language
stringclasses 6
values | original_string
stringlengths 25
887k
| text
stringlengths 25
887k
|
---|---|---|
Python | def draw_menu(self, color=BLACK, background=WHITE + (222,)):
"""
A function that draws the menu available under the f1 button
:param color: color of the drawn text
:param background: color of the drawn background
"""
blit_line = lambda pos, text: \
menu_bg.blit(self.font_help.render(text, False, color), (5, self.f1_line_height * pos))
menu_bg = pg.Surface([self.f1_menu_width, self.f1_line_height * 18], SRCALPHA)
menu_bg.fill(background)
dead_colors = {WHITE: 'WHITE',
LIGHTEST_GREY: 'LIGHTEST GREY',
LIGHTER_GREY: 'LIGHTER GREY',
LIGHT_GREY: 'LIGHT GREY'}
grid_colors = {None: 'hidden',
GREY: 'GREY',
WHITE: 'WHITE'
}
blit_line(0, f'{TITLE} FPS:{round(self.clock.get_fps())}')
blit_line(2, f'F1: show / hide menu')
blit_line(3, f'g : show / hide grid ({grid_colors[self.grid_color]})')
blit_line(4, f'w : show / hide route ({"shown" if self.show_route else "hidden"})')
blit_line(5, f'e : next color for dead cells')
blit_line(6, f' ({dead_colors[self.dead_color]})')
blit_line(7, f'p : run / pause ({"paused" if self.paused else "running"})')
blit_line(8, f's : save grid to a file')
blit_line(9, f'r : randomize grid')
blit_line(10, f'n : display next generation')
blit_line(11,
f't : switch cell sizes {self.grid_width}x{self.grid_height} ({self.grid_width * self.grid_height})')
blit_line(12, f'z | x : adjust cell sizes ({self.cell_size})')
blit_line(13, f', | . : generations per second ({self.gens_per_sec})')
blit_line(14, f'LMB : set cell as alive')
blit_line(15, f'RMB : set cell as dead')
blit_line(16, f'q : quit')
self.grid_image.blit(menu_bg, (0, 0)) | def draw_menu(self, color=BLACK, background=WHITE + (222,)):
"""
A function that draws the menu available under the f1 button
:param color: color of the drawn text
:param background: color of the drawn background
"""
blit_line = lambda pos, text: \
menu_bg.blit(self.font_help.render(text, False, color), (5, self.f1_line_height * pos))
menu_bg = pg.Surface([self.f1_menu_width, self.f1_line_height * 18], SRCALPHA)
menu_bg.fill(background)
dead_colors = {WHITE: 'WHITE',
LIGHTEST_GREY: 'LIGHTEST GREY',
LIGHTER_GREY: 'LIGHTER GREY',
LIGHT_GREY: 'LIGHT GREY'}
grid_colors = {None: 'hidden',
GREY: 'GREY',
WHITE: 'WHITE'
}
blit_line(0, f'{TITLE} FPS:{round(self.clock.get_fps())}')
blit_line(2, f'F1: show / hide menu')
blit_line(3, f'g : show / hide grid ({grid_colors[self.grid_color]})')
blit_line(4, f'w : show / hide route ({"shown" if self.show_route else "hidden"})')
blit_line(5, f'e : next color for dead cells')
blit_line(6, f' ({dead_colors[self.dead_color]})')
blit_line(7, f'p : run / pause ({"paused" if self.paused else "running"})')
blit_line(8, f's : save grid to a file')
blit_line(9, f'r : randomize grid')
blit_line(10, f'n : display next generation')
blit_line(11,
f't : switch cell sizes {self.grid_width}x{self.grid_height} ({self.grid_width * self.grid_height})')
blit_line(12, f'z | x : adjust cell sizes ({self.cell_size})')
blit_line(13, f', | . : generations per second ({self.gens_per_sec})')
blit_line(14, f'LMB : set cell as alive')
blit_line(15, f'RMB : set cell as dead')
blit_line(16, f'q : quit')
self.grid_image.blit(menu_bg, (0, 0)) |
Python | def draw(self):
"""
A function that draws everything on the screen - sprites, grid, help menu and info
"""
self.sprites.draw(self.grid_image)
self.grid_image.blit(self.grid_lines, (0, 0))
self.show_menu and self.draw_menu()
self.screen.blit(self.grid_image, (self.margin_x, 0))
self.draw_info()
pg.display.flip() | def draw(self):
"""
A function that draws everything on the screen - sprites, grid, help menu and info
"""
self.sprites.draw(self.grid_image)
self.grid_image.blit(self.grid_lines, (0, 0))
self.show_menu and self.draw_menu()
self.screen.blit(self.grid_image, (self.margin_x, 0))
self.draw_info()
pg.display.flip() |
Python | def count_alive_cells(self) -> int:
"""
Returns the number of cells currently alive
"""
return sum(sum(1 for cell in x if cell.alive) for x in self.cells) | def count_alive_cells(self) -> int:
"""
Returns the number of cells currently alive
"""
return sum(sum(1 for cell in x if cell.alive) for x in self.cells) |
Python | def count_cell_neighbors(self, x: int, y: int) -> int:
"""
Get the number of alive neighbors of the specific cell
:param x: The index of the specific cell
:param y: The index of the specific cell
:return: The number of alive neighbors of that cell
"""
prev_x = x - 1
prev_y = y - 1
next_x = (x + 1) % self.grid_width
next_y = (y + 1) % self.grid_height
return self.cells[prev_x][prev_y].alive + self.cells[prev_x][y].alive + self.cells[prev_x][next_y].alive + \
self.cells[x][prev_y].alive + self.cells[x][next_y].alive + \
self.cells[next_x][prev_y].alive + self.cells[next_x][y].alive + self.cells[next_x][next_y].alive | def count_cell_neighbors(self, x: int, y: int) -> int:
"""
Get the number of alive neighbors of the specific cell
:param x: The index of the specific cell
:param y: The index of the specific cell
:return: The number of alive neighbors of that cell
"""
prev_x = x - 1
prev_y = y - 1
next_x = (x + 1) % self.grid_width
next_y = (y + 1) % self.grid_height
return self.cells[prev_x][prev_y].alive + self.cells[prev_x][y].alive + self.cells[prev_x][next_y].alive + \
self.cells[x][prev_y].alive + self.cells[x][next_y].alive + \
self.cells[next_x][prev_y].alive + self.cells[next_x][y].alive + self.cells[next_x][next_y].alive |
Python | def update_generation(self):
"""
Calls function which set the state of every cell in next generation, then increments the generation counter
"""
self.set_cells_state()
self.generation += 1 | def update_generation(self):
"""
Calls function which set the state of every cell in next generation, then increments the generation counter
"""
self.set_cells_state()
self.generation += 1 |
Python | def compute_mouse_pos(self, pos: (int, int)) -> (int, int):
"""
A function that calculates the tuple (col, row) of the clicked cell depending on the mouse position
:param pos: Position in px where the mouse was when clicked
:return: (None, None) if clicked not on the grid otherwise tuple (col, row)
"""
# only if clicked above menu bar (on the grid image)
if self.margin_x < pos[0] < (self.grid_width * self.cell_size + self.margin_x):
if 0 < pos[1] < (self.grid_height * self.cell_size):
return ((pos[0] - self.margin_x) // self.cell_size), (pos[1] // self.cell_size)
return None, None | def compute_mouse_pos(self, pos: (int, int)) -> (int, int):
"""
A function that calculates the tuple (col, row) of the clicked cell depending on the mouse position
:param pos: Position in px where the mouse was when clicked
:return: (None, None) if clicked not on the grid otherwise tuple (col, row)
"""
# only if clicked above menu bar (on the grid image)
if self.margin_x < pos[0] < (self.grid_width * self.cell_size + self.margin_x):
if 0 < pos[1] < (self.grid_height * self.cell_size):
return ((pos[0] - self.margin_x) // self.cell_size), (pos[1] // self.cell_size)
return None, None |
Python | def handle_keys(self, event: pg.event.Event):
"""
This function handles all the events related to the keyboard
:param event: pygame Event
"""
if event.key == pg.K_p:
print("'p' pressed! - toggling pause")
self.paused = not self.paused
elif event.key == pg.K_q:
quit("'q' pressed! - quitting the game")
elif event.key == pg.K_r:
print("'r' pressed! - randomizing grid")
self.fill_grid()
elif event.key == pg.K_w:
print("'w' pressed! - toggling route view")
self.show_route = not self.show_route
elif event.key == pg.K_e:
print("'e' pressed! - next color for dead cells")
self.dead_color = next(DEAD_COLOR)
elif self.paused and event.key == pg.K_n:
print("'n' pressed! - displaying next generation")
self.update_generation()
elif event.key == pg.K_c:
print("'c' pressed! - clearing grid")
self.fill_grid(Action.CLEAR)
elif event.key == pg.K_t:
print("'t' pressed! - changing cell size")
self.cell_size = next(CELL_SIZES)
self.new()
elif event.key == pg.K_g:
print("'g' pressed! - toggling grid")
self.grid_color = next(GRID_COLOR)
self.draw_grid(self.grid_color)
elif event.key == pg.K_x:
self.increase_cell_size()
elif event.key == pg.K_z:
self.decrease_cell_size()
elif event.key == pg.K_F1:
print("'F1' pressed! - toggling menu view")
self.show_menu = not self.show_menu
elif event.key == pg.K_s:
print(f"'s' pressed ! - saved to file '{self.save_to_file()}'")
elif event.unicode == ',':
self.decrease_gens_per_sec()
elif event.unicode == '.':
self.increase_gens_per_sec() | def handle_keys(self, event: pg.event.Event):
"""
This function handles all the events related to the keyboard
:param event: pygame Event
"""
if event.key == pg.K_p:
print("'p' pressed! - toggling pause")
self.paused = not self.paused
elif event.key == pg.K_q:
quit("'q' pressed! - quitting the game")
elif event.key == pg.K_r:
print("'r' pressed! - randomizing grid")
self.fill_grid()
elif event.key == pg.K_w:
print("'w' pressed! - toggling route view")
self.show_route = not self.show_route
elif event.key == pg.K_e:
print("'e' pressed! - next color for dead cells")
self.dead_color = next(DEAD_COLOR)
elif self.paused and event.key == pg.K_n:
print("'n' pressed! - displaying next generation")
self.update_generation()
elif event.key == pg.K_c:
print("'c' pressed! - clearing grid")
self.fill_grid(Action.CLEAR)
elif event.key == pg.K_t:
print("'t' pressed! - changing cell size")
self.cell_size = next(CELL_SIZES)
self.new()
elif event.key == pg.K_g:
print("'g' pressed! - toggling grid")
self.grid_color = next(GRID_COLOR)
self.draw_grid(self.grid_color)
elif event.key == pg.K_x:
self.increase_cell_size()
elif event.key == pg.K_z:
self.decrease_cell_size()
elif event.key == pg.K_F1:
print("'F1' pressed! - toggling menu view")
self.show_menu = not self.show_menu
elif event.key == pg.K_s:
print(f"'s' pressed ! - saved to file '{self.save_to_file()}'")
elif event.unicode == ',':
self.decrease_gens_per_sec()
elif event.unicode == '.':
self.increase_gens_per_sec() |
Python | def handle_mouse_scroll(self, button: int, ctrl: bool = False):
"""
This function handles all the events related to the mouse scroll
:param button: scrolling up / down
:param ctrl: if True then CTRL is also pressed and it should zoom instead of changing gens per sec
"""
if button == WHEEL_UP:
self.increase_cell_size() if ctrl else self.increase_gens_per_sec()
elif button == WHEEL_DOWN:
self.decrease_cell_size() if ctrl else self.decrease_gens_per_sec() | def handle_mouse_scroll(self, button: int, ctrl: bool = False):
"""
This function handles all the events related to the mouse scroll
:param button: scrolling up / down
:param ctrl: if True then CTRL is also pressed and it should zoom instead of changing gens per sec
"""
if button == WHEEL_UP:
self.increase_cell_size() if ctrl else self.increase_gens_per_sec()
elif button == WHEEL_DOWN:
self.decrease_cell_size() if ctrl else self.decrease_gens_per_sec() |
Python | def handle_mouse_buttons(self, event: pg.event.Event, button: (bool, bool, bool)):
"""
This function handles all the events related to the mouse buttons
:param event: pygame Event
:param button: tuple of booleans
"""
col, row = None, None
try:
col, row = self.compute_mouse_pos(event.pos)
except AttributeError: # when the mouse is pressed down and moved out of the window
pass
if col is None:
return
state = self.cells[col][row].alive
if button[LMB] and not state:
self.cells[col][row].revive()
elif button[RMB] and state:
self.cells[col][row].kill() | def handle_mouse_buttons(self, event: pg.event.Event, button: (bool, bool, bool)):
"""
This function handles all the events related to the mouse buttons
:param event: pygame Event
:param button: tuple of booleans
"""
col, row = None, None
try:
col, row = self.compute_mouse_pos(event.pos)
except AttributeError: # when the mouse is pressed down and moved out of the window
pass
if col is None:
return
state = self.cells[col][row].alive
if button[LMB] and not state:
self.cells[col][row].revive()
elif button[RMB] and state:
self.cells[col][row].kill() |
Python | def run(self):
"""
Starts the game and loops until the quit state
"""
while True:
self.handle_events()
self.draw()
self.clock.tick(self.fps) | def run(self):
"""
Starts the game and loops until the quit state
"""
while True:
self.handle_events()
self.draw()
self.clock.tick(self.fps) |
Python | def _drill_input(self):
"""
symbolically step down a path with a tracer, trying to concretize inputs for unencountered
"""
# rebuild the path with qemu
r = tracer.qemu_runner.QEMURunner(self.binary, self.input, argv=self.argv)
p = angr.Project(self.binary)
# handle hooks
for addr, proc in self._hooks.items():
p.hook(addr, proc)
l.debug("Hooking %#x -> %s...", addr, proc.display_name)
# try to get an init simstate
# check the argv
s = p.factory.full_init_state(stdin=angr.SimFileStream, args=self.argv)
# preconstrain
s.preconstrainer.preconstrain_file(self.input, s.posix.stdin, True)
simgr = p.factory.simulation_manager(s, save_unsat=True, hierarchy=False, save_unconstrained=r.crash_mode)
# use_technique
t = angr.exploration_techniques.Tracer(trace=r.trace, crash_addr=r.crash_addr, copy_states=True)
self._core = angr.exploration_techniques.DrillerCore(trace=r.trace, fuzz_bitmap=self.fuzz_bitmap)
simgr.use_technique(t)
simgr.use_technique(angr.exploration_techniques.Oppologist())
simgr.use_technique(self._core)
self._set_concretizations(simgr.one_active)
while simgr.active and simgr.one_active.globals['trace_idx'] < len(r.trace) - 1:
simgr.step()
# if something in diverted
if 'diverted' not in simgr.stashes:
continue
while simgr.diverted:
state = simgr.diverted.pop(0)
l.debug("Found a diverted state, exploring to some extent.")
w = self._writeout(state.history.bbl_addrs[-1], state)
if w is not None:
yield w
# symbolic explore
for i in self._symbolic_explorer_stub(state):
yield i | def _drill_input(self):
"""
symbolically step down a path with a tracer, trying to concretize inputs for unencountered
"""
# rebuild the path with qemu
r = tracer.qemu_runner.QEMURunner(self.binary, self.input, argv=self.argv)
p = angr.Project(self.binary)
# handle hooks
for addr, proc in self._hooks.items():
p.hook(addr, proc)
l.debug("Hooking %#x -> %s...", addr, proc.display_name)
# try to get an init simstate
# check the argv
s = p.factory.full_init_state(stdin=angr.SimFileStream, args=self.argv)
# preconstrain
s.preconstrainer.preconstrain_file(self.input, s.posix.stdin, True)
simgr = p.factory.simulation_manager(s, save_unsat=True, hierarchy=False, save_unconstrained=r.crash_mode)
# use_technique
t = angr.exploration_techniques.Tracer(trace=r.trace, crash_addr=r.crash_addr, copy_states=True)
self._core = angr.exploration_techniques.DrillerCore(trace=r.trace, fuzz_bitmap=self.fuzz_bitmap)
simgr.use_technique(t)
simgr.use_technique(angr.exploration_techniques.Oppologist())
simgr.use_technique(self._core)
self._set_concretizations(simgr.one_active)
while simgr.active and simgr.one_active.globals['trace_idx'] < len(r.trace) - 1:
simgr.step()
# if something in diverted
if 'diverted' not in simgr.stashes:
continue
while simgr.diverted:
state = simgr.diverted.pop(0)
l.debug("Found a diverted state, exploring to some extent.")
w = self._writeout(state.history.bbl_addrs[-1], state)
if w is not None:
yield w
# symbolic explore
for i in self._symbolic_explorer_stub(state):
yield i |
Python | def _symbolic_explorer_stub(self, state):
"""
Create a new simulation manager and step it forward up to 1024
accumulated active states or steps.
"""
steps = 0
accumulated = 1
p = state.project
state = state.copy()
try:
state.options.remove(angr.options.LAZY_SOLVES)
except KeyError:
pass
simgr = p.factory.simulation_manager(state, hierarchy=False)
l.debug("[%s] started symbolic exploration at %s.", self.binary, time.ctime())
# try to explore
while len(simgr.active) and accumulated < 1024:
simgr.step()
steps += 1
# Dump all inputs.
accumulated = steps * (len(simgr.active) + len(simgr.deadended))#?? 步数乘以状态数来设置符号执行器探索的上限约束
l.debug("[%s] stopped symbolic exploration at %s.", self.binary, time.ctime())
# DO NOT think this is the same as using only the deadended stashes. this merges deadended and active
simgr.stash(from_stash='deadended', to_stash='active')
for dumpable in simgr.active:
try:
if dumpable.satisfiable():
w = self._writeout(dumpable.history.bbl_addrs[-1], dumpable)
if w is not None:
yield w
# If the state we're trying to dump wasn't actually satisfiable.
except IndexError:
pass | def _symbolic_explorer_stub(self, state):
"""
Create a new simulation manager and step it forward up to 1024
accumulated active states or steps.
"""
steps = 0
accumulated = 1
p = state.project
state = state.copy()
try:
state.options.remove(angr.options.LAZY_SOLVES)
except KeyError:
pass
simgr = p.factory.simulation_manager(state, hierarchy=False)
l.debug("[%s] started symbolic exploration at %s.", self.binary, time.ctime())
# try to explore
while len(simgr.active) and accumulated < 1024:
simgr.step()
steps += 1
# Dump all inputs.
accumulated = steps * (len(simgr.active) + len(simgr.deadended))#?? 步数乘以状态数来设置符号执行器探索的上限约束
l.debug("[%s] stopped symbolic exploration at %s.", self.binary, time.ctime())
# DO NOT think this is the same as using only the deadended stashes. this merges deadended and active
simgr.stash(from_stash='deadended', to_stash='active')
for dumpable in simgr.active:
try:
if dumpable.satisfiable():
w = self._writeout(dumpable.history.bbl_addrs[-1], dumpable)
if w is not None:
yield w
# If the state we're trying to dump wasn't actually satisfiable.
except IndexError:
pass |
Python | def create_sample(self):
'''
Description:
Creates temporary spine joint chain.
Returns:
spine_data updates
'''
logging.info('Before temp_jnt_list Updates :{}'.format(self.spine_data)) #it has correct dic
startTemp = 'spine_0_temp_jnt'
if cmds.objExists(startTemp):
cmds.delete(startTemp)
trsY = 10
self.spine_data.temp_jnt_list = list()
for num in range(self.spine_data.num_jnt):
if num == 0:
new_jnt = cmds.joint(n='spine_{}_temp_jnt'.format(num))
self.spine_data.temp_jnt_list.append(new_jnt)
else:
new_jnt = cmds.joint(n='spine_{}_temp_jnt'.format(num),position = [0, trsY*num, 0])
self.spine_data.temp_jnt_list.append(new_jnt)
logging.info('After temp_jnt_list Updates :{}'.format(self.spine_data)) | def create_sample(self):
'''
Description:
Creates temporary spine joint chain.
Returns:
spine_data updates
'''
logging.info('Before temp_jnt_list Updates :{}'.format(self.spine_data)) #it has correct dic
startTemp = 'spine_0_temp_jnt'
if cmds.objExists(startTemp):
cmds.delete(startTemp)
trsY = 10
self.spine_data.temp_jnt_list = list()
for num in range(self.spine_data.num_jnt):
if num == 0:
new_jnt = cmds.joint(n='spine_{}_temp_jnt'.format(num))
self.spine_data.temp_jnt_list.append(new_jnt)
else:
new_jnt = cmds.joint(n='spine_{}_temp_jnt'.format(num),position = [0, trsY*num, 0])
self.spine_data.temp_jnt_list.append(new_jnt)
logging.info('After temp_jnt_list Updates :{}'.format(self.spine_data)) |
Python | def create_joint(self):
'''
Description:
Creates final spine joint chain.
Returns:
spine_data updates
a list of final joints.
'''
self.spine_data.final_jnt_list = list()
num = 1
cmds.select(cl=True)
temp = self.spine_data.temp_jnt_list
name = self.spine_data.cha_naming
logging.info('Before final_jnt_list Updates :{}'.format(self.spine_data))
for tempJnt in temp:
transVar = cmds.xform(tempJnt, worldSpace = True, query = True, translation = True)
new_rig_jnt = cmds.joint(n = '{}_spine_{}_jnt'.format(name, num), absolute = True, position = transVar)
self.spine_data.final_jnt_list.append(new_rig_jnt)
num = num + 1
for finalJnt in self.spine_data.final_jnt_list:
cmds.joint(finalJnt, e=True, oj='xyz', secondaryAxisOrient = 'yup', ch=True, zso=True)
#clean the end joint's orientation
endJnt = self.spine_data.final_jnt_list[-1]
cmds.setAttr('{}.jointOrientX'.format(endJnt), 0)
cmds.setAttr('{}.jointOrientY'.format(endJnt), 0)
cmds.setAttr('{}.jointOrientZ'.format(endJnt), 0)
logging.info('After final_jnt_list Updates :{}'.format(self.spine_data)) | def create_joint(self):
'''
Description:
Creates final spine joint chain.
Returns:
spine_data updates
a list of final joints.
