module_content
stringlengths
18
1.05M
module FSM_Add_Subtract ( //INPUTS input wire clk, //system clock input wire rst, //system reset input wire rst_FSM, input wire beg_FSM, //Begin Finite State Machine //**REVISAD ////////////////////////////////////////////////////////////////////////////// //Oper_Start_In evaluation signals input wire zero_flag_i, //Exp_operation evaluation signals input wire norm_iteration_i, //Barrel_Shifter evaluation signals //None //Add_Subt_Sgf evaluation signals input wire add_overflow_i, //LZA evaluation signals //None //Deco_round evaluation Signals input wire round_i, //Final_result evaluation signals //None //OUTPUT SIGNALS //////////////////////////////////////////////////////////////////////////////////// //Oper_Start_In control signals output wire load_1_o,//Enable input registers output wire load_2_o,//Enable output registers //Exp_operation control signals output reg load_3_o, //Enable Output registers output reg load_8_o, output reg A_S_op_o, //Select operation for exponent normalization(Subt for left shift, Add for right shift) //Barrel shifter control signals output reg load_4_o, //Enable Output registers output reg left_right_o, //Select direction shift (right=0, left=1) output reg bit_shift_o, //bit input for shifts fills //Add_Subt_sgf control signals output reg load_5_o, //Enables Output registers //LZA control signals output reg load_6_o, //Enables Output registers //Deco_Round control signals //None //Final_Result control signals output reg load_7_o, ///////////////////////////////\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ //Multiplexer selector for Exp_operation's OPER_A output reg ctrl_a_o, //Multiplexer selector for Exp_operation's OPER_B & Barrel_Shifter's Shift value output reg [1:0] ctrl_b_o, output reg ctrl_b_load_o, //Multiplexer selector for Data shift output reg ctrl_c_o, //Multiplexer selector for Add_Subt_Sgf's inputs output reg ctrl_d_o, //Internal reset signal output reg rst_int, //Ready Signal output reg ready ); localparam [3:0] //First I'm going to declarate the registers of the first phase of execution start = 4'd0, //This state evaluates the beg_FSM to begin operations load_oper = 4'd1, //This state enables the registers that contains //both operands and the operator zero_info_state = 4'd2, //Evaluate zero condition load_diff_exp = 4'd3, //Enable registers for the exponent on the small value normalization and for the first //result normalization extra1_64= 4'd4, norm_sgf_first= 4'd5, //Enable the barrel shifter's registers and evaluate if it's the first time (small operand) or the //second time (result normalization) add_subt = 4'd6, //Enable the add_subt_sgf's registers add_subt_r = 4'd7, //Enable the add_subt_sgf's registers for round condition overflow_add = 4'd8, round_sgf = 4'd9, //Evaluate the significand round condition overflow_add_r = 4'd10, extra2_64= 4'd11, //Enable registers for the exponent normalization on round condition norm_sgf_r = 4'd12, //Enable the barrel shifter's registers for round condition load_final_result = 4'd13, //Load the final_result's register with the result ready_flag = 4'd14; //Enable the ready flag with the final result //**********************REVISADO reg [3:0] state_reg, state_next ; //state registers declaration ////////////////////////Logic outputs///////////////77 assign load_1_o= (state_reg==load_oper); assign load_2_o= (state_reg==zero_info_state); //// always @(posedge clk, posedge rst) if (rst) begin state_reg <= start; end else begin state_reg <= state_next; end /// always @* begin state_next = state_reg; rst_int = 0; //Oper_Start_In control signals //load_1_o=0; //load_2_o=0; //Exp_operation control signals load_3_o=0; load_8_o=0; A_S_op_o=1; //Barrel shifter control signals load_4_o=0; left_right_o=0; bit_shift_o=0; //bit input for shifts fills //Add_Subt_sgf control signals load_5_o=0; //LZA control signals load_6_o=0; //Deco_Round control signals //None //Final_Result control signals load_7_o=0; ///////////////////////////////\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ //Multiplexer selector for Exp_operation's OPER_A ctrl_a_o=0; //Multiplexer selector for Exp_operation's OPER_B ctrl_b_o=2'b00; ctrl_b_load_o=0; //Multiplexer selector for Barrel_Shifter's Data shift ctrl_c_o=0; //Multiplexer selector for Barrel_Shifter's Shift value //Multiplexer selector for Add_Subt_Sgf's inputs ctrl_d_o=0; //Ready Phase ready = 0; //**REVISADO rst_int = 0; case(state_reg) //FPU reset start: begin rst_int=1; if(beg_FSM) begin state_next = load_oper; end end load_oper: //Load input registers for Oper_star in evaluation begin // load_1_o = 1; state_next = zero_info_state; end zero_info_state: //In case of zero condition, go to final result for ready flag. Else, continue with the calculation begin if (zero_flag_i)begin state_next = ready_flag;end else begin //load_2_o = 1; state_next = load_diff_exp;end end load_diff_exp: //in first instance, Calculate DMP - DmP exponents, in other iteration, evaluation in begin load_3_o = 1; /* if ()*/ state_next = extra1_64; end extra1_64: begin load_3_o = 1; if (norm_iteration_i)begin load_8_o=1; if(add_overflow_i)begin A_S_op_o=0; left_right_o=0; bit_shift_o=1; end else begin A_S_op_o=1; left_right_o=1; bit_shift_o=0; end end state_next = norm_sgf_first; end norm_sgf_first: // begin load_4_o = 1; if (norm_iteration_i)begin if(add_overflow_i)begin left_right_o=0; bit_shift_o=1; state_next = round_sgf; end else begin left_right_o=1; bit_shift_o=0; state_next = round_sgf;end end else state_next = add_subt; end add_subt: begin //Reg enables load_5_o = 1; ctrl_c_o = 1; state_next = overflow_add; end overflow_add: begin //Reg enables/Disables load_6_o=1; ctrl_b_load_o=1; if ( add_overflow_i)begin ctrl_b_o=2'b10; end else begin A_S_op_o=1; ctrl_b_o=2'b01; end //state_next = load_exp_oper_over; state_next = extra1_64; end round_sgf: begin load_4_o = 0; if(round_i) begin ctrl_d_o =1; ctrl_a_o = 1; state_next = add_subt_r; end else begin state_next = load_final_result; end end add_subt_r: begin load_5_o = 1; state_next = overflow_add_r; end overflow_add_r: begin ctrl_b_load_o=1; if ( add_overflow_i)begin ctrl_b_o=2'b10; end else begin ctrl_b_o=2'b11; end state_next = extra2_64; end extra2_64: begin load_3_o = 1; load_8_o = 1; if ( add_overflow_i)begin A_S_op_o=0; bit_shift_o=1; end state_next = norm_sgf_r; end norm_sgf_r: begin load_4_o = 1; if ( add_overflow_i)begin left_right_o=0; bit_shift_o=1; end state_next = load_final_result; end load_final_result: begin load_7_o = 1; state_next = ready_flag; end ready_flag: begin ready = 1; if(rst_FSM) begin state_next = start;end end default: begin state_next =start;end endcase end endmodule
module dyn_pll_ctrl # (parameter SPEED_MHZ = 25, parameter SPEED_LIMIT = 100, parameter SPEED_MIN = 25, parameter OSC_MHZ = 100) (clk, clk_valid, speed_in, start, progclk, progdata, progen, reset, locked, status); input clk; // NB Assumed to be 12.5MHz uart_clk input clk_valid; // Drive from LOCKED output of first dcm (ie uart_clk valid) input [7:0] speed_in; input start; output reg progclk = 0; output reg progdata = 0; output reg progen = 0; output reg reset = 0; input locked; input [2:1] status; // NB spec says to use (dval-1) and (mval-1), but I don't think we need to be that accurate // and this saves an adder. Feel free to amend it. reg [23:0] watchdog = 0; reg [7:0] state = 0; reg [7:0] dval = OSC_MHZ; // Osc clock speed (hence mval scales in MHz) reg [7:0] mval = SPEED_MHZ; reg start_d1 = 0; always @ (posedge clk) begin progclk <= ~progclk; start_d1 <= start; reset <= 1'b0; // Watchdog is just using locked, perhaps also need | ~status[2] if (locked) watchdog <= 0; else watchdog <= watchdog + 1'b1; if (watchdog[23]) // Approx 670mS at 12.5MHz - NB spec is 5ms to lock at >50MHz CLKIN (50ms at <50MHz CLKIN) begin // but allow longer just in case watchdog <= 0; reset <= 1'b1; // One cycle at 12.5MHz should suffice (requirment is 3 CLKIN at 100MHz) end if (~clk_valid) // Try not to run while clk is unstable begin progen <= 0; progdata <= 0; state <= 0; end else begin // The documentation is unclear as to whether the DCM loads data on positive or negative edge. The timing // diagram unhelpfully shows data changing on the positive edge, which could mean either its sampled on // negative, or it was clocked on positive! However the following (WRONGLY) says NEGATIVE ... // http://forums.xilinx.com/t5/Spartan-Family-FPGAs/Spartan6-DCM-CLKGEN-does-PROGCLK-have-a-maximum-period-minimum/td-p/175642 // BUT this can lock up the DCM, positive clock seems more reliable (but it can still lock up for low values of M, eg 2). // Added SPEED_MIN to prevent this (and positive clock is correct, after looking at other implementations eg ztex/theseven) if ((start || start_d1) && state==0 && speed_in >= SPEED_MIN && speed_in <= SPEED_LIMIT && progclk==1) // positive clock // if ((start || start_d1) && state==0 && speed_in >= SPEED_MIN && speed_in <= SPEED_LIMIT && progclk==0) // negative clock begin progen <= 0; progdata <= 0; mval <= speed_in; dval <= OSC_MHZ; state <= 1; end if (state != 0) state <= state + 1'd1; case (state) // Even values to sync with progclk // Send D 2: begin progen <= 1; progdata <= 1; end 4: begin progdata <= 0; end 6,8,10,12,14,16,18,20: begin progdata <= dval[0]; dval[6:0] <= dval[7:1]; end 22: begin progen <= 0; progdata <= 0; end // Send M 32: begin progen <= 1; progdata <= 1; end 36,38,40,42,44,46,48,50: begin progdata <= mval[0]; mval[6:0] <= mval[7:1]; end 52: begin progen <= 0; progdata <= 0; end // Send GO - NB 1 clock cycle 62: begin progen <= 1; end 64: begin progen <= 0; end // We should wait on progdone/locked, but just go straight back to idle 254: begin state <= 0; end endcase end end endmodule
module dyn_pll_ctrl # (parameter SPEED_MHZ = 25, parameter SPEED_LIMIT = 100, parameter SPEED_MIN = 25, parameter OSC_MHZ = 100) (clk, clk_valid, speed_in, start, progclk, progdata, progen, reset, locked, status); input clk; // NB Assumed to be 12.5MHz uart_clk input clk_valid; // Drive from LOCKED output of first dcm (ie uart_clk valid) input [7:0] speed_in; input start; output reg progclk = 0; output reg progdata = 0; output reg progen = 0; output reg reset = 0; input locked; input [2:1] status; // NB spec says to use (dval-1) and (mval-1), but I don't think we need to be that accurate // and this saves an adder. Feel free to amend it. reg [23:0] watchdog = 0; reg [7:0] state = 0; reg [7:0] dval = OSC_MHZ; // Osc clock speed (hence mval scales in MHz) reg [7:0] mval = SPEED_MHZ; reg start_d1 = 0; always @ (posedge clk) begin progclk <= ~progclk; start_d1 <= start; reset <= 1'b0; // Watchdog is just using locked, perhaps also need | ~status[2] if (locked) watchdog <= 0; else watchdog <= watchdog + 1'b1; if (watchdog[23]) // Approx 670mS at 12.5MHz - NB spec is 5ms to lock at >50MHz CLKIN (50ms at <50MHz CLKIN) begin // but allow longer just in case watchdog <= 0; reset <= 1'b1; // One cycle at 12.5MHz should suffice (requirment is 3 CLKIN at 100MHz) end if (~clk_valid) // Try not to run while clk is unstable begin progen <= 0; progdata <= 0; state <= 0; end else begin // The documentation is unclear as to whether the DCM loads data on positive or negative edge. The timing // diagram unhelpfully shows data changing on the positive edge, which could mean either its sampled on // negative, or it was clocked on positive! However the following (WRONGLY) says NEGATIVE ... // http://forums.xilinx.com/t5/Spartan-Family-FPGAs/Spartan6-DCM-CLKGEN-does-PROGCLK-have-a-maximum-period-minimum/td-p/175642 // BUT this can lock up the DCM, positive clock seems more reliable (but it can still lock up for low values of M, eg 2). // Added SPEED_MIN to prevent this (and positive clock is correct, after looking at other implementations eg ztex/theseven) if ((start || start_d1) && state==0 && speed_in >= SPEED_MIN && speed_in <= SPEED_LIMIT && progclk==1) // positive clock // if ((start || start_d1) && state==0 && speed_in >= SPEED_MIN && speed_in <= SPEED_LIMIT && progclk==0) // negative clock begin progen <= 0; progdata <= 0; mval <= speed_in; dval <= OSC_MHZ; state <= 1; end if (state != 0) state <= state + 1'd1; case (state) // Even values to sync with progclk // Send D 2: begin progen <= 1; progdata <= 1; end 4: begin progdata <= 0; end 6,8,10,12,14,16,18,20: begin progdata <= dval[0]; dval[6:0] <= dval[7:1]; end 22: begin progen <= 0; progdata <= 0; end // Send M 32: begin progen <= 1; progdata <= 1; end 36,38,40,42,44,46,48,50: begin progdata <= mval[0]; mval[6:0] <= mval[7:1]; end 52: begin progen <= 0; progdata <= 0; end // Send GO - NB 1 clock cycle 62: begin progen <= 1; end 64: begin progen <= 0; end // We should wait on progdone/locked, but just go straight back to idle 254: begin state <= 0; end endcase end end endmodule
module dyn_pll_ctrl # (parameter SPEED_MHZ = 25, parameter SPEED_LIMIT = 100, parameter SPEED_MIN = 25, parameter OSC_MHZ = 100) (clk, clk_valid, speed_in, start, progclk, progdata, progen, reset, locked, status); input clk; // NB Assumed to be 12.5MHz uart_clk input clk_valid; // Drive from LOCKED output of first dcm (ie uart_clk valid) input [7:0] speed_in; input start; output reg progclk = 0; output reg progdata = 0; output reg progen = 0; output reg reset = 0; input locked; input [2:1] status; // NB spec says to use (dval-1) and (mval-1), but I don't think we need to be that accurate // and this saves an adder. Feel free to amend it. reg [23:0] watchdog = 0; reg [7:0] state = 0; reg [7:0] dval = OSC_MHZ; // Osc clock speed (hence mval scales in MHz) reg [7:0] mval = SPEED_MHZ; reg start_d1 = 0; always @ (posedge clk) begin progclk <= ~progclk; start_d1 <= start; reset <= 1'b0; // Watchdog is just using locked, perhaps also need | ~status[2] if (locked) watchdog <= 0; else watchdog <= watchdog + 1'b1; if (watchdog[23]) // Approx 670mS at 12.5MHz - NB spec is 5ms to lock at >50MHz CLKIN (50ms at <50MHz CLKIN) begin // but allow longer just in case watchdog <= 0; reset <= 1'b1; // One cycle at 12.5MHz should suffice (requirment is 3 CLKIN at 100MHz) end if (~clk_valid) // Try not to run while clk is unstable begin progen <= 0; progdata <= 0; state <= 0; end else begin // The documentation is unclear as to whether the DCM loads data on positive or negative edge. The timing // diagram unhelpfully shows data changing on the positive edge, which could mean either its sampled on // negative, or it was clocked on positive! However the following (WRONGLY) says NEGATIVE ... // http://forums.xilinx.com/t5/Spartan-Family-FPGAs/Spartan6-DCM-CLKGEN-does-PROGCLK-have-a-maximum-period-minimum/td-p/175642 // BUT this can lock up the DCM, positive clock seems more reliable (but it can still lock up for low values of M, eg 2). // Added SPEED_MIN to prevent this (and positive clock is correct, after looking at other implementations eg ztex/theseven) if ((start || start_d1) && state==0 && speed_in >= SPEED_MIN && speed_in <= SPEED_LIMIT && progclk==1) // positive clock // if ((start || start_d1) && state==0 && speed_in >= SPEED_MIN && speed_in <= SPEED_LIMIT && progclk==0) // negative clock begin progen <= 0; progdata <= 0; mval <= speed_in; dval <= OSC_MHZ; state <= 1; end if (state != 0) state <= state + 1'd1; case (state) // Even values to sync with progclk // Send D 2: begin progen <= 1; progdata <= 1; end 4: begin progdata <= 0; end 6,8,10,12,14,16,18,20: begin progdata <= dval[0]; dval[6:0] <= dval[7:1]; end 22: begin progen <= 0; progdata <= 0; end // Send M 32: begin progen <= 1; progdata <= 1; end 36,38,40,42,44,46,48,50: begin progdata <= mval[0]; mval[6:0] <= mval[7:1]; end 52: begin progen <= 0; progdata <= 0; end // Send GO - NB 1 clock cycle 62: begin progen <= 1; end 64: begin progen <= 0; end // We should wait on progdone/locked, but just go straight back to idle 254: begin state <= 0; end endcase end end endmodule
module axi_data_fifo_v2_1_fifo_gen #( parameter C_FAMILY = "virtex7", parameter integer C_COMMON_CLOCK = 1, parameter integer C_SYNCHRONIZER_STAGE = 3, parameter integer C_FIFO_DEPTH_LOG = 5, parameter integer C_FIFO_WIDTH = 64, parameter C_FIFO_TYPE = "lut" )( clk, rst, wr_clk, wr_en, wr_ready, wr_data, rd_clk, rd_en, rd_valid, rd_data); input clk; input wr_clk; input rd_clk; input rst; input [C_FIFO_WIDTH-1 : 0] wr_data; input wr_en; input rd_en; output [C_FIFO_WIDTH-1 : 0] rd_data; output wr_ready; output rd_valid; wire full; wire empty; wire rd_valid = ~empty; wire wr_ready = ~full; localparam C_MEMORY_TYPE = (C_FIFO_TYPE == "bram")? 1 : 2; localparam C_IMPLEMENTATION_TYPE = (C_COMMON_CLOCK == 1)? 0 : 2; fifo_generator_v12_0 #( .C_COMMON_CLOCK(C_COMMON_CLOCK), .C_DIN_WIDTH(C_FIFO_WIDTH), .C_DOUT_WIDTH(C_FIFO_WIDTH), .C_FAMILY(C_FAMILY), .C_IMPLEMENTATION_TYPE(C_IMPLEMENTATION_TYPE), .C_MEMORY_TYPE(C_MEMORY_TYPE), .C_RD_DEPTH(1<<C_FIFO_DEPTH_LOG), .C_RD_PNTR_WIDTH(C_FIFO_DEPTH_LOG), .C_WR_DEPTH(1<<C_FIFO_DEPTH_LOG), .C_WR_PNTR_WIDTH(C_FIFO_DEPTH_LOG), .C_ADD_NGC_CONSTRAINT(0), .C_APPLICATION_TYPE_AXIS(0), .C_APPLICATION_TYPE_RACH(0), .C_APPLICATION_TYPE_RDCH(0), .C_APPLICATION_TYPE_WACH(0), .C_APPLICATION_TYPE_WDCH(0), .C_APPLICATION_TYPE_WRCH(0), .C_AXIS_TDATA_WIDTH(64), .C_AXIS_TDEST_WIDTH(4), .C_AXIS_TID_WIDTH(8), .C_AXIS_TKEEP_WIDTH(4), .C_AXIS_TSTRB_WIDTH(4), .C_AXIS_TUSER_WIDTH(4), .C_AXIS_TYPE(0), .C_AXI_ADDR_WIDTH(32), .C_AXI_ARUSER_WIDTH(1), .C_AXI_AWUSER_WIDTH(1), .C_AXI_BUSER_WIDTH(1), .C_AXI_DATA_WIDTH(64), .C_AXI_ID_WIDTH(4), .C_AXI_LEN_WIDTH(8), .C_AXI_LOCK_WIDTH(2), .C_AXI_RUSER_WIDTH(1), .C_AXI_TYPE(0), .C_AXI_WUSER_WIDTH(1), .C_COUNT_TYPE(0), .C_DATA_COUNT_WIDTH(6), .C_DEFAULT_VALUE("BlankString"), .C_DIN_WIDTH_AXIS(1), .C_DIN_WIDTH_RACH(32), .C_DIN_WIDTH_RDCH(64), .C_DIN_WIDTH_WACH(32), .C_DIN_WIDTH_WDCH(64), .C_DIN_WIDTH_WRCH(2), .C_DOUT_RST_VAL("0"), .C_ENABLE_RLOCS(0), .C_ENABLE_RST_SYNC(1), .C_ERROR_INJECTION_TYPE(0), .C_ERROR_INJECTION_TYPE_AXIS(0), .C_ERROR_INJECTION_TYPE_RACH(0), .C_ERROR_INJECTION_TYPE_RDCH(0), .C_ERROR_INJECTION_TYPE_WACH(0), .C_ERROR_INJECTION_TYPE_WDCH(0), .C_ERROR_INJECTION_TYPE_WRCH(0), .C_FULL_FLAGS_RST_VAL(0), .C_HAS_ALMOST_EMPTY(0), .C_HAS_ALMOST_FULL(0), .C_HAS_AXIS_TDATA(0), .C_HAS_AXIS_TDEST(0), .C_HAS_AXIS_TID(0), .C_HAS_AXIS_TKEEP(0), .C_HAS_AXIS_TLAST(0), .C_HAS_AXIS_TREADY(1), .C_HAS_AXIS_TSTRB(0), .C_HAS_AXIS_TUSER(0), .C_HAS_AXI_ARUSER(0), .C_HAS_AXI_AWUSER(0), .C_HAS_AXI_BUSER(0), .C_HAS_AXI_RD_CHANNEL(0), .C_HAS_AXI_RUSER(0), .C_HAS_AXI_WR_CHANNEL(0), .C_HAS_AXI_WUSER(0), .C_HAS_BACKUP(0), .C_HAS_DATA_COUNT(0), .C_HAS_DATA_COUNTS_AXIS(0), .C_HAS_DATA_COUNTS_RACH(0), .C_HAS_DATA_COUNTS_RDCH(0), .C_HAS_DATA_COUNTS_WACH(0), .C_HAS_DATA_COUNTS_WDCH(0), .C_HAS_DATA_COUNTS_WRCH(0), .C_HAS_INT_CLK(0), .C_HAS_MASTER_CE(0), .C_HAS_MEMINIT_FILE(0), .C_HAS_OVERFLOW(0), .C_HAS_PROG_FLAGS_AXIS(0), .C_HAS_PROG_FLAGS_RACH(0), .C_HAS_PROG_FLAGS_RDCH(0), .C_HAS_PROG_FLAGS_WACH(0), .C_HAS_PROG_FLAGS_WDCH(0), .C_HAS_PROG_FLAGS_WRCH(0), .C_HAS_RD_DATA_COUNT(0), .C_HAS_RD_RST(0), .C_HAS_RST(1), .C_HAS_SLAVE_CE(0), .C_HAS_SRST(0), .C_HAS_UNDERFLOW(0), .C_HAS_VALID(0), .C_HAS_WR_ACK(0), .C_HAS_WR_DATA_COUNT(0), .C_HAS_WR_RST(0), .C_IMPLEMENTATION_TYPE_AXIS(1), .C_IMPLEMENTATION_TYPE_RACH(1), .C_IMPLEMENTATION_TYPE_RDCH(1), .C_IMPLEMENTATION_TYPE_WACH(1), .C_IMPLEMENTATION_TYPE_WDCH(1), .C_IMPLEMENTATION_TYPE_WRCH(1), .C_INIT_WR_PNTR_VAL(0), .C_INTERFACE_TYPE(0), .C_MIF_FILE_NAME("BlankString"), .C_MSGON_VAL(1), .C_OPTIMIZATION_MODE(0), .C_OVERFLOW_LOW(0), .C_PRELOAD_LATENCY(0), .C_PRELOAD_REGS(1), .C_PRIM_FIFO_TYPE("512x36"), .C_PROG_EMPTY_THRESH_ASSERT_VAL(4), .C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH(1022), .C_PROG_EMPTY_THRESH_NEGATE_VAL(5), .C_PROG_EMPTY_TYPE(0), .C_PROG_EMPTY_TYPE_AXIS(0), .C_PROG_EMPTY_TYPE_RACH(0), .C_PROG_EMPTY_TYPE_RDCH(0), .C_PROG_EMPTY_TYPE_WACH(0), .C_PROG_EMPTY_TYPE_WDCH(0), .C_PROG_EMPTY_TYPE_WRCH(0), .C_PROG_FULL_THRESH_ASSERT_VAL(31), .C_PROG_FULL_THRESH_ASSERT_VAL_AXIS(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_RACH(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_RDCH(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_WACH(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_WDCH(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_WRCH(1023), .C_PROG_FULL_THRESH_NEGATE_VAL(30), .C_PROG_FULL_TYPE(0), .C_PROG_FULL_TYPE_AXIS(0), .C_PROG_FULL_TYPE_RACH(0), .C_PROG_FULL_TYPE_RDCH(0), .C_PROG_FULL_TYPE_WACH(0), .C_PROG_FULL_TYPE_WDCH(0), .C_PROG_FULL_TYPE_WRCH(0), .C_RACH_TYPE(0), .C_RDCH_TYPE(0), .C_RD_DATA_COUNT_WIDTH(6), .C_RD_FREQ(1), .C_REG_SLICE_MODE_AXIS(0), .C_REG_SLICE_MODE_RACH(0), .C_REG_SLICE_MODE_RDCH(0), .C_REG_SLICE_MODE_WACH(0), .C_REG_SLICE_MODE_WDCH(0), .C_REG_SLICE_MODE_WRCH(0), .C_SYNCHRONIZER_STAGE(C_SYNCHRONIZER_STAGE), .C_UNDERFLOW_LOW(0), .C_USE_COMMON_OVERFLOW(0), .C_USE_COMMON_UNDERFLOW(0), .C_USE_DEFAULT_SETTINGS(0), .C_USE_DOUT_RST(0), .C_USE_ECC(0), .C_USE_ECC_AXIS(0), .C_USE_ECC_RACH(0), .C_USE_ECC_RDCH(0), .C_USE_ECC_WACH(0), .C_USE_ECC_WDCH(0), .C_USE_ECC_WRCH(0), .C_USE_EMBEDDED_REG(0), .C_USE_FIFO16_FLAGS(0), .C_USE_FWFT_DATA_COUNT(1), .C_VALID_LOW(0), .C_WACH_TYPE(0), .C_WDCH_TYPE(0), .C_WRCH_TYPE(0), .C_WR_ACK_LOW(0), .C_WR_DATA_COUNT_WIDTH(6), .C_WR_DEPTH_AXIS(1024), .C_WR_DEPTH_RACH(16), .C_WR_DEPTH_RDCH(1024), .C_WR_DEPTH_WACH(16), .C_WR_DEPTH_WDCH(1024), .C_WR_DEPTH_WRCH(16), .C_WR_FREQ(1), .C_WR_PNTR_WIDTH_AXIS(10), .C_WR_PNTR_WIDTH_RACH(4), .C_WR_PNTR_WIDTH_RDCH(10), .C_WR_PNTR_WIDTH_WACH(4), .C_WR_PNTR_WIDTH_WDCH(10), .C_WR_PNTR_WIDTH_WRCH(4), .C_WR_RESPONSE_LATENCY(1) ) fifo_gen_inst ( .clk(clk), .din(wr_data), .dout(rd_data), .empty(empty), .full(full), .rd_clk(rd_clk), .rd_en(rd_en), .rst(rst), .wr_clk(wr_clk), .wr_en(wr_en), .almost_empty(), .almost_full(), .axi_ar_data_count(), .axi_ar_dbiterr(), .axi_ar_injectdbiterr(1'b0), .axi_ar_injectsbiterr(1'b0), .axi_ar_overflow(), .axi_ar_prog_empty(), .axi_ar_prog_empty_thresh(4'b0), .axi_ar_prog_full(), .axi_ar_prog_full_thresh(4'b0), .axi_ar_rd_data_count(), .axi_ar_sbiterr(), .axi_ar_underflow(), .axi_ar_wr_data_count(), .axi_aw_data_count(), .axi_aw_dbiterr(), .axi_aw_injectdbiterr(1'b0), .axi_aw_injectsbiterr(1'b0), .axi_aw_overflow(), .axi_aw_prog_empty(), .axi_aw_prog_empty_thresh(4'b0), .axi_aw_prog_full(), .axi_aw_prog_full_thresh(4'b0), .axi_aw_rd_data_count(), .axi_aw_sbiterr(), .axi_aw_underflow(), .axi_aw_wr_data_count(), .axi_b_data_count(), .axi_b_dbiterr(), .axi_b_injectdbiterr(1'b0), .axi_b_injectsbiterr(1'b0), .axi_b_overflow(), .axi_b_prog_empty(), .axi_b_prog_empty_thresh(4'b0), .axi_b_prog_full(), .axi_b_prog_full_thresh(4'b0), .axi_b_rd_data_count(), .axi_b_sbiterr(), .axi_b_underflow(), .axi_b_wr_data_count(), .axi_r_data_count(), .axi_r_dbiterr(), .axi_r_injectdbiterr(1'b0), .axi_r_injectsbiterr(1'b0), .axi_r_overflow(), .axi_r_prog_empty(), .axi_r_prog_empty_thresh(10'b0), .axi_r_prog_full(), .axi_r_prog_full_thresh(10'b0), .axi_r_rd_data_count(), .axi_r_sbiterr(), .axi_r_underflow(), .axi_r_wr_data_count(), .axi_w_data_count(), .axi_w_dbiterr(), .axi_w_injectdbiterr(1'b0), .axi_w_injectsbiterr(1'b0), .axi_w_overflow(), .axi_w_prog_empty(), .axi_w_prog_empty_thresh(10'b0), .axi_w_prog_full(), .axi_w_prog_full_thresh(10'b0), .axi_w_rd_data_count(), .axi_w_sbiterr(), .axi_w_underflow(), .axi_w_wr_data_count(), .axis_data_count(), .axis_dbiterr(), .axis_injectdbiterr(1'b0), .axis_injectsbiterr(1'b0), .axis_overflow(), .axis_prog_empty(), .axis_prog_empty_thresh(10'b0), .axis_prog_full(), .axis_prog_full_thresh(10'b0), .axis_rd_data_count(), .axis_sbiterr(), .axis_underflow(), .axis_wr_data_count(), .backup(1'b0), .backup_marker(1'b0), .data_count(), .dbiterr(), .injectdbiterr(1'b0), .injectsbiterr(1'b0), .int_clk(1'b0), .m_aclk(1'b0), .m_aclk_en(1'b0), .m_axi_araddr(), .m_axi_arburst(), .m_axi_arcache(), .m_axi_arid(), .m_axi_arlen(), .m_axi_arlock(), .m_axi_arprot(), .m_axi_arqos(), .m_axi_arready(1'b0), .m_axi_arregion(), .m_axi_arsize(), .m_axi_aruser(), .m_axi_arvalid(), .m_axi_awaddr(), .m_axi_awburst(), .m_axi_awcache(), .m_axi_awid(), .m_axi_awlen(), .m_axi_awlock(), .m_axi_awprot(), .m_axi_awqos(), .m_axi_awready(1'b0), .m_axi_awregion(), .m_axi_awsize(), .m_axi_awuser(), .m_axi_awvalid(), .m_axi_bid(4'b0), .m_axi_bready(), .m_axi_bresp(2'b0), .m_axi_buser(1'b0), .m_axi_bvalid(1'b0), .m_axi_rdata(64'b0), .m_axi_rid(4'b0), .m_axi_rlast(1'b0), .m_axi_rready(), .m_axi_rresp(2'b0), .m_axi_ruser(1'b0), .m_axi_rvalid(1'b0), .m_axi_wdata(), .m_axi_wid(), .m_axi_wlast(), .m_axi_wready(1'b0), .m_axi_wstrb(), .m_axi_wuser(), .m_axi_wvalid(), .m_axis_tdata(), .m_axis_tdest(), .m_axis_tid(), .m_axis_tkeep(), .m_axis_tlast(), .m_axis_tready(1'b0), .m_axis_tstrb(), .m_axis_tuser(), .m_axis_tvalid(), .overflow(), .prog_empty(), .prog_empty_thresh(5'b0), .prog_empty_thresh_assert(5'b0), .prog_empty_thresh_negate(5'b0), .prog_full(), .prog_full_thresh(5'b0), .prog_full_thresh_assert(5'b0), .prog_full_thresh_negate(5'b0), .rd_data_count(), .rd_rst(1'b0), .s_aclk(1'b0), .s_aclk_en(1'b0), .s_aresetn(1'b0), .s_axi_araddr(32'b0), .s_axi_arburst(2'b0), .s_axi_arcache(4'b0), .s_axi_arid(4'b0), .s_axi_arlen(8'b0), .s_axi_arlock(2'b0), .s_axi_arprot(3'b0), .s_axi_arqos(4'b0), .s_axi_arready(), .s_axi_arregion(4'b0), .s_axi_arsize(3'b0), .s_axi_aruser(1'b0), .s_axi_arvalid(1'b0), .s_axi_awaddr(32'b0), .s_axi_awburst(2'b0), .s_axi_awcache(4'b0), .s_axi_awid(4'b0), .s_axi_awlen(8'b0), .s_axi_awlock(2'b0), .s_axi_awprot(3'b0), .s_axi_awqos(4'b0), .s_axi_awready(), .s_axi_awregion(4'b0), .s_axi_awsize(3'b0), .s_axi_awuser(1'b0), .s_axi_awvalid(1'b0), .s_axi_bid(), .s_axi_bready(1'b0), .s_axi_bresp(), .s_axi_buser(), .s_axi_bvalid(), .s_axi_rdata(), .s_axi_rid(), .s_axi_rlast(), .s_axi_rready(1'b0), .s_axi_rresp(), .s_axi_ruser(), .s_axi_rvalid(), .s_axi_wdata(64'b0), .s_axi_wid(4'b0), .s_axi_wlast(1'b0), .s_axi_wready(), .s_axi_wstrb(8'b0), .s_axi_wuser(1'b0), .s_axi_wvalid(1'b0), .s_axis_tdata(64'b0), .s_axis_tdest(4'b0), .s_axis_tid(8'b0), .s_axis_tkeep(4'b0), .s_axis_tlast(1'b0), .s_axis_tready(), .s_axis_tstrb(4'b0), .s_axis_tuser(4'b0), .s_axis_tvalid(1'b0), .sbiterr(), .srst(1'b0), .underflow(), .valid(), .wr_ack(), .wr_data_count(), .wr_rst(1'b0), .wr_rst_busy(), .rd_rst_busy(), .sleep(1'b0) ); endmodule
