code
stringlengths
501
4.91M
package
stringlengths
2
88
path
stringlengths
11
291
filename
stringlengths
4
197
parsed_code
stringlengths
0
4.91M
quality_prob
float64
0
0.99
learning_prob
float64
0.02
1
import os import re import itertools from pathlib import Path from schema_enforcer.utils import find_files, load_file SCHEMA_TAG = "jsonschema" class InstanceFileManager: # pylint: disable=too-few-public-methods """InstanceFileManager.""" def __init__(self, config): """Initialize the interface File manager. The file manager will locate all potential instance files in the search directories. Args: config (pydantic.BaseSettings): The Pydantec settings object. """ self.instances = [] self.config = config # Find all instance files # TODO need to load file extensions from the config instance_files = find_files( file_extensions=config.data_file_extensions, search_directories=config.data_file_search_directories, excluded_filenames=config.data_file_exclude_filenames, excluded_directories=[config.main_directory], return_dir=True, ) # For each instance file, check if there is a static mapping defined in the config # Create the InstanceFile object and save it for root, filename in instance_files: matches = set() if filename in config.schema_mapping: matches.update(config.schema_mapping[filename]) instance = InstanceFile(root=root, filename=filename, matches=matches) self.instances.append(instance) def add_matches_by_property_automap(self, schema_manager): """Adds schema_ids to matches by automapping top level schema properties to top level keys in instance data. Args: schema_manager (schema_enforcer.schemas.manager.SchemaManager): Schema manager oject """ for instance in self.instances: instance.add_matches_by_property_automap(schema_manager) def print_schema_mapping(self): """Print in CLI the matches for all instance files.""" print("{:50} Schema ID".format("Structured Data File")) # pylint: disable=consider-using-f-string print("-" * 80) print_strings = [] for instance in self.instances: filepath = f"{instance.path}/{instance.filename}" print_strings.append(f"{filepath:50} {sorted(instance.matches)}") print("\n".join(sorted(print_strings))) class InstanceFile: """Class to manage an instance file.""" def __init__(self, root, filename, matches=None): """Initializes InstanceFile object. Args: root (string): Absolute path to the directory where the schema file is located. filename (string): Name of the file. matches (set, optional): Set of schema IDs that matches with this Instance file. Defaults to None. """ self.data = None self.path = root self.full_path = os.path.realpath(root) self.filename = filename # Internal vars for caching data self._top_level_properties = set() if matches: self.matches = matches else: self.matches = set() self._add_matches_by_decorator() @property def top_level_properties(self): """Return a list of top level properties in the structured data defined by the data pulled from _get_content. Returns: set: Set of the strings of top level properties defined by the data file """ if not self._top_level_properties: content = self._get_content() self._top_level_properties = set(content.keys()) return self._top_level_properties def _add_matches_by_decorator(self, content=None): """Add matches which declare schema IDs they should adhere to using a decorator comment. If a line of the form # jsonschema: <schema_id>,<schema_id> is defined in the data file, the schema IDs will be added to the list of schema IDs the data will be checked for adherence to. Args: content (string, optional): Content of the file to analyze. Default to None. Returns: set(string): Set of matches (strings of schema_ids) found in the file. """ if not content: content = self._get_content(structured=False) matches = set() if SCHEMA_TAG in content: line_regexp = r"^#.*{0}:\s*(.*)$".format(SCHEMA_TAG) # pylint: disable=consider-using-f-string match = re.match(line_regexp, content, re.MULTILINE) if match: matches = {x.strip() for x in match.group(1).split(",")} self.matches.update(matches) def _get_content(self, structured=True): """Returns the content of the instance file. Args: structured (bool): Return structured data if true. If false returns the string representation of the data stored in the instance file. Defaults to True. Returns: dict, list, or str: File Contents. Dict or list if structured is set to True. Otherwise returns a string. """ file_location = os.path.join(self.full_path, self.filename) if not structured: return Path(file_location).read_text(encoding="utf-8") return load_file(file_location) def add_matches_by_property_automap(self, schema_manager): """Adds schema_ids to self.matches by automapping top level schema properties to top level keys in instance data. Args: schema_manager (schema_enforcer.schemas.manager.SchemaManager): Schema manager oject """ matches = set() for schema_id, schema_obj in schema_manager.iter_schemas(): if schema_obj.top_level_properties.intersection(self.top_level_properties): matches.add(schema_id) self.matches.update(matches) def validate(self, schema_manager, strict=False): """Validate this instance file with all matching schema in the schema manager. Args: schema_manager (SchemaManager): A SchemaManager object. strict (bool, optional): True is the validation should automatically flag unsupported element. Defaults to False. Returns: iterator: Iterator of ValidationErrors returned by schema.validate. """ # TODO need to add something to check if a schema is missing # Create new iterator chain to be able to aggregate multiple iterators errs = itertools.chain() # Go over all schemas and skip any schema not present in the matches for schema_id, schema in schema_manager.iter_schemas(): if schema_id not in self.matches: continue schema.validate(self._get_content(), strict) results = schema.get_results() errs = itertools.chain(errs, results) schema.clear_results() return errs
schema-enforcer
/schema_enforcer-1.2.2.tar.gz/schema_enforcer-1.2.2/schema_enforcer/instances/file.py
file.py
import os import re import itertools from pathlib import Path from schema_enforcer.utils import find_files, load_file SCHEMA_TAG = "jsonschema" class InstanceFileManager: # pylint: disable=too-few-public-methods """InstanceFileManager.""" def __init__(self, config): """Initialize the interface File manager. The file manager will locate all potential instance files in the search directories. Args: config (pydantic.BaseSettings): The Pydantec settings object. """ self.instances = [] self.config = config # Find all instance files # TODO need to load file extensions from the config instance_files = find_files( file_extensions=config.data_file_extensions, search_directories=config.data_file_search_directories, excluded_filenames=config.data_file_exclude_filenames, excluded_directories=[config.main_directory], return_dir=True, ) # For each instance file, check if there is a static mapping defined in the config # Create the InstanceFile object and save it for root, filename in instance_files: matches = set() if filename in config.schema_mapping: matches.update(config.schema_mapping[filename]) instance = InstanceFile(root=root, filename=filename, matches=matches) self.instances.append(instance) def add_matches_by_property_automap(self, schema_manager): """Adds schema_ids to matches by automapping top level schema properties to top level keys in instance data. Args: schema_manager (schema_enforcer.schemas.manager.SchemaManager): Schema manager oject """ for instance in self.instances: instance.add_matches_by_property_automap(schema_manager) def print_schema_mapping(self): """Print in CLI the matches for all instance files.""" print("{:50} Schema ID".format("Structured Data File")) # pylint: disable=consider-using-f-string print("-" * 80) print_strings = [] for instance in self.instances: filepath = f"{instance.path}/{instance.filename}" print_strings.append(f"{filepath:50} {sorted(instance.matches)}") print("\n".join(sorted(print_strings))) class InstanceFile: """Class to manage an instance file.""" def __init__(self, root, filename, matches=None): """Initializes InstanceFile object. Args: root (string): Absolute path to the directory where the schema file is located. filename (string): Name of the file. matches (set, optional): Set of schema IDs that matches with this Instance file. Defaults to None. """ self.data = None self.path = root self.full_path = os.path.realpath(root) self.filename = filename # Internal vars for caching data self._top_level_properties = set() if matches: self.matches = matches else: self.matches = set() self._add_matches_by_decorator() @property def top_level_properties(self): """Return a list of top level properties in the structured data defined by the data pulled from _get_content. Returns: set: Set of the strings of top level properties defined by the data file """ if not self._top_level_properties: content = self._get_content() self._top_level_properties = set(content.keys()) return self._top_level_properties def _add_matches_by_decorator(self, content=None): """Add matches which declare schema IDs they should adhere to using a decorator comment. If a line of the form # jsonschema: <schema_id>,<schema_id> is defined in the data file, the schema IDs will be added to the list of schema IDs the data will be checked for adherence to. Args: content (string, optional): Content of the file to analyze. Default to None. Returns: set(string): Set of matches (strings of schema_ids) found in the file. """ if not content: content = self._get_content(structured=False) matches = set() if SCHEMA_TAG in content: line_regexp = r"^#.*{0}:\s*(.*)$".format(SCHEMA_TAG) # pylint: disable=consider-using-f-string match = re.match(line_regexp, content, re.MULTILINE) if match: matches = {x.strip() for x in match.group(1).split(",")} self.matches.update(matches) def _get_content(self, structured=True): """Returns the content of the instance file. Args: structured (bool): Return structured data if true. If false returns the string representation of the data stored in the instance file. Defaults to True. Returns: dict, list, or str: File Contents. Dict or list if structured is set to True. Otherwise returns a string. """ file_location = os.path.join(self.full_path, self.filename) if not structured: return Path(file_location).read_text(encoding="utf-8") return load_file(file_location) def add_matches_by_property_automap(self, schema_manager): """Adds schema_ids to self.matches by automapping top level schema properties to top level keys in instance data. Args: schema_manager (schema_enforcer.schemas.manager.SchemaManager): Schema manager oject """ matches = set() for schema_id, schema_obj in schema_manager.iter_schemas(): if schema_obj.top_level_properties.intersection(self.top_level_properties): matches.add(schema_id) self.matches.update(matches) def validate(self, schema_manager, strict=False): """Validate this instance file with all matching schema in the schema manager. Args: schema_manager (SchemaManager): A SchemaManager object. strict (bool, optional): True is the validation should automatically flag unsupported element. Defaults to False. Returns: iterator: Iterator of ValidationErrors returned by schema.validate. """ # TODO need to add something to check if a schema is missing # Create new iterator chain to be able to aggregate multiple iterators errs = itertools.chain() # Go over all schemas and skip any schema not present in the matches for schema_id, schema in schema_manager.iter_schemas(): if schema_id not in self.matches: continue schema.validate(self._get_content(), strict) results = schema.get_results() errs = itertools.chain(errs, results) schema.clear_results() return errs
0.606382
0.152537
# 简介 程序入口的构造工具. 这个基类的设计目的是为了配置化入口的定义.通过继承和覆盖基类中的特定字段和方法来实现入口的参数配置读取. 目前的实现可以依次从指定路径下的json文件,环境变量,命令行参数读取需要的数据. 然后校验是否符合设定的json schema规定的模式,在符合模式后执行注册进去的回调函数. 入口树中可以有中间节点,用于分解复杂命令行参数,中间节点不会执行. 他们将参数传递给下一级节点,直到尾部可以执行为止. # 特性 + 根据子类的名字小写构造命令 + 根据子类的docstring,`epilog字段`和`description字段`自动构造,命令行说明. + 根据子类的`schema字段`和`env_prefix字段`自动构造环境变量的读取规则. + 根据子类的`default_config_file_paths字段`自动按顺序读取json,yaml格式配置文件中的参数. + 根据`schema字段`构造命令行参数和配置校验 + 使用装饰器`@as_main`注册获取到配置后执行的函数 + 通过覆写`parse_commandline_args`方法来定义命令行参数的读取 + 入口节点可以通过方法`regist_sub`注册子节点 # 安装 ```bash pip install schema_entry ``` # 使用介绍 ## 动机 `schema_entry`模块提供了一个基类`EntryPoint`用于构造复杂的程序入口.通常我们的程序入口参数有3个途径: 1. 配置文件 2. 环境变量 3. 命令行参数 在docker广泛应用之前可能用的最多的是命令行参数.但在docker大行其道的现在,配置文件(docker config)和环境变量(environment字段)变得更加重要. 随之而来的是参数的校验问题,python标准库`argparse`本身有不错的参数约束能力,但配置文件中的和环境变量中的参数就需要额外校验了. 这个项目的目的是简化定义入口这个非常通用的业务,将代码尽量配置化. ## 使用方法 首先我们来分析下一个入口形式. 通常一个程序的入口可能简单也可能复杂,但无非两种 1. 中间节点,比如`docker stack`, 它本质上并不执行操作,它只是表示要执行的是关于子模块的操作.当单独执行这条命令时实际上它什么都没做,它下面的子命令`git submodule add`这类才是实际可以执行的节点.而我定义这种中间节点单独被执行应该打印其帮助说明文本. 2. 执行节点,比如`docker run`,这种就是`可以执行的节点`. 本模块的基本用法是: 1. 通过继承`EntryPoint`类并覆写其中的字段来定义不同的节点 2. 通过实例化`EntryPoint`的子类并使用其实例方法`regist_subcmd`或者`regist_sub`来定义不同节点的类型和节点的调用顺序 3. 使用`可以执行节点`的实例方法`as_main`(装饰器)来指定不同节点的入口函数. 4. 命令行中按`根节点`到`可以执行节点`的顺序输入构造命令,获取来自配置文件,环境变量,命令行参数中的参数,作为注册入口函数的参数调用入口函数. ### 节点名 我们可以定义`_name`字段为节点命名,如果没有那么节点名则为子类类名的全小写形式. ### 节点的帮助信息 我们可以定义`usage`来定义用法帮助字符串,如果没有定义则会自动构造,中间节点会是`root subcmd ... [subcmd]`; 可执行节点会是`root subcmd ... entry [options]` ### 执行节点 上面说过执行节点的任务有3个: 1. 从配置文件,环境变量,命令行参数获取配置参数 2. [可选]校验配置参数是否符合要求 3. [可选]将配置作为参数引用到程序中. #### 通过定义`schema字段进行参数校验` 我们可以定义`schema字段`来激活校验功能 ```python class Test_A(EntryPoint): default_config_file_paths = [ "/test_config.json", str(Path.home().joinpath(".test_config.json")), "./test_config.json" ] schema = { "$schema": "http://json-schema.org/draft-07/schema#", "type": "object", "properties": { "a": { "type": "integer" } }, "required": ["a"] } ``` `EntryPoint`的子类会在解析获得参数后校验参数字典是否符合schema中定义的模式. 当然schema字段也不能乱写,它的规则是json schema的一个子集: ```json { "$schema": "http://json-schema.org/draft-07/schema#", "type": "object", "properties": { "properties": { "type": "object", "minProperties": 1, "additionalProperties": False, "patternProperties": { "^\\w+$": { "oneOf": [ { "type": "object", "additionalProperties": False, "required": ["type"], "properties": { "type": { "type": "string", "const": "boolean" }, "default": { "type": "boolean", }, "const": { "type": "string" }, "description": { "type": "string" }, "$comment": { "type": "string" }, "title": { "type": "string", "pattern": "^[a-b]|[d-z]$" } } }, { "type": "object", "additionalProperties": false, "required": ["type"], "properties": { "type": { "type": "string", "const": "string" }, "default": { "type": "string", }, "const": { "type": "string" }, "enum": { "type": "array", "items": { "type": "string" } }, "maxLength": { "type": "integer", "minimum": 0 }, "minLength": { "type": "integer", "minimum": 0 }, "pattern": { "type": "string" }, "format": { "type": "string" }, "description": { "type": "string" }, "$comment": { "type": "string" }, "title": { "type": "string", "pattern": r"^[a-b]|[d-z]$" } } }, { "type": "object", "additionalProperties": false, "required": ["type"], "properties": { "type": { "type": "string", "const": "number" }, "default": { "type": "number", }, "const": { "type": "number" }, "enum": { "type": "array", "items": { "type": "number" } }, "maximum": { "type": "number", }, "exclusiveMaximum": { "type": "number", }, "minimum": { "type": "number", }, "exclusiveMinimum": { "type": "number", }, "description": { "type": "string" }, "$comment": { "type": "string" }, "title": { "type": "string", "pattern": "^[a-b]|[d-z]$" } } }, { "type": "object", "additionalProperties": false, "required": ["type"], "properties": { "type": { "type": "string", "const": "integer" }, "default": { "type": "integer", }, "const": { "type": "integer" }, "enum": { "type": "array", "items": { "type": "integer" } }, "maximum": { "type": "integer", }, "exclusiveMaximum": { "type": "integer", }, "minimum": { "type": "integer", }, "exclusiveMinimum": { "type": "integer", }, "description": { "type": "string" }, "$comment": { "type": "string" }, "title": { "type": "string", "pattern": "^[a-b]|[d-z]$" } } }, { "type": "object", "additionalProperties": false, "required": ["type"], "properties": { "type": { "type": "string", "const": "array" }, "default": { "type": "array", "items": { "type": ["string", "number", "integer"] } }, "items": { "type": "object", "required": ["type"], "additionalProperties": false, "properties": { "type": { "type": "string", "enum": ["string", "number", "integer"] }, "enum":{ "type": "array" } } }, "description": { "type": "string" }, "$comment": { "type": "string" }, "title": { "type": "string", "pattern": "^[a-b]|[d-z]$" } } } ] } } }, "type": { "type": "string", "const": "object" }, "required": { "type": "array", "items": { "type": "string" } } }, "required": ["properties", "type"] } ``` 简而言之就是: 1. 最外层必须有`properties`和`type`字段且`type`字段必须为`object`,可以有`required`字段 2. 最外层`properties`中的字段名必须是由`数字`,`字母`和`_`组成, 3. 字段类型只能是`string`,`boolean`,`number`,`integer`,`array`之一 4. 字段类型如果为`array`则内部必须要有`items`且`items`中必须有`type`字段,且该`type`字段的值必须为`string`,`number`,`integer`之一 如果我们不想校验,那么可以设置`verify_schema`为`False`强行关闭这个功能. #### 从定义的schema中获取默认配置 我们在定义schema时可以在`"properties"`字段定义的模式描述中通过`default`字段指定描述字段的默认值 ```python class Test_A(EntryPoint): schema = { "$schema": "http://json-schema.org/draft-07/schema#", "type": "object", "properties": { "a_a": { "type": "number" "default": 10.1 } }, "required": ["a_a"] } ``` 这样即便没有其他输入这个参数也会有这个默认值兜底 #### 从指定配置文件中读取配置 我们可以使用字段`default_config_file_paths`指定从固定的几个路径中读取配置文件,配置文件支持`json`和`yaml`两种格式. 我们也可以通过字段`config_file_only_get_need`定义从配置文件中读取配置的行为(默认为`True`), 当置为`True`时我们只会在配置文件中读取schema中定义的字段,否则则会加载全部字段. 也可以通过设置`load_all_config_file = True`来按设定顺序读取全部预设的配置文件位置 默认配置文件地址是一个列表,会按顺序查找读取,只要找到了满足条件的配置文件就会读取. ```python from pathlib import Path from schema_entry import EntryPoint class Test_A(EntryPoint): default_config_file_paths = [ "/test_config.json", str(Path.home().joinpath(".test_config.json")), "./test_config.json", "./test_config_other.json" ] ``` ##### 指定特定命名的配置文件的解析方式 可以使用`@regist_config_file_parser(config_file_name)`来注册如何解析特定命名的配置文件.这一特性可以更好的定制化配置文件的读取 ```python class Test_AC(EntryPoint): load_all_config_file = True default_config_file_paths = [ "./test_config.json", "./test_config1.json", "./test_other_config2.json" ] root = Test_AC() @root.regist_config_file_parser("test_other_config2.json") def _1(p: Path) -> Dict[str, Any]: with open(p) as f: temp = json.load(f) return {k.lower(): v for k, v in temp.items()} ``` 如果想在定义子类时固定好,也可以定义`_config_file_parser_map:Dict[str,Callable[[Path], Dict[str, Any]]]` ```python def test_other_config2_parser( p: Path) -> Dict[str, Any]: with open(p) as f: temp = json.load(f) return {k.lower(): v for k, v in temp.items()} class Test_AC(EntryPoint): load_all_config_file = True default_config_file_paths = [ "./test_config.json", "./test_config1.json", "./test_other_config2.json" ] _config_file_parser_map = { "test_other_config2.json": test_other_config2_parser } root = Test_AC() ``` #### 从环境变量中读取配置参数 要从环境变量中读取配置必须设置`schema`字段,`EntryPoint`会按照其中`properties`字段定义的字段范围和字段类型解析环境变量. 环境变量key的规则为`前缀_字段名的大写`.前缀的默认值为`...父节命令节点的父命令节点大写_父节命令节点大写_子命令节点大写`. 我们也可以通过设定`env_prefix`字段来替换默认前缀,替换的前缀依然会被转化为大写. ```python class Test_A(EntryPoint): env_prefix = "app" schema = { "$schema": "http://json-schema.org/draft-07/schema#", "type": "object", "properties": { "a_a": { "type": "number" } }, "required": ["a_a"] } ``` 如果我们不希望从环境变量中解析配置,那么也可以设置`parse_env`为`False` #### 从命令行参数中获取配置参数 当我们定义好`schema`后所有schema中定义好的参数都可以以`--xxxx`的形式从命令行中读取,需要注意schema中定义的字段中`_`会被修改为`-`. 如果定义的字段模式中含有`title`字段,则使用title字段作为命令行缩写即`-x`的形式 这个命令行读取是使用的标准库`argparse`,构造出的解析器中`useage`,`epilog`和`description`会由类中定义的`usage`,`epilog`和docstring决定;`argv`则为传到节点处时剩下的命令行参数(每多一个节点就会从左侧摘掉一个命令行参数). 通常情况下构造的命令行解析器全部都是可选项,如果我们希望指定`schema`中一项是没有`--`的那种配置,那么可以在定义类时指定`argparse_noflag`为想要的字段,如果希望命令行中校验必填项则可以在定义类时指定`argparse_check_required=True`.需要注意如果一个字段被指定为了`noflag`那么它就是必填项了. ```python class Test_A(EntryPoint): argparse_noflag = "a" argparse_check_required=True schema = { "$schema": "http://json-schema.org/draft-07/schema#", "type": "object", "properties": { "a": { "type": "number" }, "b": { "type": "number" } }, "required": ["a","b"] } ``` 命令行中默认使用`-c`/`--config`来指定读取配置文件,它的读取行为受上面介绍的从自定义配置文件中读取配置的设置影响. #### 配置的读取顺序 配置的读取顺序为`schema中定义的default值`->`配置指定的配置文件路径`->`命令行指定的配置文件`->`环境变量`->`命令行参数`,而覆盖顺序则是反过来. #### 注册入口的执行函数 我们使用实例的装饰器方法`as_main`来实现对执行节点入口函数的注册,注册的入口函数会在解析好参数后执行,其参数就是解析好的`**config` ```python root = Test_A() @root.as_main def main(a,b): print(a) print(b) ``` 另一种指定入口函数的方法是重写子类的`do_main(self)->None`方法 ```python class Test_A(EntryPoint): argparse_noflag = "a" argparse_check_required=True schema = { "$schema": "http://json-schema.org/draft-07/schema#", "type": "object", "properties": { "a": { "type": "number" }, "b": { "type": "number" } }, "required": ["a","b"] } def do_main(self)->None: print(self.config) ``` #### 直接从节点对象中获取配置 节点对象的`config`属性会在每次调用时copy一份当前的配置值,config是不可写的. ```python print(root.config) ``` ### 中间节点 中间节点并不能执行程序,它只是用于描述一个范围内的命令集合,因此它的作用就是充当`help`指令.我们定义中间节点并不能执行.但必须有至少一个子节点才是中间节点.因此即便一个节点定义了上面的配置,只要它有子节点就不会按上面的执行流程执行. 利用中间节点我们可以构造出非常复杂的启动命令树. #### 注册子节点 中间节点的注册有两个接口 + `regist_subcmd`用于注册一个已经实例化的子节点 ```python class A(EntryPoint): pass class B(EntryPoint): pass a = A() b = B() a.regist_subcmd(b) ``` + `regist_sub`用于注册一个子节点类,它会返回被注册的节点的一个实例 ```python class A(EntryPoint): pass class B(EntryPoint): pass a = A() b =a.regist_sub(B) ```
schema-entry
/schema_entry-0.1.5.tar.gz/schema_entry-0.1.5/README.md
README.md
pip install schema_entry class Test_A(EntryPoint): default_config_file_paths = [ "/test_config.json", str(Path.home().joinpath(".test_config.json")), "./test_config.json" ] schema = { "$schema": "http://json-schema.org/draft-07/schema#", "type": "object", "properties": { "a": { "type": "integer" } }, "required": ["a"] } { "$schema": "http://json-schema.org/draft-07/schema#", "type": "object", "properties": { "properties": { "type": "object", "minProperties": 1, "additionalProperties": False, "patternProperties": { "^\\w+$": { "oneOf": [ { "type": "object", "additionalProperties": False, "required": ["type"], "properties": { "type": { "type": "string", "const": "boolean" }, "default": { "type": "boolean", }, "const": { "type": "string" }, "description": { "type": "string" }, "$comment": { "type": "string" }, "title": { "type": "string", "pattern": "^[a-b]|[d-z]$" } } }, { "type": "object", "additionalProperties": false, "required": ["type"], "properties": { "type": { "type": "string", "const": "string" }, "default": { "type": "string", }, "const": { "type": "string" }, "enum": { "type": "array", "items": { "type": "string" } }, "maxLength": { "type": "integer", "minimum": 0 }, "minLength": { "type": "integer", "minimum": 0 }, "pattern": { "type": "string" }, "format": { "type": "string" }, "description": { "type": "string" }, "$comment": { "type": "string" }, "title": { "type": "string", "pattern": r"^[a-b]|[d-z]$" } } }, { "type": "object", "additionalProperties": false, "required": ["type"], "properties": { "type": { "type": "string", "const": "number" }, "default": { "type": "number", }, "const": { "type": "number" }, "enum": { "type": "array", "items": { "type": "number" } }, "maximum": { "type": "number", }, "exclusiveMaximum": { "type": "number", }, "minimum": { "type": "number", }, "exclusiveMinimum": { "type": "number", }, "description": { "type": "string" }, "$comment": { "type": "string" }, "title": { "type": "string", "pattern": "^[a-b]|[d-z]$" } } }, { "type": "object", "additionalProperties": false, "required": ["type"], "properties": { "type": { "type": "string", "const": "integer" }, "default": { "type": "integer", }, "const": { "type": "integer" }, "enum": { "type": "array", "items": { "type": "integer" } }, "maximum": { "type": "integer", }, "exclusiveMaximum": { "type": "integer", }, "minimum": { "type": "integer", }, "exclusiveMinimum": { "type": "integer", }, "description": { "type": "string" }, "$comment": { "type": "string" }, "title": { "type": "string", "pattern": "^[a-b]|[d-z]$" } } }, { "type": "object", "additionalProperties": false, "required": ["type"], "properties": { "type": { "type": "string", "const": "array" }, "default": { "type": "array", "items": { "type": ["string", "number", "integer"] } }, "items": { "type": "object", "required": ["type"], "additionalProperties": false, "properties": { "type": { "type": "string", "enum": ["string", "number", "integer"] }, "enum":{ "type": "array" } } }, "description": { "type": "string" }, "$comment": { "type": "string" }, "title": { "type": "string", "pattern": "^[a-b]|[d-z]$" } } } ] } } }, "type": { "type": "string", "const": "object" }, "required": { "type": "array", "items": { "type": "string" } } }, "required": ["properties", "type"] } class Test_A(EntryPoint): schema = { "$schema": "http://json-schema.org/draft-07/schema#", "type": "object", "properties": { "a_a": { "type": "number" "default": 10.1 } }, "required": ["a_a"] } from pathlib import Path from schema_entry import EntryPoint class Test_A(EntryPoint): default_config_file_paths = [ "/test_config.json", str(Path.home().joinpath(".test_config.json")), "./test_config.json", "./test_config_other.json" ] class Test_AC(EntryPoint): load_all_config_file = True default_config_file_paths = [ "./test_config.json", "./test_config1.json", "./test_other_config2.json" ] root = Test_AC() @root.regist_config_file_parser("test_other_config2.json") def _1(p: Path) -> Dict[str, Any]: with open(p) as f: temp = json.load(f) return {k.lower(): v for k, v in temp.items()} def test_other_config2_parser( p: Path) -> Dict[str, Any]: with open(p) as f: temp = json.load(f) return {k.lower(): v for k, v in temp.items()} class Test_AC(EntryPoint): load_all_config_file = True default_config_file_paths = [ "./test_config.json", "./test_config1.json", "./test_other_config2.json" ] _config_file_parser_map = { "test_other_config2.json": test_other_config2_parser } root = Test_AC() class Test_A(EntryPoint): env_prefix = "app" schema = { "$schema": "http://json-schema.org/draft-07/schema#", "type": "object", "properties": { "a_a": { "type": "number" } }, "required": ["a_a"] } class Test_A(EntryPoint): argparse_noflag = "a" argparse_check_required=True schema = { "$schema": "http://json-schema.org/draft-07/schema#", "type": "object", "properties": { "a": { "type": "number" }, "b": { "type": "number" } }, "required": ["a","b"] } root = Test_A() @root.as_main def main(a,b): print(a) print(b) class Test_A(EntryPoint): argparse_noflag = "a" argparse_check_required=True schema = { "$schema": "http://json-schema.org/draft-07/schema#", "type": "object", "properties": { "a": { "type": "number" }, "b": { "type": "number" } }, "required": ["a","b"] } def do_main(self)->None: print(self.config) print(root.config)
0.647018
0.879871
import abc import argparse from pathlib import Path from typing import Callable, Sequence, Dict, Any, Optional, Tuple, List, Union from mypy_extensions import TypedDict class ItemType(TypedDict): type: str enum: List[Union[int, float, str]] class PropertyType(TypedDict): type: str title: str description: str enum: List[Union[int, float, str]] default: Union[int, float, str, bool] items: ItemType class SchemaType(TypedDict): required: List[str] type: str properties: Dict[str, PropertyType] class EntryPointABC(abc.ABC): """程序入口类. Attributes: epilog (str): 命令行展示介绍时的epilog部分 usage (str): 命令行展示介绍时的使用方法介绍 parent (Optional["EntryPointABC"]): 入口节点的父节点.Default None schema (Optional[Dict[str, Any]]): 入口节点的设置需要满足的json schema对应字典.Default None verify_schema (bool): 获得设置后节点是否校验设置是否满足定义的json schema模式 default_config_file_paths (Sequence[str]): 设置默认的配置文件位置. config_file_only_get_need (bool): 设置是否只从配置文件中获取schema中定义的配置项 load_all_config_file (bool): 设置的默认配置文件全部加载. env_prefix (str): 设置环境变量的前缀 parse_env (bool): 展示是否解析环境变量 argparse_check_required (bool): 命令行参数是否解析必填项为必填项 argparse_noflag (Optional[str]): 命令行参数解析哪个字段为无`--`的参数 """ epilog: str usage: str _name: str parent: Optional["EntryPointABC"] schema: Optional[SchemaType] # Optional[Dict[str, Union[str, List[str], Dict[str, Dict[str, Any]]]]] verify_schema: bool default_config_file_paths: Sequence[str] config_file_only_get_need: bool load_all_config_file: bool env_prefix: Optional[str] parse_env: bool argparse_check_required: bool argparse_noflag: Optional[str] _subcmds: Dict[str, "EntryPointABC"] _main: Optional[Callable[..., None]] _config_file_parser_map: Dict[str, Callable[[Path], Dict[str, Any]]] _config: Dict[str, Any] @abc.abstractproperty def name(self) -> str: """实例的名字. 实例名字就是它的构造类名. """ @abc.abstractproperty def prog(self) -> str: """命令路径.""" @abc.abstractproperty def config(self) -> Dict[str, Any]: """执行配置. 配置为只读数据. """ @abc.abstractmethod def regist_subcmd(self, subcmd: "EntryPointABC") -> None: """注册子命令. Args: subcmd (EntryPointABC): 子命令的实例 """ @abc.abstractmethod def regist_sub(self, subcmdclz: type, **kwargs: Any) -> "EntryPointABC": '''注册子命令. Args: subcmdclz (EntryPointABC): 子命令的定义类 Returns: [EntryPointABC]: 注册类的实例 ''' @abc.abstractmethod def regist_config_file_parser(self, file_name: str) -> Callable[[Callable[[Path], Dict[str, Any]]], Callable[[Path], Dict[str, Any]]]: '''注册特定配置文件名的解析方式. Args: file_name (str): 指定文件名 Returns: Callable[[Callable[[Path], None]], Callable[[Path], None]]: 注册的解析函数 ''' @abc.abstractmethod def as_main(self, func: Callable[..., None]) -> Callable[..., None]: """注册函数在解析参数成功后执行. 执行顺序按被注册的顺序来. Args: func (Callable[[Dict[str,Any]],None]): 待执行的参数. """ @abc.abstractmethod def __call__(self, argv: Sequence[str]) -> None: """执行命令. 如果当前的命令节点不是终点(也就是下面还有子命令)则传递参数到下一级; 如果当前节点已经是终点则解析命令行参数,环境变量,指定路径后获取参数,然后构造成配置,并检验是否符合定义的json schema模式. 然后如果通过验证并有注册执行函数的话则执行注册的函数. Args: argv (Sequence[str]): [description] """ @abc.abstractmethod def pass_args_to_sub(self, parser: argparse.ArgumentParser, argv: Sequence[str]) -> None: """解析复杂命令行参数并将参数传递至下一级.""" @abc.abstractmethod def parse_commandline_args(self, parser: argparse.ArgumentParser, argv: Sequence[str]) -> Tuple[Dict[str, Any], Dict[str, Any]]: '''默认端点不会再做命令行解析,如果要做则需要在继承时覆盖此方法. Args: parser (argparse.ArgumentParser): 命令行解析对象 argv (Sequence[str]): 待解析的参数列表 Returns: Tuple[Dict[str, Any], Dict[str, Any]]: 命令行指定配置文件获得配置,命令行其他flag获得的配置 ''' @abc.abstractmethod def parse_env_args(self) -> Dict[str, Any]: """从环境变量中读取配置. 必须设定json schema,且parse_env为True才能从环境变量中读取配置. 程序会读取schema结构,并解析其中的`properties`字段.如果没有定义schema则不会解析环境变量. 如果是列表型的数据,那么使用`,`分隔,如果是object型的数据,那么使用`key:value;key:value`的形式分隔 Returns: Dict[str,Any]: 环境变量中解析出来的参数. """ @abc.abstractmethod def parse_configfile_args(self) -> Dict[str, Any]: """从指定的配置文件队列中构造配置参数. 目前只支持json格式的配置文件. 指定的配置文件路径队列中第一个json格式且存在的配置文件将被读取解析. 一旦读取到了配置后面的路径将被忽略. Args: argv (Sequence[str]): 配置的可能路径 Returns: Dict[str,Any]: 从配置文件中读取到的配置 """ @abc.abstractmethod def validat_config(self) -> bool: """校验配置. 在定义好schema,解析到config并且verify_schema为True后才会进行校验. Returns: bool: 是否通过校验 """ @abc.abstractmethod def do_main(self) -> None: """执行入口函数.""" @abc.abstractmethod def parse_args(self, parser: argparse.ArgumentParser, argv: Sequence[str]) -> None: """解析获取配置 配置的加载顺序为: 指定路径的配置文件->环境变量->命令行参数 在加载完配置后校验是否满足schema的要求. Args: parser (argparse.ArgumentParser): 命令行参数解析器 argv (Sequence[str]): 命令行参数序列 """
schema-entry
/schema_entry-0.1.5.tar.gz/schema_entry-0.1.5/schema_entry/entrypoint_base.py
entrypoint_base.py
import abc import argparse from pathlib import Path from typing import Callable, Sequence, Dict, Any, Optional, Tuple, List, Union from mypy_extensions import TypedDict class ItemType(TypedDict): type: str enum: List[Union[int, float, str]] class PropertyType(TypedDict): type: str title: str description: str enum: List[Union[int, float, str]] default: Union[int, float, str, bool] items: ItemType class SchemaType(TypedDict): required: List[str] type: str properties: Dict[str, PropertyType] class EntryPointABC(abc.ABC): """程序入口类. Attributes: epilog (str): 命令行展示介绍时的epilog部分 usage (str): 命令行展示介绍时的使用方法介绍 parent (Optional["EntryPointABC"]): 入口节点的父节点.Default None schema (Optional[Dict[str, Any]]): 入口节点的设置需要满足的json schema对应字典.Default None verify_schema (bool): 获得设置后节点是否校验设置是否满足定义的json schema模式 default_config_file_paths (Sequence[str]): 设置默认的配置文件位置. config_file_only_get_need (bool): 设置是否只从配置文件中获取schema中定义的配置项 load_all_config_file (bool): 设置的默认配置文件全部加载. env_prefix (str): 设置环境变量的前缀 parse_env (bool): 展示是否解析环境变量 argparse_check_required (bool): 命令行参数是否解析必填项为必填项 argparse_noflag (Optional[str]): 命令行参数解析哪个字段为无`--`的参数 """ epilog: str usage: str _name: str parent: Optional["EntryPointABC"] schema: Optional[SchemaType] # Optional[Dict[str, Union[str, List[str], Dict[str, Dict[str, Any]]]]] verify_schema: bool default_config_file_paths: Sequence[str] config_file_only_get_need: bool load_all_config_file: bool env_prefix: Optional[str] parse_env: bool argparse_check_required: bool argparse_noflag: Optional[str] _subcmds: Dict[str, "EntryPointABC"] _main: Optional[Callable[..., None]] _config_file_parser_map: Dict[str, Callable[[Path], Dict[str, Any]]] _config: Dict[str, Any] @abc.abstractproperty def name(self) -> str: """实例的名字. 实例名字就是它的构造类名. """ @abc.abstractproperty def prog(self) -> str: """命令路径.""" @abc.abstractproperty def config(self) -> Dict[str, Any]: """执行配置. 配置为只读数据. """ @abc.abstractmethod def regist_subcmd(self, subcmd: "EntryPointABC") -> None: """注册子命令. Args: subcmd (EntryPointABC): 子命令的实例 """ @abc.abstractmethod def regist_sub(self, subcmdclz: type, **kwargs: Any) -> "EntryPointABC": '''注册子命令. Args: subcmdclz (EntryPointABC): 子命令的定义类 Returns: [EntryPointABC]: 注册类的实例 ''' @abc.abstractmethod def regist_config_file_parser(self, file_name: str) -> Callable[[Callable[[Path], Dict[str, Any]]], Callable[[Path], Dict[str, Any]]]: '''注册特定配置文件名的解析方式. Args: file_name (str): 指定文件名 Returns: Callable[[Callable[[Path], None]], Callable[[Path], None]]: 注册的解析函数 ''' @abc.abstractmethod def as_main(self, func: Callable[..., None]) -> Callable[..., None]: """注册函数在解析参数成功后执行. 执行顺序按被注册的顺序来. Args: func (Callable[[Dict[str,Any]],None]): 待执行的参数. """ @abc.abstractmethod def __call__(self, argv: Sequence[str]) -> None: """执行命令. 如果当前的命令节点不是终点(也就是下面还有子命令)则传递参数到下一级; 如果当前节点已经是终点则解析命令行参数,环境变量,指定路径后获取参数,然后构造成配置,并检验是否符合定义的json schema模式. 然后如果通过验证并有注册执行函数的话则执行注册的函数. Args: argv (Sequence[str]): [description] """ @abc.abstractmethod def pass_args_to_sub(self, parser: argparse.ArgumentParser, argv: Sequence[str]) -> None: """解析复杂命令行参数并将参数传递至下一级.""" @abc.abstractmethod def parse_commandline_args(self, parser: argparse.ArgumentParser, argv: Sequence[str]) -> Tuple[Dict[str, Any], Dict[str, Any]]: '''默认端点不会再做命令行解析,如果要做则需要在继承时覆盖此方法. Args: parser (argparse.ArgumentParser): 命令行解析对象 argv (Sequence[str]): 待解析的参数列表 Returns: Tuple[Dict[str, Any], Dict[str, Any]]: 命令行指定配置文件获得配置,命令行其他flag获得的配置 ''' @abc.abstractmethod def parse_env_args(self) -> Dict[str, Any]: """从环境变量中读取配置. 必须设定json schema,且parse_env为True才能从环境变量中读取配置. 程序会读取schema结构,并解析其中的`properties`字段.如果没有定义schema则不会解析环境变量. 如果是列表型的数据,那么使用`,`分隔,如果是object型的数据,那么使用`key:value;key:value`的形式分隔 Returns: Dict[str,Any]: 环境变量中解析出来的参数. """ @abc.abstractmethod def parse_configfile_args(self) -> Dict[str, Any]: """从指定的配置文件队列中构造配置参数. 目前只支持json格式的配置文件. 指定的配置文件路径队列中第一个json格式且存在的配置文件将被读取解析. 一旦读取到了配置后面的路径将被忽略. Args: argv (Sequence[str]): 配置的可能路径 Returns: Dict[str,Any]: 从配置文件中读取到的配置 """ @abc.abstractmethod def validat_config(self) -> bool: """校验配置. 在定义好schema,解析到config并且verify_schema为True后才会进行校验. Returns: bool: 是否通过校验 """ @abc.abstractmethod def do_main(self) -> None: """执行入口函数.""" @abc.abstractmethod def parse_args(self, parser: argparse.ArgumentParser, argv: Sequence[str]) -> None: """解析获取配置 配置的加载顺序为: 指定路径的配置文件->环境变量->命令行参数 在加载完配置后校验是否满足schema的要求. Args: parser (argparse.ArgumentParser): 命令行参数解析器 argv (Sequence[str]): 命令行参数序列 """
0.70416
0.396535
import os import sys import json import warnings import argparse import functools from copy import deepcopy from pathlib import Path from typing import Callable, Sequence, Dict, List, Any, Tuple, Optional from jsonschema import validate from yaml import load as yaml_load from .protocol import SUPPORT_SCHEMA from .utils import get_parent_tree, parse_value_string_by_schema, parse_schema_as_cmd from .entrypoint_base import SchemaType, PropertyType, EntryPointABC class EntryPoint(EntryPointABC): epilog = "" usage = "" _name = "" parent = None schema = None verify_schema = True default_config_file_paths: List[str] = [] config_file_only_get_need = True load_all_config_file = False env_prefix = None parse_env = True argparse_check_required = False argparse_noflag: Optional[str] = None _config_file_parser_map: Dict[str, Callable[[Path], Dict[str, Any]]] = {} def _check_schema(self) -> None: if self.schema is not None: try: validate(instance=self.schema, schema=SUPPORT_SCHEMA) except Exception as e: warnings.warn(str(e)) raise e # sys.exit(1) def __init__(self, *, description: Optional[str] = None, epilog: Optional[str] = None, usage: Optional[str] = None, name: Optional[str] = None, schema: Optional[SchemaType] = None, verify_schema: Optional[bool] = None, default_config_file_paths: Optional[List[str]] = None, config_file_only_get_need: Optional[bool] = None, load_all_config_file: Optional[bool] = None, env_prefix: Optional[str] = None, parse_env: Optional[bool] = None, argparse_check_required: Optional[bool] = None, argparse_noflag: Optional[str] = None, config_file_parser_map: Optional[Dict[str, Callable[[Path], Dict[str, Any]]]] = None, main: Optional[Callable[..., None]] = None ) -> None: """初始化时定义配置. 使用这一特性我们就可以不用继承也可以定义节点了.这一特性比较适合用于那些非叶子节点. Args: description (Optional[str], optional): 节点命令行的描述信息. Defaults to None. epilog (Optional[str], optional): 节点命令行的epilog信息. Defaults to None. usage (Optional[str], optional): 节点命令行的usage信息. Defaults to None. name (Optional[str], optional): 节点的name属性. Defaults to None. schema (Optional[Dict[str, Union[str, List[str], Dict[str, Dict[str, Any]]]]], optional): 节点的校验json schema. Defaults to None. verify_schema (Optional[bool], optional): 配置是否校验schema. Defaults to None. default_config_file_paths (Optional[List[str]], optional): 默认配置文件路径列表. Defaults to None. config_file_only_get_need (Optional[bool], optional): 设置是否在加载配置文件时只获取schema中定义的内容. Defaults to None. load_all_config_file (Optional[bool], optional): 是否尝试加载全部指定的配置文件路径下的配置文件. Defaults to None. env_prefix (Optional[str], optional): 设置环境变量的前缀. Defaults to None. parse_env (Optional[bool], optional): 设置是否加载环境变量. Defaults to None. argparse_check_required (Optional[bool], optional): 设置是否构造叶子节点命令行时指定schema中定义为必须的参数项为必填项. Defaults to None. argparse_noflag (Optional[str], optional): 指定命令行中noflag的参数. Defaults to None. config_file_parser_map (Optional[Dict[str, Callable[[Path], Dict[str, Any]]]], optional): 设置自定义配置文件名的解析映射. Defaults to None. main (Optional[Callable[..., None]], optional): 设置作为入口的执行函数. Defaults to None. """ if description is not None: self.__doc__ = description if epilog is not None: self.epilog = epilog if usage is not None: self.usage = usage if name is not None: self._name = name if schema is not None: self.schema = schema if verify_schema is not None: self.verify_schema = verify_schema if default_config_file_paths is not None: self.default_config_file_paths = default_config_file_paths if config_file_only_get_need is not None: self.config_file_only_get_need = config_file_only_get_need if load_all_config_file is not None: self.load_all_config_file = load_all_config_file if env_prefix is not None: self.env_prefix = env_prefix if parse_env is not None: self.parse_env = parse_env if argparse_check_required is not None: self.argparse_check_required = argparse_check_required if argparse_noflag is not None: self.argparse_noflag = argparse_noflag if config_file_parser_map is not None: self._config_file_parser_map = config_file_parser_map if config_file_parser_map is not None: self._config_file_parser_map = config_file_parser_map if main is not None: self._main = main else: self._main = None self._check_schema() self._subcmds = {} self._config = {} @ property def name(self) -> str: return self._name if self._name else self.__class__.__name__.lower() @ property def prog(self) -> str: parent_list = get_parent_tree(self) parent_list.append(self.name) return " ".join(parent_list) @ property def config(self) -> Dict[str, Any]: return deepcopy(self._config) def regist_subcmd(self, subcmd: EntryPointABC) -> None: subcmd.parent = self self._subcmds[subcmd.name] = subcmd def regist_sub(self, subcmdclz: type, **kwargs: Any) -> EntryPointABC: instance = subcmdclz(**kwargs) self.regist_subcmd(instance) return instance def as_main(self, func: Callable[..., None]) -> Callable[..., None]: @ functools.wraps(func) def warp(*args: Any, **kwargs: Any) -> None: return func(*args, **kwargs) self._main = warp return warp def __call__(self, argv: Sequence[str]) -> None: if not self.usage: if len(self._subcmds) == 0: self.usage = f"{self.prog} [options]" else: self.usage = f"{self.prog} [subcmd]" parser = argparse.ArgumentParser( prog=self.prog, epilog=self.epilog, description=self.__doc__, usage=self.usage) if len(self._subcmds) != 0: if self.epilog: epilog = self.epilog else: epilog = "子命令描述:\n" rows = [] for subcmd, ins in self._subcmds.items(): if ins.__doc__ and isinstance(ins.__doc__, str): desc = ins.__doc__.splitlines()[0] rows.append(f"{subcmd}\t{desc}") else: rows.append(f"{subcmd}") epilog += "\n".join(rows) parser = argparse.ArgumentParser( prog=self.prog, epilog=epilog, description=self.__doc__, usage=self.usage, formatter_class=argparse.RawDescriptionHelpFormatter) self.pass_args_to_sub(parser, argv) else: parser = argparse.ArgumentParser( prog=self.prog, epilog=self.epilog, description=self.__doc__, usage=self.usage) self.parse_args(parser, argv) def pass_args_to_sub(self, parser: argparse.ArgumentParser, argv: Sequence[str]) -> None: scmds = list(self._subcmds.keys()) scmdss = ",".join(scmds) parser.add_argument('subcmd', help=f'执行子命令,可选的子命有{scmdss}') args = parser.parse_args(argv[0:1]) if self._subcmds.get(args.subcmd): self._subcmds[args.subcmd](argv[1:]) else: print(f'未知的子命令 `{argv[0]}`') parser.print_help() sys.exit(1) def _make_commandline_parse_by_schema(self, parser: argparse.ArgumentParser) -> argparse.ArgumentParser: if self.schema is None: raise AttributeError("此处不该被执行") else: properties: Dict[str, PropertyType] = self.schema.get("properties", {}) requireds: List[str] = self.schema.get("required", []) for key, prop in properties.items(): required = False noflag = False if self.argparse_noflag == key: noflag = True else: if self.argparse_check_required and key in requireds: required = True parser = parse_schema_as_cmd(key, prop, parser, required=required, noflag=noflag) return parser def _parse_commandline_args_by_schema(self, parser: argparse.ArgumentParser, argv: Sequence[str]) -> Tuple[Dict[str, Any], Dict[str, Any]]: if self.schema: parser = self._make_commandline_parse_by_schema(parser) args = parser.parse_args(argv) config_file_res: Dict[str, Any] = {} cmd_res: Dict[str, Any] = {} for key, value in vars(args).items(): if key == "config": if value: p = Path(value) if not p.is_file(): warnings.warn(f"{str(p)}不是文件") continue if p.suffix == ".json": config_file_res = self.parse_json_configfile_args(p) elif p.suffix == ".yml": config_file_res = self.parse_yaml_configfile_args(p) else: warnings.warn(f"跳过不支持的配置格式的文件{str(p)}") continue else: continue else: try: if self.schema is not None and self.schema.get("properties") is not None: if self.schema["properties"].get(key) is not None and self.schema["properties"][key]["type"] == "boolean": if value is False: if self.schema.get("required") is None: value = None else: if key not in self.schema["required"]: value = None except Exception as e: warnings.warn(str(e)) finally: if value is not None: cmd_res.update({ key: value }) return config_file_res, cmd_res def parse_commandline_args(self, parser: argparse.ArgumentParser, argv: Sequence[str]) -> Tuple[Dict[str, Any], Dict[str, Any]]: """解析命令行获得参数 Args: parser (argparse.ArgumentParser): 命令行解析器 argv (Sequence[str]): 命令行参数序列 Returns: Tuple[Dict[str, Any], Dict[str, Any]]: 命令行指定配置文件获得的参数,其他命令行参数获得的参数 """ parser.add_argument("-c", "--config", type=str, help='指定配置文件位置') return self._parse_commandline_args_by_schema(parser, argv) def _parse_env_args(self, key: str, info: PropertyType) -> Any: if self.env_prefix: env_prefix = self.env_prefix.upper() else: env_prefix = self.prog.replace(" ", "_").upper() key = key.replace("-", "_") env = os.environ.get(f"{env_prefix}_{key.upper()}") if not env: env = None else: env = parse_value_string_by_schema(info, env) return env def parse_env_args(self) -> Dict[str, Any]: properties: Dict[str, Any] if self.schema and self.parse_env: properties = self.schema.get("properties", {}) result = {} for key, info in properties.items(): value = self._parse_env_args(key, info) if value is not None: result.update({ key: value }) return result else: return {} def file_config_filter(self, file_param: Dict[str, Any]) -> Dict[str, Any]: """根据条件筛选从文件中获得的参数. Args: file_param (Dict[str, Any]): 文件中获得的全量参数 Returns: Dict[str, Any]: 筛选过后的参数 """ if self.config_file_only_get_need and self.schema is not None and self.schema.get("properties") is not None: needs = list(self.schema["properties"].keys()) res = {} for key in needs: if file_param.get(key) is not None: res[key] = file_param.get(key) return res return file_param def parse_json_configfile_args(self, p: Path) -> Dict[str, Any]: with open(p, "r", encoding="utf-8") as f: result = json.load(f) return result def parse_yaml_configfile_args(self, p: Path) -> Dict[str, Any]: with open(p, "r", encoding="utf-8") as f: result = yaml_load(f) return result def regist_config_file_parser(self, file_name: str) -> Callable[[Callable[[Path], Dict[str, Any]]], Callable[[Path], Dict[str, Any]]]: def decorate(func: Callable[[Path], Dict[str, Any]]) -> Callable[[Path], Dict[str, Any]]: @functools.wraps(func) def wrap(p: Path) -> Dict[str, Any]: return func(p) self._config_file_parser_map[file_name] = func return wrap return decorate def parse_configfile_args(self) -> Dict[str, Any]: if not self.default_config_file_paths: return {} if not self.load_all_config_file: for p_str in self.default_config_file_paths: p = Path(p_str) if p.is_file(): parfunc = self._config_file_parser_map.get(p.name) if parfunc: return self.file_config_filter(parfunc(p)) if p.suffix == ".json": return self.file_config_filter(self.parse_json_configfile_args(p)) elif p.suffix == ".yml": return self.file_config_filter(self.parse_yaml_configfile_args(p)) else: warnings.warn(f"跳过不支持的配置格式的文件{str(p)}") else: warnings.warn("配置文件的指定路径都不可用.") return {} else: result = {} for p_str in self.default_config_file_paths: p = Path(p_str) if p.is_file(): parfunc = self._config_file_parser_map.get(p.name) if parfunc: result.update(self.file_config_filter(parfunc(p))) else: if p.suffix == ".json": result.update(self.file_config_filter(self.parse_json_configfile_args(p))) elif p.suffix == ".yml": result.update(self.file_config_filter(self.parse_yaml_configfile_args(p))) else: warnings.warn(f"跳过不支持的配置格式的文件{str(p)}") return result def validat_config(self) -> bool: if self.verify_schema: if self.schema and self.config: try: validate(instance=self.config, schema=self.schema) except Exception as e: warnings.warn(str(e)) return False else: return True else: warnings.warn("必须有schema和config才能校验.") return True else: return True def do_main(self) -> None: if self._main is None: print("未注册main函数") sys.exit(1) else: config = self.config self._main(**config) def parse_default(self) -> Dict[str, Any]: if self.schema: prop = self.schema.get("properties") if prop: return {key: sch.get("default") for key, sch in prop.items() if sch.get("default")} return {} return {} def parse_args(self, parser: argparse.ArgumentParser, argv: Sequence[str]) -> None: """解析获取配置 配置的加载顺序为: 指定路径的配置文件->环境变量->命令行参数 在加载完配置后校验是否满足schema的要求. Args: parser (argparse.ArgumentParser): 命令行参数解析器 argv (Sequence[str]): 命令行参数序列 """ # 默认配置 default_config = self.parse_default() self._config.update(default_config) # 默认配置文件配置 file_config = self.parse_configfile_args() self._config.update(file_config) # 命令行指定配置文件配置 cmd_config_file_config, cmd_config = self.parse_commandline_args(parser, argv) self._config.update(cmd_config_file_config) # 环境变量配置 env_config = self.parse_env_args() self._config.update(env_config) # 命令行指定配置 self._config.update(cmd_config) if self.validat_config(): self.do_main() else: sys.exit(1)
schema-entry
/schema_entry-0.1.5.tar.gz/schema_entry-0.1.5/schema_entry/entrypoint.py
entrypoint.py
import os import sys import json import warnings import argparse import functools from copy import deepcopy from pathlib import Path from typing import Callable, Sequence, Dict, List, Any, Tuple, Optional from jsonschema import validate from yaml import load as yaml_load from .protocol import SUPPORT_SCHEMA from .utils import get_parent_tree, parse_value_string_by_schema, parse_schema_as_cmd from .entrypoint_base import SchemaType, PropertyType, EntryPointABC class EntryPoint(EntryPointABC): epilog = "" usage = "" _name = "" parent = None schema = None verify_schema = True default_config_file_paths: List[str] = [] config_file_only_get_need = True load_all_config_file = False env_prefix = None parse_env = True argparse_check_required = False argparse_noflag: Optional[str] = None _config_file_parser_map: Dict[str, Callable[[Path], Dict[str, Any]]] = {} def _check_schema(self) -> None: if self.schema is not None: try: validate(instance=self.schema, schema=SUPPORT_SCHEMA) except Exception as e: warnings.warn(str(e)) raise e # sys.exit(1) def __init__(self, *, description: Optional[str] = None, epilog: Optional[str] = None, usage: Optional[str] = None, name: Optional[str] = None, schema: Optional[SchemaType] = None, verify_schema: Optional[bool] = None, default_config_file_paths: Optional[List[str]] = None, config_file_only_get_need: Optional[bool] = None, load_all_config_file: Optional[bool] = None, env_prefix: Optional[str] = None, parse_env: Optional[bool] = None, argparse_check_required: Optional[bool] = None, argparse_noflag: Optional[str] = None, config_file_parser_map: Optional[Dict[str, Callable[[Path], Dict[str, Any]]]] = None, main: Optional[Callable[..., None]] = None ) -> None: """初始化时定义配置. 使用这一特性我们就可以不用继承也可以定义节点了.这一特性比较适合用于那些非叶子节点. Args: description (Optional[str], optional): 节点命令行的描述信息. Defaults to None. epilog (Optional[str], optional): 节点命令行的epilog信息. Defaults to None. usage (Optional[str], optional): 节点命令行的usage信息. Defaults to None. name (Optional[str], optional): 节点的name属性. Defaults to None. schema (Optional[Dict[str, Union[str, List[str], Dict[str, Dict[str, Any]]]]], optional): 节点的校验json schema. Defaults to None. verify_schema (Optional[bool], optional): 配置是否校验schema. Defaults to None. default_config_file_paths (Optional[List[str]], optional): 默认配置文件路径列表. Defaults to None. config_file_only_get_need (Optional[bool], optional): 设置是否在加载配置文件时只获取schema中定义的内容. Defaults to None. load_all_config_file (Optional[bool], optional): 是否尝试加载全部指定的配置文件路径下的配置文件. Defaults to None. env_prefix (Optional[str], optional): 设置环境变量的前缀. Defaults to None. parse_env (Optional[bool], optional): 设置是否加载环境变量. Defaults to None. argparse_check_required (Optional[bool], optional): 设置是否构造叶子节点命令行时指定schema中定义为必须的参数项为必填项. Defaults to None. argparse_noflag (Optional[str], optional): 指定命令行中noflag的参数. Defaults to None. config_file_parser_map (Optional[Dict[str, Callable[[Path], Dict[str, Any]]]], optional): 设置自定义配置文件名的解析映射. Defaults to None. main (Optional[Callable[..., None]], optional): 设置作为入口的执行函数. Defaults to None. """ if description is not None: self.__doc__ = description if epilog is not None: self.epilog = epilog if usage is not None: self.usage = usage if name is not None: self._name = name if schema is not None: self.schema = schema if verify_schema is not None: self.verify_schema = verify_schema if default_config_file_paths is not None: self.default_config_file_paths = default_config_file_paths if config_file_only_get_need is not None: self.config_file_only_get_need = config_file_only_get_need if load_all_config_file is not None: self.load_all_config_file = load_all_config_file if env_prefix is not None: self.env_prefix = env_prefix if parse_env is not None: self.parse_env = parse_env if argparse_check_required is not None: self.argparse_check_required = argparse_check_required if argparse_noflag is not None: self.argparse_noflag = argparse_noflag if config_file_parser_map is not None: self._config_file_parser_map = config_file_parser_map if config_file_parser_map is not None: self._config_file_parser_map = config_file_parser_map if main is not None: self._main = main else: self._main = None self._check_schema() self._subcmds = {} self._config = {} @ property def name(self) -> str: return self._name if self._name else self.__class__.__name__.lower() @ property def prog(self) -> str: parent_list = get_parent_tree(self) parent_list.append(self.name) return " ".join(parent_list) @ property def config(self) -> Dict[str, Any]: return deepcopy(self._config) def regist_subcmd(self, subcmd: EntryPointABC) -> None: subcmd.parent = self self._subcmds[subcmd.name] = subcmd def regist_sub(self, subcmdclz: type, **kwargs: Any) -> EntryPointABC: instance = subcmdclz(**kwargs) self.regist_subcmd(instance) return instance def as_main(self, func: Callable[..., None]) -> Callable[..., None]: @ functools.wraps(func) def warp(*args: Any, **kwargs: Any) -> None: return func(*args, **kwargs) self._main = warp return warp def __call__(self, argv: Sequence[str]) -> None: if not self.usage: if len(self._subcmds) == 0: self.usage = f"{self.prog} [options]" else: self.usage = f"{self.prog} [subcmd]" parser = argparse.ArgumentParser( prog=self.prog, epilog=self.epilog, description=self.__doc__, usage=self.usage) if len(self._subcmds) != 0: if self.epilog: epilog = self.epilog else: epilog = "子命令描述:\n" rows = [] for subcmd, ins in self._subcmds.items(): if ins.__doc__ and isinstance(ins.__doc__, str): desc = ins.__doc__.splitlines()[0] rows.append(f"{subcmd}\t{desc}") else: rows.append(f"{subcmd}") epilog += "\n".join(rows) parser = argparse.ArgumentParser( prog=self.prog, epilog=epilog, description=self.__doc__, usage=self.usage, formatter_class=argparse.RawDescriptionHelpFormatter) self.pass_args_to_sub(parser, argv) else: parser = argparse.ArgumentParser( prog=self.prog, epilog=self.epilog, description=self.__doc__, usage=self.usage) self.parse_args(parser, argv) def pass_args_to_sub(self, parser: argparse.ArgumentParser, argv: Sequence[str]) -> None: scmds = list(self._subcmds.keys()) scmdss = ",".join(scmds) parser.add_argument('subcmd', help=f'执行子命令,可选的子命有{scmdss}') args = parser.parse_args(argv[0:1]) if self._subcmds.get(args.subcmd): self._subcmds[args.subcmd](argv[1:]) else: print(f'未知的子命令 `{argv[0]}`') parser.print_help() sys.exit(1) def _make_commandline_parse_by_schema(self, parser: argparse.ArgumentParser) -> argparse.ArgumentParser: if self.schema is None: raise AttributeError("此处不该被执行") else: properties: Dict[str, PropertyType] = self.schema.get("properties", {}) requireds: List[str] = self.schema.get("required", []) for key, prop in properties.items(): required = False noflag = False if self.argparse_noflag == key: noflag = True else: if self.argparse_check_required and key in requireds: required = True parser = parse_schema_as_cmd(key, prop, parser, required=required, noflag=noflag) return parser def _parse_commandline_args_by_schema(self, parser: argparse.ArgumentParser, argv: Sequence[str]) -> Tuple[Dict[str, Any], Dict[str, Any]]: if self.schema: parser = self._make_commandline_parse_by_schema(parser) args = parser.parse_args(argv) config_file_res: Dict[str, Any] = {} cmd_res: Dict[str, Any] = {} for key, value in vars(args).items(): if key == "config": if value: p = Path(value) if not p.is_file(): warnings.warn(f"{str(p)}不是文件") continue if p.suffix == ".json": config_file_res = self.parse_json_configfile_args(p) elif p.suffix == ".yml": config_file_res = self.parse_yaml_configfile_args(p) else: warnings.warn(f"跳过不支持的配置格式的文件{str(p)}") continue else: continue else: try: if self.schema is not None and self.schema.get("properties") is not None: if self.schema["properties"].get(key) is not None and self.schema["properties"][key]["type"] == "boolean": if value is False: if self.schema.get("required") is None: value = None else: if key not in self.schema["required"]: value = None except Exception as e: warnings.warn(str(e)) finally: if value is not None: cmd_res.update({ key: value }) return config_file_res, cmd_res def parse_commandline_args(self, parser: argparse.ArgumentParser, argv: Sequence[str]) -> Tuple[Dict[str, Any], Dict[str, Any]]: """解析命令行获得参数 Args: parser (argparse.ArgumentParser): 命令行解析器 argv (Sequence[str]): 命令行参数序列 Returns: Tuple[Dict[str, Any], Dict[str, Any]]: 命令行指定配置文件获得的参数,其他命令行参数获得的参数 """ parser.add_argument("-c", "--config", type=str, help='指定配置文件位置') return self._parse_commandline_args_by_schema(parser, argv) def _parse_env_args(self, key: str, info: PropertyType) -> Any: if self.env_prefix: env_prefix = self.env_prefix.upper() else: env_prefix = self.prog.replace(" ", "_").upper() key = key.replace("-", "_") env = os.environ.get(f"{env_prefix}_{key.upper()}") if not env: env = None else: env = parse_value_string_by_schema(info, env) return env def parse_env_args(self) -> Dict[str, Any]: properties: Dict[str, Any] if self.schema and self.parse_env: properties = self.schema.get("properties", {}) result = {} for key, info in properties.items(): value = self._parse_env_args(key, info) if value is not None: result.update({ key: value }) return result else: return {} def file_config_filter(self, file_param: Dict[str, Any]) -> Dict[str, Any]: """根据条件筛选从文件中获得的参数. Args: file_param (Dict[str, Any]): 文件中获得的全量参数 Returns: Dict[str, Any]: 筛选过后的参数 """ if self.config_file_only_get_need and self.schema is not None and self.schema.get("properties") is not None: needs = list(self.schema["properties"].keys()) res = {} for key in needs: if file_param.get(key) is not None: res[key] = file_param.get(key) return res return file_param def parse_json_configfile_args(self, p: Path) -> Dict[str, Any]: with open(p, "r", encoding="utf-8") as f: result = json.load(f) return result def parse_yaml_configfile_args(self, p: Path) -> Dict[str, Any]: with open(p, "r", encoding="utf-8") as f: result = yaml_load(f) return result def regist_config_file_parser(self, file_name: str) -> Callable[[Callable[[Path], Dict[str, Any]]], Callable[[Path], Dict[str, Any]]]: def decorate(func: Callable[[Path], Dict[str, Any]]) -> Callable[[Path], Dict[str, Any]]: @functools.wraps(func) def wrap(p: Path) -> Dict[str, Any]: return func(p) self._config_file_parser_map[file_name] = func return wrap return decorate def parse_configfile_args(self) -> Dict[str, Any]: if not self.default_config_file_paths: return {} if not self.load_all_config_file: for p_str in self.default_config_file_paths: p = Path(p_str) if p.is_file(): parfunc = self._config_file_parser_map.get(p.name) if parfunc: return self.file_config_filter(parfunc(p)) if p.suffix == ".json": return self.file_config_filter(self.parse_json_configfile_args(p)) elif p.suffix == ".yml": return self.file_config_filter(self.parse_yaml_configfile_args(p)) else: warnings.warn(f"跳过不支持的配置格式的文件{str(p)}") else: warnings.warn("配置文件的指定路径都不可用.") return {} else: result = {} for p_str in self.default_config_file_paths: p = Path(p_str) if p.is_file(): parfunc = self._config_file_parser_map.get(p.name) if parfunc: result.update(self.file_config_filter(parfunc(p))) else: if p.suffix == ".json": result.update(self.file_config_filter(self.parse_json_configfile_args(p))) elif p.suffix == ".yml": result.update(self.file_config_filter(self.parse_yaml_configfile_args(p))) else: warnings.warn(f"跳过不支持的配置格式的文件{str(p)}") return result def validat_config(self) -> bool: if self.verify_schema: if self.schema and self.config: try: validate(instance=self.config, schema=self.schema) except Exception as e: warnings.warn(str(e)) return False else: return True else: warnings.warn("必须有schema和config才能校验.") return True else: return True def do_main(self) -> None: if self._main is None: print("未注册main函数") sys.exit(1) else: config = self.config self._main(**config) def parse_default(self) -> Dict[str, Any]: if self.schema: prop = self.schema.get("properties") if prop: return {key: sch.get("default") for key, sch in prop.items() if sch.get("default")} return {} return {} def parse_args(self, parser: argparse.ArgumentParser, argv: Sequence[str]) -> None: """解析获取配置 配置的加载顺序为: 指定路径的配置文件->环境变量->命令行参数 在加载完配置后校验是否满足schema的要求. Args: parser (argparse.ArgumentParser): 命令行参数解析器 argv (Sequence[str]): 命令行参数序列 """ # 默认配置 default_config = self.parse_default() self._config.update(default_config) # 默认配置文件配置 file_config = self.parse_configfile_args() self._config.update(file_config) # 命令行指定配置文件配置 cmd_config_file_config, cmd_config = self.parse_commandline_args(parser, argv) self._config.update(cmd_config_file_config) # 环境变量配置 env_config = self.parse_env_args() self._config.update(env_config) # 命令行指定配置 self._config.update(cmd_config) if self.validat_config(): self.do_main() else: sys.exit(1)
0.511229
0.127707
import warnings import argparse from typing import List, Dict, Any, Optional from .entrypoint_base import EntryPointABC, PropertyType, ItemType def _get_parent_tree(c: EntryPointABC, result: List[str]) -> None: if c.parent: result.append(c.parent.name) _get_parent_tree(c.parent, result) else: return def get_parent_tree(c: EntryPointABC) -> List[str]: """获取父节点树. Args: c (EntryPoint): 节点类 Returns: List[str]: 父节点树 """ result_list: List[str] = [] _get_parent_tree(c, result_list) return list(reversed(result_list)) def parse_value_string_by_schema(schema: Any, value_str: str) -> Any: """根据schema的定义解析字符串的值. Args: schema (Dict[str, Any]): 描述字符串值的json schema字典. value_str (str): 待解析的字符串. Returns: Any: 字段的值 """ t = schema.get("type") if not t: return value_str elif t == "string": return value_str elif t == "number": return float(value_str) elif t == "integer": return int(value_str) elif t == "boolean": value_u = value_str.upper() return True if value_u == "TRUE" else False elif t == "array": item_info = schema.get("items") if not item_info: return value_str.split(",") else: return [parse_value_string_by_schema(item_info, i) for i in value_str.split(",")] else: warnings.warn(f"不支持的数据类型{t}") return value_str def _argparse_base_handdler(_type: Any, key: str, schema: PropertyType, parser: argparse.ArgumentParser, *, required: bool = False, noflag: bool = False) -> argparse.ArgumentParser: kwargs: Dict[str, Any] = {} kwargs.update({ "type": _type }) _enum = schema.get("enum") if _enum: kwargs.update({ "choices": _enum }) _description = schema.get("description") if _description: kwargs.update({ "help": _description }) if required: kwargs.update({ "required": required }) if noflag: parser.add_argument(f"{key}", **kwargs) else: if schema.get("title"): short = schema["title"][0] parser.add_argument(f"-{short}", f"--{key}", **kwargs) else: parser.add_argument(f"--{key}", **kwargs) return parser def _argparse_number_handdler(key: str, schema: PropertyType, parser: argparse.ArgumentParser, *, required: bool = False, noflag: bool = False) -> argparse.ArgumentParser: return _argparse_base_handdler(float, key, schema, parser, required=required, noflag=noflag) def _argparse_string_handdler(key: str, schema: PropertyType, parser: argparse.ArgumentParser, *, required: bool = False, noflag: bool = False) -> argparse.ArgumentParser: return _argparse_base_handdler(str, key, schema, parser, required=required, noflag=noflag) def _argparse_integer_handdler(key: str, schema: PropertyType, parser: argparse.ArgumentParser, *, required: bool = False, noflag: bool = False) -> argparse.ArgumentParser: return _argparse_base_handdler(int, key, schema, parser, required=required, noflag=noflag) def _argparse_boolean_handdler(key: str, schema: PropertyType, parser: argparse.ArgumentParser) -> argparse.ArgumentParser: kwargs: Dict[str, Any] = {} kwargs.update({ "action": "store_true" }) _description = schema.get("description") if _description: kwargs.update({ "help": _description }) if schema.get("title"): short = schema["title"][0] parser.add_argument(f"-{short}", f"--{key}", **kwargs) else: parser.add_argument(f"--{key}", **kwargs) return parser def _argparse_array_handdler(key: str, schema: PropertyType, parser: argparse.ArgumentParser, *, noflag: bool = False) -> argparse.ArgumentParser: sub_schema: Optional[ItemType] = schema.get("items") if sub_schema is None: print("array params must have sub schema items") return parser sub_type = sub_schema.get("type") if sub_type not in ("number", "string", "integer"): print("array params item type must in number,string,integer") return parser kwargs: Dict[str, Any] = {} if sub_type == "number": kwargs.update({ "type": float }) elif sub_type == "string": kwargs.update({ "type": str }) elif sub_type == "integer": kwargs.update({ "type": int }) _default = schema.get("default") if _default: kwargs.update({ "default": _default }) _description = schema.get("description") if _description: kwargs.update({ "help": _description }) _enum = sub_schema.get("enum") if _enum: kwargs.update({ "choices": _enum }) if noflag: kwargs.update({ "nargs": "+" }) parser.add_argument(f"{key}", **kwargs) else: kwargs.update({ "action": "append" }) if schema.get("title"): short = schema["title"][0] parser.add_argument(f"-{short}", f"--{key}", **kwargs) else: parser.add_argument(f"--{key}", **kwargs) return parser def parse_schema_as_cmd(key: str, schema: PropertyType, parser: argparse.ArgumentParser, *, required: bool = False, noflag: bool = False) -> argparse.ArgumentParser: """根据字段的模式解析命令行行为 Args: key (str): 字段名 schema (PropertyType): 字段的模式 parser (argparse.ArgumentParser): 添加命令行解析的解析器 Returns: argparse.ArgumentParser: 命令行的解析器 """ _type = schema.get("type") if not _type: return parser if not noflag: key = key.replace("_", "-") if _type == "number": return _argparse_number_handdler(key, schema, parser, required=required, noflag=noflag) elif _type == "string": return _argparse_string_handdler(key, schema, parser, required=required, noflag=noflag) elif _type == "integer": return _argparse_integer_handdler(key, schema, parser, required=required, noflag=noflag) elif _type == "boolean": return _argparse_boolean_handdler(key, schema, parser) elif _type == "array": return _argparse_array_handdler(key, schema, parser, noflag=noflag) else: print(f"未支持的类型{_type}") return parser
schema-entry
/schema_entry-0.1.5.tar.gz/schema_entry-0.1.5/schema_entry/utils.py
utils.py
import warnings import argparse from typing import List, Dict, Any, Optional from .entrypoint_base import EntryPointABC, PropertyType, ItemType def _get_parent_tree(c: EntryPointABC, result: List[str]) -> None: if c.parent: result.append(c.parent.name) _get_parent_tree(c.parent, result) else: return def get_parent_tree(c: EntryPointABC) -> List[str]: """获取父节点树. Args: c (EntryPoint): 节点类 Returns: List[str]: 父节点树 """ result_list: List[str] = [] _get_parent_tree(c, result_list) return list(reversed(result_list)) def parse_value_string_by_schema(schema: Any, value_str: str) -> Any: """根据schema的定义解析字符串的值. Args: schema (Dict[str, Any]): 描述字符串值的json schema字典. value_str (str): 待解析的字符串. Returns: Any: 字段的值 """ t = schema.get("type") if not t: return value_str elif t == "string": return value_str elif t == "number": return float(value_str) elif t == "integer": return int(value_str) elif t == "boolean": value_u = value_str.upper() return True if value_u == "TRUE" else False elif t == "array": item_info = schema.get("items") if not item_info: return value_str.split(",") else: return [parse_value_string_by_schema(item_info, i) for i in value_str.split(",")] else: warnings.warn(f"不支持的数据类型{t}") return value_str def _argparse_base_handdler(_type: Any, key: str, schema: PropertyType, parser: argparse.ArgumentParser, *, required: bool = False, noflag: bool = False) -> argparse.ArgumentParser: kwargs: Dict[str, Any] = {} kwargs.update({ "type": _type }) _enum = schema.get("enum") if _enum: kwargs.update({ "choices": _enum }) _description = schema.get("description") if _description: kwargs.update({ "help": _description }) if required: kwargs.update({ "required": required }) if noflag: parser.add_argument(f"{key}", **kwargs) else: if schema.get("title"): short = schema["title"][0] parser.add_argument(f"-{short}", f"--{key}", **kwargs) else: parser.add_argument(f"--{key}", **kwargs) return parser def _argparse_number_handdler(key: str, schema: PropertyType, parser: argparse.ArgumentParser, *, required: bool = False, noflag: bool = False) -> argparse.ArgumentParser: return _argparse_base_handdler(float, key, schema, parser, required=required, noflag=noflag) def _argparse_string_handdler(key: str, schema: PropertyType, parser: argparse.ArgumentParser, *, required: bool = False, noflag: bool = False) -> argparse.ArgumentParser: return _argparse_base_handdler(str, key, schema, parser, required=required, noflag=noflag) def _argparse_integer_handdler(key: str, schema: PropertyType, parser: argparse.ArgumentParser, *, required: bool = False, noflag: bool = False) -> argparse.ArgumentParser: return _argparse_base_handdler(int, key, schema, parser, required=required, noflag=noflag) def _argparse_boolean_handdler(key: str, schema: PropertyType, parser: argparse.ArgumentParser) -> argparse.ArgumentParser: kwargs: Dict[str, Any] = {} kwargs.update({ "action": "store_true" }) _description = schema.get("description") if _description: kwargs.update({ "help": _description }) if schema.get("title"): short = schema["title"][0] parser.add_argument(f"-{short}", f"--{key}", **kwargs) else: parser.add_argument(f"--{key}", **kwargs) return parser def _argparse_array_handdler(key: str, schema: PropertyType, parser: argparse.ArgumentParser, *, noflag: bool = False) -> argparse.ArgumentParser: sub_schema: Optional[ItemType] = schema.get("items") if sub_schema is None: print("array params must have sub schema items") return parser sub_type = sub_schema.get("type") if sub_type not in ("number", "string", "integer"): print("array params item type must in number,string,integer") return parser kwargs: Dict[str, Any] = {} if sub_type == "number": kwargs.update({ "type": float }) elif sub_type == "string": kwargs.update({ "type": str }) elif sub_type == "integer": kwargs.update({ "type": int }) _default = schema.get("default") if _default: kwargs.update({ "default": _default }) _description = schema.get("description") if _description: kwargs.update({ "help": _description }) _enum = sub_schema.get("enum") if _enum: kwargs.update({ "choices": _enum }) if noflag: kwargs.update({ "nargs": "+" }) parser.add_argument(f"{key}", **kwargs) else: kwargs.update({ "action": "append" }) if schema.get("title"): short = schema["title"][0] parser.add_argument(f"-{short}", f"--{key}", **kwargs) else: parser.add_argument(f"--{key}", **kwargs) return parser def parse_schema_as_cmd(key: str, schema: PropertyType, parser: argparse.ArgumentParser, *, required: bool = False, noflag: bool = False) -> argparse.ArgumentParser: """根据字段的模式解析命令行行为 Args: key (str): 字段名 schema (PropertyType): 字段的模式 parser (argparse.ArgumentParser): 添加命令行解析的解析器 Returns: argparse.ArgumentParser: 命令行的解析器 """ _type = schema.get("type") if not _type: return parser if not noflag: key = key.replace("_", "-") if _type == "number": return _argparse_number_handdler(key, schema, parser, required=required, noflag=noflag) elif _type == "string": return _argparse_string_handdler(key, schema, parser, required=required, noflag=noflag) elif _type == "integer": return _argparse_integer_handdler(key, schema, parser, required=required, noflag=noflag) elif _type == "boolean": return _argparse_boolean_handdler(key, schema, parser) elif _type == "array": return _argparse_array_handdler(key, schema, parser, noflag=noflag) else: print(f"未支持的类型{_type}") return parser
0.707304
0.324597
SUPPORT_SCHEMA = { "$schema": "http://json-schema.org/draft-07/schema#", "type": "object", "properties": { "properties": { "type": "object", "minProperties": 1, "additionalProperties": False, "patternProperties": { r"^\w+$": { "oneOf": [ { "type": "object", "additionalProperties": False, "required": ["type"], "properties": { "type": { "type": "string", "const": "boolean" }, "default": { "type": "boolean", }, "const": { "type": "boolean" }, "description": { "type": "string" }, "$comment": { "type": "string" }, "title": { "type": "string", "pattern": r"^[a-b]|[d-z]$" } } }, { "type": "object", "additionalProperties": False, "required": ["type"], "properties": { "type": { "type": "string", "const": "string" }, "default": { "type": "string", }, "const": { "type": "string" }, "enum": { "type": "array", "items": { "type": "string" } }, "maxLength": { "type": "integer", "minimum": 0 }, "minLength": { "type": "integer", "minimum": 0 }, "pattern": { "type": "string" }, "format": { "type": "string" }, "description": { "type": "string" }, "$comment": { "type": "string" }, "title": { "type": "string", "pattern": r"^[a-b]|[d-z]$" } } }, { "type": "object", "additionalProperties": False, "required": ["type"], "properties": { "type": { "type": "string", "const": "number" }, "default": { "type": "number", }, "const": { "type": "number" }, "enum": { "type": "array", "items": { "type": "number" } }, "maximum": { "type": "number", }, "exclusiveMaximum": { "type": "number", }, "minimum": { "type": "number", }, "exclusiveMinimum": { "type": "number", }, "description": { "type": "string" }, "$comment": { "type": "string" }, "title": { "type": "string", "pattern": r"^[a-b]|[d-z]$" } } }, { "type": "object", "additionalProperties": False, "required": ["type"], "properties": { "type": { "type": "string", "const": "integer" }, "default": { "type": "integer", }, "const": { "type": "integer" }, "enum": { "type": "array", "items": { "type": "integer" } }, "maximum": { "type": "integer", }, "exclusiveMaximum": { "type": "integer", }, "minimum": { "type": "integer", }, "exclusiveMinimum": { "type": "integer", }, "description": { "type": "string" }, "$comment": { "type": "string" }, "title": { "type": "string", "pattern": r"^[a-b]|[d-z]$" } } }, { "type": "object", "additionalProperties": False, "required": ["type"], "properties": { "type": { "type": "string", "const": "array" }, "default": { "type": "array", "items": { "type": ["string", "number", "integer"] } }, "items": { "type": "object", "required": ["type"], "additionalProperties":False, "properties": { "type": { "type": "string", "enum": ["string", "number", "integer"] }, "enum":{ "type": "array", "items": { "type": ["string", "number", "integer"] } } } }, "description": { "type": "string" }, "$comment": { "type": "string" }, "title": { "type": "string", "pattern": r"^[a-b]|[d-z]$" } } } ] } } }, "type": { "type": "string", "const": "object" }, "required": { "type": "array", "items": { "type": "string" } } }, "required": ["properties", "type"] }
schema-entry
/schema_entry-0.1.5.tar.gz/schema_entry-0.1.5/schema_entry/protocol.py
protocol.py
SUPPORT_SCHEMA = { "$schema": "http://json-schema.org/draft-07/schema#", "type": "object", "properties": { "properties": { "type": "object", "minProperties": 1, "additionalProperties": False, "patternProperties": { r"^\w+$": { "oneOf": [ { "type": "object", "additionalProperties": False, "required": ["type"], "properties": { "type": { "type": "string", "const": "boolean" }, "default": { "type": "boolean", }, "const": { "type": "boolean" }, "description": { "type": "string" }, "$comment": { "type": "string" }, "title": { "type": "string", "pattern": r"^[a-b]|[d-z]$" } } }, { "type": "object", "additionalProperties": False, "required": ["type"], "properties": { "type": { "type": "string", "const": "string" }, "default": { "type": "string", }, "const": { "type": "string" }, "enum": { "type": "array", "items": { "type": "string" } }, "maxLength": { "type": "integer", "minimum": 0 }, "minLength": { "type": "integer", "minimum": 0 }, "pattern": { "type": "string" }, "format": { "type": "string" }, "description": { "type": "string" }, "$comment": { "type": "string" }, "title": { "type": "string", "pattern": r"^[a-b]|[d-z]$" } } }, { "type": "object", "additionalProperties": False, "required": ["type"], "properties": { "type": { "type": "string", "const": "number" }, "default": { "type": "number", }, "const": { "type": "number" }, "enum": { "type": "array", "items": { "type": "number" } }, "maximum": { "type": "number", }, "exclusiveMaximum": { "type": "number", }, "minimum": { "type": "number", }, "exclusiveMinimum": { "type": "number", }, "description": { "type": "string" }, "$comment": { "type": "string" }, "title": { "type": "string", "pattern": r"^[a-b]|[d-z]$" } } }, { "type": "object", "additionalProperties": False, "required": ["type"], "properties": { "type": { "type": "string", "const": "integer" }, "default": { "type": "integer", }, "const": { "type": "integer" }, "enum": { "type": "array", "items": { "type": "integer" } }, "maximum": { "type": "integer", }, "exclusiveMaximum": { "type": "integer", }, "minimum": { "type": "integer", }, "exclusiveMinimum": { "type": "integer", }, "description": { "type": "string" }, "$comment": { "type": "string" }, "title": { "type": "string", "pattern": r"^[a-b]|[d-z]$" } } }, { "type": "object", "additionalProperties": False, "required": ["type"], "properties": { "type": { "type": "string", "const": "array" }, "default": { "type": "array", "items": { "type": ["string", "number", "integer"] } }, "items": { "type": "object", "required": ["type"], "additionalProperties":False, "properties": { "type": { "type": "string", "enum": ["string", "number", "integer"] }, "enum":{ "type": "array", "items": { "type": ["string", "number", "integer"] } } } }, "description": { "type": "string" }, "$comment": { "type": "string" }, "title": { "type": "string", "pattern": r"^[a-b]|[d-z]$" } } } ] } } }, "type": { "type": "string", "const": "object" }, "required": { "type": "array", "items": { "type": "string" } } }, "required": ["properties", "type"] }
0.683947
0.381018
import io import unicodecsv as csv from schema_induction.type import Type from schema_induction.union_type import UnionType def dump_csv(array, delimiter=','): f = io.BytesIO() writer = csv.writer(f, delimiter=delimiter, quoting=csv.QUOTE_ALL) writer.writerow(array) return f.getvalue()[:-2].decode('utf-8') class PrimitiveType(Type): """ Represent primitive type such as string, float, int """ MAX_N_KEEP_VALUE = 7 def __init__(self, type=None): if type is None: self.type = None else: self.set_type(type) # implement using dictionary so we can keep the order self.possible_values = {} def set_type(self, type): assert type in {'float', 'int', 'str', 'bool'}, type self.type = type return self def add_value(self, value): if len(self.possible_values) > PrimitiveType.MAX_N_KEEP_VALUE: return self if value not in self.possible_values: self.possible_values[value] = 1 return self def is_mergeable(self, another): """ test if two PRIMITIVE TYPEs can be merged :param another: PrimitiveType :return: bool """ if not isinstance(another, PrimitiveType): return False return self.type == another.type or {self.type, another.type} == {'float', 'int'} def optimize(self): """ @inherit """ return self def merge(self, another): """ @inherit """ if isinstance(another, PrimitiveType): if self.type == another.type: for value in another.possible_values.keys(): self.add_value(value) return self if {self.type, another.type} == {'float', 'int'}: self.type = 'float' return self return UnionType().add(self).add(another) def to_string(self, shift=0, indent=0): """ @inherit """ if len(self.possible_values) < PrimitiveType.MAX_N_KEEP_VALUE: string = '%s{%s}' % (self.type, dump_csv(list(self.possible_values.keys()))) return string else: return self.type class NoneType(Type): """ Represent null """ def optimize(self): """ @inherit """ return self def merge(self, another): """ @inherit """ if isinstance(another, NoneType): return self return another.merge(self) def to_string(self, shift=0, indent=0): """ @inherit """ return "null"
schema-induction
/schema_induction-1.1.7-py3-none-any.whl/schema_induction/primitive_type.py
primitive_type.py
import io import unicodecsv as csv from schema_induction.type import Type from schema_induction.union_type import UnionType def dump_csv(array, delimiter=','): f = io.BytesIO() writer = csv.writer(f, delimiter=delimiter, quoting=csv.QUOTE_ALL) writer.writerow(array) return f.getvalue()[:-2].decode('utf-8') class PrimitiveType(Type): """ Represent primitive type such as string, float, int """ MAX_N_KEEP_VALUE = 7 def __init__(self, type=None): if type is None: self.type = None else: self.set_type(type) # implement using dictionary so we can keep the order self.possible_values = {} def set_type(self, type): assert type in {'float', 'int', 'str', 'bool'}, type self.type = type return self def add_value(self, value): if len(self.possible_values) > PrimitiveType.MAX_N_KEEP_VALUE: return self if value not in self.possible_values: self.possible_values[value] = 1 return self def is_mergeable(self, another): """ test if two PRIMITIVE TYPEs can be merged :param another: PrimitiveType :return: bool """ if not isinstance(another, PrimitiveType): return False return self.type == another.type or {self.type, another.type} == {'float', 'int'} def optimize(self): """ @inherit """ return self def merge(self, another): """ @inherit """ if isinstance(another, PrimitiveType): if self.type == another.type: for value in another.possible_values.keys(): self.add_value(value) return self if {self.type, another.type} == {'float', 'int'}: self.type = 'float' return self return UnionType().add(self).add(another) def to_string(self, shift=0, indent=0): """ @inherit """ if len(self.possible_values) < PrimitiveType.MAX_N_KEEP_VALUE: string = '%s{%s}' % (self.type, dump_csv(list(self.possible_values.keys()))) return string else: return self.type class NoneType(Type): """ Represent null """ def optimize(self): """ @inherit """ return self def merge(self, another): """ @inherit """ if isinstance(another, NoneType): return self return another.merge(self) def to_string(self, shift=0, indent=0): """ @inherit """ return "null"
0.605333
0.376279
from pyspark.sql.types import ( BooleanType, BooleanType, DoubleType, IntegerType, StringType, StructField, StructType, ) def bronze_machine_raw(): """ fill in """ schema = StructType( [ StructField("N8j2", DoubleType(), True), StructField("42mj", DoubleType(), True), StructField("6tk3", BooleanType(), True), ] ) return schema def silver_machine_raw(): """ fill in """ schema = StructType( [ StructField("N8j2", DoubleType(), True), StructField("42mj", DoubleType(), True), StructField("6tk3", BooleanType(), True), StructField("engine_type", StringType(), True), ] ) return schema def bronze_sap_bseg(): """ fill in """ schema = StructType( [ StructField("MANDT", StringType(), True), StructField("BUKRS", StringType(), True), StructField("BELNR", StringType(), True), StructField("GJAHR", DoubleType(), True), StructField("BUZEI", DoubleType(), True), ] ) return schema def bronze_sales(): """ fill in """ schema = StructType( [ StructField("ORDERNUMBER", IntegerType(), True), StructField("SALE", DoubleType(), True), StructField("ORDERDATE", StringType(), True), StructField("STATUS", BooleanType(), True), StructField("CUSTOMERNAME", StringType(), True), StructField("ADDRESSLINE", StringType(), True), StructField("CITY", StringType(), True), StructField("STATE", StringType(), True), StructField("STORE", StringType(), True), ] ) return schema def gold_sales(): """ fill in """ schema = StructType( [ StructField("CUSTOMERNAME", StringType(), True), StructField("AVG", DoubleType(), True), StructField("TOTAL", DoubleType(), True), ] ) return schema
schema-jobs
/schema_jobs-0.1.15-py3-none-any.whl/schema_jobs/jobs/utility/schema/schemas.py
schemas.py
from pyspark.sql.types import ( BooleanType, BooleanType, DoubleType, IntegerType, StringType, StructField, StructType, ) def bronze_machine_raw(): """ fill in """ schema = StructType( [ StructField("N8j2", DoubleType(), True), StructField("42mj", DoubleType(), True), StructField("6tk3", BooleanType(), True), ] ) return schema def silver_machine_raw(): """ fill in """ schema = StructType( [ StructField("N8j2", DoubleType(), True), StructField("42mj", DoubleType(), True), StructField("6tk3", BooleanType(), True), StructField("engine_type", StringType(), True), ] ) return schema def bronze_sap_bseg(): """ fill in """ schema = StructType( [ StructField("MANDT", StringType(), True), StructField("BUKRS", StringType(), True), StructField("BELNR", StringType(), True), StructField("GJAHR", DoubleType(), True), StructField("BUZEI", DoubleType(), True), ] ) return schema def bronze_sales(): """ fill in """ schema = StructType( [ StructField("ORDERNUMBER", IntegerType(), True), StructField("SALE", DoubleType(), True), StructField("ORDERDATE", StringType(), True), StructField("STATUS", BooleanType(), True), StructField("CUSTOMERNAME", StringType(), True), StructField("ADDRESSLINE", StringType(), True), StructField("CITY", StringType(), True), StructField("STATE", StringType(), True), StructField("STORE", StringType(), True), ] ) return schema def gold_sales(): """ fill in """ schema = StructType( [ StructField("CUSTOMERNAME", StringType(), True), StructField("AVG", DoubleType(), True), StructField("TOTAL", DoubleType(), True), ] ) return schema
0.794505
0.413714
|PyPI| |Docs| .. |PyPI| image:: https://img.shields.io/pypi/v/schema_learn.svg :target: https://pypi.org/project/schema_learn .. |Docs| image:: https://readthedocs.org/projects/schema-multimodal/badge/?version=latest :target: https://schema-multimodal.readthedocs.io/en/latest/?badge=latest Schema - Analyze and Visualize Multimodal Single-Cell Data ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Schema is a Python library for the synthesis and integration of heterogeneous single-cell modalities. **It is designed for the case where the modalities have all been assayed for the same cells simultaneously.** Here are some of the analyses that you can do with Schema: - infer cell types jointly across modalities. - perform spatial transcriptomic analyses to identify differntially-expressed genes in cells that display a specific spatial characteristic. - create informative t-SNE & UMAP visualizations of multimodal data by infusing information from other modalities into scRNA-seq data. Schema offers support for the incorporation of more than two modalities and can also simultaneously handle batch effects and metadata (e.g., cell age). Schema is based on a metric learning approach and formulates the modality-synthesis problem as a quadratic programming problem. Its Python-based implementation can efficiently process large datasets without the need of a GPU. Read the documentation_. We encourage you to report issues at our `Github page`_ ; you can also create pull reports there to contribute your enhancements. If Schema is useful in your research, please consider citing our papers: `Genome Biology (2021)`_, with preprint in `bioRxiv (2019)`_. .. _documentation: https://schema-multimodal.readthedocs.io/en/latest/overview.html .. _bioRxiv (2019): http://doi.org/10.1101/834549 .. _Github page: https://github.com/rs239/schema .. _Genome Biology (2021): https://genomebiology.biomedcentral.com/articles/10.1186/s13059-021-02313-2
schema-learn
/schema_learn-0.1.5.5.tar.gz/schema_learn-0.1.5.5/README.rst
README.rst
|PyPI| |Docs| .. |PyPI| image:: https://img.shields.io/pypi/v/schema_learn.svg :target: https://pypi.org/project/schema_learn .. |Docs| image:: https://readthedocs.org/projects/schema-multimodal/badge/?version=latest :target: https://schema-multimodal.readthedocs.io/en/latest/?badge=latest Schema - Analyze and Visualize Multimodal Single-Cell Data ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Schema is a Python library for the synthesis and integration of heterogeneous single-cell modalities. **It is designed for the case where the modalities have all been assayed for the same cells simultaneously.** Here are some of the analyses that you can do with Schema: - infer cell types jointly across modalities. - perform spatial transcriptomic analyses to identify differntially-expressed genes in cells that display a specific spatial characteristic. - create informative t-SNE & UMAP visualizations of multimodal data by infusing information from other modalities into scRNA-seq data. Schema offers support for the incorporation of more than two modalities and can also simultaneously handle batch effects and metadata (e.g., cell age). Schema is based on a metric learning approach and formulates the modality-synthesis problem as a quadratic programming problem. Its Python-based implementation can efficiently process large datasets without the need of a GPU. Read the documentation_. We encourage you to report issues at our `Github page`_ ; you can also create pull reports there to contribute your enhancements. If Schema is useful in your research, please consider citing our papers: `Genome Biology (2021)`_, with preprint in `bioRxiv (2019)`_. .. _documentation: https://schema-multimodal.readthedocs.io/en/latest/overview.html .. _bioRxiv (2019): http://doi.org/10.1101/834549 .. _Github page: https://github.com/rs239/schema .. _Genome Biology (2021): https://genomebiology.biomedcentral.com/articles/10.1186/s13059-021-02313-2
0.842313
0.715362
Installation ============ We recommend Python v3.6 or higher. PyPI, Virtualenv, or Anaconda ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ You can use ``pip`` (or ``pip3``): .. code-block:: bash pip install schema_learn Docker ~~~~~~ Schema has been designed to be compatible with the popular and excellent single-cell Python package, Scanpy_. We recommend installing the Docker image recommended_ by Scanpy maintainers and then using ``pip``, as described above, to install Schema in it. .. _Scanpy: http://scanpy.readthedocs.io .. _recommended: https://scanpy.readthedocs.io/en/1.4.4.post1/installation.html#docker
schema-learn
/schema_learn-0.1.5.5.tar.gz/schema_learn-0.1.5.5/docs/source/installation.rst
installation.rst
Installation ============ We recommend Python v3.6 or higher. PyPI, Virtualenv, or Anaconda ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ You can use ``pip`` (or ``pip3``): .. code-block:: bash pip install schema_learn Docker ~~~~~~ Schema has been designed to be compatible with the popular and excellent single-cell Python package, Scanpy_. We recommend installing the Docker image recommended_ by Scanpy maintainers and then using ``pip``, as described above, to install Schema in it. .. _Scanpy: http://scanpy.readthedocs.io .. _recommended: https://scanpy.readthedocs.io/en/1.4.4.post1/installation.html#docker
0.70028
0.461138
Overview ======== Schema is a general algorithm for integrating heterogeneous data modalities. While it has been specially designed for multi-modal single-cell biological datasets, it should work in other multi-modal contexts too. .. image:: ../_static/Schema-Overview-v2.png :width: 648 :alt: 'Overview of Schema' Schema is designed for single-cell assays where multiple modalities have been *simultaneously* measured for each cell. For example, this could be simultaneously-asayed ("paired") scRNA-seq and scATAC-seq data, or a spatial-transcriptomics dataset (e.g. 10x Visium, Slideseq or STARmap). Schema can also be used with just a scRNA-seq dataset where some per-cell metadata is available (e.g., cell age, donor information, batch ID etc.). With this data, Schema can help perform analyses like: * Characterize cells that look similar transcriptionally but differ epigenetically. * Improve cell-type inference by combining RNA-seq and ATAC-seq data. * In spatially-resolved single-cell data, identify differentially expressed genes (DEGs) specific to a spatial pattern. * **Improved visualizations**: tune t-SNE or UMAP plots to more clearly arrange cells along a desired manifold. * Simultaneously account for batch effects while also integrating other modalities. Intuition ~~~~~~~~~ To integrate multi-modal data, Schema takes a `metric learning`_ approach. Each modality is interepreted as a multi-dimensional space, with observations mapped to points in it (**B** in figure above). We associate a distance metric with each modality: the metric reflects what it means for cells to be similar under that modality. For example, Euclidean distances between L2-normalized expression vectors are a proxy for coexpression. Across the three graphs in the figure (**B**), the dashed and dotted lines indicate distances between the same pairs of observations. Schema learns a new distance metric between points, informed jointly by all the modalities. In Schema, we start by designating one high-confidence modality as the *primary* (i.e., reference) and the remaining modalities as *secondary*--- we've found scRNA-seq to typically be a good choice for the primary modality. Schema transforms the primary-modality space by scaling each of its dimensions so that the distances in the transformed space have a higher (or lower, if desired!) correlation with corresponding distances in the secondary modalities (**C,D** in the figure above). You can choose any distance metric for the secondary modalities, though the primary modality's metric needs to be Euclidean. The primary modality can be pre-transformed by a `PCA`_ or `NMF`_ transformation so that the scaling occurs in this latter space; this can often be more powerful because the major directions of variance are now axis-aligned and hence can be scaled independently. Advantages ~~~~~~~~~~ In generating a shared-space representation, Schema is similar to statistical approaches like CCA (canonical correlation analysis) and deep-learning methods like autoencoders (which map multiple representations into a shared latent space). Each of these approaches offers a different set of trade-offs. Schema, for instance, requires the output space to be a linear transformation of the primary modality. Doing so allows it to offer the following advantages: * **Interpretability**: Schema identifies which features of the primary modality were important in maximizing its agreement with the secondary modalities. If the features corresponded to genes (or principal components), this can directly be interpreted in terms of gene importances. * **Regularization**: single-cell data can be sparse and noisy. As we discuss in our `paper`_, unconstrained approaches like CCA and autoencoders seek to maximize the alignment between modalities without any other considerations. In doing so, they can pick up on artifacts rather than true biology. A key feature of Schema is its regularization: if enforces a limit on the distortion of the primary modality, making sure that the final result remains biologically informative. * **Speed and flexibility**: Schema is a based on a fast quadratic programming approach that allows for substantial flexibility in the number of secondary modalities supported and their relative weights. Also, arbitrary distance metrics (i.e., kernels) are supported for the secondary modalities. Quick Start ~~~~~~~~~~~ Install via pip .. code-block:: bash pip install schema_learn **Example**: correlate gene expression with developmental stage. We demonstrate use with Anndata objects here. .. code-block:: Python import schema adata = schema.datasets.fly_brain() # adata has scRNA-seq data & cell age sqp = schema.SchemaQP( min_desired_corr=0.99, # require 99% agreement with original scRNA-seq distances params= {'decomposition_model': 'nmf', 'num_top_components': 20} ) #correlate the gene expression with the 'age' parameter mod_X = sqp.fit_transform( adata.X, # primary modality [ adata.obs['age'] ], # list of secondary modalities [ 'numeric' ] ) # datatypes of secondary modalities gene_wts = sqp.feature_weights() # get a ranking of gene wts important to the alignment Paper & Code ~~~~~~~~~~~~ Schema is described in the paper *Schema: metric learning enables interpretable synthesis of heterogeneous single-cell modalities* (http://doi.org/10.1101/834549) Source code available at: https://github.com/rs239/schema .. _metric learning: https://en.wikipedia.org/wiki/Similarity_learning#Metric_learning .. _paper: https://doi.org/10.1101/834549 .. _PCA: https://en.wikipedia.org/wiki/Principal_component_analysis .. _NMF: https://en.wikipedia.org/wiki/Non-negative_matrix_factorization
schema-learn
/schema_learn-0.1.5.5.tar.gz/schema_learn-0.1.5.5/docs/source/overview.rst
overview.rst
Overview ======== Schema is a general algorithm for integrating heterogeneous data modalities. While it has been specially designed for multi-modal single-cell biological datasets, it should work in other multi-modal contexts too. .. image:: ../_static/Schema-Overview-v2.png :width: 648 :alt: 'Overview of Schema' Schema is designed for single-cell assays where multiple modalities have been *simultaneously* measured for each cell. For example, this could be simultaneously-asayed ("paired") scRNA-seq and scATAC-seq data, or a spatial-transcriptomics dataset (e.g. 10x Visium, Slideseq or STARmap). Schema can also be used with just a scRNA-seq dataset where some per-cell metadata is available (e.g., cell age, donor information, batch ID etc.). With this data, Schema can help perform analyses like: * Characterize cells that look similar transcriptionally but differ epigenetically. * Improve cell-type inference by combining RNA-seq and ATAC-seq data. * In spatially-resolved single-cell data, identify differentially expressed genes (DEGs) specific to a spatial pattern. * **Improved visualizations**: tune t-SNE or UMAP plots to more clearly arrange cells along a desired manifold. * Simultaneously account for batch effects while also integrating other modalities. Intuition ~~~~~~~~~ To integrate multi-modal data, Schema takes a `metric learning`_ approach. Each modality is interepreted as a multi-dimensional space, with observations mapped to points in it (**B** in figure above). We associate a distance metric with each modality: the metric reflects what it means for cells to be similar under that modality. For example, Euclidean distances between L2-normalized expression vectors are a proxy for coexpression. Across the three graphs in the figure (**B**), the dashed and dotted lines indicate distances between the same pairs of observations. Schema learns a new distance metric between points, informed jointly by all the modalities. In Schema, we start by designating one high-confidence modality as the *primary* (i.e., reference) and the remaining modalities as *secondary*--- we've found scRNA-seq to typically be a good choice for the primary modality. Schema transforms the primary-modality space by scaling each of its dimensions so that the distances in the transformed space have a higher (or lower, if desired!) correlation with corresponding distances in the secondary modalities (**C,D** in the figure above). You can choose any distance metric for the secondary modalities, though the primary modality's metric needs to be Euclidean. The primary modality can be pre-transformed by a `PCA`_ or `NMF`_ transformation so that the scaling occurs in this latter space; this can often be more powerful because the major directions of variance are now axis-aligned and hence can be scaled independently. Advantages ~~~~~~~~~~ In generating a shared-space representation, Schema is similar to statistical approaches like CCA (canonical correlation analysis) and deep-learning methods like autoencoders (which map multiple representations into a shared latent space). Each of these approaches offers a different set of trade-offs. Schema, for instance, requires the output space to be a linear transformation of the primary modality. Doing so allows it to offer the following advantages: * **Interpretability**: Schema identifies which features of the primary modality were important in maximizing its agreement with the secondary modalities. If the features corresponded to genes (or principal components), this can directly be interpreted in terms of gene importances. * **Regularization**: single-cell data can be sparse and noisy. As we discuss in our `paper`_, unconstrained approaches like CCA and autoencoders seek to maximize the alignment between modalities without any other considerations. In doing so, they can pick up on artifacts rather than true biology. A key feature of Schema is its regularization: if enforces a limit on the distortion of the primary modality, making sure that the final result remains biologically informative. * **Speed and flexibility**: Schema is a based on a fast quadratic programming approach that allows for substantial flexibility in the number of secondary modalities supported and their relative weights. Also, arbitrary distance metrics (i.e., kernels) are supported for the secondary modalities. Quick Start ~~~~~~~~~~~ Install via pip .. code-block:: bash pip install schema_learn **Example**: correlate gene expression with developmental stage. We demonstrate use with Anndata objects here. .. code-block:: Python import schema adata = schema.datasets.fly_brain() # adata has scRNA-seq data & cell age sqp = schema.SchemaQP( min_desired_corr=0.99, # require 99% agreement with original scRNA-seq distances params= {'decomposition_model': 'nmf', 'num_top_components': 20} ) #correlate the gene expression with the 'age' parameter mod_X = sqp.fit_transform( adata.X, # primary modality [ adata.obs['age'] ], # list of secondary modalities [ 'numeric' ] ) # datatypes of secondary modalities gene_wts = sqp.feature_weights() # get a ranking of gene wts important to the alignment Paper & Code ~~~~~~~~~~~~ Schema is described in the paper *Schema: metric learning enables interpretable synthesis of heterogeneous single-cell modalities* (http://doi.org/10.1101/834549) Source code available at: https://github.com/rs239/schema .. _metric learning: https://en.wikipedia.org/wiki/Similarity_learning#Metric_learning .. _paper: https://doi.org/10.1101/834549 .. _PCA: https://en.wikipedia.org/wiki/Principal_component_analysis .. _NMF: https://en.wikipedia.org/wiki/Non-negative_matrix_factorization
0.969389
0.838217
Datasets ========= Ageing *Drosophila* brain ~~~~~~~~~~~~~~~~~~~~~~ This is sourced from `Davie et al.`_ (*Cell* 2018, `GSE 107451`_) and contains scRNA-seq data from a collection of fly brain cells along with each cell's age (in days). It is a useful dataset for exploring a common scenario in multi-modal integration: scRNA-seq data aligned to a 1-dimensional secondary modality. Please see the `example in Visualization`_ where this dataset is used. .. code-block:: Python import schema adata = schema.datasets.fly_brain() Paired RNA-seq and ATAC-seq from mouse kidney cells ~~~~~~~~~~~~~~~~~~~~~~ This is sourced from `Cao et al.`_ (*Science* 2018, `GSE 117089`_) and contains paired RNA-seq and ATAC-seq data from a collection of mouse kidney cells. The AnnData object provided here has some additional processing done to remove very low count genes and peaks. This is a useful dataset for the case where one of the modalities is very sparse (here, ATAC-seq). Please see the example in `Paired RNA-seq and ATAC-seq`_ where this dataset is used. .. code-block:: Python import schema adata = schema.datasets.scicar_mouse_kidney() .. _Davie et al.: https://doi.org/10.1016/j.cell.2018.05.057 .. _GSE 107451: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE107451 .. _example in Visualization: https://schema-multimodal.readthedocs.io/en/latest/visualization/index.html#ageing-fly-brain .. _Cao et al.: https://doi.org/10.1126/science.aau0730 .. _GSE 117089: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE117089 .. _Paired RNA-seq and ATAC-seq: https://schema-multimodal.readthedocs.io/en/latest/recipes/index.html#paired-rna-seq-and-atac-seq
schema-learn
/schema_learn-0.1.5.5.tar.gz/schema_learn-0.1.5.5/docs/source/datasets.rst
datasets.rst
Datasets ========= Ageing *Drosophila* brain ~~~~~~~~~~~~~~~~~~~~~~ This is sourced from `Davie et al.`_ (*Cell* 2018, `GSE 107451`_) and contains scRNA-seq data from a collection of fly brain cells along with each cell's age (in days). It is a useful dataset for exploring a common scenario in multi-modal integration: scRNA-seq data aligned to a 1-dimensional secondary modality. Please see the `example in Visualization`_ where this dataset is used. .. code-block:: Python import schema adata = schema.datasets.fly_brain() Paired RNA-seq and ATAC-seq from mouse kidney cells ~~~~~~~~~~~~~~~~~~~~~~ This is sourced from `Cao et al.`_ (*Science* 2018, `GSE 117089`_) and contains paired RNA-seq and ATAC-seq data from a collection of mouse kidney cells. The AnnData object provided here has some additional processing done to remove very low count genes and peaks. This is a useful dataset for the case where one of the modalities is very sparse (here, ATAC-seq). Please see the example in `Paired RNA-seq and ATAC-seq`_ where this dataset is used. .. code-block:: Python import schema adata = schema.datasets.scicar_mouse_kidney() .. _Davie et al.: https://doi.org/10.1016/j.cell.2018.05.057 .. _GSE 107451: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE107451 .. _example in Visualization: https://schema-multimodal.readthedocs.io/en/latest/visualization/index.html#ageing-fly-brain .. _Cao et al.: https://doi.org/10.1126/science.aau0730 .. _GSE 117089: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE117089 .. _Paired RNA-seq and ATAC-seq: https://schema-multimodal.readthedocs.io/en/latest/recipes/index.html#paired-rna-seq-and-atac-seq
0.840259
0.695861
Data Integration Examples ======= API-usage Examples ~~~~~~~~~~~~~~ *Note*: The code snippets below show how Schema could be used for hypothetical datasets and illustrates the API usage. In the next sections (`Paired RNA-seq and ATAC-seq`_, `Paired-Tag`_) and in `Visualization`_, we describe worked examples where we also provide the dataset to try things on. We are working to add more datasets. **Example** Correlate gene expression 1) positively with ATAC-Seq data and 2) negatively with Batch information. .. code-block:: Python atac_50d = sklearn.decomposition.TruncatedSVD(50).fit_transform( atac_cnts_sp_matrix) sqp = SchemaQP(min_corr=0.9) # df is a pd.DataFrame, srs is a pd.Series, -1 means try to disagree mod_X = sqp.fit_transform( df_gene_exp, # gene expression dataframe: rows=cells, cols=genes [ atac_50d, batch_id], # batch_info can be a pd.Series or np.array. rows=cells [ 'feature_vector', 'categorical'], [ 1, -1]) # maximize combination of (agreement with ATAC-seq + disagreement with batch_id) gene_wts = sqp.feature_weights() # get gene importances **Example** Correlate gene expression with three secondary modalities. .. code-block:: Python sqp = SchemaQP(min_corr = 0.9) # lower than the default, allowing greater distortion of the primary modality sqp.fit( adata.X, [ adata.obs['col1'], adata.obs['col2'], adata.obsm['Matrix1'] ], [ "categorical", "numeric", "feature_vector"]) # data types of the three modalities mod_X = sqp.transform( adata.X) # transform gene_wts = sqp.feature_weights() # get gene importances Paired RNA-seq and ATAC-seq ~~~~~~~~~~~~~~~~~~~~~~~~~~~ Here, we integrate simultaneously assayed RNA- and ATAC-seq data from `Cao et al.'s`_ sci-CAR study of mouse kidney cells. Specifically, we'll try to do better cell-type inference by considering both RNA-seq and ATAC-seq data simultaneously. The original study has ground-truth labels for most of the cell types, allowing us to benchmark automatically-computed clusters (generated by Leiden clustering here). As we'll show, a key challenge here is that the ATAC-seq data is very sparse and noisy. Naively incorporating it with RNA-seq can actually be counter-productive--- the joint clustering from a naive approach can actually have a *lower* overlap with the ground truth labels than if we were to just use RNA-seq-based clustering. *Note*: This example involves generating Leiden clusters; you will need to install the *igraph* and *leidenalg* Python packages if you want to use them: .. code-block:: bash pip install igraph pip install leidenalg Let's start by getting the data. We have preprocessed the original dataset, done some basic cleanup, and put it into an AnnData object that you can download. Please remember to also cite the original study if you use this dataset. .. code-block:: Python import schema adata = schema.datasets.scicar_mouse_kidney() print(adata.shape, adata.uns['atac.X'].shape) print(adata.uns.keys()) As you see, we have stored the ATAC data (as a sparse numpy matrix) in the .uns slots of the anndata object. Also look at the *adata.obs* dataframe which has t-SNE coordinates, ground-truth cell type names (as assigned by Cao et al.) and cluster colors etc. You'll notice that some cells don't have ground truth assignments. When evaluating, we'll skip those. To use the ATAC-seq data, we reduce its dimensionality to 50. Instead of PCA, we apply *TruncatedSVD* since the ATAC counts matrix is sparse. .. code-block:: Python svd2 = sklearn.decomposition.TruncatedSVD(n_components= 50, random_state = 17) H2 = svd2.fit_transform(adata.uns["atac.X"]) Next, we run Schema. We choose RNA-seq as the primary modality because 1) it has lower noise than ATAC-seq, and 2) we want to investigate which of its features (i.e., genes) are important during the integration. We will first perform a NMF transformation on the RNA-seq data. For the secondary modality, we'll use the dimensionality-reduced ATAC-seq. We require a positive correlation between the two (`secondary_data_wt_list = [1]` below). **Importantly, we force Schema to generate a low-distortation transformation** : the correlation of distances between original RNA-seq space and the transformed space, `min_desired_corr` is required to be >99%. This low-distortion capability of Schema is crucial here, as we'll demonstrate. In the `params` settings below, the number of randomly sampled point-pairs has been bumped up to 5M (from default=2M). It helps with the accuracy and doesn't cost too much computationally. We also turned off `do_whiten` (default=1, i.e., true). When `do_whiten=1`, Schema first rescales the PCA/NMF transformation so that each axis has unit variance; typically, doing so is "nice" from a theoretical/statistical perspective. But it can interfere with downstream analyses (e.g., Leiden clustering here). .. code-block:: Python sqp99 = schema.SchemaQP(0.99, mode='affine', params= {"decomposition_model":"nmf", "num_top_components":50, "do_whiten": 0, "dist_npairs": 5000000}) dz99 = sqp99.fit_transform(adata.X, [H2], ['feature_vector'], [1]) Let's look at the feature weights. Since we ran the code in 'affine' mode, the raw weights from the quadratic program will correspond to the 50 NMF factors. Three of these factors seem to stand out; most other weights are quite low. .. code-block:: Python plt.plot(sqp99._wts) .. image:: ../_static/schema_atacrna_demo_wts1.png :width: 300 Schema offers a helper function to convert these NMF (or PCA) feature weights to gene weights. The function offers a few ways of doing so, but the default is to simply average the loadings across the top-k factors: .. code-block:: Python v99 = sqp99.feature_weights("top-k-loading", 3) Let's do a dotplot to visualize how the expression of these genes varies by cell name. We plot the top 10 genes by importance here. .. code-block:: Python dfv99 = pd.DataFrame({"gene": adata.var_names, "v":v99}).sort_values("v", ascending=False).reset_index(drop=True) sc.pl.dotplot(adata, dfv99.gene.head(10).tolist(),'cell_name_short', figsize=(8,6)) As you'll notice, theese gene seem to be differentially expressed in PT cells, PBA and Ki-67+ cells. Essentially, these are cell types where ATAC-seq data was most informative. As we'll see shortly, it is preciely in these cells where Schema is able to offer the biggest improvement. .. image:: ../_static/schema_atacrna_demo_dotplot1.png :width: 500 For a comparison later, let's also do a Schema run without a strong distortion control. Below, we set the `min_desired_corr` parameter to 0.10 (i.e., 10%). Thus, the ATAC-seq data will get to influence the transformation a lot more. .. code-block:: Python sqp10 = schema.SchemaQP(0.10, mode='affine', params= {"decomposition_model":"nmf", "num_top_components":50, "do_whiten": 0, "dist_npairs": 5000000}) dz10 = sqp10.fit_transform(adata.X, [H2], ['feature_vector'], [1]) Finally, let's do Leiden clustering of the RNA-seq, ATAC-seq, and the two Schema runs. We'll compare the cluster assignments to the ground truth cell labels. Intuitively, by combining RNA-seq and ATAC-seq, one should be able to get a more biologically accurate clustering. We visually evaluate the clusterings below; in the paper, we've supplemented this with more quantitative estimates. .. code-block:: Python import schema.utils fcluster = schema.utils.get_leiden_clustering #feel free to try your own clustering algo ld_cluster_rna = fcluster(sqp99._decomp_mdl.transform(adata.X.todense())) ld_cluster_atac = fcluster(H2) ld_cluster_sqp99 = fcluster(dz99) ld_cluster_sqp10 = fcluster(dz10) .. code-block:: Python x = adata.obs.tsne_1 y = adata.obs.tsne_2 idx = adata.obs.rgb.apply(lambda s: isinstance(s,str) and '#' in s).values.tolist() #skip nan cells fig, axs = plt.subplots(3,2, figsize=(10,15)) axs[0][0].scatter(x[idx], y[idx], c=adata.obs.rgb.values[idx], s=1) axs[0][0].set_title('Ground Truth') axs[0][1].scatter(x[idx], y[idx], c=adata.obs.rgb.values[idx], s=1, alpha=0.1) axs[0][1].set_title('Ground Truth Labels') for c in np.unique(adata.obs.cell_name_short[idx]): if c=='nan': continue cx,cy = x[adata.obs.cell_name_short==c].mean(), y[adata.obs.cell_name_short==c].mean() axs[0][1].text(cx,cy,c,fontsize=10) axs[1][0].scatter(x[idx], y[idx], c=ld_cluster_rna[idx], cmap='tab20b', s=1) axs[1][0].set_title('RNA-seq') axs[1][1].scatter(x[idx], y[idx], c=ld_cluster_atac[idx], cmap='tab20b', s=1) axs[1][1].set_title('ATAC-seq') axs[2][0].scatter(x[idx], y[idx], c=ld_cluster_sqp99[idx], cmap='tab20b', s=1) axs[2][0].set_title('Schema-99%') axs[2][1].scatter(x[idx], y[idx], c=ld_cluster_sqp10[idx], cmap='tab20b', s=1) axs[2][1].set_title('Schema-10%') for ax in np.ravel(axs): ax.axis('off') Below, we show the figures in a 3x2 panel of t-SNE plots. In the first row, the left panel shows the cells colored by ground-truth cell types; the right panel is basically the same but lists the cell types explicitly. The next row shows cells colored by RNA- or ATAC-only clustering. Notice how noisy the ATAC-only clustering is! This is not a bug in our analysis-- less than 0.3% of ATAC count matrix entries are non-zero and the sparsity of the ATAC data makes it difficult to produce high-quality cell type estimates. The third row shows cells colored by Schema-based clustering at 99% (left) and 10% (right) `min_desired_corr` thresholds. With Schema at a low-distortion setting (i.e., `min_desired_corr = 99%`), notice that PT cells and Ki-67+ cells, circled in red, are getting more correctly classified now. This improvement of the Schema-implied clustering over the RNA-seq-only clustering can be quantified by measuring the overlap with ground truth cell grouping, as we do in the paper. **This is a key strength of Schema** --- even with a modality that is sparse and noisy (like ATAC-seq here), it can nonetheless extract something of value from the noisy modality because the constraint on distortion of the primary modality acts as a regularization. This is also why we recommend that your highest-confidence modality be set as the primary. Lastly as demonstration, if we relax the distortion constraint by setting `min_desired_corr = 10%`, you'll notice that the noise of ATAC-seq data does swamp out the RNA-seq signal. With an unconstrained approach (e.g., CCA or some deep learning approaches), this ends being a major challenge. .. image:: ../_static/schema_atacrna_demo_tsne1.png :width: 600 Paired-Tag ~~~~~~~~~~~~~~~~~~~~~~~~~~~ Here we synthesize simultaneously assayed RNA-seq, ATAC-seq and histone-modification data at a single-cell resolution, from the Paired-Tag protocol described in `Zhu et al.’s study`_ of adult mouse frontal cortex and hippocampus (Nature Methods, 2021). This is a fascinating dataset with five different histone modifications assayed separately (3 repressors and 2 activators), in addition to RNA-seq and ATAC-seq. As in the original study, we consider each of the histone modifications as a separate modality, implying a hepta-modal assay! Interestingly, though, the modalities are available only in pairwise combinations with RNA-seq: some cells were assayed for H3K4me1 & RNA-seq while another set of cells provided ATAC-seq & RNA-seq data, and so on. Here’s the overall distribution of non-RNA-seq modalities across 64,849 cells. .. image:: ../_static/schema_paired-tag_data-dist.png :width: 300 This organization of data might be tricky to integrate with a method which expects *each* modality to be available for *all* cells and has difficulty accomodating partial coverage of some modalities. Of course, you could always fall back to an integrative approach that treats each modality’s cell population as independent, but then you miss out on the simultaneously-multimodal aspect of this data. With Schema, you can have your cake and eat it too! We do 6 two-way integrations (RNA-seq as the primary modality against each of the other modalities) using the subsets of cells available in each case. Schema’s interpretable and linear framework makes it easy to combine these. Once Schema computes the optimal transformation of RNA-seq that aligns it with, say, ATAC-seq, we apply that transformation to the entire RNA-seq dataset, including cells that do *not* have ATAC-seq data. Such full-dataset extensions of the pairwise syntheses can then be stacked together. Doing Leiden clustering on the result would enable us to infer cell types by integrating information from all modalities. As we will show below, Schema's synthesis helps improve the quality of cell type inference over what you could get just from RNA-seq. Similarly for feature selection, Schema's computed feature weights for each two-way synthesis can be averaged to get the genes important to the overall synthesis. In a completely automated fashion and without any knowledge of tissue’s source or biology, we’ll find that the genes Schema identifies as important turn out to be very relevant to neuronal function and disease. Ready for more? First, you will need the data. The original is available on GEO (`GSE152020`_) but the individual modalities are huge (e.g., the ATAC-seq peak-counts are in a 14,095 x 2,443,832 sparse matrix!). This is not unusual--- epigenetic modalites are typically very sparse (we discuss why this matters in `Paired RNA-seq and ATAC-seq`_). As a preprocessing step, we performed singular value decompositions (SVD) of these modalities and also reduced the RNA-seq data to its 4,000 highly variable genes. An AnnData object with this preprocessing is available here (please remember to also cite the original study if you use this dataset) : .. code-block:: bash wget http://cb.csail.mit.edu/cb/schema/adata_dimreduced_paired-tag.pkl Let's load it in: .. code-block:: Python import schema, pickle, anndata, sklearn.metrics import scanpy as sc # you may need to change the file location as appopriate to your setup adata = pickle.load(open("adata_dimreduced_paired-tag.pkl", "rb")) print (adata.shape, [(c, adata.uns['SVD_'+c].shape) for c in adata.uns['sec_modalities']]) As you see, we have stored the 50-dimensional SVDs of the secondary modalities in the :code:`.uns` slots of the anndata object. Also look at the :code:`adata.obs` dataframe which has UMAP coordinates, ground-truth cell type names (as assigned by Zhu et al.) etc. We now do Schema runs for the 6 two-way modality combinations, with RNA-seq as the primary in each run. Each run will also store the transformation on the entire 64,849-cell RNA-seq dataset and also store the gene importances. .. code-block:: Python d_rna = adata.X.todense() desc2transforms = {} for desc in adata.uns['sec_modalities']: print(desc) # we mostly stick with the default settings, explicitly listed here for clarity sqp = schema.SchemaQP(0.99, mode='affine', params= {"decomposition_model": 'pca', "num_top_components":50, "do_whiten": 0, # this is different from default "dist_npairs": 5000000}) # extract the relevant subset idx1 = adata.obs['rowidx'][adata.uns["SVD_"+desc].index] prim_d = d_rna[idx1,:] sec_d = adata.uns["SVD_"+desc].values print(len(idx1), prim_d.shape, sec_d.shape) sqp.fit(prim_d, [sec_d], ['feature_vector'], [1]) # fit on the idx1 subset... dz = sqp.transform(d_rna) # ...then transform the full RNA-seq dataset desc2transforms[desc] = (sqp, dz, idx1, sqp.feature_weights(k=3)) **Cell type inference:**: In each of the 6 runs above, :code:`dz` is a 64,849 x 50 matrix. We can horizontally stack these matrices for a 64,849 x 300 matrix that represents the transformation of RNA-seq data informed simultaneously by all 6 secondary modalities. .. code-block:: Python a6Xpca = np.hstack([dz for _,dz,_,_ in desc2transforms.values()]) adata_schema = anndata.AnnData(X=a6Xpca, obs=adata.obs) print (adata_schema.shape) We then perform Leiden clustering on the original and transformed data, computing the overlap with expert marker-gene-based annotation by Zhu et al. .. code-block:: Python # original sc.pp.pca(adata) sc.pp.neighbors(adata) sc.tl.leiden(adata) # Schema-transformed # since Schema had already done PCA before it transformed, let's stick with its raw output sc.pp.neighbors(adata_schema, use_rep='X') sc.tl.leiden(adata_schema) # we'll do plots etc. with the original AnnData object adata.obs['leiden_schema'] = adata_schema.obs['leiden'].values # compute overlap with manual cell type annotations ari_orig = sklearn.metrics.adjusted_rand_score(adata.obs.Annotation, adata.obs.leiden) ari_schema= sklearn.metrics.adjusted_rand_score(adata.obs.Annotation, adata.obs.leiden_schema) print ("ARI: Orig: {} With Schema: {}".format( ari_orig, ari_schema)) As you can see, the ARI with Schema improved from 0.437 (using only RNA-seq) to 0.446 (using all modalities). Single-cell epigenetic modalities are very sparse, making it difficult to distinguish signal from noise. However, Schema's constrained approach allows it to extract signal from these secondary modalities nonetheless, a task which has otherwise been challenging (see the related discussion in our `paper`_ or in `Paired RNA-seq and ATAC-seq`_). Before we plot these clusters, we'll relabel the Schema-based Leiden clusters to match the labeling of RNA-seq only Leiden clusters; this will make their color schemes consistent. You will need to install the Python package *munkres* (:code:`pip install munkres`) for the related computation. .. code-block:: Python import munkres list1 = adata.obs['leiden'].astype(int).tolist() list2 = adata.obs['leiden_schema'].astype(int).tolist() contmat = sklearn.metrics.cluster.contingency_matrix(list1, list2) map21 = dict(munkres.Munkres().compute(contmat.max() - contmat)) adata.obs['leiden_schema_relabeled'] = [str(map21[a]) for a in list2] adata.obs['Schema_reassign'] = [('Same' if (map21[a]==a) else 'Different') for a in list2] for c in ['Annotation','Annot2', 'leiden', 'leiden_schema_relabeled', 'Schema_reassign']: sc.pl.umap(adata, color=c) .. image:: ../_static/schema_paired-tag_umap-row1.png :width: 800 .. image:: ../_static/schema_paired-tag_umap-row2.png :width: 650 It's also interesting to identify cells where the cluster assignments changed after multi-modal synthesis. As you can see, it's only in certain cell types where the epigenetic data suggests a different clustering than the primary RNA-seq modality. .. image:: ../_static/schema_paired-tag_umap-row3.png :width: 300 **Gene set identification:** The feature importances output by Schema here identify the genes whose expression variations best agree with epigenetic variations in these tissues. We first aggregate the feature importances across the 6 two-ways runs: .. code-block:: Python df_genes = pd.DataFrame({'gene': adata.var.symbol}) for desc, (_,_,_,wts) in desc2transforms.items(): df_genes[desc] = wts df_genes['avg_wt'] = df_genes.iloc[:,1:].mean(axis=1) df_genes = df_genes.sort_values('avg_wt', ascending=False).reset_index(drop=True) gene_list = df_genes.gene.values sc.pl.umap(adata, color= gene_list[:6], gene_symbols='symbol', color_map='plasma', frameon=False, ncols=3) .. image:: ../_static/schema_paired-tag_gene_plots.png :width: 800 Many of the top genes identified by Schema (e.g., `Erbb4`_, `Npas3`_, `Zbtb20`_, `Luzp2`_) are known to be relevant to neuronal function or disease. Note that all of this fell out of the synthesis directly--- we didn't do any differential expression analysis against an external background or provide the method some other indication that the data is from brain tissue. We also did a GO enrichment analysis (via `Gorilla`_) of the top 100 genes by Schema weight. Here are the significant hits (FDR q-val < 0.1). Again, most GO terms relate to neuronal development, activity, and communication: .. csv-table:: GO Enrichment of Top Schema-identified genes :file: ../_static/schema_paired-tag_go-annot.csv :widths: 20, 80 :header-rows: 0 .. _Visualization: https://schema-multimodal.readthedocs.io/en/latest/visualization/index.html#ageing-fly-brain .. _Cao et al.'s: https://science.sciencemag.org/content/361/6409/1380/ .. _paper: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-021-02313-2 .. _Erbb4: https://www.ncbi.nlm.nih.gov/gene/2066 .. _Npas3: https://www.ncbi.nlm.nih.gov/gene/64067 .. _Zbtb20: https://www.ncbi.nlm.nih.gov/gene/26137 .. _Luzp2: https://www.ncbi.nlm.nih.gov/gene/338645 .. _Gorilla: http://cbl-gorilla.cs.technion.ac.il/ .. _Zhu et al.’s study: https://www.nature.com/articles/s41592-021-01060-3 .. _GSE152020: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152020
schema-learn
/schema_learn-0.1.5.5.tar.gz/schema_learn-0.1.5.5/docs/source/recipes/index.rst
index.rst
Data Integration Examples ======= API-usage Examples ~~~~~~~~~~~~~~ *Note*: The code snippets below show how Schema could be used for hypothetical datasets and illustrates the API usage. In the next sections (`Paired RNA-seq and ATAC-seq`_, `Paired-Tag`_) and in `Visualization`_, we describe worked examples where we also provide the dataset to try things on. We are working to add more datasets. **Example** Correlate gene expression 1) positively with ATAC-Seq data and 2) negatively with Batch information. .. code-block:: Python atac_50d = sklearn.decomposition.TruncatedSVD(50).fit_transform( atac_cnts_sp_matrix) sqp = SchemaQP(min_corr=0.9) # df is a pd.DataFrame, srs is a pd.Series, -1 means try to disagree mod_X = sqp.fit_transform( df_gene_exp, # gene expression dataframe: rows=cells, cols=genes [ atac_50d, batch_id], # batch_info can be a pd.Series or np.array. rows=cells [ 'feature_vector', 'categorical'], [ 1, -1]) # maximize combination of (agreement with ATAC-seq + disagreement with batch_id) gene_wts = sqp.feature_weights() # get gene importances **Example** Correlate gene expression with three secondary modalities. .. code-block:: Python sqp = SchemaQP(min_corr = 0.9) # lower than the default, allowing greater distortion of the primary modality sqp.fit( adata.X, [ adata.obs['col1'], adata.obs['col2'], adata.obsm['Matrix1'] ], [ "categorical", "numeric", "feature_vector"]) # data types of the three modalities mod_X = sqp.transform( adata.X) # transform gene_wts = sqp.feature_weights() # get gene importances Paired RNA-seq and ATAC-seq ~~~~~~~~~~~~~~~~~~~~~~~~~~~ Here, we integrate simultaneously assayed RNA- and ATAC-seq data from `Cao et al.'s`_ sci-CAR study of mouse kidney cells. Specifically, we'll try to do better cell-type inference by considering both RNA-seq and ATAC-seq data simultaneously. The original study has ground-truth labels for most of the cell types, allowing us to benchmark automatically-computed clusters (generated by Leiden clustering here). As we'll show, a key challenge here is that the ATAC-seq data is very sparse and noisy. Naively incorporating it with RNA-seq can actually be counter-productive--- the joint clustering from a naive approach can actually have a *lower* overlap with the ground truth labels than if we were to just use RNA-seq-based clustering. *Note*: This example involves generating Leiden clusters; you will need to install the *igraph* and *leidenalg* Python packages if you want to use them: .. code-block:: bash pip install igraph pip install leidenalg Let's start by getting the data. We have preprocessed the original dataset, done some basic cleanup, and put it into an AnnData object that you can download. Please remember to also cite the original study if you use this dataset. .. code-block:: Python import schema adata = schema.datasets.scicar_mouse_kidney() print(adata.shape, adata.uns['atac.X'].shape) print(adata.uns.keys()) As you see, we have stored the ATAC data (as a sparse numpy matrix) in the .uns slots of the anndata object. Also look at the *adata.obs* dataframe which has t-SNE coordinates, ground-truth cell type names (as assigned by Cao et al.) and cluster colors etc. You'll notice that some cells don't have ground truth assignments. When evaluating, we'll skip those. To use the ATAC-seq data, we reduce its dimensionality to 50. Instead of PCA, we apply *TruncatedSVD* since the ATAC counts matrix is sparse. .. code-block:: Python svd2 = sklearn.decomposition.TruncatedSVD(n_components= 50, random_state = 17) H2 = svd2.fit_transform(adata.uns["atac.X"]) Next, we run Schema. We choose RNA-seq as the primary modality because 1) it has lower noise than ATAC-seq, and 2) we want to investigate which of its features (i.e., genes) are important during the integration. We will first perform a NMF transformation on the RNA-seq data. For the secondary modality, we'll use the dimensionality-reduced ATAC-seq. We require a positive correlation between the two (`secondary_data_wt_list = [1]` below). **Importantly, we force Schema to generate a low-distortation transformation** : the correlation of distances between original RNA-seq space and the transformed space, `min_desired_corr` is required to be >99%. This low-distortion capability of Schema is crucial here, as we'll demonstrate. In the `params` settings below, the number of randomly sampled point-pairs has been bumped up to 5M (from default=2M). It helps with the accuracy and doesn't cost too much computationally. We also turned off `do_whiten` (default=1, i.e., true). When `do_whiten=1`, Schema first rescales the PCA/NMF transformation so that each axis has unit variance; typically, doing so is "nice" from a theoretical/statistical perspective. But it can interfere with downstream analyses (e.g., Leiden clustering here). .. code-block:: Python sqp99 = schema.SchemaQP(0.99, mode='affine', params= {"decomposition_model":"nmf", "num_top_components":50, "do_whiten": 0, "dist_npairs": 5000000}) dz99 = sqp99.fit_transform(adata.X, [H2], ['feature_vector'], [1]) Let's look at the feature weights. Since we ran the code in 'affine' mode, the raw weights from the quadratic program will correspond to the 50 NMF factors. Three of these factors seem to stand out; most other weights are quite low. .. code-block:: Python plt.plot(sqp99._wts) .. image:: ../_static/schema_atacrna_demo_wts1.png :width: 300 Schema offers a helper function to convert these NMF (or PCA) feature weights to gene weights. The function offers a few ways of doing so, but the default is to simply average the loadings across the top-k factors: .. code-block:: Python v99 = sqp99.feature_weights("top-k-loading", 3) Let's do a dotplot to visualize how the expression of these genes varies by cell name. We plot the top 10 genes by importance here. .. code-block:: Python dfv99 = pd.DataFrame({"gene": adata.var_names, "v":v99}).sort_values("v", ascending=False).reset_index(drop=True) sc.pl.dotplot(adata, dfv99.gene.head(10).tolist(),'cell_name_short', figsize=(8,6)) As you'll notice, theese gene seem to be differentially expressed in PT cells, PBA and Ki-67+ cells. Essentially, these are cell types where ATAC-seq data was most informative. As we'll see shortly, it is preciely in these cells where Schema is able to offer the biggest improvement. .. image:: ../_static/schema_atacrna_demo_dotplot1.png :width: 500 For a comparison later, let's also do a Schema run without a strong distortion control. Below, we set the `min_desired_corr` parameter to 0.10 (i.e., 10%). Thus, the ATAC-seq data will get to influence the transformation a lot more. .. code-block:: Python sqp10 = schema.SchemaQP(0.10, mode='affine', params= {"decomposition_model":"nmf", "num_top_components":50, "do_whiten": 0, "dist_npairs": 5000000}) dz10 = sqp10.fit_transform(adata.X, [H2], ['feature_vector'], [1]) Finally, let's do Leiden clustering of the RNA-seq, ATAC-seq, and the two Schema runs. We'll compare the cluster assignments to the ground truth cell labels. Intuitively, by combining RNA-seq and ATAC-seq, one should be able to get a more biologically accurate clustering. We visually evaluate the clusterings below; in the paper, we've supplemented this with more quantitative estimates. .. code-block:: Python import schema.utils fcluster = schema.utils.get_leiden_clustering #feel free to try your own clustering algo ld_cluster_rna = fcluster(sqp99._decomp_mdl.transform(adata.X.todense())) ld_cluster_atac = fcluster(H2) ld_cluster_sqp99 = fcluster(dz99) ld_cluster_sqp10 = fcluster(dz10) .. code-block:: Python x = adata.obs.tsne_1 y = adata.obs.tsne_2 idx = adata.obs.rgb.apply(lambda s: isinstance(s,str) and '#' in s).values.tolist() #skip nan cells fig, axs = plt.subplots(3,2, figsize=(10,15)) axs[0][0].scatter(x[idx], y[idx], c=adata.obs.rgb.values[idx], s=1) axs[0][0].set_title('Ground Truth') axs[0][1].scatter(x[idx], y[idx], c=adata.obs.rgb.values[idx], s=1, alpha=0.1) axs[0][1].set_title('Ground Truth Labels') for c in np.unique(adata.obs.cell_name_short[idx]): if c=='nan': continue cx,cy = x[adata.obs.cell_name_short==c].mean(), y[adata.obs.cell_name_short==c].mean() axs[0][1].text(cx,cy,c,fontsize=10) axs[1][0].scatter(x[idx], y[idx], c=ld_cluster_rna[idx], cmap='tab20b', s=1) axs[1][0].set_title('RNA-seq') axs[1][1].scatter(x[idx], y[idx], c=ld_cluster_atac[idx], cmap='tab20b', s=1) axs[1][1].set_title('ATAC-seq') axs[2][0].scatter(x[idx], y[idx], c=ld_cluster_sqp99[idx], cmap='tab20b', s=1) axs[2][0].set_title('Schema-99%') axs[2][1].scatter(x[idx], y[idx], c=ld_cluster_sqp10[idx], cmap='tab20b', s=1) axs[2][1].set_title('Schema-10%') for ax in np.ravel(axs): ax.axis('off') Below, we show the figures in a 3x2 panel of t-SNE plots. In the first row, the left panel shows the cells colored by ground-truth cell types; the right panel is basically the same but lists the cell types explicitly. The next row shows cells colored by RNA- or ATAC-only clustering. Notice how noisy the ATAC-only clustering is! This is not a bug in our analysis-- less than 0.3% of ATAC count matrix entries are non-zero and the sparsity of the ATAC data makes it difficult to produce high-quality cell type estimates. The third row shows cells colored by Schema-based clustering at 99% (left) and 10% (right) `min_desired_corr` thresholds. With Schema at a low-distortion setting (i.e., `min_desired_corr = 99%`), notice that PT cells and Ki-67+ cells, circled in red, are getting more correctly classified now. This improvement of the Schema-implied clustering over the RNA-seq-only clustering can be quantified by measuring the overlap with ground truth cell grouping, as we do in the paper. **This is a key strength of Schema** --- even with a modality that is sparse and noisy (like ATAC-seq here), it can nonetheless extract something of value from the noisy modality because the constraint on distortion of the primary modality acts as a regularization. This is also why we recommend that your highest-confidence modality be set as the primary. Lastly as demonstration, if we relax the distortion constraint by setting `min_desired_corr = 10%`, you'll notice that the noise of ATAC-seq data does swamp out the RNA-seq signal. With an unconstrained approach (e.g., CCA or some deep learning approaches), this ends being a major challenge. .. image:: ../_static/schema_atacrna_demo_tsne1.png :width: 600 Paired-Tag ~~~~~~~~~~~~~~~~~~~~~~~~~~~ Here we synthesize simultaneously assayed RNA-seq, ATAC-seq and histone-modification data at a single-cell resolution, from the Paired-Tag protocol described in `Zhu et al.’s study`_ of adult mouse frontal cortex and hippocampus (Nature Methods, 2021). This is a fascinating dataset with five different histone modifications assayed separately (3 repressors and 2 activators), in addition to RNA-seq and ATAC-seq. As in the original study, we consider each of the histone modifications as a separate modality, implying a hepta-modal assay! Interestingly, though, the modalities are available only in pairwise combinations with RNA-seq: some cells were assayed for H3K4me1 & RNA-seq while another set of cells provided ATAC-seq & RNA-seq data, and so on. Here’s the overall distribution of non-RNA-seq modalities across 64,849 cells. .. image:: ../_static/schema_paired-tag_data-dist.png :width: 300 This organization of data might be tricky to integrate with a method which expects *each* modality to be available for *all* cells and has difficulty accomodating partial coverage of some modalities. Of course, you could always fall back to an integrative approach that treats each modality’s cell population as independent, but then you miss out on the simultaneously-multimodal aspect of this data. With Schema, you can have your cake and eat it too! We do 6 two-way integrations (RNA-seq as the primary modality against each of the other modalities) using the subsets of cells available in each case. Schema’s interpretable and linear framework makes it easy to combine these. Once Schema computes the optimal transformation of RNA-seq that aligns it with, say, ATAC-seq, we apply that transformation to the entire RNA-seq dataset, including cells that do *not* have ATAC-seq data. Such full-dataset extensions of the pairwise syntheses can then be stacked together. Doing Leiden clustering on the result would enable us to infer cell types by integrating information from all modalities. As we will show below, Schema's synthesis helps improve the quality of cell type inference over what you could get just from RNA-seq. Similarly for feature selection, Schema's computed feature weights for each two-way synthesis can be averaged to get the genes important to the overall synthesis. In a completely automated fashion and without any knowledge of tissue’s source or biology, we’ll find that the genes Schema identifies as important turn out to be very relevant to neuronal function and disease. Ready for more? First, you will need the data. The original is available on GEO (`GSE152020`_) but the individual modalities are huge (e.g., the ATAC-seq peak-counts are in a 14,095 x 2,443,832 sparse matrix!). This is not unusual--- epigenetic modalites are typically very sparse (we discuss why this matters in `Paired RNA-seq and ATAC-seq`_). As a preprocessing step, we performed singular value decompositions (SVD) of these modalities and also reduced the RNA-seq data to its 4,000 highly variable genes. An AnnData object with this preprocessing is available here (please remember to also cite the original study if you use this dataset) : .. code-block:: bash wget http://cb.csail.mit.edu/cb/schema/adata_dimreduced_paired-tag.pkl Let's load it in: .. code-block:: Python import schema, pickle, anndata, sklearn.metrics import scanpy as sc # you may need to change the file location as appopriate to your setup adata = pickle.load(open("adata_dimreduced_paired-tag.pkl", "rb")) print (adata.shape, [(c, adata.uns['SVD_'+c].shape) for c in adata.uns['sec_modalities']]) As you see, we have stored the 50-dimensional SVDs of the secondary modalities in the :code:`.uns` slots of the anndata object. Also look at the :code:`adata.obs` dataframe which has UMAP coordinates, ground-truth cell type names (as assigned by Zhu et al.) etc. We now do Schema runs for the 6 two-way modality combinations, with RNA-seq as the primary in each run. Each run will also store the transformation on the entire 64,849-cell RNA-seq dataset and also store the gene importances. .. code-block:: Python d_rna = adata.X.todense() desc2transforms = {} for desc in adata.uns['sec_modalities']: print(desc) # we mostly stick with the default settings, explicitly listed here for clarity sqp = schema.SchemaQP(0.99, mode='affine', params= {"decomposition_model": 'pca', "num_top_components":50, "do_whiten": 0, # this is different from default "dist_npairs": 5000000}) # extract the relevant subset idx1 = adata.obs['rowidx'][adata.uns["SVD_"+desc].index] prim_d = d_rna[idx1,:] sec_d = adata.uns["SVD_"+desc].values print(len(idx1), prim_d.shape, sec_d.shape) sqp.fit(prim_d, [sec_d], ['feature_vector'], [1]) # fit on the idx1 subset... dz = sqp.transform(d_rna) # ...then transform the full RNA-seq dataset desc2transforms[desc] = (sqp, dz, idx1, sqp.feature_weights(k=3)) **Cell type inference:**: In each of the 6 runs above, :code:`dz` is a 64,849 x 50 matrix. We can horizontally stack these matrices for a 64,849 x 300 matrix that represents the transformation of RNA-seq data informed simultaneously by all 6 secondary modalities. .. code-block:: Python a6Xpca = np.hstack([dz for _,dz,_,_ in desc2transforms.values()]) adata_schema = anndata.AnnData(X=a6Xpca, obs=adata.obs) print (adata_schema.shape) We then perform Leiden clustering on the original and transformed data, computing the overlap with expert marker-gene-based annotation by Zhu et al. .. code-block:: Python # original sc.pp.pca(adata) sc.pp.neighbors(adata) sc.tl.leiden(adata) # Schema-transformed # since Schema had already done PCA before it transformed, let's stick with its raw output sc.pp.neighbors(adata_schema, use_rep='X') sc.tl.leiden(adata_schema) # we'll do plots etc. with the original AnnData object adata.obs['leiden_schema'] = adata_schema.obs['leiden'].values # compute overlap with manual cell type annotations ari_orig = sklearn.metrics.adjusted_rand_score(adata.obs.Annotation, adata.obs.leiden) ari_schema= sklearn.metrics.adjusted_rand_score(adata.obs.Annotation, adata.obs.leiden_schema) print ("ARI: Orig: {} With Schema: {}".format( ari_orig, ari_schema)) As you can see, the ARI with Schema improved from 0.437 (using only RNA-seq) to 0.446 (using all modalities). Single-cell epigenetic modalities are very sparse, making it difficult to distinguish signal from noise. However, Schema's constrained approach allows it to extract signal from these secondary modalities nonetheless, a task which has otherwise been challenging (see the related discussion in our `paper`_ or in `Paired RNA-seq and ATAC-seq`_). Before we plot these clusters, we'll relabel the Schema-based Leiden clusters to match the labeling of RNA-seq only Leiden clusters; this will make their color schemes consistent. You will need to install the Python package *munkres* (:code:`pip install munkres`) for the related computation. .. code-block:: Python import munkres list1 = adata.obs['leiden'].astype(int).tolist() list2 = adata.obs['leiden_schema'].astype(int).tolist() contmat = sklearn.metrics.cluster.contingency_matrix(list1, list2) map21 = dict(munkres.Munkres().compute(contmat.max() - contmat)) adata.obs['leiden_schema_relabeled'] = [str(map21[a]) for a in list2] adata.obs['Schema_reassign'] = [('Same' if (map21[a]==a) else 'Different') for a in list2] for c in ['Annotation','Annot2', 'leiden', 'leiden_schema_relabeled', 'Schema_reassign']: sc.pl.umap(adata, color=c) .. image:: ../_static/schema_paired-tag_umap-row1.png :width: 800 .. image:: ../_static/schema_paired-tag_umap-row2.png :width: 650 It's also interesting to identify cells where the cluster assignments changed after multi-modal synthesis. As you can see, it's only in certain cell types where the epigenetic data suggests a different clustering than the primary RNA-seq modality. .. image:: ../_static/schema_paired-tag_umap-row3.png :width: 300 **Gene set identification:** The feature importances output by Schema here identify the genes whose expression variations best agree with epigenetic variations in these tissues. We first aggregate the feature importances across the 6 two-ways runs: .. code-block:: Python df_genes = pd.DataFrame({'gene': adata.var.symbol}) for desc, (_,_,_,wts) in desc2transforms.items(): df_genes[desc] = wts df_genes['avg_wt'] = df_genes.iloc[:,1:].mean(axis=1) df_genes = df_genes.sort_values('avg_wt', ascending=False).reset_index(drop=True) gene_list = df_genes.gene.values sc.pl.umap(adata, color= gene_list[:6], gene_symbols='symbol', color_map='plasma', frameon=False, ncols=3) .. image:: ../_static/schema_paired-tag_gene_plots.png :width: 800 Many of the top genes identified by Schema (e.g., `Erbb4`_, `Npas3`_, `Zbtb20`_, `Luzp2`_) are known to be relevant to neuronal function or disease. Note that all of this fell out of the synthesis directly--- we didn't do any differential expression analysis against an external background or provide the method some other indication that the data is from brain tissue. We also did a GO enrichment analysis (via `Gorilla`_) of the top 100 genes by Schema weight. Here are the significant hits (FDR q-val < 0.1). Again, most GO terms relate to neuronal development, activity, and communication: .. csv-table:: GO Enrichment of Top Schema-identified genes :file: ../_static/schema_paired-tag_go-annot.csv :widths: 20, 80 :header-rows: 0 .. _Visualization: https://schema-multimodal.readthedocs.io/en/latest/visualization/index.html#ageing-fly-brain .. _Cao et al.'s: https://science.sciencemag.org/content/361/6409/1380/ .. _paper: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-021-02313-2 .. _Erbb4: https://www.ncbi.nlm.nih.gov/gene/2066 .. _Npas3: https://www.ncbi.nlm.nih.gov/gene/64067 .. _Zbtb20: https://www.ncbi.nlm.nih.gov/gene/26137 .. _Luzp2: https://www.ncbi.nlm.nih.gov/gene/338645 .. _Gorilla: http://cbl-gorilla.cs.technion.ac.il/ .. _Zhu et al.’s study: https://www.nature.com/articles/s41592-021-01060-3 .. _GSE152020: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152020
0.919054
0.943764
Visualization Examples ============= Popular tools like `t-SNE`_ and `UMAP`_ can produce intuitive and appealing visualizations. However, since they perform opaque non-linear transformations of the input data, it can be unclear how to "tweak" the visualization to accentuate a specific aspect of the input. Also, it can can sometimes be difficult to understand which features (e.g. genes) of the input were most important to getting the plot. Schema can help with both of these issues. With scRNA-seq data as the primary modality, Schema can transform it by infusing additional information into it while preserving a high level of similarity with the original data. When t-SNE/UMAP are applied on the transformed data, we have found that the broad contours of the original plot are preserved while the new information is also reflected. Furthermore, the relative weight of the new data can be calibrated using the `min_desired_corr` parameter of Schema. Ageing fly brain ~~~~~~~~~~~~~~~~ Here, we tweak the UMAP plot of `Davie et al.'s`_ ageing fly brain data to accentuate cell age. First, let's get the data and do a regular UMAP plot. .. code-block:: Python import schema import scanpy as sc import anndata def sc_umap_pipeline(bdata, fig_suffix): sc.pp.pca(bdata) sc.pp.neighbors(bdata, n_neighbors=15) sc.tl.umap(bdata) sc.pl.umap(bdata, color='age', color_map='coolwarm', save='_{}.png'.format(fig_suffix) ) .. code-block:: Python adata = schema.datasets.fly_brain() # adata has scRNA-seq data & cell age sc_umap_pipeline(adata, 'regular') This should produce a plot like this, where cells are colored by age. .. image:: ../_static/umap_flybrain_regular_r3.png :width: 300 Next, we apply Schema to infuse cell age into the scRNA-seq data, while preserving a high level of correlation with the original scRNA-seq distances. We start by requiring a minimum 99.9% correlation with original scRNA-seq distances .. code-block:: Python sqp = schema.SchemaQP( min_desired_corr=0.999, # require 99.9% agreement with original scRNA-seq distances params= {'decomposition_model': 'nmf', 'num_top_components': 20} ) mod999_X = sqp.fit_transform( adata.X, [ adata.obs['age'] ], ['numeric']) # correlate gene expression with the age sc_umap_pipeline( anndata.AnnData( mod999_X, obs=adata.obs), '0.999' ) We then loosen the `min_desired_corr` constraint a tiny bit, to 99% .. code-block:: Python sqp.reset_mincorr_param(0.99) # we can re-use the NMF transform (which takes more time than the quadratic program) mod990_X = sqp.fit_transform( adata.X, [ adata.obs['age'] ], ['numeric']) sc_umap_pipeline( anndata.AnnData( mod990_X, obs=adata.obs), '0.990' ) diffexp_gene_wts = sqp.feature_weights() # get a ranking of genes important to the alignment These runs should produce a pair of plots like the ones shown below. Note how cell-age progressively stands out as a characteristic feature. We also encourage you to try out other choices of `min_desired_corr` (e.g., 0.90 or 0.7); these will show the effect of allowing greater distortions of the primary modality. .. image:: ../_static/umap_flybrain_schema0.999-0.99_r3.png :width: 620 This example also illustrates Scehma's interpretability. The variable `diffexp_gene_wts` identifies the genes most important to aligning scRNA-seq with cell age. As we describe in our `paper`_, these genes turn out to be differentially expressed between young cells and old cells. .. _Davie et al.'s: https://doi.org/10.1016/j.cell.2018.05.057 .. _paper: https://doi.org/10.1101/834549 .. _t-SNE: https://lvdmaaten.github.io/tsne/ .. _UMAP: https://umap-learn.readthedocs.io/en/latest/
schema-learn
/schema_learn-0.1.5.5.tar.gz/schema_learn-0.1.5.5/docs/source/visualization/index.rst
index.rst
Visualization Examples ============= Popular tools like `t-SNE`_ and `UMAP`_ can produce intuitive and appealing visualizations. However, since they perform opaque non-linear transformations of the input data, it can be unclear how to "tweak" the visualization to accentuate a specific aspect of the input. Also, it can can sometimes be difficult to understand which features (e.g. genes) of the input were most important to getting the plot. Schema can help with both of these issues. With scRNA-seq data as the primary modality, Schema can transform it by infusing additional information into it while preserving a high level of similarity with the original data. When t-SNE/UMAP are applied on the transformed data, we have found that the broad contours of the original plot are preserved while the new information is also reflected. Furthermore, the relative weight of the new data can be calibrated using the `min_desired_corr` parameter of Schema. Ageing fly brain ~~~~~~~~~~~~~~~~ Here, we tweak the UMAP plot of `Davie et al.'s`_ ageing fly brain data to accentuate cell age. First, let's get the data and do a regular UMAP plot. .. code-block:: Python import schema import scanpy as sc import anndata def sc_umap_pipeline(bdata, fig_suffix): sc.pp.pca(bdata) sc.pp.neighbors(bdata, n_neighbors=15) sc.tl.umap(bdata) sc.pl.umap(bdata, color='age', color_map='coolwarm', save='_{}.png'.format(fig_suffix) ) .. code-block:: Python adata = schema.datasets.fly_brain() # adata has scRNA-seq data & cell age sc_umap_pipeline(adata, 'regular') This should produce a plot like this, where cells are colored by age. .. image:: ../_static/umap_flybrain_regular_r3.png :width: 300 Next, we apply Schema to infuse cell age into the scRNA-seq data, while preserving a high level of correlation with the original scRNA-seq distances. We start by requiring a minimum 99.9% correlation with original scRNA-seq distances .. code-block:: Python sqp = schema.SchemaQP( min_desired_corr=0.999, # require 99.9% agreement with original scRNA-seq distances params= {'decomposition_model': 'nmf', 'num_top_components': 20} ) mod999_X = sqp.fit_transform( adata.X, [ adata.obs['age'] ], ['numeric']) # correlate gene expression with the age sc_umap_pipeline( anndata.AnnData( mod999_X, obs=adata.obs), '0.999' ) We then loosen the `min_desired_corr` constraint a tiny bit, to 99% .. code-block:: Python sqp.reset_mincorr_param(0.99) # we can re-use the NMF transform (which takes more time than the quadratic program) mod990_X = sqp.fit_transform( adata.X, [ adata.obs['age'] ], ['numeric']) sc_umap_pipeline( anndata.AnnData( mod990_X, obs=adata.obs), '0.990' ) diffexp_gene_wts = sqp.feature_weights() # get a ranking of genes important to the alignment These runs should produce a pair of plots like the ones shown below. Note how cell-age progressively stands out as a characteristic feature. We also encourage you to try out other choices of `min_desired_corr` (e.g., 0.90 or 0.7); these will show the effect of allowing greater distortions of the primary modality. .. image:: ../_static/umap_flybrain_schema0.999-0.99_r3.png :width: 620 This example also illustrates Scehma's interpretability. The variable `diffexp_gene_wts` identifies the genes most important to aligning scRNA-seq with cell age. As we describe in our `paper`_, these genes turn out to be differentially expressed between young cells and old cells. .. _Davie et al.'s: https://doi.org/10.1016/j.cell.2018.05.057 .. _paper: https://doi.org/10.1101/834549 .. _t-SNE: https://lvdmaaten.github.io/tsne/ .. _UMAP: https://umap-learn.readthedocs.io/en/latest/
0.946138
0.836688
### Preamble ``` import pandas as pd import numpy as np import matplotlib.pyplot as plt import warnings with warnings.catch_warnings(): warnings.simplefilter("ignore") import scanpy as sc ## local paths etc. You'll want to change these DATASET_DIR = "/scratch1/rsingh/work/schema/data/tasic-nature" import sys; sys.path.extend(['/scratch1/rsingh/tools','/afs/csail.mit.edu/u/r/rsingh/work/schema/']) ``` #### Import Schema and tSNE We use fast-tsne here, but use whatever you like ``` from fast_tsne import fast_tsne from schema import SchemaQP ``` ### Get example data * This data is from Tasic et al. (Nature 2018, DOI: 10.1038/s41586-018-0654-5 ) * Shell commands to get our copy of the data: * wget http://schema.csail.mit.edu/datasets/Schema_demo_Tasic2018.h5ad.gz * gunzip Schema_demo_Tasic2018.h5ad.gz * The processing of raw data here broadly followed the steps in Kobak & Berens, https://www.biorxiv.org/content/10.1101/453449v1 * The gene expression data has been count-normalized and log-transformed. ``` adata = sc.read(DATASET_DIR + "/" + "Schema_demo_Tasic2018.h5ad") ``` ### Schema examples * In all of what follows, the primary dataset is gene expression. The secondary datasets are 1) cluster IDs; and 2) cell-type "class" variables which correspond to superclusters (i.e. higher-level clusters) in the Tasic et al. paper. #### Recommendations for parameter settings * min_desired_corr and w_max_to_avg are the names for the hyperparameters $s_1$ and $\bar{w}$ from our paper * *min_desired_corr*: at first, you should try a range of values for min_desired_corr (e.g., 0.99, 0.90, 0.50). This will give you a sense of what might work well for your data; after this, you can progressively narrow down your range. In typical use-cases, high min_desired_corr values (> 0.80) work best. * *w_max_to_avg*: start by keeping this constraint very loose. This ensures that min_desired_corr remains the binding constraint. Later, as you get a better sense for min_desired_corr values, you can experiment with this too. A value of 100 is pretty high and should work well in the beginning. #### With PCA as change-of-basis, min_desired_corr=0.75, positive correlation with secondary datasets ``` afx = SchemaQP(0.75) # min_desired_corr is the only required argument. dx_pca = afx.fit_transform(adata.X, # primary dataset [adata.obs["class"].values], # one secondary dataset ['categorical'] #it has labels, i.e., is a categorical datatype ) ``` #### Similar to above, with NMF as change-of-basis and a different min_desired_corr ``` afx = SchemaQP(0.6, params= {"decomposition_model": "nmf", "num_top_components": 50}) dx_nmf = afx.fit_transform(adata.X, [adata.obs["class"].values, adata.obs.cluster_id.values], # two secondary datasets ['categorical', 'categorical'], # both are labels [10, 1] # relative wts ) ``` #### Now let's do something unusual. Perturb the data so it *disagrees* with cluster ids ``` afx = SchemaQP(0.97, # Notice that we bumped up the min_desired_corr so the perturbation is limited params = {"decomposition_model": "nmf", "num_top_components": 50}) dx_perturb = afx.fit_transform(adata.X, [adata.obs.cluster_id.values], # could have used both secondary datasets, but one's fine here ['categorical'], [-1] # This is key: we are putting a negative wt on the correlation ) ``` ### tSNE plots of the baseline and Schema transforms ``` fig = plt.figure(constrained_layout=True, figsize=(8,2), dpi=300) tmps = {} for i,p in enumerate([("Original", adata.X), ("PCA1 (pos corr)", dx_pca), ("NMF (pos corr)", dx_nmf), ("Perturb (neg corr)", dx_perturb) ]): titlestr, dx1 = p ax = fig.add_subplot(1,4,i+1, frameon=False) tmps[titlestr] = dy = fast_tsne(dx1, seed=42) ax = plt.gca() ax.set_aspect('equal', adjustable='datalim') ax.scatter(dy[:,0], dy[:,1], s=1, color=adata.obs['cluster_color']) ax.set_title(titlestr) ax.axis("off") ```
schema-learn
/schema_learn-0.1.5.5.tar.gz/schema_learn-0.1.5.5/examples/Schema_demo.ipynb
Schema_demo.ipynb
import pandas as pd import numpy as np import matplotlib.pyplot as plt import warnings with warnings.catch_warnings(): warnings.simplefilter("ignore") import scanpy as sc ## local paths etc. You'll want to change these DATASET_DIR = "/scratch1/rsingh/work/schema/data/tasic-nature" import sys; sys.path.extend(['/scratch1/rsingh/tools','/afs/csail.mit.edu/u/r/rsingh/work/schema/']) from fast_tsne import fast_tsne from schema import SchemaQP adata = sc.read(DATASET_DIR + "/" + "Schema_demo_Tasic2018.h5ad") afx = SchemaQP(0.75) # min_desired_corr is the only required argument. dx_pca = afx.fit_transform(adata.X, # primary dataset [adata.obs["class"].values], # one secondary dataset ['categorical'] #it has labels, i.e., is a categorical datatype ) afx = SchemaQP(0.6, params= {"decomposition_model": "nmf", "num_top_components": 50}) dx_nmf = afx.fit_transform(adata.X, [adata.obs["class"].values, adata.obs.cluster_id.values], # two secondary datasets ['categorical', 'categorical'], # both are labels [10, 1] # relative wts ) afx = SchemaQP(0.97, # Notice that we bumped up the min_desired_corr so the perturbation is limited params = {"decomposition_model": "nmf", "num_top_components": 50}) dx_perturb = afx.fit_transform(adata.X, [adata.obs.cluster_id.values], # could have used both secondary datasets, but one's fine here ['categorical'], [-1] # This is key: we are putting a negative wt on the correlation ) fig = plt.figure(constrained_layout=True, figsize=(8,2), dpi=300) tmps = {} for i,p in enumerate([("Original", adata.X), ("PCA1 (pos corr)", dx_pca), ("NMF (pos corr)", dx_nmf), ("Perturb (neg corr)", dx_perturb) ]): titlestr, dx1 = p ax = fig.add_subplot(1,4,i+1, frameon=False) tmps[titlestr] = dy = fast_tsne(dx1, seed=42) ax = plt.gca() ax.set_aspect('equal', adjustable='datalim') ax.scatter(dy[:,0], dy[:,1], s=1, color=adata.obs['cluster_color']) ax.set_title(titlestr) ax.axis("off")
0.335677
0.883236
# Schema Schema is a general algorithm for integrating heterogeneous data modalities. It has been specially designed for multi-modal single-cell biological datasets, but should work in other contexts too. This version is based on a Quadratic Programming framework. It is described in the paper ["*Schema: A general framework for integrating heterogeneous single-cell modalities*"](https://www.biorxiv.org/content/10.1101/834549v1). The module provides a class SchemaQP that offers a sklearn type fit+transform API for affine transformations of input datasets such that the transformed data is in agreement with all the input datasets. ## Getting Started The examples provided here are also available in the examples/Schema_demo.ipynb notebook ### Installation ``` pip install schema_learn ``` ### Schema: A simple example For the examples below, you'll also need scanpy (`pip install scanpy`). We use `fast_tsne` below for visualization, but feel free to use your favorite tool. #### Sample data The data in the examples below is from the paper below; we thank the authors for making it available: * Tasic et al. [*Shared and distinct transcriptomic cell types across neocortical areas*.](https://www.nature.com/articles/s41586-018-0654-5) Nature. 2018 Nov;563(7729):72-78. doi:10.1038/s41586-018-0654-5 We make available a processed subset of the data for demonstration and analysis. Linux shell commands to get this data: ``` wget http://schema.csail.mit.edu/datasets/Schema_demo_Tasic2018.h5ad.gz gunzip Schema_demo_Tasic2018.h5ad.gz ``` In Python, set the `DATASET_DIR` variable to the folder containing this file. The processing of raw data here broadly followed the steps in Kobak & Berens * https://www.biorxiv.org/content/10.1101/453449v1 The gene expression data has been count-normalized and log-transformed. Load with the commands ```python import scanpy as sc adata = sc.read(DATASET_DIR + "/" + "Schema_demo_Tasic2018.h5ad") ``` #### Sample Schema usage Import Schema as: ```python from schema import SchemaQP afx = SchemaQP(0.75) # min_desired_corr is the only required argument. dx_pca = afx.fit_transform(adata.X, # primary dataset [adata.obs["class"].values], # just one secondary dataset ['categorical'] # has labels, i.e., is a categorical datatype ) ``` This uses PCA as the change-of-basis transform; requires a min corr of 0.75 between the primary dataset (gene expression) and the transformed dataset; and maximizes correlation between the primary dataset and the secondary dataset, supercluster (i.e. higher-level clusters) labels produced during Tasic et al.'s hierarchical clustering. ### More Schema examples * In all of what follows, the primary dataset is gene expression. The secondary datasets are 1) cluster IDs; and/or 2) cell-type "class" variables which correspond to superclusters (i.e. higher-level clusters) in the Tasic et al. paper. #### With NMF (Non-negative Matrix Factorization) as change-of-basis, a different min_desired_corr, and two secondary datasets ```python afx = SchemaQP(0.6, params= {"decomposition_model": "nmf", "num_top_components": 50}) dx_nmf = afx.fit_transform(adata.X, [adata.obs["class"].values, adata.obs.cluster_id.values], # two secondary datasets ['categorical', 'categorical'], # both are labels [10, 1] # relative wts ) ``` #### Now let's do something unusual. Perturb the data so it *disagrees* with cluster ids ```python afx = SchemaQP(0.97, # Notice that we bumped up the min_desired_corr so the perturbation is limited params = {"decomposition_model": "nmf", "num_top_components": 50}) dx_perturb = afx.fit_transform(adata.X, [adata.obs.cluster_id.values], # could have used both secondary datasets, but one's fine here ['categorical'], [-1] # This is key: we are putting a negative wt on the correlation ) ``` #### Recommendations for parameter settings * `min_desired_corr` and `w_max_to_avg` are the names for the hyperparameters $s_1$ and $\bar{w}$ from our paper * *min_desired_corr*: at first, you should try a range of values for `min_desired_corr` (e.g., 0.99, 0.90, 0.50). This will give you a sense of what might work well for your data; after this, you can progressively narrow down your range. In typical use-cases, high `min_desired_corr` values (> 0.80) work best. * *w_max_to_avg*: start by keeping this constraint very loose. This ensures that `min_desired_corr` remains the binding constraint. Later, as you get a better sense for `min_desired_corr` values, you can experiment with this too. A value of 100 is pretty high and should work well in the beginning. #### tSNE plots of the baseline and Schema transforms ```python fig = plt.figure(constrained_layout=True, figsize=(8,2), dpi=300) tmps = {} for i,p in enumerate([("Original", adata.X), ("PCA1 (pos corr)", dx_pca), ("NMF (pos corr)", dx_nmf), ("Perturb (neg corr)", dx_perturb) ]): titlestr, dx1 = p ax = fig.add_subplot(1,4,i+1, frameon=False) tmps[titlestr] = dy = fast_tsne(dx1, seed=42) ax = plt.gca() ax.set_aspect('equal', adjustable='datalim') ax.scatter(dy[:,0], dy[:,1], s=1, color=adata.obs['cluster_color']) ax.set_title(titlestr) ax.axis("off") ``` ## API ### Constructor Initializes the `SchemaQP` object #### Parameters `min_desired_corr`: `float` in [0,1) The minimum desired correlation between squared L2 distances in the transformed space and distances in the original space. RECOMMENDED VALUES: At first, you should try a range of values (e.g., 0.99, 0.90, 0.50). This will give you a sense of what might work well for your data. After this, you can progressively narrow down your range. In typical use-cases of large biological datasets, high values (> 0.80) will probably work best. `w_max_to_avg`: `float` >1, optional (default: 100) Sets the upper-bound on the ratio of w's largest element to w's avg element. Making it large will allow for more severe transformations. RECOMMENDED VALUES: Start by keeping this constraint very loose; the default value (100) does this, ensuring that min_desired_corr remains the binding constraint. Later, as you get a better sense for the right min_desired_corr values for your data, you can experiment with this too. To really constrain this, set it in the (1-5] range, depending on how many features you have. `params`: `dict` of key-value pairs, optional (see defaults below) Additional configuration parameters. Here are the important ones: * decomposition_model: "pca" or "nmf" (default=pca) * num_top_components: (default=50) number of PCA (or NMF) components to use when mode=="affine". You can ignore the rest on your first pass; the default values are pretty reasonable: * dist_npairs: (default=2000000). How many pt-pairs to use for computing pairwise distances value=None means compute exhaustively over all n*(n-1)/2 pt-pairs. Not recommended for n>5000. Otherwise, the given number of pt-pairs is sampled randomly. The sampling is done in a way in which each point will be represented roughly equally. * scale_mode_uses_standard_scaler: 1 or 0 (default=0), apply the standard scaler in the scaling mode * do_whiten: 1 or 0 (default=1). When mode=="affine", should the change-of-basis loadings be made 1-variance? `mode`: {`'affine'`, `'scale'`}, optional (default: `'affine'`) Whether to perform a general affine transformation or just a scaling transformation * 'scale' does scaling transformations only. * 'affine' first does a mapping to PCA or NMF space (you can specify n_components) It then does a scaling transform in that space and then maps everything back to the regular space, the final space being an affine transformation RECOMMENDED VALUES: 'affine' is the default, which uses PCA or NMF to do the change-of-basis. You'll want 'scale' only in one of two cases: 1) You have some features on which you directly want Schema to compute feature-weights. 2) You want to do a change-of-basis transform other PCA or NMF. If so, you will need to do that yourself and then call SchemaQP with the transformed primary dataset with mode='scale'. #### Returns A SchemaQP object on which you can call fit(...), transform(...) or fit_transform(....). ### Fit Given the primary dataset 'd' and a list of secondary datasets, fit a linear transformation (d*) of 'd' such that the correlation between squared pairwise distances in d* and those in secondary datasets is maximized while the correlation between the primary dataset d and d* remains above min_desired_corr #### Parameters `d`: A numpy 2-d `array` The primary dataset (e.g. scanpy/anndata's .X). The rows are observations (e.g., cells) and the cols are variables (e.g., gene expression). The default distance measure computed is L2: sum((point1-point2)**2). See d0_dist_transform. `secondary_data_val_list`: `list` of 1-d or 2-d numpy `array`s, each with same number of rows as `d` The secondary datasets you want to align the primary data towards. Columns in scanpy's .obs variables work well (just remember to use .values) `secondary_data_type_list`: `list` of `string`s, each value in {'numeric','feature_vector','categorical'} The list's length should match the length of secondary_data_val_list * 'numeric' means you're giving one floating-pt value for each obs. The default distance measure is L2: (point1-point2)**2 * 'feature_vector' means you're giving some multi-dimensional representation for each obs. The default distance measure is L2: sum((point1-point2)**2) * 'categorical' means that you are providing label information that should be compared for equality. The default distance measure is: 1*(val1!=val2) `secondary_data_wt_list`: `list` of `float`s, optional (default: `None`) User-specified wts for each dataset. If 'None', the wts are 1. If specified, the list's length should match the length of secondary_data_wt_list NOTE: you can try to get a mapping that *disagrees* with a dataset_info instead of *agreeing*. To do so, pass in a negative number (e.g., -1) here. This works even if you have just one secondary dataset `d0`: A 1-d or 2-d numpy array, same number of rows as 'd', optional (default: `None`) An alternative representation of the primary dataset. HANDLE WITH CARE! Most likely, you don't need this parameter. This is useful if you want to provide the primary dataset in two forms: one for transforming and another one for computing pairwise distances to use in the QP constraint; if so, 'd' is used for the former, while 'd0' is used for the latter `d0_dist_transform`: a function that takes a non-negative float as input and returns a non-negative float, optional (default: `None`) HANDLE WITH CARE! Most likely, you don't need this parameter. The transformation to apply on d or d0's L2 distances before using them for correlations. `secondary_data_dist_transform`: `list` of functions, each taking a non-negative float and returning a non-negative float, optional (default: `None`) HANDLE WITH CARE! Most likely, you don't need this parameter. The transformations to apply on secondary dataset's L2 distances before using them for correlations. If specified, the length of the list should match that of secondary_data_val_list #### Returns: None ### Transform Given a dataset `d`, apply the fitted transform to it #### Parameters `d`: a numpy 2-d array with same number of columns as primary dataset `d` in the fit(...) The rows are observations (e.g., cells) and the cols are variables (e.g., gene expression). #### Returns a 2-d numpy array with the same shape as `d`
schema-learn
/schema_learn-0.1.5.5.tar.gz/schema_learn-0.1.5.5/deprecated/old_readme.md
old_readme.md
pip install schema_learn wget http://schema.csail.mit.edu/datasets/Schema_demo_Tasic2018.h5ad.gz gunzip Schema_demo_Tasic2018.h5ad.gz import scanpy as sc adata = sc.read(DATASET_DIR + "/" + "Schema_demo_Tasic2018.h5ad") from schema import SchemaQP afx = SchemaQP(0.75) # min_desired_corr is the only required argument. dx_pca = afx.fit_transform(adata.X, # primary dataset [adata.obs["class"].values], # just one secondary dataset ['categorical'] # has labels, i.e., is a categorical datatype ) afx = SchemaQP(0.6, params= {"decomposition_model": "nmf", "num_top_components": 50}) dx_nmf = afx.fit_transform(adata.X, [adata.obs["class"].values, adata.obs.cluster_id.values], # two secondary datasets ['categorical', 'categorical'], # both are labels [10, 1] # relative wts ) afx = SchemaQP(0.97, # Notice that we bumped up the min_desired_corr so the perturbation is limited params = {"decomposition_model": "nmf", "num_top_components": 50}) dx_perturb = afx.fit_transform(adata.X, [adata.obs.cluster_id.values], # could have used both secondary datasets, but one's fine here ['categorical'], [-1] # This is key: we are putting a negative wt on the correlation ) fig = plt.figure(constrained_layout=True, figsize=(8,2), dpi=300) tmps = {} for i,p in enumerate([("Original", adata.X), ("PCA1 (pos corr)", dx_pca), ("NMF (pos corr)", dx_nmf), ("Perturb (neg corr)", dx_perturb) ]): titlestr, dx1 = p ax = fig.add_subplot(1,4,i+1, frameon=False) tmps[titlestr] = dy = fast_tsne(dx1, seed=42) ax = plt.gca() ax.set_aspect('equal', adjustable='datalim') ax.scatter(dy[:,0], dy[:,1], s=1, color=adata.obs['cluster_color']) ax.set_title(titlestr) ax.axis("off")
0.780244
0.990505
from schema import SchemaQP from anndata import AnnData import numpy as np import scanpy as sc from .process import load_names def load_meta(fname): age, strain = [], [] with open(fname) as f: f.readline() # Consume header. for line in f: fields = line.rstrip().split() age.append(int(fields[4])) strain.append(fields[3]) return np.array(age), np.array(strain) if __name__ == '__main__': [ X ], [ genes ], _ = load_names([ 'data/fly_brain/GSE107451' ], norm=False) age, strain = load_meta('data/fly_brain/GSE107451/annotation.tsv') # Only analyze wild-type strain. adata = AnnData(X[strain == 'DGRP-551']) adata.var['gene_symbols'] = genes adata.obs['age'] = age[strain == 'DGRP-551'] # No Schema transformation. sc.pp.pca(adata) sc.tl.tsne(adata, n_pcs=50) sc.pl.tsne(adata, color='age', color_map='coolwarm', save='_flybrain_regular.png') sc.pp.neighbors(adata, n_neighbors=15) sc.tl.umap(adata) sc.pl.umap(adata, color='age', color_map='coolwarm', save='_flybrain_regular.png') # Schema transformation to include age. schema_corrs = [ 0.9999, 0.999, 0.99, 0.9, 0.7, 0.5 ] for schema_corr in schema_corrs: sqp = SchemaQP( min_desired_corr=schema_corr, w_max_to_avg=100, params={ 'decomposition_model': 'nmf', 'num_top_components': 20, }, ) X = sqp.fit_transform( adata.X, [ adata.obs['age'].values, ], [ 'numeric', ], [ 1, ] ) sdata = AnnData(X) sdata.obs['age'] = age[strain == 'DGRP-551'] sc.tl.tsne(sdata) sc.pl.tsne(sdata, color='age', color_map='coolwarm', save='_flybrain_schema_corr{}_w100.png'.format(schema_corr)) sc.pp.neighbors(sdata, n_neighbors=15) sc.tl.umap(sdata) sc.pl.umap(sdata, color='age', color_map='coolwarm', save='_flybrain_schema{}_w100.png'.format(schema_corr))
schema-learn
/schema_learn-0.1.5.5.tar.gz/schema_learn-0.1.5.5/deprecated/old_examples/fly_brain/fly_brain.py
fly_brain.py
from schema import SchemaQP from anndata import AnnData import numpy as np import scanpy as sc from .process import load_names def load_meta(fname): age, strain = [], [] with open(fname) as f: f.readline() # Consume header. for line in f: fields = line.rstrip().split() age.append(int(fields[4])) strain.append(fields[3]) return np.array(age), np.array(strain) if __name__ == '__main__': [ X ], [ genes ], _ = load_names([ 'data/fly_brain/GSE107451' ], norm=False) age, strain = load_meta('data/fly_brain/GSE107451/annotation.tsv') # Only analyze wild-type strain. adata = AnnData(X[strain == 'DGRP-551']) adata.var['gene_symbols'] = genes adata.obs['age'] = age[strain == 'DGRP-551'] # No Schema transformation. sc.pp.pca(adata) sc.tl.tsne(adata, n_pcs=50) sc.pl.tsne(adata, color='age', color_map='coolwarm', save='_flybrain_regular.png') sc.pp.neighbors(adata, n_neighbors=15) sc.tl.umap(adata) sc.pl.umap(adata, color='age', color_map='coolwarm', save='_flybrain_regular.png') # Schema transformation to include age. schema_corrs = [ 0.9999, 0.999, 0.99, 0.9, 0.7, 0.5 ] for schema_corr in schema_corrs: sqp = SchemaQP( min_desired_corr=schema_corr, w_max_to_avg=100, params={ 'decomposition_model': 'nmf', 'num_top_components': 20, }, ) X = sqp.fit_transform( adata.X, [ adata.obs['age'].values, ], [ 'numeric', ], [ 1, ] ) sdata = AnnData(X) sdata.obs['age'] = age[strain == 'DGRP-551'] sc.tl.tsne(sdata) sc.pl.tsne(sdata, color='age', color_map='coolwarm', save='_flybrain_schema_corr{}_w100.png'.format(schema_corr)) sc.pp.neighbors(sdata, n_neighbors=15) sc.tl.umap(sdata) sc.pl.umap(sdata, color='age', color_map='coolwarm', save='_flybrain_schema{}_w100.png'.format(schema_corr))
0.634204
0.388444
import gzip import numpy as np import os.path import scipy.sparse from scipy.sparse import csr_matrix, csc_matrix from sklearn.preprocessing import normalize import sys MIN_TRANSCRIPTS = 0 def load_tab(fname, delim='\t'): if fname.endswith('.gz'): opener = gzip.open else: opener = open with opener(fname, 'r') as f: if fname.endswith('.gz'): header = f.readline().decode('utf-8').rstrip().replace('"', '').split(delim) else: header = f.readline().rstrip().replace('"', '').split(delim) X = [] genes = [] for i, line in enumerate(f): if fname.endswith('.gz'): line = line.decode('utf-8') fields = line.rstrip().replace('"', '').split(delim) genes.append(fields[0]) X.append([ float(f) for f in fields[1:] ]) if i == 0: if len(header) == (len(fields) - 1): cells = header elif len(header) == len(fields): cells = header[1:] else: raise ValueError('Incompatible header/value dimensions {} and {}' .format(len(header), len(fields))) return np.array(X).T, np.array(cells), np.array(genes) def load_mtx(dname): with open(dname + '/matrix.mtx', 'r') as f: while True: header = f.readline() if not header.startswith('%'): break header = header.rstrip().split() n_genes, n_cells = int(header[0]), int(header[1]) data, i, j = [], [], [] for line in f: fields = line.rstrip().split() data.append(float(fields[2])) i.append(int(fields[1])-1) j.append(int(fields[0])-1) X = csr_matrix((data, (i, j)), shape=(n_cells, n_genes)) genes = [] with open(dname + '/genes.tsv', 'r') as f: for line in f: fields = line.rstrip().split() genes.append(fields[1]) assert(len(genes) == n_genes) return X, np.array(genes) def load_h5(fname, genome='GRCh38'): try: import tables except ImportError: sys.stderr.write('Please install PyTables to read .h5 files: ' 'https://www.pytables.org/usersguide/installation.html\n') exit(1) # Adapted from scanpy's read_10x_h5() method. with tables.open_file(str(fname), 'r') as f: try: dsets = {} for node in f.walk_nodes('/' + genome, 'Array'): dsets[node.name] = node.read() n_genes, n_cells = dsets['shape'] data = dsets['data'] if dsets['data'].dtype == np.dtype('int32'): data = dsets['data'].view('float32') data[:] = dsets['data'] X = csr_matrix((data, dsets['indices'], dsets['indptr']), shape=(n_cells, n_genes)) genes = [ gene for gene in dsets['gene_names'].astype(str) ] assert(len(genes) == n_genes) assert(len(genes) == X.shape[1]) except tables.NoSuchNodeError: raise Exception('Genome %s does not exist in this file.' % genome) except KeyError: raise Exception('File is missing one or more required datasets.') return X, np.array(genes) def process_tab(fname, min_trans=MIN_TRANSCRIPTS, delim='\t'): X, cells, genes = load_tab(fname, delim=delim) gt_idx = [ i for i, s in enumerate(np.sum(X != 0, axis=1)) if s >= min_trans ] X = csr_matrix(X[gt_idx, :]) cells = cells[gt_idx] if len(gt_idx) == 0: print('Warning: 0 cells passed QC in {}'.format(fname)) if fname.endswith('.txt'): cache_prefix = '.'.join(fname.split('.')[:-1]) elif fname.endswith('.txt.gz'): cache_prefix = '.'.join(fname.split('.')[:-2]) elif fname.endswith('.tsv'): cache_prefix = '.'.join(fname.split('.')[:-1]) elif fname.endswith('.tsv.gz'): cache_prefix = '.'.join(fname.split('.')[:-2]) elif fname.endswith('.csv'): cache_prefix = '.'.join(fname.split('.')[:-1]) elif fname.endswith('.csv.gz'): cache_prefix = '.'.join(fname.split('.')[:-2]) else: cache_prefix = fname cache_fname = cache_prefix + '_tab.npz' scipy.sparse.save_npz(cache_fname, X, compressed=False) with open(cache_prefix + '_tab.genes.txt', 'w') as of: of.write('\n'.join(genes) + '\n') return X, cells, genes def process_mtx(dname, min_trans=MIN_TRANSCRIPTS): X, genes = load_mtx(dname) gt_idx = [ i for i, s in enumerate(np.sum(X != 0, axis=1)) if s >= min_trans ] X = X[gt_idx, :] if len(gt_idx) == 0: print('Warning: 0 cells passed QC in {}'.format(dname)) cache_fname = dname + '/tab.npz' scipy.sparse.save_npz(cache_fname, X, compressed=False) with open(dname + '/tab.genes.txt', 'w') as of: of.write('\n'.join(genes) + '\n') return X, genes def process_h5(fname, min_trans=MIN_TRANSCRIPTS): X, genes = load_h5(fname) gt_idx = [ i for i, s in enumerate(np.sum(X != 0, axis=1)) if s >= min_trans ] X = X[gt_idx, :] if len(gt_idx) == 0: print('Warning: 0 cells passed QC in {}'.format(fname)) if fname.endswith('.h5'): cache_prefix = '.'.join(fname.split('.')[:-1]) cache_fname = cache_prefix + '.h5.npz' scipy.sparse.save_npz(cache_fname, X, compressed=False) with open(cache_prefix + '.h5.genes.txt', 'w') as of: of.write('\n'.join(genes) + '\n') return X, genes def load_data(name): if os.path.isfile(name + '.h5.npz'): X = scipy.sparse.load_npz(name + '.h5.npz') with open(name + '.h5.genes.txt') as f: genes = np.array(f.read().rstrip().split('\n')) elif os.path.isfile(name + '_tab.npz'): X = scipy.sparse.load_npz(name + '_tab.npz') with open(name + '_tab.genes.txt') as f: genes = np.array(f.read().rstrip().split('\n')) elif os.path.isfile(name + '/tab.npz'): X = scipy.sparse.load_npz(name + '/tab.npz') with open(name + '/tab.genes.txt') as f: genes = np.array(f.read().rstrip().split('\n')) else: sys.stderr.write('Could not find: {}\n'.format(name)) exit(1) genes = np.array([ gene.upper() for gene in genes ]) return X, genes def load_names(data_names, norm=False, log1p=False, verbose=True): # Load datasets. datasets = [] genes_list = [] n_cells = 0 for name in data_names: X_i, genes_i = load_data(name) if norm: X_i = normalize(X_i, axis=1) if log1p: X_i = np.log1p(X_i) X_i = csr_matrix(X_i) datasets.append(X_i) genes_list.append(genes_i) n_cells += X_i.shape[0] if verbose: print('Loaded {} with {} genes and {} cells'. format(name, X_i.shape[1], X_i.shape[0])) if verbose: print('Found {} cells among all datasets' .format(n_cells)) return datasets, genes_list, n_cells def save_datasets(datasets, genes, data_names, verbose=True, truncate_neg=False): for i in range(len(datasets)): dataset = datasets[i].toarray() name = data_names[i] if truncate_neg: dataset[dataset < 0] = 0 with open(name + '.scanorama_corrected.txt', 'w') as of: # Save header. of.write('Genes\t') of.write('\t'.join( [ 'cell' + str(cell) for cell in range(dataset.shape[0]) ] ) + '\n') for g in range(dataset.shape[1]): of.write(genes[g] + '\t') of.write('\t'.join( [ str(expr) for expr in dataset[:, g] ] ) + '\n') def merge_datasets(datasets, genes, ds_names=None, verbose=True, union=False, keep_genes=None): if keep_genes is None: # Find genes in common. keep_genes = set() for idx, gene_list in enumerate(genes): gene_list = [ g for gene in gene_list for g in gene.split(';') ] if len(keep_genes) == 0: keep_genes = set(gene_list) elif union: keep_genes |= set(gene_list) else: keep_genes &= set(gene_list) if not union and not ds_names is None and verbose: print('After {}: {} genes'.format(ds_names[idx], len(keep_genes))) if len(keep_genes) == 0: print('Error: No genes found in all datasets, exiting...') exit(1) else: union = True if verbose: print('Found {} genes among all datasets' .format(len(keep_genes))) if union: union_genes = sorted(keep_genes) for i in range(len(datasets)): if verbose: print('Processing dataset {}'.format(i)) X_new = np.zeros((datasets[i].shape[0], len(union_genes))) X_old = csc_matrix(datasets[i]) gene_to_idx = { g: idx for idx, gene in enumerate(genes[i]) for g in gene.split(';') } for j, gene in enumerate(union_genes): if gene in gene_to_idx: X_new[:, j] = X_old[:, gene_to_idx[gene]].toarray().flatten() datasets[i] = csr_matrix(X_new) ret_genes = np.array(union_genes) else: # Only keep genes in common. ret_genes = np.array(sorted(keep_genes)) for i in range(len(datasets)): if len(genes[i]) != datasets[i].shape[1]: raise ValueError('Mismatch along gene dimension for dataset {}, ' '{} genes vs {} matrix shape' .format(ds_names[i] if ds_names is not None else i, len(genes[i]), datasets[i].shape[1])) # Remove duplicate genes. uniq_genes, uniq_idx = np.unique(genes[i], return_index=True) datasets[i] = datasets[i][:, uniq_idx] # Do gene filtering. gene_sort_idx = np.argsort(uniq_genes) gene_idx = [ idx for idx in gene_sort_idx for g in uniq_genes[idx].split(';') if g in keep_genes ] datasets[i] = datasets[i][:, gene_idx] assert(len(uniq_genes[gene_idx]) == len(ret_genes)) return datasets, ret_genes def process(data_names, min_trans=MIN_TRANSCRIPTS): for name in data_names: if os.path.isdir(name): process_mtx(name, min_trans=min_trans) elif os.path.isfile(name) and name.endswith('.h5'): process_h5(name, min_trans=min_trans) elif os.path.isfile(name + '.h5'): process_h5(name + '.h5', min_trans=min_trans) elif os.path.isfile(name): process_tab(name, min_trans=min_trans) elif os.path.isfile(name + '.txt'): process_tab(name + '.txt', min_trans=min_trans) elif os.path.isfile(name + '.txt.gz'): process_tab(name + '.txt.gz', min_trans=min_trans) elif os.path.isfile(name + '.tsv'): process_tab(name + '.tsv', min_trans=min_trans) elif os.path.isfile(name + '.tsv.gz'): process_tab(name + '.tsv.gz', min_trans=min_trans) elif os.path.isfile(name + '.csv'): process_tab(name + '.csv', min_trans=min_trans, delim=',') elif os.path.isfile(name + '.csv.gz'): process_tab(name + '.csv.gz', min_trans=min_trans, delim=',') else: sys.stderr.write('Warning: Could not find {}\n'.format(name)) continue print('Successfully processed {}'.format(name)) if __name__ == '__main__': from config import data_names process(data_names)
schema-learn
/schema_learn-0.1.5.5.tar.gz/schema_learn-0.1.5.5/deprecated/old_examples/fly_brain/process.py
process.py
