Dataset Viewer
Auto-converted to Parquet
code
stringlengths
0
23.9M
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2014 Marvell Technology Group Ltd. * * Antoine Tenart <[email protected]> */ #include <linux/clk.h> #include <linux/dma-mapping.h> #include <linux/module.h> #include <linux/of.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/property.h> #include <linux/usb/chipidea.h> #include <linux/usb/hcd.h> #include <linux/usb/ulpi.h> #include "ci.h" struct ci_hdrc_usb2_priv { struct platform_device *ci_pdev; struct clk *clk; }; static const struct ci_hdrc_platform_data ci_default_pdata = { .capoffset = DEF_CAPOFFSET, .flags = CI_HDRC_DISABLE_STREAMING, }; static const struct ci_hdrc_platform_data ci_zynq_pdata = { .capoffset = DEF_CAPOFFSET, .flags = CI_HDRC_PHY_VBUS_CONTROL, }; static const struct ci_hdrc_platform_data ci_zevio_pdata = { .capoffset = DEF_CAPOFFSET, .flags = CI_HDRC_REGS_SHARED | CI_HDRC_FORCE_FULLSPEED, }; static const struct of_device_id ci_hdrc_usb2_of_match[] = { { .compatible = "chipidea,usb2" }, { .compatible = "xlnx,zynq-usb-2.20a", .data = &ci_zynq_pdata }, { .compatible = "lsi,zevio-usb", .data = &ci_zevio_pdata }, { } }; MODULE_DEVICE_TABLE(of, ci_hdrc_usb2_of_match); static int ci_hdrc_usb2_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct ci_hdrc_usb2_priv *priv; struct ci_hdrc_platform_data *ci_pdata = dev_get_platdata(dev); const struct ci_hdrc_platform_data *data; int ret; if (!ci_pdata) { ci_pdata = devm_kmalloc(dev, sizeof(*ci_pdata), GFP_KERNEL); if (!ci_pdata) return -ENOMEM; *ci_pdata = ci_default_pdata; /* struct copy */ } data = device_get_match_data(&pdev->dev); if (data) /* struct copy */ *ci_pdata = *data; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->clk = devm_clk_get_optional(dev, NULL); if (IS_ERR(priv->clk)) return PTR_ERR(priv->clk); ret = clk_prepare_enable(priv->clk); if (ret) { dev_err(dev, "failed to enable the clock: %d\n", ret); return ret; } ci_pdata->name = dev_name(dev); priv->ci_pdev = ci_hdrc_add_device(dev, pdev->resource, pdev->num_resources, ci_pdata); if (IS_ERR(priv->ci_pdev)) { ret = PTR_ERR(priv->ci_pdev); if (ret != -EPROBE_DEFER) dev_err(dev, "failed to register ci_hdrc platform device: %d\n", ret); goto clk_err; } platform_set_drvdata(pdev, priv); pm_runtime_no_callbacks(dev); pm_runtime_enable(dev); return 0; clk_err: clk_disable_unprepare(priv->clk); return ret; } static void ci_hdrc_usb2_remove(struct platform_device *pdev) { struct ci_hdrc_usb2_priv *priv = platform_get_drvdata(pdev); pm_runtime_disable(&pdev->dev); ci_hdrc_remove_device(priv->ci_pdev); clk_disable_unprepare(priv->clk); } static struct platform_driver ci_hdrc_usb2_driver = { .probe = ci_hdrc_usb2_probe, .remove = ci_hdrc_usb2_remove, .driver = { .name = "chipidea-usb2", .of_match_table = ci_hdrc_usb2_of_match, }, }; module_platform_driver(ci_hdrc_usb2_driver); MODULE_DESCRIPTION("ChipIdea HDRC USB2 binding for ci13xxx"); MODULE_AUTHOR("Antoine Tenart <[email protected]>"); MODULE_LICENSE("GPL");
/* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 2013 NVIDIA Corporation */ #ifndef TEGRA_GR2D_H #define TEGRA_GR2D_H #define GR2D_UA_BASE_ADDR 0x1a #define GR2D_VA_BASE_ADDR 0x1b #define GR2D_PAT_BASE_ADDR 0x26 #define GR2D_DSTA_BASE_ADDR 0x2b #define GR2D_DSTB_BASE_ADDR 0x2c #define GR2D_DSTC_BASE_ADDR 0x2d #define GR2D_SRCA_BASE_ADDR 0x31 #define GR2D_SRCB_BASE_ADDR 0x32 #define GR2D_PATBASE_ADDR 0x47 #define GR2D_SRC_BASE_ADDR_SB 0x48 #define GR2D_DSTA_BASE_ADDR_SB 0x49 #define GR2D_DSTB_BASE_ADDR_SB 0x4a #define GR2D_UA_BASE_ADDR_SB 0x4b #define GR2D_VA_BASE_ADDR_SB 0x4c #define GR2D_NUM_REGS 0x4d #endif
// SPDX-License-Identifier: (GPL-2.0+ OR MIT) /* * Copyright 2022 Broadcom Ltd. */ /dts-v1/; #include "bcm63146.dtsi" / { model = "Broadcom BCM963146 Reference Board"; compatible = "brcm,bcm963146", "brcm,bcm63146", "brcm,bcmbca"; aliases { serial0 = &uart0; }; chosen { stdout-path = "serial0:115200n8"; }; memory@0 { device_type = "memory"; reg = <0x0 0x0 0x0 0x08000000>; }; }; &uart0 { status = "okay"; }; &hsspi { status = "okay"; }; &nand_controller { brcm,wp-not-connected; status = "okay"; }; &nandcs { nand-on-flash-bbt; brcm,nand-ecc-use-strap; };
// SPDX-License-Identifier: GPL-2.0 /* Converted from tools/testing/selftests/bpf/verifier/ctx_sk_msg.c */ #include <linux/bpf.h> #include <bpf/bpf_helpers.h> #include "bpf_misc.h" SEC("sk_msg") __description("valid access family in SK_MSG") __success __naked void access_family_in_sk_msg(void) { asm volatile (" \ r0 = *(u32*)(r1 + %[sk_msg_md_family]); \ exit; \ " : : __imm_const(sk_msg_md_family, offsetof(struct sk_msg_md, family)) : __clobber_all); } SEC("sk_msg") __description("valid access remote_ip4 in SK_MSG") __success __naked void remote_ip4_in_sk_msg(void) { asm volatile (" \ r0 = *(u32*)(r1 + %[sk_msg_md_remote_ip4]); \ exit; \ " : : __imm_const(sk_msg_md_remote_ip4, offsetof(struct sk_msg_md, remote_ip4)) : __clobber_all); } SEC("sk_msg") __description("valid access local_ip4 in SK_MSG") __success __naked void local_ip4_in_sk_msg(void) { asm volatile (" \ r0 = *(u32*)(r1 + %[sk_msg_md_local_ip4]); \ exit; \ " : : __imm_const(sk_msg_md_local_ip4, offsetof(struct sk_msg_md, local_ip4)) : __clobber_all); } SEC("sk_msg") __description("valid access remote_port in SK_MSG") __success __naked void remote_port_in_sk_msg(void) { asm volatile (" \ r0 = *(u32*)(r1 + %[sk_msg_md_remote_port]); \ exit; \ " : : __imm_const(sk_msg_md_remote_port, offsetof(struct sk_msg_md, remote_port)) : __clobber_all); } SEC("sk_msg") __description("valid access local_port in SK_MSG") __success __naked void local_port_in_sk_msg(void) { asm volatile (" \ r0 = *(u32*)(r1 + %[sk_msg_md_local_port]); \ exit; \ " : : __imm_const(sk_msg_md_local_port, offsetof(struct sk_msg_md, local_port)) : __clobber_all); } SEC("sk_skb") __description("valid access remote_ip6 in SK_MSG") __success __naked void remote_ip6_in_sk_msg(void) { asm volatile (" \ r0 = *(u32*)(r1 + %[sk_msg_md_remote_ip6_0]); \ r0 = *(u32*)(r1 + %[sk_msg_md_remote_ip6_1]); \ r0 = *(u32*)(r1 + %[sk_msg_md_remote_ip6_2]); \ r0 = *(u32*)(r1 + %[sk_msg_md_remote_ip6_3]); \ exit; \ " : : __imm_const(sk_msg_md_remote_ip6_0, offsetof(struct sk_msg_md, remote_ip6[0])), __imm_const(sk_msg_md_remote_ip6_1, offsetof(struct sk_msg_md, remote_ip6[1])), __imm_const(sk_msg_md_remote_ip6_2, offsetof(struct sk_msg_md, remote_ip6[2])), __imm_const(sk_msg_md_remote_ip6_3, offsetof(struct sk_msg_md, remote_ip6[3])) : __clobber_all); } SEC("sk_skb") __description("valid access local_ip6 in SK_MSG") __success __naked void local_ip6_in_sk_msg(void) { asm volatile (" \ r0 = *(u32*)(r1 + %[sk_msg_md_local_ip6_0]); \ r0 = *(u32*)(r1 + %[sk_msg_md_local_ip6_1]); \ r0 = *(u32*)(r1 + %[sk_msg_md_local_ip6_2]); \ r0 = *(u32*)(r1 + %[sk_msg_md_local_ip6_3]); \ exit; \ " : : __imm_const(sk_msg_md_local_ip6_0, offsetof(struct sk_msg_md, local_ip6[0])), __imm_const(sk_msg_md_local_ip6_1, offsetof(struct sk_msg_md, local_ip6[1])), __imm_const(sk_msg_md_local_ip6_2, offsetof(struct sk_msg_md, local_ip6[2])), __imm_const(sk_msg_md_local_ip6_3, offsetof(struct sk_msg_md, local_ip6[3])) : __clobber_all); } SEC("sk_msg") __description("valid access size in SK_MSG") __success __naked void access_size_in_sk_msg(void) { asm volatile (" \ r0 = *(u32*)(r1 + %[sk_msg_md_size]); \ exit; \ " : : __imm_const(sk_msg_md_size, offsetof(struct sk_msg_md, size)) : __clobber_all); } SEC("sk_msg") __description("invalid 64B read of size in SK_MSG") __failure __msg("invalid bpf_context access") __flag(BPF_F_ANY_ALIGNMENT) __naked void of_size_in_sk_msg(void) { asm volatile (" \ r2 = *(u64*)(r1 + %[sk_msg_md_size]); \ exit; \ " : : __imm_const(sk_msg_md_size, offsetof(struct sk_msg_md, size)) : __clobber_all); } SEC("sk_msg") __description("invalid read past end of SK_MSG") __failure __msg("invalid bpf_context access") __naked void past_end_of_sk_msg(void) { asm volatile (" \ r2 = *(u32*)(r1 + %[__imm_0]); \ exit; \ " : : __imm_const(__imm_0, offsetof(struct sk_msg_md, size) + 4) : __clobber_all); } SEC("sk_msg") __description("invalid read offset in SK_MSG") __failure __msg("invalid bpf_context access") __flag(BPF_F_ANY_ALIGNMENT) __naked void read_offset_in_sk_msg(void) { asm volatile (" \ r2 = *(u32*)(r1 + %[__imm_0]); \ exit; \ " : : __imm_const(__imm_0, offsetof(struct sk_msg_md, family) + 1) : __clobber_all); } SEC("sk_msg") __description("direct packet read for SK_MSG") __success __naked void packet_read_for_sk_msg(void) { asm volatile (" \ r2 = *(u64*)(r1 + %[sk_msg_md_data]); \ r3 = *(u64*)(r1 + %[sk_msg_md_data_end]); \ r0 = r2; \ r0 += 8; \ if r0 > r3 goto l0_%=; \ r0 = *(u8*)(r2 + 0); \ l0_%=: r0 = 0; \ exit; \ " : : __imm_const(sk_msg_md_data, offsetof(struct sk_msg_md, data)), __imm_const(sk_msg_md_data_end, offsetof(struct sk_msg_md, data_end)) : __clobber_all); } SEC("sk_msg") __description("direct packet write for SK_MSG") __success __naked void packet_write_for_sk_msg(void) { asm volatile (" \ r2 = *(u64*)(r1 + %[sk_msg_md_data]); \ r3 = *(u64*)(r1 + %[sk_msg_md_data_end]); \ r0 = r2; \ r0 += 8; \ if r0 > r3 goto l0_%=; \ *(u8*)(r2 + 0) = r2; \ l0_%=: r0 = 0; \ exit; \ " : : __imm_const(sk_msg_md_data, offsetof(struct sk_msg_md, data)), __imm_const(sk_msg_md_data_end, offsetof(struct sk_msg_md, data_end)) : __clobber_all); } SEC("sk_msg") __description("overlapping checks for direct packet access SK_MSG") __success __naked void direct_packet_access_sk_msg(void) { asm volatile (" \ r2 = *(u64*)(r1 + %[sk_msg_md_data]); \ r3 = *(u64*)(r1 + %[sk_msg_md_data_end]); \ r0 = r2; \ r0 += 8; \ if r0 > r3 goto l0_%=; \ r1 = r2; \ r1 += 6; \ if r1 > r3 goto l0_%=; \ r0 = *(u16*)(r2 + 6); \ l0_%=: r0 = 0; \ exit; \ " : : __imm_const(sk_msg_md_data, offsetof(struct sk_msg_md, data)), __imm_const(sk_msg_md_data_end, offsetof(struct sk_msg_md, data_end)) : __clobber_all); } char _license[] SEC("license") = "GPL";
/* Copyright (C) 2005 - 2008 Jeff Dike <jdike@{linux.intel,addtoit}.com> */ /* Much of this ripped from drivers/char/hw_random.c, see there for other * copyright. * * This software may be used and distributed according to the terms * of the GNU General Public License, incorporated herein by reference. */ #include <linux/sched/signal.h> #include <linux/module.h> #include <linux/fs.h> #include <linux/interrupt.h> #include <linux/miscdevice.h> #include <linux/hw_random.h> #include <linux/delay.h> #include <linux/uaccess.h> #include <init.h> #include <irq_kern.h> #include <os.h> /* * core module information */ #define RNG_MODULE_NAME "hw_random" /* Changed at init time, in the non-modular case, and at module load * time, in the module case. Presumably, the module subsystem * protects against a module being loaded twice at the same time. */ static int random_fd = -1; static struct hwrng hwrng; static DECLARE_COMPLETION(have_data); static int rng_dev_read(struct hwrng *rng, void *buf, size_t max, bool block) { int ret; for (;;) { ret = os_read_file(random_fd, buf, max); if (block && ret == -EAGAIN) { add_sigio_fd(random_fd); ret = wait_for_completion_killable(&have_data); ignore_sigio_fd(random_fd); deactivate_fd(random_fd, RANDOM_IRQ); if (ret < 0) break; } else { break; } } return ret != -EAGAIN ? ret : 0; } static irqreturn_t random_interrupt(int irq, void *data) { complete(&have_data); return IRQ_HANDLED; } /* * rng_init - initialize RNG module */ static int __init rng_init (void) { int err; err = os_open_file("/dev/random", of_read(OPENFLAGS()), 0); if (err < 0) goto out; random_fd = err; err = um_request_irq(RANDOM_IRQ, random_fd, IRQ_READ, random_interrupt, 0, "random", NULL); if (err < 0) goto err_out_cleanup_hw; sigio_broken(random_fd); hwrng.name = RNG_MODULE_NAME; hwrng.read = rng_dev_read; err = hwrng_register(&hwrng); if (err) { pr_err(RNG_MODULE_NAME " registering failed (%d)\n", err); goto err_out_cleanup_hw; } out: return err; err_out_cleanup_hw: os_close_file(random_fd); random_fd = -1; goto out; } /* * rng_cleanup - shutdown RNG module */ static void cleanup(void) { free_irq_by_fd(random_fd); os_close_file(random_fd); } static void __exit rng_cleanup(void) { hwrng_unregister(&hwrng); os_close_file(random_fd); } module_init (rng_init); module_exit (rng_cleanup); __uml_exitcall(cleanup); MODULE_DESCRIPTION("UML Host Random Number Generator (RNG) driver"); MODULE_LICENSE("GPL");