module axi_data_fifo_v2_1_fifo_gen #( parameter C_FAMILY = "virtex7", parameter integer C_COMMON_CLOCK = 1, parameter integer C_SYNCHRONIZER_STAGE = 3, parameter integer C_FIFO_DEPTH_LOG = 5, parameter integer C_FIFO_WIDTH = 64, parameter C_FIFO_TYPE = "lut" )( clk, rst, wr_clk, wr_en, wr_ready, wr_data, rd_clk, rd_en, rd_valid, rd_data); input clk; input wr_clk; input rd_clk; input rst; input [C_FIFO_WIDTH-1 : 0] wr_data; input wr_en; input rd_en; output [C_FIFO_WIDTH-1 : 0] rd_data; output wr_ready; output rd_valid; wire full; wire empty; wire rd_valid = ~empty; wire wr_ready = ~full; localparam C_MEMORY_TYPE = (C_FIFO_TYPE == "bram")? 1 : 2; localparam C_IMPLEMENTATION_TYPE = (C_COMMON_CLOCK == 1)? 0 : 2; fifo_generator_v12_0 #( .C_COMMON_CLOCK(C_COMMON_CLOCK), .C_DIN_WIDTH(C_FIFO_WIDTH), .C_DOUT_WIDTH(C_FIFO_WIDTH), .C_FAMILY(C_FAMILY), .C_IMPLEMENTATION_TYPE(C_IMPLEMENTATION_TYPE), .C_MEMORY_TYPE(C_MEMORY_TYPE), .C_RD_DEPTH(1<<C_FIFO_DEPTH_LOG), .C_RD_PNTR_WIDTH(C_FIFO_DEPTH_LOG), .C_WR_DEPTH(1<<C_FIFO_DEPTH_LOG), .C_WR_PNTR_WIDTH(C_FIFO_DEPTH_LOG), .C_ADD_NGC_CONSTRAINT(0), .C_APPLICATION_TYPE_AXIS(0), .C_APPLICATION_TYPE_RACH(0), .C_APPLICATION_TYPE_RDCH(0), .C_APPLICATION_TYPE_WACH(0), .C_APPLICATION_TYPE_WDCH(0), .C_APPLICATION_TYPE_WRCH(0), .C_AXIS_TDATA_WIDTH(64), .C_AXIS_TDEST_WIDTH(4), .C_AXIS_TID_WIDTH(8), .C_AXIS_TKEEP_WIDTH(4), .C_AXIS_TSTRB_WIDTH(4), .C_AXIS_TUSER_WIDTH(4), .C_AXIS_TYPE(0), .C_AXI_ADDR_WIDTH(32), .C_AXI_ARUSER_WIDTH(1), .C_AXI_AWUSER_WIDTH(1), .C_AXI_BUSER_WIDTH(1), .C_AXI_DATA_WIDTH(64), .C_AXI_ID_WIDTH(4), .C_AXI_LEN_WIDTH(8), .C_AXI_LOCK_WIDTH(2), .C_AXI_RUSER_WIDTH(1), .C_AXI_TYPE(0), .C_AXI_WUSER_WIDTH(1), .C_COUNT_TYPE(0), .C_DATA_COUNT_WIDTH(6), .C_DEFAULT_VALUE("BlankString"), .C_DIN_WIDTH_AXIS(1), .C_DIN_WIDTH_RACH(32), .C_DIN_WIDTH_RDCH(64), .C_DIN_WIDTH_WACH(32), .C_DIN_WIDTH_WDCH(64), .C_DIN_WIDTH_WRCH(2), .C_DOUT_RST_VAL("0"), .C_ENABLE_RLOCS(0), .C_ENABLE_RST_SYNC(1), .C_ERROR_INJECTION_TYPE(0), .C_ERROR_INJECTION_TYPE_AXIS(0), .C_ERROR_INJECTION_TYPE_RACH(0), .C_ERROR_INJECTION_TYPE_RDCH(0), .C_ERROR_INJECTION_TYPE_WACH(0), .C_ERROR_INJECTION_TYPE_WDCH(0), .C_ERROR_INJECTION_TYPE_WRCH(0), .C_FULL_FLAGS_RST_VAL(0), .C_HAS_ALMOST_EMPTY(0), .C_HAS_ALMOST_FULL(0), .C_HAS_AXIS_TDATA(0), .C_HAS_AXIS_TDEST(0), .C_HAS_AXIS_TID(0), .C_HAS_AXIS_TKEEP(0), .C_HAS_AXIS_TLAST(0), .C_HAS_AXIS_TREADY(1), .C_HAS_AXIS_TSTRB(0), .C_HAS_AXIS_TUSER(0), .C_HAS_AXI_ARUSER(0), .C_HAS_AXI_AWUSER(0), .C_HAS_AXI_BUSER(0), .C_HAS_AXI_RD_CHANNEL(0), .C_HAS_AXI_RUSER(0), .C_HAS_AXI_WR_CHANNEL(0), .C_HAS_AXI_WUSER(0), .C_HAS_BACKUP(0), .C_HAS_DATA_COUNT(0), .C_HAS_DATA_COUNTS_AXIS(0), .C_HAS_DATA_COUNTS_RACH(0), .C_HAS_DATA_COUNTS_RDCH(0), .C_HAS_DATA_COUNTS_WACH(0), .C_HAS_DATA_COUNTS_WDCH(0), .C_HAS_DATA_COUNTS_WRCH(0), .C_HAS_INT_CLK(0), .C_HAS_MASTER_CE(0), .C_HAS_MEMINIT_FILE(0), .C_HAS_OVERFLOW(0), .C_HAS_PROG_FLAGS_AXIS(0), .C_HAS_PROG_FLAGS_RACH(0), .C_HAS_PROG_FLAGS_RDCH(0), .C_HAS_PROG_FLAGS_WACH(0), .C_HAS_PROG_FLAGS_WDCH(0), .C_HAS_PROG_FLAGS_WRCH(0), .C_HAS_RD_DATA_COUNT(0), .C_HAS_RD_RST(0), .C_HAS_RST(1), .C_HAS_SLAVE_CE(0), .C_HAS_SRST(0), .C_HAS_UNDERFLOW(0), .C_HAS_VALID(0), .C_HAS_WR_ACK(0), .C_HAS_WR_DATA_COUNT(0), .C_HAS_WR_RST(0), .C_IMPLEMENTATION_TYPE_AXIS(1), .C_IMPLEMENTATION_TYPE_RACH(1), .C_IMPLEMENTATION_TYPE_RDCH(1), .C_IMPLEMENTATION_TYPE_WACH(1), .C_IMPLEMENTATION_TYPE_WDCH(1), .C_IMPLEMENTATION_TYPE_WRCH(1), .C_INIT_WR_PNTR_VAL(0), .C_INTERFACE_TYPE(0), .C_MIF_FILE_NAME("BlankString"), .C_MSGON_VAL(1), .C_OPTIMIZATION_MODE(0), .C_OVERFLOW_LOW(0), .C_PRELOAD_LATENCY(0), .C_PRELOAD_REGS(1), .C_PRIM_FIFO_TYPE("512x36"), .C_PROG_EMPTY_THRESH_ASSERT_VAL(4), .C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH(1022), .C_PROG_EMPTY_THRESH_NEGATE_VAL(5), .C_PROG_EMPTY_TYPE(0), .C_PROG_EMPTY_TYPE_AXIS(0), .C_PROG_EMPTY_TYPE_RACH(0), .C_PROG_EMPTY_TYPE_RDCH(0), .C_PROG_EMPTY_TYPE_WACH(0), .C_PROG_EMPTY_TYPE_WDCH(0), .C_PROG_EMPTY_TYPE_WRCH(0), .C_PROG_FULL_THRESH_ASSERT_VAL(31), .C_PROG_FULL_THRESH_ASSERT_VAL_AXIS(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_RACH(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_RDCH(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_WACH(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_WDCH(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_WRCH(1023), .C_PROG_FULL_THRESH_NEGATE_VAL(30), .C_PROG_FULL_TYPE(0), .C_PROG_FULL_TYPE_AXIS(0), .C_PROG_FULL_TYPE_RACH(0), .C_PROG_FULL_TYPE_RDCH(0), .C_PROG_FULL_TYPE_WACH(0), .C_PROG_FULL_TYPE_WDCH(0), .C_PROG_FULL_TYPE_WRCH(0), .C_RACH_TYPE(0), .C_RDCH_TYPE(0), .C_RD_DATA_COUNT_WIDTH(6), .C_RD_FREQ(1), .C_REG_SLICE_MODE_AXIS(0), .C_REG_SLICE_MODE_RACH(0), .C_REG_SLICE_MODE_RDCH(0), .C_REG_SLICE_MODE_WACH(0), .C_REG_SLICE_MODE_WDCH(0), .C_REG_SLICE_MODE_WRCH(0), .C_SYNCHRONIZER_STAGE(C_SYNCHRONIZER_STAGE), .C_UNDERFLOW_LOW(0), .C_USE_COMMON_OVERFLOW(0), .C_USE_COMMON_UNDERFLOW(0), .C_USE_DEFAULT_SETTINGS(0), .C_USE_DOUT_RST(0), .C_USE_ECC(0), .C_USE_ECC_AXIS(0), .C_USE_ECC_RACH(0), .C_USE_ECC_RDCH(0), .C_USE_ECC_WACH(0), .C_USE_ECC_WDCH(0), .C_USE_ECC_WRCH(0), .C_USE_EMBEDDED_REG(0), .C_USE_FIFO16_FLAGS(0), .C_USE_FWFT_DATA_COUNT(1), .C_VALID_LOW(0), .C_WACH_TYPE(0), .C_WDCH_TYPE(0), .C_WRCH_TYPE(0), .C_WR_ACK_LOW(0), .C_WR_DATA_COUNT_WIDTH(6), .C_WR_DEPTH_AXIS(1024), .C_WR_DEPTH_RACH(16), .C_WR_DEPTH_RDCH(1024), .C_WR_DEPTH_WACH(16), .C_WR_DEPTH_WDCH(1024), .C_WR_DEPTH_WRCH(16), .C_WR_FREQ(1), .C_WR_PNTR_WIDTH_AXIS(10), .C_WR_PNTR_WIDTH_RACH(4), .C_WR_PNTR_WIDTH_RDCH(10), .C_WR_PNTR_WIDTH_WACH(4), .C_WR_PNTR_WIDTH_WDCH(10), .C_WR_PNTR_WIDTH_WRCH(4), .C_WR_RESPONSE_LATENCY(1) ) fifo_gen_inst ( .clk(clk), .din(wr_data), .dout(rd_data), .empty(empty), .full(full), .rd_clk(rd_clk), .rd_en(rd_en), .rst(rst), .wr_clk(wr_clk), .wr_en(wr_en), .almost_empty(), .almost_full(), .axi_ar_data_count(), .axi_ar_dbiterr(), .axi_ar_injectdbiterr(1'b0), .axi_ar_injectsbiterr(1'b0), .axi_ar_overflow(), .axi_ar_prog_empty(), .axi_ar_prog_empty_thresh(4'b0), .axi_ar_prog_full(), .axi_ar_prog_full_thresh(4'b0), .axi_ar_rd_data_count(), .axi_ar_sbiterr(), .axi_ar_underflow(), .axi_ar_wr_data_count(), .axi_aw_data_count(), .axi_aw_dbiterr(), .axi_aw_injectdbiterr(1'b0), .axi_aw_injectsbiterr(1'b0), .axi_aw_overflow(), .axi_aw_prog_empty(), .axi_aw_prog_empty_thresh(4'b0), .axi_aw_prog_full(), .axi_aw_prog_full_thresh(4'b0), .axi_aw_rd_data_count(), .axi_aw_sbiterr(), .axi_aw_underflow(), .axi_aw_wr_data_count(), .axi_b_data_count(), .axi_b_dbiterr(), .axi_b_injectdbiterr(1'b0), .axi_b_injectsbiterr(1'b0), .axi_b_overflow(), .axi_b_prog_empty(), .axi_b_prog_empty_thresh(4'b0), .axi_b_prog_full(), .axi_b_prog_full_thresh(4'b0), .axi_b_rd_data_count(), .axi_b_sbiterr(), .axi_b_underflow(), .axi_b_wr_data_count(), .axi_r_data_count(), .axi_r_dbiterr(), .axi_r_injectdbiterr(1'b0), .axi_r_injectsbiterr(1'b0), .axi_r_overflow(), .axi_r_prog_empty(), .axi_r_prog_empty_thresh(10'b0), .axi_r_prog_full(), .axi_r_prog_full_thresh(10'b0), .axi_r_rd_data_count(), .axi_r_sbiterr(), .axi_r_underflow(), .axi_r_wr_data_count(), .axi_w_data_count(), .axi_w_dbiterr(), .axi_w_injectdbiterr(1'b0), .axi_w_injectsbiterr(1'b0), .axi_w_overflow(), .axi_w_prog_empty(), .axi_w_prog_empty_thresh(10'b0), .axi_w_prog_full(), .axi_w_prog_full_thresh(10'b0), .axi_w_rd_data_count(), .axi_w_sbiterr(), .axi_w_underflow(), .axi_w_wr_data_count(), .axis_data_count(), .axis_dbiterr(), .axis_injectdbiterr(1'b0), .axis_injectsbiterr(1'b0), .axis_overflow(), .axis_prog_empty(), .axis_prog_empty_thresh(10'b0), .axis_prog_full(), .axis_prog_full_thresh(10'b0), .axis_rd_data_count(), .axis_sbiterr(), .axis_underflow(), .axis_wr_data_count(), .backup(1'b0), .backup_marker(1'b0), .data_count(), .dbiterr(), .injectdbiterr(1'b0), .injectsbiterr(1'b0), .int_clk(1'b0), .m_aclk(1'b0), .m_aclk_en(1'b0), .m_axi_araddr(), .m_axi_arburst(), .m_axi_arcache(), .m_axi_arid(), .m_axi_arlen(), .m_axi_arlock(), .m_axi_arprot(), .m_axi_arqos(), .m_axi_arready(1'b0), .m_axi_arregion(), .m_axi_arsize(), .m_axi_aruser(), .m_axi_arvalid(), .m_axi_awaddr(), .m_axi_awburst(), .m_axi_awcache(), .m_axi_awid(), .m_axi_awlen(), .m_axi_awlock(), .m_axi_awprot(), .m_axi_awqos(), .m_axi_awready(1'b0), .m_axi_awregion(), .m_axi_awsize(), .m_axi_awuser(), .m_axi_awvalid(), .m_axi_bid(4'b0), .m_axi_bready(), .m_axi_bresp(2'b0), .m_axi_buser(1'b0), .m_axi_bvalid(1'b0), .m_axi_rdata(64'b0), .m_axi_rid(4'b0), .m_axi_rlast(1'b0), .m_axi_rready(), .m_axi_rresp(2'b0), .m_axi_ruser(1'b0), .m_axi_rvalid(1'b0), .m_axi_wdata(), .m_axi_wid(), .m_axi_wlast(), .m_axi_wready(1'b0), .m_axi_wstrb(), .m_axi_wuser(), .m_axi_wvalid(), .m_axis_tdata(), .m_axis_tdest(), .m_axis_tid(), .m_axis_tkeep(), .m_axis_tlast(), .m_axis_tready(1'b0), .m_axis_tstrb(), .m_axis_tuser(), .m_axis_tvalid(), .overflow(), .prog_empty(), .prog_empty_thresh(5'b0), .prog_empty_thresh_assert(5'b0), .prog_empty_thresh_negate(5'b0), .prog_full(), .prog_full_thresh(5'b0), .prog_full_thresh_assert(5'b0), .prog_full_thresh_negate(5'b0), .rd_data_count(), .rd_rst(1'b0), .s_aclk(1'b0), .s_aclk_en(1'b0), .s_aresetn(1'b0), .s_axi_araddr(32'b0), .s_axi_arburst(2'b0), .s_axi_arcache(4'b0), .s_axi_arid(4'b0), .s_axi_arlen(8'b0), .s_axi_arlock(2'b0), .s_axi_arprot(3'b0), .s_axi_arqos(4'b0), .s_axi_arready(), .s_axi_arregion(4'b0), .s_axi_arsize(3'b0), .s_axi_aruser(1'b0), .s_axi_arvalid(1'b0), .s_axi_awaddr(32'b0), .s_axi_awburst(2'b0), .s_axi_awcache(4'b0), .s_axi_awid(4'b0), .s_axi_awlen(8'b0), .s_axi_awlock(2'b0), .s_axi_awprot(3'b0), .s_axi_awqos(4'b0), .s_axi_awready(), .s_axi_awregion(4'b0), .s_axi_awsize(3'b0), .s_axi_awuser(1'b0), .s_axi_awvalid(1'b0), .s_axi_bid(), .s_axi_bready(1'b0), .s_axi_bresp(), .s_axi_buser(), .s_axi_bvalid(), .s_axi_rdata(), .s_axi_rid(), .s_axi_rlast(), .s_axi_rready(1'b0), .s_axi_rresp(), .s_axi_ruser(), .s_axi_rvalid(), .s_axi_wdata(64'b0), .s_axi_wid(4'b0), .s_axi_wlast(1'b0), .s_axi_wready(), .s_axi_wstrb(8'b0), .s_axi_wuser(1'b0), .s_axi_wvalid(1'b0), .s_axis_tdata(64'b0), .s_axis_tdest(4'b0), .s_axis_tid(8'b0), .s_axis_tkeep(4'b0), .s_axis_tlast(1'b0), .s_axis_tready(), .s_axis_tstrb(4'b0), .s_axis_tuser(4'b0), .s_axis_tvalid(1'b0), .sbiterr(), .srst(1'b0), .underflow(), .valid(), .wr_ack(), .wr_data_count(), .wr_rst(1'b0), .wr_rst_busy(), .rd_rst_busy(), .sleep(1'b0) ); endmodule
module axi_data_fifo_v2_1_fifo_gen #( parameter C_FAMILY = "virtex7", parameter integer C_COMMON_CLOCK = 1, parameter integer C_SYNCHRONIZER_STAGE = 3, parameter integer C_FIFO_DEPTH_LOG = 5, parameter integer C_FIFO_WIDTH = 64, parameter C_FIFO_TYPE = "lut" )( clk, rst, wr_clk, wr_en, wr_ready, wr_data, rd_clk, rd_en, rd_valid, rd_data); input clk; input wr_clk; input rd_clk; input rst; input [C_FIFO_WIDTH-1 : 0] wr_data; input wr_en; input rd_en; output [C_FIFO_WIDTH-1 : 0] rd_data; output wr_ready; output rd_valid; wire full; wire empty; wire rd_valid = ~empty; wire wr_ready = ~full; localparam C_MEMORY_TYPE = (C_FIFO_TYPE == "bram")? 1 : 2; localparam C_IMPLEMENTATION_TYPE = (C_COMMON_CLOCK == 1)? 0 : 2; fifo_generator_v12_0 #( .C_COMMON_CLOCK(C_COMMON_CLOCK), .C_DIN_WIDTH(C_FIFO_WIDTH), .C_DOUT_WIDTH(C_FIFO_WIDTH), .C_FAMILY(C_FAMILY), .C_IMPLEMENTATION_TYPE(C_IMPLEMENTATION_TYPE), .C_MEMORY_TYPE(C_MEMORY_TYPE), .C_RD_DEPTH(1<<C_FIFO_DEPTH_LOG), .C_RD_PNTR_WIDTH(C_FIFO_DEPTH_LOG), .C_WR_DEPTH(1<<C_FIFO_DEPTH_LOG), .C_WR_PNTR_WIDTH(C_FIFO_DEPTH_LOG), .C_ADD_NGC_CONSTRAINT(0), .C_APPLICATION_TYPE_AXIS(0), .C_APPLICATION_TYPE_RACH(0), .C_APPLICATION_TYPE_RDCH(0), .C_APPLICATION_TYPE_WACH(0), .C_APPLICATION_TYPE_WDCH(0), .C_APPLICATION_TYPE_WRCH(0), .C_AXIS_TDATA_WIDTH(64), .C_AXIS_TDEST_WIDTH(4), .C_AXIS_TID_WIDTH(8), .C_AXIS_TKEEP_WIDTH(4), .C_AXIS_TSTRB_WIDTH(4), .C_AXIS_TUSER_WIDTH(4), .C_AXIS_TYPE(0), .C_AXI_ADDR_WIDTH(32), .C_AXI_ARUSER_WIDTH(1), .C_AXI_AWUSER_WIDTH(1), .C_AXI_BUSER_WIDTH(1), .C_AXI_DATA_WIDTH(64), .C_AXI_ID_WIDTH(4), .C_AXI_LEN_WIDTH(8), .C_AXI_LOCK_WIDTH(2), .C_AXI_RUSER_WIDTH(1), .C_AXI_TYPE(0), .C_AXI_WUSER_WIDTH(1), .C_COUNT_TYPE(0), .C_DATA_COUNT_WIDTH(6), .C_DEFAULT_VALUE("BlankString"), .C_DIN_WIDTH_AXIS(1), .C_DIN_WIDTH_RACH(32), .C_DIN_WIDTH_RDCH(64), .C_DIN_WIDTH_WACH(32), .C_DIN_WIDTH_WDCH(64), .C_DIN_WIDTH_WRCH(2), .C_DOUT_RST_VAL("0"), .C_ENABLE_RLOCS(0), .C_ENABLE_RST_SYNC(1), .C_ERROR_INJECTION_TYPE(0), .C_ERROR_INJECTION_TYPE_AXIS(0), .C_ERROR_INJECTION_TYPE_RACH(0), .C_ERROR_INJECTION_TYPE_RDCH(0), .C_ERROR_INJECTION_TYPE_WACH(0), .C_ERROR_INJECTION_TYPE_WDCH(0), .C_ERROR_INJECTION_TYPE_WRCH(0), .C_FULL_FLAGS_RST_VAL(0), .C_HAS_ALMOST_EMPTY(0), .C_HAS_ALMOST_FULL(0), .C_HAS_AXIS_TDATA(0), .C_HAS_AXIS_TDEST(0), .C_HAS_AXIS_TID(0), .C_HAS_AXIS_TKEEP(0), .C_HAS_AXIS_TLAST(0), .C_HAS_AXIS_TREADY(1), .C_HAS_AXIS_TSTRB(0), .C_HAS_AXIS_TUSER(0), .C_HAS_AXI_ARUSER(0), .C_HAS_AXI_AWUSER(0), .C_HAS_AXI_BUSER(0), .C_HAS_AXI_RD_CHANNEL(0), .C_HAS_AXI_RUSER(0), .C_HAS_AXI_WR_CHANNEL(0), .C_HAS_AXI_WUSER(0), .C_HAS_BACKUP(0), .C_HAS_DATA_COUNT(0), .C_HAS_DATA_COUNTS_AXIS(0), .C_HAS_DATA_COUNTS_RACH(0), .C_HAS_DATA_COUNTS_RDCH(0), .C_HAS_DATA_COUNTS_WACH(0), .C_HAS_DATA_COUNTS_WDCH(0), .C_HAS_DATA_COUNTS_WRCH(0), .C_HAS_INT_CLK(0), .C_HAS_MASTER_CE(0), .C_HAS_MEMINIT_FILE(0), .C_HAS_OVERFLOW(0), .C_HAS_PROG_FLAGS_AXIS(0), .C_HAS_PROG_FLAGS_RACH(0), .C_HAS_PROG_FLAGS_RDCH(0), .C_HAS_PROG_FLAGS_WACH(0), .C_HAS_PROG_FLAGS_WDCH(0), .C_HAS_PROG_FLAGS_WRCH(0), .C_HAS_RD_DATA_COUNT(0), .C_HAS_RD_RST(0), .C_HAS_RST(1), .C_HAS_SLAVE_CE(0), .C_HAS_SRST(0), .C_HAS_UNDERFLOW(0), .C_HAS_VALID(0), .C_HAS_WR_ACK(0), .C_HAS_WR_DATA_COUNT(0), .C_HAS_WR_RST(0), .C_IMPLEMENTATION_TYPE_AXIS(1), .C_IMPLEMENTATION_TYPE_RACH(1), .C_IMPLEMENTATION_TYPE_RDCH(1), .C_IMPLEMENTATION_TYPE_WACH(1), .C_IMPLEMENTATION_TYPE_WDCH(1), .C_IMPLEMENTATION_TYPE_WRCH(1), .C_INIT_WR_PNTR_VAL(0), .C_INTERFACE_TYPE(0), .C_MIF_FILE_NAME("BlankString"), .C_MSGON_VAL(1), .C_OPTIMIZATION_MODE(0), .C_OVERFLOW_LOW(0), .C_PRELOAD_LATENCY(0), .C_PRELOAD_REGS(1), .C_PRIM_FIFO_TYPE("512x36"), .C_PROG_EMPTY_THRESH_ASSERT_VAL(4), .C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH(1022), .C_PROG_EMPTY_THRESH_NEGATE_VAL(5), .C_PROG_EMPTY_TYPE(0), .C_PROG_EMPTY_TYPE_AXIS(0), .C_PROG_EMPTY_TYPE_RACH(0), .C_PROG_EMPTY_TYPE_RDCH(0), .C_PROG_EMPTY_TYPE_WACH(0), .C_PROG_EMPTY_TYPE_WDCH(0), .C_PROG_EMPTY_TYPE_WRCH(0), .C_PROG_FULL_THRESH_ASSERT_VAL(31), .C_PROG_FULL_THRESH_ASSERT_VAL_AXIS(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_RACH(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_RDCH(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_WACH(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_WDCH(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_WRCH(1023), .C_PROG_FULL_THRESH_NEGATE_VAL(30), .C_PROG_FULL_TYPE(0), .C_PROG_FULL_TYPE_AXIS(0), .C_PROG_FULL_TYPE_RACH(0), .C_PROG_FULL_TYPE_RDCH(0), .C_PROG_FULL_TYPE_WACH(0), .C_PROG_FULL_TYPE_WDCH(0), .C_PROG_FULL_TYPE_WRCH(0), .C_RACH_TYPE(0), .C_RDCH_TYPE(0), .C_RD_DATA_COUNT_WIDTH(6), .C_RD_FREQ(1), .C_REG_SLICE_MODE_AXIS(0), .C_REG_SLICE_MODE_RACH(0), .C_REG_SLICE_MODE_RDCH(0), .C_REG_SLICE_MODE_WACH(0), .C_REG_SLICE_MODE_WDCH(0), .C_REG_SLICE_MODE_WRCH(0), .C_SYNCHRONIZER_STAGE(C_SYNCHRONIZER_STAGE), .C_UNDERFLOW_LOW(0), .C_USE_COMMON_OVERFLOW(0), .C_USE_COMMON_UNDERFLOW(0), .C_USE_DEFAULT_SETTINGS(0), .C_USE_DOUT_RST(0), .C_USE_ECC(0), .C_USE_ECC_AXIS(0), .C_USE_ECC_RACH(0), .C_USE_ECC_RDCH(0), .C_USE_ECC_WACH(0), .C_USE_ECC_WDCH(0), .C_USE_ECC_WRCH(0), .C_USE_EMBEDDED_REG(0), .C_USE_FIFO16_FLAGS(0), .C_USE_FWFT_DATA_COUNT(1), .C_VALID_LOW(0), .C_WACH_TYPE(0), .C_WDCH_TYPE(0), .C_WRCH_TYPE(0), .C_WR_ACK_LOW(0), .C_WR_DATA_COUNT_WIDTH(6), .C_WR_DEPTH_AXIS(1024), .C_WR_DEPTH_RACH(16), .C_WR_DEPTH_RDCH(1024), .C_WR_DEPTH_WACH(16), .C_WR_DEPTH_WDCH(1024), .C_WR_DEPTH_WRCH(16), .C_WR_FREQ(1), .C_WR_PNTR_WIDTH_AXIS(10), .C_WR_PNTR_WIDTH_RACH(4), .C_WR_PNTR_WIDTH_RDCH(10), .C_WR_PNTR_WIDTH_WACH(4), .C_WR_PNTR_WIDTH_WDCH(10), .C_WR_PNTR_WIDTH_WRCH(4), .C_WR_RESPONSE_LATENCY(1) ) fifo_gen_inst ( .clk(clk), .din(wr_data), .dout(rd_data), .empty(empty), .full(full), .rd_clk(rd_clk), .rd_en(rd_en), .rst(rst), .wr_clk(wr_clk), .wr_en(wr_en), .almost_empty(), .almost_full(), .axi_ar_data_count(), .axi_ar_dbiterr(), .axi_ar_injectdbiterr(1'b0), .axi_ar_injectsbiterr(1'b0), .axi_ar_overflow(), .axi_ar_prog_empty(), .axi_ar_prog_empty_thresh(4'b0), .axi_ar_prog_full(), .axi_ar_prog_full_thresh(4'b0), .axi_ar_rd_data_count(), .axi_ar_sbiterr(), .axi_ar_underflow(), .axi_ar_wr_data_count(), .axi_aw_data_count(), .axi_aw_dbiterr(), .axi_aw_injectdbiterr(1'b0), .axi_aw_injectsbiterr(1'b0), .axi_aw_overflow(), .axi_aw_prog_empty(), .axi_aw_prog_empty_thresh(4'b0), .axi_aw_prog_full(), .axi_aw_prog_full_thresh(4'b0), .axi_aw_rd_data_count(), .axi_aw_sbiterr(), .axi_aw_underflow(), .axi_aw_wr_data_count(), .axi_b_data_count(), .axi_b_dbiterr(), .axi_b_injectdbiterr(1'b0), .axi_b_injectsbiterr(1'b0), .axi_b_overflow(), .axi_b_prog_empty(), .axi_b_prog_empty_thresh(4'b0), .axi_b_prog_full(), .axi_b_prog_full_thresh(4'b0), .axi_b_rd_data_count(), .axi_b_sbiterr(), .axi_b_underflow(), .axi_b_wr_data_count(), .axi_r_data_count(), .axi_r_dbiterr(), .axi_r_injectdbiterr(1'b0), .axi_r_injectsbiterr(1'b0), .axi_r_overflow(), .axi_r_prog_empty(), .axi_r_prog_empty_thresh(10'b0), .axi_r_prog_full(), .axi_r_prog_full_thresh(10'b0), .axi_r_rd_data_count(), .axi_r_sbiterr(), .axi_r_underflow(), .axi_r_wr_data_count(), .axi_w_data_count(), .axi_w_dbiterr(), .axi_w_injectdbiterr(1'b0), .axi_w_injectsbiterr(1'b0), .axi_w_overflow(), .axi_w_prog_empty(), .axi_w_prog_empty_thresh(10'b0), .axi_w_prog_full(), .axi_w_prog_full_thresh(10'b0), .axi_w_rd_data_count(), .axi_w_sbiterr(), .axi_w_underflow(), .axi_w_wr_data_count(), .axis_data_count(), .axis_dbiterr(), .axis_injectdbiterr(1'b0), .axis_injectsbiterr(1'b0), .axis_overflow(), .axis_prog_empty(), .axis_prog_empty_thresh(10'b0), .axis_prog_full(), .axis_prog_full_thresh(10'b0), .axis_rd_data_count(), .axis_sbiterr(), .axis_underflow(), .axis_wr_data_count(), .backup(1'b0), .backup_marker(1'b0), .data_count(), .dbiterr(), .injectdbiterr(1'b0), .injectsbiterr(1'b0), .int_clk(1'b0), .m_aclk(1'b0), .m_aclk_en(1'b0), .m_axi_araddr(), .m_axi_arburst(), .m_axi_arcache(), .m_axi_arid(), .m_axi_arlen(), .m_axi_arlock(), .m_axi_arprot(), .m_axi_arqos(), .m_axi_arready(1'b0), .m_axi_arregion(), .m_axi_arsize(), .m_axi_aruser(), .m_axi_arvalid(), .m_axi_awaddr(), .m_axi_awburst(), .m_axi_awcache(), .m_axi_awid(), .m_axi_awlen(), .m_axi_awlock(), .m_axi_awprot(), .m_axi_awqos(), .m_axi_awready(1'b0), .m_axi_awregion(), .m_axi_awsize(), .m_axi_awuser(), .m_axi_awvalid(), .m_axi_bid(4'b0), .m_axi_bready(), .m_axi_bresp(2'b0), .m_axi_buser(1'b0), .m_axi_bvalid(1'b0), .m_axi_rdata(64'b0), .m_axi_rid(4'b0), .m_axi_rlast(1'b0), .m_axi_rready(), .m_axi_rresp(2'b0), .m_axi_ruser(1'b0), .m_axi_rvalid(1'b0), .m_axi_wdata(), .m_axi_wid(), .m_axi_wlast(), .m_axi_wready(1'b0), .m_axi_wstrb(), .m_axi_wuser(), .m_axi_wvalid(), .m_axis_tdata(), .m_axis_tdest(), .m_axis_tid(), .m_axis_tkeep(), .m_axis_tlast(), .m_axis_tready(1'b0), .m_axis_tstrb(), .m_axis_tuser(), .m_axis_tvalid(), .overflow(), .prog_empty(), .prog_empty_thresh(5'b0), .prog_empty_thresh_assert(5'b0), .prog_empty_thresh_negate(5'b0), .prog_full(), .prog_full_thresh(5'b0), .prog_full_thresh_assert(5'b0), .prog_full_thresh_negate(5'b0), .rd_data_count(), .rd_rst(1'b0), .s_aclk(1'b0), .s_aclk_en(1'b0), .s_aresetn(1'b0), .s_axi_araddr(32'b0), .s_axi_arburst(2'b0), .s_axi_arcache(4'b0), .s_axi_arid(4'b0), .s_axi_arlen(8'b0), .s_axi_arlock(2'b0), .s_axi_arprot(3'b0), .s_axi_arqos(4'b0), .s_axi_arready(), .s_axi_arregion(4'b0), .s_axi_arsize(3'b0), .s_axi_aruser(1'b0), .s_axi_arvalid(1'b0), .s_axi_awaddr(32'b0), .s_axi_awburst(2'b0), .s_axi_awcache(4'b0), .s_axi_awid(4'b0), .s_axi_awlen(8'b0), .s_axi_awlock(2'b0), .s_axi_awprot(3'b0), .s_axi_awqos(4'b0), .s_axi_awready(), .s_axi_awregion(4'b0), .s_axi_awsize(3'b0), .s_axi_awuser(1'b0), .s_axi_awvalid(1'b0), .s_axi_bid(), .s_axi_bready(1'b0), .s_axi_bresp(), .s_axi_buser(), .s_axi_bvalid(), .s_axi_rdata(), .s_axi_rid(), .s_axi_rlast(), .s_axi_rready(1'b0), .s_axi_rresp(), .s_axi_ruser(), .s_axi_rvalid(), .s_axi_wdata(64'b0), .s_axi_wid(4'b0), .s_axi_wlast(1'b0), .s_axi_wready(), .s_axi_wstrb(8'b0), .s_axi_wuser(1'b0), .s_axi_wvalid(1'b0), .s_axis_tdata(64'b0), .s_axis_tdest(4'b0), .s_axis_tid(8'b0), .s_axis_tkeep(4'b0), .s_axis_tlast(1'b0), .s_axis_tready(), .s_axis_tstrb(4'b0), .s_axis_tuser(4'b0), .s_axis_tvalid(1'b0), .sbiterr(), .srst(1'b0), .underflow(), .valid(), .wr_ack(), .wr_data_count(), .wr_rst(1'b0), .wr_rst_busy(), .rd_rst_busy(), .sleep(1'b0) ); endmodule
module axi_data_fifo_v2_1_fifo_gen #( parameter C_FAMILY = "virtex7", parameter integer C_COMMON_CLOCK = 1, parameter integer C_SYNCHRONIZER_STAGE = 3, parameter integer C_FIFO_DEPTH_LOG = 5, parameter integer C_FIFO_WIDTH = 64, parameter C_FIFO_TYPE = "lut" )( clk, rst, wr_clk, wr_en, wr_ready, wr_data, rd_clk, rd_en, rd_valid, rd_data); input clk; input wr_clk; input rd_clk; input rst; input [C_FIFO_WIDTH-1 : 0] wr_data; input wr_en; input rd_en; output [C_FIFO_WIDTH-1 : 0] rd_data; output wr_ready; output rd_valid; wire full; wire empty; wire rd_valid = ~empty; wire wr_ready = ~full; localparam C_MEMORY_TYPE = (C_FIFO_TYPE == "bram")? 1 : 2; localparam C_IMPLEMENTATION_TYPE = (C_COMMON_CLOCK == 1)? 0 : 2; fifo_generator_v12_0 #( .C_COMMON_CLOCK(C_COMMON_CLOCK), .C_DIN_WIDTH(C_FIFO_WIDTH), .C_DOUT_WIDTH(C_FIFO_WIDTH), .C_FAMILY(C_FAMILY), .C_IMPLEMENTATION_TYPE(C_IMPLEMENTATION_TYPE), .C_MEMORY_TYPE(C_MEMORY_TYPE), .C_RD_DEPTH(1<<C_FIFO_DEPTH_LOG), .C_RD_PNTR_WIDTH(C_FIFO_DEPTH_LOG), .C_WR_DEPTH(1<<C_FIFO_DEPTH_LOG), .C_WR_PNTR_WIDTH(C_FIFO_DEPTH_LOG), .C_ADD_NGC_CONSTRAINT(0), .C_APPLICATION_TYPE_AXIS(0), .C_APPLICATION_TYPE_RACH(0), .C_APPLICATION_TYPE_RDCH(0), .C_APPLICATION_TYPE_WACH(0), .C_APPLICATION_TYPE_WDCH(0), .C_APPLICATION_TYPE_WRCH(0), .C_AXIS_TDATA_WIDTH(64), .C_AXIS_TDEST_WIDTH(4), .C_AXIS_TID_WIDTH(8), .C_AXIS_TKEEP_WIDTH(4), .C_AXIS_TSTRB_WIDTH(4), .C_AXIS_TUSER_WIDTH(4), .C_AXIS_TYPE(0), .C_AXI_ADDR_WIDTH(32), .C_AXI_ARUSER_WIDTH(1), .C_AXI_AWUSER_WIDTH(1), .C_AXI_BUSER_WIDTH(1), .C_AXI_DATA_WIDTH(64), .C_AXI_ID_WIDTH(4), .C_AXI_LEN_WIDTH(8), .C_AXI_LOCK_WIDTH(2), .C_AXI_RUSER_WIDTH(1), .C_AXI_TYPE(0), .C_AXI_WUSER_WIDTH(1), .C_COUNT_TYPE(0), .C_DATA_COUNT_WIDTH(6), .C_DEFAULT_VALUE("BlankString"), .C_DIN_WIDTH_AXIS(1), .C_DIN_WIDTH_RACH(32), .C_DIN_WIDTH_RDCH(64), .C_DIN_WIDTH_WACH(32), .C_DIN_WIDTH_WDCH(64), .C_DIN_WIDTH_WRCH(2), .C_DOUT_RST_VAL("0"), .C_ENABLE_RLOCS(0), .C_ENABLE_RST_SYNC(1), .C_ERROR_INJECTION_TYPE(0), .C_ERROR_INJECTION_TYPE_AXIS(0), .C_ERROR_INJECTION_TYPE_RACH(0), .C_ERROR_INJECTION_TYPE_RDCH(0), .C_ERROR_INJECTION_TYPE_WACH(0), .C_ERROR_INJECTION_TYPE_WDCH(0), .C_ERROR_INJECTION_TYPE_WRCH(0), .C_FULL_FLAGS_RST_VAL(0), .C_HAS_ALMOST_EMPTY(0), .C_HAS_ALMOST_FULL(0), .C_HAS_AXIS_TDATA(0), .C_HAS_AXIS_TDEST(0), .C_HAS_AXIS_TID(0), .C_HAS_AXIS_TKEEP(0), .C_HAS_AXIS_TLAST(0), .C_HAS_AXIS_TREADY(1), .C_HAS_AXIS_TSTRB(0), .C_HAS_AXIS_TUSER(0), .C_HAS_AXI_ARUSER(0), .C_HAS_AXI_AWUSER(0), .C_HAS_AXI_BUSER(0), .C_HAS_AXI_RD_CHANNEL(0), .C_HAS_AXI_RUSER(0), .C_HAS_AXI_WR_CHANNEL(0), .C_HAS_AXI_WUSER(0), .C_HAS_BACKUP(0), .C_HAS_DATA_COUNT(0), .C_HAS_DATA_COUNTS_AXIS(0), .C_HAS_DATA_COUNTS_RACH(0), .C_HAS_DATA_COUNTS_RDCH(0), .C_HAS_DATA_COUNTS_WACH(0), .C_HAS_DATA_COUNTS_WDCH(0), .C_HAS_DATA_COUNTS_WRCH(0), .C_HAS_INT_CLK(0), .C_HAS_MASTER_CE(0), .C_HAS_MEMINIT_FILE(0), .C_HAS_OVERFLOW(0), .C_HAS_PROG_FLAGS_AXIS(0), .C_HAS_PROG_FLAGS_RACH(0), .C_HAS_PROG_FLAGS_RDCH(0), .C_HAS_PROG_FLAGS_WACH(0), .C_HAS_PROG_FLAGS_WDCH(0), .C_HAS_PROG_FLAGS_WRCH(0), .C_HAS_RD_DATA_COUNT(0), .C_HAS_RD_RST(0), .C_HAS_RST(1), .C_HAS_SLAVE_CE(0), .C_HAS_SRST(0), .C_HAS_UNDERFLOW(0), .C_HAS_VALID(0), .C_HAS_WR_ACK(0), .C_HAS_WR_DATA_COUNT(0), .C_HAS_WR_RST(0), .C_IMPLEMENTATION_TYPE_AXIS(1), .C_IMPLEMENTATION_TYPE_RACH(1), .C_IMPLEMENTATION_TYPE_RDCH(1), .C_IMPLEMENTATION_TYPE_WACH(1), .C_IMPLEMENTATION_TYPE_WDCH(1), .C_IMPLEMENTATION_TYPE_WRCH(1), .C_INIT_WR_PNTR_VAL(0), .C_INTERFACE_TYPE(0), .C_MIF_FILE_NAME("BlankString"), .C_MSGON_VAL(1), .C_OPTIMIZATION_MODE(0), .C_OVERFLOW_LOW(0), .C_PRELOAD_LATENCY(0), .C_PRELOAD_REGS(1), .C_PRIM_FIFO_TYPE("512x36"), .C_PROG_EMPTY_THRESH_ASSERT_VAL(4), .C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH(1022), .C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH(1022), .C_PROG_EMPTY_THRESH_NEGATE_VAL(5), .C_PROG_EMPTY_TYPE(0), .C_PROG_EMPTY_TYPE_AXIS(0), .C_PROG_EMPTY_TYPE_RACH(0), .C_PROG_EMPTY_TYPE_RDCH(0), .C_PROG_EMPTY_TYPE_WACH(0), .C_PROG_EMPTY_TYPE_WDCH(0), .C_PROG_EMPTY_TYPE_WRCH(0), .C_PROG_FULL_THRESH_ASSERT_VAL(31), .C_PROG_FULL_THRESH_ASSERT_VAL_AXIS(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_RACH(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_RDCH(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_WACH(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_WDCH(1023), .C_PROG_FULL_THRESH_ASSERT_VAL_WRCH(1023), .C_PROG_FULL_THRESH_NEGATE_VAL(30), .C_PROG_FULL_TYPE(0), .C_PROG_FULL_TYPE_AXIS(0), .C_PROG_FULL_TYPE_RACH(0), .C_PROG_FULL_TYPE_RDCH(0), .C_PROG_FULL_TYPE_WACH(0), .C_PROG_FULL_TYPE_WDCH(0), .C_PROG_FULL_TYPE_WRCH(0), .C_RACH_TYPE(0), .C_RDCH_TYPE(0), .C_RD_DATA_COUNT_WIDTH(6), .C_RD_FREQ(1), .C_REG_SLICE_MODE_AXIS(0), .C_REG_SLICE_MODE_RACH(0), .C_REG_SLICE_MODE_RDCH(0), .C_REG_SLICE_MODE_WACH(0), .C_REG_SLICE_MODE_WDCH(0), .C_REG_SLICE_MODE_WRCH(0), .C_SYNCHRONIZER_STAGE(C_SYNCHRONIZER_STAGE), .C_UNDERFLOW_LOW(0), .C_USE_COMMON_OVERFLOW(0), .C_USE_COMMON_UNDERFLOW(0), .C_USE_DEFAULT_SETTINGS(0), .C_USE_DOUT_RST(0), .C_USE_ECC(0), .C_USE_ECC_AXIS(0), .C_USE_ECC_RACH(0), .C_USE_ECC_RDCH(0), .C_USE_ECC_WACH(0), .C_USE_ECC_WDCH(0), .C_USE_ECC_WRCH(0), .C_USE_EMBEDDED_REG(0), .C_USE_FIFO16_FLAGS(0), .C_USE_FWFT_DATA_COUNT(1), .C_VALID_LOW(0), .C_WACH_TYPE(0), .C_WDCH_TYPE(0), .C_WRCH_TYPE(0), .C_WR_ACK_LOW(0), .C_WR_DATA_COUNT_WIDTH(6), .C_WR_DEPTH_AXIS(1024), .C_WR_DEPTH_RACH(16), .C_WR_DEPTH_RDCH(1024), .C_WR_DEPTH_WACH(16), .C_WR_DEPTH_WDCH(1024), .C_WR_DEPTH_WRCH(16), .C_WR_FREQ(1), .C_WR_PNTR_WIDTH_AXIS(10), .C_WR_PNTR_WIDTH_RACH(4), .C_WR_PNTR_WIDTH_RDCH(10), .C_WR_PNTR_WIDTH_WACH(4), .C_WR_PNTR_WIDTH_WDCH(10), .C_WR_PNTR_WIDTH_WRCH(4), .C_WR_RESPONSE_LATENCY(1) ) fifo_gen_inst ( .clk(clk), .din(wr_data), .dout(rd_data), .empty(empty), .full(full), .rd_clk(rd_clk), .rd_en(rd_en), .rst(rst), .wr_clk(wr_clk), .wr_en(wr_en), .almost_empty(), .almost_full(), .axi_ar_data_count(), .axi_ar_dbiterr(), .axi_ar_injectdbiterr(1'b0), .axi_ar_injectsbiterr(1'b0), .axi_ar_overflow(), .axi_ar_prog_empty(), .axi_ar_prog_empty_thresh(4'b0), .axi_ar_prog_full(), .axi_ar_prog_full_thresh(4'b0), .axi_ar_rd_data_count(), .axi_ar_sbiterr(), .axi_ar_underflow(), .axi_ar_wr_data_count(), .axi_aw_data_count(), .axi_aw_dbiterr(), .axi_aw_injectdbiterr(1'b0), .axi_aw_injectsbiterr(1'b0), .axi_aw_overflow(), .axi_aw_prog_empty(), .axi_aw_prog_empty_thresh(4'b0), .axi_aw_prog_full(), .axi_aw_prog_full_thresh(4'b0), .axi_aw_rd_data_count(), .axi_aw_sbiterr(), .axi_aw_underflow(), .axi_aw_wr_data_count(), .axi_b_data_count(), .axi_b_dbiterr(), .axi_b_injectdbiterr(1'b0), .axi_b_injectsbiterr(1'b0), .axi_b_overflow(), .axi_b_prog_empty(), .axi_b_prog_empty_thresh(4'b0), .axi_b_prog_full(), .axi_b_prog_full_thresh(4'b0), .axi_b_rd_data_count(), .axi_b_sbiterr(), .axi_b_underflow(), .axi_b_wr_data_count(), .axi_r_data_count(), .axi_r_dbiterr(), .axi_r_injectdbiterr(1'b0), .axi_r_injectsbiterr(1'b0), .axi_r_overflow(), .axi_r_prog_empty(), .axi_r_prog_empty_thresh(10'b0), .axi_r_prog_full(), .axi_r_prog_full_thresh(10'b0), .axi_r_rd_data_count(), .axi_r_sbiterr(), .axi_r_underflow(), .axi_r_wr_data_count(), .axi_w_data_count(), .axi_w_dbiterr(), .axi_w_injectdbiterr(1'b0), .axi_w_injectsbiterr(1'b0), .axi_w_overflow(), .axi_w_prog_empty(), .axi_w_prog_empty_thresh(10'b0), .axi_w_prog_full(), .axi_w_prog_full_thresh(10'b0), .axi_w_rd_data_count(), .axi_w_sbiterr(), .axi_w_underflow(), .axi_w_wr_data_count(), .axis_data_count(), .axis_dbiterr(), .axis_injectdbiterr(1'b0), .axis_injectsbiterr(1'b0), .axis_overflow(), .axis_prog_empty(), .axis_prog_empty_thresh(10'b0), .axis_prog_full(), .axis_prog_full_thresh(10'b0), .axis_rd_data_count(), .axis_sbiterr(), .axis_underflow(), .axis_wr_data_count(), .backup(1'b0), .backup_marker(1'b0), .data_count(), .dbiterr(), .injectdbiterr(1'b0), .injectsbiterr(1'b0), .int_clk(1'b0), .m_aclk(1'b0), .m_aclk_en(1'b0), .m_axi_araddr(), .m_axi_arburst(), .m_axi_arcache(), .m_axi_arid(), .m_axi_arlen(), .m_axi_arlock(), .m_axi_arprot(), .m_axi_arqos(), .m_axi_arready(1'b0), .m_axi_arregion(), .m_axi_arsize(), .m_axi_aruser(), .m_axi_arvalid(), .m_axi_awaddr(), .m_axi_awburst(), .m_axi_awcache(), .m_axi_awid(), .m_axi_awlen(), .m_axi_awlock(), .m_axi_awprot(), .m_axi_awqos(), .m_axi_awready(1'b0), .m_axi_awregion(), .m_axi_awsize(), .m_axi_awuser(), .m_axi_awvalid(), .m_axi_bid(4'b0), .m_axi_bready(), .m_axi_bresp(2'b0), .m_axi_buser(1'b0), .m_axi_bvalid(1'b0), .m_axi_rdata(64'b0), .m_axi_rid(4'b0), .m_axi_rlast(1'b0), .m_axi_rready(), .m_axi_rresp(2'b0), .m_axi_ruser(1'b0), .m_axi_rvalid(1'b0), .m_axi_wdata(), .m_axi_wid(), .m_axi_wlast(), .m_axi_wready(1'b0), .m_axi_wstrb(), .m_axi_wuser(), .m_axi_wvalid(), .m_axis_tdata(), .m_axis_tdest(), .m_axis_tid(), .m_axis_tkeep(), .m_axis_tlast(), .m_axis_tready(1'b0), .m_axis_tstrb(), .m_axis_tuser(), .m_axis_tvalid(), .overflow(), .prog_empty(), .prog_empty_thresh(5'b0), .prog_empty_thresh_assert(5'b0), .prog_empty_thresh_negate(5'b0), .prog_full(), .prog_full_thresh(5'b0), .prog_full_thresh_assert(5'b0), .prog_full_thresh_negate(5'b0), .rd_data_count(), .rd_rst(1'b0), .s_aclk(1'b0), .s_aclk_en(1'b0), .s_aresetn(1'b0), .s_axi_araddr(32'b0), .s_axi_arburst(2'b0), .s_axi_arcache(4'b0), .s_axi_arid(4'b0), .s_axi_arlen(8'b0), .s_axi_arlock(2'b0), .s_axi_arprot(3'b0), .s_axi_arqos(4'b0), .s_axi_arready(), .s_axi_arregion(4'b0), .s_axi_arsize(3'b0), .s_axi_aruser(1'b0), .s_axi_arvalid(1'b0), .s_axi_awaddr(32'b0), .s_axi_awburst(2'b0), .s_axi_awcache(4'b0), .s_axi_awid(4'b0), .s_axi_awlen(8'b0), .s_axi_awlock(2'b0), .s_axi_awprot(3'b0), .s_axi_awqos(4'b0), .s_axi_awready(), .s_axi_awregion(4'b0), .s_axi_awsize(3'b0), .s_axi_awuser(1'b0), .s_axi_awvalid(1'b0), .s_axi_bid(), .s_axi_bready(1'b0), .s_axi_bresp(), .s_axi_buser(), .s_axi_bvalid(), .s_axi_rdata(), .s_axi_rid(), .s_axi_rlast(), .s_axi_rready(1'b0), .s_axi_rresp(), .s_axi_ruser(), .s_axi_rvalid(), .s_axi_wdata(64'b0), .s_axi_wid(4'b0), .s_axi_wlast(1'b0), .s_axi_wready(), .s_axi_wstrb(8'b0), .s_axi_wuser(1'b0), .s_axi_wvalid(1'b0), .s_axis_tdata(64'b0), .s_axis_tdest(4'b0), .s_axis_tid(8'b0), .s_axis_tkeep(4'b0), .s_axis_tlast(1'b0), .s_axis_tready(), .s_axis_tstrb(4'b0), .s_axis_tuser(4'b0), .s_axis_tvalid(1'b0), .sbiterr(), .srst(1'b0), .underflow(), .valid(), .wr_ack(), .wr_data_count(), .wr_rst(1'b0), .wr_rst_busy(), .rd_rst_busy(), .sleep(1'b0) ); endmodule