'''
self.spine_data.final_jnt_list = list()
num = 1
cmds.select(cl=True)
temp = self.spine_data.temp_jnt_list
name = self.spine_data.cha_naming
logging.info('Before final_jnt_list Updates :{}'.format(self.spine_data))
for tempJnt in temp:
transVar = cmds.xform(tempJnt, worldSpace = True, query = True, translation = True)
new_rig_jnt = cmds.joint(n = '{}_spine_{}_jnt'.format(name, num), absolute = True, position = transVar)
self.spine_data.final_jnt_list.append(new_rig_jnt)
num = num + 1
for finalJnt in self.spine_data.final_jnt_list:
cmds.joint(finalJnt, e=True, oj='xyz', secondaryAxisOrient = 'yup', ch=True, zso=True)
#clean the end joint's orientation
endJnt = self.spine_data.final_jnt_list[-1]
cmds.setAttr('{}.jointOrientX'.format(endJnt), 0)
cmds.setAttr('{}.jointOrientY'.format(endJnt), 0)
cmds.setAttr('{}.jointOrientZ'.format(endJnt), 0)
logging.info('After final_jnt_list Updates :{}'.format(self.spine_data)) |
Python | def create_control(self, target):
'''
Description:
Creates nurbs curve controller and its parent group.
Parameters:
target
Returns:
a list of nurbs curve and its parent group
'''
name = '{}_ctl'.format(target)
ctl_pair = list()
if self.spine_data.fk_rig == True:
ctl = create_circle(name)
elif self.spine_data.ik_rig == True:
ctl = create_box(name)
ctl_grp = create_group(ctl)
# Warning: Cannot parent components or objects in the underworld.
cmds.parent(ctl, ctl_grp)
ctl_pair.append(ctl)
ctl_pair.append(ctl_grp)
return ctl_pair | def create_control(self, target):
'''
Description:
Creates nurbs curve controller and its parent group.
Parameters:
target
Returns:
a list of nurbs curve and its parent group
'''
name = '{}_ctl'.format(target)
ctl_pair = list()
if self.spine_data.fk_rig == True:
ctl = create_circle(name)
elif self.spine_data.ik_rig == True:
ctl = create_box(name)
ctl_grp = create_group(ctl)
# Warning: Cannot parent components or objects in the underworld.
cmds.parent(ctl, ctl_grp)
ctl_pair.append(ctl)
ctl_pair.append(ctl_grp)
return ctl_pair |
Python | def organize_fk(self):
'''
Description:
Parent fk controllers in order.
Returns:
None
'''
ctl_grp = self.spine_data.ctl_list
for num in range(len(ctl_grp)):
if num != 0:
currentCtl = ctl_grp[num]#Find the current control
currentGrp = cmds.listRelatives(currentCtl, parent=True)#Find the parent group of the current control.
aboveCtl = ctl_grp[num-1]#Find the control before the current one.
cmds.parent(currentGrp, aboveCtl) | def organize_fk(self):
'''
Description:
Parent fk controllers in order.
Returns:
None
'''
ctl_grp = self.spine_data.ctl_list
for num in range(len(ctl_grp)):
if num != 0:
currentCtl = ctl_grp[num]#Find the current control
currentGrp = cmds.listRelatives(currentCtl, parent=True)#Find the parent group of the current control.
aboveCtl = ctl_grp[num-1]#Find the control before the current one.
cmds.parent(currentGrp, aboveCtl) |
Python | def skin_jnt_to_curve(self):
'''
Description:
Skin newly created self.skin_jnt to ikhandle curve.
Returns:
None
'''
cmds.skinCluster(self.skin_jnt, self.ik_product[2], mi=3) | def skin_jnt_to_curve(self):
'''
Description:
Skin newly created self.skin_jnt to ikhandle curve.
Returns:
None
'''
cmds.skinCluster(self.skin_jnt, self.ik_product[2], mi=3) |
Python | def organize_ik(self):
'''
Description:
Constraints IK controllers in order.
Returns:
None
'''
waist_con = self.spine_data.ctl_list[-1]
chest_con = self.spine_data.ctl_list[1]
root_con = self.spine_data.ctl_list[0]
fk_end_jnt = self.fk_jnt[0]
chest_grp = cmds.listRelatives(chest_con, parent=True)
waist_grp = cmds.listRelatives(waist_con, parent=True)
constraints_objs(waist_con, chest_grp)
constraints_objs(root_con, waist_grp)
constraints_objs(root_con, fk_end_jnt) | def organize_ik(self):
'''
Description:
Constraints IK controllers in order.
Returns:
None
'''
waist_con = self.spine_data.ctl_list[-1]
chest_con = self.spine_data.ctl_list[1]
root_con = self.spine_data.ctl_list[0]
fk_end_jnt = self.fk_jnt[0]
chest_grp = cmds.listRelatives(chest_con, parent=True)
waist_grp = cmds.listRelatives(waist_con, parent=True)
constraints_objs(waist_con, chest_grp)
constraints_objs(root_con, waist_grp)
constraints_objs(root_con, fk_end_jnt) |
Python | def create_group(target):
'''
Description:
Creates parent group of the target object.
Parameters:
target
Returns:
newly created parent group
'''
name = '{}_grp'.format(target)
group_product = cmds.group(n = name, em=True)
return group_product | def create_group(target):
'''
Description:
Creates parent group of the target object.
Parameters:
target
Returns:
newly created parent group
'''
name = '{}_grp'.format(target)
group_product = cmds.group(n = name, em=True)
return group_product |
Python | def create_circle(name):
'''
Description:
Creates nurbs circle with name.
Parameters:
name string
Returns:
newly created nurbs circle's name
'''
circle = cmds.circle(n = name, r=5, nr=(1,0,0))
return circle[0] | def create_circle(name):
'''
Description:
Creates nurbs circle with name.
Parameters:
name string
Returns:
newly created nurbs circle's name
'''
circle = cmds.circle(n = name, r=5, nr=(1,0,0))
return circle[0] |
Python | def create_box(name):
'''
Description:
Creates nurbs cube with name.
Parameters:
name string
Returns:
newly created nurbs cube's name
'''
box = cmds.curve(n = name, d=1, p=[(2.5, 2.5, 2.5), (2.5, 2.5, -2.5), (-2.5, 2.5, -2.5), (-2.5, -2.5, -2.5), (2.5, -2.5, -2.5), (2.5, 2.5, -2.5), (-2.5, 2.5, -2.5), (-2.5, 2.5, 2.5), (2.5, 2.5, 2.5), (2.5, -2.5, 2.5), (2.5, -2.5, -2.5), (-2.5, -2.5, -2.5), (-2.5, -2.5, 2.5), (2.5, -2.5, 2.5), (-2.5, -2.5, 2.5), (-2.5, 2.5, 2.5)], k=[0,1,2,3,4,2.5,7,8,9,10,11,12,13,14,12.5,16])
return box | def create_box(name):
'''
Description:
Creates nurbs cube with name.
Parameters:
name string
Returns:
newly created nurbs cube's name
'''
box = cmds.curve(n = name, d=1, p=[(2.5, 2.5, 2.5), (2.5, 2.5, -2.5), (-2.5, 2.5, -2.5), (-2.5, -2.5, -2.5), (2.5, -2.5, -2.5), (2.5, 2.5, -2.5), (-2.5, 2.5, -2.5), (-2.5, 2.5, 2.5), (2.5, 2.5, 2.5), (2.5, -2.5, 2.5), (2.5, -2.5, -2.5), (-2.5, -2.5, -2.5), (-2.5, -2.5, 2.5), (2.5, -2.5, 2.5), (-2.5, -2.5, 2.5), (-2.5, 2.5, 2.5)], k=[0,1,2,3,4,2.5,7,8,9,10,11,12,13,14,12.5,16])
return box |
Python | def create_skin_jnt(target, name):#receives self.startJ, self.endJ
'''
Description:
Creates extra joint chain for curve skinning.
Parameters:
target = target joint
name
Returns:
newly created joint's name
'''
cmds.select(cl=True)
new_joint = cmds.joint(n='{}_skin_jnt'.format(name))
new_joint_grp = create_group(new_joint)
cmds.parent(new_joint, new_joint_grp)
cmds.matchTransform(new_joint_grp, target, pos=True, rot=True)
return new_joint | def create_skin_jnt(target, name):#receives self.startJ, self.endJ
'''
Description:
Creates extra joint chain for curve skinning.
Parameters:
target = target joint
name
Returns:
newly created joint's name
'''
cmds.select(cl=True)
new_joint = cmds.joint(n='{}_skin_jnt'.format(name))
new_joint_grp = create_group(new_joint)
cmds.parent(new_joint, new_joint_grp)
cmds.matchTransform(new_joint_grp, target, pos=True, rot=True)
return new_joint |
Python | def createPreProcessingLayers(self):
"""
Creates a model with the initial pre-processing layers.
"""
model = Sequential()
model.add(Lambda(lambda x: (x / 127.5) - 1., input_shape=(160,320,3)))
# cropping image size 50px from top ~ 20 px from bottom
model.add(Cropping2D(cropping=((50,20), (0,0))))
return model | def createPreProcessingLayers(self):
"""
Creates a model with the initial pre-processing layers.
"""
model = Sequential()
model.add(Lambda(lambda x: (x / 127.5) - 1., input_shape=(160,320,3)))
# cropping image size 50px from top ~ 20 px from bottom
model.add(Cropping2D(cropping=((50,20), (0,0))))
return model |
Python | def createNormalizedLayers(self):
"""
Creates a model with the initial pre-processing layers.
"""
# image is shrinked size image 66 x 200 x 3 YCrCb image
model = Sequential()
model.add(Lambda(lambda x: (x / 127.5) - 1., input_shape=(66,200,3)))
# cropping image size 50px from top ~ 20 px from bottom
#model.add(Cropping2D(cropping=((50,20), (0,0))))
return model | def createNormalizedLayers(self):
"""
Creates a model with the initial pre-processing layers.
"""
# image is shrinked size image 66 x 200 x 3 YCrCb image
model = Sequential()
model.add(Lambda(lambda x: (x / 127.5) - 1., input_shape=(66,200,3)))
# cropping image size 50px from top ~ 20 px from bottom
#model.add(Cropping2D(cropping=((50,20), (0,0))))
return model |
Python | def buildModel(self):
"""
Creates nVidea Autonomous Car Group model
"""
model = self.createPreProcessingLayers()
if self.kversion == "1.2.1":
#
# suppress kera v.2 warning message Conv2d should be used.
#
model.add(Convolution2D(24,5,5, subsample=(2,2), activation='relu'))
model.add(Convolution2D(36,5,5, subsample=(2,2), activation='relu'))
model.add(Convolution2D(48,5,5, subsample=(2,2), activation='relu'))
model.add(Convolution2D(64,3,3, activation='relu'))
model.add(Convolution2D(64,3,3, activation='relu'))
else:
model.add(Conv2D(24,(5,5), strides=(2,2), activation='relu',name="conv1"))
model.add(Conv2D(36,(5,5), strides=(2,2), activation='relu',name="conv2"))
model.add(Conv2D(48,(5,5), strides=(2,2), activation='relu',name="conv3"))
model.add(Conv2D(64,(3,3), activation='relu',name="conv4"))
model.add(Conv2D(64,(3,3), activation='relu',name="conv5"))
model.add(Flatten())
model.add(Dense(100))
model.add(Dense(50))
model.add(Dense(10))
model.add(Dense(1))
return model | def buildModel(self):
"""
Creates nVidea Autonomous Car Group model
"""
model = self.createPreProcessingLayers()
if self.kversion == "1.2.1":
#
# suppress kera v.2 warning message Conv2d should be used.
#
model.add(Convolution2D(24,5,5, subsample=(2,2), activation='relu'))
model.add(Convolution2D(36,5,5, subsample=(2,2), activation='relu'))
model.add(Convolution2D(48,5,5, subsample=(2,2), activation='relu'))
model.add(Convolution2D(64,3,3, activation='relu'))
model.add(Convolution2D(64,3,3, activation='relu'))
else:
model.add(Conv2D(24,(5,5), strides=(2,2), activation='relu',name="conv1"))
model.add(Conv2D(36,(5,5), strides=(2,2), activation='relu',name="conv2"))
model.add(Conv2D(48,(5,5), strides=(2,2), activation='relu',name="conv3"))
model.add(Conv2D(64,(3,3), activation='relu',name="conv4"))
model.add(Conv2D(64,(3,3), activation='relu',name="conv5"))
model.add(Flatten())
model.add(Dense(100))
model.add(Dense(50))
model.add(Dense(10))
model.add(Dense(1))
return model |
Python | def buildModel_Normal(self):
"""
Creates nVidea Autonomous Car Group model
"""
model = self.createPreProcessingLayers()
if self.kversion == "1.2.1":
#
# suppress kera v.2 warning message Conv2d should be used.
#
model.add(Convolution2D(24,5,5, subsample=(2,2), activation='elu'))
model.add(Convolution2D(36,5,5, subsample=(2,2), activation='elu'))
model.add(Convolution2D(48,5,5, subsample=(2,2), activation='elu'))
model.add(Convolution2D(64,3,3, activation='elu'))
model.add(Convolution2D(64,3,3, activation='elu'))
else:
model.add(Conv2D(24,(5,5), strides=(2,2), activation='elu',name="conv1"))
model.add(Conv2D(36,(5,5), strides=(2,2), activation='elu',name="conv2"))
model.add(Conv2D(48,(5,5), strides=(2,2), activation='elu',name="conv3"))
model.add(Conv2D(64,(3,3), activation='elu',name="conv4"))
model.add(Conv2D(64,(3,3), activation='elu',name="conv5"))
model.add(Flatten())
model.add(Dense(100))
model.add(Dense(50))
model.add(Dense(10))
model.add(Dense(1))
return model | def buildModel_Normal(self):
"""
Creates nVidea Autonomous Car Group model
"""
model = self.createPreProcessingLayers()
if self.kversion == "1.2.1":
#
# suppress kera v.2 warning message Conv2d should be used.
#
model.add(Convolution2D(24,5,5, subsample=(2,2), activation='elu'))
model.add(Convolution2D(36,5,5, subsample=(2,2), activation='elu'))
model.add(Convolution2D(48,5,5, subsample=(2,2), activation='elu'))
model.add(Convolution2D(64,3,3, activation='elu'))
model.add(Convolution2D(64,3,3, activation='elu'))
else:
model.add(Conv2D(24,(5,5), strides=(2,2), activation='elu',name="conv1"))
model.add(Conv2D(36,(5,5), strides=(2,2), activation='elu',name="conv2"))
model.add(Conv2D(48,(5,5), strides=(2,2), activation='elu',name="conv3"))
model.add(Conv2D(64,(3,3), activation='elu',name="conv4"))
model.add(Conv2D(64,(3,3), activation='elu',name="conv5"))
model.add(Flatten())
model.add(Dense(100))
model.add(Dense(50))
model.add(Dense(10))
model.add(Dense(1))
return model |
Python | def buildModel_drop(self):
"""
Creates nVidea Autonomous Car Group model
"""
model = self.createPreProcessingLayers()
if self.kversion == "1.2.1":
#
# suppress kera v.2 warning message Conv2d should be used.
#
# 31 x 98 x 24
model.add(Convolution2D(24,5,5, subsample=(2,2), activation='elu', init="glorot_normal", W_regularizer=l2(0.001)) )
model.add(Dropout(0.1)) # keep_prob 0.9
# 14 x 47 x 36
model.add(Convolution2D(36,5,5, subsample=(2,2), activation='elu', init="glorot_normal", W_regularizer=l2(0.001)))
model.add(Dropout(0.2)) # keep_prob 0.8
# 5 x 22 x 48
model.add(Convolution2D(48,5,5, subsample=(2,2), activation='elu', init="glorot_normal", W_regularizer=l2(0.001)))
model.add(Dropout(0.2)) # keep_prob 0.8
# 3 x 20 x 64
model.add(Convolution2D(64,3,3, subsample=(1,1),activation='elu', init="glorot_normal", W_regularizer=l2(0.001)))
model.add(Dropout(0.2)) # keep_prob 0.8
# 1 x 18 x 64
model.add(Convolution2D(64,3,3, subsample=(1,1),activation='elu', init="glorot_normal", W_regularizer=l2(0.001)))
#model.add(Dropout(0.2)) # keep_prob 0.8
model.add(Flatten())
model.add(Dropout(0.5)) # keep_prob 0.5
model.add(Dense(100,activation='elu', init='glorot_normal', W_regularizer=l2(0.001)))
model.add(Dropout(0.5)) # keep_prob 0.5
model.add(Dense(50,activation='elu', init='glorot_normal', W_regularizer=l2(0.001)))
model.add(Dropout(0.5)) # keep_prob 0.5
model.add(Dense(10,activation='elu', init='glorot_normal', W_regularizer=l2(0.001)))
model.add(Dropout(0.5)) # keep_prob 0.5
model.add(Dense(1,activation='linear', init='glorot_normal'))
else:
model.add(Conv2D(24,(5,5), strides=(2,2), activation='elu',kernel_initializer="he_uniform", kernel_regularizer=l2(0.01), name="conv1"))
model.add(Dropout(0.1)) # keep_rate 0.9
model.add(Conv2D(36,(5,5), strides=(2,2), activation='elu',kernel_initializer="he_uniform", kernel_regularizer=l2(0.01), name="conv2"))
model.add(Dropout(0.2)) # keep_rate 0.8
model.add(Conv2D(48,(5,5), strides=(2,2), activation='elu',kernel_initializer="he_uniform", kernel_regularizer=l2(0.01), name="conv3"))
model.add(Dropout(0.2)) # keep_rate 0.8
model.add(Conv2D(64,(3,3), activation='elu',kernel_initializer="he_uniform", kernel_regularizer=l2(0.01), name="conv4"))
model.add(Dropout(0.2)) # keep_rate 0.8
model.add(Conv2D(64,(3,3), activation='elu',kernel_initializer="he_uniform", kernel_regularizer=l2(0.01), name="conv5"))
model.add(Flatten())
model.add(Dropout(0.5)) # keep_prob 0.5
model.add(Dense(100,activation='elu', kernel_initializer='he_uniform', kernel_regularizer=l2(0.01) ))
model.add(Dropout(0.5)) # keep_prob 0.5
model.add(Dense(50,activation='elu', kernel_initializer='he_uniform', kernel_regularizer=l2(0.01) ) )
model.add(Dropout(0.5)) # keep_prob 0.5
model.add(Dense(10,activation='elu', kernel_initializer='he_uniform', kernel_regularizer=l2(0.01) ) )
model.add(Dropout(0.5)) # keep_prob 0.5
model.add(Dense(1,activation='linear', kernel_initializer='he_uniform', kernel_regularizer=l2(0.01) ))
return model | def buildModel_drop(self):
"""
Creates nVidea Autonomous Car Group model
"""
model = self.createPreProcessingLayers()
if self.kversion == "1.2.1":
#
# suppress kera v.2 warning message Conv2d should be used.
#
# 31 x 98 x 24
model.add(Convolution2D(24,5,5, subsample=(2,2), activation='elu', init="glorot_normal", W_regularizer=l2(0.001)) )
model.add(Dropout(0.1)) # keep_prob 0.9
# 14 x 47 x 36
model.add(Convolution2D(36,5,5, subsample=(2,2), activation='elu', init="glorot_normal", W_regularizer=l2(0.001)))
model.add(Dropout(0.2)) # keep_prob 0.8
# 5 x 22 x 48
model.add(Convolution2D(48,5,5, subsample=(2,2), activation='elu', init="glorot_normal", W_regularizer=l2(0.001)))
model.add(Dropout(0.2)) # keep_prob 0.8
# 3 x 20 x 64
model.add(Convolution2D(64,3,3, subsample=(1,1),activation='elu', init="glorot_normal", W_regularizer=l2(0.001)))
model.add(Dropout(0.2)) # keep_prob 0.8
# 1 x 18 x 64
model.add(Convolution2D(64,3,3, subsample=(1,1),activation='elu', init="glorot_normal", W_regularizer=l2(0.001)))
#model.add(Dropout(0.2)) # keep_prob 0.8
model.add(Flatten())
model.add(Dropout(0.5)) # keep_prob 0.5
model.add(Dense(100,activation='elu', init='glorot_normal', W_regularizer=l2(0.001)))
model.add(Dropout(0.5)) # keep_prob 0.5
model.add(Dense(50,activation='elu', init='glorot_normal', W_regularizer=l2(0.001)))
model.add(Dropout(0.5)) # keep_prob 0.5
model.add(Dense(10,activation='elu', init='glorot_normal', W_regularizer=l2(0.001)))
model.add(Dropout(0.5)) # keep_prob 0.5
model.add(Dense(1,activation='linear', init='glorot_normal'))
else:
model.add(Conv2D(24,(5,5), strides=(2,2), activation='elu',kernel_initializer="he_uniform", kernel_regularizer=l2(0.01), name="conv1"))
model.add(Dropout(0.1)) # keep_rate 0.9
model.add(Conv2D(36,(5,5), strides=(2,2), activation='elu',kernel_initializer="he_uniform", kernel_regularizer=l2(0.01), name="conv2"))
model.add(Dropout(0.2)) # keep_rate 0.8
model.add(Conv2D(48,(5,5), strides=(2,2), activation='elu',kernel_initializer="he_uniform", kernel_regularizer=l2(0.01), name="conv3"))
model.add(Dropout(0.2)) # keep_rate 0.8
model.add(Conv2D(64,(3,3), activation='elu',kernel_initializer="he_uniform", kernel_regularizer=l2(0.01), name="conv4"))
model.add(Dropout(0.2)) # keep_rate 0.8
model.add(Conv2D(64,(3,3), activation='elu',kernel_initializer="he_uniform", kernel_regularizer=l2(0.01), name="conv5"))
model.add(Flatten())
model.add(Dropout(0.5)) # keep_prob 0.5
model.add(Dense(100,activation='elu', kernel_initializer='he_uniform', kernel_regularizer=l2(0.01) ))
model.add(Dropout(0.5)) # keep_prob 0.5
model.add(Dense(50,activation='elu', kernel_initializer='he_uniform', kernel_regularizer=l2(0.01) ) )
model.add(Dropout(0.5)) # keep_prob 0.5
model.add(Dense(10,activation='elu', kernel_initializer='he_uniform', kernel_regularizer=l2(0.01) ) )
model.add(Dropout(0.5)) # keep_prob 0.5
model.add(Dense(1,activation='linear', kernel_initializer='he_uniform', kernel_regularizer=l2(0.01) ))
return model |
Python | def find_surnames(authors):
"""
Make assumption that all authors are given as surname and initials,
so any uppercase followed by one-or-more lowercase letters is a surname.