import gzip import numpy as np import os.path import scipy.sparse from scipy.sparse import csr_matrix, csc_matrix from sklearn.preprocessing import normalize import sys MIN_TRANSCRIPTS = 0 def load_tab(fname, delim='\t'): if fname.endswith('.gz'): opener = gzip.open else: opener = open with opener(fname, 'r') as f: if fname.endswith('.gz'): header = f.readline().decode('utf-8').rstrip().replace('"', '').split(delim) else: header = f.readline().rstrip().replace('"', '').split(delim) X = [] genes = [] for i, line in enumerate(f): if fname.endswith('.gz'): line = line.decode('utf-8') fields = line.rstrip().replace('"', '').split(delim) genes.append(fields[0]) X.append([ float(f) for f in fields[1:] ]) if i == 0: if len(header) == (len(fields) - 1): cells = header elif len(header) == len(fields): cells = header[1:] else: raise ValueError('Incompatible header/value dimensions {} and {}' .format(len(header), len(fields))) return np.array(X).T, np.array(cells), np.array(genes) def load_mtx(dname): with open(dname + '/matrix.mtx', 'r') as f: while True: header = f.readline() if not header.startswith('%'): break header = header.rstrip().split() n_genes, n_cells = int(header[0]), int(header[1]) data, i, j = [], [], [] for line in f: fields = line.rstrip().split() data.append(float(fields[2])) i.append(int(fields[1])-1) j.append(int(fields[0])-1) X = csr_matrix((data, (i, j)), shape=(n_cells, n_genes)) genes = [] with open(dname + '/genes.tsv', 'r') as f: for line in f: fields = line.rstrip().split() genes.append(fields[1]) assert(len(genes) == n_genes) return X, np.array(genes) def load_h5(fname, genome='GRCh38'): try: import tables except ImportError: sys.stderr.write('Please install PyTables to read .h5 files: ' 'https://www.pytables.org/usersguide/installation.html\n') exit(1) # Adapted from scanpy's read_10x_h5() method. with tables.open_file(str(fname), 'r') as f: try: dsets = {} for node in f.walk_nodes('/' + genome, 'Array'): dsets[node.name] = node.read() n_genes, n_cells = dsets['shape'] data = dsets['data'] if dsets['data'].dtype == np.dtype('int32'): data = dsets['data'].view('float32') data[:] = dsets['data'] X = csr_matrix((data, dsets['indices'], dsets['indptr']), shape=(n_cells, n_genes)) genes = [ gene for gene in dsets['gene_names'].astype(str) ] assert(len(genes) == n_genes) assert(len(genes) == X.shape[1]) except tables.NoSuchNodeError: raise Exception('Genome %s does not exist in this file.' % genome) except KeyError: raise Exception('File is missing one or more required datasets.') return X, np.array(genes) def process_tab(fname, min_trans=MIN_TRANSCRIPTS, delim='\t'): X, cells, genes = load_tab(fname, delim=delim) gt_idx = [ i for i, s in enumerate(np.sum(X != 0, axis=1)) if s >= min_trans ] X = csr_matrix(X[gt_idx, :]) cells = cells[gt_idx] if len(gt_idx) == 0: print('Warning: 0 cells passed QC in {}'.format(fname)) if fname.endswith('.txt'): cache_prefix = '.'.join(fname.split('.')[:-1]) elif fname.endswith('.txt.gz'): cache_prefix = '.'.join(fname.split('.')[:-2]) elif fname.endswith('.tsv'): cache_prefix = '.'.join(fname.split('.')[:-1]) elif fname.endswith('.tsv.gz'): cache_prefix = '.'.join(fname.split('.')[:-2]) elif fname.endswith('.csv'): cache_prefix = '.'.join(fname.split('.')[:-1]) elif fname.endswith('.csv.gz'): cache_prefix = '.'.join(fname.split('.')[:-2]) else: cache_prefix = fname cache_fname = cache_prefix + '_tab.npz' scipy.sparse.save_npz(cache_fname, X, compressed=False) with open(cache_prefix + '_tab.genes.txt', 'w') as of: of.write('\n'.join(genes) + '\n') return X, cells, genes def process_mtx(dname, min_trans=MIN_TRANSCRIPTS): X, genes = load_mtx(dname) gt_idx = [ i for i, s in enumerate(np.sum(X != 0, axis=1)) if s >= min_trans ] X = X[gt_idx, :] if len(gt_idx) == 0: print('Warning: 0 cells passed QC in {}'.format(dname)) cache_fname = dname + '/tab.npz' scipy.sparse.save_npz(cache_fname, X, compressed=False) with open(dname + '/tab.genes.txt', 'w') as of: of.write('\n'.join(genes) + '\n') return X, genes def process_h5(fname, min_trans=MIN_TRANSCRIPTS): X, genes = load_h5(fname) gt_idx = [ i for i, s in enumerate(np.sum(X != 0, axis=1)) if s >= min_trans ] X = X[gt_idx, :] if len(gt_idx) == 0: print('Warning: 0 cells passed QC in {}'.format(fname)) if fname.endswith('.h5'): cache_prefix = '.'.join(fname.split('.')[:-1]) cache_fname = cache_prefix + '.h5.npz' scipy.sparse.save_npz(cache_fname, X, compressed=False) with open(cache_prefix + '.h5.genes.txt', 'w') as of: of.write('\n'.join(genes) + '\n') return X, genes def load_data(name): if os.path.isfile(name + '.h5.npz'): X = scipy.sparse.load_npz(name + '.h5.npz') with open(name + '.h5.genes.txt') as f: genes = np.array(f.read().rstrip().split('\n')) elif os.path.isfile(name + '_tab.npz'): X = scipy.sparse.load_npz(name + '_tab.npz') with open(name + '_tab.genes.txt') as f: genes = np.array(f.read().rstrip().split('\n')) elif os.path.isfile(name + '/tab.npz'): X = scipy.sparse.load_npz(name + '/tab.npz') with open(name + '/tab.genes.txt') as f: genes = np.array(f.read().rstrip().split('\n')) else: sys.stderr.write('Could not find: {}\n'.format(name)) exit(1) genes = np.array([ gene.upper() for gene in genes ]) return X, genes def load_names(data_names, norm=False, log1p=False, verbose=True): # Load datasets. datasets = [] genes_list = [] n_cells = 0 for name in data_names: X_i, genes_i = load_data(name) if norm: X_i = normalize(X_i, axis=1) if log1p: X_i = np.log1p(X_i) X_i = csr_matrix(X_i) datasets.append(X_i) genes_list.append(genes_i) n_cells += X_i.shape[0] if verbose: print('Loaded {} with {} genes and {} cells'. format(name, X_i.shape[1], X_i.shape[0])) if verbose: print('Found {} cells among all datasets' .format(n_cells)) return datasets, genes_list, n_cells def save_datasets(datasets, genes, data_names, verbose=True, truncate_neg=False): for i in range(len(datasets)): dataset = datasets[i].toarray() name = data_names[i] if truncate_neg: dataset[dataset < 0] = 0 with open(name + '.scanorama_corrected.txt', 'w') as of: # Save header. of.write('Genes\t') of.write('\t'.join( [ 'cell' + str(cell) for cell in range(dataset.shape[0]) ] ) + '\n') for g in range(dataset.shape[1]): of.write(genes[g] + '\t') of.write('\t'.join( [ str(expr) for expr in dataset[:, g] ] ) + '\n') def merge_datasets(datasets, genes, ds_names=None, verbose=True, union=False, keep_genes=None): if keep_genes is None: # Find genes in common. keep_genes = set() for idx, gene_list in enumerate(genes): gene_list = [ g for gene in gene_list for g in gene.split(';') ] if len(keep_genes) == 0: keep_genes = set(gene_list) elif union: keep_genes |= set(gene_list) else: keep_genes &= set(gene_list) if not union and not ds_names is None and verbose: print('After {}: {} genes'.format(ds_names[idx], len(keep_genes))) if len(keep_genes) == 0: print('Error: No genes found in all datasets, exiting...') exit(1) else: union = True if verbose: print('Found {} genes among all datasets' .format(len(keep_genes))) if union: union_genes = sorted(keep_genes) for i in range(len(datasets)): if verbose: print('Processing dataset {}'.format(i)) X_new = np.zeros((datasets[i].shape[0], len(union_genes))) X_old = csc_matrix(datasets[i]) gene_to_idx = { g: idx for idx, gene in enumerate(genes[i]) for g in gene.split(';') } for j, gene in enumerate(union_genes): if gene in gene_to_idx: X_new[:, j] = X_old[:, gene_to_idx[gene]].toarray().flatten() datasets[i] = csr_matrix(X_new) ret_genes = np.array(union_genes) else: # Only keep genes in common. ret_genes = np.array(sorted(keep_genes)) for i in range(len(datasets)): if len(genes[i]) != datasets[i].shape[1]: raise ValueError('Mismatch along gene dimension for dataset {}, ' '{} genes vs {} matrix shape' .format(ds_names[i] if ds_names is not None else i, len(genes[i]), datasets[i].shape[1])) # Remove duplicate genes. uniq_genes, uniq_idx = np.unique(genes[i], return_index=True) datasets[i] = datasets[i][:, uniq_idx] # Do gene filtering. gene_sort_idx = np.argsort(uniq_genes) gene_idx = [ idx for idx in gene_sort_idx for g in uniq_genes[idx].split(';') if g in keep_genes ] datasets[i] = datasets[i][:, gene_idx] assert(len(uniq_genes[gene_idx]) == len(ret_genes)) return datasets, ret_genes def process(data_names, min_trans=MIN_TRANSCRIPTS): for name in data_names: if os.path.isdir(name): process_mtx(name, min_trans=min_trans) elif os.path.isfile(name) and name.endswith('.h5'): process_h5(name, min_trans=min_trans) elif os.path.isfile(name + '.h5'): process_h5(name + '.h5', min_trans=min_trans) elif os.path.isfile(name): process_tab(name, min_trans=min_trans) elif os.path.isfile(name + '.txt'): process_tab(name + '.txt', min_trans=min_trans) elif os.path.isfile(name + '.txt.gz'): process_tab(name + '.txt.gz', min_trans=min_trans) elif os.path.isfile(name + '.tsv'): process_tab(name + '.tsv', min_trans=min_trans) elif os.path.isfile(name + '.tsv.gz'): process_tab(name + '.tsv.gz', min_trans=min_trans) elif os.path.isfile(name + '.csv'): process_tab(name + '.csv', min_trans=min_trans, delim=',') elif os.path.isfile(name + '.csv.gz'): process_tab(name + '.csv.gz', min_trans=min_trans, delim=',') else: sys.stderr.write('Warning: Could not find {}\n'.format(name)) continue print('Successfully processed {}'.format(name)) if __name__ == '__main__': from config import data_names process(data_names)
0.264453
0.316
def validate_type_model_errors(types): """ Validate a user type model's types :param dict types: The map of user type name to user type model :returns: The list of type name, member name, and error message tuples """ errors = [] # Check each user type for type_name, user_type in types.items(): # Struct? if 'struct' in user_type: struct = user_type['struct'] # Inconsistent type name? if type_name != struct['name']: errors.append((type_name, None, f'Inconsistent type name {struct["name"]!r} for {type_name!r}')) # Check base types if 'bases' in struct: is_union = struct.get('union', False) for base_name in struct['bases']: invalid_base = True base_user_type = _get_effective_user_type(types, base_name) if base_user_type is not None and 'struct' in base_user_type: if is_union == base_user_type['struct'].get('union', False): invalid_base = False if invalid_base: errors.append((type_name, None, f'Invalid struct base type {base_name!r}')) # Iterate the members try: members = set() for member in _get_struct_members(types, struct, set()): member_name = member['name'] # Duplicate member? if member_name not in members: members.add(member_name) else: errors.append((type_name, member_name, f'Redefinition of {type_name!r} member {member_name!r}')) # Check member type and attributes _validate_type_model_type(errors, types, member['type'], member.get('attr'), struct['name'], member['name']) except ValueError: errors.append((type_name, None, f'Circular base type detected for type {type_name!r}')) # Enum? elif 'enum' in user_type: enum = user_type['enum'] # Inconsistent type name? if type_name != enum['name']: errors.append((type_name, None, f'Inconsistent type name {enum["name"]!r} for {type_name!r}')) # Check base types if 'bases' in enum: for base_name in enum['bases']: base_user_type = _get_effective_user_type(types, base_name) if base_user_type is None or 'enum' not in base_user_type: errors.append((type_name, None, f'Invalid enum base type {base_name!r}')) # Get the enumeration values try: values = set() for value in _get_enum_values(types, enum, set()): value_name = value['name'] # Duplicate value? if value_name not in values: values.add(value_name) else: errors.append((type_name, value_name, f'Redefinition of {type_name!r} value {value_name!r}')) except ValueError: errors.append((type_name, None, f'Circular base type detected for type {type_name!r}')) # Typedef? elif 'typedef' in user_type: typedef = user_type['typedef'] # Inconsistent type name? if type_name != typedef['name']: errors.append((type_name, None, f'Inconsistent type name {typedef["name"]!r} for {type_name!r}')) # Check the type and its attributes _validate_type_model_type(errors, types, typedef['type'], typedef.get('attr'), type_name, None) # Action? elif 'action' in user_type: # pragma: no branch action = user_type['action'] # Inconsistent type name? if type_name != action['name']: errors.append((type_name, None, f'Inconsistent type name {action["name"]!r} for {type_name!r}')) # Check action section types for section in ('path', 'query', 'input', 'output', 'errors'): if section in action: section_type_name = action[section] # Check the section type _validate_type_model_type(errors, types, {'user': section_type_name}, None, type_name, None) # Compute effective input member counts member_sections = {} for section in ('path', 'query', 'input'): if section in action: section_type_name = action[section] if section_type_name in types: section_user_type = _get_effective_user_type(types, section_type_name) if section_user_type is not None and 'struct' in section_user_type: section_struct = section_user_type['struct'] # Get the section struct's members and count member occurrences try: for member in _get_struct_members(types, section_struct, set()): member_name = member['name'] if member_name not in member_sections: member_sections[member_name] = [] member_sections[member_name].append(section_struct['name']) except ValueError: pass # Check for duplicate input members for member_name, member_section_names in member_sections.items(): if len(member_section_names) > 1: for section_type in member_section_names: errors.append((section_type, member_name, f'Redefinition of {section_type!r} member {member_name!r}')) return errors def _get_effective_type(types, type_): if 'user' in type_ and type_['user'] in types: user_type = types[type_['user']] if 'typedef' in user_type: return _get_effective_type(types, user_type['typedef']['type']) return type_ def _get_effective_user_type(types, user_type_name): user_type = types.get(user_type_name) if user_type is not None and 'typedef' in user_type: type_effective = _get_effective_type(types, user_type['typedef']['type']) if 'user' not in type_effective: return None return types.get(type_effective['user']) return user_type def _get_struct_members(types, struct, visited=None): yield from _get_type_items(types, struct, visited, 'struct', 'members') def _get_enum_values(types, enum, visited=None): yield from _get_type_items(types, enum, visited, 'enum', 'values') def _get_type_items(types, type_, visited, def_name, member_name): if 'bases' in type_: for base in type_['bases']: user_type = _get_effective_user_type(types, base) if user_type is not None and def_name in user_type: user_type_name = user_type[def_name]['name'] if user_type_name not in visited: visited.add(user_type_name) yield from _get_type_items(types, user_type[def_name], visited, def_name, member_name) else: raise ValueError() if member_name in type_: yield from type_[member_name] # Map of attribute struct member name to attribute description _ATTR_TO_TEXT = { 'eq': '==', 'lt': '<', 'lte': '<=', 'gt': '>', 'gte': '>=', 'lenEq': 'len ==', 'lenLT': 'len <', 'lenLTE': 'len <=', 'lenGT': 'len >', 'lenGTE': 'len >=' } # Map of type name to valid attribute set _TYPE_TO_ALLOWED_ATTR = { 'float': set(['eq', 'lt', 'lte', 'gt', 'gte']), 'int': set(['eq', 'lt', 'lte', 'gt', 'gte']), 'string': set(['lenEq', 'lenLT', 'lenLTE', 'lenGT', 'lenGTE']), 'array': set(['lenEq', 'lenLT', 'lenLTE', 'lenGT', 'lenGTE']), 'dict': set(['lenEq', 'lenLT', 'lenLTE', 'lenGT', 'lenGTE']) } def _validate_type_model_type(errors, types, type_, attr, type_name, member_name): # Helper function to push an error tuple def error(message): if member_name is not None: errors.append((type_name, member_name, f'{message} from {type_name!r} member {member_name!r}')) else: errors.append((type_name, None, f'{message} from {type_name!r}')) # Array? if 'array' in type_: array = type_['array'] # Check the type and its attributes array_type = _get_effective_type(types, array['type']) _validate_type_model_type(errors, types, array_type, array.get('attr'), type_name, member_name) # Dict? elif 'dict' in type_: dict_ = type_['dict'] # Check the type and its attributes dict_type = _get_effective_type(types, dict_['type']) _validate_type_model_type(errors, types, dict_type, dict_.get('attr'), type_name, member_name) # Check the dict key type and its attributes if 'keyType' in dict_: dict_key_type = _get_effective_type(types, dict_['keyType']) _validate_type_model_type(errors, types, dict_key_type, dict_.get('keyAttr'), type_name, member_name) # Valid dict key type (string or enum) if not ('builtin' in dict_key_type and dict_key_type['builtin'] == 'string') and \ not ('user' in dict_key_type and dict_key_type['user'] in types and 'enum' in types[dict_key_type['user']]): error('Invalid dictionary key type') # User type? elif 'user' in type_: user_type_name = type_['user'] # Unknown user type? if user_type_name not in types: error(f'Unknown type {user_type_name!r}') else: user_type = types[user_type_name] # Action type references not allowed if 'action' in user_type: error(f'Invalid reference to action {user_type_name!r}') # Any not-allowed attributes? if attr is not None: type_effective = _get_effective_type(types, type_) type_key = next(iter(type_effective.keys()), None) allowed_attr = _TYPE_TO_ALLOWED_ATTR.get(type_effective[type_key] if type_key == 'builtin' else type_key) disallowed_attr = set(attr) disallowed_attr.discard('nullable') if allowed_attr is not None: disallowed_attr -= allowed_attr if disallowed_attr: for attr_key in disallowed_attr: attr_value = f'{attr[attr_key]:.6f}'.rstrip('0').rstrip('.') attr_text = f'{_ATTR_TO_TEXT[attr_key]} {attr_value}' error(f'Invalid attribute {attr_text!r}')
schema-markdown
/schema_markdown-1.2.6-py3-none-any.whl/schema_markdown/schema_util.py
schema_util.py
def validate_type_model_errors(types): """ Validate a user type model's types :param dict types: The map of user type name to user type model :returns: The list of type name, member name, and error message tuples """ errors = [] # Check each user type for type_name, user_type in types.items(): # Struct? if 'struct' in user_type: struct = user_type['struct'] # Inconsistent type name? if type_name != struct['name']: errors.append((type_name, None, f'Inconsistent type name {struct["name"]!r} for {type_name!r}')) # Check base types if 'bases' in struct: is_union = struct.get('union', False) for base_name in struct['bases']: invalid_base = True base_user_type = _get_effective_user_type(types, base_name) if base_user_type is not None and 'struct' in base_user_type: if is_union == base_user_type['struct'].get('union', False): invalid_base = False if invalid_base: errors.append((type_name, None, f'Invalid struct base type {base_name!r}')) # Iterate the members try: members = set() for member in _get_struct_members(types, struct, set()): member_name = member['name'] # Duplicate member? if member_name not in members: members.add(member_name) else: errors.append((type_name, member_name, f'Redefinition of {type_name!r} member {member_name!r}')) # Check member type and attributes _validate_type_model_type(errors, types, member['type'], member.get('attr'), struct['name'], member['name']) except ValueError: errors.append((type_name, None, f'Circular base type detected for type {type_name!r}')) # Enum? elif 'enum' in user_type: enum = user_type['enum'] # Inconsistent type name? if type_name != enum['name']: errors.append((type_name, None, f'Inconsistent type name {enum["name"]!r} for {type_name!r}')) # Check base types if 'bases' in enum: for base_name in enum['bases']: base_user_type = _get_effective_user_type(types, base_name) if base_user_type is None or 'enum' not in base_user_type: errors.append((type_name, None, f'Invalid enum base type {base_name!r}')) # Get the enumeration values try: values = set() for value in _get_enum_values(types, enum, set()): value_name = value['name'] # Duplicate value? if value_name not in values: values.add(value_name) else: errors.append((type_name, value_name, f'Redefinition of {type_name!r} value {value_name!r}')) except ValueError: errors.append((type_name, None, f'Circular base type detected for type {type_name!r}')) # Typedef? elif 'typedef' in user_type: typedef = user_type['typedef'] # Inconsistent type name? if type_name != typedef['name']: errors.append((type_name, None, f'Inconsistent type name {typedef["name"]!r} for {type_name!r}')) # Check the type and its attributes _validate_type_model_type(errors, types, typedef['type'], typedef.get('attr'), type_name, None) # Action? elif 'action' in user_type: # pragma: no branch action = user_type['action'] # Inconsistent type name? if type_name != action['name']: errors.append((type_name, None, f'Inconsistent type name {action["name"]!r} for {type_name!r}')) # Check action section types for section in ('path', 'query', 'input', 'output', 'errors'): if section in action: section_type_name = action[section] # Check the section type _validate_type_model_type(errors, types, {'user': section_type_name}, None, type_name, None) # Compute effective input member counts member_sections = {} for section in ('path', 'query', 'input'): if section in action: section_type_name = action[section] if section_type_name in types: section_user_type = _get_effective_user_type(types, section_type_name) if section_user_type is not None and 'struct' in section_user_type: section_struct = section_user_type['struct'] # Get the section struct's members and count member occurrences try: for member in _get_struct_members(types, section_struct, set()): member_name = member['name'] if member_name not in member_sections: member_sections[member_name] = [] member_sections[member_name].append(section_struct['name']) except ValueError: pass # Check for duplicate input members for member_name, member_section_names in member_sections.items(): if len(member_section_names) > 1: for section_type in member_section_names: errors.append((section_type, member_name, f'Redefinition of {section_type!r} member {member_name!r}')) return errors def _get_effective_type(types, type_): if 'user' in type_ and type_['user'] in types: user_type = types[type_['user']] if 'typedef' in user_type: return _get_effective_type(types, user_type['typedef']['type']) return type_ def _get_effective_user_type(types, user_type_name): user_type = types.get(user_type_name) if user_type is not None and 'typedef' in user_type: type_effective = _get_effective_type(types, user_type['typedef']['type']) if 'user' not in type_effective: return None return types.get(type_effective['user']) return user_type def _get_struct_members(types, struct, visited=None): yield from _get_type_items(types, struct, visited, 'struct', 'members') def _get_enum_values(types, enum, visited=None): yield from _get_type_items(types, enum, visited, 'enum', 'values') def _get_type_items(types, type_, visited, def_name, member_name): if 'bases' in type_: for base in type_['bases']: user_type = _get_effective_user_type(types, base) if user_type is not None and def_name in user_type: user_type_name = user_type[def_name]['name'] if user_type_name not in visited: visited.add(user_type_name) yield from _get_type_items(types, user_type[def_name], visited, def_name, member_name) else: raise ValueError() if member_name in type_: yield from type_[member_name] # Map of attribute struct member name to attribute description _ATTR_TO_TEXT = { 'eq': '==', 'lt': '<', 'lte': '<=', 'gt': '>', 'gte': '>=', 'lenEq': 'len ==', 'lenLT': 'len <', 'lenLTE': 'len <=', 'lenGT': 'len >', 'lenGTE': 'len >=' } # Map of type name to valid attribute set _TYPE_TO_ALLOWED_ATTR = { 'float': set(['eq', 'lt', 'lte', 'gt', 'gte']), 'int': set(['eq', 'lt', 'lte', 'gt', 'gte']), 'string': set(['lenEq', 'lenLT', 'lenLTE', 'lenGT', 'lenGTE']), 'array': set(['lenEq', 'lenLT', 'lenLTE', 'lenGT', 'lenGTE']), 'dict': set(['lenEq', 'lenLT', 'lenLTE', 'lenGT', 'lenGTE']) } def _validate_type_model_type(errors, types, type_, attr, type_name, member_name): # Helper function to push an error tuple def error(message): if member_name is not None: errors.append((type_name, member_name, f'{message} from {type_name!r} member {member_name!r}')) else: errors.append((type_name, None, f'{message} from {type_name!r}')) # Array? if 'array' in type_: array = type_['array'] # Check the type and its attributes array_type = _get_effective_type(types, array['type']) _validate_type_model_type(errors, types, array_type, array.get('attr'), type_name, member_name) # Dict? elif 'dict' in type_: dict_ = type_['dict'] # Check the type and its attributes dict_type = _get_effective_type(types, dict_['type']) _validate_type_model_type(errors, types, dict_type, dict_.get('attr'), type_name, member_name) # Check the dict key type and its attributes if 'keyType' in dict_: dict_key_type = _get_effective_type(types, dict_['keyType']) _validate_type_model_type(errors, types, dict_key_type, dict_.get('keyAttr'), type_name, member_name) # Valid dict key type (string or enum) if not ('builtin' in dict_key_type and dict_key_type['builtin'] == 'string') and \ not ('user' in dict_key_type and dict_key_type['user'] in types and 'enum' in types[dict_key_type['user']]): error('Invalid dictionary key type') # User type? elif 'user' in type_: user_type_name = type_['user'] # Unknown user type? if user_type_name not in types: error(f'Unknown type {user_type_name!r}') else: user_type = types[user_type_name] # Action type references not allowed if 'action' in user_type: error(f'Invalid reference to action {user_type_name!r}') # Any not-allowed attributes? if attr is not None: type_effective = _get_effective_type(types, type_) type_key = next(iter(type_effective.keys()), None) allowed_attr = _TYPE_TO_ALLOWED_ATTR.get(type_effective[type_key] if type_key == 'builtin' else type_key) disallowed_attr = set(attr) disallowed_attr.discard('nullable') if allowed_attr is not None: disallowed_attr -= allowed_attr if disallowed_attr: for attr_key in disallowed_attr: attr_value = f'{attr[attr_key]:.6f}'.rstrip('0').rstrip('.') attr_text = f'{_ATTR_TO_TEXT[attr_key]} {attr_value}' error(f'Invalid attribute {attr_text!r}')
0.625209
0.155495
from datetime import date, datetime, timezone from decimal import Decimal from math import isnan, isinf from uuid import UUID from .schema_util import validate_type_model_errors from .type_model import TYPE_MODEL def get_referenced_types(types, type_name, referenced_types=None): """ Get a type's referenced type model :param dict types: The `type model <https://craigahobbs.github.io/schema-markdown-doc/doc/#var.vName='Types'>`__ :param str type_name: The type name :param dict referenced_types: An optional map of referenced user type name to user type :returns: The referenced `type model <https://craigahobbs.github.io/schema-markdown-doc/doc/#var.vName='Types'>`__ """ return _get_referenced_types(types, {'user': type_name}, referenced_types) def _get_referenced_types(types, type_, referenced_types=None): # Create the referenced types dict, if necessary if referenced_types is None: referenced_types = {} # Array? if 'array' in type_: array = type_['array'] _get_referenced_types(types, array['type'], referenced_types) # Dict? elif 'dict' in type_: dict_ = type_['dict'] _get_referenced_types(types, dict_['type'], referenced_types) if 'keyType' in dict_: _get_referenced_types(types, dict_['keyType'], referenced_types) # User type? elif 'user' in type_: type_name = type_['user'] # Already encountered? if type_name not in referenced_types: user_type = types[type_name] referenced_types[type_name] = user_type # Struct? if 'struct' in user_type: struct = user_type['struct'] if 'bases' in struct: for base in struct['bases']: _get_referenced_types(types, {'user': base}, referenced_types) for member in get_struct_members(types, struct): _get_referenced_types(types, member['type'], referenced_types) # Enum elif 'enum' in user_type: enum = user_type['enum'] if 'bases' in enum: for base in enum['bases']: _get_referenced_types(types, {'user': base}, referenced_types) # Typedef? elif 'typedef' in user_type: typedef = user_type['typedef'] _get_referenced_types(types, typedef['type'], referenced_types) # Action? elif 'action' in user_type: # pragma: no branch action = user_type['action'] if 'path' in action: _get_referenced_types(types, {'user': action['path']}, referenced_types) if 'query' in action: _get_referenced_types(types, {'user': action['query']}, referenced_types) if 'input' in action: _get_referenced_types(types, {'user': action['input']}, referenced_types) if 'output' in action: _get_referenced_types(types, {'user': action['output']}, referenced_types) if 'errors' in action: _get_referenced_types(types, {'user': action['errors']}, referenced_types) return referenced_types class ValidationError(Exception): """ schema-markdown type model validation error :param str msg: The error message :param member_fqn: The fully qualified member name or None :type member_fqn: str or None """ __slots__ = ('member',) def __init__(self, msg, member_fqn=None): super().__init__(msg) #: The fully qualified member name or None self.member = member_fqn def validate_type(types, type_name, value, member_fqn=None): """ Type-validate a value using the schema-markdown user type model. Container values are duplicated since some member types are transformed during validation. :param dict types: The `type model <https://craigahobbs.github.io/schema-markdown-doc/doc/#var.vName='Types'>`__ :param str type_name: The type name :param object value: The value object to validate :param str member_fqn: The fully-qualified member name :returns: The validated, transformed value object :raises ValidationError: A validation error occurred """ if type_name not in types: raise ValidationError(f"Unknown type {type_name!r}") return _validate_type(types, {'user': type_name}, value, member_fqn) def _validate_type(types, type_, value, member_fqn=None): value_new = value # Built-in type? if 'builtin' in type_: builtin = type_['builtin'] # string? if builtin == 'string': # Not a string? if not isinstance(value, str): raise _member_error(type_, value, member_fqn) # int? elif builtin == 'int': # Convert string, float, or Decimal? if isinstance(value, (str, float, Decimal)): try: value_new = int(value) if not isinstance(value, str) and value_new != value: raise ValueError() except ValueError: raise _member_error(type_, value, member_fqn) from None # Not an int? elif not isinstance(value, int) or isinstance(value, bool): raise _member_error(type_, value, member_fqn) # float? elif builtin == 'float': # Convert string, int, or Decimal? if isinstance(value, (str, int, Decimal)) and not isinstance(value, bool): try: value_new = float(value) if isnan(value_new) or isinf(value_new): raise ValueError() except ValueError: raise _member_error(type_, value, member_fqn) from None # Not a float? elif not isinstance(value, float): raise _member_error(type_, value, member_fqn) # bool? elif builtin == 'bool': # Convert string? if isinstance(value, str): if value == 'true': value_new = True elif value == 'false': value_new = False else: raise _member_error(type_, value, member_fqn) # Not a bool? elif not isinstance(value, bool): raise _member_error(type_, value, member_fqn) # date? elif builtin == 'date': # Convert string? if isinstance(value, str): try: value_new = datetime.fromisoformat(value).date() except ValueError: raise _member_error(type_, value, member_fqn) # Not a date? elif not isinstance(value, date) or isinstance(value, datetime): raise _member_error(type_, value, member_fqn) # datetime? elif builtin == 'datetime': # Convert string? if isinstance(value, str): try: value_new = datetime.fromisoformat(value) except ValueError: raise _member_error(type_, value, member_fqn) # No timezone? if value_new.tzinfo is None: value_new = value_new.replace(tzinfo=timezone.utc) # Not a datetime? elif not isinstance(value, datetime): raise _member_error(type_, value, member_fqn) # uuid? elif builtin == 'uuid': # Convert string? if isinstance(value, str): try: value_new = UUID(value) except ValueError: raise _member_error(type_, value, member_fqn) # Not a UUID? elif not isinstance(value, UUID): raise _member_error(type_, value, member_fqn) # array? elif 'array' in type_: # Valid value type? array = type_['array'] array_type = array['type'] array_attr = array.get('attr') if isinstance(value, str) and value == '': value_new = [] elif not isinstance(value, (list, tuple)): raise _member_error(type_, value, member_fqn) # Validate the list contents value_copy = [] array_value_nullable = array_attr is not None and 'nullable' in array_attr and array_attr['nullable'] for ix_array_value, array_value in enumerate(value_new): member_fqn_value = f'{ix_array_value}' if member_fqn is None else f'{member_fqn}.{ix_array_value}' if array_value_nullable and (array_value is None or array_value == 'null'): array_value = None else: array_value = _validate_type(types, array_type, array_value, member_fqn_value) _validate_attr(array_type, array_attr, array_value, member_fqn_value) value_copy.append(array_value) # Return the validated, transformed copy value_new = value_copy # dict? elif 'dict' in type_: # Valid value type? dict_ = type_['dict'] dict_type = dict_['type'] dict_attr = dict_.get('attr') dict_key_type = dict_['keyType'] if 'keyType' in dict_ else {'builtin': 'string'} dict_key_attr = dict_.get('keyAttr') if isinstance(value, str) and value == '': value_new = {} elif not isinstance(value, dict): raise _member_error(type_, value, member_fqn) # Validate the dict key/value pairs value_copy = {} dict_key_nullable = dict_key_attr is not None and 'nullable' in dict_key_attr and dict_key_attr['nullable'] dict_value_nullable = dict_attr is not None and 'nullable' in dict_attr and dict_attr['nullable'] for dict_key, dict_value in value_new.items(): member_fqn_key = dict_key if member_fqn is None else f'{member_fqn}.{dict_key}' # Validate the key if dict_key_nullable and (dict_key is None or dict_key == 'null'): dict_key = None else: dict_key = _validate_type(types, dict_key_type, dict_key, member_fqn) _validate_attr(dict_key_type, dict_key_attr, dict_key, member_fqn) # Validate the value if dict_value_nullable and (dict_value is None or dict_value == 'null'): dict_value = None else: dict_value = _validate_type(types, dict_type, dict_value, member_fqn_key) _validate_attr(dict_type, dict_attr, dict_value, member_fqn_key) # Copy the key/value value_copy[dict_key] = dict_value # Return the validated, transformed copy value_new = value_copy # User type? elif 'user' in type_: user_type = types[type_['user']] # action? if 'action' in user_type: raise _member_error(type_, value, member_fqn) # typedef? if 'typedef' in user_type: typedef = user_type['typedef'] typedef_attr = typedef.get('attr') # Validate the value value_nullable = typedef_attr is not None and 'nullable' in typedef_attr and typedef_attr['nullable'] if value_nullable and (value is None or value == 'null'): value_new = None else: value_new = _validate_type(types, typedef['type'], value, member_fqn) _validate_attr(type_, typedef_attr, value_new, member_fqn) # enum? elif 'enum' in user_type: enum = user_type['enum'] # Not a valid enum value? if value not in (enum_value['name'] for enum_value in get_enum_values(types, enum)): raise _member_error(type_, value, member_fqn) # struct? elif 'struct' in user_type: struct = user_type['struct'] # Valid value type? if isinstance(value, str) and value == '': value_new = {} elif not isinstance(value, dict): raise _member_error({'user': struct['name']}, value, member_fqn) # Valid union? is_union = struct.get('union', False) if is_union: if len(value) != 1: raise _member_error({'user': struct['name']}, value, member_fqn) # Validate the struct members value_copy = {} for member in get_struct_members(types, struct): member_name = member['name'] member_fqn_member = member_name if member_fqn is None else f'{member_fqn}.{member_name}' member_optional = member.get('optional', False) member_nullable = 'attr' in member and member['attr'].get('nullable', False) # Missing non-optional member? if member_name not in value_new: if not member_optional and not is_union: raise ValidationError(f"Required member {member_fqn_member!r} missing") else: # Validate the member value member_value = value_new[member_name] if member_nullable and (member_value is None or member_value == 'null'): member_value = None else: member_value = _validate_type(types, member['type'], member_value, member_fqn_member) _validate_attr(member['type'], member.get('attr'), member_value, member_fqn_member) # Copy the validated member value_copy[member_name] = member_value # Any unknown members? if len(value_copy) != len(value_new): member_set = {member['name'] for member in get_struct_members(types, struct)} unknown_key = next(value_name for value_name in value_new.keys() if value_name not in member_set) # pragma: no branch unknown_fqn = unknown_key if member_fqn is None else f'{member_fqn}.{unknown_key}' raise ValidationError(f"Unknown member {unknown_fqn!r:.100s}") # Return the validated, transformed copy value_new = value_copy return value_new def _member_error(type_, value, member_fqn, attr=None): member_part = f" for member {member_fqn!r}" if member_fqn else '' type_name = type_['builtin'] if 'builtin' in type_ else ( 'array' if 'array' in type_ else ('dict' if 'dict' in type_ else type_['user'])) attr_part = f' [{attr}]' if attr else '' msg = f"Invalid value {value!r:.1000s} (type {value.__class__.__name__!r}){member_part}, expected type {type_name!r}{attr_part}" return ValidationError(msg, member_fqn) def _validate_attr(type_, attr, value, member_fqn): if attr is not None: if 'eq' in attr and not value == attr['eq']: raise _member_error(type_, value, member_fqn, f'== {attr["eq"]}') if 'lt' in attr and not value < attr['lt']: raise _member_error(type_, value, member_fqn, f'< {attr["lt"]}') if 'lte' in attr and not value <= attr['lte']: raise _member_error(type_, value, member_fqn, f'<= {attr["lte"]}') if 'gt' in attr and not value > attr['gt']: raise _member_error(type_, value, member_fqn, f'> {attr["gt"]}') if 'gte' in attr and not value >= attr['gte']: raise _member_error(type_, value, member_fqn, f'>= {attr["gte"]}') if 'lenEq' in attr and not len(value) == attr['lenEq']: raise _member_error(type_, value, member_fqn, f'len == {attr["lenEq"]}') if 'lenLT' in attr and not len(value) < attr['lenLT']: raise _member_error(type_, value, member_fqn, f'len < {attr["lenLT"]}') if 'lenLTE' in attr and not len(value) <= attr['lenLTE']: raise _member_error(type_, value, member_fqn, f'len <= {attr["lenLTE"]}') if 'lenGT' in attr and not len(value) > attr['lenGT']: raise _member_error(type_, value, member_fqn, f'len > {attr["lenGT"]}') if 'lenGTE' in attr and not len(value) >= attr['lenGTE']: raise _member_error(type_, value, member_fqn, f'len >= {attr["lenGTE"]}') def get_struct_members(types, struct): """ Iterate the struct's members (inherited members first) :param dict types: The `type model <https://craigahobbs.github.io/schema-markdown-doc/doc/#var.vName='Types'>`__ :param dict struct: The `struct model <https://craigahobbs.github.io/schema-markdown-doc/doc/#var.vName='Struct'>`__ :returns: An iterator of `struct member models <https://craigahobbs.github.io/schema-markdown-doc/doc/#var.vName='StructMember'>`__ """ if 'bases' in struct: for base in struct['bases']: base_user_type = types[base] while 'typedef' in base_user_type: base_user_type = types[base_user_type['typedef']['type']['user']] yield from get_struct_members(types, base_user_type['struct']) if 'members' in struct: yield from struct['members'] def get_enum_values(types, enum): """ Iterate the enum's values (inherited values first) :param dict types: The `type model <https://craigahobbs.github.io/schema-markdown-doc/doc/#var.vName='Types'>`__ :param dict enum: The `enum model <https://craigahobbs.github.io/schema-markdown-doc/doc/#var.vName='Enum'>`__ :returns: An iterator of `enum value models <https://craigahobbs.github.io/schema-markdown-doc/doc/#var.vName='EnumValue'>`__ """ if 'bases' in enum: for base in enum['bases']: base_user_type = types[base] while 'typedef' in base_user_type: base_user_type = types[base_user_type['typedef']['type']['user']] yield from get_enum_values(types, base_user_type['enum']) if 'values' in enum: yield from enum['values'] def validate_type_model(types): """ Validate a user type model :param dict types: The `type model <https://craigahobbs.github.io/schema-markdown-doc/doc/#var.vName='Types'>`__ :returns: The validated `type model <https://craigahobbs.github.io/schema-markdown-doc/doc/#var.vName='Types'>`__ :raises ValidationError: A validation error occurred """ # Validate with the type model validated_types = validate_type(TYPE_MODEL, 'Types', types) # Do additional type model validation errors = validate_type_model_errors(validated_types) if errors: raise ValidationError('\n'.join(message for _, _, message in sorted(errors))) return validated_types
schema-markdown
/schema_markdown-1.2.6-py3-none-any.whl/schema_markdown/schema.py
schema.py
from datetime import date, datetime, timezone from decimal import Decimal from math import isnan, isinf from uuid import UUID from .schema_util import validate_type_model_errors from .type_model import TYPE_MODEL def get_referenced_types(types, type_name, referenced_types=None): """ Get a type's referenced type model :param dict types: The `type model <https://craigahobbs.github.io/schema-markdown-doc/doc/#var.vName='Types'>`__ :param str type_name: The type name :param dict referenced_types: An optional map of referenced user type name to user type :returns: The referenced `type model <https://craigahobbs.github.io/schema-markdown-doc/doc/#var.vName='Types'>`__ """ return _get_referenced_types(types, {'user': type_name}, referenced_types) def _get_referenced_types(types, type_, referenced_types=None): # Create the referenced types dict, if necessary if referenced_types is None: referenced_types = {} # Array? if 'array' in type_: array = type_['array'] _get_referenced_types(types, array['type'], referenced_types) # Dict? elif 'dict' in type_: dict_ = type_['dict'] _get_referenced_types(types, dict_['type'], referenced_types) if 'keyType' in dict_: _get_referenced_types(types, dict_['keyType'], referenced_types) # User type? elif 'user' in type_: type_name = type_['user'] # Already encountered? if type_name not in referenced_types: user_type = types[type_name] referenced_types[type_name] = user_type # Struct? if 'struct' in user_type: struct = user_type['struct'] if 'bases' in struct: for base in struct['bases']: _get_referenced_types(types, {'user': base}, referenced_types) for member in get_struct_members(types, struct): _get_referenced_types(types, member['type'], referenced_types) # Enum elif 'enum' in user_type: enum = user_type['enum'] if 'bases' in enum: for base in enum['bases']: _get_referenced_types(types, {'user': base}, referenced_types) # Typedef? elif 'typedef' in user_type: typedef = user_type['typedef'] _get_referenced_types(types, typedef['type'], referenced_types) # Action? elif 'action' in user_type: # pragma: no branch action = user_type['action'] if 'path' in action: _get_referenced_types(types, {'user': action['path']}, referenced_types) if 'query' in action: _get_referenced_types(types, {'user': action['query']}, referenced_types) if 'input' in action: _get_referenced_types(types, {'user': action['input']}, referenced_types) if 'output' in action: _get_referenced_types(types, {'user': action['output']}, referenced_types) if 'errors' in action: _get_referenced_types(types, {'user': action['errors']}, referenced_types) return referenced_types class ValidationError(Exception): """ schema-markdown type model validation error :param str msg: The error message :param member_fqn: The fully qualified member name or None :type member_fqn: str or None """ __slots__ = ('member',) def __init__(self, msg, member_fqn=None): super().__init__(msg) #: The fully qualified member name or None self.member = member_fqn def validate_type(types, type_name, value, member_fqn=None): """ Type-validate a value using the schema-markdown user type model. Container values are duplicated since some member types are transformed during validation. :param dict types: The `type model <https://craigahobbs.github.io/schema-markdown-doc/doc/#var.vName='Types'>`__ :param str type_name: The type name :param object value: The value object to validate :param str member_fqn: The fully-qualified member name :returns: The validated, transformed value object :raises ValidationError: A validation error occurred """ if type_name not in types: raise ValidationError(f"Unknown type {type_name!r}") return _validate_type(types, {'user': type_name}, value, member_fqn) def _validate_type(types, type_, value, member_fqn=None): value_new = value # Built-in type? if 'builtin' in type_: builtin = type_['builtin'] # string? if builtin == 'string': # Not a string? if not isinstance(value, str): raise _member_error(type_, value, member_fqn) # int? elif builtin == 'int': # Convert string, float, or Decimal? if isinstance(value, (str, float, Decimal)): try: value_new = int(value) if not isinstance(value, str) and value_new != value: raise ValueError() except ValueError: raise _member_error(type_, value, member_fqn) from None # Not an int? elif not isinstance(value, int) or isinstance(value, bool): raise _member_error(type_, value, member_fqn) # float? elif builtin == 'float': # Convert string, int, or Decimal? if isinstance(value, (str, int, Decimal)) and not isinstance(value, bool): try: value_new = float(value) if isnan(value_new) or isinf(value_new): raise ValueError() except ValueError: raise _member_error(type_, value, member_fqn) from None # Not a float? elif not isinstance(value, float): raise _member_error(type_, value, member_fqn) # bool? elif builtin == 'bool': # Convert string? if isinstance(value, str): if value == 'true': value_new = True elif value == 'false': value_new = False else: raise _member_error(type_, value, member_fqn) # Not a bool? elif not isinstance(value, bool): raise _member_error(type_, value, member_fqn) # date? elif builtin == 'date': # Convert string? if isinstance(value, str): try: value_new = datetime.fromisoformat(value).date() except ValueError: raise _member_error(type_, value, member_fqn) # Not a date? elif not isinstance(value, date) or isinstance(value, datetime): raise _member_error(type_, value, member_fqn) # datetime? elif builtin == 'datetime': # Convert string? if isinstance(value, str): try: value_new = datetime.fromisoformat(value) except ValueError: raise _member_error(type_, value, member_fqn) # No timezone? if value_new.tzinfo is None: value_new = value_new.replace(tzinfo=timezone.utc) # Not a datetime? elif not isinstance(value, datetime): raise _member_error(type_, value, member_fqn) # uuid? elif builtin == 'uuid': # Convert string? if isinstance(value, str): try: value_new = UUID(value) except ValueError: raise _member_error(type_, value, member_fqn) # Not a UUID? elif not isinstance(value, UUID): raise _member_error(type_, value, member_fqn) # array? elif 'array' in type_: # Valid value type? array = type_['array'] array_type = array['type'] array_attr = array.get('attr') if isinstance(value, str) and value == '': value_new = [] elif not isinstance(value, (list, tuple)): raise _member_error(type_, value, member_fqn) # Validate the list contents value_copy = [] array_value_nullable = array_attr is not None and 'nullable' in array_attr and array_attr['nullable'] for ix_array_value, array_value in enumerate(value_new): member_fqn_value = f'{ix_array_value}' if member_fqn is None else f'{member_fqn}.{ix_array_value}' if array_value_nullable and (array_value is None or array_value == 'null'): array_value = None else: array_value = _validate_type(types, array_type, array_value, member_fqn_value) _validate_attr(array_type, array_attr, array_value, member_fqn_value) value_copy.append(array_value) # Return the validated, transformed copy value_new = value_copy # dict? elif 'dict' in type_: # Valid value type? dict_ = type_['dict'] dict_type = dict_['type'] dict_attr = dict_.get('attr') dict_key_type = dict_['keyType'] if 'keyType' in dict_ else {'builtin': 'string'} dict_key_attr = dict_.get('keyAttr') if isinstance(value, str) and value == '': value_new = {} elif not isinstance(value, dict): raise _member_error(type_, value, member_fqn) # Validate the dict key/value pairs value_copy = {} dict_key_nullable = dict_key_attr is not None and 'nullable' in dict_key_attr and dict_key_attr['nullable'] dict_value_nullable = dict_attr is not None and 'nullable' in dict_attr and dict_attr['nullable'] for dict_key, dict_value in value_new.items(): member_fqn_key = dict_key if member_fqn is None else f'{member_fqn}.{dict_key}' # Validate the key if dict_key_nullable and (dict_key is None or dict_key == 'null'): dict_key = None else: dict_key = _validate_type(types, dict_key_type, dict_key, member_fqn) _validate_attr(dict_key_type, dict_key_attr, dict_key, member_fqn) # Validate the value if dict_value_nullable and (dict_value is None or dict_value == 'null'): dict_value = None else: dict_value = _validate_type(types, dict_type, dict_value, member_fqn_key) _validate_attr(dict_type, dict_attr, dict_value, member_fqn_key) # Copy the key/value value_copy[dict_key] = dict_value # Return the validated, transformed copy value_new = value_copy # User type? elif 'user' in type_: user_type = types[type_['user']] # action? if 'action' in user_type: raise _member_error(type_, value, member_fqn) # typedef? if 'typedef' in user_type: typedef = user_type['typedef'] typedef_attr = typedef.get('attr') # Validate the value value_nullable = typedef_attr is not None and 'nullable' in typedef_attr and typedef_attr['nullable'] if value_nullable and (value is None or value == 'null'): value_new = None else: value_new = _validate_type(types, typedef['type'], value, member_fqn) _validate_attr(type_, typedef_attr, value_new, member_fqn) # enum? elif 'enum' in user_type: enum = user_type['enum'] # Not a valid enum value? if value not in (enum_value['name'] for enum_value in get_enum_values(types, enum)): raise _member_error(type_, value, member_fqn) # struct? elif 'struct' in user_type: struct = user_type['struct'] # Valid value type? if isinstance(value, str) and value == '': value_new = {} elif not isinstance(value, dict): raise _member_error({'user': struct['name']}, value, member_fqn) # Valid union? is_union = struct.get('union', False) if is_union: if len(value) != 1: raise _member_error({'user': struct['name']}, value, member_fqn) # Validate the struct members value_copy = {} for member in get_struct_members(types, struct): member_name = member['name'] member_fqn_member = member_name if member_fqn is None else f'{member_fqn}.{member_name}' member_optional = member.get('optional', False) member_nullable = 'attr' in member and member['attr'].get('nullable', False) # Missing non-optional member? if member_name not in value_new: if not member_optional and not is_union: raise ValidationError(f"Required member {member_fqn_member!r} missing") else: # Validate the member value member_value = value_new[member_name] if member_nullable and (member_value is None or member_value == 'null'): member_value = None else: member_value = _validate_type(types, member['type'], member_value, member_fqn_member) _validate_attr(member['type'], member.get('attr'), member_value, member_fqn_member) # Copy the validated member value_copy[member_name] = member_value # Any unknown members? if len(value_copy) != len(value_new): member_set = {member['name'] for member in get_struct_members(types, struct)} unknown_key = next(value_name for value_name in value_new.keys() if value_name not in member_set) # pragma: no branch unknown_fqn = unknown_key if member_fqn is None else f'{member_fqn}.{unknown_key}' raise ValidationError(f"Unknown member {unknown_fqn!r:.100s}") # Return the validated, transformed copy value_new = value_copy return value_new def _member_error(type_, value, member_fqn, attr=None): member_part = f" for member {member_fqn!r}" if member_fqn else '' type_name = type_['builtin'] if 'builtin' in type_ else ( 'array' if 'array' in type_ else ('dict' if 'dict' in type_ else type_['user'])) attr_part = f' [{attr}]' if attr else '' msg = f"Invalid value {value!r:.1000s} (type {value.__class__.__name__!r}){member_part}, expected type {type_name!r}{attr_part}" return ValidationError(msg, member_fqn) def _validate_attr(type_, attr, value, member_fqn): if attr is not None: if 'eq' in attr and not value == attr['eq']: raise _member_error(type_, value, member_fqn, f'== {attr["eq"]}') if 'lt' in attr and not value < attr['lt']: raise _member_error(type_, value, member_fqn, f'< {attr["lt"]}') if 'lte' in attr and not value <= attr['lte']: raise _member_error(type_, value, member_fqn, f'<= {attr["lte"]}') if 'gt' in attr and not value > attr['gt']: raise _member_error(type_, value, member_fqn, f'> {attr["gt"]}') if 'gte' in attr and not value >= attr['gte']: raise _member_error(type_, value, member_fqn, f'>= {attr["gte"]}') if 'lenEq' in attr and not len(value) == attr['lenEq']: raise _member_error(type_, value, member_fqn, f'len == {attr["lenEq"]}') if 'lenLT' in attr and not len(value) < attr['lenLT']: raise _member_error(type_, value, member_fqn, f'len < {attr["lenLT"]}') if 'lenLTE' in attr and not len(value) <= attr['lenLTE']: raise _member_error(type_, value, member_fqn, f'len <= {attr["lenLTE"]}') if 'lenGT' in attr and not len(value) > attr['lenGT']: raise _member_error(type_, value, member_fqn, f'len > {attr["lenGT"]}') if 'lenGTE' in attr and not len(value) >= attr['lenGTE']: raise _member_error(type_, value, member_fqn, f'len >= {attr["lenGTE"]}') def get_struct_members(types, struct): """ Iterate the struct's members (inherited members first) :param dict types: The `type model <https://craigahobbs.github.io/schema-markdown-doc/doc/#var.vName='Types'>`__ :param dict struct: The `struct model <https://craigahobbs.github.io/schema-markdown-doc/doc/#var.vName='Struct'>`__ :returns: An iterator of `struct member models <https://craigahobbs.github.io/schema-markdown-doc/doc/#var.vName='StructMember'>`__ """ if 'bases' in struct: for base in struct['bases']: base_user_type = types[base] while 'typedef' in base_user_type: base_user_type = types[base_user_type['typedef']['type']['user']] yield from get_struct_members(types, base_user_type['struct']) if 'members' in struct: yield from struct['members'] def get_enum_values(types, enum): """ Iterate the enum's values (inherited values first) :param dict types: The `type model <https://craigahobbs.github.io/schema-markdown-doc/doc/#var.vName='Types'>`__ :param dict enum: The `enum model <https://craigahobbs.github.io/schema-markdown-doc/doc/#var.vName='Enum'>`__ :returns: An iterator of `enum value models <https://craigahobbs.github.io/schema-markdown-doc/doc/#var.vName='EnumValue'>`__ """ if 'bases' in enum: for base in enum['bases']: base_user_type = types[base] while 'typedef' in base_user_type: base_user_type = types[base_user_type['typedef']['type']['user']] yield from get_enum_values(types, base_user_type['enum']) if 'values' in enum: yield from enum['values'] def validate_type_model(types): """ Validate a user type model :param dict types: The `type model <https://craigahobbs.github.io/schema-markdown-doc/doc/#var.vName='Types'>`__ :returns: The validated `type model <https://craigahobbs.github.io/schema-markdown-doc/doc/#var.vName='Types'>`__ :raises ValidationError: A validation error occurred """ # Validate with the type model validated_types = validate_type(TYPE_MODEL, 'Types', types) # Do additional type model validation errors = validate_type_model_errors(validated_types) if errors: raise ValidationError('\n'.join(message for _, _, message in sorted(errors))) return validated_types
0.818483
0.172102
from datetime import date, datetime, timezone from decimal import Decimal import json from urllib.parse import quote, unquote from uuid import UUID class JSONEncoder(json.JSONEncoder): """ A :class:`~json.JSONEncoder` sub-class with support for :class:`~datetime.datetime`, :class:`~datetime.date`, :class:`~decimal.Decimal`, and :class:`~uuid.UUID` objects. """ __slots__ = () def default(self, o): """ The override of the :meth:`~json.JSONEncoder.default` method to add support for :class:`~datetime.datetime`, :class:`~datetime.date`, :class:`~decimal.Decimal`, and :class:`~uuid.UUID` objects. """ if isinstance(o, datetime): return (o if o.tzinfo else o.replace(tzinfo=timezone.utc)).isoformat() if isinstance(o, date): return o.isoformat() if isinstance(o, Decimal): return float(o) if isinstance(o, UUID): return f'{o}' return json.JSONEncoder.default(self, o) def encode_query_string(obj, encoding='utf-8'): """ Encode an object as a query string. Dictionaries, lists, and tuples are recursed. Each member key is expressed in fully-qualified form. List keys are the index into the list, and are in order. For example: >>> schema_markdown.encode_query_string({'a': 5, 'b': 3.14, 'c': {'d': 'foo', 'e': [1, 2, 3]}, 'f': [{'g': True}, {'g': False}]}) 'a=5&b=3.14&c.d=foo&c.e.0=1&c.e.1=2&c.e.2=3&f.0.g=true&f.1.g=false' :param object obj: The object to encode as a query string :param str encoding: The query string encoding :returns: The encoded query string """ return '&'.join(f'{v}' if k is None else f'{k}={v}' for k, v in _encode_query_string_items(obj, None, encoding)) def _encode_query_string_items(obj, parent, encoding): if isinstance(obj, dict): if obj: for member, value in sorted(obj.items()): member_quoted = quote(f'{member}', encoding=encoding) parent_member = f'{parent}.{member_quoted}' if parent else member_quoted yield from _encode_query_string_items(value, parent_member, encoding) elif parent: yield parent, '' elif isinstance(obj, (list, tuple)): if obj: for idx, value in enumerate(obj): parent_member = f'{parent}.{idx}' if parent else f'{idx}' yield from _encode_query_string_items(value, parent_member, encoding) elif parent: yield parent, '' else: if isinstance(obj, bool): yield parent, 'true' if obj else 'false' # quote safe elif isinstance(obj, int): yield parent, f'{obj}' # quote safe elif isinstance(obj, datetime): if not obj.tzinfo: obj = obj.replace(tzinfo=timezone.utc) yield parent, quote(obj.isoformat(), encoding=encoding) elif isinstance(obj, date): yield parent, obj.isoformat() # quote safe elif isinstance(obj, UUID): yield parent, f'{obj}' # quote safe elif obj is None: yield parent, 'null' else: # str, float yield parent, quote(f'{obj}', encoding=encoding) def decode_query_string(query_string, encoding='utf-8'): """ Decode an object from a query string. Each member key of the query string is expressed in fully-qualified form. List keys are the index into the list, must be in order. For example: >>> schema_markdown.decode_query_string('a=5&b=3.14&c.d=foo&c.e.0=1&c.e.1=2&c.e.2=3&f.0.g=true&f.1.g=false') {'a': '5', 'b': '3.14', 'c': {'d': 'foo', 'e': ['1', '2', '3']}, 'f': [{'g': 'true'}, {'g': 'false'}]} :param str query_string: The query string :param str encoding: The query string encoding :returns: The decoded object :raises ValueError: Query string is invalid """ # Build the object result = [None] key_values = query_string.split('&') for ix_key_value, key_value in enumerate(key_values): # Split the key/value string try: key_str, value_str = key_value.split('=', 1) value = unquote(value_str, encoding=encoding) except ValueError: # Ignore hash IDs if ix_key_value == len(key_values) - 1: continue raise ValueError(f"Invalid key/value pair {key_value!r:.100s}") # Find/create the object on which to set the value parent = result key_parent = 0 for key in (unquote(key, encoding=encoding) for key in key_str.split('.')): obj = parent[key_parent] # Array key? First "key" of an array must start with "0". if isinstance(obj, list) or (obj is None and key == '0'): # Create this key's container, if necessary if obj is None: obj = parent[key_parent] = [] # Parse the key as an integer try: key = int(key) except: raise ValueError(f"Invalid array index {key!r:.100s} in key {key_str!r:.100s}") # Append the value placeholder None if key == len(obj): obj.append(None) elif key < 0 or key > len(obj): raise ValueError(f"Invalid array index {key} in key {key_str!r:.100s}") # Dictionary key else: # Create this key's container, if necessary if obj is None: obj = parent[key_parent] = {} # Create the index for this key if obj.get(key) is None: obj[key] = None # Update the parent object and key parent = obj key_parent = key # Set the value if parent[key_parent] is not None: raise ValueError(f"Duplicate key {key_str!r:.100s}") parent[key_parent] = value return result[0] if result[0] is not None else {}
schema-markdown
/schema_markdown-1.2.6-py3-none-any.whl/schema_markdown/encode.py
encode.py
from datetime import date, datetime, timezone from decimal import Decimal import json from urllib.parse import quote, unquote from uuid import UUID class JSONEncoder(json.JSONEncoder): """ A :class:`~json.JSONEncoder` sub-class with support for :class:`~datetime.datetime`, :class:`~datetime.date`, :class:`~decimal.Decimal`, and :class:`~uuid.UUID` objects. """ __slots__ = () def default(self, o): """ The override of the :meth:`~json.JSONEncoder.default` method to add support for :class:`~datetime.datetime`, :class:`~datetime.date`, :class:`~decimal.Decimal`, and :class:`~uuid.UUID` objects. """ if isinstance(o, datetime): return (o if o.tzinfo else o.replace(tzinfo=timezone.utc)).isoformat() if isinstance(o, date): return o.isoformat() if isinstance(o, Decimal): return float(o) if isinstance(o, UUID): return f'{o}' return json.JSONEncoder.default(self, o) def encode_query_string(obj, encoding='utf-8'): """ Encode an object as a query string. Dictionaries, lists, and tuples are recursed. Each member key is expressed in fully-qualified form. List keys are the index into the list, and are in order. For example: >>> schema_markdown.encode_query_string({'a': 5, 'b': 3.14, 'c': {'d': 'foo', 'e': [1, 2, 3]}, 'f': [{'g': True}, {'g': False}]}) 'a=5&b=3.14&c.d=foo&c.e.0=1&c.e.1=2&c.e.2=3&f.0.g=true&f.1.g=false' :param object obj: The object to encode as a query string :param str encoding: The query string encoding :returns: The encoded query string """ return '&'.join(f'{v}' if k is None else f'{k}={v}' for k, v in _encode_query_string_items(obj, None, encoding)) def _encode_query_string_items(obj, parent, encoding): if isinstance(obj, dict): if obj: for member, value in sorted(obj.items()): member_quoted = quote(f'{member}', encoding=encoding) parent_member = f'{parent}.{member_quoted}' if parent else member_quoted yield from _encode_query_string_items(value, parent_member, encoding) elif parent: yield parent, '' elif isinstance(obj, (list, tuple)): if obj: for idx, value in enumerate(obj): parent_member = f'{parent}.{idx}' if parent else f'{idx}' yield from _encode_query_string_items(value, parent_member, encoding) elif parent: yield parent, '' else: if isinstance(obj, bool): yield parent, 'true' if obj else 'false' # quote safe elif isinstance(obj, int): yield parent, f'{obj}' # quote safe elif isinstance(obj, datetime): if not obj.tzinfo: obj = obj.replace(tzinfo=timezone.utc) yield parent, quote(obj.isoformat(), encoding=encoding) elif isinstance(obj, date): yield parent, obj.isoformat() # quote safe elif isinstance(obj, UUID): yield parent, f'{obj}' # quote safe elif obj is None: yield parent, 'null' else: # str, float yield parent, quote(f'{obj}', encoding=encoding) def decode_query_string(query_string, encoding='utf-8'): """ Decode an object from a query string. Each member key of the query string is expressed in fully-qualified form. List keys are the index into the list, must be in order. For example: >>> schema_markdown.decode_query_string('a=5&b=3.14&c.d=foo&c.e.0=1&c.e.1=2&c.e.2=3&f.0.g=true&f.1.g=false') {'a': '5', 'b': '3.14', 'c': {'d': 'foo', 'e': ['1', '2', '3']}, 'f': [{'g': 'true'}, {'g': 'false'}]} :param str query_string: The query string :param str encoding: The query string encoding :returns: The decoded object :raises ValueError: Query string is invalid """ # Build the object result = [None] key_values = query_string.split('&') for ix_key_value, key_value in enumerate(key_values): # Split the key/value string try: key_str, value_str = key_value.split('=', 1) value = unquote(value_str, encoding=encoding) except ValueError: # Ignore hash IDs if ix_key_value == len(key_values) - 1: continue raise ValueError(f"Invalid key/value pair {key_value!r:.100s}") # Find/create the object on which to set the value parent = result key_parent = 0 for key in (unquote(key, encoding=encoding) for key in key_str.split('.')): obj = parent[key_parent] # Array key? First "key" of an array must start with "0". if isinstance(obj, list) or (obj is None and key == '0'): # Create this key's container, if necessary if obj is None: obj = parent[key_parent] = [] # Parse the key as an integer try: key = int(key) except: raise ValueError(f"Invalid array index {key!r:.100s} in key {key_str!r:.100s}") # Append the value placeholder None if key == len(obj): obj.append(None) elif key < 0 or key > len(obj): raise ValueError(f"Invalid array index {key} in key {key_str!r:.100s}") # Dictionary key else: # Create this key's container, if necessary if obj is None: obj = parent[key_parent] = {} # Create the index for this key if obj.get(key) is None: obj[key] = None # Update the parent object and key parent = obj key_parent = key # Set the value if parent[key_parent] is not None: raise ValueError(f"Duplicate key {key_str!r:.100s}") parent[key_parent] = value return result[0] if result[0] is not None else {}
0.854171
0.2901
from .parser import parse_schema_markdown #: The Schema Markdown type model TYPE_MODEL = parse_schema_markdown('''\ # Map of user type name to user type model typedef UserType{len > 0} Types # Union representing a member type union Type # A built-in type BuiltinType builtin # An array type Array array # A dictionary type Dict dict # A user type name string user # A type or member's attributes struct Attributes # If true, the value may be null optional bool nullable # The value is equal optional float eq # The value is less than optional float lt # The value is less than or equal to optional float lte # The value is greater than optional float gt # The value is greater than or equal to optional float gte # The length is equal to optional int lenEq # The length is less-than optional int lenLT # The length is less than or equal to optional int lenLTE # The length is greater than optional int lenGT # The length is greater than or equal to optional int lenGTE # The built-in type enumeration enum BuiltinType # The string type string # The integer type int # The float type float # The boolean type bool # A date formatted as an ISO-8601 date string date # A date/time formatted as an ISO-8601 date/time string datetime # A UUID formatted as string uuid # An object of any type object # An array type struct Array # The contained type Type type # The contained type's attributes optional Attributes attr # A dictionary type struct Dict # The contained key type Type type # The contained key type's attributes optional Attributes attr # The contained value type optional Type keyType # The contained value type's attributes optional Attributes keyAttr # A user type union UserType # An enumeration type Enum enum # A struct type Struct struct # A type definition Typedef typedef # A JSON web API (not reference-able) Action action # User type base struct struct UserBase # The user type name string name # The documentation markdown text lines optional string[] doc # The documentation group name optional string docGroup # An enumeration type struct Enum (UserBase) # The enum's base enumerations optional string[len > 0] bases # The enumeration values optional EnumValue[len > 0] values # An enumeration type value struct EnumValue # The value string string name # The documentation markdown text lines optional string[] doc # A struct type struct Struct (UserBase) # The struct's base classes optional string[len > 0] bases # If true, the struct is a union and exactly one of the optional members is present optional bool union # The struct members optional StructMember[len > 0] members # A struct member struct StructMember # The member name string name # The documentation markdown text lines optional string[] doc # The member type Type type # The member type attributes optional Attributes attr # If true, the member is optional and may not be present optional bool optional # A typedef type struct Typedef (UserBase) # The typedef's type Type type # The typedef's type attributes optional Attributes attr # A JSON web service API struct Action (UserBase) # The action's URLs optional ActionURL[len > 0] urls # The path parameters struct type name optional string path # The query parameters struct type name optional string query # The content body struct type name optional string input # The response body struct type name optional string output # The custom error response codes enum type name optional string errors # An action URL model struct ActionURL # The HTTP method. If not provided, matches all HTTP methods. optional string method # The URL path. If not provided, uses the default URL path of "/<actionName>". optional string path ''')
schema-markdown
/schema_markdown-1.2.6-py3-none-any.whl/schema_markdown/type_model.py
type_model.py
from .parser import parse_schema_markdown #: The Schema Markdown type model TYPE_MODEL = parse_schema_markdown('''\ # Map of user type name to user type model typedef UserType{len > 0} Types # Union representing a member type union Type # A built-in type BuiltinType builtin # An array type Array array # A dictionary type Dict dict # A user type name string user # A type or member's attributes struct Attributes # If true, the value may be null optional bool nullable # The value is equal optional float eq # The value is less than optional float lt # The value is less than or equal to optional float lte # The value is greater than optional float gt # The value is greater than or equal to optional float gte # The length is equal to optional int lenEq # The length is less-than optional int lenLT # The length is less than or equal to optional int lenLTE # The length is greater than optional int lenGT # The length is greater than or equal to optional int lenGTE # The built-in type enumeration enum BuiltinType # The string type string # The integer type int # The float type float # The boolean type bool # A date formatted as an ISO-8601 date string date # A date/time formatted as an ISO-8601 date/time string datetime # A UUID formatted as string uuid # An object of any type object # An array type struct Array # The contained type Type type # The contained type's attributes optional Attributes attr # A dictionary type struct Dict # The contained key type Type type # The contained key type's attributes optional Attributes attr # The contained value type optional Type keyType # The contained value type's attributes optional Attributes keyAttr # A user type union UserType # An enumeration type Enum enum # A struct type Struct struct # A type definition Typedef typedef # A JSON web API (not reference-able) Action action # User type base struct struct UserBase # The user type name string name # The documentation markdown text lines optional string[] doc # The documentation group name optional string docGroup # An enumeration type struct Enum (UserBase) # The enum's base enumerations optional string[len > 0] bases # The enumeration values optional EnumValue[len > 0] values # An enumeration type value struct EnumValue # The value string string name # The documentation markdown text lines optional string[] doc # A struct type struct Struct (UserBase) # The struct's base classes optional string[len > 0] bases # If true, the struct is a union and exactly one of the optional members is present optional bool union # The struct members optional StructMember[len > 0] members # A struct member struct StructMember # The member name string name # The documentation markdown text lines optional string[] doc # The member type Type type # The member type attributes optional Attributes attr # If true, the member is optional and may not be present optional bool optional # A typedef type struct Typedef (UserBase) # The typedef's type Type type # The typedef's type attributes optional Attributes attr # A JSON web service API struct Action (UserBase) # The action's URLs optional ActionURL[len > 0] urls # The path parameters struct type name optional string path # The query parameters struct type name optional string query # The content body struct type name optional string input # The response body struct type name optional string output # The custom error response codes enum type name optional string errors # An action URL model struct ActionURL # The HTTP method. If not provided, matches all HTTP methods. optional string method # The URL path. If not provided, uses the default URL path of "/<actionName>". optional string path ''')
0.797675
0.289786
from itertools import chain import re from .schema_util import validate_type_model_errors # Built-in types BUILTIN_TYPES = {'bool', 'date', 'datetime', 'float', 'int', 'object', 'string', 'uuid'} # Schema Markdown regex RE_PART_ID = r'(?:[A-Za-z]\w*)' RE_PART_ATTR_GROUP = \ r'(?:(?P<nullable>nullable)' \ r'|(?P<op><=|<|>|>=|==)\s*(?P<opnum>-?\d+(?:\.\d+)?)' \ r'|(?P<ltype>len)\s*(?P<lop><=|<|>|>=|==)\s*(?P<lopnum>\d+))' RE_PART_ATTR = re.sub(r'\(\?P<[^>]+>', r'(?:', RE_PART_ATTR_GROUP) RE_PART_ATTRS = r'(?:' + RE_PART_ATTR + r'(?:\s*,\s*' + RE_PART_ATTR + r')*)' RE_ATTR_GROUP = re.compile(RE_PART_ATTR_GROUP) RE_FIND_ATTRS = re.compile(RE_PART_ATTR + r'(?:\s*,\s*|\s*\Z)') RE_LINE_CONT = re.compile(r'\\s*$') RE_COMMENT = re.compile(r'^\s*(?:#-.*|#(?P<doc>.*))?$') RE_GROUP = re.compile(r'^group(?:\s+"(?P<group>.+?)")?\s*$') RE_ACTION = re.compile(r'^action\s+(?P<id>' + RE_PART_ID + r')') RE_PART_BASE_IDS = r'(?:\s*\(\s*(?P<base_ids>' + RE_PART_ID + r'(?:\s*,\s*' + RE_PART_ID + r')*)\s*\)\s*)' RE_BASE_IDS_SPLIT = re.compile(r'\s*,\s*') RE_DEFINITION = re.compile(r'^(?P<type>struct|union|enum)\s+(?P<id>' + RE_PART_ID + r')' + RE_PART_BASE_IDS + r'?\s*$') RE_SECTION = re.compile(r'^\s+(?P<type>path|query|input|output|errors)' + RE_PART_BASE_IDS + r'?\s*$') RE_SECTION_PLAIN = re.compile(r'^\s+(?P<type>urls)\s*$') RE_PART_TYPEDEF = \ r'(?P<type>' + RE_PART_ID + r')' \ r'(?:\s*\(\s*(?P<attrs>' + RE_PART_ATTRS + r')\s*\))?' \ r'(?:' \ r'(?:\s*\[\s*(?P<array>' + RE_PART_ATTRS + r'?)\s*\])?' \ r'|' \ r'(?:' \ r'\s*:\s*(?P<dictValueType>' + RE_PART_ID + r')' \ r'(?:\s*\(\s*(?P<dictValueAttrs>' + RE_PART_ATTRS + r')\s*\))?' \ r')?' \ r'(?:\s*\{\s*(?P<dict>' + RE_PART_ATTRS + r'?)\s*\})?' \ r')' \ r'\s+(?P<id>' + RE_PART_ID + r')' RE_TYPEDEF = re.compile(r'^typedef\s+' + RE_PART_TYPEDEF + r'\s*$') RE_MEMBER = re.compile(r'^\s+(?P<optional>optional\s+)?' + RE_PART_TYPEDEF + r'\s*$') RE_VALUE = re.compile(r'^\s+(?P<id>' + RE_PART_ID + r')\s*$') RE_VALUE_QUOTED = re.compile(r'^\s+"(?P<id>.*?)"\s*$') RE_URL = re.compile(r'^\s+(?P<method>[A-Za-z]+|\*)(?:\s+(?P<path>/\S*))?') def parse_schema_markdown(text, types=None, filename='', validate=True): """ Parse Schema Markdown from a string or an iterator of strings :param text: The Schema Markdown text :type text: str or ~collections.abc.Iterable(str) :param object types: The `type model <https://craigahobbs.github.io/schema-markdown-doc/doc/#var.vName='Types'>`__ :param str filename: The name of file being parsed (for error messages) :param bool validate: If True, validate after parsing :returns: The `type model <https://craigahobbs.github.io/schema-markdown-doc/doc/#var.vName='Types'>`__ :raises SchemaMarkdownParserError: A parsing error occurred """ # Current parser state if types is None: types = {} error_map = {} filepos = {} action = None urls = None user_type = None doc = [] doc_group = None linenum = 0 # Helper function to add an error message def add_error(msg, error_filename, error_linenum): error_msg = f'{error_filename}:{error_linenum}: error: {msg}' error_map[error_msg] = (error_filename, error_linenum, error_msg) # Helper function to get documentation strings def get_doc(): nonlocal doc result = None if doc: result = doc doc = [] return result # Line-split all script text if isinstance(text, str): lines = text.splitlines() else: lines = list(chain.from_iterable(text_part.splitlines() for text_part in text)) lines.append('') # Process each line line_continuation = [] for line_part in lines: linenum += 1 # Line continuation? line_part_no_continuation = RE_LINE_CONT.sub('', line_part) if line_continuation or line_part_no_continuation is not line_part: line_continuation.append(line_part_no_continuation) if line_part_no_continuation is not line_part: continue if line_continuation: line = ''.join(line_continuation) del line_continuation[:] else: line = line_part # Match syntax match_name, match = 'comment', RE_COMMENT.search(line) if match is None: match_name, match = 'group', RE_GROUP.search(line) if match is None: match_name, match = 'action', RE_ACTION.search(line) if match is None: match_name, match = 'definition', RE_DEFINITION.search(line) if match is None and action is not None: match_name, match = 'section', RE_SECTION.search(line) if match is None and action is not None: match_name, match = 'section_plain', RE_SECTION_PLAIN.search(line) if match is None and user_type is not None and 'enum' in user_type: match_value = RE_VALUE.search(line) if match_value is not None: match_name, match = 'value', match_value else: match_name, match = 'value', RE_VALUE_QUOTED.search(line) if match is None and user_type is not None and 'struct' in user_type: match_name, match = 'member', RE_MEMBER.search(line) if match is None and urls is not None: match_name, match = 'urls', RE_URL.search(line) if match is None: match_name, match = 'typedef', RE_TYPEDEF.search(line) if match is None: match_name = None # Comment? if match_name == 'comment': doc_string = match.group('doc') if doc_string is not None: doc.append(doc_string if not doc_string.startswith(' ') else doc_string[1:]) # Documentation group? elif match_name == 'group': doc_group = match.group('group') if doc_group is not None: doc_group = doc_group.strip() else: doc_group = None # Action? elif match_name == 'action': action_id = match.group('id') # Action already defined? if action_id in types: add_error(f"Redefinition of action '{action_id}'", filename, linenum) # Clear parser state urls = None user_type = None action_doc = get_doc() # Create the new action action = {'name': action_id} types[action_id] = {'action': action} if action_doc is not None: action['doc'] = action_doc if doc_group is not None: action['docGroup'] = doc_group # Definition? elif match_name == 'definition': definition_string = match.group('type') definition_id = match.group('id') definition_base_ids = match.group('base_ids') # Type already defined? if definition_id in BUILTIN_TYPES or definition_id in types: add_error(f"Redefinition of type '{definition_id}'", filename, linenum) # Clear parser state action = None urls = None definition_doc = get_doc() # Struct definition if definition_string in ('struct', 'union'): # Create the new struct type struct = {'name': definition_id} user_type = types[definition_id] = {'struct': struct} if definition_doc is not None: struct['doc'] = definition_doc if doc_group is not None: struct['docGroup'] = doc_group if definition_string == 'union': struct['union'] = True if definition_base_ids is not None: struct['bases'] = RE_BASE_IDS_SPLIT.split(definition_base_ids) # Enum definition else: # definition_string == 'enum': # Create the new enum type enum = {'name': definition_id} user_type = types[definition_id] = {'enum': enum} if definition_doc is not None: enum['doc'] = definition_doc if doc_group is not None: enum['docGroup'] = doc_group if definition_base_ids is not None: enum['bases'] = RE_BASE_IDS_SPLIT.split(definition_base_ids) # Record finalization information filepos[definition_id] = linenum # Action section? elif match_name == 'section': section_string = match.group('type') section_base_ids = match.group('base_ids') # Action section redefinition? if section_string in action: add_error(f'Redefinition of action {section_string}', filename, linenum) # Clear parser state urls = None # Set the action section type section_type_name = f'{action["name"]}_{section_string}' action[section_string] = section_type_name if section_string == 'errors': enum = {'name': section_type_name} user_type = types[section_type_name] = {'enum': enum} if section_base_ids is not None: enum['bases'] = RE_BASE_IDS_SPLIT.split(section_base_ids) else: struct = {'name': section_type_name} user_type = types[section_type_name] = {'struct': struct} if section_base_ids is not None: struct['bases'] = RE_BASE_IDS_SPLIT.split(section_base_ids) # Record finalization information filepos[section_type_name] = linenum # Plain action section? elif match_name == 'section_plain': section_string = match.group('type') # Action section redefinition? if section_string in action: add_error(f'Redefinition of action {section_string}', filename, linenum) # Clear parser state user_type = None # Update the parser state urls = [] # Enum value? elif match_name == 'value': value_string = match.group('id') # Add the enum value enum = user_type['enum'] if 'values' not in enum: enum['values'] = [] enum_value = {'name': value_string} enum['values'].append(enum_value) enum_value_doc = get_doc() if enum_value_doc is not None: enum_value['doc'] = enum_value_doc # Record finalization information filepos[f'{enum["name"]}.{value_string}'] = linenum # Struct member? elif match_name == 'member': optional = match.group('optional') is not None member_name = match.group('id') # Add the member struct = user_type['struct'] if 'members' not in struct: struct['members'] = [] member_type, member_attr = _parse_typedef(match) member_doc = get_doc() member = { 'name': member_name, 'type': member_type } struct['members'].append(member) if member_attr is not None: member['attr'] = member_attr if member_doc is not None: member['doc'] = member_doc if optional: member['optional'] = True # Record finalization information filepos[f'{struct["name"]}.{member_name}'] = linenum # URL? elif match_name == 'urls': method = match.group('method') path = match.group('path') # Create the action URL object action_url = {} if method != '*': action_url['method'] = method if path is not None: action_url['path'] = path # Duplicate URL? if action_url in urls: padded_path = "" if path is None else f' {path}' add_error(f'Duplicate URL: {method}{padded_path}', filename, linenum) # Add the URL if 'urls' not in action: action['urls'] = urls urls.append(action_url) # Typedef? elif match_name == 'typedef': definition_id = match.group('id') # Type already defined? if definition_id in BUILTIN_TYPES or definition_id in types: add_error(f"Redefinition of type '{definition_id}'", filename, linenum) # Clear parser state action = None urls = None user_type = None typedef_doc = get_doc() # Create the typedef typedef_type, typedef_attr = _parse_typedef(match) typedef = { 'name': definition_id, 'type': typedef_type } types[definition_id] = {'typedef': typedef} if typedef_attr is not None: typedef['attr'] = typedef_attr if typedef_doc is not None: typedef['doc'] = typedef_doc if doc_group is not None: typedef['docGroup'] = doc_group # Record finalization information filepos[definition_id] = linenum # Unrecognized line syntax else: add_error('Syntax error', filename, linenum) # Validate the type model, if requested if validate: for type_name, member_name, error_msg in validate_type_model_errors(types): error_filename = filename error_linenum = None if member_name is not None: error_linenum = filepos.get(f'{type_name}.{member_name}') if error_linenum is None: error_linenum = filepos.get(type_name) if error_linenum is None: error_filename = '' error_linenum = 1 add_error(error_msg, error_filename, error_linenum) # Raise a parser exception if there are any errors errors = [msg for _, _, msg in sorted(error_map.values())] if errors: raise SchemaMarkdownParserError(errors) return types # Helper function to parse a typedef - returns a type-model and attributes-model tuple def _parse_typedef(match_typedef): array_attrs_string = match_typedef.group('array') dict_attrs_string = match_typedef.group('dict') # Array type? if array_attrs_string is not None: value_type_name = match_typedef.group('type') value_attr = _parse_attr(match_typedef.group('attrs')) array_type = {'type': _create_type(value_type_name)} if value_attr is not None: array_type['attr'] = value_attr return {'array': array_type}, _parse_attr(array_attrs_string) # Dictionary type? if dict_attrs_string is not None: value_type_name = match_typedef.group('dictValueType') if value_type_name is not None: value_attr = _parse_attr(match_typedef.group('dictValueAttrs')) key_type_name = match_typedef.group('type') key_attr = _parse_attr(match_typedef.group('attrs')) dict_type = { 'type': _create_type(value_type_name), 'keyType': _create_type(key_type_name) } if value_attr is not None: dict_type['attr'] = value_attr if key_attr is not None: dict_type['keyAttr'] = key_attr else: value_type_name = match_typedef.group('type') value_attr = _parse_attr(match_typedef.group('attrs')) dict_type = {'type': _create_type(value_type_name)} if value_attr is not None: dict_type['attr'] = value_attr return {'dict': dict_type}, _parse_attr(dict_attrs_string) # Non-container type... member_type_name = match_typedef.group('type') return _create_type(member_type_name), _parse_attr(match_typedef.group('attrs')) # Helper function to create a type model def _create_type(type_name): if type_name in BUILTIN_TYPES: return {'builtin': type_name} return {'user': type_name} # Helper function to parse an attributes string - returns an attributes model def _parse_attr(attrs_string): attrs = None if attrs_string is not None: for attr_string in RE_FIND_ATTRS.findall(attrs_string): if attrs is None: attrs = {} match_attr = RE_ATTR_GROUP.match(attr_string) attr_op = match_attr.group('op') attr_length_op = match_attr.group('lop') if attr_op is None else None if match_attr.group('nullable') is not None: attrs['nullable'] = True elif attr_op is not None: attr_value = float(match_attr.group('opnum')) if attr_op == '<': attrs['lt'] = attr_value elif attr_op == '<=': attrs['lte'] = attr_value elif attr_op == '>': attrs['gt'] = attr_value elif attr_op == '>=': attrs['gte'] = attr_value else: # == attrs['eq'] = attr_value else: # attr_length_op is not None: attr_value = int(match_attr.group('lopnum')) if attr_length_op == '<': attrs['lenLT'] = attr_value elif attr_length_op == '<=': attrs['lenLTE'] = attr_value elif attr_length_op == '>': attrs['lenGT'] = attr_value elif attr_length_op == '>=': attrs['lenGTE'] = attr_value else: # == attrs['lenEq'] = attr_value return attrs class SchemaMarkdownParserError(Exception): """ Schema Markdown parser exception :param list(str) errors: The list of error strings """ __slots__ = ('errors',) def __init__(self, errors): super().__init__('\n'.join(errors)) #: The list of error strings self.errors = errors
schema-markdown
/schema_markdown-1.2.6-py3-none-any.whl/schema_markdown/parser.py
parser.py
from itertools import chain import re from .schema_util import validate_type_model_errors # Built-in types BUILTIN_TYPES = {'bool', 'date', 'datetime', 'float', 'int', 'object', 'string', 'uuid'} # Schema Markdown regex RE_PART_ID = r'(?:[A-Za-z]\w*)' RE_PART_ATTR_GROUP = \ r'(?:(?P<nullable>nullable)' \ r'|(?P<op><=|<|>|>=|==)\s*(?P<opnum>-?\d+(?:\.\d+)?)' \ r'|(?P<ltype>len)\s*(?P<lop><=|<|>|>=|==)\s*(?P<lopnum>\d+))' RE_PART_ATTR = re.sub(r'\(\?P<[^>]+>', r'(?:', RE_PART_ATTR_GROUP) RE_PART_ATTRS = r'(?:' + RE_PART_ATTR + r'(?:\s*,\s*' + RE_PART_ATTR + r')*)' RE_ATTR_GROUP = re.compile(RE_PART_ATTR_GROUP) RE_FIND_ATTRS = re.compile(RE_PART_ATTR + r'(?:\s*,\s*|\s*\Z)') RE_LINE_CONT = re.compile(r'\\s*$') RE_COMMENT = re.compile(r'^\s*(?:#-.*|#(?P<doc>.*))?$') RE_GROUP = re.compile(r'^group(?:\s+"(?P<group>.+?)")?\s*$') RE_ACTION = re.compile(r'^action\s+(?P<id>' + RE_PART_ID + r')') RE_PART_BASE_IDS = r'(?:\s*\(\s*(?P<base_ids>' + RE_PART_ID + r'(?:\s*,\s*' + RE_PART_ID + r')*)\s*\)\s*)' RE_BASE_IDS_SPLIT = re.compile(r'\s*,\s*') RE_DEFINITION = re.compile(r'^(?P<type>struct|union|enum)\s+(?P<id>' + RE_PART_ID + r')' + RE_PART_BASE_IDS + r'?\s*$') RE_SECTION = re.compile(r'^\s+(?P<type>path|query|input|output|errors)' + RE_PART_BASE_IDS + r'?\s*$') RE_SECTION_PLAIN = re.compile(r'^\s+(?P<type>urls)\s*$') RE_PART_TYPEDEF = \ r'(?P<type>' + RE_PART_ID + r')' \ r'(?:\s*\(\s*(?P<attrs>' + RE_PART_ATTRS + r')\s*\))?' \ r'(?:' \ r'(?:\s*\[\s*(?P<array>' + RE_PART_ATTRS + r'?)\s*\])?' \ r'|' \ r'(?:' \ r'\s*:\s*(?P<dictValueType>' + RE_PART_ID + r')' \ r'(?:\s*\(\s*(?P<dictValueAttrs>' + RE_PART_ATTRS + r')\s*\))?' \ r')?' \ r'(?:\s*\{\s*(?P<dict>' + RE_PART_ATTRS + r'?)\s*\})?' \ r')' \ r'\s+(?P<id>' + RE_PART_ID + r')' RE_TYPEDEF = re.compile(r'^typedef\s+' + RE_PART_TYPEDEF + r'\s*$') RE_MEMBER = re.compile(r'^\s+(?P<optional>optional\s+)?' + RE_PART_TYPEDEF + r'\s*$') RE_VALUE = re.compile(r'^\s+(?P<id>' + RE_PART_ID + r')\s*$') RE_VALUE_QUOTED = re.compile(r'^\s+"(?P<id>.*?)"\s*$') RE_URL = re.compile(r'^\s+(?P<method>[A-Za-z]+|\*)(?:\s+(?P<path>/\S*))?') def parse_schema_markdown(text, types=None, filename='', validate=True): """ Parse Schema Markdown from a string or an iterator of strings :param text: The Schema Markdown text :type text: str or ~collections.abc.Iterable(str) :param object types: The `type model <https://craigahobbs.github.io/schema-markdown-doc/doc/#var.vName='Types'>`__ :param str filename: The name of file being parsed (for error messages) :param bool validate: If True, validate after parsing :returns: The `type model <https://craigahobbs.github.io/schema-markdown-doc/doc/#var.vName='Types'>`__ :raises SchemaMarkdownParserError: A parsing error occurred """ # Current parser state if types is None: types = {} error_map = {} filepos = {} action = None urls = None user_type = None doc = [] doc_group = None linenum = 0 # Helper function to add an error message def add_error(msg, error_filename, error_linenum): error_msg = f'{error_filename}:{error_linenum}: error: {msg}' error_map[error_msg] = (error_filename, error_linenum, error_msg) # Helper function to get documentation strings def get_doc(): nonlocal doc result = None if doc: result = doc doc = [] return result # Line-split all script text if isinstance(text, str): lines = text.splitlines() else: lines = list(chain.from_iterable(text_part.splitlines() for text_part in text)) lines.append('') # Process each line line_continuation = [] for line_part in lines: linenum += 1 # Line continuation? line_part_no_continuation = RE_LINE_CONT.sub('', line_part) if line_continuation or line_part_no_continuation is not line_part: line_continuation.append(line_part_no_continuation) if line_part_no_continuation is not line_part: continue if line_continuation: line = ''.join(line_continuation) del line_continuation[:] else: line = line_part # Match syntax match_name, match = 'comment', RE_COMMENT.search(line) if match is None: match_name, match = 'group', RE_GROUP.search(line) if match is None: match_name, match = 'action', RE_ACTION.search(line) if match is None: match_name, match = 'definition', RE_DEFINITION.search(line) if match is None and action is not None: match_name, match = 'section', RE_SECTION.search(line) if match is None and action is not None: match_name, match = 'section_plain', RE_SECTION_PLAIN.search(line) if match is None and user_type is not None and 'enum' in user_type: match_value = RE_VALUE.search(line) if match_value is not None: match_name, match = 'value', match_value else: match_name, match = 'value', RE_VALUE_QUOTED.search(line) if match is None and user_type is not None and 'struct' in user_type: match_name, match = 'member', RE_MEMBER.search(line) if match is None and urls is not None: match_name, match = 'urls', RE_URL.search(line) if match is None: match_name, match = 'typedef', RE_TYPEDEF.search(line) if match is None: match_name = None # Comment? if match_name == 'comment': doc_string = match.group('doc') if doc_string is not None: doc.append(doc_string if not doc_string.startswith(' ') else doc_string[1:]) # Documentation group? elif match_name == 'group': doc_group = match.group('group') if doc_group is not None: doc_group = doc_group.strip() else: doc_group = None # Action? elif match_name == 'action': action_id = match.group('id') # Action already defined? if action_id in types: add_error(f"Redefinition of action '{action_id}'", filename, linenum) # Clear parser state urls = None user_type = None action_doc = get_doc() # Create the new action action = {'name': action_id} types[action_id] = {'action': action} if action_doc is not None: action['doc'] = action_doc if doc_group is not None: action['docGroup'] = doc_group # Definition? elif match_name == 'definition': definition_string = match.group('type') definition_id = match.group('id') definition_base_ids = match.group('base_ids') # Type already defined? if definition_id in BUILTIN_TYPES or definition_id in types: add_error(f"Redefinition of type '{definition_id}'", filename, linenum) # Clear parser state action = None urls = None definition_doc = get_doc() # Struct definition if definition_string in ('struct', 'union'): # Create the new struct type struct = {'name': definition_id} user_type = types[definition_id] = {'struct': struct} if definition_doc is not None: struct['doc'] = definition_doc if doc_group is not None: struct['docGroup'] = doc_group if definition_string == 'union': struct['union'] = True if definition_base_ids is not None: struct['bases'] = RE_BASE_IDS_SPLIT.split(definition_base_ids) # Enum definition else: # definition_string == 'enum': # Create the new enum type enum = {'name': definition_id} user_type = types[definition_id] = {'enum': enum} if definition_doc is not None: enum['doc'] = definition_doc if doc_group is not None: enum['docGroup'] = doc_group if definition_base_ids is not None: enum['bases'] = RE_BASE_IDS_SPLIT.split(definition_base_ids) # Record finalization information filepos[definition_id] = linenum # Action section? elif match_name == 'section': section_string = match.group('type') section_base_ids = match.group('base_ids') # Action section redefinition? if section_string in action: add_error(f'Redefinition of action {section_string}', filename, linenum) # Clear parser state urls = None # Set the action section type section_type_name = f'{action["name"]}_{section_string}' action[section_string] = section_type_name if section_string == 'errors': enum = {'name': section_type_name} user_type = types[section_type_name] = {'enum': enum} if section_base_ids is not None: enum['bases'] = RE_BASE_IDS_SPLIT.split(section_base_ids) else: struct = {'name': section_type_name} user_type = types[section_type_name] = {'struct': struct} if section_base_ids is not None: struct['bases'] = RE_BASE_IDS_SPLIT.split(section_base_ids) # Record finalization information filepos[section_type_name] = linenum # Plain action section? elif match_name == 'section_plain': section_string = match.group('type') # Action section redefinition? if section_string in action: add_error(f'Redefinition of action {section_string}', filename, linenum) # Clear parser state user_type = None # Update the parser state urls = [] # Enum value? elif match_name == 'value': value_string = match.group('id') # Add the enum value enum = user_type['enum'] if 'values' not in enum: enum['values'] = [] enum_value = {'name': value_string} enum['values'].append(enum_value) enum_value_doc = get_doc() if enum_value_doc is not None: enum_value['doc'] = enum_value_doc # Record finalization information filepos[f'{enum["name"]}.{value_string}'] = linenum # Struct member? elif match_name == 'member': optional = match.group('optional') is not None member_name = match.group('id') # Add the member struct = user_type['struct'] if 'members' not in struct: struct['members'] = [] member_type, member_attr = _parse_typedef(match) member_doc = get_doc() member = { 'name': member_name, 'type': member_type } struct['members'].append(member) if member_attr is not None: member['attr'] = member_attr if member_doc is not None: member['doc'] = member_doc if optional: member['optional'] = True # Record finalization information filepos[f'{struct["name"]}.{member_name}'] = linenum # URL? elif match_name == 'urls': method = match.group('method') path = match.group('path') # Create the action URL object action_url = {} if method != '*': action_url['method'] = method if path is not None: action_url['path'] = path # Duplicate URL? if action_url in urls: padded_path = "" if path is None else f' {path}' add_error(f'Duplicate URL: {method}{padded_path}', filename, linenum) # Add the URL if 'urls' not in action: action['urls'] = urls urls.append(action_url) # Typedef? elif match_name == 'typedef': definition_id = match.group('id') # Type already defined? if definition_id in BUILTIN_TYPES or definition_id in types: add_error(f"Redefinition of type '{definition_id}'", filename, linenum) # Clear parser state action = None urls = None user_type = None typedef_doc = get_doc() # Create the typedef typedef_type, typedef_attr = _parse_typedef(match) typedef = { 'name': definition_id, 'type': typedef_type } types[definition_id] = {'typedef': typedef} if typedef_attr is not None: typedef['attr'] = typedef_attr if typedef_doc is not None: typedef['doc'] = typedef_doc if doc_group is not None: typedef['docGroup'] = doc_group # Record finalization information filepos[definition_id] = linenum # Unrecognized line syntax else: add_error('Syntax error', filename, linenum) # Validate the type model, if requested if validate: for type_name, member_name, error_msg in validate_type_model_errors(types): error_filename = filename error_linenum = None if member_name is not None: error_linenum = filepos.get(f'{type_name}.{member_name}') if error_linenum is None: error_linenum = filepos.get(type_name) if error_linenum is None: error_filename = '' error_linenum = 1 add_error(error_msg, error_filename, error_linenum) # Raise a parser exception if there are any errors errors = [msg for _, _, msg in sorted(error_map.values())] if errors: raise SchemaMarkdownParserError(errors) return types # Helper function to parse a typedef - returns a type-model and attributes-model tuple def _parse_typedef(match_typedef): array_attrs_string = match_typedef.group('array') dict_attrs_string = match_typedef.group('dict') # Array type? if array_attrs_string is not None: value_type_name = match_typedef.group('type') value_attr = _parse_attr(match_typedef.group('attrs')) array_type = {'type': _create_type(value_type_name)} if value_attr is not None: array_type['attr'] = value_attr return {'array': array_type}, _parse_attr(array_attrs_string) # Dictionary type? if dict_attrs_string is not None: value_type_name = match_typedef.group('dictValueType') if value_type_name is not None: value_attr = _parse_attr(match_typedef.group('dictValueAttrs')) key_type_name = match_typedef.group('type') key_attr = _parse_attr(match_typedef.group('attrs')) dict_type = { 'type': _create_type(value_type_name), 'keyType': _create_type(key_type_name) } if value_attr is not None: dict_type['attr'] = value_attr if key_attr is not None: dict_type['keyAttr'] = key_attr else: value_type_name = match_typedef.group('type') value_attr = _parse_attr(match_typedef.group('attrs')) dict_type = {'type': _create_type(value_type_name)} if value_attr is not None: dict_type['attr'] = value_attr return {'dict': dict_type}, _parse_attr(dict_attrs_string) # Non-container type... member_type_name = match_typedef.group('type') return _create_type(member_type_name), _parse_attr(match_typedef.group('attrs')) # Helper function to create a type model def _create_type(type_name): if type_name in BUILTIN_TYPES: return {'builtin': type_name} return {'user': type_name} # Helper function to parse an attributes string - returns an attributes model def _parse_attr(attrs_string): attrs = None if attrs_string is not None: for attr_string in RE_FIND_ATTRS.findall(attrs_string): if attrs is None: attrs = {} match_attr = RE_ATTR_GROUP.match(attr_string) attr_op = match_attr.group('op') attr_length_op = match_attr.group('lop') if attr_op is None else None if match_attr.group('nullable') is not None: attrs['nullable'] = True elif attr_op is not None: attr_value = float(match_attr.group('opnum')) if attr_op == '<': attrs['lt'] = attr_value elif attr_op == '<=': attrs['lte'] = attr_value elif attr_op == '>': attrs['gt'] = attr_value elif attr_op == '>=': attrs['gte'] = attr_value else: # == attrs['eq'] = attr_value else: # attr_length_op is not None: attr_value = int(match_attr.group('lopnum')) if attr_length_op == '<': attrs['lenLT'] = attr_value elif attr_length_op == '<=': attrs['lenLTE'] = attr_value elif attr_length_op == '>': attrs['lenGT'] = attr_value elif attr_length_op == '>=': attrs['lenGTE'] = attr_value else: # == attrs['lenEq'] = attr_value return attrs class SchemaMarkdownParserError(Exception): """ Schema Markdown parser exception :param list(str) errors: The list of error strings """ __slots__ = ('errors',) def __init__(self, errors): super().__init__('\n'.join(errors)) #: The list of error strings self.errors = errors
0.425844
0.186447
[![PyPI version](https://badge.fury.io/py/schema-matching.svg)](https://pypi.org/project/schema-matching/) # Python Schema Matching by XGboost and Sentence-Transformers A python tool using XGboost and sentence-transformers to perform schema matching task on tables. Support multi-language column names and instances matching and can be used without column names. Both csv and json file type are supported. ## What is schema matching? ![](https://media.springernature.com/lw785/springer-static/image/prt%3A978-0-387-39940-9%2F19/MediaObjects/978-0-387-39940-9_19_Part_Fig4-962_HTML.jpg) Schema matching is the problem of finding potential associations between elements (most often attributes or relations) of two schemas. [source](https://link.springer.com/referenceworkentry/10.1007/978-3-319-77525-8_20) ## Dependencies - numpy==1.19.5 - pandas==1.1.5 - nltk==3.6.5 - python-dateutil==2.8.2 - sentence-transformers==2.1.0 - xgboost==1.5.2 - strsimpy==0.2.1 ## Package usage ### Install ``` pip install schema-matching ``` ### Conduct schema matching ``` from schema_matching import schema_matching df_pred,df_pred_labels,predicted_pairs = schema_matching("Test Data/QA/Table1.json","Test Data/QA/Table2.json") print(df_pred) print(df_pred_labels) for pair_tuple in predicted_pairs: print(pair_tuple) ``` #### Return: - df_pred: Predict value matrix, pd.DataFrame. - df_pred_labels: Predict label matrix, pd.DataFrame. - predicted_pairs: Predict label == 1 column pairs, in tuple format. #### Parameters: - table1_pth: Path to your first **csv, json or jsonl file**. - table2_pth: Path to your second **csv, json or jsonl file**. - threshold: Threshold, you can use this parameter to specify threshold value, suggest 0.9 for easy matching(column name very similar). Default value is calculated from training data, which is around 0.15-0.2. This value is used for difficult matching(column name masked or very different). - strategy: Strategy, there are three options: "one-to-one", "one-to-many" and "many-to-many". "one-to-one" means that one column can only be matched to one column. "one-to-many" means that columns in Table1 can only be matched to one column in Table2. "many-to-many" means that there is no restrictions. Default is "many-to-many". - model_pth: Path to trained model folder, which must contain at least one pair of ".model" file and ".threshold" file. You don't need to specify this parameter. ## Raw code usage: Training ### Data See Data format in Training Data and Test Data folders. You need to put mapping.txt, Table1.csv and Table2.csv in new folders under Training Data. For Test Data, mapping.txt is not needed. ### 1.Construct features ``` python relation_features.py ``` ### 2.Train xgboost models ``` python train.py ``` ### 3.Calculate similarity matrix (inference) ``` Example: python cal_column_similarity.py -p Test\ Data/self -m /model/2022-04-12-12-06-32 -s one-to-one python cal_column_similarity.py -p Test\ Data/authors -m /model/2022-04-12-12-06-32-11 -t 0.9 ``` Parameters: - -p: Path to test data folder, must contain **"Table1.csv" and "Table2.csv" or "Table1.json" and "Table2.json"**. - -m: Path to trained model folder, which must contain at least one pair of ".model" file and ".threshold" file. - -t: Threshold, you can use this parameter to specify threshold value, suggest 0.9 for easy matching(column name very similar). Default value is calculated from training data, which is around 0.15-0.2. This value is used for difficult matching(column name masked or very different). - -s: Strategy, there are three options: "one-to-one", "one-to-many" and "many-to-many". "one-to-one" means that one column can only be matched to one column. "one-to-many" means that columns in Table1 can only be matched to one column in Table2. "many-to-many" means that there is no restrictions. Default is "many-to-many". Output: - similarity_matrix_label.csv: Labels(0,1) for each column pairs. - similarity_matrix_value.csv: Average of raw values computed by all the xgboost models. ## Feature Engineering Features: "is_url","is_numeric","is_date","is_string","numeric:mean", "numeric:min", "numeric:max", "numeric:variance","numeric:cv", "numeric:unique/len(data_list)", "length:mean", "length:min", "length:max", "length:variance","length:cv", "length:unique/len(data_list)", "whitespace_ratios:mean","punctuation_ratios:mean","special_character_ratios:mean","numeric_ratios:mean", "whitespace_ratios:cv","punctuation_ratios:cv","special_character_ratios:cv","numeric_ratios:cv", "colname:bleu_score", "colname:edit_distance","colname:lcs","colname:tsm_cosine", "colname:one_in_one", "instance_similarity:cosine" - tsm_cosine: Cosine similarity of column names computed by sentence-transformers using "paraphrase-multilingual-mpnet-base-v2". Support multi-language column names matching. - instance_similarity:cosine: Select 20 instances each string column and compute its mean embedding using sentence-transformers. Cosine similarity is computed by each pairs. ## Performance ### Cross Validation on Training Data(Each pair to be used as test data) - Average Precision: 0.755 - Average Recall: 0.829 - Average F1: 0.766 Average Confusion Matrix: | | Negative(Truth) | Positive(Truth) | |----------------|-----------------|-----------------| | Negative(pred) | 0.94343111 | 0.05656889 | | Positive(pred) | 0.17135417 | 0.82864583 | ### Inference on Test Data (Give confusing column names) Data: https://github.com/fireindark707/Schema_Matching_XGboost/tree/main/Test%20Data/self | | title | text | summary | keywords | url | country | language | domain | name | timestamp | |---------|------------|------------|------------|------------|------------|------------|------------|------------|-------|------------| | col1 | 1(FN) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | col2 | 0 | 1(TP) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | col3 | 0 | 0 | 1(TP) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | words | 0 | 0 | 0 | 1(TP) | 0 | 0 | 0 | 0 | 0 | 0 | | link | 0 | 0 | 0 | 0 | 1(TP) | 0 | 0 | 0 | 0 | 0 | | col6 | 0 | 0 | 0 | 0 | 0 | 1(TP) | 0 | 0 | 0 | 0 | | lang | 0 | 0 | 0 | 0 | 0 | 0 | 1(TP) | 0 | 0 | 0 | | col8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1(TP) | 0 | 0 | | website | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0(FN) | 0 | | col10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1(TP) | **F1 score: 0.889** ## Cite ``` @software{fireinfark707_Schema_Matching_by_2022, author = {fireinfark707}, license = {MIT}, month = {4}, title = {{Schema Matching by XGboost}}, url = {https://github.com/fireindark707/Schema_Matching_XGboost}, year = {2022} } ```
schema-matching
/schema_matching-1.0.4.tar.gz/schema_matching-1.0.4/README.md
README.md
pip install schema-matching from schema_matching import schema_matching df_pred,df_pred_labels,predicted_pairs = schema_matching("Test Data/QA/Table1.json","Test Data/QA/Table2.json") print(df_pred) print(df_pred_labels) for pair_tuple in predicted_pairs: print(pair_tuple) python relation_features.py python train.py Example: python cal_column_similarity.py -p Test\ Data/self -m /model/2022-04-12-12-06-32 -s one-to-one python cal_column_similarity.py -p Test\ Data/authors -m /model/2022-04-12-12-06-32-11 -t 0.9 @software{fireinfark707_Schema_Matching_by_2022, author = {fireinfark707}, license = {MIT}, month = {4}, title = {{Schema Matching by XGboost}}, url = {https://github.com/fireindark707/Schema_Matching_XGboost}, year = {2022} }
0.495606
0.953751
import pandas as pd import numpy as np import os import xgboost as xgb import datetime from sklearn.metrics import confusion_matrix from sklearn.metrics import f1_score, precision_score, recall_score import warnings warnings.filterwarnings("ignore") feature_names = ["is_url","is_numeric","is_date","is_string","numeric:mean", "numeric:min", "numeric:max", "numeric:variance","numeric:cv", "numeric:unique/len(data_list)", "length:mean", "length:min", "length:max", "length:variance","length:cv", "length:unique/len(data_list)", "whitespace_ratios:mean","punctuation_ratios:mean","special_character_ratios:mean","numeric_ratios:mean", "whitespace_ratios:cv","punctuation_ratios:cv","special_character_ratios:cv","numeric_ratios:cv", "colname:bleu_score", "colname:edit_distance","colname:lcs","colname:tsm_cosine", "colname:one_in_one","instance_similarity:cosine", ] params = { 'max_depth': 4, 'eta': 0.1, 'objective': 'binary:logistic', 'eval_metric': 'logloss', } def train(train_features,train_labels,num_round): dtrain = xgb.DMatrix(train_features, label=train_labels) bst = xgb.train(params, dtrain, num_round) # get best_threshold best_f1 = 0 best_threshold = 0 for threshold in range(100): threshold = threshold / 100 pred_labels = np.where(bst.predict(dtrain) > threshold, 1, 0) f1 = f1_score(train_labels, pred_labels,average="binary",pos_label=1) if f1 > best_f1: best_f1 = f1 best_threshold = threshold return bst,best_threshold def test(bst,best_threshold, test_features, test_labels, type="evaluation"): dtest = xgb.DMatrix(test_features, label=test_labels) pred = bst.predict(dtest) if type == "inference": pred_labels = np.where(pred > best_threshold, 1, 0) return pred,pred_labels # compute precision, recall, and F1 score pred_labels = np.where(pred > best_threshold, 1, 0) precision = precision_score(test_labels, pred_labels,average="binary",pos_label=1) recall = recall_score(test_labels, pred_labels,average="binary",pos_label=1) f1 = f1_score(test_labels, pred_labels,average="binary",pos_label=1) c_matrix = confusion_matrix(test_labels, pred_labels) return precision, recall, f1, c_matrix def merge_features(path): files = os.listdir(path) files.sort() merged_features = [] for file in files: if not "features" in file: continue features = np.load(path + file) merged_features.append(features) return np.concatenate(merged_features) def get_labels(path): files = os.listdir(path) files.sort() labels = [] for file in files: if not "labels" in file: continue labels.append(np.load(path + file)) return np.concatenate(labels) def preprocess(path): train_path = path + "/train/" test_path = path + "/test/" train_features = merge_features(train_path) train_labels = get_labels(train_path) test_features = merge_features(test_path) test_labels = get_labels(test_path) return train_features, train_labels, test_features, test_labels def get_feature_importances(bst): importance = bst.get_fscore() importance = [(im,feature_names[int(im[0].replace("f",""))]) for im in importance.items()] importance = sorted(importance, key=lambda x: x[0][1], reverse=True) return importance def train_loop(num_round=300): precision_list = [] recall_list = [] f1_list = [] c_matrix_list = [] feature_importance_list = [] for i in range(len(os.listdir("Input"))): train_features, train_labels, test_features, test_labels = preprocess("Input/" + str(i)) bst, best_threshold = train(train_features, train_labels, num_round) precision, recall, f1, c_matrix = test(bst,best_threshold, test_features, test_labels) feature_importance = get_feature_importances(bst) c_matrix_norm = c_matrix.astype('float') / c_matrix.sum(axis=1)[:, np.newaxis] precision_list.append(precision) recall_list.append(recall) f1_list.append(f1) c_matrix_list.append(c_matrix_norm) feature_importance_list.append(feature_importance) bst.save_model(model_save_pth+f"/{i}.model") with open(model_save_pth+f"/{i}.threshold",'w') as f: f.write(str(best_threshold)) # evaluate feature importance feature_name_importance = {} for feature_importance in feature_importance_list: for (im,feature_name) in feature_importance: if feature_name in feature_name_importance: feature_name_importance[feature_name] += im[1] else: feature_name_importance[feature_name] = im[1] feature_name_importance = sorted(feature_name_importance.items(), key=lambda x: x[1], reverse=True) return precision_list, recall_list, f1_list, c_matrix_list, feature_name_importance def optimize_hyperparameter(eta_candid,max_depth_candid,num_round_candid): best_f1 = 0 for eta in eta_candid: for max_depth in max_depth_candid: for num_round in num_round_candid: print(eta, max_depth, num_round) params["eta"] = eta params["max_depth"] = max_depth precision_list, recall_list, f1_list, c_matrix_list, feature_name_importance = train_loop(num_round) print("Average Precision: %.3f" % np.mean(precision_list)) print("Average Recall: %.3f" % np.mean(recall_list)) print("Average F1: %.3f" % np.mean(f1_list)) if np.mean(f1_list) > best_f1: best_f1 = np.mean(f1_list) best_params = params best_precision = np.mean(precision_list) best_recall = np.mean(recall_list) best_params["num_round"] = num_round return best_params, best_precision, best_recall, best_f1 if __name__ == '__main__': model_save_pth = "model/"+datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S") if not os.path.exists(model_save_pth): os.makedirs(model_save_pth) precision_list, recall_list, f1_list, c_matrix_list, feature_name_importance = train_loop() # give evaluation results print("Average Precision: %.3f" % np.mean(precision_list)) print("Average Recall: %.3f" % np.mean(recall_list)) print("Average F1: %.3f" % np.mean(f1_list)) print(f1_list) print("Average Confusion Matrix: \n", np.mean(c_matrix_list,axis=0)) print("Feature Importance:") for importance in feature_name_importance: print(f"{importance[0]}: {importance[1]}") # tune parameters if False: eta_candidate = [0.08,0.05,0.03, 0.01] max_depth_candidate = [3,4,5,6,7,8,9,10,12,15,20] num_round_candidate = [100,200,300,400,500,600,700,800,900,1000] best_params,best_precision, best_recall, best_f1 = optimize_hyperparameter(eta_candidate,max_depth_candidate,num_round_candidate) print(best_params) print(best_precision) print(best_recall) print(best_f1)
schema-matching
/schema_matching-1.0.4.tar.gz/schema_matching-1.0.4/src/schema_matching/train.py
train.py
import pandas as pd import numpy as np import os import xgboost as xgb import datetime from sklearn.metrics import confusion_matrix from sklearn.metrics import f1_score, precision_score, recall_score import warnings warnings.filterwarnings("ignore") feature_names = ["is_url","is_numeric","is_date","is_string","numeric:mean", "numeric:min", "numeric:max", "numeric:variance","numeric:cv", "numeric:unique/len(data_list)", "length:mean", "length:min", "length:max", "length:variance","length:cv", "length:unique/len(data_list)", "whitespace_ratios:mean","punctuation_ratios:mean","special_character_ratios:mean","numeric_ratios:mean", "whitespace_ratios:cv","punctuation_ratios:cv","special_character_ratios:cv","numeric_ratios:cv", "colname:bleu_score", "colname:edit_distance","colname:lcs","colname:tsm_cosine", "colname:one_in_one","instance_similarity:cosine", ] params = { 'max_depth': 4, 'eta': 0.1, 'objective': 'binary:logistic', 'eval_metric': 'logloss', } def train(train_features,train_labels,num_round): dtrain = xgb.DMatrix(train_features, label=train_labels) bst = xgb.train(params, dtrain, num_round) # get best_threshold best_f1 = 0 best_threshold = 0 for threshold in range(100): threshold = threshold / 100 pred_labels = np.where(bst.predict(dtrain) > threshold, 1, 0) f1 = f1_score(train_labels, pred_labels,average="binary",pos_label=1) if f1 > best_f1: best_f1 = f1 best_threshold = threshold return bst,best_threshold def test(bst,best_threshold, test_features, test_labels, type="evaluation"): dtest = xgb.DMatrix(test_features, label=test_labels) pred = bst.predict(dtest) if type == "inference": pred_labels = np.where(pred > best_threshold, 1, 0) return pred,pred_labels # compute precision, recall, and F1 score pred_labels = np.where(pred > best_threshold, 1, 0) precision = precision_score(test_labels, pred_labels,average="binary",pos_label=1) recall = recall_score(test_labels, pred_labels,average="binary",pos_label=1) f1 = f1_score(test_labels, pred_labels,average="binary",pos_label=1) c_matrix = confusion_matrix(test_labels, pred_labels) return precision, recall, f1, c_matrix def merge_features(path): files = os.listdir(path) files.sort() merged_features = [] for file in files: if not "features" in file: continue features = np.load(path + file) merged_features.append(features) return np.concatenate(merged_features) def get_labels(path): files = os.listdir(path) files.sort() labels = [] for file in files: if not "labels" in file: continue labels.append(np.load(path + file)) return np.concatenate(labels) def preprocess(path): train_path = path + "/train/" test_path = path + "/test/" train_features = merge_features(train_path) train_labels = get_labels(train_path) test_features = merge_features(test_path) test_labels = get_labels(test_path) return train_features, train_labels, test_features, test_labels def get_feature_importances(bst): importance = bst.get_fscore() importance = [(im,feature_names[int(im[0].replace("f",""))]) for im in importance.items()] importance = sorted(importance, key=lambda x: x[0][1], reverse=True) return importance def train_loop(num_round=300): precision_list = [] recall_list = [] f1_list = [] c_matrix_list = [] feature_importance_list = [] for i in range(len(os.listdir("Input"))): train_features, train_labels, test_features, test_labels = preprocess("Input/" + str(i)) bst, best_threshold = train(train_features, train_labels, num_round) precision, recall, f1, c_matrix = test(bst,best_threshold, test_features, test_labels) feature_importance = get_feature_importances(bst) c_matrix_norm = c_matrix.astype('float') / c_matrix.sum(axis=1)[:, np.newaxis] precision_list.append(precision) recall_list.append(recall) f1_list.append(f1) c_matrix_list.append(c_matrix_norm) feature_importance_list.append(feature_importance) bst.save_model(model_save_pth+f"/{i}.model") with open(model_save_pth+f"/{i}.threshold",'w') as f: f.write(str(best_threshold)) # evaluate feature importance feature_name_importance = {} for feature_importance in feature_importance_list: for (im,feature_name) in feature_importance: if feature_name in feature_name_importance: feature_name_importance[feature_name] += im[1] else: feature_name_importance[feature_name] = im[1] feature_name_importance = sorted(feature_name_importance.items(), key=lambda x: x[1], reverse=True) return precision_list, recall_list, f1_list, c_matrix_list, feature_name_importance def optimize_hyperparameter(eta_candid,max_depth_candid,num_round_candid): best_f1 = 0 for eta in eta_candid: for max_depth in max_depth_candid: for num_round in num_round_candid: print(eta, max_depth, num_round) params["eta"] = eta params["max_depth"] = max_depth precision_list, recall_list, f1_list, c_matrix_list, feature_name_importance = train_loop(num_round) print("Average Precision: %.3f" % np.mean(precision_list)) print("Average Recall: %.3f" % np.mean(recall_list)) print("Average F1: %.3f" % np.mean(f1_list)) if np.mean(f1_list) > best_f1: best_f1 = np.mean(f1_list) best_params = params best_precision = np.mean(precision_list) best_recall = np.mean(recall_list) best_params["num_round"] = num_round return best_params, best_precision, best_recall, best_f1 if __name__ == '__main__': model_save_pth = "model/"+datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S") if not os.path.exists(model_save_pth): os.makedirs(model_save_pth) precision_list, recall_list, f1_list, c_matrix_list, feature_name_importance = train_loop() # give evaluation results print("Average Precision: %.3f" % np.mean(precision_list)) print("Average Recall: %.3f" % np.mean(recall_list)) print("Average F1: %.3f" % np.mean(f1_list)) print(f1_list) print("Average Confusion Matrix: \n", np.mean(c_matrix_list,axis=0)) print("Feature Importance:") for importance in feature_name_importance: print(f"{importance[0]}: {importance[1]}") # tune parameters if False: eta_candidate = [0.08,0.05,0.03, 0.01] max_depth_candidate = [3,4,5,6,7,8,9,10,12,15,20] num_round_candidate = [100,200,300,400,500,600,700,800,900,1000] best_params,best_precision, best_recall, best_f1 = optimize_hyperparameter(eta_candidate,max_depth_candidate,num_round_candidate) print(best_params) print(best_precision) print(best_recall) print(best_f1)
0.467575
0.263925
import pandas as pd import json from collections import defaultdict import re def find_all_keys_values(json_data,parent_key): """ Find all keys that don't have list or dictionary values and their values. Key should be saved with its parent key like "parent-key.key". """ key_values = defaultdict(list) for key, value in json_data.items(): if isinstance(value, dict): child_key_values = find_all_keys_values(value,key) for child_key, child_value in child_key_values.items(): key_values[child_key].extend(child_value) elif isinstance(value, list): for item in value: if isinstance(item, dict): child_key_values = find_all_keys_values(item,key) for child_key, child_value in child_key_values.items(): key_values[child_key].extend(child_value) else: key_values[parent_key+"."+key].append(item) else: key_values[parent_key+"."+key].append(value) return key_values def make_csv_from_json(file_path): """ Make csv file from json file. """ if file_path.endswith(".json"): with open(file_path, 'r', encoding='utf-8') as f: data = json.load(f) elif file_path.endswith(".jsonl"): data = [] with open(file_path, 'r') as json_file: json_list = list(json_file) for json_str in json_list: data.append(json.loads(json_str)) # find key_values if isinstance(data, dict): key_values = find_all_keys_values(data,"") elif isinstance(data, list): key_values = find_all_keys_values({"TOPLEVEL":data},"TOPLEVEL") else: raise ValueError('Your input JsonData is not a dictionary or list') key_values = {k.replace("TOPLEVEL.",""):v for k,v in key_values.items() if len(v)>1} df = pd.DataFrame({k:pd.Series(v) for k,v in key_values.items()}) # save to csv save_pth = re.sub(r'\.jsonl?','.csv',file_path) df.to_csv(save_pth, index=False, encoding='utf-8') return df def table_column_filter(table_df): """ Filter columns that have zero instances or all columns are "--" """ original_columns = table_df.columns for column in table_df.columns: column_data = [d for d in list(table_df[column]) if d == d and d != "--"] if len(column_data) <= 1: table_df = table_df.drop(column, axis=1) continue if "Unnamed:" in column: table_df = table_df.drop(column, axis=1) continue remove_columns = list(set(original_columns) - set(table_df.columns)) if len(remove_columns) > 0: print("Removed columns:", remove_columns) return table_df
schema-matching
/schema_matching-1.0.4.tar.gz/schema_matching-1.0.4/src/schema_matching/utils.py
utils.py
import pandas as pd import json from collections import defaultdict import re def find_all_keys_values(json_data,parent_key): """ Find all keys that don't have list or dictionary values and their values. Key should be saved with its parent key like "parent-key.key". """ key_values = defaultdict(list) for key, value in json_data.items(): if isinstance(value, dict): child_key_values = find_all_keys_values(value,key) for child_key, child_value in child_key_values.items(): key_values[child_key].extend(child_value) elif isinstance(value, list): for item in value: if isinstance(item, dict): child_key_values = find_all_keys_values(item,key) for child_key, child_value in child_key_values.items(): key_values[child_key].extend(child_value) else: key_values[parent_key+"."+key].append(item) else: key_values[parent_key+"."+key].append(value) return key_values def make_csv_from_json(file_path): """ Make csv file from json file. """ if file_path.endswith(".json"): with open(file_path, 'r', encoding='utf-8') as f: data = json.load(f) elif file_path.endswith(".jsonl"): data = [] with open(file_path, 'r') as json_file: json_list = list(json_file) for json_str in json_list: data.append(json.loads(json_str)) # find key_values if isinstance(data, dict): key_values = find_all_keys_values(data,"") elif isinstance(data, list): key_values = find_all_keys_values({"TOPLEVEL":data},"TOPLEVEL") else: raise ValueError('Your input JsonData is not a dictionary or list') key_values = {k.replace("TOPLEVEL.",""):v for k,v in key_values.items() if len(v)>1} df = pd.DataFrame({k:pd.Series(v) for k,v in key_values.items()}) # save to csv save_pth = re.sub(r'\.jsonl?','.csv',file_path) df.to_csv(save_pth, index=False, encoding='utf-8') return df def table_column_filter(table_df): """ Filter columns that have zero instances or all columns are "--" """ original_columns = table_df.columns for column in table_df.columns: column_data = [d for d in list(table_df[column]) if d == d and d != "--"] if len(column_data) <= 1: table_df = table_df.drop(column, axis=1) continue if "Unnamed:" in column: table_df = table_df.drop(column, axis=1) continue remove_columns = list(set(original_columns) - set(table_df.columns)) if len(remove_columns) > 0: print("Removed columns:", remove_columns) return table_df
0.210523
0.275026
from . import init from .self_features import make_self_features_from from .utils import table_column_filter import pandas as pd import numpy as np from numpy.linalg import norm import random import os import subprocess from strsimpy.metric_lcs import MetricLCS from strsimpy.damerau import Damerau from nltk.translate import bleu from nltk.translate.bleu_score import SmoothingFunction from sentence_transformers import util import re model = init.model smoothie = SmoothingFunction().method4 metriclcs = MetricLCS() damerau = Damerau() seed = 200 random.seed(seed) def preprocess_text(text): text = text.lower() text = re.split(r'[\s\_\.]', text) text = " ".join(text).strip() return text def transformer_similarity(text1, text2): """ Use sentence transformer to calculate similarity between two sentences. """ embeddings1 = model.encode(text1) embeddings2 = model.encode(text2) cosine_similarity = util.cos_sim(embeddings1, embeddings2) return cosine_similarity def read_mapping(mapping_file): """ Read mapping file and return a set. """ if mapping_file is None or not os.path.exists(mapping_file): return set() with open(mapping_file, 'r') as f: readed = f.readlines() readed = [x.strip() for x in readed] mapping = set() for map in readed: map = map.split(",") map = [m.strip("< >") for m in map] mapping.add(tuple(map)) return mapping def make_combinations_labels(columns1, columns2, mapping ,type="train"): """ Make combinations from columns1 list and columns2 list. Label them using mapping. """ labels = {} for i,c1 in enumerate(columns1): for j,c2 in enumerate(columns2): if (c1, c2) in mapping or (c2, c1) in mapping: labels[(i, j)] = 1 else: labels[(i, j)] = 0 # sample negative labels if type == "train": combinations_count = len(labels) for i in range(combinations_count*2): if sum(labels.values()) >= 0.1 * len(labels): break c1 = random.choice(range(len(columns1))) c2 = random.choice(range(len(columns2))) if (c1, c2) in labels and labels[c1, c2] == 0: del labels[(c1, c2)] return labels def get_colnames_features(text1,text2,column_name_embeddings): """ Use BLEU, edit distance and word2vec to calculate features. """ bleu_score = bleu([text1], text2, smoothing_function=smoothie) edit_distance = damerau.distance(text1, text2) lcs = metriclcs.distance(text1, text2) transformer_score = util.cos_sim(column_name_embeddings[text1], column_name_embeddings[text2]) one_in_one = text1 in text2 or text2 in text1 colnames_features = np.array([bleu_score, edit_distance, lcs,transformer_score, one_in_one]) return colnames_features def get_instance_similarity(embeddings1, embeddings2): """ Use cosine similarity between two sentences. """ cosine_similarity = np.inner(embeddings1, embeddings2) / (norm(embeddings1) * norm(embeddings2)) return np.array([cosine_similarity]) def make_data_from(table1_df, table2_df,mapping_file=None,type="train"): """ Read data from 2 table dataframe, mapping file path and make relational features and labels as a matrix. """ mapping = read_mapping(mapping_file) columns1 = list(table1_df.columns) columns2 = list(table2_df.columns) combinations_labels = make_combinations_labels(columns1, columns2, mapping,type) table1_features = make_self_features_from(table1_df) table2_features = make_self_features_from(table2_df) column_name_embeddings = {preprocess_text(k):model.encode(preprocess_text(k)) for k in columns1+columns2} additional_feature_num = 6 output_feature_table = np.zeros((len(combinations_labels), table1_features.shape[1] - 768+ additional_feature_num), dtype=np.float32) output_labels = np.zeros(len(combinations_labels), dtype=np.int32) for i, (combination,label) in enumerate(combinations_labels.items()): c1,c2 = combination c1_name = columns1[c1] c2_name = columns2[c2] difference_features_percent = np.abs(table1_features[c1] - table2_features[c2]) / (table1_features[c1] + table2_features[c2] + 1e-8) c1_name = preprocess_text(c1_name) c2_name = preprocess_text(c2_name) colnames_features = get_colnames_features(c1_name, c2_name,column_name_embeddings) instance_similarity = get_instance_similarity(table1_features[c1][-768:], table2_features[c2][-768:]) output_feature_table[i,:] = np.concatenate((difference_features_percent[:-768], colnames_features, instance_similarity)) output_labels[i] = label # add column names mask for training data if type == "train" and i % 5 == 0: colnames_features = np.array([0,12,0,0.2,0]) added_features = np.concatenate((difference_features_percent[:-768], colnames_features, instance_similarity)) added_features = added_features.reshape((1, added_features.shape[0])) output_feature_table = np.concatenate((output_feature_table, added_features), axis=0) output_labels = np.concatenate((output_labels, np.array([label]))) return output_feature_table, output_labels if __name__ == '__main__': if os.path.exists("Input"): #remove existing Input folder subprocess.call(["rm", "-r", "Input"]) # make folders os.mkdir("Input") folder_list = os.listdir("Training Data") train_features = {} train_labels = {} test_features = {} test_labels = {} for folder in folder_list: print("start extracting data from " + folder) data_folder = "Training Data/" + folder table1_df = pd.read_csv(data_folder + "/Table1.csv") table2_df = pd.read_csv(data_folder + "/Table2.csv") table1_df = table_column_filter(table1_df) table2_df = table_column_filter(table2_df) mapping_file = data_folder + "/mapping.txt" features,labels = make_data_from(table1_df, table2_df, mapping_file,type="train") train_features[folder] = features train_labels[folder] = labels features,labels = make_data_from(table1_df, table2_df, mapping_file,type="test") test_features[folder] = features test_labels[folder] = labels # save data using cross validation for i in range(len(folder_list)): os.mkdir("Input/" + str(i)) os.mkdir("Input/" + str(i) + "/train") os.mkdir("Input/" + str(i) + "/test") test_folder = folder_list[i] train_folders = folder_list[:i] + folder_list[i+1:] for folder in train_folders: np.save("Input/"+ str(i) +"/train/" +folder.split('/')[-1]+ "_features.npy", train_features[folder]) np.save("Input/"+ str(i) +"/train/" +folder.split('/')[-1]+ "_labels.npy", train_labels[folder]) np.save("Input/"+ str(i) +"/test/" +test_folder.split('/')[-1]+ "_features.npy", test_features[test_folder]) np.save("Input/"+ str(i) +"/test/" +test_folder.split('/')[-1]+ "_labels.npy", test_labels[test_folder])
schema-matching
/schema_matching-1.0.4.tar.gz/schema_matching-1.0.4/src/schema_matching/relation_features.py
relation_features.py
from . import init from .self_features import make_self_features_from from .utils import table_column_filter import pandas as pd import numpy as np from numpy.linalg import norm import random import os import subprocess from strsimpy.metric_lcs import MetricLCS from strsimpy.damerau import Damerau from nltk.translate import bleu from nltk.translate.bleu_score import SmoothingFunction from sentence_transformers import util import re model = init.model smoothie = SmoothingFunction().method4 metriclcs = MetricLCS() damerau = Damerau() seed = 200 random.seed(seed) def preprocess_text(text): text = text.lower() text = re.split(r'[\s\_\.]', text) text = " ".join(text).strip() return text def transformer_similarity(text1, text2): """ Use sentence transformer to calculate similarity between two sentences. """ embeddings1 = model.encode(text1) embeddings2 = model.encode(text2) cosine_similarity = util.cos_sim(embeddings1, embeddings2) return cosine_similarity def read_mapping(mapping_file): """ Read mapping file and return a set. """ if mapping_file is None or not os.path.exists(mapping_file): return set() with open(mapping_file, 'r') as f: readed = f.readlines() readed = [x.strip() for x in readed] mapping = set() for map in readed: map = map.split(",") map = [m.strip("< >") for m in map] mapping.add(tuple(map)) return mapping def make_combinations_labels(columns1, columns2, mapping ,type="train"): """ Make combinations from columns1 list and columns2 list. Label them using mapping. """ labels = {} for i,c1 in enumerate(columns1): for j,c2 in enumerate(columns2): if (c1, c2) in mapping or (c2, c1) in mapping: labels[(i, j)] = 1 else: labels[(i, j)] = 0 # sample negative labels if type == "train": combinations_count = len(labels) for i in range(combinations_count*2): if sum(labels.values()) >= 0.1 * len(labels): break c1 = random.choice(range(len(columns1))) c2 = random.choice(range(len(columns2))) if (c1, c2) in labels and labels[c1, c2] == 0: del labels[(c1, c2)] return labels def get_colnames_features(text1,text2,column_name_embeddings): """ Use BLEU, edit distance and word2vec to calculate features. """ bleu_score = bleu([text1], text2, smoothing_function=smoothie) edit_distance = damerau.distance(text1, text2) lcs = metriclcs.distance(text1, text2) transformer_score = util.cos_sim(column_name_embeddings[text1], column_name_embeddings[text2]) one_in_one = text1 in text2 or text2 in text1 colnames_features = np.array([bleu_score, edit_distance, lcs,transformer_score, one_in_one]) return colnames_features def get_instance_similarity(embeddings1, embeddings2): """ Use cosine similarity between two sentences. """ cosine_similarity = np.inner(embeddings1, embeddings2) / (norm(embeddings1) * norm(embeddings2)) return np.array([cosine_similarity]) def make_data_from(table1_df, table2_df,mapping_file=None,type="train"): """ Read data from 2 table dataframe, mapping file path and make relational features and labels as a matrix. """ mapping = read_mapping(mapping_file) columns1 = list(table1_df.columns) columns2 = list(table2_df.columns) combinations_labels = make_combinations_labels(columns1, columns2, mapping,type) table1_features = make_self_features_from(table1_df) table2_features = make_self_features_from(table2_df) column_name_embeddings = {preprocess_text(k):model.encode(preprocess_text(k)) for k in columns1+columns2} additional_feature_num = 6 output_feature_table = np.zeros((len(combinations_labels), table1_features.shape[1] - 768+ additional_feature_num), dtype=np.float32) output_labels = np.zeros(len(combinations_labels), dtype=np.int32) for i, (combination,label) in enumerate(combinations_labels.items()): c1,c2 = combination c1_name = columns1[c1] c2_name = columns2[c2] difference_features_percent = np.abs(table1_features[c1] - table2_features[c2]) / (table1_features[c1] + table2_features[c2] + 1e-8) c1_name = preprocess_text(c1_name) c2_name = preprocess_text(c2_name) colnames_features = get_colnames_features(c1_name, c2_name,column_name_embeddings) instance_similarity = get_instance_similarity(table1_features[c1][-768:], table2_features[c2][-768:]) output_feature_table[i,:] = np.concatenate((difference_features_percent[:-768], colnames_features, instance_similarity)) output_labels[i] = label # add column names mask for training data if type == "train" and i % 5 == 0: colnames_features = np.array([0,12,0,0.2,0]) added_features = np.concatenate((difference_features_percent[:-768], colnames_features, instance_similarity)) added_features = added_features.reshape((1, added_features.shape[0])) output_feature_table = np.concatenate((output_feature_table, added_features), axis=0) output_labels = np.concatenate((output_labels, np.array([label]))) return output_feature_table, output_labels if __name__ == '__main__': if os.path.exists("Input"): #remove existing Input folder subprocess.call(["rm", "-r", "Input"]) # make folders os.mkdir("Input") folder_list = os.listdir("Training Data") train_features = {} train_labels = {} test_features = {} test_labels = {} for folder in folder_list: print("start extracting data from " + folder) data_folder = "Training Data/" + folder table1_df = pd.read_csv(data_folder + "/Table1.csv") table2_df = pd.read_csv(data_folder + "/Table2.csv") table1_df = table_column_filter(table1_df) table2_df = table_column_filter(table2_df) mapping_file = data_folder + "/mapping.txt" features,labels = make_data_from(table1_df, table2_df, mapping_file,type="train") train_features[folder] = features train_labels[folder] = labels features,labels = make_data_from(table1_df, table2_df, mapping_file,type="test") test_features[folder] = features test_labels[folder] = labels # save data using cross validation for i in range(len(folder_list)): os.mkdir("Input/" + str(i)) os.mkdir("Input/" + str(i) + "/train") os.mkdir("Input/" + str(i) + "/test") test_folder = folder_list[i] train_folders = folder_list[:i] + folder_list[i+1:] for folder in train_folders: np.save("Input/"+ str(i) +"/train/" +folder.split('/')[-1]+ "_features.npy", train_features[folder]) np.save("Input/"+ str(i) +"/train/" +folder.split('/')[-1]+ "_labels.npy", train_labels[folder]) np.save("Input/"+ str(i) +"/test/" +test_folder.split('/')[-1]+ "_features.npy", test_features[test_folder]) np.save("Input/"+ str(i) +"/test/" +test_folder.split('/')[-1]+ "_labels.npy", test_labels[test_folder])
0.482917
0.284511
from . import init import pandas as pd import numpy as np import re import random from dateutil.parser import parse as parse_date model = init.model unit_dict = {"万": 10000, "亿": 100000000, "萬": 10000, "億": 100000000, "K+": 1000, "M+": 1000000, "B+": 1000000000} def load_table(filepath): """ Loads the data from the given filepath. """ df = pd.read_csv(filepath) return df def strict_numeric(data_list,verbose=False): """ Checks if the given data is numeric. """ cnt = 0 for x in data_list: try: y = float(x) if verbose: print(x) print(y) cnt += 1 except: continue if cnt >= 0.95*len(data_list): return True return False def mainly_numeric(data_list): """ Checks if the given data list is mostly numeric. """ cnt = 0 for data in data_list: data = str(data) data = data.replace(",", "") for unit in unit_dict.keys(): data = data.replace(unit, "") numeric_part = re.findall(r'\d+', data) if len(numeric_part) > 0 and sum(len(x) for x in numeric_part) >= 0.5*len(data): cnt += 1 if cnt >= 0.9*len(data_list): return True return False def extract_numeric(data_list): """ Extracts numeric part(including float) from string list """ try: data_list = [float(d) for d in data_list] except: pass numeric_part = [] unit = [] for data in data_list: data = str(data) data = data.replace(",", "") numeric_part.append(re.findall(r'([-]?([0-9]*[.])?[0-9]+)', data)) this_unit = 1 for unit_key in unit_dict.keys(): if unit_key in data: this_unit = unit_dict[unit_key] break unit.append(this_unit) numeric_part = [x for x in numeric_part if len(x) > 0] if len(numeric_part) != len(data_list): print(f"Warning: extract_numeric() found different number of numeric part({len(numeric_part)}) and data list({len(data_list)})") numeric_part = [float(x[0][0])*unit[i] for i,x in enumerate(numeric_part)] return numeric_part def numeric_features(data_list): """ Extracts numeric features from the given data. Including Mean,Min, Max, Variance, Standard Deviation, and the number of unique values. """ mean = np.mean(data_list) min = np.min(data_list) max = np.max(data_list) variance = np.var(data_list) cv = np.var(data_list)/mean unique = len(set(data_list)) return np.array([mean, min, max, variance,cv, unique/len(data_list)]) def is_url(data_list): """ Checks if the given data is in URL format. """ cnt = 0 for data in data_list: if type(data) != str: continue if re.search(r'[-a-zA-Z0-9@:%._\+~#=]{1,256}\.[a-zA-Z0-9()]{1,6}\b([-a-zA-Z0-9()@:%_\+.~#?&//=]*)', data): cnt += 1 if cnt >= 0.9*len(data_list): return True return False def is_date(data_list): """ Checks if the given data is in Date format. """ cnt = 0 for data in data_list: if type(data) != str: continue if "月" in data or "日" in data or "年" in data: cnt += 1 try: date = parse_date(data) # check if the date is near to today if date.year < 2000 or date.year > 2030: continue cnt += 1 except: continue if cnt >= 0.9*len(data_list): return True return False def character_features(data_list): """ Extracts character features from the given data. """ # Ratio of whitespace to length # Ratio of punctuation to length # Ratio of special characters to length punctuations = [",",".",";","!","?",",","。",";","!","?"] special_characters = ["/","/","\\","-","_","+","=","*","&","^","%","$","#","@","~","`","(",")","[","]","{","}","<",">","|","'","\""] whitespace_ratios = [] punctuation_ratios = [] special_character_ratios = [] numeric_ratios = [] for data in data_list: whitespace_ratio = (data.count(" ") + data.count("\t") + data.count("\n"))/len(data) punctuation_ratio = sum(1 for x in data if x in punctuations)/len(data) special_character_ratio = sum(1 for x in data if x in special_characters)/len(data) numeric_ratio = sum(1 for x in data if x.isdigit())/len(data) whitespace_ratios.append(whitespace_ratio) punctuation_ratios.append(punctuation_ratio) special_character_ratios.append(special_character_ratio) numeric_ratios.append(numeric_ratio) epilson = np.array([1e-12]*len(data_list)) whitespace_ratios = np.array(whitespace_ratios + epilson) punctuation_ratios = np.array(punctuation_ratios + epilson) special_character_ratios = np.array(special_character_ratios + epilson) numeric_ratios = np.array(numeric_ratios + epilson) return np.array([np.mean(whitespace_ratios), np.mean(punctuation_ratios), np.mean(special_character_ratios), np.mean(numeric_ratios), np.var(whitespace_ratios)/np.mean(whitespace_ratios), np.var(punctuation_ratios)/np.mean(punctuation_ratios), np.var(special_character_ratios)/np.mean(special_character_ratios), np.var(numeric_ratios)/np.mean(numeric_ratios)]) def deep_embedding(data_list): """ Extracts deep embedding features from the given data using sentence-transformers. """ if len(data_list) < 20: selected_data = data_list else: selected_data = random.sample(data_list,20) embeddings = [model.encode(str(data)) for data in selected_data] embeddings = np.array(embeddings) return np.mean(embeddings, axis=0) def extract_features(data_list): """ Extract some features from the given data(column) or list """ data_list = [d for d in data_list if d == d and d != "--"] data_types = ("url","numeric","date","string") # Classify the data's type, URL or Date or Numeric if is_url(data_list): data_type = "url" elif is_date(data_list): data_type = "date" elif strict_numeric(data_list) or mainly_numeric(data_list): data_type = "numeric" else: data_type = "string" # Make data type feature one hot encoding data_type_feature = np.zeros(len(data_types)) data_type_feature[data_types.index(data_type)] = 1 # Give numeric features if the data is mostly numeric if data_type == "numeric": data_numeric = extract_numeric(data_list) num_fts = numeric_features(data_numeric) else: num_fts = np.array([-1]*6) # If data is not numeric, give length features length_fts = numeric_features([len(str(d)) for d in data_list]) # Give character features and deep embeddings if the data is string if data_type == "string" or (not strict_numeric(data_list) and mainly_numeric(data_list)): char_fts = character_features(data_list) deep_fts = deep_embedding(data_list) else: char_fts = np.array([-1]*8) deep_fts = np.array([-999]*768) output_features = np.concatenate((data_type_feature, num_fts, length_fts, char_fts, deep_fts)) return output_features def make_self_features_from(table_df): """ Extracts features from the given table path and returns a feature table. """ features = None for column in table_df.columns: if "Unnamed:" in column: continue fts = extract_features(table_df[column]) fts = fts.reshape(1, -1) if features is None: features = fts else: features = np.concatenate((features, fts), axis=0) return features if __name__ == '__main__': features = make_self_features_from("Test Data/0archive/Table2.csv") print(features) print(features.shape)
schema-matching
/schema_matching-1.0.4.tar.gz/schema_matching-1.0.4/src/schema_matching/self_features.py
self_features.py
from . import init import pandas as pd import numpy as np import re import random from dateutil.parser import parse as parse_date model = init.model unit_dict = {"万": 10000, "亿": 100000000, "萬": 10000, "億": 100000000, "K+": 1000, "M+": 1000000, "B+": 1000000000} def load_table(filepath): """ Loads the data from the given filepath. """ df = pd.read_csv(filepath) return df def strict_numeric(data_list,verbose=False): """ Checks if the given data is numeric. """ cnt = 0 for x in data_list: try: y = float(x) if verbose: print(x) print(y) cnt += 1 except: continue if cnt >= 0.95*len(data_list): return True return False def mainly_numeric(data_list): """ Checks if the given data list is mostly numeric. """ cnt = 0 for data in data_list: data = str(data) data = data.replace(",", "") for unit in unit_dict.keys(): data = data.replace(unit, "") numeric_part = re.findall(r'\d+', data) if len(numeric_part) > 0 and sum(len(x) for x in numeric_part) >= 0.5*len(data): cnt += 1 if cnt >= 0.9*len(data_list): return True return False def extract_numeric(data_list): """ Extracts numeric part(including float) from string list """ try: data_list = [float(d) for d in data_list] except: pass numeric_part = [] unit = [] for data in data_list: data = str(data) data = data.replace(",", "") numeric_part.append(re.findall(r'([-]?([0-9]*[.])?[0-9]+)', data)) this_unit = 1 for unit_key in unit_dict.keys(): if unit_key in data: this_unit = unit_dict[unit_key] break unit.append(this_unit) numeric_part = [x for x in numeric_part if len(x) > 0] if len(numeric_part) != len(data_list): print(f"Warning: extract_numeric() found different number of numeric part({len(numeric_part)}) and data list({len(data_list)})") numeric_part = [float(x[0][0])*unit[i] for i,x in enumerate(numeric_part)] return numeric_part def numeric_features(data_list): """ Extracts numeric features from the given data. Including Mean,Min, Max, Variance, Standard Deviation, and the number of unique values. """ mean = np.mean(data_list) min = np.min(data_list) max = np.max(data_list) variance = np.var(data_list) cv = np.var(data_list)/mean unique = len(set(data_list)) return np.array([mean, min, max, variance,cv, unique/len(data_list)]) def is_url(data_list): """ Checks if the given data is in URL format. """ cnt = 0 for data in data_list: if type(data) != str: continue if re.search(r'[-a-zA-Z0-9@:%._\+~#=]{1,256}\.[a-zA-Z0-9()]{1,6}\b([-a-zA-Z0-9()@:%_\+.~#?&//=]*)', data): cnt += 1 if cnt >= 0.9*len(data_list): return True return False def is_date(data_list): """ Checks if the given data is in Date format. """ cnt = 0 for data in data_list: if type(data) != str: continue if "月" in data or "日" in data or "年" in data: cnt += 1 try: date = parse_date(data) # check if the date is near to today if date.year < 2000 or date.year > 2030: continue cnt += 1 except: continue if cnt >= 0.9*len(data_list): return True return False def character_features(data_list): """ Extracts character features from the given data. """ # Ratio of whitespace to length # Ratio of punctuation to length # Ratio of special characters to length punctuations = [",",".",";","!","?",",","。",";","!","?"] special_characters = ["/","/","\\","-","_","+","=","*","&","^","%","$","#","@","~","`","(",")","[","]","{","}","<",">","|","'","\""] whitespace_ratios = [] punctuation_ratios = [] special_character_ratios = [] numeric_ratios = [] for data in data_list: whitespace_ratio = (data.count(" ") + data.count("\t") + data.count("\n"))/len(data) punctuation_ratio = sum(1 for x in data if x in punctuations)/len(data) special_character_ratio = sum(1 for x in data if x in special_characters)/len(data) numeric_ratio = sum(1 for x in data if x.isdigit())/len(data) whitespace_ratios.append(whitespace_ratio) punctuation_ratios.append(punctuation_ratio) special_character_ratios.append(special_character_ratio) numeric_ratios.append(numeric_ratio) epilson = np.array([1e-12]*len(data_list)) whitespace_ratios = np.array(whitespace_ratios + epilson) punctuation_ratios = np.array(punctuation_ratios + epilson) special_character_ratios = np.array(special_character_ratios + epilson) numeric_ratios = np.array(numeric_ratios + epilson) return np.array([np.mean(whitespace_ratios), np.mean(punctuation_ratios), np.mean(special_character_ratios), np.mean(numeric_ratios), np.var(whitespace_ratios)/np.mean(whitespace_ratios), np.var(punctuation_ratios)/np.mean(punctuation_ratios), np.var(special_character_ratios)/np.mean(special_character_ratios), np.var(numeric_ratios)/np.mean(numeric_ratios)]) def deep_embedding(data_list): """ Extracts deep embedding features from the given data using sentence-transformers. """ if len(data_list) < 20: selected_data = data_list else: selected_data = random.sample(data_list,20) embeddings = [model.encode(str(data)) for data in selected_data] embeddings = np.array(embeddings) return np.mean(embeddings, axis=0) def extract_features(data_list): """ Extract some features from the given data(column) or list """ data_list = [d for d in data_list if d == d and d != "--"] data_types = ("url","numeric","date","string") # Classify the data's type, URL or Date or Numeric if is_url(data_list): data_type = "url" elif is_date(data_list): data_type = "date" elif strict_numeric(data_list) or mainly_numeric(data_list): data_type = "numeric" else: data_type = "string" # Make data type feature one hot encoding data_type_feature = np.zeros(len(data_types)) data_type_feature[data_types.index(data_type)] = 1 # Give numeric features if the data is mostly numeric if data_type == "numeric": data_numeric = extract_numeric(data_list) num_fts = numeric_features(data_numeric) else: num_fts = np.array([-1]*6) # If data is not numeric, give length features length_fts = numeric_features([len(str(d)) for d in data_list]) # Give character features and deep embeddings if the data is string if data_type == "string" or (not strict_numeric(data_list) and mainly_numeric(data_list)): char_fts = character_features(data_list) deep_fts = deep_embedding(data_list) else: char_fts = np.array([-1]*8) deep_fts = np.array([-999]*768) output_features = np.concatenate((data_type_feature, num_fts, length_fts, char_fts, deep_fts)) return output_features def make_self_features_from(table_df): """ Extracts features from the given table path and returns a feature table. """ features = None for column in table_df.columns: if "Unnamed:" in column: continue fts = extract_features(table_df[column]) fts = fts.reshape(1, -1) if features is None: features = fts else: features = np.concatenate((features, fts), axis=0) return features if __name__ == '__main__': features = make_self_features_from("Test Data/0archive/Table2.csv") print(features) print(features.shape)
0.389779
0.426979
from . import init from .relation_features import make_data_from from .utils import make_csv_from_json,table_column_filter from .train import test import numpy as np import pandas as pd import xgboost as xgb import os import argparse import time from pathlib import Path this_directory = Path(__file__).parent parser = argparse.ArgumentParser() parser.add_argument("-p","--path", help="path to the folder containing the test data") parser.add_argument("-m", "--model", help="path to the model") parser.add_argument("-t", "--threshold", help="threshold for inference") parser.add_argument("-s", "--strategy", help="one-to-one or many-to-many or one-to-many", default="many-to-many") args = parser.parse_args() def create_similarity_matrix(table1_df,table2_df,preds,pred_labels_list,strategy="many-to-many"): """ Create a similarity matrix from the prediction """ predicted_pairs = [] preds = np.array(preds) preds = np.mean(preds,axis=0) pred_labels_list = np.array(pred_labels_list) pred_labels = np.mean(pred_labels_list,axis=0) pred_labels = np.where(pred_labels>0.5,1,0) # read column names df1_cols = table1_df.columns df2_cols = table2_df.columns # create similarity matrix for pred values preds_matrix = np.array(preds).reshape(len(df1_cols),len(df2_cols)) # create similarity matrix for pred labels if strategy == "many-to-many": pred_labels_matrix = np.array(pred_labels).reshape(len(df1_cols),len(df2_cols)) else: pred_labels_matrix = np.zeros((len(df1_cols),len(df2_cols))) for i in range(len(df1_cols)): for j in range(len(df2_cols)): if pred_labels[i*len(df2_cols)+j] == 1: if strategy == "one-to-one": max_row = max(preds_matrix[i,:]) max_col = max(preds_matrix[:,j]) if preds_matrix[i,j] == max_row and preds_matrix[i,j] == max_col: pred_labels_matrix[i,j] = 1 elif strategy == "one-to-many": max_row = max(preds_matrix[i,:]) if preds_matrix[i,j] == max_row: pred_labels_matrix[i,j] = 1 df_pred = pd.DataFrame(preds_matrix,columns=df2_cols,index=df1_cols) df_pred_labels = pd.DataFrame(pred_labels_matrix,columns=df2_cols,index=df1_cols) for i in range(len(df_pred_labels)): for j in range(len(df_pred_labels.iloc[i])): if df_pred_labels.iloc[i,j] == 1: predicted_pairs.append((df_pred.index[i],df_pred.columns[j],df_pred.iloc[i,j])) return df_pred,df_pred_labels,predicted_pairs def schema_matching(table1_pth,table2_pth,threshold=None,strategy="many-to-many",model_pth=None): """ Do schema matching! """ if model_pth is None: model_pth = str(this_directory / "model" / "2022-04-12-12-06-32") # transform jsonl or json file to csv if table1_pth.endswith('.json') or table1_pth.endswith('.jsonl'): table1_df = make_csv_from_json(table1_pth) else: table1_df = pd.read_csv(table1_pth) if table2_pth.endswith('.json') or table2_pth.endswith('.jsonl'): table2_df = make_csv_from_json(table2_pth) else: table2_df = pd.read_csv(table2_pth) # filter columns table1_df = table_column_filter(table1_df) table2_df = table_column_filter(table2_df) # extract features features,_ = make_data_from(table1_df, table2_df, type="test") # load model and predict on features preds = [] pred_labels_list = [] for i in range(len(os.listdir(model_pth))//2): bst = xgb.Booster({'nthread': 4}) # init model bst.load_model(model_pth+"/"+str(i)+".model") if threshold is not None: best_threshold = float(threshold) else: with open(model_pth+"/"+str(i)+".threshold",'r') as f: best_threshold = float(f.read()) pred, pred_labels = test(bst, best_threshold, features, test_labels=np.ones(len(features)), type="inference") preds.append(pred) pred_labels_list.append(pred_labels) del bst df_pred,df_pred_labels,predicted_pairs = create_similarity_matrix(table1_df, table2_df, preds, pred_labels_list, strategy=strategy) return df_pred,df_pred_labels,predicted_pairs if __name__ == '__main__': start = time.time() args.path = args.path.rstrip("/") df_pred,df_pred_labels,predicted_pairs = schema_matching(args.path+"/Table1.csv",args.path+"/Table2.csv",threshold=args.threshold,strategy=args.strategy,model_pth=args.model) df_pred.to_csv(args.path+"/similarity_matrix_value.csv",index=True) df_pred_labels.to_csv(args.path+"/similarity_matrix_label.csv",index=True) for pair_tuple in predicted_pairs: print(pair_tuple) print("schema_matching|Time taken:",time.time()-start)
schema-matching
/schema_matching-1.0.4.tar.gz/schema_matching-1.0.4/src/schema_matching/cal_column_similarity.py
cal_column_similarity.py
from . import init from .relation_features import make_data_from from .utils import make_csv_from_json,table_column_filter from .train import test import numpy as np import pandas as pd import xgboost as xgb import os import argparse import time from pathlib import Path this_directory = Path(__file__).parent parser = argparse.ArgumentParser() parser.add_argument("-p","--path", help="path to the folder containing the test data") parser.add_argument("-m", "--model", help="path to the model") parser.add_argument("-t", "--threshold", help="threshold for inference") parser.add_argument("-s", "--strategy", help="one-to-one or many-to-many or one-to-many", default="many-to-many") args = parser.parse_args() def create_similarity_matrix(table1_df,table2_df,preds,pred_labels_list,strategy="many-to-many"): """ Create a similarity matrix from the prediction """ predicted_pairs = [] preds = np.array(preds) preds = np.mean(preds,axis=0) pred_labels_list = np.array(pred_labels_list) pred_labels = np.mean(pred_labels_list,axis=0) pred_labels = np.where(pred_labels>0.5,1,0) # read column names df1_cols = table1_df.columns df2_cols = table2_df.columns # create similarity matrix for pred values preds_matrix = np.array(preds).reshape(len(df1_cols),len(df2_cols)) # create similarity matrix for pred labels if strategy == "many-to-many": pred_labels_matrix = np.array(pred_labels).reshape(len(df1_cols),len(df2_cols)) else: pred_labels_matrix = np.zeros((len(df1_cols),len(df2_cols))) for i in range(len(df1_cols)): for j in range(len(df2_cols)): if pred_labels[i*len(df2_cols)+j] == 1: if strategy == "one-to-one": max_row = max(preds_matrix[i,:]) max_col = max(preds_matrix[:,j]) if preds_matrix[i,j] == max_row and preds_matrix[i,j] == max_col: pred_labels_matrix[i,j] = 1 elif strategy == "one-to-many": max_row = max(preds_matrix[i,:]) if preds_matrix[i,j] == max_row: pred_labels_matrix[i,j] = 1 df_pred = pd.DataFrame(preds_matrix,columns=df2_cols,index=df1_cols) df_pred_labels = pd.DataFrame(pred_labels_matrix,columns=df2_cols,index=df1_cols) for i in range(len(df_pred_labels)): for j in range(len(df_pred_labels.iloc[i])): if df_pred_labels.iloc[i,j] == 1: predicted_pairs.append((df_pred.index[i],df_pred.columns[j],df_pred.iloc[i,j])) return df_pred,df_pred_labels,predicted_pairs def schema_matching(table1_pth,table2_pth,threshold=None,strategy="many-to-many",model_pth=None): """ Do schema matching! """ if model_pth is None: model_pth = str(this_directory / "model" / "2022-04-12-12-06-32") # transform jsonl or json file to csv if table1_pth.endswith('.json') or table1_pth.endswith('.jsonl'): table1_df = make_csv_from_json(table1_pth) else: table1_df = pd.read_csv(table1_pth) if table2_pth.endswith('.json') or table2_pth.endswith('.jsonl'): table2_df = make_csv_from_json(table2_pth) else: table2_df = pd.read_csv(table2_pth) # filter columns table1_df = table_column_filter(table1_df) table2_df = table_column_filter(table2_df) # extract features features,_ = make_data_from(table1_df, table2_df, type="test") # load model and predict on features preds = [] pred_labels_list = [] for i in range(len(os.listdir(model_pth))//2): bst = xgb.Booster({'nthread': 4}) # init model bst.load_model(model_pth+"/"+str(i)+".model") if threshold is not None: best_threshold = float(threshold) else: with open(model_pth+"/"+str(i)+".threshold",'r') as f: best_threshold = float(f.read()) pred, pred_labels = test(bst, best_threshold, features, test_labels=np.ones(len(features)), type="inference") preds.append(pred) pred_labels_list.append(pred_labels) del bst df_pred,df_pred_labels,predicted_pairs = create_similarity_matrix(table1_df, table2_df, preds, pred_labels_list, strategy=strategy) return df_pred,df_pred_labels,predicted_pairs if __name__ == '__main__': start = time.time() args.path = args.path.rstrip("/") df_pred,df_pred_labels,predicted_pairs = schema_matching(args.path+"/Table1.csv",args.path+"/Table2.csv",threshold=args.threshold,strategy=args.strategy,model_pth=args.model) df_pred.to_csv(args.path+"/similarity_matrix_value.csv",index=True) df_pred_labels.to_csv(args.path+"/similarity_matrix_label.csv",index=True) for pair_tuple in predicted_pairs: print(pair_tuple) print("schema_matching|Time taken:",time.time()-start)
0.304972
0.279738
from functools import lru_cache import json from typing import Any, Dict, List, Optional, Set from requests_toolbelt.sessions import BaseUrlSession from bs4 import BeautifulSoup from bs4.element import ResultSet from schema_registry.config import get_logger from schema_registry.registries.entities import EnrichedNamespace, VersionedType class HttpSchemaRegistry: def __init__(self, *, url: str) -> None: self.url = url self.session = BaseUrlSession(base_url=self.url) self.log = get_logger(self.__class__.__name__) self._namespaces: Set[str] = set() self._types: Dict[str, Set[VersionedType]] = {} @lru_cache(maxsize=128) def get( self, *, namespace: str, type_name: str, version: Optional[int] = None ) -> Optional[Dict[str, Any]]: if version is None: version = self.find_latest_version(namespace=namespace, type_name=type_name) req = self.session.get( f"/registry/{namespace}/{type_name}/{version}/schema.json" ) self.log.debug(req) if req.status_code != 200: return None return req.json() # type: ignore @property def namespaces(self) -> Set[str]: if not self._namespaces: self._initialize_namespaces() return self._namespaces def types(self, *, namespace: str) -> Set[VersionedType]: preliminary_result = self._types.get(namespace) if preliminary_result is None: self.log.debug(f"Fetching types for {namespace} from remote") self._initialize_types(namespace) return self._types.get(namespace, set()) def _initialize_namespaces(self) -> None: index = self.session.get("/registry/index.json").json() schemes = index.get("schemes", []) self.log.debug(schemes) self._namespaces = {schema["ns"] for schema in schemes} def _initialize_types(self, namespace: str) -> None: index = self.session.get("/registry/index.json").json() schemes = index.get("schemes", []) filtered = filter(lambda x: x["ns"] == namespace, schemes) self._types[namespace] = { VersionedType(name=schema["type"], version=schema["version"]) for schema in filtered } def find_latest_version(self, *, namespace: str, type_name: str) -> int: self.log.debug("Fetching version") types_of_namespace = self.types(namespace=namespace) found_types = list(filter(lambda x: x.name == type_name, types_of_namespace)) found_types.sort() self.log.debug(f"Found {found_types}") # TODO: deal with case where found_types is empty/None version = found_types[-1].version if len(found_types) != 1: self.log.info( f"Found {len(found_types)} versions using latest version ({version})" ) return version def refresh(self) -> None: self._initialize_namespaces() self._types = {} self.get.cache_clear() # TODO Transformation stuff class EnrichingHttpSchemaRegistry: def __init__(self, *, url: str) -> None: self.url = url self.session = BaseUrlSession(base_url=self.url) self.http_schema_registry = HttpSchemaRegistry(url=url) self.log = get_logger(self.__class__.__name__) self._namespaces: Set[EnrichedNamespace] = set() self._types: Dict[str, Set[VersionedType]] = {} @lru_cache(maxsize=128) def get( self, *, namespace: str, type_name: str, version: Optional[int] = None ) -> Optional[Dict[str, Any]]: if version is None: version = self.http_schema_registry.find_latest_version( namespace=namespace, type_name=type_name ) schema = None try: schema_code, _ = self._get_code_elements( namespace=namespace, type_name=type_name, version=version ) # type: ignore schema_description = self._get_schema_description( namespace=namespace, type_name=type_name ) schema = json.loads(schema_code.get_text()) schema["title"] = "\n".join(schema_description) self.log.debug(f"Found schema: {schema}") except TypeError: self.log.info("Requested schema not found.") except json.JSONDecodeError: self.log.warning( "Could not translate remote schema into JSON. HTML parsing or the page might be off." ) return schema def _get_code_elements( self, *, namespace: str, type_name: str, version: int ) -> Optional[ResultSet]: # The way this is currently written is that 2 requests are made if the example and # the schema for the same event are requested. This is based on the assumption, # that users are interested in one or the other but not frequently in both. # Therefore trading of network traffic vs memory footprint. # * Should this prove false, we want lru_caching here as well, or maybe even # * a more powerful caching mechanism req = self.session.get(f"/{namespace}/{type_name.lower()}/{version}/index.html") if req.status_code != 200: return None raw_schema_html = req.content schema_html = BeautifulSoup(raw_schema_html, features="lxml") code_elements = schema_html.find_all("code") self.log.debug(f"Found {len(code_elements)} code elements") if len(code_elements) != 2: raise AttributeError("More than 2 code elements found can not parse schema") return code_elements def _get_schema_description(self, namespace: str, type_name: str) -> List[str]: req = self.session.get(f"/{namespace}/{type_name.lower()}/index.html") raw_schema_html = req.content schema_html = BeautifulSoup(raw_schema_html, features="lxml") headline = schema_html.body.h1 description = [] next_sibling = headline.next_sibling while next_sibling.name != "h2": self.log.debug(f"Sibling: {next_sibling}: {next_sibling.name}") if next_sibling.string and next_sibling.string.strip(): description.append(next_sibling.string.strip()) next_sibling = next_sibling.next_sibling return description @lru_cache(maxsize=128) def example( self, *, namespace: str, type_name: str, version: Optional[int] = None ) -> Optional[Dict[str, Any]]: if version is None: version = self.http_schema_registry.find_latest_version( namespace=namespace, type_name=type_name ) example = None try: _, example_code = self._get_code_elements( namespace=namespace, type_name=type_name, version=version ) # type: ignore example = json.loads(example_code.get_text()) self.log.debug(f"Found example: {example}") except TypeError: self.log.info("Requested example not found.") except json.JSONDecodeError: self.log.warning( "Could not translate remote example into JSON. HTML parsing or the page might be off." ) return example @property def namespaces(self) -> Set[EnrichedNamespace]: if not self._namespaces: self._initialize_namespaces() return self._namespaces def _initialize_namespaces(self) -> None: namespaces = self.http_schema_registry.namespaces self._namespaces = set() for namespace in namespaces: req = self.session.get(f"/{namespace}") raw_schema_html = req.content namespace_html = BeautifulSoup(raw_schema_html, features="lxml") description = namespace_html.find("div", {"id": "body-inner"}).p if description and description.string: title = description.string else: title = "" self._namespaces.add(EnrichedNamespace(name=namespace, title=title)) def types(self, *, namespace: str) -> Set[VersionedType]: return self.http_schema_registry.types(namespace=namespace) def refresh(self) -> None: self.http_schema_registry.refresh() self.get.cache_clear() # TODO Transformation stuff
schema-registry
/schema-registry-0.0.6.tar.gz/schema-registry-0.0.6/src/schema_registry/registries/HttpRegistry.py
HttpRegistry.py
from functools import lru_cache import json from typing import Any, Dict, List, Optional, Set from requests_toolbelt.sessions import BaseUrlSession from bs4 import BeautifulSoup from bs4.element import ResultSet from schema_registry.config import get_logger from schema_registry.registries.entities import EnrichedNamespace, VersionedType class HttpSchemaRegistry: def __init__(self, *, url: str) -> None: self.url = url self.session = BaseUrlSession(base_url=self.url) self.log = get_logger(self.__class__.__name__) self._namespaces: Set[str] = set() self._types: Dict[str, Set[VersionedType]] = {} @lru_cache(maxsize=128) def get( self, *, namespace: str, type_name: str, version: Optional[int] = None ) -> Optional[Dict[str, Any]]: if version is None: version = self.find_latest_version(namespace=namespace, type_name=type_name) req = self.session.get( f"/registry/{namespace}/{type_name}/{version}/schema.json" ) self.log.debug(req) if req.status_code != 200: return None return req.json() # type: ignore @property def namespaces(self) -> Set[str]: if not self._namespaces: self._initialize_namespaces() return self._namespaces def types(self, *, namespace: str) -> Set[VersionedType]: preliminary_result = self._types.get(namespace) if preliminary_result is None: self.log.debug(f"Fetching types for {namespace} from remote") self._initialize_types(namespace) return self._types.get(namespace, set()) def _initialize_namespaces(self) -> None: index = self.session.get("/registry/index.json").json() schemes = index.get("schemes", []) self.log.debug(schemes) self._namespaces = {schema["ns"] for schema in schemes} def _initialize_types(self, namespace: str) -> None: index = self.session.get("/registry/index.json").json() schemes = index.get("schemes", []) filtered = filter(lambda x: x["ns"] == namespace, schemes) self._types[namespace] = { VersionedType(name=schema["type"], version=schema["version"]) for schema in filtered } def find_latest_version(self, *, namespace: str, type_name: str) -> int: self.log.debug("Fetching version") types_of_namespace = self.types(namespace=namespace) found_types = list(filter(lambda x: x.name == type_name, types_of_namespace)) found_types.sort() self.log.debug(f"Found {found_types}") # TODO: deal with case where found_types is empty/None version = found_types[-1].version if len(found_types) != 1: self.log.info( f"Found {len(found_types)} versions using latest version ({version})" ) return version def refresh(self) -> None: self._initialize_namespaces() self._types = {} self.get.cache_clear() # TODO Transformation stuff class EnrichingHttpSchemaRegistry: def __init__(self, *, url: str) -> None: self.url = url self.session = BaseUrlSession(base_url=self.url) self.http_schema_registry = HttpSchemaRegistry(url=url) self.log = get_logger(self.__class__.__name__) self._namespaces: Set[EnrichedNamespace] = set() self._types: Dict[str, Set[VersionedType]] = {} @lru_cache(maxsize=128) def get( self, *, namespace: str, type_name: str, version: Optional[int] = None ) -> Optional[Dict[str, Any]]: if version is None: version = self.http_schema_registry.find_latest_version( namespace=namespace, type_name=type_name ) schema = None try: schema_code, _ = self._get_code_elements( namespace=namespace, type_name=type_name, version=version ) # type: ignore schema_description = self._get_schema_description( namespace=namespace, type_name=type_name ) schema = json.loads(schema_code.get_text()) schema["title"] = "\n".join(schema_description) self.log.debug(f"Found schema: {schema}") except TypeError: self.log.info("Requested schema not found.") except json.JSONDecodeError: self.log.warning( "Could not translate remote schema into JSON. HTML parsing or the page might be off." ) return schema def _get_code_elements( self, *, namespace: str, type_name: str, version: int ) -> Optional[ResultSet]: # The way this is currently written is that 2 requests are made if the example and # the schema for the same event are requested. This is based on the assumption, # that users are interested in one or the other but not frequently in both. # Therefore trading of network traffic vs memory footprint. # * Should this prove false, we want lru_caching here as well, or maybe even # * a more powerful caching mechanism req = self.session.get(f"/{namespace}/{type_name.lower()}/{version}/index.html") if req.status_code != 200: return None raw_schema_html = req.content schema_html = BeautifulSoup(raw_schema_html, features="lxml") code_elements = schema_html.find_all("code") self.log.debug(f"Found {len(code_elements)} code elements") if len(code_elements) != 2: raise AttributeError("More than 2 code elements found can not parse schema") return code_elements def _get_schema_description(self, namespace: str, type_name: str) -> List[str]: req = self.session.get(f"/{namespace}/{type_name.lower()}/index.html") raw_schema_html = req.content schema_html = BeautifulSoup(raw_schema_html, features="lxml") headline = schema_html.body.h1 description = [] next_sibling = headline.next_sibling while next_sibling.name != "h2": self.log.debug(f"Sibling: {next_sibling}: {next_sibling.name}") if next_sibling.string and next_sibling.string.strip(): description.append(next_sibling.string.strip()) next_sibling = next_sibling.next_sibling return description @lru_cache(maxsize=128) def example( self, *, namespace: str, type_name: str, version: Optional[int] = None ) -> Optional[Dict[str, Any]]: if version is None: version = self.http_schema_registry.find_latest_version( namespace=namespace, type_name=type_name ) example = None try: _, example_code = self._get_code_elements( namespace=namespace, type_name=type_name, version=version ) # type: ignore example = json.loads(example_code.get_text()) self.log.debug(f"Found example: {example}") except TypeError: self.log.info("Requested example not found.") except json.JSONDecodeError: self.log.warning( "Could not translate remote example into JSON. HTML parsing or the page might be off." ) return example @property def namespaces(self) -> Set[EnrichedNamespace]: if not self._namespaces: self._initialize_namespaces() return self._namespaces def _initialize_namespaces(self) -> None: namespaces = self.http_schema_registry.namespaces self._namespaces = set() for namespace in namespaces: req = self.session.get(f"/{namespace}") raw_schema_html = req.content namespace_html = BeautifulSoup(raw_schema_html, features="lxml") description = namespace_html.find("div", {"id": "body-inner"}).p if description and description.string: title = description.string else: title = "" self._namespaces.add(EnrichedNamespace(name=namespace, title=title)) def types(self, *, namespace: str) -> Set[VersionedType]: return self.http_schema_registry.types(namespace=namespace) def refresh(self) -> None: self.http_schema_registry.refresh() self.get.cache_clear() # TODO Transformation stuff
0.63114
0.113506
from pathlib import Path from copy import deepcopy import json class SchemaRenderer: list_resolver = {"allOf", "anyOf", "oneOf", "items"} schema_cache = {} def __init__(self, path): pth = Path(path) self.root_directory = pth.parent self.schema = json.load(open(path)) def _resolve_ref(self, ref, working_schema, working_path): path, _, fragment = ref.partition("#") other_schema = None new_working_path = None if path: path = Path(working_path, path) new_working_path = path.parent.resolve() other_schema = json.load(open(path)) working_schema = deepcopy(other_schema or working_schema) doc_part = deepcopy(other_schema or working_schema) fragment_parts = [part for part in fragment.split("/") if part] for fragment_part in fragment_parts: doc_part = doc_part[fragment_part] return doc_part, working_schema, new_working_path or working_path def _resolve_dict(self, dictionary, working_schema, working_path): data = dict() if "$ref" in dictionary: loaded_data, temp_working_schema, temp_working_path = self._resolve_ref( dictionary["$ref"], working_schema, working_path ) return self._resolve_dict( loaded_data, temp_working_schema, temp_working_path ) for key, item in dictionary.items(): new_value = item if isinstance(item, dict): if key == "definitions": continue new_value = self._resolve_dict(item, working_schema, working_path) elif isinstance(item, list) and key in SchemaRenderer.list_resolver: new_value = [ self._resolve_dict(it, working_schema, working_path) for it in item ] data[key] = new_value return data def render(self): return self._resolve_dict(self.schema, self.schema, self.root_directory)
schema-renderer
/schema_renderer-0.1.0-py3-none-any.whl/schema_renderer/schema_renderer.py
schema_renderer.py
from pathlib import Path from copy import deepcopy import json class SchemaRenderer: list_resolver = {"allOf", "anyOf", "oneOf", "items"} schema_cache = {} def __init__(self, path): pth = Path(path) self.root_directory = pth.parent self.schema = json.load(open(path)) def _resolve_ref(self, ref, working_schema, working_path): path, _, fragment = ref.partition("#") other_schema = None new_working_path = None if path: path = Path(working_path, path) new_working_path = path.parent.resolve() other_schema = json.load(open(path)) working_schema = deepcopy(other_schema or working_schema) doc_part = deepcopy(other_schema or working_schema) fragment_parts = [part for part in fragment.split("/") if part] for fragment_part in fragment_parts: doc_part = doc_part[fragment_part] return doc_part, working_schema, new_working_path or working_path def _resolve_dict(self, dictionary, working_schema, working_path): data = dict() if "$ref" in dictionary: loaded_data, temp_working_schema, temp_working_path = self._resolve_ref( dictionary["$ref"], working_schema, working_path ) return self._resolve_dict( loaded_data, temp_working_schema, temp_working_path ) for key, item in dictionary.items(): new_value = item if isinstance(item, dict): if key == "definitions": continue new_value = self._resolve_dict(item, working_schema, working_path) elif isinstance(item, list) and key in SchemaRenderer.list_resolver: new_value = [ self._resolve_dict(it, working_schema, working_path) for it in item ] data[key] = new_value return data def render(self): return self._resolve_dict(self.schema, self.schema, self.root_directory)
0.524882
0.142113
================ Schema Resources ================ .. image:: https://travis-ci.org/klmitch/schema-resource.svg?branch=master :target: https://travis-ci.org/klmitch/schema-resource The ``schema-resource`` package is a simple library for loading ``jsonschema`` schemas using ``pkg_resources``. This means that Python packages utilizing the ``schema-resource`` package can bundle schemas for validating API or user configuration as separate files with the package source. Further, those schemas may then reference other schema files within the package. Simple Usage ============ The simplest way to use ``schema-resource`` begins by understanding the resource URI. A resource URI is a URI with the scheme "res". The "network location"--the part that appears after the "//" in a URI--is the package name, as understood by ``pkg_resources``. The path is then interpreted relative to the root directory of the package. For instance, if the package "spam" has a schema named "schema.yaml", the resource URI would be "res://spam/schema.yaml". This schema can then be loaded using ``schema_res.load_schema()``, which takes the resource URI as its first argument; the result will be an object conforming to the ``jsonschema.IValidator`` interface documented in the ``jsonschema`` documentation. This schema could, of course, be loaded by using a combination of ``jsonschema`` and ``pkg_resources`` directly; however, ``schema-resource`` creates the schema with a special ``jsonschema.RefResolver`` that understands these resource URIs; this enhancement allows one schema to refer to another, or part of another, resource schema directly. Class Attributes ================ Often, a class needs to use a particular schema in order to validate input, often from an API or a configuration file. This can be simplified through the use of ``schema_res.SchemaDescriptor``. This class implements the Python "descriptor" protocol, meaning that, when assigned to a class attribute, references to the value of the attribute will cause a method of ``schema_res.SchemaDescriptor`` to be called. That method implements an on-demand loading of a schema resource, constructing the resource URI if needed from the class's ``__module__`` attribute. For instance, assume that the ``Spam`` class below needs to validate data fed to a class method:: class Spam(object): schema = schema_res.SchemaDescriptor("spam.yaml") @classmethod def from_data(cls, data): cls.schema.validate(data) return cls(**data) ... This class first validates the data against the schema loaded from the "spam.yaml" file bundled with the package sources, loading the schema the first time the method is called. (The ``jsonschema.IValidator.validate()`` method raises a ``jsonschema.ValidationError`` exception if the ``data`` doesn't match the requirements of the schema.) Validating Schemas ================== It is a good idea for the test suite for a package to verify that the schemas it bundles are valid. This could be done by simply using the ``schema_res.load_schema()`` function, calling it for each resource URI and passing ``validate=True``, within the package's test suite. However, there's also a simple helper: ``schema_res.validate()`` takes one or more resource URIs and calls ``schema_res.load_schema()`` on each, passing ``validate=True``. This means that this entire test can be written as a single function call, like so:: class TestSchemas(object): def test_valid(self): schema_res.validate( "res://spam/schema1.yaml", "res://spam/schema2.yaml", "res://spam/schema3.yaml", ) Schema Format ============= In all the examples so far, the schema filenames have had the ".yaml" extension. There is no specific need to use this extension, nor even for the files to be in YAML format: JSON is a subset of YAML, so the schema files can be written in regular JSON. However, by using a YAML parser to load the schema files, they may be expressed in YAML format, which this programmer finds easier to write and to read than strict JSON syntax.
schema-resource
/schema-resource-0.0.1.tar.gz/schema-resource-0.0.1/README.rst
README.rst
================ Schema Resources ================ .. image:: https://travis-ci.org/klmitch/schema-resource.svg?branch=master :target: https://travis-ci.org/klmitch/schema-resource The ``schema-resource`` package is a simple library for loading ``jsonschema`` schemas using ``pkg_resources``. This means that Python packages utilizing the ``schema-resource`` package can bundle schemas for validating API or user configuration as separate files with the package source. Further, those schemas may then reference other schema files within the package. Simple Usage ============ The simplest way to use ``schema-resource`` begins by understanding the resource URI. A resource URI is a URI with the scheme "res". The "network location"--the part that appears after the "//" in a URI--is the package name, as understood by ``pkg_resources``. The path is then interpreted relative to the root directory of the package. For instance, if the package "spam" has a schema named "schema.yaml", the resource URI would be "res://spam/schema.yaml". This schema can then be loaded using ``schema_res.load_schema()``, which takes the resource URI as its first argument; the result will be an object conforming to the ``jsonschema.IValidator`` interface documented in the ``jsonschema`` documentation. This schema could, of course, be loaded by using a combination of ``jsonschema`` and ``pkg_resources`` directly; however, ``schema-resource`` creates the schema with a special ``jsonschema.RefResolver`` that understands these resource URIs; this enhancement allows one schema to refer to another, or part of another, resource schema directly. Class Attributes ================ Often, a class needs to use a particular schema in order to validate input, often from an API or a configuration file. This can be simplified through the use of ``schema_res.SchemaDescriptor``. This class implements the Python "descriptor" protocol, meaning that, when assigned to a class attribute, references to the value of the attribute will cause a method of ``schema_res.SchemaDescriptor`` to be called. That method implements an on-demand loading of a schema resource, constructing the resource URI if needed from the class's ``__module__`` attribute. For instance, assume that the ``Spam`` class below needs to validate data fed to a class method:: class Spam(object): schema = schema_res.SchemaDescriptor("spam.yaml") @classmethod def from_data(cls, data): cls.schema.validate(data) return cls(**data) ... This class first validates the data against the schema loaded from the "spam.yaml" file bundled with the package sources, loading the schema the first time the method is called. (The ``jsonschema.IValidator.validate()`` method raises a ``jsonschema.ValidationError`` exception if the ``data`` doesn't match the requirements of the schema.) Validating Schemas ================== It is a good idea for the test suite for a package to verify that the schemas it bundles are valid. This could be done by simply using the ``schema_res.load_schema()`` function, calling it for each resource URI and passing ``validate=True``, within the package's test suite. However, there's also a simple helper: ``schema_res.validate()`` takes one or more resource URIs and calls ``schema_res.load_schema()`` on each, passing ``validate=True``. This means that this entire test can be written as a single function call, like so:: class TestSchemas(object): def test_valid(self): schema_res.validate( "res://spam/schema1.yaml", "res://spam/schema2.yaml", "res://spam/schema3.yaml", ) Schema Format ============= In all the examples so far, the schema filenames have had the ".yaml" extension. There is no specific need to use this extension, nor even for the files to be in YAML format: JSON is a subset of YAML, so the schema files can be written in regular JSON. However, by using a YAML parser to load the schema files, they may be expressed in YAML format, which this programmer finds easier to write and to read than strict JSON syntax.