module sync_signal #( parameter WIDTH=1, // width of the input and output signals parameter N=2 // depth of synchronizer )( input wire clk, input wire [WIDTH-1:0] in, output wire [WIDTH-1:0] out ); reg [WIDTH-1:0] sync_reg[N-1:0]; /* * The synchronized output is the last register in the pipeline. */ assign out = sync_reg[N-1]; integer k; always @(posedge clk) begin sync_reg[0] <= in; for (k = 1; k < N; k = k + 1) begin sync_reg[k] <= sync_reg[k-1]; end end endmodule
module sync_signal #( parameter WIDTH=1, // width of the input and output signals parameter N=2 // depth of synchronizer )( input wire clk, input wire [WIDTH-1:0] in, output wire [WIDTH-1:0] out ); reg [WIDTH-1:0] sync_reg[N-1:0]; /* * The synchronized output is the last register in the pipeline. */ assign out = sync_reg[N-1]; integer k; always @(posedge clk) begin sync_reg[0] <= in; for (k = 1; k < N; k = k + 1) begin sync_reg[k] <= sync_reg[k-1]; end end endmodule
module sync_signal #( parameter WIDTH=1, // width of the input and output signals parameter N=2 // depth of synchronizer )( input wire clk, input wire [WIDTH-1:0] in, output wire [WIDTH-1:0] out ); reg [WIDTH-1:0] sync_reg[N-1:0]; /* * The synchronized output is the last register in the pipeline. */ assign out = sync_reg[N-1]; integer k; always @(posedge clk) begin sync_reg[0] <= in; for (k = 1; k < N; k = k + 1) begin sync_reg[k] <= sync_reg[k-1]; end end endmodule
module WireDelay # ( parameter Delay_g = 0, parameter Delay_rd = 0, parameter ERR_INSERT = "OFF" ) ( inout A, inout B, input reset, input phy_init_done ); reg A_r; reg B_r; reg B_inv ; reg line_en; reg B_nonX; assign A = A_r; assign B = B_r; always @ (*) begin if (B === 1'bx) B_nonX <= $random; else B_nonX <= B; end always @(*) begin if((B_nonX == 'b1) || (B_nonX == 'b0)) B_inv <= #0 ~B_nonX ; else B_inv <= #0 'bz ; end always @(*) begin if (!reset) begin A_r <= 1'bz; B_r <= 1'bz; line_en <= 1'b0; end else begin if (line_en) begin B_r <= 1'bz; if ((ERR_INSERT == "ON") & (phy_init_done)) A_r <= #Delay_rd B_inv; else A_r <= #Delay_rd B_nonX; end else begin B_r <= #Delay_g A; A_r <= 1'bz; end end end always @(A or B) begin if (!reset) begin line_en <= 1'b0; end else if (A !== A_r) begin line_en <= 1'b0; end else if (B_r !== B) begin line_en <= 1'b1; end else begin line_en <= line_en; end end endmodule
module WireDelay # ( parameter Delay_g = 0, parameter Delay_rd = 0, parameter ERR_INSERT = "OFF" ) ( inout A, inout B, input reset, input phy_init_done ); reg A_r; reg B_r; reg B_inv ; reg line_en; reg B_nonX; assign A = A_r; assign B = B_r; always @ (*) begin if (B === 1'bx) B_nonX <= $random; else B_nonX <= B; end always @(*) begin if((B_nonX == 'b1) || (B_nonX == 'b0)) B_inv <= #0 ~B_nonX ; else B_inv <= #0 'bz ; end always @(*) begin if (!reset) begin A_r <= 1'bz; B_r <= 1'bz; line_en <= 1'b0; end else begin if (line_en) begin B_r <= 1'bz; if ((ERR_INSERT == "ON") & (phy_init_done)) A_r <= #Delay_rd B_inv; else A_r <= #Delay_rd B_nonX; end else begin B_r <= #Delay_g A; A_r <= 1'bz; end end end always @(A or B) begin if (!reset) begin line_en <= 1'b0; end else if (A !== A_r) begin line_en <= 1'b0; end else if (B_r !== B) begin line_en <= 1'b1; end else begin line_en <= line_en; end end endmodule
module WireDelay # ( parameter Delay_g = 0, parameter Delay_rd = 0, parameter ERR_INSERT = "OFF" ) ( inout A, inout B, input reset, input phy_init_done ); reg A_r; reg B_r; reg B_inv ; reg line_en; reg B_nonX; assign A = A_r; assign B = B_r; always @ (*) begin if (B === 1'bx) B_nonX <= $random; else B_nonX <= B; end always @(*) begin if((B_nonX == 'b1) || (B_nonX == 'b0)) B_inv <= #0 ~B_nonX ; else B_inv <= #0 'bz ; end always @(*) begin if (!reset) begin A_r <= 1'bz; B_r <= 1'bz; line_en <= 1'b0; end else begin if (line_en) begin B_r <= 1'bz; if ((ERR_INSERT == "ON") & (phy_init_done)) A_r <= #Delay_rd B_inv; else A_r <= #Delay_rd B_nonX; end else begin B_r <= #Delay_g A; A_r <= 1'bz; end end end always @(A or B) begin if (!reset) begin line_en <= 1'b0; end else if (A !== A_r) begin line_en <= 1'b0; end else if (B_r !== B) begin line_en <= 1'b1; end else begin line_en <= line_en; end end endmodule
module WireDelay # ( parameter Delay_g = 0, parameter Delay_rd = 0, parameter ERR_INSERT = "OFF" ) ( inout A, inout B, input reset, input phy_init_done ); reg A_r; reg B_r; reg B_inv ; reg line_en; reg B_nonX; assign A = A_r; assign B = B_r; always @ (*) begin if (B === 1'bx) B_nonX <= $random; else B_nonX <= B; end always @(*) begin if((B_nonX == 'b1) || (B_nonX == 'b0)) B_inv <= #0 ~B_nonX ; else B_inv <= #0 'bz ; end always @(*) begin if (!reset) begin A_r <= 1'bz; B_r <= 1'bz; line_en <= 1'b0; end else begin if (line_en) begin B_r <= 1'bz; if ((ERR_INSERT == "ON") & (phy_init_done)) A_r <= #Delay_rd B_inv; else A_r <= #Delay_rd B_nonX; end else begin B_r <= #Delay_g A; A_r <= 1'bz; end end end always @(A or B) begin if (!reset) begin line_en <= 1'b0; end else if (A !== A_r) begin line_en <= 1'b0; end else if (B_r !== B) begin line_en <= 1'b1; end else begin line_en <= line_en; end end endmodule
module altera_reset_controller #( parameter NUM_RESET_INPUTS = 6, parameter USE_RESET_REQUEST_IN0 = 0, parameter USE_RESET_REQUEST_IN1 = 0, parameter USE_RESET_REQUEST_IN2 = 0, parameter USE_RESET_REQUEST_IN3 = 0, parameter USE_RESET_REQUEST_IN4 = 0, parameter USE_RESET_REQUEST_IN5 = 0, parameter USE_RESET_REQUEST_IN6 = 0, parameter USE_RESET_REQUEST_IN7 = 0, parameter USE_RESET_REQUEST_IN8 = 0, parameter USE_RESET_REQUEST_IN9 = 0, parameter USE_RESET_REQUEST_IN10 = 0, parameter USE_RESET_REQUEST_IN11 = 0, parameter USE_RESET_REQUEST_IN12 = 0, parameter USE_RESET_REQUEST_IN13 = 0, parameter USE_RESET_REQUEST_IN14 = 0, parameter USE_RESET_REQUEST_IN15 = 0, parameter OUTPUT_RESET_SYNC_EDGES = "deassert", parameter SYNC_DEPTH = 2, parameter RESET_REQUEST_PRESENT = 0, parameter RESET_REQ_WAIT_TIME = 3, parameter MIN_RST_ASSERTION_TIME = 11, parameter RESET_REQ_EARLY_DSRT_TIME = 4, parameter ADAPT_RESET_REQUEST = 0 ) ( // -------------------------------------- // We support up to 16 reset inputs, for now // -------------------------------------- input reset_in0, input reset_in1, input reset_in2, input reset_in3, input reset_in4, input reset_in5, input reset_in6, input reset_in7, input reset_in8, input reset_in9, input reset_in10, input reset_in11, input reset_in12, input reset_in13, input reset_in14, input reset_in15, input reset_req_in0, input reset_req_in1, input reset_req_in2, input reset_req_in3, input reset_req_in4, input reset_req_in5, input reset_req_in6, input reset_req_in7, input reset_req_in8, input reset_req_in9, input reset_req_in10, input reset_req_in11, input reset_req_in12, input reset_req_in13, input reset_req_in14, input reset_req_in15, input clk, output reg reset_out, output reg reset_req ); // Always use async reset synchronizer if reset_req is used localparam ASYNC_RESET = (OUTPUT_RESET_SYNC_EDGES == "deassert"); // -------------------------------------- // Local parameter to control the reset_req and reset_out timing when RESET_REQUEST_PRESENT==1 // -------------------------------------- localparam MIN_METASTABLE = 3; localparam RSTREQ_ASRT_SYNC_TAP = MIN_METASTABLE + RESET_REQ_WAIT_TIME; localparam LARGER = RESET_REQ_WAIT_TIME > RESET_REQ_EARLY_DSRT_TIME ? RESET_REQ_WAIT_TIME : RESET_REQ_EARLY_DSRT_TIME; localparam ASSERTION_CHAIN_LENGTH = (MIN_METASTABLE > LARGER) ? MIN_RST_ASSERTION_TIME + 1 : ( (MIN_RST_ASSERTION_TIME > LARGER)? MIN_RST_ASSERTION_TIME + (LARGER - MIN_METASTABLE + 1) + 1 : MIN_RST_ASSERTION_TIME + RESET_REQ_EARLY_DSRT_TIME + RESET_REQ_WAIT_TIME - MIN_METASTABLE + 2 ); localparam RESET_REQ_DRST_TAP = RESET_REQ_EARLY_DSRT_TIME + 1; // -------------------------------------- wire merged_reset; wire merged_reset_req_in; wire reset_out_pre; wire reset_req_pre; // Registers and Interconnect (*preserve*) reg [RSTREQ_ASRT_SYNC_TAP: 0] altera_reset_synchronizer_int_chain; reg [ASSERTION_CHAIN_LENGTH-1: 0] r_sync_rst_chain; reg r_sync_rst; reg r_early_rst; // -------------------------------------- // "Or" all the input resets together // -------------------------------------- assign merged_reset = ( reset_in0 | reset_in1 | reset_in2 | reset_in3 | reset_in4 | reset_in5 | reset_in6 | reset_in7 | reset_in8 | reset_in9 | reset_in10 | reset_in11 | reset_in12 | reset_in13 | reset_in14 | reset_in15 ); assign merged_reset_req_in = ( ( (USE_RESET_REQUEST_IN0 == 1) ? reset_req_in0 : 1'b0) | ( (USE_RESET_REQUEST_IN1 == 1) ? reset_req_in1 : 1'b0) | ( (USE_RESET_REQUEST_IN2 == 1) ? reset_req_in2 : 1'b0) | ( (USE_RESET_REQUEST_IN3 == 1) ? reset_req_in3 : 1'b0) | ( (USE_RESET_REQUEST_IN4 == 1) ? reset_req_in4 : 1'b0) | ( (USE_RESET_REQUEST_IN5 == 1) ? reset_req_in5 : 1'b0) | ( (USE_RESET_REQUEST_IN6 == 1) ? reset_req_in6 : 1'b0) | ( (USE_RESET_REQUEST_IN7 == 1) ? reset_req_in7 : 1'b0) | ( (USE_RESET_REQUEST_IN8 == 1) ? reset_req_in8 : 1'b0) | ( (USE_RESET_REQUEST_IN9 == 1) ? reset_req_in9 : 1'b0) | ( (USE_RESET_REQUEST_IN10 == 1) ? reset_req_in10 : 1'b0) | ( (USE_RESET_REQUEST_IN11 == 1) ? reset_req_in11 : 1'b0) | ( (USE_RESET_REQUEST_IN12 == 1) ? reset_req_in12 : 1'b0) | ( (USE_RESET_REQUEST_IN13 == 1) ? reset_req_in13 : 1'b0) | ( (USE_RESET_REQUEST_IN14 == 1) ? reset_req_in14 : 1'b0) | ( (USE_RESET_REQUEST_IN15 == 1) ? reset_req_in15 : 1'b0) ); // -------------------------------------- // And if required, synchronize it to the required clock domain, // with the correct synchronization type // -------------------------------------- generate if (OUTPUT_RESET_SYNC_EDGES == "none" && (RESET_REQUEST_PRESENT==0)) begin assign reset_out_pre = merged_reset; assign reset_req_pre = merged_reset_req_in; end else begin altera_reset_synchronizer #( .DEPTH (SYNC_DEPTH), .ASYNC_RESET(RESET_REQUEST_PRESENT? 1'b1 : ASYNC_RESET) ) alt_rst_sync_uq1 ( .clk (clk), .reset_in (merged_reset), .reset_out (reset_out_pre) ); altera_reset_synchronizer #( .DEPTH (SYNC_DEPTH), .ASYNC_RESET(0) ) alt_rst_req_sync_uq1 ( .clk (clk), .reset_in (merged_reset_req_in), .reset_out (reset_req_pre) ); end endgenerate generate if ( ( (RESET_REQUEST_PRESENT == 0) && (ADAPT_RESET_REQUEST==0) )| ( (ADAPT_RESET_REQUEST == 1) && (OUTPUT_RESET_SYNC_EDGES != "deassert") ) ) begin always @* begin reset_out = reset_out_pre; reset_req = reset_req_pre; end end else if ( (RESET_REQUEST_PRESENT == 0) && (ADAPT_RESET_REQUEST==1) ) begin wire reset_out_pre2; altera_reset_synchronizer #( .DEPTH (SYNC_DEPTH+1), .ASYNC_RESET(0) ) alt_rst_sync_uq2 ( .clk (clk), .reset_in (reset_out_pre), .reset_out (reset_out_pre2) ); always @* begin reset_out = reset_out_pre2; reset_req = reset_req_pre; end end else begin // 3-FF Metastability Synchronizer initial begin altera_reset_synchronizer_int_chain <= {RSTREQ_ASRT_SYNC_TAP{1'b1}}; end always @(posedge clk) begin altera_reset_synchronizer_int_chain[RSTREQ_ASRT_SYNC_TAP:0] <= {altera_reset_synchronizer_int_chain[RSTREQ_ASRT_SYNC_TAP-1:0], reset_out_pre}; end // Synchronous reset pipe initial begin r_sync_rst_chain <= {ASSERTION_CHAIN_LENGTH{1'b1}}; end always @(posedge clk) begin if (altera_reset_synchronizer_int_chain[MIN_METASTABLE-1] == 1'b1) begin r_sync_rst_chain <= {ASSERTION_CHAIN_LENGTH{1'b1}}; end else begin r_sync_rst_chain <= {1'b0, r_sync_rst_chain[ASSERTION_CHAIN_LENGTH-1:1]}; end end // Standard synchronous reset output. From 0-1, the transition lags the early output. For 1->0, the transition // matches the early input. always @(posedge clk) begin case ({altera_reset_synchronizer_int_chain[RSTREQ_ASRT_SYNC_TAP], r_sync_rst_chain[1], r_sync_rst}) 3'b000: r_sync_rst <= 1'b0; // Not reset 3'b001: r_sync_rst <= 1'b0; 3'b010: r_sync_rst <= 1'b0; 3'b011: r_sync_rst <= 1'b1; 3'b100: r_sync_rst <= 1'b1; 3'b101: r_sync_rst <= 1'b1; 3'b110: r_sync_rst <= 1'b1; 3'b111: r_sync_rst <= 1'b1; // In Reset default: r_sync_rst <= 1'b1; endcase case ({r_sync_rst_chain[1], r_sync_rst_chain[RESET_REQ_DRST_TAP] | reset_req_pre}) 2'b00: r_early_rst <= 1'b0; // Not reset 2'b01: r_early_rst <= 1'b1; // Coming out of reset 2'b10: r_early_rst <= 1'b0; // Spurious reset - should not be possible via synchronous design. 2'b11: r_early_rst <= 1'b1; // Held in reset default: r_early_rst <= 1'b1; endcase end always @* begin reset_out = r_sync_rst; reset_req = r_early_rst; end end endgenerate endmodule
module control(clk,en,dsp_sel,an); input clk, en; output [1:0]dsp_sel; output [3:0]an; wire a,b,c,d,e,f,g,h,i,j,k,l; assign an[3] = a; assign an[2] = b; assign an[1] = c; assign an[0] = d; assign dsp_sel[1] = e; assign dsp_sel[0] = i; FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF3( .Q(a), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(d), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF2( .Q(b), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(a), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF1( .Q(c), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(b), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF0( .Q(d), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(c), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF7( .Q(e), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(h), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF6( .Q(f), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(e), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF5( .Q(g), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(f), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF4( .Q(h), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(g), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF11( .Q(i), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(l), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF10( .Q(j), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(i), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF9( .Q(k), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(j), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF8( .Q(l), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(k), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); endmodule
module control(clk,en,dsp_sel,an); input clk, en; output [1:0]dsp_sel; output [3:0]an; wire a,b,c,d,e,f,g,h,i,j,k,l; assign an[3] = a; assign an[2] = b; assign an[1] = c; assign an[0] = d; assign dsp_sel[1] = e; assign dsp_sel[0] = i; FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF3( .Q(a), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(d), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF2( .Q(b), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(a), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF1( .Q(c), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(b), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF0( .Q(d), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(c), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF7( .Q(e), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(h), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF6( .Q(f), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(e), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF5( .Q(g), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(f), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF4( .Q(h), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(g), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF11( .Q(i), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(l), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF10( .Q(j), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(i), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF9( .Q(k), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(j), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF8( .Q(l), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(k), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); endmodule
module control(clk,en,dsp_sel,an); input clk, en; output [1:0]dsp_sel; output [3:0]an; wire a,b,c,d,e,f,g,h,i,j,k,l; assign an[3] = a; assign an[2] = b; assign an[1] = c; assign an[0] = d; assign dsp_sel[1] = e; assign dsp_sel[0] = i; FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF3( .Q(a), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(d), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF2( .Q(b), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(a), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF1( .Q(c), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(b), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF0( .Q(d), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(c), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF7( .Q(e), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(h), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF6( .Q(f), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(e), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF5( .Q(g), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(f), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF4( .Q(h), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(g), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF11( .Q(i), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(l), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF10( .Q(j), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(i), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF9( .Q(k), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(j), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF8( .Q(l), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(k), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); endmodule
module control(clk,en,dsp_sel,an); input clk, en; output [1:0]dsp_sel; output [3:0]an; wire a,b,c,d,e,f,g,h,i,j,k,l; assign an[3] = a; assign an[2] = b; assign an[1] = c; assign an[0] = d; assign dsp_sel[1] = e; assign dsp_sel[0] = i; FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF3( .Q(a), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(d), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF2( .Q(b), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(a), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF1( .Q(c), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(b), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF0( .Q(d), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(c), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF7( .Q(e), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(h), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF6( .Q(f), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(e), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF5( .Q(g), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(f), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF4( .Q(h), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(g), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF11( .Q(i), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(l), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF10( .Q(j), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(i), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF9( .Q(k), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(j), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF8( .Q(l), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(k), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); endmodule
module control(clk,en,dsp_sel,an); input clk, en; output [1:0]dsp_sel; output [3:0]an; wire a,b,c,d,e,f,g,h,i,j,k,l; assign an[3] = a; assign an[2] = b; assign an[1] = c; assign an[0] = d; assign dsp_sel[1] = e; assign dsp_sel[0] = i; FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF3( .Q(a), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(d), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF2( .Q(b), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(a), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF1( .Q(c), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(b), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF0( .Q(d), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(c), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF7( .Q(e), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(h), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF6( .Q(f), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(e), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF5( .Q(g), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(f), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF4( .Q(h), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(g), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF11( .Q(i), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(l), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF10( .Q(j), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(i), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF9( .Q(k), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(j), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF8( .Q(l), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(k), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); endmodule
module control(clk,en,dsp_sel,an); input clk, en; output [1:0]dsp_sel; output [3:0]an; wire a,b,c,d,e,f,g,h,i,j,k,l; assign an[3] = a; assign an[2] = b; assign an[1] = c; assign an[0] = d; assign dsp_sel[1] = e; assign dsp_sel[0] = i; FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF3( .Q(a), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(d), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF2( .Q(b), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(a), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF1( .Q(c), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(b), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF0( .Q(d), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(c), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF7( .Q(e), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(h), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF6( .Q(f), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(e), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF5( .Q(g), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(f), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF4( .Q(h), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(g), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF11( .Q(i), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(l), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF10( .Q(j), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(i), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF9( .Q(k), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(j), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF8( .Q(l), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(k), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); endmodule
module control(clk,en,dsp_sel,an); input clk, en; output [1:0]dsp_sel; output [3:0]an; wire a,b,c,d,e,f,g,h,i,j,k,l; assign an[3] = a; assign an[2] = b; assign an[1] = c; assign an[0] = d; assign dsp_sel[1] = e; assign dsp_sel[0] = i; FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF3( .Q(a), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(d), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF2( .Q(b), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(a), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF1( .Q(c), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(b), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF0( .Q(d), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(c), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF7( .Q(e), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(h), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF6( .Q(f), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(e), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF5( .Q(g), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(f), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF4( .Q(h), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(g), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF11( .Q(i), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(l), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF10( .Q(j), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(i), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF9( .Q(k), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(j), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF8( .Q(l), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(k), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); endmodule
module control(clk,en,dsp_sel,an); input clk, en; output [1:0]dsp_sel; output [3:0]an; wire a,b,c,d,e,f,g,h,i,j,k,l; assign an[3] = a; assign an[2] = b; assign an[1] = c; assign an[0] = d; assign dsp_sel[1] = e; assign dsp_sel[0] = i; FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF3( .Q(a), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(d), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF2( .Q(b), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(a), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF1( .Q(c), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(b), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF0( .Q(d), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(c), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF7( .Q(e), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(h), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF6( .Q(f), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(e), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF5( .Q(g), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(f), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF4( .Q(h), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(g), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF11( .Q(i), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(l), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF10( .Q(j), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(i), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b1) // Initial value of register (1'b0 or 1'b1) ) DFF9( .Q(k), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(j), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); FDRSE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) DFF8( .Q(l), // Data output .C(clk), // Clock input .CE(en), // Clock enable input .D(k), // Data input .R(1'b0), // Synchronous reset input .S(1'b0) // Synchronous set input ); endmodule
