code
stringlengths
501
4.91M
package
stringlengths
2
88
path
stringlengths
11
291
filename
stringlengths
4
197
parsed_code
stringlengths
0
4.91M
quality_prob
float64
0
0.99
learning_prob
float64
0.02
1
r""" TV-Regularized Sparse-View CT Reconstruction ============================================ This example demonstrates solution of a sparse-view CT reconstruction problem with isotropic total variation (TV) regularization $$\mathrm{argmin}_{\mathbf{x}} \; (1/2) \| \mathbf{y} - A \mathbf{x} \|_2^2 + \lambda \| C \mathbf{x} \|_{2,1} \;,$$ where $A$ is the Radon transform, $\mathbf{y}$ is the sinogram, $C$ is a 2D finite difference operator, and $\mathbf{x}$ is the desired image. """ import numpy as np import jax from mpl_toolkits.axes_grid1 import make_axes_locatable from xdesign import Foam, discrete_phantom import scico.numpy as snp from scico import functional, linop, loss, metric, plot from scico.linop.radon_astra import TomographicProjector from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.util import device_info """ Create a ground truth image. """ N = 512 # phantom size np.random.seed(1234) x_gt = discrete_phantom(Foam(size_range=[0.075, 0.0025], gap=1e-3, porosity=1), size=N) x_gt = jax.device_put(x_gt) # convert to jax type, push to GPU """ Configure CT projection operator and generate synthetic measurements. """ n_projection = 45 # number of projections angles = np.linspace(0, np.pi, n_projection) # evenly spaced projection angles A = TomographicProjector(x_gt.shape, 1, N, angles) # Radon transform operator y = A @ x_gt # sinogram """ Set up ADMM solver object. """ λ = 2e0 # L1 norm regularization parameter ρ = 5e0 # ADMM penalty parameter maxiter = 25 # number of ADMM iterations cg_tol = 1e-4 # CG relative tolerance cg_maxiter = 25 # maximum CG iterations per ADMM iteration # The append=0 option makes the results of horizontal and vertical # finite differences the same shape, which is required for the L21Norm, # which is used so that g(Cx) corresponds to isotropic TV. C = linop.FiniteDifference(input_shape=x_gt.shape, append=0) g = λ * functional.L21Norm() f = loss.SquaredL2Loss(y=y, A=A) x0 = snp.clip(A.fbp(y), 0, 1.0) solver = ADMM( f=f, g_list=[g], C_list=[C], rho_list=[ρ], x0=x0, maxiter=maxiter, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": cg_tol, "maxiter": cg_maxiter}), itstat_options={"display": True, "period": 5}, ) """ Run the solver. """ print(f"Solving on {device_info()}\n") solver.solve() hist = solver.itstat_object.history(transpose=True) x_reconstruction = snp.clip(solver.x, 0, 1.0) """ Show the recovered image. """ fig, ax = plot.subplots(nrows=1, ncols=3, figsize=(15, 5)) plot.imview(x_gt, title="Ground truth", cbar=None, fig=fig, ax=ax[0]) plot.imview( x0, title="FBP Reconstruction: \nSNR: %.2f (dB), MAE: %.3f" % (metric.snr(x_gt, x0), metric.mae(x_gt, x0)), cbar=None, fig=fig, ax=ax[1], ) plot.imview( x_reconstruction, title="TV Reconstruction\nSNR: %.2f (dB), MAE: %.3f" % (metric.snr(x_gt, x_reconstruction), metric.mae(x_gt, x_reconstruction)), fig=fig, ax=ax[2], ) divider = make_axes_locatable(ax[2]) cax = divider.append_axes("right", size="5%", pad=0.2) fig.colorbar(ax[2].get_images()[0], cax=cax, label="arbitrary units") fig.show() """ Plot convergence statistics. """ fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(12, 5)) plot.plot( hist.Objective, title="Objective function", xlbl="Iteration", ylbl="Functional value", fig=fig, ax=ax[0], ) plot.plot( snp.vstack((hist.Prml_Rsdl, hist.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals", xlbl="Iteration", lgnd=("Primal", "Dual"), fig=fig, ax=ax[1], ) fig.show() input("\nWaiting for input to close figures and exit")
scico
/scico-0.0.4.tar.gz/scico-0.0.4/examples/scripts/ct_astra_tv_admm.py
ct_astra_tv_admm.py
r""" TV-Regularized Sparse-View CT Reconstruction ============================================ This example demonstrates solution of a sparse-view CT reconstruction problem with isotropic total variation (TV) regularization $$\mathrm{argmin}_{\mathbf{x}} \; (1/2) \| \mathbf{y} - A \mathbf{x} \|_2^2 + \lambda \| C \mathbf{x} \|_{2,1} \;,$$ where $A$ is the Radon transform, $\mathbf{y}$ is the sinogram, $C$ is a 2D finite difference operator, and $\mathbf{x}$ is the desired image. """ import numpy as np import jax from mpl_toolkits.axes_grid1 import make_axes_locatable from xdesign import Foam, discrete_phantom import scico.numpy as snp from scico import functional, linop, loss, metric, plot from scico.linop.radon_astra import TomographicProjector from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.util import device_info """ Create a ground truth image. """ N = 512 # phantom size np.random.seed(1234) x_gt = discrete_phantom(Foam(size_range=[0.075, 0.0025], gap=1e-3, porosity=1), size=N) x_gt = jax.device_put(x_gt) # convert to jax type, push to GPU """ Configure CT projection operator and generate synthetic measurements. """ n_projection = 45 # number of projections angles = np.linspace(0, np.pi, n_projection) # evenly spaced projection angles A = TomographicProjector(x_gt.shape, 1, N, angles) # Radon transform operator y = A @ x_gt # sinogram """ Set up ADMM solver object. """ λ = 2e0 # L1 norm regularization parameter ρ = 5e0 # ADMM penalty parameter maxiter = 25 # number of ADMM iterations cg_tol = 1e-4 # CG relative tolerance cg_maxiter = 25 # maximum CG iterations per ADMM iteration # The append=0 option makes the results of horizontal and vertical # finite differences the same shape, which is required for the L21Norm, # which is used so that g(Cx) corresponds to isotropic TV. C = linop.FiniteDifference(input_shape=x_gt.shape, append=0) g = λ * functional.L21Norm() f = loss.SquaredL2Loss(y=y, A=A) x0 = snp.clip(A.fbp(y), 0, 1.0) solver = ADMM( f=f, g_list=[g], C_list=[C], rho_list=[ρ], x0=x0, maxiter=maxiter, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": cg_tol, "maxiter": cg_maxiter}), itstat_options={"display": True, "period": 5}, ) """ Run the solver. """ print(f"Solving on {device_info()}\n") solver.solve() hist = solver.itstat_object.history(transpose=True) x_reconstruction = snp.clip(solver.x, 0, 1.0) """ Show the recovered image. """ fig, ax = plot.subplots(nrows=1, ncols=3, figsize=(15, 5)) plot.imview(x_gt, title="Ground truth", cbar=None, fig=fig, ax=ax[0]) plot.imview( x0, title="FBP Reconstruction: \nSNR: %.2f (dB), MAE: %.3f" % (metric.snr(x_gt, x0), metric.mae(x_gt, x0)), cbar=None, fig=fig, ax=ax[1], ) plot.imview( x_reconstruction, title="TV Reconstruction\nSNR: %.2f (dB), MAE: %.3f" % (metric.snr(x_gt, x_reconstruction), metric.mae(x_gt, x_reconstruction)), fig=fig, ax=ax[2], ) divider = make_axes_locatable(ax[2]) cax = divider.append_axes("right", size="5%", pad=0.2) fig.colorbar(ax[2].get_images()[0], cax=cax, label="arbitrary units") fig.show() """ Plot convergence statistics. """ fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(12, 5)) plot.plot( hist.Objective, title="Objective function", xlbl="Iteration", ylbl="Functional value", fig=fig, ax=ax[0], ) plot.plot( snp.vstack((hist.Prml_Rsdl, hist.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals", xlbl="Iteration", lgnd=("Primal", "Dual"), fig=fig, ax=ax[1], ) fig.show() input("\nWaiting for input to close figures and exit")
0.895323
0.928959
r""" Deconvolution Microscopy (All Channels) ======================================= This example partially replicates a [GlobalBioIm example](https://biomedical-imaging-group.github.io/GlobalBioIm/examples.html) using the [microscopy data](http://bigwww.epfl.ch/deconvolution/bio/) provided by the EPFL Biomedical Imaging Group. The deconvolution problem is solved using class [admm.ADMM](../_autosummary/scico.optimize.rst#scico.optimize.ADMM) to solve an image deconvolution problem with isotropic total variation (TV) regularization $$\mathrm{argmin}_{\mathbf{x}} \; (1/2) \| M (\mathbf{y} - A \mathbf{x}) \|_2^2 + \lambda \| C \mathbf{x} \|_{2,1} + \iota_{\mathrm{NN}}(\mathbf{x}) \;,$$ where $M$ is a mask operator, $A$ is circular convolution, $\mathbf{y}$ is the blurred image, $C$ is a convolutional gradient operator, $\iota_{\mathrm{NN}}$ is the indicator function of the non-negativity constraint, and $\mathbf{x}$ is the desired image. """ import numpy as np import jax import ray import scico.numpy as snp from scico import functional, linop, loss, plot from scico.examples import downsample_volume, epfl_deconv_data, tile_volume_slices from scico.optimize.admm import ADMM, CircularConvolveSolver """ Get and preprocess data. We downsample the data for the for purposes of the example. Reducing the downsampling rate will make the example slower and more memory-intensive. To run this example on a GPU it may be necessary to set environment variables `XLA_PYTHON_CLIENT_ALLOCATOR=platform` and `XLA_PYTHON_CLIENT_PREALLOCATE=false`. If your GPU does not have enough memory, you can try setting the environment variable `JAX_PLATFORM_NAME=cpu` to run on CPU. """ downsampling_rate = 2 y_list = [] y_pad_list = [] psf_list = [] for channel in range(3): y, psf = epfl_deconv_data(channel, verbose=True) # get data y = downsample_volume(y, downsampling_rate) # downsample psf = downsample_volume(psf, downsampling_rate) y -= y.min() # normalize y y /= y.max() psf /= psf.sum() # normalize psf if channel == 0: padding = [[0, p] for p in snp.array(psf.shape) - 1] mask = snp.pad(snp.ones_like(y), padding) y_pad = snp.pad(y, padding) # zero-padded version of y y_list.append(y) y_pad_list.append(y_pad) psf_list.append(psf) y = snp.stack(y_list, axis=-1) yshape = y.shape del y_list """ Define problem and algorithm parameters. """ λ = 2e-6 # ℓ1 norm regularization parameter ρ0 = 1e-3 # ADMM penalty parameter for first auxiliary variable ρ1 = 1e-3 # ADMM penalty parameter for second auxiliary variable ρ2 = 1e-3 # ADMM penalty parameter for third auxiliary variable maxiter = 100 # number of ADMM iterations """ Initialize ray, determine available computing resources, and put large arrays in object store. """ ray.init() ngpu = 0 ar = ray.available_resources() ncpu = max(int(ar["CPU"]) // 3, 1) if "GPU" in ar: ngpu = int(ar["GPU"]) // 3 print(f"Running on {ncpu} CPUs and {ngpu} GPUs per process") y_pad_list = ray.put(y_pad_list) psf_list = ray.put(psf_list) mask_store = ray.put(mask) """ Define ray remote function for parallel solves. """ @ray.remote(num_cpus=ncpu, num_gpus=ngpu) def deconvolve_channel(channel): """Deconvolve a single channel.""" y_pad = jax.device_put(ray.get(y_pad_list)[channel]) psf = jax.device_put(ray.get(psf_list)[channel]) mask = jax.device_put(ray.get(mask_store)) M = linop.Diagonal(mask) C0 = linop.CircularConvolve( h=psf, input_shape=mask.shape, h_center=snp.array(psf.shape) / 2 - 0.5 # forward operator ) C1 = linop.FiniteDifference(input_shape=mask.shape, circular=True) # gradient operator C2 = linop.Identity(mask.shape) # identity operator g0 = loss.SquaredL2Loss(y=y_pad, A=M) # loss function (forward model) g1 = λ * functional.L21Norm() # TV penalty (when applied to gradient) g2 = functional.NonNegativeIndicator() # non-negativity constraint if channel == 0: print("Displaying solver status for channel 0") display = True else: display = False solver = ADMM( f=None, g_list=[g0, g1, g2], C_list=[C0, C1, C2], rho_list=[ρ0, ρ1, ρ2], maxiter=maxiter, itstat_options={"display": display, "period": 10, "overwrite": False}, x0=y_pad, subproblem_solver=CircularConvolveSolver(), ) x_pad = solver.solve() x = x_pad[: yshape[0], : yshape[1], : yshape[2]] return (x, solver.itstat_object.history(transpose=True)) """ Solve problems for all three channels in parallel and extract results. """ ray_return = ray.get([deconvolve_channel.remote(channel) for channel in range(3)]) x = snp.stack([t[0] for t in ray_return], axis=-1) solve_stats = [t[1] for t in ray_return] """ Show the recovered image. """ fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(14, 7)) plot.imview(tile_volume_slices(y), title="Blurred measurements", fig=fig, ax=ax[0]) plot.imview(tile_volume_slices(x), title="Deconvolved image", fig=fig, ax=ax[1]) fig.show() """ Plot convergence statistics. """ fig, ax = plot.subplots(nrows=1, ncols=3, figsize=(18, 5)) plot.plot( np.stack([s.Objective for s in solve_stats]).T, title="Objective function", xlbl="Iteration", ylbl="Functional value", lgnd=("CY3", "DAPI", "FITC"), fig=fig, ax=ax[0], ) plot.plot( np.stack([s.Prml_Rsdl for s in solve_stats]).T, ptyp="semilogy", title="Primal Residual", xlbl="Iteration", lgnd=("CY3", "DAPI", "FITC"), fig=fig, ax=ax[1], ) plot.plot( np.stack([s.Dual_Rsdl for s in solve_stats]).T, ptyp="semilogy", title="Dual Residual", xlbl="Iteration", lgnd=("CY3", "DAPI", "FITC"), fig=fig, ax=ax[2], ) fig.show() input("\nWaiting for input to close figures and exit")
scico
/scico-0.0.4.tar.gz/scico-0.0.4/examples/scripts/deconv_microscopy_allchn_tv_admm.py
deconv_microscopy_allchn_tv_admm.py
r""" Deconvolution Microscopy (All Channels) ======================================= This example partially replicates a [GlobalBioIm example](https://biomedical-imaging-group.github.io/GlobalBioIm/examples.html) using the [microscopy data](http://bigwww.epfl.ch/deconvolution/bio/) provided by the EPFL Biomedical Imaging Group. The deconvolution problem is solved using class [admm.ADMM](../_autosummary/scico.optimize.rst#scico.optimize.ADMM) to solve an image deconvolution problem with isotropic total variation (TV) regularization $$\mathrm{argmin}_{\mathbf{x}} \; (1/2) \| M (\mathbf{y} - A \mathbf{x}) \|_2^2 + \lambda \| C \mathbf{x} \|_{2,1} + \iota_{\mathrm{NN}}(\mathbf{x}) \;,$$ where $M$ is a mask operator, $A$ is circular convolution, $\mathbf{y}$ is the blurred image, $C$ is a convolutional gradient operator, $\iota_{\mathrm{NN}}$ is the indicator function of the non-negativity constraint, and $\mathbf{x}$ is the desired image. """ import numpy as np import jax import ray import scico.numpy as snp from scico import functional, linop, loss, plot from scico.examples import downsample_volume, epfl_deconv_data, tile_volume_slices from scico.optimize.admm import ADMM, CircularConvolveSolver """ Get and preprocess data. We downsample the data for the for purposes of the example. Reducing the downsampling rate will make the example slower and more memory-intensive. To run this example on a GPU it may be necessary to set environment variables `XLA_PYTHON_CLIENT_ALLOCATOR=platform` and `XLA_PYTHON_CLIENT_PREALLOCATE=false`. If your GPU does not have enough memory, you can try setting the environment variable `JAX_PLATFORM_NAME=cpu` to run on CPU. """ downsampling_rate = 2 y_list = [] y_pad_list = [] psf_list = [] for channel in range(3): y, psf = epfl_deconv_data(channel, verbose=True) # get data y = downsample_volume(y, downsampling_rate) # downsample psf = downsample_volume(psf, downsampling_rate) y -= y.min() # normalize y y /= y.max() psf /= psf.sum() # normalize psf if channel == 0: padding = [[0, p] for p in snp.array(psf.shape) - 1] mask = snp.pad(snp.ones_like(y), padding) y_pad = snp.pad(y, padding) # zero-padded version of y y_list.append(y) y_pad_list.append(y_pad) psf_list.append(psf) y = snp.stack(y_list, axis=-1) yshape = y.shape del y_list """ Define problem and algorithm parameters. """ λ = 2e-6 # ℓ1 norm regularization parameter ρ0 = 1e-3 # ADMM penalty parameter for first auxiliary variable ρ1 = 1e-3 # ADMM penalty parameter for second auxiliary variable ρ2 = 1e-3 # ADMM penalty parameter for third auxiliary variable maxiter = 100 # number of ADMM iterations """ Initialize ray, determine available computing resources, and put large arrays in object store. """ ray.init() ngpu = 0 ar = ray.available_resources() ncpu = max(int(ar["CPU"]) // 3, 1) if "GPU" in ar: ngpu = int(ar["GPU"]) // 3 print(f"Running on {ncpu} CPUs and {ngpu} GPUs per process") y_pad_list = ray.put(y_pad_list) psf_list = ray.put(psf_list) mask_store = ray.put(mask) """ Define ray remote function for parallel solves. """ @ray.remote(num_cpus=ncpu, num_gpus=ngpu) def deconvolve_channel(channel): """Deconvolve a single channel.""" y_pad = jax.device_put(ray.get(y_pad_list)[channel]) psf = jax.device_put(ray.get(psf_list)[channel]) mask = jax.device_put(ray.get(mask_store)) M = linop.Diagonal(mask) C0 = linop.CircularConvolve( h=psf, input_shape=mask.shape, h_center=snp.array(psf.shape) / 2 - 0.5 # forward operator ) C1 = linop.FiniteDifference(input_shape=mask.shape, circular=True) # gradient operator C2 = linop.Identity(mask.shape) # identity operator g0 = loss.SquaredL2Loss(y=y_pad, A=M) # loss function (forward model) g1 = λ * functional.L21Norm() # TV penalty (when applied to gradient) g2 = functional.NonNegativeIndicator() # non-negativity constraint if channel == 0: print("Displaying solver status for channel 0") display = True else: display = False solver = ADMM( f=None, g_list=[g0, g1, g2], C_list=[C0, C1, C2], rho_list=[ρ0, ρ1, ρ2], maxiter=maxiter, itstat_options={"display": display, "period": 10, "overwrite": False}, x0=y_pad, subproblem_solver=CircularConvolveSolver(), ) x_pad = solver.solve() x = x_pad[: yshape[0], : yshape[1], : yshape[2]] return (x, solver.itstat_object.history(transpose=True)) """ Solve problems for all three channels in parallel and extract results. """ ray_return = ray.get([deconvolve_channel.remote(channel) for channel in range(3)]) x = snp.stack([t[0] for t in ray_return], axis=-1) solve_stats = [t[1] for t in ray_return] """ Show the recovered image. """ fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(14, 7)) plot.imview(tile_volume_slices(y), title="Blurred measurements", fig=fig, ax=ax[0]) plot.imview(tile_volume_slices(x), title="Deconvolved image", fig=fig, ax=ax[1]) fig.show() """ Plot convergence statistics. """ fig, ax = plot.subplots(nrows=1, ncols=3, figsize=(18, 5)) plot.plot( np.stack([s.Objective for s in solve_stats]).T, title="Objective function", xlbl="Iteration", ylbl="Functional value", lgnd=("CY3", "DAPI", "FITC"), fig=fig, ax=ax[0], ) plot.plot( np.stack([s.Prml_Rsdl for s in solve_stats]).T, ptyp="semilogy", title="Primal Residual", xlbl="Iteration", lgnd=("CY3", "DAPI", "FITC"), fig=fig, ax=ax[1], ) plot.plot( np.stack([s.Dual_Rsdl for s in solve_stats]).T, ptyp="semilogy", title="Dual Residual", xlbl="Iteration", lgnd=("CY3", "DAPI", "FITC"), fig=fig, ax=ax[2], ) fig.show() input("\nWaiting for input to close figures and exit")
0.931346
0.900573
r""" Circulant Blur Image Deconvolution with TV Regularization ========================================================= This example demonstrates the solution of an image deconvolution problem with isotropic total variation (TV) regularization $$\mathrm{argmin}_{\mathbf{x}} \; (1/2) \| \mathbf{y} - A \mathbf{x} \|_2^2 + \lambda \| C \mathbf{x} \|_{2,1} \;,$$ where $A$ is a circular convolution operator, $\mathbf{y}$ is the blurred image, $C$ is a 2D finite difference operator, and $\mathbf{x}$ is the deconvolved image. """ import jax from xdesign import SiemensStar, discrete_phantom import scico.numpy as snp import scico.random from scico import functional, linop, loss, metric, plot from scico.optimize.admm import ADMM, CircularConvolveSolver from scico.util import device_info """ Create a ground truth image. """ phantom = SiemensStar(32) N = 256 # image size x_gt = snp.pad(discrete_phantom(phantom, N - 16), 8) x_gt = jax.device_put(x_gt) # convert to jax type, push to GPU """ Set up the forward operator and create a test signal consisting of a blurred signal with additive Gaussian noise. """ n = 5 # convolution kernel size σ = 20.0 / 255 # noise level psf = snp.ones((n, n)) / (n * n) A = linop.CircularConvolve(h=psf, input_shape=x_gt.shape) Ax = A(x_gt) # blurred image noise, key = scico.random.randn(Ax.shape, seed=0) y = Ax + σ * noise """ Set up an ADMM solver object. """ λ = 2e-2 # L21 norm regularization parameter ρ = 5e-1 # ADMM penalty parameter maxiter = 50 # number of ADMM iterations f = loss.SquaredL2Loss(y=y, A=A) # Penalty parameters must be accounted for in the gi functions, not as # additional inputs. g = λ * functional.L21Norm() # regularization functionals gi C = linop.FiniteDifference(x_gt.shape, circular=True) solver = ADMM( f=f, g_list=[g], C_list=[C], rho_list=[ρ], x0=A.adj(y), maxiter=maxiter, subproblem_solver=CircularConvolveSolver(), itstat_options={"display": True, "period": 10}, ) """ Run the solver. """ print(f"Solving on {device_info()}\n") x = solver.solve() hist = solver.itstat_object.history(transpose=True) """ Show the recovered image. """ fig, ax = plot.subplots(nrows=1, ncols=3, figsize=(15, 5)) plot.imview(x_gt, title="Ground truth", fig=fig, ax=ax[0]) plot.imview(y, title="Blurred, noisy image: %.2f (dB)" % metric.psnr(x_gt, y), fig=fig, ax=ax[1]) plot.imview(x, title="Deconvolved image: %.2f (dB)" % metric.psnr(x_gt, x), fig=fig, ax=ax[2]) fig.show() """ Plot convergence statistics. """ fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(12, 5)) plot.plot( hist.Objective, title="Objective function", xlbl="Iteration", ylbl="Functional value", fig=fig, ax=ax[0], ) plot.plot( snp.vstack((hist.Prml_Rsdl, hist.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals", xlbl="Iteration", lgnd=("Primal", "Dual"), fig=fig, ax=ax[1], ) fig.show() input("\nWaiting for input to close figures and exit")
scico
/scico-0.0.4.tar.gz/scico-0.0.4/examples/scripts/deconv_circ_tv_admm.py
deconv_circ_tv_admm.py
r""" Circulant Blur Image Deconvolution with TV Regularization ========================================================= This example demonstrates the solution of an image deconvolution problem with isotropic total variation (TV) regularization $$\mathrm{argmin}_{\mathbf{x}} \; (1/2) \| \mathbf{y} - A \mathbf{x} \|_2^2 + \lambda \| C \mathbf{x} \|_{2,1} \;,$$ where $A$ is a circular convolution operator, $\mathbf{y}$ is the blurred image, $C$ is a 2D finite difference operator, and $\mathbf{x}$ is the deconvolved image. """ import jax from xdesign import SiemensStar, discrete_phantom import scico.numpy as snp import scico.random from scico import functional, linop, loss, metric, plot from scico.optimize.admm import ADMM, CircularConvolveSolver from scico.util import device_info """ Create a ground truth image. """ phantom = SiemensStar(32) N = 256 # image size x_gt = snp.pad(discrete_phantom(phantom, N - 16), 8) x_gt = jax.device_put(x_gt) # convert to jax type, push to GPU """ Set up the forward operator and create a test signal consisting of a blurred signal with additive Gaussian noise. """ n = 5 # convolution kernel size σ = 20.0 / 255 # noise level psf = snp.ones((n, n)) / (n * n) A = linop.CircularConvolve(h=psf, input_shape=x_gt.shape) Ax = A(x_gt) # blurred image noise, key = scico.random.randn(Ax.shape, seed=0) y = Ax + σ * noise """ Set up an ADMM solver object. """ λ = 2e-2 # L21 norm regularization parameter ρ = 5e-1 # ADMM penalty parameter maxiter = 50 # number of ADMM iterations f = loss.SquaredL2Loss(y=y, A=A) # Penalty parameters must be accounted for in the gi functions, not as # additional inputs. g = λ * functional.L21Norm() # regularization functionals gi C = linop.FiniteDifference(x_gt.shape, circular=True) solver = ADMM( f=f, g_list=[g], C_list=[C], rho_list=[ρ], x0=A.adj(y), maxiter=maxiter, subproblem_solver=CircularConvolveSolver(), itstat_options={"display": True, "period": 10}, ) """ Run the solver. """ print(f"Solving on {device_info()}\n") x = solver.solve() hist = solver.itstat_object.history(transpose=True) """ Show the recovered image. """ fig, ax = plot.subplots(nrows=1, ncols=3, figsize=(15, 5)) plot.imview(x_gt, title="Ground truth", fig=fig, ax=ax[0]) plot.imview(y, title="Blurred, noisy image: %.2f (dB)" % metric.psnr(x_gt, y), fig=fig, ax=ax[1]) plot.imview(x, title="Deconvolved image: %.2f (dB)" % metric.psnr(x_gt, x), fig=fig, ax=ax[2]) fig.show() """ Plot convergence statistics. """ fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(12, 5)) plot.plot( hist.Objective, title="Objective function", xlbl="Iteration", ylbl="Functional value", fig=fig, ax=ax[0], ) plot.plot( snp.vstack((hist.Prml_Rsdl, hist.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals", xlbl="Iteration", lgnd=("Primal", "Dual"), fig=fig, ax=ax[1], ) fig.show() input("\nWaiting for input to close figures and exit")
0.932122
0.933613
import numpy as np import jax import matplotlib.pyplot as plt import svmbir from xdesign import Foam, discrete_phantom import scico.numpy as snp from scico import functional, linop, metric, plot from scico.linop import Diagonal from scico.linop.radon_svmbir import SVMBIRSquaredL2Loss, TomographicProjector from scico.optimize import PDHG, LinearizedADMM from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.util import device_info """ Generate a ground truth image. """ N = 256 # image size density = 0.025 # attenuation density of the image np.random.seed(1234) x_gt = discrete_phantom(Foam(size_range=[0.05, 0.02], gap=0.02, porosity=0.3), size=N - 10) x_gt = x_gt / np.max(x_gt) * density x_gt = np.pad(x_gt, 5) x_gt[x_gt < 0] = 0 """ Generate tomographic projector and sinogram. """ num_angles = int(N / 2) num_channels = N angles = snp.linspace(0, snp.pi, num_angles, dtype=snp.float32) A = TomographicProjector(x_gt.shape, angles, num_channels) sino = A @ x_gt """ Impose Poisson noise on sinogram. Higher max_intensity means less noise. """ max_intensity = 2000 expected_counts = max_intensity * np.exp(-sino) noisy_counts = np.random.poisson(expected_counts).astype(np.float32) noisy_counts[noisy_counts == 0] = 1 # deal with 0s y = -np.log(noisy_counts / max_intensity) """ Reconstruct using default prior of SVMBIR :cite:`svmbir-2020`. """ weights = svmbir.calc_weights(y, weight_type="transmission") x_mrf = svmbir.recon( np.array(y[:, np.newaxis]), np.array(angles), weights=weights[:, np.newaxis], num_rows=N, num_cols=N, positivity=True, verbose=0, )[0] """ Set up problem. """ y, x0, weights = jax.device_put([y, x_mrf, weights]) λ = 1e-1 # L1 norm regularization parameter f = SVMBIRSquaredL2Loss(y=y, A=A, W=Diagonal(weights), scale=0.5) g = λ * functional.L21Norm() # regularization functional # The append=0 option makes the results of horizontal and vertical finite # differences the same shape, which is required for the L21Norm. C = linop.FiniteDifference(input_shape=x_gt.shape, append=0) """ Solve via ADMM. """ solve_admm = ADMM( f=f, g_list=[g], C_list=[C], rho_list=[2e1], x0=x0, maxiter=50, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": 1e-4, "maxiter": 10}), itstat_options={"display": True, "period": 10}, ) print(f"Solving on {device_info()}\n") x_admm = solve_admm.solve() hist_admm = solve_admm.itstat_object.history(transpose=True) print(f"PSNR: {metric.psnr(x_gt, x_admm):.2f} dB\n") """ Solve via Linearized ADMM. """ solver_ladmm = LinearizedADMM( f=f, g=g, C=C, mu=3e-2, nu=2e-1, x0=x0, maxiter=50, itstat_options={"display": True, "period": 10}, ) x_ladmm = solver_ladmm.solve() hist_ladmm = solver_ladmm.itstat_object.history(transpose=True) print(f"PSNR: {metric.psnr(x_gt, x_ladmm):.2f} dB\n") """ Solve via PDHG. """ solver_pdhg = PDHG( f=f, g=g, C=C, tau=2e-2, sigma=8e0, x0=x0, maxiter=50, itstat_options={"display": True, "period": 10}, ) x_pdhg = solver_pdhg.solve() hist_pdhg = solver_pdhg.itstat_object.history(transpose=True) print(f"PSNR: {metric.psnr(x_gt, x_pdhg):.2f} dB\n") """ Show the recovered images. """ norm = plot.matplotlib.colors.Normalize(vmin=-0.1 * density, vmax=1.2 * density) fig, ax = plt.subplots(1, 2, figsize=[10, 5]) plot.imview(img=x_gt, title="Ground Truth Image", cbar=True, fig=fig, ax=ax[0], norm=norm) plot.imview( img=x_mrf, title=f"MRF (PSNR: {metric.psnr(x_gt, x_mrf):.2f} dB)", cbar=True, fig=fig, ax=ax[1], norm=norm, ) fig.show() fig, ax = plt.subplots(1, 3, figsize=[15, 5]) plot.imview( img=x_admm, title=f"TV ADMM (PSNR: {metric.psnr(x_gt, x_admm):.2f} dB)", cbar=True, fig=fig, ax=ax[0], norm=norm, ) plot.imview( img=x_ladmm, title=f"TV LinADMM (PSNR: {metric.psnr(x_gt, x_ladmm):.2f} dB)", cbar=True, fig=fig, ax=ax[1], norm=norm, ) plot.imview( img=x_pdhg, title=f"TV PDHG (PSNR: {metric.psnr(x_gt, x_pdhg):.2f} dB)", cbar=True, fig=fig, ax=ax[2], norm=norm, ) fig.show() """ Plot convergence statistics. """ fig, ax = plot.subplots(nrows=1, ncols=3, sharex=True, sharey=False, figsize=(27, 6)) plot.plot( snp.vstack((hist_admm.Objective, hist_ladmm.Objective, hist_pdhg.Objective)).T, ptyp="semilogy", title="Objective function", xlbl="Iteration", lgnd=("ADMM", "LinADMM", "PDHG"), fig=fig, ax=ax[0], ) plot.plot( snp.vstack((hist_admm.Prml_Rsdl, hist_ladmm.Prml_Rsdl, hist_pdhg.Prml_Rsdl)).T, ptyp="semilogy", title="Primal residual", xlbl="Iteration", lgnd=("ADMM", "LinADMM", "PDHG"), fig=fig, ax=ax[1], ) plot.plot( snp.vstack((hist_admm.Dual_Rsdl, hist_ladmm.Dual_Rsdl, hist_pdhg.Dual_Rsdl)).T, ptyp="semilogy", title="Dual residual", xlbl="Iteration", lgnd=("ADMM", "LinADMM", "PDHG"), fig=fig, ax=ax[2], ) fig.show() fig, ax = plot.subplots(nrows=1, ncols=3, sharex=True, sharey=False, figsize=(27, 6)) plot.plot( snp.vstack((hist_admm.Objective, hist_ladmm.Objective, hist_pdhg.Objective)).T, snp.vstack((hist_admm.Time, hist_ladmm.Time, hist_pdhg.Time)).T, ptyp="semilogy", title="Objective function", xlbl="Time (s)", lgnd=("ADMM", "LinADMM", "PDHG"), fig=fig, ax=ax[0], ) plot.plot( snp.vstack((hist_admm.Prml_Rsdl, hist_ladmm.Prml_Rsdl, hist_pdhg.Prml_Rsdl)).T, snp.vstack((hist_admm.Time, hist_ladmm.Time, hist_pdhg.Time)).T, ptyp="semilogy", title="Primal residual", xlbl="Time (s)", lgnd=("ADMM", "LinADMM", "PDHG"), fig=fig, ax=ax[1], ) plot.plot( snp.vstack((hist_admm.Dual_Rsdl, hist_ladmm.Dual_Rsdl, hist_pdhg.Dual_Rsdl)).T, snp.vstack((hist_admm.Time, hist_ladmm.Time, hist_pdhg.Time)).T, ptyp="semilogy", title="Dual residual", xlbl="Time (s)", lgnd=("ADMM", "LinADMM", "PDHG"), fig=fig, ax=ax[2], ) fig.show() input("\nWaiting for input to close figures and exit")
scico
/scico-0.0.4.tar.gz/scico-0.0.4/examples/scripts/ct_svmbir_tv_multi.py
ct_svmbir_tv_multi.py
import numpy as np import jax import matplotlib.pyplot as plt import svmbir from xdesign import Foam, discrete_phantom import scico.numpy as snp from scico import functional, linop, metric, plot from scico.linop import Diagonal from scico.linop.radon_svmbir import SVMBIRSquaredL2Loss, TomographicProjector from scico.optimize import PDHG, LinearizedADMM from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.util import device_info """ Generate a ground truth image. """ N = 256 # image size density = 0.025 # attenuation density of the image np.random.seed(1234) x_gt = discrete_phantom(Foam(size_range=[0.05, 0.02], gap=0.02, porosity=0.3), size=N - 10) x_gt = x_gt / np.max(x_gt) * density x_gt = np.pad(x_gt, 5) x_gt[x_gt < 0] = 0 """ Generate tomographic projector and sinogram. """ num_angles = int(N / 2) num_channels = N angles = snp.linspace(0, snp.pi, num_angles, dtype=snp.float32) A = TomographicProjector(x_gt.shape, angles, num_channels) sino = A @ x_gt """ Impose Poisson noise on sinogram. Higher max_intensity means less noise. """ max_intensity = 2000 expected_counts = max_intensity * np.exp(-sino) noisy_counts = np.random.poisson(expected_counts).astype(np.float32) noisy_counts[noisy_counts == 0] = 1 # deal with 0s y = -np.log(noisy_counts / max_intensity) """ Reconstruct using default prior of SVMBIR :cite:`svmbir-2020`. """ weights = svmbir.calc_weights(y, weight_type="transmission") x_mrf = svmbir.recon( np.array(y[:, np.newaxis]), np.array(angles), weights=weights[:, np.newaxis], num_rows=N, num_cols=N, positivity=True, verbose=0, )[0] """ Set up problem. """ y, x0, weights = jax.device_put([y, x_mrf, weights]) λ = 1e-1 # L1 norm regularization parameter f = SVMBIRSquaredL2Loss(y=y, A=A, W=Diagonal(weights), scale=0.5) g = λ * functional.L21Norm() # regularization functional # The append=0 option makes the results of horizontal and vertical finite # differences the same shape, which is required for the L21Norm. C = linop.FiniteDifference(input_shape=x_gt.shape, append=0) """ Solve via ADMM. """ solve_admm = ADMM( f=f, g_list=[g], C_list=[C], rho_list=[2e1], x0=x0, maxiter=50, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": 1e-4, "maxiter": 10}), itstat_options={"display": True, "period": 10}, ) print(f"Solving on {device_info()}\n") x_admm = solve_admm.solve() hist_admm = solve_admm.itstat_object.history(transpose=True) print(f"PSNR: {metric.psnr(x_gt, x_admm):.2f} dB\n") """ Solve via Linearized ADMM. """ solver_ladmm = LinearizedADMM( f=f, g=g, C=C, mu=3e-2, nu=2e-1, x0=x0, maxiter=50, itstat_options={"display": True, "period": 10}, ) x_ladmm = solver_ladmm.solve() hist_ladmm = solver_ladmm.itstat_object.history(transpose=True) print(f"PSNR: {metric.psnr(x_gt, x_ladmm):.2f} dB\n") """ Solve via PDHG. """ solver_pdhg = PDHG( f=f, g=g, C=C, tau=2e-2, sigma=8e0, x0=x0, maxiter=50, itstat_options={"display": True, "period": 10}, ) x_pdhg = solver_pdhg.solve() hist_pdhg = solver_pdhg.itstat_object.history(transpose=True) print(f"PSNR: {metric.psnr(x_gt, x_pdhg):.2f} dB\n") """ Show the recovered images. """ norm = plot.matplotlib.colors.Normalize(vmin=-0.1 * density, vmax=1.2 * density) fig, ax = plt.subplots(1, 2, figsize=[10, 5]) plot.imview(img=x_gt, title="Ground Truth Image", cbar=True, fig=fig, ax=ax[0], norm=norm) plot.imview( img=x_mrf, title=f"MRF (PSNR: {metric.psnr(x_gt, x_mrf):.2f} dB)", cbar=True, fig=fig, ax=ax[1], norm=norm, ) fig.show() fig, ax = plt.subplots(1, 3, figsize=[15, 5]) plot.imview( img=x_admm, title=f"TV ADMM (PSNR: {metric.psnr(x_gt, x_admm):.2f} dB)", cbar=True, fig=fig, ax=ax[0], norm=norm, ) plot.imview( img=x_ladmm, title=f"TV LinADMM (PSNR: {metric.psnr(x_gt, x_ladmm):.2f} dB)", cbar=True, fig=fig, ax=ax[1], norm=norm, ) plot.imview( img=x_pdhg, title=f"TV PDHG (PSNR: {metric.psnr(x_gt, x_pdhg):.2f} dB)", cbar=True, fig=fig, ax=ax[2], norm=norm, ) fig.show() """ Plot convergence statistics. """ fig, ax = plot.subplots(nrows=1, ncols=3, sharex=True, sharey=False, figsize=(27, 6)) plot.plot( snp.vstack((hist_admm.Objective, hist_ladmm.Objective, hist_pdhg.Objective)).T, ptyp="semilogy", title="Objective function", xlbl="Iteration", lgnd=("ADMM", "LinADMM", "PDHG"), fig=fig, ax=ax[0], ) plot.plot( snp.vstack((hist_admm.Prml_Rsdl, hist_ladmm.Prml_Rsdl, hist_pdhg.Prml_Rsdl)).T, ptyp="semilogy", title="Primal residual", xlbl="Iteration", lgnd=("ADMM", "LinADMM", "PDHG"), fig=fig, ax=ax[1], ) plot.plot( snp.vstack((hist_admm.Dual_Rsdl, hist_ladmm.Dual_Rsdl, hist_pdhg.Dual_Rsdl)).T, ptyp="semilogy", title="Dual residual", xlbl="Iteration", lgnd=("ADMM", "LinADMM", "PDHG"), fig=fig, ax=ax[2], ) fig.show() fig, ax = plot.subplots(nrows=1, ncols=3, sharex=True, sharey=False, figsize=(27, 6)) plot.plot( snp.vstack((hist_admm.Objective, hist_ladmm.Objective, hist_pdhg.Objective)).T, snp.vstack((hist_admm.Time, hist_ladmm.Time, hist_pdhg.Time)).T, ptyp="semilogy", title="Objective function", xlbl="Time (s)", lgnd=("ADMM", "LinADMM", "PDHG"), fig=fig, ax=ax[0], ) plot.plot( snp.vstack((hist_admm.Prml_Rsdl, hist_ladmm.Prml_Rsdl, hist_pdhg.Prml_Rsdl)).T, snp.vstack((hist_admm.Time, hist_ladmm.Time, hist_pdhg.Time)).T, ptyp="semilogy", title="Primal residual", xlbl="Time (s)", lgnd=("ADMM", "LinADMM", "PDHG"), fig=fig, ax=ax[1], ) plot.plot( snp.vstack((hist_admm.Dual_Rsdl, hist_ladmm.Dual_Rsdl, hist_pdhg.Dual_Rsdl)).T, snp.vstack((hist_admm.Time, hist_ladmm.Time, hist_pdhg.Time)).T, ptyp="semilogy", title="Dual residual", xlbl="Time (s)", lgnd=("ADMM", "LinADMM", "PDHG"), fig=fig, ax=ax[2], ) fig.show() input("\nWaiting for input to close figures and exit")
0.772144
0.544378
r""" Deconvolution Microscopy (Single Channel) ========================================= This example partially replicates a [GlobalBioIm example](https://biomedical-imaging-group.github.io/GlobalBioIm/examples.html) using the [microscopy data](http://bigwww.epfl.ch/deconvolution/bio/) provided by the EPFL Biomedical Imaging Group. The deconvolution problem is solved using class [admm.ADMM](../_autosummary/scico.optimize.rst#scico.optimize.ADMM) to solve an image deconvolution problem with isotropic total variation (TV) regularization $$\mathrm{argmin}_{\mathbf{x}} \; (1/2) \| M (\mathbf{y} - A \mathbf{x}) \|_2^2 + \lambda \| C \mathbf{x} \|_{2,1} + \iota_{\mathrm{NN}}(\mathbf{x}) \;,$$ where $M$ is a mask operator, $A$ is circular convolution, $\mathbf{y}$ is the blurred image, $C$ is a convolutional gradient operator, $\iota_{\mathrm{NN}}$ is the indicator function of the non-negativity constraint, and $\mathbf{x}$ is the desired image. """ import scico.numpy as snp from scico import functional, linop, loss, plot, util from scico.examples import downsample_volume, epfl_deconv_data, tile_volume_slices from scico.optimize.admm import ADMM, CircularConvolveSolver """ Get and preprocess data. We downsample the data for the for purposes of the example. Reducing the downsampling rate will make the example slower and more memory-intensive. To run this example on a GPU it may be necessary to set environment variables `XLA_PYTHON_CLIENT_ALLOCATOR=platform` and `XLA_PYTHON_CLIENT_PREALLOCATE=false`. If your GPU does not have enough memory, you can try setting the environment variable `JAX_PLATFORM_NAME=cpu` to run on CPU. """ channel = 0 downsampling_rate = 2 y, psf = epfl_deconv_data(channel, verbose=True) y = downsample_volume(y, downsampling_rate) psf = downsample_volume(psf, downsampling_rate) y -= y.min() y /= y.max() psf /= psf.sum() """ Pad data and create mask. """ padding = [[0, p] for p in snp.array(psf.shape) - 1] y_pad = snp.pad(y, padding) mask = snp.pad(snp.ones_like(y), padding) """ Define problem and algorithm parameters. """ λ = 2e-6 # ℓ1 norm regularization parameter ρ0 = 1e-3 # ADMM penalty parameter for first auxiliary variable ρ1 = 1e-3 # ADMM penalty parameter for second auxiliary variable ρ2 = 1e-3 # ADMM penalty parameter for third auxiliary variable maxiter = 100 # number of ADMM iterations """ Create operators. """ M = linop.Diagonal(mask) C0 = linop.CircularConvolve(h=psf, input_shape=mask.shape, h_center=snp.array(psf.shape) / 2 - 0.5) C1 = linop.FiniteDifference(input_shape=mask.shape, circular=True) C2 = linop.Identity(mask.shape) """ Create functionals. """ g0 = loss.SquaredL2Loss(y=y_pad, A=M) # loss function (forward model) g1 = λ * functional.L21Norm() # TV penalty (when applied to gradient) g2 = functional.NonNegativeIndicator() # non-negativity constraint """ Set up ADMM solver object and solve problem. """ solver = ADMM( f=None, g_list=[g0, g1, g2], C_list=[C0, C1, C2], rho_list=[ρ0, ρ1, ρ2], maxiter=maxiter, itstat_options={"display": True, "period": 10}, x0=y_pad, subproblem_solver=CircularConvolveSolver(), ) print("Solving on %s\n" % util.device_info()) solver.solve() solve_stats = solver.itstat_object.history(transpose=True) x_pad = solver.x x = x_pad[: y.shape[0], : y.shape[1], : y.shape[2]] """ Show the recovered image. """ fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(14, 7)) plot.imview(tile_volume_slices(y), title="Blurred measurements", fig=fig, ax=ax[0]) plot.imview(tile_volume_slices(x), title="Deconvolved image", fig=fig, ax=ax[1]) fig.show() """ Plot convergence statistics. """ fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(12, 5)) plot.plot( solve_stats.Objective, title="Objective function", xlbl="Iteration", ylbl="Functional value", fig=fig, ax=ax[0], ) plot.plot( snp.vstack((solve_stats.Prml_Rsdl, solve_stats.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals", xlbl="Iteration", lgnd=("Primal", "Dual"), fig=fig, ax=ax[1], ) fig.show() input("\nWaiting for input to close figures and exit")
scico
/scico-0.0.4.tar.gz/scico-0.0.4/examples/scripts/deconv_microscopy_tv_admm.py
deconv_microscopy_tv_admm.py
r""" Deconvolution Microscopy (Single Channel) ========================================= This example partially replicates a [GlobalBioIm example](https://biomedical-imaging-group.github.io/GlobalBioIm/examples.html) using the [microscopy data](http://bigwww.epfl.ch/deconvolution/bio/) provided by the EPFL Biomedical Imaging Group. The deconvolution problem is solved using class [admm.ADMM](../_autosummary/scico.optimize.rst#scico.optimize.ADMM) to solve an image deconvolution problem with isotropic total variation (TV) regularization $$\mathrm{argmin}_{\mathbf{x}} \; (1/2) \| M (\mathbf{y} - A \mathbf{x}) \|_2^2 + \lambda \| C \mathbf{x} \|_{2,1} + \iota_{\mathrm{NN}}(\mathbf{x}) \;,$$ where $M$ is a mask operator, $A$ is circular convolution, $\mathbf{y}$ is the blurred image, $C$ is a convolutional gradient operator, $\iota_{\mathrm{NN}}$ is the indicator function of the non-negativity constraint, and $\mathbf{x}$ is the desired image. """ import scico.numpy as snp from scico import functional, linop, loss, plot, util from scico.examples import downsample_volume, epfl_deconv_data, tile_volume_slices from scico.optimize.admm import ADMM, CircularConvolveSolver """ Get and preprocess data. We downsample the data for the for purposes of the example. Reducing the downsampling rate will make the example slower and more memory-intensive. To run this example on a GPU it may be necessary to set environment variables `XLA_PYTHON_CLIENT_ALLOCATOR=platform` and `XLA_PYTHON_CLIENT_PREALLOCATE=false`. If your GPU does not have enough memory, you can try setting the environment variable `JAX_PLATFORM_NAME=cpu` to run on CPU. """ channel = 0 downsampling_rate = 2 y, psf = epfl_deconv_data(channel, verbose=True) y = downsample_volume(y, downsampling_rate) psf = downsample_volume(psf, downsampling_rate) y -= y.min() y /= y.max() psf /= psf.sum() """ Pad data and create mask. """ padding = [[0, p] for p in snp.array(psf.shape) - 1] y_pad = snp.pad(y, padding) mask = snp.pad(snp.ones_like(y), padding) """ Define problem and algorithm parameters. """ λ = 2e-6 # ℓ1 norm regularization parameter ρ0 = 1e-3 # ADMM penalty parameter for first auxiliary variable ρ1 = 1e-3 # ADMM penalty parameter for second auxiliary variable ρ2 = 1e-3 # ADMM penalty parameter for third auxiliary variable maxiter = 100 # number of ADMM iterations """ Create operators. """ M = linop.Diagonal(mask) C0 = linop.CircularConvolve(h=psf, input_shape=mask.shape, h_center=snp.array(psf.shape) / 2 - 0.5) C1 = linop.FiniteDifference(input_shape=mask.shape, circular=True) C2 = linop.Identity(mask.shape) """ Create functionals. """ g0 = loss.SquaredL2Loss(y=y_pad, A=M) # loss function (forward model) g1 = λ * functional.L21Norm() # TV penalty (when applied to gradient) g2 = functional.NonNegativeIndicator() # non-negativity constraint """ Set up ADMM solver object and solve problem. """ solver = ADMM( f=None, g_list=[g0, g1, g2], C_list=[C0, C1, C2], rho_list=[ρ0, ρ1, ρ2], maxiter=maxiter, itstat_options={"display": True, "period": 10}, x0=y_pad, subproblem_solver=CircularConvolveSolver(), ) print("Solving on %s\n" % util.device_info()) solver.solve() solve_stats = solver.itstat_object.history(transpose=True) x_pad = solver.x x = x_pad[: y.shape[0], : y.shape[1], : y.shape[2]] """ Show the recovered image. """ fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(14, 7)) plot.imview(tile_volume_slices(y), title="Blurred measurements", fig=fig, ax=ax[0]) plot.imview(tile_volume_slices(x), title="Deconvolved image", fig=fig, ax=ax[1]) fig.show() """ Plot convergence statistics. """ fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(12, 5)) plot.plot( solve_stats.Objective, title="Objective function", xlbl="Iteration", ylbl="Functional value", fig=fig, ax=ax[0], ) plot.plot( snp.vstack((solve_stats.Prml_Rsdl, solve_stats.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals", xlbl="Iteration", lgnd=("Primal", "Dual"), fig=fig, ax=ax[1], ) fig.show() input("\nWaiting for input to close figures and exit")
0.917261
0.936168
import numpy as np import jax from xdesign import Foam, discrete_phantom import scico.numpy as snp from scico import functional, linop, loss, metric, plot, random from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.util import device_info """ Create a ground truth image. """ np.random.seed(1234) N = 512 # image size x_gt = discrete_phantom(Foam(size_range=[0.075, 0.0025], gap=1e-3, porosity=1), size=N) x_gt = jax.device_put(x_gt) # convert to jax array, push to GPU """ Set up forward operator and test signal consisting of blurred signal with additive Gaussian noise. """ n = 5 # convolution kernel size σ = 20.0 / 255 # noise level psf = snp.ones((n, n)) / (n * n) A = linop.Convolve(h=psf, input_shape=x_gt.shape) Ax = A(x_gt) # blurred image noise, key = random.randn(Ax.shape) y = Ax + σ * noise """ Set up ADMM solver. """ f = loss.SquaredL2Loss(y=y, A=A) C = linop.Identity(x_gt.shape) λ = 20.0 / 255 # BM3D regularization strength g = λ * functional.BM3D() ρ = 1.0 # ADMM penalty parameter maxiter = 10 # number of ADMM iterations solver = ADMM( f=f, g_list=[g], C_list=[C], rho_list=[ρ], x0=A.T @ y, maxiter=maxiter, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": 1e-3, "maxiter": 100}), itstat_options={"display": True}, ) """ Run the solver. """ print(f"Solving on {device_info()}\n") x = solver.solve() x = snp.clip(x, 0, 1) hist = solver.itstat_object.history(transpose=True) """ Show the recovered image. """ fig, ax = plot.subplots(nrows=1, ncols=3, figsize=(15, 5)) plot.imview(x_gt, title="Ground truth", fig=fig, ax=ax[0]) nc = n // 2 yc = snp.clip(y[nc:-nc, nc:-nc], 0, 1) plot.imview(y, title="Blurred, noisy image: %.2f (dB)" % metric.psnr(x_gt, yc), fig=fig, ax=ax[1]) plot.imview(x, title="Deconvolved image: %.2f (dB)" % metric.psnr(x_gt, x), fig=fig, ax=ax[2]) fig.show() """ Plot convergence statistics. """ plot.plot( snp.vstack((hist.Prml_Rsdl, hist.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals", xlbl="Iteration", lgnd=("Primal", "Dual"), ) input("\nWaiting for input to close figures and exit")
scico
/scico-0.0.4.tar.gz/scico-0.0.4/examples/scripts/deconv_ppp_bm3d_admm.py
deconv_ppp_bm3d_admm.py
import numpy as np import jax from xdesign import Foam, discrete_phantom import scico.numpy as snp from scico import functional, linop, loss, metric, plot, random from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.util import device_info """ Create a ground truth image. """ np.random.seed(1234) N = 512 # image size x_gt = discrete_phantom(Foam(size_range=[0.075, 0.0025], gap=1e-3, porosity=1), size=N) x_gt = jax.device_put(x_gt) # convert to jax array, push to GPU """ Set up forward operator and test signal consisting of blurred signal with additive Gaussian noise. """ n = 5 # convolution kernel size σ = 20.0 / 255 # noise level psf = snp.ones((n, n)) / (n * n) A = linop.Convolve(h=psf, input_shape=x_gt.shape) Ax = A(x_gt) # blurred image noise, key = random.randn(Ax.shape) y = Ax + σ * noise """ Set up ADMM solver. """ f = loss.SquaredL2Loss(y=y, A=A) C = linop.Identity(x_gt.shape) λ = 20.0 / 255 # BM3D regularization strength g = λ * functional.BM3D() ρ = 1.0 # ADMM penalty parameter maxiter = 10 # number of ADMM iterations solver = ADMM( f=f, g_list=[g], C_list=[C], rho_list=[ρ], x0=A.T @ y, maxiter=maxiter, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": 1e-3, "maxiter": 100}), itstat_options={"display": True}, ) """ Run the solver. """ print(f"Solving on {device_info()}\n") x = solver.solve() x = snp.clip(x, 0, 1) hist = solver.itstat_object.history(transpose=True) """ Show the recovered image. """ fig, ax = plot.subplots(nrows=1, ncols=3, figsize=(15, 5)) plot.imview(x_gt, title="Ground truth", fig=fig, ax=ax[0]) nc = n // 2 yc = snp.clip(y[nc:-nc, nc:-nc], 0, 1) plot.imview(y, title="Blurred, noisy image: %.2f (dB)" % metric.psnr(x_gt, yc), fig=fig, ax=ax[1]) plot.imview(x, title="Deconvolved image: %.2f (dB)" % metric.psnr(x_gt, x), fig=fig, ax=ax[2]) fig.show() """ Plot convergence statistics. """ plot.plot( snp.vstack((hist.Prml_Rsdl, hist.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals", xlbl="Iteration", lgnd=("Primal", "Dual"), ) input("\nWaiting for input to close figures and exit")
0.81372
0.526282
r""" 3D TV-Regularized Sparse-View CT Reconstruction =============================================== This example demonstrates solution of a sparse-view, 3D CT reconstruction problem with isotropic total variation (TV) regularization $$\mathrm{argmin}_{\mathbf{x}} \; (1/2) \| \mathbf{y} - A \mathbf{x} \|_2^2 + \lambda \| C \mathbf{x} \|_{2,1} \;,$$ where $A$ is the Radon transform, $\mathbf{y}$ is the sinogram, $C$ is a 3D finite difference operator, and $\mathbf{x}$ is the desired image. """ import numpy as np import jax from mpl_toolkits.axes_grid1 import make_axes_locatable from scico import functional, linop, loss, metric, plot from scico.examples import create_tangle_phantom from scico.linop.radon_astra import TomographicProjector from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.util import device_info """ Create a ground truth image and projector. """ Nx = 128 Ny = 256 Nz = 64 tangle = create_tangle_phantom(Nx, Ny, Nz) tangle = jax.device_put(tangle) n_projection = 10 # number of projections angles = np.linspace(0, np.pi, n_projection) # evenly spaced projection angles A = TomographicProjector( tangle.shape, [1.0, 1.0], [Nz, max(Nx, Ny)], angles ) # Radon transform operator y = A @ tangle # sinogram """ Set up ADMM solver object. """ λ = 2e0 # L1 norm regularization parameter ρ = 5e0 # ADMM penalty parameter maxiter = 25 # number of ADMM iterations cg_tol = 1e-4 # CG relative tolerance cg_maxiter = 25 # maximum CG iterations per ADMM iteration # The append=0 option makes the results of horizontal and vertical # finite differences the same shape, which is required for the L21Norm, # which is used so that g(Cx) corresponds to isotropic TV. C = linop.FiniteDifference(input_shape=tangle.shape, append=0) g = λ * functional.L21Norm() f = loss.SquaredL2Loss(y=y, A=A) x0 = A.T(y) solver = ADMM( f=f, g_list=[g], C_list=[C], rho_list=[ρ], x0=x0, maxiter=maxiter, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": cg_tol, "maxiter": cg_maxiter}), itstat_options={"display": True, "period": 5}, ) """ Run the solver. """ print(f"Solving on {device_info()}\n") solver.solve() hist = solver.itstat_object.history(transpose=True) tangle_recon = solver.x print( "TV Restruction\nSNR: %.2f (dB), MAE: %.3f" % (metric.snr(tangle, tangle_recon), metric.mae(tangle, tangle_recon)) ) """ Show the recovered image. """ fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(7, 5)) plot.imview(tangle[32], title="Ground truth (central slice)", cbar=None, fig=fig, ax=ax[0]) plot.imview( tangle_recon[32], title="TV Reconstruction (central slice)\nSNR: %.2f (dB), MAE: %.3f" % (metric.snr(tangle, tangle_recon), metric.mae(tangle, tangle_recon)), fig=fig, ax=ax[1], ) divider = make_axes_locatable(ax[1]) cax = divider.append_axes("right", size="5%", pad=0.2) fig.colorbar(ax[1].get_images()[0], cax=cax, label="arbitrary units") fig.show() input("\nWaiting for input to close figures and exit")
scico
/scico-0.0.4.tar.gz/scico-0.0.4/examples/scripts/ct_astra_3d_tv_admm.py
ct_astra_3d_tv_admm.py
r""" 3D TV-Regularized Sparse-View CT Reconstruction =============================================== This example demonstrates solution of a sparse-view, 3D CT reconstruction problem with isotropic total variation (TV) regularization $$\mathrm{argmin}_{\mathbf{x}} \; (1/2) \| \mathbf{y} - A \mathbf{x} \|_2^2 + \lambda \| C \mathbf{x} \|_{2,1} \;,$$ where $A$ is the Radon transform, $\mathbf{y}$ is the sinogram, $C$ is a 3D finite difference operator, and $\mathbf{x}$ is the desired image. """ import numpy as np import jax from mpl_toolkits.axes_grid1 import make_axes_locatable from scico import functional, linop, loss, metric, plot from scico.examples import create_tangle_phantom from scico.linop.radon_astra import TomographicProjector from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.util import device_info """ Create a ground truth image and projector. """ Nx = 128 Ny = 256 Nz = 64 tangle = create_tangle_phantom(Nx, Ny, Nz) tangle = jax.device_put(tangle) n_projection = 10 # number of projections angles = np.linspace(0, np.pi, n_projection) # evenly spaced projection angles A = TomographicProjector( tangle.shape, [1.0, 1.0], [Nz, max(Nx, Ny)], angles ) # Radon transform operator y = A @ tangle # sinogram """ Set up ADMM solver object. """ λ = 2e0 # L1 norm regularization parameter ρ = 5e0 # ADMM penalty parameter maxiter = 25 # number of ADMM iterations cg_tol = 1e-4 # CG relative tolerance cg_maxiter = 25 # maximum CG iterations per ADMM iteration # The append=0 option makes the results of horizontal and vertical # finite differences the same shape, which is required for the L21Norm, # which is used so that g(Cx) corresponds to isotropic TV. C = linop.FiniteDifference(input_shape=tangle.shape, append=0) g = λ * functional.L21Norm() f = loss.SquaredL2Loss(y=y, A=A) x0 = A.T(y) solver = ADMM( f=f, g_list=[g], C_list=[C], rho_list=[ρ], x0=x0, maxiter=maxiter, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": cg_tol, "maxiter": cg_maxiter}), itstat_options={"display": True, "period": 5}, ) """ Run the solver. """ print(f"Solving on {device_info()}\n") solver.solve() hist = solver.itstat_object.history(transpose=True) tangle_recon = solver.x print( "TV Restruction\nSNR: %.2f (dB), MAE: %.3f" % (metric.snr(tangle, tangle_recon), metric.mae(tangle, tangle_recon)) ) """ Show the recovered image. """ fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(7, 5)) plot.imview(tangle[32], title="Ground truth (central slice)", cbar=None, fig=fig, ax=ax[0]) plot.imview( tangle_recon[32], title="TV Reconstruction (central slice)\nSNR: %.2f (dB), MAE: %.3f" % (metric.snr(tangle, tangle_recon), metric.mae(tangle, tangle_recon)), fig=fig, ax=ax[1], ) divider = make_axes_locatable(ax[1]) cax = divider.append_axes("right", size="5%", pad=0.2) fig.colorbar(ax[1].get_images()[0], cax=cax, label="arbitrary units") fig.show() input("\nWaiting for input to close figures and exit")
0.920348
0.948775
r""" Video Decomposition via Robust PCA ================================== This example demonstrates video foreground/background separation via a variant of the Robust PCA problem $$\mathrm{argmin}_{\mathbf{x}_0, \mathbf{x}_1} \; (1/2) \| \mathbf{x}_0 + \mathbf{x}_1 - \mathbf{y} \|_2^2 + \lambda_0 \| \mathbf{x}_0 \|_* + \lambda_1 \| \mathbf{x}_1 \|_1 \;,$$ where $\mathbf{x}_0$ and $\mathbf{x}_1$ are respectively low-rank and sparse components, $\| \cdot \|_*$ denotes the nuclear norm, and $\| \cdot \|_1$ denotes the $\ell_1$ norm. Note: while video foreground/background separation is not an example of the scientific and computational imaging problems that are the focus of SCICO, it provides a convenient demonstration of Robust PCA, which does have potential application in scientific imaging problems. """ import imageio import scico.numpy as snp from scico import functional, linop, loss, plot from scico.examples import rgb2gray from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.util import device_info """ Load example video. """ reader = imageio.get_reader("imageio:newtonscradle.gif") nfrm = reader.get_length() frmlst = [] for i, frm in enumerate(reader): frmlst.append(rgb2gray(frm[..., 0:3].astype(snp.float32) / 255.0)) vid = snp.stack(frmlst, axis=2) """ Construct matrix with each column consisting of a vectorised video frame. """ y = vid.reshape((-1, vid.shape[-1])) """ Define functional for Robust PCA problem. """ A = linop.Sum(axis=0, input_shape=(2,) + y.shape) f = loss.SquaredL2Loss(y=y, A=A) C0 = linop.Slice(idx=0, input_shape=(2,) + y.shape) g0 = functional.NuclearNorm() C1 = linop.Slice(idx=1, input_shape=(2,) + y.shape) g1 = functional.L1Norm() """ Set up an ADMM solver object. """ λ0 = 1e1 # nuclear norm regularization parameter λ1 = 3e1 # l1 norm regularization parameter ρ0 = 2e1 # ADMM penalty parameter ρ1 = 2e1 # ADMM penalty parameter maxiter = 50 # number of ADMM iterations solver = ADMM( f=f, g_list=[λ0 * g0, λ1 * g1], C_list=[C0, C1], rho_list=[ρ0, ρ1], x0=A.adj(y), maxiter=maxiter, subproblem_solver=LinearSubproblemSolver(), itstat_options={"display": True, "period": 10}, ) """ Run the solver. """ print(f"Solving on {device_info()}\n") x = solver.solve() hist = solver.itstat_object.history(transpose=True) """ Plot convergence statistics. """ fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(12, 5)) plot.plot( hist.Objective, title="Objective function", xlbl="Iteration", ylbl="Functional value", fig=fig, ax=ax[0], ) plot.plot( snp.vstack((hist.Prml_Rsdl, hist.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals", xlbl="Iteration", lgnd=("Primal", "Dual"), fig=fig, ax=ax[1], ) fig.show() """ Reshape low-rank component as background video sequence and sparse component as foreground video sequence. """ xlr = C0(x) xsp = C1(x) vbg = xlr.reshape(vid.shape) vfg = xsp.reshape(vid.shape) """ Display original video frames and corresponding background and foreground frames. """ fig, ax = plot.subplots(nrows=4, ncols=3, figsize=(10, 10)) ax[0][0].set_title("Original") ax[0][1].set_title("Background") ax[0][2].set_title("Foreground") for n, fn in enumerate(range(1, 9, 2)): plot.imview(vid[..., fn], fig=fig, ax=ax[n][0]) plot.imview(vbg[..., fn], fig=fig, ax=ax[n][1]) plot.imview(vfg[..., fn], fig=fig, ax=ax[n][2]) ax[n][0].set_ylabel("Frame %d" % fn, labelpad=5, rotation=90, size="large") fig.tight_layout() fig.show() input("\nWaiting for input to close figures and exit")
scico
/scico-0.0.4.tar.gz/scico-0.0.4/examples/scripts/video_rpca_admm.py
video_rpca_admm.py
r""" Video Decomposition via Robust PCA ================================== This example demonstrates video foreground/background separation via a variant of the Robust PCA problem $$\mathrm{argmin}_{\mathbf{x}_0, \mathbf{x}_1} \; (1/2) \| \mathbf{x}_0 + \mathbf{x}_1 - \mathbf{y} \|_2^2 + \lambda_0 \| \mathbf{x}_0 \|_* + \lambda_1 \| \mathbf{x}_1 \|_1 \;,$$ where $\mathbf{x}_0$ and $\mathbf{x}_1$ are respectively low-rank and sparse components, $\| \cdot \|_*$ denotes the nuclear norm, and $\| \cdot \|_1$ denotes the $\ell_1$ norm. Note: while video foreground/background separation is not an example of the scientific and computational imaging problems that are the focus of SCICO, it provides a convenient demonstration of Robust PCA, which does have potential application in scientific imaging problems. """ import imageio import scico.numpy as snp from scico import functional, linop, loss, plot from scico.examples import rgb2gray from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.util import device_info """ Load example video. """ reader = imageio.get_reader("imageio:newtonscradle.gif") nfrm = reader.get_length() frmlst = [] for i, frm in enumerate(reader): frmlst.append(rgb2gray(frm[..., 0:3].astype(snp.float32) / 255.0)) vid = snp.stack(frmlst, axis=2) """ Construct matrix with each column consisting of a vectorised video frame. """ y = vid.reshape((-1, vid.shape[-1])) """ Define functional for Robust PCA problem. """ A = linop.Sum(axis=0, input_shape=(2,) + y.shape) f = loss.SquaredL2Loss(y=y, A=A) C0 = linop.Slice(idx=0, input_shape=(2,) + y.shape) g0 = functional.NuclearNorm() C1 = linop.Slice(idx=1, input_shape=(2,) + y.shape) g1 = functional.L1Norm() """ Set up an ADMM solver object. """ λ0 = 1e1 # nuclear norm regularization parameter λ1 = 3e1 # l1 norm regularization parameter ρ0 = 2e1 # ADMM penalty parameter ρ1 = 2e1 # ADMM penalty parameter maxiter = 50 # number of ADMM iterations solver = ADMM( f=f, g_list=[λ0 * g0, λ1 * g1], C_list=[C0, C1], rho_list=[ρ0, ρ1], x0=A.adj(y), maxiter=maxiter, subproblem_solver=LinearSubproblemSolver(), itstat_options={"display": True, "period": 10}, ) """ Run the solver. """ print(f"Solving on {device_info()}\n") x = solver.solve() hist = solver.itstat_object.history(transpose=True) """ Plot convergence statistics. """ fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(12, 5)) plot.plot( hist.Objective, title="Objective function", xlbl="Iteration", ylbl="Functional value", fig=fig, ax=ax[0], ) plot.plot( snp.vstack((hist.Prml_Rsdl, hist.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals", xlbl="Iteration", lgnd=("Primal", "Dual"), fig=fig, ax=ax[1], ) fig.show() """ Reshape low-rank component as background video sequence and sparse component as foreground video sequence. """ xlr = C0(x) xsp = C1(x) vbg = xlr.reshape(vid.shape) vfg = xsp.reshape(vid.shape) """ Display original video frames and corresponding background and foreground frames. """ fig, ax = plot.subplots(nrows=4, ncols=3, figsize=(10, 10)) ax[0][0].set_title("Original") ax[0][1].set_title("Background") ax[0][2].set_title("Foreground") for n, fn in enumerate(range(1, 9, 2)): plot.imview(vid[..., fn], fig=fig, ax=ax[n][0]) plot.imview(vbg[..., fn], fig=fig, ax=ax[n][1]) plot.imview(vfg[..., fn], fig=fig, ax=ax[n][2]) ax[n][0].set_ylabel("Frame %d" % fn, labelpad=5, rotation=90, size="large") fig.tight_layout() fig.show() input("\nWaiting for input to close figures and exit")
0.89197
0.965803
import numpy as np import jax from bm3d import bm3d_rgb from colour_demosaicing import demosaicing_CFA_Bayer_Menon2007 import scico import scico.numpy as snp import scico.random from scico import functional, linop, loss, metric, plot from scico.data import kodim23 from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.util import device_info """ Read a ground truth image. """ img = kodim23(asfloat=True)[160:416, 60:316] img = jax.device_put(img) # convert to jax type, push to GPU """ Define demosaicing forward operator and its transpose. """ def Afn(x): """Map an RGB image to a single channel image with each pixel representing a single colour according to the colour filter array. """ y = snp.zeros(x.shape[0:2]) y = y.at[1::2, 1::2].set(x[1::2, 1::2, 0]) y = y.at[0::2, 1::2].set(x[0::2, 1::2, 1]) y = y.at[1::2, 0::2].set(x[1::2, 0::2, 1]) y = y.at[0::2, 0::2].set(x[0::2, 0::2, 2]) return y def ATfn(x): """Back project a single channel raw image to an RGB image with zeros at the locations of undefined samples. """ y = snp.zeros(x.shape + (3,)) y = y.at[1::2, 1::2, 0].set(x[1::2, 1::2]) y = y.at[0::2, 1::2, 1].set(x[0::2, 1::2]) y = y.at[1::2, 0::2, 1].set(x[1::2, 0::2]) y = y.at[0::2, 0::2, 2].set(x[0::2, 0::2]) return y """ Define a baseline demosaicing function based on the demosaicing algorithm of :cite:`menon-2007-demosaicing` from package [colour_demosaicing](https://github.com/colour-science/colour-demosaicing). """ def demosaic(cfaimg): """Apply baseline demosaicing.""" return demosaicing_CFA_Bayer_Menon2007(cfaimg, pattern="BGGR").astype(np.float32) """ Create a test image by color filter array sampling and adding Gaussian white noise. """ s = Afn(img) rgbshp = s.shape + (3,) # shape of reconstructed RGB image σ = 2e-2 # noise standard deviation noise, key = scico.random.randn(s.shape, seed=0) sn = s + σ * noise """ Compute a baseline demosaicing solution. """ imgb = jax.device_put(bm3d_rgb(demosaic(sn), 3 * σ).astype(np.float32)) """ Set up an ADMM solver object. Note the use of the baseline solution as an initializer. We use BM3D :cite:`dabov-2008-image` as the denoiser, using the [code](https://pypi.org/project/bm3d) released with :cite:`makinen-2019-exact`. """ A = linop.LinearOperator(input_shape=rgbshp, output_shape=s.shape, eval_fn=Afn, adj_fn=ATfn) f = loss.SquaredL2Loss(y=sn, A=A) C = linop.Identity(input_shape=rgbshp) g = 1.8e-1 * 6.1e-2 * functional.BM3D(is_rgb=True) ρ = 1.8e-1 # ADMM penalty parameter maxiter = 12 # number of ADMM iterations solver = ADMM( f=f, g_list=[g], C_list=[C], rho_list=[ρ], x0=imgb, maxiter=maxiter, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": 1e-3, "maxiter": 100}), itstat_options={"display": True}, ) """ Run the solver. """ print(f"Solving on {device_info()}\n") x = solver.solve() hist = solver.itstat_object.history(transpose=True) """ Show reference and demosaiced images. """ fig, ax = plot.subplots(nrows=1, ncols=3, sharex=True, sharey=True, figsize=(21, 7)) plot.imview(img, title="Reference", fig=fig, ax=ax[0]) plot.imview(imgb, title="Baseline demoisac: %.2f (dB)" % metric.psnr(img, imgb), fig=fig, ax=ax[1]) plot.imview(x, title="PPP demoisac: %.2f (dB)" % metric.psnr(img, x), fig=fig, ax=ax[2]) fig.show() """ Plot convergence statistics. """ plot.plot( snp.vstack((hist.Prml_Rsdl, hist.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals", xlbl="Iteration", lgnd=("Primal", "Dual"), ) input("\nWaiting for input to close figures and exit")
scico
/scico-0.0.4.tar.gz/scico-0.0.4/examples/scripts/demosaic_ppp_bm3d_admm.py
demosaic_ppp_bm3d_admm.py
import numpy as np import jax from bm3d import bm3d_rgb from colour_demosaicing import demosaicing_CFA_Bayer_Menon2007 import scico import scico.numpy as snp import scico.random from scico import functional, linop, loss, metric, plot from scico.data import kodim23 from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.util import device_info """ Read a ground truth image. """ img = kodim23(asfloat=True)[160:416, 60:316] img = jax.device_put(img) # convert to jax type, push to GPU """ Define demosaicing forward operator and its transpose. """ def Afn(x): """Map an RGB image to a single channel image with each pixel representing a single colour according to the colour filter array. """ y = snp.zeros(x.shape[0:2]) y = y.at[1::2, 1::2].set(x[1::2, 1::2, 0]) y = y.at[0::2, 1::2].set(x[0::2, 1::2, 1]) y = y.at[1::2, 0::2].set(x[1::2, 0::2, 1]) y = y.at[0::2, 0::2].set(x[0::2, 0::2, 2]) return y def ATfn(x): """Back project a single channel raw image to an RGB image with zeros at the locations of undefined samples. """ y = snp.zeros(x.shape + (3,)) y = y.at[1::2, 1::2, 0].set(x[1::2, 1::2]) y = y.at[0::2, 1::2, 1].set(x[0::2, 1::2]) y = y.at[1::2, 0::2, 1].set(x[1::2, 0::2]) y = y.at[0::2, 0::2, 2].set(x[0::2, 0::2]) return y """ Define a baseline demosaicing function based on the demosaicing algorithm of :cite:`menon-2007-demosaicing` from package [colour_demosaicing](https://github.com/colour-science/colour-demosaicing). """ def demosaic(cfaimg): """Apply baseline demosaicing.""" return demosaicing_CFA_Bayer_Menon2007(cfaimg, pattern="BGGR").astype(np.float32) """ Create a test image by color filter array sampling and adding Gaussian white noise. """ s = Afn(img) rgbshp = s.shape + (3,) # shape of reconstructed RGB image σ = 2e-2 # noise standard deviation noise, key = scico.random.randn(s.shape, seed=0) sn = s + σ * noise """ Compute a baseline demosaicing solution. """ imgb = jax.device_put(bm3d_rgb(demosaic(sn), 3 * σ).astype(np.float32)) """ Set up an ADMM solver object. Note the use of the baseline solution as an initializer. We use BM3D :cite:`dabov-2008-image` as the denoiser, using the [code](https://pypi.org/project/bm3d) released with :cite:`makinen-2019-exact`. """ A = linop.LinearOperator(input_shape=rgbshp, output_shape=s.shape, eval_fn=Afn, adj_fn=ATfn) f = loss.SquaredL2Loss(y=sn, A=A) C = linop.Identity(input_shape=rgbshp) g = 1.8e-1 * 6.1e-2 * functional.BM3D(is_rgb=True) ρ = 1.8e-1 # ADMM penalty parameter maxiter = 12 # number of ADMM iterations solver = ADMM( f=f, g_list=[g], C_list=[C], rho_list=[ρ], x0=imgb, maxiter=maxiter, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": 1e-3, "maxiter": 100}), itstat_options={"display": True}, ) """ Run the solver. """ print(f"Solving on {device_info()}\n") x = solver.solve() hist = solver.itstat_object.history(transpose=True) """ Show reference and demosaiced images. """ fig, ax = plot.subplots(nrows=1, ncols=3, sharex=True, sharey=True, figsize=(21, 7)) plot.imview(img, title="Reference", fig=fig, ax=ax[0]) plot.imview(imgb, title="Baseline demoisac: %.2f (dB)" % metric.psnr(img, imgb), fig=fig, ax=ax[1]) plot.imview(x, title="PPP demoisac: %.2f (dB)" % metric.psnr(img, x), fig=fig, ax=ax[2]) fig.show() """ Plot convergence statistics. """ plot.plot( snp.vstack((hist.Prml_Rsdl, hist.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals", xlbl="Iteration", lgnd=("Primal", "Dual"), ) input("\nWaiting for input to close figures and exit")
0.865835
0.614654
import numpy as np import jax import matplotlib.pyplot as plt import svmbir from matplotlib.ticker import MaxNLocator from xdesign import Foam, discrete_phantom import scico.numpy as snp from scico import metric, plot from scico.functional import BM3D, NonNegativeIndicator from scico.linop import Diagonal, Identity from scico.linop.radon_svmbir import ( SVMBIRExtendedLoss, SVMBIRSquaredL2Loss, TomographicProjector, ) from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.util import device_info """ Generate a ground truth image. """ N = 256 # image size density = 0.025 # attenuation density of the image np.random.seed(1234) x_gt = discrete_phantom(Foam(size_range=[0.05, 0.02], gap=0.02, porosity=0.3), size=N - 10) x_gt = x_gt / np.max(x_gt) * density x_gt = np.pad(x_gt, 5) x_gt[x_gt < 0] = 0 """ Generate tomographic projector and sinogram. """ num_angles = int(N / 2) num_channels = N angles = snp.linspace(0, snp.pi, num_angles, endpoint=False, dtype=snp.float32) A = TomographicProjector(x_gt.shape, angles, num_channels) sino = A @ x_gt """ Impose Poisson noise on sinogram. Higher max_intensity means less noise. """ max_intensity = 2000 expected_counts = max_intensity * np.exp(-sino) noisy_counts = np.random.poisson(expected_counts).astype(np.float32) noisy_counts[noisy_counts == 0] = 1 # deal with 0s y = -np.log(noisy_counts / max_intensity) """ Reconstruct using default prior of SVMBIR :cite:`svmbir-2020`. """ weights = svmbir.calc_weights(y, weight_type="transmission") x_mrf = svmbir.recon( np.array(y[:, np.newaxis]), np.array(angles), weights=weights[:, np.newaxis], num_rows=N, num_cols=N, positivity=True, verbose=0, )[0] """ Push arrays to device. """ y, x0, weights = jax.device_put([y, x_mrf, weights]) """ Set problem parameters and BM3D pseudo-functional. """ ρ = 10 # ADMM penalty parameter σ = density * 0.26 # denoiser sigma g0 = σ * ρ * BM3D() """ Set up problem using `SVMBIRSquaredL2Loss` and `NonNegativeIndicator`. """ f_l2loss = SVMBIRSquaredL2Loss( y=y, A=A, W=Diagonal(weights), scale=0.5, prox_kwargs={"maxiter": 5, "ctol": 0.0} ) g1 = NonNegativeIndicator() solver_l2loss = ADMM( f=None, g_list=[f_l2loss, g0, g1], C_list=[Identity(x_mrf.shape), Identity(x_mrf.shape), Identity(x_mrf.shape)], rho_list=[ρ, ρ, ρ], x0=x0, maxiter=20, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": 1e-3, "maxiter": 100}), itstat_options={"display": True}, ) """ Run the ADMM solver. """ print(f"Solving on {device_info()}\n") x_l2loss = solver_l2loss.solve() hist_l2loss = solver_l2loss.itstat_object.history(transpose=True) """ Set up problem using `SVMBIRExtendedLoss`, without need for `NonNegativeIndicator`. """ f_extloss = SVMBIRExtendedLoss( y=y, A=A, W=Diagonal(weights), scale=0.5, positivity=True, prox_kwargs={"maxiter": 5, "ctol": 0.0}, ) solver_extloss = ADMM( f=None, g_list=[f_extloss, g0], C_list=[Identity(x_mrf.shape), Identity(x_mrf.shape)], rho_list=[ρ, ρ], x0=x0, maxiter=20, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": 1e-3, "maxiter": 100}), itstat_options={"display": True}, ) """ Run the ADMM solver. """ print() x_extloss = solver_extloss.solve() hist_extloss = solver_extloss.itstat_object.history(transpose=True) """ Show the recovered images. """ norm = plot.matplotlib.colors.Normalize(vmin=-0.1 * density, vmax=1.2 * density) fig, ax = plt.subplots(2, 2, figsize=(15, 15)) plot.imview(img=x_gt, title="Ground Truth Image", cbar=True, fig=fig, ax=ax[0, 0], norm=norm) plot.imview( img=x_mrf, title=f"MRF (PSNR: {metric.psnr(x_gt, x_mrf):.2f} dB)", cbar=True, fig=fig, ax=ax[0, 1], norm=norm, ) plot.imview( img=x_l2loss, title=f"SquaredL2Loss + non-negativity (PSNR: {metric.psnr(x_gt, x_l2loss):.2f} dB)", cbar=True, fig=fig, ax=ax[1, 0], norm=norm, ) plot.imview( img=x_extloss, title=f"ExtendedLoss (PSNR: {metric.psnr(x_gt, x_extloss):.2f} dB)", cbar=True, fig=fig, ax=ax[1, 1], norm=norm, ) fig.show() """ Plot convergence statistics. """ fig, ax = plt.subplots(1, 2, figsize=(15, 5)) plot.plot( snp.vstack((hist_l2loss.Prml_Rsdl, hist_l2loss.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals (SquaredL2Loss + non-negativity)", xlbl="Iteration", lgnd=("Primal", "Dual"), fig=fig, ax=ax[0], ) ax[0].set_ylim([5e-3, 1e0]) ax[0].xaxis.set_major_locator(MaxNLocator(integer=True)) plot.plot( snp.vstack((hist_extloss.Prml_Rsdl, hist_extloss.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals (ExtendedLoss)", xlbl="Iteration", lgnd=("Primal", "Dual"), fig=fig, ax=ax[1], ) ax[1].set_ylim([5e-3, 1e0]) ax[1].xaxis.set_major_locator(MaxNLocator(integer=True)) fig.show() input("\nWaiting for input to close figures and exit")
scico
/scico-0.0.4.tar.gz/scico-0.0.4/examples/scripts/ct_svmbir_ppp_bm3d_admm_prox.py
ct_svmbir_ppp_bm3d_admm_prox.py
import numpy as np import jax import matplotlib.pyplot as plt import svmbir from matplotlib.ticker import MaxNLocator from xdesign import Foam, discrete_phantom import scico.numpy as snp from scico import metric, plot from scico.functional import BM3D, NonNegativeIndicator from scico.linop import Diagonal, Identity from scico.linop.radon_svmbir import ( SVMBIRExtendedLoss, SVMBIRSquaredL2Loss, TomographicProjector, ) from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.util import device_info """ Generate a ground truth image. """ N = 256 # image size density = 0.025 # attenuation density of the image np.random.seed(1234) x_gt = discrete_phantom(Foam(size_range=[0.05, 0.02], gap=0.02, porosity=0.3), size=N - 10) x_gt = x_gt / np.max(x_gt) * density x_gt = np.pad(x_gt, 5) x_gt[x_gt < 0] = 0 """ Generate tomographic projector and sinogram. """ num_angles = int(N / 2) num_channels = N angles = snp.linspace(0, snp.pi, num_angles, endpoint=False, dtype=snp.float32) A = TomographicProjector(x_gt.shape, angles, num_channels) sino = A @ x_gt """ Impose Poisson noise on sinogram. Higher max_intensity means less noise. """ max_intensity = 2000 expected_counts = max_intensity * np.exp(-sino) noisy_counts = np.random.poisson(expected_counts).astype(np.float32) noisy_counts[noisy_counts == 0] = 1 # deal with 0s y = -np.log(noisy_counts / max_intensity) """ Reconstruct using default prior of SVMBIR :cite:`svmbir-2020`. """ weights = svmbir.calc_weights(y, weight_type="transmission") x_mrf = svmbir.recon( np.array(y[:, np.newaxis]), np.array(angles), weights=weights[:, np.newaxis], num_rows=N, num_cols=N, positivity=True, verbose=0, )[0] """ Push arrays to device. """ y, x0, weights = jax.device_put([y, x_mrf, weights]) """ Set problem parameters and BM3D pseudo-functional. """ ρ = 10 # ADMM penalty parameter σ = density * 0.26 # denoiser sigma g0 = σ * ρ * BM3D() """ Set up problem using `SVMBIRSquaredL2Loss` and `NonNegativeIndicator`. """ f_l2loss = SVMBIRSquaredL2Loss( y=y, A=A, W=Diagonal(weights), scale=0.5, prox_kwargs={"maxiter": 5, "ctol": 0.0} ) g1 = NonNegativeIndicator() solver_l2loss = ADMM( f=None, g_list=[f_l2loss, g0, g1], C_list=[Identity(x_mrf.shape), Identity(x_mrf.shape), Identity(x_mrf.shape)], rho_list=[ρ, ρ, ρ], x0=x0, maxiter=20, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": 1e-3, "maxiter": 100}), itstat_options={"display": True}, ) """ Run the ADMM solver. """ print(f"Solving on {device_info()}\n") x_l2loss = solver_l2loss.solve() hist_l2loss = solver_l2loss.itstat_object.history(transpose=True) """ Set up problem using `SVMBIRExtendedLoss`, without need for `NonNegativeIndicator`. """ f_extloss = SVMBIRExtendedLoss( y=y, A=A, W=Diagonal(weights), scale=0.5, positivity=True, prox_kwargs={"maxiter": 5, "ctol": 0.0}, ) solver_extloss = ADMM( f=None, g_list=[f_extloss, g0], C_list=[Identity(x_mrf.shape), Identity(x_mrf.shape)], rho_list=[ρ, ρ], x0=x0, maxiter=20, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": 1e-3, "maxiter": 100}), itstat_options={"display": True}, ) """ Run the ADMM solver. """ print() x_extloss = solver_extloss.solve() hist_extloss = solver_extloss.itstat_object.history(transpose=True) """ Show the recovered images. """ norm = plot.matplotlib.colors.Normalize(vmin=-0.1 * density, vmax=1.2 * density) fig, ax = plt.subplots(2, 2, figsize=(15, 15)) plot.imview(img=x_gt, title="Ground Truth Image", cbar=True, fig=fig, ax=ax[0, 0], norm=norm) plot.imview( img=x_mrf, title=f"MRF (PSNR: {metric.psnr(x_gt, x_mrf):.2f} dB)", cbar=True, fig=fig, ax=ax[0, 1], norm=norm, ) plot.imview( img=x_l2loss, title=f"SquaredL2Loss + non-negativity (PSNR: {metric.psnr(x_gt, x_l2loss):.2f} dB)", cbar=True, fig=fig, ax=ax[1, 0], norm=norm, ) plot.imview( img=x_extloss, title=f"ExtendedLoss (PSNR: {metric.psnr(x_gt, x_extloss):.2f} dB)", cbar=True, fig=fig, ax=ax[1, 1], norm=norm, ) fig.show() """ Plot convergence statistics. """ fig, ax = plt.subplots(1, 2, figsize=(15, 5)) plot.plot( snp.vstack((hist_l2loss.Prml_Rsdl, hist_l2loss.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals (SquaredL2Loss + non-negativity)", xlbl="Iteration", lgnd=("Primal", "Dual"), fig=fig, ax=ax[0], ) ax[0].set_ylim([5e-3, 1e0]) ax[0].xaxis.set_major_locator(MaxNLocator(integer=True)) plot.plot( snp.vstack((hist_extloss.Prml_Rsdl, hist_extloss.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals (ExtendedLoss)", xlbl="Iteration", lgnd=("Primal", "Dual"), fig=fig, ax=ax[1], ) ax[1].set_ylim([5e-3, 1e0]) ax[1].xaxis.set_major_locator(MaxNLocator(integer=True)) fig.show() input("\nWaiting for input to close figures and exit")
0.793466
0.509032
r""" Convolutional Sparse Coding with Mask Decoupling (ADMM) ======================================================= This example demonstrates the solution of a convolutional sparse coding problem $$\mathrm{argmin}_{\mathbf{x}} \; \frac{1}{2} \Big\| \mathbf{y} - B \Big( \sum_k \mathbf{h}_k \ast \mathbf{x}_k \Big) \Big\|_2^2 + \lambda \sum_k ( \| \mathbf{x}_k \|_1 - \| \mathbf{x}_k \|_2 ) \;,$$ where the $\mathbf{h}$_k is a set of filters comprising the dictionary, the $\mathbf{x}$_k is a corrresponding set of coefficient maps, $\mathbf{y}$ is the signal to be represented, and $B$ is a cropping operator that allows the boundary artifacts resulting from circular convolution to be avoided. Following the mask decoupling approach :cite:`almeida-2013-deconvolving`, the problem is posed in ADMM form as $$\mathrm{argmin}_{\mathbf{x}, \mathbf{z}_0, \mathbf{z}_1} \; (1/2) \| \mathbf{y} - B \mb{z}_0 \|_2^2 + \lambda \sum_k ( \| \mathbf{z}_{1,k} \|_1 - \| \mathbf{z}_{1,k} \|_2 ) \\ \;\; \text{s.t.} \;\; \mathbf{z}_0 = \sum_k \mathbf{h}_k \ast \mathbf{x}_k \;\; \mathbf{z}_{1,k} = \mathbf{x}_k\;,$$. The most computationally expensive step in the ADMM algorithm is solved using the frequency-domain approach proposed in :cite:`wohlberg-2014-efficient`. """ import numpy as np import jax import scico.numpy as snp from scico import plot from scico.examples import create_conv_sparse_phantom from scico.functional import L1MinusL2Norm, ZeroFunctional from scico.linop import CircularConvolve, Crop, Identity, Sum from scico.loss import SquaredL2Loss from scico.optimize.admm import ADMM, G0BlockCircularConvolveSolver from scico.util import device_info """ Set problem size and create random convolutional dictionary (a set of filters) and a corresponding sparse random set of coefficient maps. """ N = 121 # image size Nnz = 128 # number of non-zeros in coefficient maps h, x0 = create_conv_sparse_phantom(N, Nnz) """ Normalize dictionary filters and scale coefficient maps accordingly. """ hnorm = np.sqrt(np.sum(h**2, axis=(1, 2), keepdims=True)) h /= hnorm x0 *= hnorm """ Convert numpy arrays to jax arrays. """ h = jax.device_put(h) x0 = jax.device_put(x0) """ Set up required padding and corresponding crop operator. """ h_center = (h.shape[1] // 2, h.shape[2] // 2) pad_width = ((0, 0), (h_center[0], h_center[0]), (h_center[1], h_center[1])) x0p = snp.pad(x0, pad_width=pad_width) B = Crop(pad_width[1:], input_shape=x0p.shape[1:]) """ Set up sum-of-convolutions forward operator. """ C = CircularConvolve(h, input_shape=x0p.shape, ndims=2, h_center=h_center) S = Sum(input_shape=C.output_shape, axis=0) A = S @ C """ Construct test image from dictionary $\mathbf{h}$ and padded version of coefficient maps $\mathbf{x}_0$. """ y = B(A(x0p)) """ Set functional and solver parameters. """ λ = 1e0 # l1-l2 norm regularization parameter ρ0 = 1e0 # ADMM penalty parameters ρ1 = 3e0 maxiter = 200 # number of ADMM iterations """ Define loss function and regularization. Note the use of the $\ell_1 - \ell_2$ norm, which has been found to provide slightly better performance than the $\ell_1$ norm in this type of problem :cite:`wohlberg-2021-psf`. """ f = ZeroFunctional() g0 = SquaredL2Loss(y=y, A=B) g1 = λ * L1MinusL2Norm() C0 = A C1 = Identity(input_shape=x0p.shape) """ Initialize ADMM solver. """ solver = ADMM( f=f, g_list=[g0, g1], C_list=[C0, C1], rho_list=[ρ0, ρ1], alpha=1.8, maxiter=maxiter, subproblem_solver=G0BlockCircularConvolveSolver(check_solve=True), itstat_options={"display": True, "period": 10}, ) """ Run the solver. """ print(f"Solving on {device_info()}\n") x1 = solver.solve() hist = solver.itstat_object.history(transpose=True) """ Show the recovered coefficient maps. """ fig, ax = plot.subplots(nrows=2, ncols=3, figsize=(12, 8.6)) plot.imview(x0[0], title="Coef. map 0", cmap=plot.cm.Blues, fig=fig, ax=ax[0, 0]) ax[0, 0].set_ylabel("Ground truth") plot.imview(x0[1], title="Coef. map 1", cmap=plot.cm.Blues, fig=fig, ax=ax[0, 1]) plot.imview(x0[2], title="Coef. map 2", cmap=plot.cm.Blues, fig=fig, ax=ax[0, 2]) plot.imview(x1[0], cmap=plot.cm.Blues, fig=fig, ax=ax[1, 0]) ax[1, 0].set_ylabel("Recovered") plot.imview(x1[1], cmap=plot.cm.Blues, fig=fig, ax=ax[1, 1]) plot.imview(x1[2], cmap=plot.cm.Blues, fig=fig, ax=ax[1, 2]) fig.tight_layout() fig.show() """ Show test image and reconstruction from recovered coefficient maps. Note the absence of the wrap-around effects at the boundary that can be seen in the corresponding images in the [related example](sparsecode_conv_admm.rst). """ fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(12, 6)) plot.imview(y, title="Test image", cmap=plot.cm.gist_heat_r, fig=fig, ax=ax[0]) plot.imview(B(A(x1)), title="Reconstructed image", cmap=plot.cm.gist_heat_r, fig=fig, ax=ax[1]) fig.show() """ Plot convergence statistics. """ fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(12, 5)) plot.plot( hist.Objective, title="Objective function", xlbl="Iteration", ylbl="Functional value", fig=fig, ax=ax[0], ) plot.plot( snp.vstack((hist.Prml_Rsdl, hist.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals", xlbl="Iteration", lgnd=("Primal", "Dual"), fig=fig, ax=ax[1], ) fig.show() input("\nWaiting for input to close figures and exit")