0.919376
0.531209
from six.moves.urllib import parse as urlparse from schema_res import loader class SchemaDescriptor(object): """ A class implementing the descriptor protocol to automatically load schemas from package resources. Values are always ``jsonschema.IValidator`` instances, regardless of how the descriptor is accessed. """ def __init__(self, uri_or_fname): """ Initialize a ``SchemaDescriptor`` instance. :param str uri_or_fname: The URI or filename of the schema to load. Only "res:"-style URIs are recognized; this cannot be used to load a schema over the network, in order to discourage that non-portable practice. If a bare filename is provided, it will be interpreted relative to the ``__module__`` attribute of the owning class. """ # Save the URI self.uri = urlparse.urlparse(uri_or_fname) # Cache of the loaded schema self.schema = None def __get__(self, inst, owner): """ Retrieve the specified schema object. :param inst: An instance of the class. Ignored by this implementation of the descriptor protocol. :param owner: The class containing the descriptor. :returns: The desired schema, loading it as necessary. :rtype: ``jsonschema.IValidator`` """ # Do we need to load the schema? if self.schema is None: # Is it a fully qualified URL? if self.uri.scheme: uri = urlparse.urlunparse(self.uri) else: uri = urlparse.urlunparse(( 'res', owner.__module__, self.uri.path, self.uri.params, self.uri.query, self.uri.fragment, )) # Load the schema self.schema = loader.load_schema(uri) return self.schema
schema-resource
/schema-resource-0.0.1.tar.gz/schema-resource-0.0.1/schema_res/descriptor.py
descriptor.py
from six.moves.urllib import parse as urlparse from schema_res import loader class SchemaDescriptor(object): """ A class implementing the descriptor protocol to automatically load schemas from package resources. Values are always ``jsonschema.IValidator`` instances, regardless of how the descriptor is accessed. """ def __init__(self, uri_or_fname): """ Initialize a ``SchemaDescriptor`` instance. :param str uri_or_fname: The URI or filename of the schema to load. Only "res:"-style URIs are recognized; this cannot be used to load a schema over the network, in order to discourage that non-portable practice. If a bare filename is provided, it will be interpreted relative to the ``__module__`` attribute of the owning class. """ # Save the URI self.uri = urlparse.urlparse(uri_or_fname) # Cache of the loaded schema self.schema = None def __get__(self, inst, owner): """ Retrieve the specified schema object. :param inst: An instance of the class. Ignored by this implementation of the descriptor protocol. :param owner: The class containing the descriptor. :returns: The desired schema, loading it as necessary. :rtype: ``jsonschema.IValidator`` """ # Do we need to load the schema? if self.schema is None: # Is it a fully qualified URL? if self.uri.scheme: uri = urlparse.urlunparse(self.uri) else: uri = urlparse.urlunparse(( 'res', owner.__module__, self.uri.path, self.uri.params, self.uri.query, self.uri.fragment, )) # Load the schema self.schema = loader.load_schema(uri) return self.schema
0.868032
0.277825
import jsonschema import pkg_resources from six.moves.urllib import parse as urlparse import yaml def _res_handler(uri): """ Handler for "res:" URIs. A "res:" URI resolves a resource using ``pkg_resources.resource_stream``; the "netloc" part of the URI (the part after the "res://") should be the package or requirement, and the "path" part of the URI will be interpreted relative to the top level of that package or requirement. :param str uri: The resource URI. :returns: The result of loading the URI as a YAML file (of which JSON is a subset). :rtype: ``dict`` or ``bool`` """ # Split the URI and extract the parts we're interested in urisplit = urlparse.urlparse(uri) if (urisplit.scheme != 'res' or not urisplit.netloc or urisplit.path in {'', '/'}): raise ValueError('invalid URI "%s"' % uri) pkg = urisplit.netloc path = urisplit.path[1:] # Return the result of loading the URI with pkg_resources.resource_stream(pkg, path) as f: return yaml.safe_load(f) def load_schema(uri, validate=False): """ Loads a schema from a specified resource URI. A resource URI has the scheme "res:"; the "netloc" part of the URI (the part after the "res://") should be the package or requirement, and the "path" part of the URI will be interpreted relative to the top level of that package or requirement. The schema is loaded as a YAML file (of which JSON is a subset), and an appropriate ``jsonschema`` validator is returned. :param str uri: The resource URI. :param bool validate: If ``True``, the schema will be validated. Defaults to ``False``. :returns: A suitable schema validator. :rtype: ``jsonschema.IValidator`` """ # Begin by loading the root schema sch = _res_handler(uri) # Construct a RefResolver resolver = jsonschema.RefResolver( uri, sch, handlers={'res': _res_handler}, ) # Pick the correct validator matching the schema val = jsonschema.validators.validator_for(sch) # Perform the schema validation if validate: val.check_schema(sch) # Return the constructed schema return val(sch, resolver=resolver)
schema-resource
/schema-resource-0.0.1.tar.gz/schema-resource-0.0.1/schema_res/loader.py
loader.py
import jsonschema import pkg_resources from six.moves.urllib import parse as urlparse import yaml def _res_handler(uri): """ Handler for "res:" URIs. A "res:" URI resolves a resource using ``pkg_resources.resource_stream``; the "netloc" part of the URI (the part after the "res://") should be the package or requirement, and the "path" part of the URI will be interpreted relative to the top level of that package or requirement. :param str uri: The resource URI. :returns: The result of loading the URI as a YAML file (of which JSON is a subset). :rtype: ``dict`` or ``bool`` """ # Split the URI and extract the parts we're interested in urisplit = urlparse.urlparse(uri) if (urisplit.scheme != 'res' or not urisplit.netloc or urisplit.path in {'', '/'}): raise ValueError('invalid URI "%s"' % uri) pkg = urisplit.netloc path = urisplit.path[1:] # Return the result of loading the URI with pkg_resources.resource_stream(pkg, path) as f: return yaml.safe_load(f) def load_schema(uri, validate=False): """ Loads a schema from a specified resource URI. A resource URI has the scheme "res:"; the "netloc" part of the URI (the part after the "res://") should be the package or requirement, and the "path" part of the URI will be interpreted relative to the top level of that package or requirement. The schema is loaded as a YAML file (of which JSON is a subset), and an appropriate ``jsonschema`` validator is returned. :param str uri: The resource URI. :param bool validate: If ``True``, the schema will be validated. Defaults to ``False``. :returns: A suitable schema validator. :rtype: ``jsonschema.IValidator`` """ # Begin by loading the root schema sch = _res_handler(uri) # Construct a RefResolver resolver = jsonschema.RefResolver( uri, sch, handlers={'res': _res_handler}, ) # Pick the correct validator matching the schema val = jsonschema.validators.validator_for(sch) # Perform the schema validation if validate: val.check_schema(sch) # Return the constructed schema return val(sch, resolver=resolver)
0.77949
0.278836
How to add new types to the local Typeshed ------------------------------------------ If when running ``make mypy`` you receive errors about modules that can't be found you may need to add type stubs for new modules to the ``mypy-stubs/`` directory. :: stubgen -o mypy-stubs module_name make mypy Note: the module name is not always the name of the PyPI package (``CacheControl`` vs ``cachecontrol``). Stubs are just that, you will still need to annotate whichever functions you call. Oftentimes it is simpler to comment out imports in the ``.pyi`` stubs that are not needed yet. The goal is represent the public API, or at least the part we use.
schema-salad
/schema-salad-8.4.20230808163024.tar.gz/schema-salad-8.4.20230808163024/docs/typeshed.rst
typeshed.rst
How to add new types to the local Typeshed ------------------------------------------ If when running ``make mypy`` you receive errors about modules that can't be found you may need to add type stubs for new modules to the ``mypy-stubs/`` directory. :: stubgen -o mypy-stubs module_name make mypy Note: the module name is not always the name of the PyPI package (``CacheControl`` vs ``cachecontrol``). Stubs are just that, you will still need to annotate whichever functions you call. Oftentimes it is simpler to comment out imports in the ``.pyi`` stubs that are not needed yet. The goal is represent the public API, or at least the part we use.
0.717903
0.32146
import logging import unicodedata from typing import ( Any, Dict, Iterable, List, MutableMapping, MutableSequence, Optional, Tuple, Union, cast, ) from urllib.parse import urldefrag, urlsplit import rdflib import rdflib.namespace from rdflib import Graph, URIRef from rdflib.namespace import RDF, RDFS from ruamel.yaml.comments import CommentedMap, CommentedSeq from .exceptions import SchemaException from .utils import ContextType, aslist, json_dumps _logger = logging.getLogger("salad") def pred( datatype: MutableMapping[str, Union[Dict[str, str], str]], field: Optional[Dict[str, Any]], name: str, context: ContextType, defaultBase: str, namespaces: Dict[str, rdflib.namespace.Namespace], ) -> Union[Dict[str, Union[str, None]], str]: split = urlsplit(name) vee = None # type: Optional[str] if split.scheme != "": vee = name (ns, ln) = rdflib.namespace.split_uri(str(vee)) name = ln if ns[0:-1] in namespaces: vee = str(namespaces[ns[0:-1]][ln]) _logger.debug("name, v %s %s", name, vee) v = None # type: Optional[Union[Dict[str, Union[str, None]], str]] if field is not None and "jsonldPredicate" in field: if isinstance(field["jsonldPredicate"], MutableMapping): v = {} for k, val in field["jsonldPredicate"].items(): v[("@" + k[1:] if k.startswith("_") else k)] = val if "@id" not in v: v["@id"] = vee else: v = field["jsonldPredicate"] elif "jsonldPredicate" in datatype: if isinstance(datatype["jsonldPredicate"], Iterable): for d in datatype["jsonldPredicate"]: if isinstance(d, MutableMapping): if d["symbol"] == name: v = d["predicate"] else: raise SchemaException( "entries in the jsonldPredicate List must be " "Dictionaries" ) else: raise SchemaException("jsonldPredicate must be a List of Dictionaries.") ret = v or vee if not ret: ret = defaultBase + name if name in context: if context[name] != ret: raise SchemaException(f"Predicate collision on {name}, {context[name]!r} != {ret!r}") else: _logger.debug("Adding to context '%s' %s (%s)", name, ret, type(ret)) context[name] = ret return ret def process_type( t: MutableMapping[str, Any], g: Graph, context: ContextType, defaultBase: str, namespaces: Dict[str, rdflib.namespace.Namespace], defaultPrefix: str, ) -> None: if t["type"] not in ("record", "enum"): return if "name" in t: recordname = t["name"] _logger.debug("Processing %s %s\n", t.get("type"), t) classnode = URIRef(recordname) g.add((classnode, RDF.type, RDFS.Class)) split = urlsplit(recordname) predicate = recordname if t.get("inVocab", True): if split.scheme: (ns, ln) = rdflib.namespace.split_uri(str(recordname)) predicate = recordname recordname = ln else: predicate = f"{defaultPrefix}:{recordname}" if context.get(recordname, predicate) != predicate: raise SchemaException( f"Predicate collision on {recordname!r}, " f"{context[recordname]!r} != {predicate!r}" ) if not recordname: raise SchemaException(f"Unable to find/derive recordname for {t}") _logger.debug("Adding to context '%s' %s (%s)", recordname, predicate, type(predicate)) context[recordname] = predicate if t["type"] == "record": for i in t.get("fields", []): fieldname = i["name"] _logger.debug("Processing field %s", i) v = pred( t, i, fieldname, context, defaultPrefix, namespaces ) # type: Union[Dict[Any, Any], str, None] if isinstance(v, str): v = v if v[0] != "@" else None elif v is not None: v = v["_@id"] if v.get("_@id", "@")[0] != "@" else None if bool(v): try: (ns, ln) = rdflib.namespace.split_uri(str(v)) except ValueError: # rdflib 5.0.0 compatibility uri = str(v) colon_index = str(v).rfind(":") if colon_index < 0: raise split_start = rdflib.namespace.SPLIT_START_CATEGORIES for j in range(-1 - colon_index, len(uri)): if unicodedata.category(uri[j]) in split_start or uri[j] == "_": # _ prevents early split, roundtrip not generate ns = uri[:j] if not ns: break ln = uri[j:] break if not ns or not ln: raise if ns[0:-1] in namespaces: propnode = namespaces[ns[0:-1]][ln] else: propnode = URIRef(v) g.add((propnode, RDF.type, RDF.Property)) g.add((propnode, RDFS.domain, classnode)) # TODO generate range from datatype. if isinstance(i["type"], MutableMapping): process_type(i["type"], g, context, defaultBase, namespaces, defaultPrefix) if "extends" in t: for e in aslist(t["extends"]): g.add((classnode, RDFS.subClassOf, URIRef(e))) elif t["type"] == "enum": _logger.debug("Processing enum %s", t.get("name")) for i in t["symbols"]: pred(t, None, i, context, defaultBase, namespaces) def salad_to_jsonld_context( j: Iterable[MutableMapping[str, Any]], schema_ctx: MutableMapping[str, Any] ) -> Tuple[ContextType, Graph]: context = {} # type: ContextType namespaces = {} g = Graph() defaultPrefix = "" for k, v in schema_ctx.items(): context[k] = v namespaces[k] = rdflib.namespace.Namespace(v) if "@base" in context: defaultBase = cast(str, context["@base"]) del context["@base"] else: defaultBase = "" for k, v in namespaces.items(): g.bind(str(k), v) for t in j: process_type(t, g, context, defaultBase, namespaces, defaultPrefix) return (context, g) def fix_jsonld_ids(obj: Union[CommentedMap, float, str, CommentedSeq], ids: List[str]) -> None: """Add missing identity entries.""" if isinstance(obj, MutableMapping): for i in ids: if i in obj: obj["@id"] = obj[i] for v in obj.values(): fix_jsonld_ids(v, ids) if isinstance(obj, MutableSequence): for entry in obj: fix_jsonld_ids(entry, ids) def makerdf( workflow: Optional[str], wf: Union[CommentedMap, float, str, CommentedSeq], ctx: ContextType, graph: Optional[Graph] = None, ) -> Graph: prefixes = {} idfields = [] for k, v in ctx.items(): if isinstance(v, MutableMapping): url = v["@id"] else: url = v if url == "@id": idfields.append(k) doc_url, frg = urldefrag(url) if "/" in frg: p = frg.split("/")[0] prefixes[p] = f"{doc_url}#{p}/" fix_jsonld_ids(wf, idfields) g = Graph() if graph is None else graph if isinstance(wf, MutableSequence): for w in wf: w["@context"] = ctx g.parse( data=json_dumps(w, default=str), format="json-ld", publicID=str(workflow), ) elif isinstance(wf, MutableMapping): wf["@context"] = ctx g.parse(data=json_dumps(wf, default=str), format="json-ld", publicID=str(workflow)) else: raise SchemaException(f"{wf} is not a workflow") # Bug in json-ld loader causes @id fields to be added to the graph for sub, pred, obj in g.triples((None, URIRef("@id"), None)): g.remove((sub, pred, obj)) for k2, v2 in prefixes.items(): g.namespace_manager.bind(k2, v2) return g
schema-salad
/schema-salad-8.4.20230808163024.tar.gz/schema-salad-8.4.20230808163024/schema_salad/jsonld_context.py
jsonld_context.py
import logging import unicodedata from typing import ( Any, Dict, Iterable, List, MutableMapping, MutableSequence, Optional, Tuple, Union, cast, ) from urllib.parse import urldefrag, urlsplit import rdflib import rdflib.namespace from rdflib import Graph, URIRef from rdflib.namespace import RDF, RDFS from ruamel.yaml.comments import CommentedMap, CommentedSeq from .exceptions import SchemaException from .utils import ContextType, aslist, json_dumps _logger = logging.getLogger("salad") def pred( datatype: MutableMapping[str, Union[Dict[str, str], str]], field: Optional[Dict[str, Any]], name: str, context: ContextType, defaultBase: str, namespaces: Dict[str, rdflib.namespace.Namespace], ) -> Union[Dict[str, Union[str, None]], str]: split = urlsplit(name) vee = None # type: Optional[str] if split.scheme != "": vee = name (ns, ln) = rdflib.namespace.split_uri(str(vee)) name = ln if ns[0:-1] in namespaces: vee = str(namespaces[ns[0:-1]][ln]) _logger.debug("name, v %s %s", name, vee) v = None # type: Optional[Union[Dict[str, Union[str, None]], str]] if field is not None and "jsonldPredicate" in field: if isinstance(field["jsonldPredicate"], MutableMapping): v = {} for k, val in field["jsonldPredicate"].items(): v[("@" + k[1:] if k.startswith("_") else k)] = val if "@id" not in v: v["@id"] = vee else: v = field["jsonldPredicate"] elif "jsonldPredicate" in datatype: if isinstance(datatype["jsonldPredicate"], Iterable): for d in datatype["jsonldPredicate"]: if isinstance(d, MutableMapping): if d["symbol"] == name: v = d["predicate"] else: raise SchemaException( "entries in the jsonldPredicate List must be " "Dictionaries" ) else: raise SchemaException("jsonldPredicate must be a List of Dictionaries.") ret = v or vee if not ret: ret = defaultBase + name if name in context: if context[name] != ret: raise SchemaException(f"Predicate collision on {name}, {context[name]!r} != {ret!r}") else: _logger.debug("Adding to context '%s' %s (%s)", name, ret, type(ret)) context[name] = ret return ret def process_type( t: MutableMapping[str, Any], g: Graph, context: ContextType, defaultBase: str, namespaces: Dict[str, rdflib.namespace.Namespace], defaultPrefix: str, ) -> None: if t["type"] not in ("record", "enum"): return if "name" in t: recordname = t["name"] _logger.debug("Processing %s %s\n", t.get("type"), t) classnode = URIRef(recordname) g.add((classnode, RDF.type, RDFS.Class)) split = urlsplit(recordname) predicate = recordname if t.get("inVocab", True): if split.scheme: (ns, ln) = rdflib.namespace.split_uri(str(recordname)) predicate = recordname recordname = ln else: predicate = f"{defaultPrefix}:{recordname}" if context.get(recordname, predicate) != predicate: raise SchemaException( f"Predicate collision on {recordname!r}, " f"{context[recordname]!r} != {predicate!r}" ) if not recordname: raise SchemaException(f"Unable to find/derive recordname for {t}") _logger.debug("Adding to context '%s' %s (%s)", recordname, predicate, type(predicate)) context[recordname] = predicate if t["type"] == "record": for i in t.get("fields", []): fieldname = i["name"] _logger.debug("Processing field %s", i) v = pred( t, i, fieldname, context, defaultPrefix, namespaces ) # type: Union[Dict[Any, Any], str, None] if isinstance(v, str): v = v if v[0] != "@" else None elif v is not None: v = v["_@id"] if v.get("_@id", "@")[0] != "@" else None if bool(v): try: (ns, ln) = rdflib.namespace.split_uri(str(v)) except ValueError: # rdflib 5.0.0 compatibility uri = str(v) colon_index = str(v).rfind(":") if colon_index < 0: raise split_start = rdflib.namespace.SPLIT_START_CATEGORIES for j in range(-1 - colon_index, len(uri)): if unicodedata.category(uri[j]) in split_start or uri[j] == "_": # _ prevents early split, roundtrip not generate ns = uri[:j] if not ns: break ln = uri[j:] break if not ns or not ln: raise if ns[0:-1] in namespaces: propnode = namespaces[ns[0:-1]][ln] else: propnode = URIRef(v) g.add((propnode, RDF.type, RDF.Property)) g.add((propnode, RDFS.domain, classnode)) # TODO generate range from datatype. if isinstance(i["type"], MutableMapping): process_type(i["type"], g, context, defaultBase, namespaces, defaultPrefix) if "extends" in t: for e in aslist(t["extends"]): g.add((classnode, RDFS.subClassOf, URIRef(e))) elif t["type"] == "enum": _logger.debug("Processing enum %s", t.get("name")) for i in t["symbols"]: pred(t, None, i, context, defaultBase, namespaces) def salad_to_jsonld_context( j: Iterable[MutableMapping[str, Any]], schema_ctx: MutableMapping[str, Any] ) -> Tuple[ContextType, Graph]: context = {} # type: ContextType namespaces = {} g = Graph() defaultPrefix = "" for k, v in schema_ctx.items(): context[k] = v namespaces[k] = rdflib.namespace.Namespace(v) if "@base" in context: defaultBase = cast(str, context["@base"]) del context["@base"] else: defaultBase = "" for k, v in namespaces.items(): g.bind(str(k), v) for t in j: process_type(t, g, context, defaultBase, namespaces, defaultPrefix) return (context, g) def fix_jsonld_ids(obj: Union[CommentedMap, float, str, CommentedSeq], ids: List[str]) -> None: """Add missing identity entries.""" if isinstance(obj, MutableMapping): for i in ids: if i in obj: obj["@id"] = obj[i] for v in obj.values(): fix_jsonld_ids(v, ids) if isinstance(obj, MutableSequence): for entry in obj: fix_jsonld_ids(entry, ids) def makerdf( workflow: Optional[str], wf: Union[CommentedMap, float, str, CommentedSeq], ctx: ContextType, graph: Optional[Graph] = None, ) -> Graph: prefixes = {} idfields = [] for k, v in ctx.items(): if isinstance(v, MutableMapping): url = v["@id"] else: url = v if url == "@id": idfields.append(k) doc_url, frg = urldefrag(url) if "/" in frg: p = frg.split("/")[0] prefixes[p] = f"{doc_url}#{p}/" fix_jsonld_ids(wf, idfields) g = Graph() if graph is None else graph if isinstance(wf, MutableSequence): for w in wf: w["@context"] = ctx g.parse( data=json_dumps(w, default=str), format="json-ld", publicID=str(workflow), ) elif isinstance(wf, MutableMapping): wf["@context"] = ctx g.parse(data=json_dumps(wf, default=str), format="json-ld", publicID=str(workflow)) else: raise SchemaException(f"{wf} is not a workflow") # Bug in json-ld loader causes @id fields to be added to the graph for sub, pred, obj in g.triples((None, URIRef("@id"), None)): g.remove((sub, pred, obj)) for k2, v2 in prefixes.items(): g.namespace_manager.bind(k2, v2) return g
0.482917
0.202838
import sys from io import TextIOWrapper from typing import ( Any, Dict, List, MutableMapping, MutableSequence, Optional, TextIO, Union, ) from urllib.parse import urlsplit from . import schema from .codegen_base import CodeGenBase from .cpp_codegen import CppCodeGen from .dlang_codegen import DlangCodeGen from .dotnet_codegen import DotNetCodeGen from .exceptions import SchemaSaladException from .java_codegen import JavaCodeGen from .python_codegen import PythonCodeGen from .ref_resolver import Loader from .schema import shortname from .typescript_codegen import TypeScriptCodeGen from .utils import aslist FIELD_SORT_ORDER = ["id", "class", "name"] def codegen( lang: str, i: List[Dict[str, str]], schema_metadata: Dict[str, Any], loader: Loader, target: Optional[str] = None, examples: Optional[str] = None, package: Optional[str] = None, copyright: Optional[str] = None, parser_info: Optional[str] = None, ) -> None: """Generate classes with loaders for the given Schema Salad description.""" j = schema.extend_and_specialize(i, loader) gen: Optional[CodeGenBase] = None base = schema_metadata.get("$base", schema_metadata.get("id")) # ``urlsplit`` decides whether to return an encoded result based # on the object type. To ensure the code behaves the same for Py # 3.6+, we enforce that the input value is of type ``str``. if base is None: base = "" sp = urlsplit(base) pkg = ( package if package else ".".join(list(reversed(sp.netloc.split("."))) + sp.path.strip("/").split("/")) ) info = parser_info or pkg salad_version = schema_metadata.get("saladVersion", "v1.1") if lang in set(["python", "cpp", "dlang"]): if target: dest: Union[TextIOWrapper, TextIO] = open(target, mode="w", encoding="utf-8") else: dest = sys.stdout if lang == "cpp": gen = CppCodeGen( base, dest, examples, pkg, copyright, ) gen.parse(j) return if lang == "dlang": gen = DlangCodeGen( base, dest, examples, pkg, copyright, info, salad_version, ) gen.parse(j) return gen = PythonCodeGen( dest, copyright=copyright, parser_info=info, salad_version=salad_version ) elif lang == "java": gen = JavaCodeGen( base, target=target, examples=examples, package=pkg, copyright=copyright, ) elif lang == "typescript": gen = TypeScriptCodeGen(base, target=target, package=pkg, examples=examples) elif lang == "dotnet": gen = DotNetCodeGen(base, target=target, package=pkg, examples=examples) else: raise SchemaSaladException(f"Unsupported code generation language {lang!r}") gen.prologue() document_roots = [] for rec in j: if rec["type"] in ("enum", "record"): gen.type_loader(rec) gen.add_vocab(shortname(rec["name"]), rec["name"]) for rec in j: if rec["type"] == "enum": for symbol in rec["symbols"]: gen.add_vocab(shortname(symbol), symbol) if rec["type"] == "record": if rec.get("documentRoot"): document_roots.append(rec["name"]) field_names = [] optional_fields = set() for field in rec.get("fields", []): field_name = shortname(field["name"]) field_names.append(field_name) tp = field["type"] if isinstance(tp, MutableSequence) and tp[0] == "https://w3id.org/cwl/salad#null": optional_fields.add(field_name) idfield = "" for field in rec.get("fields", []): if field.get("jsonldPredicate") == "@id": idfield = field.get("name") gen.begin_class( rec["name"], aslist(rec.get("extends", [])), rec.get("doc", ""), rec.get("abstract", False), field_names, idfield, optional_fields, ) gen.add_vocab(shortname(rec["name"]), rec["name"]) sorted_fields = sorted( rec.get("fields", []), key=lambda i: FIELD_SORT_ORDER.index(i["name"].split("/")[-1]) if i["name"].split("/")[-1] in FIELD_SORT_ORDER else 100, ) for field in sorted_fields: if field.get("jsonldPredicate") == "@id": subscope = field.get("subscope") fieldpred = field["name"] optional = bool("https://w3id.org/cwl/salad#null" in field["type"]) uri_loader = gen.uri_loader(gen.type_loader(field["type"]), True, False, None) gen.declare_id_field( fieldpred, uri_loader, field.get("doc"), optional, ) break for field in sorted_fields: optional = bool("https://w3id.org/cwl/salad#null" in field["type"]) type_loader = gen.type_loader(field["type"]) jld = field.get("jsonldPredicate") fieldpred = field["name"] subscope = None if isinstance(jld, MutableMapping): ref_scope = jld.get("refScope") subscope = jld.get("subscope") if jld.get("typeDSL"): type_loader = gen.typedsl_loader(type_loader, ref_scope) elif jld.get("secondaryFilesDSL"): type_loader = gen.secondaryfilesdsl_loader(type_loader) elif jld.get("_type") == "@id": type_loader = gen.uri_loader( type_loader, jld.get("identity", False), False, ref_scope ) elif jld.get("_type") == "@vocab": type_loader = gen.uri_loader(type_loader, False, True, ref_scope) map_subject = jld.get("mapSubject") if map_subject: type_loader = gen.idmap_loader( field["name"], type_loader, map_subject, jld.get("mapPredicate"), ) if "_id" in jld and jld["_id"][0] != "@": fieldpred = jld["_id"] if jld == "@id": continue gen.declare_field(fieldpred, type_loader, field.get("doc"), optional, subscope) gen.end_class(rec["name"], field_names) root_type = list(document_roots) root_type.append({"type": "array", "items": document_roots}) gen.epilogue(gen.type_loader(root_type))
schema-salad
/schema-salad-8.4.20230808163024.tar.gz/schema-salad-8.4.20230808163024/schema_salad/codegen.py
codegen.py
import sys from io import TextIOWrapper from typing import ( Any, Dict, List, MutableMapping, MutableSequence, Optional, TextIO, Union, ) from urllib.parse import urlsplit from . import schema from .codegen_base import CodeGenBase from .cpp_codegen import CppCodeGen from .dlang_codegen import DlangCodeGen from .dotnet_codegen import DotNetCodeGen from .exceptions import SchemaSaladException from .java_codegen import JavaCodeGen from .python_codegen import PythonCodeGen from .ref_resolver import Loader from .schema import shortname from .typescript_codegen import TypeScriptCodeGen from .utils import aslist FIELD_SORT_ORDER = ["id", "class", "name"] def codegen( lang: str, i: List[Dict[str, str]], schema_metadata: Dict[str, Any], loader: Loader, target: Optional[str] = None, examples: Optional[str] = None, package: Optional[str] = None, copyright: Optional[str] = None, parser_info: Optional[str] = None, ) -> None: """Generate classes with loaders for the given Schema Salad description.""" j = schema.extend_and_specialize(i, loader) gen: Optional[CodeGenBase] = None base = schema_metadata.get("$base", schema_metadata.get("id")) # ``urlsplit`` decides whether to return an encoded result based # on the object type. To ensure the code behaves the same for Py # 3.6+, we enforce that the input value is of type ``str``. if base is None: base = "" sp = urlsplit(base) pkg = ( package if package else ".".join(list(reversed(sp.netloc.split("."))) + sp.path.strip("/").split("/")) ) info = parser_info or pkg salad_version = schema_metadata.get("saladVersion", "v1.1") if lang in set(["python", "cpp", "dlang"]): if target: dest: Union[TextIOWrapper, TextIO] = open(target, mode="w", encoding="utf-8") else: dest = sys.stdout if lang == "cpp": gen = CppCodeGen( base, dest, examples, pkg, copyright, ) gen.parse(j) return if lang == "dlang": gen = DlangCodeGen( base, dest, examples, pkg, copyright, info, salad_version, ) gen.parse(j) return gen = PythonCodeGen( dest, copyright=copyright, parser_info=info, salad_version=salad_version ) elif lang == "java": gen = JavaCodeGen( base, target=target, examples=examples, package=pkg, copyright=copyright, ) elif lang == "typescript": gen = TypeScriptCodeGen(base, target=target, package=pkg, examples=examples) elif lang == "dotnet": gen = DotNetCodeGen(base, target=target, package=pkg, examples=examples) else: raise SchemaSaladException(f"Unsupported code generation language {lang!r}") gen.prologue() document_roots = [] for rec in j: if rec["type"] in ("enum", "record"): gen.type_loader(rec) gen.add_vocab(shortname(rec["name"]), rec["name"]) for rec in j: if rec["type"] == "enum": for symbol in rec["symbols"]: gen.add_vocab(shortname(symbol), symbol) if rec["type"] == "record": if rec.get("documentRoot"): document_roots.append(rec["name"]) field_names = [] optional_fields = set() for field in rec.get("fields", []): field_name = shortname(field["name"]) field_names.append(field_name) tp = field["type"] if isinstance(tp, MutableSequence) and tp[0] == "https://w3id.org/cwl/salad#null": optional_fields.add(field_name) idfield = "" for field in rec.get("fields", []): if field.get("jsonldPredicate") == "@id": idfield = field.get("name") gen.begin_class( rec["name"], aslist(rec.get("extends", [])), rec.get("doc", ""), rec.get("abstract", False), field_names, idfield, optional_fields, ) gen.add_vocab(shortname(rec["name"]), rec["name"]) sorted_fields = sorted( rec.get("fields", []), key=lambda i: FIELD_SORT_ORDER.index(i["name"].split("/")[-1]) if i["name"].split("/")[-1] in FIELD_SORT_ORDER else 100, ) for field in sorted_fields: if field.get("jsonldPredicate") == "@id": subscope = field.get("subscope") fieldpred = field["name"] optional = bool("https://w3id.org/cwl/salad#null" in field["type"]) uri_loader = gen.uri_loader(gen.type_loader(field["type"]), True, False, None) gen.declare_id_field( fieldpred, uri_loader, field.get("doc"), optional, ) break for field in sorted_fields: optional = bool("https://w3id.org/cwl/salad#null" in field["type"]) type_loader = gen.type_loader(field["type"]) jld = field.get("jsonldPredicate") fieldpred = field["name"] subscope = None if isinstance(jld, MutableMapping): ref_scope = jld.get("refScope") subscope = jld.get("subscope") if jld.get("typeDSL"): type_loader = gen.typedsl_loader(type_loader, ref_scope) elif jld.get("secondaryFilesDSL"): type_loader = gen.secondaryfilesdsl_loader(type_loader) elif jld.get("_type") == "@id": type_loader = gen.uri_loader( type_loader, jld.get("identity", False), False, ref_scope ) elif jld.get("_type") == "@vocab": type_loader = gen.uri_loader(type_loader, False, True, ref_scope) map_subject = jld.get("mapSubject") if map_subject: type_loader = gen.idmap_loader( field["name"], type_loader, map_subject, jld.get("mapPredicate"), ) if "_id" in jld and jld["_id"][0] != "@": fieldpred = jld["_id"] if jld == "@id": continue gen.declare_field(fieldpred, type_loader, field.get("doc"), optional, subscope) gen.end_class(rec["name"], field_names) root_type = list(document_roots) root_type.append({"type": "array", "items": document_roots}) gen.epilogue(gen.type_loader(root_type))
0.517083
0.112747
import os import shutil import string from io import StringIO from pathlib import Path from typing import ( Any, Dict, List, MutableMapping, MutableSequence, Optional, Set, Union, ) from xml.sax.saxutils import escape # nosec from importlib_resources import files from . import _logger, schema from .codegen_base import CodeGenBase, TypeDef from .exceptions import SchemaException from .java_codegen import _ensure_directory_and_write, _safe_makedirs from .schema import shortname def doc_to_doc_string(doc: Optional[str], indent_level: int = 0) -> str: """Generate a documentation string from a schema salad doc field.""" lead = "" + " " * indent_level + "/// " if doc: doc_str = "\n".join([f"{lead}{escape(line)}" for line in doc.split("\n")]) else: doc_str = "" return doc_str _string_type_def = TypeDef( instance_type="string", init="new PrimitiveLoader<string>()", name="StringInstance", loader_type="ILoader<string>", ) _int_type_def = TypeDef( instance_type="int", init="new PrimitiveLoader<int>()", name="IntegerInstance", loader_type="ILoader<int>", ) _long_type_def = TypeDef( instance_type="long", name="LongInstance", loader_type="ILoader<long>", init="new PrimitiveLoader<long>()", ) _float_type_def = TypeDef( instance_type="double", name="DoubleInstance", loader_type="ILoader<double>", init="new PrimitiveLoader<double>()", ) _bool_type_def = TypeDef( instance_type="bool", name="BooleanInstance", loader_type="ILoader<bool>", init="new PrimitiveLoader<bool>()", ) _null_type_def = TypeDef( instance_type="None", name="NullInstance", loader_type="ILoader<object>", init="new NullLoader()", ) _any_type_def = TypeDef( instance_type="object", name="AnyInstance", init="new AnyLoader()", loader_type="ILoader<object>", ) prims = { "http://www.w3.org/2001/XMLSchema#string": _string_type_def, "http://www.w3.org/2001/XMLSchema#int": _int_type_def, "http://www.w3.org/2001/XMLSchema#long": _long_type_def, "http://www.w3.org/2001/XMLSchema#float": _float_type_def, "http://www.w3.org/2001/XMLSchema#double": _float_type_def, "http://www.w3.org/2001/XMLSchema#boolean": _bool_type_def, "https://w3id.org/cwl/salad#null": _null_type_def, "https://w3id.org/cwl/salad#Any": _any_type_def, "string": _string_type_def, "int": _int_type_def, "long": _long_type_def, "float": _float_type_def, "double": _float_type_def, "boolean": _bool_type_def, "null": _null_type_def, "Any": _any_type_def, } class DotNetCodeGen(CodeGenBase): """Generation of TypeScript code for a given Schema Salad definition.""" def __init__( self, base: str, examples: Optional[str], target: Optional[str], package: str ) -> None: """Initialize the TypeScript codegen.""" super().__init__() self.target_dir = Path(target or ".").resolve() self.main_src_dir = self.target_dir / package / "src" self.test_src_dir = self.target_dir / "Test" self.test_resources_dir = self.test_src_dir / "data" self.package = package self.base_uri = base self.examples = examples def prologue(self) -> None: """Trigger to generate the prolouge code.""" for src_dir in [self.main_src_dir]: _safe_makedirs(src_dir) for primitive in prims.values(): self.declare_type(primitive) @staticmethod def safe_name(name: str) -> str: """Generate a safe version of the given name.""" avn = schema.avro_field_name(name) if avn.startswith("anon."): avn = avn[5:] if avn in ( "class", "in", "extends", "abstract", "default", "package", "arguments", "out", ): # reserved words avn = avn + "_" return avn def begin_class( self, # pylint: disable=too-many-arguments classname: str, extends: MutableSequence[str], doc: str, abstract: bool, field_names: MutableSequence[str], idfield: str, optional_fields: Set[str], ) -> None: """Produce the header for the given class.""" self.current_interface = "I" + self.safe_name(classname) cls = self.safe_name(classname) self.current_class = cls self.current_class_is_abstract = abstract interface_module_name = self.current_interface self.current_interface_target_file = self.main_src_dir / f"{interface_module_name}.cs" class_module_name = self.current_class self.current_class_target_file = self.main_src_dir / f"{class_module_name}.cs" self.current_constructor_signature = StringIO() self.current_constructor_signature_optionals = StringIO() self.current_constructor_body = StringIO() self.current_loader = StringIO() self.current_serializer = StringIO() self.current_fieldtypes: Dict[str, TypeDef] = {} self.optional_field_names: List[str] = [] self.mandatory_field_names: List[str] = [] self.idfield = idfield doc_string = f""" /// <summary> /// Auto-generated interface for {classname} """ if doc: doc_string += "///\n" doc_string += doc_to_doc_string(doc) doc_string += "\n" doc_string += "/// </summary>" with open(self.current_interface_target_file, "w") as f: _logger.info("Writing file: %s", self.current_interface_target_file) if extends: ext = " : " + ", ".join("I" + self.safe_name(e) for e in extends) else: ext = "" f.write( """#pragma warning disable CS0108 namespace {package}; {docstring} public interface {cls}{ext} {{ """.format( docstring=doc_string, cls=f"{self.current_interface}", ext=ext, package=self.package, ) ) if self.current_class_is_abstract: return doc_string = f""" /// <summary> /// Auto-generated class implementation for {classname} """ if doc: doc_string += "///\n" doc_string += doc_to_doc_string(doc) doc_string += "\n" doc_string += "/// </summary>" with open(self.current_class_target_file, "w") as f: _logger.info("Writing file: %s", self.current_class_target_file) f.write( """using System.Collections; using OneOf; using OneOf.Types; namespace {package}; {docstring} public class {cls} : {current_interface}, ISaveable {{ readonly LoadingOptions loadingOptions; readonly Dictionary<object, object> extensionFields; """.format( cls=cls, current_interface=self.current_interface, docstring=doc_string, package=self.package, ) ) self.current_constructor_signature.write( "\n" + "\n" + " public {cls}(".format( cls=cls, ) ) self.current_constructor_body.write( """ this.loadingOptions = loadingOptions ?? new LoadingOptions(); this.extensionFields = extensionFields ?? new Dictionary<object, object>(); """ ) self.current_loader.write( """ public static ISaveable FromDoc(object doc__, string baseUri, LoadingOptions loadingOptions, string? docRoot = null) { List<ValidationException> errors = new(); if (doc__ is not IDictionary) { throw new ValidationException("Document has to be of type Dictionary"); } Dictionary<object, object> doc_ = ((IDictionary)doc__) .Cast<dynamic>() .ToDictionary(entry => entry.Key, entry => entry.Value); """ ) self.current_serializer.write( """ public Dictionary<object, object> Save(bool top = false, string baseUrl = "", bool relativeUris = true) { Dictionary<object, object> r = new(); foreach (KeyValuePair<object, object> ef in extensionFields) { r[loadingOptions.PrefixUrl((string)ef.Value)] = ef.Value; } """ ) def end_class(self, classname: str, field_names: List[str]) -> None: """Signal that we are done with this class.""" with open(self.current_interface_target_file, "a") as f: f.write("}\n") if self.current_class_is_abstract: return self.current_constructor_signature.write( self.current_constructor_signature_optionals.getvalue() ) self.current_constructor_signature.write( "LoadingOptions? loadingOptions = null, " "Dictionary<object, object>? extensionFields = null)" "\n " "{" ) self.current_constructor_body.write(" }\n") self.current_loader.write( """ Dictionary<object, object> extensionFields = new(); foreach (KeyValuePair<object, object> v in doc_) {{ if (!attr.Contains(v.Key)) {{ if (((string)v.Key).Contains(':')) {{ string ex = loadingOptions.ExpandUrl((string)v.Key, "", false, false, null); extensionFields[ex] = v.Value; }} else {{ errors.Add( new ValidationException($"invalid field {{v.Key}}," + "expected one of {fields}")); break; }} }} }} if (errors.Count > 0) {{ throw new ValidationException("", errors); }} {classname} res__ = new( """.format( classname=self.current_class, fields=", ".join(["`" + f + "`" for f in field_names]), ) ) self.current_loader.write("loadingOptions: loadingOptions") if len(self.mandatory_field_names) > 0: self.current_loader.write( ",\n " + ",\n ".join(f + ": " + f for f in self.mandatory_field_names) ) self.current_loader.write("\n );\n") for optionalField in self.optional_field_names: self.current_loader.write( f""" if ({optionalField} != null) {{ res__.{optionalField} = {optionalField}; }} """ ) self.current_loader.write("\n return res__;") self.current_loader.write("\n " + "}" + "\n") self.current_serializer.write( """ if (top) { if (loadingOptions.namespaces != null) { r["$namespaces"] = loadingOptions.namespaces; } if (this.loadingOptions.schemas != null) { r["$schemas"] = loadingOptions.schemas; } } return r; } """ ) with open( self.current_class_target_file, "a", ) as f: f.write(self.current_constructor_signature.getvalue()) f.write(self.current_constructor_body.getvalue()) f.write(self.current_loader.getvalue()) f.write(self.current_serializer.getvalue()) f.write( " static readonly System.Collections.Generic.HashSet<string>" + " attr = new() { " + ", ".join(['"' + shortname(f) + '"' for f in field_names]) + " };" ) f.write( """ } """ ) def type_loader(self, type_declaration: Union[List[Any], Dict[str, Any], str]) -> TypeDef: """Parse the given type declaration and declare its components.""" if isinstance(type_declaration, MutableSequence): sub_types = [self.type_loader(i) for i in type_declaration] sub_names: List[str] = list(dict.fromkeys([i.name for i in sub_types])) sub_instance_types: List[str] = list( dict.fromkeys([i.instance_type for i in sub_types if i.instance_type is not None]) ) return self.declare_type( TypeDef( name="union_of_{}".format("_or_".join(sub_names)), init="new UnionLoader(new List<ILoader> {{ {} }})".format(", ".join(sub_names)), instance_type="OneOf<" + ", ".join(sub_instance_types) + ">", loader_type="ILoader<object>", ) ) if isinstance(type_declaration, MutableMapping): if type_declaration["type"] in ( "array", "https://w3id.org/cwl/salad#array", ): i = self.type_loader(type_declaration["items"]) return self.declare_type( TypeDef( instance_type=f"List<{i.instance_type}>", name=f"array_of_{i.name}", loader_type=f"ILoader<List<{i.instance_type}>>", init=f"new ArrayLoader<{i.instance_type}>({i.name})", ) ) if type_declaration["type"] in ("enum", "https://w3id.org/cwl/salad#enum"): return self.type_loader_enum(type_declaration) if type_declaration["type"] in ( "record", "https://w3id.org/cwl/salad#record", ): return self.declare_type( TypeDef( instance_type=self.safe_name(type_declaration["name"]), name=self.safe_name(type_declaration["name"]) + "Loader", init="new RecordLoader<{}>()".format( self.safe_name(type_declaration["name"]), ), loader_type="ILoader<{}>".format(self.safe_name(type_declaration["name"])), abstract=type_declaration.get("abstract", False), ) ) raise SchemaException("wft {}".format(type_declaration["type"])) if type_declaration in prims: return prims[type_declaration] if type_declaration in ("Expression", "https://w3id.org/cwl/cwl#Expression"): return self.declare_type( TypeDef( name=self.safe_name(type_declaration) + "Loader", init="new ExpressionLoader()", loader_type="ILoader<string>", instance_type="string", ) ) return self.collected_types[self.safe_name(type_declaration) + "Loader"] def type_loader_enum(self, type_declaration: Dict[str, Any]) -> TypeDef: for sym in type_declaration["symbols"]: self.add_vocab(shortname(sym), sym) enum_name = self.safe_name(type_declaration["name"]) enum_module_name = enum_name enum_path = self.main_src_dir / f"{enum_module_name}.cs" with open(enum_path, "w") as f: _logger.info("Writing file: %s", enum_path) f.write( """namespace {package}; public class {enum_name} : IEnumClass<{enum_name}> {{ private string _Name; private static readonly List<{enum_name}> members = new(); """.format( enum_name=enum_name, package=self.package ) ) for sym in type_declaration["symbols"]: const = self.safe_name(sym).replace("-", "_").replace(".", "_").upper() f.write( """ public static readonly {enum_name} {const} = new("{val}");\n""".format( const=const, val=self.safe_name(sym), enum_name=enum_name ) ) f.write( """ public string Name {{ get {{ return _Name; }} private set {{ _Name = value; }} }} public static IList<{enum_name}> Members {{ get {{ return members; }} }} private {enum_name}(string name) {{ _Name = name; members.Add(this); }} public static {enum_name} Parse(string toParse) {{ foreach ({enum_name} s in Members) {{ if (toParse == s.Name) return s; }} throw new FormatException("Could not parse string."); }} public static bool Contains(string value) {{ bool contains = false; foreach ({enum_name} s in Members) {{ if (value == s.Name) {{ contains = true; return contains; }} }} return contains; }} public static List<string> Symbols() {{ return members.Select(m => m.Name).ToList(); }} public override string ToString() {{ return _Name; }} }} """.format( enum_name=enum_name ) ) return self.declare_type( TypeDef( instance_type=enum_name, name=self.safe_name(type_declaration["name"] + "Loader"), init=f"new EnumLoader<{enum_name}>()", loader_type=f"ILoader<{enum_name}>", ) ) def declare_field( self, name: str, fieldtype: TypeDef, doc: Optional[str], optional: bool, subscope: str, ) -> None: """Output the code to load the given field.""" if self.current_class_is_abstract: return safename = self.safe_name(name) fieldname = shortname(name) self.current_fieldtypes[safename] = fieldtype if optional: self.optional_field_names.append(safename) if fieldtype.instance_type is not None and not fieldtype.instance_type.startswith( "OneOf<None" ): optionalstring = "?" else: optionalstring = "" else: self.mandatory_field_names.append(safename) optionalstring = "" with open(self.current_class_target_file, "a") as f: if doc: f.write( """ /// <summary> {doc_str} /// </summary> """.format( doc_str=doc_to_doc_string(doc, indent_level=1) ) ) f.write( " public {type}{optionalstring} {safename} {{ get; set; }}\n".format( safename=safename, type=fieldtype.instance_type, optionalstring=optionalstring, ) ) if fieldname == "class": if fieldtype.instance_type == "string": self.current_constructor_signature_optionals.write( 'string {safename} = "{val}", '.format( safename=safename, val=self.current_class ) ) else: self.current_constructor_signature_optionals.write( "{type}? {safename} = null, ".format( safename=safename, type=fieldtype.instance_type ) ) else: if not optional: self.current_constructor_signature.write( "{type} {safename}, ".format( safename=safename, type=fieldtype.instance_type, ) ) else: if fieldtype.instance_type is not None and fieldtype.instance_type.startswith( "OneOf<None" ): self.current_constructor_signature_optionals.write( "{type} {safename} = default, ".format( safename=safename, type=fieldtype.instance_type, ) ) else: self.current_constructor_signature_optionals.write( "{type}? {safename} = null, ".format( safename=safename, type=fieldtype.instance_type, ) ) if fieldname == "class" and fieldtype.instance_type != "string": self.current_constructor_body.write( " this.{safeName} = {safeName} ?? {type}.{val};\n".format( safeName=safename, type=fieldtype.instance_type, val=self.current_class.replace("-", "_").replace(".", "_").upper(), ) ) else: self.current_constructor_body.write( " this.{safeName} = {safeName};\n".format(safeName=safename) ) self.current_loader.write( """ dynamic {safename} = default!;""".format( safename=safename ) ) if optional: self.current_loader.write( """ if (doc_.ContainsKey("{fieldname}")) {{""".format( fieldname=fieldname ) ) spc = " " else: spc = " " self.current_loader.write( """ {spc} try {spc} {{ {spc} {safename} = LoaderInstances.{fieldtype} {spc} .LoadField(doc_.GetValueOrDefault("{fieldname}", null!), baseUri, {spc} loadingOptions); {spc} }} {spc} catch (ValidationException e) {spc} {{ {spc} errors.Add( {spc} new ValidationException("the `{fieldname}` field is not valid because: ", e) {spc} ); {spc} }} """.format( safename=safename, fieldname=fieldname, fieldtype=fieldtype.name, spc=spc, ) ) if optional: self.current_loader.write(" }\n") if name == self.idfield or not self.idfield: baseurl = "baseUrl" elif self.id_field_type.instance_type is not None: if self.id_field_type.instance_type.startswith("OneOf"): baseurl = ( f"(this.{self.safe_name(self.idfield)}.Value is " f'None ? "" : {self.safe_name(self.idfield)}.Value)' ) else: baseurl = f"this.{self.safe_name(self.idfield)}" if fieldtype.is_uri: self.current_serializer.write( """ object? {safename}Val = ISaveable.SaveRelativeUri({safename}, {scoped_id}, relativeUris, {ref_scope}, (string){base_url}!); if ({safename}Val is not null) {{ r["{fieldname}"] = {safename}Val; }} """.format( safename=self.safe_name(name), fieldname=shortname(name).strip(), base_url=baseurl, scoped_id=self.to_dotnet(fieldtype.scoped_id), ref_scope=self.to_dotnet(fieldtype.ref_scope), ) ) else: self.current_serializer.write( """ object? {safename}Val = ISaveable.Save({safename}, false, (string){base_url}!, relativeUris); if ({safename}Val is not null) {{ r["{fieldname}"] = {safename}Val; }} """.format( safename=self.safe_name(name), fieldname=shortname(name).strip(), base_url=baseurl, ) ) def declare_id_field( self, name: str, fieldtype: TypeDef, doc: str, optional: bool, ) -> None: """Output the code to handle the given ID field.""" self.id_field_type = fieldtype if self.current_class_is_abstract: return self.declare_field(name, fieldtype, doc, True, "") if optional: opt = f"""{self.safe_name(name)} = "_" + Guid.NewGuid();""" else: opt = """throw new ValidationException("Missing {fieldname}");""".format( fieldname=shortname(name) ) self.current_loader.write( """ if ({safename} == null) {{ if (docRoot != null) {{ {safename} = docRoot; }} else {{ {opt} }} }} else {{ baseUri = (string){safename}; }} """.format( safename=self.safe_name(name), opt=opt ) ) def to_dotnet(self, val: Any) -> Any: """Convert a Python keyword to a DotNet keyword.""" if val is True: return "true" elif val is None: return "null" elif val is False: return "false" return val def uri_loader( self, inner: TypeDef, scoped_id: bool, vocab_term: bool, ref_scope: Optional[int], ) -> TypeDef: """Construct the TypeDef for the given URI loader.""" instance_type = inner.instance_type or "object" return self.declare_type( TypeDef( instance_type=instance_type, name=f"uri{inner.name}{scoped_id}{vocab_term}{ref_scope}", loader_type="ILoader<object>", init="new UriLoader({}, {}, {}, {})".format( inner.name, self.to_dotnet(scoped_id), self.to_dotnet(vocab_term), self.to_dotnet(ref_scope), ), is_uri=True, scoped_id=scoped_id, ref_scope=ref_scope, ) ) def idmap_loader( self, field: str, inner: TypeDef, map_subject: str, map_predicate: Optional[str] ) -> TypeDef: """Construct the TypeDef for the given mapped ID loader.""" instance_type = inner.instance_type or "object" return self.declare_type( TypeDef( instance_type=instance_type, name=f"idmap{self.safe_name(field)}{inner.name}", loader_type="ILoader<object>", init='new IdMapLoader({}, "{}", "{}")'.format( inner.name, map_subject, map_predicate ), ) ) def typedsl_loader(self, inner: TypeDef, ref_scope: Optional[int]) -> TypeDef: """Construct the TypeDef for the given DSL loader.""" instance_type = inner.instance_type or "object" return self.declare_type( TypeDef( instance_type=instance_type, name=f"typedsl{self.safe_name(inner.name)}{ref_scope}", loader_type="ILoader<object>", init=(f"new TypeDSLLoader" f"({self.safe_name(inner.name)}, {ref_scope})"), ) ) def epilogue(self, root_loader: TypeDef) -> None: """Trigger to generate the epilouge code.""" pd = "This project contains .Net objects and utilities " pd = pd + ' auto-generated by <a href="https://github.com/' pd = pd + 'common-workflow-language/schema_salad">Schema Salad</a>' pd = pd + " for parsing documents corresponding to the " pd = pd + str(self.base_uri) + " schema." template_vars: MutableMapping[str, str] = dict( project_name=self.package, version="0.0.1-SNAPSHOT", project_description=pd, license_name="Apache License, Version 2.0", ) def template_from_resource(resource: Path) -> string.Template: template_str = resource.read_text("utf-8") template = string.Template(template_str) return template def expand_resource_template_to(resource: str, path: Path) -> None: template = template_from_resource(files("schema_salad").joinpath(f"dotnet/{resource}")) src = template.safe_substitute(template_vars) _ensure_directory_and_write(path, src) expand_resource_template_to("editorconfig", self.target_dir / ".editorconfig") expand_resource_template_to("gitignore", self.target_dir / ".gitignore") expand_resource_template_to("LICENSE", self.target_dir / "LICENSE") expand_resource_template_to("README.md", self.target_dir / "README.md") expand_resource_template_to("Solution.sln", self.target_dir / "Solution.sln") expand_resource_template_to( "Project.csproj.template", self.target_dir / self.package / Path(self.package + ".csproj"), ) expand_resource_template_to( "Test.csproj.template", self.test_src_dir / "Test.csproj", ) expand_resource_template_to( "docfx.json", self.target_dir / self.package / "docfx.json", ) expand_resource_template_to( "AssemblyInfo.cs", self.target_dir / self.package / "Properties" / "AssemblyInfo.cs", ) vocab = ",\n ".join( f"""["{k}"] = "{self.vocab[k]}\"""" for k in sorted(self.vocab.keys()) # noqa: B907 ) rvocab = ",\n ".join( f"""["{self.vocab[k]}"] = "{k}\"""" for k in sorted(self.vocab.keys()) # noqa: B907 ) loader_instances = "" for _, collected_type in self.collected_types.items(): if not collected_type.abstract: loader_instances += " internal static readonly {} {} = {};\n".format( collected_type.loader_type, collected_type.name, collected_type.init ) example_tests = "" if self.examples: _safe_makedirs(self.test_resources_dir) utils_resources = self.test_resources_dir / "examples" if os.path.exists(utils_resources): shutil.rmtree(utils_resources) shutil.copytree(self.examples, utils_resources) for example_name in os.listdir(self.examples): if example_name.startswith("valid"): basename = os.path.basename(example_name).rsplit(".", 1)[0] example_tests += """ [TestMethod] public void Test{basename}() {{ string? file = System.IO.File.ReadAllText("data/examples/{example_name}"); RootLoader.LoadDocument(file!, new Uri(Path.GetFullPath("data/examples/{example_name}")).AbsoluteUri); }} """.format( basename=basename.replace("-", "_").replace(".", "_"), example_name=example_name, ) template_args: MutableMapping[str, str] = dict( project_name=self.package, loader_instances=loader_instances, vocab=vocab, rvocab=rvocab, root_loader=root_loader.name, root_loader_type=root_loader.instance_type or "object", tests=example_tests, project_description=pd, ) util_src_dirs = { "util": self.main_src_dir / "util", "Test": self.test_src_dir, "DocFx": self.target_dir / "DocFx", } def copy_utils_recursive(util_src: str, util_target: Path) -> None: for util in files("schema_salad").joinpath(f"dotnet/{util_src}").iterdir(): if util.is_dir(): copy_utils_recursive(os.path.join(util_src, util.name), util_target / util.name) continue src_path = util_target / util.name src_template = template_from_resource(util) src = src_template.safe_substitute(template_args) _ensure_directory_and_write(src_path, src) for util_src, util_target in util_src_dirs.items(): copy_utils_recursive(util_src, util_target) def secondaryfilesdsl_loader(self, inner: TypeDef) -> TypeDef: """Construct the TypeDef for secondary files.""" instance_type = inner.instance_type or "any" return self.declare_type( TypeDef( name=f"secondaryfilesdsl{inner.name}", init=f"new SecondaryDSLLoader({inner.name})", loader_type="ILoader<object>", instance_type=instance_type, ) )
schema-salad
/schema-salad-8.4.20230808163024.tar.gz/schema-salad-8.4.20230808163024/schema_salad/dotnet_codegen.py
dotnet_codegen.py
import os import shutil import string from io import StringIO from pathlib import Path from typing import ( Any, Dict, List, MutableMapping, MutableSequence, Optional, Set, Union, ) from xml.sax.saxutils import escape # nosec from importlib_resources import files from . import _logger, schema from .codegen_base import CodeGenBase, TypeDef from .exceptions import SchemaException from .java_codegen import _ensure_directory_and_write, _safe_makedirs from .schema import shortname def doc_to_doc_string(doc: Optional[str], indent_level: int = 0) -> str: """Generate a documentation string from a schema salad doc field.""" lead = "" + " " * indent_level + "/// " if doc: doc_str = "\n".join([f"{lead}{escape(line)}" for line in doc.split("\n")]) else: doc_str = "" return doc_str _string_type_def = TypeDef( instance_type="string", init="new PrimitiveLoader<string>()", name="StringInstance", loader_type="ILoader<string>", ) _int_type_def = TypeDef( instance_type="int", init="new PrimitiveLoader<int>()", name="IntegerInstance", loader_type="ILoader<int>", ) _long_type_def = TypeDef( instance_type="long", name="LongInstance", loader_type="ILoader<long>", init="new PrimitiveLoader<long>()", ) _float_type_def = TypeDef( instance_type="double", name="DoubleInstance", loader_type="ILoader<double>", init="new PrimitiveLoader<double>()", ) _bool_type_def = TypeDef( instance_type="bool", name="BooleanInstance", loader_type="ILoader<bool>", init="new PrimitiveLoader<bool>()", ) _null_type_def = TypeDef( instance_type="None", name="NullInstance", loader_type="ILoader<object>", init="new NullLoader()", ) _any_type_def = TypeDef( instance_type="object", name="AnyInstance", init="new AnyLoader()", loader_type="ILoader<object>", ) prims = { "http://www.w3.org/2001/XMLSchema#string": _string_type_def, "http://www.w3.org/2001/XMLSchema#int": _int_type_def, "http://www.w3.org/2001/XMLSchema#long": _long_type_def, "http://www.w3.org/2001/XMLSchema#float": _float_type_def, "http://www.w3.org/2001/XMLSchema#double": _float_type_def, "http://www.w3.org/2001/XMLSchema#boolean": _bool_type_def, "https://w3id.org/cwl/salad#null": _null_type_def, "https://w3id.org/cwl/salad#Any": _any_type_def, "string": _string_type_def, "int": _int_type_def, "long": _long_type_def, "float": _float_type_def, "double": _float_type_def, "boolean": _bool_type_def, "null": _null_type_def, "Any": _any_type_def, } class DotNetCodeGen(CodeGenBase): """Generation of TypeScript code for a given Schema Salad definition.""" def __init__( self, base: str, examples: Optional[str], target: Optional[str], package: str ) -> None: """Initialize the TypeScript codegen.""" super().__init__() self.target_dir = Path(target or ".").resolve() self.main_src_dir = self.target_dir / package / "src" self.test_src_dir = self.target_dir / "Test" self.test_resources_dir = self.test_src_dir / "data" self.package = package self.base_uri = base self.examples = examples def prologue(self) -> None: """Trigger to generate the prolouge code.""" for src_dir in [self.main_src_dir]: _safe_makedirs(src_dir) for primitive in prims.values(): self.declare_type(primitive) @staticmethod def safe_name(name: str) -> str: """Generate a safe version of the given name.""" avn = schema.avro_field_name(name) if avn.startswith("anon."): avn = avn[5:] if avn in ( "class", "in", "extends", "abstract", "default", "package", "arguments", "out", ): # reserved words avn = avn + "_" return avn def begin_class( self, # pylint: disable=too-many-arguments classname: str, extends: MutableSequence[str], doc: str, abstract: bool, field_names: MutableSequence[str], idfield: str, optional_fields: Set[str], ) -> None: """Produce the header for the given class.""" self.current_interface = "I" + self.safe_name(classname) cls = self.safe_name(classname) self.current_class = cls self.current_class_is_abstract = abstract interface_module_name = self.current_interface self.current_interface_target_file = self.main_src_dir / f"{interface_module_name}.cs" class_module_name = self.current_class self.current_class_target_file = self.main_src_dir / f"{class_module_name}.cs" self.current_constructor_signature = StringIO() self.current_constructor_signature_optionals = StringIO() self.current_constructor_body = StringIO() self.current_loader = StringIO() self.current_serializer = StringIO() self.current_fieldtypes: Dict[str, TypeDef] = {} self.optional_field_names: List[str] = [] self.mandatory_field_names: List[str] = [] self.idfield = idfield doc_string = f""" /// <summary> /// Auto-generated interface for {classname} """ if doc: doc_string += "///\n" doc_string += doc_to_doc_string(doc) doc_string += "\n" doc_string += "/// </summary>" with open(self.current_interface_target_file, "w") as f: _logger.info("Writing file: %s", self.current_interface_target_file) if extends: ext = " : " + ", ".join("I" + self.safe_name(e) for e in extends) else: ext = "" f.write( """#pragma warning disable CS0108 namespace {package}; {docstring} public interface {cls}{ext} {{ """.format( docstring=doc_string, cls=f"{self.current_interface}", ext=ext, package=self.package, ) ) if self.current_class_is_abstract: return doc_string = f""" /// <summary> /// Auto-generated class implementation for {classname} """ if doc: doc_string += "///\n" doc_string += doc_to_doc_string(doc) doc_string += "\n" doc_string += "/// </summary>" with open(self.current_class_target_file, "w") as f: _logger.info("Writing file: %s", self.current_class_target_file) f.write( """using System.Collections; using OneOf; using OneOf.Types; namespace {package}; {docstring} public class {cls} : {current_interface}, ISaveable {{ readonly LoadingOptions loadingOptions; readonly Dictionary<object, object> extensionFields; """.format( cls=cls, current_interface=self.current_interface, docstring=doc_string, package=self.package, ) ) self.current_constructor_signature.write( "\n" + "\n" + " public {cls}(".format( cls=cls, ) ) self.current_constructor_body.write( """ this.loadingOptions = loadingOptions ?? new LoadingOptions(); this.extensionFields = extensionFields ?? new Dictionary<object, object>(); """ ) self.current_loader.write( """ public static ISaveable FromDoc(object doc__, string baseUri, LoadingOptions loadingOptions, string? docRoot = null) { List<ValidationException> errors = new(); if (doc__ is not IDictionary) { throw new ValidationException("Document has to be of type Dictionary"); } Dictionary<object, object> doc_ = ((IDictionary)doc__) .Cast<dynamic>() .ToDictionary(entry => entry.Key, entry => entry.Value); """ ) self.current_serializer.write( """ public Dictionary<object, object> Save(bool top = false, string baseUrl = "", bool relativeUris = true) { Dictionary<object, object> r = new(); foreach (KeyValuePair<object, object> ef in extensionFields) { r[loadingOptions.PrefixUrl((string)ef.Value)] = ef.Value; } """ ) def end_class(self, classname: str, field_names: List[str]) -> None: """Signal that we are done with this class.""" with open(self.current_interface_target_file, "a") as f: f.write("}\n") if self.current_class_is_abstract: return self.current_constructor_signature.write( self.current_constructor_signature_optionals.getvalue() ) self.current_constructor_signature.write( "LoadingOptions? loadingOptions = null, " "Dictionary<object, object>? extensionFields = null)" "\n " "{" ) self.current_constructor_body.write(" }\n") self.current_loader.write( """ Dictionary<object, object> extensionFields = new(); foreach (KeyValuePair<object, object> v in doc_) {{ if (!attr.Contains(v.Key)) {{ if (((string)v.Key).Contains(':')) {{ string ex = loadingOptions.ExpandUrl((string)v.Key, "", false, false, null); extensionFields[ex] = v.Value; }} else {{ errors.Add( new ValidationException($"invalid field {{v.Key}}," + "expected one of {fields}")); break; }} }} }} if (errors.Count > 0) {{ throw new ValidationException("", errors); }} {classname} res__ = new( """.format( classname=self.current_class, fields=", ".join(["`" + f + "`" for f in field_names]), ) ) self.current_loader.write("loadingOptions: loadingOptions") if len(self.mandatory_field_names) > 0: self.current_loader.write( ",\n " + ",\n ".join(f + ": " + f for f in self.mandatory_field_names) ) self.current_loader.write("\n );\n") for optionalField in self.optional_field_names: self.current_loader.write( f""" if ({optionalField} != null) {{ res__.{optionalField} = {optionalField}; }} """ ) self.current_loader.write("\n return res__;") self.current_loader.write("\n " + "}" + "\n") self.current_serializer.write( """ if (top) { if (loadingOptions.namespaces != null) { r["$namespaces"] = loadingOptions.namespaces; } if (this.loadingOptions.schemas != null) { r["$schemas"] = loadingOptions.schemas; } } return r; } """ ) with open( self.current_class_target_file, "a", ) as f: f.write(self.current_constructor_signature.getvalue()) f.write(self.current_constructor_body.getvalue()) f.write(self.current_loader.getvalue()) f.write(self.current_serializer.getvalue()) f.write( " static readonly System.Collections.Generic.HashSet<string>" + " attr = new() { " + ", ".join(['"' + shortname(f) + '"' for f in field_names]) + " };" ) f.write( """ } """ ) def type_loader(self, type_declaration: Union[List[Any], Dict[str, Any], str]) -> TypeDef: """Parse the given type declaration and declare its components.""" if isinstance(type_declaration, MutableSequence): sub_types = [self.type_loader(i) for i in type_declaration] sub_names: List[str] = list(dict.fromkeys([i.name for i in sub_types])) sub_instance_types: List[str] = list( dict.fromkeys([i.instance_type for i in sub_types if i.instance_type is not None]) ) return self.declare_type( TypeDef( name="union_of_{}".format("_or_".join(sub_names)), init="new UnionLoader(new List<ILoader> {{ {} }})".format(", ".join(sub_names)), instance_type="OneOf<" + ", ".join(sub_instance_types) + ">", loader_type="ILoader<object>", ) ) if isinstance(type_declaration, MutableMapping): if type_declaration["type"] in ( "array", "https://w3id.org/cwl/salad#array", ): i = self.type_loader(type_declaration["items"]) return self.declare_type( TypeDef( instance_type=f"List<{i.instance_type}>", name=f"array_of_{i.name}", loader_type=f"ILoader<List<{i.instance_type}>>", init=f"new ArrayLoader<{i.instance_type}>({i.name})", ) ) if type_declaration["type"] in ("enum", "https://w3id.org/cwl/salad#enum"): return self.type_loader_enum(type_declaration) if type_declaration["type"] in ( "record", "https://w3id.org/cwl/salad#record", ): return self.declare_type( TypeDef( instance_type=self.safe_name(type_declaration["name"]), name=self.safe_name(type_declaration["name"]) + "Loader", init="new RecordLoader<{}>()".format( self.safe_name(type_declaration["name"]), ), loader_type="ILoader<{}>".format(self.safe_name(type_declaration["name"])), abstract=type_declaration.get("abstract", False), ) ) raise SchemaException("wft {}".format(type_declaration["type"])) if type_declaration in prims: return prims[type_declaration] if type_declaration in ("Expression", "https://w3id.org/cwl/cwl#Expression"): return self.declare_type( TypeDef( name=self.safe_name(type_declaration) + "Loader", init="new ExpressionLoader()", loader_type="ILoader<string>", instance_type="string", ) ) return self.collected_types[self.safe_name(type_declaration) + "Loader"] def type_loader_enum(self, type_declaration: Dict[str, Any]) -> TypeDef: for sym in type_declaration["symbols"]: self.add_vocab(shortname(sym), sym) enum_name = self.safe_name(type_declaration["name"]) enum_module_name = enum_name enum_path = self.main_src_dir / f"{enum_module_name}.cs" with open(enum_path, "w") as f: _logger.info("Writing file: %s", enum_path) f.write( """namespace {package}; public class {enum_name} : IEnumClass<{enum_name}> {{ private string _Name; private static readonly List<{enum_name}> members = new(); """.format( enum_name=enum_name, package=self.package ) ) for sym in type_declaration["symbols"]: const = self.safe_name(sym).replace("-", "_").replace(".", "_").upper() f.write( """ public static readonly {enum_name} {const} = new("{val}");\n""".format( const=const, val=self.safe_name(sym), enum_name=enum_name ) ) f.write( """ public string Name {{ get {{ return _Name; }} private set {{ _Name = value; }} }} public static IList<{enum_name}> Members {{ get {{ return members; }} }} private {enum_name}(string name) {{ _Name = name; members.Add(this); }} public static {enum_name} Parse(string toParse) {{ foreach ({enum_name} s in Members) {{ if (toParse == s.Name) return s; }} throw new FormatException("Could not parse string."); }} public static bool Contains(string value) {{ bool contains = false; foreach ({enum_name} s in Members) {{ if (value == s.Name) {{ contains = true; return contains; }} }} return contains; }} public static List<string> Symbols() {{ return members.Select(m => m.Name).ToList(); }} public override string ToString() {{ return _Name; }} }} """.format( enum_name=enum_name ) ) return self.declare_type( TypeDef( instance_type=enum_name, name=self.safe_name(type_declaration["name"] + "Loader"), init=f"new EnumLoader<{enum_name}>()", loader_type=f"ILoader<{enum_name}>", ) ) def declare_field( self, name: str, fieldtype: TypeDef, doc: Optional[str], optional: bool, subscope: str, ) -> None: """Output the code to load the given field.""" if self.current_class_is_abstract: return safename = self.safe_name(name) fieldname = shortname(name) self.current_fieldtypes[safename] = fieldtype if optional: self.optional_field_names.append(safename) if fieldtype.instance_type is not None and not fieldtype.instance_type.startswith( "OneOf<None" ): optionalstring = "?" else: optionalstring = "" else: self.mandatory_field_names.append(safename) optionalstring = "" with open(self.current_class_target_file, "a") as f: if doc: f.write( """ /// <summary> {doc_str} /// </summary> """.format( doc_str=doc_to_doc_string(doc, indent_level=1) ) ) f.write( " public {type}{optionalstring} {safename} {{ get; set; }}\n".format( safename=safename, type=fieldtype.instance_type, optionalstring=optionalstring, ) ) if fieldname == "class": if fieldtype.instance_type == "string": self.current_constructor_signature_optionals.write( 'string {safename} = "{val}", '.format( safename=safename, val=self.current_class ) ) else: self.current_constructor_signature_optionals.write( "{type}? {safename} = null, ".format( safename=safename, type=fieldtype.instance_type ) ) else: if not optional: self.current_constructor_signature.write( "{type} {safename}, ".format( safename=safename, type=fieldtype.instance_type, ) ) else: if fieldtype.instance_type is not None and fieldtype.instance_type.startswith( "OneOf<None" ): self.current_constructor_signature_optionals.write( "{type} {safename} = default, ".format( safename=safename, type=fieldtype.instance_type, ) ) else: self.current_constructor_signature_optionals.write( "{type}? {safename} = null, ".format( safename=safename, type=fieldtype.instance_type, ) ) if fieldname == "class" and fieldtype.instance_type != "string": self.current_constructor_body.write( " this.{safeName} = {safeName} ?? {type}.{val};\n".format( safeName=safename, type=fieldtype.instance_type, val=self.current_class.replace("-", "_").replace(".", "_").upper(), ) ) else: self.current_constructor_body.write( " this.{safeName} = {safeName};\n".format(safeName=safename) ) self.current_loader.write( """ dynamic {safename} = default!;""".format( safename=safename ) ) if optional: self.current_loader.write( """ if (doc_.ContainsKey("{fieldname}")) {{""".format( fieldname=fieldname ) ) spc = " " else: spc = " " self.current_loader.write( """ {spc} try {spc} {{ {spc} {safename} = LoaderInstances.{fieldtype} {spc} .LoadField(doc_.GetValueOrDefault("{fieldname}", null!), baseUri, {spc} loadingOptions); {spc} }} {spc} catch (ValidationException e) {spc} {{ {spc} errors.Add( {spc} new ValidationException("the `{fieldname}` field is not valid because: ", e) {spc} ); {spc} }} """.format( safename=safename, fieldname=fieldname, fieldtype=fieldtype.name, spc=spc, ) ) if optional: self.current_loader.write(" }\n") if name == self.idfield or not self.idfield: baseurl = "baseUrl" elif self.id_field_type.instance_type is not None: if self.id_field_type.instance_type.startswith("OneOf"): baseurl = ( f"(this.{self.safe_name(self.idfield)}.Value is " f'None ? "" : {self.safe_name(self.idfield)}.Value)' ) else: baseurl = f"this.{self.safe_name(self.idfield)}" if fieldtype.is_uri: self.current_serializer.write( """ object? {safename}Val = ISaveable.SaveRelativeUri({safename}, {scoped_id}, relativeUris, {ref_scope}, (string){base_url}!); if ({safename}Val is not null) {{ r["{fieldname}"] = {safename}Val; }} """.format( safename=self.safe_name(name), fieldname=shortname(name).strip(), base_url=baseurl, scoped_id=self.to_dotnet(fieldtype.scoped_id), ref_scope=self.to_dotnet(fieldtype.ref_scope), ) ) else: self.current_serializer.write( """ object? {safename}Val = ISaveable.Save({safename}, false, (string){base_url}!, relativeUris); if ({safename}Val is not null) {{ r["{fieldname}"] = {safename}Val; }} """.format( safename=self.safe_name(name), fieldname=shortname(name).strip(), base_url=baseurl, ) ) def declare_id_field( self, name: str, fieldtype: TypeDef, doc: str, optional: bool, ) -> None: """Output the code to handle the given ID field.""" self.id_field_type = fieldtype if self.current_class_is_abstract: return self.declare_field(name, fieldtype, doc, True, "") if optional: opt = f"""{self.safe_name(name)} = "_" + Guid.NewGuid();""" else: opt = """throw new ValidationException("Missing {fieldname}");""".format( fieldname=shortname(name) ) self.current_loader.write( """ if ({safename} == null) {{ if (docRoot != null) {{ {safename} = docRoot; }} else {{ {opt} }} }} else {{ baseUri = (string){safename}; }} """.format( safename=self.safe_name(name), opt=opt ) ) def to_dotnet(self, val: Any) -> Any: """Convert a Python keyword to a DotNet keyword.""" if val is True: return "true" elif val is None: return "null" elif val is False: return "false" return val def uri_loader( self, inner: TypeDef, scoped_id: bool, vocab_term: bool, ref_scope: Optional[int], ) -> TypeDef: """Construct the TypeDef for the given URI loader.""" instance_type = inner.instance_type or "object" return self.declare_type( TypeDef( instance_type=instance_type, name=f"uri{inner.name}{scoped_id}{vocab_term}{ref_scope}", loader_type="ILoader<object>", init="new UriLoader({}, {}, {}, {})".format( inner.name, self.to_dotnet(scoped_id), self.to_dotnet(vocab_term), self.to_dotnet(ref_scope), ), is_uri=True, scoped_id=scoped_id, ref_scope=ref_scope, ) ) def idmap_loader( self, field: str, inner: TypeDef, map_subject: str, map_predicate: Optional[str] ) -> TypeDef: """Construct the TypeDef for the given mapped ID loader.""" instance_type = inner.instance_type or "object" return self.declare_type( TypeDef( instance_type=instance_type, name=f"idmap{self.safe_name(field)}{inner.name}", loader_type="ILoader<object>", init='new IdMapLoader({}, "{}", "{}")'.format( inner.name, map_subject, map_predicate ), ) ) def typedsl_loader(self, inner: TypeDef, ref_scope: Optional[int]) -> TypeDef: """Construct the TypeDef for the given DSL loader.""" instance_type = inner.instance_type or "object" return self.declare_type( TypeDef( instance_type=instance_type, name=f"typedsl{self.safe_name(inner.name)}{ref_scope}", loader_type="ILoader<object>", init=(f"new TypeDSLLoader" f"({self.safe_name(inner.name)}, {ref_scope})"), ) ) def epilogue(self, root_loader: TypeDef) -> None: """Trigger to generate the epilouge code.""" pd = "This project contains .Net objects and utilities " pd = pd + ' auto-generated by <a href="https://github.com/' pd = pd + 'common-workflow-language/schema_salad">Schema Salad</a>' pd = pd + " for parsing documents corresponding to the " pd = pd + str(self.base_uri) + " schema." template_vars: MutableMapping[str, str] = dict( project_name=self.package, version="0.0.1-SNAPSHOT", project_description=pd, license_name="Apache License, Version 2.0", ) def template_from_resource(resource: Path) -> string.Template: template_str = resource.read_text("utf-8") template = string.Template(template_str) return template def expand_resource_template_to(resource: str, path: Path) -> None: template = template_from_resource(files("schema_salad").joinpath(f"dotnet/{resource}")) src = template.safe_substitute(template_vars) _ensure_directory_and_write(path, src) expand_resource_template_to("editorconfig", self.target_dir / ".editorconfig") expand_resource_template_to("gitignore", self.target_dir / ".gitignore") expand_resource_template_to("LICENSE", self.target_dir / "LICENSE") expand_resource_template_to("README.md", self.target_dir / "README.md") expand_resource_template_to("Solution.sln", self.target_dir / "Solution.sln") expand_resource_template_to( "Project.csproj.template", self.target_dir / self.package / Path(self.package + ".csproj"), ) expand_resource_template_to( "Test.csproj.template", self.test_src_dir / "Test.csproj", ) expand_resource_template_to( "docfx.json", self.target_dir / self.package / "docfx.json", ) expand_resource_template_to( "AssemblyInfo.cs", self.target_dir / self.package / "Properties" / "AssemblyInfo.cs", ) vocab = ",\n ".join( f"""["{k}"] = "{self.vocab[k]}\"""" for k in sorted(self.vocab.keys()) # noqa: B907 ) rvocab = ",\n ".join( f"""["{self.vocab[k]}"] = "{k}\"""" for k in sorted(self.vocab.keys()) # noqa: B907 ) loader_instances = "" for _, collected_type in self.collected_types.items(): if not collected_type.abstract: loader_instances += " internal static readonly {} {} = {};\n".format( collected_type.loader_type, collected_type.name, collected_type.init ) example_tests = "" if self.examples: _safe_makedirs(self.test_resources_dir) utils_resources = self.test_resources_dir / "examples" if os.path.exists(utils_resources): shutil.rmtree(utils_resources) shutil.copytree(self.examples, utils_resources) for example_name in os.listdir(self.examples): if example_name.startswith("valid"): basename = os.path.basename(example_name).rsplit(".", 1)[0] example_tests += """ [TestMethod] public void Test{basename}() {{ string? file = System.IO.File.ReadAllText("data/examples/{example_name}"); RootLoader.LoadDocument(file!, new Uri(Path.GetFullPath("data/examples/{example_name}")).AbsoluteUri); }} """.format( basename=basename.replace("-", "_").replace(".", "_"), example_name=example_name, ) template_args: MutableMapping[str, str] = dict( project_name=self.package, loader_instances=loader_instances, vocab=vocab, rvocab=rvocab, root_loader=root_loader.name, root_loader_type=root_loader.instance_type or "object", tests=example_tests, project_description=pd, ) util_src_dirs = { "util": self.main_src_dir / "util", "Test": self.test_src_dir, "DocFx": self.target_dir / "DocFx", } def copy_utils_recursive(util_src: str, util_target: Path) -> None: for util in files("schema_salad").joinpath(f"dotnet/{util_src}").iterdir(): if util.is_dir(): copy_utils_recursive(os.path.join(util_src, util.name), util_target / util.name) continue src_path = util_target / util.name src_template = template_from_resource(util) src = src_template.safe_substitute(template_args) _ensure_directory_and_write(src_path, src) for util_src, util_target in util_src_dirs.items(): copy_utils_recursive(util_src, util_target) def secondaryfilesdsl_loader(self, inner: TypeDef) -> TypeDef: """Construct the TypeDef for secondary files.""" instance_type = inner.instance_type or "any" return self.declare_type( TypeDef( name=f"secondaryfilesdsl{inner.name}", init=f"new SecondaryDSLLoader({inner.name})", loader_type="ILoader<object>", instance_type=instance_type, ) )
0.680135
0.154121
import copy import logging import os import pathlib import tempfile import uuid as _uuid__ # pylint: disable=unused-import # noqa: F401 import xml.sax # nosec from abc import ABC, abstractmethod from io import StringIO from typing import ( Any, Dict, List, MutableMapping, MutableSequence, Optional, Sequence, Tuple, Type, Union, cast, ) from urllib.parse import quote, urldefrag, urlparse, urlsplit, urlunsplit from urllib.request import pathname2url from rdflib import Graph from rdflib.plugins.parsers.notation3 import BadSyntax from ruamel.yaml.comments import CommentedMap from schema_salad.exceptions import SchemaSaladException, ValidationException from schema_salad.fetcher import DefaultFetcher, Fetcher, MemoryCachingFetcher from schema_salad.sourceline import SourceLine, add_lc_filename from schema_salad.utils import CacheType, yaml_no_ts # requires schema-salad v8.2+ _vocab: Dict[str, str] = {} _rvocab: Dict[str, str] = {} _logger = logging.getLogger("salad") IdxType = MutableMapping[str, Tuple[Any, "LoadingOptions"]] class LoadingOptions: idx: IdxType fileuri: Optional[str] baseuri: str namespaces: MutableMapping[str, str] schemas: MutableSequence[str] original_doc: Optional[Any] addl_metadata: MutableMapping[str, Any] fetcher: Fetcher vocab: Dict[str, str] rvocab: Dict[str, str] cache: CacheType imports: List[str] includes: List[str] def __init__( self, fetcher: Optional[Fetcher] = None, namespaces: Optional[Dict[str, str]] = None, schemas: Optional[List[str]] = None, fileuri: Optional[str] = None, copyfrom: Optional["LoadingOptions"] = None, original_doc: Optional[Any] = None, addl_metadata: Optional[Dict[str, str]] = None, baseuri: Optional[str] = None, idx: Optional[IdxType] = None, imports: Optional[List[str]] = None, includes: Optional[List[str]] = None, ) -> None: """Create a LoadingOptions object.""" self.original_doc = original_doc if idx is not None: self.idx = idx else: self.idx = copyfrom.idx if copyfrom is not None else {} if fileuri is not None: self.fileuri = fileuri else: self.fileuri = copyfrom.fileuri if copyfrom is not None else None if baseuri is not None: self.baseuri = baseuri else: self.baseuri = copyfrom.baseuri if copyfrom is not None else "" if namespaces is not None: self.namespaces = namespaces else: self.namespaces = copyfrom.namespaces if copyfrom is not None else {} if schemas is not None: self.schemas = schemas else: self.schemas = copyfrom.schemas if copyfrom is not None else [] if addl_metadata is not None: self.addl_metadata = addl_metadata else: self.addl_metadata = copyfrom.addl_metadata if copyfrom is not None else {} if imports is not None: self.imports = imports else: self.imports = copyfrom.imports if copyfrom is not None else [] if includes is not None: self.includes = includes else: self.includes = copyfrom.includes if copyfrom is not None else [] if fetcher is not None: self.fetcher = fetcher elif copyfrom is not None: self.fetcher = copyfrom.fetcher else: import requests from cachecontrol.caches import FileCache from cachecontrol.wrapper import CacheControl root = pathlib.Path(os.environ.get("HOME", tempfile.gettempdir())) session = CacheControl( requests.Session(), cache=FileCache(root / ".cache" / "salad"), ) self.fetcher: Fetcher = DefaultFetcher({}, session) self.cache = self.fetcher.cache if isinstance(self.fetcher, MemoryCachingFetcher) else {} self.vocab = _vocab self.rvocab = _rvocab if namespaces is not None: self.vocab = self.vocab.copy() self.rvocab = self.rvocab.copy() for k, v in namespaces.items(): self.vocab[k] = v self.rvocab[v] = k @property def graph(self) -> Graph: """Generate a merged rdflib.Graph from all entries in self.schemas.""" graph = Graph() if not self.schemas: return graph key = str(hash(tuple(self.schemas))) if key in self.cache: return cast(Graph, self.cache[key]) for schema in self.schemas: fetchurl = ( self.fetcher.urljoin(self.fileuri, schema) if self.fileuri is not None else pathlib.Path(schema).resolve().as_uri() ) if fetchurl not in self.cache or self.cache[fetchurl] is True: _logger.debug("Getting external schema %s", fetchurl) try: content = self.fetcher.fetch_text(fetchurl) except Exception as e: _logger.warning("Could not load extension schema %s: %s", fetchurl, str(e)) continue newGraph = Graph() err_msg = "unknown error" for fmt in ["xml", "turtle"]: try: newGraph.parse(data=content, format=fmt, publicID=str(fetchurl)) self.cache[fetchurl] = newGraph graph += newGraph break except (xml.sax.SAXParseException, TypeError, BadSyntax) as e: err_msg = str(e) else: _logger.warning("Could not load extension schema %s: %s", fetchurl, err_msg) self.cache[key] = graph return graph class Saveable(ABC): """Mark classes than have a save() and fromDoc() function.""" @classmethod @abstractmethod def fromDoc( cls, _doc: Any, baseuri: str, loadingOptions: LoadingOptions, docRoot: Optional[str] = None, ) -> "Saveable": """Construct this object from the result of yaml.load().""" @abstractmethod def save( self, top: bool = False, base_url: str = "", relative_uris: bool = True ) -> Dict[str, Any]: """Convert this object to a JSON/YAML friendly dictionary.""" def load_field(val, fieldtype, baseuri, loadingOptions): # type: (Union[str, Dict[str, str]], _Loader, str, LoadingOptions) -> Any if isinstance(val, MutableMapping): if "$import" in val: if loadingOptions.fileuri is None: raise SchemaSaladException("Cannot load $import without fileuri") url = loadingOptions.fetcher.urljoin(loadingOptions.fileuri, val["$import"]) result, metadata = _document_load_by_url( fieldtype, url, loadingOptions, ) loadingOptions.imports.append(url) return result if "$include" in val: if loadingOptions.fileuri is None: raise SchemaSaladException("Cannot load $import without fileuri") url = loadingOptions.fetcher.urljoin(loadingOptions.fileuri, val["$include"]) val = loadingOptions.fetcher.fetch_text(url) loadingOptions.includes.append(url) return fieldtype.load(val, baseuri, loadingOptions) save_type = Optional[Union[MutableMapping[str, Any], MutableSequence[Any], int, float, bool, str]] def save( val: Any, top: bool = True, base_url: str = "", relative_uris: bool = True, ) -> save_type: if isinstance(val, Saveable): return val.save(top=top, base_url=base_url, relative_uris=relative_uris) if isinstance(val, MutableSequence): return [save(v, top=False, base_url=base_url, relative_uris=relative_uris) for v in val] if isinstance(val, MutableMapping): newdict = {} for key in val: newdict[key] = save(val[key], top=False, base_url=base_url, relative_uris=relative_uris) return newdict if val is None or isinstance(val, (int, float, bool, str)): return val raise Exception("Not Saveable: %s" % type(val)) def save_with_metadata( val: Any, valLoadingOpts: LoadingOptions, top: bool = True, base_url: str = "", relative_uris: bool = True, ) -> save_type: """Save and set $namespaces, $schemas, $base and any other metadata fields at the top level.""" saved_val = save(val, top, base_url, relative_uris) newdict: MutableMapping[str, Any] = {} if isinstance(saved_val, MutableSequence): newdict = {"$graph": saved_val} elif isinstance(saved_val, MutableMapping): newdict = saved_val if valLoadingOpts.namespaces: newdict["$namespaces"] = valLoadingOpts.namespaces if valLoadingOpts.schemas: newdict["$schemas"] = valLoadingOpts.schemas if valLoadingOpts.baseuri: newdict["$base"] = valLoadingOpts.baseuri for k, v in valLoadingOpts.addl_metadata.items(): if k not in newdict: newdict[k] = v return newdict def expand_url( url, # type: str base_url, # type: str loadingOptions, # type: LoadingOptions scoped_id=False, # type: bool vocab_term=False, # type: bool scoped_ref=None, # type: Optional[int] ): # type: (...) -> str if url in ("@id", "@type"): return url if vocab_term and url in loadingOptions.vocab: return url if bool(loadingOptions.vocab) and ":" in url: prefix = url.split(":")[0] if prefix in loadingOptions.vocab: url = loadingOptions.vocab[prefix] + url[len(prefix) + 1 :] split = urlsplit(url) if ( (bool(split.scheme) and split.scheme in loadingOptions.fetcher.supported_schemes()) or url.startswith("$(") or url.startswith("${") ): pass elif scoped_id and not bool(split.fragment): splitbase = urlsplit(base_url) frg = "" if bool(splitbase.fragment): frg = splitbase.fragment + "/" + split.path else: frg = split.path pt = splitbase.path if splitbase.path != "" else "/" url = urlunsplit((splitbase.scheme, splitbase.netloc, pt, splitbase.query, frg)) elif scoped_ref is not None and not bool(split.fragment): splitbase = urlsplit(base_url) sp = splitbase.fragment.split("/") n = scoped_ref while n > 0 and len(sp) > 0: sp.pop() n -= 1 sp.append(url) url = urlunsplit( ( splitbase.scheme, splitbase.netloc, splitbase.path, splitbase.query, "/".join(sp), ) ) else: url = loadingOptions.fetcher.urljoin(base_url, url) if vocab_term: split = urlsplit(url) if bool(split.scheme): if url in loadingOptions.rvocab: return loadingOptions.rvocab[url] else: raise ValidationException(f"Term {url!r} not in vocabulary") return url class _Loader: def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any pass class _AnyLoader(_Loader): def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if doc is not None: return doc raise ValidationException("Expected non-null") class _PrimitiveLoader(_Loader): def __init__(self, tp): # type: (Union[type, Tuple[Type[str], Type[str]]]) -> None self.tp = tp def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if not isinstance(doc, self.tp): raise ValidationException( "Expected a {} but got {}".format( self.tp.__class__.__name__, doc.__class__.__name__ ) ) return doc def __repr__(self): # type: () -> str return str(self.tp) class _ArrayLoader(_Loader): def __init__(self, items): # type: (_Loader) -> None self.items = items def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if not isinstance(doc, MutableSequence): raise ValidationException(f"Expected a list, was {type(doc)}") r = [] # type: List[Any] errors = [] # type: List[SchemaSaladException] for i in range(0, len(doc)): try: lf = load_field(doc[i], _UnionLoader((self, self.items)), baseuri, loadingOptions) if isinstance(lf, MutableSequence): r.extend(lf) else: r.append(lf) except ValidationException as e: errors.append(e.with_sourceline(SourceLine(doc, i, str))) if errors: raise ValidationException("", None, errors) return r def __repr__(self): # type: () -> str return f"array<{self.items}>" class _EnumLoader(_Loader): def __init__(self, symbols: Sequence[str], name: str) -> None: self.symbols = symbols self.name = name def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if doc in self.symbols: return doc raise ValidationException(f"Expected one of {self.symbols}") def __repr__(self): # type: () -> str return self.name class _SecondaryDSLLoader(_Loader): def __init__(self, inner): # type: (_Loader) -> None self.inner = inner def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any r: List[Dict[str, Any]] = [] if isinstance(doc, MutableSequence): for d in doc: if isinstance(d, str): if d.endswith("?"): r.append({"pattern": d[:-1], "required": False}) else: r.append({"pattern": d}) elif isinstance(d, dict): new_dict: Dict[str, Any] = {} dict_copy = copy.deepcopy(d) if "pattern" in dict_copy: new_dict["pattern"] = dict_copy.pop("pattern") else: raise ValidationException( f"Missing pattern in secondaryFiles specification entry: {d}" ) new_dict["required"] = ( dict_copy.pop("required") if "required" in dict_copy else None ) if len(dict_copy): raise ValidationException( "Unallowed values in secondaryFiles specification entry: {}".format( dict_copy ) ) r.append(new_dict) else: raise ValidationException( "Expected a string or sequence of (strings or mappings)." ) elif isinstance(doc, MutableMapping): new_dict = {} doc_copy = copy.deepcopy(doc) if "pattern" in doc_copy: new_dict["pattern"] = doc_copy.pop("pattern") else: raise ValidationException( f"Missing pattern in secondaryFiles specification entry: {doc}" ) new_dict["required"] = doc_copy.pop("required") if "required" in doc_copy else None if len(doc_copy): raise ValidationException( f"Unallowed values in secondaryFiles specification entry: {doc_copy}" ) r.append(new_dict) elif isinstance(doc, str): if doc.endswith("?"): r.append({"pattern": doc[:-1], "required": False}) else: r.append({"pattern": doc}) else: raise ValidationException("Expected str or sequence of str") return self.inner.load(r, baseuri, loadingOptions, docRoot) class _RecordLoader(_Loader): def __init__(self, classtype): # type: (Type[Saveable]) -> None self.classtype = classtype def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if not isinstance(doc, MutableMapping): raise ValidationException(f"Expected a dict, was {type(doc)}") return self.classtype.fromDoc(doc, baseuri, loadingOptions, docRoot=docRoot) def __repr__(self): # type: () -> str return str(self.classtype.__name__) class _ExpressionLoader(_Loader): def __init__(self, items: Type[str]) -> None: self.items = items def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if not isinstance(doc, str): raise ValidationException(f"Expected a str, was {type(doc)}") return doc class _UnionLoader(_Loader): def __init__(self, alternates: Sequence[_Loader]) -> None: self.alternates = alternates def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any errors = [] for t in self.alternates: try: return t.load(doc, baseuri, loadingOptions, docRoot=docRoot) except ValidationException as e: errors.append(ValidationException(f"tried {t} but", None, [e])) raise ValidationException("", None, errors, "-") def __repr__(self): # type: () -> str return " | ".join(str(a) for a in self.alternates) class _URILoader(_Loader): def __init__(self, inner, scoped_id, vocab_term, scoped_ref): # type: (_Loader, bool, bool, Union[int, None]) -> None self.inner = inner self.scoped_id = scoped_id self.vocab_term = vocab_term self.scoped_ref = scoped_ref def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if isinstance(doc, MutableSequence): newdoc = [] for i in doc: if isinstance(i, str): newdoc.append( expand_url( i, baseuri, loadingOptions, self.scoped_id, self.vocab_term, self.scoped_ref, ) ) else: newdoc.append(i) doc = newdoc elif isinstance(doc, str): doc = expand_url( doc, baseuri, loadingOptions, self.scoped_id, self.vocab_term, self.scoped_ref, ) return self.inner.load(doc, baseuri, loadingOptions) class _TypeDSLLoader(_Loader): def __init__(self, inner, refScope, salad_version): # type: (_Loader, Union[int, None], str) -> None self.inner = inner self.refScope = refScope self.salad_version = salad_version def resolve( self, doc, # type: str baseuri, # type: str loadingOptions, # type: LoadingOptions ): # type: (...) -> Union[List[Union[Dict[str, Any], str]], Dict[str, Any], str] doc_ = doc optional = False if doc_.endswith("?"): optional = True doc_ = doc_[0:-1] if doc_.endswith("[]"): salad_versions = [int(v) for v in self.salad_version[1:].split(".")] items = "" # type: Union[List[Union[Dict[str, Any], str]], Dict[str, Any], str] rest = doc_[0:-2] if salad_versions < [1, 3]: if rest.endswith("[]"): # To show the error message with the original type return doc else: items = expand_url(rest, baseuri, loadingOptions, False, True, self.refScope) else: items = self.resolve(rest, baseuri, loadingOptions) if isinstance(items, str): items = expand_url(items, baseuri, loadingOptions, False, True, self.refScope) expanded = {"type": "array", "items": items} # type: Union[Dict[str, Any], str] else: expanded = expand_url(doc_, baseuri, loadingOptions, False, True, self.refScope) if optional: return ["null", expanded] else: return expanded def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if isinstance(doc, MutableSequence): r = [] # type: List[Any] for d in doc: if isinstance(d, str): resolved = self.resolve(d, baseuri, loadingOptions) if isinstance(resolved, MutableSequence): for i in resolved: if i not in r: r.append(i) else: if resolved not in r: r.append(resolved) else: r.append(d) doc = r elif isinstance(doc, str): doc = self.resolve(doc, baseuri, loadingOptions) return self.inner.load(doc, baseuri, loadingOptions) class _IdMapLoader(_Loader): def __init__(self, inner, mapSubject, mapPredicate): # type: (_Loader, str, Union[str, None]) -> None self.inner = inner self.mapSubject = mapSubject self.mapPredicate = mapPredicate def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if isinstance(doc, MutableMapping): r = [] # type: List[Any] for k in sorted(doc.keys()): val = doc[k] if isinstance(val, CommentedMap): v = copy.copy(val) v.lc.data = val.lc.data v.lc.filename = val.lc.filename v[self.mapSubject] = k r.append(v) elif isinstance(val, MutableMapping): v2 = copy.copy(val) v2[self.mapSubject] = k r.append(v2) else: if self.mapPredicate: v3 = {self.mapPredicate: val} v3[self.mapSubject] = k r.append(v3) else: raise ValidationException("No mapPredicate") doc = r return self.inner.load(doc, baseuri, loadingOptions) def _document_load( loader: _Loader, doc: Union[str, MutableMapping[str, Any], MutableSequence[Any]], baseuri: str, loadingOptions: LoadingOptions, addl_metadata_fields: Optional[MutableSequence[str]] = None, ) -> Tuple[Any, LoadingOptions]: if isinstance(doc, str): return _document_load_by_url( loader, loadingOptions.fetcher.urljoin(baseuri, doc), loadingOptions, addl_metadata_fields=addl_metadata_fields, ) if isinstance(doc, MutableMapping): addl_metadata = {} if addl_metadata_fields is not None: for mf in addl_metadata_fields: if mf in doc: addl_metadata[mf] = doc[mf] docuri = baseuri if "$base" in doc: baseuri = doc["$base"] loadingOptions = LoadingOptions( copyfrom=loadingOptions, namespaces=doc.get("$namespaces", None), schemas=doc.get("$schemas", None), baseuri=doc.get("$base", None), addl_metadata=addl_metadata, ) doc = {k: v for k, v in doc.items() if k not in ("$namespaces", "$schemas", "$base")} if "$graph" in doc: loadingOptions.idx[baseuri] = ( loader.load(doc["$graph"], baseuri, loadingOptions), loadingOptions, ) else: loadingOptions.idx[baseuri] = ( loader.load(doc, baseuri, loadingOptions, docRoot=baseuri), loadingOptions, ) if docuri != baseuri: loadingOptions.idx[docuri] = loadingOptions.idx[baseuri] return loadingOptions.idx[baseuri] if isinstance(doc, MutableSequence): loadingOptions.idx[baseuri] = ( loader.load(doc, baseuri, loadingOptions), loadingOptions, ) return loadingOptions.idx[baseuri] raise ValidationException( "Expected URI string, MutableMapping or MutableSequence, got %s" % type(doc) ) def _document_load_by_url( loader: _Loader, url: str, loadingOptions: LoadingOptions, addl_metadata_fields: Optional[MutableSequence[str]] = None, ) -> Tuple[Any, LoadingOptions]: if url in loadingOptions.idx: return loadingOptions.idx[url] doc_url, frg = urldefrag(url) text = loadingOptions.fetcher.fetch_text(doc_url) textIO = StringIO(text) textIO.name = str(doc_url) yaml = yaml_no_ts() result = yaml.load(textIO) add_lc_filename(result, doc_url) loadingOptions = LoadingOptions(copyfrom=loadingOptions, fileuri=doc_url) _document_load( loader, result, doc_url, loadingOptions, addl_metadata_fields=addl_metadata_fields, ) return loadingOptions.idx[url] def file_uri(path, split_frag=False): # type: (str, bool) -> str if path.startswith("file://"): return path if split_frag: pathsp = path.split("#", 2) frag = "#" + quote(str(pathsp[1])) if len(pathsp) == 2 else "" urlpath = pathname2url(str(pathsp[0])) else: urlpath = pathname2url(path) frag = "" if urlpath.startswith("//"): return f"file:{urlpath}{frag}" return f"file://{urlpath}{frag}" def prefix_url(url: str, namespaces: Dict[str, str]) -> str: """Expand short forms into full URLs using the given namespace dictionary.""" for k, v in namespaces.items(): if url.startswith(v): return k + ":" + url[len(v) :] return url def save_relative_uri( uri: Any, base_url: str, scoped_id: bool, ref_scope: Optional[int], relative_uris: bool, ) -> Any: """Convert any URI to a relative one, obeying the scoping rules.""" if isinstance(uri, MutableSequence): return [save_relative_uri(u, base_url, scoped_id, ref_scope, relative_uris) for u in uri] elif isinstance(uri, str): if not relative_uris or uri == base_url: return uri urisplit = urlsplit(uri) basesplit = urlsplit(base_url) if urisplit.scheme == basesplit.scheme and urisplit.netloc == basesplit.netloc: if urisplit.path != basesplit.path: p = os.path.relpath(urisplit.path, os.path.dirname(basesplit.path)) if urisplit.fragment: p = p + "#" + urisplit.fragment return p basefrag = basesplit.fragment + "/" if ref_scope: sp = basefrag.split("/") i = 0 while i < ref_scope: sp.pop() i += 1 basefrag = "/".join(sp) if urisplit.fragment.startswith(basefrag): return urisplit.fragment[len(basefrag) :] return urisplit.fragment return uri else: return save(uri, top=False, base_url=base_url, relative_uris=relative_uris) def shortname(inputid: str) -> str: """ Compute the shortname of a fully qualified identifier. See https://w3id.org/cwl/v1.2/SchemaSalad.html#Short_names. """ parsed_id = urlparse(inputid) if parsed_id.fragment: return parsed_id.fragment.split("/")[-1] return parsed_id.path.split("/")[-1] def parser_info() -> str: return "org.w3id.cwl.salad" class Documented(Saveable): pass class RecordField(Documented): """ A field of a record. """ def __init__( self, name: Any, type: Any, doc: Optional[Any] = None, extension_fields: Optional[Dict[str, Any]] = None, loadingOptions: Optional[LoadingOptions] = None, ) -> None: if extension_fields: self.extension_fields = extension_fields else: self.extension_fields = CommentedMap() if loadingOptions: self.loadingOptions = loadingOptions else: self.loadingOptions = LoadingOptions() self.doc = doc self.name = name self.type = type def __eq__(self, other: Any) -> bool: if isinstance(other, RecordField): return bool( self.doc == other.doc and self.name == other.name and self.type == other.type ) return False def __hash__(self) -> int: return hash((self.doc, self.name, self.type)) @classmethod def fromDoc( cls, doc: Any, baseuri: str, loadingOptions: LoadingOptions, docRoot: Optional[str] = None, ) -> "RecordField": _doc = copy.copy(doc) if hasattr(doc, "lc"): _doc.lc.data = doc.lc.data _doc.lc.filename = doc.lc.filename _errors__ = [] if "name" in _doc: try: name = load_field( _doc.get("name"), uri_strtype_True_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'name' field is not valid because:", SourceLine(_doc, "name", str), [e], ) ) else: name = None __original_name_is_none = name is None if name is None: if docRoot is not None: name = docRoot else: raise ValidationException("Missing name") if not __original_name_is_none: baseuri = name if "doc" in _doc: try: doc = load_field( _doc.get("doc"), union_of_None_type_or_strtype_or_array_of_strtype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'doc' field is not valid because:", SourceLine(_doc, "doc", str), [e], ) ) else: doc = None try: type = load_field( _doc.get("type"), typedsl_union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype_or_array_of_union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype_2, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'type' field is not valid because:", SourceLine(_doc, "type", str), [e], ) ) extension_fields: Dict[str, Any] = {} for k in _doc.keys(): if k not in cls.attrs: if ":" in k: ex = expand_url( k, "", loadingOptions, scoped_id=False, vocab_term=False ) extension_fields[ex] = _doc[k] else: _errors__.append( ValidationException( "invalid field `{}`, expected one of: `doc`, `name`, `type`".format( k ), SourceLine(_doc, k, str), ) ) break if _errors__: raise ValidationException("Trying 'RecordField'", None, _errors__) _constructed = cls( doc=doc, name=name, type=type, extension_fields=extension_fields, loadingOptions=loadingOptions, ) loadingOptions.idx[name] = (_constructed, loadingOptions) return _constructed def save( self, top: bool = False, base_url: str = "", relative_uris: bool = True ) -> Dict[str, Any]: r: Dict[str, Any] = {} if relative_uris: for ef in self.extension_fields: r[prefix_url(ef, self.loadingOptions.vocab)] = self.extension_fields[ef] else: for ef in self.extension_fields: r[ef] = self.extension_fields[ef] if self.name is not None: u = save_relative_uri(self.name, base_url, True, None, relative_uris) r["name"] = u if self.doc is not None: r["doc"] = save( self.doc, top=False, base_url=self.name, relative_uris=relative_uris ) if self.type is not None: r["type"] = save( self.type, top=False, base_url=self.name, relative_uris=relative_uris ) # top refers to the directory level if top: if self.loadingOptions.namespaces: r["$namespaces"] = self.loadingOptions.namespaces if self.loadingOptions.schemas: r["$schemas"] = self.loadingOptions.schemas return r attrs = frozenset(["doc", "name", "type"]) class RecordSchema(Saveable): def __init__( self, type: Any, fields: Optional[Any] = None, extension_fields: Optional[Dict[str, Any]] = None, loadingOptions: Optional[LoadingOptions] = None, ) -> None: if extension_fields: self.extension_fields = extension_fields else: self.extension_fields = CommentedMap() if loadingOptions: self.loadingOptions = loadingOptions else: self.loadingOptions = LoadingOptions() self.fields = fields self.type = type def __eq__(self, other: Any) -> bool: if isinstance(other, RecordSchema): return bool(self.fields == other.fields and self.type == other.type) return False def __hash__(self) -> int: return hash((self.fields, self.type)) @classmethod def fromDoc( cls, doc: Any, baseuri: str, loadingOptions: LoadingOptions, docRoot: Optional[str] = None, ) -> "RecordSchema": _doc = copy.copy(doc) if hasattr(doc, "lc"): _doc.lc.data = doc.lc.data _doc.lc.filename = doc.lc.filename _errors__ = [] if "fields" in _doc: try: fields = load_field( _doc.get("fields"), idmap_fields_union_of_None_type_or_array_of_RecordFieldLoader, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'fields' field is not valid because:", SourceLine(_doc, "fields", str), [e], ) ) else: fields = None try: type = load_field( _doc.get("type"), typedsl_Record_nameLoader_2, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'type' field is not valid because:", SourceLine(_doc, "type", str), [e], ) ) extension_fields: Dict[str, Any] = {} for k in _doc.keys(): if k not in cls.attrs: if ":" in k: ex = expand_url( k, "", loadingOptions, scoped_id=False, vocab_term=False ) extension_fields[ex] = _doc[k] else: _errors__.append( ValidationException( "invalid field `{}`, expected one of: `fields`, `type`".format( k ), SourceLine(_doc, k, str), ) ) break if _errors__: raise ValidationException("Trying 'RecordSchema'", None, _errors__) _constructed = cls( fields=fields, type=type, extension_fields=extension_fields, loadingOptions=loadingOptions, ) return _constructed def save( self, top: bool = False, base_url: str = "", relative_uris: bool = True ) -> Dict[str, Any]: r: Dict[str, Any] = {} if relative_uris: for ef in self.extension_fields: r[prefix_url(ef, self.loadingOptions.vocab)] = self.extension_fields[ef] else: for ef in self.extension_fields: r[ef] = self.extension_fields[ef] if self.fields is not None: r["fields"] = save( self.fields, top=False, base_url=base_url, relative_uris=relative_uris ) if self.type is not None: r["type"] = save( self.type, top=False, base_url=base_url, relative_uris=relative_uris ) # top refers to the directory level if top: if self.loadingOptions.namespaces: r["$namespaces"] = self.loadingOptions.namespaces if self.loadingOptions.schemas: r["$schemas"] = self.loadingOptions.schemas return r attrs = frozenset(["fields", "type"]) class EnumSchema(Saveable): """ Define an enumerated type. """ def __init__( self, symbols: Any, type: Any, name: Optional[Any] = None, extension_fields: Optional[Dict[str, Any]] = None, loadingOptions: Optional[LoadingOptions] = None, ) -> None: if extension_fields: self.extension_fields = extension_fields else: self.extension_fields = CommentedMap() if loadingOptions: self.loadingOptions = loadingOptions else: self.loadingOptions = LoadingOptions() self.name = name self.symbols = symbols self.type = type def __eq__(self, other: Any) -> bool: if isinstance(other, EnumSchema): return bool( self.name == other.name and self.symbols == other.symbols and self.type == other.type ) return False def __hash__(self) -> int: return hash((self.name, self.symbols, self.type)) @classmethod def fromDoc( cls, doc: Any, baseuri: str, loadingOptions: LoadingOptions, docRoot: Optional[str] = None, ) -> "EnumSchema": _doc = copy.copy(doc) if hasattr(doc, "lc"): _doc.lc.data = doc.lc.data _doc.lc.filename = doc.lc.filename _errors__ = [] if "name" in _doc: try: name = load_field( _doc.get("name"), uri_union_of_None_type_or_strtype_True_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'name' field is not valid because:", SourceLine(_doc, "name", str), [e], ) ) else: name = None __original_name_is_none = name is None if name is None: if docRoot is not None: name = docRoot else: name = "_:" + str(_uuid__.uuid4()) if not __original_name_is_none: baseuri = name try: symbols = load_field( _doc.get("symbols"), uri_array_of_strtype_True_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'symbols' field is not valid because:", SourceLine(_doc, "symbols", str), [e], ) ) try: type = load_field( _doc.get("type"), typedsl_Enum_nameLoader_2, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'type' field is not valid because:", SourceLine(_doc, "type", str), [e], ) ) extension_fields: Dict[str, Any] = {} for k in _doc.keys(): if k not in cls.attrs: if ":" in k: ex = expand_url( k, "", loadingOptions, scoped_id=False, vocab_term=False ) extension_fields[ex] = _doc[k] else: _errors__.append( ValidationException( "invalid field `{}`, expected one of: `name`, `symbols`, `type`".format( k ), SourceLine(_doc, k, str), ) ) break if _errors__: raise ValidationException("Trying 'EnumSchema'", None, _errors__) _constructed = cls( name=name, symbols=symbols, type=type, extension_fields=extension_fields, loadingOptions=loadingOptions, ) loadingOptions.idx[name] = (_constructed, loadingOptions) return _constructed def save( self, top: bool = False, base_url: str = "", relative_uris: bool = True ) -> Dict[str, Any]: r: Dict[str, Any] = {} if relative_uris: for ef in self.extension_fields: r[prefix_url(ef, self.loadingOptions.vocab)] = self.extension_fields[ef] else: for ef in self.extension_fields: r[ef] = self.extension_fields[ef] if self.name is not None: u = save_relative_uri(self.name, base_url, True, None, relative_uris) r["name"] = u if self.symbols is not None: u = save_relative_uri(self.symbols, self.name, True, None, relative_uris) r["symbols"] = u if self.type is not None: r["type"] = save( self.type, top=False, base_url=self.name, relative_uris=relative_uris ) # top refers to the directory level if top: if self.loadingOptions.namespaces: r["$namespaces"] = self.loadingOptions.namespaces if self.loadingOptions.schemas: r["$schemas"] = self.loadingOptions.schemas return r attrs = frozenset(["name", "symbols", "type"]) class ArraySchema(Saveable): def __init__( self, items: Any, type: Any, extension_fields: Optional[Dict[str, Any]] = None, loadingOptions: Optional[LoadingOptions] = None, ) -> None: if extension_fields: self.extension_fields = extension_fields else: self.extension_fields = CommentedMap() if loadingOptions: self.loadingOptions = loadingOptions else: self.loadingOptions = LoadingOptions() self.items = items self.type = type def __eq__(self, other: Any) -> bool: if isinstance(other, ArraySchema): return bool(self.items == other.items and self.type == other.type) return False def __hash__(self) -> int: return hash((self.items, self.type)) @classmethod def fromDoc( cls, doc: Any, baseuri: str, loadingOptions: LoadingOptions, docRoot: Optional[str] = None, ) -> "ArraySchema": _doc = copy.copy(doc) if hasattr(doc, "lc"): _doc.lc.data = doc.lc.data _doc.lc.filename = doc.lc.filename _errors__ = [] try: items = load_field( _doc.get("items"), uri_union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype_or_array_of_union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype_False_True_2, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'items' field is not valid because:", SourceLine(_doc, "items", str), [e], ) ) try: type = load_field( _doc.get("type"), typedsl_Array_nameLoader_2, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'type' field is not valid because:", SourceLine(_doc, "type", str), [e], ) ) extension_fields: Dict[str, Any] = {} for k in _doc.keys(): if k not in cls.attrs: if ":" in k: ex = expand_url( k, "", loadingOptions, scoped_id=False, vocab_term=False ) extension_fields[ex] = _doc[k] else: _errors__.append( ValidationException( "invalid field `{}`, expected one of: `items`, `type`".format( k ), SourceLine(_doc, k, str), ) ) break if _errors__: raise ValidationException("Trying 'ArraySchema'", None, _errors__) _constructed = cls( items=items, type=type, extension_fields=extension_fields, loadingOptions=loadingOptions, ) return _constructed def save( self, top: bool = False, base_url: str = "", relative_uris: bool = True ) -> Dict[str, Any]: r: Dict[str, Any] = {} if relative_uris: for ef in self.extension_fields: r[prefix_url(ef, self.loadingOptions.vocab)] = self.extension_fields[ef] else: for ef in self.extension_fields: r[ef] = self.extension_fields[ef] if self.items is not None: u = save_relative_uri(self.items, base_url, False, 2, relative_uris) r["items"] = u if self.type is not None: r["type"] = save( self.type, top=False, base_url=base_url, relative_uris=relative_uris ) # top refers to the directory level if top: if self.loadingOptions.namespaces: r["$namespaces"] = self.loadingOptions.namespaces if self.loadingOptions.schemas: r["$schemas"] = self.loadingOptions.schemas return r attrs = frozenset(["items", "type"]) class JsonldPredicate(Saveable): """ Attached to a record field to define how the parent record field is handled for URI resolution and JSON-LD context generation. """ def __init__( self, _id: Optional[Any] = None, _type: Optional[Any] = None, _container: Optional[Any] = None, identity: Optional[Any] = None, noLinkCheck: Optional[Any] = None, mapSubject: Optional[Any] = None, mapPredicate: Optional[Any] = None, refScope: Optional[Any] = None, typeDSL: Optional[Any] = None, secondaryFilesDSL: Optional[Any] = None, subscope: Optional[Any] = None, extension_fields: Optional[Dict[str, Any]] = None, loadingOptions: Optional[LoadingOptions] = None, ) -> None: if extension_fields: self.extension_fields = extension_fields else: self.extension_fields = CommentedMap() if loadingOptions: self.loadingOptions = loadingOptions else: self.loadingOptions = LoadingOptions() self._id = _id self._type = _type self._container = _container self.identity = identity self.noLinkCheck = noLinkCheck self.mapSubject = mapSubject self.mapPredicate = mapPredicate self.refScope = refScope self.typeDSL = typeDSL self.secondaryFilesDSL = secondaryFilesDSL self.subscope = subscope def __eq__(self, other: Any) -> bool: if isinstance(other, JsonldPredicate): return bool( self._id == other._id and self._type == other._type and self._container == other._container and self.identity == other.identity and self.noLinkCheck == other.noLinkCheck and self.mapSubject == other.mapSubject and self.mapPredicate == other.mapPredicate and self.refScope == other.refScope and self.typeDSL == other.typeDSL and self.secondaryFilesDSL == other.secondaryFilesDSL and self.subscope == other.subscope ) return False def __hash__(self) -> int: return hash( ( self._id, self._type, self._container, self.identity, self.noLinkCheck, self.mapSubject, self.mapPredicate, self.refScope, self.typeDSL, self.secondaryFilesDSL, self.subscope, ) ) @classmethod def fromDoc( cls, doc: Any, baseuri: str, loadingOptions: LoadingOptions, docRoot: Optional[str] = None, ) -> "JsonldPredicate": _doc = copy.copy(doc) if hasattr(doc, "lc"): _doc.lc.data = doc.lc.data _doc.lc.filename = doc.lc.filename _errors__ = [] if "_id" in _doc: try: _id = load_field( _doc.get("_id"), uri_union_of_None_type_or_strtype_True_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the '_id' field is not valid because:", SourceLine(_doc, "_id", str), [e], ) ) else: _id = None if "_type" in _doc: try: _type = load_field( _doc.get("_type"), union_of_None_type_or_strtype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the '_type' field is not valid because:", SourceLine(_doc, "_type", str), [e], ) ) else: _type = None if "_container" in _doc: try: _container = load_field( _doc.get("_container"), union_of_None_type_or_strtype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the '_container' field is not valid because:", SourceLine(_doc, "_container", str), [e], ) ) else: _container = None if "identity" in _doc: try: identity = load_field( _doc.get("identity"), union_of_None_type_or_booltype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'identity' field is not valid because:", SourceLine(_doc, "identity", str), [e], ) ) else: identity = None if "noLinkCheck" in _doc: try: noLinkCheck = load_field( _doc.get("noLinkCheck"), union_of_None_type_or_booltype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'noLinkCheck' field is not valid because:", SourceLine(_doc, "noLinkCheck", str), [e], ) ) else: noLinkCheck = None if "mapSubject" in _doc: try: mapSubject = load_field( _doc.get("mapSubject"), union_of_None_type_or_strtype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'mapSubject' field is not valid because:", SourceLine(_doc, "mapSubject", str), [e], ) ) else: mapSubject = None if "mapPredicate" in _doc: try: mapPredicate = load_field( _doc.get("mapPredicate"), union_of_None_type_or_strtype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'mapPredicate' field is not valid because:", SourceLine(_doc, "mapPredicate", str), [e], ) ) else: mapPredicate = None if "refScope" in _doc: try: refScope = load_field( _doc.get("refScope"), union_of_None_type_or_inttype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'refScope' field is not valid because:", SourceLine(_doc, "refScope", str), [e], ) ) else: refScope = None if "typeDSL" in _doc: try: typeDSL = load_field( _doc.get("typeDSL"), union_of_None_type_or_booltype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'typeDSL' field is not valid because:", SourceLine(_doc, "typeDSL", str), [e], ) ) else: typeDSL = None if "secondaryFilesDSL" in _doc: try: secondaryFilesDSL = load_field( _doc.get("secondaryFilesDSL"), union_of_None_type_or_booltype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'secondaryFilesDSL' field is not valid because:", SourceLine(_doc, "secondaryFilesDSL", str), [e], ) ) else: secondaryFilesDSL = None if "subscope" in _doc: try: subscope = load_field( _doc.get("subscope"), union_of_None_type_or_strtype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'subscope' field is not valid because:", SourceLine(_doc, "subscope", str), [e], ) ) else: subscope = None extension_fields: Dict[str, Any] = {} for k in _doc.keys(): if k not in cls.attrs: if ":" in k: ex = expand_url( k, "", loadingOptions, scoped_id=False, vocab_term=False ) extension_fields[ex] = _doc[k] else: _errors__.append( ValidationException( "invalid field `{}`, expected one of: `_id`, `_type`, `_container`, `identity`, `noLinkCheck`, `mapSubject`, `mapPredicate`, `refScope`, `typeDSL`, `secondaryFilesDSL`, `subscope`".format( k ), SourceLine(_doc, k, str), ) ) break if _errors__: raise ValidationException("Trying 'JsonldPredicate'", None, _errors__) _constructed = cls( _id=_id, _type=_type, _container=_container, identity=identity, noLinkCheck=noLinkCheck, mapSubject=mapSubject, mapPredicate=mapPredicate, refScope=refScope, typeDSL=typeDSL, secondaryFilesDSL=secondaryFilesDSL, subscope=subscope, extension_fields=extension_fields, loadingOptions=loadingOptions, ) return _constructed def save( self, top: bool = False, base_url: str = "", relative_uris: bool = True ) -> Dict[str, Any]: r: Dict[str, Any] = {} if relative_uris: for ef in self.extension_fields: r[prefix_url(ef, self.loadingOptions.vocab)] = self.extension_fields[ef] else: for ef in self.extension_fields: r[ef] = self.extension_fields[ef] if self._id is not None: u = save_relative_uri(self._id, base_url, True, None, relative_uris) r["_id"] = u if self._type is not None: r["_type"] = save( self._type, top=False, base_url=base_url, relative_uris=relative_uris ) if self._container is not None: r["_container"] = save( self._container, top=False, base_url=base_url, relative_uris=relative_uris, ) if self.identity is not None: r["identity"] = save( self.identity, top=False, base_url=base_url, relative_uris=relative_uris ) if self.noLinkCheck is not None: r["noLinkCheck"] = save( self.noLinkCheck, top=False, base_url=base_url, relative_uris=relative_uris, ) if self.mapSubject is not None: r["mapSubject"] = save( self.mapSubject, top=False, base_url=base_url, relative_uris=relative_uris, ) if self.mapPredicate is not None: r["mapPredicate"] = save( self.mapPredicate, top=False, base_url=base_url, relative_uris=relative_uris, ) if self.refScope is not None: r["refScope"] = save( self.refScope, top=False, base_url=base_url, relative_uris=relative_uris ) if self.typeDSL is not None: r["typeDSL"] = save( self.typeDSL, top=False, base_url=base_url, relative_uris=relative_uris ) if self.secondaryFilesDSL is not None: r["secondaryFilesDSL"] = save( self.secondaryFilesDSL, top=False, base_url=base_url, relative_uris=relative_uris, ) if self.subscope is not None: r["subscope"] = save( self.subscope, top=False, base_url=base_url, relative_uris=relative_uris ) # top refers to the directory level if top: if self.loadingOptions.namespaces: r["$namespaces"] = self.loadingOptions.namespaces if self.loadingOptions.schemas: r["$schemas"] = self.loadingOptions.schemas return r attrs = frozenset( [ "_id", "_type", "_container", "identity", "noLinkCheck", "mapSubject", "mapPredicate", "refScope", "typeDSL", "secondaryFilesDSL", "subscope", ] ) class SpecializeDef(Saveable): def __init__( self, specializeFrom: Any, specializeTo: Any, extension_fields: Optional[Dict[str, Any]] = None, loadingOptions: Optional[LoadingOptions] = None, ) -> None: if extension_fields: self.extension_fields = extension_fields else: self.extension_fields = CommentedMap() if loadingOptions: self.loadingOptions = loadingOptions else: self.loadingOptions = LoadingOptions() self.specializeFrom = specializeFrom self.specializeTo = specializeTo def __eq__(self, other: Any) -> bool: if isinstance(other, SpecializeDef): return bool( self.specializeFrom == other.specializeFrom and self.specializeTo == other.specializeTo ) return False def __hash__(self) -> int: return hash((self.specializeFrom, self.specializeTo)) @classmethod def fromDoc( cls, doc: Any, baseuri: str, loadingOptions: LoadingOptions, docRoot: Optional[str] = None, ) -> "SpecializeDef": _doc = copy.copy(doc) if hasattr(doc, "lc"): _doc.lc.data = doc.lc.data _doc.lc.filename = doc.lc.filename _errors__ = [] try: specializeFrom = load_field( _doc.get("specializeFrom"), uri_strtype_False_False_1, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'specializeFrom' field is not valid because:", SourceLine(_doc, "specializeFrom", str), [e], ) ) try: specializeTo = load_field( _doc.get("specializeTo"), uri_strtype_False_False_1, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'specializeTo' field is not valid because:", SourceLine(_doc, "specializeTo", str), [e], ) ) extension_fields: Dict[str, Any] = {} for k in _doc.keys(): if k not in cls.attrs: if ":" in k: ex = expand_url( k, "", loadingOptions, scoped_id=False, vocab_term=False ) extension_fields[ex] = _doc[k] else: _errors__.append( ValidationException( "invalid field `{}`, expected one of: `specializeFrom`, `specializeTo`".format( k ), SourceLine(_doc, k, str), ) ) break if _errors__: raise ValidationException("Trying 'SpecializeDef'", None, _errors__) _constructed = cls( specializeFrom=specializeFrom, specializeTo=specializeTo, extension_fields=extension_fields, loadingOptions=loadingOptions, ) return _constructed def save( self, top: bool = False, base_url: str = "", relative_uris: bool = True ) -> Dict[str, Any]: r: Dict[str, Any] = {} if relative_uris: for ef in self.extension_fields: r[prefix_url(ef, self.loadingOptions.vocab)] = self.extension_fields[ef] else: for ef in self.extension_fields: r[ef] = self.extension_fields[ef] if self.specializeFrom is not None: u = save_relative_uri( self.specializeFrom, base_url, False, 1, relative_uris ) r["specializeFrom"] = u if self.specializeTo is not None: u = save_relative_uri(self.specializeTo, base_url, False, 1, relative_uris) r["specializeTo"] = u # top refers to the directory level if top: if self.loadingOptions.namespaces: r["$namespaces"] = self.loadingOptions.namespaces if self.loadingOptions.schemas: r["$schemas"] = self.loadingOptions.schemas return r attrs = frozenset(["specializeFrom", "specializeTo"]) class NamedType(Saveable): pass class DocType(Documented): pass class SchemaDefinedType(DocType): """ Abstract base for schema-defined types. """ pass class SaladRecordField(RecordField): """ A field of a record. """ def __init__( self, name: Any, type: Any, doc: Optional[Any] = None, jsonldPredicate: Optional[Any] = None, default: Optional[Any] = None, extension_fields: Optional[Dict[str, Any]] = None, loadingOptions: Optional[LoadingOptions] = None, ) -> None: if extension_fields: self.extension_fields = extension_fields else: self.extension_fields = CommentedMap() if loadingOptions: self.loadingOptions = loadingOptions else: self.loadingOptions = LoadingOptions() self.doc = doc self.name = name self.type = type self.jsonldPredicate = jsonldPredicate self.default = default def __eq__(self, other: Any) -> bool: if isinstance(other, SaladRecordField): return bool( self.doc == other.doc and self.name == other.name and self.type == other.type and self.jsonldPredicate == other.jsonldPredicate and self.default == other.default ) return False def __hash__(self) -> int: return hash( (self.doc, self.name, self.type, self.jsonldPredicate, self.default) ) @classmethod def fromDoc( cls, doc: Any, baseuri: str, loadingOptions: LoadingOptions, docRoot: Optional[str] = None, ) -> "SaladRecordField": _doc = copy.copy(doc) if hasattr(doc, "lc"): _doc.lc.data = doc.lc.data _doc.lc.filename = doc.lc.filename _errors__ = [] if "name" in _doc: try: name = load_field( _doc.get("name"), uri_strtype_True_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'name' field is not valid because:", SourceLine(_doc, "name", str), [e], ) ) else: name = None __original_name_is_none = name is None if name is None: if docRoot is not None: name = docRoot else: raise ValidationException("Missing name") if not __original_name_is_none: baseuri = name if "doc" in _doc: try: doc = load_field( _doc.get("doc"), union_of_None_type_or_strtype_or_array_of_strtype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'doc' field is not valid because:", SourceLine(_doc, "doc", str), [e], ) ) else: doc = None try: type = load_field( _doc.get("type"), typedsl_union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype_or_array_of_union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype_2, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'type' field is not valid because:", SourceLine(_doc, "type", str), [e], ) ) if "jsonldPredicate" in _doc: try: jsonldPredicate = load_field( _doc.get("jsonldPredicate"), union_of_None_type_or_strtype_or_JsonldPredicateLoader, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'jsonldPredicate' field is not valid because:", SourceLine(_doc, "jsonldPredicate", str), [e], ) ) else: jsonldPredicate = None if "default" in _doc: try: default = load_field( _doc.get("default"), union_of_None_type_or_Any_type, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'default' field is not valid because:", SourceLine(_doc, "default", str), [e], ) ) else: default = None extension_fields: Dict[str, Any] = {} for k in _doc.keys(): if k not in cls.attrs: if ":" in k: ex = expand_url( k, "", loadingOptions, scoped_id=False, vocab_term=False ) extension_fields[ex] = _doc[k] else: _errors__.append( ValidationException( "invalid field `{}`, expected one of: `doc`, `name`, `type`, `jsonldPredicate`, `default`".format( k ), SourceLine(_doc, k, str), ) ) break if _errors__: raise ValidationException("Trying 'SaladRecordField'", None, _errors__) _constructed = cls( doc=doc, name=name, type=type, jsonldPredicate=jsonldPredicate, default=default, extension_fields=extension_fields, loadingOptions=loadingOptions, ) loadingOptions.idx[name] = (_constructed, loadingOptions) return _constructed def save( self, top: bool = False, base_url: str = "", relative_uris: bool = True ) -> Dict[str, Any]: r: Dict[str, Any] = {} if relative_uris: for ef in self.extension_fields: r[prefix_url(ef, self.loadingOptions.vocab)] = self.extension_fields[ef] else: for ef in self.extension_fields: r[ef] = self.extension_fields[ef] if self.name is not None: u = save_relative_uri(self.name, base_url, True, None, relative_uris) r["name"] = u if self.doc is not None: r["doc"] = save( self.doc, top=False, base_url=self.name, relative_uris=relative_uris ) if self.type is not None: r["type"] = save( self.type, top=False, base_url=self.name, relative_uris=relative_uris ) if self.jsonldPredicate is not None: r["jsonldPredicate"] = save( self.jsonldPredicate, top=False, base_url=self.name, relative_uris=relative_uris, ) if self.default is not None: r["default"] = save( self.default, top=False, base_url=self.name, relative_uris=relative_uris ) # top refers to the directory level if top: if self.loadingOptions.namespaces: r["$namespaces"] = self.loadingOptions.namespaces if self.loadingOptions.schemas: r["$schemas"] = self.loadingOptions.schemas return r attrs = frozenset(["doc", "name", "type", "jsonldPredicate", "default"]) class SaladRecordSchema(NamedType, RecordSchema, SchemaDefinedType): def __init__( self, name: Any, type: Any, inVocab: Optional[Any] = None, fields: Optional[Any] = None, doc: Optional[Any] = None, docParent: Optional[Any] = None, docChild: Optional[Any] = None, docAfter: Optional[Any] = None, jsonldPredicate: Optional[Any] = None, documentRoot: Optional[Any] = None, abstract: Optional[Any] = None, extends: Optional[Any] = None, specialize: Optional[Any] = None, extension_fields: Optional[Dict[str, Any]] = None, loadingOptions: Optional[LoadingOptions] = None, ) -> None: if extension_fields: self.extension_fields = extension_fields else: self.extension_fields = CommentedMap() if loadingOptions: self.loadingOptions = loadingOptions else: self.loadingOptions = LoadingOptions() self.name = name self.inVocab = inVocab self.fields = fields self.type = type self.doc = doc self.docParent = docParent self.docChild = docChild self.docAfter = docAfter self.jsonldPredicate = jsonldPredicate self.documentRoot = documentRoot self.abstract = abstract self.extends = extends self.specialize = specialize def __eq__(self, other: Any) -> bool: if isinstance(other, SaladRecordSchema): return bool( self.name == other.name and self.inVocab == other.inVocab and self.fields == other.fields and self.type == other.type and self.doc == other.doc and self.docParent == other.docParent and self.docChild == other.docChild and self.docAfter == other.docAfter and self.jsonldPredicate == other.jsonldPredicate and self.documentRoot == other.documentRoot and self.abstract == other.abstract and self.extends == other.extends and self.specialize == other.specialize ) return False def __hash__(self) -> int: return hash( ( self.name, self.inVocab, self.fields, self.type, self.doc, self.docParent, self.docChild, self.docAfter, self.jsonldPredicate, self.documentRoot, self.abstract, self.extends, self.specialize, ) ) @classmethod def fromDoc( cls, doc: Any, baseuri: str, loadingOptions: LoadingOptions, docRoot: Optional[str] = None, ) -> "SaladRecordSchema": _doc = copy.copy(doc) if hasattr(doc, "lc"): _doc.lc.data = doc.lc.data _doc.lc.filename = doc.lc.filename _errors__ = [] if "name" in _doc: try: name = load_field( _doc.get("name"), uri_strtype_True_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'name' field is not valid because:", SourceLine(_doc, "name", str), [e], ) ) else: name = None __original_name_is_none = name is None if name is None: if docRoot is not None: name = docRoot else: raise ValidationException("Missing name") if not __original_name_is_none: baseuri = name if "inVocab" in _doc: try: inVocab = load_field( _doc.get("inVocab"), union_of_None_type_or_booltype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'inVocab' field is not valid because:", SourceLine(_doc, "inVocab", str), [e], ) ) else: inVocab = None if "fields" in _doc: try: fields = load_field( _doc.get("fields"), idmap_fields_union_of_None_type_or_array_of_SaladRecordFieldLoader, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'fields' field is not valid because:", SourceLine(_doc, "fields", str), [e], ) ) else: fields = None try: type = load_field( _doc.get("type"), typedsl_Record_nameLoader_2, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'type' field is not valid because:", SourceLine(_doc, "type", str), [e], ) ) if "doc" in _doc: try: doc = load_field( _doc.get("doc"), union_of_None_type_or_strtype_or_array_of_strtype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'doc' field is not valid because:", SourceLine(_doc, "doc", str), [e], ) ) else: doc = None if "docParent" in _doc: try: docParent = load_field( _doc.get("docParent"), uri_union_of_None_type_or_strtype_False_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'docParent' field is not valid because:", SourceLine(_doc, "docParent", str), [e], ) ) else: docParent = None if "docChild" in _doc: try: docChild = load_field( _doc.get("docChild"), uri_union_of_None_type_or_strtype_or_array_of_strtype_False_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'docChild' field is not valid because:", SourceLine(_doc, "docChild", str), [e], ) ) else: docChild = None if "docAfter" in _doc: try: docAfter = load_field( _doc.get("docAfter"), uri_union_of_None_type_or_strtype_False_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'docAfter' field is not valid because:", SourceLine(_doc, "docAfter", str), [e], ) ) else: docAfter = None if "jsonldPredicate" in _doc: try: jsonldPredicate = load_field( _doc.get("jsonldPredicate"), union_of_None_type_or_strtype_or_JsonldPredicateLoader, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'jsonldPredicate' field is not valid because:", SourceLine(_doc, "jsonldPredicate", str), [e], ) ) else: jsonldPredicate = None if "documentRoot" in _doc: try: documentRoot = load_field( _doc.get("documentRoot"), union_of_None_type_or_booltype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'documentRoot' field is not valid because:", SourceLine(_doc, "documentRoot", str), [e], ) ) else: documentRoot = None if "abstract" in _doc: try: abstract = load_field( _doc.get("abstract"), union_of_None_type_or_booltype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'abstract' field is not valid because:", SourceLine(_doc, "abstract", str), [e], ) ) else: abstract = None if "extends" in _doc: try: extends = load_field( _doc.get("extends"), uri_union_of_None_type_or_strtype_or_array_of_strtype_False_False_1, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'extends' field is not valid because:", SourceLine(_doc, "extends", str), [e], ) ) else: extends = None if "specialize" in _doc: try: specialize = load_field( _doc.get("specialize"), idmap_specialize_union_of_None_type_or_array_of_SpecializeDefLoader, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'specialize' field is not valid because:", SourceLine(_doc, "specialize", str), [e], ) ) else: specialize = None extension_fields: Dict[str, Any] = {} for k in _doc.keys(): if k not in cls.attrs: if ":" in k: ex = expand_url( k, "", loadingOptions, scoped_id=False, vocab_term=False ) extension_fields[ex] = _doc[k] else: _errors__.append( ValidationException( "invalid field `{}`, expected one of: `name`, `inVocab`, `fields`, `type`, `doc`, `docParent`, `docChild`, `docAfter`, `jsonldPredicate`, `documentRoot`, `abstract`, `extends`, `specialize`".format( k ), SourceLine(_doc, k, str), ) ) break if _errors__: raise ValidationException("Trying 'SaladRecordSchema'", None, _errors__) _constructed = cls( name=name, inVocab=inVocab, fields=fields, type=type, doc=doc, docParent=docParent, docChild=docChild, docAfter=docAfter, jsonldPredicate=jsonldPredicate, documentRoot=documentRoot, abstract=abstract, extends=extends, specialize=specialize, extension_fields=extension_fields, loadingOptions=loadingOptions, ) loadingOptions.idx[name] = (_constructed, loadingOptions) return _constructed def save( self, top: bool = False, base_url: str = "", relative_uris: bool = True ) -> Dict[str, Any]: r: Dict[str, Any] = {} if relative_uris: for ef in self.extension_fields: r[prefix_url(ef, self.loadingOptions.vocab)] = self.extension_fields[ef] else: for ef in self.extension_fields: r[ef] = self.extension_fields[ef] if self.name is not None: u = save_relative_uri(self.name, base_url, True, None, relative_uris) r["name"] = u if self.inVocab is not None: r["inVocab"] = save( self.inVocab, top=False, base_url=self.name, relative_uris=relative_uris ) if self.fields is not None: r["fields"] = save( self.fields, top=False, base_url=self.name, relative_uris=relative_uris ) if self.type is not None: r["type"] = save( self.type, top=False, base_url=self.name, relative_uris=relative_uris ) if self.doc is not None: r["doc"] = save( self.doc, top=False, base_url=self.name, relative_uris=relative_uris ) if self.docParent is not None: u = save_relative_uri(self.docParent, self.name, False, None, relative_uris) r["docParent"] = u if self.docChild is not None: u = save_relative_uri(self.docChild, self.name, False, None, relative_uris) r["docChild"] = u if self.docAfter is not None: u = save_relative_uri(self.docAfter, self.name, False, None, relative_uris) r["docAfter"] = u if self.jsonldPredicate is not None: r["jsonldPredicate"] = save( self.jsonldPredicate, top=False, base_url=self.name, relative_uris=relative_uris, ) if self.documentRoot is not None: r["documentRoot"] = save( self.documentRoot, top=False, base_url=self.name, relative_uris=relative_uris, ) if self.abstract is not None: r["abstract"] = save( self.abstract, top=False, base_url=self.name, relative_uris=relative_uris, ) if self.extends is not None: u = save_relative_uri(self.extends, self.name, False, 1, relative_uris) r["extends"] = u if self.specialize is not None: r["specialize"] = save( self.specialize, top=False, base_url=self.name, relative_uris=relative_uris, ) # top refers to the directory level if top: if self.loadingOptions.namespaces: r["$namespaces"] = self.loadingOptions.namespaces if self.loadingOptions.schemas: r["$schemas"] = self.loadingOptions.schemas return r attrs = frozenset( [ "name", "inVocab", "fields", "type", "doc", "docParent", "docChild", "docAfter", "jsonldPredicate", "documentRoot", "abstract", "extends", "specialize", ] ) class SaladEnumSchema(NamedType, EnumSchema, SchemaDefinedType): """ Define an enumerated type. """ def __init__( self, symbols: Any, type: Any, name: Optional[Any] = None, inVocab: Optional[Any] = None, doc: Optional[Any] = None, docParent: Optional[Any] = None, docChild: Optional[Any] = None, docAfter: Optional[Any] = None, jsonldPredicate: Optional[Any] = None, documentRoot: Optional[Any] = None, extends: Optional[Any] = None, extension_fields: Optional[Dict[str, Any]] = None, loadingOptions: Optional[LoadingOptions] = None, ) -> None: if extension_fields: self.extension_fields = extension_fields else: self.extension_fields = CommentedMap() if loadingOptions: self.loadingOptions = loadingOptions else: self.loadingOptions = LoadingOptions() self.name = name self.inVocab = inVocab self.symbols = symbols self.type = type self.doc = doc self.docParent = docParent self.docChild = docChild self.docAfter = docAfter self.jsonldPredicate = jsonldPredicate self.documentRoot = documentRoot self.extends = extends def __eq__(self, other: Any) -> bool: if isinstance(other, SaladEnumSchema): return bool( self.name == other.name and self.inVocab == other.inVocab and self.symbols == other.symbols and self.type == other.type and self.doc == other.doc and self.docParent == other.docParent and self.docChild == other.docChild and self.docAfter == other.docAfter and self.jsonldPredicate == other.jsonldPredicate and self.documentRoot == other.documentRoot and self.extends == other.extends ) return False def __hash__(self) -> int: return hash( ( self.name, self.inVocab, self.symbols, self.type, self.doc, self.docParent, self.docChild, self.docAfter, self.jsonldPredicate, self.documentRoot, self.extends, ) ) @classmethod def fromDoc( cls, doc: Any, baseuri: str, loadingOptions: LoadingOptions, docRoot: Optional[str] = None, ) -> "SaladEnumSchema": _doc = copy.copy(doc) if hasattr(doc, "lc"): _doc.lc.data = doc.lc.data _doc.lc.filename = doc.lc.filename _errors__ = [] if "name" in _doc: try: name = load_field( _doc.get("name"), uri_union_of_None_type_or_strtype_True_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'name' field is not valid because:", SourceLine(_doc, "name", str), [e], ) ) else: name = None __original_name_is_none = name is None if name is None: if docRoot is not None: name = docRoot else: name = "_:" + str(_uuid__.uuid4()) if not __original_name_is_none: baseuri = name if "inVocab" in _doc: try: inVocab = load_field( _doc.get("inVocab"), union_of_None_type_or_booltype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'inVocab' field is not valid because:", SourceLine(_doc, "inVocab", str), [e], ) ) else: inVocab = None try: symbols = load_field( _doc.get("symbols"), uri_array_of_strtype_True_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'symbols' field is not valid because:", SourceLine(_doc, "symbols", str), [e], ) ) try: type = load_field( _doc.get("type"), typedsl_Enum_nameLoader_2, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'type' field is not valid because:", SourceLine(_doc, "type", str), [e], ) ) if "doc" in _doc: try: doc = load_field( _doc.get("doc"), union_of_None_type_or_strtype_or_array_of_strtype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'doc' field is not valid because:", SourceLine(_doc, "doc", str), [e], ) ) else: doc = None if "docParent" in _doc: try: docParent = load_field( _doc.get("docParent"), uri_union_of_None_type_or_strtype_False_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'docParent' field is not valid because:", SourceLine(_doc, "docParent", str), [e], ) ) else: docParent = None if "docChild" in _doc: try: docChild = load_field( _doc.get("docChild"), uri_union_of_None_type_or_strtype_or_array_of_strtype_False_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'docChild' field is not valid because:", SourceLine(_doc, "docChild", str), [e], ) ) else: docChild = None if "docAfter" in _doc: try: docAfter = load_field( _doc.get("docAfter"), uri_union_of_None_type_or_strtype_False_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'docAfter' field is not valid because:", SourceLine(_doc, "docAfter", str), [e], ) ) else: docAfter = None if "jsonldPredicate" in _doc: try: jsonldPredicate = load_field( _doc.get("jsonldPredicate"), union_of_None_type_or_strtype_or_JsonldPredicateLoader, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'jsonldPredicate' field is not valid because:", SourceLine(_doc, "jsonldPredicate", str), [e], ) ) else: jsonldPredicate = None if "documentRoot" in _doc: try: documentRoot = load_field( _doc.get("documentRoot"), union_of_None_type_or_booltype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'documentRoot' field is not valid because:", SourceLine(_doc, "documentRoot", str), [e], ) ) else: documentRoot = None if "extends" in _doc: try: extends = load_field( _doc.get("extends"), uri_union_of_None_type_or_strtype_or_array_of_strtype_False_False_1, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'extends' field is not valid because:", SourceLine(_doc, "extends", str), [e], ) ) else: extends = None extension_fields: Dict[str, Any] = {} for k in _doc.keys(): if k not in cls.attrs: if ":" in k: ex = expand_url( k, "", loadingOptions, scoped_id=False, vocab_term=False ) extension_fields[ex] = _doc[k] else: _errors__.append( ValidationException( "invalid field `{}`, expected one of: `name`, `inVocab`, `symbols`, `type`, `doc`, `docParent`, `docChild`, `docAfter`, `jsonldPredicate`, `documentRoot`, `extends`".format( k ), SourceLine(_doc, k, str), ) ) break if _errors__: raise ValidationException("Trying 'SaladEnumSchema'", None, _errors__) _constructed = cls( name=name, inVocab=inVocab, symbols=symbols, type=type, doc=doc, docParent=docParent, docChild=docChild, docAfter=docAfter, jsonldPredicate=jsonldPredicate, documentRoot=documentRoot, extends=extends, extension_fields=extension_fields, loadingOptions=loadingOptions, ) loadingOptions.idx[name] = (_constructed, loadingOptions) return _constructed def save( self, top: bool = False, base_url: str = "", relative_uris: bool = True ) -> Dict[str, Any]: r: Dict[str, Any] = {} if relative_uris: for ef in self.extension_fields: r[prefix_url(ef, self.loadingOptions.vocab)] = self.extension_fields[ef] else: for ef in self.extension_fields: r[ef] = self.extension_fields[ef] if self.name is not None: u = save_relative_uri(self.name, base_url, True, None, relative_uris) r["name"] = u if self.inVocab is not None: r["inVocab"] = save( self.inVocab, top=False, base_url=self.name, relative_uris=relative_uris ) if self.symbols is not None: u = save_relative_uri(self.symbols, self.name, True, None, relative_uris) r["symbols"] = u if self.type is not None: r["type"] = save( self.type, top=False, base_url=self.name, relative_uris=relative_uris ) if self.doc is not None: r["doc"] = save( self.doc, top=False, base_url=self.name, relative_uris=relative_uris ) if self.docParent is not None: u = save_relative_uri(self.docParent, self.name, False, None, relative_uris) r["docParent"] = u if self.docChild is not None: u = save_relative_uri(self.docChild, self.name, False, None, relative_uris) r["docChild"] = u if self.docAfter is not None: u = save_relative_uri(self.docAfter, self.name, False, None, relative_uris) r["docAfter"] = u if self.jsonldPredicate is not None: r["jsonldPredicate"] = save( self.jsonldPredicate, top=False, base_url=self.name, relative_uris=relative_uris, ) if self.documentRoot is not None: r["documentRoot"] = save( self.documentRoot, top=False, base_url=self.name, relative_uris=relative_uris, ) if self.extends is not None: u = save_relative_uri(self.extends, self.name, False, 1, relative_uris) r["extends"] = u # top refers to the directory level if top: if self.loadingOptions.namespaces: r["$namespaces"] = self.loadingOptions.namespaces if self.loadingOptions.schemas: r["$schemas"] = self.loadingOptions.schemas return r attrs = frozenset( [ "name", "inVocab", "symbols", "type", "doc", "docParent", "docChild", "docAfter", "jsonldPredicate", "documentRoot", "extends", ] ) class Documentation(NamedType, DocType): """ A documentation section. This type exists to facilitate self-documenting schemas but has no role in formal validation. """ def __init__( self, name: Any, type: Any, inVocab: Optional[Any] = None, doc: Optional[Any] = None, docParent: Optional[Any] = None, docChild: Optional[Any] = None, docAfter: Optional[Any] = None, extension_fields: Optional[Dict[str, Any]] = None, loadingOptions: Optional[LoadingOptions] = None, ) -> None: if extension_fields: self.extension_fields = extension_fields else: self.extension_fields = CommentedMap() if loadingOptions: self.loadingOptions = loadingOptions else: self.loadingOptions = LoadingOptions() self.name = name self.inVocab = inVocab self.doc = doc self.docParent = docParent self.docChild = docChild self.docAfter = docAfter self.type = type def __eq__(self, other: Any) -> bool: if isinstance(other, Documentation): return bool( self.name == other.name and self.inVocab == other.inVocab and self.doc == other.doc and self.docParent == other.docParent and self.docChild == other.docChild and self.docAfter == other.docAfter and self.type == other.type ) return False def __hash__(self) -> int: return hash( ( self.name, self.inVocab, self.doc, self.docParent, self.docChild, self.docAfter, self.type, ) ) @classmethod def fromDoc( cls, doc: Any, baseuri: str, loadingOptions: LoadingOptions, docRoot: Optional[str] = None, ) -> "Documentation": _doc = copy.copy(doc) if hasattr(doc, "lc"): _doc.lc.data = doc.lc.data _doc.lc.filename = doc.lc.filename _errors__ = [] if "name" in _doc: try: name = load_field( _doc.get("name"), uri_strtype_True_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'name' field is not valid because:", SourceLine(_doc, "name", str), [e], ) ) else: name = None __original_name_is_none = name is None if name is None: if docRoot is not None: name = docRoot else: raise ValidationException("Missing name") if not __original_name_is_none: baseuri = name if "inVocab" in _doc: try: inVocab = load_field( _doc.get("inVocab"), union_of_None_type_or_booltype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'inVocab' field is not valid because:", SourceLine(_doc, "inVocab", str), [e], ) ) else: inVocab = None if "doc" in _doc: try: doc = load_field( _doc.get("doc"), union_of_None_type_or_strtype_or_array_of_strtype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'doc' field is not valid because:", SourceLine(_doc, "doc", str), [e], ) ) else: doc = None if "docParent" in _doc: try: docParent = load_field( _doc.get("docParent"), uri_union_of_None_type_or_strtype_False_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'docParent' field is not valid because:", SourceLine(_doc, "docParent", str), [e], ) ) else: docParent = None if "docChild" in _doc: try: docChild = load_field( _doc.get("docChild"), uri_union_of_None_type_or_strtype_or_array_of_strtype_False_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'docChild' field is not valid because:", SourceLine(_doc, "docChild", str), [e], ) ) else: docChild = None if "docAfter" in _doc: try: docAfter = load_field( _doc.get("docAfter"), uri_union_of_None_type_or_strtype_False_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'docAfter' field is not valid because:", SourceLine(_doc, "docAfter", str), [e], ) ) else: docAfter = None try: type = load_field( _doc.get("type"), typedsl_Documentation_nameLoader_2, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'type' field is not valid because:", SourceLine(_doc, "type", str), [e], ) ) extension_fields: Dict[str, Any] = {} for k in _doc.keys(): if k not in cls.attrs: if ":" in k: ex = expand_url( k, "", loadingOptions, scoped_id=False, vocab_term=False ) extension_fields[ex] = _doc[k] else: _errors__.append( ValidationException( "invalid field `{}`, expected one of: `name`, `inVocab`, `doc`, `docParent`, `docChild`, `docAfter`, `type`".format( k ), SourceLine(_doc, k, str), ) ) break if _errors__: raise ValidationException("Trying 'Documentation'", None, _errors__) _constructed = cls( name=name, inVocab=inVocab, doc=doc, docParent=docParent, docChild=docChild, docAfter=docAfter, type=type, extension_fields=extension_fields, loadingOptions=loadingOptions, ) loadingOptions.idx[name] = (_constructed, loadingOptions) return _constructed def save( self, top: bool = False, base_url: str = "", relative_uris: bool = True ) -> Dict[str, Any]: r: Dict[str, Any] = {} if relative_uris: for ef in self.extension_fields: r[prefix_url(ef, self.loadingOptions.vocab)] = self.extension_fields[ef] else: for ef in self.extension_fields: r[ef] = self.extension_fields[ef] if self.name is not None: u = save_relative_uri(self.name, base_url, True, None, relative_uris) r["name"] = u if self.inVocab is not None: r["inVocab"] = save( self.inVocab, top=False, base_url=self.name, relative_uris=relative_uris ) if self.doc is not None: r["doc"] = save( self.doc, top=False, base_url=self.name, relative_uris=relative_uris ) if self.docParent is not None: u = save_relative_uri(self.docParent, self.name, False, None, relative_uris) r["docParent"] = u if self.docChild is not None: u = save_relative_uri(self.docChild, self.name, False, None, relative_uris) r["docChild"] = u if self.docAfter is not None: u = save_relative_uri(self.docAfter, self.name, False, None, relative_uris) r["docAfter"] = u if self.type is not None: r["type"] = save( self.type, top=False, base_url=self.name, relative_uris=relative_uris ) # top refers to the directory level if top: if self.loadingOptions.namespaces: r["$namespaces"] = self.loadingOptions.namespaces if self.loadingOptions.schemas: r["$schemas"] = self.loadingOptions.schemas return r attrs = frozenset( ["name", "inVocab", "doc", "docParent", "docChild", "docAfter", "type"] ) _vocab = { "Any": "https://w3id.org/cwl/salad#Any", "ArraySchema": "https://w3id.org/cwl/salad#ArraySchema", "DocType": "https://w3id.org/cwl/salad#DocType", "Documentation": "https://w3id.org/cwl/salad#Documentation", "Documented": "https://w3id.org/cwl/salad#Documented", "EnumSchema": "https://w3id.org/cwl/salad#EnumSchema", "JsonldPredicate": "https://w3id.org/cwl/salad#JsonldPredicate", "NamedType": "https://w3id.org/cwl/salad#NamedType", "PrimitiveType": "https://w3id.org/cwl/salad#PrimitiveType", "RecordField": "https://w3id.org/cwl/salad#RecordField", "RecordSchema": "https://w3id.org/cwl/salad#RecordSchema", "SaladEnumSchema": "https://w3id.org/cwl/salad#SaladEnumSchema", "SaladRecordField": "https://w3id.org/cwl/salad#SaladRecordField", "SaladRecordSchema": "https://w3id.org/cwl/salad#SaladRecordSchema", "SchemaDefinedType": "https://w3id.org/cwl/salad#SchemaDefinedType", "SpecializeDef": "https://w3id.org/cwl/salad#SpecializeDef", "array": "https://w3id.org/cwl/salad#array", "boolean": "http://www.w3.org/2001/XMLSchema#boolean", "documentation": "https://w3id.org/cwl/salad#documentation", "double": "http://www.w3.org/2001/XMLSchema#double", "enum": "https://w3id.org/cwl/salad#enum", "float": "http://www.w3.org/2001/XMLSchema#float", "int": "http://www.w3.org/2001/XMLSchema#int", "long": "http://www.w3.org/2001/XMLSchema#long", "null": "https://w3id.org/cwl/salad#null", "record": "https://w3id.org/cwl/salad#record", "string": "http://www.w3.org/2001/XMLSchema#string", } _rvocab = { "https://w3id.org/cwl/salad#Any": "Any", "https://w3id.org/cwl/salad#ArraySchema": "ArraySchema", "https://w3id.org/cwl/salad#DocType": "DocType", "https://w3id.org/cwl/salad#Documentation": "Documentation", "https://w3id.org/cwl/salad#Documented": "Documented", "https://w3id.org/cwl/salad#EnumSchema": "EnumSchema", "https://w3id.org/cwl/salad#JsonldPredicate": "JsonldPredicate", "https://w3id.org/cwl/salad#NamedType": "NamedType", "https://w3id.org/cwl/salad#PrimitiveType": "PrimitiveType", "https://w3id.org/cwl/salad#RecordField": "RecordField", "https://w3id.org/cwl/salad#RecordSchema": "RecordSchema", "https://w3id.org/cwl/salad#SaladEnumSchema": "SaladEnumSchema", "https://w3id.org/cwl/salad#SaladRecordField": "SaladRecordField", "https://w3id.org/cwl/salad#SaladRecordSchema": "SaladRecordSchema", "https://w3id.org/cwl/salad#SchemaDefinedType": "SchemaDefinedType", "https://w3id.org/cwl/salad#SpecializeDef": "SpecializeDef", "https://w3id.org/cwl/salad#array": "array", "http://www.w3.org/2001/XMLSchema#boolean": "boolean", "https://w3id.org/cwl/salad#documentation": "documentation", "http://www.w3.org/2001/XMLSchema#double": "double", "https://w3id.org/cwl/salad#enum": "enum", "http://www.w3.org/2001/XMLSchema#float": "float", "http://www.w3.org/2001/XMLSchema#int": "int", "http://www.w3.org/2001/XMLSchema#long": "long", "https://w3id.org/cwl/salad#null": "null", "https://w3id.org/cwl/salad#record": "record", "http://www.w3.org/2001/XMLSchema#string": "string", } strtype = _PrimitiveLoader(str) inttype = _PrimitiveLoader(int) floattype = _PrimitiveLoader(float) booltype = _PrimitiveLoader(bool) None_type = _PrimitiveLoader(type(None)) Any_type = _AnyLoader() PrimitiveTypeLoader = _EnumLoader( ( "null", "boolean", "int", "long", "float", "double", "string", ), "PrimitiveType", ) """ Names of salad data types (based on Avro schema declarations). Refer to the [Avro schema declaration documentation](https://avro.apache.org/docs/current/spec.html#schemas) for detailed information. null: no value boolean: a binary value int: 32-bit signed integer long: 64-bit signed integer float: single precision (32-bit) IEEE 754 floating-point number double: double precision (64-bit) IEEE 754 floating-point number string: Unicode character sequence """ AnyLoader = _EnumLoader(("Any",), "Any") """ The **Any** type validates for any non-null value. """ RecordFieldLoader = _RecordLoader(RecordField) RecordSchemaLoader = _RecordLoader(RecordSchema) EnumSchemaLoader = _RecordLoader(EnumSchema) ArraySchemaLoader = _RecordLoader(ArraySchema) JsonldPredicateLoader = _RecordLoader(JsonldPredicate) SpecializeDefLoader = _RecordLoader(SpecializeDef) SaladRecordFieldLoader = _RecordLoader(SaladRecordField) SaladRecordSchemaLoader = _RecordLoader(SaladRecordSchema) SaladEnumSchemaLoader = _RecordLoader(SaladEnumSchema) DocumentationLoader = _RecordLoader(Documentation) array_of_strtype = _ArrayLoader(strtype) union_of_None_type_or_strtype_or_array_of_strtype = _UnionLoader( ( None_type, strtype, array_of_strtype, ) ) uri_strtype_True_False_None = _URILoader(strtype, True, False, None) union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype = _UnionLoader( ( PrimitiveTypeLoader, RecordSchemaLoader, EnumSchemaLoader, ArraySchemaLoader, strtype, ) ) array_of_union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype = _ArrayLoader( union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype ) union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype_or_array_of_union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype = _UnionLoader( ( PrimitiveTypeLoader, RecordSchemaLoader, EnumSchemaLoader, ArraySchemaLoader, strtype, array_of_union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype, ) ) typedsl_union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype_or_array_of_union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype_2 = _TypeDSLLoader( union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype_or_array_of_union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype, 2, "v1.1", ) array_of_RecordFieldLoader = _ArrayLoader(RecordFieldLoader) union_of_None_type_or_array_of_RecordFieldLoader = _UnionLoader( ( None_type, array_of_RecordFieldLoader, ) ) idmap_fields_union_of_None_type_or_array_of_RecordFieldLoader = _IdMapLoader( union_of_None_type_or_array_of_RecordFieldLoader, "name", "type" ) Record_nameLoader = _EnumLoader(("record",), "Record_name") typedsl_Record_nameLoader_2 = _TypeDSLLoader(Record_nameLoader, 2, "v1.1") union_of_None_type_or_strtype = _UnionLoader( ( None_type, strtype, ) ) uri_union_of_None_type_or_strtype_True_False_None = _URILoader( union_of_None_type_or_strtype, True, False, None ) uri_array_of_strtype_True_False_None = _URILoader(array_of_strtype, True, False, None) Enum_nameLoader = _EnumLoader(("enum",), "Enum_name") typedsl_Enum_nameLoader_2 = _TypeDSLLoader(Enum_nameLoader, 2, "v1.1") uri_union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype_or_array_of_union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype_False_True_2 = _URILoader( union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype_or_array_of_union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype, False, True, 2, ) Array_nameLoader = _EnumLoader(("array",), "Array_name") typedsl_Array_nameLoader_2 = _TypeDSLLoader(Array_nameLoader, 2, "v1.1") union_of_None_type_or_booltype = _UnionLoader( ( None_type, booltype, ) ) union_of_None_type_or_inttype = _UnionLoader( ( None_type, inttype, ) ) uri_strtype_False_False_1 = _URILoader(strtype, False, False, 1) uri_union_of_None_type_or_strtype_False_False_None = _URILoader( union_of_None_type_or_strtype, False, False, None ) uri_union_of_None_type_or_strtype_or_array_of_strtype_False_False_None = _URILoader( union_of_None_type_or_strtype_or_array_of_strtype, False, False, None ) union_of_None_type_or_strtype_or_JsonldPredicateLoader = _UnionLoader( ( None_type, strtype, JsonldPredicateLoader, ) ) union_of_None_type_or_Any_type = _UnionLoader( ( None_type, Any_type, ) ) array_of_SaladRecordFieldLoader = _ArrayLoader(SaladRecordFieldLoader) union_of_None_type_or_array_of_SaladRecordFieldLoader = _UnionLoader( ( None_type, array_of_SaladRecordFieldLoader, ) ) idmap_fields_union_of_None_type_or_array_of_SaladRecordFieldLoader = _IdMapLoader( union_of_None_type_or_array_of_SaladRecordFieldLoader, "name", "type" ) uri_union_of_None_type_or_strtype_or_array_of_strtype_False_False_1 = _URILoader( union_of_None_type_or_strtype_or_array_of_strtype, False, False, 1 ) array_of_SpecializeDefLoader = _ArrayLoader(SpecializeDefLoader) union_of_None_type_or_array_of_SpecializeDefLoader = _UnionLoader( ( None_type, array_of_SpecializeDefLoader, ) ) idmap_specialize_union_of_None_type_or_array_of_SpecializeDefLoader = _IdMapLoader( union_of_None_type_or_array_of_SpecializeDefLoader, "specializeFrom", "specializeTo" ) Documentation_nameLoader = _EnumLoader(("documentation",), "Documentation_name") typedsl_Documentation_nameLoader_2 = _TypeDSLLoader(Documentation_nameLoader, 2, "v1.1") union_of_SaladRecordSchemaLoader_or_SaladEnumSchemaLoader_or_DocumentationLoader = ( _UnionLoader( ( SaladRecordSchemaLoader, SaladEnumSchemaLoader, DocumentationLoader, ) ) ) array_of_union_of_SaladRecordSchemaLoader_or_SaladEnumSchemaLoader_or_DocumentationLoader = _ArrayLoader( union_of_SaladRecordSchemaLoader_or_SaladEnumSchemaLoader_or_DocumentationLoader ) union_of_SaladRecordSchemaLoader_or_SaladEnumSchemaLoader_or_DocumentationLoader_or_array_of_union_of_SaladRecordSchemaLoader_or_SaladEnumSchemaLoader_or_DocumentationLoader = _UnionLoader( ( SaladRecordSchemaLoader, SaladEnumSchemaLoader, DocumentationLoader, array_of_union_of_SaladRecordSchemaLoader_or_SaladEnumSchemaLoader_or_DocumentationLoader, ) ) def load_document( doc: Any, baseuri: Optional[str] = None, loadingOptions: Optional[LoadingOptions] = None, ) -> Any: if baseuri is None: baseuri = file_uri(os.getcwd()) + "/" if loadingOptions is None: loadingOptions = LoadingOptions() result, metadata = _document_load( union_of_SaladRecordSchemaLoader_or_SaladEnumSchemaLoader_or_DocumentationLoader_or_array_of_union_of_SaladRecordSchemaLoader_or_SaladEnumSchemaLoader_or_DocumentationLoader, doc, baseuri, loadingOptions, ) return result def load_document_with_metadata( doc: Any, baseuri: Optional[str] = None, loadingOptions: Optional[LoadingOptions] = None, addl_metadata_fields: Optional[MutableSequence[str]] = None, ) -> Any: if baseuri is None: baseuri = file_uri(os.getcwd()) + "/" if loadingOptions is None: loadingOptions = LoadingOptions(fileuri=baseuri) return _document_load( union_of_SaladRecordSchemaLoader_or_SaladEnumSchemaLoader_or_DocumentationLoader_or_array_of_union_of_SaladRecordSchemaLoader_or_SaladEnumSchemaLoader_or_DocumentationLoader, doc, baseuri, loadingOptions, addl_metadata_fields=addl_metadata_fields, ) def load_document_by_string( string: Any, uri: str, loadingOptions: Optional[LoadingOptions] = None, ) -> Any: yaml = yaml_no_ts() result = yaml.load(string) add_lc_filename(result, uri) if loadingOptions is None: loadingOptions = LoadingOptions(fileuri=uri) result, metadata = _document_load( union_of_SaladRecordSchemaLoader_or_SaladEnumSchemaLoader_or_DocumentationLoader_or_array_of_union_of_SaladRecordSchemaLoader_or_SaladEnumSchemaLoader_or_DocumentationLoader, result, uri, loadingOptions, ) return result def load_document_by_yaml( yaml: Any, uri: str, loadingOptions: Optional[LoadingOptions] = None, ) -> Any: """ Shortcut to load via a YAML object. yaml: must be from ruamel.yaml.main.YAML.load with preserve_quotes=True """ add_lc_filename(yaml, uri) if loadingOptions is None: loadingOptions = LoadingOptions(fileuri=uri) result, metadata = _document_load( union_of_SaladRecordSchemaLoader_or_SaladEnumSchemaLoader_or_DocumentationLoader_or_array_of_union_of_SaladRecordSchemaLoader_or_SaladEnumSchemaLoader_or_DocumentationLoader, yaml, uri, loadingOptions, ) return result
schema-salad
/schema-salad-8.4.20230808163024.tar.gz/schema-salad-8.4.20230808163024/schema_salad/metaschema.py
metaschema.py