/* SPDX-License-Identifier: GPL-2.0 * Copyright 2021 NXP */ #ifndef _NET_DSA_TAG_MV88E6XXX_H #define _NET_DSA_TAG_MV88E6XXX_H #include <linux/if_vlan.h> #define MV88E6XXX_VID_STANDALONE 0 #define MV88E6XXX_VID_BRIDGED (VLAN_N_VID - 1) #endif
// SPDX-License-Identifier: (GPL-2.0-or-later OR BSD-2-Clause) /* * libfdt - Flat Device Tree manipulation * Copyright (C) 2006 David Gibson, IBM Corporation. */ #include "libfdt_env.h" #include <fdt.h> #include <libfdt.h> #include "libfdt_internal.h" static int fdt_nodename_eq_(const void *fdt, int offset, const char *s, int len) { int olen; const char *p = fdt_get_name(fdt, offset, &olen); if (!p || olen < len) /* short match */ return 0; if (memcmp(p, s, len) != 0) return 0; if (p[len] == '\0') return 1; else if (!memchr(s, '@', len) && (p[len] == '@')) return 1; else return 0; } const char *fdt_get_string(const void *fdt, int stroffset, int *lenp) { int32_t totalsize; uint32_t absoffset; size_t len; int err; const char *s, *n; if (can_assume(VALID_INPUT)) { s = (const char *)fdt + fdt_off_dt_strings(fdt) + stroffset; if (lenp) *lenp = strlen(s); return s; } totalsize = fdt_ro_probe_(fdt); err = totalsize; if (totalsize < 0) goto fail; err = -FDT_ERR_BADOFFSET; absoffset = stroffset + fdt_off_dt_strings(fdt); if (absoffset >= (unsigned)totalsize) goto fail; len = totalsize - absoffset; if (fdt_magic(fdt) == FDT_MAGIC) { if (stroffset < 0) goto fail; if (can_assume(LATEST) || fdt_version(fdt) >= 17) { if ((unsigned)stroffset >= fdt_size_dt_strings(fdt)) goto fail; if ((fdt_size_dt_strings(fdt) - stroffset) < len) len = fdt_size_dt_strings(fdt) - stroffset; } } else if (fdt_magic(fdt) == FDT_SW_MAGIC) { unsigned int sw_stroffset = -stroffset; if ((stroffset >= 0) || (sw_stroffset > fdt_size_dt_strings(fdt))) goto fail; if (sw_stroffset < len) len = sw_stroffset; } else { err = -FDT_ERR_INTERNAL; goto fail; } s = (const char *)fdt + absoffset; n = memchr(s, '\0', len); if (!n) { /* missing terminating NULL */ err = -FDT_ERR_TRUNCATED; goto fail; } if (lenp) *lenp = n - s; return s; fail: if (lenp) *lenp = err; return NULL; } const char *fdt_string(const void *fdt, int stroffset) { return fdt_get_string(fdt, stroffset, NULL); } static int fdt_string_eq_(const void *fdt, int stroffset, const char *s, int len) { int slen; const char *p = fdt_get_string(fdt, stroffset, &slen); return p && (slen == len) && (memcmp(p, s, len) == 0); } int fdt_find_max_phandle(const void *fdt, uint32_t *phandle) { uint32_t max = 0; int offset = -1; while (true) { uint32_t value; offset = fdt_next_node(fdt, offset, NULL); if (offset < 0) { if (offset == -FDT_ERR_NOTFOUND) break; return offset; } value = fdt_get_phandle(fdt, offset); if (value > max) max = value; } if (phandle) *phandle = max; return 0; } int fdt_generate_phandle(const void *fdt, uint32_t *phandle) { uint32_t max; int err; err = fdt_find_max_phandle(fdt, &max); if (err < 0) return err; if (max == FDT_MAX_PHANDLE) return -FDT_ERR_NOPHANDLES; if (phandle) *phandle = max + 1; return 0; } static const struct fdt_reserve_entry *fdt_mem_rsv(const void *fdt, int n) { unsigned int offset = n * sizeof(struct fdt_reserve_entry); unsigned int absoffset = fdt_off_mem_rsvmap(fdt) + offset; if (!can_assume(VALID_INPUT)) { if (absoffset < fdt_off_mem_rsvmap(fdt)) return NULL; if (absoffset > fdt_totalsize(fdt) - sizeof(struct fdt_reserve_entry)) return NULL; } return fdt_mem_rsv_(fdt, n); } int fdt_get_mem_rsv(const void *fdt, int n, uint64_t *address, uint64_t *size) { const struct fdt_reserve_entry *re; FDT_RO_PROBE(fdt); re = fdt_mem_rsv(fdt, n); if (!can_assume(VALID_INPUT) && !re) return -FDT_ERR_BADOFFSET; *address = fdt64_ld_(&re->address); *size = fdt64_ld_(&re->size); return 0; } int fdt_num_mem_rsv(const void *fdt) { int i; const struct fdt_reserve_entry *re; for (i = 0; (re = fdt_mem_rsv(fdt, i)) != NULL; i++) { if (fdt64_ld_(&re->size) == 0) return i; } return -FDT_ERR_TRUNCATED; } static int nextprop_(const void *fdt, int offset) { uint32_t tag; int nextoffset; do { tag = fdt_next_tag(fdt, offset, &nextoffset); switch (tag) { case FDT_END: if (nextoffset >= 0) return -FDT_ERR_BADSTRUCTURE; else return nextoffset; case FDT_PROP: return offset; } offset = nextoffset; } while (tag == FDT_NOP); return -FDT_ERR_NOTFOUND; } int fdt_subnode_offset_namelen(const void *fdt, int offset, const char *name, int namelen) { int depth; FDT_RO_PROBE(fdt); for (depth = 0; (offset >= 0) && (depth >= 0); offset = fdt_next_node(fdt, offset, &depth)) if ((depth == 1) && fdt_nodename_eq_(fdt, offset, name, namelen)) return offset; if (depth < 0) return -FDT_ERR_NOTFOUND; return offset; /* error */ } int fdt_subnode_offset(const void *fdt, int parentoffset, const char *name) { return fdt_subnode_offset_namelen(fdt, parentoffset, name, strlen(name)); } int fdt_path_offset_namelen(const void *fdt, const char *path, int namelen) { const char *end = path + namelen; const char *p = path; int offset = 0; FDT_RO_PROBE(fdt); if (!can_assume(VALID_INPUT) && namelen <= 0) return -FDT_ERR_BADPATH; /* see if we have an alias */ if (*path != '/') { const char *q = memchr(path, '/', end - p); if (!q) q = end; p = fdt_get_alias_namelen(fdt, p, q - p); if (!p) return -FDT_ERR_BADPATH; offset = fdt_path_offset(fdt, p); p = q; } while (p < end) { const char *q; while (*p == '/') { p++; if (p == end) return offset; } q = memchr(p, '/', end - p); if (! q) q = end; offset = fdt_subnode_offset_namelen(fdt, offset, p, q-p); if (offset < 0) return offset; p = q; } return offset; } int fdt_path_offset(const void *fdt, const char *path) { return fdt_path_offset_namelen(fdt, path, strlen(path)); } const char *fdt_get_name(const void *fdt, int nodeoffset, int *len) { const struct fdt_node_header *nh = fdt_offset_ptr_(fdt, nodeoffset); const char *nameptr; int err; if (((err = fdt_ro_probe_(fdt)) < 0) || ((err = fdt_check_node_offset_(fdt, nodeoffset)) < 0)) goto fail; nameptr = nh->name; if (!can_assume(LATEST) && fdt_version(fdt) < 0x10) { /* * For old FDT versions, match the naming conventions of V16: * give only the leaf name (after all /). The actual tree * contents are loosely checked. */ const char *leaf; leaf = strrchr(nameptr, '/'); if (leaf == NULL) { err = -FDT_ERR_BADSTRUCTURE; goto fail; } nameptr = leaf+1; } if (len) *len = strlen(nameptr); return nameptr; fail: if (len) *len = err; return NULL; } int fdt_first_property_offset(const void *fdt, int nodeoffset) { int offset; if ((offset = fdt_check_node_offset_(fdt, nodeoffset)) < 0) return offset; return nextprop_(fdt, offset); } int fdt_next_property_offset(const void *fdt, int offset) { if ((offset = fdt_check_prop_offset_(fdt, offset)) < 0) return offset; return nextprop_(fdt, offset); } static const struct fdt_property *fdt_get_property_by_offset_(const void *fdt, int offset, int *lenp) { int err; const struct fdt_property *prop; if (!can_assume(VALID_INPUT) && (err = fdt_check_prop_offset_(fdt, offset)) < 0) { if (lenp) *lenp = err; return NULL; } prop = fdt_offset_ptr_(fdt, offset); if (lenp) *lenp = fdt32_ld_(&prop->len); return prop; } const struct fdt_property *fdt_get_property_by_offset(const void *fdt, int offset, int *lenp) { /* Prior to version 16, properties may need realignment * and this API does not work. fdt_getprop_*() will, however. */ if (!can_assume(LATEST) && fdt_version(fdt) < 0x10) { if (lenp) *lenp = -FDT_ERR_BADVERSION; return NULL; } return fdt_get_property_by_offset_(fdt, offset, lenp); } static const struct fdt_property *fdt_get_property_namelen_(const void *fdt, int offset, const char *name, int namelen, int *lenp, int *poffset) { for (offset = fdt_first_property_offset(fdt, offset); (offset >= 0); (offset = fdt_next_property_offset(fdt, offset))) { const struct fdt_property *prop; prop = fdt_get_property_by_offset_(fdt, offset, lenp); if (!can_assume(LIBFDT_FLAWLESS) && !prop) { offset = -FDT_ERR_INTERNAL; break; } if (fdt_string_eq_(fdt, fdt32_ld_(&prop->nameoff), name, namelen)) { if (poffset) *poffset = offset; return prop; } } if (lenp) *lenp = offset; return NULL; } const struct fdt_property *fdt_get_property_namelen(const void *fdt, int offset, const char *name, int namelen, int *lenp) { /* Prior to version 16, properties may need realignment * and this API does not work. fdt_getprop_*() will, however. */ if (!can_assume(LATEST) && fdt_version(fdt) < 0x10) { if (lenp) *lenp = -FDT_ERR_BADVERSION; return NULL; } return fdt_get_property_namelen_(fdt, offset, name, namelen, lenp, NULL); } const struct fdt_property *fdt_get_property(const void *fdt, int nodeoffset, const char *name, int *lenp) { return fdt_get_property_namelen(fdt, nodeoffset, name, strlen(name), lenp); } const void *fdt_getprop_namelen(const void *fdt, int nodeoffset, const char *name, int namelen, int *lenp) { int poffset; const struct fdt_property *prop; prop = fdt_get_property_namelen_(fdt, nodeoffset, name, namelen, lenp, &poffset); if (!prop) return NULL; /* Handle realignment */ if (!can_assume(LATEST) && fdt_version(fdt) < 0x10 && (poffset + sizeof(*prop)) % 8 && fdt32_ld_(&prop->len) >= 8) return prop->data + 4; return prop->data; } const void *fdt_getprop_by_offset(const void *fdt, int offset, const char **namep, int *lenp) { const struct fdt_property *prop; prop = fdt_get_property_by_offset_(fdt, offset, lenp); if (!prop) return NULL; if (namep) { const char *name; int namelen; if (!can_assume(VALID_INPUT)) { name = fdt_get_string(fdt, fdt32_ld_(&prop->nameoff), &namelen); *namep = name; if (!name) { if (lenp) *lenp = namelen; return NULL; } } else { *namep = fdt_string(fdt, fdt32_ld_(&prop->nameoff)); } } /* Handle realignment */ if (!can_assume(LATEST) && fdt_version(fdt) < 0x10 && (offset + sizeof(*prop)) % 8 && fdt32_ld_(&prop->len) >= 8) return prop->data + 4; return prop->data; } const void *fdt_getprop(const void *fdt, int nodeoffset, const char *name, int *lenp) { return fdt_getprop_namelen(fdt, nodeoffset, name, strlen(name), lenp); } uint32_t fdt_get_phandle(const void *fdt, int nodeoffset) { const fdt32_t *php; int len; /* FIXME: This is a bit sub-optimal, since we potentially scan * over all the properties twice. */ php = fdt_getprop(fdt, nodeoffset, "phandle", &len); if (!php || (len != sizeof(*php))) { php = fdt_getprop(fdt, nodeoffset, "linux,phandle", &len); if (!php || (len != sizeof(*php))) return 0; } return fdt32_ld_(php); } static const void *fdt_path_getprop_namelen(const void *fdt, const char *path, const char *propname, int propnamelen, int *lenp) { int offset = fdt_path_offset(fdt, path); if (offset < 0) return NULL; return fdt_getprop_namelen(fdt, offset, propname, propnamelen, lenp); } const char *fdt_get_alias_namelen(const void *fdt, const char *name, int namelen) { int len; const char *alias; alias = fdt_path_getprop_namelen(fdt, "/aliases", name, namelen, &len); if (!can_assume(VALID_DTB) && !