scico
/scico-0.0.4.tar.gz/scico-0.0.4/examples/scripts/sparsecode_conv_md_admm.py
sparsecode_conv_md_admm.py
r""" Convolutional Sparse Coding with Mask Decoupling (ADMM) ======================================================= This example demonstrates the solution of a convolutional sparse coding problem $$\mathrm{argmin}_{\mathbf{x}} \; \frac{1}{2} \Big\| \mathbf{y} - B \Big( \sum_k \mathbf{h}_k \ast \mathbf{x}_k \Big) \Big\|_2^2 + \lambda \sum_k ( \| \mathbf{x}_k \|_1 - \| \mathbf{x}_k \|_2 ) \;,$$ where the $\mathbf{h}$_k is a set of filters comprising the dictionary, the $\mathbf{x}$_k is a corrresponding set of coefficient maps, $\mathbf{y}$ is the signal to be represented, and $B$ is a cropping operator that allows the boundary artifacts resulting from circular convolution to be avoided. Following the mask decoupling approach :cite:`almeida-2013-deconvolving`, the problem is posed in ADMM form as $$\mathrm{argmin}_{\mathbf{x}, \mathbf{z}_0, \mathbf{z}_1} \; (1/2) \| \mathbf{y} - B \mb{z}_0 \|_2^2 + \lambda \sum_k ( \| \mathbf{z}_{1,k} \|_1 - \| \mathbf{z}_{1,k} \|_2 ) \\ \;\; \text{s.t.} \;\; \mathbf{z}_0 = \sum_k \mathbf{h}_k \ast \mathbf{x}_k \;\; \mathbf{z}_{1,k} = \mathbf{x}_k\;,$$. The most computationally expensive step in the ADMM algorithm is solved using the frequency-domain approach proposed in :cite:`wohlberg-2014-efficient`. """ import numpy as np import jax import scico.numpy as snp from scico import plot from scico.examples import create_conv_sparse_phantom from scico.functional import L1MinusL2Norm, ZeroFunctional from scico.linop import CircularConvolve, Crop, Identity, Sum from scico.loss import SquaredL2Loss from scico.optimize.admm import ADMM, G0BlockCircularConvolveSolver from scico.util import device_info """ Set problem size and create random convolutional dictionary (a set of filters) and a corresponding sparse random set of coefficient maps. """ N = 121 # image size Nnz = 128 # number of non-zeros in coefficient maps h, x0 = create_conv_sparse_phantom(N, Nnz) """ Normalize dictionary filters and scale coefficient maps accordingly. """ hnorm = np.sqrt(np.sum(h**2, axis=(1, 2), keepdims=True)) h /= hnorm x0 *= hnorm """ Convert numpy arrays to jax arrays. """ h = jax.device_put(h) x0 = jax.device_put(x0) """ Set up required padding and corresponding crop operator. """ h_center = (h.shape[1] // 2, h.shape[2] // 2) pad_width = ((0, 0), (h_center[0], h_center[0]), (h_center[1], h_center[1])) x0p = snp.pad(x0, pad_width=pad_width) B = Crop(pad_width[1:], input_shape=x0p.shape[1:]) """ Set up sum-of-convolutions forward operator. """ C = CircularConvolve(h, input_shape=x0p.shape, ndims=2, h_center=h_center) S = Sum(input_shape=C.output_shape, axis=0) A = S @ C """ Construct test image from dictionary $\mathbf{h}$ and padded version of coefficient maps $\mathbf{x}_0$. """ y = B(A(x0p)) """ Set functional and solver parameters. """ λ = 1e0 # l1-l2 norm regularization parameter ρ0 = 1e0 # ADMM penalty parameters ρ1 = 3e0 maxiter = 200 # number of ADMM iterations """ Define loss function and regularization. Note the use of the $\ell_1 - \ell_2$ norm, which has been found to provide slightly better performance than the $\ell_1$ norm in this type of problem :cite:`wohlberg-2021-psf`. """ f = ZeroFunctional() g0 = SquaredL2Loss(y=y, A=B) g1 = λ * L1MinusL2Norm() C0 = A C1 = Identity(input_shape=x0p.shape) """ Initialize ADMM solver. """ solver = ADMM( f=f, g_list=[g0, g1], C_list=[C0, C1], rho_list=[ρ0, ρ1], alpha=1.8, maxiter=maxiter, subproblem_solver=G0BlockCircularConvolveSolver(check_solve=True), itstat_options={"display": True, "period": 10}, ) """ Run the solver. """ print(f"Solving on {device_info()}\n") x1 = solver.solve() hist = solver.itstat_object.history(transpose=True) """ Show the recovered coefficient maps. """ fig, ax = plot.subplots(nrows=2, ncols=3, figsize=(12, 8.6)) plot.imview(x0[0], title="Coef. map 0", cmap=plot.cm.Blues, fig=fig, ax=ax[0, 0]) ax[0, 0].set_ylabel("Ground truth") plot.imview(x0[1], title="Coef. map 1", cmap=plot.cm.Blues, fig=fig, ax=ax[0, 1]) plot.imview(x0[2], title="Coef. map 2", cmap=plot.cm.Blues, fig=fig, ax=ax[0, 2]) plot.imview(x1[0], cmap=plot.cm.Blues, fig=fig, ax=ax[1, 0]) ax[1, 0].set_ylabel("Recovered") plot.imview(x1[1], cmap=plot.cm.Blues, fig=fig, ax=ax[1, 1]) plot.imview(x1[2], cmap=plot.cm.Blues, fig=fig, ax=ax[1, 2]) fig.tight_layout() fig.show() """ Show test image and reconstruction from recovered coefficient maps. Note the absence of the wrap-around effects at the boundary that can be seen in the corresponding images in the [related example](sparsecode_conv_admm.rst). """ fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(12, 6)) plot.imview(y, title="Test image", cmap=plot.cm.gist_heat_r, fig=fig, ax=ax[0]) plot.imview(B(A(x1)), title="Reconstructed image", cmap=plot.cm.gist_heat_r, fig=fig, ax=ax[1]) fig.show() """ Plot convergence statistics. """ fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(12, 5)) plot.plot( hist.Objective, title="Objective function", xlbl="Iteration", ylbl="Functional value", fig=fig, ax=ax[0], ) plot.plot( snp.vstack((hist.Prml_Rsdl, hist.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals", xlbl="Iteration", lgnd=("Primal", "Dual"), fig=fig, ax=ax[1], ) fig.show() input("\nWaiting for input to close figures and exit")
0.954542
0.972727
r""" TV-Regularized 3D DiffuserCam Reconstruction ============================================ This example demonstrates reconstruction of a 3D DiffuserCam :cite:`antipa-2018-diffusercam` [dataset](https://github.com/Waller-Lab/DiffuserCam/tree/master/example_data). The inverse problem can be written as $$\mathrm{argmin}_{\mathbf{x}} \; \frac{1}{2} \Big\| \mathbf{y} - M \Big( \sum_k \mathbf{h}_k \ast \mathbf{x}_k \Big) \Big\|_2^2 + \lambda_0 \sum_k \| D \mathbf{x}_k \|_{2,1} + \lambda_1 \sum_k \| \mathbf{x}_k \|_1 \;,$$ where the $\mathbf{h}$_k are the components of the PSF stack, the $\mathbf{x}$_k are the corrresponding components of the reconstructed volume, $\mathbf{y}$ is the measured image, and $M$ is a cropping operator that allows the boundary artifacts resulting from circular convolution to be avoided. Following the mask decoupling approach :cite:`almeida-2013-deconvolving`, the problem is posed in ADMM form as $$\mathrm{argmin}_{\mathbf{x}, \mathbf{z}_0, \mathbf{z}_1, \mathbf{z}_2} \; \frac{1}{2} \| \mathbf{y} - M \mathbf{z}_0 \|_2^2 + \lambda_0 \sum_k \| \mathbf{z}_{1,k} \|_{2,1} + \lambda_1 \sum_k \| \mathbf{z}_{2,k} \|_1 \\ \;\; \text{s.t.} \;\; \mathbf{z}_0 = \sum_k \mathbf{h}_k \ast \mathbf{x}_k \qquad \mathbf{z}_{1,k} = D \mathbf{x}_k \qquad \mathbf{z}_{2,k} = \mathbf{x}_k \;.$$ The most computationally expensive step in the ADMM algorithm is solved using the frequency-domain approach proposed in :cite:`wohlberg-2014-efficient`. """ import numpy as np import jax import scico.numpy as snp from scico import plot from scico.examples import ucb_diffusercam_data from scico.functional import L1Norm, L21Norm, ZeroFunctional from scico.linop import CircularConvolve, Crop, FiniteDifference, Identity, Sum from scico.loss import SquaredL2Loss from scico.optimize.admm import ADMM, G0BlockCircularConvolveSolver from scico.util import device_info """ Load the DiffuserCam PSF stack and measured image. The computational cost of the reconstruction is reduced slightly by removing parts of the PSF stack that don't make a significant contribution to the reconstruction. """ y, psf = ucb_diffusercam_data() psf = psf[..., 1:-7] """ To avoid boundary artifacts, the measured image is padded by half the PSF width/height and then cropped within the data fidelity term. This padding is implicit in that the reconstruction volume is computed at the padded size, but the actual measured image is never explicitly padded since it is used at the original (unpadded) size within the data fidelity term due to the cropping operation. The PSF axis order is modified to put the stack axis at index 0, as required by components of the ADMM solver to be used. Finally, each PSF in the stack is individually normalized. """ half_psf = np.array(psf.shape[0:2]) // 2 pad_spec = ((half_psf[0],) * 2, (half_psf[1],) * 2) y_pad_shape = tuple(np.array(y.shape) + np.array(pad_spec).sum(axis=1)) x_shape = (psf.shape[-1],) + y_pad_shape psf = psf.transpose((2, 0, 1)) psf /= np.sqrt(np.sum(psf**2, axis=(1, 2), keepdims=True)) """ Convert the image and PSF stack to JAX arrays with `float32` dtype since JAX by default does not support double-precision floating point arithmetic. This limited precision leads to relatively poor, but still acceptable accuracy within the ADMM solver x-step. To experiment with the effect of higher numerical precision, set the environment variable `JAX_ENABLE_X64=True` and change `dtype` below to `np.float64`. """ dtype = np.float32 y = jax.device_put(y.astype(dtype)) psf = jax.device_put(psf.astype(dtype)) """ Define problem and algorithm parameters. """ λ0 = 3e-3 # TV regularization parameter λ1 = 1e-2 # ℓ1 norm regularization parameter ρ0 = 1e0 # ADMM penalty parameter for first auxiliary variable ρ1 = 5e0 # ADMM penalty parameter for second auxiliary variable ρ2 = 1e1 # ADMM penalty parameter for third auxiliary variable maxiter = 100 # number of ADMM iterations """ Create operators. """ C = CircularConvolve(psf, input_shape=x_shape, input_dtype=dtype, h_center=half_psf, ndims=2) S = Sum(input_shape=x_shape, input_dtype=dtype, axis=0) M = Crop(pad_spec, input_shape=y_pad_shape, input_dtype=dtype) """ Create functionals. """ g0 = SquaredL2Loss(y=y, A=M) g1 = λ0 * L21Norm() g2 = λ1 * L1Norm() C0 = S @ C C1 = FiniteDifference(input_shape=x_shape, input_dtype=dtype, axes=(-2, -1), circular=True) C2 = Identity(input_shape=x_shape, input_dtype=dtype) """ Set up ADMM solver object and solve problem. """ solver = ADMM( f=ZeroFunctional(), g_list=[g0, g1, g2], C_list=[C0, C1, C2], rho_list=[ρ0, ρ1, ρ2], alpha=1.4, maxiter=maxiter, nanstop=True, subproblem_solver=G0BlockCircularConvolveSolver(ndims=2, check_solve=True), itstat_options={"display": True, "period": 10}, ) print(f"Solving on {device_info()}\n") x = solver.solve() hist = solver.itstat_object.history(transpose=True) """ Show the measured image and samples from PDF stack """ plot.imview(y, cmap=plot.plt.cm.Blues, cbar=True, title="Measured Image") fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(14, 7)) plot.imview(psf[0], title="Nearest PSF", cmap=plot.plt.cm.Blues, fig=fig, ax=ax[0]) plot.imview(psf[-1], title="Furthest PSF", cmap=plot.plt.cm.Blues, fig=fig, ax=ax[1]) fig.show() """ Show the recovered volume with depth indicated by color. """ XCrop = Crop(((0, 0),) + pad_spec, input_shape=x_shape, input_dtype=dtype) xm = np.array(XCrop(x[..., ::-1])) xmr = xm.transpose((1, 2, 0))[..., np.newaxis] / xm.max() cmap = plot.plt.cm.viridis_r cmval = cmap(np.arange(0, xm.shape[0]).reshape(1, 1, -1) / (xm.shape[0] - 1)) xms = np.sum(cmval * xmr, axis=2)[..., 0:3] plot.imview(xms, cmap=cmap, cbar=True, title="Recovered Volume") """ Plot convergence statistics. """ fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(12, 5)) plot.plot( hist.Objective, title="Objective function", xlbl="Iteration", ylbl="Functional value", fig=fig, ax=ax[0], ) plot.plot( snp.vstack((hist.Prml_Rsdl, hist.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals", xlbl="Iteration", lgnd=("Primal", "Dual"), fig=fig, ax=ax[1], ) fig.show() input("\nWaiting for input to close figures and exit")
scico
/scico-0.0.4.tar.gz/scico-0.0.4/examples/scripts/diffusercam_tv_admm.py
diffusercam_tv_admm.py
r""" TV-Regularized 3D DiffuserCam Reconstruction ============================================ This example demonstrates reconstruction of a 3D DiffuserCam :cite:`antipa-2018-diffusercam` [dataset](https://github.com/Waller-Lab/DiffuserCam/tree/master/example_data). The inverse problem can be written as $$\mathrm{argmin}_{\mathbf{x}} \; \frac{1}{2} \Big\| \mathbf{y} - M \Big( \sum_k \mathbf{h}_k \ast \mathbf{x}_k \Big) \Big\|_2^2 + \lambda_0 \sum_k \| D \mathbf{x}_k \|_{2,1} + \lambda_1 \sum_k \| \mathbf{x}_k \|_1 \;,$$ where the $\mathbf{h}$_k are the components of the PSF stack, the $\mathbf{x}$_k are the corrresponding components of the reconstructed volume, $\mathbf{y}$ is the measured image, and $M$ is a cropping operator that allows the boundary artifacts resulting from circular convolution to be avoided. Following the mask decoupling approach :cite:`almeida-2013-deconvolving`, the problem is posed in ADMM form as $$\mathrm{argmin}_{\mathbf{x}, \mathbf{z}_0, \mathbf{z}_1, \mathbf{z}_2} \; \frac{1}{2} \| \mathbf{y} - M \mathbf{z}_0 \|_2^2 + \lambda_0 \sum_k \| \mathbf{z}_{1,k} \|_{2,1} + \lambda_1 \sum_k \| \mathbf{z}_{2,k} \|_1 \\ \;\; \text{s.t.} \;\; \mathbf{z}_0 = \sum_k \mathbf{h}_k \ast \mathbf{x}_k \qquad \mathbf{z}_{1,k} = D \mathbf{x}_k \qquad \mathbf{z}_{2,k} = \mathbf{x}_k \;.$$ The most computationally expensive step in the ADMM algorithm is solved using the frequency-domain approach proposed in :cite:`wohlberg-2014-efficient`. """ import numpy as np import jax import scico.numpy as snp from scico import plot from scico.examples import ucb_diffusercam_data from scico.functional import L1Norm, L21Norm, ZeroFunctional from scico.linop import CircularConvolve, Crop, FiniteDifference, Identity, Sum from scico.loss import SquaredL2Loss from scico.optimize.admm import ADMM, G0BlockCircularConvolveSolver from scico.util import device_info """ Load the DiffuserCam PSF stack and measured image. The computational cost of the reconstruction is reduced slightly by removing parts of the PSF stack that don't make a significant contribution to the reconstruction. """ y, psf = ucb_diffusercam_data() psf = psf[..., 1:-7] """ To avoid boundary artifacts, the measured image is padded by half the PSF width/height and then cropped within the data fidelity term. This padding is implicit in that the reconstruction volume is computed at the padded size, but the actual measured image is never explicitly padded since it is used at the original (unpadded) size within the data fidelity term due to the cropping operation. The PSF axis order is modified to put the stack axis at index 0, as required by components of the ADMM solver to be used. Finally, each PSF in the stack is individually normalized. """ half_psf = np.array(psf.shape[0:2]) // 2 pad_spec = ((half_psf[0],) * 2, (half_psf[1],) * 2) y_pad_shape = tuple(np.array(y.shape) + np.array(pad_spec).sum(axis=1)) x_shape = (psf.shape[-1],) + y_pad_shape psf = psf.transpose((2, 0, 1)) psf /= np.sqrt(np.sum(psf**2, axis=(1, 2), keepdims=True)) """ Convert the image and PSF stack to JAX arrays with `float32` dtype since JAX by default does not support double-precision floating point arithmetic. This limited precision leads to relatively poor, but still acceptable accuracy within the ADMM solver x-step. To experiment with the effect of higher numerical precision, set the environment variable `JAX_ENABLE_X64=True` and change `dtype` below to `np.float64`. """ dtype = np.float32 y = jax.device_put(y.astype(dtype)) psf = jax.device_put(psf.astype(dtype)) """ Define problem and algorithm parameters. """ λ0 = 3e-3 # TV regularization parameter λ1 = 1e-2 # ℓ1 norm regularization parameter ρ0 = 1e0 # ADMM penalty parameter for first auxiliary variable ρ1 = 5e0 # ADMM penalty parameter for second auxiliary variable ρ2 = 1e1 # ADMM penalty parameter for third auxiliary variable maxiter = 100 # number of ADMM iterations """ Create operators. """ C = CircularConvolve(psf, input_shape=x_shape, input_dtype=dtype, h_center=half_psf, ndims=2) S = Sum(input_shape=x_shape, input_dtype=dtype, axis=0) M = Crop(pad_spec, input_shape=y_pad_shape, input_dtype=dtype) """ Create functionals. """ g0 = SquaredL2Loss(y=y, A=M) g1 = λ0 * L21Norm() g2 = λ1 * L1Norm() C0 = S @ C C1 = FiniteDifference(input_shape=x_shape, input_dtype=dtype, axes=(-2, -1), circular=True) C2 = Identity(input_shape=x_shape, input_dtype=dtype) """ Set up ADMM solver object and solve problem. """ solver = ADMM( f=ZeroFunctional(), g_list=[g0, g1, g2], C_list=[C0, C1, C2], rho_list=[ρ0, ρ1, ρ2], alpha=1.4, maxiter=maxiter, nanstop=True, subproblem_solver=G0BlockCircularConvolveSolver(ndims=2, check_solve=True), itstat_options={"display": True, "period": 10}, ) print(f"Solving on {device_info()}\n") x = solver.solve() hist = solver.itstat_object.history(transpose=True) """ Show the measured image and samples from PDF stack """ plot.imview(y, cmap=plot.plt.cm.Blues, cbar=True, title="Measured Image") fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(14, 7)) plot.imview(psf[0], title="Nearest PSF", cmap=plot.plt.cm.Blues, fig=fig, ax=ax[0]) plot.imview(psf[-1], title="Furthest PSF", cmap=plot.plt.cm.Blues, fig=fig, ax=ax[1]) fig.show() """ Show the recovered volume with depth indicated by color. """ XCrop = Crop(((0, 0),) + pad_spec, input_shape=x_shape, input_dtype=dtype) xm = np.array(XCrop(x[..., ::-1])) xmr = xm.transpose((1, 2, 0))[..., np.newaxis] / xm.max() cmap = plot.plt.cm.viridis_r cmval = cmap(np.arange(0, xm.shape[0]).reshape(1, 1, -1) / (xm.shape[0] - 1)) xms = np.sum(cmval * xmr, axis=2)[..., 0:3] plot.imview(xms, cmap=cmap, cbar=True, title="Recovered Volume") """ Plot convergence statistics. """ fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(12, 5)) plot.plot( hist.Objective, title="Objective function", xlbl="Iteration", ylbl="Functional value", fig=fig, ax=ax[0], ) plot.plot( snp.vstack((hist.Prml_Rsdl, hist.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals", xlbl="Iteration", lgnd=("Primal", "Dual"), fig=fig, ax=ax[1], ) fig.show() input("\nWaiting for input to close figures and exit")
0.932776
0.972779
r""" TV-Regularized Low-Dose CT Reconstruction ========================================= This example demonstrates solution of a low-dose CT reconstruction problem with isotropic total variation (TV) regularization $$\mathrm{argmin}_{\mathbf{x}} \; (1/2) \| \mathbf{y} - A \mathbf{x} \|_W^2 + \lambda \| C \mathbf{x} \|_{2,1} \;,$$ where $A$ is the Radon transform, $\mathbf{y}$ is the sinogram, the norm weighting $W$ is chosen so that the weighted norm is an approximation to the Poisson negative log likelihood :cite:`sauer-1993-local`, $C$ is a 2D finite difference operator, and $\mathbf{x}$ is the desired image. """ import numpy as np import jax from xdesign import Soil, discrete_phantom import scico.numpy as snp from scico import functional, linop, loss, metric, plot from scico.linop.radon_astra import TomographicProjector from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.util import device_info """ Create a ground truth image. """ N = 512 # phantom size np.random.seed(0) x_gt = discrete_phantom(Soil(porosity=0.80), size=384) x_gt = np.ascontiguousarray(np.pad(x_gt, (64, 64))) x_gt = np.clip(x_gt, 0, np.inf) # clip to positive values x_gt = jax.device_put(x_gt) # convert to jax type, push to GPU """ Configure CT projection operator and generate synthetic measurements. """ n_projection = 360 # number of projections Io = 1e3 # source flux 𝛼 = 1e-2 # attenuation coefficient angles = np.linspace(0, 2 * np.pi, n_projection) # evenly spaced projection angles A = TomographicProjector(x_gt.shape, 1.0, N, angles) # Radon transform operator y_c = A @ x_gt # sinogram r""" Add Poisson noise to projections according to $$\mathrm{counts} \sim \mathrm{Poi}\left(I_0 exp\left\{- \alpha A \mathbf{x} \right\}\right)$$ $$\mathbf{y} = - \frac{1}{\alpha} \log\left(\mathrm{counts} / I_0\right).$$ We use the NumPy random functionality so we can generate using 64-bit numbers. """ counts = np.random.poisson(Io * snp.exp(-𝛼 * A @ x_gt)) counts = np.clip(counts, a_min=1, a_max=np.inf) # replace any 0s count with 1 y = -1 / 𝛼 * np.log(counts / Io) y = jax.device_put(y) # convert back to float32 """ Set up post processing. For this example, we clip all reconstructions to the range of the ground truth. """ def postprocess(x): return snp.clip(x, 0, snp.max(x_gt)) """ Compute an FBP reconstruction as an initial guess. """ x0 = postprocess(A.fbp(y)) r""" Set up and solve the un-weighted reconstruction problem $$\mathrm{argmin}_{\mathbf{x}} \; (1/2) \| \mathbf{y} - A \mathbf{x} \|_2^2 + \lambda \| C \mathbf{x} \|_{2,1} \;.$$ """ # Note that rho and lambda were selected via a parameter sweep (not # shown here). ρ = 2.5e3 # ADMM penalty parameter lambda_unweighted = 3e2 # regularization strength maxiter = 100 # number of ADMM iterations cg_tol = 1e-5 # CG relative tolerance cg_maxiter = 10 # maximum CG iterations per ADMM iteration f = loss.SquaredL2Loss(y=y, A=A) admm_unweighted = ADMM( f=f, g_list=[lambda_unweighted * functional.L21Norm()], C_list=[linop.FiniteDifference(x_gt.shape, append=0)], rho_list=[ρ], x0=x0, maxiter=maxiter, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": cg_tol, "maxiter": cg_maxiter}), itstat_options={"display": True, "period": 10}, ) print(f"Solving on {device_info()}\n") admm_unweighted.solve() x_unweighted = postprocess(admm_unweighted.x) r""" Set up and solve the weighted reconstruction problem $$\mathrm{argmin}_{\mathbf{x}} \; (1/2) \| \mathbf{y} - A \mathbf{x} \|_W^2 + \lambda \| C \mathbf{x} \|_{2,1} \;,$$ where $$W = \mathrm{diag}\left\{ \mathrm{counts} / I_0 \right\} \;.$$ The data fidelity term in this formulation follows :cite:`sauer-1993-local` (9) except for the scaling by $I_0$, which we use to maintain balance between the data and regularization terms if $I_0$ changes. """ lambda_weighted = 5e1 weights = jax.device_put(counts / Io) f = loss.SquaredL2Loss(y=y, A=A, W=linop.Diagonal(weights)) admm_weighted = ADMM( f=f, g_list=[lambda_weighted * functional.L21Norm()], C_list=[linop.FiniteDifference(x_gt.shape, append=0)], rho_list=[ρ], maxiter=maxiter, x0=x0, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": cg_tol, "maxiter": cg_maxiter}), itstat_options={"display": True, "period": 10}, ) admm_weighted.solve() x_weighted = postprocess(admm_weighted.x) """ Show recovered images. """ def plot_recon(x, title, ax): """Plot an image with title indicating error metrics.""" plot.imview( x, title=f"{title}\nSNR: {metric.snr(x_gt, x):.2f} (dB), MAE: {metric.mae(x_gt, x):.3f}", fig=fig, ax=ax, ) fig, ax = plot.subplots(nrows=2, ncols=2, figsize=(11, 10)) plot.imview(x_gt, title="Ground truth", fig=fig, ax=ax[0, 0]) plot_recon(x0, "FBP Reconstruction", ax=ax[0, 1]) plot_recon(x_unweighted, "Unweighted TV Reconstruction", ax=ax[1, 0]) plot_recon(x_weighted, "Weighted TV Reconstruction", ax=ax[1, 1]) for ax_ in ax.ravel(): ax_.set_xlim(64, 448) ax_.set_ylim(64, 448) fig.subplots_adjust(left=0.1, right=0.99, top=0.95, bottom=0.05, wspace=0.2, hspace=0.01) fig.colorbar( ax[0, 0].get_images()[0], ax=ax, location="right", shrink=0.9, pad=0.05, label="arbitrary units" ) fig.show() input("\nWaiting for input to close figures and exit")
scico
/scico-0.0.4.tar.gz/scico-0.0.4/examples/scripts/ct_astra_weighted_tv_admm.py
ct_astra_weighted_tv_admm.py
r""" TV-Regularized Low-Dose CT Reconstruction ========================================= This example demonstrates solution of a low-dose CT reconstruction problem with isotropic total variation (TV) regularization $$\mathrm{argmin}_{\mathbf{x}} \; (1/2) \| \mathbf{y} - A \mathbf{x} \|_W^2 + \lambda \| C \mathbf{x} \|_{2,1} \;,$$ where $A$ is the Radon transform, $\mathbf{y}$ is the sinogram, the norm weighting $W$ is chosen so that the weighted norm is an approximation to the Poisson negative log likelihood :cite:`sauer-1993-local`, $C$ is a 2D finite difference operator, and $\mathbf{x}$ is the desired image. """ import numpy as np import jax from xdesign import Soil, discrete_phantom import scico.numpy as snp from scico import functional, linop, loss, metric, plot from scico.linop.radon_astra import TomographicProjector from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.util import device_info """ Create a ground truth image. """ N = 512 # phantom size np.random.seed(0) x_gt = discrete_phantom(Soil(porosity=0.80), size=384) x_gt = np.ascontiguousarray(np.pad(x_gt, (64, 64))) x_gt = np.clip(x_gt, 0, np.inf) # clip to positive values x_gt = jax.device_put(x_gt) # convert to jax type, push to GPU """ Configure CT projection operator and generate synthetic measurements. """ n_projection = 360 # number of projections Io = 1e3 # source flux 𝛼 = 1e-2 # attenuation coefficient angles = np.linspace(0, 2 * np.pi, n_projection) # evenly spaced projection angles A = TomographicProjector(x_gt.shape, 1.0, N, angles) # Radon transform operator y_c = A @ x_gt # sinogram r""" Add Poisson noise to projections according to $$\mathrm{counts} \sim \mathrm{Poi}\left(I_0 exp\left\{- \alpha A \mathbf{x} \right\}\right)$$ $$\mathbf{y} = - \frac{1}{\alpha} \log\left(\mathrm{counts} / I_0\right).$$ We use the NumPy random functionality so we can generate using 64-bit numbers. """ counts = np.random.poisson(Io * snp.exp(-𝛼 * A @ x_gt)) counts = np.clip(counts, a_min=1, a_max=np.inf) # replace any 0s count with 1 y = -1 / 𝛼 * np.log(counts / Io) y = jax.device_put(y) # convert back to float32 """ Set up post processing. For this example, we clip all reconstructions to the range of the ground truth. """ def postprocess(x): return snp.clip(x, 0, snp.max(x_gt)) """ Compute an FBP reconstruction as an initial guess. """ x0 = postprocess(A.fbp(y)) r""" Set up and solve the un-weighted reconstruction problem $$\mathrm{argmin}_{\mathbf{x}} \; (1/2) \| \mathbf{y} - A \mathbf{x} \|_2^2 + \lambda \| C \mathbf{x} \|_{2,1} \;.$$ """ # Note that rho and lambda were selected via a parameter sweep (not # shown here). ρ = 2.5e3 # ADMM penalty parameter lambda_unweighted = 3e2 # regularization strength maxiter = 100 # number of ADMM iterations cg_tol = 1e-5 # CG relative tolerance cg_maxiter = 10 # maximum CG iterations per ADMM iteration f = loss.SquaredL2Loss(y=y, A=A) admm_unweighted = ADMM( f=f, g_list=[lambda_unweighted * functional.L21Norm()], C_list=[linop.FiniteDifference(x_gt.shape, append=0)], rho_list=[ρ], x0=x0, maxiter=maxiter, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": cg_tol, "maxiter": cg_maxiter}), itstat_options={"display": True, "period": 10}, ) print(f"Solving on {device_info()}\n") admm_unweighted.solve() x_unweighted = postprocess(admm_unweighted.x) r""" Set up and solve the weighted reconstruction problem $$\mathrm{argmin}_{\mathbf{x}} \; (1/2) \| \mathbf{y} - A \mathbf{x} \|_W^2 + \lambda \| C \mathbf{x} \|_{2,1} \;,$$ where $$W = \mathrm{diag}\left\{ \mathrm{counts} / I_0 \right\} \;.$$ The data fidelity term in this formulation follows :cite:`sauer-1993-local` (9) except for the scaling by $I_0$, which we use to maintain balance between the data and regularization terms if $I_0$ changes. """ lambda_weighted = 5e1 weights = jax.device_put(counts / Io) f = loss.SquaredL2Loss(y=y, A=A, W=linop.Diagonal(weights)) admm_weighted = ADMM( f=f, g_list=[lambda_weighted * functional.L21Norm()], C_list=[linop.FiniteDifference(x_gt.shape, append=0)], rho_list=[ρ], maxiter=maxiter, x0=x0, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": cg_tol, "maxiter": cg_maxiter}), itstat_options={"display": True, "period": 10}, ) admm_weighted.solve() x_weighted = postprocess(admm_weighted.x) """ Show recovered images. """ def plot_recon(x, title, ax): """Plot an image with title indicating error metrics.""" plot.imview( x, title=f"{title}\nSNR: {metric.snr(x_gt, x):.2f} (dB), MAE: {metric.mae(x_gt, x):.3f}", fig=fig, ax=ax, ) fig, ax = plot.subplots(nrows=2, ncols=2, figsize=(11, 10)) plot.imview(x_gt, title="Ground truth", fig=fig, ax=ax[0, 0]) plot_recon(x0, "FBP Reconstruction", ax=ax[0, 1]) plot_recon(x_unweighted, "Unweighted TV Reconstruction", ax=ax[1, 0]) plot_recon(x_weighted, "Weighted TV Reconstruction", ax=ax[1, 1]) for ax_ in ax.ravel(): ax_.set_xlim(64, 448) ax_.set_ylim(64, 448) fig.subplots_adjust(left=0.1, right=0.99, top=0.95, bottom=0.05, wspace=0.2, hspace=0.01) fig.colorbar( ax[0, 0].get_images()[0], ax=ax, location="right", shrink=0.9, pad=0.05, label="arbitrary units" ) fig.show() input("\nWaiting for input to close figures and exit")
0.908544
0.914023
import numpy as np import jax import matplotlib.pyplot as plt import svmbir from xdesign import Foam, discrete_phantom import scico.numpy as snp from scico import metric, plot from scico.functional import BM3D, NonNegativeIndicator from scico.linop import Diagonal, Identity from scico.linop.radon_svmbir import SVMBIRSquaredL2Loss, TomographicProjector from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.util import device_info """ Generate a ground truth image. """ N = 256 # image size density = 0.025 # attenuation density of the image np.random.seed(1234) x_gt = discrete_phantom(Foam(size_range=[0.05, 0.02], gap=0.02, porosity=0.3), size=N - 10) x_gt = x_gt / np.max(x_gt) * density x_gt = np.pad(x_gt, 5) x_gt[x_gt < 0] = 0 """ Generate tomographic projector and sinogram. """ num_angles = int(N / 2) num_channels = N angles = snp.linspace(0, snp.pi, num_angles, endpoint=False, dtype=snp.float32) A = TomographicProjector(x_gt.shape, angles, num_channels) sino = A @ x_gt """ Impose Poisson noise on sinogram. Higher max_intensity means less noise. """ max_intensity = 2000 expected_counts = max_intensity * np.exp(-sino) noisy_counts = np.random.poisson(expected_counts).astype(np.float32) noisy_counts[noisy_counts == 0] = 1 # deal with 0s y = -np.log(noisy_counts / max_intensity) """ Reconstruct using default prior of SVMBIR :cite:`svmbir-2020`. """ weights = svmbir.calc_weights(y, weight_type="transmission") x_mrf = svmbir.recon( np.array(y[:, np.newaxis]), np.array(angles), weights=weights[:, np.newaxis], num_rows=N, num_cols=N, positivity=True, verbose=0, )[0] """ Set up an ADMM solver. """ y, x0, weights = jax.device_put([y, x_mrf, weights]) ρ = 15 # ADMM penalty parameter σ = density * 0.18 # denoiser sigma f = SVMBIRSquaredL2Loss(y=y, A=A, W=Diagonal(weights), scale=0.5) g0 = σ * ρ * BM3D() g1 = NonNegativeIndicator() solver = ADMM( f=f, g_list=[g0, g1], C_list=[Identity(x_mrf.shape), Identity(x_mrf.shape)], rho_list=[ρ, ρ], x0=x0, maxiter=20, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": 1e-4, "maxiter": 100}), itstat_options={"display": True, "period": 1}, ) """ Run the solver. """ print(f"Solving on {device_info()}\n") x_bm3d = solver.solve() hist = solver.itstat_object.history(transpose=True) """ Show the recovered image. """ norm = plot.matplotlib.colors.Normalize(vmin=-0.1 * density, vmax=1.2 * density) fig, ax = plt.subplots(1, 3, figsize=[15, 5]) plot.imview(img=x_gt, title="Ground Truth Image", cbar=True, fig=fig, ax=ax[0], norm=norm) plot.imview( img=x_mrf, title=f"MRF (PSNR: {metric.psnr(x_gt, x_mrf):.2f} dB)", cbar=True, fig=fig, ax=ax[1], norm=norm, ) plot.imview( img=x_bm3d, title=f"BM3D (PSNR: {metric.psnr(x_gt, x_bm3d):.2f} dB)", cbar=True, fig=fig, ax=ax[2], norm=norm, ) fig.show() """ Plot convergence statistics. """ plot.plot( snp.vstack((hist.Prml_Rsdl, hist.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals", xlbl="Iteration", lgnd=("Primal", "Dual"), ) input("\nWaiting for input to close figures and exit")
scico
/scico-0.0.4.tar.gz/scico-0.0.4/examples/scripts/ct_svmbir_ppp_bm3d_admm_cg.py
ct_svmbir_ppp_bm3d_admm_cg.py
import numpy as np import jax import matplotlib.pyplot as plt import svmbir from xdesign import Foam, discrete_phantom import scico.numpy as snp from scico import metric, plot from scico.functional import BM3D, NonNegativeIndicator from scico.linop import Diagonal, Identity from scico.linop.radon_svmbir import SVMBIRSquaredL2Loss, TomographicProjector from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.util import device_info """ Generate a ground truth image. """ N = 256 # image size density = 0.025 # attenuation density of the image np.random.seed(1234) x_gt = discrete_phantom(Foam(size_range=[0.05, 0.02], gap=0.02, porosity=0.3), size=N - 10) x_gt = x_gt / np.max(x_gt) * density x_gt = np.pad(x_gt, 5) x_gt[x_gt < 0] = 0 """ Generate tomographic projector and sinogram. """ num_angles = int(N / 2) num_channels = N angles = snp.linspace(0, snp.pi, num_angles, endpoint=False, dtype=snp.float32) A = TomographicProjector(x_gt.shape, angles, num_channels) sino = A @ x_gt """ Impose Poisson noise on sinogram. Higher max_intensity means less noise. """ max_intensity = 2000 expected_counts = max_intensity * np.exp(-sino) noisy_counts = np.random.poisson(expected_counts).astype(np.float32) noisy_counts[noisy_counts == 0] = 1 # deal with 0s y = -np.log(noisy_counts / max_intensity) """ Reconstruct using default prior of SVMBIR :cite:`svmbir-2020`. """ weights = svmbir.calc_weights(y, weight_type="transmission") x_mrf = svmbir.recon( np.array(y[:, np.newaxis]), np.array(angles), weights=weights[:, np.newaxis], num_rows=N, num_cols=N, positivity=True, verbose=0, )[0] """ Set up an ADMM solver. """ y, x0, weights = jax.device_put([y, x_mrf, weights]) ρ = 15 # ADMM penalty parameter σ = density * 0.18 # denoiser sigma f = SVMBIRSquaredL2Loss(y=y, A=A, W=Diagonal(weights), scale=0.5) g0 = σ * ρ * BM3D() g1 = NonNegativeIndicator() solver = ADMM( f=f, g_list=[g0, g1], C_list=[Identity(x_mrf.shape), Identity(x_mrf.shape)], rho_list=[ρ, ρ], x0=x0, maxiter=20, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": 1e-4, "maxiter": 100}), itstat_options={"display": True, "period": 1}, ) """ Run the solver. """ print(f"Solving on {device_info()}\n") x_bm3d = solver.solve() hist = solver.itstat_object.history(transpose=True) """ Show the recovered image. """ norm = plot.matplotlib.colors.Normalize(vmin=-0.1 * density, vmax=1.2 * density) fig, ax = plt.subplots(1, 3, figsize=[15, 5]) plot.imview(img=x_gt, title="Ground Truth Image", cbar=True, fig=fig, ax=ax[0], norm=norm) plot.imview( img=x_mrf, title=f"MRF (PSNR: {metric.psnr(x_gt, x_mrf):.2f} dB)", cbar=True, fig=fig, ax=ax[1], norm=norm, ) plot.imview( img=x_bm3d, title=f"BM3D (PSNR: {metric.psnr(x_gt, x_bm3d):.2f} dB)", cbar=True, fig=fig, ax=ax[2], norm=norm, ) fig.show() """ Plot convergence statistics. """ plot.plot( snp.vstack((hist.Prml_Rsdl, hist.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals", xlbl="Iteration", lgnd=("Primal", "Dual"), ) input("\nWaiting for input to close figures and exit")
0.768125
0.616301
import numpy as np import jax import matplotlib.pyplot as plt import svmbir from matplotlib.ticker import MaxNLocator from xdesign import Foam, discrete_phantom import scico.numpy as snp from scico import metric, plot from scico.functional import BM3D from scico.linop import Diagonal, Identity from scico.linop.radon_svmbir import SVMBIRExtendedLoss, TomographicProjector from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.util import device_info """ Generate a ground truth image. """ N = 256 # image size density = 0.025 # attenuation density of the image np.random.seed(1234) pad_len = 5 x_gt = discrete_phantom(Foam(size_range=[0.05, 0.02], gap=0.02, porosity=0.3), size=N - 2 * pad_len) x_gt = x_gt / np.max(x_gt) * density x_gt = np.pad(x_gt, pad_len) x_gt[x_gt < 0] = 0 """ Generate tomographic projector and sinogram for fan beam and parallel beam. For fan beam, use view angles spanning 2π since unlike parallel beam, views at 0 and π are not equivalent. """ num_angles = int(N / 2) num_channels = N # Use angles in the range [0, 2*pi] for fan beam angles = snp.linspace(0, 2 * snp.pi, num_angles, endpoint=False, dtype=snp.float32) dist_source_detector = 1500.0 magnification = 1.2 A_fan = TomographicProjector( x_gt.shape, angles, num_channels, geometry="fan-curved", dist_source_detector=dist_source_detector, magnification=magnification, ) A_parallel = TomographicProjector( x_gt.shape, angles, num_channels, geometry="parallel", ) sino_fan = A_fan @ x_gt """ Impose Poisson noise on sinograms. Higher max_intensity means less noise. """ def add_poisson_noise(sino, max_intensity): expected_counts = max_intensity * np.exp(-sino) noisy_counts = np.random.poisson(expected_counts).astype(np.float32) noisy_counts[noisy_counts == 0] = 1 # deal with 0s y = -np.log(noisy_counts / max_intensity) return y y_fan = add_poisson_noise(sino_fan, max_intensity=500) """ Reconstruct using default prior of SVMBIR :cite:`svmbir-2020`. """ weights_fan = svmbir.calc_weights(y_fan, weight_type="transmission") x_mrf_fan = svmbir.recon( np.array(y_fan[:, np.newaxis]), np.array(angles), weights=weights_fan[:, np.newaxis], num_rows=N, num_cols=N, positivity=True, verbose=0, stop_threshold=0.0, geometry="fan-curved", dist_source_detector=dist_source_detector, magnification=magnification, delta_channel=1.0, delta_pixel=1.0 / magnification, )[0] x_mrf_parallel = svmbir.recon( np.array(y_fan[:, np.newaxis]), np.array(angles), weights=weights_fan[:, np.newaxis], num_rows=N, num_cols=N, positivity=True, verbose=0, stop_threshold=0.0, geometry="parallel", )[0] """ Push arrays to device. """ y_fan, x0_fan, weights_fan = jax.device_put([y_fan, x_mrf_fan, weights_fan]) x0_parallel = jax.device_put(x_mrf_parallel) """ Set problem parameters and BM3D pseudo-functional. """ ρ = 10 # ADMM penalty parameter σ = density * 0.6 # denoiser sigma g0 = σ * ρ * BM3D() """ Set up problem using `SVMBIRExtendedLoss`. """ f_extloss_fan = SVMBIRExtendedLoss( y=y_fan, A=A_fan, W=Diagonal(weights_fan), scale=0.5, positivity=True, prox_kwargs={"maxiter": 5, "ctol": 0.0}, ) f_extloss_parallel = SVMBIRExtendedLoss( y=y_fan, A=A_parallel, W=Diagonal(weights_fan), scale=0.5, positivity=True, prox_kwargs={"maxiter": 5, "ctol": 0.0}, ) solver_extloss_fan = ADMM( f=None, g_list=[f_extloss_fan, g0], C_list=[Identity(x_mrf_fan.shape), Identity(x_mrf_fan.shape)], rho_list=[ρ, ρ], x0=x0_fan, maxiter=20, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": 1e-3, "maxiter": 100}), itstat_options={"display": True}, ) solver_extloss_parallel = ADMM( f=None, g_list=[f_extloss_parallel, g0], C_list=[Identity(x_mrf_parallel.shape), Identity(x_mrf_parallel.shape)], rho_list=[ρ, ρ], x0=x0_parallel, maxiter=20, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": 1e-3, "maxiter": 100}), itstat_options={"display": True}, ) """ Run the ADMM solvers. """ print(f"Solving on {device_info()}\n") x_extloss_fan = solver_extloss_fan.solve() hist_extloss_fan = solver_extloss_fan.itstat_object.history(transpose=True) print() x_extloss_parallel = solver_extloss_parallel.solve() hist_extloss_parallel = solver_extloss_parallel.itstat_object.history(transpose=True) """ Show the recovered images. The parallel beam reconstruction is poor because the parallel beam is a poor approximation of the specific fan beam geometry used here. """ norm = plot.matplotlib.colors.Normalize(vmin=-0.1 * density, vmax=1.2 * density) fig, ax = plt.subplots(1, 3, figsize=(20, 7)) plot.imview(img=x_gt, title="Ground Truth Image", cbar=True, fig=fig, ax=ax[0], norm=norm) plot.imview( img=x_mrf_parallel, title=f"Parallel-beam MRF (PSNR: {metric.psnr(x_gt, x_mrf_parallel):.2f} dB)", cbar=True, fig=fig, ax=ax[1], norm=norm, ) plot.imview( img=x_extloss_parallel, title=f"Parallel-beam Extended Loss (PSNR: {metric.psnr(x_gt, x_extloss_parallel):.2f} dB)", cbar=True, fig=fig, ax=ax[2], norm=norm, ) fig.show() fig, ax = plt.subplots(1, 3, figsize=(20, 7)) plot.imview(img=x_gt, title="Ground Truth Image", cbar=True, fig=fig, ax=ax[0], norm=norm) plot.imview( img=x_mrf_fan, title=f"Fan-beam MRF (PSNR: {metric.psnr(x_gt, x_mrf_fan):.2f} dB)", cbar=True, fig=fig, ax=ax[1], norm=norm, ) plot.imview( img=x_extloss_fan, title=f"Fan-beam Extended Loss (PSNR: {metric.psnr(x_gt, x_extloss_fan):.2f} dB)", cbar=True, fig=fig, ax=ax[2], norm=norm, ) fig.show() """ Plot convergence statistics. """ fig, ax = plt.subplots(1, 2, figsize=(15, 6)) plot.plot( snp.vstack((hist_extloss_parallel.Prml_Rsdl, hist_extloss_parallel.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals for parallel-beam reconstruction", xlbl="Iteration", lgnd=("Primal", "Dual"), fig=fig, ax=ax[0], ) ax[0].set_ylim([5e-3, 1e0]) ax[0].xaxis.set_major_locator(MaxNLocator(integer=True)) plot.plot( snp.vstack((hist_extloss_fan.Prml_Rsdl, hist_extloss_fan.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals for fan-beam reconstruction", xlbl="Iteration", lgnd=("Primal", "Dual"), fig=fig, ax=ax[1], ) ax[1].set_ylim([5e-3, 1e0]) ax[1].xaxis.set_major_locator(MaxNLocator(integer=True)) fig.show() input("\nWaiting for input to close figures and exit")
scico
/scico-0.0.4.tar.gz/scico-0.0.4/examples/scripts/ct_fan_svmbir_ppp_bm3d_admm_prox.py
ct_fan_svmbir_ppp_bm3d_admm_prox.py
import numpy as np import jax import matplotlib.pyplot as plt import svmbir from matplotlib.ticker import MaxNLocator from xdesign import Foam, discrete_phantom import scico.numpy as snp from scico import metric, plot from scico.functional import BM3D from scico.linop import Diagonal, Identity from scico.linop.radon_svmbir import SVMBIRExtendedLoss, TomographicProjector from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.util import device_info """ Generate a ground truth image. """ N = 256 # image size density = 0.025 # attenuation density of the image np.random.seed(1234) pad_len = 5 x_gt = discrete_phantom(Foam(size_range=[0.05, 0.02], gap=0.02, porosity=0.3), size=N - 2 * pad_len) x_gt = x_gt / np.max(x_gt) * density x_gt = np.pad(x_gt, pad_len) x_gt[x_gt < 0] = 0 """ Generate tomographic projector and sinogram for fan beam and parallel beam. For fan beam, use view angles spanning 2π since unlike parallel beam, views at 0 and π are not equivalent. """ num_angles = int(N / 2) num_channels = N # Use angles in the range [0, 2*pi] for fan beam angles = snp.linspace(0, 2 * snp.pi, num_angles, endpoint=False, dtype=snp.float32) dist_source_detector = 1500.0 magnification = 1.2 A_fan = TomographicProjector( x_gt.shape, angles, num_channels, geometry="fan-curved", dist_source_detector=dist_source_detector, magnification=magnification, ) A_parallel = TomographicProjector( x_gt.shape, angles, num_channels, geometry="parallel", ) sino_fan = A_fan @ x_gt """ Impose Poisson noise on sinograms. Higher max_intensity means less noise. """ def add_poisson_noise(sino, max_intensity): expected_counts = max_intensity * np.exp(-sino) noisy_counts = np.random.poisson(expected_counts).astype(np.float32) noisy_counts[noisy_counts == 0] = 1 # deal with 0s y = -np.log(noisy_counts / max_intensity) return y y_fan = add_poisson_noise(sino_fan, max_intensity=500) """ Reconstruct using default prior of SVMBIR :cite:`svmbir-2020`. """ weights_fan = svmbir.calc_weights(y_fan, weight_type="transmission") x_mrf_fan = svmbir.recon( np.array(y_fan[:, np.newaxis]), np.array(angles), weights=weights_fan[:, np.newaxis], num_rows=N, num_cols=N, positivity=True, verbose=0, stop_threshold=0.0, geometry="fan-curved", dist_source_detector=dist_source_detector, magnification=magnification, delta_channel=1.0, delta_pixel=1.0 / magnification, )[0] x_mrf_parallel = svmbir.recon( np.array(y_fan[:, np.newaxis]), np.array(angles), weights=weights_fan[:, np.newaxis], num_rows=N, num_cols=N, positivity=True, verbose=0, stop_threshold=0.0, geometry="parallel", )[0] """ Push arrays to device. """ y_fan, x0_fan, weights_fan = jax.device_put([y_fan, x_mrf_fan, weights_fan]) x0_parallel = jax.device_put(x_mrf_parallel) """ Set problem parameters and BM3D pseudo-functional. """ ρ = 10 # ADMM penalty parameter σ = density * 0.6 # denoiser sigma g0 = σ * ρ * BM3D() """ Set up problem using `SVMBIRExtendedLoss`. """ f_extloss_fan = SVMBIRExtendedLoss( y=y_fan, A=A_fan, W=Diagonal(weights_fan), scale=0.5, positivity=True, prox_kwargs={"maxiter": 5, "ctol": 0.0}, ) f_extloss_parallel = SVMBIRExtendedLoss( y=y_fan, A=A_parallel, W=Diagonal(weights_fan), scale=0.5, positivity=True, prox_kwargs={"maxiter": 5, "ctol": 0.0}, ) solver_extloss_fan = ADMM( f=None, g_list=[f_extloss_fan, g0], C_list=[Identity(x_mrf_fan.shape), Identity(x_mrf_fan.shape)], rho_list=[ρ, ρ], x0=x0_fan, maxiter=20, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": 1e-3, "maxiter": 100}), itstat_options={"display": True}, ) solver_extloss_parallel = ADMM( f=None, g_list=[f_extloss_parallel, g0], C_list=[Identity(x_mrf_parallel.shape), Identity(x_mrf_parallel.shape)], rho_list=[ρ, ρ], x0=x0_parallel, maxiter=20, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": 1e-3, "maxiter": 100}), itstat_options={"display": True}, ) """ Run the ADMM solvers. """ print(f"Solving on {device_info()}\n") x_extloss_fan = solver_extloss_fan.solve() hist_extloss_fan = solver_extloss_fan.itstat_object.history(transpose=True) print() x_extloss_parallel = solver_extloss_parallel.solve() hist_extloss_parallel = solver_extloss_parallel.itstat_object.history(transpose=True) """ Show the recovered images. The parallel beam reconstruction is poor because the parallel beam is a poor approximation of the specific fan beam geometry used here. """ norm = plot.matplotlib.colors.Normalize(vmin=-0.1 * density, vmax=1.2 * density) fig, ax = plt.subplots(1, 3, figsize=(20, 7)) plot.imview(img=x_gt, title="Ground Truth Image", cbar=True, fig=fig, ax=ax[0], norm=norm) plot.imview( img=x_mrf_parallel, title=f"Parallel-beam MRF (PSNR: {metric.psnr(x_gt, x_mrf_parallel):.2f} dB)", cbar=True, fig=fig, ax=ax[1], norm=norm, ) plot.imview( img=x_extloss_parallel, title=f"Parallel-beam Extended Loss (PSNR: {metric.psnr(x_gt, x_extloss_parallel):.2f} dB)", cbar=True, fig=fig, ax=ax[2], norm=norm, ) fig.show() fig, ax = plt.subplots(1, 3, figsize=(20, 7)) plot.imview(img=x_gt, title="Ground Truth Image", cbar=True, fig=fig, ax=ax[0], norm=norm) plot.imview( img=x_mrf_fan, title=f"Fan-beam MRF (PSNR: {metric.psnr(x_gt, x_mrf_fan):.2f} dB)", cbar=True, fig=fig, ax=ax[1], norm=norm, ) plot.imview( img=x_extloss_fan, title=f"Fan-beam Extended Loss (PSNR: {metric.psnr(x_gt, x_extloss_fan):.2f} dB)", cbar=True, fig=fig, ax=ax[2], norm=norm, ) fig.show() """ Plot convergence statistics. """ fig, ax = plt.subplots(1, 2, figsize=(15, 6)) plot.plot( snp.vstack((hist_extloss_parallel.Prml_Rsdl, hist_extloss_parallel.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals for parallel-beam reconstruction", xlbl="Iteration", lgnd=("Primal", "Dual"), fig=fig, ax=ax[0], ) ax[0].set_ylim([5e-3, 1e0]) ax[0].xaxis.set_major_locator(MaxNLocator(integer=True)) plot.plot( snp.vstack((hist_extloss_fan.Prml_Rsdl, hist_extloss_fan.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals for fan-beam reconstruction", xlbl="Iteration", lgnd=("Primal", "Dual"), fig=fig, ax=ax[1], ) ax[1].set_ylim([5e-3, 1e0]) ax[1].xaxis.set_major_locator(MaxNLocator(integer=True)) fig.show() input("\nWaiting for input to close figures and exit")
0.806853
0.555073
r""" Convolutional Sparse Coding (ADMM) ================================== This example demonstrates the solution of a simple convolutional sparse coding problem $$\mathrm{argmin}_{\mathbf{x}} \; \frac{1}{2} \Big\| \mathbf{y} - \sum_k \mathbf{h}_k \ast \mathbf{x}_k \Big\|_2^2 + \lambda \sum_k ( \| \mathbf{x}_k \|_1 - \| \mathbf{x}_k \|_2 ) \;,$$ where the $\mathbf{h}$_k is a set of filters comprising the dictionary, the $\mathbf{x}$_k is a corrresponding set of coefficient maps, and $\mathbf{y}$ is the signal to be represented. The problem is solved via an ADMM algorithm using the frequency-domain approach proposed in :cite:`wohlberg-2014-efficient`. """ import numpy as np import jax import scico.numpy as snp from scico import plot from scico.examples import create_conv_sparse_phantom from scico.functional import L1MinusL2Norm from scico.linop import CircularConvolve, Identity, Sum from scico.loss import SquaredL2Loss from scico.optimize.admm import ADMM, FBlockCircularConvolveSolver from scico.util import device_info """ Set problem size and create random convolutional dictionary (a set of filters) and a corresponding sparse random set of coefficient maps. """ N = 128 # image size Nnz = 128 # number of non-zeros in coefficient maps h, x0 = create_conv_sparse_phantom(N, Nnz) """ Normalize dictionary filters and scale coefficient maps accordingly. """ hnorm = np.sqrt(np.sum(h**2, axis=(1, 2), keepdims=True)) h /= hnorm x0 *= hnorm """ Convert numpy arrays to jax arrays. """ h = jax.device_put(h) x0 = jax.device_put(x0) """ Set up sum-of-convolutions forward operator. """ C = CircularConvolve(h, input_shape=x0.shape, ndims=2) S = Sum(input_shape=C.output_shape, axis=0) A = S @ C """ Construct test image from dictionary $\mathbf{h}$ and coefficient maps $\mathbf{x}_0$. """ y = A(x0) """ Set functional and solver parameters. """ λ = 1e0 # l1-l2 norm regularization parameter ρ = 2e0 # ADMM penalty parameter maxiter = 200 # number of ADMM iterations """ Define loss function and regularization. Note the use of the $\ell_1 - \ell_2$ norm, which has been found to provide slightly better performance than the $\ell_1$ norm in this type of problem :cite:`wohlberg-2021-psf`. """ f = SquaredL2Loss(y=y, A=A) g0 = λ * L1MinusL2Norm() C0 = Identity(input_shape=x0.shape) """ Initialize ADMM solver. """ solver = ADMM( f=f, g_list=[g0], C_list=[C0], rho_list=[ρ], alpha=1.8, maxiter=maxiter, subproblem_solver=FBlockCircularConvolveSolver(check_solve=True), itstat_options={"display": True, "period": 10}, ) """ Run the solver. """ print(f"Solving on {device_info()}\n") x1 = solver.solve() hist = solver.itstat_object.history(transpose=True) """ Show the recovered coefficient maps. """ fig, ax = plot.subplots(nrows=2, ncols=3, figsize=(12, 8.6)) plot.imview(x0[0], title="Coef. map 0", cmap=plot.cm.Blues, fig=fig, ax=ax[0, 0]) ax[0, 0].set_ylabel("Ground truth") plot.imview(x0[1], title="Coef. map 1", cmap=plot.cm.Blues, fig=fig, ax=ax[0, 1]) plot.imview(x0[2], title="Coef. map 2", cmap=plot.cm.Blues, fig=fig, ax=ax[0, 2]) plot.imview(x1[0], cmap=plot.cm.Blues, fig=fig, ax=ax[1, 0]) ax[1, 0].set_ylabel("Recovered") plot.imview(x1[1], cmap=plot.cm.Blues, fig=fig, ax=ax[1, 1]) plot.imview(x1[2], cmap=plot.cm.Blues, fig=fig, ax=ax[1, 2]) fig.tight_layout() fig.show() """ Show test image and reconstruction from recovered coefficient maps. """ fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(12, 6)) plot.imview(y, title="Test image", cmap=plot.cm.gist_heat_r, fig=fig, ax=ax[0]) plot.imview(A(x1), title="Reconstructed image", cmap=plot.cm.gist_heat_r, fig=fig, ax=ax[1]) fig.show() """ Plot convergence statistics. """ fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(12, 5)) plot.plot( hist.Objective, title="Objective function", xlbl="Iteration", ylbl="Functional value", fig=fig, ax=ax[0], ) plot.plot( snp.vstack((hist.Prml_Rsdl, hist.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals", xlbl="Iteration", lgnd=("Primal", "Dual"), fig=fig, ax=ax[1], ) fig.show() input("\nWaiting for input to close figures and exit")
scico
/scico-0.0.4.tar.gz/scico-0.0.4/examples/scripts/sparsecode_conv_admm.py
sparsecode_conv_admm.py
r""" Convolutional Sparse Coding (ADMM) ================================== This example demonstrates the solution of a simple convolutional sparse coding problem $$\mathrm{argmin}_{\mathbf{x}} \; \frac{1}{2} \Big\| \mathbf{y} - \sum_k \mathbf{h}_k \ast \mathbf{x}_k \Big\|_2^2 + \lambda \sum_k ( \| \mathbf{x}_k \|_1 - \| \mathbf{x}_k \|_2 ) \;,$$ where the $\mathbf{h}$_k is a set of filters comprising the dictionary, the $\mathbf{x}$_k is a corrresponding set of coefficient maps, and $\mathbf{y}$ is the signal to be represented. The problem is solved via an ADMM algorithm using the frequency-domain approach proposed in :cite:`wohlberg-2014-efficient`. """ import numpy as np import jax import scico.numpy as snp from scico import plot from scico.examples import create_conv_sparse_phantom from scico.functional import L1MinusL2Norm from scico.linop import CircularConvolve, Identity, Sum from scico.loss import SquaredL2Loss from scico.optimize.admm import ADMM, FBlockCircularConvolveSolver from scico.util import device_info """ Set problem size and create random convolutional dictionary (a set of filters) and a corresponding sparse random set of coefficient maps. """ N = 128 # image size Nnz = 128 # number of non-zeros in coefficient maps h, x0 = create_conv_sparse_phantom(N, Nnz) """ Normalize dictionary filters and scale coefficient maps accordingly. """ hnorm = np.sqrt(np.sum(h**2, axis=(1, 2), keepdims=True)) h /= hnorm x0 *= hnorm """ Convert numpy arrays to jax arrays. """ h = jax.device_put(h) x0 = jax.device_put(x0) """ Set up sum-of-convolutions forward operator. """ C = CircularConvolve(h, input_shape=x0.shape, ndims=2) S = Sum(input_shape=C.output_shape, axis=0) A = S @ C """ Construct test image from dictionary $\mathbf{h}$ and coefficient maps $\mathbf{x}_0$. """ y = A(x0) """ Set functional and solver parameters. """ λ = 1e0 # l1-l2 norm regularization parameter ρ = 2e0 # ADMM penalty parameter maxiter = 200 # number of ADMM iterations """ Define loss function and regularization. Note the use of the $\ell_1 - \ell_2$ norm, which has been found to provide slightly better performance than the $\ell_1$ norm in this type of problem :cite:`wohlberg-2021-psf`. """ f = SquaredL2Loss(y=y, A=A) g0 = λ * L1MinusL2Norm() C0 = Identity(input_shape=x0.shape) """ Initialize ADMM solver. """ solver = ADMM( f=f, g_list=[g0], C_list=[C0], rho_list=[ρ], alpha=1.8, maxiter=maxiter, subproblem_solver=FBlockCircularConvolveSolver(check_solve=True), itstat_options={"display": True, "period": 10}, ) """ Run the solver. """ print(f"Solving on {device_info()}\n") x1 = solver.solve() hist = solver.itstat_object.history(transpose=True) """ Show the recovered coefficient maps. """ fig, ax = plot.subplots(nrows=2, ncols=3, figsize=(12, 8.6)) plot.imview(x0[0], title="Coef. map 0", cmap=plot.cm.Blues, fig=fig, ax=ax[0, 0]) ax[0, 0].set_ylabel("Ground truth") plot.imview(x0[1], title="Coef. map 1", cmap=plot.cm.Blues, fig=fig, ax=ax[0, 1]) plot.imview(x0[2], title="Coef. map 2", cmap=plot.cm.Blues, fig=fig, ax=ax[0, 2]) plot.imview(x1[0], cmap=plot.cm.Blues, fig=fig, ax=ax[1, 0]) ax[1, 0].set_ylabel("Recovered") plot.imview(x1[1], cmap=plot.cm.Blues, fig=fig, ax=ax[1, 1]) plot.imview(x1[2], cmap=plot.cm.Blues, fig=fig, ax=ax[1, 2]) fig.tight_layout() fig.show() """ Show test image and reconstruction from recovered coefficient maps. """ fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(12, 6)) plot.imview(y, title="Test image", cmap=plot.cm.gist_heat_r, fig=fig, ax=ax[0]) plot.imview(A(x1), title="Reconstructed image", cmap=plot.cm.gist_heat_r, fig=fig, ax=ax[1]) fig.show() """ Plot convergence statistics. """ fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(12, 5)) plot.plot( hist.Objective, title="Objective function", xlbl="Iteration", ylbl="Functional value", fig=fig, ax=ax[0], ) plot.plot( snp.vstack((hist.Prml_Rsdl, hist.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals", xlbl="Iteration", lgnd=("Primal", "Dual"), fig=fig, ax=ax[1], ) fig.show() input("\nWaiting for input to close figures and exit")
0.944817
0.938181
r""" Total Variation Denoising (ADMM) ================================ This example compares denoising via isotropic and anisotropic total variation (TV) regularization :cite:`rudin-1992-nonlinear` :cite:`goldstein-2009-split`. It solves the denoising problem $$\mathrm{argmin}_{\mathbf{x}} \; (1/2) \| \mathbf{y} - \mathbf{x} \|_2^2 + \lambda R(\mathbf{x}) \;,$$ where $R$ is either the isotropic or anisotropic TV regularizer. In SCICO, switching between these two regularizers is a one-line change: replacing an [L1Norm](../_autosummary/scico.functional.rst#scico.functional.L1Norm) with a [L21Norm](../_autosummary/scico.functional.rst#scico.functional.L21Norm). Note that the isotropic version exhibits fewer block-like artifacts on edges that are not vertical or horizontal. """ import jax from xdesign import SiemensStar, discrete_phantom import scico.numpy as snp import scico.random from scico import functional, linop, loss, plot from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.util import device_info """ Create a ground truth image. """ N = 256 # image size phantom = SiemensStar(16) x_gt = snp.pad(discrete_phantom(phantom, N - 16), 8) x_gt = jax.device_put(x_gt) # convert to jax type, push to GPU x_gt = x_gt / x_gt.max() """ Add noise to create a noisy test image. """ σ = 0.75 # noise standard deviation noise, key = scico.random.randn(x_gt.shape, seed=0) y = x_gt + σ * noise """ Denoise with isotropic total variation. """ λ_iso = 1.4e0 f = loss.SquaredL2Loss(y=y) g_iso = λ_iso * functional.L21Norm() # The append=0 option makes the results of horizontal and vertical finite # differences the same shape, which is required for the L21Norm. C = linop.FiniteDifference(input_shape=x_gt.shape, append=0) solver = ADMM( f=f, g_list=[g_iso], C_list=[C], rho_list=[1e1], x0=y, maxiter=100, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": 1e-3, "maxiter": 20}), itstat_options={"display": True, "period": 10}, ) print(f"Solving on {device_info()}\n") solver.solve() x_iso = solver.x print() """ Denoise with anisotropic total variation for comparison. """ # Tune the weight to give the same data fidelty as the isotropic case. λ_aniso = 1.2e0 g_aniso = λ_aniso * functional.L1Norm() solver = ADMM( f=f, g_list=[g_aniso], C_list=[C], rho_list=[1e1], x0=y, maxiter=100, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": 1e-3, "maxiter": 20}), itstat_options={"display": True, "period": 10}, ) solver.solve() x_aniso = solver.x print() """ Compute and print the data fidelity. """ for x, name in zip((x_iso, x_aniso), ("Isotropic", "Anisotropic")): df = f(x) print(f"Data fidelity for {name} TV was {df:.2e}") """ Plot results. """ plt_args = dict(norm=plot.matplotlib.colors.Normalize(vmin=0, vmax=1.5)) fig, ax = plot.subplots(nrows=2, ncols=2, sharex=True, sharey=True, figsize=(11, 10)) plot.imview(x_gt, title="Ground truth", fig=fig, ax=ax[0, 0], **plt_args) plot.imview(y, title="Noisy version", fig=fig, ax=ax[0, 1], **plt_args) plot.imview(x_iso, title="Isotropic TV denoising", fig=fig, ax=ax[1, 0], **plt_args) plot.imview(x_aniso, title="Anisotropic TV denoising", fig=fig, ax=ax[1, 1], **plt_args) fig.subplots_adjust(left=0.1, right=0.99, top=0.95, bottom=0.05, wspace=0.2, hspace=0.01) fig.colorbar( ax[0, 0].get_images()[0], ax=ax, location="right", shrink=0.9, pad=0.05, label="Arbitrary Units" ) fig.suptitle("Denoising comparison") fig.show() # zoomed version fig, ax = plot.subplots(nrows=2, ncols=2, sharex=True, sharey=True, figsize=(11, 10)) plot.imview(x_gt, title="Ground truth", fig=fig, ax=ax[0, 0], **plt_args) plot.imview(y, title="Noisy version", fig=fig, ax=ax[0, 1], **plt_args) plot.imview(x_iso, title="Isotropic TV denoising", fig=fig, ax=ax[1, 0], **plt_args) plot.imview(x_aniso, title="Anisotropic TV denoising", fig=fig, ax=ax[1, 1], **plt_args) ax[0, 0].set_xlim(N // 4, N // 4 + N // 2) ax[0, 0].set_ylim(N // 4, N // 4 + N // 2) fig.subplots_adjust(left=0.1, right=0.99, top=0.95, bottom=0.05, wspace=0.2, hspace=0.01) fig.colorbar( ax[0, 0].get_images()[0], ax=ax, location="right", shrink=0.9, pad=0.05, label="Arbitrary Units" ) fig.suptitle("Denoising comparison (zoomed)") fig.show() input("\nWaiting for input to close figures and exit")
scico
/scico-0.0.4.tar.gz/scico-0.0.4/examples/scripts/denoise_tv_admm.py
denoise_tv_admm.py
r""" Total Variation Denoising (ADMM) ================================ This example compares denoising via isotropic and anisotropic total variation (TV) regularization :cite:`rudin-1992-nonlinear` :cite:`goldstein-2009-split`. It solves the denoising problem $$\mathrm{argmin}_{\mathbf{x}} \; (1/2) \| \mathbf{y} - \mathbf{x} \|_2^2 + \lambda R(\mathbf{x}) \;,$$ where $R$ is either the isotropic or anisotropic TV regularizer. In SCICO, switching between these two regularizers is a one-line change: replacing an [L1Norm](../_autosummary/scico.functional.rst#scico.functional.L1Norm) with a [L21Norm](../_autosummary/scico.functional.rst#scico.functional.L21Norm). Note that the isotropic version exhibits fewer block-like artifacts on edges that are not vertical or horizontal. """ import jax from xdesign import SiemensStar, discrete_phantom import scico.numpy as snp import scico.random from scico import functional, linop, loss, plot from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.util import device_info """ Create a ground truth image. """ N = 256 # image size phantom = SiemensStar(16) x_gt = snp.pad(discrete_phantom(phantom, N - 16), 8) x_gt = jax.device_put(x_gt) # convert to jax type, push to GPU x_gt = x_gt / x_gt.max() """ Add noise to create a noisy test image. """ σ = 0.75 # noise standard deviation noise, key = scico.random.randn(x_gt.shape, seed=0) y = x_gt + σ * noise """ Denoise with isotropic total variation. """ λ_iso = 1.4e0 f = loss.SquaredL2Loss(y=y) g_iso = λ_iso * functional.L21Norm() # The append=0 option makes the results of horizontal and vertical finite # differences the same shape, which is required for the L21Norm. C = linop.FiniteDifference(input_shape=x_gt.shape, append=0) solver = ADMM( f=f, g_list=[g_iso], C_list=[C], rho_list=[1e1], x0=y, maxiter=100, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": 1e-3, "maxiter": 20}), itstat_options={"display": True, "period": 10}, ) print(f"Solving on {device_info()}\n") solver.solve() x_iso = solver.x print() """ Denoise with anisotropic total variation for comparison. """ # Tune the weight to give the same data fidelty as the isotropic case. λ_aniso = 1.2e0 g_aniso = λ_aniso * functional.L1Norm() solver = ADMM( f=f, g_list=[g_aniso], C_list=[C], rho_list=[1e1], x0=y, maxiter=100, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": 1e-3, "maxiter": 20}), itstat_options={"display": True, "period": 10}, ) solver.solve() x_aniso = solver.x print() """ Compute and print the data fidelity. """ for x, name in zip((x_iso, x_aniso), ("Isotropic", "Anisotropic")): df = f(x) print(f"Data fidelity for {name} TV was {df:.2e}") """ Plot results. """ plt_args = dict(norm=plot.matplotlib.colors.Normalize(vmin=0, vmax=1.5)) fig, ax = plot.subplots(nrows=2, ncols=2, sharex=True, sharey=True, figsize=(11, 10)) plot.imview(x_gt, title="Ground truth", fig=fig, ax=ax[0, 0], **plt_args) plot.imview(y, title="Noisy version", fig=fig, ax=ax[0, 1], **plt_args) plot.imview(x_iso, title="Isotropic TV denoising", fig=fig, ax=ax[1, 0], **plt_args) plot.imview(x_aniso, title="Anisotropic TV denoising", fig=fig, ax=ax[1, 1], **plt_args) fig.subplots_adjust(left=0.1, right=0.99, top=0.95, bottom=0.05, wspace=0.2, hspace=0.01) fig.colorbar( ax[0, 0].get_images()[0], ax=ax, location="right", shrink=0.9, pad=0.05, label="Arbitrary Units" ) fig.suptitle("Denoising comparison") fig.show() # zoomed version fig, ax = plot.subplots(nrows=2, ncols=2, sharex=True, sharey=True, figsize=(11, 10)) plot.imview(x_gt, title="Ground truth", fig=fig, ax=ax[0, 0], **plt_args) plot.imview(y, title="Noisy version", fig=fig, ax=ax[0, 1], **plt_args) plot.imview(x_iso, title="Isotropic TV denoising", fig=fig, ax=ax[1, 0], **plt_args) plot.imview(x_aniso, title="Anisotropic TV denoising", fig=fig, ax=ax[1, 1], **plt_args) ax[0, 0].set_xlim(N // 4, N // 4 + N // 2) ax[0, 0].set_ylim(N // 4, N // 4 + N // 2) fig.subplots_adjust(left=0.1, right=0.99, top=0.95, bottom=0.05, wspace=0.2, hspace=0.01) fig.colorbar( ax[0, 0].get_images()[0], ax=ax, location="right", shrink=0.9, pad=0.05, label="Arbitrary Units" ) fig.suptitle("Denoising comparison (zoomed)") fig.show() input("\nWaiting for input to close figures and exit")
0.89241
0.828176
r""" Training of DnCNN for Denoising =============================== This example demonstrates the training and application of the DnCNN model from :cite:`zhang-2017-dncnn` to denoise images that have been corrupted with additive Gaussian noise. """ import os from time import time import numpy as np import jax from mpl_toolkits.axes_grid1 import make_axes_locatable from scico import flax as sflax from scico import metric, plot from scico.flax.examples import load_image_data """ Prepare parallel processing. Set an arbitrary processor count (only applies if GPU is not available). """ os.environ["XLA_FLAGS"] = "--xla_force_host_platform_device_count=8" platform = jax.lib.xla_bridge.get_backend().platform print("Platform: ", platform) """ Read data from cache or generate if not available. """ size = 40 # patch size train_nimg = 400 # number of training images test_nimg = 16 # number of testing images nimg = train_nimg + test_nimg gray = True # use gray scale images data_mode = "dn" # Denoising problem noise_level = 0.1 # Standard deviation of noise noise_range = False # Use fixed noise level stride = 23 # Stride to sample multiple patches from each image train_ds, test_ds = load_image_data( train_nimg, test_nimg, size, gray, data_mode, verbose=True, noise_level=noise_level, noise_range=noise_range, stride=stride, ) """ Define configuration dictionary for model and training loop. Parameters have been selected for demonstration purposes and relatively short training. The depth of the model has been reduced to 6, instead of the 17 of the original model. The suggested settings can be found in the original paper. """ # model configuration model_conf = { "depth": 6, "num_filters": 64, } # training configuration train_conf: sflax.ConfigDict = { "seed": 0, "opt_type": "ADAM", "batch_size": 128, "num_epochs": 50, "base_learning_rate": 1e-3, "warmup_epochs": 0, "log_every_steps": 5000, "log": True, } """ Construct DnCNN model. """ channels = train_ds["image"].shape[-1] model = sflax.DnCNNNet( depth=model_conf["depth"], channels=channels, num_filters=model_conf["num_filters"], ) """ Run training loop. """ workdir = os.path.join(os.path.expanduser("~"), ".cache", "scico", "examples", "dncnn_out") train_conf["workdir"] = workdir print(f"{'JAX process: '}{jax.process_index()}{' / '}{jax.process_count()}") print(f"{'JAX local devices: '}{jax.local_devices()}") trainer = sflax.BasicFlaxTrainer( train_conf, model, train_ds, test_ds, ) start_time = time() modvar, stats_object = trainer.train() time_train = time() - start_time """ Evaluate on testing data. """ test_patches = 720 start_time = time() fmap = sflax.FlaxMap(model, modvar) output = fmap(test_ds["image"][:test_patches]) time_eval = time() - start_time output = np.clip(output, a_min=0, a_max=1.0) """ Compare trained model in terms of reconstruction time and data fidelity. """ snr_eval = metric.snr(test_ds["label"][:test_patches], output) psnr_eval = metric.psnr(test_ds["label"][:test_patches], output) print( f"{'DnCNNNet training':18s}{'epochs:':2s}{train_conf['num_epochs']:>5d}" f"{'':21s}{'time[s]:':10s}{time_train:>7.2f}" ) print( f"{'DnCNNNet testing':18s}{'SNR:':5s}{snr_eval:>5.2f}{' dB'}{'':3s}" f"{'PSNR:':6s}{psnr_eval:>5.2f}{' dB'}{'':3s}{'time[s]:':10s}{time_eval:>7.2f}" ) """ Plot comparison. Note that patches have small sizes, thus, plots may correspond to unidentifiable fragments. """ np.random.seed(123) indx = np.random.randint(0, high=test_patches) fig, ax = plot.subplots(nrows=1, ncols=3, figsize=(15, 5)) plot.imview(test_ds["label"][indx, ..., 0], title="Ground truth", cbar=None, fig=fig, ax=ax[0]) plot.imview( test_ds["image"][indx, ..., 0], title="Noisy: \nSNR: %.2f (dB), PSNR: %.2f" % ( metric.snr(test_ds["label"][indx, ..., 0], test_ds["image"][indx, ..., 0]), metric.psnr(test_ds["label"][indx, ..., 0], test_ds["image"][indx, ..., 0]), ), cbar=None, fig=fig, ax=ax[1], ) plot.imview( output[indx, ..., 0], title="DnCNNNet Reconstruction\nSNR: %.2f (dB), PSNR: %.2f" % ( metric.snr(test_ds["label"][indx, ..., 0], output[indx, ..., 0]), metric.psnr(test_ds["label"][indx, ..., 0], output[indx, ..., 0]), ), fig=fig, ax=ax[2], ) divider = make_axes_locatable(ax[2]) cax = divider.append_axes("right", size="5%", pad=0.2) fig.colorbar(ax[2].get_images()[0], cax=cax, label="arbitrary units") fig.show() """ Plot convergence statistics. Statistics only generated if a training cycle was done (i.e. not reading final epoch results from checkpoint). """ if stats_object is not None: hist = stats_object.history(transpose=True) fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(12, 5)) plot.plot( np.vstack((hist.Train_Loss, hist.Eval_Loss)).T, x=hist.Epoch, ptyp="semilogy", title="Loss function", xlbl="Epoch", ylbl="Loss value", lgnd=("Train", "Test"), fig=fig, ax=ax[0], ) plot.plot( np.vstack((hist.Train_SNR, hist.Eval_SNR)).T, x=hist.Epoch, title="Metric", xlbl="Epoch", ylbl="SNR (dB)", lgnd=("Train", "Test"), fig=fig, ax=ax[1], ) fig.show() input("\nWaiting for input to close figures and exit")
scico
/scico-0.0.4.tar.gz/scico-0.0.4/examples/scripts/denoise_dncnn_train_bsds.py
denoise_dncnn_train_bsds.py
r""" Training of DnCNN for Denoising =============================== This example demonstrates the training and application of the DnCNN model from :cite:`zhang-2017-dncnn` to denoise images that have been corrupted with additive Gaussian noise. """ import os from time import time import numpy as np import jax from mpl_toolkits.axes_grid1 import make_axes_locatable from scico import flax as sflax from scico import metric, plot from scico.flax.examples import load_image_data """ Prepare parallel processing. Set an arbitrary processor count (only applies if GPU is not available). """ os.environ["XLA_FLAGS"] = "--xla_force_host_platform_device_count=8" platform = jax.lib.xla_bridge.get_backend().platform print("Platform: ", platform) """ Read data from cache or generate if not available. """ size = 40 # patch size train_nimg = 400 # number of training images test_nimg = 16 # number of testing images nimg = train_nimg + test_nimg gray = True # use gray scale images data_mode = "dn" # Denoising problem noise_level = 0.1 # Standard deviation of noise noise_range = False # Use fixed noise level stride = 23 # Stride to sample multiple patches from each image train_ds, test_ds = load_image_data( train_nimg, test_nimg, size, gray, data_mode, verbose=True, noise_level=noise_level, noise_range=noise_range, stride=stride, ) """ Define configuration dictionary for model and training loop. Parameters have been selected for demonstration purposes and relatively short training. The depth of the model has been reduced to 6, instead of the 17 of the original model. The suggested settings can be found in the original paper. """ # model configuration model_conf = { "depth": 6, "num_filters": 64, } # training configuration train_conf: sflax.ConfigDict = { "seed": 0, "opt_type": "ADAM", "batch_size": 128, "num_epochs": 50, "base_learning_rate": 1e-3, "warmup_epochs": 0, "log_every_steps": 5000, "log": True, } """ Construct DnCNN model. """ channels = train_ds["image"].shape[-1] model = sflax.DnCNNNet( depth=model_conf["depth"], channels=channels, num_filters=model_conf["num_filters"], ) """ Run training loop. """ workdir = os.path.join(os.path.expanduser("~"), ".cache", "scico", "examples", "dncnn_out") train_conf["workdir"] = workdir print(f"{'JAX process: '}{jax.process_index()}{' / '}{jax.process_count()}") print(f"{'JAX local devices: '}{jax.local_devices()}") trainer = sflax.BasicFlaxTrainer( train_conf, model, train_ds, test_ds, ) start_time = time() modvar, stats_object = trainer.train() time_train = time() - start_time """ Evaluate on testing data. """ test_patches = 720 start_time = time() fmap = sflax.FlaxMap(model, modvar) output = fmap(test_ds["image"][:test_patches]) time_eval = time() - start_time output = np.clip(output, a_min=0, a_max=1.0) """ Compare trained model in terms of reconstruction time and data fidelity. """ snr_eval = metric.snr(test_ds["label"][:test_patches], output) psnr_eval = metric.psnr(test_ds["label"][:test_patches], output) print( f"{'DnCNNNet training':18s}{'epochs:':2s}{train_conf['num_epochs']:>5d}" f"{'':21s}{'time[s]:':10s}{time_train:>7.2f}" ) print( f"{'DnCNNNet testing':18s}{'SNR:':5s}{snr_eval:>5.2f}{' dB'}{'':3s}" f"{'PSNR:':6s}{psnr_eval:>5.2f}{' dB'}{'':3s}{'time[s]:':10s}{time_eval:>7.2f}" ) """ Plot comparison. Note that patches have small sizes, thus, plots may correspond to unidentifiable fragments. """ np.random.seed(123) indx = np.random.randint(0, high=test_patches) fig, ax = plot.subplots(nrows=1, ncols=3, figsize=(15, 5)) plot.imview(test_ds["label"][indx, ..., 0], title="Ground truth", cbar=None, fig=fig, ax=ax[0]) plot.imview( test_ds["image"][indx, ..., 0], title="Noisy: \nSNR: %.2f (dB), PSNR: %.2f" % ( metric.snr(test_ds["label"][indx, ..., 0], test_ds["image"][indx, ..., 0]), metric.psnr(test_ds["label"][indx, ..., 0], test_ds["image"][indx, ..., 0]), ), cbar=None, fig=fig, ax=ax[1], ) plot.imview( output[indx, ..., 0], title="DnCNNNet Reconstruction\nSNR: %.2f (dB), PSNR: %.2f" % ( metric.snr(test_ds["label"][indx, ..., 0], output[indx, ..., 0]), metric.psnr(test_ds["label"][indx, ..., 0], output[indx, ..., 0]), ), fig=fig, ax=ax[2], ) divider = make_axes_locatable(ax[2]) cax = divider.append_axes("right", size="5%", pad=0.2) fig.colorbar(ax[2].get_images()[0], cax=cax, label="arbitrary units") fig.show() """ Plot convergence statistics. Statistics only generated if a training cycle was done (i.e. not reading final epoch results from checkpoint). """ if stats_object is not None: hist = stats_object.history(transpose=True) fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(12, 5)) plot.plot( np.vstack((hist.Train_Loss, hist.Eval_Loss)).T, x=hist.Epoch, ptyp="semilogy", title="Loss function", xlbl="Epoch", ylbl="Loss value", lgnd=("Train", "Test"), fig=fig, ax=ax[0], ) plot.plot( np.vstack((hist.Train_SNR, hist.Eval_SNR)).T, x=hist.Epoch, title="Metric", xlbl="Epoch", ylbl="SNR (dB)", lgnd=("Train", "Test"), fig=fig, ax=ax[1], ) fig.show() input("\nWaiting for input to close figures and exit")
0.920994
0.649051
import numpy as np import jax from xdesign import Foam, discrete_phantom import scico.numpy as snp from scico import functional, linop, loss, metric, plot, random from scico.optimize import ProximalADMM from scico.util import device_info """ Create a ground truth image. """ np.random.seed(1234) N = 512 # image size x_gt = discrete_phantom(Foam(size_range=[0.075, 0.0025], gap=1e-3, porosity=1), size=N) x_gt = jax.device_put(x_gt) # convert to jax array, push to GPU """ Set up forward operator $A$ and test signal consisting of blurred signal with additive Gaussian noise. """ n = 5 # convolution kernel size σ = 20.0 / 255 # noise level psf = snp.ones((n, n)) / (n * n) A = linop.Convolve(h=psf, input_shape=x_gt.shape) Ax = A(x_gt) # blurred image noise, key = random.randn(Ax.shape) y = Ax + σ * noise """ Set up the problem to be solved. We want to minimize the functional $$\mathrm{argmin}_{\mathbf{x}} \; (1/2) \| \mathbf{y} - A \mathbf{x} \|_2^2 + R(\mathbf{x}) \;$$ where $R(\cdot)$ is a pseudo-functional having the DnCNN denoiser as its proximal operator. A slightly unusual variable splitting is used,\ including setting the $f$ functional to the $R(\cdot)$ term and the $g$ functional to the data fidelity term to allow the use of proximal ADMM, which avoids the need for conjugate gradient sub-iterations in the solver steps. """ f = functional.DnCNN(variant="17M") g = loss.SquaredL2Loss(y=y) """ Set up proximal ADMM solver. """ ρ = 0.2 # ADMM penalty parameter maxiter = 10 # number of proximal ADMM iterations mu, nu = ProximalADMM.estimate_parameters(A) solver = ProximalADMM( f=f, g=g, A=A, rho=ρ, mu=mu, nu=nu, x0=A.T @ y, maxiter=maxiter, itstat_options={"display": True}, ) """ Run the solver. """ print(f"Solving on {device_info()}\n") x = solver.solve() x = snp.clip(x, 0, 1) hist = solver.itstat_object.history(transpose=True) """ Show the recovered image. """ fig, ax = plot.subplots(nrows=1, ncols=3, figsize=(15, 5)) plot.imview(x_gt, title="Ground truth", fig=fig, ax=ax[0]) nc = n // 2 yc = snp.clip(y[nc:-nc, nc:-nc], 0, 1) plot.imview(y, title="Blurred, noisy image: %.2f (dB)" % metric.psnr(x_gt, yc), fig=fig, ax=ax[1]) plot.imview(x, title="Deconvolved image: %.2f (dB)" % metric.psnr(x_gt, x), fig=fig, ax=ax[2]) fig.show() """ Plot convergence statistics. """ plot.plot( snp.vstack((hist.Prml_Rsdl, hist.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals", xlbl="Iteration", lgnd=("Primal", "Dual"), ) input("\nWaiting for input to close figures and exit")
scico
/scico-0.0.4.tar.gz/scico-0.0.4/examples/scripts/deconv_ppp_dncnn_padmm.py
deconv_ppp_dncnn_padmm.py
import numpy as np import jax from xdesign import Foam, discrete_phantom import scico.numpy as snp from scico import functional, linop, loss, metric, plot, random from scico.optimize import ProximalADMM from scico.util import device_info """ Create a ground truth image. """ np.random.seed(1234) N = 512 # image size x_gt = discrete_phantom(Foam(size_range=[0.075, 0.0025], gap=1e-3, porosity=1), size=N) x_gt = jax.device_put(x_gt) # convert to jax array, push to GPU """ Set up forward operator $A$ and test signal consisting of blurred signal with additive Gaussian noise. """ n = 5 # convolution kernel size σ = 20.0 / 255 # noise level psf = snp.ones((n, n)) / (n * n) A = linop.Convolve(h=psf, input_shape=x_gt.shape) Ax = A(x_gt) # blurred image noise, key = random.randn(Ax.shape) y = Ax + σ * noise """ Set up the problem to be solved. We want to minimize the functional $$\mathrm{argmin}_{\mathbf{x}} \; (1/2) \| \mathbf{y} - A \mathbf{x} \|_2^2 + R(\mathbf{x}) \;$$ where $R(\cdot)$ is a pseudo-functional having the DnCNN denoiser as its proximal operator. A slightly unusual variable splitting is used,\ including setting the $f$ functional to the $R(\cdot)$ term and the $g$ functional to the data fidelity term to allow the use of proximal ADMM, which avoids the need for conjugate gradient sub-iterations in the solver steps. """ f = functional.DnCNN(variant="17M") g = loss.SquaredL2Loss(y=y) """ Set up proximal ADMM solver. """ ρ = 0.2 # ADMM penalty parameter maxiter = 10 # number of proximal ADMM iterations mu, nu = ProximalADMM.estimate_parameters(A) solver = ProximalADMM( f=f, g=g, A=A, rho=ρ, mu=mu, nu=nu, x0=A.T @ y, maxiter=maxiter, itstat_options={"display": True}, ) """ Run the solver. """ print(f"Solving on {device_info()}\n") x = solver.solve() x = snp.clip(x, 0, 1) hist = solver.itstat_object.history(transpose=True) """ Show the recovered image. """ fig, ax = plot.subplots(nrows=1, ncols=3, figsize=(15, 5)) plot.imview(x_gt, title="Ground truth", fig=fig, ax=ax[0]) nc = n // 2 yc = snp.clip(y[nc:-nc, nc:-nc], 0, 1) plot.imview(y, title="Blurred, noisy image: %.2f (dB)" % metric.psnr(x_gt, yc), fig=fig, ax=ax[1]) plot.imview(x, title="Deconvolved image: %.2f (dB)" % metric.psnr(x_gt, x), fig=fig, ax=ax[2]) fig.show() """ Plot convergence statistics. """ plot.plot( snp.vstack((hist.Prml_Rsdl, hist.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals", xlbl="Iteration", lgnd=("Primal", "Dual"), ) input("\nWaiting for input to close figures and exit")
0.81637
0.684989