import copy import logging import os import pathlib import tempfile import uuid as _uuid__ # pylint: disable=unused-import # noqa: F401 import xml.sax # nosec from abc import ABC, abstractmethod from io import StringIO from typing import ( Any, Dict, List, MutableMapping, MutableSequence, Optional, Sequence, Tuple, Type, Union, cast, ) from urllib.parse import quote, urldefrag, urlparse, urlsplit, urlunsplit from urllib.request import pathname2url from rdflib import Graph from rdflib.plugins.parsers.notation3 import BadSyntax from ruamel.yaml.comments import CommentedMap from schema_salad.exceptions import SchemaSaladException, ValidationException from schema_salad.fetcher import DefaultFetcher, Fetcher, MemoryCachingFetcher from schema_salad.sourceline import SourceLine, add_lc_filename from schema_salad.utils import CacheType, yaml_no_ts # requires schema-salad v8.2+ _vocab: Dict[str, str] = {} _rvocab: Dict[str, str] = {} _logger = logging.getLogger("salad") IdxType = MutableMapping[str, Tuple[Any, "LoadingOptions"]] class LoadingOptions: idx: IdxType fileuri: Optional[str] baseuri: str namespaces: MutableMapping[str, str] schemas: MutableSequence[str] original_doc: Optional[Any] addl_metadata: MutableMapping[str, Any] fetcher: Fetcher vocab: Dict[str, str] rvocab: Dict[str, str] cache: CacheType imports: List[str] includes: List[str] def __init__( self, fetcher: Optional[Fetcher] = None, namespaces: Optional[Dict[str, str]] = None, schemas: Optional[List[str]] = None, fileuri: Optional[str] = None, copyfrom: Optional["LoadingOptions"] = None, original_doc: Optional[Any] = None, addl_metadata: Optional[Dict[str, str]] = None, baseuri: Optional[str] = None, idx: Optional[IdxType] = None, imports: Optional[List[str]] = None, includes: Optional[List[str]] = None, ) -> None: """Create a LoadingOptions object.""" self.original_doc = original_doc if idx is not None: self.idx = idx else: self.idx = copyfrom.idx if copyfrom is not None else {} if fileuri is not None: self.fileuri = fileuri else: self.fileuri = copyfrom.fileuri if copyfrom is not None else None if baseuri is not None: self.baseuri = baseuri else: self.baseuri = copyfrom.baseuri if copyfrom is not None else "" if namespaces is not None: self.namespaces = namespaces else: self.namespaces = copyfrom.namespaces if copyfrom is not None else {} if schemas is not None: self.schemas = schemas else: self.schemas = copyfrom.schemas if copyfrom is not None else [] if addl_metadata is not None: self.addl_metadata = addl_metadata else: self.addl_metadata = copyfrom.addl_metadata if copyfrom is not None else {} if imports is not None: self.imports = imports else: self.imports = copyfrom.imports if copyfrom is not None else [] if includes is not None: self.includes = includes else: self.includes = copyfrom.includes if copyfrom is not None else [] if fetcher is not None: self.fetcher = fetcher elif copyfrom is not None: self.fetcher = copyfrom.fetcher else: import requests from cachecontrol.caches import FileCache from cachecontrol.wrapper import CacheControl root = pathlib.Path(os.environ.get("HOME", tempfile.gettempdir())) session = CacheControl( requests.Session(), cache=FileCache(root / ".cache" / "salad"), ) self.fetcher: Fetcher = DefaultFetcher({}, session) self.cache = self.fetcher.cache if isinstance(self.fetcher, MemoryCachingFetcher) else {} self.vocab = _vocab self.rvocab = _rvocab if namespaces is not None: self.vocab = self.vocab.copy() self.rvocab = self.rvocab.copy() for k, v in namespaces.items(): self.vocab[k] = v self.rvocab[v] = k @property def graph(self) -> Graph: """Generate a merged rdflib.Graph from all entries in self.schemas.""" graph = Graph() if not self.schemas: return graph key = str(hash(tuple(self.schemas))) if key in self.cache: return cast(Graph, self.cache[key]) for schema in self.schemas: fetchurl = ( self.fetcher.urljoin(self.fileuri, schema) if self.fileuri is not None else pathlib.Path(schema).resolve().as_uri() ) if fetchurl not in self.cache or self.cache[fetchurl] is True: _logger.debug("Getting external schema %s", fetchurl) try: content = self.fetcher.fetch_text(fetchurl) except Exception as e: _logger.warning("Could not load extension schema %s: %s", fetchurl, str(e)) continue newGraph = Graph() err_msg = "unknown error" for fmt in ["xml", "turtle"]: try: newGraph.parse(data=content, format=fmt, publicID=str(fetchurl)) self.cache[fetchurl] = newGraph graph += newGraph break except (xml.sax.SAXParseException, TypeError, BadSyntax) as e: err_msg = str(e) else: _logger.warning("Could not load extension schema %s: %s", fetchurl, err_msg) self.cache[key] = graph return graph class Saveable(ABC): """Mark classes than have a save() and fromDoc() function.""" @classmethod @abstractmethod def fromDoc( cls, _doc: Any, baseuri: str, loadingOptions: LoadingOptions, docRoot: Optional[str] = None, ) -> "Saveable": """Construct this object from the result of yaml.load().""" @abstractmethod def save( self, top: bool = False, base_url: str = "", relative_uris: bool = True ) -> Dict[str, Any]: """Convert this object to a JSON/YAML friendly dictionary.""" def load_field(val, fieldtype, baseuri, loadingOptions): # type: (Union[str, Dict[str, str]], _Loader, str, LoadingOptions) -> Any if isinstance(val, MutableMapping): if "$import" in val: if loadingOptions.fileuri is None: raise SchemaSaladException("Cannot load $import without fileuri") url = loadingOptions.fetcher.urljoin(loadingOptions.fileuri, val["$import"]) result, metadata = _document_load_by_url( fieldtype, url, loadingOptions, ) loadingOptions.imports.append(url) return result if "$include" in val: if loadingOptions.fileuri is None: raise SchemaSaladException("Cannot load $import without fileuri") url = loadingOptions.fetcher.urljoin(loadingOptions.fileuri, val["$include"]) val = loadingOptions.fetcher.fetch_text(url) loadingOptions.includes.append(url) return fieldtype.load(val, baseuri, loadingOptions) save_type = Optional[Union[MutableMapping[str, Any], MutableSequence[Any], int, float, bool, str]] def save( val: Any, top: bool = True, base_url: str = "", relative_uris: bool = True, ) -> save_type: if isinstance(val, Saveable): return val.save(top=top, base_url=base_url, relative_uris=relative_uris) if isinstance(val, MutableSequence): return [save(v, top=False, base_url=base_url, relative_uris=relative_uris) for v in val] if isinstance(val, MutableMapping): newdict = {} for key in val: newdict[key] = save(val[key], top=False, base_url=base_url, relative_uris=relative_uris) return newdict if val is None or isinstance(val, (int, float, bool, str)): return val raise Exception("Not Saveable: %s" % type(val)) def save_with_metadata( val: Any, valLoadingOpts: LoadingOptions, top: bool = True, base_url: str = "", relative_uris: bool = True, ) -> save_type: """Save and set $namespaces, $schemas, $base and any other metadata fields at the top level.""" saved_val = save(val, top, base_url, relative_uris) newdict: MutableMapping[str, Any] = {} if isinstance(saved_val, MutableSequence): newdict = {"$graph": saved_val} elif isinstance(saved_val, MutableMapping): newdict = saved_val if valLoadingOpts.namespaces: newdict["$namespaces"] = valLoadingOpts.namespaces if valLoadingOpts.schemas: newdict["$schemas"] = valLoadingOpts.schemas if valLoadingOpts.baseuri: newdict["$base"] = valLoadingOpts.baseuri for k, v in valLoadingOpts.addl_metadata.items(): if k not in newdict: newdict[k] = v return newdict def expand_url( url, # type: str base_url, # type: str loadingOptions, # type: LoadingOptions scoped_id=False, # type: bool vocab_term=False, # type: bool scoped_ref=None, # type: Optional[int] ): # type: (...) -> str if url in ("@id", "@type"): return url if vocab_term and url in loadingOptions.vocab: return url if bool(loadingOptions.vocab) and ":" in url: prefix = url.split(":")[0] if prefix in loadingOptions.vocab: url = loadingOptions.vocab[prefix] + url[len(prefix) + 1 :] split = urlsplit(url) if ( (bool(split.scheme) and split.scheme in loadingOptions.fetcher.supported_schemes()) or url.startswith("$(") or url.startswith("${") ): pass elif scoped_id and not bool(split.fragment): splitbase = urlsplit(base_url) frg = "" if bool(splitbase.fragment): frg = splitbase.fragment + "/" + split.path else: frg = split.path pt = splitbase.path if splitbase.path != "" else "/" url = urlunsplit((splitbase.scheme, splitbase.netloc, pt, splitbase.query, frg)) elif scoped_ref is not None and not bool(split.fragment): splitbase = urlsplit(base_url) sp = splitbase.fragment.split("/") n = scoped_ref while n > 0 and len(sp) > 0: sp.pop() n -= 1 sp.append(url) url = urlunsplit( ( splitbase.scheme, splitbase.netloc, splitbase.path, splitbase.query, "/".join(sp), ) ) else: url = loadingOptions.fetcher.urljoin(base_url, url) if vocab_term: split = urlsplit(url) if bool(split.scheme): if url in loadingOptions.rvocab: return loadingOptions.rvocab[url] else: raise ValidationException(f"Term {url!r} not in vocabulary") return url class _Loader: def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any pass class _AnyLoader(_Loader): def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if doc is not None: return doc raise ValidationException("Expected non-null") class _PrimitiveLoader(_Loader): def __init__(self, tp): # type: (Union[type, Tuple[Type[str], Type[str]]]) -> None self.tp = tp def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if not isinstance(doc, self.tp): raise ValidationException( "Expected a {} but got {}".format( self.tp.__class__.__name__, doc.__class__.__name__ ) ) return doc def __repr__(self): # type: () -> str return str(self.tp) class _ArrayLoader(_Loader): def __init__(self, items): # type: (_Loader) -> None self.items = items def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if not isinstance(doc, MutableSequence): raise ValidationException(f"Expected a list, was {type(doc)}") r = [] # type: List[Any] errors = [] # type: List[SchemaSaladException] for i in range(0, len(doc)): try: lf = load_field(doc[i], _UnionLoader((self, self.items)), baseuri, loadingOptions) if isinstance(lf, MutableSequence): r.extend(lf) else: r.append(lf) except ValidationException as e: errors.append(e.with_sourceline(SourceLine(doc, i, str))) if errors: raise ValidationException("", None, errors) return r def __repr__(self): # type: () -> str return f"array<{self.items}>" class _EnumLoader(_Loader): def __init__(self, symbols: Sequence[str], name: str) -> None: self.symbols = symbols self.name = name def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if doc in self.symbols: return doc raise ValidationException(f"Expected one of {self.symbols}") def __repr__(self): # type: () -> str return self.name class _SecondaryDSLLoader(_Loader): def __init__(self, inner): # type: (_Loader) -> None self.inner = inner def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any r: List[Dict[str, Any]] = [] if isinstance(doc, MutableSequence): for d in doc: if isinstance(d, str): if d.endswith("?"): r.append({"pattern": d[:-1], "required": False}) else: r.append({"pattern": d}) elif isinstance(d, dict): new_dict: Dict[str, Any] = {} dict_copy = copy.deepcopy(d) if "pattern" in dict_copy: new_dict["pattern"] = dict_copy.pop("pattern") else: raise ValidationException( f"Missing pattern in secondaryFiles specification entry: {d}" ) new_dict["required"] = ( dict_copy.pop("required") if "required" in dict_copy else None ) if len(dict_copy): raise ValidationException( "Unallowed values in secondaryFiles specification entry: {}".format( dict_copy ) ) r.append(new_dict) else: raise ValidationException( "Expected a string or sequence of (strings or mappings)." ) elif isinstance(doc, MutableMapping): new_dict = {} doc_copy = copy.deepcopy(doc) if "pattern" in doc_copy: new_dict["pattern"] = doc_copy.pop("pattern") else: raise ValidationException( f"Missing pattern in secondaryFiles specification entry: {doc}" ) new_dict["required"] = doc_copy.pop("required") if "required" in doc_copy else None if len(doc_copy): raise ValidationException( f"Unallowed values in secondaryFiles specification entry: {doc_copy}" ) r.append(new_dict) elif isinstance(doc, str): if doc.endswith("?"): r.append({"pattern": doc[:-1], "required": False}) else: r.append({"pattern": doc}) else: raise ValidationException("Expected str or sequence of str") return self.inner.load(r, baseuri, loadingOptions, docRoot) class _RecordLoader(_Loader): def __init__(self, classtype): # type: (Type[Saveable]) -> None self.classtype = classtype def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if not isinstance(doc, MutableMapping): raise ValidationException(f"Expected a dict, was {type(doc)}") return self.classtype.fromDoc(doc, baseuri, loadingOptions, docRoot=docRoot) def __repr__(self): # type: () -> str return str(self.classtype.__name__) class _ExpressionLoader(_Loader): def __init__(self, items: Type[str]) -> None: self.items = items def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if not isinstance(doc, str): raise ValidationException(f"Expected a str, was {type(doc)}") return doc class _UnionLoader(_Loader): def __init__(self, alternates: Sequence[_Loader]) -> None: self.alternates = alternates def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any errors = [] for t in self.alternates: try: return t.load(doc, baseuri, loadingOptions, docRoot=docRoot) except ValidationException as e: errors.append(ValidationException(f"tried {t} but", None, [e])) raise ValidationException("", None, errors, "-") def __repr__(self): # type: () -> str return " | ".join(str(a) for a in self.alternates) class _URILoader(_Loader): def __init__(self, inner, scoped_id, vocab_term, scoped_ref): # type: (_Loader, bool, bool, Union[int, None]) -> None self.inner = inner self.scoped_id = scoped_id self.vocab_term = vocab_term self.scoped_ref = scoped_ref def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if isinstance(doc, MutableSequence): newdoc = [] for i in doc: if isinstance(i, str): newdoc.append( expand_url( i, baseuri, loadingOptions, self.scoped_id, self.vocab_term, self.scoped_ref, ) ) else: newdoc.append(i) doc = newdoc elif isinstance(doc, str): doc = expand_url( doc, baseuri, loadingOptions, self.scoped_id, self.vocab_term, self.scoped_ref, ) return self.inner.load(doc, baseuri, loadingOptions) class _TypeDSLLoader(_Loader): def __init__(self, inner, refScope, salad_version): # type: (_Loader, Union[int, None], str) -> None self.inner = inner self.refScope = refScope self.salad_version = salad_version def resolve( self, doc, # type: str baseuri, # type: str loadingOptions, # type: LoadingOptions ): # type: (...) -> Union[List[Union[Dict[str, Any], str]], Dict[str, Any], str] doc_ = doc optional = False if doc_.endswith("?"): optional = True doc_ = doc_[0:-1] if doc_.endswith("[]"): salad_versions = [int(v) for v in self.salad_version[1:].split(".")] items = "" # type: Union[List[Union[Dict[str, Any], str]], Dict[str, Any], str] rest = doc_[0:-2] if salad_versions < [1, 3]: if rest.endswith("[]"): # To show the error message with the original type return doc else: items = expand_url(rest, baseuri, loadingOptions, False, True, self.refScope) else: items = self.resolve(rest, baseuri, loadingOptions) if isinstance(items, str): items = expand_url(items, baseuri, loadingOptions, False, True, self.refScope) expanded = {"type": "array", "items": items} # type: Union[Dict[str, Any], str] else: expanded = expand_url(doc_, baseuri, loadingOptions, False, True, self.refScope) if optional: return ["null", expanded] else: return expanded def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if isinstance(doc, MutableSequence): r = [] # type: List[Any] for d in doc: if isinstance(d, str): resolved = self.resolve(d, baseuri, loadingOptions) if isinstance(resolved, MutableSequence): for i in resolved: if i not in r: r.append(i) else: if resolved not in r: r.append(resolved) else: r.append(d) doc = r elif isinstance(doc, str): doc = self.resolve(doc, baseuri, loadingOptions) return self.inner.load(doc, baseuri, loadingOptions) class _IdMapLoader(_Loader): def __init__(self, inner, mapSubject, mapPredicate): # type: (_Loader, str, Union[str, None]) -> None self.inner = inner self.mapSubject = mapSubject self.mapPredicate = mapPredicate def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if isinstance(doc, MutableMapping): r = [] # type: List[Any] for k in sorted(doc.keys()): val = doc[k] if isinstance(val, CommentedMap): v = copy.copy(val) v.lc.data = val.lc.data v.lc.filename = val.lc.filename v[self.mapSubject] = k r.append(v) elif isinstance(val, MutableMapping): v2 = copy.copy(val) v2[self.mapSubject] = k r.append(v2) else: if self.mapPredicate: v3 = {self.mapPredicate: val} v3[self.mapSubject] = k r.append(v3) else: raise ValidationException("No mapPredicate") doc = r return self.inner.load(doc, baseuri, loadingOptions) def _document_load( loader: _Loader, doc: Union[str, MutableMapping[str, Any], MutableSequence[Any]], baseuri: str, loadingOptions: LoadingOptions, addl_metadata_fields: Optional[MutableSequence[str]] = None, ) -> Tuple[Any, LoadingOptions]: if isinstance(doc, str): return _document_load_by_url( loader, loadingOptions.fetcher.urljoin(baseuri, doc), loadingOptions, addl_metadata_fields=addl_metadata_fields, ) if isinstance(doc, MutableMapping): addl_metadata = {} if addl_metadata_fields is not None: for mf in addl_metadata_fields: if mf in doc: addl_metadata[mf] = doc[mf] docuri = baseuri if "$base" in doc: baseuri = doc["$base"] loadingOptions = LoadingOptions( copyfrom=loadingOptions, namespaces=doc.get("$namespaces", None), schemas=doc.get("$schemas", None), baseuri=doc.get("$base", None), addl_metadata=addl_metadata, ) doc = {k: v for k, v in doc.items() if k not in ("$namespaces", "$schemas", "$base")} if "$graph" in doc: loadingOptions.idx[baseuri] = ( loader.load(doc["$graph"], baseuri, loadingOptions), loadingOptions, ) else: loadingOptions.idx[baseuri] = ( loader.load(doc, baseuri, loadingOptions, docRoot=baseuri), loadingOptions, ) if docuri != baseuri: loadingOptions.idx[docuri] = loadingOptions.idx[baseuri] return loadingOptions.idx[baseuri] if isinstance(doc, MutableSequence): loadingOptions.idx[baseuri] = ( loader.load(doc, baseuri, loadingOptions), loadingOptions, ) return loadingOptions.idx[baseuri] raise ValidationException( "Expected URI string, MutableMapping or MutableSequence, got %s" % type(doc) ) def _document_load_by_url( loader: _Loader, url: str, loadingOptions: LoadingOptions, addl_metadata_fields: Optional[MutableSequence[str]] = None, ) -> Tuple[Any, LoadingOptions]: if url in loadingOptions.idx: return loadingOptions.idx[url] doc_url, frg = urldefrag(url) text = loadingOptions.fetcher.fetch_text(doc_url) textIO = StringIO(text) textIO.name = str(doc_url) yaml = yaml_no_ts() result = yaml.load(textIO) add_lc_filename(result, doc_url) loadingOptions = LoadingOptions(copyfrom=loadingOptions, fileuri=doc_url) _document_load( loader, result, doc_url, loadingOptions, addl_metadata_fields=addl_metadata_fields, ) return loadingOptions.idx[url] def file_uri(path, split_frag=False): # type: (str, bool) -> str if path.startswith("file://"): return path if split_frag: pathsp = path.split("#", 2) frag = "#" + quote(str(pathsp[1])) if len(pathsp) == 2 else "" urlpath = pathname2url(str(pathsp[0])) else: urlpath = pathname2url(path) frag = "" if urlpath.startswith("//"): return f"file:{urlpath}{frag}" return f"file://{urlpath}{frag}" def prefix_url(url: str, namespaces: Dict[str, str]) -> str: """Expand short forms into full URLs using the given namespace dictionary.""" for k, v in namespaces.items(): if url.startswith(v): return k + ":" + url[len(v) :] return url def save_relative_uri( uri: Any, base_url: str, scoped_id: bool, ref_scope: Optional[int], relative_uris: bool, ) -> Any: """Convert any URI to a relative one, obeying the scoping rules.""" if isinstance(uri, MutableSequence): return [save_relative_uri(u, base_url, scoped_id, ref_scope, relative_uris) for u in uri] elif isinstance(uri, str): if not relative_uris or uri == base_url: return uri urisplit = urlsplit(uri) basesplit = urlsplit(base_url) if urisplit.scheme == basesplit.scheme and urisplit.netloc == basesplit.netloc: if urisplit.path != basesplit.path: p = os.path.relpath(urisplit.path, os.path.dirname(basesplit.path)) if urisplit.fragment: p = p + "#" + urisplit.fragment return p basefrag = basesplit.fragment + "/" if ref_scope: sp = basefrag.split("/") i = 0 while i < ref_scope: sp.pop() i += 1 basefrag = "/".join(sp) if urisplit.fragment.startswith(basefrag): return urisplit.fragment[len(basefrag) :] return urisplit.fragment return uri else: return save(uri, top=False, base_url=base_url, relative_uris=relative_uris) def shortname(inputid: str) -> str: """ Compute the shortname of a fully qualified identifier. See https://w3id.org/cwl/v1.2/SchemaSalad.html#Short_names. """ parsed_id = urlparse(inputid) if parsed_id.fragment: return parsed_id.fragment.split("/")[-1] return parsed_id.path.split("/")[-1] def parser_info() -> str: return "org.w3id.cwl.salad" class Documented(Saveable): pass class RecordField(Documented): """ A field of a record. """ def __init__( self, name: Any, type: Any, doc: Optional[Any] = None, extension_fields: Optional[Dict[str, Any]] = None, loadingOptions: Optional[LoadingOptions] = None, ) -> None: if extension_fields: self.extension_fields = extension_fields else: self.extension_fields = CommentedMap() if loadingOptions: self.loadingOptions = loadingOptions else: self.loadingOptions = LoadingOptions() self.doc = doc self.name = name self.type = type def __eq__(self, other: Any) -> bool: if isinstance(other, RecordField): return bool( self.doc == other.doc and self.name == other.name and self.type == other.type ) return False def __hash__(self) -> int: return hash((self.doc, self.name, self.type)) @classmethod def fromDoc( cls, doc: Any, baseuri: str, loadingOptions: LoadingOptions, docRoot: Optional[str] = None, ) -> "RecordField": _doc = copy.copy(doc) if hasattr(doc, "lc"): _doc.lc.data = doc.lc.data _doc.lc.filename = doc.lc.filename _errors__ = [] if "name" in _doc: try: name = load_field( _doc.get("name"), uri_strtype_True_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'name' field is not valid because:", SourceLine(_doc, "name", str), [e], ) ) else: name = None __original_name_is_none = name is None if name is None: if docRoot is not None: name = docRoot else: raise ValidationException("Missing name") if not __original_name_is_none: baseuri = name if "doc" in _doc: try: doc = load_field( _doc.get("doc"), union_of_None_type_or_strtype_or_array_of_strtype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'doc' field is not valid because:", SourceLine(_doc, "doc", str), [e], ) ) else: doc = None try: type = load_field( _doc.get("type"), typedsl_union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype_or_array_of_union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype_2, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'type' field is not valid because:", SourceLine(_doc, "type", str), [e], ) ) extension_fields: Dict[str, Any] = {} for k in _doc.keys(): if k not in cls.attrs: if ":" in k: ex = expand_url( k, "", loadingOptions, scoped_id=False, vocab_term=False ) extension_fields[ex] = _doc[k] else: _errors__.append( ValidationException( "invalid field `{}`, expected one of: `doc`, `name`, `type`".format( k ), SourceLine(_doc, k, str), ) ) break if _errors__: raise ValidationException("Trying 'RecordField'", None, _errors__) _constructed = cls( doc=doc, name=name, type=type, extension_fields=extension_fields, loadingOptions=loadingOptions, ) loadingOptions.idx[name] = (_constructed, loadingOptions) return _constructed def save( self, top: bool = False, base_url: str = "", relative_uris: bool = True ) -> Dict[str, Any]: r: Dict[str, Any] = {} if relative_uris: for ef in self.extension_fields: r[prefix_url(ef, self.loadingOptions.vocab)] = self.extension_fields[ef] else: for ef in self.extension_fields: r[ef] = self.extension_fields[ef] if self.name is not None: u = save_relative_uri(self.name, base_url, True, None, relative_uris) r["name"] = u if self.doc is not None: r["doc"] = save( self.doc, top=False, base_url=self.name, relative_uris=relative_uris ) if self.type is not None: r["type"] = save( self.type, top=False, base_url=self.name, relative_uris=relative_uris ) # top refers to the directory level if top: if self.loadingOptions.namespaces: r["$namespaces"] = self.loadingOptions.namespaces if self.loadingOptions.schemas: r["$schemas"] = self.loadingOptions.schemas return r attrs = frozenset(["doc", "name", "type"]) class RecordSchema(Saveable): def __init__( self, type: Any, fields: Optional[Any] = None, extension_fields: Optional[Dict[str, Any]] = None, loadingOptions: Optional[LoadingOptions] = None, ) -> None: if extension_fields: self.extension_fields = extension_fields else: self.extension_fields = CommentedMap() if loadingOptions: self.loadingOptions = loadingOptions else: self.loadingOptions = LoadingOptions() self.fields = fields self.type = type def __eq__(self, other: Any) -> bool: if isinstance(other, RecordSchema): return bool(self.fields == other.fields and self.type == other.type) return False def __hash__(self) -> int: return hash((self.fields, self.type)) @classmethod def fromDoc( cls, doc: Any, baseuri: str, loadingOptions: LoadingOptions, docRoot: Optional[str] = None, ) -> "RecordSchema": _doc = copy.copy(doc) if hasattr(doc, "lc"): _doc.lc.data = doc.lc.data _doc.lc.filename = doc.lc.filename _errors__ = [] if "fields" in _doc: try: fields = load_field( _doc.get("fields"), idmap_fields_union_of_None_type_or_array_of_RecordFieldLoader, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'fields' field is not valid because:", SourceLine(_doc, "fields", str), [e], ) ) else: fields = None try: type = load_field( _doc.get("type"), typedsl_Record_nameLoader_2, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'type' field is not valid because:", SourceLine(_doc, "type", str), [e], ) ) extension_fields: Dict[str, Any] = {} for k in _doc.keys(): if k not in cls.attrs: if ":" in k: ex = expand_url( k, "", loadingOptions, scoped_id=False, vocab_term=False ) extension_fields[ex] = _doc[k] else: _errors__.append( ValidationException( "invalid field `{}`, expected one of: `fields`, `type`".format( k ), SourceLine(_doc, k, str), ) ) break if _errors__: raise ValidationException("Trying 'RecordSchema'", None, _errors__) _constructed = cls( fields=fields, type=type, extension_fields=extension_fields, loadingOptions=loadingOptions, ) return _constructed def save( self, top: bool = False, base_url: str = "", relative_uris: bool = True ) -> Dict[str, Any]: r: Dict[str, Any] = {} if relative_uris: for ef in self.extension_fields: r[prefix_url(ef, self.loadingOptions.vocab)] = self.extension_fields[ef] else: for ef in self.extension_fields: r[ef] = self.extension_fields[ef] if self.fields is not None: r["fields"] = save( self.fields, top=False, base_url=base_url, relative_uris=relative_uris ) if self.type is not None: r["type"] = save( self.type, top=False, base_url=base_url, relative_uris=relative_uris ) # top refers to the directory level if top: if self.loadingOptions.namespaces: r["$namespaces"] = self.loadingOptions.namespaces if self.loadingOptions.schemas: r["$schemas"] = self.loadingOptions.schemas return r attrs = frozenset(["fields", "type"]) class EnumSchema(Saveable): """ Define an enumerated type. """ def __init__( self, symbols: Any, type: Any, name: Optional[Any] = None, extension_fields: Optional[Dict[str, Any]] = None, loadingOptions: Optional[LoadingOptions] = None, ) -> None: if extension_fields: self.extension_fields = extension_fields else: self.extension_fields = CommentedMap() if loadingOptions: self.loadingOptions = loadingOptions else: self.loadingOptions = LoadingOptions() self.name = name self.symbols = symbols self.type = type def __eq__(self, other: Any) -> bool: if isinstance(other, EnumSchema): return bool( self.name == other.name and self.symbols == other.symbols and self.type == other.type ) return False def __hash__(self) -> int: return hash((self.name, self.symbols, self.type)) @classmethod def fromDoc( cls, doc: Any, baseuri: str, loadingOptions: LoadingOptions, docRoot: Optional[str] = None, ) -> "EnumSchema": _doc = copy.copy(doc) if hasattr(doc, "lc"): _doc.lc.data = doc.lc.data _doc.lc.filename = doc.lc.filename _errors__ = [] if "name" in _doc: try: name = load_field( _doc.get("name"), uri_union_of_None_type_or_strtype_True_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'name' field is not valid because:", SourceLine(_doc, "name", str), [e], ) ) else: name = None __original_name_is_none = name is None if name is None: if docRoot is not None: name = docRoot else: name = "_:" + str(_uuid__.uuid4()) if not __original_name_is_none: baseuri = name try: symbols = load_field( _doc.get("symbols"), uri_array_of_strtype_True_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'symbols' field is not valid because:", SourceLine(_doc, "symbols", str), [e], ) ) try: type = load_field( _doc.get("type"), typedsl_Enum_nameLoader_2, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'type' field is not valid because:", SourceLine(_doc, "type", str), [e], ) ) extension_fields: Dict[str, Any] = {} for k in _doc.keys(): if k not in cls.attrs: if ":" in k: ex = expand_url( k, "", loadingOptions, scoped_id=False, vocab_term=False ) extension_fields[ex] = _doc[k] else: _errors__.append( ValidationException( "invalid field `{}`, expected one of: `name`, `symbols`, `type`".format( k ), SourceLine(_doc, k, str), ) ) break if _errors__: raise ValidationException("Trying 'EnumSchema'", None, _errors__) _constructed = cls( name=name, symbols=symbols, type=type, extension_fields=extension_fields, loadingOptions=loadingOptions, ) loadingOptions.idx[name] = (_constructed, loadingOptions) return _constructed def save( self, top: bool = False, base_url: str = "", relative_uris: bool = True ) -> Dict[str, Any]: r: Dict[str, Any] = {} if relative_uris: for ef in self.extension_fields: r[prefix_url(ef, self.loadingOptions.vocab)] = self.extension_fields[ef] else: for ef in self.extension_fields: r[ef] = self.extension_fields[ef] if self.name is not None: u = save_relative_uri(self.name, base_url, True, None, relative_uris) r["name"] = u if self.symbols is not None: u = save_relative_uri(self.symbols, self.name, True, None, relative_uris) r["symbols"] = u if self.type is not None: r["type"] = save( self.type, top=False, base_url=self.name, relative_uris=relative_uris ) # top refers to the directory level if top: if self.loadingOptions.namespaces: r["$namespaces"] = self.loadingOptions.namespaces if self.loadingOptions.schemas: r["$schemas"] = self.loadingOptions.schemas return r attrs = frozenset(["name", "symbols", "type"]) class ArraySchema(Saveable): def __init__( self, items: Any, type: Any, extension_fields: Optional[Dict[str, Any]] = None, loadingOptions: Optional[LoadingOptions] = None, ) -> None: if extension_fields: self.extension_fields = extension_fields else: self.extension_fields = CommentedMap() if loadingOptions: self.loadingOptions = loadingOptions else: self.loadingOptions = LoadingOptions() self.items = items self.type = type def __eq__(self, other: Any) -> bool: if isinstance(other, ArraySchema): return bool(self.items == other.items and self.type == other.type) return False def __hash__(self) -> int: return hash((self.items, self.type)) @classmethod def fromDoc( cls, doc: Any, baseuri: str, loadingOptions: LoadingOptions, docRoot: Optional[str] = None, ) -> "ArraySchema": _doc = copy.copy(doc) if hasattr(doc, "lc"): _doc.lc.data = doc.lc.data _doc.lc.filename = doc.lc.filename _errors__ = [] try: items = load_field( _doc.get("items"), uri_union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype_or_array_of_union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype_False_True_2, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'items' field is not valid because:", SourceLine(_doc, "items", str), [e], ) ) try: type = load_field( _doc.get("type"), typedsl_Array_nameLoader_2, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'type' field is not valid because:", SourceLine(_doc, "type", str), [e], ) ) extension_fields: Dict[str, Any] = {} for k in _doc.keys(): if k not in cls.attrs: if ":" in k: ex = expand_url( k, "", loadingOptions, scoped_id=False, vocab_term=False ) extension_fields[ex] = _doc[k] else: _errors__.append( ValidationException( "invalid field `{}`, expected one of: `items`, `type`".format( k ), SourceLine(_doc, k, str), ) ) break if _errors__: raise ValidationException("Trying 'ArraySchema'", None, _errors__) _constructed = cls( items=items, type=type, extension_fields=extension_fields, loadingOptions=loadingOptions, ) return _constructed def save( self, top: bool = False, base_url: str = "", relative_uris: bool = True ) -> Dict[str, Any]: r: Dict[str, Any] = {} if relative_uris: for ef in self.extension_fields: r[prefix_url(ef, self.loadingOptions.vocab)] = self.extension_fields[ef] else: for ef in self.extension_fields: r[ef] = self.extension_fields[ef] if self.items is not None: u = save_relative_uri(self.items, base_url, False, 2, relative_uris) r["items"] = u if self.type is not None: r["type"] = save( self.type, top=False, base_url=base_url, relative_uris=relative_uris ) # top refers to the directory level if top: if self.loadingOptions.namespaces: r["$namespaces"] = self.loadingOptions.namespaces if self.loadingOptions.schemas: r["$schemas"] = self.loadingOptions.schemas return r attrs = frozenset(["items", "type"]) class JsonldPredicate(Saveable): """ Attached to a record field to define how the parent record field is handled for URI resolution and JSON-LD context generation. """ def __init__( self, _id: Optional[Any] = None, _type: Optional[Any] = None, _container: Optional[Any] = None, identity: Optional[Any] = None, noLinkCheck: Optional[Any] = None, mapSubject: Optional[Any] = None, mapPredicate: Optional[Any] = None, refScope: Optional[Any] = None, typeDSL: Optional[Any] = None, secondaryFilesDSL: Optional[Any] = None, subscope: Optional[Any] = None, extension_fields: Optional[Dict[str, Any]] = None, loadingOptions: Optional[LoadingOptions] = None, ) -> None: if extension_fields: self.extension_fields = extension_fields else: self.extension_fields = CommentedMap() if loadingOptions: self.loadingOptions = loadingOptions else: self.loadingOptions = LoadingOptions() self._id = _id self._type = _type self._container = _container self.identity = identity self.noLinkCheck = noLinkCheck self.mapSubject = mapSubject self.mapPredicate = mapPredicate self.refScope = refScope self.typeDSL = typeDSL self.secondaryFilesDSL = secondaryFilesDSL self.subscope = subscope def __eq__(self, other: Any) -> bool: if isinstance(other, JsonldPredicate): return bool( self._id == other._id and self._type == other._type and self._container == other._container and self.identity == other.identity and self.noLinkCheck == other.noLinkCheck and self.mapSubject == other.mapSubject and self.mapPredicate == other.mapPredicate and self.refScope == other.refScope and self.typeDSL == other.typeDSL and self.secondaryFilesDSL == other.secondaryFilesDSL and self.subscope == other.subscope ) return False def __hash__(self) -> int: return hash( ( self._id, self._type, self._container, self.identity, self.noLinkCheck, self.mapSubject, self.mapPredicate, self.refScope, self.typeDSL, self.secondaryFilesDSL, self.subscope, ) ) @classmethod def fromDoc( cls, doc: Any, baseuri: str, loadingOptions: LoadingOptions, docRoot: Optional[str] = None, ) -> "JsonldPredicate": _doc = copy.copy(doc) if hasattr(doc, "lc"): _doc.lc.data = doc.lc.data _doc.lc.filename = doc.lc.filename _errors__ = [] if "_id" in _doc: try: _id = load_field( _doc.get("_id"), uri_union_of_None_type_or_strtype_True_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the '_id' field is not valid because:", SourceLine(_doc, "_id", str), [e], ) ) else: _id = None if "_type" in _doc: try: _type = load_field( _doc.get("_type"), union_of_None_type_or_strtype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the '_type' field is not valid because:", SourceLine(_doc, "_type", str), [e], ) ) else: _type = None if "_container" in _doc: try: _container = load_field( _doc.get("_container"), union_of_None_type_or_strtype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the '_container' field is not valid because:", SourceLine(_doc, "_container", str), [e], ) ) else: _container = None if "identity" in _doc: try: identity = load_field( _doc.get("identity"), union_of_None_type_or_booltype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'identity' field is not valid because:", SourceLine(_doc, "identity", str), [e], ) ) else: identity = None if "noLinkCheck" in _doc: try: noLinkCheck = load_field( _doc.get("noLinkCheck"), union_of_None_type_or_booltype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'noLinkCheck' field is not valid because:", SourceLine(_doc, "noLinkCheck", str), [e], ) ) else: noLinkCheck = None if "mapSubject" in _doc: try: mapSubject = load_field( _doc.get("mapSubject"), union_of_None_type_or_strtype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'mapSubject' field is not valid because:", SourceLine(_doc, "mapSubject", str), [e], ) ) else: mapSubject = None if "mapPredicate" in _doc: try: mapPredicate = load_field( _doc.get("mapPredicate"), union_of_None_type_or_strtype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'mapPredicate' field is not valid because:", SourceLine(_doc, "mapPredicate", str), [e], ) ) else: mapPredicate = None if "refScope" in _doc: try: refScope = load_field( _doc.get("refScope"), union_of_None_type_or_inttype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'refScope' field is not valid because:", SourceLine(_doc, "refScope", str), [e], ) ) else: refScope = None if "typeDSL" in _doc: try: typeDSL = load_field( _doc.get("typeDSL"), union_of_None_type_or_booltype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'typeDSL' field is not valid because:", SourceLine(_doc, "typeDSL", str), [e], ) ) else: typeDSL = None if "secondaryFilesDSL" in _doc: try: secondaryFilesDSL = load_field( _doc.get("secondaryFilesDSL"), union_of_None_type_or_booltype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'secondaryFilesDSL' field is not valid because:", SourceLine(_doc, "secondaryFilesDSL", str), [e], ) ) else: secondaryFilesDSL = None if "subscope" in _doc: try: subscope = load_field( _doc.get("subscope"), union_of_None_type_or_strtype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'subscope' field is not valid because:", SourceLine(_doc, "subscope", str), [e], ) ) else: subscope = None extension_fields: Dict[str, Any] = {} for k in _doc.keys(): if k not in cls.attrs: if ":" in k: ex = expand_url( k, "", loadingOptions, scoped_id=False, vocab_term=False ) extension_fields[ex] = _doc[k] else: _errors__.append( ValidationException( "invalid field `{}`, expected one of: `_id`, `_type`, `_container`, `identity`, `noLinkCheck`, `mapSubject`, `mapPredicate`, `refScope`, `typeDSL`, `secondaryFilesDSL`, `subscope`".format( k ), SourceLine(_doc, k, str), ) ) break if _errors__: raise ValidationException("Trying 'JsonldPredicate'", None, _errors__) _constructed = cls( _id=_id, _type=_type, _container=_container, identity=identity, noLinkCheck=noLinkCheck, mapSubject=mapSubject, mapPredicate=mapPredicate, refScope=refScope, typeDSL=typeDSL, secondaryFilesDSL=secondaryFilesDSL, subscope=subscope, extension_fields=extension_fields, loadingOptions=loadingOptions, ) return _constructed def save( self, top: bool = False, base_url: str = "", relative_uris: bool = True ) -> Dict[str, Any]: r: Dict[str, Any] = {} if relative_uris: for ef in self.extension_fields: r[prefix_url(ef, self.loadingOptions.vocab)] = self.extension_fields[ef] else: for ef in self.extension_fields: r[ef] = self.extension_fields[ef] if self._id is not None: u = save_relative_uri(self._id, base_url, True, None, relative_uris) r["_id"] = u if self._type is not None: r["_type"] = save( self._type, top=False, base_url=base_url, relative_uris=relative_uris ) if self._container is not None: r["_container"] = save( self._container, top=False, base_url=base_url, relative_uris=relative_uris, ) if self.identity is not None: r["identity"] = save( self.identity, top=False, base_url=base_url, relative_uris=relative_uris ) if self.noLinkCheck is not None: r["noLinkCheck"] = save( self.noLinkCheck, top=False, base_url=base_url, relative_uris=relative_uris, ) if self.mapSubject is not None: r["mapSubject"] = save( self.mapSubject, top=False, base_url=base_url, relative_uris=relative_uris, ) if self.mapPredicate is not None: r["mapPredicate"] = save( self.mapPredicate, top=False, base_url=base_url, relative_uris=relative_uris, ) if self.refScope is not None: r["refScope"] = save( self.refScope, top=False, base_url=base_url, relative_uris=relative_uris ) if self.typeDSL is not None: r["typeDSL"] = save( self.typeDSL, top=False, base_url=base_url, relative_uris=relative_uris ) if self.secondaryFilesDSL is not None: r["secondaryFilesDSL"] = save( self.secondaryFilesDSL, top=False, base_url=base_url, relative_uris=relative_uris, ) if self.subscope is not None: r["subscope"] = save( self.subscope, top=False, base_url=base_url, relative_uris=relative_uris ) # top refers to the directory level if top: if self.loadingOptions.namespaces: r["$namespaces"] = self.loadingOptions.namespaces if self.loadingOptions.schemas: r["$schemas"] = self.loadingOptions.schemas return r attrs = frozenset( [ "_id", "_type", "_container", "identity", "noLinkCheck", "mapSubject", "mapPredicate", "refScope", "typeDSL", "secondaryFilesDSL", "subscope", ] ) class SpecializeDef(Saveable): def __init__( self, specializeFrom: Any, specializeTo: Any, extension_fields: Optional[Dict[str, Any]] = None, loadingOptions: Optional[LoadingOptions] = None, ) -> None: if extension_fields: self.extension_fields = extension_fields else: self.extension_fields = CommentedMap() if loadingOptions: self.loadingOptions = loadingOptions else: self.loadingOptions = LoadingOptions() self.specializeFrom = specializeFrom self.specializeTo = specializeTo def __eq__(self, other: Any) -> bool: if isinstance(other, SpecializeDef): return bool( self.specializeFrom == other.specializeFrom and self.specializeTo == other.specializeTo ) return False def __hash__(self) -> int: return hash((self.specializeFrom, self.specializeTo)) @classmethod def fromDoc( cls, doc: Any, baseuri: str, loadingOptions: LoadingOptions, docRoot: Optional[str] = None, ) -> "SpecializeDef": _doc = copy.copy(doc) if hasattr(doc, "lc"): _doc.lc.data = doc.lc.data _doc.lc.filename = doc.lc.filename _errors__ = [] try: specializeFrom = load_field( _doc.get("specializeFrom"), uri_strtype_False_False_1, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'specializeFrom' field is not valid because:", SourceLine(_doc, "specializeFrom", str), [e], ) ) try: specializeTo = load_field( _doc.get("specializeTo"), uri_strtype_False_False_1, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'specializeTo' field is not valid because:", SourceLine(_doc, "specializeTo", str), [e], ) ) extension_fields: Dict[str, Any] = {} for k in _doc.keys(): if k not in cls.attrs: if ":" in k: ex = expand_url( k, "", loadingOptions, scoped_id=False, vocab_term=False ) extension_fields[ex] = _doc[k] else: _errors__.append( ValidationException( "invalid field `{}`, expected one of: `specializeFrom`, `specializeTo`".format( k ), SourceLine(_doc, k, str), ) ) break if _errors__: raise ValidationException("Trying 'SpecializeDef'", None, _errors__) _constructed = cls( specializeFrom=specializeFrom, specializeTo=specializeTo, extension_fields=extension_fields, loadingOptions=loadingOptions, ) return _constructed def save( self, top: bool = False, base_url: str = "", relative_uris: bool = True ) -> Dict[str, Any]: r: Dict[str, Any] = {} if relative_uris: for ef in self.extension_fields: r[prefix_url(ef, self.loadingOptions.vocab)] = self.extension_fields[ef] else: for ef in self.extension_fields: r[ef] = self.extension_fields[ef] if self.specializeFrom is not None: u = save_relative_uri( self.specializeFrom, base_url, False, 1, relative_uris ) r["specializeFrom"] = u if self.specializeTo is not None: u = save_relative_uri(self.specializeTo, base_url, False, 1, relative_uris) r["specializeTo"] = u # top refers to the directory level if top: if self.loadingOptions.namespaces: r["$namespaces"] = self.loadingOptions.namespaces if self.loadingOptions.schemas: r["$schemas"] = self.loadingOptions.schemas return r attrs = frozenset(["specializeFrom", "specializeTo"]) class NamedType(Saveable): pass class DocType(Documented): pass class SchemaDefinedType(DocType): """ Abstract base for schema-defined types. """ pass class SaladRecordField(RecordField): """ A field of a record. """ def __init__( self, name: Any, type: Any, doc: Optional[Any] = None, jsonldPredicate: Optional[Any] = None, default: Optional[Any] = None, extension_fields: Optional[Dict[str, Any]] = None, loadingOptions: Optional[LoadingOptions] = None, ) -> None: if extension_fields: self.extension_fields = extension_fields else: self.extension_fields = CommentedMap() if loadingOptions: self.loadingOptions = loadingOptions else: self.loadingOptions = LoadingOptions() self.doc = doc self.name = name self.type = type self.jsonldPredicate = jsonldPredicate self.default = default def __eq__(self, other: Any) -> bool: if isinstance(other, SaladRecordField): return bool( self.doc == other.doc and self.name == other.name and self.type == other.type and self.jsonldPredicate == other.jsonldPredicate and self.default == other.default ) return False def __hash__(self) -> int: return hash( (self.doc, self.name, self.type, self.jsonldPredicate, self.default) ) @classmethod def fromDoc( cls, doc: Any, baseuri: str, loadingOptions: LoadingOptions, docRoot: Optional[str] = None, ) -> "SaladRecordField": _doc = copy.copy(doc) if hasattr(doc, "lc"): _doc.lc.data = doc.lc.data _doc.lc.filename = doc.lc.filename _errors__ = [] if "name" in _doc: try: name = load_field( _doc.get("name"), uri_strtype_True_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'name' field is not valid because:", SourceLine(_doc, "name", str), [e], ) ) else: name = None __original_name_is_none = name is None if name is None: if docRoot is not None: name = docRoot else: raise ValidationException("Missing name") if not __original_name_is_none: baseuri = name if "doc" in _doc: try: doc = load_field( _doc.get("doc"), union_of_None_type_or_strtype_or_array_of_strtype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'doc' field is not valid because:", SourceLine(_doc, "doc", str), [e], ) ) else: doc = None try: type = load_field( _doc.get("type"), typedsl_union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype_or_array_of_union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype_2, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'type' field is not valid because:", SourceLine(_doc, "type", str), [e], ) ) if "jsonldPredicate" in _doc: try: jsonldPredicate = load_field( _doc.get("jsonldPredicate"), union_of_None_type_or_strtype_or_JsonldPredicateLoader, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'jsonldPredicate' field is not valid because:", SourceLine(_doc, "jsonldPredicate", str), [e], ) ) else: jsonldPredicate = None if "default" in _doc: try: default = load_field( _doc.get("default"), union_of_None_type_or_Any_type, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'default' field is not valid because:", SourceLine(_doc, "default", str), [e], ) ) else: default = None extension_fields: Dict[str, Any] = {} for k in _doc.keys(): if k not in cls.attrs: if ":" in k: ex = expand_url( k, "", loadingOptions, scoped_id=False, vocab_term=False ) extension_fields[ex] = _doc[k] else: _errors__.append( ValidationException( "invalid field `{}`, expected one of: `doc`, `name`, `type`, `jsonldPredicate`, `default`".format( k ), SourceLine(_doc, k, str), ) ) break if _errors__: raise ValidationException("Trying 'SaladRecordField'", None, _errors__) _constructed = cls( doc=doc, name=name, type=type, jsonldPredicate=jsonldPredicate, default=default, extension_fields=extension_fields, loadingOptions=loadingOptions, ) loadingOptions.idx[name] = (_constructed, loadingOptions) return _constructed def save( self, top: bool = False, base_url: str = "", relative_uris: bool = True ) -> Dict[str, Any]: r: Dict[str, Any] = {} if relative_uris: for ef in self.extension_fields: r[prefix_url(ef, self.loadingOptions.vocab)] = self.extension_fields[ef] else: for ef in self.extension_fields: r[ef] = self.extension_fields[ef] if self.name is not None: u = save_relative_uri(self.name, base_url, True, None, relative_uris) r["name"] = u if self.doc is not None: r["doc"] = save( self.doc, top=False, base_url=self.name, relative_uris=relative_uris ) if self.type is not None: r["type"] = save( self.type, top=False, base_url=self.name, relative_uris=relative_uris ) if self.jsonldPredicate is not None: r["jsonldPredicate"] = save( self.jsonldPredicate, top=False, base_url=self.name, relative_uris=relative_uris, ) if self.default is not None: r["default"] = save( self.default, top=False, base_url=self.name, relative_uris=relative_uris ) # top refers to the directory level if top: if self.loadingOptions.namespaces: r["$namespaces"] = self.loadingOptions.namespaces if self.loadingOptions.schemas: r["$schemas"] = self.loadingOptions.schemas return r attrs = frozenset(["doc", "name", "type", "jsonldPredicate", "default"]) class SaladRecordSchema(NamedType, RecordSchema, SchemaDefinedType): def __init__( self, name: Any, type: Any, inVocab: Optional[Any] = None, fields: Optional[Any] = None, doc: Optional[Any] = None, docParent: Optional[Any] = None, docChild: Optional[Any] = None, docAfter: Optional[Any] = None, jsonldPredicate: Optional[Any] = None, documentRoot: Optional[Any] = None, abstract: Optional[Any] = None, extends: Optional[Any] = None, specialize: Optional[Any] = None, extension_fields: Optional[Dict[str, Any]] = None, loadingOptions: Optional[LoadingOptions] = None, ) -> None: if extension_fields: self.extension_fields = extension_fields else: self.extension_fields = CommentedMap() if loadingOptions: self.loadingOptions = loadingOptions else: self.loadingOptions = LoadingOptions() self.name = name self.inVocab = inVocab self.fields = fields self.type = type self.doc = doc self.docParent = docParent self.docChild = docChild self.docAfter = docAfter self.jsonldPredicate = jsonldPredicate self.documentRoot = documentRoot self.abstract = abstract self.extends = extends self.specialize = specialize def __eq__(self, other: Any) -> bool: if isinstance(other, SaladRecordSchema): return bool( self.name == other.name and self.inVocab == other.inVocab and self.fields == other.fields and self.type == other.type and self.doc == other.doc and self.docParent == other.docParent and self.docChild == other.docChild and self.docAfter == other.docAfter and self.jsonldPredicate == other.jsonldPredicate and self.documentRoot == other.documentRoot and self.abstract == other.abstract and self.extends == other.extends and self.specialize == other.specialize ) return False def __hash__(self) -> int: return hash( ( self.name, self.inVocab, self.fields, self.type, self.doc, self.docParent, self.docChild, self.docAfter, self.jsonldPredicate, self.documentRoot, self.abstract, self.extends, self.specialize, ) ) @classmethod def fromDoc( cls, doc: Any, baseuri: str, loadingOptions: LoadingOptions, docRoot: Optional[str] = None, ) -> "SaladRecordSchema": _doc = copy.copy(doc) if hasattr(doc, "lc"): _doc.lc.data = doc.lc.data _doc.lc.filename = doc.lc.filename _errors__ = [] if "name" in _doc: try: name = load_field( _doc.get("name"), uri_strtype_True_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'name' field is not valid because:", SourceLine(_doc, "name", str), [e], ) ) else: name = None __original_name_is_none = name is None if name is None: if docRoot is not None: name = docRoot else: raise ValidationException("Missing name") if not __original_name_is_none: baseuri = name if "inVocab" in _doc: try: inVocab = load_field( _doc.get("inVocab"), union_of_None_type_or_booltype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'inVocab' field is not valid because:", SourceLine(_doc, "inVocab", str), [e], ) ) else: inVocab = None if "fields" in _doc: try: fields = load_field( _doc.get("fields"), idmap_fields_union_of_None_type_or_array_of_SaladRecordFieldLoader, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'fields' field is not valid because:", SourceLine(_doc, "fields", str), [e], ) ) else: fields = None try: type = load_field( _doc.get("type"), typedsl_Record_nameLoader_2, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'type' field is not valid because:", SourceLine(_doc, "type", str), [e], ) ) if "doc" in _doc: try: doc = load_field( _doc.get("doc"), union_of_None_type_or_strtype_or_array_of_strtype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'doc' field is not valid because:", SourceLine(_doc, "doc", str), [e], ) ) else: doc = None if "docParent" in _doc: try: docParent = load_field( _doc.get("docParent"), uri_union_of_None_type_or_strtype_False_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'docParent' field is not valid because:", SourceLine(_doc, "docParent", str), [e], ) ) else: docParent = None if "docChild" in _doc: try: docChild = load_field( _doc.get("docChild"), uri_union_of_None_type_or_strtype_or_array_of_strtype_False_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'docChild' field is not valid because:", SourceLine(_doc, "docChild", str), [e], ) ) else: docChild = None if "docAfter" in _doc: try: docAfter = load_field( _doc.get("docAfter"), uri_union_of_None_type_or_strtype_False_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'docAfter' field is not valid because:", SourceLine(_doc, "docAfter", str), [e], ) ) else: docAfter = None if "jsonldPredicate" in _doc: try: jsonldPredicate = load_field( _doc.get("jsonldPredicate"), union_of_None_type_or_strtype_or_JsonldPredicateLoader, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'jsonldPredicate' field is not valid because:", SourceLine(_doc, "jsonldPredicate", str), [e], ) ) else: jsonldPredicate = None if "documentRoot" in _doc: try: documentRoot = load_field( _doc.get("documentRoot"), union_of_None_type_or_booltype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'documentRoot' field is not valid because:", SourceLine(_doc, "documentRoot", str), [e], ) ) else: documentRoot = None if "abstract" in _doc: try: abstract = load_field( _doc.get("abstract"), union_of_None_type_or_booltype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'abstract' field is not valid because:", SourceLine(_doc, "abstract", str), [e], ) ) else: abstract = None if "extends" in _doc: try: extends = load_field( _doc.get("extends"), uri_union_of_None_type_or_strtype_or_array_of_strtype_False_False_1, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'extends' field is not valid because:", SourceLine(_doc, "extends", str), [e], ) ) else: extends = None if "specialize" in _doc: try: specialize = load_field( _doc.get("specialize"), idmap_specialize_union_of_None_type_or_array_of_SpecializeDefLoader, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'specialize' field is not valid because:", SourceLine(_doc, "specialize", str), [e], ) ) else: specialize = None extension_fields: Dict[str, Any] = {} for k in _doc.keys(): if k not in cls.attrs: if ":" in k: ex = expand_url( k, "", loadingOptions, scoped_id=False, vocab_term=False ) extension_fields[ex] = _doc[k] else: _errors__.append( ValidationException( "invalid field `{}`, expected one of: `name`, `inVocab`, `fields`, `type`, `doc`, `docParent`, `docChild`, `docAfter`, `jsonldPredicate`, `documentRoot`, `abstract`, `extends`, `specialize`".format( k ), SourceLine(_doc, k, str), ) ) break if _errors__: raise ValidationException("Trying 'SaladRecordSchema'", None, _errors__) _constructed = cls( name=name, inVocab=inVocab, fields=fields, type=type, doc=doc, docParent=docParent, docChild=docChild, docAfter=docAfter, jsonldPredicate=jsonldPredicate, documentRoot=documentRoot, abstract=abstract, extends=extends, specialize=specialize, extension_fields=extension_fields, loadingOptions=loadingOptions, ) loadingOptions.idx[name] = (_constructed, loadingOptions) return _constructed def save( self, top: bool = False, base_url: str = "", relative_uris: bool = True ) -> Dict[str, Any]: r: Dict[str, Any] = {} if relative_uris: for ef in self.extension_fields: r[prefix_url(ef, self.loadingOptions.vocab)] = self.extension_fields[ef] else: for ef in self.extension_fields: r[ef] = self.extension_fields[ef] if self.name is not None: u = save_relative_uri(self.name, base_url, True, None, relative_uris) r["name"] = u if self.inVocab is not None: r["inVocab"] = save( self.inVocab, top=False, base_url=self.name, relative_uris=relative_uris ) if self.fields is not None: r["fields"] = save( self.fields, top=False, base_url=self.name, relative_uris=relative_uris ) if self.type is not None: r["type"] = save( self.type, top=False, base_url=self.name, relative_uris=relative_uris ) if self.doc is not None: r["doc"] = save( self.doc, top=False, base_url=self.name, relative_uris=relative_uris ) if self.docParent is not None: u = save_relative_uri(self.docParent, self.name, False, None, relative_uris) r["docParent"] = u if self.docChild is not None: u = save_relative_uri(self.docChild, self.name, False, None, relative_uris) r["docChild"] = u if self.docAfter is not None: u = save_relative_uri(self.docAfter, self.name, False, None, relative_uris) r["docAfter"] = u if self.jsonldPredicate is not None: r["jsonldPredicate"] = save( self.jsonldPredicate, top=False, base_url=self.name, relative_uris=relative_uris, ) if self.documentRoot is not None: r["documentRoot"] = save( self.documentRoot, top=False, base_url=self.name, relative_uris=relative_uris, ) if self.abstract is not None: r["abstract"] = save( self.abstract, top=False, base_url=self.name, relative_uris=relative_uris, ) if self.extends is not None: u = save_relative_uri(self.extends, self.name, False, 1, relative_uris) r["extends"] = u if self.specialize is not None: r["specialize"] = save( self.specialize, top=False, base_url=self.name, relative_uris=relative_uris, ) # top refers to the directory level if top: if self.loadingOptions.namespaces: r["$namespaces"] = self.loadingOptions.namespaces if self.loadingOptions.schemas: r["$schemas"] = self.loadingOptions.schemas return r attrs = frozenset( [ "name", "inVocab", "fields", "type", "doc", "docParent", "docChild", "docAfter", "jsonldPredicate", "documentRoot", "abstract", "extends", "specialize", ] ) class SaladEnumSchema(NamedType, EnumSchema, SchemaDefinedType): """ Define an enumerated type. """ def __init__( self, symbols: Any, type: Any, name: Optional[Any] = None, inVocab: Optional[Any] = None, doc: Optional[Any] = None, docParent: Optional[Any] = None, docChild: Optional[Any] = None, docAfter: Optional[Any] = None, jsonldPredicate: Optional[Any] = None, documentRoot: Optional[Any] = None, extends: Optional[Any] = None, extension_fields: Optional[Dict[str, Any]] = None, loadingOptions: Optional[LoadingOptions] = None, ) -> None: if extension_fields: self.extension_fields = extension_fields else: self.extension_fields = CommentedMap() if loadingOptions: self.loadingOptions = loadingOptions else: self.loadingOptions = LoadingOptions() self.name = name self.inVocab = inVocab self.symbols = symbols self.type = type self.doc = doc self.docParent = docParent self.docChild = docChild self.docAfter = docAfter self.jsonldPredicate = jsonldPredicate self.documentRoot = documentRoot self.extends = extends def __eq__(self, other: Any) -> bool: if isinstance(other, SaladEnumSchema): return bool( self.name == other.name and self.inVocab == other.inVocab and self.symbols == other.symbols and self.type == other.type and self.doc == other.doc and self.docParent == other.docParent and self.docChild == other.docChild and self.docAfter == other.docAfter and self.jsonldPredicate == other.jsonldPredicate and self.documentRoot == other.documentRoot and self.extends == other.extends ) return False def __hash__(self) -> int: return hash( ( self.name, self.inVocab, self.symbols, self.type, self.doc, self.docParent, self.docChild, self.docAfter, self.jsonldPredicate, self.documentRoot, self.extends, ) ) @classmethod def fromDoc( cls, doc: Any, baseuri: str, loadingOptions: LoadingOptions, docRoot: Optional[str] = None, ) -> "SaladEnumSchema": _doc = copy.copy(doc) if hasattr(doc, "lc"): _doc.lc.data = doc.lc.data _doc.lc.filename = doc.lc.filename _errors__ = [] if "name" in _doc: try: name = load_field( _doc.get("name"), uri_union_of_None_type_or_strtype_True_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'name' field is not valid because:", SourceLine(_doc, "name", str), [e], ) ) else: name = None __original_name_is_none = name is None if name is None: if docRoot is not None: name = docRoot else: name = "_:" + str(_uuid__.uuid4()) if not __original_name_is_none: baseuri = name if "inVocab" in _doc: try: inVocab = load_field( _doc.get("inVocab"), union_of_None_type_or_booltype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'inVocab' field is not valid because:", SourceLine(_doc, "inVocab", str), [e], ) ) else: inVocab = None try: symbols = load_field( _doc.get("symbols"), uri_array_of_strtype_True_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'symbols' field is not valid because:", SourceLine(_doc, "symbols", str), [e], ) ) try: type = load_field( _doc.get("type"), typedsl_Enum_nameLoader_2, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'type' field is not valid because:", SourceLine(_doc, "type", str), [e], ) ) if "doc" in _doc: try: doc = load_field( _doc.get("doc"), union_of_None_type_or_strtype_or_array_of_strtype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'doc' field is not valid because:", SourceLine(_doc, "doc", str), [e], ) ) else: doc = None if "docParent" in _doc: try: docParent = load_field( _doc.get("docParent"), uri_union_of_None_type_or_strtype_False_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'docParent' field is not valid because:", SourceLine(_doc, "docParent", str), [e], ) ) else: docParent = None if "docChild" in _doc: try: docChild = load_field( _doc.get("docChild"), uri_union_of_None_type_or_strtype_or_array_of_strtype_False_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'docChild' field is not valid because:", SourceLine(_doc, "docChild", str), [e], ) ) else: docChild = None if "docAfter" in _doc: try: docAfter = load_field( _doc.get("docAfter"), uri_union_of_None_type_or_strtype_False_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'docAfter' field is not valid because:", SourceLine(_doc, "docAfter", str), [e], ) ) else: docAfter = None if "jsonldPredicate" in _doc: try: jsonldPredicate = load_field( _doc.get("jsonldPredicate"), union_of_None_type_or_strtype_or_JsonldPredicateLoader, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'jsonldPredicate' field is not valid because:", SourceLine(_doc, "jsonldPredicate", str), [e], ) ) else: jsonldPredicate = None if "documentRoot" in _doc: try: documentRoot = load_field( _doc.get("documentRoot"), union_of_None_type_or_booltype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'documentRoot' field is not valid because:", SourceLine(_doc, "documentRoot", str), [e], ) ) else: documentRoot = None if "extends" in _doc: try: extends = load_field( _doc.get("extends"), uri_union_of_None_type_or_strtype_or_array_of_strtype_False_False_1, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'extends' field is not valid because:", SourceLine(_doc, "extends", str), [e], ) ) else: extends = None extension_fields: Dict[str, Any] = {} for k in _doc.keys(): if k not in cls.attrs: if ":" in k: ex = expand_url( k, "", loadingOptions, scoped_id=False, vocab_term=False ) extension_fields[ex] = _doc[k] else: _errors__.append( ValidationException( "invalid field `{}`, expected one of: `name`, `inVocab`, `symbols`, `type`, `doc`, `docParent`, `docChild`, `docAfter`, `jsonldPredicate`, `documentRoot`, `extends`".format( k ), SourceLine(_doc, k, str), ) ) break if _errors__: raise ValidationException("Trying 'SaladEnumSchema'", None, _errors__) _constructed = cls( name=name, inVocab=inVocab, symbols=symbols, type=type, doc=doc, docParent=docParent, docChild=docChild, docAfter=docAfter, jsonldPredicate=jsonldPredicate, documentRoot=documentRoot, extends=extends, extension_fields=extension_fields, loadingOptions=loadingOptions, ) loadingOptions.idx[name] = (_constructed, loadingOptions) return _constructed def save( self, top: bool = False, base_url: str = "", relative_uris: bool = True ) -> Dict[str, Any]: r: Dict[str, Any] = {} if relative_uris: for ef in self.extension_fields: r[prefix_url(ef, self.loadingOptions.vocab)] = self.extension_fields[ef] else: for ef in self.extension_fields: r[ef] = self.extension_fields[ef] if self.name is not None: u = save_relative_uri(self.name, base_url, True, None, relative_uris) r["name"] = u if self.inVocab is not None: r["inVocab"] = save( self.inVocab, top=False, base_url=self.name, relative_uris=relative_uris ) if self.symbols is not None: u = save_relative_uri(self.symbols, self.name, True, None, relative_uris) r["symbols"] = u if self.type is not None: r["type"] = save( self.type, top=False, base_url=self.name, relative_uris=relative_uris ) if self.doc is not None: r["doc"] = save( self.doc, top=False, base_url=self.name, relative_uris=relative_uris ) if self.docParent is not None: u = save_relative_uri(self.docParent, self.name, False, None, relative_uris) r["docParent"] = u if self.docChild is not None: u = save_relative_uri(self.docChild, self.name, False, None, relative_uris) r["docChild"] = u if self.docAfter is not None: u = save_relative_uri(self.docAfter, self.name, False, None, relative_uris) r["docAfter"] = u if self.jsonldPredicate is not None: r["jsonldPredicate"] = save( self.jsonldPredicate, top=False, base_url=self.name, relative_uris=relative_uris, ) if self.documentRoot is not None: r["documentRoot"] = save( self.documentRoot, top=False, base_url=self.name, relative_uris=relative_uris, ) if self.extends is not None: u = save_relative_uri(self.extends, self.name, False, 1, relative_uris) r["extends"] = u # top refers to the directory level if top: if self.loadingOptions.namespaces: r["$namespaces"] = self.loadingOptions.namespaces if self.loadingOptions.schemas: r["$schemas"] = self.loadingOptions.schemas return r attrs = frozenset( [ "name", "inVocab", "symbols", "type", "doc", "docParent", "docChild", "docAfter", "jsonldPredicate", "documentRoot", "extends", ] ) class Documentation(NamedType, DocType): """ A documentation section. This type exists to facilitate self-documenting schemas but has no role in formal validation. """ def __init__( self, name: Any, type: Any, inVocab: Optional[Any] = None, doc: Optional[Any] = None, docParent: Optional[Any] = None, docChild: Optional[Any] = None, docAfter: Optional[Any] = None, extension_fields: Optional[Dict[str, Any]] = None, loadingOptions: Optional[LoadingOptions] = None, ) -> None: if extension_fields: self.extension_fields = extension_fields else: self.extension_fields = CommentedMap() if loadingOptions: self.loadingOptions = loadingOptions else: self.loadingOptions = LoadingOptions() self.name = name self.inVocab = inVocab self.doc = doc self.docParent = docParent self.docChild = docChild self.docAfter = docAfter self.type = type def __eq__(self, other: Any) -> bool: if isinstance(other, Documentation): return bool( self.name == other.name and self.inVocab == other.inVocab and self.doc == other.doc and self.docParent == other.docParent and self.docChild == other.docChild and self.docAfter == other.docAfter and self.type == other.type ) return False def __hash__(self) -> int: return hash( ( self.name, self.inVocab, self.doc, self.docParent, self.docChild, self.docAfter, self.type, ) ) @classmethod def fromDoc( cls, doc: Any, baseuri: str, loadingOptions: LoadingOptions, docRoot: Optional[str] = None, ) -> "Documentation": _doc = copy.copy(doc) if hasattr(doc, "lc"): _doc.lc.data = doc.lc.data _doc.lc.filename = doc.lc.filename _errors__ = [] if "name" in _doc: try: name = load_field( _doc.get("name"), uri_strtype_True_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'name' field is not valid because:", SourceLine(_doc, "name", str), [e], ) ) else: name = None __original_name_is_none = name is None if name is None: if docRoot is not None: name = docRoot else: raise ValidationException("Missing name") if not __original_name_is_none: baseuri = name if "inVocab" in _doc: try: inVocab = load_field( _doc.get("inVocab"), union_of_None_type_or_booltype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'inVocab' field is not valid because:", SourceLine(_doc, "inVocab", str), [e], ) ) else: inVocab = None if "doc" in _doc: try: doc = load_field( _doc.get("doc"), union_of_None_type_or_strtype_or_array_of_strtype, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'doc' field is not valid because:", SourceLine(_doc, "doc", str), [e], ) ) else: doc = None if "docParent" in _doc: try: docParent = load_field( _doc.get("docParent"), uri_union_of_None_type_or_strtype_False_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'docParent' field is not valid because:", SourceLine(_doc, "docParent", str), [e], ) ) else: docParent = None if "docChild" in _doc: try: docChild = load_field( _doc.get("docChild"), uri_union_of_None_type_or_strtype_or_array_of_strtype_False_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'docChild' field is not valid because:", SourceLine(_doc, "docChild", str), [e], ) ) else: docChild = None if "docAfter" in _doc: try: docAfter = load_field( _doc.get("docAfter"), uri_union_of_None_type_or_strtype_False_False_None, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'docAfter' field is not valid because:", SourceLine(_doc, "docAfter", str), [e], ) ) else: docAfter = None try: type = load_field( _doc.get("type"), typedsl_Documentation_nameLoader_2, baseuri, loadingOptions, ) except ValidationException as e: _errors__.append( ValidationException( "the 'type' field is not valid because:", SourceLine(_doc, "type", str), [e], ) ) extension_fields: Dict[str, Any] = {} for k in _doc.keys(): if k not in cls.attrs: if ":" in k: ex = expand_url( k, "", loadingOptions, scoped_id=False, vocab_term=False ) extension_fields[ex] = _doc[k] else: _errors__.append( ValidationException( "invalid field `{}`, expected one of: `name`, `inVocab`, `doc`, `docParent`, `docChild`, `docAfter`, `type`".format( k ), SourceLine(_doc, k, str), ) ) break if _errors__: raise ValidationException("Trying 'Documentation'", None, _errors__) _constructed = cls( name=name, inVocab=inVocab, doc=doc, docParent=docParent, docChild=docChild, docAfter=docAfter, type=type, extension_fields=extension_fields, loadingOptions=loadingOptions, ) loadingOptions.idx[name] = (_constructed, loadingOptions) return _constructed def save( self, top: bool = False, base_url: str = "", relative_uris: bool = True ) -> Dict[str, Any]: r: Dict[str, Any] = {} if relative_uris: for ef in self.extension_fields: r[prefix_url(ef, self.loadingOptions.vocab)] = self.extension_fields[ef] else: for ef in self.extension_fields: r[ef] = self.extension_fields[ef] if self.name is not None: u = save_relative_uri(self.name, base_url, True, None, relative_uris) r["name"] = u if self.inVocab is not None: r["inVocab"] = save( self.inVocab, top=False, base_url=self.name, relative_uris=relative_uris ) if self.doc is not None: r["doc"] = save( self.doc, top=False, base_url=self.name, relative_uris=relative_uris ) if self.docParent is not None: u = save_relative_uri(self.docParent, self.name, False, None, relative_uris) r["docParent"] = u if self.docChild is not None: u = save_relative_uri(self.docChild, self.name, False, None, relative_uris) r["docChild"] = u if self.docAfter is not None: u = save_relative_uri(self.docAfter, self.name, False, None, relative_uris) r["docAfter"] = u if self.type is not None: r["type"] = save( self.type, top=False, base_url=self.name, relative_uris=relative_uris ) # top refers to the directory level if top: if self.loadingOptions.namespaces: r["$namespaces"] = self.loadingOptions.namespaces if self.loadingOptions.schemas: r["$schemas"] = self.loadingOptions.schemas return r attrs = frozenset( ["name", "inVocab", "doc", "docParent", "docChild", "docAfter", "type"] ) _vocab = { "Any": "https://w3id.org/cwl/salad#Any", "ArraySchema": "https://w3id.org/cwl/salad#ArraySchema", "DocType": "https://w3id.org/cwl/salad#DocType", "Documentation": "https://w3id.org/cwl/salad#Documentation", "Documented": "https://w3id.org/cwl/salad#Documented", "EnumSchema": "https://w3id.org/cwl/salad#EnumSchema", "JsonldPredicate": "https://w3id.org/cwl/salad#JsonldPredicate", "NamedType": "https://w3id.org/cwl/salad#NamedType", "PrimitiveType": "https://w3id.org/cwl/salad#PrimitiveType", "RecordField": "https://w3id.org/cwl/salad#RecordField", "RecordSchema": "https://w3id.org/cwl/salad#RecordSchema", "SaladEnumSchema": "https://w3id.org/cwl/salad#SaladEnumSchema", "SaladRecordField": "https://w3id.org/cwl/salad#SaladRecordField", "SaladRecordSchema": "https://w3id.org/cwl/salad#SaladRecordSchema", "SchemaDefinedType": "https://w3id.org/cwl/salad#SchemaDefinedType", "SpecializeDef": "https://w3id.org/cwl/salad#SpecializeDef", "array": "https://w3id.org/cwl/salad#array", "boolean": "http://www.w3.org/2001/XMLSchema#boolean", "documentation": "https://w3id.org/cwl/salad#documentation", "double": "http://www.w3.org/2001/XMLSchema#double", "enum": "https://w3id.org/cwl/salad#enum", "float": "http://www.w3.org/2001/XMLSchema#float", "int": "http://www.w3.org/2001/XMLSchema#int", "long": "http://www.w3.org/2001/XMLSchema#long", "null": "https://w3id.org/cwl/salad#null", "record": "https://w3id.org/cwl/salad#record", "string": "http://www.w3.org/2001/XMLSchema#string", } _rvocab = { "https://w3id.org/cwl/salad#Any": "Any", "https://w3id.org/cwl/salad#ArraySchema": "ArraySchema", "https://w3id.org/cwl/salad#DocType": "DocType", "https://w3id.org/cwl/salad#Documentation": "Documentation", "https://w3id.org/cwl/salad#Documented": "Documented", "https://w3id.org/cwl/salad#EnumSchema": "EnumSchema", "https://w3id.org/cwl/salad#JsonldPredicate": "JsonldPredicate", "https://w3id.org/cwl/salad#NamedType": "NamedType", "https://w3id.org/cwl/salad#PrimitiveType": "PrimitiveType", "https://w3id.org/cwl/salad#RecordField": "RecordField", "https://w3id.org/cwl/salad#RecordSchema": "RecordSchema", "https://w3id.org/cwl/salad#SaladEnumSchema": "SaladEnumSchema", "https://w3id.org/cwl/salad#SaladRecordField": "SaladRecordField", "https://w3id.org/cwl/salad#SaladRecordSchema": "SaladRecordSchema", "https://w3id.org/cwl/salad#SchemaDefinedType": "SchemaDefinedType", "https://w3id.org/cwl/salad#SpecializeDef": "SpecializeDef", "https://w3id.org/cwl/salad#array": "array", "http://www.w3.org/2001/XMLSchema#boolean": "boolean", "https://w3id.org/cwl/salad#documentation": "documentation", "http://www.w3.org/2001/XMLSchema#double": "double", "https://w3id.org/cwl/salad#enum": "enum", "http://www.w3.org/2001/XMLSchema#float": "float", "http://www.w3.org/2001/XMLSchema#int": "int", "http://www.w3.org/2001/XMLSchema#long": "long", "https://w3id.org/cwl/salad#null": "null", "https://w3id.org/cwl/salad#record": "record", "http://www.w3.org/2001/XMLSchema#string": "string", } strtype = _PrimitiveLoader(str) inttype = _PrimitiveLoader(int) floattype = _PrimitiveLoader(float) booltype = _PrimitiveLoader(bool) None_type = _PrimitiveLoader(type(None)) Any_type = _AnyLoader() PrimitiveTypeLoader = _EnumLoader( ( "null", "boolean", "int", "long", "float", "double", "string", ), "PrimitiveType", ) """ Names of salad data types (based on Avro schema declarations). Refer to the [Avro schema declaration documentation](https://avro.apache.org/docs/current/spec.html#schemas) for detailed information. null: no value boolean: a binary value int: 32-bit signed integer long: 64-bit signed integer float: single precision (32-bit) IEEE 754 floating-point number double: double precision (64-bit) IEEE 754 floating-point number string: Unicode character sequence """ AnyLoader = _EnumLoader(("Any",), "Any") """ The **Any** type validates for any non-null value. """ RecordFieldLoader = _RecordLoader(RecordField) RecordSchemaLoader = _RecordLoader(RecordSchema) EnumSchemaLoader = _RecordLoader(EnumSchema) ArraySchemaLoader = _RecordLoader(ArraySchema) JsonldPredicateLoader = _RecordLoader(JsonldPredicate) SpecializeDefLoader = _RecordLoader(SpecializeDef) SaladRecordFieldLoader = _RecordLoader(SaladRecordField) SaladRecordSchemaLoader = _RecordLoader(SaladRecordSchema) SaladEnumSchemaLoader = _RecordLoader(SaladEnumSchema) DocumentationLoader = _RecordLoader(Documentation) array_of_strtype = _ArrayLoader(strtype) union_of_None_type_or_strtype_or_array_of_strtype = _UnionLoader( ( None_type, strtype, array_of_strtype, ) ) uri_strtype_True_False_None = _URILoader(strtype, True, False, None) union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype = _UnionLoader( ( PrimitiveTypeLoader, RecordSchemaLoader, EnumSchemaLoader, ArraySchemaLoader, strtype, ) ) array_of_union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype = _ArrayLoader( union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype ) union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype_or_array_of_union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype = _UnionLoader( ( PrimitiveTypeLoader, RecordSchemaLoader, EnumSchemaLoader, ArraySchemaLoader, strtype, array_of_union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype, ) ) typedsl_union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype_or_array_of_union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype_2 = _TypeDSLLoader( union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype_or_array_of_union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype, 2, "v1.1", ) array_of_RecordFieldLoader = _ArrayLoader(RecordFieldLoader) union_of_None_type_or_array_of_RecordFieldLoader = _UnionLoader( ( None_type, array_of_RecordFieldLoader, ) ) idmap_fields_union_of_None_type_or_array_of_RecordFieldLoader = _IdMapLoader( union_of_None_type_or_array_of_RecordFieldLoader, "name", "type" ) Record_nameLoader = _EnumLoader(("record",), "Record_name") typedsl_Record_nameLoader_2 = _TypeDSLLoader(Record_nameLoader, 2, "v1.1") union_of_None_type_or_strtype = _UnionLoader( ( None_type, strtype, ) ) uri_union_of_None_type_or_strtype_True_False_None = _URILoader( union_of_None_type_or_strtype, True, False, None ) uri_array_of_strtype_True_False_None = _URILoader(array_of_strtype, True, False, None) Enum_nameLoader = _EnumLoader(("enum",), "Enum_name") typedsl_Enum_nameLoader_2 = _TypeDSLLoader(Enum_nameLoader, 2, "v1.1") uri_union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype_or_array_of_union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype_False_True_2 = _URILoader( union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype_or_array_of_union_of_PrimitiveTypeLoader_or_RecordSchemaLoader_or_EnumSchemaLoader_or_ArraySchemaLoader_or_strtype, False, True, 2, ) Array_nameLoader = _EnumLoader(("array",), "Array_name") typedsl_Array_nameLoader_2 = _TypeDSLLoader(Array_nameLoader, 2, "v1.1") union_of_None_type_or_booltype = _UnionLoader( ( None_type, booltype, ) ) union_of_None_type_or_inttype = _UnionLoader( ( None_type, inttype, ) ) uri_strtype_False_False_1 = _URILoader(strtype, False, False, 1) uri_union_of_None_type_or_strtype_False_False_None = _URILoader( union_of_None_type_or_strtype, False, False, None ) uri_union_of_None_type_or_strtype_or_array_of_strtype_False_False_None = _URILoader( union_of_None_type_or_strtype_or_array_of_strtype, False, False, None ) union_of_None_type_or_strtype_or_JsonldPredicateLoader = _UnionLoader( ( None_type, strtype, JsonldPredicateLoader, ) ) union_of_None_type_or_Any_type = _UnionLoader( ( None_type, Any_type, ) ) array_of_SaladRecordFieldLoader = _ArrayLoader(SaladRecordFieldLoader) union_of_None_type_or_array_of_SaladRecordFieldLoader = _UnionLoader( ( None_type, array_of_SaladRecordFieldLoader, ) ) idmap_fields_union_of_None_type_or_array_of_SaladRecordFieldLoader = _IdMapLoader( union_of_None_type_or_array_of_SaladRecordFieldLoader, "name", "type" ) uri_union_of_None_type_or_strtype_or_array_of_strtype_False_False_1 = _URILoader( union_of_None_type_or_strtype_or_array_of_strtype, False, False, 1 ) array_of_SpecializeDefLoader = _ArrayLoader(SpecializeDefLoader) union_of_None_type_or_array_of_SpecializeDefLoader = _UnionLoader( ( None_type, array_of_SpecializeDefLoader, ) ) idmap_specialize_union_of_None_type_or_array_of_SpecializeDefLoader = _IdMapLoader( union_of_None_type_or_array_of_SpecializeDefLoader, "specializeFrom", "specializeTo" ) Documentation_nameLoader = _EnumLoader(("documentation",), "Documentation_name") typedsl_Documentation_nameLoader_2 = _TypeDSLLoader(Documentation_nameLoader, 2, "v1.1") union_of_SaladRecordSchemaLoader_or_SaladEnumSchemaLoader_or_DocumentationLoader = ( _UnionLoader( ( SaladRecordSchemaLoader, SaladEnumSchemaLoader, DocumentationLoader, ) ) ) array_of_union_of_SaladRecordSchemaLoader_or_SaladEnumSchemaLoader_or_DocumentationLoader = _ArrayLoader( union_of_SaladRecordSchemaLoader_or_SaladEnumSchemaLoader_or_DocumentationLoader ) union_of_SaladRecordSchemaLoader_or_SaladEnumSchemaLoader_or_DocumentationLoader_or_array_of_union_of_SaladRecordSchemaLoader_or_SaladEnumSchemaLoader_or_DocumentationLoader = _UnionLoader( ( SaladRecordSchemaLoader, SaladEnumSchemaLoader, DocumentationLoader, array_of_union_of_SaladRecordSchemaLoader_or_SaladEnumSchemaLoader_or_DocumentationLoader, ) ) def load_document( doc: Any, baseuri: Optional[str] = None, loadingOptions: Optional[LoadingOptions] = None, ) -> Any: if baseuri is None: baseuri = file_uri(os.getcwd()) + "/" if loadingOptions is None: loadingOptions = LoadingOptions() result, metadata = _document_load( union_of_SaladRecordSchemaLoader_or_SaladEnumSchemaLoader_or_DocumentationLoader_or_array_of_union_of_SaladRecordSchemaLoader_or_SaladEnumSchemaLoader_or_DocumentationLoader, doc, baseuri, loadingOptions, ) return result def load_document_with_metadata( doc: Any, baseuri: Optional[str] = None, loadingOptions: Optional[LoadingOptions] = None, addl_metadata_fields: Optional[MutableSequence[str]] = None, ) -> Any: if baseuri is None: baseuri = file_uri(os.getcwd()) + "/" if loadingOptions is None: loadingOptions = LoadingOptions(fileuri=baseuri) return _document_load( union_of_SaladRecordSchemaLoader_or_SaladEnumSchemaLoader_or_DocumentationLoader_or_array_of_union_of_SaladRecordSchemaLoader_or_SaladEnumSchemaLoader_or_DocumentationLoader, doc, baseuri, loadingOptions, addl_metadata_fields=addl_metadata_fields, ) def load_document_by_string( string: Any, uri: str, loadingOptions: Optional[LoadingOptions] = None, ) -> Any: yaml = yaml_no_ts() result = yaml.load(string) add_lc_filename(result, uri) if loadingOptions is None: loadingOptions = LoadingOptions(fileuri=uri) result, metadata = _document_load( union_of_SaladRecordSchemaLoader_or_SaladEnumSchemaLoader_or_DocumentationLoader_or_array_of_union_of_SaladRecordSchemaLoader_or_SaladEnumSchemaLoader_or_DocumentationLoader, result, uri, loadingOptions, ) return result def load_document_by_yaml( yaml: Any, uri: str, loadingOptions: Optional[LoadingOptions] = None, ) -> Any: """ Shortcut to load via a YAML object. yaml: must be from ruamel.yaml.main.YAML.load with preserve_quotes=True """ add_lc_filename(yaml, uri) if loadingOptions is None: loadingOptions = LoadingOptions(fileuri=uri) result, metadata = _document_load( union_of_SaladRecordSchemaLoader_or_SaladEnumSchemaLoader_or_DocumentationLoader_or_array_of_union_of_SaladRecordSchemaLoader_or_SaladEnumSchemaLoader_or_DocumentationLoader, yaml, uri, loadingOptions, ) return result
0.600774
0.081082
import os import re from typing import ( Any, AnyStr, Callable, List, MutableMapping, MutableSequence, Optional, Tuple, Union, ) import ruamel.yaml from ruamel.yaml.comments import CommentedBase, CommentedMap, CommentedSeq lineno_re = re.compile("^(.*?:[0-9]+:[0-9]+: )(( *)(.*))") def _add_lc_filename(r: ruamel.yaml.comments.CommentedBase, source: AnyStr) -> None: if isinstance(r, ruamel.yaml.comments.CommentedBase): r.lc.filename = source if isinstance(r, MutableSequence): for d in r: _add_lc_filename(d, source) elif isinstance(r, MutableMapping): for d in r.values(): _add_lc_filename(d, source) def relname(source: str) -> str: if source.startswith("file://"): source = source[7:] source = os.path.relpath(source) return source def add_lc_filename(r: ruamel.yaml.comments.CommentedBase, source: str) -> None: _add_lc_filename(r, relname(source)) def reflow_all(text: str, maxline: Optional[int] = None) -> str: if maxline is None: maxline = int(os.environ.get("COLUMNS", "100")) maxno = 0 for line in text.splitlines(): g = lineno_re.match(line) if not g: continue group = g.group(1) assert group is not None # nosec maxno = max(maxno, len(group)) maxno_text = maxline - maxno msg = [] # type: List[str] for line in text.splitlines(): g = lineno_re.match(line) if not g: msg.append(line) continue pre = g.group(1) assert pre is not None # nosec group2 = g.group(2) assert group2 is not None # nosec reflowed = reflow(group2, maxno_text, g.group(3)).splitlines() msg.extend([pre.ljust(maxno, " ") + r for r in reflowed]) return "\n".join(msg) def reflow(text: str, maxline: int, shift: Optional[str] = "") -> str: maxline = max(maxline, 20) if len(text) > maxline: sp = text.rfind(" ", 0, maxline) if sp < 1: sp = text.find(" ", sp + 1) if sp == -1: sp = len(text) if sp < len(text): return f"{text[0:sp]}\n{shift}{reflow(text[sp + 1 :], maxline, shift)}" return text def indent(v: str, nolead: bool = False, shift: str = " ", bullet: str = " ") -> str: if nolead: return v.splitlines()[0] + "\n".join([shift + line for line in v.splitlines()[1:]]) def lineno(i: int, line: str) -> str: r = lineno_re.match(line) if r is not None: group1 = r.group(1) group2 = r.group(2) assert group1 is not None # nosec assert group2 is not None # nosec return group1 + (bullet if i == 0 else shift) + group2 return (bullet if i == 0 else shift) + line return "\n".join([lineno(i, line) for i, line in enumerate(v.splitlines())]) def bullets(textlist: List[str], bul: str) -> str: if len(textlist) == 1: return textlist[0] return "\n".join(indent(t, bullet=bul) for t in textlist) def strip_duplicated_lineno(text: str) -> str: """ Strip duplicated line numbers. Same as :py:meth:`strip_dup_lineno` but without reflow. """ pre = None # type: Optional[str] msg = [] for line in text.splitlines(): g = lineno_re.match(line) if not g: msg.append(line) continue if g.group(1) != pre: msg.append(line) pre = g.group(1) else: group1 = g.group(1) group2 = g.group(2) assert group1 is not None # nosec assert group2 is not None # nosec msg.append(" " * len(group1) + group2) return "\n".join(msg) def strip_dup_lineno(text: str, maxline: Optional[int] = None) -> str: if maxline is None: maxline = int(os.environ.get("COLUMNS", "100")) pre = None # type: Optional[str] msg = [] maxno = 0 for line in text.splitlines(): g = lineno_re.match(line) if not g: continue group1 = g.group(1) assert group1 is not None # nosec maxno = max(maxno, len(group1)) for line in text.splitlines(): g = lineno_re.match(line) if not g: msg.append(line) continue if g.group(1) != pre: group3 = g.group(3) assert group3 is not None # nosec shift = maxno + len(group3) group2 = g.group(2) assert group2 is not None # nosec g2 = reflow(group2, maxline - shift, " " * shift) pre = g.group(1) assert pre is not None # nosec msg.append(pre + " " * (maxno - len(pre)) + g2) else: group2 = g.group(2) assert group2 is not None # nosec group3 = g.group(3) assert group3 is not None # nosec g2 = reflow(group2, maxline - maxno, " " * (maxno + len(group3))) msg.append(" " * maxno + g2) return "\n".join(msg) def cmap( d: Union[int, float, str, MutableMapping[str, Any], MutableSequence[Any], None], lc: Optional[List[int]] = None, fn: Optional[str] = None, ) -> Union[int, float, str, CommentedMap, CommentedSeq, None]: if lc is None: lc = [0, 0, 0, 0] if fn is None: fn = "test" if isinstance(d, CommentedMap): fn = d.lc.filename if hasattr(d.lc, "filename") else fn for k, v in d.items(): if d.lc.data is not None and k in d.lc.data: d[k] = cmap(v, lc=d.lc.data[k], fn=fn) else: d[k] = cmap(v, lc, fn=fn) return d if isinstance(d, CommentedSeq): fn = d.lc.filename if hasattr(d.lc, "filename") else fn for k2, v2 in enumerate(d): if d.lc.data is not None and k2 in d.lc.data: d[k2] = cmap(v2, lc=d.lc.data[k2], fn=fn) else: d[k2] = cmap(v2, lc, fn=fn) return d if isinstance(d, MutableMapping): cm = CommentedMap() for k in sorted(d.keys()): v = d[k] if isinstance(v, CommentedBase): uselc = [v.lc.line, v.lc.col, v.lc.line, v.lc.col] vfn = v.lc.filename if hasattr(v.lc, "filename") else fn else: uselc = lc vfn = fn cm[k] = cmap(v, lc=uselc, fn=vfn) cm.lc.add_kv_line_col(k, uselc) cm.lc.filename = fn return cm if isinstance(d, MutableSequence): cs = CommentedSeq() for k3, v3 in enumerate(d): if isinstance(v3, CommentedBase): uselc = [v3.lc.line, v3.lc.col, v3.lc.line, v3.lc.col] vfn = v3.lc.filename if hasattr(v3.lc, "filename") else fn else: uselc = lc vfn = fn cs.append(cmap(v3, lc=uselc, fn=vfn)) cs.lc.add_kv_line_col(k3, uselc) cs.lc.filename = fn return cs return d class SourceLine: def __init__( self, item: Any, key: Optional[Any] = None, raise_type: Callable[[str], Any] = str, include_traceback: bool = False, ) -> None: self.item = item self.key = key self.raise_type = raise_type self.include_traceback = include_traceback def __enter__(self) -> "SourceLine": return self def __exit__( self, exc_type: Any, exc_value: Any, tb: Any, ) -> None: if not exc_value: return raise self.makeError(str(exc_value)) from exc_value def file(self) -> Optional[str]: if hasattr(self.item, "lc") and hasattr(self.item.lc, "filename"): return str(self.item.lc.filename) return None def start(self) -> Optional[Tuple[int, int]]: if self.file() is None: return None if self.key is None or self.item.lc.data is None or self.key not in self.item.lc.data: return ((self.item.lc.line or 0) + 1, (self.item.lc.col or 0) + 1) return ( (self.item.lc.data[self.key][0] or 0) + 1, (self.item.lc.data[self.key][1] or 0) + 1, ) def end(self) -> Optional[Tuple[int, int]]: return None def makeLead(self) -> str: if self.file(): lcol = self.start() line, col = lcol if lcol else ("", "") return f"{self.file()}:{line}:{col}:" return "" def makeError(self, msg: str) -> Any: if not isinstance(self.item, ruamel.yaml.comments.CommentedBase): return self.raise_type(msg) errs = [] lead = self.makeLead() for m in msg.splitlines(): if bool(lineno_re.match(m)): errs.append(m) else: errs.append(f"{lead} {m}") return self.raise_type("\n".join(errs))
schema-salad
/schema-salad-8.4.20230808163024.tar.gz/schema-salad-8.4.20230808163024/schema_salad/sourceline.py
sourceline.py
import os import re from typing import ( Any, AnyStr, Callable, List, MutableMapping, MutableSequence, Optional, Tuple, Union, ) import ruamel.yaml from ruamel.yaml.comments import CommentedBase, CommentedMap, CommentedSeq lineno_re = re.compile("^(.*?:[0-9]+:[0-9]+: )(( *)(.*))") def _add_lc_filename(r: ruamel.yaml.comments.CommentedBase, source: AnyStr) -> None: if isinstance(r, ruamel.yaml.comments.CommentedBase): r.lc.filename = source if isinstance(r, MutableSequence): for d in r: _add_lc_filename(d, source) elif isinstance(r, MutableMapping): for d in r.values(): _add_lc_filename(d, source) def relname(source: str) -> str: if source.startswith("file://"): source = source[7:] source = os.path.relpath(source) return source def add_lc_filename(r: ruamel.yaml.comments.CommentedBase, source: str) -> None: _add_lc_filename(r, relname(source)) def reflow_all(text: str, maxline: Optional[int] = None) -> str: if maxline is None: maxline = int(os.environ.get("COLUMNS", "100")) maxno = 0 for line in text.splitlines(): g = lineno_re.match(line) if not g: continue group = g.group(1) assert group is not None # nosec maxno = max(maxno, len(group)) maxno_text = maxline - maxno msg = [] # type: List[str] for line in text.splitlines(): g = lineno_re.match(line) if not g: msg.append(line) continue pre = g.group(1) assert pre is not None # nosec group2 = g.group(2) assert group2 is not None # nosec reflowed = reflow(group2, maxno_text, g.group(3)).splitlines() msg.extend([pre.ljust(maxno, " ") + r for r in reflowed]) return "\n".join(msg) def reflow(text: str, maxline: int, shift: Optional[str] = "") -> str: maxline = max(maxline, 20) if len(text) > maxline: sp = text.rfind(" ", 0, maxline) if sp < 1: sp = text.find(" ", sp + 1) if sp == -1: sp = len(text) if sp < len(text): return f"{text[0:sp]}\n{shift}{reflow(text[sp + 1 :], maxline, shift)}" return text def indent(v: str, nolead: bool = False, shift: str = " ", bullet: str = " ") -> str: if nolead: return v.splitlines()[0] + "\n".join([shift + line for line in v.splitlines()[1:]]) def lineno(i: int, line: str) -> str: r = lineno_re.match(line) if r is not None: group1 = r.group(1) group2 = r.group(2) assert group1 is not None # nosec assert group2 is not None # nosec return group1 + (bullet if i == 0 else shift) + group2 return (bullet if i == 0 else shift) + line return "\n".join([lineno(i, line) for i, line in enumerate(v.splitlines())]) def bullets(textlist: List[str], bul: str) -> str: if len(textlist) == 1: return textlist[0] return "\n".join(indent(t, bullet=bul) for t in textlist) def strip_duplicated_lineno(text: str) -> str: """ Strip duplicated line numbers. Same as :py:meth:`strip_dup_lineno` but without reflow. """ pre = None # type: Optional[str] msg = [] for line in text.splitlines(): g = lineno_re.match(line) if not g: msg.append(line) continue if g.group(1) != pre: msg.append(line) pre = g.group(1) else: group1 = g.group(1) group2 = g.group(2) assert group1 is not None # nosec assert group2 is not None # nosec msg.append(" " * len(group1) + group2) return "\n".join(msg) def strip_dup_lineno(text: str, maxline: Optional[int] = None) -> str: if maxline is None: maxline = int(os.environ.get("COLUMNS", "100")) pre = None # type: Optional[str] msg = [] maxno = 0 for line in text.splitlines(): g = lineno_re.match(line) if not g: continue group1 = g.group(1) assert group1 is not None # nosec maxno = max(maxno, len(group1)) for line in text.splitlines(): g = lineno_re.match(line) if not g: msg.append(line) continue if g.group(1) != pre: group3 = g.group(3) assert group3 is not None # nosec shift = maxno + len(group3) group2 = g.group(2) assert group2 is not None # nosec g2 = reflow(group2, maxline - shift, " " * shift) pre = g.group(1) assert pre is not None # nosec msg.append(pre + " " * (maxno - len(pre)) + g2) else: group2 = g.group(2) assert group2 is not None # nosec group3 = g.group(3) assert group3 is not None # nosec g2 = reflow(group2, maxline - maxno, " " * (maxno + len(group3))) msg.append(" " * maxno + g2) return "\n".join(msg) def cmap( d: Union[int, float, str, MutableMapping[str, Any], MutableSequence[Any], None], lc: Optional[List[int]] = None, fn: Optional[str] = None, ) -> Union[int, float, str, CommentedMap, CommentedSeq, None]: if lc is None: lc = [0, 0, 0, 0] if fn is None: fn = "test" if isinstance(d, CommentedMap): fn = d.lc.filename if hasattr(d.lc, "filename") else fn for k, v in d.items(): if d.lc.data is not None and k in d.lc.data: d[k] = cmap(v, lc=d.lc.data[k], fn=fn) else: d[k] = cmap(v, lc, fn=fn) return d if isinstance(d, CommentedSeq): fn = d.lc.filename if hasattr(d.lc, "filename") else fn for k2, v2 in enumerate(d): if d.lc.data is not None and k2 in d.lc.data: d[k2] = cmap(v2, lc=d.lc.data[k2], fn=fn) else: d[k2] = cmap(v2, lc, fn=fn) return d if isinstance(d, MutableMapping): cm = CommentedMap() for k in sorted(d.keys()): v = d[k] if isinstance(v, CommentedBase): uselc = [v.lc.line, v.lc.col, v.lc.line, v.lc.col] vfn = v.lc.filename if hasattr(v.lc, "filename") else fn else: uselc = lc vfn = fn cm[k] = cmap(v, lc=uselc, fn=vfn) cm.lc.add_kv_line_col(k, uselc) cm.lc.filename = fn return cm if isinstance(d, MutableSequence): cs = CommentedSeq() for k3, v3 in enumerate(d): if isinstance(v3, CommentedBase): uselc = [v3.lc.line, v3.lc.col, v3.lc.line, v3.lc.col] vfn = v3.lc.filename if hasattr(v3.lc, "filename") else fn else: uselc = lc vfn = fn cs.append(cmap(v3, lc=uselc, fn=vfn)) cs.lc.add_kv_line_col(k3, uselc) cs.lc.filename = fn return cs return d class SourceLine: def __init__( self, item: Any, key: Optional[Any] = None, raise_type: Callable[[str], Any] = str, include_traceback: bool = False, ) -> None: self.item = item self.key = key self.raise_type = raise_type self.include_traceback = include_traceback def __enter__(self) -> "SourceLine": return self def __exit__( self, exc_type: Any, exc_value: Any, tb: Any, ) -> None: if not exc_value: return raise self.makeError(str(exc_value)) from exc_value def file(self) -> Optional[str]: if hasattr(self.item, "lc") and hasattr(self.item.lc, "filename"): return str(self.item.lc.filename) return None def start(self) -> Optional[Tuple[int, int]]: if self.file() is None: return None if self.key is None or self.item.lc.data is None or self.key not in self.item.lc.data: return ((self.item.lc.line or 0) + 1, (self.item.lc.col or 0) + 1) return ( (self.item.lc.data[self.key][0] or 0) + 1, (self.item.lc.data[self.key][1] or 0) + 1, ) def end(self) -> Optional[Tuple[int, int]]: return None def makeLead(self) -> str: if self.file(): lcol = self.start() line, col = lcol if lcol else ("", "") return f"{self.file()}:{line}:{col}:" return "" def makeError(self, msg: str) -> Any: if not isinstance(self.item, ruamel.yaml.comments.CommentedBase): return self.raise_type(msg) errs = [] lead = self.makeLead() for m in msg.splitlines(): if bool(lineno_re.match(m)): errs.append(m) else: errs.append(f"{lead} {m}") return self.raise_type("\n".join(errs))
0.567697
0.190479
import copy import hashlib from typing import ( IO, Any, Dict, List, Mapping, MutableMapping, MutableSequence, Optional, Set, Tuple, TypeVar, Union, cast, ) from urllib.parse import urlparse from importlib_resources import files from ruamel.yaml.comments import CommentedMap, CommentedSeq from schema_salad.utils import ( CacheType, ResolveType, add_dictlist, aslist, convert_to_dict, flatten, json_dumps, yaml_no_ts, ) from . import _logger, jsonld_context, ref_resolver, validate from .avro.schema import Names, SchemaParseException, is_subtype, make_avsc_object from .exceptions import ( ClassValidationException, SchemaSaladException, ValidationException, ) from .ref_resolver import Loader from .sourceline import SourceLine, add_lc_filename, relname SALAD_FILES = ( "metaschema.yml", "metaschema_base.yml", "salad.md", "field_name.yml", "import_include.md", "link_res.yml", "ident_res.yml", "vocab_res.yml", "vocab_res.yml", "field_name_schema.yml", "field_name_src.yml", "field_name_proc.yml", "ident_res_schema.yml", "ident_res_src.yml", "ident_res_proc.yml", "link_res_schema.yml", "link_res_src.yml", "link_res_proc.yml", "vocab_res_schema.yml", "vocab_res_src.yml", "vocab_res_proc.yml", "map_res.yml", "map_res_schema.yml", "map_res_src.yml", "map_res_proc.yml", "typedsl_res.yml", "typedsl_res_schema.yml", "typedsl_res_src.yml", "typedsl_res_proc.yml", "sfdsl_res.yml", "sfdsl_res_schema.yml", "sfdsl_res_src.yml", "sfdsl_res_proc.yml", ) saladp = "https://w3id.org/cwl/salad#" cached_metaschema: Optional[Tuple[Names, List[Dict[str, str]], Loader]] = None def get_metaschema() -> Tuple[Names, List[Dict[str, str]], Loader]: """Instantiate the metaschema.""" global cached_metaschema if cached_metaschema is not None: return cached_metaschema loader = ref_resolver.Loader( { "Any": saladp + "Any", "ArraySchema": saladp + "ArraySchema", "Array_symbol": saladp + "ArraySchema/type/Array_symbol", "DocType": saladp + "DocType", "Documentation": saladp + "Documentation", "Documentation_symbol": saladp + "Documentation/type/Documentation_symbol", "Documented": saladp + "Documented", "EnumSchema": saladp + "EnumSchema", "Enum_symbol": saladp + "EnumSchema/type/Enum_symbol", "JsonldPredicate": saladp + "JsonldPredicate", "NamedType": saladp + "NamedType", "PrimitiveType": saladp + "PrimitiveType", "RecordField": saladp + "RecordField", "RecordSchema": saladp + "RecordSchema", "Record_symbol": saladp + "RecordSchema/type/Record_symbol", "SaladEnumSchema": saladp + "SaladEnumSchema", "SaladRecordField": saladp + "SaladRecordField", "SaladRecordSchema": saladp + "SaladRecordSchema", "SchemaDefinedType": saladp + "SchemaDefinedType", "SpecializeDef": saladp + "SpecializeDef", "_container": saladp + "JsonldPredicate/_container", "_id": {"@id": saladp + "_id", "@type": "@id", "identity": True}, "_type": saladp + "JsonldPredicate/_type", "abstract": saladp + "SaladRecordSchema/abstract", "array": saladp + "array", "boolean": "http://www.w3.org/2001/XMLSchema#boolean", "dct": "http://purl.org/dc/terms/", "default": {"@id": saladp + "default", "noLinkCheck": True}, "doc": "rdfs:comment", "docAfter": {"@id": saladp + "docAfter", "@type": "@id"}, "docChild": {"@id": saladp + "docChild", "@type": "@id"}, "docParent": {"@id": saladp + "docParent", "@type": "@id"}, "documentRoot": saladp + "SchemaDefinedType/documentRoot", "documentation": saladp + "documentation", "double": "http://www.w3.org/2001/XMLSchema#double", "enum": saladp + "enum", "extends": {"@id": saladp + "extends", "@type": "@id", "refScope": 1}, "fields": { "@id": saladp + "fields", "mapPredicate": "type", "mapSubject": "name", }, "float": "http://www.w3.org/2001/XMLSchema#float", "identity": saladp + "JsonldPredicate/identity", "inVocab": saladp + "NamedType/inVocab", "int": "http://www.w3.org/2001/XMLSchema#int", "items": {"@id": saladp + "items", "@type": "@vocab", "refScope": 2}, "jsonldPredicate": "sld:jsonldPredicate", "long": "http://www.w3.org/2001/XMLSchema#long", "mapPredicate": saladp + "JsonldPredicate/mapPredicate", "mapSubject": saladp + "JsonldPredicate/mapSubject", "name": "@id", "noLinkCheck": saladp + "JsonldPredicate/noLinkCheck", "null": saladp + "null", "rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#", "rdfs": "http://www.w3.org/2000/01/rdf-schema#", "record": saladp + "record", "refScope": saladp + "JsonldPredicate/refScope", "sld": saladp, "specialize": { "@id": saladp + "specialize", "mapPredicate": "specializeTo", "mapSubject": "specializeFrom", }, "specializeFrom": { "@id": saladp + "specializeFrom", "@type": "@id", "refScope": 1, }, "specializeTo": { "@id": saladp + "specializeTo", "@type": "@id", "refScope": 1, }, "string": "http://www.w3.org/2001/XMLSchema#string", "subscope": saladp + "JsonldPredicate/subscope", "symbols": {"@id": saladp + "symbols", "@type": "@id", "identity": True}, "type": { "@id": saladp + "type", "@type": "@vocab", "refScope": 2, "typeDSL": True, }, "typeDSL": saladp + "JsonldPredicate/typeDSL", "xsd": "http://www.w3.org/2001/XMLSchema#", }, salad_version="v1.3", ) for salad in SALAD_FILES: loader.cache["https://w3id.org/cwl/" + salad] = ( files("schema_salad").joinpath("metaschema/" + salad).read_text("UTF-8") ) loader.cache["https://w3id.org/cwl/salad"] = ( files("schema_salad").joinpath("metaschema/metaschema.yml").read_text("UTF-8") ) yaml = yaml_no_ts() j = yaml.load(loader.cache["https://w3id.org/cwl/salad"]) add_lc_filename(j, "metaschema.yml") j2 = loader.resolve_all(j, saladp)[0] if not isinstance(j2, list): _logger.error("%s", j2) raise SchemaParseException(f"Not a list: {j2}") sch_obj = make_avro(j2, loader, loader.vocab) try: sch_names = make_avro_schema_from_avro(sch_obj) except SchemaParseException: _logger.error("Metaschema error, avro was:\n%s", json_dumps(sch_obj, indent=4)) raise validate_doc(sch_names, j2, loader, strict=True) cached_metaschema = (sch_names, j2, loader) return cached_metaschema def add_namespaces(metadata: Mapping[str, Any], namespaces: MutableMapping[str, str]) -> None: """Collect the provided namespaces, checking for conflicts.""" for key, value in metadata.items(): if key not in namespaces: namespaces[key] = value elif namespaces[key] != value: raise ValidationException( f"Namespace prefix {key!r} has conflicting definitions {namespaces[key]!r}" " and {value!r}." ) def collect_namespaces(metadata: Mapping[str, Any]) -> Dict[str, str]: """Walk through the metadata object, collecting namespace declarations.""" namespaces = {} # type: Dict[str, str] if "$import_metadata" in metadata: for value in metadata["$import_metadata"].values(): add_namespaces(collect_namespaces(value), namespaces) if "$namespaces" in metadata: add_namespaces(metadata["$namespaces"], namespaces) return namespaces schema_type = Tuple[Loader, Union[Names, SchemaParseException], Dict[str, Any], Loader] def load_schema( schema_ref: ResolveType, cache: Optional[CacheType] = None, ) -> schema_type: """ Load a schema that can be used to validate documents using load_and_validate. :returns: document_loader, avsc_names, schema_metadata, metaschema_loader """ metaschema_names, _metaschema_doc, metaschema_loader = get_metaschema() if cache is not None: # we want to replace some items in the cache, so we need to # make a new Loader with an empty index. for k, v in metaschema_loader.cache.items(): if k not in cache: cache[k] = v metaschema_loader = Loader( ctx=metaschema_loader.ctx, cache=cache, session=metaschema_loader.session ) schema_doc, schema_metadata = metaschema_loader.resolve_ref(schema_ref, "") if not isinstance(schema_doc, MutableSequence): raise ValidationException("Schema reference must resolve to a list.") validate_doc(metaschema_names, schema_doc, metaschema_loader, True) metactx = schema_metadata.get("@context", {}) metactx.update(collect_namespaces(schema_metadata)) schema_ctx = jsonld_context.salad_to_jsonld_context(schema_doc, metactx)[0] # Create the loader that will be used to load the target document. document_loader = Loader(schema_ctx, cache=cache) # Make the Avro validation that will be used to validate the target # document avsc_names = make_avro_schema(schema_doc, document_loader, metaschema_loader.vocab) return document_loader, avsc_names, schema_metadata, metaschema_loader def load_and_validate( document_loader: Loader, avsc_names: Names, document: Union[CommentedMap, str], strict: bool, strict_foreign_properties: bool = False, ) -> Tuple[Any, Dict[str, Any]]: """Load a document and validate it with the provided schema. return data, metadata """ try: if isinstance(document, CommentedMap): data, metadata = document_loader.resolve_all( document, document["id"], checklinks=True, strict_foreign_properties=strict_foreign_properties, ) else: data, metadata = document_loader.resolve_ref( document, checklinks=True, strict_foreign_properties=strict_foreign_properties, ) validate_doc( avsc_names, data, document_loader, strict, strict_foreign_properties=strict_foreign_properties, ) except ValidationException as exc: raise ValidationException("", None, [exc]) from exc return data, metadata def validate_doc( schema_names: Names, doc: ResolveType, loader: Loader, strict: bool, strict_foreign_properties: bool = False, ) -> None: """Validate a document using the provided schema.""" has_root = False for root in schema_names.names.values(): if (hasattr(root, "get_prop") and root.get_prop("documentRoot")) or ( "documentRoot" in root.props ): has_root = True break if not has_root: raise ValidationException("No document roots defined in the schema") if isinstance(doc, MutableSequence): vdoc = doc elif isinstance(doc, CommentedMap): vdoc = CommentedSeq([doc]) vdoc.lc.add_kv_line_col(0, [doc.lc.line, doc.lc.col]) vdoc.lc.filename = doc.lc.filename else: raise ValidationException("Document must be dict or list") roots = [] for root in schema_names.names.values(): if (hasattr(root, "get_prop") and root.get_prop("documentRoot")) or ( root.props.get("documentRoot") ): roots.append(root) anyerrors = [] for pos, item in enumerate(vdoc): sourceline = SourceLine(vdoc, pos, str) success = False for root in roots: success = validate.validate_ex( root, item, loader.identifiers, strict, foreign_properties=loader.foreign_properties, raise_ex=False, skip_foreign_properties=loader.skip_schemas, strict_foreign_properties=strict_foreign_properties, vocab=loader.vocab, ) if success: break if not success: errors: List[SchemaSaladException] = [] for root in roots: if hasattr(root, "get_prop"): name = root.get_prop("name") elif hasattr(root, "name"): name = root.name try: validate.validate_ex( root, item, loader.identifiers, strict, foreign_properties=loader.foreign_properties, raise_ex=True, skip_foreign_properties=loader.skip_schemas, strict_foreign_properties=strict_foreign_properties, vocab=loader.vocab, ) except ClassValidationException as exc1: errors = [ ClassValidationException( f"tried {validate.friendly(name)!r} but", sourceline, [exc1] ) ] break except ValidationException as exc2: errors.append( ValidationException( f"tried {validate.friendly(name)!r} but", sourceline, [exc2] ) ) objerr = "Invalid" for ident in loader.identifiers: if ident in item: objerr = f"Object {relname(item[ident])!r} is not valid because" break anyerrors.append(ValidationException(objerr, sourceline, errors, "-")) if anyerrors: raise ValidationException("", None, anyerrors, "*") def get_anon_name(rec: MutableMapping[str, Union[str, Dict[str, str], List[str]]]) -> str: """Calculate a reproducible name for anonymous types.""" if "name" in rec: name = rec["name"] if isinstance(name, str): return name raise ValidationException(f"Expected name field to be a string, was {name}") anon_name = "" if rec["type"] in ("enum", saladp + "enum"): for sym in rec["symbols"]: anon_name += sym return "anon.enum_" + hashlib.sha1(anon_name.encode("UTF-8")).hexdigest() # nosec if rec["type"] in ("record", saladp + "record"): for field in rec["fields"]: if isinstance(field, Mapping): anon_name += field["name"] else: raise ValidationException( f"Expected entries in 'fields' to also be maps, was {field}." ) return "record_" + hashlib.sha1(anon_name.encode("UTF-8")).hexdigest() # nosec if rec["type"] in ("array", saladp + "array"): return "" raise ValidationException("Expected enum or record, was {rec['type'])}") def replace_type( items: Any, spec: Dict[str, Any], loader: Loader, found: Set[str], find_embeds: bool = True, deepen: bool = True, ) -> Any: """Go through and replace types in the 'spec' mapping.""" if isinstance(items, MutableMapping): # recursively check these fields for types to replace if items.get("type") in ("record", "enum") and items.get("name"): if items["name"] in found: return items["name"] found.add(items["name"]) if not deepen: return items items = copy.copy(items) if not items.get("name"): items["name"] = get_anon_name(items) for name in ("type", "items", "fields"): if name in items: items[name] = replace_type( items[name], spec, loader, found, find_embeds=find_embeds, deepen=find_embeds, ) if isinstance(items[name], MutableSequence): items[name] = flatten(items[name]) return items if isinstance(items, MutableSequence): # recursively transform list return [ replace_type(i, spec, loader, found, find_embeds=find_embeds, deepen=deepen) for i in items ] if isinstance(items, str): # found a string which is a symbol corresponding to a type. replace_with = None if items in loader.vocab: # If it's a vocabulary term, first expand it to its fully qualified # URI items = loader.vocab[items] if items in spec: # Look up in specialization map replace_with = spec[items] if replace_with: return replace_type(replace_with, spec, loader, found, find_embeds=find_embeds) found.add(items) return items def avro_field_name(url: str) -> str: """ Turn a URL into an Avro-safe name. If the URL has no fragment, return this plain URL. Extract either the last part of the URL fragment past the slash, otherwise the whole fragment. """ d = urlparse(url) if d.fragment: return d.fragment.split("/")[-1] return d.path.split("/")[-1] Avro = TypeVar("Avro", MutableMapping[str, Any], MutableSequence[Any], str) def make_valid_avro( items: Avro, alltypes: Dict[str, Dict[str, Any]], found: Set[str], union: bool = False, fielddef: bool = False, vocab: Optional[Dict[str, str]] = None, ) -> Union[Avro, MutableMapping[str, str], str, List[Union[Any, MutableMapping[str, str], str]]]: """Convert our schema to be more avro like.""" if vocab is None: _, _, metaschema_loader = get_metaschema() vocab = metaschema_loader.vocab # Possibly could be integrated into our fork of avro/schema.py? if isinstance(items, MutableMapping): avro = copy.copy(items) if avro.get("name"): if fielddef: avro["name"] = avro_field_name(avro["name"]) else: avro["name"] = validate.avro_type_name(avro["name"]) if "type" in avro and avro["type"] in ( saladp + "record", saladp + "enum", "record", "enum", ): if (hasattr(avro, "get") and avro.get("abstract")) or ("abstract" in avro): return avro if avro["name"] in found: return cast(str, avro["name"]) found.add(avro["name"]) for field in ("type", "items", "values", "fields"): if field in avro: avro[field] = make_valid_avro( avro[field], alltypes, found, union=True, fielddef=(field == "fields"), vocab=vocab, ) if "symbols" in avro: avro["symbols"] = [avro_field_name(sym) for sym in avro["symbols"]] return avro if items and isinstance(items, MutableSequence): ret = [] for i in items: ret.append( make_valid_avro(i, alltypes, found, union=union, fielddef=fielddef, vocab=vocab) ) return ret if union and isinstance(items, str): if items in alltypes and validate.avro_type_name(items) not in found: return make_valid_avro(alltypes[items], alltypes, found, union=union, vocab=vocab) if items in vocab: return validate.avro_type_name(vocab[items]) return validate.avro_type_name(items) return items def deepcopy_strip(item: Any) -> Any: """ Make a deep copy of list and dict objects. Intentionally do not copy attributes. This is to discard CommentedMap and CommentedSeq metadata which is very expensive with regular copy.deepcopy. """ if isinstance(item, MutableMapping): return {k: deepcopy_strip(v) for k, v in item.items()} if isinstance(item, MutableSequence): return [deepcopy_strip(k) for k in item] return item def extend_and_specialize(items: List[Dict[str, Any]], loader: Loader) -> List[Dict[str, Any]]: """Apply 'extend' and 'specialize' to fully materialize derived record types.""" items2 = deepcopy_strip(items) types = {i["name"]: i for i in items2} # type: Dict[str, Any] results = [] for stype in items2: if "extends" in stype: specs = {} # type: Dict[str, str] if "specialize" in stype: for spec in aslist(stype["specialize"]): specs[spec["specializeFrom"]] = spec["specializeTo"] exfields = [] # type: List[Any] exsym = [] # type: List[str] for ex in aslist(stype["extends"]): if ex not in types: raise ValidationException( f"Extends {stype['extends']} in {stype['name']} refers to invalid base type." ) basetype = copy.copy(types[ex]) if stype["type"] == "record": if specs: basetype["fields"] = replace_type( basetype.get("fields", []), specs, loader, set() ) for field in basetype.get("fields", []): if "inherited_from" not in field: field["inherited_from"] = ex exfields.extend(basetype.get("fields", [])) elif stype["type"] == "enum": exsym.extend(basetype.get("symbols", [])) if stype["type"] == "record": stype = copy.copy(stype) combined_fields = [] fields = stype.get("fields", []) # We use short names here so that if a type inherits a field # (e.g. Child#id) from a parent (Parent#id) we avoid adding # the same field twice (previously we had just # ``exfields.extends(stype.fields)``). sns_fields = {shortname(field["name"]): field for field in fields} sns_exfields = {shortname(exfield["name"]): exfield for exfield in exfields} # N.B.: This could be simpler. We could have a single loop # to create the list of fields. The reason for this more # convoluted solution is to make sure we keep the order # of ``exfields`` first, and then the type fields. That's # because we have unit tests that rely on the order that # fields are written. Codegen output changes as well. # We are relying on the insertion order preserving # property of python dicts (i.e. relyig on Py3.5+). # First pass adding the exfields. for sn_exfield, exfield in sns_exfields.items(): field = sns_fields.get(sn_exfield, None) if field is None: field = exfield else: # make sure field name has not been used yet if not is_subtype(exfield["type"], field["type"]): raise SchemaParseException( f"Field name {field['name']} already in use with " "incompatible type. " f"{field['type']} vs {exfield['type']}." ) combined_fields.append(field) # Second pass, now add the ones that are specific to the subtype. for field in sns_fields.values(): if field not in combined_fields: combined_fields.append(field) stype["fields"] = combined_fields fieldnames = set() # type: Set[str] for field in stype["fields"]: if field["name"] in fieldnames: raise ValidationException( f"Field name {field['name']} appears twice in {stype['name']}" ) fieldnames.add(field["name"]) elif stype["type"] == "enum": stype = copy.copy(stype) exsym.extend(stype.get("symbols", [])) stype["symbols"] = exsym types[stype["name"]] = stype results.append(stype) ex_types = {} for result in results: ex_types[result["name"]] = result extended_by = {} # type: Dict[str, str] for result in results: if "extends" in result: for ex in aslist(result["extends"]): if ex_types[ex].get("abstract"): add_dictlist(extended_by, ex, ex_types[result["name"]]) add_dictlist(extended_by, validate.avro_type_name(ex), ex_types[ex]) for result in results: if result.get("abstract") and result["name"] not in extended_by: raise ValidationException( f"{result['name']} is abstract but missing a concrete subtype" ) for result in results: if "fields" in result: result["fields"] = replace_type(result["fields"], extended_by, loader, set()) return results def make_avro( i: List[Dict[str, Any]], loader: Loader, metaschema_vocab: Optional[Dict[str, str]] = None, ) -> List[Any]: j = extend_and_specialize(i, loader) name_dict = {} # type: Dict[str, Dict[str, Any]] for entry in j: name_dict[entry["name"]] = entry avro = make_valid_avro(j, name_dict, set(), vocab=metaschema_vocab) return [ t for t in avro if isinstance(t, MutableMapping) and not t.get("abstract") and t.get("type") != "org.w3id.cwl.salad.documentation" ] def make_avro_schema( i: List[Any], loader: Loader, metaschema_vocab: Optional[Dict[str, str]] = None ) -> Names: """ All in one convenience function. Call make_avro() and make_avro_schema_from_avro() separately if you need the intermediate result for diagnostic output. """ names = Names() avro = make_avro(i, loader, metaschema_vocab) make_avsc_object(convert_to_dict(avro), names) return names def make_avro_schema_from_avro(avro: List[Union[Avro, Dict[str, str], str]]) -> Names: names = Names() make_avsc_object(convert_to_dict(avro), names) return names def shortname(inputid: str) -> str: """Return the last segment of the provided fragment or path.""" parsed_id = urlparse(inputid) if parsed_id.fragment: return parsed_id.fragment.split("/")[-1] return parsed_id.path.split("/")[-1] def print_inheritance(doc: List[Dict[str, Any]], stream: IO[Any]) -> None: """Write a Grapviz inheritance graph for the supplied document.""" stream.write("digraph {\n") for entry in doc: if entry["type"] == "record": label = name = shortname(entry["name"]) fields = entry.get("fields", []) if fields: label += "\\n* {}\\l".format( "\\l* ".join(shortname(field["name"]) for field in fields) ) shape = "ellipse" if entry.get("abstract") else "box" stream.write(f'"{name}" [shape={shape} label="{label}"];\n') # noqa: B907 if "extends" in entry: for target in aslist(entry["extends"]): stream.write(f'"{shortname(target)}" -> "{name}";\n') # noqa: B907 stream.write("}\n") def print_fieldrefs(doc: List[Dict[str, Any]], loader: Loader, stream: IO[Any]) -> None: """Write a GraphViz graph of the relationships between the fields.""" obj = extend_and_specialize(doc, loader) primitives = { "http://www.w3.org/2001/XMLSchema#string", "http://www.w3.org/2001/XMLSchema#boolean", "http://www.w3.org/2001/XMLSchema#int", "http://www.w3.org/2001/XMLSchema#long", saladp + "null", saladp + "enum", saladp + "array", saladp + "record", saladp + "Any", } stream.write("digraph {\n") for entry in obj: if entry.get("abstract"): continue if entry["type"] == "record": label = shortname(entry["name"]) for field in entry.get("fields", []): found = set() # type: Set[str] field_name = shortname(field["name"]) replace_type(field["type"], {}, loader, found, find_embeds=False) for each_type in found: if each_type not in primitives: stream.write( f"{label!r} -> {shortname(each_type)!r} [label={field_name!r}];\n" ) stream.write("}\n")
schema-salad
/schema-salad-8.4.20230808163024.tar.gz/schema-salad-8.4.20230808163024/schema_salad/schema.py
schema.py
import copy import hashlib from typing import ( IO, Any, Dict, List, Mapping, MutableMapping, MutableSequence, Optional, Set, Tuple, TypeVar, Union, cast, ) from urllib.parse import urlparse from importlib_resources import files from ruamel.yaml.comments import CommentedMap, CommentedSeq from schema_salad.utils import ( CacheType, ResolveType, add_dictlist, aslist, convert_to_dict, flatten, json_dumps, yaml_no_ts, ) from . import _logger, jsonld_context, ref_resolver, validate from .avro.schema import Names, SchemaParseException, is_subtype, make_avsc_object from .exceptions import ( ClassValidationException, SchemaSaladException, ValidationException, ) from .ref_resolver import Loader from .sourceline import SourceLine, add_lc_filename, relname SALAD_FILES = ( "metaschema.yml", "metaschema_base.yml", "salad.md", "field_name.yml", "import_include.md", "link_res.yml", "ident_res.yml", "vocab_res.yml", "vocab_res.yml", "field_name_schema.yml", "field_name_src.yml", "field_name_proc.yml", "ident_res_schema.yml", "ident_res_src.yml", "ident_res_proc.yml", "link_res_schema.yml", "link_res_src.yml", "link_res_proc.yml", "vocab_res_schema.yml", "vocab_res_src.yml", "vocab_res_proc.yml", "map_res.yml", "map_res_schema.yml", "map_res_src.yml", "map_res_proc.yml", "typedsl_res.yml", "typedsl_res_schema.yml", "typedsl_res_src.yml", "typedsl_res_proc.yml", "sfdsl_res.yml", "sfdsl_res_schema.yml", "sfdsl_res_src.yml", "sfdsl_res_proc.yml", ) saladp = "https://w3id.org/cwl/salad#" cached_metaschema: Optional[Tuple[Names, List[Dict[str, str]], Loader]] = None def get_metaschema() -> Tuple[Names, List[Dict[str, str]], Loader]: """Instantiate the metaschema.""" global cached_metaschema if cached_metaschema is not None: return cached_metaschema loader = ref_resolver.Loader( { "Any": saladp + "Any", "ArraySchema": saladp + "ArraySchema", "Array_symbol": saladp + "ArraySchema/type/Array_symbol", "DocType": saladp + "DocType", "Documentation": saladp + "Documentation", "Documentation_symbol": saladp + "Documentation/type/Documentation_symbol", "Documented": saladp + "Documented", "EnumSchema": saladp + "EnumSchema", "Enum_symbol": saladp + "EnumSchema/type/Enum_symbol", "JsonldPredicate": saladp + "JsonldPredicate", "NamedType": saladp + "NamedType", "PrimitiveType": saladp + "PrimitiveType", "RecordField": saladp + "RecordField", "RecordSchema": saladp + "RecordSchema", "Record_symbol": saladp + "RecordSchema/type/Record_symbol", "SaladEnumSchema": saladp + "SaladEnumSchema", "SaladRecordField": saladp + "SaladRecordField", "SaladRecordSchema": saladp + "SaladRecordSchema", "SchemaDefinedType": saladp + "SchemaDefinedType", "SpecializeDef": saladp + "SpecializeDef", "_container": saladp + "JsonldPredicate/_container", "_id": {"@id": saladp + "_id", "@type": "@id", "identity": True}, "_type": saladp + "JsonldPredicate/_type", "abstract": saladp + "SaladRecordSchema/abstract", "array": saladp + "array", "boolean": "http://www.w3.org/2001/XMLSchema#boolean", "dct": "http://purl.org/dc/terms/", "default": {"@id": saladp + "default", "noLinkCheck": True}, "doc": "rdfs:comment", "docAfter": {"@id": saladp + "docAfter", "@type": "@id"}, "docChild": {"@id": saladp + "docChild", "@type": "@id"}, "docParent": {"@id": saladp + "docParent", "@type": "@id"}, "documentRoot": saladp + "SchemaDefinedType/documentRoot", "documentation": saladp + "documentation", "double": "http://www.w3.org/2001/XMLSchema#double", "enum": saladp + "enum", "extends": {"@id": saladp + "extends", "@type": "@id", "refScope": 1}, "fields": { "@id": saladp + "fields", "mapPredicate": "type", "mapSubject": "name", }, "float": "http://www.w3.org/2001/XMLSchema#float", "identity": saladp + "JsonldPredicate/identity", "inVocab": saladp + "NamedType/inVocab", "int": "http://www.w3.org/2001/XMLSchema#int", "items": {"@id": saladp + "items", "@type": "@vocab", "refScope": 2}, "jsonldPredicate": "sld:jsonldPredicate", "long": "http://www.w3.org/2001/XMLSchema#long", "mapPredicate": saladp + "JsonldPredicate/mapPredicate", "mapSubject": saladp + "JsonldPredicate/mapSubject", "name": "@id", "noLinkCheck": saladp + "JsonldPredicate/noLinkCheck", "null": saladp + "null", "rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#", "rdfs": "http://www.w3.org/2000/01/rdf-schema#", "record": saladp + "record", "refScope": saladp + "JsonldPredicate/refScope", "sld": saladp, "specialize": { "@id": saladp + "specialize", "mapPredicate": "specializeTo", "mapSubject": "specializeFrom", }, "specializeFrom": { "@id": saladp + "specializeFrom", "@type": "@id", "refScope": 1, }, "specializeTo": { "@id": saladp + "specializeTo", "@type": "@id", "refScope": 1, }, "string": "http://www.w3.org/2001/XMLSchema#string", "subscope": saladp + "JsonldPredicate/subscope", "symbols": {"@id": saladp + "symbols", "@type": "@id", "identity": True}, "type": { "@id": saladp + "type", "@type": "@vocab", "refScope": 2, "typeDSL": True, }, "typeDSL": saladp + "JsonldPredicate/typeDSL", "xsd": "http://www.w3.org/2001/XMLSchema#", }, salad_version="v1.3", ) for salad in SALAD_FILES: loader.cache["https://w3id.org/cwl/" + salad] = ( files("schema_salad").joinpath("metaschema/" + salad).read_text("UTF-8") ) loader.cache["https://w3id.org/cwl/salad"] = ( files("schema_salad").joinpath("metaschema/metaschema.yml").read_text("UTF-8") ) yaml = yaml_no_ts() j = yaml.load(loader.cache["https://w3id.org/cwl/salad"]) add_lc_filename(j, "metaschema.yml") j2 = loader.resolve_all(j, saladp)[0] if not isinstance(j2, list): _logger.error("%s", j2) raise SchemaParseException(f"Not a list: {j2}") sch_obj = make_avro(j2, loader, loader.vocab) try: sch_names = make_avro_schema_from_avro(sch_obj) except SchemaParseException: _logger.error("Metaschema error, avro was:\n%s", json_dumps(sch_obj, indent=4)) raise validate_doc(sch_names, j2, loader, strict=True) cached_metaschema = (sch_names, j2, loader) return cached_metaschema def add_namespaces(metadata: Mapping[str, Any], namespaces: MutableMapping[str, str]) -> None: """Collect the provided namespaces, checking for conflicts.""" for key, value in metadata.items(): if key not in namespaces: namespaces[key] = value elif namespaces[key] != value: raise ValidationException( f"Namespace prefix {key!r} has conflicting definitions {namespaces[key]!r}" " and {value!r}." ) def collect_namespaces(metadata: Mapping[str, Any]) -> Dict[str, str]: """Walk through the metadata object, collecting namespace declarations.""" namespaces = {} # type: Dict[str, str] if "$import_metadata" in metadata: for value in metadata["$import_metadata"].values(): add_namespaces(collect_namespaces(value), namespaces) if "$namespaces" in metadata: add_namespaces(metadata["$namespaces"], namespaces) return namespaces schema_type = Tuple[Loader, Union[Names, SchemaParseException], Dict[str, Any], Loader] def load_schema( schema_ref: ResolveType, cache: Optional[CacheType] = None, ) -> schema_type: """ Load a schema that can be used to validate documents using load_and_validate. :returns: document_loader, avsc_names, schema_metadata, metaschema_loader """ metaschema_names, _metaschema_doc, metaschema_loader = get_metaschema() if cache is not None: # we want to replace some items in the cache, so we need to # make a new Loader with an empty index. for k, v in metaschema_loader.cache.items(): if k not in cache: cache[k] = v metaschema_loader = Loader( ctx=metaschema_loader.ctx, cache=cache, session=metaschema_loader.session ) schema_doc, schema_metadata = metaschema_loader.resolve_ref(schema_ref, "") if not isinstance(schema_doc, MutableSequence): raise ValidationException("Schema reference must resolve to a list.") validate_doc(metaschema_names, schema_doc, metaschema_loader, True) metactx = schema_metadata.get("@context", {}) metactx.update(collect_namespaces(schema_metadata)) schema_ctx = jsonld_context.salad_to_jsonld_context(schema_doc, metactx)[0] # Create the loader that will be used to load the target document. document_loader = Loader(schema_ctx, cache=cache) # Make the Avro validation that will be used to validate the target # document avsc_names = make_avro_schema(schema_doc, document_loader, metaschema_loader.vocab) return document_loader, avsc_names, schema_metadata, metaschema_loader def load_and_validate( document_loader: Loader, avsc_names: Names, document: Union[CommentedMap, str], strict: bool, strict_foreign_properties: bool = False, ) -> Tuple[Any, Dict[str, Any]]: """Load a document and validate it with the provided schema. return data, metadata """ try: if isinstance(document, CommentedMap): data, metadata = document_loader.resolve_all( document, document["id"], checklinks=True, strict_foreign_properties=strict_foreign_properties, ) else: data, metadata = document_loader.resolve_ref( document, checklinks=True, strict_foreign_properties=strict_foreign_properties, ) validate_doc( avsc_names, data, document_loader, strict, strict_foreign_properties=strict_foreign_properties, ) except ValidationException as exc: raise ValidationException("", None, [exc]) from exc return data, metadata def validate_doc( schema_names: Names, doc: ResolveType, loader: Loader, strict: bool, strict_foreign_properties: bool = False, ) -> None: """Validate a document using the provided schema.""" has_root = False for root in schema_names.names.values(): if (hasattr(root, "get_prop") and root.get_prop("documentRoot")) or ( "documentRoot" in root.props ): has_root = True break if not has_root: raise ValidationException("No document roots defined in the schema") if isinstance(doc, MutableSequence): vdoc = doc elif isinstance(doc, CommentedMap): vdoc = CommentedSeq([doc]) vdoc.lc.add_kv_line_col(0, [doc.lc.line, doc.lc.col]) vdoc.lc.filename = doc.lc.filename else: raise ValidationException("Document must be dict or list") roots = [] for root in schema_names.names.values(): if (hasattr(root, "get_prop") and root.get_prop("documentRoot")) or ( root.props.get("documentRoot") ): roots.append(root) anyerrors = [] for pos, item in enumerate(vdoc): sourceline = SourceLine(vdoc, pos, str) success = False for root in roots: success = validate.validate_ex( root, item, loader.identifiers, strict, foreign_properties=loader.foreign_properties, raise_ex=False, skip_foreign_properties=loader.skip_schemas, strict_foreign_properties=strict_foreign_properties, vocab=loader.vocab, ) if success: break if not success: errors: List[SchemaSaladException] = [] for root in roots: if hasattr(root, "get_prop"): name = root.get_prop("name") elif hasattr(root, "name"): name = root.name try: validate.validate_ex( root, item, loader.identifiers, strict, foreign_properties=loader.foreign_properties, raise_ex=True, skip_foreign_properties=loader.skip_schemas, strict_foreign_properties=strict_foreign_properties, vocab=loader.vocab, ) except ClassValidationException as exc1: errors = [ ClassValidationException( f"tried {validate.friendly(name)!r} but", sourceline, [exc1] ) ] break except ValidationException as exc2: errors.append( ValidationException( f"tried {validate.friendly(name)!r} but", sourceline, [exc2] ) ) objerr = "Invalid" for ident in loader.identifiers: if ident in item: objerr = f"Object {relname(item[ident])!r} is not valid because" break anyerrors.append(ValidationException(objerr, sourceline, errors, "-")) if anyerrors: raise ValidationException("", None, anyerrors, "*") def get_anon_name(rec: MutableMapping[str, Union[str, Dict[str, str], List[str]]]) -> str: """Calculate a reproducible name for anonymous types.""" if "name" in rec: name = rec["name"] if isinstance(name, str): return name raise ValidationException(f"Expected name field to be a string, was {name}") anon_name = "" if rec["type"] in ("enum", saladp + "enum"): for sym in rec["symbols"]: anon_name += sym return "anon.enum_" + hashlib.sha1(anon_name.encode("UTF-8")).hexdigest() # nosec if rec["type"] in ("record", saladp + "record"): for field in rec["fields"]: if isinstance(field, Mapping): anon_name += field["name"] else: raise ValidationException( f"Expected entries in 'fields' to also be maps, was {field}." ) return "record_" + hashlib.sha1(anon_name.encode("UTF-8")).hexdigest() # nosec if rec["type"] in ("array", saladp + "array"): return "" raise ValidationException("Expected enum or record, was {rec['type'])}") def replace_type( items: Any, spec: Dict[str, Any], loader: Loader, found: Set[str], find_embeds: bool = True, deepen: bool = True, ) -> Any: """Go through and replace types in the 'spec' mapping.""" if isinstance(items, MutableMapping): # recursively check these fields for types to replace if items.get("type") in ("record", "enum") and items.get("name"): if items["name"] in found: return items["name"] found.add(items["name"]) if not deepen: return items items = copy.copy(items) if not items.get("name"): items["name"] = get_anon_name(items) for name in ("type", "items", "fields"): if name in items: items[name] = replace_type( items[name], spec, loader, found, find_embeds=find_embeds, deepen=find_embeds, ) if isinstance(items[name], MutableSequence): items[name] = flatten(items[name]) return items if isinstance(items, MutableSequence): # recursively transform list return [ replace_type(i, spec, loader, found, find_embeds=find_embeds, deepen=deepen) for i in items ] if isinstance(items, str): # found a string which is a symbol corresponding to a type. replace_with = None if items in loader.vocab: # If it's a vocabulary term, first expand it to its fully qualified # URI items = loader.vocab[items] if items in spec: # Look up in specialization map replace_with = spec[items] if replace_with: return replace_type(replace_with, spec, loader, found, find_embeds=find_embeds) found.add(items) return items def avro_field_name(url: str) -> str: """ Turn a URL into an Avro-safe name. If the URL has no fragment, return this plain URL. Extract either the last part of the URL fragment past the slash, otherwise the whole fragment. """ d = urlparse(url) if d.fragment: return d.fragment.split("/")[-1] return d.path.split("/")[-1] Avro = TypeVar("Avro", MutableMapping[str, Any], MutableSequence[Any], str) def make_valid_avro( items: Avro, alltypes: Dict[str, Dict[str, Any]], found: Set[str], union: bool = False, fielddef: bool = False, vocab: Optional[Dict[str, str]] = None, ) -> Union[Avro, MutableMapping[str, str], str, List[Union[Any, MutableMapping[str, str], str]]]: """Convert our schema to be more avro like.""" if vocab is None: _, _, metaschema_loader = get_metaschema() vocab = metaschema_loader.vocab # Possibly could be integrated into our fork of avro/schema.py? if isinstance(items, MutableMapping): avro = copy.copy(items) if avro.get("name"): if fielddef: avro["name"] = avro_field_name(avro["name"]) else: avro["name"] = validate.avro_type_name(avro["name"]) if "type" in avro and avro["type"] in ( saladp + "record", saladp + "enum", "record", "enum", ): if (hasattr(avro, "get") and avro.get("abstract")) or ("abstract" in avro): return avro if avro["name"] in found: return cast(str, avro["name"]) found.add(avro["name"]) for field in ("type", "items", "values", "fields"): if field in avro: avro[field] = make_valid_avro( avro[field], alltypes, found, union=True, fielddef=(field == "fields"), vocab=vocab, ) if "symbols" in avro: avro["symbols"] = [avro_field_name(sym) for sym in avro["symbols"]] return avro if items and isinstance(items, MutableSequence): ret = [] for i in items: ret.append( make_valid_avro(i, alltypes, found, union=union, fielddef=fielddef, vocab=vocab) ) return ret if union and isinstance(items, str): if items in alltypes and validate.avro_type_name(items) not in found: return make_valid_avro(alltypes[items], alltypes, found, union=union, vocab=vocab) if items in vocab: return validate.avro_type_name(vocab[items]) return validate.avro_type_name(items) return items def deepcopy_strip(item: Any) -> Any: """ Make a deep copy of list and dict objects. Intentionally do not copy attributes. This is to discard CommentedMap and CommentedSeq metadata which is very expensive with regular copy.deepcopy. """ if isinstance(item, MutableMapping): return {k: deepcopy_strip(v) for k, v in item.items()} if isinstance(item, MutableSequence): return [deepcopy_strip(k) for k in item] return item def extend_and_specialize(items: List[Dict[str, Any]], loader: Loader) -> List[Dict[str, Any]]: """Apply 'extend' and 'specialize' to fully materialize derived record types.""" items2 = deepcopy_strip(items) types = {i["name"]: i for i in items2} # type: Dict[str, Any] results = [] for stype in items2: if "extends" in stype: specs = {} # type: Dict[str, str] if "specialize" in stype: for spec in aslist(stype["specialize"]): specs[spec["specializeFrom"]] = spec["specializeTo"] exfields = [] # type: List[Any] exsym = [] # type: List[str] for ex in aslist(stype["extends"]): if ex not in types: raise ValidationException( f"Extends {stype['extends']} in {stype['name']} refers to invalid base type." ) basetype = copy.copy(types[ex]) if stype["type"] == "record": if specs: basetype["fields"] = replace_type( basetype.get("fields", []), specs, loader, set() ) for field in basetype.get("fields", []): if "inherited_from" not in field: field["inherited_from"] = ex exfields.extend(basetype.get("fields", [])) elif stype["type"] == "enum": exsym.extend(basetype.get("symbols", [])) if stype["type"] == "record": stype = copy.copy(stype) combined_fields = [] fields = stype.get("fields", []) # We use short names here so that if a type inherits a field # (e.g. Child#id) from a parent (Parent#id) we avoid adding # the same field twice (previously we had just # ``exfields.extends(stype.fields)``). sns_fields = {shortname(field["name"]): field for field in fields} sns_exfields = {shortname(exfield["name"]): exfield for exfield in exfields} # N.B.: This could be simpler. We could have a single loop # to create the list of fields. The reason for this more # convoluted solution is to make sure we keep the order # of ``exfields`` first, and then the type fields. That's # because we have unit tests that rely on the order that # fields are written. Codegen output changes as well. # We are relying on the insertion order preserving # property of python dicts (i.e. relyig on Py3.5+). # First pass adding the exfields. for sn_exfield, exfield in sns_exfields.items(): field = sns_fields.get(sn_exfield, None) if field is None: field = exfield else: # make sure field name has not been used yet if not is_subtype(exfield["type"], field["type"]): raise SchemaParseException( f"Field name {field['name']} already in use with " "incompatible type. " f"{field['type']} vs {exfield['type']}." ) combined_fields.append(field) # Second pass, now add the ones that are specific to the subtype. for field in sns_fields.values(): if field not in combined_fields: combined_fields.append(field) stype["fields"] = combined_fields fieldnames = set() # type: Set[str] for field in stype["fields"]: if field["name"] in fieldnames: raise ValidationException( f"Field name {field['name']} appears twice in {stype['name']}" ) fieldnames.add(field["name"]) elif stype["type"] == "enum": stype = copy.copy(stype) exsym.extend(stype.get("symbols", [])) stype["symbols"] = exsym types[stype["name"]] = stype results.append(stype) ex_types = {} for result in results: ex_types[result["name"]] = result extended_by = {} # type: Dict[str, str] for result in results: if "extends" in result: for ex in aslist(result["extends"]): if ex_types[ex].get("abstract"): add_dictlist(extended_by, ex, ex_types[result["name"]]) add_dictlist(extended_by, validate.avro_type_name(ex), ex_types[ex]) for result in results: if result.get("abstract") and result["name"] not in extended_by: raise ValidationException( f"{result['name']} is abstract but missing a concrete subtype" ) for result in results: if "fields" in result: result["fields"] = replace_type(result["fields"], extended_by, loader, set()) return results def make_avro( i: List[Dict[str, Any]], loader: Loader, metaschema_vocab: Optional[Dict[str, str]] = None, ) -> List[Any]: j = extend_and_specialize(i, loader) name_dict = {} # type: Dict[str, Dict[str, Any]] for entry in j: name_dict[entry["name"]] = entry avro = make_valid_avro(j, name_dict, set(), vocab=metaschema_vocab) return [ t for t in avro if isinstance(t, MutableMapping) and not t.get("abstract") and t.get("type") != "org.w3id.cwl.salad.documentation" ] def make_avro_schema( i: List[Any], loader: Loader, metaschema_vocab: Optional[Dict[str, str]] = None ) -> Names: """ All in one convenience function. Call make_avro() and make_avro_schema_from_avro() separately if you need the intermediate result for diagnostic output. """ names = Names() avro = make_avro(i, loader, metaschema_vocab) make_avsc_object(convert_to_dict(avro), names) return names def make_avro_schema_from_avro(avro: List[Union[Avro, Dict[str, str], str]]) -> Names: names = Names() make_avsc_object(convert_to_dict(avro), names) return names def shortname(inputid: str) -> str: """Return the last segment of the provided fragment or path.""" parsed_id = urlparse(inputid) if parsed_id.fragment: return parsed_id.fragment.split("/")[-1] return parsed_id.path.split("/")[-1] def print_inheritance(doc: List[Dict[str, Any]], stream: IO[Any]) -> None: """Write a Grapviz inheritance graph for the supplied document.""" stream.write("digraph {\n") for entry in doc: if entry["type"] == "record": label = name = shortname(entry["name"]) fields = entry.get("fields", []) if fields: label += "\\n* {}\\l".format( "\\l* ".join(shortname(field["name"]) for field in fields) ) shape = "ellipse" if entry.get("abstract") else "box" stream.write(f'"{name}" [shape={shape} label="{label}"];\n') # noqa: B907 if "extends" in entry: for target in aslist(entry["extends"]): stream.write(f'"{shortname(target)}" -> "{name}";\n') # noqa: B907 stream.write("}\n") def print_fieldrefs(doc: List[Dict[str, Any]], loader: Loader, stream: IO[Any]) -> None: """Write a GraphViz graph of the relationships between the fields.""" obj = extend_and_specialize(doc, loader) primitives = { "http://www.w3.org/2001/XMLSchema#string", "http://www.w3.org/2001/XMLSchema#boolean", "http://www.w3.org/2001/XMLSchema#int", "http://www.w3.org/2001/XMLSchema#long", saladp + "null", saladp + "enum", saladp + "array", saladp + "record", saladp + "Any", } stream.write("digraph {\n") for entry in obj: if entry.get("abstract"): continue if entry["type"] == "record": label = shortname(entry["name"]) for field in entry.get("fields", []): found = set() # type: Set[str] field_name = shortname(field["name"]) replace_type(field["type"], {}, loader, found, find_embeds=False) for each_type in found: if each_type not in primitives: stream.write( f"{label!r} -> {shortname(each_type)!r} [label={field_name!r}];\n" ) stream.write("}\n")
0.627609
0.255406
import argparse import logging import os import sys from typing import Any, Dict, List, Mapping, MutableSequence, Optional, Union, cast from urllib.parse import urlparse from rdflib import __version__ as rdflib_version from rdflib.parser import Parser from rdflib.plugin import register from ruamel.yaml.comments import CommentedMap, CommentedSeq from . import codegen, jsonld_context, schema from .avro.schema import SchemaParseException from .exceptions import ValidationException, to_one_line_messages from .makedoc import makedoc from .ref_resolver import Loader, file_uri from .utils import json_dump, stdout if int(rdflib_version.split(".", maxsplit=1)[0]) < 6: register("json-ld", Parser, "rdflib_jsonld.parser", "JsonLDParser") if sys.version_info >= (3, 8): import importlib.metadata as importlib_metadata else: import importlib_metadata _logger = logging.getLogger("salad") def printrdf( workflow: str, wf: Union[CommentedMap, CommentedSeq], ctx: Dict[str, Any], sr: str, ) -> None: g = jsonld_context.makerdf(workflow, wf, ctx) g.serialize(destination=stdout(), format=sr) def arg_parser() -> argparse.ArgumentParser: """Build the argument parser.""" parser = argparse.ArgumentParser() parser.add_argument( "--rdf-serializer", help="Output RDF serialization format used by --print-rdf" "(one of turtle (default), n3, nt, xml)", default="turtle", ) parser.add_argument( "--skip-schemas", action="store_true", default=False, help="If specified, ignore $schemas sections.", ) parser.add_argument( "--strict-foreign-properties", action="store_true", help="Strict checking of foreign properties", default=False, ) exgroup = parser.add_mutually_exclusive_group() exgroup.add_argument( "--print-jsonld-context", action="store_true", help="Print JSON-LD context for schema", ) exgroup.add_argument("--print-rdfs", action="store_true", help="Print RDF schema") exgroup.add_argument("--print-avro", action="store_true", help="Print Avro schema") exgroup.add_argument( "--print-rdf", action="store_true", help="Print corresponding RDF graph for document", ) exgroup.add_argument( "--print-pre", action="store_true", help="Print document after preprocessing" ) exgroup.add_argument("--print-index", action="store_true", help="Print node index") exgroup.add_argument("--print-metadata", action="store_true", help="Print document metadata") exgroup.add_argument( "--print-inheritance-dot", action="store_true", help="Print graphviz file of inheritance", ) exgroup.add_argument( "--print-fieldrefs-dot", action="store_true", help="Print graphviz file of field refs", ) exgroup.add_argument( "--codegen", type=str, metavar="language", help="Generate classes in target language, currently supported: " "python, java, typescript, dotnet, cpp, dlang", ) parser.add_argument( "--codegen-target", type=str, default=None, help="Defaults to sys.stdout for Python/C++/Dlang and ./ for " "Java/TypeScript/.Net", ) parser.add_argument( "--codegen-examples", type=str, metavar="directory", default=None, help="Directory of example documents for test case generation (Java/TypeScript/.Net/Dlang only).", ) parser.add_argument( "--codegen-package", type=str, metavar="dotted.package", default=None, help="Optional override of the package name which is other derived " "from the base URL (Java/TypeScript/.Net/Dlang only).", ), parser.add_argument( "--codegen-copyright", type=str, metavar="copyright_string", default=None, help="Optional copyright of the input schema.", ), parser.add_argument( "--codegen-parser-info", metavar="parser_info", type=str, default=None, help="Optional parser name which is accessible via resulted parser API (Python and Dlang only)", ) exgroup.add_argument( "--print-oneline", action="store_true", help="Print each error message in oneline", ) exgroup.add_argument( "--print-doc", action="store_true", help="Print HTML schema documentation page" ) exgroup_strict = parser.add_mutually_exclusive_group() exgroup_strict.add_argument( "--strict", action="store_true", help="Strict validation (unrecognized or out of place fields are error)", default=True, dest="strict", ) exgroup_strict.add_argument( "--non-strict", action="store_false", help="Lenient validation (ignore unrecognized fields)", default=True, dest="strict", ) exgroup_volume = parser.add_mutually_exclusive_group() exgroup_volume.add_argument("--verbose", action="store_true", help="Default logging") exgroup_volume.add_argument( "--quiet", action="store_true", help="Only print warnings and errors." ) exgroup_volume.add_argument("--debug", action="store_true", help="Print even more logging") parser.add_argument( "--only", action="append", help="Use with --print-doc, document only listed types", ) parser.add_argument( "--redirect", action="append", help="Use with --print-doc, override default link for type", ) parser.add_argument("--brand", help="Use with --print-doc, set the 'brand' text in nav bar") parser.add_argument( "--brandlink", help="Use with --print-doc, set the link for 'brand' in nav bar", ) parser.add_argument( "--brandstyle", help="Use with --print-doc, HTML code to link to an external style sheet", ) parser.add_argument( "--brandinverse", default=False, action="store_true", help="Use with --print-doc", ) parser.add_argument( "--primtype", default="#PrimitiveType", help="Use with --print-doc, link to use for primitive types (string, int etc)", ) parser.add_argument("schema", type=str, nargs="?", default=None) parser.add_argument("document", type=str, nargs="*", default=None) parser.add_argument("--version", "-v", action="store_true", help="Print version", default=None) return parser def main(argsl: Optional[List[str]] = None) -> int: if argsl is None: argsl = sys.argv[1:] args = arg_parser().parse_args(argsl) if args.version is None and args.schema is None: print(f"{sys.argv[0]}: error: too few arguments.") return 1 if args.quiet: _logger.setLevel(logging.WARN) if args.debug: _logger.setLevel(logging.DEBUG) pkg = importlib_metadata.version("schema_salad") if pkg: if args.version: print(f"{sys.argv[0]} Current version: {pkg}") return 0 _logger.info("%s Current version: %s", sys.argv[0], pkg) # Get the metaschema to validate the schema metaschema_names, metaschema_doc, metaschema_loader = schema.get_metaschema() # Load schema document and resolve refs schema_uri = args.schema if not (urlparse(schema_uri)[0] and urlparse(schema_uri)[0] in ["http", "https", "file"]): schema_uri = file_uri(os.path.abspath(schema_uri)) schema_raw_doc = metaschema_loader.fetch(schema_uri) try: schema_doc, schema_metadata = metaschema_loader.resolve_all(schema_raw_doc, schema_uri) except ValidationException as e: _logger.error( "Schema %r failed link checking:\n%s", args.schema, str(e), exc_info=bool(args.debug), ) _logger.debug("Index is %s", list(metaschema_loader.idx.keys())) _logger.debug("Vocabulary is %s", list(metaschema_loader.vocab.keys())) return 1 except RuntimeError as e: _logger.error( "Schema %r read error:\n%s", args.schema, str(e), exc_info=bool(args.debug), ) return 1 if args.print_doc: makedoc( sys.stdout, args.schema, args.redirect, args.only, args.brand, args.brandlink, args.primtype, args.brandstyle, args.brandinverse, ) return 0 # Optionally print the schema after ref resolution if not args.document and args.print_pre: json_dump(schema_doc, fp=sys.stdout, indent=4, default=str) return 0 if not args.document and args.print_index: json_dump(list(metaschema_loader.idx.keys()), fp=sys.stdout, indent=4, default=str) return 0 # Validate the schema document against the metaschema try: schema.validate_doc(metaschema_names, schema_doc, metaschema_loader, args.strict) except ValidationException as e: _logger.error("While validating schema %r:\n%s", args.schema, str(e)) return 1 # Get the json-ld context and RDFS representation from the schema metactx = schema.collect_namespaces(schema_metadata) if "$base" in schema_metadata: metactx["@base"] = schema_metadata["$base"] if isinstance(schema_doc, CommentedSeq): (schema_ctx, rdfs) = jsonld_context.salad_to_jsonld_context(schema_doc, metactx) else: raise ValidationException(f"Expected a CommentedSeq, got {type(schema_doc)}: {schema_doc}.") # Create the loader that will be used to load the target document. schema_version = schema_metadata.get("saladVersion", None) document_loader = Loader( schema_ctx, skip_schemas=args.skip_schemas, salad_version=schema_version ) if args.codegen: codegen.codegen( args.codegen, cast(List[Dict[str, Any]], schema_doc), schema_metadata, document_loader, target=args.codegen_target, examples=args.codegen_examples, package=args.codegen_package, copyright=args.codegen_copyright, parser_info=args.codegen_parser_info, ) return 0 # Make the Avro validation that will be used to validate the target # document if isinstance(schema_doc, MutableSequence): avsc_obj = schema.make_avro(schema_doc, document_loader) try: avsc_names = schema.make_avro_schema_from_avro(avsc_obj) except SchemaParseException as err: _logger.error( "Schema %r error:\n%s", args.schema, str(err), exc_info=((type(err), err, None) if args.debug else None), ) if args.print_avro: json_dump(avsc_obj, fp=sys.stdout, indent=4, default=str) return 1 else: _logger.error("Schema %r must be a list.", args.schema) # type: ignore[unreachable] return 1 # Optionally print Avro-compatible schema from schema if args.print_avro: json_dump(avsc_obj, fp=sys.stdout, indent=4, default=str) return 0 # Optionally print the json-ld context from the schema if args.print_jsonld_context: j = {"@context": schema_ctx} json_dump(j, fp=sys.stdout, indent=4, sort_keys=True, default=str) return 0 # Optionally print the RDFS graph from the schema if args.print_rdfs: rdfs.serialize(destination=stdout(), format=args.rdf_serializer) return 0 if args.print_metadata and not args.document: json_dump(schema_metadata, fp=sys.stdout, indent=4, default=str) return 0 if args.print_inheritance_dot: schema.print_inheritance(schema_doc, sys.stdout) return 0 if args.print_fieldrefs_dot: schema.print_fieldrefs(schema_doc, document_loader, sys.stdout) return 0 # If no document specified, all done. if not args.document: print(f"Schema {args.schema!r} is valid") return 0 # Load target document and resolve refs for uri in args.document: try: document, doc_metadata = document_loader.resolve_ref( uri, strict_foreign_properties=args.strict_foreign_properties ) except ValidationException as e: msg = to_one_line_messages(e) if args.print_oneline else str(e) _logger.error( "Document %r failed validation:\n%s", args.document, msg, exc_info=args.debug, ) return 1 # Optionally print the document after ref resolution if args.print_pre: json_dump(document, fp=sys.stdout, indent=4, default=str) return 0 if args.print_index: json_dump(list(document_loader.idx.keys()), fp=sys.stdout, indent=4, default=str) return 0 # Validate the user document against the schema try: schema.validate_doc( avsc_names, document, document_loader, args.strict, strict_foreign_properties=args.strict_foreign_properties, ) except ValidationException as e: msg2 = to_one_line_messages(e) if args.print_oneline else str(e) _logger.error("While validating document %r:\n%s", uri, msg2) return 1 # Optionally convert the document to RDF if args.print_rdf: if isinstance(document, (Mapping, MutableSequence)): printrdf(uri, document, schema_ctx, args.rdf_serializer) return 0 print("Document must be a dictionary or list.") return 1 if args.print_metadata: json_dump(doc_metadata, fp=sys.stdout, indent=4, default=str) return 0 _logger.info("Document %r is valid", uri) return 0 if __name__ == "__main__": sys.exit(main(sys.argv[1:]))
schema-salad
/schema-salad-8.4.20230808163024.tar.gz/schema-salad-8.4.20230808163024/schema_salad/main.py
main.py
import argparse import logging import os import sys from typing import Any, Dict, List, Mapping, MutableSequence, Optional, Union, cast from urllib.parse import urlparse from rdflib import __version__ as rdflib_version from rdflib.parser import Parser from rdflib.plugin import register from ruamel.yaml.comments import CommentedMap, CommentedSeq from . import codegen, jsonld_context, schema from .avro.schema import SchemaParseException from .exceptions import ValidationException, to_one_line_messages from .makedoc import makedoc from .ref_resolver import Loader, file_uri from .utils import json_dump, stdout if int(rdflib_version.split(".", maxsplit=1)[0]) < 6: register("json-ld", Parser, "rdflib_jsonld.parser", "JsonLDParser") if sys.version_info >= (3, 8): import importlib.metadata as importlib_metadata else: import importlib_metadata _logger = logging.getLogger("salad") def printrdf( workflow: str, wf: Union[CommentedMap, CommentedSeq], ctx: Dict[str, Any], sr: str, ) -> None: g = jsonld_context.makerdf(workflow, wf, ctx) g.serialize(destination=stdout(), format=sr) def arg_parser() -> argparse.ArgumentParser: """Build the argument parser.""" parser = argparse.ArgumentParser() parser.add_argument( "--rdf-serializer", help="Output RDF serialization format used by --print-rdf" "(one of turtle (default), n3, nt, xml)", default="turtle", ) parser.add_argument( "--skip-schemas", action="store_true", default=False, help="If specified, ignore $schemas sections.", ) parser.add_argument( "--strict-foreign-properties", action="store_true", help="Strict checking of foreign properties", default=False, ) exgroup = parser.add_mutually_exclusive_group() exgroup.add_argument( "--print-jsonld-context", action="store_true", help="Print JSON-LD context for schema", ) exgroup.add_argument("--print-rdfs", action="store_true", help="Print RDF schema") exgroup.add_argument("--print-avro", action="store_true", help="Print Avro schema") exgroup.add_argument( "--print-rdf", action="store_true", help="Print corresponding RDF graph for document", ) exgroup.add_argument( "--print-pre", action="store_true", help="Print document after preprocessing" ) exgroup.add_argument("--print-index", action="store_true", help="Print node index") exgroup.add_argument("--print-metadata", action="store_true", help="Print document metadata") exgroup.add_argument( "--print-inheritance-dot", action="store_true", help="Print graphviz file of inheritance", ) exgroup.add_argument( "--print-fieldrefs-dot", action="store_true", help="Print graphviz file of field refs", ) exgroup.add_argument( "--codegen", type=str, metavar="language", help="Generate classes in target language, currently supported: " "python, java, typescript, dotnet, cpp, dlang", ) parser.add_argument( "--codegen-target", type=str, default=None, help="Defaults to sys.stdout for Python/C++/Dlang and ./ for " "Java/TypeScript/.Net", ) parser.add_argument( "--codegen-examples", type=str, metavar="directory", default=None, help="Directory of example documents for test case generation (Java/TypeScript/.Net/Dlang only).", ) parser.add_argument( "--codegen-package", type=str, metavar="dotted.package", default=None, help="Optional override of the package name which is other derived " "from the base URL (Java/TypeScript/.Net/Dlang only).", ), parser.add_argument( "--codegen-copyright", type=str, metavar="copyright_string", default=None, help="Optional copyright of the input schema.", ), parser.add_argument( "--codegen-parser-info", metavar="parser_info", type=str, default=None, help="Optional parser name which is accessible via resulted parser API (Python and Dlang only)", ) exgroup.add_argument( "--print-oneline", action="store_true", help="Print each error message in oneline", ) exgroup.add_argument( "--print-doc", action="store_true", help="Print HTML schema documentation page" ) exgroup_strict = parser.add_mutually_exclusive_group() exgroup_strict.add_argument( "--strict", action="store_true", help="Strict validation (unrecognized or out of place fields are error)", default=True, dest="strict", ) exgroup_strict.add_argument( "--non-strict", action="store_false", help="Lenient validation (ignore unrecognized fields)", default=True, dest="strict", ) exgroup_volume = parser.add_mutually_exclusive_group() exgroup_volume.add_argument("--verbose", action="store_true", help="Default logging") exgroup_volume.add_argument( "--quiet", action="store_true", help="Only print warnings and errors." ) exgroup_volume.add_argument("--debug", action="store_true", help="Print even more logging") parser.add_argument( "--only", action="append", help="Use with --print-doc, document only listed types", ) parser.add_argument( "--redirect", action="append", help="Use with --print-doc, override default link for type", ) parser.add_argument("--brand", help="Use with --print-doc, set the 'brand' text in nav bar") parser.add_argument( "--brandlink", help="Use with --print-doc, set the link for 'brand' in nav bar", ) parser.add_argument( "--brandstyle", help="Use with --print-doc, HTML code to link to an external style sheet", ) parser.add_argument( "--brandinverse", default=False, action="store_true", help="Use with --print-doc", ) parser.add_argument( "--primtype", default="#PrimitiveType", help="Use with --print-doc, link to use for primitive types (string, int etc)", ) parser.add_argument("schema", type=str, nargs="?", default=None) parser.add_argument("document", type=str, nargs="*", default=None) parser.add_argument("--version", "-v", action="store_true", help="Print version", default=None) return parser def main(argsl: Optional[List[str]] = None) -> int: if argsl is None: argsl = sys.argv[1:] args = arg_parser().parse_args(argsl) if args.version is None and args.schema is None: print(f"{sys.argv[0]}: error: too few arguments.") return 1 if args.quiet: _logger.setLevel(logging.WARN) if args.debug: _logger.setLevel(logging.DEBUG) pkg = importlib_metadata.version("schema_salad") if pkg: if args.version: print(f"{sys.argv[0]} Current version: {pkg}") return 0 _logger.info("%s Current version: %s", sys.argv[0], pkg) # Get the metaschema to validate the schema metaschema_names, metaschema_doc, metaschema_loader = schema.get_metaschema() # Load schema document and resolve refs schema_uri = args.schema if not (urlparse(schema_uri)[0] and urlparse(schema_uri)[0] in ["http", "https", "file"]): schema_uri = file_uri(os.path.abspath(schema_uri)) schema_raw_doc = metaschema_loader.fetch(schema_uri) try: schema_doc, schema_metadata = metaschema_loader.resolve_all(schema_raw_doc, schema_uri) except ValidationException as e: _logger.error( "Schema %r failed link checking:\n%s", args.schema, str(e), exc_info=bool(args.debug), ) _logger.debug("Index is %s", list(metaschema_loader.idx.keys())) _logger.debug("Vocabulary is %s", list(metaschema_loader.vocab.keys())) return 1 except RuntimeError as e: _logger.error( "Schema %r read error:\n%s", args.schema, str(e), exc_info=bool(args.debug), ) return 1 if args.print_doc: makedoc( sys.stdout, args.schema, args.redirect, args.only, args.brand, args.brandlink, args.primtype, args.brandstyle, args.brandinverse, ) return 0 # Optionally print the schema after ref resolution if not args.document and args.print_pre: json_dump(schema_doc, fp=sys.stdout, indent=4, default=str) return 0 if not args.document and args.print_index: json_dump(list(metaschema_loader.idx.keys()), fp=sys.stdout, indent=4, default=str) return 0 # Validate the schema document against the metaschema try: schema.validate_doc(metaschema_names, schema_doc, metaschema_loader, args.strict) except ValidationException as e: _logger.error("While validating schema %r:\n%s", args.schema, str(e)) return 1 # Get the json-ld context and RDFS representation from the schema metactx = schema.collect_namespaces(schema_metadata) if "$base" in schema_metadata: metactx["@base"] = schema_metadata["$base"] if isinstance(schema_doc, CommentedSeq): (schema_ctx, rdfs) = jsonld_context.salad_to_jsonld_context(schema_doc, metactx) else: raise ValidationException(f"Expected a CommentedSeq, got {type(schema_doc)}: {schema_doc}.") # Create the loader that will be used to load the target document. schema_version = schema_metadata.get("saladVersion", None) document_loader = Loader( schema_ctx, skip_schemas=args.skip_schemas, salad_version=schema_version ) if args.codegen: codegen.codegen( args.codegen, cast(List[Dict[str, Any]], schema_doc), schema_metadata, document_loader, target=args.codegen_target, examples=args.codegen_examples, package=args.codegen_package, copyright=args.codegen_copyright, parser_info=args.codegen_parser_info, ) return 0 # Make the Avro validation that will be used to validate the target # document if isinstance(schema_doc, MutableSequence): avsc_obj = schema.make_avro(schema_doc, document_loader) try: avsc_names = schema.make_avro_schema_from_avro(avsc_obj) except SchemaParseException as err: _logger.error( "Schema %r error:\n%s", args.schema, str(err), exc_info=((type(err), err, None) if args.debug else None), ) if args.print_avro: json_dump(avsc_obj, fp=sys.stdout, indent=4, default=str) return 1 else: _logger.error("Schema %r must be a list.", args.schema) # type: ignore[unreachable] return 1 # Optionally print Avro-compatible schema from schema if args.print_avro: json_dump(avsc_obj, fp=sys.stdout, indent=4, default=str) return 0 # Optionally print the json-ld context from the schema if args.print_jsonld_context: j = {"@context": schema_ctx} json_dump(j, fp=sys.stdout, indent=4, sort_keys=True, default=str) return 0 # Optionally print the RDFS graph from the schema if args.print_rdfs: rdfs.serialize(destination=stdout(), format=args.rdf_serializer) return 0 if args.print_metadata and not args.document: json_dump(schema_metadata, fp=sys.stdout, indent=4, default=str) return 0 if args.print_inheritance_dot: schema.print_inheritance(schema_doc, sys.stdout) return 0 if args.print_fieldrefs_dot: schema.print_fieldrefs(schema_doc, document_loader, sys.stdout) return 0 # If no document specified, all done. if not args.document: print(f"Schema {args.schema!r} is valid") return 0 # Load target document and resolve refs for uri in args.document: try: document, doc_metadata = document_loader.resolve_ref( uri, strict_foreign_properties=args.strict_foreign_properties ) except ValidationException as e: msg = to_one_line_messages(e) if args.print_oneline else str(e) _logger.error( "Document %r failed validation:\n%s", args.document, msg, exc_info=args.debug, ) return 1 # Optionally print the document after ref resolution if args.print_pre: json_dump(document, fp=sys.stdout, indent=4, default=str) return 0 if args.print_index: json_dump(list(document_loader.idx.keys()), fp=sys.stdout, indent=4, default=str) return 0 # Validate the user document against the schema try: schema.validate_doc( avsc_names, document, document_loader, args.strict, strict_foreign_properties=args.strict_foreign_properties, ) except ValidationException as e: msg2 = to_one_line_messages(e) if args.print_oneline else str(e) _logger.error("While validating document %r:\n%s", uri, msg2) return 1 # Optionally convert the document to RDF if args.print_rdf: if isinstance(document, (Mapping, MutableSequence)): printrdf(uri, document, schema_ctx, args.rdf_serializer) return 0 print("Document must be a dictionary or list.") return 1 if args.print_metadata: json_dump(doc_metadata, fp=sys.stdout, indent=4, default=str) return 0 _logger.info("Document %r is valid", uri) return 0 if __name__ == "__main__": sys.exit(main(sys.argv[1:]))
0.568895
0.091382
import logging import pprint from typing import Any, List, Mapping, MutableMapping, MutableSequence, Optional, Set from urllib.parse import urlsplit from . import avro from .avro.schema import Schema from .exceptions import ( ClassValidationException, SchemaSaladException, ValidationException, ) from .sourceline import SourceLine _logger = logging.getLogger("salad") def validate( expected_schema: Schema, datum: Any, identifiers: Optional[List[str]] = None, strict: bool = False, foreign_properties: Optional[Set[str]] = None, vocab: Optional[Mapping[str, str]] = None, ) -> bool: if not identifiers: identifiers = [] if not foreign_properties: foreign_properties = set() return validate_ex( expected_schema, datum, identifiers, strict=strict, foreign_properties=foreign_properties, raise_ex=False, vocab=vocab, ) INT_MIN_VALUE = -(1 << 31) INT_MAX_VALUE = (1 << 31) - 1 LONG_MIN_VALUE = -(1 << 63) LONG_MAX_VALUE = (1 << 63) - 1 def avro_shortname(name: str) -> str: """Produce an avro friendly short name.""" return name.split(".")[-1] saladp = "https://w3id.org/cwl/salad#" primitives = { "http://www.w3.org/2001/XMLSchema#string": "string", "http://www.w3.org/2001/XMLSchema#boolean": "boolean", "http://www.w3.org/2001/XMLSchema#int": "int", "http://www.w3.org/2001/XMLSchema#long": "long", "http://www.w3.org/2001/XMLSchema#float": "float", "http://www.w3.org/2001/XMLSchema#double": "double", saladp + "null": "null", saladp + "enum": "enum", saladp + "array": "array", saladp + "record": "record", } def avro_type_name(url: str) -> str: """ Turn a URL into an Avro-safe name. If the URL has no fragment, return this plain URL. Extract either the last part of the URL fragment past the slash, otherwise the whole fragment. """ global primitives if url in primitives: return primitives[url] u = urlsplit(url) joined = filter( lambda x: x, list(reversed(u.netloc.split("."))) + u.path.split("/") + u.fragment.split("/"), ) return ".".join(joined) def friendly(v): # type: (Any) -> Any if isinstance(v, avro.schema.NamedSchema): return avro_shortname(v.name) if isinstance(v, avro.schema.ArraySchema): return f"array of <{friendly(v.items)}>" if isinstance(v, avro.schema.PrimitiveSchema): return v.type if isinstance(v, avro.schema.UnionSchema): return " or ".join([friendly(s) for s in v.schemas]) return avro_shortname(v) def vpformat(datum): # type: (Any) -> str a = pprint.pformat(datum) if len(a) > 160: a = a[0:160] + "[...]" return a def validate_ex( expected_schema: Schema, datum, # type: Any identifiers=None, # type: Optional[List[str]] strict=False, # type: bool foreign_properties=None, # type: Optional[Set[str]] raise_ex=True, # type: bool strict_foreign_properties=False, # type: bool logger=_logger, # type: logging.Logger skip_foreign_properties=False, # type: bool vocab=None, # type: Optional[Mapping[str, str]] ): # type: (...) -> bool """Determine if a python datum is an instance of a schema.""" debug = _logger.isEnabledFor(logging.DEBUG) if not identifiers: identifiers = [] if not foreign_properties: foreign_properties = set() if vocab is None: raise Exception("vocab must be provided") schema_type = expected_schema.type if schema_type == "null": if datum is None: return True if raise_ex: raise ValidationException("the value is not null") return False if schema_type == "boolean": if isinstance(datum, bool): return True if raise_ex: raise ValidationException("the value is not boolean") return False if schema_type == "string": if isinstance(datum, str): return True if isinstance(datum, bytes): return True if raise_ex: raise ValidationException("the value is not string") return False if schema_type == "int": if isinstance(datum, int) and INT_MIN_VALUE <= datum <= INT_MAX_VALUE: return True if raise_ex: raise ValidationException(f"{vpformat(datum)!r} is not int") return False if schema_type == "long": if (isinstance(datum, int)) and LONG_MIN_VALUE <= datum <= LONG_MAX_VALUE: return True if raise_ex: raise ValidationException(f"the value {vpformat(datum)!r} is not long") return False if schema_type in ["float", "double"]: if isinstance(datum, (int, float)): return True if raise_ex: raise ValidationException(f"the value {vpformat(datum)!r} is not float or double") return False if isinstance(expected_schema, avro.schema.EnumSchema): if expected_schema.name in ("org.w3id.cwl.salad.Any", "Any"): if datum is not None: return True if raise_ex: raise ValidationException("'Any' type must be non-null") return False if not isinstance(datum, str): if raise_ex: raise ValidationException( f"value is a {type(datum).__name__} but expected a string" ) return False if expected_schema.name == "org.w3id.cwl.cwl.Expression": if "$(" in datum or "${" in datum: return True if raise_ex: raise ValidationException( f"value {datum!r} does not contain an expression in the form $() or ${{}}" ) return False if datum in expected_schema.symbols: return True if raise_ex: raise ValidationException( "the value {} is not a valid {}, expected {}{}".format( vpformat(datum), friendly(expected_schema.name), "one of " if len(expected_schema.symbols) > 1 else "", "'" + "', '".join(expected_schema.symbols) + "'", ) ) return False if isinstance(expected_schema, avro.schema.ArraySchema): if isinstance(datum, MutableSequence): for i, d in enumerate(datum): try: sl = SourceLine(datum, i, ValidationException) if not validate_ex( expected_schema.items, d, identifiers, strict=strict, foreign_properties=foreign_properties, raise_ex=raise_ex, strict_foreign_properties=strict_foreign_properties, logger=logger, skip_foreign_properties=skip_foreign_properties, vocab=vocab, ): return False except ValidationException as v: if raise_ex: source = v if debug else None raise ValidationException("item is invalid because", sl, [v]) from source return False return True if raise_ex: raise ValidationException( f"the value {vpformat(datum)} is not a list, " f"expected list of {friendly(expected_schema.items)}" ) return False if isinstance(expected_schema, avro.schema.UnionSchema): for s in expected_schema.schemas: if validate_ex( s, datum, identifiers, strict=strict, raise_ex=False, strict_foreign_properties=strict_foreign_properties, logger=logger, skip_foreign_properties=skip_foreign_properties, vocab=vocab, ): return True if not raise_ex: return False errors: List[SchemaSaladException] = [] checked = [] for s in expected_schema.schemas: if isinstance(datum, MutableSequence) and not isinstance(s, avro.schema.ArraySchema): continue if isinstance(datum, MutableMapping) and not isinstance(s, avro.schema.RecordSchema): continue if isinstance(datum, (bool, int, float, str)) and isinstance( s, (avro.schema.ArraySchema, avro.schema.RecordSchema) ): continue if datum is not None and s.type == "null": continue checked.append(s) try: validate_ex( s, datum, identifiers, strict=strict, foreign_properties=foreign_properties, raise_ex=True, strict_foreign_properties=strict_foreign_properties, logger=logger, skip_foreign_properties=skip_foreign_properties, vocab=vocab, ) except ClassValidationException: raise except ValidationException as e: errors.append(e) if bool(errors): raise ValidationException( "", None, [ ValidationException(f"tried {friendly(check)} but", None, [err]) for (check, err) in zip(checked, errors) ], "-", ) raise ValidationException( f"value is a {type(datum).__name__}, expected {friendly(expected_schema)}" ) if isinstance(expected_schema, avro.schema.RecordSchema): if not isinstance(datum, MutableMapping): if raise_ex: raise ValidationException( f"is not a dict. Expected a {friendly(expected_schema.name)} object." ) return False classmatch = None for f in expected_schema.fields: if f.name in ("class",): d = datum.get(f.name) if not d: if raise_ex: raise ValidationException(f"Missing {f.name!r} field") return False avroname = None if d in vocab: avroname = avro_type_name(vocab[d]) if expected_schema.name not in (d, avroname): if raise_ex: raise ValidationException( f"Expected class {expected_schema.name!r} but this is {d!r}" ) return False classmatch = d break errors = [] for f in expected_schema.fields: if f.name in ("class",): continue if f.name in datum: fieldval = datum[f.name] else: try: fieldval = f.default except KeyError: fieldval = None try: sl = SourceLine(datum, f.name, str) if not validate_ex( f.type, fieldval, identifiers, strict=strict, foreign_properties=foreign_properties, raise_ex=raise_ex, strict_foreign_properties=strict_foreign_properties, logger=logger, skip_foreign_properties=skip_foreign_properties, vocab=vocab, ): return False except ValidationException as v: if f.name not in datum: errors.append(ValidationException(f"missing required field {f.name!r}")) else: errors.append( ValidationException( f"the {f.name!r} field is not valid because", sl, [v], ) ) for d in datum: found = False for f in expected_schema.fields: if d == f.name: found = True if not found: sl = SourceLine(datum, d, str) if d is None: err = ValidationException("mapping with implicit null key", sl) if strict: errors.append(err) else: logger.warning(err.as_warning()) continue if d not in identifiers and d not in foreign_properties and d[0] not in ("@", "$"): if ( (d not in identifiers and strict) and ( d not in foreign_properties and strict_foreign_properties and not skip_foreign_properties ) and not raise_ex ): return False split = urlsplit(d) if split.scheme: if not skip_foreign_properties: err = ValidationException( "unrecognized extension field {!r}{}.{}".format( d, " and strict_foreign_properties checking is enabled" if strict_foreign_properties else "", "\nForeign properties from $schemas:\n {}".format( "\n ".join(sorted(foreign_properties)) ) if len(foreign_properties) > 0 else "", ), sl, ) if strict_foreign_properties: errors.append(err) elif len(foreign_properties) > 0: logger.warning(err.as_warning()) else: err = ValidationException( "invalid field {!r}, expected one of: {}".format( d, ", ".join(f"{fn.name!r}" for fn in expected_schema.fields), ), sl, ) if strict: errors.append(err) else: logger.warning(err.as_warning()) if bool(errors): if raise_ex: if classmatch: raise ClassValidationException("", None, errors, "*") raise ValidationException("", None, errors, "*") return False return True if raise_ex: raise ValidationException(f"Unrecognized schema_type {schema_type}") return False
schema-salad
/schema-salad-8.4.20230808163024.tar.gz/schema-salad-8.4.20230808163024/schema_salad/validate.py
validate.py