(alias && len > 0 && alias[len - 1] == '\0' && *alias == '/')) return NULL; return alias; } const char *fdt_get_alias(const void *fdt, const char *name) { return fdt_get_alias_namelen(fdt, name, strlen(name)); } const char *fdt_get_symbol_namelen(const void *fdt, const char *name, int namelen) { return fdt_path_getprop_namelen(fdt, "/__symbols__", name, namelen, NULL); } const char *fdt_get_symbol(const void *fdt, const char *name) { return fdt_get_symbol_namelen(fdt, name, strlen(name)); } int fdt_get_path(const void *fdt, int nodeoffset, char *buf, int buflen) { int pdepth = 0, p = 0; int offset, depth, namelen; const char *name; FDT_RO_PROBE(fdt); if (buflen < 2) return -FDT_ERR_NOSPACE; for (offset = 0, depth = 0; (offset >= 0) && (offset <= nodeoffset); offset = fdt_next_node(fdt, offset, &depth)) { while (pdepth > depth) { do { p--; } while (buf[p-1] != '/'); pdepth--; } if (pdepth >= depth) { name = fdt_get_name(fdt, offset, &namelen); if (!name) return namelen; if ((p + namelen + 1) <= buflen) { memcpy(buf + p, name, namelen); p += namelen; buf[p++] = '/'; pdepth++; } } if (offset == nodeoffset) { if (pdepth < (depth + 1)) return -FDT_ERR_NOSPACE; if (p > 1) /* special case so that root path is "/", not "" */ p--; buf[p] = '\0'; return 0; } } if ((offset == -FDT_ERR_NOTFOUND) || (offset >= 0)) return -FDT_ERR_BADOFFSET; else if (offset == -FDT_ERR_BADOFFSET) return -FDT_ERR_BADSTRUCTURE; return offset; /* error from fdt_next_node() */ } int fdt_supernode_atdepth_offset(const void *fdt, int nodeoffset, int supernodedepth, int *nodedepth) { int offset, depth; int supernodeoffset = -FDT_ERR_INTERNAL; FDT_RO_PROBE(fdt); if (supernodedepth < 0) return -FDT_ERR_NOTFOUND; for (offset = 0, depth = 0; (offset >= 0) && (offset <= nodeoffset); offset = fdt_next_node(fdt, offset, &depth)) { if (depth == supernodedepth) supernodeoffset = offset; if (offset == nodeoffset) { if (nodedepth) *nodedepth = depth; if (supernodedepth > depth) return -FDT_ERR_NOTFOUND; else return supernodeoffset; } } if (!can_assume(VALID_INPUT)) { if ((offset == -FDT_ERR_NOTFOUND) || (offset >= 0)) return -FDT_ERR_BADOFFSET; else if (offset == -FDT_ERR_BADOFFSET) return -FDT_ERR_BADSTRUCTURE; } return offset; /* error from fdt_next_node() */ } int fdt_node_depth(const void *fdt, int nodeoffset) { int nodedepth; int err; err = fdt_supernode_atdepth_offset(fdt, nodeoffset, 0, &nodedepth); if (err) return (can_assume(LIBFDT_FLAWLESS) || err < 0) ? err : -FDT_ERR_INTERNAL; return nodedepth; } int fdt_parent_offset(const void *fdt, int nodeoffset) { int nodedepth = fdt_node_depth(fdt, nodeoffset); if (nodedepth < 0) return nodedepth; return fdt_supernode_atdepth_offset(fdt, nodeoffset, nodedepth - 1, NULL); } int fdt_node_offset_by_prop_value(const void *fdt, int startoffset, const char *propname, const void *propval, int proplen) { int offset; const void *val; int len; FDT_RO_PROBE(fdt); /* FIXME: The algorithm here is pretty horrible: we scan each * property of a node in fdt_getprop(), then if that didn't * find what we want, we scan over them again making our way * to the next node. Still it's the easiest to implement * approach; performance can come later. */ for (offset = fdt_next_node(fdt, startoffset, NULL); offset >= 0; offset = fdt_next_node(fdt, offset, NULL)) { val = fdt_getprop(fdt, offset, propname, &len); if (val && (len == proplen) && (memcmp(val, propval, len) == 0)) return offset; } return offset; /* error from fdt_next_node() */ } int fdt_node_offset_by_phandle(const void *fdt, uint32_t phandle) { int offset; if ((phandle == 0) || (phandle == ~0U)) return -FDT_ERR_BADPHANDLE; FDT_RO_PROBE(fdt); /* FIXME: The algorithm here is pretty horrible: we * potentially scan each property of a node in * fdt_get_phandle(), then if that didn't find what * we want, we scan over them again making our way to the next * node. Still it's the easiest to implement approach; * performance can come later. */ for (offset = fdt_next_node(fdt, -1, NULL); offset >= 0; offset = fdt_next_node(fdt, offset, NULL)) { if (fdt_get_phandle(fdt, offset) == phandle) return offset; } return offset; /* error from fdt_next_node() */ } int fdt_stringlist_contains(const char *strlist, int listlen, const char *str) { int len = strlen(str); const char *p; while (listlen >= len) { if (memcmp(str, strlist, len+1) == 0) return 1; p = memchr(strlist, '\0', listlen); if (!p) return 0; /* malformed strlist.. */ listlen -= (p-strlist) + 1; strlist = p + 1; } return 0; } int fdt_stringlist_count(const void *fdt, int nodeoffset, const char *property) { const char *list, *end; int length, count = 0; list = fdt_getprop(fdt, nodeoffset, property, &length); if (!list) return length; end = list + length; while (list < end) { length = strnlen(list, end - list) + 1; /* Abort if the last string isn't properly NUL-terminated. */ if (list + length > end) return -FDT_ERR_BADVALUE; list += length; count++; } return count; } int fdt_stringlist_search(const void *fdt, int nodeoffset, const char *property, const char *string) { int length, len, idx = 0; const char *list, *end; list = fdt_getprop(fdt, nodeoffset, property, &length); if (!list) return length; len = strlen(string) + 1; end = list + length; while (list < end) { length = strnlen(list, end - list) + 1; /* Abort if the last string isn't properly NUL-terminated. */ if (list + length > end) return -FDT_ERR_BADVALUE; if (length == len && memcmp(list, string, length) == 0) return idx; list += length; idx++; } return -FDT_ERR_NOTFOUND; } const char *fdt_stringlist_get(const void *fdt, int nodeoffset, const char *property, int idx, int *lenp) { const char *list, *end; int length; list = fdt_getprop(fdt, nodeoffset, property, &length); if (!list) { if (lenp) *lenp = length; return NULL; } end = list + length; while (list < end) { length = strnlen(list, end - list) + 1; /* Abort if the last string isn't properly NUL-terminated. */ if (list + length > end) { if (lenp) *lenp = -FDT_ERR_BADVALUE; return NULL; } if (idx == 0) { if (lenp) *lenp = length - 1; return list; } list += length; idx--; } if (lenp) *lenp = -FDT_ERR_NOTFOUND; return NULL; } int fdt_node_check_compatible(const void *fdt, int nodeoffset, const char *compatible) { const void *prop; int len; prop = fdt_getprop(fdt, nodeoffset, "compatible", &len); if (!prop) return len; return !fdt_stringlist_contains(prop, len, compatible); } int fdt_node_offset_by_compatible(const void *fdt, int startoffset, const char *compatible) { int offset, err; FDT_RO_PROBE(fdt); /* FIXME: The algorithm here is pretty horrible: we scan each * property of a node in fdt_node_check_compatible(), then if * that didn't find what we want, we scan over them again * making our way to the next node. Still it's the easiest to * implement approach; performance can come later. */ for (offset = fdt_next_node(fdt, startoffset, NULL); offset >= 0; offset = fdt_next_node(fdt, offset, NULL)) { err = fdt_node_check_compatible(fdt, offset, compatible); if ((err < 0) && (err != -FDT_ERR_NOTFOUND)) return err; else if (err == 0) return offset; } return offset; /* error from fdt_next_node() */ }
// SPDX-License-Identifier: GPL-2.0-or-later /* * Coda multi-standard codec IP - H.264 helper functions * * Copyright (C) 2012 Vista Silicon S.L. * Javier Martin, <[email protected]> * Xavier Duret */ #include <linux/kernel.h> #include <linux/string.h> #include <linux/videodev2.h> #include "coda.h" static const u8 coda_filler_size[8] = { 0, 7, 14, 13, 12, 11, 10, 9 }; static const u8 *coda_find_nal_header(const u8 *buf, const u8 *end) { u32 val = 0xffffffff; do { val = val << 8 | *buf++; if (buf >= end) return NULL; } while (val != 0x00000001); return buf; } int coda_sps_parse_profile(struct coda_ctx *ctx, struct vb2_buffer *vb) { const u8 *buf = vb2_plane_vaddr(vb, 0); const u8 *end = buf + vb2_get_plane_payload(vb, 0); /* Find SPS header */ do { buf = coda_find_nal_header(buf, end); if (!buf) return -EINVAL; } while ((*buf++ & 0x1f) != 0x7); ctx->params.h264_profile_idc = buf[0]; ctx->params.h264_level_idc = buf[2]; return 0; } int coda_h264_filler_nal(int size, char *p) { if (size < 6) return -EINVAL; p[0] = 0x00; p[1] = 0x00; p[2] = 0x00; p[3] = 0x01; p[4] = 0x0c; memset(p + 5, 0xff, size - 6); /* Add rbsp stop bit and trailing at the end */ p[size - 1] = 0x80; return 0; } int coda_h264_padding(int size, char *p) { int nal_size; int diff; diff = size - (size & ~0x7); if (diff == 0) return 0; nal_size = coda_filler_size[diff]; coda_h264_filler_nal(nal_size, p); return nal_size; } int coda_h264_profile(int profile_idc) { switch (profile_idc) { case 66: return V4L2_MPEG_VIDEO_H264_PROFILE_BASELINE; case 77: return V4L2_MPEG_VIDEO_H264_PROFILE_MAIN; case 88: return V4L2_MPEG_VIDEO_H264_PROFILE_EXTENDED; case 100: return V4L2_MPEG_VIDEO_H264_PROFILE_HIGH; default: return -EINVAL; } } int coda_h264_level(int level_idc) { switch (level_idc) { case 10: return V4L2_MPEG_VIDEO_H264_LEVEL_1_0; case 9: return V4L2_MPEG_VIDEO_H264_LEVEL_1B; case 11: return V4L2_MPEG_VIDEO_H264_LEVEL_1_1; case 12: return V4L2_MPEG_VIDEO_H264_LEVEL_1_2; case 13: return V4L2_MPEG_VIDEO_H264_LEVEL_1_3; case 20: return V4L2_MPEG_VIDEO_H264_LEVEL_2_0; case 21: return V4L2_MPEG_VIDEO_H264_LEVEL_2_1; case 22: return V4L2_MPEG_VIDEO_H264_LEVEL_2_2; case 30: return V4L2_MPEG_VIDEO_H264_LEVEL_3_0; case 31: return V4L2_MPEG_VIDEO_H264_LEVEL_3_1; case 32: return V4L2_MPEG_VIDEO_H264_LEVEL_3_2; case 40: return V4L2_MPEG_VIDEO_H264_LEVEL_4_0; case 41: return V4L2_MPEG_VIDEO_H264_LEVEL_4_1; case 42: return V4L2_MPEG_VIDEO_H264_LEVEL_4_2; case 50: return V4L2_MPEG_VIDEO_H264_LEVEL_5_0; case 51: return V4L2_MPEG_VIDEO_H264_LEVEL_5_1; default: return -EINVAL; } } struct rbsp { char *buf; int size; int pos; }; static inline int rbsp_read_bit(struct rbsp *rbsp) { int shift = 7 - (rbsp->pos % 8); int ofs = rbsp->pos++ / 8; if (ofs >= rbsp->size) return -EINVAL; return (rbsp->buf[ofs] >> shift) & 1; } static inline int rbsp_write_bit(struct rbsp *rbsp, int bit) { int shift = 7 - (rbsp->pos % 8); int ofs = rbsp->pos++ / 8; if (ofs >= rbsp->size) return -EINVAL; rbsp->buf[ofs] &= ~(1 << shift); rbsp->buf[ofs] |= bit << shift; return 0; } static inline int rbsp_read_bits(struct rbsp *rbsp, int num, int *val) { int i, ret; int tmp = 0; if (num > 32) return -EINVAL; for (i = 0; i < num; i++) { ret = rbsp_read_bit(rbsp); if (ret < 0) return ret; tmp |= ret << (num - i - 1); } if (val) *val = tmp; return 0; } static int rbsp_write_bits(struct rbsp *rbsp, int num, int value) { int ret; while (num--) { ret = rbsp_write_bit(rbsp, (value >> num) & 1); if (ret) return ret; } return 0; } static int rbsp_read_uev(struct rbsp *rbsp, unsigned int *val) { int leading_zero_bits = 0; unsigned int tmp = 0; int ret; while ((ret = rbsp_read_bit(rbsp)) == 0) leading_zero_bits++; if (ret < 0) return ret; if (leading_zero_bits > 0) { ret = rbsp_read_bits(rbsp, leading_zero_bits, &tmp); if (ret) return ret; } if (val) *val = (1 << leading_zero_bits) - 1 + tmp; return 0; } static int rbsp_write_uev(struct rbsp *rbsp, unsigned int value) { int i; int ret; int tmp = value + 1; int leading_zero_bits = fls(tmp) - 1; for (i = 0; i < leading_zero_bits; i++) { ret = rbsp_write_bit(rbsp, 0); if (ret) return ret; } return rbsp_write_bits(rbsp, leading_zero_bits + 1, tmp); } static int rbsp_read_sev(struct rbsp *rbsp, int *val) { unsigned int tmp; int ret; ret = rbsp_read_uev(rbsp, &tmp); if (ret) return ret; if (val) { if (tmp & 1) *val = (tmp + 1) / 2; else *val = -(tmp / 2); } return 0; } /** * coda_h264_sps_fixup - fixes frame cropping values in h.264 SPS * @ctx: encoder context * @width: visible width * @height: visible height * @buf: buffer containing h.264 SPS RBSP, starting with NAL header * @size: modified RBSP size return value * @max_size: available size in buf * * Rewrites the frame cropping values in an h.264 SPS RBSP correctly for the * given visible width and height. */ int coda_h264_sps_fixup(struct coda_ctx *ctx, int width, int height, char *buf, int *size, int max_size) { int profile_idc; unsigned int pic_order_cnt_type; int pic_width_in_mbs_minus1, pic_height_in_map_units_minus1; int frame_mbs_only_flag, frame_cropping_flag; int vui_parameters_present_flag; unsigned int crop_right, crop_bottom; struct rbsp sps; int pos; int ret; if (*size < 8 || *size >= max_size) return -EINVAL; sps.buf = buf + 5; /* Skip NAL header */ sps.size = *size - 5; profile_idc = sps.buf[0]; /* Skip constraint_set[0-5]_flag, reserved_zero_2bits */ /* Skip level_idc */ sps.pos = 24; /* seq_parameter_set_id */ ret = rbsp_read_uev(&sps, NULL); if (ret) return ret; if (profile_idc == 100 || profile_idc == 110 || profile_idc == 122 || profile_idc == 244 || profile_idc == 44 || profile_idc == 83 || profile_idc == 86 || profile_idc == 118 || profile_idc == 128 || profile_idc == 138 || profile_idc == 139 || profile_idc == 134 || profile_idc == 135) { dev_err(ctx->fh.vdev->dev_parent, "%s: Handling profile_idc %d not implemented\n", __func__, profile_idc); return -EINVAL; } /* log2_max_frame_num_minus4 */ ret = rbsp_read_uev(&sps, NULL); if (ret) return ret; ret = rbsp_read_uev(&sps, &pic_order_cnt_type); if (ret) return ret; if (pic_order_cnt_type == 0) { /* log2_max_pic_order_cnt_lsb_minus4 */ ret = rbsp_read_uev(&sps, NULL); if (ret) return ret; } else if (pic_order_cnt_type == 1) { unsigned int i, num_ref_frames_in_pic_order_cnt_cycle; /* delta_pic_order_always_zero_flag */ ret = rbsp_read_bit(&sps); if (ret < 0) return ret; /* offset_for_non_ref_pic */ ret = rbsp_read_sev(&sps, NULL); if (ret) return ret; /* offset_for_top_to_bottom_field */ ret = rbsp_read_sev(&sps, NULL); if (ret) return ret; ret = rbsp_read_uev(&sps, &num_ref_frames_in_pic_order_cnt_cycle); if (ret) return ret; for (i = 0; i < num_ref_frames_in_pic_order_cnt_cycle; i++) { /* offset_for_ref_frame */ ret = rbsp_read_sev(&sps, NULL); if (ret) return ret; } } /* max_num_ref_frames */ ret = rbsp_read_uev(&sps, NULL); if (ret) return