\xf6\xc0\xc5\ \xc0\xf4\xe8B$I1<\x04\xd0<\xaf&\xdd\xae\xd3\ \xe6/I\x0d\xe6\x00\xd0,\x1f\x01.\x02&G\x17\x22\ I\x8a\xe5!\x80f\x18G\xba}\xef[\xa2\x0b\x91$\ \x95\x83\x03@\xfd=\x8ft\xbc\x7f\xef\xe8B$I\xe5\ \xe1\x00Po\xdb\x00\x97\x01[F\x17\x22I*\x17\xcf\ \x01\xa8\xaf\x97\x00Wc\xf3\x97$\x0d\xc2\x01\xa0\x9e\xde\ \x00\x5c\x01L\x89.D\x92TN\x0e\x00\xf5\xf3a\xe0\ \x87\xa4\x13\xff$I\x1a\x94\xe7\x00\xd4G\x0f\xf0y\xe0\ \x84\xe8B$I\xe5\xe7\x00P\x0f\xa3\x81\xb3\x80wF\ \x17\x22I\xaa\x06\x07\x80\xea\x1bG\xda\xe5\x7fdt!\ \xca\xcd2`\x1e0\x17X0H\x9e\x04\x9ej\xfb\xf9\ \x14\xf0\x0c\xb0\x04X\xda\xf6s9\xb0\x02\xe8kK?\ \xe9P\xe0@\xc6\x00k\x01c[\x99\xd0\x96I\xa4E\ \xa4&\x01\xeb\x90\xee'1\x90\xa9\xc0\x06\xadl\xd8\xfa\ \xe9!F\xa9\xc4\x1c\x00\xaam\x12ie\xbf\x03\xa3\x0b\ \xd1\x88=\x05\xdc\x0b<\x08<\x0c<\xd4\xca\xc3\xc0\x1c\ R\xd3_Hj\xd4y\x19\x18\x06\x00z3z\xcc\xd1\ \xa4A`c\xe0\x05\xadl\x0aL\x036oe\x1ai\ \xd8\x90\x14\xc0\x01\xa0\xba\xd6%\xdd\xc6\xd7\x05~\xca\xef\ i\xe0\x0e\xe0\xf6V\xee\x06\xee!5\xfe\xc7\x02\xeb\xca\ \xd3\x0a\xd2\x003\x07\xf8\xf3j\xfe\x9bQ\xa4!`:\ 0\x03\xd8\x9a\xb4v\xc5\xb6\xc0V\xa4!BRN\x1c\ \x00\xaai=\xe0r\xe0E\xd1\x85\xe8Y\x96\x91\x1a\xfd\ -\xad\xcc\x02\xfeJ\xfav\x9f\xe77\xf8\xaa\xea\x03\x1e\ h\xe5\xcaU\xfe\xddX\xd20\xb0C+;\x02\xbb\x90\ \x06\x06I\x19p\x00\xa8\x9e)\xa4k\xfcw\x8b.\xa4\ \xe1\x96\x93\x9a\xfb\x0d\xc0\xf5\xad\x9f\xb3\xc8n\x17z\xd3\ \xf5\x92^\xcfY\xab\xfc\xf3)\xa4A`\x8f\xb6\xb8\xd8\ \x954\x02\x0e\x00\xd52\x15\xf8\x15\xe9\x03P\xc5ZH\ ZY\xf1\x8f\xad\x5cO:\xd1N\xc5Z@\xda[\xd0\ \xbe\xc7\xe0y\xa4Ca/\x06\xf6\x01\xf6\x04\xc6\x17_\ \x9aT-=\xd1\x05h\xd8\xa6\x92>\xf4v\x8a.\xa4\ !\x16\x02\xbfee\xb3\xb9\x15w\xe3W\xc58\xd2\x9e\ \x81\x97\x02/\x03\xf6\x05&\x86V$u\xe7\xc7\xc0\x1b\ \xb3~P\x07\x80jX\x97\xd4\x84\xdc\xed\x9f\x9fe\xa4\ o\xf8\xbf \x1db\xb9\x99\x95g\xc6\xab\xda\xc6\x02{\ \x01\xafhe\x0f\xbcDQ\xd5\xe2\x00\xd0P\x13I'\ \xfc\xed\x1b]H\x0d\xcd\x05~\x06\x5c\x0a\xfc\x1a\xf8{\ l9*\xc8\x14\xe0\x95\xc0\xa1\xc0\xc1\xa4\xbdkR\x99\ 9\x004\xd08\xe0\x12\xe0\xa0\xe8Bj\xe4N\xd2\xda\ \x09\x17\x01\xd7\xe2\xb7\xfc\xa6\x1bM:o\xe0\x08\xe0p\ \xd2%\x89R\xd9\xe42\x00\xa8\xbc\xc6\x00\xffG:\xee\ l\xba\xcb]\xc0\xa7I\x97\x92Ik\xb23\xe9\xbdr\ ;\xf1\xef[c\x06\xf2#\xd4\x18=\xc0\xb9\xc4\xbf\xe9\ \xaa\x9c9\xc0\x17\x80\xdd;|\xed\xa5\x01;\x03\xa7\x93\ \xd6)\x88~?\x9bf\xc7\x01\xa0A>O\xfc\x1b\xae\ \x8aY\x02\xfc/p\x18^\xe2\xaa\xec\xf4\x90\xae(\xf8\ \x0e\xe9~\x0b\xd1\xefs\xd3\xbc8\x004\xc4\x09\xc4\xbf\ \xd9\xaa\x96\xdb[\xaf\x9b's)o\x13\x81\xb7\x03\x7f\ \xfe}o\x9a\x13\x07\x80\x06x\x13+\xef\xd0f\xd6\ \x9c^\xd2Fq\xc0H^h)\x033\x81/\x01O\ \x10\xbf=\x98z\xc7\x01\xa0\xe6\x0e$\xdd\xb25\xfa\x8d\ V\xf6\xcc\x07>K\xba\xbb\x9cT\x06\x13\x81\xf7\x90\xee\ \xff\x10\xbd}\x98z\xc6\x01\xa0\xc6\xb6e\xe5-_\xcd\ \xe0\xb9\x03\xf8G\xd2}\xe9\xa5\xb2:\x90\xb4\xb6\x84{\ \xf2L\x96q\x00\xa8\xa9\xa9\xa4\xdb\xc3F\xbf\xc1\xca\x9a\ \x9b\x80\xa3p\xe56U\xcbv\xa4\x93\x06\xdd\xabg\xb2\ \x88\x03@\x0d\xad\x05\x5cE\xfc\x9b\xab\x8c\xb9\x9a\xb4J\ \x9bTe/ \x9d'\xf04\xf1\xdb\x94\xa9n\x1c\x00\ j\xe8\xdb\xc4\xbf\xb1\xca\x96\x1b\x81C\xbayQ\xa5\x12\ \xda\x88ty\xaf\x83\x80\x19I\x1c\x00j\xe6x\xe2\xdf\ Te\xcam\xc0\x91]\xbd\xa2R\xf9m\x0c|\x85\xb4\ fE\xf46g\xaa\x13\x07\x80\x1a9\x80t\xf7\xb9\xe8\ 7U\x192\x07x\x1f.\xdc\xa3f\xd9\x0c\xf8.\xb0\ \x82\xf8m\xd0\x94?\x0e\x005\xb1)\xe9.t\xd1o\ \xa8\xe8<\x03\x9c\x0aL\xea\xee\xe5\x94*m'\xd2\xdd\ >\xa3\xb7GS\xee8\x00\xd4\xc0X\xe0\x1a\xe2\xdfL\ \xd1\xb9\x18\xd8\xb2\xcb\xd7R\xaa\x93\xc3\xf0\x06Df\xf5\ q\x00\xa8\x81\xaf\x13\xffF\x8a\xcc]\xc0\xab\xba~\x15\ \xa5zZ\x0b\xf80\xdeo\xc0<7\x0e\x00\x15w\x0c\ \xf1o\xa2\xa8,\x03>\x03\x8c\xef\xfaU\x94\xea\xef\x05\ \xc0\xfd\xc4o\xb7\xa6<\xc9e\x00\xf0\xc4\xabb\xcc\x00\ \xfe'\xba\x88 7\x00\xc7\x92\x96I\x954\xb4\xf7\x01\ \x9bG\x17\xa1\xfasu\xb5\xfc\x8d%Mo\x93\xa3\x0b\ )X/\xf0Q`ol\xfe\xd2p\x9d\x0a\x9c\x1c]\ \x84\x9a\xc1=\x00\xf9;\x0d\xd8=\xba\x88\x82\xcd\x02\xde\ \x0a\xfc%\xba\x10\xa9Bl\xfeR\x8d\xbc\x8af\xdd\x14\ \xa4\x0f\xf8\x1ci\xaf\x87\xa4\xe1;\x95\xf8\xed\xd7\x947\ \x9e\x04X1\xa3Hw\xb0\x8b~\xe3\x14\x95\xb9\xc0+\ 3y\xe5\xa4f\xb1\xf9\x9b\xa1\xe2I\x80\x15s4\xf0\ \xc2\xe8\x22\x0ar%\xf0\x16\xe0\xd1\xe8B\xa4\x8aq\xb7\ \xbfTC\xb7\x10?5\xe6\x9d>\xe0?\xf0dRi\ $\xfc\xe6o\x86\x1b\xf7\x00T\xc8.\xc0\x8e\xd1E\xe4\ \xecI\xe0m\xc0E\xd1\x85H\x15\xe47\x7f\x85s\x00\ \xc8\xc7\xeb\xa3\x0b\xc8\xd9\x1d\xc0\x11\xa4\xa5K%u\xc6\ \xe6\xafRp\xd7m>\x8e\x88. GW\x92\xae\xed\ \xb7\xf9K\x9d\xb3\xf9\xab4\x1c\x00\xb2\xb7603\xba\ \x88\x9c\x9c\x0d\x1c\x0c<\x11]\x88TA6\x7f\x95\x8a\ \x03@\xf6v\x04z\xa2\x8b\xc8\xc1\xc9\xc0\xbbH\xeb\xfa\ K\xea\x8c\xcd_\xa5\xe39\x00\xd9\xdb>\xba\x80\x8c\xad\ \x00\xde\x0b|;\xba\x10\xa9\xa2l\xfe*%\x07\x80\xec\ M\x89. CK\x817\x03?\x8d.D\xaa(\x9b\ \xbfJ\xcb\x01 {\x93\xa2\x0b\xc8\xc8b\xe0p\xe0\xd7\ \xd1\x85H\x15e\xf3W\xa99\x00do\x5ct\x01\x19\ X\x0c\x1c\x02\xfc.\xba\x10\xa9\xa2l\xfe*=O\x02\ \xcc^\xd5\xcf\x90\x7f\x8at\x13#\x9b\xbf426\x7f\ U\x82\x03@\xf6\x1e\x8b.\xa0\x0b\x03\xdf\xfc\x7f\x1f]\ \x88TQ6\x7fU\x86\x03@\xf6\xfe\x16]\xc0\x08\xf5\ \x02\xaf\xc5\xe6/\x8d\x94\xcd_\x95\xe2\x00\x90\xbd\x9b\xa2\ \x0b\x18\x81>\xe0\x18\xe0\xf2\xe8B\xa4\x8a\xb2\xf9\xabr\ \x1c\x00\xb27\x0fx \xba\x88\x0e\xbd\x0f\xb8 \xba\x08\ \xa9\xa2l\xfe\xaa$\x07\x80|\x5c\x15]@\x07>\x0d\ \x9c\x15]\x84TQ6\x7fU\x96\x03@>\xce\x8f.\ `\x98~\x00\x9c\x12]\x84TQ6\x7fU\x9a\x03@\ >\xae\x00\x1e\x8f.b\x08\xbf'\xad\xed/\xa9s6\ \x7fU\x9e\x03@>\x96Q\xee\xdd\xea\x0f\x92\xce\xf8_\ \x1a]\x88TA6\x7f\xd5\x82\x03@~\xce\x04\x9e\x8e\ .b\x10K\x80#\x81\xf9\xd1\x85H\x15d\xf3Wm\ 8\x00\xe4\xe71\xe0\xbf\xa3\x8b\x18\xc4\xfb\xa8\xe6\xa5\x8a\ R4\x9b\xbf\xa4a[\x1b\xb8\x1f\xe8/I\xbe\x91\xeb\ \xb3\x95\xea\xebT\xe2\xb7_\xd3\xdc\xfc\x88\x1c\xb8\x07 \ _\x8b\x81\xf7F\x17\xd1r\x1bp|t\x11R\x05\xf9\ \xcd_\xb5\xe4\x00\x90\xbf_\x02\xa7\x07\xd7\xf0w\xd2I\ \x7fe<'A*3\x9b\xbf\xa4\xae\x8c\x02.&f\ \xd7Q/\xf0\x8a\xfc\x9f\xa2T;\xee\xf67eI.\ \x87\x00T\x9c\xb5I\xeb\x03\x14\xf9\xa6Y\x0e\x1c]\xc4\ \x93\x93j\xc6\xe6o\xca\x14\x07\x80\x1a\x18\x07\xfc\x94b\ \xde0\xcf\x90.\xf7\x93\xd4\x19\x9b\xbf)[\x1c\x00j\ b4\xf0I\xd2\xb7\xf3\xbc\xde,\x7f\x03\xf6.\xe8\xf9\ Hub\xf37e\x8c\x03@\xcd\xec\x0b\xdcM\xf6o\ \x94K\x80\xe7\x15\xf8<\xa4\xba\xb0\xf9\x9b\xb2\xc6\x01\xa0\ \x86\xc6\x02\xef\x07\xe6\xd0\xfd\x1b\xe4A\xe0M\xc5\x96/\ \xd5\x86\xcd\xdf\x949\x0e\x0056\x11x;p%\xd0\ Ggo\x8c\xd9\xa4\xb5\x06\xc6\x15^\xb5T\x0f6\x7f\ S\xf6\xe42\x00\xf4\xe4\xf1\xa0\xea\xca\xf3\x81\xfd\x80\xbd\ \x80\xdd\x81\x8d\x81)\xc0\xfa\xa4K\xfa\xe6\x90\x16\xf5\xb9\ \x1a\xb8\x14\xf8sL\x99R-x\x9d\xbf\xaa\xe0\xc7\xc0\ \x1b\xa3\x8b\x90\xa4\xba\xf0\x9b\xbf\xa9J\x5c\x0aX\x922\ \xe27\x7f5\x9e\x03\x80\xa4\xa6\xb1\xf9K8\x00Hj\ \x16\x9b\xbf\xd4\xe2\x00 \xa9)l\xfeR\x1b\x07\x00I\ M`\xf3\x97V\xe1\x00 \xa9\xee>\x89\xcd_z\x0e\ \x07\x00Iuv\x1c\xf0\x89\xe8\x22\xa42r\x00\x90T\ W/\x07\xce\x8c.B*+\x07\x00Iu\xb4>\xf0\ }\xd2\xdd7%\x0d\xc2\x01@R\x1d\x9dNZV[\ \xd2j8\x00H\xaa\x9b\xed\x81c\xa3\x8b\x90\xca\xce\x01\ @R\xdd\x9c\x84\x9fm\xd2\x90\xdcH$\xd5\xc9\x86\xc0\ Q\xd1EHU\xe0\x00 \xa9N\xde\x00\xac\x15]\x84\ T\x05\x0e\x00\x92\xea\xe45\xd1\x05HU\xe1\x00 \xa9\ .\xc6\x00\xfbF\x17!U\x85\x03\x80\xa4\xba\xd8\x0e\x98\ \x18]\x84T\x15\x0e\x00\x92\xeab\xeb\xe8\x02\xa4*q\ \x00\x90T\x17.\xfc#u\xc0\x01@R]\xac\x1b]\ \x80T%\x0e\x00\x92\xea\xa2'\xba\x00)'}y<\ \xa8\x03\x80\xa4\xbax:\xba\x00)'K\xf3xP\x07\ \x00Iu1/\xba\x00)'\x8b\xf2xP\x07\x00I\ uq_t\x01RN\x1e\xc9\xe3A\x1d\x00$\xd5\xc5\ l\xa0?\xba\x08)\x07w\xe7\xf1\xa0\x0e\x00\x92\xeab\ \x11pkt\x11R\x0en\xc9\xe3A\x1d\x00$\xd5\xc9\ \xe5\xd1\x05H\x19\x9b\x87{\x00$iH?\x89.@\ \xca\xd8\x15y=\xb0\x03\x80\xa4:\xb9\x1a\xb8+\xba\x08\ )C\x17\xe4\xf5\xc0\x0e\x00\x92\xea\xa4\x1f\xf8jt\x11\ RF\xe6\x01\x97\xe6\xf5\xe0\x0e\x00\x92\xea\xe6,\xe0\xd1\ \xe8\x22\xa4\x0c|\x15\xe8\xcd\xeb\xc1G\xe7\xf5\xc0\x92\x14\ d9\xb0\x008<\xba\x10\xa9\x0b\xf3\x817\x93\xd3*\ \x80\xe0\x1e\x00I\xf5t\x0epUp\x0dR7>\x0a\ \xfc=\xcf_\xe0\xcd3$\xd5\xd54\xe0f`jt\ !R\x87.\x03\x0e\xc9\xfb\x97\xb8\x07@R]=\x04\ \x1c\x0d,\x8b.D\xea\xc0\xbd\xc0[\x8b\xf8E\x9e\x03\ \xa9\xce\xee\x03\xee\x00^\x8b_xT~s\x81\x03\ \x81\x87\x8b\xf8en\x10\x92\xea\xee|\xe0u\xc0\x92\xe8\ B\xa45\xb8\x17x\x09\x05\xaec\xe1\x00 \xa9\x09.\ \x06\xf6\xc5;\x06\xaa\x9c.\x03\xf6\xc4E\xac$)7\ \x93H\xd7V/'-\x1adLd\x1e\x03\x8eE\x92\ T\x98\x1dH\x87\x06V\x10\xdf\x04L\xf32\x178\x05\ X\x87@^\x06(\xa9\xc96\x07\xde\x06\x1c\x01\xec\x8a\ \x9f\x89\xca\xcf<\xd2\x8d}. -\xef\x9b\xdb\x0a\x7f\ \xc3\xe5\x9b]\x92\x92\xa9\xc0\xee\xc0L\xd2\x1a\x02\xeb\x01\ \x13\xf0\x5c)u\xa6\x8f\xb4z\xdf\x22\xe0\x11\xd2\xad|\ o!\xa7[\xfaJ\x92$I\x92$I\x92$I\x92\ $I\x92$I\x92$I\x92$I\x92$I\x92$\ I\x92$I\x92$I\x92$I\x92$I\x92$I\ \x92$I\x92$I\x92$I\x92$I\x92$I\x92\ $I\x92$I\x92$I\x92$I\x92$I\x92$\ I\x92$I\x92$I\x92$I\x92$I\x92$I\ \x92$I\x92$I\x92$I\x92$I\x92$I\x92\ $I\x92$I\x92$I\x92$I\x92$I\x92$\ I\x92\xea\xa4'\xba\x80A\x8c\x02\xb6\x03v\x02f\x00\ \x1b\x03\xeb\x01c)g\xbd*\xaf>`\x09\xf0\x04\xf0\ \x10p\x1bp=07\xb2(I*\x83\xb24\xd4\x09\ \xc0\x11\xc0\xeb\x80\x83\x80uc\xcbQ\xcd\xcd\x06.\x04\ \xbe\x0b\xdc\x13\x5c\x8b$5\xd2\x06\xc0i\xc0\x02\xa0\xdf\ \x98\x82\xd3\x07\x5c\x0c\xec\x8a$\xa9\x10\xa3\x80\x0f\x01\x8b\ \x88o\x02\xc6\xac\x00\xbe\x85{\x9e$)W\x9b\x00\xbf\ %\xfeC\xdf\x98U\xf3\x10\xf0b$I\x99\xdb\x11x\ \x98\xf8\x0fzcV\x97^\xe0\x18$\xa9\xe6F\x17\xf8\ \xbbv\x04~\x03lT\xe0\xef\x94:5\x1a8\x12x\ \x14\xb81\xb8\x16I\xcaMQ\x03\xc0\xc0n\x7f\x9b\xbf\ \xaa\xa0\x078\x14\xb8\xb5\x15I\xaa\x9d\x22.\x03\x1cE\ \xfa\xe6\xff\xd2\x02~\x97\x94\xa5\xa7I\xe7\x04\xdc\x12]\ \x88$emT\x01\xbf\xe38l\xfe\xaa\xa6\x89\xc0\x8f\ I\xebTHR\xad\xe4}\x08`\x03\xd2\x82+\xe3r\ \xfe=R^6\x00\xc6\x00\xbf\x8a.D\x92\xb2\x94\xf7\ \x1e\x80\x13\x81ur\xfe\x1dR\xdeN\x00\xa6G\x17!\ IY\xcas\x0f\xc0\x04\xe0\x07\xb8\xfbT\xd57\x1a\x98\ B\xda\x9b%I\xb5\x90\xe7\x1e\x80#\x80\xf5s||\ \xa9Ho\x046\x8f.B\x92\xb2\x92\xe7\x00\xf0\xba\x1c\ \x1f[*\xda\x18\xe0\xdd\xd1EHRV\xf2\xba\x0cp\ \x14\xe9\x06?\xae\xad\xae:\xb9\x1f\xd82\xba\x08I\xca\ B^{\x00\xb6\xc3\xe6\xaf\xfa\xd9\x02\xd8%\xba\x08I\ \xcaB^\x03\xc0N9=\xae\x14\xed\xa0\xe8\x02$)\ \x0by\x0d\x003rz\x5c)\x9aw\x0b\x94T\x0by\ \x0d\x00\x1b\xe7\xf4\xb8R\xb4\x9d\xa3\x0b\x90\xa4,\xe45\ \x00\xac\x97\xd3\xe3J\xd16\xa7\xd8\xbbhJR.\xf2\ \x1a\x00\xc6\xe6\xf4\xb8R\xb41\xa4\xe5\x81%\xa9\xd2\xf2\ \x1a\x00\x8a\xb8\xcb\xa0\x14\xc5\xe5\xad%U^\x11w\x03\ \x94\xea\xc6\xedFR\xe5\xf9A&unIt\x01\x92\ \xd4-\x07\x00\xa9s\x0b\xa2\x0b\x90\xa4n9\x00H\x9d\ y\x1cx2\xba\x08I\xea\x96\x03\x80\xd4\x99\xbfF\x17\ IYp\x00\x90:smt\x01\x92\x94\x05\x07\x00\ \xa93WD\x17 IYp\x00\x90\x86\xefq\xe0\xaa\ \xe8\x22$)\x0b\x0e\x00\xd2\xf0\xfd\x00X\x16]\x84$\ e\xc1\x01@\x1a\x9e\x15\xc0\x97\xa3\x8b\x90\xa4\xac8\x00\ H\xc3s\x0epOt\x11\x92\x94\x15\x07\x00ih\x0b\ \x81\x8fG\x17!IYr\x00\x90\x86\xf6~`nt\ \x11\x92\x94%\x07\x00i\xcd\xbeF:\xf9O\x92j\xc5\ \x01@Z\xbd\xb3\x81\x0fD\x17!Iyp\x00\x90\x06\ w6\xf0n\xa0/\xba\x10I\xca\x83\x03\x80\xf4\x5c6\ \x7fI\xb5\xe7\x00 =\x9b\xcd_R#8\x00H+\ \xd9\xfc%5\x86\x03\x80\x94\xd8\xfc%5\xca\x98\xe8\x02\ \xa4\x12\xb0\xf9K\xc5\x99\x04\x1c\x00\xec\x07\xec\x04l\x05\ l\xdc\xfa\xe7=\xc0\x12`>\xf0\x000\x1b\xb8\x06\xf8\ \x15\xf0H@\xad\x1a\x81\x0b\x80~c*\x90\xef\xe0\x9e\ 0)o=\xc0\xa1\xc0\x85\xa4\x06\xdf\xe9v\xda\x07\x5c\ M\x1a\xd4'\x14\x5c\xbb:\xe4\x00`\xaa\x10\x9b\xbf\x94\ \xbf#\x81[\xc9n\xbb\x9d\x0b\x9c\x00\x8c-\xf2Ih\ \xf8\x1c\x00L\xd9c\xf3\x97\xf2\xb5\x05p\x05\xf9m\xc3\ \xb7\x03\xfb\x16\xf5d4|\x0e\x00\xa6\xcc\xb1\xf9K\xf9\ z=\xb0\x88\xfc\xb7\xe5\x15\xc0\xc9\xa4C\x0c*\x09\x07\ \x00S\xd6\xd8\xfc\xa5|\x9dL\xf1\xdb\xf5\x0f\xf1\x90@\ i8\x00\x982\xc6\xe6/\xe5\xeb\x0c\xe2\xb6\xef\xff\x03\ \xd6\xca\xff)j(\x0e\x00\xa6l\xb1\xf9K\xf9\xfa\x04\ \xf1\xdb\xf9\xf7r\x7f\x96\x1a\x92\x03\x80)Sl\xfeR\ \xbe\x8e!~;\x1f\xc8\xf19?W\x0d\xc1\x01\xc0\x94\ %6\x7f)_\xdb\x03O\x13\xbf\xad\x0fd)i\x81\ !\x0d\xc1\x0fF\xd5\xd9\xd9\xb8\xc2\x9f\x94\xa7\xb1\xc0\xb9\ \x94kq\x9e\xb1\xc07\xf1\xca\x80!9\x00\xa8\xael\ \xfeR\xfe>\x07\xec\x12]\xc4 \xf6\x02\xde\x10]D\ Sy\x08\xc0D\xc6\xdd\xfeR\xfe\x0e'~[_S\ f\xe7\xf7\xd4\xeb\xc1\x0fI\xd5\xcd\xd9\xf8\xcd_\xca\xdb\ 4\xd2\xa0]f\xdb\x03/\x8b.\xa2\xcc\x1c\x00T'\ 6\x7f)\x7f\xe3H{y\xa7D\x172\x0c\xc7D\x17\ Pf\x0e\x00\xaa\x0b\x9b\xbfT\x8c\xaf\x03{F\x171\ L\x87\xe1\xc9\x80\xab\xe5\x00\xa0:\xb0\xf9K\xc58\x0e\ xGt\x11\x1d\xd8\x08\xd8&\xba\x88\xb2r\x00P\xd5\ \xd9\xfc\xa5b\xbc\x02\xf8Bt\x11#P\xc6\xab\x14J\ \xc1\x01@Uf\xf3\x97\x8a\xb13\xe9\xb8\xff\x98\xe8B\ F`zt\x01e\xe5\x00\xa0\xaa\xb2\xf9K\xc5\x98\x06\ \x5c\x0aL\x8e.d\x846\x88.\xa0\xac\x1c\x00TE\ 6\x7f\xa9\x18S\x80\xcb\x80\xe7G\x17\xd2\x85q\xd1\x05\ \x94\x95\x03\x80\xaa\xc6\xe6/\x15c\x1d\xe0\x97\xa4\xeb\xe9\ \xablIt\x01e\xe5\x00\xa0*\xb1\xf9K\xc5\x98\x08\ \x5c\x02\xec\x11]H\x06\xe6D\x17PV\x0e\x00\xaa\x0a\ \x9b\xbfT\x8c\x09\xc0E\xc0K\xa2\x0b\xc9\xc8\x9d\xd1\x05\ \x94U\x15\xcf\xe8T\xf3\xd8\xfc\xa5b\xacM\xfa\xe6\x7f\ @p\x1dY\xba!\xba\x80\xb2r\x00P\xd9\xd9\xfc\xa5\ b\xacC:\xdb\x7f\xdf\xe8B2t;\xf0pt\x11\ e\xe5!\x00\x95\x99\xcd_*\xc6\x86\xc0\xaf\xa9W\xf3\ \x07\xf8\xdf\xe8\x02\xca\xcc=\x00*+\x9b\xbfT\x8c\xad\ Hg\xfb\xcf\x88.$c+\x80oE\x17Qf\xee\ \x01P\x19\xd9\xfc\xa5b\xec\x06\x5cM\xfd\x9a?\xc0y\ \xc0\x83\xd1E\x94\x99\x03\x80\xca\xc6\xe6/\x15\xe3p\xe0\ \xb7\xa4\x1b\xe6\xd4\xcd\xd3\xc0)\xd1E\x94\x9d\x03\x80\xca\ \xc4\xe6/\x15\xe3$\xe0B`Rt!9\xf98~\ \xfb\x0fs\x01\xd0oL\x07\xf9\x0e\x0e\xa4R\xde&\x90\ v\x8dGo\xefy\xe6\x12\xa0'\xab\x17\xac\xce<\x09\ Pe1\x95t\x0d\xf2\x93\xd1\x85H55\x83\xf4\xe5\ l\xe7\xe8Br\xf4\x08\xf0v\xd2 \xa0!\xf8\x8dK\ e\xf1\x1a\xe0Z`\xeb\xe8B\xa4\x1a:\x92\xb4 N\ \x9d\x9b\x7f?\xf0\x0e\xe0\xf1\xe0:*\xc3\x01@e\xb2\ \x1d\xe9C\xea\xf5\xd1\x85H51\x0e\xf8\x22\xf0S`\ \xdd\xe0Z\xf2\xf6e\xe0\x8a\xe8\x22\xe49\x00\xa6\xfb\xfc\ \x170\x16I#\xb5\x03\xf0\x17\xe2\xb7\xe5\x222\x0bo\ \xfb\xdb1\xf7\x00\xa8\xac\xde\x0f\x5c\x07\xcc\x8c.D\xaa\ \x98\x1e\xe08\xe0z`\xa7\xe0Z\x8a\xb0\x148\xa6\xf5\ S\x1dp\x00P\x99\xed\x0c\xdcH\xfa0\xf3\xac^i\ h3\x80\xabH\xbb\xc3\xc7\xc7\x96R\x98\x13\x81[\xa2\ \x8b\xd0J\x1e\x020Y\xe7*`:\x92\x063\x0a8\ \x81\xb4\x00N\xf4\xb6Zd~\x9c\xc5\x8b\xa7l9\x00\ \x98<\xb2\x188\x1e\x18\x8d\xa4\x01\xbb\x91\xae\xa0\x89\xde\ >\x8b\xce\x9d\xc0\xe4\x0c^\xbf\xc6\xf2\x10\x80\xaad\x22\ p&\xe9\xd8\xe6\x8b\x82k\x91\xa2\xadK:Y\xf6:\ `\xcf\xe0Z\x8a\xb6\x048\x0a\xd7\x0d\xe9\x8a\x03\x80\xaa\ hW\xe0\x1a\xe0\x7fH\x0b\x08IM\xd2C\xba\xde\xfd\ v\xd2\xc9\xb2M\xdc#\xf6A\xd2\x15\x0e*!\x0f\x01\ \x98\xa2\xb2\x80t\x92\xa0\xabZ\xaa\x09^J:16\ z\xbb\x8b\x8c\xb7\xf8-9\x07\x00Stn'\xadv\ &\xd5\xd1\xb6\xc0O\x88\xdf\xce\xa2\xf3'\xbc\xde\xbf\xf4\ \x1c\x00LT\xfe@\xfa\x96$\xd5\xc1\x16\xc09\xc0r\ \xe2\xb7\xad\xe8<\x02<\xbf\x9b\x17S\xcf\xe69\x00\xaa\ \x9b}I\xf78\xbf\x02\xd8;\xb8\x16i\xa4\xa6\x01\xff\ \x0d\xdcA\xba\xb9M\x13\x8f\xf3\xb7\xeb\x05^G\x1a\x02\ Tr\xee\x010e\xc9\xe5\xc0\xfeH\xd50\x9dt\x8c\ \xbb\x97\xf8m\xa7L9\xb6\x9b\x17U\xc5r\x000e\ \xcb\x1fHw\x1ctEA\x95\xd1\xae\xc0y\xb8\xab\x7f\ \xb0\x9c\xd1\xc5\xeb\xaa\x00\x0e\x00\xa6\xac\xb9\x1dx/0\ \x01)V\x0f\xf0j\xe07\xc4o\x17e\xcd\x058\xb4\ W\x8e\x03\x80){\x1e'}\xb3\xd8\x12\xa9X\xeb\x01\ \x1f\x22\x1d\xdf\x8f\xde\x0e\xca\x9ckqP\xaf$\x07\x00\ S\x95\xac\x00~\x0e\x1c\x81k\x09(_{\x00\xdf&\ -i\x1d\xfd\xbe/{\xee\x076\x1a\xd1\xab\xacp\x0e\ \x00\xa6\x8ay\x048\x8dt\xcd\xb5\x94\x85\x0dI\xf7\xaf\ \xf8\x0b\xf1\xef\xef\xaad\x01\xb0\xfdH^l\x95\x83\x03\ \x80\xa9z\xae'-\xb3\xba!Rg&\x00\xaf\x07.\ \xc6\xb3\xf9;\xcdb`\x9f\xce_r\x95\x89\x03\x80\xa9\ K\x96\x93.%|\x17\xe9\xd8\xad4\x98\xb1\xa4\x13\xfa\ \xce#\xdd\xa0&\xfa}[\xc5,\x03\x0e\xe9\xf4\x85W\ \xf98\x00\x98:\xa6\x974\x0c\xbc\x0f\xd8\x185\xdd\xda\ \xa4o\xfa\xe7\x01\x0b\x89\x7f\x7fV9}\xc0[:{\ \xf9\xd5\xad\xbc.\xaf\xb8\x80\xb4j\x93TW\xfd\xa4\xc3\ \x04\x97\xb4rsl9*\xc8f\xa4o\xa9\x87\x02\x07\ \x01\xe3c\xcb\xa9\x8d\xe3\x81/E\x17\xd14\x0e\x00R\ 6\x1e%-?|y\xeb\xe7\xbc\xd8r\x94\x91\x09\xa4\ \xe5\xa5\x0f\x06^\x05\xcc\x8c-\xa7\x96>\x05|2\xba\ \x88&r\x00\x90\xb2\xd7\x0f\xcc&-\xf0\xf2\x1b\xe0w\ \xa43\x9bU~\xe3\x80\x17\x01\x07\x02/\x07\xf6\xc2\xbb\ \xcf\xe5\xe9?\x81\x8fE\x17\xd1T\x0e\x00R\xfe\xfa\x81\ \xdb\x80?\x92\x96$\xfe\x13pWhE\x1a0\x95t\ \xd6\xf9~\xa4o\xfa{`\xc3/\xca\x17\x81\x13\xa2\x8b\ h2\x07\x00)\xc6\x02\xd29\x04\xd7\x92\xce\x1f\xb8\x09\ x0\xb4\xa2\xfa\x9b\x0c\xecF\xfa\x86\xff\x22R\xb3\xdf\ *\xb4\xa2\xe6\xfa\x1a\xf0/\xd1E4\x9d+\x9fI1\ \xa6\x00\xafle\xc0\xe3\xc0\x9f\x81Ym\xb9\x0dx\xaa\ \xf0\xea\xaam\x0c\xe9\xaez\xdb\x03;\x03;\xb5~n\ \x81\xeb\xca\x97\xc1\xb7Hkl(\x98\x03\x80T\x1eS\ I\xc7\x9e\x0f\x5c\xe5\x9f?L\xba\x89\xd1m\xc0\xddm\ \xb9\x8ft\xedt\x13\x8d\x026%}\x83\x9f\xde\xcav\ \xa4U\x1c\xa7\x03k\xc5\x95\xa65\xf8\x1a\xa9\xf9\xf7G\ \x17\x22\x07\x00\xa9\x0a6m\xe5\xa0U\xfey\x1fi\xf9\ \xe2\x07\xda\xf2\xb7\xb6<B\xba\x1a\xa1jC\xc2h\xd2\ \x0a\x8c\x1b\xb7\xb2)0\xad-\x9b\x91\xbe\xcd\x8f\x0d\xaa\ O#\xe31\xff\x92q\x00\x90\xaak\xe0[\xf0\xa6\xa4\ \x13\xd8V\xe7\x09`.\xf0\x18\xe9\xdc\x83\xc7[YH\ Z\xb5nQ+\x8b\x81\xa7[Y\x0c,%-~\xd4\ \xdb\xfa\xf3\x0a\xd2\xd0\xd1\xd7\xfasO\xab\x86\xd1m\x19\ C\xba6~<\xe9d\xba\x81?OneR\xdb\x9f\ \xa7\x0c\x92\x8d\x80\x0dZ\x8f\xab\xfa8\x0d8)\xba\x08\ =\x9b\x03\x80T\x7f\xeb\xb5\xb2Mt!j\xa4O\x00\ \xff\x11]\x84\x9e\xcb\x01@\x92\x94\x87~\xe0D\xd2\xae\ \x7f\x95\x90\x03\x80$)k\xcbH7\xd0:7\xba\x10\ \xad\x9e\x03\x80$)KO\x93\xd6\x81\xf9Et!Z\ 3\x07\x00IRV\x16\x90n\x94tMt!\x1a\x9a\ \x03\x80$)\x0b\x0f\x90\xee\x94xkt!\x1a\x1e/\ \xb5\x91$u\xebz`ol\xfe\x95\xe2\x00 I\xea\ \xc6O\x81\x03\x809\xc1u\xa8C\x0e\x00\x92\xa4\x91\xfa\ <\xf0z\xd2\x89\x7f\xaa\x18\xcf\x01\x90$uj9i\ M\xffoD\x17\xa2\x91s\x00\x90$u\xe21\xe0(\ \xe0\xb7\xd1\x85\xa8;\x0e\x00\x92\xa4\xe1\xba\x198\x02x\ 0\xba\x10u\xcfs\x00$I\xc3\xf1#`?l\xfe\ \xb5\xe1\x00 IZ\x93>\xe0#\xc0\x9b\xf0d\xbfZ\ \xf1\x10\x80$iu\xe6\x02o\x06\xae\x8c.D\xd9s\ \x00\x90$\x0d\xe6\xb7\xa4o\xfd\x8fF\x17\xa2|x\x08\ @\x92\xd4\xae\x1f\xf8O\xe0@l\xfe\xb5\xe6\x1e\x00I\ \xd2\x80\x05\xc0\xdb\x80\x9fG\x17\xa2\xfc9\x00H\x92\x00\ \xae\x02\xde\x0a<\x1c\x5c\x87\x0a\xe2!\x80\xea\xf9,N\ \xe7\x92\xb2\xb3\x0c8\x89\xb4\xcb\xdf\xe6\xdf \x0e\x00\xd5\ r\x0a\xf0q\xe0\xd5\xc0\xbf\x91\x96\xe3\x94\xa4\x91\xba\x1b\ \xd8\x178\x8dt\xb9\x9f\x1a\xc4\x01\xa0:N\x01>\xdd\ \xfas?p\x06\xf0R\x5c\x94C\xd2\xc8\x9c\x0d\xecJ\ \xba\x95\xaf\x1a\xc8\x01\xa0\x1a\xda\x9b\x7f\xbb?\x01;\x03\ ?.\xb6\x1cI\x156\x07x\x0d\xf0.\xe0\xa9\xe0Z\ \x14\xc8\x01\xa0\xfcV\xd7\xfc\x07<\x01\xbc\x11x\x07n\ \xcc\x92\xd6\xec\x07\xc0\xf6\xc0\xcf\xa2\x0bQ<\x07\x80r\ \x1b\xaa\xf9\xb7\xfb.\xb0\x0b\xf0\x87\xfc\xca\x91TQ\xf3\ \x80\xd7\x02\xc7\x90.\xf5\x93\x1c\x00J\xac\x93\xe6?\xe0\ \x1e`\x7f\xe0\xc3\xc0\xd2\xcc+\x92TE?$}\xeb\ \xbf0\xba\x10\x95\x8b\x03@9\x8d\xa4\xf9\x0f\xe8\x03>\ \x0f\xec\x06\xdc\x90YE\x92\xaa\xe6~\xe0\x10\xd2Z\xfe\ \xf3cKQ\x199\x00\x94O7\xcd\xbf\xdd\xad\xc0\xde\ \xa4\xbbx-\xc9\xe0\xf1$U\xc3\x0a\xe0\x0b\xa4o\xfd\ \x97\x05\xd7\xa2\x12s\x00(\x97\xac\x9a\xff\x80\x15\xc0\xe7\ HW\x0a\xfc>\xc3\xc7\x95TN7\x02/\x02\xfe\x15\ o\xdd\xab!8\x00\x94G\xd6\xcd\xbf\xdd\x9d\xa4s\x03\ \xde\x0b,\xcc\xe9wH\x8a\xb3\x10\xf8\x00\xb0\x17ps\ p-\xaa\x08\x07\x80r\xc8\xb3\xf9\x0f\xe8\x07\xbe\x09l\ \x0b\x9c\x9b\xf3\xef\x92T\x8c>\xe0[\xc0\x0b\x81\xaf\x92\ \xf6\xfaI\xc3\xe2\x00\x10\xaf\x88\xe6\xdfn\x1e\xe9\x86\x1f\ \x07\x02\xb7\x15\xf8{%e\xebZ\xd27\xfe\xf7\xe0I\ ~\x1a\x01\x07\x80XE7\xffvW\x92\xce\x0d8\x11\ \xf8{P\x0d\x92:7\x07x'\xf0b\xbc\xd2G]\ p\x00\x88\x13\xd9\xfc\x07,\x03\xce\x04\xb6\x01\xce!\x1d\ &\x90TN\x8b\x81O\x013p{U\x89]@z\ s\x9a\xc1s\xf2\xc8_\xda\x5c\xedF\xba'x\xf4\xeb\ c\x8cY\x99\xe5\xc0Y\xc0&H\x19r\x0f@\xf1\xca\ \xf0\xcd\x7fun\x02\x0e\x00\x8e\x04\xee\x8a-E\x12\xe9\ :\xfe]H\xc7\xf9\x1f\x0d\xaeE5\xe3\x00P\xac2\ 7\xffv\x17\x013\x81\x7f\x22\x1do\x94T\xac\xdf\x93\ \x86\xf1C\x80\xd9\xb1\xa5H\x9d\xf1\x10\xc0sS\xd6\xdd\ \xfeC\x99\x08\x9cD\xba\xeb`\xf4khLE\x85\xb4\ \xb4\x00\x00\x04\xd4IDAT\xdds\x0d\xf0\x0fH\x15\ \xe6\x00\xf0\xecT\xb5\xf9\xb7[\x1f\xf8\x0c\xf0$\xf1\xaf\ \xa71u\xcbM\xc0aH5\xe0\x00\xb02uh\xfe\ \xed\xa6\x02\xa7\x03O\x11\xff\xda\x1aS\xf5\x5c\x07\x1c\x01\ \xf4 \xd5\x84\x03@J\xdd\x9a\x7f\xbb\x0dH{\x04\x16\ \x11\xff:\x1bS\xb5\x5c\x09\x1c\x84TC\x0e\x00\xf5n\ \xfe\xed\xd6#=\xd7\xf9\xc4\xbf\xe6\xc6\x94=?#-\ \xe0#\xd5V\xd3\x07\x80\xa64\xffv\x13\x81\xf7\x03\xf7\ \x12\xff\xfa\x1bS\xa6,\x01\xbe\x03\xec\x88\xd4\x00M\x1e\ \x00\x9a\xd8\xfc\xdb\x8d\x06\x8e\x06\xae'\xfe\xef\xc2\x98\xc8\ \xcc\x05>\x09l\x84\xd4 M\x1d\x00\x9a\xde\xfcW\xb5\ \x0fp>i\xc9\xe1\xe8\xbf\x1bc\x8a\xcal\xe0X`\ \x1cR\x035q\x00\xb0\xf9\xaf\xde4\xe04\xd2\x9d\x08\ \xa3\xff\x9e\x8c\xc9#\xbd\xc0\x8fH\x8b\xf7H\x8d\xd6\xb4\ \x01\xc0\xe6?<c\x817\x03\xbf#\xfe\xef\xcc\x98,\ r\x1f\xf01\xe0yH\x02\x9a5\x00\xd8\xfcGf{\ \xe0\x8bx\xf5\x80\xa9^zI\xcbe\xbf\x0a\x97S\x97\ \x9e\xa3)\x03\x80\xcd\xbf{c\x81\xa3\x80_\x00+\x88\ \xff;5fu\xb9\x09\xf8 \xb0!\x92V\xab\x09\x03\ \x80\xcd?{/\x00>\x0c\xdcB\xfc\xdf\xaf1\xfd\xa4\ \x9ba}\x01/\xe1\x93\x86\xad\xee\x03\x80\xcd?\x7f;\ \x03g\x00\x0f\x12\xff\xf7m\x9a\x95\x85\xc0\xd9\xc0\xc1\xc0\ \x18$u\xa4\xce\x03\x80\xcd\xbfX=\xc0\xbe\xc0WH\ \xf7C\x8f\xfe\xfb7\xf5\xcc\x22\xe0\xfb\xa4\x1b\xf2\x8cE\ \xd2\x88\xd5u\x00\xb0\xf9\xc7\x1a\x05\xec\x07\x9cI:\xfb\ :\xfa\xfd`\xaa\x9d\xc7\x81\xef\x91n\xc63\x1eI\x99\ \xa8\xe3\x00`\xf3/\x9f]I+\xad\xdd\x00\xf4\x11\xff\ \x1e1\xe5\xcf]\xa4c\xfa\xfb\x93V\xad\x94\x94\xb1\xba\ \x0d\x006\xff\xf2\xdb\x04x7p!\xde\xa1\xd0\xacL\ /p\x15\xf0\x11`;$\xe5\xee|\xe27\xfc\xacb\ \xf3\xaf\x9e1\xc0K\x80SI\xf7[\xf7\xf2\xc2f\xe5\ v\xd29#\x87\x01\x93\x90T\xa8\xef\x11\xff!\x90E\ l\xfe\xf5\xb0>p8\xf0%\xd2%\x86\x1e.\xa8W\ \x1e\x00\xce%\xed\x01\xda\x0cI\xa1\xbeB\xfc\x87B\xb7\ \xb1\xf9\xd7\xd7\x06\xa4\x13\xbf\xce\x00\xfe\x04,%\xfe\xfd\ f\x86\x9f[\x81o\x00o\x016G\xd2\x88\xe4u\x8d\ \xebC9=nQN\x01>\x1d]\x84r3\x9f\xb4\ \x94\xebE\xad\xff=\x1e\xd8\x03\xd8\x0b\xd8\xb3\x95-B\ *\xd3\xaa\x16\x90n-}]\xeb\xe75\xc0c\xa1\x15\ I5\xd1\x93\xd3\xe3\x1e\x06\xfc,\xa7\xc7\xce\x9b\xcd_\ \x90n\xee\xb2\x1b\xe9J\x83\x81\x9f[\x91\xdf6\xa3t\ Y\xde,\xd2\x92\xbb\x03\x0d\xff\xde\xd0\x8a\xa4\x1a\xcb\xeb\ \xc3l#\xd2\x12\x9aUc\xf3\xd7\x9a\xac\x03\xec\xb0J\ f\x92\xde\xef\x1a\xbe%\xa4\xdd\xf8\xb3V\xc9\xa3\x91E\ IM\x93\xe7\xb7\x99Y\xa4\x0f\xc8\xaa\xb0\xf9k\xa4\xd6\ \x05^\x08l\xd3\xfa\xb95\xb0e+M\xbdMl/\ \xe9\xdb\xfb]\xc0\xdd\xad\x9f\x03y\x88t\x22\xa6\xa4@\ y\xaes\xfdS\xaa3\x00\xd8\xfc\xd5\x8dE\xa4\xdd\xd5\ \xd7\x0f\xf2\xef\xd6&\x0d\x02\x9b\x03\x9b\xae\x92MH{\ \x0f\xa6R\xadC\x0b\xbd\xa4\xe3\xf0\x0f\xb7\xf2P\xdb\xcf\ \x81??B\xba\xfcRRI\xe5\xf9\xa13\x9d4\xed\ \x97\xfd\x83\xcd\xe6\xafhcH\xb7\x98\x1d\x18\x06\xa6\xb4\ \xb2~+\xeb\x00\x93W\xc9\xf8V\xc6\xb5\xfd\x1c\xdd\x96\ Q\xad\xac\x00\x96\xaf\x92e\xad\x9f\xbd\xc0\x93\xc0S\xad\ \xac\xfa\xe7\x85\xa4\x13&\x1f[\xe5\xe7\xdf\xf3y\x19$\ \xd5\xc9E\xc4_2\xb4\xa6x\xa9\x9f$I9\xd8\x85\ \xf2\xae\xc2f\xf3\x97$)G_'\xbe\xd9\xdb\xfc%\ I*\xd8d\xcau\xebV\x9b\xbf$I\x05\xd9\x1dx\ \x06\x9b\xbf$I\x8ds\x04\xe9\xccc\x9b\xbf$I\x0d\ s4\xe9\xd2\xa3\xa2\x9b\xffG\x8bxr\x92$i\xf5\ \x0e ]O\x5cD\xe3_\x0a\x1c[\xc8\xb3\x92$I\ C\xda\x14\xf8\x15\xf96\xff\xfb\x80\x17\x17\xf5\x84$I\ \xd2\xf0\xbd\x95\xb4lh\x96\x8d\xbf\x17\xf8\x220\xa9\xc0\ \xe7!I\x92:4\x1e\xf8g\xe0v\xbak\xfc\xcf\x00\ \xdf\x04f\x14[\xbe$I\xea\xd6^\xc0\xe9\xc0\xcd\x0c\ \xef\x8a\x81\x85\xa4\xe5\x86\x8f%\xdd\x91M\x92$\x0dC\ \x99o\xd43\x91t\xaf\xf5-I7J\x99@j\xfa\ \x8bH\xf7\x0d\x1f\xb8\xcdh\x7fT\x81\x92$I\x92$\ I\x92$I\x92$I\x92$I\x92$I\x92$I\ \x92$I\x92$I\x92$I\x92$I\x92$I\x92\ $I\x92$I\x92$I\x92$I\x92$I\x92$\ I\x92$I\x92$I\x92$I\x92$I\x92$I\ \x92$I\x92$I\x92$I\x92$I\x92$I\x92\ $I\x92$I\x92$I\x92$I\x92$I\x92$\ I\x92$I\x92$I\x92$I\x92$I\x92$I\ \x92$I\x92$I\x92$I\x92$I\x92$I\x92\ $I\x92$I\x92$I\x92$I\x92$I\x92$\ I\x92$I\x92*\xef\xff\x01\x05\xa3\x8b\xdeK\xbc\x80\ b\x00\x00\x00\x00IEND\xaeB`\x82\ \x00\x00\x0b+\ \x89\ PNG\x0d\x0a\x1a\x0a\x00\x00\x00\x0dIHDR\x00\ \x00\x01\x00\x00\x00\x01\x00\x08\x06\x00\x00\x00\x5cr\xa8f\ \x00\x00\x00\x09pHYs\x00\x00\x0e\xc4\x00\x00\x0e\xc4\ \x01\x95+\x0e\x1b\x00\x00\x00 cHRM\x00\x00z\ r\x00\x00\x80\xeb\x00\x00\xf5\x8d\x00\x00\x84\xec\x00\x00q\ \x90\x00\x00\xf6\x89\x00\x00;\x1d\x00\x00\x16G^\xee\x0e\ Z\x00\x00\x0a\xb1IDATx\xda\xec\xdd\xddo\x15\ \xf4\x1d\xc7\xf1rl\x8f-\xad\x80<\xa5\xb4\x14L)\ \x04\x1f\x22\x88\x05\xa7&\x14\x11\x10'\xf1\x02\xd0\xa0Y\ \x80\x0eC\x88\x9a\xb1 \x12\x05\xd4\x18Bp\x12\x8c\xba\ ,8\x17\x82h\x14\x17\xc2\x05\xc1\xf9\x84B1\x19\x04\ ATt1\x80\xed\x82\x08\x94\x82\xb4\x04k{Z\xda\ \xee\x8a\xc4l\xba(\xb4\xd0\xd3\xef\xeb\xe2\xf5\x0f\xfc\xda\ \xcf\xfb\xa2=\xbf\xf3\xcbhkk\xcb\x00br\x08 \ \x00\x80\x00\x00\x02\x00\x08\x00 \x00\x80\x00\x00\x02\x00\x08\ \x00 \x00\x80\x00\x00\x02\x00\x08\x00 \x00\x80\x00\x00\x02\ \x00\x08\x00 \x00\x80\x00\x00\x02\x00\x08\x00 \x00\x80\x00\ \x00\x02\x00\x08\x00\xfc\x8f\xd6\xd6\xd6\xc4G\x1f}4\xb6\ \xac\xacl{~~\xfe\xb1\xcc\xcc\xcc\xe6\x91#G~\ :s\xe6\xccu\xb5\xb5\xb5\xbd\x9c\x91\x00\xd0E\xa5R\ \xa9dqqqeFFF\xdbO\xc9\xce\xcen\x98\ ={\xf6Zg%\x00t1\xdb\xb7o\x1f;t\xe8\ \xd0\x83?7\xfe\x1f[\xbcx\xf1\xf2T*\x95tn\ \x02@\x170\x7f\xfe\xfc\x17~\xc9\xf0\xff[UUU\ \xb1\xf3\x13\x00\xd2Tuuu\xfe\xe8\xd1\xa3w\x9f\xcf\ \xf8\xcf\x998q\xe2\x16g)\x00\xa4\xa1\xab\xae\xba\xea\ \xdf\x172\xfes\x9c\xa5\x00\x90F^{\xed\xb5\xdf%\ \x93\xc9T{\x8c?##\xa3m\xf9\xf2\xe5\x8b\x9d\xab\ \x00\x90.\xbf\xa0\xed4\xfcs\x8a\x8a\x8a\x0e\xb7\xb6\xb6\ &\x9c\xad\x00\xd0\x89M\x980aK{\x8f\xff\x9c'\ \x9f|\xf2ig,\x00tR\xdf|\xf3\xcd\xa0\x8e\x1a\ \x7fFFF\xdb\x1dw\xdc\xf1\x9es\x16\x00:\xa1\xbc\ \xbc\xbc3\x1d9\xfe\x8c\x8c\x8c\xb6\xdc\xdc\xdczg-\ \x00t\xb2\x8f\xf5v\xf4\xf0\xfd7@\x00\xe8\x84\x1a\x1b\ \x1b\xb3\xef\xbd\xf7\xde\xbf\x0b\x80\x00\x10\xcc\xd7_\x7f]\ r1\x87/\x00\x02@'\xb1c\xc7\x8e[\xfa\xf6\xed\ {B\x00\x04\x80`V\xae\x5c\xb9\xf0R\x0c_\x00\x04\ \x80K\xec\xc1\x07\x1f\xfc\xcb\xa5\x1c\xbf\x00\x08\x00\x97\xc8\ \xa8Q\xa3>\xb9\xd4\xe3\x17\x00\x01\xe0\x12\xf8\xf2\xcb/\ \xaf\xeb\x0c\xe3\x17\x00\x01\xe0\x22\xcb\xca\xcaj\xee,\xe3\ \x17\x00\x01\xe0\x22\x999s\xe6\xba\xce4|\x01\x10\x00\ .\x92\xba\xba\xba^\x9dq\xfc\x02 \x00t\xb0\xfc\xfc\ \xfcc\x9du\xfc\x02 \x00t\xa0\xcd\x9b7O\xe9\xcc\ \xe3\x17\x00\x01\xa0\x0b\x5c\xe8\x11\x00\x01\xa0\x13\x996m\ \xdaF\x01\x10\x00\x829p\xe0\xc0\xb0!C\x86T\xa6\ \xcb\xf8\x05@\x00h'o\xbe\xf9\xe6\x8ct\x1a\xbe\x00\ \x08\x00\xed\xe4\x99g\x9ey\xac[\xb7nm\x02 \x00\ \x04r\xe6\xcc\x99\xbc;\xef\xbc\xf3\x9dt\x1c\xbe\x00\x08\ \x00\x17h\xe4\xc8\x91\x9f\xa6\xf3\xf8\x05@\x008O=\ z\xf48\x9d\xee\xe3\x17\x00\x01\xe0<\xacY\xb3\xe6\xf7\ ]a\xfc\x02 \x00\xfc\x0a\xa9T*\xd9U\x86/\x00\ \x02\xc0\xafp\xea\xd4\xa9\xdeeee\xdb\x05@\x00\x08\ \xe6\xe3\x8f?\x1e\xd3\xd5\x86/\x00\x02\xc0/\x90H$\ Z\xba\xea\xf8\x05@\x00\xf8\x19---\x89\xf9\xf3\xe7\ \xbf\xd0\x95\xc7/\x00\x02\xc0O8~\xfcx\xff\xae>\ |\x01\x10\x00~Fqqq\xa5\x00\x08\x00\xc1\xbc\xfe\ \xfa\xeb\xf7'\x93\xc9T\x94\xf1\x0b\x80\x00\xf0#\xe9z\ \xa1G\x00\x04\x80\x0b0i\xd2\xa4\xf7\xa2\x0d_\x00\x04\ \xbc\xcf>\xfbldaa\xe1\x91\xa8\xe3\x17\x00\x01\ \x08\xed\x8a+\xae8\x13y\xfc\x02 \x00!\xa5\xd3\x97\ v\x0a\x80\x00\xd0\x8e\x1a\x1b\x1b\xb3\xef\xbb\xef\xbe\xf5\xc6\ /\x00\x02\x10Leee\xb1\xd1\x0b\x80\x00\x04\xb4s\ \xe7\xce\xdf\xf4\xeb\xd7\xef\x84\xd1\x0b\x80\x00\x04\xb3j\xd5\ \xaa\x05\xc6.\x00\x02\x10\xd0\xc3\x0f?\xfcgC\x17\x00\ \x01\x08\xa6\xba\xba:\xbf\xb4\xb4t\xb7\x91\x0b\x80\x00\x04\ \xb3u\xeb\xd6\xf1\xc6-\x00\x02\x10T\xb4\x0b=\x02 \ \x00\xb4\xb5e\x94\x97\x97\xaf5j\x01\x10\x80\x80\xea\xea\ \xeaz\x19\xb4\x00\x08@@\x03\x06\x0c8f\xcc\x02 \ \x00\x01\xbd\xf5\xd6[S\x0cY\x00\x04\xc0\x85\x1e\x04@\ \x00\x228y\xf2d_\xe3\x15\x00\x01\x08\xe8\xe0\xc1\x83\ %%%%\x07\x8dW\x00\x04 \x98\x0d\x1b6L7\ Z\x01\x10\x80\x80\x9e}\xf6\xd9E\x11\xbf\xb4S\x00\x04\ \xb4\xef\xbf\xff>\xef\xae\xbb\xee\xfa\x87\xb1\x0a\x80\x00\ \x044j\xd4\xa8O\x0cU\x00\x04 \x98\x0f>\xf8`\ B\xcf\x9e=O\x1b\xa9\x00\x08@@YYY\xcd\x06\ *\x00\x02\x10LSSS\xd20\x05@\x00\x02\xba\xe6\ \x9ak\xfee\x94\x02 \x00\x01\xed\xd9\xb3\xa7\xd4 \x05\ @\x00\x02\xba\xec\xb2\xcbZ\x8cQ\x00\x04 \xe0\x85\x9e\ \x05\x0b\x16\xac2D\x01\x10\x80`jjj\xfa\x1b\xa0\ \x00\x08@PC\x86\x0c\xa94@\x01\x10\x80`\xd6\xaf\ _?\xe3\xf2\xcb/\xf7\xa5\x9d\x02 \x00\x91477\ g\xce\x9d;\xf7\xafF'\x00\x02\x10\xd0\xe4\xc9\x93\xdf\ 18\x01\x10\x80`\xf6\xed\xdbw\xfd\xc0\x81\x03\x0f\x1b\ \x9b\x00\x08@@=z\xf4p\xa1G\x00\x04 \x9a%\ K\x96,70\x01\x10\x80\x80R\xa9\x94\x0b=\x02 \ \x00\x11UUU\x15\x1b\x96\x00\x08@@\xbbv\xed\x1a\ \xd3\xbf\x7f\xff\xe3\x86%\x00\x02\x10\xcc\xf3\xcf?\xffG\ \x83\x12\x00\x01\x08\xa6\xbe\xbe\xbe\xbb!\x09\x80\x00\x04t\ \xfc\xf8\xf1\xfec\xc6\x8c\xd9eH\x02 \x00\xc1TT\ T\x8c3 \x01\x10\x80\xa0\x92\xc9\xa4\x0b=\x02 \x00\ \xd1\xcc\x993g\x8d\xe1\x08\x80\x00\x04t\xfa\xf4\xe9\x1e\ F#\x00\x02\x10PAA\xc1\x11\x83\x11\x00\x01\x08\xf8\ \xe1\x9e\xbc\xbc\xbc3\xc6\x22\x00\x02\x10P\xbf~\xfdN\ \x18\x8a\x00\x08@@\x8f>\xfa\xe8J#\x11\x00\x01\x08\ h\xef\xde\xbd\xa3|_\xbf\x00\x08@\xd4\x031\x0e\x01\ \x10\x00\x01@\x00\x04 \x98'\x9exb\x99q\x08\x80\ \x00\x04u\xed\xb5\xd7z\xa5W\x00\x04 \xa2\x0d\x1b6\ L7\x0c\x01\x10\x80\xa0\xee\xb9\xe7\x9e\x0d\x86!\x00\x02\ \x10\xd4\xcd7\xdf\xbc\xd30\x04@\x00\x82***\xf2\ \x88\x87\x00\x08@T\x83\x07\x0f>d\x18\x02 \x00A\ \x95\x95\x95m7\x0c\x01\x10\x80\xa0f\xcd\x9a\xb5\xce0\ \x04@\x00\x82z\xff\xfd\xf7'\x19\x86\x00\x08@`\xb7\ \xdf~\xfb\x87\xc6!\x00\x02\x10\xd4\xea\xd5\xab\xe7\x19\x87\ \x00\x08\x80\xcb@\x08\x80\x00D\x94\x99\x99\xd9l \x02\ \x00A\x9d8q\xa2o\x9f>}\xbe3\x12\x01\x10\ \x80\xa0\xdex\xe3\x8d\xfb\x8dD\x00\x04 \xb0\x9bn\xba\ \xc9\xdb\x7f\x02 \x00Q\xd5\xd4\xd4\xf4\x1f>|\xf8W\ \xc6\x22\x00\x02\x10\xd8\xd8\xb1c}DX\x00\x04 \xb2\ \xd6\xd6\xd6\x84\xd1\x08\x80\x00\x04\xf6\xf2\xcb/\xcf\xf5/\ B\x01\x10\x80\xe0\x0a\x0b\x0b\xbd\x15(\x00\x02\x10\xd5\xe1\ \xc3\x87\x07\x1a\x90\x00\x08@`\xcd\xcd\xcd\x99s\xe6\xcc\ YcH\x02 \x00\xee\x0d \x00\x02\x10\xd5\xb6m\xdb\ \xc6\x19\x94\x00\x08@`\xd5\xd5\xd5\xf9\xa5\xa5\xa5\xbb\x0d\ K\x00\x04 \xa8\xfa\xfa\xfa\xee\x86%\x00\x02\x10\x5c\x22\ \x91\xf0\xb4\xb8\x00\x08@T\x1b7n\x9c\x9a\x93\x93\xd3\ `d\x02 \x00\x81\x0d\x1b6l\xbf\xa1\x09\x80\x00\x04\ u\xf2\xe4\xc9\xbe\xb7\xdez\xeb?\x8dM\x00\x04 \xb0\ E\x8b\x16\xfd\xc9\xe0\x04@\x00\x02{\xe9\xa5\x97|\xdb\ \xb0\x00\x08@d{\xf7\xee\x1d5`\xc0\x80c\xc6'\ \x00\x02\xe0\xf1\x11#\x14\x00\x01\x88\xa8\xa9\xa9)i\x80\ \x02 \x00\xc1\xad[\xb7n\xa6!\x0a\x80\x00\x04\xd6\xb3\ g\xcf\xd3\xc6(\x00\x02\x10\xd8\xd1\xa3G\x0b\x0cR\x00\ \x04 \xb0)S\xa6l6J\x01\x10\x80\xe0\xbau\xeb\ f\x9c\x02 \x00\x91y\x97P\x00\x04 \xb0\x03\x07\x0e\ \x0c+))9h\xa4\x02 \x00\x81M\x9f>}\x83\ \xa1\x0a\x80\x00\x04~\x8d\xe8\x91G\x1eYe\xac\x02 \ \x00\x81m\xde\xbcyJnnn\xbd\xd1\x0a\x80\x00\x04\ \xb5g\xcf\x9eR\xa3\x15\x00\x01\x08\xac\xb6\xb6\xb6\xd7m\ \xb7\xdd\xb6\xcdx\x05@\x00\x5c$B\x00\x04 \xaa\xac\ \xac,\xaf\x14\x0b\x80\x00D\xb6o\xdf\xbe\xeb\x0dY\x00\ \x04 \xb0\x1bn\xb8\xe1Sc\x16\x00\x01\x08\xec\xec\xd9\ \xb3\x99\x06-\x00\x02\x10\xd8\x8a\x15+\x1es\x91H\x00\ \x04 \xb8\xde\xbd{\xbbH$\x00\x02\x10\xd5\xfe\xfd\xfb\ \x87\x19\xb7\x00\x08@`?\xfc\xf0C\xf7\xa9S\xa7n\ 4r\x01\x10\x80\xc0^|\xf1\xc5?x\xa9X\x00\x04\ \xb0M\x9b6\xddm\xec\x02 \x00\x81UUU\x15\ \x0f\x1f>\xfc+\xa3\x17\x00\x01\x08\xea\xd4\xa9S\xbd\x8d\ ^\x00\x04 \xf8\x17\x8c,^\xbcx\xb9\xf1\x0b\x80\x00\ \x04\x96\x99\x99\xe9\x22\x91\x00\x08@d\x85\x85\x85G\x04\ \xc0\xef\x81\x00\x04\xf5\xed\xb7\xdf\x0e\x1c1b\xc4\xe7\x02\ \x80C\x08\xec\x81\x07\x1e\xf8\x9b\x00\x08\x00\xc1%\x93\xc9\ \x94\x00\x08\x00AUTT\x8c\xbb\xf2\xca+k\x05@\ \x00\x08l\xf4\xe8\xd1\xbb\x05@\x00\x08\xaa\xbe\xbe\xbe\xbb\ \x00\x08\x00\xc1=\xf7\xdcs\x0b\x04@\x00\x08,''\ \xa7A\x00\x04\x80\xc0*++\x8b\x05@\x00\x08\xac\xb1\ \xb11{\xc6\x8c\x19\xeb\x05@\x00\x08|\x91H\x00\x04\ \x80\xe0\xde~\xfb\xed\xdf\x0a\x80\x00\x10XAA\xc1\x11\ \x01\x10\x00\x02\x9b0a\xc2\x16\x01\x10\x00\x82jjj\ J\x96\x97\x97\xaf\x15\x00\x01 \xb0W_}uf\xba\ ^$\xf2\xf3\x13\x00\xda\xc1\xd6\xad[\xc7\x0b\x80\x00\x10\ \xd8\xb1c\xc7\xf2o\xbc\xf1\xc6O\x04@\x00\x08\xec\xa1\ \x87\x1e\xfa\x8b\x00\x08\x00\x81\xa5\xcb+\xc5~V\x02@\ \x07\xd9\xb1c\xc7-\x02 \x00\x046t\xe8\xd0\x83\x02\ \x00\x04\xd6\xd0\xd0\x90-\x00\x02@`\x0b\x17.\x5c\ )\x00\x02@p\xb9\xb9\xb9\xf5\x02 \x00\x04v\xe8\xd0\ \xa1A\x02 \x00\x046~\xfc\xf8\x0f\x05@\x00\x08\xec\ \xa9\xa7\x9ezZ\x00\x04\x80\xc0^y\xe5\x95\xd9\x02 \ \x00\x04\xf6\xc5\x17_\x5c7h\xd0\xa0C\x02 \x00\x04\ u\xf4\xe8\xd1\x02\x01\x10\x00\x02;{\xf6l\xe6\xbcy\ \xf3V\x0b\x80\x00\xe0\x22\x91\x00\x08\x00Q\xf5\xe9\xd3\xe7\ \xbb\x8e\x1e\x7fNNN\x83\xb3\x16\x00:\xa9\x9a\x9a\x9a\ \xfe\x1d\x19\x80I\x93&\xbd\xe7\x9c\x05\x80Nl\xda\xb4\ i\x1b;*\x00K\x97.]\xe6\x8c\x05\x804\x90H\ $Z\xdas\xfcEEE\x87[ZZ\x12\xceV\x00\ H\x03\x9b6m\xba\xbb{\xf7\xee\xedv\x91h\xd9\xb2\ eK\x9d\xab\x00\x90f\xae\xbe\xfa\xea\xaf\xfc\xf5_\x00\ \x08\xaa\xb6\xb6\xb6\xd7\xb8q\xe3\xb6]\xc8\xf8'N\x9c\ \xb8\xc5Y\x0a\x00i\xec\xf1\xc7\x1f_q>\xe3\xaf\xaa\ \xaa*v~\x02@\x17\xf0\xee\xbb\xefN\x1e<x\xf0\ /\xbaC\xb0d\xc9\x92\xe5\xa9T*\xe9\xdc\x04\x80.\ \xa4\xa1\xa1!\xfb\xffE ;;\xbb\xa1\xbc\xbc|\xad\ \xb3\x12\x00\xba\xa8\x96\x96\x96DEE\xc5\xb8\xb2\xb2\xb2\ \xed\x05\x05\x05G\x12\x89D\xcb\x88\x11#>\x9f5k\ \xd6\xba\xba\xba\xba^\xceH\x00\x00\x01\x00\x04\x00\x10\x00\ @\x00@\x00\x1c\x02\x08\x00 \x00\x80\x00\x00\x02\x00\x08\ \x00 \x00\x80\x00\x00\x02\x00\x08\x00 \x00\x80\x00\x00\x02\ \x00\x08\x00 \x00\x80\x00\x00\x02\x00\x08\x00 \x00\x80\x00\ \x00\x97\xc4\x7f\x06\x00R \x97\x14:@H\xe3\x00\x00\ \x00\x00IEND\xaeB`\x82\ \x00\x00\x0bl\ \x89\ PNG\x0d\x0a\x1a\x0a\x00\x00\x00\x0dIHDR\x00\ \x00\x01\x00\x00\x00\x01\x00\x08\x06\x00\x00\x00\x5cr\xa8f\ \x00\x00\x00\x09pHYs\x00\x00\x0e\xc4\x00\x00\x0e\xc4\ \x01\x95+\x0e\x1b\x00\x00\x00 cHRM\x00\x00z\ r\x00\x00\x80\xeb\x00\x00\xf5\x8d\x00\x00\x84\xec\x00\x00q\ \x90\x00\x00\xf6\x89\x00\x00;\x1d\x00\x00\x16G^\xee\x0e\ Z\x00\x00\x0a\xf2IDATx\xda\xec\xdd\xedo\xd5\ \xe5\x1d\xc7\xf1\xab\xc7\xf6\xd8R\x04\xe4.\xa5\xa5`J\ !x\x13A,85\xa1\x88\x80:\x89\x0f\x04\x0d\x9a\ \x05\xec0\xc6\xa8\x19\x0b\xa2Q\xf0&\x86\x10\x9c\x04\xa3\ .F\xe7B\x10\x8d\xe2Bx@p\xde\xa1PL\x06\ A\x10\x15]\x8c`\xbb \x02\xa5 -\xc1J\x0f\xa5\ ={\xd4d331\x0a\x19\xf0}=x\xff\x03\xd7\ \xf5\xf9\xbd\x1eP~\xe7\x97\xf2\xf9|\x92\x143\x87 \ \x01@\x12\x00$\x01@\x12\x00$\x01@\x12\x00$\x01\ @\x12\x00$\x01@\x12\x00$\x01@\x12\x00$\x01@\ \x12\x00$\x01@\x12\x00$\x01@\x12\x00$\x01@\x12\ \x00$\x01@\x12\x00$\x01@\x12\x00\xfe\xaf\xb5\xb6\xb6\ \xf6\x995k\xd6\x8aQ\xa3F}\x96\xc9d:\xcb\xcb\ \xcb\xf7\xd6\xd6\xd6n\xac\xaf\xaf\x9f\xd0\xd9\xd9\x99qF\ \x02\xc0YZ]]\xdd\xf2\xe2\xe2\xe2c)\xa5\xfc\xff\ j\xe8\xd0\xa1\xbb\x8f\x1d;V\xec\xac\x04\x80\xb3\xa8\x5c\ .\x97]\xb0`\xc1\xa2\x9fz\xf0\x7f\x8c\xc0;\xef\xbc\ s\xbds\x13\x00\xce\x82\x1a\x1b\x1b\xab~\xce\x83\xff\xe3\ \x1e~\xf8\xe1\xc5\xceO\x008\x83\x9b<y\xf2\xba_\ \xf2\xf0w7a\xc2\x84\x0d---}\x9c\xa5\x00p\ &\x1e\xc8\xafx\xf8\xbb\xbb\xf0\xc2\x0b\xbft\x96\x02\xc0\ \x19\xd6\xc2\x85\x0b\x1f9\x19\x00\xa4\x94\xf2=z\xf4h\ [\xb3f\xcdM\xceU\x008\x03\xea\xec\xec\xccTV\ V\xee9Y\x00\xa4\x94\xf2\x99L\xa6\xd3\xd9\x0a\x00g\ @\x8f<\xf2\xc8\xc2\x93\xf9\xf0\xffg\xd3\xa6M[\xed\ \x8c\x05\x80\xd3\xb8)S\xa6\xbc{\xaa\x00H)\xe5\x9b\ \x9b\x9b\x07:g\x01\xe04\xad\xa4\xa4\xe4\xd8\xa9\x04 \ \xa5\x94\xef\xd7\xaf\xdfw\xceZ\x008K\xff\xf5\xff\xe7\ TPP\x90w\xde\x02@P\x00RJ\xf9\xbb\xef\xbe\ \xfb\x85\x13'N\x14:w\x01 \x00\xdd\xed\xdb\xb7\ \xaf\xdc\xd9\x0b\x00A\x01\x182d\xc8\xee\xcf?\xff\xfc\ \x12\xe7/\x00\x04\x04\xa0\xbb\x97_~\xf9\x0ew \x00\ \x04\x05 \xa5\x94\x7f\xfc\xf1\xc7\x9fp\x0f\x02@P\x00\ RJ\xf9\x89\x13'~\xe0.\x04\x80\xa0\x00\xa4\x94\xf2\ \xbbw\xef\x1e\xe2>\x04\x80\xa0\x00\xa4\x94\xf2\xa5\xa5\xa5\ m\xeeD\x00\x08\x0a@w\xf3\xe6\xcd[\xe2n\x04\x80\ \xa0\x00\xa4\x94\xf2~oP\x00\x08\x0c@J)?|\ \xf8\xf0]\xeeH\x00\x08\x0a@J)\xbfi\xd3\xa6\xab\ \xdc\x93\x00\x10\x14\x00/\x12\x09\x00\xc1\x01H)\xe5\xef\ \xbd\xf7\xde\xe7\xdd\x97\x00\x10\x14\x80\x94R\xfe\xf2\xcb/\ \xffx\xff\xfe\xfde\xeeM\x00\x08\x08@w\xeb\xd7\xaf\ \x9f\xe8\xee\x04\x80\xa0\x00d\xb3\xd9\xdc+\xaf\xbc2\xd3\ \xfd\x09\x00\x01\x01\xe8\xae\xae\xaen\xf9\xf1\xe3\xc7\xb3\xee\ Q\x00\x08\x08@J)?i\xd2\xa4u\xeeQ\x00\x08\ \x0a@J)_^^\xbe\xd7]\x0a\x00A\x01H)\ \xe5\xdfz\xeb\xad\xdf\xbaO\x01 (\x00\xdduuu\ e\xdc\xab\x00\x10\x14\x80\x193f\xacloo\xf7\x22\ \x91\x00\x10\x11\x80\xee\x1a\x1a\x1a\xaa\xdc\xaf\x00\x10\x14\x80\ \x94R\xbe\xa4\xa4\xe4\x98;\x16\x00\x82\x02\x90R\xca?\ \xfd\xf4\xd3s\xdd\xb3\x00\x10\x14\x80\xee\xda\xda\xdaz\xb8\ o\x01 (\x00c\xc7\x8e\xdd\xea\xbe\x05\x80\xa0\x00\xa4\ \x94\xf2\xe7\x9f\x7f~K}}\xfd\x04\xf7.\x87\x10\x10\ \x80\xee\x17\x89\xdc\xbb\x1cBP\x00\xba\xbb\xf3\xce;\xff\ \xea\xfe\x01\xe0 \x82\x02\x90R\xca\x8f\x1a5\xea\xb3o\ \xbf\xfdv\xb0\x1d\x00\x00\x00A\xab\xa8\xa8\xf0\x22\x11\x00\ \x00\x10\xb9\xc2\xc2\xc2\x0e[\x00\x00\x00\x027\x7f\xfe\xfc\ E^$\x02\x00\x00\x82w\xf8\xf0\xe1\xbev\x01\x00\x00\ \x04m\xe4\xc8\x91_666z\x91\x08\x00\x00\x88\xdc\ \x9a5kn\xb2\x0f\x00\x00 h\x99L\xa6\xf3\xb9\xe7\ \x9e\xfb\x83\x8d\x00\x00\x00\x81\xbb\xf9\xe6\x9bW\xff\xf0\xc3\ \x0f^$\x02\x00\x00\x22\xf7\xd5W_\x8d\xb0\x17\x00\x00\ h}\xfb\xf6\xfd\xce^\x00\x00\x80\xc0\x15\x14\x14\xe4\ \x17/^\xfc\x90\xdd\x00\x00\x00\x81;q\xe2D\xa1\xed\ \x00\x00\x00\x81\xbb\xec\xb2\xcb>\xb1\x1f\x00\x00 p;\ v\xec\xb8\xd4\x86\x00\x00\x80\xc0\x15\x15\x15y\x91\x08\x00\ \x00\x88\x9e\xaf\x14\x03\x00\x00\x81\xbb\xe6\x9ak6\xb4\xb4\ \xb4\xf4\xb1)\x00\x00 p\xdb\xb6m\xab\xb1+\x00\x00\ h\xa5\xa5\xa5mk\xd7\xae\x9dj[\x00\x00@\xe0\ \xee\xbf\xff\xfe\xa5~`\x04\x00\x00\x08\xdc\xf4\xe9\xd3W\ \xd9\x18\x00\x00\x10\xb8\xea\xea\xea];w\xee\xf4\x22\x11\ \x00\x00\x10\xb5~\xfd\xfay\x91\x08\x00\x00\x88\xfe\x22\x91\ \xbd\x01\x00\x00\xc1\x9b:u\xeaZ\xbb\x03\x00\x00\x02\xb7\ o\xdf\xber\xdb\x03\x00\x00\x02\xd7\xbbw\xef#\xf6\x07\ \x00\x00\x04n\xc5\x8a\x153m\x10\x00\x00\xf0\x22\x91\x17\ \x89\x00\x00\x80\xa8]{\xed\xb5\x1f\xd8\x22\x00\x00\x10\xb8\ A\x83\x06\xed\xdf\xbe}\xfb\x18\x9b\x04\x00\x00\x02\xf7\xe2\ \x8b/\xdem\x97\x00\x00@\xe0\x1e|\xf0\xc1?\xd9&\ \x00\x00\x10\xb8\xab\xaf\xbe\xfa\x1f\x87\x0e\x1d\xeao\xa3\x00\ \x00@\xd0F\x8c\x18\xf1\x95\x8d\x02\x00\x00\x81+))\ 9\xb6z\xf5\xea\x9bm\x15\x00\x00\x08\xfc\xa5b[\x05\ \x00\x00\x82\xd7\xd6\xd6\xe6+\xc5\x00\x00@\xd4jjj\ \xb6655\x95\xd9-\x00\x00\x10\xb8\x0d\x1b6L\xb0\ ]\x00\x00 x\xf6\x0b\x00\x00\x04n\xf6\xec\xd9\xcb:\ ::|\xa9\x18\x00\x00\x88\xdc\x9e={\x06\xdb2\x00\ \x00\x10\xb4\x8a\x8a\x8a\xbd\xb6\x0c\x00\x00\x04\xae\xb0\xb0\xb0\ \xe3\xa5\x97^\xba\xcb\xa6\x01\x00\x80\xc0\xf9\x1a\x11\x00\x00\ \x10\xbc\xf1\xe3\xc7o\xb4m\x00\x00 p#G\x8e\xfc\ \xb2\xb9\xb9y\xa0\x8d\x03\x00\x00A\xbb\xe2\x8a+\xb6\xd8\ 8\x00\x00\x10\xb8\xd7_\x7f\xfdv;\x07\x00\x00\x02\x7f\ \x97\xf0\xe0\xc1\x83~X\x04\x00\x00\x88\xfc'B[\x07\ \x00\x00\xbc7 \x00\x00 b/\xbc\xf0\x82_\x1b\x06\ \x00\x00||D\x00\x00@\xc8\xde{\xef\xbd)6\x0f\ \x00\x00\x04m\xd6\xacY+l\x1e\x00\x00\x08Zmm\ \xad\xff\x22\x0c\x00\x00Dm\xe8\xd0\xa1\xbbm\x1e\x00\x00\ \x08Zee\xe5\x1e\x9b\x07\x00\x00\x82v\xe5\x95Wn\ \xb6y\x00\x00 h\xb7\xdcr\xcb*\x9b\x07\x00\x00\x82\ \xb6j\xd5\xaa\xe96\x0f\x00\x00\x04\xec\xe2\x8b/\xfe\xa7\ \xbd\x03\x00\x00A{\xf4\xd1G\x17\xda;\x00\x00\xe0e\ \x01\x00\x00\x00\x00\x80\x00p\xd6w\xce9\xe7tn\ \xdf\xbe}\x8c\xad\x03\x00\x00\x01{\xe0\x81\x07\x96\xd89\ \x00\x00\x10\xb0\x01\x03\x06\x1c\xb4q\x00\x00 `={\ \xf6<\xbae\xcb\x96q6\x0e\x00\x00\x04\xab\xbc\xbc\xdc\ \xb7\x02\x01\x00\x80\x88\x1d9r\xa4\x97]\x03\x00\x00\x01\ \x9b={\xf62\x9b\x06\x00\x00\x82\x95\xcdfs\xb6\x0c\ \x00\x00\x04\xad\xbe\xbe~\x82-\x03\x00\x00\xc1\x1a7n\ \xdc\x96\x03\x07\x0e\xf8\x00(\x00\x00\x10\xb1\xb6\xb6\xb6\x1e\ 6\x0c\x00\x00\x04\xeb\x99g\x9e\xf9\xa3\xed\x02\x00\x00\xc1\ \x1a8p\xe0\x01\xff\xb9\x07\x00\x00\x08Zccc\x95\ \xcd\x02\x00\x00\x01\xcb\xe5rY{\x05\x00\x00\x02\xb6`\ \xc1\x82E\xb6\x0a\x00\x00\x04\xabW\xaf^Gl\x14\x00\ \x00\x08\xd8\xe0\xc1\x83\xf7\xec\xd8\xb1\xe3R\x1b\x05\x00\x00\ \x82u\xfd\xf5\xd7\xbfm\x9b\x00\x00@\xc0\xee\xba\xeb\xae\ \xbfttt\x14\xda&\x00\x00\x10\xa8s\xcf=7\xb7\ r\xe5\xca\x196\x09\x00\x00\x04k\xd8\xb0a\x0d\xb6\x08\ \x00\x00\x04\xad\xb9\xb9\xd9\x0b=\x00\x00@\xb4\xe6\xce\x9d\ \xbb\xb4\xab\xab+c\x87\x00\x00@\xc0\xdf\xeb\xb7?\x00\ \x00 `\xdb\xb6m\xab\xb1=\x00\x00 `\x17]t\ \x91\xaf\xf4\x02\x00\x00\x11;~\xfc\xb8\x17z\x00\x00\x80\ h\x15\x15\x15u\xd8\x1a\x00\x00\x10\xb0\xde\xbd{\x1fy\ \xff\xfd\xf7'\xd9\x1a\x00\x00\x10\xac1c\xc6|lc\ \x00\x00@\xc0n\xbc\xf1\xc6\xbf\x7f\xff\xfd\xf7=m\x0c\ \x00\x00\x08TAAA\xfe\xa9\xa7\x9ez\xd0\xb6\x00\x00\ \x80\x80\xadZ\xb5j\xba]\x01\x00\x00\xc1\xaa\xae\xae\xde\ \xb5k\xd7\xaej\x9b\x02\x00\x00\x02v\xe8\xd0\xa1\xfe\xf6\ \x04\x00\x00\x04\xcc\x0b=\x00\x00@\xc0\xde|\xf3\xcd\xa9\ 6\x04\x00\x00\x04l\xd0\xa0A\xfb\xed\x07\x00\x00\x08X\ kkk\x1f\xdb\x01\x00\x00\x02VWW\xb7\xdcn\x00\ \x00\x80`e\xb3\xd9\x9c\xbd\x00\x00\x00A[\xbf~\xfd\ D{\x01\x00\x00\x82USS\xb3\xb5\xa9\xa9\xa9\xccV\ \x00\x00\x80`\xddw\xdf}\x7f\xb6\x11\x00\x00 `K\ \x97.\x9dk\x1f\x00\x00@\xb0\x06\x0c\x18pp\xf3\xe6\ \xcd\xbf\xb1\x0d\x00\x00 `\x0d\x0d\x0dUv\x01\x00\x00\ \x04\xeb\xb6\xdbn[\xd9\xde\xde^l\x13\x00\x00\x80\x17\ z\x04\x00\x00D\xe8\xbc\xf3\xce;j\x07\x00\x00@\xc0\ ***\xf6~\xfa\xe9\xa7\xa3\xed\x00\x00\x00\x08\xd6\x94\ )S\xdeu\xff\x00p\x10\x01\x7f\xb4\xd3\xbd\xcb!\x04\ \x04 \x9b\xcd\xe6^{\xed\xb5\xdb\xdd\xbb\x1cB0\x00\ \xaa\xaa\xaa\x1a\xdc\xb7\x00\x10\x14\x80\x03\x07\x0e\x0ct\xdf\ \x02@0\x00\xe6\xcc\x99\xf3lgg\xa7\xbf\xf1\x0b\x00\ \xd1\x00\xc8d2\x9d\xeeX\x00\x08\x08\xc0G\x1f}4\ \xce\xfd\x0a\x00\xc1\x00\xa8\xad\xad\xddx\xf8\xf0\xe1\xbe\xee\ V\x00\x08\x08@.\x97\xcb\xbaW\x01 \x18\x00\xcb\x96\ -\xfb\xbd\xfb\x14\x00\x02\x02\xd0\xabW\xaf#\xeeR\x00\ \x08\x08\xc0\xe8\xd1\xa3?q\x8f\x02@@\x00n\xb8\xe1\ \x86\xb7\x8f\x1e=\xda\xd3=\x0a\x00\x81\x00(((\xc8\ ?\xf9\xe4\x93\x0f\xb9?\x01 \x00o\xbc\xf1\xc6\x0c\ w'\x00\x04\x03`\xd8\xb0a\x0d;w\xee\x1c\xe1\xde\ \x04\x80`\x00L\x9b6m\xb5\xfb\x12\x00\x82\x02\xe0G\ ;\x05\x80\x80\x00\xac]\xbbv\xaa{\x12\x00\x02\x02P\ VV\xb6\xdf\x1d\x09\x00\x01\x01hmm\xed\xe3~\x04\ \x80\x80\x00\xcc\x9c9s\x85\xbb\x11\x00\x82\x01PTT\ \xd4\xe1N\x04\x80\x80\x00|\xf1\xc5\x17\x97\xb8\x0f\x01 \ \x00c\xc6\x8c\xf9\xd8]\x08\x00\x01\x01\xb8\xe7\x9e{\ \x9ew\x0f\x02@@\x00\x96,Y2\xcf\x1d\x08\x00\xc1\ \x00\xe8\xdf\xbf\xff\xc1M\x9b6]\xe5\xfc\x05\x80\x80\x00\ |\xfd\xf5\xd7\xd5\xce^\x00\x08\x06\xc0\xad\xb7\xde\xfa\xb7\ \xf6\xf6\xf6b\xe7.\x00\x04\x04\xc0\x0b=\x02\xc0iV\ iii\xdb\xa9~\xf0{\xf6\xecy\xd4Y\x0b\x00\xa7\ a\xd7]w\xdd\xbb\xa7\xf2\xe1\xff\xe6\x9bo\x868g\ \x01\xe04\xed\xb1\xc7\x1e{\xe2T=\xfc\x93&MZ\ \xe7\x8c\x05\x80\xd3\xb8\xae\xae\xaeLee\xe5\x9e\x93\xfd\ \xf0;[\x01\xe0\x0ci\xd1\xa2E\xf3O\xd6\x83\x9f\xcd\ fs\xaf\xbe\xfa\xea\xef\x9c\xab\x00\x10\xec\xaf\x01\x17\x5c\ p\xc1\xbf\x9c\xa5\x00p\x066y\xf2\xe4u\xbf\xe6\xe1\ \x1f;v\xec\xd6\xa6\xa6\xa62g)\x00\x9c\xa156\ 6V\xfd\x92\x87\x7f\xce\x9c9\xcf:?\x01\xe0,(\ \x97\xcbe\xe7\xcf\x9f\xbf\xe8\xe7<\xf8\xc3\x87\x0f\xdf\xb5\ q\xe3\xc6\xf1\xceM\x008\xcb\xba\xe3\x8e;\x96\x17\x17\ \x17\x1f\xfb\xa9\x87\xbf\xaa\xaa\xaa!\x97\xcbe\x9d\x95\x00\ p\x96\xd6\xd2\xd2\xd2g\xe6\xcc\x99+F\x8f\x1e\xfdI\ aaaGYY\xd9\xfe\xda\xda\xda\x8d\x1f~\xf8\xe1\ x\xff\xadW\x00\x90\x04\x00I\x00\x90\x04\x00I\x00\x90\ \x04\x00I\x00\x90\x04\x00I\x00\x90\x04\x00I\x00\x90\x04\ \x00I\x00\x90\x04\x00I\x00\x90\x04\x00I\x00\x90\x04\x00\ I\x00\x90\x04\x00I\x00\x90\x04\x00I\x00\x90\x04\x00I\ \x00\x90\xf4_\xfd{\x00\x9ep\x97\x14J\x1d-\xa2\x00\ \x00\x00\x00IEND\xaeB`\x82\ \x00\x00\x0a\xcb\ \x89\ PNG\x0d\x0a\x1a\x0a\x00\x00\x00\x0dIHDR\x00\ \x00\x01\x00\x00\x00\x01\x00\x08\x06\x00\x00\x00\x5cr\xa8f\ \x00\x00\x00\x09pHYs\x00\x00\x0e\xc4\x00\x00\x0e\xc4\ \x01\x95+\x0e\x1b\x00\x00\x00 cHRM\x00\x00z\ r\x00\x00\x80\xeb\x00\x00\xf5\x8d\x00\x00\x84\xec\x00\x00q\ \x90\x00\x00\xf6\x89\x00\x00;\x1d\x00\x00\x16G^\xee\x0e\ Z\x00\x00\x0aQIDATx\xda\xec\xddkl\x95\ \xf5\x1d\xc0\xf1\xd3c{l)\x02R \xd0R0\xe5\ \x12\xbcD\xb0\x16\x9c\x9aPD@\x9c\xc4\x17\x80\x06\xcd\ \x02t\x18B\xd4\x8c\x05\x91(\xa0\xc6\x10\x82\x93`\xd4\ \xc5\xe0\x5c\x08\xa2Q\x5c\x1a^\x10\x9cw\xa15\x19\x04\ AT\xd4\x18@\xba \x02\xa5\x5cZ\x82\xb57\xdag\ /\xdc\xa2S)\x85^8\xe7y>/>\xef\xc9\xf3\ \xff\xfd\xbeI\x0f\xcf%\x16\x04A\x0c\x88&\x17\x01\x04\ \x00\x10\x00@\x00\x00\x01\x00\x04\x00\x10\x00@\x00\x00\x01\ \x00\x04\x00\x10\x00@\x00\x00\x01\x00\x04\x00\x10\x00@\x00\ \x00\x01\x00\x04\x00\x10\x00@\x00\x00\x01\x00\x04\x00\x10\x00\ @\x00\x00\x01\x00\x04\x00\x10\x00@\x00\x00\x01\x00\x04\x00\ \x10\x00@\x00\x00\x01\x00\x04\x00\x10\x00@\x00\x00\x01\x00\ \x01p\x11@\x00\x00\x01\x00\x04\x00\x10\x00@\x00\x00\x01\ \x00\x04\x00\x10\x00@\x00\x00\x01\x00\x04\x00\x10\x00@\x00\ \x00\x01\x00\x04\x00\x10\x00@\x00\x00\x01\x00\x04\x00\x10\x00\ @\x00\x00\x01\x00\x04\x00\x10\x00@\x00\x00\x01\x00\x04\x00\ H\xed\x00\xb4\xb4\xb4\xc4\x1f\x7f\xfc\xf1'o\xbb\xed\xb6\ w\xb3\xb3\xb3kc\xb1X\x00a\x95\x95\x95U7i\ \xd2\xa4w\x97.]\xba\xac\xb9\xb99\x1e\xe9\x00,_\ \xbe|q~~\xfeA\x83A\x14\xe5\xe7\xe7\x1f\x5c\xb6\ l\xd9\xd2\xc8\x05`\xe2\xc4\x89\xef\x1b\x00\xf8\xc9\xc4\x89\ \x13\xdf\x8fD\x00***\x0a\x1c8\xfcZEEE\ A\xa8\x03\xd0\xd0\xd0\x90p\xd0pv\x0d\x0d\x0d\x89\xd0\ \x06`\xf1\xe2\xc5\xcb\x1d2\x9c\xdd\x92%K\x96\x872\ \x00\xb3g\xcf^\xeb\x80\xe1\xdcJJJ\xd6\x86*\x00\ \xd5\xd5\xd5\xbd233\xeb\x1c.\x9c[fff]\ MMM\xaf\xd0\x04`\xe6\xcc\x99\xeb\x1c,\xb4\xdd\xac\ Y\xb3\xd6\x85&\x00\xa3F\x8d\xfa\xd4\xa1B\xdb\x8d\x1c\ 9\xf2\xf3\xd0\x04 ==\xbd\xc9\xa1B\xdb\xc5\xe3\xf1\ \xe6\xd0\x04\xa0\x7f\xff\xfeG\x1c*\xb4]nn\xee\xa1\ \xd0\x04\xa0\xb8\xb8\xb8\xdc\xa1B\xdb\x15\x17\x17\x97\x87&\ \x00\x1f}\xf4\xd1X\x87\x0amWVV6.4\x01\ hii\x89\x17\x14\x14\xecw\xb0pn\x83\x07\x0f>\ \xd0UO\x0av\xe9m\xc0\xc3\x86\x0d\xdb\xe7\x80\xa1\xf5\ \xe5\xaf\xab\xab\xcb\x0c\xe5\xad\xc0\xe5\xe5\xe5\xfe\x14\x80V\ \xbc\xf3\xce;\x93C\xfd4\xe0\xfc\xf9\xf3\x9fs\xd0\xf0\ k\x8f>\xfa\xe8\x8aH\xbc\x0f`\xf4\xe8\xd1;\x1c8\ \xfcd\xdc\xb8q[\x22\xf3B\x90\xca\xca\xca\xfeW\x5c\ q\xc5\xbf\x1d<\xc4\x82+\xaf\xbc\xf2\xeb\xea\xea\xea^\ \x91{%X\x22\x91h0\x00DY\xb7n\xddj#\ \xfbN\xc0W_}\xf5\x0f\x86\x80(\xdf\xee\xbbq\xe3\ \xc6;#\xffZp\xc3@\x14y-\xf8\x7fM\x980\ \xc1KB\x89\x94i\xd3\xa6m\x10\x80\x9f\xf9\xf6\xdbo\ \x07\x19\x0c\xa2\xa0\xaa\xaa\xaa\x9f\x0f\x83\xfc\x86\xee\xdd\xbb\ \x9f6 \x84YNN\xce\x09_\x06\xf2{\x00\x11\x94\ \x96\x96\x16$\xdd\xbe%\xdb?