import logging import pprint from typing import Any, List, Mapping, MutableMapping, MutableSequence, Optional, Set from urllib.parse import urlsplit from . import avro from .avro.schema import Schema from .exceptions import ( ClassValidationException, SchemaSaladException, ValidationException, ) from .sourceline import SourceLine _logger = logging.getLogger("salad") def validate( expected_schema: Schema, datum: Any, identifiers: Optional[List[str]] = None, strict: bool = False, foreign_properties: Optional[Set[str]] = None, vocab: Optional[Mapping[str, str]] = None, ) -> bool: if not identifiers: identifiers = [] if not foreign_properties: foreign_properties = set() return validate_ex( expected_schema, datum, identifiers, strict=strict, foreign_properties=foreign_properties, raise_ex=False, vocab=vocab, ) INT_MIN_VALUE = -(1 << 31) INT_MAX_VALUE = (1 << 31) - 1 LONG_MIN_VALUE = -(1 << 63) LONG_MAX_VALUE = (1 << 63) - 1 def avro_shortname(name: str) -> str: """Produce an avro friendly short name.""" return name.split(".")[-1] saladp = "https://w3id.org/cwl/salad#" primitives = { "http://www.w3.org/2001/XMLSchema#string": "string", "http://www.w3.org/2001/XMLSchema#boolean": "boolean", "http://www.w3.org/2001/XMLSchema#int": "int", "http://www.w3.org/2001/XMLSchema#long": "long", "http://www.w3.org/2001/XMLSchema#float": "float", "http://www.w3.org/2001/XMLSchema#double": "double", saladp + "null": "null", saladp + "enum": "enum", saladp + "array": "array", saladp + "record": "record", } def avro_type_name(url: str) -> str: """ Turn a URL into an Avro-safe name. If the URL has no fragment, return this plain URL. Extract either the last part of the URL fragment past the slash, otherwise the whole fragment. """ global primitives if url in primitives: return primitives[url] u = urlsplit(url) joined = filter( lambda x: x, list(reversed(u.netloc.split("."))) + u.path.split("/") + u.fragment.split("/"), ) return ".".join(joined) def friendly(v): # type: (Any) -> Any if isinstance(v, avro.schema.NamedSchema): return avro_shortname(v.name) if isinstance(v, avro.schema.ArraySchema): return f"array of <{friendly(v.items)}>" if isinstance(v, avro.schema.PrimitiveSchema): return v.type if isinstance(v, avro.schema.UnionSchema): return " or ".join([friendly(s) for s in v.schemas]) return avro_shortname(v) def vpformat(datum): # type: (Any) -> str a = pprint.pformat(datum) if len(a) > 160: a = a[0:160] + "[...]" return a def validate_ex( expected_schema: Schema, datum, # type: Any identifiers=None, # type: Optional[List[str]] strict=False, # type: bool foreign_properties=None, # type: Optional[Set[str]] raise_ex=True, # type: bool strict_foreign_properties=False, # type: bool logger=_logger, # type: logging.Logger skip_foreign_properties=False, # type: bool vocab=None, # type: Optional[Mapping[str, str]] ): # type: (...) -> bool """Determine if a python datum is an instance of a schema.""" debug = _logger.isEnabledFor(logging.DEBUG) if not identifiers: identifiers = [] if not foreign_properties: foreign_properties = set() if vocab is None: raise Exception("vocab must be provided") schema_type = expected_schema.type if schema_type == "null": if datum is None: return True if raise_ex: raise ValidationException("the value is not null") return False if schema_type == "boolean": if isinstance(datum, bool): return True if raise_ex: raise ValidationException("the value is not boolean") return False if schema_type == "string": if isinstance(datum, str): return True if isinstance(datum, bytes): return True if raise_ex: raise ValidationException("the value is not string") return False if schema_type == "int": if isinstance(datum, int) and INT_MIN_VALUE <= datum <= INT_MAX_VALUE: return True if raise_ex: raise ValidationException(f"{vpformat(datum)!r} is not int") return False if schema_type == "long": if (isinstance(datum, int)) and LONG_MIN_VALUE <= datum <= LONG_MAX_VALUE: return True if raise_ex: raise ValidationException(f"the value {vpformat(datum)!r} is not long") return False if schema_type in ["float", "double"]: if isinstance(datum, (int, float)): return True if raise_ex: raise ValidationException(f"the value {vpformat(datum)!r} is not float or double") return False if isinstance(expected_schema, avro.schema.EnumSchema): if expected_schema.name in ("org.w3id.cwl.salad.Any", "Any"): if datum is not None: return True if raise_ex: raise ValidationException("'Any' type must be non-null") return False if not isinstance(datum, str): if raise_ex: raise ValidationException( f"value is a {type(datum).__name__} but expected a string" ) return False if expected_schema.name == "org.w3id.cwl.cwl.Expression": if "$(" in datum or "${" in datum: return True if raise_ex: raise ValidationException( f"value {datum!r} does not contain an expression in the form $() or ${{}}" ) return False if datum in expected_schema.symbols: return True if raise_ex: raise ValidationException( "the value {} is not a valid {}, expected {}{}".format( vpformat(datum), friendly(expected_schema.name), "one of " if len(expected_schema.symbols) > 1 else "", "'" + "', '".join(expected_schema.symbols) + "'", ) ) return False if isinstance(expected_schema, avro.schema.ArraySchema): if isinstance(datum, MutableSequence): for i, d in enumerate(datum): try: sl = SourceLine(datum, i, ValidationException) if not validate_ex( expected_schema.items, d, identifiers, strict=strict, foreign_properties=foreign_properties, raise_ex=raise_ex, strict_foreign_properties=strict_foreign_properties, logger=logger, skip_foreign_properties=skip_foreign_properties, vocab=vocab, ): return False except ValidationException as v: if raise_ex: source = v if debug else None raise ValidationException("item is invalid because", sl, [v]) from source return False return True if raise_ex: raise ValidationException( f"the value {vpformat(datum)} is not a list, " f"expected list of {friendly(expected_schema.items)}" ) return False if isinstance(expected_schema, avro.schema.UnionSchema): for s in expected_schema.schemas: if validate_ex( s, datum, identifiers, strict=strict, raise_ex=False, strict_foreign_properties=strict_foreign_properties, logger=logger, skip_foreign_properties=skip_foreign_properties, vocab=vocab, ): return True if not raise_ex: return False errors: List[SchemaSaladException] = [] checked = [] for s in expected_schema.schemas: if isinstance(datum, MutableSequence) and not isinstance(s, avro.schema.ArraySchema): continue if isinstance(datum, MutableMapping) and not isinstance(s, avro.schema.RecordSchema): continue if isinstance(datum, (bool, int, float, str)) and isinstance( s, (avro.schema.ArraySchema, avro.schema.RecordSchema) ): continue if datum is not None and s.type == "null": continue checked.append(s) try: validate_ex( s, datum, identifiers, strict=strict, foreign_properties=foreign_properties, raise_ex=True, strict_foreign_properties=strict_foreign_properties, logger=logger, skip_foreign_properties=skip_foreign_properties, vocab=vocab, ) except ClassValidationException: raise except ValidationException as e: errors.append(e) if bool(errors): raise ValidationException( "", None, [ ValidationException(f"tried {friendly(check)} but", None, [err]) for (check, err) in zip(checked, errors) ], "-", ) raise ValidationException( f"value is a {type(datum).__name__}, expected {friendly(expected_schema)}" ) if isinstance(expected_schema, avro.schema.RecordSchema): if not isinstance(datum, MutableMapping): if raise_ex: raise ValidationException( f"is not a dict. Expected a {friendly(expected_schema.name)} object." ) return False classmatch = None for f in expected_schema.fields: if f.name in ("class",): d = datum.get(f.name) if not d: if raise_ex: raise ValidationException(f"Missing {f.name!r} field") return False avroname = None if d in vocab: avroname = avro_type_name(vocab[d]) if expected_schema.name not in (d, avroname): if raise_ex: raise ValidationException( f"Expected class {expected_schema.name!r} but this is {d!r}" ) return False classmatch = d break errors = [] for f in expected_schema.fields: if f.name in ("class",): continue if f.name in datum: fieldval = datum[f.name] else: try: fieldval = f.default except KeyError: fieldval = None try: sl = SourceLine(datum, f.name, str) if not validate_ex( f.type, fieldval, identifiers, strict=strict, foreign_properties=foreign_properties, raise_ex=raise_ex, strict_foreign_properties=strict_foreign_properties, logger=logger, skip_foreign_properties=skip_foreign_properties, vocab=vocab, ): return False except ValidationException as v: if f.name not in datum: errors.append(ValidationException(f"missing required field {f.name!r}")) else: errors.append( ValidationException( f"the {f.name!r} field is not valid because", sl, [v], ) ) for d in datum: found = False for f in expected_schema.fields: if d == f.name: found = True if not found: sl = SourceLine(datum, d, str) if d is None: err = ValidationException("mapping with implicit null key", sl) if strict: errors.append(err) else: logger.warning(err.as_warning()) continue if d not in identifiers and d not in foreign_properties and d[0] not in ("@", "$"): if ( (d not in identifiers and strict) and ( d not in foreign_properties and strict_foreign_properties and not skip_foreign_properties ) and not raise_ex ): return False split = urlsplit(d) if split.scheme: if not skip_foreign_properties: err = ValidationException( "unrecognized extension field {!r}{}.{}".format( d, " and strict_foreign_properties checking is enabled" if strict_foreign_properties else "", "\nForeign properties from $schemas:\n {}".format( "\n ".join(sorted(foreign_properties)) ) if len(foreign_properties) > 0 else "", ), sl, ) if strict_foreign_properties: errors.append(err) elif len(foreign_properties) > 0: logger.warning(err.as_warning()) else: err = ValidationException( "invalid field {!r}, expected one of: {}".format( d, ", ".join(f"{fn.name!r}" for fn in expected_schema.fields), ), sl, ) if strict: errors.append(err) else: logger.warning(err.as_warning()) if bool(errors): if raise_ex: if classmatch: raise ClassValidationException("", None, errors, "*") raise ValidationException("", None, errors, "*") return False return True if raise_ex: raise ValidationException(f"Unrecognized schema_type {schema_type}") return False
0.73431
0.211906
import json import os import sys from io import BufferedWriter from typing import ( IO, TYPE_CHECKING, Any, Callable, Dict, Iterable, Mapping, MutableSequence, Optional, Tuple, TypeVar, Union, ) import requests from rdflib.graph import Graph from ruamel.yaml.comments import CommentedMap, CommentedSeq from ruamel.yaml.constructor import RoundTripConstructor from ruamel.yaml.main import YAML if TYPE_CHECKING: from .fetcher import Fetcher ContextType = Dict[str, Union[Dict[str, Any], str, Iterable[str]]] DocumentType = TypeVar("DocumentType", CommentedSeq, CommentedMap) DocumentOrStrType = TypeVar("DocumentOrStrType", CommentedSeq, CommentedMap, str) FieldType = TypeVar("FieldType", str, CommentedSeq, CommentedMap) MandatoryResolveType = Union[int, float, str, CommentedMap, CommentedSeq] ResolveType = Optional[MandatoryResolveType] ResolvedRefType = Tuple[ResolveType, CommentedMap] IdxResultType = Union[CommentedMap, CommentedSeq, str, None] IdxType = Dict[str, IdxResultType] CacheType = Dict[str, Union[str, Graph, bool]] FetcherCallableType = Callable[[CacheType, requests.sessions.Session], "Fetcher"] AttachmentsType = Callable[[Union[CommentedMap, CommentedSeq]], bool] def add_dictlist(di, key, val): # type: (Dict[Any, Any], Any, Any) -> None if key not in di: di[key] = [] di[key].append(val) def aslist(thing: Any) -> MutableSequence[Any]: """ Wrap single items and lists. Return lists unchanged. """ if isinstance(thing, MutableSequence): return thing return [thing] def flatten(thing, ltypes=(list, tuple)): # type: (Any, Any) -> Any # http://rightfootin.blogspot.com/2006/09/more-on-python-flatten.html if thing is None: return [] if not isinstance(thing, ltypes): return [thing] ltype = type(thing) lst = list(thing) i = 0 while i < len(lst): while isinstance(lst[i], ltypes): if not lst[i]: lst.pop(i) i -= 1 break lst[i : i + 1] = lst[i] i += 1 return ltype(lst) # Check if we are on windows OS def onWindows(): # type: () -> (bool) return os.name == "nt" def convert_to_dict(j4): # type: (Any) -> Any if isinstance(j4, Mapping): return {k: convert_to_dict(v) for k, v in j4.items()} if isinstance(j4, MutableSequence): return [convert_to_dict(v) for v in j4] return j4 def json_dump(obj: Any, fp: IO[str], **kwargs: Any) -> None: """Force use of unicode.""" json.dump(convert_to_dict(obj), fp, **kwargs) def json_dumps( obj, # type: Any **kwargs, # type: Any ): # type: (...) -> str """Force use of unicode.""" return json.dumps(convert_to_dict(obj), **kwargs) def stdout() -> BufferedWriter: """Build a replacement for sys.stdout that allow for writing binary data.""" return os.fdopen(sys.stdout.fileno(), "wb", closefd=False) class _RoundTripNoTimeStampConstructor(RoundTripConstructor): def construct_yaml_timestamp(self: Any, node: Any, values: Any = None) -> Any: return node.value _RoundTripNoTimeStampConstructor.add_constructor( "tag:yaml.org,2002:timestamp", _RoundTripNoTimeStampConstructor.construct_yaml_timestamp, ) # mypy: no-warn-unused-ignores def yaml_no_ts() -> YAML: """ Get a YAML loader that won't parse timestamps into datetime objects. Such datetime objects can't be easily dumped into JSON. """ yaml = YAML(typ="rt") yaml.preserve_quotes = True # type: ignore yaml.Constructor = _RoundTripNoTimeStampConstructor return yaml
schema-salad
/schema-salad-8.4.20230808163024.tar.gz/schema-salad-8.4.20230808163024/schema_salad/utils.py
utils.py
import json import os import sys from io import BufferedWriter from typing import ( IO, TYPE_CHECKING, Any, Callable, Dict, Iterable, Mapping, MutableSequence, Optional, Tuple, TypeVar, Union, ) import requests from rdflib.graph import Graph from ruamel.yaml.comments import CommentedMap, CommentedSeq from ruamel.yaml.constructor import RoundTripConstructor from ruamel.yaml.main import YAML if TYPE_CHECKING: from .fetcher import Fetcher ContextType = Dict[str, Union[Dict[str, Any], str, Iterable[str]]] DocumentType = TypeVar("DocumentType", CommentedSeq, CommentedMap) DocumentOrStrType = TypeVar("DocumentOrStrType", CommentedSeq, CommentedMap, str) FieldType = TypeVar("FieldType", str, CommentedSeq, CommentedMap) MandatoryResolveType = Union[int, float, str, CommentedMap, CommentedSeq] ResolveType = Optional[MandatoryResolveType] ResolvedRefType = Tuple[ResolveType, CommentedMap] IdxResultType = Union[CommentedMap, CommentedSeq, str, None] IdxType = Dict[str, IdxResultType] CacheType = Dict[str, Union[str, Graph, bool]] FetcherCallableType = Callable[[CacheType, requests.sessions.Session], "Fetcher"] AttachmentsType = Callable[[Union[CommentedMap, CommentedSeq]], bool] def add_dictlist(di, key, val): # type: (Dict[Any, Any], Any, Any) -> None if key not in di: di[key] = [] di[key].append(val) def aslist(thing: Any) -> MutableSequence[Any]: """ Wrap single items and lists. Return lists unchanged. """ if isinstance(thing, MutableSequence): return thing return [thing] def flatten(thing, ltypes=(list, tuple)): # type: (Any, Any) -> Any # http://rightfootin.blogspot.com/2006/09/more-on-python-flatten.html if thing is None: return [] if not isinstance(thing, ltypes): return [thing] ltype = type(thing) lst = list(thing) i = 0 while i < len(lst): while isinstance(lst[i], ltypes): if not lst[i]: lst.pop(i) i -= 1 break lst[i : i + 1] = lst[i] i += 1 return ltype(lst) # Check if we are on windows OS def onWindows(): # type: () -> (bool) return os.name == "nt" def convert_to_dict(j4): # type: (Any) -> Any if isinstance(j4, Mapping): return {k: convert_to_dict(v) for k, v in j4.items()} if isinstance(j4, MutableSequence): return [convert_to_dict(v) for v in j4] return j4 def json_dump(obj: Any, fp: IO[str], **kwargs: Any) -> None: """Force use of unicode.""" json.dump(convert_to_dict(obj), fp, **kwargs) def json_dumps( obj, # type: Any **kwargs, # type: Any ): # type: (...) -> str """Force use of unicode.""" return json.dumps(convert_to_dict(obj), **kwargs) def stdout() -> BufferedWriter: """Build a replacement for sys.stdout that allow for writing binary data.""" return os.fdopen(sys.stdout.fileno(), "wb", closefd=False) class _RoundTripNoTimeStampConstructor(RoundTripConstructor): def construct_yaml_timestamp(self: Any, node: Any, values: Any = None) -> Any: return node.value _RoundTripNoTimeStampConstructor.add_constructor( "tag:yaml.org,2002:timestamp", _RoundTripNoTimeStampConstructor.construct_yaml_timestamp, ) # mypy: no-warn-unused-ignores def yaml_no_ts() -> YAML: """ Get a YAML loader that won't parse timestamps into datetime objects. Such datetime objects can't be easily dumped into JSON. """ yaml = YAML(typ="rt") yaml.preserve_quotes = True # type: ignore yaml.Constructor = _RoundTripNoTimeStampConstructor return yaml
0.544075
0.217244
import copy import logging import os import pathlib import tempfile import uuid as _uuid__ # pylint: disable=unused-import # noqa: F401 import xml.sax # nosec from abc import ABC, abstractmethod from io import StringIO from typing import ( Any, Dict, List, MutableMapping, MutableSequence, Optional, Sequence, Tuple, Type, Union, cast, ) from urllib.parse import quote, urldefrag, urlparse, urlsplit, urlunsplit from urllib.request import pathname2url from rdflib import Graph from rdflib.plugins.parsers.notation3 import BadSyntax from ruamel.yaml.comments import CommentedMap from schema_salad.exceptions import SchemaSaladException, ValidationException from schema_salad.fetcher import DefaultFetcher, Fetcher, MemoryCachingFetcher from schema_salad.sourceline import SourceLine, add_lc_filename from schema_salad.utils import CacheType, yaml_no_ts # requires schema-salad v8.2+ _vocab: Dict[str, str] = {} _rvocab: Dict[str, str] = {} _logger = logging.getLogger("salad") IdxType = MutableMapping[str, Tuple[Any, "LoadingOptions"]] class LoadingOptions: idx: IdxType fileuri: Optional[str] baseuri: str namespaces: MutableMapping[str, str] schemas: MutableSequence[str] original_doc: Optional[Any] addl_metadata: MutableMapping[str, Any] fetcher: Fetcher vocab: Dict[str, str] rvocab: Dict[str, str] cache: CacheType imports: List[str] includes: List[str] def __init__( self, fetcher: Optional[Fetcher] = None, namespaces: Optional[Dict[str, str]] = None, schemas: Optional[List[str]] = None, fileuri: Optional[str] = None, copyfrom: Optional["LoadingOptions"] = None, original_doc: Optional[Any] = None, addl_metadata: Optional[Dict[str, str]] = None, baseuri: Optional[str] = None, idx: Optional[IdxType] = None, imports: Optional[List[str]] = None, includes: Optional[List[str]] = None, ) -> None: """Create a LoadingOptions object.""" self.original_doc = original_doc if idx is not None: self.idx = idx else: self.idx = copyfrom.idx if copyfrom is not None else {} if fileuri is not None: self.fileuri = fileuri else: self.fileuri = copyfrom.fileuri if copyfrom is not None else None if baseuri is not None: self.baseuri = baseuri else: self.baseuri = copyfrom.baseuri if copyfrom is not None else "" if namespaces is not None: self.namespaces = namespaces else: self.namespaces = copyfrom.namespaces if copyfrom is not None else {} if schemas is not None: self.schemas = schemas else: self.schemas = copyfrom.schemas if copyfrom is not None else [] if addl_metadata is not None: self.addl_metadata = addl_metadata else: self.addl_metadata = copyfrom.addl_metadata if copyfrom is not None else {} if imports is not None: self.imports = imports else: self.imports = copyfrom.imports if copyfrom is not None else [] if includes is not None: self.includes = includes else: self.includes = copyfrom.includes if copyfrom is not None else [] if fetcher is not None: self.fetcher = fetcher elif copyfrom is not None: self.fetcher = copyfrom.fetcher else: import requests from cachecontrol.caches import FileCache from cachecontrol.wrapper import CacheControl root = pathlib.Path(os.environ.get("HOME", tempfile.gettempdir())) session = CacheControl( requests.Session(), cache=FileCache(root / ".cache" / "salad"), ) self.fetcher: Fetcher = DefaultFetcher({}, session) self.cache = self.fetcher.cache if isinstance(self.fetcher, MemoryCachingFetcher) else {} self.vocab = _vocab self.rvocab = _rvocab if namespaces is not None: self.vocab = self.vocab.copy() self.rvocab = self.rvocab.copy() for k, v in namespaces.items(): self.vocab[k] = v self.rvocab[v] = k @property def graph(self) -> Graph: """Generate a merged rdflib.Graph from all entries in self.schemas.""" graph = Graph() if not self.schemas: return graph key = str(hash(tuple(self.schemas))) if key in self.cache: return cast(Graph, self.cache[key]) for schema in self.schemas: fetchurl = ( self.fetcher.urljoin(self.fileuri, schema) if self.fileuri is not None else pathlib.Path(schema).resolve().as_uri() ) if fetchurl not in self.cache or self.cache[fetchurl] is True: _logger.debug("Getting external schema %s", fetchurl) try: content = self.fetcher.fetch_text(fetchurl) except Exception as e: _logger.warning("Could not load extension schema %s: %s", fetchurl, str(e)) continue newGraph = Graph() err_msg = "unknown error" for fmt in ["xml", "turtle"]: try: newGraph.parse(data=content, format=fmt, publicID=str(fetchurl)) self.cache[fetchurl] = newGraph graph += newGraph break except (xml.sax.SAXParseException, TypeError, BadSyntax) as e: err_msg = str(e) else: _logger.warning("Could not load extension schema %s: %s", fetchurl, err_msg) self.cache[key] = graph return graph class Saveable(ABC): """Mark classes than have a save() and fromDoc() function.""" @classmethod @abstractmethod def fromDoc( cls, _doc: Any, baseuri: str, loadingOptions: LoadingOptions, docRoot: Optional[str] = None, ) -> "Saveable": """Construct this object from the result of yaml.load().""" @abstractmethod def save( self, top: bool = False, base_url: str = "", relative_uris: bool = True ) -> Dict[str, Any]: """Convert this object to a JSON/YAML friendly dictionary.""" def load_field(val, fieldtype, baseuri, loadingOptions): # type: (Union[str, Dict[str, str]], _Loader, str, LoadingOptions) -> Any if isinstance(val, MutableMapping): if "$import" in val: if loadingOptions.fileuri is None: raise SchemaSaladException("Cannot load $import without fileuri") url = loadingOptions.fetcher.urljoin(loadingOptions.fileuri, val["$import"]) result, metadata = _document_load_by_url( fieldtype, url, loadingOptions, ) loadingOptions.imports.append(url) return result if "$include" in val: if loadingOptions.fileuri is None: raise SchemaSaladException("Cannot load $import without fileuri") url = loadingOptions.fetcher.urljoin(loadingOptions.fileuri, val["$include"]) val = loadingOptions.fetcher.fetch_text(url) loadingOptions.includes.append(url) return fieldtype.load(val, baseuri, loadingOptions) save_type = Optional[Union[MutableMapping[str, Any], MutableSequence[Any], int, float, bool, str]] def save( val: Any, top: bool = True, base_url: str = "", relative_uris: bool = True, ) -> save_type: if isinstance(val, Saveable): return val.save(top=top, base_url=base_url, relative_uris=relative_uris) if isinstance(val, MutableSequence): return [save(v, top=False, base_url=base_url, relative_uris=relative_uris) for v in val] if isinstance(val, MutableMapping): newdict = {} for key in val: newdict[key] = save(val[key], top=False, base_url=base_url, relative_uris=relative_uris) return newdict if val is None or isinstance(val, (int, float, bool, str)): return val raise Exception("Not Saveable: %s" % type(val)) def save_with_metadata( val: Any, valLoadingOpts: LoadingOptions, top: bool = True, base_url: str = "", relative_uris: bool = True, ) -> save_type: """Save and set $namespaces, $schemas, $base and any other metadata fields at the top level.""" saved_val = save(val, top, base_url, relative_uris) newdict: MutableMapping[str, Any] = {} if isinstance(saved_val, MutableSequence): newdict = {"$graph": saved_val} elif isinstance(saved_val, MutableMapping): newdict = saved_val if valLoadingOpts.namespaces: newdict["$namespaces"] = valLoadingOpts.namespaces if valLoadingOpts.schemas: newdict["$schemas"] = valLoadingOpts.schemas if valLoadingOpts.baseuri: newdict["$base"] = valLoadingOpts.baseuri for k, v in valLoadingOpts.addl_metadata.items(): if k not in newdict: newdict[k] = v return newdict def expand_url( url, # type: str base_url, # type: str loadingOptions, # type: LoadingOptions scoped_id=False, # type: bool vocab_term=False, # type: bool scoped_ref=None, # type: Optional[int] ): # type: (...) -> str if url in ("@id", "@type"): return url if vocab_term and url in loadingOptions.vocab: return url if bool(loadingOptions.vocab) and ":" in url: prefix = url.split(":")[0] if prefix in loadingOptions.vocab: url = loadingOptions.vocab[prefix] + url[len(prefix) + 1 :] split = urlsplit(url) if ( (bool(split.scheme) and split.scheme in loadingOptions.fetcher.supported_schemes()) or url.startswith("$(") or url.startswith("${") ): pass elif scoped_id and not bool(split.fragment): splitbase = urlsplit(base_url) frg = "" if bool(splitbase.fragment): frg = splitbase.fragment + "/" + split.path else: frg = split.path pt = splitbase.path if splitbase.path != "" else "/" url = urlunsplit((splitbase.scheme, splitbase.netloc, pt, splitbase.query, frg)) elif scoped_ref is not None and not bool(split.fragment): splitbase = urlsplit(base_url) sp = splitbase.fragment.split("/") n = scoped_ref while n > 0 and len(sp) > 0: sp.pop() n -= 1 sp.append(url) url = urlunsplit( ( splitbase.scheme, splitbase.netloc, splitbase.path, splitbase.query, "/".join(sp), ) ) else: url = loadingOptions.fetcher.urljoin(base_url, url) if vocab_term: split = urlsplit(url) if bool(split.scheme): if url in loadingOptions.rvocab: return loadingOptions.rvocab[url] else: raise ValidationException(f"Term {url!r} not in vocabulary") return url class _Loader: def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any pass class _AnyLoader(_Loader): def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if doc is not None: return doc raise ValidationException("Expected non-null") class _PrimitiveLoader(_Loader): def __init__(self, tp): # type: (Union[type, Tuple[Type[str], Type[str]]]) -> None self.tp = tp def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if not isinstance(doc, self.tp): raise ValidationException( "Expected a {} but got {}".format( self.tp.__class__.__name__, doc.__class__.__name__ ) ) return doc def __repr__(self): # type: () -> str return str(self.tp) class _ArrayLoader(_Loader): def __init__(self, items): # type: (_Loader) -> None self.items = items def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if not isinstance(doc, MutableSequence): raise ValidationException(f"Expected a list, was {type(doc)}") r = [] # type: List[Any] errors = [] # type: List[SchemaSaladException] for i in range(0, len(doc)): try: lf = load_field(doc[i], _UnionLoader((self, self.items)), baseuri, loadingOptions) if isinstance(lf, MutableSequence): r.extend(lf) else: r.append(lf) except ValidationException as e: errors.append(e.with_sourceline(SourceLine(doc, i, str))) if errors: raise ValidationException("", None, errors) return r def __repr__(self): # type: () -> str return f"array<{self.items}>" class _EnumLoader(_Loader): def __init__(self, symbols: Sequence[str], name: str) -> None: self.symbols = symbols self.name = name def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if doc in self.symbols: return doc raise ValidationException(f"Expected one of {self.symbols}") def __repr__(self): # type: () -> str return self.name class _SecondaryDSLLoader(_Loader): def __init__(self, inner): # type: (_Loader) -> None self.inner = inner def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any r: List[Dict[str, Any]] = [] if isinstance(doc, MutableSequence): for d in doc: if isinstance(d, str): if d.endswith("?"): r.append({"pattern": d[:-1], "required": False}) else: r.append({"pattern": d}) elif isinstance(d, dict): new_dict: Dict[str, Any] = {} dict_copy = copy.deepcopy(d) if "pattern" in dict_copy: new_dict["pattern"] = dict_copy.pop("pattern") else: raise ValidationException( f"Missing pattern in secondaryFiles specification entry: {d}" ) new_dict["required"] = ( dict_copy.pop("required") if "required" in dict_copy else None ) if len(dict_copy): raise ValidationException( "Unallowed values in secondaryFiles specification entry: {}".format( dict_copy ) ) r.append(new_dict) else: raise ValidationException( "Expected a string or sequence of (strings or mappings)." ) elif isinstance(doc, MutableMapping): new_dict = {} doc_copy = copy.deepcopy(doc) if "pattern" in doc_copy: new_dict["pattern"] = doc_copy.pop("pattern") else: raise ValidationException( f"Missing pattern in secondaryFiles specification entry: {doc}" ) new_dict["required"] = doc_copy.pop("required") if "required" in doc_copy else None if len(doc_copy): raise ValidationException( f"Unallowed values in secondaryFiles specification entry: {doc_copy}" ) r.append(new_dict) elif isinstance(doc, str): if doc.endswith("?"): r.append({"pattern": doc[:-1], "required": False}) else: r.append({"pattern": doc}) else: raise ValidationException("Expected str or sequence of str") return self.inner.load(r, baseuri, loadingOptions, docRoot) class _RecordLoader(_Loader): def __init__(self, classtype): # type: (Type[Saveable]) -> None self.classtype = classtype def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if not isinstance(doc, MutableMapping): raise ValidationException(f"Expected a dict, was {type(doc)}") return self.classtype.fromDoc(doc, baseuri, loadingOptions, docRoot=docRoot) def __repr__(self): # type: () -> str return str(self.classtype.__name__) class _ExpressionLoader(_Loader): def __init__(self, items: Type[str]) -> None: self.items = items def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if not isinstance(doc, str): raise ValidationException(f"Expected a str, was {type(doc)}") return doc class _UnionLoader(_Loader): def __init__(self, alternates: Sequence[_Loader]) -> None: self.alternates = alternates def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any errors = [] for t in self.alternates: try: return t.load(doc, baseuri, loadingOptions, docRoot=docRoot) except ValidationException as e: errors.append(ValidationException(f"tried {t} but", None, [e])) raise ValidationException("", None, errors, "-") def __repr__(self): # type: () -> str return " | ".join(str(a) for a in self.alternates) class _URILoader(_Loader): def __init__(self, inner, scoped_id, vocab_term, scoped_ref): # type: (_Loader, bool, bool, Union[int, None]) -> None self.inner = inner self.scoped_id = scoped_id self.vocab_term = vocab_term self.scoped_ref = scoped_ref def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if isinstance(doc, MutableSequence): newdoc = [] for i in doc: if isinstance(i, str): newdoc.append( expand_url( i, baseuri, loadingOptions, self.scoped_id, self.vocab_term, self.scoped_ref, ) ) else: newdoc.append(i) doc = newdoc elif isinstance(doc, str): doc = expand_url( doc, baseuri, loadingOptions, self.scoped_id, self.vocab_term, self.scoped_ref, ) return self.inner.load(doc, baseuri, loadingOptions) class _TypeDSLLoader(_Loader): def __init__(self, inner, refScope, salad_version): # type: (_Loader, Union[int, None], str) -> None self.inner = inner self.refScope = refScope self.salad_version = salad_version def resolve( self, doc, # type: str baseuri, # type: str loadingOptions, # type: LoadingOptions ): # type: (...) -> Union[List[Union[Dict[str, Any], str]], Dict[str, Any], str] doc_ = doc optional = False if doc_.endswith("?"): optional = True doc_ = doc_[0:-1] if doc_.endswith("[]"): salad_versions = [int(v) for v in self.salad_version[1:].split(".")] items = "" # type: Union[List[Union[Dict[str, Any], str]], Dict[str, Any], str] rest = doc_[0:-2] if salad_versions < [1, 3]: if rest.endswith("[]"): # To show the error message with the original type return doc else: items = expand_url(rest, baseuri, loadingOptions, False, True, self.refScope) else: items = self.resolve(rest, baseuri, loadingOptions) if isinstance(items, str): items = expand_url(items, baseuri, loadingOptions, False, True, self.refScope) expanded = {"type": "array", "items": items} # type: Union[Dict[str, Any], str] else: expanded = expand_url(doc_, baseuri, loadingOptions, False, True, self.refScope) if optional: return ["null", expanded] else: return expanded def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if isinstance(doc, MutableSequence): r = [] # type: List[Any] for d in doc: if isinstance(d, str): resolved = self.resolve(d, baseuri, loadingOptions) if isinstance(resolved, MutableSequence): for i in resolved: if i not in r: r.append(i) else: if resolved not in r: r.append(resolved) else: r.append(d) doc = r elif isinstance(doc, str): doc = self.resolve(doc, baseuri, loadingOptions) return self.inner.load(doc, baseuri, loadingOptions) class _IdMapLoader(_Loader): def __init__(self, inner, mapSubject, mapPredicate): # type: (_Loader, str, Union[str, None]) -> None self.inner = inner self.mapSubject = mapSubject self.mapPredicate = mapPredicate def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if isinstance(doc, MutableMapping): r = [] # type: List[Any] for k in sorted(doc.keys()): val = doc[k] if isinstance(val, CommentedMap): v = copy.copy(val) v.lc.data = val.lc.data v.lc.filename = val.lc.filename v[self.mapSubject] = k r.append(v) elif isinstance(val, MutableMapping): v2 = copy.copy(val) v2[self.mapSubject] = k r.append(v2) else: if self.mapPredicate: v3 = {self.mapPredicate: val} v3[self.mapSubject] = k r.append(v3) else: raise ValidationException("No mapPredicate") doc = r return self.inner.load(doc, baseuri, loadingOptions) def _document_load( loader: _Loader, doc: Union[str, MutableMapping[str, Any], MutableSequence[Any]], baseuri: str, loadingOptions: LoadingOptions, addl_metadata_fields: Optional[MutableSequence[str]] = None, ) -> Tuple[Any, LoadingOptions]: if isinstance(doc, str): return _document_load_by_url( loader, loadingOptions.fetcher.urljoin(baseuri, doc), loadingOptions, addl_metadata_fields=addl_metadata_fields, ) if isinstance(doc, MutableMapping): addl_metadata = {} if addl_metadata_fields is not None: for mf in addl_metadata_fields: if mf in doc: addl_metadata[mf] = doc[mf] docuri = baseuri if "$base" in doc: baseuri = doc["$base"] loadingOptions = LoadingOptions( copyfrom=loadingOptions, namespaces=doc.get("$namespaces", None), schemas=doc.get("$schemas", None), baseuri=doc.get("$base", None), addl_metadata=addl_metadata, ) doc = {k: v for k, v in doc.items() if k not in ("$namespaces", "$schemas", "$base")} if "$graph" in doc: loadingOptions.idx[baseuri] = ( loader.load(doc["$graph"], baseuri, loadingOptions), loadingOptions, ) else: loadingOptions.idx[baseuri] = ( loader.load(doc, baseuri, loadingOptions, docRoot=baseuri), loadingOptions, ) if docuri != baseuri: loadingOptions.idx[docuri] = loadingOptions.idx[baseuri] return loadingOptions.idx[baseuri] if isinstance(doc, MutableSequence): loadingOptions.idx[baseuri] = ( loader.load(doc, baseuri, loadingOptions), loadingOptions, ) return loadingOptions.idx[baseuri] raise ValidationException( "Expected URI string, MutableMapping or MutableSequence, got %s" % type(doc) ) def _document_load_by_url( loader: _Loader, url: str, loadingOptions: LoadingOptions, addl_metadata_fields: Optional[MutableSequence[str]] = None, ) -> Tuple[Any, LoadingOptions]: if url in loadingOptions.idx: return loadingOptions.idx[url] doc_url, frg = urldefrag(url) text = loadingOptions.fetcher.fetch_text(doc_url) textIO = StringIO(text) textIO.name = str(doc_url) yaml = yaml_no_ts() result = yaml.load(textIO) add_lc_filename(result, doc_url) loadingOptions = LoadingOptions(copyfrom=loadingOptions, fileuri=doc_url) _document_load( loader, result, doc_url, loadingOptions, addl_metadata_fields=addl_metadata_fields, ) return loadingOptions.idx[url] def file_uri(path, split_frag=False): # type: (str, bool) -> str if path.startswith("file://"): return path if split_frag: pathsp = path.split("#", 2) frag = "#" + quote(str(pathsp[1])) if len(pathsp) == 2 else "" urlpath = pathname2url(str(pathsp[0])) else: urlpath = pathname2url(path) frag = "" if urlpath.startswith("//"): return f"file:{urlpath}{frag}" return f"file://{urlpath}{frag}" def prefix_url(url: str, namespaces: Dict[str, str]) -> str: """Expand short forms into full URLs using the given namespace dictionary.""" for k, v in namespaces.items(): if url.startswith(v): return k + ":" + url[len(v) :] return url def save_relative_uri( uri: Any, base_url: str, scoped_id: bool, ref_scope: Optional[int], relative_uris: bool, ) -> Any: """Convert any URI to a relative one, obeying the scoping rules.""" if isinstance(uri, MutableSequence): return [save_relative_uri(u, base_url, scoped_id, ref_scope, relative_uris) for u in uri] elif isinstance(uri, str): if not relative_uris or uri == base_url: return uri urisplit = urlsplit(uri) basesplit = urlsplit(base_url) if urisplit.scheme == basesplit.scheme and urisplit.netloc == basesplit.netloc: if urisplit.path != basesplit.path: p = os.path.relpath(urisplit.path, os.path.dirname(basesplit.path)) if urisplit.fragment: p = p + "#" + urisplit.fragment return p basefrag = basesplit.fragment + "/" if ref_scope: sp = basefrag.split("/") i = 0 while i < ref_scope: sp.pop() i += 1 basefrag = "/".join(sp) if urisplit.fragment.startswith(basefrag): return urisplit.fragment[len(basefrag) :] return urisplit.fragment return uri else: return save(uri, top=False, base_url=base_url, relative_uris=relative_uris) def shortname(inputid: str) -> str: """ Compute the shortname of a fully qualified identifier. See https://w3id.org/cwl/v1.2/SchemaSalad.html#Short_names. """ parsed_id = urlparse(inputid) if parsed_id.fragment: return parsed_id.fragment.split("/")[-1] return parsed_id.path.split("/")[-1]
schema-salad
/schema-salad-8.4.20230808163024.tar.gz/schema-salad-8.4.20230808163024/schema_salad/python_codegen_support.py
python_codegen_support.py
import copy import logging import os import pathlib import tempfile import uuid as _uuid__ # pylint: disable=unused-import # noqa: F401 import xml.sax # nosec from abc import ABC, abstractmethod from io import StringIO from typing import ( Any, Dict, List, MutableMapping, MutableSequence, Optional, Sequence, Tuple, Type, Union, cast, ) from urllib.parse import quote, urldefrag, urlparse, urlsplit, urlunsplit from urllib.request import pathname2url from rdflib import Graph from rdflib.plugins.parsers.notation3 import BadSyntax from ruamel.yaml.comments import CommentedMap from schema_salad.exceptions import SchemaSaladException, ValidationException from schema_salad.fetcher import DefaultFetcher, Fetcher, MemoryCachingFetcher from schema_salad.sourceline import SourceLine, add_lc_filename from schema_salad.utils import CacheType, yaml_no_ts # requires schema-salad v8.2+ _vocab: Dict[str, str] = {} _rvocab: Dict[str, str] = {} _logger = logging.getLogger("salad") IdxType = MutableMapping[str, Tuple[Any, "LoadingOptions"]] class LoadingOptions: idx: IdxType fileuri: Optional[str] baseuri: str namespaces: MutableMapping[str, str] schemas: MutableSequence[str] original_doc: Optional[Any] addl_metadata: MutableMapping[str, Any] fetcher: Fetcher vocab: Dict[str, str] rvocab: Dict[str, str] cache: CacheType imports: List[str] includes: List[str] def __init__( self, fetcher: Optional[Fetcher] = None, namespaces: Optional[Dict[str, str]] = None, schemas: Optional[List[str]] = None, fileuri: Optional[str] = None, copyfrom: Optional["LoadingOptions"] = None, original_doc: Optional[Any] = None, addl_metadata: Optional[Dict[str, str]] = None, baseuri: Optional[str] = None, idx: Optional[IdxType] = None, imports: Optional[List[str]] = None, includes: Optional[List[str]] = None, ) -> None: """Create a LoadingOptions object.""" self.original_doc = original_doc if idx is not None: self.idx = idx else: self.idx = copyfrom.idx if copyfrom is not None else {} if fileuri is not None: self.fileuri = fileuri else: self.fileuri = copyfrom.fileuri if copyfrom is not None else None if baseuri is not None: self.baseuri = baseuri else: self.baseuri = copyfrom.baseuri if copyfrom is not None else "" if namespaces is not None: self.namespaces = namespaces else: self.namespaces = copyfrom.namespaces if copyfrom is not None else {} if schemas is not None: self.schemas = schemas else: self.schemas = copyfrom.schemas if copyfrom is not None else [] if addl_metadata is not None: self.addl_metadata = addl_metadata else: self.addl_metadata = copyfrom.addl_metadata if copyfrom is not None else {} if imports is not None: self.imports = imports else: self.imports = copyfrom.imports if copyfrom is not None else [] if includes is not None: self.includes = includes else: self.includes = copyfrom.includes if copyfrom is not None else [] if fetcher is not None: self.fetcher = fetcher elif copyfrom is not None: self.fetcher = copyfrom.fetcher else: import requests from cachecontrol.caches import FileCache from cachecontrol.wrapper import CacheControl root = pathlib.Path(os.environ.get("HOME", tempfile.gettempdir())) session = CacheControl( requests.Session(), cache=FileCache(root / ".cache" / "salad"), ) self.fetcher: Fetcher = DefaultFetcher({}, session) self.cache = self.fetcher.cache if isinstance(self.fetcher, MemoryCachingFetcher) else {} self.vocab = _vocab self.rvocab = _rvocab if namespaces is not None: self.vocab = self.vocab.copy() self.rvocab = self.rvocab.copy() for k, v in namespaces.items(): self.vocab[k] = v self.rvocab[v] = k @property def graph(self) -> Graph: """Generate a merged rdflib.Graph from all entries in self.schemas.""" graph = Graph() if not self.schemas: return graph key = str(hash(tuple(self.schemas))) if key in self.cache: return cast(Graph, self.cache[key]) for schema in self.schemas: fetchurl = ( self.fetcher.urljoin(self.fileuri, schema) if self.fileuri is not None else pathlib.Path(schema).resolve().as_uri() ) if fetchurl not in self.cache or self.cache[fetchurl] is True: _logger.debug("Getting external schema %s", fetchurl) try: content = self.fetcher.fetch_text(fetchurl) except Exception as e: _logger.warning("Could not load extension schema %s: %s", fetchurl, str(e)) continue newGraph = Graph() err_msg = "unknown error" for fmt in ["xml", "turtle"]: try: newGraph.parse(data=content, format=fmt, publicID=str(fetchurl)) self.cache[fetchurl] = newGraph graph += newGraph break except (xml.sax.SAXParseException, TypeError, BadSyntax) as e: err_msg = str(e) else: _logger.warning("Could not load extension schema %s: %s", fetchurl, err_msg) self.cache[key] = graph return graph class Saveable(ABC): """Mark classes than have a save() and fromDoc() function.""" @classmethod @abstractmethod def fromDoc( cls, _doc: Any, baseuri: str, loadingOptions: LoadingOptions, docRoot: Optional[str] = None, ) -> "Saveable": """Construct this object from the result of yaml.load().""" @abstractmethod def save( self, top: bool = False, base_url: str = "", relative_uris: bool = True ) -> Dict[str, Any]: """Convert this object to a JSON/YAML friendly dictionary.""" def load_field(val, fieldtype, baseuri, loadingOptions): # type: (Union[str, Dict[str, str]], _Loader, str, LoadingOptions) -> Any if isinstance(val, MutableMapping): if "$import" in val: if loadingOptions.fileuri is None: raise SchemaSaladException("Cannot load $import without fileuri") url = loadingOptions.fetcher.urljoin(loadingOptions.fileuri, val["$import"]) result, metadata = _document_load_by_url( fieldtype, url, loadingOptions, ) loadingOptions.imports.append(url) return result if "$include" in val: if loadingOptions.fileuri is None: raise SchemaSaladException("Cannot load $import without fileuri") url = loadingOptions.fetcher.urljoin(loadingOptions.fileuri, val["$include"]) val = loadingOptions.fetcher.fetch_text(url) loadingOptions.includes.append(url) return fieldtype.load(val, baseuri, loadingOptions) save_type = Optional[Union[MutableMapping[str, Any], MutableSequence[Any], int, float, bool, str]] def save( val: Any, top: bool = True, base_url: str = "", relative_uris: bool = True, ) -> save_type: if isinstance(val, Saveable): return val.save(top=top, base_url=base_url, relative_uris=relative_uris) if isinstance(val, MutableSequence): return [save(v, top=False, base_url=base_url, relative_uris=relative_uris) for v in val] if isinstance(val, MutableMapping): newdict = {} for key in val: newdict[key] = save(val[key], top=False, base_url=base_url, relative_uris=relative_uris) return newdict if val is None or isinstance(val, (int, float, bool, str)): return val raise Exception("Not Saveable: %s" % type(val)) def save_with_metadata( val: Any, valLoadingOpts: LoadingOptions, top: bool = True, base_url: str = "", relative_uris: bool = True, ) -> save_type: """Save and set $namespaces, $schemas, $base and any other metadata fields at the top level.""" saved_val = save(val, top, base_url, relative_uris) newdict: MutableMapping[str, Any] = {} if isinstance(saved_val, MutableSequence): newdict = {"$graph": saved_val} elif isinstance(saved_val, MutableMapping): newdict = saved_val if valLoadingOpts.namespaces: newdict["$namespaces"] = valLoadingOpts.namespaces if valLoadingOpts.schemas: newdict["$schemas"] = valLoadingOpts.schemas if valLoadingOpts.baseuri: newdict["$base"] = valLoadingOpts.baseuri for k, v in valLoadingOpts.addl_metadata.items(): if k not in newdict: newdict[k] = v return newdict def expand_url( url, # type: str base_url, # type: str loadingOptions, # type: LoadingOptions scoped_id=False, # type: bool vocab_term=False, # type: bool scoped_ref=None, # type: Optional[int] ): # type: (...) -> str if url in ("@id", "@type"): return url if vocab_term and url in loadingOptions.vocab: return url if bool(loadingOptions.vocab) and ":" in url: prefix = url.split(":")[0] if prefix in loadingOptions.vocab: url = loadingOptions.vocab[prefix] + url[len(prefix) + 1 :] split = urlsplit(url) if ( (bool(split.scheme) and split.scheme in loadingOptions.fetcher.supported_schemes()) or url.startswith("$(") or url.startswith("${") ): pass elif scoped_id and not bool(split.fragment): splitbase = urlsplit(base_url) frg = "" if bool(splitbase.fragment): frg = splitbase.fragment + "/" + split.path else: frg = split.path pt = splitbase.path if splitbase.path != "" else "/" url = urlunsplit((splitbase.scheme, splitbase.netloc, pt, splitbase.query, frg)) elif scoped_ref is not None and not bool(split.fragment): splitbase = urlsplit(base_url) sp = splitbase.fragment.split("/") n = scoped_ref while n > 0 and len(sp) > 0: sp.pop() n -= 1 sp.append(url) url = urlunsplit( ( splitbase.scheme, splitbase.netloc, splitbase.path, splitbase.query, "/".join(sp), ) ) else: url = loadingOptions.fetcher.urljoin(base_url, url) if vocab_term: split = urlsplit(url) if bool(split.scheme): if url in loadingOptions.rvocab: return loadingOptions.rvocab[url] else: raise ValidationException(f"Term {url!r} not in vocabulary") return url class _Loader: def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any pass class _AnyLoader(_Loader): def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if doc is not None: return doc raise ValidationException("Expected non-null") class _PrimitiveLoader(_Loader): def __init__(self, tp): # type: (Union[type, Tuple[Type[str], Type[str]]]) -> None self.tp = tp def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if not isinstance(doc, self.tp): raise ValidationException( "Expected a {} but got {}".format( self.tp.__class__.__name__, doc.__class__.__name__ ) ) return doc def __repr__(self): # type: () -> str return str(self.tp) class _ArrayLoader(_Loader): def __init__(self, items): # type: (_Loader) -> None self.items = items def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if not isinstance(doc, MutableSequence): raise ValidationException(f"Expected a list, was {type(doc)}") r = [] # type: List[Any] errors = [] # type: List[SchemaSaladException] for i in range(0, len(doc)): try: lf = load_field(doc[i], _UnionLoader((self, self.items)), baseuri, loadingOptions) if isinstance(lf, MutableSequence): r.extend(lf) else: r.append(lf) except ValidationException as e: errors.append(e.with_sourceline(SourceLine(doc, i, str))) if errors: raise ValidationException("", None, errors) return r def __repr__(self): # type: () -> str return f"array<{self.items}>" class _EnumLoader(_Loader): def __init__(self, symbols: Sequence[str], name: str) -> None: self.symbols = symbols self.name = name def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if doc in self.symbols: return doc raise ValidationException(f"Expected one of {self.symbols}") def __repr__(self): # type: () -> str return self.name class _SecondaryDSLLoader(_Loader): def __init__(self, inner): # type: (_Loader) -> None self.inner = inner def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any r: List[Dict[str, Any]] = [] if isinstance(doc, MutableSequence): for d in doc: if isinstance(d, str): if d.endswith("?"): r.append({"pattern": d[:-1], "required": False}) else: r.append({"pattern": d}) elif isinstance(d, dict): new_dict: Dict[str, Any] = {} dict_copy = copy.deepcopy(d) if "pattern" in dict_copy: new_dict["pattern"] = dict_copy.pop("pattern") else: raise ValidationException( f"Missing pattern in secondaryFiles specification entry: {d}" ) new_dict["required"] = ( dict_copy.pop("required") if "required" in dict_copy else None ) if len(dict_copy): raise ValidationException( "Unallowed values in secondaryFiles specification entry: {}".format( dict_copy ) ) r.append(new_dict) else: raise ValidationException( "Expected a string or sequence of (strings or mappings)." ) elif isinstance(doc, MutableMapping): new_dict = {} doc_copy = copy.deepcopy(doc) if "pattern" in doc_copy: new_dict["pattern"] = doc_copy.pop("pattern") else: raise ValidationException( f"Missing pattern in secondaryFiles specification entry: {doc}" ) new_dict["required"] = doc_copy.pop("required") if "required" in doc_copy else None if len(doc_copy): raise ValidationException( f"Unallowed values in secondaryFiles specification entry: {doc_copy}" ) r.append(new_dict) elif isinstance(doc, str): if doc.endswith("?"): r.append({"pattern": doc[:-1], "required": False}) else: r.append({"pattern": doc}) else: raise ValidationException("Expected str or sequence of str") return self.inner.load(r, baseuri, loadingOptions, docRoot) class _RecordLoader(_Loader): def __init__(self, classtype): # type: (Type[Saveable]) -> None self.classtype = classtype def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if not isinstance(doc, MutableMapping): raise ValidationException(f"Expected a dict, was {type(doc)}") return self.classtype.fromDoc(doc, baseuri, loadingOptions, docRoot=docRoot) def __repr__(self): # type: () -> str return str(self.classtype.__name__) class _ExpressionLoader(_Loader): def __init__(self, items: Type[str]) -> None: self.items = items def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if not isinstance(doc, str): raise ValidationException(f"Expected a str, was {type(doc)}") return doc class _UnionLoader(_Loader): def __init__(self, alternates: Sequence[_Loader]) -> None: self.alternates = alternates def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any errors = [] for t in self.alternates: try: return t.load(doc, baseuri, loadingOptions, docRoot=docRoot) except ValidationException as e: errors.append(ValidationException(f"tried {t} but", None, [e])) raise ValidationException("", None, errors, "-") def __repr__(self): # type: () -> str return " | ".join(str(a) for a in self.alternates) class _URILoader(_Loader): def __init__(self, inner, scoped_id, vocab_term, scoped_ref): # type: (_Loader, bool, bool, Union[int, None]) -> None self.inner = inner self.scoped_id = scoped_id self.vocab_term = vocab_term self.scoped_ref = scoped_ref def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if isinstance(doc, MutableSequence): newdoc = [] for i in doc: if isinstance(i, str): newdoc.append( expand_url( i, baseuri, loadingOptions, self.scoped_id, self.vocab_term, self.scoped_ref, ) ) else: newdoc.append(i) doc = newdoc elif isinstance(doc, str): doc = expand_url( doc, baseuri, loadingOptions, self.scoped_id, self.vocab_term, self.scoped_ref, ) return self.inner.load(doc, baseuri, loadingOptions) class _TypeDSLLoader(_Loader): def __init__(self, inner, refScope, salad_version): # type: (_Loader, Union[int, None], str) -> None self.inner = inner self.refScope = refScope self.salad_version = salad_version def resolve( self, doc, # type: str baseuri, # type: str loadingOptions, # type: LoadingOptions ): # type: (...) -> Union[List[Union[Dict[str, Any], str]], Dict[str, Any], str] doc_ = doc optional = False if doc_.endswith("?"): optional = True doc_ = doc_[0:-1] if doc_.endswith("[]"): salad_versions = [int(v) for v in self.salad_version[1:].split(".")] items = "" # type: Union[List[Union[Dict[str, Any], str]], Dict[str, Any], str] rest = doc_[0:-2] if salad_versions < [1, 3]: if rest.endswith("[]"): # To show the error message with the original type return doc else: items = expand_url(rest, baseuri, loadingOptions, False, True, self.refScope) else: items = self.resolve(rest, baseuri, loadingOptions) if isinstance(items, str): items = expand_url(items, baseuri, loadingOptions, False, True, self.refScope) expanded = {"type": "array", "items": items} # type: Union[Dict[str, Any], str] else: expanded = expand_url(doc_, baseuri, loadingOptions, False, True, self.refScope) if optional: return ["null", expanded] else: return expanded def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if isinstance(doc, MutableSequence): r = [] # type: List[Any] for d in doc: if isinstance(d, str): resolved = self.resolve(d, baseuri, loadingOptions) if isinstance(resolved, MutableSequence): for i in resolved: if i not in r: r.append(i) else: if resolved not in r: r.append(resolved) else: r.append(d) doc = r elif isinstance(doc, str): doc = self.resolve(doc, baseuri, loadingOptions) return self.inner.load(doc, baseuri, loadingOptions) class _IdMapLoader(_Loader): def __init__(self, inner, mapSubject, mapPredicate): # type: (_Loader, str, Union[str, None]) -> None self.inner = inner self.mapSubject = mapSubject self.mapPredicate = mapPredicate def load(self, doc, baseuri, loadingOptions, docRoot=None): # type: (Any, str, LoadingOptions, Optional[str]) -> Any if isinstance(doc, MutableMapping): r = [] # type: List[Any] for k in sorted(doc.keys()): val = doc[k] if isinstance(val, CommentedMap): v = copy.copy(val) v.lc.data = val.lc.data v.lc.filename = val.lc.filename v[self.mapSubject] = k r.append(v) elif isinstance(val, MutableMapping): v2 = copy.copy(val) v2[self.mapSubject] = k r.append(v2) else: if self.mapPredicate: v3 = {self.mapPredicate: val} v3[self.mapSubject] = k r.append(v3) else: raise ValidationException("No mapPredicate") doc = r return self.inner.load(doc, baseuri, loadingOptions) def _document_load( loader: _Loader, doc: Union[str, MutableMapping[str, Any], MutableSequence[Any]], baseuri: str, loadingOptions: LoadingOptions, addl_metadata_fields: Optional[MutableSequence[str]] = None, ) -> Tuple[Any, LoadingOptions]: if isinstance(doc, str): return _document_load_by_url( loader, loadingOptions.fetcher.urljoin(baseuri, doc), loadingOptions, addl_metadata_fields=addl_metadata_fields, ) if isinstance(doc, MutableMapping): addl_metadata = {} if addl_metadata_fields is not None: for mf in addl_metadata_fields: if mf in doc: addl_metadata[mf] = doc[mf] docuri = baseuri if "$base" in doc: baseuri = doc["$base"] loadingOptions = LoadingOptions( copyfrom=loadingOptions, namespaces=doc.get("$namespaces", None), schemas=doc.get("$schemas", None), baseuri=doc.get("$base", None), addl_metadata=addl_metadata, ) doc = {k: v for k, v in doc.items() if k not in ("$namespaces", "$schemas", "$base")} if "$graph" in doc: loadingOptions.idx[baseuri] = ( loader.load(doc["$graph"], baseuri, loadingOptions), loadingOptions, ) else: loadingOptions.idx[baseuri] = ( loader.load(doc, baseuri, loadingOptions, docRoot=baseuri), loadingOptions, ) if docuri != baseuri: loadingOptions.idx[docuri] = loadingOptions.idx[baseuri] return loadingOptions.idx[baseuri] if isinstance(doc, MutableSequence): loadingOptions.idx[baseuri] = ( loader.load(doc, baseuri, loadingOptions), loadingOptions, ) return loadingOptions.idx[baseuri] raise ValidationException( "Expected URI string, MutableMapping or MutableSequence, got %s" % type(doc) ) def _document_load_by_url( loader: _Loader, url: str, loadingOptions: LoadingOptions, addl_metadata_fields: Optional[MutableSequence[str]] = None, ) -> Tuple[Any, LoadingOptions]: if url in loadingOptions.idx: return loadingOptions.idx[url] doc_url, frg = urldefrag(url) text = loadingOptions.fetcher.fetch_text(doc_url) textIO = StringIO(text) textIO.name = str(doc_url) yaml = yaml_no_ts() result = yaml.load(textIO) add_lc_filename(result, doc_url) loadingOptions = LoadingOptions(copyfrom=loadingOptions, fileuri=doc_url) _document_load( loader, result, doc_url, loadingOptions, addl_metadata_fields=addl_metadata_fields, ) return loadingOptions.idx[url] def file_uri(path, split_frag=False): # type: (str, bool) -> str if path.startswith("file://"): return path if split_frag: pathsp = path.split("#", 2) frag = "#" + quote(str(pathsp[1])) if len(pathsp) == 2 else "" urlpath = pathname2url(str(pathsp[0])) else: urlpath = pathname2url(path) frag = "" if urlpath.startswith("//"): return f"file:{urlpath}{frag}" return f"file://{urlpath}{frag}" def prefix_url(url: str, namespaces: Dict[str, str]) -> str: """Expand short forms into full URLs using the given namespace dictionary.""" for k, v in namespaces.items(): if url.startswith(v): return k + ":" + url[len(v) :] return url def save_relative_uri( uri: Any, base_url: str, scoped_id: bool, ref_scope: Optional[int], relative_uris: bool, ) -> Any: """Convert any URI to a relative one, obeying the scoping rules.""" if isinstance(uri, MutableSequence): return [save_relative_uri(u, base_url, scoped_id, ref_scope, relative_uris) for u in uri] elif isinstance(uri, str): if not relative_uris or uri == base_url: return uri urisplit = urlsplit(uri) basesplit = urlsplit(base_url) if urisplit.scheme == basesplit.scheme and urisplit.netloc == basesplit.netloc: if urisplit.path != basesplit.path: p = os.path.relpath(urisplit.path, os.path.dirname(basesplit.path)) if urisplit.fragment: p = p + "#" + urisplit.fragment return p basefrag = basesplit.fragment + "/" if ref_scope: sp = basefrag.split("/") i = 0 while i < ref_scope: sp.pop() i += 1 basefrag = "/".join(sp) if urisplit.fragment.startswith(basefrag): return urisplit.fragment[len(basefrag) :] return urisplit.fragment return uri else: return save(uri, top=False, base_url=base_url, relative_uris=relative_uris) def shortname(inputid: str) -> str: """ Compute the shortname of a fully qualified identifier. See https://w3id.org/cwl/v1.2/SchemaSalad.html#Short_names. """ parsed_id = urlparse(inputid) if parsed_id.fragment: return parsed_id.fragment.split("/")[-1] return parsed_id.path.split("/")[-1]
0.600774
0.081082
import re from typing import IO, Any, Dict, List, Optional, Tuple, Union, cast from . import _logger from .codegen_base import CodeGenBase, TypeDef from .exceptions import SchemaException from .schema import shortname from .utils import aslist def replaceKeywords(s: str) -> str: """Rename keywords that are reserved in C++.""" if s in ( "class", "enum", "int", "long", "float", "double", "default", "stdin", "stdout", "stderr", ): s = s + "_" return s def safename(name: str) -> str: """Create a C++ safe name.""" classname = re.sub("[^a-zA-Z0-9]", "_", name) return replaceKeywords(classname) # TODO: this should be somehow not really exists def safename2(name: Dict[str, str]) -> str: """Create a namespaced safename.""" return safename(name["namespace"]) + "::" + safename(name["classname"]) # Splits names like https://xyz.xyz/blub#cwl/class # into its class path and non class path def split_name(s: str) -> Tuple[str, str]: t = s.split("#") if len(t) != 2: raise ValueError("Expected field to be formatted as 'https://xyz.xyz/blub#cwl/class'.") return (t[0], t[1]) # similar to split_name but for field names def split_field(s: str) -> Tuple[str, str, str]: (namespace, field) = split_name(s) t = field.split("/") if len(t) != 2: raise ValueError("Expected field to be formatted as 'https://xyz.xyz/blub#cwl/class'.") return (namespace, t[0], t[1]) # Prototype of a class class ClassDefinition: def __init__(self, name: str): self.fullName = name self.extends: List[Dict[str, str]] = [] self.fields: List[FieldDefinition] = [] self.abstract = False (self.namespace, self.classname) = split_name(name) self.namespace = safename(self.namespace) self.classname = safename(self.classname) def writeFwdDeclaration(self, target: IO[str], fullInd: str, ind: str) -> None: target.write(f"{fullInd}namespace {self.namespace} {{ struct {self.classname}; }}\n") def writeDefinition(self, target: IO[Any], fullInd: str, ind: str) -> None: target.write(f"{fullInd}namespace {self.namespace} {{\n") target.write(f"{fullInd}struct {self.classname}") extends = list(map(safename2, self.extends)) override = "" virtual = "virtual " if len(self.extends) > 0: target.write(f"\n{fullInd}{ind}: ") target.write(f"\n{fullInd}{ind}, ".join(extends)) override = " override" virtual = "" target.write(" {\n") for field in self.fields: field.writeDefinition(target, fullInd + ind, ind, self.namespace) if self.abstract: target.write(f"{fullInd}{ind}virtual ~{self.classname}() = 0;\n") target.write(f"{fullInd}{ind}{virtual}auto toYaml() const -> YAML::Node{override};\n") target.write(f"{fullInd}}};\n") target.write(f"{fullInd}}}\n\n") def writeImplDefinition(self, target: IO[str], fullInd: str, ind: str) -> None: extends = list(map(safename2, self.extends)) if self.abstract: target.write( f"{fullInd}inline {self.namespace}::{self.classname}::~{self.classname}() = default;\n" ) target.write( f"""{fullInd}inline auto {self.namespace}::{self.classname}::toYaml() const -> YAML::Node {{ {fullInd}{ind}using ::toYaml; {fullInd}{ind}auto n = YAML::Node{{}}; """ ) for e in extends: target.write(f"{fullInd}{ind}n = mergeYaml(n, {e}::toYaml());\n") for field in self.fields: fieldname = safename(field.name) target.write( f'{fullInd}{ind}addYamlField(n, "{field.name}", toYaml(*{fieldname}));\n' # noqa: B907 ) # target.write(f"{fullInd}{ind}addYamlIfNotEmpty(n, \"{field.name}\", toYaml(*{fieldname}));\n") target.write(f"{fullInd}{ind}return n;\n{fullInd}}}\n") # Prototype of a single field of a class class FieldDefinition: def __init__(self, name: str, typeStr: str, optional: bool): self.name = name self.typeStr = typeStr self.optional = optional def writeDefinition(self, target: IO[Any], fullInd: str, ind: str, namespace: str) -> None: """Write a C++ definition for the class field.""" name = safename(self.name) typeStr = self.typeStr.replace(namespace + "::", "") target.write(f"{fullInd}heap_object<{typeStr}> {name};\n") # Prototype of an enum definition class EnumDefinition: def __init__(self, name: str, values: List[str]): self.name = name self.values = values def writeDefinition(self, target: IO[str], ind: str) -> None: namespace = "" if len(self.name.split("#")) == 2: (namespace, classname) = split_name(self.name) namespace = safename(namespace) classname = safename(classname) name = namespace + "::" + classname else: name = safename(self.name) classname = name if len(namespace) > 0: target.write(f"namespace {namespace} {{\n") target.write(f"enum class {classname} : unsigned int {{\n{ind}") target.write(f",\n{ind}".join(map(safename, self.values))) target.write("\n};\n") target.write(f"inline auto to_string({classname} v) {{\n") target.write(f"{ind}static auto m = std::vector<std::string_view> {{\n") target.write(f'{ind} "') target.write(f'",\n{ind} "'.join(self.values)) target.write(f'"\n{ind}}};\n') target.write(f"{ind}using U = std::underlying_type_t<{name}>;\n") target.write(f"{ind}return m.at(static_cast<U>(v));\n}}\n") if len(namespace) > 0: target.write("}\n") target.write(f"inline void to_enum(std::string_view v, {name}& out) {{\n") target.write(f"{ind}static auto m = std::map<std::string, {name}, std::less<>> {{\n") for v in self.values: target.write(f'{ind}{ind}{{"{v}", {name}::{safename(v)}}},\n') # noqa: B907 target.write(f"{ind}}};\n{ind}out = m.find(v)->second;\n}}\n") target.write(f"inline auto toYaml({name} v) {{\n") target.write(f"{ind}return YAML::Node{{std::string{{to_string(v)}}}};\n}}\n") target.write(f"inline auto yamlToEnum(YAML::Node n, {name}& out) {{\n") target.write(f"{ind}to_enum(n.as<std::string>(), out);\n}}\n") # !TODO way tot many functions, most of these shouldn't exists def isPrimitiveType(v: Any) -> bool: if not isinstance(v, str): return False return v in ["null", "boolean", "int", "long", "float", "double", "string"] def hasFieldValue(e: Any, f: str, v: Any) -> bool: if not isinstance(e, dict): return False if f not in e: return False return bool(e[f] == v) def isRecordSchema(v: Any) -> bool: return hasFieldValue(v, "type", "record") def isEnumSchema(v: Any) -> bool: if not hasFieldValue(v, "type", "enum"): return False if "symbols" not in v: return False if not isinstance(v["symbols"], list): return False return True def isArray(v: Any) -> bool: if not isinstance(v, list): return False for i in v: if not pred(i): return False return True def pred(i: Any) -> bool: return ( isPrimitiveType(i) or isRecordSchema(i) or isEnumSchema(i) or isArraySchema(i) or isinstance(i, str) ) def isArraySchema(v: Any) -> bool: if not hasFieldValue(v, "type", "array"): return False if "items" not in v: return False if not isinstance(v["items"], list): return False for i in v["items"]: if not (pred(i) or isArray(i)): return False return True class CppCodeGen(CodeGenBase): """Generation of C++ code for a given Schema Salad definition.""" def __init__( self, base: str, target: IO[str], examples: Optional[str], package: str, copyright: Optional[str], ) -> None: super().__init__() self.base_uri = base self.target = target self.examples = examples self.package = package self.copyright = copyright self.classDefinitions: Dict[str, ClassDefinition] = {} self.enumDefinitions: Dict[str, EnumDefinition] = {} def convertTypeToCpp(self, type_declaration: Union[List[Any], Dict[str, Any], str]) -> str: """Convert a Schema Salad type to a C++ type.""" if not isinstance(type_declaration, list): return self.convertTypeToCpp([type_declaration]) if len(type_declaration) == 1: if type_declaration[0] in ("null", "https://w3id.org/cwl/salad#null"): return "std::monostate" elif type_declaration[0] in ( "string", "http://www.w3.org/2001/XMLSchema#string", ): return "std::string" elif type_declaration[0] in ("int", "http://www.w3.org/2001/XMLSchema#int"): return "int32_t" elif type_declaration[0] in ( "long", "http://www.w3.org/2001/XMLSchema#long", ): return "int64_t" elif type_declaration[0] in ( "float", "http://www.w3.org/2001/XMLSchema#float", ): return "float" elif type_declaration[0] in ( "double", "http://www.w3.org/2001/XMLSchema#double", ): return "double" elif type_declaration[0] in ( "boolean", "http://www.w3.org/2001/XMLSchema#boolean", ): return "bool" elif type_declaration[0] == "https://w3id.org/cwl/salad#Any": return "std::any" elif type_declaration[0] in ( "PrimitiveType", "https://w3id.org/cwl/salad#PrimitiveType", ): return "std::variant<bool, int32_t, int64_t, float, double, std::string>" elif isinstance(type_declaration[0], dict): if "type" in type_declaration[0] and type_declaration[0]["type"] in ( "enum", "https://w3id.org/cwl/salad#enum", ): name = type_declaration[0]["name"] if name not in self.enumDefinitions: self.enumDefinitions[name] = EnumDefinition( type_declaration[0]["name"], list(map(shortname, type_declaration[0]["symbols"])), ) if len(name.split("#")) != 2: return safename(name) (namespace, classname) = name.split("#") return safename(namespace) + "::" + safename(classname) elif "type" in type_declaration[0] and type_declaration[0]["type"] in ( "array", "https://w3id.org/cwl/salad#array", ): items = type_declaration[0]["items"] if isinstance(items, list): ts = [] for i in items: ts.append(self.convertTypeToCpp(i)) name = ", ".join(ts) return f"std::vector<std::variant<{name}>>" else: i = self.convertTypeToCpp(items) return f"std::vector<{i}>" elif "type" in type_declaration[0] and type_declaration[0]["type"] in ( "record", "https://w3id.org/cwl/salad#record", ): n = type_declaration[0]["name"] (namespace, classname) = split_name(n) return safename(namespace) + "::" + safename(classname) n = type_declaration[0]["type"] (namespace, classname) = split_name(n) return safename(namespace) + "::" + safename(classname) if len(type_declaration[0].split("#")) != 2: _logger.debug(f"// something weird2 about {type_declaration[0]}") return cast(str, type_declaration[0]) (namespace, classname) = split_name(type_declaration[0]) return safename(namespace) + "::" + safename(classname) type_declaration = list(map(self.convertTypeToCpp, type_declaration)) type_declaration = ", ".join(type_declaration) return f"std::variant<{type_declaration}>" # start of our generated file def epilogue(self, root_loader: Optional[TypeDef]) -> None: self.target.write( """#pragma once // Generated by schema-salad code generator #include <cassert> #include <cstddef> #include <cstdint> #include <map> #include <string> #include <string_view> #include <variant> #include <vector> #include <yaml-cpp/yaml.h> #include <any> inline auto mergeYaml(YAML::Node n1, YAML::Node n2) { for (auto const& e : n1) { n2[e.first.as<std::string>()] = e.second; } return n2; } // declaring toYaml inline auto toYaml(bool v) { return YAML::Node{v}; } inline auto toYaml(float v) { return YAML::Node{v}; } inline auto toYaml(double v) { return YAML::Node{v}; } inline auto toYaml(int32_t v) { return YAML::Node{v}; } inline auto toYaml(int64_t v) { return YAML::Node{v}; } inline auto toYaml(std::any const&) { return YAML::Node{}; } inline auto toYaml(std::monostate const&) { return YAML::Node(YAML::NodeType::Undefined); } inline auto toYaml(std::string const& v) { return YAML::Node{v}; } inline void addYamlField(YAML::Node node, std::string const& key, YAML::Node value) { if (value.IsDefined()) { node[key] = value; } } // fwd declaring toYaml template <typename T> auto toYaml(std::vector<T> const& v) -> YAML::Node; template <typename T> auto toYaml(T const& t) -> YAML::Node; template <typename ...Args> auto toYaml(std::variant<Args...> const& t) -> YAML::Node; template <typename T> class heap_object { std::unique_ptr<T> data = std::make_unique<T>(); public: heap_object() = default; heap_object(heap_object const& oth) { *data = *oth; } heap_object(heap_object&& oth) { *data = *oth; } template <typename T2> heap_object(T2 const& oth) { *data = oth; } template <typename T2> heap_object(T2&& oth) { *data = oth; } auto operator=(heap_object const& oth) -> heap_object& { *data = *oth; return *this; } auto operator=(heap_object&& oth) -> heap_object& { *data = std::move(*oth); return *this; } template <typename T2> auto operator=(T2 const& oth) -> heap_object& { *data = oth; return *this; } template <typename T2> auto operator=(T2&& oth) -> heap_object& { *data = std::move(oth); return *this; } auto operator->() -> T* { return data.get(); } auto operator->() const -> T const* { return data.get(); } auto operator*() -> T& { return *data; } auto operator*() const -> T const& { return *data; } }; """ ) # main body, printing fwd declaration, class definitions, and then implementations for key in self.classDefinitions: self.classDefinitions[key].writeFwdDeclaration(self.target, "", " ") for key in self.enumDefinitions: self.enumDefinitions[key].writeDefinition(self.target, " ") for key in self.classDefinitions: self.classDefinitions[key].writeDefinition(self.target, "", " ") for key in self.classDefinitions: self.classDefinitions[key].writeImplDefinition(self.target, "", " ") self.target.write( """ template <typename T> auto toYaml(std::vector<T> const& v) -> YAML::Node { auto n = YAML::Node(YAML::NodeType::Sequence); for (auto const& e : v) { n.push_back(toYaml(e)); } return n; } template <typename T> auto toYaml(T const& t) -> YAML::Node { if constexpr (std::is_enum_v<T>) { return toYaml(t); } else { return t.toYaml(); } } template <typename ...Args> auto toYaml(std::variant<Args...> const& t) -> YAML::Node { return std::visit([](auto const& e) { return toYaml(e); }, t); } """ ) def parseRecordField(self, field: Dict[str, Any]) -> FieldDefinition: (namespace, classname, fieldname) = split_field(field["name"]) if isinstance(field["type"], dict): if field["type"]["type"] == "enum": fieldtype = "Enum" else: fieldtype = self.convertTypeToCpp(field["type"]) else: fieldtype = field["type"] fieldtype = self.convertTypeToCpp(fieldtype) return FieldDefinition(name=fieldname, typeStr=fieldtype, optional=False) def parseRecordSchema(self, stype: Dict[str, Any]) -> None: cd = ClassDefinition(name=stype["name"]) cd.abstract = stype.get("abstract", False) if "extends" in stype: for ex in aslist(stype["extends"]): (base_namespace, base_classname) = split_name(ex) ext = {"namespace": base_namespace, "classname": base_classname} cd.extends.append(ext) if "fields" in stype: for field in stype["fields"]: cd.fields.append(self.parseRecordField(field)) self.classDefinitions[stype["name"]] = cd def parseEnum(self, stype: Dict[str, Any]) -> str: name = cast(str, stype["name"]) if name not in self.enumDefinitions: self.enumDefinitions[name] = EnumDefinition( name, list(map(shortname, stype["symbols"])) ) return name def parse(self, items: List[Dict[str, Any]]) -> None: for stype in items: if "type" in stype and stype["type"] == "documentation": continue if not (pred(stype) or isArray(stype)): raise SchemaException("not a valid SaladRecordField") # parsing a record if isRecordSchema(stype): self.parseRecordSchema(stype) elif isEnumSchema(stype): self.parseEnum(stype) else: _logger.error(f"not parsed{stype}") self.epilogue(None) self.target.close()
schema-salad
/schema-salad-8.4.20230808163024.tar.gz/schema-salad-8.4.20230808163024/schema_salad/cpp_codegen.py
cpp_codegen.py
import re from typing import IO, Any, Dict, List, Optional, Tuple, Union, cast from . import _logger from .codegen_base import CodeGenBase, TypeDef from .exceptions import SchemaException from .schema import shortname from .utils import aslist def replaceKeywords(s: str) -> str: """Rename keywords that are reserved in C++.""" if s in ( "class", "enum", "int", "long", "float", "double", "default", "stdin", "stdout", "stderr", ): s = s + "_" return s def safename(name: str) -> str: """Create a C++ safe name.""" classname = re.sub("[^a-zA-Z0-9]", "_", name) return replaceKeywords(classname) # TODO: this should be somehow not really exists def safename2(name: Dict[str, str]) -> str: """Create a namespaced safename.""" return safename(name["namespace"]) + "::" + safename(name["classname"]) # Splits names like https://xyz.xyz/blub#cwl/class # into its class path and non class path def split_name(s: str) -> Tuple[str, str]: t = s.split("#") if len(t) != 2: raise ValueError("Expected field to be formatted as 'https://xyz.xyz/blub#cwl/class'.") return (t[0], t[1]) # similar to split_name but for field names def split_field(s: str) -> Tuple[str, str, str]: (namespace, field) = split_name(s) t = field.split("/") if len(t) != 2: raise ValueError("Expected field to be formatted as 'https://xyz.xyz/blub#cwl/class'.") return (namespace, t[0], t[1]) # Prototype of a class class ClassDefinition: def __init__(self, name: str): self.fullName = name self.extends: List[Dict[str, str]] = [] self.fields: List[FieldDefinition] = [] self.abstract = False (self.namespace, self.classname) = split_name(name) self.namespace = safename(self.namespace) self.classname = safename(self.classname) def writeFwdDeclaration(self, target: IO[str], fullInd: str, ind: str) -> None: target.write(f"{fullInd}namespace {self.namespace} {{ struct {self.classname}; }}\n") def writeDefinition(self, target: IO[Any], fullInd: str, ind: str) -> None: target.write(f"{fullInd}namespace {self.namespace} {{\n") target.write(f"{fullInd}struct {self.classname}") extends = list(map(safename2, self.extends)) override = "" virtual = "virtual " if len(self.extends) > 0: target.write(f"\n{fullInd}{ind}: ") target.write(f"\n{fullInd}{ind}, ".join(extends)) override = " override" virtual = "" target.write(" {\n") for field in self.fields: field.writeDefinition(target, fullInd + ind, ind, self.namespace) if self.abstract: target.write(f"{fullInd}{ind}virtual ~{self.classname}() = 0;\n") target.write(f"{fullInd}{ind}{virtual}auto toYaml() const -> YAML::Node{override};\n") target.write(f"{fullInd}}};\n") target.write(f"{fullInd}}}\n\n") def writeImplDefinition(self, target: IO[str], fullInd: str, ind: str) -> None: extends = list(map(safename2, self.extends)) if self.abstract: target.write( f"{fullInd}inline {self.namespace}::{self.classname}::~{self.classname}() = default;\n" ) target.write( f"""{fullInd}inline auto {self.namespace}::{self.classname}::toYaml() const -> YAML::Node {{ {fullInd}{ind}using ::toYaml; {fullInd}{ind}auto n = YAML::Node{{}}; """ ) for e in extends: target.write(f"{fullInd}{ind}n = mergeYaml(n, {e}::toYaml());\n") for field in self.fields: fieldname = safename(field.name) target.write( f'{fullInd}{ind}addYamlField(n, "{field.name}", toYaml(*{fieldname}));\n' # noqa: B907 ) # target.write(f"{fullInd}{ind}addYamlIfNotEmpty(n, \"{field.name}\", toYaml(*{fieldname}));\n") target.write(f"{fullInd}{ind}return n;\n{fullInd}}}\n") # Prototype of a single field of a class class FieldDefinition: def __init__(self, name: str, typeStr: str, optional: bool): self.name = name self.typeStr = typeStr self.optional = optional def writeDefinition(self, target: IO[Any], fullInd: str, ind: str, namespace: str) -> None: """Write a C++ definition for the class field.""" name = safename(self.name) typeStr = self.typeStr.replace(namespace + "::", "") target.write(f"{fullInd}heap_object<{typeStr}> {name};\n") # Prototype of an enum definition class EnumDefinition: def __init__(self, name: str, values: List[str]): self.name = name self.values = values def writeDefinition(self, target: IO[str], ind: str) -> None: namespace = "" if len(self.name.split("#")) == 2: (namespace, classname) = split_name(self.name) namespace = safename(namespace) classname = safename(classname) name = namespace + "::" + classname else: name = safename(self.name) classname = name if len(namespace) > 0: target.write(f"namespace {namespace} {{\n") target.write(f"enum class {classname} : unsigned int {{\n{ind}") target.write(f",\n{ind}".join(map(safename, self.values))) target.write("\n};\n") target.write(f"inline auto to_string({classname} v) {{\n") target.write(f"{ind}static auto m = std::vector<std::string_view> {{\n") target.write(f'{ind} "') target.write(f'",\n{ind} "'.join(self.values)) target.write(f'"\n{ind}}};\n') target.write(f"{ind}using U = std::underlying_type_t<{name}>;\n") target.write(f"{ind}return m.at(static_cast<U>(v));\n}}\n") if len(namespace) > 0: target.write("}\n") target.write(f"inline void to_enum(std::string_view v, {name}& out) {{\n") target.write(f"{ind}static auto m = std::map<std::string, {name}, std::less<>> {{\n") for v in self.values: target.write(f'{ind}{ind}{{"{v}", {name}::{safename(v)}}},\n') # noqa: B907 target.write(f"{ind}}};\n{ind}out = m.find(v)->second;\n}}\n") target.write(f"inline auto toYaml({name} v) {{\n") target.write(f"{ind}return YAML::Node{{std::string{{to_string(v)}}}};\n}}\n") target.write(f"inline auto yamlToEnum(YAML::Node n, {name}& out) {{\n") target.write(f"{ind}to_enum(n.as<std::string>(), out);\n}}\n") # !TODO way tot many functions, most of these shouldn't exists def isPrimitiveType(v: Any) -> bool: if not isinstance(v, str): return False return v in ["null", "boolean", "int", "long", "float", "double", "string"] def hasFieldValue(e: Any, f: str, v: Any) -> bool: if not isinstance(e, dict): return False if f not in e: return False return bool(e[f] == v) def isRecordSchema(v: Any) -> bool: return hasFieldValue(v, "type", "record") def isEnumSchema(v: Any) -> bool: if not hasFieldValue(v, "type", "enum"): return False if "symbols" not in v: return False if not isinstance(v["symbols"], list): return False return True def isArray(v: Any) -> bool: if not isinstance(v, list): return False for i in v: if not pred(i): return False return True def pred(i: Any) -> bool: return ( isPrimitiveType(i) or isRecordSchema(i) or isEnumSchema(i) or isArraySchema(i) or isinstance(i, str) ) def isArraySchema(v: Any) -> bool: if not hasFieldValue(v, "type", "array"): return False if "items" not in v: return False if not isinstance(v["items"], list): return False for i in v["items"]: if not (pred(i) or isArray(i)): return False return True class CppCodeGen(CodeGenBase): """Generation of C++ code for a given Schema Salad definition.""" def __init__( self, base: str, target: IO[str], examples: Optional[str], package: str, copyright: Optional[str], ) -> None: super().__init__() self.base_uri = base self.target = target self.examples = examples self.package = package self.copyright = copyright self.classDefinitions: Dict[str, ClassDefinition] = {} self.enumDefinitions: Dict[str, EnumDefinition] = {} def convertTypeToCpp(self, type_declaration: Union[List[Any], Dict[str, Any], str]) -> str: """Convert a Schema Salad type to a C++ type.""" if not isinstance(type_declaration, list): return self.convertTypeToCpp([type_declaration]) if len(type_declaration) == 1: if type_declaration[0] in ("null", "https://w3id.org/cwl/salad#null"): return "std::monostate" elif type_declaration[0] in ( "string", "http://www.w3.org/2001/XMLSchema#string", ): return "std::string" elif type_declaration[0] in ("int", "http://www.w3.org/2001/XMLSchema#int"): return "int32_t" elif type_declaration[0] in ( "long", "http://www.w3.org/2001/XMLSchema#long", ): return "int64_t" elif type_declaration[0] in ( "float", "http://www.w3.org/2001/XMLSchema#float", ): return "float" elif type_declaration[0] in ( "double", "http://www.w3.org/2001/XMLSchema#double", ): return "double" elif type_declaration[0] in ( "boolean", "http://www.w3.org/2001/XMLSchema#boolean", ): return "bool" elif type_declaration[0] == "https://w3id.org/cwl/salad#Any": return "std::any" elif type_declaration[0] in ( "PrimitiveType", "https://w3id.org/cwl/salad#PrimitiveType", ): return "std::variant<bool, int32_t, int64_t, float, double, std::string>" elif isinstance(type_declaration[0], dict): if "type" in type_declaration[0] and type_declaration[0]["type"] in ( "enum", "https://w3id.org/cwl/salad#enum", ): name = type_declaration[0]["name"] if name not in self.enumDefinitions: self.enumDefinitions[name] = EnumDefinition( type_declaration[0]["name"], list(map(shortname, type_declaration[0]["symbols"])), ) if len(name.split("#")) != 2: return safename(name) (namespace, classname) = name.split("#") return safename(namespace) + "::" + safename(classname) elif "type" in type_declaration[0] and type_declaration[0]["type"] in ( "array", "https://w3id.org/cwl/salad#array", ): items = type_declaration[0]["items"] if isinstance(items, list): ts = [] for i in items: ts.append(self.convertTypeToCpp(i)) name = ", ".join(ts) return f"std::vector<std::variant<{name}>>" else: i = self.convertTypeToCpp(items) return f"std::vector<{i}>" elif "type" in type_declaration[0] and type_declaration[0]["type"] in ( "record", "https://w3id.org/cwl/salad#record", ): n = type_declaration[0]["name"] (namespace, classname) = split_name(n) return safename(namespace) + "::" + safename(classname) n = type_declaration[0]["type"] (namespace, classname) = split_name(n) return safename(namespace) + "::" + safename(classname) if len(type_declaration[0].split("#")) != 2: _logger.debug(f"// something weird2 about {type_declaration[0]}") return cast(str, type_declaration[0]) (namespace, classname) = split_name(type_declaration[0]) return safename(namespace) + "::" + safename(classname) type_declaration = list(map(self.convertTypeToCpp, type_declaration)) type_declaration = ", ".join(type_declaration) return f"std::variant<{type_declaration}>" # start of our generated file def epilogue(self, root_loader: Optional[TypeDef]) -> None: self.target.write( """#pragma once // Generated by schema-salad code generator #include <cassert> #include <cstddef> #include <cstdint> #include <map> #include <string> #include <string_view> #include <variant> #include <vector> #include <yaml-cpp/yaml.h> #include <any> inline auto mergeYaml(YAML::Node n1, YAML::Node n2) { for (auto const& e : n1) { n2[e.first.as<std::string>()] = e.second; } return n2; } // declaring toYaml inline auto toYaml(bool v) { return YAML::Node{v}; } inline auto toYaml(float v) { return YAML::Node{v}; } inline auto toYaml(double v) { return YAML::Node{v}; } inline auto toYaml(int32_t v) { return YAML::Node{v}; } inline auto toYaml(int64_t v) { return YAML::Node{v}; } inline auto toYaml(std::any const&) { return YAML::Node{}; } inline auto toYaml(std::monostate const&) { return YAML::Node(YAML::NodeType::Undefined); } inline auto toYaml(std::string const& v) { return YAML::Node{v}; } inline void addYamlField(YAML::Node node, std::string const& key, YAML::Node value) { if (value.IsDefined()) { node[key] = value; } } // fwd declaring toYaml template <typename T> auto toYaml(std::vector<T> const& v) -> YAML::Node; template <typename T> auto toYaml(T const& t) -> YAML::Node; template <typename ...Args> auto toYaml(std::variant<Args...> const& t) -> YAML::Node; template <typename T> class heap_object { std::unique_ptr<T> data = std::make_unique<T>(); public: heap_object() = default; heap_object(heap_object const& oth) { *data = *oth; } heap_object(heap_object&& oth) { *data = *oth; } template <typename T2> heap_object(T2 const& oth) { *data = oth; } template <typename T2> heap_object(T2&& oth) { *data = oth; } auto operator=(heap_object const& oth) -> heap_object& { *data = *oth; return *this; } auto operator=(heap_object&& oth) -> heap_object& { *data = std::move(*oth); return *this; } template <typename T2> auto operator=(T2 const& oth) -> heap_object& { *data = oth; return *this; } template <typename T2> auto operator=(T2&& oth) -> heap_object& { *data = std::move(oth); return *this; } auto operator->() -> T* { return data.get(); } auto operator->() const -> T const* { return data.get(); } auto operator*() -> T& { return *data; } auto operator*() const -> T const& { return *data; } }; """ ) # main body, printing fwd declaration, class definitions, and then implementations for key in self.classDefinitions: self.classDefinitions[key].writeFwdDeclaration(self.target, "", " ") for key in self.enumDefinitions: self.enumDefinitions[key].writeDefinition(self.target, " ") for key in self.classDefinitions: self.classDefinitions[key].writeDefinition(self.target, "", " ") for key in self.classDefinitions: self.classDefinitions[key].writeImplDefinition(self.target, "", " ") self.target.write( """ template <typename T> auto toYaml(std::vector<T> const& v) -> YAML::Node { auto n = YAML::Node(YAML::NodeType::Sequence); for (auto const& e : v) { n.push_back(toYaml(e)); } return n; } template <typename T> auto toYaml(T const& t) -> YAML::Node { if constexpr (std::is_enum_v<T>) { return toYaml(t); } else { return t.toYaml(); } } template <typename ...Args> auto toYaml(std::variant<Args...> const& t) -> YAML::Node { return std::visit([](auto const& e) { return toYaml(e); }, t); } """ ) def parseRecordField(self, field: Dict[str, Any]) -> FieldDefinition: (namespace, classname, fieldname) = split_field(field["name"]) if isinstance(field["type"], dict): if field["type"]["type"] == "enum": fieldtype = "Enum" else: fieldtype = self.convertTypeToCpp(field["type"]) else: fieldtype = field["type"] fieldtype = self.convertTypeToCpp(fieldtype) return FieldDefinition(name=fieldname, typeStr=fieldtype, optional=False) def parseRecordSchema(self, stype: Dict[str, Any]) -> None: cd = ClassDefinition(name=stype["name"]) cd.abstract = stype.get("abstract", False) if "extends" in stype: for ex in aslist(stype["extends"]): (base_namespace, base_classname) = split_name(ex) ext = {"namespace": base_namespace, "classname": base_classname} cd.extends.append(ext) if "fields" in stype: for field in stype["fields"]: cd.fields.append(self.parseRecordField(field)) self.classDefinitions[stype["name"]] = cd def parseEnum(self, stype: Dict[str, Any]) -> str: name = cast(str, stype["name"]) if name not in self.enumDefinitions: self.enumDefinitions[name] = EnumDefinition( name, list(map(shortname, stype["symbols"])) ) return name def parse(self, items: List[Dict[str, Any]]) -> None: for stype in items: if "type" in stype and stype["type"] == "documentation": continue if not (pred(stype) or isArray(stype)): raise SchemaException("not a valid SaladRecordField") # parsing a record if isRecordSchema(stype): self.parseRecordSchema(stype) elif isEnumSchema(stype): self.parseEnum(stype) else: _logger.error(f"not parsed{stype}") self.epilogue(None) self.target.close()
0.642432
0.216591
import copy import logging import os import pathlib import re import tempfile import traceback import urllib import xml.sax # nosec from io import StringIO from typing import ( Any, Callable, Dict, List, MutableMapping, MutableSequence, Optional, Set, Union, cast, ) import requests from cachecontrol.caches import FileCache from cachecontrol.wrapper import CacheControl from rdflib.exceptions import ParserError from rdflib.graph import Graph from rdflib.namespace import OWL, RDF, RDFS from rdflib.plugin import PluginException from rdflib.plugins.parsers.notation3 import BadSyntax from rdflib.util import guess_format from ruamel.yaml.comments import CommentedMap, CommentedSeq, LineCol from ruamel.yaml.error import MarkedYAMLError from .exceptions import SchemaSaladException, ValidationException from .fetcher import DefaultFetcher from .sourceline import SourceLine, add_lc_filename, relname from .utils import ( AttachmentsType, CacheType, ContextType, FetcherCallableType, IdxResultType, IdxType, ResolvedRefType, ResolveType, aslist, onWindows, yaml_no_ts, ) _logger = logging.getLogger("salad") def file_uri(path: str, split_frag: bool = False) -> str: if path.startswith("file://"): return path if split_frag: pathsp = path.split("#", 2) if len(pathsp) == 2: frag = "#" + urllib.parse.quote(str(pathsp[1])) else: frag = "" urlpath = urllib.request.pathname2url(str(pathsp[0])) else: urlpath = urllib.request.pathname2url(path) frag = "" if urlpath.startswith("//"): return f"file:{urlpath}{frag}" return f"file://{urlpath}{frag}" def uri_file_path(url: str) -> str: split = urllib.parse.urlsplit(url) if split.scheme == "file": return urllib.request.url2pathname(str(split.path)) + ( "#" + urllib.parse.unquote(str(split.fragment)) if bool(split.fragment) else "" ) raise ValidationException(f"Not a file URI: {url}") def to_validation_exception(e: MarkedYAMLError) -> ValidationException: """Convert ruamel.yaml exception to our type.""" fname_regex = re.compile(r"^file://" + re.escape(os.getcwd()) + "/") exc = ValidationException(e.problem) mark = e.problem_mark exc.file = re.sub(fname_regex, "", mark.name) exc.start = (mark.line + 1, mark.column + 1) exc.end = None if e.context: parent = ValidationException(e.context) context_mark = e.context_mark if context_mark: parent.file = re.sub(fname_regex, "", context_mark.name) parent.start = (context_mark.line + 1, context_mark.column + 1) parent.end = None parent.children = [exc] return parent return exc class NormDict(Dict[str, Union[CommentedMap, CommentedSeq, str, None]]): """A Dict where all keys are normalized using the provided function.""" def __init__(self, normalize: Callable[[str], str] = str) -> None: super().__init__() self.normalize = normalize def __eq__(self, other: Any) -> bool: return super().__eq__(other) def __getitem__(self, key: Any) -> Any: return super().__getitem__(self.normalize(key)) def __setitem__(self, key: Any, value: Any) -> Any: return super().__setitem__(self.normalize(key), value) def __delitem__(self, key: Any) -> Any: return super().__delitem__(self.normalize(key)) def __contains__(self, key: Any) -> bool: return super().__contains__(self.normalize(key)) def __del__(self) -> None: del self.normalize def SubLoader(loader: "Loader") -> "Loader": return Loader( loader.ctx, schemagraph=loader.graph, foreign_properties=loader.foreign_properties, idx=loader.idx, cache=loader.cache, fetcher_constructor=loader.fetcher_constructor, skip_schemas=loader.skip_schemas, url_fields=loader.url_fields, allow_attachments=loader.allow_attachments, session=loader.session, salad_version=loader.salad_version, ) class Loader: def __init__( self, ctx: ContextType, schemagraph: Optional[Graph] = None, foreign_properties: Optional[Set[str]] = None, idx: Optional[IdxType] = None, cache: Optional[CacheType] = None, session: Optional[requests.sessions.Session] = None, fetcher_constructor: Optional[FetcherCallableType] = None, skip_schemas: Optional[bool] = None, url_fields: Optional[Set[str]] = None, allow_attachments: Optional[AttachmentsType] = None, doc_cache: Union[str, bool] = True, salad_version: Optional[str] = None, ) -> None: self.idx: IdxType = ( NormDict(lambda url: urllib.parse.urlsplit(url).geturl()) if idx is None else idx ) self.ctx: ContextType = {} self.graph = schemagraph if schemagraph is not None else Graph() self.foreign_properties = ( set(foreign_properties) if foreign_properties is not None else set() ) self.cache = cache if cache is not None else {} self.skip_schemas = skip_schemas if skip_schemas is not None else False if session is None: if doc_cache is False: self.session = requests.Session() elif doc_cache is True: root = pathlib.Path(os.environ.get("HOME", tempfile.gettempdir())) self.session = CacheControl( requests.Session(), cache=FileCache(root / ".cache" / "salad"), ) elif isinstance(doc_cache, str): self.session = CacheControl(requests.Session(), cache=FileCache(doc_cache)) else: self.session = session self.fetcher_constructor = ( fetcher_constructor if fetcher_constructor is not None else DefaultFetcher ) self.fetcher = self.fetcher_constructor(self.cache, self.session) self.fetch_text = self.fetcher.fetch_text self.check_exists = self.fetcher.check_exists self.url_fields: Set[str] = set() if url_fields is None else set(url_fields) self.scoped_ref_fields: Dict[str, int] = {} self.vocab_fields: Set[str] = set() self.identifiers: List[str] = [] self.identity_links: Set[str] = set() self.standalone: Optional[Set[str]] = None self.nolinkcheck: Set[str] = set() self.vocab: Dict[str, str] = {} self.rvocab: Dict[str, str] = {} self.idmap: Dict[str, str] = {} self.mapPredicate: Dict[str, str] = {} self.type_dsl_fields: Set[str] = set() self.subscopes: Dict[str, str] = {} self.secondaryFile_dsl_fields: Set[str] = set() self.allow_attachments = allow_attachments if salad_version: self.salad_version = salad_version else: self.salad_version = "v1.1" self.add_context(ctx) def expand_url( self, url: str, base_url: str, scoped_id: bool = False, vocab_term: bool = False, scoped_ref: Optional[int] = None, ) -> str: if url in ("@id", "@type"): return url if vocab_term and url in self.vocab: return url if url.startswith("_:"): return url if bool(self.vocab) and ":" in url: prefix = url.split(":")[0] if not prefix: pass elif prefix in self.vocab: url = self.vocab[prefix] + url[len(prefix) + 1 :] elif ( prefix not in self.fetcher.supported_schemes() and "/" not in prefix and "#" not in prefix ): _logger.warning( "URI prefix '%s' of '%s' not recognized, are you missing a " "$namespaces section?", prefix, url, ) split = urllib.parse.urlsplit(url) if ( (bool(split.scheme) and split.scheme in self.fetcher.supported_schemes()) or url.startswith("$(") or url.startswith("${") ): pass elif scoped_id and not bool(split.fragment): splitbase = urllib.parse.urlsplit(base_url) frg = splitbase.fragment + "/" + split.path if bool(splitbase.fragment) else split.path pt = splitbase.path if splitbase.path != "" else "/" url = urllib.parse.urlunsplit( (splitbase.scheme, splitbase.netloc, pt, splitbase.query, frg) ) elif scoped_ref is not None and not split.fragment: pass else: url = self.fetcher.urljoin(base_url, url) if vocab_term and url in self.rvocab: return self.rvocab[url] return url def _add_properties(self, s: str) -> None: for _, _, rng in self.graph.triples((s, RDFS.range, None)): literal = ( str(rng).startswith("http://www.w3.org/2001/XMLSchema#") and str(rng) != "http://www.w3.org/2001/XMLSchema#anyURI" ) or str(rng) == "http://www.w3.org/2000/01/rdf-schema#Literal" if not literal: self.url_fields.add(str(s)) self.foreign_properties.add(str(s)) def add_namespaces(self, ns: Dict[str, str]) -> None: self.vocab.update(ns) def add_schemas(self, ns: Union[List[str], str], base_url: str) -> None: if self.skip_schemas: return for sch in aslist(ns): fetchurl = self.fetcher.urljoin(base_url, sch) if fetchurl not in self.cache or self.cache[fetchurl] is True: _logger.debug("Getting external schema %s", fetchurl) try: content = self.fetch_text(fetchurl) except Exception as e: tb = traceback.format_exception(type(e), e, e.__traceback__) _logger.warning("Could not load extension schema %s: %s", fetchurl, str(e)) _logger.debug(tb) continue newGraph = Graph() err_msg = "unknown error" for fmt in [ guess_format(sch), "xml", "turtle", None, guess_format(sch), ]: try: newGraph.parse(data=content, format=fmt, publicID=str(fetchurl)) self.cache[fetchurl] = newGraph self.graph += newGraph break except ( xml.sax.SAXParseException, TypeError, BadSyntax, ParserError, PluginException, ) as e: err_msg = str(e) else: _logger.warning("Could not load extension schema %s: %s", fetchurl, err_msg) for s, _, _ in self.graph.triples((None, RDF.type, RDF.Property)): self._add_properties(s) for s, _, o in self.graph.triples((None, RDFS.subPropertyOf, None)): self._add_properties(s) self._add_properties(o) for s, _, _ in self.graph.triples((None, RDFS.range, None)): self._add_properties(s) for s, _, _ in self.graph.triples((None, RDF.type, OWL.ObjectProperty)): self._add_properties(s) for s, _, _ in self.graph.triples((None, None, None)): self.idx[str(s)] = None def add_context(self, newcontext: ContextType) -> None: if bool(self.vocab): raise ValidationException("Refreshing context that already has stuff in it") self.url_fields = {"$schemas"} self.scoped_ref_fields.clear() self.vocab_fields.clear() self.identifiers.clear() self.identity_links.clear() self.standalone = set() self.nolinkcheck.clear() self.idmap.clear() self.mapPredicate.clear() self.vocab.clear() self.rvocab.clear() self.type_dsl_fields.clear() self.secondaryFile_dsl_fields.clear() self.subscopes.clear() self.ctx.update(_copy_dict_without_key(newcontext, "@context")) _logger.debug("ctx is %s", self.ctx) for key, value in self.ctx.items(): if value == "@id": self.identifiers.append(key) self.identity_links.add(key) elif isinstance(value, MutableMapping): if value.get("@type") == "@id": self.url_fields.add(key) if "refScope" in value: self.scoped_ref_fields[key] = value["refScope"] if value.get("identity", False): self.identity_links.add(key) if value.get("@type") == "@vocab": self.url_fields.add(key) self.vocab_fields.add(key) if "refScope" in value: self.scoped_ref_fields[key] = value["refScope"] if value.get("typeDSL"): self.type_dsl_fields.add(key) if value.get("secondaryFilesDSL"): self.secondaryFile_dsl_fields.add(key) if value.get("noLinkCheck"): self.nolinkcheck.add(key) if value.get("mapSubject"): self.idmap[key] = value["mapSubject"] if value.get("mapPredicate"): self.mapPredicate[key] = value["mapPredicate"] if value.get("@id"): self.vocab[key] = value["@id"] if value.get("subscope"): self.subscopes[key] = value["subscope"] elif isinstance(value, str): self.vocab[key] = value for k, v in self.vocab.items(): self.rvocab[self.expand_url(v, "", scoped_id=False)] = k self.identifiers.sort() _logger.debug("identifiers is %s", self.identifiers) _logger.debug("identity_links is %s", self.identity_links) _logger.debug("url_fields is %s", self.url_fields) _logger.debug("vocab_fields is %s", self.vocab_fields) _logger.debug("vocab is %s", self.vocab) def resolve_ref( self, ref: ResolveType, base_url: Optional[str] = None, checklinks: bool = True, strict_foreign_properties: bool = False, content_types: Optional[List[str]] = None, # Expected content-types ) -> ResolvedRefType: lref = ref obj: Optional[CommentedMap] = None resolved_obj: ResolveType = None imp = False inc = False mixin: Optional[MutableMapping[str, str]] = None if not base_url: base_url = file_uri(os.getcwd()) + "/" # If `ref` is a dict, look for special directives. if isinstance(lref, CommentedMap): obj = lref if "$import" in obj: if len(obj) == 1: lref = obj["$import"] imp = True obj = None else: raise ValidationException( f"'$import' must be the only field in {obj}", SourceLine(obj, "$import"), ) elif "$include" in obj: if len(obj) == 1: lref = obj["$include"] inc = True obj = None else: raise ValidationException( f"'$include' must be the only field in {obj}", SourceLine(obj, "$include"), ) elif "$mixin" in obj: lref = obj["$mixin"] mixin = obj obj = None else: lref = None for identifier in self.identifiers: if identifier in obj: lref = obj[identifier] break if not lref: raise ValidationException( f"Object {obj!r} does not have identifier field in {self.identifiers}", SourceLine(obj), ) if not isinstance(lref, str): raise ValidationException( f"Expected CommentedMap or string, got {type(lref)}: {lref!r}" ) if isinstance(lref, str) and os.sep == "\\": # Convert Windows path separator in ref lref = lref.replace("\\", "/") url = self.expand_url(lref, base_url, scoped_id=(obj is not None)) # Has this reference been loaded already? if url in self.idx and (not mixin): resolved_obj = self.idx[url] if isinstance(resolved_obj, MutableMapping): metadata: Union[CommentedMap, CommentedSeq, str, None] = self.idx.get( urllib.parse.urldefrag(url)[0], CommentedMap() ) if isinstance(metadata, MutableMapping): if "$graph" in resolved_obj: metadata = _copy_dict_without_key(resolved_obj, "$graph") return resolved_obj["$graph"], metadata else: return resolved_obj, metadata else: raise ValidationException( f"Expected CommentedMap, got {type(metadata)}: {metadata!r}" ) elif isinstance(resolved_obj, MutableSequence): metadata = self.idx.get(urllib.parse.urldefrag(url)[0], CommentedMap()) if isinstance(metadata, MutableMapping): return resolved_obj, metadata else: return resolved_obj, CommentedMap() elif isinstance(resolved_obj, str): return resolved_obj, CommentedMap() else: raise ValidationException( f"Expected MutableMapping or MutableSequence, got " f"{type(resolved_obj)}: {resolved_obj!r}" ) # "$include" directive means load raw text if inc: # Make a note in the index that this was an included string self.idx["include:" + url] = url return self.fetch_text(url), CommentedMap() doc = None if isinstance(obj, MutableMapping): for identifier in self.identifiers: obj[identifier] = url doc_url = url else: # Load structured document doc_url, frg = urllib.parse.urldefrag(url) if doc_url in self.idx and (not mixin): # If the base document is in the index, it was already loaded, # so if we didn't find the reference earlier then it must not # exist. raise SourceLine(self.idx, doc_url, ValidationException).makeError( f"Reference '#{frg}' not found in file {doc_url!r}.", ) doc = self.fetch(doc_url, inject_ids=(not mixin), content_types=content_types) if imp: # Make a note in the index that this was an imported fragment self.idx["import:" + url] = url # Recursively expand urls and resolve directives if bool(mixin): doc = copy.deepcopy(doc) if isinstance(doc, CommentedMap) and mixin is not None: doc.update(mixin) del doc["$mixin"] resolved_obj, metadata = self.resolve_all( doc, base_url, file_base=doc_url, checklinks=checklinks, strict_foreign_properties=strict_foreign_properties, ) else: resolved_obj, metadata = self.resolve_all( doc or obj, doc_url, checklinks=checklinks, strict_foreign_properties=strict_foreign_properties, ) # Requested reference should be in the index now, otherwise it's a bad # reference if not bool(mixin): if url in self.idx: resolved_obj = self.idx[url] else: raise ValidationException( f"Reference {url!r} is not in the index. Index contains: {' '.join(self.idx)}" ) if isinstance(resolved_obj, CommentedMap): if "$graph" in resolved_obj: metadata = _copy_dict_without_key(resolved_obj, "$graph") return resolved_obj["$graph"], metadata else: return resolved_obj, metadata else: return resolved_obj, metadata def _resolve_idmap( self, document: CommentedMap, loader: "Loader", ) -> None: # Convert fields with mapSubject into lists # use mapPredicate if the mapped value isn't a dict. for idmapField in loader.idmap: if idmapField in document: idmapFieldValue = document[idmapField] if ( isinstance(idmapFieldValue, MutableMapping) and "$import" not in idmapFieldValue and "$include" not in idmapFieldValue ): ls = CommentedSeq() for k in sorted(idmapFieldValue.keys()): val = idmapFieldValue[k] v: Optional[CommentedMap] = None if not isinstance(val, CommentedMap): if idmapField in loader.mapPredicate: v = CommentedMap(((loader.mapPredicate[idmapField], val),)) v.lc.add_kv_line_col( loader.mapPredicate[idmapField], document[idmapField].lc.data[k], ) v.lc.filename = document.lc.filename else: raise ValidationException( f"mapSubject {k!r} value {v!r} is not a dict " "and does not have a mapPredicate.", SourceLine(document, idmapField), ) else: v = val v[loader.idmap[idmapField]] = k v.lc.add_kv_line_col( loader.idmap[idmapField], document[idmapField].lc.data[k] ) v.lc.filename = document.lc.filename ls.lc.add_kv_line_col(len(ls), document[idmapField].lc.data[k]) ls.lc.filename = document.lc.filename ls.append(v) document[idmapField] = ls def _type_dsl( self, t: Union[str, CommentedMap, CommentedSeq], lc: LineCol, filename: str, ) -> Union[str, CommentedMap, CommentedSeq]: if not isinstance(t, str): return t t_ = t optional = False if t_.endswith("?"): optional = True t_ = t_[0:-1] if t_.endswith("[]"): salad_versions = [int(v) for v in self.salad_version[1:].split(".")] rest = t_[0:-2] if salad_versions < [1, 3]: if rest.endswith("[]"): # To show the error message with the original type return t else: cmap = CommentedMap((("type", "array"), ("items", rest))) else: items = self._type_dsl(rest, lc, filename) cmap = CommentedMap((("type", "array"), ("items", items))) cmap.lc.add_kv_line_col("type", lc) cmap.lc.add_kv_line_col("items", lc) cmap.lc.filename = filename expanded: Union[str, CommentedMap, CommentedSeq] = cmap else: expanded = t_ if optional: cs = CommentedSeq(["null", expanded]) cs.lc.add_kv_line_col(0, lc) cs.lc.add_kv_line_col(1, lc) cs.lc.filename = filename ret: Union[str, CommentedMap, CommentedSeq] = cs else: ret = expanded return ret def _secondaryFile_dsl( self, t: Union[str, CommentedMap, CommentedSeq], lc: LineCol, filename: str, ) -> Union[str, CommentedMap, CommentedSeq]: if not isinstance(t, str): return t pat = t[0:-1] if t.endswith("?") else t req: Optional[bool] = False if t.endswith("?") else None second = CommentedMap((("pattern", pat), ("required", req))) second.lc.add_kv_line_col("pattern", lc) second.lc.add_kv_line_col("required", lc) second.lc.filename = filename return second def _apply_dsl( self, datum: Union[str, CommentedMap, CommentedSeq], d: str, loader: "Loader", lc: LineCol, filename: str, ) -> Union[str, CommentedMap, CommentedSeq]: if d in loader.type_dsl_fields: return self._type_dsl(datum, lc, filename) if d in loader.secondaryFile_dsl_fields: return self._secondaryFile_dsl(datum, lc, filename) return datum def _resolve_dsl( self, document: CommentedMap, loader: "Loader", ) -> None: fields = list(loader.type_dsl_fields) fields.extend(loader.secondaryFile_dsl_fields) for d in fields: if d in document: datum2 = datum = document[d] if isinstance(datum, str): datum2 = self._apply_dsl( datum, d, loader, document.lc.data[d] if document.lc.data else document.lc, getattr(document.lc, "filename", ""), ) elif isinstance(datum, CommentedSeq): datum2 = CommentedSeq() for n, t in enumerate(datum): if datum.lc and datum.lc.data: datum2.lc.add_kv_line_col(len(datum2), datum.lc.data[n]) datum2.append( self._apply_dsl( t, d, loader, datum.lc.data[n], document.lc.filename ) ) else: datum2.append(self._apply_dsl(t, d, loader, LineCol(), "")) if isinstance(datum2, CommentedSeq): datum3 = CommentedSeq() seen: List[str] = [] for i, item in enumerate(datum2): if isinstance(item, CommentedSeq): for j, v in enumerate(item): if v not in seen: datum3.lc.add_kv_line_col(len(datum3), item.lc.data[j]) datum3.append(v) seen.append(v) else: if item not in seen: if datum2.lc and datum2.lc.data: datum3.lc.add_kv_line_col(len(datum3), datum2.lc.data[i]) datum3.append(item) seen.append(item) document[d] = datum3 else: document[d] = datum2 def _resolve_identifier(self, document: CommentedMap, loader: "Loader", base_url: str) -> str: # Expand identifier field (usually 'id') to resolve scope for identifier in loader.identifiers: if identifier in document: if isinstance(document[identifier], str): document[identifier] = loader.expand_url( document[identifier], base_url, scoped_id=True ) if document[identifier] not in loader.idx or isinstance( loader.idx[document[identifier]], str ): loader.idx[document[identifier]] = document base_url = document[identifier] else: raise ValidationException( f"identifier field {document[identifier]!r} must be a string" ) return base_url def _resolve_identity( self, document: Dict[str, Union[str, MutableSequence[Union[str, CommentedMap]]]], loader: "Loader", base_url: str, ) -> None: # Resolve scope for identity fields (fields where the value is the # identity of a standalone node, such as enum symbols) for identifier in loader.identity_links: if identifier in document and isinstance(document[identifier], MutableSequence): for n, v in enumerate(document[identifier]): if isinstance(v, str): document[identifier][n] = loader.expand_url( # type: ignore v, base_url, scoped_id=True ) if document[identifier][n] not in loader.idx: loader.idx[cast(str, document[identifier][n])] = v def _normalize_fields(self, document: CommentedMap, loader: "Loader") -> None: # Normalize fields which are prefixed or full URIn to vocabulary terms for d in list(document.keys()): if isinstance(d, str): d2 = loader.expand_url(d, "", scoped_id=False, vocab_term=True) if d != d2: document[d2] = document[d] document.lc.add_kv_line_col(d2, document.lc.data[d]) del document[d] def _resolve_uris( self, document: Dict[str, Union[str, MutableSequence[Union[str, CommentedMap]]]], loader: "Loader", base_url: str, ) -> None: # Resolve remaining URLs based on document base for d in loader.url_fields: if d in document: datum = document[d] if isinstance(datum, str): document[d] = loader.expand_url( datum, base_url, scoped_id=False, vocab_term=(d in loader.vocab_fields), scoped_ref=loader.scoped_ref_fields.get(d), ) elif isinstance(datum, MutableSequence): for i, url in enumerate(datum): if isinstance(url, str): datum[i] = loader.expand_url( url, base_url, scoped_id=False, vocab_term=(d in loader.vocab_fields), scoped_ref=loader.scoped_ref_fields.get(d), ) def resolve_all( self, document: ResolveType, base_url: str, file_base: Optional[str] = None, checklinks: bool = True, strict_foreign_properties: bool = False, ) -> ResolvedRefType: loader = self metadata = CommentedMap() if file_base is None: file_base = base_url if isinstance(document, CommentedMap): # Handle $import and $include if "$import" in document or "$include" in document: return self.resolve_ref( document, base_url=file_base, checklinks=checklinks, strict_foreign_properties=strict_foreign_properties, ) if "$mixin" in document: return self.resolve_ref( document, base_url=base_url, checklinks=checklinks, strict_foreign_properties=strict_foreign_properties, ) elif isinstance(document, CommentedSeq): pass elif isinstance(document, (list, dict)): raise ValidationException( f"Expected CommentedMap or CommentedSeq, got {type(document)}: {document!r}" ) else: return (document, metadata) newctx: Optional["Loader"] = None if isinstance(document, CommentedMap): # Handle $base, $profile, $namespaces, $schemas and $graph if "$base" in document: base_url = document["$base"] if "$profile" in document: if newctx is None: newctx = SubLoader(self) newctx.add_namespaces(document.get("$namespaces", CommentedMap())) newctx.add_schemas(document.get("$schemas", []), document["$profile"]) if "$namespaces" in document: if newctx is None: newctx = SubLoader(self) namespaces = document["$namespaces"] if isinstance(namespaces, dict): newctx.add_namespaces(document["$namespaces"]) else: raise ValidationException( "$namespaces must be a dictionary", SourceLine(document, "$namespaces"), ) if "$schemas" in document: if newctx is None: newctx = SubLoader(self) schemas = document["$schemas"] if isinstance(schemas, (list, str)): newctx.add_schemas(schemas, file_base) else: raise ValidationException( "$schemas must be a string or a list of string", SourceLine(document, "$schemas"), ) if newctx is not None: loader = newctx for identifier in loader.identity_links: if identifier in document: if isinstance(document[identifier], str): document[identifier] = loader.expand_url( document[identifier], base_url, scoped_id=True ) loader.idx[document[identifier]] = document metadata = document if "$graph" in document: document = document["$graph"] if isinstance(document, CommentedMap): self._normalize_fields(document, loader) self._resolve_idmap(document, loader) self._resolve_dsl(document, loader) base_url = self._resolve_identifier(document, loader, base_url) self._resolve_identity(document, loader, base_url) self._resolve_uris(document, loader, base_url) try: for key, val in document.items(): subscope: str = "" if key in loader.subscopes: subscope = "/" + loader.subscopes[key] document[key], _ = loader.resolve_all( val, base_url + subscope, file_base=file_base, checklinks=False ) except ValidationException as v: _logger.warning("loader is %s", id(loader), exc_info=True) raise ValidationException( f"({id(loader)}) ({file_base}) Validation error in field {key}:", None, [v], ) from v elif isinstance(document, CommentedSeq): i = 0 try: while i < len(document): val = document[i] if isinstance(val, CommentedMap) and ("$import" in val or "$mixin" in val): l, import_metadata = loader.resolve_ref( val, base_url=file_base, checklinks=False ) metadata.setdefault("$import_metadata", {}) for identifier in loader.identifiers: if identifier in import_metadata: metadata["$import_metadata"][ import_metadata[identifier] ] = import_metadata if isinstance(l, CommentedSeq): lc = document.lc.data[i] del document[i] llen = len(l) for j in range(len(document) + llen, i + llen, -1): document.lc.data[j - 1] = document.lc.data[j - llen] for item in l: document.insert(i, item) document.lc.data[i] = lc i += 1 else: document[i] = l i += 1 else: document[i], _ = loader.resolve_all( val, base_url, file_base=file_base, checklinks=False ) i += 1 except ValidationException as v: _logger.warning("failed", exc_info=True) raise ValidationException( f"({id(loader)}) ({file_base}) Validation error in position {i}:", None, [v], ) from v if checklinks: all_doc_ids: Dict[str, str] = {} loader.validate_links( document, "", all_doc_ids, strict_foreign_properties=strict_foreign_properties, ) return document, metadata def fetch( self, url: str, inject_ids: bool = True, content_types: Optional[List[str]] = None, ) -> IdxResultType: if url in self.idx: return self.idx[url] try: text = self.fetch_text(url, content_types=content_types) textIO = StringIO(text) textIO.name = str(url) yaml = yaml_no_ts() attachments = yaml.load_all(textIO) result = cast(Union[CommentedSeq, CommentedMap], next(attachments)) if self.allow_attachments is not None and self.allow_attachments(result): i = 1 for a in attachments: self.idx[f"{url}#attachment-{i}"] = a i += 1 add_lc_filename(result, url) except MarkedYAMLError as e: raise to_validation_exception(e) from e if isinstance(result, CommentedMap) and inject_ids and bool(self.identifiers): missing_identifier = True for identifier in self.identifiers: if identifier in result: missing_identifier = False self.idx[self.expand_url(result[identifier], url, scoped_id=True)] = result if missing_identifier: result[self.identifiers[0]] = url self.idx[url] = result return result def validate_scoped(self, field: str, link: str, docid: str) -> str: split = urllib.parse.urlsplit(docid) sp = split.fragment.split("/") n = self.scoped_ref_fields[field] while n > 0 and len(sp) > 0: sp.pop() n -= 1 tried = [] while True: sp.append(link) url = urllib.parse.urlunsplit( (split.scheme, split.netloc, split.path, split.query, "/".join(sp)) ) tried.append(url) if url in self.idx: return url sp.pop() if len(sp) == 0: break sp.pop() if onWindows() and link.startswith("file:"): link = link.lower() raise ValidationException( f"Field {field!r} references unknown identifier {link!r}, tried {' '.join(tried)}" ) def validate_link( self, field: str, link: Union[str, CommentedSeq, CommentedMap], # link also can be None, but that results in # mypyc "error: Local variable "link" has inferred type None; add an annotation" docid: str, all_doc_ids: Dict[str, str], ) -> Union[str, CommentedSeq, CommentedMap]: if field in self.nolinkcheck: return link if isinstance(link, str): if field in self.vocab_fields: if link not in self.vocab and link not in self.idx and link not in self.rvocab: if field in self.scoped_ref_fields: return self.validate_scoped(field, link, docid) elif not self.check_exists(link): raise ValidationException( f"Field {field!r} contains undefined reference to {link!r}" ) elif link not in self.idx and link not in self.rvocab: if field in self.scoped_ref_fields: return self.validate_scoped(field, link, docid) elif not self.check_exists(link): raise ValidationException( f"Field {field!r} contains undefined reference to {link!r}" ) elif isinstance(link, CommentedSeq): errors = [] for n, i in enumerate(link): try: link[n] = self.validate_link(field, i, docid, all_doc_ids) except ValidationException as v: errors.append(v) if bool(errors): raise ValidationException("", None, errors) elif isinstance(link, CommentedMap): self.validate_links(link, docid, all_doc_ids) elif link is None: # type: ignore[unreachable] return None else: raise ValidationException( f"{field!r} field is {type(link).__name__}, expected string, list, or a dict." ) return link def getid(self, d: Any) -> Optional[str]: if isinstance(d, MutableMapping): for i in self.identifiers: if i in d: idd = d[i] if isinstance(idd, str): return idd return None def validate_links( self, document: ResolveType, base_url: str, all_doc_ids: Dict[str, str], strict_foreign_properties: bool = False, ) -> None: docid = self.getid(document) or base_url errors: List[SchemaSaladException] = [] iterator: Any = None if isinstance(document, MutableSequence): iterator = enumerate(document) elif isinstance(document, MutableMapping): for d in self.url_fields: try: if d in document and d not in self.identity_links: document[d] = self.validate_link(d, document[d], docid, all_doc_ids) except SchemaSaladException as v: v = v.with_sourceline(SourceLine(document, d, str)) if d == "$schemas" or ( d in self.foreign_properties and not strict_foreign_properties ): _logger.warning(v.as_warning()) else: errors.append(v) # TODO: Validator should local scope only in which # duplicated keys are prohibited. # See also https://github.com/common-workflow-language/common-workflow-language/issues/734 # noqa: B950 # In the future, it should raise # ValidationException instead of _logger.warn try: for identifier in self.identifiers: # validate that each id is defined uniquely if identifier in document: sl = SourceLine(document, identifier, str) if ( document[identifier] in all_doc_ids and sl.makeLead() != all_doc_ids[document[identifier]] ): _logger.warning( "%s object %s %r previously defined", all_doc_ids[document[identifier]], identifier, relname(document[identifier]), ) else: all_doc_ids[document[identifier]] = sl.makeLead() break except ValidationException as v: errors.append(v.with_sourceline(sl)) iterator = list(document.items()) else: return for key, val in iterator: sl = SourceLine(document, key, str) try: self.validate_links( val, docid, all_doc_ids, strict_foreign_properties=strict_foreign_properties, ) except ValidationException as v: if key in self.nolinkcheck or (isinstance(key, str) and ":" in key): _logger.warning(v.as_warning()) else: docid2 = self.getid(val) if docid2 is not None: errors.append( ValidationException(f"checking object {relname(docid2)!r}", sl, [v]) ) else: if isinstance(key, str): errors.append(ValidationException(f"checking field {key!r}", sl, [v])) else: errors.append(ValidationException("checking item", sl, [v])) if bool(errors): if len(errors) > 1: raise ValidationException("", None, errors) raise errors[0] return def _copy_dict_without_key( from_dict: Union[CommentedMap, ContextType], filtered_key: str ) -> CommentedMap: new_dict = CommentedMap(from_dict.items()) if filtered_key in new_dict: del new_dict[filtered_key] if isinstance(from_dict, CommentedMap): new_dict.lc.data = copy.copy(from_dict.lc.data) new_dict.lc.filename = from_dict.lc.filename return new_dict
schema-salad
/schema-salad-8.4.20230808163024.tar.gz/schema-salad-8.4.20230808163024/schema_salad/ref_resolver.py
ref_resolver.py
import copy import logging import os import pathlib import re import tempfile import traceback import urllib import xml.sax # nosec from io import StringIO from typing import ( Any, Callable, Dict, List, MutableMapping, MutableSequence, Optional, Set, Union, cast, ) import requests from cachecontrol.caches import FileCache from cachecontrol.wrapper import CacheControl from rdflib.exceptions import ParserError from rdflib.graph import Graph from rdflib.namespace import OWL, RDF, RDFS from rdflib.plugin import PluginException from rdflib.plugins.parsers.notation3 import BadSyntax from rdflib.util import guess_format from ruamel.yaml.comments import CommentedMap, CommentedSeq, LineCol from ruamel.yaml.error import MarkedYAMLError from .exceptions import SchemaSaladException, ValidationException from .fetcher import DefaultFetcher from .sourceline import SourceLine, add_lc_filename, relname from .utils import ( AttachmentsType, CacheType, ContextType, FetcherCallableType, IdxResultType, IdxType, ResolvedRefType, ResolveType, aslist, onWindows, yaml_no_ts, ) _logger = logging.getLogger("salad") def file_uri(path: str, split_frag: bool = False) -> str: if path.startswith("file://"): return path if split_frag: pathsp = path.split("#", 2) if len(pathsp) == 2: frag = "#" + urllib.parse.quote(str(pathsp[1])) else: frag = "" urlpath = urllib.request.pathname2url(str(pathsp[0])) else: urlpath = urllib.request.pathname2url(path) frag = "" if urlpath.startswith("//"): return f"file:{urlpath}{frag}" return f"file://{urlpath}{frag}" def uri_file_path(url: str) -> str: split = urllib.parse.urlsplit(url) if split.scheme == "file": return urllib.request.url2pathname(str(split.path)) + ( "#" + urllib.parse.unquote(str(split.fragment)) if bool(split.fragment) else "" ) raise ValidationException(f"Not a file URI: {url}") def to_validation_exception(e: MarkedYAMLError) -> ValidationException: """Convert ruamel.yaml exception to our type.""" fname_regex = re.compile(r"^file://" + re.escape(os.getcwd()) + "/") exc = ValidationException(e.problem) mark = e.problem_mark exc.file = re.sub(fname_regex, "", mark.name) exc.start = (mark.line + 1, mark.column + 1) exc.end = None if e.context: parent = ValidationException(e.context) context_mark = e.context_mark if context_mark: parent.file = re.sub(fname_regex, "", context_mark.name) parent.start = (context_mark.line + 1, context_mark.column + 1) parent.end = None parent.children = [exc] return parent return exc class NormDict(Dict[str, Union[CommentedMap, CommentedSeq, str, None]]): """A Dict where all keys are normalized using the provided function.""" def __init__(self, normalize: Callable[[str], str] = str) -> None: super().__init__() self.normalize = normalize def __eq__(self, other: Any) -> bool: return super().__eq__(other) def __getitem__(self, key: Any) -> Any: return super().__getitem__(self.normalize(key)) def __setitem__(self, key: Any, value: Any) -> Any: return super().__setitem__(self.normalize(key), value) def __delitem__(self, key: Any) -> Any: return super().__delitem__(self.normalize(key)) def __contains__(self, key: Any) -> bool: return super().__contains__(self.normalize(key)) def __del__(self) -> None: del self.normalize def SubLoader(loader: "Loader") -> "Loader": return Loader( loader.ctx, schemagraph=loader.graph, foreign_properties=loader.foreign_properties, idx=loader.idx, cache=loader.cache, fetcher_constructor=loader.fetcher_constructor, skip_schemas=loader.skip_schemas, url_fields=loader.url_fields, allow_attachments=loader.allow_attachments, session=loader.session, salad_version=loader.salad_version, ) class Loader: def __init__( self, ctx: ContextType, schemagraph: Optional[Graph] = None, foreign_properties: Optional[Set[str]] = None, idx: Optional[IdxType] = None, cache: Optional[CacheType] = None, session: Optional[requests.sessions.Session] = None, fetcher_constructor: Optional[FetcherCallableType] = None, skip_schemas: Optional[bool] = None, url_fields: Optional[Set[str]] = None, allow_attachments: Optional[AttachmentsType] = None, doc_cache: Union[str, bool] = True, salad_version: Optional[str] = None, ) -> None: self.idx: IdxType = ( NormDict(lambda url: urllib.parse.urlsplit(url).geturl()) if idx is None else idx ) self.ctx: ContextType = {} self.graph = schemagraph if schemagraph is not None else Graph() self.foreign_properties = ( set(foreign_properties) if foreign_properties is not None else set() ) self.cache = cache if cache is not None else {} self.skip_schemas = skip_schemas if skip_schemas is not None else False if session is None: if doc_cache is False: self.session = requests.Session() elif doc_cache is True: root = pathlib.Path(os.environ.get("HOME", tempfile.gettempdir())) self.session = CacheControl( requests.Session(), cache=FileCache(root / ".cache" / "salad"), ) elif isinstance(doc_cache, str): self.session = CacheControl(requests.Session(), cache=FileCache(doc_cache)) else: self.session = session self.fetcher_constructor = ( fetcher_constructor if fetcher_constructor is not None else DefaultFetcher ) self.fetcher = self.fetcher_constructor(self.cache, self.session) self.fetch_text = self.fetcher.fetch_text self.check_exists = self.fetcher.check_exists self.url_fields: Set[str] = set() if url_fields is None else set(url_fields) self.scoped_ref_fields: Dict[str, int] = {} self.vocab_fields: Set[str] = set() self.identifiers: List[str] = [] self.identity_links: Set[str] = set() self.standalone: Optional[Set[str]] = None self.nolinkcheck: Set[str] = set() self.vocab: Dict[str, str] = {} self.rvocab: Dict[str, str] = {} self.idmap: Dict[str, str] = {} self.mapPredicate: Dict[str, str] = {} self.type_dsl_fields: Set[str] = set() self.subscopes: Dict[str, str] = {} self.secondaryFile_dsl_fields: Set[str] = set() self.allow_attachments = allow_attachments if salad_version: self.salad_version = salad_version else: self.salad_version = "v1.1" self.add_context(ctx) def expand_url( self, url: str, base_url: str, scoped_id: bool = False, vocab_term: bool = False, scoped_ref: Optional[int] = None, ) -> str: if url in ("@id", "@type"): return url if vocab_term and url in self.vocab: return url if url.startswith("_:"): return url if bool(self.vocab) and ":" in url: prefix = url.split(":")[0] if not prefix: pass elif prefix in self.vocab: url = self.vocab[prefix] + url[len(prefix) + 1 :] elif ( prefix not in self.fetcher.supported_schemes() and "/" not in prefix and "#" not in prefix ): _logger.warning( "URI prefix '%s' of '%s' not recognized, are you missing a " "$namespaces section?", prefix, url, ) split = urllib.parse.urlsplit(url) if ( (bool(split.scheme) and split.scheme in self.fetcher.supported_schemes()) or url.startswith("$(") or url.startswith("${") ): pass elif scoped_id and not bool(split.fragment): splitbase = urllib.parse.urlsplit(base_url) frg = splitbase.fragment + "/" + split.path if bool(splitbase.fragment) else split.path pt = splitbase.path if splitbase.path != "" else "/" url = urllib.parse.urlunsplit( (splitbase.scheme, splitbase.netloc, pt, splitbase.query, frg) ) elif scoped_ref is not None and not split.fragment: pass else: url = self.fetcher.urljoin(base_url, url) if vocab_term and url in self.rvocab: return self.rvocab[url] return url def _add_properties(self, s: str) -> None: for _, _, rng in self.graph.triples((s, RDFS.range, None)): literal = ( str(rng).startswith("http://www.w3.org/2001/XMLSchema#") and str(rng) != "http://www.w3.org/2001/XMLSchema#anyURI" ) or str(rng) == "http://www.w3.org/2000/01/rdf-schema#Literal" if not literal: self.url_fields.add(str(s)) self.foreign_properties.add(str(s)) def add_namespaces(self, ns: Dict[str, str]) -> None: self.vocab.update(ns) def add_schemas(self, ns: Union[List[str], str], base_url: str) -> None: if self.skip_schemas: return for sch in aslist(ns): fetchurl = self.fetcher.urljoin(base_url, sch) if fetchurl not in self.cache or self.cache[fetchurl] is True: _logger.debug("Getting external schema %s", fetchurl) try: content = self.fetch_text(fetchurl) except Exception as e: tb = traceback.format_exception(type(e), e, e.__traceback__) _logger.warning("Could not load extension schema %s: %s", fetchurl, str(e)) _logger.debug(tb) continue newGraph = Graph() err_msg = "unknown error" for fmt in [ guess_format(sch), "xml", "turtle", None, guess_format(sch), ]: try: newGraph.parse(data=content, format=fmt, publicID=str(fetchurl)) self.cache[fetchurl] = newGraph self.graph += newGraph break except ( xml.sax.SAXParseException, TypeError, BadSyntax, ParserError, PluginException, ) as e: err_msg = str(e) else: _logger.warning("Could not load extension schema %s: %s", fetchurl, err_msg) for s, _, _ in self.graph.triples((None, RDF.type, RDF.Property)): self._add_properties(s) for s, _, o in self.graph.triples((None, RDFS.subPropertyOf, None)): self._add_properties(s) self._add_properties(o) for s, _, _ in self.graph.triples((None, RDFS.range, None)): self._add_properties(s) for s, _, _ in self.graph.triples((None, RDF.type, OWL.ObjectProperty)): self._add_properties(s) for s, _, _ in self.graph.triples((None, None, None)): self.idx[str(s)] = None def add_context(self, newcontext: ContextType) -> None: if bool(self.vocab): raise ValidationException("Refreshing context that already has stuff in it") self.url_fields = {"$schemas"} self.scoped_ref_fields.clear() self.vocab_fields.clear() self.identifiers.clear() self.identity_links.clear() self.standalone = set() self.nolinkcheck.clear() self.idmap.clear() self.mapPredicate.clear() self.vocab.clear() self.rvocab.clear() self.type_dsl_fields.clear() self.secondaryFile_dsl_fields.clear() self.subscopes.clear() self.ctx.update(_copy_dict_without_key(newcontext, "@context")) _logger.debug("ctx is %s", self.ctx) for key, value in self.ctx.items(): if value == "@id": self.identifiers.append(key) self.identity_links.add(key) elif isinstance(value, MutableMapping): if value.get("@type") == "@id": self.url_fields.add(key) if "refScope" in value: self.scoped_ref_fields[key] = value["refScope"] if value.get("identity", False): self.identity_links.add(key) if value.get("@type") == "@vocab": self.url_fields.add(key) self.vocab_fields.add(key) if "refScope" in value: self.scoped_ref_fields[key] = value["refScope"] if value.get("typeDSL"): self.type_dsl_fields.add(key) if value.get("secondaryFilesDSL"): self.secondaryFile_dsl_fields.add(key) if value.get("noLinkCheck"): self.nolinkcheck.add(key) if value.get("mapSubject"): self.idmap[key] = value["mapSubject"] if value.get("mapPredicate"): self.mapPredicate[key] = value["mapPredicate"] if value.get("@id"): self.vocab[key] = value["@id"] if value.get("subscope"): self.subscopes[key] = value["subscope"] elif isinstance(value, str): self.vocab[key] = value for k, v in self.vocab.items(): self.rvocab[self.expand_url(v, "", scoped_id=False)] = k self.identifiers.sort() _logger.debug("identifiers is %s", self.identifiers) _logger.debug("identity_links is %s", self.identity_links) _logger.debug("url_fields is %s", self.url_fields) _logger.debug("vocab_fields is %s", self.vocab_fields) _logger.debug("vocab is %s", self.vocab) def resolve_ref( self, ref: ResolveType, base_url: Optional[str] = None, checklinks: bool = True, strict_foreign_properties: bool = False, content_types: Optional[List[str]] = None, # Expected content-types ) -> ResolvedRefType: lref = ref obj: Optional[CommentedMap] = None resolved_obj: ResolveType = None imp = False inc = False mixin: Optional[MutableMapping[str, str]] = None if not base_url: base_url = file_uri(os.getcwd()) + "/" # If `ref` is a dict, look for special directives. if isinstance(lref, CommentedMap): obj = lref if "$import" in obj: if len(obj) == 1: lref = obj["$import"] imp = True obj = None else: raise ValidationException( f"'$import' must be the only field in {obj}", SourceLine(obj, "$import"), ) elif "$include" in obj: if len(obj) == 1: lref = obj["$include"] inc = True obj = None else: raise ValidationException( f"'$include' must be the only field in {obj}", SourceLine(obj, "$include"), ) elif "$mixin" in obj: lref = obj["$mixin"] mixin = obj obj = None else: lref = None for identifier in self.identifiers: if identifier in obj: lref = obj[identifier] break if not lref: raise ValidationException( f"Object {obj!r} does not have identifier field in {self.identifiers}", SourceLine(obj), ) if not isinstance(lref, str): raise ValidationException( f"Expected CommentedMap or string, got {type(lref)}: {lref!r}" ) if isinstance(lref, str) and os.sep == "\\": # Convert Windows path separator in ref lref = lref.replace("\\", "/") url = self.expand_url(lref, base_url, scoped_id=(obj is not None)) # Has this reference been loaded already? if url in self.idx and (not mixin): resolved_obj = self.idx[url] if isinstance(resolved_obj, MutableMapping): metadata: Union[CommentedMap, CommentedSeq, str, None] = self.idx.get( urllib.parse.urldefrag(url)[0], CommentedMap() ) if isinstance(metadata, MutableMapping): if "$graph" in resolved_obj: metadata = _copy_dict_without_key(resolved_obj, "$graph") return resolved_obj["$graph"], metadata else: return resolved_obj, metadata else: raise ValidationException( f"Expected CommentedMap, got {type(metadata)}: {metadata!r}" ) elif isinstance(resolved_obj, MutableSequence): metadata = self.idx.get(urllib.parse.urldefrag(url)[0], CommentedMap()) if isinstance(metadata, MutableMapping): return resolved_obj, metadata else: return resolved_obj, CommentedMap() elif isinstance(resolved_obj, str): return resolved_obj, CommentedMap() else: raise ValidationException( f"Expected MutableMapping or MutableSequence, got " f"{type(resolved_obj)}: {resolved_obj!r}" ) # "$include" directive means load raw text if inc: # Make a note in the index that this was an included string self.idx["include:" + url] = url return self.fetch_text(url), CommentedMap() doc = None if isinstance(obj, MutableMapping): for identifier in self.identifiers: obj[identifier] = url doc_url = url else: # Load structured document doc_url, frg = urllib.parse.urldefrag(url) if doc_url in self.idx and (not mixin): # If the base document is in the index, it was already loaded, # so if we didn't find the reference earlier then it must not # exist. raise SourceLine(self.idx, doc_url, ValidationException).makeError( f"Reference '#{frg}' not found in file {doc_url!r}.", ) doc = self.fetch(doc_url, inject_ids=(not mixin), content_types=content_types) if imp: # Make a note in the index that this was an imported fragment self.idx["import:" + url] = url # Recursively expand urls and resolve directives if bool(mixin): doc = copy.deepcopy(doc) if isinstance(doc, CommentedMap) and mixin is not None: doc.update(mixin) del doc["$mixin"] resolved_obj, metadata = self.resolve_all( doc, base_url, file_base=doc_url, checklinks=checklinks, strict_foreign_properties=strict_foreign_properties, ) else: resolved_obj, metadata = self.resolve_all( doc or obj, doc_url, checklinks=checklinks, strict_foreign_properties=strict_foreign_properties, ) # Requested reference should be in the index now, otherwise it's a bad # reference if not bool(mixin): if url in self.idx: resolved_obj = self.idx[url] else: raise ValidationException( f"Reference {url!r} is not in the index. Index contains: {' '.join(self.idx)}" ) if isinstance(resolved_obj, CommentedMap): if "$graph" in resolved_obj: metadata = _copy_dict_without_key(resolved_obj, "$graph") return resolved_obj["$graph"], metadata else: return resolved_obj, metadata else: return resolved_obj, metadata def _resolve_idmap( self, document: CommentedMap, loader: "Loader", ) -> None: # Convert fields with mapSubject into lists # use mapPredicate if the mapped value isn't a dict. for idmapField in loader.idmap: if idmapField in document: idmapFieldValue = document[idmapField] if ( isinstance(idmapFieldValue, MutableMapping) and "$import" not in idmapFieldValue and "$include" not in idmapFieldValue ): ls = CommentedSeq() for k in sorted(idmapFieldValue.keys()): val = idmapFieldValue[k] v: Optional[CommentedMap] = None if not isinstance(val, CommentedMap): if idmapField in loader.mapPredicate: v = CommentedMap(((loader.mapPredicate[idmapField], val),)) v.lc.add_kv_line_col( loader.mapPredicate[idmapField], document[idmapField].lc.data[k], ) v.lc.filename = document.lc.filename else: raise ValidationException( f"mapSubject {k!r} value {v!r} is not a dict " "and does not have a mapPredicate.", SourceLine(document, idmapField), ) else: v = val v[loader.idmap[idmapField]] = k v.lc.add_kv_line_col( loader.idmap[idmapField], document[idmapField].lc.data[k] ) v.lc.filename = document.lc.filename ls.lc.add_kv_line_col(len(ls), document[idmapField].lc.data[k]) ls.lc.filename = document.lc.filename ls.append(v) document[idmapField] = ls def _type_dsl( self, t: Union[str, CommentedMap, CommentedSeq], lc: LineCol, filename: str, ) -> Union[str, CommentedMap, CommentedSeq]: if not isinstance(t, str): return t t_ = t optional = False if t_.endswith("?"): optional = True t_ = t_[0:-1] if t_.endswith("[]"): salad_versions = [int(v) for v in self.salad_version[1:].split(".")] rest = t_[0:-2] if salad_versions < [1, 3]: if rest.endswith("[]"): # To show the error message with the original type return t else: cmap = CommentedMap((("type", "array"), ("items", rest))) else: items = self._type_dsl(rest, lc, filename) cmap = CommentedMap((("type", "array"), ("items", items))) cmap.lc.add_kv_line_col("type", lc) cmap.lc.add_kv_line_col("items", lc) cmap.lc.filename = filename expanded: Union[str, CommentedMap, CommentedSeq] = cmap else: expanded = t_ if optional: cs = CommentedSeq(["null", expanded]) cs.lc.add_kv_line_col(0, lc) cs.lc.add_kv_line_col(1, lc) cs.lc.filename = filename ret: Union[str, CommentedMap, CommentedSeq] = cs else: ret = expanded return ret def _secondaryFile_dsl( self, t: Union[str, CommentedMap, CommentedSeq], lc: LineCol, filename: str, ) -> Union[str, CommentedMap, CommentedSeq]: if not isinstance(t, str): return t pat = t[0:-1] if t.endswith("?") else t req: Optional[bool] = False if t.endswith("?") else None second = CommentedMap((("pattern", pat), ("required", req))) second.lc.add_kv_line_col("pattern", lc) second.lc.add_kv_line_col("required", lc) second.lc.filename = filename return second def _apply_dsl( self, datum: Union[str, CommentedMap, CommentedSeq], d: str, loader: "Loader", lc: LineCol, filename: str, ) -> Union[str, CommentedMap, CommentedSeq]: if d in loader.type_dsl_fields: return self._type_dsl(datum, lc, filename) if d in loader.secondaryFile_dsl_fields: return self._secondaryFile_dsl(datum, lc, filename) return datum def _resolve_dsl( self, document: CommentedMap, loader: "Loader", ) -> None: fields = list(loader.type_dsl_fields) fields.extend(loader.secondaryFile_dsl_fields) for d in fields: if d in document: datum2 = datum = document[d] if isinstance(datum, str): datum2 = self._apply_dsl( datum, d, loader, document.lc.data[d] if document.lc.data else document.lc, getattr(document.lc, "filename", ""), ) elif isinstance(datum, CommentedSeq): datum2 = CommentedSeq() for n, t in enumerate(datum): if datum.lc and datum.lc.data: datum2.lc.add_kv_line_col(len(datum2), datum.lc.data[n]) datum2.append( self._apply_dsl( t, d, loader, datum.lc.data[n], document.lc.filename ) ) else: datum2.append(self._apply_dsl(t, d, loader, LineCol(), "")) if isinstance(datum2, CommentedSeq): datum3 = CommentedSeq() seen: List[str] = [] for i, item in enumerate(datum2): if isinstance(item, CommentedSeq): for j, v in enumerate(item): if v not in seen: datum3.lc.add_kv_line_col(len(datum3), item.lc.data[j]) datum3.append(v) seen.append(v) else: if item not in seen: if datum2.lc and datum2.lc.data: datum3.lc.add_kv_line_col(len(datum3), datum2.lc.data[i]) datum3.append(item) seen.append(item) document[d] = datum3 else: document[d] = datum2 def _resolve_identifier(self, document: CommentedMap, loader: "Loader", base_url: str) -> str: # Expand identifier field (usually 'id') to resolve scope for identifier in loader.identifiers: if identifier in document: if isinstance(document[identifier], str): document[identifier] = loader.expand_url( document[identifier], base_url, scoped_id=True ) if document[identifier] not in loader.idx or isinstance( loader.idx[document[identifier]], str ): loader.idx[document[identifier]] = document base_url = document[identifier] else: raise ValidationException( f"identifier field {document[identifier]!r} must be a string" ) return base_url def _resolve_identity( self, document: Dict[str, Union[str, MutableSequence[Union[str, CommentedMap]]]], loader: "Loader", base_url: str, ) -> None: # Resolve scope for identity fields (fields where the value is the # identity of a standalone node, such as enum symbols) for identifier in loader.identity_links: if identifier in document and isinstance(document[identifier], MutableSequence): for n, v in enumerate(document[identifier]): if isinstance(v, str): document[identifier][n] = loader.expand_url( # type: ignore v, base_url, scoped_id=True ) if document[identifier][n] not in loader.idx: loader.idx[cast(str, document[identifier][n])] = v def _normalize_fields(self, document: CommentedMap, loader: "Loader") -> None: # Normalize fields which are prefixed or full URIn to vocabulary terms for d in list(document.keys()): if isinstance(d, str): d2 = loader.expand_url(d, "", scoped_id=False, vocab_term=True) if d != d2: document[d2] = document[d] document.lc.add_kv_line_col(d2, document.lc.data[d]) del document[d] def _resolve_uris( self, document: Dict[str, Union[str, MutableSequence[Union[str, CommentedMap]]]], loader: "Loader", base_url: str, ) -> None: # Resolve remaining URLs based on document base for d in loader.url_fields: if d in document: datum = document[d] if isinstance(datum, str): document[d] = loader.expand_url( datum, base_url, scoped_id=False, vocab_term=(d in loader.vocab_fields), scoped_ref=loader.scoped_ref_fields.get(d), ) elif isinstance(datum, MutableSequence): for i, url in enumerate(datum): if isinstance(url, str): datum[i] = loader.expand_url( url, base_url, scoped_id=False, vocab_term=(d in loader.vocab_fields), scoped_ref=loader.scoped_ref_fields.get(d), ) def resolve_all( self, document: ResolveType, base_url: str, file_base: Optional[str] = None, checklinks: bool = True, strict_foreign_properties: bool = False, ) -> ResolvedRefType: loader = self metadata = CommentedMap() if file_base is None: file_base = base_url if isinstance(document, CommentedMap): # Handle $import and $include if "$import" in document or "$include" in document: return self.resolve_ref( document, base_url=file_base, checklinks=checklinks, strict_foreign_properties=strict_foreign_properties, ) if "$mixin" in document: return self.resolve_ref( document, base_url=base_url, checklinks=checklinks, strict_foreign_properties=strict_foreign_properties, ) elif isinstance(document, CommentedSeq): pass elif isinstance(document, (list, dict)): raise ValidationException( f"Expected CommentedMap or CommentedSeq, got {type(document)}: {document!r}" ) else: return (document, metadata) newctx: Optional["Loader"] = None if isinstance(document, CommentedMap): # Handle $base, $profile, $namespaces, $schemas and $graph if "$base" in document: base_url = document["$base"] if "$profile" in document: if newctx is None: newctx = SubLoader(self) newctx.add_namespaces(document.get("$namespaces", CommentedMap())) newctx.add_schemas(document.get("$schemas", []), document["$profile"]) if "$namespaces" in document: if newctx is None: newctx = SubLoader(self) namespaces = document["$namespaces"] if isinstance(namespaces, dict): newctx.add_namespaces(document["$namespaces"]) else: raise ValidationException( "$namespaces must be a dictionary", SourceLine(document, "$namespaces"), ) if "$schemas" in document: if newctx is None: newctx = SubLoader(self) schemas = document["$schemas"] if isinstance(schemas, (list, str)): newctx.add_schemas(schemas, file_base) else: raise ValidationException( "$schemas must be a string or a list of string", SourceLine(document, "$schemas"), ) if newctx is not None: loader = newctx for identifier in loader.identity_links: if identifier in document: if isinstance(document[identifier], str): document[identifier] = loader.expand_url( document[identifier], base_url, scoped_id=True ) loader.idx[document[identifier]] = document metadata = document if "$graph" in document: document = document["$graph"] if isinstance(document, CommentedMap): self._normalize_fields(document, loader) self._resolve_idmap(document, loader) self._resolve_dsl(document, loader) base_url = self._resolve_identifier(document, loader, base_url) self._resolve_identity(document, loader, base_url) self._resolve_uris(document, loader, base_url) try: for key, val in document.items(): subscope: str = "" if key in loader.subscopes: subscope = "/" + loader.subscopes[key] document[key], _ = loader.resolve_all( val, base_url + subscope, file_base=file_base, checklinks=False ) except ValidationException as v: _logger.warning("loader is %s", id(loader), exc_info=True) raise ValidationException( f"({id(loader)}) ({file_base}) Validation error in field {key}:", None, [v], ) from v elif isinstance(document, CommentedSeq): i = 0 try: while i < len(document): val = document[i] if isinstance(val, CommentedMap) and ("$import" in val or "$mixin" in val): l, import_metadata = loader.resolve_ref( val, base_url=file_base, checklinks=False ) metadata.setdefault("$import_metadata", {}) for identifier in loader.identifiers: if identifier in import_metadata: metadata["$import_metadata"][ import_metadata[identifier] ] = import_metadata if isinstance(l, CommentedSeq): lc = document.lc.data[i] del document[i] llen = len(l) for j in range(len(document) + llen, i + llen, -1): document.lc.data[j - 1] = document.lc.data[j - llen] for item in l: document.insert(i, item) document.lc.data[i] = lc i += 1 else: document[i] = l i += 1 else: document[i], _ = loader.resolve_all( val, base_url, file_base=file_base, checklinks=False ) i += 1 except ValidationException as v: _logger.warning("failed", exc_info=True) raise ValidationException( f"({id(loader)}) ({file_base}) Validation error in position {i}:", None, [v], ) from v if checklinks: all_doc_ids: Dict[str, str] = {} loader.validate_links( document, "", all_doc_ids, strict_foreign_properties=strict_foreign_properties, ) return document, metadata def fetch( self, url: str, inject_ids: bool = True, content_types: Optional[List[str]] = None, ) -> IdxResultType: if url in self.idx: return self.idx[url] try: text = self.fetch_text(url, content_types=content_types) textIO = StringIO(text) textIO.name = str(url) yaml = yaml_no_ts() attachments = yaml.load_all(textIO) result = cast(Union[CommentedSeq, CommentedMap], next(attachments)) if self.allow_attachments is not None and self.allow_attachments(result): i = 1 for a in attachments: self.idx[f"{url}#attachment-{i}"] = a i += 1 add_lc_filename(result, url) except MarkedYAMLError as e: raise to_validation_exception(e) from e if isinstance(result, CommentedMap) and inject_ids and bool(self.identifiers): missing_identifier = True for identifier in self.identifiers: if identifier in result: missing_identifier = False self.idx[self.expand_url(result[identifier], url, scoped_id=True)] = result if missing_identifier: result[self.identifiers[0]] = url self.idx[url] = result return result def validate_scoped(self, field: str, link: str, docid: str) -> str: split = urllib.parse.urlsplit(docid) sp = split.fragment.split("/") n = self.scoped_ref_fields[field] while n > 0 and len(sp) > 0: sp.pop() n -= 1 tried = [] while True: sp.append(link) url = urllib.parse.urlunsplit( (split.scheme, split.netloc, split.path, split.query, "/".join(sp)) ) tried.append(url) if url in self.idx: return url sp.pop() if len(sp) == 0: break sp.pop() if onWindows() and link.startswith("file:"): link = link.lower() raise ValidationException( f"Field {field!r} references unknown identifier {link!r}, tried {' '.join(tried)}" ) def validate_link( self, field: str, link: Union[str, CommentedSeq, CommentedMap], # link also can be None, but that results in # mypyc "error: Local variable "link" has inferred type None; add an annotation" docid: str, all_doc_ids: Dict[str, str], ) -> Union[str, CommentedSeq, CommentedMap]: if field in self.nolinkcheck: return link if isinstance(link, str): if field in self.vocab_fields: if link not in self.vocab and link not in self.idx and link not in self.rvocab: if field in self.scoped_ref_fields: return self.validate_scoped(field, link, docid) elif not self.check_exists(link): raise ValidationException( f"Field {field!r} contains undefined reference to {link!r}" ) elif link not in self.idx and link not in self.rvocab: if field in self.scoped_ref_fields: return self.validate_scoped(field, link, docid) elif not self.check_exists(link): raise ValidationException( f"Field {field!r} contains undefined reference to {link!r}" ) elif isinstance(link, CommentedSeq): errors = [] for n, i in enumerate(link): try: link[n] = self.validate_link(field, i, docid, all_doc_ids) except ValidationException as v: errors.append(v) if bool(errors): raise ValidationException("", None, errors) elif isinstance(link, CommentedMap): self.validate_links(link, docid, all_doc_ids) elif link is None: # type: ignore[unreachable] return None else: raise ValidationException( f"{field!r} field is {type(link).__name__}, expected string, list, or a dict." ) return link def getid(self, d: Any) -> Optional[str]: if isinstance(d, MutableMapping): for i in self.identifiers: if i in d: idd = d[i] if isinstance(idd, str): return idd return None def validate_links( self, document: ResolveType, base_url: str, all_doc_ids: Dict[str, str], strict_foreign_properties: bool = False, ) -> None: docid = self.getid(document) or base_url errors: List[SchemaSaladException] = [] iterator: Any = None if isinstance(document, MutableSequence): iterator = enumerate(document) elif isinstance(document, MutableMapping): for d in self.url_fields: try: if d in document and d not in self.identity_links: document[d] = self.validate_link(d, document[d], docid, all_doc_ids) except SchemaSaladException as v: v = v.with_sourceline(SourceLine(document, d, str)) if d == "$schemas" or ( d in self.foreign_properties and not strict_foreign_properties ): _logger.warning(v.as_warning()) else: errors.append(v) # TODO: Validator should local scope only in which # duplicated keys are prohibited. # See also https://github.com/common-workflow-language/common-workflow-language/issues/734 # noqa: B950 # In the future, it should raise # ValidationException instead of _logger.warn try: for identifier in self.identifiers: # validate that each id is defined uniquely if identifier in document: sl = SourceLine(document, identifier, str) if ( document[identifier] in all_doc_ids and sl.makeLead() != all_doc_ids[document[identifier]] ): _logger.warning( "%s object %s %r previously defined", all_doc_ids[document[identifier]], identifier, relname(document[identifier]), ) else: all_doc_ids[document[identifier]] = sl.makeLead() break except ValidationException as v: errors.append(v.with_sourceline(sl)) iterator = list(document.items()) else: return for key, val in iterator: sl = SourceLine(document, key, str) try: self.validate_links( val, docid, all_doc_ids, strict_foreign_properties=strict_foreign_properties, ) except ValidationException as v: if key in self.nolinkcheck or (isinstance(key, str) and ":" in key): _logger.warning(v.as_warning()) else: docid2 = self.getid(val) if docid2 is not None: errors.append( ValidationException(f"checking object {relname(docid2)!r}", sl, [v]) ) else: if isinstance(key, str): errors.append(ValidationException(f"checking field {key!r}", sl, [v])) else: errors.append(ValidationException("checking item", sl, [v])) if bool(errors): if len(errors) > 1: raise ValidationException("", None, errors) raise errors[0] return def _copy_dict_without_key( from_dict: Union[CommentedMap, ContextType], filtered_key: str ) -> CommentedMap: new_dict = CommentedMap(from_dict.items()) if filtered_key in new_dict: del new_dict[filtered_key] if isinstance(from_dict, CommentedMap): new_dict.lc.data = copy.copy(from_dict.lc.data) new_dict.lc.filename = from_dict.lc.filename return new_dict
0.692538
0.106041
import os import shutil import string from io import StringIO from pathlib import Path from typing import ( Any, Dict, List, MutableMapping, MutableSequence, Optional, Set, Union, ) from importlib_resources import files from . import _logger, schema from .codegen_base import CodeGenBase, TypeDef from .exceptions import SchemaException from .java_codegen import _ensure_directory_and_write, _safe_makedirs from .schema import shortname def doc_to_doc_string(doc: Optional[str], indent_level: int = 0) -> str: """Generate a documentation string from a schema salad doc field.""" lead = " " + " " * indent_level + "* " if doc: doc_str = "\n".join([f"{lead}{line}" for line in doc.split("\n")]) else: doc_str = "" return doc_str _string_type_def = TypeDef( name="strtype", init="new _PrimitiveLoader(TypeGuards.String)", instance_type="string", ) _int_type_def = TypeDef( name="inttype", init="new _PrimitiveLoader(TypeGuards.Int)", instance_type="number" ) _float_type_def = TypeDef( name="floattype", init="new _PrimitiveLoader(TypeGuards.Float)", instance_type="number", ) _bool_type_def = TypeDef( name="booltype", init="new _PrimitiveLoader(TypeGuards.Bool)", instance_type="boolean", ) _null_type_def = TypeDef( name="undefinedtype", init="new _PrimitiveLoader(TypeGuards.Undefined)", instance_type="undefined", ) _any_type_def = TypeDef(name="anyType", init="new _AnyLoader()", instance_type="any") prims = { "http://www.w3.org/2001/XMLSchema#string": _string_type_def, "http://www.w3.org/2001/XMLSchema#int": _int_type_def, "http://www.w3.org/2001/XMLSchema#long": _int_type_def, "http://www.w3.org/2001/XMLSchema#float": _float_type_def, "http://www.w3.org/2001/XMLSchema#double": _float_type_def, "http://www.w3.org/2001/XMLSchema#boolean": _bool_type_def, "https://w3id.org/cwl/salad#null": _null_type_def, "https://w3id.org/cwl/salad#Any": _any_type_def, "string": _string_type_def, "int": _int_type_def, "long": _int_type_def, "float": _float_type_def, "double": _float_type_def, "boolean": _bool_type_def, "null": _null_type_def, "Any": _any_type_def, } class TypeScriptCodeGen(CodeGenBase): """Generation of TypeScript code for a given Schema Salad definition.""" def __init__( self, base: str, examples: Optional[str], target: Optional[str], package: str ) -> None: """Initialize the TypeScript codegen.""" super().__init__() self.target_dir = Path(target or ".").resolve() self.main_src_dir = self.target_dir / "src" self.test_resources_dir = self.target_dir / "src" / "test" / "data" self.package = package self.base_uri = base self.record_types: Set[str] = set() self.modules: Set[str] = set() self.id_field = "" self.examples = examples def prologue(self) -> None: """Trigger to generate the prolouge code.""" for src_dir in [self.main_src_dir]: _safe_makedirs(src_dir) for primitive in prims.values(): self.declare_type(primitive) @staticmethod def safe_name(name: str) -> str: """Generate a safe version of the given name.""" avn = schema.avro_field_name(name) if avn.startswith("anon."): avn = avn[5:] if avn in ( "class", "in", "extends", "abstract", "default", "package", "arguments", ): # reserved words avn = avn + "_" return avn def begin_class( self, # pylint: disable=too-many-arguments classname: str, extends: MutableSequence[str], doc: str, abstract: bool, field_names: MutableSequence[str], idfield: str, optional_fields: Set[str], ) -> None: """Produce the header for the given class.""" self.current_interface = self.safe_name(classname) + "Properties" cls = self.safe_name(classname) self.current_class = cls self.current_class_is_abstract = abstract interface_module_name = self.current_interface self.current_interface_target_file = self.main_src_dir / f"{interface_module_name}.ts" class_module_name = self.current_class self.current_class_target_file = self.main_src_dir / f"{class_module_name}.ts" self.current_constructor_signature = StringIO() self.current_constructor_body = StringIO() self.current_loader = StringIO() self.current_serializer = StringIO() self.current_fieldtypes: Dict[str, TypeDef] = {} self.idfield = idfield doc_string = f""" /** * Auto-generated interface for {classname} """ if doc: doc_string += " *\n" doc_string += doc_to_doc_string(doc) doc_string += "\n" doc_string += " */" self.record_types.add(f"{self.current_interface}") self.modules.add(interface_module_name) with open(self.current_interface_target_file, "w") as f: _logger.info("Writing file: %s", self.current_interface_target_file) if extends: ext = "extends Internal." + ", Internal.".join( self.safe_name(e) + "Properties" for e in extends ) else: ext = "" f.write( """ import * as Internal from './util/Internal' {docstring} export interface {cls} {ext} {{ """.format( docstring=doc_string, cls=f"{self.current_interface}", ext=ext, ) ) if self.current_class_is_abstract: return self.record_types.add(cls) self.modules.add(class_module_name) with open(self.current_interface_target_file, "a") as f: f.write( """ extensionFields?: Internal.Dictionary<any> """ ) doc_string = f""" /** * Auto-generated class implementation for {classname} """ if doc: doc_string += " *\n" doc_string += doc_to_doc_string(doc) doc_string += "\n" doc_string += " */" with open(self.current_class_target_file, "w") as f: _logger.info("Writing file: %s", self.current_class_target_file) f.write( """ import {{ Dictionary, expandUrl, loadField, LoaderInstances, LoadingOptions, Saveable, ValidationException, prefixUrl, save, saveRelativeUri }} from './util/Internal' import {{ v4 as uuidv4 }} from 'uuid' import * as Internal from './util/Internal' {docstring} export class {cls} extends Saveable implements Internal.{current_interface} {{ extensionFields?: Internal.Dictionary<any> """.format( cls=cls, current_interface=self.current_interface, docstring=doc_string, ) ) self.current_constructor_signature.write( "\n" + "\n" + " constructor ({loadingOptions, extensionFields" ) self.current_constructor_body.write( """ super(loadingOptions) this.extensionFields = extensionFields ?? {} """ ) self.current_loader.write( """ /** * Used to construct instances of {{@link {cls} }}. * * @param __doc Document fragment to load this record object from. * @param baseuri Base URI to generate child document IDs against. * @param loadingOptions Context for loading URIs and populating objects. * @param docRoot ID at this position in the document (if available) * @returns An instance of {{@link {cls} }} * @throws {{@link ValidationException}} If the document fragment is not a * {{@link Dictionary}} or validation of fields fails. */ static override async fromDoc (__doc: any, baseuri: string, loadingOptions: LoadingOptions, docRoot?: string): Promise<Saveable> {{ const _doc = Object.assign({{}}, __doc) const __errors: ValidationException[] = [] """.format( cls=cls ) ) self.current_serializer.write( """ save (top: boolean = false, baseUrl: string = '', relativeUris: boolean = true) : Dictionary<any> { const r: Dictionary<any> = {} for (const ef in this.extensionFields) { r[prefixUrl(ef, this.loadingOptions.vocab)] = this.extensionFields.ef } """ ) def end_class(self, classname: str, field_names: List[str]) -> None: """Signal that we are done with this class.""" with open(self.current_interface_target_file, "a") as f: f.write("}") if self.current_class_is_abstract: return self.current_constructor_signature.write( f"}} : {{loadingOptions?: LoadingOptions}} & Internal.{self.current_interface}) {{" ) self.current_constructor_body.write(" }\n") self.current_loader.write( """ const extensionFields: Dictionary<any> = {{}} for (const [key, value] of Object.entries(_doc)) {{ if (!{classname}.attr.has(key)) {{ if ((key as string).includes(':')) {{ const ex = expandUrl(key, '', loadingOptions, false, false) extensionFields[ex] = value }} else {{ __errors.push( new ValidationException(`invalid field ${{key as string}}, \\ expected one of: {fields}`) ) break }} }} }} if (__errors.length > 0) {{ throw new ValidationException("Trying '{classname}'", __errors) }} const schema = new {classname}({{ extensionFields: extensionFields, loadingOptions: loadingOptions, """.format( classname=self.current_class, fields=",".join(["\\`" + f + "\\`" for f in field_names]), ) ) self.current_loader.write( ",\n ".join(self.safe_name(f) + ": " + self.safe_name(f) for f in field_names) + "\n })" ) self.current_loader.write( """ return schema } """ ) self.current_serializer.write( """ if (top) { if (this.loadingOptions.namespaces != null) { r.$namespaces = this.loadingOptions.namespaces } if (this.loadingOptions.schemas != null) { r.$schemas = this.loadingOptions.schemas } } return r } """ ) with open( self.current_class_target_file, "a", ) as f: f.write(self.current_constructor_signature.getvalue()) f.write(self.current_constructor_body.getvalue()) f.write(self.current_loader.getvalue()) f.write(self.current_serializer.getvalue()) f.write( "\n" + " static attr: Set<string> = new Set([" + ",".join(["'" + shortname(f) + "'" for f in field_names]) + "])" ) f.write( """ } """ ) def type_loader(self, type_declaration: Union[List[Any], Dict[str, Any], str]) -> TypeDef: """Parse the given type declaration and declare its components.""" if isinstance(type_declaration, MutableSequence): sub_types = [self.type_loader(i) for i in type_declaration] sub_names: List[str] = list(dict.fromkeys([i.name for i in sub_types])) sub_instance_types: List[str] = list( dict.fromkeys([i.instance_type for i in sub_types if i.instance_type is not None]) ) return self.declare_type( TypeDef( "unionOf{}".format("Or".join(sub_names)), "new _UnionLoader([{}])".format(", ".join(sub_names)), instance_type=" | ".join(sub_instance_types), ) ) if isinstance(type_declaration, MutableMapping): if type_declaration["type"] in ( "array", "https://w3id.org/cwl/salad#array", ): i = self.type_loader(type_declaration["items"]) return self.declare_type( TypeDef( f"arrayOf{i.name}", f"new _ArrayLoader([{i.name}])", instance_type=f"Array<{i.instance_type}>", ) ) if type_declaration["type"] in ("enum", "https://w3id.org/cwl/salad#enum"): return self.type_loader_enum(type_declaration) if type_declaration["type"] in ( "record", "https://w3id.org/cwl/salad#record", ): return self.declare_type( TypeDef( self.safe_name(type_declaration["name"]) + "Loader", "new _RecordLoader({}.fromDoc)".format( self.safe_name(type_declaration["name"]), ), instance_type="Internal." + self.safe_name(type_declaration["name"]), abstract=type_declaration.get("abstract", False), ) ) raise SchemaException("wft {}".format(type_declaration["type"])) if type_declaration in prims: return prims[type_declaration] if type_declaration in ("Expression", "https://w3id.org/cwl/cwl#Expression"): return self.declare_type( TypeDef( self.safe_name(type_declaration) + "Loader", "new _ExpressionLoader()", instance_type="string", ) ) return self.collected_types[self.safe_name(type_declaration) + "Loader"] def type_loader_enum(self, type_declaration: Dict[str, Any]) -> TypeDef: for sym in type_declaration["symbols"]: self.add_vocab(shortname(sym), sym) enum_name = self.safe_name(type_declaration["name"]) enum_module_name = enum_name enum_path = self.main_src_dir / f"{enum_module_name}.ts" self.modules.add(enum_module_name) self.record_types.add(enum_name) with open(enum_path, "w") as f: _logger.info("Writing file: %s", enum_path) f.write( """ export enum {enum_name} {{ """.format( enum_name=enum_name ) ) for sym in type_declaration["symbols"]: val = self.safe_name(sym) const = self.safe_name(sym).replace("-", "_").replace(".", "_").upper() f.write(f""" {const}='{val}',\n""") # noqa: B907 f.write( """} """ ) return self.declare_type( TypeDef( instance_type="Internal." + enum_name, name=self.safe_name(type_declaration["name"]) + "Loader", init=f"new _EnumLoader((Object.keys({enum_name}) as Array<keyof typeof " f"{enum_name}>).map(key => {enum_name}[key]))", ) ) def declare_field( self, name: str, fieldtype: TypeDef, doc: Optional[str], optional: bool, subscope: str, ) -> None: """Output the code to load the given field.""" safename = self.safe_name(name) fieldname = shortname(name) self.current_fieldtypes[safename] = fieldtype if fieldtype.instance_type is not None and "undefined" in fieldtype.instance_type: optionalstring = "?" else: optionalstring = "" with open(self.current_interface_target_file, "a") as f: if doc: f.write( """ /** {doc_str} */ """.format( doc_str=doc_to_doc_string(doc, indent_level=1) ) ) if fieldname == "class": f.write( " {safename}{optionalstring}: {type}\n".format( safename=safename, type=fieldtype.instance_type, optionalstring="?", ) ) else: f.write( " {safename}{optionalstring}: {type}\n".format( safename=safename, type=fieldtype.instance_type, optionalstring=optionalstring, ) ) if self.current_class_is_abstract: return with open(self.current_class_target_file, "a") as f: if doc: f.write( """ /** {doc_str} */ """.format( doc_str=doc_to_doc_string(doc, indent_level=1) ) ) f.write( " {safename}{optionalstring}: {type}\n".format( safename=safename, type=fieldtype.instance_type, optionalstring=optionalstring, ) ) if fieldname == "class": if fieldtype.instance_type == "string": self.current_constructor_signature.write( f", {safename} = '{self.current_class}'" # noqa: B907 ) else: self.current_constructor_signature.write( ", {safename} = {type}.{val}".format( safename=safename, type=fieldtype.instance_type, val=self.current_class.replace("-", "_").replace(".", "_").upper(), ) ) else: self.current_constructor_signature.write( ", {safename}".format( safename=safename, ) ) self.current_constructor_body.write( " this.{safeName} = {safeName}\n".format(safeName=safename) ) self.current_loader.write( """ let {safename}""".format( safename=safename ) ) if optional: self.current_loader.write( """ if ('{fieldname}' in _doc) {{""".format( fieldname=fieldname ) ) spc = " " else: spc = "" self.current_loader.write( """ {spc} try {{ {spc} {safename} = await loadField(_doc.{fieldname}, LoaderInstances.{fieldtype}, {spc} baseuri, loadingOptions) {spc} }} catch (e) {{ {spc} if (e instanceof ValidationException) {{ {spc} __errors.push( {spc} new ValidationException('the `{fieldname}` field is not valid because: ', [e]) {spc} ) {spc} }} else {{ {spc} throw e {spc} }} {spc} }} """.format( safename=safename, fieldname=fieldname, fieldtype=fieldtype.name, spc=spc, ) ) if optional: self.current_loader.write(" }\n") if name == self.idfield or not self.idfield: baseurl = "baseUrl" else: baseurl = f"this.{self.safe_name(self.idfield)}" if fieldtype.is_uri: self.current_serializer.write( """ if (this.{safename} != null) {{ const u = saveRelativeUri(this.{safename}, {base_url}, {scoped_id}, relativeUris, {ref_scope}) if (u != null) {{ r.{fieldname} = u }} }} """.format( safename=self.safe_name(name), fieldname=shortname(name).strip(), base_url=baseurl, scoped_id=self.to_typescript(fieldtype.scoped_id), ref_scope=self.to_typescript(fieldtype.ref_scope), ) ) else: self.current_serializer.write( """ if (this.{safename} != null) {{ r.{fieldname} = save(this.{safename}, false, {base_url}, relativeUris) }} """.format( safename=self.safe_name(name), fieldname=shortname(name).strip(), base_url=baseurl, ) ) def declare_id_field( self, name: str, fieldtype: TypeDef, doc: str, optional: bool, ) -> None: """Output the code to handle the given ID field.""" self.declare_field(name, fieldtype, doc, True, "") if optional: opt = f"""{self.safe_name(name)} = "_" + uuidv4()""" else: opt = """throw new ValidationException("Missing {fieldname}")""".format( fieldname=shortname(name) ) self.current_loader.write( """ const original{safename}IsUndefined = ({safename} === undefined) if (original{safename}IsUndefined ) {{ if (docRoot != null) {{ {safename} = docRoot }} else {{ {opt} }} }} else {{ baseuri = {safename} as string }} """.format( safename=self.safe_name(name), opt=opt ) ) def to_typescript(self, val: Any) -> Any: """Convert a Python keyword to a TypeScript keyword.""" if val is True: return "true" elif val is None: return "undefined" elif val is False: return "false" return val def uri_loader( self, inner: TypeDef, scoped_id: bool, vocab_term: bool, ref_scope: Optional[int], ) -> TypeDef: """Construct the TypeDef for the given URI loader.""" instance_type = inner.instance_type or "any" return self.declare_type( TypeDef( f"uri{inner.name}{scoped_id}{vocab_term}{ref_scope}", "new _URILoader({}, {}, {}, {})".format( inner.name, self.to_typescript(scoped_id), self.to_typescript(vocab_term), self.to_typescript(ref_scope), ), is_uri=True, scoped_id=scoped_id, ref_scope=ref_scope, instance_type=instance_type, ) ) def idmap_loader( self, field: str, inner: TypeDef, map_subject: str, map_predicate: Optional[str] ) -> TypeDef: """Construct the TypeDef for the given mapped ID loader.""" instance_type = inner.instance_type or "any" return self.declare_type( TypeDef( f"idmap{self.safe_name(field)}{inner.name}", f"new _IdMapLoader({inner.name}, '{map_subject}', '{map_predicate}')", # noqa: B907 instance_type=instance_type, ) ) def typedsl_loader(self, inner: TypeDef, ref_scope: Optional[int]) -> TypeDef: """Construct the TypeDef for the given DSL loader.""" instance_type = inner.instance_type or "any" return self.declare_type( TypeDef( f"typedsl{self.safe_name(inner.name)}{ref_scope}", f"new _TypeDSLLoader({self.safe_name(inner.name)}, {ref_scope})", instance_type=instance_type, ) ) def epilogue(self, root_loader: TypeDef) -> None: """Trigger to generate the epilouge code.""" pd = "This project contains TypeScript objects and utilities " pd = pd + ' auto-generated by <a href=\\"https://github.com/' pd = pd + 'common-workflow-language/schema_salad\\">Schema Salad</a>' pd = pd + " for parsing documents corresponding to the " pd = pd + str(self.base_uri) + " schema." sorted_record_types = sorted(self.record_types) generated_class_imports = ",\n ".join(sorted_record_types) template_vars: MutableMapping[str, str] = dict( project_name=self.package, version="0.0.1-SNAPSHOT", project_description=pd, license_name="Apache License, Version 2.0", generated_class_imports=generated_class_imports, ) def template_from_resource(resource: Path) -> string.Template: template_str = resource.read_text("utf-8") template = string.Template(template_str) return template def expand_resource_template_to(resource: str, path: Path) -> None: template = template_from_resource( files("schema_salad").joinpath(f"typescript/{resource}") ) src = template.safe_substitute(template_vars) _ensure_directory_and_write(path, src) expand_resource_template_to("package.json", self.target_dir / "package.json") expand_resource_template_to(".gitignore", self.target_dir / ".gitignore") expand_resource_template_to("LICENSE", self.target_dir / "LICENSE") expand_resource_template_to("tsconfig.json", self.target_dir / "tsconfig.json") expand_resource_template_to("index.ts", self.main_src_dir / "index.ts") vocab = ",\n ".join( f"""'{k}': '{self.vocab[k]}'""" for k in sorted(self.vocab.keys()) # noqa: B907 ) rvocab = ",\n ".join( f"""'{self.vocab[k]}': '{k}'""" for k in sorted(self.vocab.keys()) # noqa: B907 ) loader_instances = "" for _, collected_type in self.collected_types.items(): if not collected_type.abstract: loader_instances += "export const {} = {};\n".format( collected_type.name, collected_type.init ) sorted_modules = sorted(self.modules) internal_module_exports = "\n".join(f"export * from '../{f}'" for f in sorted_modules) example_tests = "" if self.examples: _safe_makedirs(self.test_resources_dir) utils_resources = self.test_resources_dir / "examples" if os.path.exists(utils_resources): shutil.rmtree(utils_resources) shutil.copytree(self.examples, utils_resources) for example_name in os.listdir(self.examples): if example_name.startswith("valid"): basename = os.path.basename(example_name).rsplit(".", 1)[0] example_tests += """ it('{basename}', async () => {{ await loadDocument(__dirname + '/data/examples/{example_name}') }}) it('{basename} by string', async () => {{ let doc = fs.readFileSync(__dirname + '/data/examples/{example_name}').toString() await loadDocumentByString(doc, url.pathToFileURL(__dirname + '/data/examples/').toString()) }})""".format( basename=basename.replace("-", "_").replace(".", "_"), example_name=example_name, ) template_args: MutableMapping[str, str] = dict( internal_module_exports=internal_module_exports, loader_instances=loader_instances, generated_class_imports=generated_class_imports, vocab=vocab, rvocab=rvocab, root_loader=root_loader.name, root_loader_type=root_loader.instance_type or "any", tests=example_tests, ) util_src_dirs = { "util": self.main_src_dir / "util", "test": self.main_src_dir / "test", } def copy_utils_recursive(util_src: str, util_target: Path) -> None: for util in files("schema_salad").joinpath(f"typescript/{util_src}").iterdir(): if util.is_dir(): copy_utils_recursive(os.path.join(util_src, util.name), util_target / util.name) continue src_path = util_target / util.name src_template = template_from_resource(util) src = src_template.safe_substitute(template_args) _ensure_directory_and_write(src_path, src) for util_src, util_target in util_src_dirs.items(): copy_utils_recursive(util_src, util_target) def secondaryfilesdsl_loader(self, inner: TypeDef) -> TypeDef: """Construct the TypeDef for secondary files.""" instance_type = inner.instance_type or "any" return self.declare_type( TypeDef( f"secondaryfilesdsl{inner.name}", f"new _SecondaryDSLLoader({inner.name})", instance_type=instance_type, ) )