ret; /* gaps_in_frame_num_value_allowed_flag */ ret = rbsp_read_bit(&sps); if (ret < 0) return ret; ret = rbsp_read_uev(&sps, &pic_width_in_mbs_minus1); if (ret) return ret; ret = rbsp_read_uev(&sps, &pic_height_in_map_units_minus1); if (ret) return ret; frame_mbs_only_flag = ret = rbsp_read_bit(&sps); if (ret < 0) return ret; if (!frame_mbs_only_flag) { /* mb_adaptive_frame_field_flag */ ret = rbsp_read_bit(&sps); if (ret < 0) return ret; } /* direct_8x8_inference_flag */ ret = rbsp_read_bit(&sps); if (ret < 0) return ret; /* Mark position of the frame cropping flag */ pos = sps.pos; frame_cropping_flag = ret = rbsp_read_bit(&sps); if (ret < 0) return ret; if (frame_cropping_flag) { unsigned int crop_left, crop_top; ret = rbsp_read_uev(&sps, &crop_left); if (ret) return ret; ret = rbsp_read_uev(&sps, &crop_right); if (ret) return ret; ret = rbsp_read_uev(&sps, &crop_top); if (ret) return ret; ret = rbsp_read_uev(&sps, &crop_bottom); if (ret) return ret; } vui_parameters_present_flag = ret = rbsp_read_bit(&sps); if (ret < 0) return ret; if (vui_parameters_present_flag) { dev_err(ctx->fh.vdev->dev_parent, "%s: Handling vui_parameters not implemented\n", __func__); return -EINVAL; } crop_right = round_up(width, 16) - width; crop_bottom = round_up(height, 16) - height; crop_right /= 2; if (frame_mbs_only_flag) crop_bottom /= 2; else crop_bottom /= 4; sps.size = max_size - 5; sps.pos = pos; frame_cropping_flag = 1; ret = rbsp_write_bit(&sps, frame_cropping_flag); if (ret) return ret; ret = rbsp_write_uev(&sps, 0); /* crop_left */ if (ret) return ret; ret = rbsp_write_uev(&sps, crop_right); if (ret) return ret; ret = rbsp_write_uev(&sps, 0); /* crop_top */ if (ret) return ret; ret = rbsp_write_uev(&sps, crop_bottom); if (ret) return ret; ret = rbsp_write_bit(&sps, 0); /* vui_parameters_present_flag */ if (ret) return ret; ret = rbsp_write_bit(&sps, 1); if (ret) return ret; *size = 5 + DIV_ROUND_UP(sps.pos, 8); return 0; }
// SPDX-License-Identifier: GPL-2.0 #include <linux/if_link.h> #include <test_progs.h> #define IFINDEX_LO 1 void serial_test_xdp_info(void) { __u32 len = sizeof(struct bpf_prog_info), duration = 0, prog_id; const char *file = "./xdp_dummy.bpf.o"; LIBBPF_OPTS(bpf_xdp_query_opts, opts); struct bpf_prog_info info = {}; struct bpf_object *obj; int err, prog_fd; /* Get prog_id for XDP_ATTACHED_NONE mode */ err = bpf_xdp_query_id(IFINDEX_LO, 0, &prog_id); if (CHECK(err, "get_xdp_none", "errno=%d\n", errno)) return; if (CHECK(prog_id, "prog_id_none", "unexpected prog_id=%u\n", prog_id)) return; err = bpf_xdp_query_id(IFINDEX_LO, XDP_FLAGS_SKB_MODE, &prog_id); if (CHECK(err, "get_xdp_none_skb", "errno=%d\n", errno)) return; if (CHECK(prog_id, "prog_id_none_skb", "unexpected prog_id=%u\n", prog_id)) return; /* Setup prog */ err = bpf_prog_test_load(file, BPF_PROG_TYPE_XDP, &obj, &prog_fd); if (CHECK_FAIL(err)) return; err = bpf_prog_get_info_by_fd(prog_fd, &info, &len); if (CHECK(err, "get_prog_info", "errno=%d\n", errno)) goto out_close; err = bpf_xdp_attach(IFINDEX_LO, prog_fd, XDP_FLAGS_SKB_MODE, NULL); if (CHECK(err, "set_xdp_skb", "errno=%d\n", errno)) goto out_close; /* Get prog_id for single prog mode */ err = bpf_xdp_query_id(IFINDEX_LO, 0, &prog_id); if (CHECK(err, "get_xdp", "errno=%d\n", errno)) goto out; if (CHECK(prog_id != info.id, "prog_id", "prog_id not available\n")) goto out; err = bpf_xdp_query_id(IFINDEX_LO, XDP_FLAGS_SKB_MODE, &prog_id); if (CHECK(err, "get_xdp_skb", "errno=%d\n", errno)) goto out; if (CHECK(prog_id != info.id, "prog_id_skb", "prog_id not available\n")) goto out; err = bpf_xdp_query_id(IFINDEX_LO, XDP_FLAGS_DRV_MODE, &prog_id); if (CHECK(err, "get_xdp_drv", "errno=%d\n", errno)) goto out; if (CHECK(prog_id, "prog_id_drv", "unexpected prog_id=%u\n", prog_id)) goto out; /* Check xdp features supported by lo device */ opts.feature_flags = ~0; err = bpf_xdp_query(IFINDEX_LO, XDP_FLAGS_DRV_MODE, &opts); if (!ASSERT_OK(err, "bpf_xdp_query")) goto out; ASSERT_EQ(opts.feature_flags, 0, "opts.feature_flags"); out: bpf_xdp_detach(IFINDEX_LO, 0, NULL); out_close: bpf_object__close(obj); }
// SPDX-License-Identifier: (GPL-2.0-or-later OR MIT) /* * Copyright 2020-2021 TQ-Systems GmbH */ /dts-v1/; #include "imx8mn-tqma8mqnl.dtsi" #include "mba8mx.dtsi" / { model = "TQ-Systems GmbH i.MX8MN TQMa8MxNL on MBa8Mx"; compatible = "tq,imx8mn-tqma8mqnl-mba8mx", "tq,imx8mn-tqma8mqnl", "fsl,imx8mn"; chassis-type = "embedded"; aliases { eeprom0 = &eeprom3; mmc0 = &usdhc3; mmc1 = &usdhc2; mmc2 = &usdhc1; rtc0 = &pcf85063; rtc1 = &snvs_rtc; }; reg_usdhc2_vmmc: regulator-vmmc { compatible = "regulator-fixed"; pinctrl-names = "default"; pinctrl-0 = <&pinctrl_reg_usdhc2_vmmc>; regulator-name = "VSD_3V3"; regulator-min-microvolt = <3300000>; regulator-max-microvolt = <3300000>; gpio = <&gpio2 19 GPIO_ACTIVE_HIGH>; enable-active-high; startup-delay-us = <100>; off-on-delay-us = <12000>; }; }; /* Located on TQMa8MxML-ADAP */ &gpio2 { pinctrl-names = "default"; pinctrl-0 = <&pinctrl_usb0hub_sel>; sel_usb_hub_hog: sel-usb-hub-hog { gpio-hog; gpios = <1 GPIO_ACTIVE_HIGH>; output-high; }; }; &i2c1 { expander2: gpio@27 { compatible = "nxp,pca9555"; reg = <0x27>; gpio-controller; #gpio-cells = <2>; vcc-supply = <&reg_vcc_3v3>; pinctrl-names = "default"; pinctrl-0 = <&pinctrl_expander2>; interrupt-parent = <&gpio1>; interrupts = <9 IRQ_TYPE_EDGE_FALLING>; interrupt-controller; #interrupt-cells = <2>; }; }; &mipi_dsi { samsung,burst-clock-frequency = <891000000>; samsung,esc-clock-frequency = <20000000>; }; &sai3 { assigned-clocks = <&clk IMX8MN_CLK_SAI3>; assigned-clock-parents = <&clk IMX8MN_AUDIO_PLL1_OUT>; clock-names = "bus", "mclk0", "mclk1", "mclk2", "mclk3", "pll8k", "pll11k"; clocks = <&clk IMX8MN_CLK_SAI3_IPG>, <&clk IMX8MN_CLK_DUMMY>, <&clk IMX8MN_CLK_SAI3_ROOT>, <&clk IMX8MN_CLK_DUMMY>, <&clk IMX8MN_CLK_DUMMY>, <&clk IMX8MN_AUDIO_PLL1_OUT>, <&clk IMX8MN_AUDIO_PLL2_OUT>; }; &tlv320aic3x04 { clock-names = "mclk"; clocks = <&clk IMX8MN_CLK_SAI3_ROOT>; }; &usbotg1 { dr_mode = "host"; disable-over-current; power-active-high; status = "okay"; }; &iomuxc { pinctrl_ecspi1: ecspi1grp { fsl,pins = <MX8MN_IOMUXC_ECSPI1_SCLK_ECSPI1_SCLK 0x00000146>, <MX8MN_IOMUXC_ECSPI1_MOSI_ECSPI1_MOSI 0x00000146>, <MX8MN_IOMUXC_ECSPI1_MISO_ECSPI1_MISO 0x00000146>, <MX8MN_IOMUXC_ECSPI1_SS0_GPIO5_IO9 0x00000146>; }; pinctrl_ecspi2: ecspi2grp { fsl,pins = <MX8MN_IOMUXC_ECSPI2_SCLK_ECSPI2_SCLK 0x00000146>, <MX8MN_IOMUXC_ECSPI2_MOSI_ECSPI2_MOSI 0x00000146>, <MX8MN_IOMUXC_ECSPI2_MISO_ECSPI2_MISO 0x00000146>, <MX8MN_IOMUXC_ECSPI2_SS0_GPIO5_IO13 0x00000146>; }; pinctrl_expander2: expander2grp { fsl,pins = <MX8MN_IOMUXC_GPIO1_IO09_GPIO1_IO9 0x94>; }; pinctrl_fec1: fec1grp { fsl,pins = <MX8MN_IOMUXC_ENET_MDC_ENET1_MDC 0x40000002>, <MX8MN_IOMUXC_ENET_MDIO_ENET1_MDIO 0x40000002>, <MX8MN_IOMUXC_ENET_TD3_ENET1_RGMII_TD3 0x14>, <MX8MN_IOMUXC_ENET_TD2_ENET1_RGMII_TD2 0x14>, <MX8MN_IOMUXC_ENET_TD1_ENET1_RGMII_TD1 0x14>, <MX8MN_IOMUXC_ENET_TD0_ENET1_RGMII_TD0 0x14>, <MX8MN_IOMUXC_ENET_RD3_ENET1_RGMII_RD3 0x90>, <MX8MN_IOMUXC_ENET_RD2_ENET1_RGMII_RD2 0x90>, <MX8MN_IOMUXC_ENET_RD1_ENET1_RGMII_RD1 0x90>, <MX8MN_IOMUXC_ENET_RD0_ENET1_RGMII_RD0 0x90>, <MX8MN_IOMUXC_ENET_TXC_ENET1_RGMII_TXC 0x14>, <MX8MN_IOMUXC_ENET_RXC_ENET1_RGMII_RXC 0x90>, <MX8MN_IOMUXC_ENET_RX_CTL_ENET1_RGMII_RX_CTL 0x90>, <MX8MN_IOMUXC_ENET_TX_CTL_ENET1_RGMII_TX_CTL 0x14>; }; pinctrl_gpiobutton: gpiobuttongrp { fsl,pins = <MX8MN_IOMUXC_GPIO1_IO05_GPIO1_IO5 0x84>, <MX8MN_IOMUXC_GPIO1_IO07_GPIO1_IO7 0x84>, <MX8MN_IOMUXC_SD1_CLK_GPIO2_IO0 0x84>; }; pinctrl_gpioled: gpioledgrp { fsl,pins = <MX8MN_IOMUXC_GPIO1_IO00_GPIO1_IO0 0x84>, <MX8MN_IOMUXC_NAND_DQS_GPIO3_IO14 0x84>; }; pinctrl_i2c2: i2c2grp { fsl,pins = <MX8MN_IOMUXC_I2C2_SCL_I2C2_SCL 0x400001C4>, <MX8MN_IOMUXC_I2C2_SDA_I2C2_SDA 0x400001C4>; }; pinctrl_i2c2_gpio: i2c2gpiogrp { fsl,pins = <MX8MN_IOMUXC_I2C2_SCL_GPIO5_IO16 0x400001C4>, <MX8MN_IOMUXC_I2C2_SDA_GPIO5_IO17 0x400001C4>; }; pinctrl_i2c3: i2c3grp { fsl,pins = <MX8MN_IOMUXC_I2C3_SCL_I2C3_SCL 0x400001C4>, <MX8MN_IOMUXC_I2C3_SDA_I2C3_SDA 0x400001C4>; }; pinctrl_i2c3_gpio: i2c3gpiogrp { fsl,pins = <MX8MN_IOMUXC_I2C3_SCL_GPIO5_IO18 0x400001C4>, <MX8MN_IOMUXC_I2C3_SDA_GPIO5_IO19 0x400001C4>; }; pinctrl_pwm3: pwm3grp { fsl,pins = <MX8MN_IOMUXC_GPIO1_IO14_PWM3_OUT 0x14>; }; pinctrl_pwm4: pwm4grp { fsl,pins = <MX8MN_IOMUXC_GPIO1_IO15_PWM4_OUT 0x14>; }; pinctrl_sai3: sai3grp { fsl,pins = <MX8MN_IOMUXC_SAI3_MCLK_SAI3_MCLK 0x94>, <MX8MN_IOMUXC_SAI3_RXC_SAI3_RX_BCLK 0x94>, <MX8MN_IOMUXC_SAI3_RXFS_SAI3_RX_SYNC 0x94>, <MX8MN_IOMUXC_SAI3_RXD_SAI3_RX_DATA0 0x94>, <MX8MN_IOMUXC_SAI3_TXFS_SAI3_TX_SYNC 0x94>, <MX8MN_IOMUXC_SAI3_TXD_SAI3_TX_DATA0 0x94>, <MX8MN_IOMUXC_SAI3_TXC_SAI3_TX_BCLK 0x94>; }; pinctrl_uart1: uart1grp { fsl,pins = <MX8MN_IOMUXC_UART1_RXD_UART1_DCE_RX 0x16>, <MX8MN_IOMUXC_UART1_TXD_UART1_DCE_TX 0x16>; }; pinctrl_uart2: uart2grp { fsl,pins = <MX8MN_IOMUXC_UART2_RXD_UART2_DCE_RX 0x16>, <MX8MN_IOMUXC_UART2_TXD_UART2_DCE_TX 0x16>; }; pinctrl_uart3: uart3grp { fsl,pins = <MX8MN_IOMUXC_UART3_RXD_UART3_DCE_RX 0x16>, <MX8MN_IOMUXC_UART3_TXD_UART3_DCE_TX 0x16>; }; pinctrl_uart4: uart4grp { fsl,pins = <MX8MN_IOMUXC_UART4_RXD_UART4_DCE_RX 0x16>, <MX8MN_IOMUXC_UART4_TXD_UART4_DCE_TX 0x16>; }; pinctrl_usb0hub_sel: usb0hub-selgrp { /* SEL_USB_HUB_B */ fsl,pins = <MX8MN_IOMUXC_SD1_CMD_GPIO2_IO1 0x84>; }; pinctrl_usbotg: usbotggrp { fsl,pins = <MX8MN_IOMUXC_GPIO1_IO12_USB1_OTG_PWR 0x84>, <MX8MN_IOMUXC_GPIO1_IO13_USB1_OTG_OC 0x84>; }; pinctrl_usdhc2: usdhc2grp { fsl,pins = <MX8MN_IOMUXC_SD2_CLK_USDHC2_CLK 0x1d4>, <MX8MN_IOMUXC_SD2_CMD_USDHC2_CMD 0x1d4>, <MX8MN_IOMUXC_SD2_DATA0_USDHC2_DATA0 0x1d4>, <MX8MN_IOMUXC_SD2_DATA1_USDHC2_DATA1 0x1d4>, <MX8MN_IOMUXC_SD2_DATA2_USDHC2_DATA2 0x1d4>, <MX8MN_IOMUXC_SD2_DATA3_USDHC2_DATA3 0x1d4>, <MX8MN_IOMUXC_GPIO1_IO04_USDHC2_VSELECT 0x84>; }; pinctrl_usdhc2_100mhz: usdhc2-100mhzgrp { fsl,pins = <MX8MN_IOMUXC_SD2_CLK_USDHC2_CLK 0x1d4>, <MX8MN_IOMUXC_SD2_CMD_USDHC2_CMD 0x1d4>, <MX8MN_IOMUXC_SD2_DATA0_USDHC2_DATA0 0x1d4>, <MX8MN_IOMUXC_SD2_DATA1_USDHC2_DATA1 0x1d4>, <MX8MN_IOMUXC_SD2_DATA2_USDHC2_DATA2 0x1d4>, <MX8MN_IOMUXC_SD2_DATA3_USDHC2_DATA3 0x1d4>, <MX8MN_IOMUXC_GPIO1_IO04_USDHC2_VSELECT 0x84>; }; pinctrl_usdhc2_200mhz: usdhc2-200mhzgrp { fsl,pins = <MX8MN_IOMUXC_SD2_CLK_USDHC2_CLK 0x1d4>, <MX8MN_IOMUXC_SD2_CMD_USDHC2_CMD 0x1d4>, <MX8MN_IOMUXC_SD2_DATA0_USDHC2_DATA0 0x1d4>, <MX8MN_IOMUXC_SD2_DATA1_USDHC2_DATA1 0x1d4>, <MX8MN_IOMUXC_SD2_DATA2_USDHC2_DATA2 0x1d4>, <MX8MN_IOMUXC_SD2_DATA3_USDHC2_DATA3 0x1d4>, <MX8MN_IOMUXC_GPIO1_IO04_USDHC2_VSELECT 0x84>; }; pinctrl_usdhc2_gpio: usdhc2-gpiogrp { fsl,pins = <MX8MN_IOMUXC_SD2_CD_B_GPIO2_IO12 0x84>; }; };
// SPDX-License-Identifier: GPL-2.0 /* * r8a7778 Core CPG Clocks * * Copyright (C) 2014 Ulrich Hecht */ #include <linux/clk-provider.h> #include <linux/clk/renesas.h> #include <linux/of_address.h> #include <linux/slab.h> #include <linux/soc/renesas/rcar-rst.h> /* PLL multipliers per bits 11, 12, and 18 of MODEMR */ static const struct { unsigned long plla_mult; unsigned long pllb_mult; } r8a7778_rates[] __initconst = { [0] = { 21, 21 }, [1] = { 24, 24 }, [2] = { 28, 28 }, [3] = { 32, 32 }, [5] = { 24, 21 }, [6] = { 28, 21 }, [7] = { 32, 24 }, }; /* Clock dividers per bits 1 and 2 of MODEMR */ static const struct { const char *name; unsigned int div[4]; } r8a7778_divs[6] __initconst = { { "b", { 12, 12, 16, 18 } }, { "out", { 12, 12, 16, 18 } }, { "p", { 16, 12, 16, 12 } }, { "s", { 4, 3, 4, 3 } }, { "s1", { 8, 6, 8, 6 } }, }; static u32 cpg_mode_rates __initdata; static u32 cpg_mode_divs __initdata; static struct clk * __init r8a7778_cpg_register_clock(struct device_node *np, const char *name) { if (!strcmp(name, "plla")) { return clk_register_fixed_factor(NULL, "plla", of_clk_get_parent_name(np, 0), 0, r8a7778_rates[cpg_mode_rates].plla_mult, 1); } else if (!strcmp(name, "pllb")) { return clk_register_fixed_factor(NULL, "pllb", of_clk_get_parent_name(np, 0), 0, r8a7778_rates[cpg_mode_rates].pllb_mult, 1); } else { unsigned int i; for (i = 0; i < ARRAY_SIZE(r8a7778_divs); i++) { if (!strcmp(name, r8a7778_divs[i].name)) { return clk_register_fixed_factor(NULL, r8a7778_divs[i].name, "plla", 0, 1, r8a7778_divs[i].div[cpg_mode_divs]); } } } return ERR_PTR(-EINVAL); } static void __init r8a7778_cpg_clocks_init(struct device_node *np) { struct clk_onecell_data *data; struct clk **clks; unsigned int i; int num_clks; u32 mode; if (rcar_rst_read_mode_pins(&mode)) return; BUG_ON(!(mode & BIT(19))); cpg_mode_rates = (!!(mode & BIT(18)) << 2) | (!!(mode & BIT(12)) << 1) | (!!(mode & BIT(11))); cpg_mode_divs = (!!(mode & BIT(2)) << 1) | (!!(mode & BIT(1))); num_clks = of_property_count_strings(np, "clock-output-names"); if (num_clks < 0) { pr_err("%s: failed to count clocks\n", __func__); return; } data = kzalloc(sizeof(*data), GFP_KERNEL); clks = kcalloc(num_clks, sizeof(*clks), GFP_KERNEL); if (data == NULL || clks == NULL) { /* We're leaking memory on purpose, there's no point in cleaning * up as the system won't boot anyway. */ return; } data->clks = clks; data->clk_num = num_clks; for (i = 0; i < num_clks; ++i) { const char *name; struct clk *clk; of_property_read_string_index(np, "clock-output-names", i, &name); clk = r8a7778_cpg_register_clock(np, name); if (IS_ERR(clk)) pr_err("%s: failed to register %pOFn %s clock (%ld)\n", __func__, np, name, PTR_ERR(clk)); else data->clks[i] = clk; } of_clk_add_provider(np, of_clk_src_onecell_get, data); cpg_mstp_add_clk_domain(np); } CLK_OF_DECLARE(r8a7778_cpg_clks, "renesas,r8a7778-cpg-clocks", r8a7778_cpg_clocks_init);