module fifo_1kx16 ( aclr, clock, data, rdreq, wrreq, almost_empty, empty, full, q, usedw); input aclr; input clock; input [15:0] data; input rdreq; input wrreq; output almost_empty; output empty; output full; output [15:0] q; output [9:0] usedw; endmodule
module fifo_1kx16 ( aclr, clock, data, rdreq, wrreq, almost_empty, empty, full, q, usedw); input aclr; input clock; input [15:0] data; input rdreq; input wrreq; output almost_empty; output empty; output full; output [15:0] q; output [9:0] usedw; endmodule
module fifo_1kx16 ( aclr, clock, data, rdreq, wrreq, almost_empty, empty, full, q, usedw); input aclr; input clock; input [15:0] data; input rdreq; input wrreq; output almost_empty; output empty; output full; output [15:0] q; output [9:0] usedw; endmodule
module fifo_1kx16 ( aclr, clock, data, rdreq, wrreq, almost_empty, empty, full, q, usedw); input aclr; input clock; input [15:0] data; input rdreq; input wrreq; output almost_empty; output empty; output full; output [15:0] q; output [9:0] usedw; endmodule
module dyn_pll # (parameter SPEED_MHZ = 25 ) (CLKIN_IN, CLKFX1_OUT, CLKFX2_OUT, CLKDV_OUT, DCM_SP_LOCKED_OUT, dcm_progclk, dcm_progdata, dcm_progen, dcm_reset, dcm_progdone, dcm_locked, dcm_status); input CLKIN_IN; wire CLKIN_IBUFG_OUT; wire CLK0_OUT; output CLKFX1_OUT; output CLKFX2_OUT; output CLKDV_OUT; output DCM_SP_LOCKED_OUT; input dcm_progclk; input dcm_progdata; input dcm_progen; input dcm_reset; output dcm_progdone; output dcm_locked; output [2:1] dcm_status; wire CLKFB_IN; wire CLKIN_IBUFG; wire CLK0_BUF; wire CLKFX1_BUF; wire CLKFX2_BUF; wire CLKDV_BUF; wire GND_BIT; wire dcm_progclk_buf; assign GND_BIT = 0; assign CLKIN_IBUFG_OUT = CLKIN_IBUFG; assign CLK0_OUT = CLKFB_IN; IBUFG CLKIN_IBUFG_INST (.I(CLKIN_IN), .O(CLKIN_IBUFG)); BUFG CLK0_BUFG_INST (.I(CLK0_BUF), .O(CLKFB_IN)); BUFG CLKFX1_BUFG_INST (.I(CLKFX1_BUF), .O(CLKFX1_OUT)); BUFG CLKFX2_BUFG_INST (.I(CLKFX2_BUF), .O(CLKFX2_OUT)); BUFG CLKDV_BUFG_INST (.I(CLKDV_BUF), .O(CLKDV_OUT)); BUFG DCMPROGCLK_BUFG_INST (.I(dcm_progclk), .O(dcm_progclk_buf)); // 100 MHZ osc gives fixed 50MHz CLKFX1, 12.5MHZ CLKDV DCM_SP #( .CLK_FEEDBACK("1X"), .CLKDV_DIVIDE(8.0), .CLKFX_DIVIDE(8), .CLKFX_MULTIPLY(4), .CLKIN_DIVIDE_BY_2("FALSE"), .CLKIN_PERIOD(10.000), .CLKOUT_PHASE_SHIFT("NONE"), .DESKEW_ADJUST("SYSTEM_SYNCHRONOUS"), .DFS_FREQUENCY_MODE("LOW"), .DLL_FREQUENCY_MODE("LOW"), .DUTY_CYCLE_CORRECTION("TRUE"), .FACTORY_JF(16'hC080), .PHASE_SHIFT(0), .STARTUP_WAIT("FALSE") ) DCM_SP_INST (.CLKFB(CLKFB_IN), .CLKIN(CLKIN_IBUFG), .DSSEN(GND_BIT), .PSCLK(GND_BIT), .PSEN(GND_BIT), .PSINCDEC(GND_BIT), .RST(GND_BIT), .CLKDV(CLKDV_BUF), .CLKFX(CLKFX1_BUF), .CLKFX180(), .CLK0(CLK0_BUF), .CLK2X(), .CLK2X180(), .CLK90(), .CLK180(), .CLK270(), .LOCKED(DCM_SP_LOCKED_OUT), .PSDONE(), .STATUS()); DCM_CLKGEN #( .CLKFX_DIVIDE(100), // 100Mhz osc so gives steps of 1MHz .CLKFX_MULTIPLY(SPEED_MHZ), .CLKFXDV_DIVIDE(2), // Unused .CLKIN_PERIOD(10.0), .CLKFX_MD_MAX(0.000), .SPREAD_SPECTRUM("NONE"), .STARTUP_WAIT("FALSE") ) DCM_CLKGEN_INST ( .CLKIN(CLKIN_IBUFG), .CLKFX(CLKFX2_BUF), .FREEZEDCM(1'b0), .PROGCLK(dcm_progclk_buf), .PROGDATA(dcm_progdata), .PROGEN(dcm_progen), .PROGDONE(dcm_progdone), .LOCKED(dcm_locked), .STATUS(dcm_status), .RST(dcm_reset) ); endmodule
module dyn_pll # (parameter SPEED_MHZ = 25 ) (CLKIN_IN, CLKFX1_OUT, CLKFX2_OUT, CLKDV_OUT, DCM_SP_LOCKED_OUT, dcm_progclk, dcm_progdata, dcm_progen, dcm_reset, dcm_progdone, dcm_locked, dcm_status); input CLKIN_IN; wire CLKIN_IBUFG_OUT; wire CLK0_OUT; output CLKFX1_OUT; output CLKFX2_OUT; output CLKDV_OUT; output DCM_SP_LOCKED_OUT; input dcm_progclk; input dcm_progdata; input dcm_progen; input dcm_reset; output dcm_progdone; output dcm_locked; output [2:1] dcm_status; wire CLKFB_IN; wire CLKIN_IBUFG; wire CLK0_BUF; wire CLKFX1_BUF; wire CLKFX2_BUF; wire CLKDV_BUF; wire GND_BIT; wire dcm_progclk_buf; assign GND_BIT = 0; assign CLKIN_IBUFG_OUT = CLKIN_IBUFG; assign CLK0_OUT = CLKFB_IN; IBUFG CLKIN_IBUFG_INST (.I(CLKIN_IN), .O(CLKIN_IBUFG)); BUFG CLK0_BUFG_INST (.I(CLK0_BUF), .O(CLKFB_IN)); BUFG CLKFX1_BUFG_INST (.I(CLKFX1_BUF), .O(CLKFX1_OUT)); BUFG CLKFX2_BUFG_INST (.I(CLKFX2_BUF), .O(CLKFX2_OUT)); BUFG CLKDV_BUFG_INST (.I(CLKDV_BUF), .O(CLKDV_OUT)); BUFG DCMPROGCLK_BUFG_INST (.I(dcm_progclk), .O(dcm_progclk_buf)); // 100 MHZ osc gives fixed 50MHz CLKFX1, 12.5MHZ CLKDV DCM_SP #( .CLK_FEEDBACK("1X"), .CLKDV_DIVIDE(8.0), .CLKFX_DIVIDE(8), .CLKFX_MULTIPLY(4), .CLKIN_DIVIDE_BY_2("FALSE"), .CLKIN_PERIOD(10.000), .CLKOUT_PHASE_SHIFT("NONE"), .DESKEW_ADJUST("SYSTEM_SYNCHRONOUS"), .DFS_FREQUENCY_MODE("LOW"), .DLL_FREQUENCY_MODE("LOW"), .DUTY_CYCLE_CORRECTION("TRUE"), .FACTORY_JF(16'hC080), .PHASE_SHIFT(0), .STARTUP_WAIT("FALSE") ) DCM_SP_INST (.CLKFB(CLKFB_IN), .CLKIN(CLKIN_IBUFG), .DSSEN(GND_BIT), .PSCLK(GND_BIT), .PSEN(GND_BIT), .PSINCDEC(GND_BIT), .RST(GND_BIT), .CLKDV(CLKDV_BUF), .CLKFX(CLKFX1_BUF), .CLKFX180(), .CLK0(CLK0_BUF), .CLK2X(), .CLK2X180(), .CLK90(), .CLK180(), .CLK270(), .LOCKED(DCM_SP_LOCKED_OUT), .PSDONE(), .STATUS()); DCM_CLKGEN #( .CLKFX_DIVIDE(100), // 100Mhz osc so gives steps of 1MHz .CLKFX_MULTIPLY(SPEED_MHZ), .CLKFXDV_DIVIDE(2), // Unused .CLKIN_PERIOD(10.0), .CLKFX_MD_MAX(0.000), .SPREAD_SPECTRUM("NONE"), .STARTUP_WAIT("FALSE") ) DCM_CLKGEN_INST ( .CLKIN(CLKIN_IBUFG), .CLKFX(CLKFX2_BUF), .FREEZEDCM(1'b0), .PROGCLK(dcm_progclk_buf), .PROGDATA(dcm_progdata), .PROGEN(dcm_progen), .PROGDONE(dcm_progdone), .LOCKED(dcm_locked), .STATUS(dcm_status), .RST(dcm_reset) ); endmodule
module fifo_4kx16_dc ( aclr, data, rdclk, rdreq, wrclk, wrreq, q, rdempty, rdusedw, wrfull, wrusedw); input aclr; input [15:0] data; input rdclk; input rdreq; input wrclk; input wrreq; output [15:0] q; output rdempty; output [11:0] rdusedw; output wrfull; output [11:0] wrusedw; wire sub_wire0; wire [11:0] sub_wire1; wire sub_wire2; wire [15:0] sub_wire3; wire [11:0] sub_wire4; wire rdempty = sub_wire0; wire [11:0] wrusedw = sub_wire1[11:0]; wire wrfull = sub_wire2; wire [15:0] q = sub_wire3[15:0]; wire [11:0] rdusedw = sub_wire4[11:0]; dcfifo dcfifo_component ( .wrclk (wrclk), .rdreq (rdreq), .aclr (aclr), .rdclk (rdclk), .wrreq (wrreq), .data (data), .rdempty (sub_wire0), .wrusedw (sub_wire1), .wrfull (sub_wire2), .q (sub_wire3), .rdusedw (sub_wire4) // synopsys translate_off , .wrempty (), .rdfull () // synopsys translate_on ); defparam dcfifo_component.add_ram_output_register = "OFF", dcfifo_component.clocks_are_synchronized = "FALSE", dcfifo_component.intended_device_family = "Cyclone", dcfifo_component.lpm_numwords = 4096, dcfifo_component.lpm_showahead = "ON", dcfifo_component.lpm_type = "dcfifo", dcfifo_component.lpm_width = 16, dcfifo_component.lpm_widthu = 12, dcfifo_component.overflow_checking = "OFF", dcfifo_component.underflow_checking = "OFF", dcfifo_component.use_eab = "ON"; endmodule
module fifo_4kx16_dc ( aclr, data, rdclk, rdreq, wrclk, wrreq, q, rdempty, rdusedw, wrfull, wrusedw); input aclr; input [15:0] data; input rdclk; input rdreq; input wrclk; input wrreq; output [15:0] q; output rdempty; output [11:0] rdusedw; output wrfull; output [11:0] wrusedw; wire sub_wire0; wire [11:0] sub_wire1; wire sub_wire2; wire [15:0] sub_wire3; wire [11:0] sub_wire4; wire rdempty = sub_wire0; wire [11:0] wrusedw = sub_wire1[11:0]; wire wrfull = sub_wire2; wire [15:0] q = sub_wire3[15:0]; wire [11:0] rdusedw = sub_wire4[11:0]; dcfifo dcfifo_component ( .wrclk (wrclk), .rdreq (rdreq), .aclr (aclr), .rdclk (rdclk), .wrreq (wrreq), .data (data), .rdempty (sub_wire0), .wrusedw (sub_wire1), .wrfull (sub_wire2), .q (sub_wire3), .rdusedw (sub_wire4) // synopsys translate_off , .wrempty (), .rdfull () // synopsys translate_on ); defparam dcfifo_component.add_ram_output_register = "OFF", dcfifo_component.clocks_are_synchronized = "FALSE", dcfifo_component.intended_device_family = "Cyclone", dcfifo_component.lpm_numwords = 4096, dcfifo_component.lpm_showahead = "ON", dcfifo_component.lpm_type = "dcfifo", dcfifo_component.lpm_width = 16, dcfifo_component.lpm_widthu = 12, dcfifo_component.overflow_checking = "OFF", dcfifo_component.underflow_checking = "OFF", dcfifo_component.use_eab = "ON"; endmodule
module fifo_4kx16_dc ( aclr, data, rdclk, rdreq, wrclk, wrreq, q, rdempty, rdusedw, wrfull, wrusedw); input aclr; input [15:0] data; input rdclk; input rdreq; input wrclk; input wrreq; output [15:0] q; output rdempty; output [11:0] rdusedw; output wrfull; output [11:0] wrusedw; wire sub_wire0; wire [11:0] sub_wire1; wire sub_wire2; wire [15:0] sub_wire3; wire [11:0] sub_wire4; wire rdempty = sub_wire0; wire [11:0] wrusedw = sub_wire1[11:0]; wire wrfull = sub_wire2; wire [15:0] q = sub_wire3[15:0]; wire [11:0] rdusedw = sub_wire4[11:0]; dcfifo dcfifo_component ( .wrclk (wrclk), .rdreq (rdreq), .aclr (aclr), .rdclk (rdclk), .wrreq (wrreq), .data (data), .rdempty (sub_wire0), .wrusedw (sub_wire1), .wrfull (sub_wire2), .q (sub_wire3), .rdusedw (sub_wire4) // synopsys translate_off , .wrempty (), .rdfull () // synopsys translate_on ); defparam dcfifo_component.add_ram_output_register = "OFF", dcfifo_component.clocks_are_synchronized = "FALSE", dcfifo_component.intended_device_family = "Cyclone", dcfifo_component.lpm_numwords = 4096, dcfifo_component.lpm_showahead = "ON", dcfifo_component.lpm_type = "dcfifo", dcfifo_component.lpm_width = 16, dcfifo_component.lpm_widthu = 12, dcfifo_component.overflow_checking = "OFF", dcfifo_component.underflow_checking = "OFF", dcfifo_component.use_eab = "ON"; endmodule
module. // 1 => FWD_REV = Both FWD and REV (fully-registered) // 2 => FWD = The master VALID and payload signals are registrated. // 3 => REV = The slave ready signal is registrated // 4 => SLAVE_FWD = All slave side signals and master VALID and payload are registrated. // 5 => SLAVE_RDY = All slave side signals and master READY are registrated. // 6 => INPUTS = Slave and Master side inputs are registrated. // 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining parameter integer C_REG_CONFIG_AW = 0, parameter integer C_REG_CONFIG_W = 0, parameter integer C_REG_CONFIG_B = 0, parameter integer C_REG_CONFIG_AR = 0, parameter integer C_REG_CONFIG_R = 0 ) ( // System Signals input wire aclk, input wire aresetn, // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, input wire s_axi_awvalid, output wire s_axi_awready, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, input wire s_axi_wvalid, output wire s_axi_wready, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, output wire s_axi_bvalid, input wire s_axi_bready, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, input wire s_axi_arvalid, output wire s_axi_arready, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, output wire s_axi_rvalid, input wire s_axi_rready, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen, output wire [3-1:0] m_axi_awsize, output wire [2-1:0] m_axi_awburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock, output wire [4-1:0] m_axi_awcache, output wire [3-1:0] m_axi_awprot, output wire [4-1:0] m_axi_awregion, output wire [4-1:0] m_axi_awqos, output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser, output wire m_axi_awvalid, input wire m_axi_awready, // Master Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid, output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata, output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb, output wire m_axi_wlast, output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser, output wire m_axi_wvalid, input wire m_axi_wready, // Master Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid, input wire [2-1:0] m_axi_bresp, input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser, input wire m_axi_bvalid, output wire m_axi_bready, // Master Interface Read Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen, output wire [3-1:0] m_axi_arsize, output wire [2-1:0] m_axi_arburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock, output wire [4-1:0] m_axi_arcache, output wire [3-1:0] m_axi_arprot, output wire [4-1:0] m_axi_arregion, output wire [4-1:0] m_axi_arqos, output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser, output wire m_axi_arvalid, input wire m_axi_arready, // Master Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid, input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata, input wire [2-1:0] m_axi_rresp, input wire m_axi_rlast, input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser, input wire m_axi_rvalid, output wire m_axi_rready ); wire reset; localparam C_AXI_SUPPORTS_REGION_SIGNALS = (C_AXI_PROTOCOL == 0) ? 1 : 0; `include "axi_infrastructure_v1_1_header.vh" wire [G_AXI_AWPAYLOAD_WIDTH-1:0] s_awpayload; wire [G_AXI_AWPAYLOAD_WIDTH-1:0] m_awpayload; wire [G_AXI_WPAYLOAD_WIDTH-1:0] s_wpayload; wire [G_AXI_WPAYLOAD_WIDTH-1:0] m_wpayload; wire [G_AXI_BPAYLOAD_WIDTH-1:0] s_bpayload; wire [G_AXI_BPAYLOAD_WIDTH-1:0] m_bpayload; wire [G_AXI_ARPAYLOAD_WIDTH-1:0] s_arpayload; wire [G_AXI_ARPAYLOAD_WIDTH-1:0] m_arpayload; wire [G_AXI_RPAYLOAD_WIDTH-1:0] s_rpayload; wire [G_AXI_RPAYLOAD_WIDTH-1:0] m_rpayload; assign reset = ~aresetn; axi_infrastructure_v1_1_axi2vector #( .C_AXI_PROTOCOL ( C_AXI_PROTOCOL ) , .C_AXI_ID_WIDTH ( C_AXI_ID_WIDTH ) , .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) , .C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) , .C_AXI_SUPPORTS_USER_SIGNALS ( C_AXI_SUPPORTS_USER_SIGNALS ) , .C_AXI_SUPPORTS_REGION_SIGNALS ( C_AXI_SUPPORTS_REGION_SIGNALS ) , .C_AXI_AWUSER_WIDTH ( C_AXI_AWUSER_WIDTH ) , .C_AXI_ARUSER_WIDTH ( C_AXI_ARUSER_WIDTH ) , .C_AXI_WUSER_WIDTH ( C_AXI_WUSER_WIDTH ) , .C_AXI_RUSER_WIDTH ( C_AXI_RUSER_WIDTH ) , .C_AXI_BUSER_WIDTH ( C_AXI_BUSER_WIDTH ) , .C_AWPAYLOAD_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) , .C_WPAYLOAD_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) , .C_BPAYLOAD_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) , .C_ARPAYLOAD_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) , .C_RPAYLOAD_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) ) axi_infrastructure_v1_1_axi2vector_0 ( .s_axi_awid ( s_axi_awid ) , .s_axi_awaddr ( s_axi_awaddr ) , .s_axi_awlen ( s_axi_awlen ) , .s_axi_awsize ( s_axi_awsize ) , .s_axi_awburst ( s_axi_awburst ) , .s_axi_awlock ( s_axi_awlock ) , .s_axi_awcache ( s_axi_awcache ) , .s_axi_awprot ( s_axi_awprot ) , .s_axi_awqos ( s_axi_awqos ) , .s_axi_awuser ( s_axi_awuser ) , .s_axi_awregion ( s_axi_awregion ) , .s_axi_wid ( s_axi_wid ) , .s_axi_wdata ( s_axi_wdata ) , .s_axi_wstrb ( s_axi_wstrb ) , .s_axi_wlast ( s_axi_wlast ) , .s_axi_wuser ( s_axi_wuser ) , .s_axi_bid ( s_axi_bid ) , .s_axi_bresp ( s_axi_bresp ) , .s_axi_buser ( s_axi_buser ) , .s_axi_arid ( s_axi_arid ) , .s_axi_araddr ( s_axi_araddr ) , .s_axi_arlen ( s_axi_arlen ) , .s_axi_arsize ( s_axi_arsize ) , .s_axi_arburst ( s_axi_arburst ) , .s_axi_arlock ( s_axi_arlock ) , .s_axi_arcache ( s_axi_arcache ) , .s_axi_arprot ( s_axi_arprot ) , .s_axi_arqos ( s_axi_arqos ) , .s_axi_aruser ( s_axi_aruser ) , .s_axi_arregion ( s_axi_arregion ) , .s_axi_rid ( s_axi_rid ) , .s_axi_rdata ( s_axi_rdata ) , .s_axi_rresp ( s_axi_rresp ) , .s_axi_rlast ( s_axi_rlast ) , .s_axi_ruser ( s_axi_ruser ) , .s_awpayload ( s_awpayload ) , .s_wpayload ( s_wpayload ) , .s_bpayload ( s_bpayload ) , .s_arpayload ( s_arpayload ) , .s_rpayload ( s_rpayload ) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_AW ) ) aw_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(s_awpayload), .S_VALID(s_axi_awvalid), .S_READY(s_axi_awready), // Master side .M_PAYLOAD_DATA(m_awpayload), .M_VALID(m_axi_awvalid), .M_READY(m_axi_awready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_W ) ) w_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(s_wpayload), .S_VALID(s_axi_wvalid), .S_READY(s_axi_wready), // Master side .M_PAYLOAD_DATA(m_wpayload), .M_VALID(m_axi_wvalid), .M_READY(m_axi_wready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_B ) ) b_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(m_bpayload), .S_VALID(m_axi_bvalid), .S_READY(m_axi_bready), // Master side .M_PAYLOAD_DATA(s_bpayload), .M_VALID(s_axi_bvalid), .M_READY(s_axi_bready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_AR ) ) ar_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(s_arpayload), .S_VALID(s_axi_arvalid), .S_READY(s_axi_arready), // Master side .M_PAYLOAD_DATA(m_arpayload), .M_VALID(m_axi_arvalid), .M_READY(m_axi_arready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_R ) ) r_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(m_rpayload), .S_VALID(m_axi_rvalid), .S_READY(m_axi_rready), // Master side .M_PAYLOAD_DATA(s_rpayload), .M_VALID(s_axi_rvalid), .M_READY(s_axi_rready) ); axi_infrastructure_v1_1_vector2axi #( .C_AXI_PROTOCOL ( C_AXI_PROTOCOL ) , .C_AXI_ID_WIDTH ( C_AXI_ID_WIDTH ) , .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) , .C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) , .C_AXI_SUPPORTS_USER_SIGNALS ( C_AXI_SUPPORTS_USER_SIGNALS ) , .C_AXI_SUPPORTS_REGION_SIGNALS ( C_AXI_SUPPORTS_REGION_SIGNALS ) , .C_AXI_AWUSER_WIDTH ( C_AXI_AWUSER_WIDTH ) , .C_AXI_ARUSER_WIDTH ( C_AXI_ARUSER_WIDTH ) , .C_AXI_WUSER_WIDTH ( C_AXI_WUSER_WIDTH ) , .C_AXI_RUSER_WIDTH ( C_AXI_RUSER_WIDTH ) , .C_AXI_BUSER_WIDTH ( C_AXI_BUSER_WIDTH ) , .C_AWPAYLOAD_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) , .C_WPAYLOAD_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) , .C_BPAYLOAD_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) , .C_ARPAYLOAD_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) , .C_RPAYLOAD_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) ) axi_infrastructure_v1_1_vector2axi_0 ( .m_awpayload ( m_awpayload ) , .m_wpayload ( m_wpayload ) , .m_bpayload ( m_bpayload ) , .m_arpayload ( m_arpayload ) , .m_rpayload ( m_rpayload ) , .m_axi_awid ( m_axi_awid ) , .m_axi_awaddr ( m_axi_awaddr ) , .m_axi_awlen ( m_axi_awlen ) , .m_axi_awsize ( m_axi_awsize ) , .m_axi_awburst ( m_axi_awburst ) , .m_axi_awlock ( m_axi_awlock ) , .m_axi_awcache ( m_axi_awcache ) , .m_axi_awprot ( m_axi_awprot ) , .m_axi_awqos ( m_axi_awqos ) , .m_axi_awuser ( m_axi_awuser ) , .m_axi_awregion ( m_axi_awregion ) , .m_axi_wid ( m_axi_wid ) , .m_axi_wdata ( m_axi_wdata ) , .m_axi_wstrb ( m_axi_wstrb ) , .m_axi_wlast ( m_axi_wlast ) , .m_axi_wuser ( m_axi_wuser ) , .m_axi_bid ( m_axi_bid ) , .m_axi_bresp ( m_axi_bresp ) , .m_axi_buser ( m_axi_buser ) , .m_axi_arid ( m_axi_arid ) , .m_axi_araddr ( m_axi_araddr ) , .m_axi_arlen ( m_axi_arlen ) , .m_axi_arsize ( m_axi_arsize ) , .m_axi_arburst ( m_axi_arburst ) , .m_axi_arlock ( m_axi_arlock ) , .m_axi_arcache ( m_axi_arcache ) , .m_axi_arprot ( m_axi_arprot ) , .m_axi_arqos ( m_axi_arqos ) , .m_axi_aruser ( m_axi_aruser ) , .m_axi_arregion ( m_axi_arregion ) , .m_axi_rid ( m_axi_rid ) , .m_axi_rdata ( m_axi_rdata ) , .m_axi_rresp ( m_axi_rresp ) , .m_axi_rlast ( m_axi_rlast ) , .m_axi_ruser ( m_axi_ruser ) ); endmodule
module. // 1 => FWD_REV = Both FWD and REV (fully-registered) // 2 => FWD = The master VALID and payload signals are registrated. // 3 => REV = The slave ready signal is registrated // 4 => SLAVE_FWD = All slave side signals and master VALID and payload are registrated. // 5 => SLAVE_RDY = All slave side signals and master READY are registrated. // 6 => INPUTS = Slave and Master side inputs are registrated. // 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining parameter integer C_REG_CONFIG_AW = 0, parameter integer C_REG_CONFIG_W = 0, parameter integer C_REG_CONFIG_B = 0, parameter integer C_REG_CONFIG_AR = 0, parameter integer C_REG_CONFIG_R = 0 ) ( // System Signals input wire aclk, input wire aresetn, // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, input wire s_axi_awvalid, output wire s_axi_awready, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, input wire s_axi_wvalid, output wire s_axi_wready, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, output wire s_axi_bvalid, input wire s_axi_bready, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, input wire s_axi_arvalid, output wire s_axi_arready, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, output wire s_axi_rvalid, input wire s_axi_rready, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen, output wire [3-1:0] m_axi_awsize, output wire [2-1:0] m_axi_awburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock, output wire [4-1:0] m_axi_awcache, output wire [3-1:0] m_axi_awprot, output wire [4-1:0] m_axi_awregion, output wire [4-1:0] m_axi_awqos, output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser, output wire m_axi_awvalid, input wire m_axi_awready, // Master Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid, output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata, output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb, output wire m_axi_wlast, output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser, output wire m_axi_wvalid, input wire m_axi_wready, // Master Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid, input wire [2-1:0] m_axi_bresp, input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser, input wire m_axi_bvalid, output wire m_axi_bready, // Master Interface Read Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen, output wire [3-1:0] m_axi_arsize, output wire [2-1:0] m_axi_arburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock, output wire [4-1:0] m_axi_arcache, output wire [3-1:0] m_axi_arprot, output wire [4-1:0] m_axi_arregion, output wire [4-1:0] m_axi_arqos, output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser, output wire m_axi_arvalid, input wire m_axi_arready, // Master Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid, input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata, input wire [2-1:0] m_axi_rresp, input wire m_axi_rlast, input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser, input wire m_axi_rvalid, output wire m_axi_rready ); wire reset; localparam C_AXI_SUPPORTS_REGION_SIGNALS = (C_AXI_PROTOCOL == 0) ? 1 : 0; `include "axi_infrastructure_v1_1_header.vh" wire [G_AXI_AWPAYLOAD_WIDTH-1:0] s_awpayload; wire [G_AXI_AWPAYLOAD_WIDTH-1:0] m_awpayload; wire [G_AXI_WPAYLOAD_WIDTH-1:0] s_wpayload; wire [G_AXI_WPAYLOAD_WIDTH-1:0] m_wpayload; wire [G_AXI_BPAYLOAD_WIDTH-1:0] s_bpayload; wire [G_AXI_BPAYLOAD_WIDTH-1:0] m_bpayload; wire [G_AXI_ARPAYLOAD_WIDTH-1:0] s_arpayload; wire [G_AXI_ARPAYLOAD_WIDTH-1:0] m_arpayload; wire [G_AXI_RPAYLOAD_WIDTH-1:0] s_rpayload; wire [G_AXI_RPAYLOAD_WIDTH-1:0] m_rpayload; assign reset = ~aresetn; axi_infrastructure_v1_1_axi2vector #( .C_AXI_PROTOCOL ( C_AXI_PROTOCOL ) , .C_AXI_ID_WIDTH ( C_AXI_ID_WIDTH ) , .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) , .C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) , .C_AXI_SUPPORTS_USER_SIGNALS ( C_AXI_SUPPORTS_USER_SIGNALS ) , .C_AXI_SUPPORTS_REGION_SIGNALS ( C_AXI_SUPPORTS_REGION_SIGNALS ) , .C_AXI_AWUSER_WIDTH ( C_AXI_AWUSER_WIDTH ) , .C_AXI_ARUSER_WIDTH ( C_AXI_ARUSER_WIDTH ) , .C_AXI_WUSER_WIDTH ( C_AXI_WUSER_WIDTH ) , .C_AXI_RUSER_WIDTH ( C_AXI_RUSER_WIDTH ) , .C_AXI_BUSER_WIDTH ( C_AXI_BUSER_WIDTH ) , .C_AWPAYLOAD_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) , .C_WPAYLOAD_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) , .C_BPAYLOAD_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) , .C_ARPAYLOAD_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) , .C_RPAYLOAD_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) ) axi_infrastructure_v1_1_axi2vector_0 ( .s_axi_awid ( s_axi_awid ) , .s_axi_awaddr ( s_axi_awaddr ) , .s_axi_awlen ( s_axi_awlen ) , .s_axi_awsize ( s_axi_awsize ) , .s_axi_awburst ( s_axi_awburst ) , .s_axi_awlock ( s_axi_awlock ) , .s_axi_awcache ( s_axi_awcache ) , .s_axi_awprot ( s_axi_awprot ) , .s_axi_awqos ( s_axi_awqos ) , .s_axi_awuser ( s_axi_awuser ) , .s_axi_awregion ( s_axi_awregion ) , .s_axi_wid ( s_axi_wid ) , .s_axi_wdata ( s_axi_wdata ) , .s_axi_wstrb ( s_axi_wstrb ) , .s_axi_wlast ( s_axi_wlast ) , .s_axi_wuser ( s_axi_wuser ) , .s_axi_bid ( s_axi_bid ) , .s_axi_bresp ( s_axi_bresp ) , .s_axi_buser ( s_axi_buser ) , .s_axi_arid ( s_axi_arid ) , .s_axi_araddr ( s_axi_araddr ) , .s_axi_arlen ( s_axi_arlen ) , .s_axi_arsize ( s_axi_arsize ) , .s_axi_arburst ( s_axi_arburst ) , .s_axi_arlock ( s_axi_arlock ) , .s_axi_arcache ( s_axi_arcache ) , .s_axi_arprot ( s_axi_arprot ) , .s_axi_arqos ( s_axi_arqos ) , .s_axi_aruser ( s_axi_aruser ) , .s_axi_arregion ( s_axi_arregion ) , .s_axi_rid ( s_axi_rid ) , .s_axi_rdata ( s_axi_rdata ) , .s_axi_rresp ( s_axi_rresp ) , .s_axi_rlast ( s_axi_rlast ) , .s_axi_ruser ( s_axi_ruser ) , .s_awpayload ( s_awpayload ) , .s_wpayload ( s_wpayload ) , .s_bpayload ( s_bpayload ) , .s_arpayload ( s_arpayload ) , .s_rpayload ( s_rpayload ) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_AW ) ) aw_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(s_awpayload), .S_VALID(s_axi_awvalid), .S_READY(s_axi_awready), // Master side .M_PAYLOAD_DATA(m_awpayload), .M_VALID(m_axi_awvalid), .M_READY(m_axi_awready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_W ) ) w_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(s_wpayload), .S_VALID(s_axi_wvalid), .S_READY(s_axi_wready), // Master side .M_PAYLOAD_DATA(m_wpayload), .M_VALID(m_axi_wvalid), .M_READY(m_axi_wready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_B ) ) b_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(m_bpayload), .S_VALID(m_axi_bvalid), .S_READY(m_axi_bready), // Master side .M_PAYLOAD_DATA(s_bpayload), .M_VALID(s_axi_bvalid), .M_READY(s_axi_bready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_AR ) ) ar_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(s_arpayload), .S_VALID(s_axi_arvalid), .S_READY(s_axi_arready), // Master side .M_PAYLOAD_DATA(m_arpayload), .M_VALID(m_axi_arvalid), .M_READY(m_axi_arready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_R ) ) r_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(m_rpayload), .S_VALID(m_axi_rvalid), .S_READY(m_axi_rready), // Master side .M_PAYLOAD_DATA(s_rpayload), .M_VALID(s_axi_rvalid), .M_READY(s_axi_rready) ); axi_infrastructure_v1_1_vector2axi #( .C_AXI_PROTOCOL ( C_AXI_PROTOCOL ) , .C_AXI_ID_WIDTH ( C_AXI_ID_WIDTH ) , .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) , .C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) , .C_AXI_SUPPORTS_USER_SIGNALS ( C_AXI_SUPPORTS_USER_SIGNALS ) , .C_AXI_SUPPORTS_REGION_SIGNALS ( C_AXI_SUPPORTS_REGION_SIGNALS ) , .C_AXI_AWUSER_WIDTH ( C_AXI_AWUSER_WIDTH ) , .C_AXI_ARUSER_WIDTH ( C_AXI_ARUSER_WIDTH ) , .C_AXI_WUSER_WIDTH ( C_AXI_WUSER_WIDTH ) , .C_AXI_RUSER_WIDTH ( C_AXI_RUSER_WIDTH ) , .C_AXI_BUSER_WIDTH ( C_AXI_BUSER_WIDTH ) , .C_AWPAYLOAD_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) , .C_WPAYLOAD_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) , .C_BPAYLOAD_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) , .C_ARPAYLOAD_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) , .C_RPAYLOAD_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) ) axi_infrastructure_v1_1_vector2axi_0 ( .m_awpayload ( m_awpayload ) , .m_wpayload ( m_wpayload ) , .m_bpayload ( m_bpayload ) , .m_arpayload ( m_arpayload ) , .m_rpayload ( m_rpayload ) , .m_axi_awid ( m_axi_awid ) , .m_axi_awaddr ( m_axi_awaddr ) , .m_axi_awlen ( m_axi_awlen ) , .m_axi_awsize ( m_axi_awsize ) , .m_axi_awburst ( m_axi_awburst ) , .m_axi_awlock ( m_axi_awlock ) , .m_axi_awcache ( m_axi_awcache ) , .m_axi_awprot ( m_axi_awprot ) , .m_axi_awqos ( m_axi_awqos ) , .m_axi_awuser ( m_axi_awuser ) , .m_axi_awregion ( m_axi_awregion ) , .m_axi_wid ( m_axi_wid ) , .m_axi_wdata ( m_axi_wdata ) , .m_axi_wstrb ( m_axi_wstrb ) , .m_axi_wlast ( m_axi_wlast ) , .m_axi_wuser ( m_axi_wuser ) , .m_axi_bid ( m_axi_bid ) , .m_axi_bresp ( m_axi_bresp ) , .m_axi_buser ( m_axi_buser ) , .m_axi_arid ( m_axi_arid ) , .m_axi_araddr ( m_axi_araddr ) , .m_axi_arlen ( m_axi_arlen ) , .m_axi_arsize ( m_axi_arsize ) , .m_axi_arburst ( m_axi_arburst ) , .m_axi_arlock ( m_axi_arlock ) , .m_axi_arcache ( m_axi_arcache ) , .m_axi_arprot ( m_axi_arprot ) , .m_axi_arqos ( m_axi_arqos ) , .m_axi_aruser ( m_axi_aruser ) , .m_axi_arregion ( m_axi_arregion ) , .m_axi_rid ( m_axi_rid ) , .m_axi_rdata ( m_axi_rdata ) , .m_axi_rresp ( m_axi_rresp ) , .m_axi_rlast ( m_axi_rlast ) , .m_axi_ruser ( m_axi_ruser ) ); endmodule
