|
import xml.etree.ElementTree as ET |
|
import re |
|
import json |
|
from typing import List, Dict |
|
from tqdm import tqdm |
|
import random |
|
import os.path |
|
from huggingface_hub import HfApi |
|
import csv |
|
|
|
random.seed(42) |
|
import subprocess |
|
|
|
example_qa_dict = { |
|
"xbrl_tags": { |
|
"q": "What is the US GAAP XBRL tag for Cash and Cash Equivalents as reported by Example Company Inc for the Fiscal Year ending in FY 2022", |
|
"a": "us-gaap:AnExampleTagName" |
|
}, |
|
"value": { |
|
"q": "What is the value of Exapmle company's income for the Fiscal year ending in FY 2020?", |
|
"a": "80000000" |
|
}, |
|
"formula_calculation": { |
|
"q": "Can you provide the formula for Operating Profit Margin from Example Corp for the Fiscal Year ending in FY 2022?", |
|
"a": "(50000000 / 3590000000) * 100" |
|
}, |
|
"formula_formatted_with_tags": { |
|
"q": "What is the formula for the Gross Profit Margin of Example Inc, formatted with the relevant US GAAP XBRL tags", |
|
"a": "us-gaap:ExampleTag / us-gaap:AnotherExampleTag) * 100" |
|
} |
|
} |
|
|
|
|
|
def get_xbrl_dataset(data: List[Dict], cat): |
|
""" |
|
Saves entries with matching category1 or category2 in the format for fine-tuning. |
|
|
|
Args: |
|
data (List[Dict]): The input JSON data. |
|
category (str): The category name to match. |
|
""" |
|
results = [] |
|
for entry in data: |
|
question = entry["query"] |
|
question = re.sub(r"\(.*?\)", "", question) |
|
context_ids = entry["contextID"] |
|
|
|
|
|
|
|
|
|
|
|
example_qa = f"Example question: {example_qa_dict[cat]['q']}\nExample answer: {example_qa_dict[cat]['a']}" |
|
output = entry["raw_answer"] |
|
|
|
if cat == 'formula_calculation': |
|
question += " Answer with a formula substituted with values. " |
|
output = entry["value_formula_answer"] |
|
|
|
output = str(output) |
|
instruction = (f"You are a knowledgeable XBRL assistant. Your task is to analyze the XBRL context and provide an" |
|
f" accurate and very concise answer to the question, The example question can help you to learn the " |
|
f"answer format. DO NOT output xml, code, explanation or create new question. \n{example_qa}\n") |
|
|
|
input = f"Question: {question}\nAnswer:" |
|
year = int(entry["{fiscal year/quarter}"].replace("FY ", "")) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
results.append({ |
|
"instruction": instruction, |
|
"input": input, |
|
"output": output, |
|
"year": year, |
|
"company": entry["ticker"], |
|
"doc_path": entry['doc_path'], |
|
"context_id": context_ids[0], |
|
}) |
|
|
|
print("final length", len(results)) |
|
return results |
|
|
|
|
|
def gen_xbrl(cat): |
|
with open("xbrl_bench_34020.json", "r") as f: |
|
data = json.load(f) |
|
filtered_data = [entry for entry in data if entry['category1'] == cat or entry['category2'] == cat] |
|
|
|
all_doc_path = list(set([entry['doc_path'] for entry in filtered_data])) |
|
print(f"Total data size for {cat}: {len(filtered_data)}, total number of filings {len(all_doc_path)}") |
|
random.shuffle(filtered_data) |
|
|
|
dataset = get_xbrl_dataset(filtered_data, cat) |
|
|
|
test_data = [x for x in dataset if x['year'] == 2023] |
|
train_data = [x for x in dataset if x['year'] != 2023] |
|
|
|
print(f"train size: {len(train_data)}, test size: {len(test_data)}\n") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return train_data, test_data |
|
|
|
|
|
if __name__ == '__main__': |
|
tags_train, tags_test = gen_xbrl("xbrl_tags") |
|
value_train, value_test = gen_xbrl("value") |
|
formula_train, formula_test = gen_xbrl("formula_formatted_with_tags") |
|
formula_calc_train, formula_calc_test = gen_xbrl("formula_calculation") |
|
|