schema-salad
/schema-salad-8.4.20230808163024.tar.gz/schema-salad-8.4.20230808163024/schema_salad/typescript_codegen.py
typescript_codegen.py
import os import shutil import string from io import StringIO from pathlib import Path from typing import ( Any, Dict, List, MutableMapping, MutableSequence, Optional, Set, Union, ) from importlib_resources import files from . import _logger, schema from .codegen_base import CodeGenBase, TypeDef from .exceptions import SchemaException from .java_codegen import _ensure_directory_and_write, _safe_makedirs from .schema import shortname def doc_to_doc_string(doc: Optional[str], indent_level: int = 0) -> str: """Generate a documentation string from a schema salad doc field.""" lead = " " + " " * indent_level + "* " if doc: doc_str = "\n".join([f"{lead}{line}" for line in doc.split("\n")]) else: doc_str = "" return doc_str _string_type_def = TypeDef( name="strtype", init="new _PrimitiveLoader(TypeGuards.String)", instance_type="string", ) _int_type_def = TypeDef( name="inttype", init="new _PrimitiveLoader(TypeGuards.Int)", instance_type="number" ) _float_type_def = TypeDef( name="floattype", init="new _PrimitiveLoader(TypeGuards.Float)", instance_type="number", ) _bool_type_def = TypeDef( name="booltype", init="new _PrimitiveLoader(TypeGuards.Bool)", instance_type="boolean", ) _null_type_def = TypeDef( name="undefinedtype", init="new _PrimitiveLoader(TypeGuards.Undefined)", instance_type="undefined", ) _any_type_def = TypeDef(name="anyType", init="new _AnyLoader()", instance_type="any") prims = { "http://www.w3.org/2001/XMLSchema#string": _string_type_def, "http://www.w3.org/2001/XMLSchema#int": _int_type_def, "http://www.w3.org/2001/XMLSchema#long": _int_type_def, "http://www.w3.org/2001/XMLSchema#float": _float_type_def, "http://www.w3.org/2001/XMLSchema#double": _float_type_def, "http://www.w3.org/2001/XMLSchema#boolean": _bool_type_def, "https://w3id.org/cwl/salad#null": _null_type_def, "https://w3id.org/cwl/salad#Any": _any_type_def, "string": _string_type_def, "int": _int_type_def, "long": _int_type_def, "float": _float_type_def, "double": _float_type_def, "boolean": _bool_type_def, "null": _null_type_def, "Any": _any_type_def, } class TypeScriptCodeGen(CodeGenBase): """Generation of TypeScript code for a given Schema Salad definition.""" def __init__( self, base: str, examples: Optional[str], target: Optional[str], package: str ) -> None: """Initialize the TypeScript codegen.""" super().__init__() self.target_dir = Path(target or ".").resolve() self.main_src_dir = self.target_dir / "src" self.test_resources_dir = self.target_dir / "src" / "test" / "data" self.package = package self.base_uri = base self.record_types: Set[str] = set() self.modules: Set[str] = set() self.id_field = "" self.examples = examples def prologue(self) -> None: """Trigger to generate the prolouge code.""" for src_dir in [self.main_src_dir]: _safe_makedirs(src_dir) for primitive in prims.values(): self.declare_type(primitive) @staticmethod def safe_name(name: str) -> str: """Generate a safe version of the given name.""" avn = schema.avro_field_name(name) if avn.startswith("anon."): avn = avn[5:] if avn in ( "class", "in", "extends", "abstract", "default", "package", "arguments", ): # reserved words avn = avn + "_" return avn def begin_class( self, # pylint: disable=too-many-arguments classname: str, extends: MutableSequence[str], doc: str, abstract: bool, field_names: MutableSequence[str], idfield: str, optional_fields: Set[str], ) -> None: """Produce the header for the given class.""" self.current_interface = self.safe_name(classname) + "Properties" cls = self.safe_name(classname) self.current_class = cls self.current_class_is_abstract = abstract interface_module_name = self.current_interface self.current_interface_target_file = self.main_src_dir / f"{interface_module_name}.ts" class_module_name = self.current_class self.current_class_target_file = self.main_src_dir / f"{class_module_name}.ts" self.current_constructor_signature = StringIO() self.current_constructor_body = StringIO() self.current_loader = StringIO() self.current_serializer = StringIO() self.current_fieldtypes: Dict[str, TypeDef] = {} self.idfield = idfield doc_string = f""" /** * Auto-generated interface for {classname} """ if doc: doc_string += " *\n" doc_string += doc_to_doc_string(doc) doc_string += "\n" doc_string += " */" self.record_types.add(f"{self.current_interface}") self.modules.add(interface_module_name) with open(self.current_interface_target_file, "w") as f: _logger.info("Writing file: %s", self.current_interface_target_file) if extends: ext = "extends Internal." + ", Internal.".join( self.safe_name(e) + "Properties" for e in extends ) else: ext = "" f.write( """ import * as Internal from './util/Internal' {docstring} export interface {cls} {ext} {{ """.format( docstring=doc_string, cls=f"{self.current_interface}", ext=ext, ) ) if self.current_class_is_abstract: return self.record_types.add(cls) self.modules.add(class_module_name) with open(self.current_interface_target_file, "a") as f: f.write( """ extensionFields?: Internal.Dictionary<any> """ ) doc_string = f""" /** * Auto-generated class implementation for {classname} """ if doc: doc_string += " *\n" doc_string += doc_to_doc_string(doc) doc_string += "\n" doc_string += " */" with open(self.current_class_target_file, "w") as f: _logger.info("Writing file: %s", self.current_class_target_file) f.write( """ import {{ Dictionary, expandUrl, loadField, LoaderInstances, LoadingOptions, Saveable, ValidationException, prefixUrl, save, saveRelativeUri }} from './util/Internal' import {{ v4 as uuidv4 }} from 'uuid' import * as Internal from './util/Internal' {docstring} export class {cls} extends Saveable implements Internal.{current_interface} {{ extensionFields?: Internal.Dictionary<any> """.format( cls=cls, current_interface=self.current_interface, docstring=doc_string, ) ) self.current_constructor_signature.write( "\n" + "\n" + " constructor ({loadingOptions, extensionFields" ) self.current_constructor_body.write( """ super(loadingOptions) this.extensionFields = extensionFields ?? {} """ ) self.current_loader.write( """ /** * Used to construct instances of {{@link {cls} }}. * * @param __doc Document fragment to load this record object from. * @param baseuri Base URI to generate child document IDs against. * @param loadingOptions Context for loading URIs and populating objects. * @param docRoot ID at this position in the document (if available) * @returns An instance of {{@link {cls} }} * @throws {{@link ValidationException}} If the document fragment is not a * {{@link Dictionary}} or validation of fields fails. */ static override async fromDoc (__doc: any, baseuri: string, loadingOptions: LoadingOptions, docRoot?: string): Promise<Saveable> {{ const _doc = Object.assign({{}}, __doc) const __errors: ValidationException[] = [] """.format( cls=cls ) ) self.current_serializer.write( """ save (top: boolean = false, baseUrl: string = '', relativeUris: boolean = true) : Dictionary<any> { const r: Dictionary<any> = {} for (const ef in this.extensionFields) { r[prefixUrl(ef, this.loadingOptions.vocab)] = this.extensionFields.ef } """ ) def end_class(self, classname: str, field_names: List[str]) -> None: """Signal that we are done with this class.""" with open(self.current_interface_target_file, "a") as f: f.write("}") if self.current_class_is_abstract: return self.current_constructor_signature.write( f"}} : {{loadingOptions?: LoadingOptions}} & Internal.{self.current_interface}) {{" ) self.current_constructor_body.write(" }\n") self.current_loader.write( """ const extensionFields: Dictionary<any> = {{}} for (const [key, value] of Object.entries(_doc)) {{ if (!{classname}.attr.has(key)) {{ if ((key as string).includes(':')) {{ const ex = expandUrl(key, '', loadingOptions, false, false) extensionFields[ex] = value }} else {{ __errors.push( new ValidationException(`invalid field ${{key as string}}, \\ expected one of: {fields}`) ) break }} }} }} if (__errors.length > 0) {{ throw new ValidationException("Trying '{classname}'", __errors) }} const schema = new {classname}({{ extensionFields: extensionFields, loadingOptions: loadingOptions, """.format( classname=self.current_class, fields=",".join(["\\`" + f + "\\`" for f in field_names]), ) ) self.current_loader.write( ",\n ".join(self.safe_name(f) + ": " + self.safe_name(f) for f in field_names) + "\n })" ) self.current_loader.write( """ return schema } """ ) self.current_serializer.write( """ if (top) { if (this.loadingOptions.namespaces != null) { r.$namespaces = this.loadingOptions.namespaces } if (this.loadingOptions.schemas != null) { r.$schemas = this.loadingOptions.schemas } } return r } """ ) with open( self.current_class_target_file, "a", ) as f: f.write(self.current_constructor_signature.getvalue()) f.write(self.current_constructor_body.getvalue()) f.write(self.current_loader.getvalue()) f.write(self.current_serializer.getvalue()) f.write( "\n" + " static attr: Set<string> = new Set([" + ",".join(["'" + shortname(f) + "'" for f in field_names]) + "])" ) f.write( """ } """ ) def type_loader(self, type_declaration: Union[List[Any], Dict[str, Any], str]) -> TypeDef: """Parse the given type declaration and declare its components.""" if isinstance(type_declaration, MutableSequence): sub_types = [self.type_loader(i) for i in type_declaration] sub_names: List[str] = list(dict.fromkeys([i.name for i in sub_types])) sub_instance_types: List[str] = list( dict.fromkeys([i.instance_type for i in sub_types if i.instance_type is not None]) ) return self.declare_type( TypeDef( "unionOf{}".format("Or".join(sub_names)), "new _UnionLoader([{}])".format(", ".join(sub_names)), instance_type=" | ".join(sub_instance_types), ) ) if isinstance(type_declaration, MutableMapping): if type_declaration["type"] in ( "array", "https://w3id.org/cwl/salad#array", ): i = self.type_loader(type_declaration["items"]) return self.declare_type( TypeDef( f"arrayOf{i.name}", f"new _ArrayLoader([{i.name}])", instance_type=f"Array<{i.instance_type}>", ) ) if type_declaration["type"] in ("enum", "https://w3id.org/cwl/salad#enum"): return self.type_loader_enum(type_declaration) if type_declaration["type"] in ( "record", "https://w3id.org/cwl/salad#record", ): return self.declare_type( TypeDef( self.safe_name(type_declaration["name"]) + "Loader", "new _RecordLoader({}.fromDoc)".format( self.safe_name(type_declaration["name"]), ), instance_type="Internal." + self.safe_name(type_declaration["name"]), abstract=type_declaration.get("abstract", False), ) ) raise SchemaException("wft {}".format(type_declaration["type"])) if type_declaration in prims: return prims[type_declaration] if type_declaration in ("Expression", "https://w3id.org/cwl/cwl#Expression"): return self.declare_type( TypeDef( self.safe_name(type_declaration) + "Loader", "new _ExpressionLoader()", instance_type="string", ) ) return self.collected_types[self.safe_name(type_declaration) + "Loader"] def type_loader_enum(self, type_declaration: Dict[str, Any]) -> TypeDef: for sym in type_declaration["symbols"]: self.add_vocab(shortname(sym), sym) enum_name = self.safe_name(type_declaration["name"]) enum_module_name = enum_name enum_path = self.main_src_dir / f"{enum_module_name}.ts" self.modules.add(enum_module_name) self.record_types.add(enum_name) with open(enum_path, "w") as f: _logger.info("Writing file: %s", enum_path) f.write( """ export enum {enum_name} {{ """.format( enum_name=enum_name ) ) for sym in type_declaration["symbols"]: val = self.safe_name(sym) const = self.safe_name(sym).replace("-", "_").replace(".", "_").upper() f.write(f""" {const}='{val}',\n""") # noqa: B907 f.write( """} """ ) return self.declare_type( TypeDef( instance_type="Internal." + enum_name, name=self.safe_name(type_declaration["name"]) + "Loader", init=f"new _EnumLoader((Object.keys({enum_name}) as Array<keyof typeof " f"{enum_name}>).map(key => {enum_name}[key]))", ) ) def declare_field( self, name: str, fieldtype: TypeDef, doc: Optional[str], optional: bool, subscope: str, ) -> None: """Output the code to load the given field.""" safename = self.safe_name(name) fieldname = shortname(name) self.current_fieldtypes[safename] = fieldtype if fieldtype.instance_type is not None and "undefined" in fieldtype.instance_type: optionalstring = "?" else: optionalstring = "" with open(self.current_interface_target_file, "a") as f: if doc: f.write( """ /** {doc_str} */ """.format( doc_str=doc_to_doc_string(doc, indent_level=1) ) ) if fieldname == "class": f.write( " {safename}{optionalstring}: {type}\n".format( safename=safename, type=fieldtype.instance_type, optionalstring="?", ) ) else: f.write( " {safename}{optionalstring}: {type}\n".format( safename=safename, type=fieldtype.instance_type, optionalstring=optionalstring, ) ) if self.current_class_is_abstract: return with open(self.current_class_target_file, "a") as f: if doc: f.write( """ /** {doc_str} */ """.format( doc_str=doc_to_doc_string(doc, indent_level=1) ) ) f.write( " {safename}{optionalstring}: {type}\n".format( safename=safename, type=fieldtype.instance_type, optionalstring=optionalstring, ) ) if fieldname == "class": if fieldtype.instance_type == "string": self.current_constructor_signature.write( f", {safename} = '{self.current_class}'" # noqa: B907 ) else: self.current_constructor_signature.write( ", {safename} = {type}.{val}".format( safename=safename, type=fieldtype.instance_type, val=self.current_class.replace("-", "_").replace(".", "_").upper(), ) ) else: self.current_constructor_signature.write( ", {safename}".format( safename=safename, ) ) self.current_constructor_body.write( " this.{safeName} = {safeName}\n".format(safeName=safename) ) self.current_loader.write( """ let {safename}""".format( safename=safename ) ) if optional: self.current_loader.write( """ if ('{fieldname}' in _doc) {{""".format( fieldname=fieldname ) ) spc = " " else: spc = "" self.current_loader.write( """ {spc} try {{ {spc} {safename} = await loadField(_doc.{fieldname}, LoaderInstances.{fieldtype}, {spc} baseuri, loadingOptions) {spc} }} catch (e) {{ {spc} if (e instanceof ValidationException) {{ {spc} __errors.push( {spc} new ValidationException('the `{fieldname}` field is not valid because: ', [e]) {spc} ) {spc} }} else {{ {spc} throw e {spc} }} {spc} }} """.format( safename=safename, fieldname=fieldname, fieldtype=fieldtype.name, spc=spc, ) ) if optional: self.current_loader.write(" }\n") if name == self.idfield or not self.idfield: baseurl = "baseUrl" else: baseurl = f"this.{self.safe_name(self.idfield)}" if fieldtype.is_uri: self.current_serializer.write( """ if (this.{safename} != null) {{ const u = saveRelativeUri(this.{safename}, {base_url}, {scoped_id}, relativeUris, {ref_scope}) if (u != null) {{ r.{fieldname} = u }} }} """.format( safename=self.safe_name(name), fieldname=shortname(name).strip(), base_url=baseurl, scoped_id=self.to_typescript(fieldtype.scoped_id), ref_scope=self.to_typescript(fieldtype.ref_scope), ) ) else: self.current_serializer.write( """ if (this.{safename} != null) {{ r.{fieldname} = save(this.{safename}, false, {base_url}, relativeUris) }} """.format( safename=self.safe_name(name), fieldname=shortname(name).strip(), base_url=baseurl, ) ) def declare_id_field( self, name: str, fieldtype: TypeDef, doc: str, optional: bool, ) -> None: """Output the code to handle the given ID field.""" self.declare_field(name, fieldtype, doc, True, "") if optional: opt = f"""{self.safe_name(name)} = "_" + uuidv4()""" else: opt = """throw new ValidationException("Missing {fieldname}")""".format( fieldname=shortname(name) ) self.current_loader.write( """ const original{safename}IsUndefined = ({safename} === undefined) if (original{safename}IsUndefined ) {{ if (docRoot != null) {{ {safename} = docRoot }} else {{ {opt} }} }} else {{ baseuri = {safename} as string }} """.format( safename=self.safe_name(name), opt=opt ) ) def to_typescript(self, val: Any) -> Any: """Convert a Python keyword to a TypeScript keyword.""" if val is True: return "true" elif val is None: return "undefined" elif val is False: return "false" return val def uri_loader( self, inner: TypeDef, scoped_id: bool, vocab_term: bool, ref_scope: Optional[int], ) -> TypeDef: """Construct the TypeDef for the given URI loader.""" instance_type = inner.instance_type or "any" return self.declare_type( TypeDef( f"uri{inner.name}{scoped_id}{vocab_term}{ref_scope}", "new _URILoader({}, {}, {}, {})".format( inner.name, self.to_typescript(scoped_id), self.to_typescript(vocab_term), self.to_typescript(ref_scope), ), is_uri=True, scoped_id=scoped_id, ref_scope=ref_scope, instance_type=instance_type, ) ) def idmap_loader( self, field: str, inner: TypeDef, map_subject: str, map_predicate: Optional[str] ) -> TypeDef: """Construct the TypeDef for the given mapped ID loader.""" instance_type = inner.instance_type or "any" return self.declare_type( TypeDef( f"idmap{self.safe_name(field)}{inner.name}", f"new _IdMapLoader({inner.name}, '{map_subject}', '{map_predicate}')", # noqa: B907 instance_type=instance_type, ) ) def typedsl_loader(self, inner: TypeDef, ref_scope: Optional[int]) -> TypeDef: """Construct the TypeDef for the given DSL loader.""" instance_type = inner.instance_type or "any" return self.declare_type( TypeDef( f"typedsl{self.safe_name(inner.name)}{ref_scope}", f"new _TypeDSLLoader({self.safe_name(inner.name)}, {ref_scope})", instance_type=instance_type, ) ) def epilogue(self, root_loader: TypeDef) -> None: """Trigger to generate the epilouge code.""" pd = "This project contains TypeScript objects and utilities " pd = pd + ' auto-generated by <a href=\\"https://github.com/' pd = pd + 'common-workflow-language/schema_salad\\">Schema Salad</a>' pd = pd + " for parsing documents corresponding to the " pd = pd + str(self.base_uri) + " schema." sorted_record_types = sorted(self.record_types) generated_class_imports = ",\n ".join(sorted_record_types) template_vars: MutableMapping[str, str] = dict( project_name=self.package, version="0.0.1-SNAPSHOT", project_description=pd, license_name="Apache License, Version 2.0", generated_class_imports=generated_class_imports, ) def template_from_resource(resource: Path) -> string.Template: template_str = resource.read_text("utf-8") template = string.Template(template_str) return template def expand_resource_template_to(resource: str, path: Path) -> None: template = template_from_resource( files("schema_salad").joinpath(f"typescript/{resource}") ) src = template.safe_substitute(template_vars) _ensure_directory_and_write(path, src) expand_resource_template_to("package.json", self.target_dir / "package.json") expand_resource_template_to(".gitignore", self.target_dir / ".gitignore") expand_resource_template_to("LICENSE", self.target_dir / "LICENSE") expand_resource_template_to("tsconfig.json", self.target_dir / "tsconfig.json") expand_resource_template_to("index.ts", self.main_src_dir / "index.ts") vocab = ",\n ".join( f"""'{k}': '{self.vocab[k]}'""" for k in sorted(self.vocab.keys()) # noqa: B907 ) rvocab = ",\n ".join( f"""'{self.vocab[k]}': '{k}'""" for k in sorted(self.vocab.keys()) # noqa: B907 ) loader_instances = "" for _, collected_type in self.collected_types.items(): if not collected_type.abstract: loader_instances += "export const {} = {};\n".format( collected_type.name, collected_type.init ) sorted_modules = sorted(self.modules) internal_module_exports = "\n".join(f"export * from '../{f}'" for f in sorted_modules) example_tests = "" if self.examples: _safe_makedirs(self.test_resources_dir) utils_resources = self.test_resources_dir / "examples" if os.path.exists(utils_resources): shutil.rmtree(utils_resources) shutil.copytree(self.examples, utils_resources) for example_name in os.listdir(self.examples): if example_name.startswith("valid"): basename = os.path.basename(example_name).rsplit(".", 1)[0] example_tests += """ it('{basename}', async () => {{ await loadDocument(__dirname + '/data/examples/{example_name}') }}) it('{basename} by string', async () => {{ let doc = fs.readFileSync(__dirname + '/data/examples/{example_name}').toString() await loadDocumentByString(doc, url.pathToFileURL(__dirname + '/data/examples/').toString()) }})""".format( basename=basename.replace("-", "_").replace(".", "_"), example_name=example_name, ) template_args: MutableMapping[str, str] = dict( internal_module_exports=internal_module_exports, loader_instances=loader_instances, generated_class_imports=generated_class_imports, vocab=vocab, rvocab=rvocab, root_loader=root_loader.name, root_loader_type=root_loader.instance_type or "any", tests=example_tests, ) util_src_dirs = { "util": self.main_src_dir / "util", "test": self.main_src_dir / "test", } def copy_utils_recursive(util_src: str, util_target: Path) -> None: for util in files("schema_salad").joinpath(f"typescript/{util_src}").iterdir(): if util.is_dir(): copy_utils_recursive(os.path.join(util_src, util.name), util_target / util.name) continue src_path = util_target / util.name src_template = template_from_resource(util) src = src_template.safe_substitute(template_args) _ensure_directory_and_write(src_path, src) for util_src, util_target in util_src_dirs.items(): copy_utils_recursive(util_src, util_target) def secondaryfilesdsl_loader(self, inner: TypeDef) -> TypeDef: """Construct the TypeDef for secondary files.""" instance_type = inner.instance_type or "any" return self.declare_type( TypeDef( f"secondaryfilesdsl{inner.name}", f"new _SecondaryDSLLoader({inner.name})", instance_type=instance_type, ) )
0.693058
0.178956
from typing import List, Optional, Sequence, Tuple, Union from .sourceline import SourceLine, reflow_all, strip_duplicated_lineno class SchemaSaladException(Exception): """Base class for all schema-salad exceptions.""" def __init__( self, msg: str, sl: Optional[SourceLine] = None, children: Optional[Sequence["SchemaSaladException"]] = None, bullet_for_children: str = "", ) -> None: super().__init__(msg) self.message = self.args[0] self.file: Optional[str] = None self.start: Optional[Tuple[int, int]] = None self.end: Optional[Tuple[int, int]] = None self.is_warning: bool = False # It will be set by its parent self.bullet: str = "" def simplify(exc: "SchemaSaladException") -> List["SchemaSaladException"]: return [exc] if len(exc.message) else exc.children def with_bullet(exc: "SchemaSaladException", bullet: str) -> "SchemaSaladException": if exc.bullet == "": exc.bullet = bullet return exc if children is None: self.children: List["SchemaSaladException"] = [] elif len(children) <= 1: self.children = sum((simplify(c) for c in children), []) else: self.children = sum( (simplify(with_bullet(c, bullet_for_children)) for c in children), [] ) self.with_sourceline(sl) self.propagate_sourceline() def propagate_sourceline(self) -> None: if self.file is None: return for c in self.children: if c.file is None: c.file = self.file c.start = self.start c.end = self.end c.propagate_sourceline() def as_warning(self) -> "SchemaSaladException": self.is_warning = True for c in self.children: c.as_warning() return self def with_sourceline(self, sl: Optional[SourceLine]) -> "SchemaSaladException": if sl and sl.file(): self.file = sl.file() self.start = sl.start() self.end = sl.end() else: self.file = None self.start = None self.end = None return self def leaves(self) -> List["SchemaSaladException"]: if len(self.children) > 0: return sum((c.leaves() for c in self.children), []) if len(self.message): return [self] return [] def prefix(self) -> str: pre: str = "" if self.file: linecol0: Union[int, str] = "" linecol1: Union[int, str] = "" if self.start: linecol0, linecol1 = self.start pre = f"{self.file}:{linecol0}:{linecol1}: " return pre + "Warning: " if self.is_warning else pre def summary(self, level: int = 0, with_bullet: bool = False) -> str: indent_per_level = 2 spaces = (level * indent_per_level) * " " bullet = self.bullet + " " if len(self.bullet) > 0 and with_bullet else "" return f"{self.prefix()}{spaces}{bullet}{self.message}" def __str__(self) -> str: """Convert to a string using :py:meth:`pretty_str`.""" return str(self.pretty_str()) def pretty_str(self, level: int = 0) -> str: messages = len(self.message) my_summary = [self.summary(level, True)] if messages else [] next_level = level + 1 if messages else level ret = "\n".join(e for e in my_summary + [c.pretty_str(next_level) for c in self.children]) if level == 0: return strip_duplicated_lineno(reflow_all(ret)) return ret class SchemaException(SchemaSaladException): """Indicates error with the provided schema definition.""" class ValidationException(SchemaSaladException): """Indicates error with document against the provided schema.""" class ClassValidationException(ValidationException): pass def to_one_line_messages(exc: SchemaSaladException) -> str: return "\n".join(c.summary() for c in exc.leaves())
schema-salad
/schema-salad-8.4.20230808163024.tar.gz/schema-salad-8.4.20230808163024/schema_salad/exceptions.py
exceptions.py
from typing import List, Optional, Sequence, Tuple, Union from .sourceline import SourceLine, reflow_all, strip_duplicated_lineno class SchemaSaladException(Exception): """Base class for all schema-salad exceptions.""" def __init__( self, msg: str, sl: Optional[SourceLine] = None, children: Optional[Sequence["SchemaSaladException"]] = None, bullet_for_children: str = "", ) -> None: super().__init__(msg) self.message = self.args[0] self.file: Optional[str] = None self.start: Optional[Tuple[int, int]] = None self.end: Optional[Tuple[int, int]] = None self.is_warning: bool = False # It will be set by its parent self.bullet: str = "" def simplify(exc: "SchemaSaladException") -> List["SchemaSaladException"]: return [exc] if len(exc.message) else exc.children def with_bullet(exc: "SchemaSaladException", bullet: str) -> "SchemaSaladException": if exc.bullet == "": exc.bullet = bullet return exc if children is None: self.children: List["SchemaSaladException"] = [] elif len(children) <= 1: self.children = sum((simplify(c) for c in children), []) else: self.children = sum( (simplify(with_bullet(c, bullet_for_children)) for c in children), [] ) self.with_sourceline(sl) self.propagate_sourceline() def propagate_sourceline(self) -> None: if self.file is None: return for c in self.children: if c.file is None: c.file = self.file c.start = self.start c.end = self.end c.propagate_sourceline() def as_warning(self) -> "SchemaSaladException": self.is_warning = True for c in self.children: c.as_warning() return self def with_sourceline(self, sl: Optional[SourceLine]) -> "SchemaSaladException": if sl and sl.file(): self.file = sl.file() self.start = sl.start() self.end = sl.end() else: self.file = None self.start = None self.end = None return self def leaves(self) -> List["SchemaSaladException"]: if len(self.children) > 0: return sum((c.leaves() for c in self.children), []) if len(self.message): return [self] return [] def prefix(self) -> str: pre: str = "" if self.file: linecol0: Union[int, str] = "" linecol1: Union[int, str] = "" if self.start: linecol0, linecol1 = self.start pre = f"{self.file}:{linecol0}:{linecol1}: " return pre + "Warning: " if self.is_warning else pre def summary(self, level: int = 0, with_bullet: bool = False) -> str: indent_per_level = 2 spaces = (level * indent_per_level) * " " bullet = self.bullet + " " if len(self.bullet) > 0 and with_bullet else "" return f"{self.prefix()}{spaces}{bullet}{self.message}" def __str__(self) -> str: """Convert to a string using :py:meth:`pretty_str`.""" return str(self.pretty_str()) def pretty_str(self, level: int = 0) -> str: messages = len(self.message) my_summary = [self.summary(level, True)] if messages else [] next_level = level + 1 if messages else level ret = "\n".join(e for e in my_summary + [c.pretty_str(next_level) for c in self.children]) if level == 0: return strip_duplicated_lineno(reflow_all(ret)) return ret class SchemaException(SchemaSaladException): """Indicates error with the provided schema definition.""" class ValidationException(SchemaSaladException): """Indicates error with document against the provided schema.""" class ClassValidationException(ValidationException): pass def to_one_line_messages(exc: SchemaSaladException) -> str: return "\n".join(c.summary() for c in exc.leaves())
0.917488
0.261343
# Semantic Annotations for Linked Avro Data (SALAD) Author: * Peter Amstutz <[email protected]>, Curii Corporation Contributors: * The developers of Apache Avro * The developers of JSON-LD * Nebojša Tijanić <[email protected]>, Seven Bridges Genomics * Michael R. Crusoe, ELIXIR-DE # Abstract Salad is a schema language for describing structured linked data documents in JSON or YAML documents. A Salad schema provides rules for preprocessing, structural validation, and link checking for documents described by a Salad schema. Salad builds on JSON-LD and the Apache Avro data serialization system, and extends Avro with features for rich data modeling such as inheritance, template specialization, object identifiers, and object references. Salad was developed to provide a bridge between the record oriented data modeling supported by Apache Avro and the Semantic Web. # Status of This Document This document is the product of the [Common Workflow Language working group](https://groups.google.com/forum/#!forum/common-workflow-language). The latest version of this document is available in the "schema_salad" repository at https://github.com/common-workflow-language/schema_salad The products of the CWL working group (including this document) are made available under the terms of the Apache License, version 2.0. <!--ToC--> # Introduction The JSON data model is an extremely popular way to represent structured data. It is attractive because of its relative simplicity and is a natural fit with the standard types of many programming languages. However, this simplicity means that basic JSON lacks expressive features useful for working with complex data structures and document formats, such as schemas, object references, and namespaces. JSON-LD is a W3C standard providing a way to describe how to interpret a JSON document as Linked Data by means of a "context". JSON-LD provides a powerful solution for representing object references and namespaces in JSON based on standard web URIs, but is not itself a schema language. Without a schema providing a well defined structure, it is difficult to process an arbitrary JSON-LD document as idiomatic JSON because there are many ways to express the same data that are logically equivalent but structurally distinct. Several schema languages exist for describing and validating JSON data, such as the Apache Avro data serialization system, however none understand linked data. As a result, to fully take advantage of JSON-LD to build the next generation of linked data applications, one must maintain separate JSON schema, JSON-LD context, RDF schema, and human documentation, despite significant overlap of content and obvious need for these documents to stay synchronized. Schema Salad is designed to address this gap. It provides a schema language and processing rules for describing structured JSON content permitting URI resolution and strict document validation. The schema language supports linked data through annotations that describe the linked data interpretation of the content, enables generation of JSON-LD context and RDF schema, and production of RDF triples by applying the JSON-LD context. The schema language also provides for robust support of inline documentation. ## Introduction to v1.1 This is the third version of the Schema Salad specification. It is developed concurrently with v1.1 of the Common Workflow Language for use in specifying the Common Workflow Language, however Schema Salad is intended to be useful to a broader audience. Compared to the v1.0 schema salad specification, the following changes have been made: * Support for `default` values on record fields to specify default values * Add subscoped fields (fields which introduce a new inner scope for identifiers) * Add the *inVocab* flag (default true) to indicate if a type is added to the vocabulary of well known terms or must be prefixed * Add *secondaryFilesDSL* micro DSL (domain specific language) to convert text strings to a secondaryFiles record type used in CWL * The `$mixin` feature has been removed from the specification, as it is poorly documented, not included in conformance testing, and not widely supported. ## Introduction to v1.2 This is the fourth version of the Schema Salad specification. It was created to ease the development of extensions to CWL v1.2. The only change is that inherited records can narrow the types of fields if those fields are re-specified with a matching jsonldPredicate. ## References to Other Specifications **Javascript Object Notation (JSON)**: http://json.org **JSON Linked Data (JSON-LD)**: http://json-ld.org **YAML**: https://yaml.org/spec/1.2/spec.html **Avro**: https://avro.apache.org/docs/current/spec.html **Uniform Resource Identifier (URI) Generic Syntax**: https://tools.ietf.org/html/rfc3986) **Resource Description Framework (RDF)**: http://www.w3.org/RDF/ **UTF-8**: https://www.ietf.org/rfc/rfc2279.txt) ## Scope This document describes the syntax, data model, algorithms, and schema language for working with Salad documents. It is not intended to document a specific implementation of Salad, however it may serve as a reference for the behavior of conforming implementations. ## Terminology The terminology used to describe Salad documents is defined in the Concepts section of the specification. The terms defined in the following list are used in building those definitions and in describing the actions of a Salad implementation: **may**: Conforming Salad documents and Salad implementations are permitted but not required to be interpreted as described. **must**: Conforming Salad documents and Salad implementations are required to be interpreted as described; otherwise they are in error. **error**: A violation of the rules of this specification; results are undefined. Conforming implementations may detect and report an error and may recover from it. **fatal error**: A violation of the rules of this specification; results are undefined. Conforming implementations must not continue to process the document and may report an error. **at user option**: Conforming software may or must (depending on the modal verb in the sentence) behave as described; if it does, it must provide users a means to enable or disable the behavior described. # Document model ## Data concepts An **object** is a data structure equivalent to the "object" type in JSON, consisting of a unordered set of name/value pairs (referred to here as **fields**) and where the name is a string and the value is a string, number, boolean, array, or object. A **document** is a file containing a serialized object, or an array of objects. A **document type** is a class of files that share a common structure and semantics. A **document schema** is a formal description of the grammar of a document type. A **base URI** is a context-dependent URI used to resolve relative references. An **identifier** is a URI that designates a single document or single object within a document. A **vocabulary** is the set of symbolic field names and enumerated symbols defined by a document schema, where each term maps to absolute URI. ## Syntax Conforming Salad v1.1 documents are serialized and loaded using a subset of YAML 1.2 syntax and UTF-8 text encoding. Salad documents are written using the [JSON-compatible subset of YAML described in section 10.2](https://yaml.org/spec/1.2/spec.html#id2803231). The following features of YAML must not be used in conforming Salad documents: * Use of explicit node tags with leading `!` or `!!` * Use of anchors with leading `&` and aliases with leading `*` * %YAML directives * %TAG directives It is a fatal error if the document is not valid YAML. A Salad document must consist only of either a single root object or an array of objects. ## Document context ### Implied context The implicit context consists of the vocabulary defined by the schema and the base URI. By default, the base URI must be the URI that was used to load the document. It may be overridden by an explicit context. ### Explicit context If a document consists of a root object, this object may contain the fields `$base`, `$namespaces`, `$schemas`, and `$graph`: * `$base`: Must be a string. Set the base URI for the document used to resolve relative references. * `$namespaces`: Must be an object with strings as values. The keys of the object are namespace prefixes used in the document; the values of the object are the prefix expansions. * `$schemas`: Must be an array of strings. This field may list URI references to documents in RDF-XML format which will be queried for RDF schema data. The subjects and predicates described by the RDF schema may provide additional semantic context for the document, and may be used for validation of prefixed extension fields found in the document. Other directives beginning with `$` must be ignored. ## Document graph If a document consists of a single root object, this object may contain the field `$graph`. This field must be an array of objects. If present, this field holds the primary content of the document. A document that consists of array of objects at the root is an implicit graph. ## Document metadata If a document consists of a single root object, metadata about the document, such as authorship, may be declared in the root object. ## Document schema Document preprocessing, link validation and schema validation require a document schema. A schema may consist of: * At least one record definition object which defines valid fields that make up a record type. Record field definitions include the valid types that may be assigned to each field and annotations to indicate fields that represent identifiers and links, described below in "Semantic Annotations". * Any number of enumerated type objects which define a set of finite set of symbols that are valid value of the type. * Any number of documentation objects which allow in-line documentation of the schema. The schema for defining a salad schema (the metaschema) is described in detail in the [Schema](#Schema) section. ## Record field annotations In a document schema, record field definitions may include the field `jsonldPredicate`, which may be either a string or object. Implementations must use the following document preprocessing of fields by the following rules: * If the value of `jsonldPredicate` is `@id`, the field is an identifier field. * If the value of `jsonldPredicate` is an object, and that object contains the field `_type` with the value `@id`, the field is a link field. If the field `jsonldPredicate` also has the field `identity` with the value `true`, the field is resolved with [identifier resolution](#Identifier_resolution). Otherwise it is resolved with [link resolution](#Link_resolution). * If the value of `jsonldPredicate` is an object which contains the field `_type` with the value `@vocab`, the field value is subject to [vocabulary resolution](#Vocabulary_resolution). ## Document traversal To perform document preprocessing, link validation and schema validation, the document must be traversed starting from the fields or array items of the root object or array and recursively visiting each child item which contains an object or arrays. ## Short names The "short name" of a fully qualified identifier is the portion of the identifier following the final slash `/` of either the fragment identifier following `#` or the path portion, if there is no fragment. Some examples: * the short name of `http://example.com/foo` is `foo` * the short name of `http://example.com/#bar` is `bar` * the short name of `http://example.com/foo/bar` is `bar` * the short name of `http://example.com/foo#bar` is `bar` * the short name of `http://example.com/#foo/bar` is `bar` * the short name of `http://example.com/foo#bar/baz` is `baz` ## Inheritance and specialization A record definition may inherit from one or more record definitions with the `extends` field. This copies the fields defined in the parent record(s) as the base for the new record. A record definition may `specialize` type declarations of the fields inherited from the base record. For each field inherited from the base record, any instance of the type in `specializeFrom` is replaced with the type in `specializeTo`. The type in `specializeTo` should extend from the type in `specializeFrom`. A record definition may be `abstract`. This means the record definition is not used for validation on its own, but may be extended by other definitions. If an abstract type appears in a field definition, it is logically replaced with a union of all concrete subtypes of the abstract type. In other words, the field value does not validate as the abstract type, but must validate as some concrete type that inherits from the abstract type. # Document preprocessing After processing the explicit context (if any), document preprocessing begins. Starting from the document root, object fields values or array items which contain objects or arrays are recursively traversed depth-first. For each visited object, field names, identifier fields, link fields, vocabulary fields, and `$import` and `$include` directives must be processed as described in this section. The order of traversal of child nodes within a parent node is undefined.
schema-salad
/schema-salad-8.4.20230808163024.tar.gz/schema-salad-8.4.20230808163024/schema_salad/metaschema/salad.md
salad.md
# Semantic Annotations for Linked Avro Data (SALAD) Author: * Peter Amstutz <[email protected]>, Curii Corporation Contributors: * The developers of Apache Avro * The developers of JSON-LD * Nebojša Tijanić <[email protected]>, Seven Bridges Genomics * Michael R. Crusoe, ELIXIR-DE # Abstract Salad is a schema language for describing structured linked data documents in JSON or YAML documents. A Salad schema provides rules for preprocessing, structural validation, and link checking for documents described by a Salad schema. Salad builds on JSON-LD and the Apache Avro data serialization system, and extends Avro with features for rich data modeling such as inheritance, template specialization, object identifiers, and object references. Salad was developed to provide a bridge between the record oriented data modeling supported by Apache Avro and the Semantic Web. # Status of This Document This document is the product of the [Common Workflow Language working group](https://groups.google.com/forum/#!forum/common-workflow-language). The latest version of this document is available in the "schema_salad" repository at https://github.com/common-workflow-language/schema_salad The products of the CWL working group (including this document) are made available under the terms of the Apache License, version 2.0. <!--ToC--> # Introduction The JSON data model is an extremely popular way to represent structured data. It is attractive because of its relative simplicity and is a natural fit with the standard types of many programming languages. However, this simplicity means that basic JSON lacks expressive features useful for working with complex data structures and document formats, such as schemas, object references, and namespaces. JSON-LD is a W3C standard providing a way to describe how to interpret a JSON document as Linked Data by means of a "context". JSON-LD provides a powerful solution for representing object references and namespaces in JSON based on standard web URIs, but is not itself a schema language. Without a schema providing a well defined structure, it is difficult to process an arbitrary JSON-LD document as idiomatic JSON because there are many ways to express the same data that are logically equivalent but structurally distinct. Several schema languages exist for describing and validating JSON data, such as the Apache Avro data serialization system, however none understand linked data. As a result, to fully take advantage of JSON-LD to build the next generation of linked data applications, one must maintain separate JSON schema, JSON-LD context, RDF schema, and human documentation, despite significant overlap of content and obvious need for these documents to stay synchronized. Schema Salad is designed to address this gap. It provides a schema language and processing rules for describing structured JSON content permitting URI resolution and strict document validation. The schema language supports linked data through annotations that describe the linked data interpretation of the content, enables generation of JSON-LD context and RDF schema, and production of RDF triples by applying the JSON-LD context. The schema language also provides for robust support of inline documentation. ## Introduction to v1.1 This is the third version of the Schema Salad specification. It is developed concurrently with v1.1 of the Common Workflow Language for use in specifying the Common Workflow Language, however Schema Salad is intended to be useful to a broader audience. Compared to the v1.0 schema salad specification, the following changes have been made: * Support for `default` values on record fields to specify default values * Add subscoped fields (fields which introduce a new inner scope for identifiers) * Add the *inVocab* flag (default true) to indicate if a type is added to the vocabulary of well known terms or must be prefixed * Add *secondaryFilesDSL* micro DSL (domain specific language) to convert text strings to a secondaryFiles record type used in CWL * The `$mixin` feature has been removed from the specification, as it is poorly documented, not included in conformance testing, and not widely supported. ## Introduction to v1.2 This is the fourth version of the Schema Salad specification. It was created to ease the development of extensions to CWL v1.2. The only change is that inherited records can narrow the types of fields if those fields are re-specified with a matching jsonldPredicate. ## References to Other Specifications **Javascript Object Notation (JSON)**: http://json.org **JSON Linked Data (JSON-LD)**: http://json-ld.org **YAML**: https://yaml.org/spec/1.2/spec.html **Avro**: https://avro.apache.org/docs/current/spec.html **Uniform Resource Identifier (URI) Generic Syntax**: https://tools.ietf.org/html/rfc3986) **Resource Description Framework (RDF)**: http://www.w3.org/RDF/ **UTF-8**: https://www.ietf.org/rfc/rfc2279.txt) ## Scope This document describes the syntax, data model, algorithms, and schema language for working with Salad documents. It is not intended to document a specific implementation of Salad, however it may serve as a reference for the behavior of conforming implementations. ## Terminology The terminology used to describe Salad documents is defined in the Concepts section of the specification. The terms defined in the following list are used in building those definitions and in describing the actions of a Salad implementation: **may**: Conforming Salad documents and Salad implementations are permitted but not required to be interpreted as described. **must**: Conforming Salad documents and Salad implementations are required to be interpreted as described; otherwise they are in error. **error**: A violation of the rules of this specification; results are undefined. Conforming implementations may detect and report an error and may recover from it. **fatal error**: A violation of the rules of this specification; results are undefined. Conforming implementations must not continue to process the document and may report an error. **at user option**: Conforming software may or must (depending on the modal verb in the sentence) behave as described; if it does, it must provide users a means to enable or disable the behavior described. # Document model ## Data concepts An **object** is a data structure equivalent to the "object" type in JSON, consisting of a unordered set of name/value pairs (referred to here as **fields**) and where the name is a string and the value is a string, number, boolean, array, or object. A **document** is a file containing a serialized object, or an array of objects. A **document type** is a class of files that share a common structure and semantics. A **document schema** is a formal description of the grammar of a document type. A **base URI** is a context-dependent URI used to resolve relative references. An **identifier** is a URI that designates a single document or single object within a document. A **vocabulary** is the set of symbolic field names and enumerated symbols defined by a document schema, where each term maps to absolute URI. ## Syntax Conforming Salad v1.1 documents are serialized and loaded using a subset of YAML 1.2 syntax and UTF-8 text encoding. Salad documents are written using the [JSON-compatible subset of YAML described in section 10.2](https://yaml.org/spec/1.2/spec.html#id2803231). The following features of YAML must not be used in conforming Salad documents: * Use of explicit node tags with leading `!` or `!!` * Use of anchors with leading `&` and aliases with leading `*` * %YAML directives * %TAG directives It is a fatal error if the document is not valid YAML. A Salad document must consist only of either a single root object or an array of objects. ## Document context ### Implied context The implicit context consists of the vocabulary defined by the schema and the base URI. By default, the base URI must be the URI that was used to load the document. It may be overridden by an explicit context. ### Explicit context If a document consists of a root object, this object may contain the fields `$base`, `$namespaces`, `$schemas`, and `$graph`: * `$base`: Must be a string. Set the base URI for the document used to resolve relative references. * `$namespaces`: Must be an object with strings as values. The keys of the object are namespace prefixes used in the document; the values of the object are the prefix expansions. * `$schemas`: Must be an array of strings. This field may list URI references to documents in RDF-XML format which will be queried for RDF schema data. The subjects and predicates described by the RDF schema may provide additional semantic context for the document, and may be used for validation of prefixed extension fields found in the document. Other directives beginning with `$` must be ignored. ## Document graph If a document consists of a single root object, this object may contain the field `$graph`. This field must be an array of objects. If present, this field holds the primary content of the document. A document that consists of array of objects at the root is an implicit graph. ## Document metadata If a document consists of a single root object, metadata about the document, such as authorship, may be declared in the root object. ## Document schema Document preprocessing, link validation and schema validation require a document schema. A schema may consist of: * At least one record definition object which defines valid fields that make up a record type. Record field definitions include the valid types that may be assigned to each field and annotations to indicate fields that represent identifiers and links, described below in "Semantic Annotations". * Any number of enumerated type objects which define a set of finite set of symbols that are valid value of the type. * Any number of documentation objects which allow in-line documentation of the schema. The schema for defining a salad schema (the metaschema) is described in detail in the [Schema](#Schema) section. ## Record field annotations In a document schema, record field definitions may include the field `jsonldPredicate`, which may be either a string or object. Implementations must use the following document preprocessing of fields by the following rules: * If the value of `jsonldPredicate` is `@id`, the field is an identifier field. * If the value of `jsonldPredicate` is an object, and that object contains the field `_type` with the value `@id`, the field is a link field. If the field `jsonldPredicate` also has the field `identity` with the value `true`, the field is resolved with [identifier resolution](#Identifier_resolution). Otherwise it is resolved with [link resolution](#Link_resolution). * If the value of `jsonldPredicate` is an object which contains the field `_type` with the value `@vocab`, the field value is subject to [vocabulary resolution](#Vocabulary_resolution). ## Document traversal To perform document preprocessing, link validation and schema validation, the document must be traversed starting from the fields or array items of the root object or array and recursively visiting each child item which contains an object or arrays. ## Short names The "short name" of a fully qualified identifier is the portion of the identifier following the final slash `/` of either the fragment identifier following `#` or the path portion, if there is no fragment. Some examples: * the short name of `http://example.com/foo` is `foo` * the short name of `http://example.com/#bar` is `bar` * the short name of `http://example.com/foo/bar` is `bar` * the short name of `http://example.com/foo#bar` is `bar` * the short name of `http://example.com/#foo/bar` is `bar` * the short name of `http://example.com/foo#bar/baz` is `baz` ## Inheritance and specialization A record definition may inherit from one or more record definitions with the `extends` field. This copies the fields defined in the parent record(s) as the base for the new record. A record definition may `specialize` type declarations of the fields inherited from the base record. For each field inherited from the base record, any instance of the type in `specializeFrom` is replaced with the type in `specializeTo`. The type in `specializeTo` should extend from the type in `specializeFrom`. A record definition may be `abstract`. This means the record definition is not used for validation on its own, but may be extended by other definitions. If an abstract type appears in a field definition, it is logically replaced with a union of all concrete subtypes of the abstract type. In other words, the field value does not validate as the abstract type, but must validate as some concrete type that inherits from the abstract type. # Document preprocessing After processing the explicit context (if any), document preprocessing begins. Starting from the document root, object fields values or array items which contain objects or arrays are recursively traversed depth-first. For each visited object, field names, identifier fields, link fields, vocabulary fields, and `$import` and `$include` directives must be processed as described in this section. The order of traversal of child nodes within a parent node is undefined.
0.915838
0.75593
## Import During preprocessing traversal, an implementation must resolve `$import` directives. An `$import` directive is an object consisting of exactly one field `$import` specifying resource by URI string. It is an error if there are additional fields in the `$import` object, such additional fields must be ignored. The URI string must be resolved to an absolute URI using the link resolution rules described previously. Implementations must support loading from `file`, `http` and `https` resources. The URI referenced by `$import` must be loaded and recursively preprocessed as a Salad document. The external imported document does not inherit the context of the importing document, and the default base URI for processing the imported document must be the URI used to retrieve the imported document. If the `$import` URI includes a document fragment, the fragment must be excluded from the base URI used to preprocess the imported document. If the `$import` node is in an array and the import operation yields an array, it is flattened to the parent array. Otherwise the `$import` node is replaced in the document structure by the object or array yielded from the import operation. URIs may reference document fragments which refer to specific an object in the target document. This indicates that the `$import` node must be replaced by only the object with the appropriate fragment identifier. It is a fatal error if an import directive refers to an external resource or resource fragment which does not exist or is not accessible. ### Import example: replacing the `$import` node import.json: ``` { "hello": "world" } ``` parent.json: ``` { "form": { "bar": { "$import": "import.json" } } } ``` This becomes: ``` { "form": { "bar": { "hello": "world" } } } ``` ### Import example: flattening the `$import`ed array import.json: ``` [ "hello", "world" ] ``` parent.json: ``` { "form": [ "bar", { "$import": "import.json" } ] } ``` This becomes: ``` { "form": [ "bar", "hello", "world" ] } ``` ## Include During preprocessing traversal, an implementation must resolve `$include` directives. An `$include` directive is an object consisting of exactly one field `$include` specifying a URI string. It is an error if there are additional fields in the `$include` object, such additional fields must be ignored. The URI string must be resolved to an absolute URI using the link resolution rules described previously. The URI referenced by `$include` must be loaded as a text data. Implementations must support loading from `file`, `http` and `https` resources. Implementations may transcode the character encoding of the text data to match that of the parent document, but must not interpret or parse the text document in any other way. Once loaded, the `$include` node is replaced in the document structure by a string containing the text data loaded from the resource. It is a fatal error if an import directive refers to an external resource which does not exist or is not accessible. ### Include example parent.json: ``` { "form": { "bar": { "$include": "include.txt" } } } ``` include.txt: ``` hello world ``` This becomes: ``` { "form": { "bar": "hello world" } } ```
schema-salad
/schema-salad-8.4.20230808163024.tar.gz/schema-salad-8.4.20230808163024/schema_salad/metaschema/import_include.md
import_include.md
{ "hello": "world" } { "form": { "bar": { "$import": "import.json" } } } { "form": { "bar": { "hello": "world" } } } [ "hello", "world" ] { "form": [ "bar", { "$import": "import.json" } ] } { "form": [ "bar", "hello", "world" ] } { "form": { "bar": { "$include": "include.txt" } } } hello world { "form": { "bar": "hello world" } }
0.44071
0.841109
import { assert } from 'chai' import { DefaultFetcher, ValidationException } from '../util/Internal' import sinon from 'sinon' import * as fetchModule from 'node-fetch' import { Response } from 'node-fetch' import path from 'path' import URL from 'url' describe('Test Fetcher', () => { const fet = new DefaultFetcher() describe('Test fetchText()', () => { afterEach(function () { sinon.restore() }) it('Should fetch text from http urls', async () => { sinon.stub(fetchModule, 'default').returns(new Promise((resolve) => resolve(new Response('test', { status: 200 })))) assert.equal(await fet.fetchText('http://www.example.com'), 'test') }) it('Should fetch text from https urls', async () => { sinon.stub(fetchModule, 'default').returns(new Promise((resolve) => resolve(new Response('test', { status: 200 })))) assert.equal(await fet.fetchText('https://www.example.com'), 'test') }) it('Should fetch text from files', async () => { const filepath = URL.pathToFileURL(path.resolve('./src/test/data/test.txt')).toString() assert.equal(await fet.fetchText(filepath), 'test\n') }) it('Throw a 404 exception', async () => { sinon.stub(fetchModule, 'default').returns(new Promise((resolve) => resolve(new Response('test', { status: 404 })))) let err try { await fet.fetchText('https://www.example.com') } catch (e) { err = e } assert.exists(err) assert.isTrue(err instanceof ValidationException) assert.equal((err as ValidationException).message, 'Error fetching https://www.example.com: HTTP Error Response: 404 Not Found') }) it('Throw an invalid schema exception', async () => { let err try { await fet.fetchText('invalidscheme://www.example.com') } catch (e) { err = e } assert.exists(err) assert.isTrue(err instanceof ValidationException) assert.equal((err as ValidationException).message, 'Unsupported scheme invalidscheme in url: invalidscheme://www.example.com') }) }) describe('Test urlJoin()', () => { it('Should correctly join urls', async () => { assert.equal(fet.urljoin('http://example.com/base', 'one'), 'http://example.com/one') assert.equal(fet.urljoin('http://example.com/base', 'two'), 'http://example.com/two') assert.equal(fet.urljoin('http://example.com/base', '#three'), 'http://example.com/base#three') assert.equal(fet.urljoin('http://example.com/base', 'four#five'), 'http://example.com/four#five') assert.equal(fet.urljoin('http://example.com/base', '_:five'), '_:five') }) it('Should throw a remote exploit exception', async () => { let err try { fet.urljoin('http://example.com/base', 'file:///test/test.txt') } catch (e) { err = e } assert.exists(err) assert.isTrue(err instanceof ValidationException) assert.equal((err as ValidationException).message, 'Not resolving potential remote exploit file:///test/test.txt from base http://example.com/base') }) }) })
schema-salad
/schema-salad-8.4.20230808163024.tar.gz/schema-salad-8.4.20230808163024/schema_salad/typescript/test/Fetcher.spec.ts
Fetcher.spec.ts
import { assert } from 'chai' import { DefaultFetcher, ValidationException } from '../util/Internal' import sinon from 'sinon' import * as fetchModule from 'node-fetch' import { Response } from 'node-fetch' import path from 'path' import URL from 'url' describe('Test Fetcher', () => { const fet = new DefaultFetcher() describe('Test fetchText()', () => { afterEach(function () { sinon.restore() }) it('Should fetch text from http urls', async () => { sinon.stub(fetchModule, 'default').returns(new Promise((resolve) => resolve(new Response('test', { status: 200 })))) assert.equal(await fet.fetchText('http://www.example.com'), 'test') }) it('Should fetch text from https urls', async () => { sinon.stub(fetchModule, 'default').returns(new Promise((resolve) => resolve(new Response('test', { status: 200 })))) assert.equal(await fet.fetchText('https://www.example.com'), 'test') }) it('Should fetch text from files', async () => { const filepath = URL.pathToFileURL(path.resolve('./src/test/data/test.txt')).toString() assert.equal(await fet.fetchText(filepath), 'test\n') }) it('Throw a 404 exception', async () => { sinon.stub(fetchModule, 'default').returns(new Promise((resolve) => resolve(new Response('test', { status: 404 })))) let err try { await fet.fetchText('https://www.example.com') } catch (e) { err = e } assert.exists(err) assert.isTrue(err instanceof ValidationException) assert.equal((err as ValidationException).message, 'Error fetching https://www.example.com: HTTP Error Response: 404 Not Found') }) it('Throw an invalid schema exception', async () => { let err try { await fet.fetchText('invalidscheme://www.example.com') } catch (e) { err = e } assert.exists(err) assert.isTrue(err instanceof ValidationException) assert.equal((err as ValidationException).message, 'Unsupported scheme invalidscheme in url: invalidscheme://www.example.com') }) }) describe('Test urlJoin()', () => { it('Should correctly join urls', async () => { assert.equal(fet.urljoin('http://example.com/base', 'one'), 'http://example.com/one') assert.equal(fet.urljoin('http://example.com/base', 'two'), 'http://example.com/two') assert.equal(fet.urljoin('http://example.com/base', '#three'), 'http://example.com/base#three') assert.equal(fet.urljoin('http://example.com/base', 'four#five'), 'http://example.com/four#five') assert.equal(fet.urljoin('http://example.com/base', '_:five'), '_:five') }) it('Should throw a remote exploit exception', async () => { let err try { fet.urljoin('http://example.com/base', 'file:///test/test.txt') } catch (e) { err = e } assert.exists(err) assert.isTrue(err instanceof ValidationException) assert.equal((err as ValidationException).message, 'Not resolving potential remote exploit file:///test/test.txt from base http://example.com/base') }) }) })
0.692226
0.404213
import { assert } from 'chai' import { TypeGuards } from '../util/Internal' describe('Test Typeguards', () => { describe('Int', () => { it('Should return true', () => { assert.equal(TypeGuards.Int(2), true) assert.equal(TypeGuards.Int(0), true) }) it('Should return false', () => { assert.equal(TypeGuards.Int(2.2), false) assert.equal(TypeGuards.Int('2.2'), false) assert.equal(TypeGuards.Int([2]), false) assert.equal(TypeGuards.Int({}), false) assert.equal(TypeGuards.Int(null), false) assert.equal(TypeGuards.Int(undefined), false) }) }) describe('Float', () => { it('Should return true', () => { assert.equal(TypeGuards.Float(2.0), true) assert.equal(TypeGuards.Float(2), true) assert.equal(TypeGuards.Float(0), true) }) it('Should return false', () => { assert.equal(TypeGuards.Float([2]), false) assert.equal(TypeGuards.Float('2.2'), false) assert.equal(TypeGuards.Float({}), false) assert.equal(TypeGuards.Float(null), false) assert.equal(TypeGuards.Float(undefined), false) }) }) describe('Bool', () => { it('Should return true', () => { assert.equal(TypeGuards.Bool(true), true) assert.equal(TypeGuards.Bool(false), true) }) it('Should return false', () => { assert.equal(TypeGuards.Bool([1]), false) assert.equal(TypeGuards.Bool('1'), false) assert.equal(TypeGuards.Bool(1), false) assert.equal(TypeGuards.Bool({}), false) assert.equal(TypeGuards.Bool(null), false) assert.equal(TypeGuards.Bool(undefined), false) }) }) describe('String', () => { it('Should return true', () => { assert.equal(TypeGuards.String('2.2'), true) assert.equal(TypeGuards.String(''), true) assert.equal(TypeGuards.String('test'), true) }) it('Should return false', () => { assert.equal(TypeGuards.String([2]), false) assert.equal(TypeGuards.String(2), false) assert.equal(TypeGuards.String({}), false) assert.equal(TypeGuards.String(null), false) assert.equal(TypeGuards.String(undefined), false) }) }) describe('Undefined', () => { it('Should return true', () => { assert.equal(TypeGuards.Undefined(undefined), true) assert.equal(TypeGuards.Undefined(null), true) }) it('Should return false', () => { assert.equal(TypeGuards.Undefined([1]), false) assert.equal(TypeGuards.Undefined('1'), false) assert.equal(TypeGuards.Undefined(1), false) assert.equal(TypeGuards.Undefined(1.1), false) assert.equal(TypeGuards.Undefined({}), false) }) }) describe('Dictionary', () => { it('Should return true', () => { assert.equal(TypeGuards.isDictionary({}), true) assert.equal(TypeGuards.isDictionary({ test: 'test' }), true) }) it('Should return false', () => { assert.equal(TypeGuards.isDictionary([]), false) assert.equal(TypeGuards.isDictionary('1'), false) assert.equal(TypeGuards.isDictionary(1), false) assert.equal(TypeGuards.isDictionary(1.1), false) assert.equal(TypeGuards.isDictionary(undefined), false) assert.equal(TypeGuards.isDictionary(null), false) }) }) })
schema-salad
/schema-salad-8.4.20230808163024.tar.gz/schema-salad-8.4.20230808163024/schema_salad/typescript/test/Typeguards.spec.ts
Typeguards.spec.ts
import { assert } from 'chai' import { TypeGuards } from '../util/Internal' describe('Test Typeguards', () => { describe('Int', () => { it('Should return true', () => { assert.equal(TypeGuards.Int(2), true) assert.equal(TypeGuards.Int(0), true) }) it('Should return false', () => { assert.equal(TypeGuards.Int(2.2), false) assert.equal(TypeGuards.Int('2.2'), false) assert.equal(TypeGuards.Int([2]), false) assert.equal(TypeGuards.Int({}), false) assert.equal(TypeGuards.Int(null), false) assert.equal(TypeGuards.Int(undefined), false) }) }) describe('Float', () => { it('Should return true', () => { assert.equal(TypeGuards.Float(2.0), true) assert.equal(TypeGuards.Float(2), true) assert.equal(TypeGuards.Float(0), true) }) it('Should return false', () => { assert.equal(TypeGuards.Float([2]), false) assert.equal(TypeGuards.Float('2.2'), false) assert.equal(TypeGuards.Float({}), false) assert.equal(TypeGuards.Float(null), false) assert.equal(TypeGuards.Float(undefined), false) }) }) describe('Bool', () => { it('Should return true', () => { assert.equal(TypeGuards.Bool(true), true) assert.equal(TypeGuards.Bool(false), true) }) it('Should return false', () => { assert.equal(TypeGuards.Bool([1]), false) assert.equal(TypeGuards.Bool('1'), false) assert.equal(TypeGuards.Bool(1), false) assert.equal(TypeGuards.Bool({}), false) assert.equal(TypeGuards.Bool(null), false) assert.equal(TypeGuards.Bool(undefined), false) }) }) describe('String', () => { it('Should return true', () => { assert.equal(TypeGuards.String('2.2'), true) assert.equal(TypeGuards.String(''), true) assert.equal(TypeGuards.String('test'), true) }) it('Should return false', () => { assert.equal(TypeGuards.String([2]), false) assert.equal(TypeGuards.String(2), false) assert.equal(TypeGuards.String({}), false) assert.equal(TypeGuards.String(null), false) assert.equal(TypeGuards.String(undefined), false) }) }) describe('Undefined', () => { it('Should return true', () => { assert.equal(TypeGuards.Undefined(undefined), true) assert.equal(TypeGuards.Undefined(null), true) }) it('Should return false', () => { assert.equal(TypeGuards.Undefined([1]), false) assert.equal(TypeGuards.Undefined('1'), false) assert.equal(TypeGuards.Undefined(1), false) assert.equal(TypeGuards.Undefined(1.1), false) assert.equal(TypeGuards.Undefined({}), false) }) }) describe('Dictionary', () => { it('Should return true', () => { assert.equal(TypeGuards.isDictionary({}), true) assert.equal(TypeGuards.isDictionary({ test: 'test' }), true) }) it('Should return false', () => { assert.equal(TypeGuards.isDictionary([]), false) assert.equal(TypeGuards.isDictionary('1'), false) assert.equal(TypeGuards.isDictionary(1), false) assert.equal(TypeGuards.isDictionary(1.1), false) assert.equal(TypeGuards.isDictionary(undefined), false) assert.equal(TypeGuards.isDictionary(null), false) }) }) })
0.748352
0.911101
import { LoadingOptions, Dictionary, TypeGuards } from './Internal' import * as URI from 'uri-js' import path from 'path' // eslint-disable-next-line @typescript-eslint/no-extraneous-class export abstract class Saveable { loadingOptions: LoadingOptions constructor(loadingOptions?: LoadingOptions) { this.loadingOptions = loadingOptions ?? new LoadingOptions({}) } static async fromDoc (doc: any, baseuri: string, loadingOptions: LoadingOptions, docRoot?: string): Promise<Saveable> { throw new Error('Not Implemented') } abstract save (top: boolean, baseUrl: string, relativeUris: boolean): Dictionary<any> } export function save (val: any, top: boolean = true, baseUrl: string = '', relativeUris: boolean = true): any { if (val instanceof Saveable) { return val.save(top, baseUrl, relativeUris) } if (Array.isArray(val)) { const r = [] for (const v of val) { r.push(save(v, false, baseUrl, relativeUris)) } return r } if (TypeGuards.isDictionary(val)) { const newDict: Dictionary<any> = {} for (const key in val) { newDict[key] = save(val[key], false, baseUrl, relativeUris) } return newDict } return val } export function saveRelativeUri (uri: any, baseUrl: string='', scopedId: boolean, relativeUris: boolean, refScope?: number): any { if (relativeUris === false || uri === baseUrl) { return uri } if (Array.isArray(uri)) { const r = [] for (const v of uri) { r.push(saveRelativeUri(v, baseUrl, scopedId, relativeUris, refScope)) } return r } else if (typeof uri === 'string') { const uriSplit = URI.parse(uri) const baseSplit = URI.parse(baseUrl) if (uriSplit.path == null || baseSplit.path == null) { throw new Error('uri or baseurl need to contain a path.') } if (uriSplit.scheme === baseSplit.scheme && uriSplit.host === baseSplit.host) { if (uriSplit.path !== baseSplit.path) { let p = path.relative(path.dirname(baseSplit.path), uriSplit.path) if (uriSplit.fragment != null) { p = p + '#' + uriSplit.fragment } return p } if (baseSplit.fragment == null) { baseSplit.fragment = '' } let basefrag = baseSplit.fragment + '/' if (refScope != null) { const sp = basefrag.split('/') let i = 0 while (i < refScope) { sp.pop() i += 1 } basefrag = sp.join('/') } if (uriSplit.fragment == null) { uriSplit.fragment = '' } if (uriSplit.fragment.startsWith(basefrag)) { return uriSplit.fragment.slice(basefrag.length) } else { return uriSplit.fragment } } else { return save(uri, false, baseUrl) } } } export function prefixUrl (url: string, namespaces: Dictionary<string>): string { for (const k in namespaces) { if (url.startsWith(namespaces.k)) { return k + ':' + url.slice(namespaces.k.length) } } return url } /** * Compute the shortname of a fully qualified identifier. * See https://w3id.org/cwl/v1.2/SchemaSalad.html#Short_names. * */ export function shortname (inputId: string): string { const parsedId = URI.parse(inputId) if (parsedId.fragment != null) { const fragmentSplit = parsedId.fragment.split('/') return fragmentSplit[fragmentSplit.length - 1] } else if (parsedId.path != null) { const pathSplit = parsedId.path.split('/') return pathSplit[pathSplit.length - 1] } else { return inputId } }
schema-salad
/schema-salad-8.4.20230808163024.tar.gz/schema-salad-8.4.20230808163024/schema_salad/typescript/util/Saveable.ts
Saveable.ts
import { LoadingOptions, Dictionary, TypeGuards } from './Internal' import * as URI from 'uri-js' import path from 'path' // eslint-disable-next-line @typescript-eslint/no-extraneous-class export abstract class Saveable { loadingOptions: LoadingOptions constructor(loadingOptions?: LoadingOptions) { this.loadingOptions = loadingOptions ?? new LoadingOptions({}) } static async fromDoc (doc: any, baseuri: string, loadingOptions: LoadingOptions, docRoot?: string): Promise<Saveable> { throw new Error('Not Implemented') } abstract save (top: boolean, baseUrl: string, relativeUris: boolean): Dictionary<any> } export function save (val: any, top: boolean = true, baseUrl: string = '', relativeUris: boolean = true): any { if (val instanceof Saveable) { return val.save(top, baseUrl, relativeUris) } if (Array.isArray(val)) { const r = [] for (const v of val) { r.push(save(v, false, baseUrl, relativeUris)) } return r } if (TypeGuards.isDictionary(val)) { const newDict: Dictionary<any> = {} for (const key in val) { newDict[key] = save(val[key], false, baseUrl, relativeUris) } return newDict } return val } export function saveRelativeUri (uri: any, baseUrl: string='', scopedId: boolean, relativeUris: boolean, refScope?: number): any { if (relativeUris === false || uri === baseUrl) { return uri } if (Array.isArray(uri)) { const r = [] for (const v of uri) { r.push(saveRelativeUri(v, baseUrl, scopedId, relativeUris, refScope)) } return r } else if (typeof uri === 'string') { const uriSplit = URI.parse(uri) const baseSplit = URI.parse(baseUrl) if (uriSplit.path == null || baseSplit.path == null) { throw new Error('uri or baseurl need to contain a path.') } if (uriSplit.scheme === baseSplit.scheme && uriSplit.host === baseSplit.host) { if (uriSplit.path !== baseSplit.path) { let p = path.relative(path.dirname(baseSplit.path), uriSplit.path) if (uriSplit.fragment != null) { p = p + '#' + uriSplit.fragment } return p } if (baseSplit.fragment == null) { baseSplit.fragment = '' } let basefrag = baseSplit.fragment + '/' if (refScope != null) { const sp = basefrag.split('/') let i = 0 while (i < refScope) { sp.pop() i += 1 } basefrag = sp.join('/') } if (uriSplit.fragment == null) { uriSplit.fragment = '' } if (uriSplit.fragment.startsWith(basefrag)) { return uriSplit.fragment.slice(basefrag.length) } else { return uriSplit.fragment } } else { return save(uri, false, baseUrl) } } } export function prefixUrl (url: string, namespaces: Dictionary<string>): string { for (const k in namespaces) { if (url.startsWith(namespaces.k)) { return k + ':' + url.slice(namespaces.k.length) } } return url } /** * Compute the shortname of a fully qualified identifier. * See https://w3id.org/cwl/v1.2/SchemaSalad.html#Short_names. * */ export function shortname (inputId: string): string { const parsedId = URI.parse(inputId) if (parsedId.fragment != null) { const fragmentSplit = parsedId.fragment.split('/') return fragmentSplit[fragmentSplit.length - 1] } else if (parsedId.path != null) { const pathSplit = parsedId.path.split('/') return pathSplit[pathSplit.length - 1] } else { return inputId } }
0.558568
0.161122
import { ValidationException } from './Internal' import fetch from 'node-fetch' import * as fs from 'fs' import * as URI from 'uri-js' // Code implemented after https://github.com/common-workflow-language/schema_salad/blob/main/schema_salad/fetcher.py export abstract class Fetcher { abstract fetchText (url: string, contentTypes?: string[]): Promise<string> abstract checkExists (url: string): boolean abstract urljoin (baseUrl: string, url: string): string static schemes = ['file', 'http', 'https', 'mailto'] } export class DefaultFetcher extends Fetcher { async fetchText (urlString: string): Promise<string> { // TODO: cache const split = URI.parse(urlString) const scheme = split.scheme ?? '' if (Fetcher.schemes.includes(scheme)) { if (['http', 'https'].includes(scheme)) { try { // TODO: content types const result = await fetch(new URL(urlString)) if (!result.ok) { throw Error(`HTTP Error Response: ${result.status} ${result.statusText}`) } return await result.text() } catch (e) { if (e instanceof Error) { throw new ValidationException(`Error fetching ${urlString}: ${e.message}`) } else { throw e } } } else if (scheme === 'file') { try { return fs.readFileSync(split.path ?? '', { encoding: 'utf8' }) } catch (e) { if (e instanceof Error) { throw new ValidationException(`Error reading file ${urlString}: ${e.message}`) } else { throw e } } } } throw new ValidationException(`Unsupported scheme ${scheme} in url: ${urlString}`) } checkExists (url: string): boolean { throw new Error('Not implemented.') } urljoin (baseUrlString: string, urlString: string): string { if (urlString.startsWith('_:')) { return urlString } const baseUrl = URI.parse(baseUrlString) const url = URI.parse(urlString) if (baseUrl.scheme != null && baseUrl.scheme !== 'file' && url.scheme === 'file') { throw new ValidationException(`Not resolving potential remote exploit ${urlString} from base ${baseUrlString}`) } // TODO: Windows specific join? return new URL(urlString, baseUrlString).toString() } }
schema-salad
/schema-salad-8.4.20230808163024.tar.gz/schema-salad-8.4.20230808163024/schema_salad/typescript/util/Fetcher.ts
Fetcher.ts
import { ValidationException } from './Internal' import fetch from 'node-fetch' import * as fs from 'fs' import * as URI from 'uri-js' // Code implemented after https://github.com/common-workflow-language/schema_salad/blob/main/schema_salad/fetcher.py export abstract class Fetcher { abstract fetchText (url: string, contentTypes?: string[]): Promise<string> abstract checkExists (url: string): boolean abstract urljoin (baseUrl: string, url: string): string static schemes = ['file', 'http', 'https', 'mailto'] } export class DefaultFetcher extends Fetcher { async fetchText (urlString: string): Promise<string> { // TODO: cache const split = URI.parse(urlString) const scheme = split.scheme ?? '' if (Fetcher.schemes.includes(scheme)) { if (['http', 'https'].includes(scheme)) { try { // TODO: content types const result = await fetch(new URL(urlString)) if (!result.ok) { throw Error(`HTTP Error Response: ${result.status} ${result.statusText}`) } return await result.text() } catch (e) { if (e instanceof Error) { throw new ValidationException(`Error fetching ${urlString}: ${e.message}`) } else { throw e } } } else if (scheme === 'file') { try { return fs.readFileSync(split.path ?? '', { encoding: 'utf8' }) } catch (e) { if (e instanceof Error) { throw new ValidationException(`Error reading file ${urlString}: ${e.message}`) } else { throw e } } } } throw new ValidationException(`Unsupported scheme ${scheme} in url: ${urlString}`) } checkExists (url: string): boolean { throw new Error('Not implemented.') } urljoin (baseUrlString: string, urlString: string): string { if (urlString.startsWith('_:')) { return urlString } const baseUrl = URI.parse(baseUrlString) const url = URI.parse(urlString) if (baseUrl.scheme != null && baseUrl.scheme !== 'file' && url.scheme === 'file') { throw new ValidationException(`Not resolving potential remote exploit ${urlString} from base ${baseUrlString}`) } // TODO: Windows specific join? return new URL(urlString, baseUrlString).toString() } }
0.503418
0.090977
import { LoadingOptions, documentLoadByUrl, TypeGuards, ValidationException } from '../Internal' import * as URI from 'uri-js' export interface Loader { load: (doc: any, baseuri: string, loadingOptions: LoadingOptions, docRoot?: string) => Promise<any> } export async function loadField (val: any, fieldType: Loader, baseuri: string, loadingOptions: LoadingOptions): Promise<any> { if (TypeGuards.isDictionary(val)) { if ('$import' in val) { if (loadingOptions.fileUri == null) { throw Error('Cannot load $import without fileuri') } return await documentLoadByUrl(fieldType, loadingOptions.fetcher.urljoin(loadingOptions.fileUri, val.$import), loadingOptions) } else if ('$include' in val) { if (loadingOptions.fileUri == null) { throw Error('Cannot load $import without fileuri') } val = await loadingOptions.fetcher.fetchText(loadingOptions.fetcher.urljoin(loadingOptions.fileUri, val.$include)) } } return await fieldType.load(val, baseuri, loadingOptions) } export function expandUrl (url: string, baseUrl: string, loadingOptions: LoadingOptions, scopedId = false, vocabTerm = false, scopedRef?: number): string { if (['@id', '@type'].includes(url)) { return url } if (vocabTerm && url in loadingOptions.vocab) { return url } if (loadingOptions.vocab != null && url.includes(':')) { const prefix = url.split(':')[0] if (prefix in loadingOptions.vocab) { url = loadingOptions.vocab[prefix] + url.slice(prefix.length + 1) } } const split = URI.parse(url) if ((split.scheme != null && ['http', 'https', 'file'].includes(split.scheme)) || url.startsWith('$(') || url.startsWith('${')) { } else if (scopedId && split.fragment === undefined) { const splitbase = URI.parse(baseUrl) let frg = '' if (splitbase.fragment != null) { frg = splitbase.fragment + '/' + (split.path ?? '') } else { frg = split.path ?? '' } const pt = splitbase.path ?? '/' const parts = { scheme: splitbase.scheme, userinfo: undefined, host: splitbase.host, port: undefined, path: pt, query: splitbase.query, fragment: frg, reference: undefined, error: undefined } url = URI.serialize(parts) } else if (scopedRef != null && split.fragment === undefined) { const splitbase = URI.parse(baseUrl) const sp = splitbase.fragment?.split('/') ?? [] let n = scopedRef while (n > 0 && sp?.length > 0) { sp.pop() n -= 1 } sp.push(url) const parts = { scheme: splitbase.scheme, userinfo: undefined, host: splitbase.host, port: undefined, path: splitbase.path, query: splitbase.query, fragment: sp.join('/'), reference: undefined, error: undefined } url = URI.serialize(parts) } else { url = loadingOptions.fetcher.urljoin(baseUrl, url) } if (vocabTerm) { const split = URI.parse(url) if (split.scheme !== undefined) { if (url in loadingOptions.rvocab) { return loadingOptions.rvocab[url] } } else { throw new ValidationException(`Term '${url}' not in vocabulary`) } } return url }
schema-salad
/schema-salad-8.4.20230808163024.tar.gz/schema-salad-8.4.20230808163024/schema_salad/typescript/util/loaders/Loader.ts
Loader.ts
import { LoadingOptions, documentLoadByUrl, TypeGuards, ValidationException } from '../Internal' import * as URI from 'uri-js' export interface Loader { load: (doc: any, baseuri: string, loadingOptions: LoadingOptions, docRoot?: string) => Promise<any> } export async function loadField (val: any, fieldType: Loader, baseuri: string, loadingOptions: LoadingOptions): Promise<any> { if (TypeGuards.isDictionary(val)) { if ('$import' in val) { if (loadingOptions.fileUri == null) { throw Error('Cannot load $import without fileuri') } return await documentLoadByUrl(fieldType, loadingOptions.fetcher.urljoin(loadingOptions.fileUri, val.$import), loadingOptions) } else if ('$include' in val) { if (loadingOptions.fileUri == null) { throw Error('Cannot load $import without fileuri') } val = await loadingOptions.fetcher.fetchText(loadingOptions.fetcher.urljoin(loadingOptions.fileUri, val.$include)) } } return await fieldType.load(val, baseuri, loadingOptions) } export function expandUrl (url: string, baseUrl: string, loadingOptions: LoadingOptions, scopedId = false, vocabTerm = false, scopedRef?: number): string { if (['@id', '@type'].includes(url)) { return url } if (vocabTerm && url in loadingOptions.vocab) { return url } if (loadingOptions.vocab != null && url.includes(':')) { const prefix = url.split(':')[0] if (prefix in loadingOptions.vocab) { url = loadingOptions.vocab[prefix] + url.slice(prefix.length + 1) } } const split = URI.parse(url) if ((split.scheme != null && ['http', 'https', 'file'].includes(split.scheme)) || url.startsWith('$(') || url.startsWith('${')) { } else if (scopedId && split.fragment === undefined) { const splitbase = URI.parse(baseUrl) let frg = '' if (splitbase.fragment != null) { frg = splitbase.fragment + '/' + (split.path ?? '') } else { frg = split.path ?? '' } const pt = splitbase.path ?? '/' const parts = { scheme: splitbase.scheme, userinfo: undefined, host: splitbase.host, port: undefined, path: pt, query: splitbase.query, fragment: frg, reference: undefined, error: undefined } url = URI.serialize(parts) } else if (scopedRef != null && split.fragment === undefined) { const splitbase = URI.parse(baseUrl) const sp = splitbase.fragment?.split('/') ?? [] let n = scopedRef while (n > 0 && sp?.length > 0) { sp.pop() n -= 1 } sp.push(url) const parts = { scheme: splitbase.scheme, userinfo: undefined, host: splitbase.host, port: undefined, path: splitbase.path, query: splitbase.query, fragment: sp.join('/'), reference: undefined, error: undefined } url = URI.serialize(parts) } else { url = loadingOptions.fetcher.urljoin(baseUrl, url) } if (vocabTerm) { const split = URI.parse(url) if (split.scheme !== undefined) { if (url in loadingOptions.rvocab) { return loadingOptions.rvocab[url] } } else { throw new ValidationException(`Term '${url}' not in vocabulary`) } } return url }
0.547464
0.14253
import { Loader, LoadingOptions, Dictionary, TypeGuards, ValidationException } from '../Internal' export class _SecondaryDSLLoader implements Loader { inner: Loader constructor (inner: Loader) { this.inner = inner } async load (doc: any, baseuri: string, loadingOptions: LoadingOptions, docRoot?: string): Promise<any> { const r: Array<Dictionary<any>> = [] if (Array.isArray(doc)) { for (const d of doc) { if (typeof d === 'string') { if (d.endsWith('?')) { r.push({ pattern: d.slice(0, -1), required: false }) } else { r.push({ pattern: d }) } } else if (TypeGuards.isDictionary(d)) { const newDict: Dictionary<any> = {} if ('pattern' in d) { newDict.pattern = d.pattern delete d.pattern } else { throw new ValidationException(`Missing pattern in secondaryFiles specification entry: ${JSON.stringify(d)}`) } if ('required' in d) { newDict.required = d.required delete d.required } if (Object.keys(d).length > 0) { throw new ValidationException(`Unallowed values in secondaryFiles specification entry: ${JSON.stringify(d)}`) } r.push(newDict) } else { throw new ValidationException('Expected a string or sequence of (strings or mappings).') } } } else if (TypeGuards.isDictionary(doc)) { const newDict: Dictionary<any> = {} if ('pattern' in doc) { newDict.pattern = doc.pattern delete doc.pattern } else { throw new ValidationException(`Missing pattern in secondaryFiles specification entry: ${JSON.stringify(doc)}`) } if ('required' in doc) { newDict.required = doc.required delete doc.required } if (Object.keys(doc).length > 0) { throw new ValidationException(`Unallowed values in secondaryFiles specification entry: ${JSON.stringify(doc)}`) } r.push(newDict) } else if (typeof doc === 'string') { if (doc.endsWith('?')) { r.push({ pattern: doc.slice(0, -1), required: false }) } else { r.push({ pattern: doc }) } } else { throw new ValidationException('Expected str or sequence of str') } return await this.inner.load(r, baseuri, loadingOptions, docRoot) } }
schema-salad
/schema-salad-8.4.20230808163024.tar.gz/schema-salad-8.4.20230808163024/schema_salad/typescript/util/loaders/SecondaryDSLLoader.ts
SecondaryDSLLoader.ts
import { Loader, LoadingOptions, Dictionary, TypeGuards, ValidationException } from '../Internal' export class _SecondaryDSLLoader implements Loader { inner: Loader constructor (inner: Loader) { this.inner = inner } async load (doc: any, baseuri: string, loadingOptions: LoadingOptions, docRoot?: string): Promise<any> { const r: Array<Dictionary<any>> = [] if (Array.isArray(doc)) { for (const d of doc) { if (typeof d === 'string') { if (d.endsWith('?')) { r.push({ pattern: d.slice(0, -1), required: false }) } else { r.push({ pattern: d }) } } else if (TypeGuards.isDictionary(d)) { const newDict: Dictionary<any> = {} if ('pattern' in d) { newDict.pattern = d.pattern delete d.pattern } else { throw new ValidationException(`Missing pattern in secondaryFiles specification entry: ${JSON.stringify(d)}`) } if ('required' in d) { newDict.required = d.required delete d.required } if (Object.keys(d).length > 0) { throw new ValidationException(`Unallowed values in secondaryFiles specification entry: ${JSON.stringify(d)}`) } r.push(newDict) } else { throw new ValidationException('Expected a string or sequence of (strings or mappings).') } } } else if (TypeGuards.isDictionary(doc)) { const newDict: Dictionary<any> = {} if ('pattern' in doc) { newDict.pattern = doc.pattern delete doc.pattern } else { throw new ValidationException(`Missing pattern in secondaryFiles specification entry: ${JSON.stringify(doc)}`) } if ('required' in doc) { newDict.required = doc.required delete doc.required } if (Object.keys(doc).length > 0) { throw new ValidationException(`Unallowed values in secondaryFiles specification entry: ${JSON.stringify(doc)}`) } r.push(newDict) } else if (typeof doc === 'string') { if (doc.endsWith('?')) { r.push({ pattern: doc.slice(0, -1), required: false }) } else { r.push({ pattern: doc }) } } else { throw new ValidationException('Expected str or sequence of str') } return await this.inner.load(r, baseuri, loadingOptions, docRoot) } }
0.631253
0.214157
import { LoadingOptions, Loader, TypeGuards, LoaderInstances } from '../Internal' import * as Internal from '../Internal' import * as yaml from 'js-yaml' import * as URL from 'url' export async function documentLoad (loader: Loader, doc: unknown, baseuri: string, loadingOptions: LoadingOptions): Promise<any> { if (typeof doc === 'string') { return await documentLoadByUrl(loader, loadingOptions.fetcher.urljoin(baseuri, doc), loadingOptions) } if (Array.isArray(doc)) { return await loader.load(doc, baseuri, loadingOptions) } if (TypeGuards.isDictionary(doc)) { if (doc != null) { if ('$namespaces' in doc || '$schemas' in doc) { loadingOptions = new LoadingOptions({ copyFrom: loadingOptions, namespaces: doc.$namespaces ?? undefined, schemas: doc.$schemas ?? undefined }) delete doc.$schemas delete doc.$namespaces } if ('$base' in doc) { baseuri = doc.$base } if ('$graph' in doc) { return await loader.load(doc.$graph, baseuri, loadingOptions) } else { return await loader.load(doc, baseuri, loadingOptions, baseuri) } } } throw new Error('Reached unexpected path') } export async function documentLoadByUrl (loader: Loader, url: string, loadingOptions: LoadingOptions): Promise<void> { if (url in loadingOptions.idx) { return await documentLoad(loader, loadingOptions.idx[url], url, loadingOptions) } const text = await loadingOptions.fetcher.fetchText(url) const result = yaml.load(text) loadingOptions.idx[url] = result loadingOptions = new LoadingOptions({ copyFrom: loadingOptions, fileUri: url }) return await documentLoad(loader, result, url, loadingOptions) } export async function loadDocument (doc: any, baseuri?: string, loadingOptions?: LoadingOptions): Promise<${root_loader_type}> { if (baseuri == null) { baseuri = URL.pathToFileURL(process.cwd() + '/').toString() } if (loadingOptions == null) { loadingOptions = new LoadingOptions({}) } return await documentLoad(LoaderInstances.${root_loader}, doc, baseuri, loadingOptions) } export async function loadDocumentByString (doc: string, uri: string, loadingOptions?: LoadingOptions): Promise<${root_loader_type}> { const result = yaml.load(doc) if (loadingOptions == null) { loadingOptions = new LoadingOptions({ fileUri: uri }) } loadingOptions.idx[uri] = result return await documentLoad(LoaderInstances.${root_loader}, result, uri, loadingOptions) }
schema-salad
/schema-salad-8.4.20230808163024.tar.gz/schema-salad-8.4.20230808163024/schema_salad/typescript/util/loaders/RootLoader.ts
RootLoader.ts
import { LoadingOptions, Loader, TypeGuards, LoaderInstances } from '../Internal' import * as Internal from '../Internal' import * as yaml from 'js-yaml' import * as URL from 'url' export async function documentLoad (loader: Loader, doc: unknown, baseuri: string, loadingOptions: LoadingOptions): Promise<any> { if (typeof doc === 'string') { return await documentLoadByUrl(loader, loadingOptions.fetcher.urljoin(baseuri, doc), loadingOptions) } if (Array.isArray(doc)) { return await loader.load(doc, baseuri, loadingOptions) } if (TypeGuards.isDictionary(doc)) { if (doc != null) { if ('$namespaces' in doc || '$schemas' in doc) { loadingOptions = new LoadingOptions({ copyFrom: loadingOptions, namespaces: doc.$namespaces ?? undefined, schemas: doc.$schemas ?? undefined }) delete doc.$schemas delete doc.$namespaces } if ('$base' in doc) { baseuri = doc.$base } if ('$graph' in doc) { return await loader.load(doc.$graph, baseuri, loadingOptions) } else { return await loader.load(doc, baseuri, loadingOptions, baseuri) } } } throw new Error('Reached unexpected path') } export async function documentLoadByUrl (loader: Loader, url: string, loadingOptions: LoadingOptions): Promise<void> { if (url in loadingOptions.idx) { return await documentLoad(loader, loadingOptions.idx[url], url, loadingOptions) } const text = await loadingOptions.fetcher.fetchText(url) const result = yaml.load(text) loadingOptions.idx[url] = result loadingOptions = new LoadingOptions({ copyFrom: loadingOptions, fileUri: url }) return await documentLoad(loader, result, url, loadingOptions) } export async function loadDocument (doc: any, baseuri?: string, loadingOptions?: LoadingOptions): Promise<${root_loader_type}> { if (baseuri == null) { baseuri = URL.pathToFileURL(process.cwd() + '/').toString() } if (loadingOptions == null) { loadingOptions = new LoadingOptions({}) } return await documentLoad(LoaderInstances.${root_loader}, doc, baseuri, loadingOptions) } export async function loadDocumentByString (doc: string, uri: string, loadingOptions?: LoadingOptions): Promise<${root_loader_type}> { const result = yaml.load(doc) if (loadingOptions == null) { loadingOptions = new LoadingOptions({ fileUri: uri }) } loadingOptions.idx[uri] = result return await documentLoad(LoaderInstances.${root_loader}, result, uri, loadingOptions) }
0.50952
0.150778
from typing import List, Dict, Optional, Union from dataclasses import dataclass import xml.etree.ElementTree as ET import os @dataclass(frozen=True) class St4Entry(): type:str label:str node_id:str link_id:str titles:Dict[str,str] content:Dict[str,str] thumbnail:Optional[str]=None data_web:Optional[Dict[str,str]]=None data_web_data:Optional[Dict[str,str]]=None @property def languages(self)->List[str]: if len(self.content) == 0: return list(self.titles.keys()) return list(self.content.keys()) def get_namespaces(xml_file:Union[str, os.PathLike])->Dict[str,str]: """ Extracts the namespaces from a schema st4 xml file """ namespaces = {} for event, elem in ET.iterparse(xml_file, events=("start", "start-ns")): if event == "start-ns": prefix, url = elem namespaces[prefix] = url return namespaces def parse(xml_file:Union[str, os.PathLike])->List[St4Entry]: """ Parses a schema st4 xml file and returns a list of St4Entry objects """ namespaces = get_namespaces(xml_file) assert "n" in namespaces and "l" in namespaces , "No namespaces found! Is this a valid ST4 file?" extracted_entries=[] def extract_language_and_values(element:ET.Element,with_entry=False)->Dict[str,str]: extracted={} value_elements = element.findall("./n:Value",namespaces) for value_element in value_elements: language = value_element.attrib[(f"{'{'+namespaces['n']+'}'}Aspect")] if with_entry: entry_element = value_element.find(".//n:Entry",namespaces) if entry_element is not None: extracted[language]=entry_element.text else: extracted[language]=value_element.text return extracted tree = ET.parse(xml_file) root = tree.getroot() # Find all 'n:SystemFolder' elements system_folder_elements = root.findall(".//n:SystemFolder",namespaces) for system_folder_element in system_folder_elements: #get info elements info_elements = system_folder_element.findall(".//n:Data-Title/..",namespaces) #Just dont ask me why, but im not gonna hardcode the InfoType02 element if info_elements is None: continue for info_element in info_elements: #extract label and ids type=info_element.tag label = info_element.attrib[(f"{'{'+namespaces['l']+'}'}Label")] node_id = info_element.attrib[(f"{'{'+namespaces['n']+'}'}Id")] link_id = info_element.attrib[(f"{'{'+namespaces['l']+'}'}Id")] #extract the titles in all languages title_element = info_element.find(".//n:Data-Title",namespaces) titles=extract_language_and_values(title_element,with_entry=True) #get the content in all languages data_content_element = info_element.find(".//n:Data-Content",namespaces) content={} if data_content_element is not None: value_elements = data_content_element.findall("./n:Value",namespaces) for value_element in value_elements: language = value_element.attrib[(f"{'{'+namespaces['n']+'}'}Aspect")] content_element = value_element.find(".//n:Entry//content",namespaces) content[language]= ET.tostring(content_element, encoding='unicode') #check if we got content or titles, if not, skip this entry if len(titles)==0 and len(content)==0: continue #get thumbnail if it exists thumbnail=None thumbnail_element = info_element.find(".//n:Data-Thumbnail",namespaces) if thumbnail_element is not None: thumbnail = thumbnail_element.text #get data web if it exists data_web = None data_web_element = info_element.find(".//n:Data-Web",namespaces) if data_web_element is not None: data_web = extract_language_and_values(data_web_element) # get data web.data if it exists // dont ask me why it is named this way, its just stupid data_web_data = None data_web_data_element = info_element.find(".//n:Data-Web.Data",namespaces) if data_web_data_element is not None: data_web_data = extract_language_and_values(data_web_data_element) extracted_entries.append(St4Entry(type,label,node_id,link_id,titles,content,thumbnail,data_web,data_web_data)) return extracted_entries
schema-st4-parser
/schema_st4_parser-1.0.1.tar.gz/schema_st4_parser-1.0.1/src/schema_st4_parser/__init__.py
__init__.py
from typing import List, Dict, Optional, Union from dataclasses import dataclass import xml.etree.ElementTree as ET import os @dataclass(frozen=True) class St4Entry(): type:str label:str node_id:str link_id:str titles:Dict[str,str] content:Dict[str,str] thumbnail:Optional[str]=None data_web:Optional[Dict[str,str]]=None data_web_data:Optional[Dict[str,str]]=None @property def languages(self)->List[str]: if len(self.content) == 0: return list(self.titles.keys()) return list(self.content.keys()) def get_namespaces(xml_file:Union[str, os.PathLike])->Dict[str,str]: """ Extracts the namespaces from a schema st4 xml file """ namespaces = {} for event, elem in ET.iterparse(xml_file, events=("start", "start-ns")): if event == "start-ns": prefix, url = elem namespaces[prefix] = url return namespaces def parse(xml_file:Union[str, os.PathLike])->List[St4Entry]: """ Parses a schema st4 xml file and returns a list of St4Entry objects """ namespaces = get_namespaces(xml_file) assert "n" in namespaces and "l" in namespaces , "No namespaces found! Is this a valid ST4 file?" extracted_entries=[] def extract_language_and_values(element:ET.Element,with_entry=False)->Dict[str,str]: extracted={} value_elements = element.findall("./n:Value",namespaces) for value_element in value_elements: language = value_element.attrib[(f"{'{'+namespaces['n']+'}'}Aspect")] if with_entry: entry_element = value_element.find(".//n:Entry",namespaces) if entry_element is not None: extracted[language]=entry_element.text else: extracted[language]=value_element.text return extracted tree = ET.parse(xml_file) root = tree.getroot() # Find all 'n:SystemFolder' elements system_folder_elements = root.findall(".//n:SystemFolder",namespaces) for system_folder_element in system_folder_elements: #get info elements info_elements = system_folder_element.findall(".//n:Data-Title/..",namespaces) #Just dont ask me why, but im not gonna hardcode the InfoType02 element if info_elements is None: continue for info_element in info_elements: #extract label and ids type=info_element.tag label = info_element.attrib[(f"{'{'+namespaces['l']+'}'}Label")] node_id = info_element.attrib[(f"{'{'+namespaces['n']+'}'}Id")] link_id = info_element.attrib[(f"{'{'+namespaces['l']+'}'}Id")] #extract the titles in all languages title_element = info_element.find(".//n:Data-Title",namespaces) titles=extract_language_and_values(title_element,with_entry=True) #get the content in all languages data_content_element = info_element.find(".//n:Data-Content",namespaces) content={} if data_content_element is not None: value_elements = data_content_element.findall("./n:Value",namespaces) for value_element in value_elements: language = value_element.attrib[(f"{'{'+namespaces['n']+'}'}Aspect")] content_element = value_element.find(".//n:Entry//content",namespaces) content[language]= ET.tostring(content_element, encoding='unicode') #check if we got content or titles, if not, skip this entry if len(titles)==0 and len(content)==0: continue #get thumbnail if it exists thumbnail=None thumbnail_element = info_element.find(".//n:Data-Thumbnail",namespaces) if thumbnail_element is not None: thumbnail = thumbnail_element.text #get data web if it exists data_web = None data_web_element = info_element.find(".//n:Data-Web",namespaces) if data_web_element is not None: data_web = extract_language_and_values(data_web_element) # get data web.data if it exists // dont ask me why it is named this way, its just stupid data_web_data = None data_web_data_element = info_element.find(".//n:Data-Web.Data",namespaces) if data_web_data_element is not None: data_web_data = extract_language_and_values(data_web_data_element) extracted_entries.append(St4Entry(type,label,node_id,link_id,titles,content,thumbnail,data_web,data_web_data)) return extracted_entries
0.507324
0.214229
from schema_tools.schema.json import ValueSchema, Enum, StringSchema class ValidationIssue(object): def __init__(self, msg): self.msg = msg def __str__(self): return "{}: {}".format(self.__class__.__name__, self.msg) def __repr__(self): return str(self) class Warning(ValidationIssue): pass class Error(ValidationIssue): pass class Mapping(object): def __init__(self, source, target): self.source = source self.target = target self.validation = [] @property def is_valid(self): return self._validate() @property def issues(self): self._validate() return self.validation @property def errors(self): self._validate() return [ e for e in self.validation if isinstance(e, Error) ] @property def warnings(self): self._validate() return [ w for w in self.validation if isinstance(w, Warning) ] def warn(self, msg, *args): self.validation.append(Warning(msg.format(*args))) return True def error(self, msg, *args): self.validation.append(Error(msg.format(*args))) return False def __str__(self): return "source:{}\ntarget:{}".format(repr(self.source), repr(self.target)) # TODO make this more generic and easier to simply add checks def _validate(self): self.validation = [] if isinstance(self.source, ValueSchema) and isinstance(self.target, ValueSchema): return self._validate_value_schemas() if isinstance(self.source, Enum) and isinstance(self.target, Enum): return self._validate_enum_schemas() if isinstance(self.source, Enum) and isinstance(self.target, StringSchema): return self.warn( "target type, 'StringSchema', accepts '{}' with cast", self.source.__class__.__name__ ) return self.error( "can't compare source '{}' with target '{}'", self.source.__class__.__name__, self.target.__class__.__name__ ) def _validate_value_schemas(self): if self.source.__class__ is self.target.__class__: return True if self.target.__class__ is StringSchema: return self.warn( "target type, 'StringSchema', accepts '{}' with cast", self.source.__class__.__name__ ) else: return self.error( "source type '{}' doesn't match target type '{}'", self.source.__class__.__name__, self.target.__class__.__name__ ) def _validate_enum_schemas(self): if not self.source.__class__ is self.target.__class__: return self.error( "source type '{}' doesn't match target type '{}'", self.source.__class__.__name__, self.target.__class__.__name__ ) if not self.source.values == self.target.values: return self.error( "source enum values () don't match target enum values ()", ", ".join(self.source.values), ", ".join(self.target.values) ) return True
schema-tools
/schema_tools-0.0.19-py3-none-any.whl/schema_tools/mapping.py
mapping.py
from schema_tools.schema.json import ValueSchema, Enum, StringSchema class ValidationIssue(object): def __init__(self, msg): self.msg = msg def __str__(self): return "{}: {}".format(self.__class__.__name__, self.msg) def __repr__(self): return str(self) class Warning(ValidationIssue): pass class Error(ValidationIssue): pass class Mapping(object): def __init__(self, source, target): self.source = source self.target = target self.validation = [] @property def is_valid(self): return self._validate() @property def issues(self): self._validate() return self.validation @property def errors(self): self._validate() return [ e for e in self.validation if isinstance(e, Error) ] @property def warnings(self): self._validate() return [ w for w in self.validation if isinstance(w, Warning) ] def warn(self, msg, *args): self.validation.append(Warning(msg.format(*args))) return True def error(self, msg, *args): self.validation.append(Error(msg.format(*args))) return False def __str__(self): return "source:{}\ntarget:{}".format(repr(self.source), repr(self.target)) # TODO make this more generic and easier to simply add checks def _validate(self): self.validation = [] if isinstance(self.source, ValueSchema) and isinstance(self.target, ValueSchema): return self._validate_value_schemas() if isinstance(self.source, Enum) and isinstance(self.target, Enum): return self._validate_enum_schemas() if isinstance(self.source, Enum) and isinstance(self.target, StringSchema): return self.warn( "target type, 'StringSchema', accepts '{}' with cast", self.source.__class__.__name__ ) return self.error( "can't compare source '{}' with target '{}'", self.source.__class__.__name__, self.target.__class__.__name__ ) def _validate_value_schemas(self): if self.source.__class__ is self.target.__class__: return True if self.target.__class__ is StringSchema: return self.warn( "target type, 'StringSchema', accepts '{}' with cast", self.source.__class__.__name__ ) else: return self.error( "source type '{}' doesn't match target type '{}'", self.source.__class__.__name__, self.target.__class__.__name__ ) def _validate_enum_schemas(self): if not self.source.__class__ is self.target.__class__: return self.error( "source type '{}' doesn't match target type '{}'", self.source.__class__.__name__, self.target.__class__.__name__ ) if not self.source.values == self.target.values: return self.error( "source enum values () don't match target enum values ()", ", ".join(self.source.values), ", ".join(self.target.values) ) return True
0.512937
0.105579
class SchemaNode(object): def __init__(self, line, column): self._line = line self._column = column class ValueNode(SchemaNode): def __init__(self, value, line, column): super().__init__(line, column) self._value = value def replace(self, find, replace_by): return self._value.replace(find, replace_by) def __repr__(self): return "ValueNode(value={}, line={}, column={})".format( self._value, self._line, self._column ) def __call__(self): return self._value def __eq__(self, other): if not isinstance(other, self.__class__): return NotImplemented return self._value == other._value def __hash__(self): return hash( (self._value, self._line, self._column) ) class ListNode(SchemaNode): def __init__(self, items, line, column): super().__init__(line, column) self._items = items self.current = -1 def __iter__(self): return iter(self._items) def __setitem__(self, key, item): self._items[key] = item def __getitem__(self, key): return self._items[key] def __repr__(self): return "ListNode(len={}, line={}, column={})".format( len(self._items), self._line, self._column ) def __call__(self): return [ v() for v in self ] def __eq__(self, other): if not isinstance(other, self.__class__): return NotImplemented for index, _ in enumerate(self._items): if self._items[index] != other._items[index]: return False return True class ObjectNode(SchemaNode): def __init__(self, items, line, column): super().__init__(line, column) self._items = items def __iter__(self): return iter(self._items.items()) def __setitem__(self, key, item): self._items[key] = item def __getitem__(self, key): return self._items[key] def __getattr__(self, key): return self._items[key] def __repr__(self): return "ObjectNode(len={}, line={}, column={})".format( len(self._items), self._line, self._column ) def __len__(self): return len(self._items) def __delitem__(self, key): del self._items[key] def clear(self): return self._items.clear() def copy(self): return self._items.copy() def has_key(self, k): return k in self._items def __contains__(self, k): return k in self._items def update(self, *args, **kwargs): return self._items.update(*args, **kwargs) def keys(self): return self._items.keys() def values(self): return self._items.values() def items(self): return self._items.items() def __call__(self): return { k : v() for k, v in self.items() } def __eq__(self, other): if not isinstance(other, self.__class__): return NotImplemented for key in self._items.keys(): if self._items[key] != other._items[key]: return False return True
schema-tools
/schema_tools-0.0.19-py3-none-any.whl/schema_tools/ast.py
ast.py
class SchemaNode(object): def __init__(self, line, column): self._line = line self._column = column class ValueNode(SchemaNode): def __init__(self, value, line, column): super().__init__(line, column) self._value = value def replace(self, find, replace_by): return self._value.replace(find, replace_by) def __repr__(self): return "ValueNode(value={}, line={}, column={})".format( self._value, self._line, self._column ) def __call__(self): return self._value def __eq__(self, other): if not isinstance(other, self.__class__): return NotImplemented return self._value == other._value def __hash__(self): return hash( (self._value, self._line, self._column) ) class ListNode(SchemaNode): def __init__(self, items, line, column): super().__init__(line, column) self._items = items self.current = -1 def __iter__(self): return iter(self._items) def __setitem__(self, key, item): self._items[key] = item def __getitem__(self, key): return self._items[key] def __repr__(self): return "ListNode(len={}, line={}, column={})".format( len(self._items), self._line, self._column ) def __call__(self): return [ v() for v in self ] def __eq__(self, other): if not isinstance(other, self.__class__): return NotImplemented for index, _ in enumerate(self._items): if self._items[index] != other._items[index]: return False return True class ObjectNode(SchemaNode): def __init__(self, items, line, column): super().__init__(line, column) self._items = items def __iter__(self): return iter(self._items.items()) def __setitem__(self, key, item): self._items[key] = item def __getitem__(self, key): return self._items[key] def __getattr__(self, key): return self._items[key] def __repr__(self): return "ObjectNode(len={}, line={}, column={})".format( len(self._items), self._line, self._column ) def __len__(self): return len(self._items) def __delitem__(self, key): del self._items[key] def clear(self): return self._items.clear() def copy(self): return self._items.copy() def has_key(self, k): return k in self._items def __contains__(self, k): return k in self._items def update(self, *args, **kwargs): return self._items.update(*args, **kwargs) def keys(self): return self._items.keys() def values(self): return self._items.values() def items(self): return self._items.items() def __call__(self): return { k : v() for k, v in self.items() } def __eq__(self, other): if not isinstance(other, self.__class__): return NotImplemented for key in self._items.keys(): if self._items[key] != other._items[key]: return False return True
0.760828
0.196884
from collections import namedtuple from schema_tools.ast import ValueNode, ListNode, ObjectNode location = namedtuple("NodeLocation", "line column") def node_location(node): try: return location(node._line, node._column) except AttributeError: raise TypeError("Expected a config node but received a {}.".format( node.__class__.__name__ )) class VisitorException(Exception): pass class Visitor(object): def __init__(self, value_class, list_class, object_class): self.value_class = value_class self.list_class = list_class self.object_class = object_class def visit(self, obj): try: if isinstance(obj, self.object_class): return self.visit_object(obj) elif isinstance(obj, self.list_class): return self.visit_list(obj) elif isinstance(obj, self.value_class): return self.visit_value(obj) else: raise TypeError("Node type '{}' is not supported by '{}'".format( obj.__class__.__name__, self.__class__.__name__ )) except VisitorException as e: raise e except Exception as e: raise VisitorException("Failed to visit '{}', due to '{}'".format( repr(obj), str(e) )) def visit_value(self, value_node): raise NotImplementedError def visit_list(self, list_node): raise NotImplementedError def visit_object(self, object_node): raise NotImplementedError class ASTVisitor(Visitor): def __init__(self): super().__init__(ValueNode, ListNode, ObjectNode) self.level = 0 def location(self, node): return node_location(node) def visit_value(self, value_node): raise NotImplementedError def visit_list(self, list_node): self.level += 1 children = [ self.visit(item) for item in list_node ] self.level -= 1 return children def visit_object(self, object_node): self.level += 1 children = { str(key) : self.visit(child) for key, child in object_node.items() } self.level -= 1 return children class ASTDumper(ASTVisitor): def dump(self, node): return "\n".join(self.visit(node)) def indent(self): return " " * self.level def location(self, node): location = super().location(node) # don't take into account column ;-) return "[{},{}]{} ".format(*location, self.indent()) def visit_value(self, value_node): return "{}{}".format(self.location(value_node), value_node()) def visit_object(self, object_node): children = [] for key, child in super().visit_object(object_node).items(): # reuse location of child for key children.append("{}{}".format(self.location(object_node[key]), key)) if isinstance(child, list): children.extend(child) else: children.append(child) return children
schema-tools
/schema_tools-0.0.19-py3-none-any.whl/schema_tools/utils.py
utils.py
from collections import namedtuple from schema_tools.ast import ValueNode, ListNode, ObjectNode location = namedtuple("NodeLocation", "line column") def node_location(node): try: return location(node._line, node._column) except AttributeError: raise TypeError("Expected a config node but received a {}.".format( node.__class__.__name__ )) class VisitorException(Exception): pass class Visitor(object): def __init__(self, value_class, list_class, object_class): self.value_class = value_class self.list_class = list_class self.object_class = object_class def visit(self, obj): try: if isinstance(obj, self.object_class): return self.visit_object(obj) elif isinstance(obj, self.list_class): return self.visit_list(obj) elif isinstance(obj, self.value_class): return self.visit_value(obj) else: raise TypeError("Node type '{}' is not supported by '{}'".format( obj.__class__.__name__, self.__class__.__name__ )) except VisitorException as e: raise e except Exception as e: raise VisitorException("Failed to visit '{}', due to '{}'".format( repr(obj), str(e) )) def visit_value(self, value_node): raise NotImplementedError def visit_list(self, list_node): raise NotImplementedError def visit_object(self, object_node): raise NotImplementedError class ASTVisitor(Visitor): def __init__(self): super().__init__(ValueNode, ListNode, ObjectNode) self.level = 0 def location(self, node): return node_location(node) def visit_value(self, value_node): raise NotImplementedError def visit_list(self, list_node): self.level += 1 children = [ self.visit(item) for item in list_node ] self.level -= 1 return children def visit_object(self, object_node): self.level += 1 children = { str(key) : self.visit(child) for key, child in object_node.items() } self.level -= 1 return children class ASTDumper(ASTVisitor): def dump(self, node): return "\n".join(self.visit(node)) def indent(self): return " " * self.level def location(self, node): location = super().location(node) # don't take into account column ;-) return "[{},{}]{} ".format(*location, self.indent()) def visit_value(self, value_node): return "{}{}".format(self.location(value_node), value_node()) def visit_object(self, object_node): children = [] for key, child in super().visit_object(object_node).items(): # reuse location of child for key children.append("{}{}".format(self.location(object_node[key]), key)) if isinstance(child, list): children.extend(child) else: children.append(child) return children
0.675978
0.283381
import collections import inspect UnknownProperty = collections.namedtuple("UnknownProperty", "name definition") from schema_tools import json from schema_tools.utils import ASTVisitor def load(path, parser=json): return build(parser.load(path), origin=path) def loads(src, parser=json, origin=None): return build(parser.loads(src), origin=origin) def build(nodes, origin=None): from schema_tools.schema.json import SchemaMapper schema = NodesMapper(SchemaMapper()).visit(nodes) schema._origin = origin return schema class NodesMapper(ASTVisitor): def __init__(self, *mappers): super().__init__() self.mappers = [ func \ for mapper in mappers \ for func in inspect.getmembers(mapper, predicate=callable) \ if func[0].startswith("map_") ] def visit_value(self, value_node): return ConstantValueSchema(value=value_node(), _location=self.location(value_node)) def visit_object(self, object_node): properties = super().visit_object(object_node) properties["_location"] = self.location(object_node) for name, mapper in self.mappers: result = mapper(properties) if result: return result return Schema(**properties) class Mapper(object): def has(self, properties, name, of_type=None, containing=None): if not name in properties: return False value = properties[name] if isinstance(value, ConstantValueSchema): value = value.value if of_type: if isinstance(of_type, str): return value == of_type elif isinstance(of_type, dict): return value in of_type else: if isinstance(value, of_type): if not containing or containing in value: return True return False return bool(value) class Schema(object): args = {} _location = None _origin = None def __init__(self, **kwargs): self.parent = None self._location = None self._origin = None if "_location" in kwargs: self._location = kwargs.pop("_location") self.args = kwargs # catchall properties # drop examples if "examples" in kwargs and not isinstance(kwargs["examples"], IdentifiedSchema): kwargs.pop("examples") def __getattr__(self, key): try: return self.args[key] except KeyError: return None def select(self, *path, stack=None): path = self._clean(path) if not path: return None # print("select", path) return self._select(*path, stack=stack) def trace(self, *path): path = self._clean(path) if not path: return [] # print("trace", path) stack = [] self.select(*path, stack=stack) # add UnknownProperties for not returned items in stack for missing in path[len(stack):]: stack.append(UnknownProperty(missing, None)) return stack def _clean(self, path): if not path or path[0] is None: return None # ensure all parts in the path are strings for step in path: if not isinstance(step, str): raise ValueError("only string paths are selectable") # single path can be dotted string if len(path) == 1: path = path[0].split(".") return path def _select(self, *path, stack=None): # print(stack, "schema", path) return None # default def __repr__(self): props = { k: v for k, v in self.args.items() } # TODO not "if v" ? props.update(self._more_repr()) props["<location>"] = self._location return "{}({})".format( self.__class__.__name__, ", ".join( [ "{}={}".format(k, v) for k, v in props.items() ] ) ) def _more_repr(self): return {} def to_dict(self, deref=False, prefix=None, stack=None): if stack is None: stack = [] items = {} for k, v in self.args.items(): if isinstance(v, Schema): v = v.to_dict(deref=deref, prefix=prefix, stack=stack+[k]) elif isinstance(v, list): vv = [] for i in v: vv.append(i.to_dict(deref=deref, prefix=prefix, stack=stack+[k]) if isinstance(i, Schema) else i) v = vv elif v is None or isinstance(v, (str, int, float)): pass else: print(v.__class__.__name__, v) raise NotImplementedError items[k] = v return items def items(self): return self.args.items() def dependencies(self, external=False, visited=None): return [] @property def root(self): if not self.parent: return self p = self.parent while not p.parent is None: p = p.parent return p @property def origin(self): return self.root._origin class IdentifiedSchema(Schema): pass class ConstantValueSchema(IdentifiedSchema): def to_dict(self, deref=False, prefix=None, stack=None): return self.value
schema-tools
/schema_tools-0.0.19-py3-none-any.whl/schema_tools/schema/__init__.py
__init__.py
import collections import inspect UnknownProperty = collections.namedtuple("UnknownProperty", "name definition") from schema_tools import json from schema_tools.utils import ASTVisitor def load(path, parser=json): return build(parser.load(path), origin=path) def loads(src, parser=json, origin=None): return build(parser.loads(src), origin=origin) def build(nodes, origin=None): from schema_tools.schema.json import SchemaMapper schema = NodesMapper(SchemaMapper()).visit(nodes) schema._origin = origin return schema class NodesMapper(ASTVisitor): def __init__(self, *mappers): super().__init__() self.mappers = [ func \ for mapper in mappers \ for func in inspect.getmembers(mapper, predicate=callable) \ if func[0].startswith("map_") ] def visit_value(self, value_node): return ConstantValueSchema(value=value_node(), _location=self.location(value_node)) def visit_object(self, object_node): properties = super().visit_object(object_node) properties["_location"] = self.location(object_node) for name, mapper in self.mappers: result = mapper(properties) if result: return result return Schema(**properties) class Mapper(object): def has(self, properties, name, of_type=None, containing=None): if not name in properties: return False value = properties[name] if isinstance(value, ConstantValueSchema): value = value.value if of_type: if isinstance(of_type, str): return value == of_type elif isinstance(of_type, dict): return value in of_type else: if isinstance(value, of_type): if not containing or containing in value: return True return False return bool(value) class Schema(object): args = {} _location = None _origin = None def __init__(self, **kwargs): self.parent = None self._location = None self._origin = None if "_location" in kwargs: self._location = kwargs.pop("_location") self.args = kwargs # catchall properties # drop examples if "examples" in kwargs and not isinstance(kwargs["examples"], IdentifiedSchema): kwargs.pop("examples") def __getattr__(self, key): try: return self.args[key] except KeyError: return None def select(self, *path, stack=None): path = self._clean(path) if not path: return None # print("select", path) return self._select(*path, stack=stack) def trace(self, *path): path = self._clean(path) if not path: return [] # print("trace", path) stack = [] self.select(*path, stack=stack) # add UnknownProperties for not returned items in stack for missing in path[len(stack):]: stack.append(UnknownProperty(missing, None)) return stack def _clean(self, path): if not path or path[0] is None: return None # ensure all parts in the path are strings for step in path: if not isinstance(step, str): raise ValueError("only string paths are selectable") # single path can be dotted string if len(path) == 1: path = path[0].split(".") return path def _select(self, *path, stack=None): # print(stack, "schema", path) return None # default def __repr__(self): props = { k: v for k, v in self.args.items() } # TODO not "if v" ? props.update(self._more_repr()) props["<location>"] = self._location return "{}({})".format( self.__class__.__name__, ", ".join( [ "{}={}".format(k, v) for k, v in props.items() ] ) ) def _more_repr(self): return {} def to_dict(self, deref=False, prefix=None, stack=None): if stack is None: stack = [] items = {} for k, v in self.args.items(): if isinstance(v, Schema): v = v.to_dict(deref=deref, prefix=prefix, stack=stack+[k]) elif isinstance(v, list): vv = [] for i in v: vv.append(i.to_dict(deref=deref, prefix=prefix, stack=stack+[k]) if isinstance(i, Schema) else i) v = vv elif v is None or isinstance(v, (str, int, float)): pass else: print(v.__class__.__name__, v) raise NotImplementedError items[k] = v return items def items(self): return self.args.items() def dependencies(self, external=False, visited=None): return [] @property def root(self): if not self.parent: return self p = self.parent while not p.parent is None: p = p.parent return p @property def origin(self): return self.root._origin class IdentifiedSchema(Schema): pass class ConstantValueSchema(IdentifiedSchema): def to_dict(self, deref=False, prefix=None, stack=None): return self.value
0.399109
0.206114
import requests from requests_file import FileAdapter from urllib.parse import urldefrag, urlparse from pathlib import Path from schema_tools import json, yaml from schema_tools.schema import Schema, Mapper, loads, IdentifiedSchema, ConstantValueSchema def log(*args): if False: print(*args) class ObjectSchema(IdentifiedSchema): def __init__(self, properties=None, definitions=None, allOf=None, anyOf=None, oneOf=None, **kwargs): super().__init__(**kwargs) if properties is None: properties = [] self.properties = properties if isinstance(self.properties, list): for prop in self.properties: prop.parent = self elif isinstance(self.properties, ConstantValueSchema): if self.properties.value is None: self.properties = [] else: raise ValueError("can't handle properties", self.properties) self.definitions = [] if definitions: for definition in definitions: self.add_definition(definition) self.allOf = allOf if self.allOf: self.allOf.parent = self self.anyOf = anyOf if self.anyOf: self.anyOf.parent = self self.oneOf = oneOf if self.oneOf: self.oneOf.parent = self def add_definition(self, definition): definition.parent = self self.definitions.append(definition) def definition(self, key, return_definition=True): for definition in self.definitions: if definition.name == key: return definition.definition if return_definition else definition raise KeyError("'{}' is not a known definition".format(key)) def _combinations(self): for combination in [ self.allOf, self.anyOf, self.oneOf ]: if isinstance(combination, Combination): for option in combination.options: yield option def property(self, key, return_definition=True): # local properties for prop in self.properties: if prop.name == key: return prop.definition if return_definition else prop # collected/combinations properties for candidate in self._combinations(): if isinstance(candidate, Reference): candidate = candidate.resolve() try: return candidate.property(key, return_definition=return_definition) except: pass raise KeyError("'{}' is not a known property".format(key)) def _select(self, name, *remainder, stack=None): if stack is None: stack = [] log(stack, "object", name, remainder) result = None # TODO generalize this at schema level if name == "components" and remainder[0] == "schemas": try: remainder = list(remainder) stack.append("components") stack.append(remainder.pop(0)) name = remainder.pop(0) result = self.definition(name, return_definition=False) stack.append(result) if remainder: result = result._select(*remainder, stack=stack) except KeyError: pass else: try: result = self.property(name, return_definition=False) stack.append(result) if remainder: result = result._select(*remainder, stack=stack) except KeyError: pass return result def _more_repr(self): return { "properties" : [ prop.name for prop in self.properties ], "definitions" : [ definition.name for definition in self.definitions ], # "allOf" : [ repr(candidate) for candidate in self.allOf.options ], # "oneOf" : [ repr(candidate) for candidate in self.oneOf.options ], # "anyOf" : [ repr(candidate) for candidate in self.anyOf.options ] } def to_dict(self, deref=False, prefix=None, stack=None): if stack is None: stack = [] out = super().to_dict(deref=deref, prefix=prefix, stack=stack) if self.properties: out["properties"] = { p.name : p.to_dict(deref=deref, prefix=prefix, stack=stack+["properties"]) for p in self.properties } if self.definitions: out["definitions"] = { d.name : d.to_dict(deref=deref, prefix=prefix, stack=stack+["definitions"]) for d in self.definitions } if self.allOf: out["allOf"] = [ a.to_dict(deref=deref, prefix=prefix, stack=stack) for a in self.allOf.options ] if self.oneOf: out["oneOf"] = [ a.to_dict(deref=deref, prefix=prefix, stack=stack) for a in self.oneOf.options ] if self.anyOf: out["anyOf"] = [ a.to_dict(deref=deref, prefix=prefix, stack=stack) for a in self.anyOf.options ] return out def dependencies(self, external=False, visited=None): return list({ dependency \ for prop in self.properties + list(self._combinations()) \ for dependency in prop.dependencies(external=external, visited=visited) }) class Definition(IdentifiedSchema): def __init__(self, name, definition): self.name = name self._definition = definition if isinstance(self._definition, Schema): self._definition.parent = self self._location = self._definition._location else: raise ValueError("unsupported items type: '{}'".format( self.items.__class__.__type__) ) def is_ref(self): return isinstance(self._definition, Reference) @property def definition(self): d = self._definition while isinstance(d, Reference): d = d.resolve() return d def _more_repr(self): return { "name" : self.name, "definition" : repr(self._definition) } def to_dict(self, deref=False, prefix=None, stack=None): if stack is None: stack = [] if isinstance(self._definition, Schema): return self._definition.to_dict(deref=deref, prefix=prefix, stack=stack + [self.name]) else: return self._definition def _select(self, *path, stack=None): log(stack, "definition/property", path) return self.definition._select(*path, stack=stack) def dependencies(self, external=False, visited=None): return self._definition.dependencies(external=external, visited=visited) class Property(Definition): pass class ValueSchema(IdentifiedSchema): pass class StringSchema(ValueSchema): pass class IntegerSchema(ValueSchema): pass class NullSchema(ValueSchema): pass class NumberSchema(ValueSchema): pass class BooleanSchema(ValueSchema): pass class ArraySchema(IdentifiedSchema): def __init__(self, items=None, **kwargs): super().__init__(**kwargs) self.items = items if isinstance(self.items, Schema): self.items.parent = self elif self.items is None: self.items = [] else: raise ValueError("unsupported items type: '{}'".format( self.items.__class__.__name__) ) def _more_repr(self): return { "items" : repr(self.items) } def to_dict(self, deref=False, prefix=None, stack=None): if stack is None: stack = [] out = super().to_dict(deref=deref, prefix=prefix, stack=stack) if isinstance(self.items, Schema): out["items"] = self.items.to_dict(deref=deref, prefix=prefix, stack=stack+["items"]) else: out["items"] = self.items return out def _select(self, index, *path, stack=None): # TODO in case of (None) log(stack, "array", index, path) if isinstance(self.items, Schema): return self.items._select(index, *path, stack=stack) def dependencies(self, external=False, visited=None): if isinstance(self.items, Schema): return self.items.dependencies(external=external, visited=visited) else: return list({ dependency \ for item in self.items \ for dependency in item.dependencies(external=external, visited=visited) }) class TupleItem(Definition): def _more_repr(self): return { "index" : self.name, "definition" : repr(self._definition) } class TupleSchema(IdentifiedSchema): def __init__(self, items=None, **kwargs): super().__init__(**kwargs) self.items = items if not isinstance(self.items, list): raise ValueError("tuple items should be list, not: '{}'".format( self.items.__class__.__name__) ) for item in self.items: item.parent = self def _more_repr(self): return { "items" : repr(self.items) } def item(self, index): return self[index].definition def __getitem__(self, index): if not isinstance(index, int): raise TypeError("tuple access only with numeric indices") return self.items[index] def to_dict(self, deref=False, prefix=None, stack=None): if stack is None: stack = [] out = super().to_dict(deref=deref, prefix=prefix, stack=stack) out["items"] = [ item.to_dict(deref=deref, prefix=prefix, stack=stack) for item in self.items ] return out def _select(self, index, *path, stack=None): log(stack, "tuple", index, path) if path: return self[int(index)]._select(*path, stack=stack) else: return self[int(index)] def dependencies(self, external=False, visited=None): return list({ dependency \ for item in self.items \ for dependency in item.dependencies(external=external, visited=visited) }) class Combination(IdentifiedSchema): def __init__(self, options=None, **kwargs): super().__init__(**kwargs) self.options = options if options else [] for option in self.options: option.parent = self def _more_repr(self): return { "options" : len(self.options) } def to_dict(self, deref=False, prefix=None, stack=None): if stack is None: stack = [] out = super().to_dict(deref=deref, prefix=prefix, stack=stack) name = self.__class__.__name__ name = name[0].lower() + name[1:] out[name] = [ o.to_dict(deref=deref, prefix=prefix, stack=stack+[name]+[str(index)]) \ for index, o in enumerate(self.options) ] return out def _select(self, *path, stack=None): log(stack, "combination", path) best_stack = [] result = None for option in self.options: local_stack = [] result = option._select(*path, stack=local_stack) if len(local_stack) > len(best_stack): best_stack = local_stack if result: break stack.extend(local_stack) return result def dependencies(self, external=False, visited=None): return list({ dependency \ for option in self.options \ for dependency in option.dependencies(external=external, visited=visited) }) class AllOf(Combination): pass class AnyOf(Combination): pass class OneOf(Combination): pass class Reference(IdentifiedSchema): def __init__(self, ref=None, **kwargs): super().__init__(**kwargs) self.ref = ref.value def __repr__(self): return "Reference(ref={})".format( self.ref ) def _more_repr(self): return { "$ref" : self.ref } def to_dict(self, deref=False, prefix=None, stack=None): if stack is None: stack = [] if prefix is None: prefix = "#" if deref: if self.is_remote: prefix = "#/" + "/".join(stack) return self.resolve(strip_id=True).to_dict(deref=deref, prefix=prefix, stack=stack) else: return { "$ref" : prefix + self.ref[1:] } return { "$ref" : self.ref } def resolve(self, return_definition=True, strip_id=False): url = "" fragment = "" parts = self.ref.split("#") if len(parts) == 1: url = self.ref else: url = parts[0] fragment = parts[1] if url: doc = self._fetch(url) if strip_id: try: del doc.args["$id"] except KeyError: pass else: doc = self.root if not fragment: return doc name = None fragment_schema = None if fragment.startswith("/definitions/"): name = fragment.replace("/definitions/", "") if not doc.definition: raise ValueError("doc " + repr(doc) + " has no definitions ?!") fragment_schema = doc.definition(name, return_definition=return_definition) elif fragment.startswith("/properties/"): name = fragment.replace("/properties/", "") fragment_schema = doc.property(name, return_definition=return_definition) elif fragment.startswith("/components/schemas/"): name = fragment.replace("/components/schemas/", "") fragment_schema = doc.definition(name, return_definition=return_definition) else: raise NotImplementedError # FIXME: when refering to a non local fragment, the fragment can refer to # something else in its own file. A partial solution here includes # all other definitions. Refering to properties or the whole schema # remains problematic. if url and isinstance(fragment_schema, ObjectSchema) and doc.definition: for definition in doc.definitions: if definition.name != name: fragment_schema.add_definition(Definition(definition.name, definition._definition)) return fragment_schema def _fetch(self, url): s = requests.Session() s.mount("file:", FileAdapter()) # make sure file url is absolute u = urlparse(url) if u.scheme == "file": u = u._replace(path=str(Path(u.path).absolute())) url = u.geturl() try: doc = s.get(url) except Exception as e: raise ValueError("unable to fetch '{}', due to '{}'".format(url, str(e))) src = doc.text try: return loads(src, origin=url) except: try: return loads(src, parser=yaml) except Exception as e: print(src) raise ValueError("unable to parse '{}', due to '{}'".format(url, str(e))) def _select(self, *path, stack=None): log(self._stack, "ref", path) return self.resolve()._select(*path, stack=stack) @property def is_remote(self): return not self.ref.startswith("#") def dependencies(self, external=False, visited=None): if not visited: visited = [] if self in visited: return [] visited.append(self) if self.is_remote: if external: return list(set( self.resolve(return_definition=False).dependencies(external=external, visited=visited) + [ self ] )) else: return [ self ] else: return list(set( self.resolve(return_definition=False).dependencies(external=external, visited=visited) )) def __hash__(self): return hash(self.ref) def __eq__(self, other): if isinstance(other, self.__class__): return self.ref == other.ref else: return False class Enum(IdentifiedSchema): def __init__(self, enum=None, **kwargs): super().__init__(**kwargs) self.values = [] if enum: for e in enum: if not isinstance(e, ConstantValueSchema): raise ValueError("not constant value", e) else: self.values.append(e.value) def _more_repr(self): return { "enum" : self.values } def to_dict(self, deref=False, prefix=None, stack=None): return { "enum" : self.values } class SchemaMapper(Mapper): def map_object(self, properties): if self.has( properties, "type", "object" ) or \ self.has( properties, "type", list, containing="object") or \ ( self.has(properties, "properties") and \ not isinstance(properties["properties"], IdentifiedSchema) ) or \ ( self.has(properties, "components") and \ not isinstance(properties["components"], IdentifiedSchema) ): # properties and definitions bubble up as Generic Schemas if self.has(properties, "properties"): properties["properties"] = [ Property(name, definition) \ for name, definition in properties["properties"].items() ] if self.has(properties, "definitions"): properties["definitions"] = [ Definition(name, definition) \ for name, definition in properties["definitions"].items() ] if self.has(properties, "components") and properties["components"].schemas: components = properties.pop("components") if not "definitions" in properties: properties["definitions"] = [] properties["definitions"] += [ Definition(name, definition) \ for name, definition in components.schemas.items() ] # extract combinations for combination, cls in { "allOf" : AllOf, "oneOf" : OneOf, "anyOf": AnyOf }.items(): options = self._combine_options(properties, combination, combination.lower()) if options: properties[combination] = cls(options=options) return ObjectSchema(**properties) def map_value(self, properties): value_mapping = { "boolean": BooleanSchema, "integer": IntegerSchema, "null": NullSchema, "number": NumberSchema, "string": StringSchema } if self.has(properties, "type", value_mapping): return value_mapping[properties["type"].value](**properties) def map_array(self, properties): if not self.has(properties, "type", "array"): return if self.has(properties, "items", list): properties["items"] = [ TupleItem(index, value) \ for index, value in enumerate(properties["items"]) ] return TupleSchema(**properties) return ArraySchema(**properties) def _combine_options(self, properties, *keys): combined = [] for key in keys: if self.has(properties, key): combined += properties.pop(key, {}) return combined def map_all_of(self, properties): if "type" in properties: return options = self._combine_options(properties, "allOf", "allof") if options: properties["options"] = options return AllOf(**properties) def map_any_of(self, properties): if "type" in properties: return options = self._combine_options(properties, "anyOf", "anyof") if options: properties["options"] = options return AnyOf(**properties) def map_one_of(self, properties): if "type" in properties: return options = self._combine_options(properties, "oneOf", "oneof") if options: properties["options"] = options return OneOf(**properties) def map_reference(self, properties): if self.has(properties, "$ref", str): properties["ref"] = properties.pop("$ref") return Reference(**properties) def map_enum(self, properties): if self.has(properties, "enum", list): return Enum(**properties)
schema-tools
/schema_tools-0.0.19-py3-none-any.whl/schema_tools/schema/json.py
json.py
import requests from requests_file import FileAdapter from urllib.parse import urldefrag, urlparse from pathlib import Path from schema_tools import json, yaml from schema_tools.schema import Schema, Mapper, loads, IdentifiedSchema, ConstantValueSchema def log(*args): if False: print(*args) class ObjectSchema(IdentifiedSchema): def __init__(self, properties=None, definitions=None, allOf=None, anyOf=None, oneOf=None, **kwargs): super().__init__(**kwargs) if properties is None: properties = [] self.properties = properties if isinstance(self.properties, list): for prop in self.properties: prop.parent = self elif isinstance(self.properties, ConstantValueSchema): if self.properties.value is None: self.properties = [] else: raise ValueError("can't handle properties", self.properties) self.definitions = [] if definitions: for definition in definitions: self.add_definition(definition) self.allOf = allOf if self.allOf: self.allOf.parent = self self.anyOf = anyOf if self.anyOf: self.anyOf.parent = self self.oneOf = oneOf if self.oneOf: self.oneOf.parent = self def add_definition(self, definition): definition.parent = self self.definitions.append(definition) def definition(self, key, return_definition=True): for definition in self.definitions: if definition.name == key: return definition.definition if return_definition else definition raise KeyError("'{}' is not a known definition".format(key)) def _combinations(self): for combination in [ self.allOf, self.anyOf, self.oneOf ]: if isinstance(combination, Combination): for option in combination.options: yield option def property(self, key, return_definition=True): # local properties for prop in self.properties: if prop.name == key: return prop.definition if return_definition else prop # collected/combinations properties for candidate in self._combinations(): if isinstance(candidate, Reference): candidate = candidate.resolve() try: return candidate.property(key, return_definition=return_definition) except: pass raise KeyError("'{}' is not a known property".format(key)) def _select(self, name, *remainder, stack=None): if stack is None: stack = [] log(stack, "object", name, remainder) result = None # TODO generalize this at schema level if name == "components" and remainder[0] == "schemas": try: remainder = list(remainder) stack.append("components") stack.append(remainder.pop(0)) name = remainder.pop(0) result = self.definition(name, return_definition=False) stack.append(result) if remainder: result = result._select(*remainder, stack=stack) except KeyError: pass else: try: result = self.property(name, return_definition=False) stack.append(result) if remainder: result = result._select(*remainder, stack=stack) except KeyError: pass return result def _more_repr(self): return { "properties" : [ prop.name for prop in self.properties ], "definitions" : [ definition.name for definition in self.definitions ], # "allOf" : [ repr(candidate) for candidate in self.allOf.options ], # "oneOf" : [ repr(candidate) for candidate in self.oneOf.options ], # "anyOf" : [ repr(candidate) for candidate in self.anyOf.options ] } def to_dict(self, deref=False, prefix=None, stack=None): if stack is None: stack = [] out = super().to_dict(deref=deref, prefix=prefix, stack=stack) if self.properties: out["properties"] = { p.name : p.to_dict(deref=deref, prefix=prefix, stack=stack+["properties"]) for p in self.properties } if self.definitions: out["definitions"] = { d.name : d.to_dict(deref=deref, prefix=prefix, stack=stack+["definitions"]) for d in self.definitions } if self.allOf: out["allOf"] = [ a.to_dict(deref=deref, prefix=prefix, stack=stack) for a in self.allOf.options ] if self.oneOf: out["oneOf"] = [ a.to_dict(deref=deref, prefix=prefix, stack=stack) for a in self.oneOf.options ] if self.anyOf: out["anyOf"] = [ a.to_dict(deref=deref, prefix=prefix, stack=stack) for a in self.anyOf.options ] return out def dependencies(self, external=False, visited=None): return list({ dependency \ for prop in self.properties + list(self._combinations()) \ for dependency in prop.dependencies(external=external, visited=visited) }) class Definition(IdentifiedSchema): def __init__(self, name, definition): self.name = name self._definition = definition if isinstance(self._definition, Schema): self._definition.parent = self self._location = self._definition._location else: raise ValueError("unsupported items type: '{}'".format( self.items.__class__.__type__) ) def is_ref(self): return isinstance(self._definition, Reference) @property def definition(self): d = self._definition while isinstance(d, Reference): d = d.resolve() return d def _more_repr(self): return { "name" : self.name, "definition" : repr(self._definition) } def to_dict(self, deref=False, prefix=None, stack=None): if stack is None: stack = [] if isinstance(self._definition, Schema): return self._definition.to_dict(deref=deref, prefix=prefix, stack=stack + [self.name]) else: return self._definition def _select(self, *path, stack=None): log(stack, "definition/property", path) return self.definition._select(*path, stack=stack) def dependencies(self, external=False, visited=None): return self._definition.dependencies(external=external, visited=visited) class Property(Definition): pass class ValueSchema(IdentifiedSchema): pass class StringSchema(ValueSchema): pass class IntegerSchema(ValueSchema): pass class NullSchema(ValueSchema): pass class NumberSchema(ValueSchema): pass class BooleanSchema(ValueSchema): pass class ArraySchema(IdentifiedSchema): def __init__(self, items=None, **kwargs): super().__init__(**kwargs) self.items = items if isinstance(self.items, Schema): self.items.parent = self elif self.items is None: self.items = [] else: raise ValueError("unsupported items type: '{}'".format( self.items.__class__.__name__) ) def _more_repr(self): return { "items" : repr(self.items) } def to_dict(self, deref=False, prefix=None, stack=None): if stack is None: stack = [] out = super().to_dict(deref=deref, prefix=prefix, stack=stack) if isinstance(self.items, Schema): out["items"] = self.items.to_dict(deref=deref, prefix=prefix, stack=stack+["items"]) else: out["items"] = self.items return out def _select(self, index, *path, stack=None): # TODO in case of (None) log(stack, "array", index, path) if isinstance(self.items, Schema): return self.items._select(index, *path, stack=stack) def dependencies(self, external=False, visited=None): if isinstance(self.items, Schema): return self.items.dependencies(external=external, visited=visited) else: return list({ dependency \ for item in self.items \ for dependency in item.dependencies(external=external, visited=visited) }) class TupleItem(Definition): def _more_repr(self): return { "index" : self.name, "definition" : repr(self._definition) } class TupleSchema(IdentifiedSchema): def __init__(self, items=None, **kwargs): super().__init__(**kwargs) self.items = items if not isinstance(self.items, list): raise ValueError("tuple items should be list, not: '{}'".format( self.items.__class__.__name__) ) for item in self.items: item.parent = self def _more_repr(self): return { "items" : repr(self.items) } def item(self, index): return self[index].definition def __getitem__(self, index): if not isinstance(index, int): raise TypeError("tuple access only with numeric indices") return self.items[index] def to_dict(self, deref=False, prefix=None, stack=None): if stack is None: stack = [] out = super().to_dict(deref=deref, prefix=prefix, stack=stack) out["items"] = [ item.to_dict(deref=deref, prefix=prefix, stack=stack) for item in self.items ] return out def _select(self, index, *path, stack=None): log(stack, "tuple", index, path) if path: return self[int(index)]._select(*path, stack=stack) else: return self[int(index)] def dependencies(self, external=False, visited=None): return list({ dependency \ for item in self.items \ for dependency in item.dependencies(external=external, visited=visited) }) class Combination(IdentifiedSchema): def __init__(self, options=None, **kwargs): super().__init__(**kwargs) self.options = options if options else [] for option in self.options: option.parent = self def _more_repr(self): return { "options" : len(self.options) } def to_dict(self, deref=False, prefix=None, stack=None): if stack is None: stack = [] out = super().to_dict(deref=deref, prefix=prefix, stack=stack) name = self.__class__.__name__ name = name[0].lower() + name[1:] out[name] = [ o.to_dict(deref=deref, prefix=prefix, stack=stack+[name]+[str(index)]) \ for index, o in enumerate(self.options) ] return out def _select(self, *path, stack=None): log(stack, "combination", path) best_stack = [] result = None for option in self.options: local_stack = [] result = option._select(*path, stack=local_stack) if len(local_stack) > len(best_stack): best_stack = local_stack if result: break stack.extend(local_stack) return result def dependencies(self, external=False, visited=None): return list({ dependency \ for option in self.options \ for dependency in option.dependencies(external=external, visited=visited) }) class AllOf(Combination): pass class AnyOf(Combination): pass class OneOf(Combination): pass class Reference(IdentifiedSchema): def __init__(self, ref=None, **kwargs): super().__init__(**kwargs) self.ref = ref.value def __repr__(self): return "Reference(ref={})".format( self.ref ) def _more_repr(self): return { "$ref" : self.ref } def to_dict(self, deref=False, prefix=None, stack=None): if stack is None: stack = [] if prefix is None: prefix = "#" if deref: if self.is_remote: prefix = "#/" + "/".join(stack) return self.resolve(strip_id=True).to_dict(deref=deref, prefix=prefix, stack=stack) else: return { "$ref" : prefix + self.ref[1:] } return { "$ref" : self.ref } def resolve(self, return_definition=True, strip_id=False): url = "" fragment = "" parts = self.ref.split("#") if len(parts) == 1: url = self.ref else: url = parts[0] fragment = parts[1] if url: doc = self._fetch(url) if strip_id: try: del doc.args["$id"] except KeyError: pass else: doc = self.root if not fragment: return doc name = None fragment_schema = None if fragment.startswith("/definitions/"): name = fragment.replace("/definitions/", "") if not doc.definition: raise ValueError("doc " + repr(doc) + " has no definitions ?!") fragment_schema = doc.definition(name, return_definition=return_definition) elif fragment.startswith("/properties/"): name = fragment.replace("/properties/", "") fragment_schema = doc.property(name, return_definition=return_definition) elif fragment.startswith("/components/schemas/"): name = fragment.replace("/components/schemas/", "") fragment_schema = doc.definition(name, return_definition=return_definition) else: raise NotImplementedError # FIXME: when refering to a non local fragment, the fragment can refer to # something else in its own file. A partial solution here includes # all other definitions. Refering to properties or the whole schema # remains problematic. if url and isinstance(fragment_schema, ObjectSchema) and doc.definition: for definition in doc.definitions: if definition.name != name: fragment_schema.add_definition(Definition(definition.name, definition._definition)) return fragment_schema def _fetch(self, url): s = requests.Session() s.mount("file:", FileAdapter()) # make sure file url is absolute u = urlparse(url) if u.scheme == "file": u = u._replace(path=str(Path(u.path).absolute())) url = u.geturl() try: doc = s.get(url) except Exception as e: raise ValueError("unable to fetch '{}', due to '{}'".format(url, str(e))) src = doc.text try: return loads(src, origin=url) except: try: return loads(src, parser=yaml) except Exception as e: print(src) raise ValueError("unable to parse '{}', due to '{}'".format(url, str(e))) def _select(self, *path, stack=None): log(self._stack, "ref", path) return self.resolve()._select(*path, stack=stack) @property def is_remote(self): return not self.ref.startswith("#") def dependencies(self, external=False, visited=None): if not visited: visited = [] if self in visited: return [] visited.append(self) if self.is_remote: if external: return list(set( self.resolve(return_definition=False).dependencies(external=external, visited=visited) + [ self ] )) else: return [ self ] else: return list(set( self.resolve(return_definition=False).dependencies(external=external, visited=visited) )) def __hash__(self): return hash(self.ref) def __eq__(self, other): if isinstance(other, self.__class__): return self.ref == other.ref else: return False class Enum(IdentifiedSchema): def __init__(self, enum=None, **kwargs): super().__init__(**kwargs) self.values = [] if enum: for e in enum: if not isinstance(e, ConstantValueSchema): raise ValueError("not constant value", e) else: self.values.append(e.value) def _more_repr(self): return { "enum" : self.values } def to_dict(self, deref=False, prefix=None, stack=None): return { "enum" : self.values } class SchemaMapper(Mapper): def map_object(self, properties): if self.has( properties, "type", "object" ) or \ self.has( properties, "type", list, containing="object") or \ ( self.has(properties, "properties") and \ not isinstance(properties["properties"], IdentifiedSchema) ) or \ ( self.has(properties, "components") and \ not isinstance(properties["components"], IdentifiedSchema) ): # properties and definitions bubble up as Generic Schemas if self.has(properties, "properties"): properties["properties"] = [ Property(name, definition) \ for name, definition in properties["properties"].items() ] if self.has(properties, "definitions"): properties["definitions"] = [ Definition(name, definition) \ for name, definition in properties["definitions"].items() ] if self.has(properties, "components") and properties["components"].schemas: components = properties.pop("components") if not "definitions" in properties: properties["definitions"] = [] properties["definitions"] += [ Definition(name, definition) \ for name, definition in components.schemas.items() ] # extract combinations for combination, cls in { "allOf" : AllOf, "oneOf" : OneOf, "anyOf": AnyOf }.items(): options = self._combine_options(properties, combination, combination.lower()) if options: properties[combination] = cls(options=options) return ObjectSchema(**properties) def map_value(self, properties): value_mapping = { "boolean": BooleanSchema, "integer": IntegerSchema, "null": NullSchema, "number": NumberSchema, "string": StringSchema } if self.has(properties, "type", value_mapping): return value_mapping[properties["type"].value](**properties) def map_array(self, properties): if not self.has(properties, "type", "array"): return if self.has(properties, "items", list): properties["items"] = [ TupleItem(index, value) \ for index, value in enumerate(properties["items"]) ] return TupleSchema(**properties) return ArraySchema(**properties) def _combine_options(self, properties, *keys): combined = [] for key in keys: if self.has(properties, key): combined += properties.pop(key, {}) return combined def map_all_of(self, properties): if "type" in properties: return options = self._combine_options(properties, "allOf", "allof") if options: properties["options"] = options return AllOf(**properties) def map_any_of(self, properties): if "type" in properties: return options = self._combine_options(properties, "anyOf", "anyof") if options: properties["options"] = options return AnyOf(**properties) def map_one_of(self, properties): if "type" in properties: return options = self._combine_options(properties, "oneOf", "oneof") if options: properties["options"] = options return OneOf(**properties) def map_reference(self, properties): if self.has(properties, "$ref", str): properties["ref"] = properties.pop("$ref") return Reference(**properties) def map_enum(self, properties): if self.has(properties, "enum", list): return Enum(**properties)
0.443841
0.180504
from __future__ import unicode_literals import six import abc import json import logging from jsonpointer import resolve_pointer, JsonPointerException logger = logging.getLogger(__name__) try: from lxml import etree except ImportError: logger.info('You will need to install lxml to use the XML transformer') @six.add_metaclass(abc.ABCMeta) class BaseTransformer(object): def __init__(self, schema): self.schema = schema @abc.abstractmethod def _transform_string(self, string, doc): raise NotImplementedError @abc.abstractmethod def load(self, doc): raise NotImplementedError def transform(self, doc, fail=False, load=True): doc = self.load(doc) if load else doc return self._transform_dict(self.schema, doc, fail=fail) def _transform_dict(self, d, doc, fail=False): return { key: self._maybe_transform_value(value, doc, fail=fail) for key, value in d.items() } def _transform_list(self, l, doc, fail=False): return [ self._maybe_transform_value(item, doc, fail=fail) for item in l ] def _maybe_transform_value(self, value, doc, fail=False): try: return self._transform_value(value, doc, fail=fail) except Exception as e: if fail: raise logger.exception(e) return None def _transform_value(self, value, doc, fail=False): if isinstance(value, dict): return self._transform_dict(value, doc, fail=fail) elif isinstance(value, list): return self._transform_list(value, doc, fail=fail) elif isinstance(value, tuple) and len(value) == 2 and isinstance(value[0], tuple): return self._transform_args_kwargs(value, doc) elif isinstance(value, tuple): return self._transform_tuple(value, doc) elif isinstance(value, six.string_types): return self._transform_string(value, doc) elif callable(value): return value(doc) def _transform_tuple(self, l, doc): fn, values = l[-1], l[:-1] args = [] for value in values: if isinstance(value, six.string_types): args.append(self._transform_string(value, doc)) elif callable(value): args.append(value(doc)) return fn(*args) def _transform_args_kwargs(self, l, doc): fn = l[1] return fn( *self._transform_args(l[0], doc), **self._transform_kwargs(l[0], doc) ) def _transform_args(self, t, doc): return [self._transform_string(arg, doc) for arg in t[0]] def _transform_kwargs(self, t, doc): return { k: self._transform_string(v, doc) for k, v in t[1].items() } if len(t) == 2 else {} @six.add_metaclass(abc.ABCMeta) class XMLTransformer(BaseTransformer): def __init__(self, schema, namespaces=None): BaseTransformer.__init__(self, schema) self.namespaces = namespaces or {} def load(self, doc): return etree.XML(doc) def _transform_string(self, string, doc): return doc.xpath(string, namespaces=self.namespaces) @six.add_metaclass(abc.ABCMeta) class JSONTransformer(BaseTransformer): def load(self, doc): return json.loads(doc) def _transform_string(self, val, doc): try: return resolve_pointer(doc, val) except JsonPointerException as e: # This is because of jsonpointer's exception structure if 'not found in' in e.args[0] or 'is not a valid list index' in e.args[0]: return None raise e @six.add_metaclass(abc.ABCMeta) class CSVTransformer(BaseTransformer): def __init__(self, schema, keys): BaseTransformer.__init__(self, schema) self.keys = dict((val, key) for key, val in enumerate(keys)) def load(self, doc): raise NotImplementedError def _transform_string(self, val, doc): return doc[self.keys[val]]
schema-transformer
/schema-transformer-0.0.2.tar.gz/schema-transformer-0.0.2/schema_transformer/transformer.py
transformer.py
from __future__ import unicode_literals import six import abc import json import logging from jsonpointer import resolve_pointer, JsonPointerException logger = logging.getLogger(__name__) try: from lxml import etree except ImportError: logger.info('You will need to install lxml to use the XML transformer') @six.add_metaclass(abc.ABCMeta) class BaseTransformer(object): def __init__(self, schema): self.schema = schema @abc.abstractmethod def _transform_string(self, string, doc): raise NotImplementedError @abc.abstractmethod def load(self, doc): raise NotImplementedError def transform(self, doc, fail=False, load=True): doc = self.load(doc) if load else doc return self._transform_dict(self.schema, doc, fail=fail) def _transform_dict(self, d, doc, fail=False): return { key: self._maybe_transform_value(value, doc, fail=fail) for key, value in d.items() } def _transform_list(self, l, doc, fail=False): return [ self._maybe_transform_value(item, doc, fail=fail) for item in l ] def _maybe_transform_value(self, value, doc, fail=False): try: return self._transform_value(value, doc, fail=fail) except Exception as e: if fail: raise logger.exception(e) return None def _transform_value(self, value, doc, fail=False): if isinstance(value, dict): return self._transform_dict(value, doc, fail=fail) elif isinstance(value, list): return self._transform_list(value, doc, fail=fail) elif isinstance(value, tuple) and len(value) == 2 and isinstance(value[0], tuple): return self._transform_args_kwargs(value, doc) elif isinstance(value, tuple): return self._transform_tuple(value, doc) elif isinstance(value, six.string_types): return self._transform_string(value, doc) elif callable(value): return value(doc) def _transform_tuple(self, l, doc): fn, values = l[-1], l[:-1] args = [] for value in values: if isinstance(value, six.string_types): args.append(self._transform_string(value, doc)) elif callable(value): args.append(value(doc)) return fn(*args) def _transform_args_kwargs(self, l, doc): fn = l[1] return fn( *self._transform_args(l[0], doc), **self._transform_kwargs(l[0], doc) ) def _transform_args(self, t, doc): return [self._transform_string(arg, doc) for arg in t[0]] def _transform_kwargs(self, t, doc): return { k: self._transform_string(v, doc) for k, v in t[1].items() } if len(t) == 2 else {} @six.add_metaclass(abc.ABCMeta) class XMLTransformer(BaseTransformer): def __init__(self, schema, namespaces=None): BaseTransformer.__init__(self, schema) self.namespaces = namespaces or {} def load(self, doc): return etree.XML(doc) def _transform_string(self, string, doc): return doc.xpath(string, namespaces=self.namespaces) @six.add_metaclass(abc.ABCMeta) class JSONTransformer(BaseTransformer): def load(self, doc): return json.loads(doc) def _transform_string(self, val, doc): try: return resolve_pointer(doc, val) except JsonPointerException as e: # This is because of jsonpointer's exception structure if 'not found in' in e.args[0] or 'is not a valid list index' in e.args[0]: return None raise e @six.add_metaclass(abc.ABCMeta) class CSVTransformer(BaseTransformer): def __init__(self, schema, keys): BaseTransformer.__init__(self, schema) self.keys = dict((val, key) for key, val in enumerate(keys)) def load(self, doc): raise NotImplementedError def _transform_string(self, val, doc): return doc[self.keys[val]]
0.584745
0.139133
import functools from copy import deepcopy def CONSTANT(x): ''' Takes a value, returns a function that always returns that value Useful inside schemas for defining constants >>> CONSTANT(7)('my', 'name', verb='is') 7 >>> CONSTANT([123, 456])() [123, 456] ''' def inner(*y, **z): return x return inner def compose(*functions): ''' evaluates functions from right to left. >>> add = lambda x, y: x + y >>> add3 = lambda x: x + 3 >>> divide2 = lambda x: x/2 >>> subtract4 = lambda x: x - 4 >>> subtract1 = compose(add3, subtract4) >>> subtract1(1) 0 >>> compose(subtract1, add3)(4) 6 >>> compose(int, add3, add3, divide2)(4) 8 >>> compose(int, divide2, add3, add3)(4) 5 >>> compose(int, divide2, compose(add3, add3), add)(7, 3) 8 ''' def inner(func1, func2): return lambda *x, **y: func1(func2(*x, **y)) return functools.reduce(inner, functions) def updated_schema(old, new): ''' Creates a dictionary resulting from adding all keys/values of the second to the first The second dictionary will overwrite the first. >>> old, new = {'name': 'ric', 'job': None}, {'name': 'Rick'} >>> updated = updated_schema(old, new) >>> len(updated.keys()) 2 >>> print(updated['name']) Rick >>> updated['job'] is None True ''' d = deepcopy(old) for key, value in new.items(): if isinstance(value, dict) and old.get(key) and isinstance(old[key], dict): d[key] = updated_schema(old[key], new[key]) else: d[key] = value return d def single_result(l, default=''): ''' A function that will return the first element of a list if it exists >>> print(single_result(['hello', None])) hello >>> print(single_result([], default='hello')) hello >>> print(single_result([])) <BLANKLINE> ''' return l[0] if l else default
schema-transformer
/schema-transformer-0.0.2.tar.gz/schema-transformer-0.0.2/schema_transformer/helpers.py
helpers.py
import functools from copy import deepcopy def CONSTANT(x): ''' Takes a value, returns a function that always returns that value Useful inside schemas for defining constants >>> CONSTANT(7)('my', 'name', verb='is') 7 >>> CONSTANT([123, 456])() [123, 456] ''' def inner(*y, **z): return x return inner def compose(*functions): ''' evaluates functions from right to left. >>> add = lambda x, y: x + y >>> add3 = lambda x: x + 3 >>> divide2 = lambda x: x/2 >>> subtract4 = lambda x: x - 4 >>> subtract1 = compose(add3, subtract4) >>> subtract1(1) 0 >>> compose(subtract1, add3)(4) 6 >>> compose(int, add3, add3, divide2)(4) 8 >>> compose(int, divide2, add3, add3)(4) 5 >>> compose(int, divide2, compose(add3, add3), add)(7, 3) 8 ''' def inner(func1, func2): return lambda *x, **y: func1(func2(*x, **y)) return functools.reduce(inner, functions) def updated_schema(old, new): ''' Creates a dictionary resulting from adding all keys/values of the second to the first The second dictionary will overwrite the first. >>> old, new = {'name': 'ric', 'job': None}, {'name': 'Rick'} >>> updated = updated_schema(old, new) >>> len(updated.keys()) 2 >>> print(updated['name']) Rick >>> updated['job'] is None True ''' d = deepcopy(old) for key, value in new.items(): if isinstance(value, dict) and old.get(key) and isinstance(old[key], dict): d[key] = updated_schema(old[key], new[key]) else: d[key] = value return d def single_result(l, default=''): ''' A function that will return the first element of a list if it exists >>> print(single_result(['hello', None])) hello >>> print(single_result([], default='hello')) hello >>> print(single_result([])) <BLANKLINE> ''' return l[0] if l else default
0.732592
0.454654