r""" Comparison of Optimization Algorithms for Total Variation Denoising =================================================================== This example compares the performance of alternating direction method of multipliers (ADMM), linearized ADMM, proximal ADMM, and primal–dual hybrid gradient (PDHG) in solving the isotropic total variation (TV) denoising problem $$\mathrm{argmin}_{\mathbf{x}} \; (1/2) \| \mathbf{y} - \mathbf{x} \|_2^2 + \lambda R(\mathbf{x}) \;,$$ where $R$ is the isotropic TV: the sum of the norms of the gradient vectors at each point in the image $\mathbf{x}$. """ import jax from xdesign import SiemensStar, discrete_phantom import scico.numpy as snp import scico.random from scico import functional, linop, loss, plot from scico.optimize import PDHG, LinearizedADMM, ProximalADMM from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.util import device_info """ Create a ground truth image. """ phantom = SiemensStar(32) N = 256 # image size x_gt = snp.pad(discrete_phantom(phantom, N - 16), 8) x_gt = jax.device_put(x_gt) # convert to jax type, push to GPU """ Add noise to create a noisy test image. """ σ = 1.0 # noise standard deviation noise, key = scico.random.randn(x_gt.shape, seed=0) y = x_gt + σ * noise """ Construct operators and functionals and set regularization parameter. """ # The append=0 option makes the results of horizontal and vertical # finite differences the same shape, which is required for the L21Norm. C = linop.FiniteDifference(input_shape=x_gt.shape, append=0) f = loss.SquaredL2Loss(y=y) λ = 1e0 g = λ * functional.L21Norm() """ The first step of the first-run solver is much slower than the following steps, presumably due to just-in-time compilation of relevant operators in first use. The code below performs a preliminary solver step, the result of which is discarded, to reduce this bias in the timing results. The precise cause of the remaining differences in time required to compute the first step of each algorithm is unknown, but it is worth noting that this difference becomes negligible when just-in-time compilation is disabled (e.g. via the JAX_DISABLE_JIT environment variable). """ solver_admm = ADMM( f=f, g_list=[g], C_list=[C], rho_list=[1e1], x0=y, maxiter=1, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"maxiter": 1}), ) solver_admm.solve(); # fmt: skip # trailing semi-colon suppresses output in notebook """ Solve via ADMM with a maximum of 2 CG iterations. """ solver_admm = ADMM( f=f, g_list=[g], C_list=[C], rho_list=[1e1], x0=y, maxiter=200, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"maxiter": 2}), itstat_options={"display": True, "period": 10}, ) print(f"Solving on {device_info()}\n") print("ADMM solver") solver_admm.solve() hist_admm = solver_admm.itstat_object.history(transpose=True) """ Solve via Linearized ADMM. """ solver_ladmm = LinearizedADMM( f=f, g=g, C=C, mu=1e-2, nu=1e-1, x0=y, maxiter=200, itstat_options={"display": True, "period": 10}, ) print("\nLinearized ADMM solver") solver_ladmm.solve() hist_ladmm = solver_ladmm.itstat_object.history(transpose=True) """ Solve via Proximal ADMM. """ mu, nu = ProximalADMM.estimate_parameters(C) solver_padmm = ProximalADMM( f=f, g=g, A=C, rho=1e0, mu=mu, nu=nu, x0=y, maxiter=200, itstat_options={"display": True, "period": 10}, ) print("\nProximal ADMM solver") solver_padmm.solve() hist_padmm = solver_padmm.itstat_object.history(transpose=True) """ Solve via PDHG. """ tau, sigma = PDHG.estimate_parameters(C, factor=1.5) solver_pdhg = PDHG( f=f, g=g, C=C, tau=tau, sigma=sigma, maxiter=200, itstat_options={"display": True, "period": 10}, ) print("\nPDHG solver") solver_pdhg.solve() hist_pdhg = solver_pdhg.itstat_object.history(transpose=True) """ Plot results. It is worth noting that: 1. PDHG outperforms ADMM both with respect to iterations and time. 2. Proximal ADMM has similar performance to PDHG with respect to iterations, but is slightly inferior with respect to time. 3. ADMM greatly outperforms Linearized ADMM with respect to iterations. 4. ADMM slightly outperforms Linearized ADMM with respect to time. This is possible because the ADMM $\mathbf{x}$-update can be solved relatively cheaply, with only 2 CG iterations. If more CG iterations were required, the time comparison would be favorable to Linearized ADMM. """ fig, ax = plot.subplots(nrows=1, ncols=3, sharex=True, sharey=False, figsize=(27, 6)) plot.plot( snp.vstack( (hist_admm.Objective, hist_ladmm.Objective, hist_padmm.Objective, hist_pdhg.Objective) ).T, ptyp="semilogy", title="Objective function", xlbl="Iteration", lgnd=("ADMM", "LinADMM", "ProxADMM", "PDHG"), fig=fig, ax=ax[0], ) plot.plot( snp.vstack( (hist_admm.Prml_Rsdl, hist_ladmm.Prml_Rsdl, hist_padmm.Prml_Rsdl, hist_pdhg.Prml_Rsdl) ).T, ptyp="semilogy", title="Primal residual", xlbl="Iteration", lgnd=("ADMM", "LinADMM", "ProxADMM", "PDHG"), fig=fig, ax=ax[1], ) plot.plot( snp.vstack( (hist_admm.Dual_Rsdl, hist_ladmm.Dual_Rsdl, hist_padmm.Dual_Rsdl, hist_pdhg.Dual_Rsdl) ).T, ptyp="semilogy", title="Dual residual", xlbl="Iteration", lgnd=("ADMM", "LinADMM", "ProxADMM", "PDHG"), fig=fig, ax=ax[2], ) fig.show() fig, ax = plot.subplots(nrows=1, ncols=3, sharex=True, sharey=False, figsize=(27, 6)) plot.plot( snp.vstack( (hist_admm.Objective, hist_ladmm.Objective, hist_padmm.Objective, hist_pdhg.Objective) ).T, snp.vstack((hist_admm.Time, hist_ladmm.Time, hist_padmm.Time, hist_pdhg.Time)).T, ptyp="semilogy", title="Objective function", xlbl="Time (s)", lgnd=("ADMM", "LinADMM", "ProxADMM", "PDHG"), fig=fig, ax=ax[0], ) plot.plot( snp.vstack( (hist_admm.Prml_Rsdl, hist_ladmm.Prml_Rsdl, hist_padmm.Prml_Rsdl, hist_pdhg.Prml_Rsdl) ).T, snp.vstack((hist_admm.Time, hist_ladmm.Time, hist_padmm.Time, hist_pdhg.Time)).T, ptyp="semilogy", title="Primal residual", xlbl="Time (s)", lgnd=("ADMM", "LinADMM", "ProxADMM", "PDHG"), fig=fig, ax=ax[1], ) plot.plot( snp.vstack( (hist_admm.Dual_Rsdl, hist_ladmm.Dual_Rsdl, hist_padmm.Dual_Rsdl, hist_pdhg.Dual_Rsdl) ).T, snp.vstack((hist_admm.Time, hist_ladmm.Time, hist_padmm.Time, hist_pdhg.Time)).T, ptyp="semilogy", title="Dual residual", xlbl="Time (s)", lgnd=("ADMM", "LinADMM", "ProxADMM", "PDHG"), fig=fig, ax=ax[2], ) fig.show() input("\nWaiting for input to close figures and exit")
scico
/scico-0.0.4.tar.gz/scico-0.0.4/examples/scripts/denoise_tv_multi.py
denoise_tv_multi.py
r""" Comparison of Optimization Algorithms for Total Variation Denoising =================================================================== This example compares the performance of alternating direction method of multipliers (ADMM), linearized ADMM, proximal ADMM, and primal–dual hybrid gradient (PDHG) in solving the isotropic total variation (TV) denoising problem $$\mathrm{argmin}_{\mathbf{x}} \; (1/2) \| \mathbf{y} - \mathbf{x} \|_2^2 + \lambda R(\mathbf{x}) \;,$$ where $R$ is the isotropic TV: the sum of the norms of the gradient vectors at each point in the image $\mathbf{x}$. """ import jax from xdesign import SiemensStar, discrete_phantom import scico.numpy as snp import scico.random from scico import functional, linop, loss, plot from scico.optimize import PDHG, LinearizedADMM, ProximalADMM from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.util import device_info """ Create a ground truth image. """ phantom = SiemensStar(32) N = 256 # image size x_gt = snp.pad(discrete_phantom(phantom, N - 16), 8) x_gt = jax.device_put(x_gt) # convert to jax type, push to GPU """ Add noise to create a noisy test image. """ σ = 1.0 # noise standard deviation noise, key = scico.random.randn(x_gt.shape, seed=0) y = x_gt + σ * noise """ Construct operators and functionals and set regularization parameter. """ # The append=0 option makes the results of horizontal and vertical # finite differences the same shape, which is required for the L21Norm. C = linop.FiniteDifference(input_shape=x_gt.shape, append=0) f = loss.SquaredL2Loss(y=y) λ = 1e0 g = λ * functional.L21Norm() """ The first step of the first-run solver is much slower than the following steps, presumably due to just-in-time compilation of relevant operators in first use. The code below performs a preliminary solver step, the result of which is discarded, to reduce this bias in the timing results. The precise cause of the remaining differences in time required to compute the first step of each algorithm is unknown, but it is worth noting that this difference becomes negligible when just-in-time compilation is disabled (e.g. via the JAX_DISABLE_JIT environment variable). """ solver_admm = ADMM( f=f, g_list=[g], C_list=[C], rho_list=[1e1], x0=y, maxiter=1, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"maxiter": 1}), ) solver_admm.solve(); # fmt: skip # trailing semi-colon suppresses output in notebook """ Solve via ADMM with a maximum of 2 CG iterations. """ solver_admm = ADMM( f=f, g_list=[g], C_list=[C], rho_list=[1e1], x0=y, maxiter=200, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"maxiter": 2}), itstat_options={"display": True, "period": 10}, ) print(f"Solving on {device_info()}\n") print("ADMM solver") solver_admm.solve() hist_admm = solver_admm.itstat_object.history(transpose=True) """ Solve via Linearized ADMM. """ solver_ladmm = LinearizedADMM( f=f, g=g, C=C, mu=1e-2, nu=1e-1, x0=y, maxiter=200, itstat_options={"display": True, "period": 10}, ) print("\nLinearized ADMM solver") solver_ladmm.solve() hist_ladmm = solver_ladmm.itstat_object.history(transpose=True) """ Solve via Proximal ADMM. """ mu, nu = ProximalADMM.estimate_parameters(C) solver_padmm = ProximalADMM( f=f, g=g, A=C, rho=1e0, mu=mu, nu=nu, x0=y, maxiter=200, itstat_options={"display": True, "period": 10}, ) print("\nProximal ADMM solver") solver_padmm.solve() hist_padmm = solver_padmm.itstat_object.history(transpose=True) """ Solve via PDHG. """ tau, sigma = PDHG.estimate_parameters(C, factor=1.5) solver_pdhg = PDHG( f=f, g=g, C=C, tau=tau, sigma=sigma, maxiter=200, itstat_options={"display": True, "period": 10}, ) print("\nPDHG solver") solver_pdhg.solve() hist_pdhg = solver_pdhg.itstat_object.history(transpose=True) """ Plot results. It is worth noting that: 1. PDHG outperforms ADMM both with respect to iterations and time. 2. Proximal ADMM has similar performance to PDHG with respect to iterations, but is slightly inferior with respect to time. 3. ADMM greatly outperforms Linearized ADMM with respect to iterations. 4. ADMM slightly outperforms Linearized ADMM with respect to time. This is possible because the ADMM $\mathbf{x}$-update can be solved relatively cheaply, with only 2 CG iterations. If more CG iterations were required, the time comparison would be favorable to Linearized ADMM. """ fig, ax = plot.subplots(nrows=1, ncols=3, sharex=True, sharey=False, figsize=(27, 6)) plot.plot( snp.vstack( (hist_admm.Objective, hist_ladmm.Objective, hist_padmm.Objective, hist_pdhg.Objective) ).T, ptyp="semilogy", title="Objective function", xlbl="Iteration", lgnd=("ADMM", "LinADMM", "ProxADMM", "PDHG"), fig=fig, ax=ax[0], ) plot.plot( snp.vstack( (hist_admm.Prml_Rsdl, hist_ladmm.Prml_Rsdl, hist_padmm.Prml_Rsdl, hist_pdhg.Prml_Rsdl) ).T, ptyp="semilogy", title="Primal residual", xlbl="Iteration", lgnd=("ADMM", "LinADMM", "ProxADMM", "PDHG"), fig=fig, ax=ax[1], ) plot.plot( snp.vstack( (hist_admm.Dual_Rsdl, hist_ladmm.Dual_Rsdl, hist_padmm.Dual_Rsdl, hist_pdhg.Dual_Rsdl) ).T, ptyp="semilogy", title="Dual residual", xlbl="Iteration", lgnd=("ADMM", "LinADMM", "ProxADMM", "PDHG"), fig=fig, ax=ax[2], ) fig.show() fig, ax = plot.subplots(nrows=1, ncols=3, sharex=True, sharey=False, figsize=(27, 6)) plot.plot( snp.vstack( (hist_admm.Objective, hist_ladmm.Objective, hist_padmm.Objective, hist_pdhg.Objective) ).T, snp.vstack((hist_admm.Time, hist_ladmm.Time, hist_padmm.Time, hist_pdhg.Time)).T, ptyp="semilogy", title="Objective function", xlbl="Time (s)", lgnd=("ADMM", "LinADMM", "ProxADMM", "PDHG"), fig=fig, ax=ax[0], ) plot.plot( snp.vstack( (hist_admm.Prml_Rsdl, hist_ladmm.Prml_Rsdl, hist_padmm.Prml_Rsdl, hist_pdhg.Prml_Rsdl) ).T, snp.vstack((hist_admm.Time, hist_ladmm.Time, hist_padmm.Time, hist_pdhg.Time)).T, ptyp="semilogy", title="Primal residual", xlbl="Time (s)", lgnd=("ADMM", "LinADMM", "ProxADMM", "PDHG"), fig=fig, ax=ax[1], ) plot.plot( snp.vstack( (hist_admm.Dual_Rsdl, hist_ladmm.Dual_Rsdl, hist_padmm.Dual_Rsdl, hist_pdhg.Dual_Rsdl) ).T, snp.vstack((hist_admm.Time, hist_ladmm.Time, hist_padmm.Time, hist_pdhg.Time)).T, ptyp="semilogy", title="Dual residual", xlbl="Time (s)", lgnd=("ADMM", "LinADMM", "ProxADMM", "PDHG"), fig=fig, ax=ax[2], ) fig.show() input("\nWaiting for input to close figures and exit")
0.907091
0.909385
r""" Parameter Tuning for TV-Regularized Abel Inversion ================================================== This example demonstrates the use of [scico.ray.tune](../_autosummary/scico.ray.tune.rst) to tune parameters for the companion [example script](ct_abel_tv_admm.rst). The `ray.tune` class API is used in this example. This script is hard-coded to run on CPU only to avoid the large number of warnings that are emitted when GPU resources are requested but not available, and due to the difficulty of supressing these warnings in a way that does not force use of the CPU only. To enable GPU usage, comment out the `os.environ` statements near the beginning of the script, and change the value of the "gpu" entry in the `resources` dict from 0 to 1. Note that two environment variables are set to suppress the warnings because `JAX_PLATFORMS` was intended to replace `JAX_PLATFORM_NAME` but this change has yet to be correctly implemented (see [google/jax#6805](https://github.com/google/jax/issues/6805) and [google/jax#10272](https://github.com/google/jax/pull/10272). """ # isort: off import os os.environ["JAX_PLATFORM_NAME"] = "cpu" os.environ["JAX_PLATFORMS"] = "cpu" import numpy as np import jax import scico.numpy as snp from scico import functional, linop, loss, metric, plot from scico.examples import create_circular_phantom from scico.linop.abel import AbelProjector from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.ray import tune """ Create a ground truth image. """ N = 256 # image size x_gt = create_circular_phantom((N, N), [0.4 * N, 0.2 * N, 0.1 * N], [1, 0, 0.5]) """ Set up the forward operator and create a test measurement. """ A = AbelProjector(x_gt.shape) y = A @ x_gt np.random.seed(12345) y = y + np.random.normal(size=y.shape).astype(np.float32) """ Compute inverse Abel transform solution for use as initial solution. """ x_inv = A.inverse(y) x0 = snp.clip(x_inv, 0.0, 1.0) """ Define performance evaluation class. """ class Trainable(tune.Trainable): """Parameter evaluation class.""" def setup(self, config, x_gt, x0, y): """This method initializes a new parameter evaluation object. It is called once when a new parameter evaluation object is created. The `config` parameter is a dict of specific parameters for evaluation of a single parameter set (a pair of parameters in this case). The remaining parameters are objects that are passed to the evaluation function via the ray object store. """ # Put main arrays on jax device. self.x_gt, self.x0, self.y = jax.device_put([x_gt, x0, y]) # Set up problem to be solved. self.A = AbelProjector(self.x_gt.shape) self.f = loss.SquaredL2Loss(y=self.y, A=self.A) self.C = linop.FiniteDifference(input_shape=self.x_gt.shape) self.reset_config(config) def reset_config(self, config): """This method is only required when `scico.ray.tune.Tuner` is initialized with `reuse_actors` set to ``True`` (the default). In this case, a set of parameter evaluation processes and corresponding objects are created once (including initialization via a call to the `setup` method), and this method is called when switching to evaluation of a different parameter configuration. If `reuse_actors` is set to ``False``, then a new process and object are created for each parameter configuration, and this method is not used. """ # Extract solver parameters from config dict. λ, ρ = config["lambda"], config["rho"] # Set up parameter-dependent functional. g = λ * functional.L1Norm() # Define solver. cg_tol = 1e-4 cg_maxiter = 25 self.solver = ADMM( f=self.f, g_list=[g], C_list=[self.C], rho_list=[ρ], x0=self.x0, maxiter=10, subproblem_solver=LinearSubproblemSolver( cg_kwargs={"tol": cg_tol, "maxiter": cg_maxiter} ), ) return True def step(self): """This method is called for each step in the evaluation of a single parameter configuration. The maximum number of times it can be called is controlled by the `num_iterations` parameter in the initialization of a `scico.ray.tune.Tuner` object. """ # Perform 10 solver steps for every ray.tune step x_tv = snp.clip(self.solver.solve(), 0.0, 1.0) return {"psnr": float(metric.psnr(self.x_gt, x_tv))} """ Define parameter search space and resources per trial. """ config = {"lambda": tune.loguniform(1e0, 1e2), "rho": tune.loguniform(1e1, 1e3)} resources = {"gpu": 0, "cpu": 1} # gpus per trial, cpus per trial """ Run parameter search. """ tuner = tune.Tuner( tune.with_parameters(Trainable, x_gt=x_gt, x0=x0, y=y), param_space=config, resources=resources, metric="psnr", mode="max", num_samples=100, # perform 100 parameter evaluations num_iterations=10, # perform at most 10 steps for each parameter evaluation ) results = tuner.fit() """ Display best parameters and corresponding performance. """ best_result = results.get_best_result() best_config = best_result.config print(f"Best PSNR: {best_result.metrics['psnr']:.2f} dB") print("Best config: " + ", ".join([f"{k}: {v:.2e}" for k, v in best_config.items()])) """ Plot parameter values visited during parameter search. Marker sizes are proportional to number of iterations run at each parameter pair. The best point in the parameter space is indicated in red. """ fig = plot.figure(figsize=(8, 8)) trials = results.get_dataframe() for t in trials.iloc: n = t["training_iteration"] plot.plot( t["config/lambda"], t["config/rho"], ptyp="loglog", lw=0, ms=(0.5 + 1.5 * n), marker="o", mfc="blue", mec="blue", fig=fig, ) plot.plot( best_config["lambda"], best_config["rho"], ptyp="loglog", title="Parameter search sampling locations\n(marker size proportional to number of iterations)", xlbl=r"$\rho$", ylbl=r"$\lambda$", lw=0, ms=5.0, marker="o", mfc="red", mec="red", fig=fig, ) ax = fig.axes[0] ax.set_xlim([config["rho"].lower, config["rho"].upper]) ax.set_ylim([config["lambda"].lower, config["lambda"].upper]) fig.show() """ Plot parameter values visited during parameter search and corresponding reconstruction PSNRs.The best point in the parameter space is indicated in red. """ 𝜌 = [t["config/rho"] for t in trials.iloc] 𝜆 = [t["config/lambda"] for t in trials.iloc] psnr = [t["psnr"] for t in trials.iloc] minpsnr = min(max(psnr), 20.0) 𝜌, 𝜆, psnr = zip(*filter(lambda x: x[2] >= minpsnr, zip(𝜌, 𝜆, psnr))) fig, ax = plot.subplots(figsize=(10, 8)) sc = ax.scatter(𝜌, 𝜆, c=psnr, cmap=plot.cm.plasma_r) fig.colorbar(sc) plot.plot( best_config["lambda"], best_config["rho"], ptyp="loglog", lw=0, ms=12.0, marker="2", mfc="red", mec="red", fig=fig, ax=ax, ) ax.set_xscale("log") ax.set_yscale("log") ax.set_xlabel(r"$\rho$") ax.set_ylabel(r"$\lambda$") ax.set_title("PSNR at each sample location\n(values below 20 dB omitted)") fig.show() input("\nWaiting for input to close figures and exit")
scico
/scico-0.0.4.tar.gz/scico-0.0.4/examples/scripts/ct_abel_tv_admm_tune.py
ct_abel_tv_admm_tune.py
r""" Parameter Tuning for TV-Regularized Abel Inversion ================================================== This example demonstrates the use of [scico.ray.tune](../_autosummary/scico.ray.tune.rst) to tune parameters for the companion [example script](ct_abel_tv_admm.rst). The `ray.tune` class API is used in this example. This script is hard-coded to run on CPU only to avoid the large number of warnings that are emitted when GPU resources are requested but not available, and due to the difficulty of supressing these warnings in a way that does not force use of the CPU only. To enable GPU usage, comment out the `os.environ` statements near the beginning of the script, and change the value of the "gpu" entry in the `resources` dict from 0 to 1. Note that two environment variables are set to suppress the warnings because `JAX_PLATFORMS` was intended to replace `JAX_PLATFORM_NAME` but this change has yet to be correctly implemented (see [google/jax#6805](https://github.com/google/jax/issues/6805) and [google/jax#10272](https://github.com/google/jax/pull/10272). """ # isort: off import os os.environ["JAX_PLATFORM_NAME"] = "cpu" os.environ["JAX_PLATFORMS"] = "cpu" import numpy as np import jax import scico.numpy as snp from scico import functional, linop, loss, metric, plot from scico.examples import create_circular_phantom from scico.linop.abel import AbelProjector from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.ray import tune """ Create a ground truth image. """ N = 256 # image size x_gt = create_circular_phantom((N, N), [0.4 * N, 0.2 * N, 0.1 * N], [1, 0, 0.5]) """ Set up the forward operator and create a test measurement. """ A = AbelProjector(x_gt.shape) y = A @ x_gt np.random.seed(12345) y = y + np.random.normal(size=y.shape).astype(np.float32) """ Compute inverse Abel transform solution for use as initial solution. """ x_inv = A.inverse(y) x0 = snp.clip(x_inv, 0.0, 1.0) """ Define performance evaluation class. """ class Trainable(tune.Trainable): """Parameter evaluation class.""" def setup(self, config, x_gt, x0, y): """This method initializes a new parameter evaluation object. It is called once when a new parameter evaluation object is created. The `config` parameter is a dict of specific parameters for evaluation of a single parameter set (a pair of parameters in this case). The remaining parameters are objects that are passed to the evaluation function via the ray object store. """ # Put main arrays on jax device. self.x_gt, self.x0, self.y = jax.device_put([x_gt, x0, y]) # Set up problem to be solved. self.A = AbelProjector(self.x_gt.shape) self.f = loss.SquaredL2Loss(y=self.y, A=self.A) self.C = linop.FiniteDifference(input_shape=self.x_gt.shape) self.reset_config(config) def reset_config(self, config): """This method is only required when `scico.ray.tune.Tuner` is initialized with `reuse_actors` set to ``True`` (the default). In this case, a set of parameter evaluation processes and corresponding objects are created once (including initialization via a call to the `setup` method), and this method is called when switching to evaluation of a different parameter configuration. If `reuse_actors` is set to ``False``, then a new process and object are created for each parameter configuration, and this method is not used. """ # Extract solver parameters from config dict. λ, ρ = config["lambda"], config["rho"] # Set up parameter-dependent functional. g = λ * functional.L1Norm() # Define solver. cg_tol = 1e-4 cg_maxiter = 25 self.solver = ADMM( f=self.f, g_list=[g], C_list=[self.C], rho_list=[ρ], x0=self.x0, maxiter=10, subproblem_solver=LinearSubproblemSolver( cg_kwargs={"tol": cg_tol, "maxiter": cg_maxiter} ), ) return True def step(self): """This method is called for each step in the evaluation of a single parameter configuration. The maximum number of times it can be called is controlled by the `num_iterations` parameter in the initialization of a `scico.ray.tune.Tuner` object. """ # Perform 10 solver steps for every ray.tune step x_tv = snp.clip(self.solver.solve(), 0.0, 1.0) return {"psnr": float(metric.psnr(self.x_gt, x_tv))} """ Define parameter search space and resources per trial. """ config = {"lambda": tune.loguniform(1e0, 1e2), "rho": tune.loguniform(1e1, 1e3)} resources = {"gpu": 0, "cpu": 1} # gpus per trial, cpus per trial """ Run parameter search. """ tuner = tune.Tuner( tune.with_parameters(Trainable, x_gt=x_gt, x0=x0, y=y), param_space=config, resources=resources, metric="psnr", mode="max", num_samples=100, # perform 100 parameter evaluations num_iterations=10, # perform at most 10 steps for each parameter evaluation ) results = tuner.fit() """ Display best parameters and corresponding performance. """ best_result = results.get_best_result() best_config = best_result.config print(f"Best PSNR: {best_result.metrics['psnr']:.2f} dB") print("Best config: " + ", ".join([f"{k}: {v:.2e}" for k, v in best_config.items()])) """ Plot parameter values visited during parameter search. Marker sizes are proportional to number of iterations run at each parameter pair. The best point in the parameter space is indicated in red. """ fig = plot.figure(figsize=(8, 8)) trials = results.get_dataframe() for t in trials.iloc: n = t["training_iteration"] plot.plot( t["config/lambda"], t["config/rho"], ptyp="loglog", lw=0, ms=(0.5 + 1.5 * n), marker="o", mfc="blue", mec="blue", fig=fig, ) plot.plot( best_config["lambda"], best_config["rho"], ptyp="loglog", title="Parameter search sampling locations\n(marker size proportional to number of iterations)", xlbl=r"$\rho$", ylbl=r"$\lambda$", lw=0, ms=5.0, marker="o", mfc="red", mec="red", fig=fig, ) ax = fig.axes[0] ax.set_xlim([config["rho"].lower, config["rho"].upper]) ax.set_ylim([config["lambda"].lower, config["lambda"].upper]) fig.show() """ Plot parameter values visited during parameter search and corresponding reconstruction PSNRs.The best point in the parameter space is indicated in red. """ 𝜌 = [t["config/rho"] for t in trials.iloc] 𝜆 = [t["config/lambda"] for t in trials.iloc] psnr = [t["psnr"] for t in trials.iloc] minpsnr = min(max(psnr), 20.0) 𝜌, 𝜆, psnr = zip(*filter(lambda x: x[2] >= minpsnr, zip(𝜌, 𝜆, psnr))) fig, ax = plot.subplots(figsize=(10, 8)) sc = ax.scatter(𝜌, 𝜆, c=psnr, cmap=plot.cm.plasma_r) fig.colorbar(sc) plot.plot( best_config["lambda"], best_config["rho"], ptyp="loglog", lw=0, ms=12.0, marker="2", mfc="red", mec="red", fig=fig, ax=ax, ) ax.set_xscale("log") ax.set_yscale("log") ax.set_xlabel(r"$\rho$") ax.set_ylabel(r"$\lambda$") ax.set_title("PSNR at each sample location\n(values below 20 dB omitted)") fig.show() input("\nWaiting for input to close figures and exit")
0.925626
0.755997
r""" Parameter Tuning for Image Deconvolution with TV Regularization (ADMM Solver) ============================================================================= This example demonstrates the use of [scico.ray.tune](../_autosummary/scico.ray.tune.rst) to tune parameters for the companion [example script](deconv_tv_admm.rst). The `ray.tune` function API is used in this example. This script is hard-coded to run on CPU only to avoid the large number of warnings that are emitted when GPU resources are requested but not available, and due to the difficulty of supressing these warnings in a way that does not force use of the CPU only. To enable GPU usage, comment out the `os.environ` statements near the beginning of the script, and change the value of the "gpu" entry in the `resources` dict from 0 to 1. Note that two environment variables are set to suppress the warnings because `JAX_PLATFORMS` was intended to replace `JAX_PLATFORM_NAME` but this change has yet to be correctly implemented (see [google/jax#6805](https://github.com/google/jax/issues/6805) and [google/jax#10272](https://github.com/google/jax/pull/10272)). """ # isort: off import os os.environ["JAX_PLATFORM_NAME"] = "cpu" os.environ["JAX_PLATFORMS"] = "cpu" import jax from xdesign import SiemensStar, discrete_phantom import scico.numpy as snp import scico.random from scico import functional, linop, loss, metric, plot from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.ray import report, tune """ Create a ground truth image. """ phantom = SiemensStar(32) N = 256 # image size x_gt = snp.pad(discrete_phantom(phantom, N - 16), 8) """ Set up the forward operator and create a test signal consisting of a blurred signal with additive Gaussian noise. """ n = 5 # convolution kernel size σ = 20.0 / 255 # noise level psf = snp.ones((n, n)) / (n * n) A = linop.Convolve(h=psf, input_shape=x_gt.shape) Ax = A(x_gt) # blurred image noise, key = scico.random.randn(Ax.shape, seed=0) y = Ax + σ * noise """ Define performance evaluation function. """ def eval_params(config, x_gt, psf, y): """Parameter evaluation function. The `config` parameter is a dict of specific parameters for evaluation of a single parameter set (a pair of parameters in this case). The remaining parameters are objects that are passed to the evaluation function via the ray object store. """ # Extract solver parameters from config dict. λ, ρ = config["lambda"], config["rho"] # Put main arrays on jax device. x_gt, psf, y = jax.device_put([x_gt, psf, y]) # Set up problem to be solved. A = linop.Convolve(h=psf, input_shape=x_gt.shape) f = loss.SquaredL2Loss(y=y, A=A) g = λ * functional.L21Norm() C = linop.FiniteDifference(input_shape=x_gt.shape, append=0) # Define solver. solver = ADMM( f=f, g_list=[g], C_list=[C], rho_list=[ρ], x0=A.adj(y), maxiter=10, subproblem_solver=LinearSubproblemSolver(), ) # Perform 50 iterations, reporting performance to ray.tune every 10 iterations. for step in range(5): x_admm = solver.solve() report({"psnr": float(metric.psnr(x_gt, x_admm))}) """ Define parameter search space and resources per trial. """ config = {"lambda": tune.loguniform(1e-3, 1e-1), "rho": tune.loguniform(1e-2, 1e0)} resources = {"cpu": 4, "gpu": 0} # cpus per trial, gpus per trial """ Run parameter search. """ tuner = tune.Tuner( tune.with_parameters(eval_params, x_gt=x_gt, psf=psf, y=y), param_space=config, resources=resources, metric="psnr", mode="max", num_samples=100, # perform 100 parameter evaluations ) results = tuner.fit() """ Display best parameters and corresponding performance. """ best_result = results.get_best_result() best_config = best_result.config print(f"Best PSNR: {best_result.metrics['psnr']:.2f} dB") print("Best config: " + ", ".join([f"{k}: {v:.2e}" for k, v in best_config.items()])) """ Plot parameter values visited during parameter search. Marker sizes are proportional to number of iterations run at each parameter pair. The best point in the parameter space is indicated in red. """ fig = plot.figure(figsize=(8, 8)) trials = results.get_dataframe() for t in trials.iloc: n = t["training_iteration"] plot.plot( t["config/lambda"], t["config/rho"], ptyp="loglog", lw=0, ms=(0.5 + 1.5 * n), marker="o", mfc="blue", mec="blue", fig=fig, ) plot.plot( best_config["lambda"], best_config["rho"], ptyp="loglog", title="Parameter search sampling locations\n(marker size proportional to number of iterations)", xlbl=r"$\rho$", ylbl=r"$\lambda$", lw=0, ms=5.0, marker="o", mfc="red", mec="red", fig=fig, ) ax = fig.axes[0] ax.set_xlim([config["rho"].lower, config["rho"].upper]) ax.set_ylim([config["lambda"].lower, config["lambda"].upper]) fig.show() """ Plot parameter values visited during parameter search and corresponding reconstruction PSNRs.The best point in the parameter space is indicated in red. """ 𝜌 = [t["config/rho"] for t in trials.iloc] 𝜆 = [t["config/lambda"] for t in trials.iloc] psnr = [t["psnr"] for t in trials.iloc] minpsnr = min(max(psnr), 18.0) 𝜌, 𝜆, psnr = zip(*filter(lambda x: x[2] >= minpsnr, zip(𝜌, 𝜆, psnr))) fig, ax = plot.subplots(figsize=(10, 8)) sc = ax.scatter(𝜌, 𝜆, c=psnr, cmap=plot.cm.plasma_r) fig.colorbar(sc) plot.plot( best_config["lambda"], best_config["rho"], ptyp="loglog", lw=0, ms=12.0, marker="2", mfc="red", mec="red", fig=fig, ax=ax, ) ax.set_xscale("log") ax.set_yscale("log") ax.set_xlabel(r"$\rho$") ax.set_ylabel(r"$\lambda$") ax.set_title("PSNR at each sample location\n(values below 18 dB omitted)") fig.show() input("\nWaiting for input to close figures and exit")
scico
/scico-0.0.4.tar.gz/scico-0.0.4/examples/scripts/deconv_tv_admm_tune.py
deconv_tv_admm_tune.py
r""" Parameter Tuning for Image Deconvolution with TV Regularization (ADMM Solver) ============================================================================= This example demonstrates the use of [scico.ray.tune](../_autosummary/scico.ray.tune.rst) to tune parameters for the companion [example script](deconv_tv_admm.rst). The `ray.tune` function API is used in this example. This script is hard-coded to run on CPU only to avoid the large number of warnings that are emitted when GPU resources are requested but not available, and due to the difficulty of supressing these warnings in a way that does not force use of the CPU only. To enable GPU usage, comment out the `os.environ` statements near the beginning of the script, and change the value of the "gpu" entry in the `resources` dict from 0 to 1. Note that two environment variables are set to suppress the warnings because `JAX_PLATFORMS` was intended to replace `JAX_PLATFORM_NAME` but this change has yet to be correctly implemented (see [google/jax#6805](https://github.com/google/jax/issues/6805) and [google/jax#10272](https://github.com/google/jax/pull/10272)). """ # isort: off import os os.environ["JAX_PLATFORM_NAME"] = "cpu" os.environ["JAX_PLATFORMS"] = "cpu" import jax from xdesign import SiemensStar, discrete_phantom import scico.numpy as snp import scico.random from scico import functional, linop, loss, metric, plot from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.ray import report, tune """ Create a ground truth image. """ phantom = SiemensStar(32) N = 256 # image size x_gt = snp.pad(discrete_phantom(phantom, N - 16), 8) """ Set up the forward operator and create a test signal consisting of a blurred signal with additive Gaussian noise. """ n = 5 # convolution kernel size σ = 20.0 / 255 # noise level psf = snp.ones((n, n)) / (n * n) A = linop.Convolve(h=psf, input_shape=x_gt.shape) Ax = A(x_gt) # blurred image noise, key = scico.random.randn(Ax.shape, seed=0) y = Ax + σ * noise """ Define performance evaluation function. """ def eval_params(config, x_gt, psf, y): """Parameter evaluation function. The `config` parameter is a dict of specific parameters for evaluation of a single parameter set (a pair of parameters in this case). The remaining parameters are objects that are passed to the evaluation function via the ray object store. """ # Extract solver parameters from config dict. λ, ρ = config["lambda"], config["rho"] # Put main arrays on jax device. x_gt, psf, y = jax.device_put([x_gt, psf, y]) # Set up problem to be solved. A = linop.Convolve(h=psf, input_shape=x_gt.shape) f = loss.SquaredL2Loss(y=y, A=A) g = λ * functional.L21Norm() C = linop.FiniteDifference(input_shape=x_gt.shape, append=0) # Define solver. solver = ADMM( f=f, g_list=[g], C_list=[C], rho_list=[ρ], x0=A.adj(y), maxiter=10, subproblem_solver=LinearSubproblemSolver(), ) # Perform 50 iterations, reporting performance to ray.tune every 10 iterations. for step in range(5): x_admm = solver.solve() report({"psnr": float(metric.psnr(x_gt, x_admm))}) """ Define parameter search space and resources per trial. """ config = {"lambda": tune.loguniform(1e-3, 1e-1), "rho": tune.loguniform(1e-2, 1e0)} resources = {"cpu": 4, "gpu": 0} # cpus per trial, gpus per trial """ Run parameter search. """ tuner = tune.Tuner( tune.with_parameters(eval_params, x_gt=x_gt, psf=psf, y=y), param_space=config, resources=resources, metric="psnr", mode="max", num_samples=100, # perform 100 parameter evaluations ) results = tuner.fit() """ Display best parameters and corresponding performance. """ best_result = results.get_best_result() best_config = best_result.config print(f"Best PSNR: {best_result.metrics['psnr']:.2f} dB") print("Best config: " + ", ".join([f"{k}: {v:.2e}" for k, v in best_config.items()])) """ Plot parameter values visited during parameter search. Marker sizes are proportional to number of iterations run at each parameter pair. The best point in the parameter space is indicated in red. """ fig = plot.figure(figsize=(8, 8)) trials = results.get_dataframe() for t in trials.iloc: n = t["training_iteration"] plot.plot( t["config/lambda"], t["config/rho"], ptyp="loglog", lw=0, ms=(0.5 + 1.5 * n), marker="o", mfc="blue", mec="blue", fig=fig, ) plot.plot( best_config["lambda"], best_config["rho"], ptyp="loglog", title="Parameter search sampling locations\n(marker size proportional to number of iterations)", xlbl=r"$\rho$", ylbl=r"$\lambda$", lw=0, ms=5.0, marker="o", mfc="red", mec="red", fig=fig, ) ax = fig.axes[0] ax.set_xlim([config["rho"].lower, config["rho"].upper]) ax.set_ylim([config["lambda"].lower, config["lambda"].upper]) fig.show() """ Plot parameter values visited during parameter search and corresponding reconstruction PSNRs.The best point in the parameter space is indicated in red. """ 𝜌 = [t["config/rho"] for t in trials.iloc] 𝜆 = [t["config/lambda"] for t in trials.iloc] psnr = [t["psnr"] for t in trials.iloc] minpsnr = min(max(psnr), 18.0) 𝜌, 𝜆, psnr = zip(*filter(lambda x: x[2] >= minpsnr, zip(𝜌, 𝜆, psnr))) fig, ax = plot.subplots(figsize=(10, 8)) sc = ax.scatter(𝜌, 𝜆, c=psnr, cmap=plot.cm.plasma_r) fig.colorbar(sc) plot.plot( best_config["lambda"], best_config["rho"], ptyp="loglog", lw=0, ms=12.0, marker="2", mfc="red", mec="red", fig=fig, ax=ax, ) ax.set_xscale("log") ax.set_yscale("log") ax.set_xlabel(r"$\rho$") ax.set_ylabel(r"$\lambda$") ax.set_title("PSNR at each sample location\n(values below 18 dB omitted)") fig.show() input("\nWaiting for input to close figures and exit")
0.917043
0.814828
r""" Image Deconvolution with TV Regularization (Proximal ADMM Solver) ================================================================= This example demonstrates the solution of an image deconvolution problem with isotropic total variation (TV) regularization $$\mathrm{argmin}_{\mathbf{x}} \; (1/2) \| \mathbf{y} - C \mathbf{x} \|_2^2 + \lambda \| D \mathbf{x} \|_{2,1} \;,$$ where $C$ is a convolution operator, $\mathbf{y}$ is the blurred image, $D$ is a 2D finite fifference operator, and $\mathbf{x}$ is the deconvolved image. In this example the problem is solved via proximal ADMM, while standard ADMM is used in a [companion example](deconv_tv_admm.rst). """ import jax from xdesign import SiemensStar, discrete_phantom import scico.numpy as snp import scico.random from scico import functional, linop, loss, metric, plot from scico.optimize import ProximalADMM from scico.util import device_info """ Create a ground truth image. """ phantom = SiemensStar(32) N = 256 # image size x_gt = snp.pad(discrete_phantom(phantom, N - 16), 8) x_gt = jax.device_put(x_gt) # convert to jax type, push to GPU """ Set up the forward operator and create a test signal consisting of a blurred signal with additive Gaussian noise. """ n = 5 # convolution kernel size σ = 20.0 / 255 # noise level psf = snp.ones((n, n)) / (n * n) C = linop.Convolve(h=psf, input_shape=x_gt.shape) Cx = C(x_gt) # blurred image noise, key = scico.random.randn(Cx.shape, seed=0) y = Cx + σ * noise r""" Set up the problem to be solved. We want to minimize the functional $$\mathrm{argmin}_{\mathbf{x}} \; (1/2) \| \mathbf{y} - C \mathbf{x} \|_2^2 + \lambda \| D \mathbf{x} \|_{2,1} \;,$$ where $C$ is the convolution operator and $D$ is a finite difference operator. This problem can be expressed as $$\mathrm{argmin}_{\mathbf{x}, \mathbf{z}} \; (1/2) \| \mathbf{y} - \mathbf{z}_0 \|_2^2 + \lambda \| \mathbf{z}_1 \|_{2,1} \;\; \text{such that} \;\; \mathbf{z}_0 = C \mathbf{x} \;\; \text{and} \;\; \mathbf{z}_1 = D \mathbf{x} \;,$$ which can be written in the form of a standard ADMM problem $$\mathrm{argmin}_{\mathbf{x}, \mathbf{z}} \; f(\mathbf{x}) + g(\mathbf{z}) \;\; \text{such that} \;\; A \mathbf{x} + B \mathbf{z} = \mathbf{c}$$ with $$f = 0 \quad g = g_0 + g_1$$ $$g_0(\mathbf{z}_0) = (1/2) \| \mathbf{y} - \mathbf{z}_0 \|_2^2 \quad g_1(\mathbf{z}_1) = \lambda \| \mathbf{z}_1 \|_{2,1}$$ $$A = \left( \begin{array}{c} C \\ D \end{array} \right) \quad B = \left( \begin{array}{cc} -I & 0 \\ 0 & -I \end{array} \right) \quad \mathbf{c} = \left( \begin{array}{c} 0 \\ 0 \end{array} \right) \;.$$ This is a more complex splitting than that used in the [companion example](deconv_tv_admm.rst), but it allows the use of a proximal ADMM solver in a way that avoids the need for the conjugate gradient sub-iterations used by the ADMM solver in the [companion example](deconv_tv_admm.rst). """ f = functional.ZeroFunctional() g0 = loss.SquaredL2Loss(y=y) λ = 2.0e-2 # L1 norm regularization parameter g1 = λ * functional.L21Norm() g = functional.SeparableFunctional((g0, g1)) D = linop.FiniteDifference(input_shape=x_gt.shape, append=0) A = linop.VerticalStack((C, D)) """ Set up a proximal ADMM solver object. """ ρ = 1.0e-1 # ADMM penalty parameter maxiter = 50 # number of ADMM iterations mu, nu = ProximalADMM.estimate_parameters(D) solver = ProximalADMM( f=f, g=g, A=A, B=None, rho=ρ, mu=mu, nu=nu, x0=C.adj(y), maxiter=maxiter, itstat_options={"display": True, "period": 10}, ) """ Run the solver. """ print(f"Solving on {device_info()}\n") x = solver.solve() hist = solver.itstat_object.history(transpose=True) """ Show the recovered image. """ fig, ax = plot.subplots(nrows=1, ncols=3, figsize=(15, 5)) plot.imview(x_gt, title="Ground truth", fig=fig, ax=ax[0]) nc = n // 2 yc = y[nc:-nc, nc:-nc] plot.imview(y, title="Blurred, noisy image: %.2f (dB)" % metric.psnr(x_gt, yc), fig=fig, ax=ax[1]) plot.imview( solver.x, title="Deconvolved image: %.2f (dB)" % metric.psnr(x_gt, solver.x), fig=fig, ax=ax[2] ) fig.show() """ Plot convergence statistics. """ fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(12, 5)) plot.plot( hist.Objective, title="Objective function", xlbl="Iteration", ylbl="Functional value", fig=fig, ax=ax[0], ) plot.plot( snp.vstack((hist.Prml_Rsdl, hist.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals", xlbl="Iteration", lgnd=("Primal", "Dual"), fig=fig, ax=ax[1], ) fig.show() input("\nWaiting for input to close figures and exit")
scico
/scico-0.0.4.tar.gz/scico-0.0.4/examples/scripts/deconv_tv_padmm.py
deconv_tv_padmm.py
r""" Image Deconvolution with TV Regularization (Proximal ADMM Solver) ================================================================= This example demonstrates the solution of an image deconvolution problem with isotropic total variation (TV) regularization $$\mathrm{argmin}_{\mathbf{x}} \; (1/2) \| \mathbf{y} - C \mathbf{x} \|_2^2 + \lambda \| D \mathbf{x} \|_{2,1} \;,$$ where $C$ is a convolution operator, $\mathbf{y}$ is the blurred image, $D$ is a 2D finite fifference operator, and $\mathbf{x}$ is the deconvolved image. In this example the problem is solved via proximal ADMM, while standard ADMM is used in a [companion example](deconv_tv_admm.rst). """ import jax from xdesign import SiemensStar, discrete_phantom import scico.numpy as snp import scico.random from scico import functional, linop, loss, metric, plot from scico.optimize import ProximalADMM from scico.util import device_info """ Create a ground truth image. """ phantom = SiemensStar(32) N = 256 # image size x_gt = snp.pad(discrete_phantom(phantom, N - 16), 8) x_gt = jax.device_put(x_gt) # convert to jax type, push to GPU """ Set up the forward operator and create a test signal consisting of a blurred signal with additive Gaussian noise. """ n = 5 # convolution kernel size σ = 20.0 / 255 # noise level psf = snp.ones((n, n)) / (n * n) C = linop.Convolve(h=psf, input_shape=x_gt.shape) Cx = C(x_gt) # blurred image noise, key = scico.random.randn(Cx.shape, seed=0) y = Cx + σ * noise r""" Set up the problem to be solved. We want to minimize the functional $$\mathrm{argmin}_{\mathbf{x}} \; (1/2) \| \mathbf{y} - C \mathbf{x} \|_2^2 + \lambda \| D \mathbf{x} \|_{2,1} \;,$$ where $C$ is the convolution operator and $D$ is a finite difference operator. This problem can be expressed as $$\mathrm{argmin}_{\mathbf{x}, \mathbf{z}} \; (1/2) \| \mathbf{y} - \mathbf{z}_0 \|_2^2 + \lambda \| \mathbf{z}_1 \|_{2,1} \;\; \text{such that} \;\; \mathbf{z}_0 = C \mathbf{x} \;\; \text{and} \;\; \mathbf{z}_1 = D \mathbf{x} \;,$$ which can be written in the form of a standard ADMM problem $$\mathrm{argmin}_{\mathbf{x}, \mathbf{z}} \; f(\mathbf{x}) + g(\mathbf{z}) \;\; \text{such that} \;\; A \mathbf{x} + B \mathbf{z} = \mathbf{c}$$ with $$f = 0 \quad g = g_0 + g_1$$ $$g_0(\mathbf{z}_0) = (1/2) \| \mathbf{y} - \mathbf{z}_0 \|_2^2 \quad g_1(\mathbf{z}_1) = \lambda \| \mathbf{z}_1 \|_{2,1}$$ $$A = \left( \begin{array}{c} C \\ D \end{array} \right) \quad B = \left( \begin{array}{cc} -I & 0 \\ 0 & -I \end{array} \right) \quad \mathbf{c} = \left( \begin{array}{c} 0 \\ 0 \end{array} \right) \;.$$ This is a more complex splitting than that used in the [companion example](deconv_tv_admm.rst), but it allows the use of a proximal ADMM solver in a way that avoids the need for the conjugate gradient sub-iterations used by the ADMM solver in the [companion example](deconv_tv_admm.rst). """ f = functional.ZeroFunctional() g0 = loss.SquaredL2Loss(y=y) λ = 2.0e-2 # L1 norm regularization parameter g1 = λ * functional.L21Norm() g = functional.SeparableFunctional((g0, g1)) D = linop.FiniteDifference(input_shape=x_gt.shape, append=0) A = linop.VerticalStack((C, D)) """ Set up a proximal ADMM solver object. """ ρ = 1.0e-1 # ADMM penalty parameter maxiter = 50 # number of ADMM iterations mu, nu = ProximalADMM.estimate_parameters(D) solver = ProximalADMM( f=f, g=g, A=A, B=None, rho=ρ, mu=mu, nu=nu, x0=C.adj(y), maxiter=maxiter, itstat_options={"display": True, "period": 10}, ) """ Run the solver. """ print(f"Solving on {device_info()}\n") x = solver.solve() hist = solver.itstat_object.history(transpose=True) """ Show the recovered image. """ fig, ax = plot.subplots(nrows=1, ncols=3, figsize=(15, 5)) plot.imview(x_gt, title="Ground truth", fig=fig, ax=ax[0]) nc = n // 2 yc = y[nc:-nc, nc:-nc] plot.imview(y, title="Blurred, noisy image: %.2f (dB)" % metric.psnr(x_gt, yc), fig=fig, ax=ax[1]) plot.imview( solver.x, title="Deconvolved image: %.2f (dB)" % metric.psnr(x_gt, solver.x), fig=fig, ax=ax[2] ) fig.show() """ Plot convergence statistics. """ fig, ax = plot.subplots(nrows=1, ncols=2, figsize=(12, 5)) plot.plot( hist.Objective, title="Objective function", xlbl="Iteration", ylbl="Functional value", fig=fig, ax=ax[0], ) plot.plot( snp.vstack((hist.Prml_Rsdl, hist.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals", xlbl="Iteration", lgnd=("Primal", "Dual"), fig=fig, ax=ax[1], ) fig.show() input("\nWaiting for input to close figures and exit")
0.927388
0.964355
r""" Total Variation Denoising with Constraint (APGM) ================================================ This example demonstrates the solution of the isotropic total variation (TV) denoising problem $$\mathrm{argmin}_{\mathbf{x}} \; (1/2) \| \mathbf{y} - \mathbf{x} \|_2^2 + \lambda R(\mathbf{x}) + \iota_C(\mathbf{x}) \;,$$ where $R$ is a TV regularizer, $\iota_C(\cdot)$ is the indicator function of constraint set $C$, and $C = \{ \mathbf{x} \, | \, x_i \in [0, 1] \}$, i.e. the set of vectors with components constrained to be in the interval $[0, 1]$. The problem is solved seperately with $R$ taken as isotropic and anisotropic TV regularization The solution via APGM is based on the approach in :cite:`beck-2009-tv`, which involves constructing a dual for the constrained denoising problem. The APGM solution minimizes the resulting dual. In this case, switching between the two regularizers corresponds to switching between two different projectors. """ from typing import Callable, Optional, Union import jax import jax.numpy as jnp from xdesign import SiemensStar, discrete_phantom import scico.numpy as snp import scico.random from scico import functional, linop, loss, operator, plot from scico.numpy import Array, BlockArray from scico.numpy.util import ensure_on_device from scico.optimize.pgm import AcceleratedPGM, RobustLineSearchStepSize from scico.util import device_info """ Create a ground truth image. """ N = 256 # image size phantom = SiemensStar(16) x_gt = snp.pad(discrete_phantom(phantom, N - 16), 8) x_gt = jax.device_put(x_gt) # convert to jax type, push to GPU x_gt = x_gt / x_gt.max() """ Add noise to create a noisy test image. """ σ = 0.75 # noise standard deviation noise, key = scico.random.randn(x_gt.shape, seed=0) y = x_gt + σ * noise """ Define finite difference operator and adjoint. """ # The append=0 option appends 0 to the input along the axis # prior to performing the difference to make the results of # horizontal and vertical finite differences the same shape. C = linop.FiniteDifference(input_shape=x_gt.shape, append=0) A = C.adj """ Define a zero array as initial estimate. """ x0 = jnp.zeros(C(y).shape) """ Define the dual of the total variation denoising problem. """ class DualTVLoss(loss.Loss): def __init__( self, y: Union[Array, BlockArray], A: Optional[Union[Callable, operator.Operator]] = None, lmbda: float = 0.5, ): y = ensure_on_device(y) self.functional = functional.SquaredL2Norm() super().__init__(y=y, A=A, scale=1.0) self.lmbda = lmbda def __call__(self, x: Union[Array, BlockArray]) -> float: xint = self.y - self.lmbda * self.A(x) return -1.0 * self.functional(xint - jnp.clip(xint, 0.0, 1.0)) + self.functional(xint) """ Denoise with isotropic total variation. Define projector for isotropic total variation. """ # Evaluation of functional set to zero. class IsoProjector(functional.Functional): has_eval = True has_prox = True def __call__(self, x: Union[Array, BlockArray]) -> float: return 0.0 def prox(self, v: Array, lam: float, **kwargs) -> Array: norm_v_ptp = jnp.sqrt(jnp.sum(jnp.abs(v) ** 2, axis=0)) x_out = v / jnp.maximum(jnp.ones(v.shape), norm_v_ptp) out1 = v[0, :, -1] / jnp.maximum(jnp.ones(v[0, :, -1].shape), jnp.abs(v[0, :, -1])) x_out = x_out.at[0, :, -1].set(out1) out2 = v[1, -1, :] / jnp.maximum(jnp.ones(v[1, -1, :].shape), jnp.abs(v[1, -1, :])) x_out = x_out.at[1, -1, :].set(out2) return x_out """ Use RobustLineSearchStepSize object and set up AcceleratedPGM solver object. Run the solver. """ reg_weight_iso = 1.4e0 f_iso = DualTVLoss(y=y, A=A, lmbda=reg_weight_iso) g_iso = IsoProjector() solver_iso = AcceleratedPGM( f=f_iso, g=g_iso, L0=16.0 * f_iso.lmbda**2, x0=x0, maxiter=100, itstat_options={"display": True, "period": 10}, step_size=RobustLineSearchStepSize(), ) # Run the solver. print(f"Solving on {device_info()}\n") x = solver_iso.solve() hist_iso = solver_iso.itstat_object.history(transpose=True) # Project to constraint set. x_iso = jnp.clip(y - f_iso.lmbda * f_iso.A(x), 0.0, 1.0) """ Denoise with anisotropic total variation for comparison. Define projector for anisotropic total variation. """ # Evaluation of functional set to zero. class AnisoProjector(functional.Functional): has_eval = True has_prox = True def __call__(self, x: Union[Array, BlockArray]) -> float: return 0.0 def prox(self, v: Array, lam: float, **kwargs) -> Array: return v / jnp.maximum(jnp.ones(v.shape), jnp.abs(v)) """ Use RobustLineSearchStepSize object and set up AcceleratedPGM solver object. Weight was tuned to give the same data fidelty as the isotropic case. Run the solver. """ reg_weight_aniso = 1.2e0 f = DualTVLoss(y=y, A=A, lmbda=reg_weight_aniso) g = AnisoProjector() solver = AcceleratedPGM( f=f, g=g, L0=16.0 * f.lmbda**2, x0=x0, maxiter=100, itstat_options={"display": True, "period": 10}, step_size=RobustLineSearchStepSize(), ) # Run the solver. print() x = solver.solve() # Project to constraint set. x_aniso = jnp.clip(y - f.lmbda * f.A(x), 0.0, 1.0) """ Compute the data fidelity. """ df = hist_iso.Objective[-1] print(f"\nData fidelity for isotropic TV was {df:.2e}") hist = solver.itstat_object.history(transpose=True) df = hist.Objective[-1] print(f"Data fidelity for anisotropic TV was {df:.2e}") """ Plot results. """ plt_args = dict(norm=plot.matplotlib.colors.Normalize(vmin=0, vmax=1.5)) fig, ax = plot.subplots(nrows=2, ncols=2, sharex=True, sharey=True, figsize=(11, 10)) plot.imview(x_gt, title="Ground truth", fig=fig, ax=ax[0, 0], **plt_args) plot.imview(y, title="Noisy version", fig=fig, ax=ax[0, 1], **plt_args) plot.imview(x_iso, title="Isotropic TV denoising", fig=fig, ax=ax[1, 0], **plt_args) plot.imview(x_aniso, title="Anisotropic TV denoising", fig=fig, ax=ax[1, 1], **plt_args) fig.subplots_adjust(left=0.1, right=0.99, top=0.95, bottom=0.05, wspace=0.2, hspace=0.01) fig.colorbar( ax[0, 0].get_images()[0], ax=ax, location="right", shrink=0.9, pad=0.05, label="Arbitrary Units" ) fig.suptitle("Denoising comparison") fig.show() # zoomed version fig, ax = plot.subplots(nrows=2, ncols=2, sharex=True, sharey=True, figsize=(11, 10)) plot.imview(x_gt, title="Ground truth", fig=fig, ax=ax[0, 0], **plt_args) plot.imview(y, title="Noisy version", fig=fig, ax=ax[0, 1], **plt_args) plot.imview(x_iso, title="Isotropic TV denoising", fig=fig, ax=ax[1, 0], **plt_args) plot.imview(x_aniso, title="Anisotropic TV denoising", fig=fig, ax=ax[1, 1], **plt_args) ax[0, 0].set_xlim(N // 4, N // 4 + N // 2) ax[0, 0].set_ylim(N // 4, N // 4 + N // 2) fig.subplots_adjust(left=0.1, right=0.99, top=0.95, bottom=0.05, wspace=0.2, hspace=0.01) fig.colorbar( ax[0, 0].get_images()[0], ax=ax, location="right", shrink=0.9, pad=0.05, label="Arbitrary Units" ) fig.suptitle("Denoising comparison (zoomed)") fig.show() input("\nWaiting for input to close figures and exit")
scico
/scico-0.0.4.tar.gz/scico-0.0.4/examples/scripts/denoise_tv_pgm.py
denoise_tv_pgm.py
r""" Total Variation Denoising with Constraint (APGM) ================================================ This example demonstrates the solution of the isotropic total variation (TV) denoising problem $$\mathrm{argmin}_{\mathbf{x}} \; (1/2) \| \mathbf{y} - \mathbf{x} \|_2^2 + \lambda R(\mathbf{x}) + \iota_C(\mathbf{x}) \;,$$ where $R$ is a TV regularizer, $\iota_C(\cdot)$ is the indicator function of constraint set $C$, and $C = \{ \mathbf{x} \, | \, x_i \in [0, 1] \}$, i.e. the set of vectors with components constrained to be in the interval $[0, 1]$. The problem is solved seperately with $R$ taken as isotropic and anisotropic TV regularization The solution via APGM is based on the approach in :cite:`beck-2009-tv`, which involves constructing a dual for the constrained denoising problem. The APGM solution minimizes the resulting dual. In this case, switching between the two regularizers corresponds to switching between two different projectors. """ from typing import Callable, Optional, Union import jax import jax.numpy as jnp from xdesign import SiemensStar, discrete_phantom import scico.numpy as snp import scico.random from scico import functional, linop, loss, operator, plot from scico.numpy import Array, BlockArray from scico.numpy.util import ensure_on_device from scico.optimize.pgm import AcceleratedPGM, RobustLineSearchStepSize from scico.util import device_info """ Create a ground truth image. """ N = 256 # image size phantom = SiemensStar(16) x_gt = snp.pad(discrete_phantom(phantom, N - 16), 8) x_gt = jax.device_put(x_gt) # convert to jax type, push to GPU x_gt = x_gt / x_gt.max() """ Add noise to create a noisy test image. """ σ = 0.75 # noise standard deviation noise, key = scico.random.randn(x_gt.shape, seed=0) y = x_gt + σ * noise """ Define finite difference operator and adjoint. """ # The append=0 option appends 0 to the input along the axis # prior to performing the difference to make the results of # horizontal and vertical finite differences the same shape. C = linop.FiniteDifference(input_shape=x_gt.shape, append=0) A = C.adj """ Define a zero array as initial estimate. """ x0 = jnp.zeros(C(y).shape) """ Define the dual of the total variation denoising problem. """ class DualTVLoss(loss.Loss): def __init__( self, y: Union[Array, BlockArray], A: Optional[Union[Callable, operator.Operator]] = None, lmbda: float = 0.5, ): y = ensure_on_device(y) self.functional = functional.SquaredL2Norm() super().__init__(y=y, A=A, scale=1.0) self.lmbda = lmbda def __call__(self, x: Union[Array, BlockArray]) -> float: xint = self.y - self.lmbda * self.A(x) return -1.0 * self.functional(xint - jnp.clip(xint, 0.0, 1.0)) + self.functional(xint) """ Denoise with isotropic total variation. Define projector for isotropic total variation. """ # Evaluation of functional set to zero. class IsoProjector(functional.Functional): has_eval = True has_prox = True def __call__(self, x: Union[Array, BlockArray]) -> float: return 0.0 def prox(self, v: Array, lam: float, **kwargs) -> Array: norm_v_ptp = jnp.sqrt(jnp.sum(jnp.abs(v) ** 2, axis=0)) x_out = v / jnp.maximum(jnp.ones(v.shape), norm_v_ptp) out1 = v[0, :, -1] / jnp.maximum(jnp.ones(v[0, :, -1].shape), jnp.abs(v[0, :, -1])) x_out = x_out.at[0, :, -1].set(out1) out2 = v[1, -1, :] / jnp.maximum(jnp.ones(v[1, -1, :].shape), jnp.abs(v[1, -1, :])) x_out = x_out.at[1, -1, :].set(out2) return x_out """ Use RobustLineSearchStepSize object and set up AcceleratedPGM solver object. Run the solver. """ reg_weight_iso = 1.4e0 f_iso = DualTVLoss(y=y, A=A, lmbda=reg_weight_iso) g_iso = IsoProjector() solver_iso = AcceleratedPGM( f=f_iso, g=g_iso, L0=16.0 * f_iso.lmbda**2, x0=x0, maxiter=100, itstat_options={"display": True, "period": 10}, step_size=RobustLineSearchStepSize(), ) # Run the solver. print(f"Solving on {device_info()}\n") x = solver_iso.solve() hist_iso = solver_iso.itstat_object.history(transpose=True) # Project to constraint set. x_iso = jnp.clip(y - f_iso.lmbda * f_iso.A(x), 0.0, 1.0) """ Denoise with anisotropic total variation for comparison. Define projector for anisotropic total variation. """ # Evaluation of functional set to zero. class AnisoProjector(functional.Functional): has_eval = True has_prox = True def __call__(self, x: Union[Array, BlockArray]) -> float: return 0.0 def prox(self, v: Array, lam: float, **kwargs) -> Array: return v / jnp.maximum(jnp.ones(v.shape), jnp.abs(v)) """ Use RobustLineSearchStepSize object and set up AcceleratedPGM solver object. Weight was tuned to give the same data fidelty as the isotropic case. Run the solver. """ reg_weight_aniso = 1.2e0 f = DualTVLoss(y=y, A=A, lmbda=reg_weight_aniso) g = AnisoProjector() solver = AcceleratedPGM( f=f, g=g, L0=16.0 * f.lmbda**2, x0=x0, maxiter=100, itstat_options={"display": True, "period": 10}, step_size=RobustLineSearchStepSize(), ) # Run the solver. print() x = solver.solve() # Project to constraint set. x_aniso = jnp.clip(y - f.lmbda * f.A(x), 0.0, 1.0) """ Compute the data fidelity. """ df = hist_iso.Objective[-1] print(f"\nData fidelity for isotropic TV was {df:.2e}") hist = solver.itstat_object.history(transpose=True) df = hist.Objective[-1] print(f"Data fidelity for anisotropic TV was {df:.2e}") """ Plot results. """ plt_args = dict(norm=plot.matplotlib.colors.Normalize(vmin=0, vmax=1.5)) fig, ax = plot.subplots(nrows=2, ncols=2, sharex=True, sharey=True, figsize=(11, 10)) plot.imview(x_gt, title="Ground truth", fig=fig, ax=ax[0, 0], **plt_args) plot.imview(y, title="Noisy version", fig=fig, ax=ax[0, 1], **plt_args) plot.imview(x_iso, title="Isotropic TV denoising", fig=fig, ax=ax[1, 0], **plt_args) plot.imview(x_aniso, title="Anisotropic TV denoising", fig=fig, ax=ax[1, 1], **plt_args) fig.subplots_adjust(left=0.1, right=0.99, top=0.95, bottom=0.05, wspace=0.2, hspace=0.01) fig.colorbar( ax[0, 0].get_images()[0], ax=ax, location="right", shrink=0.9, pad=0.05, label="Arbitrary Units" ) fig.suptitle("Denoising comparison") fig.show() # zoomed version fig, ax = plot.subplots(nrows=2, ncols=2, sharex=True, sharey=True, figsize=(11, 10)) plot.imview(x_gt, title="Ground truth", fig=fig, ax=ax[0, 0], **plt_args) plot.imview(y, title="Noisy version", fig=fig, ax=ax[0, 1], **plt_args) plot.imview(x_iso, title="Isotropic TV denoising", fig=fig, ax=ax[1, 0], **plt_args) plot.imview(x_aniso, title="Anisotropic TV denoising", fig=fig, ax=ax[1, 1], **plt_args) ax[0, 0].set_xlim(N // 4, N // 4 + N // 2) ax[0, 0].set_ylim(N // 4, N // 4 + N // 2) fig.subplots_adjust(left=0.1, right=0.99, top=0.95, bottom=0.05, wspace=0.2, hspace=0.01) fig.colorbar( ax[0, 0].get_images()[0], ax=ax, location="right", shrink=0.9, pad=0.05, label="Arbitrary Units" ) fig.suptitle("Denoising comparison (zoomed)") fig.show() input("\nWaiting for input to close figures and exit")
0.963265
0.883739
import numpy as np import jax import scico.numpy as snp from scico import functional, linop, loss, metric, plot, random from scico.examples import create_3d_foam_phantom, downsample_volume, tile_volume_slices from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.util import device_info """ Create a ground truth image. """ np.random.seed(1234) N = 128 # phantom size Nx, Ny, Nz = N, N, N // 4 upsamp = 2 x_gt_hires = create_3d_foam_phantom((upsamp * Nz, upsamp * Ny, upsamp * Nx), N_sphere=100) x_gt = downsample_volume(x_gt_hires, upsamp) x_gt = jax.device_put(x_gt) # convert to jax array, push to GPU """ Set up forward operator and test signal consisting of blurred signal with additive Gaussian noise. """ n = 5 # convolution kernel size σ = 20.0 / 255 # noise level psf = snp.ones((n, n, n)) / (n**3) A = linop.Convolve(h=psf, input_shape=x_gt.shape) Ax = A(x_gt) # blurred image noise, key = random.randn(Ax.shape) y = Ax + σ * noise """ Set up ADMM solver. """ f = loss.SquaredL2Loss(y=y, A=A) C = linop.Identity(x_gt.shape) λ = 40.0 / 255 # BM4D regularization strength g = λ * functional.BM4D() ρ = 1.0 # ADMM penalty parameter maxiter = 10 # number of ADMM iterations solver = ADMM( f=f, g_list=[g], C_list=[C], rho_list=[ρ], x0=A.T @ y, maxiter=maxiter, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": 1e-3, "maxiter": 100}), itstat_options={"display": True}, ) """ Run the solver. """ print(f"Solving on {device_info()}\n") x = solver.solve() x = snp.clip(x, 0, 1) hist = solver.itstat_object.history(transpose=True) """ Show slices of the recovered 3D volume. """ show_id = Nz // 2 fig, ax = plot.subplots(nrows=1, ncols=3, figsize=(15, 5)) plot.imview(tile_volume_slices(x_gt), title="Ground truth", fig=fig, ax=ax[0]) nc = n // 2 yc = y[nc:-nc, nc:-nc, nc:-nc] yc = snp.clip(yc, 0, 1) plot.imview( tile_volume_slices(yc), title="Slices of blurred, noisy volume: %.2f (dB)" % metric.psnr(x_gt, yc), fig=fig, ax=ax[1], ) plot.imview( tile_volume_slices(x), title="Slices of deconvolved volume: %.2f (dB)" % metric.psnr(x_gt, x), fig=fig, ax=ax[2], ) fig.show() """ Plot convergence statistics. """ plot.plot( snp.vstack((hist.Prml_Rsdl, hist.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals", xlbl="Iteration", lgnd=("Primal", "Dual"), ) input("\nWaiting for input to close figures and exit")
scico
/scico-0.0.4.tar.gz/scico-0.0.4/examples/scripts/deconv_ppp_bm4d_admm.py
deconv_ppp_bm4d_admm.py
import numpy as np import jax import scico.numpy as snp from scico import functional, linop, loss, metric, plot, random from scico.examples import create_3d_foam_phantom, downsample_volume, tile_volume_slices from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.util import device_info """ Create a ground truth image. """ np.random.seed(1234) N = 128 # phantom size Nx, Ny, Nz = N, N, N // 4 upsamp = 2 x_gt_hires = create_3d_foam_phantom((upsamp * Nz, upsamp * Ny, upsamp * Nx), N_sphere=100) x_gt = downsample_volume(x_gt_hires, upsamp) x_gt = jax.device_put(x_gt) # convert to jax array, push to GPU """ Set up forward operator and test signal consisting of blurred signal with additive Gaussian noise. """ n = 5 # convolution kernel size σ = 20.0 / 255 # noise level psf = snp.ones((n, n, n)) / (n**3) A = linop.Convolve(h=psf, input_shape=x_gt.shape) Ax = A(x_gt) # blurred image noise, key = random.randn(Ax.shape) y = Ax + σ * noise """ Set up ADMM solver. """ f = loss.SquaredL2Loss(y=y, A=A) C = linop.Identity(x_gt.shape) λ = 40.0 / 255 # BM4D regularization strength g = λ * functional.BM4D() ρ = 1.0 # ADMM penalty parameter maxiter = 10 # number of ADMM iterations solver = ADMM( f=f, g_list=[g], C_list=[C], rho_list=[ρ], x0=A.T @ y, maxiter=maxiter, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": 1e-3, "maxiter": 100}), itstat_options={"display": True}, ) """ Run the solver. """ print(f"Solving on {device_info()}\n") x = solver.solve() x = snp.clip(x, 0, 1) hist = solver.itstat_object.history(transpose=True) """ Show slices of the recovered 3D volume. """ show_id = Nz // 2 fig, ax = plot.subplots(nrows=1, ncols=3, figsize=(15, 5)) plot.imview(tile_volume_slices(x_gt), title="Ground truth", fig=fig, ax=ax[0]) nc = n // 2 yc = y[nc:-nc, nc:-nc, nc:-nc] yc = snp.clip(yc, 0, 1) plot.imview( tile_volume_slices(yc), title="Slices of blurred, noisy volume: %.2f (dB)" % metric.psnr(x_gt, yc), fig=fig, ax=ax[1], ) plot.imview( tile_volume_slices(x), title="Slices of deconvolved volume: %.2f (dB)" % metric.psnr(x_gt, x), fig=fig, ax=ax[2], ) fig.show() """ Plot convergence statistics. """ plot.plot( snp.vstack((hist.Prml_Rsdl, hist.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals", xlbl="Iteration", lgnd=("Primal", "Dual"), ) input("\nWaiting for input to close figures and exit")
0.803868
0.543893
MIT License Copyright (c) 2021 Malte Vogl (ModelSEN project) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
scicom
/scicom-0.1.2-py3-none-any.whl/scicom-0.1.2.dist-info/LICENSE.md
LICENSE.md
MIT License Copyright (c) 2021 Malte Vogl (ModelSEN project) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
0.807574
0.210543
MIT License Copyright (c) [2021] [Thomas Bury] Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
scicomap
/scicomap-0.4.1.tar.gz/scicomap-0.4.1/LICENSE.md
LICENSE.md
MIT License Copyright (c) [2021] [Thomas Bury] Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
0.826642
0.352898
import os import shutil import subprocess from pathlib import Path PROJECT_DIRECTORY = Path(os.path.abspath(os.path.curdir)).resolve() UNUSED_DOCS_DIRS = [ PROJECT_DIRECTORY / 'docs-mkdocs', PROJECT_DIRECTORY / 'docs-sphinx', PROJECT_DIRECTORY / 'docs-jupyter-book' ] DOCUMENTATION_ENGINE = "{{ cookiecutter.documentation_engine }}" DOCS_SPEC_DIR = UNUSED_DOCS_DIRS.pop( UNUSED_DOCS_DIRS.index( PROJECT_DIRECTORY / f'docs-{DOCUMENTATION_ENGINE}' ) ) USE_SRC_LAYOUT = {{ cookiecutter.project_layout == "src" }} if USE_SRC_LAYOUT: PACKAGE_PATH = PROJECT_DIRECTORY / "src" / "{{ cookiecutter.package_slug}}" else: PACKAGE_PATH = PROJECT_DIRECTORY / "{{ cookiecutter.package_slug}}" USE_BLACK = {{ cookiecutter.use_black == "yes" }} USE_BLUE = {{ cookiecutter.use_blue == "yes" }} USE_BANDIT = {{ cookiecutter.use_bandit == "yes" }} USE_CONTAINERS = {{ cookiecutter.use_containers in ['Docker', 'Podman'] }} USE_CLI = {{ cookiecutter.command_line_interface != "No command-line interface" }} USE_CONDA = {{ cookiecutter.use_conda == "yes" }} {% if cookiecutter.code_of_conduct == "contributor-covenant" -%} COC_PATH = PROJECT_DIRECTORY / 'coc' / 'CONTRIBUTOR_COVENANT.md' {%- elif cookiecutter.code_of_conduct == "citizen-code-of-conduct" -%} COC_PATH = PROJECT_DIRECTORY / 'coc' / 'CITIZEN.md' {% else %} COC_PATH = None {%- endif %} {% if cookiecutter.governance_document == "numpy-governance" -%} GOVERNANCE_PATH = PROJECT_DIRECTORY / 'governance' / 'numpy_governance.md' {% elif cookiecutter.code_of_conduct == "sciml-governance" -%} GOVERNANCE_PATH = PROJECT_DIRECTORY / 'governance' / 'sciml_governance.md' {% else -%} GOVERNANCE_PATH = None {%- endif %} {% if cookiecutter.roadmap_document == "pytorch-ignite-roadmap" -%} ROADMAP_PATH = PROJECT_DIRECTORY / 'roadmap' / 'ignite_roadmap.md' {%- else %} ROADMAP_PATH = None {%- endif %} {% if cookiecutter.build_system == "poetry" -%} BUILD_SYSTEM = "poetry" {% elif cookiecutter.build_system == "flit" -%} BUILD_SYSTEM = "flit" {% elif cookiecutter.build_system == "mesonpy" -%} BUILD_SYSTEM = "mesonpy" {% elif cookiecutter.build_system == "setuptools" -%} BUILD_SYSTEM = "setuptools" {% elif cookiecutter.build_system == "pdm" -%} BUILD_SYSTEM = "pdm" {%- else %} BUILD_SYSTEM = None {%- endif %} def remove_dirs(dirs: list): for dirs in dirs: shutil.rmtree(dirs) def remove_dir(dir_path): """Remove a directory located at PROJECT_DIRECTORY/dir_path""" shutil.rmtree(PROJECT_DIRECTORY/dir_path) def remove_project_file(filepath: str): os.remove(PROJECT_DIRECTORY / filepath) def remove_package_file(filepath: str): os.remove(PACKAGE_PATH / filepath) def move_selected_doc_dir(): docs_target_dir = PROJECT_DIRECTORY / "docs" for file_name in os.listdir(DOCS_SPEC_DIR): shutil.move(DOCS_SPEC_DIR / file_name, docs_target_dir) if DOCUMENTATION_ENGINE == "sphinx": remove_project_file(Path("docs") / "index.md") remove_project_file(Path("docs/api") / "references.md") shutil.rmtree(DOCS_SPEC_DIR) def clean_up_docs(): remove_dirs(UNUSED_DOCS_DIRS) move_selected_doc_dir() def clean_up_project_layout(): if USE_SRC_LAYOUT: if not os.path.exists("src"): os.mkdir("src") shutil.move('{{cookiecutter.package_slug}}', 'src') def clean_up_code_of_conduct(): if COC_PATH: shutil.move( COC_PATH, PROJECT_DIRECTORY / 'CODE_OF_CONDUCT.md' ) remove_dir("coc") def clean_up_conda(): if not USE_CONDA: remove_dir("conda") def clean_up_governance(): if GOVERNANCE_PATH: shutil.move( GOVERNANCE_PATH, PROJECT_DIRECTORY / 'governance.md' ) remove_dir("governance") def clean_up_roadmap(): if ROADMAP_PATH: shutil.move( ROADMAP_PATH, PROJECT_DIRECTORY / 'roadmap.md' ) remove_dir("roadmap") def clean_up_containers(): if not USE_CONTAINERS: remove_dir("containers") def clean_up_cli(): if not USE_CLI: remove_package_file("__main__.py") def clean_up_build_system(): build_system_dir = PROJECT_DIRECTORY / "build-system" if BUILD_SYSTEM == "poetry": shutil.move( build_system_dir / "poetry-pyproject.toml", PROJECT_DIRECTORY / 'pyproject.toml' ) elif BUILD_SYSTEM == "flit": shutil.move( build_system_dir / "flit-pyproject.toml", PROJECT_DIRECTORY / 'pyproject.toml' ) elif BUILD_SYSTEM == "mesonpy": shutil.move( build_system_dir / "mesonpy-pyproject.toml", PROJECT_DIRECTORY / 'pyproject.toml' ) shutil.move( build_system_dir / "meson.build", PROJECT_DIRECTORY / 'meson.build' ) elif BUILD_SYSTEM == "setuptools": shutil.move( build_system_dir / "setuptools-pyproject.toml", PROJECT_DIRECTORY / 'pyproject.toml' ) elif BUILD_SYSTEM == "pdm": shutil.move( build_system_dir / "pdm-pyproject.toml", PROJECT_DIRECTORY / 'pyproject.toml' ) else: shutil.move( build_system_dir / "base-pyproject.toml", PROJECT_DIRECTORY / 'pyproject.toml' ) remove_dir("build-system") def http2ssh(url): url = url.replace("https://", "git@") return url.replace("/", ":", 1) def validation(): if USE_BLUE and USE_BLACK: raise Exception( "The libs Blue and Black were selected, but you need to choose " "just one of them." ) def prepare_git(): subprocess.call(["git", "init"]) git_https_origin = http2ssh("{{cookiecutter.git_https_origin}}") git_https_upstream = http2ssh("{{cookiecutter.git_https_upstream}}") git_main_branch = http2ssh("{{cookiecutter.git_main_branch}}") git_new_branch = "add-initial-structure" if git_https_origin != "": subprocess.call(["git", "remote", "add", "origin", git_https_origin]) subprocess.call(["git", "fetch", "--all"]) if git_https_upstream != "": subprocess.call( ["git", "remote", "add", "upstream", git_https_upstream] ) subprocess.call(["git", "checkout", f"upstream/{git_main_branch}"]) subprocess.call(["git", "fetch", "--all"]) subprocess.call( ["git", "config", "user.name", "{{cookiecutter.author_full_name}}"] ) subprocess.call( ["git", "config", "user.email", "{{cookiecutter.author_email}}"] ) subprocess.call(["git", "checkout", "-b", git_new_branch]) subprocess.call(["git", "add", "."]) subprocess.call(["git", "commit", "-m", "Initial commit", "--no-verify"]) print("=" * 80) print("NOTE: Run `git rebase -i upstream/{{ cookiecutter.git_main_branch }}`") print("=" * 80) def post_gen(): validation() # keep this one first, because it changes the package folder clean_up_project_layout() clean_up_cli() clean_up_code_of_conduct() clean_up_conda() clean_up_containers() clean_up_docs() clean_up_governance() clean_up_roadmap() clean_up_build_system() # keep it at the end, because it will create a new git commit prepare_git() if __name__ == "__main__": post_gen()
scicookie
/hooks/post_gen_project.py
post_gen_project.py
import os import shutil import subprocess from pathlib import Path PROJECT_DIRECTORY = Path(os.path.abspath(os.path.curdir)).resolve() UNUSED_DOCS_DIRS = [ PROJECT_DIRECTORY / 'docs-mkdocs', PROJECT_DIRECTORY / 'docs-sphinx', PROJECT_DIRECTORY / 'docs-jupyter-book' ] DOCUMENTATION_ENGINE = "{{ cookiecutter.documentation_engine }}" DOCS_SPEC_DIR = UNUSED_DOCS_DIRS.pop( UNUSED_DOCS_DIRS.index( PROJECT_DIRECTORY / f'docs-{DOCUMENTATION_ENGINE}' ) ) USE_SRC_LAYOUT = {{ cookiecutter.project_layout == "src" }} if USE_SRC_LAYOUT: PACKAGE_PATH = PROJECT_DIRECTORY / "src" / "{{ cookiecutter.package_slug}}" else: PACKAGE_PATH = PROJECT_DIRECTORY / "{{ cookiecutter.package_slug}}" USE_BLACK = {{ cookiecutter.use_black == "yes" }} USE_BLUE = {{ cookiecutter.use_blue == "yes" }} USE_BANDIT = {{ cookiecutter.use_bandit == "yes" }} USE_CONTAINERS = {{ cookiecutter.use_containers in ['Docker', 'Podman'] }} USE_CLI = {{ cookiecutter.command_line_interface != "No command-line interface" }} USE_CONDA = {{ cookiecutter.use_conda == "yes" }} {% if cookiecutter.code_of_conduct == "contributor-covenant" -%} COC_PATH = PROJECT_DIRECTORY / 'coc' / 'CONTRIBUTOR_COVENANT.md' {%- elif cookiecutter.code_of_conduct == "citizen-code-of-conduct" -%} COC_PATH = PROJECT_DIRECTORY / 'coc' / 'CITIZEN.md' {% else %} COC_PATH = None {%- endif %} {% if cookiecutter.governance_document == "numpy-governance" -%} GOVERNANCE_PATH = PROJECT_DIRECTORY / 'governance' / 'numpy_governance.md' {% elif cookiecutter.code_of_conduct == "sciml-governance" -%} GOVERNANCE_PATH = PROJECT_DIRECTORY / 'governance' / 'sciml_governance.md' {% else -%} GOVERNANCE_PATH = None {%- endif %} {% if cookiecutter.roadmap_document == "pytorch-ignite-roadmap" -%} ROADMAP_PATH = PROJECT_DIRECTORY / 'roadmap' / 'ignite_roadmap.md' {%- else %} ROADMAP_PATH = None {%- endif %} {% if cookiecutter.build_system == "poetry" -%} BUILD_SYSTEM = "poetry" {% elif cookiecutter.build_system == "flit" -%} BUILD_SYSTEM = "flit" {% elif cookiecutter.build_system == "mesonpy" -%} BUILD_SYSTEM = "mesonpy" {% elif cookiecutter.build_system == "setuptools" -%} BUILD_SYSTEM = "setuptools" {% elif cookiecutter.build_system == "pdm" -%} BUILD_SYSTEM = "pdm" {%- else %} BUILD_SYSTEM = None {%- endif %} def remove_dirs(dirs: list): for dirs in dirs: shutil.rmtree(dirs) def remove_dir(dir_path): """Remove a directory located at PROJECT_DIRECTORY/dir_path""" shutil.rmtree(PROJECT_DIRECTORY/dir_path) def remove_project_file(filepath: str): os.remove(PROJECT_DIRECTORY / filepath) def remove_package_file(filepath: str): os.remove(PACKAGE_PATH / filepath) def move_selected_doc_dir(): docs_target_dir = PROJECT_DIRECTORY / "docs" for file_name in os.listdir(DOCS_SPEC_DIR): shutil.move(DOCS_SPEC_DIR / file_name, docs_target_dir) if DOCUMENTATION_ENGINE == "sphinx": remove_project_file(Path("docs") / "index.md") remove_project_file(Path("docs/api") / "references.md") shutil.rmtree(DOCS_SPEC_DIR) def clean_up_docs(): remove_dirs(UNUSED_DOCS_DIRS) move_selected_doc_dir() def clean_up_project_layout(): if USE_SRC_LAYOUT: if not os.path.exists("src"): os.mkdir("src") shutil.move('{{cookiecutter.package_slug}}', 'src') def clean_up_code_of_conduct(): if COC_PATH: shutil.move( COC_PATH, PROJECT_DIRECTORY / 'CODE_OF_CONDUCT.md' ) remove_dir("coc") def clean_up_conda(): if not USE_CONDA: remove_dir("conda") def clean_up_governance(): if GOVERNANCE_PATH: shutil.move( GOVERNANCE_PATH, PROJECT_DIRECTORY / 'governance.md' ) remove_dir("governance") def clean_up_roadmap(): if ROADMAP_PATH: shutil.move( ROADMAP_PATH, PROJECT_DIRECTORY / 'roadmap.md' ) remove_dir("roadmap") def clean_up_containers(): if not USE_CONTAINERS: remove_dir("containers") def clean_up_cli(): if not USE_CLI: remove_package_file("__main__.py") def clean_up_build_system(): build_system_dir = PROJECT_DIRECTORY / "build-system" if BUILD_SYSTEM == "poetry": shutil.move( build_system_dir / "poetry-pyproject.toml", PROJECT_DIRECTORY / 'pyproject.toml' ) elif BUILD_SYSTEM == "flit": shutil.move( build_system_dir / "flit-pyproject.toml", PROJECT_DIRECTORY / 'pyproject.toml' ) elif BUILD_SYSTEM == "mesonpy": shutil.move( build_system_dir / "mesonpy-pyproject.toml", PROJECT_DIRECTORY / 'pyproject.toml' ) shutil.move( build_system_dir / "meson.build", PROJECT_DIRECTORY / 'meson.build' ) elif BUILD_SYSTEM == "setuptools": shutil.move( build_system_dir / "setuptools-pyproject.toml", PROJECT_DIRECTORY / 'pyproject.toml' ) elif BUILD_SYSTEM == "pdm": shutil.move( build_system_dir / "pdm-pyproject.toml", PROJECT_DIRECTORY / 'pyproject.toml' ) else: shutil.move( build_system_dir / "base-pyproject.toml", PROJECT_DIRECTORY / 'pyproject.toml' ) remove_dir("build-system") def http2ssh(url): url = url.replace("https://", "git@") return url.replace("/", ":", 1) def validation(): if USE_BLUE and USE_BLACK: raise Exception( "The libs Blue and Black were selected, but you need to choose " "just one of them." ) def prepare_git(): subprocess.call(["git", "init"]) git_https_origin = http2ssh("{{cookiecutter.git_https_origin}}") git_https_upstream = http2ssh("{{cookiecutter.git_https_upstream}}") git_main_branch = http2ssh("{{cookiecutter.git_main_branch}}") git_new_branch = "add-initial-structure" if git_https_origin != "": subprocess.call(["git", "remote", "add", "origin", git_https_origin]) subprocess.call(["git", "fetch", "--all"]) if git_https_upstream != "": subprocess.call( ["git", "remote", "add", "upstream", git_https_upstream] ) subprocess.call(["git", "checkout", f"upstream/{git_main_branch}"]) subprocess.call(["git", "fetch", "--all"]) subprocess.call( ["git", "config", "user.name", "{{cookiecutter.author_full_name}}"] ) subprocess.call( ["git", "config", "user.email", "{{cookiecutter.author_email}}"] ) subprocess.call(["git", "checkout", "-b", git_new_branch]) subprocess.call(["git", "add", "."]) subprocess.call(["git", "commit", "-m", "Initial commit", "--no-verify"]) print("=" * 80) print("NOTE: Run `git rebase -i upstream/{{ cookiecutter.git_main_branch }}`") print("=" * 80) def post_gen(): validation() # keep this one first, because it changes the package folder clean_up_project_layout() clean_up_cli() clean_up_code_of_conduct() clean_up_conda() clean_up_containers() clean_up_docs() clean_up_governance() clean_up_roadmap() clean_up_build_system() # keep it at the end, because it will create a new git commit prepare_git() if __name__ == "__main__": post_gen()
0.188697
0.092155
import os import sys import logging from shutil import copyfile from distutils.dir_util import copy_tree import click import click_log log = logging.getLogger() click_log.basic_config(log) class ConfUpdate(object): def __init__(self, repo_dir, safe_mode): log.debug('init : %s, safe : %s' % (repo_dir, safe_mode)) self.safe_mode = safe_mode if os.path.isdir(repo_dir): log.debug('repo_dir good') self.repo_dir = repo_dir else: message = ('this is bad, quitting : bad --> (%s)\n\n' 'and you should feel bad' % repo_dir) log.critical(message) sys.exit(2) repo_name = os.path.basename(os.path.normpath(repo_dir)) log.debug('repo_name : %s' % repo_name) self.solr_repo_name = repo_name self.solr_conf_dir = self.conf_path_detect() self.fgs_index_dir = ('/usr/local/fedora/tomcat/webapps/' 'fedoragsearch/WEB-INF/classes/fgsconfigFinal/' 'index/FgsIndex/') def conf_path_detect(self): log.debug('conf_path_detect') product = None c1 = '/usr/local/fedora/solr/conf' c2 = '/usr/local/fedora/solr/collection1/conf' if os.path.isdir(c1): # product = '/usr/local/fedora/solr' product = c1 elif os.path.isdir(c2): # product = '/usr/local/fedora/solr/collection1' product = c2 else: log.critical('not locating solr config dir') sys.exit(3) product = None log.debug('conf location : %s' % product) return product def copy_folder(self, src, dst): log.debug('copy_folder\n src: %s\n dst: %s' % (src, dst)) p = os.path.join(self.repo_dir, src) if not self.safe_mode: copy_tree(p, dst) def copy_file(self, src, dst): log.debug('copy_file\n src: %s\n dst: %s' % (src, dst)) p = os.path.join(self.repo_dir, src) if not self.safe_mode: copyfile(p, dst) def execute(self): log.debug('execute') self.copy_folder('conf', self.solr_conf_dir) transform_dest = os.path.join( self.fgs_index_dir, 'islandora_transforms' ) self.copy_folder('islandora_transforms', transform_dest) self.copy_file( 'foxmlToSolr.xslt', os.path.join(self.fgs_index_dir, 'foxmlToSolr.xslt') ) self.copy_file( 'index.properties', os.path.join(self.fgs_index_dir, 'index.properties') ) @click.command() @click.option( '--repo', 'repo_dir', required=True, ) @click.option( '--safe', is_flag=True, default=False, help="dry run, don't copy files" ) @click_log.simple_verbosity_option(log) def main(repo_dir, safe): log.debug('main') conf = ConfUpdate(repo_dir, safe) conf.execute() if __name__ == '__main__': main()
scid
/scid-0.3.tar.gz/scid-0.3/scid.py
scid.py
import os import sys import logging from shutil import copyfile from distutils.dir_util import copy_tree import click import click_log log = logging.getLogger() click_log.basic_config(log) class ConfUpdate(object): def __init__(self, repo_dir, safe_mode): log.debug('init : %s, safe : %s' % (repo_dir, safe_mode)) self.safe_mode = safe_mode if os.path.isdir(repo_dir): log.debug('repo_dir good') self.repo_dir = repo_dir else: message = ('this is bad, quitting : bad --> (%s)\n\n' 'and you should feel bad' % repo_dir) log.critical(message) sys.exit(2) repo_name = os.path.basename(os.path.normpath(repo_dir)) log.debug('repo_name : %s' % repo_name) self.solr_repo_name = repo_name self.solr_conf_dir = self.conf_path_detect() self.fgs_index_dir = ('/usr/local/fedora/tomcat/webapps/' 'fedoragsearch/WEB-INF/classes/fgsconfigFinal/' 'index/FgsIndex/') def conf_path_detect(self): log.debug('conf_path_detect') product = None c1 = '/usr/local/fedora/solr/conf' c2 = '/usr/local/fedora/solr/collection1/conf' if os.path.isdir(c1): # product = '/usr/local/fedora/solr' product = c1 elif os.path.isdir(c2): # product = '/usr/local/fedora/solr/collection1' product = c2 else: log.critical('not locating solr config dir') sys.exit(3) product = None log.debug('conf location : %s' % product) return product def copy_folder(self, src, dst): log.debug('copy_folder\n src: %s\n dst: %s' % (src, dst)) p = os.path.join(self.repo_dir, src) if not self.safe_mode: copy_tree(p, dst) def copy_file(self, src, dst): log.debug('copy_file\n src: %s\n dst: %s' % (src, dst)) p = os.path.join(self.repo_dir, src) if not self.safe_mode: copyfile(p, dst) def execute(self): log.debug('execute') self.copy_folder('conf', self.solr_conf_dir) transform_dest = os.path.join( self.fgs_index_dir, 'islandora_transforms' ) self.copy_folder('islandora_transforms', transform_dest) self.copy_file( 'foxmlToSolr.xslt', os.path.join(self.fgs_index_dir, 'foxmlToSolr.xslt') ) self.copy_file( 'index.properties', os.path.join(self.fgs_index_dir, 'index.properties') ) @click.command() @click.option( '--repo', 'repo_dir', required=True, ) @click.option( '--safe', is_flag=True, default=False, help="dry run, don't copy files" ) @click_log.simple_verbosity_option(log) def main(repo_dir, safe): log.debug('main') conf = ConfUpdate(repo_dir, safe) conf.execute() if __name__ == '__main__': main()
0.135032
0.053576
# scida ![test status](https://github.com/cbyrohl/scida/actions/workflows/tests.yml/badge.svg) scida is an out-of-the-box analysis tool for large scientific datasets. It primarily supports the astrophysics community, focusing on cosmological and galaxy formation simulations using particles or unstructured meshes, as well as large observational datasets. This tool uses dask, allowing analysis to scale up from your personal computer to HPC resources and the cloud. ## Features - Unified, high-level interface to load and analyze large datasets from a variety of sources. - Parallel, task-based data processing with dask arrays. - Physical unit support via pint. - Easily extensible architecture. ## Requirements - Python >= 3.9 ## Documentation The documentation can be found [here](https://cbyrohl.github.io/scida/). ## Install ``` pip install scida ``` ## First Steps After installing scida, follow the [tutorial](https://cbyrohl.github.io/scida/tutorial/). ## License Distributed under the terms of the [MIT license](LICENSE), _scida_ is free and open source software. ## Issues If you encounter any problems, please [file an issue](https://github.com/cbyrohl/scida/issues/new) along with a detailed description. ## Contributors In alphabetical order: - @ayromlou - @cbyrohl - @dnelson86 ## Acknowledgements The project structure was adapted from [Wolt](https://github.com/woltapp/wolt-python-package-cookiecutter) and [Hypermodern Python](https://github.com/cjolowicz/cookiecutter-hypermodern-python) cookiecutter templates.