\xa8\xa5\xa5%~\xf7\xdd\ w\xff\xc3\xc0\x10&\xf3\xe6\xcd[\xed\xdb\x80mT_\ _\x9fih\x08\x933g\xce\xa4\x0b\xc0y\xf8\xe6\x9b\ o\x86\xf6\xe9\xd3\xe7\x98\xe1!\x95\x0d\x1a4\xe8\xc0\xe1\ \xc3\x87s}\x1d\xf8\x02l\xdd\xba\xf5&CD*\xfb\ \xe2\x8b/\xae\xf1y\xf0vX\xb9r\xe5B\x83D*\ z\xf9\xe5\x97g'\xfb~%}\x00\x82 \x88\xdd\x7f\ \xff\xfd/\x18(R\xc9\x13O<\xf1d*\xecVJ\ \x04 \x08\x82Xaa\xe1'\x06\x8bT0~\xfc\xf8\ \x0fSe\xafR&\x00A\x10\xc4\xbe\xfc\xf2\xcbk\x0c\ \x18\xc9\xec\xc0\x81\x03\x83Ri\xa7R*\x00A\x10\xc4\ 222|d\x84\xa4\x94\x9d\x9d]\x9bj\xfb\x94r\ \x01p\xb7 \x9e\xee\x8bx\x00|l\x94d\xb3p\xe1\ \xc2\x95\x02\xd0\x85jjjz\x19<\x92AW\xbe\xc6\ [\x00|s\x90$2l\xd8\xb0}\xa9\xbcC)\x1d\ \x80 \x08b\x9b6m\x9ab\x10\xb9\x18\xb6n\xddz\ S\xaa\xefO\xca\x07\xc0\x8f\x82x\xb47\xe2\x01hi\ i\x89O\x9b6m\x83\xc1\xa4+<\xf0\xc0\x03/\x84\ aoB\x13\x80\xff\x192d\x88\x0f\x90\xd2\xa9\xae\xbf\ \xfe\xfaO\xc2\xb43\xa1\x0a\xc0\xde\xbd{\x87\x1bR:\ \xd3\x91#G\xfa\x0b@\x12{\xe3\x8d7f\xa4\xa5\xa5\ \x19V:T\x22\x91h\xd8\xbcy\xf3\xf8\xb0\xedK\xe8\ \x02\x10\x04A\xec\xa9\xa7\x9ez\xc4\xd0\xd2\x91^y\xe5\ \x95\x99a\xdc\x95P\x06 \x08\x82\xd8\xed\xb7\xdf\xfe\xb6\ \xc1\xa5#\x94\x94\x94\xac\x0d\xeb\x9e\x846\x00\xa7O\x9f\ \xee>j\xd4\xa8O\x0d0\xed1a\xc2\x84\xf7\x1b\x1b\ \x1b\x13\x02\x90\xa2z\xf4\xe8q\xca s!rss\ \x0f\x85}?B\x1f\x80 \x08bk\xd6\xac\xf9\xa3\x81\ \xe6|\xbc\xf5\xd6[\xbf\x8f\xc2nD\x22\x00\xee\x16$\ \x0a\x8f\xf6\x0a@+\x1a\x1a\x1a\x12\xc5\xc5\xc5\xe5\x86\x9b\ \xd6\xcc\x981c}KKK\x5c\x00B\xe8\xe4\xc9\x93\ \xbd\x0d9\xad\xa9\xaf\xaf\xcf\x8c\xd2ND*\x00A\x10\ \xc4>\xfe\xf8\xe31\x06\x9d\xdf\xb2\x7f\xff\xfe\x82\xa8\xed\ C\xe4\x02\x10\x04A,\x1e\x8f7\x1bx~.++\ \xab.\x8a\xbb\x10\xc9\x00\x04A\x10\x9b?\x7f\xfes\x06\ \x9fX,\x16<\xf3\xcc3\x0b\xa2\xba\x07\x91\x0d@s\ ss\xdc\xf0\x13\xa5_\xfc\x05\xe0\x17\x8e\x1e=\xda\xaf\ \xa0\xa0\xc0#\xc4\x115z\xf4\xe8\x1d\xb5\xb5\xb5\xdd\x04\ \xe2\x12\x89D\x83\x85\x88\x96\xcb/\xbf\xbc\xda\xec\x0b\ @,\x08\x82\xd8k\xaf\xbdv\xafG\x88\xa3\xf5ho\ YY\xd98\xb3/\x00\xee\x16\xf47\xbf\x00\xf0\xa3I\ \x93&\xbdkA\xc2\xed\xbe\xfb\xee\xfb\xbbY\x17\x80\xb3\ \xca\xcb\xcb;dQ\xc2i\xe4\xc8\x91\x9f\x9bq\x01h\ \xd5g\x9f}6\xea\xb2\xcb.;ma\xc2%//\ \xef\xd0w\xdf}7\xd0\x8c\x0b\x80\xdf\x03\x22&==\ \xbd\xc9L\x0b\xc0y\x7fk\xe0\x9e{\xeeYo\x81R\ \xdb\xe2\xc5\x8b\x97\x9bg\x01\xb8 \xf5\xf5\xf5\x99\x96(\ \xb5E\xe9\xd1^\x01\xe8\x04\xfb\xf7\xef/\xe8\xdb\xb7\xef\ 1\xcb\x94ZF\x8c\x18\xf1\xf5\xc9\x93'{\x9ba\x01\ h\xb7m\xdb\xb6\xfd\xceR\xa5\x96\x8a\x8a\x8a\x02\xb3+\ \x00\x1df\xd5\xaaU\x0b,V\xf2\x8b\xc7\xe3\xcd\x1b7\ n\xbc\xd3\xcc\x0a@\x87{\xf0\xc1\x07\xffj\xc9\x92\xdb\ \xf3\xcf?\xff'\xb3*\x00\x9d\xa6\xa8\xa8h\x87EK\ NS\xa7N\xdd`F\x05\xa0SUVV\xf6\xb7l\ \xc9\xe9\x87\x1f~\xe8fF\x05\xa0\xd3m\xde\xbcy\xbc\ G\x88\x93G\xef\xde\xbdO\xec\xd9\xb3g\xb8\xd9\x14\x00\ w\x0bFLZZ\x9a\xa7\xfb\x04\xe0\xe2())Y\ k\x09/\xae\x15+V<b\x16\x05\xe0\xa2\xa9\xa9\xa9\ \xe9e\x11/\x8e3g\xce\xa4\x9bA\x01\xb8\xe8\x06\x0c\ \x18p\xc4Bv\xad\xeb\xae\xbb\xeeS\xb3'\x00I\xe3\ \xcd7\xdf\x9cb1\xbb\xc6\xee\xdd\xbb\xaf5s\x02\xe0\ G\xc1\x08\xca\xc8\xc8\xf0h\xaf\x00$\xef#\xc4\x96\xd4\ \xfb\xfc\x04 \xc2\x8e\x1f?\xdeg\xe8\xd0\xa1\xfb,k\ \xc7\xba\xe5\x96[\xb6466&\xcc\x98\x00$\xbd}\ \xfb\xf6\x0d\xb5\xb4\x1d\xab\xba\xba\xba\x97\xd9\x12\x80\x94Q\ ZZ:\xdd\xb7\x06\xda/;;\xbbv\xe7\xce\x9dE\ fJ\x00R\xce\xd3O?\xbd\xc8\x12\xb7\xcf\xa6M\x9b\ \xa6\x98%\x01HYw\xdcq\xc7?-\xf2\x85y\xe8\ \xa1\x87V\x99!\x01Hi\xdf\x7f\xff}\xf7\xc2\xc2\xc2\ O,\xf4\xf9\x99>}z\xa9\xf7\xf9\x09@h\xf4\xec\ \xd9\xf3\x94\xc5n\x9b\xa1C\x87\xee33\x02\x10*\x1f\ |\xf0\xc1\x84\x8c\x8c\x8c&\x0b\xde\xba\x9c\x9c\x9c\x13{\ \xf7\xee\xf5h\xaf\x00\xb8[\xd0\xa3\xbd\x08@\xc846\ 6&,\xbb\xbb\xfc\x04 \xc2\xae\xba\xea\xaa\xaf,\xfc\ \xff\x9b2e\xca&\xb3!\x00\x91\xb1s\xe7\xce\x22\x8b\ \xff\xa3\xc3\x87\x0f\xe7\x9a\x09\x01\x88\x9cK.\xb9\xa49\ \xea\xcb\xdf\xb3g\xcfSfA\x00\x22k\xc1\x82\x05\xab\ \xa2\xba\xfc\xeb\xd6\xad\x9bi\x06\x04\xc0#\xc4~\xf4C\ \x00\xa2\xab\xaa\xaa\xaa\xdf\x90!C\xf6Ge\xf1o\xbd\ \xf5\xd6\x0f=\xda+\x00\xfc\xc2\xa5\x97^\x1a\xfao\x0d\ \x0c\x180\xe0\x88\xb3\x16\x00~\xc3\xfa\xf5\xebg\x84=\ \x00\xbbv\xed*t\xd6\x02\xc0Y\xcc\x9d;\xf7oa\ ]\xfe\x17_|q\x9e3\x16\x00Z\xd1\xd4\xd4\x94>\ y\xf2\xe4\xb7\xc3\xb6\xfc\x8b\x16-\xfa\x8b\xf3\x15\x00\xda\ h\xe0\xc0\x81\x07\xc3\xb2\xfc7\xdf|\xf3\xbf\x9c\xa9\x00\ p\x1ev\xef\xde}m\x8f\x1e=R\xfe\x11\xe2\xe1\xc3\ \x87\xef9~\xfcx\x1fg*\x00D\xec\xe9\xc1\xac\xac\ \xac:g(\x00\xb4\xc3\x92%K\x96\xa7\xe2\xf2\xc7\xe3\ \xf1\xe6\x0d\x1b6Lu\x86\x02@;544$\xdc\ \xe5\x87\x00DXEEEA\xbf~\xfd\x8e&\xfb\xe2\ \x17\x15\x15\xed\xa8\xad\xad\xed\xe6\xcc\x04\x80\x0e\xb6}\xfb\ \xf61\xc9\x1e\x80\xca\xca\xca\xfe\xceJ\x00\xe8$\xcf>\ \xfb\xec\x9f\x93u\xf9\xb7l\xd92\xce\x19\x09\x00\x11\xfd\ \x9f\x01g#\x00t\x81\xda\xda\xdanc\xc6\x8c\xd9\x9e\ ,\x8b?g\xce\x9c5\xceE\x00\xe8BG\x8f\x1e\xed\ \x97,\x01hjjJw&\x02@\x17+++\x1b\ \x97H$.\xda#\xc4yyy\x87\x0e\x1e<8\xd0\ Y\x08\x00\x11\xfbM ==\xbd\xc9\xb5\x17\x00\x92\xc0\ \x9c9s\xd6tu\x00^z\xe9\xa5\xb9\xae\xbd\x00\x90\ $N\x9d:\xd5\xa3\xab\x96\xdfG;\x05\x80$\x94\x9b\ \x9b{\xa8\xb3\x97\x7f\xec\xd8\xb1\xe5\xae\xb5\x00\x90\xa4\xba\ w\xef~\xba\xb3\x96\x7f\xc4\x88\x11_\xbb\xc6\x02@\x92\ \xdf.\xdc\xb7o\xdfc\x1d\xbd\xfc7\xdcp\xc3\xf6\xaa\ \xaa\xaa~\xae\xb1\x00\x90\x02\x1e~\xf8\xe1\x95\x1d\xf1\xe5\ \xa1\x9c\x9c\x9c\x13\xaf\xbf\xfe\xfa\xbd\xae\xa9\x00\x90bv\ \xed\xdaU\xd8\xde\xff\xea;v\xec\x98\xb7\xf9\x08\x00\xa9\ \xee\xb1\xc7\x1e[v\xf5\xd5W\x7f\xd5\x96\x8fv\xac^\ \xbd\xda\xdb{\x05\x800*--\x9d~\xd7]w\x95\ \xdex\xe3\x8d\xdb\xf2\xf3\xf3\x0f\x0e\x1e<\xf8@qq\ q\xf9\xacY\xb3\xd6\xbd\xf7\xde{\x93\x5c#\x01\x00\x04\ \x00\x10\x00@\x00\x00\x01\x00\x04\x00\x10\x00@\x00\x00\x01\ \x00\x04\x00\x10\x00@\x00\x00\x01\x00\x04\x00\x10\x00@\x00\ \x00\x01\x00\x04\x00\x10\x00@\x00\x00\x01\x00\x04\x00\x10\x00\ @\x00\x00\x01\x00\x04\x00\x10\x00@\x00\x00\x01\x00\x04\x00\ \x10\x00@\x00\x00\x01\x00\x04\x00p\x11@\x00\x00\x01\x00\ \x04\x00\x10\x00@\x00\x00\x01\x00\x04\x00\x10\x00@\x00\x00\ \x01\x00\x04\x00\x10\x00@\x00\x00\x01\x00\x04\x00\x10\x00@\ \x00\x00\x01\x00\x04\x00\x10\x00@\x00\x00\x01\x00\x04\x00\x10\ \x00@\x00\x00\x01\x00\x04\x00\x10\x00@\x00\x00\x01\x00\x04\ \x008\xb7\xff\x0c\x00:\xc5\x97\x14,\x17\x85\x18\x00\x00\ \x00\x00IEND\xaeB`\x82\ \x00\x00\x0a\xa5\ \x89\ PNG\x0d\x0a\x1a\x0a\x00\x00\x00\x0dIHDR\x00\ \x00\x01\x00\x00\x00\x01\x00\x08\x06\x00\x00\x00\x5cr\xa8f\ \x00\x00\x00\x09pHYs\x00\x00\x0e\xc4\x00\x00\x0e\xc4\ \x01\x95+\x0e\x1b\x00\x00\x00 cHRM\x00\x00z\ r\x00\x00\x80\xeb\x00\x00\xf5\x8d\x00\x00\x84\xec\x00\x00q\ \x90\x00\x00\xf6\x89\x00\x00;\x1d\x00\x00\x16G^\xee\x0e\ Z\x00\x00\x0a+IDATx\xda\xec\xdd[l\x94\ e\x1a\xc0\xf1\xe9\xd8\x8e-\xad\x80\x9c\x02-\x05S\x0e\ \xc1C\x04k\xc1U\x13\x8a\x08\x88+\xf1\x02\xd0\xa0\xd9\ \x00]\x0c!j\x96\x0d\x22Q@\x8d!\x04W\x82Q\ 7\x1b\x5c7\x04\xd1(n\x1a.\x08\xae'\x14Z\x93\ \x85 \x88\x8a\x1a\x03\xd8n\x10\x81R\x90\x96`m\xa7\ \xa5\xed^l\x1aY\x15,\xb4\x9d\xce|\xdf\xef\xe2w\ O\xbe\xf7y\xfe\x09\xd3\xef\x9d\x89\xb4\xb6\xb6F\x80p\ \xf2\x10@\x00\x00\x01\x00\x04\x00\x10\x00@\x00\x00\x01\x00\ \x04\x00\x10\x00@\x00\x00\x01\x00\x04\x00\x10\x00@\x00\x00\ \x01\x00\x04\x00\x10\x00@\x00\x00\x01\x00\x04\x00\x10\x00@\ \x00\x00\x01\x00\x04\x00\x10\x00@\x00\x00\x01\x00\x04\x00\x10\ \x00@\x00\x00\x01\x00\x04\x00\x10\x00@\x00\x00\x01\x00\x04\ \x00\x10\x00\x10\x00\x0f\x01\x04\x00\x10\x00@\x00\x00\x01\x00\ \x04\x00\x10\x00@\x00\x00\x01\x00\x04\x00\x10\x00@\x00\x00\ \x01\x00\x04\x00\x10\x00@\x00\x00\x01\x00\x04\x00\x10\x00@\ \x00\x00\x01\x00\x04\x00\x10\x00@\x00\x00\x01\x00\x04\x00\x10\ \x00@\x00\x00\x01\xa0\xfd\xde\x7f\xff\xfd)s\xe6\xcc\xd9\ P\x5c\x5c\x5c>t\xe8\xd0C\xf9\xf9\xf9\x87o\xbe\xf9\ \xe6\x9d\xf7\xdcsOiii\xe9L\xcfH\x00\x08\xa0\ \xb5k\xd7.\xb8\xfd\xf6\xdb?\x8cD\x22\xad\x17r\xed\ \xb5\xd7~\xf5\xc4\x13O\xac\xf0\xcc\x04\x80\x14w\xe2\xc4\ \x89~\xe9\xe9\xe9M\xbf\xb5\xf4\x17\xb2w\xef\xdeB\xcf\ R\x00H1o\xbc\xf1\xc6\xfd}\xfb\xf6\xfd\xbe#\xcb\ \x1f\x89DZ/\xbb\xec\xb2\xe6G\x1f}t\xb5g*\ \x00\xa4\x80\xea\xea\xea\x017\xddt\xd3\xae\x8e.\xfe\xcf\ \xf5\xef\xdf\xff\xc4\xae]\xbb\xc6y\xc6\x02@\x12\x1b5\ j\xd4\xd7\x9d\xbd\xfcmrrr\xcex\xc6\x02@\x92\ \x1a?~|yW-\x7f\x9b\xdc\xdc\xdc#\x9e\xb5\x00\ \x90dZZZ\xa2]\xbd\xfcmN\x9f>\xdd\xd33\ \x17\x00\x92\xc4\xcb/\xbf<?Q\xcb\xdff\xde\xbcy\ \xeb<{\x01 \x09t\xf4O}\x97\xca\xb3\x17\x00\xba\ \xd1\xe1\xc3\x87\x07\xe7\xe5\xe5\x1d\xe9\x8e\xe5\x8fD\x22\xad\ \xb1X,^VV6\xc1Y\x08\x00\x09\xd6\xd4\xd4\x94\ \xde]\x8b\xffs\xc7\x8f\x1f\x1f\xe0L\x04\x80\x04\x9a7\ o\xde\xbad\x09\xc0\xb8q\xe3v\xd5\xd5\xd5\xf5p.\ \x02@\x22\x0e-I\x16\xdfg\x02\x02@\x82m\xdf\xbe\ }B\xb2\x06\xe0\xf9\xe7\x9f\xff\xb33\x12\x00\xbaHU\ U\xd5\xc0d]\xfe6^\x17\x16\x00\xba@]]]\ \x8f\xa2\xa2\xa2\xdd\xc9\x1e\x80\x01\x03\x06\x1c\xaf\xac\xac,\ pf\x02@\x08\xfe\xdf\x7f>\xf1x<\xe6\xdc\x04\x80\ \x0e\xda\xb4i\xd3\xf4h4\xda\x9cj\x01\x88D\x22\xad\ \xcb\x96-[\xe9\x0c\x05\x80\x0e\xc8\xca\xca\xaaO\xc5\xe5\ \xf7\x97\x01\x01\xa0\x03N\x9e<\xd9o\xe4\xc8\x91\xfbS\ y\xf9#\x91Hk\xcf\x9e=O\xef\xdb\xb7\xefzg\ *\x00\x5c\x84[o\xbd\xf5\xdf\xa9\xbe\xfcm\x06\x0f\x1e\ |\xd8\x99\x0a\x00\xed\xb4d\xc9\x92\xbf\x04e\xf9\xdbL\ \x9d:\xf5\x9d\xa6\xa6\xa6t\xe7+\x00\x5c\xc0K/\xbd\ \xb4 h\xcb\xdff\xfe\xfc\xf9\x7fw\xc6\x02\xc0y\xec\ \xdd\xbb\xb70\xa8\xcb\xdff\xe3\xc6\x8d\xb3\x9c\xb5\x00\xf0\ +\x06\x0d\x1at,\xe8\x01\xb8\xfc\xf2\xcb\xe3\xceZ\x00\ 8Gccc\xac=?\xda\x11\x14\xc3\x86\x0d\xab\xa8\ \xae\xaev\x85X\x00H\xc5\xb7\xfc:KKKK\xd4\ \xf9\x0b@\xa8m\xd8\xb0avX\x03\xb0h\xd1\xa25\ f@\x00B\xabW\xaf^\xa7\xc3\xba\xfc\xe7\xfe\xf2\x90\ Y\x10\x80\xd09z\xf4hn\xd8\x97\xbf\xcd\x9e={\ \x8a\xcc\x84\x00\x84\xc6\xb4i\xd3\xb6X\xfc\xffw\xcd5\ \xd7|e6\x04\xc0\x87~!\xd6\xd8\xd8\xe8\x0a\xb1\x00\ \x04[ZZ\x9aew{P\x00\xc2\xe6\xc0\x81\x03#\ ;\xe3\xe7\xba\x83.##\xa3\xe9\x83\x0f>\x98df\ \x04 P\x86\x0f\x1f~\xd0\x82\xb7O\xaf^\xbdN\x9b\ \x19\x01\x08\x84\x96\x96\x96\xe8\xcc\x993K-\xf6\xc5)\ ,,\xfc\xe4\x87\x1f~\xc81C\x02\x90\xd2\x1ey\xe4\ \x915\x16\xfa\xd2\xdcu\xd7]\xff2C\x02\x90\xb2\xb6\ l\xd92\xcd\x22w\xcc\xb3\xcf>\xbb\xc4,\x09@\xca\ \xd9\xb3gOQvvv\x9d%\xee\x98\xb4\xb4\xb4\xd6\ \xd2\xd2\xd2\x99fJ\x00RFMMMo\xcb\xdb\xb9\ \x0e\x1e<8\xdcl\x09@J\x5c\xed\xbd\xed\xb6\xdb\xb6\ [\xda\xce5|\xf8\xf0\x83'O\x9e\xecg\xc6\x04\xc0\ [~!\xe6\x0a\xb1\x00$\xad\x8c\x8c\x8c&K\xeam\ A\x01\x08\xa1}\xfb\xf6]o9\x13\xe3\xad\xb7\xde\x9a\ f\xe6\x04 i\xdcp\xc3\x0d\x9fZ\xcc\xc4\x1a4h\ \xd01\xb3'\x00\xdd\xee\xec\xd9\xb3\xe9\x16\xb2{\xd4\xd6\ \xd6\xf66\x83\x02\xd0mV\xadZ\xf5\x98E\xec^%\ %%\xeb\xcd\xa2\x00\xb8\xda\xebCA\x04 1\xf6\xef\ \xdf?\xb2O\x9f>\xae\xf6&\x89X,\x16\xdf\xb6m\ \xdbD\xb3)\x00]\xee\xc7\x1f\x7f\xeca\xe9\x92SU\ U\xd5@3*\x00]j\xfa\xf4\xe9\x9b,[r*\ **\xdamF\x05\xa0\xcb\xbc\xf8\xe2\x8b\x7f\xb2h\xc9\ \xed\xe1\x87\x1f\xfe\xabY\x15\x80N\xb7y\xf3\xe6\xbb\xa3\ \xd1h\xb3%K~k\xd6\xacYdf\x05\xa0\xd3T\ VV\x16X\xac\xd4\xb2s\xe7\xce\xdf\x99]\x01\xe8\xb0\ S\xa7N\xf5\x195j\xd4\xd7\x96*\xb5\xf4\xef\xdf\xff\ DEEE\x81\x19\x16\x80\x0e}\x9f\x9feJm\x0d\ \x0d\x0d\x99fY\x00.\xc9\xd2\xa5KWZ\xa2\xd4v\ \xdf}\xf7mt\x85X\x00.Zzz\xba\xab\xbd\xde\ \x16\x14\x80\xb0\xf9\xee\xbb\xef\x06\xe7\xe5\xe5\x1d\xb14\xc1\ r\xc5\x15W\x9c\xf9\xec\xb3\xcf\xc6\x98q\x01\xb8\xa0\xd1\ \xa3G\x7fna\x82)//\xef\x88\x19\x17\x80\xf3z\ \xe0\x81\x07\xfeaQ\x82m\xca\x94)\xef\x99u\x01\xf0\ }~>\x0f@\x00\xfe\xa7\xac\xaclB,\x16\x8b[\ \x8e\xf0\xfc\xd6\xc0\xeb\xaf\xbf~\xbf\xd9\x17\x80Hkk\ k\xe4\xca+\xaf\xac\xb1\x18\xe1\xbbBl\xf6C\x1e\x80\ \xba\xba\xba\x1ec\xc7\x8e\xddm!\xc2\xa9\xa0\xa0\xa0\xe2\ \xf8\xf1\xe3\x03\x04\xc0\xff\xf9\x09\xb1\xe6\xe6\xe6\xa8\x00\x84\ \xccs\xcf=\xb7\xc8\xf0\x13\x89DZ\x17.\x5c\xf8\x82\ \x00\x84HVVV\xbd\xc1\xe7\x5c\xd1h\xb4Y\x00B\ \xa0\xa2\xa2\xc2\xd5^~\xd5\xc7\x1f\x7f<N\x00\x02\xac\ \xa1\xa1!\xd3\xa0s!\xa7N\x9d\xea#\x00\x01\xbd\xda\ ;k\xd6\xac\x8d\x86\x9c\x0b)...\x8f\xc7\xe31\ \x01\xf0\x89?\xde\x16\x14\x80 x\xfb\xed\xb7\x7fo\xa8\ \xb9\x18\xeb\xd6\xad\xfb\xa3\x00\x04@nn\xae\xab\xbd\x5c\ \x92\x9e={\x9e\x16\x80\x14\xd5\xd8\xd8\x18\x9b4i\xd2\ V\x83LG\x8c\x193\xe6\xd33g\xce\xe4\x08@\x8a\ )))Yo\x80\xe9\x0cw\xdey\xe7;\x02\x90B\ ^}\xf5\xd5\xd9\x06\x97\xce\xf4\xcc3\xcf<&\x00)\ `\xdb\xb6m\x13]\xed\xa5+\xae\x10\xbf\xf9\xe6\x9b\xb3\ \x04 \x89\x1d;vl\xa0a\xa5+\x1d8p`\xa4\ \x00$\xa9\x1bo\xbc\xf1\x13CJW\x1a6lX\x85\ \x00$\xa1\x87\x1ez\xe8o\x06\x94D\x981c\xc6\xa6\ \xa0\xfc\xd6@ \x96?--\xcd`\xe2m\xc10\x06\ `\xc7\x8e\x1d\xb7\x18F\xba\xc3\x96-[\xa6\x09@7\ \x1a1b\xc4A\x83Hw\x1a8p\xe01\x01\xe8\x06\ \xf5\xf5\xf5\xae\xf6\x92\x14jkk{\x0b@\x02-^\ \xbcx\xb5\xc1#\x99\xcc\x9e={\x83\x00\xb8\xda\x8b\x0f\ \x05\x05\xa0+egg\xd7\x196\x92QFFF\x93\ \x00t\xa1C\x87\x0e\x0d1h$\xb3/\xbf\xfc\xf2:\ \x01\xe8\x02\x13'N\xfc\xd0\x80\x91\x0a\x0a\x0b\x0b?\x11\ \x80N\xf4\xd4SO=m\xb0H%\x0f>\xf8\xe0\xdf\ \x04\xa0\x13\xbc\xf2\xca+s\x0d\x14\xa9h\xf5\xea\xd5\x8b\ \x05\xa0\x03\xbe\xf8\xe2\x8b\xeb\x0c\x12\xa9l\xc7\x8e\x1d\xb7\ \x08\xc0%8z\xf4h\xee\x90!C\x0e\x19\x22RY\ \xbf~\xfdN|\xf3\xcd7\xc3\x05\xe0\x22\x9c={6\ \xdd\xf0\x10$\x0d\x0d\x0d\x99\x02\xd0N\x0b\x16,Xk\ h\x08\x92{\xef\xbd\xf7\x9f\xc9x\x85\xd8\xd5^\x08\xf1\ \xdb\x82I\xf5\x8f\xe9\xdb\xb7\xef\xf7\x86\x84 \xcb\xc9\xc9\ 9#\x00\xbf\xa2\xba\xbaz\x80\x01!\x0c\xbe\xfd\xf6\xdb\ !\x02p\x8e\x193fl2\x18\x84\xc9\xa4I\x93\xb6\ \x0a\x80\xdb}\xf8< \xbc\x01\xd8\xbcy\xf3\xdd\xd1h\ \xb4\xd90\x10V\xaf\xbd\xf6\xda\x1fB\x1b\x80\x1e=z\ \xb8\xdaK\xa8\xc5b\xb1x\xe8\x02PSS\xd3\xfb\xea\ \xab\xaf\xfe\xda\x00@\xa4\xf5\xaa\xab\xae\xfaOUU\xd5\ \xc0\xd0\x04`\xc2\x84\x09\xdb\x1d<\xfcd\xec\xd8\xb1\xbb\ C\x11\x80\xc7\x1f\x7f|\x95\x03\x87_Z\xb8p\xe1\x0b\ \x81\x0e\xc0\xbb\xef\xbe;\xd5A\xc3\xf9\x95\x97\x97\x8f\x0f\ d\x00\xea\xeb\xeb3\x87\x0e\x1d\xeav\x1f\x5c\xc0\x88\x11\ #\x0e\xc6\xe3\xf1X\xa0\x02\xd0\xdc\xdc\x1c\xb5\xfc\xd0>\ \x05\x05\x05\x15\x89\xba8\x94\x90\x00\x94\x95\x95Mp\xb0\ \xd0~\x1f}\xf4\xd1\xf8\xc0\x04\xa0\xb8\xb8\xb8\xdc\xa1B\ \xfb\x15\x17\x17\x97\x07&\x00\xb9\xb9\xb9G\x1c*\xb4_\ \xa2~s0!\x01\xf0\xba/\x5c\x9c\xf4\xf4\xf4\xa6\xc0\ \x04`\xf4\xe8\xd1\x9f;Th\xbf1c\xc6|\x1a\x98\ \x00\xcc\x993g\x83C\x85\xf6K\xd4\x8f\x8d&$\x00\ \xb5\xb5\xb5\xbd333\xeb\x1d,\xfc\xb6\xcc\xcc\xcc\xfa\ \x9a\x9a\x9a\xde\x81z\x11\xa8\xa4\xa4d\xbd\xc3\x85\xdf6\ w\xee\xdc\xf5\x81|\x15x\xd9\xb2e+\x1d0\x9c\xdf\ \xd2\xa5KW\x06\xf6.@<\x1e\x8f9d8\xbfD\ \xbe\x06\xdc-\xb7\x01+++\x0b\x1c4\xfcRee\ eA(\xbe\x0f`\xf2\xe4\xc9[\x1d8\xfcd\xf2\xe4\ \xc9[C\xf7\x95`+V\xacX\x9e\x9f\x9f\x7f\xd8\x00\ \x10F\xf9\xf9\xf9\x87W\xae\x5c\xb94\xd4\xdf\x0a\xdc\xdc\ \xdc\x1c]\xbe|\xf9\x8a)S\xa6\xbc\x97\x95\x95\xe5O\ \x85\x04Zvvv\xdd\x1dw\xdc\xf1\xde\x93O>\xf9\ t2\xfcTXR\xff<8 \x00\x80\x00\x00\x02\x00\ \x08\x00 \x00\x80\x00\x00\x02\x00\x08\x00 \x00\x80\x00\x00\ \x02\x00\x08\x00 \x00\x80\x00\x80\x00\x00\x02\x00\x08\x00 \ \x00\x80\x00\x00\x02\x00\x08\x00 \x00\x80\x00\x00\x02\x00\x08\ \x00 \x00\x80\x00\x00\x02\x00\x08\x00 \x00\x80\x00\x00\x02\ \x00\x08\x00 \x00\x80\x00\x00\x02\x00\x08\x00 \x00\x80\x00\ \x00\x02\x00\x08\x00 \x00\x80\x00\x00\x02\x00\x08\x00 \x00\ \x80\x00\x00\x02\x00\x08\x00 \x00\x80\x00\x80\x00\x00\x02\x00\ \x08\x00 \x00\x80\x00\x00\x02\x00\x08\x00 \x00\x80\x00\x00\ \x02\x00\x08\x00 \x00\x80\x00\x00\x02\x00$\xb1\xff\x0e\x00\ \xb5\xcb\x97\x14\x8f|Z\x82\x00\x00\x00\x00IEND\ \xaeB`\x82\ " qt_resource_name = b"\ \x00\x05\ \x00o\xa6S\ \x00i\ \x00c\x00o\x00n\x00s\ \x00\x04\ \x00\x075t\ \x00l\ \x00o\x00a\x00d\ \x00\x07\ \x08\x99m\x9c\ \x00a\ \x00r\x00r\x00o\x00w\x00_\x00l\ \x00\x07\ \x08\x99m\xa2\ \x00a\ \x00r\x00r\x00o\x00w\x00_\x00r\ \x00\x07\ \x08\x99m\x94\ \x00a\ \x00r\x00r\x00o\x00w\x00_\x00d\ \x00\x07\ \x08\x99m\xa5\ \x00a\ \x00r\x00r\x00o\x00w\x00_\x00u\ " qt_resource_struct = b"\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x01\ \x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x05\x00\x00\x00\x02\ \x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x10\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\ \x00\x00\x01x\xe4\xec\xb8\xde\ \x00\x00\x00F\x00\x00\x00\x00\x00\x01\x00\x00;\xe1\ \x00\x00\x01x\xe4\xec\xb8\xde\ \x00\x00\x00\x1e\x00\x00\x00\x00\x00\x01\x00\x00%B\ \x00\x00\x01x\xe4\xec\xb8\xde\ \x00\x00\x002\x00\x00\x00\x00\x00\x01\x00\x000q\ \x00\x00\x01x\xe4\xec\xb8\xde\ \x00\x00\x00Z\x00\x00\x00\x00\x00\x01\x00\x00F\xb0\ \x00\x00\x01x\xe4\xec\xb8\xde\ " def qInitResources(): QtCore.qRegisterResourceData(0x03, qt_resource_struct, qt_resource_name, qt_resource_data) def qCleanupResources(): QtCore.qUnregisterResourceData(0x03, qt_resource_struct, qt_resource_name, qt_resource_data) qInitResources()
AlignR
/AlignR-2.0.5.tar.gz/AlignR-2.0.5/AlignmentReporter/UI/Qt/AlignmentReporterRessources.py
AlignmentReporterRessources.py
# AlignmentUtilis `AlignmentUtilis` is a collection utilities of sequence alignment algorithms, - Needleman-Wunsch and Smith-Watermen algorithms to conduct sequence alignment with affine gap penalty - Naive exact matching to conduct reads alignment problem - ... ## How to get it? ```shell pip install AlignmentUtilis ``` ## How to use it? ```shell # 1. PairwiseSequenceAlignment from AlignmentUtilis.Pairwise import * # Test seq1 = "TCGTAGACGA" seq2 = "ATAGAATGCGG" # Run Global Alignment PairwiseSequenceAlignment.Runalignment(seq1, seq2, 1, -1, -2, -1, local=False) # Run Local Alignment PairwiseSequenceAlignment.Runalignment(seq1, seq2, 1, -1, -2, -1, local=True) # 2. Naive exact matching from AlignmentUtilis.Naive import * # Naive Exact Macthing Basic Utility Test test_occurrences = Naive.naive_exact_matching('AG', 'AGCTTAGATAGC') print('The pattern is AG') print('The target sequence is AGCTTAGATAGC') print(f'The start position of exact matching is {test_occurrences}') # 3. Booyer-Moore algorithm to reduce the unnecessary alignments from AlignmentUtilis.BM import * # BoyerMoore Test p = 'TCAA' p_bm = BoyerMoore(p) print(p_bm.amap) print(p_bm.bad_character_rule(2, 'T')) # boyer_moore Test t = 'ACGTCGTGCGGTGAGTCGGTAGCGTAGCTAGATACAATCAAGAGAGAGTGCGGAGTGCGAGTCAA' occurrences = boyer_moore(p, p_bm, t) print(occurrences) # 4. Kmer indexing of target sequence, and simple application of query sequence alignment from AlignmentUtilis.KmerIndex import * t = 'GCTACGATCTAGAATCTA' p = 'TCTA' index = Index(t, 2) print(queryIndex(p, t, index)) ``` ## License MIT License Copyright (c) 2022 Youpu Chen Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
AlignmentUtilis
/AlignmentUtilis-0.1.0.tar.gz/AlignmentUtilis-0.1.0/README.md
README.md
from typing import Optional, Union, List, Dict class APIResponses: RESPONSE_MESSAGES = { "Lütfen cep telefonunuza gönderilen kodu giriniz": 1, "Girmiş olduğunuz cep telefonu numarası sistemde kayıtlı değildir, lütfen kontrol edip tekrar deneyiniz": 0, "Algida dünyasına yönlendiriliyorsun.": 1, "Girdiğiniz kod doğrulanamamıştır, lütfen tekrar deneyiniz.": 0, "Kısa bir süre içerisinde çok fazla istekte bulundunuz, lütfen daha sonra tekrar deneyiniz": 0, } @staticmethod def process_response(response: Optional[Union[List[Dict], Dict]]) -> Dict: if not isinstance(response, list): if not isinstance(response, dict): return {"status": False} else: if not isinstance(response[0], dict): return {"status": False} else: response = response[0] response = response.get('Message') if response in APIResponses.RESPONSE_MESSAGES: return {"status": APIResponses.RESPONSE_MESSAGES[response], "message": response} else: return {"status": False, "message": response} @staticmethod def process_verification(response) -> Dict: return APIResponses.process_response(response.json()) @staticmethod def process_code_verification(response): keys_to_check = ['UCID', 'RefreshToken', 'Token', 'CustomerID'] data = response.json() if not isinstance(data, list): if not isinstance(data, dict): return {"status": False} else: if not isinstance(data[0], dict): return {"status": False} else: data = data[0] api_response = APIResponses.process_response(data) if all(key in data for key in keys_to_check): api_response.update(data) return api_response @staticmethod def process_login(response): # Login API yanıtını işle pass @staticmethod def process_user_data(response): # User data API yanıtını işle pass @staticmethod def process_update_settings(response): # Update settings API yanıtını işle pass @staticmethod def process_app_action(response): # App action API yanıtını işle pass
Alika
/Alika-0.0.1.tar.gz/Alika-0.0.1/alika/api/api_responses.py
api_responses.py
import requests from typing import Optional, Dict from .api_responses import APIResponses class APIService: def __init__(self, base_url: str): self.base_url = base_url self.headers = {"Accept": "application/json, text/plain, */*", "Content-Type": "application/json", "Accept-Encoding": "gzip, deflate", "User-Agent": "okhttp/4.9.1"} self.app_key = "830DA10A-FA97-4244-8B40-E97EC8F085D9" def _set_authorization(self, token: Optional[str] = None) -> dict: headers = self.headers.copy() if token: headers["Authorization"] = f"Bearer {token}" return headers def _make_request(self, method: str, endpoint: str, data: Optional[Dict] = None, headers: Optional[Dict] = None) -> requests.Response: url = self.base_url + endpoint response = requests.request(method, url, json=data, headers=headers) return response def send_verification_code(self, phone_number: str) -> Dict: headers = self._set_authorization() headers["Captchatoken"] = "token" endpoint = "/promo/customerLogin" data = {"appKey": self.app_key, "msisdn": phone_number} response = self._make_request("POST", endpoint, data=data, headers=headers) return APIResponses.process_verification(response) def verify_code(self, phone_number: str, verification_code: str) -> Dict: headers = self._set_authorization() headers["Captchatoken"] = "token" endpoint = "/promo/checkPincode" data = {"appKey": self.app_key, "msisdn": phone_number, "pincode": verification_code} response = self._make_request("POST", endpoint, data=data, headers=headers) return APIResponses.process_code_verification(response) def login(self, phone_number: str, token: Optional[str] = None) -> Dict: pass def get_user_data(self, token: str) -> Dict: pass def update_user_settings(self, token: str, new_settings: Dict) -> Dict: pass def perform_app_action(self, token: str, action_data: Dict) -> Dict: pass
Alika
/Alika-0.0.1.tar.gz/Alika-0.0.1/alika/api/api_service.py
api_service.py
import math import matplotlib.pyplot as plt from .Generaldistribution import Distribution class Gaussian(Distribution): """ Gaussian distribution class for calculating and visualizing a Gaussian distribution. Attributes: mean (float) representing the mean value of the distribution stdev (float) representing the standard deviation of the distribution data_list (list of floats) a list of floats extracted from the data file """ def __init__(self, mu=0, sigma=1): Distribution.__init__(self, mu, sigma) def calculate_mean(self): """Function to calculate the mean of the data set. Args: None Returns: float: mean of the data set """ avg = 1.0 * sum(self.data) / len(self.data) self.mean = avg return self.mean def calculate_stdev(self, sample=True): """Function to calculate the standard deviation of the data set. Args: sample (bool): whether the data represents a sample or population Returns: float: standard deviation of the data set """ if sample: n = len(self.data) - 1 else: n = len(self.data) mean = self.calculate_mean() sigma = 0 for d in self.data: sigma += (d - mean) ** 2 sigma = math.sqrt(sigma / n) self.stdev = sigma return self.stdev def plot_histogram(self): """Function to output a histogram of the instance variable data using matplotlib pyplot library. Args: None Returns: None """ plt.hist(self.data) plt.title('Histogram of Data') plt.xlabel('data') plt.ylabel('count') def pdf(self, x): """Probability density function calculator for the gaussian distribution. Args: x (float): point for calculating the probability density function Returns: float: probability density function output """ return (1.0 / (self.stdev * math.sqrt(2*math.pi))) * math.exp(-0.5*((x - self.mean) / self.stdev) ** 2) def plot_histogram_pdf(self, n_spaces = 50): """Function to plot the normalized histogram of the data and a plot of the probability density function along the same range Args: n_spaces (int): number of data points Returns: list: x values for the pdf plot list: y values for the pdf plot """ mu = self.mean sigma = self.stdev min_range = min(self.data) max_range = max(self.data) # calculates the interval between x values interval = 1.0 * (max_range - min_range) / n_spaces x = [] y = [] # calculate the x values to visualize for i in range(n_spaces): tmp = min_range + interval*i x.append(tmp) y.append(self.pdf(tmp)) # make the plots fig, axes = plt.subplots(2,sharex=True) fig.subplots_adjust(hspace=.5) axes[0].hist(self.data, density=True) axes[0].set_title('Normed Histogram of Data') axes[0].set_ylabel('Density') axes[1].plot(x, y) axes[1].set_title('Normal Distribution for \n Sample Mean and Sample Standard Deviation') axes[0].set_ylabel('Density') plt.show() return x, y def __add__(self, other): """Function to add together two Gaussian distributions Args: other (Gaussian): Gaussian instance Returns: Gaussian: Gaussian distribution """ result = Gaussian() result.mean = self.mean + other.mean result.stdev = math.sqrt(self.stdev ** 2 + other.stdev ** 2) return result def __repr__(self): """Function to output the characteristics of the Gaussian instance Args: None Returns: string: characteristics of the Gaussian """ return "mean {}, standard deviation {}".format(self.mean, self.stdev)
Alisha-ProbPack
/Alisha_ProbPack-0.1.tar.gz/Alisha_ProbPack-0.1/Alisha_ProbPack/Gaussiandistribution.py
Gaussiandistribution.py
import math import matplotlib.pyplot as plt from .Generaldistribution import Distribution class Binomial(Distribution): """ Binomial distribution class for calculating and visualizing a Binomial distribution. Attributes: mean (float) representing the mean value of the distribution stdev (float) representing the standard deviation of the distribution data_list (list of floats) a list of floats to be extracted from the data file p (float) representing the probability of an event occurring n (int) number of trials TODO: Fill out all functions below """ def __init__(self, prob=.5, size=20): self.n = size self.p = prob Distribution.__init__(self, self.calculate_mean(), self.calculate_stdev()) def calculate_mean(self): """Function to calculate the mean from p and n Args: None Returns: float: mean of the data set """ self.mean = self.p * self.n return self.mean def calculate_stdev(self): """Function to calculate the standard deviation from p and n. Args: None Returns: float: standard deviation of the data set """ self.stdev = math.sqrt(self.n * self.p * (1 - self.p)) return self.stdev def replace_stats_with_data(self): """Function to calculate p and n from the data set Args: None Returns: float: the p value float: the n value """ self.n = len(self.data) self.p = 1.0 * sum(self.data) / len(self.data) self.mean = self.calculate_mean() self.stdev = self.calculate_stdev() def plot_bar(self): """Function to output a histogram of the instance variable data using matplotlib pyplot library. Args: None Returns: None """ plt.bar(x = ['0', '1'], height = [(1 - self.p) * self.n, self.p * self.n]) plt.title('Bar Chart of Data') plt.xlabel('outcome') plt.ylabel('count') def pdf(self, k): """Probability density function calculator for the gaussian distribution. Args: x (float): point for calculating the probability density function Returns: float: probability density function output """ a = math.factorial(self.n) / (math.factorial(k) * (math.factorial(self.n - k))) b = (self.p ** k) * (1 - self.p) ** (self.n - k) return a * b def plot_bar_pdf(self): """Function to plot the pdf of the binomial distribution Args: None Returns: list: x values for the pdf plot list: y values for the pdf plot """ x = [] y = [] # calculate the x values to visualize for i in range(self.n + 1): x.append(i) y.append(self.pdf(i)) # make the plots plt.bar(x, y) plt.title('Distribution of Outcomes') plt.ylabel('Probability') plt.xlabel('Outcome') plt.show() return x, y def __add__(self, other): """Function to add together two Binomial distributions with equal p Args: other (Binomial): Binomial instance Returns: Binomial: Binomial distribution """ try: assert self.p == other.p, 'p values are not equal' except AssertionError as error: raise result = Binomial() result.n = self.n + other.n result.p = self.p result.calculate_mean() result.calculate_stdev() return result def __repr__(self): """Function to output the characteristics of the Binomial instance Args: None Returns: string: characteristics of the Gaussian """ return "mean {}, standard deviation {}, p {}, n {}".\ format(self.mean, self.stdev, self.p, self.n)
Alisha-ProbPack
/Alisha_ProbPack-0.1.tar.gz/Alisha_ProbPack-0.1/Alisha_ProbPack/Binomialdistribution.py
Binomialdistribution.py
import sys DEFAULT_VERSION = "0.6c11" DEFAULT_URL = "http://pypi.python.org/packages/%s/s/setuptools/" % sys.version[:3] md5_data = { 'setuptools-0.6b1-py2.3.egg': '8822caf901250d848b996b7f25c6e6ca', 'setuptools-0.6b1-py2.4.egg': 'b79a8a403e4502fbb85ee3f1941735cb', 'setuptools-0.6b2-py2.3.egg': '5657759d8a6d8fc44070a9d07272d99b', 'setuptools-0.6b2-py2.4.egg': '4996a8d169d2be661fa32a6e52e4f82a', 'setuptools-0.6b3-py2.3.egg': 'bb31c0fc7399a63579975cad9f5a0618', 'setuptools-0.6b3-py2.4.egg': '38a8c6b3d6ecd22247f179f7da669fac', 'setuptools-0.6b4-py2.3.egg': '62045a24ed4e1ebc77fe039aa4e6f7e5', 'setuptools-0.6b4-py2.4.egg': '4cb2a185d228dacffb2d17f103b3b1c4', 'setuptools-0.6c1-py2.3.egg': 'b3f2b5539d65cb7f74ad79127f1a908c', 'setuptools-0.6c1-py2.4.egg': 'b45adeda0667d2d2ffe14009364f2a4b', 'setuptools-0.6c10-py2.3.egg': 'ce1e2ab5d3a0256456d9fc13800a7090', 'setuptools-0.6c10-py2.4.egg': '57d6d9d6e9b80772c59a53a8433a5dd4', 'setuptools-0.6c10-py2.5.egg': 'de46ac8b1c97c895572e5e8596aeb8c7', 'setuptools-0.6c10-py2.6.egg': '58ea40aef06da02ce641495523a0b7f5', 'setuptools-0.6c11-py2.3.egg': '2baeac6e13d414a9d28e7ba5b5a596de', 'setuptools-0.6c11-py2.4.egg': 'bd639f9b0eac4c42497034dec2ec0c2b', 'setuptools-0.6c11-py2.5.egg': '64c94f3bf7a72a13ec83e0b24f2749b2', 'setuptools-0.6c11-py2.6.egg': 'bfa92100bd772d5a213eedd356d64086', 'setuptools-0.6c2-py2.3.egg': 'f0064bf6aa2b7d0f3ba0b43f20817c27', 'setuptools-0.6c2-py2.4.egg': '616192eec35f47e8ea16cd6a122b7277', 'setuptools-0.6c3-py2.3.egg': 'f181fa125dfe85a259c9cd6f1d7b78fa', 'setuptools-0.6c3-py2.4.egg': 'e0ed74682c998bfb73bf803a50e7b71e', 'setuptools-0.6c3-py2.5.egg': 'abef16fdd61955514841c7c6bd98965e', 'setuptools-0.6c4-py2.3.egg': 'b0b9131acab32022bfac7f44c5d7971f', 'setuptools-0.6c4-py2.4.egg': '2a1f9656d4fbf3c97bf946c0a124e6e2', 'setuptools-0.6c4-py2.5.egg': '8f5a052e32cdb9c72bcf4b5526f28afc', 'setuptools-0.6c5-py2.3.egg': 'ee9fd80965da04f2f3e6b3576e9d8167', 'setuptools-0.6c5-py2.4.egg': 'afe2adf1c01701ee841761f5bcd8aa64', 'setuptools-0.6c5-py2.5.egg': 'a8d3f61494ccaa8714dfed37bccd3d5d', 'setuptools-0.6c6-py2.3.egg': '35686b78116a668847237b69d549ec20', 'setuptools-0.6c6-py2.4.egg': '3c56af57be3225019260a644430065ab', 'setuptools-0.6c6-py2.5.egg': 'b2f8a7520709a5b34f80946de5f02f53', 'setuptools-0.6c7-py2.3.egg': '209fdf9adc3a615e5115b725658e13e2', 'setuptools-0.6c7-py2.4.egg': '5a8f954807d46a0fb67cf1f26c55a82e', 'setuptools-0.6c7-py2.5.egg': '45d2ad28f9750e7434111fde831e8372', 'setuptools-0.6c8-py2.3.egg': '50759d29b349db8cfd807ba8303f1902', 'setuptools-0.6c8-py2.4.egg': 'cba38d74f7d483c06e9daa6070cce6de', 'setuptools-0.6c8-py2.5.egg': '1721747ee329dc150590a58b3e1ac95b', 'setuptools-0.6c9-py2.3.egg': 'a83c4020414807b496e4cfbe08507c03', 'setuptools-0.6c9-py2.4.egg': '260a2be2e5388d66bdaee06abec6342a', 'setuptools-0.6c9-py2.5.egg': 'fe67c3e5a17b12c0e7c541b7ea43a8e6', 'setuptools-0.6c9-py2.6.egg': 'ca37b1ff16fa2ede6e19383e7b59245a', } import sys, os try: from hashlib import md5 except ImportError: from md5 import md5 def _validate_md5(egg_name, data): if egg_name in md5_data: digest = md5(data).hexdigest() if digest != md5_data[egg_name]: print >>sys.stderr, ( "md5 validation of %s failed! (Possible download problem?)" % egg_name ) sys.exit(2) return data def use_setuptools( version=DEFAULT_VERSION, download_base=DEFAULT_URL, to_dir=os.curdir, download_delay=15 ): """Automatically find/download setuptools and make it available on sys.path `version` should be a valid setuptools version number that is available as an egg for download under the `download_base` URL (which should end with a '/'). `to_dir` is the directory where setuptools will be downloaded, if it is not already available. If `download_delay` is specified, it should be the number of seconds that will be paused before initiating a download, should one be required. If an older version of setuptools is installed, this routine will print a message to ``sys.stderr`` and raise SystemExit in an attempt to abort the calling script. """ was_imported = 'pkg_resources' in sys.modules or 'setuptools' in sys.modules def do_download(): egg = download_setuptools(version, download_base, to_dir, download_delay) sys.path.insert(0, egg) import setuptools; setuptools.bootstrap_install_from = egg try: import pkg_resources except ImportError: return do_download() try: pkg_resources.require("setuptools>="+version); return except pkg_resources.VersionConflict, e: if was_imported: print >>sys.stderr, ( "The required version of setuptools (>=%s) is not available, and\n" "can't be installed while this script is running. Please install\n" " a more recent version first, using 'easy_install -U setuptools'." "\n\n(Currently using %r)" ) % (version, e.args[0]) sys.exit(2) except pkg_resources.DistributionNotFound: pass del pkg_resources, sys.modules['pkg_resources'] # reload ok return do_download() def download_setuptools( version=DEFAULT_VERSION, download_base=DEFAULT_URL, to_dir=os.curdir, delay = 15 ): """Download setuptools from a specified location and return its filename `version` should be a valid setuptools version number that is available as an egg for download under the `download_base` URL (which should end with a '/'). `to_dir` is the directory where the egg will be downloaded. `delay` is the number of seconds to pause before an actual download attempt. """ import urllib2, shutil egg_name = "setuptools-%s-py%s.egg" % (version,sys.version[:3]) url = download_base + egg_name saveto = os.path.join(to_dir, egg_name) src = dst = None if not os.path.exists(saveto): # Avoid repeated downloads try: from distutils import log if delay: log.warn(""" --------------------------------------------------------------------------- This script requires setuptools version %s to run (even to display help). I will attempt to download it for you (from %s), but you may need to enable firewall access for this script first. I will start the download in %d seconds. (Note: if this machine does not have network access, please obtain the file %s and place it in this directory before rerunning this script.) ---------------------------------------------------------------------------""", version, download_base, delay, url ); from time import sleep; sleep(delay) log.warn("Downloading %s", url) src = urllib2.urlopen(url) # Read/write all in one block, so we don't create a corrupt file # if the download is interrupted. data = _validate_md5(egg_name, src.read()) dst = open(saveto,"wb"); dst.write(data) finally: if src: src.close() if dst: dst.close() return os.path.realpath(saveto) def main(argv, version=DEFAULT_VERSION): """Install or upgrade setuptools and EasyInstall""" try: import setuptools except ImportError: egg = None try: egg = download_setuptools(version, delay=0) sys.path.insert(0,egg) from setuptools.command.easy_install import main return main(list(argv)+[egg]) # we're done here finally: if egg and os.path.exists(egg): os.unlink(egg) else: if setuptools.__version__ == '0.0.1': print >>sys.stderr, ( "You have an obsolete version of setuptools installed. Please\n" "remove it from your system entirely before rerunning this script." ) sys.exit(2) req = "setuptools>="+version import pkg_resources try: pkg_resources.require(req) except pkg_resources.VersionConflict: try: from setuptools.command.easy_install import main except ImportError: from easy_install import main main(list(argv)+[download_setuptools(delay=0)]) sys.exit(0) # try to force an exit else: if argv: from setuptools.command.easy_install import main main(argv) else: print "Setuptools version",version,"or greater has been installed." print '(Run "ez_setup.py -U setuptools" to reinstall or upgrade.)' def update_md5(filenames): """Update our built-in md5 registry""" import re for name in filenames: base = os.path.basename(name) f = open(name,'rb') md5_data[base] = md5(f.read()).hexdigest() f.close() data = [" %r: %r,\n" % it for it in md5_data.items()] data.sort() repl = "".join(data) import inspect srcfile = inspect.getsourcefile(sys.modules[__name__]) f = open(srcfile, 'rb'); src = f.read(); f.close() match = re.search("\nmd5_data = {\n([^}]+)}", src) if not match: print >>sys.stderr, "Internal error!" sys.exit(2) src = src[:match.start(1)] + repl + src[match.end(1):] f = open(srcfile,'w') f.write(src) f.close() if __name__=='__main__': if len(sys.argv)>2 and sys.argv[1]=='--md5update': update_md5(sys.argv[2:]) else: main(sys.argv[1:])
Aliyun
/Aliyun-0.1.1.tar.gz/Aliyun-0.1.1/ez_setup.py
ez_setup.py
import urllib2 from urllib import urlencode REST_METHODS = ['GET', 'POST', 'DELETE', 'HEAD', 'OPTIONS', 'PUT'] class REST_BASE(object): def __init__(self): self.headers = {} self.finename = None self.stdin = False self.params = [] self.host = 'http://api.aliyun-dev.com' ''' if options.accept: self.headers['accept'] = options.accept for head in options.headers: pass if options.params: if self._allow_params: self.params = [tuple(p.split('=', 1)) for p in options.param] ''' def request(self, uri, data = None, auth=None): if data: request = urllib2.Request(self.host + uri, urlencode(data)) else: request = urllib2.Request(self.host + uri) request.get_method = lambda: self._method result = urllib2.urlopen(request) return result.read() class REST_GET(REST_BASE): _method = 'GET' _allow_request_body = False _allow_params = True class REST_HEAD(REST_BASE): _method = 'HEAD' _allow_request_body = False _allow_params = True class REST_POST(REST_BASE): _method = 'POST' _allow_request_body = True _allow_params = True class REST_PUT(REST_BASE): _method = 'PUT' _allow_request_body = True _allow_params = True class REST_DELETE(REST_BASE): _method = 'DELETE' _allow_request_body = False _allow_params = True class REST_OPTIONS(REST_BASE): _method = 'OPTIONS' _allow_request_body = False _allow_params = False def simple_rest_factory(method): method = method.lower() if method == 'get': return REST_GET() elif method == 'post': return REST_POST() if __name__ == '__main__': from urllib import quote, urlencode print "Test REST_POST" statement = """insert overwrite table src_dest select * from src""" post = simple_rest_factory('post') uri = '/query/' data = {'statement': statement,} print post.request(uri, data) print "Test REST_GET" job_name = 'taobao/job_20110725033501158_21405' get = simple_rest_factory('get') uri = '/status/%s/' % quote(job_name.encode('utf-8')).replace('/', '%252F') print uri print get.request(uri)
Aliyun
/Aliyun-0.1.1.tar.gz/Aliyun-0.1.1/src/aliyun/rest.py
rest.py
import readline from authentication import authenticate from exceptions import CommandNotFound from sys import exit from imp import find_module from os import listdir from getpass import getpass from modules import simple_module_factory from metadata import COMMANDS LOGIN_RETRY_MAX = 3 class Shell(object): def __init__(self): self.module = None self.module_commands = None self.module_list = None self.build_module_list() self.parse_system_commands(COMMANDS) self.login() def message_of_service(self): """ Message of service """ return """ ----------------------------------------------------------------------- Thanks for choosing Aliyun product. This shell environment is for you to interact with our public services. More details please use "help". ----------------------------------------------------------------------- """ def parse_system_commands(self, commands): self.system_commands = dict() field_list = ['name', 'function', 'description'] for item in commands: command = dict(zip(field_list, item)) self.system_commands[command['name']] = command def parse_module_commands(self, commands): self.module_commands = dict() field_list = ['name', 'function', 'description'] for item in commands: command = dict(zip(field_list, item)) self.module_commands[command['name']] = command def help(self, args): """ Help description """ target = args.strip()[5:] if target: if target in self.system_commands: output = "\n%s\t\t%s\n" % (self.system_commands[target]['name'], self.system_commands[target]['description']) elif self.module_commands and target in self.module_commands: output = "\n%s\t\t%s\n" % (self.module_commands[target]['name'], self.module_commands[target]['description']) else: output = """ Nothing found Please try to run 'help' for a list of all accessible topics """ else: output = """ System Commands ------------------------------------ """ for key in self.system_commands: output += "%s\t\t%s\n" % (self.system_commands[key]['name'], self.system_commands[key]['description']) if self.module_commands: output += """ Module Commands ------------------------------------ """ for key in self.module_commands: output += "%s\t\t%s\n" % (self.module_commands[key]['name'], self.module_commands[key]['description']) return output def prompt(self): prompt = 'aliyun' if self.module: prompt += '::%s' % (self.module.metadata.NAME) prompt += '> ' return prompt def build_module_list(self): ignore, pathname, ignore = find_module('aliyun') self.module_list = [package for package in listdir('%s/modules' % (pathname)) if not package.endswith(('.py', '.pyc', '.pyo')) ] def list(self, args): output = "Available modules:\n" output += '\n'.join(self.module_list) return output def load(self, args): module = args.split()[1] if module in self.module_list: self.module = simple_module_factory(module) self.parse_module_commands(self.module.metadata.COMMANDS) output = "\n%s" % (self.module.metadata.MESSAGE) else: output = "%s: does not exist" % (module) return output def unload(self, args): self.module = None self.module_commands = None def quit(self, args): raise EOFError() def exit(self, args): self.quit(args) def process_input(self, input): output = '' items = input.split() command = items[0] # System commands always get priority if command in self.system_commands: output = getattr(self, self.system_commands[command]['function'])(input) elif self.module and command in self.module_commands: output += getattr(self.module.functions, self.module_commands[command]['function'])(input) else: raise CommandNotFound(command) return output def login(self): retry = 0 while True: try: if retry >= LOGIN_RETRY_MAX: print "Permission denied (login attemps have been reported)." exit(1) username = raw_input('Username: ') if not username: continue retry += 1 password = getpass('Password: ') self.user = authenticate(username = username, password = password) if self.user is not None: print self.user.get_last_login_message() self.start_shell() else: print "Permission denied, please try again." except KeyboardInterrupt: print 'Ctrl-C -- exit!\nAborted' exit(1) except EOFError: print "Permission denied, please try again." def start_shell(self): print self.message_of_service() while True: try: input = raw_input(self.prompt()) if input: output = self.process_input(input) if output: print output except CommandNotFound as e: print "%s: command not found" % (e.value) pass except KeyboardInterrupt: print 'Ctrl-C -- exit!\nAborted' exit(1) except EOFError: print 'Have a nice day ^____^' exit(0)
Aliyun
/Aliyun-0.1.1.tar.gz/Aliyun-0.1.1/src/aliyun/shell.py
shell.py