// SPDX-License-Identifier: GPL-2.0 // Copyright (c) 2019 Facebook #include <linux/bpf.h> #include <stdint.h> #include <bpf/bpf_helpers.h> #include <bpf/bpf_core_read.h> char _license[] SEC("license") = "GPL"; struct { char in[256]; char out[256]; } data = {}; struct core_reloc_flavors { int a; int b; int c; }; /* local flavor with reversed layout */ struct core_reloc_flavors___reversed { int c; int b; int a; }; /* local flavor with nested/overlapping layout */ struct core_reloc_flavors___weird { struct { int b; }; /* a and c overlap in local flavor, but this should still work * correctly with target original flavor */ union { int a; int c; }; }; #define CORE_READ(dst, src) bpf_core_read(dst, sizeof(*(dst)), src) SEC("raw_tracepoint/sys_enter") int test_core_flavors(void *ctx) { struct core_reloc_flavors *in_orig = (void *)&data.in; struct core_reloc_flavors___reversed *in_rev = (void *)&data.in; struct core_reloc_flavors___weird *in_weird = (void *)&data.in; struct core_reloc_flavors *out = (void *)&data.out; /* read a using weird layout */ if (CORE_READ(&out->a, &in_weird->a)) return 1; /* read b using reversed layout */ if (CORE_READ(&out->b, &in_rev->b)) return 1; /* read c using original layout */ if (CORE_READ(&out->c, &in_orig->c)) return 1; return 0; }
// SPDX-License-Identifier: GPL-2.0 #include <test_progs.h> #include <bpf/bpf_endian.h> #include "sock_destroy_prog.skel.h" #include "sock_destroy_prog_fail.skel.h" #include "network_helpers.h" #define TEST_NS "sock_destroy_netns" static void start_iter_sockets(struct bpf_program *prog) { struct bpf_link *link; char buf[50] = {}; int iter_fd, len; link = bpf_program__attach_iter(prog, NULL); if (!ASSERT_OK_PTR(link, "attach_iter")) return; iter_fd = bpf_iter_create(bpf_link__fd(link)); if (!ASSERT_GE(iter_fd, 0, "create_iter")) goto free_link; while ((len = read(iter_fd, buf, sizeof(buf))) > 0) ; ASSERT_GE(len, 0, "read"); close(iter_fd); free_link: bpf_link__destroy(link); } static void test_tcp_client(struct sock_destroy_prog *skel) { int serv = -1, clien = -1, accept_serv = -1, n; serv = start_server(AF_INET6, SOCK_STREAM, NULL, 0, 0); if (!ASSERT_GE(serv, 0, "start_server")) goto cleanup; clien = connect_to_fd(serv, 0); if (!ASSERT_GE(clien, 0, "connect_to_fd")) goto cleanup; accept_serv = accept(serv, NULL, NULL); if (!ASSERT_GE(accept_serv, 0, "serv accept")) goto cleanup; n = send(clien, "t", 1, 0); if (!ASSERT_EQ(n, 1, "client send")) goto cleanup; /* Run iterator program that destroys connected client sockets. */ start_iter_sockets(skel->progs.iter_tcp6_client); n = send(clien, "t", 1, 0); if (!ASSERT_LT(n, 0, "client_send on destroyed socket")) goto cleanup; ASSERT_EQ(errno, ECONNABORTED, "error code on destroyed socket"); cleanup: if (clien != -1) close(clien); if (accept_serv != -1) close(accept_serv); if (serv != -1) close(serv); } static void test_tcp_server(struct sock_destroy_prog *skel) { int serv = -1, clien = -1, accept_serv = -1, n, serv_port; serv = start_server(AF_INET6, SOCK_STREAM, NULL, 0, 0); if (!ASSERT_GE(serv, 0, "start_server")) goto cleanup; serv_port = get_socket_local_port(serv); if (!ASSERT_GE(serv_port, 0, "get_sock_local_port")) goto cleanup; skel->bss->serv_port = (__be16) serv_port; clien = connect_to_fd(serv, 0); if (!ASSERT_GE(clien, 0, "connect_to_fd")) goto cleanup; accept_serv = accept(serv, NULL, NULL); if (!ASSERT_GE(accept_serv, 0, "serv accept")) goto cleanup; n = send(clien, "t", 1, 0); if (!ASSERT_EQ(n, 1, "client send")) goto cleanup; /* Run iterator program that destroys server sockets. */ start_iter_sockets(skel->progs.iter_tcp6_server); n = send(clien, "t", 1, 0); if (!ASSERT_LT(n, 0, "client_send on destroyed socket")) goto cleanup; ASSERT_EQ(errno, ECONNRESET, "error code on destroyed socket"); cleanup: if (clien != -1) close(clien); if (accept_serv != -1) close(accept_serv); if (serv != -1) close(serv); } static void test_udp_client(struct sock_destroy_prog *skel) { int serv = -1, clien = -1, n = 0; serv = start_server(AF_INET6, SOCK_DGRAM, NULL, 0, 0); if (!ASSERT_GE(serv, 0, "start_server")) goto cleanup; clien = connect_to_fd(serv, 0); if (!ASSERT_GE(clien, 0, "connect_to_fd")) goto cleanup; n = send(clien, "t", 1, 0); if (!ASSERT_EQ(n, 1, "client send")) goto cleanup; /* Run iterator program that destroys sockets. */ start_iter_sockets(skel->progs.iter_udp6_client); n = send(clien, "t", 1, 0); if (!ASSERT_LT(n, 0, "client_send on destroyed socket")) goto cleanup; /* UDP sockets have an overriding error code after they are disconnected, * so we don't check for ECONNABORTED error code. */ cleanup: if (clien != -1) close(clien); if (serv != -1) close(serv); } static void test_udp_server(struct sock_destroy_prog *skel) { int *listen_fds = NULL, n, i, serv_port; unsigned int num_listens = 5; char buf[1]; /* Start reuseport servers. */ listen_fds = start_reuseport_server(AF_INET6, SOCK_DGRAM, "::1", 0, 0, num_listens); if (!ASSERT_OK_PTR(listen_fds, "start_reuseport_server")) goto cleanup; serv_port = get_socket_local_port(listen_fds[0]); if (!ASSERT_GE(serv_port, 0, "get_sock_local_port")) goto cleanup; skel->bss->serv_port = (__be16) serv_port; /* Run iterator program that destroys server sockets. */ start_iter_sockets(skel->progs.iter_udp6_server); for (i = 0; i < num_listens; ++i) { n = read(listen_fds[i], buf, sizeof(buf)); if (!ASSERT_EQ(n, -1, "read") || !ASSERT_EQ(errno, ECONNABORTED, "error code on destroyed socket")) break; } ASSERT_EQ(i, num_listens, "server socket"); cleanup: free_fds(listen_fds, num_listens); } void test_sock_destroy(void) { struct sock_destroy_prog *skel; struct nstoken *nstoken = NULL; int cgroup_fd; skel = sock_destroy_prog__open_and_load(); if (!ASSERT_OK_PTR(skel, "skel_open")) return; cgroup_fd = test__join_cgroup("/sock_destroy"); if (!ASSERT_GE(cgroup_fd, 0, "join_cgroup")) goto cleanup; skel->links.sock_connect = bpf_program__attach_cgroup( skel->progs.sock_connect, cgroup_fd); if (!ASSERT_OK_PTR(skel->links.sock_connect, "prog_attach")) goto cleanup; SYS(cleanup, "ip netns add %s", TEST_NS); SYS(cleanup, "ip -net %s link set dev lo up", TEST_NS); nstoken = open_netns(TEST_NS); if (!ASSERT_OK_PTR(nstoken, "open_netns")) goto cleanup; if (test__start_subtest("tcp_client")) test_tcp_client(skel); if (test__start_subtest("tcp_server")) test_tcp_server(skel); if (test__start_subtest("udp_client")) test_udp_client(skel); if (test__start_subtest("udp_server")) test_udp_server(skel); RUN_TESTS(sock_destroy_prog_fail); cleanup: if (nstoken) close_netns(nstoken); SYS_NOFAIL("ip netns del " TEST_NS); if (cgroup_fd >= 0) close(cgroup_fd); sock_destroy_prog__destroy(skel); }
/* SPDX-License-Identifier: GPL-2.0 */ /* * Core pinctrl/GPIO driver for Intel GPIO controllers * * Copyright (C) 2015, Intel Corporation * Authors: Mathias Nyman <[email protected]> * Mika Westerberg <[email protected]> */ #ifndef PINCTRL_INTEL_H #define PINCTRL_INTEL_H #include <linux/array_size.h> #include <linux/bits.h> #include <linux/compiler_types.h> #include <linux/gpio/driver.h> #include <linux/irq.h> #include <linux/pm.h> #include <linux/pinctrl/pinctrl.h> #include <linux/spinlock_types.h> struct platform_device; struct device; /** * struct intel_pingroup - Description about group of pins * @grp: Generic data of the pin group (name and pins) * @mode: Native mode in which the group is muxed out @pins. Used if @modes is %NULL. * @modes: If not %NULL this will hold mode for each pin in @pins */ struct intel_pingroup { struct pingroup grp; unsigned short mode; const unsigned int *modes; }; /** * struct intel_function - Description about a function * @func: Generic data of the pin function (name and groups of pins) */ struct intel_function { struct pinfunction func; }; #define INTEL_PINCTRL_MAX_GPP_SIZE 32 /** * struct intel_padgroup - Hardware pad group information * @reg_num: GPI_IS register number * @base: Starting pin of this group * @size: Size of this group (maximum is %INTEL_PINCTRL_MAX_GPP_SIZE). * @gpio_base: Starting GPIO base of this group * @padown_num: PAD_OWN register number (assigned by the core driver) * * If pad groups of a community are not the same size, use this structure * to specify them. */ struct intel_padgroup { unsigned int reg_num; unsigned int base; unsigned int size; int gpio_base; unsigned int padown_num; }; /** * enum - Special treatment for GPIO base in pad group * * @INTEL_GPIO_BASE_ZERO: force GPIO base to be 0 * @INTEL_GPIO_BASE_NOMAP: no GPIO mapping should be created * @INTEL_GPIO_BASE_MATCH: matches with starting pin number */ enum { INTEL_GPIO_BASE_ZERO = -2, INTEL_GPIO_BASE_NOMAP = -1, INTEL_GPIO_BASE_MATCH = 0, }; /** * struct intel_community - Intel pin community description * @barno: MMIO BAR number where registers for this community reside * @padown_offset: Register offset of PAD_OWN register from @regs. If %0 * then there is no support for owner. * @padcfglock_offset: Register offset of PADCFGLOCK from @regs. If %0 then * locking is not supported. * @hostown_offset: Register offset of HOSTSW_OWN from @regs. If %0 then it * is assumed that the host owns the pin (rather than * ACPI). * @is_offset: Register offset of GPI_IS from @regs. * @ie_offset: Register offset of GPI_IE from @regs. * @features: Additional features supported by the hardware * @pin_base: Starting pin of pins in this community * @npins: Number of pins in this community * @gpp_size: Maximum number of pads in each group, such as PADCFGLOCK, * HOSTSW_OWN, GPI_IS, GPI_IE. Used when @gpps is %NULL. * @gpp_num_padown_regs: Number of pad registers each pad group consumes at * minimum. Used when @gpps is %NULL. * @gpps: Pad groups if the controller has variable size pad groups * @ngpps: Number of pad groups in this community * @pad_map: Optional non-linear mapping of the pads * @nirqs: Optional total number of IRQs this community can generate * @acpi_space_id: Optional address space ID for ACPI OpRegion handler * @regs: Community specific common registers (reserved for core driver) * @pad_regs: Community specific pad registers (reserved for core driver) * * In older Intel GPIO host controllers, this driver supports, each pad group * is of equal size (except the last one). In that case the driver can just * fill in @gpp_size and @gpp_num_padown_regs fields and let the core driver * to handle the rest. * * In newer Intel GPIO host controllers each pad group is of variable size, * so the client driver can pass custom @gpps and @ngpps instead. */ struct intel_community { unsigned int barno; unsigned int padown_offset; unsigned int padcfglock_offset; unsigned int hostown_offset; unsigned int is_offset; unsigned int ie_offset; unsigned int features; unsigned int pin_base; size_t npins; unsigned int gpp_size; unsigned int gpp_num_padown_regs; const struct intel_padgroup *gpps; size_t ngpps; const unsigned int *pad_map; unsigned short nirqs; unsigned short acpi_space_id; /* Reserved for the core driver */ void __iomem *regs; void __iomem *pad_regs; }; /* Additional features supported by the hardware */ #define PINCTRL_FEATURE_DEBOUNCE BIT(0) #define PINCTRL_FEATURE_1K_PD BIT(1) #define PINCTRL_FEATURE_GPIO_HW_INFO BIT(2) #define PINCTRL_FEATURE_PWM BIT(3) #define PINCTRL_FEATURE_BLINK BIT(4) #define PINCTRL_FEATURE_EXP