"""
surname_list = []
surname_regex = "([A-Z\u00C0-\u00DE][a-z\u00DF-\u00FF\u0107]+)+"
if isinstance(authors, str):
surname_list = re.findall(surname_regex, authors)
return surname_list
elif isinstance(authors, list) or isinstance(authors, tuple):
for author in authors:
surname_list += re.findall(surname_regex, author)
return surname_list | def find_surnames(authors):
"""
Make assumption that all authors are given as surname and initials,
so any uppercase followed by one-or-more lowercase letters is a surname.
"""
surname_list = []
surname_regex = "([A-Z\u00C0-\u00DE][a-z\u00DF-\u00FF\u0107]+)+"
if isinstance(authors, str):
surname_list = re.findall(surname_regex, authors)
return surname_list
elif isinstance(authors, list) or isinstance(authors, tuple):
for author in authors:
surname_list += re.findall(surname_regex, author)
return surname_list |
Python | def match_surnames(list_1, list_2):
""""
Return True if at least one author surname matches.
Otherwise return False
"""
for name in list_1:
if name in list_2:
return True
return False | def match_surnames(list_1, list_2):
""""
Return True if at least one author surname matches.
Otherwise return False
"""
for name in list_1:
if name in list_2:
return True
return False |
Python | def fill_row(owner, repo, traffic=False, PAT=None):
"""
Fill data for a single row of the output table
"""
results = {"repo" : ["{}/{}".format(owner, repo)]}
results.update(get_stars_watchers_forks(owner, repo, PAT))
if traffic:
results.update(get_traffic(owner, repo, PAT))
return results | def fill_row(owner, repo, traffic=False, PAT=None):
"""
Fill data for a single row of the output table
"""
results = {"repo" : ["{}/{}".format(owner, repo)]}
results.update(get_stars_watchers_forks(owner, repo, PAT))
if traffic:
results.update(get_traffic(owner, repo, PAT))
return results |
Python | def process_input_file(input_filename, traffic, PAT):
"""
Loop through all lines of an input text file, one URL per line
"""
results = {}
infile = open(input_filename)
for line in infile.readlines():
if not GITHUB_REGEX.search(line.strip()):
raise RuntimeError("Not a Github URL! {}".format(line.strip()))
owner, repo = line.strip().split("/")[-2:]
print("Looking at {}/{}".format(owner, repo))
try:
this_row = fill_row(owner, repo, traffic, PAT)
for k, v in this_row.items():
if not k in results.keys():
results[k] = []
results[k] += v
except(RuntimeError):
print("Problem filling row for {}/{}".format(owner, repo))
continue
return results | def process_input_file(input_filename, traffic, PAT):
"""
Loop through all lines of an input text file, one URL per line
"""
results = {}
infile = open(input_filename)
for line in infile.readlines():
if not GITHUB_REGEX.search(line.strip()):
raise RuntimeError("Not a Github URL! {}".format(line.strip()))
owner, repo = line.strip().split("/")[-2:]
print("Looking at {}/{}".format(owner, repo))
try:
this_row = fill_row(owner, repo, traffic, PAT)
for k, v in this_row.items():
if not k in results.keys():
results[k] = []
results[k] += v
except(RuntimeError):
print("Problem filling row for {}/{}".format(owner, repo))
continue
return results |
Python | def sanity_check(args):
"""
make sure we have a consistent set of arguments,
and give a helpful error message if not.
"""
if (args.repo or args.owner) and not (args.repo and args.owner):
raise RuntimeError("Need to set both or neither of --repo and --owner")
if (args.repo and args.input_filename) or not (args.repo or args.input_filename):
raise RuntimeError("Need to set EITHER --repo and --owner OR --input_filename")
if args.PAT and not args.traffic:
print("No need to specify PAT if not requesting traffic info") | def sanity_check(args):
"""
make sure we have a consistent set of arguments,
and give a helpful error message if not.
"""
if (args.repo or args.owner) and not (args.repo and args.owner):
raise RuntimeError("Need to set both or neither of --repo and --owner")
if (args.repo and args.input_filename) or not (args.repo or args.input_filename):
raise RuntimeError("Need to set EITHER --repo and --owner OR --input_filename")
if args.PAT and not args.traffic:
print("No need to specify PAT if not requesting traffic info") |
Python | def clip_by_global_norm(grads, clip_norm):
"""Clip the grads by global norm."""
global_norm = mtf.sqrt(
mtf.add_n([mtf.reduce_sum(mtf.square(mtf.cast(t, tf.float32))) for t in grads if t is not None
]))
multiplier = clip_norm / mtf.maximum(global_norm, clip_norm)
clipped_grads = [None if t is None else mtf.cast(mtf.cast(t, tf.float32) * multiplier, t.dtype) for t in grads]
return clipped_grads, global_norm | def clip_by_global_norm(grads, clip_norm):
"""Clip the grads by global norm."""
global_norm = mtf.sqrt(
mtf.add_n([mtf.reduce_sum(mtf.square(mtf.cast(t, tf.float32))) for t in grads if t is not None
]))
multiplier = clip_norm / mtf.maximum(global_norm, clip_norm)
clipped_grads = [None if t is None else mtf.cast(mtf.cast(t, tf.float32) * multiplier, t.dtype) for t in grads]
return clipped_grads, global_norm |
Python | def create_optimizer(loss, base_lr, num_warmup_steps,
max_optimized_variable_size=None,
optimizer="adam",
grad_scale=1.0,
clip_gradients=True):
"""Creates an optimizer training op."""
global_steps = tf.train.get_or_create_global_step()
mesh = loss.mesh
# “inverse square root” learning rate schedule start with base_lr; https://arxiv.org/abs/1910.10683
# note: if use small batch size, base_lr needs to be small
global_steps_float = tf.cast(global_steps, tf.float32)
decay_steps = tf.constant((1/base_lr)**2, dtype=tf.float32)
decay_steps_float = tf.math.maximum(decay_steps, global_steps_float)
learning_rate = 1.0 / tf.math.sqrt(decay_steps_float)
# Linear warm-up equivalent to RADAM; https://arxiv.org/abs/1908.03265
if num_warmup_steps:
warmup_steps_int = tf.constant(num_warmup_steps, dtype=tf.int64)
warmup_steps_float = tf.constant(num_warmup_steps, dtype=tf.float32)
warmup_percent_done = global_steps_float / warmup_steps_float
warmup_learning_rate = base_lr * warmup_percent_done
is_warmup = tf.cast(global_steps < warmup_steps_int, tf.float32)
learning_rate = ((1.0 - is_warmup) * learning_rate +
is_warmup * warmup_learning_rate)
mtf_learning_rate = mtf.import_tf_tensor(mesh, learning_rate, [])
if optimizer == "adam":
optimizer = AdamWeightDecayOptimizer(
learning_rate=mtf_learning_rate,
weight_decay_rate=0.01,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-8,
exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"])
else:
raise ValueError("unknown optimizer")
trainable_variables = mesh.graph.trainable_variables
if max_optimized_variable_size:
trainable_variables = [t for t in trainable_variables
if t.shape.size <= max_optimized_variable_size]
var_grads = mtf.gradients(
[loss*grad_scale], [v.outputs[0] for v in trainable_variables])
# This is how the model was pre-trained.
if clip_gradients:
(var_grads, _) = clip_by_global_norm(
var_grads, clip_norm=mtf.constant(mesh, 1.0, dtype=tf.float32))
update_ops = optimizer.apply_grads(var_grads, trainable_variables, grad_scale)
return learning_rate, update_ops | def create_optimizer(loss, base_lr, num_warmup_steps,
max_optimized_variable_size=None,
optimizer="adam",
grad_scale=1.0,
clip_gradients=True):
"""Creates an optimizer training op."""
global_steps = tf.train.get_or_create_global_step()
mesh = loss.mesh
# “inverse square root” learning rate schedule start with base_lr; https://arxiv.org/abs/1910.10683
# note: if use small batch size, base_lr needs to be small
global_steps_float = tf.cast(global_steps, tf.float32)
decay_steps = tf.constant((1/base_lr)**2, dtype=tf.float32)
decay_steps_float = tf.math.maximum(decay_steps, global_steps_float)
learning_rate = 1.0 / tf.math.sqrt(decay_steps_float)
# Linear warm-up equivalent to RADAM; https://arxiv.org/abs/1908.03265
if num_warmup_steps:
warmup_steps_int = tf.constant(num_warmup_steps, dtype=tf.int64)
warmup_steps_float = tf.constant(num_warmup_steps, dtype=tf.float32)
warmup_percent_done = global_steps_float / warmup_steps_float
warmup_learning_rate = base_lr * warmup_percent_done
is_warmup = tf.cast(global_steps < warmup_steps_int, tf.float32)
learning_rate = ((1.0 - is_warmup) * learning_rate +
is_warmup * warmup_learning_rate)
mtf_learning_rate = mtf.import_tf_tensor(mesh, learning_rate, [])
if optimizer == "adam":
optimizer = AdamWeightDecayOptimizer(
learning_rate=mtf_learning_rate,
weight_decay_rate=0.01,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-8,
exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"])
else:
raise ValueError("unknown optimizer")
trainable_variables = mesh.graph.trainable_variables
if max_optimized_variable_size:
trainable_variables = [t for t in trainable_variables
if t.shape.size <= max_optimized_variable_size]
var_grads = mtf.gradients(
[loss*grad_scale], [v.outputs[0] for v in trainable_variables])
# This is how the model was pre-trained.
if clip_gradients:
(var_grads, _) = clip_by_global_norm(
var_grads, clip_norm=mtf.constant(mesh, 1.0, dtype=tf.float32))
update_ops = optimizer.apply_grads(var_grads, trainable_variables, grad_scale)
return learning_rate, update_ops |
Python | def _transport_bunnies(velocity):
"""
Bunnies need to be transported from the farm to the lab but the road
is dangerous and the amount of oxygen in the truck is limited.
"""
bunnies = ["Fifi", "Gunter", "Hazy"]
distance = 100.0
time_required = distance / velocity
oxygen_required = time_required * 10.0
if velocity > 100:
return rescue([])
if oxygen_required > 20.0:
return rescue([])
rescue(bunnies) | def _transport_bunnies(velocity):
"""
Bunnies need to be transported from the farm to the lab but the road
is dangerous and the amount of oxygen in the truck is limited.
"""
bunnies = ["Fifi", "Gunter", "Hazy"]
distance = 100.0
time_required = distance / velocity
oxygen_required = time_required * 10.0
if velocity > 100:
return rescue([])
if oxygen_required > 20.0:
return rescue([])
rescue(bunnies) |
Python | def _shave_bunnies(device_index):
"""
Shaves bunnies to prepare them for experiments.
"""
bunnies = ["Alfie", "Bugs", "Chip"]
devices = ["harmless bunny shaver", "buzz saw", "rusty razor"]
devices.reverse()
device = devices[device_index]
for bunny in bunnies:
if device in ["buzz saw", "rusty razor"]:
bunnies.remove(bunny)
rescue(bunnies) | def _shave_bunnies(device_index):
"""
Shaves bunnies to prepare them for experiments.
"""
bunnies = ["Alfie", "Bugs", "Chip"]
devices = ["harmless bunny shaver", "buzz saw", "rusty razor"]
devices.reverse()
device = devices[device_index]
for bunny in bunnies:
if device in ["buzz saw", "rusty razor"]:
bunnies.remove(bunny)
rescue(bunnies) |
Python | def _feed_bunnies(names):
"""
Some of the bunnies are hungry and need food. This
function feeds a list of bunnies.
"""
hungry_bunnies = ["Hips", "Ivan", "Jo"]
allergies = {"Hips": ["Carrots"],
"Ivan": ["Hay, Carrots"],
"Jo": ["Cale"]}
foods = ["Carrots", "Hay", "Cale"]
bunnies_fed = []
for bunny, food in zip(names, foods):
if not food in allergies[bunny]:
bunnies_fed.append(bunny)
healthy_bunnies = [b for b in bunnies_fed if b in hungry_bunnies]
rescue(healthy_bunnies) | def _feed_bunnies(names):
"""
Some of the bunnies are hungry and need food. This
function feeds a list of bunnies.
"""
hungry_bunnies = ["Hips", "Ivan", "Jo"]
allergies = {"Hips": ["Carrots"],
"Ivan": ["Hay, Carrots"],
"Jo": ["Cale"]}
foods = ["Carrots", "Hay", "Cale"]
bunnies_fed = []
for bunny, food in zip(names, foods):
if not food in allergies[bunny]:
bunnies_fed.append(bunny)
healthy_bunnies = [b for b in bunnies_fed if b in hungry_bunnies]
rescue(healthy_bunnies) |
Python | def _free_bunnies(spy_class):
"""
Just as you and a group of other bunnies want to escape from the lab, you
discover that the back door is locked with a secret code. To open it, you
need to spy on a guard who's going out for a smoke.
"""
bunnies = ["Turbo", "Uma", "Velvet", "Whoopie"]
drugs = ["Placebo", "Bleach"]
spy = spy_class()
secret_code = []
for i in range(10):
x = random()
spy.listen(x)
secret_code.append(x)
if secret_code == spy.guess_code():
rescue(bunnies) | def _free_bunnies(spy_class):
"""
Just as you and a group of other bunnies want to escape from the lab, you
discover that the back door is locked with a secret code. To open it, you
need to spy on a guard who's going out for a smoke.
"""
bunnies = ["Turbo", "Uma", "Velvet", "Whoopie"]
drugs = ["Placebo", "Bleach"]
spy = spy_class()
secret_code = []
for i in range(10):
x = random()
spy.listen(x)
secret_code.append(x)
if secret_code == spy.guess_code():
rescue(bunnies) |
Python | def parseIterLine(line):
"""Parse line for PHASTA iteration information
Returns dictionary of the matches converted to a numeric type (either int
or float).
"""
keyTypeDict = {
'timestep': int,
'walltime': float,
'residual': float,
'decibel': int,
'vel_res': float,
'pre_res': float,
'maxres_node': int,
'maxres_part': int,
'maxres_ratio': int,
'GMRESiter': int,
'CGiter': int,
}
match = iterationRe.search(line)
if match:
matchdict = match.groupdict()
for key, dtype in keyTypeDict.items():
matchdict[key] = dtype(matchdict[key])
else:
matchdict = None
return matchdict | def parseIterLine(line):
"""Parse line for PHASTA iteration information
Returns dictionary of the matches converted to a numeric type (either int
or float).
"""
keyTypeDict = {
'timestep': int,
'walltime': float,
'residual': float,
'decibel': int,
'vel_res': float,
'pre_res': float,
'maxres_node': int,
'maxres_part': int,
'maxres_ratio': int,
'GMRESiter': int,
'CGiter': int,
}
match = iterationRe.search(line)
if match:
matchdict = match.groupdict()
for key, dtype in keyTypeDict.items():
matchdict[key] = dtype(matchdict[key])
else:
matchdict = None
return matchdict |
Python | def parseOutFile(file):
"""Parse the file and return list of dictionaries of the results
file : pathlib.PurePath
Path to the file to be parsed
"""
with file.open() as fileread:
output = fileread.readlines()
iterations = []
for line in output:
matchdict = parseIterLine(line)
if matchdict:
iterations.append(matchdict)
return iterations | def parseOutFile(file):
"""Parse the file and return list of dictionaries of the results
file : pathlib.PurePath
Path to the file to be parsed
"""
with file.open() as fileread:
output = fileread.readlines()
iterations = []
for line in output:
matchdict = parseIterLine(line)
if matchdict:
iterations.append(matchdict)
return iterations |
Python | def loadandwritevtu(filepaths: dict, outdir: Path, phastapartnum: int, writevtu: bool):
"""Writes out a solInterp given a vtu file
Parameters
----------
filepath : dict
dict of paths to the vtu file that will be converted
outdir : Path
Directory where the solInterp.N file will be saved to
phastapartnum : int
Phasta partition number
writevtu: bool
Whether to write an Intermediate vtk file
"""
vtus = {}
nnodes_list = []
for key, filepath in filepaths.items():
try:
vtus[key] = pv.UnstructuredGrid(filepath)
nnode = vtus[key].number_of_points
assert(nnode > 0) # force an exception to be raise if there is
# an issue reading the vtk file
nnodes_list.append(vtus[key].number_of_points)
except Exception as e:
del vtus[key] #Remove faulty file
print(f'\tFILE FAILURE: {filepath.name} failed to read correctly for '
f'part {phastapartnum}: \n{e}')
nnodes = list(vtus.values())[0].number_of_points
for key, vtu in vtus.items():
assert(vtu.number_of_points == nnodes)
outdata = np.zeros((nnodes,4))
mask_filled = np.zeros(nnodes, dtype=np.bool_)
mask_vtu1d = np.zeros(nnodes, dtype=np.bool_)
mask_vtu2d = np.zeros((nnodes,4), dtype=np.bool_)
mask_of_trues = np.ones((nnodes,4), dtype=np.bool_)
used_node_count = {}
for key, vtu in vtus.items():
if np.all(mask_vtu2d): break # stop loop if mask completed
fileIssue = False
pressure_keys = ['pressure', 'p']
if all(array in vtu.array_names for array in ['VelX', 'VelY', 'VelZ', 'vtkValidPointMask']):
fileIssue = True
if any(array in vtu.array_names for array in pressure_keys):
fileIssue = True
if fileIssue:
print(f'FILE ISSUE: {filepath.name} does not have expected array names: {vtu.array_names}'
f' Skipping file for part {phastapartnum}')
continue
sys.stdout.flush()
for pstr in pressure_keys:
if pstr in vtu.array_names:
pressure = pstr
break
mask_vtu1d = np.logical_not(mask_filled ** vtu['vtkValidPointMask'])
used_node_count[key] = np.sum(mask_vtu1d)
mask_filled = np.logical_or(mask_filled, vtu['vtkValidPointMask'])
if not TESTONLY:
dataarray = np.column_stack((vtu[pressure], vtu['VelX'], vtu['VelY'], vtu['VelZ']))
mask_vtu2d = mask_vtu1d[:,None].astype(np.bool_)*mask_of_trues
np.copyto(outdata, dataarray, where=mask_vtu2d)
if not TESTONLY:
if writevtu:
vtu = next(iter(vtus.values()))
vtu[pressure] = outdata[:,0]
vtu['VelX'] = outdata[:,1]
vtu['VelY'] = outdata[:,2]
vtu['VelZ'] = outdata[:,3]
vtu['vtkValidPointMask'] = mask_filled
vtu.save(intermediateOutdir / f'Intermediate_{phastapartnum}.vtu')
else:
outpath = outdir / f'solInterp.{phastapartnum}'
np.savetxt(outpath, outdata)
logstring = '\t'
for key in vtus.keys():
if key in used_node_count.keys():
logstring += f'{key:8}:{used_node_count[key]:8} '
else:
logstring += f'{key:8}: N/A '
if not np.all(mask_filled):
totalpnts = np.sum(np.logical_not(mask_filled))
percent = totalpnts / nnodes
print(f'solInterp.{phastapartnum:<5} BROKEN {totalpnts},{percent:>8.3%}'
'\n' + logstring)
else:
print(f'solInterp.{phastapartnum:<5} fine'
'\n' + logstring)
sys.stdout.flush() | def loadandwritevtu(filepaths: dict, outdir: Path, phastapartnum: int, writevtu: bool):
"""Writes out a solInterp given a vtu file
Parameters
----------
filepath : dict
dict of paths to the vtu file that will be converted
outdir : Path
Directory where the solInterp.N file will be saved to
phastapartnum : int
Phasta partition number
writevtu: bool
Whether to write an Intermediate vtk file
"""
vtus = {}
nnodes_list = []
for key, filepath in filepaths.items():
try:
vtus[key] = pv.UnstructuredGrid(filepath)
nnode = vtus[key].number_of_points
assert(nnode > 0) # force an exception to be raise if there is
# an issue reading the vtk file
nnodes_list.append(vtus[key].number_of_points)
except Exception as e:
del vtus[key] #Remove faulty file
print(f'\tFILE FAILURE: {filepath.name} failed to read correctly for '
f'part {phastapartnum}: \n{e}')
nnodes = list(vtus.values())[0].number_of_points
for key, vtu in vtus.items():
assert(vtu.number_of_points == nnodes)
outdata = np.zeros((nnodes,4))
mask_filled = np.zeros(nnodes, dtype=np.bool_)
mask_vtu1d = np.zeros(nnodes, dtype=np.bool_)
mask_vtu2d = np.zeros((nnodes,4), dtype=np.bool_)
mask_of_trues = np.ones((nnodes,4), dtype=np.bool_)
used_node_count = {}
for key, vtu in vtus.items():
if np.all(mask_vtu2d): break # stop loop if mask completed
fileIssue = False
pressure_keys = ['pressure', 'p']
if all(array in vtu.array_names for array in ['VelX', 'VelY', 'VelZ', 'vtkValidPointMask']):
fileIssue = True
if any(array in vtu.array_names for array in pressure_keys):
fileIssue = True
if fileIssue:
print(f'FILE ISSUE: {filepath.name} does not have expected array names: {vtu.array_names}'
f' Skipping file for part {phastapartnum}')
continue
sys.stdout.flush()
for pstr in pressure_keys:
if pstr in vtu.array_names:
pressure = pstr
break
mask_vtu1d = np.logical_not(mask_filled ** vtu['vtkValidPointMask'])
used_node_count[key] = np.sum(mask_vtu1d)
mask_filled = np.logical_or(mask_filled, vtu['vtkValidPointMask'])
if not TESTONLY:
dataarray = np.column_stack((vtu[pressure], vtu['VelX'], vtu['VelY'], vtu['VelZ']))
mask_vtu2d = mask_vtu1d[:,None].astype(np.bool_)*mask_of_trues
np.copyto(outdata, dataarray, where=mask_vtu2d)
if not TESTONLY:
if writevtu:
vtu = next(iter(vtus.values()))
vtu[pressure] = outdata[:,0]
vtu['VelX'] = outdata[:,1]
vtu['VelY'] = outdata[:,2]
vtu['VelZ'] = outdata[:,3]
vtu['vtkValidPointMask'] = mask_filled
vtu.save(intermediateOutdir / f'Intermediate_{phastapartnum}.vtu')
else:
outpath = outdir / f'solInterp.{phastapartnum}'
np.savetxt(outpath, outdata)
logstring = '\t'
for key in vtus.keys():
if key in used_node_count.keys():
logstring += f'{key:8}:{used_node_count[key]:8} '
else:
logstring += f'{key:8}: N/A '
if not np.all(mask_filled):
totalpnts = np.sum(np.logical_not(mask_filled))
percent = totalpnts / nnodes
print(f'solInterp.{phastapartnum:<5} BROKEN {totalpnts},{percent:>8.3%}'
'\n' + logstring)
else:
print(f'solInterp.{phastapartnum:<5} fine'
'\n' + logstring)
sys.stdout.flush() |
Python | def typedb_session(self):
"""
Did this like this in an attempt to make it
also work when using with a DataLoader with
num_workers > 0.