import pandas as pd import matplotlib.pyplot as plt import seaborn as sns #from sklearn.linear_model import LinearRegression,Ridge,Lasso,RidgeCV,LassoCV,ElasticNet,ElasticNetCV from sklearn.preprocessing import StandardScaler import numpy as np class all_in_1: def __init__(self,dataset,out,visualize=False,standard=False,stats=False,future_sel=False,outlayer_removel=False,multicol=False,remove_null=False): self.dataset=dataset self.out=out self.v=visualize self.out=outlayer_removel self.m=multicol self.std=standard self.s=stats self.f=future_sel if self.std==True: self.standardtation(dataset,out) if self.v==True: self.visualize_data(dataset,out) if self.s==True: self.stats_data(dataset,out) if self.m==True: self.multi_col1(dataset,out) if self.out==True: self.find_outlayer(dataset,out) if remove_null==True: self.remove_nan_value(dataset,out) if self.f==True: self.featue_selection(dataset,out) def stats_data(self,dataset,out): print('our dataset Stats Analysis :') try: print('our datasets basic informations ') print() print(dataset.describe()) print('---'*20) print() print('dataset croreation') print(dataset.corr()) print('---'*20) print() print('---'*20) print() replace_i=[] replace_i1=[] try: import statsmodels.formula.api as sm col=dataset.columns s1='' replace_i=[] replace_i1=[] for i in col: if i.startswith('Serial' or 'serial' or 'SERIAL'): continue new=i.replace(' ','_') replace_i.append(new) for i in col: new=i.replace(' ','_') replace_i1.append(new) for i,j in enumerate(replace_i): if i<len(replace_i)-1: s1=s1+j+'+' else: s1=s1+j print(s1) out=out.replace(' ','_') new_d=np.asarray(dataset) new_d1=pd.DataFrame(new_d,columns=replace_i1) print(new_d1.columns) lm=sm.ols(formula=f'{out} ~ {s1}',data=new_d1).fit() print('stats table') print() print(lm.summary()) except Exception as e: print('error ',e) print('calculate the multi colinearity ') self.multi_col1(dataset,out) except Exception as e: print('erorr stats ',e) def remove_nan_value(self,dataset,out): li=[dataset._get_numeric_data().columns] try: for i in range(len(dataset.columns)): if dataset.columns[i] in li[0]: if dataset[dataset.columns[i]].nunique()<6: dataset[dataset.columns[i]].fillna(dataset[dataset.columns[i]].mode()[0],inplace=True) else: dataset[dataset.columns[i]].fillna(dataset[dataset.columns[i]].mean(),inplace=True) else: dataset[dataset.columns[i]].fillna(dataset[dataset.columns[i]].mode()[0],inplace=True) return dataset except Exception as e: print('error ',e) def find_outlayer(self,dataset,out): """ this function find and remove the outlayers in our dataset and return tha new_dataset """ out_layer_list=[] col=dataset.columns ind=[ i for i,j in enumerate(dataset.dtypes) if j=='float64' or 'int64' or 'float32' or 'int32'] col_name=dataset.columns[ind] for i in col_name: try: if dataset[i].isna().sum()<=0: q1=np.percentile(dataset[i],25) q3=np.percentile(dataset[i],75) iq=q3-q1 upper=q3+(1.5*iq) lower=q1-(1.5*iq) print(f'our datase upper limit : {upper},our datase upper limit : {lower}') for i1,j in enumerate(dataset[i]): if j<upper and j>lower: pass else: print(f'col of {i} index is {i1} val is {j} ') out_layer_list.append(i1) else: print('some val was null val so you first remove null values') inp1=input('if you want remove outayer yes ---1 o no---0') if inp1=='1': self.remove_nan_value(dataset,out) except Exception as e: print('eror ',e) inp=input('if you want the emove the outlayersyes--1 or no---0') if inp=='1': a=(dataset.iloc[out_layer_list]).index dataset.drop(a,inplace=True) print('our new dataset shape :',dataset.shape) def visualize_data(self,d,o): """ this function visualize in our dataset to better undestanding to our dataset """ inp=input('if you want to save all the plots y---1 or n---0') try: if inp=='1': inp1=input('enter path ') except Exception as e: print('enter 0 or 1 ') # int_col,object_col=[],[] cat_col,num_col=[],[] df=d print(type(df)) col=d.columns col=d.columns for i in range(len(col)): if d[col[i]].nunique()<6: cat_col.append(col[i]) else: num_col.append(col[i]) for i in range(len(num_col)): print(f'{num_col[i]} vs {o}') plt.xlabel(num_col[i]) plt.xlabel(o) plt.scatter(x=num_col[i],y=o,data=d) plt.show() print('--'*20) if inp1!='': try: plt.savefig(inp1+num_col[i]+'_vs_'+o+'.png') except Exception as e: print('please enter valid path ',e) for i in range(len(cat_col)): print() sns.barplot(x=cat_col[i],y=o,data=d) plt.show() print('--'*20) if inp1!='': try: plt.savefig(inp1+cat_col[i]+'_vs_'+o+'.png') except Exception as e: print('please enter valid path ',e) inp=input('you want hist yes--1 no--0') if inp=='1': for i in d.columns: plt.xlabel(i) plt.ylabel('count') plt.hist(x=d[i]) plt.show() print('--'*20) def featue_selection(self,dataset,out): """ this function find best feature to our dataset this function used in corelation comparison method used if our dataset feature < 35% to correlation in output data remove the that paticular feature return the new dataset """ cor=dataset.corr() ind=np.where(cor[out]<0.35) a=cor.iloc[ind].index print('this columns lower contribute our out come ' ) print() print(a) inp=input('if you want to remove columns y--1 or n--0') if inp=='1': dataset.drop(columns=a,inplace=True) print('successfully removed the columns') return dataset def multi_col1(self,dataset,out): """ this function find the multicolinearity feature in our datset this function used variance_inflation_factor method return new_dataset """ from statsmodels.stats.outliers_influence import variance_inflation_factor li=dataset._get_numeric_data().columns try: # print(out) #data=dataset.drop(out,axis=1) final_data=dataset[li] x=np.asarray(final_data) data_vif=[variance_inflation_factor(x,i)for i in range(x.shape[1])] print('our dataset vif values ') print() print(data_vif) inp=input('if you want to remove the mlti col feature y --- 1 or n----0 ') if inp=='1': col_ind=[ i for i,j in enumerate(data_vif) if j>10] print(col_ind) col_name=dataset.columns[col_ind] print(col_name) dataset.drop(col_name,axis=1,inplace=True) print('our final columns in our dataset ',dataset.columns) return dataset except Exception as e: print('error mul ',e) def standardtation(self,dataset,out): """ this function standardtizeing in our dataset return standadtize dataset """ data=dataset.drop(out,axis=1) li=data._get_numeric_data().columns scaler=StandardScaler() arr=scaler.fit_transform(dataset[li]) final=pd.DataFrame(data=arr,columns=li) dataset[li]=final return dataset # data=pd.read_csv('C:\\Users\\sathi\Downloads\\Admission_Predict.csv') # out='Chance of Admit' # a=all_in_1(data,out,visualize=True
All-In-1-sathishbilli
/All_In_1_sathishbilli-0.0.3-py3-none-any.whl/All_In_1/app.py
app.py
import webbrowser import tkinter as tk class calc: """ A maths class that contains a calculator and some other good stuff """ def prtclc(a, operator, b): """ prtclc stands for print calculator wich is a calculator that prints the answer on the screen """ if operator == "+": answr = a + b elif operator == "-": answr = a - b elif operator == "*": answr = a * b elif operator == "/": answr = a / b else: raise ValueError(operator, " is not a operator. The operators are + , - , * and / . If you wrote one of those make sure it is a string, not a variable.") print(answr) def even(number_to_check): """ A function that checks if number_to_check is even and return True or False """ if number_to_check % 2 == 0: return True else: return False def odd(number_to_check): """ A function that checks if number_to_check is odd and returns either True or False as an output """ if not number_to_check % 2 == 0: return True else: return False class www: """ A class that contains internet functions NEEDS webbrowser module and internet """ def visit(url): """Opens the url in your standard webbrowser""" webbrowser.open(url) class buggie: """A class with functions that goes on forever""" def zero(): "Zero Zero Zero... What else do you need to know""" while True: print("000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000") def window(): """A alpha function that does not work as supposed""" while True: root = tk.Tk() window = tk.Toplevel(root) tk.mainloop() class og: """Well, it's the og class""" def og(): """Some sort of hello world command""" print("hello world") class classes: """A class made for documentation. The classes in the documentation is Calc , www , buggie , og and classes (a special documentation class)"""
All-you-need-module
/All%20you%20need%20module-0.0.1.tar.gz/All you need module-0.0.1/AYNM/aynm.py
aynm.py
from trac.attachment import Attachment from trac.resource import ResourceNotFound from trac.util.html import html from trac.util.text import pretty_size from trac.wiki.macros import WikiMacroBase class AllAttachmentsMacro(WikiMacroBase): """Shows all attachments on the Trac site. The first argument is the filter for which attachments to show. The filter can have the value 'ticket' or 'wiki'. Omitting the filter argument shows all attachments. Examples: {{{ [[AllAttachments()]] # Show all attachments [[AllAttachments(ticket)]] # Show attachments linked to tickets [[AllAttachments(wiki)]] # Show attachments linked to wiki pages }}} """ def expand_macro(self, formatter, name, content): attachment_type = "" if content: argv = [arg.strip() for arg in content.split(',')] if len(argv) > 0: attachment_type = argv[0] with self.env.db_transaction as db: if attachment_type is None or attachment_type == "": attachments = db(""" SELECT type,id,filename,size,time, description,author,ipnr FROM attachment """) else: attachments = db(""" SELECT type,id,filename,size,time, description,author,ipnr FROM attachment WHERE type=%s """, (attachment_type, )) formatters = { 'wiki': formatter.href.wiki, 'ticket': formatter.href.ticket, 'milestone': formatter.href.milestone, } types = { 'wiki': '', 'ticket': 'ticket ', 'milestone': 'milestone ', } return html.ul( [html.li( html.a(filename, href=formatter.href.attachment(type + '/' + id + '/' + filename)), " (", html.span(pretty_size(size), title=size), ") - added by ", html.em(author), " to ", html.a(types[type] + ' ' + id, href=formatters[type](id)), ' ') for type, id, filename, size, time, description, author, ipnr in attachments if self._has_perm(type, id, filename, formatter.context)]) def _has_perm(self, parent_realm, parent_id, filename, context): try: attachment = Attachment(self.env, parent_realm, parent_id, filename) except ResourceNotFound: return False return 'ATTACHMENT_VIEW' in context.req.perm(attachment.resource)
AllAttachmentsMacro
/AllAttachmentsMacro-0.2.tar.gz/AllAttachmentsMacro-0.2/allattachments/api.py
api.py
==================================== AllPairs test combinations generator ==================================== AllPairs is an open source test combinations generator written in Python, developed and maintained by MetaCommunications Engineering. The generator allows one to create a set of tests using "pairwise combinations" method, reducing a number of combinations of variables into a lesser set that covers most situations. For more info on pairwise testing see http://www.pairwise.org. The easiest way to get started is to check out usage examples in the "examples" directory and online at https://apps.sourceforge.net/trac/allpairs/browser/examples/. Features -------- * Produces good enough dataset. * Pythonic, iterator-style enumeration interface. * Allows to filter out "invalid" combinations during search for the next combination. * Allows to exclude "previously tested" pairs/combinations. * Goes beyond pairs! If/when required can generate n-wise combinations. Installation ------------ To install AllPairs to your Python's site-packages directory, run this command from the command prompt: python setup.py install Alternatively, you can just copy the entire "metacomm" directory somewhere into your Python path. Known issues ------------ * Not optimal - there are tools that can create smaller set covering all the pairs. However, they are missing some other important features and/or do not integrate well with Python. * Lousy written filtering function may lead to full permutation of parameters. * Version 2.0 has become slower (a side-effect of introducing ability to produce n-wise combinations). Feedback -------- Please submit patches, bug reports, and feature requests here: http://apps.sourceforge.net/trac/allpairs/newticket Other inquires can be directed to metacomm(at)users.sourceforge.net
AllPairs
/AllPairs-2.0.1.zip/AllPairs-2.0.1/README.txt
README.txt
import pairs_storage from combinatorics import xuniqueCombinations class item: def __init__(self, id, value): self.id = id self.value = value self.weights = [] def __str__(self): return str(self.__dict__) def get_max_comb_number( arr, n ): items = [len(x) for x in arr] #print items f = lambda x,y:x*y total = sum([ reduce(f, z) for z in xuniqueCombinations( items, n) ]) return total class all_pairs2: def __iter__( self ): return self def __init__( self, options, filter_func = lambda x: True, previously_tested = [[]], n = 2 ): """ TODO: check that input arrays are: - (optional) has no duplicated values inside single array / or compress such values """ if len( options ) < 2: raise Exception("must provide more than one option") for arr in options: if not len(arr): raise Exception("option arrays must have at least one item") self.__filter_func = filter_func self.__n = n self.__pairs = pairs_storage.pairs_storage(n) self.__max_unique_pairs_expected = get_max_comb_number( options, n ) self.__working_arr = [] for i in range( len( options )): self.__working_arr.append( [ item("a%iv%i" % (i,j), value) \ for j, value in enumerate(options[i] ) ] ) for arr in previously_tested: if len(arr) == 0: continue elif len(arr) != len(self.__working_arr): raise Exception("previously tested combination is not complete") if not self.__filter_func(arr): raise Exception("invalid tested combination is provided") tested = [] for i, val in enumerate(arr): idxs = [item(node.id, 0) for node in self.__working_arr[i] if node.value == val] if len(idxs) != 1: raise Exception("value from previously tested combination is not found in the options or found more than once") tested.append(idxs[0]) self.__pairs.add_sequence(tested) def next( self ): assert( len(self.__pairs) <= self.__max_unique_pairs_expected ) p = self.__pairs if len(self.__pairs) == self.__max_unique_pairs_expected: # no reasons to search further - all pairs are found raise StopIteration previous_unique_pairs_count= len(self.__pairs) chosen_values_arr = [None] * len(self.__working_arr) indexes = [None] * len(self.__working_arr) direction = 1 i = 0 while -1 < i < len(self.__working_arr): if direction == 1: # move forward self.resort_working_array( chosen_values_arr[:i], i ) indexes[i] = 0 elif direction == 0 or direction == -1: # scan current array or go back indexes[i] += 1 if indexes[i] >= len( self.__working_arr[i] ): direction = -1 if i == 0: raise StopIteration i += direction continue direction = 0 else: raise Exception("next(): unknown 'direction' code.") chosen_values_arr[i] = self.__working_arr[i][ indexes[i] ] if self.__filter_func( self.get_values_array( chosen_values_arr[:i+1] ) ): assert(direction > -1) direction = 1 else: direction = 0 i += direction if len( self.__working_arr ) != len(chosen_values_arr): raise StopIteration self.__pairs.add_sequence( chosen_values_arr ) if len(self.__pairs) == previous_unique_pairs_count: # could not find new unique pairs - stop raise StopIteration # replace returned array elements with real values and return it return self.get_values_array( chosen_values_arr ) def get_values_array( self, arr ): return [ item.value for item in arr ] def resort_working_array( self, chosen_values_arr, num ): for item in self.__working_arr[num]: data_node = self.__pairs.get_node_info( item ) new_combs = [] for i in range(0, self.__n): # numbers of new combinations to be created if this item is appended to array new_combs.append( set([pairs_storage.key(z) for z in xuniqueCombinations( chosen_values_arr+[item], i+1)]) - self.__pairs.get_combs()[i] ) # weighting the node item.weights = [ -len(new_combs[-1]) ] # node that creates most of new pairs is the best item.weights += [ len(data_node.out) ] # less used outbound connections most likely to produce more new pairs while search continues item.weights += [ len(x) for x in reversed(new_combs[:-1])] item.weights += [ -data_node.counter ] # less used node is better item.weights += [ -len(data_node.in_) ] # otherwise we will prefer node with most of free inbound connections; somehow it works out better ;) self.__working_arr[num].sort( lambda a,b: cmp(a.weights, b.weights) ) # statistics, internal stuff def get_pairs_found( self ): return self.__pairs __export__ = [ all_pairs2, get_max_comb_number ]
AllPairs
/AllPairs-2.0.1.zip/AllPairs-2.0.1/metacomm/combinatorics/all_pairs2.py
all_pairs2.py
AllTray ========= Make a System Tray Icon for all application. Install ------- Simple Install with pip:: pip install alltray --user From source:: python setup.py install Usage ----- :: $ alltray --help usage: alltray.py [-h] [--config CONFIG] [--tooltip TOOLTIP] [--icon ICON] [command] positional arguments: command To run command optional arguments: -h, --help show this help message and exit --config CONFIG command group --tooltip TOOLTIP tray tool tip --icon ICON command icon example:: alltray --config chinadns Pack execute or app file ------------------------- For window, use cx_Freeze_ For mac os x, still has some issue... cx_Freeze ~~~~~~~~~ :: python cx_Freeze_setup.py bdist pyinstaller ~~~~~~~~~~~ 1. install pywin32 from http://sourceforge.net/projects/pywin32/files/ 2. pip install pyinstaller 3. [option] install upx from http://upx.sourceforge.net/ 4. Run ``pyinstaller --clean -i Apps-wheelchair.icns -w alltray.py`` Execute file will be found in "dist" directory. .. important:: + The execute file only be exectuted in ASCII directory. No support other encoding directory. It just is pyinstaller bug. + The single execute file could not be run in window 64bit! bug! py2exe ~~~~~~~ too old, please ignore it. :: python py2exe_setup.py py2exe Icon ----- http://www.iconarchive.com/show/nuoveXT-2-icons-by-saki/Apps-wheelchair-icon.html Screenshot ---------- + Window .. image:: screenshot_window.png + Ubuntu .. image:: screenshot_ubuntu.png
AllTray
/AllTray-0.1.1.tar.gz/AllTray-0.1.1/README.rst
README.rst
import sys import subprocess import threading import locale import argparse import shlex import os.path from functools import partial from PyQt4 import QtGui, QtCore from alltray import __version__ class TrayDialog(QtGui.QDialog): logThread = None def __init__(self, settings, parent=None): super(TrayDialog, self).__init__(parent) self.settings = settings icon_path = settings.value('icon_path').toString() if icon_path.isEmpty(): if sys.platform == 'win32': icon = QtGui.QIcon(QtGui.QFileIconProvider().icon(QtCore.QFileInfo(sys.argv[0]))) # elif sys.platform == 'darwin': # icon = QtGui.QIcon('Apps-wheelchair.icns') elif sys.platform == 'linux2': icon = QtGui.QIcon.fromTheme('preferences-desktop-accessibility') else: icon = QtGui.QIcon('Apps-wheelchair.ico') else: icon = QtGui.QIcon(QtGui.QFileIconProvider().icon(QtCore.QFileInfo(icon_path))) self.setWindowIcon(icon) self.setWindowTitle(self.tr('All Tray')) self.setLayout(self.getLayout()) self.tray = QtGui.QSystemTrayIcon(self) self.tray.setContextMenu(self.getMenu()) self.tray.setIcon(icon) tooltip = settings.value('tooltip').toString() if tooltip.isEmpty(): tooltip = self.tr('[All Tray] I\'m here!') self.tray.setToolTip(tooltip) self.tray.activated.connect(self.trayActivated) app_cmd = settings.value('app_cmd').toString() self.general_ctl.icon_path.setText(icon_path) self.general_ctl.app_path.appendPlainText(app_cmd) self.general_ctl.tooltip.setText(tooltip) app_run = settings.value('app_run').toBool() self.general_ctl.app_run.setChecked(app_run) if app_run: self.tray.show() def getLayout(self): main_layout = QtGui.QVBoxLayout() tabWidget = QtGui.QTabWidget(self) self.general_ctl = GeneralWidget(self.settings, tabWidget) self.log_ctl = LogWidget(tabWidget) dlg = QtGui.QDialog(self) about = AboutWidget(dlg) about_layout = QtGui.QVBoxLayout() about_layout.addWidget(about) about_layout.addStretch(1) dlg.setLayout(about_layout) tabWidget.addTab(self.general_ctl, self.tr('General')) tabWidget.addTab(self.log_ctl, self.tr('Log')) tabWidget.addTab(dlg, self.tr('About')) self.buttonBox = QtGui.QDialogButtonBox(QtGui.QDialogButtonBox.Apply | QtGui.QDialogButtonBox.Close) self.buttonBox.clicked.connect(self.applyCommand) main_layout.addWidget(tabWidget) main_layout.addWidget(self.buttonBox) return main_layout def getMenu(self): exit_action = QtGui.QAction( self.tr('&Exit'), self, triggered=self.quit) about_action = QtGui.QAction( self.tr('&About'), self, triggered=self.about) show_action = QtGui.QAction( self.tr('&Show Alltray'), self, triggered=partial(self.trayActivated, QtGui.QSystemTrayIcon.Trigger) ) menu = QtGui.QMenu(self) menu.addAction(show_action) menu.addAction(about_action) menu.addSeparator() menu.addAction(exit_action) return menu def trayActivated(self, reason): if reason in ( QtGui.QSystemTrayIcon.Trigger, QtGui.QSystemTrayIcon.DoubleClick): self.show() def closeEvent(self, event): self.saveSettings() if self.tray.isVisible(): self.hide() event.ignore() def applyCommand(self, button): if self.buttonBox.buttonRole(button) == QtGui.QDialogButtonBox.RejectRole: self.close() elif self.buttonBox.buttonRole(button) == QtGui.QDialogButtonBox.ApplyRole: icon_path = self.general_ctl.icon_path.text() app_cmd = self.general_ctl.app_path.toPlainText() tooltip = self.general_ctl.tooltip.text() self.saveSettings() icon = QtGui.QFileIconProvider().icon( QtCore.QFileInfo(icon_path)) self.setWindowIcon(icon) self.tray.setToolTip(tooltip) self.tray.show() self.hide() self.runCommand(app_cmd) def saveSettings(self): icon_path = self.general_ctl.icon_path.text() app_cmd = self.general_ctl.app_path.toPlainText() tooltip = self.general_ctl.tooltip.text() app_run = self.general_ctl.app_run.isChecked() self.settings.setValue('icon_path', icon_path) self.settings.setValue('app_cmd', app_cmd) self.settings.setValue('tooltip', tooltip) self.settings.setValue('app_run', app_run) def runCommand(self, app_cmd): if not app_cmd: self.log_ctl.append('no cmd') return cmd = shlex.split(unicode(app_cmd.toUtf8(), encoding='utf8')) if os.path.dirname(cmd[0]): cmd[0] = os.path.realpath(cmd[0]) if self.logThread: self.process.kill() self.logThread.kill() self.logThread.join() self.log_ctl.append(' '.join(cmd)) kwargs = {} kwargs['stdout'] = subprocess.PIPE kwargs['stderr'] = subprocess.PIPE kwargs['shell'] = False if sys.platform == 'win32': si = subprocess.STARTUPINFO() si.dwFlags |= subprocess.STARTF_USESHOWWINDOW si.dwFlags |= subprocess.STARTF_USESTDHANDLES kwargs['startupinfo'] = si self.process = subprocess.Popen( cmd, **kwargs ) self.logThread = LogThread(self.process, self) self.logThread.start() def killCommand(self): if self.logThread: self.process.kill() self.logThread.kill() self.logThread.join() self.logThread = None def about(self): dlg = AboutDialog(self) dlg.show() def quit(self): self.tray.hide() self.killCommand() QtGui.qApp.quit() class GeneralWidget(QtGui.QWidget): def __init__(self, settings, parent=None): super(GeneralWidget, self).__init__(parent) main_layout = QtGui.QVBoxLayout() icon_folder = QtGui.QFileIconProvider().icon(QtGui.QFileIconProvider.Folder) # command line application don't has icon, so you may set any icon. iconGroup = QtGui.QGroupBox(self.tr('Icon')) hlayout = QtGui.QHBoxLayout() self.icon_ctl = QtGui.QLabel() self.icon_ctl.setPixmap(self.windowIcon().pixmap(32, 32)) self.icon_ctl.setFrameStyle(QtGui.QFrame.StyledPanel | QtGui.QFrame.Plain) hlayout.addWidget(self.icon_ctl) vlayout = QtGui.QVBoxLayout() icon_label = QtGui.QLabel(self.tr('path:')) vlayout.addWidget(icon_label) self.icon_path = QtGui.QLineEdit() icon_browser = QtGui.QPushButton(icon_folder, '') icon_browser.setFlat(True) icon_browser.clicked.connect(self.iconBrowser) h_layout = QtGui.QHBoxLayout() h_layout.addWidget(self.icon_path) h_layout.addWidget(icon_browser) h_layout.setStretch(0, 1) vlayout.addLayout(h_layout) hlayout.addLayout(vlayout) iconGroup.setLayout(hlayout) appGroup = QtGui.QGroupBox(self.tr('Application')) vlayout = QtGui.QVBoxLayout() hlayout = QtGui.QHBoxLayout() app_label = QtGui.QLabel(self.tr('path:')) self.app_path = QtGui.QPlainTextEdit() app_browser = QtGui.QPushButton(icon_folder, '') app_browser.setFlat(True) app_browser.clicked.connect(self.applicationBrowser) hlayout.addWidget(app_label) hlayout.addWidget(app_browser) hlayout.setStretch(0, 1) vlayout.addLayout(hlayout) vlayout.addWidget(self.app_path) vlayout.setStretch(1, 1) appGroup.setLayout(vlayout) tooltipGroup = QtGui.QGroupBox(self.tr('Tooltip')) vlayout = QtGui.QVBoxLayout() self.tooltip = QtGui.QLineEdit() vlayout.addWidget(self.tooltip) tooltipGroup.setLayout(vlayout) self.app_run = QtGui.QCheckBox(self.tr('Run directly, not show dialog.')) self.app_run.setChecked(False) main_layout.addWidget(iconGroup) main_layout.addWidget(appGroup) main_layout.addWidget(tooltipGroup) main_layout.addWidget(self.app_run) main_layout.addStretch(1) self.setLayout(main_layout) def getFilePath(self): file_path = QtGui.QFileDialog.getOpenFileName( self, self.tr('Selected file'), '', "All Files (*)", ) return file_path def iconBrowser(self): path = self.getFilePath() self.icon_path.setText(path) icon = QtGui.QFileIconProvider().icon( QtCore.QFileInfo(path)) self.icon_ctl.setPixmap(icon.pixmap(32, 32)) def applicationBrowser(self): path = self.getFilePath() self.app_path.appendPlainText(path) class LogWidget(QtGui.QWidget): appended = QtCore.pyqtSignal(str) def __init__(self, parent=None): super(LogWidget, self).__init__(parent) self.mono_font = QtGui.QFont('Monospace') main_layout = QtGui.QVBoxLayout() self.text_ctl = QtGui.QPlainTextEdit(self) self.text_ctl.setFont(self.mono_font) self.text_ctl.setLineWrapMode(QtGui.QPlainTextEdit.NoWrap) self.text_ctl.setReadOnly(True) main_layout.addWidget(self.text_ctl) self.setLayout(main_layout) self.appended.connect(self.append) def sizeHint(self): # width = QtGui.QFontMetrics(self.mono_font).width('=' * 80) width = 500 return QtCore.QSize(width, -1) @QtCore.pyqtSlot(str) def append(self, line): self.text_ctl.moveCursor(QtGui.QTextCursor.End) self.text_ctl.moveCursor(QtGui.QTextCursor.StartOfLine) self.text_ctl.appendPlainText(line) class AboutWidget(QtGui.QWidget): def __init__(self, parent=None): super(AboutWidget, self).__init__(parent) hlayout = QtGui.QHBoxLayout() hlayout.addStretch(1) icon_ctl = QtGui.QLabel() icon_ctl.setPixmap(self.windowIcon().pixmap(32, 32)) hlayout.addWidget(icon_ctl) vlayout = QtGui.QVBoxLayout() vlayout.addWidget(QtGui.QLabel( self.tr('All Tray v%s' % __version__) )) vlayout.addWidget(QtGui.QLabel(self.tr('Tray all application.'))) hlayout.addLayout(vlayout) hlayout.addStretch(1) self.setLayout(hlayout) class AboutDialog(QtGui.QDialog): def __init__(self, parent=None): super(AboutDialog, self).__init__(parent) self.setWindowTitle(self.tr('All Tray')) main_layout = QtGui.QVBoxLayout() main_layout.addWidget(AboutWidget(self)) buttonBox = QtGui.QDialogButtonBox(QtGui.QDialogButtonBox.Ok) buttonBox.accepted.connect(self.close) main_layout.addWidget(buttonBox) self.setLayout(main_layout) def closeEvent(self, event): self.hide() event.ignore() class LogThread(): process = None t1 = None def __init__(self, process, logWin): self.logWin = logWin self.process = process self.system_encoding = locale.getpreferredencoding() self.log('System encoding: %s' % self.system_encoding, force=True) def kill(self): pass def join(self): self.t1.join() self.t2.join() def log(self, text, force=False): if force or not self.logWin.isHidden(): self.logWin.log_ctl.appended.emit(text) def start(self): """ It will get log information if application flush its buffer. bug: sys.stdout, sys.stderr block stream sometimes """ def tee_pipe(pipe, log): for line in iter(pipe.readline, ''): line = unicode(line, self.system_encoding) log(line.rstrip('\n\r')) self.t1 = threading.Thread(target=tee_pipe, args=(self.process.stdout, self.log)) self.t1.start() self.t2 = threading.Thread(target=tee_pipe, args=(self.process.stderr, self.log)) self.t2.start() def main(): parser = argparse.ArgumentParser() parser.add_argument('--config', default='default', help='command group') parser.add_argument('--tooltip', help='tray tool tip') parser.add_argument('--icon', help='command icon') parser.add_argument('command', nargs='?', help='To run command') args = parser.parse_args() if sys.platform == 'win32': if args.config == 'default': args.config = 'alltray.ini' settings = QtCore.QSettings(args.config, QtCore.QSettings.IniFormat) else: settings = QtCore.QSettings('alltray', args.config) if args.icon: settings.setValue('icon_path', args.icon) if args.command: settings.setValue('app_cmd', args.command) if args.tooltip: settings.setValue('tooltip', args.tooltip) app = QtGui.QApplication(sys.argv) if not QtGui.QSystemTrayIcon.isSystemTrayAvailable(): QtGui.QMessageBox.critical( None, "Sorry", "I couldn't detect any system tray on this system." ) sys.exit(1) win = TrayDialog(settings) app_cmd = settings.value('app_cmd').toString() app_run = settings.value('app_run').toBool() if app_run: win.hide() win.runCommand(app_cmd) else: win.show() sys.exit(app.exec_())
AllTray
/AllTray-0.1.1.tar.gz/AllTray-0.1.1/alltray/tray.py
tray.py
# Allagash [![build status](https://github.com/apulverizer/allagash/workflows/Build/badge.svg)](https://github.com/apulverizer/allagash/actions) [![MIT License](https://anaconda.org/conda-forge/allagash/badges/license.svg)](LICENSE) [![Install with conda](https://anaconda.org/conda-forge/allagash/badges/version.svg)](https://anaconda.org/conda-forge/allagash) A spatial optimization library for covering problems. Full documentation is available [here](https://apulverizer.github.io/allagash) ---- ### Installing with conda To install with geopandas run: `conda install -c conda-forge allagash geopandas` To install with arcgis run: `conda install -c conda-forge -c esri allagash arcgis` To install without a spatial library run: `conda install -c conda-forge allagash` ---- ### Installing with pip To install with geopandas run: `pip install allagash[geopandas]` To install with arcgis run: `pip install allagash[arcgis]` To install without a spatial library run: `pip install allagash` ---- ### Running Locally 1. Clone the repo `git clone [email protected]:apulverizer/allagash.git` 2. Create the conda environment `conda env create --file environment.yml` 3. Activate the new environment `conda activate allagash` 4. Install pre-commit hooks `pre-commit install` 5. Install allagash locally `pip install -e . --no-deps` 6. Launch jupyter notebook `jupyter notebook` You should now be able to run the example notebooks. You can choose to install and use another solver that is supported by [Pulp](https://github.com/coin-or/pulp): - [GLPK](https://www.gnu.org/software/glpk/) (included in conda environment) - [COIN-OR CBC](https://github.com/coin-or/Cbc) - [CPLEX](https://www.ibm.com/analytics/cplex-optimizer) - [Gurobi](https://www.gurobi.com/) ---- ### Running Tests Locally 1. Run tests `pytest --nbval` ---- ### Building Documentation 1. From the repo directory run `sphinx-build -b html ./src-doc ./docs -a` This will deploy html documentation to the docs folder. ---- ### Running with Docker You can build the local docker image that includes Allagash, Python, Jupyter, GLPK, and COIN-OR CBC. 1. Builder the docker image `docker build . -t apulverizer/allagash:latest` 2. Launch Jupyter notebook `docker run -i -t --user=allagash -p 8888:8888 apulverizer/allagash:latest /bin/bash -c "jupyter notebook --ip='*' --port=8888 --no-browser"` You should now be able to run the example notebooks. You can test the notebooks as well by running `docker run --user=allagash apulverizer/allagash:latest /bin/bash -c "py.test --nbval"` If you'd like to mount a directory of local data/files into the container, you can add `-v <your-local-dir>:/home/allagash/<dir-name>` when running `docker run` ---- ### Running Tests with Docker You can build a docker container that will run the tests (mounted into the container) 1. `docker build . --file build.Dockerfile --tag apulverizer/allagash:build` 2. `docker run --user=allagash -v $PWD/tests:/home/allagash/tests -v $PWD/src-doc:/home/allagash/src-doc apulverizer/allagash:build /bin/bash -c "py.test --nbval"`
Allagash
/Allagash-0.4.3.tar.gz/Allagash-0.4.3/README.md
README.md
import operator import pulp from .coverage import Coverage from pandas.api.types import is_string_dtype class Problem: _problem_types = ["lscp", "mclp", "bclp"] _delineator = "$" def __init__(self, pulp_problem, coverages, problem_type): """ A representation of the linear programming problem that can be solved. This is not intended to be created on it's own but rather from one of the factory methods :meth:`~allagash.problem.Problem.lscp` or :meth:`~allagash.problem.Problem.mclp` .. code-block:: python Problem.lscp(coverage) Problem.lscp([coverage1, coverage2]) :param ~pulp.LpProblem pulp_problem: The pulp problem that will be solved :param list[~allagash.coverage.Coverage] coverages: The coverages that were used to build the problem :param str problem_type: The type of problem that was generated """ self._validate(pulp_problem, coverages, problem_type) self._pulp_problem = pulp_problem if isinstance(coverages, Coverage): self._coverages = [coverages] else: self._coverages = coverages self._problem_type = problem_type.lower() def _validate(self, problem, coverages, problem_type): if not isinstance(problem, pulp.LpProblem): raise TypeError( f"Expected 'LpProblem' type for problem, got '{type(problem)}'" ) if not isinstance(problem_type, str): raise TypeError( f"Expected 'str' type for problem_type, got '{type(problem_type)}'" ) if problem_type.lower() not in self._problem_types: raise ValueError(f"Invalid problem_type: '{problem_type}'") if not isinstance(coverages, (list, Coverage)): raise TypeError( f"Expected 'Coverage' or 'list' type for coverages, got '{type(coverages)}'" ) @property def pulp_problem(self): """ :return: The pulp problem :rtype: ~pulp.LpProblem """ return self._pulp_problem @property def coverages(self): """ :return: The coverage used to create the problem :rtype: list[~allagash.coverage.Coverage] """ return self._coverages @property def problem_type(self): """ :return: The type of problem that this is :rtype: str """ return self._problem_type def solve(self, solver): """ :param ~pulp.solvers.LpSolver solver: The solver to use for this problem :return: The solution for this problem :rtype: ~allagash.problem.Problem """ if not isinstance(solver, pulp.LpSolver): raise TypeError( f"Expected 'LpSolver' type for solver, got '{type(solver)}'" ) self._pulp_problem.solve(solver) if self._pulp_problem.status == 0: raise NotSolvedException("Unable to solve the problem") elif self._pulp_problem.status == -1: raise InfeasibleException("Infeasible problem") elif self._pulp_problem.status == -2: raise UnboundedException("Unbounded problem") elif self._pulp_problem.status == -3: raise UndefinedException("Undefined problem") return self @classmethod def lscp(cls, coverages): """ Creates a new :class:`~allagash.problem.Problem` object representing the Location Covering Set Problem :param list[~allagash.coverage.Coverage] coverages: The coverages to be used to create the problem :return: The created problem :rtype: ~allagash.problem.Problem """ if not isinstance(coverages, (Coverage, list)): raise TypeError( f"Expected 'Coverage' or 'list' type for coverages, got '{type(coverages)}'" ) if isinstance(coverages, Coverage): coverages = [coverages] if not all([c.coverage_type == coverages[0].coverage_type for c in coverages]): raise ValueError( "Invalid coverages. Coverages must have the same coverage type." ) if coverages[0].coverage_type != "binary": raise ValueError("LSCP can only be generated from binary coverage.") if not all(x.demand_name == coverages[0].demand_name for x in coverages): raise ValueError("All Coverages must have the same 'demand_name'") prob = cls._generate_lscp_problem(coverages) return Problem(prob, coverages, problem_type="lscp") @classmethod def bclp(cls, coverages, max_supply): """ Creates a new :class:`~allagash.problem.Problem` object representing the Backup Covering Location Problem :param list[~allagash.coverage.Coverage] coverages: The coverages to be used to create the problem :param dict[~allagash.coverage.Coverage,int] max_supply: The maximum number of supply locations to allow :return: The created problem :rtype: ~allagash.problem.Problem """ if not isinstance(coverages, (Coverage, list)): raise TypeError( f"Expected 'Coverage' or 'list' type for coverages, got '{type(coverages)}'" ) if isinstance(coverages, Coverage): coverages = [coverages] if not all([c.coverage_type == coverages[0].coverage_type for c in coverages]): raise ValueError( "Invalid coverages. Coverages must have the same coverage type." ) if coverages[0].coverage_type != "binary": raise ValueError("BCLP can only be generated from binary coverage.") if not isinstance(max_supply, dict): raise TypeError( f"Expected 'dict' type for max_supply, got '{type(max_supply)}'" ) for k, v in max_supply.items(): if not isinstance(k, Coverage): raise TypeError( f"Expected 'Coverage' type as key in max_supply, got '{type(k)}'" ) if k.demand_col is None: raise TypeError("Coverages used in BCLP must have 'demand_col'") if not isinstance(v, int): raise TypeError( f"Expected 'int' type as value in max_supply, got '{type(v)}'" ) if not all(x.demand_name == coverages[0].demand_name for x in coverages): raise ValueError("All Coverages must have the same 'demand_name'") prob = cls._generate_bclp_problem(coverages, max_supply) return Problem(prob, coverages, problem_type="bclp") @classmethod def mclp(cls, coverages, max_supply): """ Creates a new :class:`~allagash.problem.Problem` object representing the Maximum Covering Location Problem :param list[~allagash.coverage.Coverage] coverages: The coverages to be used to create the problem :param dict[~allagash.coverage.Coverage,int] max_supply: The maximum number of supply locations to allow :return: The created problem :rtype: ~allagash.problem.Problem """ if not isinstance(coverages, (Coverage, list)): raise TypeError( f"Expected 'Coverage' or 'list' type for coverages, got '{type(coverages)}'" ) if isinstance(coverages, Coverage): coverages = [coverages] if not all([c.coverage_type == coverages[0].coverage_type for c in coverages]): raise ValueError( "Invalid coverages. Coverages must have the same coverage type." ) if coverages[0].coverage_type != "binary": raise ValueError("MCLP can only be generated from binary coverage.") if not isinstance(max_supply, dict): raise TypeError( f"Expected 'dict' type for max_supply, got '{type(max_supply)}'" ) for k, v in max_supply.items(): if not isinstance(k, Coverage): raise TypeError( f"Expected 'Coverage' type as key in max_supply, got '{type(k)}'" ) if k.demand_col is None: raise TypeError("Coverages used in MCLP must have 'demand_col'") if not isinstance(v, int): raise TypeError( f"Expected 'int' type as value in max_supply, got '{type(v)}'" ) if not all(x.demand_name == coverages[0].demand_name for x in coverages): raise ValueError("All Coverages must have the same 'demand_name'") prob = cls._generate_mclp_problem(coverages, max_supply) return Problem(prob, coverages, problem_type="mclp") @staticmethod def _generate_lscp_problem(coverages): # noqa: C901 demand_vars = {} for c in coverages: if c.demand_name not in demand_vars: demand_vars[c.demand_name] = {} for index, _ in c.df.iterrows(): name = f"{c.demand_name}{Problem._delineator}{index}" demand_vars[c.demand_name][index] = pulp.LpVariable( name, 0, 1, pulp.LpInteger ) supply_vars = {} for c in coverages: if c.demand_col: df = c.df.drop(columns=c.demand_col) else: df = c.df if c.supply_name not in supply_vars: supply_vars[c.supply_name] = {} for s in df.columns.to_list(): name = f"{c.supply_name}{Problem._delineator}{s}" supply_vars[c.supply_name][s] = pulp.LpVariable( name, 0, 1, pulp.LpInteger ) prob = pulp.LpProblem("LSCP", pulp.LpMinimize) to_sum = [] for _, v in supply_vars.items(): to_sum.append(v) prob += pulp.lpSum(to_sum) sums = {} for c in coverages: if c.demand_name not in sums: sums[c.demand_name] = {} if c.demand_col: df = c.df.drop(columns=c.demand_col) else: df = c.df for index, demand in df.iterrows(): if index not in sums[c.demand_name]: sums[c.demand_name][index] = [] cov = demand.T for i, value in cov.iteritems(): if value is True: sums[c.demand_name][index].append(supply_vars[c.supply_name][i]) for c in coverages: for k, v in demand_vars[c.demand_name].items(): if not to_sum: sums[c.demand_name][v] = [ pulp.LpVariable( f"__dummy{Problem._delineator}{v}", 0, 0, pulp.LpInteger ) ] for demand_name, v in sums.items(): for i, to_sum in v.items(): prob += pulp.lpSum(to_sum) >= 1, f"D{demand_name}{i}" return prob @staticmethod def _generate_bclp_problem(coverages, max_supply): # noqa: C901 demand_vars = {} for c in coverages: if c.demand_name not in demand_vars: demand_vars[c.demand_name] = {} for index, _ in c.df.iterrows(): name = f"{c.demand_name}{Problem._delineator}{index}" demand_vars[c.demand_name][index] = pulp.LpVariable( name, 0, 1, pulp.LpInteger ) supply_vars = {} for c in coverages: if c.demand_col: df = c.df.drop(columns=c.demand_col) else: df = c.df if c.supply_name not in supply_vars: supply_vars[c.supply_name] = {} for s in df.columns.to_list(): name = f"{c.supply_name}{Problem._delineator}{s}" supply_vars[c.supply_name][s] = pulp.LpVariable( name, 0, 1, pulp.LpInteger ) # add objective prob = pulp.LpProblem("BCLP", pulp.LpMaximize) demands = {} for c in coverages: for _, demand_var in demand_vars[c.demand_name].items(): d = demand_var.name.split(Problem._delineator)[1] if d not in demands: if is_string_dtype(coverages[0].df.index.dtype): query = f"{coverages[0].df.index.name} == '{d}'" else: query = f"{coverages[0].df.index.name} == {d}" v = c.df.query(query)[c.demand_col].tolist()[0] demands[d] = v * demand_var to_sum = [] for k, v in demands.items(): to_sum.append(v) prob += pulp.lpSum(to_sum) # coverage constraints sums = {} for c in coverages: if c.demand_name not in sums: sums[c.demand_name] = {} if c.demand_col: df = c.df.drop(columns=c.demand_col) else: df = c.df for index, demand in df.iterrows(): if index not in sums[c.demand_name]: sums[c.demand_name][index] = [ -demand_vars[c.demand_name][index], -1, ] cov = demand.T for i, value in cov.iteritems(): if value is True: sums[c.demand_name][index].append(supply_vars[c.supply_name][i]) for k, v in sums.items(): for index, to_sum in v.items(): prob += pulp.lpSum(to_sum) >= 0, f"D{index}" # Number of supply locations for c in coverages: to_sum = [] for k, v in supply_vars[c.supply_name].items(): to_sum.append(v) prob += ( pulp.lpSum(to_sum) <= max_supply[c], f"Num{Problem._delineator}{c.supply_name}", ) return prob @staticmethod def _generate_mclp_problem(coverages, max_supply): # noqa: C901 demand_vars = {} for c in coverages: if c.demand_name not in demand_vars: demand_vars[c.demand_name] = {} for index, _ in c.df.iterrows(): name = f"{c.demand_name}{Problem._delineator}{index}" demand_vars[c.demand_name][index] = pulp.LpVariable( name, 0, 1, pulp.LpInteger ) supply_vars = {} for c in coverages: if c.demand_col: df = c.df.drop(columns=c.demand_col) else: df = c.df if c.supply_name not in supply_vars: supply_vars[c.supply_name] = {} for s in df.columns.to_list(): name = f"{c.supply_name}{Problem._delineator}{s}" supply_vars[c.supply_name][s] = pulp.LpVariable( name, 0, 1, pulp.LpInteger ) # add objective prob = pulp.LpProblem("MCLP", pulp.LpMaximize) demands = {} for c in coverages: for _, demand_var in demand_vars[c.demand_name].items(): d = demand_var.name.split(Problem._delineator)[1] if d not in demands: if is_string_dtype(coverages[0].df.index.dtype): query = f"{coverages[0].df.index.name} == '{d}'" else: query = f"{coverages[0].df.index.name} == {d}" v = c.df.query(query)[c.demand_col].tolist()[0] demands[d] = v * demand_var to_sum = [] for k, v in demands.items(): to_sum.append(v) prob += pulp.lpSum(to_sum) # coverage constraints sums = {} for c in coverages: if c.demand_name not in sums: sums[c.demand_name] = {} if c.demand_col: df = c.df.drop(columns=c.demand_col) else: df = c.df for index, demand in df.iterrows(): if index not in sums[c.demand_name]: sums[c.demand_name][index] = [-demand_vars[c.demand_name][index]] cov = demand.T for i, value in cov.iteritems(): if value is True: sums[c.demand_name][index].append(supply_vars[c.supply_name][i]) for k, v in sums.items(): for index, to_sum in v.items(): prob += pulp.lpSum(to_sum) >= 0, f"D{index}" # Number of supply locations for c in coverages: to_sum = [] for k, v in supply_vars[c.supply_name].items(): to_sum.append(v) prob += ( pulp.lpSum(to_sum) <= max_supply[c], f"Num{Problem._delineator}{c.supply_name}", ) return prob def selected_supply(self, coverage, operation=operator.eq, value=1): """ Gets the list of the supply locations that were selected when the optimization problem was solved. :param ~allagash.coverage.Coverage coverage: The coverage that selected locations may be found in. :param function operation: The operation to use when determining whether a location was selected :param int value: The value to apply the operation to :return: The list of location ids of the selected locations :rtype: list """ if self._pulp_problem.status != 1: raise RuntimeError("Problem not optimally solved yet") from allagash.coverage import Coverage if not isinstance(coverage, Coverage): raise TypeError( f"Expected 'Coverage' type for coverage, got '{type(coverage)}'" ) if not callable(operation): raise TypeError(f"Expected callable for operation, got '{type(operation)}'") if not isinstance(value, (int, float)): raise TypeError(f"Expected 'int' or 'float' for value, got '{type(value)}'") ids = [] for var in self._pulp_problem.variables(): if var.name.split(self._delineator)[0] == coverage.supply_name: if operation(var.varValue, value): ids.append(var.name.split(self._delineator)[1]) return ids def selected_demand(self, coverage): """ Gets the list of the demand locations that were selected when the optimization problem was solved. :param ~allagash.coverage.Coverage coverage: The coverage that the demand locations may be found in. If multiple coverages were used that have the same demand, locations covered by any other coverages will also be returned. :return: The list of location ids of the covered locations :rtype: list """ if self._pulp_problem.status != 1: raise RuntimeError("Problem not optimally solved yet") from allagash.coverage import Coverage if not isinstance(coverage, Coverage): raise TypeError( f"Expected 'Coverage' type for coverage, got '{type(coverage)}'" ) if self.problem_type in ["lscp", "bclp"]: for c in self.coverages: if c.demand_name == c.demand_name: return c.df.index.tolist() else: raise ValueError( f"Unable to find demand named '{coverage.demand_name}'" ) else: ids = [] for var in self._pulp_problem.variables(): if var.name.split(self._delineator)[0] == coverage.demand_name: if var.varValue >= 1: ids.append(var.name.split(self._delineator)[1]) return ids class NotSolvedException(Exception): def __init__(self, message): """ An exception indicating the problem was not solved :param str message: A descriptive message about the exception """ super().__init__(message) class InfeasibleException(Exception): def __init__(self, message): """ An exception indicating the problem as an infeasible solution :param str message: A descriptive message about the exception """ super().__init__(message) class UnboundedException(Exception): def __init__(self, message): """ An exception indicating the solution is unbounded :param str message: A descriptive message about the exception """ super().__init__(message) class UndefinedException(Exception): def __init__(self, message): """ An exception indicating the problem was not solved for an undefined reason :param str message: A descriptive message about the exception """ super().__init__(message)