module. // 1 => FWD_REV = Both FWD and REV (fully-registered) // 2 => FWD = The master VALID and payload signals are registrated. // 3 => REV = The slave ready signal is registrated // 4 => SLAVE_FWD = All slave side signals and master VALID and payload are registrated. // 5 => SLAVE_RDY = All slave side signals and master READY are registrated. // 6 => INPUTS = Slave and Master side inputs are registrated. // 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining parameter integer C_REG_CONFIG_AW = 0, parameter integer C_REG_CONFIG_W = 0, parameter integer C_REG_CONFIG_B = 0, parameter integer C_REG_CONFIG_AR = 0, parameter integer C_REG_CONFIG_R = 0 ) ( // System Signals input wire aclk, input wire aresetn, // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, input wire s_axi_awvalid, output wire s_axi_awready, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, input wire s_axi_wvalid, output wire s_axi_wready, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, output wire s_axi_bvalid, input wire s_axi_bready, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, input wire s_axi_arvalid, output wire s_axi_arready, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, output wire s_axi_rvalid, input wire s_axi_rready, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen, output wire [3-1:0] m_axi_awsize, output wire [2-1:0] m_axi_awburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock, output wire [4-1:0] m_axi_awcache, output wire [3-1:0] m_axi_awprot, output wire [4-1:0] m_axi_awregion, output wire [4-1:0] m_axi_awqos, output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser, output wire m_axi_awvalid, input wire m_axi_awready, // Master Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid, output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata, output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb, output wire m_axi_wlast, output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser, output wire m_axi_wvalid, input wire m_axi_wready, // Master Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid, input wire [2-1:0] m_axi_bresp, input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser, input wire m_axi_bvalid, output wire m_axi_bready, // Master Interface Read Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen, output wire [3-1:0] m_axi_arsize, output wire [2-1:0] m_axi_arburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock, output wire [4-1:0] m_axi_arcache, output wire [3-1:0] m_axi_arprot, output wire [4-1:0] m_axi_arregion, output wire [4-1:0] m_axi_arqos, output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser, output wire m_axi_arvalid, input wire m_axi_arready, // Master Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid, input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata, input wire [2-1:0] m_axi_rresp, input wire m_axi_rlast, input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser, input wire m_axi_rvalid, output wire m_axi_rready ); wire reset; localparam C_AXI_SUPPORTS_REGION_SIGNALS = (C_AXI_PROTOCOL == 0) ? 1 : 0; `include "axi_infrastructure_v1_1_header.vh" wire [G_AXI_AWPAYLOAD_WIDTH-1:0] s_awpayload; wire [G_AXI_AWPAYLOAD_WIDTH-1:0] m_awpayload; wire [G_AXI_WPAYLOAD_WIDTH-1:0] s_wpayload; wire [G_AXI_WPAYLOAD_WIDTH-1:0] m_wpayload; wire [G_AXI_BPAYLOAD_WIDTH-1:0] s_bpayload; wire [G_AXI_BPAYLOAD_WIDTH-1:0] m_bpayload; wire [G_AXI_ARPAYLOAD_WIDTH-1:0] s_arpayload; wire [G_AXI_ARPAYLOAD_WIDTH-1:0] m_arpayload; wire [G_AXI_RPAYLOAD_WIDTH-1:0] s_rpayload; wire [G_AXI_RPAYLOAD_WIDTH-1:0] m_rpayload; assign reset = ~aresetn; axi_infrastructure_v1_1_axi2vector #( .C_AXI_PROTOCOL ( C_AXI_PROTOCOL ) , .C_AXI_ID_WIDTH ( C_AXI_ID_WIDTH ) , .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) , .C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) , .C_AXI_SUPPORTS_USER_SIGNALS ( C_AXI_SUPPORTS_USER_SIGNALS ) , .C_AXI_SUPPORTS_REGION_SIGNALS ( C_AXI_SUPPORTS_REGION_SIGNALS ) , .C_AXI_AWUSER_WIDTH ( C_AXI_AWUSER_WIDTH ) , .C_AXI_ARUSER_WIDTH ( C_AXI_ARUSER_WIDTH ) , .C_AXI_WUSER_WIDTH ( C_AXI_WUSER_WIDTH ) , .C_AXI_RUSER_WIDTH ( C_AXI_RUSER_WIDTH ) , .C_AXI_BUSER_WIDTH ( C_AXI_BUSER_WIDTH ) , .C_AWPAYLOAD_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) , .C_WPAYLOAD_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) , .C_BPAYLOAD_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) , .C_ARPAYLOAD_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) , .C_RPAYLOAD_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) ) axi_infrastructure_v1_1_axi2vector_0 ( .s_axi_awid ( s_axi_awid ) , .s_axi_awaddr ( s_axi_awaddr ) , .s_axi_awlen ( s_axi_awlen ) , .s_axi_awsize ( s_axi_awsize ) , .s_axi_awburst ( s_axi_awburst ) , .s_axi_awlock ( s_axi_awlock ) , .s_axi_awcache ( s_axi_awcache ) , .s_axi_awprot ( s_axi_awprot ) , .s_axi_awqos ( s_axi_awqos ) , .s_axi_awuser ( s_axi_awuser ) , .s_axi_awregion ( s_axi_awregion ) , .s_axi_wid ( s_axi_wid ) , .s_axi_wdata ( s_axi_wdata ) , .s_axi_wstrb ( s_axi_wstrb ) , .s_axi_wlast ( s_axi_wlast ) , .s_axi_wuser ( s_axi_wuser ) , .s_axi_bid ( s_axi_bid ) , .s_axi_bresp ( s_axi_bresp ) , .s_axi_buser ( s_axi_buser ) , .s_axi_arid ( s_axi_arid ) , .s_axi_araddr ( s_axi_araddr ) , .s_axi_arlen ( s_axi_arlen ) , .s_axi_arsize ( s_axi_arsize ) , .s_axi_arburst ( s_axi_arburst ) , .s_axi_arlock ( s_axi_arlock ) , .s_axi_arcache ( s_axi_arcache ) , .s_axi_arprot ( s_axi_arprot ) , .s_axi_arqos ( s_axi_arqos ) , .s_axi_aruser ( s_axi_aruser ) , .s_axi_arregion ( s_axi_arregion ) , .s_axi_rid ( s_axi_rid ) , .s_axi_rdata ( s_axi_rdata ) , .s_axi_rresp ( s_axi_rresp ) , .s_axi_rlast ( s_axi_rlast ) , .s_axi_ruser ( s_axi_ruser ) , .s_awpayload ( s_awpayload ) , .s_wpayload ( s_wpayload ) , .s_bpayload ( s_bpayload ) , .s_arpayload ( s_arpayload ) , .s_rpayload ( s_rpayload ) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_AW ) ) aw_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(s_awpayload), .S_VALID(s_axi_awvalid), .S_READY(s_axi_awready), // Master side .M_PAYLOAD_DATA(m_awpayload), .M_VALID(m_axi_awvalid), .M_READY(m_axi_awready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_W ) ) w_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(s_wpayload), .S_VALID(s_axi_wvalid), .S_READY(s_axi_wready), // Master side .M_PAYLOAD_DATA(m_wpayload), .M_VALID(m_axi_wvalid), .M_READY(m_axi_wready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_B ) ) b_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(m_bpayload), .S_VALID(m_axi_bvalid), .S_READY(m_axi_bready), // Master side .M_PAYLOAD_DATA(s_bpayload), .M_VALID(s_axi_bvalid), .M_READY(s_axi_bready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_AR ) ) ar_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(s_arpayload), .S_VALID(s_axi_arvalid), .S_READY(s_axi_arready), // Master side .M_PAYLOAD_DATA(m_arpayload), .M_VALID(m_axi_arvalid), .M_READY(m_axi_arready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_R ) ) r_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(m_rpayload), .S_VALID(m_axi_rvalid), .S_READY(m_axi_rready), // Master side .M_PAYLOAD_DATA(s_rpayload), .M_VALID(s_axi_rvalid), .M_READY(s_axi_rready) ); axi_infrastructure_v1_1_vector2axi #( .C_AXI_PROTOCOL ( C_AXI_PROTOCOL ) , .C_AXI_ID_WIDTH ( C_AXI_ID_WIDTH ) , .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) , .C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) , .C_AXI_SUPPORTS_USER_SIGNALS ( C_AXI_SUPPORTS_USER_SIGNALS ) , .C_AXI_SUPPORTS_REGION_SIGNALS ( C_AXI_SUPPORTS_REGION_SIGNALS ) , .C_AXI_AWUSER_WIDTH ( C_AXI_AWUSER_WIDTH ) , .C_AXI_ARUSER_WIDTH ( C_AXI_ARUSER_WIDTH ) , .C_AXI_WUSER_WIDTH ( C_AXI_WUSER_WIDTH ) , .C_AXI_RUSER_WIDTH ( C_AXI_RUSER_WIDTH ) , .C_AXI_BUSER_WIDTH ( C_AXI_BUSER_WIDTH ) , .C_AWPAYLOAD_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) , .C_WPAYLOAD_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) , .C_BPAYLOAD_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) , .C_ARPAYLOAD_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) , .C_RPAYLOAD_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) ) axi_infrastructure_v1_1_vector2axi_0 ( .m_awpayload ( m_awpayload ) , .m_wpayload ( m_wpayload ) , .m_bpayload ( m_bpayload ) , .m_arpayload ( m_arpayload ) , .m_rpayload ( m_rpayload ) , .m_axi_awid ( m_axi_awid ) , .m_axi_awaddr ( m_axi_awaddr ) , .m_axi_awlen ( m_axi_awlen ) , .m_axi_awsize ( m_axi_awsize ) , .m_axi_awburst ( m_axi_awburst ) , .m_axi_awlock ( m_axi_awlock ) , .m_axi_awcache ( m_axi_awcache ) , .m_axi_awprot ( m_axi_awprot ) , .m_axi_awqos ( m_axi_awqos ) , .m_axi_awuser ( m_axi_awuser ) , .m_axi_awregion ( m_axi_awregion ) , .m_axi_wid ( m_axi_wid ) , .m_axi_wdata ( m_axi_wdata ) , .m_axi_wstrb ( m_axi_wstrb ) , .m_axi_wlast ( m_axi_wlast ) , .m_axi_wuser ( m_axi_wuser ) , .m_axi_bid ( m_axi_bid ) , .m_axi_bresp ( m_axi_bresp ) , .m_axi_buser ( m_axi_buser ) , .m_axi_arid ( m_axi_arid ) , .m_axi_araddr ( m_axi_araddr ) , .m_axi_arlen ( m_axi_arlen ) , .m_axi_arsize ( m_axi_arsize ) , .m_axi_arburst ( m_axi_arburst ) , .m_axi_arlock ( m_axi_arlock ) , .m_axi_arcache ( m_axi_arcache ) , .m_axi_arprot ( m_axi_arprot ) , .m_axi_arqos ( m_axi_arqos ) , .m_axi_aruser ( m_axi_aruser ) , .m_axi_arregion ( m_axi_arregion ) , .m_axi_rid ( m_axi_rid ) , .m_axi_rdata ( m_axi_rdata ) , .m_axi_rresp ( m_axi_rresp ) , .m_axi_rlast ( m_axi_rlast ) , .m_axi_ruser ( m_axi_ruser ) ); endmodule
module. // 1 => FWD_REV = Both FWD and REV (fully-registered) // 2 => FWD = The master VALID and payload signals are registrated. // 3 => REV = The slave ready signal is registrated // 4 => SLAVE_FWD = All slave side signals and master VALID and payload are registrated. // 5 => SLAVE_RDY = All slave side signals and master READY are registrated. // 6 => INPUTS = Slave and Master side inputs are registrated. // 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining parameter integer C_REG_CONFIG_AW = 0, parameter integer C_REG_CONFIG_W = 0, parameter integer C_REG_CONFIG_B = 0, parameter integer C_REG_CONFIG_AR = 0, parameter integer C_REG_CONFIG_R = 0 ) ( // System Signals input wire aclk, input wire aresetn, // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, input wire s_axi_awvalid, output wire s_axi_awready, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, input wire s_axi_wvalid, output wire s_axi_wready, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, output wire s_axi_bvalid, input wire s_axi_bready, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, input wire s_axi_arvalid, output wire s_axi_arready, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, output wire s_axi_rvalid, input wire s_axi_rready, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen, output wire [3-1:0] m_axi_awsize, output wire [2-1:0] m_axi_awburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock, output wire [4-1:0] m_axi_awcache, output wire [3-1:0] m_axi_awprot, output wire [4-1:0] m_axi_awregion, output wire [4-1:0] m_axi_awqos, output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser, output wire m_axi_awvalid, input wire m_axi_awready, // Master Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid, output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata, output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb, output wire m_axi_wlast, output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser, output wire m_axi_wvalid, input wire m_axi_wready, // Master Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid, input wire [2-1:0] m_axi_bresp, input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser, input wire m_axi_bvalid, output wire m_axi_bready, // Master Interface Read Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen, output wire [3-1:0] m_axi_arsize, output wire [2-1:0] m_axi_arburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock, output wire [4-1:0] m_axi_arcache, output wire [3-1:0] m_axi_arprot, output wire [4-1:0] m_axi_arregion, output wire [4-1:0] m_axi_arqos, output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser, output wire m_axi_arvalid, input wire m_axi_arready, // Master Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid, input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata, input wire [2-1:0] m_axi_rresp, input wire m_axi_rlast, input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser, input wire m_axi_rvalid, output wire m_axi_rready ); wire reset; localparam C_AXI_SUPPORTS_REGION_SIGNALS = (C_AXI_PROTOCOL == 0) ? 1 : 0; `include "axi_infrastructure_v1_1_header.vh" wire [G_AXI_AWPAYLOAD_WIDTH-1:0] s_awpayload; wire [G_AXI_AWPAYLOAD_WIDTH-1:0] m_awpayload; wire [G_AXI_WPAYLOAD_WIDTH-1:0] s_wpayload; wire [G_AXI_WPAYLOAD_WIDTH-1:0] m_wpayload; wire [G_AXI_BPAYLOAD_WIDTH-1:0] s_bpayload; wire [G_AXI_BPAYLOAD_WIDTH-1:0] m_bpayload; wire [G_AXI_ARPAYLOAD_WIDTH-1:0] s_arpayload; wire [G_AXI_ARPAYLOAD_WIDTH-1:0] m_arpayload; wire [G_AXI_RPAYLOAD_WIDTH-1:0] s_rpayload; wire [G_AXI_RPAYLOAD_WIDTH-1:0] m_rpayload; assign reset = ~aresetn; axi_infrastructure_v1_1_axi2vector #( .C_AXI_PROTOCOL ( C_AXI_PROTOCOL ) , .C_AXI_ID_WIDTH ( C_AXI_ID_WIDTH ) , .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) , .C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) , .C_AXI_SUPPORTS_USER_SIGNALS ( C_AXI_SUPPORTS_USER_SIGNALS ) , .C_AXI_SUPPORTS_REGION_SIGNALS ( C_AXI_SUPPORTS_REGION_SIGNALS ) , .C_AXI_AWUSER_WIDTH ( C_AXI_AWUSER_WIDTH ) , .C_AXI_ARUSER_WIDTH ( C_AXI_ARUSER_WIDTH ) , .C_AXI_WUSER_WIDTH ( C_AXI_WUSER_WIDTH ) , .C_AXI_RUSER_WIDTH ( C_AXI_RUSER_WIDTH ) , .C_AXI_BUSER_WIDTH ( C_AXI_BUSER_WIDTH ) , .C_AWPAYLOAD_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) , .C_WPAYLOAD_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) , .C_BPAYLOAD_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) , .C_ARPAYLOAD_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) , .C_RPAYLOAD_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) ) axi_infrastructure_v1_1_axi2vector_0 ( .s_axi_awid ( s_axi_awid ) , .s_axi_awaddr ( s_axi_awaddr ) , .s_axi_awlen ( s_axi_awlen ) , .s_axi_awsize ( s_axi_awsize ) , .s_axi_awburst ( s_axi_awburst ) , .s_axi_awlock ( s_axi_awlock ) , .s_axi_awcache ( s_axi_awcache ) , .s_axi_awprot ( s_axi_awprot ) , .s_axi_awqos ( s_axi_awqos ) , .s_axi_awuser ( s_axi_awuser ) , .s_axi_awregion ( s_axi_awregion ) , .s_axi_wid ( s_axi_wid ) , .s_axi_wdata ( s_axi_wdata ) , .s_axi_wstrb ( s_axi_wstrb ) , .s_axi_wlast ( s_axi_wlast ) , .s_axi_wuser ( s_axi_wuser ) , .s_axi_bid ( s_axi_bid ) , .s_axi_bresp ( s_axi_bresp ) , .s_axi_buser ( s_axi_buser ) , .s_axi_arid ( s_axi_arid ) , .s_axi_araddr ( s_axi_araddr ) , .s_axi_arlen ( s_axi_arlen ) , .s_axi_arsize ( s_axi_arsize ) , .s_axi_arburst ( s_axi_arburst ) , .s_axi_arlock ( s_axi_arlock ) , .s_axi_arcache ( s_axi_arcache ) , .s_axi_arprot ( s_axi_arprot ) , .s_axi_arqos ( s_axi_arqos ) , .s_axi_aruser ( s_axi_aruser ) , .s_axi_arregion ( s_axi_arregion ) , .s_axi_rid ( s_axi_rid ) , .s_axi_rdata ( s_axi_rdata ) , .s_axi_rresp ( s_axi_rresp ) , .s_axi_rlast ( s_axi_rlast ) , .s_axi_ruser ( s_axi_ruser ) , .s_awpayload ( s_awpayload ) , .s_wpayload ( s_wpayload ) , .s_bpayload ( s_bpayload ) , .s_arpayload ( s_arpayload ) , .s_rpayload ( s_rpayload ) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_AW ) ) aw_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(s_awpayload), .S_VALID(s_axi_awvalid), .S_READY(s_axi_awready), // Master side .M_PAYLOAD_DATA(m_awpayload), .M_VALID(m_axi_awvalid), .M_READY(m_axi_awready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_W ) ) w_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(s_wpayload), .S_VALID(s_axi_wvalid), .S_READY(s_axi_wready), // Master side .M_PAYLOAD_DATA(m_wpayload), .M_VALID(m_axi_wvalid), .M_READY(m_axi_wready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_B ) ) b_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(m_bpayload), .S_VALID(m_axi_bvalid), .S_READY(m_axi_bready), // Master side .M_PAYLOAD_DATA(s_bpayload), .M_VALID(s_axi_bvalid), .M_READY(s_axi_bready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_AR ) ) ar_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(s_arpayload), .S_VALID(s_axi_arvalid), .S_READY(s_axi_arready), // Master side .M_PAYLOAD_DATA(m_arpayload), .M_VALID(m_axi_arvalid), .M_READY(m_axi_arready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_R ) ) r_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(m_rpayload), .S_VALID(m_axi_rvalid), .S_READY(m_axi_rready), // Master side .M_PAYLOAD_DATA(s_rpayload), .M_VALID(s_axi_rvalid), .M_READY(s_axi_rready) ); axi_infrastructure_v1_1_vector2axi #( .C_AXI_PROTOCOL ( C_AXI_PROTOCOL ) , .C_AXI_ID_WIDTH ( C_AXI_ID_WIDTH ) , .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) , .C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) , .C_AXI_SUPPORTS_USER_SIGNALS ( C_AXI_SUPPORTS_USER_SIGNALS ) , .C_AXI_SUPPORTS_REGION_SIGNALS ( C_AXI_SUPPORTS_REGION_SIGNALS ) , .C_AXI_AWUSER_WIDTH ( C_AXI_AWUSER_WIDTH ) , .C_AXI_ARUSER_WIDTH ( C_AXI_ARUSER_WIDTH ) , .C_AXI_WUSER_WIDTH ( C_AXI_WUSER_WIDTH ) , .C_AXI_RUSER_WIDTH ( C_AXI_RUSER_WIDTH ) , .C_AXI_BUSER_WIDTH ( C_AXI_BUSER_WIDTH ) , .C_AWPAYLOAD_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) , .C_WPAYLOAD_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) , .C_BPAYLOAD_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) , .C_ARPAYLOAD_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) , .C_RPAYLOAD_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) ) axi_infrastructure_v1_1_vector2axi_0 ( .m_awpayload ( m_awpayload ) , .m_wpayload ( m_wpayload ) , .m_bpayload ( m_bpayload ) , .m_arpayload ( m_arpayload ) , .m_rpayload ( m_rpayload ) , .m_axi_awid ( m_axi_awid ) , .m_axi_awaddr ( m_axi_awaddr ) , .m_axi_awlen ( m_axi_awlen ) , .m_axi_awsize ( m_axi_awsize ) , .m_axi_awburst ( m_axi_awburst ) , .m_axi_awlock ( m_axi_awlock ) , .m_axi_awcache ( m_axi_awcache ) , .m_axi_awprot ( m_axi_awprot ) , .m_axi_awqos ( m_axi_awqos ) , .m_axi_awuser ( m_axi_awuser ) , .m_axi_awregion ( m_axi_awregion ) , .m_axi_wid ( m_axi_wid ) , .m_axi_wdata ( m_axi_wdata ) , .m_axi_wstrb ( m_axi_wstrb ) , .m_axi_wlast ( m_axi_wlast ) , .m_axi_wuser ( m_axi_wuser ) , .m_axi_bid ( m_axi_bid ) , .m_axi_bresp ( m_axi_bresp ) , .m_axi_buser ( m_axi_buser ) , .m_axi_arid ( m_axi_arid ) , .m_axi_araddr ( m_axi_araddr ) , .m_axi_arlen ( m_axi_arlen ) , .m_axi_arsize ( m_axi_arsize ) , .m_axi_arburst ( m_axi_arburst ) , .m_axi_arlock ( m_axi_arlock ) , .m_axi_arcache ( m_axi_arcache ) , .m_axi_arprot ( m_axi_arprot ) , .m_axi_arqos ( m_axi_arqos ) , .m_axi_aruser ( m_axi_aruser ) , .m_axi_arregion ( m_axi_arregion ) , .m_axi_rid ( m_axi_rid ) , .m_axi_rdata ( m_axi_rdata ) , .m_axi_rresp ( m_axi_rresp ) , .m_axi_rlast ( m_axi_rlast ) , .m_axi_ruser ( m_axi_ruser ) ); endmodule
module. // 1 => FWD_REV = Both FWD and REV (fully-registered) // 2 => FWD = The master VALID and payload signals are registrated. // 3 => REV = The slave ready signal is registrated // 4 => SLAVE_FWD = All slave side signals and master VALID and payload are registrated. // 5 => SLAVE_RDY = All slave side signals and master READY are registrated. // 6 => INPUTS = Slave and Master side inputs are registrated. // 7 => LIGHT_WT = 1-stage pipeline register with bubble cycle, both FWD and REV pipelining parameter integer C_REG_CONFIG_AW = 0, parameter integer C_REG_CONFIG_W = 0, parameter integer C_REG_CONFIG_B = 0, parameter integer C_REG_CONFIG_AR = 0, parameter integer C_REG_CONFIG_R = 0 ) ( // System Signals input wire aclk, input wire aresetn, // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, input wire s_axi_awvalid, output wire s_axi_awready, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, input wire s_axi_wvalid, output wire s_axi_wready, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, output wire s_axi_bvalid, input wire s_axi_bready, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, input wire s_axi_arvalid, output wire s_axi_arready, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, output wire s_axi_rvalid, input wire s_axi_rready, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen, output wire [3-1:0] m_axi_awsize, output wire [2-1:0] m_axi_awburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock, output wire [4-1:0] m_axi_awcache, output wire [3-1:0] m_axi_awprot, output wire [4-1:0] m_axi_awregion, output wire [4-1:0] m_axi_awqos, output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser, output wire m_axi_awvalid, input wire m_axi_awready, // Master Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid, output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata, output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb, output wire m_axi_wlast, output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser, output wire m_axi_wvalid, input wire m_axi_wready, // Master Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid, input wire [2-1:0] m_axi_bresp, input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser, input wire m_axi_bvalid, output wire m_axi_bready, // Master Interface Read Address Port output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen, output wire [3-1:0] m_axi_arsize, output wire [2-1:0] m_axi_arburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock, output wire [4-1:0] m_axi_arcache, output wire [3-1:0] m_axi_arprot, output wire [4-1:0] m_axi_arregion, output wire [4-1:0] m_axi_arqos, output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser, output wire m_axi_arvalid, input wire m_axi_arready, // Master Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid, input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata, input wire [2-1:0] m_axi_rresp, input wire m_axi_rlast, input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser, input wire m_axi_rvalid, output wire m_axi_rready ); wire reset; localparam C_AXI_SUPPORTS_REGION_SIGNALS = (C_AXI_PROTOCOL == 0) ? 1 : 0; `include "axi_infrastructure_v1_1_header.vh" wire [G_AXI_AWPAYLOAD_WIDTH-1:0] s_awpayload; wire [G_AXI_AWPAYLOAD_WIDTH-1:0] m_awpayload; wire [G_AXI_WPAYLOAD_WIDTH-1:0] s_wpayload; wire [G_AXI_WPAYLOAD_WIDTH-1:0] m_wpayload; wire [G_AXI_BPAYLOAD_WIDTH-1:0] s_bpayload; wire [G_AXI_BPAYLOAD_WIDTH-1:0] m_bpayload; wire [G_AXI_ARPAYLOAD_WIDTH-1:0] s_arpayload; wire [G_AXI_ARPAYLOAD_WIDTH-1:0] m_arpayload; wire [G_AXI_RPAYLOAD_WIDTH-1:0] s_rpayload; wire [G_AXI_RPAYLOAD_WIDTH-1:0] m_rpayload; assign reset = ~aresetn; axi_infrastructure_v1_1_axi2vector #( .C_AXI_PROTOCOL ( C_AXI_PROTOCOL ) , .C_AXI_ID_WIDTH ( C_AXI_ID_WIDTH ) , .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) , .C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) , .C_AXI_SUPPORTS_USER_SIGNALS ( C_AXI_SUPPORTS_USER_SIGNALS ) , .C_AXI_SUPPORTS_REGION_SIGNALS ( C_AXI_SUPPORTS_REGION_SIGNALS ) , .C_AXI_AWUSER_WIDTH ( C_AXI_AWUSER_WIDTH ) , .C_AXI_ARUSER_WIDTH ( C_AXI_ARUSER_WIDTH ) , .C_AXI_WUSER_WIDTH ( C_AXI_WUSER_WIDTH ) , .C_AXI_RUSER_WIDTH ( C_AXI_RUSER_WIDTH ) , .C_AXI_BUSER_WIDTH ( C_AXI_BUSER_WIDTH ) , .C_AWPAYLOAD_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) , .C_WPAYLOAD_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) , .C_BPAYLOAD_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) , .C_ARPAYLOAD_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) , .C_RPAYLOAD_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) ) axi_infrastructure_v1_1_axi2vector_0 ( .s_axi_awid ( s_axi_awid ) , .s_axi_awaddr ( s_axi_awaddr ) , .s_axi_awlen ( s_axi_awlen ) , .s_axi_awsize ( s_axi_awsize ) , .s_axi_awburst ( s_axi_awburst ) , .s_axi_awlock ( s_axi_awlock ) , .s_axi_awcache ( s_axi_awcache ) , .s_axi_awprot ( s_axi_awprot ) , .s_axi_awqos ( s_axi_awqos ) , .s_axi_awuser ( s_axi_awuser ) , .s_axi_awregion ( s_axi_awregion ) , .s_axi_wid ( s_axi_wid ) , .s_axi_wdata ( s_axi_wdata ) , .s_axi_wstrb ( s_axi_wstrb ) , .s_axi_wlast ( s_axi_wlast ) , .s_axi_wuser ( s_axi_wuser ) , .s_axi_bid ( s_axi_bid ) , .s_axi_bresp ( s_axi_bresp ) , .s_axi_buser ( s_axi_buser ) , .s_axi_arid ( s_axi_arid ) , .s_axi_araddr ( s_axi_araddr ) , .s_axi_arlen ( s_axi_arlen ) , .s_axi_arsize ( s_axi_arsize ) , .s_axi_arburst ( s_axi_arburst ) , .s_axi_arlock ( s_axi_arlock ) , .s_axi_arcache ( s_axi_arcache ) , .s_axi_arprot ( s_axi_arprot ) , .s_axi_arqos ( s_axi_arqos ) , .s_axi_aruser ( s_axi_aruser ) , .s_axi_arregion ( s_axi_arregion ) , .s_axi_rid ( s_axi_rid ) , .s_axi_rdata ( s_axi_rdata ) , .s_axi_rresp ( s_axi_rresp ) , .s_axi_rlast ( s_axi_rlast ) , .s_axi_ruser ( s_axi_ruser ) , .s_awpayload ( s_awpayload ) , .s_wpayload ( s_wpayload ) , .s_bpayload ( s_bpayload ) , .s_arpayload ( s_arpayload ) , .s_rpayload ( s_rpayload ) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_AW ) ) aw_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(s_awpayload), .S_VALID(s_axi_awvalid), .S_READY(s_axi_awready), // Master side .M_PAYLOAD_DATA(m_awpayload), .M_VALID(m_axi_awvalid), .M_READY(m_axi_awready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_W ) ) w_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(s_wpayload), .S_VALID(s_axi_wvalid), .S_READY(s_axi_wready), // Master side .M_PAYLOAD_DATA(m_wpayload), .M_VALID(m_axi_wvalid), .M_READY(m_axi_wready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_B ) ) b_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(m_bpayload), .S_VALID(m_axi_bvalid), .S_READY(m_axi_bready), // Master side .M_PAYLOAD_DATA(s_bpayload), .M_VALID(s_axi_bvalid), .M_READY(s_axi_bready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_AR ) ) ar_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(s_arpayload), .S_VALID(s_axi_arvalid), .S_READY(s_axi_arready), // Master side .M_PAYLOAD_DATA(m_arpayload), .M_VALID(m_axi_arvalid), .M_READY(m_axi_arready) ); axi_register_slice_v2_1_axic_register_slice # ( .C_FAMILY ( C_FAMILY ) , .C_DATA_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) , .C_REG_CONFIG ( C_REG_CONFIG_R ) ) r_pipe ( // System Signals .ACLK(aclk), .ARESET(reset), // Slave side .S_PAYLOAD_DATA(m_rpayload), .S_VALID(m_axi_rvalid), .S_READY(m_axi_rready), // Master side .M_PAYLOAD_DATA(s_rpayload), .M_VALID(s_axi_rvalid), .M_READY(s_axi_rready) ); axi_infrastructure_v1_1_vector2axi #( .C_AXI_PROTOCOL ( C_AXI_PROTOCOL ) , .C_AXI_ID_WIDTH ( C_AXI_ID_WIDTH ) , .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) , .C_AXI_DATA_WIDTH ( C_AXI_DATA_WIDTH ) , .C_AXI_SUPPORTS_USER_SIGNALS ( C_AXI_SUPPORTS_USER_SIGNALS ) , .C_AXI_SUPPORTS_REGION_SIGNALS ( C_AXI_SUPPORTS_REGION_SIGNALS ) , .C_AXI_AWUSER_WIDTH ( C_AXI_AWUSER_WIDTH ) , .C_AXI_ARUSER_WIDTH ( C_AXI_ARUSER_WIDTH ) , .C_AXI_WUSER_WIDTH ( C_AXI_WUSER_WIDTH ) , .C_AXI_RUSER_WIDTH ( C_AXI_RUSER_WIDTH ) , .C_AXI_BUSER_WIDTH ( C_AXI_BUSER_WIDTH ) , .C_AWPAYLOAD_WIDTH ( G_AXI_AWPAYLOAD_WIDTH ) , .C_WPAYLOAD_WIDTH ( G_AXI_WPAYLOAD_WIDTH ) , .C_BPAYLOAD_WIDTH ( G_AXI_BPAYLOAD_WIDTH ) , .C_ARPAYLOAD_WIDTH ( G_AXI_ARPAYLOAD_WIDTH ) , .C_RPAYLOAD_WIDTH ( G_AXI_RPAYLOAD_WIDTH ) ) axi_infrastructure_v1_1_vector2axi_0 ( .m_awpayload ( m_awpayload ) , .m_wpayload ( m_wpayload ) , .m_bpayload ( m_bpayload ) , .m_arpayload ( m_arpayload ) , .m_rpayload ( m_rpayload ) , .m_axi_awid ( m_axi_awid ) , .m_axi_awaddr ( m_axi_awaddr ) , .m_axi_awlen ( m_axi_awlen ) , .m_axi_awsize ( m_axi_awsize ) , .m_axi_awburst ( m_axi_awburst ) , .m_axi_awlock ( m_axi_awlock ) , .m_axi_awcache ( m_axi_awcache ) , .m_axi_awprot ( m_axi_awprot ) , .m_axi_awqos ( m_axi_awqos ) , .m_axi_awuser ( m_axi_awuser ) , .m_axi_awregion ( m_axi_awregion ) , .m_axi_wid ( m_axi_wid ) , .m_axi_wdata ( m_axi_wdata ) , .m_axi_wstrb ( m_axi_wstrb ) , .m_axi_wlast ( m_axi_wlast ) , .m_axi_wuser ( m_axi_wuser ) , .m_axi_bid ( m_axi_bid ) , .m_axi_bresp ( m_axi_bresp ) , .m_axi_buser ( m_axi_buser ) , .m_axi_arid ( m_axi_arid ) , .m_axi_araddr ( m_axi_araddr ) , .m_axi_arlen ( m_axi_arlen ) , .m_axi_arsize ( m_axi_arsize ) , .m_axi_arburst ( m_axi_arburst ) , .m_axi_arlock ( m_axi_arlock ) , .m_axi_arcache ( m_axi_arcache ) , .m_axi_arprot ( m_axi_arprot ) , .m_axi_arqos ( m_axi_arqos ) , .m_axi_aruser ( m_axi_aruser ) , .m_axi_arregion ( m_axi_arregion ) , .m_axi_rid ( m_axi_rid ) , .m_axi_rdata ( m_axi_rdata ) , .m_axi_rresp ( m_axi_rresp ) , .m_axi_rlast ( m_axi_rlast ) , .m_axi_ruser ( m_axi_ruser ) ); endmodule