scida
/scida-0.2.4.tar.gz/scida-0.2.4/README.md
README.md
pip install scida
0.710528
0.909907
<div align="center"> <h1>scidantic</h1> <p> <em> An extension of <a href="https://github.com/pydantic/pydantic">pydantic</a> providing types for NumPy-like arrays and much more. </em> </p> <a href="https://github.com/gabrielmbmb/scidantic/actions/workflows/test.yaml"> <img src="https://github.com/gabrielmbmb/flowtastic/actions/workflows/test.yaml/badge.svg" alt="Test Workflow">> </a> <a href="https://pypi.org/project/scidantic"> <img src="https://img.shields.io/pypi/v/scidantic" alt="Python package version"> </a> <a href="https://pypi.org/project/scidantic"> <img src="https://img.shields.io/pypi/pyversions/scidantic" alt="Supported Python versions"> </a> </div> ## Installation ```shell pip install scidantic ```
scidantic
/scidantic-0.0.1.tar.gz/scidantic-0.0.1/README.md
README.md
pip install scidantic
0.647241
0.656462
import logging import copy import dpath.util from scidash_api.exceptions import ScidashClientException from scidash_api.validator import ScidashClientDataValidator logger = logging.getLogger(__name__) class ScidashClientMapper(object): """ScidashClientMapper util class for converting raw data from Sciunit to data acceptable in Scidash """ # Expected output format OUTPUT_SCHEME = { 'score_class': { 'class_name': None, 'url': None }, 'model_instance': { 'model_class': { 'class_name': None, 'url': '', 'capabilities': [] }, 'backend': None, 'hash_id': None, 'attributes': {}, 'name': None, 'run_params': {}, 'url': None }, 'prediction': None, 'raw': None, 'score': None, 'hash_id': None, 'sort_key': None, 'score_type': None, 'summary': None, 'test_instance': { 'description': None, 'test_suites': [], 'hash_id': None, 'test_class': { 'class_name': None, 'url': None }, 'observation': { 'mean': None, 'std': None, 'url': None }, 'verbose': None } } KEYS_MAPPING = [ ( 'score_class/class_name', '_class/name' ), ( 'score_class/url', '_class/url' ), ( 'model_instance/model_class/class_name', 'model/_class/name' ), ( 'model_instance/model_class/url', 'model/_class/url' ), ( 'model_instance/name', 'model/name' ), ( 'model_instance/url', 'model/url' ), ( 'prediction', 'prediction' ), ( 'raw', 'raw' ), ( 'score', 'score' ), ( 'score_type', 'score_type' ), ( 'summary', 'summary' ), ( 'test_instance/description', 'test/description' ), ( 'test_instance/test_class/class_name', 'test/name' ), ( 'test_instance/test_class/url', 'test/_class/url' ), ( 'test_instance/observation', 'test/observation' ), ( 'test_instance/verbose', 'test/verbose' ), ] OPTIONAL_KEYS_MAPPING = [ ( 'model_instance/backend', 'model/backend' ), ( 'model_instance/attrs', 'model/attrs' ) ] def __init__(self): self.errors = [] self.validator = ScidashClientDataValidator() def convert(self, raw_data=None, strict=False): """convert main method for converting :param raw_data:dict with data from sciunit :returns dict """ if raw_data is None: return raw_data if not self.validator.validate_score(raw_data) and strict: raise ScidashClientException('CLIENT -> INVALID DATA: ' '{}'.format(self.validator.get_errors())) elif not self.validator.validate_score(raw_data): logger.error('CLIENT -> INVALID DATA: ' '{}'.format(self.validator.get_errors())) self.errors.append(self.validator.get_errors()) return None result = copy.deepcopy(self.OUTPUT_SCHEME) for item, address in self.KEYS_MAPPING: dpath.util.set(result, item, dpath.util.get(raw_data, address)) for item, address in self.OPTIONAL_KEYS_MAPPING: try: dpath.util.set(result, item, dpath.util.get(raw_data, address)) except KeyError: logger.info("Optional value {} is not found".format(item)) for capability in dpath.util.get(raw_data, 'model/capabilities'): result.get('model_instance').get('model_class') \ .get('capabilities').append({ 'class_name': capability }) try: for test_suite in dpath.util.get(raw_data, 'test/test_suites'): result.get('test_instance').get('test_suites').append({ 'name': test_suite.get('name'), 'hash': test_suite.get('hash') }) except KeyError: pass model_instance_hash_id = '{}_{}'.format( raw_data.get('model').get('hash'), raw_data.get('model').get('_id') ) test_instance_hash_id = '{}_{}'.format( raw_data.get('test').get('hash'), raw_data.get('test').get('_id') ) score_instance_hash_id = '{}_{}'.format( raw_data.get('hash'), raw_data.get('_id') ) sort_key = raw_data.get('norm_score') if not raw_data.get('sort_key', False) else \ raw_data.get('sort_key') run_params = raw_data.get('model').get('run_params', False) if run_params: for key in run_params: run_params.update({ key: str(run_params.get(key)) }) result.get('model_instance').update({'hash_id': model_instance_hash_id}) result.get('test_instance').update({'hash_id': test_instance_hash_id}) result.update({'hash_id': score_instance_hash_id}) result.update({ 'sort_key': sort_key }) if run_params: result.get('model_instance').update({ 'run_params': run_params }) if type(result.get('score')) is bool: result['score'] = float(result.get('score')) return result
scidash-api
/scidash-api-1.3.0.tar.gz/scidash-api-1.3.0/scidash_api/mapper.py
mapper.py
import logging import copy import dpath.util from scidash_api.exceptions import ScidashClientException from scidash_api.validator import ScidashClientDataValidator logger = logging.getLogger(__name__) class ScidashClientMapper(object): """ScidashClientMapper util class for converting raw data from Sciunit to data acceptable in Scidash """ # Expected output format OUTPUT_SCHEME = { 'score_class': { 'class_name': None, 'url': None }, 'model_instance': { 'model_class': { 'class_name': None, 'url': '', 'capabilities': [] }, 'backend': None, 'hash_id': None, 'attributes': {}, 'name': None, 'run_params': {}, 'url': None }, 'prediction': None, 'raw': None, 'score': None, 'hash_id': None, 'sort_key': None, 'score_type': None, 'summary': None, 'test_instance': { 'description': None, 'test_suites': [], 'hash_id': None, 'test_class': { 'class_name': None, 'url': None }, 'observation': { 'mean': None, 'std': None, 'url': None }, 'verbose': None } } KEYS_MAPPING = [ ( 'score_class/class_name', '_class/name' ), ( 'score_class/url', '_class/url' ), ( 'model_instance/model_class/class_name', 'model/_class/name' ), ( 'model_instance/model_class/url', 'model/_class/url' ), ( 'model_instance/name', 'model/name' ), ( 'model_instance/url', 'model/url' ), ( 'prediction', 'prediction' ), ( 'raw', 'raw' ), ( 'score', 'score' ), ( 'score_type', 'score_type' ), ( 'summary', 'summary' ), ( 'test_instance/description', 'test/description' ), ( 'test_instance/test_class/class_name', 'test/name' ), ( 'test_instance/test_class/url', 'test/_class/url' ), ( 'test_instance/observation', 'test/observation' ), ( 'test_instance/verbose', 'test/verbose' ), ] OPTIONAL_KEYS_MAPPING = [ ( 'model_instance/backend', 'model/backend' ), ( 'model_instance/attrs', 'model/attrs' ) ] def __init__(self): self.errors = [] self.validator = ScidashClientDataValidator() def convert(self, raw_data=None, strict=False): """convert main method for converting :param raw_data:dict with data from sciunit :returns dict """ if raw_data is None: return raw_data if not self.validator.validate_score(raw_data) and strict: raise ScidashClientException('CLIENT -> INVALID DATA: ' '{}'.format(self.validator.get_errors())) elif not self.validator.validate_score(raw_data): logger.error('CLIENT -> INVALID DATA: ' '{}'.format(self.validator.get_errors())) self.errors.append(self.validator.get_errors()) return None result = copy.deepcopy(self.OUTPUT_SCHEME) for item, address in self.KEYS_MAPPING: dpath.util.set(result, item, dpath.util.get(raw_data, address)) for item, address in self.OPTIONAL_KEYS_MAPPING: try: dpath.util.set(result, item, dpath.util.get(raw_data, address)) except KeyError: logger.info("Optional value {} is not found".format(item)) for capability in dpath.util.get(raw_data, 'model/capabilities'): result.get('model_instance').get('model_class') \ .get('capabilities').append({ 'class_name': capability }) try: for test_suite in dpath.util.get(raw_data, 'test/test_suites'): result.get('test_instance').get('test_suites').append({ 'name': test_suite.get('name'), 'hash': test_suite.get('hash') }) except KeyError: pass model_instance_hash_id = '{}_{}'.format( raw_data.get('model').get('hash'), raw_data.get('model').get('_id') ) test_instance_hash_id = '{}_{}'.format( raw_data.get('test').get('hash'), raw_data.get('test').get('_id') ) score_instance_hash_id = '{}_{}'.format( raw_data.get('hash'), raw_data.get('_id') ) sort_key = raw_data.get('norm_score') if not raw_data.get('sort_key', False) else \ raw_data.get('sort_key') run_params = raw_data.get('model').get('run_params', False) if run_params: for key in run_params: run_params.update({ key: str(run_params.get(key)) }) result.get('model_instance').update({'hash_id': model_instance_hash_id}) result.get('test_instance').update({'hash_id': test_instance_hash_id}) result.update({'hash_id': score_instance_hash_id}) result.update({ 'sort_key': sort_key }) if run_params: result.get('model_instance').update({ 'run_params': run_params }) if type(result.get('score')) is bool: result['score'] = float(result.get('score')) return result
0.460532
0.080755
from __future__ import unicode_literals, print_function import json import logging from platform import platform, system import requests import six from scidash_api import settings from scidash_api.mapper import ScidashClientMapper from scidash_api import exceptions from scidash_api import helper logger = logging.getLogger(__name__) class ScidashClient(object): """Base client class for all actions with Scidash API""" def __init__(self, config=None, build_info=None, hostname=None): """__init__ :param config: :param build_info: :param hostname: """ self.token = None self.config = settings.CONFIG self.data = {} self.errors = [] if build_info is None: self.build_info = "{}/{}".format(platform(), system()) else: self.build_info = build_info self.hostname = hostname self.mapper = ScidashClientMapper() if config is not None: self.config.update(config) self.test_config() def test_config(self): """ Check, is config is fine :returns: void :raises: ScidashClientWrongConfigException """ if self.config.get('base_url')[-1] is '/': raise exceptions.ScidashClientWrongConfigException('Remove last ' 'slash ' 'from base_url') def get_headers(self): """ Shortcut for gettings headers for uploading """ return { 'Authorization': 'JWT {}'.format(self.token) } def login(self, username, password): """ Getting API token from Scidash :param username: :param password: """ credentials = { "username": username, "password": password } auth_url = self.config.get('auth_url') base_url = self.config.get('base_url') r = requests.post('{}{}'.format(base_url, auth_url), data=credentials) try: self.token = r.json().get('token') except Exception as e: raise exceptions.ScidashClientException('Authentication' ' Failed: {}'.format(e)) if self.token is None: raise exceptions.ScidashClientException('Authentication Failed: ' '{}'.format(r.json())) return self def set_data(self, data=None): """ Sets data for uploading :param data: :returns: self """ if isinstance(data, six.string_types): data = json.loads(data) elif not isinstance(data, dict): data = json.loads(data.json(add_props=True, string=True)) self.data = self.mapper.convert(data) if self.data is not None: self.data.get('test_instance').update({ "build_info": self.build_info, "hostname": self.hostname }) else: self.errors = self.errors + self.mapper.errors return self def upload_test_score(self, data=None): """ Main method for uploading :returns: urllib3 requests object """ if data is not None: self.set_data(data) if self.data is None: return False files = { 'file': (self.config.get('file_name'), json.dumps(self.data)) } headers = self.get_headers() upload_url = \ self.config.get('upload_url') \ .format(filename=self.config.get('file_name')) base_url = self.config.get('base_url') r = requests.put('{}{}'.format(base_url, upload_url), headers=headers, files=files) if r.status_code == 400 or r.status_code == 500: self.errors.append(r.text) if r.status_code == 400: logger.error('SERVER -> INVALID DATA: ' '{}'.format(self.errors)) if r.status_code == 500: logger.error('SERVER -> SERVER ERROR: ' '{}'.format(self.errors)) return r def upload_score(self, data=None): helper.deprecated(method_name="upload_score()", will_be_removed="2.0.0", replacement="upload_test_score()") return self.upload_test_score(data) def upload_suite_score(self, suite, score_matrix): """upload_suite uploading score matrix with suite information :param suite: :param score_matrix: :returns: urllib3 requests object list """ if isinstance(suite, six.string_types): suite = json.loads(suite) elif not isinstance(suite, dict): suite = json.loads(suite.json(add_props=True, string=True)) if isinstance(score_matrix, six.string_types): score_matrix = json.loads(score_matrix) elif not isinstance(score_matrix, dict): score_matrix = json.loads(score_matrix.json(add_props=True, string=True)) hash_list = [] for test in suite.get('tests'): hash_list.append(test.get('hash')) responses = [] raw_score_list = score_matrix.get('scores') flat_score_list = [score for score_list in raw_score_list for score in score_list] for score in flat_score_list: if score.get('test').get('hash') in hash_list: if 'test_suites' not in score.get('test'): score.get('test').update({ 'test_suites': [] }) score.get('test').get('test_suites').append(suite) responses.append(self.upload_test_score(data=score)) return responses def upload_suite(self, suite, score_matrix): helper.deprecated(method_name="upload_suite()", will_be_removed="2.0.0", replacement="upload_suite_score()") return self.upload_suite_score(suite, score_matrix)
scidash-api
/scidash-api-1.3.0.tar.gz/scidash-api-1.3.0/scidash_api/client.py
client.py
from __future__ import unicode_literals, print_function import json import logging from platform import platform, system import requests import six from scidash_api import settings from scidash_api.mapper import ScidashClientMapper from scidash_api import exceptions from scidash_api import helper logger = logging.getLogger(__name__) class ScidashClient(object): """Base client class for all actions with Scidash API""" def __init__(self, config=None, build_info=None, hostname=None): """__init__ :param config: :param build_info: :param hostname: """ self.token = None self.config = settings.CONFIG self.data = {} self.errors = [] if build_info is None: self.build_info = "{}/{}".format(platform(), system()) else: self.build_info = build_info self.hostname = hostname self.mapper = ScidashClientMapper() if config is not None: self.config.update(config) self.test_config() def test_config(self): """ Check, is config is fine :returns: void :raises: ScidashClientWrongConfigException """ if self.config.get('base_url')[-1] is '/': raise exceptions.ScidashClientWrongConfigException('Remove last ' 'slash ' 'from base_url') def get_headers(self): """ Shortcut for gettings headers for uploading """ return { 'Authorization': 'JWT {}'.format(self.token) } def login(self, username, password): """ Getting API token from Scidash :param username: :param password: """ credentials = { "username": username, "password": password } auth_url = self.config.get('auth_url') base_url = self.config.get('base_url') r = requests.post('{}{}'.format(base_url, auth_url), data=credentials) try: self.token = r.json().get('token') except Exception as e: raise exceptions.ScidashClientException('Authentication' ' Failed: {}'.format(e)) if self.token is None: raise exceptions.ScidashClientException('Authentication Failed: ' '{}'.format(r.json())) return self def set_data(self, data=None): """ Sets data for uploading :param data: :returns: self """ if isinstance(data, six.string_types): data = json.loads(data) elif not isinstance(data, dict): data = json.loads(data.json(add_props=True, string=True)) self.data = self.mapper.convert(data) if self.data is not None: self.data.get('test_instance').update({ "build_info": self.build_info, "hostname": self.hostname }) else: self.errors = self.errors + self.mapper.errors return self def upload_test_score(self, data=None): """ Main method for uploading :returns: urllib3 requests object """ if data is not None: self.set_data(data) if self.data is None: return False files = { 'file': (self.config.get('file_name'), json.dumps(self.data)) } headers = self.get_headers() upload_url = \ self.config.get('upload_url') \ .format(filename=self.config.get('file_name')) base_url = self.config.get('base_url') r = requests.put('{}{}'.format(base_url, upload_url), headers=headers, files=files) if r.status_code == 400 or r.status_code == 500: self.errors.append(r.text) if r.status_code == 400: logger.error('SERVER -> INVALID DATA: ' '{}'.format(self.errors)) if r.status_code == 500: logger.error('SERVER -> SERVER ERROR: ' '{}'.format(self.errors)) return r def upload_score(self, data=None): helper.deprecated(method_name="upload_score()", will_be_removed="2.0.0", replacement="upload_test_score()") return self.upload_test_score(data) def upload_suite_score(self, suite, score_matrix): """upload_suite uploading score matrix with suite information :param suite: :param score_matrix: :returns: urllib3 requests object list """ if isinstance(suite, six.string_types): suite = json.loads(suite) elif not isinstance(suite, dict): suite = json.loads(suite.json(add_props=True, string=True)) if isinstance(score_matrix, six.string_types): score_matrix = json.loads(score_matrix) elif not isinstance(score_matrix, dict): score_matrix = json.loads(score_matrix.json(add_props=True, string=True)) hash_list = [] for test in suite.get('tests'): hash_list.append(test.get('hash')) responses = [] raw_score_list = score_matrix.get('scores') flat_score_list = [score for score_list in raw_score_list for score in score_list] for score in flat_score_list: if score.get('test').get('hash') in hash_list: if 'test_suites' not in score.get('test'): score.get('test').update({ 'test_suites': [] }) score.get('test').get('test_suites').append(suite) responses.append(self.upload_test_score(data=score)) return responses def upload_suite(self, suite, score_matrix): helper.deprecated(method_name="upload_suite()", will_be_removed="2.0.0", replacement="upload_suite_score()") return self.upload_suite_score(suite, score_matrix)
0.615088
0.100879
import math import numbers from cerberus import Validator from scidash_api.exceptions import ScidashClientValidatorException class ValidatorExtended(Validator): def _validate_isnan(self, isnan, field, value): """ Check, is value NaN or not The rule's arguments are validated against this schema: {'type': 'boolean'} """ if not isinstance(value, numbers.Number): return if not isnan and math.isnan(value): self._error(field, "Value can't be NaN") class ScidashClientDataValidator(): errors = None # Validation schema for raw score SCORE_SCHEMA = { '_class': { 'type': 'dict', 'schema': { 'url': { 'type': 'string', 'required': True }, 'name': { 'type': 'string', 'required': True } } }, 'model': { 'type': 'dict', 'schema': { '_class': { 'type': 'dict', 'schema': { 'name': { 'type': 'string' }, 'url': { 'type': 'string', 'required': True } } }, 'attrs': { 'type': 'dict', 'required': False }, 'hash': { 'type': 'string', 'required': True }, '_id': { 'type': 'number', 'required': True }, 'capabilities': { 'type': 'list', 'required': True, 'schema': { 'type': 'string' } }, 'name': { 'type': 'string', 'required': True }, 'run_params': { 'type': 'dict', 'required': False }, 'url': { 'type': 'string', 'required': True } } }, 'observation': { 'type': 'dict', 'required': True }, 'prediction': { 'type': ['number', 'dict'], 'required': True, 'isnan': False }, 'raw': { 'type': 'string', 'required': True }, 'score': { 'type':['number', 'boolean'], 'isnan': False, 'required': True }, 'score_type': { 'type': 'string' }, 'sort_key': { 'type': 'number', 'isnan': False, 'required': False }, 'norm_score': { 'type': 'number', 'isnan': False, 'required': False }, 'summary': { 'type': 'string', 'required': True }, 'hash': { 'type': 'string', 'required': True }, '_id': { 'type': 'number', 'required': True }, 'test': { 'type': 'dict', 'schema': { '_class': { 'type': 'dict', 'schema': { 'name': { 'type': 'string', 'required': True }, 'url': { 'type': 'string', 'required': True } }, 'required': True }, 'description': { 'type': 'string', 'nullable': True, 'required': True }, 'hash': { 'type': 'string', 'required': True }, '_id': { 'type': 'number', 'required': True }, 'name': { 'type': 'string', 'required': True }, 'observation': { 'type': 'dict', 'required': True }, 'verbose': { 'type': 'number', 'isnan': False, 'required': True } } } } def validate_score(self, raw_data): """ Checks, is score raw data valid and can be processed :raw_data: raw data dictionary :returns: boolean """ validator = ValidatorExtended(self.SCORE_SCHEMA) validator.allow_unknown = True valid = validator.validate(raw_data) if not valid: self.errors = validator.errors if not raw_data.get('sort_key', False): if not raw_data.get('norm_score', False): raise ScidashClientValidatorException("sort_key or norm_score" "not found") return valid def get_errors(self): """ Returns errors from last validation procedure, if any """ return self.errors def validate_suite(self, raw_data): raise NotImplementedError("Not implemented yet")
scidash-api
/scidash-api-1.3.0.tar.gz/scidash-api-1.3.0/scidash_api/validator.py
validator.py
import math import numbers from cerberus import Validator from scidash_api.exceptions import ScidashClientValidatorException class ValidatorExtended(Validator): def _validate_isnan(self, isnan, field, value): """ Check, is value NaN or not The rule's arguments are validated against this schema: {'type': 'boolean'} """ if not isinstance(value, numbers.Number): return if not isnan and math.isnan(value): self._error(field, "Value can't be NaN") class ScidashClientDataValidator(): errors = None # Validation schema for raw score SCORE_SCHEMA = { '_class': { 'type': 'dict', 'schema': { 'url': { 'type': 'string', 'required': True }, 'name': { 'type': 'string', 'required': True } } }, 'model': { 'type': 'dict', 'schema': { '_class': { 'type': 'dict', 'schema': { 'name': { 'type': 'string' }, 'url': { 'type': 'string', 'required': True } } }, 'attrs': { 'type': 'dict', 'required': False }, 'hash': { 'type': 'string', 'required': True }, '_id': { 'type': 'number', 'required': True }, 'capabilities': { 'type': 'list', 'required': True, 'schema': { 'type': 'string' } }, 'name': { 'type': 'string', 'required': True }, 'run_params': { 'type': 'dict', 'required': False }, 'url': { 'type': 'string', 'required': True } } }, 'observation': { 'type': 'dict', 'required': True }, 'prediction': { 'type': ['number', 'dict'], 'required': True, 'isnan': False }, 'raw': { 'type': 'string', 'required': True }, 'score': { 'type':['number', 'boolean'], 'isnan': False, 'required': True }, 'score_type': { 'type': 'string' }, 'sort_key': { 'type': 'number', 'isnan': False, 'required': False }, 'norm_score': { 'type': 'number', 'isnan': False, 'required': False }, 'summary': { 'type': 'string', 'required': True }, 'hash': { 'type': 'string', 'required': True }, '_id': { 'type': 'number', 'required': True }, 'test': { 'type': 'dict', 'schema': { '_class': { 'type': 'dict', 'schema': { 'name': { 'type': 'string', 'required': True }, 'url': { 'type': 'string', 'required': True } }, 'required': True }, 'description': { 'type': 'string', 'nullable': True, 'required': True }, 'hash': { 'type': 'string', 'required': True }, '_id': { 'type': 'number', 'required': True }, 'name': { 'type': 'string', 'required': True }, 'observation': { 'type': 'dict', 'required': True }, 'verbose': { 'type': 'number', 'isnan': False, 'required': True } } } } def validate_score(self, raw_data): """ Checks, is score raw data valid and can be processed :raw_data: raw data dictionary :returns: boolean """ validator = ValidatorExtended(self.SCORE_SCHEMA) validator.allow_unknown = True valid = validator.validate(raw_data) if not valid: self.errors = validator.errors if not raw_data.get('sort_key', False): if not raw_data.get('norm_score', False): raise ScidashClientValidatorException("sort_key or norm_score" "not found") return valid def get_errors(self): """ Returns errors from last validation procedure, if any """ return self.errors def validate_suite(self, raw_data): raise NotImplementedError("Not implemented yet")
0.564098
0.182881
# Sci-dat: Download Annotate TCGA [![codecov.io](https://codecov.io/github/ArianeMora/scidat/coverage.svg?branch=master)](https://codecov.io/github/ArianeMora/scidat?branch=master) [![PyPI](https://img.shields.io/pypi/v/scidat)](https://pypi.org/project/scidat/) A package developed to enable the download an annotation of TCGA data from `https://portal.gdc.cancer.gov/` ## Docs https://arianemora.github.io/scidat/ ## Install ``` pip install scidat ``` ## Use ### API The API combines the functions in Download and Annotation. It removes some of the ability to set specific directories etc but makes it easier to perform the functions. See example notebook for how we get the following from the TCGA site: ``` 1. manifest_file 2. gdc_client 3. clinical_file 4. sample_file ``` ``` api = API(manifest_file, gdc_client, clinical_file, sample_file, requires_lst=None, clin_cols=None, max_cnt=100, sciutil=None, split_manifest_dir='.', download_dir='.', meta_dir='.', sep='_') ``` Step 1. Download manifest data ``` # Downloads every file using default parameters in the manifest file api.download_data_from_manifest() # This will also unzip and copy the files all into one directory ``` Step 2. Annotation ``` # Builds the annotation information api.build_annotation() ``` Step 3. Download mutation data ``` # Downloads all the mutation data for all the cases in the clinical_file api.download_mutation_data() ``` Step 4. Generate RNAseq dataframe ``` # Generates the RNA dataframe from the downloaded folder api.build_rna_df() ``` Step 5. Get cases that have any mutations or specific mutations ``` # Returns a list of cases that have mutations (either in any gene if gene_list = None or in specific genes) list_of_cases = api.get_cases_with_mutations(gene_list=None, id_type='symbol') # Get genes with a small deletion filter_col = 'ssm.consequence.0.transcript.gene.symbol' genes = api.get_mutation_values_on_filter(filter_col, ['Small deletion'], 'ssm.mutation_subtype') # Get genes with a specifc genomic change: ssm.genomic_dna_change filter_col = 'case_id' cases = api.get_mutation_values_on_filter(filter_col, ['chr13:g.45340134A>G'], 'ssm.genomic_dna_change') ``` Step 6. Get cases with specific metadata information Metadata list: ``` submitter_id project_id age_at_index gender race vital_status tumor_stage normal_samples tumor_samples case_files tumor_stage_num example: {'gender': ['female'], 'tumor_stage_num': [1, 2]} ``` Method can be `any` i.e. it satisfies any of the conditions, or `all`, a case has to satisfy all the conditions in the meta_dict ``` # Returns cases that have the chosen metadata information e.g. gender, race, tumour_stage_num cases_list = api.get_cases_with_meta(meta: dict, method="all") ``` Step 7. Get genes with mutations ``` # Returns a list of genes with mutations for specific cases list_of_genes = api.get_genes_with_mutations(case_ids=None, id_type='symbol') ``` Step 8. Get values from the dataframe ``` # Returns the values, columns, dataframe of a subset of the RNAseq dataframe values, columns, dataframe = get_values_from_df(df: pd.DataFrame, gene_id_column: str, case_ids=None, gene_ids=None, column_name_includes=None, column_name_method="all") ``` ### Download ``` # Downloads data using a manifest file download = Download(manifest_file, split_manifest_dir, download_dir, gdc_client, max_cnt=100) download.download() ``` ``` # Downloads data from API to complement data from manifest file # example datatype = mutation (this is the only one implemented for now) download.download_data_using_api(case_ids: list, data_type: str) ``` ### Annotate ** Generate annotation using clinical information from TCGA ** ``` annotator = Annotate(output_dir: str, clinical_file: str, sample_file: str, manifest_file: str, file_types: list, sep='_', clin_cols=None) # Generate the annotate dataframe annotator.build_annotation() # Save the dataframe to a csv file annotator.save_annotation(output_directory: str, filename: str) # Save the clinical information to a csv file annotator.save_annotated_clinical_df(output_directory: str, filename: str) ``` ** Download mutation data for the cases of interest ** Note we first need to download the data using the `download_data_using_api` from above. ``` annotator.build_mutation_df(mutation_dir) # Get that dataframe mutation_df = annotator.get_mutation_df() # Save the mutation dataframe to a csv annotator.save_mutation_df(output_directory: str, filename: str) ```
scidat
/scidat-1.0.6.tar.gz/scidat-1.0.6/README.md
README.md
pip install scidat 1. manifest_file 2. gdc_client 3. clinical_file 4. sample_file api = API(manifest_file, gdc_client, clinical_file, sample_file, requires_lst=None, clin_cols=None, max_cnt=100, sciutil=None, split_manifest_dir='.', download_dir='.', meta_dir='.', sep='_') # Downloads every file using default parameters in the manifest file api.download_data_from_manifest() # This will also unzip and copy the files all into one directory # Builds the annotation information api.build_annotation() # Downloads all the mutation data for all the cases in the clinical_file api.download_mutation_data() # Generates the RNA dataframe from the downloaded folder api.build_rna_df() # Returns a list of cases that have mutations (either in any gene if gene_list = None or in specific genes) list_of_cases = api.get_cases_with_mutations(gene_list=None, id_type='symbol') # Get genes with a small deletion filter_col = 'ssm.consequence.0.transcript.gene.symbol' genes = api.get_mutation_values_on_filter(filter_col, ['Small deletion'], 'ssm.mutation_subtype') # Get genes with a specifc genomic change: ssm.genomic_dna_change filter_col = 'case_id' cases = api.get_mutation_values_on_filter(filter_col, ['chr13:g.45340134A>G'], 'ssm.genomic_dna_change') submitter_id project_id age_at_index gender race vital_status tumor_stage normal_samples tumor_samples case_files tumor_stage_num example: {'gender': ['female'], 'tumor_stage_num': [1, 2]} # Returns cases that have the chosen metadata information e.g. gender, race, tumour_stage_num cases_list = api.get_cases_with_meta(meta: dict, method="all") # Returns a list of genes with mutations for specific cases list_of_genes = api.get_genes_with_mutations(case_ids=None, id_type='symbol') # Returns the values, columns, dataframe of a subset of the RNAseq dataframe values, columns, dataframe = get_values_from_df(df: pd.DataFrame, gene_id_column: str, case_ids=None, gene_ids=None, column_name_includes=None, column_name_method="all") # Downloads data using a manifest file download = Download(manifest_file, split_manifest_dir, download_dir, gdc_client, max_cnt=100) download.download() # Downloads data from API to complement data from manifest file # example datatype = mutation (this is the only one implemented for now) download.download_data_using_api(case_ids: list, data_type: str) annotator = Annotate(output_dir: str, clinical_file: str, sample_file: str, manifest_file: str, file_types: list, sep='_', clin_cols=None) # Generate the annotate dataframe annotator.build_annotation() # Save the dataframe to a csv file annotator.save_annotation(output_directory: str, filename: str) # Save the clinical information to a csv file annotator.save_annotated_clinical_df(output_directory: str, filename: str) annotator.build_mutation_df(mutation_dir) # Get that dataframe mutation_df = annotator.get_mutation_df() # Save the mutation dataframe to a csv annotator.save_mutation_df(output_directory: str, filename: str)
0.740456
0.971402
SciDB-Bridge: Python Library to access externally stored SciDB data =================================================================== .. image:: https://img.shields.io/badge/SciDB-22.5-blue.svg :target: https://paradigm4.atlassian.net/wiki/spaces/scidb/pages/2828833854/22.5+Release+Notes .. image:: https://img.shields.io/badge/arrow-11.0.0-blue.svg :target: https://arrow.apache.org/release/11.0.0.html Requirements ------------ - Python ``3.5.x``, ``3.6.x``, ``3.7.x``, ``3.8.x``, ``3.9.x``, or ``3.10.x`` - SciDB ``19.11`` or newer - SciDB-Py ``19.11.4`` or newer - Apache PyArrow ``5.0.0`` up to ``11.0.0`` - Boto3 ``1.14.12`` for Amazon Simple Storage Service (S3) support Installation ------------ Install latest release:: pip install scidb-bridge Install development version from GitHub:: pip install git+http://github.com/paradigm4/bridge.git#subdirectory=py_pkg Contributing ------------ Check code style before committing code .. code:: bash pip install pycodestyle pycodestyle py_pkg For Visual Studio Code see `Linting Python in Visual Studio Code <https://code.visualstudio.com/docs/python/linting>`_
scidb-bridge
/scidb-bridge-19.11.6.tar.gz/scidb-bridge-19.11.6/README.rst
README.rst
SciDB-Bridge: Python Library to access externally stored SciDB data =================================================================== .. image:: https://img.shields.io/badge/SciDB-22.5-blue.svg :target: https://paradigm4.atlassian.net/wiki/spaces/scidb/pages/2828833854/22.5+Release+Notes .. image:: https://img.shields.io/badge/arrow-11.0.0-blue.svg :target: https://arrow.apache.org/release/11.0.0.html Requirements ------------ - Python ``3.5.x``, ``3.6.x``, ``3.7.x``, ``3.8.x``, ``3.9.x``, or ``3.10.x`` - SciDB ``19.11`` or newer - SciDB-Py ``19.11.4`` or newer - Apache PyArrow ``5.0.0`` up to ``11.0.0`` - Boto3 ``1.14.12`` for Amazon Simple Storage Service (S3) support Installation ------------ Install latest release:: pip install scidb-bridge Install development version from GitHub:: pip install git+http://github.com/paradigm4/bridge.git#subdirectory=py_pkg Contributing ------------ Check code style before committing code .. code:: bash pip install pycodestyle pycodestyle py_pkg For Visual Studio Code see `Linting Python in Visual Studio Code <https://code.visualstudio.com/docs/python/linting>`_
0.79542
0.340842
import boto3 import os import pyarrow import pyarrow.parquet import urllib.parse import shutil class Driver: default_format = 'arrow' default_compression = 'lz4' index_format = 'arrow' index_compression = 'lz4' _s3_client = None _s3_resource = None @staticmethod def s3_client(): if Driver._s3_client is None: Driver._s3_client = boto3.client('s3') return Driver._s3_client @staticmethod def s3_resource(): if Driver._s3_resource is None: Driver._s3_resource = boto3.resource('s3') return Driver._s3_resource @staticmethod def list(url): parts = urllib.parse.urlparse(url) # S3 if parts.scheme == 's3': bucket = parts.netloc key = parts.path[1:] + '/' pages = Driver.s3_client().get_paginator( 'list_objects_v2').paginate(Bucket=bucket, Prefix=key) for page in pages: if 'Contents' in page.keys(): for obj in page['Contents']: yield 's3://{}/{}'.format(bucket, obj['Key']) # File System elif parts.scheme == 'file': path = os.path.join(parts.netloc, parts.path) for fn in os.listdir(path): if os.path.isfile(os.path.join(path, fn)): yield 'file://' + os.path.join(path, fn) else: raise Exception('URL {} not supported'.format(url)) @staticmethod def init_array(url): parts = urllib.parse.urlparse(url) # S3 if parts.scheme == 's3': pass # File System elif parts.scheme == 'file': path = os.path.join(parts.netloc, parts.path) os.makedirs(path, exist_ok=True) os.mkdir(os.path.join(path, 'index')) os.mkdir(os.path.join(path, 'chunks')) else: raise Exception('URL {} not supported'.format(url)) @staticmethod def read_metadata(url): parts = urllib.parse.urlparse(url) # S3 if parts.scheme == 's3': bucket = parts.netloc key = parts.path[1:] + '/metadata' obj = Driver.s3_client().get_object(Bucket=bucket, Key=key) return obj['Body'].read().decode('utf-8') # File System elif parts.scheme == 'file': path = os.path.join(parts.netloc, parts.path, 'metadata') return open(path).read() else: raise Exception('URL {} not supported'.format(url)) @staticmethod def write_metadata(url, metadata): parts = urllib.parse.urlparse(url) # S3 if parts.scheme == 's3': bucket = parts.netloc key = parts.path[1:] + '/metadata' Driver.s3_client().put_object(Body=metadata, Bucket=bucket, Key=key) # File System elif parts.scheme == 'file': path = os.path.join(parts.netloc, parts.path, 'metadata') with open(path, 'w') as f: f.write(metadata) else: raise Exception('URL {} not supported'.format(url)) @staticmethod def read_table(url, format=default_format, compression=default_compression): parts = urllib.parse.urlparse(url) # S3 if parts.scheme == 's3': bucket = parts.netloc key = parts.path[1:] obj = Driver.s3_client().get_object(Bucket=bucket, Key=key) buf = pyarrow.py_buffer(obj['Body'].read()) if format == 'arrow': strm = pyarrow.input_stream(buf, compression=compression) return pyarrow.RecordBatchStreamReader(strm).read_all() elif format == 'parquet': return pyarrow.parquet.read_table(buf) else: raise Exception('Format {} not supported'.format(format)) # File System elif parts.scheme == 'file': path = os.path.join(parts.netloc, parts.path) if format == 'arrow': strm = pyarrow.input_stream(path, compression=compression) return pyarrow.RecordBatchStreamReader(strm).read_all() if format == 'parquet': return pyarrow.parquet.read_table(path) else: raise Exception('Format {} not supported'.format(format)) else: raise Exception('URL {} not supported'.format(url)) @staticmethod def write_table(table, url, schema, format=default_format, compression=default_compression): parts = urllib.parse.urlparse(url) # S3 if parts.scheme == 's3': bucket = parts.netloc key = parts.path[1:] buf = pyarrow.BufferOutputStream() if format == 'arrow': stream = pyarrow.output_stream(buf, compression=compression) writer = pyarrow.RecordBatchStreamWriter(stream, schema) writer.write_table(table) writer.close() stream.close() elif format == 'parquet': pyarrow.parquet.write_table( table, buf, compression=compression) else: raise Exception('Format {} not supported'.format(format)) Driver.s3_client().put_object(Body=buf.getvalue().to_pybytes(), Bucket=bucket, Key=key) # File System elif parts.scheme == 'file': path = os.path.join(parts.netloc, parts.path) if format == 'arrow': stream = pyarrow.output_stream(path, compression=compression) writer = pyarrow.RecordBatchStreamWriter(stream, schema) writer.write_table(table) writer.close() stream.close() elif format == 'parquet': pyarrow.parquet.write_table( table, path, compression=compression) else: raise Exception('Format {} not supported'.format(format)) else: raise Exception('URL {} not supported'.format(url)) @staticmethod def delete_all(url): parts = urllib.parse.urlparse(url) # S3 if parts.scheme == 's3': bucket = parts.netloc key = parts.path[1:] Driver.s3_resource().Bucket( bucket).objects.filter(Prefix=key).delete() # File System elif parts.scheme == 'file': path = os.path.join(parts.netloc, parts.path) for fn in os.listdir(path): tfn = os.path.join(path, fn) if os.path.isdir(tfn): shutil.rmtree(tfn) else: os.unlink(tfn) else: raise Exception('URL {} not supported'.format(url)) @staticmethod def delete(url): parts = urllib.parse.urlparse(url) # S3 if parts.scheme == 's3': bucket = parts.netloc key = parts.path[1:] Driver.s3_client().delete_object(Bucket=bucket, Key=key) # File System elif parts.scheme == 'file': path = os.path.join(parts.netloc, parts.path) os.unlink(path) else: raise Exception('URL {} not supported'.format(url))
scidb-bridge
/scidb-bridge-19.11.6.tar.gz/scidb-bridge-19.11.6/scidbbridge/driver.py
driver.py
import boto3 import os import pyarrow import pyarrow.parquet import urllib.parse import shutil class Driver: default_format = 'arrow' default_compression = 'lz4' index_format = 'arrow' index_compression = 'lz4' _s3_client = None _s3_resource = None @staticmethod def s3_client(): if Driver._s3_client is None: Driver._s3_client = boto3.client('s3') return Driver._s3_client @staticmethod def s3_resource(): if Driver._s3_resource is None: Driver._s3_resource = boto3.resource('s3') return Driver._s3_resource @staticmethod def list(url): parts = urllib.parse.urlparse(url) # S3 if parts.scheme == 's3': bucket = parts.netloc key = parts.path[1:] + '/' pages = Driver.s3_client().get_paginator( 'list_objects_v2').paginate(Bucket=bucket, Prefix=key) for page in pages: if 'Contents' in page.keys(): for obj in page['Contents']: yield 's3://{}/{}'.format(bucket, obj['Key']) # File System elif parts.scheme == 'file': path = os.path.join(parts.netloc, parts.path) for fn in os.listdir(path): if os.path.isfile(os.path.join(path, fn)): yield 'file://' + os.path.join(path, fn) else: raise Exception('URL {} not supported'.format(url)) @staticmethod def init_array(url): parts = urllib.parse.urlparse(url) # S3 if parts.scheme == 's3': pass # File System elif parts.scheme == 'file': path = os.path.join(parts.netloc, parts.path) os.makedirs(path, exist_ok=True) os.mkdir(os.path.join(path, 'index')) os.mkdir(os.path.join(path, 'chunks')) else: raise Exception('URL {} not supported'.format(url)) @staticmethod def read_metadata(url): parts = urllib.parse.urlparse(url) # S3 if parts.scheme == 's3': bucket = parts.netloc key = parts.path[1:] + '/metadata' obj = Driver.s3_client().get_object(Bucket=bucket, Key=key) return obj['Body'].read().decode('utf-8') # File System elif parts.scheme == 'file': path = os.path.join(parts.netloc, parts.path, 'metadata') return open(path).read() else: raise Exception('URL {} not supported'.format(url)) @staticmethod def write_metadata(url, metadata): parts = urllib.parse.urlparse(url) # S3 if parts.scheme == 's3': bucket = parts.netloc key = parts.path[1:] + '/metadata' Driver.s3_client().put_object(Body=metadata, Bucket=bucket, Key=key) # File System elif parts.scheme == 'file': path = os.path.join(parts.netloc, parts.path, 'metadata') with open(path, 'w') as f: f.write(metadata) else: raise Exception('URL {} not supported'.format(url)) @staticmethod def read_table(url, format=default_format, compression=default_compression): parts = urllib.parse.urlparse(url) # S3 if parts.scheme == 's3': bucket = parts.netloc key = parts.path[1:] obj = Driver.s3_client().get_object(Bucket=bucket, Key=key) buf = pyarrow.py_buffer(obj['Body'].read()) if format == 'arrow': strm = pyarrow.input_stream(buf, compression=compression) return pyarrow.RecordBatchStreamReader(strm).read_all() elif format == 'parquet': return pyarrow.parquet.read_table(buf) else: raise Exception('Format {} not supported'.format(format)) # File System elif parts.scheme == 'file': path = os.path.join(parts.netloc, parts.path) if format == 'arrow': strm = pyarrow.input_stream(path, compression=compression) return pyarrow.RecordBatchStreamReader(strm).read_all() if format == 'parquet': return pyarrow.parquet.read_table(path) else: raise Exception('Format {} not supported'.format(format)) else: raise Exception('URL {} not supported'.format(url)) @staticmethod def write_table(table, url, schema, format=default_format, compression=default_compression): parts = urllib.parse.urlparse(url) # S3 if parts.scheme == 's3': bucket = parts.netloc key = parts.path[1:] buf = pyarrow.BufferOutputStream() if format == 'arrow': stream = pyarrow.output_stream(buf, compression=compression) writer = pyarrow.RecordBatchStreamWriter(stream, schema) writer.write_table(table) writer.close() stream.close() elif format == 'parquet': pyarrow.parquet.write_table( table, buf, compression=compression) else: raise Exception('Format {} not supported'.format(format)) Driver.s3_client().put_object(Body=buf.getvalue().to_pybytes(), Bucket=bucket, Key=key) # File System elif parts.scheme == 'file': path = os.path.join(parts.netloc, parts.path) if format == 'arrow': stream = pyarrow.output_stream(path, compression=compression) writer = pyarrow.RecordBatchStreamWriter(stream, schema) writer.write_table(table) writer.close() stream.close() elif format == 'parquet': pyarrow.parquet.write_table( table, path, compression=compression) else: raise Exception('Format {} not supported'.format(format)) else: raise Exception('URL {} not supported'.format(url)) @staticmethod def delete_all(url): parts = urllib.parse.urlparse(url) # S3 if parts.scheme == 's3': bucket = parts.netloc key = parts.path[1:] Driver.s3_resource().Bucket( bucket).objects.filter(Prefix=key).delete() # File System elif parts.scheme == 'file': path = os.path.join(parts.netloc, parts.path) for fn in os.listdir(path): tfn = os.path.join(path, fn) if os.path.isdir(tfn): shutil.rmtree(tfn) else: os.unlink(tfn) else: raise Exception('URL {} not supported'.format(url)) @staticmethod def delete(url): parts = urllib.parse.urlparse(url) # S3 if parts.scheme == 's3': bucket = parts.netloc key = parts.path[1:] Driver.s3_client().delete_object(Bucket=bucket, Key=key) # File System elif parts.scheme == 'file': path = os.path.join(parts.netloc, parts.path) os.unlink(path) else: raise Exception('URL {} not supported'.format(url))
0.337313
0.099733
import boto3 import itertools import os import os.path import pandas import pyarrow import scidbpy from .driver import Driver from .coord import coord2delta, delta2coord __version__ = '19.11.6' type_map_pyarrow = dict( [(t.__str__(), t) for t in (pyarrow.binary(), pyarrow.bool_(), pyarrow.int16(), pyarrow.int32(), pyarrow.int64(), pyarrow.int8(), pyarrow.string(), pyarrow.uint16(), pyarrow.uint32(), pyarrow.uint64(), pyarrow.uint8())] + [('char', pyarrow.string()), ('datetime', pyarrow.timestamp('s')), ('double', pyarrow.float64()), ('float', pyarrow.float32())]) class Array(object): """Wrapper for SciDB array stored externally Constructor parameters: :param string url: URL of the SciDB array. Supported schemas are ``s3://`` and ``file://``. :param string schema: SciDB array schema for creating a new array. Can be specified as ``string`` or ``scidbpy.Schema`` """ def __init__(self, url, schema=None, format='arrow', compression='lz4', namespace='public', index_split=100000): self.url = url if schema is None: self._metadata = None self._schema = None else: # Create new array if type(schema) is scidbpy.Schema: self._schema = schema else: self._schema = scidbpy.Schema.fromstring(schema) self._metadata = { 'attribute': 'ALL', 'format': format, 'version': '1', 'schema': self._schema.__str__(), 'compression': None if compression == 'none' else compression, 'index_split': index_split, 'namespace': namespace } Driver.init_array(url) Driver.write_metadata( url, Array.metadata_to_string(self._metadata.copy())) def __iter__(self): return (i for i in (self.url, )) def __eq__(self): return tuple(self) == tuple(other) def __repr__(self): return ('{}(url={!r})').format(type(self).__name__, *self) def __str__(self): return self.url @property def metadata(self): if self._metadata is None: self._metadata = Array.metadata_from_string( Driver.read_metadata(self.url)) return self._metadata @property def schema(self): if self._schema is None: self._schema = scidbpy.Schema.fromstring( self.metadata['schema']) return self._schema def delete(self): # Delete metadata file first, deleting large arrays could take sometime Driver.delete('{}/metadata'.format(self.url)) Driver.delete_all(self.url) def read_index(self): # Read index as Arrow Table tables = [] for index_url in Driver.list('{}/index'.format(self.url)): tables.append( Driver.read_table(index_url, Driver.index_format, Driver.index_compression)) if len(tables): table = pyarrow.concat_tables(tables) # Convert Arrow Table index to Pandas DataFrame index = table.to_pandas(split_blocks=True, self_destruct=True) # https://arrow.apache.org/docs/python/pandas.html#reducing- # memory-use-i del table index.sort_values(by=list(index.columns), inplace=True, ignore_index=True) return index return pandas.DataFrame() def build_index(self): dims = self.schema.dims index = pandas.DataFrame.from_records( map(lambda x: Array.url_to_coords(x, dims), Driver.list('{}/chunks'.format(self.url))), columns=[d.name for d in dims]) index.sort_values(by=list(index.columns), inplace=True, ignore_index=True) return index def write_index(self, index, split_size=None): # Check for a DataFrame if not isinstance(index, pandas.DataFrame): raise Exception("Value provided as argument " + "is not a Pandas DataFrame") # Check index columns matches array dimentions dim_names = [d.name for d in self.schema.dims] if len(index.columns) != len(dim_names): raise Exception( ("Index columns count {} does not match " + "array dimensions count {}").format(len(index.columns), len(dim_names))) if not (index.columns == dim_names).all(): raise Exception( ("Index columns {} does not match " + "array dimensions {}").format(index.columns, dim_names)) # Check for coordinates outside chunk boundaries for dim in self.schema.dims: vals = index[dim.name] if any(vals < dim.low_value): raise Exception("Index values smaller than " + "lower bound on dimension " + dim.name) if dim.high_value != '*' and any(vals > dim.high_value): raise Exception("Index values bigger than " + "upper bound on dimension " + dim.name) if (dim.chunk_length != '*' and any((vals - dim.low_value) % dim.chunk_length != 0)): raise Exception("Index values misaligned " + "with chunk size on dimension " + dim.name) # Check for duplicates if index.duplicated().any(): raise Exception("Duplicate entries") index.sort_values(by=list(index.columns), inplace=True, ignore_index=True) if split_size is None: split_size = int(self.metadata['index_split']) index_schema = pyarrow.schema( [(d.name, pyarrow.int64(), False) for d in self.schema.dims]) chunk_size = split_size // len(index.columns) # Remove existing index Driver.delete_all('{}/index'.format(self.url)) # Write new index i = 0 for offset in range(0, len(index), chunk_size): table = pyarrow.Table.from_pandas( index.iloc[offset:offset + chunk_size], index_schema) Driver.write_table(table, '{}/index/{}'.format(self.url, i), index_schema, Driver.index_format, Driver.index_compression) i += 1 def get_chunk(self, *argv): return Chunk(self, *argv) @staticmethod def metadata_from_string(input): res = dict(ln.split('\t') for ln in input.strip().split('\n')) try: if res['compression'] == 'none': res['compression'] = None except KeyError: pass return res @staticmethod def metadata_to_string(input): if input['compression'] is None: input['compression'] = 'none' return '\n'.join('{}\t{}'.format(k, v) for (k, v) in input.items()) + '\n' @staticmethod def coords_to_url_suffix(coords, dims): parts = ['c'] for (coord, dim) in zip(coords, dims): if (coord < dim.low_value or dim.high_value != '*' and coord > dim.high_value): raise Exception( ('Coordinate value, {}, is outside of dimension range, ' '[{}:{}]').format( coord, dim.low_value, dim.high_value)) part = coord - dim.low_value if part % dim.chunk_length != 0: raise Exception( ('Coordinate value, {}, is not a multiple of ' + 'chunk size, {}').format( coord, dim.chunk_length)) part = part // dim.chunk_length parts.append(part) return '_'.join(map(str, parts)) @staticmethod def url_to_coords(url, dims): part = url[url.rindex('/') + 1:] return tuple( map(lambda x: int(x[0]) * x[1].chunk_length + x[1].low_value, zip(part.split('_')[1:], dims))) class Chunk(object): """Wrapper for SciDB array chunk stored externally""" def __init__(self, array, *argv): self.array = array self.coords = argv if (len(argv) == 1 and type(argv[0]) is pandas.core.series.Series): argv = tuple(argv[0]) dims = self.array.schema.dims if len(argv) != len(dims): raise Exception( ('Number of arguments, {}, does not match the number of ' + 'dimensions, {}. Please specify one start coordiante for ' + 'each dimension.').format(len(argv), len(self.array.schema.dims))) part = Array.coords_to_url_suffix(self.coords, dims) self.url = '{}/chunks/{}'.format(self.array.url, part) self._table = None def __iter__(self): return (i for i in (self.array, self.url)) def __eq__(self, other): return tuple(self) == tuple(other) def __repr__(self): return ('{}(array={!r}, url={!r})').format( type(self).__name__, *self) def __str__(self): return self.url @property def table(self): if self._table is None: self._table = Driver.read_table( self.url, format=self.array.metadata['format'], compression=self.array.metadata['compression']) return self._table def to_pandas(self): return delta2coord( self.table.to_pandas(), self.array.schema, self.coords) def from_pandas(self, pd): # Check for a DataFrame if not isinstance(pd, pandas.DataFrame): raise Exception("Value provided as argument " + "is not a Pandas DataFrame") # Check for empty DataFrame if pd.empty: raise Exception("Pandas DataFrame is empty. " + "Nothing to do.") # Check that columns match array schema dims = [d.name for d in self.array.schema.dims] columns = [a.name for a in self.array.schema.atts] + dims if len(pd.columns) != len(columns): raise Exception( ("Argument columns count {} do not match " + "array attributes plus dimensions count {}").format( len(pd.columns), len(columns))) if sorted(list(pd.columns)) != sorted(columns): raise Exception( ("Argument columns {} does not match " + "array schema {}").format(pd.columns, columns)) # Use schema order pd = pd[columns] # Sort by dimensions pd = pd.sort_values(by=dims, ignore_index=True) # Check for duplicates if pd.duplicated(subset=dims).any(): raise Exception("Duplicate coordinates") # Check for coordinates outside chunk boundaries for (coord, dim) in zip(self.coords, self.array.schema.dims): vals = pd[dim.name] if (vals.iloc[0] < coord or vals.iloc[-1] >= coord + dim.chunk_length): raise Exception("Coordinates outside chunk boundaries") # Build schema schema = pyarrow.schema( [(a.name, type_map_pyarrow[a.type_name], not a.not_null) for a in self.array.schema.atts] + [('@delta', pyarrow.int64(), False)]) pd['@delta'] = coord2delta(pd, self.array.schema.dims, self.coords) self._table = pyarrow.Table.from_pandas(pd, schema) self._table = self._table.replace_schema_metadata() def save(self): Driver.write_table(self._table, self.url, self._table.schema, self.array.metadata['format'], self.array.metadata['compression'])
scidb-bridge
/scidb-bridge-19.11.6.tar.gz/scidb-bridge-19.11.6/scidbbridge/__init__.py
__init__.py
import boto3 import itertools import os import os.path import pandas import pyarrow import scidbpy from .driver import Driver from .coord import coord2delta, delta2coord __version__ = '19.11.6' type_map_pyarrow = dict( [(t.__str__(), t) for t in (pyarrow.binary(), pyarrow.bool_(), pyarrow.int16(), pyarrow.int32(), pyarrow.int64(), pyarrow.int8(), pyarrow.string(), pyarrow.uint16(), pyarrow.uint32(), pyarrow.uint64(), pyarrow.uint8())] + [('char', pyarrow.string()), ('datetime', pyarrow.timestamp('s')), ('double', pyarrow.float64()), ('float', pyarrow.float32())]) class Array(object): """Wrapper for SciDB array stored externally Constructor parameters: :param string url: URL of the SciDB array. Supported schemas are ``s3://`` and ``file://``. :param string schema: SciDB array schema for creating a new array. Can be specified as ``string`` or ``scidbpy.Schema`` """ def __init__(self, url, schema=None, format='arrow', compression='lz4', namespace='public', index_split=100000): self.url = url if schema is None: self._metadata = None self._schema = None else: # Create new array if type(schema) is scidbpy.Schema: self._schema = schema else: self._schema = scidbpy.Schema.fromstring(schema) self._metadata = { 'attribute': 'ALL', 'format': format, 'version': '1', 'schema': self._schema.__str__(), 'compression': None if compression == 'none' else compression, 'index_split': index_split, 'namespace': namespace } Driver.init_array(url) Driver.write_metadata( url, Array.metadata_to_string(self._metadata.copy())) def __iter__(self): return (i for i in (self.url, )) def __eq__(self): return tuple(self) == tuple(other) def __repr__(self): return ('{}(url={!r})').format(type(self).__name__, *self) def __str__(self): return self.url @property def metadata(self): if self._metadata is None: self._metadata = Array.metadata_from_string( Driver.read_metadata(self.url)) return self._metadata @property def schema(self): if self._schema is None: self._schema = scidbpy.Schema.fromstring( self.metadata['schema']) return self._schema def delete(self): # Delete metadata file first, deleting large arrays could take sometime Driver.delete('{}/metadata'.format(self.url)) Driver.delete_all(self.url) def read_index(self): # Read index as Arrow Table tables = [] for index_url in Driver.list('{}/index'.format(self.url)): tables.append( Driver.read_table(index_url, Driver.index_format, Driver.index_compression)) if len(tables): table = pyarrow.concat_tables(tables) # Convert Arrow Table index to Pandas DataFrame index = table.to_pandas(split_blocks=True, self_destruct=True) # https://arrow.apache.org/docs/python/pandas.html#reducing- # memory-use-i del table index.sort_values(by=list(index.columns), inplace=True, ignore_index=True) return index return pandas.DataFrame() def build_index(self): dims = self.schema.dims index = pandas.DataFrame.from_records( map(lambda x: Array.url_to_coords(x, dims), Driver.list('{}/chunks'.format(self.url))), columns=[d.name for d in dims]) index.sort_values(by=list(index.columns), inplace=True, ignore_index=True) return index def write_index(self, index, split_size=None): # Check for a DataFrame if not isinstance(index, pandas.DataFrame): raise Exception("Value provided as argument " + "is not a Pandas DataFrame") # Check index columns matches array dimentions dim_names = [d.name for d in self.schema.dims] if len(index.columns) != len(dim_names): raise Exception( ("Index columns count {} does not match " + "array dimensions count {}").format(len(index.columns), len(dim_names))) if not (index.columns == dim_names).all(): raise Exception( ("Index columns {} does not match " + "array dimensions {}").format(index.columns, dim_names)) # Check for coordinates outside chunk boundaries for dim in self.schema.dims: vals = index[dim.name] if any(vals < dim.low_value): raise Exception("Index values smaller than " + "lower bound on dimension " + dim.name) if dim.high_value != '*' and any(vals > dim.high_value): raise Exception("Index values bigger than " + "upper bound on dimension " + dim.name) if (dim.chunk_length != '*' and any((vals - dim.low_value) % dim.chunk_length != 0)): raise Exception("Index values misaligned " + "with chunk size on dimension " + dim.name) # Check for duplicates if index.duplicated().any(): raise Exception("Duplicate entries") index.sort_values(by=list(index.columns), inplace=True, ignore_index=True) if split_size is None: split_size = int(self.metadata['index_split']) index_schema = pyarrow.schema( [(d.name, pyarrow.int64(), False) for d in self.schema.dims]) chunk_size = split_size // len(index.columns) # Remove existing index Driver.delete_all('{}/index'.format(self.url)) # Write new index i = 0 for offset in range(0, len(index), chunk_size): table = pyarrow.Table.from_pandas( index.iloc[offset:offset + chunk_size], index_schema) Driver.write_table(table, '{}/index/{}'.format(self.url, i), index_schema, Driver.index_format, Driver.index_compression) i += 1 def get_chunk(self, *argv): return Chunk(self, *argv) @staticmethod def metadata_from_string(input): res = dict(ln.split('\t') for ln in input.strip().split('\n')) try: if res['compression'] == 'none': res['compression'] = None except KeyError: pass return res @staticmethod def metadata_to_string(input): if input['compression'] is None: input['compression'] = 'none' return '\n'.join('{}\t{}'.format(k, v) for (k, v) in input.items()) + '\n' @staticmethod def coords_to_url_suffix(coords, dims): parts = ['c'] for (coord, dim) in zip(coords, dims): if (coord < dim.low_value or dim.high_value != '*' and coord > dim.high_value): raise Exception( ('Coordinate value, {}, is outside of dimension range, ' '[{}:{}]').format( coord, dim.low_value, dim.high_value)) part = coord - dim.low_value if part % dim.chunk_length != 0: raise Exception( ('Coordinate value, {}, is not a multiple of ' + 'chunk size, {}').format( coord, dim.chunk_length)) part = part // dim.chunk_length parts.append(part) return '_'.join(map(str, parts)) @staticmethod def url_to_coords(url, dims): part = url[url.rindex('/') + 1:] return tuple( map(lambda x: int(x[0]) * x[1].chunk_length + x[1].low_value, zip(part.split('_')[1:], dims))) class Chunk(object): """Wrapper for SciDB array chunk stored externally""" def __init__(self, array, *argv): self.array = array self.coords = argv if (len(argv) == 1 and type(argv[0]) is pandas.core.series.Series): argv = tuple(argv[0]) dims = self.array.schema.dims if len(argv) != len(dims): raise Exception( ('Number of arguments, {}, does not match the number of ' + 'dimensions, {}. Please specify one start coordiante for ' + 'each dimension.').format(len(argv), len(self.array.schema.dims))) part = Array.coords_to_url_suffix(self.coords, dims) self.url = '{}/chunks/{}'.format(self.array.url, part) self._table = None def __iter__(self): return (i for i in (self.array, self.url)) def __eq__(self, other): return tuple(self) == tuple(other) def __repr__(self): return ('{}(array={!r}, url={!r})').format( type(self).__name__, *self) def __str__(self): return self.url @property def table(self): if self._table is None: self._table = Driver.read_table( self.url, format=self.array.metadata['format'], compression=self.array.metadata['compression']) return self._table def to_pandas(self): return delta2coord( self.table.to_pandas(), self.array.schema, self.coords) def from_pandas(self, pd): # Check for a DataFrame if not isinstance(pd, pandas.DataFrame): raise Exception("Value provided as argument " + "is not a Pandas DataFrame") # Check for empty DataFrame if pd.empty: raise Exception("Pandas DataFrame is empty. " + "Nothing to do.") # Check that columns match array schema dims = [d.name for d in self.array.schema.dims] columns = [a.name for a in self.array.schema.atts] + dims if len(pd.columns) != len(columns): raise Exception( ("Argument columns count {} do not match " + "array attributes plus dimensions count {}").format( len(pd.columns), len(columns))) if sorted(list(pd.columns)) != sorted(columns): raise Exception( ("Argument columns {} does not match " + "array schema {}").format(pd.columns, columns)) # Use schema order pd = pd[columns] # Sort by dimensions pd = pd.sort_values(by=dims, ignore_index=True) # Check for duplicates if pd.duplicated(subset=dims).any(): raise Exception("Duplicate coordinates") # Check for coordinates outside chunk boundaries for (coord, dim) in zip(self.coords, self.array.schema.dims): vals = pd[dim.name] if (vals.iloc[0] < coord or vals.iloc[-1] >= coord + dim.chunk_length): raise Exception("Coordinates outside chunk boundaries") # Build schema schema = pyarrow.schema( [(a.name, type_map_pyarrow[a.type_name], not a.not_null) for a in self.array.schema.atts] + [('@delta', pyarrow.int64(), False)]) pd['@delta'] = coord2delta(pd, self.array.schema.dims, self.coords) self._table = pyarrow.Table.from_pandas(pd, schema) self._table = self._table.replace_schema_metadata() def save(self): Driver.write_table(self._table, self.url, self._table.schema, self.array.metadata['format'], self.array.metadata['compression'])
0.603231
0.236913
SciDB-Py: Python Interface to SciDB =================================== .. image:: https://img.shields.io/badge/SciDB-22.5-blue.svg :target: https://paradigm4.atlassian.net/wiki/spaces/scidb/pages/2828833854/22.5+Release+Notes .. image:: https://img.shields.io/badge/arrow-11.0.0-blue.svg :target: https://arrow.apache.org/release/11.0.0.html .. image:: https://github.com/Paradigm4/SciDB-Py/actions/workflows/test-ee.yml/badge.svg :target: https://github.com/Paradigm4/SciDB-Py/actions/workflows/test-ee.yml Version Information ------------------- The major and minor version numbers of SciDB-Py track the major and minor version of SciDB they are compatible with. For example SciDB-Py ``16.9.1``, ``16.9.2`` or ``16.9.10`` are all compatible with SciDB ``16.9.x``. During SciDB ``16.9``, Shim (HTTP service for SciDB) transitioned from query authentication to session authentication. SciDB-Py has been updated to be compatible with the new Shim. Below is the compatibility matrix between SciDB-Py and Shim: =========== ===== SciDB-Py Shim =========== ===== ``16.9.1`` query authentication (old Shim) ``16.9.2`` query authentication (old Shim) ``16.9.10`` session authentication (new Shim) =========== ===== From ``16.9.10`` onwards only Shim with session authentication is supported. Since SciDB-Py Release **16.9.1** (released in `September 2017`) the library has been rewritten entirely from scratch. **16.9.1** and newer versions are **not compatible** with the previous versions of the library. The documentation for the previous versions is available at `SciDB-Py documentation (legacy) <http://scidb-py.readthedocs.io/en/v16.9-legacy/>`_. GitHub pull requests are still accepted for the previous versions, but the code is not actively maintained. Requirements ------------ SciDB ``19.11`` or newer with Shim Python ``3.5.x``, ``3.6.x``, ``3.7.x``, ``3.8.x``, ``3.9.x``, or ``3.10.x`` Required Python packages:: backports.weakref enum34 numpy pandas (see version requirements in setup.py) pyarrow (see version requirements in setup.py) requests six CentOS 6 and Red Hat Enterprise Linux 6 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ CentOS ``6`` and Red Hat Enterprise Linux ``6`` come with Python ``2.6``. SciDB-Py requires Python ``2.7`` or newer (see above). The default Python cannot be upgraded on these operating systems. Instead a different Python version can be installed in parallel using `Software Collections <https://www.softwarecollections.org/en/>`_. For example, `here <https://www.softwarecollections.org/en/scls/rhscl/python27/>`_ are the instructions to install Python ``2.7`` using Software Collections. Installation ------------ Install latest release:: pip install scidb-py Install development version from GitHub:: pip install git+http://github.com/paradigm4/scidb-py.git Documentation ------------- See `SciDB-Py Documentation <http://paradigm4.github.io/SciDB-Py/>`_.
scidb-py
/scidb-py-19.11.6.tar.gz/scidb-py-19.11.6/README.rst
README.rst
SciDB-Py: Python Interface to SciDB =================================== .. image:: https://img.shields.io/badge/SciDB-22.5-blue.svg :target: https://paradigm4.atlassian.net/wiki/spaces/scidb/pages/2828833854/22.5+Release+Notes .. image:: https://img.shields.io/badge/arrow-11.0.0-blue.svg :target: https://arrow.apache.org/release/11.0.0.html .. image:: https://github.com/Paradigm4/SciDB-Py/actions/workflows/test-ee.yml/badge.svg :target: https://github.com/Paradigm4/SciDB-Py/actions/workflows/test-ee.yml Version Information ------------------- The major and minor version numbers of SciDB-Py track the major and minor version of SciDB they are compatible with. For example SciDB-Py ``16.9.1``, ``16.9.2`` or ``16.9.10`` are all compatible with SciDB ``16.9.x``. During SciDB ``16.9``, Shim (HTTP service for SciDB) transitioned from query authentication to session authentication. SciDB-Py has been updated to be compatible with the new Shim. Below is the compatibility matrix between SciDB-Py and Shim: =========== ===== SciDB-Py Shim =========== ===== ``16.9.1`` query authentication (old Shim) ``16.9.2`` query authentication (old Shim) ``16.9.10`` session authentication (new Shim) =========== ===== From ``16.9.10`` onwards only Shim with session authentication is supported. Since SciDB-Py Release **16.9.1** (released in `September 2017`) the library has been rewritten entirely from scratch. **16.9.1** and newer versions are **not compatible** with the previous versions of the library. The documentation for the previous versions is available at `SciDB-Py documentation (legacy) <http://scidb-py.readthedocs.io/en/v16.9-legacy/>`_. GitHub pull requests are still accepted for the previous versions, but the code is not actively maintained. Requirements ------------ SciDB ``19.11`` or newer with Shim Python ``3.5.x``, ``3.6.x``, ``3.7.x``, ``3.8.x``, ``3.9.x``, or ``3.10.x`` Required Python packages:: backports.weakref enum34 numpy pandas (see version requirements in setup.py) pyarrow (see version requirements in setup.py) requests six CentOS 6 and Red Hat Enterprise Linux 6 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ CentOS ``6`` and Red Hat Enterprise Linux ``6`` come with Python ``2.6``. SciDB-Py requires Python ``2.7`` or newer (see above). The default Python cannot be upgraded on these operating systems. Instead a different Python version can be installed in parallel using `Software Collections <https://www.softwarecollections.org/en/>`_. For example, `here <https://www.softwarecollections.org/en/scls/rhscl/python27/>`_ are the instructions to install Python ``2.7`` using Software Collections. Installation ------------ Install latest release:: pip install scidb-py Install development version from GitHub:: pip install git+http://github.com/paradigm4/scidb-py.git Documentation ------------- See `SciDB-Py Documentation <http://paradigm4.github.io/SciDB-Py/>`_.
0.856902
0.396156
SciDB-Strm: Python Library for SciDB Streaming ============================================== .. image:: https://img.shields.io/badge/SciDB-22.5-blue.svg :target: https://paradigm4.atlassian.net/wiki/spaces/scidb/pages/2828833854/22.5+Release+Notes .. image:: https://img.shields.io/badge/arrow-11.0.0-blue.svg :target: https://arrow.apache.org/release/11.0.0.html .. image:: https://github.com/Paradigm4/stream/actions/workflows/test.yml/badge.svg :target: https://github.com/Paradigm4/stream/actions/workflows/test.yml Requirements ------------ SciDB ``19.11`` or newer. Apache Arrow ``5.0.0`` to ``11.0.0``. Python ``3.6.x``, ``3.7.x``, ``3.8.x``, ``3.9.x``, or ``3.10.x`` Required Python packages:: dill pandas pyarrow Installation ------------ Install latest release:: pip install scidb-strm Install development version from GitHub:: pip install git+http://github.com/paradigm4/stream.git#subdirectory=py_pkg The Python library needs to be installed on the SciDB server. The library needs to be installed on the client as well, if Python code is to be send from the client to the server. SciDB-Strm Python API and Examples ---------------------------------- Once installed the *SciDB-Strm* Python library can be imported with ``import scidbstrm``. The library provides a high and low-level access to the SciDB ``stream`` operator as well as the ability to send Python code to the SciDB server. High-level access is provided by the function ``map``: ``map(map_fun, finalize_fun=None)`` Read SciDB chunks. For each chunk, call ``map_fun`` and stream its result back to SciDB. If ``finalize_fun`` is provided, call it after all the chunks have been processed. See `0-iquery.txt <examples/0-iquery.txt>`_ for a succinct example using the ``map`` function. See `1-map-finalize.py <examples/1-map-finalize.py>`_ for an example using the ``map`` function. The Python script has to be copied onto the SciDB instance. Python code can be send to the SciDB server for execution using the ``pack_func`` and ``read_func`` functions: ``pack_func(func)`` Serialize Python function for use as ``upload_data`` in ``input`` or ``load`` operators. ``read_func()`` Read and de-serialize function from SciDB. See `2-pack-func.py <examples/2-pack-func.py>`_ for an example of using the ``pack_func`` and ``read_func`` functions. Low-level access is provided by the ``read`` and ``write`` functions: ``read()`` Read a data chunk from SciDB. Returns a Pandas DataFrame or None. ``write(df=None)`` Write a data chunk to SciDB. See `3-read-write.py <examples/3-read-write.py>`_ for an example using the ``read`` and ``write`` functions. The Python script has to be copied onto the SciDB instance. A convenience invocation of the Python interpreter is provided in ``python_map`` variable and it is set to:: python -uc "import scidbstrm; scidbstrm.map(scidbstrm.read_func())" Finally, see `4-machine-learning.py <examples/4-machine-learning.py>`_ for a more complex example of going through the steps of using machine learning (preprocessing, training, and prediction). Debugging Python Code --------------------- When debugging Python code executed as part of the ``stream`` operator *do not* use the ``print`` function. The ``stream`` operator communicates with the Python process using ``stdout``. The ``print`` function writes output to ``stdout``. So, using the ``print`` function would interfere with the inter-process communication. Instead, use the ``debug`` function provided by the library. The function formats the arguments as strings and printed them all out separated by space. For example:: debug("Value of i is", 10) Alternatively, output can be written directly to ``stderr`` using the ``write`` function. For example:: import sys x = [1, 2, 3] sys.stderr.write("{}\n".format(x)) The output is written in the ``scidb-stderr.log`` files of each instance, for example:: /opt/scidb/18.1/DB-scidb/0/0/scidb-stderr.log /opt/scidb/18.1/DB-scidb/0/1/scidb-stderr.log If using SciDB ``18.1`` installed in the default location and configured with one server and two instances. ImportError: No module named ---------------------------- When trying to de-serialize a Python function uploaded to SciDB using ``pack_func``, one might encounter:: ImportError: No module named ... This error is because ``dill``, the Python serialization library, links the function to the module in which it is defined. This can be resolved in two ways: 1. Make the named module available on all the SciDB instances 2. If the module is small, the recursive ``dill`` mode can be used. Replace:: foo_pack = scidbstrm.pack_func(foo) with:: foo_pack = numpy.array([dill.dumps(foo, 0, recurse=True)])
scidb-strm
/scidb-strm-19.11.4.tar.gz/scidb-strm-19.11.4/README.rst
README.rst
SciDB-Strm: Python Library for SciDB Streaming ============================================== .. image:: https://img.shields.io/badge/SciDB-22.5-blue.svg :target: https://paradigm4.atlassian.net/wiki/spaces/scidb/pages/2828833854/22.5+Release+Notes .. image:: https://img.shields.io/badge/arrow-11.0.0-blue.svg :target: https://arrow.apache.org/release/11.0.0.html .. image:: https://github.com/Paradigm4/stream/actions/workflows/test.yml/badge.svg :target: https://github.com/Paradigm4/stream/actions/workflows/test.yml Requirements ------------ SciDB ``19.11`` or newer. Apache Arrow ``5.0.0`` to ``11.0.0``. Python ``3.6.x``, ``3.7.x``, ``3.8.x``, ``3.9.x``, or ``3.10.x`` Required Python packages:: dill pandas pyarrow Installation ------------ Install latest release:: pip install scidb-strm Install development version from GitHub:: pip install git+http://github.com/paradigm4/stream.git#subdirectory=py_pkg The Python library needs to be installed on the SciDB server. The library needs to be installed on the client as well, if Python code is to be send from the client to the server. SciDB-Strm Python API and Examples ---------------------------------- Once installed the *SciDB-Strm* Python library can be imported with ``import scidbstrm``. The library provides a high and low-level access to the SciDB ``stream`` operator as well as the ability to send Python code to the SciDB server. High-level access is provided by the function ``map``: ``map(map_fun, finalize_fun=None)`` Read SciDB chunks. For each chunk, call ``map_fun`` and stream its result back to SciDB. If ``finalize_fun`` is provided, call it after all the chunks have been processed. See `0-iquery.txt <examples/0-iquery.txt>`_ for a succinct example using the ``map`` function. See `1-map-finalize.py <examples/1-map-finalize.py>`_ for an example using the ``map`` function. The Python script has to be copied onto the SciDB instance. Python code can be send to the SciDB server for execution using the ``pack_func`` and ``read_func`` functions: ``pack_func(func)`` Serialize Python function for use as ``upload_data`` in ``input`` or ``load`` operators. ``read_func()`` Read and de-serialize function from SciDB. See `2-pack-func.py <examples/2-pack-func.py>`_ for an example of using the ``pack_func`` and ``read_func`` functions. Low-level access is provided by the ``read`` and ``write`` functions: ``read()`` Read a data chunk from SciDB. Returns a Pandas DataFrame or None. ``write(df=None)`` Write a data chunk to SciDB. See `3-read-write.py <examples/3-read-write.py>`_ for an example using the ``read`` and ``write`` functions. The Python script has to be copied onto the SciDB instance. A convenience invocation of the Python interpreter is provided in ``python_map`` variable and it is set to:: python -uc "import scidbstrm; scidbstrm.map(scidbstrm.read_func())" Finally, see `4-machine-learning.py <examples/4-machine-learning.py>`_ for a more complex example of going through the steps of using machine learning (preprocessing, training, and prediction). Debugging Python Code --------------------- When debugging Python code executed as part of the ``stream`` operator *do not* use the ``print`` function. The ``stream`` operator communicates with the Python process using ``stdout``. The ``print`` function writes output to ``stdout``. So, using the ``print`` function would interfere with the inter-process communication. Instead, use the ``debug`` function provided by the library. The function formats the arguments as strings and printed them all out separated by space. For example:: debug("Value of i is", 10) Alternatively, output can be written directly to ``stderr`` using the ``write`` function. For example:: import sys x = [1, 2, 3] sys.stderr.write("{}\n".format(x)) The output is written in the ``scidb-stderr.log`` files of each instance, for example:: /opt/scidb/18.1/DB-scidb/0/0/scidb-stderr.log /opt/scidb/18.1/DB-scidb/0/1/scidb-stderr.log If using SciDB ``18.1`` installed in the default location and configured with one server and two instances. ImportError: No module named ---------------------------- When trying to de-serialize a Python function uploaded to SciDB using ``pack_func``, one might encounter:: ImportError: No module named ... This error is because ``dill``, the Python serialization library, links the function to the module in which it is defined. This can be resolved in two ways: 1. Make the named module available on all the SciDB instances 2. If the module is small, the recursive ``dill`` mode can be used. Replace:: foo_pack = scidbstrm.pack_func(foo) with:: foo_pack = numpy.array([dill.dumps(foo, 0, recurse=True)])
0.890127
0.447641
import dill import struct import sys import pyarrow # Workaround for NumPy bug #10338 # https://github.com/numpy/numpy/issues/10338 try: import numpy except KeyError: import os os.environ.setdefault('PATH', '') import numpy __version__ = '19.11.4' python_map = ("'" + 'python{major}.{minor} -uc '.format( major=sys.version_info.major, minor=sys.version_info.minor) + '"import scidbstrm; scidbstrm.map(scidbstrm.read_func())"' + "'") # Python 2 and 3 compatibility fix for reading/writing binary data # to/from STDIN/STDOUT if hasattr(sys.stdout, 'buffer'): # Python 3 stdin = sys.stdin.buffer stdout = sys.stdout.buffer else: # Python 2 stdin = sys.stdin stdout = sys.stdout def read(): """Read a data chunk from SciDB. Returns a Pandas DataFrame or None. """ sz = struct.unpack('<Q', stdin.read(8))[0] if sz: stream = pyarrow.ipc.open_stream(stdin) df = stream.read_pandas() return df else: # Last Chunk return None def write(df=None): """Write a data chunk to SciDB. """ if df is None: stdout.write(struct.pack('<Q', 0)) return buf = pyarrow.BufferOutputStream() table = pyarrow.Table.from_pandas(df) table = table.replace_schema_metadata() # Remove metadata writer = pyarrow.RecordBatchStreamWriter(buf, table.schema) writer.write_table(table) writer.close() byt = buf.getvalue().to_pybytes() sz = len(byt) stdout.write(struct.pack('<Q', sz)) stdout.write(byt) def pack_func(func): """Serialize function to upload to SciDB. The result can be used as `upload_data` in `input` or `load` operators. """ return numpy.array( [dill.dumps(func, 0)] # Serialize streaming function ) def read_func(): """Read and de-serialize function from SciDB. """ func = dill.loads(read().iloc[0, 0]) write() # SciDB expects a message back return func def map(map_fun, finalize_fun=None): """Read SciDB chunks. For each chunk, call `map_fun` and stream its result back to SciDB. If `finalize_fun` is provided, call it after all the chunks have been processed. """ while True: # Read DataFrame df = read() if df is None: # End of stream break # Write DataFrame write(map_fun(df)) # Write final DataFrame (if any) if finalize_fun is None: write() else: write(finalize_fun()) def debug(*args): """Print debug message to scidb-stderr.log file""" sys.stderr.write(' '.join('{}'.format(i) for i in args) + '\n') sys.stderr.flush()
scidb-strm
/scidb-strm-19.11.4.tar.gz/scidb-strm-19.11.4/scidbstrm/__init__.py
__init__.py
import dill import struct import sys import pyarrow # Workaround for NumPy bug #10338 # https://github.com/numpy/numpy/issues/10338 try: import numpy except KeyError: import os os.environ.setdefault('PATH', '') import numpy __version__ = '19.11.4' python_map = ("'" + 'python{major}.{minor} -uc '.format( major=sys.version_info.major, minor=sys.version_info.minor) + '"import scidbstrm; scidbstrm.map(scidbstrm.read_func())"' + "'") # Python 2 and 3 compatibility fix for reading/writing binary data # to/from STDIN/STDOUT if hasattr(sys.stdout, 'buffer'): # Python 3 stdin = sys.stdin.buffer stdout = sys.stdout.buffer else: # Python 2 stdin = sys.stdin stdout = sys.stdout def read(): """Read a data chunk from SciDB. Returns a Pandas DataFrame or None. """ sz = struct.unpack('<Q', stdin.read(8))[0] if sz: stream = pyarrow.ipc.open_stream(stdin) df = stream.read_pandas() return df else: # Last Chunk return None def write(df=None): """Write a data chunk to SciDB. """ if df is None: stdout.write(struct.pack('<Q', 0)) return buf = pyarrow.BufferOutputStream() table = pyarrow.Table.from_pandas(df) table = table.replace_schema_metadata() # Remove metadata writer = pyarrow.RecordBatchStreamWriter(buf, table.schema) writer.write_table(table) writer.close() byt = buf.getvalue().to_pybytes() sz = len(byt) stdout.write(struct.pack('<Q', sz)) stdout.write(byt) def pack_func(func): """Serialize function to upload to SciDB. The result can be used as `upload_data` in `input` or `load` operators. """ return numpy.array( [dill.dumps(func, 0)] # Serialize streaming function ) def read_func(): """Read and de-serialize function from SciDB. """ func = dill.loads(read().iloc[0, 0]) write() # SciDB expects a message back return func def map(map_fun, finalize_fun=None): """Read SciDB chunks. For each chunk, call `map_fun` and stream its result back to SciDB. If `finalize_fun` is provided, call it after all the chunks have been processed. """ while True: # Read DataFrame df = read() if df is None: # End of stream break # Write DataFrame write(map_fun(df)) # Write final DataFrame (if any) if finalize_fun is None: write() else: write(finalize_fun()) def debug(*args): """Print debug message to scidb-stderr.log file""" sys.stderr.write(' '.join('{}'.format(i) for i in args) + '\n') sys.stderr.flush()
0.366476
0.172712
scidb4py — SciDB for Python =========================== Pure python SciDB client library. This library aims to provide access to SciDB server through native network protocol based on protobuf. It still on early stages of development, so do not expect complete features support and stable work :) Any feedback and patches are welcome: https://github.com/artyom-smirnov/scidb4py/ Runtime dependencies -------------------- * python >= 2.7 or pypy >= 1.8 (python 3 not supported yet) * python-protobuf >= 2.4 * bitstring Build dependencies ------------------ * protobuf-compiler >= 2.4 Installation ------------ :: sudo pip install scidb4py or :: sudo python setup.py install Examples -------- Iterating through array item-by-item ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :: from scidb4py import Connection conn = Connection('localhost', 1239) conn.open() array = conn.execute("select * from array(<a:int32>[x=0:3,2,0], '[0,1,2,3]')") for pos, val in array: print '%d - %d' % (pos['x'], val['a']) conn.close() Iterating through array chunk-by-chunk, item-by-item ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :: from scidb4py import Connection conn = Connection('localhost', 1239) conn.open() array = conn.execute("select * from array(<a:int32 null>[x=0:2,3,0, y=0:2,3,0], '[[1,2,3][4,5,6][7,8,9]]')") while not array.end: while not array.chunk_end: print '%s - %s' % (array.get_coordinates(), array.get_item("a")) array.next_item() array.next_chunk() conn.close()
scidb4py
/scidb4py-0.0.6.tar.gz/scidb4py-0.0.6/README.rst
README.rst
scidb4py — SciDB for Python =========================== Pure python SciDB client library. This library aims to provide access to SciDB server through native network protocol based on protobuf. It still on early stages of development, so do not expect complete features support and stable work :) Any feedback and patches are welcome: https://github.com/artyom-smirnov/scidb4py/ Runtime dependencies -------------------- * python >= 2.7 or pypy >= 1.8 (python 3 not supported yet) * python-protobuf >= 2.4 * bitstring Build dependencies ------------------ * protobuf-compiler >= 2.4 Installation ------------ :: sudo pip install scidb4py or :: sudo python setup.py install Examples -------- Iterating through array item-by-item ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :: from scidb4py import Connection conn = Connection('localhost', 1239) conn.open() array = conn.execute("select * from array(<a:int32>[x=0:3,2,0], '[0,1,2,3]')") for pos, val in array: print '%d - %d' % (pos['x'], val['a']) conn.close() Iterating through array chunk-by-chunk, item-by-item ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :: from scidb4py import Connection conn = Connection('localhost', 1239) conn.open() array = conn.execute("select * from array(<a:int32 null>[x=0:2,3,0, y=0:2,3,0], '[[1,2,3][4,5,6][7,8,9]]')") while not array.end: while not array.chunk_end: print '%s - %s' % (array.get_coordinates(), array.get_item("a")) array.next_item() array.next_chunk() conn.close()
0.603465
0.318134
import sys import os from loguru import logger import click import asyncio from asyncio.subprocess import PIPE, STDOUT from typing import List def setup_logger(): logger.remove() logger.add( sys.stdout, enqueue=True, level="DEBUG", format="<green>{time:HH:mm:ss zz}</green> | <cyan>{process}</cyan> | <level>{message}</level>", ) async def _command_loop(cmd: List[str], cwd: str = None, timeout: int = 600) -> int: timeout = 600 if not cwd: cwd = os.getcwd() # start child process try: assert ( cmd is not None and len(cmd) > 0 ), "Trying to run a command loop without commands" process = None returncode = -1 process = await asyncio.create_subprocess_exec( cmd[0], *cmd[1:], cwd=cwd, stdout=PIPE, stderr=STDOUT ) assert process is not None, "Something went wrong creating the process" logger.info(f"Process for {cmd} started pid:{process.pid}") while True: # type: ignore try: line = await process.stdout.readline() # type: ignore except asyncio.TimeoutError: logger.error( f"Process has timed out while reading line, timeout set to {timeout}" ) raise if not line: logger.info("Output for process has finished") break try: line = line.decode() except AttributeError: # Probably already a string pass logger.info(line.strip()) logger.info("Waiting for process to finish") await process.wait() returncode = process.returncode logger.info(f"Process finish with return code {returncode}") except Exception as exc: error_str = f"Something went wrong with running the command {cmd}, killing the process. Error: {exc}" logger.error(error_str) if process: process.kill() return returncode def run_command_with_output(cmd: List[str], cwd: str = None, timeout: int = 600) -> int: """Runs a command line tool printing the stdout as it runs, NOTE: This requires python 3.8 Arguments: cmd {List[str]} -- [List of arguments to run on the commandline] Keyword Arguments: cwd {str} -- [Current working directory] timeout {int} -- [Max time between stdout lines to judge if the program is stuck] (default: {600}) Returns: int -- [0 if successful, -1 if there's an error] """ loop = asyncio.get_event_loop() if loop.is_closed: loop = asyncio.new_event_loop() try: returncode = loop.run_until_complete(_command_loop(cmd, cwd, timeout)) finally: loop.close() logger.info(f"Command: {cmd} has completed with the return code: {returncode}") return returncode class command: def __init__(self, name=None, cls=click.Command, **attrs): self.name = name self.cls = cls self.attrs = attrs def __call__(self, method): def __command__(this): def wrapper(*args, **kwargs): return method(this, *args, **kwargs) if hasattr(method, "__options__"): options = method.__options__ return self.cls(self.name, callback=wrapper, params=options, **self.attrs) method.__command__ = __command__ return method class option: def __init__(self, *param_decls, **attrs): self.param_decls = param_decls self.attrs = attrs def __call__(self, method): if not hasattr(method, "__options__"): method.__options__ = [] method.__options__.append( click.Option(param_decls=self.param_decls, **self.attrs) ) return method class Cli: def __new__(cls, *args, **kwargs): self = super(Cli, cls).__new__(cls, *args, **kwargs) self._cli = click.Group() # Wrap instance options self.__option_callbacks__ = set() for attr_name in dir(cls): attr = getattr(cls, attr_name) if hasattr(attr, "__options__") and not hasattr(attr, "__command__"): self._cli.params.extend(attr.__options__) self.__option_callbacks__.add(attr) # Wrap commands for attr_name in dir(cls): attr = getattr(cls, attr_name) if hasattr(attr, "__command__"): command = attr.__command__(self) # command.params.extend(_options) self._cli.add_command(command) return self def run(self): """Run the CLI application.""" self() def __call__(self): """Run the CLI application.""" self._cli()
scidra-module-utils
/scidra_module_utils-0.2.1-py3-none-any.whl/scidra/module_utils/utils.py
utils.py
import sys import os from loguru import logger import click import asyncio from asyncio.subprocess import PIPE, STDOUT from typing import List def setup_logger(): logger.remove() logger.add( sys.stdout, enqueue=True, level="DEBUG", format="<green>{time:HH:mm:ss zz}</green> | <cyan>{process}</cyan> | <level>{message}</level>", ) async def _command_loop(cmd: List[str], cwd: str = None, timeout: int = 600) -> int: timeout = 600 if not cwd: cwd = os.getcwd() # start child process try: assert ( cmd is not None and len(cmd) > 0 ), "Trying to run a command loop without commands" process = None returncode = -1 process = await asyncio.create_subprocess_exec( cmd[0], *cmd[1:], cwd=cwd, stdout=PIPE, stderr=STDOUT ) assert process is not None, "Something went wrong creating the process" logger.info(f"Process for {cmd} started pid:{process.pid}") while True: # type: ignore try: line = await process.stdout.readline() # type: ignore except asyncio.TimeoutError: logger.error( f"Process has timed out while reading line, timeout set to {timeout}" ) raise if not line: logger.info("Output for process has finished") break try: line = line.decode() except AttributeError: # Probably already a string pass logger.info(line.strip()) logger.info("Waiting for process to finish") await process.wait() returncode = process.returncode logger.info(f"Process finish with return code {returncode}") except Exception as exc: error_str = f"Something went wrong with running the command {cmd}, killing the process. Error: {exc}" logger.error(error_str) if process: process.kill() return returncode def run_command_with_output(cmd: List[str], cwd: str = None, timeout: int = 600) -> int: """Runs a command line tool printing the stdout as it runs, NOTE: This requires python 3.8 Arguments: cmd {List[str]} -- [List of arguments to run on the commandline] Keyword Arguments: cwd {str} -- [Current working directory] timeout {int} -- [Max time between stdout lines to judge if the program is stuck] (default: {600}) Returns: int -- [0 if successful, -1 if there's an error] """ loop = asyncio.get_event_loop() if loop.is_closed: loop = asyncio.new_event_loop() try: returncode = loop.run_until_complete(_command_loop(cmd, cwd, timeout)) finally: loop.close() logger.info(f"Command: {cmd} has completed with the return code: {returncode}") return returncode class command: def __init__(self, name=None, cls=click.Command, **attrs): self.name = name self.cls = cls self.attrs = attrs def __call__(self, method): def __command__(this): def wrapper(*args, **kwargs): return method(this, *args, **kwargs) if hasattr(method, "__options__"): options = method.__options__ return self.cls(self.name, callback=wrapper, params=options, **self.attrs) method.__command__ = __command__ return method class option: def __init__(self, *param_decls, **attrs): self.param_decls = param_decls self.attrs = attrs def __call__(self, method): if not hasattr(method, "__options__"): method.__options__ = [] method.__options__.append( click.Option(param_decls=self.param_decls, **self.attrs) ) return method class Cli: def __new__(cls, *args, **kwargs): self = super(Cli, cls).__new__(cls, *args, **kwargs) self._cli = click.Group() # Wrap instance options self.__option_callbacks__ = set() for attr_name in dir(cls): attr = getattr(cls, attr_name) if hasattr(attr, "__options__") and not hasattr(attr, "__command__"): self._cli.params.extend(attr.__options__) self.__option_callbacks__.add(attr) # Wrap commands for attr_name in dir(cls): attr = getattr(cls, attr_name) if hasattr(attr, "__command__"): command = attr.__command__(self) # command.params.extend(_options) self._cli.add_command(command) return self def run(self): """Run the CLI application.""" self() def __call__(self): """Run the CLI application.""" self._cli()
0.462959
0.147893
import os import json import abc import shutil from zipfile import ZipFile from click import Path as ClickPath, UsageError from clint.textui import progress from typing import Dict, List from pathlib import Path import pprint import requests from loguru import logger from .utils import option, command, Cli, setup_logger as default_setup_logger from .models import FileRef, Output class BaseModule(abc.ABC, Cli): OUTPUT_FILENAME: str = os.getenv("OUTPUT_FILENAME", "outputs.json") CHUNK_SIZE: int = 2391975 @abc.abstractmethod def run_job_logic(self, parameters: dict, files: Dict[str, FileRef]) -> Output: """ This is the custom implementation of what will become an interface. Does the necessary setup to execute the existing module code. This method should represent 90% or more of the custom code required to create a module using pre existing logic. Arguments: parameters {dict} -- [description] files {dict} -- [description] output_path {str} -- [description] """ pass @classmethod def setup_logger(cls): default_setup_logger() def create_artifacts( self, output: Output, artifact_path: str = "./", zip: bool = False ): logger.info("Creating job artifacts") if artifact_path != "./": Path(artifact_path).mkdir(parents=True, exist_ok=True) outfile_path = os.path.join(artifact_path, self.OUTPUT_FILENAME) with open(outfile_path, "w") as outfile: outfile.write(output.output_json + "\n") logger.info(f"Output JSON saved to {outfile_path}") if output.files is not None: to_zip = [] logger.info(f"Ensuring output files are in correct folder: {artifact_path}") for _file in output.files: target = Path(os.path.join(artifact_path, f"{_file.name}")) if not target.exists() and _file.path is not None: logger.info(f"Moving {_file.path} to {target}") shutil.move(_file.path, target) to_zip.append({"path": str(target), "name": f"{_file.name}"}) if zip: zip_path = os.path.join(artifact_path, "files.zip") logger.info(f"Creating output files zip: {zip_path}") with ZipFile(zip_path, "w") as zipObj: for zf in to_zip: zipObj.write(zf["path"], zf["name"]) logger.info(f"Added {zf['name']} to {zip_path}") def download_files( self, file_refs: List[dict], files_path: str = "./" ) -> Dict[str, FileRef]: output_file_refs = {} for _fr in file_refs: file_ref = FileRef(**_fr) if file_ref is None: raise ValueError( f"File Ref {file_ref.name} has no url to download the file" ) r = requests.get(file_ref.url, stream=True) # type: ignore target_path = Path(os.path.join(files_path, f"{file_ref.name}")) target_path.parent.mkdir(parents=True, exist_ok=True) with open(target_path, "wb") as _file: length = r.headers.get("content-length") total_length = None if length is not None: total_length = int(length) logger.info( f"Downloading {file_ref.name} Size: {length} to {target_path}" ) if total_length is not None: for ch in progress.bar( r.iter_content(chunk_size=self.CHUNK_SIZE), expected_size=(total_length / 1024) + 1, ): if ch: _file.write(ch) else: for ch in r.iter_content(chunk_size=self.CHUNK_SIZE): _file.write(ch) file_ref.path = str(target_path) output_file_refs[file_ref.id] = file_ref return output_file_refs @command("run-job") @option( "params_path", "--params-path", default=None, envvar="PARAMS_PATH", type=ClickPath(exists=True), ) @option( "params_json", "--params-json", default=None, envvar="PARAMS_JSON", type=str ) @option( "file_refs_json", "--files-json", default=None, envvar="FILE_REFS_JSON", type=str, ) @option( "file_refs_path", "--files-path", default=None, envvar="FILE_REFS_PATH", type=ClickPath(exists=True), ) @option( "input_path", "--input", default="input", envvar="FILES_IN_PATH", type=ClickPath(), ) @option( "output_path", "--output", default="output", envvar="OUTPUT_PATH", type=ClickPath(), ) @option("--zip", is_flag=True) def run_job( self, params_path, params_json, file_refs_json, file_refs_path, input_path, output_path, zip, ): self.setup_logger() if params_json: parameters = json.loads(params_json) elif params_path: with open(params_path) as json_file: parameters = json.load(json_file) else: err_str = "One of either --params-json or --params-path is required" logger.error(err_str) raise UsageError(err_str) logger.info(f"--- Using Parameters --- \n {pprint.pformat(parameters)}") file_refs = None if file_refs_json: file_refs = json.loads(file_refs_json) elif file_refs_path: with open(file_refs_path) as json_file: file_refs = json.load(json_file) # Download inputs if file_refs is not None: file_refs = self.download_files(file_refs, input_path) if file_refs is not None: logger.info("--- Using Files ---") for fr in file_refs.keys(): logger.info(f"{fr} - Path: {file_refs[fr].path}") else: logger.info("--- No Input Files ---") output = self.run_job_logic(parameters, file_refs) # Package up outputs self.create_artifacts(output, output_path, zip)
scidra-module-utils
/scidra_module_utils-0.2.1-py3-none-any.whl/scidra/module_utils/base_module.py
base_module.py
import os import json import abc import shutil from zipfile import ZipFile from click import Path as ClickPath, UsageError from clint.textui import progress from typing import Dict, List from pathlib import Path import pprint import requests from loguru import logger from .utils import option, command, Cli, setup_logger as default_setup_logger from .models import FileRef, Output class BaseModule(abc.ABC, Cli): OUTPUT_FILENAME: str = os.getenv("OUTPUT_FILENAME", "outputs.json") CHUNK_SIZE: int = 2391975 @abc.abstractmethod def run_job_logic(self, parameters: dict, files: Dict[str, FileRef]) -> Output: """ This is the custom implementation of what will become an interface. Does the necessary setup to execute the existing module code. This method should represent 90% or more of the custom code required to create a module using pre existing logic. Arguments: parameters {dict} -- [description] files {dict} -- [description] output_path {str} -- [description] """ pass @classmethod def setup_logger(cls): default_setup_logger() def create_artifacts( self, output: Output, artifact_path: str = "./", zip: bool = False ): logger.info("Creating job artifacts") if artifact_path != "./": Path(artifact_path).mkdir(parents=True, exist_ok=True) outfile_path = os.path.join(artifact_path, self.OUTPUT_FILENAME) with open(outfile_path, "w") as outfile: outfile.write(output.output_json + "\n") logger.info(f"Output JSON saved to {outfile_path}") if output.files is not None: to_zip = [] logger.info(f"Ensuring output files are in correct folder: {artifact_path}") for _file in output.files: target = Path(os.path.join(artifact_path, f"{_file.name}")) if not target.exists() and _file.path is not None: logger.info(f"Moving {_file.path} to {target}") shutil.move(_file.path, target) to_zip.append({"path": str(target), "name": f"{_file.name}"}) if zip: zip_path = os.path.join(artifact_path, "files.zip") logger.info(f"Creating output files zip: {zip_path}") with ZipFile(zip_path, "w") as zipObj: for zf in to_zip: zipObj.write(zf["path"], zf["name"]) logger.info(f"Added {zf['name']} to {zip_path}") def download_files( self, file_refs: List[dict], files_path: str = "./" ) -> Dict[str, FileRef]: output_file_refs = {} for _fr in file_refs: file_ref = FileRef(**_fr) if file_ref is None: raise ValueError( f"File Ref {file_ref.name} has no url to download the file" ) r = requests.get(file_ref.url, stream=True) # type: ignore target_path = Path(os.path.join(files_path, f"{file_ref.name}")) target_path.parent.mkdir(parents=True, exist_ok=True) with open(target_path, "wb") as _file: length = r.headers.get("content-length") total_length = None if length is not None: total_length = int(length) logger.info( f"Downloading {file_ref.name} Size: {length} to {target_path}" ) if total_length is not None: for ch in progress.bar( r.iter_content(chunk_size=self.CHUNK_SIZE), expected_size=(total_length / 1024) + 1, ): if ch: _file.write(ch) else: for ch in r.iter_content(chunk_size=self.CHUNK_SIZE): _file.write(ch) file_ref.path = str(target_path) output_file_refs[file_ref.id] = file_ref return output_file_refs @command("run-job") @option( "params_path", "--params-path", default=None, envvar="PARAMS_PATH", type=ClickPath(exists=True), ) @option( "params_json", "--params-json", default=None, envvar="PARAMS_JSON", type=str ) @option( "file_refs_json", "--files-json", default=None, envvar="FILE_REFS_JSON", type=str, ) @option( "file_refs_path", "--files-path", default=None, envvar="FILE_REFS_PATH", type=ClickPath(exists=True), ) @option( "input_path", "--input", default="input", envvar="FILES_IN_PATH", type=ClickPath(), ) @option( "output_path", "--output", default="output", envvar="OUTPUT_PATH", type=ClickPath(), ) @option("--zip", is_flag=True) def run_job( self, params_path, params_json, file_refs_json, file_refs_path, input_path, output_path, zip, ): self.setup_logger() if params_json: parameters = json.loads(params_json) elif params_path: with open(params_path) as json_file: parameters = json.load(json_file) else: err_str = "One of either --params-json or --params-path is required" logger.error(err_str) raise UsageError(err_str) logger.info(f"--- Using Parameters --- \n {pprint.pformat(parameters)}") file_refs = None if file_refs_json: file_refs = json.loads(file_refs_json) elif file_refs_path: with open(file_refs_path) as json_file: file_refs = json.load(json_file) # Download inputs if file_refs is not None: file_refs = self.download_files(file_refs, input_path) if file_refs is not None: logger.info("--- Using Files ---") for fr in file_refs.keys(): logger.info(f"{fr} - Path: {file_refs[fr].path}") else: logger.info("--- No Input Files ---") output = self.run_job_logic(parameters, file_refs) # Package up outputs self.create_artifacts(output, output_path, zip)
0.512205
0.164785
# sci-Epi2Gene [![codecov.io](https://codecov.io/github/ArianeMora/sciepi2gene/coverage.svg?branch=master)](https://codecov.io/github/ArianeMora/sciepi2gene?branch=master) [![PyPI](https://img.shields.io/pypi/v/scie2g)](https://pypi.org/project/scie2g/) [![DOI](https://zenodo.org/badge/316410924.svg)](https://zenodo.org/badge/latestdoi/316410924) [Link to docs](https://arianemora.github.io/sciepi2gene/) ## Warning!! If you have non normal chr's please remove them it will make the program extremely slow. Another warning: If you have duplicates (i.e. multiple things with the same start and end it will be extremely slow! Sci-epi2gene maps events annotated to a genome location to nearby genes - i.e. peaks from histone modification data ChIP-seq experiemnts stored as bed data, or DNA methylation data in csv format (e.g. output from DMRseq, methylKit or methylSig). The user provides a SORTED gene annotation file with start, end, and direction for each gene (we recommend using [sci-biomart](https://github.com/ArianeMora/scibiomart), see examples for detail. The user then selects how to annotate, i.e. whether it is in the promoter region, or overlaps the gene body. Finally, the parameters for overlap on each side are chosen. It is available under the [GNU General Public License (Version 3) ](https://www.gnu.org/licenses/gpl-3.0.en.html). This package is a wrapper that allows various epigenetic data types to be annotated to genes. [Examples are in the docs](https://arianemora.github.io/sciepi2gene/) I also wanted to have different upper flanking and lower flanking distances that took into account the directionality of the strand and also an easy output csv file that can be filtered and used in downstream analyses. This is why I keep all features that fall within the annotation region of a gene (example below): The overlapping methods are as follows: 1) overlaps: this means does ANY part of the peak/feature overlap the gene body + some buffer before the TSS and some buffer on the non-TSS side 2) promoter: does ANY part of the peak/feature overlap with the TSS of the gene taking into account buffers on either side of the TSS. .. image:: _static/example_overlaps.png :width: 600 As you can see from the above screenshot using IGV, the input peaks are in purple, and the green are the output peaks as annotated to genes. The function *convert_to_bed* converts the output csv to bed files for viewing. This example shows that a peak/feature can be annotated to multiple genes. Peaks/features outside of the regions of genes (e.g. the first peak) are dropped from the output. We show this example in the notebook (see examples folder), where we use [IGV](https://github.com/igvteam/igv-jupyter#igvjs-jupyter-extension) to view the tracks (see image below). .. image:: _static/igv_jupyter.png :width: 600 Lastly, there are sometimes differences between annotations (i.e. the TSS on your annotation in IGV may differ to the annotation you input to sciepi2gene), naturally, how your genes/features are annotated depends on the input file so if you see differences check this first! Please post questions and issues related to sci-epi2gene on the `Issues <https://github.com/ArianeMora/sciepi2gene/issues>`_ section of the GitHub repository.
scie2g
/scie2g-1.0.3.tar.gz/scie2g-1.0.3/README.md
README.md
# sci-Epi2Gene [![codecov.io](https://codecov.io/github/ArianeMora/sciepi2gene/coverage.svg?branch=master)](https://codecov.io/github/ArianeMora/sciepi2gene?branch=master) [![PyPI](https://img.shields.io/pypi/v/scie2g)](https://pypi.org/project/scie2g/) [![DOI](https://zenodo.org/badge/316410924.svg)](https://zenodo.org/badge/latestdoi/316410924) [Link to docs](https://arianemora.github.io/sciepi2gene/) ## Warning!! If you have non normal chr's please remove them it will make the program extremely slow. Another warning: If you have duplicates (i.e. multiple things with the same start and end it will be extremely slow! Sci-epi2gene maps events annotated to a genome location to nearby genes - i.e. peaks from histone modification data ChIP-seq experiemnts stored as bed data, or DNA methylation data in csv format (e.g. output from DMRseq, methylKit or methylSig). The user provides a SORTED gene annotation file with start, end, and direction for each gene (we recommend using [sci-biomart](https://github.com/ArianeMora/scibiomart), see examples for detail. The user then selects how to annotate, i.e. whether it is in the promoter region, or overlaps the gene body. Finally, the parameters for overlap on each side are chosen. It is available under the [GNU General Public License (Version 3) ](https://www.gnu.org/licenses/gpl-3.0.en.html). This package is a wrapper that allows various epigenetic data types to be annotated to genes. [Examples are in the docs](https://arianemora.github.io/sciepi2gene/) I also wanted to have different upper flanking and lower flanking distances that took into account the directionality of the strand and also an easy output csv file that can be filtered and used in downstream analyses. This is why I keep all features that fall within the annotation region of a gene (example below): The overlapping methods are as follows: 1) overlaps: this means does ANY part of the peak/feature overlap the gene body + some buffer before the TSS and some buffer on the non-TSS side 2) promoter: does ANY part of the peak/feature overlap with the TSS of the gene taking into account buffers on either side of the TSS. .. image:: _static/example_overlaps.png :width: 600 As you can see from the above screenshot using IGV, the input peaks are in purple, and the green are the output peaks as annotated to genes. The function *convert_to_bed* converts the output csv to bed files for viewing. This example shows that a peak/feature can be annotated to multiple genes. Peaks/features outside of the regions of genes (e.g. the first peak) are dropped from the output. We show this example in the notebook (see examples folder), where we use [IGV](https://github.com/igvteam/igv-jupyter#igvjs-jupyter-extension) to view the tracks (see image below). .. image:: _static/igv_jupyter.png :width: 600 Lastly, there are sometimes differences between annotations (i.e. the TSS on your annotation in IGV may differ to the annotation you input to sciepi2gene), naturally, how your genes/features are annotated depends on the input file so if you see differences check this first! Please post questions and issues related to sci-epi2gene on the `Issues <https://github.com/ArianeMora/sciepi2gene/issues>`_ section of the GitHub repository.