Allagash
/Allagash-0.4.3.tar.gz/Allagash-0.4.3/allagash/problem.py
problem.py
import random import string import pandas as pd class Coverage: def __init__( self, dataframe, demand_col=None, demand_name="demand", supply_name=None, coverage_type="binary", ): """ An object that stores the relationship between a set of demand locations and a set of supply locations. Use this initializer if the coverage matrix has already been created, otherwise this can be created from two geodataframes using the :meth:`~allagash.coverage.Coverage.from_geodataframes` or :meth:`~allagash.coverage.Coverage.from_spatially_enabled_dataframes` factory methods. .. code-block:: python Coverage.from_geodataframes(df1, df2, "Demand_Id", "Supply_Id") :param ~pandas.DataFrame dataframe: A dataframe containing a matrix of demand (rows) and supply (columns). An additional column containing the demand values can optionally be provided. :param str demand_col: (optional) The name of the column storing the demand value. :param str demand_name: (optional) The name of the demand to use. If not supplied, 'demand' is used'. :param str supply_name: (optional) The name of the supply to use. If not supplied, a random name is generated. :param str coverage_type: (optional) The type of coverage this represents. If not supplied, the default is "binary". Options are "binary" and "partial". """ self._validate_init( coverage_type, dataframe, demand_col, demand_name, supply_name ) self._demand_col = demand_col self._dataframe = dataframe if not demand_name: self._demand_name = "".join(random.choices(string.ascii_uppercase, k=6)) else: self._demand_name = demand_name if not supply_name: self._supply_name = "".join(random.choices(string.ascii_uppercase, k=6)) else: self._supply_name = supply_name self._coverage_type = coverage_type.lower() @staticmethod def _validate_init(coverage_type, dataframe, demand_col, demand_name, supply_name): if not isinstance(dataframe, pd.DataFrame): raise TypeError( f"Expected 'Dataframe' type for dataframe, got '{type(dataframe)}'" ) if not isinstance(demand_col, str) and demand_col is not None: raise TypeError( f"Expected 'str' type for demand_col, got '{type(demand_col)}'" ) if not isinstance(demand_name, str) and demand_name is not None: raise TypeError( f"Expected 'str' type for demand_name, got '{type(demand_name)}'" ) if not isinstance(supply_name, str) and supply_name is not None: raise TypeError( f"Expected 'str' type for supply_name, got '{type(supply_name)}'" ) if not isinstance(coverage_type, str): raise TypeError( f"Expected 'str' type for coverage_type, got '{type(coverage_type)}'" ) if demand_col and demand_col not in dataframe.columns: raise ValueError(f"'{demand_col}' not in dataframe") if coverage_type.lower() not in ("binary", "partial"): raise ValueError(f"Invalid coverage type '{coverage_type}'") if coverage_type.lower() == "partial" and demand_col is None: raise ValueError( "'demand_col' is required when generating partial coverage" ) @property def df(self): """ :return: The geodataframe the dataset is based on :rtype: ~geopandas.GeoDataFrame """ return self._dataframe @property def demand_name(self): """ :return: The name of the demand :rtype: str """ return self._demand_name @property def supply_name(self): """ :return: The name of the supply :rtype: str """ return self._supply_name @property def coverage_type(self): """ :return: The type of coverage :rtype: str """ return self._coverage_type @property def demand_col(self): """ :return: The name of the demand column in the underlying dataframe :rtype: str or None """ return self._demand_col @classmethod def from_geodataframes( cls, demand_df, supply_df, demand_id_col, supply_id_col, demand_name="demand", supply_name=None, demand_col=None, coverage_type="binary", ): """ Creates a new Coverage from two GeoDataFrames representing the demand and supply locations. The coverage is determined by intersecting the two dataframes. :param ~geopandas.GeoDataFrame demand_df: The GeoDataFrame containing the demand locations :param ~geopandas.GeoDataFrame supply_df: The GeoDataFrame containing the supply locations :param str demand_id_col: The name of the column that has unique identifiers for the demand locations :param str supply_id_col: The name of the column that has unique identifiers for the supply locations :param str demand_name: (optional) The name of the demand to use. If not supplied, 'demand' is used. :param str supply_name: (optional) The name of the supply to use. If not supplied, a random name is generated. :param str demand_col: (optional) The name of the column that stores the amount of demand for the demand locations. Required if generating partial coverage. :param str coverage_type: (optional) The type of coverage this represents. If not supplied, the default is "binary". Options are "binary" and "partial". :return: The coverage :rtype: ~allagash.coverage.Coverage """ cls._validate_from_geodataframes( coverage_type, demand_col, demand_df, demand_id_col, demand_name, supply_df, supply_id_col, ) data = [] if coverage_type.lower() == "binary": for index, row in demand_df.iterrows(): contains = supply_df.geometry.contains(row.geometry).tolist() if demand_col: contains.insert(0, row[demand_col]) # Add the id column to the end, it will be used as index and removed later contains.append(row[demand_id_col]) data.append(contains) elif coverage_type.lower() == "partial": for index, row in demand_df.iterrows(): demand_area = row.geometry.area intersection_area = supply_df.geometry.intersection( row.geometry ).geometry.area partial_coverage = ( (intersection_area / demand_area) * row[demand_col] ).tolist() if demand_col: partial_coverage.insert(0, row[demand_col]) partial_coverage.insert(0, row[demand_id_col]) data.append(partial_coverage) else: raise ValueError(f"Invalid coverage type '{coverage_type}'") columns = supply_df[supply_id_col].tolist() if demand_col: columns.insert(0, demand_col) # id column will be used as index when dataframe is created columns.append(demand_id_col) # Set index after to avoid issue with multiindex being created df = pd.DataFrame.from_records(data, columns=columns).set_index(demand_id_col) return Coverage( df, demand_col=demand_col, demand_name=demand_name, supply_name=supply_name, coverage_type=coverage_type, ) @classmethod def from_spatially_enabled_dataframes( cls, demand_df, supply_df, demand_id_col, supply_id_col, demand_name="demand", supply_name=None, demand_col=None, coverage_type="binary", demand_geometry_col="SHAPE", supply_geometry_col="SHAPE", ): """ Creates a new Coverage from two spatially enabled (arcgis) dataframes representing the demand and supply locations. The coverage is determined by intersecting the two dataframes. :param ~pandas.DataFrame demand_df: The spatially enabled dataframe containing the demand locations :param ~pandas.DataFrame supply_df: The spatially enavled dataframe containing the supply locations :param str demand_id_col: The name of the column that has unique identifiers for the demand locations :param str supply_id_col: The name of the column that has unique identifiers for the supply locations :param str demand_name: (optional) The name of the demand to use. If not supplied, 'demand' is used'. :param str supply_name: (optional) The name of the supply to use. If not supplied, a random name is generated. :param str demand_col: (optional) The name of the column that stores the amount of demand for the demand locations. Required if generating partial coverage. :param str coverage_type: (optional) The type of coverage this represents. If not supplied, the default is "binary". Options are "binary" and "partial". :param str demand_geometry_col: (optional) The name of the field storing the geometry in the demand dataframe. If not supplied, the default is "SHAPE". :param str supply_geometry_col: (optional) The name of the field storing the geometry in the supply dataframe. If not supplied, the default is "SHAPE". :return: The coverage :rtype: ~allagash.coverage.Coverage """ cls._validate_from_spatially_enabled_dataframes( coverage_type, demand_col, demand_df, demand_id_col, demand_name, supply_df, supply_id_col, demand_geometry_col, supply_geometry_col, ) data = [] if coverage_type.lower() == "binary": for index, row in demand_df.iterrows(): contains = ( supply_df[supply_geometry_col] .geom.contains(row[demand_geometry_col]) .tolist() ) if demand_col: contains.insert(0, row[demand_col]) # Add the id column to the end, it will be used as index and removed later contains.append(row[demand_id_col]) data.append(contains) elif coverage_type.lower() == "partial": for index, row in demand_df.iterrows(): partial_coverage = [] demand_area = row[demand_geometry_col].area # Cannot vectorize this because if the intersection returns an empty polygon with rings # The conversion to shapely fails when trying to get the area for _, s_row in supply_df.iterrows(): intersection = s_row[supply_geometry_col].intersect( row[demand_geometry_col] ) area = intersection.area if not intersection.is_empty else 0 partial_coverage.append((area / demand_area) * row[demand_col]) if demand_col: partial_coverage.insert(0, row[demand_col]) # Add the id column to the end, it will be used as index and removed later partial_coverage.append(row[demand_id_col]) data.append(partial_coverage) else: raise ValueError(f"Invalid coverage type '{coverage_type}'") columns = supply_df[supply_id_col].tolist() if demand_col: columns.insert(0, demand_col) columns.append(demand_id_col) df = pd.DataFrame.from_records(data, columns=columns).set_index(demand_id_col) return Coverage( df, demand_col=demand_col, demand_name=demand_name, supply_name=supply_name, coverage_type=coverage_type, ) @classmethod def _validate_from_geodataframes( cls, coverage_type, demand_col, demand_df, demand_id_col, demand_name, supply_df, supply_id_col, ): if not isinstance(demand_df, pd.DataFrame): raise TypeError( f"Expected 'Dataframe' type for demand_df, got '{type(demand_df)}'" ) if not isinstance(supply_df, pd.DataFrame): raise TypeError( f"Expected 'Dataframe' type for supply_df, got '{type(supply_df)}'" ) if not isinstance(demand_id_col, str): raise TypeError( f"Expected 'str' type for demand_id_col, got '{type(demand_id_col)}'" ) if not isinstance(supply_id_col, str): raise TypeError( f"Expected 'str' type for demand_id_col, got '{type(supply_id_col)}'" ) if not isinstance(demand_name, str) and demand_name is not None: raise TypeError( f"Expected 'str' type for demand_name, got '{type(demand_name)}'" ) if not isinstance(coverage_type, str): raise TypeError( f"Expected 'str' type for coverage_type, got '{type(coverage_type)}'" ) if demand_col and demand_col not in demand_df.columns: raise ValueError(f"'{demand_col}' not in dataframe") if demand_id_col and demand_id_col not in demand_df.columns: raise ValueError(f"'{demand_id_col}' not in dataframe") if supply_id_col and supply_id_col not in supply_df.columns: raise ValueError(f"'{supply_id_col}' not in dataframe") if coverage_type.lower() not in ("binary", "partial"): raise ValueError(f"Invalid coverage type '{coverage_type}'") if coverage_type.lower() == "partial" and demand_col is None: raise ValueError("demand_col is required when generating partial coverage") @classmethod def _validate_from_spatially_enabled_dataframes( cls, coverage_type, demand_col, demand_df, demand_id_col, demand_name, supply_df, supply_id_col, demand_geometry_col, supply_geometry_col, ): if not isinstance(demand_df, pd.DataFrame): raise TypeError( f"Expected 'Dataframe' type for demand_df, got '{type(demand_df)}'" ) if not isinstance(supply_df, pd.DataFrame): raise TypeError( f"Expected 'Dataframe' type for supply_df, got '{type(supply_df)}'" ) if not isinstance(demand_id_col, str): raise TypeError( f"Expected 'str' type for demand_id_col, got '{type(demand_id_col)}'" ) if not isinstance(supply_id_col, str): raise TypeError( f"Expected 'str' type for demand_id_col, got '{type(supply_id_col)}'" ) if not isinstance(demand_name, str) and demand_name is not None: raise TypeError( f"Expected 'str' type for demand_name, got '{type(demand_name)}'" ) if not isinstance(coverage_type, str): raise TypeError( f"Expected 'str' type for coverage_type, got '{type(coverage_type)}'" ) if demand_col and demand_col not in demand_df.columns: raise ValueError(f"'{demand_col}' not in dataframe") if demand_id_col and demand_id_col not in demand_df.columns: raise ValueError(f"'{demand_id_col}' not in dataframe") if supply_id_col and supply_id_col not in supply_df.columns: raise ValueError(f"'{supply_id_col}' not in dataframe") if demand_geometry_col and demand_geometry_col not in demand_df.columns: raise ValueError(f"'{demand_geometry_col}' not in dataframe") if supply_geometry_col and supply_geometry_col not in supply_df.columns: raise ValueError(f"'{supply_geometry_col}' not in dataframe") if coverage_type.lower() not in ("binary", "partial"): raise ValueError(f"Invalid coverage type '{coverage_type}'") if coverage_type.lower() == "partial" and demand_col is None: raise ValueError("demand_col is required when generating partial coverage")
Allagash
/Allagash-0.4.3.tar.gz/Allagash-0.4.3/allagash/coverage.py
coverage.py
AllanTools ========== .. image:: https://badge.fury.io/py/AllanTools.svg :target: https://badge.fury.io/py/AllanTools .. image:: https://travis-ci.org/aewallin/allantools.svg?branch=master :target: https://travis-ci.org/aewallin/allantools .. image:: http://readthedocs.org/projects/allantools/badge/?version=latest :target: http://allantools.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status .. image:: https://coveralls.io/repos/github/aewallin/allantools/badge.svg?branch=master :target: https://coveralls.io/github/aewallin/allantools?branch=master .. image:: https://app.fossa.io/api/projects/git%2Bgithub.com%2Faewallin%2Fallantools.svg?type=shield :target: https://app.fossa.io/projects/git%2Bgithub.com%2Faewallin%2Fallantools?ref=badge_shield A python library for calculating Allan deviation and related time & frequency statistics. `LGPL v3+ license <https://www.gnu.org/licenses/lgpl.html>`_. * Development at https://github.com/aewallin/allantools * Installation package at https://pypi.python.org/pypi/AllanTools * Discussion group at https://groups.google.com/d/forum/allantools * Documentation available at https://allantools.readthedocs.org Input data should be evenly spaced observations of either fractional frequency, or phase in seconds. Deviations are calculated for given tau values in seconds. ===================================== ==================================================== Function Description ===================================== ==================================================== ``adev()`` Allan deviation ``oadev()`` Overlapping Allan deviation ``mdev()`` Modified Allan deviation ``tdev()`` Time deviation ``hdev()`` Hadamard deviation ``ohdev()`` Overlapping Hadamard deviation ``totdev()`` Total deviation ``mtotdev()`` Modified total deviation ``ttotdev()`` Time total deviation ``htotdev()`` Hadamard total deviation ``theo1()`` Theo1 deviation ``mtie()`` Maximum Time Interval Error ``tierms()`` Time Interval Error RMS ``gradev()`` Gap resistant overlapping Allan deviation ===================================== ==================================================== Noise generators for creating synthetic datasets are also included: * violet noise with f^2 PSD * white noise with f^0 PSD * pink noise with f^-1 PSD * Brownian or random walk noise with f^-2 PSD More details on available statistics and noise generators : `full list of available functions <functions.html>`_ see /tests for tests that compare allantools output to other (e.g. Stable32) programs. More test data, benchmarks, ipython notebooks, and comparisons to known-good algorithms are welcome! Installation ------------ Install from pypi:: pip install allantools Latest version + examples, tests, test data, iPython notebooks : clone from github, then install :: python setup.py install (see `python setup.py --help install` for install options) These commands should be run as root for system-wide installation, or you can use the `--user` option to install for your account only. Exact command names may vary depending on your OS / package manager / target python version. Basic usage ----------- Minimal example, phase data ~~~~~~~~~~~~~~~~~~~~~~~~~~~ We can call allantools with only one parameter - an array of phase data. This is suitable for time-interval measurements at 1 Hz, for example from a time-interval-counter measuring the 1PPS output of two clocks. :: >>> import allantools >>> x = allantools.noise.white(10000) # Generate some phase data, in seconds. >>> (taus, adevs, errors, ns) = allantools.oadev(x) when only one input parameter is given, phase data in seconds is assumed when no rate parameter is given, rate=1.0 is the default when no taus parameter is given, taus='octave' is the default Frequency data example ~~~~~~~~~~~~~~~~~~~~~~ Note that allantools assumes non-dimensional frequency data input. Normalization, by e.g. dividing all data points with the average frequency, is left to the user. :: >>> import allantools >>> import pylab as plt >>> import numpy as np >>> t = np.logspace(0, 3, 50) # tau values from 1 to 1000 >>> y = allantools.noise.white(10000) # Generate some frequency data >>> r = 12.3 # sample rate in Hz of the input data >>> (t2, ad, ade, adn) = allantools.oadev(y, rate=r, data_type="freq", taus=t) # Compute the overlapping ADEV >>> fig = plt.loglog(t2, ad) # Plot the results >>> # plt.show() *New in 2016.11* : simple top-level `API <api.html>`_, using dedicated classes for data handling and plotting. :: import allantools # https://github.com/aewallin/allantools/ import numpy as np # Compute a deviation using the Dataset class a = allantools.Dataset(data=np.random.rand(1000)) a.compute("mdev") # New in 2019.7 : write results to file a.write_result("output.dat") # Plot it using the Plot class b = allantools.Plot() # New in 2019.7 : additional keyword arguments are passed to # matplotlib.pyplot.plot() b.plot(a, errorbars=True, grid=True) # You can override defaults before "show" if needed b.ax.set_xlabel("Tau (s)") b.show() Jupyter notebooks with examples ------------------------------- Jupyter notebooks are interactive python scripts, embedded in a browser, allowing you to manipulate data and display plots like easily. For guidance on installing jupyter, please refer to https://jupyter.org/install. See /examples for some examples in notebook format. github formats the notebooks into nice web-pages, for example * https://github.com/aewallin/allantools/blob/master/examples/noise-color-demo.ipynb * https://github.com/aewallin/allantools/blob/master/examples/three-cornered-hat-demo.ipynb Authors ------- * Anders E.E. Wallin, anders.e.e.wallin "at" gmail.com , https://github.com/aewallin * Danny Price, https://github.com/telegraphic * Cantwell G. Carson, carsonc "at" gmail.com * Frédéric Meynadier, https://github.com/fmeynadier * Yan Xie, https://github.com/yxie-git * Erik Benkler, https://github.com/EBenkler
AllanTools
/AllanTools-2019.9.tar.gz/AllanTools-2019.9/README.rst
README.rst
import os import json import numpy as np #import scipy.stats # used in confidence_intervals() #import scipy.signal # decimation in lag-1 acf from . import ci # edf, confidence intervals # Get version number from json metadata pkginfo_path = os.path.join(os.path.dirname(__file__), 'allantools_info.json') with open(pkginfo_path) as fp: pkginfo = json.load(fp) __version__ = pkginfo["version"] def tdev(data, rate=1.0, data_type="phase", taus=None): """ Time deviation. Based on modified Allan variance. .. math:: \\sigma^2_{TDEV}( \\tau ) = { \\tau^2 \\over 3 } \\sigma^2_{MDEV}( \\tau ) Note that TDEV has a unit of seconds. NIST [SP1065]_ eqn (15), page 18. Parameters ---------- data: np.array Input data. Provide either phase or frequency (fractional, adimensional). rate: float The sampling rate for data, in Hz. Defaults to 1.0 data_type: {'phase', 'freq'} Data type, i.e. phase or frequency. Defaults to "phase". taus: np.array Array of tau values, in seconds, for which to compute statistic. Optionally set taus=["all"|"octave"|"decade"] for automatic tau-list generation. Returns ------- (taus, tdev, tdev_error, ns): tuple Tuple of values taus: np.array Tau values for which td computed tdev: np.array Computed time deviations (in seconds) for each tau value tdev_errors: np.array Time deviation errors ns: np.array Values of N used in mdev_phase() Notes ----- http://en.wikipedia.org/wiki/Time_deviation """ phase = input_to_phase(data, rate, data_type) (taus, md, mde, ns) = mdev(phase, rate=rate, taus=taus) td = taus * md / np.sqrt(3.0) tde = td / np.sqrt(ns) return taus, td, tde, ns def mdev(data, rate=1.0, data_type="phase", taus=None): """ Modified Allan deviation. Used to distinguish between White and Flicker Phase Modulation. .. math:: \\sigma^2_{MDEV}(m\\tau_0) = { 1 \\over 2 (m \\tau_0 )^2 (N-3m+1) } \\sum_{j=1}^{N-3m+1} \\lbrace \\sum_{i=j}^{j+m-1} {x}_{i+2m} - 2x_{i+m} + x_{i} \\rbrace^2 see http://www.leapsecond.com/tools/adev_lib.c NIST [SP1065]_ eqn (14), page 17. Parameters ---------- data: np.array Input data. Provide either phase or frequency (fractional, adimensional). rate: float The sampling rate for data, in Hz. Defaults to 1.0 data_type: {'phase', 'freq'} Data type, i.e. phase or frequency. Defaults to "phase". taus: np.array Array of tau values, in seconds, for which to compute statistic. Optionally set taus=["all"|"octave"|"decade"] for automatic tau-list generation. Returns ------- (taus2, md, mde, ns): tuple Tuple of values taus2: np.array Tau values for which td computed md: np.array Computed mdev for each tau value mde: np.array mdev errors ns: np.array Values of N used in each mdev calculation """ phase = input_to_phase(data, rate, data_type) (phase, ms, taus_used) = tau_generator(phase, rate, taus=taus) data, taus = np.array(phase), np.array(taus) md = np.zeros_like(ms) mderr = np.zeros_like(ms) ns = np.zeros_like(ms) # this is a 'loop-unrolled' algorithm following # http://www.leapsecond.com/tools/adev_lib.c for idx, m in enumerate(ms): m = int(m) # without this we get: VisibleDeprecationWarning: # using a non-integer number instead of an integer # will result in an error in the future tau = taus_used[idx] # First loop sum d0 = phase[0:m] d1 = phase[m:2*m] d2 = phase[2*m:3*m] e = min(len(d0), len(d1), len(d2)) v = np.sum(d2[:e] - 2* d1[:e] + d0[:e]) s = v * v # Second part of sum d3 = phase[3*m:] d2 = phase[2*m:] d1 = phase[1*m:] d0 = phase[0:] e = min(len(d0), len(d1), len(d2), len(d3)) n = e + 1 v_arr = v + np.cumsum(d3[:e] - 3 * d2[:e] + 3 * d1[:e] - d0[:e]) s = s + np.sum(v_arr * v_arr) s /= 2.0 * m * m * tau * tau * n s = np.sqrt(s) md[idx] = s mderr[idx] = (s / np.sqrt(n)) ns[idx] = n return remove_small_ns(taus_used, md, mderr, ns) def adev(data, rate=1.0, data_type="phase", taus=None): """ Allan deviation. Classic - use only if required - relatively poor confidence. .. math:: \\sigma^2_{ADEV}(\\tau) = { 1 \\over 2 \\tau^2 } \\langle ( {x}_{n+2} - 2x_{n+1} + x_{n} )^2 \\rangle = { 1 \\over 2 (N-2) \\tau^2 } \\sum_{n=1}^{N-2} ( {x}_{n+2} - 2x_{n+1} + x_{n} )^2 where :math:`x_n` is the time-series of phase observations, spaced by the measurement interval :math:`\\tau`, and with length :math:`N`. Or alternatively calculated from a time-series of fractional frequency: .. math:: \\sigma^{2}_{ADEV}(\\tau) = { 1 \\over 2 } \\langle ( \\bar{y}_{n+1} - \\bar{y}_n )^2 \\rangle where :math:`\\bar{y}_n` is the time-series of fractional frequency at averaging time :math:`\\tau` NIST [SP1065]_ eqn (6) and (7), pages 14 and 15. Parameters ---------- data: np.array Input data. Provide either phase or frequency (fractional, adimensional). rate: float The sampling rate for data, in Hz. Defaults to 1.0 data_type: {'phase', 'freq'} Data type, i.e. phase or frequency. Defaults to "phase". taus: np.array Array of tau values, in seconds, for which to compute statistic. Optionally set taus=["all"|"octave"|"decade"] for automatic tau-list generation. Returns ------- (taus2, ad, ade, ns): tuple Tuple of values taus2: np.array Tau values for which td computed ad: np.array Computed adev for each tau value ade: np.array adev errors ns: np.array Values of N used in each adev calculation """ phase = input_to_phase(data, rate, data_type) (phase, m, taus_used) = tau_generator(phase, rate, taus) ad = np.zeros_like(taus_used) ade = np.zeros_like(taus_used) adn = np.zeros_like(taus_used) for idx, mj in enumerate(m): # loop through each tau value m(j) (ad[idx], ade[idx], adn[idx]) = calc_adev_phase(phase, rate, mj, mj) return remove_small_ns(taus_used, ad, ade, adn) def calc_adev_phase(phase, rate, mj, stride): """ Main algorithm for adev() (stride=mj) and oadev() (stride=1) see http://www.leapsecond.com/tools/adev_lib.c stride = mj for nonoverlapping allan deviation Parameters ---------- phase: np.array Phase data in seconds. rate: float The sampling rate for phase or frequency, in Hz mj: int M index value for stride stride: int Size of stride Returns ------- (dev, deverr, n): tuple Array of computed values. Notes ----- stride = mj for nonoverlapping Allan deviation stride = 1 for overlapping Allan deviation References ---------- * http://en.wikipedia.org/wiki/Allan_variance * http://www.leapsecond.com/tools/adev_lib.c NIST [SP1065]_ eqn (7) and (11) page 16 """ mj = int(mj) stride = int(stride) d2 = phase[2 * mj::stride] d1 = phase[1 * mj::stride] d0 = phase[::stride] n = min(len(d0), len(d1), len(d2)) if n == 0: RuntimeWarning("Data array length is too small: %i" % len(phase)) n = 1 v_arr = d2[:n] - 2 * d1[:n] + d0[:n] s = np.sum(v_arr * v_arr) dev = np.sqrt(s / (2.0 * n)) / mj * rate deverr = dev / np.sqrt(n) return dev, deverr, n def oadev(data, rate=1.0, data_type="phase", taus=None): """ overlapping Allan deviation. General purpose - most widely used - first choice .. math:: \\sigma^2_{OADEV}(m\\tau_0) = { 1 \\over 2 (m \\tau_0 )^2 (N-2m) } \\sum_{n=1}^{N-2m} ( {x}_{n+2m} - 2x_{n+1m} + x_{n} )^2 where :math:`\\sigma^2_x(m\\tau_0)` is the overlapping Allan deviation at an averaging time of :math:`\\tau=m\\tau_0`, and :math:`x_n` is the time-series of phase observations, spaced by the measurement interval :math:`\\tau_0`, with length :math:`N`. NIST [SP1065]_ eqn (11), page 16. Parameters ---------- data: np.array Input data. Provide either phase or frequency (fractional, adimensional). rate: float The sampling rate for data, in Hz. Defaults to 1.0 data_type: {'phase', 'freq'} Data type, i.e. phase or frequency. Defaults to "phase". taus: np.array Array of tau values, in seconds, for which to compute statistic. Optionally set taus=["all"|"octave"|"decade"] for automatic tau-list generation. Returns ------- (taus2, ad, ade, ns): tuple Tuple of values taus2: np.array Tau values for which td computed ad: np.array Computed oadev for each tau value ade: np.array oadev errors ns: np.array Values of N used in each oadev calculation """ phase = input_to_phase(data, rate, data_type) (phase, m, taus_used) = tau_generator(phase, rate, taus) ad = np.zeros_like(taus_used) ade = np.zeros_like(taus_used) adn = np.zeros_like(taus_used) for idx, mj in enumerate(m): # stride=1 for overlapping ADEV (ad[idx], ade[idx], adn[idx]) = calc_adev_phase(phase, rate, mj, 1) return remove_small_ns(taus_used, ad, ade, adn) def ohdev(data, rate=1.0, data_type="phase", taus=None): """ Overlapping Hadamard deviation. Better confidence than normal Hadamard. .. math:: \\sigma^2_{OHDEV}(m\\tau_0) = { 1 \\over 6 (m \\tau_0 )^2 (N-3m) } \\sum_{i=1}^{N-3m} ( {x}_{i+3m} - 3x_{i+2m} + 3x_{i+m} - x_{i} )^2 where :math:`x_i` is the time-series of phase observations, spaced by the measurement interval :math:`\\tau_0`, and with length :math:`N`. Parameters ---------- data: np.array Input data. Provide either phase or frequency (fractional, adimensional). rate: float The sampling rate for data, in Hz. Defaults to 1.0 data_type: {'phase', 'freq'} Data type, i.e. phase or frequency. Defaults to "phase". taus: np.array Array of tau values, in seconds, for which to compute statistic. Optionally set taus=["all"|"octave"|"decade"] for automatic tau-list generation. Returns ------- (taus2, hd, hde, ns): tuple Tuple of values taus2: np.array Tau values for which td computed hd: np.array Computed hdev for each tau value hde: np.array hdev errors ns: np.array Values of N used in each hdev calculation """ phase = input_to_phase(data, rate, data_type) (phase, m, taus_used) = tau_generator(phase, rate, taus) hdevs = np.zeros_like(taus_used) hdeverrs = np.zeros_like(taus_used) ns = np.zeros_like(taus_used) for idx, mj in enumerate(m): (hdevs[idx], hdeverrs[idx], ns[idx]) = calc_hdev_phase(phase, rate, mj, 1) return remove_small_ns(taus_used, hdevs, hdeverrs, ns) def hdev(data, rate=1.0, data_type="phase", taus=None): """ Hadamard deviation. Rejects frequency drift, and handles divergent noise. .. math:: \\sigma^2_{HDEV}( \\tau ) = { 1 \\over 6 \\tau^2 (N-3) } \\sum_{i=1}^{N-3} ( {x}_{i+3} - 3x_{i+2} + 3x_{i+1} - x_{i} )^2 where :math:`x_i` is the time-series of phase observations, spaced by the measurement interval :math:`\\tau`, and with length :math:`N`. NIST [SP1065]_ eqn (17) and (18), page 20 Parameters ---------- data: np.array Input data. Provide either phase or frequency (fractional, adimensional). rate: float The sampling rate for data, in Hz. Defaults to 1.0 data_type: {'phase', 'freq'} Data type, i.e. phase or frequency. Defaults to "phase". taus: np.array Array of tau values, in seconds, for which to compute statistic. Optionally set taus=["all"|"octave"|"decade"] for automatic tau-list generation. """ phase = input_to_phase(data, rate, data_type) (phase, m, taus_used) = tau_generator(phase, rate, taus) hdevs = np.zeros_like(taus_used) hdeverrs = np.zeros_like(taus_used) ns = np.zeros_like(taus_used) for idx, mj in enumerate(m): (hdevs[idx], hdeverrs[idx], ns[idx]) = calc_hdev_phase(phase, rate, mj, mj) # stride = mj return remove_small_ns(taus_used, hdevs, hdeverrs, ns) def calc_hdev_phase(phase, rate, mj, stride): """ main calculation fungtion for HDEV and OHDEV Parameters ---------- phase: np.array Phase data in seconds. rate: float The sampling rate for phase or frequency, in Hz mj: int M index value for stride stride: int Size of stride Returns ------- (dev, deverr, n): tuple Array of computed values. Notes ----- http://www.leapsecond.com/tools/adev_lib.c 1 N-3 s2y(t) = --------------- sum [x(i+3) - 3x(i+2) + 3x(i+1) - x(i) ]^2 6*tau^2 (N-3m) i=1 N=M+1 phase measurements m is averaging factor NIST [SP1065]_ eqn (18) and (20) pages 20 and 21 """ tau0 = 1.0 / float(rate) mj = int(mj) stride = int(stride) d3 = phase[3 * mj::stride] d2 = phase[2 * mj::stride] d1 = phase[1 * mj::stride] d0 = phase[::stride] n = min(len(d0), len(d1), len(d2), len(d3)) v_arr = d3[:n] - 3 * d2[:n] + 3 * d1[:n] - d0[:n] s = np.sum(v_arr * v_arr) if n == 0: n = 1 h = np.sqrt(s / 6.0 / float(n)) / float(tau0 * mj) e = h / np.sqrt(n) return h, e, n def totdev(data, rate=1.0, data_type="phase", taus=None): """ Total deviation. Better confidence at long averages for Allan deviation. .. math:: \\sigma^2_{TOTDEV}( m\\tau_0 ) = { 1 \\over 2 (m\\tau_0)^2 (N-2) } \\sum_{i=2}^{N-1} ( {x}^*_{i-m} - 2x^*_{i} + x^*_{i+m} )^2 Where :math:`x^*_i` is a new time-series of length :math:`3N-4` derived from the original phase time-series :math:`x_n` of length :math:`N` by reflection at both ends. FIXME: better description of reflection operation. the original data x is in the center of x*: x*(1-j) = 2x(1) - x(1+j) for j=1..N-2 x*(i) = x(i) for i=1..N x*(N+j) = 2x(N) - x(N-j) for j=1..N-2 x* has length 3N-4 tau = m*tau0 NIST [SP1065]_ eqn (25) page 23 FIXME: bias correction http://www.wriley.com/CI2.pdf page 5 Parameters ---------- phase: np.array Phase data in seconds. Provide either phase or frequency. frequency: np.array Fractional frequency data (nondimensional). Provide either frequency or phase. rate: float The sampling rate for phase or frequency, in Hz taus: np.array Array of tau values for which to compute measurement """ phase = input_to_phase(data, rate, data_type) (phase, m, taus_used) = tau_generator(phase, rate, taus) N = len(phase) # totdev requires a new dataset # Begin by adding reflected data before dataset x1 = 2.0 * phase[0] * np.ones((N - 2,)) x1 = x1 - phase[1:-1] x1 = x1[::-1] # Reflected data at end of dataset x2 = 2.0 * phase[-1] * np.ones((N - 2,)) x2 = x2 - phase[1:-1][::-1] # check length of new dataset assert len(x1)+len(phase)+len(x2) == 3*N - 4 # Combine into a single array x = np.zeros((3*N - 4)) x[0:N-2] = x1 x[N-2:2*(N-2)+2] = phase # original data in the middle x[2*(N-2)+2:] = x2 devs = np.zeros_like(taus_used) deverrs = np.zeros_like(taus_used) ns = np.zeros_like(taus_used) mid = len(x1) for idx, mj in enumerate(m): mj = int(mj) d0 = x[mid + 1:] d1 = x[mid + mj + 1:] d1n = x[mid - mj + 1:] e = min(len(d0), len(d1), len(d1n)) v_arr = d1n[:e] - 2.0 * d0[:e] + d1[:e] dev = np.sum(v_arr[:mid] * v_arr[:mid]) dev /= float(2 * pow(mj / rate, 2) * (N - 2)) dev = np.sqrt(dev) devs[idx] = dev deverrs[idx] = dev / np.sqrt(mid) ns[idx] = mid return remove_small_ns(taus_used, devs, deverrs, ns) def ttotdev(data, rate=1.0, data_type="phase", taus=None): """ Time Total Deviation Modified total variance scaled by tau^2 / 3 NIST [SP1065]_ eqn (28) page 26. Note that [SP1065]_ erroneously has tau-cubed here (!). """ (taus, mtotdevs, mde, ns) = mtotdev(data, data_type=data_type, rate=rate, taus=taus) td = taus*mtotdevs / np.sqrt(3.0) tde = td / np.sqrt(ns) return taus, td, tde, ns def mtotdev(data, rate=1.0, data_type="phase", taus=None): """ PRELIMINARY - REQUIRES FURTHER TESTING. Modified Total deviation. Better confidence at long averages for modified Allan FIXME: bias-correction http://www.wriley.com/CI2.pdf page 6 The variance is scaled up (divided by this number) based on the noise-type identified. WPM 0.94 FPM 0.83 WFM 0.73 FFM 0.70 RWFM 0.69 Parameters ---------- data: np.array Input data. Provide either phase or frequency (fractional, adimensional). rate: float The sampling rate for data, in Hz. Defaults to 1.0 data_type: {'phase', 'freq'} Data type, i.e. phase or frequency. Defaults to "phase". taus: np.array Array of tau values, in seconds, for which to compute statistic. Optionally set taus=["all"|"octave"|"decade"] for automatic tau-list generation. NIST [SP1065]_ eqn (27) page 25 """ phase = input_to_phase(data, rate, data_type) (phase, ms, taus_used) = tau_generator(phase, rate, taus, maximum_m=float(len(phase))/3.0) devs = np.zeros_like(taus_used) deverrs = np.zeros_like(taus_used) ns = np.zeros_like(taus_used) for idx, mj in enumerate(ms): devs[idx], deverrs[idx], ns[idx] = calc_mtotdev_phase(phase, rate, mj) return remove_small_ns(taus_used, devs, deverrs, ns) def calc_mtotdev_phase(phase, rate, m): """ PRELIMINARY - REQUIRES FURTHER TESTING. calculation of mtotdev for one averaging factor m tau = m*tau0 NIST [SP1065]_ Eqn (27), page 25. Computed from a set of N - 3m + 1 subsequences of 3m points. 1. A linear trend (frequency offset) is removed from the subsequence by averaging the first and last halves of the subsequence and dividing by half the interval. 