module axi_infrastructure_v1_1_axi2vector # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter integer C_AXI_PROTOCOL = 0, parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AWPAYLOAD_WIDTH = 61, parameter integer C_WPAYLOAD_WIDTH = 73, parameter integer C_BPAYLOAD_WIDTH = 6, parameter integer C_ARPAYLOAD_WIDTH = 61, parameter integer C_RPAYLOAD_WIDTH = 69 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, // payloads output wire [C_AWPAYLOAD_WIDTH-1:0] s_awpayload, output wire [C_WPAYLOAD_WIDTH-1:0] s_wpayload, input wire [C_BPAYLOAD_WIDTH-1:0] s_bpayload, output wire [C_ARPAYLOAD_WIDTH-1:0] s_arpayload, input wire [C_RPAYLOAD_WIDTH-1:0] s_rpayload ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// `include "axi_infrastructure_v1_1_header.vh" //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // AXI4, AXI4LITE, AXI3 packing assign s_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH] = s_axi_awaddr; assign s_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH] = s_axi_awprot; assign s_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH] = s_axi_wdata; assign s_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH] = s_axi_wstrb; assign s_axi_bresp = s_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH]; assign s_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH] = s_axi_araddr; assign s_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH] = s_axi_arprot; assign s_axi_rdata = s_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH]; assign s_axi_rresp = s_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH]; generate if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing assign s_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] = s_axi_awsize; assign s_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH] = s_axi_awburst; assign s_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH] = s_axi_awcache; assign s_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] = s_axi_awlen; assign s_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] = s_axi_awlock; assign s_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] = s_axi_awid; assign s_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] = s_axi_awqos; assign s_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] = s_axi_wlast; if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing assign s_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] = s_axi_wid; end else begin : gen_no_axi3_wid_packing end assign s_axi_bid = s_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH]; assign s_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] = s_axi_arsize; assign s_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH] = s_axi_arburst; assign s_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH] = s_axi_arcache; assign s_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] = s_axi_arlen; assign s_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] = s_axi_arlock; assign s_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] = s_axi_arid; assign s_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] = s_axi_arqos; assign s_axi_rlast = s_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH]; assign s_axi_rid = s_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH]; if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals assign s_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH] = s_axi_awregion; assign s_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH] = s_axi_arregion; end else begin : gen_no_region_signals end if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals assign s_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH] = s_axi_awuser; assign s_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] = s_axi_wuser; assign s_axi_buser = s_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH]; assign s_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH] = s_axi_aruser; assign s_axi_ruser = s_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH]; end else begin : gen_no_user_signals assign s_axi_buser = 'b0; assign s_axi_ruser = 'b0; end end else begin : gen_axi4lite_packing assign s_axi_bid = 'b0; assign s_axi_buser = 'b0; assign s_axi_rlast = 1'b1; assign s_axi_rid = 'b0; assign s_axi_ruser = 'b0; end endgenerate endmodule
module axi_infrastructure_v1_1_axi2vector # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter integer C_AXI_PROTOCOL = 0, parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AWPAYLOAD_WIDTH = 61, parameter integer C_WPAYLOAD_WIDTH = 73, parameter integer C_BPAYLOAD_WIDTH = 6, parameter integer C_ARPAYLOAD_WIDTH = 61, parameter integer C_RPAYLOAD_WIDTH = 69 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, // payloads output wire [C_AWPAYLOAD_WIDTH-1:0] s_awpayload, output wire [C_WPAYLOAD_WIDTH-1:0] s_wpayload, input wire [C_BPAYLOAD_WIDTH-1:0] s_bpayload, output wire [C_ARPAYLOAD_WIDTH-1:0] s_arpayload, input wire [C_RPAYLOAD_WIDTH-1:0] s_rpayload ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// `include "axi_infrastructure_v1_1_header.vh" //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // AXI4, AXI4LITE, AXI3 packing assign s_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH] = s_axi_awaddr; assign s_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH] = s_axi_awprot; assign s_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH] = s_axi_wdata; assign s_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH] = s_axi_wstrb; assign s_axi_bresp = s_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH]; assign s_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH] = s_axi_araddr; assign s_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH] = s_axi_arprot; assign s_axi_rdata = s_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH]; assign s_axi_rresp = s_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH]; generate if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing assign s_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] = s_axi_awsize; assign s_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH] = s_axi_awburst; assign s_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH] = s_axi_awcache; assign s_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] = s_axi_awlen; assign s_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] = s_axi_awlock; assign s_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] = s_axi_awid; assign s_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] = s_axi_awqos; assign s_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] = s_axi_wlast; if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing assign s_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] = s_axi_wid; end else begin : gen_no_axi3_wid_packing end assign s_axi_bid = s_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH]; assign s_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] = s_axi_arsize; assign s_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH] = s_axi_arburst; assign s_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH] = s_axi_arcache; assign s_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] = s_axi_arlen; assign s_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] = s_axi_arlock; assign s_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] = s_axi_arid; assign s_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] = s_axi_arqos; assign s_axi_rlast = s_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH]; assign s_axi_rid = s_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH]; if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals assign s_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH] = s_axi_awregion; assign s_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH] = s_axi_arregion; end else begin : gen_no_region_signals end if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals assign s_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH] = s_axi_awuser; assign s_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] = s_axi_wuser; assign s_axi_buser = s_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH]; assign s_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH] = s_axi_aruser; assign s_axi_ruser = s_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH]; end else begin : gen_no_user_signals assign s_axi_buser = 'b0; assign s_axi_ruser = 'b0; end end else begin : gen_axi4lite_packing assign s_axi_bid = 'b0; assign s_axi_buser = 'b0; assign s_axi_rlast = 1'b1; assign s_axi_rid = 'b0; assign s_axi_ruser = 'b0; end endgenerate endmodule
module axi_infrastructure_v1_1_axi2vector # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter integer C_AXI_PROTOCOL = 0, parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AWPAYLOAD_WIDTH = 61, parameter integer C_WPAYLOAD_WIDTH = 73, parameter integer C_BPAYLOAD_WIDTH = 6, parameter integer C_ARPAYLOAD_WIDTH = 61, parameter integer C_RPAYLOAD_WIDTH = 69 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, // payloads output wire [C_AWPAYLOAD_WIDTH-1:0] s_awpayload, output wire [C_WPAYLOAD_WIDTH-1:0] s_wpayload, input wire [C_BPAYLOAD_WIDTH-1:0] s_bpayload, output wire [C_ARPAYLOAD_WIDTH-1:0] s_arpayload, input wire [C_RPAYLOAD_WIDTH-1:0] s_rpayload ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// `include "axi_infrastructure_v1_1_header.vh" //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // AXI4, AXI4LITE, AXI3 packing assign s_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH] = s_axi_awaddr; assign s_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH] = s_axi_awprot; assign s_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH] = s_axi_wdata; assign s_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH] = s_axi_wstrb; assign s_axi_bresp = s_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH]; assign s_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH] = s_axi_araddr; assign s_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH] = s_axi_arprot; assign s_axi_rdata = s_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH]; assign s_axi_rresp = s_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH]; generate if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing assign s_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] = s_axi_awsize; assign s_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH] = s_axi_awburst; assign s_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH] = s_axi_awcache; assign s_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] = s_axi_awlen; assign s_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] = s_axi_awlock; assign s_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] = s_axi_awid; assign s_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] = s_axi_awqos; assign s_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] = s_axi_wlast; if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing assign s_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] = s_axi_wid; end else begin : gen_no_axi3_wid_packing end assign s_axi_bid = s_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH]; assign s_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] = s_axi_arsize; assign s_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH] = s_axi_arburst; assign s_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH] = s_axi_arcache; assign s_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] = s_axi_arlen; assign s_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] = s_axi_arlock; assign s_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] = s_axi_arid; assign s_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] = s_axi_arqos; assign s_axi_rlast = s_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH]; assign s_axi_rid = s_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH]; if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals assign s_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH] = s_axi_awregion; assign s_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH] = s_axi_arregion; end else begin : gen_no_region_signals end if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals assign s_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH] = s_axi_awuser; assign s_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] = s_axi_wuser; assign s_axi_buser = s_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH]; assign s_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH] = s_axi_aruser; assign s_axi_ruser = s_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH]; end else begin : gen_no_user_signals assign s_axi_buser = 'b0; assign s_axi_ruser = 'b0; end end else begin : gen_axi4lite_packing assign s_axi_bid = 'b0; assign s_axi_buser = 'b0; assign s_axi_rlast = 1'b1; assign s_axi_rid = 'b0; assign s_axi_ruser = 'b0; end endgenerate endmodule
module axi_infrastructure_v1_1_axi2vector # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter integer C_AXI_PROTOCOL = 0, parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AWPAYLOAD_WIDTH = 61, parameter integer C_WPAYLOAD_WIDTH = 73, parameter integer C_BPAYLOAD_WIDTH = 6, parameter integer C_ARPAYLOAD_WIDTH = 61, parameter integer C_RPAYLOAD_WIDTH = 69 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, // payloads output wire [C_AWPAYLOAD_WIDTH-1:0] s_awpayload, output wire [C_WPAYLOAD_WIDTH-1:0] s_wpayload, input wire [C_BPAYLOAD_WIDTH-1:0] s_bpayload, output wire [C_ARPAYLOAD_WIDTH-1:0] s_arpayload, input wire [C_RPAYLOAD_WIDTH-1:0] s_rpayload ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// `include "axi_infrastructure_v1_1_header.vh" //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // AXI4, AXI4LITE, AXI3 packing assign s_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH] = s_axi_awaddr; assign s_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH] = s_axi_awprot; assign s_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH] = s_axi_wdata; assign s_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH] = s_axi_wstrb; assign s_axi_bresp = s_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH]; assign s_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH] = s_axi_araddr; assign s_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH] = s_axi_arprot; assign s_axi_rdata = s_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH]; assign s_axi_rresp = s_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH]; generate if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing assign s_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] = s_axi_awsize; assign s_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH] = s_axi_awburst; assign s_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH] = s_axi_awcache; assign s_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] = s_axi_awlen; assign s_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] = s_axi_awlock; assign s_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] = s_axi_awid; assign s_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] = s_axi_awqos; assign s_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] = s_axi_wlast; if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing assign s_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] = s_axi_wid; end else begin : gen_no_axi3_wid_packing end assign s_axi_bid = s_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH]; assign s_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] = s_axi_arsize; assign s_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH] = s_axi_arburst; assign s_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH] = s_axi_arcache; assign s_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] = s_axi_arlen; assign s_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] = s_axi_arlock; assign s_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] = s_axi_arid; assign s_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] = s_axi_arqos; assign s_axi_rlast = s_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH]; assign s_axi_rid = s_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH]; if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals assign s_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH] = s_axi_awregion; assign s_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH] = s_axi_arregion; end else begin : gen_no_region_signals end if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals assign s_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH] = s_axi_awuser; assign s_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] = s_axi_wuser; assign s_axi_buser = s_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH]; assign s_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH] = s_axi_aruser; assign s_axi_ruser = s_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH]; end else begin : gen_no_user_signals assign s_axi_buser = 'b0; assign s_axi_ruser = 'b0; end end else begin : gen_axi4lite_packing assign s_axi_bid = 'b0; assign s_axi_buser = 'b0; assign s_axi_rlast = 1'b1; assign s_axi_rid = 'b0; assign s_axi_ruser = 'b0; end endgenerate endmodule
module ps2_mouse ( input clk, // Clock Input input reset, // Reset Input inout ps2_clk, // PS2 Clock, Bidirectional inout ps2_dat, // PS2 Data, Bidirectional input [7:0] the_command, // Command to send to mouse input send_command, // Signal to send output command_was_sent, // Signal command finished sending output error_communication_timed_out, output [7:0] received_data, // Received data output received_data_en, // If 1 - new data has been received output start_receiving_data, output wait_for_incoming_data ); // -------------------------------------------------------------------- // Internal wires and registers Declarations // -------------------------------------------------------------------- wire ps2_clk_posedge; // Internal Wires wire ps2_clk_negedge; reg [7:0] idle_counter; // Internal Registers reg ps2_clk_reg; reg ps2_data_reg; reg last_ps2_clk; reg [2:0] ns_ps2_transceiver; // State Machine Registers reg [2:0] s_ps2_transceiver; // -------------------------------------------------------------------- // Constant Declarations // -------------------------------------------------------------------- localparam PS2_STATE_0_IDLE = 3'h0, // states PS2_STATE_1_DATA_IN = 3'h1, PS2_STATE_2_COMMAND_OUT = 3'h2, PS2_STATE_3_END_TRANSFER = 3'h3, PS2_STATE_4_END_DELAYED = 3'h4; // -------------------------------------------------------------------- // Finite State Machine(s) // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE; else s_ps2_transceiver <= ns_ps2_transceiver; end always @(*) begin ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults case (s_ps2_transceiver) PS2_STATE_0_IDLE: begin if((idle_counter == 8'hFF) && (send_command == 1'b1)) ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_1_DATA_IN; else ns_ps2_transceiver = PS2_STATE_0_IDLE; end PS2_STATE_1_DATA_IN: begin // if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1)) if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_1_DATA_IN; end PS2_STATE_2_COMMAND_OUT: begin if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1)) ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; end PS2_STATE_3_END_TRANSFER: begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end PS2_STATE_4_END_DELAYED: begin if(received_data_en == 1'b1) begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; end default: ns_ps2_transceiver = PS2_STATE_0_IDLE; endcase end // -------------------------------------------------------------------- // Sequential logic // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) begin last_ps2_clk <= 1'b1; ps2_clk_reg <= 1'b1; ps2_data_reg <= 1'b1; end else begin last_ps2_clk <= ps2_clk_reg; ps2_clk_reg <= ps2_clk; ps2_data_reg <= ps2_dat; end end always @(posedge clk) begin if(reset == 1'b1) idle_counter <= 6'h00; else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF)) idle_counter <= idle_counter + 6'h01; else if (s_ps2_transceiver != PS2_STATE_0_IDLE) idle_counter <= 6'h00; end // -------------------------------------------------------------------- // Combinational logic // -------------------------------------------------------------------- assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0; assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0; assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN); assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER); // -------------------------------------------------------------------- // Internal Modules // -------------------------------------------------------------------- ps2_mouse_cmdout mouse_cmdout ( .clk (clk), // Inputs .reset (reset), .the_command (the_command), .send_command (send_command), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_clk (ps2_clk), // Bidirectionals .ps2_dat (ps2_dat), .command_was_sent (command_was_sent), // Outputs .error_communication_timed_out (error_communication_timed_out) ); ps2_mouse_datain mouse_datain ( .clk (clk), // Inputs .reset (reset), .wait_for_incoming_data (wait_for_incoming_data), .start_receiving_data (start_receiving_data), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_data (ps2_data_reg), .received_data (received_data), // Outputs .received_data_en (received_data_en) ); endmodule
module ps2_mouse ( input clk, // Clock Input input reset, // Reset Input inout ps2_clk, // PS2 Clock, Bidirectional inout ps2_dat, // PS2 Data, Bidirectional input [7:0] the_command, // Command to send to mouse input send_command, // Signal to send output command_was_sent, // Signal command finished sending output error_communication_timed_out, output [7:0] received_data, // Received data output received_data_en, // If 1 - new data has been received output start_receiving_data, output wait_for_incoming_data ); // -------------------------------------------------------------------- // Internal wires and registers Declarations // -------------------------------------------------------------------- wire ps2_clk_posedge; // Internal Wires wire ps2_clk_negedge; reg [7:0] idle_counter; // Internal Registers reg ps2_clk_reg; reg ps2_data_reg; reg last_ps2_clk; reg [2:0] ns_ps2_transceiver; // State Machine Registers reg [2:0] s_ps2_transceiver; // -------------------------------------------------------------------- // Constant Declarations // -------------------------------------------------------------------- localparam PS2_STATE_0_IDLE = 3'h0, // states PS2_STATE_1_DATA_IN = 3'h1, PS2_STATE_2_COMMAND_OUT = 3'h2, PS2_STATE_3_END_TRANSFER = 3'h3, PS2_STATE_4_END_DELAYED = 3'h4; // -------------------------------------------------------------------- // Finite State Machine(s) // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE; else s_ps2_transceiver <= ns_ps2_transceiver; end always @(*) begin ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults case (s_ps2_transceiver) PS2_STATE_0_IDLE: begin if((idle_counter == 8'hFF) && (send_command == 1'b1)) ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_1_DATA_IN; else ns_ps2_transceiver = PS2_STATE_0_IDLE; end PS2_STATE_1_DATA_IN: begin // if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1)) if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_1_DATA_IN; end PS2_STATE_2_COMMAND_OUT: begin if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1)) ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; end PS2_STATE_3_END_TRANSFER: begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end PS2_STATE_4_END_DELAYED: begin if(received_data_en == 1'b1) begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; end default: ns_ps2_transceiver = PS2_STATE_0_IDLE; endcase end // -------------------------------------------------------------------- // Sequential logic // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) begin last_ps2_clk <= 1'b1; ps2_clk_reg <= 1'b1; ps2_data_reg <= 1'b1; end else begin last_ps2_clk <= ps2_clk_reg; ps2_clk_reg <= ps2_clk; ps2_data_reg <= ps2_dat; end end always @(posedge clk) begin if(reset == 1'b1) idle_counter <= 6'h00; else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF)) idle_counter <= idle_counter + 6'h01; else if (s_ps2_transceiver != PS2_STATE_0_IDLE) idle_counter <= 6'h00; end // -------------------------------------------------------------------- // Combinational logic // -------------------------------------------------------------------- assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0; assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0; assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN); assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER); // -------------------------------------------------------------------- // Internal Modules // -------------------------------------------------------------------- ps2_mouse_cmdout mouse_cmdout ( .clk (clk), // Inputs .reset (reset), .the_command (the_command), .send_command (send_command), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_clk (ps2_clk), // Bidirectionals .ps2_dat (ps2_dat), .command_was_sent (command_was_sent), // Outputs .error_communication_timed_out (error_communication_timed_out) ); ps2_mouse_datain mouse_datain ( .clk (clk), // Inputs .reset (reset), .wait_for_incoming_data (wait_for_incoming_data), .start_receiving_data (start_receiving_data), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_data (ps2_data_reg), .received_data (received_data), // Outputs .received_data_en (received_data_en) ); endmodule