# Schema Transpose This library and CLI converts JSON Schema Documents into other languages. It can work with JSON Schema or Pydantic files as a source. ## Usage This needs to be installed in the same virtual environment as the Models that it is converting. Once installed a CLI tool, `schema_transpose`, will be available in the environment. For example, to generate a variables file for the RDS ParameterValidation class- ```shell robert@Roberts-MacBook-Pro terraform-aws-core % schema_transpose modules.rds.validation.parameters:ParameterValidation ``` The command will output the following to stdout: ```hcl variable "type" { type = string default = null } variable "pit_identifier" { type = string default = null } variable "tags" { type = map(any) default = {} } variable "name" { type = string validation { # Automatically Generated from Rule: minlength condition = length(var.name) >= 1 error_message = "Field should not be less than 1 characters" } validation { # Automatically Generated from Rule: maxlength condition = length(var.name) <= 63 error_message = "Field should not be larger than 63 characters" } validation { # Automatically Generated from Rule: pattern condition = length(regexall("^(?!.*--)[a-zA-Z][A-Za-z0-9.-]+(?<!-)$", var.name)) > 0 error_message = "Field does not match regex pattern ^(?!.*--)[a-zA-Z][A-Za-z0-9.-]+(?<!-)$" } } variable "vpc_name" { type = string } variable "engine" { type = string validation { # Automatically Generated from Rule: minlength condition = length(var.engine) >= 1 error_message = "Field should not be less than 1 characters" } } variable "engine_version" { type = string validation { # Automatically Generated from Rule: minlength condition = length(var.engine_version) >= 1 error_message = "Field should not be less than 1 characters" } } variable "is_public" { type = bool default = false } ```
schema-transpose
/schema_transpose-0.1.0.tar.gz/schema_transpose-0.1.0/README.md
README.md
robert@Roberts-MacBook-Pro terraform-aws-core % schema_transpose modules.rds.validation.parameters:ParameterValidation variable "type" { type = string default = null } variable "pit_identifier" { type = string default = null } variable "tags" { type = map(any) default = {} } variable "name" { type = string validation { # Automatically Generated from Rule: minlength condition = length(var.name) >= 1 error_message = "Field should not be less than 1 characters" } validation { # Automatically Generated from Rule: maxlength condition = length(var.name) <= 63 error_message = "Field should not be larger than 63 characters" } validation { # Automatically Generated from Rule: pattern condition = length(regexall("^(?!.*--)[a-zA-Z][A-Za-z0-9.-]+(?<!-)$", var.name)) > 0 error_message = "Field does not match regex pattern ^(?!.*--)[a-zA-Z][A-Za-z0-9.-]+(?<!-)$" } } variable "vpc_name" { type = string } variable "engine" { type = string validation { # Automatically Generated from Rule: minlength condition = length(var.engine) >= 1 error_message = "Field should not be less than 1 characters" } } variable "engine_version" { type = string validation { # Automatically Generated from Rule: minlength condition = length(var.engine_version) >= 1 error_message = "Field should not be less than 1 characters" } } variable "is_public" { type = bool default = false }
0.396302
0.774413
import json import os import sys import textwrap from pathlib import Path from typing import Any, Dict, List, cast from glom import glom # type: ignore from jinja2 import Environment, FileSystemLoader, Template from pydantic import BaseModel from schema_transpose import validators env = Environment(loader=FileSystemLoader(Path(__file__).parent.parent / "templates")) SETTINGS = { "hcl": { "template": cast(Template, env.get_template("hcl.tf")), "delimiter": "\n\n", }, "tfvars": { "template": cast(Template, env.get_template("variable.tfvars")), "delimiter": "\n", }, "module": { "template": cast(Template, env.get_template("module_params.tf")), "delimiter": "\n", "wrapper": cast(Template, env.get_template("module_wrapper.tf")), }, } class JinjaConverter: numbers: List[str] = ["int", "float", "integer"] objects: List[str] = ["dict", "object"] pass_through_fields: List[str] = ["string"] def __init__(self, format="hcl") -> None: if format not in SETTINGS: raise ValueError(f"Format must be hcl or tfvars") self.template = SETTINGS[format]["template"] self.delimiter = SETTINGS[format]["delimiter"] self.wrapper = cast(Template, SETTINGS[format]["wrapper"]) if "wrapper" in SETTINGS[format] else None def convert(self, model: BaseModel) -> str: schema = model.schema() output = "" for field_name, field_data in schema["properties"].items(): output += self.convert_field(schema, field_name, field_data) output += self.delimiter # type: ignore if self.wrapper: output = self.wrapper.render(parameters=output) return output.strip() def _get_reference(self, schema, reference): # Convert reference into glom format. path = reference.strip("#/").replace("/", ".") return glom(schema, path) def convert_field(self, schema, field_name, field_data) -> Any: field_data = self.get_field_data(schema, field_name, field_data) return self.template.render(**field_data) # type: ignore def get_field_data(self, schema, field_name, field_data) -> Dict[str, Any]: # This field references another field. Swap the field_data out. if "$ref" in field_data: field_data = self._get_reference(schema, field_data["$ref"]) if "allOf" in field_data: for parent_model in field_data["allOf"]: # Attempt to keep any existing descriptions instead of using the enum descriptions. field_description = False if "description" in field_data: field_description = field_data["description"] if "$ref" in parent_model: parent_model = self._get_reference(schema, parent_model["$ref"]) field_data |= parent_model # If there was a field description add it back. if field_description: field_data["description"] = field_description type, type_rules = self.get_type(field_name, field_data) # Since "null" and "false" are valid defaults we can't rely on default being defined. # To get around that we have `has_default`. has_default = False default = None required = field_name in schema.get("required", {}) if "default" in field_data or not required: has_default = True default = self.get_default(type, field_data.get("default")) rules = self.get_validation_list(field_name, field_data, allow_none=not required) if type_rules: rules += type_rules return { "name": field_name, "type": type, "description": field_data.get("description"), "has_default": has_default, "default": default, "sensitive": "writeOnly" in field_data, "required": required, "validation_rules": rules, } def get_type(self, field_name, field_data): type_validators = [] if "enum" in field_data: if "type" not in field_data: field_data["type"] = "string" type_validators.append(validators.oneof(field_name, field_data["enum"], allow_none=False)) if "type" not in field_data: print(field_data) raise ValueError(f"Unknown type for {field_name}") field_type = field_data["type"].lower() if field_type in self.pass_through_fields: return field_type, type_validators if field_type in self.numbers: return "number", type_validators if field_type == "array": subtype = self.get_subtype(field_name, field_data) return f"list({subtype})", None if field_type in self.objects: subtype = self.get_subtype(field_name, field_data) return f"map({subtype})", None if field_type == "boolean": return "bool", None return "string", None def get_subtype(self, field_name, field_data): subtype = "any" if "items" in field_data: if "type" in field_data["items"]: subtype, rules = self.get_type(field_name, field_data["items"]) if "additionalProperties" in field_data and "type" in field_data["additionalProperties"]: subtype = field_data["additionalProperties"]["type"] return subtype def get_default(self, type, value): if type.startswith("list"): return textwrap.indent(json.dumps(value, indent=2), " ").strip() if value else "[]" if type.startswith("map"): return textwrap.indent(json.dumps(value, indent=2), " ").strip() if value else "{}" # Custom Nulls above this line if value == None: return "null" if type == "number": return value if type == "string": escaped_value = str(value).replace('"', '\\"') return f'"{escaped_value}"' if type == "bool": return "true" if value else "false" if value: return value return "null" def get_validation_list(self, field_name, field_data, allow_none): tf_rules = [] for key, value in field_data.items(): if not hasattr(validators, key.lower()): continue rule = getattr(validators, key.lower())(field_name, value, allow_none) if rule: tf_rules.append(rule) return tf_rules
schema-transpose
/schema_transpose-0.1.0.tar.gz/schema_transpose-0.1.0/schema_transpose/converters/jinja.py
jinja.py
import json import os import sys import textwrap from pathlib import Path from typing import Any, Dict, List, cast from glom import glom # type: ignore from jinja2 import Environment, FileSystemLoader, Template from pydantic import BaseModel from schema_transpose import validators env = Environment(loader=FileSystemLoader(Path(__file__).parent.parent / "templates")) SETTINGS = { "hcl": { "template": cast(Template, env.get_template("hcl.tf")), "delimiter": "\n\n", }, "tfvars": { "template": cast(Template, env.get_template("variable.tfvars")), "delimiter": "\n", }, "module": { "template": cast(Template, env.get_template("module_params.tf")), "delimiter": "\n", "wrapper": cast(Template, env.get_template("module_wrapper.tf")), }, } class JinjaConverter: numbers: List[str] = ["int", "float", "integer"] objects: List[str] = ["dict", "object"] pass_through_fields: List[str] = ["string"] def __init__(self, format="hcl") -> None: if format not in SETTINGS: raise ValueError(f"Format must be hcl or tfvars") self.template = SETTINGS[format]["template"] self.delimiter = SETTINGS[format]["delimiter"] self.wrapper = cast(Template, SETTINGS[format]["wrapper"]) if "wrapper" in SETTINGS[format] else None def convert(self, model: BaseModel) -> str: schema = model.schema() output = "" for field_name, field_data in schema["properties"].items(): output += self.convert_field(schema, field_name, field_data) output += self.delimiter # type: ignore if self.wrapper: output = self.wrapper.render(parameters=output) return output.strip() def _get_reference(self, schema, reference): # Convert reference into glom format. path = reference.strip("#/").replace("/", ".") return glom(schema, path) def convert_field(self, schema, field_name, field_data) -> Any: field_data = self.get_field_data(schema, field_name, field_data) return self.template.render(**field_data) # type: ignore def get_field_data(self, schema, field_name, field_data) -> Dict[str, Any]: # This field references another field. Swap the field_data out. if "$ref" in field_data: field_data = self._get_reference(schema, field_data["$ref"]) if "allOf" in field_data: for parent_model in field_data["allOf"]: # Attempt to keep any existing descriptions instead of using the enum descriptions. field_description = False if "description" in field_data: field_description = field_data["description"] if "$ref" in parent_model: parent_model = self._get_reference(schema, parent_model["$ref"]) field_data |= parent_model # If there was a field description add it back. if field_description: field_data["description"] = field_description type, type_rules = self.get_type(field_name, field_data) # Since "null" and "false" are valid defaults we can't rely on default being defined. # To get around that we have `has_default`. has_default = False default = None required = field_name in schema.get("required", {}) if "default" in field_data or not required: has_default = True default = self.get_default(type, field_data.get("default")) rules = self.get_validation_list(field_name, field_data, allow_none=not required) if type_rules: rules += type_rules return { "name": field_name, "type": type, "description": field_data.get("description"), "has_default": has_default, "default": default, "sensitive": "writeOnly" in field_data, "required": required, "validation_rules": rules, } def get_type(self, field_name, field_data): type_validators = [] if "enum" in field_data: if "type" not in field_data: field_data["type"] = "string" type_validators.append(validators.oneof(field_name, field_data["enum"], allow_none=False)) if "type" not in field_data: print(field_data) raise ValueError(f"Unknown type for {field_name}") field_type = field_data["type"].lower() if field_type in self.pass_through_fields: return field_type, type_validators if field_type in self.numbers: return "number", type_validators if field_type == "array": subtype = self.get_subtype(field_name, field_data) return f"list({subtype})", None if field_type in self.objects: subtype = self.get_subtype(field_name, field_data) return f"map({subtype})", None if field_type == "boolean": return "bool", None return "string", None def get_subtype(self, field_name, field_data): subtype = "any" if "items" in field_data: if "type" in field_data["items"]: subtype, rules = self.get_type(field_name, field_data["items"]) if "additionalProperties" in field_data and "type" in field_data["additionalProperties"]: subtype = field_data["additionalProperties"]["type"] return subtype def get_default(self, type, value): if type.startswith("list"): return textwrap.indent(json.dumps(value, indent=2), " ").strip() if value else "[]" if type.startswith("map"): return textwrap.indent(json.dumps(value, indent=2), " ").strip() if value else "{}" # Custom Nulls above this line if value == None: return "null" if type == "number": return value if type == "string": escaped_value = str(value).replace('"', '\\"') return f'"{escaped_value}"' if type == "bool": return "true" if value else "false" if value: return value return "null" def get_validation_list(self, field_name, field_data, allow_none): tf_rules = [] for key, value in field_data.items(): if not hasattr(validators, key.lower()): continue rule = getattr(validators, key.lower())(field_name, value, allow_none) if rule: tf_rules.append(rule) return tf_rules
0.575349
0.142649
from typing import Any, List try: # This works on MacOS but not Ubuntu from markdowntable import markdownTable # type: ignore except: # This works on Ubuntu but not MacOS from markdownTable import markdownTable # type: ignore from pydantic import BaseModel from schema_transpose.converters.jinja import JinjaConverter class MarkdownTableBuilder(markdownTable): def getHeader(self): # The only change in this function from the parent is the `title` casing header = "" if self.row_sep in ("topbottom", "always"): header += self.newline_char + self.var_row_sep_last + self.newline_char for key in self.data[0].keys(): margin = self.var_padding[key] - len(key) right = self.getMargin(margin) header += "|" + key.title().rjust(self.var_padding[key] - right, self.padding_char).ljust( self.var_padding[key], self.padding_char ) header += "|" + self.newline_char if self.row_sep == "always": header += self.var_row_sep + self.newline_char if self.row_sep == "markdown": header += self.var_row_sep.replace("+", "|") + self.newline_char return header class MarkdownConverter(JinjaConverter): numbers: List[str] = [] # ["int", "float", "integer"] objects: List[str] = ["dict", "object"] pass_through_fields: List[str] = ["string", "int", "float", "integer"] def __init__(self, format="table") -> None: self.format = format def convert(self, model: BaseModel) -> str: schema = model.schema() output = "" fields = [] for field_name, field_data in schema["properties"].items(): if field_name == "type": continue fields.append(self.convert_field(schema, field_name, field_data)) # We need at least one field to make a table. if len(fields) < 1: return "" # Sort required fields to the top, then sort by alphabet. fields.sort(key=lambda t: (0 if t["Required"] == "Yes" else 1, t["Name"])) return MarkdownTableBuilder(fields).setParams(quote=False, row_sep="markdown").getMarkdown() def convert_field(self, schema, field_name, field_data) -> Any: field_data = self.get_field_data(schema, field_name, field_data) description = "" if "description" in field_data and field_data["description"]: description = field_data["description"] return { "Name": f"`{field_name}`", "Type": self.get_display_type(field_name, field_data), "Description": description, "Default": field_data["default"] if field_data["has_default"] else "", "Required": "Yes" if field_data["required"] else "No", } def get_display_type(self, field_name, field_data): if field_data["type"] == "bool": return "boolean" if "list" in field_data["type"]: return field_data["type"].replace("list", "array") return field_data["type"]
schema-transpose
/schema_transpose-0.1.0.tar.gz/schema_transpose-0.1.0/schema_transpose/converters/markdown.py
markdown.py
from typing import Any, List try: # This works on MacOS but not Ubuntu from markdowntable import markdownTable # type: ignore except: # This works on Ubuntu but not MacOS from markdownTable import markdownTable # type: ignore from pydantic import BaseModel from schema_transpose.converters.jinja import JinjaConverter class MarkdownTableBuilder(markdownTable): def getHeader(self): # The only change in this function from the parent is the `title` casing header = "" if self.row_sep in ("topbottom", "always"): header += self.newline_char + self.var_row_sep_last + self.newline_char for key in self.data[0].keys(): margin = self.var_padding[key] - len(key) right = self.getMargin(margin) header += "|" + key.title().rjust(self.var_padding[key] - right, self.padding_char).ljust( self.var_padding[key], self.padding_char ) header += "|" + self.newline_char if self.row_sep == "always": header += self.var_row_sep + self.newline_char if self.row_sep == "markdown": header += self.var_row_sep.replace("+", "|") + self.newline_char return header class MarkdownConverter(JinjaConverter): numbers: List[str] = [] # ["int", "float", "integer"] objects: List[str] = ["dict", "object"] pass_through_fields: List[str] = ["string", "int", "float", "integer"] def __init__(self, format="table") -> None: self.format = format def convert(self, model: BaseModel) -> str: schema = model.schema() output = "" fields = [] for field_name, field_data in schema["properties"].items(): if field_name == "type": continue fields.append(self.convert_field(schema, field_name, field_data)) # We need at least one field to make a table. if len(fields) < 1: return "" # Sort required fields to the top, then sort by alphabet. fields.sort(key=lambda t: (0 if t["Required"] == "Yes" else 1, t["Name"])) return MarkdownTableBuilder(fields).setParams(quote=False, row_sep="markdown").getMarkdown() def convert_field(self, schema, field_name, field_data) -> Any: field_data = self.get_field_data(schema, field_name, field_data) description = "" if "description" in field_data and field_data["description"]: description = field_data["description"] return { "Name": f"`{field_name}`", "Type": self.get_display_type(field_name, field_data), "Description": description, "Default": field_data["default"] if field_data["has_default"] else "", "Required": "Yes" if field_data["required"] else "No", } def get_display_type(self, field_name, field_data): if field_data["type"] == "bool": return "boolean" if "list" in field_data["type"]: return field_data["type"].replace("list", "array") return field_data["type"]
0.660501
0.135976
# Package This package is a wrapper for jsonschema and simplejson to simplyfy JSON schema validation specified by [JSON Schema Draft 7](https://json-schema.org/specification-links.html#draft-7) (link to [IETF](https://tools.ietf.org/html/draft-handrews-json-schema-01)). ## Example ```python from validator import validate # Define the validation schema schema = { "type": "object", "required": [ "name", "age", ], "properties": { "name": { "type": "string" }, "age": { "type": "number" }, } } # Data to be validated data = { "name": "Daniel", "age": 30, } # Validate and run validation = validate(schema, data) if validation==True: # do something with data, e.g. create a new friend else: print(validation) # will show a well formated dict with errors ``` > Note: More examples can be shown in the tests ## Contribute This package is intended to be used by private projects. But go ahead if you like and make comments and pull requests and I might look into it. ### Install the package ```sh python -m venv venv source venv/bin/activate pip install -r requirements.txt ``` ### Run tests ```sh python -m pytest -m validator -s ``` ### Upload package ```sh # Set your user with python keyring python3 -m keyring set https://upload.pypi.org/legacy/ $username # substitue $username with your actual username # Update packaging tools python3 -m pip install --user --upgrade setuptools wheel twine # Remove dist folder rm -rf dist/* # Create a new dist python3 setup.py sdist bdist_wheel # Above command creates # dist/ # schema-validator-halpa-0.0.5-py3-none-any.whl # schema-validator-halpa-0.0.5.tar.gz # where "0.0.1" is equivalent to value in "version" from setup.py # Upload the package python3 -m twine upload dist/* ```
schema-validator-halpa
/schema-validator-halpa-0.0.7.tar.gz/schema-validator-halpa-0.0.7/README.md
README.md
from validator import validate # Define the validation schema schema = { "type": "object", "required": [ "name", "age", ], "properties": { "name": { "type": "string" }, "age": { "type": "number" }, } } # Data to be validated data = { "name": "Daniel", "age": 30, } # Validate and run validation = validate(schema, data) if validation==True: # do something with data, e.g. create a new friend else: print(validation) # will show a well formated dict with errors python -m venv venv source venv/bin/activate pip install -r requirements.txt python -m pytest -m validator -s # Set your user with python keyring python3 -m keyring set https://upload.pypi.org/legacy/ $username # substitue $username with your actual username # Update packaging tools python3 -m pip install --user --upgrade setuptools wheel twine # Remove dist folder rm -rf dist/* # Create a new dist python3 setup.py sdist bdist_wheel # Above command creates # dist/ # schema-validator-halpa-0.0.5-py3-none-any.whl # schema-validator-halpa-0.0.5.tar.gz # where "0.0.1" is equivalent to value in "version" from setup.py # Upload the package python3 -m twine upload dist/*
0.496094
0.811489
import re import logging from collections.abc import Mapping from typing import Any, Dict, List, Optional, Tuple from humps import camelize, decamelize from pydantic.json import pydantic_encoder from pydantic.schema import model_schema from schema_validator.constants import ( IGNORE_METHODS, REF_PREFIX, SCHEMA_QUERYSTRING_ATTRIBUTE, SCHEMA_REQUEST_ATTRIBUTE, SCHEMA_RESPONSE_ATTRIBUTE, SCHEMA_TAG_ATTRIBUTE, SWAGGER_CSS_URL, SWAGGER_JS_URL ) from schema_validator.types import ServerObject from schema_validator.utils import DataSource try: from quart import current_app, render_template_string from quart.json import JSONDecoder, JSONEncoder IS_FLASK = False except ImportError: from flask import current_app, render_template_string, Flask from flask.json import JSONDecoder, JSONEncoder IS_FLASK = True PATH_RE = re.compile("<(?:[^:]*:)?([^>]+)>") logger = logging.getLogger(__name__) class PydanticJSONEncoder(JSONEncoder): def default(self, object_: Any) -> Any: return pydantic_encoder(object_) class CasingJSONEncoder(PydanticJSONEncoder): def encode(self, object_: Any) -> Any: if isinstance(object_, (list, Mapping)): object_ = camelize(object_) return super().encode(camelize(object_)) class CasingJSONDecoder(JSONDecoder): def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, object_hook=self.object_hook, **kwargs) @staticmethod def object_hook(object_: dict) -> Any: return decamelize(object_) class SchemaValidator: """A Flask-Schema instance. app = Flask(__name__) FlaskSchema(app) flask_schema = FlaskSchema() or def create_app(): app = Flask(__name__) flask_schema.init_app(app) return app Arguments: swagger_ui_path: The path used to serve the documentation UI using swagger or None to disable swagger documentation. title: The publishable title for the app. version: The publishable version for the app. """ def __init__( self, app=None, *, swagger_ui_path: Optional[str] = "/swagger/docs", title: Optional[str] = None, version: str = "0.1.0", convert_casing: bool = False, servers: Optional[List[ServerObject]] = None ) -> None: self.openapi_path = "/swagger/openapi.json" self.openapi_tag_path = "/swagger/openapi-<tag>.json" self.swagger_ui_path = swagger_ui_path self.title = title self.version = version self.convert_casing = convert_casing self.servers = servers or [] if app is not None: self.init_app(app) def init_app(self, app) -> None: app.extensions["SCHEMA_VALIDATOR"] = self self.title = app.name if self.title is None else self.title if self.convert_casing: app.json_decoder = CasingJSONDecoder app.json_encoder = CasingJSONEncoder else: app.json_encoder = PydanticJSONEncoder app.config.setdefault( "SCHEMA_SWAGGER_JS_URL", SWAGGER_JS_URL ) app.config.setdefault( "SCHEMA_SWAGGER_CSS_URL", SWAGGER_CSS_URL ) try: if isinstance(app, Flask): IS_FLASK = True else: IS_FLASK = False except BaseException: IS_FLASK = False if self.openapi_path is not None and app.config.get("SWAGGER_ROUTE"): if IS_FLASK: from .flask import openapi, swagger_ui app_name = "FLASK" else: from .quart import openapi, swagger_ui, convert_model_result app.make_response = convert_model_result(app.make_response) app_name = "QUART" logger.info(f"start validator by {app_name}") app.add_url_rule( self.openapi_path, "openapi", lambda: openapi(validator=self) ) app.add_url_rule( self.openapi_tag_path, "openapi_tag", lambda tag: openapi(self, tag) ) if self.swagger_ui_path is not None: app.add_url_rule( self.swagger_ui_path, "swagger_ui", lambda: swagger_ui(validator=self) ) app.add_url_rule( f"{self.swagger_ui_path}/<tag>", "swagger_ui_tag", lambda tag: swagger_ui(self, tag) ) def _split_definitions(schema: dict) -> Tuple[dict, dict]: new_schema = schema.copy() definitions = new_schema.pop("definitions", {}) return definitions, new_schema def _build_openapi_schema( app, extension: SchemaValidator, expected_tag: str = None ) -> dict: """ params: expected_tag: str """ paths: Dict[str, dict] = {} components = {"schemas": {}} for rule in app.url_map.iter_rules(): if rule.endpoint in [ "static", "openapi", "swagger_ui", "swagger_ui_tag", "openapi_tag" ]: continue func = app.view_functions[rule.endpoint] for method in rule.methods - IGNORE_METHODS: view_func = None view_class = getattr(func, "view_class", None) if view_class is not None: view_func = getattr(view_class, method.lower(), None) path_object = { "parameters": [], "responses": {}, } function = view_func or func if function.__doc__ is not None: summary, *description = function.__doc__.splitlines() path_object["description"] = "\n".join(description) path_object["summary"] = summary if view_class: tags = getattr(view_class, SCHEMA_TAG_ATTRIBUTE, []) else: tags = getattr(func, SCHEMA_TAG_ATTRIBUTE, []) if tags: path_object["tags"] = tags if expected_tag and expected_tag not in tags: continue response_models = getattr(function, SCHEMA_RESPONSE_ATTRIBUTE, {}) for status_code, model_class in response_models.items(): schema = model_schema(model_class, ref_prefix=REF_PREFIX) if extension.convert_casing: schema = camelize(schema) definitions, schema = _split_definitions(schema) components["schemas"].update(definitions) path_object["responses"][status_code] = { # type: ignore "content": { "application/json": { "schema": schema, }, }, "description": model_class.__doc__, } request_data = getattr(function, SCHEMA_REQUEST_ATTRIBUTE, None) if request_data is not None: schema = model_schema(request_data[0], ref_prefix=REF_PREFIX) if extension.convert_casing: schema = camelize(schema) definitions, schema = _split_definitions(schema) components["schemas"].update(definitions) if request_data[1] == DataSource.JSON: encoding = "application/json" else: encoding = "application/x-www-form-urlencoded" path_object["requestBody"] = { "content": { encoding: { "schema": schema, }, }, } querystring_model = getattr( function, SCHEMA_QUERYSTRING_ATTRIBUTE, None) if querystring_model is not None: schema = model_schema(querystring_model, ref_prefix=REF_PREFIX) if extension.convert_casing: schema = camelize(schema) definitions, schema = _split_definitions(schema) components["schemas"].update(definitions) for name, type_ in schema["properties"].items(): path_object["parameters"].append( { "name": name, "in": "query", "schema": type_, } ) for name, converter in rule._converters.items(): path_object["parameters"].append( { "name": name, "in": "path", } ) path = re.sub(PATH_RE, r"{\1}", rule.rule) paths.setdefault(path, {}) paths[path][method.lower()] = path_object return { "openapi": "3.0.3", "info": { "title": extension.title, "version": extension.version, }, "components": components, "paths": paths, "tags": [], "servers": extension.servers, }
schema-validator
/schema_validator-0.2.5.tar.gz/schema_validator-0.2.5/schema_validator/core.py
core.py
import re import logging from collections.abc import Mapping from typing import Any, Dict, List, Optional, Tuple from humps import camelize, decamelize from pydantic.json import pydantic_encoder from pydantic.schema import model_schema from schema_validator.constants import ( IGNORE_METHODS, REF_PREFIX, SCHEMA_QUERYSTRING_ATTRIBUTE, SCHEMA_REQUEST_ATTRIBUTE, SCHEMA_RESPONSE_ATTRIBUTE, SCHEMA_TAG_ATTRIBUTE, SWAGGER_CSS_URL, SWAGGER_JS_URL ) from schema_validator.types import ServerObject from schema_validator.utils import DataSource try: from quart import current_app, render_template_string from quart.json import JSONDecoder, JSONEncoder IS_FLASK = False except ImportError: from flask import current_app, render_template_string, Flask from flask.json import JSONDecoder, JSONEncoder IS_FLASK = True PATH_RE = re.compile("<(?:[^:]*:)?([^>]+)>") logger = logging.getLogger(__name__) class PydanticJSONEncoder(JSONEncoder): def default(self, object_: Any) -> Any: return pydantic_encoder(object_) class CasingJSONEncoder(PydanticJSONEncoder): def encode(self, object_: Any) -> Any: if isinstance(object_, (list, Mapping)): object_ = camelize(object_) return super().encode(camelize(object_)) class CasingJSONDecoder(JSONDecoder): def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, object_hook=self.object_hook, **kwargs) @staticmethod def object_hook(object_: dict) -> Any: return decamelize(object_) class SchemaValidator: """A Flask-Schema instance. app = Flask(__name__) FlaskSchema(app) flask_schema = FlaskSchema() or def create_app(): app = Flask(__name__) flask_schema.init_app(app) return app Arguments: swagger_ui_path: The path used to serve the documentation UI using swagger or None to disable swagger documentation. title: The publishable title for the app. version: The publishable version for the app. """ def __init__( self, app=None, *, swagger_ui_path: Optional[str] = "/swagger/docs", title: Optional[str] = None, version: str = "0.1.0", convert_casing: bool = False, servers: Optional[List[ServerObject]] = None ) -> None: self.openapi_path = "/swagger/openapi.json" self.openapi_tag_path = "/swagger/openapi-<tag>.json" self.swagger_ui_path = swagger_ui_path self.title = title self.version = version self.convert_casing = convert_casing self.servers = servers or [] if app is not None: self.init_app(app) def init_app(self, app) -> None: app.extensions["SCHEMA_VALIDATOR"] = self self.title = app.name if self.title is None else self.title if self.convert_casing: app.json_decoder = CasingJSONDecoder app.json_encoder = CasingJSONEncoder else: app.json_encoder = PydanticJSONEncoder app.config.setdefault( "SCHEMA_SWAGGER_JS_URL", SWAGGER_JS_URL ) app.config.setdefault( "SCHEMA_SWAGGER_CSS_URL", SWAGGER_CSS_URL ) try: if isinstance(app, Flask): IS_FLASK = True else: IS_FLASK = False except BaseException: IS_FLASK = False if self.openapi_path is not None and app.config.get("SWAGGER_ROUTE"): if IS_FLASK: from .flask import openapi, swagger_ui app_name = "FLASK" else: from .quart import openapi, swagger_ui, convert_model_result app.make_response = convert_model_result(app.make_response) app_name = "QUART" logger.info(f"start validator by {app_name}") app.add_url_rule( self.openapi_path, "openapi", lambda: openapi(validator=self) ) app.add_url_rule( self.openapi_tag_path, "openapi_tag", lambda tag: openapi(self, tag) ) if self.swagger_ui_path is not None: app.add_url_rule( self.swagger_ui_path, "swagger_ui", lambda: swagger_ui(validator=self) ) app.add_url_rule( f"{self.swagger_ui_path}/<tag>", "swagger_ui_tag", lambda tag: swagger_ui(self, tag) ) def _split_definitions(schema: dict) -> Tuple[dict, dict]: new_schema = schema.copy() definitions = new_schema.pop("definitions", {}) return definitions, new_schema def _build_openapi_schema( app, extension: SchemaValidator, expected_tag: str = None ) -> dict: """ params: expected_tag: str """ paths: Dict[str, dict] = {} components = {"schemas": {}} for rule in app.url_map.iter_rules(): if rule.endpoint in [ "static", "openapi", "swagger_ui", "swagger_ui_tag", "openapi_tag" ]: continue func = app.view_functions[rule.endpoint] for method in rule.methods - IGNORE_METHODS: view_func = None view_class = getattr(func, "view_class", None) if view_class is not None: view_func = getattr(view_class, method.lower(), None) path_object = { "parameters": [], "responses": {}, } function = view_func or func if function.__doc__ is not None: summary, *description = function.__doc__.splitlines() path_object["description"] = "\n".join(description) path_object["summary"] = summary if view_class: tags = getattr(view_class, SCHEMA_TAG_ATTRIBUTE, []) else: tags = getattr(func, SCHEMA_TAG_ATTRIBUTE, []) if tags: path_object["tags"] = tags if expected_tag and expected_tag not in tags: continue response_models = getattr(function, SCHEMA_RESPONSE_ATTRIBUTE, {}) for status_code, model_class in response_models.items(): schema = model_schema(model_class, ref_prefix=REF_PREFIX) if extension.convert_casing: schema = camelize(schema) definitions, schema = _split_definitions(schema) components["schemas"].update(definitions) path_object["responses"][status_code] = { # type: ignore "content": { "application/json": { "schema": schema, }, }, "description": model_class.__doc__, } request_data = getattr(function, SCHEMA_REQUEST_ATTRIBUTE, None) if request_data is not None: schema = model_schema(request_data[0], ref_prefix=REF_PREFIX) if extension.convert_casing: schema = camelize(schema) definitions, schema = _split_definitions(schema) components["schemas"].update(definitions) if request_data[1] == DataSource.JSON: encoding = "application/json" else: encoding = "application/x-www-form-urlencoded" path_object["requestBody"] = { "content": { encoding: { "schema": schema, }, }, } querystring_model = getattr( function, SCHEMA_QUERYSTRING_ATTRIBUTE, None) if querystring_model is not None: schema = model_schema(querystring_model, ref_prefix=REF_PREFIX) if extension.convert_casing: schema = camelize(schema) definitions, schema = _split_definitions(schema) components["schemas"].update(definitions) for name, type_ in schema["properties"].items(): path_object["parameters"].append( { "name": name, "in": "query", "schema": type_, } ) for name, converter in rule._converters.items(): path_object["parameters"].append( { "name": name, "in": "path", } ) path = re.sub(PATH_RE, r"{\1}", rule.rule) paths.setdefault(path, {}) paths[path][method.lower()] = path_object return { "openapi": "3.0.3", "info": { "title": extension.title, "version": extension.version, }, "components": components, "paths": paths, "tags": [], "servers": extension.servers, }
0.763351
0.104569
from dataclasses import asdict, is_dataclass from functools import wraps from typing import (Any, Callable, Dict, Iterable, List, Optional, Union, cast) from pydantic import BaseModel, ValidationError from pydantic.dataclasses import is_builtin_dataclass from flask import Response, current_app, g, jsonify, request from werkzeug.datastructures import Headers from werkzeug.exceptions import BadRequest from schema_validator.constants import ( SCHEMA_QUERYSTRING_ATTRIBUTE, SCHEMA_REQUEST_ATTRIBUTE, SCHEMA_RESPONSE_ATTRIBUTE, SCHEMA_TAG_ATTRIBUTE ) from schema_validator.types import PydanticModel from schema_validator.utils import DataSource, check_body_schema, \ check_query_string_schema, check_response_schema def check_response(result, response_model: Dict[int, PydanticModel]): status_or_headers: Union[None, int, str, Dict, List] = None headers: Optional[Headers] = None if isinstance(result, tuple): value, status_or_headers, headers = result + (None,) * ( 3 - len(result)) else: value = result if isinstance(value, Response): value = value.get_json() status = 200 if status_or_headers is not None and not isinstance( status_or_headers, (Headers, dict, list) ) and str(status_or_headers).isdigit(): status = int(status_or_headers) bad_status = BadRequest.code for status_code, model_cls in response_model.items(): if status_code != status: continue if isinstance(value, dict): try: model_value = model_cls(**value) except (TypeError, ValidationError) as ve: return jsonify(validation_error=str(ve)), bad_status elif type(value) == model_cls: model_value = value elif is_builtin_dataclass(value): model_value = model_cls(**asdict(value)) else: return jsonify(validation_error="invalid response"), bad_status if is_dataclass(model_value): return asdict(model_value), status_or_headers, headers else: model_value = cast(BaseModel, model_value) return model_value.dict(), status_or_headers, headers return result def validate( query_string: Optional[PydanticModel] = None, body: Optional[PydanticModel] = None, source: DataSource = DataSource.JSON, validate_path_args: bool = False, responses: Union[PydanticModel, Dict[int, PydanticModel], None] = None, headers: Optional[PydanticModel] = None, tags: Optional[Iterable[str]] = None ) -> Callable: """ params: query_string: the params in query body: json body or form source: the body source response: response model define from dataclasses import dataclass from datetime import datetime from typing import Optional from pydantic import BaseModel from flask import Flask from schema_validator import FlaskSchema, validate app = Flask(__name__) FlaskSchema(app) OR schema = FlaskSchema() schema.init_app(app) @dataclass class Todo: task: str due: Optional[datetime] class TodoResponse(BaseModel): id: int name: str @app.post("/") @validate(body=Todo, responses=TodoResponse) def create_todo(): ... # Do something with data, e.g. save to the DB return dict(id=1, name="2") @app.put("/") @validate( body=Todo, responses={200: TodoResponse, 400: TodoResponse}, tags=["SOME-TAG"] ) def update_todo(): ... # Do something with data, e.g. save to the DB return TodoResponse(id=1, name="123") @tags("SOME-TAG", "OTHER-TAG") class View(MethodView): @validate(...) def get(self): return {} """ # TODO if validate_path_args: pass # TODO if headers is not None: pass if query_string is not None: query_string = check_query_string_schema(query_string) if body is not None: body = check_body_schema(body, source) if responses is not None: responses = check_response_schema(responses) def decorator(func: Callable) -> Callable: if query_string: setattr(func, SCHEMA_QUERYSTRING_ATTRIBUTE, query_string) if body: setattr(func, SCHEMA_REQUEST_ATTRIBUTE, (body, source)) if responses: setattr(func, SCHEMA_RESPONSE_ATTRIBUTE, responses) if tags: setattr(func, SCHEMA_TAG_ATTRIBUTE, list(set(tags))) @wraps(func) def wrapper(*args: Any, **kwargs: Any) -> Any: err = {} if body: if source == DataSource.JSON: data = request.get_json() else: data = request.form try: body_model = body(**data) except (TypeError, ValidationError) as ve: err["body_params"] = str(ve) else: g.body_params = body_model if query_string: try: query_params = query_string(**request.args) except (TypeError, ValidationError) as ve: err["query_params"] = str(ve) else: g.query_params = query_params if err: return jsonify(validation_error=err), BadRequest.code result = current_app.ensure_sync(func)(*args, **kwargs) if responses: return check_response(result, responses) return result return wrapper return decorator
schema-validator
/schema_validator-0.2.5.tar.gz/schema_validator-0.2.5/schema_validator/flask/validation.py
validation.py
from dataclasses import asdict, is_dataclass from functools import wraps from typing import (Any, Callable, Dict, Iterable, List, Optional, Union, cast) from pydantic import BaseModel, ValidationError from pydantic.dataclasses import is_builtin_dataclass from flask import Response, current_app, g, jsonify, request from werkzeug.datastructures import Headers from werkzeug.exceptions import BadRequest from schema_validator.constants import ( SCHEMA_QUERYSTRING_ATTRIBUTE, SCHEMA_REQUEST_ATTRIBUTE, SCHEMA_RESPONSE_ATTRIBUTE, SCHEMA_TAG_ATTRIBUTE ) from schema_validator.types import PydanticModel from schema_validator.utils import DataSource, check_body_schema, \ check_query_string_schema, check_response_schema def check_response(result, response_model: Dict[int, PydanticModel]): status_or_headers: Union[None, int, str, Dict, List] = None headers: Optional[Headers] = None if isinstance(result, tuple): value, status_or_headers, headers = result + (None,) * ( 3 - len(result)) else: value = result if isinstance(value, Response): value = value.get_json() status = 200 if status_or_headers is not None and not isinstance( status_or_headers, (Headers, dict, list) ) and str(status_or_headers).isdigit(): status = int(status_or_headers) bad_status = BadRequest.code for status_code, model_cls in response_model.items(): if status_code != status: continue if isinstance(value, dict): try: model_value = model_cls(**value) except (TypeError, ValidationError) as ve: return jsonify(validation_error=str(ve)), bad_status elif type(value) == model_cls: model_value = value elif is_builtin_dataclass(value): model_value = model_cls(**asdict(value)) else: return jsonify(validation_error="invalid response"), bad_status if is_dataclass(model_value): return asdict(model_value), status_or_headers, headers else: model_value = cast(BaseModel, model_value) return model_value.dict(), status_or_headers, headers return result def validate( query_string: Optional[PydanticModel] = None, body: Optional[PydanticModel] = None, source: DataSource = DataSource.JSON, validate_path_args: bool = False, responses: Union[PydanticModel, Dict[int, PydanticModel], None] = None, headers: Optional[PydanticModel] = None, tags: Optional[Iterable[str]] = None ) -> Callable: """ params: query_string: the params in query body: json body or form source: the body source response: response model define from dataclasses import dataclass from datetime import datetime from typing import Optional from pydantic import BaseModel from flask import Flask from schema_validator import FlaskSchema, validate app = Flask(__name__) FlaskSchema(app) OR schema = FlaskSchema() schema.init_app(app) @dataclass class Todo: task: str due: Optional[datetime] class TodoResponse(BaseModel): id: int name: str @app.post("/") @validate(body=Todo, responses=TodoResponse) def create_todo(): ... # Do something with data, e.g. save to the DB return dict(id=1, name="2") @app.put("/") @validate( body=Todo, responses={200: TodoResponse, 400: TodoResponse}, tags=["SOME-TAG"] ) def update_todo(): ... # Do something with data, e.g. save to the DB return TodoResponse(id=1, name="123") @tags("SOME-TAG", "OTHER-TAG") class View(MethodView): @validate(...) def get(self): return {} """ # TODO if validate_path_args: pass # TODO if headers is not None: pass if query_string is not None: query_string = check_query_string_schema(query_string) if body is not None: body = check_body_schema(body, source) if responses is not None: responses = check_response_schema(responses) def decorator(func: Callable) -> Callable: if query_string: setattr(func, SCHEMA_QUERYSTRING_ATTRIBUTE, query_string) if body: setattr(func, SCHEMA_REQUEST_ATTRIBUTE, (body, source)) if responses: setattr(func, SCHEMA_RESPONSE_ATTRIBUTE, responses) if tags: setattr(func, SCHEMA_TAG_ATTRIBUTE, list(set(tags))) @wraps(func) def wrapper(*args: Any, **kwargs: Any) -> Any: err = {} if body: if source == DataSource.JSON: data = request.get_json() else: data = request.form try: body_model = body(**data) except (TypeError, ValidationError) as ve: err["body_params"] = str(ve) else: g.body_params = body_model if query_string: try: query_params = query_string(**request.args) except (TypeError, ValidationError) as ve: err["query_params"] = str(ve) else: g.query_params = query_params if err: return jsonify(validation_error=err), BadRequest.code result = current_app.ensure_sync(func)(*args, **kwargs) if responses: return check_response(result, responses) return result return wrapper return decorator
0.72662
0.152473
from dataclasses import asdict, is_dataclass from functools import wraps from typing import (Any, Callable, Dict, Iterable, List, Optional, Union, cast) from pydantic import BaseModel, ValidationError from pydantic.dataclasses import is_builtin_dataclass from quart import Response, current_app, g, jsonify, request from werkzeug.datastructures import Headers from werkzeug.exceptions import BadRequest from schema_validator.constants import ( SCHEMA_QUERYSTRING_ATTRIBUTE, SCHEMA_REQUEST_ATTRIBUTE, SCHEMA_RESPONSE_ATTRIBUTE, SCHEMA_TAG_ATTRIBUTE ) from schema_validator.types import PydanticModel from schema_validator.utils import DataSource, check_body_schema, \ check_query_string_schema, check_response_schema async def check_response(result, response_model: Dict[int, PydanticModel]): status_or_headers: Union[None, int, str, Dict, List] = None headers: Optional[Headers] = None if isinstance(result, tuple): value, status_or_headers, headers = result + (None,) * ( 3 - len(result)) else: value = result if isinstance(value, Response): value = await value.get_json() status = 200 if status_or_headers is not None and not isinstance( status_or_headers, (Headers, dict, list) ) and str(status_or_headers).isdigit(): status = int(status_or_headers) bad_status = BadRequest.code for status_code, model_cls in response_model.items(): if status_code != status: continue if isinstance(value, dict): try: model_value = model_cls(**value) except (TypeError, ValidationError) as ve: return jsonify(validation_error=str(ve)), bad_status elif type(value) == model_cls: model_value = value elif is_builtin_dataclass(value): model_value = model_cls(**asdict(value)) else: return jsonify(validation_error="invalid response"), bad_status if is_dataclass(model_value): return asdict(model_value), status_or_headers, headers else: model_value = cast(BaseModel, model_value) return model_value.dict(), status_or_headers, headers return result def validate( query_string: Optional[PydanticModel] = None, body: Optional[PydanticModel] = None, source: DataSource = DataSource.JSON, validate_path_args: bool = False, responses: Union[PydanticModel, Dict[int, PydanticModel], None] = None, headers: Optional[PydanticModel] = None, tags: Optional[Iterable[str]] = None ) -> Callable: """ params: query_string: the params in query body: json body or form source: the body source response: response model define from dataclasses import dataclass from datetime import datetime from typing import Optional from pydantic import BaseModel from flask import Flask from schema_validator import FlaskSchema, validate app = Flask(__name__) FlaskSchema(app) OR schema = FlaskSchema() schema.init_app(app) @dataclass class Todo: task: str due: Optional[datetime] class TodoResponse(BaseModel): id: int name: str @app.post("/") @validate(body=Todo, responses=TodoResponse) def create_todo(): ... # Do something with data, e.g. save to the DB return dict(id=1, name="2") @app.put("/") @validate( body=Todo, responses={200: TodoResponse, 400: TodoResponse}, tags=["SOME-TAG"] ) def update_todo(): ... # Do something with data, e.g. save to the DB return TodoResponse(id=1, name="123") @tags("SOME-TAG", "OTHER-TAG") class View(MethodView): @validate(...) def get(self): return {} """ # TODO if validate_path_args: pass # TODO if headers is not None: pass if query_string is not None: query_string = check_query_string_schema(query_string) if body is not None: body = check_body_schema(body, source) if responses is not None: responses = check_response_schema(responses) def decorator(func: Callable) -> Callable: if query_string: setattr(func, SCHEMA_QUERYSTRING_ATTRIBUTE, query_string) if body: setattr(func, SCHEMA_REQUEST_ATTRIBUTE, (body, source)) if responses: setattr(func, SCHEMA_RESPONSE_ATTRIBUTE, responses) if tags: setattr(func, SCHEMA_TAG_ATTRIBUTE, list(set(tags))) @wraps(func) async def wrapper(*args: Any, **kwargs: Any) -> Any: err = {} if body: if source == DataSource.JSON: data = await request.get_json() else: data = await request.form try: body_model = body(**data) except (TypeError, ValidationError) as ve: err["body_params"] = str(ve) else: g.body_params = body_model if query_string: try: query_params = query_string(**request.args) except (TypeError, ValidationError) as ve: err["query_params"] = str(ve) else: g.query_params = query_params if err: return jsonify(validation_error=err), BadRequest.code result = await current_app.ensure_async(func)(*args, **kwargs) if responses: return await check_response(result, responses) return result return wrapper return decorator
schema-validator
/schema_validator-0.2.5.tar.gz/schema_validator-0.2.5/schema_validator/quart/validation.py
validation.py
from dataclasses import asdict, is_dataclass from functools import wraps from typing import (Any, Callable, Dict, Iterable, List, Optional, Union, cast) from pydantic import BaseModel, ValidationError from pydantic.dataclasses import is_builtin_dataclass from quart import Response, current_app, g, jsonify, request from werkzeug.datastructures import Headers from werkzeug.exceptions import BadRequest from schema_validator.constants import ( SCHEMA_QUERYSTRING_ATTRIBUTE, SCHEMA_REQUEST_ATTRIBUTE, SCHEMA_RESPONSE_ATTRIBUTE, SCHEMA_TAG_ATTRIBUTE ) from schema_validator.types import PydanticModel from schema_validator.utils import DataSource, check_body_schema, \ check_query_string_schema, check_response_schema async def check_response(result, response_model: Dict[int, PydanticModel]): status_or_headers: Union[None, int, str, Dict, List] = None headers: Optional[Headers] = None if isinstance(result, tuple): value, status_or_headers, headers = result + (None,) * ( 3 - len(result)) else: value = result if isinstance(value, Response): value = await value.get_json() status = 200 if status_or_headers is not None and not isinstance( status_or_headers, (Headers, dict, list) ) and str(status_or_headers).isdigit(): status = int(status_or_headers) bad_status = BadRequest.code for status_code, model_cls in response_model.items(): if status_code != status: continue if isinstance(value, dict): try: model_value = model_cls(**value) except (TypeError, ValidationError) as ve: return jsonify(validation_error=str(ve)), bad_status elif type(value) == model_cls: model_value = value elif is_builtin_dataclass(value): model_value = model_cls(**asdict(value)) else: return jsonify(validation_error="invalid response"), bad_status if is_dataclass(model_value): return asdict(model_value), status_or_headers, headers else: model_value = cast(BaseModel, model_value) return model_value.dict(), status_or_headers, headers return result def validate( query_string: Optional[PydanticModel] = None, body: Optional[PydanticModel] = None, source: DataSource = DataSource.JSON, validate_path_args: bool = False, responses: Union[PydanticModel, Dict[int, PydanticModel], None] = None, headers: Optional[PydanticModel] = None, tags: Optional[Iterable[str]] = None ) -> Callable: """ params: query_string: the params in query body: json body or form source: the body source response: response model define from dataclasses import dataclass from datetime import datetime from typing import Optional from pydantic import BaseModel from flask import Flask from schema_validator import FlaskSchema, validate app = Flask(__name__) FlaskSchema(app) OR schema = FlaskSchema() schema.init_app(app) @dataclass class Todo: task: str due: Optional[datetime] class TodoResponse(BaseModel): id: int name: str @app.post("/") @validate(body=Todo, responses=TodoResponse) def create_todo(): ... # Do something with data, e.g. save to the DB return dict(id=1, name="2") @app.put("/") @validate( body=Todo, responses={200: TodoResponse, 400: TodoResponse}, tags=["SOME-TAG"] ) def update_todo(): ... # Do something with data, e.g. save to the DB return TodoResponse(id=1, name="123") @tags("SOME-TAG", "OTHER-TAG") class View(MethodView): @validate(...) def get(self): return {} """ # TODO if validate_path_args: pass # TODO if headers is not None: pass if query_string is not None: query_string = check_query_string_schema(query_string) if body is not None: body = check_body_schema(body, source) if responses is not None: responses = check_response_schema(responses) def decorator(func: Callable) -> Callable: if query_string: setattr(func, SCHEMA_QUERYSTRING_ATTRIBUTE, query_string) if body: setattr(func, SCHEMA_REQUEST_ATTRIBUTE, (body, source)) if responses: setattr(func, SCHEMA_RESPONSE_ATTRIBUTE, responses) if tags: setattr(func, SCHEMA_TAG_ATTRIBUTE, list(set(tags))) @wraps(func) async def wrapper(*args: Any, **kwargs: Any) -> Any: err = {} if body: if source == DataSource.JSON: data = await request.get_json() else: data = await request.form try: body_model = body(**data) except (TypeError, ValidationError) as ve: err["body_params"] = str(ve) else: g.body_params = body_model if query_string: try: query_params = query_string(**request.args) except (TypeError, ValidationError) as ve: err["query_params"] = str(ve) else: g.query_params = query_params if err: return jsonify(validation_error=err), BadRequest.code result = await current_app.ensure_async(func)(*args, **kwargs) if responses: return await check_response(result, responses) return result return wrapper return decorator
0.732209
0.157266
Schema validation just got Pythonic =============================================================================== **schema** is a library for validating Python data structures, such as those obtained from config-files, forms, external services or command-line parsing, converted from JSON/YAML (or something else) to Python data-types. .. image:: https://secure.travis-ci.org/keleshev/schema.svg?branch=master :target: https://travis-ci.org/keleshev/schema .. image:: https://img.shields.io/codecov/c/github/keleshev/schema.svg :target: http://codecov.io/github/keleshev/schema Example ---------------------------------------------------------------------------- Here is a quick example to get a feeling of **schema**, validating a list of entries with personal information: .. code:: python >>> from schema import Schema, And, Use, Optional, SchemaError >>> schema = Schema([{'name': And(str, len), ... 'age': And(Use(int), lambda n: 18 <= n <= 99), ... Optional('gender'): And(str, Use(str.lower), ... lambda s: s in ('squid', 'kid'))}]) >>> data = [{'name': 'Sue', 'age': '28', 'gender': 'Squid'}, ... {'name': 'Sam', 'age': '42'}, ... {'name': 'Sacha', 'age': '20', 'gender': 'KID'}] >>> validated = schema.validate(data) >>> assert validated == [{'name': 'Sue', 'age': 28, 'gender': 'squid'}, ... {'name': 'Sam', 'age': 42}, ... {'name': 'Sacha', 'age' : 20, 'gender': 'kid'}] If data is valid, ``Schema.validate`` will return the validated data (optionally converted with `Use` calls, see below). If data is invalid, ``Schema`` will raise ``SchemaError`` exception. If you just want to check that the data is valid, ``schema.is_valid(data)`` will return ``True`` or ``False``. Installation ------------------------------------------------------------------------------- Use `pip <http://pip-installer.org>`_ or easy_install:: pip install schema Alternatively, you can just drop ``schema.py`` file into your project—it is self-contained. - **schema** is tested with Python 2.6, 2.7, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9 and PyPy. - **schema** follows `semantic versioning <http://semver.org>`_. How ``Schema`` validates data ------------------------------------------------------------------------------- Types ~~~~~ If ``Schema(...)`` encounters a type (such as ``int``, ``str``, ``object``, etc.), it will check if the corresponding piece of data is an instance of that type, otherwise it will raise ``SchemaError``. .. code:: python >>> from schema import Schema >>> Schema(int).validate(123) 123 >>> Schema(int).validate('123') Traceback (most recent call last): ... schema.SchemaUnexpectedTypeError: '123' should be instance of 'int' >>> Schema(object).validate('hai') 'hai' Callables ~~~~~~~~~ If ``Schema(...)`` encounters a callable (function, class, or object with ``__call__`` method) it will call it, and if its return value evaluates to ``True`` it will continue validating, else—it will raise ``SchemaError``. .. code:: python >>> import os >>> Schema(os.path.exists).validate('./') './' >>> Schema(os.path.exists).validate('./non-existent/') Traceback (most recent call last): ... schema.SchemaError: exists('./non-existent/') should evaluate to True >>> Schema(lambda n: n > 0).validate(123) 123 >>> Schema(lambda n: n > 0).validate(-12) Traceback (most recent call last): ... schema.SchemaError: <lambda>(-12) should evaluate to True "Validatables" ~~~~~~~~~~~~~~ If ``Schema(...)`` encounters an object with method ``validate`` it will run this method on corresponding data as ``data = obj.validate(data)``. This method may raise ``SchemaError`` exception, which will tell ``Schema`` that that piece of data is invalid, otherwise—it will continue validating. An example of "validatable" is ``Regex``, that tries to match a string or a buffer with the given regular expression (itself as a string, buffer or compiled regex ``SRE_Pattern``): .. code:: python >>> from schema import Regex >>> import re >>> Regex(r'^foo').validate('foobar') 'foobar' >>> Regex(r'^[A-Z]+$', flags=re.I).validate('those-dashes-dont-match') Traceback (most recent call last): ... schema.SchemaError: Regex('^[A-Z]+$', flags=re.IGNORECASE) does not match 'those-dashes-dont-match' For a more general case, you can use ``Use`` for creating such objects. ``Use`` helps to use a function or type to convert a value while validating it: .. code:: python >>> from schema import Use >>> Schema(Use(int)).validate('123') 123 >>> Schema(Use(lambda f: open(f, 'a'))).validate('LICENSE-MIT') <_io.TextIOWrapper name='LICENSE-MIT' mode='a' encoding='UTF-8'> Dropping the details, ``Use`` is basically: .. code:: python class Use(object): def __init__(self, callable_): self._callable = callable_ def validate(self, data): try: return self._callable(data) except Exception as e: raise SchemaError('%r raised %r' % (self._callable.__name__, e)) Sometimes you need to transform and validate part of data, but keep original data unchanged. ``Const`` helps to keep your data safe: .. code:: python >> from schema import Use, Const, And, Schema >> from datetime import datetime >> is_future = lambda date: datetime.now() > date >> to_json = lambda v: {"timestamp": v} >> Schema(And(Const(And(Use(datetime.fromtimestamp), is_future)), Use(to_json))).validate(1234567890) {"timestamp": 1234567890} Now you can write your own validation-aware classes and data types. Lists, similar containers ~~~~~~~~~~~~~~~~~~~~~~~~~ If ``Schema(...)`` encounters an instance of ``list``, ``tuple``, ``set`` or ``frozenset``, it will validate contents of corresponding data container against all schemas listed inside that container and aggregate all errors: .. code:: python >>> Schema([1, 0]).validate([1, 1, 0, 1]) [1, 1, 0, 1] >>> Schema((int, float)).validate((5, 7, 8, 'not int or float here')) Traceback (most recent call last): ... schema.SchemaError: Or(<class 'int'>, <class 'float'>) did not validate 'not int or float here' 'not int or float here' should be instance of 'int' 'not int or float here' should be instance of 'float' Dictionaries ~~~~~~~~~~~~ If ``Schema(...)`` encounters an instance of ``dict``, it will validate data key-value pairs: .. code:: python >>> d = Schema({'name': str, ... 'age': lambda n: 18 <= n <= 99}).validate({'name': 'Sue', 'age': 28}) >>> assert d == {'name': 'Sue', 'age': 28} You can specify keys as schemas too: .. code:: python >>> schema = Schema({str: int, # string keys should have integer values ... int: None}) # int keys should be always None >>> data = schema.validate({'key1': 1, 'key2': 2, ... 10: None, 20: None}) >>> schema.validate({'key1': 1, ... 10: 'not None here'}) Traceback (most recent call last): ... schema.SchemaError: Key '10' error: None does not match 'not None here' This is useful if you want to check certain key-values, but don't care about others: .. code:: python >>> schema = Schema({'<id>': int, ... '<file>': Use(open), ... str: object}) # don't care about other str keys >>> data = schema.validate({'<id>': 10, ... '<file>': 'README.rst', ... '--verbose': True}) You can mark a key as optional as follows: .. code:: python >>> from schema import Optional >>> Schema({'name': str, ... Optional('occupation'): str}).validate({'name': 'Sam'}) {'name': 'Sam'} ``Optional`` keys can also carry a ``default``, to be used when no key in the data matches: .. code:: python >>> from schema import Optional >>> Schema({Optional('color', default='blue'): str, ... str: str}).validate({'texture': 'furry'} ... ) == {'color': 'blue', 'texture': 'furry'} True Defaults are used verbatim, not passed through any validators specified in the value. default can also be a callable: .. code:: python >>> from schema import Schema, Optional >>> Schema({Optional('data', default=dict): {}}).validate({}) == {'data': {}} True Also, a caveat: If you specify types, **schema** won't validate the empty dict: .. code:: python >>> Schema({int:int}).is_valid({}) False To do that, you need ``Schema(Or({int:int}, {}))``. This is unlike what happens with lists, where ``Schema([int]).is_valid([])`` will return True. **schema** has classes ``And`` and ``Or`` that help validating several schemas for the same data: .. code:: python >>> from schema import And, Or >>> Schema({'age': And(int, lambda n: 0 < n < 99)}).validate({'age': 7}) {'age': 7} >>> Schema({'password': And(str, lambda s: len(s) > 6)}).validate({'password': 'hai'}) Traceback (most recent call last): ... schema.SchemaError: Key 'password' error: <lambda>('hai') should evaluate to True >>> Schema(And(Or(int, float), lambda x: x > 0)).validate(3.1415) 3.1415 In a dictionary, you can also combine two keys in a "one or the other" manner. To do so, use the `Or` class as a key: .. code:: python >>> from schema import Or, Schema >>> schema = Schema({ ... Or("key1", "key2", only_one=True): str ... }) >>> schema.validate({"key1": "test"}) # Ok {'key1': 'test'} >>> schema.validate({"key1": "test", "key2": "test"}) # SchemaError Traceback (most recent call last): ... schema.SchemaOnlyOneAllowedError: There are multiple keys present from the Or('key1', 'key2') condition Hooks ~~~~~~~~~~ You can define hooks which are functions that are executed whenever a valid key:value is found. The `Forbidden` class is an example of this. You can mark a key as forbidden as follows: .. code:: python >>> from schema import Forbidden >>> Schema({Forbidden('age'): object}).validate({'age': 50}) Traceback (most recent call last): ... schema.SchemaForbiddenKeyError: Forbidden key encountered: 'age' in {'age': 50} A few things are worth noting. First, the value paired with the forbidden key determines whether it will be rejected: .. code:: python >>> Schema({Forbidden('age'): str, 'age': int}).validate({'age': 50}) {'age': 50} Note: if we hadn't supplied the 'age' key here, the call would have failed too, but with SchemaWrongKeyError, not SchemaForbiddenKeyError. Second, Forbidden has a higher priority than standard keys, and consequently than Optional. This means we can do that: .. code:: python >>> Schema({Forbidden('age'): object, Optional(str): object}).validate({'age': 50}) Traceback (most recent call last): ... schema.SchemaForbiddenKeyError: Forbidden key encountered: 'age' in {'age': 50} You can also define your own hooks. The following hook will call `_my_function` if `key` is encountered. .. code:: python from schema import Hook def _my_function(key, scope, error): print(key, scope, error) Hook("key", handler=_my_function) Here's an example where a `Deprecated` class is added to log warnings whenever a key is encountered: .. code:: python from schema import Hook, Schema class Deprecated(Hook): def __init__(self, *args, **kwargs): kwargs["handler"] = lambda key, *args: logging.warn(f"`{key}` is deprecated. " + (self._error or "")) super(Deprecated, self).__init__(*args, **kwargs) Schema({Deprecated("test", "custom error message."): object}, ignore_extra_keys=True).validate({"test": "value"}) ... WARNING: `test` is deprecated. custom error message. Extra Keys ~~~~~~~~~~ The ``Schema(...)`` parameter ``ignore_extra_keys`` causes validation to ignore extra keys in a dictionary, and also to not return them after validating. .. code:: python >>> schema = Schema({'name': str}, ignore_extra_keys=True) >>> schema.validate({'name': 'Sam', 'age': '42'}) {'name': 'Sam'} If you would like any extra keys returned, use ``object: object`` as one of the key/value pairs, which will match any key and any value. Otherwise, extra keys will raise a ``SchemaError``. Customized Validation ~~~~~~~~~~~~~~~~~~~~~~~ The ``Schema.validate`` method accepts additional keyword arguments. The keyword arguments will be propagated to the ``validate`` method of any child validatables (including any ad-hoc ``Schema`` objects), or the default value callable (if a callable is specified) for ``Optional`` keys. This feature can be used together with inheritance of the ``Schema`` class for customized validation. Here is an example where a "post-validation" hook that runs after validation against a sub-schema in a larger schema: .. code:: python class EventSchema(schema.Schema): def validate(self, data, _is_event_schema=True): data = super(EventSchema, self).validate(data, _is_event_schema=False) if _is_event_schema and data.get("minimum", None) is None: data["minimum"] = data["capacity"] return data events_schema = schema.Schema( { str: EventSchema({ "capacity": int, schema.Optional("minimum"): int, # default to capacity }) } ) data = {'event1': {'capacity': 1}, 'event2': {'capacity': 2, 'minimum': 3}} events = events_schema.validate(data) assert events['event1']['minimum'] == 1 # == capacity assert events['event2']['minimum'] == 3 Note that the additional keyword argument ``_is_event_schema`` is necessary to limit the customized behavior to the ``EventSchema`` object itself so that it won't affect any recursive invoke of the ``self.__class__.validate`` for the child schemas (e.g., the call to ``Schema("capacity").validate("capacity")``). User-friendly error reporting ------------------------------------------------------------------------------- You can pass a keyword argument ``error`` to any of validatable classes (such as ``Schema``, ``And``, ``Or``, ``Regex``, ``Use``) to report this error instead of a built-in one. .. code:: python >>> Schema(Use(int, error='Invalid year')).validate('XVII') Traceback (most recent call last): ... schema.SchemaError: Invalid year You can see all errors that occurred by accessing exception's ``exc.autos`` for auto-generated error messages, and ``exc.errors`` for errors which had ``error`` text passed to them. You can exit with ``sys.exit(exc.code)`` if you want to show the messages to the user without traceback. ``error`` messages are given precedence in that case. A JSON API example ------------------------------------------------------------------------------- Here is a quick example: validation of `create a gist <http://developer.github.com/v3/gists/>`_ request from github API. .. code:: python >>> gist = '''{"description": "the description for this gist", ... "public": true, ... "files": { ... "file1.txt": {"content": "String file contents"}, ... "other.txt": {"content": "Another file contents"}}}''' >>> from schema import Schema, And, Use, Optional >>> import json >>> gist_schema = Schema(And(Use(json.loads), # first convert from JSON ... # use str since json returns unicode ... {Optional('description'): str, ... 'public': bool, ... 'files': {str: {'content': str}}})) >>> gist = gist_schema.validate(gist) # gist: {u'description': u'the description for this gist', u'files': {u'file1.txt': {u'content': u'String file contents'}, u'other.txt': {u'content': u'Another file contents'}}, u'public': True} Using **schema** with `docopt <http://github.com/docopt/docopt>`_ ------------------------------------------------------------------------------- Assume you are using **docopt** with the following usage-pattern: Usage: my_program.py [--count=N] <path> <files>... and you would like to validate that ``<files>`` are readable, and that ``<path>`` exists, and that ``--count`` is either integer from 0 to 5, or ``None``. Assuming **docopt** returns the following dict: .. code:: python >>> args = {'<files>': ['LICENSE-MIT', 'setup.py'], ... '<path>': '../', ... '--count': '3'} this is how you validate it using ``schema``: .. code:: python >>> from schema import Schema, And, Or, Use >>> import os >>> s = Schema({'<files>': [Use(open)], ... '<path>': os.path.exists, ... '--count': Or(None, And(Use(int), lambda n: 0 < n < 5))}) >>> args = s.validate(args) >>> args['<files>'] [<_io.TextIOWrapper name='LICENSE-MIT' ...>, <_io.TextIOWrapper name='setup.py' ...] >>> args['<path>'] '../' >>> args['--count'] 3 As you can see, **schema** validated data successfully, opened files and converted ``'3'`` to ``int``. JSON schema ----------- You can also generate standard `draft-07 JSON schema <https://json-schema.org/>`_ from a dict ``Schema``. This can be used to add word completion, validation, and documentation directly in code editors. The output schema can also be used with JSON schema compatible libraries. JSON: Generating ~~~~~~~~~~~~~~~~ Just define your schema normally and call ``.json_schema()`` on it. The output is a Python dict, you need to dump it to JSON. .. code:: python >>> from schema import Optional, Schema >>> import json >>> s = Schema({"test": str, ... "nested": {Optional("other"): str} ... }) >>> json_schema = json.dumps(s.json_schema("https://example.com/my-schema.json")) # json_schema { "type":"object", "properties": { "test": {"type": "string"}, "nested": { "type":"object", "properties": { "other": {"type": "string"} }, "required": [], "additionalProperties": false } }, "required":[ "test", "nested" ], "additionalProperties":false, "$id":"https://example.com/my-schema.json", "$schema":"http://json-schema.org/draft-07/schema#" } You can add descriptions for the schema elements using the ``Literal`` object instead of a string. The main schema can also have a description. These will appear in IDEs to help your users write a configuration. .. code:: python >>> from schema import Literal, Schema >>> import json >>> s = Schema({Literal("project_name", description="Names must be unique"): str}, description="Project schema") >>> json_schema = json.dumps(s.json_schema("https://example.com/my-schema.json"), indent=4) # json_schema { "type": "object", "properties": { "project_name": { "description": "Names must be unique", "type": "string" } }, "required": [ "project_name" ], "additionalProperties": false, "$id": "https://example.com/my-schema.json", "$schema": "http://json-schema.org/draft-07/schema#", "description": "Project schema" } JSON: Supported validations ~~~~~~~~~~~~~~~~~~~~~~~~~~~ The resulting JSON schema is not guaranteed to accept the same objects as the library would accept, since some validations are not implemented or have no JSON schema equivalent. This is the case of the ``Use`` and ``Hook`` objects for example. Implemented ''''''''''' `Object properties <https://json-schema.org/understanding-json-schema/reference/object.html#properties>`_ Use a dict literal. The dict keys are the JSON schema properties. Example: ``Schema({"test": str})`` becomes ``{'type': 'object', 'properties': {'test': {'type': 'string'}}, 'required': ['test'], 'additionalProperties': False}``. Please note that attributes are required by default. To create optional attributes use ``Optional``, like so: ``Schema({Optional("test"): str})`` becomes ``{'type': 'object', 'properties': {'test': {'type': 'string'}}, 'required': [], 'additionalProperties': False}`` additionalProperties is set to true when at least one of the conditions is met: - ignore_extra_keys is True - at least one key is `str` or `object` For example: ``Schema({str: str})`` and ``Schema({}, ignore_extra_keys=True)`` both becomes ``{'type': 'object', 'properties' : {}, 'required': [], 'additionalProperties': True}`` and ``Schema({})`` becomes ``{'type': 'object', 'properties' : {}, 'required': [], 'additionalProperties': False}`` Types Use the Python type name directly. It will be converted to the JSON name: - ``str`` -> `string <https://json-schema.org/understanding-json-schema/reference/string.html>`_ - ``int`` -> `integer <https://json-schema.org/understanding-json-schema/reference/numeric.html#integer>`_ - ``float`` -> `number <https://json-schema.org/understanding-json-schema/reference/numeric.html#number>`_ - ``bool`` -> `boolean <https://json-schema.org/understanding-json-schema/reference/boolean.html>`_ - ``list`` -> `array <https://json-schema.org/understanding-json-schema/reference/array.html>`_ - ``dict`` -> `object <https://json-schema.org/understanding-json-schema/reference/object.html>`_ Example: ``Schema(float)`` becomes ``{"type": "number"}`` `Array items <https://json-schema.org/understanding-json-schema/reference/array.html#items>`_ Surround a schema with ``[]``. Example: ``Schema([str])`` means an array of string and becomes: ``{'type': 'array', 'items': {'type': 'string'}}`` `Enumerated values <https://json-schema.org/understanding-json-schema/reference/generic.html#enumerated-values>`_ Use `Or`. Example: ``Schema(Or(1, 2, 3))`` becomes ``{"enum": [1, 2, 3]}`` `Constant values <https://json-schema.org/understanding-json-schema/reference/generic.html#constant-values>`_ Use the value itself. Example: ``Schema("name")`` becomes ``{"const": "name"}`` `Regular expressions <https://json-schema.org/understanding-json-schema/reference/regular_expressions.html>`_ Use ``Regex``. Example: ``Schema(Regex("^v\d+"))`` becomes ``{'type': 'string', 'pattern': '^v\\d+'}`` `Annotations (title and description) <https://json-schema.org/understanding-json-schema/reference/generic.html#annotations>`_ You can use the ``name`` and ``description`` parameters of the ``Schema`` object init method. To add description to keys, replace a str with a ``Literal`` object. Example: ``Schema({Literal("test", description="A description"): str})`` is equivalent to ``Schema({"test": str})`` with the description added to the resulting JSON schema. `Combining schemas with allOf <https://json-schema.org/understanding-json-schema/reference/combining.html#allof>`_ Use ``And`` Example: ``Schema(And(str, "value"))`` becomes ``{"allOf": [{"type": "string"}, {"const": "value"}]}`` Note that this example is not really useful in the real world, since ``const`` already implies the type. `Combining schemas with anyOf <https://json-schema.org/understanding-json-schema/reference/combining.html#anyof>`_ Use ``Or`` Example: ``Schema(Or(str, int))`` becomes ``{"anyOf": [{"type": "string"}, {"type": "integer"}]}`` Not implemented ''''''''''''''' The following JSON schema validations cannot be generated from this library. - `String length <https://json-schema.org/understanding-json-schema/reference/string.html#length>`_ However, those can be implemented using ``Regex`` - `String format <https://json-schema.org/understanding-json-schema/reference/string.html#format>`_ However, those can be implemented using ``Regex`` - `Object dependencies <https://json-schema.org/understanding-json-schema/reference/object.html#dependencies>`_ - `Array length <https://json-schema.org/understanding-json-schema/reference/array.html#length>`_ - `Array uniqueness <https://json-schema.org/understanding-json-schema/reference/array.html#uniqueness>`_ - `Numeric multiples <https://json-schema.org/understanding-json-schema/reference/numeric.html#multiples>`_ - `Numeric ranges <https://json-schema.org/understanding-json-schema/reference/numeric.html#range>`_ - `Property Names <https://json-schema.org/understanding-json-schema/reference/object.html#property-names>`_ Not implemented. We suggest listing the possible keys instead. As a tip, you can use ``Or`` as a dict key. Example: ``Schema({Or("name1", "name2"): str})`` - `Annotations (default and examples) <https://json-schema.org/understanding-json-schema/reference/generic.html#annotations>`_ - `Combining schemas with oneOf <https://json-schema.org/understanding-json-schema/reference/combining.html#oneof>`_ - `Not <https://json-schema.org/understanding-json-schema/reference/combining.html#not>`_ - `Object size <https://json-schema.org/understanding-json-schema/reference/object.html#size>`_ - `additionalProperties having a different schema (true and false is supported)` JSON: Minimizing output size ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Explicit Reuse '''''''''''''' If your JSON schema is big and has a lot of repetition, it can be made simpler and smaller by defining Schema objects as reference. These references will be placed in a "definitions" section in the main schema. `You can look at the JSON schema documentation for more information <https://json-schema.org/understanding-json-schema/structuring.html#reuse>`_ .. code:: python >>> from schema import Optional, Schema >>> import json >>> s = Schema({"test": str, ... "nested": Schema({Optional("other"): str}, name="nested", as_reference=True) ... }) >>> json_schema = json.dumps(s.json_schema("https://example.com/my-schema.json"), indent=4) # json_schema { "type": "object", "properties": { "test": { "type": "string" }, "nested": { "$ref": "#/definitions/nested" } }, "required": [ "test", "nested" ], "additionalProperties": false, "$id": "https://example.com/my-schema.json", "$schema": "http://json-schema.org/draft-07/schema#", "definitions": { "nested": { "type": "object", "properties": { "other": { "type": "string" } }, "required": [], "additionalProperties": false } } } This becomes really useful when using the same object several times .. code:: python >>> from schema import Optional, Or, Schema >>> import json >>> language_configuration = Schema({"autocomplete": bool, "stop_words": [str]}, name="language", as_reference=True) >>> s = Schema({Or("ar", "cs", "de", "el", "eu", "en", "es", "fr"): language_configuration}) >>> json_schema = json.dumps(s.json_schema("https://example.com/my-schema.json"), indent=4) # json_schema { "type": "object", "properties": { "ar": { "$ref": "#/definitions/language" }, "cs": { "$ref": "#/definitions/language" }, "de": { "$ref": "#/definitions/language" }, "el": { "$ref": "#/definitions/language" }, "eu": { "$ref": "#/definitions/language" }, "en": { "$ref": "#/definitions/language" }, "es": { "$ref": "#/definitions/language" }, "fr": { "$ref": "#/definitions/language" } }, "required": [], "additionalProperties": false, "$id": "https://example.com/my-schema.json", "$schema": "http://json-schema.org/draft-07/schema#", "definitions": { "language": { "type": "object", "properties": { "autocomplete": { "type": "boolean" }, "stop_words": { "type": "array", "items": { "type": "string" } } }, "required": [ "autocomplete", "stop_words" ], "additionalProperties": false } } } Automatic reuse ''''''''''''''' If you want to minimize the output size without using names explicitly, you can have the library generate hashes of parts of the output JSON schema and use them as references throughout. Enable this behaviour by providing the parameter ``use_refs`` to the json_schema method. Be aware that this method is less often compatible with IDEs and JSON schema libraries. It produces a JSON schema that is more difficult to read by humans. .. code:: python >>> from schema import Optional, Or, Schema >>> import json >>> language_configuration = Schema({"autocomplete": bool, "stop_words": [str]}) >>> s = Schema({Or("ar", "cs", "de", "el", "eu", "en", "es", "fr"): language_configuration}) >>> json_schema = json.dumps(s.json_schema("https://example.com/my-schema.json", use_refs=True), indent=4) # json_schema { "type": "object", "properties": { "ar": { "type": "object", "properties": { "autocomplete": { "type": "boolean", "$id": "#6456104181059880193" }, "stop_words": { "type": "array", "items": { "type": "string", "$id": "#1856069563381977338" } } }, "required": [ "autocomplete", "stop_words" ], "additionalProperties": false }, "cs": { "type": "object", "properties": { "autocomplete": { "$ref": "#6456104181059880193" }, "stop_words": { "type": "array", "items": { "$ref": "#1856069563381977338" }, "$id": "#-5377945144312515805" } }, "required": [ "autocomplete", "stop_words" ], "additionalProperties": false }, "de": { "type": "object", "properties": { "autocomplete": { "$ref": "#6456104181059880193" }, "stop_words": { "$ref": "#-5377945144312515805" } }, "required": [ "autocomplete", "stop_words" ], "additionalProperties": false, "$id": "#-8142886105174600858" }, "el": { "$ref": "#-8142886105174600858" }, "eu": { "$ref": "#-8142886105174600858" }, "en": { "$ref": "#-8142886105174600858" }, "es": { "$ref": "#-8142886105174600858" }, "fr": { "$ref": "#-8142886105174600858" } }, "required": [], "additionalProperties": false, "$id": "https://example.com/my-schema.json", "$schema": "http://json-schema.org/draft-07/schema#" }
schema
/schema-0.7.5.tar.gz/schema-0.7.5/README.rst
README.rst
Schema validation just got Pythonic =============================================================================== **schema** is a library for validating Python data structures, such as those obtained from config-files, forms, external services or command-line parsing, converted from JSON/YAML (or something else) to Python data-types. .. image:: https://secure.travis-ci.org/keleshev/schema.svg?branch=master :target: https://travis-ci.org/keleshev/schema .. image:: https://img.shields.io/codecov/c/github/keleshev/schema.svg :target: http://codecov.io/github/keleshev/schema Example ---------------------------------------------------------------------------- Here is a quick example to get a feeling of **schema**, validating a list of entries with personal information: .. code:: python >>> from schema import Schema, And, Use, Optional, SchemaError >>> schema = Schema([{'name': And(str, len), ... 'age': And(Use(int), lambda n: 18 <= n <= 99), ... Optional('gender'): And(str, Use(str.lower), ... lambda s: s in ('squid', 'kid'))}]) >>> data = [{'name': 'Sue', 'age': '28', 'gender': 'Squid'}, ... {'name': 'Sam', 'age': '42'}, ... {'name': 'Sacha', 'age': '20', 'gender': 'KID'}] >>> validated = schema.validate(data) >>> assert validated == [{'name': 'Sue', 'age': 28, 'gender': 'squid'}, ... {'name': 'Sam', 'age': 42}, ... {'name': 'Sacha', 'age' : 20, 'gender': 'kid'}] If data is valid, ``Schema.validate`` will return the validated data (optionally converted with `Use` calls, see below). If data is invalid, ``Schema`` will raise ``SchemaError`` exception. If you just want to check that the data is valid, ``schema.is_valid(data)`` will return ``True`` or ``False``. Installation ------------------------------------------------------------------------------- Use `pip <http://pip-installer.org>`_ or easy_install:: pip install schema Alternatively, you can just drop ``schema.py`` file into your project—it is self-contained. - **schema** is tested with Python 2.6, 2.7, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9 and PyPy. - **schema** follows `semantic versioning <http://semver.org>`_. How ``Schema`` validates data ------------------------------------------------------------------------------- Types ~~~~~ If ``Schema(...)`` encounters a type (such as ``int``, ``str``, ``object``, etc.), it will check if the corresponding piece of data is an instance of that type, otherwise it will raise ``SchemaError``. .. code:: python >>> from schema import Schema >>> Schema(int).validate(123) 123 >>> Schema(int).validate('123') Traceback (most recent call last): ... schema.SchemaUnexpectedTypeError: '123' should be instance of 'int' >>> Schema(object).validate('hai') 'hai' Callables ~~~~~~~~~ If ``Schema(...)`` encounters a callable (function, class, or object with ``__call__`` method) it will call it, and if its return value evaluates to ``True`` it will continue validating, else—it will raise ``SchemaError``. .. code:: python >>> import os >>> Schema(os.path.exists).validate('./') './' >>> Schema(os.path.exists).validate('./non-existent/') Traceback (most recent call last): ... schema.SchemaError: exists('./non-existent/') should evaluate to True >>> Schema(lambda n: n > 0).validate(123) 123 >>> Schema(lambda n: n > 0).validate(-12) Traceback (most recent call last): ... schema.SchemaError: <lambda>(-12) should evaluate to True "Validatables" ~~~~~~~~~~~~~~ If ``Schema(...)`` encounters an object with method ``validate`` it will run this method on corresponding data as ``data = obj.validate(data)``. This method may raise ``SchemaError`` exception, which will tell ``Schema`` that that piece of data is invalid, otherwise—it will continue validating. An example of "validatable" is ``Regex``, that tries to match a string or a buffer with the given regular expression (itself as a string, buffer or compiled regex ``SRE_Pattern``): .. code:: python >>> from schema import Regex >>> import re >>> Regex(r'^foo').validate('foobar') 'foobar' >>> Regex(r'^[A-Z]+$', flags=re.I).validate('those-dashes-dont-match') Traceback (most recent call last): ... schema.SchemaError: Regex('^[A-Z]+$', flags=re.IGNORECASE) does not match 'those-dashes-dont-match' For a more general case, you can use ``Use`` for creating such objects. ``Use`` helps to use a function or type to convert a value while validating it: .. code:: python >>> from schema import Use >>> Schema(Use(int)).validate('123') 123 >>> Schema(Use(lambda f: open(f, 'a'))).validate('LICENSE-MIT') <_io.TextIOWrapper name='LICENSE-MIT' mode='a' encoding='UTF-8'> Dropping the details, ``Use`` is basically: .. code:: python class Use(object): def __init__(self, callable_): self._callable = callable_ def validate(self, data): try: return self._callable(data) except Exception as e: raise SchemaError('%r raised %r' % (self._callable.__name__, e)) Sometimes you need to transform and validate part of data, but keep original data unchanged. ``Const`` helps to keep your data safe: .. code:: python >> from schema import Use, Const, And, Schema >> from datetime import datetime >> is_future = lambda date: datetime.now() > date >> to_json = lambda v: {"timestamp": v} >> Schema(And(Const(And(Use(datetime.fromtimestamp), is_future)), Use(to_json))).validate(1234567890) {"timestamp": 1234567890} Now you can write your own validation-aware classes and data types. Lists, similar containers ~~~~~~~~~~~~~~~~~~~~~~~~~ If ``Schema(...)`` encounters an instance of ``list``, ``tuple``, ``set`` or ``frozenset``, it will validate contents of corresponding data container against all schemas listed inside that container and aggregate all errors: .. code:: python >>> Schema([1, 0]).validate([1, 1, 0, 1]) [1, 1, 0, 1] >>> Schema((int, float)).validate((5, 7, 8, 'not int or float here')) Traceback (most recent call last): ... schema.SchemaError: Or(<class 'int'>, <class 'float'>) did not validate 'not int or float here' 'not int or float here' should be instance of 'int' 'not int or float here' should be instance of 'float' Dictionaries ~~~~~~~~~~~~ If ``Schema(...)`` encounters an instance of ``dict``, it will validate data key-value pairs: .. code:: python >>> d = Schema({'name': str, ... 'age': lambda n: 18 <= n <= 99}).validate({'name': 'Sue', 'age': 28}) >>> assert d == {'name': 'Sue', 'age': 28} You can specify keys as schemas too: .. code:: python >>> schema = Schema({str: int, # string keys should have integer values ... int: None}) # int keys should be always None >>> data = schema.validate({'key1': 1, 'key2': 2, ... 10: None, 20: None}) >>> schema.validate({'key1': 1, ... 10: 'not None here'}) Traceback (most recent call last): ... schema.SchemaError: Key '10' error: None does not match 'not None here' This is useful if you want to check certain key-values, but don't care about others: .. code:: python >>> schema = Schema({'<id>': int, ... '<file>': Use(open), ... str: object}) # don't care about other str keys >>> data = schema.validate({'<id>': 10, ... '<file>': 'README.rst', ... '--verbose': True}) You can mark a key as optional as follows: .. code:: python >>> from schema import Optional >>> Schema({'name': str, ... Optional('occupation'): str}).validate({'name': 'Sam'}) {'name': 'Sam'} ``Optional`` keys can also carry a ``default``, to be used when no key in the data matches: .. code:: python >>> from schema import Optional >>> Schema({Optional('color', default='blue'): str, ... str: str}).validate({'texture': 'furry'} ... ) == {'color': 'blue', 'texture': 'furry'} True Defaults are used verbatim, not passed through any validators specified in the value. default can also be a callable: .. code:: python >>> from schema import Schema, Optional >>> Schema({Optional('data', default=dict): {}}).validate({}) == {'data': {}} True Also, a caveat: If you specify types, **schema** won't validate the empty dict: .. code:: python >>> Schema({int:int}).is_valid({}) False To do that, you need ``Schema(Or({int:int}, {}))``. This is unlike what happens with lists, where ``Schema([int]).is_valid([])`` will return True. **schema** has classes ``And`` and ``Or`` that help validating several schemas for the same data: .. code:: python >>> from schema import And, Or >>> Schema({'age': And(int, lambda n: 0 < n < 99)}).validate({'age': 7}) {'age': 7} >>> Schema({'password': And(str, lambda s: len(s) > 6)}).validate({'password': 'hai'}) Traceback (most recent call last): ... schema.SchemaError: Key 'password' error: <lambda>('hai') should evaluate to True >>> Schema(And(Or(int, float), lambda x: x > 0)).validate(3.1415) 3.1415 In a dictionary, you can also combine two keys in a "one or the other" manner. To do so, use the `Or` class as a key: .. code:: python >>> from schema import Or, Schema >>> schema = Schema({ ... Or("key1", "key2", only_one=True): str ... }) >>> schema.validate({"key1": "test"}) # Ok {'key1': 'test'} >>> schema.validate({"key1": "test", "key2": "test"}) # SchemaError Traceback (most recent call last): ... schema.SchemaOnlyOneAllowedError: There are multiple keys present from the Or('key1', 'key2') condition Hooks ~~~~~~~~~~ You can define hooks which are functions that are executed whenever a valid key:value is found. The `Forbidden` class is an example of this. You can mark a key as forbidden as follows: .. code:: python >>> from schema import Forbidden >>> Schema({Forbidden('age'): object}).validate({'age': 50}) Traceback (most recent call last): ... schema.SchemaForbiddenKeyError: Forbidden key encountered: 'age' in {'age': 50} A few things are worth noting. First, the value paired with the forbidden key determines whether it will be rejected: .. code:: python >>> Schema({Forbidden('age'): str, 'age': int}).validate({'age': 50}) {'age': 50} Note: if we hadn't supplied the 'age' key here, the call would have failed too, but with SchemaWrongKeyError, not SchemaForbiddenKeyError. Second, Forbidden has a higher priority than standard keys, and consequently than Optional. This means we can do that: .. code:: python >>> Schema({Forbidden('age'): object, Optional(str): object}).validate({'age': 50}) Traceback (most recent call last): ... schema.SchemaForbiddenKeyError: Forbidden key encountered: 'age' in {'age': 50} You can also define your own hooks. The following hook will call `_my_function` if `key` is encountered. .. code:: python from schema import Hook def _my_function(key, scope, error): print(key, scope, error) Hook("key", handler=_my_function) Here's an example where a `Deprecated` class is added to log warnings whenever a key is encountered: .. code:: python from schema import Hook, Schema class Deprecated(Hook): def __init__(self, *args, **kwargs): kwargs["handler"] = lambda key, *args: logging.warn(f"`{key}` is deprecated. " + (self._error or "")) super(Deprecated, self).__init__(*args, **kwargs) Schema({Deprecated("test", "custom error message."): object}, ignore_extra_keys=True).validate({"test": "value"}) ... WARNING: `test` is deprecated. custom error message. Extra Keys ~~~~~~~~~~ The ``Schema(...)`` parameter ``ignore_extra_keys`` causes validation to ignore extra keys in a dictionary, and also to not return them after validating. .. code:: python >>> schema = Schema({'name': str}, ignore_extra_keys=True) >>> schema.validate({'name': 'Sam', 'age': '42'}) {'name': 'Sam'} If you would like any extra keys returned, use ``object: object`` as one of the key/value pairs, which will match any key and any value. Otherwise, extra keys will raise a ``SchemaError``. Customized Validation ~~~~~~~~~~~~~~~~~~~~~~~ The ``Schema.validate`` method accepts additional keyword arguments. The keyword arguments will be propagated to the ``validate`` method of any child validatables (including any ad-hoc ``Schema`` objects), or the default value callable (if a callable is specified) for ``Optional`` keys. This feature can be used together with inheritance of the ``Schema`` class for customized validation. Here is an example where a "post-validation" hook that runs after validation against a sub-schema in a larger schema: .. code:: python class EventSchema(schema.Schema): def validate(self, data, _is_event_schema=True): data = super(EventSchema, self).validate(data, _is_event_schema=False) if _is_event_schema and data.get("minimum", None) is None: data["minimum"] = data["capacity"] return data events_schema = schema.Schema( { str: EventSchema({ "capacity": int, schema.Optional("minimum"): int, # default to capacity }) } ) data = {'event1': {'capacity': 1}, 'event2': {'capacity': 2, 'minimum': 3}} events = events_schema.validate(data) assert events['event1']['minimum'] == 1 # == capacity assert events['event2']['minimum'] == 3 Note that the additional keyword argument ``_is_event_schema`` is necessary to limit the customized behavior to the ``EventSchema`` object itself so that it won't affect any recursive invoke of the ``self.__class__.validate`` for the child schemas (e.g., the call to ``Schema("capacity").validate("capacity")``). User-friendly error reporting ------------------------------------------------------------------------------- You can pass a keyword argument ``error`` to any of validatable classes (such as ``Schema``, ``And``, ``Or``, ``Regex``, ``Use``) to report this error instead of a built-in one. .. code:: python >>> Schema(Use(int, error='Invalid year')).validate('XVII') Traceback (most recent call last): ... schema.SchemaError: Invalid year You can see all errors that occurred by accessing exception's ``exc.autos`` for auto-generated error messages, and ``exc.errors`` for errors which had ``error`` text passed to them. You can exit with ``sys.exit(exc.code)`` if you want to show the messages to the user without traceback. ``error`` messages are given precedence in that case. A JSON API example ------------------------------------------------------------------------------- Here is a quick example: validation of `create a gist <http://developer.github.com/v3/gists/>`_ request from github API. .. code:: python >>> gist = '''{"description": "the description for this gist", ... "public": true, ... "files": { ... "file1.txt": {"content": "String file contents"}, ... "other.txt": {"content": "Another file contents"}}}''' >>> from schema import Schema, And, Use, Optional >>> import json >>> gist_schema = Schema(And(Use(json.loads), # first convert from JSON ... # use str since json returns unicode ... {Optional('description'): str, ... 'public': bool, ... 'files': {str: {'content': str}}})) >>> gist = gist_schema.validate(gist) # gist: {u'description': u'the description for this gist', u'files': {u'file1.txt': {u'content': u'String file contents'}, u'other.txt': {u'content': u'Another file contents'}}, u'public': True} Using **schema** with `docopt <http://github.com/docopt/docopt>`_ ------------------------------------------------------------------------------- Assume you are using **docopt** with the following usage-pattern: Usage: my_program.py [--count=N] <path> <files>... and you would like to validate that ``<files>`` are readable, and that ``<path>`` exists, and that ``--count`` is either integer from 0 to 5, or ``None``. Assuming **docopt** returns the following dict: .. code:: python >>> args = {'<files>': ['LICENSE-MIT', 'setup.py'], ... '<path>': '../', ... '--count': '3'} this is how you validate it using ``schema``: .. code:: python >>> from schema import Schema, And, Or, Use >>> import os >>> s = Schema({'<files>': [Use(open)], ... '<path>': os.path.exists, ... '--count': Or(None, And(Use(int), lambda n: 0 < n < 5))}) >>> args = s.validate(args) >>> args['<files>'] [<_io.TextIOWrapper name='LICENSE-MIT' ...>, <_io.TextIOWrapper name='setup.py' ...] >>> args['<path>'] '../' >>> args['--count'] 3 As you can see, **schema** validated data successfully, opened files and converted ``'3'`` to ``int``. JSON schema ----------- You can also generate standard `draft-07 JSON schema <https://json-schema.org/>`_ from a dict ``Schema``. This can be used to add word completion, validation, and documentation directly in code editors. The output schema can also be used with JSON schema compatible libraries. JSON: Generating ~~~~~~~~~~~~~~~~ Just define your schema normally and call ``.json_schema()`` on it. The output is a Python dict, you need to dump it to JSON. .. code:: python >>> from schema import Optional, Schema >>> import json >>> s = Schema({"test": str, ... "nested": {Optional("other"): str} ... }) >>> json_schema = json.dumps(s.json_schema("https://example.com/my-schema.json")) # json_schema { "type":"object", "properties": { "test": {"type": "string"}, "nested": { "type":"object", "properties": { "other": {"type": "string"} }, "required": [], "additionalProperties": false } }, "required":[ "test", "nested" ], "additionalProperties":false, "$id":"https://example.com/my-schema.json", "$schema":"http://json-schema.org/draft-07/schema#" } You can add descriptions for the schema elements using the ``Literal`` object instead of a string. The main schema can also have a description. These will appear in IDEs to help your users write a configuration. .. code:: python >>> from schema import Literal, Schema >>> import json >>> s = Schema({Literal("project_name", description="Names must be unique"): str}, description="Project schema") >>> json_schema = json.dumps(s.json_schema("https://example.com/my-schema.json"), indent=4) # json_schema { "type": "object", "properties": { "project_name": { "description": "Names must be unique", "type": "string" } }, "required": [ "project_name" ], "additionalProperties": false, "$id": "https://example.com/my-schema.json", "$schema": "http://json-schema.org/draft-07/schema#", "description": "Project schema" } JSON: Supported validations ~~~~~~~~~~~~~~~~~~~~~~~~~~~ The resulting JSON schema is not guaranteed to accept the same objects as the library would accept, since some validations are not implemented or have no JSON schema equivalent. This is the case of the ``Use`` and ``Hook`` objects for example. Implemented ''''''''''' `Object properties <https://json-schema.org/understanding-json-schema/reference/object.html#properties>`_ Use a dict literal. The dict keys are the JSON schema properties. Example: ``Schema({"test": str})`` becomes ``{'type': 'object', 'properties': {'test': {'type': 'string'}}, 'required': ['test'], 'additionalProperties': False}``. Please note that attributes are required by default. To create optional attributes use ``Optional``, like so: ``Schema({Optional("test"): str})`` becomes ``{'type': 'object', 'properties': {'test': {'type': 'string'}}, 'required': [], 'additionalProperties': False}`` additionalProperties is set to true when at least one of the conditions is met: - ignore_extra_keys is True - at least one key is `str` or `object` For example: ``Schema({str: str})`` and ``Schema({}, ignore_extra_keys=True)`` both becomes ``{'type': 'object', 'properties' : {}, 'required': [], 'additionalProperties': True}`` and ``Schema({})`` becomes ``{'type': 'object', 'properties' : {}, 'required': [], 'additionalProperties': False}`` Types Use the Python type name directly. It will be converted to the JSON name: - ``str`` -> `string <https://json-schema.org/understanding-json-schema/reference/string.html>`_ - ``int`` -> `integer <https://json-schema.org/understanding-json-schema/reference/numeric.html#integer>`_ - ``float`` -> `number <https://json-schema.org/understanding-json-schema/reference/numeric.html#number>`_ - ``bool`` -> `boolean <https://json-schema.org/understanding-json-schema/reference/boolean.html>`_ - ``list`` -> `array <https://json-schema.org/understanding-json-schema/reference/array.html>`_ - ``dict`` -> `object <https://json-schema.org/understanding-json-schema/reference/object.html>`_ Example: ``Schema(float)`` becomes ``{"type": "number"}`` `Array items <https://json-schema.org/understanding-json-schema/reference/array.html#items>`_ Surround a schema with ``[]``. Example: ``Schema([str])`` means an array of string and becomes: ``{'type': 'array', 'items': {'type': 'string'}}`` `Enumerated values <https://json-schema.org/understanding-json-schema/reference/generic.html#enumerated-values>`_ Use `Or`. Example: ``Schema(Or(1, 2, 3))`` becomes ``{"enum": [1, 2, 3]}`` `Constant values <https://json-schema.org/understanding-json-schema/reference/generic.html#constant-values>`_ Use the value itself. Example: ``Schema("name")`` becomes ``{"const": "name"}`` `Regular expressions <https://json-schema.org/understanding-json-schema/reference/regular_expressions.html>`_ Use ``Regex``. Example: ``Schema(Regex("^v\d+"))`` becomes ``{'type': 'string', 'pattern': '^v\\d+'}`` `Annotations (title and description) <https://json-schema.org/understanding-json-schema/reference/generic.html#annotations>`_ You can use the ``name`` and ``description`` parameters of the ``Schema`` object init method. To add description to keys, replace a str with a ``Literal`` object. Example: ``Schema({Literal("test", description="A description"): str})`` is equivalent to ``Schema({"test": str})`` with the description added to the resulting JSON schema. `Combining schemas with allOf <https://json-schema.org/understanding-json-schema/reference/combining.html#allof>`_ Use ``And`` Example: ``Schema(And(str, "value"))`` becomes ``{"allOf": [{"type": "string"}, {"const": "value"}]}`` Note that this example is not really useful in the real world, since ``const`` already implies the type. `Combining schemas with anyOf <https://json-schema.org/understanding-json-schema/reference/combining.html#anyof>`_ Use ``Or`` Example: ``Schema(Or(str, int))`` becomes ``{"anyOf": [{"type": "string"}, {"type": "integer"}]}`` Not implemented ''''''''''''''' The following JSON schema validations cannot be generated from this library. - `String length <https://json-schema.org/understanding-json-schema/reference/string.html#length>`_ However, those can be implemented using ``Regex`` - `String format <https://json-schema.org/understanding-json-schema/reference/string.html#format>`_ However, those can be implemented using ``Regex`` - `Object dependencies <https://json-schema.org/understanding-json-schema/reference/object.html#dependencies>`_ - `Array length <https://json-schema.org/understanding-json-schema/reference/array.html#length>`_ - `Array uniqueness <https://json-schema.org/understanding-json-schema/reference/array.html#uniqueness>`_ - `Numeric multiples <https://json-schema.org/understanding-json-schema/reference/numeric.html#multiples>`_ - `Numeric ranges <https://json-schema.org/understanding-json-schema/reference/numeric.html#range>`_ - `Property Names <https://json-schema.org/understanding-json-schema/reference/object.html#property-names>`_ Not implemented. We suggest listing the possible keys instead. As a tip, you can use ``Or`` as a dict key. Example: ``Schema({Or("name1", "name2"): str})`` - `Annotations (default and examples) <https://json-schema.org/understanding-json-schema/reference/generic.html#annotations>`_ - `Combining schemas with oneOf <https://json-schema.org/understanding-json-schema/reference/combining.html#oneof>`_ - `Not <https://json-schema.org/understanding-json-schema/reference/combining.html#not>`_ - `Object size <https://json-schema.org/understanding-json-schema/reference/object.html#size>`_ - `additionalProperties having a different schema (true and false is supported)` JSON: Minimizing output size ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Explicit Reuse '''''''''''''' If your JSON schema is big and has a lot of repetition, it can be made simpler and smaller by defining Schema objects as reference. These references will be placed in a "definitions" section in the main schema. `You can look at the JSON schema documentation for more information <https://json-schema.org/understanding-json-schema/structuring.html#reuse>`_ .. code:: python >>> from schema import Optional, Schema >>> import json >>> s = Schema({"test": str, ... "nested": Schema({Optional("other"): str}, name="nested", as_reference=True) ... }) >>> json_schema = json.dumps(s.json_schema("https://example.com/my-schema.json"), indent=4) # json_schema { "type": "object", "properties": { "test": { "type": "string" }, "nested": { "$ref": "#/definitions/nested" } }, "required": [ "test", "nested" ], "additionalProperties": false, "$id": "https://example.com/my-schema.json", "$schema": "http://json-schema.org/draft-07/schema#", "definitions": { "nested": { "type": "object", "properties": { "other": { "type": "string" } }, "required": [], "additionalProperties": false } } } This becomes really useful when using the same object several times .. code:: python >>> from schema import Optional, Or, Schema >>> import json >>> language_configuration = Schema({"autocomplete": bool, "stop_words": [str]}, name="language", as_reference=True) >>> s = Schema({Or("ar", "cs", "de", "el", "eu", "en", "es", "fr"): language_configuration}) >>> json_schema = json.dumps(s.json_schema("https://example.com/my-schema.json"), indent=4) # json_schema { "type": "object", "properties": { "ar": { "$ref": "#/definitions/language" }, "cs": { "$ref": "#/definitions/language" }, "de": { "$ref": "#/definitions/language" }, "el": { "$ref": "#/definitions/language" }, "eu": { "$ref": "#/definitions/language" }, "en": { "$ref": "#/definitions/language" }, "es": { "$ref": "#/definitions/language" }, "fr": { "$ref": "#/definitions/language" } }, "required": [], "additionalProperties": false, "$id": "https://example.com/my-schema.json", "$schema": "http://json-schema.org/draft-07/schema#", "definitions": { "language": { "type": "object", "properties": { "autocomplete": { "type": "boolean" }, "stop_words": { "type": "array", "items": { "type": "string" } } }, "required": [ "autocomplete", "stop_words" ], "additionalProperties": false } } } Automatic reuse ''''''''''''''' If you want to minimize the output size without using names explicitly, you can have the library generate hashes of parts of the output JSON schema and use them as references throughout. Enable this behaviour by providing the parameter ``use_refs`` to the json_schema method. Be aware that this method is less often compatible with IDEs and JSON schema libraries. It produces a JSON schema that is more difficult to read by humans. .. code:: python >>> from schema import Optional, Or, Schema >>> import json >>> language_configuration = Schema({"autocomplete": bool, "stop_words": [str]}) >>> s = Schema({Or("ar", "cs", "de", "el", "eu", "en", "es", "fr"): language_configuration}) >>> json_schema = json.dumps(s.json_schema("https://example.com/my-schema.json", use_refs=True), indent=4) # json_schema { "type": "object", "properties": { "ar": { "type": "object", "properties": { "autocomplete": { "type": "boolean", "$id": "#6456104181059880193" }, "stop_words": { "type": "array", "items": { "type": "string", "$id": "#1856069563381977338" } } }, "required": [ "autocomplete", "stop_words" ], "additionalProperties": false }, "cs": { "type": "object", "properties": { "autocomplete": { "$ref": "#6456104181059880193" }, "stop_words": { "type": "array", "items": { "$ref": "#1856069563381977338" }, "$id": "#-5377945144312515805" } }, "required": [ "autocomplete", "stop_words" ], "additionalProperties": false }, "de": { "type": "object", "properties": { "autocomplete": { "$ref": "#6456104181059880193" }, "stop_words": { "$ref": "#-5377945144312515805" } }, "required": [ "autocomplete", "stop_words" ], "additionalProperties": false, "$id": "#-8142886105174600858" }, "el": { "$ref": "#-8142886105174600858" }, "eu": { "$ref": "#-8142886105174600858" }, "en": { "$ref": "#-8142886105174600858" }, "es": { "$ref": "#-8142886105174600858" }, "fr": { "$ref": "#-8142886105174600858" } }, "required": [], "additionalProperties": false, "$id": "https://example.com/my-schema.json", "$schema": "http://json-schema.org/draft-07/schema#" }
0.928547
0.667039
# Changelog ## v0.7.4 (2021-02-01) ### Fixes * Don't double-format errors. fixes #240 (#247) [Leif Ryge] * Fix "Unknown format code" in Python 3.8 (#245) [Denis Blanchette] * JSON Schema: Allow using $ref when schema is not a dict (#244) [Denis Blanchette] * JSON Schema: Set additionalProperties true when dict contains str as key (#243) [Denis Blanchette] ## v0.7.3 (2020-07-31) ### Fixes * JSON Schema: Support schemas where the root is not a dict. [Stavros Korokithakis] * Do not drop previous errors within an Or criterion. [Stavros Korokithakis] ## v0.7.1 (2019-09-09) ### Features * JSON Schema: Include default values. [Stavros Korokithakis] * JSON schema with common definitions + Update README. [Stavros Korokithakis] * Add references to JSON schema rendering. [Stavros Korokithakis] * Add the "Literal" type for JSONSchema. [Stavros Korokithakis] * Improve JSON schema generation (#206) [Denis Blanchette] ### Fixes * JSON Schema: Fix allOf and oneOf with only one condition. [Stavros Korokithakis] * Fix readme code block typo. [Stavros Korokithakis] * JSON Schema: Don't add a description in a ref. [Stavros Korokithakis] * JSON Schema: Fix using `dict` as type. [Stavros Korokithakis] * Fix using Literal in enum in JSON Schema. [Stavros Korokithakis] ## v0.7.0 (2019-02-25) ### Features * Add Hook class. Allows to introduce custom handlers (#175) [Julien Duchesne] ### Fixes * Add pre-commit to CI (#187) [Stavros Korokithakis] * Use correct singular/plural form of “key(s)” in error messages (#184) [Joel Rosdahl] * When ignoring extra keys, Or's only_one should still be handled (#181) [Julien Duchesne] * Fix Or reset() when Or is Optional (#178) [Julien Duchesne] * Don't accept boolens as instances of ints (#176) [Brandon Skari] * Remove assert statements (#170) [Ryan Morshead] ## v0.6.8 (2018-06-14) ### Features * Add an is_valid method to the schema (as in #134) (#150) [Shailyn Ortiz] ### Fixes * Fix typo in schema.py: vaidated->validated (#151) [drootnar] * Fix callable check under PyPy2 (#149) [cfs-pure] ## v0.6.6 (2017-04-26) ### Fixes * Schema can be inherited (#127) [Hiroyuki Ishii] * Show a key error if a dict error happens. [Stavros Korokithakis] ## v0.6.4 (2016-09-19) ### Fixes * Revert the optional error commit. [Stavros Korokithakis] ## v0.6.3 (2016-09-19) ### Fixes * Sort missing keys. [Stavros Korokithakis] ## v0.6.2 (2016-07-27) ### Fixes * Add SchemaError SubClasses: SchemaWrongKey, SchemaMissingKeyError (#111) [Stavros Korokithakis] ## v0.6.1 (2016-07-27) ### Fixes * Handle None as the error message properly. [Stavros Korokithakis] ## v0.6.0 (2016-07-18) ### Features * Add the "Regex" class. [Stavros Korokithakis]
schema
/schema-0.7.5.tar.gz/schema-0.7.5/CHANGELOG.md
CHANGELOG.md
# Changelog ## v0.7.4 (2021-02-01) ### Fixes * Don't double-format errors. fixes #240 (#247) [Leif Ryge] * Fix "Unknown format code" in Python 3.8 (#245) [Denis Blanchette] * JSON Schema: Allow using $ref when schema is not a dict (#244) [Denis Blanchette] * JSON Schema: Set additionalProperties true when dict contains str as key (#243) [Denis Blanchette] ## v0.7.3 (2020-07-31) ### Fixes * JSON Schema: Support schemas where the root is not a dict. [Stavros Korokithakis] * Do not drop previous errors within an Or criterion. [Stavros Korokithakis] ## v0.7.1 (2019-09-09) ### Features * JSON Schema: Include default values. [Stavros Korokithakis] * JSON schema with common definitions + Update README. [Stavros Korokithakis] * Add references to JSON schema rendering. [Stavros Korokithakis] * Add the "Literal" type for JSONSchema. [Stavros Korokithakis] * Improve JSON schema generation (#206) [Denis Blanchette] ### Fixes * JSON Schema: Fix allOf and oneOf with only one condition. [Stavros Korokithakis] * Fix readme code block typo. [Stavros Korokithakis] * JSON Schema: Don't add a description in a ref. [Stavros Korokithakis] * JSON Schema: Fix using `dict` as type. [Stavros Korokithakis] * Fix using Literal in enum in JSON Schema. [Stavros Korokithakis] ## v0.7.0 (2019-02-25) ### Features * Add Hook class. Allows to introduce custom handlers (#175) [Julien Duchesne] ### Fixes * Add pre-commit to CI (#187) [Stavros Korokithakis] * Use correct singular/plural form of “key(s)” in error messages (#184) [Joel Rosdahl] * When ignoring extra keys, Or's only_one should still be handled (#181) [Julien Duchesne] * Fix Or reset() when Or is Optional (#178) [Julien Duchesne] * Don't accept boolens as instances of ints (#176) [Brandon Skari] * Remove assert statements (#170) [Ryan Morshead] ## v0.6.8 (2018-06-14) ### Features * Add an is_valid method to the schema (as in #134) (#150) [Shailyn Ortiz] ### Fixes * Fix typo in schema.py: vaidated->validated (#151) [drootnar] * Fix callable check under PyPy2 (#149) [cfs-pure] ## v0.6.6 (2017-04-26) ### Fixes * Schema can be inherited (#127) [Hiroyuki Ishii] * Show a key error if a dict error happens. [Stavros Korokithakis] ## v0.6.4 (2016-09-19) ### Fixes * Revert the optional error commit. [Stavros Korokithakis] ## v0.6.3 (2016-09-19) ### Fixes * Sort missing keys. [Stavros Korokithakis] ## v0.6.2 (2016-07-27) ### Fixes * Add SchemaError SubClasses: SchemaWrongKey, SchemaMissingKeyError (#111) [Stavros Korokithakis] ## v0.6.1 (2016-07-27) ### Fixes * Handle None as the error message properly. [Stavros Korokithakis] ## v0.6.0 (2016-07-18) ### Features * Add the "Regex" class. [Stavros Korokithakis]
0.735262
0.583559
`schema2rst` generates reST doc from database schema Features ======== Generates table definitions document from database schema. `schema2rst` recognizes your database comments on tables and columns, and reflect it to docs. Setup ===== Use easy_install (or pip): $ sudo easy_install schema2rst Configuration ============= Make config.yaml to connect your database server. This is example for MySQL Server:: type: mysql db: sample host: localhost user: username passwd: passw0rd `type` parameter is accept these values: mysql, mysql+pymysql, postgresql Usage ===== Execute schema2rst command:: $ schema2rst -c config.yaml -o database.rst Examples ======== You can see example at http://tk0miya.bitbucket.org/schema2rst/build/html/ . Requirements ============ * Python 2.6, 2.7, 3.2, 3.3 * SQLAlchemy * PyYAML * Six * pymysql or MySQL-python (optional) * psycopg2 (optional) License ======= Apache License 2.0
schema2rst
/schema2rst-0.9.0.tar.gz/schema2rst-0.9.0/README.rst
README.rst
`schema2rst` generates reST doc from database schema Features ======== Generates table definitions document from database schema. `schema2rst` recognizes your database comments on tables and columns, and reflect it to docs. Setup ===== Use easy_install (or pip): $ sudo easy_install schema2rst Configuration ============= Make config.yaml to connect your database server. This is example for MySQL Server:: type: mysql db: sample host: localhost user: username passwd: passw0rd `type` parameter is accept these values: mysql, mysql+pymysql, postgresql Usage ===== Execute schema2rst command:: $ schema2rst -c config.yaml -o database.rst Examples ======== You can see example at http://tk0miya.bitbucket.org/schema2rst/build/html/ . Requirements ============ * Python 2.6, 2.7, 3.2, 3.3 * SQLAlchemy * PyYAML * Six * pymysql or MySQL-python (optional) * psycopg2 (optional) License ======= Apache License 2.0
0.613352
0.400749
=================== JSON-Schema builder =================== Helpers to build you define JSON schema for either validation or publication. Requirements ============ It requires Python 2.7 and ``jsonschema``. ``jsonschema`` or ``setuptools`` should be installed with Python. Install ======= Using pip:: pip install schemabuilder Or easy_install:: easty_install schemabuilder You may install it manually:: git clone https://github.com/dinoboff/schemabuilder.git cd schemabuilder python setup.py install Usage ===== Primitives ---------- JSON schema primitives are represented by object of type: * ``schemabuilder.Str`` * ``schemabuilder.Bool`` * ``schemabuilder.Number`` * ``schemabuilder.Int`` * ``schemabuilder.Object`` * ``schemabuilder.Array`` .. code-block:: python >>> import schemabuilder as jsb >>> import pprint >>> >>> name = jsb.Str(pattern="^[a-zA-Z][- 'a-zA-Z0-9]+") >>> email = jsb.Str(format="email") >>> user = jsb.Object(properties={ ... 'name': name(required=True), ... 'email': email(), ... 'home': jsb.Str(format='uri'), ... }) >>> pprint.pprint(user.to_dict()) {'properties': {'email': {'type': 'string'}, 'home': {'format': 'uri', 'type': 'string'}, 'name': {'type': 'string'}}, 'required': ['name'], 'type': 'object'} Schema ------ Schema collects those definitions for validation (using ``jsonschema``) or publication. .. code-block:: python >>> import schemabuilder as jsb >>> import pprint >>> >>> my_schemas = jsb.Schema(id='http://example.com/schemas.json#') >>> name = my_schemas.define( ... 'name', jsb.Str(pattern="^[a-zA-Z][- 'a-zA-Z0-9]+") ... ) >>> email = my_schemas.define('email', jsb.Str(format="email")) >>> user = my_schemas.define('user', jsb.Object(properties={ ... 'name': name(required=True), ... 'email': email(required=True), ... })) >>> >>> user.validate({'name': 'bob'}) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "schemabuilder/schema.py", line 50, in validate validator.validate(data) File "/Users/bob/pyenv/lib/python2.7/site-packages/jsonschema/validators.py", line 117, in validate raise error jsonschema.exceptions.ValidationError: 'email' is a required property Failed validating 'required' in schema: {'properties': {'email': {'$ref': '#/definitions/email'}, 'name': {'$ref': '#/definitions/name'}}, 'required': ['name', 'email'], 'type': 'object'} On instance: {'name': 'bob'} >>> >>> user.validate({'name': 'bob', 'email': '[email protected]'}) >>> >>> import json >>> print json.dumps(my_schemas.to_dict(), indent=4) { "definitions": { "email": { "type": "string", "format": "email" }, "user": { "required": [ "name", "email" ], "type": "object", "properties": { "name": { "$ref": "#/definitions/name" }, "email": { "$ref": "#/definitions/email" } } }, "name": { "pattern": "^[a-zA-Z][- 'a-zA-Z0-9]+", "type": "string" } }, "id": "http://example.com/schemas.json#", "$schema": "http://json-schema.org/draft-04/schema#" }
schemabuilder
/schemabuilder-0.3.0.tar.gz/schemabuilder-0.3.0/README.rst
README.rst
=================== JSON-Schema builder =================== Helpers to build you define JSON schema for either validation or publication. Requirements ============ It requires Python 2.7 and ``jsonschema``. ``jsonschema`` or ``setuptools`` should be installed with Python. Install ======= Using pip:: pip install schemabuilder Or easy_install:: easty_install schemabuilder You may install it manually:: git clone https://github.com/dinoboff/schemabuilder.git cd schemabuilder python setup.py install Usage ===== Primitives ---------- JSON schema primitives are represented by object of type: * ``schemabuilder.Str`` * ``schemabuilder.Bool`` * ``schemabuilder.Number`` * ``schemabuilder.Int`` * ``schemabuilder.Object`` * ``schemabuilder.Array`` .. code-block:: python >>> import schemabuilder as jsb >>> import pprint >>> >>> name = jsb.Str(pattern="^[a-zA-Z][- 'a-zA-Z0-9]+") >>> email = jsb.Str(format="email") >>> user = jsb.Object(properties={ ... 'name': name(required=True), ... 'email': email(), ... 'home': jsb.Str(format='uri'), ... }) >>> pprint.pprint(user.to_dict()) {'properties': {'email': {'type': 'string'}, 'home': {'format': 'uri', 'type': 'string'}, 'name': {'type': 'string'}}, 'required': ['name'], 'type': 'object'} Schema ------ Schema collects those definitions for validation (using ``jsonschema``) or publication. .. code-block:: python >>> import schemabuilder as jsb >>> import pprint >>> >>> my_schemas = jsb.Schema(id='http://example.com/schemas.json#') >>> name = my_schemas.define( ... 'name', jsb.Str(pattern="^[a-zA-Z][- 'a-zA-Z0-9]+") ... ) >>> email = my_schemas.define('email', jsb.Str(format="email")) >>> user = my_schemas.define('user', jsb.Object(properties={ ... 'name': name(required=True), ... 'email': email(required=True), ... })) >>> >>> user.validate({'name': 'bob'}) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "schemabuilder/schema.py", line 50, in validate validator.validate(data) File "/Users/bob/pyenv/lib/python2.7/site-packages/jsonschema/validators.py", line 117, in validate raise error jsonschema.exceptions.ValidationError: 'email' is a required property Failed validating 'required' in schema: {'properties': {'email': {'$ref': '#/definitions/email'}, 'name': {'$ref': '#/definitions/name'}}, 'required': ['name', 'email'], 'type': 'object'} On instance: {'name': 'bob'} >>> >>> user.validate({'name': 'bob', 'email': '[email protected]'}) >>> >>> import json >>> print json.dumps(my_schemas.to_dict(), indent=4) { "definitions": { "email": { "type": "string", "format": "email" }, "user": { "required": [ "name", "email" ], "type": "object", "properties": { "name": { "$ref": "#/definitions/name" }, "email": { "$ref": "#/definitions/email" } } }, "name": { "pattern": "^[a-zA-Z][- 'a-zA-Z0-9]+", "type": "string" } }, "id": "http://example.com/schemas.json#", "$schema": "http://json-schema.org/draft-04/schema#" }
0.716516
0.213726
schemaconvertor =============== **schemaconvertor**\ 提供了一种使用schema来转换对象的方法,通过schema,可以指定该对象序列化的部分和对应的类型,其结果可以进一步序列化为json。 安装:\ ``pip install schemaconvertor`` 项目:\ `github <https://github.com/MrLYC/schemaconvertor>`__ `pypi <https://pypi.python.org/pypi/schemaconvertor/>`__ 版本:0.3 演示 ---- 假设有个简单的数据类型\ ``User``\ : .. code:: py from collections import namedtuple User = namedtuple("User", ["name", "password", "age"]) 可以通过指定schema来转换对象: .. code:: py schema = { "type": "object", "properties": { "name": { "type": "string" }, "age": { "type": "integer" } } } user = User(name="lyc", password="schemaconvertor", age="24") from schemaconvertor.convertor import convert_by_schema print convert_by_schema(user, schema) 输出: > {'age': 24, 'name': 'lyc'} 更多示例:\ `demo 0.3 <https://github.com/MrLYC/schemaconvertor/blob/master/schemaconvertor/tests/test_demo.py>`__ 说明 ---- 基本字段 ~~~~~~~~ version ^^^^^^^ **version**\ 字段标识着Schema版本。 description ^^^^^^^^^^^ **description**\ 字段标识着Schema说明。 encoding ^^^^^^^^ **encoding**\ 指定Schema的\ **string**\ 字段的字符编码,默认是\ *utf-8*\ 。 decoderrors ^^^^^^^^^^^ **decoderrors**\ 指定Schema的\ **string**\ 字段解码失败的操作,用于\ ``str.decode``\ 的第二个参数,主要有\ *strict*\ ,\ *ignore*\ ,\ *replace*\ 三种可选参数,默认是\ ``strict``\ 。 type ^^^^ **type**\ 字段指定对应待转换数据的最终类型,主要类型对应如下表: +-----------+-------------+ | type | Python | +===========+=============+ | string | unicode | +-----------+-------------+ | object | dict | +-----------+-------------+ | integer | int | +-----------+-------------+ | float | float | +-----------+-------------+ | number | int/float | +-----------+-------------+ | boolean | bool | +-----------+-------------+ | dict | dict | +-----------+-------------+ | array | list | +-----------+-------------+ | null | NoneType | +-----------+-------------+ | raw | object | +-----------+-------------+ **type**\ 字段直接影响转换行为,因此基本上每个Schema都需指定\ **type**\ ,为简化表达,当一个Schema仅有\ **type**\ 一项时,可以直接使用\ **type**\ 的值简化表示为Schema。 typeOf ^^^^^^ 当前仅在声明\ **typeOf**\ 字段时可以不指定\ **type**\ ,\ **typeOf**\ 指示如何根据数据的类型选择对应的Schema。可以使用真实的Python类型或类型元组作为key(作为\ ``isinstance``\ 的第二个参数)。 default ^^^^^^^ **default**\ 字段仅用在\ **typeOf**\ 字段内,用于指示缺省类型表示的Schema。 items ^^^^^ **items**\ 字段仅在\ **type**\ 为array时生效,用于描述序列中的每一项对应的Schema。 properties ^^^^^^^^^^ **items**\ 字段仅在\ **type**\ 为dict或object时生效,指定给出的项的Schema(没有指定的项不会处理)。 patternProperties ^^^^^^^^^^^^^^^^^ **items**\ 字段仅在\ **type**\ 为dict或object时生效,指定符合给定的正则表达式的项的Schema(使用\ ``re.search``\ 匹配)。 附加信息 ~~~~~~~~ 1. Schema使用lazy compile方式,仅在转换使用时自动编译,初始化代价极小。 2. 子Schema中如无显式声明,\ *version*\ ,\ *description*\ ,\ *encoding*\ ,\ *decoderrors*\ 自动继承父Schema对应的值。 3. **typeOf**\ 能够识别继承关系,但针对使用数据真实类型的情况有优化。 4. **typeOf**\ 指定多种类型时不要使用\ ``list``\ 等非hashable类型。 5. 对于\ *object*\ 的情况是使用\ ``ObjAsDictAdapter``\ 将数据包装成类\ ``dict``\ 对象进行转换的。
schemaconvertor
/schemaconvertor-0.3.1.0.tar.gz/schemaconvertor-0.3.1.0/README.rst
README.rst
schemaconvertor =============== **schemaconvertor**\ 提供了一种使用schema来转换对象的方法,通过schema,可以指定该对象序列化的部分和对应的类型,其结果可以进一步序列化为json。 安装:\ ``pip install schemaconvertor`` 项目:\ `github <https://github.com/MrLYC/schemaconvertor>`__ `pypi <https://pypi.python.org/pypi/schemaconvertor/>`__ 版本:0.3 演示 ---- 假设有个简单的数据类型\ ``User``\ : .. code:: py from collections import namedtuple User = namedtuple("User", ["name", "password", "age"]) 可以通过指定schema来转换对象: .. code:: py schema = { "type": "object", "properties": { "name": { "type": "string" }, "age": { "type": "integer" } } } user = User(name="lyc", password="schemaconvertor", age="24") from schemaconvertor.convertor import convert_by_schema print convert_by_schema(user, schema) 输出: > {'age': 24, 'name': 'lyc'} 更多示例:\ `demo 0.3 <https://github.com/MrLYC/schemaconvertor/blob/master/schemaconvertor/tests/test_demo.py>`__ 说明 ---- 基本字段 ~~~~~~~~ version ^^^^^^^ **version**\ 字段标识着Schema版本。 description ^^^^^^^^^^^ **description**\ 字段标识着Schema说明。 encoding ^^^^^^^^ **encoding**\ 指定Schema的\ **string**\ 字段的字符编码,默认是\ *utf-8*\ 。 decoderrors ^^^^^^^^^^^ **decoderrors**\ 指定Schema的\ **string**\ 字段解码失败的操作,用于\ ``str.decode``\ 的第二个参数,主要有\ *strict*\ ,\ *ignore*\ ,\ *replace*\ 三种可选参数,默认是\ ``strict``\ 。 type ^^^^ **type**\ 字段指定对应待转换数据的最终类型,主要类型对应如下表: +-----------+-------------+ | type | Python | +===========+=============+ | string | unicode | +-----------+-------------+ | object | dict | +-----------+-------------+ | integer | int | +-----------+-------------+ | float | float | +-----------+-------------+ | number | int/float | +-----------+-------------+ | boolean | bool | +-----------+-------------+ | dict | dict | +-----------+-------------+ | array | list | +-----------+-------------+ | null | NoneType | +-----------+-------------+ | raw | object | +-----------+-------------+ **type**\ 字段直接影响转换行为,因此基本上每个Schema都需指定\ **type**\ ,为简化表达,当一个Schema仅有\ **type**\ 一项时,可以直接使用\ **type**\ 的值简化表示为Schema。 typeOf ^^^^^^ 当前仅在声明\ **typeOf**\ 字段时可以不指定\ **type**\ ,\ **typeOf**\ 指示如何根据数据的类型选择对应的Schema。可以使用真实的Python类型或类型元组作为key(作为\ ``isinstance``\ 的第二个参数)。 default ^^^^^^^ **default**\ 字段仅用在\ **typeOf**\ 字段内,用于指示缺省类型表示的Schema。 items ^^^^^ **items**\ 字段仅在\ **type**\ 为array时生效,用于描述序列中的每一项对应的Schema。 properties ^^^^^^^^^^ **items**\ 字段仅在\ **type**\ 为dict或object时生效,指定给出的项的Schema(没有指定的项不会处理)。 patternProperties ^^^^^^^^^^^^^^^^^ **items**\ 字段仅在\ **type**\ 为dict或object时生效,指定符合给定的正则表达式的项的Schema(使用\ ``re.search``\ 匹配)。 附加信息 ~~~~~~~~ 1. Schema使用lazy compile方式,仅在转换使用时自动编译,初始化代价极小。 2. 子Schema中如无显式声明,\ *version*\ ,\ *description*\ ,\ *encoding*\ ,\ *decoderrors*\ 自动继承父Schema对应的值。 3. **typeOf**\ 能够识别继承关系,但针对使用数据真实类型的情况有优化。 4. **typeOf**\ 指定多种类型时不要使用\ ``list``\ 等非hashable类型。 5. 对于\ *object*\ 的情况是使用\ ``ObjAsDictAdapter``\ 将数据包装成类\ ``dict``\ 对象进行转换的。
0.551091
0.55658
.. image:: https://img.shields.io/pypi/v/schemadict.svg?style=flat :target: https://pypi.org/project/schemadict/ :alt: Latest PyPI version .. image:: https://readthedocs.org/projects/schemadict/badge/?version=latest :target: https://schemadict.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status .. image:: https://img.shields.io/badge/license-Apache%202-blue.svg :target: https://github.com/airinnova/schemadict/blob/master/LICENSE.txt :alt: License .. image:: https://travis-ci.org/airinnova/schemadict.svg?branch=master :target: https://travis-ci.org/airinnova/schemadict :alt: Build status .. image:: https://codecov.io/gh/airinnova/schemadict/branch/master/graph/badge.svg :target: https://codecov.io/gh/airinnova/schemadict :alt: Coverage | .. image:: https://raw.githubusercontent.com/airinnova/schemadict/master/docs/source/_static/images/logo.png :target: https://github.com/airinnova/schemadict/ :alt: logo A *schemadict* is a regular Python dictionary which specifies the type and format of values for some given key. To check if a test dictionary is conform with the expected schema, *schemadict* provides the `validate()` method. If the test dictionary is ill-defined, an error will be thrown, otherwise `None` is returned. Examples ======== **Basic usage** .. code:: python >>> from schemadict import schemadict >>> schema = schemadict({ ... 'name': { ... 'type': str, ... 'min_len': 3, ... 'max_len': 12, ... }, ... 'age': { ... 'type': int, ... '>=': 0, ... '<': 150, ... }, ... }) >>> >>> testdict = {'name': 'Neil', 'age': 55} >>> schema.validate(testdict) >>> >>> testdict = {'name': 'Neil', 'age': -12} >>> schema.validate(testdict) Traceback (most recent call last): ... ValueError: 'age' too small: expected >= 0, but was -12 >>> >>> testdict = {'name': 'Neil', 'age': '55'} >>> schema.validate(testdict) Traceback (most recent call last): ... TypeError: unexpected type for 'age': expected <class 'int'>, but was <class 'str'> >>> **Nested schemadict** It is possible to check individual item in a list. For instance, in the following example we check if each item (of type ``str``) looks like a valid IPv4 address. How each item should look like can be specified with the ``item_schema`` keyword. .. code:: python >>> schema = schemadict({ ... 'ip_addrs': { ... 'type': list, ... 'item_schema': { ... 'type': str, ... 'regex': r'^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}$', ... }, ... }, ... }) >>> >>> >>> schema.validate({'ip_addrs': ['127.0.0.1', '192.168.1.1']}) # Valid >>> schema.validate({'ip_addrs': ['127.0.0.1', '192.168.1.1', '1234.5678']}) # Last item invalid Traceback (most recent call last): ... ValueError: regex mismatch for 'ip_addrs': expected pattern '^\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}$', got '1234.5678' >>> Items in a ``list`` (or ``tuple``) may themselves be dictionaries which can be described with *schemadicts*. In this case, we use the keyword ``item_schemadict`` as illustrated in the following example. .. code:: python >>> schema_city = schemadict({ ... 'name': { ... 'type': str ... }, ... 'population': { ... 'type': int, ... '>=': 0, ... }, ... }) >>> >>> schema_country = schemadict({ ... 'name': {'type': str}, ... 'cities': { ... 'type': list, ... 'item_type': dict, ... 'item_schemadict': schema_city, ... }, ... }) >>> >>> test_country = { ... 'name': 'Neverland', ... 'cities': [ ... {'name': 'Faketown', 'population': 3}, ... {'name': 'Evergreen', 'population': True}, ... ], ... } >>> >>> schema_country.validate(test_country) Traceback (most recent call last): ... TypeError: unexpected type for 'population': expected <class 'int'>, but was <class 'bool'> >>> **Custom validation functions** Each *type* (``int``, ``bool``, ``str``, etc.) defines its own set of validation keywords and corresponding test functions. The dictionary ``STANDARD_VALIDATORS`` provided by the ``schemadict`` module contains the default validation functions for the Python's built-in types. However, it is also possible to modify or extend this dictionary with custom validation functions. .. code:: python >>> from schemadict import schemadict, STANDARD_VALIDATORS >>> # Add a custom validation function >>> def is_divisible(key, value, comp_value, _): ... if value % comp_value != 0: ... raise ValueError(f"{key!r} is not divisible by {comp_value}") ... ... ... >>> >>> # Update the standard validator dictionary >>> my_validators = STANDARD_VALIDATORS >>> my_validators[int]['%'] = is_divisible >>> # Register the updated validator dictionary in the new schemadict instance >>> s = schemadict({'my_num': {'type': int, '%': 3}}, validators=my_validators) >>> s.validate({'my_num': 33}) >>> s.validate({'my_num': 4}) Traceback (most recent call last): ... ValueError: 'my_num' is not divisible by 3 >>> It is also possible to define *custom types* and *custom test functions* as shown in the following example. .. code:: python >>> from schemadict import schemadict, STANDARD_VALIDATORS >>> class MyOcean: ... has_dolphins = True ... has_plastic = False ... >>> >>> def has_dolphins(key, value, comp_value, _): ... if getattr(value, 'has_dolphins') is not comp_value: ... raise ValueError(f"{key!r} does not have dolphins") ... >>> >>> my_validators = STANDARD_VALIDATORS >>> my_validators.update({MyOcean: {'has_dolphins': has_dolphins}}) >>> >>> schema_ocean = schemadict( ... {'ocean': {'type': MyOcean, 'has_dolphins': True}}, ... validators=my_validators, ... ) >>> >>> ocean1 = MyOcean() >>> schema_ocean.validate({'ocean': ocean1}) >>> >>> ocean2 = MyOcean() >>> ocean2.has_dolphins = False >>> schema_ocean.validate({'ocean': ocean2}) Traceback (most recent call last): ... ValueError: 'ocean' does not have dolphins Full documentation: https://schemadict.readthedocs.io/ Features ======== What *schemadict* offers: * Built-in support for Python's primitive types * Specify *required* and *optional* keys * Validate *nested* schemas * Add custom validation functions to built-in types * Add custom validation functions to custom types * Support for Regex checks of strings Features currently in development * Metaschema validation * Lazy validation and summary of all errors * Allow schema variations: schmea 1 OR schema 2 * Add support for validation of type `number.Number` Installation ============ *Schemadict* is available on `PyPI <https://pypi.org/project/schemadict/>`_ and may simply be installed with .. code:: pip install schemadict Idea ==== *Schemadict* is loosely inspired by `JSON schema <https://json-schema.org/>`_ and `jsonschema <https://github.com/Julian/jsonschema>`_, a JSON schema validator for Python. License ======= **License:** Apache-2.0
schemadict
/schemadict-0.0.9.tar.gz/schemadict-0.0.9/README.rst
README.rst
.. image:: https://img.shields.io/pypi/v/schemadict.svg?style=flat :target: https://pypi.org/project/schemadict/ :alt: Latest PyPI version .. image:: https://readthedocs.org/projects/schemadict/badge/?version=latest :target: https://schemadict.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status .. image:: https://img.shields.io/badge/license-Apache%202-blue.svg :target: https://github.com/airinnova/schemadict/blob/master/LICENSE.txt :alt: License .. image:: https://travis-ci.org/airinnova/schemadict.svg?branch=master :target: https://travis-ci.org/airinnova/schemadict :alt: Build status .. image:: https://codecov.io/gh/airinnova/schemadict/branch/master/graph/badge.svg :target: https://codecov.io/gh/airinnova/schemadict :alt: Coverage | .. image:: https://raw.githubusercontent.com/airinnova/schemadict/master/docs/source/_static/images/logo.png :target: https://github.com/airinnova/schemadict/ :alt: logo A *schemadict* is a regular Python dictionary which specifies the type and format of values for some given key. To check if a test dictionary is conform with the expected schema, *schemadict* provides the `validate()` method. If the test dictionary is ill-defined, an error will be thrown, otherwise `None` is returned. Examples ======== **Basic usage** .. code:: python >>> from schemadict import schemadict >>> schema = schemadict({ ... 'name': { ... 'type': str, ... 'min_len': 3, ... 'max_len': 12, ... }, ... 'age': { ... 'type': int, ... '>=': 0, ... '<': 150, ... }, ... }) >>> >>> testdict = {'name': 'Neil', 'age': 55} >>> schema.validate(testdict) >>> >>> testdict = {'name': 'Neil', 'age': -12} >>> schema.validate(testdict) Traceback (most recent call last): ... ValueError: 'age' too small: expected >= 0, but was -12 >>> >>> testdict = {'name': 'Neil', 'age': '55'} >>> schema.validate(testdict) Traceback (most recent call last): ... TypeError: unexpected type for 'age': expected <class 'int'>, but was <class 'str'> >>> **Nested schemadict** It is possible to check individual item in a list. For instance, in the following example we check if each item (of type ``str``) looks like a valid IPv4 address. How each item should look like can be specified with the ``item_schema`` keyword. .. code:: python >>> schema = schemadict({ ... 'ip_addrs': { ... 'type': list, ... 'item_schema': { ... 'type': str, ... 'regex': r'^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}$', ... }, ... }, ... }) >>> >>> >>> schema.validate({'ip_addrs': ['127.0.0.1', '192.168.1.1']}) # Valid >>> schema.validate({'ip_addrs': ['127.0.0.1', '192.168.1.1', '1234.5678']}) # Last item invalid Traceback (most recent call last): ... ValueError: regex mismatch for 'ip_addrs': expected pattern '^\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}$', got '1234.5678' >>> Items in a ``list`` (or ``tuple``) may themselves be dictionaries which can be described with *schemadicts*. In this case, we use the keyword ``item_schemadict`` as illustrated in the following example. .. code:: python >>> schema_city = schemadict({ ... 'name': { ... 'type': str ... }, ... 'population': { ... 'type': int, ... '>=': 0, ... }, ... }) >>> >>> schema_country = schemadict({ ... 'name': {'type': str}, ... 'cities': { ... 'type': list, ... 'item_type': dict, ... 'item_schemadict': schema_city, ... }, ... }) >>> >>> test_country = { ... 'name': 'Neverland', ... 'cities': [ ... {'name': 'Faketown', 'population': 3}, ... {'name': 'Evergreen', 'population': True}, ... ], ... } >>> >>> schema_country.validate(test_country) Traceback (most recent call last): ... TypeError: unexpected type for 'population': expected <class 'int'>, but was <class 'bool'> >>> **Custom validation functions** Each *type* (``int``, ``bool``, ``str``, etc.) defines its own set of validation keywords and corresponding test functions. The dictionary ``STANDARD_VALIDATORS`` provided by the ``schemadict`` module contains the default validation functions for the Python's built-in types. However, it is also possible to modify or extend this dictionary with custom validation functions. .. code:: python >>> from schemadict import schemadict, STANDARD_VALIDATORS >>> # Add a custom validation function >>> def is_divisible(key, value, comp_value, _): ... if value % comp_value != 0: ... raise ValueError(f"{key!r} is not divisible by {comp_value}") ... ... ... >>> >>> # Update the standard validator dictionary >>> my_validators = STANDARD_VALIDATORS >>> my_validators[int]['%'] = is_divisible >>> # Register the updated validator dictionary in the new schemadict instance >>> s = schemadict({'my_num': {'type': int, '%': 3}}, validators=my_validators) >>> s.validate({'my_num': 33}) >>> s.validate({'my_num': 4}) Traceback (most recent call last): ... ValueError: 'my_num' is not divisible by 3 >>> It is also possible to define *custom types* and *custom test functions* as shown in the following example. .. code:: python >>> from schemadict import schemadict, STANDARD_VALIDATORS >>> class MyOcean: ... has_dolphins = True ... has_plastic = False ... >>> >>> def has_dolphins(key, value, comp_value, _): ... if getattr(value, 'has_dolphins') is not comp_value: ... raise ValueError(f"{key!r} does not have dolphins") ... >>> >>> my_validators = STANDARD_VALIDATORS >>> my_validators.update({MyOcean: {'has_dolphins': has_dolphins}}) >>> >>> schema_ocean = schemadict( ... {'ocean': {'type': MyOcean, 'has_dolphins': True}}, ... validators=my_validators, ... ) >>> >>> ocean1 = MyOcean() >>> schema_ocean.validate({'ocean': ocean1}) >>> >>> ocean2 = MyOcean() >>> ocean2.has_dolphins = False >>> schema_ocean.validate({'ocean': ocean2}) Traceback (most recent call last): ... ValueError: 'ocean' does not have dolphins Full documentation: https://schemadict.readthedocs.io/ Features ======== What *schemadict* offers: * Built-in support for Python's primitive types * Specify *required* and *optional* keys * Validate *nested* schemas * Add custom validation functions to built-in types * Add custom validation functions to custom types * Support for Regex checks of strings Features currently in development * Metaschema validation * Lazy validation and summary of all errors * Allow schema variations: schmea 1 OR schema 2 * Add support for validation of type `number.Number` Installation ============ *Schemadict* is available on `PyPI <https://pypi.org/project/schemadict/>`_ and may simply be installed with .. code:: pip install schemadict Idea ==== *Schemadict* is loosely inspired by `JSON schema <https://json-schema.org/>`_ and `jsonschema <https://github.com/Julian/jsonschema>`_, a JSON schema validator for Python. License ======= **License:** Apache-2.0
0.954658
0.652961
# schemadiff schemadiff is a niche package designed for situations where a — large — number of files on a filesystem are expected to have identical schemas, but they don't. This can present a challenge when working with distributed computing systems like `Apache Spark` or `Google BigQuery`, as unexpected schema differences can disrupt data loading and processing. Consider a scenario where you are processing thousands of files, and a subset of them have schemas that are almost identical but not completely matching. This can lead to errors such as: - BigQuery: `Error while reading data, error message: Parquet column '<COLUMN_NAME>' has type INT32 which does not match the target cpp_type DOUBLE File: gs://bucket/file.parquet` - Spark: `Error: java.lang.UnsupportedOperationException: org.apache.parquet.column.values.dictionary.PlainValuesDictionary$PlainDoubleDictionary` schemadiff addresses these issues by efficiently identifying the files with schema inconsistencies through reading file metadata. ## Installation Install the package with pip: ```bash pip install schemadiffed # schemadiff taken :p ``` ## Usage The package can be used as a Python library or as a command-line tool. ### Python Library Here's an example of using schemadiff to group files by their schema: ```python import os from schemadiff import compare_schemas os.environ['GOOGLE_CLOUD_CREDENTIALS'] = 'key.json' grouped_files = compare_schemas('path/to/parquet_files', report_path='/desired/path/to/report.json') ``` In this example, `compare_schemas` groups the Parquet files in the directory `path/to/parquet_files` by their schema. It saves the results to `report.json` and also returns the grouped files as a list for potential downstream use. ### Command-Line Interface schemadiff can also be used as a command-line tool. After installation, the command `compare-schemas` is available in your shell: ```bash python schemadiff --dir_path 'gs://<bucket>/yellow/*_2020*.parquet' --fs_type 'gcs' --report_path 'report.json' --return_type 'as_list' ``` ## Features - Efficient processing by reading the metadata of Parquet files. - Supports local, GCS, S3 filesystems (you must be authenticated to your cloud service first). - Supports wildcard characters for flexible file selection.
schemadiffed
/schemadiffed-0.1.0.1.tar.gz/schemadiffed-0.1.0.1/README.md
README.md
pip install schemadiffed # schemadiff taken :p import os from schemadiff import compare_schemas os.environ['GOOGLE_CLOUD_CREDENTIALS'] = 'key.json' grouped_files = compare_schemas('path/to/parquet_files', report_path='/desired/path/to/report.json') python schemadiff --dir_path 'gs://<bucket>/yellow/*_2020*.parquet' --fs_type 'gcs' --report_path 'report.json' --return_type 'as_list'
0.324021
0.871092
from collections import defaultdict from typing import Union import pyarrow.parquet as pq from schemadiff.filesystem import FileSystem class SchemaExtractor: """A class for extracting schema from Parquet files.""" @staticmethod def get_schema_from_parquet(parquet_file: pq.ParquetFile) -> list[tuple[str, str]]: """Returns a sorted list of tuples, where each tuple represents a field in the schema. Args: parquet_file (pq.ParquetFile): The Parquet file to extract the schema from. Returns: list[Tuple[str, str]]: A sorted list of tuples, where each tuple represents a field in the schema. """ arrow_schema = parquet_file.schema_arrow return sorted((field.name, str(field.type)) for field in arrow_schema) class SchemaComparer: """A class for comparing schemas of Parquet files.""" @staticmethod def group_files_by_schema( file_handler: FileSystem, dir_path: str, return_type: str = "as_dict" ) -> Union[dict[str, list[str]], list[list[str]]]: """Returns a dictionary or list that groups files by their schema. Args: file_handler (FileSystem): The file system handler. dir_path (str): The directory path. return_type (str, optional): The return type. Can be 'as_dict' or 'as_list'. Defaults to 'as_dict'. Returns: Union[dict[str, list[str]], list[list[str]]]: A dictionary or list that groups files by their schema. """ files = file_handler.list_files(dir_path) schema_to_files = defaultdict(list) for file in files: parquet_file = file_handler.get_parquet_file(file) schema = SchemaExtractor.get_schema_from_parquet(parquet_file) schema_to_files[str(schema)].append(file) if return_type == "as_list": return list(schema_to_files.values()) else: return dict(schema_to_files)
schemadiffed
/schemadiffed-0.1.0.1.tar.gz/schemadiffed-0.1.0.1/schemadiff/schema_comparer.py
schema_comparer.py
from collections import defaultdict from typing import Union import pyarrow.parquet as pq from schemadiff.filesystem import FileSystem class SchemaExtractor: """A class for extracting schema from Parquet files.""" @staticmethod def get_schema_from_parquet(parquet_file: pq.ParquetFile) -> list[tuple[str, str]]: """Returns a sorted list of tuples, where each tuple represents a field in the schema. Args: parquet_file (pq.ParquetFile): The Parquet file to extract the schema from. Returns: list[Tuple[str, str]]: A sorted list of tuples, where each tuple represents a field in the schema. """ arrow_schema = parquet_file.schema_arrow return sorted((field.name, str(field.type)) for field in arrow_schema) class SchemaComparer: """A class for comparing schemas of Parquet files.""" @staticmethod def group_files_by_schema( file_handler: FileSystem, dir_path: str, return_type: str = "as_dict" ) -> Union[dict[str, list[str]], list[list[str]]]: """Returns a dictionary or list that groups files by their schema. Args: file_handler (FileSystem): The file system handler. dir_path (str): The directory path. return_type (str, optional): The return type. Can be 'as_dict' or 'as_list'. Defaults to 'as_dict'. Returns: Union[dict[str, list[str]], list[list[str]]]: A dictionary or list that groups files by their schema. """ files = file_handler.list_files(dir_path) schema_to_files = defaultdict(list) for file in files: parquet_file = file_handler.get_parquet_file(file) schema = SchemaExtractor.get_schema_from_parquet(parquet_file) schema_to_files[str(schema)].append(file) if return_type == "as_list": return list(schema_to_files.values()) else: return dict(schema_to_files)
0.935236
0.320609
import importlib.util from abc import ABC, abstractmethod from pathlib import Path from typing import Optional, Union import pyarrow.parquet as pq from schemadiff.m_exceptions import FileSystemError class FileSystem(ABC): """An abstract base class for file system interactions. This class defines the interface for a file system, including methods to list files and retrieve Parquet files. """ @abstractmethod def list_files(self, dir_path: Union[str, Path]) -> list[str]: """Abstract method that should return a list of file paths.""" pass @abstractmethod def get_parquet_file(self, file_path: str) -> pq.ParquetFile: """Abstract method that should return a ParquetFile object.""" pass class LocalFileSystem(FileSystem): """A class to interact with a local filesystem. Inherits from the abstract base class FileSystem. Methods: list_files(dir_path: str) -> list[str]: Returns a list of Parquet file paths in the directory. get_parquet_file(file_path: str) -> pq.ParquetFile: Returns a ParquetFile object. """ def list_files(self, dir_path: Path) -> list[str]: """Lists all Parquet files in the provided directory.""" dir_path = Path(dir_path) if "*" in dir_path.name: # If the last part of the path contains a wildcard file_pattern = dir_path.name dir_path = dir_path.parent else: file_pattern = "*.parquet" if not dir_path.is_dir(): raise FileSystemError(f"{dir_path} is not a directory.") return sorted(str(path) for path in dir_path.glob(file_pattern)) def get_parquet_file(self, file_path: str) -> pq.ParquetFile: """Loads a Parquet file from the local filesystem.""" file_path_obj = Path(file_path) if not file_path_obj.is_file(): raise FileSystemError(f"{file_path} is not a file.") if file_path_obj.suffix != ".parquet": raise FileSystemError(f"{file_path} is not a Parquet file.") try: return pq.ParquetFile(file_path) except Exception as e: raise FileSystemError( f"Error opening {file_path} as a Parquet file: {str(e)}" ) class S3FileSystem(FileSystem): """A class to interact with Amazon S3. Inherits from the abstract base class FileSystem.""" def __init__(self, **kwargs): if importlib.util.find_spec("s3fs") is None: raise ImportError( "The s3fs library is required to use the S3FileSystem class." ) import s3fs self.fs = s3fs.S3Filesystem() def list_files(self, dir_path: str) -> list[str]: """Lists all files in the provided S3 directory.""" return ["s3://" + path for path in sorted(self.fs.glob(dir_path))] def get_parquet_file(self, file_path: str) -> pq.ParquetFile: """Loads a Parquet file from Amazon S3.""" try: with self.fs.open(file_path) as f: return pq.ParquetFile(f) except Exception as e: raise FileSystemError( f"Error opening {file_path} as a Parquet file: {str(e)}" ) class GCSFileSystem(FileSystem): """A class to interact with Google Cloud Storage. Inherits from the abstract base class FileSystem.""" def __init__(self): if importlib.util.find_spec("gcsfs") is None: raise ImportError( "The gcsfs library is required to use the GCSFileSystem class." ) import gcsfs self.fs = gcsfs.GCSFileSystem() def list_files(self, dir_path: str) -> list[str]: """Lists all files in the provided GCS directory.""" return ["gs://" + path for path in sorted(self.fs.glob(dir_path))] # type: ignore def get_parquet_file(self, file_path: str) -> pq.ParquetFile: """Loads a Parquet file from Google Cloud Storage.""" try: with self.fs.open(file_path) as f: return pq.ParquetFile(f) except Exception as e: raise FileSystemError( f"Error opening {file_path} as a Parquet file: {str(e)}" ) class FileSystemFactory: """A factory class for creating FileSystem instances. Methods: create_filesystem(type: str) -> Union[LocalFileSystem, None]: Returns a FileSystem object of the specified type. """ @staticmethod def create_filesystem( type: Optional[str] = None, path: Optional[str] = None ) -> Union[LocalFileSystem, GCSFileSystem, S3FileSystem]: """ Returns a FileSystem object of the specified type. Args: type (str, optional): The type of filesystem. Can be 'local', 'gcs', or 's3'. path (str, optional): The path from which to infer the filesystem type if no type is provided. Returns: Union[LocalFileSystem, GCSFileSystem, S3FileSystem]: A FileSystem object of the specified type. Raises: ValueError: If an unsupported filesystem type is provided. """ if type is None: if path.startswith("gs://"): # type: ignore type = "gcs" elif path.startswith("s3://"): # type: ignore type = "s3" else: type = "local" if type == "local": return LocalFileSystem() elif type == "gcs": return GCSFileSystem() elif type == "s3": return S3FileSystem() else: raise ValueError(f"Unsupported filesystem type: {type}")
schemadiffed
/schemadiffed-0.1.0.1.tar.gz/schemadiffed-0.1.0.1/schemadiff/filesystem.py
filesystem.py
import importlib.util from abc import ABC, abstractmethod from pathlib import Path from typing import Optional, Union import pyarrow.parquet as pq from schemadiff.m_exceptions import FileSystemError class FileSystem(ABC): """An abstract base class for file system interactions. This class defines the interface for a file system, including methods to list files and retrieve Parquet files. """ @abstractmethod def list_files(self, dir_path: Union[str, Path]) -> list[str]: """Abstract method that should return a list of file paths.""" pass @abstractmethod def get_parquet_file(self, file_path: str) -> pq.ParquetFile: """Abstract method that should return a ParquetFile object.""" pass class LocalFileSystem(FileSystem): """A class to interact with a local filesystem. Inherits from the abstract base class FileSystem. Methods: list_files(dir_path: str) -> list[str]: Returns a list of Parquet file paths in the directory. get_parquet_file(file_path: str) -> pq.ParquetFile: Returns a ParquetFile object. """ def list_files(self, dir_path: Path) -> list[str]: """Lists all Parquet files in the provided directory.""" dir_path = Path(dir_path) if "*" in dir_path.name: # If the last part of the path contains a wildcard file_pattern = dir_path.name dir_path = dir_path.parent else: file_pattern = "*.parquet" if not dir_path.is_dir(): raise FileSystemError(f"{dir_path} is not a directory.") return sorted(str(path) for path in dir_path.glob(file_pattern)) def get_parquet_file(self, file_path: str) -> pq.ParquetFile: """Loads a Parquet file from the local filesystem.""" file_path_obj = Path(file_path) if not file_path_obj.is_file(): raise FileSystemError(f"{file_path} is not a file.") if file_path_obj.suffix != ".parquet": raise FileSystemError(f"{file_path} is not a Parquet file.") try: return pq.ParquetFile(file_path) except Exception as e: raise FileSystemError( f"Error opening {file_path} as a Parquet file: {str(e)}" ) class S3FileSystem(FileSystem): """A class to interact with Amazon S3. Inherits from the abstract base class FileSystem.""" def __init__(self, **kwargs): if importlib.util.find_spec("s3fs") is None: raise ImportError( "The s3fs library is required to use the S3FileSystem class." ) import s3fs self.fs = s3fs.S3Filesystem() def list_files(self, dir_path: str) -> list[str]: """Lists all files in the provided S3 directory.""" return ["s3://" + path for path in sorted(self.fs.glob(dir_path))] def get_parquet_file(self, file_path: str) -> pq.ParquetFile: """Loads a Parquet file from Amazon S3.""" try: with self.fs.open(file_path) as f: return pq.ParquetFile(f) except Exception as e: raise FileSystemError( f"Error opening {file_path} as a Parquet file: {str(e)}" ) class GCSFileSystem(FileSystem): """A class to interact with Google Cloud Storage. Inherits from the abstract base class FileSystem.""" def __init__(self): if importlib.util.find_spec("gcsfs") is None: raise ImportError( "The gcsfs library is required to use the GCSFileSystem class." ) import gcsfs self.fs = gcsfs.GCSFileSystem() def list_files(self, dir_path: str) -> list[str]: """Lists all files in the provided GCS directory.""" return ["gs://" + path for path in sorted(self.fs.glob(dir_path))] # type: ignore def get_parquet_file(self, file_path: str) -> pq.ParquetFile: """Loads a Parquet file from Google Cloud Storage.""" try: with self.fs.open(file_path) as f: return pq.ParquetFile(f) except Exception as e: raise FileSystemError( f"Error opening {file_path} as a Parquet file: {str(e)}" ) class FileSystemFactory: """A factory class for creating FileSystem instances. Methods: create_filesystem(type: str) -> Union[LocalFileSystem, None]: Returns a FileSystem object of the specified type. """ @staticmethod def create_filesystem( type: Optional[str] = None, path: Optional[str] = None ) -> Union[LocalFileSystem, GCSFileSystem, S3FileSystem]: """ Returns a FileSystem object of the specified type. Args: type (str, optional): The type of filesystem. Can be 'local', 'gcs', or 's3'. path (str, optional): The path from which to infer the filesystem type if no type is provided. Returns: Union[LocalFileSystem, GCSFileSystem, S3FileSystem]: A FileSystem object of the specified type. Raises: ValueError: If an unsupported filesystem type is provided. """ if type is None: if path.startswith("gs://"): # type: ignore type = "gcs" elif path.startswith("s3://"): # type: ignore type = "s3" else: type = "local" if type == "local": return LocalFileSystem() elif type == "gcs": return GCSFileSystem() elif type == "s3": return S3FileSystem() else: raise ValueError(f"Unsupported filesystem type: {type}")
0.889075
0.34392
from typing import Optional, Union from schemadiff.filesystem import FileSystemFactory from schemadiff.report_generator import ReportGenerator from schemadiff.schema_comparer import SchemaComparer, SchemaExtractor def compare_schemas( dir_path: str, fs_type: Optional[str] = None, report_path: Union[str, None] = None, return_type: str = "as_list", ) -> Union[dict[str, list[str]], list[list[str]]]: """Compares schemas of Parquet files in a directory and optionally generates a report. Args: dir_path (str): The directory path. fs_type (str, optional): The type of filesystem. Can be 'local', 'gcs', or 's3'. Defaults to 'local'. report_path (Union[str, None], optional): The file path where the report will be saved. If None, no report is generated. Defaults to None. return_type (str, optional): The return type. Can be 'as_dict' or 'as_list'. Defaults to 'as_list'. Returns: Union[dict[str, list[str]], list[list[str]]]: A dictionary or list that groups files by their schema. """ fs = FileSystemFactory.create_filesystem(fs_type, dir_path) grouped_files = SchemaComparer.group_files_by_schema(fs, dir_path, return_type) if report_path is not None: all_schemas = [ SchemaExtractor.get_schema_from_parquet(fs.get_parquet_file(file_group[0])) for file_group in grouped_files ] # Finding differences between all schemas common_schema = set(all_schemas[0]) for schema in all_schemas[1:]: common_schema.intersection_update(schema) differences = [list(set(schema) - common_schema) for schema in all_schemas] schema_to_files = { str(difference): file_group for difference, file_group in zip(differences, grouped_files) } report = ReportGenerator.generate_report(schema_to_files) # type: ignore ReportGenerator.save_report(report, report_path) return grouped_files
schemadiffed
/schemadiffed-0.1.0.1.tar.gz/schemadiffed-0.1.0.1/schemadiff/__init__.py
__init__.py
from typing import Optional, Union from schemadiff.filesystem import FileSystemFactory from schemadiff.report_generator import ReportGenerator from schemadiff.schema_comparer import SchemaComparer, SchemaExtractor def compare_schemas( dir_path: str, fs_type: Optional[str] = None, report_path: Union[str, None] = None, return_type: str = "as_list", ) -> Union[dict[str, list[str]], list[list[str]]]: """Compares schemas of Parquet files in a directory and optionally generates a report. Args: dir_path (str): The directory path. fs_type (str, optional): The type of filesystem. Can be 'local', 'gcs', or 's3'. Defaults to 'local'. report_path (Union[str, None], optional): The file path where the report will be saved. If None, no report is generated. Defaults to None. return_type (str, optional): The return type. Can be 'as_dict' or 'as_list'. Defaults to 'as_list'. Returns: Union[dict[str, list[str]], list[list[str]]]: A dictionary or list that groups files by their schema. """ fs = FileSystemFactory.create_filesystem(fs_type, dir_path) grouped_files = SchemaComparer.group_files_by_schema(fs, dir_path, return_type) if report_path is not None: all_schemas = [ SchemaExtractor.get_schema_from_parquet(fs.get_parquet_file(file_group[0])) for file_group in grouped_files ] # Finding differences between all schemas common_schema = set(all_schemas[0]) for schema in all_schemas[1:]: common_schema.intersection_update(schema) differences = [list(set(schema) - common_schema) for schema in all_schemas] schema_to_files = { str(difference): file_group for difference, file_group in zip(differences, grouped_files) } report = ReportGenerator.generate_report(schema_to_files) # type: ignore ReportGenerator.save_report(report, report_path) return grouped_files
0.916507
0.257042
# ipython_magic_sqlalchemy_schemadisplay Magic for [sqlalchemy_schemadisplay](https://github.com/fschulze/sqlalchemy_schemadisplay) [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/innovationOUtside/ipython_magic_sqlalchemy_schemadisplay/master?filepath=notebooks/SchemaDemo.ipynb) Magic originally created for the Open University module [TM351 Data Management and Analysis](http://www.open.ac.uk/courses/modules/tm351). This magic complements the [`ipython-sql`](https://github.com/catherinedevlin/ipython-sql), which provides magics for connecting to a SQL database, with a magic that uses [sqlalchemy_schemadisplay](https://github.com/fschulze/sqlalchemy_schemadisplay) to generate ERDs over a SQL database. *The code for generating the ER diagram can be found in the third party `sqlalchemy_schemadisplay` package.* At the moment, the schema display and `ipython-sql` magics and independent, but they really should be combined into a single package. ## Usage Install from PyPi: `pip install schemadisplay-magic` Install from this repo: `pip install git+https://github.com/innovationOUtside/ipython_magic_sqlalchemy_schemadisplay.git` Note there are several other dependencies: - Python: see *requirements.txt* - O/S: see *apt.txt* Set up a database. For example, load the SQL magic: ```python %load_ext sql ``` Create a database connection string — we can use a SQLite database for demo purposes — and connect the SQL magic to the database: ``` DB_CONNECTION = 'sqlite:///./test.db' %sql $DB_CONNECTION ``` Populate the database with a couple of foreign key related tables: ``` %%sql DROP TABLE IF EXISTS doctor; CREATE TABLE doctor ( doctor_id CHAR(4), doctor_name VARCHAR(20), PRIMARY KEY (doctor_id) ); DROP TABLE IF EXISTS patient; CREATE TABLE patient ( patient_id CHAR(4), patient_name VARCHAR(20), date_of_birth DATE, gender CHAR(6), height_cm DECIMAL(4,1), weight_kg DECIMAL(4,1), doctor_id CHAR(4), PRIMARY KEY (patient_id), FOREIGN KEY (doctor_id) REFERENCES doctor ); ``` Load the schema display magic, and render the schema from the connected database: ```python %load_ext schemadisplay_magic %schema --connection_string $DB_CONNECTION ``` <img src='example_erd.png' width=500/> At the moment, the database connection string needs to be provided to the schem magic for each diagram. [TO DO - fix this to use a single persistemt connection for the life of the notebook session, once connected.] ## Using the Magic in a Teaching and Learning Context The magic was developed to support teaching and learning around the topic of *relational databases*. Students were working with a PostgreSQL database, creating, editing and deleting tables, and creating foreign key relationships between tables. The magic provided an easy way to visualise the current state of the tables available in the database, and any foreign key relationships between them. In this way, students could run database and table modifying statements in a notebook. A single line magic invocation could then be used to generate a visual representation of the current state of the database to check that their intended changes had worked correctly.
schemadisplay-magic
/schemadisplay-magic-0.0.6.tar.gz/schemadisplay-magic-0.0.6/README.md
README.md
%load_ext sql DB_CONNECTION = 'sqlite:///./test.db' %sql $DB_CONNECTION %%sql DROP TABLE IF EXISTS doctor; CREATE TABLE doctor ( doctor_id CHAR(4), doctor_name VARCHAR(20), PRIMARY KEY (doctor_id) ); DROP TABLE IF EXISTS patient; CREATE TABLE patient ( patient_id CHAR(4), patient_name VARCHAR(20), date_of_birth DATE, gender CHAR(6), height_cm DECIMAL(4,1), weight_kg DECIMAL(4,1), doctor_id CHAR(4), PRIMARY KEY (patient_id), FOREIGN KEY (doctor_id) REFERENCES doctor ); %load_ext schemadisplay_magic %schema --connection_string $DB_CONNECTION
0.221687
0.833392
[![Build Status](https://travis-ci.org/jorgecarleitao/schemaflow.svg?branch=master)](https://travis-ci.org/jorgecarleitao/schemaflow) [![Coverage Status](https://coveralls.io/repos/github/jorgecarleitao/schemaflow/badge.svg)](https://coveralls.io/github/jorgecarleitao/schemaflow) [![Documentation Status](https://readthedocs.org/projects/schemaflow/badge/?version=latest)](https://schemaflow.readthedocs.io/en/latest/?badge=latest) # SchemaFlow This is a a package to write data pipelines for data science systematically in Python. Thanks for checking it out. Check out the very comprehensive documentation [here](https://schemaflow.readthedocs.io/en/latest/). ## The problem that this package solves A major challenge in creating a robust data pipeline is guaranteeing interoperability between pipes: how do we guarantee that the pipe that someone wrote is compatible with others' pipe *without* running the whole pipeline multiple times until we get it right? ## The solution that this package adopts This package declares an API to define a stateful data transformation that gives the developer the opportunity to declare what comes in, what comes out, and what states are modified on each pipe and therefore the whole pipeline. Check out [`tests/test_pipeline.py`](https://github.com/jorgecarleitao/schemaflow/blob/master/tests/test_pipeline.py) or [`examples/end_to_end_kaggle.py`](https://github.com/jorgecarleitao/schemaflow/blob/master/examples/end_to_end_kaggle.py) ## Install pip install schemaflow or, install the latest (recommended for now): git clone https://github.com/jorgecarleitao/schemaflow cd schemaflow && pip install -e . ## Run examples We provide one example that demonstrate the usage of SchemaFlow's API on developing an end-to-end pipeline applied to [one of Kaggle's exercises](https://www.kaggle.com/c/house-prices-advanced-regression-techniques). To run it, download the data in that exercise to `examples/all/` and run pip install -r examples/requirements.txt python examples/end_to_end_kaggle.py You should see some prints to the console as well as the generation of 3 files at `examples/`: two plots and one `submission.txt`. ## Run tests pip install -r tests/requirements.txt python -m unittest discover ## Build documentation pip install -r docs/requirements.txt cd docs && make html && cd .. open docs/build/html/index.html
schemaflow
/schemaflow-0.2.0.tar.gz/schemaflow-0.2.0/README.md
README.md
[![Build Status](https://travis-ci.org/jorgecarleitao/schemaflow.svg?branch=master)](https://travis-ci.org/jorgecarleitao/schemaflow) [![Coverage Status](https://coveralls.io/repos/github/jorgecarleitao/schemaflow/badge.svg)](https://coveralls.io/github/jorgecarleitao/schemaflow) [![Documentation Status](https://readthedocs.org/projects/schemaflow/badge/?version=latest)](https://schemaflow.readthedocs.io/en/latest/?badge=latest) # SchemaFlow This is a a package to write data pipelines for data science systematically in Python. Thanks for checking it out. Check out the very comprehensive documentation [here](https://schemaflow.readthedocs.io/en/latest/). ## The problem that this package solves A major challenge in creating a robust data pipeline is guaranteeing interoperability between pipes: how do we guarantee that the pipe that someone wrote is compatible with others' pipe *without* running the whole pipeline multiple times until we get it right? ## The solution that this package adopts This package declares an API to define a stateful data transformation that gives the developer the opportunity to declare what comes in, what comes out, and what states are modified on each pipe and therefore the whole pipeline. Check out [`tests/test_pipeline.py`](https://github.com/jorgecarleitao/schemaflow/blob/master/tests/test_pipeline.py) or [`examples/end_to_end_kaggle.py`](https://github.com/jorgecarleitao/schemaflow/blob/master/examples/end_to_end_kaggle.py) ## Install pip install schemaflow or, install the latest (recommended for now): git clone https://github.com/jorgecarleitao/schemaflow cd schemaflow && pip install -e . ## Run examples We provide one example that demonstrate the usage of SchemaFlow's API on developing an end-to-end pipeline applied to [one of Kaggle's exercises](https://www.kaggle.com/c/house-prices-advanced-regression-techniques). To run it, download the data in that exercise to `examples/all/` and run pip install -r examples/requirements.txt python examples/end_to_end_kaggle.py You should see some prints to the console as well as the generation of 3 files at `examples/`: two plots and one `submission.txt`. ## Run tests pip install -r tests/requirements.txt python -m unittest discover ## Build documentation pip install -r docs/requirements.txt cd docs && make html && cd .. open docs/build/html/index.html
0.809841
0.801237
# SchemaGen Schema Gen is a simple CLI tool that generates Python GraphQL implementations(using Graphene) from a Graphql Schema file. # Installation ```shell pip install schemagen ``` # Usage Here's the content of a sample input file(we will call it *test.graphql*) ```graphql type User { id: ID! username: String first_name: String last_name: String full_name: String name: String name: String } ``` Now let's use SchemaGen to generate python code from it. As a CLI tool: ```shell schemagen parse test.graphql -o test.py ``` As a Python Package: ```python from schemagen import SchemaGen gen = SchemaGen( input_file='test.graphql', output_file='test.py' ) # parse input file gen() ``` Output(*test.py*): ```python # This file was generated by CodegenTool from graphene import * class User(ObjectType): id = Field(ID, required=True) username = Field(String) first_name = Field(String) last_name = Field(String) full_name = Field(String) name = Field(String) ``` # Notes Here are some things you should know about using SchemaGen: * SchemaGen is not guaranteed to catch errors in your GraphQL schema file. SchemaGen will only catch a very small percentage of errors that might occur in defining a GraphQL schema. It is the developer's responsibility to ensure the GraphQL schema file is error-free. * SchemaGen will not install the graphene package on your local machine however it will import it in the generated python file. You can easily install the package by running: ```shell pip install graphene ``` * GraphQL type declarations in your schema file **must be ordered**. Because of the way Python and SchemaGen works, you cannot use a GraphQL type before declaring it. For example, the following graphql schema definition would be invalid because we are using the **Url** scalar in our **User** type before declaring it: ```graphql type User { id: ID! username: String avatar_url: Url } scalar Url ``` The correct version of the above code is: ```graphql scalar Url type User { id: ID! username: String avatar_url: Url } ``` * Using a GraphQL SDL keyword as an object field name in your schema will throw an error. For example, doing this: ```graphql enum UserType { Example } type User{ name: String type: UserType } ``` will throw an error. Do this instead: ```graphql enum UserType { Example } type User{ name: String user_type: UserType } ``` I plan to fix the last two issues stated above in the future. Pull requests are welcome!