2. The offset-removed subsequence is extended at both ends by uninverted, even reflection. [Howe1999]_ D.A. Howe and F. Vernotte, "Generalization of the Total Variance Approach to the Modified Allan Variance," Proc. 31 st PTTI Meeting, pp. 267-276, Dec. 1999. """ tau0 = 1.0/rate N = len(phase) # phase data, N points m = int(m) n = 0 # number of terms in the sum, for error estimation dev = 0.0 # the deviation we are computing err = 0.0 # the error in the deviation #print('calc_mtotdev N=%d m=%d' % (N,m) ) for i in range(0, N-3*m+1): # subsequence of length 3m, from the original phase data xs = phase[i:i+3*m] assert len(xs) == 3*m # Step 1. # remove linear trend. by averaging first/last half, # computing slope, and subtracting half1_idx = int(np.floor(3*m/2.0)) half2_idx = int(np.ceil(3*m/2.0)) # m # 1 0:1 2:2 mean1 = np.mean(xs[:half1_idx]) mean2 = np.mean(xs[half2_idx:]) if int(3*m)%2 == 1: # m is odd # 3m = 2k+1 is odd, with the averages at both ends over k points # the distance between the averages is then k+1 = (3m-1)/2 +1 slope = (mean2-mean1) / ((0.5*(3*m-1)+1)*tau0) else: # m is even # 3m = 2k is even, so distance between averages is k=m/2 slope = (mean2-mean1) / (0.5*3*m*tau0) # remove the linear trend x0 = [x - slope*idx*tau0 for (idx, x) in enumerate(xs)] x0_flip = x0[::-1] # left-right flipped version of array # Step 2. # extend sequence, by uninverted even reflection # extended sequence xstar, of length 9m, xstar = np.concatenate((x0_flip, x0, x0_flip)) assert len(xstar) == 9*m # now compute mdev on these 9m points # 6m unique groups of m-point averages, # use all possible overlapping second differences # one term in the 6m sum: [ x_i - 2 x_i+m + x_i+2m ]^2 squaresum = 0.0 #print('m=%d 9m=%d maxj+3*m=%d' %( m, len(xstar), 6*int(m)+3*int(m)) ) # below we want the following sums (averages, see squaresum where we divide by m) # xmean1=np.sum(xstar[j : j+m]) # xmean2=np.sum(xstar[j+m : j+2*m]) # xmean3=np.sum(xstar[j+2*m : j+3*m]) # for speed these are not computed with np.sum or np.mean in each loop # instead they are initialized at m=0, and then just updated for j in range(0, 6*m): # summation of the 6m terms. # faster inner sum, based on Stable32 MTC.c code if j == 0: # intialize the sum xmean1 = np.sum(xstar[0:m]) xmean2 = np.sum(xstar[m:2*m]) xmean3 = np.sum(xstar[2*m:3*m]) else: # j>=1, subtract old point, add new point xmean1 = xmean1 - xstar[j-1] + xstar[j+m-1] # xmean2 = xmean2 - xstar[m+j-1] + xstar[j+2*m-1] # xmean3 = xmean3 - xstar[2*m+j-1] + xstar[j+3*m-1] # squaresum += pow((xmean1 - 2.0*xmean2 + xmean3)/float(m), 2) squaresum = (1.0/(6.0*m)) * squaresum dev += squaresum n = n+1 # scaling in front of double-sum assert n == N-3*m+1 # sanity check on the number of terms n dev = dev * 1.0/ (2.0*pow(m*tau0, 2)*(N-3*m+1)) dev = np.sqrt(dev) error = dev / np.sqrt(n) return (dev, error, n) def htotdev(data, rate=1.0, data_type="phase", taus=None): """ PRELIMINARY - REQUIRES FURTHER TESTING. Hadamard Total deviation. Better confidence at long averages for Hadamard deviation Computed for N fractional frequency points y_i with sampling period tau0, analyzed at tau = m*tau0 1. remove linear trend by averaging first and last half and divide by interval 2. extend sequence by uninverted even reflection 3. compute Hadamard for extended, length 9m, sequence. FIXME: bias corrections from http://www.wriley.com/CI2.pdf W FM 0.995 alpha= 0 F FM 0.851 alpha=-1 RW FM 0.771 alpha=-2 FW FM 0.717 alpha=-3 RR FM 0.679 alpha=-4 Parameters ---------- data: np.array Input data. Provide either phase or frequency (fractional, adimensional). rate: float The sampling rate for data, in Hz. Defaults to 1.0 data_type: {'phase', 'freq'} Data type, i.e. phase or frequency. Defaults to "phase". taus: np.array Array of tau values, in seconds, for which to compute statistic. Optionally set taus=["all"|"octave"|"decade"] for automatic tau-list generation. """ if data_type == "phase": phase = data freq = phase2frequency(phase, rate) elif data_type == "freq": phase = frequency2phase(data, rate) freq = data else: raise Exception("unknown data_type: " + data_type) rate = float(rate) (freq, ms, taus_used) = tau_generator(freq, rate, taus, maximum_m=float(len(freq))/3.0) phase = np.array(phase) freq = np.array(freq) devs = np.zeros_like(taus_used) deverrs = np.zeros_like(taus_used) ns = np.zeros_like(taus_used) # NOTE at mj==1 we use ohdev(), based on comment from here: # http://www.wriley.com/paper4ht.htm # "For best consistency, the overlapping Hadamard variance is used # instead of the Hadamard total variance at m=1" # FIXME: this uses both freq and phase datasets, which uses double the memory really needed... for idx, mj in enumerate(ms): if int(mj) == 1: (devs[idx], deverrs[idx], ns[idx]) = calc_hdev_phase(phase, rate, mj, 1) else: (devs[idx], deverrs[idx], ns[idx]) = calc_htotdev_freq(freq, mj) return remove_small_ns(taus_used, devs, deverrs, ns) def calc_htotdev_freq(freq, m): """ PRELIMINARY - REQUIRES FURTHER TESTING. calculation of htotdev for one averaging factor m tau = m*tau0 Parameters ---------- frequency: np.array Fractional frequency data (nondimensional). m: int Averaging factor. tau = m*tau0, where tau0=1/rate. """ N = int(len(freq)) # frequency data, N points m = int(m) n = 0 # number of terms in the sum, for error estimation dev = 0.0 # the deviation we are computing for i in range(0, N-3*m+1): # subsequence of length 3m, from the original phase data xs = freq[i:i+3*m] assert len(xs) == 3*m # remove linear trend. by averaging first/last half, # computing slope, and subtracting half1_idx = int(np.floor(3*m/2.0)) half2_idx = int(np.ceil(3*m/2.0)) # m # 1 0:1 2:2 mean1 = np.mean(xs[:half1_idx]) mean2 = np.mean(xs[half2_idx:]) if int(3*m)%2 == 1: # m is odd # 3m = 2k+1 is odd, with the averages at both ends over k points # the distance between the averages is then k+1 = (3m-1)/2 +1 slope = (mean2-mean1) / ((0.5*(3*m-1)+1)) else: # m is even # 3m = 2k is even, so distance between averages is k=3m/2 slope = (mean2-mean1) / (0.5*3*m) # remove the linear trend x0 = [x - slope*(idx-np.floor(3*m/2)) for (idx, x) in enumerate(xs)] x0_flip = x0[::-1] # left-right flipped version of array # extended sequence, to length 9m, by uninverted even reflection xstar = np.concatenate((x0_flip, x0, x0_flip)) assert len(xstar) == 9*m # now compute totdev on these 9m points # 6m unique groups of m-point averages, # all possible overlapping second differences # one term in the 6m sum: [ x_i - 2 x_i+m + x_i+2m ]^2 squaresum = 0.0 k = 0 for j in range(0, 6*int(m)): # summation of the 6m terms. # old naive code # xmean1 = np.mean(xstar[j+0*m : j+1*m]) # xmean2 = np.mean(xstar[j+1*m : j+2*m]) # xmean3 = np.mean(xstar[j+2*m : j+3*m]) # squaresum += pow(xmean1 - 2.0*xmean2 + xmean3, 2) # new faster way of doing the sums if j == 0: # intialize the sum xmean1 = np.sum(xstar[0:m]) xmean2 = np.sum(xstar[m:2*m]) xmean3 = np.sum(xstar[2*m:3*m]) else: # j>=1, subtract old point, add new point xmean1 = xmean1 - xstar[j-1] + xstar[j+m-1] # xmean2 = xmean2 - xstar[m+j-1] + xstar[j+2*m-1] # xmean3 = xmean3 - xstar[2*m+j-1] + xstar[j+3*m-1] # squaresum += pow((xmean1 - 2.0*xmean2 + xmean3)/float(m), 2) k = k+1 assert k == 6*m # check number of terms in the sum squaresum = (1.0/(6.0*k)) * squaresum dev += squaresum n = n+1 # scaling in front of double-sum assert n == N-3*m+1 # sanity check on the number of terms n dev = dev * 1.0/(N-3*m+1) dev = np.sqrt(dev) error = dev / np.sqrt(n) return (dev, error, n) def theo1(data, rate=1.0, data_type="phase", taus=None): """ PRELIMINARY - REQUIRES FURTHER TESTING. Theo1 is a two-sample variance with improved confidence and extended averaging factor range. .. math:: \\sigma^2_{THEO1}(m\\tau_0) = { 1 \\over (m \\tau_0 )^2 (N-m) } \\sum_{i=1}^{N-m} \\sum_{\\delta=0}^{m/2-1} {1\\over m/2-\\delta}\\lbrace ({x}_{i} - x_{i-\\delta +m/2}) + (x_{i+m}- x_{i+\\delta +m/2}) \\rbrace^2 Where :math:`10<=m<=N-1` is even. FIXME: bias correction NIST [SP1065]_ eq (30) page 29 Parameters ---------- data: np.array Input data. Provide either phase or frequency (fractional, adimensional). rate: float The sampling rate for data, in Hz. Defaults to 1.0 data_type: {'phase', 'freq'} Data type, i.e. phase or frequency. Defaults to "phase". taus: np.array Array of tau values, in seconds, for which to compute statistic. Optionally set taus=["all"|"octave"|"decade"] for automatic tau-list generation. """ phase = input_to_phase(data, rate, data_type) tau0 = 1.0/rate (phase, ms, taus_used) = tau_generator(phase, rate, taus, even=True) devs = np.zeros_like(taus_used) deverrs = np.zeros_like(taus_used) ns = np.zeros_like(taus_used) N = len(phase) for idx, m in enumerate(ms): m = int(m) # to avoid: VisibleDeprecationWarning: using a # non-integer number instead of an integer will # result in an error in the future assert m % 2 == 0 # m must be even dev = 0 n = 0 for i in range(int(N-m)): s = 0 for d in range(int(m/2)): # inner sum pre = 1.0 / (float(m)/2 - float(d)) s += pre*pow(phase[i]-phase[i-d+int(m/2)] + phase[i+m]-phase[i+d+int(m/2)], 2) n = n+1 dev += s assert n == (N-m)*m/2 # N-m outer sums, m/2 inner sums dev = dev/(0.75*(N-m)*pow(m*tau0, 2)) # factor 0.75 used here? http://tf.nist.gov/general/pdf/1990.pdf # but not here? http://tf.nist.gov/timefreq/general/pdf/2220.pdf page 29 devs[idx] = np.sqrt(dev) deverrs[idx] = devs[idx] / np.sqrt(N-m) ns[idx] = n return remove_small_ns(taus_used, devs, deverrs, ns) def tierms(data, rate=1.0, data_type="phase", taus=None): """ Time Interval Error RMS. Parameters ---------- data: np.array Input data. Provide either phase or frequency (fractional, adimensional). rate: float The sampling rate for data, in Hz. Defaults to 1.0 data_type: {'phase', 'freq'} Data type, i.e. phase or frequency. Defaults to "phase". taus: np.array Array of tau values, in seconds, for which to compute statistic. Optionally set taus=["all"|"octave"|"decade"] for automatic tau-list generation. """ phase = input_to_phase(data, rate, data_type) (data, m, taus_used) = tau_generator(phase, rate, taus) count = len(phase) devs = np.zeros_like(taus_used) deverrs = np.zeros_like(taus_used) ns = np.zeros_like(taus_used) for idx, mj in enumerate(m): mj = int(mj) # This seems like an unusual way to phases = np.column_stack((phase[:-mj], phase[mj:])) p_max = np.max(phases, axis=1) p_min = np.min(phases, axis=1) phases = p_max - p_min tie = np.sqrt(np.mean(phases * phases)) ncount = count - mj devs[idx] = tie deverrs[idx] = 0 / np.sqrt(ncount) # TODO! I THINK THIS IS WRONG! ns[idx] = ncount return remove_small_ns(taus_used, devs, deverrs, ns) def mtie_rolling_window(a, window): """ Make an ndarray with a rolling window of the last dimension, from http://mail.scipy.org/pipermail/numpy-discussion/2011-January/054401.html Parameters ---------- a : array_like Array to add rolling window to window : int Size of rolling window Returns ------- Array that is a view of the original array with a added dimension of size window. Note ---- This may consume large amounts of memory. See discussion: https://mail.python.org/pipermail/numpy-discussion/2011-January/054364.html https://mail.python.org/pipermail/numpy-discussion/2011-January/054370.html """ if window < 1: raise ValueError("`window` must be at least 1.") if window > a.shape[-1]: raise ValueError("`window` is too long.") shape = a.shape[:-1] + (a.shape[-1] - window + 1, window) strides = a.strides + (a.strides[-1],) return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides) def mtie(data, rate=1.0, data_type="phase", taus=None): """ Maximum Time Interval Error. Parameters ---------- data: np.array Input data. Provide either phase or frequency (fractional, adimensional). rate: float The sampling rate for data, in Hz. Defaults to 1.0 data_type: {'phase', 'freq'} Data type, i.e. phase or frequency. Defaults to "phase". taus: np.array Array of tau values, in seconds, for which to compute statistic. Optionally set taus=["all"|"octave"|"decade"] for automatic tau-list generation. Notes ----- this seems to correspond to Stable32 setting "Fast(u)" Stable32 also has "Decade" and "Octave" modes where the dataset is extended somehow? """ phase = input_to_phase(data, rate, data_type) (phase, m, taus_used) = tau_generator(phase, rate, taus) devs = np.zeros_like(taus_used) deverrs = np.zeros_like(taus_used) ns = np.zeros_like(taus_used) for idx, mj in enumerate(m): try: # the older algorithm uses a lot of memory # but can be used for short datasets. rw = mtie_rolling_window(phase, int(mj + 1)) win_max = np.max(rw, axis=1) win_min = np.min(rw, axis=1) tie = win_max - win_min dev = np.max(tie) except: if int(mj + 1) < 1: raise ValueError("`window` must be at least 1.") if int(mj + 1) > phase.shape[-1]: raise ValueError("`window` is too long.") mj = int(mj) currMax = np.max(phase[0:mj]) currMin = np.min(phase[0:mj]) dev = currMax - currMin for winStartIdx in range(1, int(phase.shape[0] - mj)): winEndIdx = mj + winStartIdx if currMax == phase[winStartIdx - 1]: currMax = np.max(phase[winStartIdx:winEndIdx]) elif currMax < phase[winEndIdx]: currMax = phase[winEndIdx] if currMin == phase[winStartIdx - 1]: currMin = np.min(phase[winStartIdx:winEndIdx]) elif currMin > phase[winEndIdx]: currMin = phase[winEndIdx] if dev < currMax - currMin: dev = currMax - currMin ncount = phase.shape[0] - mj devs[idx] = dev deverrs[idx] = dev / np.sqrt(ncount) ns[idx] = ncount return remove_small_ns(taus_used, devs, deverrs, ns) # # !!!!!!! # FIXME: mtie_phase_fast() is incomplete. # !!!!!!! # def mtie_phase_fast(phase, rate=1.0, data_type="phase", taus=None): """ fast binary decomposition algorithm for MTIE See: [Bregni2001]_ STEFANO BREGNI "Fast Algorithms for TVAR and MTIE Computation in Characterization of Network Synchronization Performance" """ rate = float(rate) phase = np.asarray(phase) k_max = int(np.floor(np.log2(len(phase)))) phase = phase[0:pow(2, k_max)] # truncate data to 2**k_max datapoints assert len(phase) == pow(2, k_max) #k = 1 taus = [pow(2, k) for k in range(k_max)] #while k <= k_max: # tau = pow(2, k) # taus.append(tau) #print tau # k += 1 print("taus N=", len(taus), " ", taus) devs = np.zeros(len(taus)) deverrs = np.zeros(len(taus)) ns = np.zeros(len(taus)) taus_used = np.array(taus) # [(1.0/rate)*t for t in taus] # matrices to store results mtie_max = np.zeros((len(phase)-1, k_max)) mtie_min = np.zeros((len(phase)-1, k_max)) for kidx in range(k_max): k = kidx+1 imax = len(phase)-pow(2, k)+1 #print k, imax tie = np.zeros(imax) ns[kidx] = imax #print np.max( tie ) for i in range(imax): if k == 1: mtie_max[i, kidx] = max(phase[i], phase[i+1]) mtie_min[i, kidx] = min(phase[i], phase[i+1]) else: p = int(pow(2, k-1)) mtie_max[i, kidx] = max(mtie_max[i, kidx-1], mtie_max[i+p, kidx-1]) mtie_min[i, kidx] = min(mtie_min[i, kidx-1], mtie_min[i+p, kidx-1]) #for i in range(imax): tie[i] = mtie_max[i, kidx] - mtie_min[i, kidx] #print tie[i] devs[kidx] = np.amax(tie) # maximum along axis #print "maximum %2.4f" % devs[kidx] #print np.amax( tie ) #for tau in taus: #for devs = np.array(devs) print("devs N=", len(devs), " ", devs) print("taus N=", len(taus_used), " ", taus_used) return remove_small_ns(taus_used, devs, deverrs, ns) ######################################################################## # # gap resistant Allan deviation # def gradev(data, rate=1.0, data_type="phase", taus=None, ci=0.9, noisetype='wp'): """ gap resistant overlapping Allan deviation Parameters ---------- data: np.array Input data. Provide either phase or frequency (fractional, adimensional). Warning : phase data works better (frequency data is first trantformed into phase using numpy.cumsum() function, which can lead to poor results). rate: float The sampling rate for data, in Hz. Defaults to 1.0 data_type: {'phase', 'freq'} Data type, i.e. phase or frequency. Defaults to "phase". taus: np.array Array of tau values, in seconds, for which to compute statistic. Optionally set taus=["all"|"octave"|"decade"] for automatic tau-list generation. ci: float the total confidence interval desired, i.e. if ci = 0.9, the bounds will be at 0.05 and 0.95. noisetype: string the type of noise desired: 'wp' returns white phase noise. 'wf' returns white frequency noise. 'fp' returns flicker phase noise. 'ff' returns flicker frequency noise. 'rf' returns random walk frequency noise. If the input is not recognized, it defaults to idealized, uncorrelated noise with (N-1) degrees of freedom. Returns ------- taus: np.array list of tau vales in seconds adev: np.array deviations [err_l, err_h] : list of len()==2, np.array the upper and lower bounds of the confidence interval taken as distances from the the estimated two sample variance. ns: np.array numper of terms n in the adev estimate. """ if data_type == "freq": print("Warning : phase data is preferred as input to gradev()") phase = input_to_phase(data, rate, data_type) (data, m, taus_used) = tau_generator(phase, rate, taus) ad = np.zeros_like(taus_used) ade_l = np.zeros_like(taus_used) ade_h = np.zeros_like(taus_used) adn = np.zeros_like(taus_used) for idx, mj in enumerate(m): (dev, deverr, n) = calc_gradev_phase(data, rate, mj, 1, ci, noisetype) # stride=1 for overlapping ADEV ad[idx] = dev ade_l[idx] = deverr[0] ade_h[idx] = deverr[1] adn[idx] = n # Note that errors are split in 2 arrays return remove_small_ns(taus_used, ad, [ade_l, ade_h], adn) def calc_gradev_phase(data, rate, mj, stride, confidence, noisetype): """ see http://www.leapsecond.com/tools/adev_lib.c stride = mj for nonoverlapping allan deviation stride = 1 for overlapping allan deviation see http://en.wikipedia.org/wiki/Allan_variance 1 1 s2y(t) = --------- sum [x(i+2) - 2x(i+1) + x(i) ]^2 2*tau^2 """ d2 = data[2 * int(mj)::int(stride)] d1 = data[1 * int(mj)::int(stride)] d0 = data[::int(stride)] n = min(len(d0), len(d1), len(d2)) v_arr = d2[:n] - 2 * d1[:n] + d0[:n] n = len(np.where(np.isnan(v_arr) == False)[0]) # only average for non-nans if n == 0: RuntimeWarning("Data array length is too small: %i" % len(data)) n = 1 N = len(np.where(np.isnan(data) == False)[0]) s = np.nansum(v_arr * v_arr) # a summation robust to nans dev = np.sqrt(s / (2.0 * n)) / mj * rate #deverr = dev / np.sqrt(n) # old simple errorbars if noisetype == 'wp': alpha = 2 elif noisetype == 'wf': alpha = 0 elif noisetype == 'fp': alpha = -2 else: alpha = None if n > 1: edf = ci.edf_simple(N, mj, alpha) deverr = ci.confidence_interval(dev, confidence, edf) else: deverr = [0, 0] return dev, deverr, n ######################################################################## # # Various helper functions and utilities # def input_to_phase(data, rate, data_type): """ Take either phase or frequency as input and return phase """ if data_type == "phase": return data elif data_type == "freq": return frequency2phase(data, rate) else: raise Exception("unknown data_type: " + data_type) def tau_generator(data, rate, taus=None, v=False, even=False, maximum_m=-1): """ pre-processing of the tau-list given by the user (Helper function) Does sanity checks, sorts data, removes duplicates and invalid values. Generates a tau-list based on keywords 'all', 'decade', 'octave'. Uses 'octave' by default if no taus= argument is given. Parameters ---------- data: np.array data array rate: float Sample rate of data in Hz. Time interval between measurements is 1/rate seconds. taus: np.array Array of tau values for which to compute measurement. Alternatively one of the keywords: "all", "octave", "decade". Defaults to "octave" if omitted. v: verbose output if True even: require even m, where tau=m*tau0, for Theo1 statistic maximum_m: limit m, where tau=m*tau0, to this value. used by mtotdev() and htotdev() to limit maximum tau. Returns ------- (data, m, taus): tuple List of computed values data: np.array Data m: np.array Tau in units of data points taus: np.array Cleaned up list of tau values """ if rate == 0: raise RuntimeError("Warning! rate==0") if taus is None: # empty or no tau-list supplied taus = "octave" # default to octave elif isinstance(taus, list) and taus == []: taus = "octave" if taus is "all": taus = (1.0/rate)*np.linspace(1.0, len(data), len(data)) elif taus is "octave": maxn = np.floor(np.log2(len(data))) taus = (1.0/rate)*np.logspace(0, int(maxn), int(maxn+1), base=2.0) elif taus is "decade": # 1, 2, 4, 10, 20, 40, spacing similar to Stable32 maxn = np.floor(np.log10(len(data))) taus = [] for k in range(int(maxn+1)): taus.append(1.0*(1.0/rate)*pow(10.0, k)) taus.append(2.0*(1.0/rate)*pow(10.0, k)) taus.append(4.0*(1.0/rate)*pow(10.0, k)) data, taus = np.array(data), np.array(taus) rate = float(rate) m = [] # integer averaging factor. tau = m*tau0 if maximum_m == -1: # if no limit given maximum_m = len(data) # FIXME: should we use a "stop-ratio" like Stable32 # found in Table III, page 9 of "Evolution of frequency stability analysis software" # max(AF) = len(phase)/stop_ratio, where # function stop_ratio # adev 5 # oadev 4 # mdev 4 # tdev 4 # hdev 5 # ohdev 4 # totdev 2 # tierms 4 # htotdev 3 # mtie 2 # theo1 1 # theoH 1 # mtotdev 2 # ttotdev 2 taus_valid1 = taus < (1 / float(rate)) * float(len(data)) taus_valid2 = taus > 0 taus_valid3 = taus <= (1 / float(rate)) * float(maximum_m) taus_valid = taus_valid1 & taus_valid2 & taus_valid3 m = np.floor(taus[taus_valid] * rate) m = m[m != 0] # m is tau in units of datapoints m = np.unique(m) # remove duplicates and sort if v: print("tau_generator: ", m) if len(m) == 0: print("Warning: sanity-check on tau failed!") print(" len(data)=", len(data), " rate=", rate, "taus= ", taus) taus2 = m / float(rate) if even: # used by Theo1 m_even_mask = ((m % 2) == 0) m = m[m_even_mask] taus2 = taus2[m_even_mask] return data, m, taus2 def tau_reduction(ms, rate, n_per_decade): """Reduce the number of taus to maximum of n per decade (Helper function) takes in a tau list and reduces the number of taus to a maximum amount per decade. This is only useful if more than the "decade" and "octave" but less than the "all" taus are wanted. E.g. to show certain features of the data one might want 100 points per decade. NOTE: The algorithm is slightly inaccurate for ms under n_per_decade, and will also remove some points in this range, which is usually fine. Typical use would be something like: (data,m,taus)=tau_generator(data,rate,taus="all") (m,taus)=tau_reduction(m,rate,n_per_decade) Parameters ---------- ms: array of integers List of m values (assumed to be an "all" list) to remove points from. rate: float Sample rate of data in Hz. Time interval between measurements is 1/rate seconds. Used to convert to taus. n_per_decade: int Number of ms/taus to keep per decade. Returns ------- m: np.array Reduced list of m values taus: np.array Reduced list of tau values """ ms = np.int64(ms) keep = np.bool8(np.rint(n_per_decade*np.log10(ms[1:])) - np.rint(n_per_decade*np.log10(ms[:-1]))) # Adjust ms size to fit above-defined mask ms = ms[:-1] assert len(ms) == len(keep) ms = ms[keep] taus = ms/float(rate) return ms, taus def remove_small_ns(taus, devs, deverrs, ns): """ Remove results with small number of samples. If n is small (==1), reject the result Parameters ---------- taus: array List of tau values for which deviation were computed devs: array List of deviations deverrs: array or list of arrays List of estimated errors (possibly a list containing two arrays : upper and lower values) ns: array Number of samples for each point Returns ------- (taus, devs, deverrs, ns): tuple Identical to input, except that values with low ns have been removed. """ ns_big_enough = ns > 1 o_taus = taus[ns_big_enough] o_devs = devs[ns_big_enough] o_ns = ns[ns_big_enough] if isinstance(deverrs, list): assert len(deverrs) < 3 o_deverrs = [deverrs[0][ns_big_enough], deverrs[1][ns_big_enough]] else: o_deverrs = deverrs[ns_big_enough] if len(o_devs) == 0: print("remove_small_ns() nothing remains!?") raise UserWarning return o_taus, o_devs, o_deverrs, o_ns def trim_data(x): """ Trim leading and trailing NaNs from dataset This is done by browsing the array from each end and store the index of the first non-NaN in each case, the return the appropriate slice of the array """ # Find indices for first and last valid data first = 0 while np.isnan(x[first]): first += 1 last = len(x) while np.isnan(x[last - 1]): last -= 1 return x[first:last] def three_cornered_hat_phase(phasedata_ab, phasedata_bc, phasedata_ca, rate, taus, function): """ Three Cornered Hat Method Given three clocks A, B, C, we seek to find their variances :math:`\\sigma^2_A`, :math:`\\sigma^2_B`, :math:`\\sigma^2_C`. We measure three phase differences, assuming no correlation between the clocks, the measurements have variances: .. math:: \\sigma^2_{AB} = \\sigma^2_{A} + \\sigma^2_{B} \\sigma^2_{BC} = \\sigma^2_{B} + \\sigma^2_{C} \\sigma^2_{CA} = \\sigma^2_{C} + \\sigma^2_{A} Which allows solving for the variance of one clock as: .. math:: \\sigma^2_{A} = {1 \\over 2} ( \\sigma^2_{AB} + \\sigma^2_{CA} - \\sigma^2_{BC} ) and similarly cyclic permutations for :math:`\\sigma^2_B` and :math:`\\sigma^2_C` Parameters ---------- phasedata_ab: np.array phase measurements between clock A and B, in seconds phasedata_bc: np.array phase measurements between clock B and C, in seconds phasedata_ca: np.array phase measurements between clock C and A, in seconds rate: float The sampling rate for phase, in Hz taus: np.array The tau values for deviations, in seconds function: allantools deviation function The type of statistic to compute, e.g. allantools.oadev Returns ------- tau_ab: np.array Tau values corresponding to output deviations dev_a: np.array List of computed values for clock A References ---------- http://www.wriley.com/3-CornHat.htm """ (tau_ab, dev_ab, err_ab, ns_ab) = function(phasedata_ab, data_type='phase', rate=rate, taus=taus) (tau_bc, dev_bc, err_bc, ns_bc) = function(phasedata_bc, data_type='phase', rate=rate, taus=taus) (tau_ca, dev_ca, err_ca, ns_ca) = function(phasedata_ca, data_type='phase', rate=rate, taus=taus) var_ab = dev_ab * dev_ab var_bc = dev_bc * dev_bc var_ca = dev_ca * dev_ca assert len(var_ab) == len(var_bc) == len(var_ca) var_a = 0.5 * (var_ab + var_ca - var_bc) var_a[var_a < 0] = 0 # don't return imaginary deviations (?) dev_a = np.sqrt(var_a) err_a = [d/np.sqrt(nn) for (d, nn) in zip(dev_a, ns_ab)] return tau_ab, dev_a, err_a, ns_ab ######################################################################## # # simple conversions between frequency, phase(seconds), phase(radians) # def frequency2phase(freqdata, rate): """ integrate fractional frequency data and output phase data Parameters ---------- freqdata: np.array Data array of fractional frequency measurements (nondimensional) rate: float The sampling rate for phase or frequency, in Hz Returns ------- phasedata: np.array Time integral of fractional frequency data, i.e. phase (time) data in units of seconds. For phase in units of radians, see phase2radians() """ dt = 1.0 / float(rate) # Protect against NaN values in input array (issue #60) # Reintroduces data trimming as in commit 503cb82 freqdata = trim_data(freqdata) # Erik Benkler (PTB): Subtract mean value before cumsum in order to # avoid precision issues when we have small frequency fluctuations on # a large average frequency freqdata = freqdata - np.nanmean(freqdata) phasedata = np.cumsum(freqdata) * dt phasedata = np.insert(phasedata, 0, 0) # FIXME: why do we do this? # so that phase starts at zero and len(phase)=len(freq)+1 ?? return phasedata def phase2radians(phasedata, v0): """ Convert phase in seconds to phase in radians Parameters ---------- phasedata: np.array Data array of phase in seconds v0: float Nominal oscillator frequency in Hz Returns ------- fi: phase data in radians """ fi = [2*np.pi*v0*xx for xx in phasedata] return fi def phase2frequency(phase, rate): """ Convert phase in seconds to fractional frequency Parameters ---------- phase: np.array Data array of phase in seconds rate: float The sampling rate for phase, in Hz Returns ------- y: Data array of fractional frequency """ y = rate*np.diff(phase) return y def frequency2fractional(frequency, mean_frequency=-1): """ Convert frequency in Hz to fractional frequency Parameters ---------- frequency: np.array Data array of frequency in Hz mean_frequency: float (optional) The nominal mean frequency, in Hz if omitted, defaults to mean frequency=np.mean(frequency) Returns ------- y: Data array of fractional frequency """ if mean_frequency == -1: mu = np.mean(frequency) else: mu = mean_frequency y = [(x-mu)/mu for x in frequency] return y # end of file allantools.py
AllanTools
/AllanTools-2019.9.tar.gz/AllanTools-2019.9/allantools/allantools.py
allantools.py
import math import numpy import scipy.signal # for welch PSD def numpy_psd(x, f_sample=1.0): """ calculate power spectral density of input signal x x = signal f_sample = sampling frequency in Hz. i.e. 1/fs is the time-interval in seconds between datapoints scale fft so that output corresponds to 1-sided PSD output has units of [X^2/Hz] where X is the unit of x """ psd_of_x = ((2.0 / (float(len(x)) * f_sample)) * numpy.abs(numpy.fft.rfft(x))**2) f_axis = numpy.linspace(0, f_sample/2.0, len(psd_of_x)) # frequency axis return f_axis, psd_of_x def scipy_psd(x, f_sample=1.0, nr_segments=4): """ PSD routine from scipy we can compare our own numpy result against this one """ f_axis, psd_of_x = scipy.signal.welch(x, f_sample, nperseg=len(x)/nr_segments) return f_axis, psd_of_x def white(num_points=1024, b0=1.0, fs=1.0): """ White noise generator Generate time series with white noise that has constant PSD = b0, up to the nyquist frequency fs/2. The PSD is at 'height' b0 and extends from 0 Hz up to the nyquist frequency fs/2 (prefactor math.sqrt(b0*fs/2.0)) Parameters ---------- num_points: int, optional number of samples b0: float, optional desired power-spectral density in [X^2/Hz] where X is the unit of x fs: float, optional sampling frequency, i.e. 1/fs is the time-interval between datapoints Returns ------- White noise sample: numpy.array """ return math.sqrt(b0*fs/2.0)*numpy.random.randn(num_points) def brown(num_points=1024, b2=1.0, fs=1.0): """ Brownian or random walk (diffusion) noise with 1/f^2 PSD Not really a color... rather Brownian or random-walk. Obtained by integrating white-noise. Parameters ---------- num_points: int, optional number of samples b2: float, optional desired power-spectral density is b2*f^-2 fs: float, optional sampling frequency, i.e. 1/fs is the time-interval between datapoints Returns ------- Random walk sample: numpy.array """ return (1.0/float(fs))*numpy.cumsum(white(num_points, b0=b2*(4.0*math.pi*math.pi), fs=fs)) def violet(num_points=1024): """ Violet noise with /f^2 PSD Obtained by differentiating white noise Parameters ---------- num_points: int, optional number of samples Returns ------- Violet noise sample: numpy.array """ # diff() reduces number of points by one. return numpy.diff(numpy.random.randn(num_points+1)) def pink(num_points=1024, depth=80): """ Pink noise (approximation) with 1/f PSD Fills a sample with results from a pink noise generator from http://pydoc.net/Python/lmj.sound/0.1.1/lmj.sound.noise/, based on the Voss-McCartney algorithm, discussion and code examples at http://www.firstpr.com.au/dsp/pink-noise/ Parameters ---------- num_points: int, optional number of samples depth: int, optional number of iteration for each point. High numbers are slower but generates a more correct spectrum on low-frequencies end. Returns ------- Pink noise sample: numpy.array """ a = [] s = iterpink(depth) for n in range(num_points): # FIXME: num_points is unused here. a.append(next(s)) return numpy.array(a) def iterpink(depth=20): """Generate a sequence of samples of pink noise. pink noise generator from http://pydoc.net/Python/lmj.sound/0.1.1/lmj.sound.noise/ Based on the Voss-McCartney algorithm, discussion and code examples at http://www.firstpr.com.au/dsp/pink-noise/ depth: Use this many samples of white noise to calculate the output. A higher number is slower to run, but renders low frequencies with more correct power spectra. Generates a never-ending sequence of floating-point values. Any continuous set of these samples will tend to have a 1/f power spectrum. """ values = numpy.random.randn(depth) smooth = numpy.random.randn(depth) source = numpy.random.randn(depth) sumvals = values.sum() i = 0 while True: yield sumvals + smooth[i] # advance the index by 1. if the index wraps, generate noise to use in # the calculations, but do not update any of the pink noise values. i += 1 if i == depth: i = 0 smooth = numpy.random.randn(depth) source = numpy.random.randn(depth) continue # count trailing zeros in i c = 0 while not (i >> c) & 1: c += 1 # replace value c with a new source element sumvals += source[i] - values[c] values[c] = source[i]
AllanTools
/AllanTools-2019.9.tar.gz/AllanTools-2019.9/allantools/noise.py
noise.py
from . import allantools class Dataset(object): """ Dataset class for Allantools :Example: :: import numpy as np # Load random data a = allantools.Dataset(data=np.random.rand(1000)) # compute mdev a.compute("mdev") print(a.out["stat"]) compute() returns the result of the computation and also stores it in the object's ``out`` member. """ def __init__(self, data=None, rate=1.0, data_type="phase", taus=None): """ Initialize object with input data Parameters ---------- data: np.array Input data. Provide either phase or frequency (fractional, adimensional) rate: float The sampling rate for data, in Hz. Defaults to 1.0 data_type: {'phase', 'freq'} Data type, i.e. phase or frequency. Defaults to "phase". taus: np.array Array of tau values, in seconds, for which to compute statistic. Optionally set taus=["all"|"octave"|"decade"] for automatic calculation of taus list Returns ------- Dataset() A Dataset() instance """ #: input data Dict, self.inp = {"data": None, "rate": None, "data_type": None, "taus": None} #: output data Dict, to be populated by compute() self.out = {"taus": None, "stat": None, "stat_err": None, "stat_n": None, "stat_unc": None, "stat_id": None} self.inp["data"] = data self.inp["rate"] = rate self.inp["data_type"] = data_type self.inp["taus"] = taus def set_input(self, data, rate=1.0, data_type="phase", taus=None): """ Optionnal method if you chose not to set inputs on init Parameters ---------- data: np.array Input data. Provide either phase or frequency (fractional, adimensional) rate: float The sampling rate for data, in Hz. Defaults to 1.0 data_type: {'phase', 'freq'} Data type, i.e. phase or frequency. Defaults to "phase". taus: np.array Array of tau values, in seconds, for which to compute statistic. Optionally set taus=["all"|"octave"|"decade"] for automatic """ self.inp["data"] = data self.inp["rate"] = rate self.inp["data_type"] = data_type self.inp["taus"] = taus def compute(self, function): """Evaluate the passed function with the supplied data. Stores result in self.out. Parameters ---------- function: str Name of the :mod:`allantools` function to evaluate Returns ------- result: dict The results of the calculation. """ try: func = getattr(allantools, function) except AttributeError: raise AttributeError("function must be defined in allantools") whitelisted = ["theo1", "mtie", "tierms"] if function[-3:] != "dev" and function not in whitelisted: # this should probably raise a custom exception type so # it's easier to distinguish from other bad things raise RuntimeError("function must be one of the 'dev' functions") result = func(self.inp["data"], rate=self.inp["rate"], data_type=self.inp["data_type"], taus=self.inp["taus"]) keys = ["taus", "stat", "stat_err", "stat_n"] result = {key: result[i] for i, key in enumerate(keys)} self.out = result.copy() self.out["stat_id"] = function return result def write_results(self, filename, digits=5, header_params={}): """ Output result to text Save calculation results to disk. Will overwrite any existing file. Parameters ---------- filename: str Path to the output file digits: int Number of significant digits in output header_params: dict Arbitrary dict of params to be included in header Returns ------- None """ with open(filename, 'w') as fp: fp.write("# Generated by Allantools {}\n".format( allantools.__version__)) fp.write("# Input data type: {}\n".format(self.inp["data_type"])) fp.write("# Input data rate: {}\n".format(self.inp["rate"])) for key, val in header_params.items(): fp.write("# {}: {}\n".format(key, val)) # Fields fp.write(("{af:>5s} {tau:>{width}s} {n:>10s} {alpha:>5s} " "{minsigma:>{width}} " "{sigma:>{width}} " "{maxsigma:>{width}} " "\n").format( af="AF", tau="Tau", n="N", alpha="alpha", minsigma="min_" + self.out["stat_id"], sigma=self.out["stat_id"], maxsigma="max_" + self.out["stat_id"], width=digits + 5 ) ) out_fmt = ("{af:5d} {tau:.{prec}e} {n:10d} {alpha:5s} " "{minsigma:.{prec}e} " "{sigma:.{prec}e} " "{maxsigma:.{prec}e} " "\n") for i in range(len(self.out["taus"])): fp.write(out_fmt.format( af=int(self.out["taus"][i] / self.out["taus"][0]), tau=self.out["taus"][i], n=int(self.out["stat_n"][i]), alpha="NaN", # Not implemented yet minsigma=self.out["stat"][i] - self.out["stat_err"][i]/2, sigma=self.out["stat"][i], maxsigma=(self.out["stat"][i] + self.out["stat_err"][i]/2), prec=digits-1, ))
AllanTools
/AllanTools-2019.9.tar.gz/AllanTools-2019.9/allantools/dataset.py
dataset.py
class Plot(object): """ A class for plotting data once computed by Allantools :Example: :: import allantools import numpy as np a = allantools.Dataset(data=np.random.rand(1000)) a.compute("mdev") b = allantools.Plot() b.plot(a) b.show() Uses matplotlib. self.fig and self.ax stores the return values of matplotlib.pyplot.subplots(). plot() sets various defaults, but you can change them by using standard matplotlib method on self.fig and self.ax """ def __init__(self, no_display=False): """ set ``no_display`` to ``True`` when we don't have an X-window (e.g. for tests) """ try: import matplotlib if no_display: matplotlib.use('Agg') import matplotlib.pyplot as plt self.plt = plt except ImportError: raise RuntimeError("Matplotlib is required for plotting") self.fig, self.ax = plt.subplots() self.ax.set_xscale("log") self.ax.set_yscale("log") def plot(self, atDataset, errorbars=False, grid=False, **kwargs ): """ Use matplotlib methods for plotting Additional keywords arguments are passed to :py:func:`matplotlib.pyplot.plot`. Parameters ---------- atDataset : allantools.Dataset() a dataset with computed data errorbars : boolean Plot errorbars. Defaults to False grid : boolean Plot grid. Defaults to False """ if errorbars: self.ax.errorbar(atDataset.out["taus"], atDataset.out["stat"], yerr=atDataset.out["stat_err"], **kwargs ) else: self.ax.plot(atDataset.out["taus"], atDataset.out["stat"], **kwargs ) self.ax.set_xlabel("Tau") self.ax.set_ylabel(atDataset.out["stat_id"]) self.ax.grid(grid, which="minor", ls="-", color='0.65') self.ax.grid(grid, which="major", ls="-", color='0.25') def show(self): """Calls matplotlib.pyplot.show() Keeping this separated from ``plot()`` allows to tweak display before rendering """ self.plt.show() def save(self, f): """Save figure to file """ self.plt.savefig(f)
AllanTools
/AllanTools-2019.9.tar.gz/AllanTools-2019.9/allantools/plot.py
plot.py
import numpy class dev_realtime(object): """ Base-class for real-time statistics """ def __init__(self, afs=[1], tau0=1.0, auto_afs=False, pts_per_decade=4): self.x = [] # phase time-series self.afs = afs # averaging factor, tau = af*tau0 self.auto_afs = auto_afs self.af_taus = numpy.logspace(0, 1, pts_per_decade+1)[:-1] # will fail at >=6 (?), need to remove duplicates? self.af_idx = 0 # logspace index, to keep track of afs in auto-af mode self.af_decade = 0 # logspace decade if auto_afs: self.afs = numpy.array([1]) self.dev = numpy.zeros(len(afs)) # resulting xDEV self.tau0 = tau0 # time-interval between points def update_af(self): """ used in auto-AF mode, - check if we can add another AF - if yes, add it. """ next_idx = self.af_idx+1 next_decade = self.af_decade if next_idx == len(self.af_taus): next_idx = 0 next_decade = self.af_decade + 1 next_af = int(numpy.round(pow(10.0, next_decade) * self.af_taus[next_idx])) # next possible AF if len(self.x) >= (2*next_af+1): # can compute next AF self.afs = numpy.append(self.afs, next_af) # new AF self.add_af() # tell subclass to update internal variables #self.S = numpy.append(self.S, 0) # new S, FIXME: S defined in subclass! self.dev = numpy.append(self.dev, 0) # new dev self.af_idx = next_idx self.af_decade = next_decade else: pass #print "no new AF " def add_frequency(self, f): """ add new frequency point, in units of Hz """ if not self.x: # empty sequence self.add_phase(0) # initialize self.add_phase(self.x[-1] + f) # integration def taus(self): """ return taus, in unit of seconds """ return self.tau0*numpy.array(self.afs) def add_af(self): pass # define in subclass! def devs(self): """ return deviation """ return self.dev class oadev_realtime(dev_realtime): """ Overlapping Allan deviation in real-time from a stream of phase/frequency samples. Dobrogowski & Kasznia https://doi.org/10.1109/FREQ.2007.4319204 """ def __init__(self, afs=[1], tau0=1.0, auto_afs=False, pts_per_decade=4): super(oadev_realtime, self).__init__(afs=afs, tau0=tau0, auto_afs=auto_afs, pts_per_decade=pts_per_decade) self.S = numpy.zeros(len(afs)) # sum-of-squares def add_phase(self, xnew): """ add new phase point, in units of seconds """ self.x.append(xnew) for idx, af in enumerate(self.afs): if len(self.x) >= (2*af+1): self.update_S(idx) if self.auto_afs: self.update_af() def update_S(self, idx): """ update S, sum-of-squares """ af = self.afs[idx] i = len(self.x)-1 # last pt S_new = pow(self.x[i] - 2*self.x[i-af] + self.x[i-2*af], 2) self.S[idx] = self.S[idx] + S_new self.dev[idx] = numpy.sqrt((1.0/(2*pow(af*self.tau0, 2)*(i+1-2*af))) * self.S[idx]) def add_af(self): self.S = numpy.append(self.S, 0) class ohdev_realtime(dev_realtime): """ Overlapping Hadamard deviation in real-time from a stream of phase/frequency samples. [Dobrogowski2007]_ Dobrogowski & Kasznia https://doi.org/10.1109/FREQ.2007.4319204 """ def __init__(self, afs=[1], tau0=1.0, auto_afs=False, pts_per_decade=4): super(ohdev_realtime, self).__init__(afs=afs, tau0=tau0, auto_afs=auto_afs, pts_per_decade=pts_per_decade) self.S = numpy.zeros(len(afs)) # sum-of-squares def add_af(self): self.S = numpy.append(self.S, 0) def add_phase(self, xnew): """ add new phase point """ self.x.append(xnew) for idx, af in enumerate(self.afs): if len(self.x) > 3*af: self.update_S(idx) if self.auto_afs: self.update_af() def update_S(self, idx): """ update S, sum-of-squares """ af = self.afs[idx] i = len(self.x)-1 # last pt #print i,self.x S_new = pow(self.x[i] - 3*self.x[i-af] + 3*self.x[i-2*af] - self.x[i-3*af], 2) self.S[idx] = self.S[idx] + S_new self.dev[idx] = numpy.sqrt((1.0/(6.0*pow(af*self.tau0, 2)*(i+1.0-3*af))) * self.S[idx]) class tdev_realtime(dev_realtime): """ Time deviation and Modified Allan deviation in real-time from a stream of phase/frequency samples. Dobrogowski & Kasznia https://doi.org/10.1109/FREQ.2007.4319204 """ def __init__(self, afs=[1], tau0=1.0, auto_afs=False, pts_per_decade=4): super(tdev_realtime, self).__init__(afs=afs, tau0=tau0, auto_afs=auto_afs, pts_per_decade=pts_per_decade) self.S = numpy.zeros(len(afs)) # sum-of-squares self.So = numpy.zeros(len(afs)) # overall sum-of-squares def add_phase(self, xnew): """ add new phase point """ self.x.append(xnew) for idx, af in enumerate(self.afs): if len(self.x) >= 3*af+1: # 3n+1 samples measured self.update_S(idx) elif len(self.x) >= 2*af+1: # 2n+1 samples measured self.update_S3n(idx) if self.auto_afs: self.update_af() def add_af(self): self.S = numpy.append(self.S, 0) self.So = numpy.append(self.So, 0) def update_S3n(self, idx): """ eqn (13) of paper """ af = self.afs[idx] j = len(self.x)-1 # last pt self.S[idx] = self.S[idx] + self.x[j] - 2*self.x[j-af] + self.x[j-2*af] if len(self.x) == 3*af: # last call to this fctn self.So[idx] = pow(self.S[idx], 2) self.update_dev(idx) def update_dev(self, idx): # Eqn (14) num_pts = len(self.x) af = self.afs[idx] self.dev[idx] = numpy.sqrt((1.0/6.0)*(1.0/(num_pts-3*af+1.0))*(1.0/pow(af, 2))*(self.So[idx])) def update_S(self, idx): """ update S, sum-of-squares """ af = self.afs[idx] assert(len(self.x) >= 3*af+1) i = len(self.x)-1 # last pt # Eqn (12) S_new = -1*self.x[i-3*af] + 3*self.x[i-2*af] - 3*self.x[i-af] + self.x[i] self.S[idx] = self.S[idx] + S_new # Eqn (11) self.So[idx] = self.So[idx] + pow(self.S[idx], 2) #??? S_(i-1) in paper for TDEV-sqrt? self.update_dev(idx) def mdev(self): """ scale tdev to output mdev """ mdev = self.dev.copy() for idx, af in enumerate(self.afs): mdev[idx] = mdev[idx]*numpy.sqrt(3)/(af*self.tau0) return mdev # end of file realtime.py
AllanTools
/AllanTools-2019.9.tar.gz/AllanTools-2019.9/allantools/realtime.py
realtime.py
import numpy as np class Noise(object): """ Generate discrete colored noise Python / Numpy implementation of: Kasdin, N.J., Walter, T., "Discrete simulation of power law noise [for oscillator stability evaluation]," Frequency Control Symposium, 1992. 46th., Proceedings of the 1992 IEEE, pp.274,283, 27-29 May 1992 http://dx.doi.org/10.1109/FREQ.1992.270003 :Example: :: import numpy as np noise = allantools.Noise(nr=2*8, qd=1.0e-20, b=-1) noise.generateNoise() print noise.time_series """ def __init__(self, nr=2, qd=1, b=0): """ Initialize object with input data Parameters ------- nr: integer length of generated time-series must be power of two qd: float discrete variance b: float noise type: 0 : White Phase Modulation (WPM) -1 : Flicker Phase Modulation (FPM) -2 : White Frequency Modulation (WFM) -3 : Flicker Frequency Modulation (FFM) -4 : Random Walk Frequency Modulation (RWFM) Returns ------- Noise() A Noise() instance """ self.nr = nr self.qd = qd self.b = b self.time_series = np.array([]) def set_input(self, nr=2, qd=1, b=0): """ Set inputs after initialization Parameters ------- nr: integer length of generated time-series number must be power of two qd: float discrete variance b: float noise type: 0 : White Phase Modulation (WPM) -1 : Flicker Phase Modulation (FPM) -2 : White Frequency Modulation (WFM) -3 : Flicker Frequency Modulation (FFM) -4 : Random Walk Frequency Modulation (RWFM) """ self.nr = nr self.qd = qd self.b = b def generateNoise(self): """ Generate noise time series based on input parameters Returns ------- time_series: np.array Time series with colored noise. len(time_series) == nr """ # Fill wfb array with white noise based on given discrete variance wfb = np.zeros(self.nr*2) wfb[:self.nr] = np.random.normal(0, np.sqrt(self.qd), self.nr) # Generate the hfb coefficients based on the noise type mhb = -self.b/2.0 hfb = np.zeros(self.nr*2) hfb = np.zeros(self.nr*2) hfb[0] = 1.0 indices = np.arange(self.nr-1) hfb[1:self.nr] = (mhb+indices)/(indices+1.0) hfb[:self.nr] = np.multiply.accumulate(hfb[:self.nr]) # Perform discrete Fourier transform of wfb and hfb time series wfb_fft = np.fft.rfft(wfb) hfb_fft = np.fft.rfft(hfb) # Perform inverse Fourier transform of the product of wfb and hfb FFTs time_series = np.fft.irfft(wfb_fft*hfb_fft)[:self.nr] self.time_series = time_series def phase_psd_from_qd(self, tau0=1.0): """ return phase power spectral density coefficient g_b for noise-type defined by (qd, b, tau0) where tau0 is the interval between data points Colored noise generated with (qd, b, tau0) parameters will show a phase power spectral density of S_x(f) = Phase_PSD(f) = g_b * f^b Kasdin & Walter eqn (39) """ return self.qd*2.0*pow(2.0*np.pi, self.b)*pow(tau0, self.b+1.0) def frequency_psd_from_qd(self, tau0=1.0): """ return frequency power spectral density coefficient h_a for the noise type defined by (qd, b, tau0) Colored noise generated with (qd, b, tau0) parameters will show a frequency power spectral density of S_y(f) = Frequency_PSD(f) = h_a * f^a where the slope a comes from the phase PSD slope b: a = b + 2 Kasdin & Walter eqn (39) """ a = self.b + 2.0 return self.qd*2.0*pow(2.0*np.pi, a)*pow(tau0, a-1.0) def adev(self, tau0, tau): """ return predicted ADEV of noise-type at given tau """ prefactor = self.adev_from_qd(tau0=tau0, tau=tau) c = self.c_avar() avar = pow(prefactor, 2)*pow(tau, c) return np.sqrt(avar) def mdev(self, tau0, tau): """ return predicted MDEV of noise-type at given tau """ prefactor = self.mdev_from_qd(tau0=tau0, tau=tau) c = self.c_mvar() mvar = pow(prefactor, 2)*pow(tau, c) return np.sqrt(mvar) def c_avar(self): """ return tau exponent "c" for noise type. AVAR = prefactor * h_a * tau^c """ if self.b == -4: return 1.0 elif self.b == -3: return 0.0 elif self.b == -2: return -1.0 elif self.b == -1: return -2.0 elif self.b == 0: return -2.0 def c_mvar(self): """ return tau exponent "c" for noise type. MVAR = prefactor * h_a * tau^c """ if self.b == -4: return 1.0 elif self.b == -3: return 0.0 elif self.b == -2: return -1.0 elif self.b == -1: return -2.0 elif self.b == 0: return -3.0 def adev_from_qd(self, tau0=1.0, tau=1.0): """ prefactor for Allan deviation for noise type defined by (qd, b, tau0) Colored noise generated with (qd, b, tau0) parameters will show an Allan variance of: AVAR = prefactor * h_a * tau^c where a = b + 2 is the slope of the frequency PSD. and h_a is the frequency PSD prefactor S_y(f) = h_a * f^a The relation between a, b, c is: a b c(AVAR) c(MVAR) ----------------------- -2 -4 1 1 -1 -3 0 0 0 -2 -1 -1 +1 -1 -2 -2 +2 0 -2 -3 Coefficients from: S. T. Dawkins, J. J. McFerran and A. N. Luiten, "Considerations on the measurement of the stability of oscillators with frequency counters," in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 54, no. 5, pp. 918-925, May 2007. doi: 10.1109/TUFFC.2007.337 """ g_b = self.phase_psd_from_qd(tau0) f_h = 0.5/tau0 if self.b == 0: coeff = 3.0*f_h / (4.0*pow(np.pi, 2)) # E, White PM, tau^-1 elif self.b == -1: coeff = (1.038+3*np.log(2.0*np.pi*f_h*tau))/(4.0*pow(np.pi, 2))# D, Flicker PM, tau^-1 elif self.b == -2: coeff = 0.5 # C, white FM, 1/sqrt(tau) elif self.b == -3: coeff = 2*np.log(2) # B, flicker FM, constant ADEV elif self.b == -4: coeff = 2.0*pow(np.pi, 2)/3.0 # A, RW FM, sqrt(tau) return np.sqrt(coeff*g_b*pow(2.0*np.pi, 2)) def mdev_from_qd(self, tau0=1.0, tau=1.0): # FIXME: tau is unused here - can we remove it? """ prefactor for Modified Allan deviation for noise type defined by (qd, b, tau0) Colored noise generated with (qd, b, tau0) parameters will show an Modified Allan variance of: MVAR = prefactor * h_a * tau^c where a = b + 2 is the slope of the frequency PSD. and h_a is the frequency PSD prefactor S_y(f) = h_a * f^a The relation between a, b, c is: a b c(AVAR) c(MVAR) ----------------------- -2 -4 1 1 -1 -3 0 0 0 -2 -1 -1 +1 -1 -2 -2 +2 0 -2 -3 Coefficients from: S. T. Dawkins, J. J. McFerran and A. N. Luiten, "Considerations on the measurement of the stability of oscillators with frequency counters," in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 54, no. 5, pp. 918-925, May 2007. doi: 10.1109/TUFFC.2007.337 """ g_b = self.phase_psd_from_qd(tau0) #f_h = 0.5/tau0 #unused!? if self.b == 0: coeff = 3.0/(8.0*pow(np.pi, 2)) # E, White PM, tau^-{3/2} elif self.b == -1: coeff = (24.0*np.log(2)-9.0*np.log(3))/8.0/pow(np.pi, 2) # D, Flicker PM, tau^-1 elif self.b == -2: coeff = 0.25 # C, white FM, 1/sqrt(tau) elif self.b == -3: coeff = 2.0*np.log(3.0*pow(3.0, 11.0/16.0)/4.0) # B, flicker FM, constant MDEV elif self.b == -4: coeff = 11.0/20.0*pow(np.pi, 2) # A, RW FM, sqrt(tau) return np.sqrt(coeff*g_b*pow(2.0*np.pi, 2)) # end of file noise_kasdin.py