module ps2_mouse ( input clk, // Clock Input input reset, // Reset Input inout ps2_clk, // PS2 Clock, Bidirectional inout ps2_dat, // PS2 Data, Bidirectional input [7:0] the_command, // Command to send to mouse input send_command, // Signal to send output command_was_sent, // Signal command finished sending output error_communication_timed_out, output [7:0] received_data, // Received data output received_data_en, // If 1 - new data has been received output start_receiving_data, output wait_for_incoming_data ); // -------------------------------------------------------------------- // Internal wires and registers Declarations // -------------------------------------------------------------------- wire ps2_clk_posedge; // Internal Wires wire ps2_clk_negedge; reg [7:0] idle_counter; // Internal Registers reg ps2_clk_reg; reg ps2_data_reg; reg last_ps2_clk; reg [2:0] ns_ps2_transceiver; // State Machine Registers reg [2:0] s_ps2_transceiver; // -------------------------------------------------------------------- // Constant Declarations // -------------------------------------------------------------------- localparam PS2_STATE_0_IDLE = 3'h0, // states PS2_STATE_1_DATA_IN = 3'h1, PS2_STATE_2_COMMAND_OUT = 3'h2, PS2_STATE_3_END_TRANSFER = 3'h3, PS2_STATE_4_END_DELAYED = 3'h4; // -------------------------------------------------------------------- // Finite State Machine(s) // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE; else s_ps2_transceiver <= ns_ps2_transceiver; end always @(*) begin ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults case (s_ps2_transceiver) PS2_STATE_0_IDLE: begin if((idle_counter == 8'hFF) && (send_command == 1'b1)) ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_1_DATA_IN; else ns_ps2_transceiver = PS2_STATE_0_IDLE; end PS2_STATE_1_DATA_IN: begin // if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1)) if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_1_DATA_IN; end PS2_STATE_2_COMMAND_OUT: begin if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1)) ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; end PS2_STATE_3_END_TRANSFER: begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end PS2_STATE_4_END_DELAYED: begin if(received_data_en == 1'b1) begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; end default: ns_ps2_transceiver = PS2_STATE_0_IDLE; endcase end // -------------------------------------------------------------------- // Sequential logic // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) begin last_ps2_clk <= 1'b1; ps2_clk_reg <= 1'b1; ps2_data_reg <= 1'b1; end else begin last_ps2_clk <= ps2_clk_reg; ps2_clk_reg <= ps2_clk; ps2_data_reg <= ps2_dat; end end always @(posedge clk) begin if(reset == 1'b1) idle_counter <= 6'h00; else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF)) idle_counter <= idle_counter + 6'h01; else if (s_ps2_transceiver != PS2_STATE_0_IDLE) idle_counter <= 6'h00; end // -------------------------------------------------------------------- // Combinational logic // -------------------------------------------------------------------- assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0; assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0; assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN); assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER); // -------------------------------------------------------------------- // Internal Modules // -------------------------------------------------------------------- ps2_mouse_cmdout mouse_cmdout ( .clk (clk), // Inputs .reset (reset), .the_command (the_command), .send_command (send_command), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_clk (ps2_clk), // Bidirectionals .ps2_dat (ps2_dat), .command_was_sent (command_was_sent), // Outputs .error_communication_timed_out (error_communication_timed_out) ); ps2_mouse_datain mouse_datain ( .clk (clk), // Inputs .reset (reset), .wait_for_incoming_data (wait_for_incoming_data), .start_receiving_data (start_receiving_data), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_data (ps2_data_reg), .received_data (received_data), // Outputs .received_data_en (received_data_en) ); endmodule
module ps2_mouse ( input clk, // Clock Input input reset, // Reset Input inout ps2_clk, // PS2 Clock, Bidirectional inout ps2_dat, // PS2 Data, Bidirectional input [7:0] the_command, // Command to send to mouse input send_command, // Signal to send output command_was_sent, // Signal command finished sending output error_communication_timed_out, output [7:0] received_data, // Received data output received_data_en, // If 1 - new data has been received output start_receiving_data, output wait_for_incoming_data ); // -------------------------------------------------------------------- // Internal wires and registers Declarations // -------------------------------------------------------------------- wire ps2_clk_posedge; // Internal Wires wire ps2_clk_negedge; reg [7:0] idle_counter; // Internal Registers reg ps2_clk_reg; reg ps2_data_reg; reg last_ps2_clk; reg [2:0] ns_ps2_transceiver; // State Machine Registers reg [2:0] s_ps2_transceiver; // -------------------------------------------------------------------- // Constant Declarations // -------------------------------------------------------------------- localparam PS2_STATE_0_IDLE = 3'h0, // states PS2_STATE_1_DATA_IN = 3'h1, PS2_STATE_2_COMMAND_OUT = 3'h2, PS2_STATE_3_END_TRANSFER = 3'h3, PS2_STATE_4_END_DELAYED = 3'h4; // -------------------------------------------------------------------- // Finite State Machine(s) // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE; else s_ps2_transceiver <= ns_ps2_transceiver; end always @(*) begin ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults case (s_ps2_transceiver) PS2_STATE_0_IDLE: begin if((idle_counter == 8'hFF) && (send_command == 1'b1)) ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_1_DATA_IN; else ns_ps2_transceiver = PS2_STATE_0_IDLE; end PS2_STATE_1_DATA_IN: begin // if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1)) if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_1_DATA_IN; end PS2_STATE_2_COMMAND_OUT: begin if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1)) ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; end PS2_STATE_3_END_TRANSFER: begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end PS2_STATE_4_END_DELAYED: begin if(received_data_en == 1'b1) begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; end default: ns_ps2_transceiver = PS2_STATE_0_IDLE; endcase end // -------------------------------------------------------------------- // Sequential logic // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) begin last_ps2_clk <= 1'b1; ps2_clk_reg <= 1'b1; ps2_data_reg <= 1'b1; end else begin last_ps2_clk <= ps2_clk_reg; ps2_clk_reg <= ps2_clk; ps2_data_reg <= ps2_dat; end end always @(posedge clk) begin if(reset == 1'b1) idle_counter <= 6'h00; else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF)) idle_counter <= idle_counter + 6'h01; else if (s_ps2_transceiver != PS2_STATE_0_IDLE) idle_counter <= 6'h00; end // -------------------------------------------------------------------- // Combinational logic // -------------------------------------------------------------------- assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0; assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0; assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN); assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER); // -------------------------------------------------------------------- // Internal Modules // -------------------------------------------------------------------- ps2_mouse_cmdout mouse_cmdout ( .clk (clk), // Inputs .reset (reset), .the_command (the_command), .send_command (send_command), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_clk (ps2_clk), // Bidirectionals .ps2_dat (ps2_dat), .command_was_sent (command_was_sent), // Outputs .error_communication_timed_out (error_communication_timed_out) ); ps2_mouse_datain mouse_datain ( .clk (clk), // Inputs .reset (reset), .wait_for_incoming_data (wait_for_incoming_data), .start_receiving_data (start_receiving_data), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_data (ps2_data_reg), .received_data (received_data), // Outputs .received_data_en (received_data_en) ); endmodule
module ps2_mouse ( input clk, // Clock Input input reset, // Reset Input inout ps2_clk, // PS2 Clock, Bidirectional inout ps2_dat, // PS2 Data, Bidirectional input [7:0] the_command, // Command to send to mouse input send_command, // Signal to send output command_was_sent, // Signal command finished sending output error_communication_timed_out, output [7:0] received_data, // Received data output received_data_en, // If 1 - new data has been received output start_receiving_data, output wait_for_incoming_data ); // -------------------------------------------------------------------- // Internal wires and registers Declarations // -------------------------------------------------------------------- wire ps2_clk_posedge; // Internal Wires wire ps2_clk_negedge; reg [7:0] idle_counter; // Internal Registers reg ps2_clk_reg; reg ps2_data_reg; reg last_ps2_clk; reg [2:0] ns_ps2_transceiver; // State Machine Registers reg [2:0] s_ps2_transceiver; // -------------------------------------------------------------------- // Constant Declarations // -------------------------------------------------------------------- localparam PS2_STATE_0_IDLE = 3'h0, // states PS2_STATE_1_DATA_IN = 3'h1, PS2_STATE_2_COMMAND_OUT = 3'h2, PS2_STATE_3_END_TRANSFER = 3'h3, PS2_STATE_4_END_DELAYED = 3'h4; // -------------------------------------------------------------------- // Finite State Machine(s) // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE; else s_ps2_transceiver <= ns_ps2_transceiver; end always @(*) begin ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults case (s_ps2_transceiver) PS2_STATE_0_IDLE: begin if((idle_counter == 8'hFF) && (send_command == 1'b1)) ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_1_DATA_IN; else ns_ps2_transceiver = PS2_STATE_0_IDLE; end PS2_STATE_1_DATA_IN: begin // if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1)) if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_1_DATA_IN; end PS2_STATE_2_COMMAND_OUT: begin if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1)) ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; end PS2_STATE_3_END_TRANSFER: begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end PS2_STATE_4_END_DELAYED: begin if(received_data_en == 1'b1) begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; end default: ns_ps2_transceiver = PS2_STATE_0_IDLE; endcase end // -------------------------------------------------------------------- // Sequential logic // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) begin last_ps2_clk <= 1'b1; ps2_clk_reg <= 1'b1; ps2_data_reg <= 1'b1; end else begin last_ps2_clk <= ps2_clk_reg; ps2_clk_reg <= ps2_clk; ps2_data_reg <= ps2_dat; end end always @(posedge clk) begin if(reset == 1'b1) idle_counter <= 6'h00; else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF)) idle_counter <= idle_counter + 6'h01; else if (s_ps2_transceiver != PS2_STATE_0_IDLE) idle_counter <= 6'h00; end // -------------------------------------------------------------------- // Combinational logic // -------------------------------------------------------------------- assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0; assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0; assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN); assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER); // -------------------------------------------------------------------- // Internal Modules // -------------------------------------------------------------------- ps2_mouse_cmdout mouse_cmdout ( .clk (clk), // Inputs .reset (reset), .the_command (the_command), .send_command (send_command), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_clk (ps2_clk), // Bidirectionals .ps2_dat (ps2_dat), .command_was_sent (command_was_sent), // Outputs .error_communication_timed_out (error_communication_timed_out) ); ps2_mouse_datain mouse_datain ( .clk (clk), // Inputs .reset (reset), .wait_for_incoming_data (wait_for_incoming_data), .start_receiving_data (start_receiving_data), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_data (ps2_data_reg), .received_data (received_data), // Outputs .received_data_en (received_data_en) ); endmodule
module ps2_mouse ( input clk, // Clock Input input reset, // Reset Input inout ps2_clk, // PS2 Clock, Bidirectional inout ps2_dat, // PS2 Data, Bidirectional input [7:0] the_command, // Command to send to mouse input send_command, // Signal to send output command_was_sent, // Signal command finished sending output error_communication_timed_out, output [7:0] received_data, // Received data output received_data_en, // If 1 - new data has been received output start_receiving_data, output wait_for_incoming_data ); // -------------------------------------------------------------------- // Internal wires and registers Declarations // -------------------------------------------------------------------- wire ps2_clk_posedge; // Internal Wires wire ps2_clk_negedge; reg [7:0] idle_counter; // Internal Registers reg ps2_clk_reg; reg ps2_data_reg; reg last_ps2_clk; reg [2:0] ns_ps2_transceiver; // State Machine Registers reg [2:0] s_ps2_transceiver; // -------------------------------------------------------------------- // Constant Declarations // -------------------------------------------------------------------- localparam PS2_STATE_0_IDLE = 3'h0, // states PS2_STATE_1_DATA_IN = 3'h1, PS2_STATE_2_COMMAND_OUT = 3'h2, PS2_STATE_3_END_TRANSFER = 3'h3, PS2_STATE_4_END_DELAYED = 3'h4; // -------------------------------------------------------------------- // Finite State Machine(s) // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) s_ps2_transceiver <= PS2_STATE_0_IDLE; else s_ps2_transceiver <= ns_ps2_transceiver; end always @(*) begin ns_ps2_transceiver = PS2_STATE_0_IDLE; // Defaults case (s_ps2_transceiver) PS2_STATE_0_IDLE: begin if((idle_counter == 8'hFF) && (send_command == 1'b1)) ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; else if ((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_1_DATA_IN; else ns_ps2_transceiver = PS2_STATE_0_IDLE; end PS2_STATE_1_DATA_IN: begin // if((received_data_en == 1'b1) && (ps2_clk_posedge == 1'b1)) if((received_data_en == 1'b1)) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_1_DATA_IN; end PS2_STATE_2_COMMAND_OUT: begin if((command_was_sent == 1'b1) || (error_communication_timed_out == 1'b1)) ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; else ns_ps2_transceiver = PS2_STATE_2_COMMAND_OUT; end PS2_STATE_3_END_TRANSFER: begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else if((ps2_data_reg == 1'b0) && (ps2_clk_posedge == 1'b1)) ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end PS2_STATE_4_END_DELAYED: begin if(received_data_en == 1'b1) begin if(send_command == 1'b0) ns_ps2_transceiver = PS2_STATE_0_IDLE; else ns_ps2_transceiver = PS2_STATE_3_END_TRANSFER; end else ns_ps2_transceiver = PS2_STATE_4_END_DELAYED; end default: ns_ps2_transceiver = PS2_STATE_0_IDLE; endcase end // -------------------------------------------------------------------- // Sequential logic // -------------------------------------------------------------------- always @(posedge clk) begin if(reset == 1'b1) begin last_ps2_clk <= 1'b1; ps2_clk_reg <= 1'b1; ps2_data_reg <= 1'b1; end else begin last_ps2_clk <= ps2_clk_reg; ps2_clk_reg <= ps2_clk; ps2_data_reg <= ps2_dat; end end always @(posedge clk) begin if(reset == 1'b1) idle_counter <= 6'h00; else if((s_ps2_transceiver == PS2_STATE_0_IDLE) && (idle_counter != 8'hFF)) idle_counter <= idle_counter + 6'h01; else if (s_ps2_transceiver != PS2_STATE_0_IDLE) idle_counter <= 6'h00; end // -------------------------------------------------------------------- // Combinational logic // -------------------------------------------------------------------- assign ps2_clk_posedge = ((ps2_clk_reg == 1'b1) && (last_ps2_clk == 1'b0)) ? 1'b1 : 1'b0; assign ps2_clk_negedge = ((ps2_clk_reg == 1'b0) && (last_ps2_clk == 1'b1)) ? 1'b1 : 1'b0; assign start_receiving_data = (s_ps2_transceiver == PS2_STATE_1_DATA_IN); assign wait_for_incoming_data = (s_ps2_transceiver == PS2_STATE_3_END_TRANSFER); // -------------------------------------------------------------------- // Internal Modules // -------------------------------------------------------------------- ps2_mouse_cmdout mouse_cmdout ( .clk (clk), // Inputs .reset (reset), .the_command (the_command), .send_command (send_command), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_clk (ps2_clk), // Bidirectionals .ps2_dat (ps2_dat), .command_was_sent (command_was_sent), // Outputs .error_communication_timed_out (error_communication_timed_out) ); ps2_mouse_datain mouse_datain ( .clk (clk), // Inputs .reset (reset), .wait_for_incoming_data (wait_for_incoming_data), .start_receiving_data (start_receiving_data), .ps2_clk_posedge (ps2_clk_posedge), .ps2_clk_negedge (ps2_clk_negedge), .ps2_data (ps2_data_reg), .received_data (received_data), // Outputs .received_data_en (received_data_en) ); endmodule
module LZD#(parameter SWR=26, parameter EWR=5)( //#(parameter SWR=55, parameter EWR=6)( input wire clk, input wire rst, input wire load_i, input wire [SWR-1:0] Add_subt_result_i, /////////////////////////////////////////////7 output wire [EWR-1:0] Shift_Value_o ); wire [EWR-1:0] Codec_to_Reg; generate case (SWR) 26:begin Priority_Codec_32 Codec_32( .Data_Dec_i(Add_subt_result_i), .Data_Bin_o(Codec_to_Reg) ); end 55:begin Priority_Codec_64 Codec_64( .Data_Dec_i(Add_subt_result_i), .Data_Bin_o(Codec_to_Reg) ); end endcase endgenerate RegisterAdd #(.W(EWR)) Output_Reg( .clk(clk), .rst(rst), .load(load_i), .D(Codec_to_Reg), .Q(Shift_Value_o) ); endmodule
module sync_signal #( parameter WIDTH=1, // width of the input and output signals parameter N=2 // depth of synchronizer )( input wire clk, input wire [WIDTH-1:0] in, output wire [WIDTH-1:0] out ); reg [WIDTH-1:0] sync_reg[N-1:0]; /* * The synchronized output is the last register in the pipeline. */ assign out = sync_reg[N-1]; integer k; always @(posedge clk) begin sync_reg[0] <= in; for (k = 1; k < N; k = k + 1) begin sync_reg[k] <= sync_reg[k-1]; end end endmodule
module sync_signal #( parameter WIDTH=1, // width of the input and output signals parameter N=2 // depth of synchronizer )( input wire clk, input wire [WIDTH-1:0] in, output wire [WIDTH-1:0] out ); reg [WIDTH-1:0] sync_reg[N-1:0]; /* * The synchronized output is the last register in the pipeline. */ assign out = sync_reg[N-1]; integer k; always @(posedge clk) begin sync_reg[0] <= in; for (k = 1; k < N; k = k + 1) begin sync_reg[k] <= sync_reg[k-1]; end end endmodule
module sync_signal #( parameter WIDTH=1, // width of the input and output signals parameter N=2 // depth of synchronizer )( input wire clk, input wire [WIDTH-1:0] in, output wire [WIDTH-1:0] out ); reg [WIDTH-1:0] sync_reg[N-1:0]; /* * The synchronized output is the last register in the pipeline. */ assign out = sync_reg[N-1]; integer k; always @(posedge clk) begin sync_reg[0] <= in; for (k = 1; k < N; k = k + 1) begin sync_reg[k] <= sync_reg[k-1]; end end endmodule
module sync_signal #( parameter WIDTH=1, // width of the input and output signals parameter N=2 // depth of synchronizer )( input wire clk, input wire [WIDTH-1:0] in, output wire [WIDTH-1:0] out ); reg [WIDTH-1:0] sync_reg[N-1:0]; /* * The synchronized output is the last register in the pipeline. */ assign out = sync_reg[N-1]; integer k; always @(posedge clk) begin sync_reg[0] <= in; for (k = 1; k < N; k = k + 1) begin sync_reg[k] <= sync_reg[k-1]; end end endmodule
module sync_signal #( parameter WIDTH=1, // width of the input and output signals parameter N=2 // depth of synchronizer )( input wire clk, input wire [WIDTH-1:0] in, output wire [WIDTH-1:0] out ); reg [WIDTH-1:0] sync_reg[N-1:0]; /* * The synchronized output is the last register in the pipeline. */ assign out = sync_reg[N-1]; integer k; always @(posedge clk) begin sync_reg[0] <= in; for (k = 1; k < N; k = k + 1) begin sync_reg[k] <= sync_reg[k-1]; end end endmodule
module sync_signal #( parameter WIDTH=1, // width of the input and output signals parameter N=2 // depth of synchronizer )( input wire clk, input wire [WIDTH-1:0] in, output wire [WIDTH-1:0] out ); reg [WIDTH-1:0] sync_reg[N-1:0]; /* * The synchronized output is the last register in the pipeline. */ assign out = sync_reg[N-1]; integer k; always @(posedge clk) begin sync_reg[0] <= in; for (k = 1; k < N; k = k + 1) begin sync_reg[k] <= sync_reg[k-1]; end end endmodule
module wdt(clk, ena, cnt, out); input clk, ena, cnt; output out; reg [6:0] timer; wire timer_top = (timer == 7'd127); reg internal_enable; wire out = internal_enable && timer_top; always @(posedge clk) begin if(ena) begin internal_enable <= 1; timer <= 0; end else if(cnt && !timer_top) timer <= timer + 7'd1; end endmodule
module wire [W-1:0] intDX; //Output of register DATA_X wire [W-1:0] intDY; //Output of register DATA_Y wire intAS; //Output of register add_subt wire gtXY; //Output for magntiude_comparator (X>Y) wire eqXY; //Output for magntiude_comparator (X=Y) wire [W-2:0] intM; //Output of MuxXY for bigger value wire [W-2:0] intm; //Output of MuxXY for small value /////////////////////////////////////////////////////////////////// RegisterAdd #(.W(W)) XRegister ( //Data X input register .clk(clk), .rst(rst), .load(load_a_i), .D(Data_X_i), .Q(intDX) ); RegisterAdd #(.W(W)) YRegister ( //Data Y input register .clk(clk), .rst(rst), .load(load_a_i), .D(Data_Y_i), .Q(intDY) ); RegisterAdd #(.W(1)) ASRegister ( //Data Add_Subtract input register .clk(clk), .rst(rst), .load(load_a_i), .D(add_subt_i), .Q(intAS) ); Comparator #(.W(W-1)) Magnitude_Comparator ( //Compare between magnitude for DATA_X and DATA_Y and select whos bigger and if there's a equality .Data_X_i(intDX[W-2:0]), .Data_Y_i(intDY[W-2:0]), .gtXY_o(gtXY), .eqXY_o(eqXY) ); xor_tri #(.W(W)) Op_verification ( //Operation between the DATA_X & Y's sign bit and the operation bit to find the real operation for ADDER/SUBTRACT .A_i(intDX[W-1]), .B_i(intDY[W-1]), .C_i(intAS), .Z_o(real_op_o) ); sgn_result result_sign_bit (//Calculate the sign bit for the final result .Add_Subt_i(intAS), .sgn_X_i(intDX[W-1]), .sgn_Y_i(intDY[W-1]), .gtXY_i(gtXY), .eqXY_i(eqXY), .sgn_result_o(sign_result) ); MultiplexTxT #(.W(W-1)) MuxXY (//Classify in the registers the bigger value (M) and the smaller value (m) .select(gtXY), .D0_i(intDX[W-2:0]), .D1_i(intDY[W-2:0]), .S0_o(intM), .S1_o(intm) ); RegisterAdd #(.W(W-1)) MRegister ( //Data_M register .clk(clk), .rst(rst), .load(load_b_i), .D(intM), .Q(DMP_o) ); RegisterAdd #(.W(W-1)) mRegister ( //Data_m register .clk(clk), .rst(rst), .load(load_b_i), .D(intm), .Q(DmP_o) ); RegisterAdd #(.W(1)) SignRegister ( .clk(clk), .rst(rst), .load(load_b_i), .D(sign_result), .Q(sign_final_result_o) ); assign zero_flag_o = real_op_o & eqXY; endmodule
module wire [W-1:0] intDX; //Output of register DATA_X wire [W-1:0] intDY; //Output of register DATA_Y wire intAS; //Output of register add_subt wire gtXY; //Output for magntiude_comparator (X>Y) wire eqXY; //Output for magntiude_comparator (X=Y) wire [W-2:0] intM; //Output of MuxXY for bigger value wire [W-2:0] intm; //Output of MuxXY for small value /////////////////////////////////////////////////////////////////// RegisterAdd #(.W(W)) XRegister ( //Data X input register .clk(clk), .rst(rst), .load(load_a_i), .D(Data_X_i), .Q(intDX) ); RegisterAdd #(.W(W)) YRegister ( //Data Y input register .clk(clk), .rst(rst), .load(load_a_i), .D(Data_Y_i), .Q(intDY) ); RegisterAdd #(.W(1)) ASRegister ( //Data Add_Subtract input register .clk(clk), .rst(rst), .load(load_a_i), .D(add_subt_i), .Q(intAS) ); Comparator #(.W(W-1)) Magnitude_Comparator ( //Compare between magnitude for DATA_X and DATA_Y and select whos bigger and if there's a equality .Data_X_i(intDX[W-2:0]), .Data_Y_i(intDY[W-2:0]), .gtXY_o(gtXY), .eqXY_o(eqXY) ); xor_tri #(.W(W)) Op_verification ( //Operation between the DATA_X & Y's sign bit and the operation bit to find the real operation for ADDER/SUBTRACT .A_i(intDX[W-1]), .B_i(intDY[W-1]), .C_i(intAS), .Z_o(real_op_o) ); sgn_result result_sign_bit (//Calculate the sign bit for the final result .Add_Subt_i(intAS), .sgn_X_i(intDX[W-1]), .sgn_Y_i(intDY[W-1]), .gtXY_i(gtXY), .eqXY_i(eqXY), .sgn_result_o(sign_result) ); MultiplexTxT #(.W(W-1)) MuxXY (//Classify in the registers the bigger value (M) and the smaller value (m) .select(gtXY), .D0_i(intDX[W-2:0]), .D1_i(intDY[W-2:0]), .S0_o(intM), .S1_o(intm) ); RegisterAdd #(.W(W-1)) MRegister ( //Data_M register .clk(clk), .rst(rst), .load(load_b_i), .D(intM), .Q(DMP_o) ); RegisterAdd #(.W(W-1)) mRegister ( //Data_m register .clk(clk), .rst(rst), .load(load_b_i), .D(intm), .Q(DmP_o) ); RegisterAdd #(.W(1)) SignRegister ( .clk(clk), .rst(rst), .load(load_b_i), .D(sign_result), .Q(sign_final_result_o) ); assign zero_flag_o = real_op_o & eqXY; endmodule
module glbl (); parameter ROC_WIDTH = 100000; parameter TOC_WIDTH = 0; //-------- STARTUP Globals -------------- wire GSR; wire GTS; wire GWE; wire PRLD; tri1 p_up_tmp; tri (weak1, strong0) PLL_LOCKG = p_up_tmp; wire PROGB_GLBL; wire CCLKO_GLBL; wire FCSBO_GLBL; wire [3:0] DO_GLBL; wire [3:0] DI_GLBL; reg GSR_int; reg GTS_int; reg PRLD_int; //-------- JTAG Globals -------------- wire JTAG_TDO_GLBL; wire JTAG_TCK_GLBL; wire JTAG_TDI_GLBL; wire JTAG_TMS_GLBL; wire JTAG_TRST_GLBL; reg JTAG_CAPTURE_GLBL; reg JTAG_RESET_GLBL; reg JTAG_SHIFT_GLBL; reg JTAG_UPDATE_GLBL; reg JTAG_RUNTEST_GLBL; reg JTAG_SEL1_GLBL = 0; reg JTAG_SEL2_GLBL = 0 ; reg JTAG_SEL3_GLBL = 0; reg JTAG_SEL4_GLBL = 0; reg JTAG_USER_TDO1_GLBL = 1'bz; reg JTAG_USER_TDO2_GLBL = 1'bz; reg JTAG_USER_TDO3_GLBL = 1'bz; reg JTAG_USER_TDO4_GLBL = 1'bz; assign (strong1, weak0) GSR = GSR_int; assign (strong1, weak0) GTS = GTS_int; assign (weak1, weak0) PRLD = PRLD_int; initial begin GSR_int = 1'b1; PRLD_int = 1'b1; #(ROC_WIDTH) GSR_int = 1'b0; PRLD_int = 1'b0; end initial begin GTS_int = 1'b1; #(TOC_WIDTH) GTS_int = 1'b0; end endmodule
module glbl (); parameter ROC_WIDTH = 100000; parameter TOC_WIDTH = 0; //-------- STARTUP Globals -------------- wire GSR; wire GTS; wire GWE; wire PRLD; tri1 p_up_tmp; tri (weak1, strong0) PLL_LOCKG = p_up_tmp; wire PROGB_GLBL; wire CCLKO_GLBL; wire FCSBO_GLBL; wire [3:0] DO_GLBL; wire [3:0] DI_GLBL; reg GSR_int; reg GTS_int; reg PRLD_int; //-------- JTAG Globals -------------- wire JTAG_TDO_GLBL; wire JTAG_TCK_GLBL; wire JTAG_TDI_GLBL; wire JTAG_TMS_GLBL; wire JTAG_TRST_GLBL; reg JTAG_CAPTURE_GLBL; reg JTAG_RESET_GLBL; reg JTAG_SHIFT_GLBL; reg JTAG_UPDATE_GLBL; reg JTAG_RUNTEST_GLBL; reg JTAG_SEL1_GLBL = 0; reg JTAG_SEL2_GLBL = 0 ; reg JTAG_SEL3_GLBL = 0; reg JTAG_SEL4_GLBL = 0; reg JTAG_USER_TDO1_GLBL = 1'bz; reg JTAG_USER_TDO2_GLBL = 1'bz; reg JTAG_USER_TDO3_GLBL = 1'bz; reg JTAG_USER_TDO4_GLBL = 1'bz; assign (strong1, weak0) GSR = GSR_int; assign (strong1, weak0) GTS = GTS_int; assign (weak1, weak0) PRLD = PRLD_int; initial begin GSR_int = 1'b1; PRLD_int = 1'b1; #(ROC_WIDTH) GSR_int = 1'b0; PRLD_int = 1'b0; end initial begin GTS_int = 1'b1; #(TOC_WIDTH) GTS_int = 1'b0; end endmodule
module glbl (); parameter ROC_WIDTH = 100000; parameter TOC_WIDTH = 0; //-------- STARTUP Globals -------------- wire GSR; wire GTS; wire GWE; wire PRLD; tri1 p_up_tmp; tri (weak1, strong0) PLL_LOCKG = p_up_tmp; wire PROGB_GLBL; wire CCLKO_GLBL; wire FCSBO_GLBL; wire [3:0] DO_GLBL; wire [3:0] DI_GLBL; reg GSR_int; reg GTS_int; reg PRLD_int; //-------- JTAG Globals -------------- wire JTAG_TDO_GLBL; wire JTAG_TCK_GLBL; wire JTAG_TDI_GLBL; wire JTAG_TMS_GLBL; wire JTAG_TRST_GLBL; reg JTAG_CAPTURE_GLBL; reg JTAG_RESET_GLBL; reg JTAG_SHIFT_GLBL; reg JTAG_UPDATE_GLBL; reg JTAG_RUNTEST_GLBL; reg JTAG_SEL1_GLBL = 0; reg JTAG_SEL2_GLBL = 0 ; reg JTAG_SEL3_GLBL = 0; reg JTAG_SEL4_GLBL = 0; reg JTAG_USER_TDO1_GLBL = 1'bz; reg JTAG_USER_TDO2_GLBL = 1'bz; reg JTAG_USER_TDO3_GLBL = 1'bz; reg JTAG_USER_TDO4_GLBL = 1'bz; assign (strong1, weak0) GSR = GSR_int; assign (strong1, weak0) GTS = GTS_int; assign (weak1, weak0) PRLD = PRLD_int; initial begin GSR_int = 1'b1; PRLD_int = 1'b1; #(ROC_WIDTH) GSR_int = 1'b0; PRLD_int = 1'b0; end initial begin GTS_int = 1'b1; #(TOC_WIDTH) GTS_int = 1'b0; end endmodule