0.683631
0.878627
[![PyPI version](https://badge.fury.io/py/sciebo-rds-cli.svg)](https://badge.fury.io/py/sciebo-rds-cli) Status: not for production, yet # Sciebo RDS CLI This is a helper tool to install sciebo RDS to your owncloud instances. It supports ssh and kubectl. ## Usage You need python3 (>= 3.10) and pip to use this tool. ```bash pip install sciebo-rds-cli sciebords --help ``` If you prefer the sourcecode way: ```bash git clone https://github.com/Heiss/Sciebo-RDS-Install.git && cd Sciebo-RDS-Install pip install -r requirements.txt chmod +x sciebo_rds_install/main.py sciebo_rds_install/main.py --help ``` If you have poetry installed, you can use it, too. So the installation will not rubbish your local python environment, because it uses virtualenv on its own. ```bash git clone https://github.com/Heiss/Sciebo-RDS-Install.git && cd Sciebo-RDS-Install poetry install poetry shell sciebords --help ``` The application will look for a `values.yaml`, which is needed for the sciebo RDS helm supported installation process. So you only have to maintain a single yaml file. Just append the content of `config.yaml.example` to your `values.yaml`. But you can also set your config stuff for this tool in a separated `config.yaml` with `--config` flag. For options for the configuration, please take a look into the `config.yaml.example`, because it holds everything with documentation you can configure for this app. Also you should take a look into the help parameter, because it shows, what the tool can do for you. ## Developer installation This project uses [poetry](https://python-poetry.org/docs/#installation) for dependencies. Install it with the described methods over there in the official poetry documentation. Then you need to install the developer environment. ```bash poetry install --with dev poetry shell ``` After this you can run the application in this environment. ```bash sciebords --help ``` If you add or update the dependencies, you have to generate a new requirementst.txt for easier user installations. ```bash poetry export -f requirements.txt --output requirements.txt ```
sciebo-rds-cli
/sciebo_rds_cli-0.1.6.tar.gz/sciebo_rds_cli-0.1.6/README.md
README.md
pip install sciebo-rds-cli sciebords --help git clone https://github.com/Heiss/Sciebo-RDS-Install.git && cd Sciebo-RDS-Install pip install -r requirements.txt chmod +x sciebo_rds_install/main.py sciebo_rds_install/main.py --help git clone https://github.com/Heiss/Sciebo-RDS-Install.git && cd Sciebo-RDS-Install poetry install poetry shell sciebords --help poetry install --with dev poetry shell sciebords --help poetry export -f requirements.txt --output requirements.txt
0.425367
0.691894
import click import paramiko import kubernetes from secrets import choice import yaml import string import os import requests from pathlib import Path def random(N=64): return "".join( [ choice(string.ascii_lowercase + string.ascii_uppercase + string.digits) for _ in range(N) ] ) def get_commands(): commands = [ # "{owncloud_path}occ market:install oauth2", # "{owncloud_path}occ market:install rds", "{owncloud_path}occ app:enable oauth2", "{owncloud_path}occ app:enable rds", "{owncloud_path}occ oauth2:add-client {oauthname} {client_id} {client_secret} {rds_domain}", "{owncloud_path}occ rds:set-oauthname {oauthname}", "{owncloud_path}occ rds:set-url {rds_domain}", "{owncloud_path}occ rds:create-keys", ] return commands def execute_ssh(ssh, cmd): _, stdout, stderr = ssh.exec_command(cmd) err = stderr.read() if err != "": click.echo(f"Error in ssh command: {err}", err=True) exit(1) return stdout def execute_kubectl(k8s, cmd): k8s.write_stdin(cmd + "\n") err = k8s.read_stderr() if err != "": click.echo(f"Error in kubectl command: {err}") exit(1) return k8s.read_stdout(timeout=3) def execute_helm(values_file, install=False, dry_run=False): if install and not dry_run: click.echo("Preparing helm for sciebo RDS.") click.echo("Remove installed sciebo rds from k8s if it is already there.") os.system("helm uninstall sciebo-rds") click.echo("Remove sciebo RDS from helm repo list.") os.system("helm repo remove sciebo-rds") click.echo("Add sciebo RDS in helm repo list again.") os.system( "helm repo add sciebo-rds https://www.research-data-services.org/charts/stable" ) click.echo("Update helm repo list.") os.system("helm repo up sciebo-rds") click.echo("Finish preparation.") click.echo("Installing sciebo RDS via helm.") cmd = f"helm upgrade -i sciebo-rds sciebo-rds/all --values {values_file}" if dry_run: cmd += " --dry-run" error_code = os.system(cmd) if error_code > 0: click.echo("There was an error while installing sciebo RDS via helm.") else: click.echo( "Sciebo RDS is installed now via helm. Check it out via `kubectl get pods`." ) def execute( channel, fun, commands, owncloud_host_hostname_command, owncloud_host_config_command ): for cmd in commands: click.echo(f"Running command: {cmd}") fun(channel, cmd) # via php hostname owncloud_url = fun(channel, owncloud_host_hostname_command) # via overwrites from config for overwrite in fun(channel, owncloud_host_config_command): # remove comma, because we look at php dict parts overwrite = overwrite.replace(",", "", 1) # separate key and value _, _, val = str(overwrite).partition(":") owncloud_url = val return owncloud_url @click.group() def cli(): pass values_file_path = "values.yaml" config_file_path = "config.yaml" cert_file_path = "create_certs.sh" @click.command() @click.option( "--self-signed-cert", "-s", "self_signed", is_flag=True, default=False, help=f"Creates the script {cert_file_path} for self-signed certificates. Not recommended for production use, but handy for testing.", ) @click.option( "--force", "-f", "overwrite_values", is_flag=True, default=False, help=f"Overwrites the {values_file_path}, if it already exists. Otherwise exits with statuscode greater then 0.", ) @click.option( "--one-file", "-c", "single_file", is_flag=True, default=False, help=f"Writes down the needed config stuff in {values_file_path}. Otherwise it creates a separate file {config_file_path}.", ) def init(self_signed, overwrite_values, single_file): """ Initialize needed files for sciebo RDS. Places the files in the current folder. """ if self_signed: click.echo("Self-signed script selected.") if not os.path.isfile(cert_file_path) or overwrite_values: if overwrite_values: click.echo(f"WARN: Overwrites {cert_file_path} if it exists.") cnt = requests.get( "https://raw.githubusercontent.com/Sciebo-RDS/Sciebo-RDS/release/getting-started/create_certs.sh.example" ).text with open(cert_file_path, "w") as f: f.write(cnt) click.echo(f"{cert_file_path} created.") else: click.echo( f"{cert_file_path} already in place. Delete it or use -f to overwrite it.", err=True, ) cnt = requests.get( "https://raw.githubusercontent.com/Sciebo-RDS/Sciebo-RDS/release/getting-started/values.yaml.example" ).text cfg = requests.get( "https://raw.githubusercontent.com/Sciebo-RDS/Sciebo-RDS-CLI/develop/config.yaml.example" ).text if (not os.path.isfile(config_file_path) or overwrite_values) and not single_file: if overwrite_values: click.echo(f"WARN: Overwrites {config_file_path} if it exists.") with open(config_file_path, "w") as f: f.write(cfg) click.echo(f"{config_file_path} created.") if not os.path.isfile(values_file_path) or overwrite_values: if overwrite_values: click.echo(f"WARN: Overwrites {values_file_path} if it exists.") if single_file: click.echo( f"WARN: Places {config_file_path} content at the top of {values_file_path}." ) cnt = cfg + "\n\n\n" + cnt with open(values_file_path, "w") as f: f.write(cnt) click.echo(f"{values_file_path} created.") else: click.echo( f"{values_file_path} already in place. Delete it or use -f to overwrite it.", err=True, ) if not single_file: click.echo( f"Adjust the {values_file_path} and {config_file_path} to your needs with your favourite editor, before you `install` sciebo RDS." ) else: click.echo( f"Adjust the {values_file_path} to your needs with your favourite editor, before you `install` sciebo RDS." ) @click.command() @click.option( "--one-file", "-c", "single_file", is_flag=True, default=False, help=f"Writes down the needed config stuff in {values_file_path}. Otherwise it creates a separate file {config_file_path}.", ) @click.option( "--helm-sciebords-name", "-n", "helm_name", default="sciebords", help="Use the given name for helm install process. Defaults to 'sciebords'.", ) def checks(single_file, helm_name): """ Runs several checks if all requirements for sciebo RDS are fulfilled. """ error_found = False if not os.path.isfile(values_file_path): click.echo(f"values.yaml is not in place: {values_file_path}", err=True) error_found = True return if not single_file and not os.path.isfile(config_file_path): click.echo(f"config.yaml is not in place: {config_file_path}", err=True) error_found = True return if os.system("kubectl version") > 0: click.echo("kubectl not found", err=True) error_found = True if os.system("helm version") > 0: click.echo("helm not found", err=True) error_found = True if ( os.path.isfile(values_file_path) and os.system( f"helm upgrade -i {helm_name} sciebo-rds/all --values {values_file_path} --dry-run" ) > 0 ): click.echo(f"{values_file_path} not valid. Helm founds error.", err=True) error_found = True if not error_found: click.echo("Everything is fine. You should be good to install sciebo RDS.") @click.command() @click.option( "--dry-run", "dry_run", is_flag=True, default=False, help="Execute install without any changes. WARNING: It connects to the ownCloud instances and your k8s cluster via SSH and Kubectl to get some informations. Nevertheless it does not change anything.", ) @click.argument( "values_file", default=Path(f"{os.getcwd()}/values.yaml"), type=click.Path(exists=True), ) def upgrade(dry_run, values_file): """ A wrapper method for convenience to upgrade the sciebo RDS instance with helm. Use this command if you changed something in your values.yaml """ execute_helm(values_file, install=False, dry_run=dry_run) @click.command() def commands(): """ Shows all commands, which will be executed to configure the owncloud instances properly. """ data = { "client_id": "${CLIENT_ID}", "client_secret": "${CLIENT_SECRET}", "oauthname": "${OAUTHNAME}", "rds_domain": "${RDS_DOMAIN}", "owncloud_path": "${OWNCLOUD_PATH}", } click.echo( """Conditions: $CLIENT_ID and $CLIENT_SECRET has a length of 64 characters (no special character like [/\.,] allowed). $OWNCLOUD_PATH is empty "" (occ can be found through $PATH) or set to a folder with trailing slash / e.g. /var/www/owncloud/ $OAUTHNAME is not in use for oauth2 already. $RDS_DOMAIN points to the sciebo-rds installation root domain. Remember that you also need the domainname of the owncloud instance to configure the values.yaml, which will be automatically guessed by this script. ownCloud needs php-gmp for oauth2 plugin. Install it on your own. """ ) click.echo("Commands: ") for cmd in get_commands(): click.echo(cmd.format(**data)) @click.command() @click.option( "--only-kubeconfig", "-k", "force_kubectl", is_flag=True, default=False, help="Ignore servers object in config.yaml and use the user kubeconfig for a single pod configuration.", ) @click.option( "-h", "--helm-install", "helm_install", is_flag=True, default=False, help="A convenient parameter. It runs all needed helm commands to install sciebo-rds in your current kubectl context after configuration. Helm upgrades should not use this parameter. Please use `sciebords upgrade` for this.", ) @click.option( "-c", "--config", "file", type=click.Path(exists=True), is_flag=False, flag_value=Path(f"{os.getcwd()}/config.yaml"), help="The given path will be used as config.yaml file. If not given, it will use the values.yaml per default as a single-file-configuration otherwise.", ) @click.argument( "values_file", default=Path(f"{os.getcwd()}/values.yaml"), type=click.Path(exists=True), ) @click.option( "--dry-run", "dry_run", is_flag=True, default=False, help="Execute install without any changes. WARNING: It connects to the ownCloud instances and your k8s cluster via SSH and Kubectl to get some informations. Nevertheless it does not change anything.", ) def install(force_kubectl, helm_install, values_file, file, dry_run): """ Use defined interfaces in given VALUES_FILE to get all needed informations from ownCloud installations and prepare the VALUES_FILE to install sciebo RDS. VALUES_FILE defaults to ./values.yaml. Take a look at --config to specify a different file for interface configuration. Primarily it sets up all needed plugins in ownCloud, gets everything in place and writes down the domains object in the values.yaml file, which will be used later to install sciebo RDS. """ config_file = None values = None config = None try: with open(values_file, "r") as f: try: values = yaml.safe_load(f) except yaml.YAMLError as exc: click.echo(f"Error in values.yaml: {exc}", err=True) exit(1) except OSError as exc: click.echo(f"Missing file: {values_file}", err=True) exit(1) if config_file is None: config = values else: try: with open(config_file, "r") as f: try: config = yaml.safe_load(f) except yaml.YAMLError as exc: click.echo(f"Error in config.yaml: {exc}", err=True) exit(1) except OSError as exc: click.echo(f"Missing file: {config_file}", err=True) exit(1) owncloud_path_global = config.get("owncloud_path", "") if force_kubectl: try: config["servers"] = [{"selector": config["k8sselector"]}] except KeyError as exc: click.echo( "Missing `k8sselector` field in config. --only-kubeconfig needs this field.", err=True, ) exit(1) click.echo("use kubeconfig only") servers = config.get("servers", []) if len(servers) == 0: click.echo("No servers were found.") exit(1) for val in servers: key_filename = val.get("private_key") if key_filename is not None: key_filename = key_filename.replace("{$HOME}", os.environ["HOME"]) client_id, client_secret = (random(), random()) oauthname = config.get("oauthname", "sciebo-rds") rds_domain = config["rds"] owncloud_path = val.get("owncloud_path", owncloud_path_global) if owncloud_path != "" and not str(owncloud_path).endswith("/"): owncloud_path += "/" data = { "client_id": client_id, "client_secret": client_secret, "oauthname": oauthname, "rds_domain": rds_domain, "owncloud_path": owncloud_path, } commands = [cmd.format(**data) for cmd in get_commands()] owncloud_host_hostname_command = 'php -r "echo gethostname();"' owncloud_host_config_command = ( f'{owncloud_path}occ config:list | grep "overwritehost\|overwrite.cli.url"' ) owncloud_url = "" if "address" in val: ssh = paramiko.client.SSHClient() ssh.load_system_host_keys() ssh.connect( val["address"], username=val.get("user"), password=val.get("password"), key_filename=key_filename, ) if dry_run: click.echo( "SSH can connect to ownCloud server: {}".format(val["address"]) ) continue owncloud_url = execute( ssh, execute_ssh, commands, owncloud_host_hostname_command, owncloud_host_config_command, ) ssh.close() elif "namespace" in val: context = val.get("context", config.get("k8scontext")) selector = val.get("selector", config.get("k8sselector")) containername = val.get("containername", config.get("k8scontainername")) kubernetes.config.load_kube_config(context=context) namespace = val.get( "namespace", config.get( "k8snamespace", kubernetes.config.list_kube_config_contexts()[1]["context"][ "namespace" ], ), ) api = kubernetes.client.CoreV1Api() pods = api.list_namespaced_pod( namespace=namespace, label_selector=selector, field_selector="status.phase=Running", ) k8s = None for pod in pods.items: k8s = kubernetes.stream.stream( api.connect_get_namespaced_pod_exec, pod.metadata.name, namespace, container=containername, command="/bin/bash", stderr=True, stdin=True, stdout=True, tty=False, _preload_content=False, ) if k8s.is_open(): continue if k8s is None or not k8s.is_open(): click.echo(f"No connection via kubectl possible: {val}") exit(1) click.echo( f"kubectl initialized: Connected to pod {pod.metadata.name}, container {containername} in namespace {namespace}" ) if dry_run: click.echo( "kubectl can connect to ownCloud label: {}, container: {}".format( selector, containername ) ) continue owncloud_url = execute( k8s, execute_kubectl, commands, owncloud_host_hostname_command, owncloud_host_config_command, ) k8s.close() else: click.echo( f"Skipped: Server was not valid to work with: {val}\nIt needs to be an object with `address` for ssh or `namespace` for kubectl" ) continue if not owncloud_url: click.echo( f"owncloud domain cannot be found automatically for {val}. Enter the correct domain without protocol. If port needed, add it too.\nExample: sciebords.uni-muenster.de, localhost:8000" ) value = "" while not value: value = input(f"Address: ") if value: owncloud_url = value else: exit(1) domain = { "name": val["name"], "ADDRESS": owncloud_url, "OAUTH_CLIENT_ID": client_id, "OAUTH_CLIENT_SECRET": client_secret, } values["global"]["domains"].append(domain) if not dry_run: with open(values_file, "w") as yaml_file: yaml.dump(values, yaml_file, default_flow_style=False) if helm_install: execute_helm(values_file, install=True, dry_run=dry_run) cli.add_command(commands, "get-commands") cli.add_command(init, "init") cli.add_command(install, "install") cli.add_command(checks, "checks") cli.add_command(upgrade, "upgrade") if __name__ == "__main__": cli()
sciebo-rds-cli
/sciebo_rds_cli-0.1.6.tar.gz/sciebo_rds_cli-0.1.6/sciebo_rds_cli/main.py
main.py
import click import paramiko import kubernetes from secrets import choice import yaml import string import os import requests from pathlib import Path def random(N=64): return "".join( [ choice(string.ascii_lowercase + string.ascii_uppercase + string.digits) for _ in range(N) ] ) def get_commands(): commands = [ # "{owncloud_path}occ market:install oauth2", # "{owncloud_path}occ market:install rds", "{owncloud_path}occ app:enable oauth2", "{owncloud_path}occ app:enable rds", "{owncloud_path}occ oauth2:add-client {oauthname} {client_id} {client_secret} {rds_domain}", "{owncloud_path}occ rds:set-oauthname {oauthname}", "{owncloud_path}occ rds:set-url {rds_domain}", "{owncloud_path}occ rds:create-keys", ] return commands def execute_ssh(ssh, cmd): _, stdout, stderr = ssh.exec_command(cmd) err = stderr.read() if err != "": click.echo(f"Error in ssh command: {err}", err=True) exit(1) return stdout def execute_kubectl(k8s, cmd): k8s.write_stdin(cmd + "\n") err = k8s.read_stderr() if err != "": click.echo(f"Error in kubectl command: {err}") exit(1) return k8s.read_stdout(timeout=3) def execute_helm(values_file, install=False, dry_run=False): if install and not dry_run: click.echo("Preparing helm for sciebo RDS.") click.echo("Remove installed sciebo rds from k8s if it is already there.") os.system("helm uninstall sciebo-rds") click.echo("Remove sciebo RDS from helm repo list.") os.system("helm repo remove sciebo-rds") click.echo("Add sciebo RDS in helm repo list again.") os.system( "helm repo add sciebo-rds https://www.research-data-services.org/charts/stable" ) click.echo("Update helm repo list.") os.system("helm repo up sciebo-rds") click.echo("Finish preparation.") click.echo("Installing sciebo RDS via helm.") cmd = f"helm upgrade -i sciebo-rds sciebo-rds/all --values {values_file}" if dry_run: cmd += " --dry-run" error_code = os.system(cmd) if error_code > 0: click.echo("There was an error while installing sciebo RDS via helm.") else: click.echo( "Sciebo RDS is installed now via helm. Check it out via `kubectl get pods`." ) def execute( channel, fun, commands, owncloud_host_hostname_command, owncloud_host_config_command ): for cmd in commands: click.echo(f"Running command: {cmd}") fun(channel, cmd) # via php hostname owncloud_url = fun(channel, owncloud_host_hostname_command) # via overwrites from config for overwrite in fun(channel, owncloud_host_config_command): # remove comma, because we look at php dict parts overwrite = overwrite.replace(",", "", 1) # separate key and value _, _, val = str(overwrite).partition(":") owncloud_url = val return owncloud_url @click.group() def cli(): pass values_file_path = "values.yaml" config_file_path = "config.yaml" cert_file_path = "create_certs.sh" @click.command() @click.option( "--self-signed-cert", "-s", "self_signed", is_flag=True, default=False, help=f"Creates the script {cert_file_path} for self-signed certificates. Not recommended for production use, but handy for testing.", ) @click.option( "--force", "-f", "overwrite_values", is_flag=True, default=False, help=f"Overwrites the {values_file_path}, if it already exists. Otherwise exits with statuscode greater then 0.", ) @click.option( "--one-file", "-c", "single_file", is_flag=True, default=False, help=f"Writes down the needed config stuff in {values_file_path}. Otherwise it creates a separate file {config_file_path}.", ) def init(self_signed, overwrite_values, single_file): """ Initialize needed files for sciebo RDS. Places the files in the current folder. """ if self_signed: click.echo("Self-signed script selected.") if not os.path.isfile(cert_file_path) or overwrite_values: if overwrite_values: click.echo(f"WARN: Overwrites {cert_file_path} if it exists.") cnt = requests.get( "https://raw.githubusercontent.com/Sciebo-RDS/Sciebo-RDS/release/getting-started/create_certs.sh.example" ).text with open(cert_file_path, "w") as f: f.write(cnt) click.echo(f"{cert_file_path} created.") else: click.echo( f"{cert_file_path} already in place. Delete it or use -f to overwrite it.", err=True, ) cnt = requests.get( "https://raw.githubusercontent.com/Sciebo-RDS/Sciebo-RDS/release/getting-started/values.yaml.example" ).text cfg = requests.get( "https://raw.githubusercontent.com/Sciebo-RDS/Sciebo-RDS-CLI/develop/config.yaml.example" ).text if (not os.path.isfile(config_file_path) or overwrite_values) and not single_file: if overwrite_values: click.echo(f"WARN: Overwrites {config_file_path} if it exists.") with open(config_file_path, "w") as f: f.write(cfg) click.echo(f"{config_file_path} created.") if not os.path.isfile(values_file_path) or overwrite_values: if overwrite_values: click.echo(f"WARN: Overwrites {values_file_path} if it exists.") if single_file: click.echo( f"WARN: Places {config_file_path} content at the top of {values_file_path}." ) cnt = cfg + "\n\n\n" + cnt with open(values_file_path, "w") as f: f.write(cnt) click.echo(f"{values_file_path} created.") else: click.echo( f"{values_file_path} already in place. Delete it or use -f to overwrite it.", err=True, ) if not single_file: click.echo( f"Adjust the {values_file_path} and {config_file_path} to your needs with your favourite editor, before you `install` sciebo RDS." ) else: click.echo( f"Adjust the {values_file_path} to your needs with your favourite editor, before you `install` sciebo RDS." ) @click.command() @click.option( "--one-file", "-c", "single_file", is_flag=True, default=False, help=f"Writes down the needed config stuff in {values_file_path}. Otherwise it creates a separate file {config_file_path}.", ) @click.option( "--helm-sciebords-name", "-n", "helm_name", default="sciebords", help="Use the given name for helm install process. Defaults to 'sciebords'.", ) def checks(single_file, helm_name): """ Runs several checks if all requirements for sciebo RDS are fulfilled. """ error_found = False if not os.path.isfile(values_file_path): click.echo(f"values.yaml is not in place: {values_file_path}", err=True) error_found = True return if not single_file and not os.path.isfile(config_file_path): click.echo(f"config.yaml is not in place: {config_file_path}", err=True) error_found = True return if os.system("kubectl version") > 0: click.echo("kubectl not found", err=True) error_found = True if os.system("helm version") > 0: click.echo("helm not found", err=True) error_found = True if ( os.path.isfile(values_file_path) and os.system( f"helm upgrade -i {helm_name} sciebo-rds/all --values {values_file_path} --dry-run" ) > 0 ): click.echo(f"{values_file_path} not valid. Helm founds error.", err=True) error_found = True if not error_found: click.echo("Everything is fine. You should be good to install sciebo RDS.") @click.command() @click.option( "--dry-run", "dry_run", is_flag=True, default=False, help="Execute install without any changes. WARNING: It connects to the ownCloud instances and your k8s cluster via SSH and Kubectl to get some informations. Nevertheless it does not change anything.", ) @click.argument( "values_file", default=Path(f"{os.getcwd()}/values.yaml"), type=click.Path(exists=True), ) def upgrade(dry_run, values_file): """ A wrapper method for convenience to upgrade the sciebo RDS instance with helm. Use this command if you changed something in your values.yaml """ execute_helm(values_file, install=False, dry_run=dry_run) @click.command() def commands(): """ Shows all commands, which will be executed to configure the owncloud instances properly. """ data = { "client_id": "${CLIENT_ID}", "client_secret": "${CLIENT_SECRET}", "oauthname": "${OAUTHNAME}", "rds_domain": "${RDS_DOMAIN}", "owncloud_path": "${OWNCLOUD_PATH}", } click.echo( """Conditions: $CLIENT_ID and $CLIENT_SECRET has a length of 64 characters (no special character like [/\.,] allowed). $OWNCLOUD_PATH is empty "" (occ can be found through $PATH) or set to a folder with trailing slash / e.g. /var/www/owncloud/ $OAUTHNAME is not in use for oauth2 already. $RDS_DOMAIN points to the sciebo-rds installation root domain. Remember that you also need the domainname of the owncloud instance to configure the values.yaml, which will be automatically guessed by this script. ownCloud needs php-gmp for oauth2 plugin. Install it on your own. """ ) click.echo("Commands: ") for cmd in get_commands(): click.echo(cmd.format(**data)) @click.command() @click.option( "--only-kubeconfig", "-k", "force_kubectl", is_flag=True, default=False, help="Ignore servers object in config.yaml and use the user kubeconfig for a single pod configuration.", ) @click.option( "-h", "--helm-install", "helm_install", is_flag=True, default=False, help="A convenient parameter. It runs all needed helm commands to install sciebo-rds in your current kubectl context after configuration. Helm upgrades should not use this parameter. Please use `sciebords upgrade` for this.", ) @click.option( "-c", "--config", "file", type=click.Path(exists=True), is_flag=False, flag_value=Path(f"{os.getcwd()}/config.yaml"), help="The given path will be used as config.yaml file. If not given, it will use the values.yaml per default as a single-file-configuration otherwise.", ) @click.argument( "values_file", default=Path(f"{os.getcwd()}/values.yaml"), type=click.Path(exists=True), ) @click.option( "--dry-run", "dry_run", is_flag=True, default=False, help="Execute install without any changes. WARNING: It connects to the ownCloud instances and your k8s cluster via SSH and Kubectl to get some informations. Nevertheless it does not change anything.", ) def install(force_kubectl, helm_install, values_file, file, dry_run): """ Use defined interfaces in given VALUES_FILE to get all needed informations from ownCloud installations and prepare the VALUES_FILE to install sciebo RDS. VALUES_FILE defaults to ./values.yaml. Take a look at --config to specify a different file for interface configuration. Primarily it sets up all needed plugins in ownCloud, gets everything in place and writes down the domains object in the values.yaml file, which will be used later to install sciebo RDS. """ config_file = None values = None config = None try: with open(values_file, "r") as f: try: values = yaml.safe_load(f) except yaml.YAMLError as exc: click.echo(f"Error in values.yaml: {exc}", err=True) exit(1) except OSError as exc: click.echo(f"Missing file: {values_file}", err=True) exit(1) if config_file is None: config = values else: try: with open(config_file, "r") as f: try: config = yaml.safe_load(f) except yaml.YAMLError as exc: click.echo(f"Error in config.yaml: {exc}", err=True) exit(1) except OSError as exc: click.echo(f"Missing file: {config_file}", err=True) exit(1) owncloud_path_global = config.get("owncloud_path", "") if force_kubectl: try: config["servers"] = [{"selector": config["k8sselector"]}] except KeyError as exc: click.echo( "Missing `k8sselector` field in config. --only-kubeconfig needs this field.", err=True, ) exit(1) click.echo("use kubeconfig only") servers = config.get("servers", []) if len(servers) == 0: click.echo("No servers were found.") exit(1) for val in servers: key_filename = val.get("private_key") if key_filename is not None: key_filename = key_filename.replace("{$HOME}", os.environ["HOME"]) client_id, client_secret = (random(), random()) oauthname = config.get("oauthname", "sciebo-rds") rds_domain = config["rds"] owncloud_path = val.get("owncloud_path", owncloud_path_global) if owncloud_path != "" and not str(owncloud_path).endswith("/"): owncloud_path += "/" data = { "client_id": client_id, "client_secret": client_secret, "oauthname": oauthname, "rds_domain": rds_domain, "owncloud_path": owncloud_path, } commands = [cmd.format(**data) for cmd in get_commands()] owncloud_host_hostname_command = 'php -r "echo gethostname();"' owncloud_host_config_command = ( f'{owncloud_path}occ config:list | grep "overwritehost\|overwrite.cli.url"' ) owncloud_url = "" if "address" in val: ssh = paramiko.client.SSHClient() ssh.load_system_host_keys() ssh.connect( val["address"], username=val.get("user"), password=val.get("password"), key_filename=key_filename, ) if dry_run: click.echo( "SSH can connect to ownCloud server: {}".format(val["address"]) ) continue owncloud_url = execute( ssh, execute_ssh, commands, owncloud_host_hostname_command, owncloud_host_config_command, ) ssh.close() elif "namespace" in val: context = val.get("context", config.get("k8scontext")) selector = val.get("selector", config.get("k8sselector")) containername = val.get("containername", config.get("k8scontainername")) kubernetes.config.load_kube_config(context=context) namespace = val.get( "namespace", config.get( "k8snamespace", kubernetes.config.list_kube_config_contexts()[1]["context"][ "namespace" ], ), ) api = kubernetes.client.CoreV1Api() pods = api.list_namespaced_pod( namespace=namespace, label_selector=selector, field_selector="status.phase=Running", ) k8s = None for pod in pods.items: k8s = kubernetes.stream.stream( api.connect_get_namespaced_pod_exec, pod.metadata.name, namespace, container=containername, command="/bin/bash", stderr=True, stdin=True, stdout=True, tty=False, _preload_content=False, ) if k8s.is_open(): continue if k8s is None or not k8s.is_open(): click.echo(f"No connection via kubectl possible: {val}") exit(1) click.echo( f"kubectl initialized: Connected to pod {pod.metadata.name}, container {containername} in namespace {namespace}" ) if dry_run: click.echo( "kubectl can connect to ownCloud label: {}, container: {}".format( selector, containername ) ) continue owncloud_url = execute( k8s, execute_kubectl, commands, owncloud_host_hostname_command, owncloud_host_config_command, ) k8s.close() else: click.echo( f"Skipped: Server was not valid to work with: {val}\nIt needs to be an object with `address` for ssh or `namespace` for kubectl" ) continue if not owncloud_url: click.echo( f"owncloud domain cannot be found automatically for {val}. Enter the correct domain without protocol. If port needed, add it too.\nExample: sciebords.uni-muenster.de, localhost:8000" ) value = "" while not value: value = input(f"Address: ") if value: owncloud_url = value else: exit(1) domain = { "name": val["name"], "ADDRESS": owncloud_url, "OAUTH_CLIENT_ID": client_id, "OAUTH_CLIENT_SECRET": client_secret, } values["global"]["domains"].append(domain) if not dry_run: with open(values_file, "w") as yaml_file: yaml.dump(values, yaml_file, default_flow_style=False) if helm_install: execute_helm(values_file, install=True, dry_run=dry_run) cli.add_command(commands, "get-commands") cli.add_command(init, "init") cli.add_command(install, "install") cli.add_command(checks, "checks") cli.add_command(upgrade, "upgrade") if __name__ == "__main__": cli()
0.387111
0.123974
# scieconlib This is a machine learning toolkit to game theory or econometrics analysis. ## Dev environment setup In your virtual environment, run ```shell python3 -m pip install -r requirements.txt ``` To build the project, run ```shell make clean && make start ``` ## Basic usage ### Installation ```sheel python3 -m pip install scieconlib ``` ### Example ```python import scieconlib.gametheory.multi_armed_bandit as bandit import scieconlib print('version: ', scieconlib.__version__) # create actions action_1 = bandit.Action.from_array([1, 2, 3, 4, 5]) action_2 = bandit.Action.from_array([2, 4, 5, 4, 8]) action_3 = bandit.Action.from_array([0, 1, 2, 1, 3]) # create agent and add actions agent = bandit.Agent() agent.add_action(action_1, verbose=1) agent.add_action(action_2, verbose=1) agent.add_action(action_3, verbose=1) # setup the model model = bandit.Model( agent=agent, agent_num=10, epsilon=0.1, epochs=500 ) # train the model model.train() # draw the result model.history() ```
scieconlib
/scieconlib-0.0.5.tar.gz/scieconlib-0.0.5/README.md
README.md
python3 -m pip install -r requirements.txt make clean && make start python3 -m pip install scieconlib import scieconlib.gametheory.multi_armed_bandit as bandit import scieconlib print('version: ', scieconlib.__version__) # create actions action_1 = bandit.Action.from_array([1, 2, 3, 4, 5]) action_2 = bandit.Action.from_array([2, 4, 5, 4, 8]) action_3 = bandit.Action.from_array([0, 1, 2, 1, 3]) # create agent and add actions agent = bandit.Agent() agent.add_action(action_1, verbose=1) agent.add_action(action_2, verbose=1) agent.add_action(action_3, verbose=1) # setup the model model = bandit.Model( agent=agent, agent_num=10, epsilon=0.1, epochs=500 ) # train the model model.train() # draw the result model.history()
0.375592
0.770637
# Clea This project is an XML front matter metadata reader for documents that *almost* follows the [SciELO Publishing Schema], extracting and sanitizing the values regarding the affiliations. ## Installation One can install Clea with either: ``` pip install scielo-clea # Minimal pip install scielo-clea[cli] # Clea with CLI (recommended) pip install scielo-clea[server] # Clea with the testing/example server pip install scielo-clea[all] # Clea with both CLI and the server ``` Actually all these commands installs everything, only the dependencies aren't the same. The first is an installation with minimal requirements, intended for use within Python, as an imported package. ## Running the command line interface The CLI is a way to use Clea as an article XML to JSONL converter (one JSON output line for each XML input): ``` clea -o output.jsonl article1.xml article2.xml article3.xml ``` The same can be done with ``python -m clea`` instead of ``clea``. The output is the standard output stream. See ``clea --help`` for more information. ## Running the testing server You can run the development server using the flask CLI. For example, for listening at 8080 from every host: ``` FLASK_APP=clea.server flask run -h 0.0.0.0 -p 8080 ``` In a production server with 4 worker processes for handling requests, you can, for example: - Install gunicorn (it's not a dependency) - Run `gunicorn -b 0.0.0.0:8080 -w 4 clea.server:app` ## Clea as a library A simple example to see all the extracted data is: ```python from clea import Article from pprint import pprint art = Article("some_file.xml") pprint(art.data_full) ``` That's a dictionary of lists with all the "raw" extracted data. The keys of that dictionary can be directly accessed, so one can avoid extracting everything from the XML by getting just the specific items/attributes (e.g. `art["journal_meta"][0].data_full` or `art.journal_meta[0].data_full` instead of `art.data_full["journal_meta"][0]`). These items/attributes are always lists, for example: * `art["aff"]`: List of `clea.core.Branch` instances * `art["sub_article"]`: List of `clea.core.SubArticle` instances * `art["contrib"][0]["contrib_name"]`: List of strings Where the `art["contrib"][0]` is a `Branch` instance, and all such instances behave in the same way (there's no nested branches). That can be seen as another way to navigate in the former dictionary, the last example should return the same list one would get with `art.data_full["contrib"][0]["contrib_name"]`, but without extracting everything else that appears in the `art.data_full` dictionary. More simple stuff that can be done: ```python len(art.aff) # Number of <aff> entries len(art.sub_article) # Number of <sub-article> art.contrib[0].data_full # Data from the first contributor as a dict # Something like {"type": ["translation"], "lang": ["en"]}, # the content from <sub-article> attributes art["sub_article"][0]["article"][0].data_full # A string with the article title, accessing just the desired content art["article_meta"][0]["article_title"][0] ``` All `SubArticle`, `Article` and `Branch` instances have the `data_full` property and the `get` method, the latter being internally used for item/attribute getting. Their behavior is: * `Branch.get` always returns a list of strings * `Article.get("sub_article")` returns a list of `SubArticle` * `Article.get(...)` returns a list of `Branch` * `SubArticle` behaves like `Article` The extracted information is not exhaustive! Its result should not be seen as a replacement of the raw XML. One of the goals of this library was to help on creating a tabular data from a given XML with as many rows as required to have a pair of a matching `<aff>` and `<contrib>` in each row. These are the `Article` methods/properties that does that matching: * `art.aff_contrib_inner_gen()` * `art.aff_contrib_full_gen()` * `art.aff_contrib_inner` * `art.aff_contrib_full` * `art.aff_contrib_inner_indices` * `art.aff_contrib_full_indices` The most useful ones are probably the last ones, which return a list of pairs (tuples) of indices (ints), so one can use a `(ai, ci)` result to access the `(art.aff[ai], art.contrib[ci])` pair, unless the index is `-1` (not found). The ones with the `_gen` suffix are generator functions that yields a tuple with two `Branch` entries (or `None`), the ones without a suffix return a list of merged dictionaries in an almost tabular format (dictionary of lists of strings). Each list regarding these elements for these specific elements should usually have at most one string, but that's not always the case even for these specific elements, then one should be careful when using the `data` property. The `inner` and `full` in the names regards to `INNER JOIN` and `FULL OUTER JOIN` from SQL, meaning the unmatched elements (all `<aff>` and `<contrib>` unreferred nodes) are discarded in the former strategy, whereas they're forcefully matched with `None` in the latter. To print all the extracted data from a XML including the indices of matching `<aff>` and `<contrib>` pairs performed in the `FULL OUTER JOIN` sense, similar to the test server response: ```python pprint({ **article.data_full, "aff_contrib_pairs": article.aff_contrib_full_indices, }) ``` [SciELO Publishing Schema]: http://docs.scielo.org/projects/scielo-publishing-schema
scielo-clea
/scielo-clea-0.4.4.tar.gz/scielo-clea-0.4.4/README.md
README.md
pip install scielo-clea # Minimal pip install scielo-clea[cli] # Clea with CLI (recommended) pip install scielo-clea[server] # Clea with the testing/example server pip install scielo-clea[all] # Clea with both CLI and the server clea -o output.jsonl article1.xml article2.xml article3.xml FLASK_APP=clea.server flask run -h 0.0.0.0 -p 8080 from clea import Article from pprint import pprint art = Article("some_file.xml") pprint(art.data_full) len(art.aff) # Number of <aff> entries len(art.sub_article) # Number of <sub-article> art.contrib[0].data_full # Data from the first contributor as a dict # Something like {"type": ["translation"], "lang": ["en"]}, # the content from <sub-article> attributes art["sub_article"][0]["article"][0].data_full # A string with the article title, accessing just the desired content art["article_meta"][0]["article_title"][0] pprint({ **article.data_full, "aff_contrib_pairs": article.aff_contrib_full_indices, })
0.427038
0.92597
from .misc import get_lev def aff_contrib_inner_gen(article): """Generator of matching <aff> and <contrib> of an article as pairs of Branch instances, using a strategy based on SQL's INNER JOIN.""" affs_ids = [get_lev(aff.node, "id") for aff in article.aff] contrib_rids = [[get_lev(xref, "rid") for xref in contrib.get_field_nodes("xref_aff")] for contrib in article.contrib] for aff_id, aff in zip(affs_ids, article.aff): for rid_list, contrib in zip(contrib_rids, article.contrib): for rid in rid_list: if rid == aff_id: yield aff, contrib def aff_contrib_full_gen(article): """Generator of matching <aff> and <contrib> of an article as pairs of Branch instances, using a strategy based on SQL's FULL OUTER JOIN.""" affs_ids = [get_lev(aff.node, "id") for aff in article.aff] contrib_rids = [[get_lev(xref, "rid") for xref in contrib.get_field_nodes("xref_aff")] for contrib in article.contrib] contrib_missing = set(range(len(article.contrib))) for aff_id, aff in zip(affs_ids, article.aff): amiss = True for cidx, (rid_list, contrib) in enumerate(zip(contrib_rids, article.contrib)): for rid in rid_list: if rid == aff_id: yield aff, contrib amiss = False contrib_missing.discard(cidx) if amiss: yield aff, None for cidx in sorted(contrib_missing): yield None, article.contrib[cidx] def aff_contrib_inner(article): """Inner join list of matching <aff> and <contrib> entries.""" return [{**aff.data_full, **contrib.data_full} for aff, contrib in aff_contrib_inner_gen(article)] def aff_contrib_full(article): """Full outer join list of matching <aff> and <contrib> entries.""" return [{**(aff.data_full if aff else {}), **(contrib.data_full if contrib else {}), } for aff, contrib in aff_contrib_full_gen(article)] def aff_contrib_inner_indices(article): """List of ``(ia, ic)`` tuples of indices for all matching ``(article["aff"][ia], article["contrib"][ic])`` pairs, using a strategy based on SQL's INNER JOIN. """ affs = [None] + article["aff"] contribs = [None] + article["contrib"] return [(affs.index(aff) - 1, contribs.index(contrib) - 1) for aff, contrib in aff_contrib_inner_gen(article)] def aff_contrib_full_indices(article): """List of ``(ia, ic)`` tuples of indices for all matching ``(article["aff"][ia], article["contrib"][ic])`` pairs, using a strategy based on SQL's FULL OUTER JOIN. """ affs = [None] + article["aff"] contribs = [None] + article["contrib"] return [(affs.index(aff) - 1, contribs.index(contrib) - 1) for aff, contrib in aff_contrib_full_gen(article)]
scielo-clea
/scielo-clea-0.4.4.tar.gz/scielo-clea-0.4.4/clea/join.py
join.py
from .misc import get_lev def aff_contrib_inner_gen(article): """Generator of matching <aff> and <contrib> of an article as pairs of Branch instances, using a strategy based on SQL's INNER JOIN.""" affs_ids = [get_lev(aff.node, "id") for aff in article.aff] contrib_rids = [[get_lev(xref, "rid") for xref in contrib.get_field_nodes("xref_aff")] for contrib in article.contrib] for aff_id, aff in zip(affs_ids, article.aff): for rid_list, contrib in zip(contrib_rids, article.contrib): for rid in rid_list: if rid == aff_id: yield aff, contrib def aff_contrib_full_gen(article): """Generator of matching <aff> and <contrib> of an article as pairs of Branch instances, using a strategy based on SQL's FULL OUTER JOIN.""" affs_ids = [get_lev(aff.node, "id") for aff in article.aff] contrib_rids = [[get_lev(xref, "rid") for xref in contrib.get_field_nodes("xref_aff")] for contrib in article.contrib] contrib_missing = set(range(len(article.contrib))) for aff_id, aff in zip(affs_ids, article.aff): amiss = True for cidx, (rid_list, contrib) in enumerate(zip(contrib_rids, article.contrib)): for rid in rid_list: if rid == aff_id: yield aff, contrib amiss = False contrib_missing.discard(cidx) if amiss: yield aff, None for cidx in sorted(contrib_missing): yield None, article.contrib[cidx] def aff_contrib_inner(article): """Inner join list of matching <aff> and <contrib> entries.""" return [{**aff.data_full, **contrib.data_full} for aff, contrib in aff_contrib_inner_gen(article)] def aff_contrib_full(article): """Full outer join list of matching <aff> and <contrib> entries.""" return [{**(aff.data_full if aff else {}), **(contrib.data_full if contrib else {}), } for aff, contrib in aff_contrib_full_gen(article)] def aff_contrib_inner_indices(article): """List of ``(ia, ic)`` tuples of indices for all matching ``(article["aff"][ia], article["contrib"][ic])`` pairs, using a strategy based on SQL's INNER JOIN. """ affs = [None] + article["aff"] contribs = [None] + article["contrib"] return [(affs.index(aff) - 1, contribs.index(contrib) - 1) for aff, contrib in aff_contrib_inner_gen(article)] def aff_contrib_full_indices(article): """List of ``(ia, ic)`` tuples of indices for all matching ``(article["aff"][ia], article["contrib"][ic])`` pairs, using a strategy based on SQL's FULL OUTER JOIN. """ affs = [None] + article["aff"] contribs = [None] + article["contrib"] return [(affs.index(aff) - 1, contribs.index(contrib) - 1) for aff, contrib in aff_contrib_full_gen(article)]
0.637934
0.391813
from contextlib import contextmanager import html from lxml import etree from unidecode import unidecode import numpy as np import regex from .cache import CachedMethod, CachedProperty from . import join from .misc import get_lev from .regexes import TAG_PATH_REGEXES, SUB_ARTICLE_NAME, get_branch_dicts _PARSER = etree.XMLParser(recover=True) _DOCTYPE = '<!DOCTYPE article PUBLIC "" "http://">\n' # Force Entity objects class InvalidInput(Exception): pass def etree_tag_path_gen(root, start=""): """Extract the tag path.""" start += "/" + root.tag yield start, root for node in root.iterchildren(tag=etree.Element): yield from etree_tag_path_gen(node, start) def etree_path_gen(branch, path=""): """Extract the branch path.""" path += "/" + branch.tag for k, v in sorted(branch.items()): path += f"@{xml_attr_cleanup(k)}={xml_attr_cleanup(v)}" yield path, branch for node in branch.iterchildren(tag=etree.Element): yield from etree_path_gen(node, path) def xml_attr_cleanup(name): """Clean the given XML attribute name/value. This just removes what's required in order to build a branch path. """ return regex.sub("[/@]", "%", unidecode(name)) def node_getattr(node, attr=""): """Item getter from an Element node of an ElementTree. Returns the decoded inner text string form the node, unless an attribute name is given. """ if node is None: return "" if attr: return get_lev(node, attr) full_text = etree.tostring(node, encoding=str, method="text", with_tail=False, ) return regex.sub(r"\s+", " ", full_text).strip() @contextmanager def open_or_bypass(fileobj_or_filename, mode="r"): if isinstance(fileobj_or_filename, str): with open(fileobj_or_filename, mode) as result: yield result else: yield fileobj_or_filename def replace_html_entity_by_text(entity): value = html.unescape(entity.text) + (entity.tail or "") previous = entity.getprevious() parent = entity.getparent() parent.remove(entity) if previous is not None: if previous.tail is None: previous.tail = value else: previous.tail += value else: if parent.text is None: parent.text = value else: parent.text += value class Article(object): """Article abstraction from its XML file.""" def __init__(self, xml_file, raise_on_invalid=True): with open_or_bypass(xml_file) as fobj: raw_data = fobj.read() if isinstance(raw_data, bytes): raw_data = raw_data.decode("utf-8") try: # Remove <?xml> and <!DOCTYPE> headers document = regex.search("<[^?!](?:.|\n)*$", raw_data, flags=regex.MULTILINE).group() except AttributeError: document = raw_data self.root = etree.fromstring(_DOCTYPE + document, parser=_PARSER) if self.root is None: if raise_on_invalid: raise InvalidInput("Not an XML file") self.root = etree.Element("article") # There should be no entity at all, # but if there's any (legacy), they are the HTML5 ones for entity in self.root.iterdescendants(tag=etree.Entity): replace_html_entity_by_text(entity) @CachedProperty def tag_paths_pairs(self): return list(etree_tag_path_gen(self.root)) @CachedMethod def get(self, tag_name): tag_regex = TAG_PATH_REGEXES[tag_name] if tag_name == SUB_ARTICLE_NAME: return [SubArticle(parent=self, root=el, tag_name=tag_name) for path, el in self.tag_paths_pairs if tag_regex.search(path)] return [Branch(article=self, node=el, tag_name=tag_name) for path, el in self.tag_paths_pairs if tag_regex.search(path)] @CachedProperty def data_full(self): return {tag_name: [branch.data_full for branch in self.get(tag_name)] for tag_name in TAG_PATH_REGEXES} __getitem__ = __getattr__ = lambda self, name: self.get(name) aff_contrib_inner_gen = join.aff_contrib_inner_gen aff_contrib_full_gen = join.aff_contrib_full_gen aff_contrib_inner = CachedProperty(join.aff_contrib_inner) aff_contrib_full = CachedProperty(join.aff_contrib_full) aff_contrib_inner_indices = CachedProperty(join.aff_contrib_inner_indices) aff_contrib_full_indices = CachedProperty(join.aff_contrib_full_indices) class SubArticle(Article): def __init__(self, parent, root, tag_name): self.parent = parent # Should be the <article> (main XML root) self.root = root # The <sub-article> element self.tag_name = tag_name class Branch(object): def __init__(self, article, node, tag_name): self.article = article self.node = node # Branch "root" element self.tag_name = tag_name self.field_regexes, self.field_attrs = get_branch_dicts(tag_name) @CachedProperty def paths_pairs(self): return list(etree_path_gen(self.node)) @CachedProperty def _paths_nodes_pair(self): return tuple(zip(*self.paths_pairs)) @CachedProperty def paths(self): return self._paths_nodes_pair[0] @CachedProperty def nodes(self): return self._paths_nodes_pair[1] @CachedProperty def paths_str(self): return "\n".join(self.paths) @CachedProperty def ends(self): return np.cumsum([len(p) + 1 for p in self.paths]) # Add \n @CachedProperty def data_full(self): return {key: self.get(key) for key in self.field_regexes} @CachedMethod def get_field_nodes(self, field): field_regex = self.field_regexes[field] matches = field_regex.finditer(self.paths_str) return [self.nodes[np.where(self.ends > m.start())[0][0]] for m in matches] @CachedMethod def get(self, field): attr = self.field_attrs[field] nodes = self.get_field_nodes(field) return [node_getattr(node, attr) for node in nodes] __getitem__ = __getattr__ = lambda self, name: self.get(name)
scielo-clea
/scielo-clea-0.4.4.tar.gz/scielo-clea-0.4.4/clea/core.py
core.py
from contextlib import contextmanager import html from lxml import etree from unidecode import unidecode import numpy as np import regex from .cache import CachedMethod, CachedProperty from . import join from .misc import get_lev from .regexes import TAG_PATH_REGEXES, SUB_ARTICLE_NAME, get_branch_dicts _PARSER = etree.XMLParser(recover=True) _DOCTYPE = '<!DOCTYPE article PUBLIC "" "http://">\n' # Force Entity objects class InvalidInput(Exception): pass def etree_tag_path_gen(root, start=""): """Extract the tag path.""" start += "/" + root.tag yield start, root for node in root.iterchildren(tag=etree.Element): yield from etree_tag_path_gen(node, start) def etree_path_gen(branch, path=""): """Extract the branch path.""" path += "/" + branch.tag for k, v in sorted(branch.items()): path += f"@{xml_attr_cleanup(k)}={xml_attr_cleanup(v)}" yield path, branch for node in branch.iterchildren(tag=etree.Element): yield from etree_path_gen(node, path) def xml_attr_cleanup(name): """Clean the given XML attribute name/value. This just removes what's required in order to build a branch path. """ return regex.sub("[/@]", "%", unidecode(name)) def node_getattr(node, attr=""): """Item getter from an Element node of an ElementTree. Returns the decoded inner text string form the node, unless an attribute name is given. """ if node is None: return "" if attr: return get_lev(node, attr) full_text = etree.tostring(node, encoding=str, method="text", with_tail=False, ) return regex.sub(r"\s+", " ", full_text).strip() @contextmanager def open_or_bypass(fileobj_or_filename, mode="r"): if isinstance(fileobj_or_filename, str): with open(fileobj_or_filename, mode) as result: yield result else: yield fileobj_or_filename def replace_html_entity_by_text(entity): value = html.unescape(entity.text) + (entity.tail or "") previous = entity.getprevious() parent = entity.getparent() parent.remove(entity) if previous is not None: if previous.tail is None: previous.tail = value else: previous.tail += value else: if parent.text is None: parent.text = value else: parent.text += value class Article(object): """Article abstraction from its XML file.""" def __init__(self, xml_file, raise_on_invalid=True): with open_or_bypass(xml_file) as fobj: raw_data = fobj.read() if isinstance(raw_data, bytes): raw_data = raw_data.decode("utf-8") try: # Remove <?xml> and <!DOCTYPE> headers document = regex.search("<[^?!](?:.|\n)*$", raw_data, flags=regex.MULTILINE).group() except AttributeError: document = raw_data self.root = etree.fromstring(_DOCTYPE + document, parser=_PARSER) if self.root is None: if raise_on_invalid: raise InvalidInput("Not an XML file") self.root = etree.Element("article") # There should be no entity at all, # but if there's any (legacy), they are the HTML5 ones for entity in self.root.iterdescendants(tag=etree.Entity): replace_html_entity_by_text(entity) @CachedProperty def tag_paths_pairs(self): return list(etree_tag_path_gen(self.root)) @CachedMethod def get(self, tag_name): tag_regex = TAG_PATH_REGEXES[tag_name] if tag_name == SUB_ARTICLE_NAME: return [SubArticle(parent=self, root=el, tag_name=tag_name) for path, el in self.tag_paths_pairs if tag_regex.search(path)] return [Branch(article=self, node=el, tag_name=tag_name) for path, el in self.tag_paths_pairs if tag_regex.search(path)] @CachedProperty def data_full(self): return {tag_name: [branch.data_full for branch in self.get(tag_name)] for tag_name in TAG_PATH_REGEXES} __getitem__ = __getattr__ = lambda self, name: self.get(name) aff_contrib_inner_gen = join.aff_contrib_inner_gen aff_contrib_full_gen = join.aff_contrib_full_gen aff_contrib_inner = CachedProperty(join.aff_contrib_inner) aff_contrib_full = CachedProperty(join.aff_contrib_full) aff_contrib_inner_indices = CachedProperty(join.aff_contrib_inner_indices) aff_contrib_full_indices = CachedProperty(join.aff_contrib_full_indices) class SubArticle(Article): def __init__(self, parent, root, tag_name): self.parent = parent # Should be the <article> (main XML root) self.root = root # The <sub-article> element self.tag_name = tag_name class Branch(object): def __init__(self, article, node, tag_name): self.article = article self.node = node # Branch "root" element self.tag_name = tag_name self.field_regexes, self.field_attrs = get_branch_dicts(tag_name) @CachedProperty def paths_pairs(self): return list(etree_path_gen(self.node)) @CachedProperty def _paths_nodes_pair(self): return tuple(zip(*self.paths_pairs)) @CachedProperty def paths(self): return self._paths_nodes_pair[0] @CachedProperty def nodes(self): return self._paths_nodes_pair[1] @CachedProperty def paths_str(self): return "\n".join(self.paths) @CachedProperty def ends(self): return np.cumsum([len(p) + 1 for p in self.paths]) # Add \n @CachedProperty def data_full(self): return {key: self.get(key) for key in self.field_regexes} @CachedMethod def get_field_nodes(self, field): field_regex = self.field_regexes[field] matches = field_regex.finditer(self.paths_str) return [self.nodes[np.where(self.ends > m.start())[0][0]] for m in matches] @CachedMethod def get(self, field): attr = self.field_attrs[field] nodes = self.get_field_nodes(field) return [node_getattr(node, attr) for node in nodes] __getitem__ = __getattr__ = lambda self, name: self.get(name)
0.669205
0.131118
from django.utils.translation import ugettext as _ from django.db import models # tell south how to instrospect this field try: from south.modelsinspector import add_introspection_rules except ImportError: pass else: add_introspection_rules([], ["^scielo_extensions\.modelfields\.CountryField"]) COUNTRIES = [ ('AD', _('Andorra')), ('AE', _('United Arab Emirates')), ('AF', _('Afghanistan')), ('AG', _('Antigua & Barbuda')), ('AI', _('Anguilla')), ('AL', _('Albania')), ('AM', _('Armenia')), ('AN', _('Netherlands Antilles')), ('AO', _('Angola')), ('AQ', _('Antarctica')), ('AR', _('Argentina')), ('AS', _('American Samoa')), ('AT', _('Austria')), ('AU', _('Australia')), ('AW', _('Aruba')), ('AZ', _('Azerbaijan')), ('BA', _('Bosnia and Herzegovina')), ('BB', _('Barbados')), ('BD', _('Bangladesh')), ('BE', _('Belgium')), ('BF', _('Burkina Faso')), ('BG', _('Bulgaria')), ('BH', _('Bahrain')), ('BI', _('Burundi')), ('BJ', _('Benin')), ('BM', _('Bermuda')), ('BN', _('Brunei Darussalam')), ('BO', _('Bolivia')), ('BR', _('Brazil')), ('BS', _('Bahama')), ('BT', _('Bhutan')), ('BV', _('Bouvet Island')), ('BW', _('Botswana')), ('BY', _('Belarus')), ('BZ', _('Belize')), ('CA', _('Canada')), ('CC', _('Cocos (Keeling) Islands')), ('CF', _('Central African Republic')), ('CG', _('Congo')), ('CH', _('Switzerland')), ('CI', _('Ivory Coast')), ('CK', _('Cook Iislands')), ('CL', _('Chile')), ('CM', _('Cameroon')), ('CN', _('China')), ('CO', _('Colombia')), ('CR', _('Costa Rica')), ('CU', _('Cuba')), ('CV', _('Cape Verde')), ('CX', _('Christmas Island')), ('CY', _('Cyprus')), ('CZ', _('Czech Republic')), ('DE', _('Germany')), ('DJ', _('Djibouti')), ('DK', _('Denmark')), ('DM', _('Dominica')), ('DO', _('Dominican Republic')), ('DZ', _('Algeria')), ('EC', _('Ecuador')), ('EE', _('Estonia')), ('EG', _('Egypt')), ('EH', _('Western Sahara')), ('ER', _('Eritrea')), ('ES', _('Spain')), ('ET', _('Ethiopia')), ('FI', _('Finland')), ('FJ', _('Fiji')), ('FK', _('Falkland Islands (Malvinas)')), ('FM', _('Micronesia')), ('FO', _('Faroe Islands')), ('FR', _('France')), ('FX', _('France, Metropolitan')), ('GA', _('Gabon')), ('GB', _('United Kingdom (Great Britain)')), ('GD', _('Grenada')), ('GE', _('Georgia')), ('GF', _('French Guiana')), ('GH', _('Ghana')), ('GI', _('Gibraltar')), ('GL', _('Greenland')), ('GM', _('Gambia')), ('GN', _('Guinea')), ('GP', _('Guadeloupe')), ('GQ', _('Equatorial Guinea')), ('GR', _('Greece')), ('GS', _('South Georgia and the South Sandwich Islands')), ('GT', _('Guatemala')), ('GU', _('Guam')), ('GW', _('Guinea-Bissau')), ('GY', _('Guyana')), ('HK', _('Hong Kong')), ('HM', _('Heard & McDonald Islands')), ('HN', _('Honduras')), ('HR', _('Croatia')), ('HT', _('Haiti')), ('HU', _('Hungary')), ('ID', _('Indonesia')), ('IE', _('Ireland')), ('IL', _('Israel')), ('IN', _('India')), ('IO', _('British Indian Ocean Territory')), ('IQ', _('Iraq')), ('IR', _('Islamic Republic of Iran')), ('IS', _('Iceland')), ('IT', _('Italy')), ('JM', _('Jamaica')), ('JO', _('Jordan')), ('JP', _('Japan')), ('KE', _('Kenya')), ('KG', _('Kyrgyzstan')), ('KH', _('Cambodia')), ('KI', _('Kiribati')), ('KM', _('Comoros')), ('KN', _('St. Kitts and Nevis')), ('KP', _('Korea, Democratic People\'s Republic of')), ('KR', _('Korea, Republic of')), ('KW', _('Kuwait')), ('KY', _('Cayman Islands')), ('KZ', _('Kazakhstan')), ('LA', _('Lao People\'s Democratic Republic')), ('LB', _('Lebanon')), ('LC', _('Saint Lucia')), ('LI', _('Liechtenstein')), ('LK', _('Sri Lanka')), ('LR', _('Liberia')), ('LS', _('Lesotho')), ('LT', _('Lithuania')), ('LU', _('Luxembourg')), ('LV', _('Latvia')), ('LY', _('Libyan Arab Jamahiriya')), ('MA', _('Morocco')), ('MC', _('Monaco')), ('MD', _('Moldova, Republic of')), ('MG', _('Madagascar')), ('MH', _('Marshall Islands')), ('ML', _('Mali')), ('MN', _('Mongolia')), ('MM', _('Myanmar')), ('MO', _('Macau')), ('MP', _('Northern Mariana Islands')), ('MQ', _('Martinique')), ('MR', _('Mauritania')), ('MS', _('Monserrat')), ('MT', _('Malta')), ('MU', _('Mauritius')), ('MV', _('Maldives')), ('MW', _('Malawi')), ('MX', _('Mexico')), ('MY', _('Malaysia')), ('MZ', _('Mozambique')), ('NA', _('Namibia')), ('NC', _('New Caledonia')), ('NE', _('Niger')), ('NF', _('Norfolk Island')), ('NG', _('Nigeria')), ('NI', _('Nicaragua')), ('NL', _('Netherlands')), ('NO', _('Norway')), ('NP', _('Nepal')), ('NR', _('Nauru')), ('NU', _('Niue')), ('NZ', _('New Zealand')), ('OM', _('Oman')), ('PA', _('Panama')), ('PE', _('Peru')), ('PF', _('French Polynesia')), ('PG', _('Papua New Guinea')), ('PH', _('Philippines')), ('PK', _('Pakistan')), ('PL', _('Poland')), ('PM', _('St. Pierre & Miquelon')), ('PN', _('Pitcairn')), ('PR', _('Puerto Rico')), ('PT', _('Portugal')), ('PW', _('Palau')), ('PY', _('Paraguay')), ('QA', _('Qatar')), ('RE', _('Reunion')), ('RO', _('Romania')), ('RU', _('Russian Federation')), ('RW', _('Rwanda')), ('SA', _('Saudi Arabia')), ('SB', _('Solomon Islands')), ('SC', _('Seychelles')), ('SD', _('Sudan')), ('SE', _('Sweden')), ('SG', _('Singapore')), ('SH', _('St. Helena')), ('SI', _('Slovenia')), ('SJ', _('Svalbard & Jan Mayen Islands')), ('SK', _('Slovakia')), ('SL', _('Sierra Leone')), ('SM', _('San Marino')), ('SN', _('Senegal')), ('SO', _('Somalia')), ('SR', _('Suriname')), ('ST', _('Sao Tome & Principe')), ('SV', _('El Salvador')), ('SY', _('Syrian Arab Republic')), ('SZ', _('Swaziland')), ('TC', _('Turks & Caicos Islands')), ('TD', _('Chad')), ('TF', _('French Southern Territories')), ('TG', _('Togo')), ('TH', _('Thailand')), ('TJ', _('Tajikistan')), ('TK', _('Tokelau')), ('TM', _('Turkmenistan')), ('TN', _('Tunisia')), ('TO', _('Tonga')), ('TP', _('East Timor')), ('TR', _('Turkey')), ('TT', _('Trinidad & Tobago')), ('TV', _('Tuvalu')), ('TW', _('Taiwan, Province of China')), ('TZ', _('Tanzania, United Republic of')), ('UA', _('Ukraine')), ('UG', _('Uganda')), ('UM', _('United States Minor Outlying Islands')), ('US', _('United States of America')), ('UY', _('Uruguay')), ('UZ', _('Uzbekistan')), ('VA', _('Vatican City State (Holy See)')), ('VC', _('St. Vincent & the Grenadines')), ('VE', _('Venezuela')), ('VG', _('British Virgin Islands')), ('VI', _('United States Virgin Islands')), ('VN', _('Viet Nam')), ('VU', _('Vanuatu')), ('WF', _('Wallis & Futuna Islands')), ('WS', _('Samoa')), ('YE', _('Yemen')), ('YT', _('Mayotte')), ('YU', _('Yugoslavia')), ('ZA', _('South Africa')), ('ZM', _('Zambia')), ('ZR', _('Zaire')), ('ZW', _('Zimbabwe')), ('ZZ', _('Unknown or unspecified country')), ] class CountryField(models.CharField): def __init__(self, *args, **kwargs): kwargs.setdefault('max_length', 2) kwargs.setdefault('choices', COUNTRIES) super(CountryField, self).__init__(*args, **kwargs) def get_internal_type(self): return "CharField"
scielo-django-extensions
/scielo-django-extensions-0.4.tar.gz/scielo-django-extensions-0.4/scielo_extensions/modelfields.py
modelfields.py
from django.utils.translation import ugettext as _ from django.db import models # tell south how to instrospect this field try: from south.modelsinspector import add_introspection_rules except ImportError: pass else: add_introspection_rules([], ["^scielo_extensions\.modelfields\.CountryField"]) COUNTRIES = [ ('AD', _('Andorra')), ('AE', _('United Arab Emirates')), ('AF', _('Afghanistan')), ('AG', _('Antigua & Barbuda')), ('AI', _('Anguilla')), ('AL', _('Albania')), ('AM', _('Armenia')), ('AN', _('Netherlands Antilles')), ('AO', _('Angola')), ('AQ', _('Antarctica')), ('AR', _('Argentina')), ('AS', _('American Samoa')), ('AT', _('Austria')), ('AU', _('Australia')), ('AW', _('Aruba')), ('AZ', _('Azerbaijan')), ('BA', _('Bosnia and Herzegovina')), ('BB', _('Barbados')), ('BD', _('Bangladesh')), ('BE', _('Belgium')), ('BF', _('Burkina Faso')), ('BG', _('Bulgaria')), ('BH', _('Bahrain')), ('BI', _('Burundi')), ('BJ', _('Benin')), ('BM', _('Bermuda')), ('BN', _('Brunei Darussalam')), ('BO', _('Bolivia')), ('BR', _('Brazil')), ('BS', _('Bahama')), ('BT', _('Bhutan')), ('BV', _('Bouvet Island')), ('BW', _('Botswana')), ('BY', _('Belarus')), ('BZ', _('Belize')), ('CA', _('Canada')), ('CC', _('Cocos (Keeling) Islands')), ('CF', _('Central African Republic')), ('CG', _('Congo')), ('CH', _('Switzerland')), ('CI', _('Ivory Coast')), ('CK', _('Cook Iislands')), ('CL', _('Chile')), ('CM', _('Cameroon')), ('CN', _('China')), ('CO', _('Colombia')), ('CR', _('Costa Rica')), ('CU', _('Cuba')), ('CV', _('Cape Verde')), ('CX', _('Christmas Island')), ('CY', _('Cyprus')), ('CZ', _('Czech Republic')), ('DE', _('Germany')), ('DJ', _('Djibouti')), ('DK', _('Denmark')), ('DM', _('Dominica')), ('DO', _('Dominican Republic')), ('DZ', _('Algeria')), ('EC', _('Ecuador')), ('EE', _('Estonia')), ('EG', _('Egypt')), ('EH', _('Western Sahara')), ('ER', _('Eritrea')), ('ES', _('Spain')), ('ET', _('Ethiopia')), ('FI', _('Finland')), ('FJ', _('Fiji')), ('FK', _('Falkland Islands (Malvinas)')), ('FM', _('Micronesia')), ('FO', _('Faroe Islands')), ('FR', _('France')), ('FX', _('France, Metropolitan')), ('GA', _('Gabon')), ('GB', _('United Kingdom (Great Britain)')), ('GD', _('Grenada')), ('GE', _('Georgia')), ('GF', _('French Guiana')), ('GH', _('Ghana')), ('GI', _('Gibraltar')), ('GL', _('Greenland')), ('GM', _('Gambia')), ('GN', _('Guinea')), ('GP', _('Guadeloupe')), ('GQ', _('Equatorial Guinea')), ('GR', _('Greece')), ('GS', _('South Georgia and the South Sandwich Islands')), ('GT', _('Guatemala')), ('GU', _('Guam')), ('GW', _('Guinea-Bissau')), ('GY', _('Guyana')), ('HK', _('Hong Kong')), ('HM', _('Heard & McDonald Islands')), ('HN', _('Honduras')), ('HR', _('Croatia')), ('HT', _('Haiti')), ('HU', _('Hungary')), ('ID', _('Indonesia')), ('IE', _('Ireland')), ('IL', _('Israel')), ('IN', _('India')), ('IO', _('British Indian Ocean Territory')), ('IQ', _('Iraq')), ('IR', _('Islamic Republic of Iran')), ('IS', _('Iceland')), ('IT', _('Italy')), ('JM', _('Jamaica')), ('JO', _('Jordan')), ('JP', _('Japan')), ('KE', _('Kenya')), ('KG', _('Kyrgyzstan')), ('KH', _('Cambodia')), ('KI', _('Kiribati')), ('KM', _('Comoros')), ('KN', _('St. Kitts and Nevis')), ('KP', _('Korea, Democratic People\'s Republic of')), ('KR', _('Korea, Republic of')), ('KW', _('Kuwait')), ('KY', _('Cayman Islands')), ('KZ', _('Kazakhstan')), ('LA', _('Lao People\'s Democratic Republic')), ('LB', _('Lebanon')), ('LC', _('Saint Lucia')), ('LI', _('Liechtenstein')), ('LK', _('Sri Lanka')), ('LR', _('Liberia')), ('LS', _('Lesotho')), ('LT', _('Lithuania')), ('LU', _('Luxembourg')), ('LV', _('Latvia')), ('LY', _('Libyan Arab Jamahiriya')), ('MA', _('Morocco')), ('MC', _('Monaco')), ('MD', _('Moldova, Republic of')), ('MG', _('Madagascar')), ('MH', _('Marshall Islands')), ('ML', _('Mali')), ('MN', _('Mongolia')), ('MM', _('Myanmar')), ('MO', _('Macau')), ('MP', _('Northern Mariana Islands')), ('MQ', _('Martinique')), ('MR', _('Mauritania')), ('MS', _('Monserrat')), ('MT', _('Malta')), ('MU', _('Mauritius')), ('MV', _('Maldives')), ('MW', _('Malawi')), ('MX', _('Mexico')), ('MY', _('Malaysia')), ('MZ', _('Mozambique')), ('NA', _('Namibia')), ('NC', _('New Caledonia')), ('NE', _('Niger')), ('NF', _('Norfolk Island')), ('NG', _('Nigeria')), ('NI', _('Nicaragua')), ('NL', _('Netherlands')), ('NO', _('Norway')), ('NP', _('Nepal')), ('NR', _('Nauru')), ('NU', _('Niue')), ('NZ', _('New Zealand')), ('OM', _('Oman')), ('PA', _('Panama')), ('PE', _('Peru')), ('PF', _('French Polynesia')), ('PG', _('Papua New Guinea')), ('PH', _('Philippines')), ('PK', _('Pakistan')), ('PL', _('Poland')), ('PM', _('St. Pierre & Miquelon')), ('PN', _('Pitcairn')), ('PR', _('Puerto Rico')), ('PT', _('Portugal')), ('PW', _('Palau')), ('PY', _('Paraguay')), ('QA', _('Qatar')), ('RE', _('Reunion')), ('RO', _('Romania')), ('RU', _('Russian Federation')), ('RW', _('Rwanda')), ('SA', _('Saudi Arabia')), ('SB', _('Solomon Islands')), ('SC', _('Seychelles')), ('SD', _('Sudan')), ('SE', _('Sweden')), ('SG', _('Singapore')), ('SH', _('St. Helena')), ('SI', _('Slovenia')), ('SJ', _('Svalbard & Jan Mayen Islands')), ('SK', _('Slovakia')), ('SL', _('Sierra Leone')), ('SM', _('San Marino')), ('SN', _('Senegal')), ('SO', _('Somalia')), ('SR', _('Suriname')), ('ST', _('Sao Tome & Principe')), ('SV', _('El Salvador')), ('SY', _('Syrian Arab Republic')), ('SZ', _('Swaziland')), ('TC', _('Turks & Caicos Islands')), ('TD', _('Chad')), ('TF', _('French Southern Territories')), ('TG', _('Togo')), ('TH', _('Thailand')), ('TJ', _('Tajikistan')), ('TK', _('Tokelau')), ('TM', _('Turkmenistan')), ('TN', _('Tunisia')), ('TO', _('Tonga')), ('TP', _('East Timor')), ('TR', _('Turkey')), ('TT', _('Trinidad & Tobago')), ('TV', _('Tuvalu')), ('TW', _('Taiwan, Province of China')), ('TZ', _('Tanzania, United Republic of')), ('UA', _('Ukraine')), ('UG', _('Uganda')), ('UM', _('United States Minor Outlying Islands')), ('US', _('United States of America')), ('UY', _('Uruguay')), ('UZ', _('Uzbekistan')), ('VA', _('Vatican City State (Holy See)')), ('VC', _('St. Vincent & the Grenadines')), ('VE', _('Venezuela')), ('VG', _('British Virgin Islands')), ('VI', _('United States Virgin Islands')), ('VN', _('Viet Nam')), ('VU', _('Vanuatu')), ('WF', _('Wallis & Futuna Islands')), ('WS', _('Samoa')), ('YE', _('Yemen')), ('YT', _('Mayotte')), ('YU', _('Yugoslavia')), ('ZA', _('South Africa')), ('ZM', _('Zambia')), ('ZR', _('Zaire')), ('ZW', _('Zimbabwe')), ('ZZ', _('Unknown or unspecified country')), ] class CountryField(models.CharField): def __init__(self, *args, **kwargs): kwargs.setdefault('max_length', 2) kwargs.setdefault('choices', COUNTRIES) super(CountryField, self).__init__(*args, **kwargs) def get_internal_type(self): return "CharField"
0.362518
0.067793
from django.utils.translation import ugettext_lazy as _ from django.utils.translation import ugettext as __ from django.conf import settings from django import template register = template.Library() GLOSSARY_URL = settings.DOCUMENTATION_BASE_URL +'/glossary.html#' def easy_tag(func): """ Deals with the repetitive parts of parsing template tags """ def inner(parser, token): try: return func(*token.split_contents()) except TypeError: raise template.TemplateSyntaxError('Bad arguments for tag "%s"' % token.split_contents()[0]) inner.__name__ = func.__name__ inner.__doc__ = inner.__doc__ return inner def full_path(context, **params): url_path = '' url_get = context['request'].GET.copy() if 'PATH_INFO' in context['request'].META: url_path = context['request'].META['PATH_INFO'] for key, value in params.items(): url_get[key] = value if len(url_get): url_path += "?%s" % "&".join(("%s=%s" % (key, value) for key, value in url_get.items() if value)) return url_path.encode('utf8') class NamedPagination(template.Node): def __init__(self, letters, selected): self.letters = template.Variable(letters) self.selected = template.Variable(selected) def render(self, context): letters = self.letters.resolve(context) selected = self.selected.resolve(context) html_snippet = '''<div class="pagination" style="margin:0;padding-top:8px;text-align:center;"> <ul><li><a href="?" style="line-height: 20px;padding: 0 5px;">''' + str(__('All')) + '''</a></li>''' for letter in letters: if letter != selected: html_snippet += ''' <li><a href="{0}" style="line-height: 20px;padding: 0 5px;">{1}</a></li>'''\ .format(full_path(context, letter=letter),letter.encode('utf8')) else: html_snippet += ''' <li class="active"><a href="{0}" style="line-height: 20px;padding: 0 5px;">{1}</a></li>'''\ .format(full_path(context, letter=letter),letter.encode('utf8')) html_snippet += ''' </ul></div>''' return html_snippet @register.tag() @easy_tag def named_pagination(_tag_name, *params): return NamedPagination(*params) class Pagination(template.Node): def __init__(self, object_record): self.object_record = template.Variable(object_record) def render(self, context): object_record = self.object_record.resolve(context) if not object_record.paginator: # the paginator is empty return '' if object_record.paginator.count > settings.PAGINATION__ITEMS_PER_PAGE: class_li_previous = 'disabled' if not object_record.has_previous() else '' class_li_next = 'disabled' if not object_record.has_next() else '' html_pages = [] for page in object_record.paginator.page_range: class_li_page = 'active' if object_record.number == page else '' html_pages.append(u'<li class="{0}"><a href="{1}">{2}</a></li>'.format(class_li_page, full_path(context, page=page), page)) html_snippet = u''' <div class="pagination"> <ul> <li class="prev {0}"><a href="{1}">&larr; {2}</a></li> {3} <li class="next {4}"><a href="{5}">{6} &rarr;</a></li> </ul> </div> '''.format( class_li_previous, full_path(context, page=object_record.previous_page_number()), _('Previous'), ''.join(html_pages), class_li_next, full_path(context, page=object_record.next_page_number()), _('Next') ) return html_snippet else: return '' @register.tag() @easy_tag def pagination(_tag_name, params): return Pagination(params) class SimplePagination(template.Node): def __init__(self, object_record): self.object_record = template.Variable(object_record) def render(self, context): object_record = self.object_record.resolve(context) if not object_record.paginator: # the paginator is empty return '' if object_record.paginator.count > settings.PAGINATION__ITEMS_PER_PAGE: class_li_previous = 'disabled' if not object_record.has_previous() else '' class_li_next = 'disabled' if not object_record.has_next() else '' html_snippet = u''' <span style=""><b>{0}-{1}</b> {2} <b>{3}</b></span> <span class="pagination"><ul> <li class="prev {4}"> <a href="{5}">&larr;</a></li> <li class="next {6}"> <a href="{7}">&rarr;</a></li> </ul></span> '''.format(object_record.start_index(), object_record.end_index(), _('of'), object_record.paginator.count, class_li_previous, full_path(context, page=object_record.previous_page_number()), class_li_next, full_path(context, page=object_record.next_page_number())) return html_snippet else: return '' @register.tag() @easy_tag def simple_pagination(_tag_name, params): return SimplePagination(params) class FieldHelpText(template.Node): def __init__(self, field_name, help_text, glossary_refname): self.field_name = template.Variable(field_name) self.help_text = template.Variable(help_text) self.glossary_refname = glossary_refname def render(self, context): field_name = self.field_name.resolve(context) help_text = self.help_text.resolve(context) glossary_refname = self.glossary_refname for value in ['field_name', 'help_text', 'glossary_refname']: if len(locals().get(value)) < 1: return '' html_snippet = u''' <a class="help-text" target="_blank" rel="popover" data-original-title="{0} {1}" data-content="{2}" href="{3}{4}"> <i class="icon-question-sign">&nbsp;</i> </a> '''.format(_('Help on:'), field_name, help_text, GLOSSARY_URL, glossary_refname).strip() return html_snippet @register.tag() @easy_tag def field_help(_tag_name, *params): """ Renders the help for a given field. Usage: {% field_help field_label help_text %} """ return FieldHelpText(*params)
scielo-django-extensions
/scielo-django-extensions-0.4.tar.gz/scielo-django-extensions-0.4/scielo_extensions/templatetags/scielo_common.py
scielo_common.py
from django.utils.translation import ugettext_lazy as _ from django.utils.translation import ugettext as __ from django.conf import settings from django import template register = template.Library() GLOSSARY_URL = settings.DOCUMENTATION_BASE_URL +'/glossary.html#' def easy_tag(func): """ Deals with the repetitive parts of parsing template tags """ def inner(parser, token): try: return func(*token.split_contents()) except TypeError: raise template.TemplateSyntaxError('Bad arguments for tag "%s"' % token.split_contents()[0]) inner.__name__ = func.__name__ inner.__doc__ = inner.__doc__ return inner def full_path(context, **params): url_path = '' url_get = context['request'].GET.copy() if 'PATH_INFO' in context['request'].META: url_path = context['request'].META['PATH_INFO'] for key, value in params.items(): url_get[key] = value if len(url_get): url_path += "?%s" % "&".join(("%s=%s" % (key, value) for key, value in url_get.items() if value)) return url_path.encode('utf8') class NamedPagination(template.Node): def __init__(self, letters, selected): self.letters = template.Variable(letters) self.selected = template.Variable(selected) def render(self, context): letters = self.letters.resolve(context) selected = self.selected.resolve(context) html_snippet = '''<div class="pagination" style="margin:0;padding-top:8px;text-align:center;"> <ul><li><a href="?" style="line-height: 20px;padding: 0 5px;">''' + str(__('All')) + '''</a></li>''' for letter in letters: if letter != selected: html_snippet += ''' <li><a href="{0}" style="line-height: 20px;padding: 0 5px;">{1}</a></li>'''\ .format(full_path(context, letter=letter),letter.encode('utf8')) else: html_snippet += ''' <li class="active"><a href="{0}" style="line-height: 20px;padding: 0 5px;">{1}</a></li>'''\ .format(full_path(context, letter=letter),letter.encode('utf8')) html_snippet += ''' </ul></div>''' return html_snippet @register.tag() @easy_tag def named_pagination(_tag_name, *params): return NamedPagination(*params) class Pagination(template.Node): def __init__(self, object_record): self.object_record = template.Variable(object_record) def render(self, context): object_record = self.object_record.resolve(context) if not object_record.paginator: # the paginator is empty return '' if object_record.paginator.count > settings.PAGINATION__ITEMS_PER_PAGE: class_li_previous = 'disabled' if not object_record.has_previous() else '' class_li_next = 'disabled' if not object_record.has_next() else '' html_pages = [] for page in object_record.paginator.page_range: class_li_page = 'active' if object_record.number == page else '' html_pages.append(u'<li class="{0}"><a href="{1}">{2}</a></li>'.format(class_li_page, full_path(context, page=page), page)) html_snippet = u''' <div class="pagination"> <ul> <li class="prev {0}"><a href="{1}">&larr; {2}</a></li> {3} <li class="next {4}"><a href="{5}">{6} &rarr;</a></li> </ul> </div> '''.format( class_li_previous, full_path(context, page=object_record.previous_page_number()), _('Previous'), ''.join(html_pages), class_li_next, full_path(context, page=object_record.next_page_number()), _('Next') ) return html_snippet else: return '' @register.tag() @easy_tag def pagination(_tag_name, params): return Pagination(params) class SimplePagination(template.Node): def __init__(self, object_record): self.object_record = template.Variable(object_record) def render(self, context): object_record = self.object_record.resolve(context) if not object_record.paginator: # the paginator is empty return '' if object_record.paginator.count > settings.PAGINATION__ITEMS_PER_PAGE: class_li_previous = 'disabled' if not object_record.has_previous() else '' class_li_next = 'disabled' if not object_record.has_next() else '' html_snippet = u''' <span style=""><b>{0}-{1}</b> {2} <b>{3}</b></span> <span class="pagination"><ul> <li class="prev {4}"> <a href="{5}">&larr;</a></li> <li class="next {6}"> <a href="{7}">&rarr;</a></li> </ul></span> '''.format(object_record.start_index(), object_record.end_index(), _('of'), object_record.paginator.count, class_li_previous, full_path(context, page=object_record.previous_page_number()), class_li_next, full_path(context, page=object_record.next_page_number())) return html_snippet else: return '' @register.tag() @easy_tag def simple_pagination(_tag_name, params): return SimplePagination(params) class FieldHelpText(template.Node): def __init__(self, field_name, help_text, glossary_refname): self.field_name = template.Variable(field_name) self.help_text = template.Variable(help_text) self.glossary_refname = glossary_refname def render(self, context): field_name = self.field_name.resolve(context) help_text = self.help_text.resolve(context) glossary_refname = self.glossary_refname for value in ['field_name', 'help_text', 'glossary_refname']: if len(locals().get(value)) < 1: return '' html_snippet = u''' <a class="help-text" target="_blank" rel="popover" data-original-title="{0} {1}" data-content="{2}" href="{3}{4}"> <i class="icon-question-sign">&nbsp;</i> </a> '''.format(_('Help on:'), field_name, help_text, GLOSSARY_URL, glossary_refname).strip() return html_snippet @register.tag() @easy_tag def field_help(_tag_name, *params): """ Renders the help for a given field. Usage: {% field_help field_label help_text %} """ return FieldHelpText(*params)
0.50415
0.094218
Paperboy ======== Utilitário para envio de dados SciELO de servidores de sites locais para de processamento e também de servidores de uma coleção para o de processamento da rede. O utilitario permite o envio de bases para processamento, images, pdfs, traduções e XML's. PaperBoy Dockerizado? ===================== `PaperBoy Dockerizado <https://github.com/rondinelisaad/paperboy/blob/master/paperboy-dockerizado.md>`_ Como instalar ============= Linux ----- pip install scielo-paperboy Windows ------- 1. Instalar as seguintes dependência: paramiko 1.16.0 ou superior pycrypto 2.6.1 ou superior 2. Instalar Paperboy pip install scielo-paperboy Como utilizar ============= Com arquivo de configuração --------------------------- Criar um arquivo de configuração utilizando o template config.ini-TEMPLATE config.ini:: [app:main] source_dir=/var/www/scielo serial_source_dir=/var/www/scielo cisis_dir=/var/www/scielo/proc/cisis scilista=/var/www/scielo/serial/scilista.lst destiny_dir=/var/www/scielo server=localhost port=21 user=anonymous password=anonymous Criar variável de ambiente indicando o arquivo de configuração Linux export PAPERBOY_SETTINGS_FILE=config.ini Windows set PAPERBOY_SETTINGS_FILE=config.ini Utilitários disponíveis * paperboy_delivery_to_server Executa o envio de dados do site local para o servidor de processamento * paperboy_delivery_to_scielo Executa o envio de dados de uma coleção SciELO para o processamento dos dados de toda a Rede SciELO Para ajuda paperboy_delivery_to_server --help paperboy_delivery_to_scielo --help Para ativar módulo de compatibilidade de bases no utilitário **paperboy_delivery_to_server**. O modulo de compatibilidade converte as bases de dados para que sejam compatíveis com o sistema operacional de destino. Deve ser utilizado quando o objetivo é enviar bases do Windows para o Linux ou o contrário. paperboy_delivery_to_server -m Sem arquivo de configuração --------------------------- Executar paperboy_delivery_to_scielo --help paperboy_delivery_to_server --help
scielo-paperboy
/scielo_paperboy-0.12.7.tar.gz/scielo_paperboy-0.12.7/README.rst
README.rst
Paperboy ======== Utilitário para envio de dados SciELO de servidores de sites locais para de processamento e também de servidores de uma coleção para o de processamento da rede. O utilitario permite o envio de bases para processamento, images, pdfs, traduções e XML's. PaperBoy Dockerizado? ===================== `PaperBoy Dockerizado <https://github.com/rondinelisaad/paperboy/blob/master/paperboy-dockerizado.md>`_ Como instalar ============= Linux ----- pip install scielo-paperboy Windows ------- 1. Instalar as seguintes dependência: paramiko 1.16.0 ou superior pycrypto 2.6.1 ou superior 2. Instalar Paperboy pip install scielo-paperboy Como utilizar ============= Com arquivo de configuração --------------------------- Criar um arquivo de configuração utilizando o template config.ini-TEMPLATE config.ini:: [app:main] source_dir=/var/www/scielo serial_source_dir=/var/www/scielo cisis_dir=/var/www/scielo/proc/cisis scilista=/var/www/scielo/serial/scilista.lst destiny_dir=/var/www/scielo server=localhost port=21 user=anonymous password=anonymous Criar variável de ambiente indicando o arquivo de configuração Linux export PAPERBOY_SETTINGS_FILE=config.ini Windows set PAPERBOY_SETTINGS_FILE=config.ini Utilitários disponíveis * paperboy_delivery_to_server Executa o envio de dados do site local para o servidor de processamento * paperboy_delivery_to_scielo Executa o envio de dados de uma coleção SciELO para o processamento dos dados de toda a Rede SciELO Para ajuda paperboy_delivery_to_server --help paperboy_delivery_to_scielo --help Para ativar módulo de compatibilidade de bases no utilitário **paperboy_delivery_to_server**. O modulo de compatibilidade converte as bases de dados para que sejam compatíveis com o sistema operacional de destino. Deve ser utilizado quando o objetivo é enviar bases do Windows para o Linux ou o contrário. paperboy_delivery_to_server -m Sem arquivo de configuração --------------------------- Executar paperboy_delivery_to_scielo --help paperboy_delivery_to_server --help
0.613237
0.237156
import argparse import logging import logging.config import os import subprocess from paperboy.utils import settings from paperboy.communicator import SFTP, FTP logger = logging.getLogger(__name__) LOGGING = { 'version': 1, 'formatters': { 'simple': { 'format': '%(asctime)s - %(name)s - %(levelname)s - %(message)s' } }, 'handlers': { 'console': { 'level': 'NOTSET', 'class': 'logging.StreamHandler', 'formatter': 'simple', } }, 'loggers': { '': { 'handlers': ['console'], 'level': 'ERROR' }, 'paperboy': { 'handlers': ['console'], 'level': 'INFO' } } } def _config_logging(logging_level='INFO'): LOGGING['loggers']['paperboy']['level'] = logging_level logging.config.dictConfig(LOGGING) def make_iso(mst_input, iso_output, cisis_dir=None, fltr=None, proc=None): logger.info(u'Making iso for %s', mst_input) status = '1' # erro de acordo com stdout do CISIS command = [remove_last_slash(cisis_dir) + u'/mx' if cisis_dir else u'mx'] command.append(mst_input) if fltr: command.append(u'btell=0') command.append(fltr) if proc: command.append(proc) command.append(u'iso=%s' % (iso_output)) command.append(u'-all') command.append(u'now') logger.debug(u'Running: %s', u' '.join(command)) try: status = subprocess.call(command) except OSError: logger.error(u'Error while running mx, check if the command is available on the syspath, or the CISIS path was correctly indicated in the config file') if str(status) == '0': logger.debug(u'ISO %s creation done for %s', iso_output, mst_input) return True if str(status) == '1': logger.error(u'ISO creation did not work for %s', mst_input) return False return False def make_section_catalog_report(source_dir, cisis_dir): logger.info(u'Making report static_section_catalog.txt') command = u"""mkdir -p %s/bases/reports; %s/mx %s/bases/issue/issue btell=0 "pft=if p(v49) then (v35[1],v65[1]*0.4,s(f(val(s(v36[1]*4.3))+10000,2,0))*1.4,'|',v49^l,'|',v49^c,'|',v49^t,/) fi" lw=0 -all now > %s/bases/reports/static_section_catalog.txt""" % ( source_dir, cisis_dir, source_dir, source_dir, ) logger.debug(u'Running: %s', command) try: status = subprocess.Popen(command, shell=True) status.wait() except OSError: logger.error(u'Error while creating report, static_section_catalog.txt was not updated') logger.debug(u'Report static_section_catalog.txt done') def make_static_file_report(source_dir, report): extension_name = 'htm' if report == 'translation' else report report_name = 'html' if report == 'translation' else report logger.info(u'Making report static_%s_files.txt', report_name) command = u'mkdir -p %s/bases/%s; mkdir -p %s/bases/reports; cd %s/bases/%s; find . -name "*.%s*" > %s/bases/reports/static_%s_files.txt' %( source_dir, report, source_dir, source_dir, report, extension_name, source_dir, report_name ) logger.debug(u'Running: %s', command) try: status = subprocess.Popen(command, shell=True) status.wait() except OSError: logger.error(u'Error while creating report, static_%s_files.txt was not updated', report_name) logger.debug(u'Report static_%s_files.txt done', report_name) def remove_last_slash(path): path = path.replace('\\', '/') try: return path[:-1] if path[-1] == '/' else path except IndexError: return path class Delivery(object): def __init__(self, source_type, cisis_dir, source_dir, destiny_dir, server, server_type, port, user, password, original_dataset): self.source_type = source_type self.cisis_dir = remove_last_slash(cisis_dir) self.source_dir = remove_last_slash(source_dir) self.destiny_dir = remove_last_slash(destiny_dir) self.original_dataset = bool(original_dataset) if str(server_type) == 'sftp': self.client = SFTP(server, int(port), user, password) elif str(server_type) == 'ftp': self.client = FTP(server, int(port), user, password) else: raise TypeError(u'server_type must be ftp or sftp') def _local_remove(self, path): logger.info(u'Removing temporary file (%s)', path) try: os.remove(path) logger.debug(u'Temporary has being file removed (%s)', path) except OSError as e: logger.error( u'Fail while removing temporary file (%s): %s', path, e.strerror ) def send_full_isos(self): """ This method will prepare and send article, issue, and title iso files to SciELO. Those files are used to produce bibliometric and site usage indicators. This method will use the mst, xrf files available in bases-work directory """ # Making title ISO make_iso( self.source_dir + u'/bases-work/title/title', self.source_dir + u'/bases-work/title/title_full.iso', self.cisis_dir ) self.client.put( self.source_dir + u'/bases-work/title/title_full.iso', self.destiny_dir + u'/title_full.iso' ) # Making issue ISO make_iso( self.source_dir + u'/bases-work/issue/issue', self.source_dir + u'/bases-work/issue/issue_full.iso', self.cisis_dir ) self.client.put( self.source_dir + u'/bases-work/issue/issue_full.iso', self.destiny_dir + u'/issue_full.iso' ) # Making article ISO make_iso( self.source_dir + u'/bases-work/artigo/artigo', self.source_dir + u'/bases-work/artigo/artigo_full.iso', self.cisis_dir ) self.client.put( self.source_dir + u'/bases-work/artigo/artigo_full.iso', self.destiny_dir + u'/artigo_full.iso' ) def send_isos(self): """ This method will prepare and send article, issue, issues, title and bib4cit iso files to SciELO. Those files are used to produce bibliometric and site usage indicators. This method will use the mst, xrf files available in bases directory """ # Making title ISO make_iso( self.source_dir + u'/bases/title/title', self.source_dir + u'/bases/title/title.iso', self.cisis_dir ) self.client.put( self.source_dir + u'/bases/title/title.iso', self.destiny_dir + u'/title.iso' ) # Making issue ISO make_iso( self.source_dir + u'/bases/issue/issue', self.source_dir + u'/bases/issue/issue.iso', self.cisis_dir ) self.client.put( self.source_dir + u'/bases/issue/issue.iso', self.destiny_dir + u'/issue.iso' ) # Making issues ISO make_iso( self.source_dir + u'/bases/artigo/artigo', self.source_dir + u'/bases/issue/issues.iso', self.cisis_dir, u'TP=I' ) self.client.put( self.source_dir + u'/bases/issue/issues.iso', self.destiny_dir + u'/issues.iso' ) # Making article ISO make_iso( self.source_dir + u'/bases/artigo/artigo', self.source_dir + u'/bases/artigo/artigo.iso', self.cisis_dir, u'TP=H', u'''"proc='d91<91 0>',ref(mfn-1,v91),'</91>'"''' ) self.client.put( self.source_dir + u'/bases/artigo/artigo.iso', self.destiny_dir + u'/artigo.iso' ) # Making bib4cit ISO make_iso( self.source_dir + u'/bases/artigo/artigo', self.source_dir + u'/bases/artigo/bib4cit.iso', self.cisis_dir, u'TP=C' ) self.client.put( self.source_dir + u'/bases/artigo/bib4cit.iso', self.destiny_dir + u'/bib4cit.iso' ) def send_static_reports(self): """ This method will prepare and send static reports to the SciELO FPT. The static reports are: static_pdf_files.txt List of PDF files available in the server side file system. static_html_files.txt List of HTML files available in the server side file system. static_xml_files.txt List of XML files available in the server side file system. static_section_catalog.txt List of the journals sections extracted from the issue database. Those files are used to improve the metadata quality and completeness of the Article Meta API. """ make_static_file_report(self.source_dir, u'pdf') self.client.put( self.source_dir + u'/bases/reports/static_pdf_files.txt', self.destiny_dir + u'/static_pdf_files.txt' ) make_static_file_report(self.source_dir, u'translation') self.client.put( self.source_dir + u'/bases/reports/static_html_files.txt', self.destiny_dir + u'/static_html_files.txt' ) make_static_file_report(self.source_dir, u'xml') self.client.put( self.source_dir + u'/bases/reports/static_xml_files.txt', self.destiny_dir + u'/static_xml_files.txt' ) make_section_catalog_report(self.source_dir, self.cisis_dir) self.client.put( self.source_dir + u'/bases/reports/static_section_catalog.txt', self.destiny_dir + u'/static_section_catalog.txt' ) def run(self, source_type=None): source_type = source_type if source_type else self.source_type sender = self.send_full_isos if self.original_dataset is True else self.send_isos if source_type == u'isos': sender() elif source_type == u'reports': self.send_static_reports() else: sender() self.send_static_reports() def main(): setts = settings.get(u'app:main', {}) parser = argparse.ArgumentParser( description=u'Tools to send ISO databases to SciELO Network processing' ) parser.add_argument( u'--source_type', u'-t', choices=['isos', 'reports'], help=u'Type of data that will be send to the server' ) parser.add_argument( u'--cisis_dir', u'-r', default=setts.get(u'cisis_dir', u''), help=u'absolute path to the source where the ISIS utilitaries are where installed. It is not necessary to informe when the utiliaries are in the syspath.' ) parser.add_argument( u'--original_dataset', u'-o', action="store_true", help=u'Send the original dataset [title, issue, artigo] without bib4cit, all the content is available at artigo field 706=c 706=h 706=i 706=o.' ) parser.add_argument( u'--source_dir', u'-s', default=setts.get(u'source_dir', u'.'), help=u'absolute path where the SciELO site was installed. this directory must contain the directories bases, htcos, proc and serial' ) parser.add_argument( u'--destiny_dir', u'-d', default=setts.get(u'destiny_dir', u'.'), help=u'absolute path (server site) where the SciELO site was installed. this directory must contain the directories bases, htcos, proc and serial' ) parser.add_argument( u'--server', u'-f', default=setts.get(u'server', u'localhost'), help=u'FTP or SFTP Server' ) parser.add_argument( u'--server_type', u'-e', default=setts.get(u'server_type', u'sftp'), choices=['ftp', 'sftp'] ) parser.add_argument( u'--port', u'-x', default=setts.get(u'port', u'22'), help=u'usually 22 for SFTP connection or 21 for FTP connection' ) parser.add_argument( u'--user', u'-u', default=setts.get(u'user', u'anonymous'), help=u'FTP or SFTP username' ) parser.add_argument( u'--password', u'-p', default=setts.get(u'password', u'anonymous'), help=u'FTP or SFTP password' ) parser.add_argument( u'--logging_level', u'-l', default=u'DEBUG', choices=[u'DEBUG', u'INFO', u'WARNING', u'ERROR', u'CRITICAL'], help=u'Log level' ) args = parser.parse_args() _config_logging(args.logging_level) delivery = Delivery( args.source_type, args.cisis_dir, args.source_dir, args.destiny_dir, args.server, args.server_type, args.port, args.user, args.password, args.original_dataset ) delivery.run()
scielo-paperboy
/scielo_paperboy-0.12.7.tar.gz/scielo_paperboy-0.12.7/paperboy/send_to_scielo.py
send_to_scielo.py
import argparse import logging import logging.config import os import subprocess from paperboy.utils import settings from paperboy.communicator import SFTP, FTP logger = logging.getLogger(__name__) LOGGING = { 'version': 1, 'formatters': { 'simple': { 'format': '%(asctime)s - %(name)s - %(levelname)s - %(message)s' } }, 'handlers': { 'console': { 'level': 'NOTSET', 'class': 'logging.StreamHandler', 'formatter': 'simple', } }, 'loggers': { '': { 'handlers': ['console'], 'level': 'ERROR' }, 'paperboy': { 'handlers': ['console'], 'level': 'INFO' } } } def _config_logging(logging_level='INFO'): LOGGING['loggers']['paperboy']['level'] = logging_level logging.config.dictConfig(LOGGING) def make_iso(mst_input, iso_output, cisis_dir=None, fltr=None, proc=None): logger.info(u'Making iso for %s', mst_input) status = '1' # erro de acordo com stdout do CISIS command = [remove_last_slash(cisis_dir) + u'/mx' if cisis_dir else u'mx'] command.append(mst_input) if fltr: command.append(u'btell=0') command.append(fltr) if proc: command.append(proc) command.append(u'iso=%s' % (iso_output)) command.append(u'-all') command.append(u'now') logger.debug(u'Running: %s', u' '.join(command)) try: status = subprocess.call(command) except OSError: logger.error(u'Error while running mx, check if the command is available on the syspath, or the CISIS path was correctly indicated in the config file') if str(status) == '0': logger.debug(u'ISO %s creation done for %s', iso_output, mst_input) return True if str(status) == '1': logger.error(u'ISO creation did not work for %s', mst_input) return False return False def make_section_catalog_report(source_dir, cisis_dir): logger.info(u'Making report static_section_catalog.txt') command = u"""mkdir -p %s/bases/reports; %s/mx %s/bases/issue/issue btell=0 "pft=if p(v49) then (v35[1],v65[1]*0.4,s(f(val(s(v36[1]*4.3))+10000,2,0))*1.4,'|',v49^l,'|',v49^c,'|',v49^t,/) fi" lw=0 -all now > %s/bases/reports/static_section_catalog.txt""" % ( source_dir, cisis_dir, source_dir, source_dir, ) logger.debug(u'Running: %s', command) try: status = subprocess.Popen(command, shell=True) status.wait() except OSError: logger.error(u'Error while creating report, static_section_catalog.txt was not updated') logger.debug(u'Report static_section_catalog.txt done') def make_static_file_report(source_dir, report): extension_name = 'htm' if report == 'translation' else report report_name = 'html' if report == 'translation' else report logger.info(u'Making report static_%s_files.txt', report_name) command = u'mkdir -p %s/bases/%s; mkdir -p %s/bases/reports; cd %s/bases/%s; find . -name "*.%s*" > %s/bases/reports/static_%s_files.txt' %( source_dir, report, source_dir, source_dir, report, extension_name, source_dir, report_name ) logger.debug(u'Running: %s', command) try: status = subprocess.Popen(command, shell=True) status.wait() except OSError: logger.error(u'Error while creating report, static_%s_files.txt was not updated', report_name) logger.debug(u'Report static_%s_files.txt done', report_name) def remove_last_slash(path): path = path.replace('\\', '/') try: return path[:-1] if path[-1] == '/' else path except IndexError: return path class Delivery(object): def __init__(self, source_type, cisis_dir, source_dir, destiny_dir, server, server_type, port, user, password, original_dataset): self.source_type = source_type self.cisis_dir = remove_last_slash(cisis_dir) self.source_dir = remove_last_slash(source_dir) self.destiny_dir = remove_last_slash(destiny_dir) self.original_dataset = bool(original_dataset) if str(server_type) == 'sftp': self.client = SFTP(server, int(port), user, password) elif str(server_type) == 'ftp': self.client = FTP(server, int(port), user, password) else: raise TypeError(u'server_type must be ftp or sftp') def _local_remove(self, path): logger.info(u'Removing temporary file (%s)', path) try: os.remove(path) logger.debug(u'Temporary has being file removed (%s)', path) except OSError as e: logger.error( u'Fail while removing temporary file (%s): %s', path, e.strerror ) def send_full_isos(self): """ This method will prepare and send article, issue, and title iso files to SciELO. Those files are used to produce bibliometric and site usage indicators. This method will use the mst, xrf files available in bases-work directory """ # Making title ISO make_iso( self.source_dir + u'/bases-work/title/title', self.source_dir + u'/bases-work/title/title_full.iso', self.cisis_dir ) self.client.put( self.source_dir + u'/bases-work/title/title_full.iso', self.destiny_dir + u'/title_full.iso' ) # Making issue ISO make_iso( self.source_dir + u'/bases-work/issue/issue', self.source_dir + u'/bases-work/issue/issue_full.iso', self.cisis_dir ) self.client.put( self.source_dir + u'/bases-work/issue/issue_full.iso', self.destiny_dir + u'/issue_full.iso' ) # Making article ISO make_iso( self.source_dir + u'/bases-work/artigo/artigo', self.source_dir + u'/bases-work/artigo/artigo_full.iso', self.cisis_dir ) self.client.put( self.source_dir + u'/bases-work/artigo/artigo_full.iso', self.destiny_dir + u'/artigo_full.iso' ) def send_isos(self): """ This method will prepare and send article, issue, issues, title and bib4cit iso files to SciELO. Those files are used to produce bibliometric and site usage indicators. This method will use the mst, xrf files available in bases directory """ # Making title ISO make_iso( self.source_dir + u'/bases/title/title', self.source_dir + u'/bases/title/title.iso', self.cisis_dir ) self.client.put( self.source_dir + u'/bases/title/title.iso', self.destiny_dir + u'/title.iso' ) # Making issue ISO make_iso( self.source_dir + u'/bases/issue/issue', self.source_dir + u'/bases/issue/issue.iso', self.cisis_dir ) self.client.put( self.source_dir + u'/bases/issue/issue.iso', self.destiny_dir + u'/issue.iso' ) # Making issues ISO make_iso( self.source_dir + u'/bases/artigo/artigo', self.source_dir + u'/bases/issue/issues.iso', self.cisis_dir, u'TP=I' ) self.client.put( self.source_dir + u'/bases/issue/issues.iso', self.destiny_dir + u'/issues.iso' ) # Making article ISO make_iso( self.source_dir + u'/bases/artigo/artigo', self.source_dir + u'/bases/artigo/artigo.iso', self.cisis_dir, u'TP=H', u'''"proc='d91<91 0>',ref(mfn-1,v91),'</91>'"''' ) self.client.put( self.source_dir + u'/bases/artigo/artigo.iso', self.destiny_dir + u'/artigo.iso' ) # Making bib4cit ISO make_iso( self.source_dir + u'/bases/artigo/artigo', self.source_dir + u'/bases/artigo/bib4cit.iso', self.cisis_dir, u'TP=C' ) self.client.put( self.source_dir + u'/bases/artigo/bib4cit.iso', self.destiny_dir + u'/bib4cit.iso' ) def send_static_reports(self): """ This method will prepare and send static reports to the SciELO FPT. The static reports are: static_pdf_files.txt List of PDF files available in the server side file system. static_html_files.txt List of HTML files available in the server side file system. static_xml_files.txt List of XML files available in the server side file system. static_section_catalog.txt List of the journals sections extracted from the issue database. Those files are used to improve the metadata quality and completeness of the Article Meta API. """ make_static_file_report(self.source_dir, u'pdf') self.client.put( self.source_dir + u'/bases/reports/static_pdf_files.txt', self.destiny_dir + u'/static_pdf_files.txt' ) make_static_file_report(self.source_dir, u'translation') self.client.put( self.source_dir + u'/bases/reports/static_html_files.txt', self.destiny_dir + u'/static_html_files.txt' ) make_static_file_report(self.source_dir, u'xml') self.client.put( self.source_dir + u'/bases/reports/static_xml_files.txt', self.destiny_dir + u'/static_xml_files.txt' ) make_section_catalog_report(self.source_dir, self.cisis_dir) self.client.put( self.source_dir + u'/bases/reports/static_section_catalog.txt', self.destiny_dir + u'/static_section_catalog.txt' ) def run(self, source_type=None): source_type = source_type if source_type else self.source_type sender = self.send_full_isos if self.original_dataset is True else self.send_isos if source_type == u'isos': sender() elif source_type == u'reports': self.send_static_reports() else: sender() self.send_static_reports() def main(): setts = settings.get(u'app:main', {}) parser = argparse.ArgumentParser( description=u'Tools to send ISO databases to SciELO Network processing' ) parser.add_argument( u'--source_type', u'-t', choices=['isos', 'reports'], help=u'Type of data that will be send to the server' ) parser.add_argument( u'--cisis_dir', u'-r', default=setts.get(u'cisis_dir', u''), help=u'absolute path to the source where the ISIS utilitaries are where installed. It is not necessary to informe when the utiliaries are in the syspath.' ) parser.add_argument( u'--original_dataset', u'-o', action="store_true", help=u'Send the original dataset [title, issue, artigo] without bib4cit, all the content is available at artigo field 706=c 706=h 706=i 706=o.' ) parser.add_argument( u'--source_dir', u'-s', default=setts.get(u'source_dir', u'.'), help=u'absolute path where the SciELO site was installed. this directory must contain the directories bases, htcos, proc and serial' ) parser.add_argument( u'--destiny_dir', u'-d', default=setts.get(u'destiny_dir', u'.'), help=u'absolute path (server site) where the SciELO site was installed. this directory must contain the directories bases, htcos, proc and serial' ) parser.add_argument( u'--server', u'-f', default=setts.get(u'server', u'localhost'), help=u'FTP or SFTP Server' ) parser.add_argument( u'--server_type', u'-e', default=setts.get(u'server_type', u'sftp'), choices=['ftp', 'sftp'] ) parser.add_argument( u'--port', u'-x', default=setts.get(u'port', u'22'), help=u'usually 22 for SFTP connection or 21 for FTP connection' ) parser.add_argument( u'--user', u'-u', default=setts.get(u'user', u'anonymous'), help=u'FTP or SFTP username' ) parser.add_argument( u'--password', u'-p', default=setts.get(u'password', u'anonymous'), help=u'FTP or SFTP password' ) parser.add_argument( u'--logging_level', u'-l', default=u'DEBUG', choices=[u'DEBUG', u'INFO', u'WARNING', u'ERROR', u'CRITICAL'], help=u'Log level' ) args = parser.parse_args() _config_logging(args.logging_level) delivery = Delivery( args.source_type, args.cisis_dir, args.source_dir, args.destiny_dir, args.server, args.server_type, args.port, args.user, args.password, args.original_dataset ) delivery.run()
0.199386
0.091626
import logging import paramiko from paramiko.client import SSHClient from paramiko import ssh_exception from ftplib import FTP as FTPLIB import ftplib logger = logging.getLogger(__name__) class Communicator(object): def __init__(self, host, port, user, password): self.host = host self.port = port self.user = user self.password = password self._active_client = None class FTP(Communicator): ftp_client = None @property def client(self): self.ftp_client = FTPLIB(self.host) try: self.ftp_client.login(user=self.user, passwd=self.password) except ftplib.error_perm: logger.error(u'Fail while connecting through FTP. Check your creadentials.') else: return self.ftp_client def exists_dir(self, path): logger.info(u'Checking if directory already exists (%s)', path) try: self.client.nlst(str(path)) logger.debug(u'Directory already exists (%s)', path) return True except ftplib.error_perm: logger.debug(u'Directory do not exists (%s)', path) return False def mkdir(self, path): logger.info(u'Creating directory (%s)', path) try: self.client.mkd(path) logger.debug(u'Directory has being created (%s)', path) except ftplib.error_perm as e: if not self.exists_dir(path): logger.error( u'Fail while creating directory (%s): %s', path, e.message ) def chdir(self, path): logger.info(u'Changing to directory (%s)', path) try: self.client.chdir(path) except IOError as e: logger.error( u'Fail while accessing directory (%s): %s', path, e.strerror ) raise(e) def put(self, from_fl, to_fl, binary=True): logger.info( u'Copying file from (%s) to (%s)', from_fl, to_fl ) read_type = u'rb' if not binary: read_type = u'r' try: command = u'STOR %s' % to_fl if binary: self.client.storbinary( command.encode('utf-8'), open(from_fl, read_type) ) else: self.client.storlines( command.encode('utf-8'), open(from_fl, read_type) ) except IOError: logger.error(u'File not found (%s)', from_fl) logger.debug(u'File has being copied (%s)', to_fl) class SFTP(Communicator): ssh_client = None @property def client(self): if self.ssh_client and self.ssh_client.get_transport().is_active(): return self._active_client self._active_client = self._client() return self._active_client def _client(self): logger.info( u'Conecting through SSH to the server (%s:%s)', self.host, self.port ) try: self.ssh_client = SSHClient() self.ssh_client.set_missing_host_key_policy( paramiko.AutoAddPolicy() ) self.ssh_client.connect( self.host, username=self.user, password=self.password, compress=True ) except ssh_exception.AuthenticationException: logger.error( u'Fail while connecting through SSH. Check your creadentials.') return None except ssh_exception.NoValidConnectionsError: logger.error(u'Fail while connecting through SSH. Check your credentials or the server availability.') return None else: return self.ssh_client.open_sftp() def mkdir(self, path): logger.info(u'Creating directory (%s)', path) try: self.client.mkdir(path) logger.debug(u'Directory has being created (%s)', path) except IOError as e: try: self.client.stat(path) logger.warning(u'Directory already exists (%s)', path) except IOError as e: logger.error( u'Fail while creating directory (%s): %s', path, e.strerror ) raise(e) def chdir(self, path): logger.info(u'Changing to directory (%s)', path) try: self.client.chdir(path) except IOError as e: logger.error( u'Fail while accessing directory (%s): %s', path, e.strerror ) raise(e) def put(self, from_fl, to_fl): logger.info( u'Copying file from (%s) to (%s)', from_fl, to_fl ) try: self.client.put(from_fl, to_fl) logger.debug(u'File has being copied (%s)', to_fl) except OSError as e: logger.error( u'Fail while copying file (%s), file not found', to_fl ) except IOError as e: logger.error( u'Fail while copying file (%s): %s', to_fl, e.strerror )
scielo-paperboy
/scielo_paperboy-0.12.7.tar.gz/scielo_paperboy-0.12.7/paperboy/communicator.py
communicator.py
import logging import paramiko from paramiko.client import SSHClient from paramiko import ssh_exception from ftplib import FTP as FTPLIB import ftplib logger = logging.getLogger(__name__) class Communicator(object): def __init__(self, host, port, user, password): self.host = host self.port = port self.user = user self.password = password self._active_client = None class FTP(Communicator): ftp_client = None @property def client(self): self.ftp_client = FTPLIB(self.host) try: self.ftp_client.login(user=self.user, passwd=self.password) except ftplib.error_perm: logger.error(u'Fail while connecting through FTP. Check your creadentials.') else: return self.ftp_client def exists_dir(self, path): logger.info(u'Checking if directory already exists (%s)', path) try: self.client.nlst(str(path)) logger.debug(u'Directory already exists (%s)', path) return True except ftplib.error_perm: logger.debug(u'Directory do not exists (%s)', path) return False def mkdir(self, path): logger.info(u'Creating directory (%s)', path) try: self.client.mkd(path) logger.debug(u'Directory has being created (%s)', path) except ftplib.error_perm as e: if not self.exists_dir(path): logger.error( u'Fail while creating directory (%s): %s', path, e.message ) def chdir(self, path): logger.info(u'Changing to directory (%s)', path) try: self.client.chdir(path) except IOError as e: logger.error( u'Fail while accessing directory (%s): %s', path, e.strerror ) raise(e) def put(self, from_fl, to_fl, binary=True): logger.info( u'Copying file from (%s) to (%s)', from_fl, to_fl ) read_type = u'rb' if not binary: read_type = u'r' try: command = u'STOR %s' % to_fl if binary: self.client.storbinary( command.encode('utf-8'), open(from_fl, read_type) ) else: self.client.storlines( command.encode('utf-8'), open(from_fl, read_type) ) except IOError: logger.error(u'File not found (%s)', from_fl) logger.debug(u'File has being copied (%s)', to_fl) class SFTP(Communicator): ssh_client = None @property def client(self): if self.ssh_client and self.ssh_client.get_transport().is_active(): return self._active_client self._active_client = self._client() return self._active_client def _client(self): logger.info( u'Conecting through SSH to the server (%s:%s)', self.host, self.port ) try: self.ssh_client = SSHClient() self.ssh_client.set_missing_host_key_policy( paramiko.AutoAddPolicy() ) self.ssh_client.connect( self.host, username=self.user, password=self.password, compress=True ) except ssh_exception.AuthenticationException: logger.error( u'Fail while connecting through SSH. Check your creadentials.') return None except ssh_exception.NoValidConnectionsError: logger.error(u'Fail while connecting through SSH. Check your credentials or the server availability.') return None else: return self.ssh_client.open_sftp() def mkdir(self, path): logger.info(u'Creating directory (%s)', path) try: self.client.mkdir(path) logger.debug(u'Directory has being created (%s)', path) except IOError as e: try: self.client.stat(path) logger.warning(u'Directory already exists (%s)', path) except IOError as e: logger.error( u'Fail while creating directory (%s): %s', path, e.strerror ) raise(e) def chdir(self, path): logger.info(u'Changing to directory (%s)', path) try: self.client.chdir(path) except IOError as e: logger.error( u'Fail while accessing directory (%s): %s', path, e.strerror ) raise(e) def put(self, from_fl, to_fl): logger.info( u'Copying file from (%s) to (%s)', from_fl, to_fl ) try: self.client.put(from_fl, to_fl) logger.debug(u'File has being copied (%s)', to_fl) except OSError as e: logger.error( u'Fail while copying file (%s), file not found', to_fl ) except IOError as e: logger.error( u'Fail while copying file (%s): %s', to_fl, e.strerror )
0.387111
0.063715
import os import weakref import logging try: from configparser import ConfigParser except ImportError: from ConfigParser import ConfigParser logger = logging.getLogger(__name__) class SingletonMixin(object): """ Adds a singleton behaviour to an existing class. weakrefs are used in order to keep a low memory footprint. As a result, args and kwargs passed to classes initializers must be of weakly refereable types. """ _instances = weakref.WeakValueDictionary() def __new__(cls, *args, **kwargs): key = (cls, args, tuple(kwargs.items())) if key in cls._instances: return cls._instances[key] try: new_instance = super(type(cls), cls).__new__(cls, *args, **kwargs) except TypeError: new_instance = super(type(cls), cls).__new__(cls, **kwargs) cls._instances[key] = new_instance return new_instance class Configuration(SingletonMixin): """ Acts as a proxy to the ConfigParser module """ def __init__(self, fp, parser_dep=ConfigParser): self.conf = parser_dep() try: self.conf.read_file(fp) except AttributeError: self.conf.readfp(fp) @classmethod def from_env(cls): try: filepath = os.environ['PAPERBOY_SETTINGS_FILE'] except KeyError: logger.warning('missing env variable PAPERBOY_SETTINGS_FILE, no presets available') return {} return cls.from_file(filepath) @classmethod def from_file(cls, filepath): """ Returns an instance of Configuration ``filepath`` is a text string. """ try: fp = open(filepath, 'r') except IOError: logger.warning('file defined on PAPERBOY_SETTINGS_FILE environment variable not found (%s), no presets available', filepath) return {} return cls(fp) def __getattr__(self, attr): return getattr(self.conf, attr) def items(self): """Settings as key-value pair. """ return [(section, dict(self.conf.items(section, raw=True))) for \ section in [section for section in self.conf.sections()]] config = Configuration.from_env() settings = dict(config.items())
scielo-paperboy
/scielo_paperboy-0.12.7.tar.gz/scielo_paperboy-0.12.7/paperboy/utils.py
utils.py
import os import weakref import logging try: from configparser import ConfigParser except ImportError: from ConfigParser import ConfigParser logger = logging.getLogger(__name__) class SingletonMixin(object): """ Adds a singleton behaviour to an existing class. weakrefs are used in order to keep a low memory footprint. As a result, args and kwargs passed to classes initializers must be of weakly refereable types. """ _instances = weakref.WeakValueDictionary() def __new__(cls, *args, **kwargs): key = (cls, args, tuple(kwargs.items())) if key in cls._instances: return cls._instances[key] try: new_instance = super(type(cls), cls).__new__(cls, *args, **kwargs) except TypeError: new_instance = super(type(cls), cls).__new__(cls, **kwargs) cls._instances[key] = new_instance return new_instance class Configuration(SingletonMixin): """ Acts as a proxy to the ConfigParser module """ def __init__(self, fp, parser_dep=ConfigParser): self.conf = parser_dep() try: self.conf.read_file(fp) except AttributeError: self.conf.readfp(fp) @classmethod def from_env(cls): try: filepath = os.environ['PAPERBOY_SETTINGS_FILE'] except KeyError: logger.warning('missing env variable PAPERBOY_SETTINGS_FILE, no presets available') return {} return cls.from_file(filepath) @classmethod def from_file(cls, filepath): """ Returns an instance of Configuration ``filepath`` is a text string. """ try: fp = open(filepath, 'r') except IOError: logger.warning('file defined on PAPERBOY_SETTINGS_FILE environment variable not found (%s), no presets available', filepath) return {} return cls(fp) def __getattr__(self, attr): return getattr(self.conf, attr) def items(self): """Settings as key-value pair. """ return [(section, dict(self.conf.items(section, raw=True))) for \ section in [section for section in self.conf.sections()]] config = Configuration.from_env() settings = dict(config.items())
0.560854
0.146575
import argparse import logging import logging.config import os import subprocess from paperboy.utils import settings from paperboy.communicator import SFTP, FTP logger = logging.getLogger(__name__) ALLOWED_ITENS = ['serial', 'pdfs', 'images', 'translations'] LOGGING = { 'version': 1, 'formatters': { 'simple': { 'format': '%(asctime)s - %(name)s - %(levelname)s - %(message)s' } }, 'handlers': { 'console': { 'level': 'NOTSET', 'class': 'logging.StreamHandler', 'formatter': 'simple', } }, 'loggers': { '': { 'handlers': ['console'], 'level': 'ERROR' }, 'paperboy': { 'handlers': ['console'], 'level': 'INFO' } } } def _config_logging(logging_level='INFO'): LOGGING['loggers']['paperboy']['level'] = logging_level logging.config.dictConfig(LOGGING) def master_conversor(mst_input, mst_output, cisis_dir=None): logger.debug(u'Running database conversion for %s', mst_input) status = '1' # erro de acordo com stdout do CISIS command = remove_last_slash(cisis_dir) + '/crunchmf' if cisis_dir else 'crunchmf' logger.debug(u'Running: %s %s %s', command, mst_input, mst_output) try: status = subprocess.call([command, mst_input, mst_output]) except OSError: logger.error(u'Error while running crunchmf, check if the command is available on the syspath, or the CISIS path was correctly indicated in the config file') if str(status) == '0': logger.debug(u'Conversion done for %s', mst_input) return True if str(status) == '1': logger.error(u'Conversion did not work fot %s', mst_input) return False return False def parse_scilista(scilista): logger.info(u'Loading scilista (%s)', scilista) lista = [] try: f = open(scilista, 'r') except IOError: logger.error( u'Fail while loading scilista, file not found (%s)', scilista ) else: with f: count = 0 for line in f: line = line.strip() count += 1 splited_line = [i.strip() for i in line.split(' ')] if len(splited_line) > 3 or len(splited_line) < 2: logger.warning( u'Wrong value in the file (%s) line (%d): %s', scilista, count, line ) continue if len(splited_line) == 3: # issue to remove if splited_line[2].lower() == 'del': lista.append((splited_line[0], splited_line[1], True)) else: lista.append((splited_line[0], splited_line[1], False)) if len(splited_line) == 2: # issue to remove lista.append((splited_line[0], splited_line[1], False)) logger.info(u'scilista loaded (%s)', scilista) return lista def remove_last_slash(path): path = path.replace('\\', '/') try: return path[:-1] if path[-1] == '/' else path except IndexError: return path class Delivery(object): def __init__(self, source_type, cisis_dir, scilista, source_dir, destiny_dir, compatibility_mode, server, server_type, port, user, password, serial_source_dir=None): self._scilista = parse_scilista(scilista) self.scilista = scilista self.cisis_dir = remove_last_slash(cisis_dir) self.source_type = source_type self.source_dir = remove_last_slash(source_dir) self.serial_source_dir = remove_last_slash(serial_source_dir) if serial_source_dir else self.source_dir self.destiny_dir = remove_last_slash(destiny_dir) self.compatibility_mode = compatibility_mode if str(server_type) == 'sftp': self.client = SFTP(server, int(port), user, password) elif str(server_type) == 'ftp': self.client = FTP(server, int(port), user, password) else: raise TypeError(u'server_type must be ftp or sftp') def _local_remove(self, path): logger.info(u'Removing temporary file (%s)', path) try: os.remove(path) logger.debug(u'Temporary has being file removed (%s)', path) except OSError as e: logger.error( u'Fail while removing temporary file (%s): %s', path, e.strerror ) def transfer_data_general(self, base_path): base_path = base_path.replace(u'\\', u'/') # Cria a estrutura de diretorio informada em base_path dentro de destiny_dir path = u'' for item in base_path.split(u'/'): path += u'/' + item self.client.mkdir(self.destiny_dir + path) # Cria recursivamente todo conteudo baixo o source_dir + base_path tree = os.walk(self.source_dir + u'/' + base_path) for item in tree: root = item[0].replace(u'\\', u'/') current = root.replace(self.source_dir+u'/', '') dirs = item[1] files = item[2] for fl in files: from_fl = root + u'/' + fl to_fl = self.destiny_dir + u'/' + current + u'/' + fl self.client.put(from_fl, to_fl) for directory in dirs: self.client.mkdir(self.destiny_dir + u'/' + current + u'/' + directory) def transfer_data_databases(self, base_path): """ base_path: directory inside the source path that will be transfered. ex: serial/rsap img/revistas/rsap compatibility_mode: Will convert the original MST and XRF files for the inversed SO system of the source data. ex: if the source data is on a windows machine, it will be converted to linux compatible files. If the source data is on a linux machine it will convert the files to windown compatible files. The default is false. """ base_path = base_path.replace(u'\\', u'/') allowed_extensions = [u'mst', u'xrf'] # Cria a estrutura de diretorio informada em base_path dentro de destiny_dir path = u'' for item in base_path.split(u'/'): path += u'/' + item self.client.mkdir(self.destiny_dir + path) # Cria recursivamente todo conteudo baixo o serial_source_dir + base_path tree = os.walk(self.serial_source_dir + u'/' + base_path) converted = set() for item in tree: root = item[0].replace(u'\\', u'/') current = root.replace(self.serial_source_dir + u'/', u'') dirs = item[1] files = item[2] for fl in files: if not fl[-3:].lower() in allowed_extensions: continue from_fl = root + u'/' + fl from_fl_name = from_fl[:-4] converted_fl = from_fl_name + u'_converted' to_fl = self.destiny_dir + u'/' + current + u'/' + fl if not self.compatibility_mode: self.client.put(from_fl, to_fl) continue if from_fl_name in converted: continue converted.add(from_fl_name) convertion_status = master_conversor( from_fl_name, converted_fl, cisis_dir=self.cisis_dir ) if not convertion_status: continue if convertion_status: from_fl = converted_fl to_fl = to_fl[:-4] for extension in allowed_extensions: self.client.put(from_fl + u'.' + extension, to_fl + u'.' + extension) self._local_remove(from_fl + u'.' + extension) for directory in dirs: self.client.mkdir(self.destiny_dir + u'/' + current + u'/' + directory) def run_serial(self): self.client.mkdir(self.destiny_dir + u'/serial') logger.info(u'Copying scilista.lst file') self.client.put(self.scilista, self.destiny_dir + u'/serial/scilista.lst') logger.info(u'Copying issue database') self.transfer_data_databases(u'serial/issue') logger.info(u'Copying title database') self.transfer_data_databases(u'serial/title') for item in self._scilista: journal_acronym = item[0] issue_label = item[1] # pulando itens do scilista indicados para exclusao, ex: rsap v12n3 del if item[2]: continue logger.info( u'Copying databases from %s %s', journal_acronym, issue_label ) self.transfer_data_databases(u'serial/%s/%s/base' % ( journal_acronym, issue_label) ) def run_pdfs(self): for item in self._scilista: journal_acronym = item[0] issue_label = item[1] # pulando itens do scilista indicados para exclusao, ex: rsap v12n3 del if item[2]: continue logger.info( u'Copying pdf\'s from %s %s', journal_acronym, issue_label ) self.transfer_data_general(u'bases/pdf/%s/%s' % ( journal_acronym, issue_label) ) def run_translations(self): for item in self._scilista: journal_acronym = item[0] issue_label = item[1] # pulando itens do scilista indicados para exclusao, ex: rsap v12n3 del if item[2]: continue logger.info( u'Copying translations from %s %s', journal_acronym, issue_label ) self.transfer_data_general(u'bases/translation/%s/%s' % ( journal_acronym, issue_label) ) def run_xmls(self): for item in self._scilista: journal_acronym = item[0] issue_label = item[1] # pulando itens do scilista indicados para exclusao, ex: rsap v12n3 del if item[2]: continue logger.info( u'Copying xmls from %s %s', journal_acronym, issue_label ) self.transfer_data_general(u'bases/xml/%s/%s' % ( journal_acronym, issue_label) ) def run_images(self): for item in self._scilista: journal_acronym = item[0] issue_label = item[1] # pulando itens do scilista indicados para exclusao, ex: rsap v12n3 del if item[2]: continue logger.info( u'Copying images from %s %s', journal_acronym, issue_label ) self.transfer_data_general(u'htdocs/img/revistas/%s/%s' % ( journal_acronym, issue_label) ) def run(self, source_type=None): source_type = source_type if source_type else self.source_type if source_type == u'pdfs': self.run_pdfs() elif source_type == u'images': self.run_images() elif source_type == u'translations': self.run_translations() elif source_type == u'databases': self.run_serial() elif source_type == u'xmls': self.run_xmls() else: self.run_serial() self.run_images() self.run_pdfs() self.run_translations() self.run_xmls() def main(): setts = settings.get('app:main', {}) parser = argparse.ArgumentParser( description=u'Tools to send images, PDF\'s, translations and databases from the local SciELO sites to the stage and production servers' ) parser.add_argument( u'--source_type', u'-t', choices=[u'pdfs', u'images', u'translations', u'xmls', u'databases'], help=u'Type of data that will be send to the server' ) parser.add_argument( u'--cisis_dir', u'-r', default=setts.get(u'cisis_dir', u''), help=u'absolute path to the source where the ISIS utilitaries are where installed. It is not necessary to informe when the utiliaries are in the syspath.' ) parser.add_argument( u'--scilista', u'-i', default=setts.get(u'scilista', u'./serial/scilista.lst'), help=u'absolute path to the scilista.lst file' ) parser.add_argument( u'--source_dir', u'-s', default=setts.get(u'source_dir', u'.'), help=u'absolute path where the SciELO site was installed. this directory must contain the directories bases, htcos, proc and serial' ) parser.add_argument( u'--serial_source_dir', u'-b', default=setts.get(u'serial_source_dir', ''), help=u'absolute path where the SciELO site was installed. this directory must contain the serial directory' ) parser.add_argument( u'--destiny_dir', u'-d', default=setts.get(u'destiny_dir', u'.'), help=u'absolute path (server site) where the SciELO site was installed. this directory must contain the directories bases, htcos, proc and serial' ) parser.add_argument( u'--compatibility_mode', u'-m', action=u'store_true', help=u'Activate the compatibility mode between operating systems. It is necessary to have the CISIS configured in the syspath or in the configuration file' ) parser.add_argument( u'--server', u'-f', default=setts.get(u'server', u'localhost'), help=u'FTP or SFTP' ) parser.add_argument( u'--server_type', u'-e', default=setts.get(u'server_type', u'sftp'), choices=['ftp', 'sftp'] ) parser.add_argument( u'--port', u'-x', default=setts.get(u'port', u'22'), help=u'usually 22 for SFTP connection or 21 for FTP connection' ) parser.add_argument( u'--user', u'-u', default=setts.get(u'user', u'anonymous'), help=u'FTP or SFTP username' ) parser.add_argument( u'--password', u'-p', default=setts.get(u'password', u'anonymous'), help=u'FTP or SFTP password' ) parser.add_argument( u'--logging_level', u'-l', default=u'DEBUG', choices=[u'DEBUG', u'INFO', u'WARNING', u'ERROR', u'CRITICAL'], help=u'Log level' ) args = parser.parse_args() _config_logging(args.logging_level) delivery = Delivery( args.source_type, args.cisis_dir, args.scilista, args.source_dir, args.destiny_dir, args.compatibility_mode, args.server, args.server_type, args.port, args.user, args.password, args.serial_source_dir ) delivery.run()
scielo-paperboy
/scielo_paperboy-0.12.7.tar.gz/scielo_paperboy-0.12.7/paperboy/send_to_server.py
send_to_server.py
import argparse import logging import logging.config import os import subprocess from paperboy.utils import settings from paperboy.communicator import SFTP, FTP logger = logging.getLogger(__name__) ALLOWED_ITENS = ['serial', 'pdfs', 'images', 'translations'] LOGGING = { 'version': 1, 'formatters': { 'simple': { 'format': '%(asctime)s - %(name)s - %(levelname)s - %(message)s' } }, 'handlers': { 'console': { 'level': 'NOTSET', 'class': 'logging.StreamHandler', 'formatter': 'simple', } }, 'loggers': { '': { 'handlers': ['console'], 'level': 'ERROR' }, 'paperboy': { 'handlers': ['console'], 'level': 'INFO' } } } def _config_logging(logging_level='INFO'): LOGGING['loggers']['paperboy']['level'] = logging_level logging.config.dictConfig(LOGGING) def master_conversor(mst_input, mst_output, cisis_dir=None): logger.debug(u'Running database conversion for %s', mst_input) status = '1' # erro de acordo com stdout do CISIS command = remove_last_slash(cisis_dir) + '/crunchmf' if cisis_dir else 'crunchmf' logger.debug(u'Running: %s %s %s', command, mst_input, mst_output) try: status = subprocess.call([command, mst_input, mst_output]) except OSError: logger.error(u'Error while running crunchmf, check if the command is available on the syspath, or the CISIS path was correctly indicated in the config file') if str(status) == '0': logger.debug(u'Conversion done for %s', mst_input) return True if str(status) == '1': logger.error(u'Conversion did not work fot %s', mst_input) return False return False def parse_scilista(scilista): logger.info(u'Loading scilista (%s)', scilista) lista = [] try: f = open(scilista, 'r') except IOError: logger.error( u'Fail while loading scilista, file not found (%s)', scilista ) else: with f: count = 0 for line in f: line = line.strip() count += 1 splited_line = [i.strip() for i in line.split(' ')] if len(splited_line) > 3 or len(splited_line) < 2: logger.warning( u'Wrong value in the file (%s) line (%d): %s', scilista, count, line ) continue if len(splited_line) == 3: # issue to remove if splited_line[2].lower() == 'del': lista.append((splited_line[0], splited_line[1], True)) else: lista.append((splited_line[0], splited_line[1], False)) if len(splited_line) == 2: # issue to remove lista.append((splited_line[0], splited_line[1], False)) logger.info(u'scilista loaded (%s)', scilista) return lista def remove_last_slash(path): path = path.replace('\\', '/') try: return path[:-1] if path[-1] == '/' else path except IndexError: return path class Delivery(object): def __init__(self, source_type, cisis_dir, scilista, source_dir, destiny_dir, compatibility_mode, server, server_type, port, user, password, serial_source_dir=None): self._scilista = parse_scilista(scilista) self.scilista = scilista self.cisis_dir = remove_last_slash(cisis_dir) self.source_type = source_type self.source_dir = remove_last_slash(source_dir) self.serial_source_dir = remove_last_slash(serial_source_dir) if serial_source_dir else self.source_dir self.destiny_dir = remove_last_slash(destiny_dir) self.compatibility_mode = compatibility_mode if str(server_type) == 'sftp': self.client = SFTP(server, int(port), user, password) elif str(server_type) == 'ftp': self.client = FTP(server, int(port), user, password) else: raise TypeError(u'server_type must be ftp or sftp') def _local_remove(self, path): logger.info(u'Removing temporary file (%s)', path) try: os.remove(path) logger.debug(u'Temporary has being file removed (%s)', path) except OSError as e: logger.error( u'Fail while removing temporary file (%s): %s', path, e.strerror ) def transfer_data_general(self, base_path): base_path = base_path.replace(u'\\', u'/') # Cria a estrutura de diretorio informada em base_path dentro de destiny_dir path = u'' for item in base_path.split(u'/'): path += u'/' + item self.client.mkdir(self.destiny_dir + path) # Cria recursivamente todo conteudo baixo o source_dir + base_path tree = os.walk(self.source_dir + u'/' + base_path) for item in tree: root = item[0].replace(u'\\', u'/') current = root.replace(self.source_dir+u'/', '') dirs = item[1] files = item[2] for fl in files: from_fl = root + u'/' + fl to_fl = self.destiny_dir + u'/' + current + u'/' + fl self.client.put(from_fl, to_fl) for directory in dirs: self.client.mkdir(self.destiny_dir + u'/' + current + u'/' + directory) def transfer_data_databases(self, base_path): """ base_path: directory inside the source path that will be transfered. ex: serial/rsap img/revistas/rsap compatibility_mode: Will convert the original MST and XRF files for the inversed SO system of the source data. ex: if the source data is on a windows machine, it will be converted to linux compatible files. If the source data is on a linux machine it will convert the files to windown compatible files. The default is false. """ base_path = base_path.replace(u'\\', u'/') allowed_extensions = [u'mst', u'xrf'] # Cria a estrutura de diretorio informada em base_path dentro de destiny_dir path = u'' for item in base_path.split(u'/'): path += u'/' + item self.client.mkdir(self.destiny_dir + path) # Cria recursivamente todo conteudo baixo o serial_source_dir + base_path tree = os.walk(self.serial_source_dir + u'/' + base_path) converted = set() for item in tree: root = item[0].replace(u'\\', u'/') current = root.replace(self.serial_source_dir + u'/', u'') dirs = item[1] files = item[2] for fl in files: if not fl[-3:].lower() in allowed_extensions: continue from_fl = root + u'/' + fl from_fl_name = from_fl[:-4] converted_fl = from_fl_name + u'_converted' to_fl = self.destiny_dir + u'/' + current + u'/' + fl if not self.compatibility_mode: self.client.put(from_fl, to_fl) continue if from_fl_name in converted: continue converted.add(from_fl_name) convertion_status = master_conversor( from_fl_name, converted_fl, cisis_dir=self.cisis_dir ) if not convertion_status: continue if convertion_status: from_fl = converted_fl to_fl = to_fl[:-4] for extension in allowed_extensions: self.client.put(from_fl + u'.' + extension, to_fl + u'.' + extension) self._local_remove(from_fl + u'.' + extension) for directory in dirs: self.client.mkdir(self.destiny_dir + u'/' + current + u'/' + directory) def run_serial(self): self.client.mkdir(self.destiny_dir + u'/serial') logger.info(u'Copying scilista.lst file') self.client.put(self.scilista, self.destiny_dir + u'/serial/scilista.lst') logger.info(u'Copying issue database') self.transfer_data_databases(u'serial/issue') logger.info(u'Copying title database') self.transfer_data_databases(u'serial/title') for item in self._scilista: journal_acronym = item[0] issue_label = item[1] # pulando itens do scilista indicados para exclusao, ex: rsap v12n3 del if item[2]: continue logger.info( u'Copying databases from %s %s', journal_acronym, issue_label ) self.transfer_data_databases(u'serial/%s/%s/base' % ( journal_acronym, issue_label) ) def run_pdfs(self): for item in self._scilista: journal_acronym = item[0] issue_label = item[1] # pulando itens do scilista indicados para exclusao, ex: rsap v12n3 del if item[2]: continue logger.info( u'Copying pdf\'s from %s %s', journal_acronym, issue_label ) self.transfer_data_general(u'bases/pdf/%s/%s' % ( journal_acronym, issue_label) ) def run_translations(self): for item in self._scilista: journal_acronym = item[0] issue_label = item[1] # pulando itens do scilista indicados para exclusao, ex: rsap v12n3 del if item[2]: continue logger.info( u'Copying translations from %s %s', journal_acronym, issue_label ) self.transfer_data_general(u'bases/translation/%s/%s' % ( journal_acronym, issue_label) ) def run_xmls(self): for item in self._scilista: journal_acronym = item[0] issue_label = item[1] # pulando itens do scilista indicados para exclusao, ex: rsap v12n3 del if item[2]: continue logger.info( u'Copying xmls from %s %s', journal_acronym, issue_label ) self.transfer_data_general(u'bases/xml/%s/%s' % ( journal_acronym, issue_label) ) def run_images(self): for item in self._scilista: journal_acronym = item[0] issue_label = item[1] # pulando itens do scilista indicados para exclusao, ex: rsap v12n3 del if item[2]: continue logger.info( u'Copying images from %s %s', journal_acronym, issue_label ) self.transfer_data_general(u'htdocs/img/revistas/%s/%s' % ( journal_acronym, issue_label) ) def run(self, source_type=None): source_type = source_type if source_type else self.source_type if source_type == u'pdfs': self.run_pdfs() elif source_type == u'images': self.run_images() elif source_type == u'translations': self.run_translations() elif source_type == u'databases': self.run_serial() elif source_type == u'xmls': self.run_xmls() else: self.run_serial() self.run_images() self.run_pdfs() self.run_translations() self.run_xmls() def main(): setts = settings.get('app:main', {}) parser = argparse.ArgumentParser( description=u'Tools to send images, PDF\'s, translations and databases from the local SciELO sites to the stage and production servers' ) parser.add_argument( u'--source_type', u'-t', choices=[u'pdfs', u'images', u'translations', u'xmls', u'databases'], help=u'Type of data that will be send to the server' ) parser.add_argument( u'--cisis_dir', u'-r', default=setts.get(u'cisis_dir', u''), help=u'absolute path to the source where the ISIS utilitaries are where installed. It is not necessary to informe when the utiliaries are in the syspath.' ) parser.add_argument( u'--scilista', u'-i', default=setts.get(u'scilista', u'./serial/scilista.lst'), help=u'absolute path to the scilista.lst file' ) parser.add_argument( u'--source_dir', u'-s', default=setts.get(u'source_dir', u'.'), help=u'absolute path where the SciELO site was installed. this directory must contain the directories bases, htcos, proc and serial' ) parser.add_argument( u'--serial_source_dir', u'-b', default=setts.get(u'serial_source_dir', ''), help=u'absolute path where the SciELO site was installed. this directory must contain the serial directory' ) parser.add_argument( u'--destiny_dir', u'-d', default=setts.get(u'destiny_dir', u'.'), help=u'absolute path (server site) where the SciELO site was installed. this directory must contain the directories bases, htcos, proc and serial' ) parser.add_argument( u'--compatibility_mode', u'-m', action=u'store_true', help=u'Activate the compatibility mode between operating systems. It is necessary to have the CISIS configured in the syspath or in the configuration file' ) parser.add_argument( u'--server', u'-f', default=setts.get(u'server', u'localhost'), help=u'FTP or SFTP' ) parser.add_argument( u'--server_type', u'-e', default=setts.get(u'server_type', u'sftp'), choices=['ftp', 'sftp'] ) parser.add_argument( u'--port', u'-x', default=setts.get(u'port', u'22'), help=u'usually 22 for SFTP connection or 21 for FTP connection' ) parser.add_argument( u'--user', u'-u', default=setts.get(u'user', u'anonymous'), help=u'FTP or SFTP username' ) parser.add_argument( u'--password', u'-p', default=setts.get(u'password', u'anonymous'), help=u'FTP or SFTP password' ) parser.add_argument( u'--logging_level', u'-l', default=u'DEBUG', choices=[u'DEBUG', u'INFO', u'WARNING', u'ERROR', u'CRITICAL'], help=u'Log level' ) args = parser.parse_args() _config_logging(args.logging_level) delivery = Delivery( args.source_type, args.cisis_dir, args.scilista, args.source_dir, args.destiny_dir, args.compatibility_mode, args.server, args.server_type, args.port, args.user, args.password, args.serial_source_dir ) delivery.run()
0.155848
0.124266
import json import re from accessstats.client import ThriftClient REGEX_ISSN = re.compile("^[0-9]{4}-[0-9]{3}[0-9xX]$") REGEX_ISSUE = re.compile("^[0-9]{4}-[0-9]{3}[0-9xX][0-2][0-9]{3}[0-9]{4}$") REGEX_ARTICLE = re.compile("^S[0-9]{4}-[0-9]{3}[0-9xX][0-2][0-9]{3}[0-9]{4}[0-9]{5}$") def _code_type(code): if not code: return None if REGEX_ISSN.match(code): return 'issn' if REGEX_ISSUE.match(code): return 'issue' if REGEX_ARTICLE.match(code): return 'pid' def _compute_downloads_per_year(query_result): result = [] for item in query_result['aggregations']['access_year']['buckets']: result.append( (item['key'], int(item['access_total']['value'])) ) return result def downloads_per_year(collection, code, raw=False): """ This method retrieve the total of downloads per year. arguments collection: SciELO 3 letters Acronym code: (Journal ISSN, Issue PID, Article PID) return [ ("2017", "20101"), ("2016", "11201"), ("2015", "12311"), ... ] """ tc = ThriftClient() body = {"query": {"filtered": {}}} fltr = {} query = { "query": { "bool": { "must": [ { "match": { "collection": collection } } ] } } } aggs = { "aggs": { "access_year": { "terms": { "field": "access_year", "size": 0, "order": { "_term": "asc" } }, "aggs": { "access_total": { "sum": { "field": "access_total" } } } } } } body['query']['filtered'].update(fltr) body['query']['filtered'].update(query) body.update(aggs) code_type = _code_type(code) if code_type: query["query"]["bool"]["must"].append({ "match": { code_type: code } }) query_parameters = [ ('size', '0') ] query_result = tc.search(json.dumps(body), query_parameters) return query_result if raw is True else _compute_downloads_per_year(query_result)
scielo_accessstatsapi
/scielo_accessstatsapi-1.1.0.tar.gz/scielo_accessstatsapi-1.1.0/accessstats/queries.py
queries.py
import json import re from accessstats.client import ThriftClient REGEX_ISSN = re.compile("^[0-9]{4}-[0-9]{3}[0-9xX]$") REGEX_ISSUE = re.compile("^[0-9]{4}-[0-9]{3}[0-9xX][0-2][0-9]{3}[0-9]{4}$") REGEX_ARTICLE = re.compile("^S[0-9]{4}-[0-9]{3}[0-9xX][0-2][0-9]{3}[0-9]{4}[0-9]{5}$") def _code_type(code): if not code: return None if REGEX_ISSN.match(code): return 'issn' if REGEX_ISSUE.match(code): return 'issue' if REGEX_ARTICLE.match(code): return 'pid' def _compute_downloads_per_year(query_result): result = [] for item in query_result['aggregations']['access_year']['buckets']: result.append( (item['key'], int(item['access_total']['value'])) ) return result def downloads_per_year(collection, code, raw=False): """ This method retrieve the total of downloads per year. arguments collection: SciELO 3 letters Acronym code: (Journal ISSN, Issue PID, Article PID) return [ ("2017", "20101"), ("2016", "11201"), ("2015", "12311"), ... ] """ tc = ThriftClient() body = {"query": {"filtered": {}}} fltr = {} query = { "query": { "bool": { "must": [ { "match": { "collection": collection } } ] } } } aggs = { "aggs": { "access_year": { "terms": { "field": "access_year", "size": 0, "order": { "_term": "asc" } }, "aggs": { "access_total": { "sum": { "field": "access_total" } } } } } } body['query']['filtered'].update(fltr) body['query']['filtered'].update(query) body.update(aggs) code_type = _code_type(code) if code_type: query["query"]["bool"]["must"].append({ "match": { code_type: code } }) query_parameters = [ ('size', '0') ] query_result = tc.search(json.dumps(body), query_parameters) return query_result if raw is True else _compute_downloads_per_year(query_result)
0.400984
0.208642
import os import thriftpy import json import logging import time # URLJOIN Python 3 and 2 import compatibilities try: from urllib.parse import urljoin except: from urlparse import urljoin import requests from thriftpy.rpc import make_client logger = logging.getLogger(__name__) class CitedByExceptions(Exception): pass class ServerError(CitedByExceptions): pass class ThriftClient(object): ACCESSSTATS_THRIFT = thriftpy.load( os.path.join(os.path.dirname(__file__))+'/thrift/access_stats.thrift') def __init__(self, domain=None): """ Cliente thrift para o Articlemeta. """ self.domain = domain or 'ratchet.scielo.org:11660' self._set_address() def _set_address(self): address = self.domain.split(':') self._address = address[0] try: self._port = int(address[1]) except: self._port = 11660 @property def client(self): client = make_client( self.ACCESSSTATS_THRIFT.AccessStats, self._address, self._port ) return client def document(self, code, collection=None): result = self.client.document(code=code, collection=collection) try: return json.loads(result) except: return None def search(self, dsl, params): """ Free queries to ES index. dsl (string): with DSL query params (list): [(key, value), (key, value)] where key is a query parameter, and value is the value required for parameter, ex: [('size', '0'), ('search_type', 'count')] """ query_parameters = [] for key, value in params: query_parameters.append( self.ACCESSSTATS_THRIFT.kwargs(str(key), str(value)) ) try: result = self.client.search(dsl, query_parameters) except self.ACCESSSTATS_THRIFT.ServerError: raise ServerError('you may trying to run a bad DSL Query') try: return json.loads(result) except: return None
scielo_accessstatsapi
/scielo_accessstatsapi-1.1.0.tar.gz/scielo_accessstatsapi-1.1.0/accessstats/client.py
client.py
import os import thriftpy import json import logging import time # URLJOIN Python 3 and 2 import compatibilities try: from urllib.parse import urljoin except: from urlparse import urljoin import requests from thriftpy.rpc import make_client logger = logging.getLogger(__name__) class CitedByExceptions(Exception): pass class ServerError(CitedByExceptions): pass class ThriftClient(object): ACCESSSTATS_THRIFT = thriftpy.load( os.path.join(os.path.dirname(__file__))+'/thrift/access_stats.thrift') def __init__(self, domain=None): """ Cliente thrift para o Articlemeta. """ self.domain = domain or 'ratchet.scielo.org:11660' self._set_address() def _set_address(self): address = self.domain.split(':') self._address = address[0] try: self._port = int(address[1]) except: self._port = 11660 @property def client(self): client = make_client( self.ACCESSSTATS_THRIFT.AccessStats, self._address, self._port ) return client def document(self, code, collection=None): result = self.client.document(code=code, collection=collection) try: return json.loads(result) except: return None def search(self, dsl, params): """ Free queries to ES index. dsl (string): with DSL query params (list): [(key, value), (key, value)] where key is a query parameter, and value is the value required for parameter, ex: [('size', '0'), ('search_type', 'count')] """ query_parameters = [] for key, value in params: query_parameters.append( self.ACCESSSTATS_THRIFT.kwargs(str(key), str(value)) ) try: result = self.client.search(dsl, query_parameters) except self.ACCESSSTATS_THRIFT.ServerError: raise ServerError('you may trying to run a bad DSL Query') try: return json.loads(result) except: return None
0.483161
0.066904
scieloapi.py ============ Thin wrapper around the SciELO Manager RESTful API. [![Build Status](https://travis-ci.org/scieloorg/scieloapi.py.png?branch=master)](https://travis-ci.org/scieloorg/scieloapi.py) Usage example: import scieloapi client = scieloapi.Client('some.user', 'some.api_key') for journal in client.journals.all(): print journal['id'], journal['title'] How to install -------------- You can install it via `pip`, directly from the github repo: pip install -e git+git://github.com/scieloorg/scieloapi.py.git#egg=scieloapi Or from PyPi (more stable): pip install scieloapi Basics ------ When a `Client` instance is initialized, the process automaticaly instrospects the API server in order to make available only the endpoints part of the specified API version. The API version may be passed as keyword argument `version` when creating the `Client` instance. If ommited, the highest version is used. >>> client = scieloapi.Client('some.user', 'some.api_key', api_uri='http://manager.scielo.org/api/', version='v1') Listing available endpoints: >>> client.endpoints [u'pressreleases', u'users', u'sections', u'sponsors', u'collections', u'changes', u'apressreleases', u'uselicenses', u'journals', u'issues'] >>> Listing all items of an endpoint: >>> for journal in client.journals.all(): print journal['title'] ... Acta Médica Costarricense Acta Pediátrica Costarricense Actualidades Investigativas en Educación Adolescencia y Salud Agronomía Costarricense Agronomía Mesoamericana Annali dell'Istituto Superiore di Sanità Arquivos em Odontologia Brazilian Journal of Oral Sciences Bulletin of the World Health Organization Cadernos de Saúde Pública >>> Listing items matching some params: >>> for journal in client.journals.filter(collection='saude-publica'): print journal['title'] ... Annali dell'Istituto Superiore di Sanità Bulletin of the World Health Organization Cadernos de Saúde Pública Ciência & Saúde Coletiva Gaceta Sanitaria MEDICC Review Revista Brasileira de Epidemiologia Revista Cubana de Salud Pública Revista de Salud Pública >>> Getting a specific item: >>> journal = client.journals.get(62) >>> journal['title'] u'Acta M\xe9dica Costarricense' >>> Use license ----------- This project is licensed under FreeBSD 2-clause. See `LICENSE` for more details.