AllanTools
/AllanTools-2019.9.tar.gz/AllanTools-2019.9/allantools/noise_kasdin.py
noise_kasdin.py
import numpy as np import scipy.stats # used in confidence_intervals() import scipy.signal # decimation in lag-1 acf ######################################################################## # Confidence Intervals ONE_SIGMA_CI = scipy.special.erf(1/np.sqrt(2)) # = 0.68268949213708585 def confidence_interval(dev, edf, ci=ONE_SIGMA_CI): """ returns confidence interval (dev_min, dev_max) for a given deviation dev, equivalent degrees of freedom edf, and degree of confidence ci. Parameters ---------- dev: float Mean value (e.g. adev) around which we produce the confidence interval edf: float Equivalent degrees of freedon ci: float, defaults to scipy.special.erf(1/math.sqrt(2)) for 1-sigma standard error set ci = scipy.special.erf(1/math.sqrt(2)) = 0.68268949213708585 Returns ------- (dev_min, dev_max): (float, float) Confidence interval """ ci_l = min(np.abs(ci), np.abs((ci-1))) / 2 ci_h = 1 - ci_l # function from scipy, works OK, but scipy is large and slow to build chi2_l = scipy.stats.chi2.ppf(ci_l, edf) chi2_h = scipy.stats.chi2.ppf(ci_h, edf) variance = dev*dev var_l = float(edf) * variance / chi2_h # NIST SP1065 eqn (45) var_h = float(edf) * variance / chi2_l return (np.sqrt(var_l), np.sqrt(var_h)) def confidence_interval_noiseID(x, dev, af, dev_type="adev", data_type="phase", ci=ONE_SIGMA_CI): """ returns confidence interval (dev_min, dev_max) for a given deviation dev = Xdev( x, tau = af*(1/rate) ) steps: 1) identify noise type 2) compute EDF 3) compute confidence interval Parameters ---------- x: numpy.array time-series dev: float Mean value (e.g. adev) around which we produce the confidence interval af: int averaging factor dev_type: string adev, oadev, mdev, tdev, hdev, ohdev data_type: "phase" or "freq" ci: float, defaults to scipy.special.erf(1/math.sqrt(2)) for 1-sigma standard error set ci = scipy.special.erf(1/math.sqrt(2)) = 0.68268949213708585 Returns ------- (dev_min, dev_max): (float, float) Confidence interval """ # 1) noise ID dmax = 2 if (dev_type is "hdev") or (dev_type is "ohdev"): dmax = 3 alpha_int = autocorr_noise_id(x, int(af), data_type=data_type, dmin=0, dmax=dmax)[0] # 2) EDF if dev_type is "adev": edf = edf_greenhall(alpha=alpha_int, d=2, m=af, N=len(x), overlapping=False, modified=False) elif dev_type is "oadev": edf = edf_greenhall(alpha=alpha_int, d=2, m=af, N=len(x), overlapping=True, modified=False) elif (dev_type is "mdev") or (dev_type is "tdev"): edf = edf_greenhall(alpha=alpha_int, d=2, m=af, N=len(x), overlapping=True, modified=True) elif dev_type is "hdev": edf = edf_greenhall(alpha=alpha_int, d=3, m=af, N=len(x), overlapping=False, modified=False) elif dev_type is "ohdev": edf = edf_greenhall(alpha=alpha_int, d=3, m=af, N=len(x), overlapping=True, modified=False) else: raise NotImplementedError # 3) confidence interval (low, high) = confidence_interval(dev, edf, ci) return (low, high) ######################################################################## # Noise Identification using R(n) def rn(x, af, rate): """ R(n) ratio for noise identification ratio of MVAR to AVAR """ (taus, devs, errs, ns) = at.adev(x, taus=[af*rate], data_type='phase', rate=rate) oadev_x = devs[0] (mtaus, mdevs, errs, ns) = at.mdev(x, taus=[af*rate], data_type='phase', rate=rate) mdev_x = mdevs[0] return pow(mdev_x/oadev_x, 2) def rn_theory(af, b): """ R(n) ratio expected from theory for given noise type alpha = b + 2 """ # From IEEE1139-2008 # alpha beta ADEV_mu MDEV_mu Rn_mu # -2 -4 1 1 0 Random Walk FM # -1 -3 0 0 0 Flicker FM # 0 -2 -1 -1 0 White FM # 1 -1 -2 -2 0 Flicker PM # 2 0 -2 -3 -1 White PM # (a=-3 flicker walk FM) # (a=-4 random run FM) if b == 0: return pow(af, -1) elif b == -1: # f_h = 0.5/tau0 (assumed!) # af = tau/tau0 # so f_h*tau = 0.5/tau0 * af*tau0 = 0.5*af avar = (1.038+3*np.log(2*np.pi*0.5*af)) / (4.0*pow(np.pi, 2)) mvar = 3*np.log(256.0/27.0)/(8.0*pow(np.pi, 2)) return mvar/avar else: return pow(af, 0) def rn_boundary(af, b_hi): """ R(n) ratio boundary for selecting between [b_hi-1, b_hi] alpha = b + 2 """ return np.sqrt(rn_theory(af, b)*rn_theory(af, b-1)) # geometric mean ######################################################################## # Noise Identification using B1 def b1(x, af, rate): """ B1 ratio for noise identification (and bias correction?) ratio of Standard Variace to AVAR Howe, Beard, Greenhall, Riley, A TOTAL ESTIMATOR OF THE HADAMARD FUNCTION USED FOR GPS OPERATIONS 32nd PTTI, 2000 https://apps.dtic.mil/dtic/tr/fulltext/u2/a484835.pdf Barnes, 1974 https://tf.nist.gov/general/pdf/11.pdf """ (taus, devs, errs, ns) = adev(x, taus=[af*rate], data_type="phase", rate=rate) oadev_x = devs[0] avar = pow(oadev_x, 2.0) # variance of y, at given af y = np.diff(x) y_cut = np.array(y[:len(y)-(len(y)%af)]) # cut to length assert len(y_cut)%af == 0 y_shaped = y_cut.reshape((int(len(y_cut)/af), af)) y_averaged = np.average(y_shaped, axis=1) # average var = np.var(y_averaged, ddof=1) return var/avar def b1_theory(N, mu): """ Expected B1 ratio for given time-series length N and exponent mu FIXME: add reference (paper & link) The exponents are defined as S_y(f) = h_a f^alpha (power spectrum of y) S_x(f) = g_b f^b (power spectrum of x) bias = const * tau^mu and (b, alpha, mu) relate to eachother by: b alpha mu 0 +2 -2 -1 +1 -2 resolve between -2 cases with R(n) -2 0 -1 -3 -1 0 -4 -2 +1 -5 -3 +2 -6 -4 +3 for HDEV, by applying B1 to frequency data, and add +2 to resulting mu """ # see Table 3 of Howe 2000 if mu == 2: return float(N)*(float(N)+1.0)/6.0 elif mu == 1: return float(N)/2.0 elif mu == 0: return N*np.log(N)/(2.0*(N-1.0)*np.log(2)) elif mu == -1: return 1 elif mu == -2: return (pow(N, 2)-1.0)/(1.5*N*(N-1.0)) else: up = N*(1.0-pow(N, mu)) down = 2*(N-1.0)*(1-pow(2.0, mu)) return up/down assert False # we should never get here def b1_boundary(b_hi, N): """ B1 ratio boundary for selecting between [b_hi-1, b_hi] alpha = b + 2 """ b_lo = b_hi-1 b1_lo = b1_theory(N, b_to_mu(b_lo)) b1_hi = b1_theory(N, b_to_mu(b_hi)) if b1_lo >= -4: return np.sqrt(b1_lo*b1_hi) # geometric mean else: return 0.5*(b1_lo+b1_hi) # arithemtic mean def b_to_mu(b): """ return mu, parameter needed for B1 ratio function b1() alpha = b + 2 """ a = b + 2 if a == +2: return -2 elif a == +1: return -2 elif a == 0: return -1 elif a == -1: return 0 elif a == -2: return 1 elif a == -3: return 2 elif a == -4: return 3 assert False ######################################################################## # Noise Identification using ACF def lag1_acf(x, detrend_deg=1): """ Lag-1 autocorrelation function as defined in Riley 2004, Eqn (2) used by autocorr_noise_id() Parameters ---------- x: numpy.array time-series Returns ------- ACF: float Lag-1 autocorrelation for input time-series x Notes ----- * a faster algorithm based on FFT might be better!? * numpy.corrcoeff() gives similar but not identical results. #c = np.corrcoef( np.array(x[:-lag]), np.array(x[lag:]) ) #r1 = c[0,1] # lag-1 autocorrelation of x """ mu = np.mean(x) a = 0 b = 0 for n in range(len(x)-1): a = a + (x[n]-mu)*(x[n+1]-mu) #for n in range(len(x)): for xn in x: b = b+pow(xn-mu, 2) return a/b def autocorr_noise_id(x, af, data_type="phase", dmin=0, dmax=2): """ Lag-1 autocorrelation based noise identification Parameters ---------- x: numpy.array phase or fractional frequency time-series data minimum recommended length is len(x)>30 roughly. af: int averaging factor data_type: string {'phase', 'freq'} "phase" for phase data in seconds "freq" for fractional frequency data dmin: int minimum required number of differentiations in the algorithm dmax: int maximum number of differentiations defaults to 2 for ADEV set to 3 for HDEV Returns ------- alpha_int: int noise-slope as integer alpha: float noise-slope as float d: int number of differentiations of the time-series performed Notes ----- http://www.stable32.com/Auto.pdf http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.503.9864&rep=rep1&type=pdf Power law noise identification using the lag 1 autocorrelation Riley,W.J. et al. 18th European Frequency and Time Forum (EFTF 2004) https://ieeexplore.ieee.org/document/5075021 """ d = 0 # number of differentiations lag = 1 if data_type is "phase": if af > 1: #x = scipy.signal.decimate(x, af, n=1, ftype='fir') x = x[0:len(x):af] # decimate by averaging factor x = detrend(x, deg=2) # remove quadratic trend (frequency offset and drift) elif data_type is "freq": # average by averaging factor y_cut = np.array(x[:len(x)-(len(x)%af)]) # cut to length assert len(y_cut)%af == 0 y_shaped = y_cut.reshape((int(len(y_cut)/af), af)) x = np.average(y_shaped, axis=1) # average x = detrend(x, deg=1) # remove frequency drift # require minimum length for time-series if len(x) < 30: print("autocorr_noise_id() Don't know how to do noise-ID for time-series length= %d"%len(x)) raise NotImplementedError while True: r1 = lag1_acf(x) rho = r1/(1.0+r1) if d >= dmin and (rho < 0.25 or d >= dmax): p = -2*(rho+d) #print r1 #assert r1 < 0 #assert r1 > -1.0/2.0 phase_add2 = 0 if data_type is "phase": phase_add2 = 2 alpha = p+phase_add2 alpha_int = int(-1.0*np.round(2*rho) - 2.0*d) + phase_add2 #print "d=",d,"alpha=",p+2 return alpha_int, alpha, d, rho else: x = np.diff(x) d = d + 1 assert False # we should not get here ever. def detrend(x, deg=1): """ remove polynomial from data. used by autocorr_noise_id() Parameters ---------- x: numpy.array time-series deg: int degree of polynomial to remove from x Returns ------- x_detrended: numpy.array detrended time-series """ t = range(len(x)) p = np.polyfit(t, x, deg) residual = x - np.polyval(p, t) return residual ######################################################################## # Equivalent Degrees of Freedom def edf_greenhall_simple(alpha, d, m, S, F, N): """ Eqn (13) from Greenhall2004 """ L = m/F+m*d # length of filter applied to phase samples M = 1 + np.floor(S*(N-L) / m) J = min(M, (d+1)*S) inv_edf = (1.0/(pow(greenhall_sz(0, F, alpha, d), 2)*M))* \ greenhall_BasicSum(J, M, S, F, alpha, d) return 1.0/inv_edf def edf_greenhall(alpha, d, m, N, overlapping=False, modified=False, verbose=False): """ returns Equivalent degrees of freedom Parameters ---------- alpha: int noise type, +2...-4 d: int 1 first-difference variance 2 Allan variance 3 Hadamard variance require alpha+2*d>1 m: int averaging factor tau = m*tau0 = m*(1/rate) N: int number of phase observations (length of time-series) overlapping: bool True for oadev, ohdev modified: bool True for mdev, tdev Returns ------- edf: float Equivalent degrees of freedom Greenhall, Riley, 2004 https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20050061319.pdf UNCERTAINTY OF STABILITY VARIANCES BASED ON FINITE DIFFERENCES Notes ----- Used for the following deviations (see http://www.wriley.com/CI2.pdf page 8) adev() oadev() mdev() tdev() hdev() ohdev() """ if modified: F = 1 # F filter factor, 1 modified variance, m unmodified variance else: F = int(m) if overlapping: # S stride factor, 1 nonoverlapped estimator, S = int(m) # m overlapped estimator (estimator stride = tau/S ) else: S = 1 assert(alpha+2*d > 1.0) L = m/F+m*d # length of filter applied to phase samples M = 1 + np.floor(S*(N-L) / m) J = min(M, (d+1)*S) J_max = 100 r = M/S if int(F) == 1 and modified: # case 1, modified variances, all alpha if J <= J_max: inv_edf = (1.0/(pow(greenhall_sz(0, 1, alpha, d), 2)*M))* \ greenhall_BasicSum(J, M, S, 1, alpha, d) if verbose: print("case 1.1 edf= %3f" % float(1.0/inv_edf)) return 1.0/inv_edf elif r > d+1: (a0, a1) = greenhall_table1(alpha, d) inv_edf = (1.0/r)*(a0-a1/r) if verbose: print("case 1.2 edf= %3f" % float(1.0/inv_edf)) return 1.0/inv_edf else: m_prime = J_max/r inv_edf = (1.0/(pow(greenhall_sz(0, F, alpha, d), 2)*J_max))* \ greenhall_BasicSum(J_max, J_max, m_prime, 1, alpha, d) if verbose: print("case 1.3 edf= %3f" % float(1.0/inv_edf)) return 1.0/inv_edf elif int(F) == int(m) and int(alpha) <= 0 and not modified: # case 2, unmodified variances, alpha <= 0 if J <= J_max: if m*(d+1) <= J_max: m_prime = m variant = "a" else: m_prime = float('inf') variant = "b" inv_edf = (1.0/(pow(greenhall_sz(0, m_prime, alpha, d), 2)*M))* \ greenhall_BasicSum(J, M, S, m_prime, alpha, d) if verbose: print("case 2.1%s edf= %3f" % (variant, float(1.0/inv_edf))) return 1.0/inv_edf elif r > d+1: (a0, a1) = greenhall_table2(alpha, d) inv_edf = (1.0/r)*(a0-a1/r) if verbose: print("case 2.2 edf= %3f" % float(1.0/inv_edf)) return 1.0/inv_edf else: m_prime = J_max/r inv_edf = (1.0/(pow(greenhall_sz(0, float('inf'), alpha, d), 2)*J_max))* \ greenhall_BasicSum(J_max, J_max, m_prime, float('inf'), alpha, d) if verbose: print("case 2.3 edf= %3f" % float(1.0/inv_edf)) return 1.0/inv_edf elif int(F) == int(m) and int(alpha) == 1 and not modified: # case 3, unmodified variances, alpha=1 if J <= J_max: inv_edf = (1.0/(pow(greenhall_sz(0, m, 1, d), 2)*M))* \ greenhall_BasicSum(J, M, S, m, 1, d) # note: m<1e6 to avoid roundoff if verbose: print("case 3.1 edf= %3f" % float(1.0/inv_edf)) return 1.0/inv_edf elif r > d+1: (a0, a1) = greenhall_table2(alpha, d) (b0, b1) = greenhall_table3(alpha, d) inv_edf = (1.0/(pow(b0+b1*np.log(m), 2)*r))*(a0-a1/r) if verbose: print("case 3.2 edf= %3f" % float(1.0/inv_edf)) return 1.0/inv_edf else: m_prime = J_max/r (b0, b1) = greenhall_table3(alpha, d) inv_edf = (1.0/(pow(b0+b1*np.log(m), 2)*J_max))* \ greenhall_BasicSum(J_max, J_max, m_prime, m_prime, 1, d) if verbose: print("case 3.3 edf= %3f" % float(1.0/inv_edf)) return 1.0/inv_edf elif int(F) == int(m) and int(alpha) == 2 and not modified: # case 4, unmodified variances, alpha=2 K = np.ceil(r) if K <= d: raise NotImplementedError # FIXME: add formula from the paper here! else: a0 = scipy.special.binom(4*d, 2*d) / pow(scipy.special.binom(2*d, d), 2) a1 = d/2.0 inv_edf = (1.0/M)*(a0-a1/r) if verbose: print("case 4.2 edf= %3f" % float(1.0/inv_edf)) return 1.0/inv_edf print("greenhall_edf() no matching case!") raise NotImplementedError #assert(0) # ERROR def greenhall_BasicSum(J, M, S, F, alpha, d): """ Eqn (10) from Greenhall2004 """ first = pow(greenhall_sz(0, F, alpha, d), 2) second = (1-float(J)/float(M))*pow(greenhall_sz(float(J)/float(S), F, alpha, d), 2) third = 0 for j in range(1, int(J)): third += 2*(1.0-float(j)/float(M))*pow(greenhall_sz(float(j)/float(S), F, alpha, d), 2) return first+second+third def greenhall_sz(t, F, alpha, d): """ Eqn (9) from Greenhall2004 """ if d == 1: a = 2*greenhall_sx(t, F, alpha) b = greenhall_sx(t-1.0, F, alpha) c = greenhall_sx(t+1.0, F, alpha) return a-b-c elif d == 2: a = 6*greenhall_sx(t, F, alpha) b = 4*greenhall_sx(t-1.0, F, alpha) c = 4*greenhall_sx(t+1.0, F, alpha) dd = greenhall_sx(t-2.0, F, alpha) e = greenhall_sx(t+2.0, F, alpha) return a-b-c+dd+e elif d == 3: a = 20.0*greenhall_sx(t, F, alpha) b = 15.0*greenhall_sx(t-1.0, F, alpha) c = 15.0*greenhall_sx(t+1.0, F, alpha) dd = 6.0*greenhall_sx(t-2.0, F, alpha) e = 6.0*greenhall_sx(t+2.0, F, alpha) f = greenhall_sx(t-3.0, F, alpha) g = greenhall_sx(t+3.0, F, alpha) return a-b-c+dd+e-f-g assert(0) # ERROR def greenhall_sx(t, F, alpha): """ Eqn (8) from Greenhall2004 """ if F == float('inf'): return greenhall_sw(t, alpha+2) a = 2*greenhall_sw(t, alpha) b = greenhall_sw(t-1.0/float(F), alpha) c = greenhall_sw(t+1.0/float(F), alpha) return pow(F, 2)*(a-b-c) def greenhall_sw(t, alpha): """ Eqn (7) from Greenhall2004 """ alpha = int(alpha) if alpha == 2: return -np.abs(t) elif alpha == 1: if t == 0: return 0 else: return pow(t, 2)*np.log(np.abs(t)) elif alpha == 0: return np.abs(pow(t, 3)) elif alpha == -1: if t == 0: return 0 else: return pow(t, 4)*np.log(np.abs(t)) elif alpha == -2: return np.abs(pow(t, 5)) elif alpha == -3: if t == 0: return 0 else: return pow(t, 6)*np.log(np.abs(t)) elif alpha == -4: return np.abs(pow(t, 7)) assert(0) # ERROR def greenhall_table3(alpha, d): """ Table 3 from Greenhall 2004 """ assert(alpha == 1) idx = d-1 table3 = [(6.0, 4.0), (15.23, 12.0), (47.8, 40.0)] return table3[idx] def greenhall_table2(alpha, d): """ Table 2 from Greenhall 2004 """ row_idx = int(-alpha+2) # map 2-> row0 and -4-> row6 assert(row_idx in [0, 1, 2, 3, 4, 5]) col_idx = int(d-1) table2 = [[(3.0/2.0, 1.0/2.0), (35.0/18.0, 1.0), (231.0/100.0, 3.0/2.0)], # alpha=+2 [(78.6, 25.2), (790.0, 410.0), (9950.0, 6520.0)], [(2.0/3.0, 1.0/6.0), (2.0/3.0, 1.0/3.0), (7.0/9.0, 1.0/2.0)], # alpha=0 [(-1, -1), (0.852, 0.375), (0.997, 0.617)], # -1 [(-1, -1), (1.079, 0.368), (1.033, 0.607)], #-2 [(-1, -1), (-1, -1), (1.053, 0.553)], #-3 [(-1, -1), (-1, -1), (1.302, 0.535)], # alpha=-4 ] #print("table2 = ", table2[row_idx][col_idx]) return table2[row_idx][col_idx] def greenhall_table1(alpha, d): """ Table 1 from Greenhall 2004 """ row_idx = int(-alpha+2) # map 2-> row0 and -4-> row6 col_idx = int(d-1) table1 = [[(2.0/3.0, 1.0/3.0), (7.0/9.0, 1.0/2.0), (22.0/25.0, 2.0/3.0)], # alpha=+2 [(0.840, 0.345), (0.997, 0.616), (1.141, 0.843)], [(1.079, 0.368), (1.033, 0.607), (1.184, 0.848)], [(-1, -1), (1.048, 0.534), (1.180, 0.816)], # -1 [(-1, -1), (1.302, 0.535), (1.175, 0.777)], #-2 [(-1, -1), (-1, -1), (1.194, 0.703)], #-3 [(-1, -1), (-1, -1), (1.489, 0.702)], # alpha=-4 ] #print("table1 = ", table1[row_idx][col_idx]) return table1[row_idx][col_idx] def edf_totdev(N, m, alpha): """ Equivalent degrees of freedom for Total Deviation FIXME: what is the right behavior for alpha outside 0,-1,-2? NIST SP1065 page 41, Table 7 """ alpha = int(alpha) if alpha in [0, -1, -2]: # alpha 0 WFM # alpha -1 FFM # alpha -2 RWFM NIST_SP1065_table7 = [(1.50, 0.0), (1.17, 0.22), (0.93, 0.36)] (b, c) = NIST_SP1065_table7[int(abs(alpha))] return b*(float(N)/float(m))-c # alpha outside 0, -1, -2: return edf_simple(N, m, alpha) def edf_mtotdev(N, m, alpha): """ Equivalent degrees of freedom for Modified Total Deviation NIST SP1065 page 41, Table 8 """ assert(alpha in [2, 1, 0, -1, -2]) NIST_SP1065_table8 = [(1.90, 2.1), (1.20, 1.40), (1.10, 1.2), (0.85, 0.50), (0.75, 0.31)] #(b, c) = NIST_SP1065_table8[ abs(alpha-2) ] (b, c) = NIST_SP1065_table8[abs(alpha-2)] edf = b*(float(N)/float(m))-c print("mtotdev b,c= ", (b, c), " edf=", edf) return edf def edf_simple(N, m, alpha): """Equivalent degrees of freedom. Simple approximate formulae. Parameters ---------- N : int the number of phase samples m : int averaging factor, tau = m * tau0 alpha: int exponent of f for the frequency PSD: 'wp' returns white phase noise. alpha=+2 'wf' returns white frequency noise. alpha= 0 'fp' returns flicker phase noise. alpha=+1 'ff' returns flicker frequency noise. alpha=-1 'rf' returns random walk frequency noise. alpha=-2 If the input is not recognized, it defaults to idealized, uncorrelated noise with (N-1) degrees of freedom. Notes ----- S. Stein, Frequency and Time - Their Measurement and Characterization. Precision Frequency Control Vol 2, 1985, pp 191-416. http://tf.boulder.nist.gov/general/pdf/666.pdf Returns ------- edf : float Equivalent degrees of freedom """ N = float(N) m = float(m) if alpha in [2, 1, 0, -1, -2]: # NIST SP 1065, Table 5 if alpha == +2: edf = (N + 1) * (N - 2*m) / (2 * (N - m)) if alpha == 0: edf = (((3 * (N - 1) / (2 * m)) - (2 * (N - 2) / N)) * ((4*pow(m, 2)) / ((4*pow(m, 2)) + 5))) if alpha == 1: a = (N - 1)/(2 * m) b = (2 * m + 1) * (N - 1) / 4 edf = np.exp(np.sqrt(np.log(a) * np.log(b))) if alpha == -1: if m == 1: edf = 2 * (N - 2) /(2.3 * N - 4.9) if m >= 2: edf = 5 * N**2 / (4 * m * (N + (3 * m))) if alpha == -2: a = (N - 2) / (m * (N - 3)**2) b = (N - 1)**2 c = 3 * m * (N - 1) d = 4 * m **2 edf = a * (b - c + d) else: edf = (N - 1) print("Noise type not recognized. Defaulting to N - 1 degrees of freedom.") return edf ######################################################################## # end of ci.py
AllanTools
/AllanTools-2019.9.tar.gz/AllanTools-2019.9/allantools/ci.py
ci.py
__all__ = [ '__version__', 'adev', 'oadev', 'mdev', 'hdev', 'ohdev', 'calc_hdev_phase', 'tdev', 'totdev', 'mtotdev', 'calc_mtotdev_phase', 'ttotdev', 'htotdev', 'calc_htotdev_freq', 'theo1', 'mtie', 'mtie_phase_fast', 'tierms', 'frequency2phase', 'phase2frequency', 'phase2radians', 'frequency2fractional', 'three_cornered_hat_phase', 'noise', 'gradev', 'trim_data', 'edf_simple', 'edf_greenhall', 'edf_totdev', 'edf_mtotdev', 'confidence_interval', 'confidence_interval_noiseID', 'autocorr_noise_id', 'uncertainty_estimate', 'Dataset', 'Noise', 'Plot' ] from .allantools import __version__ from .allantools import frequency2phase from .allantools import phase2frequency from .allantools import phase2radians from .allantools import frequency2fractional from .allantools import three_cornered_hat_phase from .allantools import adev from .allantools import oadev from .allantools import mdev from .allantools import hdev from .allantools import ohdev from .allantools import calc_hdev_phase from .allantools import tdev from .allantools import totdev from .allantools import ttotdev from .allantools import mtotdev from .allantools import calc_mtotdev_phase from .allantools import htotdev from .allantools import calc_htotdev_freq from .allantools import theo1 from .allantools import mtie from .allantools import mtie_phase_fast from .allantools import tierms from .allantools import gradev from .allantools import trim_data # ci.py contains functions for confidence intervals from .ci import edf_simple from .ci import edf_greenhall from .ci import edf_totdev from .ci import edf_mtotdev from .ci import confidence_interval from .ci import autocorr_noise_id from .ci import confidence_interval_noiseID # noise generation from . import noise from .dataset import Dataset from .plot import Plot from .noise_kasdin import Noise # realtime statistics from .realtime import oadev_realtime from .realtime import ohdev_realtime from .realtime import tdev_realtime # end of file __init__.py
AllanTools
/AllanTools-2019.9.tar.gz/AllanTools-2019.9/allantools/__init__.py
__init__.py
.. contents:: Introduction ============ Let's say that you want to access a slow streaming site to see something (obviously: something not protected by copyright). The streaming site use URLs in that format: http://legal-streaming-site.org/program-name/season5/episode4/ Every page contains some HTML code like the following:: .... <div id="video-container"> ... <embed src="http://someotherurl.org/qwerty.flv" ... ... <div> ... Let say this is the URL for the episode 4 of the fifth season of your program. You know that this program has 6 seasons with 22 episode each. As said before: this site is very slow so you prefer downloading episodes in background then watch them later. To download them you need to watch the HTML inside the page and get some resources (commonly: and FLV file). The best would be download *all* episode in a single (long running) operation instead of manually doing it. **Allanon** will help you exactly in such tasks. You simply need to provide it: * a simple URL or a *dynamic URL pattern* * a *query selector* for resources inside the page Quick example (you can keep it single lined):: $ allanon --search="#movie-container embed" \ > "http://legal-streaming-site.org/program-name/season{1:6}/episode{1:22}" Documentation ============= Installation ------------ You can use `distribute`__ or `pip`__ to install the utility in your Python environment. __ http://pypi.python.org/pypi/distribute __ http://pypi.python.org/pypi/pip :: $ easy_install Allanon or alternately:: $ pip install Allanon Invocation ---------- After installing you will be able to run the ``allanon`` script from command line. For example: run the following for access the utility help:: $ allanon --help Basic usage (you probably don't need Allanon at all for this) ------------------------------------------------------------- The ``allanon`` script accept an URL (or a list of URLs) to be downloaded:: $ allanon http://myhost/folder/image1.jpg http://myhost/folder/image2.jpg ... Every command line URL given to Allanon can be a simple URL or an *URL model* like the following:: $ allanon "http://myhost/folder/image{1:50}.jpg" This will crawl 50 different URLs automatically. Main usage (things became interesting now) ------------------------------------------ The ``allanon`` script take an additional ``--search`` parameter (see the first example given above). When you provide it, you are meaning: "*I don't want to download those URLs directly, but those URLs contain links to file that I really want*". The search parameter format must be CSS 3 compatible, like the one supported the famous `jQuery library`__, and it's based onto the `pyquery`__ library. See it's documentation for more details about what you can look for. __ http://api.jquery.com/category/selectors/ __ http://packages.python.org/pyquery/ Extreme usage ------------- The ``--search`` parameter can be provided multiple times:: $ allanon --search="ul.image-repos a" \ > --search="div.image-containers img" \ > "http://image-repository-sites.org/category{1:30}.html" When you provide (for example) two different search parameters, you are meaning: "*I don't want to download resources at given URLs. Those URLs contain links to secondary pages, and inside those pages there're links to resources I want to download*" Filters are applied in the given order, so: * Allanon will search inside 30 pages named *category1.html*, *category2.html*, ... * inside those pages, Allanon will look for all links inside ``ul`` tags with CSS class *image-repos* and recursively crawl them. * inside those pages, Allanon will looks for images inside ``div`` with class *image-containers*. * images will be downloaded. Potentially you can continue this way, providing a third level of filters, and so on. Naming and storing downloaded resources --------------------------------------- By default Allanon download all files in the current directory so a filename conflict is possible. You can control how/where download, changing dynamically the filename using the ``--filename`` option and/or change the directory where to store files with the ``--directory`` option. An example:: $ allanon --filename="%HOST-%INDEX-section%1-version%3-%FULLNAME" \ > "http://foo.org/pdf-repo-{1:10}/file{1:50}.pdf?version={0:3}" As you seen ``--filename`` accept some *markers* that can be used to better organize resources: ``%HOST`` Will be replaced with the hostname used in the URL. ``%INDEX`` Is a progressive from 1 to the number of downloaded resources. ``%X`` When using dynamic URLs models you can refer to the current number of an URL section. In this case "%1" is the current "pdf-repo-*x*" number and "%3" is the "version" parameter value. ``%FULLNAME`` The original filename (the one used if ``--filename`` is not provided). You can also use the ``%NAME`` and ``%EXTENSION`` to get only the name of the file (without extension) or simply the extension. The ``--directory`` option can be a simple directory name or a directory path (in unix-like format, for example "``foo/bar/baz``"). An example:: $ allanon --directory="/home/keul/%HOST/%1" \ > "http://foo.org/pdf-repo-{1:10}/file{1:50}.pdf" \ > "http://baz.net/pdf-repo-{1:10}/file{1:50}.pdf" Also the ``--directory`` option supports some of the markers: you can use ``%HOST``, ``%INDEX`` and ``%X`` with the same meaning given above. TODO ==== This utility is in alpha stage, a lot of thing can goes wrong when downloading and many features are missing: * verbosity controls * bandwidth control * multi-thread (let's look at `grequests`__) * Python 3 __ https://github.com/kennethreitz/grequests If you find other bugs or want to ask for missing features, use the `product's issue tracker`__. __ https://github.com/keul/Allanon/issues
Allanon
/Allanon-0.2.zip/Allanon-0.2/README.rst
README.rst
import sys import os.path import time from optparse import OptionParser, OptionGroup from allanon import config from allanon.url_generator import get_dynamic_urls from allanon.url_generator import search_resources from allanon.resouce_grabber import ResourceGrabber VERSION = open(os.path.join(os.path.dirname(os.path.abspath(__file__)), "version.txt")).read().strip() DESCRIPTION = """ Crawl a replicable set of URLs, then download resources from them. URLs can be composed by a variable range(s) like: http://foo.org/{1:10}/page?section={1:4} This will make this utility to crawl through a set of URLs like this: http://foo.org/1/page?section=1 http://foo.org/1/page?section=2 ... http://foo.org/2/page?section=1 ... http://foo.org/10/page?section=4 """.strip() parser = OptionParser(usage="Usage: %prog [option, ...] url_model [url_model, ...]", version="%prog " + VERSION, description=DESCRIPTION, prog="allanon") parser.remove_option("--help") parser.add_option('--help', '-h', action="store_true", default=False, help='show this help message and exit') parser.add_option('--search', '-s', dest="search_queries", default=[], action="append", metavar="QUERY", help="Query for other URLs inside every argument URLs and download them instead " "of the URL itself.\n" "See the pyquery documentation for more info about the query " "format (http://packages.python.org/pyquery/).\n" "Can be provided multiple times to recursively search for links to " "pages until resources are found (last search filter must always " "points to the final resource to download).") parser.add_option('--directory', '-d', dest="destination_directory", default=os.getcwd(), metavar="TARGET_DIR", help="Directory where to store all resources that will be downloaded.\n" "Default is the current directory.\n" "Can be also a directory path string in nix format (like \"foo/bar\"), " "in that case all intermediate directories will be created.\n" "You can use some markers for creating a dynamic name.\n" "Use %x (%1, %2, ...) to include the current URLs range " "(if any). Use %1 for the first range in the URL, %2 for " "the second, and so on.\n" "Use %HOST for include the original host where the resource has " "been downloaded.\n" "Use %INDEX for include a progressive number of downloaded resources.\n" ) parser.add_option('--filename', '-f', dest="filename_model", default=None, metavar="FILENAME", help="Download resources with a custom, dynamic, filename.\n" "You can use some markers for creating a dynamic name.\n" "Use %x (%1, %2, ...) to include the current URLs range " "(if any). Use %1 for the first range in the URL, %2 for " "the second, and so on.\n" "Use %HOST for include the original host where the resource has " "been downloaded.\n" "Use %INDEX for include a progressive number of downloaded resources.\n" "Use %NAME for include the original filename (without extension).\n" "Use %EXTENSION for include the original file extensions.\n" "Use %FULLNAME for include the original filename (with extension).\n" "Default is \"%FULLNAME\"") parser.add_option("--check-duplicate", '-c', action="store_true", dest="duplicate_check", default=False, help="When finding a duplicate filename check they are duplicates. " "In this case, do not save the new file. Default action is to keep all " "resources handling filename collision, without checking files content.") group = OptionGroup(parser, "Request options", "This set of options control how Allanon connect to remote servers." ) group.add_option('--user-agent', '-u', dest="user_agent", default=None, metavar="USER_AGENT", help="Change the User-Agent header sent with every request.\n" "Default is \"Allanon Crawler %s\"." % VERSION) group.add_option('--timeout', '-t', dest="timeout", default=60.0, type="float", help="Number of seconds to wait for server response before giving up.\n" "Default is 60. Use 0 for disable timeout.") group.add_option('--sleep-time', dest="sleep", default=1.0, type="float", help="Number of seconds to wait after each downloaded resource.\n" "Use this to not overload a server or being banned.\n" "Default is 1.") parser.add_option_group(group) def main(options=None, *args): if not options: # invocation from command line options, args = parser.parse_args() if len(args)<1 or options.help: # personal version of the help, to being able to keep \n in description result = ['Allanon: a crawler for visit a predictable set of URLs, ' 'and download resources from them\n'] result.append(parser.get_usage()) result.append(DESCRIPTION+"\n") result.append(parser.format_option_help(parser.formatter)) result.append('By Luca Fabbri - luca<at>keul.it\n') result.append('See https://github.com/keul/Allanon for detailed documentation or ' 'provide bug report.') print "\n".join(result) sys.exit(0) if options.user_agent: config.USER_AGENT = options.user_agent if options.timeout: config.TIMEOUT = options.timeout if options.sleep: config.SLEEP_TIME = options.sleep # first, command line URLs sequence try: urls = get_dynamic_urls(args) index_digit_len = 0 # optimization: we don't need to count all the URLs in that case if options.filename_model and '%INDEX' in options.filename_model: urls = tuple(urls) index_digit_len = len(str(len(urls))) # in case we are not directly downloading, we need to look for inner resources if options.search_queries: urls = search_resources(urls, options.search_queries) for index, urls_data in enumerate(urls): url, ids, max_ids = urls_data rg = ResourceGrabber(url) rg.download(options.destination_directory, options.filename_model, ids, index+1, ids_digit_len=max_ids, index_digit_len=index_digit_len, duplicate_check=options.duplicate_check) time.sleep(options.sleep) except KeyboardInterrupt: print "\nTerminated by user action" sys.exit(1) if __name__ == '__main__': main()
Allanon
/Allanon-0.2.zip/Allanon-0.2/src/allanon/main.py
main.py
import re import hashlib import tempfile import sys import os.path import traceback import urllib from shutil import copyfile from urlparse import urlparse import requests from progress.bar import Bar from progress.spinner import PieSpinner from allanon import config from allanon.html_crawler import search_in_html CONTENT_DISPOSITION_MODEL = r"""^.*filename\s*="?\s*(?P<filename>.*?)"?;?$""" cdre = re.compile(CONTENT_DISPOSITION_MODEL, re.IGNORECASE) DYNA_ID_MODEL = r"""(\%\d+)""" dynaid_re = re.compile(DYNA_ID_MODEL) EXTENSION_MODEL = r"""^(?P<name>.+?)(?P<index>_\d+)?(?P<extension>\.[a-zA-Z]{2,4})?$""" def _int_format(i, ilen): if not ilen: return str(i) return ("%%0%dd" % ilen) % i def _try_new_filename(filename): """ Getting a filename in the form foo_X.ext where X, it generate a new filename as foo_Y.ext, where Y is X+1 In the case that _X is missing (like foo.ext), Y=1 i used Extension is optional """ match = re.match(EXTENSION_MODEL, filename) if match: name, version, extension = match.groups() if version: version = "_%d" % (int(version[1:])+1) else: version = "_1" filename = name + version + (extension if extension else '') return filename class ResourceGrabber(object): def __init__(self, url): self.url = url self.url_info = urlparse(url) self.request = None self.timeout = config.TIMEOUT @property def html(self): self._open() return self.request.text if self.request else None def _open(self): if self.request is None: print "Getting %s" % self.url try: self.request = requests.get(self.url, headers=config.headers(), stream=True, timeout=self.timeout) except requests.exceptions.Timeout: print "Can't get resource at %s. Request timed out" % self.url return if self.request.status_code>=200 and self.request.status_code<300: print "Done" else: print "Can't get resource at %s. HTTP error %d" % (self.url, self.request.status_code) def _get_filename(self, filename_model=None, ids=[], index=0, ids_digit_len=0, index_digit_len=0): content_disposition = self.request.headers.get('content-disposition', '') filename_re = cdre.match(content_disposition) filename = "" if filename_re: filename = filename_re.groupdict().get('filename') else: path = self.url_info.path if path and path!='/': if path.endswith('/'): path = path[:-1] filename = path.split('/')[-1] else: # let's use hostname filename = self.url_info.hostname filename = urllib.unquote(filename) if filename_model: filename = self._generate_filename_from_model(filename, filename_model=filename_model, ids=ids, index=index, ids_digit_len=ids_digit_len, index_digit_len=index_digit_len) return filename def _string_interpolation(self, model, ids=[], index=0, ids_digit_len=[], index_digit_len=0): # replace %x with proper ids cnt = 0 while dynaid_re.search(model): match = dynaid_re.search(model) dynaid = match.group() model = model.replace(dynaid, _int_format(ids[cnt], ids_digit_len[cnt]), 1) cnt+=1 # replace %INDEX with the progressive if model.find("%INDEX")>-1: model = model.replace("%INDEX", _int_format(index, index_digit_len)) # replace %HOST with current host if model.find("%HOST")>-1: model = model.replace("%HOST", self.url_info.hostname) return model def _generate_filename_from_model(self, original, filename_model, ids=[], index=0, ids_digit_len=[], index_digit_len=0): filename = self._string_interpolation(filename_model, ids, index, ids_digit_len, index_digit_len) # *** Other interpolation (only file's specific) *** # replace %NAME with original filename if filename.find("%NAME")>-1: filename = filename.replace("%NAME", original[:original.rfind('.')]) # replace %EXTENSION with original extension if filename.find("%EXTENSION")>-1: filename = filename.replace("%EXTENSION", original[original.rfind('.')+1:]) # replace %EXTENSION with original extension if filename.find("%FULLNAME")>-1: filename = filename.replace("%FULLNAME", original) return filename def _create_subdirs(self, directory, ids=[], index=0, ids_digit_len=[], index_digit_len=0): """Given a directory name, or a directory path string in nix format (e.g: foo/bar), create all intermediate directories. Return the new (existing) final directory absolute path """ directory = self._string_interpolation(directory, ids, index, ids_digit_len, index_digit_len) if not os.path.exists(directory): os.makedirs(directory) return directory def _get_resource_content(self, file_out, filename): """Save data stored in the current request object in a file""" content_length = self.request.headers.get('content-length', '') size = int(content_length) if content_length else 0 if size: progress = Bar("Getting %s" % filename, fill='#', suffix='%(percent)d%%', max=size) else: progress = PieSpinner("Getting %s " % filename) try: for chunk in self.request.iter_content(config.CHUNK_SIZE): file_out.write(chunk) progress.next(config.CHUNK_SIZE if size else 1) except: print "Error while getting %s" % self.url traceback.print_exc(file=sys.stdout) return None finally: progress.finish() return file_out.name def download(self, directory, filename_model=None, ids=[], index=0, ids_digit_len=[], index_digit_len=0, duplicate_check=False): """Download a remote resource. Return the new path or None if no resource has been created""" self._open() if not self.request: return directory = self._create_subdirs(directory, ids=ids, index=index, ids_digit_len=ids_digit_len, index_digit_len=index_digit_len) filename = self._get_filename(filename_model=filename_model, ids=ids, index=index, ids_digit_len=ids_digit_len, index_digit_len=index_digit_len) path = os.path.join(directory, filename) cache = None if duplicate_check and os.path.exists(path): # Before trying to find a free filename, check is this file is a duplicate with open(path, 'rb') as saved: md5_saved = hashlib.md5(saved.read()).digest() with tempfile.NamedTemporaryFile(delete=False) as tmp: cache = self._get_resource_content(tmp, filename) tmp.seek(0) md5_remote = hashlib.md5(tmp.read()).digest() if md5_saved==md5_remote: # same file print "Resource at %s is a duplicate of %s" % (self.url, path) return while os.path.exists(path): # continue trying until we get a good filename filename = _try_new_filename(filename) path = os.path.join(directory, filename) if self.request.status_code>=200 and self.request.status_code<300: if cache: # re-use file in temp directory, used for md5 checksum copyfile(cache, path) os.remove(cache) else: with open(path, 'wb') as f: print "Writing resource to %s" % path self._get_resource_content(f, filename) return path def download_resources(self, query, directory, filename_model=None, ids=[], index=0, ids_digit_len=[], index_digit_len=0, duplicate_check=False): self._open() if not self.request: return resources = search_in_html(self.html, query, self.url) for url in resources: rg = ResourceGrabber(url) rg.download(directory, filename_model=filename_model, ids=ids, index=index, ids_digit_len=ids_digit_len, index_digit_len=ids_digit_len, duplicate_check=duplicate_check) def get_internal_links(self, *args, **kwargs): self._open() if not self.request: return level = kwargs.get('level', 0) if self.request.status_code >=200 and self.request.status_code<300: links = search_in_html(self.html, args[level], self.url) for link in links: rg = ResourceGrabber(link) if len(args)>level+1: for inner_link in rg.get_internal_links(*args, level=level+1): yield inner_link else: yield link
Allanon
/Allanon-0.2.zip/Allanon-0.2/src/allanon/resouce_grabber.py
resouce_grabber.py
import re from allanon.resouce_grabber import ResourceGrabber SPREAD_MODEL = r"""\{(?P<start>\d+)\:(?P<end>\d+)\}""" spre = re.compile(SPREAD_MODEL) def generate_urls(url, level=0): """ Using a string (commonly an URL) that contains a range section like this: foo {n:m} bar This will iterate through a set of results like those: foo n bar foo n+1 bar foo n+2 bar ... foo m bar This will also work when n>m: foo n bar foo n-1 bar foo n-2 bar ... foo m bar The range section can be used also multiple times: foo {n:m} bar {x:y} baz This will generate: foo n bar x baz foo n bar x+1 baz ... foo n bar y baz foo n+1 bar x baz ... foo m bar y baz """ match = spre.search(url) if match: start, end = match.groups() start = int(start); end = int(end) step = start<=end and 1 or -1 for x in xrange(start, end+step, step): ids = [x] max_ids = [len(str(max(start, end+step)))] new_url = spre.sub(str(x), url, 1) if new_url.find("{")==-1: yield new_url, ids, max_ids for y, inner_ids, inner_max_ids in generate_urls(new_url, level+1): yield y, ids + inner_ids, max_ids + inner_max_ids elif level==0: # first attempt doesn't match: then I'll return original URL yield url, [], [] def get_dynamic_urls(raw_urls, outer_ids=[], outer_max_ids=[]): for raw_url in raw_urls: for url, ids, max_ids in generate_urls(raw_url): ids = ids or outer_ids max_ids = max_ids or outer_max_ids yield url, ids, max_ids def search_resources(urls, search_queries): for generated_url in urls: url, ids, max_ids = generated_url rg = ResourceGrabber(url) inner_urls = rg.get_internal_links(*search_queries) for url in inner_urls: yield url, ids, max_ids
Allanon
/Allanon-0.2.zip/Allanon-0.2/src/allanon/url_generator.py
url_generator.py
Allegra - Copyright (C) 2006 Laurent A.V. Szyster | Copyleft GPL 2.0 Allegra is an innovative library for web peer applications development. It provides a Python framework for asynchronous network peer programming, a simple stack of Internet standards implementations, and two new network applications: a new metabase peer and a practical web peer. http://laurentszyster.be/blog/allegra/ REQUIREMENTS You need CPython 2.4 to run Allegra. If you don't, get it first. INSTALL Extract this archive and change directory to the extracted root cd allegra Then install Allegra's library python setup.py install
Allegra
/Allegra-0.63.zip/Allegra-0.63/README.txt
README.txt