TODO: it does not, so look into this.
"""
if not self._typedb_session:
print("setting up session")
print(self)
client = TypeDB.core_client(self._uri)
self._typedb_session = client.session(database=self._database, session_type=SessionType.DATA)
return self._typedb_session | def typedb_session(self):
"""
Did this like this in an attempt to make it
also work when using with a DataLoader with
num_workers > 0.
TODO: it does not, so look into this.
"""
if not self._typedb_session:
print("setting up session")
print(self)
client = TypeDB.core_client(self._uri)
self._typedb_session = client.session(database=self._database, session_type=SessionType.DATA)
return self._typedb_session |
Python | def is_listening(host, port):
"""Check if a service is listening there."""
s = socket.socket()
try:
s.connect((host, port))
return True
except socket.error:
return False | def is_listening(host, port):
"""Check if a service is listening there."""
s = socket.socket()
try:
s.connect((host, port))
return True
except socket.error:
return False |
Python | def montecarlo_samples(self,mcn):
''' Sample the w parameters over the various angles'''
# Sample the angles according to their pdf
theta=np.arccos(np.random.uniform(-1,1,mcn)) # Polar
phi = np.pi*np.random.uniform(-1,1,mcn) # Azimuthal
psi = np.pi*np.random.uniform(-1,1,mcn) # Azimuthal
iota = np.arccos(np.random.uniform(-1,1,mcn)) # Polar
# Antenna patterns. Eq. (57) in arxiv:0903.0338
Fplus = 0.5*(1.+np.cos(theta)**2)*np.cos(2.*phi)*np.cos(2.*psi) - np.cos(theta)*np.sin(2.*phi)*np.sin(2.*psi)
Fcross = 0.5*(1.+np.cos(theta)**2)*np.cos(2.*phi)*np.sin(2.*psi) + np.cos(theta)*np.sin(2.*phi)*np.cos(2.*psi)
# Projection parameter. Eq. (3.31) in arxiv:gr-qc/9301003 but define omega=Theta/4
littleomega = ( Fplus**2*(1.+np.cos(iota)**2)**2/4. +Fcross**2*np.cos(iota)**2 )**0.5
return littleomega if len(littleomega)>1 else littleomega[0] | def montecarlo_samples(self,mcn):
''' Sample the w parameters over the various angles'''
# Sample the angles according to their pdf
theta=np.arccos(np.random.uniform(-1,1,mcn)) # Polar
phi = np.pi*np.random.uniform(-1,1,mcn) # Azimuthal
psi = np.pi*np.random.uniform(-1,1,mcn) # Azimuthal
iota = np.arccos(np.random.uniform(-1,1,mcn)) # Polar
# Antenna patterns. Eq. (57) in arxiv:0903.0338
Fplus = 0.5*(1.+np.cos(theta)**2)*np.cos(2.*phi)*np.cos(2.*psi) - np.cos(theta)*np.sin(2.*phi)*np.sin(2.*psi)
Fcross = 0.5*(1.+np.cos(theta)**2)*np.cos(2.*phi)*np.sin(2.*psi) + np.cos(theta)*np.sin(2.*phi)*np.cos(2.*psi)
# Projection parameter. Eq. (3.31) in arxiv:gr-qc/9301003 but define omega=Theta/4
littleomega = ( Fplus**2*(1.+np.cos(iota)**2)**2/4. +Fcross**2*np.cos(iota)**2 )**0.5
return littleomega if len(littleomega)>1 else littleomega[0] |
Python | def interpolate(self):
''' Compute interpolation. If available, read from file'''
if self._interpolate is None:
# Takes some time. Store a pickle...
if not os.path.isfile(self.binfile):
if not os.path.exists(self.directory) and self.directory!='':
os.makedirs(self.directory)
if self.is_default:
print('\n['+this_module+'] You are using defaults values. You can download this interpolant. Use:\n')
print('curl https://raw.githubusercontent.com/dgerosa/gwdet/master/checkpoints/'+self.binfileonly+'.tar.gz -o '+self.binfile+'.tar.gz; tar -xzvf '+self.binfile+'.tar.gz -C '+self.directory+'; rm '+self.binfile+'.tar.gz \n')
print('['+this_module+'] Storing: '+self.binfile)
print('['+this_module+'] Interpolating Pw(w)...')
hist = np.histogram(self.montecarlo_samples(self.mcn),bins=self.mcbins)
hist_dist = scipy.stats.rv_histogram(hist)
with open(self.binfile, 'wb') as f: pickle.dump(hist_dist, f)
with open(self.binfile, 'rb') as f: hist_dist = pickle.load(f)
self._interpolate = hist_dist.sf # sf give the cdf P(>w) instead of P(<w)
return self._interpolate | def interpolate(self):
''' Compute interpolation. If available, read from file'''
if self._interpolate is None:
# Takes some time. Store a pickle...
if not os.path.isfile(self.binfile):
if not os.path.exists(self.directory) and self.directory!='':
os.makedirs(self.directory)
if self.is_default:
print('\n['+this_module+'] You are using defaults values. You can download this interpolant. Use:\n')
print('curl https://raw.githubusercontent.com/dgerosa/gwdet/master/checkpoints/'+self.binfileonly+'.tar.gz -o '+self.binfile+'.tar.gz; tar -xzvf '+self.binfile+'.tar.gz -C '+self.directory+'; rm '+self.binfile+'.tar.gz \n')
print('['+this_module+'] Storing: '+self.binfile)
print('['+this_module+'] Interpolating Pw(w)...')
hist = np.histogram(self.montecarlo_samples(self.mcn),bins=self.mcbins)
hist_dist = scipy.stats.rv_histogram(hist)
with open(self.binfile, 'wb') as f: pickle.dump(hist_dist, f)
with open(self.binfile, 'rb') as f: hist_dist = pickle.load(f)
self._interpolate = hist_dist.sf # sf give the cdf P(>w) instead of P(<w)
return self._interpolate |
Python | def pdetproj(self):
''' A single instance of the pdet class'''
if self._pdetproj is None:
self._pdetproj = averageangles(directory=self.directory,binfile=self.binfilepdet,mcn=self.mcn,mcbins=self.mcbins)
return self._pdetproj | def pdetproj(self):
''' A single instance of the pdet class'''
if self._pdetproj is None:
self._pdetproj = averageangles(directory=self.directory,binfile=self.binfilepdet,mcn=self.mcn,mcbins=self.mcbins)
return self._pdetproj |
Python | def snr(self,m1_vals,m2_vals,z_vals):
''' Compute the SNR from m1,m2,z '''
if not hasattr(m1_vals, "__len__"): m1_vals=[m1_vals]
if not hasattr(m2_vals, "__len__"): m2_vals=[m2_vals]
if not hasattr(z_vals, "__len__"): z_vals=[z_vals]
snr=[]
for m1,m2,z in zip(m1_vals,m2_vals,z_vals):
lum_dist = astropy.cosmology.Planck15.luminosity_distance(z).value # luminosity distance in Mpc
assert self.has_pycbc, "pycbc is needed"
hp, hc = pycbc.waveform.get_fd_waveform(approximant=self.approximant,
mass1=m1*(1.+z),
mass2=m2*(1.+z),
delta_f=self.deltaf,
f_lower=self.flow,
distance=lum_dist)
if self.psd_from_path:
evaluatedpsd = pycbc.psd.from_txt(self.psd_path, len(hp), self.deltaf, self.flow, is_asd_file=self.is_asd_file)
else:
evaluatedpsd = pycbc.psd.analytical.from_string(self.psd,len(hp), self.deltaf, self.flow)
snr_one=pycbc.filter.sigma(hp, psd=evaluatedpsd, low_frequency_cutoff=self.flow)
snr.append(snr_one ) # use hp only because I want optimally oriented sources
if self.screen==True:
print(" m1="+str(m1)+" m1="+str(m2)+" z="+str(z)+" SNR="+str(snr_one))
return np.array(snr) if len(snr)>1 else snr[0] | def snr(self,m1_vals,m2_vals,z_vals):
''' Compute the SNR from m1,m2,z '''
if not hasattr(m1_vals, "__len__"): m1_vals=[m1_vals]
if not hasattr(m2_vals, "__len__"): m2_vals=[m2_vals]
if not hasattr(z_vals, "__len__"): z_vals=[z_vals]
snr=[]
for m1,m2,z in zip(m1_vals,m2_vals,z_vals):
lum_dist = astropy.cosmology.Planck15.luminosity_distance(z).value # luminosity distance in Mpc
assert self.has_pycbc, "pycbc is needed"
hp, hc = pycbc.waveform.get_fd_waveform(approximant=self.approximant,
mass1=m1*(1.+z),
mass2=m2*(1.+z),
delta_f=self.deltaf,
f_lower=self.flow,
distance=lum_dist)
if self.psd_from_path:
evaluatedpsd = pycbc.psd.from_txt(self.psd_path, len(hp), self.deltaf, self.flow, is_asd_file=self.is_asd_file)
else:
evaluatedpsd = pycbc.psd.analytical.from_string(self.psd,len(hp), self.deltaf, self.flow)
snr_one=pycbc.filter.sigma(hp, psd=evaluatedpsd, low_frequency_cutoff=self.flow)
snr.append(snr_one ) # use hp only because I want optimally oriented sources
if self.screen==True:
print(" m1="+str(m1)+" m1="+str(m2)+" z="+str(z)+" SNR="+str(snr_one))
return np.array(snr) if len(snr)>1 else snr[0] |
Python | def compute(self,m1,m2,z):
''' Direct evaluation of the detection probability'''
snr = self.snr(m1,m2,z)
return self.pdetproj().eval(self.snrthreshold/snr) | def compute(self,m1,m2,z):
''' Direct evaluation of the detection probability'''
snr = self.snr(m1,m2,z)
return self.pdetproj().eval(self.snrthreshold/snr) |
Python | def snrinterpolant(self):
''' Build an interpolation for the SNR '''
if self._snrinterpolant is None:
assert self.has_pycbc, 'pycbc is needed'
# Takes some time. Store a pickle...
# Takes some time. Store a pickle...
#if not os.path.isfile(self.tempfile):
print('['+this_module+'] Interpolating SNR...')
# See https://stackoverflow.com/a/30059599
m1z_grid = np.linspace(self.massmin*(1.+self.zmin),self.massmax*(1.+self.zmax),self.mc1d) # Redshifted mass 1
m2z_grid = np.linspace(self.massmin*(1.+self.zmin),self.massmax*(1.+self.zmax),self.mc1d) # Redshifted mass 1
grids=[m1z_grid,m2z_grid]
#meshgrid=np.zeros(reduce(lambda x,y:x*y, [len(x) for x in grids]))
#print(reduce(lambda x,y:x*y, [len(x) for x in grids]))
meshgrid=[]
meshcoord=[]
for i,m1z in enumerate(m1z_grid):
for j,m2z in enumerate(m2z_grid):
meshcoord.append([i,j])
meshgrid.append([m1z,m2z])
meshgrid=np.array(meshgrid)
meshcoord=np.array(meshcoord)
if self.parallel:
# Shuffle the arrays: https://stackoverflow.com/a/4602224/4481987
# Useful to better ditribute load across processors
if True:
assert len(meshcoord)==len(meshgrid)
p = np.random.permutation(len(meshcoord))
meshcoord = meshcoord[p]
meshgrid = meshgrid[p]
#pool = multiprocessing.Pool(processes=multiprocessing.cpu_count())
#meshvalues = pool.imap(snr_pickable, meshgrid)
#pool.close() # No more work
#meshvalues = pool.imap(self._snr, meshgrid)
meshvalues= self.map(self._snr, meshgrid)
while (True):
completed = meshvalues._index
if (completed == len(meshgrid)): break
print(' [multiprocessing] Waiting for', len(meshgrid)-completed, 'tasks...')
time.sleep(1)
#pool.close()
#pool.join()
else:
meshvalues = map(self._snr, meshgrid)
#print meshvalues
valuesforinterpolator = np.zeros([len(x) for x in grids])
for ij,val in zip(meshcoord,meshvalues):
i,j=ij
valuesforinterpolator[i,j]=val
snrinterpolant = scipy.interpolate.RegularGridInterpolator(points=grids,values=valuesforinterpolator,bounds_error=False,fill_value=None)
self._snrinterpolant = snrinterpolant
# with open(self.tempfile, 'wb') as f: pickle.dump(snrinterpolant, f)
#with open(self.tempfile, 'rb') as f: self._snrinterpolant = pickle.load(f)
return self._snrinterpolant | def snrinterpolant(self):
''' Build an interpolation for the SNR '''
if self._snrinterpolant is None:
assert self.has_pycbc, 'pycbc is needed'
# Takes some time. Store a pickle...
# Takes some time. Store a pickle...
#if not os.path.isfile(self.tempfile):
print('['+this_module+'] Interpolating SNR...')
# See https://stackoverflow.com/a/30059599
m1z_grid = np.linspace(self.massmin*(1.+self.zmin),self.massmax*(1.+self.zmax),self.mc1d) # Redshifted mass 1
m2z_grid = np.linspace(self.massmin*(1.+self.zmin),self.massmax*(1.+self.zmax),self.mc1d) # Redshifted mass 1
grids=[m1z_grid,m2z_grid]
#meshgrid=np.zeros(reduce(lambda x,y:x*y, [len(x) for x in grids]))
#print(reduce(lambda x,y:x*y, [len(x) for x in grids]))
meshgrid=[]
meshcoord=[]
for i,m1z in enumerate(m1z_grid):
for j,m2z in enumerate(m2z_grid):
meshcoord.append([i,j])
meshgrid.append([m1z,m2z])
meshgrid=np.array(meshgrid)
meshcoord=np.array(meshcoord)
if self.parallel:
# Shuffle the arrays: https://stackoverflow.com/a/4602224/4481987
# Useful to better ditribute load across processors
if True:
assert len(meshcoord)==len(meshgrid)
p = np.random.permutation(len(meshcoord))
meshcoord = meshcoord[p]
meshgrid = meshgrid[p]
#pool = multiprocessing.Pool(processes=multiprocessing.cpu_count())
#meshvalues = pool.imap(snr_pickable, meshgrid)
#pool.close() # No more work
#meshvalues = pool.imap(self._snr, meshgrid)
meshvalues= self.map(self._snr, meshgrid)
while (True):
completed = meshvalues._index
if (completed == len(meshgrid)): break
print(' [multiprocessing] Waiting for', len(meshgrid)-completed, 'tasks...')
time.sleep(1)
#pool.close()
#pool.join()
else:
meshvalues = map(self._snr, meshgrid)
#print meshvalues
valuesforinterpolator = np.zeros([len(x) for x in grids])
for ij,val in zip(meshcoord,meshvalues):
i,j=ij
valuesforinterpolator[i,j]=val
snrinterpolant = scipy.interpolate.RegularGridInterpolator(points=grids,values=valuesforinterpolator,bounds_error=False,fill_value=None)
self._snrinterpolant = snrinterpolant
# with open(self.tempfile, 'wb') as f: pickle.dump(snrinterpolant, f)
#with open(self.tempfile, 'rb') as f: self._snrinterpolant = pickle.load(f)
return self._snrinterpolant |
Python | def interpolate(self):
''' Build an interpolation for the detection probability as a function of m1,m2,z'''
if self._interpolate is None:
# Takes some time. Store a pickle...
if not os.path.isfile(self.binfile):
if not os.path.exists(self.directory) and self.directory!='':
os.makedirs(self.directory)
if self.is_default:
print('\n['+this_module+'] You are using defaults values. You can download this interpolant. Use:\n')
print('curl https://raw.githubusercontent.com/dgerosa/gwdet/master/checkpoints/'+self.binfileonly+'.tar.gz -o '+self.binfile+'.tar.gz; tar -xzvf '+self.binfile+'.tar.gz -C '+self.directory+'; rm '+self.binfile+'.tar.gz \n')
assert self.has_pycbc, "pycbc is needed"
print('['+this_module+'] Storing: '+self.binfile)
# Make sure the other interpolants are available
dummy=self.snrinterpolant()
dummy = self.pdetproj()(0.5)
print('['+this_module+'] Interpolating Pw(SNR)...')
# See https://stackoverflow.com/a/30059599
m1_grid = np.linspace(self.massmin,self.massmax,self.mc1d) # Redshifted mass 1
m2_grid = np.linspace(self.massmin,self.massmax,self.mc1d) # Redshifted mass 1
z_grid = np.linspace(self.zmin,self.zmax,self.mc1d) # Redshifted mass 1
grids=[m1_grid,m2_grid,z_grid]
meshgrid=[]
meshcoord=[]
for i,m1 in enumerate(m1_grid):
for j,m2 in enumerate(m2_grid):
for k,z in enumerate(z_grid):
#print i,j,k
meshcoord.append([i,j,k])
meshgrid.append([m1,m2,z])
meshgrid=np.array(meshgrid)
meshcoord=np.array(meshcoord)
if self.parallel:
# Shuffle the arrays: https://stackoverflow.com/a/4602224/4481987
# Useful to better ditribute load across processors
if True:
assert len(meshcoord)==len(meshgrid)
p = np.random.permutation(len(meshcoord))
meshcoord = meshcoord[p]
meshgrid = meshgrid[p]
#pool = multiprocessing.Pool(processes=multiprocessing.cpu_count())
#meshvalues = pool.imap(compute_pickable, meshgrid)
#pool.close() # No more work
#pool2 = pathos.multiprocessing.ProcessingPool(multiprocessing.cpu_count())
#meshvalues = pool2.imap(self._compute, meshgrid)
#pool2.close()
meshvalues= self.map(self._compute, meshgrid)
while (True):
completed = meshvalues._index
if (completed == len(meshgrid)): break
print(' [multiprocessing] Waiting for', len(meshgrid)-completed, 'tasks...')
time.sleep(1)
#pool.close()
else:
meshvalues = map(self._compute, meshgrid)
valuesforinterpolator = np.zeros([len(x) for x in grids])
for ijk,val in zip(meshcoord,meshvalues):
i,j,k=ijk
valuesforinterpolator[i,j,k]=val
interpolant = scipy.interpolate.RegularGridInterpolator(points=grids,values=valuesforinterpolator,bounds_error=False,fill_value=None)
with open(self.binfile, 'wb') as f: pickle.dump(interpolant, f)
with open(self.binfile, 'rb') as f: interpolant = pickle.load(f)
self._interpolate = interpolant
return self._interpolate | def interpolate(self):
''' Build an interpolation for the detection probability as a function of m1,m2,z'''
if self._interpolate is None:
# Takes some time. Store a pickle...
if not os.path.isfile(self.binfile):
if not os.path.exists(self.directory) and self.directory!='':
os.makedirs(self.directory)
if self.is_default:
print('\n['+this_module+'] You are using defaults values. You can download this interpolant. Use:\n')
print('curl https://raw.githubusercontent.com/dgerosa/gwdet/master/checkpoints/'+self.binfileonly+'.tar.gz -o '+self.binfile+'.tar.gz; tar -xzvf '+self.binfile+'.tar.gz -C '+self.directory+'; rm '+self.binfile+'.tar.gz \n')
assert self.has_pycbc, "pycbc is needed"
print('['+this_module+'] Storing: '+self.binfile)
# Make sure the other interpolants are available
dummy=self.snrinterpolant()
dummy = self.pdetproj()(0.5)
print('['+this_module+'] Interpolating Pw(SNR)...')