scieloapi
/scieloapi-0.5.tar.gz/scieloapi-0.5/README.md
README.md
scieloapi.py ============ Thin wrapper around the SciELO Manager RESTful API. [![Build Status](https://travis-ci.org/scieloorg/scieloapi.py.png?branch=master)](https://travis-ci.org/scieloorg/scieloapi.py) Usage example: import scieloapi client = scieloapi.Client('some.user', 'some.api_key') for journal in client.journals.all(): print journal['id'], journal['title'] How to install -------------- You can install it via `pip`, directly from the github repo: pip install -e git+git://github.com/scieloorg/scieloapi.py.git#egg=scieloapi Or from PyPi (more stable): pip install scieloapi Basics ------ When a `Client` instance is initialized, the process automaticaly instrospects the API server in order to make available only the endpoints part of the specified API version. The API version may be passed as keyword argument `version` when creating the `Client` instance. If ommited, the highest version is used. >>> client = scieloapi.Client('some.user', 'some.api_key', api_uri='http://manager.scielo.org/api/', version='v1') Listing available endpoints: >>> client.endpoints [u'pressreleases', u'users', u'sections', u'sponsors', u'collections', u'changes', u'apressreleases', u'uselicenses', u'journals', u'issues'] >>> Listing all items of an endpoint: >>> for journal in client.journals.all(): print journal['title'] ... Acta Médica Costarricense Acta Pediátrica Costarricense Actualidades Investigativas en Educación Adolescencia y Salud Agronomía Costarricense Agronomía Mesoamericana Annali dell'Istituto Superiore di Sanità Arquivos em Odontologia Brazilian Journal of Oral Sciences Bulletin of the World Health Organization Cadernos de Saúde Pública >>> Listing items matching some params: >>> for journal in client.journals.filter(collection='saude-publica'): print journal['title'] ... Annali dell'Istituto Superiore di Sanità Bulletin of the World Health Organization Cadernos de Saúde Pública Ciência & Saúde Coletiva Gaceta Sanitaria MEDICC Review Revista Brasileira de Epidemiologia Revista Cubana de Salud Pública Revista de Salud Pública >>> Getting a specific item: >>> journal = client.journals.get(62) >>> journal['title'] u'Acta M\xe9dica Costarricense' >>> Use license ----------- This project is licensed under FreeBSD 2-clause. See `LICENSE` for more details.
0.782413
0.380011
History ======= 0.5 (2014-02-10) ---------------- * Added `tox.ini` to help the porting to Python3.3. * Support for https (without verifiying CA). * Added `Content-Type: application/json` HTTP header to all post requests. * Added a do-nothing logger handler by default. 0.4 (2013-08-30) ---------------- * Params are sorted by key before the GET request is dispatched. This minor change aims to improve server-side caching capabilities. * Minor changes to the API of the function `httpbroker.get`. It now accepts a `auth` kwarg to handle server-side authentication. * Minor changes to `scieloapi.Connector`: * A custom http broker can be passed as `http_broker` kwarg during init. * Http methods are created dinamically during initialization, with user credentials bound into it. Api_key is no longer maintained by the instance. * `Client.fetch_relations` now accepts the param `only` to specify a subset of relations to fetch. * Now the User-Agent is set to `scieloapi/:version`. * The module `scieloapi.scieloapi` was renamed to `scieloapi.core` to make things clearer. * Added POST method capabilities on endpoints. * Added the exception `exceptions.MethodNotAllowed` to represent 405 status code. 0.3 (2013-08-02) ---------------- * Added more unit tests (Now at 73% of code coverage). * Minor adjusts at `setup.py` installation script. * New exceptions to represent http status codes. * Better documentation at `http://docs.scielo.org/projects/scieloapipy/`. 0.2 (2013-07-26) ---------------- * Slumber dependency was removed. The module `scieloapi.httpbroker` was created to deal with http requests and responses. * Better test reports now using Nosetests + coverage. * Added method `Client.fetch_relations` to fetch all first-level relations of a document and replace the value by the full document.
scieloapi
/scieloapi-0.5.tar.gz/scieloapi-0.5/HISTORY.md
HISTORY.md
History ======= 0.5 (2014-02-10) ---------------- * Added `tox.ini` to help the porting to Python3.3. * Support for https (without verifiying CA). * Added `Content-Type: application/json` HTTP header to all post requests. * Added a do-nothing logger handler by default. 0.4 (2013-08-30) ---------------- * Params are sorted by key before the GET request is dispatched. This minor change aims to improve server-side caching capabilities. * Minor changes to the API of the function `httpbroker.get`. It now accepts a `auth` kwarg to handle server-side authentication. * Minor changes to `scieloapi.Connector`: * A custom http broker can be passed as `http_broker` kwarg during init. * Http methods are created dinamically during initialization, with user credentials bound into it. Api_key is no longer maintained by the instance. * `Client.fetch_relations` now accepts the param `only` to specify a subset of relations to fetch. * Now the User-Agent is set to `scieloapi/:version`. * The module `scieloapi.scieloapi` was renamed to `scieloapi.core` to make things clearer. * Added POST method capabilities on endpoints. * Added the exception `exceptions.MethodNotAllowed` to represent 405 status code. 0.3 (2013-08-02) ---------------- * Added more unit tests (Now at 73% of code coverage). * Minor adjusts at `setup.py` installation script. * New exceptions to represent http status codes. * Better documentation at `http://docs.scielo.org/projects/scieloapipy/`. 0.2 (2013-07-26) ---------------- * Slumber dependency was removed. The module `scieloapi.httpbroker` was created to deal with http requests and responses. * Better test reports now using Nosetests + coverage. * Added method `Client.fetch_relations` to fetch all first-level relations of a document and replace the value by the full document.
0.788217
0.251383
# Science Concierge a Python repository for content-based recommendation based on Latent semantic analysis (LSA) topic distance and Rocchio Algorithm. Science Concierge is an backend algorithm for Scholarfy [www.scholarfy.net](http://www.scholarfy.net/), an automatic scheduler for conference. See full article on [PLOS ONE](http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0158423), [Arxiv](http://arxiv.org/abs/1604.01070) or full tex manuscript and presentation [here](https://github.com/titipata/science_concierge_manuscript). You can also see the scale version of Scholarfy to 14.3M articles from Pubmed at [pubmed.scholarfy.net](http://pubmed.scholarfy.net/). ## Usage First, clone the repository. ```bash $ git clone https://github.com/titipata/science_concierge ``` Install dependencies using `pip`, ```bash $ pip install -r requirements.txt ``` Install the library using `setup.py`, ```bash $ python setup.py develop install ``` ## Download example data We provide example `csv` file from Pubmed Open Acess Subset that you can download and play with (we parsed using [pubmed_parser](https://github.com/titipata/pubmed_parser)). Each file contains `pmc`, `pmid`, `title`, `abstract`, `publication_year` as column name. Use `download` function to download example data, ```python import science_concierge science_concierge.download(['pubmed_oa_2015.csv', 'pubmed_oa_2016.csv']) ``` We provide `pubmed_oa_{year}.csv` from `{year} = 2007, ..., 2016` (**note** 2007 is all publications before year 2008). Alternative is to use `awscli` to download, ```bash $ aws s3 cp s3://science-of-science-bucket/science_concierge/data/ . --recursive ``` ## Example usage of Science Concierge You can build quick recommendation by importing `ScienceConcierge` class then use `fit` method to fit list of documents. Then use `recommend` to recommend documents based on like or dislike documents. ```python import pandas as pd from science_concierge import ScienceConcierge df = pd.read_csv('data/pubmed_oa_2016.csv', encoding='utf-8') docs = list(df.abstract) # provide list of abstracts titles = list(df.title) # titles # select weighting from 'count', 'tfidf', or 'entropy' recommend_model = ScienceConcierge(stemming=True, ngram_range=(1,1), weighting='entropy', norm=None, n_components=200, n_recommend=200, verbose=True) recommend_model.fit(docs) # input list of documents or abstracts index = recommend_model.recommend(likes=[10000], dislikes=[]) # input list of like/dislike index (here we like title[10000]) docs_recommend = [titles[i] for i in index[0:10]] # recommended documents ``` ## Vectorizer available We have adds on vectorizer classes including `LogEntropyVectorizer` and `BM25Vectorizer` for calculating documents-terms weighting from input list of documents. Here is an example usage. ```python from science_concierge import LogEntropyVectorizer l_model = LogEntropyVectorizer(norm=None, ngram_range=(1,2), stop_words='english', min_df=1, max_df=0.8) X = l_model.fit_transform(docs) # where docs is list of documents ``` In this case when we have sparse matrix of documents, we can use `fit_document_matrix` method directly. ```python recommend_model = ScienceConcierge(n_components=200, n_recommend=200) recommend_model.fit_document_matrix(X) index = recommend_model.recommend(likes=[10000], dislikes=[]) ``` ## Dependencies - [numpy](http://www.numpy.org/) - [pandas](http://pandas.pydata.org/) - [unidecode](https://pypi.python.org/pypi/Unidecode) - [nltk](http://www.nltk.org/) with white space tokenizer and Porter stemmer, <br> use `science_concierge.download_nltk()` to download required corpora (there is a stemmer bug in `nltk==3.2.2`) - [scikit-learn](http://scikit-learn.org/) - [cachetools](http://pythonhosted.org/cachetools/) - [joblib](http://pythonhosted.org/joblib/) ## Members - [Titipat Achakulvisut](http://titipata.github.io) - [Daniel Acuna](http://www.scienceofscience.org) - [Tulakan Ruangrong](http://github.com/bluenex) - [Konrad Kording](http://koerding.com/) ## License [![License](https://licensebuttons.net/l/by-nc-sa/3.0/88x31.png)](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode) Copyright (c) 2015 Titipat Achakulvisut, Daniel E. Acuna, Tulakan Ruangrong, Konrad Kording
science-concierge
/science_concierge-0.1.tar.gz/science_concierge-0.1/README.md
README.md
$ git clone https://github.com/titipata/science_concierge $ pip install -r requirements.txt $ python setup.py develop install import science_concierge science_concierge.download(['pubmed_oa_2015.csv', 'pubmed_oa_2016.csv']) $ aws s3 cp s3://science-of-science-bucket/science_concierge/data/ . --recursive import pandas as pd from science_concierge import ScienceConcierge df = pd.read_csv('data/pubmed_oa_2016.csv', encoding='utf-8') docs = list(df.abstract) # provide list of abstracts titles = list(df.title) # titles # select weighting from 'count', 'tfidf', or 'entropy' recommend_model = ScienceConcierge(stemming=True, ngram_range=(1,1), weighting='entropy', norm=None, n_components=200, n_recommend=200, verbose=True) recommend_model.fit(docs) # input list of documents or abstracts index = recommend_model.recommend(likes=[10000], dislikes=[]) # input list of like/dislike index (here we like title[10000]) docs_recommend = [titles[i] for i in index[0:10]] # recommended documents from science_concierge import LogEntropyVectorizer l_model = LogEntropyVectorizer(norm=None, ngram_range=(1,2), stop_words='english', min_df=1, max_df=0.8) X = l_model.fit_transform(docs) # where docs is list of documents recommend_model = ScienceConcierge(n_components=200, n_recommend=200) recommend_model.fit_document_matrix(X) index = recommend_model.recommend(likes=[10000], dislikes=[])
0.535584
0.933915
import logging import sys import re import numpy as np import string from six import string_types from unidecode import unidecode from nltk.stem.porter import PorterStemmer from nltk.tokenize import WhitespaceTokenizer from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.decomposition import TruncatedSVD from sklearn.preprocessing import normalize from .vectorizer import LogEntropyVectorizer from .recommend import build_nearest_neighbors, get_rocchio_topic logger = logging.getLogger('scienceconcierge') logger.addHandler(logging.StreamHandler()) stemmer = PorterStemmer() w_tokenizer = WhitespaceTokenizer() punct_re = re.compile('[{}]'.format(re.escape(string.punctuation))) def set_log_level(verbose): """Convenience function for setting the log level. Parameters ---------- verbose : bool, str, int, or None The verbosity of messages to print. If a str, it can be either DEBUG, INFO, WARNING, ERROR, or CRITICAL. Note that these are for convenience and are equivalent to passing in logging.DEBUG, etc. For bool, True is the same as 'INFO', False is the same as 'WARNING'. """ if isinstance(verbose, bool): if verbose is True: verbose = 'INFO' else: verbose = 'WARNING' if isinstance(verbose, str): verbose = verbose.upper() logging_types = dict(DEBUG=logging.DEBUG, INFO=logging.INFO, WARNING=logging.WARNING, ERROR=logging.ERROR, CRITICAL=logging.CRITICAL) if verbose not in logging_types: raise ValueError('verbose must be of a valid type') verbose = logging_types[verbose] logger.setLevel(verbose) class ScienceConcierge: """Science Concierge Recommendation class using Latent Semantic Analysis on list of abstracts Process workflow are as follows - Word tokenize and stemming (optional) - Create tf-idf matrix, unigram or bigram recommended - Latent Semantic Analysis (LSA) i.e. reduce dimension of using truncated SVD - Nearest neighbor assignment for recommendation Parameters ---------- * parameters for preprocessing stemming: boolean, if True it will apply Porter stemmer as a preprocessor to , default: True parallel: boolean, if True multipleprocessing will used to apply preprocessing to abstract text, default: True * parameters for term frequenct weighting scheme weighting: str, options from ['count', 'tfidf', 'entropy'] min_df: int or float [0.0, 1.0] ignore term that appear less than min_df or has weight less than min_df, default: 3 max_df: int or float [0.0, 1.0] ignore term that appear more than max_df or has weight greater than max_df, default: 0.8 ngram_range: tuple, parameter for tfidf transformation (1, 1) for unigram, (1, 2) for bigram, default (1, 2) i.e. bigram norm: 'l2', 'l1' or None, default: 'l2' * parameters for dimensionality reduction algorithm: str, 'arpack' or 'randomized', default 'arpack' n_components: int, number of components of reduced dimension vector in LSA, default=200 n_iter: int, iteration for LSA * For recommendation w_like: weight term for liked documents (called alpha in literature) w_dislike: wieght term for disliked documents n_recommend: number of total documents that want to be recommended, if None it will be set to total number of documents TO DO ----- - update nearest neighbor model so that it allows larger scale of documents - print logging output for preprocessing step """ def __init__(self, stemming=True, parallel=True, weighting='tfidf', strip_accents='unicode', norm='l2', lowercase=True, min_df=3, max_df=0.8, ngram_range=(1,2), algorithm='arpack', n_components=200, n_iter=150, n_recommend=None, save=False, verbose=False): self.docs = None self.docs_preprocess = None self.stemming = stemming self.parallel = parallel self.weighting = weighting self.strip_accents = strip_accents self.min_df = min_df self.max_df = max_df self.ngram_range = ngram_range self.analyzer = 'word' self.token_pattern = r'\w{1,}' self.stop_words = 'english' self.lowercase = lowercase self.norm = norm self.n_components = int(n_components) self.n_iter = int(n_iter) self.algorithm = algorithm self.vectors = None self.nbrs_model = None # holder for nearest neighbor model self.n_recommend = n_recommend self.save = False set_log_level(verbose) def preprocess(self, text): """ Apply Porter stemmer to input string Parameters ---------- text: str, input string Returns ------- text_preprocess: str, output stemming string """ if isinstance(text, (type(None), float)): text_preprocess = '' else: text = unidecode(text).lower() text = punct_re.sub(' ', text) # remove punctuation if self.stemming: text_preprocess = [stemmer.stem(token) for token in w_tokenizer.tokenize(text)] else: text_preprocess = w_tokenizer.tokenize(text) text_preprocess = ' '.join(text_preprocess) return text_preprocess def preprocess_docs(self, docs): """ Preprocess string or list of strings """ if isinstance(docs, string_types): docs = [docs] if self.stemming is True: if not self.parallel: logger.info('preprocess %i documents without multiprocessing' % len(docs)) docs_preprocess = list(map(self.preprocess, docs)) else: if sys.version_info[0] == 3: from multiprocessing import Pool pool = Pool() n_processes = pool._processes docs_preprocess = pool.map(self.preprocess, docs) logger.info('preprocess %i documents with %i workers' % (len(docs), n_processes)) else: logger.info('using simple map for preprocessing abstracts') docs_preprocess = list(map(self.preprocess, docs)) else: logger.info('no prepocess function apply') docs_preprocess = docs return docs_preprocess def fit_document_matrix(self, X): """ Reduce dimension of sparse matrix X using Latent Semantic Analysis and build nearst neighbor model Parameters ---------- X: sparse csr matrix, sparse term frequency matrix or others weighting matrix from documents """ n_components = self.n_components n_iter = self.n_iter algorithm = self.algorithm lsa_model = TruncatedSVD(n_components=n_components, n_iter=n_iter, algorithm=algorithm) # reduce dimension using Latent Semantic Analysis vectors = lsa_model.fit_transform(X) self.vectors = vectors # build nearest neighbor model nbrs_model = build_nearest_neighbors(vectors, n_recommend=self.n_recommend) self.nbrs_model = nbrs_model return self def fit(self, docs): """ Create recommendation vectors and nearest neighbor model from list of documents Parameters ---------- docs: list of string, list of documents' text or abstracts from papers or publications or posters """ # parameters from class weighting = self.weighting strip_accents = self.strip_accents token_pattern = self.token_pattern lowercase = self.lowercase min_df = self.min_df max_df = self.max_df norm = self.norm ngram_range = self.ngram_range analyzer = self.analyzer stop_words = self.stop_words # preprocess text docs_preprocess = self.preprocess_docs(docs) self.docs = docs if self.save: self.docs_preprocess = docs_preprocess # weighting documents if self.weighting == 'count': model = CountVectorizer(min_df=min_df, max_df=max_df, lowercase=lowercase, strip_accents=strip_accents, analyzer=analyzer, token_pattern=token_pattern, ngram_range=ngram_range, stop_words=stop_words) elif self.weighting == 'tfidf': model = TfidfVectorizer(min_df=min_df, max_df=max_df, lowercase=lowercase, norm=norm, strip_accents=strip_accents, analyzer=analyzer, token_pattern=token_pattern, ngram_range=ngram_range, use_idf=True, smooth_idf=True, sublinear_tf=True, stop_words=stop_words) elif self.weighting == 'entropy': model = LogEntropyVectorizer(min_df=min_df, max_df=max_df, lowercase=lowercase, norm=norm, token_pattern=token_pattern, ngram_range=ngram_range, analyzer=analyzer, smooth_idf=False, stop_words=stop_words) else: logger.error('choose one weighting scheme from count, tfidf or entropy') # text transformation and latent-semantic-analysis logger.info('apply %s weighting to documents' % self.weighting) X = model.fit_transform(docs_preprocess) # fit documents matrix from sparse matrix logger.info('perform Latent Semantic Analysis with %i components' % self.n_components) self.fit_document_matrix(X) return self def recommend(self, likes=list(), dislikes=list(), w_like=1.8, w_dislike=0.2): """ Apply Rocchio algorithm and nearest neighbor to recommend related documents: x_pref = w_like * mean(x_likes) - w_dislike * mean(x_dislikes) see article on how to cross-validate parameters. Use recommend after fit method Parameters ---------- likes: list, list of index of liked documents dislikes: list, list of index of disliked documents w_like: float, weight for liked documents, default 1.8 (from cross-validation) w_dislike: float, weight for disliked documents, default 0.2 (we got 0.0 from cross-validation) Returns ------- recommend_index: 1d array, array of recommended index from documents """ self.w_like = w_like self.w_dislike = w_dislike # compute preference vector topic_pref = get_rocchio_topic(self.vectors, likes, dislikes, w_like, w_dislike) # nearest neighbor to suggest related abstract with close topic _, recommend_index = self.nbrs_model.kneighbors(topic_pref) return recommend_index.flatten()
science-concierge
/science_concierge-0.1.tar.gz/science_concierge-0.1/science_concierge/science_concierge.py
science_concierge.py
import logging import sys import re import numpy as np import string from six import string_types from unidecode import unidecode from nltk.stem.porter import PorterStemmer from nltk.tokenize import WhitespaceTokenizer from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.decomposition import TruncatedSVD from sklearn.preprocessing import normalize from .vectorizer import LogEntropyVectorizer from .recommend import build_nearest_neighbors, get_rocchio_topic logger = logging.getLogger('scienceconcierge') logger.addHandler(logging.StreamHandler()) stemmer = PorterStemmer() w_tokenizer = WhitespaceTokenizer() punct_re = re.compile('[{}]'.format(re.escape(string.punctuation))) def set_log_level(verbose): """Convenience function for setting the log level. Parameters ---------- verbose : bool, str, int, or None The verbosity of messages to print. If a str, it can be either DEBUG, INFO, WARNING, ERROR, or CRITICAL. Note that these are for convenience and are equivalent to passing in logging.DEBUG, etc. For bool, True is the same as 'INFO', False is the same as 'WARNING'. """ if isinstance(verbose, bool): if verbose is True: verbose = 'INFO' else: verbose = 'WARNING' if isinstance(verbose, str): verbose = verbose.upper() logging_types = dict(DEBUG=logging.DEBUG, INFO=logging.INFO, WARNING=logging.WARNING, ERROR=logging.ERROR, CRITICAL=logging.CRITICAL) if verbose not in logging_types: raise ValueError('verbose must be of a valid type') verbose = logging_types[verbose] logger.setLevel(verbose) class ScienceConcierge: """Science Concierge Recommendation class using Latent Semantic Analysis on list of abstracts Process workflow are as follows - Word tokenize and stemming (optional) - Create tf-idf matrix, unigram or bigram recommended - Latent Semantic Analysis (LSA) i.e. reduce dimension of using truncated SVD - Nearest neighbor assignment for recommendation Parameters ---------- * parameters for preprocessing stemming: boolean, if True it will apply Porter stemmer as a preprocessor to , default: True parallel: boolean, if True multipleprocessing will used to apply preprocessing to abstract text, default: True * parameters for term frequenct weighting scheme weighting: str, options from ['count', 'tfidf', 'entropy'] min_df: int or float [0.0, 1.0] ignore term that appear less than min_df or has weight less than min_df, default: 3 max_df: int or float [0.0, 1.0] ignore term that appear more than max_df or has weight greater than max_df, default: 0.8 ngram_range: tuple, parameter for tfidf transformation (1, 1) for unigram, (1, 2) for bigram, default (1, 2) i.e. bigram norm: 'l2', 'l1' or None, default: 'l2' * parameters for dimensionality reduction algorithm: str, 'arpack' or 'randomized', default 'arpack' n_components: int, number of components of reduced dimension vector in LSA, default=200 n_iter: int, iteration for LSA * For recommendation w_like: weight term for liked documents (called alpha in literature) w_dislike: wieght term for disliked documents n_recommend: number of total documents that want to be recommended, if None it will be set to total number of documents TO DO ----- - update nearest neighbor model so that it allows larger scale of documents - print logging output for preprocessing step """ def __init__(self, stemming=True, parallel=True, weighting='tfidf', strip_accents='unicode', norm='l2', lowercase=True, min_df=3, max_df=0.8, ngram_range=(1,2), algorithm='arpack', n_components=200, n_iter=150, n_recommend=None, save=False, verbose=False): self.docs = None self.docs_preprocess = None self.stemming = stemming self.parallel = parallel self.weighting = weighting self.strip_accents = strip_accents self.min_df = min_df self.max_df = max_df self.ngram_range = ngram_range self.analyzer = 'word' self.token_pattern = r'\w{1,}' self.stop_words = 'english' self.lowercase = lowercase self.norm = norm self.n_components = int(n_components) self.n_iter = int(n_iter) self.algorithm = algorithm self.vectors = None self.nbrs_model = None # holder for nearest neighbor model self.n_recommend = n_recommend self.save = False set_log_level(verbose) def preprocess(self, text): """ Apply Porter stemmer to input string Parameters ---------- text: str, input string Returns ------- text_preprocess: str, output stemming string """ if isinstance(text, (type(None), float)): text_preprocess = '' else: text = unidecode(text).lower() text = punct_re.sub(' ', text) # remove punctuation if self.stemming: text_preprocess = [stemmer.stem(token) for token in w_tokenizer.tokenize(text)] else: text_preprocess = w_tokenizer.tokenize(text) text_preprocess = ' '.join(text_preprocess) return text_preprocess def preprocess_docs(self, docs): """ Preprocess string or list of strings """ if isinstance(docs, string_types): docs = [docs] if self.stemming is True: if not self.parallel: logger.info('preprocess %i documents without multiprocessing' % len(docs)) docs_preprocess = list(map(self.preprocess, docs)) else: if sys.version_info[0] == 3: from multiprocessing import Pool pool = Pool() n_processes = pool._processes docs_preprocess = pool.map(self.preprocess, docs) logger.info('preprocess %i documents with %i workers' % (len(docs), n_processes)) else: logger.info('using simple map for preprocessing abstracts') docs_preprocess = list(map(self.preprocess, docs)) else: logger.info('no prepocess function apply') docs_preprocess = docs return docs_preprocess def fit_document_matrix(self, X): """ Reduce dimension of sparse matrix X using Latent Semantic Analysis and build nearst neighbor model Parameters ---------- X: sparse csr matrix, sparse term frequency matrix or others weighting matrix from documents """ n_components = self.n_components n_iter = self.n_iter algorithm = self.algorithm lsa_model = TruncatedSVD(n_components=n_components, n_iter=n_iter, algorithm=algorithm) # reduce dimension using Latent Semantic Analysis vectors = lsa_model.fit_transform(X) self.vectors = vectors # build nearest neighbor model nbrs_model = build_nearest_neighbors(vectors, n_recommend=self.n_recommend) self.nbrs_model = nbrs_model return self def fit(self, docs): """ Create recommendation vectors and nearest neighbor model from list of documents Parameters ---------- docs: list of string, list of documents' text or abstracts from papers or publications or posters """ # parameters from class weighting = self.weighting strip_accents = self.strip_accents token_pattern = self.token_pattern lowercase = self.lowercase min_df = self.min_df max_df = self.max_df norm = self.norm ngram_range = self.ngram_range analyzer = self.analyzer stop_words = self.stop_words # preprocess text docs_preprocess = self.preprocess_docs(docs) self.docs = docs if self.save: self.docs_preprocess = docs_preprocess # weighting documents if self.weighting == 'count': model = CountVectorizer(min_df=min_df, max_df=max_df, lowercase=lowercase, strip_accents=strip_accents, analyzer=analyzer, token_pattern=token_pattern, ngram_range=ngram_range, stop_words=stop_words) elif self.weighting == 'tfidf': model = TfidfVectorizer(min_df=min_df, max_df=max_df, lowercase=lowercase, norm=norm, strip_accents=strip_accents, analyzer=analyzer, token_pattern=token_pattern, ngram_range=ngram_range, use_idf=True, smooth_idf=True, sublinear_tf=True, stop_words=stop_words) elif self.weighting == 'entropy': model = LogEntropyVectorizer(min_df=min_df, max_df=max_df, lowercase=lowercase, norm=norm, token_pattern=token_pattern, ngram_range=ngram_range, analyzer=analyzer, smooth_idf=False, stop_words=stop_words) else: logger.error('choose one weighting scheme from count, tfidf or entropy') # text transformation and latent-semantic-analysis logger.info('apply %s weighting to documents' % self.weighting) X = model.fit_transform(docs_preprocess) # fit documents matrix from sparse matrix logger.info('perform Latent Semantic Analysis with %i components' % self.n_components) self.fit_document_matrix(X) return self def recommend(self, likes=list(), dislikes=list(), w_like=1.8, w_dislike=0.2): """ Apply Rocchio algorithm and nearest neighbor to recommend related documents: x_pref = w_like * mean(x_likes) - w_dislike * mean(x_dislikes) see article on how to cross-validate parameters. Use recommend after fit method Parameters ---------- likes: list, list of index of liked documents dislikes: list, list of index of disliked documents w_like: float, weight for liked documents, default 1.8 (from cross-validation) w_dislike: float, weight for disliked documents, default 0.2 (we got 0.0 from cross-validation) Returns ------- recommend_index: 1d array, array of recommended index from documents """ self.w_like = w_like self.w_dislike = w_dislike # compute preference vector topic_pref = get_rocchio_topic(self.vectors, likes, dislikes, w_like, w_dislike) # nearest neighbor to suggest related abstract with close topic _, recommend_index = self.nbrs_model.kneighbors(topic_pref) return recommend_index.flatten()
0.649245
0.298453
![PyPI](https://img.shields.io/pypi/v/science-data-structure) ![PyPI](https://img.shields.io/pypi/dm/science-data-structure) ![GitHub last commit](https://img.shields.io/github/last-commit/woutervanveen/science_data_structure) # Science data structure This library makes it straight forward to make a tree folder structure for large data-sets. For now it supports numpy arrays only, but I have plans to implement pandas, csv, tab-separated and excel soon. The idea behind the library is to make a data-set browse-able with a normal file browser. The components can be rearranged with the use of Python, the terminal or a simple file-browser. ## Install Install through pip ``` pip install science-data-structure ``` Manual installation ``` python setup.py install ``` ## Command line tools This library is bundled with command line tools to create a system wide author ```bash science_data_structure global create author "<name>" ``` or ```bash science_data_structure global create author ``` and you will be prompted for the name of the author. You only have to run the above commands a single time, the data is stored in a configuration file (the location is dependent of your OS). From the command line you can create a dataset: ```bash science_data_structure create dataset "<name>" "<description>" ``` The author you have created for you system is added to this dataset. Go into the folder of the dataset and execute: ```bash science_data_structure list author ``` to view all the authors in this dataset. Alternatively you can list the entire meta file ```bash science_data_structure list meta ``` ## Examples ### Simple data-set In this simple example a data-set is created, with a single branch `parabola`. In this branch two "leafs" are added `x` and `y`. At the end of the example the data_set is written to disk. Before we can create a dataset we need to create a meta file containing an author, you can do this with the earlier mentioned command line example above. ```python import science_data_structure.structures as structures from pathlib import Path import numpy # initialize the empty data-set dataset = structures.StructuredDataSet.create_dataset(Path("./."), "test_set") # add data to the data-set data_set["parabola"]["x"] = numpy.linspace(-2, 2, 100) data_set["parabola"]["y"] = data_set["parabola"]["x"].data ** 2 # write the data to disk data_set.write() ``` ### Branch overriding What will happen when a branch or a leaf is overwritten with another leaf or branch? This example extends the previous example ```python data_set["parabola"]["x"] = None ``` In this case the variable ~x~ stored in the branch ~parabola~ will be deleted upon the first write.
science-data-structure
/science_data_structure-0.0.4.tar.gz/science_data_structure-0.0.4/README.md
README.md
pip install science-data-structure python setup.py install science_data_structure global create author "<name>" science_data_structure global create author science_data_structure create dataset "<name>" "<description>" science_data_structure list author science_data_structure list meta import science_data_structure.structures as structures from pathlib import Path import numpy # initialize the empty data-set dataset = structures.StructuredDataSet.create_dataset(Path("./."), "test_set") # add data to the data-set data_set["parabola"]["x"] = numpy.linspace(-2, 2, 100) data_set["parabola"]["y"] = data_set["parabola"]["x"].data ** 2 # write the data to disk data_set.write() data_set["parabola"]["x"] = None
0.535584
0.972908
import json from typing import Dict, List import json from pathlib import Path import abc class JSONObject: def to_json(self) -> str: return json.dumps(self, default=lambda o: o.__dict__(), sort_keys=True, indent=4) class Author(JSONObject): def __init__(self, author_id: int, name: str) -> None: self._author_id = author_id self._name = name def __dict__(self): return { "id": self._author_id, "name": self._name } def __str__(self) -> str: return "{:d} {:s}".format(self._author_id, self._name) @staticmethod def from_json(json_data: Dict) -> Dict[int, "Author"]: content = list(json_data.items()) return dict(map(lambda item: (int(item[0]), Author(item[1]["id"], item[1]["name"])), content)) class Meta(JSONObject): def __init__(self, path: Path) -> None: self._path = path self._authors = {} # type: Dict[int, Author] def __dict__(self) -> Dict: result = { "path": str(self._path), "authors": self._authors } return result def write(self) -> None: output_line = self.to_json() self._path.write_text(output_line) @staticmethod def read(path: Path) -> "Meta": with path.open("r") as content: text = content.read() return Meta.from_json(path, json.loads(text)) @staticmethod def from_json(path: Path, json_data: Dict) -> "Meta": meta = Meta(path) meta.authors = Author.from_json(json_data["authors"]) return meta @property def authors(self) -> Dict[int, Author]: return self._authors @authors.setter def authors(self, authors: Dict[int, Author]) -> None: self._authors = authors def __str__(self) -> None: line = "{:s} authors = ".format(str(self._path)) line += str(self._authors) return line def remove(self) -> None: self._path.unlink()
science-data-structure
/science_data_structure-0.0.4.tar.gz/science_data_structure-0.0.4/science_data_structure/descriptions.py
descriptions.py
import json from typing import Dict, List import json from pathlib import Path import abc class JSONObject: def to_json(self) -> str: return json.dumps(self, default=lambda o: o.__dict__(), sort_keys=True, indent=4) class Author(JSONObject): def __init__(self, author_id: int, name: str) -> None: self._author_id = author_id self._name = name def __dict__(self): return { "id": self._author_id, "name": self._name } def __str__(self) -> str: return "{:d} {:s}".format(self._author_id, self._name) @staticmethod def from_json(json_data: Dict) -> Dict[int, "Author"]: content = list(json_data.items()) return dict(map(lambda item: (int(item[0]), Author(item[1]["id"], item[1]["name"])), content)) class Meta(JSONObject): def __init__(self, path: Path) -> None: self._path = path self._authors = {} # type: Dict[int, Author] def __dict__(self) -> Dict: result = { "path": str(self._path), "authors": self._authors } return result def write(self) -> None: output_line = self.to_json() self._path.write_text(output_line) @staticmethod def read(path: Path) -> "Meta": with path.open("r") as content: text = content.read() return Meta.from_json(path, json.loads(text)) @staticmethod def from_json(path: Path, json_data: Dict) -> "Meta": meta = Meta(path) meta.authors = Author.from_json(json_data["authors"]) return meta @property def authors(self) -> Dict[int, Author]: return self._authors @authors.setter def authors(self, authors: Dict[int, Author]) -> None: self._authors = authors def __str__(self) -> None: line = "{:s} authors = ".format(str(self._path)) line += str(self._authors) return line def remove(self) -> None: self._path.unlink()
0.637031
0.168309
from pathlib import Path from typing import List from author import Author from core import JSONObject from logger import LogEntry import uuid import json from typing import Dict import abc from datetime import datetime class NodeProperty(JSONObject): @abc.abstractproperty def name(self): raise NotImplementedError("Must override the property name") class Meta(JSONObject): id_counter = 0 def __init__(self, path: Path, dataset_id: int, branch_id: int, description: str = "", authors: List[Author] = [], log: Dict[int, LogEntry] = {}, additional_properties: Dict[str, NodeProperty] = {}): self._path = path self._dataset_id = dataset_id self._branch_id = branch_id self._description = description self._authors = authors self._log = log self._additional_properties = additional_properties def write(self): self.path.write_text(self.to_json()) def __str__(self): line = "meta information \n" line += "dataset id \t {:d} \n".format(self._dataset_id) line += "branch id \t {:d} \n".format(self._branch_id) line += "description \t {:s} \n".format(self._description) line += "\n" line += "authors: \n" for author in self.authors: line += "{:s} \n \n".format(str(author)) line += "\n" for name in self._additional_properties.keys(): line += "{:s}\n".format(str(self._additional_properties[name])) return line def __dict__(self): base_dict = { "dataset_id": self._dataset_id, "branch_id": self._branch_id, "authors": self._authors, "description": self._description, "log": self._log } for property_name in self._additional_properties.keys(): base_dict[property_name] = self._additional_properties[property_name].__dict__() return base_dict @property def path(self): return self._path @path.setter def path(self, path): self._path = path @property def dataset_id(self): return self._dataset_id @property def branch_id(self): return self._branch_id @property def authors(self): return self._authors @property def description(self): return self._description @description.setter def description(self, description: str): self._description = description @staticmethod def create_top_level_meta(path: Path, author: Author, description: str = ""): # create a uuid for the dataset dataset_id = uuid.uuid4().int branch_id = 0 Meta.id_counter += 1 meta = Meta(path, dataset_id, branch_id, description, [author]) return meta @staticmethod def create_meta(top_level_meta: "Meta", path): dataset_id = top_level_meta.dataset_id branch_id = Meta.id_counter Meta.id_counter += 1 meta = Meta(path / ".meta.json", dataset_id, branch_id) return meta @staticmethod def from_json(path: Path) -> "Meta": text = path.read_text() json_data = json.loads(text) authors = list(map(lambda author_content: Author.from_dict(author_content), json_data["authors"])) return Meta(path, int(json_data["dataset_id"]), int(json_data["branch_id"]), json_data["description"], authors) def add_property(self, node_property: NodeProperty): self._additional_properties[node_property.name] = node_property def __getitem__(self, name: str) -> NodeProperty: return self._additional_properties[name] def add_log_entry(self, log_entry): self._log[log_entry.log_id] = log_entry class FileProperty(NodeProperty): def __init__(self): # properties self._size = None # type: int self._n_childs = None # type: int @property def size(self) -> int: return self._size @size.setter def size(self, size): self._size = size @property def n_childs(self) -> int: return self._n_childs @n_childs.setter def n_childs(self, n_childs): self._n_childs = n_childs @staticmethod def from_dict(content: Dict) -> "FileProperty": file_property = FileProperty() file_property.size = int(content["size"]) file_property.n_childs = int(content["n_childs"]) return file_property def __dict__(self): return { "size": self._size, "n_childs": self._n_childs } @property def name(self) -> str: return "file_properties"
science-data-structure
/science_data_structure-0.0.4.tar.gz/science_data_structure-0.0.4/science_data_structure/meta.py
meta.py
from pathlib import Path from typing import List from author import Author from core import JSONObject from logger import LogEntry import uuid import json from typing import Dict import abc from datetime import datetime class NodeProperty(JSONObject): @abc.abstractproperty def name(self): raise NotImplementedError("Must override the property name") class Meta(JSONObject): id_counter = 0 def __init__(self, path: Path, dataset_id: int, branch_id: int, description: str = "", authors: List[Author] = [], log: Dict[int, LogEntry] = {}, additional_properties: Dict[str, NodeProperty] = {}): self._path = path self._dataset_id = dataset_id self._branch_id = branch_id self._description = description self._authors = authors self._log = log self._additional_properties = additional_properties def write(self): self.path.write_text(self.to_json()) def __str__(self): line = "meta information \n" line += "dataset id \t {:d} \n".format(self._dataset_id) line += "branch id \t {:d} \n".format(self._branch_id) line += "description \t {:s} \n".format(self._description) line += "\n" line += "authors: \n" for author in self.authors: line += "{:s} \n \n".format(str(author)) line += "\n" for name in self._additional_properties.keys(): line += "{:s}\n".format(str(self._additional_properties[name])) return line def __dict__(self): base_dict = { "dataset_id": self._dataset_id, "branch_id": self._branch_id, "authors": self._authors, "description": self._description, "log": self._log } for property_name in self._additional_properties.keys(): base_dict[property_name] = self._additional_properties[property_name].__dict__() return base_dict @property def path(self): return self._path @path.setter def path(self, path): self._path = path @property def dataset_id(self): return self._dataset_id @property def branch_id(self): return self._branch_id @property def authors(self): return self._authors @property def description(self): return self._description @description.setter def description(self, description: str): self._description = description @staticmethod def create_top_level_meta(path: Path, author: Author, description: str = ""): # create a uuid for the dataset dataset_id = uuid.uuid4().int branch_id = 0 Meta.id_counter += 1 meta = Meta(path, dataset_id, branch_id, description, [author]) return meta @staticmethod def create_meta(top_level_meta: "Meta", path): dataset_id = top_level_meta.dataset_id branch_id = Meta.id_counter Meta.id_counter += 1 meta = Meta(path / ".meta.json", dataset_id, branch_id) return meta @staticmethod def from_json(path: Path) -> "Meta": text = path.read_text() json_data = json.loads(text) authors = list(map(lambda author_content: Author.from_dict(author_content), json_data["authors"])) return Meta(path, int(json_data["dataset_id"]), int(json_data["branch_id"]), json_data["description"], authors) def add_property(self, node_property: NodeProperty): self._additional_properties[node_property.name] = node_property def __getitem__(self, name: str) -> NodeProperty: return self._additional_properties[name] def add_log_entry(self, log_entry): self._log[log_entry.log_id] = log_entry class FileProperty(NodeProperty): def __init__(self): # properties self._size = None # type: int self._n_childs = None # type: int @property def size(self) -> int: return self._size @size.setter def size(self, size): self._size = size @property def n_childs(self) -> int: return self._n_childs @n_childs.setter def n_childs(self, n_childs): self._n_childs = n_childs @staticmethod def from_dict(content: Dict) -> "FileProperty": file_property = FileProperty() file_property.size = int(content["size"]) file_property.n_childs = int(content["n_childs"]) return file_property def __dict__(self): return { "size": self._size, "n_childs": self._n_childs } @property def name(self) -> str: return "file_properties"
0.786623
0.158597
import abc from typing import Dict, List from pathlib import Path import os from meta import Meta from config import ConfigManager import logger as logger from author import Author class Node: def __init__(self, parent: "Node", meta: Meta, name: str): self._parent = parent self._meta = meta self._name = name @property def name(self) -> str: return self._name @property def path(self) -> Path: return self._parent.path / self.name @abc.abstractmethod def write(self) -> "None": raise NotImplementedError("write functions must be overwritten") @abc.abstractmethod def remove(self) -> "None": raise NotImplementedError("remove function must be overwritten") @property def meta(self): return self._meta @property def top_level_meta(self) -> Meta: if isinstance(self, StructuredDataSet): return self.meta return self._parent.top_level_meta class Branch(Node): def __init__(self, parent: Node, name: str, content: Dict[str, Node], meta: Meta) -> None: super().__init__(parent, meta, name) self._content = content # type: Dict[str, Node] self._kill = [] # type: List[Node] @logger.logger def write(self) -> None: os.makedirs(self.path, exist_ok=True) self._meta.write() for node_name in self._content.keys(): self._content[node_name].write() # empty the kill ring for node_kill in self._kill: node_kill.remove() self._kill = [] def read(self) -> "Branch": content = list(self.path.glob("./*")) content = list(filter(lambda x: not x.stem.startswith("."), content)) branches = list(filter(lambda x: x.suffix != ".leaf", content)) data = list(filter(lambda x: x.suffix == ".leaf", content)) for branch in branches: self._content[branch.name] = Branch(self, branch.name, {}, Meta.from_json(self.path / branch.name / ".meta.json")) self._content[branch.name].read() for data_node in data: self._content[data_node.with_suffix("").name] = Leaf.initialize(self, data_node.with_suffix("").name) def keys(self) -> List[str]: return list(self._content.keys()) def remove(self) -> None: for key in self._content.keys(): self._content[key].remove() self.meta.path.unlink() self._clear_kill() self.path.rmdir() # protected functions def _remove_item(self, key: str) -> Node: self._kill += [self._content[key]] return self._content.pop(key) def _clear_kill(self) -> None: for node in self._kill: node._remove() self._kill.remove(node) for branch in self.branches: branch._clear_kill() def __getitem__(self, name: str) -> Node: try: return self._content[name] except KeyError: self._content[name] = Branch.create_branch(self, name) return self._content[name] def __setitem__(self, key: str, item) -> None: if not isinstance(key, str): raise KeyError if item is None: self._remove_item(key) elif not isinstance(item, Node): if key in self._content: self._kill += [self._content[key]] import data_formats self._content[key] = data_formats.available_types[type(item)](self, "{:s}.leaf".format(key), Meta.create_meta(self.top_level_meta, self.path / "{:s}.leaf/".format(key))) self._content[key].data = item else: if key not in self._content: self._content[key] = item else: self._kill += [self._content[key]] self._content[key] = item @property def name(self) -> str: return self._name @property def branches(self) -> List["Branch"]: return list(filter(lambda content: isinstance(content, Branch), self._content.values())) @property def leafs(self) -> List["Leaf"]: return list(filter(lambda content: isinstance(content, Leaf), self._content.values())) @staticmethod def create_branch(parent: "Branch", name: str) -> "Branch": return Branch(parent, name, {}, Meta.create_meta(parent.top_level_meta, parent.path / name)) class StructuredDataSet(Branch): def __init__(self, path: Path, name: str, content: Dict[str, Node], meta: Meta) -> None: super().__init__(None, "{:s}.struct".format(name), content, meta) self._path = path @property def path(self): return self._path / self._name @staticmethod def create_dataset(path: Path, name: str, author: Author, description: str = "") -> "StructuredDataSet": top_level_meta = Meta.create_top_level_meta(None, author, description=description) path_tmp = path / "{:s}.struct".format(name) path_meta = path_tmp / ".meta.json" top_level_meta.path = path_meta return StructuredDataSet(path, name, {}, top_level_meta) class Leaf(Node): def __init__(self, parent: Node, name: str, meta: Meta) -> None: super().__init__(parent, meta, name) # public functions def write(self) -> None: if not self.path.exists(): self.path.mkdir() self.meta.write() self._write_child() @property def data(self): return self._get_data() @data.setter def data(self, data): self._set_data(data) @abc.abstractmethod def _get_data(self): raise NotImplementedError("Must override the _get_data function") @abc.abstractmethod def _set_data(self, data): raise NotImplementedError("Must override the _set_data function") @staticmethod def initialize(parent: Node, name: str) -> "Leaf": name = name.replace(".leaf", "") leaf_path = (parent.path / name).with_suffix(".leaf") meta = Meta.from_json(leaf_path / ".meta.json") # read all the non-hidden files content = list(leaf_path.with_suffix(".leaf").glob("./*")) content = list(filter(lambda x: not x.stem.startswith("."), content)) if len(content) == 0: import data_formats return data_formats.available_extensions[content[0].suffix](parent, name.replace(".leaf"), meta) else: if len(content) > 1: raise FileNotFoundError("To many files in the leaf") else: raise FileNotFoundError("The leaf does not exist {:s} {:s}".format(str(leaf_path), name))
science-data-structure
/science_data_structure-0.0.4.tar.gz/science_data_structure-0.0.4/science_data_structure/structures.py
structures.py
import abc from typing import Dict, List from pathlib import Path import os from meta import Meta from config import ConfigManager import logger as logger from author import Author class Node: def __init__(self, parent: "Node", meta: Meta, name: str): self._parent = parent self._meta = meta self._name = name @property def name(self) -> str: return self._name @property def path(self) -> Path: return self._parent.path / self.name @abc.abstractmethod def write(self) -> "None": raise NotImplementedError("write functions must be overwritten") @abc.abstractmethod def remove(self) -> "None": raise NotImplementedError("remove function must be overwritten") @property def meta(self): return self._meta @property def top_level_meta(self) -> Meta: if isinstance(self, StructuredDataSet): return self.meta return self._parent.top_level_meta class Branch(Node): def __init__(self, parent: Node, name: str, content: Dict[str, Node], meta: Meta) -> None: super().__init__(parent, meta, name) self._content = content # type: Dict[str, Node] self._kill = [] # type: List[Node] @logger.logger def write(self) -> None: os.makedirs(self.path, exist_ok=True) self._meta.write() for node_name in self._content.keys(): self._content[node_name].write() # empty the kill ring for node_kill in self._kill: node_kill.remove() self._kill = [] def read(self) -> "Branch": content = list(self.path.glob("./*")) content = list(filter(lambda x: not x.stem.startswith("."), content)) branches = list(filter(lambda x: x.suffix != ".leaf", content)) data = list(filter(lambda x: x.suffix == ".leaf", content)) for branch in branches: self._content[branch.name] = Branch(self, branch.name, {}, Meta.from_json(self.path / branch.name / ".meta.json")) self._content[branch.name].read() for data_node in data: self._content[data_node.with_suffix("").name] = Leaf.initialize(self, data_node.with_suffix("").name) def keys(self) -> List[str]: return list(self._content.keys()) def remove(self) -> None: for key in self._content.keys(): self._content[key].remove() self.meta.path.unlink() self._clear_kill() self.path.rmdir() # protected functions def _remove_item(self, key: str) -> Node: self._kill += [self._content[key]] return self._content.pop(key) def _clear_kill(self) -> None: for node in self._kill: node._remove() self._kill.remove(node) for branch in self.branches: branch._clear_kill() def __getitem__(self, name: str) -> Node: try: return self._content[name] except KeyError: self._content[name] = Branch.create_branch(self, name) return self._content[name] def __setitem__(self, key: str, item) -> None: if not isinstance(key, str): raise KeyError if item is None: self._remove_item(key) elif not isinstance(item, Node): if key in self._content: self._kill += [self._content[key]] import data_formats self._content[key] = data_formats.available_types[type(item)](self, "{:s}.leaf".format(key), Meta.create_meta(self.top_level_meta, self.path / "{:s}.leaf/".format(key))) self._content[key].data = item else: if key not in self._content: self._content[key] = item else: self._kill += [self._content[key]] self._content[key] = item @property def name(self) -> str: return self._name @property def branches(self) -> List["Branch"]: return list(filter(lambda content: isinstance(content, Branch), self._content.values())) @property def leafs(self) -> List["Leaf"]: return list(filter(lambda content: isinstance(content, Leaf), self._content.values())) @staticmethod def create_branch(parent: "Branch", name: str) -> "Branch": return Branch(parent, name, {}, Meta.create_meta(parent.top_level_meta, parent.path / name)) class StructuredDataSet(Branch): def __init__(self, path: Path, name: str, content: Dict[str, Node], meta: Meta) -> None: super().__init__(None, "{:s}.struct".format(name), content, meta) self._path = path @property def path(self): return self._path / self._name @staticmethod def create_dataset(path: Path, name: str, author: Author, description: str = "") -> "StructuredDataSet": top_level_meta = Meta.create_top_level_meta(None, author, description=description) path_tmp = path / "{:s}.struct".format(name) path_meta = path_tmp / ".meta.json" top_level_meta.path = path_meta return StructuredDataSet(path, name, {}, top_level_meta) class Leaf(Node): def __init__(self, parent: Node, name: str, meta: Meta) -> None: super().__init__(parent, meta, name) # public functions def write(self) -> None: if not self.path.exists(): self.path.mkdir() self.meta.write() self._write_child() @property def data(self): return self._get_data() @data.setter def data(self, data): self._set_data(data) @abc.abstractmethod def _get_data(self): raise NotImplementedError("Must override the _get_data function") @abc.abstractmethod def _set_data(self, data): raise NotImplementedError("Must override the _set_data function") @staticmethod def initialize(parent: Node, name: str) -> "Leaf": name = name.replace(".leaf", "") leaf_path = (parent.path / name).with_suffix(".leaf") meta = Meta.from_json(leaf_path / ".meta.json") # read all the non-hidden files content = list(leaf_path.with_suffix(".leaf").glob("./*")) content = list(filter(lambda x: not x.stem.startswith("."), content)) if len(content) == 0: import data_formats return data_formats.available_extensions[content[0].suffix](parent, name.replace(".leaf"), meta) else: if len(content) > 1: raise FileNotFoundError("To many files in the leaf") else: raise FileNotFoundError("The leaf does not exist {:s} {:s}".format(str(leaf_path), name))
0.752104
0.144601
import click from science_data_structure.author import Author from science_data_structure.meta import Meta from science_data_structure.config import ConfigManager from science_data_structure.tools import files as file_tools from pathlib import Path from science_data_structure.structures import StructuredDataSet import os @click.group() def manage(): pass @click.group() def create(): pass @click.group() def edit(): pass @click.group(name="global") def _global(): pass @click.group(name="create") def global_create(): pass @click.group(name="list") def global_list(): pass @click.group(name="list") def _list(): pass @click.command(name="dataset") @click.argument("name") @click.argument("description", required=False) def create_dataset(name, description): path = Path(os.getcwd()) if (path / name / ".struct").exists(): raise FileExistsError("There is already a dataset in this folder with that name") author = ConfigManager().default_author dataset = StructuredDataSet.create_dataset(path, name, Meta.create_top_level_meta(None, author)) if description is not None: dataset.meta.description = description click.echo(dataset.path) dataset.write() @click.command(name="meta") def list_meta(): meta = Meta.from_json(Path(os.getcwd()) / ".meta.json") click.echo(str(meta)) @click.command(name="author") def list_author(): meta = Meta.from_json(Path(os.getcwd()) / ".meta.json") authors = meta.authors authors = list(map(lambda x: str(x), authors)) for author in authors: click.echo(author) @click.command(name="author") @click.argument("name", required=False) def create_global_author(name): config_manager = ConfigManager() if name is None: name = click.prompt("What is the name of the new author?") author = Author.create_author(name) config_manager.default_author = author click.echo(config_manager._path) config_manager.write() @click.command(name="author") def list_global_author(): config_manager = ConfigManager() click.echo("{:s}".format(str(config_manager.default_author))) # globals global_create.add_command(create_global_author) global_list.add_command(list_global_author) _global.add_command(global_create) _global.add_command(global_list) manage.add_command(_global) # Create group create.add_command(create_dataset) manage.add_command(create) # Delete group # List group _list.add_command(list_author) _list.add_command(list_meta) manage.add_command(_list) # edit group manage.add_command(edit) if __name__ == "__main__": manage()
science-data-structure
/science_data_structure-0.0.4.tar.gz/science_data_structure-0.0.4/science_data_structure/tools/manage.py
manage.py
import click from science_data_structure.author import Author from science_data_structure.meta import Meta from science_data_structure.config import ConfigManager from science_data_structure.tools import files as file_tools from pathlib import Path from science_data_structure.structures import StructuredDataSet import os @click.group() def manage(): pass @click.group() def create(): pass @click.group() def edit(): pass @click.group(name="global") def _global(): pass @click.group(name="create") def global_create(): pass @click.group(name="list") def global_list(): pass @click.group(name="list") def _list(): pass @click.command(name="dataset") @click.argument("name") @click.argument("description", required=False) def create_dataset(name, description): path = Path(os.getcwd()) if (path / name / ".struct").exists(): raise FileExistsError("There is already a dataset in this folder with that name") author = ConfigManager().default_author dataset = StructuredDataSet.create_dataset(path, name, Meta.create_top_level_meta(None, author)) if description is not None: dataset.meta.description = description click.echo(dataset.path) dataset.write() @click.command(name="meta") def list_meta(): meta = Meta.from_json(Path(os.getcwd()) / ".meta.json") click.echo(str(meta)) @click.command(name="author") def list_author(): meta = Meta.from_json(Path(os.getcwd()) / ".meta.json") authors = meta.authors authors = list(map(lambda x: str(x), authors)) for author in authors: click.echo(author) @click.command(name="author") @click.argument("name", required=False) def create_global_author(name): config_manager = ConfigManager() if name is None: name = click.prompt("What is the name of the new author?") author = Author.create_author(name) config_manager.default_author = author click.echo(config_manager._path) config_manager.write() @click.command(name="author") def list_global_author(): config_manager = ConfigManager() click.echo("{:s}".format(str(config_manager.default_author))) # globals global_create.add_command(create_global_author) global_list.add_command(list_global_author) _global.add_command(global_create) _global.add_command(global_list) manage.add_command(_global) # Create group create.add_command(create_dataset) manage.add_command(create) # Delete group # List group _list.add_command(list_author) _list.add_command(list_meta) manage.add_command(_list) # edit group manage.add_command(edit) if __name__ == "__main__": manage()
0.336331
0.072374
import numpy as np from typing import List class Variable: """Class for optimization variables. """ # attributes _x_min = None # variables _x_max = None # variables _x_type = None # variables' type def __init__(self, x_min: np.ndarray, x_max: np.ndarray, x_type: List[str]=None): """Constructor of variables. Args: x_min : (np.ndarray) (n x 1)-array with lower bounds. x_max : (np.ndarray) (n x 1)-array with upper bounds. x_type: (np.ndarray) (n x 1)-list with variables' type ('c': continuous or 'd': discrete). """ # set bounds self.x_min = x_min self.x_max = x_max self.x_type = x_type # getters @property def x_min(self): return self._x_min @property def x_max(self): return self._x_max @property def x_type(self): return self._x_type # setters @x_min.setter def x_min(self, x_lb): """Setter of x_min. Args: x_lb: (n x 1)-numpy array """ # check numpy if not isinstance(x_lb, np.ndarray): raise ValueError("x_min must be a numpy array!") # check dimension if not x_lb.shape[1]: raise ValueError("x_min must be a (n x 1)-numpy array!") # check consistency if self._x_min is not None: n = self._x_min.shape[0] if n != x_lb.shape[0] and n > 0: raise ValueError("x_min must be a ({} x 1)-numpy array!".format(n)) # set self._x_min = x_lb @x_max.setter def x_max(self, x_ub): """Setter of x_max. Args: x_ub: (n x 1)-numpy array """ # check numpy if not isinstance(x_ub, np.ndarray): raise ValueError("x_max must be a numpy array!") # check dimension if not x_ub.shape[1]: raise ValueError("x_max must be a (n x 1)-numpy array!") # check dimension consistency n = self._x_min.shape[0] if n != x_ub.shape[0] and n > 0: raise ValueError("x_max must be a ({} x 1)-numpy array!".format(n)) # check range consistency if np.any((x_ub - self._x_min) < 0): raise ValueError("x_max must be greater than or equal x_min!") # set self._x_max = x_ub @x_type.setter def x_type(self, x_type): """Setter of x_min. Args: x_type: (n )-list """ if x_type is not None: # check numpy if not isinstance(x_type, list): raise ValueError("x_type must be a list!") # check consistency n = self._x_min.shape[0] if n != len(x_type) and n > 0: raise ValueError("x_type must be a list of {} elements!".format(n)) # check values if (x_type.count('c') + x_type.count('d')) != n: raise ValueError("x_type must be either 'c' or 'd'.") self._x_type = x_type else: self.x_type = ['c'] * self.x_min.shape[0] def dimension(self): """Return variable dimension.""" return self.x_min.shape[0]
science-optimization
/science_optimization-9.0.2-cp310-cp310-manylinux_2_35_x86_64.whl/science_optimization/builder/variable.py
variable.py
import numpy as np from typing import List class Variable: """Class for optimization variables. """ # attributes _x_min = None # variables _x_max = None # variables _x_type = None # variables' type def __init__(self, x_min: np.ndarray, x_max: np.ndarray, x_type: List[str]=None): """Constructor of variables. Args: x_min : (np.ndarray) (n x 1)-array with lower bounds. x_max : (np.ndarray) (n x 1)-array with upper bounds. x_type: (np.ndarray) (n x 1)-list with variables' type ('c': continuous or 'd': discrete). """ # set bounds self.x_min = x_min self.x_max = x_max self.x_type = x_type # getters @property def x_min(self): return self._x_min @property def x_max(self): return self._x_max @property def x_type(self): return self._x_type # setters @x_min.setter def x_min(self, x_lb): """Setter of x_min. Args: x_lb: (n x 1)-numpy array """ # check numpy if not isinstance(x_lb, np.ndarray): raise ValueError("x_min must be a numpy array!") # check dimension if not x_lb.shape[1]: raise ValueError("x_min must be a (n x 1)-numpy array!") # check consistency if self._x_min is not None: n = self._x_min.shape[0] if n != x_lb.shape[0] and n > 0: raise ValueError("x_min must be a ({} x 1)-numpy array!".format(n)) # set self._x_min = x_lb @x_max.setter def x_max(self, x_ub): """Setter of x_max. Args: x_ub: (n x 1)-numpy array """ # check numpy if not isinstance(x_ub, np.ndarray): raise ValueError("x_max must be a numpy array!") # check dimension if not x_ub.shape[1]: raise ValueError("x_max must be a (n x 1)-numpy array!") # check dimension consistency n = self._x_min.shape[0] if n != x_ub.shape[0] and n > 0: raise ValueError("x_max must be a ({} x 1)-numpy array!".format(n)) # check range consistency if np.any((x_ub - self._x_min) < 0): raise ValueError("x_max must be greater than or equal x_min!") # set self._x_max = x_ub @x_type.setter def x_type(self, x_type): """Setter of x_min. Args: x_type: (n )-list """ if x_type is not None: # check numpy if not isinstance(x_type, list): raise ValueError("x_type must be a list!") # check consistency n = self._x_min.shape[0] if n != len(x_type) and n > 0: raise ValueError("x_type must be a list of {} elements!".format(n)) # check values if (x_type.count('c') + x_type.count('d')) != n: raise ValueError("x_type must be either 'c' or 'd'.") self._x_type = x_type else: self.x_type = ['c'] * self.x_min.shape[0] def dimension(self): """Return variable dimension.""" return self.x_min.shape[0]
0.912089
0.510802
from science_optimization.solvers.pareto_samplers import BaseParetoSamplers from science_optimization.solvers import OptimizationResults from science_optimization.builder import OptimizationProblem from science_optimization.function import GenericFunction, LinearFunction from typing import Any import numpy as np from copy import deepcopy class LambdaSampler(BaseParetoSamplers): """p-lambda Pareto front sampler.""" def __init__(self, optimization_problem: OptimizationProblem, algorithm: Any = None, n_samples: int = None): """Constructor of optimizer class. Args: optimization_problem: (OptimizationProblem) optimization problem instance. algorithm : (Any) an algorithm instance. n_samples : (int) number os samples. """ # instantiate super class super().__init__(optimization_problem, algorithm, n_samples) def sample_aux(self) -> OptimizationResults: """ p-lambda sampler. Returns: output: (OptimizationResults) optimization results. """ # cardinalities n = self.optimization_problem.variables.dimension() o = self.optimization_problem.objective.objectives.n_functions # verify if self.optimization_problem.objective.objectives.n_functions != 2: raise ValueError("Sampler only implemented for bi-objective optimization problems.") # generate lambda values from [0, 1] l = np.linspace(0, 1, self.n_samples) # remove vertices # sample x = np.zeros((n, 0)) fx = np.zeros((o, 0)) for k in range(self.n_samples): # p-lambda optimization problem op = self.op_lambda(l[k]) # optimize o = self.algorithm.optimize(optimization_problem=op, debug=False) x = np.hstack((x, o.x)) fx = np.hstack((fx, self.optimization_problem.objective.objectives.eval(o.x))) # output output = OptimizationResults() output.x = x output.fx = fx return output def op_lambda(self, l): """ Builds a p-lambda optimization problem. Args: l : used in the weighted sum of two objectives. Returns: op: optimization problem. """ # copy of optimization problem op = deepcopy(self.optimization_problem) obj = deepcopy(self.optimization_problem.objective) # nonparametric functions w = np.array([[1-l, l]]) if not obj.objectives.is_linear(): def fo(x): return obj.objectives.eval(x, composition='series', weights=w) # delete original objectives and evaluate op.objective.objectives.clear() # delete functions op.objective.objectives.add(GenericFunction(func=fo, n=op.variables.dimension())) else: # new objective parameters c = w @ obj.C() # delete original objectives and evaluate op.objective.objectives.clear() # delete functions op.objective.objectives.add(LinearFunction(c=c.T)) return op
science-optimization
/science_optimization-9.0.2-cp310-cp310-manylinux_2_35_x86_64.whl/science_optimization/solvers/pareto_samplers/lambda_sampler.py
lambda_sampler.py
from science_optimization.solvers.pareto_samplers import BaseParetoSamplers from science_optimization.solvers import OptimizationResults from science_optimization.builder import OptimizationProblem from science_optimization.function import GenericFunction, LinearFunction from typing import Any import numpy as np from copy import deepcopy class LambdaSampler(BaseParetoSamplers): """p-lambda Pareto front sampler.""" def __init__(self, optimization_problem: OptimizationProblem, algorithm: Any = None, n_samples: int = None): """Constructor of optimizer class. Args: optimization_problem: (OptimizationProblem) optimization problem instance. algorithm : (Any) an algorithm instance. n_samples : (int) number os samples. """ # instantiate super class super().__init__(optimization_problem, algorithm, n_samples) def sample_aux(self) -> OptimizationResults: """ p-lambda sampler. Returns: output: (OptimizationResults) optimization results. """ # cardinalities n = self.optimization_problem.variables.dimension() o = self.optimization_problem.objective.objectives.n_functions # verify if self.optimization_problem.objective.objectives.n_functions != 2: raise ValueError("Sampler only implemented for bi-objective optimization problems.") # generate lambda values from [0, 1] l = np.linspace(0, 1, self.n_samples) # remove vertices # sample x = np.zeros((n, 0)) fx = np.zeros((o, 0)) for k in range(self.n_samples): # p-lambda optimization problem op = self.op_lambda(l[k]) # optimize o = self.algorithm.optimize(optimization_problem=op, debug=False) x = np.hstack((x, o.x)) fx = np.hstack((fx, self.optimization_problem.objective.objectives.eval(o.x))) # output output = OptimizationResults() output.x = x output.fx = fx return output def op_lambda(self, l): """ Builds a p-lambda optimization problem. Args: l : used in the weighted sum of two objectives. Returns: op: optimization problem. """ # copy of optimization problem op = deepcopy(self.optimization_problem) obj = deepcopy(self.optimization_problem.objective) # nonparametric functions w = np.array([[1-l, l]]) if not obj.objectives.is_linear(): def fo(x): return obj.objectives.eval(x, composition='series', weights=w) # delete original objectives and evaluate op.objective.objectives.clear() # delete functions op.objective.objectives.add(GenericFunction(func=fo, n=op.variables.dimension())) else: # new objective parameters c = w @ obj.C() # delete original objectives and evaluate op.objective.objectives.clear() # delete functions op.objective.objectives.add(LinearFunction(c=c.T)) return op
0.942593
0.587174
import numpy as np from science_optimization.builder import OptimizationProblem from science_optimization.function import GenericFunction from science_optimization.solvers import Optimizer from science_optimization.problems import SeparableResourceAllocation from science_optimization.algorithms.decomposition import DualDecomposition def decomposition_example(): """Decomposition problem example. Solve problem: min f_1(x_1) + f_2(x_2), f_i(x_i) = e^(-2*x_i) s.t. x_1 + x_2 - 10 <= 0 2 <= x_i <= 6 """ # dimension n = 2 # objective functions def f_1(x): return np.exp(-2*x[0, :]) + 0 * x[1, :] def f_2(x): return np.exp(-2*x[1, :]) + 0 * x[0, :] # inequality constraints functions def g_1(x): return x[0, :] - 10 def g_2(x): return x[1, :] # input lists f_i = [GenericFunction(func=f_1, n=n), GenericFunction(func=f_2, n=n)] # f_i list g_i = [GenericFunction(func=g_1, n=n), GenericFunction(func=g_2, n=n)] # g_i list # bounds x_min = np.array([2, 2]).reshape(-1, 1) # lower x_max = np.array([6, 6]).reshape(-1, 1) # upper x_bounds = np.hstack((x_min, x_max)) # build generic problem instance generic = OptimizationProblem(builder=SeparableResourceAllocation(f_i=f_i, coupling_eq_constraints=[], coupling_ineq_constraints=g_i, x_bounds=x_bounds )) # starting point x0 = np.array([0, 0]).reshape(-1, 1) # builder optimization optimizer = Optimizer(opt_problem=generic, algorithm=DualDecomposition(x0=x0)) results = optimizer.optimize() # result results.info() if __name__ == "__main__": # run example decomposition_example()
science-optimization
/science_optimization-9.0.2-cp310-cp310-manylinux_2_35_x86_64.whl/science_optimization/examples/decomposition_example.py
decomposition_example.py
import numpy as np from science_optimization.builder import OptimizationProblem from science_optimization.function import GenericFunction from science_optimization.solvers import Optimizer from science_optimization.problems import SeparableResourceAllocation from science_optimization.algorithms.decomposition import DualDecomposition def decomposition_example(): """Decomposition problem example. Solve problem: min f_1(x_1) + f_2(x_2), f_i(x_i) = e^(-2*x_i) s.t. x_1 + x_2 - 10 <= 0 2 <= x_i <= 6 """ # dimension n = 2 # objective functions def f_1(x): return np.exp(-2*x[0, :]) + 0 * x[1, :] def f_2(x): return np.exp(-2*x[1, :]) + 0 * x[0, :] # inequality constraints functions def g_1(x): return x[0, :] - 10 def g_2(x): return x[1, :] # input lists f_i = [GenericFunction(func=f_1, n=n), GenericFunction(func=f_2, n=n)] # f_i list g_i = [GenericFunction(func=g_1, n=n), GenericFunction(func=g_2, n=n)] # g_i list # bounds x_min = np.array([2, 2]).reshape(-1, 1) # lower x_max = np.array([6, 6]).reshape(-1, 1) # upper x_bounds = np.hstack((x_min, x_max)) # build generic problem instance generic = OptimizationProblem(builder=SeparableResourceAllocation(f_i=f_i, coupling_eq_constraints=[], coupling_ineq_constraints=g_i, x_bounds=x_bounds )) # starting point x0 = np.array([0, 0]).reshape(-1, 1) # builder optimization optimizer = Optimizer(opt_problem=generic, algorithm=DualDecomposition(x0=x0)) results = optimizer.optimize() # result results.info() if __name__ == "__main__": # run example decomposition_example()
0.779196
0.557243
import numpy as np from science_optimization.builder import OptimizationProblem from science_optimization.function import QuadraticFunction from science_optimization.solvers.pareto_samplers import NonDominatedSampler, EpsilonSampler, LambdaSampler, MuSampler from science_optimization.problems import GenericProblem import matplotlib.pyplot as plt import matplotlib.ticker as ticker def pareto_sampling_cs0(s): """Multiobjective problem example. Args: s: nondominated_sampler. """ # parameters objective function 1 Q = np.array([[1, 0], [0, 1]]) c1 = np.array([[0], [0]]) d1 = np.array([0]) # parameters objective function 2 c2 = np.array([[-2], [-2]]) d2 = np.array([2]) # objectives f1 = QuadraticFunction(Q=Q, c=c1, d=d1) f2 = QuadraticFunction(Q=Q, c=c2, d=d2) f = [f1, f2] # constraints ineq_cons = [] eq_cons = [] # bounds x_min = np.array([-5, -5]).reshape(-1, 1) # lower x_max = np.array([5, 5]).reshape(-1, 1) # upper x_lim = np.hstack((x_min, x_max)) # build generic problem instance generic = OptimizationProblem(builder=GenericProblem(f=f, eq_cons=eq_cons, ineq_cons=ineq_cons, x_bounds=x_lim)) # builder pareto sampler if s == 0: sampler = EpsilonSampler(optimization_problem=generic) elif s == 1: sampler = NonDominatedSampler(optimization_problem=generic) elif s == 2: sampler = MuSampler(optimization_problem=generic) else: sampler = LambdaSampler(optimization_problem=generic) results = sampler.sample() # contour delta = 0.02 x = np.arange(-5, 5, delta) y = np.arange(-5, 5, delta) X, Y = np.meshgrid(x, y) XY = np.vstack((X.reshape(1, -1), Y.reshape(1, -1))) f1eval = np.reshape(f1.eval(XY), X.shape) f2eval = np.reshape(f2.eval(XY), X.shape) # contour plot of individual functions fig, ax = plt.subplots() ax.contour(X, Y, f1eval, 17, colors='k', linewidths=.8) ax.xaxis.set_major_locator(ticker.MultipleLocator(1)) ax.yaxis.set_major_locator(ticker.MultipleLocator(1)) ax.set_xlabel(r'$x_1$') ax.set_ylabel(r'$x_2$') # contour plot of individual functions fig, ax = plt.subplots() ax.contour(X, Y, f2eval, 17, colors='k', linewidths=.8) ax.xaxis.set_major_locator(ticker.MultipleLocator(1)) ax.yaxis.set_major_locator(ticker.MultipleLocator(1)) ax.set_xlabel(r'$x_1$') ax.set_ylabel(r'$x_2$') # contour plot of functions and solution fig, ax = plt.subplots() ax.contour(X, Y, f1eval, 17, colors='k', linewidths=.8) ax.contour(X, Y, f2eval, 17, colors='r', linewidths=.8) plt.scatter(results.x[0, :], results.x[1, :], s=8) ax.xaxis.set_major_locator(ticker.MultipleLocator(1)) ax.yaxis.set_major_locator(ticker.MultipleLocator(1)) ax.set_xlabel(r'$x_1$') ax.set_ylabel(r'$x_2$') # pareto front plot plt.figure() plt.scatter(results.fx[0, :], results.fx[1, :], s=8) plt.xlabel(r'$f_1$') plt.ylabel(r'$f_2$') plt.show() if __name__ == "__main__": # run example pareto_sampling_cs0(s=2)
science-optimization
/science_optimization-9.0.2-cp310-cp310-manylinux_2_35_x86_64.whl/science_optimization/examples/pareto_sampling_cs0.py
pareto_sampling_cs0.py
import numpy as np from science_optimization.builder import OptimizationProblem from science_optimization.function import QuadraticFunction from science_optimization.solvers.pareto_samplers import NonDominatedSampler, EpsilonSampler, LambdaSampler, MuSampler from science_optimization.problems import GenericProblem import matplotlib.pyplot as plt import matplotlib.ticker as ticker def pareto_sampling_cs0(s): """Multiobjective problem example. Args: s: nondominated_sampler. """ # parameters objective function 1 Q = np.array([[1, 0], [0, 1]]) c1 = np.array([[0], [0]]) d1 = np.array([0]) # parameters objective function 2 c2 = np.array([[-2], [-2]]) d2 = np.array([2]) # objectives f1 = QuadraticFunction(Q=Q, c=c1, d=d1) f2 = QuadraticFunction(Q=Q, c=c2, d=d2) f = [f1, f2] # constraints ineq_cons = [] eq_cons = [] # bounds x_min = np.array([-5, -5]).reshape(-1, 1) # lower x_max = np.array([5, 5]).reshape(-1, 1) # upper x_lim = np.hstack((x_min, x_max)) # build generic problem instance generic = OptimizationProblem(builder=GenericProblem(f=f, eq_cons=eq_cons, ineq_cons=ineq_cons, x_bounds=x_lim)) # builder pareto sampler if s == 0: sampler = EpsilonSampler(optimization_problem=generic) elif s == 1: sampler = NonDominatedSampler(optimization_problem=generic) elif s == 2: sampler = MuSampler(optimization_problem=generic) else: sampler = LambdaSampler(optimization_problem=generic) results = sampler.sample() # contour delta = 0.02 x = np.arange(-5, 5, delta) y = np.arange(-5, 5, delta) X, Y = np.meshgrid(x, y) XY = np.vstack((X.reshape(1, -1), Y.reshape(1, -1))) f1eval = np.reshape(f1.eval(XY), X.shape) f2eval = np.reshape(f2.eval(XY), X.shape) # contour plot of individual functions fig, ax = plt.subplots() ax.contour(X, Y, f1eval, 17, colors='k', linewidths=.8) ax.xaxis.set_major_locator(ticker.MultipleLocator(1)) ax.yaxis.set_major_locator(ticker.MultipleLocator(1)) ax.set_xlabel(r'$x_1$') ax.set_ylabel(r'$x_2$') # contour plot of individual functions fig, ax = plt.subplots() ax.contour(X, Y, f2eval, 17, colors='k', linewidths=.8) ax.xaxis.set_major_locator(ticker.MultipleLocator(1)) ax.yaxis.set_major_locator(ticker.MultipleLocator(1)) ax.set_xlabel(r'$x_1$') ax.set_ylabel(r'$x_2$') # contour plot of functions and solution fig, ax = plt.subplots() ax.contour(X, Y, f1eval, 17, colors='k', linewidths=.8) ax.contour(X, Y, f2eval, 17, colors='r', linewidths=.8) plt.scatter(results.x[0, :], results.x[1, :], s=8) ax.xaxis.set_major_locator(ticker.MultipleLocator(1)) ax.yaxis.set_major_locator(ticker.MultipleLocator(1)) ax.set_xlabel(r'$x_1$') ax.set_ylabel(r'$x_2$') # pareto front plot plt.figure() plt.scatter(results.fx[0, :], results.fx[1, :], s=8) plt.xlabel(r'$f_1$') plt.ylabel(r'$f_2$') plt.show() if __name__ == "__main__": # run example pareto_sampling_cs0(s=2)
0.847858
0.60542
import numpy as np from science_optimization.solvers import Optimizer from science_optimization.builder import OptimizationProblem from science_optimization.function import GenericFunction from science_optimization.problems import Quadratic, GenericProblem from science_optimization.algorithms.derivative_free import NelderMead def generate_grid(x_min, x_max, n): coords = [] for i in range(n): coords.append(np.arange(x_min[i][0], x_max[i][0]+1, 5)) g = np.meshgrid(*coords) for i in range(n): coords[i] = g[i].reshape((np.prod(g[i].shape), )).reshape(-1, 1) return np.hstack(coords) def quadratic(Q, c, d): # bounds x_min = np.array([-10, -10]).reshape(-1, 1) # lower bound x_max = np.array([10, 10]).reshape(-1, 1) # upper bound x_bounds = np.hstack((x_min, x_max)) # builder quadratic problem instance quadratic = OptimizationProblem(builder=Quadratic(Q=Q, c=c, d=d, x_bounds=x_bounds)) # builder optimization x0 = np.array([[5], [6]]) delta_r = 1.0 delta_e = 2.0 delta_ic = 0.5 delta_oc = 0.5 delta_s = 0.5 optimizer = Optimizer( opt_problem=quadratic, algorithm=NelderMead(x0, delta_r, delta_e, delta_ic, delta_oc, delta_s) ) results = optimizer.optimize() # result results.info() def generic_fun(f, x0, x_lim, ineq_cons, eq_cons): delta_r = 1.0 delta_e = 2.0 delta_ic = 0.5 delta_oc = 0.5 delta_s = 0.5 generic = OptimizationProblem(builder=GenericProblem(f=f, eq_cons=eq_cons, ineq_cons=ineq_cons, x_bounds=x_lim)) optimizer = Optimizer( opt_problem=generic, algorithm=NelderMead(x0, delta_r, delta_e, delta_ic, delta_oc, delta_s) ) optimizer.algorithm.n_max = 500 results = optimizer.optimize(debug=True) results.info() return results def get_bm_1_problem(n): def obj_func(x): a = [10 for i in range(n)] b = [100 for i in range(n)] s = 0 for i in range(n): s += a[i] * np.abs(x[i][0] / b[i]) return s def c_1(x): c = 4 s = 0 for i in range(n): s += np.power(x[i][0], 3) s -= c return s def c_2(x): d = 1 / np.pi s = 0 for i in range(n): s += np.power(-1 + x[i][0], 2) s -= d return s def c_3(x): d = 3 m = 100 s = 0 for i in range(n): s += x[i][0] s = d - m * np.sqrt(s) return s x_min = np.full((n, 1), -10) # lower x_max = np.full((n, 1), 10) # upper x_lim = np.hstack((x_min, x_max)) f = [GenericFunction(func=obj_func, n=n)] ineq_cons = [ GenericFunction(func=c_1, n=n), GenericFunction(func=c_2, n=n), GenericFunction(func=c_3, n=n) ] eq_cons = [] return f, ineq_cons, eq_cons, x_min, x_max, x_lim def get_bm_2_problem(n): def obj_func(x): s = 1 for i in range(n): s *= x[i][0] s *= -1 * np.power(np.sqrt(n), n) return s def c_1(x): s = 0 for i in range(n): s += x[i][0] return s - 1 return obj_func, c_1 def get_bm_3_problem(): def obj_func(x): s = np.sum(x[0:4, ]) s -= np.sum(np.power(x[0:4, ], 2)) s -= np.sum(x[4:13, ]) return s def c_1(x): return 2*x[0][0] + 2*x[1][0] + x[9][0] + x[10][0] - 10 def c_2(x): return 2*x[0][0] + 2*x[2][0] + x[9][0] + x[11][0] - 10 def c_3(x): return 2*x[0][0] + 2*x[2][0] + x[10][0] + x[11][0] - 10 def c_4(x): return -8 * x[0][0] + x[9][0] def c_5(x): return -8 * x[1][0] + x[10][0] def c_6(x): return -8 * x[2][0] + x[11][0] def c_7(x): return -2 * x[3][0] - x[4][0] + x[9][0] def c_8(x): return -2 * x[5][0] - x[6][0] + x[10][0] def c_9(x): return -2 * x[7][0] - x[8][0] + x[11][0] x_min = np.zeros((13, 1)) x_max = np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 100, 100, 100, 1]).reshape(-1, 1) x_bounds = np.hstack((x_min, x_max)) x0 = np.array([.5, .5, .5, .5, .5, .5, .5, .5, .5, 3, 3, 3, .5]).reshape(-1, 1) f = [GenericFunction(obj_func, 13)] ineq_cons = [ GenericFunction(func=c_1, n=13), GenericFunction(func=c_2, n=13), GenericFunction(func=c_3, n=13), GenericFunction(func=c_4, n=13), GenericFunction(func=c_5, n=13), GenericFunction(func=c_6, n=13), GenericFunction(func=c_7, n=13), GenericFunction(func=c_8, n=13), GenericFunction(func=c_9, n=13) ] eq_cons = [] return x0, x_bounds, f, ineq_cons, eq_cons def get_bm_4_problem(): def obj_func(x): a = np.sum(np.power(np.cos(x), 4)) b = np.prod(np.power(np.cos(x), 2)) c = np.sqrt(np.sum(np.arange(1, 21).reshape(-1, 1) * np.power(x, 2))) s = np.abs((a - 2*b)/c) return s def c_1(x): return 0.75 - np.prod(x) def c_2(x): return np.sum(x) - 7.5 * x.shape[0] x_min = np.zeros((20, 1)) x_max = np.full((20, 1), 10) x_bounds = np.hstack((x_min, x_max)) x0 = np.full((20, 1), 5) f = [GenericFunction(func=obj_func, n=20)] ineq_cons = [ GenericFunction(func=c_1, n=20), GenericFunction(func=c_2, n=20) ] eq_cons = [] return x0, x_bounds, f, ineq_cons, eq_cons def get_bm_5_problem(): def obj_func(x): return np.abs(np.power(x[0][0], 2) + np.power(x[1][0], 2)) + np.abs(np.sin(x[0][0])) + np.abs(np.cos(x[1][0])) def c_1(x): c = 4 s = 0 for i in range(2): s += np.power(x[i][0], 3) s -= c return s def c_2(x): d = 1 / np.pi s = 0 for i in range(2): s += np.power(-1 + x[i][0], 2) s -= d return s def c_3(x): d = 3 m = 100 s = 0 for i in range(2): s += x[i][0] s = d - m * np.sqrt(s) return s # bounds x_min = np.array([-10, -10]).reshape(-1, 1) # lower x_max = np.array([10, 10]).reshape(-1, 1) # upper x_lim = np.hstack((x_min, x_max)) f = [GenericFunction(func=obj_func, n=2)] ineq_cons = [ GenericFunction(func=c_1, n=2), GenericFunction(func=c_2, n=2), GenericFunction(func=c_3, n=2) ] eq_cons = [] x0 = np.array([[5.0], [1.0]]) return x0, x_lim, f, ineq_cons, eq_cons def neldermead_example(problem=1): """ Args: problem: Returns: """ np.set_printoptions(precision=9, suppress=True) if problem == 1: # Problem: (x[0]-1)^2 + 4.0*x[1]^2 Q = np.array([[1, 0], [0, 4]]) c = np.array([-2, 0]).reshape(-1, 1) d = 1 quadratic(Q, c, d) elif problem == 2: # Problem: x[0]^2 + 3.0*x[1]^2 Q = np.array([[1, 0], [0, 3]]) c = np.array([0, 0]).reshape(-1, 1) d = 0 quadratic(Q, c, d) elif problem == 3: def f_obj(x): return np.max(np.abs(x * (.5 + 1e-2) - .5 * np.sin(x) * np.cos(x)), axis=0) # bounds x_min = np.array([-5, -5]).reshape(-1, 1) # lower x_max = np.array([10, 10]).reshape(-1, 1) # upper x_lim = np.hstack((x_min, x_max)) f = [GenericFunction(func=f_obj, n=2)] ineq_cons = [] eq_cons = [] x0 = np.array([[2], [2]]) generic_fun(f, x0, x_lim, ineq_cons, eq_cons) elif problem == 4: def f_obj(x): return x[0][0]*x[0][0] + x[1][0]*x[1][0] - x[0][0]*x[1][0] # bounds x_min = np.array([-5, -5]).reshape(-1, 1) # lower x_max = np.array([10, 10]).reshape(-1, 1) # upper x_lim = np.hstack((x_min, x_max)) f = [GenericFunction(func=f_obj, n=2)] ineq_cons = [] eq_cons = [] x0 = np.array([[2], [2]]) generic_fun(f, x0, x_lim, ineq_cons, eq_cons) elif problem == 5: def f_obj(x): return 200 * x[0][0]*x[0][0] + x[1][0]*x[1][0] # bounds x_min = np.array([-10, -10]).reshape(-1, 1) # lower x_max = np.array([10, 10]).reshape(-1, 1) # upper x_lim = np.hstack((x_min, x_max)) f = [GenericFunction(func=f_obj, n=2)] ineq_cons = [] eq_cons = [] x0 = np.array([[10], [10]]) generic_fun(f, x0, x_lim, ineq_cons, eq_cons) elif problem == 6: def f_obj(x): return 100 * np.square((x[1][0] - np.square(x[0][0]))) + np.square(1 - x[0][0]) # bounds x_min = np.array([-5, -5]).reshape(-1, 1) # lower x_max = np.array([10, 10]).reshape(-1, 1) # upper x_lim = np.hstack((x_min, x_max)) f = [GenericFunction(func=f_obj, n=2)] ineq_cons = [] eq_cons = [] x0 = np.array([[-2], [1]]) generic_fun(f, x0, x_lim, ineq_cons, eq_cons) elif problem == 7: def f_obj(x): return np.square(x[0][0] + 10 * x[1][0]) + 5 * np.square(x[2][0] - x[3][0]) + \ np.power((x[1][0] - 2 * x[2][0]), 4) + 10 * np.power(x[0][0] - x[3][0], 4) # bounds x_min = np.array([-5, -5, -5, -5]).reshape(-1, 1) # lower x_max = np.array([10, 10, 10, 10]).reshape(-1, 1) # upper x_lim = np.hstack((x_min, x_max)) f = [GenericFunction(func=f_obj, n=4)] ineq_cons = [] eq_cons = [] x0 = np.array([[3], [-1], [0], [1]]) generic_fun(f, x0, x_lim, ineq_cons, eq_cons) elif problem == 8: n = 5 f, ineq_cons, eq_cons, x_min, x_max, x_lim = get_bm_1_problem(n) x0 = np.full((n, 1), 1.0) generic_fun(f, x0, x_lim, ineq_cons, eq_cons) elif problem == 9: x0, x_lim, obj_func, ineq_cons, eq_cons = get_bm_3_problem() generic_fun(obj_func, x0, x_lim, ineq_cons, eq_cons) elif problem == 10: x0, x_lim, obj_func, ineq_cons, eq_cons = get_bm_4_problem() generic_fun(obj_func, x0, x_lim, ineq_cons, eq_cons) elif problem == 11: x0, x_bounds, f, ineq_cons, eq_cons = get_bm_5_problem() generic_fun(f, x0, x_bounds, ineq_cons, eq_cons) else: raise Warning("Undefined problem example.") if __name__ == '__main__': neldermead_example(problem=1)
science-optimization
/science_optimization-9.0.2-cp310-cp310-manylinux_2_35_x86_64.whl/science_optimization/examples/neldermead_example.py
neldermead_example.py