schemagen
/schemagen-1.0.5.tar.gz/schemagen-1.0.5/README.md
README.md
pip install schemagen type User { id: ID! username: String first_name: String last_name: String full_name: String name: String name: String } schemagen parse test.graphql -o test.py from schemagen import SchemaGen gen = SchemaGen( input_file='test.graphql', output_file='test.py' ) # parse input file gen() # This file was generated by CodegenTool from graphene import * class User(ObjectType): id = Field(ID, required=True) username = Field(String) first_name = Field(String) last_name = Field(String) full_name = Field(String) name = Field(String)
0.500488
0.910346
========================= Schemagic / Schemagic.web ========================= .. image:: https://img.shields.io/badge/pypi-v0.9.1-blue.svg :target: https://pypi.python.org/pypi/schemagic .. image:: https://img.shields.io/badge/ReadTheDocs-latest-red.svg :target: http://schemagic.readthedocs.io/en/latest/schemagic.html .. image:: https://travis-ci.org/Mechrophile/schemagic.svg?branch=master :target: https://travis-ci.org/Mechrophile/schemagic/ Remove the Guesswork from Data Processing ========================================= Schemagic is a rather utilitarian re-imagining of the wonderful and powerful clojure library `Schema <https://github.com/plumatic/schema>`_! Schemagic.web is what programmers do when they hate web programming, but want to make their programs accessible to the web. Installation ------------ It's a wheel on Pypi, and it's 2 and 3 compatible. To install Schemagic, simply: .. code-block:: bash $ pip install schemagic What is schemagic? ------------------ One of the difficulties with large scale, multi-team python efforts is the overhead of understanding the kind of data (e.g., list of strings, nested map from long to string to double) that a function or a webservice expects and returns. Python lacks static typing and, moreover, static typing is insufficient to capture and validate custom business types, which ultimately is what holds back teams from rapidly iterating on each others work.[1] To you, the programmer, schemagic is all about three things: * data **description** using the simplest python data structures and an easily extensible syntax * data **communication** between teams, enhancing documentation, giving feedback when something went wrong. * data **validation** based on descriptions of data that have been documented and communicated. Comments describing the shape of data are insufficient in real world applications. Unless the documentation is backed up by programmatic verification, the documentation gets initially ignored, and ultimately falls behind the actual program behavior. In other words, **schemagic is all about data**. Getting Acquainted with Schemagic --------------------------------- Lets build a schema and start using it. .. code-block:: python >>> import schemagic >>> list_of_ints = [int] >>> schemagic.validate_against_schema(list_of_ints, [1, 2, 3]) [1, 2, 3] >>> schemagic.validate_against_schema(list_of_ints, ["hello", "my friends"]) Traceback (most recent call last): ... ValueError: invalid literal for int() with base 10: 'hello' The error you see here (customizeable) is the error you get when you try to call: .. code-block:: python >>> int("hello") Traceback (most recent call last): ... ValueError: invalid literal for int() with base 10: 'hello' And it occurred because list_of_ints specified that the function to check every member of the list against was int() Basic Schemagic Usage --------------------- Schema checking is quite flexible, and all checks are done recursively. Lets go through some more examples: **Map Template**: *if you only provide a schema with one (callable) key and one value* .. code-block:: python >>> string_to_int_map = {str:int} >>> schemagic.validate_against_schema(string_to_int_map, {"hello": 5, "friends": 6}) {'friends': 6, 'hello': 5} **Map with Specific Keys** *if you provide a schema with strings as keys* .. code-block:: python >>> friend_record = {"name":str, "age": int} >>> schemagic.validate_against_schema(friend_record, {"name": "Tyler", "age": 400}) {'name': 'Tyler', 'age': 400} **Sequence Template**: *if you provide a sequence containing only one item as a schema* .. code-block:: python >>> list_of_ints = [int] >>> schemagic.validate_against_schema(list_of_ints, [1, 2, 3, 4]) [1, 2, 3, 4] **Strict Sequence**: *if you provide a sequence with multiple items as a schema* .. code-block:: python >>> list_with_3_items_int_str_and_intstrmap = [int, str, {int: str}] >>> schemagic.validate_against_schema(list_with_3_items_int_str_and_intstrmap, [1, "hello", {5: "friends", 12: "and", 90: "world"}]) [1, "hello", {5: "friends", 12: "and", 90: "world"}] **Validation Function**: *if you provide a function as a schema* .. code-block:: python >>> def null(data): ... if data is not None: ... raise TypeError("expected Nonetype, got {0}".format(data)) >>> schemagic.validate_against_schema(null, None) >>> schemagic.validate_against_schema(null, "hello!") Traceback (most recent call last): ... TypeError: expected Nonetype, got hello **Compose Schema Definitions Recursively Ad Nauseam**: *this is where the real value lies* .. code-block:: python >>> def enum(*possible_values): ... def _validator(data): ... if not data in possible_values: ... raise ValueError() ... return data ... return _validator >>> event = { ... "event_type": enum("PRODUCTION", "DEVELOPMENT"), ... "event_name": str ...} >>> dispatch_request = { ... "events": [event], ... "requested_by": str ...} >>> schemagic.validate_against_schema(dispatch_request, ... {"events": [{"event_type": "DEVELOPMENT", ... "event_name": "demo_business_process"}, ... {"event_type": "DEVELOPMENT", ... "event_name": "demo_other_business_process"}], ... "requested_by": "Tyler Tolton"}) {"events": [{"event_type": "DEVELOPMENT", "event_name": "demo_business_process"}, {"event_type": "DEVELOPMENT", "event_name": "demo_other_business_process"}], "requested_by": "Tyler Tolton"} Schemagic.validator Usage ------------------------- **Use the Schemagic.validator for increased message clarity and control**: .. code-block:: python >>> list_of_ints_validator = schemagic.validator([int], "Business Type: list of integers") >>> list_of_ints_validator([1, "not an int", 3]) Traceback (most recent call last): ... ValueError: Bad value provided for Business Type: list of integers. - error: ValueError: invalid literal for int() with base 10: 'not an int' schema: [<type 'int'>] value: [1, 'not an int', 3] **Supply predicate to prevent/enable validation conditionally**: .. code-block:: python >>> __env__ = None >>> WHEN_IN_DEV_ENV = lambda: __env__ == "DEV" >>> validate_in_dev = partial(schemagic.validator, validation_predicate=WHEN_IN_DEV_ENV) >>> list_of_ints_validator = validate_in_dev([int], "integer list") >>> __env__ = "DEV" >>> list_of_ints_validator([1, "not an int", 3]) Traceback (most recent call last): ... ValueError: Bad value provided for integer list. - error: ValueError: invalid literal for int() with base 10: 'not an int' schema: [<type 'int'>] value: [1, 'not an int', 3] >>> __env__ = "PROD" >>> list_of_ints_validator([1, "not an int", 3]) [1, "not an int", 3] **Coerce data as it is validated**: *note: validate_against_schema will do this automatically. see docs on validator.* .. code-block:: python >>> validate_and_coerce = partial(schemagic.validator, coerce_data=True) >>> list_of_ints_validator_and_coercer = validate_and_coerce([int], "integer list") >>> list_of_ints_validator_only = schemagic.validator([int], "integer_list") >>> list_of_ints_validator_only(["1", "2", "3"]) ["1", "2", "3"] >>> # Note that the if you pass an integer string to int() it returns an integer. >>> # this makes it s dual purpose validator and coercer. >>> list_of_ints_validator_and_coercer(["1", "2", "3"]) [1, 2, 3] Schemagic.web ------------- Schemagic.web is where rubber meets the road in practical usage. It provides an easy way to communicate between services, between developers, and between development teams in an agile environment. The webservice business world was the furnace in which schemagic was forged. Get ready to outsource yourself. To demo the schemagic.web workflow, lets assume the roles of the first people in the world to discover a way to (gasp) compute the fibonacci sequence in python. *note: this code is all pulled from Peter Norvig's excellent* `Design of Computer Programs <https://www.udacity.com/course/design-of-computer-programs--cs212>`_ *Udacity class.* .. code-block:: python def memo(fn): _cache = {} def _f(*args): try: return _cache[args] except KeyError: _cache[args] = result = fn(*args) return result except TypeError: return fn(*args) _f.cache = _cache return _f @memo def fib(n): if n == 0 or n == 1: return 1 else: return fib(n - 1) + fib(n - 2) >>> fib(30) 1346269 Brilliant! Well, now we'll of course want to share this discovery with the world in the form of a microservice, so that others need not know the inner workings of this complex and dangerous algorithm. Lets walk through how we might set up this webservice in flask: .. code-block:: python from flask import Flask, json from fibonacci import fib # assuming we implemented the function in fibonnaci.py app = Flask(__name__) @app.route("/fibonacci/<index>") def web_fib_endpoint(index): try: index = int(index) except ValueError: return Response( status=400, response="Argument to /fibonacci/ must be an integer" ) return Response( status=200, response=json.dumps(fib(index)) ) if __name__ == '__main__': app.run(port=5000) While this pattern is certainly serviceable, it is rather heavyweight to simply expose a function to the web. Additionally, the code doesn't lend itself well to easily documenting its input and output. Lets see an adapted version of this code using schemagic.web utilities. .. code-block:: python from flask.app import Flask from fibonacci import fib # assuming we implemented the function in fibonnaci.py from schemagic.web import service_registry app = Flask(__name__) register_fibonnacci_services = service_registry(app) register_fibonnacci_services( dict(rule="/fibonacci", input_schema=int, output_schema=int, fn=fib)) if __name__ == '__main__': app.run(port=5000) There, now we simply *describe* our service with data. What is the service endpoint, what is the input, what is the output, and what is the implementation that delivers the contract defined herein. #. The webservices all uniformally use POST requests to transmit data. The data supplied to the endpoints comes from the payload of the request. How to Contribute ----------------- #. This codebase uses the popular `git flow <http://nvie.com/posts/a-successful-git-branching-model/>`_ model for version control #. Fork `the repository`_ and make a branch off of develop, (ideally using the naming convention feature/your-feature) #. When you've finished your feature, make a pull request back into develop. #. Once you've made your pull request, email `the maintainer`_ and let me know! #. Finally, if you ever have any questions about how or what to contribute, feel free to send an email! .. _`the repository`: https://github.com/TJTolton/schemagic .. _`the maintainer`: [email protected] Documentation ============= This project autogenerates it's documentation using sphinx and hosts it using readthedocs. It can be viewed `here <http://schemagic.readthedocs.io/en/latest/schemagic.html>`_ .. [1] Please note: this description is adapted from the excellently phrased introduction to the `prismatic/schema <https://github.com/plumatic/schema>`_ clojure library this project was based on
schemagic
/schemagic-0.9.1.tar.gz/schemagic-0.9.1/README.rst
README.rst
========================= Schemagic / Schemagic.web ========================= .. image:: https://img.shields.io/badge/pypi-v0.9.1-blue.svg :target: https://pypi.python.org/pypi/schemagic .. image:: https://img.shields.io/badge/ReadTheDocs-latest-red.svg :target: http://schemagic.readthedocs.io/en/latest/schemagic.html .. image:: https://travis-ci.org/Mechrophile/schemagic.svg?branch=master :target: https://travis-ci.org/Mechrophile/schemagic/ Remove the Guesswork from Data Processing ========================================= Schemagic is a rather utilitarian re-imagining of the wonderful and powerful clojure library `Schema <https://github.com/plumatic/schema>`_! Schemagic.web is what programmers do when they hate web programming, but want to make their programs accessible to the web. Installation ------------ It's a wheel on Pypi, and it's 2 and 3 compatible. To install Schemagic, simply: .. code-block:: bash $ pip install schemagic What is schemagic? ------------------ One of the difficulties with large scale, multi-team python efforts is the overhead of understanding the kind of data (e.g., list of strings, nested map from long to string to double) that a function or a webservice expects and returns. Python lacks static typing and, moreover, static typing is insufficient to capture and validate custom business types, which ultimately is what holds back teams from rapidly iterating on each others work.[1] To you, the programmer, schemagic is all about three things: * data **description** using the simplest python data structures and an easily extensible syntax * data **communication** between teams, enhancing documentation, giving feedback when something went wrong. * data **validation** based on descriptions of data that have been documented and communicated. Comments describing the shape of data are insufficient in real world applications. Unless the documentation is backed up by programmatic verification, the documentation gets initially ignored, and ultimately falls behind the actual program behavior. In other words, **schemagic is all about data**. Getting Acquainted with Schemagic --------------------------------- Lets build a schema and start using it. .. code-block:: python >>> import schemagic >>> list_of_ints = [int] >>> schemagic.validate_against_schema(list_of_ints, [1, 2, 3]) [1, 2, 3] >>> schemagic.validate_against_schema(list_of_ints, ["hello", "my friends"]) Traceback (most recent call last): ... ValueError: invalid literal for int() with base 10: 'hello' The error you see here (customizeable) is the error you get when you try to call: .. code-block:: python >>> int("hello") Traceback (most recent call last): ... ValueError: invalid literal for int() with base 10: 'hello' And it occurred because list_of_ints specified that the function to check every member of the list against was int() Basic Schemagic Usage --------------------- Schema checking is quite flexible, and all checks are done recursively. Lets go through some more examples: **Map Template**: *if you only provide a schema with one (callable) key and one value* .. code-block:: python >>> string_to_int_map = {str:int} >>> schemagic.validate_against_schema(string_to_int_map, {"hello": 5, "friends": 6}) {'friends': 6, 'hello': 5} **Map with Specific Keys** *if you provide a schema with strings as keys* .. code-block:: python >>> friend_record = {"name":str, "age": int} >>> schemagic.validate_against_schema(friend_record, {"name": "Tyler", "age": 400}) {'name': 'Tyler', 'age': 400} **Sequence Template**: *if you provide a sequence containing only one item as a schema* .. code-block:: python >>> list_of_ints = [int] >>> schemagic.validate_against_schema(list_of_ints, [1, 2, 3, 4]) [1, 2, 3, 4] **Strict Sequence**: *if you provide a sequence with multiple items as a schema* .. code-block:: python >>> list_with_3_items_int_str_and_intstrmap = [int, str, {int: str}] >>> schemagic.validate_against_schema(list_with_3_items_int_str_and_intstrmap, [1, "hello", {5: "friends", 12: "and", 90: "world"}]) [1, "hello", {5: "friends", 12: "and", 90: "world"}] **Validation Function**: *if you provide a function as a schema* .. code-block:: python >>> def null(data): ... if data is not None: ... raise TypeError("expected Nonetype, got {0}".format(data)) >>> schemagic.validate_against_schema(null, None) >>> schemagic.validate_against_schema(null, "hello!") Traceback (most recent call last): ... TypeError: expected Nonetype, got hello **Compose Schema Definitions Recursively Ad Nauseam**: *this is where the real value lies* .. code-block:: python >>> def enum(*possible_values): ... def _validator(data): ... if not data in possible_values: ... raise ValueError() ... return data ... return _validator >>> event = { ... "event_type": enum("PRODUCTION", "DEVELOPMENT"), ... "event_name": str ...} >>> dispatch_request = { ... "events": [event], ... "requested_by": str ...} >>> schemagic.validate_against_schema(dispatch_request, ... {"events": [{"event_type": "DEVELOPMENT", ... "event_name": "demo_business_process"}, ... {"event_type": "DEVELOPMENT", ... "event_name": "demo_other_business_process"}], ... "requested_by": "Tyler Tolton"}) {"events": [{"event_type": "DEVELOPMENT", "event_name": "demo_business_process"}, {"event_type": "DEVELOPMENT", "event_name": "demo_other_business_process"}], "requested_by": "Tyler Tolton"} Schemagic.validator Usage ------------------------- **Use the Schemagic.validator for increased message clarity and control**: .. code-block:: python >>> list_of_ints_validator = schemagic.validator([int], "Business Type: list of integers") >>> list_of_ints_validator([1, "not an int", 3]) Traceback (most recent call last): ... ValueError: Bad value provided for Business Type: list of integers. - error: ValueError: invalid literal for int() with base 10: 'not an int' schema: [<type 'int'>] value: [1, 'not an int', 3] **Supply predicate to prevent/enable validation conditionally**: .. code-block:: python >>> __env__ = None >>> WHEN_IN_DEV_ENV = lambda: __env__ == "DEV" >>> validate_in_dev = partial(schemagic.validator, validation_predicate=WHEN_IN_DEV_ENV) >>> list_of_ints_validator = validate_in_dev([int], "integer list") >>> __env__ = "DEV" >>> list_of_ints_validator([1, "not an int", 3]) Traceback (most recent call last): ... ValueError: Bad value provided for integer list. - error: ValueError: invalid literal for int() with base 10: 'not an int' schema: [<type 'int'>] value: [1, 'not an int', 3] >>> __env__ = "PROD" >>> list_of_ints_validator([1, "not an int", 3]) [1, "not an int", 3] **Coerce data as it is validated**: *note: validate_against_schema will do this automatically. see docs on validator.* .. code-block:: python >>> validate_and_coerce = partial(schemagic.validator, coerce_data=True) >>> list_of_ints_validator_and_coercer = validate_and_coerce([int], "integer list") >>> list_of_ints_validator_only = schemagic.validator([int], "integer_list") >>> list_of_ints_validator_only(["1", "2", "3"]) ["1", "2", "3"] >>> # Note that the if you pass an integer string to int() it returns an integer. >>> # this makes it s dual purpose validator and coercer. >>> list_of_ints_validator_and_coercer(["1", "2", "3"]) [1, 2, 3] Schemagic.web ------------- Schemagic.web is where rubber meets the road in practical usage. It provides an easy way to communicate between services, between developers, and between development teams in an agile environment. The webservice business world was the furnace in which schemagic was forged. Get ready to outsource yourself. To demo the schemagic.web workflow, lets assume the roles of the first people in the world to discover a way to (gasp) compute the fibonacci sequence in python. *note: this code is all pulled from Peter Norvig's excellent* `Design of Computer Programs <https://www.udacity.com/course/design-of-computer-programs--cs212>`_ *Udacity class.* .. code-block:: python def memo(fn): _cache = {} def _f(*args): try: return _cache[args] except KeyError: _cache[args] = result = fn(*args) return result except TypeError: return fn(*args) _f.cache = _cache return _f @memo def fib(n): if n == 0 or n == 1: return 1 else: return fib(n - 1) + fib(n - 2) >>> fib(30) 1346269 Brilliant! Well, now we'll of course want to share this discovery with the world in the form of a microservice, so that others need not know the inner workings of this complex and dangerous algorithm. Lets walk through how we might set up this webservice in flask: .. code-block:: python from flask import Flask, json from fibonacci import fib # assuming we implemented the function in fibonnaci.py app = Flask(__name__) @app.route("/fibonacci/<index>") def web_fib_endpoint(index): try: index = int(index) except ValueError: return Response( status=400, response="Argument to /fibonacci/ must be an integer" ) return Response( status=200, response=json.dumps(fib(index)) ) if __name__ == '__main__': app.run(port=5000) While this pattern is certainly serviceable, it is rather heavyweight to simply expose a function to the web. Additionally, the code doesn't lend itself well to easily documenting its input and output. Lets see an adapted version of this code using schemagic.web utilities. .. code-block:: python from flask.app import Flask from fibonacci import fib # assuming we implemented the function in fibonnaci.py from schemagic.web import service_registry app = Flask(__name__) register_fibonnacci_services = service_registry(app) register_fibonnacci_services( dict(rule="/fibonacci", input_schema=int, output_schema=int, fn=fib)) if __name__ == '__main__': app.run(port=5000) There, now we simply *describe* our service with data. What is the service endpoint, what is the input, what is the output, and what is the implementation that delivers the contract defined herein. #. The webservices all uniformally use POST requests to transmit data. The data supplied to the endpoints comes from the payload of the request. How to Contribute ----------------- #. This codebase uses the popular `git flow <http://nvie.com/posts/a-successful-git-branching-model/>`_ model for version control #. Fork `the repository`_ and make a branch off of develop, (ideally using the naming convention feature/your-feature) #. When you've finished your feature, make a pull request back into develop. #. Once you've made your pull request, email `the maintainer`_ and let me know! #. Finally, if you ever have any questions about how or what to contribute, feel free to send an email! .. _`the repository`: https://github.com/TJTolton/schemagic .. _`the maintainer`: [email protected] Documentation ============= This project autogenerates it's documentation using sphinx and hosts it using readthedocs. It can be viewed `here <http://schemagic.readthedocs.io/en/latest/schemagic.html>`_ .. [1] Please note: this description is adapted from the excellently phrased introduction to the `prismatic/schema <https://github.com/plumatic/schema>`_ clojure library this project was based on
0.881513
0.689547
# migra: Like diff but for Postgres schemas - ## compare schemas - ## autogenerate migration scripts - ## autosync your development database from your application models - ## make your schema changes testable, robust, and (mostly) automatic `migra` is a schema diff tool for PostgreSQL, written in Python. Use it in your python scripts, or from the command line like this: $ migra postgresql:///a postgresql:///b alter table "public"."products" add column newcolumn text; alter table "public"."products" add constraint "x" CHECK ((price > (0)::numeric)); `migra` magically figures out all the statements required to get from A to B. Most features of PostgreSQL are supported. **Migra supports PostgreSQL >= 10 only.** Known issues exist with earlier versions. Development resources are limited, and feature support rather than backwards compatibility is prioritised. ## THE DOCS Documentation is at [djrobstep.com/docs/migra](https://djrobstep.com/docs/migra). ## Folks, schemas are good Schema migrations are without doubt the most cumbersome and annoying part of working with SQL databases. So much so that some people think that schemas themselves are bad! But schemas are actually good. Enforcing data consistency and structure is a good thing. It’s the migration tooling that is bad, because it’s harder to use than it should be. ``migra`` is an attempt to change that, and make migrations easy, safe, and reliable instead of something to dread. ## Contributing Contributing is easy. [Jump into the issues](https://github.com/djrobstep/migra/issues), find a feature or fix you'd like to work on, and get involved. Or create a new issue and suggest something completely different. If you're unsure about any aspect of the process, just ask. ## Credits - [https://github.com/djrobstep](djrobstep): initial development, maintenance - [https://github.com/alvarogzp](alvarogzp): privileges support - [https://github.com/seblucas](seblucas): docker improvements - [https://github.com/MOZGIII](MOZGIII): docker support - [https://github.com/mshahbazi](mshahbazi): misc fixes and enhancements
schemahq-migra
/schemahq-migra-1.0.11.tar.gz/schemahq-migra-1.0.11/README.md
README.md
# migra: Like diff but for Postgres schemas - ## compare schemas - ## autogenerate migration scripts - ## autosync your development database from your application models - ## make your schema changes testable, robust, and (mostly) automatic `migra` is a schema diff tool for PostgreSQL, written in Python. Use it in your python scripts, or from the command line like this: $ migra postgresql:///a postgresql:///b alter table "public"."products" add column newcolumn text; alter table "public"."products" add constraint "x" CHECK ((price > (0)::numeric)); `migra` magically figures out all the statements required to get from A to B. Most features of PostgreSQL are supported. **Migra supports PostgreSQL >= 10 only.** Known issues exist with earlier versions. Development resources are limited, and feature support rather than backwards compatibility is prioritised. ## THE DOCS Documentation is at [djrobstep.com/docs/migra](https://djrobstep.com/docs/migra). ## Folks, schemas are good Schema migrations are without doubt the most cumbersome and annoying part of working with SQL databases. So much so that some people think that schemas themselves are bad! But schemas are actually good. Enforcing data consistency and structure is a good thing. It’s the migration tooling that is bad, because it’s harder to use than it should be. ``migra`` is an attempt to change that, and make migrations easy, safe, and reliable instead of something to dread. ## Contributing Contributing is easy. [Jump into the issues](https://github.com/djrobstep/migra/issues), find a feature or fix you'd like to work on, and get involved. Or create a new issue and suggest something completely different. If you're unsure about any aspect of the process, just ask. ## Credits - [https://github.com/djrobstep](djrobstep): initial development, maintenance - [https://github.com/alvarogzp](alvarogzp): privileges support - [https://github.com/seblucas](seblucas): docker improvements - [https://github.com/MOZGIII](MOZGIII): docker support - [https://github.com/mshahbazi](mshahbazi): misc fixes and enhancements
0.605333
0.312147
from __future__ import unicode_literals from schemainspect import DBInspector, get_inspector from sqlbag import raw_execute from .changes import Changes from .statements import Statements class Migration(object): """ The main class of migra """ def __init__(self, x_from, x_target, schema=None): self.statements = Statements() self.changes = Changes(None, None) self.schema = schema if isinstance(x_from, DBInspector): self.changes.i_from = x_from else: self.changes.i_from = get_inspector(x_from, schema=schema) if x_from: self.s_from = x_from if isinstance(x_target, DBInspector): self.changes.i_target = x_target else: self.changes.i_target = get_inspector(x_target, schema=schema) if x_target: self.s_target = x_target def inspect_from(self): self.changes.i_from = get_inspector(self.s_from, schema=self.schema) def inspect_target(self): self.changes.i_target = get_inspector(self.s_target, schema=self.schema) def clear(self): self.statements = Statements() def apply(self): for stmt in self.statements: raw_execute(self.s_from, stmt) self.changes.i_from = get_inspector(self.s_from, schema=self.schema) safety_on = self.statements.safe self.clear() self.set_safety(safety_on) def add(self, statements): self.statements += [statement for statement in statements if statement != ""] def add_sql(self, sql): self.statements += Statements([sql]) def set_safety(self, safety_on): self.statements.safe = safety_on def add_extension_changes(self, creates=True, drops=True): if creates: self.add(self.changes.extensions(creations_only=True)) if drops: self.add(self.changes.extensions(drops_only=True)) def add_all_changes(self, privileges=False, roles=False): if roles: if privileges: self.add(self.changes.memberships(drops_only=True)) self.add(self.changes.roles(drops_only=True)) self.add(self.changes.roles(creations_only=True)) self.add(self.changes.schemas(creations_only=True)) self.add(self.changes.extensions(creations_only=True)) self.add(self.changes.collations(creations_only=True)) self.add(self.changes.enums(creations_only=True, modifications=False)) self.add(self.changes.sequences(creations_only=True)) self.add(self.changes.triggers(drops_only=True)) self.add(self.changes.rlspolicies(drops_only=True)) if privileges: self.add(self.changes.privileges(drops_only=True)) self.add(self.changes.schema_privileges(drops_only=True)) self.add(self.changes.sequence_privileges(drops_only=True)) self.add(self.changes.column_privileges(drops_only=True)) self.add(self.changes.non_pk_constraints(drops_only=True)) self.add(self.changes.pk_constraints(drops_only=True)) self.add(self.changes.indexes(drops_only=True)) self.add(self.changes.selectables()) self.add(self.changes.sequences(drops_only=True)) self.add(self.changes.enums(drops_only=True, modifications=False)) self.add(self.changes.extensions(drops_only=True)) self.add(self.changes.indexes(creations_only=True)) self.add(self.changes.pk_constraints(creations_only=True)) self.add(self.changes.non_pk_constraints(creations_only=True)) if privileges: self.add(self.changes.privileges(creations_only=True)) self.add(self.changes.schema_privileges(creations_only=True)) self.add(self.changes.sequence_privileges(creations_only=True)) self.add(self.changes.column_privileges(creations_only=True)) if roles: self.add(self.changes.memberships(creations_only=True)) self.add(self.changes.rlspolicies(creations_only=True)) self.add(self.changes.triggers(creations_only=True)) self.add(self.changes.collations(drops_only=True)) self.add(self.changes.schemas(drops_only=True)) @property def sql(self): return self.statements.sql
schemahq-migra
/schemahq-migra-1.0.11.tar.gz/schemahq-migra-1.0.11/migra/migra.py
migra.py
from __future__ import unicode_literals from schemainspect import DBInspector, get_inspector from sqlbag import raw_execute from .changes import Changes from .statements import Statements class Migration(object): """ The main class of migra """ def __init__(self, x_from, x_target, schema=None): self.statements = Statements() self.changes = Changes(None, None) self.schema = schema if isinstance(x_from, DBInspector): self.changes.i_from = x_from else: self.changes.i_from = get_inspector(x_from, schema=schema) if x_from: self.s_from = x_from if isinstance(x_target, DBInspector): self.changes.i_target = x_target else: self.changes.i_target = get_inspector(x_target, schema=schema) if x_target: self.s_target = x_target def inspect_from(self): self.changes.i_from = get_inspector(self.s_from, schema=self.schema) def inspect_target(self): self.changes.i_target = get_inspector(self.s_target, schema=self.schema) def clear(self): self.statements = Statements() def apply(self): for stmt in self.statements: raw_execute(self.s_from, stmt) self.changes.i_from = get_inspector(self.s_from, schema=self.schema) safety_on = self.statements.safe self.clear() self.set_safety(safety_on) def add(self, statements): self.statements += [statement for statement in statements if statement != ""] def add_sql(self, sql): self.statements += Statements([sql]) def set_safety(self, safety_on): self.statements.safe = safety_on def add_extension_changes(self, creates=True, drops=True): if creates: self.add(self.changes.extensions(creations_only=True)) if drops: self.add(self.changes.extensions(drops_only=True)) def add_all_changes(self, privileges=False, roles=False): if roles: if privileges: self.add(self.changes.memberships(drops_only=True)) self.add(self.changes.roles(drops_only=True)) self.add(self.changes.roles(creations_only=True)) self.add(self.changes.schemas(creations_only=True)) self.add(self.changes.extensions(creations_only=True)) self.add(self.changes.collations(creations_only=True)) self.add(self.changes.enums(creations_only=True, modifications=False)) self.add(self.changes.sequences(creations_only=True)) self.add(self.changes.triggers(drops_only=True)) self.add(self.changes.rlspolicies(drops_only=True)) if privileges: self.add(self.changes.privileges(drops_only=True)) self.add(self.changes.schema_privileges(drops_only=True)) self.add(self.changes.sequence_privileges(drops_only=True)) self.add(self.changes.column_privileges(drops_only=True)) self.add(self.changes.non_pk_constraints(drops_only=True)) self.add(self.changes.pk_constraints(drops_only=True)) self.add(self.changes.indexes(drops_only=True)) self.add(self.changes.selectables()) self.add(self.changes.sequences(drops_only=True)) self.add(self.changes.enums(drops_only=True, modifications=False)) self.add(self.changes.extensions(drops_only=True)) self.add(self.changes.indexes(creations_only=True)) self.add(self.changes.pk_constraints(creations_only=True)) self.add(self.changes.non_pk_constraints(creations_only=True)) if privileges: self.add(self.changes.privileges(creations_only=True)) self.add(self.changes.schema_privileges(creations_only=True)) self.add(self.changes.sequence_privileges(creations_only=True)) self.add(self.changes.column_privileges(creations_only=True)) if roles: self.add(self.changes.memberships(creations_only=True)) self.add(self.changes.rlspolicies(creations_only=True)) self.add(self.changes.triggers(creations_only=True)) self.add(self.changes.collations(drops_only=True)) self.add(self.changes.schemas(drops_only=True)) @property def sql(self): return self.statements.sql
0.632616
0.148201
from __future__ import print_function, unicode_literals import argparse import sys from contextlib import contextmanager from sqlbag import S from .migra import Migration from .statements import UnsafeMigrationException @contextmanager def arg_context(x): if x == "EMPTY": yield None else: with S(x) as s: yield s def parse_args(args): parser = argparse.ArgumentParser(description="Generate a database migration.") parser.add_argument( "--unsafe", dest="unsafe", action="store_true", help="Prevent migra from erroring upon generation of drop statements.", ) parser.add_argument( "--schema", dest="schema", default=None, help="Restrict output to statements for a particular schema", ) parser.add_argument( "--create-extensions-only", dest="create_extensions_only", action="store_true", default=False, help='Only output "create extension..." statements, nothing else.', ) parser.add_argument( "--with-privileges", dest="with_privileges", action="store_true", default=False, help="Also output privilege differences (ie. grant/revoke statements)", ) parser.add_argument( "--with-roles", dest="with_roles", action="store_true", default=False, help='Also output "create/drop role" statements.', ) parser.add_argument( "--force-utf8", dest="force_utf8", action="store_true", default=False, help="Force UTF-8 encoding for output", ) parser.add_argument("dburl_from", help="The database you want to migrate.") parser.add_argument( "dburl_target", help="The database you want to use as the target." ) return parser.parse_args(args) def run(args, out=None, err=None): schema = args.schema if not out: out = sys.stdout # pragma: no cover if not err: err = sys.stderr # pragma: no cover with arg_context(args.dburl_from) as ac0, arg_context(args.dburl_target) as ac1: m = Migration(ac0, ac1, schema=schema) if args.unsafe: m.set_safety(False) if args.create_extensions_only: m.add_extension_changes(drops=False) else: m.add_all_changes(privileges=args.with_privileges, roles=args.with_roles) try: if m.statements: if args.force_utf8: print(m.sql.encode("utf8"), file=out) else: print(m.sql, file=out) except UnsafeMigrationException: print( "-- ERROR: destructive statements generated. Use the --unsafe flag to suppress this error.", file=err, ) return 3 if not m.statements: return 0 else: return 2 def do_command(): # pragma: no cover args = parse_args(sys.argv[1:]) status = run(args) sys.exit(status)
schemahq-migra
/schemahq-migra-1.0.11.tar.gz/schemahq-migra-1.0.11/migra/command.py
command.py
from __future__ import print_function, unicode_literals import argparse import sys from contextlib import contextmanager from sqlbag import S from .migra import Migration from .statements import UnsafeMigrationException @contextmanager def arg_context(x): if x == "EMPTY": yield None else: with S(x) as s: yield s def parse_args(args): parser = argparse.ArgumentParser(description="Generate a database migration.") parser.add_argument( "--unsafe", dest="unsafe", action="store_true", help="Prevent migra from erroring upon generation of drop statements.", ) parser.add_argument( "--schema", dest="schema", default=None, help="Restrict output to statements for a particular schema", ) parser.add_argument( "--create-extensions-only", dest="create_extensions_only", action="store_true", default=False, help='Only output "create extension..." statements, nothing else.', ) parser.add_argument( "--with-privileges", dest="with_privileges", action="store_true", default=False, help="Also output privilege differences (ie. grant/revoke statements)", ) parser.add_argument( "--with-roles", dest="with_roles", action="store_true", default=False, help='Also output "create/drop role" statements.', ) parser.add_argument( "--force-utf8", dest="force_utf8", action="store_true", default=False, help="Force UTF-8 encoding for output", ) parser.add_argument("dburl_from", help="The database you want to migrate.") parser.add_argument( "dburl_target", help="The database you want to use as the target." ) return parser.parse_args(args) def run(args, out=None, err=None): schema = args.schema if not out: out = sys.stdout # pragma: no cover if not err: err = sys.stderr # pragma: no cover with arg_context(args.dburl_from) as ac0, arg_context(args.dburl_target) as ac1: m = Migration(ac0, ac1, schema=schema) if args.unsafe: m.set_safety(False) if args.create_extensions_only: m.add_extension_changes(drops=False) else: m.add_all_changes(privileges=args.with_privileges, roles=args.with_roles) try: if m.statements: if args.force_utf8: print(m.sql.encode("utf8"), file=out) else: print(m.sql, file=out) except UnsafeMigrationException: print( "-- ERROR: destructive statements generated. Use the --unsafe flag to suppress this error.", file=err, ) return 3 if not m.statements: return 0 else: return 2 def do_command(): # pragma: no cover args = parse_args(sys.argv[1:]) status = run(args) sys.exit(status)
0.359027
0.113949
from __future__ import unicode_literals from collections import OrderedDict as od from functools import partial from .statements import Statements from .util import differences THINGS = [ "schemas", "enums", "sequences", "constraints", "functions", "views", "indexes", "extensions", "privileges", "schema_privileges", "sequence_privileges", "column_privileges", "collations", "rlspolicies", "triggers", "roles", "memberships", ] PK = "PRIMARY KEY" def statements_for_changes( things_from, things_target, creations_only=False, drops_only=False, modifications=True, dependency_ordering=False, add_dependents_for_modified=False, ): added, removed, modified, unmodified = differences(things_from, things_target) return statements_from_differences( added=added, removed=removed, modified=modified, replaceable=None, creations_only=creations_only, drops_only=drops_only, modifications=modifications, dependency_ordering=dependency_ordering, old=things_from, ) def statements_from_differences( added, removed, modified, replaceable=None, creations_only=False, drops_only=False, modifications=True, dependency_ordering=False, old=None, ): replaceable = replaceable or set() statements = Statements() if not creations_only: pending_drops = set(removed) if modifications: pending_drops |= set(modified) - replaceable else: pending_drops = set() if not drops_only: pending_creations = set(added) if modifications: pending_creations |= set(modified) else: pending_creations = set() def has_remaining_dependents(v, pending_drops): if not dependency_ordering: return False return bool(set(v.dependents) & pending_drops) def has_uncreated_dependencies(v, pending_creations): if not dependency_ordering: return False return bool(set(v.dependent_on) & pending_creations) while True: before = pending_drops | pending_creations if not creations_only: for k, v in removed.items(): if not has_remaining_dependents(v, pending_drops): if k in pending_drops: statements.append(old[k].drop_statement) pending_drops.remove(k) if not drops_only: for k, v in added.items(): if not has_uncreated_dependencies(v, pending_creations): if k in pending_creations: statements.append(v.create_statement) pending_creations.remove(k) if modifications: for k, v in modified.items(): if hasattr(v, "update_statement"): statements.append(v.update_statement) pending_drops.remove(k) pending_creations.remove(k) else: if not creations_only: if not has_remaining_dependents(v, pending_drops): if k in pending_drops: statements.append(old[k].drop_statement) pending_drops.remove(k) if not drops_only: if not has_uncreated_dependencies(v, pending_creations): if k in pending_creations: statements.append(v.create_statement) pending_creations.remove(k) after = pending_drops | pending_creations if not after: break elif ( after == before ): # this should never happen because there shouldn't be circular dependencies raise ValueError("cannot resolve dependencies") # pragma: no cover return statements def get_enum_modifications(tables_from, tables_target, enums_from, enums_target): _, _, e_modified, _ = differences(enums_from, enums_target) _, _, t_modified, _ = differences(tables_from, tables_target) pre = Statements() recreate = Statements() post = Statements() enums_to_change = e_modified for t, v in t_modified.items(): t_before = tables_from[t] _, _, c_modified, _ = differences(t_before.columns, v.columns) for k, c in c_modified.items(): before = t_before.columns[k] if ( c.is_enum == before.is_enum and c.dbtypestr == before.dbtypestr and c.enum != before.enum ): has_default = c.default and not c.is_generated if has_default: pre.append(before.drop_default_statement(t)) pre.append(before.change_enum_to_string_statement(t)) post.append(before.change_string_to_enum_statement(t)) if has_default: post.append(before.add_default_statement(t)) for e in enums_to_change.values(): recreate.append(e.drop_statement) recreate.append(e.create_statement) return pre + recreate + post def get_table_changes(tables_from, tables_target, enums_from, enums_target): added, removed, modified, _ = differences(tables_from, tables_target) statements = Statements() for t, v in removed.items(): statements.append(v.drop_statement) for t, v in added.items(): statements.append(v.create_statement) if v.rowsecurity: rls_alter = v.alter_rls_statement statements += [rls_alter] statements += get_enum_modifications( tables_from, tables_target, enums_from, enums_target ) for t, v in modified.items(): before = tables_from[t] # drop/recreate tables which have changed from partitioned to non-partitioned if v.is_partitioned != before.is_partitioned: statements.append(v.drop_statement) statements.append(v.create_statement) continue if v.is_unlogged != before.is_unlogged: statements += [v.alter_unlogged_statement] # attach/detach tables with changed parent tables if v.parent_table != before.parent_table: statements += v.attach_detach_statements(before) for t, v in modified.items(): before = tables_from[t] if not v.is_alterable: continue c_added, c_removed, c_modified, _ = differences(before.columns, v.columns) for k in list(c_modified): c = v.columns[k] c_before = before.columns[k] # there's no way to alter a table into/out of generated state # so you gotta drop/recreate if c.is_generated != c_before.is_generated: del c_modified[k] c_added[k] = c c_removed[k] = c_before for k, c in c_removed.items(): alter = v.alter_table_statement(c.drop_column_clause) statements.append(alter) for k, c in c_added.items(): alter = v.alter_table_statement(c.add_column_clause) statements.append(alter) for k, c in c_modified.items(): statements += c.alter_table_statements(before.columns[k], t) if v.rowsecurity != before.rowsecurity: rls_alter = v.alter_rls_statement statements += [rls_alter] return statements def get_selectable_changes( selectables_from, selectables_target, enums_from, enums_target, add_dependents_for_modified=True, ): tables_from = od((k, v) for k, v in selectables_from.items() if v.is_table) tables_target = od((k, v) for k, v in selectables_target.items() if v.is_table) other_from = od((k, v) for k, v in selectables_from.items() if not v.is_table) other_target = od((k, v) for k, v in selectables_target.items() if not v.is_table) added_tables, removed_tables, modified_tables, unmodified_tables = differences( tables_from, tables_target ) added_other, removed_other, modified_other, unmodified_other = differences( other_from, other_target ) changed_all = {} changed_all.update(modified_tables) changed_all.update(modified_other) modified_all = dict(changed_all) changed_all.update(removed_tables) changed_all.update(removed_other) replaceable = set() not_replaceable = set() if add_dependents_for_modified: for k, m in changed_all.items(): old = selectables_from[k] if k in modified_all and m.can_replace(old): if not m.is_table: replaceable.add(k) continue for d in m.dependents_all: if d in unmodified_other: dd = unmodified_other.pop(d) modified_other[d] = dd not_replaceable.add(d) modified_other = od(sorted(modified_other.items())) replaceable -= not_replaceable statements = Statements() def functions(d): return {k: v for k, v in d.items() if v.relationtype == "f"} statements += statements_from_differences( added_other, removed_other, modified_other, replaceable=replaceable, drops_only=True, dependency_ordering=True, old=selectables_from, ) statements += get_table_changes( tables_from, tables_target, enums_from, enums_target ) if any([functions(added_other), functions(modified_other)]): statements += ["set check_function_bodies = off;"] statements += statements_from_differences( added_other, removed_other, modified_other, replaceable=replaceable, creations_only=True, dependency_ordering=True, old=selectables_from, ) return statements class Changes(object): def __init__(self, i_from, i_target): self.i_from = i_from self.i_target = i_target def __getattr__(self, name): if name == "non_pk_constraints": a = self.i_from.constraints.items() b = self.i_target.constraints.items() a_od = od((k, v) for k, v in a if v.constraint_type != PK) b_od = od((k, v) for k, v in b if v.constraint_type != PK) return partial(statements_for_changes, a_od, b_od) elif name == "pk_constraints": a = self.i_from.constraints.items() b = self.i_target.constraints.items() a_od = od((k, v) for k, v in a if v.constraint_type == PK) b_od = od((k, v) for k, v in b if v.constraint_type == PK) return partial(statements_for_changes, a_od, b_od) elif name == "selectables": return partial( get_selectable_changes, od(sorted(self.i_from.selectables.items())), od(sorted(self.i_target.selectables.items())), self.i_from.enums, self.i_target.enums, ) elif name in THINGS: return partial( statements_for_changes, getattr(self.i_from, name), getattr(self.i_target, name), ) else: raise AttributeError(name)
schemahq-migra
/schemahq-migra-1.0.11.tar.gz/schemahq-migra-1.0.11/migra/changes.py
changes.py
from __future__ import unicode_literals from collections import OrderedDict as od from functools import partial from .statements import Statements from .util import differences THINGS = [ "schemas", "enums", "sequences", "constraints", "functions", "views", "indexes", "extensions", "privileges", "schema_privileges", "sequence_privileges", "column_privileges", "collations", "rlspolicies", "triggers", "roles", "memberships", ] PK = "PRIMARY KEY" def statements_for_changes( things_from, things_target, creations_only=False, drops_only=False, modifications=True, dependency_ordering=False, add_dependents_for_modified=False, ): added, removed, modified, unmodified = differences(things_from, things_target) return statements_from_differences( added=added, removed=removed, modified=modified, replaceable=None, creations_only=creations_only, drops_only=drops_only, modifications=modifications, dependency_ordering=dependency_ordering, old=things_from, ) def statements_from_differences( added, removed, modified, replaceable=None, creations_only=False, drops_only=False, modifications=True, dependency_ordering=False, old=None, ): replaceable = replaceable or set() statements = Statements() if not creations_only: pending_drops = set(removed) if modifications: pending_drops |= set(modified) - replaceable else: pending_drops = set() if not drops_only: pending_creations = set(added) if modifications: pending_creations |= set(modified) else: pending_creations = set() def has_remaining_dependents(v, pending_drops): if not dependency_ordering: return False return bool(set(v.dependents) & pending_drops) def has_uncreated_dependencies(v, pending_creations): if not dependency_ordering: return False return bool(set(v.dependent_on) & pending_creations) while True: before = pending_drops | pending_creations if not creations_only: for k, v in removed.items(): if not has_remaining_dependents(v, pending_drops): if k in pending_drops: statements.append(old[k].drop_statement) pending_drops.remove(k) if not drops_only: for k, v in added.items(): if not has_uncreated_dependencies(v, pending_creations): if k in pending_creations: statements.append(v.create_statement) pending_creations.remove(k) if modifications: for k, v in modified.items(): if hasattr(v, "update_statement"): statements.append(v.update_statement) pending_drops.remove(k) pending_creations.remove(k) else: if not creations_only: if not has_remaining_dependents(v, pending_drops): if k in pending_drops: statements.append(old[k].drop_statement) pending_drops.remove(k) if not drops_only: if not has_uncreated_dependencies(v, pending_creations): if k in pending_creations: statements.append(v.create_statement) pending_creations.remove(k) after = pending_drops | pending_creations if not after: break elif ( after == before ): # this should never happen because there shouldn't be circular dependencies raise ValueError("cannot resolve dependencies") # pragma: no cover return statements def get_enum_modifications(tables_from, tables_target, enums_from, enums_target): _, _, e_modified, _ = differences(enums_from, enums_target) _, _, t_modified, _ = differences(tables_from, tables_target) pre = Statements() recreate = Statements() post = Statements() enums_to_change = e_modified for t, v in t_modified.items(): t_before = tables_from[t] _, _, c_modified, _ = differences(t_before.columns, v.columns) for k, c in c_modified.items(): before = t_before.columns[k] if ( c.is_enum == before.is_enum and c.dbtypestr == before.dbtypestr and c.enum != before.enum ): has_default = c.default and not c.is_generated if has_default: pre.append(before.drop_default_statement(t)) pre.append(before.change_enum_to_string_statement(t)) post.append(before.change_string_to_enum_statement(t)) if has_default: post.append(before.add_default_statement(t)) for e in enums_to_change.values(): recreate.append(e.drop_statement) recreate.append(e.create_statement) return pre + recreate + post def get_table_changes(tables_from, tables_target, enums_from, enums_target): added, removed, modified, _ = differences(tables_from, tables_target) statements = Statements() for t, v in removed.items(): statements.append(v.drop_statement) for t, v in added.items(): statements.append(v.create_statement) if v.rowsecurity: rls_alter = v.alter_rls_statement statements += [rls_alter] statements += get_enum_modifications( tables_from, tables_target, enums_from, enums_target ) for t, v in modified.items(): before = tables_from[t] # drop/recreate tables which have changed from partitioned to non-partitioned if v.is_partitioned != before.is_partitioned: statements.append(v.drop_statement) statements.append(v.create_statement) continue if v.is_unlogged != before.is_unlogged: statements += [v.alter_unlogged_statement] # attach/detach tables with changed parent tables if v.parent_table != before.parent_table: statements += v.attach_detach_statements(before) for t, v in modified.items(): before = tables_from[t] if not v.is_alterable: continue c_added, c_removed, c_modified, _ = differences(before.columns, v.columns) for k in list(c_modified): c = v.columns[k] c_before = before.columns[k] # there's no way to alter a table into/out of generated state # so you gotta drop/recreate if c.is_generated != c_before.is_generated: del c_modified[k] c_added[k] = c c_removed[k] = c_before for k, c in c_removed.items(): alter = v.alter_table_statement(c.drop_column_clause) statements.append(alter) for k, c in c_added.items(): alter = v.alter_table_statement(c.add_column_clause) statements.append(alter) for k, c in c_modified.items(): statements += c.alter_table_statements(before.columns[k], t) if v.rowsecurity != before.rowsecurity: rls_alter = v.alter_rls_statement statements += [rls_alter] return statements def get_selectable_changes( selectables_from, selectables_target, enums_from, enums_target, add_dependents_for_modified=True, ): tables_from = od((k, v) for k, v in selectables_from.items() if v.is_table) tables_target = od((k, v) for k, v in selectables_target.items() if v.is_table) other_from = od((k, v) for k, v in selectables_from.items() if not v.is_table) other_target = od((k, v) for k, v in selectables_target.items() if not v.is_table) added_tables, removed_tables, modified_tables, unmodified_tables = differences( tables_from, tables_target ) added_other, removed_other, modified_other, unmodified_other = differences( other_from, other_target ) changed_all = {} changed_all.update(modified_tables) changed_all.update(modified_other) modified_all = dict(changed_all) changed_all.update(removed_tables) changed_all.update(removed_other) replaceable = set() not_replaceable = set() if add_dependents_for_modified: for k, m in changed_all.items(): old = selectables_from[k] if k in modified_all and m.can_replace(old): if not m.is_table: replaceable.add(k) continue for d in m.dependents_all: if d in unmodified_other: dd = unmodified_other.pop(d) modified_other[d] = dd not_replaceable.add(d) modified_other = od(sorted(modified_other.items())) replaceable -= not_replaceable statements = Statements() def functions(d): return {k: v for k, v in d.items() if v.relationtype == "f"} statements += statements_from_differences( added_other, removed_other, modified_other, replaceable=replaceable, drops_only=True, dependency_ordering=True, old=selectables_from, ) statements += get_table_changes( tables_from, tables_target, enums_from, enums_target ) if any([functions(added_other), functions(modified_other)]): statements += ["set check_function_bodies = off;"] statements += statements_from_differences( added_other, removed_other, modified_other, replaceable=replaceable, creations_only=True, dependency_ordering=True, old=selectables_from, ) return statements class Changes(object): def __init__(self, i_from, i_target): self.i_from = i_from self.i_target = i_target def __getattr__(self, name): if name == "non_pk_constraints": a = self.i_from.constraints.items() b = self.i_target.constraints.items() a_od = od((k, v) for k, v in a if v.constraint_type != PK) b_od = od((k, v) for k, v in b if v.constraint_type != PK) return partial(statements_for_changes, a_od, b_od) elif name == "pk_constraints": a = self.i_from.constraints.items() b = self.i_target.constraints.items() a_od = od((k, v) for k, v in a if v.constraint_type == PK) b_od = od((k, v) for k, v in b if v.constraint_type == PK) return partial(statements_for_changes, a_od, b_od) elif name == "selectables": return partial( get_selectable_changes, od(sorted(self.i_from.selectables.items())), od(sorted(self.i_target.selectables.items())), self.i_from.enums, self.i_target.enums, ) elif name in THINGS: return partial( statements_for_changes, getattr(self.i_from, name), getattr(self.i_target, name), ) else: raise AttributeError(name)
0.47244
0.131759
# `schemainspect`: SQL Schema Inspection Schema inspection for PostgreSQL (and potentially others in the future). Inspects tables, views, materialized views, constraints, indexes, sequences, enums, functions, and extensions. Handles table partitioning and inheritance. **Limitations:** Function inspection only confirmed to work with SQL/PLPGSQL languages so far. Basic Usage ----------- Get an inspection object from an already opened SQLAlchemy session or connection as follows: from schemainspect import get_inspector from sqlbag import S with S('postgresql:///example') as s: i = get_inspector(s) The inspection object has attributes for tables, views, and all the other things it tracks. At each of these attributes you'll find a dictionary (OrderedDict) mapping from fully-qualified-and-quoted-name-of-thing-in-database to information object. For instance, the information about a table *books* would be accessed as follows: >>> books_table = i.tables['"public"."books"'] >>> books_table.name 'books' >>> books_table.schema 'public' >>> [each.name for each in books_table.columns] ['id', 'title', 'isbn'] ## Documentation Documentation is a bit patchy at the moment. Watch this space! ## Author Credits Initial development, maintenance: - [djrobstep](https://github.com/djrobstep) Contributions: - [BenSjoberg](https://github.com/BenSjoberg) - [johto](https://github.com/johto) ## Install Install with [pip](https://pip.pypa.io): $ pip install schemainspect To install psycopg2 (the PostgreSQL driver) at the same time as well: $ pip install schemainspect[pg]
schemahq-schemainspect
/schemahq-schemainspect-1.0.12.tar.gz/schemahq-schemainspect-1.0.12/README.md
README.md
# `schemainspect`: SQL Schema Inspection Schema inspection for PostgreSQL (and potentially others in the future). Inspects tables, views, materialized views, constraints, indexes, sequences, enums, functions, and extensions. Handles table partitioning and inheritance. **Limitations:** Function inspection only confirmed to work with SQL/PLPGSQL languages so far. Basic Usage ----------- Get an inspection object from an already opened SQLAlchemy session or connection as follows: from schemainspect import get_inspector from sqlbag import S with S('postgresql:///example') as s: i = get_inspector(s) The inspection object has attributes for tables, views, and all the other things it tracks. At each of these attributes you'll find a dictionary (OrderedDict) mapping from fully-qualified-and-quoted-name-of-thing-in-database to information object. For instance, the information about a table *books* would be accessed as follows: >>> books_table = i.tables['"public"."books"'] >>> books_table.name 'books' >>> books_table.schema 'public' >>> [each.name for each in books_table.columns] ['id', 'title', 'isbn'] ## Documentation Documentation is a bit patchy at the moment. Watch this space! ## Author Credits Initial development, maintenance: - [djrobstep](https://github.com/djrobstep) Contributions: - [BenSjoberg](https://github.com/BenSjoberg) - [johto](https://github.com/johto) ## Install Install with [pip](https://pip.pypa.io): $ pip install schemainspect To install psycopg2 (the PostgreSQL driver) at the same time as well: $ pip install schemainspect[pg]
0.838911
0.587736
from collections import OrderedDict as od from .misc import AutoRepr, quoted_identifier class Inspected(AutoRepr): @property def quoted_full_name(self): return "{}.{}".format( quoted_identifier(self.schema), quoted_identifier(self.name) ) @property def signature(self): return self.quoted_full_name @property def unquoted_full_name(self): return "{}.{}".format(self.schema, self.name) @property def quoted_name(self): return quoted_identifier(self.name) @property def quoted_schema(self): return quoted_identifier(self.schema) def __ne__(self, other): return not self == other class TableRelated(object): @property def quoted_full_table_name(self): return "{}.{}".format( quoted_identifier(self.schema), quoted_identifier(self.table_name) ) class ColumnInfo(AutoRepr): def __init__( self, name, dbtype, pytype, default=None, not_null=False, is_enum=False, enum=None, dbtypestr=None, collation=None, is_identity=False, is_identity_always=False, is_generated=False, ): self.name = name or "" self.dbtype = dbtype self.dbtypestr = dbtypestr or dbtype self.pytype = pytype self.default = default or None self.not_null = not_null self.is_enum = is_enum self.enum = enum self.collation = collation self.is_identity = is_identity self.is_identity_always = is_identity_always self.is_generated = is_generated def __eq__(self, other): return ( self.name == other.name and self.dbtype == other.dbtype and self.dbtypestr == other.dbtypestr and self.pytype == other.pytype and self.default == other.default and self.not_null == other.not_null and self.enum == other.enum and self.collation == other.collation and self.is_identity == other.is_identity and self.is_identity_always == other.is_identity_always and self.is_generated == other.is_generated ) def alter_clauses(self, other): # ordering: # identify must be dropped before notnull # notnull must be added before identity clauses = [] not_null_change = self.not_null != other.not_null if not_null_change and self.not_null: clauses.append(self.alter_not_null_clause) if self.default != other.default and not self.default: clauses.append(self.alter_default_clause) if ( self.is_identity != other.is_identity or self.is_identity_always != other.is_identity_always ): clauses.append(self.alter_identity_clause(other)) elif self.default != other.default and self.default: clauses.append(self.alter_default_clause) if not_null_change and not self.not_null: clauses.append(self.alter_not_null_clause) if self.dbtypestr != other.dbtypestr or self.collation != other.collation: clauses.append(self.alter_data_type_clause) return clauses def change_enum_to_string_statement(self, table_name): if self.is_enum: return "alter table {} alter column {} set data type varchar using {}::varchar;".format( table_name, self.quoted_name, self.quoted_name ) else: raise ValueError def change_string_to_enum_statement(self, table_name): if self.is_enum: return "alter table {} alter column {} set data type {} using {}::{};".format( table_name, self.quoted_name, self.dbtypestr, self.quoted_name, self.dbtypestr, ) else: raise ValueError def drop_default_statement(self, table_name): return "alter table {} alter column {} drop default;".format( table_name, self.quoted_name ) def add_default_statement(self, table_name): return "alter table {} alter column {} set default {};".format( table_name, self.quoted_name, self.default ) def alter_table_statements(self, other, table_name): prefix = "alter table {}".format(table_name) return ["{} {};".format(prefix, c) for c in self.alter_clauses(other)] @property def quoted_name(self): return quoted_identifier(self.name) @property def creation_clause(self): x = "{} {}".format(self.quoted_name, self.dbtypestr) if self.is_identity: identity_type = "always" if self.is_identity_always else "by default" x += " generated {} as identity".format(identity_type) if self.not_null: x += " not null" if self.is_generated: x += " generated always as ({}) stored".format(self.default) elif self.default: x += " default {}".format(self.default) return x @property def add_column_clause(self): return "add column {}{}".format(self.creation_clause, self.collation_subclause) @property def drop_column_clause(self): return "drop column {k}".format(k=self.quoted_name) @property def alter_not_null_clause(self): keyword = "set" if self.not_null else "drop" return "alter column {} {} not null".format(self.quoted_name, keyword) @property def alter_default_clause(self): if self.default: alter = "alter column {} set default {}".format( self.quoted_name, self.default ) else: alter = "alter column {} drop default".format(self.quoted_name) return alter def alter_identity_clause(self, other): if self.is_identity: identity_type = "always" if self.is_identity_always else "by default" if other.is_identity: alter = "alter column {} set generated {}".format( self.quoted_name, identity_type ) else: alter = "alter column {} add generated {} as identity".format( self.quoted_name, identity_type ) else: alter = "alter column {} drop identity".format(self.quoted_name) return alter @property def collation_subclause(self): if self.collation: collate = " collate {}".format(quoted_identifier(self.collation)) else: collate = "" return collate @property def alter_data_type_clause(self): return "alter column {} set data type {}{} using {}::{}".format( self.quoted_name, self.dbtypestr, self.collation_subclause, self.quoted_name, self.dbtypestr, ) class InspectedSelectable(Inspected): def __init__( self, name, schema, columns, inputs=None, definition=None, dependent_on=None, dependents=None, comment=None, relationtype="unknown", parent_table=None, partition_def=None, rowsecurity=False, forcerowsecurity=False, persistence=None, ): self.name = name self.schema = schema self.inputs = inputs or [] self.columns = columns self.definition = definition self.relationtype = relationtype self.dependent_on = dependent_on or [] self.dependents = dependents or [] self.dependent_on_all = [] self.dependents_all = [] self.constraints = od() self.indexes = od() self.comment = comment self.parent_table = parent_table self.partition_def = partition_def self.rowsecurity = rowsecurity self.forcerowsecurity = forcerowsecurity self.persistence = persistence def __eq__(self, other): equalities = ( type(self) == type(other), self.relationtype == other.relationtype, self.name == other.name, self.schema == other.schema, dict(self.columns) == dict(other.columns), self.inputs == other.inputs, self.definition == other.definition, self.parent_table == other.parent_table, self.partition_def == other.partition_def, self.rowsecurity == other.rowsecurity, self.persistence == other.persistence, ) return all(equalities)
schemahq-schemainspect
/schemahq-schemainspect-1.0.12.tar.gz/schemahq-schemainspect-1.0.12/schemainspect/inspected.py
inspected.py
from collections import OrderedDict as od from .misc import AutoRepr, quoted_identifier class Inspected(AutoRepr): @property def quoted_full_name(self): return "{}.{}".format( quoted_identifier(self.schema), quoted_identifier(self.name) ) @property def signature(self): return self.quoted_full_name @property def unquoted_full_name(self): return "{}.{}".format(self.schema, self.name) @property def quoted_name(self): return quoted_identifier(self.name) @property def quoted_schema(self): return quoted_identifier(self.schema) def __ne__(self, other): return not self == other class TableRelated(object): @property def quoted_full_table_name(self): return "{}.{}".format( quoted_identifier(self.schema), quoted_identifier(self.table_name) ) class ColumnInfo(AutoRepr): def __init__( self, name, dbtype, pytype, default=None, not_null=False, is_enum=False, enum=None, dbtypestr=None, collation=None, is_identity=False, is_identity_always=False, is_generated=False, ): self.name = name or "" self.dbtype = dbtype self.dbtypestr = dbtypestr or dbtype self.pytype = pytype self.default = default or None self.not_null = not_null self.is_enum = is_enum self.enum = enum self.collation = collation self.is_identity = is_identity self.is_identity_always = is_identity_always self.is_generated = is_generated def __eq__(self, other): return ( self.name == other.name and self.dbtype == other.dbtype and self.dbtypestr == other.dbtypestr and self.pytype == other.pytype and self.default == other.default and self.not_null == other.not_null and self.enum == other.enum and self.collation == other.collation and self.is_identity == other.is_identity and self.is_identity_always == other.is_identity_always and self.is_generated == other.is_generated ) def alter_clauses(self, other): # ordering: # identify must be dropped before notnull # notnull must be added before identity clauses = [] not_null_change = self.not_null != other.not_null if not_null_change and self.not_null: clauses.append(self.alter_not_null_clause) if self.default != other.default and not self.default: clauses.append(self.alter_default_clause) if ( self.is_identity != other.is_identity or self.is_identity_always != other.is_identity_always ): clauses.append(self.alter_identity_clause(other)) elif self.default != other.default and self.default: clauses.append(self.alter_default_clause) if not_null_change and not self.not_null: clauses.append(self.alter_not_null_clause) if self.dbtypestr != other.dbtypestr or self.collation != other.collation: clauses.append(self.alter_data_type_clause) return clauses def change_enum_to_string_statement(self, table_name): if self.is_enum: return "alter table {} alter column {} set data type varchar using {}::varchar;".format( table_name, self.quoted_name, self.quoted_name ) else: raise ValueError def change_string_to_enum_statement(self, table_name): if self.is_enum: return "alter table {} alter column {} set data type {} using {}::{};".format( table_name, self.quoted_name, self.dbtypestr, self.quoted_name, self.dbtypestr, ) else: raise ValueError def drop_default_statement(self, table_name): return "alter table {} alter column {} drop default;".format( table_name, self.quoted_name ) def add_default_statement(self, table_name): return "alter table {} alter column {} set default {};".format( table_name, self.quoted_name, self.default ) def alter_table_statements(self, other, table_name): prefix = "alter table {}".format(table_name) return ["{} {};".format(prefix, c) for c in self.alter_clauses(other)] @property def quoted_name(self): return quoted_identifier(self.name) @property def creation_clause(self): x = "{} {}".format(self.quoted_name, self.dbtypestr) if self.is_identity: identity_type = "always" if self.is_identity_always else "by default" x += " generated {} as identity".format(identity_type) if self.not_null: x += " not null" if self.is_generated: x += " generated always as ({}) stored".format(self.default) elif self.default: x += " default {}".format(self.default) return x @property def add_column_clause(self): return "add column {}{}".format(self.creation_clause, self.collation_subclause) @property def drop_column_clause(self): return "drop column {k}".format(k=self.quoted_name) @property def alter_not_null_clause(self): keyword = "set" if self.not_null else "drop" return "alter column {} {} not null".format(self.quoted_name, keyword) @property def alter_default_clause(self): if self.default: alter = "alter column {} set default {}".format( self.quoted_name, self.default ) else: alter = "alter column {} drop default".format(self.quoted_name) return alter def alter_identity_clause(self, other): if self.is_identity: identity_type = "always" if self.is_identity_always else "by default" if other.is_identity: alter = "alter column {} set generated {}".format( self.quoted_name, identity_type ) else: alter = "alter column {} add generated {} as identity".format( self.quoted_name, identity_type ) else: alter = "alter column {} drop identity".format(self.quoted_name) return alter @property def collation_subclause(self): if self.collation: collate = " collate {}".format(quoted_identifier(self.collation)) else: collate = "" return collate @property def alter_data_type_clause(self): return "alter column {} set data type {}{} using {}::{}".format( self.quoted_name, self.dbtypestr, self.collation_subclause, self.quoted_name, self.dbtypestr, ) class InspectedSelectable(Inspected): def __init__( self, name, schema, columns, inputs=None, definition=None, dependent_on=None, dependents=None, comment=None, relationtype="unknown", parent_table=None, partition_def=None, rowsecurity=False, forcerowsecurity=False, persistence=None, ): self.name = name self.schema = schema self.inputs = inputs or [] self.columns = columns self.definition = definition self.relationtype = relationtype self.dependent_on = dependent_on or [] self.dependents = dependents or [] self.dependent_on_all = [] self.dependents_all = [] self.constraints = od() self.indexes = od() self.comment = comment self.parent_table = parent_table self.partition_def = partition_def self.rowsecurity = rowsecurity self.forcerowsecurity = forcerowsecurity self.persistence = persistence def __eq__(self, other): equalities = ( type(self) == type(other), self.relationtype == other.relationtype, self.name == other.name, self.schema == other.schema, dict(self.columns) == dict(other.columns), self.inputs == other.inputs, self.definition == other.definition, self.parent_table == other.parent_table, self.partition_def == other.partition_def, self.rowsecurity == other.rowsecurity, self.persistence == other.persistence, ) return all(equalities)
0.715623
0.169543
Overview ============ SchemaIndex is designed for data scientists to find data more efficiently. It can index the tables and files known to the user. With schemaindex, you can: 1. Create a data source (e.g. Mysql, Oracle, etc) by registering its connection information. 2. Reflect the data source and index the metadata. 3. Search for all tables/entities in those data sources by their names. Supported Data Sources ------------- I plan to support at least top 10 of most popular databases in db-ranking. This table tracks the progress.: * HDFS * Mysql * Sqlite | #Data Source | #pip install | #Cloud | #Notes | | :--- | :--- | :---: | :--- | | Oracle | requires: 1. pip install cx_oracle, 2. instal oracle instantClient. | OOTB | | Mysql | requires: 1. pip install pymysql | OOTB | | MS SQL Server | requires: 1. conda install pymssql | OOTB | | Sqlite | OOTB | OOTB | | HDFS | OOTB | OOTB | | HDFS_inotify | OOTB | OOTB | Data Sources to Support on Roadmap ------------- * HDP (Hive) * Installation ============ On Linux ------------- Stardard pip should be able to install schemaindex: .. code-block:: bash $ pip install schemaindex How to use ============ Basic Usage ------------- To start the schemaindex server, please run this command: .. code-block:: bash $ schemaindex runserver The following is a sample output: .. code-block:: bash (py3env1) duan:py3env1$ schemaindex runserver Server started, please visit : http://localhost:8088/ *runserver* command should boot up a webserver and also open a browser for you. In the browser, click "datasources" and then click "create ..." to register your own data source. For example, to register a new HDFS data source, you can input information like the following screenshot: .. image:: doc/pic/create_data_source.png The next step is to reflect the data source and extract all metadata. You can do so by clicking button "Relfect Now!" to extract the metadata of the data source, or check the box "Reflect Data Source Immediately" during data source creation. If all previous two steps are successful, you should be able to search the files in "search" box appearing in "overview" and "search" page, like the following screenshot: .. image:: doc/pic/global_search.png Work with HDFS Index ------------- While creating data source, you can select 'hdfsindex' plugin. This plugin is based on hdfscli library (pip install hdfs). You need to input those parameters: 1. HDFS Web URL: sometimes is also known as Namenode-UI. Note: Kerberos authentication is not supported. If you need it, please raise a ticket in github. 2. HDFS Native URL: Usually you can find this link after you openned the namenode-ui/web url. THis should start with hdfs://localhost:9000 (or 8020) If you check "Real time synchronization:" and you have reflected the hdfs data source, it will start a background java process to capture all hdfs changes and update the index in real time. In background, you should be able to see a process similar to "java ... HdfsINotify2Restful". If you do not see this process, try to restart schemaindex server, or look at the logs at $SCHEMAINDEX/log Work with Databases ------------- By default, schemaindex comes with a predefined plugin to extract metadata from mainstream databases. It is sqlalchemyindex. This reflect engine is based on python library Sqlalchemy, which works for many databases, including Mysql, Sqlite, etc. For mysql to work, you need to install pymysql (python3) or mysql-python (python2) in advance. How to start a SchemaIndex Server ------------- All the plugins are located in $SCHEMAINDEX/plugin. Currently only HDFS and SQLALCHEMY are implemented. If you want to add more plugins, you can put the plugin into this folder and run this command: .. code-block:: bash $ schemaindex reload plugin The following is a sample output: .. code-block:: bash (py3env1) duan:py3env1$ schemaindex reload plugin Plugins are reloaded. Reflect Plugin Name: Path: hdfsindex /home/duan/virenv/py3env1/local/lib/python2.7/site-packages/schemaindex/plugin/hdfsindex sqlalchemy /home/duan/virenv/py3env1/local/lib/python2.7/site-packages/schemaindex/plugin/sqlalchemyindex Reference ============ Those questions explain why I created this software: 1. `What is the best way to index and search files in HDFS? <https://www.quora.com/What-is-the-best-way-to-index-and-search-files-in-HDFS>`_ 2. `Search/Find a file and file content in Hadoop <https://stackoverflow.com/questions/6297533/search-find-a-file-and-file-content-in-hadoop>`_ 3. `find file in hadoop filesystem <https://stackoverflow.com/questions/42903113/find-file-in-hadoop-filesystem>`_
schemaindex
/schemaindex-0.2451.tar.gz/schemaindex-0.2451/README.rst
README.rst
Overview ============ SchemaIndex is designed for data scientists to find data more efficiently. It can index the tables and files known to the user. With schemaindex, you can: 1. Create a data source (e.g. Mysql, Oracle, etc) by registering its connection information. 2. Reflect the data source and index the metadata. 3. Search for all tables/entities in those data sources by their names. Supported Data Sources ------------- I plan to support at least top 10 of most popular databases in db-ranking. This table tracks the progress.: * HDFS * Mysql * Sqlite | #Data Source | #pip install | #Cloud | #Notes | | :--- | :--- | :---: | :--- | | Oracle | requires: 1. pip install cx_oracle, 2. instal oracle instantClient. | OOTB | | Mysql | requires: 1. pip install pymysql | OOTB | | MS SQL Server | requires: 1. conda install pymssql | OOTB | | Sqlite | OOTB | OOTB | | HDFS | OOTB | OOTB | | HDFS_inotify | OOTB | OOTB | Data Sources to Support on Roadmap ------------- * HDP (Hive) * Installation ============ On Linux ------------- Stardard pip should be able to install schemaindex: .. code-block:: bash $ pip install schemaindex How to use ============ Basic Usage ------------- To start the schemaindex server, please run this command: .. code-block:: bash $ schemaindex runserver The following is a sample output: .. code-block:: bash (py3env1) duan:py3env1$ schemaindex runserver Server started, please visit : http://localhost:8088/ *runserver* command should boot up a webserver and also open a browser for you. In the browser, click "datasources" and then click "create ..." to register your own data source. For example, to register a new HDFS data source, you can input information like the following screenshot: .. image:: doc/pic/create_data_source.png The next step is to reflect the data source and extract all metadata. You can do so by clicking button "Relfect Now!" to extract the metadata of the data source, or check the box "Reflect Data Source Immediately" during data source creation. If all previous two steps are successful, you should be able to search the files in "search" box appearing in "overview" and "search" page, like the following screenshot: .. image:: doc/pic/global_search.png Work with HDFS Index ------------- While creating data source, you can select 'hdfsindex' plugin. This plugin is based on hdfscli library (pip install hdfs). You need to input those parameters: 1. HDFS Web URL: sometimes is also known as Namenode-UI. Note: Kerberos authentication is not supported. If you need it, please raise a ticket in github. 2. HDFS Native URL: Usually you can find this link after you openned the namenode-ui/web url. THis should start with hdfs://localhost:9000 (or 8020) If you check "Real time synchronization:" and you have reflected the hdfs data source, it will start a background java process to capture all hdfs changes and update the index in real time. In background, you should be able to see a process similar to "java ... HdfsINotify2Restful". If you do not see this process, try to restart schemaindex server, or look at the logs at $SCHEMAINDEX/log Work with Databases ------------- By default, schemaindex comes with a predefined plugin to extract metadata from mainstream databases. It is sqlalchemyindex. This reflect engine is based on python library Sqlalchemy, which works for many databases, including Mysql, Sqlite, etc. For mysql to work, you need to install pymysql (python3) or mysql-python (python2) in advance. How to start a SchemaIndex Server ------------- All the plugins are located in $SCHEMAINDEX/plugin. Currently only HDFS and SQLALCHEMY are implemented. If you want to add more plugins, you can put the plugin into this folder and run this command: .. code-block:: bash $ schemaindex reload plugin The following is a sample output: .. code-block:: bash (py3env1) duan:py3env1$ schemaindex reload plugin Plugins are reloaded. Reflect Plugin Name: Path: hdfsindex /home/duan/virenv/py3env1/local/lib/python2.7/site-packages/schemaindex/plugin/hdfsindex sqlalchemy /home/duan/virenv/py3env1/local/lib/python2.7/site-packages/schemaindex/plugin/sqlalchemyindex Reference ============ Those questions explain why I created this software: 1. `What is the best way to index and search files in HDFS? <https://www.quora.com/What-is-the-best-way-to-index-and-search-files-in-HDFS>`_ 2. `Search/Find a file and file content in Hadoop <https://stackoverflow.com/questions/6297533/search-find-a-file-and-file-content-in-hadoop>`_ 3. `find file in hadoop filesystem <https://stackoverflow.com/questions/42903113/find-file-in-hadoop-filesystem>`_
0.622689
0.57335
# `schemainspect`: SQL Schema Inspection Schema inspection for PostgreSQL (and potentially others in the future). Inspects tables, views, materialized views, constraints, indexes, sequences, enums, functions, and extensions. Handles table partitioning and inheritance. **Limitations:** Function inspection only confirmed to work with SQL/PLPGSQL languages so far. ## Basic Usage Get an inspection object from an already opened SQLAlchemy session or connection as follows: from schemainspect import get_inspector from sqlbag import S with S('postgresql:///example') as s: i = get_inspector(s) The inspection object has attributes for tables, views, and all the other things it tracks. At each of these attributes you'll find a dictionary (OrderedDict) mapping from fully-qualified-and-quoted-name-of-thing-in-database to information object. For instance, the information about a table *books* would be accessed as follows: >>> books_table = i.tables['"public"."books"'] >>> books_table.name 'books' >>> books_table.schema 'public' >>> [each.name for each in books_table.columns] ['id', 'title', 'isbn'] ## Documentation Documentation is a bit patchy at the moment. Watch this space! ## Author Credits Initial development, maintenance: - [djrobstep](https://github.com/djrobstep) Contributions: - [BenSjoberg](https://github.com/BenSjoberg) - [johto](https://github.com/johto) ## Install Install with [pip](https://pip.pypa.io): $ pip install schemainspect To install psycopg2 (the PostgreSQL driver) at the same time as well: $ pip install schemainspect[pg]
schemainspect-idempotent
/schemainspect_idempotent-0.6.tar.gz/schemainspect_idempotent-0.6/README.md
README.md
# `schemainspect`: SQL Schema Inspection Schema inspection for PostgreSQL (and potentially others in the future). Inspects tables, views, materialized views, constraints, indexes, sequences, enums, functions, and extensions. Handles table partitioning and inheritance. **Limitations:** Function inspection only confirmed to work with SQL/PLPGSQL languages so far. ## Basic Usage Get an inspection object from an already opened SQLAlchemy session or connection as follows: from schemainspect import get_inspector from sqlbag import S with S('postgresql:///example') as s: i = get_inspector(s) The inspection object has attributes for tables, views, and all the other things it tracks. At each of these attributes you'll find a dictionary (OrderedDict) mapping from fully-qualified-and-quoted-name-of-thing-in-database to information object. For instance, the information about a table *books* would be accessed as follows: >>> books_table = i.tables['"public"."books"'] >>> books_table.name 'books' >>> books_table.schema 'public' >>> [each.name for each in books_table.columns] ['id', 'title', 'isbn'] ## Documentation Documentation is a bit patchy at the moment. Watch this space! ## Author Credits Initial development, maintenance: - [djrobstep](https://github.com/djrobstep) Contributions: - [BenSjoberg](https://github.com/BenSjoberg) - [johto](https://github.com/johto) ## Install Install with [pip](https://pip.pypa.io): $ pip install schemainspect To install psycopg2 (the PostgreSQL driver) at the same time as well: $ pip install schemainspect[pg]
0.847242
0.602442
from collections import OrderedDict as od from .misc import AutoRepr, quoted_identifier class Inspected(AutoRepr): @property def quoted_full_name(self): return "{}.{}".format( quoted_identifier(self.schema), quoted_identifier(self.name) ) @property def signature(self): return self.quoted_full_name @property def unquoted_full_name(self): return "{}.{}".format(self.schema, self.name) @property def quoted_name(self): return quoted_identifier(self.name) @property def quoted_schema(self): return quoted_identifier(self.schema) def __ne__(self, other): return not self == other class TableRelated(object): @property def quoted_full_table_name(self): return "{}.{}".format( quoted_identifier(self.schema), quoted_identifier(self.table_name) ) class ColumnInfo(AutoRepr): def __init__( self, name, dbtype, pytype, default=None, not_null=False, is_enum=False, enum=None, dbtypestr=None, collation=None, is_identity=False, is_identity_always=False, is_generated=False, is_inherited=False, ): self.name = name or "" self.dbtype = dbtype self.dbtypestr = dbtypestr or dbtype self.pytype = pytype self.default = default or None self.not_null = not_null self.is_enum = is_enum self.enum = enum self.collation = collation self.is_identity = is_identity self.is_identity_always = is_identity_always self.is_generated = is_generated self.is_inherited = is_inherited def __eq__(self, other): return ( self.name == other.name and self.dbtype == other.dbtype and self.dbtypestr == other.dbtypestr and self.pytype == other.pytype and self.default == other.default and self.not_null == other.not_null and self.enum == other.enum and self.collation == other.collation and self.is_identity == other.is_identity and self.is_identity_always == other.is_identity_always and self.is_generated == other.is_generated and self.is_inherited == other.is_inherited ) def alter_clauses(self, other): # ordering: # identify must be dropped before notnull # notnull must be added before identity clauses = [] notnull_changed = self.not_null != other.not_null notnull_added = notnull_changed and self.not_null notnull_dropped = notnull_changed and not self.not_null default_changed = self.default != other.default # default_added = default_changed and self.default # default_dropped = default_changed and not self.default identity_changed = ( self.is_identity != other.is_identity or self.is_identity_always != other.is_identity_always ) type_or_collation_changed = ( self.dbtypestr != other.dbtypestr or self.collation != other.collation ) if default_changed: clauses.append(self.alter_default_clause) if notnull_added: clauses.append(self.alter_not_null_clause) if identity_changed: clauses.append(self.alter_identity_clause(other)) if notnull_dropped: clauses.append(self.alter_not_null_clause) if type_or_collation_changed: if self.is_enum and other.is_enum: clauses.append(self.alter_enum_type_clause) else: clauses.append(self.alter_data_type_clause) return clauses def change_enum_to_string_statement(self, table_name): if self.is_enum: return "alter table {} alter column {} set data type varchar using {}::varchar;".format( table_name, self.quoted_name, self.quoted_name ) else: raise ValueError def change_string_to_enum_statement(self, table_name): if self.is_enum: return "alter table {} alter column {} set data type {} using {}::{};".format( table_name, self.quoted_name, self.dbtypestr, self.quoted_name, self.dbtypestr, ) else: raise ValueError def change_enum_statement(self, table_name): if self.is_enum: return "alter table {} alter column {} type {} using {}::text::{};".format( table_name, self.name, self.enum.quoted_full_name, self.name, self.enum.quoted_full_name, ) else: raise ValueError def drop_default_statement(self, table_name): return "alter table {} alter column {} drop default;".format( table_name, self.quoted_name ) def add_default_statement(self, table_name): return "alter table {} alter column {} set default {};".format( table_name, self.quoted_name, self.default ) def alter_table_statements(self, other, table_name): prefix = "alter table {}".format(table_name) return ["{} {};".format(prefix, c) for c in self.alter_clauses(other)] @property def quoted_name(self): return quoted_identifier(self.name) @property def creation_clause(self): x = "{} {}".format(self.quoted_name, self.dbtypestr) if self.is_identity: identity_type = "always" if self.is_identity_always else "by default" x += " generated {} as identity".format(identity_type) if self.not_null: x += " not null" if self.is_generated: x += " generated always as ({}) stored".format(self.default) elif self.default: x += " default {}".format(self.default) return x @property def add_column_clause(self): return "add column if not exists {}{}".format(self.creation_clause, self.collation_subclause) @property def drop_column_clause(self): return "drop column if exists {k}".format(k=self.quoted_name) @property def alter_not_null_clause(self): keyword = "set" if self.not_null else "drop" return "alter column {} {} not null".format(self.quoted_name, keyword) @property def alter_default_clause(self): if self.default: alter = "alter column {} set default {}".format( self.quoted_name, self.default ) else: alter = "alter column {} drop default".format(self.quoted_name) return alter def alter_identity_clause(self, other): if self.is_identity: identity_type = "always" if self.is_identity_always else "by default" if other.is_identity: alter = "alter column {} set generated {}".format( self.quoted_name, identity_type ) else: alter = "alter column {} add generated {} as identity".format( self.quoted_name, identity_type ) else: alter = "alter column {} drop identity".format(self.quoted_name) return alter @property def collation_subclause(self): if self.collation: collate = " collate {}".format(quoted_identifier(self.collation)) else: collate = "" return collate @property def alter_data_type_clause(self): return "alter column {} set data type {}{} using {}::{}".format( self.quoted_name, self.dbtypestr, self.collation_subclause, self.quoted_name, self.dbtypestr, ) @property def alter_enum_type_clause(self): return "alter column {} set data type {}{} using {}::text::{}".format( self.quoted_name, self.dbtypestr, self.collation_subclause, self.quoted_name, self.dbtypestr, ) class InspectedSelectable(Inspected): def __init__( self, name, schema, columns, inputs=None, definition=None, dependent_on=None, dependents=None, comment=None, relationtype="unknown", parent_table=None, partition_def=None, rowsecurity=False, forcerowsecurity=False, persistence=None, ): self.name = name self.schema = schema self.inputs = inputs or [] self.columns = columns self.definition = definition self.relationtype = relationtype self.dependent_on = dependent_on or [] self.dependents = dependents or [] self.dependent_on_all = [] self.dependents_all = [] self.constraints = od() self.indexes = od() self.comment = comment self.parent_table = parent_table self.partition_def = partition_def self.rowsecurity = rowsecurity self.forcerowsecurity = forcerowsecurity self.persistence = persistence def __eq__(self, other): equalities = ( type(self) == type(other), self.relationtype == other.relationtype, self.name == other.name, self.schema == other.schema, dict(self.columns) == dict(other.columns), self.inputs == other.inputs, self.definition == other.definition, self.parent_table == other.parent_table, self.partition_def == other.partition_def, self.rowsecurity == other.rowsecurity, self.persistence == other.persistence, ) return all(equalities)
schemainspect-idempotent
/schemainspect_idempotent-0.6.tar.gz/schemainspect_idempotent-0.6/schemainspect_idempotent/inspected.py
inspected.py
from collections import OrderedDict as od from .misc import AutoRepr, quoted_identifier class Inspected(AutoRepr): @property def quoted_full_name(self): return "{}.{}".format( quoted_identifier(self.schema), quoted_identifier(self.name) ) @property def signature(self): return self.quoted_full_name @property def unquoted_full_name(self): return "{}.{}".format(self.schema, self.name) @property def quoted_name(self): return quoted_identifier(self.name) @property def quoted_schema(self): return quoted_identifier(self.schema) def __ne__(self, other): return not self == other class TableRelated(object): @property def quoted_full_table_name(self): return "{}.{}".format( quoted_identifier(self.schema), quoted_identifier(self.table_name) ) class ColumnInfo(AutoRepr): def __init__( self, name, dbtype, pytype, default=None, not_null=False, is_enum=False, enum=None, dbtypestr=None, collation=None, is_identity=False, is_identity_always=False, is_generated=False, is_inherited=False, ): self.name = name or "" self.dbtype = dbtype self.dbtypestr = dbtypestr or dbtype self.pytype = pytype self.default = default or None self.not_null = not_null self.is_enum = is_enum self.enum = enum self.collation = collation self.is_identity = is_identity self.is_identity_always = is_identity_always self.is_generated = is_generated self.is_inherited = is_inherited def __eq__(self, other): return ( self.name == other.name and self.dbtype == other.dbtype and self.dbtypestr == other.dbtypestr and self.pytype == other.pytype and self.default == other.default and self.not_null == other.not_null and self.enum == other.enum and self.collation == other.collation and self.is_identity == other.is_identity and self.is_identity_always == other.is_identity_always and self.is_generated == other.is_generated and self.is_inherited == other.is_inherited ) def alter_clauses(self, other): # ordering: # identify must be dropped before notnull # notnull must be added before identity clauses = [] notnull_changed = self.not_null != other.not_null notnull_added = notnull_changed and self.not_null notnull_dropped = notnull_changed and not self.not_null default_changed = self.default != other.default # default_added = default_changed and self.default # default_dropped = default_changed and not self.default identity_changed = ( self.is_identity != other.is_identity or self.is_identity_always != other.is_identity_always ) type_or_collation_changed = ( self.dbtypestr != other.dbtypestr or self.collation != other.collation ) if default_changed: clauses.append(self.alter_default_clause) if notnull_added: clauses.append(self.alter_not_null_clause) if identity_changed: clauses.append(self.alter_identity_clause(other)) if notnull_dropped: clauses.append(self.alter_not_null_clause) if type_or_collation_changed: if self.is_enum and other.is_enum: clauses.append(self.alter_enum_type_clause) else: clauses.append(self.alter_data_type_clause) return clauses def change_enum_to_string_statement(self, table_name): if self.is_enum: return "alter table {} alter column {} set data type varchar using {}::varchar;".format( table_name, self.quoted_name, self.quoted_name ) else: raise ValueError def change_string_to_enum_statement(self, table_name): if self.is_enum: return "alter table {} alter column {} set data type {} using {}::{};".format( table_name, self.quoted_name, self.dbtypestr, self.quoted_name, self.dbtypestr, ) else: raise ValueError def change_enum_statement(self, table_name): if self.is_enum: return "alter table {} alter column {} type {} using {}::text::{};".format( table_name, self.name, self.enum.quoted_full_name, self.name, self.enum.quoted_full_name, ) else: raise ValueError def drop_default_statement(self, table_name): return "alter table {} alter column {} drop default;".format( table_name, self.quoted_name ) def add_default_statement(self, table_name): return "alter table {} alter column {} set default {};".format( table_name, self.quoted_name, self.default ) def alter_table_statements(self, other, table_name): prefix = "alter table {}".format(table_name) return ["{} {};".format(prefix, c) for c in self.alter_clauses(other)] @property def quoted_name(self): return quoted_identifier(self.name) @property def creation_clause(self): x = "{} {}".format(self.quoted_name, self.dbtypestr) if self.is_identity: identity_type = "always" if self.is_identity_always else "by default" x += " generated {} as identity".format(identity_type) if self.not_null: x += " not null" if self.is_generated: x += " generated always as ({}) stored".format(self.default) elif self.default: x += " default {}".format(self.default) return x @property def add_column_clause(self): return "add column if not exists {}{}".format(self.creation_clause, self.collation_subclause) @property def drop_column_clause(self): return "drop column if exists {k}".format(k=self.quoted_name) @property def alter_not_null_clause(self): keyword = "set" if self.not_null else "drop" return "alter column {} {} not null".format(self.quoted_name, keyword) @property def alter_default_clause(self): if self.default: alter = "alter column {} set default {}".format( self.quoted_name, self.default ) else: alter = "alter column {} drop default".format(self.quoted_name) return alter def alter_identity_clause(self, other): if self.is_identity: identity_type = "always" if self.is_identity_always else "by default" if other.is_identity: alter = "alter column {} set generated {}".format( self.quoted_name, identity_type ) else: alter = "alter column {} add generated {} as identity".format( self.quoted_name, identity_type ) else: alter = "alter column {} drop identity".format(self.quoted_name) return alter @property def collation_subclause(self): if self.collation: collate = " collate {}".format(quoted_identifier(self.collation)) else: collate = "" return collate @property def alter_data_type_clause(self): return "alter column {} set data type {}{} using {}::{}".format( self.quoted_name, self.dbtypestr, self.collation_subclause, self.quoted_name, self.dbtypestr, ) @property def alter_enum_type_clause(self): return "alter column {} set data type {}{} using {}::text::{}".format( self.quoted_name, self.dbtypestr, self.collation_subclause, self.quoted_name, self.dbtypestr, ) class InspectedSelectable(Inspected): def __init__( self, name, schema, columns, inputs=None, definition=None, dependent_on=None, dependents=None, comment=None, relationtype="unknown", parent_table=None, partition_def=None, rowsecurity=False, forcerowsecurity=False, persistence=None, ): self.name = name self.schema = schema self.inputs = inputs or [] self.columns = columns self.definition = definition self.relationtype = relationtype self.dependent_on = dependent_on or [] self.dependents = dependents or [] self.dependent_on_all = [] self.dependents_all = [] self.constraints = od() self.indexes = od() self.comment = comment self.parent_table = parent_table self.partition_def = partition_def self.rowsecurity = rowsecurity self.forcerowsecurity = forcerowsecurity self.persistence = persistence def __eq__(self, other): equalities = ( type(self) == type(other), self.relationtype == other.relationtype, self.name == other.name, self.schema == other.schema, dict(self.columns) == dict(other.columns), self.inputs == other.inputs, self.definition == other.definition, self.parent_table == other.parent_table, self.partition_def == other.partition_def, self.rowsecurity == other.rowsecurity, self.persistence == other.persistence, ) return all(equalities)
0.701917
0.141786
# `schemainspect`: SQL Schema Inspection Schema inspection for PostgreSQL (and potentially others in the future). Inspects tables, views, materialized views, constraints, indexes, sequences, enums, functions, and extensions. Handles table partitioning and inheritance. **Limitations:** Function inspection only confirmed to work with SQL/PLPGSQL languages so far. ## Basic Usage Get an inspection object from an already opened SQLAlchemy session or connection as follows: from schemainspect import get_inspector from sqlbag import S with S('postgresql:///example') as s: i = get_inspector(s) The inspection object has attributes for tables, views, and all the other things it tracks. At each of these attributes you'll find a dictionary (OrderedDict) mapping from fully-qualified-and-quoted-name-of-thing-in-database to information object. For instance, the information about a table *books* would be accessed as follows: >>> books_table = i.tables['"public"."books"'] >>> books_table.name 'books' >>> books_table.schema 'public' >>> [each.name for each in books_table.columns] ['id', 'title', 'isbn'] ## Documentation Documentation is a bit patchy at the moment. Watch this space! ## Author Credits Initial development, maintenance: - [djrobstep](https://github.com/djrobstep) Contributions: - [BenSjoberg](https://github.com/BenSjoberg) - [johto](https://github.com/johto) ## Install Install with [pip](https://pip.pypa.io): $ pip install schemainspect To install psycopg2 (the PostgreSQL driver) at the same time as well: $ pip install schemainspect[pg]
schemainspect
/schemainspect-3.1.1652015119.tar.gz/schemainspect-3.1.1652015119/README.md
README.md
# `schemainspect`: SQL Schema Inspection Schema inspection for PostgreSQL (and potentially others in the future). Inspects tables, views, materialized views, constraints, indexes, sequences, enums, functions, and extensions. Handles table partitioning and inheritance. **Limitations:** Function inspection only confirmed to work with SQL/PLPGSQL languages so far. ## Basic Usage Get an inspection object from an already opened SQLAlchemy session or connection as follows: from schemainspect import get_inspector from sqlbag import S with S('postgresql:///example') as s: i = get_inspector(s) The inspection object has attributes for tables, views, and all the other things it tracks. At each of these attributes you'll find a dictionary (OrderedDict) mapping from fully-qualified-and-quoted-name-of-thing-in-database to information object. For instance, the information about a table *books* would be accessed as follows: >>> books_table = i.tables['"public"."books"'] >>> books_table.name 'books' >>> books_table.schema 'public' >>> [each.name for each in books_table.columns] ['id', 'title', 'isbn'] ## Documentation Documentation is a bit patchy at the moment. Watch this space! ## Author Credits Initial development, maintenance: - [djrobstep](https://github.com/djrobstep) Contributions: - [BenSjoberg](https://github.com/BenSjoberg) - [johto](https://github.com/johto) ## Install Install with [pip](https://pip.pypa.io): $ pip install schemainspect To install psycopg2 (the PostgreSQL driver) at the same time as well: $ pip install schemainspect[pg]
0.847242
0.602442
About Schemaish =============== Schemaish is a schema library that was initially written to support the formish form library. However it has been designed to work as a standalone schema package with validation from validatish. How does Schemaish work? ------------------------ There are two ways of creating schemas, the procedural way and the declarative way. Here is the procedural way. >>> import schemaish >>> schema = schemaish.Integer(title='My Integer', description='This is really my integer') The schema can now be used to validate a value.. >>> schema.validate(10) .. note:: Validation does not validate types, it only calls the validation that has been applied to the schema. If you need to have type validation, add a specific validator A Schemaish Structure --------------------- Just create a structure and add schema attributes to it! >>> schema = schemaish.Structure() >>> schema.add( 'myfield', schemaish.Integer() ) >>> schema.add( 'myotherfield', schemaish.String() ) and we can now validate a dictionary >>> schema.validate( {'myfield': 12, 'myotherfield': 'foo'} ) .. note:: The title and description are used by Formish as the label and description of each field. Declarative Schema Generation ----------------------------- This will be familiar to many developers.. >>> class Name(Structure): ... title = String() ... first = String(title="First Name") ... last = String(title="Last Name") Validation ========== See the validatish module documentation to learn more about the validators available. >>> import validatish >>> schema = schemaish.Integer(validator=validatish.Required()) >>> schema.validate(None) ...schemaish.attr.Invalid: is required >>> schema.validate(10)
schemaish
/schemaish-0.5.6.tar.gz/schemaish-0.5.6/docs-build/introduction.rst
introduction.rst
About Schemaish =============== Schemaish is a schema library that was initially written to support the formish form library. However it has been designed to work as a standalone schema package with validation from validatish. How does Schemaish work? ------------------------ There are two ways of creating schemas, the procedural way and the declarative way. Here is the procedural way. >>> import schemaish >>> schema = schemaish.Integer(title='My Integer', description='This is really my integer') The schema can now be used to validate a value.. >>> schema.validate(10) .. note:: Validation does not validate types, it only calls the validation that has been applied to the schema. If you need to have type validation, add a specific validator A Schemaish Structure --------------------- Just create a structure and add schema attributes to it! >>> schema = schemaish.Structure() >>> schema.add( 'myfield', schemaish.Integer() ) >>> schema.add( 'myotherfield', schemaish.String() ) and we can now validate a dictionary >>> schema.validate( {'myfield': 12, 'myotherfield': 'foo'} ) .. note:: The title and description are used by Formish as the label and description of each field. Declarative Schema Generation ----------------------------- This will be familiar to many developers.. >>> class Name(Structure): ... title = String() ... first = String(title="First Name") ... last = String(title="Last Name") Validation ========== See the validatish module documentation to learn more about the validators available. >>> import validatish >>> schema = schemaish.Integer(validator=validatish.Required()) >>> schema.validate(None) ...schemaish.attr.Invalid: is required >>> schema.validate(10)
0.800887
0.522202
function count_previous_fields(o) { var f = o.prevAll('.field').length; var g = o.prevAll('.group').length; if (f > g) { return f; } else { return g; }; }; function create_addlinks(o) { o.find('.adder').each(function() { $(this).before('<a class="adderlink">Add</a>'); }); }; function get_sequence_numbers(segments, l) { var result = Array(); for each (segment in segments) { if (isNaN(parseInt(segment)) == false) { result.push(segment); } } result.push(l); return result } function replace_stars(original, nums, divider) { var result = Array(); var segments = original.split(divider); var n = 0; for each (segment in segments) { if ((segment == '*' || isNaN(parseInt(segment)) == false) && n < nums.length) { // If the segment is a * or a number then we check replace it with the right number (the target number is probably right anyway) result.push(nums[n]); n=n+1; } else { // If not then we just push the segment result.push(segment); } } return result.join(divider); } function construct(start_segments, n, remainder, divider, strip) { var remainder_bits = remainder.split(divider); var remainder = remainder_bits.slice(1,remainder_bits.length-strip).join(divider); var result = Array(); for each (segment in start_segments) { if (segment != '') { result.push(segment); } } result.push(n); if (remainder != '') { var out = result.join(divider)+divider+remainder; } else { var out = result.join(divider); } return out }; function convert_id_to_name(s) { var segments=s.split('-'); var out = segments.slice(1,segments.length).join('.'); return out } function renumber_sequences(o) { var n = 0; var previous_seqid_prefix = ''; o.find('.sequence > div').each( function () { var seqid = $(this).parent().attr('id'); var seqid_prefix = seqid.substr(0,seqid.length-5); if (seqid_prefix != previous_seqid_prefix) { n = 0; } else { n=n+1; } // replace id occurences var thisid = $(this).attr('id'); var newid = seqid_prefix + n + '-field'; $(this).attr('id',newid); // Replace 'for' occurences $(this).find("[for^='"+seqid_prefix+"']").each( function () { var name = $(this).attr('for'); $(this).text(n); var name_remainder = name.substring(seqid_prefix.length, name.length); $(this).attr('for', construct(seqid_prefix.split('-'),n,name_remainder,'-', 1)); }); // Replace 'id' occurences $(this).find("[id^='"+seqid_prefix+"']").each( function () { var name = $(this).attr('id'); var name_remainder = name.substring(seqid_prefix.length, name.length); $(this).attr('id', construct(seqid_prefix.split('-'),n,name_remainder,'-', 1)); }); // replace 'name' occurences $(this).find("[name^='"+convert_id_to_name(seqid_prefix)+"']").each( function () { var name = $(this).attr('name'); var name_remainder = name.substring(convert_id_to_name(seqid_prefix).length, name.length); $(this).attr('name', construct(convert_id_to_name(seqid_prefix).split('.'),n,name_remainder,'.', 1)); }); previous_seqid_prefix = seqid_prefix; }); o.find('.sequence > fieldset').each( function () { var seqid = $(this).parent().attr('id'); var seqid_prefix = seqid.substr(0,seqid.length-5); if (seqid_prefix != previous_seqid_prefix) { n = 0; } else { n=n+1; } // replace id occurences var thisid = $(this).attr('id'); $(this).find('> legend').text(n); var newid = seqid_prefix + n + '-field'; $(this).attr('id',newid); // Replace 'for' occurences $(this).find("[for^='"+seqid_prefix+"']").each( function () { var name = $(this).attr('for'); var name_remainder = name.substring(seqid_prefix.length, name.length); $(this).attr('for', construct(seqid_prefix.split('-'),n,name_remainder,'-', 0)); }); // Replace 'id' occurences $(this).find("[id^='"+seqid_prefix+"']").each( function () { var name = $(this).attr('id'); var name_remainder = name.substring(seqid_prefix.length, name.length); $(this).attr('id', construct(seqid_prefix.split('-'),n,name_remainder,'-', 0)); }); // replace 'name' occurences $(this).find("[name^='"+convert_id_to_name(seqid_prefix)+"']").each( function () { var name = $(this).attr('name'); var name_remainder = name.substring(convert_id_to_name(seqid_prefix).length, name.length); $(this).attr('name', construct(convert_id_to_name(seqid_prefix).split('.'),n,name_remainder,'.',0)); }); previous_seqid_prefix = seqid_prefix; }); } function add_mousedown_to_addlinks(o) { o.find('.adderlink').mousedown( function() { // Get the base64 encoded template var code = $(this).next('.adder').val(); // Find out how many fields we already have var l = count_previous_fields($(this).next('.adder')); // Get some variable to help with replacing (originalname, originalid, name, id) var originalname = $(this).next('.adder').attr('name'); var segments = originalname.split('.'); // Get the numbers used in the originalname var seqnums = get_sequence_numbers(segments, l); var originalid = $(o).attr('id')+'-'+segments.join('-'); segments[ segments.length -1 ] = l; var name = segments.join('.'); var id = $(o).attr('id')+'-'+segments.join('-'); // Decode the base64 var html = $.base64Decode(code); // Add the links and mousedowns to this generated code var h = $(html); create_addlinks(h); add_mousedown_to_addlinks(h); h.find("[name]").each( function () { var newname = replace_stars($(this).attr('name'), seqnums, '.'); $(this).attr('name', newname ); }); var newid = replace_stars(h.attr('id'),seqnums,'-') h.attr('id',newid); h.find("[id]").each( function () { var newid = replace_stars($(this).attr('id'),seqnums, '-'); $(this).attr('id', newid ); }); h.find("[for]").each( function () { var newid = replace_stars($(this).attr('for'),seqnums, '-'); $(this).attr('for', newid ); if ($(this).text() == '*') { $(this).text(l); } }); h.find("label[for='"+id+"']").text(l); h.find("legend:contains('*')").text(l); $(this).before(h); add_sortables($('form')); add_remove_buttons($(this).parent().parent()); }); }; function add_remove_buttons(o) { o.find('.sequence.sequencecontrols > div > label').each( function() { if ($(this).next().text() != 'x') { var x = $('<span class="remove">x</span>'); $(this).after(x); x.mousedown(function () { $(this).parent().remove(); renumber_sequences($('form')); add_sortables($('form')); }); }; }); o.find('.sequence.sequencecontrols > fieldset > legend').each( function() { if ($(this).next().text() != 'x') { var x = $('<span class="remove">x</span>'); $(this).after(x); x.mousedown(function () { $(this).parent().remove(); renumber_sequences($('form')); add_sortables($('form')); }); }; }); } function order_changed(e,ui) { renumber_sequences($('form')); } function add_sortables(o) { //o.find('.sequence > div > label').after('<span class="handle">handle</span>'); //o.find('.sequence > fieldset > legend').after('<span class="handle">handle</span>'); o.find('.sequence').sortable({'items':'> div','stop':order_changed}); } function formish() { create_addlinks($('form')); add_mousedown_to_addlinks($('form')); add_remove_buttons($('form')); add_sortables($('form')); }
schemaish
/schemaish-0.5.6.tar.gz/schemaish-0.5.6/docs-build/.static/js/formish.js
formish.js
function count_previous_fields(o) { var f = o.prevAll('.field').length; var g = o.prevAll('.group').length; if (f > g) { return f; } else { return g; }; }; function create_addlinks(o) { o.find('.adder').each(function() { $(this).before('<a class="adderlink">Add</a>'); }); }; function get_sequence_numbers(segments, l) { var result = Array(); for each (segment in segments) { if (isNaN(parseInt(segment)) == false) { result.push(segment); } } result.push(l); return result } function replace_stars(original, nums, divider) { var result = Array(); var segments = original.split(divider); var n = 0; for each (segment in segments) { if ((segment == '*' || isNaN(parseInt(segment)) == false) && n < nums.length) { // If the segment is a * or a number then we check replace it with the right number (the target number is probably right anyway) result.push(nums[n]); n=n+1; } else { // If not then we just push the segment result.push(segment); } } return result.join(divider); } function construct(start_segments, n, remainder, divider, strip) { var remainder_bits = remainder.split(divider); var remainder = remainder_bits.slice(1,remainder_bits.length-strip).join(divider); var result = Array(); for each (segment in start_segments) { if (segment != '') { result.push(segment); } } result.push(n); if (remainder != '') { var out = result.join(divider)+divider+remainder; } else { var out = result.join(divider); } return out }; function convert_id_to_name(s) { var segments=s.split('-'); var out = segments.slice(1,segments.length).join('.'); return out } function renumber_sequences(o) { var n = 0; var previous_seqid_prefix = ''; o.find('.sequence > div').each( function () { var seqid = $(this).parent().attr('id'); var seqid_prefix = seqid.substr(0,seqid.length-5); if (seqid_prefix != previous_seqid_prefix) { n = 0; } else { n=n+1; } // replace id occurences var thisid = $(this).attr('id'); var newid = seqid_prefix + n + '-field'; $(this).attr('id',newid); // Replace 'for' occurences $(this).find("[for^='"+seqid_prefix+"']").each( function () { var name = $(this).attr('for'); $(this).text(n); var name_remainder = name.substring(seqid_prefix.length, name.length); $(this).attr('for', construct(seqid_prefix.split('-'),n,name_remainder,'-', 1)); }); // Replace 'id' occurences $(this).find("[id^='"+seqid_prefix+"']").each( function () { var name = $(this).attr('id'); var name_remainder = name.substring(seqid_prefix.length, name.length); $(this).attr('id', construct(seqid_prefix.split('-'),n,name_remainder,'-', 1)); }); // replace 'name' occurences $(this).find("[name^='"+convert_id_to_name(seqid_prefix)+"']").each( function () { var name = $(this).attr('name'); var name_remainder = name.substring(convert_id_to_name(seqid_prefix).length, name.length); $(this).attr('name', construct(convert_id_to_name(seqid_prefix).split('.'),n,name_remainder,'.', 1)); }); previous_seqid_prefix = seqid_prefix; }); o.find('.sequence > fieldset').each( function () { var seqid = $(this).parent().attr('id'); var seqid_prefix = seqid.substr(0,seqid.length-5); if (seqid_prefix != previous_seqid_prefix) { n = 0; } else { n=n+1; } // replace id occurences var thisid = $(this).attr('id'); $(this).find('> legend').text(n); var newid = seqid_prefix + n + '-field'; $(this).attr('id',newid); // Replace 'for' occurences $(this).find("[for^='"+seqid_prefix+"']").each( function () { var name = $(this).attr('for'); var name_remainder = name.substring(seqid_prefix.length, name.length); $(this).attr('for', construct(seqid_prefix.split('-'),n,name_remainder,'-', 0)); }); // Replace 'id' occurences $(this).find("[id^='"+seqid_prefix+"']").each( function () { var name = $(this).attr('id'); var name_remainder = name.substring(seqid_prefix.length, name.length); $(this).attr('id', construct(seqid_prefix.split('-'),n,name_remainder,'-', 0)); }); // replace 'name' occurences $(this).find("[name^='"+convert_id_to_name(seqid_prefix)+"']").each( function () { var name = $(this).attr('name'); var name_remainder = name.substring(convert_id_to_name(seqid_prefix).length, name.length); $(this).attr('name', construct(convert_id_to_name(seqid_prefix).split('.'),n,name_remainder,'.',0)); }); previous_seqid_prefix = seqid_prefix; }); } function add_mousedown_to_addlinks(o) { o.find('.adderlink').mousedown( function() { // Get the base64 encoded template var code = $(this).next('.adder').val(); // Find out how many fields we already have var l = count_previous_fields($(this).next('.adder')); // Get some variable to help with replacing (originalname, originalid, name, id) var originalname = $(this).next('.adder').attr('name'); var segments = originalname.split('.'); // Get the numbers used in the originalname var seqnums = get_sequence_numbers(segments, l); var originalid = $(o).attr('id')+'-'+segments.join('-'); segments[ segments.length -1 ] = l; var name = segments.join('.'); var id = $(o).attr('id')+'-'+segments.join('-'); // Decode the base64 var html = $.base64Decode(code); // Add the links and mousedowns to this generated code var h = $(html); create_addlinks(h); add_mousedown_to_addlinks(h); h.find("[name]").each( function () { var newname = replace_stars($(this).attr('name'), seqnums, '.'); $(this).attr('name', newname ); }); var newid = replace_stars(h.attr('id'),seqnums,'-') h.attr('id',newid); h.find("[id]").each( function () { var newid = replace_stars($(this).attr('id'),seqnums, '-'); $(this).attr('id', newid ); }); h.find("[for]").each( function () { var newid = replace_stars($(this).attr('for'),seqnums, '-'); $(this).attr('for', newid ); if ($(this).text() == '*') { $(this).text(l); } }); h.find("label[for='"+id+"']").text(l); h.find("legend:contains('*')").text(l); $(this).before(h); add_sortables($('form')); add_remove_buttons($(this).parent().parent()); }); }; function add_remove_buttons(o) { o.find('.sequence.sequencecontrols > div > label').each( function() { if ($(this).next().text() != 'x') { var x = $('<span class="remove">x</span>'); $(this).after(x); x.mousedown(function () { $(this).parent().remove(); renumber_sequences($('form')); add_sortables($('form')); }); }; }); o.find('.sequence.sequencecontrols > fieldset > legend').each( function() { if ($(this).next().text() != 'x') { var x = $('<span class="remove">x</span>'); $(this).after(x); x.mousedown(function () { $(this).parent().remove(); renumber_sequences($('form')); add_sortables($('form')); }); }; }); } function order_changed(e,ui) { renumber_sequences($('form')); } function add_sortables(o) { //o.find('.sequence > div > label').after('<span class="handle">handle</span>'); //o.find('.sequence > fieldset > legend').after('<span class="handle">handle</span>'); o.find('.sequence').sortable({'items':'> div','stop':order_changed}); } function formish() { create_addlinks($('form')); add_mousedown_to_addlinks($('form')); add_remove_buttons($('form')); add_sortables($('form')); }
0.213213
0.157655
var sIFR=new function(){var O=this;var E={ACTIVE:"sIFR-active",REPLACED:"sIFR-replaced",IGNORE:"sIFR-ignore",ALTERNATE:"sIFR-alternate",CLASS:"sIFR-class",LAYOUT:"sIFR-layout",FLASH:"sIFR-flash",FIX_FOCUS:"sIFR-fixfocus",DUMMY:"sIFR-dummy"};E.IGNORE_CLASSES=[E.REPLACED,E.IGNORE,E.ALTERNATE];this.MIN_FONT_SIZE=6;this.MAX_FONT_SIZE=126;this.FLASH_PADDING_BOTTOM=5;this.VERSION="436";this.isActive=false;this.isEnabled=true;this.fixHover=true;this.autoInitialize=true;this.setPrefetchCookie=true;this.cookiePath="/";this.domains=[];this.forceWidth=true;this.fitExactly=false;this.forceTextTransform=true;this.useDomLoaded=true;this.useStyleCheck=false;this.hasFlashClassSet=false;this.repaintOnResize=true;this.replacements=[];var L=0;var R=false;function Y(){}function D(c){function d(e){return e.toLocaleUpperCase()}this.normalize=function(e){return e.replace(/\n|\r|\xA0/g,D.SINGLE_WHITESPACE).replace(/\s+/g,D.SINGLE_WHITESPACE)};this.textTransform=function(e,f){switch(e){case"uppercase":return f.toLocaleUpperCase();case"lowercase":return f.toLocaleLowerCase();case"capitalize":return f.replace(/^\w|\s\w/g,d)}return f};this.toHexString=function(e){if(e.charAt(0)!="#"||e.length!=4&&e.length!=7){return e}e=e.substring(1);return"0x"+(e.length==3?e.replace(/(.)(.)(.)/,"$1$1$2$2$3$3"):e)};this.toJson=function(g,f){var e="";switch(typeof(g)){case"string":e='"'+f(g)+'"';break;case"number":case"boolean":e=g.toString();break;case"object":e=[];for(var h in g){if(g[h]==Object.prototype[h]){continue}e.push('"'+h+'":'+this.toJson(g[h]))}e="{"+e.join(",")+"}";break}return e};this.convertCssArg=function(e){if(!e){return{}}if(typeof(e)=="object"){if(e.constructor==Array){e=e.join("")}else{return e}}var l={};var m=e.split("}");for(var h=0;h<m.length;h++){var k=m[h].match(/([^\s{]+)\s*\{(.+)\s*;?\s*/);if(!k||k.length!=3){continue}if(!l[k[1]]){l[k[1]]={}}var g=k[2].split(";");for(var f=0;f<g.length;f++){var n=g[f].match(/\s*([^:\s]+)\s*\:\s*([^;]+)/);if(!n||n.length!=3){continue}l[k[1]][n[1]]=n[2].replace(/\s+$/,"")}}return l};this.extractFromCss=function(g,f,i,e){var h=null;if(g&&g[f]&&g[f][i]){h=g[f][i];if(e){delete g[f][i]}}return h};this.cssToString=function(f){var g=[];for(var e in f){var j=f[e];if(j==Object.prototype[e]){continue}g.push(e,"{");for(var i in j){if(j[i]==Object.prototype[i]){continue}var h=j[i];if(D.UNIT_REMOVAL_PROPERTIES[i]){h=parseInt(h,10)}g.push(i,":",h,";")}g.push("}")}return g.join("")};this.escape=function(e){return escape(e).replace(/\+/g,"%2B")};this.encodeVars=function(e){return e.join("&").replace(/%/g,"%25")};this.copyProperties=function(g,f){for(var e in g){if(f[e]===undefined){f[e]=g[e]}}return f};this.domain=function(){var f="";try{f=document.domain}catch(g){}return f};this.domainMatches=function(h,g){if(g=="*"||g==h){return true}var f=g.lastIndexOf("*");if(f>-1){g=g.substr(f+1);var e=h.lastIndexOf(g);if(e>-1&&(e+g.length)==h.length){return true}}return false};this.uriEncode=function(e){return encodeURI(decodeURIComponent(e))};this.delay=function(f,h,g){var e=Array.prototype.slice.call(arguments,3);setTimeout(function(){h.apply(g,e)},f)}}D.UNIT_REMOVAL_PROPERTIES={leading:true,"margin-left":true,"margin-right":true,"text-indent":true};D.SINGLE_WHITESPACE=" ";function U(e){var d=this;function c(g,j,h){var k=d.getStyleAsInt(g,j,e.ua.ie);if(k==0){k=g[h];for(var f=3;f<arguments.length;f++){k-=d.getStyleAsInt(g,arguments[f],true)}}return k}this.getBody=function(){return document.getElementsByTagName("body")[0]||null};this.querySelectorAll=function(f){return window.parseSelector(f)};this.addClass=function(f,g){if(g){g.className=((g.className||"")==""?"":g.className+" ")+f}};this.removeClass=function(f,g){if(g){g.className=g.className.replace(new RegExp("(^|\\s)"+f+"(\\s|$)"),"").replace(/^\s+|(\s)\s+/g,"$1")}};this.hasClass=function(f,g){return new RegExp("(^|\\s)"+f+"(\\s|$)").test(g.className)};this.hasOneOfClassses=function(h,g){for(var f=0;f<h.length;f++){if(this.hasClass(h[f],g)){return true}}return false};this.ancestorHasClass=function(g,f){g=g.parentNode;while(g&&g.nodeType==1){if(this.hasClass(f,g)){return true}g=g.parentNode}return false};this.create=function(f,g){var h=document.createElementNS?document.createElementNS(U.XHTML_NS,f):document.createElement(f);if(g){h.className=g}return h};this.getComputedStyle=function(h,i){var f;if(document.defaultView&&document.defaultView.getComputedStyle){var g=document.defaultView.getComputedStyle(h,null);f=g?g[i]:null}else{if(h.currentStyle){f=h.currentStyle[i]}}return f||""};this.getStyleAsInt=function(g,i,f){var h=this.getComputedStyle(g,i);if(f&&!/px$/.test(h)){return 0}return parseInt(h)||0};this.getWidthFromStyle=function(f){return c(f,"width","offsetWidth","paddingRight","paddingLeft","borderRightWidth","borderLeftWidth")};this.getHeightFromStyle=function(f){return c(f,"height","offsetHeight","paddingTop","paddingBottom","borderTopWidth","borderBottomWidth")};this.getDimensions=function(j){var h=j.offsetWidth;var f=j.offsetHeight;if(h==0||f==0){for(var g=0;g<j.childNodes.length;g++){var k=j.childNodes[g];if(k.nodeType!=1){continue}h=Math.max(h,k.offsetWidth);f=Math.max(f,k.offsetHeight)}}return{width:h,height:f}};this.getViewport=function(){return{width:window.innerWidth||document.documentElement.clientWidth||this.getBody().clientWidth,height:window.innerHeight||document.documentElement.clientHeight||this.getBody().clientHeight}};this.blurElement=function(g){try{g.blur();return}catch(h){}var f=this.create("input");f.style.width="0px";f.style.height="0px";g.parentNode.appendChild(f);f.focus();f.blur();f.parentNode.removeChild(f)}}U.XHTML_NS="http://www.w3.org/1999/xhtml";function H(r){var g=navigator.userAgent.toLowerCase();var q=(navigator.product||"").toLowerCase();var h=navigator.platform.toLowerCase();this.parseVersion=H.parseVersion;this.macintosh=/^mac/.test(h);this.windows=/^win/.test(h);this.linux=/^linux/.test(h);this.quicktime=false;this.opera=/opera/.test(g);this.konqueror=/konqueror/.test(g);this.ie=false/*@cc_on||true@*/;this.ieSupported=this.ie&&!/ppc|smartphone|iemobile|msie\s5\.5/.test(g)/*@cc_on&&@_jscript_version>=5.5@*/;this.ieWin=this.ie&&this.windows/*@cc_on&&@_jscript_version>=5.1@*/;this.windows=this.windows&&(!this.ie||this.ieWin);this.ieMac=this.ie&&this.macintosh/*@cc_on&&@_jscript_version<5.1@*/;this.macintosh=this.macintosh&&(!this.ie||this.ieMac);this.safari=/safari/.test(g);this.webkit=!this.konqueror&&/applewebkit/.test(g);this.khtml=this.webkit||this.konqueror;this.gecko=!this.khtml&&q=="gecko";this.ieVersion=this.ie&&/.*msie\s(\d\.\d)/.exec(g)?this.parseVersion(RegExp.$1):"0";this.operaVersion=this.opera&&/.*opera(\s|\/)(\d+\.\d+)/.exec(g)?this.parseVersion(RegExp.$2):"0";this.webkitVersion=this.webkit&&/.*applewebkit\/(\d+).*/.exec(g)?this.parseVersion(RegExp.$1):"0";this.geckoVersion=this.gecko&&/.*rv:\s*([^\)]+)\)\s+gecko/.exec(g)?this.parseVersion(RegExp.$1):"0";this.konquerorVersion=this.konqueror&&/.*konqueror\/([\d\.]+).*/.exec(g)?this.parseVersion(RegExp.$1):"0";this.flashVersion=0;if(this.ieWin){var l;var o=false;try{l=new ActiveXObject("ShockwaveFlash.ShockwaveFlash.7")}catch(m){try{l=new ActiveXObject("ShockwaveFlash.ShockwaveFlash.6");this.flashVersion=this.parseVersion("6");l.AllowScriptAccess="always"}catch(m){o=this.flashVersion==this.parseVersion("6")}if(!o){try{l=new ActiveXObject("ShockwaveFlash.ShockwaveFlash")}catch(m){}}}if(!o&&l){this.flashVersion=this.parseVersion((l.GetVariable("$version")||"").replace(/^\D+(\d+)\D+(\d+)\D+(\d+).*/g,"$1.$2.$3"))}}else{if(navigator.plugins&&navigator.plugins["Shockwave Flash"]){var n=navigator.plugins["Shockwave Flash"].description.replace(/^.*\s+(\S+\s+\S+$)/,"$1");var p=n.replace(/^\D*(\d+\.\d+).*$/,"$1");if(/r/.test(n)){p+=n.replace(/^.*r(\d*).*$/,".$1")}else{if(/d/.test(n)){p+=".0"}}this.flashVersion=this.parseVersion(p);var j=false;for(var k=0,c=this.flashVersion>=H.MIN_FLASH_VERSION;c&&k<navigator.mimeTypes.length;k++){var f=navigator.mimeTypes[k];if(f.type!="application/x-shockwave-flash"){continue}if(f.enabledPlugin){j=true;if(f.enabledPlugin.description.toLowerCase().indexOf("quicktime")>-1){c=false;this.quicktime=true}}}if(this.quicktime||!j){this.flashVersion=this.parseVersion("0")}}}this.flash=this.flashVersion>=H.MIN_FLASH_VERSION;this.transparencySupport=this.macintosh||this.windows||this.linux&&(this.flashVersion>=this.parseVersion("10")&&(this.gecko&&this.geckoVersion>=this.parseVersion("1.9")||this.opera));this.computedStyleSupport=this.ie||!!document.defaultView.getComputedStyle;this.fixFocus=this.gecko&&this.windows;this.nativeDomLoaded=this.gecko||this.webkit&&this.webkitVersion>=this.parseVersion("525")||this.konqueror&&this.konquerorMajor>this.parseVersion("03")||this.opera;this.mustCheckStyle=this.khtml||this.opera;this.forcePageLoad=this.webkit&&this.webkitVersion<this.parseVersion("523");this.properDocument=typeof(document.location)=="object";this.supported=this.flash&&this.properDocument&&(!this.ie||this.ieSupported)&&this.computedStyleSupport&&(!this.opera||this.operaVersion>=this.parseVersion("9.61"))&&(!this.webkit||this.webkitVersion>=this.parseVersion("412"))&&(!this.gecko||this.geckoVersion>=this.parseVersion("1.8.0.12"))&&(!this.konqueror)}H.parseVersion=function(c){return c.replace(/(^|\D)(\d+)(?=\D|$)/g,function(f,e,g){f=e;for(var d=4-g.length;d>=0;d--){f+="0"}return f+g})};H.MIN_FLASH_VERSION=H.parseVersion("8");function F(c){this.fix=c.ua.ieWin&&window.location.hash!="";var d;this.cache=function(){d=document.title};function e(){document.title=d}this.restore=function(){if(this.fix){setTimeout(e,0)}}}function S(l){var e=null;function c(){try{if(l.ua.ie||document.readyState!="loaded"&&document.readyState!="complete"){document.documentElement.doScroll("left")}}catch(n){return setTimeout(c,10)}i()}function i(){if(l.useStyleCheck){h()}else{if(!l.ua.mustCheckStyle){d(null,true)}}}function h(){e=l.dom.create("div",E.DUMMY);l.dom.getBody().appendChild(e);m()}function m(){if(l.dom.getComputedStyle(e,"marginLeft")=="42px"){g()}else{setTimeout(m,10)}}function g(){if(e&&e.parentNode){e.parentNode.removeChild(e)}e=null;d(null,true)}function d(n,o){l.initialize(o);if(n&&n.type=="load"){if(document.removeEventListener){document.removeEventListener("DOMContentLoaded",d,false)}if(window.removeEventListener){window.removeEventListener("load",d,false)}}}function j(){l.prepareClearReferences();if(document.readyState=="interactive"){document.attachEvent("onstop",f);setTimeout(function(){document.detachEvent("onstop",f)},0)}}function f(){document.detachEvent("onstop",f);k()}function k(){l.clearReferences()}this.attach=function(){if(window.addEventListener){window.addEventListener("load",d,false)}else{window.attachEvent("onload",d)}if(!l.useDomLoaded||l.ua.forcePageLoad||l.ua.ie&&window.top!=window){return}if(l.ua.nativeDomLoaded){document.addEventListener("DOMContentLoaded",i,false)}else{if(l.ua.ie||l.ua.khtml){c()}}};this.attachUnload=function(){if(!l.ua.ie){return}window.attachEvent("onbeforeunload",j);window.attachEvent("onunload",k)}}var Q="sifrFetch";function N(c){var e=false;this.fetchMovies=function(f){if(c.setPrefetchCookie&&new RegExp(";?"+Q+"=true;?").test(document.cookie)){return}try{e=true;d(f)}catch(g){}if(c.setPrefetchCookie){document.cookie=Q+"=true;path="+c.cookiePath}};this.clear=function(){if(!e){return}try{var f=document.getElementsByTagName("script");for(var g=f.length-1;g>=0;g--){var h=f[g];if(h.type=="sifr/prefetch"){h.parentNode.removeChild(h)}}}catch(j){}};function d(f){for(var g=0;g<f.length;g++){document.write('<script defer type="sifr/prefetch" src="'+f[g].src+'"><\/script>')}}}function b(e){var g=e.ua.ie;var f=g&&e.ua.flashVersion<e.ua.parseVersion("9.0.115");var d={};var c={};this.fixFlash=f;this.register=function(h){if(!g){return}var i=h.getAttribute("id");this.cleanup(i,false);c[i]=h;delete d[i];if(f){window[i]=h}};this.reset=function(){if(!g){return false}for(var j=0;j<e.replacements.length;j++){var h=e.replacements[j];var k=c[h.id];if(!d[h.id]&&(!k.parentNode||k.parentNode.nodeType==11)){h.resetMovie();d[h.id]=true}}return true};this.cleanup=function(l,h){var i=c[l];if(!i){return}for(var k in i){if(typeof(i[k])=="function"){i[k]=null}}c[l]=null;if(f){window[l]=null}if(i.parentNode){if(h&&i.parentNode.nodeType==1){var j=document.createElement("div");j.style.width=i.offsetWidth+"px";j.style.height=i.offsetHeight+"px";i.parentNode.replaceChild(j,i)}else{i.parentNode.removeChild(i)}}};this.prepareClearReferences=function(){if(!f){return}__flash_unloadHandler=function(){};__flash_savedUnloadHandler=function(){}};this.clearReferences=function(){if(f){var j=document.getElementsByTagName("object");for(var h=j.length-1;h>=0;h--){c[j[h].getAttribute("id")]=j[h]}}for(var k in c){if(Object.prototype[k]!=c[k]){this.cleanup(k,true)}}}}function K(d,g,f,c,e){this.sIFR=d;this.id=g;this.vars=f;this.movie=null;this.__forceWidth=c;this.__events=e;this.__resizing=0}K.prototype={getFlashElement:function(){return document.getElementById(this.id)},getAlternate:function(){return document.getElementById(this.id+"_alternate")},getAncestor:function(){var c=this.getFlashElement().parentNode;return !this.sIFR.dom.hasClass(E.FIX_FOCUS,c)?c:c.parentNode},available:function(){var c=this.getFlashElement();return c&&c.parentNode},call:function(c){var d=this.getFlashElement();if(!d[c]){return false}return Function.prototype.apply.call(d[c],d,Array.prototype.slice.call(arguments,1))},attempt:function(){if(!this.available()){return false}try{this.call.apply(this,arguments)}catch(c){if(this.sIFR.debug){throw c}return false}return true},updateVars:function(c,e){for(var d=0;d<this.vars.length;d++){if(this.vars[d].split("=")[0]==c){this.vars[d]=c+"="+e;break}}var f=this.sIFR.util.encodeVars(this.vars);this.movie.injectVars(this.getFlashElement(),f);this.movie.injectVars(this.movie.html,f)},storeSize:function(c,d){this.movie.setSize(c,d);this.updateVars(c,d)},fireEvent:function(c){if(this.available()&&this.__events[c]){this.sIFR.util.delay(0,this.__events[c],this,this)}},resizeFlashElement:function(c,d,e){if(!this.available()){return}this.__resizing++;var f=this.getFlashElement();f.setAttribute("height",c);this.getAncestor().style.minHeight="";this.updateVars("renderheight",c);this.storeSize("height",c);if(d!==null){f.setAttribute("width",d);this.movie.setSize("width",d)}if(this.__events.onReplacement){this.sIFR.util.delay(0,this.__events.onReplacement,this,this);delete this.__events.onReplacement}if(e){this.sIFR.util.delay(0,function(){this.attempt("scaleMovie");this.__resizing--},this)}else{this.__resizing--}},blurFlashElement:function(){if(this.available()){this.sIFR.dom.blurElement(this.getFlashElement())}},resetMovie:function(){this.sIFR.util.delay(0,this.movie.reset,this.movie,this.getFlashElement(),this.getAlternate())},resizeAfterScale:function(){if(this.available()&&this.__resizing==0){this.sIFR.util.delay(0,this.resize,this)}},resize:function(){if(!this.available()){return}this.__resizing++;var g=this.getFlashElement();var f=g.offsetWidth;if(f==0){return}var e=g.getAttribute("width");var l=g.getAttribute("height");var m=this.getAncestor();var o=this.sIFR.dom.getHeightFromStyle(m);g.style.width="1px";g.style.height="1px";m.style.minHeight=o+"px";var c=this.getAlternate().childNodes;var n=[];for(var k=0;k<c.length;k++){var h=c[k].cloneNode(true);n.push(h);m.appendChild(h)}var d=this.sIFR.dom.getWidthFromStyle(m);for(var k=0;k<n.length;k++){m.removeChild(n[k])}g.style.width=g.style.height=m.style.minHeight="";g.setAttribute("width",this.__forceWidth?d:e);g.setAttribute("height",l);if(sIFR.ua.ie){g.style.display="none";var j=g.offsetHeight;g.style.display=""}if(d!=f){if(this.__forceWidth){this.storeSize("width",d)}this.attempt("resize",d)}this.__resizing--},replaceText:function(g,j){var d=this.sIFR.util.escape(g);if(!this.attempt("replaceText",d)){return false}this.updateVars("content",d);var f=this.getAlternate();if(j){while(f.firstChild){f.removeChild(f.firstChild)}for(var c=0;c<j.length;c++){f.appendChild(j[c])}}else{try{f.innerHTML=g}catch(h){}}return true},changeCSS:function(c){c=this.sIFR.util.escape(this.sIFR.util.cssToString(this.sIFR.util.convertCssArg(c)));this.updateVars("css",c);return this.attempt("changeCSS",c)},remove:function(){if(this.movie&&this.available()){this.movie.remove(this.getFlashElement(),this.id)}}};var X=new function(){this.create=function(p,n,j,i,f,e,g,o,l,h,m){var k=p.ua.ie?d:c;return new k(p,n,j,i,f,e,g,o,["flashvars",l,"wmode",h,"bgcolor",m,"allowScriptAccess","always","quality","best"])};function c(s,q,l,h,f,e,g,r,n){var m=s.dom.create("object",E.FLASH);var p=["type","application/x-shockwave-flash","id",f,"name",f,"data",e,"width",g,"height",r];for(var o=0;o<p.length;o+=2){m.setAttribute(p[o],p[o+1])}var j=m;if(h){j=W.create("div",E.FIX_FOCUS);j.appendChild(m)}for(var o=0;o<n.length;o+=2){if(n[o]=="name"){continue}var k=W.create("param");k.setAttribute("name",n[o]);k.setAttribute("value",n[o+1]);m.appendChild(k)}l.style.minHeight=r+"px";while(l.firstChild){l.removeChild(l.firstChild)}l.appendChild(j);this.html=j.cloneNode(true)}c.prototype={reset:function(e,f){e.parentNode.replaceChild(this.html.cloneNode(true),e)},remove:function(e,f){e.parentNode.removeChild(e)},setSize:function(e,f){this.html.setAttribute(e,f)},injectVars:function(e,g){var h=e.getElementsByTagName("param");for(var f=0;f<h.length;f++){if(h[f].getAttribute("name")=="flashvars"){h[f].setAttribute("value",g);break}}}};function d(p,n,j,h,f,e,g,o,k){this.dom=p.dom;this.broken=n;this.html='<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" id="'+f+'" width="'+g+'" height="'+o+'" class="'+E.FLASH+'"><param name="movie" value="'+e+'"></param></object>';var m="";for(var l=0;l<k.length;l+=2){m+='<param name="'+k[l]+'" value="'+k[l+1]+'"></param>'}this.html=this.html.replace(/(<\/object>)/,m+"$1");j.style.minHeight=o+"px";j.innerHTML=this.html;this.broken.register(j.firstChild)}d.prototype={reset:function(f,g){g=g.cloneNode(true);var e=f.parentNode;e.innerHTML=this.html;this.broken.register(e.firstChild);e.appendChild(g)},remove:function(e,f){this.broken.cleanup(f)},setSize:function(e,f){this.html=this.html.replace(e=="height"?/(height)="\d+"/:/(width)="\d+"/,'$1="'+f+'"')},injectVars:function(e,f){if(e!=this.html){return}this.html=this.html.replace(/(flashvars(=|\"\svalue=)\")[^\"]+/,"$1"+f)}}};this.errors=new Y(O);var A=this.util=new D(O);var W=this.dom=new U(O);var T=this.ua=new H(O);var G={fragmentIdentifier:new F(O),pageLoad:new S(O),prefetch:new N(O),brokenFlashIE:new b(O)};this.__resetBrokenMovies=G.brokenFlashIE.reset;var J={kwargs:[],replaceAll:function(d){for(var c=0;c<this.kwargs.length;c++){O.replace(this.kwargs[c])}if(!d){this.kwargs=[]}}};this.activate=function(){if(!T.supported||!this.isEnabled||this.isActive||!C()||a()){return}G.prefetch.fetchMovies(arguments);this.isActive=true;this.setFlashClass();G.fragmentIdentifier.cache();G.pageLoad.attachUnload();if(!this.autoInitialize){return}G.pageLoad.attach()};this.setFlashClass=function(){if(this.hasFlashClassSet){return}W.addClass(E.ACTIVE,W.getBody()||document.documentElement);this.hasFlashClassSet=true};this.removeFlashClass=function(){if(!this.hasFlashClassSet){return}W.removeClass(E.ACTIVE,W.getBody());W.removeClass(E.ACTIVE,document.documentElement);this.hasFlashClassSet=false};this.initialize=function(c){if(!this.isActive||!this.isEnabled){return}if(R){if(!c){J.replaceAll(false)}return}R=true;J.replaceAll(c);if(O.repaintOnResize){if(window.addEventListener){window.addEventListener("resize",Z,false)}else{window.attachEvent("onresize",Z)}}G.prefetch.clear()};this.replace=function(x,u){if(!T.supported){return}if(u){x=A.copyProperties(x,u)}if(!R){return J.kwargs.push(x)}if(this.onReplacementStart){this.onReplacementStart(x)}var AM=x.elements||W.querySelectorAll(x.selector);if(AM.length==0){return}var w=M(x.src);var AR=A.convertCssArg(x.css);var v=B(x.filters);var AN=x.forceSingleLine===true;var AS=x.preventWrap===true&&!AN;var q=AN||(x.fitExactly==null?this.fitExactly:x.fitExactly)===true;var AD=q||(x.forceWidth==null?this.forceWidth:x.forceWidth)===true;var s=x.ratios||[];var AE=x.pixelFont===true;var r=parseInt(x.tuneHeight)||0;var z=!!x.onRelease||!!x.onRollOver||!!x.onRollOut;if(q){A.extractFromCss(AR,".sIFR-root","text-align",true)}var t=A.extractFromCss(AR,".sIFR-root","font-size",true)||"0";var e=A.extractFromCss(AR,".sIFR-root","background-color",true)||"#FFFFFF";var o=A.extractFromCss(AR,".sIFR-root","kerning",true)||"";var AW=A.extractFromCss(AR,".sIFR-root","opacity",true)||"100";var k=A.extractFromCss(AR,".sIFR-root","cursor",true)||"default";var AP=parseInt(A.extractFromCss(AR,".sIFR-root","leading"))||0;var AJ=x.gridFitType||(A.extractFromCss(AR,".sIFR-root","text-align")=="right")?"subpixel":"pixel";var h=this.forceTextTransform===false?"none":A.extractFromCss(AR,".sIFR-root","text-transform",true)||"none";t=/^\d+(px)?$/.test(t)?parseInt(t):0;AW=parseFloat(AW)<1?100*parseFloat(AW):AW;var AC=x.modifyCss?"":A.cssToString(AR);var AG=x.wmode||"";if(!AG){if(x.transparent){AG="transparent"}else{if(x.opaque){AG="opaque"}}}if(AG=="transparent"){if(!T.transparencySupport){AG="opaque"}else{e="transparent"}}else{if(e=="transparent"){e="#FFFFFF"}}for(var AV=0;AV<AM.length;AV++){var AF=AM[AV];if(W.hasOneOfClassses(E.IGNORE_CLASSES,AF)||W.ancestorHasClass(AF,E.ALTERNATE)){continue}var AO=W.getDimensions(AF);var f=AO.height;var c=AO.width;var AA=W.getComputedStyle(AF,"display");if(!f||!c||!AA||AA=="none"){continue}c=W.getWidthFromStyle(AF);var n,AH;if(!t){var AL=I(AF);n=Math.min(this.MAX_FONT_SIZE,Math.max(this.MIN_FONT_SIZE,AL.fontSize));if(AE){n=Math.max(8,8*Math.round(n/8))}AH=AL.lines}else{n=t;AH=1}var d=W.create("span",E.ALTERNATE);var AX=AF.cloneNode(true);AF.parentNode.appendChild(AX);for(var AU=0,AT=AX.childNodes.length;AU<AT;AU++){var m=AX.childNodes[AU];if(!/^(style|script)$/i.test(m.nodeName)){d.appendChild(m.cloneNode(true))}}if(x.modifyContent){x.modifyContent(AX,x.selector)}if(x.modifyCss){AC=x.modifyCss(AR,AX,x.selector)}var p=P(AX,h,x.uriEncode);AX.parentNode.removeChild(AX);if(x.modifyContentString){p.text=x.modifyContentString(p.text,x.selector)}if(p.text==""){continue}var AK=Math.round(AH*V(n,s)*n)+this.FLASH_PADDING_BOTTOM+r;if(AH>1&&AP){AK+=Math.round((AH-1)*AP)}var AB=AD?c:"100%";var AI="sIFR_replacement_"+L++;var AQ=["id="+AI,"content="+A.escape(p.text),"width="+c,"renderheight="+AK,"link="+A.escape(p.primaryLink.href||""),"target="+A.escape(p.primaryLink.target||""),"size="+n,"css="+A.escape(AC),"cursor="+k,"tunewidth="+(x.tuneWidth||0),"tuneheight="+r,"offsetleft="+(x.offsetLeft||""),"offsettop="+(x.offsetTop||""),"fitexactly="+q,"preventwrap="+AS,"forcesingleline="+AN,"antialiastype="+(x.antiAliasType||""),"thickness="+(x.thickness||""),"sharpness="+(x.sharpness||""),"kerning="+o,"gridfittype="+AJ,"flashfilters="+v,"opacity="+AW,"blendmode="+(x.blendMode||""),"selectable="+(x.selectable==null||AG!=""&&!sIFR.ua.macintosh&&sIFR.ua.gecko&&sIFR.ua.geckoVersion>=sIFR.ua.parseVersion("1.9")?"true":x.selectable===true),"fixhover="+(this.fixHover===true),"events="+z,"delayrun="+G.brokenFlashIE.fixFlash,"version="+this.VERSION];var y=A.encodeVars(AQ);var g=new K(O,AI,AQ,AD,{onReplacement:x.onReplacement,onRollOver:x.onRollOver,onRollOut:x.onRollOut,onRelease:x.onRelease});g.movie=X.create(sIFR,G.brokenFlashIE,AF,T.fixFocus&&x.fixFocus,AI,w,AB,AK,y,AG,e);this.replacements.push(g);this.replacements[AI]=g;if(x.selector){if(!this.replacements[x.selector]){this.replacements[x.selector]=[g]}else{this.replacements[x.selector].push(g)}}d.setAttribute("id",AI+"_alternate");AF.appendChild(d);W.addClass(E.REPLACED,AF)}G.fragmentIdentifier.restore()};this.getReplacementByFlashElement=function(d){for(var c=0;c<O.replacements.length;c++){if(O.replacements[c].id==d.getAttribute("id")){return O.replacements[c]}}};this.redraw=function(){for(var c=0;c<O.replacements.length;c++){O.replacements[c].resetMovie()}};this.prepareClearReferences=function(){G.brokenFlashIE.prepareClearReferences()};this.clearReferences=function(){G.brokenFlashIE.clearReferences();G=null;J=null;delete O.replacements};function C(){if(O.domains.length==0){return true}var d=A.domain();for(var c=0;c<O.domains.length;c++){if(A.domainMatches(d,O.domains[c])){return true}}return false}function a(){if(document.location.protocol=="file:"){if(O.debug){O.errors.fire("isFile")}return true}return false}function M(c){if(T.ie&&c.charAt(0)=="/"){c=window.location.toString().replace(/([^:]+)(:\/?\/?)([^\/]+).*/,"$1$2$3")+c}return c}function V(d,e){for(var c=0;c<e.length;c+=2){if(d<=e[c]){return e[c+1]}}return e[e.length-1]||1}function B(g){var e=[];for(var d in g){if(g[d]==Object.prototype[d]){continue}var c=g[d];d=[d.replace(/filter/i,"")+"Filter"];for(var f in c){if(c[f]==Object.prototype[f]){continue}d.push(f+":"+A.escape(A.toJson(c[f],A.toHexString)))}e.push(d.join(","))}return A.escape(e.join(";"))}function Z(d){var e=Z.viewport;var c=W.getViewport();if(e&&c.width==e.width&&c.height==e.height){return}Z.viewport=c;if(O.replacements.length==0){return}if(Z.timer){clearTimeout(Z.timer)}Z.timer=setTimeout(function(){delete Z.timer;for(var f=0;f<O.replacements.length;f++){O.replacements[f].resize()}},200)}function I(f){var g=W.getComputedStyle(f,"fontSize");var d=g.indexOf("px")==-1;var e=f.innerHTML;if(d){f.innerHTML="X"}f.style.paddingTop=f.style.paddingBottom=f.style.borderTopWidth=f.style.borderBottomWidth="0px";f.style.lineHeight="2em";f.style.display="block";g=d?f.offsetHeight/2:parseInt(g,10);if(d){f.innerHTML=e}var c=Math.round(f.offsetHeight/(2*g));f.style.paddingTop=f.style.paddingBottom=f.style.borderTopWidth=f.style.borderBottomWidth=f.style.lineHeight=f.style.display="";if(isNaN(c)||!isFinite(c)||c==0){c=1}return{fontSize:g,lines:c}}function P(c,g,s){s=s||A.uriEncode;var q=[],m=[];var k=null;var e=c.childNodes;var o=false,p=false;var j=0;while(j<e.length){var f=e[j];if(f.nodeType==3){var t=A.textTransform(g,A.normalize(f.nodeValue)).replace(/</g,"&lt;");if(o&&p){t=t.replace(/^\s+/,"")}m.push(t);o=/\s$/.test(t);p=false}if(f.nodeType==1&&!/^(style|script)$/i.test(f.nodeName)){var h=[];var r=f.nodeName.toLowerCase();var n=f.className||"";if(/\s+/.test(n)){if(n.indexOf(E.CLASS)>-1){n=n.match("(\\s|^)"+E.CLASS+"-([^\\s$]*)(\\s|$)")[2]}else{n=n.match(/^([^\s]+)/)[1]}}if(n!=""){h.push('class="'+n+'"')}if(r=="a"){var d=s(f.getAttribute("href")||"");var l=f.getAttribute("target")||"";h.push('href="'+d+'"','target="'+l+'"');if(!k){k={href:d,target:l}}}m.push("<"+r+(h.length>0?" ":"")+h.join(" ")+">");p=true;if(f.hasChildNodes()){q.push(j);j=0;e=f.childNodes;continue}else{if(!/^(br|img)$/i.test(f.nodeName)){m.push("</",f.nodeName.toLowerCase(),">")}}}if(q.length>0&&!f.nextSibling){do{j=q.pop();e=f.parentNode.parentNode.childNodes;f=e[j];if(f){m.push("</",f.nodeName.toLowerCase(),">")}}while(j==e.length-1&&q.length>0)}j++}return{text:m.join("").replace(/^\s+|\s+$|\s*(<br>)\s*/g,"$1"),primaryLink:k||{}}}}; var parseSelector=(function(){var B=/\s*,\s*/;var A=/\s*([\s>+~(),]|^|$)\s*/g;var L=/([\s>+~,]|[^(]\+|^)([#.:@])/g;var F=/(^|\))[^\s>+~]/g;var M=/(\)|^)/;var K=/[\s#.:>+~()@]|[^\s#.:>+~()@]+/g;function H(R,P){P=P||document.documentElement;var S=R.split(B),X=[];for(var U=0;U<S.length;U++){var N=[P],W=G(S[U]);for(var T=0;T<W.length;){var Q=W[T++],O=W[T++],V="";if(W[T]=="("){while(W[T++]!=")"&&T<W.length){V+=W[T]}V=V.slice(0,-1)}N=I(N,Q,O,V)}X=X.concat(N)}return X}function G(N){var O=N.replace(A,"$1").replace(L,"$1*$2").replace(F,D);return O.match(K)||[]}function D(N){return N.replace(M,"$1 ")}function I(N,P,Q,O){return(H.selectors[P])?H.selectors[P](N,Q,O):[]}var E={toArray:function(O){var N=[];for(var P=0;P<O.length;P++){N.push(O[P])}return N}};var C={isTag:function(O,N){return(N=="*")||(N.toLowerCase()==O.nodeName.toLowerCase())},previousSiblingElement:function(N){do{N=N.previousSibling}while(N&&N.nodeType!=1);return N},nextSiblingElement:function(N){do{N=N.nextSibling}while(N&&N.nodeType!=1);return N},hasClass:function(N,O){return(O.className||"").match("(^|\\s)"+N+"(\\s|$)")},getByTag:function(N,O){return O.getElementsByTagName(N)}};var J={"#":function(N,P){for(var O=0;O<N.length;O++){if(N[O].getAttribute("id")==P){return[N[O]]}}return[]}," ":function(O,Q){var N=[];for(var P=0;P<O.length;P++){N=N.concat(E.toArray(C.getByTag(Q,O[P])))}return N},">":function(O,R){var N=[];for(var Q=0,S;Q<O.length;Q++){S=O[Q];for(var P=0,T;P<S.childNodes.length;P++){T=S.childNodes[P];if(T.nodeType==1&&C.isTag(T,R)){N.push(T)}}}return N},".":function(O,Q){var N=[];for(var P=0,R;P<O.length;P++){R=O[P];if(C.hasClass([Q],R)){N.push(R)}}return N},":":function(N,P,O){return(H.pseudoClasses[P])?H.pseudoClasses[P](N,O):[]}};H.selectors=J;H.pseudoClasses={};H.util=E;H.dom=C;return H})();
schemaish
/schemaish-0.5.6.tar.gz/schemaish-0.5.6/docs-build/.static/js/sifr.js
sifr.js
var sIFR=new function(){var O=this;var E={ACTIVE:"sIFR-active",REPLACED:"sIFR-replaced",IGNORE:"sIFR-ignore",ALTERNATE:"sIFR-alternate",CLASS:"sIFR-class",LAYOUT:"sIFR-layout",FLASH:"sIFR-flash",FIX_FOCUS:"sIFR-fixfocus",DUMMY:"sIFR-dummy"};E.IGNORE_CLASSES=[E.REPLACED,E.IGNORE,E.ALTERNATE];this.MIN_FONT_SIZE=6;this.MAX_FONT_SIZE=126;this.FLASH_PADDING_BOTTOM=5;this.VERSION="436";this.isActive=false;this.isEnabled=true;this.fixHover=true;this.autoInitialize=true;this.setPrefetchCookie=true;this.cookiePath="/";this.domains=[];this.forceWidth=true;this.fitExactly=false;this.forceTextTransform=true;this.useDomLoaded=true;this.useStyleCheck=false;this.hasFlashClassSet=false;this.repaintOnResize=true;this.replacements=[];var L=0;var R=false;function Y(){}function D(c){function d(e){return e.toLocaleUpperCase()}this.normalize=function(e){return e.replace(/\n|\r|\xA0/g,D.SINGLE_WHITESPACE).replace(/\s+/g,D.SINGLE_WHITESPACE)};this.textTransform=function(e,f){switch(e){case"uppercase":return f.toLocaleUpperCase();case"lowercase":return f.toLocaleLowerCase();case"capitalize":return f.replace(/^\w|\s\w/g,d)}return f};this.toHexString=function(e){if(e.charAt(0)!="#"||e.length!=4&&e.length!=7){return e}e=e.substring(1);return"0x"+(e.length==3?e.replace(/(.)(.)(.)/,"$1$1$2$2$3$3"):e)};this.toJson=function(g,f){var e="";switch(typeof(g)){case"string":e='"'+f(g)+'"';break;case"number":case"boolean":e=g.toString();break;case"object":e=[];for(var h in g){if(g[h]==Object.prototype[h]){continue}e.push('"'+h+'":'+this.toJson(g[h]))}e="{"+e.join(",")+"}";break}return e};this.convertCssArg=function(e){if(!e){return{}}if(typeof(e)=="object"){if(e.constructor==Array){e=e.join("")}else{return e}}var l={};var m=e.split("}");for(var h=0;h<m.length;h++){var k=m[h].match(/([^\s{]+)\s*\{(.+)\s*;?\s*/);if(!k||k.length!=3){continue}if(!l[k[1]]){l[k[1]]={}}var g=k[2].split(";");for(var f=0;f<g.length;f++){var n=g[f].match(/\s*([^:\s]+)\s*\:\s*([^;]+)/);if(!n||n.length!=3){continue}l[k[1]][n[1]]=n[2].replace(/\s+$/,"")}}return l};this.extractFromCss=function(g,f,i,e){var h=null;if(g&&g[f]&&g[f][i]){h=g[f][i];if(e){delete g[f][i]}}return h};this.cssToString=function(f){var g=[];for(var e in f){var j=f[e];if(j==Object.prototype[e]){continue}g.push(e,"{");for(var i in j){if(j[i]==Object.prototype[i]){continue}var h=j[i];if(D.UNIT_REMOVAL_PROPERTIES[i]){h=parseInt(h,10)}g.push(i,":",h,";")}g.push("}")}return g.join("")};this.escape=function(e){return escape(e).replace(/\+/g,"%2B")};this.encodeVars=function(e){return e.join("&").replace(/%/g,"%25")};this.copyProperties=function(g,f){for(var e in g){if(f[e]===undefined){f[e]=g[e]}}return f};this.domain=function(){var f="";try{f=document.domain}catch(g){}return f};this.domainMatches=function(h,g){if(g=="*"||g==h){return true}var f=g.lastIndexOf("*");if(f>-1){g=g.substr(f+1);var e=h.lastIndexOf(g);if(e>-1&&(e+g.length)==h.length){return true}}return false};this.uriEncode=function(e){return encodeURI(decodeURIComponent(e))};this.delay=function(f,h,g){var e=Array.prototype.slice.call(arguments,3);setTimeout(function(){h.apply(g,e)},f)}}D.UNIT_REMOVAL_PROPERTIES={leading:true,"margin-left":true,"margin-right":true,"text-indent":true};D.SINGLE_WHITESPACE=" ";function U(e){var d=this;function c(g,j,h){var k=d.getStyleAsInt(g,j,e.ua.ie);if(k==0){k=g[h];for(var f=3;f<arguments.length;f++){k-=d.getStyleAsInt(g,arguments[f],true)}}return k}this.getBody=function(){return document.getElementsByTagName("body")[0]||null};this.querySelectorAll=function(f){return window.parseSelector(f)};this.addClass=function(f,g){if(g){g.className=((g.className||"")==""?"":g.className+" ")+f}};this.removeClass=function(f,g){if(g){g.className=g.className.replace(new RegExp("(^|\\s)"+f+"(\\s|$)"),"").replace(/^\s+|(\s)\s+/g,"$1")}};this.hasClass=function(f,g){return new RegExp("(^|\\s)"+f+"(\\s|$)").test(g.className)};this.hasOneOfClassses=function(h,g){for(var f=0;f<h.length;f++){if(this.hasClass(h[f],g)){return true}}return false};this.ancestorHasClass=function(g,f){g=g.parentNode;while(g&&g.nodeType==1){if(this.hasClass(f,g)){return true}g=g.parentNode}return false};this.create=function(f,g){var h=document.createElementNS?document.createElementNS(U.XHTML_NS,f):document.createElement(f);if(g){h.className=g}return h};this.getComputedStyle=function(h,i){var f;if(document.defaultView&&document.defaultView.getComputedStyle){var g=document.defaultView.getComputedStyle(h,null);f=g?g[i]:null}else{if(h.currentStyle){f=h.currentStyle[i]}}return f||""};this.getStyleAsInt=function(g,i,f){var h=this.getComputedStyle(g,i);if(f&&!/px$/.test(h)){return 0}return parseInt(h)||0};this.getWidthFromStyle=function(f){return c(f,"width","offsetWidth","paddingRight","paddingLeft","borderRightWidth","borderLeftWidth")};this.getHeightFromStyle=function(f){return c(f,"height","offsetHeight","paddingTop","paddingBottom","borderTopWidth","borderBottomWidth")};this.getDimensions=function(j){var h=j.offsetWidth;var f=j.offsetHeight;if(h==0||f==0){for(var g=0;g<j.childNodes.length;g++){var k=j.childNodes[g];if(k.nodeType!=1){continue}h=Math.max(h,k.offsetWidth);f=Math.max(f,k.offsetHeight)}}return{width:h,height:f}};this.getViewport=function(){return{width:window.innerWidth||document.documentElement.clientWidth||this.getBody().clientWidth,height:window.innerHeight||document.documentElement.clientHeight||this.getBody().clientHeight}};this.blurElement=function(g){try{g.blur();return}catch(h){}var f=this.create("input");f.style.width="0px";f.style.height="0px";g.parentNode.appendChild(f);f.focus();f.blur();f.parentNode.removeChild(f)}}U.XHTML_NS="http://www.w3.org/1999/xhtml";function H(r){var g=navigator.userAgent.toLowerCase();var q=(navigator.product||"").toLowerCase();var h=navigator.platform.toLowerCase();this.parseVersion=H.parseVersion;this.macintosh=/^mac/.test(h);this.windows=/^win/.test(h);this.linux=/^linux/.test(h);this.quicktime=false;this.opera=/opera/.test(g);this.konqueror=/konqueror/.test(g);this.ie=false/*@cc_on||true@*/;this.ieSupported=this.ie&&!/ppc|smartphone|iemobile|msie\s5\.5/.test(g)/*@cc_on&&@_jscript_version>=5.5@*/;this.ieWin=this.ie&&this.windows/*@cc_on&&@_jscript_version>=5.1@*/;this.windows=this.windows&&(!this.ie||this.ieWin);this.ieMac=this.ie&&this.macintosh/*@cc_on&&@_jscript_version<5.1@*/;this.macintosh=this.macintosh&&(!this.ie||this.ieMac);this.safari=/safari/.test(g);this.webkit=!this.konqueror&&/applewebkit/.test(g);this.khtml=this.webkit||this.konqueror;this.gecko=!this.khtml&&q=="gecko";this.ieVersion=this.ie&&/.*msie\s(\d\.\d)/.exec(g)?this.parseVersion(RegExp.$1):"0";this.operaVersion=this.opera&&/.*opera(\s|\/)(\d+\.\d+)/.exec(g)?this.parseVersion(RegExp.$2):"0";this.webkitVersion=this.webkit&&/.*applewebkit\/(\d+).*/.exec(g)?this.parseVersion(RegExp.$1):"0";this.geckoVersion=this.gecko&&/.*rv:\s*([^\)]+)\)\s+gecko/.exec(g)?this.parseVersion(RegExp.$1):"0";this.konquerorVersion=this.konqueror&&/.*konqueror\/([\d\.]+).*/.exec(g)?this.parseVersion(RegExp.$1):"0";this.flashVersion=0;if(this.ieWin){var l;var o=false;try{l=new ActiveXObject("ShockwaveFlash.ShockwaveFlash.7")}catch(m){try{l=new ActiveXObject("ShockwaveFlash.ShockwaveFlash.6");this.flashVersion=this.parseVersion("6");l.AllowScriptAccess="always"}catch(m){o=this.flashVersion==this.parseVersion("6")}if(!o){try{l=new ActiveXObject("ShockwaveFlash.ShockwaveFlash")}catch(m){}}}if(!o&&l){this.flashVersion=this.parseVersion((l.GetVariable("$version")||"").replace(/^\D+(\d+)\D+(\d+)\D+(\d+).*/g,"$1.$2.$3"))}}else{if(navigator.plugins&&navigator.plugins["Shockwave Flash"]){var n=navigator.plugins["Shockwave Flash"].description.replace(/^.*\s+(\S+\s+\S+$)/,"$1");var p=n.replace(/^\D*(\d+\.\d+).*$/,"$1");if(/r/.test(n)){p+=n.replace(/^.*r(\d*).*$/,".$1")}else{if(/d/.test(n)){p+=".0"}}this.flashVersion=this.parseVersion(p);var j=false;for(var k=0,c=this.flashVersion>=H.MIN_FLASH_VERSION;c&&k<navigator.mimeTypes.length;k++){var f=navigator.mimeTypes[k];if(f.type!="application/x-shockwave-flash"){continue}if(f.enabledPlugin){j=true;if(f.enabledPlugin.description.toLowerCase().indexOf("quicktime")>-1){c=false;this.quicktime=true}}}if(this.quicktime||!j){this.flashVersion=this.parseVersion("0")}}}this.flash=this.flashVersion>=H.MIN_FLASH_VERSION;this.transparencySupport=this.macintosh||this.windows||this.linux&&(this.flashVersion>=this.parseVersion("10")&&(this.gecko&&this.geckoVersion>=this.parseVersion("1.9")||this.opera));this.computedStyleSupport=this.ie||!!document.defaultView.getComputedStyle;this.fixFocus=this.gecko&&this.windows;this.nativeDomLoaded=this.gecko||this.webkit&&this.webkitVersion>=this.parseVersion("525")||this.konqueror&&this.konquerorMajor>this.parseVersion("03")||this.opera;this.mustCheckStyle=this.khtml||this.opera;this.forcePageLoad=this.webkit&&this.webkitVersion<this.parseVersion("523");this.properDocument=typeof(document.location)=="object";this.supported=this.flash&&this.properDocument&&(!this.ie||this.ieSupported)&&this.computedStyleSupport&&(!this.opera||this.operaVersion>=this.parseVersion("9.61"))&&(!this.webkit||this.webkitVersion>=this.parseVersion("412"))&&(!this.gecko||this.geckoVersion>=this.parseVersion("1.8.0.12"))&&(!this.konqueror)}H.parseVersion=function(c){return c.replace(/(^|\D)(\d+)(?=\D|$)/g,function(f,e,g){f=e;for(var d=4-g.length;d>=0;d--){f+="0"}return f+g})};H.MIN_FLASH_VERSION=H.parseVersion("8");function F(c){this.fix=c.ua.ieWin&&window.location.hash!="";var d;this.cache=function(){d=document.title};function e(){document.title=d}this.restore=function(){if(this.fix){setTimeout(e,0)}}}function S(l){var e=null;function c(){try{if(l.ua.ie||document.readyState!="loaded"&&document.readyState!="complete"){document.documentElement.doScroll("left")}}catch(n){return setTimeout(c,10)}i()}function i(){if(l.useStyleCheck){h()}else{if(!l.ua.mustCheckStyle){d(null,true)}}}function h(){e=l.dom.create("div",E.DUMMY);l.dom.getBody().appendChild(e);m()}function m(){if(l.dom.getComputedStyle(e,"marginLeft")=="42px"){g()}else{setTimeout(m,10)}}function g(){if(e&&e.parentNode){e.parentNode.removeChild(e)}e=null;d(null,true)}function d(n,o){l.initialize(o);if(n&&n.type=="load"){if(document.removeEventListener){document.removeEventListener("DOMContentLoaded",d,false)}if(window.removeEventListener){window.removeEventListener("load",d,false)}}}function j(){l.prepareClearReferences();if(document.readyState=="interactive"){document.attachEvent("onstop",f);setTimeout(function(){document.detachEvent("onstop",f)},0)}}function f(){document.detachEvent("onstop",f);k()}function k(){l.clearReferences()}this.attach=function(){if(window.addEventListener){window.addEventListener("load",d,false)}else{window.attachEvent("onload",d)}if(!l.useDomLoaded||l.ua.forcePageLoad||l.ua.ie&&window.top!=window){return}if(l.ua.nativeDomLoaded){document.addEventListener("DOMContentLoaded",i,false)}else{if(l.ua.ie||l.ua.khtml){c()}}};this.attachUnload=function(){if(!l.ua.ie){return}window.attachEvent("onbeforeunload",j);window.attachEvent("onunload",k)}}var Q="sifrFetch";function N(c){var e=false;this.fetchMovies=function(f){if(c.setPrefetchCookie&&new RegExp(";?"+Q+"=true;?").test(document.cookie)){return}try{e=true;d(f)}catch(g){}if(c.setPrefetchCookie){document.cookie=Q+"=true;path="+c.cookiePath}};this.clear=function(){if(!e){return}try{var f=document.getElementsByTagName("script");for(var g=f.length-1;g>=0;g--){var h=f[g];if(h.type=="sifr/prefetch"){h.parentNode.removeChild(h)}}}catch(j){}};function d(f){for(var g=0;g<f.length;g++){document.write('<script defer type="sifr/prefetch" src="'+f[g].src+'"><\/script>')}}}function b(e){var g=e.ua.ie;var f=g&&e.ua.flashVersion<e.ua.parseVersion("9.0.115");var d={};var c={};this.fixFlash=f;this.register=function(h){if(!g){return}var i=h.getAttribute("id");this.cleanup(i,false);c[i]=h;delete d[i];if(f){window[i]=h}};this.reset=function(){if(!g){return false}for(var j=0;j<e.replacements.length;j++){var h=e.replacements[j];var k=c[h.id];if(!d[h.id]&&(!k.parentNode||k.parentNode.nodeType==11)){h.resetMovie();d[h.id]=true}}return true};this.cleanup=function(l,h){var i=c[l];if(!i){return}for(var k in i){if(typeof(i[k])=="function"){i[k]=null}}c[l]=null;if(f){window[l]=null}if(i.parentNode){if(h&&i.parentNode.nodeType==1){var j=document.createElement("div");j.style.width=i.offsetWidth+"px";j.style.height=i.offsetHeight+"px";i.parentNode.replaceChild(j,i)}else{i.parentNode.removeChild(i)}}};this.prepareClearReferences=function(){if(!f){return}__flash_unloadHandler=function(){};__flash_savedUnloadHandler=function(){}};this.clearReferences=function(){if(f){var j=document.getElementsByTagName("object");for(var h=j.length-1;h>=0;h--){c[j[h].getAttribute("id")]=j[h]}}for(var k in c){if(Object.prototype[k]!=c[k]){this.cleanup(k,true)}}}}function K(d,g,f,c,e){this.sIFR=d;this.id=g;this.vars=f;this.movie=null;this.__forceWidth=c;this.__events=e;this.__resizing=0}K.prototype={getFlashElement:function(){return document.getElementById(this.id)},getAlternate:function(){return document.getElementById(this.id+"_alternate")},getAncestor:function(){var c=this.getFlashElement().parentNode;return !this.sIFR.dom.hasClass(E.FIX_FOCUS,c)?c:c.parentNode},available:function(){var c=this.getFlashElement();return c&&c.parentNode},call:function(c){var d=this.getFlashElement();if(!d[c]){return false}return Function.prototype.apply.call(d[c],d,Array.prototype.slice.call(arguments,1))},attempt:function(){if(!this.available()){return false}try{this.call.apply(this,arguments)}catch(c){if(this.sIFR.debug){throw c}return false}return true},updateVars:function(c,e){for(var d=0;d<this.vars.length;d++){if(this.vars[d].split("=")[0]==c){this.vars[d]=c+"="+e;break}}var f=this.sIFR.util.encodeVars(this.vars);this.movie.injectVars(this.getFlashElement(),f);this.movie.injectVars(this.movie.html,f)},storeSize:function(c,d){this.movie.setSize(c,d);this.updateVars(c,d)},fireEvent:function(c){if(this.available()&&this.__events[c]){this.sIFR.util.delay(0,this.__events[c],this,this)}},resizeFlashElement:function(c,d,e){if(!this.available()){return}this.__resizing++;var f=this.getFlashElement();f.setAttribute("height",c);this.getAncestor().style.minHeight="";this.updateVars("renderheight",c);this.storeSize("height",c);if(d!==null){f.setAttribute("width",d);this.movie.setSize("width",d)}if(this.__events.onReplacement){this.sIFR.util.delay(0,this.__events.onReplacement,this,this);delete this.__events.onReplacement}if(e){this.sIFR.util.delay(0,function(){this.attempt("scaleMovie");this.__resizing--},this)}else{this.__resizing--}},blurFlashElement:function(){if(this.available()){this.sIFR.dom.blurElement(this.getFlashElement())}},resetMovie:function(){this.sIFR.util.delay(0,this.movie.reset,this.movie,this.getFlashElement(),this.getAlternate())},resizeAfterScale:function(){if(this.available()&&this.__resizing==0){this.sIFR.util.delay(0,this.resize,this)}},resize:function(){if(!this.available()){return}this.__resizing++;var g=this.getFlashElement();var f=g.offsetWidth;if(f==0){return}var e=g.getAttribute("width");var l=g.getAttribute("height");var m=this.getAncestor();var o=this.sIFR.dom.getHeightFromStyle(m);g.style.width="1px";g.style.height="1px";m.style.minHeight=o+"px";var c=this.getAlternate().childNodes;var n=[];for(var k=0;k<c.length;k++){var h=c[k].cloneNode(true);n.push(h);m.appendChild(h)}var d=this.sIFR.dom.getWidthFromStyle(m);for(var k=0;k<n.length;k++){m.removeChild(n[k])}g.style.width=g.style.height=m.style.minHeight="";g.setAttribute("width",this.__forceWidth?d:e);g.setAttribute("height",l);if(sIFR.ua.ie){g.style.display="none";var j=g.offsetHeight;g.style.display=""}if(d!=f){if(this.__forceWidth){this.storeSize("width",d)}this.attempt("resize",d)}this.__resizing--},replaceText:function(g,j){var d=this.sIFR.util.escape(g);if(!this.attempt("replaceText",d)){return false}this.updateVars("content",d);var f=this.getAlternate();if(j){while(f.firstChild){f.removeChild(f.firstChild)}for(var c=0;c<j.length;c++){f.appendChild(j[c])}}else{try{f.innerHTML=g}catch(h){}}return true},changeCSS:function(c){c=this.sIFR.util.escape(this.sIFR.util.cssToString(this.sIFR.util.convertCssArg(c)));this.updateVars("css",c);return this.attempt("changeCSS",c)},remove:function(){if(this.movie&&this.available()){this.movie.remove(this.getFlashElement(),this.id)}}};var X=new function(){this.create=function(p,n,j,i,f,e,g,o,l,h,m){var k=p.ua.ie?d:c;return new k(p,n,j,i,f,e,g,o,["flashvars",l,"wmode",h,"bgcolor",m,"allowScriptAccess","always","quality","best"])};function c(s,q,l,h,f,e,g,r,n){var m=s.dom.create("object",E.FLASH);var p=["type","application/x-shockwave-flash","id",f,"name",f,"data",e,"width",g,"height",r];for(var o=0;o<p.length;o+=2){m.setAttribute(p[o],p[o+1])}var j=m;if(h){j=W.create("div",E.FIX_FOCUS);j.appendChild(m)}for(var o=0;o<n.length;o+=2){if(n[o]=="name"){continue}var k=W.create("param");k.setAttribute("name",n[o]);k.setAttribute("value",n[o+1]);m.appendChild(k)}l.style.minHeight=r+"px";while(l.firstChild){l.removeChild(l.firstChild)}l.appendChild(j);this.html=j.cloneNode(true)}c.prototype={reset:function(e,f){e.parentNode.replaceChild(this.html.cloneNode(true),e)},remove:function(e,f){e.parentNode.removeChild(e)},setSize:function(e,f){this.html.setAttribute(e,f)},injectVars:function(e,g){var h=e.getElementsByTagName("param");for(var f=0;f<h.length;f++){if(h[f].getAttribute("name")=="flashvars"){h[f].setAttribute("value",g);break}}}};function d(p,n,j,h,f,e,g,o,k){this.dom=p.dom;this.broken=n;this.html='<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" id="'+f+'" width="'+g+'" height="'+o+'" class="'+E.FLASH+'"><param name="movie" value="'+e+'"></param></object>';var m="";for(var l=0;l<k.length;l+=2){m+='<param name="'+k[l]+'" value="'+k[l+1]+'"></param>'}this.html=this.html.replace(/(<\/object>)/,m+"$1");j.style.minHeight=o+"px";j.innerHTML=this.html;this.broken.register(j.firstChild)}d.prototype={reset:function(f,g){g=g.cloneNode(true);var e=f.parentNode;e.innerHTML=this.html;this.broken.register(e.firstChild);e.appendChild(g)},remove:function(e,f){this.broken.cleanup(f)},setSize:function(e,f){this.html=this.html.replace(e=="height"?/(height)="\d+"/:/(width)="\d+"/,'$1="'+f+'"')},injectVars:function(e,f){if(e!=this.html){return}this.html=this.html.replace(/(flashvars(=|\"\svalue=)\")[^\"]+/,"$1"+f)}}};this.errors=new Y(O);var A=this.util=new D(O);var W=this.dom=new U(O);var T=this.ua=new H(O);var G={fragmentIdentifier:new F(O),pageLoad:new S(O),prefetch:new N(O),brokenFlashIE:new b(O)};this.__resetBrokenMovies=G.brokenFlashIE.reset;var J={kwargs:[],replaceAll:function(d){for(var c=0;c<this.kwargs.length;c++){O.replace(this.kwargs[c])}if(!d){this.kwargs=[]}}};this.activate=function(){if(!T.supported||!this.isEnabled||this.isActive||!C()||a()){return}G.prefetch.fetchMovies(arguments);this.isActive=true;this.setFlashClass();G.fragmentIdentifier.cache();G.pageLoad.attachUnload();if(!this.autoInitialize){return}G.pageLoad.attach()};this.setFlashClass=function(){if(this.hasFlashClassSet){return}W.addClass(E.ACTIVE,W.getBody()||document.documentElement);this.hasFlashClassSet=true};this.removeFlashClass=function(){if(!this.hasFlashClassSet){return}W.removeClass(E.ACTIVE,W.getBody());W.removeClass(E.ACTIVE,document.documentElement);this.hasFlashClassSet=false};this.initialize=function(c){if(!this.isActive||!this.isEnabled){return}if(R){if(!c){J.replaceAll(false)}return}R=true;J.replaceAll(c);if(O.repaintOnResize){if(window.addEventListener){window.addEventListener("resize",Z,false)}else{window.attachEvent("onresize",Z)}}G.prefetch.clear()};this.replace=function(x,u){if(!T.supported){return}if(u){x=A.copyProperties(x,u)}if(!R){return J.kwargs.push(x)}if(this.onReplacementStart){this.onReplacementStart(x)}var AM=x.elements||W.querySelectorAll(x.selector);if(AM.length==0){return}var w=M(x.src);var AR=A.convertCssArg(x.css);var v=B(x.filters);var AN=x.forceSingleLine===true;var AS=x.preventWrap===true&&!AN;var q=AN||(x.fitExactly==null?this.fitExactly:x.fitExactly)===true;var AD=q||(x.forceWidth==null?this.forceWidth:x.forceWidth)===true;var s=x.ratios||[];var AE=x.pixelFont===true;var r=parseInt(x.tuneHeight)||0;var z=!!x.onRelease||!!x.onRollOver||!!x.onRollOut;if(q){A.extractFromCss(AR,".sIFR-root","text-align",true)}var t=A.extractFromCss(AR,".sIFR-root","font-size",true)||"0";var e=A.extractFromCss(AR,".sIFR-root","background-color",true)||"#FFFFFF";var o=A.extractFromCss(AR,".sIFR-root","kerning",true)||"";var AW=A.extractFromCss(AR,".sIFR-root","opacity",true)||"100";var k=A.extractFromCss(AR,".sIFR-root","cursor",true)||"default";var AP=parseInt(A.extractFromCss(AR,".sIFR-root","leading"))||0;var AJ=x.gridFitType||(A.extractFromCss(AR,".sIFR-root","text-align")=="right")?"subpixel":"pixel";var h=this.forceTextTransform===false?"none":A.extractFromCss(AR,".sIFR-root","text-transform",true)||"none";t=/^\d+(px)?$/.test(t)?parseInt(t):0;AW=parseFloat(AW)<1?100*parseFloat(AW):AW;var AC=x.modifyCss?"":A.cssToString(AR);var AG=x.wmode||"";if(!AG){if(x.transparent){AG="transparent"}else{if(x.opaque){AG="opaque"}}}if(AG=="transparent"){if(!T.transparencySupport){AG="opaque"}else{e="transparent"}}else{if(e=="transparent"){e="#FFFFFF"}}for(var AV=0;AV<AM.length;AV++){var AF=AM[AV];if(W.hasOneOfClassses(E.IGNORE_CLASSES,AF)||W.ancestorHasClass(AF,E.ALTERNATE)){continue}var AO=W.getDimensions(AF);var f=AO.height;var c=AO.width;var AA=W.getComputedStyle(AF,"display");if(!f||!c||!AA||AA=="none"){continue}c=W.getWidthFromStyle(AF);var n,AH;if(!t){var AL=I(AF);n=Math.min(this.MAX_FONT_SIZE,Math.max(this.MIN_FONT_SIZE,AL.fontSize));if(AE){n=Math.max(8,8*Math.round(n/8))}AH=AL.lines}else{n=t;AH=1}var d=W.create("span",E.ALTERNATE);var AX=AF.cloneNode(true);AF.parentNode.appendChild(AX);for(var AU=0,AT=AX.childNodes.length;AU<AT;AU++){var m=AX.childNodes[AU];if(!/^(style|script)$/i.test(m.nodeName)){d.appendChild(m.cloneNode(true))}}if(x.modifyContent){x.modifyContent(AX,x.selector)}if(x.modifyCss){AC=x.modifyCss(AR,AX,x.selector)}var p=P(AX,h,x.uriEncode);AX.parentNode.removeChild(AX);if(x.modifyContentString){p.text=x.modifyContentString(p.text,x.selector)}if(p.text==""){continue}var AK=Math.round(AH*V(n,s)*n)+this.FLASH_PADDING_BOTTOM+r;if(AH>1&&AP){AK+=Math.round((AH-1)*AP)}var AB=AD?c:"100%";var AI="sIFR_replacement_"+L++;var AQ=["id="+AI,"content="+A.escape(p.text),"width="+c,"renderheight="+AK,"link="+A.escape(p.primaryLink.href||""),"target="+A.escape(p.primaryLink.target||""),"size="+n,"css="+A.escape(AC),"cursor="+k,"tunewidth="+(x.tuneWidth||0),"tuneheight="+r,"offsetleft="+(x.offsetLeft||""),"offsettop="+(x.offsetTop||""),"fitexactly="+q,"preventwrap="+AS,"forcesingleline="+AN,"antialiastype="+(x.antiAliasType||""),"thickness="+(x.thickness||""),"sharpness="+(x.sharpness||""),"kerning="+o,"gridfittype="+AJ,"flashfilters="+v,"opacity="+AW,"blendmode="+(x.blendMode||""),"selectable="+(x.selectable==null||AG!=""&&!sIFR.ua.macintosh&&sIFR.ua.gecko&&sIFR.ua.geckoVersion>=sIFR.ua.parseVersion("1.9")?"true":x.selectable===true),"fixhover="+(this.fixHover===true),"events="+z,"delayrun="+G.brokenFlashIE.fixFlash,"version="+this.VERSION];var y=A.encodeVars(AQ);var g=new K(O,AI,AQ,AD,{onReplacement:x.onReplacement,onRollOver:x.onRollOver,onRollOut:x.onRollOut,onRelease:x.onRelease});g.movie=X.create(sIFR,G.brokenFlashIE,AF,T.fixFocus&&x.fixFocus,AI,w,AB,AK,y,AG,e);this.replacements.push(g);this.replacements[AI]=g;if(x.selector){if(!this.replacements[x.selector]){this.replacements[x.selector]=[g]}else{this.replacements[x.selector].push(g)}}d.setAttribute("id",AI+"_alternate");AF.appendChild(d);W.addClass(E.REPLACED,AF)}G.fragmentIdentifier.restore()};this.getReplacementByFlashElement=function(d){for(var c=0;c<O.replacements.length;c++){if(O.replacements[c].id==d.getAttribute("id")){return O.replacements[c]}}};this.redraw=function(){for(var c=0;c<O.replacements.length;c++){O.replacements[c].resetMovie()}};this.prepareClearReferences=function(){G.brokenFlashIE.prepareClearReferences()};this.clearReferences=function(){G.brokenFlashIE.clearReferences();G=null;J=null;delete O.replacements};function C(){if(O.domains.length==0){return true}var d=A.domain();for(var c=0;c<O.domains.length;c++){if(A.domainMatches(d,O.domains[c])){return true}}return false}function a(){if(document.location.protocol=="file:"){if(O.debug){O.errors.fire("isFile")}return true}return false}function M(c){if(T.ie&&c.charAt(0)=="/"){c=window.location.toString().replace(/([^:]+)(:\/?\/?)([^\/]+).*/,"$1$2$3")+c}return c}function V(d,e){for(var c=0;c<e.length;c+=2){if(d<=e[c]){return e[c+1]}}return e[e.length-1]||1}function B(g){var e=[];for(var d in g){if(g[d]==Object.prototype[d]){continue}var c=g[d];d=[d.replace(/filter/i,"")+"Filter"];for(var f in c){if(c[f]==Object.prototype[f]){continue}d.push(f+":"+A.escape(A.toJson(c[f],A.toHexString)))}e.push(d.join(","))}return A.escape(e.join(";"))}function Z(d){var e=Z.viewport;var c=W.getViewport();if(e&&c.width==e.width&&c.height==e.height){return}Z.viewport=c;if(O.replacements.length==0){return}if(Z.timer){clearTimeout(Z.timer)}Z.timer=setTimeout(function(){delete Z.timer;for(var f=0;f<O.replacements.length;f++){O.replacements[f].resize()}},200)}function I(f){var g=W.getComputedStyle(f,"fontSize");var d=g.indexOf("px")==-1;var e=f.innerHTML;if(d){f.innerHTML="X"}f.style.paddingTop=f.style.paddingBottom=f.style.borderTopWidth=f.style.borderBottomWidth="0px";f.style.lineHeight="2em";f.style.display="block";g=d?f.offsetHeight/2:parseInt(g,10);if(d){f.innerHTML=e}var c=Math.round(f.offsetHeight/(2*g));f.style.paddingTop=f.style.paddingBottom=f.style.borderTopWidth=f.style.borderBottomWidth=f.style.lineHeight=f.style.display="";if(isNaN(c)||!isFinite(c)||c==0){c=1}return{fontSize:g,lines:c}}function P(c,g,s){s=s||A.uriEncode;var q=[],m=[];var k=null;var e=c.childNodes;var o=false,p=false;var j=0;while(j<e.length){var f=e[j];if(f.nodeType==3){var t=A.textTransform(g,A.normalize(f.nodeValue)).replace(/</g,"&lt;");if(o&&p){t=t.replace(/^\s+/,"")}m.push(t);o=/\s$/.test(t);p=false}if(f.nodeType==1&&!/^(style|script)$/i.test(f.nodeName)){var h=[];var r=f.nodeName.toLowerCase();var n=f.className||"";if(/\s+/.test(n)){if(n.indexOf(E.CLASS)>-1){n=n.match("(\\s|^)"+E.CLASS+"-([^\\s$]*)(\\s|$)")[2]}else{n=n.match(/^([^\s]+)/)[1]}}if(n!=""){h.push('class="'+n+'"')}if(r=="a"){var d=s(f.getAttribute("href")||"");var l=f.getAttribute("target")||"";h.push('href="'+d+'"','target="'+l+'"');if(!k){k={href:d,target:l}}}m.push("<"+r+(h.length>0?" ":"")+h.join(" ")+">");p=true;if(f.hasChildNodes()){q.push(j);j=0;e=f.childNodes;continue}else{if(!/^(br|img)$/i.test(f.nodeName)){m.push("</",f.nodeName.toLowerCase(),">")}}}if(q.length>0&&!f.nextSibling){do{j=q.pop();e=f.parentNode.parentNode.childNodes;f=e[j];if(f){m.push("</",f.nodeName.toLowerCase(),">")}}while(j==e.length-1&&q.length>0)}j++}return{text:m.join("").replace(/^\s+|\s+$|\s*(<br>)\s*/g,"$1"),primaryLink:k||{}}}}; var parseSelector=(function(){var B=/\s*,\s*/;var A=/\s*([\s>+~(),]|^|$)\s*/g;var L=/([\s>+~,]|[^(]\+|^)([#.:@])/g;var F=/(^|\))[^\s>+~]/g;var M=/(\)|^)/;var K=/[\s#.:>+~()@]|[^\s#.:>+~()@]+/g;function H(R,P){P=P||document.documentElement;var S=R.split(B),X=[];for(var U=0;U<S.length;U++){var N=[P],W=G(S[U]);for(var T=0;T<W.length;){var Q=W[T++],O=W[T++],V="";if(W[T]=="("){while(W[T++]!=")"&&T<W.length){V+=W[T]}V=V.slice(0,-1)}N=I(N,Q,O,V)}X=X.concat(N)}return X}function G(N){var O=N.replace(A,"$1").replace(L,"$1*$2").replace(F,D);return O.match(K)||[]}function D(N){return N.replace(M,"$1 ")}function I(N,P,Q,O){return(H.selectors[P])?H.selectors[P](N,Q,O):[]}var E={toArray:function(O){var N=[];for(var P=0;P<O.length;P++){N.push(O[P])}return N}};var C={isTag:function(O,N){return(N=="*")||(N.toLowerCase()==O.nodeName.toLowerCase())},previousSiblingElement:function(N){do{N=N.previousSibling}while(N&&N.nodeType!=1);return N},nextSiblingElement:function(N){do{N=N.nextSibling}while(N&&N.nodeType!=1);return N},hasClass:function(N,O){return(O.className||"").match("(^|\\s)"+N+"(\\s|$)")},getByTag:function(N,O){return O.getElementsByTagName(N)}};var J={"#":function(N,P){for(var O=0;O<N.length;O++){if(N[O].getAttribute("id")==P){return[N[O]]}}return[]}," ":function(O,Q){var N=[];for(var P=0;P<O.length;P++){N=N.concat(E.toArray(C.getByTag(Q,O[P])))}return N},">":function(O,R){var N=[];for(var Q=0,S;Q<O.length;Q++){S=O[Q];for(var P=0,T;P<S.childNodes.length;P++){T=S.childNodes[P];if(T.nodeType==1&&C.isTag(T,R)){N.push(T)}}}return N},".":function(O,Q){var N=[];for(var P=0,R;P<O.length;P++){R=O[P];if(C.hasClass([Q],R)){N.push(R)}}return N},":":function(N,P,O){return(H.pseudoClasses[P])?H.pseudoClasses[P](N,O):[]}};H.selectors=J;H.pseudoClasses={};H.util=E;H.dom=C;return H})();
0.021792
0.114196