# See https://stackoverflow.com/a/30059599
m1_grid = np.linspace(self.massmin,self.massmax,self.mc1d) # Redshifted mass 1
m2_grid = np.linspace(self.massmin,self.massmax,self.mc1d) # Redshifted mass 1
z_grid = np.linspace(self.zmin,self.zmax,self.mc1d) # Redshifted mass 1
grids=[m1_grid,m2_grid,z_grid]
meshgrid=[]
meshcoord=[]
for i,m1 in enumerate(m1_grid):
for j,m2 in enumerate(m2_grid):
for k,z in enumerate(z_grid):
#print i,j,k
meshcoord.append([i,j,k])
meshgrid.append([m1,m2,z])
meshgrid=np.array(meshgrid)
meshcoord=np.array(meshcoord)
if self.parallel:
# Shuffle the arrays: https://stackoverflow.com/a/4602224/4481987
# Useful to better ditribute load across processors
if True:
assert len(meshcoord)==len(meshgrid)
p = np.random.permutation(len(meshcoord))
meshcoord = meshcoord[p]
meshgrid = meshgrid[p]
#pool = multiprocessing.Pool(processes=multiprocessing.cpu_count())
#meshvalues = pool.imap(compute_pickable, meshgrid)
#pool.close() # No more work
#pool2 = pathos.multiprocessing.ProcessingPool(multiprocessing.cpu_count())
#meshvalues = pool2.imap(self._compute, meshgrid)
#pool2.close()
meshvalues= self.map(self._compute, meshgrid)
while (True):
completed = meshvalues._index
if (completed == len(meshgrid)): break
print(' [multiprocessing] Waiting for', len(meshgrid)-completed, 'tasks...')
time.sleep(1)
#pool.close()
else:
meshvalues = map(self._compute, meshgrid)
valuesforinterpolator = np.zeros([len(x) for x in grids])
for ijk,val in zip(meshcoord,meshvalues):
i,j,k=ijk
valuesforinterpolator[i,j,k]=val
interpolant = scipy.interpolate.RegularGridInterpolator(points=grids,values=valuesforinterpolator,bounds_error=False,fill_value=None)
with open(self.binfile, 'wb') as f: pickle.dump(interpolant, f)
with open(self.binfile, 'rb') as f: interpolant = pickle.load(f)
self._interpolate = interpolant
return self._interpolate |
Python | def compare_Pw():
''' Compare performance of the averageangles interpolator against public data from Emanuele Berti's website'''
plotting()# Initialized plotting stuff
# Download file from Emanuele Berti's website if it does not exist
if not os.path.isfile("Pw_single.dat"):
urllib.urlretrieve('http://www.phy.olemiss.edu/~berti/research/Pw_single.dat', "Pw_single.dat")
wEm,PwEm=np.loadtxt("Pw_single.dat",unpack=True)
wmy = np.linspace(-0.1,1.1,1000)
p=averageangles()
Pwmy=p(wmy)
f, ax = plt.subplots(2, sharex=True)
ax[0].plot(wEm,PwEm,label="public data")
ax[0].plot(wmy,Pwmy,ls='dashed',label="this code")
Pwmy = p(wEm)
ax[1].plot(wEm,np.abs(PwEm-Pwmy),c='C2')#*2./(PwEm+Pwmy))
ax[1].set_xlabel('$\omega$')
ax[0].set_ylabel('$P(>\omega)$')
ax[1].set_ylabel('Residuals')
ax[0].legend()
plt.savefig(sys._getframe().f_code.co_name+".pdf",bbox_inches='tight') | def compare_Pw():
''' Compare performance of the averageangles interpolator against public data from Emanuele Berti's website'''
plotting()# Initialized plotting stuff
# Download file from Emanuele Berti's website if it does not exist
if not os.path.isfile("Pw_single.dat"):
urllib.urlretrieve('http://www.phy.olemiss.edu/~berti/research/Pw_single.dat', "Pw_single.dat")
wEm,PwEm=np.loadtxt("Pw_single.dat",unpack=True)
wmy = np.linspace(-0.1,1.1,1000)
p=averageangles()
Pwmy=p(wmy)
f, ax = plt.subplots(2, sharex=True)
ax[0].plot(wEm,PwEm,label="public data")
ax[0].plot(wmy,Pwmy,ls='dashed',label="this code")
Pwmy = p(wEm)
ax[1].plot(wEm,np.abs(PwEm-Pwmy),c='C2')#*2./(PwEm+Pwmy))
ax[1].set_xlabel('$\omega$')
ax[0].set_ylabel('$P(>\omega)$')
ax[1].set_ylabel('Residuals')
ax[0].legend()
plt.savefig(sys._getframe().f_code.co_name+".pdf",bbox_inches='tight') |
Python | def compare_Psnr():
''' Evaluate performace of the detectability interpolator against raw SNRs calculations '''
plotting() # Initialized plotting stuff
computed=[]
interpolated=[]
n=1000
m1=np.random.uniform(1,100,n)
m2=np.random.uniform(1,100,n)
z=np.random.uniform(1e-4,2.5,n)
p=detectability()
computed=p.compute(m1,m2,z)
interpolated=p(m1,m2,z)
computed=np.array(computed)
interpolated=np.array(interpolated)
residuals=np.abs(computed-interpolated)
residuals_notzero= residuals[np.logical_and(computed!=0,interpolated!=0)]
f, ax = plt.subplots(2)
#ax[0].hist(residuals,weights=[1./n for x in residuals],alpha=0.8,bins=100)
ax[0].hist(residuals_notzero,weights=[1./n for x in residuals_notzero],alpha=0.8,bins=100)
ax[0].axvline(np.median(residuals_notzero),ls='dashed',c='red')
#ax[1].hist(residuals,range=[0,0.0001],weights=[1./n for x in residuals],alpha=0.8,bins=100)
ax[1].hist(residuals_notzero,range=[0,0.0001],weights=[1./n for x in residuals_notzero],alpha=0.8,bins=100)
ax[1].axvline(np.median(residuals_notzero),ls='dashed',c='red')
ax[1].set_xlabel('Residuals $P_{\\rm det}$')
plt.savefig(sys._getframe().f_code.co_name+".pdf",bbox_inches='tight') | def compare_Psnr():
''' Evaluate performace of the detectability interpolator against raw SNRs calculations '''
plotting() # Initialized plotting stuff
computed=[]
interpolated=[]
n=1000
m1=np.random.uniform(1,100,n)
m2=np.random.uniform(1,100,n)
z=np.random.uniform(1e-4,2.5,n)
p=detectability()
computed=p.compute(m1,m2,z)
interpolated=p(m1,m2,z)
computed=np.array(computed)
interpolated=np.array(interpolated)
residuals=np.abs(computed-interpolated)
residuals_notzero= residuals[np.logical_and(computed!=0,interpolated!=0)]
f, ax = plt.subplots(2)
#ax[0].hist(residuals,weights=[1./n for x in residuals],alpha=0.8,bins=100)
ax[0].hist(residuals_notzero,weights=[1./n for x in residuals_notzero],alpha=0.8,bins=100)
ax[0].axvline(np.median(residuals_notzero),ls='dashed',c='red')
#ax[1].hist(residuals,range=[0,0.0001],weights=[1./n for x in residuals],alpha=0.8,bins=100)
ax[1].hist(residuals_notzero,range=[0,0.0001],weights=[1./n for x in residuals_notzero],alpha=0.8,bins=100)
ax[1].axvline(np.median(residuals_notzero),ls='dashed',c='red')
ax[1].set_xlabel('Residuals $P_{\\rm det}$')
plt.savefig(sys._getframe().f_code.co_name+".pdf",bbox_inches='tight') |
Python | def _event_selector(self, event):
""" Select the correct events and call the handler """
event_type = event[0]
if event_type == 'waiting':
self.events_handler.waiting()
elif event_type == 'typing':
self.events_handler.typing()
elif event_type == 'connected':
self.connected = True
self.events_handler.connected()
elif event_type == 'gotMessage':
message = event[1]
self.events_handler.message(message)
elif event_type == 'commonLikes':
likes = event[1]
self.events_handler.common_likes(likes)
elif event_type == 'stoppedTyping':
self.events_handler.stopped_typing()
elif event_type == 'strangerDisconnected':
self.disconnect()
self.events_handler.disconnected()
elif event_type == 'recaptchaRequired':
self.events_handler.captcha_required()
elif event_type == 'recaptchaRejected':
self.events_handler.captcha_rejected()
elif event_type == 'serverMessage':
message = event[1]
self.events_handler.server_message(message)
elif event_type == 'statusInfo':
status = event[1]
self.events_handler.status_info(status)
elif event_type == 'identDigests':
digests = event[1]
self.events_handler.ident_digest(digests)
## SEND YOUR GREETING OR WHATEVER, OR DELETE IT IF U DO NOT WANT IT
self.send('Hola')
else:
print ('Unhandled event: %s' % event) | def _event_selector(self, event):
""" Select the correct events and call the handler """
event_type = event[0]
if event_type == 'waiting':
self.events_handler.waiting()
elif event_type == 'typing':
self.events_handler.typing()
elif event_type == 'connected':
self.connected = True
self.events_handler.connected()
elif event_type == 'gotMessage':
message = event[1]
self.events_handler.message(message)
elif event_type == 'commonLikes':
likes = event[1]
self.events_handler.common_likes(likes)
elif event_type == 'stoppedTyping':
self.events_handler.stopped_typing()
elif event_type == 'strangerDisconnected':
self.disconnect()
self.events_handler.disconnected()
elif event_type == 'recaptchaRequired':
self.events_handler.captcha_required()
elif event_type == 'recaptchaRejected':
self.events_handler.captcha_rejected()
elif event_type == 'serverMessage':
message = event[1]
self.events_handler.server_message(message)
elif event_type == 'statusInfo':
status = event[1]
self.events_handler.status_info(status)
elif event_type == 'identDigests':
digests = event[1]
self.events_handler.ident_digest(digests)
## SEND YOUR GREETING OR WHATEVER, OR DELETE IT IF U DO NOT WANT IT
self.send('Hola')
else:
print ('Unhandled event: %s' % event) |
Python | def count_words(link):
res = requests.get(link)
soup = BeautifulSoup(res.text, 'lxml') # .encode("utf-8") # to take care of chinese characters and all xD or while reading file
lyrics_soup = soup.select('.lyrics')[0] # .select return a list of ALL occurrences of .lyrics so the 1st element is considered
# lyrics is a html tag with lyrics as class. lyrics.text gives the <p> tag etc.
with open('lyrics_raw.txt', 'w', encoding="utf-8") as f: # encoding to handle chinese chars etc
f.write(lyrics_soup.text)
f.write(" ") # added this if we're using same file to write multiple songs
f.close()
lyrics_list = [] # creating a list as with file reading, writing and reading at the same time is unnecessary
# filtering and removing non artist verses
modified_file_contents = ""
with open('lyrics_raw.txt', 'r', encoding="utf-8") as f:
file_contents = f.read() # f.read() gives a string
if is_feature(file_contents):
for i in range(len(file_contents)):
# filter 1: removing other artists
if file_contents[i] == '[':
flag = False
j = 0
while True:
if file_contents[i + j] == ']':
break
else:
j += 1
square_brackets_content = file_contents[i: i + j + 1] # genius has everything in sq brackets
del j
artist = data['name_with_spaces']
for j in range(len(square_brackets_content) - len(artist)):
if artist.lower() == square_brackets_content[j: j + len(artist)].lower(): # to handle different case artists
flag = True
break # flag = True is to say that the following verse is by the selected artist
if flag:
j = len(square_brackets_content) + 1
try:
while file_contents[i + j] != '[': # till the start of next verse
modified_file_contents += file_contents[i + j]
j += 1
except IndexError:
pass
else:
for i in range(len(file_contents)):
if file_contents[i] == '[':
j = 0 # j is length of square bracket content
while True:
if file_contents[i + j] == ']':
j += 1 # to remove the current '['
break
else:
j += 1
try:
# starting from j skips the square bracket content
while file_contents[i + j] != '[': # till the start of next verse
modified_file_contents += file_contents[i + j]
j += 1
except IndexError:
pass
# now to remove them annotations like comma, apostrophes etc
modified_file_contents = modified_file_contents.replace('-', ' ')\
.replace('*', '')\
.replace('?', '')\
.replace(' ', ' ')\
.replace(' ', ' ')\
.replace('(', '')\
.replace(')', '')\
.replace('{', '')\
.replace('\'', '')\
.replace(',', '')\
.replace('-', '')\
.replace('!', '')\
.replace('\"', '')\
.replace('--', '')\
.replace('.', '')\
.replace(',', '')\
.replace('\n', ' ')
modified_file_contents = modified_file_contents.lower()
with open('lyrics_raw.txt', 'w', encoding="utf-8") as f:
f.write(modified_file_contents)
f.write(" ")
"""
at this point the file is ready to be counted
"""
# making the list
words_list = modified_file_contents.split(" ")
for i in words_list:
if i == '' or i == ' ':
words_list.remove(i) # removing nonsense from the split
dict_unsorted = {}
for word in words_list:
count = 0
for i in words_list: # i is the word which is checked throughout the list
if word == i:
count += 1
dict_unsorted[word] = count # adding a pair (word, count) to the unsorted dictionary
if len(dicts) >= 2: # merge
dicts.append({**dicts.pop(), **dicts.pop()})
else:
dicts.append(dict_unsorted) | def count_words(link):
res = requests.get(link)
soup = BeautifulSoup(res.text, 'lxml') # .encode("utf-8") # to take care of chinese characters and all xD or while reading file
lyrics_soup = soup.select('.lyrics')[0] # .select return a list of ALL occurrences of .lyrics so the 1st element is considered
# lyrics is a html tag with lyrics as class. lyrics.text gives the <p> tag etc.
with open('lyrics_raw.txt', 'w', encoding="utf-8") as f: # encoding to handle chinese chars etc
f.write(lyrics_soup.text)
f.write(" ") # added this if we're using same file to write multiple songs
f.close()
lyrics_list = [] # creating a list as with file reading, writing and reading at the same time is unnecessary
# filtering and removing non artist verses
modified_file_contents = ""
with open('lyrics_raw.txt', 'r', encoding="utf-8") as f:
file_contents = f.read() # f.read() gives a string
if is_feature(file_contents):
for i in range(len(file_contents)):
# filter 1: removing other artists
if file_contents[i] == '[':
flag = False
j = 0
while True:
if file_contents[i + j] == ']':
break
else:
j += 1
square_brackets_content = file_contents[i: i + j + 1] # genius has everything in sq brackets
del j
artist = data['name_with_spaces']
for j in range(len(square_brackets_content) - len(artist)):
if artist.lower() == square_brackets_content[j: j + len(artist)].lower(): # to handle different case artists
flag = True
break # flag = True is to say that the following verse is by the selected artist
if flag:
j = len(square_brackets_content) + 1
try:
while file_contents[i + j] != '[': # till the start of next verse
modified_file_contents += file_contents[i + j]
j += 1
except IndexError:
pass
else:
for i in range(len(file_contents)):
if file_contents[i] == '[':
j = 0 # j is length of square bracket content
while True:
if file_contents[i + j] == ']':
j += 1 # to remove the current '['
break
else:
j += 1
try:
# starting from j skips the square bracket content
while file_contents[i + j] != '[': # till the start of next verse
modified_file_contents += file_contents[i + j]
j += 1
except IndexError:
pass
# now to remove them annotations like comma, apostrophes etc
modified_file_contents = modified_file_contents.replace('-', ' ')\
.replace('*', '')\
.replace('?', '')\
.replace(' ', ' ')\
.replace(' ', ' ')\
.replace('(', '')\
.replace(')', '')\
.replace('{', '')\
.replace('\'', '')\
.replace(',', '')\
.replace('-', '')\
.replace('!', '')\
.replace('\"', '')\
.replace('--', '')\
.replace('.', '')\
.replace(',', '')\
.replace('\n', ' ')
modified_file_contents = modified_file_contents.lower()
with open('lyrics_raw.txt', 'w', encoding="utf-8") as f:
f.write(modified_file_contents)
f.write(" ")
"""
at this point the file is ready to be counted
"""
# making the list
words_list = modified_file_contents.split(" ")
for i in words_list:
if i == '' or i == ' ':
words_list.remove(i) # removing nonsense from the split
dict_unsorted = {}
for word in words_list:
count = 0
for i in words_list: # i is the word which is checked throughout the list
if word == i:
count += 1
dict_unsorted[word] = count # adding a pair (word, count) to the unsorted dictionary
if len(dicts) >= 2: # merge
dicts.append({**dicts.pop(), **dicts.pop()})
else:
dicts.append(dict_unsorted) |
Python | def list(self, ignore_patterns=None):
"""
List all files in all locations.
"""
for prefix, root in self.locations:
storage = self.storages[root]
for path in utils.get_files(storage, ignore_patterns):
yield path, storage | def list(self, ignore_patterns=None):
"""
List all files in all locations.
"""
for prefix, root in self.locations:
storage = self.storages[root]
for path in utils.get_files(storage, ignore_patterns):
yield path, storage |
Python | def list(self, ignore_patterns=None):
"""
List all files in all app storages.
"""
for storage in self.storages.values():
if storage.exists(''): # check if storage location exists
for path in utils.get_files(storage, ignore_patterns):
yield path, storage | def list(self, ignore_patterns=None):
"""
List all files in all app storages.
"""
for storage in self.storages.values():
if storage.exists(''): # check if storage location exists
for path in utils.get_files(storage, ignore_patterns):
yield path, storage |
Python | def find_in_app(self, app, path):
"""
Find a requested media file in an app's media fixtures locations.
"""
storage = self.storages.get(app, None)
if storage:
# only try to find a file if the source dir actually exists
if storage.exists(path):
matched_path = storage.path(path)
if matched_path:
return matched_path | def find_in_app(self, app, path):
"""
Find a requested media file in an app's media fixtures locations.
"""
storage = self.storages.get(app, None)
if storage:
# only try to find a file if the source dir actually exists
if storage.exists(path):
matched_path = storage.path(path)
if matched_path:
return matched_path |
Python | def generate_single_page(self):
"""Generate the whole markdown for single page of the mission"""
template = copy.deepcopy(SINGLE_PAGE_TEMPLATE)
image_row = ""
for b in self.badges:
image_item = copy.deepcopy(SINGLE_PAGE_IMAGE_ITEM_TEMPLATE)
image_item = image_item.replace("image_file", b.local_path)
image_row += image_item
template = template.replace("IMAGE_ROW", image_row)
caption_row = ""
for b in self.badges:
caption_item = copy.deepcopy(SINGLE_PAGE_CAPTION_ITEM_TEMPLATE)
caption_item = caption_item.replace("mission_name", self.mission_name)
caption_item = caption_item.replace("mission_date_formatted", self.mission_date_formatted)
caption_row += caption_item
template = template.replace("CAPTION_ROW", caption_row)
template = template.replace("MISSION_NAME_EN", self.mission_name_en) # This should be placed first
template = template.replace("MISSION_NAME", self.mission_name)
info = ""
info += "* 时间:{}\n".format(self.mission_date_formatted)
info += "* 载具:{}\n".format(self.launch_vehicle)
info += "* 载荷:{}\n".format(self.payload)
info += "* 来源:"
for b in self.badges:
info += "[{}]({}) ".format(b.source_name, b.source_url)
info += "\n"
info += "* 信息:"
for i in self.info_sources:
info += "[{}]({}) ".format(i[0], i[1])
info += "\n"
if self.comment is not None:
info += "* 其他:"
info += self.comment
info += "\n"
template = template.replace("INFO", info)
with open(join(self.folder_path, "README.md"), "w") as f:
f.write(template)
return dict(
path=self.folder_path,
# text=template,
mission_name=self.mission_name,
mission_name_en=self.mission_name_en,
date=self.mission_date_formatted
) | def generate_single_page(self):
"""Generate the whole markdown for single page of the mission"""
template = copy.deepcopy(SINGLE_PAGE_TEMPLATE)
image_row = ""
for b in self.badges:
image_item = copy.deepcopy(SINGLE_PAGE_IMAGE_ITEM_TEMPLATE)
image_item = image_item.replace("image_file", b.local_path)
image_row += image_item
template = template.replace("IMAGE_ROW", image_row)
caption_row = ""
for b in self.badges:
caption_item = copy.deepcopy(SINGLE_PAGE_CAPTION_ITEM_TEMPLATE)
caption_item = caption_item.replace("mission_name", self.mission_name)
caption_item = caption_item.replace("mission_date_formatted", self.mission_date_formatted)
caption_row += caption_item
template = template.replace("CAPTION_ROW", caption_row)
template = template.replace("MISSION_NAME_EN", self.mission_name_en) # This should be placed first
template = template.replace("MISSION_NAME", self.mission_name)
info = ""
info += "* 时间:{}\n".format(self.mission_date_formatted)
info += "* 载具:{}\n".format(self.launch_vehicle)
info += "* 载荷:{}\n".format(self.payload)
info += "* 来源:"
for b in self.badges:
info += "[{}]({}) ".format(b.source_name, b.source_url)
info += "\n"
info += "* 信息:"
for i in self.info_sources:
info += "[{}]({}) ".format(i[0], i[1])
info += "\n"
if self.comment is not None:
info += "* 其他:"
info += self.comment
info += "\n"
template = template.replace("INFO", info)
with open(join(self.folder_path, "README.md"), "w") as f:
f.write(template)
return dict(
path=self.folder_path,
# text=template,
mission_name=self.mission_name,
mission_name_en=self.mission_name_en,
date=self.mission_date_formatted
) |
Python | def add_one_mission(image_row, caption_row, mission):
"""Add one cell in the blocks in the main page."""
image_item = copy.deepcopy(MAIN_PAGE_IMAGE_ITEM_TEMPLATE)
caption_item = copy.deepcopy(MAIN_PAGE_CAPTION_ITEM_TEMPLATE)
image_item = image_item.replace("image_file", join("gallery", mission.badges[0].root_path))
image_row += image_item
# caption_item = caption_item.replace("MISSION_NAME_EN", mission.mission_name_en) # This line is first
caption_item = caption_item.replace("MISSION_NAME", mission.mission_name)
caption_item = caption_item.replace("mission_date_formatted", mission.mission_date_formatted)
caption_item = caption_item.replace("MISSION_LINK", join("gallery", mission.folder_path))
caption_row += caption_item
return image_row, caption_row | def add_one_mission(image_row, caption_row, mission):
"""Add one cell in the blocks in the main page."""
image_item = copy.deepcopy(MAIN_PAGE_IMAGE_ITEM_TEMPLATE)
caption_item = copy.deepcopy(MAIN_PAGE_CAPTION_ITEM_TEMPLATE)
image_item = image_item.replace("image_file", join("gallery", mission.badges[0].root_path))
image_row += image_item
# caption_item = caption_item.replace("MISSION_NAME_EN", mission.mission_name_en) # This line is first
caption_item = caption_item.replace("MISSION_NAME", mission.mission_name)
caption_item = caption_item.replace("mission_date_formatted", mission.mission_date_formatted)
caption_item = caption_item.replace("MISSION_LINK", join("gallery", mission.folder_path))
caption_row += caption_item
return image_row, caption_row |
Python | def run_one_named_indexer(token, iri, named):
"""Run indexer on the named graph of the endpoint."""
g = rdflib.Graph(store='SPARQLStore', identifier=named)
g.open(iri)
red = run_one_named_indexer.redis
return run_indexer(token, f'{iri}/{named}', g, red) | def run_one_named_indexer(token, iri, named):
"""Run indexer on the named graph of the endpoint."""
g = rdflib.Graph(store='SPARQLStore', identifier=named)
g.open(iri)
red = run_one_named_indexer.redis
return run_indexer(token, f'{iri}/{named}', g, red) |
Python | def run_indexer(token, iri, g, red):
"""Get all available analyzers and let them find relationships."""
log = logging.getLogger(__name__)
exp = expiration[KeyRoot.RELATED]
log.info(f'Indexing {iri}')
cnt = 0
analyzer = get_analyzer(token)
with red.pipeline() as pipe:
for key, rel_type in analyzer.find_relation(g):
log.debug(f'Distribution: {iri!s}, relationship type: {rel_type!s}, shared key: {key!s}')
key = related_key(rel_type, key)
pipe.sadd(key, iri)
pipe.expire(key, exp)
pipe.sadd('purgeable', key)
cnt = cnt + 1
pipe.execute()
log.info(f'Indexed {cnt!s} records')
return cnt | def run_indexer(token, iri, g, red):
"""Get all available analyzers and let them find relationships."""
log = logging.getLogger(__name__)
exp = expiration[KeyRoot.RELATED]
log.info(f'Indexing {iri}')
cnt = 0
analyzer = get_analyzer(token)
with red.pipeline() as pipe:
for key, rel_type in analyzer.find_relation(g):
log.debug(f'Distribution: {iri!s}, relationship type: {rel_type!s}, shared key: {key!s}')
key = related_key(rel_type, key)
pipe.sadd(key, iri)
pipe.expire(key, exp)
pipe.sadd('purgeable', key)
cnt = cnt + 1
pipe.execute()
log.info(f'Indexed {cnt!s} records')
return cnt |
Python | def run_one_indexer(token, iri, format_guess):
"""Extract graph from redis and run indexer identified by token on it."""