import numpy as np from science_optimization.solvers import Optimizer from science_optimization.builder import OptimizationProblem from science_optimization.function import GenericFunction from science_optimization.problems import Quadratic, GenericProblem from science_optimization.algorithms.derivative_free import NelderMead def generate_grid(x_min, x_max, n): coords = [] for i in range(n): coords.append(np.arange(x_min[i][0], x_max[i][0]+1, 5)) g = np.meshgrid(*coords) for i in range(n): coords[i] = g[i].reshape((np.prod(g[i].shape), )).reshape(-1, 1) return np.hstack(coords) def quadratic(Q, c, d): # bounds x_min = np.array([-10, -10]).reshape(-1, 1) # lower bound x_max = np.array([10, 10]).reshape(-1, 1) # upper bound x_bounds = np.hstack((x_min, x_max)) # builder quadratic problem instance quadratic = OptimizationProblem(builder=Quadratic(Q=Q, c=c, d=d, x_bounds=x_bounds)) # builder optimization x0 = np.array([[5], [6]]) delta_r = 1.0 delta_e = 2.0 delta_ic = 0.5 delta_oc = 0.5 delta_s = 0.5 optimizer = Optimizer( opt_problem=quadratic, algorithm=NelderMead(x0, delta_r, delta_e, delta_ic, delta_oc, delta_s) ) results = optimizer.optimize() # result results.info() def generic_fun(f, x0, x_lim, ineq_cons, eq_cons): delta_r = 1.0 delta_e = 2.0 delta_ic = 0.5 delta_oc = 0.5 delta_s = 0.5 generic = OptimizationProblem(builder=GenericProblem(f=f, eq_cons=eq_cons, ineq_cons=ineq_cons, x_bounds=x_lim)) optimizer = Optimizer( opt_problem=generic, algorithm=NelderMead(x0, delta_r, delta_e, delta_ic, delta_oc, delta_s) ) optimizer.algorithm.n_max = 500 results = optimizer.optimize(debug=True) results.info() return results def get_bm_1_problem(n): def obj_func(x): a = [10 for i in range(n)] b = [100 for i in range(n)] s = 0 for i in range(n): s += a[i] * np.abs(x[i][0] / b[i]) return s def c_1(x): c = 4 s = 0 for i in range(n): s += np.power(x[i][0], 3) s -= c return s def c_2(x): d = 1 / np.pi s = 0 for i in range(n): s += np.power(-1 + x[i][0], 2) s -= d return s def c_3(x): d = 3 m = 100 s = 0 for i in range(n): s += x[i][0] s = d - m * np.sqrt(s) return s x_min = np.full((n, 1), -10) # lower x_max = np.full((n, 1), 10) # upper x_lim = np.hstack((x_min, x_max)) f = [GenericFunction(func=obj_func, n=n)] ineq_cons = [ GenericFunction(func=c_1, n=n), GenericFunction(func=c_2, n=n), GenericFunction(func=c_3, n=n) ] eq_cons = [] return f, ineq_cons, eq_cons, x_min, x_max, x_lim def get_bm_2_problem(n): def obj_func(x): s = 1 for i in range(n): s *= x[i][0] s *= -1 * np.power(np.sqrt(n), n) return s def c_1(x): s = 0 for i in range(n): s += x[i][0] return s - 1 return obj_func, c_1 def get_bm_3_problem(): def obj_func(x): s = np.sum(x[0:4, ]) s -= np.sum(np.power(x[0:4, ], 2)) s -= np.sum(x[4:13, ]) return s def c_1(x): return 2*x[0][0] + 2*x[1][0] + x[9][0] + x[10][0] - 10 def c_2(x): return 2*x[0][0] + 2*x[2][0] + x[9][0] + x[11][0] - 10 def c_3(x): return 2*x[0][0] + 2*x[2][0] + x[10][0] + x[11][0] - 10 def c_4(x): return -8 * x[0][0] + x[9][0] def c_5(x): return -8 * x[1][0] + x[10][0] def c_6(x): return -8 * x[2][0] + x[11][0] def c_7(x): return -2 * x[3][0] - x[4][0] + x[9][0] def c_8(x): return -2 * x[5][0] - x[6][0] + x[10][0] def c_9(x): return -2 * x[7][0] - x[8][0] + x[11][0] x_min = np.zeros((13, 1)) x_max = np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 100, 100, 100, 1]).reshape(-1, 1) x_bounds = np.hstack((x_min, x_max)) x0 = np.array([.5, .5, .5, .5, .5, .5, .5, .5, .5, 3, 3, 3, .5]).reshape(-1, 1) f = [GenericFunction(obj_func, 13)] ineq_cons = [ GenericFunction(func=c_1, n=13), GenericFunction(func=c_2, n=13), GenericFunction(func=c_3, n=13), GenericFunction(func=c_4, n=13), GenericFunction(func=c_5, n=13), GenericFunction(func=c_6, n=13), GenericFunction(func=c_7, n=13), GenericFunction(func=c_8, n=13), GenericFunction(func=c_9, n=13) ] eq_cons = [] return x0, x_bounds, f, ineq_cons, eq_cons def get_bm_4_problem(): def obj_func(x): a = np.sum(np.power(np.cos(x), 4)) b = np.prod(np.power(np.cos(x), 2)) c = np.sqrt(np.sum(np.arange(1, 21).reshape(-1, 1) * np.power(x, 2))) s = np.abs((a - 2*b)/c) return s def c_1(x): return 0.75 - np.prod(x) def c_2(x): return np.sum(x) - 7.5 * x.shape[0] x_min = np.zeros((20, 1)) x_max = np.full((20, 1), 10) x_bounds = np.hstack((x_min, x_max)) x0 = np.full((20, 1), 5) f = [GenericFunction(func=obj_func, n=20)] ineq_cons = [ GenericFunction(func=c_1, n=20), GenericFunction(func=c_2, n=20) ] eq_cons = [] return x0, x_bounds, f, ineq_cons, eq_cons def get_bm_5_problem(): def obj_func(x): return np.abs(np.power(x[0][0], 2) + np.power(x[1][0], 2)) + np.abs(np.sin(x[0][0])) + np.abs(np.cos(x[1][0])) def c_1(x): c = 4 s = 0 for i in range(2): s += np.power(x[i][0], 3) s -= c return s def c_2(x): d = 1 / np.pi s = 0 for i in range(2): s += np.power(-1 + x[i][0], 2) s -= d return s def c_3(x): d = 3 m = 100 s = 0 for i in range(2): s += x[i][0] s = d - m * np.sqrt(s) return s # bounds x_min = np.array([-10, -10]).reshape(-1, 1) # lower x_max = np.array([10, 10]).reshape(-1, 1) # upper x_lim = np.hstack((x_min, x_max)) f = [GenericFunction(func=obj_func, n=2)] ineq_cons = [ GenericFunction(func=c_1, n=2), GenericFunction(func=c_2, n=2), GenericFunction(func=c_3, n=2) ] eq_cons = [] x0 = np.array([[5.0], [1.0]]) return x0, x_lim, f, ineq_cons, eq_cons def neldermead_example(problem=1): """ Args: problem: Returns: """ np.set_printoptions(precision=9, suppress=True) if problem == 1: # Problem: (x[0]-1)^2 + 4.0*x[1]^2 Q = np.array([[1, 0], [0, 4]]) c = np.array([-2, 0]).reshape(-1, 1) d = 1 quadratic(Q, c, d) elif problem == 2: # Problem: x[0]^2 + 3.0*x[1]^2 Q = np.array([[1, 0], [0, 3]]) c = np.array([0, 0]).reshape(-1, 1) d = 0 quadratic(Q, c, d) elif problem == 3: def f_obj(x): return np.max(np.abs(x * (.5 + 1e-2) - .5 * np.sin(x) * np.cos(x)), axis=0) # bounds x_min = np.array([-5, -5]).reshape(-1, 1) # lower x_max = np.array([10, 10]).reshape(-1, 1) # upper x_lim = np.hstack((x_min, x_max)) f = [GenericFunction(func=f_obj, n=2)] ineq_cons = [] eq_cons = [] x0 = np.array([[2], [2]]) generic_fun(f, x0, x_lim, ineq_cons, eq_cons) elif problem == 4: def f_obj(x): return x[0][0]*x[0][0] + x[1][0]*x[1][0] - x[0][0]*x[1][0] # bounds x_min = np.array([-5, -5]).reshape(-1, 1) # lower x_max = np.array([10, 10]).reshape(-1, 1) # upper x_lim = np.hstack((x_min, x_max)) f = [GenericFunction(func=f_obj, n=2)] ineq_cons = [] eq_cons = [] x0 = np.array([[2], [2]]) generic_fun(f, x0, x_lim, ineq_cons, eq_cons) elif problem == 5: def f_obj(x): return 200 * x[0][0]*x[0][0] + x[1][0]*x[1][0] # bounds x_min = np.array([-10, -10]).reshape(-1, 1) # lower x_max = np.array([10, 10]).reshape(-1, 1) # upper x_lim = np.hstack((x_min, x_max)) f = [GenericFunction(func=f_obj, n=2)] ineq_cons = [] eq_cons = [] x0 = np.array([[10], [10]]) generic_fun(f, x0, x_lim, ineq_cons, eq_cons) elif problem == 6: def f_obj(x): return 100 * np.square((x[1][0] - np.square(x[0][0]))) + np.square(1 - x[0][0]) # bounds x_min = np.array([-5, -5]).reshape(-1, 1) # lower x_max = np.array([10, 10]).reshape(-1, 1) # upper x_lim = np.hstack((x_min, x_max)) f = [GenericFunction(func=f_obj, n=2)] ineq_cons = [] eq_cons = [] x0 = np.array([[-2], [1]]) generic_fun(f, x0, x_lim, ineq_cons, eq_cons) elif problem == 7: def f_obj(x): return np.square(x[0][0] + 10 * x[1][0]) + 5 * np.square(x[2][0] - x[3][0]) + \ np.power((x[1][0] - 2 * x[2][0]), 4) + 10 * np.power(x[0][0] - x[3][0], 4) # bounds x_min = np.array([-5, -5, -5, -5]).reshape(-1, 1) # lower x_max = np.array([10, 10, 10, 10]).reshape(-1, 1) # upper x_lim = np.hstack((x_min, x_max)) f = [GenericFunction(func=f_obj, n=4)] ineq_cons = [] eq_cons = [] x0 = np.array([[3], [-1], [0], [1]]) generic_fun(f, x0, x_lim, ineq_cons, eq_cons) elif problem == 8: n = 5 f, ineq_cons, eq_cons, x_min, x_max, x_lim = get_bm_1_problem(n) x0 = np.full((n, 1), 1.0) generic_fun(f, x0, x_lim, ineq_cons, eq_cons) elif problem == 9: x0, x_lim, obj_func, ineq_cons, eq_cons = get_bm_3_problem() generic_fun(obj_func, x0, x_lim, ineq_cons, eq_cons) elif problem == 10: x0, x_lim, obj_func, ineq_cons, eq_cons = get_bm_4_problem() generic_fun(obj_func, x0, x_lim, ineq_cons, eq_cons) elif problem == 11: x0, x_bounds, f, ineq_cons, eq_cons = get_bm_5_problem() generic_fun(f, x0, x_bounds, ineq_cons, eq_cons) else: raise Warning("Undefined problem example.") if __name__ == '__main__': neldermead_example(problem=1)
0.687945
0.544922
import numpy as np from science_optimization.solvers import Optimizer from science_optimization.builder import OptimizationProblem from science_optimization.function import GenericFunction from science_optimization.problems import Quadratic, GenericProblem from science_optimization.algorithms.derivative_free import NelderMead def generic_fun(f, x0, x_lim, ineq_cons, eq_cons): delta_r = 1.0 delta_e = 2.0 delta_ic = 0.5 delta_oc = 0.5 delta_s = 0.5 generic = OptimizationProblem(builder=GenericProblem(f=f, eq_cons=eq_cons, ineq_cons=ineq_cons, x_bounds=x_lim)) optimizer = Optimizer( opt_problem=generic, algorithm=NelderMead(x0, delta_r, delta_e, delta_ic, delta_oc, delta_s) ) optimizer.algorithm.n_max = 2000 results = optimizer.optimize(debug=False) # results.info() return results def generate_points(x_min, x_max, dim, n=30): points = [] for i in range(n): p = x_min + np.random.random_sample((dim, 1)) * (x_max - x_min) points.append(p) return points def get_bm_1_problem(n): def obj_func(x): a = [10 for i in range(n)] b = [100 for i in range(n)] s = 0 for i in range(n): s += a[i] * np.abs(x[i][0] / b[i]) return s def c_1(x): c = 4 s = 0 for i in range(n): s += np.power(x[i][0], 3) s -= c return s def c_2(x): d = 1 / np.pi s = 0 for i in range(n): s += np.power(-1 + x[i][0], 2) s -= d return s def c_3(x): d = 3 m = 100 s = 0 for i in range(n): s += x[i][0] s = d - m * np.sqrt(s) return s x_min = np.full((n, 1), -10) # lower x_max = np.full((n, 1), 10) # upper x_lim = np.hstack((x_min, x_max)) f = [GenericFunction(func=obj_func, n=n)] ineq_cons = [ GenericFunction(func=c_1, n=n), GenericFunction(func=c_2, n=n), GenericFunction(func=c_3, n=n) ] eq_cons = [] return f, ineq_cons, eq_cons, x_min, x_max, x_lim def write_x0_result(dim, x0, fx, n_evals, stop_crit): with open(str(dim) + "_dim_x0_results.txt", "a+") as fp: fp.write(str(x0.T[0].tolist()) + "\t" + str(fx) + "\t" + str(n_evals) + stop_crit) fp.write("\n") def write_dim_result(dim, fx_min, fx_median, fx_std, fx_max, n_evals_mean): with open("results.txt", "a+") as fp: fp.write( str(dim) + "\t" + str(fx_min) + "\t" + str(fx_median) + "\t" + str(fx_std) + "\t" + str(fx_max) + "\t" + str(n_evals_mean) ) fp.write("\n") def run_tests(): for dim in range(11, 16): fx = [] n_evals = [] f, ineq_cons, eq_cons, x_min, x_max, x_lim = get_bm_1_problem(dim) initial_points = generate_points(x_min, x_max, dim, n=30) for p in range(len(initial_points)): x0 = initial_points[p].reshape(-1, 1) results = generic_fun(f, x0, x_lim, ineq_cons, eq_cons) n_evals.append(results.n_function_evaluations) fx.append(results.fx) with open(str(dim) + "_dim_x0_results.txt", "a+") as fp: fp.write(str(x0.T[0].tolist()) + "\t" + str(results.fx) + "\t" + str(results.n_function_evaluations)) fp.write("\n") # print(x0.T[0].tolist(), results.fx, results.n_function_evaluations) fx = np.array(fx) n_evals = np.array(n_evals) n_data = [np.min(fx), np.median(fx), np.std(fx), np.max(fx), np.mean(n_evals)] with open("results.txt", "a+") as fp: fp.write( str(dim) + "\t" + str(np.min(fx)) + "\t" + str(np.median(fx)) + "\t" + str(np.std(fx)) + "\t" + str(np.max(fx)) + "\t" + str(np.mean(n_evals)) ) fp.write("\n") print(n_data) if __name__ == "__main__": run_tests()
science-optimization
/science_optimization-9.0.2-cp310-cp310-manylinux_2_35_x86_64.whl/science_optimization/examples/neldermead_article_example.py
neldermead_article_example.py
import numpy as np from science_optimization.solvers import Optimizer from science_optimization.builder import OptimizationProblem from science_optimization.function import GenericFunction from science_optimization.problems import Quadratic, GenericProblem from science_optimization.algorithms.derivative_free import NelderMead def generic_fun(f, x0, x_lim, ineq_cons, eq_cons): delta_r = 1.0 delta_e = 2.0 delta_ic = 0.5 delta_oc = 0.5 delta_s = 0.5 generic = OptimizationProblem(builder=GenericProblem(f=f, eq_cons=eq_cons, ineq_cons=ineq_cons, x_bounds=x_lim)) optimizer = Optimizer( opt_problem=generic, algorithm=NelderMead(x0, delta_r, delta_e, delta_ic, delta_oc, delta_s) ) optimizer.algorithm.n_max = 2000 results = optimizer.optimize(debug=False) # results.info() return results def generate_points(x_min, x_max, dim, n=30): points = [] for i in range(n): p = x_min + np.random.random_sample((dim, 1)) * (x_max - x_min) points.append(p) return points def get_bm_1_problem(n): def obj_func(x): a = [10 for i in range(n)] b = [100 for i in range(n)] s = 0 for i in range(n): s += a[i] * np.abs(x[i][0] / b[i]) return s def c_1(x): c = 4 s = 0 for i in range(n): s += np.power(x[i][0], 3) s -= c return s def c_2(x): d = 1 / np.pi s = 0 for i in range(n): s += np.power(-1 + x[i][0], 2) s -= d return s def c_3(x): d = 3 m = 100 s = 0 for i in range(n): s += x[i][0] s = d - m * np.sqrt(s) return s x_min = np.full((n, 1), -10) # lower x_max = np.full((n, 1), 10) # upper x_lim = np.hstack((x_min, x_max)) f = [GenericFunction(func=obj_func, n=n)] ineq_cons = [ GenericFunction(func=c_1, n=n), GenericFunction(func=c_2, n=n), GenericFunction(func=c_3, n=n) ] eq_cons = [] return f, ineq_cons, eq_cons, x_min, x_max, x_lim def write_x0_result(dim, x0, fx, n_evals, stop_crit): with open(str(dim) + "_dim_x0_results.txt", "a+") as fp: fp.write(str(x0.T[0].tolist()) + "\t" + str(fx) + "\t" + str(n_evals) + stop_crit) fp.write("\n") def write_dim_result(dim, fx_min, fx_median, fx_std, fx_max, n_evals_mean): with open("results.txt", "a+") as fp: fp.write( str(dim) + "\t" + str(fx_min) + "\t" + str(fx_median) + "\t" + str(fx_std) + "\t" + str(fx_max) + "\t" + str(n_evals_mean) ) fp.write("\n") def run_tests(): for dim in range(11, 16): fx = [] n_evals = [] f, ineq_cons, eq_cons, x_min, x_max, x_lim = get_bm_1_problem(dim) initial_points = generate_points(x_min, x_max, dim, n=30) for p in range(len(initial_points)): x0 = initial_points[p].reshape(-1, 1) results = generic_fun(f, x0, x_lim, ineq_cons, eq_cons) n_evals.append(results.n_function_evaluations) fx.append(results.fx) with open(str(dim) + "_dim_x0_results.txt", "a+") as fp: fp.write(str(x0.T[0].tolist()) + "\t" + str(results.fx) + "\t" + str(results.n_function_evaluations)) fp.write("\n") # print(x0.T[0].tolist(), results.fx, results.n_function_evaluations) fx = np.array(fx) n_evals = np.array(n_evals) n_data = [np.min(fx), np.median(fx), np.std(fx), np.max(fx), np.mean(n_evals)] with open("results.txt", "a+") as fp: fp.write( str(dim) + "\t" + str(np.min(fx)) + "\t" + str(np.median(fx)) + "\t" + str(np.std(fx)) + "\t" + str(np.max(fx)) + "\t" + str(np.mean(n_evals)) ) fp.write("\n") print(n_data) if __name__ == "__main__": run_tests()
0.486819
0.462473
import numpy as np from science_optimization.builder import OptimizationProblem from science_optimization.function import QuadraticFunction from science_optimization.function import GenericFunction from science_optimization.solvers.pareto_samplers import NonDominatedSampler, EpsilonSampler, LambdaSampler, MuSampler from science_optimization.problems import GenericProblem import matplotlib.pyplot as plt import matplotlib.ticker as ticker def pareto_sampling_cs1(s): """Multiobjective problem example. Args: s: nondominated_sampler. """ # objective function 1 def f_obj1(x): return np.max(np.abs(x * (.5 + 1e-2) - .5 * np.sin(x) * np.cos(x)), axis=0) # parameters objective function 2 Q = np.array([[10, 9], [9, 10]]) c = np.array([[-90], [-100]]) d = np.array([250]) # objectives f1 = GenericFunction(func=f_obj1, n=2) f2 = QuadraticFunction(Q=Q, c=c, d=d) f = [f1, f2] # constraints ineq_cons = [] eq_cons = [] # bounds x_min = np.array([-5, -5]).reshape(-1, 1) # lower x_max = np.array([10, 10]).reshape(-1, 1) # upper x_lim = np.hstack((x_min, x_max)) # build generic problem instance generic = OptimizationProblem(builder=GenericProblem(f=f, eq_cons=eq_cons, ineq_cons=ineq_cons, x_bounds=x_lim)) # builder sampler if s == 0: sampler = EpsilonSampler(optimization_problem=generic, n_samples=13) elif s == 1: sampler = NonDominatedSampler(optimization_problem=generic, n_samples=13) elif s == 2: sampler = MuSampler(optimization_problem=generic, n_samples=13) else: sampler = LambdaSampler(optimization_problem=generic, n_samples=13) results = sampler.sample() # contour delta = 0.02 x = np.arange(-5, 10, delta) y = np.arange(-5, 10, delta) X, Y = np.meshgrid(x, y) XY = np.vstack((X.reshape(1, -1), Y.reshape(1, -1))) f1eval = np.reshape(f_obj1(XY), X.shape) f2eval = np.reshape(f2.eval(XY), X.shape) # contour plot of individual functions fig, ax = plt.subplots() ax.contour(X, Y, f1eval, 17, colors='k', linewidths=.8) ax.xaxis.set_major_locator(ticker.MultipleLocator(5)) ax.yaxis.set_major_locator(ticker.MultipleLocator(5)) ax.set_xlabel(r'$x_1$') ax.set_ylabel(r'$x_2$') # contour plot of individual functions fig, ax = plt.subplots() ax.contour(X, Y, f2eval, 17, colors='k', linewidths=.8) ax.xaxis.set_major_locator(ticker.MultipleLocator(5)) ax.yaxis.set_major_locator(ticker.MultipleLocator(5)) ax.set_xlabel(r'$x_1$') ax.set_ylabel(r'$x_2$') # contour plot of functions and solution fig, ax = plt.subplots() ax.contour(X, Y, f1eval, 17, colors='k', linewidths=.8) ax.contour(X, Y, f2eval, 17, colors='r', linewidths=.8) plt.scatter(results.x[0, :], results.x[1, :], s=8) ax.xaxis.set_major_locator(ticker.MultipleLocator(5)) ax.yaxis.set_major_locator(ticker.MultipleLocator(5)) ax.set_xlabel(r'$x_1$') ax.set_ylabel(r'$x_2$') # pareto front plot plt.figure() plt.scatter(results.fx[0, :], results.fx[1, :], s=8) plt.xlabel(r'$f_1$') plt.ylabel(r'$f_2$') plt.show() if __name__ == "__main__": # run example s = 1 pareto_sampling_cs1(s)
science-optimization
/science_optimization-9.0.2-cp310-cp310-manylinux_2_35_x86_64.whl/science_optimization/examples/pareto_sampling_cs1.py
pareto_sampling_cs1.py
import numpy as np from science_optimization.builder import OptimizationProblem from science_optimization.function import QuadraticFunction from science_optimization.function import GenericFunction from science_optimization.solvers.pareto_samplers import NonDominatedSampler, EpsilonSampler, LambdaSampler, MuSampler from science_optimization.problems import GenericProblem import matplotlib.pyplot as plt import matplotlib.ticker as ticker def pareto_sampling_cs1(s): """Multiobjective problem example. Args: s: nondominated_sampler. """ # objective function 1 def f_obj1(x): return np.max(np.abs(x * (.5 + 1e-2) - .5 * np.sin(x) * np.cos(x)), axis=0) # parameters objective function 2 Q = np.array([[10, 9], [9, 10]]) c = np.array([[-90], [-100]]) d = np.array([250]) # objectives f1 = GenericFunction(func=f_obj1, n=2) f2 = QuadraticFunction(Q=Q, c=c, d=d) f = [f1, f2] # constraints ineq_cons = [] eq_cons = [] # bounds x_min = np.array([-5, -5]).reshape(-1, 1) # lower x_max = np.array([10, 10]).reshape(-1, 1) # upper x_lim = np.hstack((x_min, x_max)) # build generic problem instance generic = OptimizationProblem(builder=GenericProblem(f=f, eq_cons=eq_cons, ineq_cons=ineq_cons, x_bounds=x_lim)) # builder sampler if s == 0: sampler = EpsilonSampler(optimization_problem=generic, n_samples=13) elif s == 1: sampler = NonDominatedSampler(optimization_problem=generic, n_samples=13) elif s == 2: sampler = MuSampler(optimization_problem=generic, n_samples=13) else: sampler = LambdaSampler(optimization_problem=generic, n_samples=13) results = sampler.sample() # contour delta = 0.02 x = np.arange(-5, 10, delta) y = np.arange(-5, 10, delta) X, Y = np.meshgrid(x, y) XY = np.vstack((X.reshape(1, -1), Y.reshape(1, -1))) f1eval = np.reshape(f_obj1(XY), X.shape) f2eval = np.reshape(f2.eval(XY), X.shape) # contour plot of individual functions fig, ax = plt.subplots() ax.contour(X, Y, f1eval, 17, colors='k', linewidths=.8) ax.xaxis.set_major_locator(ticker.MultipleLocator(5)) ax.yaxis.set_major_locator(ticker.MultipleLocator(5)) ax.set_xlabel(r'$x_1$') ax.set_ylabel(r'$x_2$') # contour plot of individual functions fig, ax = plt.subplots() ax.contour(X, Y, f2eval, 17, colors='k', linewidths=.8) ax.xaxis.set_major_locator(ticker.MultipleLocator(5)) ax.yaxis.set_major_locator(ticker.MultipleLocator(5)) ax.set_xlabel(r'$x_1$') ax.set_ylabel(r'$x_2$') # contour plot of functions and solution fig, ax = plt.subplots() ax.contour(X, Y, f1eval, 17, colors='k', linewidths=.8) ax.contour(X, Y, f2eval, 17, colors='r', linewidths=.8) plt.scatter(results.x[0, :], results.x[1, :], s=8) ax.xaxis.set_major_locator(ticker.MultipleLocator(5)) ax.yaxis.set_major_locator(ticker.MultipleLocator(5)) ax.set_xlabel(r'$x_1$') ax.set_ylabel(r'$x_2$') # pareto front plot plt.figure() plt.scatter(results.fx[0, :], results.fx[1, :], s=8) plt.xlabel(r'$f_1$') plt.ylabel(r'$f_2$') plt.show() if __name__ == "__main__": # run example s = 1 pareto_sampling_cs1(s)
0.832169
0.574335
import numpy as np from science_optimization.builder import OptimizationProblem from science_optimization.function import QuadraticFunction from science_optimization.solvers import Optimizer from science_optimization.problems import GenericProblem from science_optimization.algorithms.cutting_plane import EllipsoidMethod def multiobjective_example(): """Multiobjective problem example. """ # objective functions xf = np.array([1, 1, 1]).reshape(-1, 1) Af = 2 * np.identity(3) bf = -np.matmul(Af, xf) cf = .5 * np.matmul(np.transpose(xf), np.matmul(Af, xf)) xf2 = np.array([-1, -1, -1]).reshape(-1, 1) Af2 = np.diag([1, 2, 4]) bf2 = -np.matmul(Af2, xf2) cf2 = .5 * np.matmul(np.transpose(xf2), np.matmul(Af2, xf2)) f = [QuadraticFunction(Q=.5*Af, c=bf, d=cf), QuadraticFunction(Q=.5*Af2, c=bf2, d=cf2)] # inequality constraints Ag = 2 * np.identity(3) bg = np.zeros((3, 1)) cg = -1 xg2 = np.array([1, 1, 1]).reshape(-1, 1) Ag2 = 2 * np.identity(3) bg2 = -np.matmul(Ag2, xg2) cg2 = .5 * np.matmul(np.transpose(xg2), np.matmul(Ag2, xg2)) - 1 ineq_cons = [QuadraticFunction(Q=.5*Ag, c=bg, d=cg), QuadraticFunction(Q=.5*Ag2, c=bg2, d=cg2)] # equality constraints eq_cons = [] # bounds x_min = np.array([-10, -10, -10]).reshape(-1, 1) # lower x_max = np.array([10, 10, 10]).reshape(-1, 1) # upper x_lim = np.hstack((x_min, x_max)) # build generic problem instance generic = OptimizationProblem(builder=GenericProblem(f=f, eq_cons=eq_cons, ineq_cons=ineq_cons, x_bounds=x_lim)) # starting point x0 = np.array([20, 20, 20]).reshape(-1, 1) # cut option shallow_cut = 0 # builder optimization optimizer = Optimizer(opt_problem=generic, algorithm=EllipsoidMethod(x0=x0, shallow_cut=shallow_cut)) results = optimizer.optimize(debug=True, n_step=5) # result results.info() if __name__ == "__main__": # run example multiobjective_example()
science-optimization
/science_optimization-9.0.2-cp310-cp310-manylinux_2_35_x86_64.whl/science_optimization/examples/multiobjective_example.py
multiobjective_example.py
import numpy as np from science_optimization.builder import OptimizationProblem from science_optimization.function import QuadraticFunction from science_optimization.solvers import Optimizer from science_optimization.problems import GenericProblem from science_optimization.algorithms.cutting_plane import EllipsoidMethod def multiobjective_example(): """Multiobjective problem example. """ # objective functions xf = np.array([1, 1, 1]).reshape(-1, 1) Af = 2 * np.identity(3) bf = -np.matmul(Af, xf) cf = .5 * np.matmul(np.transpose(xf), np.matmul(Af, xf)) xf2 = np.array([-1, -1, -1]).reshape(-1, 1) Af2 = np.diag([1, 2, 4]) bf2 = -np.matmul(Af2, xf2) cf2 = .5 * np.matmul(np.transpose(xf2), np.matmul(Af2, xf2)) f = [QuadraticFunction(Q=.5*Af, c=bf, d=cf), QuadraticFunction(Q=.5*Af2, c=bf2, d=cf2)] # inequality constraints Ag = 2 * np.identity(3) bg = np.zeros((3, 1)) cg = -1 xg2 = np.array([1, 1, 1]).reshape(-1, 1) Ag2 = 2 * np.identity(3) bg2 = -np.matmul(Ag2, xg2) cg2 = .5 * np.matmul(np.transpose(xg2), np.matmul(Ag2, xg2)) - 1 ineq_cons = [QuadraticFunction(Q=.5*Ag, c=bg, d=cg), QuadraticFunction(Q=.5*Ag2, c=bg2, d=cg2)] # equality constraints eq_cons = [] # bounds x_min = np.array([-10, -10, -10]).reshape(-1, 1) # lower x_max = np.array([10, 10, 10]).reshape(-1, 1) # upper x_lim = np.hstack((x_min, x_max)) # build generic problem instance generic = OptimizationProblem(builder=GenericProblem(f=f, eq_cons=eq_cons, ineq_cons=ineq_cons, x_bounds=x_lim)) # starting point x0 = np.array([20, 20, 20]).reshape(-1, 1) # cut option shallow_cut = 0 # builder optimization optimizer = Optimizer(opt_problem=generic, algorithm=EllipsoidMethod(x0=x0, shallow_cut=shallow_cut)) results = optimizer.optimize(debug=True, n_step=5) # result results.info() if __name__ == "__main__": # run example multiobjective_example()
0.770206
0.634656
import numpy as np from science_optimization.algorithms import BaseAlgorithms from science_optimization.builder import OptimizationProblem from science_optimization.problems import GenericProblem from science_optimization.function import GenericFunction, FunctionsComposite from science_optimization.solvers import OptimizationResults from science_optimization.algorithms.unidimensional import GoldenSection import copy class DualDecomposition(BaseAlgorithms): """Dual decomposition method. """ # attributes _x0 = None def __init__(self, x0: np.ndarray=np.array([[]]).reshape(-1, 1), n_max: int=None, eps: float=None): """Dual decomposition method constructor. Args: x0 : (np.ndarray) initial point n_max: (int) maximum number of iterations for stop criterion eps : (float) maximum uncertainty for stop criterion """ # parameters self.x0 = 1.0 * x0 if n_max is not None: self.n_max = n_max if eps is not None: self.eps = eps # getters @property def x0(self): return self._x0 # setters @x0.setter def x0(self, x0): if x0.shape[1] == 1: self._x0 = x0 else: raise ValueError("Initial point must be a column vector.") def optimize(self, optimization_problem, debug=False, n_step=5): """Optimization core of Decomposition method. Args: optimization_problem: (OptimizationProblem) an optimization problem. debug : (bool) debug option indicator. n_step : (int) iterations steps to store optimization results. Returns: optimization_results: (OptimizationResults) optimization results. """ # optimization parameters f = optimization_problem.objective.objectives x_bounds = np.hstack((optimization_problem.variables.x_min, optimization_problem.variables.x_max)) # check whether inequality of inequality if not optimization_problem.constraints.inequality_constraints.functions: g = optimization_problem.constraints.equality_constraints constraint_type = 1 else: g = optimization_problem.constraints.inequality_constraints constraint_type = 0 # instantiate sub-problem and its solver sp_solver = GoldenSection(eps=self.eps, n_max=int(self.n_max / 2)) sp = OptimizationProblem(builder=GenericProblem(f=[GenericFunction(func=lambda: 1, n=1)], eq_cons=[], ineq_cons=[], x_bounds=np.zeros((0, 2)))) # solve master problem evaluator def f_master(n): return -self.master_eval(f=f, g=g, nu=n, x_bounds=x_bounds, op=sp, solver=sp_solver)[1] # master problem bounds (nu bounds) if constraint_type: # equality constraint x_bounds_master = np.array([[-self.eps**-1, self.eps**-1]]) else: # inequality constraint x_bounds_master = np.array([[0, self.eps**-1]]) # optimization parameters nu = 1. x = self.x0 k = 0 k_max = int(self.n_max / 10) stop = False # master problem and solver mp = OptimizationProblem(builder=GenericProblem(f=[GenericFunction(func=f_master, n=1)], eq_cons=[], ineq_cons=[], x_bounds=x_bounds_master)) # main loop mp_solver = GoldenSection(eps=self.eps, n_max=self.n_max) results = OptimizationResults() while not stop and k < k_max: # run algorithm output = mp_solver.optimize(optimization_problem=mp, debug=False) # new price (nu) nu_new = output.x nu_diff = np.abs(nu - nu_new) nu = copy.copy(nu_new) # evaluate master problem x, fx, gx = self.master_eval(f=f, g=g, nu=nu, x_bounds=x_bounds, op=sp, solver=sp_solver) # update nu: bounds of master problem h = 2 x_lb = nu-h*np.abs(nu) if constraint_type else np.maximum(0, nu-h*np.abs(nu)) x_bounds_master = np.array([[x_lb, nu+h*np.abs(nu)]]) # update problem bounds mp.variables.x_min = x_bounds_master[:, 0].reshape(-1, 1) mp.variables.x_max = x_bounds_master[:, 1].reshape(-1, 1) # stop criteria stop = (np.abs(gx) < self.eps and constraint_type) or (np.abs(nu) < self.eps) or \ (np.diff(x_bounds_master) < self.eps) or (nu_diff < self.eps and k > 0) # update counter k += 1 # output results.x = x results.fx = f.eval(x) results.parameter = {'nu': nu} results.n_iterations = k return results @staticmethod def master_eval(f: FunctionsComposite, g: FunctionsComposite, nu: float, x_bounds: np.ndarray, op: OptimizationProblem, solver: GoldenSection): """ Evaluates master problem. Args: f : (FunctionsComposite) objective functions. g : (FunctionsComposite) constraints. nu : (float) allocation factor. x_bounds: (np.ndarray) bounds. op : (OptimizationProblem) optimization problem. solver : (GoldenSection) algorithm solver Returns: x : (np.ndarray) sub-problems' solution. fx_master: (np.ndarray) objective evaluation at x. gx : (np.ndarray) constraint evaluation at x. """ # build and solve sub-problems n = x_bounds.shape[0] # number of variables x_out = np.zeros((n, 1)) # build generic problem instance for i in range(f.n_functions): # sub-problem def f_i(x): y = np.zeros((n, 1)) y[i, :] = x return f.functions[i].eval(y) + nu * g.functions[i].eval(y) # update problem objective op.objective.objectives.remove() op.objective.objectives.add(GenericFunction(func=f_i, n=1)) # update problem bounds op.variables.x_min = x_bounds[i, 0].reshape(-1, 1) op.variables.x_max = x_bounds[i, 1].reshape(-1, 1) output = solver.optimize(optimization_problem=op, debug=False) x_out[i, 0] = output.x # master eval gx = g.eval(x_out, composition='series') fx_master = f.eval(x_out, composition='series') + nu * gx return x_out, fx_master, gx
science-optimization
/science_optimization-9.0.2-cp310-cp310-manylinux_2_35_x86_64.whl/science_optimization/algorithms/decomposition/dual_decomposition.py
dual_decomposition.py
import numpy as np from science_optimization.algorithms import BaseAlgorithms from science_optimization.builder import OptimizationProblem from science_optimization.problems import GenericProblem from science_optimization.function import GenericFunction, FunctionsComposite from science_optimization.solvers import OptimizationResults from science_optimization.algorithms.unidimensional import GoldenSection import copy class DualDecomposition(BaseAlgorithms): """Dual decomposition method. """ # attributes _x0 = None def __init__(self, x0: np.ndarray=np.array([[]]).reshape(-1, 1), n_max: int=None, eps: float=None): """Dual decomposition method constructor. Args: x0 : (np.ndarray) initial point n_max: (int) maximum number of iterations for stop criterion eps : (float) maximum uncertainty for stop criterion """ # parameters self.x0 = 1.0 * x0 if n_max is not None: self.n_max = n_max if eps is not None: self.eps = eps # getters @property def x0(self): return self._x0 # setters @x0.setter def x0(self, x0): if x0.shape[1] == 1: self._x0 = x0 else: raise ValueError("Initial point must be a column vector.") def optimize(self, optimization_problem, debug=False, n_step=5): """Optimization core of Decomposition method. Args: optimization_problem: (OptimizationProblem) an optimization problem. debug : (bool) debug option indicator. n_step : (int) iterations steps to store optimization results. Returns: optimization_results: (OptimizationResults) optimization results. """ # optimization parameters f = optimization_problem.objective.objectives x_bounds = np.hstack((optimization_problem.variables.x_min, optimization_problem.variables.x_max)) # check whether inequality of inequality if not optimization_problem.constraints.inequality_constraints.functions: g = optimization_problem.constraints.equality_constraints constraint_type = 1 else: g = optimization_problem.constraints.inequality_constraints constraint_type = 0 # instantiate sub-problem and its solver sp_solver = GoldenSection(eps=self.eps, n_max=int(self.n_max / 2)) sp = OptimizationProblem(builder=GenericProblem(f=[GenericFunction(func=lambda: 1, n=1)], eq_cons=[], ineq_cons=[], x_bounds=np.zeros((0, 2)))) # solve master problem evaluator def f_master(n): return -self.master_eval(f=f, g=g, nu=n, x_bounds=x_bounds, op=sp, solver=sp_solver)[1] # master problem bounds (nu bounds) if constraint_type: # equality constraint x_bounds_master = np.array([[-self.eps**-1, self.eps**-1]]) else: # inequality constraint x_bounds_master = np.array([[0, self.eps**-1]]) # optimization parameters nu = 1. x = self.x0 k = 0 k_max = int(self.n_max / 10) stop = False # master problem and solver mp = OptimizationProblem(builder=GenericProblem(f=[GenericFunction(func=f_master, n=1)], eq_cons=[], ineq_cons=[], x_bounds=x_bounds_master)) # main loop mp_solver = GoldenSection(eps=self.eps, n_max=self.n_max) results = OptimizationResults() while not stop and k < k_max: # run algorithm output = mp_solver.optimize(optimization_problem=mp, debug=False) # new price (nu) nu_new = output.x nu_diff = np.abs(nu - nu_new) nu = copy.copy(nu_new) # evaluate master problem x, fx, gx = self.master_eval(f=f, g=g, nu=nu, x_bounds=x_bounds, op=sp, solver=sp_solver) # update nu: bounds of master problem h = 2 x_lb = nu-h*np.abs(nu) if constraint_type else np.maximum(0, nu-h*np.abs(nu)) x_bounds_master = np.array([[x_lb, nu+h*np.abs(nu)]]) # update problem bounds mp.variables.x_min = x_bounds_master[:, 0].reshape(-1, 1) mp.variables.x_max = x_bounds_master[:, 1].reshape(-1, 1) # stop criteria stop = (np.abs(gx) < self.eps and constraint_type) or (np.abs(nu) < self.eps) or \ (np.diff(x_bounds_master) < self.eps) or (nu_diff < self.eps and k > 0) # update counter k += 1 # output results.x = x results.fx = f.eval(x) results.parameter = {'nu': nu} results.n_iterations = k return results @staticmethod def master_eval(f: FunctionsComposite, g: FunctionsComposite, nu: float, x_bounds: np.ndarray, op: OptimizationProblem, solver: GoldenSection): """ Evaluates master problem. Args: f : (FunctionsComposite) objective functions. g : (FunctionsComposite) constraints. nu : (float) allocation factor. x_bounds: (np.ndarray) bounds. op : (OptimizationProblem) optimization problem. solver : (GoldenSection) algorithm solver Returns: x : (np.ndarray) sub-problems' solution. fx_master: (np.ndarray) objective evaluation at x. gx : (np.ndarray) constraint evaluation at x. """ # build and solve sub-problems n = x_bounds.shape[0] # number of variables x_out = np.zeros((n, 1)) # build generic problem instance for i in range(f.n_functions): # sub-problem def f_i(x): y = np.zeros((n, 1)) y[i, :] = x return f.functions[i].eval(y) + nu * g.functions[i].eval(y) # update problem objective op.objective.objectives.remove() op.objective.objectives.add(GenericFunction(func=f_i, n=1)) # update problem bounds op.variables.x_min = x_bounds[i, 0].reshape(-1, 1) op.variables.x_max = x_bounds[i, 1].reshape(-1, 1) output = solver.optimize(optimization_problem=op, debug=False) x_out[i, 0] = output.x # master eval gx = g.eval(x_out, composition='series') fx_master = f.eval(x_out, composition='series') + nu * gx return x_out, fx_master, gx
0.889042
0.45641
import numpy as np from science_optimization.algorithms.derivative_free import NelderMead from science_optimization.algorithms import BaseAlgorithms from science_optimization.algorithms.search_direction import QuasiNewton, GradientAlgorithm, NewtonAlgorithm from science_optimization.builder import OptimizationProblem from science_optimization.function.lagrange_function import AugmentedLagrangeFunction from science_optimization.problems import GenericProblem from science_optimization.solvers import OptimizationResults from typing import Tuple, Any class AugmentedLagrangian(BaseAlgorithms): """ Augmented Lagrangian algorithm """ def __init__(self, x0: np.ndarray, n_max: int = None, eps: float = None, randx: bool = False, algorithm: Any = None, c: float = 1.1): """Algorithm constructor. Args: x0 : (np.ndarray) initial point n_max: (int) maximum number of iterations for stop criterion eps : (float) maximum uncertainty for stop criterion randx: (bool) True to use a different initial point in each Lagrangian iteration alg_choose: (int) chooses the method to solve the unconstrained problem (0 -> Quasi Newton (BFGS) / 1 -> Gradient method / 2 -> Newton method / 3 -> Nelder Mead) c: (float) parameter used to update the rho value """ # parameters self.x0 = x0 if n_max is not None: self.n_max = n_max if eps is not None: self.eps = eps self.randx = randx if algorithm is not None: self.algorithm = algorithm else: self.algorithm = QuasiNewton(x0=x0) if c <= 1: raise Exception('Invalid value, must be greater than one') self.c = c # getters @property def algorithm(self): return self._algorithm @algorithm.setter def algorithm(self, algorithm): # verify instances if issubclass(type(algorithm), QuasiNewton) or issubclass(type(algorithm), GradientAlgorithm) \ or issubclass(type(algorithm), NewtonAlgorithm) or issubclass(type(algorithm), NelderMead): self._algorithm = algorithm else: raise Warning("Invalid algorithm, must solve constrained problems") def optimize(self, optimization_problem, debug=False, n_step=5): """Optimization core of Augmented Lagrangian method Args: optimization_problem: (OptimizationProblem) an optimization problem. debug : (bool) debug option indicator. n_step : (int) iterations steps to store optimization results. Returns: optimization_results: (OptimizationResults) optimization results. """ optimization_results = OptimizationResults() optimization_results.message = 'Stop by maximum number of iterations.' f_obj = optimization_problem.objective.objectives x_bounds = np.hstack((optimization_problem.variables.x_min, optimization_problem.variables.x_max)) n = len(optimization_problem.variables.x_type) h = optimization_problem.constraints.equality_constraints g = optimization_problem.constraints.inequality_constraints x0 = self.x0 la_function = AugmentedLagrangeFunction(f_obj=f_obj, g=g, h=h, rho=1, c=self.c) # only parameter that changes through the iterations is f op_generic = OptimizationProblem(builder=GenericProblem(f=[la_function], eq_cons=[], ineq_cons=[], x_bounds=x_bounds)) stop_criteria = False k = 0 prev_x = x0 x_hist = np.array(x0) f_hist = [f_obj.eval(x0)] while k < self.n_max and not stop_criteria: self.algorithm.x0 = x0 results = self.algorithm.optimize(optimization_problem=op_generic, debug=False) x_new = results.x if debug: x_hist = np.hstack((x_hist, x_new)) f_hist.append(results.fx) # update Lagrange multipliers la_function.update_multipliers(x_new) k += 1 if np.linalg.norm(x_new - prev_x) < self.eps: optimization_results.message = 'Stop by unchanged x value.' stop_criteria = True prev_x = x_new if self.randx: x0 = np.random.uniform(x_bounds[:, 0], x_bounds[:, 1], (1, n)).transpose() else: x0 = x_new if debug: optimization_results.x = x_hist optimization_results.fx = np.array(f_hist) else: optimization_results.x = prev_x optimization_results.fx = f_obj.eval(prev_x) optimization_results.n_iterations = k optimization_results.parameter = {'lambda': la_function.lag_eq, 'mu': la_function.lag_ineq} return optimization_results
science-optimization
/science_optimization-9.0.2-cp310-cp310-manylinux_2_35_x86_64.whl/science_optimization/algorithms/lagrange/augmented_lagrangian.py
augmented_lagrangian.py
import numpy as np from science_optimization.algorithms.derivative_free import NelderMead from science_optimization.algorithms import BaseAlgorithms from science_optimization.algorithms.search_direction import QuasiNewton, GradientAlgorithm, NewtonAlgorithm from science_optimization.builder import OptimizationProblem from science_optimization.function.lagrange_function import AugmentedLagrangeFunction from science_optimization.problems import GenericProblem from science_optimization.solvers import OptimizationResults from typing import Tuple, Any class AugmentedLagrangian(BaseAlgorithms): """ Augmented Lagrangian algorithm """ def __init__(self, x0: np.ndarray, n_max: int = None, eps: float = None, randx: bool = False, algorithm: Any = None, c: float = 1.1): """Algorithm constructor. Args: x0 : (np.ndarray) initial point n_max: (int) maximum number of iterations for stop criterion eps : (float) maximum uncertainty for stop criterion randx: (bool) True to use a different initial point in each Lagrangian iteration alg_choose: (int) chooses the method to solve the unconstrained problem (0 -> Quasi Newton (BFGS) / 1 -> Gradient method / 2 -> Newton method / 3 -> Nelder Mead) c: (float) parameter used to update the rho value """ # parameters self.x0 = x0 if n_max is not None: self.n_max = n_max if eps is not None: self.eps = eps self.randx = randx if algorithm is not None: self.algorithm = algorithm else: self.algorithm = QuasiNewton(x0=x0) if c <= 1: raise Exception('Invalid value, must be greater than one') self.c = c # getters @property def algorithm(self): return self._algorithm @algorithm.setter def algorithm(self, algorithm): # verify instances if issubclass(type(algorithm), QuasiNewton) or issubclass(type(algorithm), GradientAlgorithm) \ or issubclass(type(algorithm), NewtonAlgorithm) or issubclass(type(algorithm), NelderMead): self._algorithm = algorithm else: raise Warning("Invalid algorithm, must solve constrained problems") def optimize(self, optimization_problem, debug=False, n_step=5): """Optimization core of Augmented Lagrangian method Args: optimization_problem: (OptimizationProblem) an optimization problem. debug : (bool) debug option indicator. n_step : (int) iterations steps to store optimization results. Returns: optimization_results: (OptimizationResults) optimization results. """ optimization_results = OptimizationResults() optimization_results.message = 'Stop by maximum number of iterations.' f_obj = optimization_problem.objective.objectives x_bounds = np.hstack((optimization_problem.variables.x_min, optimization_problem.variables.x_max)) n = len(optimization_problem.variables.x_type) h = optimization_problem.constraints.equality_constraints g = optimization_problem.constraints.inequality_constraints x0 = self.x0 la_function = AugmentedLagrangeFunction(f_obj=f_obj, g=g, h=h, rho=1, c=self.c) # only parameter that changes through the iterations is f op_generic = OptimizationProblem(builder=GenericProblem(f=[la_function], eq_cons=[], ineq_cons=[], x_bounds=x_bounds)) stop_criteria = False k = 0 prev_x = x0 x_hist = np.array(x0) f_hist = [f_obj.eval(x0)] while k < self.n_max and not stop_criteria: self.algorithm.x0 = x0 results = self.algorithm.optimize(optimization_problem=op_generic, debug=False) x_new = results.x if debug: x_hist = np.hstack((x_hist, x_new)) f_hist.append(results.fx) # update Lagrange multipliers la_function.update_multipliers(x_new) k += 1 if np.linalg.norm(x_new - prev_x) < self.eps: optimization_results.message = 'Stop by unchanged x value.' stop_criteria = True prev_x = x_new if self.randx: x0 = np.random.uniform(x_bounds[:, 0], x_bounds[:, 1], (1, n)).transpose() else: x0 = x_new if debug: optimization_results.x = x_hist optimization_results.fx = np.array(f_hist) else: optimization_results.x = prev_x optimization_results.fx = f_obj.eval(prev_x) optimization_results.n_iterations = k optimization_results.parameter = {'lambda': la_function.lag_eq, 'mu': la_function.lag_ineq} return optimization_results
0.910468
0.551151
import copy import numpy as np from science_optimization.algorithms.utils import box_constraints from science_optimization.solvers import OptimizationResults from science_optimization.builder import OptimizationProblem from science_optimization.function import BaseFunction from science_optimization.algorithms import BaseAlgorithms class NelderMead(BaseAlgorithms): """ Nelder-Mead simplex algorithm to minimize derivative-free non-linear functions. """ # starting point _x0 = None _x_min = None _x_max = None _x_bounds = None _x_min_norm = None _x_max_norm = None # problem dimensio _dim = None # function _f = None # constraint _g = None # function values _fx = None _gx = None # algorithm constants _delta_r = None _delta_e = None _delta_ic = None _delta_oc = None _delta_s = None # simplex point lists _simplex = None def __init__(self, x0, delta_r=1.0, delta_e=2.0, delta_ic=0.5, delta_oc=0.5, delta_s=0.5): """ Args: x0: delta_r: delta_e: delta_ic: delta_oc: delta_s: """ self.x0 = x0 self.dim = x0.shape[0] self.x_min_norm = np.zeros((self.dim, 1)) self.x_max_norm = np.full((self.dim, 1), 100) self.delta_r = delta_r self.delta_e = delta_e self.delta_ic = delta_ic self.delta_oc = delta_oc self.delta_s = delta_s self.simplex = [] self.fx = None self.gx = None self.x_min = None self.x_max = None self.x_bounds = None @property def x0(self): return self._x0 @property def x_min(self): return self._x_min @property def x_max(self): return self._x_max @property def x_bounds(self): return self._x_bounds @property def x_min_norm(self): return self._x_min_norm @property def x_max_norm(self): return self._x_max_norm @property def dim(self): return self._dim @property def f(self): return self._f @property def g(self): return self._g @property def fx(self): return self._fx @property def gx(self): return self._gx @property def delta_r(self): return self._delta_r @property def delta_e(self): return self._delta_e @property def delta_ic(self): return self._delta_ic @property def delta_oc(self): return self._delta_oc @property def delta_s(self): return self._delta_s @property def simplex(self): return self._simplex @x0.setter def x0(self, value): self._x0 = value @x_min.setter def x_min(self, value): self._x_min = value @x_max.setter def x_max(self, value): self._x_max = value @x_bounds.setter def x_bounds(self, value): self._x_bounds = value @x_min_norm.setter def x_min_norm(self, value): self._x_min_norm = value @x_max_norm.setter def x_max_norm(self, value): self._x_max_norm = value @dim.setter def dim(self, value): self._dim = value @f.setter def f(self, value): if not isinstance(value, BaseFunction): raise Exception("The function must be an instance of BaseFunction!") self._f = value @g.setter def g(self, value): if not isinstance(value, BaseFunction): raise Exception("The function must be an instance of BaseFunction!") self._g = value @fx.setter def fx(self, value): self._fx = value @gx.setter def gx(self, value): self._gx = value @delta_r.setter def delta_r(self, value): self._delta_r = value @delta_e.setter def delta_e(self, value): self._delta_e = value @delta_ic.setter def delta_ic(self, value): self._delta_ic = value @delta_oc.setter def delta_oc(self, value): self._delta_oc = value @delta_s.setter def delta_s(self, value): self._delta_s = value @simplex.setter def simplex(self, value): self._simplex = value def initialize_fminsearch(self): """ Args: dim: Returns: """ simplex = [self.x0] for i in range(self.dim): e_i = np.eye(1, self.dim, i).reshape(self.dim, 1) h_i = 0.05 if self.x0[i][0] != 0 else 0.00025 simplex.append(box_constraints(self.x0 + h_i * e_i, self.x_bounds)) self.simplex = simplex def initialize_simplex_size(self, size): """ Args: size: Returns: """ dim = self.dim simplex = [self.x0] p = size / (dim * np.sqrt(2)) p = p * ((np.sqrt(dim+1)) + dim - 1) q = size / (dim * np.sqrt(2)) q = q * ((np.sqrt(dim + 1)) - 1) e = np.identity(dim) for i in range(1, dim+1): point_sum = np.zeros((dim, 1)) p_sign = 1 e[i - 1][i - 1] = 0 for j in range(dim): if self.x0[j][0] > (self.x_min_norm[j][0] + self.x_max_norm[j][0]) / 2: point_sum += -1 * q * e[:, j].reshape(dim, 1) else: point_sum += q * e[:, j].reshape(dim, 1) e[i - 1][i - 1] = 1 if self.x0[i - 1][0] > (self.x_min_norm[i - 1][0] + self.x_min_norm[i - 1][0]) / 2: p_sign = -1 new_point = self.x0 + p_sign * p * e[i - 1].reshape(dim, 1) + point_sum simplex.append(new_point) self.simplex = simplex def centroid(self, xw_index): """ Args: xw_index: Returns: """ simplex = copy.deepcopy(self.simplex) del(simplex[xw_index]) return np.mean(simplex, axis=0) def reflect(self, x_centroid, xw_index): """ Args: x_centroid: Returns: """ return x_centroid + self.delta_r * (x_centroid - self.simplex[xw_index]) def expand(self, x_centroid, x_reflect): """ Args: x_centroid: x_reflect: Returns: """ return x_centroid + self.delta_e * (x_reflect - x_centroid) def inside_contraction(self, x_centroid, x_reflect): """ Args: x_centroid: x_reflect: Returns: """ return x_centroid - self.delta_ic * (x_reflect - x_centroid) def outside_contraction(self, x_centroid, x_reflect): """ Args: x_centroid: x_reflect: Returns: """ return x_centroid + self.delta_oc * (x_reflect - x_centroid) def shrink(self, x_best): """ Args: x_best: Returns: """ for j in range(1, len(self.simplex)): x_new = x_best + self.delta_s * (self.simplex[j] - x_best) fx_new, gx_new = self.eval_fg(self.norm2real(x_new)) self.replace_point(idx=j, x=x_new, fx=fx_new, gx=gx_new) def box_feasible(self, x): """ Args: x: Returns: """ return not(any(np.less(x, self.x_min_norm)) or any(np.greater(x, self.x_max_norm))) @staticmethod def is_less_than(fx_1, gx_1, fx_2, gx_2): """ Args: fx_1: gx_1: fx_2: gx_2: Returns: """ if gx_1 > 0 and gx_2 > 0: return gx_1 < gx_2 elif gx_1 <= 0 and gx_2 <= 0: return fx_1 < fx_2 else: return gx_1 <= 0 def norm2real(self, x_norm): """ Args: x_norm: Returns: """ x = 0.01 * x_norm x = (self.x_max - self.x_min) * x x = x + self.x_min return x def real2norm(self, x): """ Args: x: Returns: """ x_norm = (x - self.x_min) / (self.x_max - self.x_min) x_norm = x_norm * 100 return x_norm def constraint_sum(self, x): """ Args: x: Returns: """ if self.g is not None: gx_eval = self.g.eval(x) return np.sum(gx_eval[np.where(gx_eval > self.eps)]) else: return 0 def eval_fg(self, x): """ Args: x: Returns: """ fx = self.f.eval(x) gx = self.constraint_sum(x=x) return fx, gx def replace_point(self, idx, x, fx, gx): """ Args: idx: x: fx: gx: Returns: """ self.simplex[idx] = x self.fx[idx] = fx self.gx[idx] = gx def min(self, x, y): """ Args: x: y: Returns: """ x_real = self.norm2real(x) y_real = self.norm2real(y) fx, gx = self.eval_fg(x_real) fy, gy = self.eval_fg(y_real) if self.is_less_than(fx, gx, fy, gy): return x return y def sort_simplex(self): """ Returns: """ index = [x for x in range(len(self.fx))] gx_fx_idx = [(x, y, z) for x, y, z in zip(self.gx, self.fx, index)] result = [t[2] for t in sorted(gx_fx_idx)] return result def optimize(self, optimization_problem, debug=False, n_step=10): """ Args: optimization_problem: debug: n_step: Returns: """ if not isinstance(optimization_problem, OptimizationProblem): raise Exception("Optimize must have and OptimizationProblem instance as argument!") if optimization_problem.objective.objectives.n_functions != 1: raise Exception("Method able to optimize only one function.") optimization_results = OptimizationResults() optimization_results.message = 'Stop by maximum number of iterations.' self.f = optimization_problem.objective.objectives.functions[0] if optimization_problem.has_inequality_constraints(): self.g = optimization_problem.constraints.inequality_constraints self.x_min = optimization_problem.variables.x_min self.x_max = optimization_problem.variables.x_max self.x_bounds = np.hstack((optimization_problem.variables.x_min, optimization_problem.variables.x_max)) self.x0 = box_constraints(self.x0, self.x_bounds) self.x0 = self.real2norm(self.x0) self.initialize_simplex_size(size=10) self.fx = np.array([self.f.eval(self.norm2real(x)) for x in self.simplex]) optimization_results.n_function_evaluations += len(self.simplex) if self.g is not None: gx = [] for x in self.simplex: gx.append(self.constraint_sum(x=self.norm2real(x))) self.gx = np.array(gx) else: self.gx = np.zeros(len(self.simplex)) index = self.sort_simplex() b = index[0] s = index[-2] w = index[-1] stop = False while optimization_results.n_iterations < self.n_max and not stop: x_c = self.centroid(xw_index=w) x_r = self.reflect(x_c, w) x_b = self.simplex[b] x_s = self.simplex[s] x_w = self.simplex[w] fx_b, gx_b = self.eval_fg(self.norm2real(x_b)) fx_s, gx_s = self.eval_fg(self.norm2real(x_s)) fx_w, gx_w = self.eval_fg(self.norm2real(x_w)) optimization_results.n_function_evaluations += 3 if self.box_feasible(x_r): fx_r, gx_r = self.eval_fg(self.norm2real(x_r)) optimization_results.n_function_evaluations += 1 if self.is_less_than(fx_r, gx_r, fx_b, gx_b): x_e = self.expand(x_centroid=x_c, x_reflect=x_r) use_reflection = True if self.box_feasible(x_e): fx_e, gx_e = self.eval_fg(self.norm2real(x_e)) optimization_results.n_function_evaluations += 1 if self.is_less_than(fx_e, gx_e, fx_r, gx_r): self.replace_point(idx=w, x=x_e, fx=fx_e, gx=gx_e) use_reflection = False if debug: print("expansion") if use_reflection: self.replace_point(idx=w, x=x_r, fx=fx_r, gx=gx_r) if debug: print("reflection e") elif self.is_less_than(fx_r, gx_r, fx_s, gx_s): self.replace_point(idx=w, x=x_r, fx=fx_r, gx=gx_r) if debug: print("reflection r") elif self.is_less_than(fx_r, gx_r, fx_w, gx_w): x_oc = self.outside_contraction(x_centroid=x_c, x_reflect=x_r) use_reflection = True if self.box_feasible(x_oc): fx_oc, gx_oc = self.eval_fg(self.norm2real(x_oc)) optimization_results.n_function_evaluations += 1 if self.is_less_than(fx_oc, gx_oc, fx_r, gx_r): self.replace_point(idx=w, x=x_oc, fx=fx_oc, gx=gx_oc) use_reflection = False if debug: print("outside contract") if use_reflection: self.replace_point(idx=w, x=x_r, fx=fx_r, gx=gx_r) if debug: print("reflection oc") else: x_ic = self.inside_contraction(x_centroid=x_c, x_reflect=x_r) use_shrink = True if self.box_feasible(x_ic): fx_ic, gx_ic = self.eval_fg(self.norm2real(x_ic)) optimization_results.n_function_evaluations += 1 if self.is_less_than(fx_ic, gx_ic, fx_r, gx_r): self.replace_point(idx=w, x=x_ic, fx=fx_ic, gx=gx_ic) use_shrink = False if debug: print("inside contract") if use_shrink: self.shrink(x_best=x_b) optimization_results.n_function_evaluations += self.dim if debug: print("shrink") else: x_oc = self.outside_contraction(x_centroid=x_c, x_reflect=x_r) x_ic = self.inside_contraction(x_centroid=x_c, x_reflect=x_r) fx_ic, gx_ic = self.eval_fg(self.norm2real(x_ic)) if debug: print("xr infeasible") if self.box_feasible(x_oc): x_new = self.min(x_oc, self.min(x_ic, x_w)) optimization_results.n_function_evaluations += 4 if not all(np.equal(x_new, x_w)): fx_new, gx_new = self.eval_fg(x_new) optimization_results.n_function_evaluations += 1 self.replace_point(idx=w, x=x_new, fx=fx_new, gx=gx_new) else: self.shrink(x_best=x_b) optimization_results.n_function_evaluations += self.dim elif self.is_less_than(fx_ic, gx_ic, fx_w, gx_w): self.replace_point(idx=w, x=x_ic, fx=fx_ic, gx=gx_ic) else: self.shrink(x_best=x_b) optimization_results.n_function_evaluations += self.dim index = self.sort_simplex() b = index[0] s = index[-2] w = index[-1] x_norms = [np.linalg.norm(x - self.simplex[b], ord=np.inf, axis=0) for x in self.simplex] if max(x_norms) < self.eps: optimization_results.message = "Stop by norm of the max edge of the simplex less than " + str(self.eps) stop = True fx_norms = [np.abs(self.f.eval(x) - self.f.eval(self.simplex[b])) for x in self.simplex] if max(fx_norms) < self.eps: optimization_results.message = "Stop by norm of the max image of the simplex points less than " +\ str(self.eps) stop = True optimization_results.n_iterations += 1 optimization_results.x = self.norm2real(self.simplex[b]) optimization_results.fx = self.fx[b] return optimization_results def print_simplex(self): simplex = np.array(self.simplex) print(simplex, '\n')
science-optimization
/science_optimization-9.0.2-cp310-cp310-manylinux_2_35_x86_64.whl/science_optimization/algorithms/derivative_free/nelder_mead.py
nelder_mead.py
import copy import numpy as np from science_optimization.algorithms.utils import box_constraints from science_optimization.solvers import OptimizationResults from science_optimization.builder import OptimizationProblem from science_optimization.function import BaseFunction from science_optimization.algorithms import BaseAlgorithms class NelderMead(BaseAlgorithms): """ Nelder-Mead simplex algorithm to minimize derivative-free non-linear functions. """ # starting point _x0 = None _x_min = None _x_max = None _x_bounds = None _x_min_norm = None _x_max_norm = None # problem dimensio _dim = None # function _f = None # constraint _g = None # function values _fx = None _gx = None # algorithm constants _delta_r = None _delta_e = None _delta_ic = None _delta_oc = None _delta_s = None # simplex point lists _simplex = None def __init__(self, x0, delta_r=1.0, delta_e=2.0, delta_ic=0.5, delta_oc=0.5, delta_s=0.5): """ Args: x0: delta_r: delta_e: delta_ic: delta_oc: delta_s: """ self.x0 = x0 self.dim = x0.shape[0] self.x_min_norm = np.zeros((self.dim, 1)) self.x_max_norm = np.full((self.dim, 1), 100) self.delta_r = delta_r self.delta_e = delta_e self.delta_ic = delta_ic self.delta_oc = delta_oc self.delta_s = delta_s self.simplex = [] self.fx = None self.gx = None self.x_min = None self.x_max = None self.x_bounds = None @property def x0(self): return self._x0 @property def x_min(self): return self._x_min @property def x_max(self): return self._x_max @property def x_bounds(self): return self._x_bounds @property def x_min_norm(self): return self._x_min_norm @property def x_max_norm(self): return self._x_max_norm @property def dim(self): return self._dim @property def f(self): return self._f @property def g(self): return self._g @property def fx(self): return self._fx @property def gx(self): return self._gx @property def delta_r(self): return self._delta_r @property def delta_e(self): return self._delta_e @property def delta_ic(self): return self._delta_ic @property def delta_oc(self): return self._delta_oc @property def delta_s(self): return self._delta_s @property def simplex(self): return self._simplex @x0.setter def x0(self, value): self._x0 = value @x_min.setter def x_min(self, value): self._x_min = value @x_max.setter def x_max(self, value): self._x_max = value @x_bounds.setter def x_bounds(self, value): self._x_bounds = value @x_min_norm.setter def x_min_norm(self, value): self._x_min_norm = value @x_max_norm.setter def x_max_norm(self, value): self._x_max_norm = value @dim.setter def dim(self, value): self._dim = value @f.setter def f(self, value): if not isinstance(value, BaseFunction): raise Exception("The function must be an instance of BaseFunction!") self._f = value @g.setter def g(self, value): if not isinstance(value, BaseFunction): raise Exception("The function must be an instance of BaseFunction!") self._g = value @fx.setter def fx(self, value): self._fx = value @gx.setter def gx(self, value): self._gx = value @delta_r.setter def delta_r(self, value): self._delta_r = value @delta_e.setter def delta_e(self, value): self._delta_e = value @delta_ic.setter def delta_ic(self, value): self._delta_ic = value @delta_oc.setter def delta_oc(self, value): self._delta_oc = value @delta_s.setter def delta_s(self, value): self._delta_s = value @simplex.setter def simplex(self, value): self._simplex = value def initialize_fminsearch(self): """ Args: dim: Returns: """ simplex = [self.x0] for i in range(self.dim): e_i = np.eye(1, self.dim, i).reshape(self.dim, 1) h_i = 0.05 if self.x0[i][0] != 0 else 0.00025 simplex.append(box_constraints(self.x0 + h_i * e_i, self.x_bounds)) self.simplex = simplex def initialize_simplex_size(self, size): """ Args: size: Returns: """ dim = self.dim simplex = [self.x0] p = size / (dim * np.sqrt(2)) p = p * ((np.sqrt(dim+1)) + dim - 1) q = size / (dim * np.sqrt(2)) q = q * ((np.sqrt(dim + 1)) - 1) e = np.identity(dim) for i in range(1, dim+1): point_sum = np.zeros((dim, 1)) p_sign = 1 e[i - 1][i - 1] = 0 for j in range(dim): if self.x0[j][0] > (self.x_min_norm[j][0] + self.x_max_norm[j][0]) / 2: point_sum += -1 * q * e[:, j].reshape(dim, 1) else: point_sum += q * e[:, j].reshape(dim, 1) e[i - 1][i - 1] = 1 if self.x0[i - 1][0] > (self.x_min_norm[i - 1][0] + self.x_min_norm[i - 1][0]) / 2: p_sign = -1 new_point = self.x0 + p_sign * p * e[i - 1].reshape(dim, 1) + point_sum simplex.append(new_point) self.simplex = simplex def centroid(self, xw_index): """ Args: xw_index: Returns: """ simplex = copy.deepcopy(self.simplex) del(simplex[xw_index]) return np.mean(simplex, axis=0) def reflect(self, x_centroid, xw_index): """ Args: x_centroid: Returns: """ return x_centroid + self.delta_r * (x_centroid - self.simplex[xw_index]) def expand(self, x_centroid, x_reflect): """ Args: x_centroid: x_reflect: Returns: """ return x_centroid + self.delta_e * (x_reflect - x_centroid) def inside_contraction(self, x_centroid, x_reflect): """ Args: x_centroid: x_reflect: Returns: """ return x_centroid - self.delta_ic * (x_reflect - x_centroid) def outside_contraction(self, x_centroid, x_reflect): """ Args: x_centroid: x_reflect: Returns: """ return x_centroid + self.delta_oc * (x_reflect - x_centroid) def shrink(self, x_best): """ Args: x_best: Returns: """ for j in range(1, len(self.simplex)): x_new = x_best + self.delta_s * (self.simplex[j] - x_best) fx_new, gx_new = self.eval_fg(self.norm2real(x_new)) self.replace_point(idx=j, x=x_new, fx=fx_new, gx=gx_new) def box_feasible(self, x): """ Args: x: Returns: """ return not(any(np.less(x, self.x_min_norm)) or any(np.greater(x, self.x_max_norm))) @staticmethod def is_less_than(fx_1, gx_1, fx_2, gx_2): """ Args: fx_1: gx_1: fx_2: gx_2: Returns: """ if gx_1 > 0 and gx_2 > 0: return gx_1 < gx_2 elif gx_1 <= 0 and gx_2 <= 0: return fx_1 < fx_2 else: return gx_1 <= 0 def norm2real(self, x_norm): """ Args: x_norm: Returns: """ x = 0.01 * x_norm x = (self.x_max - self.x_min) * x x = x + self.x_min return x def real2norm(self, x): """ Args: x: Returns: """ x_norm = (x - self.x_min) / (self.x_max - self.x_min) x_norm = x_norm * 100 return x_norm def constraint_sum(self, x): """ Args: x: Returns: """ if self.g is not None: gx_eval = self.g.eval(x) return np.sum(gx_eval[np.where(gx_eval > self.eps)]) else: return 0 def eval_fg(self, x): """ Args: x: Returns: """ fx = self.f.eval(x) gx = self.constraint_sum(x=x) return fx, gx def replace_point(self, idx, x, fx, gx): """ Args: idx: x: fx: gx: Returns: """ self.simplex[idx] = x self.fx[idx] = fx self.gx[idx] = gx def min(self, x, y): """ Args: x: y: Returns: """ x_real = self.norm2real(x) y_real = self.norm2real(y) fx, gx = self.eval_fg(x_real) fy, gy = self.eval_fg(y_real) if self.is_less_than(fx, gx, fy, gy): return x return y def sort_simplex(self): """ Returns: """ index = [x for x in range(len(self.fx))] gx_fx_idx = [(x, y, z) for x, y, z in zip(self.gx, self.fx, index)] result = [t[2] for t in sorted(gx_fx_idx)] return result def optimize(self, optimization_problem, debug=False, n_step=10): """ Args: optimization_problem: debug: n_step: Returns: """ if not isinstance(optimization_problem, OptimizationProblem): raise Exception("Optimize must have and OptimizationProblem instance as argument!") if optimization_problem.objective.objectives.n_functions != 1: raise Exception("Method able to optimize only one function.") optimization_results = OptimizationResults() optimization_results.message = 'Stop by maximum number of iterations.' self.f = optimization_problem.objective.objectives.functions[0] if optimization_problem.has_inequality_constraints(): self.g = optimization_problem.constraints.inequality_constraints self.x_min = optimization_problem.variables.x_min self.x_max = optimization_problem.variables.x_max self.x_bounds = np.hstack((optimization_problem.variables.x_min, optimization_problem.variables.x_max)) self.x0 = box_constraints(self.x0, self.x_bounds) self.x0 = self.real2norm(self.x0) self.initialize_simplex_size(size=10) self.fx = np.array([self.f.eval(self.norm2real(x)) for x in self.simplex]) optimization_results.n_function_evaluations += len(self.simplex) if self.g is not None: gx = [] for x in self.simplex: gx.append(self.constraint_sum(x=self.norm2real(x))) self.gx = np.array(gx) else: self.gx = np.zeros(len(self.simplex)) index = self.sort_simplex() b = index[0] s = index[-2] w = index[-1] stop = False while optimization_results.n_iterations < self.n_max and not stop: x_c = self.centroid(xw_index=w) x_r = self.reflect(x_c, w) x_b = self.simplex[b] x_s = self.simplex[s] x_w = self.simplex[w] fx_b, gx_b = self.eval_fg(self.norm2real(x_b)) fx_s, gx_s = self.eval_fg(self.norm2real(x_s)) fx_w, gx_w = self.eval_fg(self.norm2real(x_w)) optimization_results.n_function_evaluations += 3 if self.box_feasible(x_r): fx_r, gx_r = self.eval_fg(self.norm2real(x_r)) optimization_results.n_function_evaluations += 1 if self.is_less_than(fx_r, gx_r, fx_b, gx_b): x_e = self.expand(x_centroid=x_c, x_reflect=x_r) use_reflection = True if self.box_feasible(x_e): fx_e, gx_e = self.eval_fg(self.norm2real(x_e)) optimization_results.n_function_evaluations += 1 if self.is_less_than(fx_e, gx_e, fx_r, gx_r): self.replace_point(idx=w, x=x_e, fx=fx_e, gx=gx_e) use_reflection = False if debug: print("expansion") if use_reflection: self.replace_point(idx=w, x=x_r, fx=fx_r, gx=gx_r) if debug: print("reflection e") elif self.is_less_than(fx_r, gx_r, fx_s, gx_s): self.replace_point(idx=w, x=x_r, fx=fx_r, gx=gx_r) if debug: print("reflection r") elif self.is_less_than(fx_r, gx_r, fx_w, gx_w): x_oc = self.outside_contraction(x_centroid=x_c, x_reflect=x_r) use_reflection = True if self.box_feasible(x_oc): fx_oc, gx_oc = self.eval_fg(self.norm2real(x_oc)) optimization_results.n_function_evaluations += 1 if self.is_less_than(fx_oc, gx_oc, fx_r, gx_r): self.replace_point(idx=w, x=x_oc, fx=fx_oc, gx=gx_oc) use_reflection = False if debug: print("outside contract") if use_reflection: self.replace_point(idx=w, x=x_r, fx=fx_r, gx=gx_r) if debug: print("reflection oc") else: x_ic = self.inside_contraction(x_centroid=x_c, x_reflect=x_r) use_shrink = True if self.box_feasible(x_ic): fx_ic, gx_ic = self.eval_fg(self.norm2real(x_ic)) optimization_results.n_function_evaluations += 1 if self.is_less_than(fx_ic, gx_ic, fx_r, gx_r): self.replace_point(idx=w, x=x_ic, fx=fx_ic, gx=gx_ic) use_shrink = False if debug: print("inside contract") if use_shrink: self.shrink(x_best=x_b) optimization_results.n_function_evaluations += self.dim if debug: print("shrink") else: x_oc = self.outside_contraction(x_centroid=x_c, x_reflect=x_r) x_ic = self.inside_contraction(x_centroid=x_c, x_reflect=x_r) fx_ic, gx_ic = self.eval_fg(self.norm2real(x_ic)) if debug: print("xr infeasible") if self.box_feasible(x_oc): x_new = self.min(x_oc, self.min(x_ic, x_w)) optimization_results.n_function_evaluations += 4 if not all(np.equal(x_new, x_w)): fx_new, gx_new = self.eval_fg(x_new) optimization_results.n_function_evaluations += 1 self.replace_point(idx=w, x=x_new, fx=fx_new, gx=gx_new) else: self.shrink(x_best=x_b) optimization_results.n_function_evaluations += self.dim elif self.is_less_than(fx_ic, gx_ic, fx_w, gx_w): self.replace_point(idx=w, x=x_ic, fx=fx_ic, gx=gx_ic) else: self.shrink(x_best=x_b) optimization_results.n_function_evaluations += self.dim index = self.sort_simplex() b = index[0] s = index[-2] w = index[-1] x_norms = [np.linalg.norm(x - self.simplex[b], ord=np.inf, axis=0) for x in self.simplex] if max(x_norms) < self.eps: optimization_results.message = "Stop by norm of the max edge of the simplex less than " + str(self.eps) stop = True fx_norms = [np.abs(self.f.eval(x) - self.f.eval(self.simplex[b])) for x in self.simplex] if max(fx_norms) < self.eps: optimization_results.message = "Stop by norm of the max image of the simplex points less than " +\ str(self.eps) stop = True optimization_results.n_iterations += 1 optimization_results.x = self.norm2real(self.simplex[b]) optimization_results.fx = self.fx[b] return optimization_results def print_simplex(self): simplex = np.array(self.simplex) print(simplex, '\n')
0.787646
0.533944
import nlpalg import numpy as np from science_optimization.algorithms import BaseAlgorithms from science_optimization.solvers import OptimizationResults from science_optimization.builder import OptimizationProblem class EllipsoidMethod(BaseAlgorithms): """Ellipsoid algorithm method. """ # attributes _x0 = None _Q0 = None _max_cuts = None _shallow_cut = None _decomposition = None _memory = None def __init__(self, x0: np.ndarray=np.array([[]]).reshape(-1, 1), Q0: np.ndarray=np.array([[]]), max_cuts: int=32, shallow_cut: float=0, decomposition: bool=True, memory: bool=True, n_max: int=None, eps: float=None): """Ellipsoid algorithm constructor. Args: x0 : (np.ndarray) initial point. Q0 : (np.ndarray) initial inverse ellipsoid matrix. max_cuts : (int) maximum number of ellipsoid cuts per iteration. shallow_cut : (float) shallow cut option [0, 1]. decomposition: (bool) is matrix decomposition indicator (True: sqrt decomposition). memory : (bool) cut memory indicator. n_max : (int) maximum number of iterations for stop criterion. eps : (float) maximum uncertainty for stop criterion. """ # parameters self.x0 = 1.0 * x0 self.Q0 = Q0 self.max_cuts = max_cuts self.shallow_cut = shallow_cut self.decomposition = decomposition self.memory = memory if n_max is not None: self.n_max = n_max if eps is not None: self.eps = eps # getters @property def x0(self): return self._x0 @property def Q0(self): return self._Q0 @property def max_cuts(self): return self._max_cuts @property def shallow_cut(self): return self._shallow_cut @property def decomposition(self): return self._decomposition @property def memory(self): return self._memory # setters @x0.setter def x0(self, x0): if x0.shape[1] == 1: self._x0 = x0 else: raise ValueError("Initial point must be a column vector.") @Q0.setter def Q0(self, Q0): # check if input is numpy if not isinstance(Q0, np.ndarray): raise Warning("x must be a numpy array!") else: self._Q0 = Q0 @max_cuts.setter def max_cuts(self, k): if k > 0: self._max_cuts = k else: raise ValueError("Maximum number of cuts must be a positive number!") @shallow_cut.setter def shallow_cut(self, s): if 0 <= s <= 1: self._shallow_cut = s else: raise ValueError("Shallow cut must be in [0, 1).") @decomposition.setter def decomposition(self, d): # check if input is numpy if not isinstance(d, bool): raise Warning("Decomposition must be a boolean!") else: self._decomposition = d @memory.setter def memory(self, m): # check if input is numpy if not isinstance(m, bool): raise Warning("Memory must be a boolean!") else: self._memory = m def optimize(self, optimization_problem: OptimizationProblem, debug: bool=True, n_step: int=5) -> OptimizationResults: """Optimization core of Ellipsoid method. Args: optimization_problem: (OptimizationProblem) an optimization problem. debug : (bool) debug option indicator. n_step : (int) iterations steps to store optimization results. Returns: optimization_results: (OptimizationResults) optimization results. """ # get input arguments f, df, _, _, g, dg, A, b, Aeq, beq, x_min, x_max, _ = optimization_problem.op_arguments() # optimization results optimization_results = OptimizationResults() # call method if not debug: # method output xb, fxb, _, _, _, stop = nlpalg.ellipsoidmethod(f, df, g, dg, A, b, Aeq, beq, x_min, x_max, self.x0, self.Q0, self.eps, self.n_max, self.max_cuts, self.shallow_cut, self.decomposition, self.memory, debug) # results optimization_results.x = xb optimization_results.fx = fxb else: # TODO (matheus): implement iterative run _, _, x, fx, Qi, stop = nlpalg.ellipsoidmethod(f, df, g, dg, A, b, Aeq, beq, x_min, x_max, self.x0, self.Q0, self.eps, self.n_max, self.max_cuts, self.shallow_cut, self.decomposition, self.memory, debug) # optimization results optimization_results.n_iterations = x.shape[1] # number of iterations optimization_results.x = x[:, 0::n_step] optimization_results.fx = fx[:, 0::n_step] optimization_results.parameter = {'Q': Qi[..., 0::n_step]} # stop criteria if stop == 0: optimization_results.message = 'Stop by maximum number of iterations.' elif stop == 1: optimization_results.message = 'Stop by ellipsoid volume reduction.' elif stop == 2: optimization_results.message = 'Stop by empty localizing set.' elif stop == 3: optimization_results.message = 'Stop by degenerate ellipsoid.' else: optimization_results.message = 'Unknown termination cause.' return optimization_results
science-optimization
/science_optimization-9.0.2-cp310-cp310-manylinux_2_35_x86_64.whl/science_optimization/algorithms/cutting_plane/ellipsoid_method.py
ellipsoid_method.py
import nlpalg import numpy as np from science_optimization.algorithms import BaseAlgorithms from science_optimization.solvers import OptimizationResults from science_optimization.builder import OptimizationProblem class EllipsoidMethod(BaseAlgorithms): """Ellipsoid algorithm method. """ # attributes _x0 = None _Q0 = None _max_cuts = None _shallow_cut = None _decomposition = None _memory = None def __init__(self, x0: np.ndarray=np.array([[]]).reshape(-1, 1), Q0: np.ndarray=np.array([[]]), max_cuts: int=32, shallow_cut: float=0, decomposition: bool=True, memory: bool=True, n_max: int=None, eps: float=None): """Ellipsoid algorithm constructor. Args: x0 : (np.ndarray) initial point. Q0 : (np.ndarray) initial inverse ellipsoid matrix. max_cuts : (int) maximum number of ellipsoid cuts per iteration. shallow_cut : (float) shallow cut option [0, 1]. decomposition: (bool) is matrix decomposition indicator (True: sqrt decomposition). memory : (bool) cut memory indicator. n_max : (int) maximum number of iterations for stop criterion. eps : (float) maximum uncertainty for stop criterion. """ # parameters self.x0 = 1.0 * x0 self.Q0 = Q0 self.max_cuts = max_cuts self.shallow_cut = shallow_cut self.decomposition = decomposition self.memory = memory if n_max is not None: self.n_max = n_max if eps is not None: self.eps = eps # getters @property def x0(self): return self._x0 @property def Q0(self): return self._Q0 @property def max_cuts(self): return self._max_cuts @property def shallow_cut(self): return self._shallow_cut @property def decomposition(self): return self._decomposition @property def memory(self): return self._memory # setters @x0.setter def x0(self, x0): if x0.shape[1] == 1: self._x0 = x0 else: raise ValueError("Initial point must be a column vector.") @Q0.setter def Q0(self, Q0): # check if input is numpy if not isinstance(Q0, np.ndarray): raise Warning("x must be a numpy array!") else: self._Q0 = Q0 @max_cuts.setter def max_cuts(self, k): if k > 0: self._max_cuts = k else: raise ValueError("Maximum number of cuts must be a positive number!") @shallow_cut.setter def shallow_cut(self, s): if 0 <= s <= 1: self._shallow_cut = s else: raise ValueError("Shallow cut must be in [0, 1).") @decomposition.setter def decomposition(self, d): # check if input is numpy if not isinstance(d, bool): raise Warning("Decomposition must be a boolean!") else: self._decomposition = d @memory.setter def memory(self, m): # check if input is numpy if not isinstance(m, bool): raise Warning("Memory must be a boolean!") else: self._memory = m def optimize(self, optimization_problem: OptimizationProblem, debug: bool=True, n_step: int=5) -> OptimizationResults: """Optimization core of Ellipsoid method. Args: optimization_problem: (OptimizationProblem) an optimization problem. debug : (bool) debug option indicator. n_step : (int) iterations steps to store optimization results. Returns: optimization_results: (OptimizationResults) optimization results. """ # get input arguments f, df, _, _, g, dg, A, b, Aeq, beq, x_min, x_max, _ = optimization_problem.op_arguments() # optimization results optimization_results = OptimizationResults() # call method if not debug: # method output xb, fxb, _, _, _, stop = nlpalg.ellipsoidmethod(f, df, g, dg, A, b, Aeq, beq, x_min, x_max, self.x0, self.Q0, self.eps, self.n_max, self.max_cuts, self.shallow_cut, self.decomposition, self.memory, debug) # results optimization_results.x = xb optimization_results.fx = fxb else: # TODO (matheus): implement iterative run _, _, x, fx, Qi, stop = nlpalg.ellipsoidmethod(f, df, g, dg, A, b, Aeq, beq, x_min, x_max, self.x0, self.Q0, self.eps, self.n_max, self.max_cuts, self.shallow_cut, self.decomposition, self.memory, debug) # optimization results optimization_results.n_iterations = x.shape[1] # number of iterations optimization_results.x = x[:, 0::n_step] optimization_results.fx = fx[:, 0::n_step] optimization_results.parameter = {'Q': Qi[..., 0::n_step]} # stop criteria if stop == 0: optimization_results.message = 'Stop by maximum number of iterations.' elif stop == 1: optimization_results.message = 'Stop by ellipsoid volume reduction.' elif stop == 2: optimization_results.message = 'Stop by empty localizing set.' elif stop == 3: optimization_results.message = 'Stop by degenerate ellipsoid.' else: optimization_results.message = 'Unknown termination cause.' return optimization_results
0.82151
0.428592
import abc import numpy as np from science_optimization.algorithms import BaseAlgorithms from science_optimization.algorithms.unidimensional import GoldenSection, MultimodalGoldenSection from science_optimization.solvers import OptimizationResults from science_optimization.algorithms.utils import hypercube_intersection from science_optimization.algorithms.utils import box_constraints from science_optimization.function import GenericFunction, BaseFunction from science_optimization.problems import GenericProblem from science_optimization.builder import OptimizationProblem from typing import Tuple class BaseSearchDirection(BaseAlgorithms): """Base class for search direction algorithms. """ # attributes _x0 = None _x_bounds = None _uni_dimensional_opt_strategy = None _fun = None def __init__(self, x0: np.ndarray, n_max: int = None, eps: float = None, line_search_method: str='gs'): """Constructor of search direction algorithms. Args: x0 : (np.ndarray) initial point. n_max : (int) maximum number of iterations. eps : (float) maximum uncertainty for stop criterion. line_search_method: (str) line search strategy ('gs': golden section or 'mgs' multimodal gs). """ self.x0 = 1.0 * x0 self.uni_dimensional_opt_strategy = line_search_method if n_max is not None: self.n_max = n_max if eps is not None: self.eps = eps # attributes interface @property def x0(self): return self._x0 @property def x_bounds(self): return self._x_bounds @property def uni_dimensional_opt_strategy(self): return self._uni_dimensional_opt_strategy @property def fun(self): return self._fun # setters @x0.setter def x0(self, x0): if x0.shape[1] == 1: self._x0 = x0 else: raise ValueError("Initial point must be a column vector.") @x_bounds.setter def x_bounds(self, x_bounds): if x_bounds.shape[1] == 2: self._x_bounds = x_bounds else: raise ValueError("x_bounds must be a nx2-array.") @fun.setter def fun(self, fun): self._fun = fun @uni_dimensional_opt_strategy.setter def uni_dimensional_opt_strategy(self, uni_d_strategy): self._uni_dimensional_opt_strategy = uni_d_strategy def correct_direction_by_box(self, d: np.ndarray, x: np.ndarray, alpha): """ check for values too near the box limits, and avoid the direction to go that way Args: d: current direction x: current x value alpha: previous value of alpha (unidimensional optimization) Returns: """ for i, d_each in enumerate(d): if x[i] + d_each * alpha > self.x_bounds[i][1] + self.eps: d[i] = self.eps ** 2 d = d / np.linalg.norm(d, 2) if x[i] + d_each * alpha < self.x_bounds[i][0] + self.eps: d[i] = self.eps ** 2 d = d / np.linalg.norm(d, 2) # methods def optimize(self, optimization_problem: OptimizationProblem, debug: bool, n_step: int=5): """Optimization core of Search direction methods. Args: optimization_problem: (OptimizationProblem) an optimization problem. debug : (bool) debug option indicator. n_step : (int) iterations steps to store optimization results. Returns: optimization_results: (OptimizationResults) optimization results. """ # instantiate results optimization_results = OptimizationResults() optimization_results.message = 'Stop by maximum number of iterations.' # define functions self.fun = optimization_problem.objective.objectives # initial point x = self.x0 # bounds self.x_bounds = np.hstack((optimization_problem.variables.x_min, optimization_problem.variables.x_max)) # correct x to bounds x = box_constraints(x, self.x_bounds) # initial results nf = optimization_problem.objective.objectives.n_functions # number of functions fx = np.zeros((nf, 0)) optimization_results.x = np.zeros((x.shape[0], 0)) # store parameters in debug option debug = False # TODO(Matheus): debug if debug: optimization_results.parameter = {'alpha': np.zeros((0,))} alpha = 1 # main loop stop = False while optimization_results.n_iterations < self.n_max and not stop: # compute search direction d = self._search_direction(fun=self.fun, x=x) self.correct_direction_by_box(d, x, alpha) # compute search interval interval = self._search_interval(x=x, d=d) # uni-dimensional optimization alpha, nfe = self._uni_dimensional_optimization(x=x, d=d, fun=self.fun, interval=interval, strategy=self.uni_dimensional_opt_strategy, debug=debug) if debug: alpha = alpha[:, -1] # update function evaluation count optimization_results.n_function_evaluations += nfe # step towards search direction y = x + alpha*d fx_x = self.fun.eval(x) fx_y = self.fun.eval(y) # stop criteria: stalled if np.linalg.norm(x-y, 2) < self.eps: optimization_results.message = 'Stop by stalled search.' stop = True # stop criteria: unchanged function value if np.abs(fx_x - fx_y) < self.eps: optimization_results.message = 'Stop by unchanged function value.' stop = True # stop criteria: null gradient if np.linalg.norm(self.fun.gradient(y), 2) < self.eps: optimization_results.message = 'Stop by null gradient.' stop = True # update x x = y.copy() fx_x = fx_y.copy() # update results if debug and not (optimization_results.n_iterations + 1) % n_step: optimization_results.x = np.hstack((optimization_results.x, x)) fx = np.hstack((fx, fx_x)) optimization_results.fx = fx optimization_results.parameter['alpha'] = np.hstack((optimization_results.parameter['alpha'], np.array(alpha))) if not debug: optimization_results.x = x optimization_results.fx = fx_x # update count optimization_results.n_iterations += 1 return optimization_results @abc.abstractmethod def _search_direction(self, **kwargs) -> np.ndarray: """Abstract search direction.""" pass @staticmethod def _uni_dimensional_optimization(x: np.ndarray, d: np.ndarray, fun: BaseFunction, interval: list, strategy: str, debug: bool) -> Tuple[np.ndarray, int]: """Unidimensional optimization. Args: x : (np.ndarray) current point. d : (np.ndarray) search direction. fun : (BaseFunction) function object. interval: (list) interval of search [a, b]. strategy: (str) which uni-dimensional strategy to use. debug : (bool) debug option indicator. Returns: alpha: optimal step nfe : number of function evaluations """ # objective function def line_search_function(a): return fun.eval(x + a*d) # function encapsulation f = [GenericFunction(func=line_search_function, n=1)] interval = np.array(interval).reshape(1, -1) # build problem op = OptimizationProblem(builder=GenericProblem(f=f, eq_cons=[], ineq_cons=[], x_bounds=interval)) # instantiate uni-dimensional optimization class if strategy == "gs": op_result = GoldenSection() elif strategy == 'mgs': op_result = MultimodalGoldenSection(all_minima=False) else: raise Warning("Unknown unidimensional optimization strategy.") # optimize output = op_result.optimize(optimization_problem=op, debug=debug) alpha = output.x nfe = output.n_function_evaluations return alpha, nfe def _search_interval(self, x: np.ndarray, d: np.ndarray) -> list: """Determination of search interval. Args: x: (np.ndarray) current point. d: (np.ndarray) search direction. Returns: interval: (list) [a, b] search interval. """ # interval a = 0 if np.linalg.norm(d) < self.eps: b = a else: b, _ = hypercube_intersection(x=x, d=d, x_bounds=self.x_bounds) # maximum step interval = [a, b] return interval
science-optimization
/science_optimization-9.0.2-cp310-cp310-manylinux_2_35_x86_64.whl/science_optimization/algorithms/search_direction/base_search_direction.py
base_search_direction.py
import abc import numpy as np from science_optimization.algorithms import BaseAlgorithms from science_optimization.algorithms.unidimensional import GoldenSection, MultimodalGoldenSection from science_optimization.solvers import OptimizationResults from science_optimization.algorithms.utils import hypercube_intersection from science_optimization.algorithms.utils import box_constraints from science_optimization.function import GenericFunction, BaseFunction from science_optimization.problems import GenericProblem from science_optimization.builder import OptimizationProblem from typing import Tuple class BaseSearchDirection(BaseAlgorithms): """Base class for search direction algorithms. """ # attributes _x0 = None _x_bounds = None _uni_dimensional_opt_strategy = None _fun = None def __init__(self, x0: np.ndarray, n_max: int = None, eps: float = None, line_search_method: str='gs'): """Constructor of search direction algorithms. Args: x0 : (np.ndarray) initial point. n_max : (int) maximum number of iterations. eps : (float) maximum uncertainty for stop criterion. line_search_method: (str) line search strategy ('gs': golden section or 'mgs' multimodal gs). """ self.x0 = 1.0 * x0 self.uni_dimensional_opt_strategy = line_search_method if n_max is not None: self.n_max = n_max if eps is not None: self.eps = eps # attributes interface @property def x0(self): return self._x0 @property def x_bounds(self): return self._x_bounds @property def uni_dimensional_opt_strategy(self): return self._uni_dimensional_opt_strategy @property def fun(self): return self._fun # setters @x0.setter def x0(self, x0): if x0.shape[1] == 1: self._x0 = x0 else: raise ValueError("Initial point must be a column vector.") @x_bounds.setter def x_bounds(self, x_bounds): if x_bounds.shape[1] == 2: self._x_bounds = x_bounds else: raise ValueError("x_bounds must be a nx2-array.") @fun.setter def fun(self, fun): self._fun = fun @uni_dimensional_opt_strategy.setter def uni_dimensional_opt_strategy(self, uni_d_strategy): self._uni_dimensional_opt_strategy = uni_d_strategy def correct_direction_by_box(self, d: np.ndarray, x: np.ndarray, alpha): """ check for values too near the box limits, and avoid the direction to go that way Args: d: current direction x: current x value alpha: previous value of alpha (unidimensional optimization) Returns: """ for i, d_each in enumerate(d): if x[i] + d_each * alpha > self.x_bounds[i][1] + self.eps: d[i] = self.eps ** 2 d = d / np.linalg.norm(d, 2) if x[i] + d_each * alpha < self.x_bounds[i][0] + self.eps: d[i] = self.eps ** 2 d = d / np.linalg.norm(d, 2) # methods def optimize(self, optimization_problem: OptimizationProblem, debug: bool, n_step: int=5): """Optimization core of Search direction methods. Args: optimization_problem: (OptimizationProblem) an optimization problem. debug : (bool) debug option indicator. n_step : (int) iterations steps to store optimization results. Returns: optimization_results: (OptimizationResults) optimization results. """ # instantiate results optimization_results = OptimizationResults() optimization_results.message = 'Stop by maximum number of iterations.' # define functions self.fun = optimization_problem.objective.objectives # initial point x = self.x0 # bounds self.x_bounds = np.hstack((optimization_problem.variables.x_min, optimization_problem.variables.x_max)) # correct x to bounds x = box_constraints(x, self.x_bounds) # initial results nf = optimization_problem.objective.objectives.n_functions # number of functions fx = np.zeros((nf, 0)) optimization_results.x = np.zeros((x.shape[0], 0)) # store parameters in debug option debug = False # TODO(Matheus): debug if debug: optimization_results.parameter = {'alpha': np.zeros((0,))} alpha = 1 # main loop stop = False while optimization_results.n_iterations < self.n_max and not stop: # compute search direction d = self._search_direction(fun=self.fun, x=x) self.correct_direction_by_box(d, x, alpha) # compute search interval interval = self._search_interval(x=x, d=d) # uni-dimensional optimization alpha, nfe = self._uni_dimensional_optimization(x=x, d=d, fun=self.fun, interval=interval, strategy=self.uni_dimensional_opt_strategy, debug=debug) if debug: alpha = alpha[:, -1] # update function evaluation count optimization_results.n_function_evaluations += nfe # step towards search direction y = x + alpha*d fx_x = self.fun.eval(x) fx_y = self.fun.eval(y) # stop criteria: stalled if np.linalg.norm(x-y, 2) < self.eps: optimization_results.message = 'Stop by stalled search.' stop = True # stop criteria: unchanged function value if np.abs(fx_x - fx_y) < self.eps: optimization_results.message = 'Stop by unchanged function value.' stop = True # stop criteria: null gradient if np.linalg.norm(self.fun.gradient(y), 2) < self.eps: optimization_results.message = 'Stop by null gradient.' stop = True # update x x = y.copy() fx_x = fx_y.copy() # update results if debug and not (optimization_results.n_iterations + 1) % n_step: optimization_results.x = np.hstack((optimization_results.x, x)) fx = np.hstack((fx, fx_x)) optimization_results.fx = fx optimization_results.parameter['alpha'] = np.hstack((optimization_results.parameter['alpha'], np.array(alpha))) if not debug: optimization_results.x = x optimization_results.fx = fx_x # update count optimization_results.n_iterations += 1 return optimization_results @abc.abstractmethod def _search_direction(self, **kwargs) -> np.ndarray: """Abstract search direction.""" pass @staticmethod def _uni_dimensional_optimization(x: np.ndarray, d: np.ndarray, fun: BaseFunction, interval: list, strategy: str, debug: bool) -> Tuple[np.ndarray, int]: """Unidimensional optimization. Args: x : (np.ndarray) current point. d : (np.ndarray) search direction. fun : (BaseFunction) function object. interval: (list) interval of search [a, b]. strategy: (str) which uni-dimensional strategy to use. debug : (bool) debug option indicator. Returns: alpha: optimal step nfe : number of function evaluations """ # objective function def line_search_function(a): return fun.eval(x + a*d) # function encapsulation f = [GenericFunction(func=line_search_function, n=1)] interval = np.array(interval).reshape(1, -1) # build problem op = OptimizationProblem(builder=GenericProblem(f=f, eq_cons=[], ineq_cons=[], x_bounds=interval)) # instantiate uni-dimensional optimization class if strategy == "gs": op_result = GoldenSection() elif strategy == 'mgs': op_result = MultimodalGoldenSection(all_minima=False) else: raise Warning("Unknown unidimensional optimization strategy.") # optimize output = op_result.optimize(optimization_problem=op, debug=debug) alpha = output.x nfe = output.n_function_evaluations return alpha, nfe def _search_interval(self, x: np.ndarray, d: np.ndarray) -> list: """Determination of search interval. Args: x: (np.ndarray) current point. d: (np.ndarray) search direction. Returns: interval: (list) [a, b] search interval. """ # interval a = 0 if np.linalg.norm(d) < self.eps: b = a else: b, _ = hypercube_intersection(x=x, d=d, x_bounds=self.x_bounds) # maximum step interval = [a, b] return interval
0.809803
0.443902
from science_optimization.algorithms import BaseAlgorithms from science_optimization.solvers import OptimizationResults from science_optimization.function import LinearFunction from science_optimization.builder import OptimizationProblem from scipy.optimize import linprog import numpy as np class ScipyBaseLinear(BaseAlgorithms): """Base scipy linear method. """ # parameters _method = None def __init__(self, method=None, n_max=None): """Constructor. Args: method: 'simplex' or 'interior-point'. n_max: maximum number of iterations. """ if n_max is not None: self.n_max = n_max if method is not None: self.method = method # get @property def method(self): """Gets method.""" return self._method # sets @method.setter def method(self, method): """Sets method.""" if method == 'simplex' or method == 'interior-point': self._method = method else: raise ValueError("method must be either 'simplex' or 'interior-point'!") # optimize method def optimize(self, optimization_problem: OptimizationProblem, debug: bool, n_step: int) -> OptimizationResults: """Optimization core. Args: optimization_problem: (OptimizationProblem) an optimization problem. debug : (bool) debug option indicator. n_step : (int) iterations steps to store optimization results. Returns: optimization_results: (OptimizationResults) optimization results. """ # optimization problem check self.input(optimization_problem) # get input arguments _, _, c, d, _, _, A, b, Aeq, beq, x_min, x_max, _ = optimization_problem.op_arguments() # output optimization_results = OptimizationResults() output = linprog(c.ravel(), method=self.method, A_ub=A, b_ub=b, A_eq=Aeq, b_eq=beq, bounds=np.hstack((x_min, x_max)), options={'maxiter': self.n_max}) optimization_results.x = output.x.reshape(-1, 1) if isinstance(output.x, np.ndarray) else output.x optimization_results.fx = output.fun optimization_results.message = output.message optimization_results.n_iterations = output.nit return optimization_results @staticmethod def input(op: OptimizationProblem): """Optimization problem input. Args: op: (OptimizationProblem) an optimization problem instance. """ # number of functions test if op.objective.objectives.n_functions > 1: raise ValueError('Not yet implemented multiobjective linear programming.') # linear objective function test if not isinstance(op.objective.objectives.functions[0], LinearFunction): raise ValueError('Objective function must be linear!') if op.nonlinear_functions_indices(op.constraints.inequality_constraints.functions) \ or op.nonlinear_functions_indices(op.constraints.equality_constraints.functions): raise ValueError('Constraints must be linear.')
science-optimization
/science_optimization-9.0.2-cp310-cp310-manylinux_2_35_x86_64.whl/science_optimization/algorithms/linear_programming/scipy_base_linear.py
scipy_base_linear.py
from science_optimization.algorithms import BaseAlgorithms from science_optimization.solvers import OptimizationResults from science_optimization.function import LinearFunction from science_optimization.builder import OptimizationProblem from scipy.optimize import linprog import numpy as np class ScipyBaseLinear(BaseAlgorithms): """Base scipy linear method. """ # parameters _method = None def __init__(self, method=None, n_max=None): """Constructor. Args: method: 'simplex' or 'interior-point'. n_max: maximum number of iterations. """ if n_max is not None: self.n_max = n_max if method is not None: self.method = method # get @property def method(self): """Gets method.""" return self._method # sets @method.setter def method(self, method): """Sets method.""" if method == 'simplex' or method == 'interior-point': self._method = method else: raise ValueError("method must be either 'simplex' or 'interior-point'!") # optimize method def optimize(self, optimization_problem: OptimizationProblem, debug: bool, n_step: int) -> OptimizationResults: """Optimization core. Args: optimization_problem: (OptimizationProblem) an optimization problem. debug : (bool) debug option indicator. n_step : (int) iterations steps to store optimization results. Returns: optimization_results: (OptimizationResults) optimization results. """ # optimization problem check self.input(optimization_problem) # get input arguments _, _, c, d, _, _, A, b, Aeq, beq, x_min, x_max, _ = optimization_problem.op_arguments() # output optimization_results = OptimizationResults() output = linprog(c.ravel(), method=self.method, A_ub=A, b_ub=b, A_eq=Aeq, b_eq=beq, bounds=np.hstack((x_min, x_max)), options={'maxiter': self.n_max}) optimization_results.x = output.x.reshape(-1, 1) if isinstance(output.x, np.ndarray) else output.x optimization_results.fx = output.fun optimization_results.message = output.message optimization_results.n_iterations = output.nit return optimization_results @staticmethod def input(op: OptimizationProblem): """Optimization problem input. Args: op: (OptimizationProblem) an optimization problem instance. """ # number of functions test if op.objective.objectives.n_functions > 1: raise ValueError('Not yet implemented multiobjective linear programming.') # linear objective function test if not isinstance(op.objective.objectives.functions[0], LinearFunction): raise ValueError('Objective function must be linear!') if op.nonlinear_functions_indices(op.constraints.inequality_constraints.functions) \ or op.nonlinear_functions_indices(op.constraints.equality_constraints.functions): raise ValueError('Constraints must be linear.')