"http://laurentszyster.be/blog/finalization/" from allegra import loginfo, async_loop # Finalize class Finalization (object): finalization = None async_finalized = async_loop._finalized def __del__ (self): if self.finalization != None: self.async_finalized.append (self) def collect (): import gc collected = gc.collect () if collected == 0: return assert None == loginfo.log ('%d' % collected, 'collected') for cycle in gc.garbage: try: cylce.finalization = None except: pass assert None == loginfo.log ('%r' % cycle, 'garbage') # Branch class Branch (Finalization): def __init__ (self, finalizations): self.finalizations = finalizations def __call__ (self, finalized): for finalization in self.finalizations: finalization (finalized) def branch (branched, finalization): try: branched.finalization.finalizations.append (finalization) except: branched.finalization = Branch ([ branched.finalization, finalization ]) # Continue class Continuation (object): finalization = None async_finalized = async_loop._finalized def __call__ (self): pass def __del__ (self): if self.finalization != None: self.async_finalized.append (self) def continuation (finalizations): "combines continuations into one execution path" i = iter (finalizations) first = continued = i.next () try: while True: continued.finalization = i.next () continued = continued.finalization except StopIteration: pass return first, continued class Continue (Continuation): def __init__ (self, finalizations): self.__call__, self.continued = continuation ( finalizations ) # Join # # the equivalent of "thread joining" with finalization does not really need # a specific interface because it is enough to set the "joining" finalized # as the finalization of all "joined" finalized. # # joined.finalization = joining # # how simple ... def join (finalizations, continuation): def finalize (finalized): for joined in finalizations: joined.finalization = continuation return finalize class Join (Continuation): def __init__ (self, finalizations): self.finalizations = finalizations def __call__ (self, finalized): if self.finalizations: # start for joined in self.finalizations: joined.finalization = self self.finalizations = None # # join
Allegra
/Allegra-0.63.zip/Allegra-0.63/lib/finalization.py
finalization.py
"http://laurentszyster.be/blog/thread_loop/" import threading, collections from allegra import netstring, loginfo, finalization, select_trigger class Trunked_deque (object): "a deque implementation to trunk protected deque safely" def __len__ (self): "return 1, a trunked deque has allways one item" return 1 def __getitem__ (self, index): "return None or raise IndexError" if index == 0: return None raise IndexError, 'trunked deque' def append (self, item): "drop any item appended to the deque" pass def popleft (self): "return None, the closing item for a deque consumer" return None pop = popleft appendleft = append class Protected_deque (object): "a thread-safe wrapper for a deque" def __init__ (self, queue=None): self.deque = collections.deque (queue or []) self.mon = threading.RLock () self.cv = threading.Condition (self.mon) def __repr__ (self): "return a safe netstring representation of the deque" r = [] try: self.cv.acquire () l = len (self.deque) for item in self.deque: try: r.append ('%r' % (item,)) except: r.append ( 'item id="%x"' % id (item) ) finally: self.cv.release () return netstring.encode (( 'protected_deque queued="%d"' % l, netstring.encode (r) )) def __len__ (self): "return the queue's length" try: self.cv.acquire () l = len (self.deque) finally: self.cv.release () return l def __getitem__ (self, index): "return the queue's length" try: self.cv.acquire () return self.deque[index] finally: self.cv.release () def append (self, item): "push an item at the end the deque and notify" try: self.cv.acquire () self.deque.append (item) self.cv.notify () finally: self.cv.release () __call__ = append def popleft (self): "wait for a first item in the deque and pop it" try: self.cv.acquire () while len (self.deque) == 0: self.cv.wait () item = self.deque.popleft () finally: self.cv.release () return item def appendleft (self, item): "push an item of items in front of the deque" try: self.cv.acquire () self.deque.appendleft (item) self.cv.notify () finally: self.cv.release () def pop (self): "wait for a last item in the deque and pop it" try: self.cv.acquire () while len (self.deque) == 0: self.cv.wait () item = self.deque.pop () finally: self.cv.release () return item def trunk (self): """Replace the deque with a trunked deque implementation and return the replaced deque instance.""" try: self.cv.acquire () trunked = self.deque self.deque = Trunked_deque () finally: self.cv.release () return trunked # # In effect, trunking implies closing a running thread loop # and dropping any item queued thereafter, which is precisely # The Right Thing To Do when a thread loop queue is stopped: # prevent accessors to push references that won't be popped # out and leak. class Thread_loop (threading.Thread, select_trigger.Select_trigger): "a thread loop, with thread-safe asynchronous logging" def __init__ (self, queue=None): self.thread_loop_queue = queue or Protected_deque () select_trigger.Select_trigger.__init__ (self) threading.Thread.__init__ (self) self.setDaemon (1) def __repr__ (self): return 'thread-loop id="%x"' % id (self) def run (self): """The Thread Loop If thread_loop_init() is True call queued instance until None is popped or and exception is raised and not catched by thread_loop_throw. Finally, if thread_loop_delete() is True, trunk the thread loop queue. """ if self.thread_loop_init (): next = self.thread_loop_queue.popleft # ? maybe safer while True: queued = next () # ... sure faster if queued == None: break try: queued[0] (*queued[1]) except: if self.thread_loop_throw (): del queued break else: del queued # # note that I make sure to delete the tuple which # would otherwise hold a reference to the method and # arguments of the call threaded, preventing garbage # collection hence finalization and was the source # of subtle bugs ... # if self.thread_loop_delete (): trunked = self.thread_loop_queue.trunk () if trunked: assert None == self.select_trigger_log ( netstring.encode ([ '%r' % (i,) for i in trunked ]), 'debug' ) # # ... continue with the Select_trigger.finalization, unless # there are circular references for this instance, caveat! def thread_loop (self, queued): "assert debug log and push a simple callable in the queue" assert None == self.log ('%r %r' % queued, 'queued') self.thread_loop_queue (queued) def thread_loop_stop (self): "assert debug log and push the stop item None in the queue" assert None == self.log ('stop-when-done', 'debug') self.thread_loop_queue (None) def thread_loop_init (self): "return True, assert a debug log of the thread loop start" assert None == self.log ('start', 'debug') return True def thread_loop_throw (self): "return False, log a compact traceback via the select trigger" self.select_trigger_traceback () return False def thread_loop_delete (self): "return True, assert a debug log of the thread loop start" assert None == self.log ('stop', 'debug') return True class Synchronizer (loginfo.Loginfo): def __init__ (self, size=2): self.synchronizer_size = size self.synchronized_thread_loops = [] self.synchronized_instance_count = [] self.synchronized_count = 0 def __repr__ (self): return 'synchronizer pid="%x" count="%d"' % ( id (self), self.synchronized_count ) def synchronizer_append (self): assert None == self.log ( 'append %d' % len (self.synchronized_thread_loops), 'synchronizer' ) t = Thread_loop () t.thread_loop_queue.synchronizer_index = len ( self.synchronized_thread_loops ) self.synchronized_thread_loops.append (t) self.synchronized_instance_count.append (0) t.start () def synchronize (self, instance): assert not hasattr (instance, 'synchronized') if self.synchronized_count == len ( self.synchronized_thread_loops ) < self.synchronizer_size: self.synchronizer_append () index = self.synchronized_instance_count.index ( min (self.synchronized_instance_count) ) t = self.synchronized_thread_loops[index] instance.synchronized = t.thread_loop_queue instance.select_trigger = t.select_trigger self.synchronized_instance_count[index] += 1 self.synchronized_count += 1 assert None == self.log ('%r' % instance, 'synchronized') def desynchronize (self, instance): assert hasattr (instance, 'synchronized') i = instance.synchronized.synchronizer_index count = self.synchronized_instance_count[i] self.synchronized_count += -1 self.synchronized_instance_count[i] += -1 instance.select_trigger = instance.synchronized = None if self.synchronized_count == 0: assert None == self.log ('stop %d threads' % len ( self.synchronized_thread_loops ), 'synchronizer') for t in self.synchronized_thread_loops: t.thread_loop_queue (None) self.synchronized_thread_loops = [] assert None == self.log ('%r' % instance, 'desynchronized') def synchronize (instance): if instance.synchronizer == None: instance.__class__.synchronizer = Synchronizer ( instance.synchronizer_size ) instance.synchronizer.synchronize (instance) def desynchronize (instance): instance.synchronizer.desynchronize (instance) def synchronized (instance): assert isinstance (instance, finalization.Finalization) if instance.synchronizer == None: instance.__class__.synchronizer = Synchronizer ( instance.synchronizer_size ) instance.synchronizer.synchronize (instance) instance.finalization = instance.synchronizer.desynchronize # Notes about the Synchronizer # # The purpose is to but deliver non-blocking interfaces to synchronous API. # # The synchronizer is an resizable array of thread loop queues. Synchronized # instances are attached to one of these queues. When a synchronized instance # is finalized, that reference is released and the array is notified. When no # more instance is attached to a thread loop queue, its thread exits. If the # limit set on the array size is not reached, a new thread loop is created for # each new synchronized instance. The default limit is set to 4. # # This interface is purely asynchronous: methods synchronized should be able # to access the select_trigger to manipulate the Synchronizer, or more # mundanely to push data to asynchat ... # # # Limits # # There is no easy way to prevent an instance to stall its thread loop queue # and all the other instances methods synchronized to it. The only practical # algorithm to detect a stalled method (and "fix" it), is to set a limit on # the size of the synchronized queue and when that limit is reached to replace # the stalled thread loop by a new one. However, this would leave the stalled # thread to hang forever if the stalling method is running amok or blocking # forever too. Setting a timeout on each synchronized method is impossible # since there is no way to infer reliably a maximum execution time, certainly # in such case of concurrent processes. # # Basicaly, there is no practical and effective way to fix a thread broken by # an infinite loop or a stalled-forever wait state. So, this implementation # does not even attempt to correct the effects of such bugs on the other # synchronized instance methods. # # # Beware! # # Synchronized methods must be tested separately. Yet it is trivial, because # you may either test them asynchronously from within an async_loop host or, # since they are synchronous, directly from the Python prompt. # # My advice is to use synchronized method in two cases. Either you don't want # to learn asynchronous programming (don't have time for that). Or you know # how, but need to access a blocking API that happens to be thread safe and # releases the Python GIL. # # For instance: # # os.open (...).read () # # or # # bsddb.db.DB ().open (...) # # may be blocking and should be synchronized.
Allegra
/Allegra-0.63.zip/Allegra-0.63/lib/thread_loop.py
thread_loop.py
# Copyright (C) 2005 Laurent A.V. Szyster # # This library is free software; you can redistribute it and/or modify # it under the terms of version 2 of the GNU General Public License as # published by the Free Software Foundation. # # http://www.gnu.org/copyleft/gpl.html # # This library is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # # You should have received a copy of the GNU General Public License # along with this library; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 # USA "http://laurentszyster.be/blog/async_loop/" import gc, select, errno, time, collections, heapq from allegra import loginfo Exit = KeyboardInterrupt # Poll I/O def _io_select (map, timeout, limit): "poll for I/O a limited number of writable/readable dispatchers" r = [] w = [] concurrent = map.items () rest = limit - len (concurrent) if rest < 0: concurrent = concurrent[:limit] else: rest = 0 for fd, dispatcher in concurrent: if dispatcher.readable (): r.append (fd) if dispatcher.writable (): w.append (fd) if len (r) + len (w) == 0: time.sleep (timeout) return limit - rest, 0 try: r, w, e = select.select (r, w, [], timeout) except select.error, err: if err[0] != errno.EINTR: raise else: return limit - rest, 0 for fd in r: try: dispatcher = map[fd] except KeyError: continue try: dispatcher.handle_read_event () except Exit: raise except: dispatcher.handle_error () for fd in w: try: dispatcher = map[fd] except KeyError: continue try: dispatcher.handle_write_event () except Exit: raise except: dispatcher.handle_error () return limit - rest, len (r) + len (w) # # note that the number of distinct active dispatchers may actually # be lower than the one reported: to get an exact cound would # require to use sets, something like: len (set (r) + set (w)) def _io_poll (map, timeout, limit): "poll for I/O a limited number of writable/readable dispatchers" timeout = int (timeout*1000) pollster = select.poll () R = select.POLLIN | select.POLLPRI W = select.POLLOUT RW = R | W concurrent = map.items () rest = limit - len (concurrent) if rest < 0: concurrent = concurrent[:limit] else: rest = 0 for fd, dispatcher in concurrent: if dispatcher.readable (): if dispatcher.writable (): pollster.register (fd, RW) else: pollster.register (fd, R) elif dispatcher.writable (): pollster.register (fd, W) try: p = pollster.poll (timeout) except select.error, err: if err[0] != errno.EINTR: raise else: for fd, flags in p: try: dispatcher = map[fd] except KeyError: continue try: if flags & R: dispatcher.handle_read_event () if flags & W: dispatcher.handle_write_event () except Exit: raise except: dispatcher.handle_error() return limit - rest, len (p) # select the best I/O poll function available for this system if hasattr (select, 'poll'): _io = _io_poll else: _io = _io_select # Poll Memory (Finalizations, ie: CPython __del__ decoupled) _finalized = collections.deque () def _finalize (): "call all finalizations queued" while True: try: finalized = _finalized.popleft () except IndexError: break try: finalized.finalization = finalized.finalization ( finalized ) # finalize and maybe continue ... except Exit: finalized.finalization = None raise except: finalized.finalization = None loginfo.traceback () # log exception # Poll Time (Scheduled Events) precision = 0.1 _scheduled = [] def _clock (): "call all events scheduled before now, maybe recurr in the future" now = time.time () future = now + precision while _scheduled: # get the next defered ... event = heapq.heappop (_scheduled) if event[0] > now: heapq.heappush (_scheduled, event) break # ... nothing to defer now. try: # ... do defer and ... continued = event[1] (event[0]) except Exit: raise except: loginfo.traceback () else: if continued != None: # ... maybe recurr in the future if continued[0] < future: continued = (future, continued[1]) heapq.heappush (_scheduled, continued) # Poll Signals (Exceptions Handler) _catchers = [] def _catched (): "call async_loop.Exit exception catchers" assert None == loginfo.log ('async_catch', 'debug') if _catchers: for catcher in tuple (_catchers): if catcher (): _catchers.remove (catcher) return True if __debug__: for dispatcher in _dispatched.values (): loginfo.log ( '%r' % dispatcher, 'undispatched' ) for event in _scheduled: loginfo.log ( '%r' % (event, ), 'unscheduled' ) for finalized in _finalized: loginfo.log ( '%r' % (finalized, ), 'unfinalized' ) return False # Application Programming Interfaces def schedule (when, scheduled): "schedule a call to scheduled after when" heapq.heappush (_scheduled, (when, scheduled)) def catch (catcher): "register an catcher for the Exit exception" _catchers.append (catcher) concurrency = 512 _dispatched = {} def dispatch (): "dispatch I/O, time and finalization events" assert None == loginfo.log ('async_dispatch_start', 'debug') while _dispatched or _scheduled or _finalized or gc.collect () > 0: try: _io (_dispatched, precision, concurrency) _clock () _finalize () except Exit: if not _catched (): break except: loginfo.traceback () assert None == loginfo.log ('async_dispatch_stop', 'debug') def io_meter (loop, when=None): "decorate the loop module's I/O poll function with meters, log info" loop._io_when = when or time.time () loop._io_run = 0 loop._io_load = loop._io_concurrency = loop._io_activity = 0.0 def _io_metering (map, timeout, limit): loop._io_run += 1 dispatched = len (loop._dispatched) concurrent, polled = _io (map, timeout, limit) if concurrent > 0: loop._io_activity += float (active) / concurrent concurrent = float (concurrent) loop._io_load += concurrent / limit loop._io_concurrency += concurrent / dispatched loop._io_metered = loop._io loop._io = _io_metering loginfo.log ('io-metered', 'info') def io_meters (loop): "return statistics about a metered I/O loop" return ( loop._io_when, loop._io_run, loop._io_run / (time.time () - loop._io_when), loop._io_load / loop._io_run, loop._io_concurrency / loop._io_run, loop._io_activity / loop._io_run ) def io_unmeter (loop): "log meter statistics and remove the metering decoration" meters = io_meters (loop) loginfo.log ( 'io-unmetered' ' seconds="%f" run="%d"' ' rps="%f" load="%f"' ' concurrency="%f" activity="%f"' % meters, 'info' ) del ( loop._io_when, loop._io_run, loop._io_load, _io_concurrency, loop._io_activity ) loop._io = loop._io_metered return meters
Allegra
/Allegra-0.63.zip/Allegra-0.63/lib/async_loop.py
async_loop.py
"http://laurentszyster.be/blog/async_limits/" import time from allegra import async_loop # Metering for stream and datagram sockets def meter_recv (dispatcher, when): "decorate a stream transport with an input meter" dispatcher.ac_in_meter = 0 dispatcher.ac_in_when = when metered_recv = dispatcher.recv def recv (buffer_size): data = metered_recv (buffer_size) dispatcher.ac_in_meter += len (data) dispatcher.ac_in_when = time.time () return data dispatcher.recv = recv def meter_send (dispatcher, when): "decorate a stream transport with an output meter" dispatcher.ac_out_meter = 0 dispatcher.ac_out_when = when metered_send = dispatcher.send def send (data): sent = metered_send (data) dispatcher.ac_out_meter += sent dispatcher.ac_out_when = time.time () return sent dispatcher.send = send def meter_recvfrom (dispatcher, when): "decorate a datagram transport with an input meter" dispatcher.ac_in_meter = 0 dispatcher.ac_in_when = when metered_recvfrom = dispatcher.recvfrom def recvfrom (datagram_size): data, peer = metered_recvfrom (datagram_size) dispatcher.ac_in_meter += len (data) dispatcher.ac_in_when = time.time () return data, peer dispatcher.recvfrom = recvfrom def meter_sendto (dispatcher, when): "decorate a datagram transport with an output meter" dispatcher.ac_out_meter = 0 dispatcher.ac_out_when = when metered_sendto = dispatcher.sendto def sendto (self): sent = metered_sendto (data, peer) dispatcher.ac_out_meter += sent dispatcher.ac_out_when = time.time () return sent dispatcher.sendto = sendto # Inactivity Limits def inactive_in (dispatcher, when): "overflow if connected, not closing and input is inactive" return not dispatcher.closing and dispatcher.connected and ( when - dispatcher.ac_in_when ) > dispatcher.limit_inactive def inactive_out (dispatcher, when): "overflow if connected, not closing and output is inactive" return not dispatcher.closing and dispatcher.connected and ( when - dispatcher.ac_out_when ) > dispatcher.limit_inactive def inactive (dispatcher, when): "overflow if connected, not closing and I/O is inactive" return not dispatcher.closing and dispatcher.connected and ( when - max ( dispatcher.ac_in_when, dispatcher.ac_out_when ) ) > dispatcher.limit_inactive # Throttling Decorators def throttle_readable (dispatcher, when, Bps): "decorate a metered dispatcher with an input throttle" dispatcher.ac_in_throttle = Bps () dispatcher.ac_in_throttle_when = when dispatcher.ac_in_throttle_Bps = Bps throttled_readable = dispatcher.readable def readable (): return ( dispatcher.ac_in_meter < dispatcher.ac_in_throttle and throttled_readable () ) dispatcher.readable = readable def throttle_writable (dispatcher, when, Bps): "decorate a metered dispatcher with an output throttle" dispatcher.ac_out_throttle = Bps () dispatcher.ac_out_throttle_when = when dispatcher.ac_out_throttle_Bps = Bps throttled_writable = dispatcher.writable def writable (): return ( dispatcher.ac_out_meter < dispatcher.ac_out_throttle and throttled_writable () ) dispatcher.writable = writable # Throttling limits def throttle_in (dispatcher, when): "allocate input bandiwth to a throttled dispatcher" if dispatcher.ac_in_meter >= dispatcher.ac_in_throttle: dispatcher.ac_in_throttle += int (( when - max ( dispatcher.ac_in_when, dispatcher.ac_in_throttle_when ) ) * dispatcher.ac_in_throttle_Bps ()) dispatcher.ac_in_throttle_when = when return False # # when the dispatcher exceeded its limit, allocate bandwith at a given # rate for the period between "when" - approximatively but steadily # "now" - and the last I/O or the last allocation, which ever comes # later. in effect it grants the dispatcher the bandwith it is entitled # to for the immediate past. # # the async_throttle_in method is supposed to be called by a # periodical defered. for peers with long-lived dispatchers it is # faster to periodically allocate bandwith than to do it whenever # we send or receive, or every time we check for readability or # writability. def throttle_out (dispatcher, when): "allocate output bandiwth to a throttled dispatcher" if dispatcher.ac_out_meter >= dispatcher.ac_out_throttle: dispatcher.ac_out_throttle += int (( when - max ( dispatcher.ac_out_when, dispatcher.ac_out_throttle_when ) ) * dispatcher.ac_out_throttle_Bps ()) dispatcher.ac_out_throttle_when = when return False def throttle (dispatcher, when): "allocate I/O bandiwth to a throttled dispatcher" throttle_in (dispatcher, when) throttle_out (dispatcher, when) return False # Limit recurrence factory def limit_schedule (dispatcher, when, interval, limit, unlimit): "instanciate and schedule a limit recurrence" # set the limit flag down dispatcher.limit_stop = False def scheduled (when): if dispatcher.closing or dispatcher.limit_stop: # closing or limit flag raised, remove unlimit (dispatcher) return if limit (dispatcher, when): # limit overflowed, remove and handle close unlimit (dispatcher) dispatcher.handle_close () return # recur at interval return (when + interval, scheduled) async_loop.schedule (when + interval, scheduled) # I like that one (nested namespaces rule ,-) # Conveniences: ready-made metering, inactivity check and throttling def limit_in (dispatcher, when): "overflow if input is inactive, throttle it otherwise" return ( inactive_in (dispatcher, when) or throttle_in (dispatcher, when) ) def limit_out (dispatcher, when): "overflow if output is inactive, throttle it otherwise" return ( inactive_out (dispatcher, when) or throttle_out (dispatcher, when) ) def limit (dispatcher, when): "overflow if I/O are inactive, throttle them otherwise" return ( inactive (dispatcher, when) or throttle (dispatcher, when) ) # for stream transport def limit_recv (dispatcher, interval, timeout, Bps): "meter recv and throttle readable, schedule throttling in" when = time.time () dispatcher.limit_inactive = timeout meter_recv (dispatcher, when) throttle_readable (dispatcher, when, Bps) limit_schedule ( dispatcher, when, interval, limit_in, unlimit_recv ) def unlimit_recv (dispatcher): "unmeter recv and unthrottle readable" del ( dispatcher.recv, dispatcher.readable, dispatcher.ac_in_throttle_Bps ) def limit_send (dispatcher, interval, timeout, Bps): "meter send and throttle writable, schedule throttling out" when = time.time () dispatcher.limit_inactive = timeout meter_send (dispatcher, when) throttle_writable (dispatcher, when, Bps) limit_schedule ( dispatcher, when, interval, limit_out, unlimit_send ) def unlimit_send (dispatcher): "unmeter send and unthrottle writable" del ( dispatcher.send, dispatcher.writable, dispatcher.ac_out_throttle_Bps ) def limit_stream (dispatcher, interval, timeout, inBps, outBps): "meter and throttle stream I/O, schedule throttling" when = time.time () dispatcher.limit_inactive = timeout meter_recv (dispatcher, when) throttle_readable (dispatcher, when, inBps) meter_send (dispatcher, when) throttle_writable (dispatcher, when, inBps) limit_schedule ( dispatcher, when, interval, limit, unlimit_stream ) def unlimit_stream (dispatcher): "unmeter and unthrottle stream I/O" del ( dispatcher.recv, dispatcher.readable, dispatcher.ac_in_throttle_Bps, dispatcher.send, dispatcher.writable, dispatcher.ac_out_throttle_Bps ) # for datagram transport def limit_recvfrom (dispatcher, interval, timeout, Bps): "meter recvfrom and throttle readable, schedule throttling in" when = time.time () dispatcher.limit_inactive = timeout meter_recvfrom (dispatcher, when) throttle_readable (dispatcher, when, Bps) limit_schedule ( dispatcher, when, interval, limit_in, unlimit_recvfrom ) def unlimit_recvfrom (dispatcher): "unmeter recvfrom and unthrottle readable" del ( dispatcher.recvfrom, dispatcher.readable, dispatcher.ac_in_throttle_Bps ) def limit_sendto (dispatcher, interval, timeout, Bps): "meter sendto and throttle writable, schedule throttling out" when = time.time () dispatcher.limit_inactive = timeout meter_sendto (dispatcher, when) throttle_writable (dispatcher, when, Bps) limit_schedule ( dispatcher, when, interval, limit_out, unlimit_sendto ) def unlimit_sendto (dispatcher): "unmeter sendto and unthrottle writable" del ( dispatcher.sendto, dispatcher.writable, dispatcher.ac_out_throttle_Bps ) def limit_datagram (dispatcher, interval, timeout, inBps, outBps): "meter and throttle datagram I/O, schedule throttling" when = time.time () dispatcher.limit_inactive = timeout meter_recvfrom (dispatcher, when) throttle_readable (dispatcher, when, inBps) meter_sendto (dispatcher, when) throttle_writable (dispatcher, when, inBps) limit_schedule ( dispatcher, when, interval, limit, unlimit_datagram ) def unlimit_datagram (dispatcher): "unmeter and unthrottle datagram I/O" del ( dispatcher.recvfrom, dispatcher.readable, dispatcher.ac_in_throttle_Bps, dispatcher.sendto, dispatcher.writable, dispatcher.ac_out_throttle_Bps ) # Note about this implementation # # other kind of limits - like an absolute limit on the maximum i/o or # duration per dispatcher - should be implemented in the final class. # # # The Case for Throttling # # Asynchat allows to save server's resources by limiting the i/o buffers # but for a peer on the edges of the network, the bottleneck is bandwith # not memory. Compare the 16KBps upload limit of a low-end connection with # the 512MB of RAM available in most PCs those days ... it would take nine # hours to upload that much data in such small pipe. # # It is a basic requirement for a peer to throttle its traffic to a fraction # of the bandwith generaly available. Because there *are* other applications # and system functions that need a bit of bandwith, and peer application tend # to exhaust network resources pretty fast. #
Allegra
/Allegra-0.63.zip/Allegra-0.63/lib/async_limits.py
async_limits.py
"http://laurentszyster.be/blog/netstring/" class NetstringsError (Exception): pass def encode (strings): "encode an sequence of 8-bit byte strings as netstrings" return ''.join (['%d:%s,' % (len (s), s) for s in strings]) def decode (buffer): "decode the netstrings found in the buffer, trunk garbage" size = len (buffer) prev = 0 while prev < size: pos = buffer.find (':', prev) if pos < 1: break try: next = pos + int (buffer[prev:pos]) + 1 except: break if next >= size: break if buffer[next] == ',': yield buffer[pos+1:next] else: break prev = next + 1 def validate (buffer, length): "decode the netstrings, but keep garbage and fit to size" size = len (buffer) prev = 0 while prev < size and length: pos = buffer.find (':', prev) if pos < 1: if prev == 0: raise StopIteration # not a netstring! break try: next = pos + int (buffer[prev:pos]) + 1 except: break if next >= size: break if buffer[next] == ',': length -= 1 yield buffer[pos+1:next] else: break prev = next + 1 if length: length -= 1 yield buffer[max (prev, pos+1):] while length: length -= 1 yield '' def outline (encoded, format, indent): "recursively format nested netstrings as a CRLF outline" n = tuple (decode (encoded)) if len (n) > 0: return ''.join ((outline ( e, indent + format, indent ) for e in n)) return format % encoded def netstrings (instance): "encode a tree of instances as nested netstrings" t = type (instance) if t == str: return instance if t in (tuple, list, set, frozenset): return encode ((netstrings (i) for i in instance)) if t == dict: return encode ((netstrings (i) for i in instance.items ())) try: return '%s' % instance except: return '%r' % instance def netlist (encoded): "return a list of strings or [encoded] if no netstrings found" return list (decode (encoded)) or [encoded] def nettree (encoded): "decode the nested encoded strings in a tree of lists" leaves = [nettree (s) for s in decode (encoded)] if len (leaves) > 0: return leaves return encoded def netlines (encoded, format='%s\n', indent=' '): "beautify a netstring as an outline ready to log" n = tuple (decode (encoded)) if len (n) > 0: return format % ''.join ((outline ( e, format, indent ) for e in n)) return format % encoded def netoutline (encoded, indent=''): "recursively format nested netstrings as an outline with length" n = tuple (decode (encoded)) if len (n) > 0: return '%s%d:\n%s%s,\n' % ( indent, len (encoded), ''.join ((netoutline ( e, indent + ' ' ) for e in n)), indent) return '%s%d:%s,\n' % (indent, len (encoded), encoded) def netpipe (more, BUFFER_MAX=0): """A practical netstrings pipe generator Decode the stream of netstrings produced by more (), raise a NetstringsError exception on protocol failure or StopIteration when the producer is exhausted. If specified, the BUFFER_MAX size must be more than twice as big as the largest netstring piped through (although netstrings strictly smaller than BUFFER_MAX may pass through without raising an exception). """ buffer = more () while buffer: pos = buffer.find (':') if pos < 0: raise NetstringsError, '1 not a netstring' try: next = pos + int (buffer[:pos]) + 1 except: raise NetstringsError, '2 not a valid length' if 0 < BUFFER_MAX < next: raise ( NetstringsError, '4 buffer overflow (%d bytes)' % BUFFER_MAX ) while next >= len (buffer): data = more () if data: buffer += data else: raise NetstringsError, '5 end of pipe' if buffer[next] == ',': yield buffer[pos+1:next] else: raise NetstringsError, '3 missing coma' buffer = buffer[next+1:] if buffer == '' or buffer.isdigit (): buffer += more () # # Note also that the first call to more must return at least the # encoded length of the first netstring, which practically is (or # should be) allways the case (for instance, piping in a netstring # sequence from a file will be done by blocks of pages, typically # between 512 and 4096 bytes, maybe more certainly not less). if __name__ == '__main__': import sys assert None == sys.stderr.write ( 'Allegra Netstrings' ' - Copyright 2005 Laurent A.V. Szyster' ' | Copyleft GPL 2.0\n\n' ) if len (sys.argv) > 1: command = sys.argv[1] else: command = 'outline' if command in ('outline', 'decode'): if len (sys.argv) > 2: if len (sys.argv) > 3: try: buffer_max = int (sys.argv[3]) except: sys.stderr.write ( '3 invalid buffer max\n' ) sys.exit (3) else: buffer_max = 0 try: buffer_more = int (sys.argv[2]) except: sys.stderr.write ('2 invalid buffer size\n') sys.exit (2) else: buffer_max = 0 buffer_more = 4096 def more (): return sys.stdin.read (buffer_more) count = 0 try: if command == 'outline': write = sys.stdout.write for n in netpipe (more, buffer_max): write (netlines (n)) count += 1 else: for n in netpipe (more, buffer_max): count += 1 finally: assert None == sys.stderr.write ('%d' % count) elif command == 'encode': write = sys.stdout.write for line in sys.stdin.xreadlines (): write ('%d:%s,' % (len (line)-1, line[:-1])) else: sys.stderr.write ('1 invalid command\n') sys.exit (1) sys.exit (0)
Allegra
/Allegra-0.63.zip/Allegra-0.63/lib/netstring.py
netstring.py
"http://laurentszyster.be/blog/prompt/" import sys, types def compact_traceback (exc_info=None): """return a compact traceback tuple from sys.exc_info(), like: (['error name', ('filename', 'lineno', 'function'), ... ], 'error message') a compact traceback is a simple data structure made of 8-bit byte strings, ready to be serialized.""" t, v, tb = exc_info or sys.exc_info () if type (t) == types.ClassType: t = t.__name__ elif type (t) != str: t = str (t) tbinfo = [] assert tb # Must have a traceback ? while tb: tbinfo.append (( tb.tb_frame.f_code.co_filename, tb.tb_frame.f_code.co_name, str (tb.tb_lineno) )) tb = tb.tb_next del tb # just to be safe ? return t, str (v), tbinfo def python_eval (co, env): """try to eval the compiled co in the environement env return either ('eval', result) or ('excp', traceback)""" try: return ('eval', eval (co, env)) except: return ('excp', compact_traceback ()) def python_exec (co, env): """try to exec the compiled co in the environement env return either ('exec', None) or ('excp', traceback)""" try: exec co in env except: return ('excp', compact_traceback ()) else: return ('exec', None) def python_prompt (line, env): """try eval first, if that fails try exec, return ('eval', result) ('exec', None) or ('excp', traceback)""" try: try: co = compile (line, 'python_line', 'eval') except SyntaxError: co = compile (line, 'python_line', 'exec') method, result = python_exec (co, env) else: method, result = python_eval (co, env) except: return ('excp', compact_traceback ()) else: return (method, result) # Synopsis # # >>> from allegra import prompt # >>> env = {} # >>> prompt.python_prompt ('1+1', env) # ('eval', 2) # >>> prompt.python_prompt ('a=1+1', env) # ('exec', None) # >>> env['a'] # 2 # >>> prompt.python_prompt ('foobar', env) # ('excp', ( # 'exceptions.NameError', # "name 'foobar' is not defined", # [ # ('prompt.py', 'python_eval', '53'), # ('python_line', '?', '0') # ] # )) # >>> try: # ... foobar # ... except: # ... prompt.compact_traceback () # ... # ( # 'exceptions.NameError', # "name 'foobar' is not defined", # [('<stdin>', '?', '2')] # )
Allegra
/Allegra-0.63.zip/Allegra-0.63/lib/prompt.py
prompt.py
"http://laurentszyster.be/blog/producer/" import types class File (object): "producer wrapper for file[-like] objects" def __init__ (self, file, chunk=1<<14): # 16KB buffer self.file = file self.chunk = chunk def more (self): return self.file.read (self.chunk) def producer_stalled (self): return False class Simple (object): "scanning producer for a large string" def __init__ (self, data, chunk=1<<14): # 16KB buffer lb = len (data) self.content_length = lambda: lb self.more = self.produce (data, chunk).next def produce (self, data, chunk): lb = len (data) start = 0 while start < lb: end = start + chunk yield data[start:end] start = end del data, self.content_length, self.more yield '' def producer_stalled (self): return False class Stalled_generator (object): # the simplest stallable generator, a usefull construct for any # generator based producer that is set as a finalization or a # handler of diverse asynchronous or synchronized callback ... def __call__ (self, *args): self.generator = iter (( 'Stalled_generator.__call__ not implemented', )) generator = None def more (self): try: return self.generator.next () except StopIteration: return '' def producer_stalled (self): return self.generator == None class Composite (object): # This is a more "modern" composite producer than the original # one, with support for stalled producers and generators. it is the # bread & butter of Allegra's PRESTo! with the Buffer. def __init__ (self, head, body, glob=1<<14): # 16KB globber assert ( type (head) == types.StringType and type (body) == types.GeneratorType ) self.current = head self.generator = body self.glob = glob def more (self): if self.current == '': return '' buffer = '' limit = self.glob while True: if type (self.current) == str: buffer += self.current try: self.current = self.generator.next () except StopIteration: self.current = '' break if len (buffer) > limit: break elif self.current.producer_stalled (): assert buffer != '' # watch this! break else: data = self.current.more () if data: buffer += data if len (buffer) > limit: break else: continue try: self.current = self.generator.next () except StopIteration: self.current = '' break return buffer def producer_stalled (self): try: return self.current.producer_stalled () except: return False # Note that this class also makes the original Medusa's lines, buffer # and globbing producer redundant. What this class does it to glob # as much strings as possible from a MIME like data structure: # # head = 'string' # body = (generator of 'string' or producer ()) # # It's a practical producer for asynchronous REST responses composed # of simple strings and maybe-stalling producers. The overhead of # another loop buys globbing and helps the peer fill its channel's # buffers more efficiently for TCP/IP. class Tee (object): def __init__ (self, producer): self.index = -1 self.producer = producer try: self.buffers = producer.tee_buffers except AttributeError: self.buffers = producer.tee_buffers = [] def more (self): self.index += 1 try: return self.buffers[self.index] except IndexError: data = self.producer.more () self.buffers.append (data) return data def producer_stalled (self): if self.index + 1 < len (self.buffers): return False return self.producer.producer_stalled ()
Allegra
/Allegra-0.63.zip/Allegra-0.63/lib/producer.py
producer.py
# Copyright (C) 2005 Laurent A.V. Szyster # # This library is free software; you can redistribute it and/or modify # it under the terms of version 2 of the GNU General Public License as # published by the Free Software Foundation. # # http://www.gnu.org/copyleft/gpl.html # # This library is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # # You should have received a copy of the GNU General Public License # along with this library; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 # USA "http://laurentszyster.be/blog/async_chat/" import collections, socket from allegra import async_core def find_prefix_at_end (haystack, needle): "given 'haystack', see if any prefix of 'needle' is at its end." l = len (needle) - 1 while l and not haystack.endswith (needle[:l]): l -= 1 return l def collect_chat (c, buffer): "collect a buffer for a channel or collector" lb = len (buffer) while lb: terminator = c.get_terminator () if terminator is None or terminator == '': c.collect_incoming_data (buffer) buffer = '' elif isinstance (terminator, int): if lb < terminator: c.collect_incoming_data (buffer) buffer = '' c.set_terminator (terminator - lb) else: c.collect_incoming_data (buffer[:terminator]) buffer = buffer[terminator:] c.set_terminator (0) if c.found_terminator (): c.collector_stalled = True break else: tl = len (terminator) index = buffer.find (terminator) if index != -1: if index > 0: c.collect_incoming_data ( buffer[:index] ) buffer = buffer[index+tl:] if c.found_terminator (): c.collector_stalled = True break else: index = find_prefix_at_end ( buffer, terminator ) if index: if index != lb: c.collect_incoming_data ( buffer[:-index] ) buffer = buffer[-index:] break else: c.collect_incoming_data (buffer) buffer = '' lb = len (buffer) return buffer class Dispatcher (async_core.Dispatcher): ac_in_buffer_size = ac_out_buffer_size = 1 << 14 terminator = None collector_stalled = False collector_is_simple = False collector_depth = 32 def __init__ (self): self.ac_in_buffer = '' self.ac_out_buffer = '' self.output_fifo = collections.deque () def __repr__ (self): return 'async-chat id="%x"' % id (self) def readable (self): "predicate for inclusion in the poll loop for input" return not ( self.collector_stalled or len (self.ac_in_buffer) > self.ac_in_buffer_size ) def writable (self): "predicate for inclusion in the poll loop for output" try: return not ( self.output_fifo[ 0 ].producer_stalled () and self.connected ) except: return not ( (self.ac_out_buffer == '') and not self.output_fifo and self.connected ) def handle_read (self): "try to refill the input buffer and collect it" try: data = self.recv (self.ac_in_buffer_size) except socket.error, why: self.handle_error () return self.ac_in_buffer = collect_chat ( self, self.ac_in_buffer + data ) def handle_write (self): "maybe refill the output buffer and try to send it" obs = self.ac_out_buffer_size buffer = self.ac_out_buffer if len (buffer) < obs: fifo = self.output_fifo while fifo: p = fifo[0] if p == None: if buffer == '': fifo.popleft () self.handle_close () return break elif type (p) == str: fifo.popleft () buffer += p if len (buffer) < obs: continue break if p.producer_stalled (): break data = p.more () if data: buffer += data break fifo.popleft () if buffer: sent = self.send (buffer[:obs]) if sent: self.ac_out_buffer = buffer[sent:] else: self.ac_out_buffer = buffer else: self.ac_out_buffer = '' def close (self): "close the dispatcher and maybe terminate the collector" async_core.Dispatcher.close (self) if not self.collector_stalled: depth = self.collector_depth while depth and not self.found_terminator (): depth -= 1 if depth < 1: self.log ( '%d' % self.collector_depth, 'collector-leak' ) def close_when_done (self): """automatically close this channel once the outgoing queue is empty, or handle close now if it is allready empty""" if self.output_fifo: self.output_fifo.append (None) else: self.handle_close () # when done is now! def async_chat_push (self, p): "push a string or producer on the output deque" assert type (p) == str or hasattr (p, 'more') self.output_fifo.append (p) # push_with_producer = push = async_chat_push def async_chat_pull (self): "stall no more and collect the input buffer" self.collector_stalled = False if self.ac_in_buffer: self.ac_in_buffer = collect_chat ( self, self.ac_in_buffer ) def set_terminator (self, terminator): "set the channel's terminator" self.terminator = terminator def get_terminator (self): "get the channel's terminator" return self.terminator def collect_incoming_data (self, data): "assert debug log of collected data" assert None == self.log (data, 'collect-incoming-data') def found_terminator (self): "assert debug log of terminator found" assert None == self.log ( self.get_terminator (), 'found-terminator' ) return True # do not pipeline # Note about this implementation # # This is a refactored version of asynchat.py as found in Python 2.4, and # modified as to support stallable producers and collectors, loginfo and # finalization. # # Stallable Producer and Collector # # In order to support non-blocking asynchronous and synchronized peer, # the async_chat module introduces stallable collector and generalize # the stallable producer of Medusa's proxy. # # Besides the fact that stallable reactors are a requirement for peers # that do not block, they have other practical benefits. For instance, # a channel with an collector_stalled and an empty output_fifo will not # be polled for I/O. # # This implementation use collection.deque for output FIFO queues instead # of a class wrapper, and the push () method actually does what it is # supposed to do and pushes a string at the end that output queue, not a # Simple instance. # # The channel's method collect_incoming_data is called to collect data # between terminators. Its found_terminator method is called whenever # the current terminator is found, and if that method returns True, then # no more buffer will be consumed until the channel's collector_stalled # is not set to False by a call to async_collect.
