|
--- |
|
task_categories: |
|
- object-detection |
|
dataset_info: |
|
features: |
|
- name: image_id |
|
dtype: string |
|
- name: image |
|
dtype: image |
|
- name: label_bbox |
|
list: |
|
- name: bbox |
|
sequence: int64 |
|
- name: bbox_id |
|
dtype: string |
|
- name: label |
|
dtype: string |
|
- name: issues |
|
list: |
|
- name: confidence |
|
dtype: float64 |
|
- name: description |
|
dtype: string |
|
- name: issue_type |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 13436697177.0 |
|
num_examples: 82081 |
|
- name: validation |
|
num_bytes: 6606403140.0 |
|
num_examples: 40137 |
|
- name: test |
|
num_bytes: 6653024122.0 |
|
num_examples: 40775 |
|
download_size: 26617129269 |
|
dataset_size: 26696124439.0 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: validation |
|
path: data/validation-* |
|
- split: test |
|
path: data/test-* |
|
--- |
|
|
|
[![Visualize Dataset on Visual Layer](https://img.shields.io/badge/Visualize%20on-%20Visual%20Layer-purple?style=for-the-badge&logo=numpy)](https://app.visual-layer.com/dataset/acd886ce-2b9f-11ef-bb10-e605d78f584b/data?p=1&page=1) |
|
|
|
<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/6195f404c07573b03c61702c/jQPvVpNJBB6M_9Mcun5eb.mp4"></video> |
|
|
|
# COCO-2014-VL-Enriched |
|
|
|
An enriched version of the COCO 2014 dataset with label issues! The label issues helps to curate a cleaner and leaner dataset. |
|
|
|
## Description |
|
The dataset consists of 6 columns: |
|
|
|
+ `image_id`: The original image filename from the COCO dataset. |
|
+ `image`: Image data in the form of PIL Image. |
|
+ `label_bbox`: Bounding box annotations from the COCO dataset. Consists of bounding box coordinates, confidence scores, and labels for the bounding box generated using object detection models. |
|
+ `issues`: Quality issues found such as duplicate, mislabeled, dark, blurry, bright, and outlier images. |
|
## Usage |
|
This dataset can be used with the Hugging Face Datasets library.: |
|
```python |
|
import datasets |
|
ds = datasets.load_dataset("visual-layer/coco-2014-vl-enriched") |
|
``` |
|
|
|
More in this [notebook](usage.ipynb). |
|
|
|
## Interactive Visualization |
|
Visual Layer provides a platform to interactively visualize a dataset and highlight quality issues such as duplicates, mislabels, outliers, etc. |
|
Check it out [here](https://app.visual-layer.com/dataset/acd886ce-2b9f-11ef-bb10-e605d78f584b/data?p=1&page=1). No sign-up required. |
|
|
|
<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/6195f404c07573b03c61702c/jQPvVpNJBB6M_9Mcun5eb.mp4"></video> |
|
|
|
<div style="text-align: center;"> |
|
<a href="https://app.visual-layer.com/dataset/acd886ce-2b9f-11ef-bb10-e605d78f584b/data?p=1&page=1"> |
|
<img src="https://img.shields.io/badge/Visualize%20on-%20Visual%20Layer-purple?style=for-the-badge&logo=numpy" alt="Visualize Dataset on Visual Layer"> |
|
</a> |
|
</div> |
|
|
|
|
|
## License & Disclaimer |
|
|
|
We provide no warranty on the dataset, and the user takes full responsibility for the usage of the dataset. By using the dataset, you agree to the terms of the ImageNet-1K dataset license. |
|
|
|
## About Visual Layer |
|
|
|
<div style="text-align: center; margin-top:50px;"> |
|
<a href="https://visual-layer.com/" style="padding:10px; display: inline-block;"> |
|
<img alt="site" src="https://vl-blog.s3.us-east-2.amazonaws.com/imgs/web.png" width="50"></a> |
|
<a href="https://medium.com/visual-layer" style="padding:10px; display: inline-block;"> |
|
<img alt="blog" src="https://vl-blog.s3.us-east-2.amazonaws.com/imgs/forum.png" width="50"></a> |
|
<a href="https://github.com/visual-layer/fastdup" style="padding:10px; display: inline-block;"> |
|
<img alt="github" src="https://vl-blog.s3.us-east-2.amazonaws.com/imgs/github.png" width="50"></a> |
|
<a href="https://discord.com/invite/Dqw458EG/" style="padding:10px; display: inline-block;"> |
|
<img alt="slack" src="https://vl-blog.s3.us-east-2.amazonaws.com/imgs/discord.png" width="50"></a> |
|
<a href="https://www.linkedin.com/company/visual-layer/" style="padding:10px; display: inline-block;"> |
|
<img alt="linkedin" src="https://vl-blog.s3.us-east-2.amazonaws.com/imgs/linkedin.png" width="50"></a> |
|
<a href="https://www.youtube.com/@visual-layer" style="padding:10px; display: inline-block;"> |
|
<img alt="youtube" src="https://vl-blog.s3.us-east-2.amazonaws.com/imgs/youtube.png" width="50"></a> |
|
<a href="https://twitter.com/visual_layer" style="padding:10px; display: inline-block;"> |
|
<img alt="twitter" src="https://vl-blog.s3.us-east-2.amazonaws.com/imgs/x.png" width="50"></a> |
|
</div> |
|
<div style="text-align: center;"> |
|
<img style="width:200px; display: block; margin: 0 auto;" alt="logo" src="https://d2iycffepdu1yp.cloudfront.net/design-assets/VL_horizontal_logo.png"> |
|
<div style="margin-top:20px;">Copyright © 2024 Visual Layer. All rights reserved.</div> |
|
</div> |