0.944382
0.388241
from science_optimization.algorithms import BaseAlgorithms from science_optimization.solvers import OptimizationResults from science_optimization.function import LinearFunction from science_optimization.builder import OptimizationProblem from ortools.linear_solver import pywraplp import numpy as np class Glop(BaseAlgorithms): """Interface to Google GLOP solver (https://developers.google.com/optimization/install/).""" # parameters _t_max = None def __init__(self, t_max: float=5): """Constructor of glop optimization solver. Args: t_max: (float) time limit in seconds. """ self.t_max = t_max # get @property def t_max(self): """Gets method.""" return self._t_max # sets @t_max.setter def t_max(self, t_max): """Sets method.""" self._t_max = int(t_max/1e3) # optimize method def optimize(self, optimization_problem: OptimizationProblem, debug: bool = False, n_step: int = 0) -> OptimizationResults: """Optimization core. Args: optimization_problem: (OptimizationProblem) an optimization problem. debug : (bool) debug option indicator. n_step : (int) iterations steps to store optimization results. Returns: optimization_results: (OptimizationResults) optimization results. """ # optimization problem check self.input(optimization_problem) # get input arguments _, _, c, d, _, _, A, b, Aeq, beq, x_min, x_max, x_type = optimization_problem.op_arguments() # instantiate solver object if 'd' in x_type: problem_type = 'MIP' problem_solver = pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING else: problem_type = 'LP' problem_solver = pywraplp.Solver.GLOP_LINEAR_PROGRAMMING solver = pywraplp.Solver(problem_type, problem_solver) # create variables n = x_min.shape[0] x = [] for i in range(n): if x_type[i] == 'c': x.append(solver.NumVar(float(x_min[i, 0]), float(x_max[i, 0]), "x_"+str(i))) elif x_type[i] == 'd': x.append(solver.IntVar(float(x_min[i, 0]), float(x_max[i, 0]), "x_"+str(i))) else: raise ValueError("Variable type must be either 'c' or 'd'.") # create inequality constraints (A*x <= b) mi = A.shape[0] ic = [[]] * mi for i in range(mi): ic[i] = solver.Constraint(-solver.infinity(), float(b[i, 0])) for j in range(n): ic[i].SetCoefficient(x[j], float(A[i, j])) # create equality constraints (Aeq*x = beq) me = Aeq.shape[0] if Aeq is not None else 0 ec = [[]] * me for i in range(me): ec[i] = solver.Constraint(float(beq[i, 0]), float(beq[i, 0])) for j in range(n): ec[i].SetCoefficient(x[j], float(Aeq[i, j])) # set objective function objective = solver.Objective() for i in range(n): objective.SetCoefficient(x[i], float(c[0, i])) objective.SetMinimization() # set time limit solver.SetTimeLimit(self.t_max) # solver solver.Solve() # output op_results = OptimizationResults() xb = np.zeros((n, 1)) for i in range(n): xb[i, 0] = x[i].solution_value() op_results.x = xb op_results.fx = np.array([solver.Objective().Value()]) return op_results @staticmethod def input(op: OptimizationProblem): """Optimization problem input. Args: op: (OptimizationProblem)an optimization problem instance """ # number of functions test if op.objective.objectives.n_functions > 1: raise ValueError('Not yet implemented multiobjective linear programming.') # linear objective function test if not isinstance(op.objective.objectives.functions[0], LinearFunction): raise ValueError('Objective function must be linear!') if op.nonlinear_functions_indices(op.constraints.inequality_constraints.functions) \ or op.nonlinear_functions_indices(op.constraints.equality_constraints.functions): raise ValueError('Constraints must be linear.')
science-optimization
/science_optimization-9.0.2-cp310-cp310-manylinux_2_35_x86_64.whl/science_optimization/algorithms/linear_programming/glop.py
glop.py
from science_optimization.algorithms import BaseAlgorithms from science_optimization.solvers import OptimizationResults from science_optimization.function import LinearFunction from science_optimization.builder import OptimizationProblem from ortools.linear_solver import pywraplp import numpy as np class Glop(BaseAlgorithms): """Interface to Google GLOP solver (https://developers.google.com/optimization/install/).""" # parameters _t_max = None def __init__(self, t_max: float=5): """Constructor of glop optimization solver. Args: t_max: (float) time limit in seconds. """ self.t_max = t_max # get @property def t_max(self): """Gets method.""" return self._t_max # sets @t_max.setter def t_max(self, t_max): """Sets method.""" self._t_max = int(t_max/1e3) # optimize method def optimize(self, optimization_problem: OptimizationProblem, debug: bool = False, n_step: int = 0) -> OptimizationResults: """Optimization core. Args: optimization_problem: (OptimizationProblem) an optimization problem. debug : (bool) debug option indicator. n_step : (int) iterations steps to store optimization results. Returns: optimization_results: (OptimizationResults) optimization results. """ # optimization problem check self.input(optimization_problem) # get input arguments _, _, c, d, _, _, A, b, Aeq, beq, x_min, x_max, x_type = optimization_problem.op_arguments() # instantiate solver object if 'd' in x_type: problem_type = 'MIP' problem_solver = pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING else: problem_type = 'LP' problem_solver = pywraplp.Solver.GLOP_LINEAR_PROGRAMMING solver = pywraplp.Solver(problem_type, problem_solver) # create variables n = x_min.shape[0] x = [] for i in range(n): if x_type[i] == 'c': x.append(solver.NumVar(float(x_min[i, 0]), float(x_max[i, 0]), "x_"+str(i))) elif x_type[i] == 'd': x.append(solver.IntVar(float(x_min[i, 0]), float(x_max[i, 0]), "x_"+str(i))) else: raise ValueError("Variable type must be either 'c' or 'd'.") # create inequality constraints (A*x <= b) mi = A.shape[0] ic = [[]] * mi for i in range(mi): ic[i] = solver.Constraint(-solver.infinity(), float(b[i, 0])) for j in range(n): ic[i].SetCoefficient(x[j], float(A[i, j])) # create equality constraints (Aeq*x = beq) me = Aeq.shape[0] if Aeq is not None else 0 ec = [[]] * me for i in range(me): ec[i] = solver.Constraint(float(beq[i, 0]), float(beq[i, 0])) for j in range(n): ec[i].SetCoefficient(x[j], float(Aeq[i, j])) # set objective function objective = solver.Objective() for i in range(n): objective.SetCoefficient(x[i], float(c[0, i])) objective.SetMinimization() # set time limit solver.SetTimeLimit(self.t_max) # solver solver.Solve() # output op_results = OptimizationResults() xb = np.zeros((n, 1)) for i in range(n): xb[i, 0] = x[i].solution_value() op_results.x = xb op_results.fx = np.array([solver.Objective().Value()]) return op_results @staticmethod def input(op: OptimizationProblem): """Optimization problem input. Args: op: (OptimizationProblem)an optimization problem instance """ # number of functions test if op.objective.objectives.n_functions > 1: raise ValueError('Not yet implemented multiobjective linear programming.') # linear objective function test if not isinstance(op.objective.objectives.functions[0], LinearFunction): raise ValueError('Objective function must be linear!') if op.nonlinear_functions_indices(op.constraints.inequality_constraints.functions) \ or op.nonlinear_functions_indices(op.constraints.equality_constraints.functions): raise ValueError('Constraints must be linear.')
0.932176
0.500854
import numpy as np from .base_function import BaseFunction class PolynomialFunction(BaseFunction): """ Class that implements a polynomial function """ _flag_num_g = False # this function uses analytical gradient def __init__(self, exponents, coefficients): """The constructor for the polynomial function instance. Args: exponents: A matrix with the exponents of the function in order of the variables for each element of the function coefficients: A vector with the coefficients of each element of the function Example: For the function ax² + bxy + cy²: exponents : [[2,0],[1,1],[0,2]] coefficients : [a, b, c] """ # parameters check self.numpy_check(exponents, coefficients) self.parameters = {'e': exponents, 'c': coefficients} @staticmethod def aux_eval(f, i, x): return ((np.tile((x[:, i]).transpose(), (f.parameters['e'].shape[0], 1)) ** f.parameters['e']).prod(axis=1) * f.parameters['c']).sum(axis=0) # TODO: explain this function def aux_grad_j(self, i, j, x, dfdx): C = np.copy(self.parameters['e']) val = np.copy(C[:, j]) d = np.where(val > 0) C[d, j] = C[d, j] - 1 dfdx[j, i] = ((np.tile((x[:, i]).transpose(), (self.parameters['e'].shape[0], 1)) ** C).prod(axis=1) * val * self.parameters['c']).sum(axis=0) # TODO: explain this function def aux_grad_i(self, i, j, x, dfdx): grad_j_vec = np.vectorize(PolynomialFunction.aux_grad_j, excluded=['self', 'i', 'x', 'dfdx'], otypes=[float]) grad_j_vec(self, i=i, j=j, x=x, dfdx=dfdx) def dimension(self): return len(self.parameters['e'][0]) def eval(self, x): """ Polynomial function evaluation. Args: x: A matrix with the evaluation points, the structure of the matrix should have the tuples in the columns, so each column is an evaluation point Returns: aux: Returns a vector with the evaluation value in each point (the index of the value matches the index of the column of the evaluation point) Example: For the function ax² + bxy + cy²: With x = [[1,2,3],[3,2,1]] Returns: [a + 3b + 9c, 4a + 4b + 4c, 9a + 3b + c] For the function x³ + y³ + z³ With x = [[1],[2],[3]] Returns: [36] """ # input check self.input_check(x) # eval num = x.shape[1] fx = np.arange(start=0, stop=num, step=1) eval_vec = np.vectorize(self.aux_eval, excluded=['f', 'x']) fx = eval_vec(f=self, i=fx, x=x) return fx def gradient(self, x): """Polynomial gradient evaluation. Args: x: A matrix with the evaluation points, the structure of the matrix should have the tuples in the columns, so each column is an evaluation point Returns: dfdx: Returns a matrix with the gradient vector in each point (the index of the row where the gradient is matches the index of the column of the evaluation point) Example: For the function ax² + bxy + cy²: With x = [[1,2,3],[3,2,1]] The gradient should be : [2ax + by, 2cy + bx] Returns:[[2a + 3b, 6c + b],[4a + 2b, 4c + 2b],[6a + b, 2c + 3b]] For the function x³ + y³ + z³ With x = [[1],[2],[3]] The gradient should be : [3x²,3y²,3z²] Returns: [3, 12, 27] """ # input check self.input_check(x) # gradient rows, columns = x.shape if self.parameters['c'].size <= 1: dfdx = np.zeros((rows, columns)) else: dfdx = np.zeros((rows, columns)) auxi = np.arange(start=0, stop=columns, step=1) auxj = np.arange(start=0, stop=rows, step=1) grad_i_vec = \ np.vectorize(PolynomialFunction.aux_grad_i, excluded=['self', 'j', 'x', 'dfdx'], otypes={object}) np.array(grad_i_vec(self, i=auxi, j=auxj, x=x, dfdx=dfdx)) return dfdx def aux_hes_k(self, i, j, k, x, hfdx): C = np.copy(self.parameters['e']) valj = np.copy(C[:, j]) d = np.where(valj > 0) # PolynomialFunction.indices(valj, lambda x: x > 0) for a in d: C[a, j] = C[a, j] - 1 valk = np.copy(C[:, k]) d = np.where(valk > 0) # PolynomialFunction.indices(valk, lambda x: x > 0) for a in d: C[a, k] = C[a, k] - 1 hfdx[j, k, i] = ((np.tile((x[:, i]).transpose(), (self.parameters['e'].shape[0], 1)) ** C).prod( axis=1) * valj * valk * self.parameters['c']).sum(axis=0) hfdx[k, j, i] = hfdx[j, k, i] return hfdx def aux_hes_j(self, i, j, k, x, hfdx): C = np.copy(self.parameters['e']) val = np.copy(C[:, j]) val = val * (val - 1) d = np.where(val > 1) # PolynomialFunction.indices(val, lambda x: x > 1) for a in d: C[a, j] = C[a, j] - 2 hfdx[j, j, i] = ((np.tile((x[:, i]).transpose(), (self.parameters['e'].shape[0], 1)) ** C).prod(axis=1) * val * self.parameters['c']).sum(axis=0) grad_hes_k = np.vectorize(PolynomialFunction.aux_hes_k, excluded=['i', 'j', 'x', 'hfdx'], otypes={object}) grad_hes_k(self, i=i, j=j, k=k, x=x, hfdx=hfdx) def aux_hes_i(self, i, j, k, x, hfdx): grad_hes_j = np.vectorize(PolynomialFunction.aux_hes_j, excluded=['i', 'k', 'x', 'hfdx'], otypes={object}) grad_hes_j(self, i=i, j=j, k=k, x=x, hfdx=hfdx) def hessian(self, x): """Polynomial hessian evaluation. Args: x: A matrix with the evaluation points, the structure of the matrix should have the tuples in the columns, so each column is an evaluation point Returns: hfdx: Returns a vector of matrices with the hessian matrix in each point (the index of the row where the hessian is matches the index of the column of the evaluation point) Example: For the function ax² + bxy + cy²: With x = [[1,2,3],[3,2,1]] The gradient should be : [2ax + by, 2cy + bx] So the hessian should be : [[2a,b],[b,2c]] Returns:[[[2a,b],[b,2c]],[[2a,b],[b,2c]],[[2a,b],[b,2c]]] For the function x³ + y³ + z³ With x = [[1],[2],[3]] The gradient should be : [3x²,3y²,3z²] So the hessian should be : [[6x,0,0],[0,6y,0],[0,0,6z]] Returns: [[6,0,0],[0,12,0],[0,0,18]] """ # input check self.input_check(x) # hessian rows, columns = x.shape if self.parameters['c'].size < rows: hfdx = np.zeros((rows, rows, columns)) else: hfdx = np.zeros((rows, rows, columns)) auxi = np.arange(start=0, stop=columns, step=1) auxj = np.arange(start=0, stop=rows, step=1) auxk = np.arange(start=0, stop=rows, step=1) hes_i_vec = np.vectorize(PolynomialFunction.aux_hes_i, excluded=['self', 'j', 'k', 'x', 'hfdx'], otypes={object}) np.array(hes_i_vec(self, i=auxi, j=auxj, k=auxk, x=x, hfdx=hfdx)) return hfdx.transpose() def input_check(self, x): """Check input dimension. Args: x: point to be evaluated. Returns: indicator: indicator if input os consistent """ # check if input is numpy self.numpy_check(x) # check dimension x_dim = x.shape param_dim = len(self.parameters['e'][0]) if len(x_dim) == 1: raise Warning("x must be a {}xm (m>0) array!".format(param_dim)) if not x_dim[0] == param_dim: raise Warning("x must be a {}xm array!".format(param_dim)) if not all(len(e) == param_dim for e in self.parameters['e']): raise Warning("List of exponents must have the same dimension!")
science-optimization
/science_optimization-9.0.2-cp310-cp310-manylinux_2_35_x86_64.whl/science_optimization/function/polynomial_function.py
polynomial_function.py
import numpy as np from .base_function import BaseFunction class PolynomialFunction(BaseFunction): """ Class that implements a polynomial function """ _flag_num_g = False # this function uses analytical gradient def __init__(self, exponents, coefficients): """The constructor for the polynomial function instance. Args: exponents: A matrix with the exponents of the function in order of the variables for each element of the function coefficients: A vector with the coefficients of each element of the function Example: For the function ax² + bxy + cy²: exponents : [[2,0],[1,1],[0,2]] coefficients : [a, b, c] """ # parameters check self.numpy_check(exponents, coefficients) self.parameters = {'e': exponents, 'c': coefficients} @staticmethod def aux_eval(f, i, x): return ((np.tile((x[:, i]).transpose(), (f.parameters['e'].shape[0], 1)) ** f.parameters['e']).prod(axis=1) * f.parameters['c']).sum(axis=0) # TODO: explain this function def aux_grad_j(self, i, j, x, dfdx): C = np.copy(self.parameters['e']) val = np.copy(C[:, j]) d = np.where(val > 0) C[d, j] = C[d, j] - 1 dfdx[j, i] = ((np.tile((x[:, i]).transpose(), (self.parameters['e'].shape[0], 1)) ** C).prod(axis=1) * val * self.parameters['c']).sum(axis=0) # TODO: explain this function def aux_grad_i(self, i, j, x, dfdx): grad_j_vec = np.vectorize(PolynomialFunction.aux_grad_j, excluded=['self', 'i', 'x', 'dfdx'], otypes=[float]) grad_j_vec(self, i=i, j=j, x=x, dfdx=dfdx) def dimension(self): return len(self.parameters['e'][0]) def eval(self, x): """ Polynomial function evaluation. Args: x: A matrix with the evaluation points, the structure of the matrix should have the tuples in the columns, so each column is an evaluation point Returns: aux: Returns a vector with the evaluation value in each point (the index of the value matches the index of the column of the evaluation point) Example: For the function ax² + bxy + cy²: With x = [[1,2,3],[3,2,1]] Returns: [a + 3b + 9c, 4a + 4b + 4c, 9a + 3b + c] For the function x³ + y³ + z³ With x = [[1],[2],[3]] Returns: [36] """ # input check self.input_check(x) # eval num = x.shape[1] fx = np.arange(start=0, stop=num, step=1) eval_vec = np.vectorize(self.aux_eval, excluded=['f', 'x']) fx = eval_vec(f=self, i=fx, x=x) return fx def gradient(self, x): """Polynomial gradient evaluation. Args: x: A matrix with the evaluation points, the structure of the matrix should have the tuples in the columns, so each column is an evaluation point Returns: dfdx: Returns a matrix with the gradient vector in each point (the index of the row where the gradient is matches the index of the column of the evaluation point) Example: For the function ax² + bxy + cy²: With x = [[1,2,3],[3,2,1]] The gradient should be : [2ax + by, 2cy + bx] Returns:[[2a + 3b, 6c + b],[4a + 2b, 4c + 2b],[6a + b, 2c + 3b]] For the function x³ + y³ + z³ With x = [[1],[2],[3]] The gradient should be : [3x²,3y²,3z²] Returns: [3, 12, 27] """ # input check self.input_check(x) # gradient rows, columns = x.shape if self.parameters['c'].size <= 1: dfdx = np.zeros((rows, columns)) else: dfdx = np.zeros((rows, columns)) auxi = np.arange(start=0, stop=columns, step=1) auxj = np.arange(start=0, stop=rows, step=1) grad_i_vec = \ np.vectorize(PolynomialFunction.aux_grad_i, excluded=['self', 'j', 'x', 'dfdx'], otypes={object}) np.array(grad_i_vec(self, i=auxi, j=auxj, x=x, dfdx=dfdx)) return dfdx def aux_hes_k(self, i, j, k, x, hfdx): C = np.copy(self.parameters['e']) valj = np.copy(C[:, j]) d = np.where(valj > 0) # PolynomialFunction.indices(valj, lambda x: x > 0) for a in d: C[a, j] = C[a, j] - 1 valk = np.copy(C[:, k]) d = np.where(valk > 0) # PolynomialFunction.indices(valk, lambda x: x > 0) for a in d: C[a, k] = C[a, k] - 1 hfdx[j, k, i] = ((np.tile((x[:, i]).transpose(), (self.parameters['e'].shape[0], 1)) ** C).prod( axis=1) * valj * valk * self.parameters['c']).sum(axis=0) hfdx[k, j, i] = hfdx[j, k, i] return hfdx def aux_hes_j(self, i, j, k, x, hfdx): C = np.copy(self.parameters['e']) val = np.copy(C[:, j]) val = val * (val - 1) d = np.where(val > 1) # PolynomialFunction.indices(val, lambda x: x > 1) for a in d: C[a, j] = C[a, j] - 2 hfdx[j, j, i] = ((np.tile((x[:, i]).transpose(), (self.parameters['e'].shape[0], 1)) ** C).prod(axis=1) * val * self.parameters['c']).sum(axis=0) grad_hes_k = np.vectorize(PolynomialFunction.aux_hes_k, excluded=['i', 'j', 'x', 'hfdx'], otypes={object}) grad_hes_k(self, i=i, j=j, k=k, x=x, hfdx=hfdx) def aux_hes_i(self, i, j, k, x, hfdx): grad_hes_j = np.vectorize(PolynomialFunction.aux_hes_j, excluded=['i', 'k', 'x', 'hfdx'], otypes={object}) grad_hes_j(self, i=i, j=j, k=k, x=x, hfdx=hfdx) def hessian(self, x): """Polynomial hessian evaluation. Args: x: A matrix with the evaluation points, the structure of the matrix should have the tuples in the columns, so each column is an evaluation point Returns: hfdx: Returns a vector of matrices with the hessian matrix in each point (the index of the row where the hessian is matches the index of the column of the evaluation point) Example: For the function ax² + bxy + cy²: With x = [[1,2,3],[3,2,1]] The gradient should be : [2ax + by, 2cy + bx] So the hessian should be : [[2a,b],[b,2c]] Returns:[[[2a,b],[b,2c]],[[2a,b],[b,2c]],[[2a,b],[b,2c]]] For the function x³ + y³ + z³ With x = [[1],[2],[3]] The gradient should be : [3x²,3y²,3z²] So the hessian should be : [[6x,0,0],[0,6y,0],[0,0,6z]] Returns: [[6,0,0],[0,12,0],[0,0,18]] """ # input check self.input_check(x) # hessian rows, columns = x.shape if self.parameters['c'].size < rows: hfdx = np.zeros((rows, rows, columns)) else: hfdx = np.zeros((rows, rows, columns)) auxi = np.arange(start=0, stop=columns, step=1) auxj = np.arange(start=0, stop=rows, step=1) auxk = np.arange(start=0, stop=rows, step=1) hes_i_vec = np.vectorize(PolynomialFunction.aux_hes_i, excluded=['self', 'j', 'k', 'x', 'hfdx'], otypes={object}) np.array(hes_i_vec(self, i=auxi, j=auxj, k=auxk, x=x, hfdx=hfdx)) return hfdx.transpose() def input_check(self, x): """Check input dimension. Args: x: point to be evaluated. Returns: indicator: indicator if input os consistent """ # check if input is numpy self.numpy_check(x) # check dimension x_dim = x.shape param_dim = len(self.parameters['e'][0]) if len(x_dim) == 1: raise Warning("x must be a {}xm (m>0) array!".format(param_dim)) if not x_dim[0] == param_dim: raise Warning("x must be a {}xm array!".format(param_dim)) if not all(len(e) == param_dim for e in self.parameters['e']): raise Warning("List of exponents must have the same dimension!")
0.818845
0.755997
from .base_function import BaseFunction class GenericFunction(BaseFunction): """Class to convert a python function to a BaseFunction instance.""" def __init__(self, func, n, grad_func=None): """Constructor of a generic function. Args: func : (callable) instance of a python function for function evaluation n : (int) number of function arguments grad_func: (callable) instance of a python function for gradient evaluation """ # check if object is a function if not callable(func): raise Warning("func must be callable.") if grad_func is not None and not callable(grad_func): raise Warning("grad_func must be callable.") if grad_func is not None: self.flag_num_g = False # set parameters self.parameters = {'func': func, 'n': n, 'grad_func': grad_func} def dimension(self): return self.parameters['n'] def eval(self, x): """Evaluates generic function Args: x: (numpy array) evaluation point. Returns: fx: (numpy array) function evaluation at point x. """ # input check self.input_check(x) # function evaluation f = self.parameters['func'] fx = f(x) return fx def gradient(self, x): """Gradient of generic function Args: x: (numpy array) evaluation point. Returns: dfx: (numpy array) function evaluation at point x. """ # gradient evaluation df = self.parameters['grad_func'] # input check self.input_check(x) if df is not None: # evaluate dfx = df(x) # check dimension if dfx.shape[0] != self.parameters['n']: raise ValueError('Callable grad_func must return a {}xm array'.format(self.parameters['n'])) else: dfx = self.numerical_gradient(x) return dfx def input_check(self, x): """Check input dimension. Args: x: (numpy array) point to be evaluated. """ # check if input is numpy self.numpy_check(x) if not x.shape[0] == self.parameters['n']: raise Warning("Point x must have {} dimensions.".format(self.parameters['n']))
science-optimization
/science_optimization-9.0.2-cp310-cp310-manylinux_2_35_x86_64.whl/science_optimization/function/generic_function.py
generic_function.py
from .base_function import BaseFunction class GenericFunction(BaseFunction): """Class to convert a python function to a BaseFunction instance.""" def __init__(self, func, n, grad_func=None): """Constructor of a generic function. Args: func : (callable) instance of a python function for function evaluation n : (int) number of function arguments grad_func: (callable) instance of a python function for gradient evaluation """ # check if object is a function if not callable(func): raise Warning("func must be callable.") if grad_func is not None and not callable(grad_func): raise Warning("grad_func must be callable.") if grad_func is not None: self.flag_num_g = False # set parameters self.parameters = {'func': func, 'n': n, 'grad_func': grad_func} def dimension(self): return self.parameters['n'] def eval(self, x): """Evaluates generic function Args: x: (numpy array) evaluation point. Returns: fx: (numpy array) function evaluation at point x. """ # input check self.input_check(x) # function evaluation f = self.parameters['func'] fx = f(x) return fx def gradient(self, x): """Gradient of generic function Args: x: (numpy array) evaluation point. Returns: dfx: (numpy array) function evaluation at point x. """ # gradient evaluation df = self.parameters['grad_func'] # input check self.input_check(x) if df is not None: # evaluate dfx = df(x) # check dimension if dfx.shape[0] != self.parameters['n']: raise ValueError('Callable grad_func must return a {}xm array'.format(self.parameters['n'])) else: dfx = self.numerical_gradient(x) return dfx def input_check(self, x): """Check input dimension. Args: x: (numpy array) point to be evaluated. """ # check if input is numpy self.numpy_check(x) if not x.shape[0] == self.parameters['n']: raise Warning("Point x must have {} dimensions.".format(self.parameters['n']))
0.91501
0.437944
import numpy as np import numpy.matlib from .base_function import BaseFunction class QuadraticFunction(BaseFunction): """ Class that implements a quadratic function """ _flag_num_g = False # this function uses analytical gradient def __init__(self, Q, c, d=0): """ Set parameters for x'Qx + c'x + d. Args: Q: quadratic coefficients of equations (n x n)-matrix c: scaling n-vector coefficients of equations d: constants of equations """ # parameters check self.numpy_check(Q, c) # set parameters self.parameters = {'Q': Q, 'c': c, 'd': d} def dimension(self): return self.parameters['Q'].shape[0] def eval(self, x): """ Quadratic function evaluation. Args: x: evaluation point Returns: fx: evaluates the point value in the function """ # input check self.input_check(x) # define parameters Q = self.parameters['Q'] c = self.parameters['c'] d = self.parameters['d'] # evaluates the point fx = np.sum(x*(np.dot(Q, x)), axis=0) + np.dot(c.T, x) + d return fx def gradient(self, x): """Derivative relative to input. Args: x: evaluation point Returns: dfdx: derivative at evaluation points """ # input check self.input_check(x) # define parameters Q = self.parameters['Q'] c = self.parameters['c'] # quadratic function gradient dfdx = np.matlib.repmat(c, 1, x.shape[1]) dfdx = dfdx + np.dot((Q + Q.T), x) return dfdx def hessian(self, x): """Second derivative relative to input. Args: x: evaluation point Returns: hfdx: second derivative at evaluation points """ # input check self.input_check(x) # define parameters Q = self.parameters['Q'] # quadratic function hessian hfdx = np.tile(Q + Q.T, (x.shape[1], 1, 1)) return hfdx def input_check(self, x): """Check input dimension. Args: x: point to be evaluated. Returns: indicator: indicator if input os consistent """ # check if input is numpy self.numpy_check(x) # check dimension x_dim = x.shape param_dim = self.parameters['Q'].shape[0] if len(x_dim) == 1: raise Warning("x must be a {}xm (m>0) array!".format(param_dim)) if not x_dim[0] == param_dim: raise Warning("x must be a {}xm array!".format(param_dim))
science-optimization
/science_optimization-9.0.2-cp310-cp310-manylinux_2_35_x86_64.whl/science_optimization/function/quadratic_function.py
quadratic_function.py
import numpy as np import numpy.matlib from .base_function import BaseFunction class QuadraticFunction(BaseFunction): """ Class that implements a quadratic function """ _flag_num_g = False # this function uses analytical gradient def __init__(self, Q, c, d=0): """ Set parameters for x'Qx + c'x + d. Args: Q: quadratic coefficients of equations (n x n)-matrix c: scaling n-vector coefficients of equations d: constants of equations """ # parameters check self.numpy_check(Q, c) # set parameters self.parameters = {'Q': Q, 'c': c, 'd': d} def dimension(self): return self.parameters['Q'].shape[0] def eval(self, x): """ Quadratic function evaluation. Args: x: evaluation point Returns: fx: evaluates the point value in the function """ # input check self.input_check(x) # define parameters Q = self.parameters['Q'] c = self.parameters['c'] d = self.parameters['d'] # evaluates the point fx = np.sum(x*(np.dot(Q, x)), axis=0) + np.dot(c.T, x) + d return fx def gradient(self, x): """Derivative relative to input. Args: x: evaluation point Returns: dfdx: derivative at evaluation points """ # input check self.input_check(x) # define parameters Q = self.parameters['Q'] c = self.parameters['c'] # quadratic function gradient dfdx = np.matlib.repmat(c, 1, x.shape[1]) dfdx = dfdx + np.dot((Q + Q.T), x) return dfdx def hessian(self, x): """Second derivative relative to input. Args: x: evaluation point Returns: hfdx: second derivative at evaluation points """ # input check self.input_check(x) # define parameters Q = self.parameters['Q'] # quadratic function hessian hfdx = np.tile(Q + Q.T, (x.shape[1], 1, 1)) return hfdx def input_check(self, x): """Check input dimension. Args: x: point to be evaluated. Returns: indicator: indicator if input os consistent """ # check if input is numpy self.numpy_check(x) # check dimension x_dim = x.shape param_dim = self.parameters['Q'].shape[0] if len(x_dim) == 1: raise Warning("x must be a {}xm (m>0) array!".format(param_dim)) if not x_dim[0] == param_dim: raise Warning("x must be a {}xm array!".format(param_dim))
0.880964
0.632588
import numpy as np from science_optimization.function import BaseFunction, LinearFunction, FunctionsComposite class AugmentedLagrangeFunction(BaseFunction): """ Class that deals with the function used in the Augmented Lagrangian method """ eq_aux_func = None ineq_aux_func = None aux_rho = None _flag_num_g = False # this function uses analytical gradient def input_check(self, x): """Check input dimension. Args: x: (numpy array) point to be evaluated. """ # check if input is numpy self.numpy_check(x) if not x.shape[0] == self.dimension(): raise Warning("Point x must have {} dimensions.".format(self.parameters['n'])) def eval(self, x): """ Args: x: Returns: """ if self.ineq_aux_func is not None: aux_max = self.ineq_aux_func.eval(x=x) aux_max[aux_max < 0] = 0 ineq_part = 0.5 * self.rho * sum(aux_max ** 2) else: ineq_part = 0 if self.eq_aux_func is not None: eq_part = 0.5 * sum((self.aux_rho * (self.eq_aux_func * self.eq_aux_func)).eval(x=x)) else: eq_part = 0 return self.f_obj.eval(x) + eq_part + ineq_part def gradient(self, x): if self.ineq_aux_func is not None: aux_max = self.ineq_aux_func.eval(x=x) aux_max[aux_max < 0] = 0 ineq_part = self.rho * np.dot(self.g.gradient(x), aux_max) else: ineq_part = 0 if self.eq_aux_func is not None: eq_part = self.rho * np.dot(self.h.gradient(x), self.eq_aux_func.eval(x)) else: eq_part = 0 return self.f_obj.gradient(x) + eq_part + ineq_part def hessian(self, x): if self.ineq_aux_func is not None: aux_grad = self.g.gradient(x) aux_hess = self.g.hessian(x) aux_max = self.ineq_aux_func.eval(x=x) aux_max[aux_max < 0] = 0 ineq_part = np.zeros((self.dimension(), self.dimension())) for i in range(self.g.n_functions): if aux_max[i] > 0: ineq_part += ( (aux_hess[i] * aux_max[i]) + np.dot(aux_grad[0], aux_grad[0].transpose()) ) ineq_part = self.rho * ineq_part else: ineq_part = 0 if self.eq_aux_func is not None: aux_grad = self.h.gradient(x) aux_hess = self.h.hessian(x) eq_part = np.zeros((self.dimension(), self.dimension())) # TODO (Feres) tirar o for for i in range(self.h.n_functions): eq_part += ( (aux_hess[i] * self.eq_aux_func.eval(x)[i]) + np.dot(aux_grad[0], aux_grad[0].transpose()) ) eq_part = self.rho * eq_part else: eq_part = 0 return self.f_obj.hessian(x) + eq_part + ineq_part def dimension(self): return self.f_obj.dimension() def __init__(self, f_obj, g, h, rho, c): """ Initialize functions and multipliers properly Args: f_obj: (FunctionsComposite) objective function g: (FunctionsComposite) inequality constraints h: (FunctionsComposite) inequality constraints rho: (float) initial rho value (penalty parameter) c: (float) constant used to update rho value """ self.f_obj = f_obj self.g = g self.h = h self.lag_eq = np.zeros((h.n_functions, 1)) # lagrangian multipliers (equality constraints) self.lag_ineq = np.zeros((g.n_functions, 1)) # lagrangian multipliers (equality constraints) self.rho = rho self.c = c self.update_aux_functions() def update_aux_functions(self): """ Uses current multipliers and rho value to update auxiliary functions use to evaluate function Returns: """ self.aux_rho = LinearFunction(c=np.zeros((self.dimension(), 1)), d=self.rho) aux_lag_eq = FunctionsComposite() for aux in self.lag_eq: aux_lag_eq.add(LinearFunction( c=np.zeros((self.dimension(), 1)), d=aux )) aux_lag_ineq = FunctionsComposite() for aux in self.lag_ineq: aux_lag_ineq.add(LinearFunction( c=np.zeros((self.dimension(), 1)), d=aux )) if self.h.n_functions > 0: self.eq_aux_func = (self.h + aux_lag_eq / self.aux_rho) if self.g.n_functions > 0: self.ineq_aux_func = (self.g + aux_lag_ineq / self.aux_rho) def update_multipliers(self, x_new): """ Uses current point to update lagrange multipliers properly Args: x_new: (np array) new point found by the unconstrained optimization Returns: """ h_val = self.h.eval(x_new) self.lag_eq = self.lag_eq + self.rho * h_val g_val = self.g.eval(x_new) self.lag_ineq = self.lag_ineq + self.rho * g_val self.lag_ineq[self.lag_ineq < 0] = 0 # TODO (Feres) adicionar condicional aqui self.rho = self.c * self.rho self.update_aux_functions()
science-optimization
/science_optimization-9.0.2-cp310-cp310-manylinux_2_35_x86_64.whl/science_optimization/function/lagrange_function.py
lagrange_function.py
import numpy as np from science_optimization.function import BaseFunction, LinearFunction, FunctionsComposite class AugmentedLagrangeFunction(BaseFunction): """ Class that deals with the function used in the Augmented Lagrangian method """ eq_aux_func = None ineq_aux_func = None aux_rho = None _flag_num_g = False # this function uses analytical gradient def input_check(self, x): """Check input dimension. Args: x: (numpy array) point to be evaluated. """ # check if input is numpy self.numpy_check(x) if not x.shape[0] == self.dimension(): raise Warning("Point x must have {} dimensions.".format(self.parameters['n'])) def eval(self, x): """ Args: x: Returns: """ if self.ineq_aux_func is not None: aux_max = self.ineq_aux_func.eval(x=x) aux_max[aux_max < 0] = 0 ineq_part = 0.5 * self.rho * sum(aux_max ** 2) else: ineq_part = 0 if self.eq_aux_func is not None: eq_part = 0.5 * sum((self.aux_rho * (self.eq_aux_func * self.eq_aux_func)).eval(x=x)) else: eq_part = 0 return self.f_obj.eval(x) + eq_part + ineq_part def gradient(self, x): if self.ineq_aux_func is not None: aux_max = self.ineq_aux_func.eval(x=x) aux_max[aux_max < 0] = 0 ineq_part = self.rho * np.dot(self.g.gradient(x), aux_max) else: ineq_part = 0 if self.eq_aux_func is not None: eq_part = self.rho * np.dot(self.h.gradient(x), self.eq_aux_func.eval(x)) else: eq_part = 0 return self.f_obj.gradient(x) + eq_part + ineq_part def hessian(self, x): if self.ineq_aux_func is not None: aux_grad = self.g.gradient(x) aux_hess = self.g.hessian(x) aux_max = self.ineq_aux_func.eval(x=x) aux_max[aux_max < 0] = 0 ineq_part = np.zeros((self.dimension(), self.dimension())) for i in range(self.g.n_functions): if aux_max[i] > 0: ineq_part += ( (aux_hess[i] * aux_max[i]) + np.dot(aux_grad[0], aux_grad[0].transpose()) ) ineq_part = self.rho * ineq_part else: ineq_part = 0 if self.eq_aux_func is not None: aux_grad = self.h.gradient(x) aux_hess = self.h.hessian(x) eq_part = np.zeros((self.dimension(), self.dimension())) # TODO (Feres) tirar o for for i in range(self.h.n_functions): eq_part += ( (aux_hess[i] * self.eq_aux_func.eval(x)[i]) + np.dot(aux_grad[0], aux_grad[0].transpose()) ) eq_part = self.rho * eq_part else: eq_part = 0 return self.f_obj.hessian(x) + eq_part + ineq_part def dimension(self): return self.f_obj.dimension() def __init__(self, f_obj, g, h, rho, c): """ Initialize functions and multipliers properly Args: f_obj: (FunctionsComposite) objective function g: (FunctionsComposite) inequality constraints h: (FunctionsComposite) inequality constraints rho: (float) initial rho value (penalty parameter) c: (float) constant used to update rho value """ self.f_obj = f_obj self.g = g self.h = h self.lag_eq = np.zeros((h.n_functions, 1)) # lagrangian multipliers (equality constraints) self.lag_ineq = np.zeros((g.n_functions, 1)) # lagrangian multipliers (equality constraints) self.rho = rho self.c = c self.update_aux_functions() def update_aux_functions(self): """ Uses current multipliers and rho value to update auxiliary functions use to evaluate function Returns: """ self.aux_rho = LinearFunction(c=np.zeros((self.dimension(), 1)), d=self.rho) aux_lag_eq = FunctionsComposite() for aux in self.lag_eq: aux_lag_eq.add(LinearFunction( c=np.zeros((self.dimension(), 1)), d=aux )) aux_lag_ineq = FunctionsComposite() for aux in self.lag_ineq: aux_lag_ineq.add(LinearFunction( c=np.zeros((self.dimension(), 1)), d=aux )) if self.h.n_functions > 0: self.eq_aux_func = (self.h + aux_lag_eq / self.aux_rho) if self.g.n_functions > 0: self.ineq_aux_func = (self.g + aux_lag_ineq / self.aux_rho) def update_multipliers(self, x_new): """ Uses current point to update lagrange multipliers properly Args: x_new: (np array) new point found by the unconstrained optimization Returns: """ h_val = self.h.eval(x_new) self.lag_eq = self.lag_eq + self.rho * h_val g_val = self.g.eval(x_new) self.lag_ineq = self.lag_ineq + self.rho * g_val self.lag_ineq[self.lag_ineq < 0] = 0 # TODO (Feres) adicionar condicional aqui self.rho = self.c * self.rho self.update_aux_functions()
0.758421
0.443721
import numpy as np import numpy.matlib from .base_function import BaseFunction class LinearFunction(BaseFunction): """ Class that implements a linear function """ _flag_num_g = False # this function uses analytical gradient def parameter_check(self, c: np.ndarray, d): # checking c parameter self.numpy_check(c) if len(c.shape) != 2 or c.shape[1] != 1: raise Exception("Invalid format for 'c' parameter") # checking d parameter try: int(d) except (ValueError, TypeError): raise Exception("'d' parameter must be a valid number") def __init__(self, c, d=0): """ Linear Function constructor: c'x + d. Args: c: scaling n-vector coefficients of equations d: constants of equations """ self.parameter_check(c, d) # set parameters self.parameters = {'c': c, 'd': d} def dimension(self): """Linear problem dimension.""" return self.parameters['c'].shape[0] def eval(self, x): """ Linear function evaluation. Args: x: evaluation point Returns: fx: evaluates the point value in the function """ # input check self.input_check(x) # define parameters c = self.parameters['c'] d = self.parameters['d'] # evaluates the point fx = np.dot(c.T, x) + d return fx def gradient(self, x): """Derivative relative to input. Args: x: evaluation point Returns: dfdx: derivative at evaluation points """ # input check self.input_check(x) # define parameters c = self.parameters['c'] # linear function gradient dim = x.shape if len(dim) == 1: dfdx = c else: dfdx = np.matlib.repmat(c, 1, dim[1]) return dfdx def hessian(self, x): """Second derivative relative to input. Args: x: evaluation point Returns: hfdx: second derivative at evaluation points """ # input check self.input_check(x) # linear function hessian dim = x.shape input_dimension = dim[0] if len(dim) == 1: input_number = 1 else: input_number = dim[1] hfdx = np.zeros((input_number, input_dimension, input_dimension)) return hfdx def input_check(self, x): """Check input dimension. Args: x: point to be evaluated. Returns: indicator: indicator if input os consistent """ # check if input is numpy self.numpy_check(x) # check dimension x_dim = x.shape param_dim = self.parameters['c'].shape[0] if len(x_dim) == 1: raise Warning("x must be a {}xm (m>0) array!".format(param_dim)) if not x_dim[0] == param_dim: raise Warning("x must be a {}xm array!".format(param_dim))
science-optimization
/science_optimization-9.0.2-cp310-cp310-manylinux_2_35_x86_64.whl/science_optimization/function/linear_function.py
linear_function.py
import numpy as np import numpy.matlib from .base_function import BaseFunction class LinearFunction(BaseFunction): """ Class that implements a linear function """ _flag_num_g = False # this function uses analytical gradient def parameter_check(self, c: np.ndarray, d): # checking c parameter self.numpy_check(c) if len(c.shape) != 2 or c.shape[1] != 1: raise Exception("Invalid format for 'c' parameter") # checking d parameter try: int(d) except (ValueError, TypeError): raise Exception("'d' parameter must be a valid number") def __init__(self, c, d=0): """ Linear Function constructor: c'x + d. Args: c: scaling n-vector coefficients of equations d: constants of equations """ self.parameter_check(c, d) # set parameters self.parameters = {'c': c, 'd': d} def dimension(self): """Linear problem dimension.""" return self.parameters['c'].shape[0] def eval(self, x): """ Linear function evaluation. Args: x: evaluation point Returns: fx: evaluates the point value in the function """ # input check self.input_check(x) # define parameters c = self.parameters['c'] d = self.parameters['d'] # evaluates the point fx = np.dot(c.T, x) + d return fx def gradient(self, x): """Derivative relative to input. Args: x: evaluation point Returns: dfdx: derivative at evaluation points """ # input check self.input_check(x) # define parameters c = self.parameters['c'] # linear function gradient dim = x.shape if len(dim) == 1: dfdx = c else: dfdx = np.matlib.repmat(c, 1, dim[1]) return dfdx def hessian(self, x): """Second derivative relative to input. Args: x: evaluation point Returns: hfdx: second derivative at evaluation points """ # input check self.input_check(x) # linear function hessian dim = x.shape input_dimension = dim[0] if len(dim) == 1: input_number = 1 else: input_number = dim[1] hfdx = np.zeros((input_number, input_dimension, input_dimension)) return hfdx def input_check(self, x): """Check input dimension. Args: x: point to be evaluated. Returns: indicator: indicator if input os consistent """ # check if input is numpy self.numpy_check(x) # check dimension x_dim = x.shape param_dim = self.parameters['c'].shape[0] if len(x_dim) == 1: raise Warning("x must be a {}xm (m>0) array!".format(param_dim)) if not x_dim[0] == param_dim: raise Warning("x must be a {}xm array!".format(param_dim))
0.861188
0.573081
import numpy as np from science_optimization.builder import BuilderOptimizationProblem, Objective, Variable, Constraint from science_optimization.function import BaseFunction, FunctionsComposite class RosenSuzukiProblem(BuilderOptimizationProblem): """Concrete builder implementation. This class builds the Rosen-Suzuki problem. """ def build_objectives(self): obj_fun = FunctionsComposite() obj_fun.add(RosenSuzukiFunction(self.n, self.Q0, self.c)) objective = Objective(objective=obj_fun) return objective def build_variables(self): variables = Variable(x_min=self.x_min, x_max=self.x_max) return variables def build_constraints(self): constraints = Constraint(eq_cons=FunctionsComposite(), ineq_cons=RosenSuzukiConstraints(self.n, self.b)) return constraints def __init__(self, n): """ Constructor of Rosen-Suzuki optimization problem. Args: n: desired dimension """ # Step 1 self.n = n x_star = [] u_star = [] for i in range(1, self.n): x_star.append((-1) ** i) u_star.append((-1) ** i + 1) x_star.append((-1) ** self.n) self.x_star = np.array(x_star).reshape((-1, 1)) self.u_star = np.array(u_star).reshape((-1, 1)) self.x_min = np.ones((self.n, 1)) * (-5) self.x_max = np.ones((self.n, 1)) * 5 # Step 2 mdg = [] b = [] for j in range(1, self.n): v = [] a = [] for i in range(1, self.n+1): v.append(2 - (-1) ** (i + j)) a.append(1 + (-1) ** j + (-1) ** i) a = np.array(a).reshape((-1, 1)) v = np.array(v).reshape((-1, 1)) Q = np.diag(v.transpose()[0]) g_now = np.dot( np.dot(self.x_star.transpose(), Q), self.x_star ) + np.dot(a.transpose(), self.x_star) mdg.append(2*np.dot(Q, self.x_star) + a) if self.u_star[j-1] > 0: b.append(-g_now) else: b.append(-g_now - 1) self.b = np.array(b).reshape((-1, 1)) mdg = np.array(mdg).transpose()[0] # Step 3 v = [] for i in range(1, self.n + 1): v.append(2 - (-1) ** i) v = np.array(v).reshape((-1, 1)) self.Q0 = np.diag(v.transpose()[0]) df = 2 * np.dot(self.Q0, self.x_star) self.c = -df - np.dot(mdg, self.u_star) class RosenSuzukiFunction(BaseFunction): """ Rosen-Suzuki objective function """ n = None def __init__(self, n, Q0, c): # Step 1 self.n = n self.Q0 = Q0 self.c = c def dimension(self): return self.n def eval(self, x: np.ndarray): self.input_check(x) return np.dot(np.dot(x.transpose(), self.Q0), x) + np.dot(self.c.transpose(), x) def gradient(self, x: np.ndarray): self.input_check(x) return 2 * np.dot(self.Q0, x) + self.c def input_check(self, x): # check if input is numpy self.numpy_check(x) if not x.shape[0] == self.dimension(): raise Warning("Point x must have {} dimensions.".format(self.parameters['n'])) class RosenSuzukiConstraints(FunctionsComposite): """ Rosen-Suzuki constraints """ def __init__(self, n, b): super().__init__() self.n = n self.n_functions = n-1 self.b = b def dimension(self): return self.n def eval(self, x, idx=None, composition="parallel", weights=None): # input check idx, composition, weights, n_functions = self.input_check(idx=idx, composition=composition, weights=weights) g = [] # evaluate for j in range(1, self.n_functions+1): v = [] a = [] for i in range(1, self.n+1): v.append(2 - (-1) ** (i + j)) a.append(1 + (-1) ** j + (-1) ** i) a = np.array(a).reshape((-1, 1)) v = np.array(v).reshape((-1, 1)) Q = np.diag(v.transpose()[0]) g.append( np.dot(np.dot(x.transpose(), Q), x)[0] + np.dot(a.transpose(), x)[0] + self.b[j-1] ) g_return = np.array(g).reshape((-1, 1)) # series composition if composition == "series": g_return = np.dot(weights, g_return) return g_return def gradient(self, x, idx=None, composition="parallel", weights=None): # input check idx, composition, weights, n_functions = self.input_check(idx=idx, composition=composition, weights=weights) mdg = [] # evaluate for j in range(1, self.n_functions+1): v = [] a = [] for i in range(1, self.n+1): v.append(2 - (-1) ** (i + j)) a.append(1 + (-1) ** j + (-1) ** i) a = np.array(a).reshape((-1, 1)) v = np.array(v).reshape((-1, 1)) Q = np.diag(v.transpose()[0]) mdg.append(2 * np.dot(Q, x) + a) j_matrix = np.array(mdg).transpose()[0] # jacobian (gradient of each constraint) # series composition if composition == "series": j_matrix = np.dot(weights, j_matrix) return j_matrix def hessian(self, x, idx=None, composition="parallel", weights=None): # TODO (Feres) implement hessian analytical calculus raise Exception('Not implemented calculus')
science-optimization
/science_optimization-9.0.2-cp310-cp310-manylinux_2_35_x86_64.whl/science_optimization/problems/rosen_suzuki.py
rosen_suzuki.py
import numpy as np from science_optimization.builder import BuilderOptimizationProblem, Objective, Variable, Constraint from science_optimization.function import BaseFunction, FunctionsComposite class RosenSuzukiProblem(BuilderOptimizationProblem): """Concrete builder implementation. This class builds the Rosen-Suzuki problem. """ def build_objectives(self): obj_fun = FunctionsComposite() obj_fun.add(RosenSuzukiFunction(self.n, self.Q0, self.c)) objective = Objective(objective=obj_fun) return objective def build_variables(self): variables = Variable(x_min=self.x_min, x_max=self.x_max) return variables def build_constraints(self): constraints = Constraint(eq_cons=FunctionsComposite(), ineq_cons=RosenSuzukiConstraints(self.n, self.b)) return constraints def __init__(self, n): """ Constructor of Rosen-Suzuki optimization problem. Args: n: desired dimension """ # Step 1 self.n = n x_star = [] u_star = [] for i in range(1, self.n): x_star.append((-1) ** i) u_star.append((-1) ** i + 1) x_star.append((-1) ** self.n) self.x_star = np.array(x_star).reshape((-1, 1)) self.u_star = np.array(u_star).reshape((-1, 1)) self.x_min = np.ones((self.n, 1)) * (-5) self.x_max = np.ones((self.n, 1)) * 5 # Step 2 mdg = [] b = [] for j in range(1, self.n): v = [] a = [] for i in range(1, self.n+1): v.append(2 - (-1) ** (i + j)) a.append(1 + (-1) ** j + (-1) ** i) a = np.array(a).reshape((-1, 1)) v = np.array(v).reshape((-1, 1)) Q = np.diag(v.transpose()[0]) g_now = np.dot( np.dot(self.x_star.transpose(), Q), self.x_star ) + np.dot(a.transpose(), self.x_star) mdg.append(2*np.dot(Q, self.x_star) + a) if self.u_star[j-1] > 0: b.append(-g_now) else: b.append(-g_now - 1) self.b = np.array(b).reshape((-1, 1)) mdg = np.array(mdg).transpose()[0] # Step 3 v = [] for i in range(1, self.n + 1): v.append(2 - (-1) ** i) v = np.array(v).reshape((-1, 1)) self.Q0 = np.diag(v.transpose()[0]) df = 2 * np.dot(self.Q0, self.x_star) self.c = -df - np.dot(mdg, self.u_star) class RosenSuzukiFunction(BaseFunction): """ Rosen-Suzuki objective function """ n = None def __init__(self, n, Q0, c): # Step 1 self.n = n self.Q0 = Q0 self.c = c def dimension(self): return self.n def eval(self, x: np.ndarray): self.input_check(x) return np.dot(np.dot(x.transpose(), self.Q0), x) + np.dot(self.c.transpose(), x) def gradient(self, x: np.ndarray): self.input_check(x) return 2 * np.dot(self.Q0, x) + self.c def input_check(self, x): # check if input is numpy self.numpy_check(x) if not x.shape[0] == self.dimension(): raise Warning("Point x must have {} dimensions.".format(self.parameters['n'])) class RosenSuzukiConstraints(FunctionsComposite): """ Rosen-Suzuki constraints """ def __init__(self, n, b): super().__init__() self.n = n self.n_functions = n-1 self.b = b def dimension(self): return self.n def eval(self, x, idx=None, composition="parallel", weights=None): # input check idx, composition, weights, n_functions = self.input_check(idx=idx, composition=composition, weights=weights) g = [] # evaluate for j in range(1, self.n_functions+1): v = [] a = [] for i in range(1, self.n+1): v.append(2 - (-1) ** (i + j)) a.append(1 + (-1) ** j + (-1) ** i) a = np.array(a).reshape((-1, 1)) v = np.array(v).reshape((-1, 1)) Q = np.diag(v.transpose()[0]) g.append( np.dot(np.dot(x.transpose(), Q), x)[0] + np.dot(a.transpose(), x)[0] + self.b[j-1] ) g_return = np.array(g).reshape((-1, 1)) # series composition if composition == "series": g_return = np.dot(weights, g_return) return g_return def gradient(self, x, idx=None, composition="parallel", weights=None): # input check idx, composition, weights, n_functions = self.input_check(idx=idx, composition=composition, weights=weights) mdg = [] # evaluate for j in range(1, self.n_functions+1): v = [] a = [] for i in range(1, self.n+1): v.append(2 - (-1) ** (i + j)) a.append(1 + (-1) ** j + (-1) ** i) a = np.array(a).reshape((-1, 1)) v = np.array(v).reshape((-1, 1)) Q = np.diag(v.transpose()[0]) mdg.append(2 * np.dot(Q, x) + a) j_matrix = np.array(mdg).transpose()[0] # jacobian (gradient of each constraint) # series composition if composition == "series": j_matrix = np.dot(weights, j_matrix) return j_matrix def hessian(self, x, idx=None, composition="parallel", weights=None): # TODO (Feres) implement hessian analytical calculus raise Exception('Not implemented calculus')
0.760517
0.523177
from science_optimization.builder import BuilderOptimizationProblem from science_optimization.builder import Objective from science_optimization.builder import Variable from science_optimization.builder import Constraint from science_optimization.function import FunctionsComposite, LinearFunction import numpy as np from typing import List class MIP(BuilderOptimizationProblem): """This class builds a mixed integer linear problem.""" # objective function(s) _c = None # inequality constraint matrix _A = None # inequality constraint vector _b = None # the variables' bounds _x_bounds = None # variables' type _x_type = None # equality constraint matrix _Aeq = None # equality constraint vector _beq = None def __init__(self, c: np.ndarray, A: np.ndarray, b: np.ndarray, x_bounds: np.ndarray=None, x_type: List[str]=None, Aeq: np.ndarray=None, beq: np.ndarray=None): """Constructor of a generic mixed-integer linear problem. min c' @ x st. A @ x <= b Aeq @ x == beq x_min <= x <= x_max Args: c : (np.ndarray) (n x 1)-objective function coefficients. A : (np.ndarray) (m1 x n)-inequality linear constraints matrix. b : (np.ndarray) (m1 x 1)-inequality linear constraints bounds. x_bounds: (np.ndarray) (n x 2)-lower bound and upper bounds. x_type : (List[str]) variables' types ('c' or 'd'). Aeq : (m2 x n)-equality linear constraints matrix. beq : (m2 x 1)-equality linear constraints bounds. """ # set parameters self.c = c self.A = A self.b = b self.x_bounds = x_bounds self.x_type = x_type self.Aeq = Aeq self.beq = beq # getters @property def c(self): return self._c @property def A(self): return self._A @property def b(self): return self._b @property def Aeq(self): return self._Aeq @property def beq(self): return self._beq @property def x_bounds(self): return self._x_bounds @property def x_type(self): return self._x_type # setters @c.setter def c(self, value): self._c = value @A.setter def A(self, value): self._A = value @b.setter def b(self, value): self._b = value @x_bounds.setter def x_bounds(self, value): self._x_bounds = value @x_type.setter def x_type(self, value): self._x_type = value @Aeq.setter def Aeq(self, value): self._Aeq = value @beq.setter def beq(self, value): self._beq = value def build_objectives(self): # cardinalities m, n = self.c.shape # composition obj_fun = FunctionsComposite() # mono-objective problem if (m > 1 and n == 1) or (m == 1 and n > 1): # add to function composition obj_fun.add(LinearFunction(c=self.c.reshape(-1, 1))) elif m >= 1 and n >= 1: for i in range(m): # add to function composition obj_fun.add(LinearFunction(c=self.c[i, :].reshape(-1, 1))) else: raise ValueError("({}x{})-array not supported!".format(m, n)) objective = Objective(objective=obj_fun) return objective def build_constraints(self): # cardinalities mi = self.A.shape[0] me = self.Aeq.shape[0] if self.Aeq is not None else 0 # create object ineq_cons = FunctionsComposite() eq_cons = FunctionsComposite() # add linear inequality functions for i in range(mi): ineq_cons.add(LinearFunction(c=self.A[i, :].reshape(-1, 1), d=-self.b[i, 0])) # add linear equality functions for i in range(me): eq_cons.add(LinearFunction(c=self.Aeq[i, :].reshape(-1, 1), d=-self.beq[i, 0])) # set constraints constraints = Constraint(eq_cons=eq_cons, ineq_cons=ineq_cons) return constraints def build_variables(self): # default unbounded variables if self.x_bounds is None: self.x_bounds = np.ones((self.c.shape[0], 2)) self.x_bounds[:, 0] = -np.inf self.x_bounds[:, 1] = np.inf # create variables variables = Variable(x_min=self.x_bounds[:, 0].reshape(-1, 1), x_max=self.x_bounds[:, 1].reshape(-1, 1), x_type=self.x_type) return variables
science-optimization
/science_optimization-9.0.2-cp310-cp310-manylinux_2_35_x86_64.whl/science_optimization/problems/mip.py
mip.py
from science_optimization.builder import BuilderOptimizationProblem from science_optimization.builder import Objective from science_optimization.builder import Variable from science_optimization.builder import Constraint from science_optimization.function import FunctionsComposite, LinearFunction import numpy as np from typing import List class MIP(BuilderOptimizationProblem): """This class builds a mixed integer linear problem.""" # objective function(s) _c = None # inequality constraint matrix _A = None # inequality constraint vector _b = None # the variables' bounds _x_bounds = None # variables' type _x_type = None # equality constraint matrix _Aeq = None # equality constraint vector _beq = None def __init__(self, c: np.ndarray, A: np.ndarray, b: np.ndarray, x_bounds: np.ndarray=None, x_type: List[str]=None, Aeq: np.ndarray=None, beq: np.ndarray=None): """Constructor of a generic mixed-integer linear problem. min c' @ x st. A @ x <= b Aeq @ x == beq x_min <= x <= x_max Args: c : (np.ndarray) (n x 1)-objective function coefficients. A : (np.ndarray) (m1 x n)-inequality linear constraints matrix. b : (np.ndarray) (m1 x 1)-inequality linear constraints bounds. x_bounds: (np.ndarray) (n x 2)-lower bound and upper bounds. x_type : (List[str]) variables' types ('c' or 'd'). Aeq : (m2 x n)-equality linear constraints matrix. beq : (m2 x 1)-equality linear constraints bounds. """ # set parameters self.c = c self.A = A self.b = b self.x_bounds = x_bounds self.x_type = x_type self.Aeq = Aeq self.beq = beq # getters @property def c(self): return self._c @property def A(self): return self._A @property def b(self): return self._b @property def Aeq(self): return self._Aeq @property def beq(self): return self._beq @property def x_bounds(self): return self._x_bounds @property def x_type(self): return self._x_type # setters @c.setter def c(self, value): self._c = value @A.setter def A(self, value): self._A = value @b.setter def b(self, value): self._b = value @x_bounds.setter def x_bounds(self, value): self._x_bounds = value @x_type.setter def x_type(self, value): self._x_type = value @Aeq.setter def Aeq(self, value): self._Aeq = value @beq.setter def beq(self, value): self._beq = value def build_objectives(self): # cardinalities m, n = self.c.shape # composition obj_fun = FunctionsComposite() # mono-objective problem if (m > 1 and n == 1) or (m == 1 and n > 1): # add to function composition obj_fun.add(LinearFunction(c=self.c.reshape(-1, 1))) elif m >= 1 and n >= 1: for i in range(m): # add to function composition obj_fun.add(LinearFunction(c=self.c[i, :].reshape(-1, 1))) else: raise ValueError("({}x{})-array not supported!".format(m, n)) objective = Objective(objective=obj_fun) return objective def build_constraints(self): # cardinalities mi = self.A.shape[0] me = self.Aeq.shape[0] if self.Aeq is not None else 0 # create object ineq_cons = FunctionsComposite() eq_cons = FunctionsComposite() # add linear inequality functions for i in range(mi): ineq_cons.add(LinearFunction(c=self.A[i, :].reshape(-1, 1), d=-self.b[i, 0])) # add linear equality functions for i in range(me): eq_cons.add(LinearFunction(c=self.Aeq[i, :].reshape(-1, 1), d=-self.beq[i, 0])) # set constraints constraints = Constraint(eq_cons=eq_cons, ineq_cons=ineq_cons) return constraints def build_variables(self): # default unbounded variables if self.x_bounds is None: self.x_bounds = np.ones((self.c.shape[0], 2)) self.x_bounds[:, 0] = -np.inf self.x_bounds[:, 1] = np.inf # create variables variables = Variable(x_min=self.x_bounds[:, 0].reshape(-1, 1), x_max=self.x_bounds[:, 1].reshape(-1, 1), x_type=self.x_type) return variables
0.95202
0.64058
from science_optimization.builder import BuilderOptimizationProblem from science_optimization.builder import Objective from science_optimization.builder import Variable from science_optimization.builder import Constraint from science_optimization.function import FunctionsComposite class SeparableResourceAllocation(BuilderOptimizationProblem): """Concrete builder implementation. This class builds a dual decomposition optimization problem. """ # objective function(s) _f_i = None # equality constraint function(s) _coupling_eq_constraints = None # inequality constraint function(s) _coupling_ineq_constraints = None # the variables' bounds _x_bounds = None def __init__(self, f_i, coupling_eq_constraints, coupling_ineq_constraints, x_bounds): """Constructor of a Dual Decomposition problem builder. Args: f_i : Objective functions composition with i individual functions. coupling_eq_constraints : Composition with functions in equality coupling. coupling_ineq_constraints: Composition with functions in inequality coupling. x_bounds : Lower bound and upper bounds. """ self.f_i = f_i self.coupling_eq_constraints = coupling_eq_constraints self.coupling_ineq_constraints = coupling_ineq_constraints self.x_bounds = x_bounds # gets @property def f_i(self): return self._f_i @property def coupling_eq_constraints(self): return self._coupling_eq_constraints @property def coupling_ineq_constraints(self): return self._coupling_ineq_constraints @property def x_bounds(self): return self._x_bounds @f_i.setter def f_i(self, value): self._f_i = value # sets @coupling_eq_constraints.setter def coupling_eq_constraints(self, value): self._coupling_eq_constraints = value @coupling_ineq_constraints.setter def coupling_ineq_constraints(self, value): self._coupling_ineq_constraints = value @x_bounds.setter def x_bounds(self, value): self._x_bounds = value # methods def build_objectives(self): # instantiate composition obj_fun = FunctionsComposite() for f in self.f_i: obj_fun.add(f) objective = Objective(objective=obj_fun) return objective def build_constraints(self): # instantiate composition eq_cons = FunctionsComposite() ineq_cons = FunctionsComposite() for eq_g in self.coupling_eq_constraints: eq_cons.add(eq_g) for ineq_g in self.coupling_ineq_constraints: ineq_cons.add(ineq_g) constraints = Constraint(eq_cons=eq_cons, ineq_cons=ineq_cons) return constraints def build_variables(self): # variables variables = Variable(x_min=self.x_bounds[:, 0].reshape(-1, 1), x_max=self.x_bounds[:, 1].reshape(-1, 1)) return variables
science-optimization
/science_optimization-9.0.2-cp310-cp310-manylinux_2_35_x86_64.whl/science_optimization/problems/separable_resource_allocation.py
separable_resource_allocation.py
from science_optimization.builder import BuilderOptimizationProblem from science_optimization.builder import Objective from science_optimization.builder import Variable from science_optimization.builder import Constraint from science_optimization.function import FunctionsComposite class SeparableResourceAllocation(BuilderOptimizationProblem): """Concrete builder implementation. This class builds a dual decomposition optimization problem. """ # objective function(s) _f_i = None # equality constraint function(s) _coupling_eq_constraints = None # inequality constraint function(s) _coupling_ineq_constraints = None # the variables' bounds _x_bounds = None def __init__(self, f_i, coupling_eq_constraints, coupling_ineq_constraints, x_bounds): """Constructor of a Dual Decomposition problem builder. Args: f_i : Objective functions composition with i individual functions. coupling_eq_constraints : Composition with functions in equality coupling. coupling_ineq_constraints: Composition with functions in inequality coupling. x_bounds : Lower bound and upper bounds. """ self.f_i = f_i self.coupling_eq_constraints = coupling_eq_constraints self.coupling_ineq_constraints = coupling_ineq_constraints self.x_bounds = x_bounds # gets @property def f_i(self): return self._f_i @property def coupling_eq_constraints(self): return self._coupling_eq_constraints @property def coupling_ineq_constraints(self): return self._coupling_ineq_constraints @property def x_bounds(self): return self._x_bounds @f_i.setter def f_i(self, value): self._f_i = value # sets @coupling_eq_constraints.setter def coupling_eq_constraints(self, value): self._coupling_eq_constraints = value @coupling_ineq_constraints.setter def coupling_ineq_constraints(self, value): self._coupling_ineq_constraints = value @x_bounds.setter def x_bounds(self, value): self._x_bounds = value # methods def build_objectives(self): # instantiate composition obj_fun = FunctionsComposite() for f in self.f_i: obj_fun.add(f) objective = Objective(objective=obj_fun) return objective def build_constraints(self): # instantiate composition eq_cons = FunctionsComposite() ineq_cons = FunctionsComposite() for eq_g in self.coupling_eq_constraints: eq_cons.add(eq_g) for ineq_g in self.coupling_ineq_constraints: ineq_cons.add(ineq_g) constraints = Constraint(eq_cons=eq_cons, ineq_cons=ineq_cons) return constraints def build_variables(self): # variables variables = Variable(x_min=self.x_bounds[:, 0].reshape(-1, 1), x_max=self.x_bounds[:, 1].reshape(-1, 1)) return variables
0.953416
0.49823
from science_optimization.builder import BuilderOptimizationProblem from science_optimization.builder import Objective from science_optimization.builder import Variable from science_optimization.builder import Constraint from science_optimization.function import FunctionsComposite class GenericProblem(BuilderOptimizationProblem): """Concrete builder implementation. This class builds a generic optimization problem. """ # objective function(s) _f = None # equality constraint function(s) _eq_cons = None # inequality constraint function(s) _ineq_cons = None # the variables' bounds _x_bounds = None def __init__(self, f, eq_cons, ineq_cons, x_bounds, x_type=None): """Constructor of a generic optimization problem. Args: f : Objective functions. eq_cons : Equality constraint functions. ineq_cons: Inequality constraint functions. x_bounds : Lower bound and upper bounds. x_type: (np.ndarray) (n x 1)-list with variables' type ('c': continuous or 'd': discrete). """ self.f = f self.eq_cons = eq_cons self.ineq_cons = ineq_cons self.x_bounds = x_bounds self.x_type = x_type @property def f(self): return self._f @property def eq_cons(self): return self._eq_cons @property def ineq_cons(self): return self._ineq_cons @property def x_bounds(self): return self._x_bounds @f.setter def f(self, value): self._f = value @eq_cons.setter def eq_cons(self, value): self._eq_cons = value @ineq_cons.setter def ineq_cons(self, value): self._ineq_cons = value @x_bounds.setter def x_bounds(self, value): self._x_bounds = value def build_objectives(self): obj_fun = FunctionsComposite() for f in self.f: obj_fun.add(f) objective = Objective(objective=obj_fun) return objective def build_constraints(self): eq_cons = FunctionsComposite() ineq_cons = FunctionsComposite() for eq_g in self.eq_cons: eq_cons.add(eq_g) for ineq_g in self.ineq_cons: ineq_cons.add(ineq_g) constraints = Constraint(eq_cons=eq_cons, ineq_cons=ineq_cons) return constraints def build_variables(self): variables = Variable(x_min=self.x_bounds[:, 0].reshape(-1, 1), x_max=self.x_bounds[:, 1].reshape(-1, 1), x_type=self.x_type) return variables
science-optimization
/science_optimization-9.0.2-cp310-cp310-manylinux_2_35_x86_64.whl/science_optimization/problems/generic.py
generic.py
from science_optimization.builder import BuilderOptimizationProblem from science_optimization.builder import Objective from science_optimization.builder import Variable from science_optimization.builder import Constraint from science_optimization.function import FunctionsComposite class GenericProblem(BuilderOptimizationProblem): """Concrete builder implementation. This class builds a generic optimization problem. """ # objective function(s) _f = None # equality constraint function(s) _eq_cons = None # inequality constraint function(s) _ineq_cons = None # the variables' bounds _x_bounds = None def __init__(self, f, eq_cons, ineq_cons, x_bounds, x_type=None): """Constructor of a generic optimization problem. Args: f : Objective functions. eq_cons : Equality constraint functions. ineq_cons: Inequality constraint functions. x_bounds : Lower bound and upper bounds. x_type: (np.ndarray) (n x 1)-list with variables' type ('c': continuous or 'd': discrete). """ self.f = f self.eq_cons = eq_cons self.ineq_cons = ineq_cons self.x_bounds = x_bounds self.x_type = x_type @property def f(self): return self._f @property def eq_cons(self): return self._eq_cons @property def ineq_cons(self): return self._ineq_cons @property def x_bounds(self): return self._x_bounds @f.setter def f(self, value): self._f = value @eq_cons.setter def eq_cons(self, value): self._eq_cons = value @ineq_cons.setter def ineq_cons(self, value): self._ineq_cons = value @x_bounds.setter def x_bounds(self, value): self._x_bounds = value def build_objectives(self): obj_fun = FunctionsComposite() for f in self.f: obj_fun.add(f) objective = Objective(objective=obj_fun) return objective def build_constraints(self): eq_cons = FunctionsComposite() ineq_cons = FunctionsComposite() for eq_g in self.eq_cons: eq_cons.add(eq_g) for ineq_g in self.ineq_cons: ineq_cons.add(ineq_g) constraints = Constraint(eq_cons=eq_cons, ineq_cons=ineq_cons) return constraints def build_variables(self): variables = Variable(x_min=self.x_bounds[:, 0].reshape(-1, 1), x_max=self.x_bounds[:, 1].reshape(-1, 1), x_type=self.x_type) return variables
0.947076
0.479686
__all__ = ['parse_pdf', 'logger'] # Cell import logging from pathlib import Path from typing import Optional, Dict, Any import requests logger = logging.getLogger(__name__) def parse_pdf(server_address: str, file_path: Path, port: str = '', timeout: int = 60 ) -> Optional[Dict[str, Any]]: ''' This function if successful returns the JSON output of the science parse server as a dictionary. Else if a Timeout Exception or any other Exception occurs it will return None. If any of the exceptions do occur they will be logged as an error. 1. **server_address**: Address of the server e.g. `http://127.0.0.1` 2. **file_path**: Path to the pdf file to be processed. 3. **port**: The port to the server e.g. 8080 4. **timeout**: The amount of time to allow the request to take. **returns** A dictionary with the following keys: ```python ['abstractText', 'authors', 'id', 'references', 'sections', 'title', 'year'] ``` **Note** not all of these dictionary keys will always exist if science parse cannot detect the relevant information e.g. if it cannot find any references then there will be no reference key. **Note** See the example on the main page of the documentation for a detailed example of this method. ''' endpoint = "/v1" if port: url = f'{server_address}:{port}{endpoint}' else: url = f'{server_address}{endpoint}' file_name = file_path.name files = {'data-binary': (file_name, file_path.open('rb'), 'application/pdf', {'Expires': '0'})} try: response = requests.post(url, files=files, headers={'Accept': 'application/json'}, timeout=timeout) status_code = response.status_code if status_code != 200: error_message = (f'URL: {url}. {file_name} failed with a ' f'status code: {status_code}') logger.error(error_message) return None return response.json() except requests.exceptions.Timeout: error_message = (f'URL: {url}. {file_name} failed due to a timeout.') logger.error(error_message) except Exception as e: error_message = f'URL: {url}. {file_name} failed due to the following error:' logger.error(error_message, exc_info=True) return None
science-parse-api
/science_parse_api-1.0.1-py3-none-any.whl/science_parse_api/api.py
api.py
__all__ = ['parse_pdf', 'logger'] # Cell import logging from pathlib import Path from typing import Optional, Dict, Any import requests logger = logging.getLogger(__name__) def parse_pdf(server_address: str, file_path: Path, port: str = '', timeout: int = 60 ) -> Optional[Dict[str, Any]]: ''' This function if successful returns the JSON output of the science parse server as a dictionary. Else if a Timeout Exception or any other Exception occurs it will return None. If any of the exceptions do occur they will be logged as an error. 1. **server_address**: Address of the server e.g. `http://127.0.0.1` 2. **file_path**: Path to the pdf file to be processed. 3. **port**: The port to the server e.g. 8080 4. **timeout**: The amount of time to allow the request to take. **returns** A dictionary with the following keys: ```python ['abstractText', 'authors', 'id', 'references', 'sections', 'title', 'year'] ``` **Note** not all of these dictionary keys will always exist if science parse cannot detect the relevant information e.g. if it cannot find any references then there will be no reference key. **Note** See the example on the main page of the documentation for a detailed example of this method. ''' endpoint = "/v1" if port: url = f'{server_address}:{port}{endpoint}' else: url = f'{server_address}{endpoint}' file_name = file_path.name files = {'data-binary': (file_name, file_path.open('rb'), 'application/pdf', {'Expires': '0'})} try: response = requests.post(url, files=files, headers={'Accept': 'application/json'}, timeout=timeout) status_code = response.status_code if status_code != 200: error_message = (f'URL: {url}. {file_name} failed with a ' f'status code: {status_code}') logger.error(error_message) return None return response.json() except requests.exceptions.Timeout: error_message = (f'URL: {url}. {file_name} failed due to a timeout.') logger.error(error_message) except Exception as e: error_message = f'URL: {url}. {file_name} failed due to the following error:' logger.error(error_message, exc_info=True) return None
0.890205
0.575946
science_tools ============================== [//]: # (Badges) [![GitHub Actions Build Status](https://github.com/REPLACE_WITH_OWNER_ACCOUNT/science_tools/workflows/CI/badge.svg)](https://github.com/REPLACE_WITH_OWNER_ACCOUNT/science_tools/actions?query=workflow%3ACI) [![codecov](https://codecov.io/gh/REPLACE_WITH_OWNER_ACCOUNT/science_tools/branch/main/graph/badge.svg)](https://codecov.io/gh/REPLACE_WITH_OWNER_ACCOUNT/science_tools/branch/main) Beautiful tools for beautiful science. ### Copyright Copyright (c) 2023, Max Gallant #### Acknowledgements Project based on the [Computational Molecular Science Python Cookiecutter](https://github.com/molssi/cookiecutter-cms) version 1.1.
science-tools
/science_tools-0.0.2.tar.gz/science_tools-0.0.2/README.md
README.md
science_tools ============================== [//]: # (Badges) [![GitHub Actions Build Status](https://github.com/REPLACE_WITH_OWNER_ACCOUNT/science_tools/workflows/CI/badge.svg)](https://github.com/REPLACE_WITH_OWNER_ACCOUNT/science_tools/actions?query=workflow%3ACI) [![codecov](https://codecov.io/gh/REPLACE_WITH_OWNER_ACCOUNT/science_tools/branch/main/graph/badge.svg)](https://codecov.io/gh/REPLACE_WITH_OWNER_ACCOUNT/science_tools/branch/main) Beautiful tools for beautiful science. ### Copyright Copyright (c) 2023, Max Gallant #### Acknowledgements Project based on the [Computational Molecular Science Python Cookiecutter](https://github.com/molssi/cookiecutter-cms) version 1.1.
0.569613
0.349144
# Contributor Covenant Code of Conduct ## Our Pledge In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race, religion, or sexual identity and orientation. ## Our Standards Examples of behavior that contributes to creating a positive environment include: * Using welcoming and inclusive language * Being respectful of differing viewpoints and experiences * Gracefully accepting constructive criticism * Focusing on what is best for the community * Showing empathy towards other community members Examples of unacceptable behavior by participants include: * The use of sexualized language or imagery and unwelcome sexual attention or advances * Trolling, insulting/derogatory comments, and personal or political attacks * Public or private harassment * Publishing others' private information, such as a physical or electronic address, without explicit permission * Other conduct which could reasonably be considered inappropriate in a professional setting ## Our Responsibilities Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior. Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful. Moreover, project maintainers will strive to offer feedback and advice to ensure quality and consistency of contributions to the code. Contributions from outside the group of project maintainers are strongly welcomed but the final decision as to whether commits are merged into the codebase rests with the team of project maintainers. ## Scope This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers. ## Enforcement Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at '[email protected]'. The project team will review and investigate all complaints, and will respond in a way that it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately. Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project's leadership. ## Attribution This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4, available at [http://contributor-covenant.org/version/1/4][version] [homepage]: http://contributor-covenant.org [version]: http://contributor-covenant.org/version/1/4/
science-tools
/science_tools-0.0.2.tar.gz/science_tools-0.0.2/CODE_OF_CONDUCT.md
CODE_OF_CONDUCT.md
# Contributor Covenant Code of Conduct ## Our Pledge In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race, religion, or sexual identity and orientation. ## Our Standards Examples of behavior that contributes to creating a positive environment include: * Using welcoming and inclusive language * Being respectful of differing viewpoints and experiences * Gracefully accepting constructive criticism * Focusing on what is best for the community * Showing empathy towards other community members Examples of unacceptable behavior by participants include: * The use of sexualized language or imagery and unwelcome sexual attention or advances * Trolling, insulting/derogatory comments, and personal or political attacks * Public or private harassment * Publishing others' private information, such as a physical or electronic address, without explicit permission * Other conduct which could reasonably be considered inappropriate in a professional setting ## Our Responsibilities Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior. Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful. Moreover, project maintainers will strive to offer feedback and advice to ensure quality and consistency of contributions to the code. Contributions from outside the group of project maintainers are strongly welcomed but the final decision as to whether commits are merged into the codebase rests with the team of project maintainers. ## Scope This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers. ## Enforcement Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at '[email protected]'. The project team will review and investigate all complaints, and will respond in a way that it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately. Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project's leadership. ## Attribution This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4, available at [http://contributor-covenant.org/version/1/4][version] [homepage]: http://contributor-covenant.org [version]: http://contributor-covenant.org/version/1/4/
0.485844
0.674577
from re import S from tracemalloc import start from science_utils_k.echarts.EChart import EChart from science_utils_k.utils import princess import time import os class LineChart(EChart): def __init__(self, global_args=None, options=None): super(LineChart, self).__init__(global_args) if options == None: self.options = { 'title': { 'text': 'Classification', }, 'tooltip': {}, 'legend': {}, 'xAxis': { 'name': "epoch", 'nameLocation': "end", 'data': None, 'axisLabel': { 'show': 'true' } }, 'yAxis': {}, 'series': None } else: self.options = options def get_options(self): return self.options def set_options(self, attrs, values): for attr, value in zip(attrs, values): # print(attr) # print(value) attr = attr.split(".") princess.set_attr(self.options, attr, value) def output(self, time_stamp,type="html", log_root_path="log"): o_path = log_root_path + "/"+time_stamp if type == "html": if not os.path.exists("log"): os.makedirs("log") if time_stamp not in os.listdir("log"): os.makedirs(o_path) if "html" not in os.listdir(o_path): os.makedirs(o_path+"/html") if "js" not in os.listdir(o_path+"/html"): os.makedirs(o_path+"/html/js") # os.makedirs(o_path+"/html/js/") # 如果main.html已存在,从以有文件读入html。否则使用默认html模板 if "main.html" in os.listdir(o_path+"/html"): echart_html = princess.echart2html(self,log_path=o_path) else: echart_html = princess.echart2html(self) # write html file fd = open(o_path+"/html/main.html", "w") fd.write(str(echart_html)) fd.close() # write js file fd = open(o_path+"/html/js/charts_cfg.js","a") fd.write(princess.js_init_echart(self)) fd.write(princess.js_init_chartOption(self)) fd.close()
science-utils-k
/science_utils_k-0.0.6.tar.gz/science_utils_k-0.0.6/science_utils_k/echarts/LineChart.py
LineChart.py
from re import S from tracemalloc import start from science_utils_k.echarts.EChart import EChart from science_utils_k.utils import princess import time import os class LineChart(EChart): def __init__(self, global_args=None, options=None): super(LineChart, self).__init__(global_args) if options == None: self.options = { 'title': { 'text': 'Classification', }, 'tooltip': {}, 'legend': {}, 'xAxis': { 'name': "epoch", 'nameLocation': "end", 'data': None, 'axisLabel': { 'show': 'true' } }, 'yAxis': {}, 'series': None } else: self.options = options def get_options(self): return self.options def set_options(self, attrs, values): for attr, value in zip(attrs, values): # print(attr) # print(value) attr = attr.split(".") princess.set_attr(self.options, attr, value) def output(self, time_stamp,type="html", log_root_path="log"): o_path = log_root_path + "/"+time_stamp if type == "html": if not os.path.exists("log"): os.makedirs("log") if time_stamp not in os.listdir("log"): os.makedirs(o_path) if "html" not in os.listdir(o_path): os.makedirs(o_path+"/html") if "js" not in os.listdir(o_path+"/html"): os.makedirs(o_path+"/html/js") # os.makedirs(o_path+"/html/js/") # 如果main.html已存在,从以有文件读入html。否则使用默认html模板 if "main.html" in os.listdir(o_path+"/html"): echart_html = princess.echart2html(self,log_path=o_path) else: echart_html = princess.echart2html(self) # write html file fd = open(o_path+"/html/main.html", "w") fd.write(str(echart_html)) fd.close() # write js file fd = open(o_path+"/html/js/charts_cfg.js","a") fd.write(princess.js_init_echart(self)) fd.write(princess.js_init_chartOption(self)) fd.close()
0.086828
0.0745
from bs4 import BeautifulSoup def set_attr(options: dict, attr: list, value: any) -> str: i = 0 for x in attr: if i == 0: exec_str = "options['%s']" % x i += 1 else: exec_str += "['%s']" % x exec_str += " = %s" % value print(exec_str) exec(exec_str) # print(options) return exec_str def load_html(file_path=None): html_temp = '<!DOCTYPE html>\ <html>\ \ <head>\ <meta charset="utf-8" />\ <meta http-equiv="X-UA-Compatible" content="IE=edge">\ <meta name="viewport" content="width=device-width, initial-scale=1">\ <title></title>\ \ <!-- ZUI Javascript 依赖 jQuery -->\ <script src="https://cdn.staticfile.org/echarts/4.3.0/echarts.min.js"></script>\ </head>\ \ <body>\ <div class="container"></div>\ </body>\ <script src="js/charts_cfg.js"></script>\ \ </html>' if file_path == None: return BeautifulSoup(html_temp, features="lxml") else: return BeautifulSoup(open(file_path),features="lxml") def load_data(data) -> str: return str(data) def load_data_from_file(path: str, args_name: list, split=","): pass def js_init_echart(chart): global_args = chart.get_global_args() options = chart.get_options() i = 0 for arg in global_args["init"]: if i == 0: init_js = "var %s = echarts.init(\n\ %s=%s, \n \ " % ( global_args["id"], arg, global_args["init"][arg] , ) i = 1 else: init_js += "%s = %s,\n" % ( arg, global_args["init"][arg]if global_args["init"][arg] != None else "null", ) init_js += ");\n" print(init_js) return init_js def js_init_chartOption(chart): global_args = chart.get_global_args() options = chart.get_options() options_js = "%s.setOption(%s)" % ( global_args["id"], options ) options_js +=";\n" return options_js def echart2html(chart,log_path=None): # echart_container = '&lt;div id="%s" style="float: left;"></div>' % chart.get_global_args()["id"] if log_path == None: soup = load_html() else: soup = load_html(file_path=log_path+"/html/main.html") echart_container = soup.new_tag("div", id=chart.get_global_args()["id"],style="float: left;") soup.div.append(echart_container) return soup.prettify() # soup = load_html().prettify # print(soup)
science-utils-k
/science_utils_k-0.0.6.tar.gz/science_utils_k-0.0.6/science_utils_k/utils/princess.py
princess.py
from bs4 import BeautifulSoup def set_attr(options: dict, attr: list, value: any) -> str: i = 0 for x in attr: if i == 0: exec_str = "options['%s']" % x i += 1 else: exec_str += "['%s']" % x exec_str += " = %s" % value print(exec_str) exec(exec_str) # print(options) return exec_str def load_html(file_path=None): html_temp = '<!DOCTYPE html>\ <html>\ \ <head>\ <meta charset="utf-8" />\ <meta http-equiv="X-UA-Compatible" content="IE=edge">\ <meta name="viewport" content="width=device-width, initial-scale=1">\ <title></title>\ \ <!-- ZUI Javascript 依赖 jQuery -->\ <script src="https://cdn.staticfile.org/echarts/4.3.0/echarts.min.js"></script>\ </head>\ \ <body>\ <div class="container"></div>\ </body>\ <script src="js/charts_cfg.js"></script>\ \ </html>' if file_path == None: return BeautifulSoup(html_temp, features="lxml") else: return BeautifulSoup(open(file_path),features="lxml") def load_data(data) -> str: return str(data) def load_data_from_file(path: str, args_name: list, split=","): pass def js_init_echart(chart): global_args = chart.get_global_args() options = chart.get_options() i = 0 for arg in global_args["init"]: if i == 0: init_js = "var %s = echarts.init(\n\ %s=%s, \n \ " % ( global_args["id"], arg, global_args["init"][arg] , ) i = 1 else: init_js += "%s = %s,\n" % ( arg, global_args["init"][arg]if global_args["init"][arg] != None else "null", ) init_js += ");\n" print(init_js) return init_js def js_init_chartOption(chart): global_args = chart.get_global_args() options = chart.get_options() options_js = "%s.setOption(%s)" % ( global_args["id"], options ) options_js +=";\n" return options_js def echart2html(chart,log_path=None): # echart_container = '&lt;div id="%s" style="float: left;"></div>' % chart.get_global_args()["id"] if log_path == None: soup = load_html() else: soup = load_html(file_path=log_path+"/html/main.html") echart_container = soup.new_tag("div", id=chart.get_global_args()["id"],style="float: left;") soup.div.append(echart_container) return soup.prettify() # soup = load_html().prettify # print(soup)
0.069494
0.088702
# [<img src="https://pbs.twimg.com/profile_images/1396102254487384065/ZjD8GvMw_400x400.png" alt="drawing" width="50"/>ViewsOnDrugsBot<img src="https://pbs.twimg.com/media/E1_0586WQAYCNym?format=png&name=small" alt="drawing" width="50"/>](https://twitter.com/ViewsOnDrugsBot/) A bot application sharing scientific publications and educated opinions on psychedelic research, harm reduction and drug policy issues. A collaboration with: [#mybrainmychoice](https://mybrainmychoice.de/twitter-bot/) [<img src="https://mybrainmychoice.de/wp-content/uploads/mybrainmychoice_Logo-500x500_GIF.gif" alt="drawing" width="50"/>](https://mybrainmychoice.de/) ## What it does: * Reads and parses a list of RSS feeds (i.e. PubMed) Tweets an article's title, link, abstract, and authors as a 5/5 thread :thread:. * Retweets older RSS post after a given time. * Retweets the most retweeted and up-voted post from: - a global search for specified keywords or hashtags defined on `Settings.add_hashtag`. - a search result from a given distribution Twitter list defined on `Settings.mylist_id`. * Interacts with users by faving posts from the above. * Schedule jobs for any of the above. * Send automated debug reports via Telegram. All functions can be used independently. ## Install 0. Download or git clone Twitterbot: - `git clone https://github.com/franasal/science_bot.git` 1. Run: - `cd scibot` - `pip install . --user` 2. Create a [Twitter application](https://apps.twitter.com/), and generate keys, tokens etc. 3. Create a [Telegram bot](https://python-telegram-bot.readthedocs.io/en/stable/) for post and debugging notifications. 4. Modify the settings in the source code. - Modify `feed_urls` list to add the RSS feeds of your choice. [Here](https://github.com/roblanf/phypapers) you can find a description on how to set an RSS search. - Modify the variables in the `example.env` file and add keys, tokens etc. for connecting to your Twitter app and save it as `.env` in your home directory. - Modify `retweet_include_words` for keywords you want to search and retweet, and `retweet_exclude_words` for keywords you would like to exclude from retweeting. For example `retweet_include_words = ["foo"]` and `retweet_exclude_words = ["bar"]` will include any tweet with the word "foo", as long as the word "bar" is absent. This list can also be left empty, i.e. `retweet_exclude_words = []`. - Modify or add jobs to the `scheduled_job()` function. ## Requirements * Python 3+ * Twitter account * Telegram account ## Usage Read the RSS feeds and post a thread to Twitter account: ```bash $ scibot rss ``` Search globally for tweets and retweet them: ```bash $ scibot rtg ``` Search for tweets within a Twitter list and retweet them: ```bash $ scibot rtl ``` Retweet last own tweet: ```bash $ scibot rto ``` ### Deploy: [Here](https://schedule.readthedocs.io/en/stable/) you can learn how set-up tasks for the the `scheduled_job()` function There are some good free cloud solutions such as [pythonanywhere](https://www.pythonanywhere.com/), where you can deploy the bot, to do that just run: ```bash $ scibot sch ``` :hibiscus:
scienceBot
/scienceBot-0.1.1.1.tar.gz/scienceBot-0.1.1.1/README.md
README.md
$ scibot rss $ scibot rtg $ scibot rtl $ scibot rto $ scibot sch
0.370339
0.844024
import tweepy from scibot.telebot import telegram_bot_sendtext from dotenv import load_dotenv from os.path import expanduser import os env_path = expanduser("~/.env") load_dotenv(dotenv_path=env_path, override=True) # Setup API: def twitter_setup(): """ Setup Twitter connection for a developer account Returns: tweepy.API object """ # Authenticate and access using keys: auth = tweepy.OAuthHandler(os.getenv("CONSUMER_KEY"), os.getenv("CONSUMER_SECRET")) auth.set_access_token(os.getenv("ACCESS_TOKEN"), os.getenv("ACCESS_SECRET")) # Return API access: api = tweepy.API(auth, wait_on_rate_limit=True, wait_on_rate_limit_notify=True) return api api = twitter_setup() banned_profiles = ['nydancesafe'] class MyStreamListener(tweepy.StreamListener): def on_status(self, status): if hasattr(status, "retweeted_status"): # Check if Retweet # try: # print('rt',status['retweeted_status']['extended_tweet']["full_text"]) # except AttributeError: telegram_bot_sendtext(f" check if retweet:, {status.retweeted_status.text}") if "constellation" not in status.retweeted_status.text.lower(): pass else: try: ## catch nesting if status.user.screen_name in banned_profiles or status.in_reply_to_screen_name: pass replied_to=status.in_reply_to_screen_name answer_user=status.user.screen_name answer_id=status.id answer_user_id = status.user.id ## ignore replies that by default contain mention in_reply_to_status_id=status.in_reply_to_status_id in_reply_to_user_id=status.in_reply_to_user_id telegram_bot_sendtext(f"{replied_to}, 'nesting', {in_reply_to_user_id}, 'replied to', {replied_to}, 'message', {status.text}") except AttributeError: replied_to=status.in_reply_to_screen_name answer_user=status.user.screen_name answer_user_id = status.user.id answer_id=status.id in_reply_to_status_id=status.in_reply_to_status_id in_reply_to_user_id=status.in_reply_to_user_id telegram_bot_sendtext(f"ATRIB ERROR: {replied_to}, 'nesting', {in_reply_to_user_id}, 'replied to', {replied_to}, 'message', {status.text}") update_status = f""" #ConstellationsFest live RT. From 16-24 NOV: https://twitter.com/{answer_user}/status/{answer_id} """ # don't reply to yourself!! self_ids=[1319577341056733184, 1118874276961116162] if status.user.id not in self_ids: api.update_status(update_status, auto_populate_reply_metadata=True) def on_error(self, status): telegram_bot_sendtext(f"ERROR with: {status}") def listen_stream_and_rt(keywords_list): api = twitter_setup() myStreamListener = MyStreamListener() try: myStream = tweepy.Stream(auth=api.auth, listener=myStreamListener) myStream.filter(track=keywords_list, is_async=True) except Exception as ex: telegram_bot_sendtext(f"ERROR with: {ex}") pass
scienceBot
/scienceBot-0.1.1.1.tar.gz/scienceBot-0.1.1.1/scibot/streamer.py
streamer.py
import tweepy from scibot.telebot import telegram_bot_sendtext from dotenv import load_dotenv from os.path import expanduser import os env_path = expanduser("~/.env") load_dotenv(dotenv_path=env_path, override=True) # Setup API: def twitter_setup(): """ Setup Twitter connection for a developer account Returns: tweepy.API object """ # Authenticate and access using keys: auth = tweepy.OAuthHandler(os.getenv("CONSUMER_KEY"), os.getenv("CONSUMER_SECRET")) auth.set_access_token(os.getenv("ACCESS_TOKEN"), os.getenv("ACCESS_SECRET")) # Return API access: api = tweepy.API(auth, wait_on_rate_limit=True, wait_on_rate_limit_notify=True) return api api = twitter_setup() banned_profiles = ['nydancesafe'] class MyStreamListener(tweepy.StreamListener): def on_status(self, status): if hasattr(status, "retweeted_status"): # Check if Retweet # try: # print('rt',status['retweeted_status']['extended_tweet']["full_text"]) # except AttributeError: telegram_bot_sendtext(f" check if retweet:, {status.retweeted_status.text}") if "constellation" not in status.retweeted_status.text.lower(): pass else: try: ## catch nesting if status.user.screen_name in banned_profiles or status.in_reply_to_screen_name: pass replied_to=status.in_reply_to_screen_name answer_user=status.user.screen_name answer_id=status.id answer_user_id = status.user.id ## ignore replies that by default contain mention in_reply_to_status_id=status.in_reply_to_status_id in_reply_to_user_id=status.in_reply_to_user_id telegram_bot_sendtext(f"{replied_to}, 'nesting', {in_reply_to_user_id}, 'replied to', {replied_to}, 'message', {status.text}") except AttributeError: replied_to=status.in_reply_to_screen_name answer_user=status.user.screen_name answer_user_id = status.user.id answer_id=status.id in_reply_to_status_id=status.in_reply_to_status_id in_reply_to_user_id=status.in_reply_to_user_id telegram_bot_sendtext(f"ATRIB ERROR: {replied_to}, 'nesting', {in_reply_to_user_id}, 'replied to', {replied_to}, 'message', {status.text}") update_status = f""" #ConstellationsFest live RT. From 16-24 NOV: https://twitter.com/{answer_user}/status/{answer_id} """ # don't reply to yourself!! self_ids=[1319577341056733184, 1118874276961116162] if status.user.id not in self_ids: api.update_status(update_status, auto_populate_reply_metadata=True) def on_error(self, status): telegram_bot_sendtext(f"ERROR with: {status}") def listen_stream_and_rt(keywords_list): api = twitter_setup() myStreamListener = MyStreamListener() try: myStream = tweepy.Stream(auth=api.auth, listener=myStreamListener) myStream.filter(track=keywords_list, is_async=True) except Exception as ex: telegram_bot_sendtext(f"ERROR with: {ex}") pass
0.214362
0.058346