BIT(5) #define __INTEL_COMMUNITY(b, s, e, g, n, gs, gn, soc) \ { \ .barno = (b), \ .padown_offset = soc ## _PAD_OWN, \ .padcfglock_offset = soc ## _PADCFGLOCK, \ .hostown_offset = soc ## _HOSTSW_OWN, \ .is_offset = soc ## _GPI_IS, \ .ie_offset = soc ## _GPI_IE, \ .gpp_size = (gs), \ .gpp_num_padown_regs = (gn), \ .pin_base = (s), \ .npins = ((e) - (s) + 1), \ .gpps = (g), \ .ngpps = (n), \ } #define INTEL_COMMUNITY_GPPS(b, s, e, g, soc) \ __INTEL_COMMUNITY(b, s, e, g, ARRAY_SIZE(g), 0, 0, soc) #define INTEL_COMMUNITY_SIZE(b, s, e, gs, gn, soc) \ __INTEL_COMMUNITY(b, s, e, NULL, 0, gs, gn, soc) /** * PIN_GROUP - Declare a pin group * @n: Name of the group * @p: An array of pins this group consists * @m: Mode which the pins are put when this group is active. Can be either * a single integer or an array of integers in which case mode is per * pin. */ #define PIN_GROUP(n, p, m) \ { \ .grp = PINCTRL_PINGROUP((n), (p), ARRAY_SIZE((p))), \ .mode = __builtin_choose_expr(__builtin_constant_p((m)), (m), 0), \ .modes = __builtin_choose_expr(__builtin_constant_p((m)), NULL, (m)), \ } #define PIN_GROUP_GPIO(n, p, m) \ PIN_GROUP(n, p, m), \ PIN_GROUP(n "_gpio", p, 0) #define FUNCTION(n, g) \ { \ .func = PINCTRL_PINFUNCTION((n), (g), ARRAY_SIZE(g)), \ } /** * struct intel_pinctrl_soc_data - Intel pin controller per-SoC configuration * @uid: ACPI _UID for the probe driver use if needed * @pins: Array if pins this pinctrl controls * @npins: Number of pins in the array * @groups: Array of pin groups * @ngroups: Number of groups in the array * @functions: Array of functions * @nfunctions: Number of functions in the array * @communities: Array of communities this pinctrl handles * @ncommunities: Number of communities in the array * * The @communities is used as a template by the core driver. It will make * copy of all communities and fill in rest of the information. */ struct intel_pinctrl_soc_data { const char *uid; const struct pinctrl_pin_desc *pins; size_t npins; const struct intel_pingroup *groups; size_t ngroups; const struct intel_function *functions; size_t nfunctions; const struct intel_community *communities; size_t ncommunities; }; const struct intel_pinctrl_soc_data *intel_pinctrl_get_soc_data(struct platform_device *pdev); struct intel_pad_context; struct intel_community_context; /** * struct intel_pinctrl_context - context to be saved during suspend-resume * @pads: Opaque context per pad (driver dependent) * @communities: Opaque context per community (driver dependent) */ struct intel_pinctrl_context { struct intel_pad_context *pads; struct intel_community_context *communities; }; /** * struct intel_pinctrl - Intel pinctrl private structure * @dev: Pointer to the device structure * @lock: Lock to serialize register access * @pctldesc: Pin controller description * @pctldev: Pointer to the pin controller device * @chip: GPIO chip in this pin controller * @soc: SoC/PCH specific pin configuration data * @communities: All communities in this pin controller * @ncommunities: Number of communities in this pin controller * @context: Configuration saved over system sleep * @irq: pinctrl/GPIO chip irq number */ struct intel_pinctrl { struct device *dev; raw_spinlock_t lock; struct pinctrl_desc pctldesc; struct pinctrl_dev *pctldev; struct gpio_chip chip; const struct intel_pinctrl_soc_data *soc; struct intel_community *communities; size_t ncommunities; struct intel_pinctrl_context context; int irq; }; int intel_pinctrl_probe(struct platform_device *pdev, const struct intel_pinctrl_soc_data *soc_data); int intel_pinctrl_probe_by_hid(struct platform_device *pdev); int intel_pinctrl_probe_by_uid(struct platform_device *pdev); extern const struct dev_pm_ops intel_pinctrl_pm_ops; const struct intel_community *intel_get_community(const struct intel_pinctrl *pctrl, unsigned int pin); int intel_get_groups_count(struct pinctrl_dev *pctldev); const char *intel_get_group_name(struct pinctrl_dev *pctldev, unsigned int group); int intel_get_group_pins(struct pinctrl_dev *pctldev, unsigned int group, const unsigned int **pins, unsigned int *npins); int intel_get_functions_count(struct pinctrl_dev *pctldev); const char *intel_get_function_name(struct pinctrl_dev *pctldev, unsigned int function); int intel_get_function_groups(struct pinctrl_dev *pctldev, unsigned int function, const char * const **groups, unsigned int * const ngroups); #endif /* PINCTRL_INTEL_H */
/* SPDX-License-Identifier: GPL-2.0 */ /* * A scheduler that validates the behavior of direct dispatching with a default * select_cpu implementation. * * Copyright (c) 2023 Meta Platforms, Inc. and affiliates. * Copyright (c) 2023 David Vernet <[email protected]> * Copyright (c) 2023 Tejun Heo <[email protected]> */ #include <scx/common.bpf.h> char _license[] SEC("license") = "GPL"; bool saw_local = false; static bool task_is_test(const struct task_struct *p) { return !bpf_strncmp(p->comm, 9, "select_cpu"); } void BPF_STRUCT_OPS(select_cpu_dfl_enqueue, struct task_struct *p, u64 enq_flags) { const struct cpumask *idle_mask = scx_bpf_get_idle_cpumask(); if (task_is_test(p) && bpf_cpumask_test_cpu(scx_bpf_task_cpu(p), idle_mask)) { saw_local = true; } scx_bpf_put_idle_cpumask(idle_mask); scx_bpf_dispatch(p, SCX_DSQ_GLOBAL, SCX_SLICE_DFL, enq_flags); } SEC(".struct_ops.link") struct sched_ext_ops select_cpu_dfl_ops = { .enqueue = (void *) select_cpu_dfl_enqueue, .name = "select_cpu_dfl", };
// SPDX-License-Identifier: GPL-2.0 // Copyright (c) 2020 Facebook #include <linux/bpf.h> #include <bpf/bpf_helpers.h> #define LOOP_BOUND 0xf #define MAX_ENTRIES 8 #define HALF_ENTRIES (MAX_ENTRIES >> 1) _Static_assert(MAX_ENTRIES < LOOP_BOUND, "MAX_ENTRIES must be < LOOP_BOUND"); enum bpf_map_type g_map_type = BPF_MAP_TYPE_UNSPEC; __u32 g_line = 0; int page_size = 0; /* userspace should set it */ #define VERIFY_TYPE(type, func) ({ \ g_map_type = type; \ if (!func()) \ return 0; \ }) #define VERIFY(expr) ({ \ g_line = __LINE__; \ if (!(expr)) \ return 0; \ }) struct bpf_map { enum bpf_map_type map_type; __u32 key_size; __u32 value_size; __u32 max_entries; __u32 id; } __attribute__((preserve_access_index)); static inline int check_bpf_map_fields(struct bpf_map *map, __u32 key_size, __u32 value_size, __u32 max_entries) { VERIFY(map->map_type == g_map_type); VERIFY(map->key_size == key_size); VERIFY(map->value_size == value_size); VERIFY(map->max_entries == max_entries); VERIFY(map->id > 0); return 1; } static inline int check_bpf_map_ptr(struct bpf_map *indirect, struct bpf_map *direct) { VERIFY(indirect->map_type == direct->map_type); VERIFY(indirect->key_size == direct->key_size); VERIFY(indirect->value_size == direct->value_size); VERIFY(indirect->max_entries == direct->max_entries); VERIFY(indirect->id == direct->id); return 1; } static inline int check(struct bpf_map *indirect, struct bpf_map *direct, __u32 key_size, __u32 value_size, __u32 max_entries) { VERIFY(check_bpf_map_ptr(indirect, direct)); VERIFY(check_bpf_map_fields(indirect, key_size, value_size, max_entries)); return 1; } static inline int check_default(struct bpf_map *indirect, struct bpf_map *direct) { VERIFY(check(indirect, direct, sizeof(__u32), sizeof(__u32), MAX_ENTRIES)); return 1; } static __noinline int check_default_noinline(struct bpf_map *indirect, struct bpf_map *direct) { VERIFY(check(indirect, direct, sizeof(__u32), sizeof(__u32), MAX_ENTRIES)); return 1; } typedef struct { int counter; } atomic_t; struct bpf_htab { struct bpf_map map; atomic_t count; __u32 n_buckets; __u32 elem_size; } __attribute__((preserve_access_index)); struct { __uint(type, BPF_MAP_TYPE_HASH); __uint(map_flags, BPF_F_NO_PREALLOC); /* to test bpf_htab.count */ __uint(max_entries, MAX_ENTRIES); __type(key, __u32); __type(value, __u32); } m_hash SEC(".maps"); __s64 bpf_map_sum_elem_count(struct bpf_map *map) __ksym; static inline int check_hash(void) { struct bpf_htab *hash = (struct bpf_htab *)&m_hash; struct bpf_map *map = (struct bpf_map *)&m_hash; int i; VERIFY(check_default_noinline(&hash->map, map)); VERIFY(hash->n_buckets == MAX_ENTRIES); VERIFY(hash->elem_size == 64); VERIFY(hash->count.counter == 0); VERIFY(bpf_map_sum_elem_count(map) == 0); for (i = 0; i < HALF_ENTRIES; ++i) { const __u32 key = i; const __u32 val = 1; if (bpf_map_update_elem(hash, &key, &val, 0)) return 0; } VERIFY(hash->count.counter == HALF_ENTRIES); VERIFY(bpf_map_sum_elem_count(map) == HALF_ENTRIES); return 1; } struct bpf_array { struct bpf_map map; __u32 elem_size; } __attribute__((preserve_access_index)); struct { __uint(type, BPF_MAP_TYPE_ARRAY); __uint(max_entries, MAX_ENTRIES); __type(key, __u32); __type(value, __u32); } m_array SEC(".maps"); static inline int check_array(void) { struct bpf_array *array = (struct bpf_array *)&m_array; struct bpf_map *map = (struct bpf_map *)&m_array; int i, n_lookups = 0, n_keys = 0; VERIFY(check_default(&array->map, map)); VERIFY(array->elem_size == 8); for (i = 0; i < array->map.max_entries && i < LOOP_BOUND; ++i) { const __u32 key = i; __u32 *val = bpf_map_lookup_elem(array, &key); ++n_lookups; if (val) ++n_keys; } VERIFY(n_lookups == MAX_ENTRIES); VERIFY(n_keys == MAX_ENTRIES); return 1; } struct { __uint(type, BPF_MAP_TYPE_PROG_ARRAY); __uint(max_entries, MAX_ENTRIES); __type(key, __u32); __type(value, __u32); } m_prog_array SEC(".maps"); static inline int check_prog_array(void) { struct bpf_array *prog_array = (struct bpf_array *)&m_prog_array; struct bpf_map *map = (struct bpf_map *)&m_prog_array; VERIFY(check_default(&prog_array->map, map)); return 1; } struct { __uint(type, BPF_MAP_TYPE_PERF_EVENT_ARRAY); __uint(max_entries, MAX_ENTRIES); __type(key, __u32); __type(value, __u32); } m_perf_event_array SEC(".maps"); static inline int check_perf_event_array(void) { struct bpf_array *perf_event_array = (struct bpf_array *)&m_perf_event_array; struct bpf_map *map = (struct bpf_map *)&m_perf_event_array; VERIFY(check_default(&perf_event_array->map, map)); return 1; } struct { __uint(type, BPF_MAP_TYPE_PERCPU_HASH); __uint(max_entries, MAX_ENTRIES); __type(key, __u32); __type(value, __u32); } m_percpu_hash SEC(".maps"); static inline int check_percpu_hash(void) { struct bpf_htab *percpu_hash = (struct bpf_htab *)&m_percpu_hash; struct bpf_map *map = (struct bpf_map *)&m_percpu_hash; VERIFY(check_default(&percpu_hash->map, map)); return 1; } struct { __uint(type, BPF_MAP_TYPE_PERCPU_ARRAY); __uint(max_entries, MAX_ENTRIES); __type(key, __u32); __type(value, __u32); } m_percpu_array SEC(".maps"); static inline int check_percpu_array(void) { struct bpf_array *percpu_array = (struct bpf_array *)&m_percpu_array; struct bpf_map *map = (struct bpf_map *)&m_percpu_array; VERIFY(check_default(&percpu_array->map, map)); return 1; } struct bpf_stack_map { struct bpf_map map; } __attribute__((preserve_access_index)); struct { __uint(type, BPF_MAP_TYPE_STACK_TRACE); __uint(max_entries, MAX_ENTRIES); __type(key, __u32); __type(value, __u64); } m_stack_trace SEC(".maps"); static inline int check_stack_trace(void) { struct bpf_stack_map *stack_trace = (struct bpf_stack_map *)&m_stack_trace; struct bpf_map *map = (struct bpf_map *)&m_stack_trace; VERIFY(check(&stack_trace->map, map, sizeof(__u32), sizeof(__u64), MAX_ENTRIES)); return 1; } struct { __uint(type, BPF_MAP_TYPE_CGROUP_ARRAY); __uint(max_entries, MAX_ENTRIES); __type(key, __u32); __type(value, __u32); } m_cgroup_array SEC(".maps"); static inline int check_cgroup_array(void) { struct bpf_array *cgroup_array = (struct bpf_array *)&m_cgroup_array; struct bpf_map *map = (struct bpf_map *)&m_cgroup_array; VERIFY(check_default(&cgroup_array->map, map)); return 1; } struct { __uint(type, BPF_MAP_TYPE_LRU_HASH); __uint(max_entries, MAX_ENTRIES); __type(key, __u32); __type(value, __u32); } m_lru_hash SEC(".maps"); static inline int check_lru_hash(void) { struct bpf_htab *lru_hash = (struct bpf_htab *)&m_lru_hash; struct bpf_map *map = (struct bpf_map *)&m_lru_hash; VERIFY(check_default(&lru_hash->map, map)); return 1; } struct { __uint(type, BPF_MAP_TYPE_LRU_PERCPU_HASH); __uint(max_entries, MAX_ENTRIES); __type(key, __u32); __type(value, __u32); } m_lru_percpu_hash SEC(".maps"); static inline int check_lru_percpu_hash(void) { struct bpf_htab *lru_percpu_hash = (struct bpf_htab *)&m_lru_percpu_hash; struct bpf_map *map = (struct bpf_map *)&m_lru_percpu_hash; VERIFY(check_default(&lru_percpu_hash->map, map)); return 1; } struct