log = logging.getLogger(__name__)
red = run_one_indexer.redis
key = data_key(iri)
log.debug('Parsing graph')
try:
g = rdflib.ConjunctiveGraph()
g.parse(data=red.get(key), format=format_guess)
except rdflib.plugin.PluginException:
log.debug('Failed to parse graph')
return 0
except ValueError:
log.debug('Failed to parse graph')
return 0
return run_indexer(token, iri, g, red) | def run_one_indexer(token, iri, format_guess):
"""Extract graph from redis and run indexer identified by token on it."""
log = logging.getLogger(__name__)
red = run_one_indexer.redis
key = data_key(iri)
log.debug('Parsing graph')
try:
g = rdflib.ConjunctiveGraph()
g.parse(data=red.get(key), format=format_guess)
except rdflib.plugin.PluginException:
log.debug('Failed to parse graph')
return 0
except ValueError:
log.debug('Failed to parse graph')
return 0
return run_indexer(token, iri, g, red) |
Python | def do_process(iri, task, is_prio=False):
"""Analyze an RDF distribution under given IRI."""
log = logging.getLogger(__name__)
if iri.endswith('csv.zip') or iri.endswith('csv') or iri.endswith('csv.gz') or iri.endswith('xls') or \
iri.endswith('docx') or iri.endswith('xlsx') or iri.endswith('pdf') or \
(iri.startswith('http://vdp.cuzk.cz') and (iri.endswith('xml.zip') or iri.endswith('xml'))) or \
(iri.startswith('http://dataor.justice.cz') and (iri.endswith('xml') or iri.endswith('xml.gz'))) or \
iri.startswith('https://apl.czso.cz/iSMS/cisexp.jsp') or \
iri.startswith('https://volby.cz/pls/ps2017/vysledky_okres') or \
iri.startswith('http://services.cuzk.cz/'):
log.warn(f'Skipping distribution as it will not be supported: {iri!s}')
return
if not is_prio and (iri.endswith('xml') or iri.endswith('xml.zip')):
log.warn(f'Skipping distribution as it will not be supported: {iri!s} (xml in the non-priority channel)')
key = root_name[KeyRoot.DISTRIBUTIONS]
red = task.redis
if red.sadd(key, iri) == 0:
log.warn(f'Skipping distribution as it was recently processed: {iri!s}')
return
red.expire(key, expiration[KeyRoot.DISTRIBUTIONS])
red.sadd('purgeable', key)
log.info(f'Processing {iri!s}')
if iri.endswith('sparql'):
log.info(f'Guessing it is a SPARQL endpoint')
return process_endpoint.si(iri).apply_async(queue='low_priority')
try:
try:
r = fetch(iri, log, red)
except RobotsRetry as e:
red.srem(key, iri)
task.retry(countdown=e.delay)
except requests.exceptions.HTTPError:
log.exception('HTTP Error') # this is a 404 or similar, not worth retrying
raise
except requests.exceptions.RequestException as e:
red.srem(key, iri)
task.retry(exc=e)
except GeventTimeout as e: # this is gevent.timeout.Timeout
red.srem(key, iri)
task.retry(exc=e, countdown=e.seconds)
try:
test_content_length(iri, r, log)
guess, priority = guess_format(iri, r, log, red)
is_prio = is_prio | priority
except Skip:
return
decompress_task = decompress
if is_prio:
decompress_task = decompress_prio
if guess in ['application/x-7z-compressed', 'application/x-zip-compressed', 'application/zip']:
#delegate this into low_priority task
return decompress_task.si(iri, 'zip').apply_async(queue='low_priority')
elif guess in ['application/gzip', 'application/x-gzip']:
return decompress_task.si(iri, 'gzip').apply_async(queue='low_priority')
else:
try:
store_content(iri, r, red)
except SizeException:
log.warn(f'File is too large: {iri}')
raise
else:
pipeline = group(index.si(iri, guess), analyze.si(iri, guess))
if is_prio:
return pipeline.apply_async(queue='high_priority')
return pipeline.apply_async()
except:
log.exception(f'Failed to get {iri!s}')
red.sadd('stat:failed', str(iri))
red.sadd('purgeable', 'stat:failed')
return | def do_process(iri, task, is_prio=False):
"""Analyze an RDF distribution under given IRI."""
log = logging.getLogger(__name__)
if iri.endswith('csv.zip') or iri.endswith('csv') or iri.endswith('csv.gz') or iri.endswith('xls') or \
iri.endswith('docx') or iri.endswith('xlsx') or iri.endswith('pdf') or \
(iri.startswith('http://vdp.cuzk.cz') and (iri.endswith('xml.zip') or iri.endswith('xml'))) or \
(iri.startswith('http://dataor.justice.cz') and (iri.endswith('xml') or iri.endswith('xml.gz'))) or \
iri.startswith('https://apl.czso.cz/iSMS/cisexp.jsp') or \
iri.startswith('https://volby.cz/pls/ps2017/vysledky_okres') or \
iri.startswith('http://services.cuzk.cz/'):
log.warn(f'Skipping distribution as it will not be supported: {iri!s}')
return
if not is_prio and (iri.endswith('xml') or iri.endswith('xml.zip')):
log.warn(f'Skipping distribution as it will not be supported: {iri!s} (xml in the non-priority channel)')
key = root_name[KeyRoot.DISTRIBUTIONS]
red = task.redis
if red.sadd(key, iri) == 0:
log.warn(f'Skipping distribution as it was recently processed: {iri!s}')
return
red.expire(key, expiration[KeyRoot.DISTRIBUTIONS])
red.sadd('purgeable', key)
log.info(f'Processing {iri!s}')
if iri.endswith('sparql'):
log.info(f'Guessing it is a SPARQL endpoint')
return process_endpoint.si(iri).apply_async(queue='low_priority')
try:
try:
r = fetch(iri, log, red)
except RobotsRetry as e:
red.srem(key, iri)
task.retry(countdown=e.delay)
except requests.exceptions.HTTPError:
log.exception('HTTP Error') # this is a 404 or similar, not worth retrying
raise
except requests.exceptions.RequestException as e:
red.srem(key, iri)
task.retry(exc=e)
except GeventTimeout as e: # this is gevent.timeout.Timeout
red.srem(key, iri)
task.retry(exc=e, countdown=e.seconds)
try:
test_content_length(iri, r, log)
guess, priority = guess_format(iri, r, log, red)
is_prio = is_prio | priority
except Skip:
return
decompress_task = decompress
if is_prio:
decompress_task = decompress_prio
if guess in ['application/x-7z-compressed', 'application/x-zip-compressed', 'application/zip']:
#delegate this into low_priority task
return decompress_task.si(iri, 'zip').apply_async(queue='low_priority')
elif guess in ['application/gzip', 'application/x-gzip']:
return decompress_task.si(iri, 'gzip').apply_async(queue='low_priority')
else:
try:
store_content(iri, r, red)
except SizeException:
log.warn(f'File is too large: {iri}')
raise
else:
pipeline = group(index.si(iri, guess), analyze.si(iri, guess))
if is_prio:
return pipeline.apply_async(queue='high_priority')
return pipeline.apply_async()
except:
log.exception(f'Failed to get {iri!s}')
red.sadd('stat:failed', str(iri))
red.sadd('purgeable', 'stat:failed')
return |
Python | def guess_format(iri, r, log, red):
"""
Guess format of the distribution.
Skip if not known 5* distribution format.
"""
guess = rdflib.util.guess_format(iri)
if guess is None:
guess = r.headers.get('content-type').split(';')[0]
monitor.log_format(str(guess))
log.info(f'Guessing format to be {guess!s}')
priority = set(['hturtle', 'n3', 'nquads', 'nt',
'trix', 'trig', 'turtle', 'xml', 'json-ld',
'application/x-7z-compressed', 'application/rdf+xml',
'application/ld+json', 'application/rss+xml'])
regular = set(['text/xml', 'application/json',
'application/gzip', 'application/x-zip-compressed',
'application/zip', 'text/plain',
'application/x-gzip'])
if guess not in priority.union(regular):
log.info(f'Skipping this distribution')
red.sadd('stat:skipped', str(iri))
red.sadd('purgeable', 'stat:skipped')
raise Skip()
return guess, (guess in priority) | def guess_format(iri, r, log, red):
"""
Guess format of the distribution.
Skip if not known 5* distribution format.
"""
guess = rdflib.util.guess_format(iri)
if guess is None:
guess = r.headers.get('content-type').split(';')[0]
monitor.log_format(str(guess))
log.info(f'Guessing format to be {guess!s}')
priority = set(['hturtle', 'n3', 'nquads', 'nt',
'trix', 'trig', 'turtle', 'xml', 'json-ld',
'application/x-7z-compressed', 'application/rdf+xml',
'application/ld+json', 'application/rss+xml'])
regular = set(['text/xml', 'application/json',
'application/gzip', 'application/x-zip-compressed',
'application/zip', 'text/plain',
'application/x-gzip'])
if guess not in priority.union(regular):
log.info(f'Skipping this distribution')
red.sadd('stat:skipped', str(iri))
red.sadd('purgeable', 'stat:skipped')
raise Skip()
return guess, (guess in priority) |
Python | def process_endpoint(iri): #Low priority as we are doing scan of all graphs in the endpoint
log = logging.getLogger(__name__)
"""Index and analyze triples in the endpoint."""
key = root_name[KeyRoot.ENDPOINTS]
red = process_endpoint.redis
red.sadd('purgeable', key)
if red.sadd(key, iri) > 0:
red.expire(key, expiration[KeyRoot.ENDPOINTS])
a = SparqlEndpointAnalyzer()
tasks = []
for g in a.get_graphs_from_endpoint(iri):
key = graph(iri)
red.sadd('purgeable', key)
if red.sadd(key, g) > 0:
# this is to prevent repeated processing of a graph (same as distributions)
# and also for analysis query
tasks.append(index_named.si(iri, g))
tasks.append(analyze_named.si(iri, g))
red.expire(key, expiration[KeyRoot.GRAPHS])
return group(tasks).apply_async(queue='low_priority')
log.debug(f'Skipping endpoint as it was recently analyzed: {iri!s}') | def process_endpoint(iri): #Low priority as we are doing scan of all graphs in the endpoint
log = logging.getLogger(__name__)
"""Index and analyze triples in the endpoint."""
key = root_name[KeyRoot.ENDPOINTS]
red = process_endpoint.redis
red.sadd('purgeable', key)
if red.sadd(key, iri) > 0:
red.expire(key, expiration[KeyRoot.ENDPOINTS])
a = SparqlEndpointAnalyzer()
tasks = []
for g in a.get_graphs_from_endpoint(iri):
key = graph(iri)
red.sadd('purgeable', key)
if red.sadd(key, g) > 0:
# this is to prevent repeated processing of a graph (same as distributions)
# and also for analysis query
tasks.append(index_named.si(iri, g))
tasks.append(analyze_named.si(iri, g))
red.expire(key, expiration[KeyRoot.GRAPHS])
return group(tasks).apply_async(queue='low_priority')
log.debug(f'Skipping endpoint as it was recently analyzed: {iri!s}') |
Python | def decompress_7z(iri, r, red):
"""Download a 7z file, decompress it and store contents in redis."""
data = load_data(iri, r)
log = logging.getLogger(__name__)
expiration = expire_table[KeyRoot.DATA]
deco_size_total = 0
with libarchive.memory_reader(data) as archive:
for entry in archive:
try:
name = str(entry)
except:
name = str(uuid.uuid4())
if len(name) == 0:
if iri.endswith('.zip'):
sub_iri = iri[:-4]
else:
sub_iri = f'{iri}/{name}'
log.error(f'Empty name, iri: {iri!s}')
else:
sub_iri = f'{iri}/{name}'
sub_key = data_key(sub_iri)
log.debug(f'Store {name} into {sub_key}')
conlen = 0
if not red.exists(sub_key):
red.sadd('purgeable', sub_key)
for block in entry.get_blocks():
if len(block) + conlen > MAX_CONTENT_LENGTH:
# Will fail due to redis limitation
red.expire(sub_key, 0)
raise SizeException(name)
red.append(sub_key, block)
conlen = conlen + len(block)
red.expire(sub_key, expiration)
monitor.log_size(conlen)
log.debug(f'Subfile has size {conlen}')
deco_size_total = deco_size_total + conlen
else:
log.warn(f'Data already exists for {sub_iri}')
if conlen > 0:
yield sub_iri
log.debug(f'Done decompression, total decompressed size {deco_size_total}') | def decompress_7z(iri, r, red):
"""Download a 7z file, decompress it and store contents in redis."""
data = load_data(iri, r)
log = logging.getLogger(__name__)
expiration = expire_table[KeyRoot.DATA]
deco_size_total = 0
with libarchive.memory_reader(data) as archive:
for entry in archive:
try:
name = str(entry)
except:
name = str(uuid.uuid4())
if len(name) == 0:
if iri.endswith('.zip'):
sub_iri = iri[:-4]
else:
sub_iri = f'{iri}/{name}'
log.error(f'Empty name, iri: {iri!s}')
else:
sub_iri = f'{iri}/{name}'
sub_key = data_key(sub_iri)
log.debug(f'Store {name} into {sub_key}')
conlen = 0
if not red.exists(sub_key):
red.sadd('purgeable', sub_key)
for block in entry.get_blocks():
if len(block) + conlen > MAX_CONTENT_LENGTH:
# Will fail due to redis limitation
red.expire(sub_key, 0)
raise SizeException(name)
red.append(sub_key, block)
conlen = conlen + len(block)
red.expire(sub_key, expiration)
monitor.log_size(conlen)
log.debug(f'Subfile has size {conlen}')
deco_size_total = deco_size_total + conlen
else:
log.warn(f'Data already exists for {sub_iri}')
if conlen > 0:
yield sub_iri
log.debug(f'Done decompression, total decompressed size {deco_size_total}') |
Python | def cleanup_endpoint():
"""Clean any purgeable records, Flask cache and possibly also stats."""
extra = ['purgeable']
stats = 'stats' in request.args
if stats:
extra.extend(Monitor.KEYS)
cleanup.si(current_app.config['CACHE_KEY_PREFIX'], extra).apply_async(queue='low_priority').get()
return 'OK' | def cleanup_endpoint():
"""Clean any purgeable records, Flask cache and possibly also stats."""
extra = ['purgeable']
stats = 'stats' in request.args
if stats:
extra.extend(Monitor.KEYS)
cleanup.si(current_app.config['CACHE_KEY_PREFIX'], extra).apply_async(queue='low_priority').get()
return 'OK' |
Python | def system_check():
"""Runs an availability test of additional systems.
Tested are: redis.
"""
log = logging.getLogger(__name__)
log.info('System check started')
log.info(f'Testing redis')
red = redis.Redis(connection_pool=redis_pool)
red.ping()
log.info('System check successful') | def system_check():
"""Runs an availability test of additional systems.
Tested are: redis.
"""
log = logging.getLogger(__name__)
log.info('System check started')
log.info(f'Testing redis')
red = redis.Redis(connection_pool=redis_pool)
red.ping()
log.info('System check successful') |
Python | def process_graph(self, endpoint, graph_iri):
"""Extract DCAT datasets from the given named graph of an endpoint."""
log = logging.getLogger(__name__)
if not rfc3987.match(endpoint):
log.warn(f'{endpoint!s} is not a valid endpoint URL')
return None
if not rfc3987.match(graph_iri):
log.warn(f'{graph_iri!s} is not a valid graph URL')
return None
g = Graph(store='SPARQLStore', identifier=graph_iri)
g.open(endpoint)
result = Graph()
for s, p, o in g.query(self.__query(endpoint, graph_iri)):
result.add( (s, p, o) )
return result | def process_graph(self, endpoint, graph_iri):
"""Extract DCAT datasets from the given named graph of an endpoint."""
log = logging.getLogger(__name__)
if not rfc3987.match(endpoint):
log.warn(f'{endpoint!s} is not a valid endpoint URL')
return None
if not rfc3987.match(graph_iri):
log.warn(f'{graph_iri!s} is not a valid graph URL')
return None
g = Graph(store='SPARQLStore', identifier=graph_iri)
g.open(endpoint)
result = Graph()
for s, p, o in g.query(self.__query(endpoint, graph_iri)):
result.add( (s, p, o) )
return result |
Python | def inspect_catalog(key):
"""Analyze DCAT datasets listed in the catalog."""
log = logging.getLogger(__name__)
red = inspect_catalog.redis
log.debug('Parsing graph')
try:
g = rdflib.ConjunctiveGraph()
g.parse(data=red.get(key), format='n3')
red.delete(key)
except rdflib.plugin.PluginException:
log.debug('Failed to parse graph')
return None
return _dcat_extractor(g, red, log) | def inspect_catalog(key):
"""Analyze DCAT datasets listed in the catalog."""
log = logging.getLogger(__name__)
red = inspect_catalog.redis
log.debug('Parsing graph')
try:
g = rdflib.ConjunctiveGraph()
g.parse(data=red.get(key), format='n3')
red.delete(key)
except rdflib.plugin.PluginException:
log.debug('Failed to parse graph')
return None
return _dcat_extractor(g, red, log) |
Python | def store_analysis(results, iri):
"""Store results of the analysis in redis."""
red = store_analysis.redis
# results ... list of strings (json.dumps())
if len(results) > 0:
store = json.dumps({'analysis': [json.loads(x) for x in results if ((x is not None) and (len(x) > 0))], 'iri': iri})
else:
red.delete(data_key(iri))
return
key_result = analysis_dataset(iri)
with red.pipeline() as pipe:
pipe.set(key_result, store)
pipe.sadd('purgeable', key_result)
pipe.expire(key_result, expiration[KeyRoot.ANALYSIS])
pipe.delete(data_key(iri)) # trash original content (index doesn't need it?)
pipe.execute() | def store_analysis(results, iri):
"""Store results of the analysis in redis."""
red = store_analysis.redis
# results ... list of strings (json.dumps())
if len(results) > 0:
store = json.dumps({'analysis': [json.loads(x) for x in results if ((x is not None) and (len(x) > 0))], 'iri': iri})
else:
red.delete(data_key(iri))
return
key_result = analysis_dataset(iri)
with red.pipeline() as pipe:
pipe.set(key_result, store)
pipe.sadd('purgeable', key_result)
pipe.expire(key_result, expiration[KeyRoot.ANALYSIS])
pipe.delete(data_key(iri)) # trash original content (index doesn't need it?)
pipe.execute() |
Python | def run_one_analyzer(analyzer_token, key, format_guess):
"""Run one analyzer identified by its token."""
log = logging.getLogger(__name__)
analyzer = get_analyzer(analyzer_token)
try:
g = rdflib.ConjunctiveGraph()
log.debug('Parsing graph')
red = run_one_analyzer.redis
g.parse(data=red.get(key), format=format_guess)
return json.dumps({analyzer_token: analyzer.analyze(g)})
except (rdflib.plugin.PluginException, UnicodeDecodeError):
log.debug('Failed to parse graph')
except ValueError:
log.exception(f'Missing data, key: {key}, analyzer: {analyzer_token}, format: {format_guess}')
return None | def run_one_analyzer(analyzer_token, key, format_guess):
"""Run one analyzer identified by its token."""
log = logging.getLogger(__name__)
analyzer = get_analyzer(analyzer_token)
try:
g = rdflib.ConjunctiveGraph()
log.debug('Parsing graph')
red = run_one_analyzer.redis
g.parse(data=red.get(key), format=format_guess)
return json.dumps({analyzer_token: analyzer.analyze(g)})
except (rdflib.plugin.PluginException, UnicodeDecodeError):
log.debug('Failed to parse graph')
except ValueError:
log.exception(f'Missing data, key: {key}, analyzer: {analyzer_token}, format: {format_guess}')
return None |
Python | def analyze_named(endpoint_iri, named_graph):
"""Analyze triples in a named graph of an endpoint."""
tokens = [it.token for it in AbstractAnalyzer.__subclasses__()]
tasks = [run_one_named_analyzer.si(token, endpoint_iri, named_graph) for token in tokens]
return chord(tasks)(store_named_analysis.si(endpoint_iri, named_graph)) | def analyze_named(endpoint_iri, named_graph):
"""Analyze triples in a named graph of an endpoint."""
tokens = [it.token for it in AbstractAnalyzer.__subclasses__()]
tasks = [run_one_named_analyzer.si(token, endpoint_iri, named_graph) for token in tokens]
return chord(tasks)(store_named_analysis.si(endpoint_iri, named_graph)) |
Python | def run_one_named_analyzer(token, endpoint_iri, named_graph):
"""Run an analyzer identified by its token on a triples in a named graph of an endpoint."""
g = rdflib.Graph(store='SPARQLStore', identifier=named_graph)
g.open(endpoint_iri)
a = get_analyzer(token)
return json.dumps({token: a.analyze(g)}) | def run_one_named_analyzer(token, endpoint_iri, named_graph):
"""Run an analyzer identified by its token on a triples in a named graph of an endpoint."""
g = rdflib.Graph(store='SPARQLStore', identifier=named_graph)
g.open(endpoint_iri)
a = get_analyzer(token)
return json.dumps({token: a.analyze(g)}) |
Python | def store_named_analysis(results, endpoint_iri, named_graph):
"""Store results of the analysis in redis."""
red = store_named_analysis.redis
key = analysis_endpoint(endpoint_iri, named_graph)
if len(results) > 0:
store = json.dumps({
'analysis': [json.loads(x) for x in results if ((x is not None) and (len(x) > 0))],
'endpoint': endpoint_iri,
'graph': named_graph
})
with red.pipeline() as pipe:
pipe.sadd('purgeable', key)
pipe.set(key, store)
pipe.expire(key, expiration[KeyRoot.ANALYSIS])
pipe.execute() | def store_named_analysis(results, endpoint_iri, named_graph):
"""Store results of the analysis in redis."""
red = store_named_analysis.redis
key = analysis_endpoint(endpoint_iri, named_graph)
if len(results) > 0:
store = json.dumps({
'analysis': [json.loads(x) for x in results if ((x is not None) and (len(x) > 0))],
'endpoint': endpoint_iri,
'graph': named_graph
})
with red.pipeline() as pipe:
pipe.sadd('purgeable', key)
pipe.set(key, store)
pipe.expire(key, expiration[KeyRoot.ANALYSIS])
pipe.execute() |
Python | def index_distribution_query(iri):
"""Query the index and construct related datasets for the iri of a distribution.
Final result is stored in redis.