Allegra
/Allegra-0.63.zip/Allegra-0.63/lib/async_chat.py
async_chat.py
"http://laurentszyster.be/blog/async_core/" import exceptions, sys, os, time, socket, collections from errno import ( EALREADY, EINPROGRESS, EWOULDBLOCK, ECONNRESET, ENOTCONN, ESHUTDOWN, EINTR, EISCONN ) from allegra import loginfo, async_loop, finalization class Dispatcher (loginfo.Loginfo, finalization.Finalization): connected = accepting = closing = False socket = addr = family_and_type = _fileno = None def create_socket (self, family, type): "create a socket and add the dispatcher to the I/O map" self.family_and_type = family, type self.socket = socket.socket (family, type) self.socket.setblocking (0) self._fileno = self.socket.fileno () self.add_channel () def set_connection (self, conn, addr): "set a connected socket and add the dispatcher to the I/O map" conn.setblocking (0) self.socket = conn self.addr = addr self._fileno = conn.fileno () self.add_channel () self.connected = True def set_reuse_addr (self): "try to re-use a server port if possible" try: self.socket.setsockopt ( socket.SOL_SOCKET, socket.SO_REUSEADDR, self.socket.getsockopt ( socket.SOL_SOCKET, socket.SO_REUSEADDR ) | 1 ) except socket.error: pass def listen (self, num): "listen and set the dispatcher's accepting state" self.accepting = True if os.name == 'nt' and num > 5: num = 1 return self.socket.listen (num) def bind (self, addr): "bind to addr and set the dispatcher's addr property" self.addr = addr return self.socket.bind (addr) def connect (self, address): "try to connect and set the dispatcher's connected state" err = self.socket.connect_ex (address) if err in (EINPROGRESS, EALREADY, EWOULDBLOCK): return if err in (0, EISCONN): self.addr = address self.connected = True self.handle_connect () else: raise socket.error, err def accept (self): "try to accept a connection" try: conn, addr = self.socket.accept() return conn, addr except socket.error, why: if why[0] == EWOULDBLOCK: pass else: raise def close (self): "close the socket and remove the dispatcher from the I/O map" try: self.socket.close () except: pass # closing a self.socket = None self.del_channel () self.connected = False self.closing = True # == (self.socket == None) assert None == self.log ('close', 'debug') # The transport API for stream and datagram sockets def send (self, data): "try to send data through a stream socket" try: result = self.socket.send (data) return result except socket.error, why: if why[0] == EWOULDBLOCK: return 0 else: raise return 0 def recv (self, buffer_size): "try to receive bytes from a stream socket or handle close" try: data = self.socket.recv (buffer_size) if not data: # a closed connection is indicated by signaling # a read condition, and having recv() return 0. self.handle_close() return '' else: return data except MemoryError: # according to Sam Rushing, this is a place where # MemoryError tend to be raised by Medusa. the rational # is that under high load, like a DDoS (or the /. # effect :-), recv is the function that will be called # most *and* allocate the more memory. # sys.exit ("Out of Memory!") # do not even try to log! except socket.error, why: # winsock sometimes throws ENOTCONN if why[0] in [ECONNRESET, ENOTCONN, ESHUTDOWN]: self.handle_close() return '' else: raise def sendto (self, data, peer): "try to send data through a datagram socket" try: return self.socket.sendto (data, peer) except socket.error, why: if why[0] == EWOULDBLOCK: return 0 else: raise return 0 def recvfrom (self, datagram_size): "try to receive from a datagram socket, maybe handle close" try: return self.socket.recvfrom (datagram_size) except socket.error, why: if why[0] in [ECONNRESET, ENOTCONN, ESHUTDOWN]: self.handle_close() return '', None else: raise # The "iner" API applied in async_loop async_map = async_loop._dispatched def add_channel (self): "add the dispatcher to the asynchronous I/O map" self.async_map[self._fileno] = self def del_channel (self): "removes the dispatcher from the asynchronous I/O map" fd = self._fileno try: del self.async_map[fd] except KeyError: pass def readable (self): "predicate for inclusion as readable in the poll loop" return True def writable (self): "predicate for inclusion as writable in the poll loop" return True def handle_read_event (self): "articulate read event as accept, connect or read." if self.accepting: # for an accepting socket, getting a read implies # that we are connected # # TODO: is this actually usefull? I mean, a listener # is not a stream connection, not really ... # if not self.connected: self.connected = True self.handle_accept () elif not self.connected: self.handle_connect () self.connected = True self.handle_read () else: self.handle_read () def handle_write_event (self): "articulate write event as connect or write." if not self.connected: # getting a write implies that we are connected self.handle_connect () self.connected = True self.handle_write () # The protocol API for stream and datagram sockets def handle_error (self): "log a traceback and close, or raise SystemExit again" t, v = sys.exc_info ()[:2] if t is SystemExit: raise t, v self.loginfo_traceback () self.close () # self.handle_close () ... or nothing? def handle_close (self): self.close () def handle_read (self): "to subclass: assert unhandled read event debug log" assert None == self.log ('unhandled read event', 'debug') def handle_write (self): "to subclass: assert unhandled write event debug log" assert None == self.log ('unhandled write event', 'debug') def handle_connect (self): "to subclass: assert unhandled connect event debug log" assert None == self.log ('unhandled connect event', 'debug') def handle_accept (self): "to subclass: assert unhandled accept event debug log" assert None == self.log ('unhandled accept event', 'debug') # and finaly ... def finalization (self, finalized): "assert debug log of the instance finalization" assert None == self.log ('finalized', 'debug') # Asynchronous File I/O: UNIX pipe and stdio only # # What follows is the original comments by Sam Rushing: # # After a little research (reading man pages on various unixen, and # digging through the linux kernel), I've determined that select() # isn't meant for doing doing asynchronous file i/o. # Heartening, though - reading linux/mm/filemap.c shows that linux # supports asynchronous read-ahead. So _MOST_ of the time, the data # will be sitting in memory for us already when we go to read it. # # What other OS's (besides NT) support async file i/o? [VMS?] # # Regardless, this is useful for pipes, and stdin/stdout... if os.name == 'posix': import fcntl class File_wrapper (object): "wrap a file with enough of a socket like interface" def __init__ (self, fd): self.fd = fd def recv (self, *args): return apply (os.read, (self.fd, ) + args) def send (self, *args): return apply (os.write, (self.fd, ) + args) read = recv write = send def close (self): return os.close (self.fd) def fileno (self): return self.fd def set_file (self, fd): "set a file descriptor and add the dispatcher (POSIX only)" flags = fcntl.fcntl (fd, fcntl.F_GETFL, 0) | os.O_NONBLOCK fcntl.fcntl (fd, fcntl.F_SETFL, flags) self._fileno = fd self.socket = File_wrapper (fd) self.add_channel () self.connected = True Dispatcher.set_file = set_file # Conveniences class Dispatcher_with_send (Dispatcher): ac_out_buffer_size = 1 << 14 # sweet sixteen kilobytes def __init__ (self): self.ac_out_buffer = '' def writable (self): "writable when there is output buffered or queued" return not ( (self.ac_out_buffer == '') and self.connected ) def handle_write (self): "try to send a chunk of buffered output or handle error" buffer = self.ac_out_buffer sent = self.send (buffer[:self.ac_out_buffer_size]) if sent: self.ac_out_buffer = buffer[sent:] else: self.ac_out_buffer = buffer class Dispatcher_with_fifo (Dispatcher): ac_out_buffer_size = 1 << 14 # sweet sixteen kilobytes def __init__ (self): self.ac_out_buffer = '' self.output_fifo = collections.deque () def writable (self): "writable when there is output buffered or queued" return not ( (self.ac_out_buffer == '') and not self.output_fifo and self.connected ) def handle_write (self): """pull an output fifo of single strings into the buffer, send a chunk of it or close if done""" obs = self.ac_out_buffer_size buffer = self.ac_out_buffer fifo = self.output_fifo while len (buffer) < obs and fifo: s = fifo.popleft () if s == None: if buffer == '': self.handle_close () return else: fifo.append (None) break buffer += s if buffer: sent = self.send (buffer[:obs]) if sent: self.ac_out_buffer = buffer[sent:] else: self.ac_out_buffer = buffer else: self.ac_out_buffer = '' def close_when_done (self): "queue None if there is output queued, or handle close now" if self.output_fifo: self.output_fifo_push (None) else: self.handle_close () # Note about this implementation # # This is a refactored version of the asyncore's original dispatcher class, # with a new logging facility (loginfo). The poll functions and the # asynchronous loop have been moved to async_loop, in a single module that # integrates a non-blocking I/O loop, a heapq scheduler loop and a loop # through a deque of finalizations. # # I also : # # 1. added set_connection (conn, addr), moving that logic out of __init__ # 2. refactored the File_dispatcher as a set_file (fd) method # 3. removed the now redundant set_socket (sock) method.
Allegra
/Allegra-0.63.zip/Allegra-0.63/lib/async_core.py
async_core.py
"http://laurentszyster.be/blog/sync_stdio/" import sys from allegra import prompt, loginfo, async_loop, finalization, thread_loop logger = loginfo.logger class Sync_stdio (thread_loop.Thread_loop): def __init__ (self): self.async_loop_catch = async_loop._catched async_loop._catched = self.async_prompt_catch self.sync_stdout = logger.loginfo_stdout self.sync_stderr = logger.loginfo_stderr logger.loginfo_stdout = self.async_stdout logger.loginfo_stderr = self.async_stderr thread_loop.Thread_loop.__init__ (self) def __repr__ (self): return 'sync-stdio' def async_stdout (self, data): self.thread_loop_queue ((self.sync_stdout, (data,))) def async_stderr (self, data): self.thread_loop_queue ((self.sync_stderr, (data,))) def async_stdio_stop (self): async_loop._catched = self.async_loop_catch self.async_loop_catch = None logger.loginfo_stdout = self.sync_stdout logger.loginfo_stderr = self.sync_stderr try: del self.log except: pass self.thread_loop_queue (None) return True async_prompt_catch = async_stdio_stop def thread_loop_delete (self): assert None == self.select_trigger_log ( 'stdio-stop', 'debug' ) # del self.sync_stdout, self.sync_stderr return True class Sync_stdoe (Sync_stdio): def __repr__ (self): return 'sync-stdoe' def thread_loop_init (self): self.select_trigger_log ( 'Press CTRL+C to stop synchronous I/O', 'info' ) self.thread_loop_queue ((self.sync_stdin_close, ())) return True def sync_stdin_close (self): sys.stdin.close () assert None == self.select_trigger_log ( 'stdin_close', 'debug' ) class Sync_prompt (Sync_stdio): sync_prompt_prefix = '>>> ' sync_prompt_comment = '#' sync_prompt_ready = not __debug__ def thread_loop_init (self): if self.sync_prompt_ready: self.thread_loop_queue ((self.sync_stdin, ())) else: self.select_trigger_log ( 'press CTRL+C to open and close the console', 'info' ) return True def async_prompt_catch (self): if self.sync_prompt_ready: self.thread_loop_queue (( self.sync_stderr, ('[CTRL+C]\n',) )) self.sync_prompt_ready = False else: self.thread_loop_queue ((self.sync_stdin, ())) self.sync_prompt_ready = True return True def sync_stdin (self): self.sync_stderr (self.sync_prompt_prefix) line = sys.stdin.readline () if line == '': if sys.stdin.closed: self.select_trigger (( self.async_stdio_stop, () )) else: self.select_trigger ((self.async_prompt, ())) elif line == '\n': self.select_trigger ((self.async_prompt, ())) else: self.select_trigger (( self.async_readline, (line[:-1],) )) def sync_stdin_script (self): line = sys.stdin.readline () if line == '': self.select_trigger ((self.async_prompt, ())) elif line == '\n' or line.startswith ( self.sync_prompt_comment ): self.thread_loop_queue ((self.sync_stdin, ())) else: self.select_trigger (( self.async_readline, (line[:-1],) )) def async_prompt (self): self.sync_prompt_ready = False def async_readline (self, line): assert None == self.log (line) self.thread_loop_queue ((self.sync_stdin, ())) class Python_prompt (Sync_prompt): def __init__ (self, env=None, info=None): self.loginfo_info = info self.python_prompt_env = env or {'prompt': self} loginfo.log ('Python %s on %s' % ( sys.version, sys.platform ), info) Sync_prompt.__init__ (self) def __repr__ (self): return 'python-prompt id="%x"' % id (self) def async_readline (self, line): method, result = prompt.python_prompt ( line, self.python_prompt_env ) if method == 'excp': self.loginfo_traceback (result) elif result != None: if __debug__: self.async_stderr ('%r\n' % (result,)) else: self.select_trigger ((loginfo.log, ( '%r' % (result, ), self.loginfo_info ))) if self.async_loop_catch != None: self.thread_loop_queue ((self.sync_stdin, ())) def async_stdio_stop (self): self.python_prompt_env = None # break circular reference return Sync_prompt.async_stdio_stop (self) if __name__ == '__main__': import sys info = None # log prompt results to STDOUT by default if '-d' in sys.argv: sys.argv.remove ('-d') loginfo.Logger.log = loginfo.Logger.loginfo_netlines elif not __debug__: Python_prompt.sync_stdin = Sync_prompt.sync_stdin_script info = 'prompt' assert None == loginfo.log ( 'Allegra Prompt' ' - Copyright 2005 Laurent A.V. Szyster' ' | Copyleft GPL 2.0', 'info' ) Python_prompt (None, info).start () async_loop.dispatch () assert None == finalization.collect ()
Allegra
/Allegra-0.63.zip/Allegra-0.63/lib/sync_stdio.py
sync_stdio.py
"http://laurentszyster.be/blog/async_client/" import time, socket, collections try: SOCKET_FAMILIES = (socket.AF_INET, socket.AF_UNIX) except: SOCKET_FAMILIES = (socket.AF_INET, ) from allegra import loginfo, async_loop, async_limits def connect (dispatcher, addr, timeout=3.0, family=socket.AF_INET): "create a socket, try to connect it and schedule a timeout" assert ( not dispatcher.connected and timeout > 0 and family in SOCKET_FAMILIES ) dispatcher.client_when = time.time () dispatcher.client_timeout = timeout try: dispatcher.create_socket (family, socket.SOCK_STREAM) dispatcher.connect (addr) except: dispatcher.loginfo_traceback () dispatcher.handle_error () return False assert None == dispatcher.log ('connect', 'debug') def connect_timeout (when): "if not connected and not closing yet, handle close" if not dispatcher.connected and not dispatcher.closing: assert None == dispatcher.log ( 'connect-timeout %f seconds' % ( when - dispatcher.client_when ), 'debug' ) dispatcher.handle_close () async_loop.schedule ( dispatcher.client_when + timeout, connect_timeout ) return True def reconnect (dispatcher): if dispatcher.addr: dispatcher.closing = False return connect ( dispatcher, dispatcher.addr, dispatcher.client_timeout, dispatcher.family_and_type[0] ) return False class Connections (loginfo.Loginfo): "a connection manager for async_client.Dispatcher instances" ac_in_meter = ac_out_meter = 0 client_errors = client_when = client_dispatched = 0 def __init__ ( self, timeout=3.0, precision=1.0, family=socket.AF_INET ): "initialize a new client manager" assert ( timeout > 0 and precision > 0 and family in SOCKET_FAMILIES ) self.client_managed = {} self.client_timeout = timeout self.client_precision = precision self.client_family = family resolved (self) inactive (self, timeout) def __call__ (self, dispatcher, name): "registed, decorate and connect a new dispatcher" if self.client_connect (dispatcher, name): now = time.time () dispatcher.async_client = self self.client_decorate (dispatcher, now) key = id (dispatcher) self.client_managed[key] = dispatcher dispatcher.client_key = key if len (self.client_managed) == 1: self.client_start (now) else: self.client_errors += 1 return dispatcher def client_connect (self, dispatcher, name): "resolve and/or connect a dispatcher" dispatcher.client_name = name addr = self.client_resolved (name) if addr != None: return connect ( dispatcher, addr, self.client_timeout, self.client_family ) if self.client_resolve == None: self.client_unresolved (dispatcher, addr) return False def resolve (addr): if addr == None: self.client_unresolved (dispatcher, name) return if not connect ( dispatcher, addr, self.client_timeout, self.client_family ): self.client_errors += 1 self.client_resolve (name, resolve) return True def client_reconnect (self, dispatcher): dispatcher.closing = False self (dispatcher, dispatcher.client_name) return dispatcher.closing def client_unresolved (self, dispatcher, name): "assert debug log and close an unresolved dispatcher" assert None == dispatcher.log ( '%r unresolved' % (name, ), 'debug' ) self.client_errors += 1 dispatcher.handle_close () def client_start (self, when): "handle the client management startup" self.client_when = when async_loop.schedule ( when + self.client_precision, self.client_manage ) assert None == self.log ('start', 'debug') def client_manage (self, when): "test limits overflow, recure or stop" for dispatcher in self.client_dispatchers (): if self.client_limit (dispatcher, when): self.client_overflow (dispatcher) if self.client_managed: return ( when + self.client_precision, self.client_manage ) # continue to defer self.client_stop (when) return None def client_dispatchers (self): "return a list of managed dispatchers" return self.client_managed.values () def client_overflow (self, dispatcher): "assert debug log and close an overflowed dispatcher" assert None == dispatcher.log ('limit overflow', 'debug') dispatcher.handle_close () def client_meter (self, dispatcher): "assert debug log and account I/O meters of a dispatcher" assert None == dispatcher.log ( 'in="%d" out="%d"' % ( dispatcher.ac_in_meter, dispatcher.ac_out_meter ), 'debug' ) self.ac_in_meter += dispatcher.ac_in_meter self.ac_out_meter += dispatcher.ac_out_meter self.client_dispatched += 1 def client_close (self, dispatcher): "remove the dispatcher from cache and meter dispatched" del self.client_managed[dispatcher.client_key] self.client_meter (dispatcher) dispatcher.async_client = None def client_stop (self, when): "handle the client management stop" assert None == self.log ( 'stop errors="%d" dispatched="%d"' ' seconds="%f" in="%d" out="%d"' % ( self.client_errors, self.client_dispatched, (when - self.client_when), self.ac_in_meter, self.ac_out_meter ), 'debug') self.client_errors = self.client_dispatched = \ self.ac_in_meter = self.ac_out_meter = 0 def close_when_done (self): "close all client dispatchers when done" for dispatcher in self.client_dispatchers (): dispatcher.close_when_done () class Cache (Connections): "a cache of managed connections" def __init__ ( self, timeout=3.0, precision=1.0, family=socket.AF_INET ): "initialize a new client cache" assert ( timeout > 0 and precision > 0 and family in SOCKET_FAMILIES ) self.client_managed = {} self.client_timeout = timeout self.client_precision = precision self.client_family = family resolved (self) inactive (self, timeout) def __call__ (self, Dispatcher, name): """return a cached or a new dispatcher, maybe resolving and connecting it first, closing it on connection error or if it's socket address cannot be resolved""" try: return self.client_managed[name] except KeyError: pass dispatcher = Dispatcher () if self.client_connect (dispatcher, name): now = time.time () dispatcher.async_client = self self.client_decorate (dispatcher, now) self.client_managed[name] = dispatcher dispatcher.client_key = name if len (self.client_managed) == 1: self.client_start (now) else: self.client_errors += 1 return dispatcher class Pool (Connections): "a pool of managed connections" def __init__ ( self, Dispatcher, name, size=2, timeout=3.0, precision=1.0, family=socket.AF_INET ): "initialize a new client pool" assert ( type (size) == int and size > 1 and timeout > 0 and precision > 0 and family in SOCKET_FAMILIES ) self.client_managed = [] self.client_pool = size self.client_name = name self.client_called = 0 self.Client_dispatcher = Dispatcher self.client_timeout = timeout self.client_precision = precision self.client_family = family resolved (self) inactive (self, timeout) def __call__ (self): """return the next dispatcher pooled or instanciate a new one, maybe resolving and connecting it first, closing it on connection error or if it's socket address cannot be resolved""" size = len (self.client_managed) if size >= self.client_pool: self.client_called += 1 return self.client_managed[self.client_called % size] now = time.time () dispatcher = self.Client_dispatcher () if self.client_connect (dispatcher, self.client_name): dispatcher.async_client = self self.client_decorate (dispatcher, now) self.client_managed.append (dispatcher) if len (self.client_managed) == 1: self.client_start (now) else: self.client_errors += 1 return dispatcher def client_reconnect (self, dispatcher): return False # useless for a cached dispatcher! def client_dispatchers (self): "return a list of dispatchers pooled" return list (self.client_managed) def client_close (self, dispatcher): "remove the dispatcher from pool and increment dispatched" self.client_meter (dispatcher) self.client_managed.remove (dispatcher) dispatcher.async_client = None def resolved (connections): "allways resolved for unresolved dispatcher address" connections.client_resolved = (lambda addr: addr) connections.client_resolve = None return connections def meter (dispatcher, when): "decorate a client dispatcher with stream meters" async_limits.meter_recv (dispatcher, when) async_limits.meter_send (dispatcher, when) def close (): del ( dispatcher.recv, dispatcher.send, dispatcher.close ) dispatcher.close () dispatcher.async_client.client_close (dispatcher) dispatcher.close = close def no_limit (dispatcher, when): return False def unlimited (connections): "meter I/O for unlimited client streams" connections.client_decorate = meter connections.client_limit = no_limit return connections def inactive (connections, timeout): "meter I/O and limit inactivity for client streams" assert timeout > 0 def decorate (dispatcher, when): meter (dispatcher, when) dispatcher.limit_inactive = connections.client_inactive connections.client_decorate = decorate connections.client_inactive = timeout connections.client_limit = async_limits.inactive return connections def limited (connections, timeout, inBps, outBps): "throttle I/O and limit inactivity for managed client streams" assert ( timeout > 0 and type (inBps ()) == int and inBps () > 0 and type (outBps ()) == int and outBps () > 0 ) def throttle (dispatcher, when): "decorate a client dispatcher with stream limits" async_limits.meter_recv (dispatcher, when) async_limits.meter_send (dispatcher, when) dispatcher.limit_inactive = timeout async_limits.throttle_readable ( dispatcher, when, connections.ac_in_throttle_Bps ) async_limits.throttle_writable ( dispatcher, when, connections.ac_out_throttle_Bps ) def close (): del ( dispatcher.recv, dispatcher.send, dispatcher.readable, dispatcher.writable, dispatcher.close ) dispatcher.close () dispatcher.async_client.client_close (dispatcher) dispatcher.close = close connections.client_decorate = throttle connections.ac_in_throttle_Bps = inBps connections.ac_out_throttle_Bps = outBps connections.client_limit = async_limits.limit return connections def rationed (connections, timeout, inBps, outBps): "ration I/O and limit inactivity for managed client streams" assert ( timeout > 0 and type (inBps) == int and inBps > 0 and type (outBps) == int and outBps > 0 ) connections.ac_in_ration_Bps = inBps connections.ac_out_ration_Bps = outBps def throttle_in (): return int (connections.ac_in_ration_Bps / max (len ( connections.client_managed ), 1)) def throttle_out (): return int (connections.ac_out_ration_Bps / max (len ( connections.client_managed ), 1)) return limited (connections, timeout, throttle_in, throttle_out) class Pipeline (object): "a pipeline mix-in for dispatcher" #pipeline_sleeping = False pipeline_pipelining = False pipeline_keep_alive = False def pipeline_set (self, requests=None, responses=None): "set new requests and responses deque" self.pipeline_requests = requests or collections.deque () self.pipeline_responses = responses or collections.deque () #def pipeline (self, request): # "pipeline a new request, wake up if sleeping" # self.pipeline_requests.append (request) # if self.pipeline_sleeping: # self.pipeline_sleeping = False # self.pipeline_wake_up () def pipeline_wake_up (self): requests = self.pipeline_requests if self.pipeline_pipelining and len (requests) > 1: self.pipeline_requests = deque () self.output_fifo.extend (( request[0] for request in requests )) self.pipeline_responses.extend (requests) else: request = self.pipeline_requests.popleft () self.output_fifo.append (request[0]) self.pipeline_responses.append (request)
Allegra
/Allegra-0.63.zip/Allegra-0.63/lib/async_client.py
async_client.py
"http://laurentszyster.be/blog/async_net/" import collections, socket from allegra import async_core class NetstringError (Exception): pass def collect_net (next, buffer, collect, terminate): "consume a buffer of netstrings into a stallable collector sink" lb = len (buffer) if next > 0: if next > lb: collect (buffer) return next - lb, '', False # buffer more ... if buffer[next] == ',': collect (buffer[:next]) if terminate (None): return 0, buffer[next+1:], True # stop now! else: raise NetstringError, '3 missing comma' prev = next + 1 else: prev = 0 while prev < lb: pos = buffer.find (':', prev) if pos < 0: if prev > 0: buffer = buffer[prev:] if not buffer.isdigit (): raise NetstringError, '1 not a netstring' return 0, buffer, False # buffer more ... try: next = pos + int (buffer[prev:pos]) + 1 except: raise NetstringError, '2 not a length' if next >= lb: collect (buffer[pos+1:]) return next - lb, '', False # buffer more elif buffer[next] == ',': if terminate (buffer[pos+1:next]): return 0, buffer[next+1:], True # stop now! else: raise NetstringError, '3 missing comma' prev = next + 1 # continue ... return 0, '', False # buffer consumed. class Dispatcher (async_core.Dispatcher): ac_in_buffer_size = ac_out_buffer_size = 1 << 14 # sweet 16 kilobytes terminator = 0 collector_stalled = False def __init__ (self): self.ac_in_buffer = '' self.ac_out_buffer = '' self.output_fifo = collections.deque () def __repr__ (self): return 'async-net id="%x"' % id (self) def readable (self): "predicate for inclusion in the poll loop for input" return not ( self.collector_stalled or len (self.ac_in_buffer) > self.ac_in_buffer_size ) def writable (self): "predicate for inclusion in the poll loop for output" return not ( (self.ac_out_buffer == '') and not self.output_fifo and self.connected ) def handle_read (self): "try to buffer more input and parse netstrings" try: ( self.terminator, self.ac_in_buffer, self.collector_stalled ) = collect_net ( self.terminator, self.ac_in_buffer + self.recv ( self.ac_in_buffer_size ), self.async_net_collect, self.async_net_terminate ) except NetstringError, error: self.async_net_error (error) def handle_write (self): "buffer out a fifo of strings, try to send or close if done" obs = self.ac_out_buffer_size buffer = self.ac_out_buffer fifo = self.output_fifo while len (buffer) < obs and fifo: strings = fifo.popleft () if strings == None: if buffer == '': self.handle_close () return else: fifo.append (None) break buffer += ''.join (( '%d:%s,' % (len (s), s) for s in strings )) if buffer: sent = self.send (buffer[:obs]) if sent: self.ac_out_buffer = buffer[sent:] else: self.ac_out_buffer = buffer else: self.ac_out_buffer = '' # A compatible interface with Async_chat.close_when_done used by # Allegra's TCP clients and servers implementation. def close_when_done (self): """close this channel when previously queued strings have been sent, or close now if the queue is empty.""" if self.output_fifo: self.output_fifo.append (None) else: self.handle_close () # The Async_net Interface def async_net_out (self, strings): "buffer netstrings of an iterable of 8-bit byte strings" self.ac_out_buffer += ''.join (( '%d:%s,' % (len (s), s) for s in strings )) def async_net_push (self, strings): "push an iterable of 8-bit byte strings for output" assert hasattr (strings, '__iter__') self.output_fifo.append (strings) def async_net_pull (self): "try to consume the input netstrings buffered" if not self.ac_in_buffer: self.collector_stalled = False return try: ( self.terminator, self.ac_in_buffer, self.collector_stalled ) = collect_net ( self.terminator, self.ac_in_buffer, self.async_net_collect, self.async_net_terminate ) except NetstringError, error: self.async_net_error (error) async_net_in = '' def async_net_collect (self, bytes): "collect an incomplete netstring chunk into a buffer" self.async_net_in += bytes def async_net_terminate (self, bytes): "terminate a collected or buffered netstring and continue" if bytes == None: bytes = self.async_net_in self.async_net_in = '' return self.async_net_continue (bytes) def async_net_continue (self, bytes): "assert debug log of collected netstrings" assert None == self.log (bytes, 'async-net-continue') return False def async_net_error (self, message): "log netstrings error and close the channel" self.log (message, 'async-net-error') self.handle_close ()
Allegra
/Allegra-0.63.zip/Allegra-0.63/lib/async_net.py
async_net.py
"http://laurentszyster.be/blog/synchronized/" import collections, subprocess from allegra import loginfo, finalization, thread_loop # File producer and collector def sync_open (self, filename, mode, bufsize): try: self.sync_file = open (filename, mode, bufsize) except: self.select_trigger ((self.async_close, ('eo', ))) else: self.select_trigger ((self.async_open, (mode, ))) def sync_write (self, data): try: self.sync_file.write (data) except: self.select_trigger ((self.async_close, ('ew', ))) def sync_read (self): try: data = self.sync_file.read (self.sync_buffer) except: self.select_trigger ((self.async_close, ('er', ))) else: if data: self.select_trigger ((self.async_read, (data, ))) else: sync_close (self, 'r') def sync_close (self, mode): try: self.sync_file.close () except: self.select_trigger ((self.async_close, ('ec', ))) else: self.select_trigger ((self.async_close, (mode, ))) self.sync_file = None class File_producer (object): synchronizer = None synchronizer_size = 2 async_buffers = () async_closed = False def __init__ (self, filename, mode='rb', bufsize=1<<14): assert ( type (filename) == str and mode.startswith ('r') and (0 < len (mode) < 3) and buffer > 0 ) self.sync_buffer = bufsize self.async_buffers = collections.deque([]) thread_loop.synchronize (self) self.synchronized (( sync_open, (self, filename, mode, bufsize) )) def __repr__ (self): return 'synchronized-file-producer id="%x"' % id (self) def more (self): try: return self.async_buffers.popleft () except: return '' def producer_stalled (self): return not ( self.async_closed or len (self.async_buffers) > 0 ) def async_open (self, mode): self.synchronized ((sync_read, (self, ))) def async_read (self, data): self.async_buffers.append (data) self.synchronized ((sync_read, (self, ))) def async_close (self, mode): self.async_closed = True thread_loop.desynchronize (self) class File_collector (object): synchronizer = None synchronizer_size = 2 collector_is_simple = True async_closed = False def __init__ (self, filename, mode='wb', bufsize=-1): assert ( type (filename) == str and not mode.startswith ('r') and (0 < len (mode) < 3) ) thread_loop.synchronize (self) self.synchronized (( sync_open, (self, filename, mode, bufsize) )) def __repr__ (self): return 'synchronized-file-collector id="%x"' % id (self) def collect_incoming_data (self, data): self.synchronized ((sync_write, (self, data,))) def found_terminator (self): self.synchronized ((sync_close, (self, 'w', ))) return True def async_open (self, mode): pass def async_close (self, mode): self.async_closed = True thread_loop.desynchronize (self) # Subprocess reactor def sync_popen (self, args): try: self.subprocess = subprocess.Popen (*args) except Exception, error: self.select_trigger ((self.async_except, (error, ))) else: self.select_trigger ((self.async_popen, ())) def sync_stdin (self, data): try: self.subprocess.stdin.write (data) except Exception, error: self.select_trigger ((self.async_except, (error, ))) def sync_stdout (self): exit = self.subprocess.poll () if exit != None: sync_wait (self) return try: data = self.subprocess.stdout.read (self.sync_buffer) except Exception, error: self.select_trigger ((self.async_except, (error, ))) else: if data: self.select_trigger ((self.async_stdout, (data, ))) else: sync_wait (self) def sync_wait (self): if self.subprocess == None: self.select_trigger ((self.async_return, (None, ))) return sub = self.subprocess self.subprocess = None sub.stdin.close () sub.stdout.close () if sub.stderr: sub.stderr.close () self.select_trigger ((self.async_return, (sub.wait (), ))) class Popen_producer (object): synchronizer = None synchronizer_size = 2 subprocess = async_code = None sync_buffer = 1<<16 def __init__ (self): self.async_buffers = collections.deque([]) thread_loop.synchronize (self) def more (self): try: return self.async_buffers.popleft () except: return '' def producer_stalled (self): return ( self.async_code == None and len (self.async_buffers) == 0 ) def async_popen (self): self.synchronized ((sync_stdout, (self, ))) def async_stdout (self, data): self.async_buffers.append (data) self.synchronized ((sync_stdout, (self, ))) def async_stderr (self, data): assert None == loginfo.log ( 'async_error', 'not implemented' ) def async_except (self, error): assert None == loginfo.log (str (error), 'debug') sync_wait (self) def async_return (self, code): self.async_code = code thread_loop.desynchronize (self) assert None == loginfo.log ('exit (%r)' % code, 'debug') def popen_producer ( args, bufsize=0, executable=None, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, preexec_fn=None, close_fds=False, shell=False, cwd=None, env=None, universal_newlines=False, startupinfo=None, creationflags=0 ): assert ( stdin == subprocess.PIPE and stdout == subprocess.PIPE and stderr in (subprocess.PIPE, subprocess.STDOUT) ) sp = Popen_producer () sp.synchronized ((sync_popen, (sp, ( args, bufsize, executable, stdin, stdout, stderr, preexec_fn, close_fds, shell, cwd, env, universal_newlines, startupinfo, creationflags )))) return sp class Popen_collector (object): synchronizer = None synchronizer_size = 2 collector_is_simple = True subprocess = async_code = None def __init__ (self): thread_loop.synchronize (self) def collect_incoming_data (self, data): self.synchronized ((sync_stdin, (self, data,))) def found_terminator (self): self.synchronized ((sync_wait, (self, ))) return True def async_popen (self): assert None == loginfo.log ('async_popen', 'debug') def async_stderr (self, data): assert None == loginfo.log ( 'async_error', 'not implemented' ) def async_except (self, error): assert None == loginfo.log (str (error), 'debug') sync_wait (self) def async_return (self, code): self.async_code = code thread_loop.desynchronize (self) assert None == loginfo.log ('%r' % code, 'debug') def popen_collector ( args, bufsize=0, executable=None, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, preexec_fn=None, close_fds=False, shell=False, cwd=None, env=None, universal_newlines=False, startupinfo=None, creationflags=0 ): assert ( stdin == subprocess.PIPE and stdout == subprocess.PIPE and stderr in (subprocess.PIPE, subprocess.STDOUT) ) sc = Popen_collector () sc.synchronized ((sync_popen, (sc, ( args, bufsize, executable, stdin, stdout, stderr, preexec_fn, close_fds, shell, cwd, env, universal_newlines, startupinfo, creationflags )))) return sc class Popen_reactor (finalization.Finalization): def __init__ ( self, args, bufsize=0, executable=None, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, preexec_fn=None, close_fds=False, shell=False, cwd=None, env=None, universal_newlines=False, startupinfo=None, creationflags=0 ): assert ( stdin == subprocess.PIPE and stdout == subprocess.PIPE and stderr in (subprocess.PIPE, subprocess.STDOUT) ) self.collector = Popen_collector () self.producer = Popen_producer () self.collector.async_popen = self.async_popen self.collector.found_terminator = self.found_terminator self.producer.async_return = self.async_return self.collector.synchronized ((sync_popen, (self.collector, ( args, bufsize, executable, stdin, stdout, stderr, preexec_fn, close_fds, shell, cwd, env, universal_newlines, startupinfo, creationflags )))) def async_popen (self): self.producer.subprocess = self.collector.subprocess self.producer.synchronized (( sync_stdout, (self.producer, ) )) self.collector.async_popen = None def found_terminator (self): self.collector.found_terminator = None def async_return (self, code): scin = self.collector spout = self.producer scin.async_code = spout.async_code = code self.producer = self.collector = None spout.async_return = None thread_loop.desynchronize (scin) thread_loop.desynchronize (spout) assert None == loginfo.log ('%r' % code, 'debug')
Allegra
/Allegra-0.63.zip/Allegra-0.63/lib/synchronized.py
synchronized.py
"http://laurentszyster.be/blog/loginfo/" import sys from allegra import netstring, prompt def _write_maybe_flush (file): assert hasattr (file, 'write') if hasattr (file, 'flush'): def write (data): file.write (data) file.flush () return return write return file.write class Logger (object): "Loginfo's log dispatcher implementation" def __init__ (self): self.loginfo_stdout = _write_maybe_flush (sys.stdout) self.loginfo_stderr = _write_maybe_flush (sys.stderr) self.loginfo_categories = {} def loginfo_netstrings (self, data, info=None): "log netstrings to STDOUT, a category handler or STDERR" assert type (data) == str if info == None: self.loginfo_stdout ('%d:%s,' % (len (data), data)) elif self.loginfo_categories.has_key (info): self.loginfo_categories[info] ( '%d:%s,' % (len (data), data) ) else: assert type (info) == str encoded = netstring.encode ((info, data)) self.loginfo_stderr ( '%d:%s,' % (len (encoded), encoded) ) def loginfo_netlines (self, data, info=None): "log netoutlines to STDOUT, a category handler or STDERR" assert type (data) == str if info == None: self.loginfo_stdout (netstring.netlines (data)) elif self.loginfo_categories.has_key (info): self.loginfo_categories[info] ( netstring.netlines (data) ) else: assert type (info) == str self.loginfo_stderr (netstring.netlines ( netstring.encode ((info, data)) )) if __debug__: log = loginfo_netlines else: log = loginfo_netstrings # the facility instance and module interfaces logger = Logger () def log (*args): logger.log (*args) def compact_traceback (ctb): "encode a compact traceback tuple as netstrings" return netstring.encode (( ctb[0], netstring.encode ([' | '.join (x) for x in ctb[2]]), ctb[1] )), 'traceback' def classic_traceback (ctb=None): return netstring.encode (( netstring.encode ([ 'File "%s", line %s, in %s' % ( tb[0] or '<string>', tb[2], tb[1] ) for tb in ctb[2] ]), '%s: %s' % ctb[:2] )), 'Traceback (most recent call last):' traceback_encode = compact_traceback def traceback (ctb=None): "return a compact traceback and log it in the 'traceback' category" if ctb == None: ctb = prompt.compact_traceback () logger.log (*traceback_encode (ctb)) return ctb # redirection of all Python standard outputs to the logger class _STDOUT (object): def write (self, line): logger.log (line) sys.stdout = _STDOUT () def _displayhook (value): if value != None: logger.log ('%r' % (value,)) sys.displayhook = _displayhook class _STDERR (object): def write (self, line): logger.log (line, 'stderr') def _excepthook (*exc_info): traceback (prompt.compact_traceback (exc_info)) sys.excepthook = _excepthook # a class interface to mix in class Loginfo (object): loginfo_logger = logger def __repr__ (self): return '%s id="%x"' % ( self.__class__.__name__, id (self) ) def loginfo_log (self, data, info=None): """log a message with this instance's __repr__ and an optional category""" self.loginfo_logger.log (netstring.encode (( '%r' % self, '%s' % data )), info) log = loginfo_log def loginfo_null (self, data, info=None): "drop the message to log" pass def loginfo_logging (self): "return True if the instance is logging" return self.log != self.loginfo_null def loginfo_toggle (self, logging=None): "toggle logging on/off for this instance" if logging == None: if self.log == self.loginfo_null: try: del self.log except: self.log = self.loginfo_log else: try: del self.log except: self.log = self.loginfo_null return self.log != self.loginfo_null if logging == True and self.log == self.loginfo_null: self.log = self.loginfo_log elif logging == False and self.log == self.loginfo_log: self.log = self.loginfo_null return logging def loginfo_traceback (self, ctb=None): """return a compact traceback tuple and log it encoded as netstrings, along with this instance's __repr__, in the 'traceback' category""" if ctb == None: ctb = prompt.compact_traceback () self.loginfo_log (*traceback_encode (ctb)) return ctb def toggle (logging=None, Class=Loginfo): "toggle logging on/off for the Class specified or Loginfo" if logging == None: if Class.log == Class.loginfo_null: Class.log = Class.loginfo_log return True Class.log = Class.loginfo_null return False if logging == True and Class.log == Class.loginfo_null: Class.log = Class.loginfo_log elif logging == False and Class.log == Class.loginfo_log: Class.log = Class.loginfo_null return logging # SYNOPSIS # # >>> from allegra import loginfo #>>> loginfo.log ('message') # message # >>> loginfo.log ('message', 'info') # info # message # # >>> try: # ... foobar () # ... except: # ... ctb = loginfo.traceback () # traceback # exceptions.NameError # name 'foobar' is not defined # <stdin> | ? | 2 # # >>> logged = loginfo.Loginfo () # >>> logged.log ('message') # Loginfo id="8da4e0" # message # # >>> logged.log ('message', 'info') # info # Loginfo id="8da4e0" # message # # The Loginfo interface and implementation provide a simpler, yet more # powerfull and practical logging facility than the one currently integrated # with Python. # # First is uses netstrings instead of CR or CRLF delimeted lines for I/O # encoding, solving ahead many problems of the log consumers. Second it # is well adapted to a practical development cycle and by defaults implement # a simple scheme that suites well a shell pipe like: # # pipe < input 1> output 2> errors # # However "slow" this Python facily is, it offers a next-best trade-off # between performance in production and flexibility for both debugging and # maintenance. All debug and information logging can be effectively disabled, # either skipped in case of: # # assert None == loginfo.log (...) # # or simply dropped, yielding not access to possibly blocking or buffering # process handling the log output. The ability to filter out or filter in # log at the instance or class level is enough to satisfy the most demanding # application administrator (as for categories, there are none defined, do # as it please you ;-). # # Last but not least, the loginfo_log is compatible with asyncore logging # interfaces (which is no wonder, it is inspired from Medusa's original # logging facility module). # # # CAVEAT! # # since Loginfo instances update their own namespace with bound methods, # they actually cycle, referencing themselves. so, when toggling off is # a requirement if you need to finalize an instance that has been # explicitely logged in or out. # # the trade-off is the following: most toggling happens at the class level # in practice. From development to production, instance loginfo toggling # will disapear. And if you ask to log an object at runtime, it's a practical # way to *not* finalize it: you're observing something! And that's even more # true if you have to manipulate instances in production ... # # Simple but not obvious :-) # # # One Logger Only # # As time and applications go by, it made sense to do with only one logger # facility, a root logger. That's the model of log4j, but with an extra # simplification: STDOUT and STDERR are replaced by loginfo's interfaces # and implementation. # # If you # # >>> print "something" # # in your application, it will actually be logged without categories nor # context, directly to STDOUT. In the debug outline mode, this is exactly # similar to writing "something" out with a newline at the end. However, # in optimized mode, those print statement will be encoded in netstrings # and without newline. # # Also, when an uncatched exception is raised, it will be logged as an # outline or a netstring (or a multiline classic traceback, for people # who really need that at debug time). # # The rational is that if your application needs to write to a file in all # case, it either does not need a log or that file should not be STDOUT. # Similarly, if your application does demand an error log, there is no # reason not to have them writen to STDERR, preferrably in a format that is # simple and safe to parse and present. # # # Practicality beats purity # # Satisfying a demand of Andrew Dalke, loginfo gives the option of classic # and compact tracebacks. The later are encoded in netstring and outlined # at debug time, the former are allways multiline strings (the original # format) that can be parsed by existing Python development tools. # # If you do use those tools to lookup source code at development time, do # # if __debug__: # Loginfo.loginfo_traceback = Loginfo.loginfo_classic_traceback # loginfo.traceback = loginfo._classic_traceback # #
Allegra
/Allegra-0.63.zip/Allegra-0.63/lib/loginfo.py
loginfo.py