lpm_trie { struct bpf_map map; } __attribute__((preserve_access_index)); struct lpm_key { struct bpf_lpm_trie_key_hdr trie_key; __u32 data; }; struct { __uint(type, BPF_MAP_TYPE_LPM_TRIE); __uint(map_flags, BPF_F_NO_PREALLOC); __uint(max_entries, MAX_ENTRIES); __type(key, struct lpm_key); __type(value, __u32); } m_lpm_trie SEC(".maps"); static inline int check_lpm_trie(void) { struct lpm_trie *lpm_trie = (struct lpm_trie *)&m_lpm_trie; struct bpf_map *map = (struct bpf_map *)&m_lpm_trie; VERIFY(check(&lpm_trie->map, map, sizeof(struct lpm_key), sizeof(__u32), MAX_ENTRIES)); return 1; } #define INNER_MAX_ENTRIES 1234 struct inner_map { __uint(type, BPF_MAP_TYPE_ARRAY); __uint(max_entries, INNER_MAX_ENTRIES); __type(key, __u32); __type(value, __u32); } inner_map SEC(".maps"); struct { __uint(type, BPF_MAP_TYPE_ARRAY_OF_MAPS); __uint(max_entries, MAX_ENTRIES); __type(key, __u32); __type(value, __u32); __array(values, struct { __uint(type, BPF_MAP_TYPE_ARRAY); __uint(max_entries, INNER_MAX_ENTRIES); __type(key, __u32); __type(value, __u32); }); } m_array_of_maps SEC(".maps") = { .values = { (void *)&inner_map, 0, 0, 0, 0, 0, 0, 0, 0 }, }; static inline int check_array_of_maps(void) { struct bpf_array *array_of_maps = (struct bpf_array *)&m_array_of_maps; struct bpf_map *map = (struct bpf_map *)&m_array_of_maps; struct bpf_array *inner_map; int key = 0; VERIFY(check_default(&array_of_maps->map, map)); inner_map = bpf_map_lookup_elem(array_of_maps, &key); VERIFY(inner_map != NULL); VERIFY(inner_map->map.max_entries == INNER_MAX_ENTRIES); return 1; } struct { __uint(type, BPF_MAP_TYPE_HASH_OF_MAPS); __uint(max_entries, MAX_ENTRIES); __type(key, __u32); __type(value, __u32); __array(values, struct inner_map); } m_hash_of_maps SEC(".maps") = { .values = { [2] = &inner_map, }, }; static inline int check_hash_of_maps(void) { struct bpf_htab *hash_of_maps = (struct bpf_htab *)&m_hash_of_maps; struct bpf_map *map = (struct bpf_map *)&m_hash_of_maps; struct bpf_htab *inner_map; int key = 2; VERIFY(check_default(&hash_of_maps->map, map)); inner_map = bpf_map_lookup_elem(hash_of_maps, &key); VERIFY(inner_map != NULL); VERIFY(inner_map->map.max_entries == INNER_MAX_ENTRIES); return 1; } struct bpf_dtab { struct bpf_map map; } __attribute__((preserve_access_index)); struct { __uint(type, BPF_MAP_TYPE_DEVMAP); __uint(max_entries, MAX_ENTRIES); __type(key, __u32); __type(value, __u32); } m_devmap SEC(".maps"); static inline int check_devmap(void) { struct bpf_dtab *devmap = (struct bpf_dtab *)&m_devmap; struct bpf_map *map = (struct bpf_map *)&m_devmap; VERIFY(check_default(&devmap->map, map)); return 1; } struct bpf_stab { struct bpf_map map; } __attribute__((preserve_access_index)); struct { __uint(type, BPF_MAP_TYPE_SOCKMAP); __uint(max_entries, MAX_ENTRIES); __type(key, __u32); __type(value, __u32); } m_sockmap SEC(".maps"); static inline int check_sockmap(void) { struct bpf_stab *sockmap = (struct bpf_stab *)&m_sockmap; struct bpf_map *map = (struct bpf_map *)&m_sockmap; VERIFY(check_default(&sockmap->map, map)); return 1; } struct bpf_cpu_map { struct bpf_map map; } __attribute__((preserve_access_index)); struct { __uint(type, BPF_MAP_TYPE_CPUMAP); __uint(max_entries, MAX_ENTRIES); __type(key, __u32); __type(value, __u32); } m_cpumap SEC(".maps"); static inline int check_cpumap(void) { struct bpf_cpu_map *cpumap = (struct bpf_cpu_map *)&m_cpumap; struct bpf_map *map = (struct bpf_map *)&m_cpumap; VERIFY(check_default(&cpumap->map, map)); return 1; } struct xsk_map { struct bpf_map map; } __attribute__((preserve_access_index)); struct { __uint(type, BPF_MAP_TYPE_XSKMAP); __uint(max_entries, MAX_ENTRIES); __type(key, __u32); __type(value, __u32); } m_xskmap SEC(".maps"); static inline int check_xskmap(void) { struct xsk_map *xskmap = (struct xsk_map *)&m_xskmap; struct bpf_map *map = (struct bpf_map *)&m_xskmap; VERIFY(check_default(&xskmap->map, map)); return 1; } struct bpf_shtab { struct bpf_map map; } __attribute__((preserve_access_index)); struct { __uint(type, BPF_MAP_TYPE_SOCKHASH); __uint(max_entries, MAX_ENTRIES); __type(key, __u32); __type(value, __u32); } m_sockhash SEC(".maps"); static inline int check_sockhash(void) { struct bpf_shtab *sockhash = (struct bpf_shtab *)&m_sockhash; struct bpf_map *map = (struct bpf_map *)&m_sockhash; VERIFY(check_default(&sockhash->map, map)); return 1; } struct bpf_cgroup_storage_map { struct bpf_map map; } __attribute__((preserve_access_index)); struct { __uint(type, BPF_MAP_TYPE_CGROUP_STORAGE); __type(key, struct bpf_cgroup_storage_key); __type(value, __u32); } m_cgroup_storage SEC(".maps"); static inline int check_cgroup_storage(void) { struct bpf_cgroup_storage_map *cgroup_storage = (struct bpf_cgroup_storage_map *)&m_cgroup_storage; struct bpf_map *map = (struct bpf_map *)&m_cgroup_storage; VERIFY(check(&cgroup_storage->map, map, sizeof(struct bpf_cgroup_storage_key), sizeof(__u32), 0)); return 1; } struct reuseport_array { struct bpf_map map; } __attribute__((preserve_access_index)); struct { __uint(type, BPF_MAP_TYPE_REUSEPORT_SOCKARRAY); __uint(max_entries, MAX_ENTRIES); __type(key, __u32); __type(value, __u32); } m_reuseport_sockarray SEC(".maps"); static inline int check_reuseport_sockarray(void) { struct reuseport_array *reuseport_sockarray = (struct reuseport_array *)&m_reuseport_sockarray; struct bpf_map *map = (struct bpf_map *)&m_reuseport_sockarray; VERIFY(check_default(&reuseport_sockarray->map, map)); return 1; } struct { __uint(type, BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); __type(key, struct bpf_cgroup_storage_key); __type(value, __u32); } m_percpu_cgroup_storage SEC(".maps"); static inline int check_percpu_cgroup_storage(void) { struct bpf_cgroup_storage_map *percpu_cgroup_storage = (struct bpf_cgroup_storage_map *)&m_percpu_cgroup_storage; struct bpf_map *map = (struct bpf_map *)&m_percpu_cgroup_storage; VERIFY(check(&percpu_cgroup_storage->map, map, sizeof(struct bpf_cgroup_storage_key), sizeof(__u32), 0)); return 1; } struct bpf_queue_stack { struct bpf_map map; } __attribute__((preserve_access_index)); struct { __uint(type, BPF_MAP_TYPE_QUEUE); __uint(max_entries, MAX_ENTRIES); __type(value, __u32); } m_queue SEC(".maps"); static inline int check_queue(void) { struct bpf_queue_stack *queue = (struct bpf_queue_stack *)&m_queue; struct bpf_map *map = (struct bpf_map *)&m_queue; VERIFY(check(&queue->map, map, 0, sizeof(__u32), MAX_ENTRIES)); return 1; } struct { __uint(type, BPF_MAP_TYPE_STACK); __uint(max_entries, MAX_ENTRIES); __type(value, __u32); } m_stack SEC(".maps"); static inline int check_stack(void) { struct bpf_queue_stack *stack = (struct bpf_queue_stack *)&m_stack; struct bpf_map *map = (struct bpf_map *)&m_stack; VERIFY(check(&stack->map, map, 0, sizeof(__u32), MAX_ENTRIES)); return 1; } struct bpf_local_storage_map { struct bpf_map map; } __attribute__((preserve_access_index)); struct { __uint(type, BPF_MAP_TYPE_SK_STORAGE); __uint(map_flags, BPF_F_NO_PREALLOC); __type(key, __u32); __type(value, __u32); } m_sk_storage SEC(".maps"); static inline int check_sk_storage(void) { struct bpf_local_storage_map *sk_storage = (struct bpf_local_storage_map *)&m_sk_storage; struct bpf_map *map = (struct bpf_map *)&m_sk_storage; VERIFY(check(&sk_storage->map, map, sizeof(__u32), sizeof(__u32), 0)); return 1; } struct { __uint(type, BPF_MAP_TYPE_DEVMAP_HASH); __uint(max_entries, MAX_ENTRIES); __type(key, __u32); __type(value, __u32); } m_devmap_hash SEC(".maps"); static inline int check_devmap_hash(void) { struct bpf_dtab *devmap_hash = (struct bpf_dtab *)&m_devmap_hash; struct bpf_map *map = (struct bpf_map *)&m_devmap_hash; VERIFY(check_default(&devmap_hash->map, map)); return 1; } struct bpf_ringbuf_map { struct bpf_map map; } __attribute__((preserve_access_index)); struct { __uint(type, BPF_MAP_TYPE_RINGBUF); } m_ringbuf SEC(".maps"); static inline int check_ringbuf(void) { struct bpf_ringbuf_map *ringbuf = (struct bpf_ringbuf_map *)&m_ringbuf; struct bpf_map *map = (struct bpf_map *)&m_ringbuf; VERIFY(check(&ringbuf->map, map, 0, 0, page_size)); return 1; } SEC("cgroup_skb/egress") int cg_skb(void *ctx) { VERIFY_TYPE(BPF_MAP_TYPE_HASH, check_hash); VERIFY_TYPE(BPF_MAP_TYPE_ARRAY, check_array); VERIFY_TYPE(BPF_MAP_TYPE_PROG_ARRAY, check_prog_array); VERIFY_TYPE(BPF_MAP_TYPE_PERF_EVENT_ARRAY, check_perf_event_array); VERIFY_TYPE(BPF_MAP_TYPE_PERCPU_HASH, check_percpu_hash); VERIFY_TYPE(BPF_MAP_TYPE_PERCPU_ARRAY, check_percpu_array); VERIFY_TYPE(BPF_MAP_TYPE_STACK_TRACE, check_stack_trace); VERIFY_TYPE(BPF_MAP_TYPE_CGROUP_ARRAY, check_cgroup_array); VERIFY_TYPE(BPF_MAP_TYPE_LRU_HASH, check_lru_hash); VERIFY_TYPE(BPF_MAP_TYPE_LRU_PERCPU_HASH, check_lru_percpu_hash); VERIFY_TYPE(BPF_MAP_TYPE_LPM_TRIE, check_lpm_trie); VERIFY_TYPE(BPF_MAP_TYPE_ARRAY_OF_MAPS, check_array_of_maps); VERIFY_TYPE(BPF_MAP_TYPE_HASH_OF_MAPS, check_hash_of_maps); VERIFY_TYPE(BPF_MAP_TYPE_DEVMAP, check_devmap); VERIFY_TYPE(BPF_MAP_TYPE_SOCKMAP, check_sockmap); VERIFY_TYPE(BPF_MAP_TYPE_CPUMAP, check_cpumap); VERIFY_TYPE(BPF_MAP_TYPE_XSKMAP, check_xskmap); VERIFY_TYPE(BPF_MAP_TYPE_SOCKHASH, check_sockhash); VERIFY_TYPE(BPF_MAP_TYPE_CGROUP_STORAGE, check_cgroup_storage); VERIFY_TYPE(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, check_reuseport_sockarray); VERIFY_TYPE(BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE, check_percpu_cgroup_storage); VERIFY_TYPE(BPF_MAP_TYPE_QUEUE, check_queue); VERIFY_TYPE(BPF_MAP_TYPE_STACK, check_stack); VERIFY_TYPE(BPF_MAP_TYPE_SK_STORAGE, check_sk_storage); VERIFY_TYPE(BPF_MAP_TYPE_DEVMAP_HASH, check_devmap_hash); VERIFY_TYPE(BPF_MAP_TYPE_RINGBUF, check_ringbuf); return 1; } char _license[] SEC("license") = "GPL";
/* SPDX-License-Identifier: GPL-2.0 */ /* * Data Access Monitor Unit Tests * * Copyright 2019 Amazon.com, Inc. or its affiliates. All rights reserved. * * Author: SeongJae Park <[email protected]> */ #ifdef CONFIG_DAMON_KUNIT_TEST #ifndef _DAMON_CORE_TEST_H #define _DAMON_CORE_TEST_H #include <kunit/test.h> static void damon_test_regions(struct kunit *test) { struct damon_region *r; struct damon_target *t; r = damon_new_region(1, 2); KUNIT_EXPECT_EQ(test, 1ul, r->ar.start); KUNIT_EXPECT_EQ(test, 2ul, r->ar.end); KUNIT_EXPECT_EQ(test, 0u, r->nr_accesses); t = damon_new_target(); KUNIT_EXPECT_EQ(test, 0u, damon_nr_regions(t)); damon_add_region(r, t); KUNIT_EXPECT_EQ(test, 1u, damon_nr_regions(t)); damon_destroy_region(r, t); KUNIT_EXPECT_EQ(test, 0u, damon_nr_regions(t)); damon_free_target(t); } static unsigned int nr_damon_targets(struct damon_ctx *ctx) { struct damon_target *t; unsigned int nr_targets = 0; damon_for_each_target(t, ctx) nr_targets++; return nr_targets; } static void damon_test_target(struct kunit *test) { struct damon_ctx *c = damon_new_ctx(); struct damon_target *t; t = damon_new_target(); KUNIT_EXPECT_EQ(test, 0u, nr_damon_targets(c)); damon_add_target(c, t); KUNIT_EXPECT_EQ(test, 1u, nr_damon_targets(c)); damon_destroy_target(t); KUNIT_EXPECT_EQ(test, 0u, nr_damon_targets(c)); damon_destroy_ctx(c); } /* * Test kdamond_reset_aggregated() * * DAMON checks access to each region and aggregates this information as the * access frequency of each region. In detail, it increases '->nr_accesses' of * regions that an access has confirmed. 