"""
red = redis.Redis(connection_pool=redis_pool)
#if not missing(iri, red):
# return
related_ds = json.loads(red.get('relatedds'))
current_dataset = red.hget('distrds', iri)
for rel_type in reltypes:
to_delete = []
for token in related_ds[rel_type].keys():
if current_dataset in related_ds[rel_type][token]:
related_ds[rel_type][token].remove(current_dataset)
else:
to_delete.append(token)
for token in to_delete:
del related_ds[rel_type][token]
exp = EXPIRATION_CACHED # 30D
key = f'distrquery:{current_dataset}'
with red.pipeline() as pipe:
pipe.set(key, json.dumps(related_ds))
pipe.sadd('purgeable', key)
pipe.expire(key, exp)
pipe.execute() | def index_distribution_query(iri):
"""Query the index and construct related datasets for the iri of a distribution.
Final result is stored in redis.
"""
red = redis.Redis(connection_pool=redis_pool)
#if not missing(iri, red):
# return
related_ds = json.loads(red.get('relatedds'))
current_dataset = red.hget('distrds', iri)
for rel_type in reltypes:
to_delete = []
for token in related_ds[rel_type].keys():
if current_dataset in related_ds[rel_type][token]:
related_ds[rel_type][token].remove(current_dataset)
else:
to_delete.append(token)
for token in to_delete:
del related_ds[rel_type][token]
exp = EXPIRATION_CACHED # 30D
key = f'distrquery:{current_dataset}'
with red.pipeline() as pipe:
pipe.set(key, json.dumps(related_ds))
pipe.sadd('purgeable', key)
pipe.expire(key, exp)
pipe.execute() |
Python | def retrieve_size_stats(red):
"""Load sizes from redis and calculate some stats about it."""
lst = sorted([int(x) for x in red.lrange('stat:size', 0, -1)])
try:
mode = statistics.mode(lst)
except statistics.StatisticsError:
mode = None
try:
mean = statistics.mean(lst)
except statistics.StatisticsError:
mean = None
try:
stdev = statistics.stdev(lst, mean)
except statistics.StatisticsError:
stdev = None
try:
var = statistics.variance(lst, mean)
except statistics.StatisticsError:
var = None
try:
minimum = min(lst)
except ValueError:
minimum = None
try:
maximum = max(lst)
except ValueError:
maximum = None
return {
'min': convert_size(minimum),
'max': convert_size(maximum),
'mean': convert_size(mean),
'mode': convert_size(mode),
'stdev': convert_size(stdev),
'var': var
} | def retrieve_size_stats(red):
"""Load sizes from redis and calculate some stats about it."""
lst = sorted([int(x) for x in red.lrange('stat:size', 0, -1)])
try:
mode = statistics.mode(lst)
except statistics.StatisticsError:
mode = None
try:
mean = statistics.mean(lst)
except statistics.StatisticsError:
mean = None
try:
stdev = statistics.stdev(lst, mean)
except statistics.StatisticsError:
stdev = None
try:
var = statistics.variance(lst, mean)
except statistics.StatisticsError:
var = None
try:
minimum = min(lst)
except ValueError:
minimum = None
try:
maximum = max(lst)
except ValueError:
maximum = None
return {
'min': convert_size(minimum),
'max': convert_size(maximum),
'mean': convert_size(mean),
'mode': convert_size(mode),
'stdev': convert_size(stdev),
'var': var
} |
Python | def sync_chat(request, chat_id):
"""
View checks new messages for the logged in user within a Chat
session with a given chat_id, renders them and returnes as
a JSON encoded list.
"""
chat = get_object_or_404(Chat, id=chat_id)
# We store last sync timestamp to make sure the user recieves
# all the messages since the last sync.
now = datetime.now()
timestamp = request.session.get(chat_id, now)
request.session[chat_id] = now
messages = chat.messages.exclude(author=request.user).filter(created__gt=timestamp)
return json_response(map(lambda message: render_to(request,
"im/message.html",
{"message": message}),
messages)) | def sync_chat(request, chat_id):
"""
View checks new messages for the logged in user within a Chat
session with a given chat_id, renders them and returnes as
a JSON encoded list.
"""
chat = get_object_or_404(Chat, id=chat_id)
# We store last sync timestamp to make sure the user recieves
# all the messages since the last sync.
now = datetime.now()
timestamp = request.session.get(chat_id, now)
request.session[chat_id] = now
messages = chat.messages.exclude(author=request.user).filter(created__gt=timestamp)
return json_response(map(lambda message: render_to(request,
"im/message.html",
{"message": message}),
messages)) |
Python | def send_message(request, chat_id):
"""
View sends message from the logged in user to the Chat session
with a given chat_id and returns a JSON encoded hash code for
the newly created message.
"""
chat = get_object_or_404(Chat, id=chat_id)
text, event = request.POST.get("text"), request.POST.get("event", "")
if text or event.isdigit():
try:
event = int(event)
except ValueError:
event = None
message = Message(chat=chat,
author=request.user,
text=text,
event=event,
created=datetime.now())
message.save()
return json_response(render_to(request,
"im/message.html",
{"message": message}))
# If there's no text to send or POST data contains a non-digit
# event code (which is irrelevant, because EVENT_CHOICES should
# be a list), or send() didn't return a hash code, the response
# is HttpResponseBadRequest.
return HttpResponseBadRequest("Empty message or unknown event code.") | def send_message(request, chat_id):
"""
View sends message from the logged in user to the Chat session
with a given chat_id and returns a JSON encoded hash code for
the newly created message.
"""
chat = get_object_or_404(Chat, id=chat_id)
text, event = request.POST.get("text"), request.POST.get("event", "")
if text or event.isdigit():
try:
event = int(event)
except ValueError:
event = None
message = Message(chat=chat,
author=request.user,
text=text,
event=event,
created=datetime.now())
message.save()
return json_response(render_to(request,
"im/message.html",
{"message": message}))
# If there's no text to send or POST data contains a non-digit
# event code (which is irrelevant, because EVENT_CHOICES should
# be a list), or send() didn't return a hash code, the response
# is HttpResponseBadRequest.
return HttpResponseBadRequest("Empty message or unknown event code.") |
Python | def sync_chatbox(request, target):
"""
Depending on the target argument value, the view either returns
new chat requests for the logged in user or a list of online users,
provided by the useractivity app.
"""
if target == "chat_requests":
now = datetime.now()
# Checking for the timestamp in session data, explanations
# are below.
timestamp = request.session.get("im:chat_requests:sync", now)
chat_requests = ChatRequest.objects.incoming(request.user,
timestamp,)
data = map(lambda chat_request: render_to(request,
"im/chat_request.html",
{"chat_request": chat_request}),
chat_requests)
# Saving last check timestamp in session data, so we can later
# determine which requests were already sent to the browser.
request.session["im:chat_requests:sync"] = now
elif target == "online_users":
friends = friend_set_for(request.user)
online_users = get_online_users()
if request.user in online_users:
online_users.remove(request.user)
online_friends = online_users & friends
online_others = online_users - friends
data = render_to(request,
"im/userlist.html",
{"friends": online_friends,
"others": online_others})
return json_response(data) | def sync_chatbox(request, target):
"""
Depending on the target argument value, the view either returns
new chat requests for the logged in user or a list of online users,
provided by the useractivity app.
"""
if target == "chat_requests":
now = datetime.now()
# Checking for the timestamp in session data, explanations
# are below.
timestamp = request.session.get("im:chat_requests:sync", now)
chat_requests = ChatRequest.objects.incoming(request.user,
timestamp,)
data = map(lambda chat_request: render_to(request,
"im/chat_request.html",
{"chat_request": chat_request}),
chat_requests)
# Saving last check timestamp in session data, so we can later
# determine which requests were already sent to the browser.
request.session["im:chat_requests:sync"] = now
elif target == "online_users":
friends = friend_set_for(request.user)
online_users = get_online_users()
if request.user in online_users:
online_users.remove(request.user)
online_friends = online_users & friends
online_others = online_users - friends
data = render_to(request,
"im/userlist.html",
{"friends": online_friends,
"others": online_others})
return json_response(data) |
Python | def request_chat(request, user_id):
"""
View creates a chat request from the logged in user to the
user with a given id. If there's an active request for this
pair of users, the view raises bad request, else json encoded
success message is returned.
"""
kwargs = {"user_to": get_object_or_404(User, id=user_id),
"user_from": request.user}
if not ChatRequest.objects.sent(**kwargs):
chat_request = ChatRequest(created=datetime.now(), **kwargs)
chat_request.save()
return json_response(render_to(request,
"im/chat_request.html",
{"chat_request": chat_request}))
return HttpResponseBadRequest("Duplicate request.") | def request_chat(request, user_id):
"""
View creates a chat request from the logged in user to the
user with a given id. If there's an active request for this
pair of users, the view raises bad request, else json encoded
success message is returned.
"""
kwargs = {"user_to": get_object_or_404(User, id=user_id),
"user_from": request.user}
if not ChatRequest.objects.sent(**kwargs):
chat_request = ChatRequest(created=datetime.now(), **kwargs)
chat_request.save()
return json_response(render_to(request,
"im/chat_request.html",
{"chat_request": chat_request}))
return HttpResponseBadRequest("Duplicate request.") |
Python | def accept_chat(request, chat_request_id):
"""
View accepts chat request with a given id, creates a Chat instance
for chat request sender and reciever and returns a json encoded url
for the newly created chatroom.
"""
chat_request = get_object_or_404(ChatRequest, id=chat_request_id)
chat_request.accept()
chat = Chat(request=chat_request,
created=datetime.now())
chat.save()
chat.users.add(chat_request.user_to,
chat_request.user_from)
return json_response(reverse("im_show_chat", args=[chat.id])) | def accept_chat(request, chat_request_id):
"""
View accepts chat request with a given id, creates a Chat instance
for chat request sender and reciever and returns a json encoded url
for the newly created chatroom.
"""
chat_request = get_object_or_404(ChatRequest, id=chat_request_id)
chat_request.accept()
chat = Chat(request=chat_request,
created=datetime.now())
chat.save()
chat.users.add(chat_request.user_to,
chat_request.user_from)
return json_response(reverse("im_show_chat", args=[chat.id])) |
Python | def decline_chat(request, chat_request_id):
"""
View declines chat requets with a given id and returns an empty
response.
"""
chat_request = get_object_or_404(ChatRequest, id=chat_request_id)
chat_request.decline()
return json_response() | def decline_chat(request, chat_request_id):
"""
View declines chat requets with a given id and returns an empty
response.
"""
chat_request = get_object_or_404(ChatRequest, id=chat_request_id)
chat_request.decline()
return json_response() |
Python | def emoticons(value):
"""
Filter substitutes all text emoticons by the appropriate images.
For the filter to work you need three variables set in settings.py
* IM_EMOTICONS_ROOT: absolute path to the directory with emoticons
* IM_EMOTICONS_URL: relative url for the directory with emoticons
* IM_EMOTICONS_THEME: a name of the theme directory, which must contain
an __init__.py file.
More detailed description can be found in
"""
for name, pattern in IM_EMOTICONS_THEME.iteritems():
value = pattern.sub(
lambda match: IM_EMOTICONS_TEMPLATE % (name, match.group()), value)
return value | def emoticons(value):
"""
Filter substitutes all text emoticons by the appropriate images.
For the filter to work you need three variables set in settings.py
* IM_EMOTICONS_ROOT: absolute path to the directory with emoticons
* IM_EMOTICONS_URL: relative url for the directory with emoticons
* IM_EMOTICONS_THEME: a name of the theme directory, which must contain
an __init__.py file.
More detailed description can be found in
"""
for name, pattern in IM_EMOTICONS_THEME.iteritems():
value = pattern.sub(
lambda match: IM_EMOTICONS_TEMPLATE % (name, match.group()), value)
return value |
Python | def incoming(self, user, timestamp):
"""
Method returns a list of incoming chat requests for a given
user, created after the given timestamp. This includes:
* chat requests, sent by a given user, either accepter or
declined,
* chat requests, sent to a given user from other users.
"""
return self.get_query_set().filter(
models.Q(created__gt=timestamp) & (
models.Q(user_from=user,
state__in=[STATE_ACCEPTED, STATE_DECLINED]) |
models.Q(user_to=user, state=STATE_SENT))
) | def incoming(self, user, timestamp):
"""
Method returns a list of incoming chat requests for a given
user, created after the given timestamp. This includes:
* chat requests, sent by a given user, either accepter or
declined,
* chat requests, sent to a given user from other users.
"""
return self.get_query_set().filter(
models.Q(created__gt=timestamp) & (
models.Q(user_from=user,
state__in=[STATE_ACCEPTED, STATE_DECLINED]) |
models.Q(user_to=user, state=STATE_SENT))
) |
Python | def sent(self, **kwargs):
"""
Method returns a list of active chat requests, which don't have
a related chat attached. A chat request is considered active
if it is created within the expiration interval, defined by
IM_REQUESTS_EXPIRE_IN option in the settings module.
"""
timestamp = datetime.now() - settings.IM_REQUESTS_EXPIRE_IN
return self.get_query_set().filter(state=STATE_SENT,
created__gt=timestamp,
chat=None, **kwargs) | def sent(self, **kwargs):
"""
Method returns a list of active chat requests, which don't have
a related chat attached. A chat request is considered active
if it is created within the expiration interval, defined by
IM_REQUESTS_EXPIRE_IN option in the settings module.
"""
timestamp = datetime.now() - settings.IM_REQUESTS_EXPIRE_IN
return self.get_query_set().filter(state=STATE_SENT,
created__gt=timestamp,
chat=None, **kwargs) |
Python | def run(self):
"""Run method that performs all the real work"""
# Create the dialog with elements (after translation) and keep reference
# Only create GUI ONCE in callback, so that it will only load when the plugin is started
if self.first_start == True:
self.first_start = False
self.dlg = Nuevo_nidoDialog()
self.dlg.cmbnido.currentTextChanged.connect(self.event_estadochange)
mapa = self.iface.mapCanvas()
self.dlg.spbcoorx.setValue(mapa.center().x())
self.dlg.spbcoory.setValue(mapa.center().y())
self.dlg.QTDate.setDate(QDate.currentDate())
capas_formulario = []
for lyr in mapa.layers():
capas_formulario.append(lyr.name())
capas_faltantes = []
if not "Avistamientos" in capas_formulario:
capas_faltantes.append("Avistamientos")
if not "Buffer Nidos" in capas_formulario:
capas_faltantes.append("Buffer Nidos")
if capas_faltantes:
msg = "Faltan las siguientes capas en el proyecto para seguir"
for lyrs in capas_faltantes:
msg += f"\n {lyrs}"
QMessageBox.critical(self.dlg,"capas faltantes" , msg)
return
QMessageBox.information(self.dlg,"Mensaje","Esto debe correr siempre")
# show the dialog
self.dlg.show()
# Run the dialog event loop
result = self.dlg.exec_()
# See if OK was pressed
if result:
# Do something useful here - delete the line containing pass and
# substitute with your code.
QMessageBox.information(self.dlg,"Mensaje","Esto debe correr una vez si presiona ok")
lry_avistamientos = QgsProject.instance().mapLayersByName("Avistamientos")[0]
lry_buffers = QgsProject.instance().mapLayersByName("Buffer Nidos")[0]
lry_buffer_lineal = QgsProject.instance().mapLayersByName("Buffer Lineal")[0]
indice = lry_avistamientos.fields().indexOf("nidoID")
indice_max = lry_avistamientos.maximumValue(indice) + 1
coorx = self.dlg.spbcoorx.value()
coory = self.dlg.spbcoory.value()
valor_especie = self.dlg.cmbespecie.currentText()
valor_nido = self.dlg.cmbnido.currentText()
valor_buffer = self.dlg.spbbuffer.value()
valor_fecha = self.dlg.QTDate.date()
feature_nido = QgsFeature(lry_avistamientos.fields())
feature_nido.setAttribute( "id" ,indice_max)
feature_nido.setAttribute( "coord_x",coorx)
feature_nido.setAttribute( "coord_y",coory)
feature_nido.setAttribute( "fecha",valor_fecha)
feature_nido.setAttribute( "especie",valor_especie)
feature_nido.setAttribute( "estado",valor_nido)
feature_nido.setAttribute( "dist_buf",valor_buffer)
feature_nido.setAttribute( "nidoID",indice_max)
geom = QgsGeometry(QgsPoint(coorx,coory))
feature_nido.setGeometry(geom)
pr = lry_avistamientos.dataProvider()
pr.addFeatures([feature_nido])
lry_avistamientos.reload()
pr = lry_buffers.dataProvider()
buffer = geom.buffer(valor_buffer,10)
feature_nido.setGeometry(buffer)
pr.addFeatures([feature_nido])
lry_buffers.reload()
tabla_impactos = tabla_dialog()
bb = buffer.boundingBox()
lineal = lry_buffer_lineal.getFeatures(bb)
for linea in lineal:
idvar = linea.attribute("Proyecto")
idtipo = linea.attribute("Tipo")
idbuffer = linea.geometry().distance(geom)
if idbuffer < valor_buffer:
fila = tabla_impactos.tbl_impactos.rowCount()
tabla_impactos.tbl_impactos.insertRow(fila)
tabla_impactos.tbl_impactos.setItem(fila,0,QTableWidgetItem(str(idvar)))
tabla_impactos.tbl_impactos.setItem(fila,1,QTableWidgetItem(idtipo))
tabla_impactos.tbl_impactos.setItem(fila,2,QTableWidgetItem(f"{idbuffer:.2f}"))
tabla_impactos.tbl_impactos.sortItems(2)
tabla_impactos.show()
tabla_impactos.exec_()
else:
QMessageBox.information(self.dlg,"Mensaje","Esto debe correr una vez si presiona cancel o exit") | def run(self):
"""Run method that performs all the real work"""
# Create the dialog with elements (after translation) and keep reference
# Only create GUI ONCE in callback, so that it will only load when the plugin is started
if self.first_start == True:
self.first_start = False
self.dlg = Nuevo_nidoDialog()
self.dlg.cmbnido.currentTextChanged.connect(self.event_estadochange)
mapa = self.iface.mapCanvas()
self.dlg.spbcoorx.setValue(mapa.center().x())
self.dlg.spbcoory.setValue(mapa.center().y())
self.dlg.QTDate.setDate(QDate.currentDate())
capas_formulario = []
for lyr in mapa.layers():
capas_formulario.append(lyr.name())
capas_faltantes = []
if not "Avistamientos" in capas_formulario:
capas_faltantes.append("Avistamientos")
if not "Buffer Nidos" in capas_formulario:
capas_faltantes.append("Buffer Nidos")
if capas_faltantes:
msg = "Faltan las siguientes capas en el proyecto para seguir"
for lyrs in capas_faltantes:
msg += f"\n {lyrs}"
QMessageBox.critical(self.dlg,"capas faltantes" , msg)
return
QMessageBox.information(self.dlg,"Mensaje","Esto debe correr siempre")
# show the dialog
self.dlg.show()
# Run the dialog event loop
result = self.dlg.exec_()
# See if OK was pressed
if result:
# Do something useful here - delete the line containing pass and
# substitute with your code.
QMessageBox.information(self.dlg,"Mensaje","Esto debe correr una vez si presiona ok")
lry_avistamientos = QgsProject.instance().mapLayersByName("Avistamientos")[0]
lry_buffers = QgsProject.instance().mapLayersByName("Buffer Nidos")[0]
lry_buffer_lineal = QgsProject.instance().mapLayersByName("Buffer Lineal")[0]
indice = lry_avistamientos.fields().indexOf("nidoID")
indice_max = lry_avistamientos.maximumValue(indice) + 1
coorx = self.dlg.spbcoorx.value()
coory = self.dlg.spbcoory.value()
valor_especie = self.dlg.cmbespecie.currentText()
valor_nido = self.dlg.cmbnido.currentText()
valor_buffer = self.dlg.spbbuffer.value()
valor_fecha = self.dlg.QTDate.date()
feature_nido = QgsFeature(lry_avistamientos.fields())
feature_nido.setAttribute( "id" ,indice_max)
feature_nido.setAttribute( "coord_x",coorx)
feature_nido.setAttribute( "coord_y",coory)
feature_nido.setAttribute( "fecha",valor_fecha)
feature_nido.setAttribute( "especie",valor_especie)
feature_nido.setAttribute( "estado",valor_nido)
feature_nido.setAttribute( "dist_buf",valor_buffer)
feature_nido.setAttribute( "nidoID",indice_max)
geom = QgsGeometry(QgsPoint(coorx,coory))
feature_nido.setGeometry(geom)
pr = lry_avistamientos.dataProvider()
pr.addFeatures([feature_nido])
lry_avistamientos.reload()
pr = lry_buffers.dataProvider()
buffer = geom.buffer(valor_buffer,10)
feature_nido.setGeometry(buffer)
pr.addFeatures([feature_nido])
lry_buffers.reload()
tabla_impactos = tabla_dialog()
bb = buffer.boundingBox()
lineal = lry_buffer_lineal.getFeatures(bb)
for linea in lineal:
idvar = linea.attribute("Proyecto")
idtipo = linea.attribute("Tipo")
idbuffer = linea.geometry().distance(geom)
if idbuffer < valor_buffer:
fila = tabla_impactos.tbl_impactos.rowCount()
tabla_impactos.tbl_impactos.insertRow(fila)
tabla_impactos.tbl_impactos.setItem(fila,0,QTableWidgetItem(str(idvar)))
tabla_impactos.tbl_impactos.setItem(fila,1,QTableWidgetItem(idtipo))
tabla_impactos.tbl_impactos.setItem(fila,2,QTableWidgetItem(f"{idbuffer:.2f}"))
tabla_impactos.tbl_impactos.sortItems(2)
tabla_impactos.show()
tabla_impactos.exec_()
else:
QMessageBox.information(self.dlg,"Mensaje","Esto debe correr una vez si presiona cancel o exit") |
Python | def pprint(*s, output=True):
"""Hack to make for more informative print statements."""
f = inspect.stack()[1][1].split('/')[-1]
m = '{:13.13} |'.format(f)
if output:
print(m, *s)
else:
lines = []
for e in s:
line = [str(m) + ' ' + str(f) for f in e.split('\n')]
lines.append('\n'.join(line))
return '\n'.join(lines) | def pprint(*s, output=True):
"""Hack to make for more informative print statements."""
f = inspect.stack()[1][1].split('/')[-1]
m = '{:13.13} |'.format(f)
if output:
print(m, *s)
else:
lines = []
for e in s:
line = [str(m) + ' ' + str(f) for f in e.split('\n')]
lines.append('\n'.join(line))
return '\n'.join(lines) |
Python | def radec_to_lb(ra, dec, frac=False):
"""
Convert from ra, dec to galactic coordinates.