'kdamond_reset_aggregated()' flushes * the aggregated information ('->nr_accesses' of each regions) to the result * buffer. As a result of the flushing, the '->nr_accesses' of regions are * initialized to zero. */ static void damon_test_aggregate(struct kunit *test) { struct damon_ctx *ctx = damon_new_ctx(); unsigned long saddr[][3] = {{10, 20, 30}, {5, 42, 49}, {13, 33, 55} }; unsigned long eaddr[][3] = {{15, 27, 40}, {31, 45, 55}, {23, 44, 66} }; unsigned long accesses[][3] = {{42, 95, 84}, {10, 20, 30}, {0, 1, 2} }; struct damon_target *t; struct damon_region *r; int it, ir; for (it = 0; it < 3; it++) { t = damon_new_target(); damon_add_target(ctx, t); } it = 0; damon_for_each_target(t, ctx) { for (ir = 0; ir < 3; ir++) { r = damon_new_region(saddr[it][ir], eaddr[it][ir]); r->nr_accesses = accesses[it][ir]; r->nr_accesses_bp = accesses[it][ir] * 10000; damon_add_region(r, t); } it++; } kdamond_reset_aggregated(ctx); it = 0; damon_for_each_target(t, ctx) { ir = 0; /* '->nr_accesses' should be zeroed */ damon_for_each_region(r, t) { KUNIT_EXPECT_EQ(test, 0u, r->nr_accesses); ir++; } /* regions should be preserved */ KUNIT_EXPECT_EQ(test, 3, ir); it++; } /* targets also should be preserved */ KUNIT_EXPECT_EQ(test, 3, it); damon_destroy_ctx(ctx); } static void damon_test_split_at(struct kunit *test) { struct damon_ctx *c = damon_new_ctx(); struct damon_target *t; struct damon_region *r, *r_new; t = damon_new_target(); r = damon_new_region(0, 100); r->nr_accesses_bp = 420000; r->nr_accesses = 42; r->last_nr_accesses = 15; damon_add_region(r, t); damon_split_region_at(t, r, 25); KUNIT_EXPECT_EQ(test, r->ar.start, 0ul); KUNIT_EXPECT_EQ(test, r->ar.end, 25ul); r_new = damon_next_region(r); KUNIT_EXPECT_EQ(test, r_new->ar.start, 25ul); KUNIT_EXPECT_EQ(test, r_new->ar.end, 100ul); KUNIT_EXPECT_EQ(test, r->nr_accesses_bp, r_new->nr_accesses_bp); KUNIT_EXPECT_EQ(test, r->nr_accesses, r_new->nr_accesses); KUNIT_EXPECT_EQ(test, r->last_nr_accesses, r_new->last_nr_accesses); damon_free_target(t); damon_destroy_ctx(c); } static void damon_test_merge_two(struct kunit *test) { struct damon_target *t; struct damon_region *r, *r2, *r3; int i; t = damon_new_target(); r = damon_new_region(0, 100); r->nr_accesses = 10; r->nr_accesses_bp = 100000; damon_add_region(r, t); r2 = damon_new_region(100, 300); r2->nr_accesses = 20; r2->nr_accesses_bp = 200000; damon_add_region(r2, t); damon_merge_two_regions(t, r, r2); KUNIT_EXPECT_EQ(test, r->ar.start, 0ul); KUNIT_EXPECT_EQ(test, r->ar.end, 300ul); KUNIT_EXPECT_EQ(test, r->nr_accesses, 16u); i = 0; damon_for_each_region(r3, t) { KUNIT_EXPECT_PTR_EQ(test, r, r3); i++; } KUNIT_EXPECT_EQ(test, i, 1); damon_free_target(t); } static struct damon_region *__nth_region_of(struct damon_target *t, int idx) { struct damon_region *r; unsigned int i = 0; damon_for_each_region(r, t) { if (i++ == idx) return r; } return NULL; } static void damon_test_merge_regions_of(struct kunit *test) { struct damon_target *t; struct damon_region *r; unsigned long sa[] = {0, 100, 114, 122, 130, 156, 170, 184}; unsigned long ea[] = {100, 112, 122, 130, 156, 170, 184, 230}; unsigned int nrs[] = {0, 0, 10, 10, 20, 30, 1, 2}; unsigned long saddrs[] = {0, 114, 130, 156, 170}; unsigned long eaddrs[] = {112, 130, 156, 170, 230}; int i; t = damon_new_target(); for (i = 0; i < ARRAY_SIZE(sa); i++) { r = damon_new_region(sa[i], ea[i]); r->nr_accesses = nrs[i]; r->nr_accesses_bp = nrs[i] * 10000; damon_add_region(r, t); } damon_merge_regions_of(t, 9, 9999); /* 0-112, 114-130, 130-156, 156-170 */ KUNIT_EXPECT_EQ(test, damon_nr_regions(t), 5u); for (i = 0; i < 5; i++) { r = __nth_region_of(t, i); KUNIT_EXPECT_EQ(test, r->ar.start, saddrs[i]); KUNIT_EXPECT_EQ(test, r->ar.end, eaddrs[i]); } damon_free_target(t); } static void damon_test_split_regions_of(struct kunit *test) { struct damon_ctx *c = damon_new_ctx(); struct damon_target *t; struct damon_region *r; t = damon_new_target(); r = damon_new_region(0, 22); damon_add_region(r, t); damon_split_regions_of(t, 2); KUNIT_EXPECT_LE(test, damon_nr_regions(t), 2u); damon_free_target(t); t = damon_new_target(); r = damon_new_region(0, 220); damon_add_region(r, t); damon_split_regions_of(t, 4); KUNIT_EXPECT_LE(test, damon_nr_regions(t), 4u); damon_free_target(t); damon_destroy_ctx(c); } static void damon_test_ops_registration(struct kunit *test) { struct damon_ctx *c = damon_new_ctx(); struct damon_operations ops = {.id = DAMON_OPS_VADDR}, bak; bool need_cleanup = false; /* DAMON_OPS_VADDR is registered only if CONFIG_DAMON_VADDR is set */ if (!damon_is_registered_ops(DAMON_OPS_VADDR)) { bak.id = DAMON_OPS_VADDR; KUNIT_EXPECT_EQ(test, damon_register_ops(&bak), 0); need_cleanup = true; } /* DAMON_OPS_VADDR is ensured to be registered */ KUNIT_EXPECT_EQ(test, damon_select_ops(c, DAMON_OPS_VADDR), 0); /* Double-registration is prohibited */ KUNIT_EXPECT_EQ(test, damon_register_ops(&ops), -EINVAL); /* Unknown ops id cannot be registered */ KUNIT_EXPECT_EQ(test, damon_select_ops(c, NR_DAMON_OPS), -EINVAL); /* Registration should success after unregistration */ mutex_lock(&damon_ops_lock); bak = damon_registered_ops[DAMON_OPS_VADDR]; damon_registered_ops[DAMON_OPS_VADDR] = (struct damon_operations){}; mutex_unlock(&damon_ops_lock); ops.id = DAMON_OPS_VADDR; KUNIT_EXPECT_EQ(test, damon_register_ops(&ops), 0); mutex_lock(&damon_ops_lock); damon_registered_ops[DAMON_OPS_VADDR] = bak; mutex_unlock(&damon_ops_lock); /* Check double-registration failure again */ KUNIT_EXPECT_EQ(test, damon_register_ops(&ops), -EINVAL); damon_destroy_ctx(c); if (need_cleanup) { mutex_lock(&damon_ops_lock); damon_registered_ops[DAMON_OPS_VADDR] = (struct damon_operations){}; mutex_unlock(&damon_ops_lock); } } static void damon_test_set_regions(struct kunit *test) { struct damon_target *t = damon_new_target(); struct damon_region *r1 = damon_new_region(4, 16); struct damon_region *r2 = damon_new_region(24, 32); struct damon_addr_range range = {.start = 8, .end = 28}; unsigned long expects[] = {8, 16, 16, 24, 24, 28}; int expect_idx = 0; struct damon_region *r; damon_add_region(r1, t); damon_add_region(r2, t); damon_set_regions(t, &range, 1); KUNIT_EXPECT_EQ(test, damon_nr_regions(t), 3); damon_for_each_region(r, t) { KUNIT_EXPECT_EQ(test, r->ar.start, expects[expect_idx++]); KUNIT_EXPECT_EQ(test, r->ar.end, expects[expect_idx++]); } damon_destroy_target(t); } static void damon_test_nr_accesses_to_accesses_bp(struct kunit *test) { struct damon_attrs attrs = { .sample_interval = 10, .aggr_interval = ((unsigned long)UINT_MAX + 1) * 10 }; /* * In some cases such as 32bit architectures where UINT_MAX is * ULONG_MAX, attrs.aggr_interval becomes zero. Calling * damon_nr_accesses_to_accesses_bp() in the case will cause * divide-by-zero. Such case is prohibited in normal execution since * the caution is documented on the comment for the function, and * damon_update_monitoring_results() does the check. Skip the test in * the case. */ if (!attrs.aggr_interval) kunit_skip(test, "aggr_interval is zero."); KUNIT_EXPECT_EQ(test, damon_nr_accesses_to_accesses_bp(123, &attrs), 0); } static void damon_test_update_monitoring_result(struct kunit *test) { struct damon_attrs old_attrs = { .sample_interval = 10, .aggr_interval = 1000,}; struct damon_attrs new_attrs; struct damon_region *r = damon_new_region(3, 7); r->nr_accesses = 15; r->nr_accesses_bp = 150000; r->age = 20; new_attrs = (struct damon_attrs){ .sample_interval = 100, .aggr_interval = 10000,}; damon_update_monitoring_result(r, &old_attrs, &new_attrs); KUNIT_EXPECT_EQ(test, r->nr_accesses, 15); KUNIT_EXPECT_EQ(test, r->age, 2); new_attrs = (struct damon_attrs){ .sample_interval = 1, .aggr_interval = 1000}; damon_update_monitoring_result(r, &old_attrs, &new_attrs); KUNIT_EXPECT_EQ(test, r->nr_accesses, 150); KUNIT_EXPECT_EQ(test, r->age, 2); new_attrs = (struct damon_attrs){ .sample_interval = 1, .aggr_interval = 100}; damon_update_monitoring_result(r, &old_attrs, &new_attrs); KUNIT_EXPECT_EQ(test, r->nr_accesses, 150); KUNIT_EXPECT_EQ(test, r->age, 20); damon_free_region(r); } static void damon_test_set_attrs(struct kunit *test) { struct damon_ctx *c = damon_new_ctx(); struct damon_attrs valid_attrs = { .min_nr_regions = 10, .max_nr_regions = 1000, .sample_interval = 5000, .aggr_interval = 100000,}; struct damon_attrs invalid_attrs; KUNIT_EXPECT_EQ(test, damon_set_attrs(c, &valid_attrs), 0); invalid_attrs = valid_attrs; invalid_attrs.min_nr_regions = 1; KUNIT_EXPECT_EQ(test, damon_set_attrs(c, &invalid_attrs), -EINVAL); invalid_attrs = valid_attrs; invalid_attrs.max_nr_regions = 9; KUNIT_EXPECT_EQ(test, damon_set_attrs(c, &invalid_attrs), -EINVAL); invalid_attrs = valid_attrs; invalid_attrs.aggr_interval = 4999; KUNIT_EXPECT_EQ(test, damon_set_attrs(c, &invalid_attrs), -EINVAL); damon_destroy_ctx(c); } static void damon_test_moving_sum(struct kunit *test) { unsigned int mvsum = 50000, nomvsum = 50000, len_window = 10; unsigned int new_values[] = {10000, 0, 10000, 0, 0, 0, 10000, 0, 0, 0}; unsigned int expects[] = {55000, 50000, 55000, 50000, 45000, 40000, 45000, 40000, 35000, 30000}; int i; for (i = 0; i < ARRAY_SIZE(new_values); i++) { mvsum = damon_moving_sum(mvsum, nomvsum, len_window, new_values[i]); KUNIT_EXPECT_EQ(test, mvsum, expects[i]); } } static void damos_test_new_filter(struct kunit *test) { struct damos_filter *filter; filter = damos_new_filter(DAMOS_FILTER_TYPE_ANON, true); KUNIT_EXPECT_EQ(test, filter->type, DAMOS_FILTER_TYPE_ANON); KUNIT_EXPECT_EQ(test, filter->matching, true); KUNIT_EXPECT_PTR_EQ(test, filter->list.prev, &filter->list); KUNIT_EXPECT_PTR_EQ(test, filter->list.next, &filter->list); damos_destroy_filter(filter); } static void damos_test_filter_out(struct kunit *test) { struct damon_target *t; struct damon_region *r, *r2; struct damos_filter *f; f = damos_new_filter(DAMOS_FILTER_TYPE_ADDR, true); f->addr_range = (struct damon_addr_range){ .start = DAMON_MIN_REGION * 2, .end = DAMON_MIN_REGION * 6}; t = damon_new_target(); r = damon_new_region(DAMON_MIN_REGION * 3, DAMON_MIN_REGION * 5); damon_add_region(r, t); /* region in the range */ KUNIT_EXPECT_TRUE(test, __damos_filter_out(NULL, t, r, f)); KUNIT_EXPECT_EQ(test, damon_nr_regions(t), 1); /* region before the range */ r->ar.start = DAMON_MIN_REGION * 1; r->ar.end = DAMON_MIN_REGION * 2; KUNIT_EXPECT_FALSE(test, __damos_filter_out(NULL, t, r, f)); KUNIT_EXPECT_EQ(test, damon_nr_regions(t), 1); /* region after the range */ r->ar.start = DAMON_MIN_REGION * 6; r->ar.end = DAMON_MIN_REGION * 8; KUNIT_EXPECT_FALSE(test, __damos_filter_out(NULL, t, r, f)); KUNIT_EXPECT_EQ(test, damon_nr_regions(t), 1); /* region started before the range */ r->ar.start = DAMON_MIN_REGION * 1; r->ar.end = DAMON_MIN_REGION * 4; KUNIT_EXPECT_FALSE(test, __damos_filter_out(NULL, t, r, f)); /* filter should have split the region */ KUNIT_EXPECT_EQ(test, r->ar.start, DAMON_MIN_REGION * 1); KUNIT_EXPECT_EQ(test, r->ar.end, DAMON_MIN_REGION * 2); KUNIT_EXPECT_EQ(test, damon_nr_regions(t), 2); r2 = damon_next_region(r); KUNIT_EXPECT_EQ(test, r2->ar.start, DAMON_MIN_REGION * 2); KUNIT_EXPECT_EQ(test, r2->ar.end, DAMON_MIN_REGION * 4); damon_destroy_region(r2, t); /* region started in the range */ r->ar.start = DAMON_MIN_REGION * 2; r->ar.end = DAMON_MIN_REGION * 8; KUNIT_EXPECT_TRUE(test, __damos_filter_out(NULL, t, r, f)); /* filter should have split the region */ KUNIT_EXPECT_EQ(test, r->ar.start, DAMON_MIN_REGION * 2); KUNIT_EXPECT_EQ(test, r->ar.end, DAMON_MIN_REGION * 6); KUNIT_EXPECT_EQ(test, damon_nr_regions(t), 2); r2 = damon_next_region(r); KUNIT_EXPECT_EQ(test, r2->ar.start, DAMON_MIN_REGION * 6); KUNIT_EXPECT_EQ(test, r2->ar.end, DAMON_MIN_REGION * 8); damon_destroy_region(r2, t); damon_free_target(t); damos_free_filter(f); } static void damon_test_feed_loop_next_input(struct kunit *test) { unsigned long last_input = 900000, current_score = 200; /* * If current score is lower than the goal, which is always 10,000 * (read the comment on damon_feed_loop_next_input()'s comment), next * input should be higher than the last input. */ KUNIT_EXPECT_GT(test, damon_feed_loop_next_input(last_input, current_score), last_input); /* * If current score is higher than the goal, next input should be lower * than the last input. */ current_score = 250000000; KUNIT_EXPECT_LT(test, damon_feed_loop_next_input(last_input, current_score), last_input); /* * The next input depends on the distance between the current score and * the goal */ KUNIT_EXPECT_GT(test, damon_feed_loop_next_input(last_input, 200), damon_feed_loop_next_input(last_input, 2000)); } static struct kunit_case damon_test_cases[] = { KUNIT_CASE(damon_test_target), KUNIT_CASE(damon_test_regions), KUNIT_CASE(damon_test_aggregate), KUNIT_CASE(damon_test_split_at), KUNIT_CASE(damon_test_merge_two), KUNIT_CASE(damon_test_merge_regions_of), KUNIT_CASE(damon_test_split_regions_of), KUNIT_CASE(damon_test_ops_registration), KUNIT_CASE(damon_test_set_regions), KUNIT_CASE(damon_test_nr_accesses_to_accesses_bp), KUNIT_CASE(damon_test_update_monitoring_result), KUNIT_CASE(damon_test_set_attrs), KUNIT_CASE(damon_test_moving_sum), KUNIT_CASE(damos_test_new_filter), KUNIT_CASE(damos_test_filter_out), KUNIT_CASE(damon_test_feed_loop_next_input), {}, }; static struct kunit_suite damon_test_suite = { .name = "damon", .test_cases = damon_test_cases, }; kunit_test_suite(damon_test_suite); #endif /* _DAMON_CORE_TEST_H */ #endif /* CONFIG_DAMON_KUNIT_TEST */
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
3