Formulas from 'An Introduction to Modern Astrophysics (2nd Edition)' by
Bradley W. Carroll, Dale A. Ostlie (Eq. 24.16 onwards).
NOTE: This function is not as accurate as the astropy conversion, nor as
the Javascript calculators found online. However, as using astropy was
prohibitively slow while running over large populations, we use this
function. While this function is not as accurate, the under/over
estimations of the coordinates are equally distributed meaning the errors
cancel each other in the limit of large populations.
Args:
ra (string): Right ascension given in the form '19:06:53'
dec (string): Declination given in the form '-40:37:14'
frac (bool): Denote whether coordinates are already fractional or not
Returns:
gl, gb (float): Galactic longitude and latitude [fractional degrees]
"""
if not frac:
ra, dec = frac_deg(ra, dec)
a = np.radians(ra)
d = np.radians(dec)
# Coordinates of the galactic north pole (J2000)
a_ngp = np.radians(12.9406333 * 15.)
d_ngp = np.radians(27.1282500)
l_ngp = np.radians(123.9320000)
sd_ngp = np.sin(d_ngp)
cd_ngp = np.cos(d_ngp)
sd = np.sin(d)
cd = np.cos(d)
# Calculate galactic longitude
y = cd*np.sin(a - a_ngp)
x = cd_ngp*sd - sd_ngp*cd*np.cos(a - a_ngp)
gl = - np.arctan2(y, x) + l_ngp
gl = np.degrees(gl) % 360
# Shift so in range -180 to 180
if isinstance(gl, np.ndarray):
gl[gl > 180] = -(360 - gl[gl > 180])
else:
if gl > 180:
gl = -(360 - gl)
# Calculate galactic latitude
gb = np.arcsin(sd_ngp*sd + cd_ngp*cd*np.cos(a - a_ngp))
gb = np.degrees(gb) % 360
if isinstance(gb, np.ndarray):
gb[gb > 270] = -(360 - gb[gb > 270])
else:
if gb > 270:
gb = -(360 - gb)
return gl, gb | def radec_to_lb(ra, dec, frac=False):
"""
Convert from ra, dec to galactic coordinates.
Formulas from 'An Introduction to Modern Astrophysics (2nd Edition)' by
Bradley W. Carroll, Dale A. Ostlie (Eq. 24.16 onwards).
NOTE: This function is not as accurate as the astropy conversion, nor as
the Javascript calculators found online. However, as using astropy was
prohibitively slow while running over large populations, we use this
function. While this function is not as accurate, the under/over
estimations of the coordinates are equally distributed meaning the errors
cancel each other in the limit of large populations.
Args:
ra (string): Right ascension given in the form '19:06:53'
dec (string): Declination given in the form '-40:37:14'
frac (bool): Denote whether coordinates are already fractional or not
Returns:
gl, gb (float): Galactic longitude and latitude [fractional degrees]
"""
if not frac:
ra, dec = frac_deg(ra, dec)
a = np.radians(ra)
d = np.radians(dec)
# Coordinates of the galactic north pole (J2000)
a_ngp = np.radians(12.9406333 * 15.)
d_ngp = np.radians(27.1282500)
l_ngp = np.radians(123.9320000)
sd_ngp = np.sin(d_ngp)
cd_ngp = np.cos(d_ngp)
sd = np.sin(d)
cd = np.cos(d)
# Calculate galactic longitude
y = cd*np.sin(a - a_ngp)
x = cd_ngp*sd - sd_ngp*cd*np.cos(a - a_ngp)
gl = - np.arctan2(y, x) + l_ngp
gl = np.degrees(gl) % 360
# Shift so in range -180 to 180
if isinstance(gl, np.ndarray):
gl[gl > 180] = -(360 - gl[gl > 180])
else:
if gl > 180:
gl = -(360 - gl)
# Calculate galactic latitude
gb = np.arcsin(sd_ngp*sd + cd_ngp*cd*np.cos(a - a_ngp))
gb = np.degrees(gb) % 360
if isinstance(gb, np.ndarray):
gb[gb > 270] = -(360 - gb[gb > 270])
else:
if gb > 270:
gb = -(360 - gb)
return gl, gb |
Python | def url_to_df(self, url):
"""Convert a url of a JSON table to a Pandas DataFrame.
Args:
url (str): URL to the webpage
Returns:
DataFrame: DataFrame of JSON table
"""
try:
s = requests.get(url).content
f = io.StringIO(s.decode('utf-8'))
series = []
for entry in pd.read_json(f)['products']:
series.append(pd.Series(entry))
df = pd.concat(series, axis=1).T
return df
except ValueError:
pass | def url_to_df(self, url):
"""Convert a url of a JSON table to a Pandas DataFrame.
Args:
url (str): URL to the webpage
Returns:
DataFrame: DataFrame of JSON table
"""
try:
s = requests.get(url).content
f = io.StringIO(s.decode('utf-8'))
series = []
for entry in pd.read_json(f)['products']:
series.append(pd.Series(entry))
df = pd.concat(series, axis=1).T
return df
except ValueError:
pass |
Python | def urls_to_df(self, endings, url):
"""
Use Series to loop over multiple webpages.
Proceed to concatenate them to a single DataFrame
Args:
endings (iterables): The list/series/column over which to loop
url (str): The base url
Returns:
DataFrame
"""
dfs = []
for ending in endings:
full_url = str(url) + str(ending)
df = self.url_to_df(full_url)
if isinstance(df, pd.DataFrame):
dfs.append(df)
if dfs:
return pd.concat(dfs, ignore_index=True)
else:
return None | def urls_to_df(self, endings, url):
"""
Use Series to loop over multiple webpages.
Proceed to concatenate them to a single DataFrame
Args:
endings (iterables): The list/series/column over which to loop
url (str): The base url
Returns:
DataFrame
"""
dfs = []
for ending in endings:
full_url = str(url) + str(ending)
df = self.url_to_df(full_url)
if isinstance(df, pd.DataFrame):
dfs.append(df)
if dfs:
return pd.concat(dfs, ignore_index=True)
else:
return None |
Python | def filter(self,
one_offs=True,
repeaters=True,
repeat_bursts=False,
one_entry_per_frb=True):
"""Filter frbcat in various ways."""
if one_entry_per_frb is True:
# Only keep rows with the largest number of parameters
# so that only one row per detected FRB remains
self.df['count'] = self.df.count(axis=1)
self.df = self.df.sort_values('count', ascending=False)
self.df = self.df.drop_duplicates(subset=['utc'])
if one_offs is False:
# Only keep repeaters
self.df = self.df[self.df.duplicated(['frb_name'])]
if repeaters is False:
# Drops any repeater sources
self.df = self.df.drop_duplicates(subset=['frb_name'], keep=False)
if repeat_bursts is False:
# Only keeps one detection of repeaters
self.df = self.df.sort_values('utc')
self.df = self.df.drop_duplicates(subset=['frb_name'],
keep='first')
self.df = self.df.sort_index() | def filter(self,
one_offs=True,
repeaters=True,
repeat_bursts=False,
one_entry_per_frb=True):
"""Filter frbcat in various ways."""
if one_entry_per_frb is True:
# Only keep rows with the largest number of parameters
# so that only one row per detected FRB remains
self.df['count'] = self.df.count(axis=1)
self.df = self.df.sort_values('count', ascending=False)
self.df = self.df.drop_duplicates(subset=['utc'])
if one_offs is False:
# Only keep repeaters
self.df = self.df[self.df.duplicated(['frb_name'])]
if repeaters is False:
# Drops any repeater sources
self.df = self.df.drop_duplicates(subset=['frb_name'], keep=False)
if repeat_bursts is False:
# Only keeps one detection of repeaters
self.df = self.df.sort_values('utc')
self.df = self.df.drop_duplicates(subset=['frb_name'],
keep='first')
self.df = self.df.sort_index() |
Python | def forward(self, x, lengths):
"""
This is the heart of the model.
This function, defines how the data passes through the network.
Returns: the logits for each class
"""
#encode
# 1 - embed the words, using the embedding layer
embeddings = self.embedding(x)
# 2 - construct a sentence representation out of the word embeddings
representations = self.mean_pooling(embeddings, lengths)
# 3 - transform the representations to new ones.
representations = self.non_linearity1(representations)
# 4 - project the representations to classes using a linear layer
logits = self.classifier(representations) # EX6
return logits | def forward(self, x, lengths):
"""
This is the heart of the model.
This function, defines how the data passes through the network.
Returns: the logits for each class
"""
#encode
# 1 - embed the words, using the embedding layer
embeddings = self.embedding(x)
# 2 - construct a sentence representation out of the word embeddings
representations = self.mean_pooling(embeddings, lengths)
# 3 - transform the representations to new ones.
representations = self.non_linearity1(representations)
# 4 - project the representations to classes using a linear layer
logits = self.classifier(representations) # EX6
return logits |
Python | def forward(self, x, lengths):
"""
This is the heart of the model.
This function, defines how the data passes through the network.
Returns: the logits for each class
"""
#1 - embed the words, using the embedding layer
#Input: batch_size x seq_len x 1
#Output: batch_size x seq_len x embedding_dim
embeddings = self.embedding(x)
#####################
# 1o ερωτημα #
#####################
############1.1############### ΚΑΙ ΠΡΕΠΕΙ + self.classifier = nn.Linear(in_features = 40, out_features=output_size)
#representations_mean = self.mean_pooling(embeddings, lengths)
#representations_max = self.max_pooling(embeddings)
#representations = torch.cat((representations_mean,representations_max),1)
#representations = self.non_linearity1(representations)
############1.2###############
#representations_mean = self.mean_pooling(embeddings, lengths)
#representations = representations_mean
###########################
# 2o ερωτημα - LSTM #
###########################
############2.1##############
#Input: batch_size x seq_len x embedding_dim
#representations_LSTM: batch_size x seq_len x embedding_dim
#hn: batch_size x embedding_dim
#representations_LSTM, (hn, cn) = self.rnn(embeddings)
#Input: batch_size x seq_len x embedding_dim
#Output: batch_size x embedding_dim
#representations_LSTM = self.last_timestep(representations_LSTM,lengths)
#representations = representations_LSTM
############2.2############### + self.classifier = nn.Linear(in_features = 3*emb_dim, out_features=output_size)
#representations_LSTM, (hn, cn) = self.rnn(embeddings)
#representations_mean = self.mean_pooling(representations_LSTM, lengths)
#representations_max = self.max_pooling(representations_LSTM)
#representations_LSTM = self.last_timestep(representations_LSTM,lengths)
#representations = torch.cat((representations_mean,representations_max,representations_LSTM),1)
##############################
# 3o ερωτημα - Attention #
##############################
############3.1###############
#representations,attentions = self.attention(embeddings, lengths)
############3.2###############
#representations_LSTM, (hn, cn) = self.rnn(embeddings)
#representations, attentions = self.attention(representations_LSTM, lengths)
##############################
# 4o ερωτημα - Bidiractional #
##############################
############4.1############### +
#representations_LSTM, (hn, cn) = self.bi_rnn(embeddings)
#representations_mean = self.mean_pooling(representations_LSTM, lengths)
#representations_max = self.max_pooling(representations_LSTM)
#hidden_size = 20
#representations_LSTM_fw = representations_LSTM[:, :, :hidden_size]
#representations_LSTM_bw = representations_LSTM[:, :, hidden_size:]
#representations_LSTM_fw = self.last_timestep(representations_LSTM_fw,lengths)
#representations_LSTM_bw = self.last_timestep(representations_LSTM_bw,lengths)
#representations = torch.cat((representations_mean,representations_max,representations_LSTM_fw,representations_LSTM_bw),1)
############4.2############### + self.classifier = nn.Linear(in_features = 2*emb_dim, out_features=output_size)
hidden_size = 20
representations_LSTM, (hn, cn) = self.bi_rnn(embeddings)
representations_LSTM_fw = representations_LSTM[:, :, :hidden_size]
representations_LSTM_bw = representations_LSTM[:, :, hidden_size:]
representations_LSTM_fw,attentions_fw = self.attention(representations_LSTM_fw, lengths)
representations_LSTM_bw,attentions_bw = self.attention(representations_LSTM_bw, lengths)
representations = torch.cat((representations_LSTM_fw,representations_LSTM_bw),1)
# 4 - project the representations to classes using a linear layer
logits = self.classifier(representations) # EX6
#Input: batch_size x embedding_dim
#Output: batch_size x 3
return logits
#return logits, attentions | def forward(self, x, lengths):
"""
This is the heart of the model.
This function, defines how the data passes through the network.
Returns: the logits for each class
"""
#1 - embed the words, using the embedding layer
#Input: batch_size x seq_len x 1
#Output: batch_size x seq_len x embedding_dim
embeddings = self.embedding(x)
#####################
# 1o ερωτημα #
#####################
############1.1############### ΚΑΙ ΠΡΕΠΕΙ + self.classifier = nn.Linear(in_features = 40, out_features=output_size)
#representations_mean = self.mean_pooling(embeddings, lengths)
#representations_max = self.max_pooling(embeddings)
#representations = torch.cat((representations_mean,representations_max),1)
#representations = self.non_linearity1(representations)
############1.2###############
#representations_mean = self.mean_pooling(embeddings, lengths)
#representations = representations_mean
###########################
# 2o ερωτημα - LSTM #
###########################
############2.1##############
#Input: batch_size x seq_len x embedding_dim
#representations_LSTM: batch_size x seq_len x embedding_dim
#hn: batch_size x embedding_dim
#representations_LSTM, (hn, cn) = self.rnn(embeddings)
#Input: batch_size x seq_len x embedding_dim
#Output: batch_size x embedding_dim
#representations_LSTM = self.last_timestep(representations_LSTM,lengths)
#representations = representations_LSTM
############2.2############### + self.classifier = nn.Linear(in_features = 3*emb_dim, out_features=output_size)
#representations_LSTM, (hn, cn) = self.rnn(embeddings)
#representations_mean = self.mean_pooling(representations_LSTM, lengths)
#representations_max = self.max_pooling(representations_LSTM)
#representations_LSTM = self.last_timestep(representations_LSTM,lengths)
#representations = torch.cat((representations_mean,representations_max,representations_LSTM),1)
##############################
# 3o ερωτημα - Attention #
##############################
############3.1###############
#representations,attentions = self.attention(embeddings, lengths)
############3.2###############
#representations_LSTM, (hn, cn) = self.rnn(embeddings)
#representations, attentions = self.attention(representations_LSTM, lengths)
##############################
# 4o ερωτημα - Bidiractional #
##############################
############4.1############### +
#representations_LSTM, (hn, cn) = self.bi_rnn(embeddings)
#representations_mean = self.mean_pooling(representations_LSTM, lengths)
#representations_max = self.max_pooling(representations_LSTM)
#hidden_size = 20
#representations_LSTM_fw = representations_LSTM[:, :, :hidden_size]
#representations_LSTM_bw = representations_LSTM[:, :, hidden_size:]
#representations_LSTM_fw = self.last_timestep(representations_LSTM_fw,lengths)
#representations_LSTM_bw = self.last_timestep(representations_LSTM_bw,lengths)
#representations = torch.cat((representations_mean,representations_max,representations_LSTM_fw,representations_LSTM_bw),1)
############4.2############### + self.classifier = nn.Linear(in_features = 2*emb_dim, out_features=output_size)
hidden_size = 20
representations_LSTM, (hn, cn) = self.bi_rnn(embeddings)
representations_LSTM_fw = representations_LSTM[:, :, :hidden_size]
representations_LSTM_bw = representations_LSTM[:, :, hidden_size:]
representations_LSTM_fw,attentions_fw = self.attention(representations_LSTM_fw, lengths)
representations_LSTM_bw,attentions_bw = self.attention(representations_LSTM_bw, lengths)
representations = torch.cat((representations_LSTM_fw,representations_LSTM_bw),1)
# 4 - project the representations to classes using a linear layer
logits = self.classifier(representations) # EX6
#Input: batch_size x embedding_dim
#Output: batch_size x 3
return logits
#return logits, attentions |
Python | def validate_capacities(self, chancaps):
"""
This function allows more granular selection of candidates than total or
average capacity.
"""
for tierfilter in self.minchanstiers:
if 'k' in tierfilter:
ksize, mincount = tierfilter.split('k')
size = int(ksize) * 1e3
elif 'M' in tierfilter:
Msize, mincount = tierfilter.split('M')
size = int(Msize) * 1e6
else:
raise RuntimeError('No recognized seperator in minchannel filter')
if sum((c >= size for c in chancaps)) < int(mincount):
return False
return True | def validate_capacities(self, chancaps):
"""
This function allows more granular selection of candidates than total or
average capacity.
"""
for tierfilter in self.minchanstiers:
if 'k' in tierfilter:
ksize, mincount = tierfilter.split('k')
size = int(ksize) * 1e3
elif 'M' in tierfilter:
Msize, mincount = tierfilter.split('M')
size = int(Msize) * 1e6
else:
raise RuntimeError('No recognized seperator in minchannel filter')
if sum((c >= size for c in chancaps)) < int(mincount):
return False
return True |
Python | def autoload(cls, expirehours=8):
"""Intelligently load from a json file or node"""
# Check for json, check age
graphfilename = 'describegraph.json'
if os.path.isfile(graphfilename):
mtime = os.path.getmtime(graphfilename)
# if expired, warn and exit
if expirehours:
if time.time() - mtime > expirehours * 60 * 60:
print(graphfilename, 'was found but is more than 8 hours old')
print('Please update it or delete to attempt fetching from lnd')
exit()
return cls.fromjson()
else:
# fromconfig will create and exit if the config is missing
ni = NodeInterface.fromconfig()
# else load from lnd
print('Fetching graph data from lnd')
return cls.fromlnd(lndnode=ni) | def autoload(cls, expirehours=8):
"""Intelligently load from a json file or node"""
# Check for json, check age
graphfilename = 'describegraph.json'
if os.path.isfile(graphfilename):
mtime = os.path.getmtime(graphfilename)
# if expired, warn and exit
if expirehours:
if time.time() - mtime > expirehours * 60 * 60:
print(graphfilename, 'was found but is more than 8 hours old')
print('Please update it or delete to attempt fetching from lnd')
exit()
return cls.fromjson()
else:
# fromconfig will create and exit if the config is missing
ni = NodeInterface.fromconfig()
# else load from lnd
print('Fetching graph data from lnd')
return cls.fromlnd(lndnode=ni) |
Python | def channels(self, nodeid):
"""Return channels for a node, including redundants"""
channels = []
for peerkey in self.adj[mynodekey]:
mainchan = self.edges[peerkey, mynodekey].copy()
redundants = mainchan['redundant_edges']
del mainchan['redundant_edges']
channels.append(mainchan)
channels.extend(redundants)
return channels | def channels(self, nodeid):
"""Return channels for a node, including redundants"""
channels = []
for peerkey in self.adj[mynodekey]:
mainchan = self.edges[peerkey, mynodekey].copy()
redundants = mainchan['redundant_edges']
del mainchan['redundant_edges']
channels.append(mainchan)
channels.extend(redundants)
return channels |
Python | def nx2ig(nxgraph):
"""
Convert networkx graph to igraph
For centrality we only care about keys and channels
igraph uses integer indexing, so a map will also be created.
"""
nxnodekeys = nxgraph.nodes
nxnodemap = {nk: i for i, nk in enumerate(nxnodekeys)}
ig = igraph.Graph()
ig.add_vertices(len(nxnodekeys))
igedges = [(nxnodemap[nk1], nxnodemap[nk2])
for nk1, nk2 in nxgraph.edges]
ig.add_edges(igedges)
return ig, nxnodemap | def nx2ig(nxgraph):
"""
Convert networkx graph to igraph
For centrality we only care about keys and channels
igraph uses integer indexing, so a map will also be created.
"""
nxnodekeys = nxgraph.nodes
nxnodemap = {nk: i for i, nk in enumerate(nxnodekeys)}
ig = igraph.Graph()
ig.add_vertices(len(nxnodekeys))
igedges = [(nxnodemap[nk1], nxnodemap[nk2])
for nk1, nk2 in nxgraph.edges]
ig.add_edges(igedges)
return ig, nxnodemap |
Python | def __generate_config_file(self, target_name):
"""
Generates the config file in conf.d/
:param target_name: Target for which config file should be created
:return: None
"""
config = open(
os.path.join(self.TGT_ISCSI_CONFIG, target_name + ".conf"), 'w')
template_loc = os.path.abspath(
os.path.join(os.path.dirname(os.path.abspath(__file__)), "..",
".."))
for line in open(os.path.join(template_loc, "tgt_target.temp"), 'r'):
line = line.replace('${target_name}', target_name)
line = line.replace('${ceph_user}', self.fs_user)
line = line.replace('${ceph_config}', self.fs_config_loc)
line = line.replace('${pool}', self.fs_pool)
config.write(line)
config.close() | def __generate_config_file(self, target_name):
"""
Generates the config file in conf.d/
:param target_name: Target for which config file should be created
:return: None
"""
config = open(
os.path.join(self.TGT_ISCSI_CONFIG, target_name + ".conf"), 'w')
template_loc = os.path.abspath(
os.path.join(os.path.dirname(os.path.abspath(__file__)), "..",
".."))
for line in open(os.path.join(template_loc, "tgt_target.temp"), 'r'):
line = line.replace('${target_name}', target_name)
line = line.replace('${ceph_user}', self.fs_user)
line = line.replace('${ceph_config}', self.fs_config_loc)
line = line.replace('${pool}', self.fs_pool)
config.write(line)
config.close() |
Python | def list_targets(self):
"""
Lists all the targets available by querying tgt-admin
:return: None
"""
try:
command = "tgt-admin -s"
output = shell.call(command, sudo=True)
logger.debug("Output = %s", output)
formatted_output = output.split("\n")
target_list = [target.split(":")[1].strip() for target in
formatted_output if
re.match("^Target [0-9]+:", target)]
return target_list
except shell_exceptions.CommandFailedException as e:
raise iscsi_exceptions.ListTargetFailedException(str(e)) | def list_targets(self):
"""
Lists all the targets available by querying tgt-admin
:return: None
"""
try:
command = "tgt-admin -s"
output = shell.call(command, sudo=True)
logger.debug("Output = %s", output)
formatted_output = output.split("\n")
target_list = [target.split(":")[1].strip() for target in
formatted_output if
re.match("^Target [0-9]+:", target)]
return target_list
except shell_exceptions.CommandFailedException as e:
raise iscsi_exceptions.ListTargetFailedException(str(e)) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.