module glbl (); parameter ROC_WIDTH = 100000; parameter TOC_WIDTH = 0; //-------- STARTUP Globals -------------- wire GSR; wire GTS; wire GWE; wire PRLD; tri1 p_up_tmp; tri (weak1, strong0) PLL_LOCKG = p_up_tmp; wire PROGB_GLBL; wire CCLKO_GLBL; wire FCSBO_GLBL; wire [3:0] DO_GLBL; wire [3:0] DI_GLBL; reg GSR_int; reg GTS_int; reg PRLD_int; //-------- JTAG Globals -------------- wire JTAG_TDO_GLBL; wire JTAG_TCK_GLBL; wire JTAG_TDI_GLBL; wire JTAG_TMS_GLBL; wire JTAG_TRST_GLBL; reg JTAG_CAPTURE_GLBL; reg JTAG_RESET_GLBL; reg JTAG_SHIFT_GLBL; reg JTAG_UPDATE_GLBL; reg JTAG_RUNTEST_GLBL; reg JTAG_SEL1_GLBL = 0; reg JTAG_SEL2_GLBL = 0 ; reg JTAG_SEL3_GLBL = 0; reg JTAG_SEL4_GLBL = 0; reg JTAG_USER_TDO1_GLBL = 1'bz; reg JTAG_USER_TDO2_GLBL = 1'bz; reg JTAG_USER_TDO3_GLBL = 1'bz; reg JTAG_USER_TDO4_GLBL = 1'bz; assign (strong1, weak0) GSR = GSR_int; assign (strong1, weak0) GTS = GTS_int; assign (weak1, weak0) PRLD = PRLD_int; initial begin GSR_int = 1'b1; PRLD_int = 1'b1; #(ROC_WIDTH) GSR_int = 1'b0; PRLD_int = 1'b0; end initial begin GTS_int = 1'b1; #(TOC_WIDTH) GTS_int = 1'b0; end endmodule
module glbl (); parameter ROC_WIDTH = 100000; parameter TOC_WIDTH = 0; //-------- STARTUP Globals -------------- wire GSR; wire GTS; wire GWE; wire PRLD; tri1 p_up_tmp; tri (weak1, strong0) PLL_LOCKG = p_up_tmp; wire PROGB_GLBL; wire CCLKO_GLBL; wire FCSBO_GLBL; wire [3:0] DO_GLBL; wire [3:0] DI_GLBL; reg GSR_int; reg GTS_int; reg PRLD_int; //-------- JTAG Globals -------------- wire JTAG_TDO_GLBL; wire JTAG_TCK_GLBL; wire JTAG_TDI_GLBL; wire JTAG_TMS_GLBL; wire JTAG_TRST_GLBL; reg JTAG_CAPTURE_GLBL; reg JTAG_RESET_GLBL; reg JTAG_SHIFT_GLBL; reg JTAG_UPDATE_GLBL; reg JTAG_RUNTEST_GLBL; reg JTAG_SEL1_GLBL = 0; reg JTAG_SEL2_GLBL = 0 ; reg JTAG_SEL3_GLBL = 0; reg JTAG_SEL4_GLBL = 0; reg JTAG_USER_TDO1_GLBL = 1'bz; reg JTAG_USER_TDO2_GLBL = 1'bz; reg JTAG_USER_TDO3_GLBL = 1'bz; reg JTAG_USER_TDO4_GLBL = 1'bz; assign (strong1, weak0) GSR = GSR_int; assign (strong1, weak0) GTS = GTS_int; assign (weak1, weak0) PRLD = PRLD_int; initial begin GSR_int = 1'b1; PRLD_int = 1'b1; #(ROC_WIDTH) GSR_int = 1'b0; PRLD_int = 1'b0; end initial begin GTS_int = 1'b1; #(TOC_WIDTH) GTS_int = 1'b0; end endmodule
module glbl (); parameter ROC_WIDTH = 100000; parameter TOC_WIDTH = 0; //-------- STARTUP Globals -------------- wire GSR; wire GTS; wire GWE; wire PRLD; tri1 p_up_tmp; tri (weak1, strong0) PLL_LOCKG = p_up_tmp; wire PROGB_GLBL; wire CCLKO_GLBL; wire FCSBO_GLBL; wire [3:0] DO_GLBL; wire [3:0] DI_GLBL; reg GSR_int; reg GTS_int; reg PRLD_int; //-------- JTAG Globals -------------- wire JTAG_TDO_GLBL; wire JTAG_TCK_GLBL; wire JTAG_TDI_GLBL; wire JTAG_TMS_GLBL; wire JTAG_TRST_GLBL; reg JTAG_CAPTURE_GLBL; reg JTAG_RESET_GLBL; reg JTAG_SHIFT_GLBL; reg JTAG_UPDATE_GLBL; reg JTAG_RUNTEST_GLBL; reg JTAG_SEL1_GLBL = 0; reg JTAG_SEL2_GLBL = 0 ; reg JTAG_SEL3_GLBL = 0; reg JTAG_SEL4_GLBL = 0; reg JTAG_USER_TDO1_GLBL = 1'bz; reg JTAG_USER_TDO2_GLBL = 1'bz; reg JTAG_USER_TDO3_GLBL = 1'bz; reg JTAG_USER_TDO4_GLBL = 1'bz; assign (strong1, weak0) GSR = GSR_int; assign (strong1, weak0) GTS = GTS_int; assign (weak1, weak0) PRLD = PRLD_int; initial begin GSR_int = 1'b1; PRLD_int = 1'b1; #(ROC_WIDTH) GSR_int = 1'b0; PRLD_int = 1'b0; end initial begin GTS_int = 1'b1; #(TOC_WIDTH) GTS_int = 1'b0; end endmodule
module glbl (); parameter ROC_WIDTH = 100000; parameter TOC_WIDTH = 0; //-------- STARTUP Globals -------------- wire GSR; wire GTS; wire GWE; wire PRLD; tri1 p_up_tmp; tri (weak1, strong0) PLL_LOCKG = p_up_tmp; wire PROGB_GLBL; wire CCLKO_GLBL; wire FCSBO_GLBL; wire [3:0] DO_GLBL; wire [3:0] DI_GLBL; reg GSR_int; reg GTS_int; reg PRLD_int; //-------- JTAG Globals -------------- wire JTAG_TDO_GLBL; wire JTAG_TCK_GLBL; wire JTAG_TDI_GLBL; wire JTAG_TMS_GLBL; wire JTAG_TRST_GLBL; reg JTAG_CAPTURE_GLBL; reg JTAG_RESET_GLBL; reg JTAG_SHIFT_GLBL; reg JTAG_UPDATE_GLBL; reg JTAG_RUNTEST_GLBL; reg JTAG_SEL1_GLBL = 0; reg JTAG_SEL2_GLBL = 0 ; reg JTAG_SEL3_GLBL = 0; reg JTAG_SEL4_GLBL = 0; reg JTAG_USER_TDO1_GLBL = 1'bz; reg JTAG_USER_TDO2_GLBL = 1'bz; reg JTAG_USER_TDO3_GLBL = 1'bz; reg JTAG_USER_TDO4_GLBL = 1'bz; assign (strong1, weak0) GSR = GSR_int; assign (strong1, weak0) GTS = GTS_int; assign (weak1, weak0) PRLD = PRLD_int; initial begin GSR_int = 1'b1; PRLD_int = 1'b1; #(ROC_WIDTH) GSR_int = 1'b0; PRLD_int = 1'b0; end initial begin GTS_int = 1'b1; #(TOC_WIDTH) GTS_int = 1'b0; end endmodule
module soc_design_niosII_core_cpu_debug_slave_wrapper ( // inputs: MonDReg, break_readreg, clk, dbrk_hit0_latch, dbrk_hit1_latch, dbrk_hit2_latch, dbrk_hit3_latch, debugack, monitor_error, monitor_ready, reset_n, resetlatch, tracemem_on, tracemem_trcdata, tracemem_tw, trc_im_addr, trc_on, trc_wrap, trigbrktype, trigger_state_1, // outputs: jdo, jrst_n, st_ready_test_idle, take_action_break_a, take_action_break_b, take_action_break_c, take_action_ocimem_a, take_action_ocimem_b, take_action_tracectrl, take_no_action_break_a, take_no_action_break_b, take_no_action_break_c, take_no_action_ocimem_a ) ; output [ 37: 0] jdo; output jrst_n; output st_ready_test_idle; output take_action_break_a; output take_action_break_b; output take_action_break_c; output take_action_ocimem_a; output take_action_ocimem_b; output take_action_tracectrl; output take_no_action_break_a; output take_no_action_break_b; output take_no_action_break_c; output take_no_action_ocimem_a; input [ 31: 0] MonDReg; input [ 31: 0] break_readreg; input clk; input dbrk_hit0_latch; input dbrk_hit1_latch; input dbrk_hit2_latch; input dbrk_hit3_latch; input debugack; input monitor_error; input monitor_ready; input reset_n; input resetlatch; input tracemem_on; input [ 35: 0] tracemem_trcdata; input tracemem_tw; input [ 6: 0] trc_im_addr; input trc_on; input trc_wrap; input trigbrktype; input trigger_state_1; wire [ 37: 0] jdo; wire jrst_n; wire [ 37: 0] sr; wire st_ready_test_idle; wire take_action_break_a; wire take_action_break_b; wire take_action_break_c; wire take_action_ocimem_a; wire take_action_ocimem_b; wire take_action_tracectrl; wire take_no_action_break_a; wire take_no_action_break_b; wire take_no_action_break_c; wire take_no_action_ocimem_a; wire vji_cdr; wire [ 1: 0] vji_ir_in; wire [ 1: 0] vji_ir_out; wire vji_rti; wire vji_sdr; wire vji_tck; wire vji_tdi; wire vji_tdo; wire vji_udr; wire vji_uir; //Change the sld_virtual_jtag_basic's defparams to //switch between a regular Nios II or an internally embedded Nios II. //For a regular Nios II, sld_mfg_id = 70, sld_type_id = 34. //For an internally embedded Nios II, slf_mfg_id = 110, sld_type_id = 135. soc_design_niosII_core_cpu_debug_slave_tck the_soc_design_niosII_core_cpu_debug_slave_tck ( .MonDReg (MonDReg), .break_readreg (break_readreg), .dbrk_hit0_latch (dbrk_hit0_latch), .dbrk_hit1_latch (dbrk_hit1_latch), .dbrk_hit2_latch (dbrk_hit2_latch), .dbrk_hit3_latch (dbrk_hit3_latch), .debugack (debugack), .ir_in (vji_ir_in), .ir_out (vji_ir_out), .jrst_n (jrst_n), .jtag_state_rti (vji_rti), .monitor_error (monitor_error), .monitor_ready (monitor_ready), .reset_n (reset_n), .resetlatch (resetlatch), .sr (sr), .st_ready_test_idle (st_ready_test_idle), .tck (vji_tck), .tdi (vji_tdi), .tdo (vji_tdo), .tracemem_on (tracemem_on), .tracemem_trcdata (tracemem_trcdata), .tracemem_tw (tracemem_tw), .trc_im_addr (trc_im_addr), .trc_on (trc_on), .trc_wrap (trc_wrap), .trigbrktype (trigbrktype), .trigger_state_1 (trigger_state_1), .vs_cdr (vji_cdr), .vs_sdr (vji_sdr), .vs_uir (vji_uir) ); soc_design_niosII_core_cpu_debug_slave_sysclk the_soc_design_niosII_core_cpu_debug_slave_sysclk ( .clk (clk), .ir_in (vji_ir_in), .jdo (jdo), .sr (sr), .take_action_break_a (take_action_break_a), .take_action_break_b (take_action_break_b), .take_action_break_c (take_action_break_c), .take_action_ocimem_a (take_action_ocimem_a), .take_action_ocimem_b (take_action_ocimem_b), .take_action_tracectrl (take_action_tracectrl), .take_no_action_break_a (take_no_action_break_a), .take_no_action_break_b (take_no_action_break_b), .take_no_action_break_c (take_no_action_break_c), .take_no_action_ocimem_a (take_no_action_ocimem_a), .vs_udr (vji_udr), .vs_uir (vji_uir) ); //synthesis translate_off //////////////// SIMULATION-ONLY CONTENTS assign vji_tck = 1'b0; assign vji_tdi = 1'b0; assign vji_sdr = 1'b0; assign vji_cdr = 1'b0; assign vji_rti = 1'b0; assign vji_uir = 1'b0; assign vji_udr = 1'b0; assign vji_ir_in = 2'b0; //////////////// END SIMULATION-ONLY CONTENTS //synthesis translate_on //synthesis read_comments_as_HDL on // sld_virtual_jtag_basic soc_design_niosII_core_cpu_debug_slave_phy // ( // .ir_in (vji_ir_in), // .ir_out (vji_ir_out), // .jtag_state_rti (vji_rti), // .tck (vji_tck), // .tdi (vji_tdi), // .tdo (vji_tdo), // .virtual_state_cdr (vji_cdr), // .virtual_state_sdr (vji_sdr), // .virtual_state_udr (vji_udr), // .virtual_state_uir (vji_uir) // ); // // defparam soc_design_niosII_core_cpu_debug_slave_phy.sld_auto_instance_index = "YES", // soc_design_niosII_core_cpu_debug_slave_phy.sld_instance_index = 0, // soc_design_niosII_core_cpu_debug_slave_phy.sld_ir_width = 2, // soc_design_niosII_core_cpu_debug_slave_phy.sld_mfg_id = 70, // soc_design_niosII_core_cpu_debug_slave_phy.sld_sim_action = "", // soc_design_niosII_core_cpu_debug_slave_phy.sld_sim_n_scan = 0, // soc_design_niosII_core_cpu_debug_slave_phy.sld_sim_total_length = 0, // soc_design_niosII_core_cpu_debug_slave_phy.sld_type_id = 34, // soc_design_niosII_core_cpu_debug_slave_phy.sld_version = 3; // //synthesis read_comments_as_HDL off endmodule
module soc_design_niosII_core_cpu_debug_slave_wrapper ( // inputs: MonDReg, break_readreg, clk, dbrk_hit0_latch, dbrk_hit1_latch, dbrk_hit2_latch, dbrk_hit3_latch, debugack, monitor_error, monitor_ready, reset_n, resetlatch, tracemem_on, tracemem_trcdata, tracemem_tw, trc_im_addr, trc_on, trc_wrap, trigbrktype, trigger_state_1, // outputs: jdo, jrst_n, st_ready_test_idle, take_action_break_a, take_action_break_b, take_action_break_c, take_action_ocimem_a, take_action_ocimem_b, take_action_tracectrl, take_no_action_break_a, take_no_action_break_b, take_no_action_break_c, take_no_action_ocimem_a ) ; output [ 37: 0] jdo; output jrst_n; output st_ready_test_idle; output take_action_break_a; output take_action_break_b; output take_action_break_c; output take_action_ocimem_a; output take_action_ocimem_b; output take_action_tracectrl; output take_no_action_break_a; output take_no_action_break_b; output take_no_action_break_c; output take_no_action_ocimem_a; input [ 31: 0] MonDReg; input [ 31: 0] break_readreg; input clk; input dbrk_hit0_latch; input dbrk_hit1_latch; input dbrk_hit2_latch; input dbrk_hit3_latch; input debugack; input monitor_error; input monitor_ready; input reset_n; input resetlatch; input tracemem_on; input [ 35: 0] tracemem_trcdata; input tracemem_tw; input [ 6: 0] trc_im_addr; input trc_on; input trc_wrap; input trigbrktype; input trigger_state_1; wire [ 37: 0] jdo; wire jrst_n; wire [ 37: 0] sr; wire st_ready_test_idle; wire take_action_break_a; wire take_action_break_b; wire take_action_break_c; wire take_action_ocimem_a; wire take_action_ocimem_b; wire take_action_tracectrl; wire take_no_action_break_a; wire take_no_action_break_b; wire take_no_action_break_c; wire take_no_action_ocimem_a; wire vji_cdr; wire [ 1: 0] vji_ir_in; wire [ 1: 0] vji_ir_out; wire vji_rti; wire vji_sdr; wire vji_tck; wire vji_tdi; wire vji_tdo; wire vji_udr; wire vji_uir; //Change the sld_virtual_jtag_basic's defparams to //switch between a regular Nios II or an internally embedded Nios II. //For a regular Nios II, sld_mfg_id = 70, sld_type_id = 34. //For an internally embedded Nios II, slf_mfg_id = 110, sld_type_id = 135. soc_design_niosII_core_cpu_debug_slave_tck the_soc_design_niosII_core_cpu_debug_slave_tck ( .MonDReg (MonDReg), .break_readreg (break_readreg), .dbrk_hit0_latch (dbrk_hit0_latch), .dbrk_hit1_latch (dbrk_hit1_latch), .dbrk_hit2_latch (dbrk_hit2_latch), .dbrk_hit3_latch (dbrk_hit3_latch), .debugack (debugack), .ir_in (vji_ir_in), .ir_out (vji_ir_out), .jrst_n (jrst_n), .jtag_state_rti (vji_rti), .monitor_error (monitor_error), .monitor_ready (monitor_ready), .reset_n (reset_n), .resetlatch (resetlatch), .sr (sr), .st_ready_test_idle (st_ready_test_idle), .tck (vji_tck), .tdi (vji_tdi), .tdo (vji_tdo), .tracemem_on (tracemem_on), .tracemem_trcdata (tracemem_trcdata), .tracemem_tw (tracemem_tw), .trc_im_addr (trc_im_addr), .trc_on (trc_on), .trc_wrap (trc_wrap), .trigbrktype (trigbrktype), .trigger_state_1 (trigger_state_1), .vs_cdr (vji_cdr), .vs_sdr (vji_sdr), .vs_uir (vji_uir) ); soc_design_niosII_core_cpu_debug_slave_sysclk the_soc_design_niosII_core_cpu_debug_slave_sysclk ( .clk (clk), .ir_in (vji_ir_in), .jdo (jdo), .sr (sr), .take_action_break_a (take_action_break_a), .take_action_break_b (take_action_break_b), .take_action_break_c (take_action_break_c), .take_action_ocimem_a (take_action_ocimem_a), .take_action_ocimem_b (take_action_ocimem_b), .take_action_tracectrl (take_action_tracectrl), .take_no_action_break_a (take_no_action_break_a), .take_no_action_break_b (take_no_action_break_b), .take_no_action_break_c (take_no_action_break_c), .take_no_action_ocimem_a (take_no_action_ocimem_a), .vs_udr (vji_udr), .vs_uir (vji_uir) ); //synthesis translate_off //////////////// SIMULATION-ONLY CONTENTS assign vji_tck = 1'b0; assign vji_tdi = 1'b0; assign vji_sdr = 1'b0; assign vji_cdr = 1'b0; assign vji_rti = 1'b0; assign vji_uir = 1'b0; assign vji_udr = 1'b0; assign vji_ir_in = 2'b0; //////////////// END SIMULATION-ONLY CONTENTS //synthesis translate_on //synthesis read_comments_as_HDL on // sld_virtual_jtag_basic soc_design_niosII_core_cpu_debug_slave_phy // ( // .ir_in (vji_ir_in), // .ir_out (vji_ir_out), // .jtag_state_rti (vji_rti), // .tck (vji_tck), // .tdi (vji_tdi), // .tdo (vji_tdo), // .virtual_state_cdr (vji_cdr), // .virtual_state_sdr (vji_sdr), // .virtual_state_udr (vji_udr), // .virtual_state_uir (vji_uir) // ); // // defparam soc_design_niosII_core_cpu_debug_slave_phy.sld_auto_instance_index = "YES", // soc_design_niosII_core_cpu_debug_slave_phy.sld_instance_index = 0, // soc_design_niosII_core_cpu_debug_slave_phy.sld_ir_width = 2, // soc_design_niosII_core_cpu_debug_slave_phy.sld_mfg_id = 70, // soc_design_niosII_core_cpu_debug_slave_phy.sld_sim_action = "", // soc_design_niosII_core_cpu_debug_slave_phy.sld_sim_n_scan = 0, // soc_design_niosII_core_cpu_debug_slave_phy.sld_sim_total_length = 0, // soc_design_niosII_core_cpu_debug_slave_phy.sld_type_id = 34, // soc_design_niosII_core_cpu_debug_slave_phy.sld_version = 3; // //synthesis read_comments_as_HDL off endmodule
module salsa (clk, B, Bx, Bo, X0out, Xaddr); // Latency 16 clock cycles, approx 20nS propagation delay (SLOW!) input clk; // input feedback; input [511:0]B; input [511:0]Bx; // output reg [511:0]Bo; // Output is registered output [511:0]Bo; // Output is async output [511:0]X0out; // Becomes new X0 output [9:0] Xaddr; wire [9:0] xa1, xa2, xa3, xa4, ya1, ya2, ya3, ya4; reg [511:0]x1d1, x1d1a; reg [511:0]x1d2, x1d2a; reg [511:0]x1d3, x1d3a; reg [511:0]x1d4, x1d4a; reg [511:0]Xod1, Xod1a; reg [511:0]Xod2, Xod2a; reg [511:0]Xod3, Xod3a; reg [511:0]Xod4, X0out; reg [511:0]xxd1, xxd1a; reg [511:0]xxd2, xxd2a; reg [511:0]xxd3, xxd3a; reg [511:0]xxd4, xxd4a; reg [511:0]yyd1, yyd1a; reg [511:0]yyd2, yyd2a; reg [511:0]yyd3, yyd3a; reg [511:0]yyd4, yyd4a; wire [511:0]xx; // Initial xor wire [511:0]x1; // Salasa core outputs wire [511:0]x2; wire [511:0]x3; wire [511:0]xr; wire [511:0]Xo; // Four salsa iterations. NB use registered salsa_core so 4 clock cycles. salsa_core salsax1 (clk, xx, x1, xa1); salsa_core salsax2 (clk, x1, x2, xa2); salsa_core salsax3 (clk, x2, x3, xa3); salsa_core salsax4 (clk, x3, xr, xa4); wire [511:0]yy; // Initial xor wire [511:0]y1; // Salasa core outputs wire [511:0]y2; wire [511:0]y3; wire [511:0]yr; // Four salsa iterations. NB use registered salsa_core so 4 clock cycles. salsa_core salsay1 (clk, yy, y1, ya1); salsa_core salsay2 (clk, y1, y2, ya2); salsa_core salsay3 (clk, y2, y3, ya3); salsa_core salsay4 (clk, y3, yr, ya4); assign Xaddr = yyd4[9:0] + ya4; genvar i; generate for (i = 0; i < 16; i = i + 1) begin : XX // Initial XOR. NB this adds to the propagation delay of the first salsa, may want register it. assign xx[`IDX(i)] = B[`IDX(i)] ^ Bx[`IDX(i)]; assign Xo[`IDX(i)] = xxd4a[`IDX(i)] + xr[`IDX(i)]; assign yy[`IDX(i)] = x1d4a[`IDX(i)] ^ Xo[`IDX(i)]; assign Bo[`IDX(i)] = yyd4a[`IDX(i)] + yr[`IDX(i)]; // Async output end endgenerate always @ (posedge clk) begin x1d1 <= Bx; x1d1a <= x1d1; x1d2 <= x1d1a; x1d2a <= x1d2; x1d3 <= x1d2a; x1d3a <= x1d3; x1d4 <= x1d3a; x1d4a <= x1d4; Xod1 <= Xo; Xod1a <= Xod1; Xod2 <= Xod1a; Xod2a <= Xod2; Xod3 <= Xod2a; Xod3a <= Xod3; Xod4 <= Xod3a; X0out <= Xod4; // We output this to become new X0 xxd1 <= xx; xxd1a <= xxd1; xxd2 <= xxd1a; xxd2a <= xxd2; xxd3 <= xxd2a; xxd3a <= xxd3; xxd4 <= xxd3a; xxd4a <= xxd4; yyd1 <= yy; yyd1a <= yyd1; yyd2 <= yyd1a; yyd2a <= yyd2; yyd3 <= yyd2a; yyd3a <= yyd3; yyd4 <= yyd3a; yyd4a <= yyd4; end endmodule
module salsa_core (clk, xx, out, Xaddr); input clk; input [511:0]xx; output reg [511:0]out; // Output is registered output [9:0] Xaddr; // Address output unregistered // This is clunky due to my lack of verilog skills but it works so elegance can come later wire [31:0]c00; // Column results wire [31:0]c01; wire [31:0]c02; wire [31:0]c03; wire [31:0]c04; wire [31:0]c05; wire [31:0]c06; wire [31:0]c07; wire [31:0]c08; wire [31:0]c09; wire [31:0]c10; wire [31:0]c11; wire [31:0]c12; wire [31:0]c13; wire [31:0]c14; wire [31:0]c15; wire [31:0]r00; // Row results wire [31:0]r01; wire [31:0]r02; wire [31:0]r03; wire [31:0]r04; wire [31:0]r05; wire [31:0]r06; wire [31:0]r07; wire [31:0]r08; wire [31:0]r09; wire [31:0]r10; wire [31:0]r11; wire [31:0]r12; wire [31:0]r13; wire [31:0]r14; wire [31:0]r15; wire [31:0]c00s; // Column sums wire [31:0]c01s; wire [31:0]c02s; wire [31:0]c03s; wire [31:0]c04s; wire [31:0]c05s; wire [31:0]c06s; wire [31:0]c07s; wire [31:0]c08s; wire [31:0]c09s; wire [31:0]c10s; wire [31:0]c11s; wire [31:0]c12s; wire [31:0]c13s; wire [31:0]c14s; wire [31:0]c15s; wire [31:0]r00s; // Row sums wire [31:0]r01s; wire [31:0]r02s; wire [31:0]r03s; wire [31:0]r04s; wire [31:0]r05s; wire [31:0]r06s; wire [31:0]r07s; wire [31:0]r08s; wire [31:0]r09s; wire [31:0]r10s; wire [31:0]r11s; wire [31:0]r12s; wire [31:0]r13s; wire [31:0]r14s; wire [31:0]r15s; reg [31:0]c00d; // Column results registered reg [31:0]c01d; reg [31:0]c02d; reg [31:0]c03d; reg [31:0]c04d; reg [31:0]c05d; reg [31:0]c06d; reg [31:0]c07d; reg [31:0]c08d; reg [31:0]c09d; reg [31:0]c10d; reg [31:0]c11d; reg [31:0]c12d; reg [31:0]c13d; reg [31:0]c14d; reg [31:0]c15d; /* From scrypt.c #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) for (i = 0; i < 8; i += 2) { // Operate on columns x04 ^= R(x00+x12, 7); x09 ^= R(x05+x01, 7); x14 ^= R(x10+x06, 7); x03 ^= R(x15+x11, 7); x08 ^= R(x04+x00, 9); x13 ^= R(x09+x05, 9); x02 ^= R(x14+x10, 9); x07 ^= R(x03+x15, 9); x12 ^= R(x08+x04,13); x01 ^= R(x13+x09,13); x06 ^= R(x02+x14,13); x11 ^= R(x07+x03,13); x00 ^= R(x12+x08,18); x05 ^= R(x01+x13,18); x10 ^= R(x06+x02,18); x15 ^= R(x11+x07,18); // Operate on rows x01 ^= R(x00+x03, 7); x06 ^= R(x05+x04, 7); x11 ^= R(x10+x09, 7); x12 ^= R(x15+x14, 7); x02 ^= R(x01+x00, 9); x07 ^= R(x06+x05, 9); x08 ^= R(x11+x10, 9); x13 ^= R(x12+x15, 9); x03 ^= R(x02+x01,13); x04 ^= R(x07+x06,13); x09 ^= R(x08+x11,13); x14 ^= R(x13+x12,13); x00 ^= R(x03+x02,18); x05 ^= R(x04+x07,18); x10 ^= R(x09+x08,18); x15 ^= R(x14+x13,18); } */ // cols assign c04s = xx[`IDX(0)] + xx[`IDX(12)]; assign c04 = xx[`IDX(4)] ^ { c04s[24:0], c04s[31:25] }; assign c09s = xx[`IDX(5)] + xx[`IDX(1)]; assign c09 = xx[`IDX(9)] ^ { c09s[24:0], c09s[31:25] }; assign c14s = xx[`IDX(10)] + xx[`IDX(6)]; assign c14 = xx[`IDX(14)] ^ { c14s[24:0], c14s[31:25] }; assign c03s = xx[`IDX(15)] + xx[`IDX(11)]; assign c03 = xx[`IDX(03)] ^ { c03s[24:0], c03s[31:25] }; assign c08s = c04 + xx[`IDX(0)]; assign c08 = xx[`IDX(8)] ^ { c08s[22:0], c08s[31:23] }; assign c13s = c09 + xx[`IDX(5)]; assign c13 = xx[`IDX(13)] ^ { c13s[22:0], c13s[31:23] }; assign c02s = c14 + xx[`IDX(10)]; assign c02 = xx[`IDX(2)] ^ { c02s[22:0], c02s[31:23] }; assign c07s = c03 + xx[`IDX(15)]; assign c07 = xx[`IDX(7)] ^ { c07s[22:0], c07s[31:23] }; assign c12s = c08 + c04; assign c12 = xx[`IDX(12)] ^ { c12s[18:0], c12s[31:19] }; assign c01s = c13 + c09; assign c01 = xx[`IDX(1)] ^ { c01s[18:0], c01s[31:19] }; assign c06s = c02 + c14; assign c06 = xx[`IDX(6)] ^ { c06s[18:0], c06s[31:19] }; assign c11s = c07 + c03; assign c11 = xx[`IDX(11)] ^ { c11s[18:0], c11s[31:19] }; assign c00s = c12 + c08; assign c00 = xx[`IDX(0)] ^ { c00s[13:0], c00s[31:14] }; assign c05s = c01 + c13; assign c05 = xx[`IDX(5)] ^ { c05s[13:0], c05s[31:14] }; assign c10s = c06 + c02; assign c10 = xx[`IDX(10)] ^ { c10s[13:0], c10s[31:14] }; assign c15s = c11 + c07; assign c15 = xx[`IDX(15)] ^ { c15s[13:0], c15s[31:14] }; // rows assign r01s = c00d + c03d; assign r01 = c01d ^ { r01s[24:0], r01s[31:25] }; assign r06s = c05d + c04d; assign r06 = c06d ^ { r06s[24:0], r06s[31:25] }; assign r11s = c10d + c09d; assign r11 = c11d ^ { r11s[24:0], r11s[31:25] }; assign r12s = c15d + c14d; assign r12 = c12d ^ { r12s[24:0], r12s[31:25] }; assign r02s = r01 + c00d; assign r02 = c02d ^ { r02s[22:0], r02s[31:23] }; assign r07s = r06 + c05d; assign r07 = c07d ^ { r07s[22:0], r07s[31:23] }; assign r08s = r11 + c10d; assign r08 = c08d ^ { r08s[22:0], r08s[31:23] }; assign r13s = r12 + c15d; assign r13 = c13d ^ { r13s[22:0], r13s[31:23] }; assign r03s = r02 + r01; assign r03 = c03d ^ { r03s[18:0], r03s[31:19] }; assign r04s = r07 + r06; assign r04 = c04d ^ { r04s[18:0], r04s[31:19] }; assign r09s = r08 + r11; assign r09 = c09d ^ { r09s[18:0], r09s[31:19] }; assign r14s = r13 + r12; assign r14 = c14d ^ { r14s[18:0], r14s[31:19] }; assign r00s = r03 + r02; assign r00 = c00d ^ { r00s[13:0], r00s[31:14] }; assign r05s = r04 + r07; assign r05 = c05d ^ { r05s[13:0], r05s[31:14] }; assign r10s = r09 + r08; assign r10 = c10d ^ { r10s[13:0], r10s[31:14] }; assign r15s = r14 + r13; assign r15 = c15d ^ { r15s[13:0], r15s[31:14] }; wire [511:0]xo; // Rename row results assign xo = { r15, r14, r13, r12, r11, r10, r09, r08, r07, r06, r05, r04, r03, r02, r01, r00 }; assign Xaddr = xo[9:0]; // Unregistered output always @ (posedge clk) begin c00d <= c00; c01d <= c01; c02d <= c02; c03d <= c03; c04d <= c04; c05d <= c05; c06d <= c06; c07d <= c07; c08d <= c08; c09d <= c09; c10d <= c10; c11d <= c11; c12d <= c12; c13d <= c13; c14d <= c14; c15d <= c15; out <= xo; // Registered output end endmodule
module salsa (clk, B, Bx, Bo, X0out, Xaddr); // Latency 16 clock cycles, approx 20nS propagation delay (SLOW!) input clk; // input feedback; input [511:0]B; input [511:0]Bx; // output reg [511:0]Bo; // Output is registered output [511:0]Bo; // Output is async output [511:0]X0out; // Becomes new X0 output [9:0] Xaddr; wire [9:0] xa1, xa2, xa3, xa4, ya1, ya2, ya3, ya4; reg [511:0]x1d1, x1d1a; reg [511:0]x1d2, x1d2a; reg [511:0]x1d3, x1d3a; reg [511:0]x1d4, x1d4a; reg [511:0]Xod1, Xod1a; reg [511:0]Xod2, Xod2a; reg [511:0]Xod3, Xod3a; reg [511:0]Xod4, X0out; reg [511:0]xxd1, xxd1a; reg [511:0]xxd2, xxd2a; reg [511:0]xxd3, xxd3a; reg [511:0]xxd4, xxd4a; reg [511:0]yyd1, yyd1a; reg [511:0]yyd2, yyd2a; reg [511:0]yyd3, yyd3a; reg [511:0]yyd4, yyd4a; wire [511:0]xx; // Initial xor wire [511:0]x1; // Salasa core outputs wire [511:0]x2; wire [511:0]x3; wire [511:0]xr; wire [511:0]Xo; // Four salsa iterations. NB use registered salsa_core so 4 clock cycles. salsa_core salsax1 (clk, xx, x1, xa1); salsa_core salsax2 (clk, x1, x2, xa2); salsa_core salsax3 (clk, x2, x3, xa3); salsa_core salsax4 (clk, x3, xr, xa4); wire [511:0]yy; // Initial xor wire [511:0]y1; // Salasa core outputs wire [511:0]y2; wire [511:0]y3; wire [511:0]yr; // Four salsa iterations. NB use registered salsa_core so 4 clock cycles. salsa_core salsay1 (clk, yy, y1, ya1); salsa_core salsay2 (clk, y1, y2, ya2); salsa_core salsay3 (clk, y2, y3, ya3); salsa_core salsay4 (clk, y3, yr, ya4); assign Xaddr = yyd4[9:0] + ya4; genvar i; generate for (i = 0; i < 16; i = i + 1) begin : XX // Initial XOR. NB this adds to the propagation delay of the first salsa, may want register it. assign xx[`IDX(i)] = B[`IDX(i)] ^ Bx[`IDX(i)]; assign Xo[`IDX(i)] = xxd4a[`IDX(i)] + xr[`IDX(i)]; assign yy[`IDX(i)] = x1d4a[`IDX(i)] ^ Xo[`IDX(i)]; assign Bo[`IDX(i)] = yyd4a[`IDX(i)] + yr[`IDX(i)]; // Async output end endgenerate always @ (posedge clk) begin x1d1 <= Bx; x1d1a <= x1d1; x1d2 <= x1d1a; x1d2a <= x1d2; x1d3 <= x1d2a; x1d3a <= x1d3; x1d4 <= x1d3a; x1d4a <= x1d4; Xod1 <= Xo; Xod1a <= Xod1; Xod2 <= Xod1a; Xod2a <= Xod2; Xod3 <= Xod2a; Xod3a <= Xod3; Xod4 <= Xod3a; X0out <= Xod4; // We output this to become new X0 xxd1 <= xx; xxd1a <= xxd1; xxd2 <= xxd1a; xxd2a <= xxd2; xxd3 <= xxd2a; xxd3a <= xxd3; xxd4 <= xxd3a; xxd4a <= xxd4; yyd1 <= yy; yyd1a <= yyd1; yyd2 <= yyd1a; yyd2a <= yyd2; yyd3 <= yyd2a; yyd3a <= yyd3; yyd4 <= yyd3a; yyd4a <= yyd4; end endmodule
module salsa_core (clk, xx, out, Xaddr); input clk; input [511:0]xx; output reg [511:0]out; // Output is registered output [9:0] Xaddr; // Address output unregistered // This is clunky due to my lack of verilog skills but it works so elegance can come later wire [31:0]c00; // Column results wire [31:0]c01; wire [31:0]c02; wire [31:0]c03; wire [31:0]c04; wire [31:0]c05; wire [31:0]c06; wire [31:0]c07; wire [31:0]c08; wire [31:0]c09; wire [31:0]c10; wire [31:0]c11; wire [31:0]c12; wire [31:0]c13; wire [31:0]c14; wire [31:0]c15; wire [31:0]r00; // Row results wire [31:0]r01; wire [31:0]r02; wire [31:0]r03; wire [31:0]r04; wire [31:0]r05; wire [31:0]r06; wire [31:0]r07; wire [31:0]r08; wire [31:0]r09; wire [31:0]r10; wire [31:0]r11; wire [31:0]r12; wire [31:0]r13; wire [31:0]r14; wire [31:0]r15; wire [31:0]c00s; // Column sums wire [31:0]c01s; wire [31:0]c02s; wire [31:0]c03s; wire [31:0]c04s; wire [31:0]c05s; wire [31:0]c06s; wire [31:0]c07s; wire [31:0]c08s; wire [31:0]c09s; wire [31:0]c10s; wire [31:0]c11s; wire [31:0]c12s; wire [31:0]c13s; wire [31:0]c14s; wire [31:0]c15s; wire [31:0]r00s; // Row sums wire [31:0]r01s; wire [31:0]r02s; wire [31:0]r03s; wire [31:0]r04s; wire [31:0]r05s; wire [31:0]r06s; wire [31:0]r07s; wire [31:0]r08s; wire [31:0]r09s; wire [31:0]r10s; wire [31:0]r11s; wire [31:0]r12s; wire [31:0]r13s; wire [31:0]r14s; wire [31:0]r15s; reg [31:0]c00d; // Column results registered reg [31:0]c01d; reg [31:0]c02d; reg [31:0]c03d; reg [31:0]c04d; reg [31:0]c05d; reg [31:0]c06d; reg [31:0]c07d; reg [31:0]c08d; reg [31:0]c09d; reg [31:0]c10d; reg [31:0]c11d; reg [31:0]c12d; reg [31:0]c13d; reg [31:0]c14d; reg [31:0]c15d; /* From scrypt.c #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) for (i = 0; i < 8; i += 2) { // Operate on columns x04 ^= R(x00+x12, 7); x09 ^= R(x05+x01, 7); x14 ^= R(x10+x06, 7); x03 ^= R(x15+x11, 7); x08 ^= R(x04+x00, 9); x13 ^= R(x09+x05, 9); x02 ^= R(x14+x10, 9); x07 ^= R(x03+x15, 9); x12 ^= R(x08+x04,13); x01 ^= R(x13+x09,13); x06 ^= R(x02+x14,13); x11 ^= R(x07+x03,13); x00 ^= R(x12+x08,18); x05 ^= R(x01+x13,18); x10 ^= R(x06+x02,18); x15 ^= R(x11+x07,18); // Operate on rows x01 ^= R(x00+x03, 7); x06 ^= R(x05+x04, 7); x11 ^= R(x10+x09, 7); x12 ^= R(x15+x14, 7); x02 ^= R(x01+x00, 9); x07 ^= R(x06+x05, 9); x08 ^= R(x11+x10, 9); x13 ^= R(x12+x15, 9); x03 ^= R(x02+x01,13); x04 ^= R(x07+x06,13); x09 ^= R(x08+x11,13); x14 ^= R(x13+x12,13); x00 ^= R(x03+x02,18); x05 ^= R(x04+x07,18); x10 ^= R(x09+x08,18); x15 ^= R(x14+x13,18); } */ // cols assign c04s = xx[`IDX(0)] + xx[`IDX(12)]; assign c04 = xx[`IDX(4)] ^ { c04s[24:0], c04s[31:25] }; assign c09s = xx[`IDX(5)] + xx[`IDX(1)]; assign c09 = xx[`IDX(9)] ^ { c09s[24:0], c09s[31:25] }; assign c14s = xx[`IDX(10)] + xx[`IDX(6)]; assign c14 = xx[`IDX(14)] ^ { c14s[24:0], c14s[31:25] }; assign c03s = xx[`IDX(15)] + xx[`IDX(11)]; assign c03 = xx[`IDX(03)] ^ { c03s[24:0], c03s[31:25] }; assign c08s = c04 + xx[`IDX(0)]; assign c08 = xx[`IDX(8)] ^ { c08s[22:0], c08s[31:23] }; assign c13s = c09 + xx[`IDX(5)]; assign c13 = xx[`IDX(13)] ^ { c13s[22:0], c13s[31:23] }; assign c02s = c14 + xx[`IDX(10)]; assign c02 = xx[`IDX(2)] ^ { c02s[22:0], c02s[31:23] }; assign c07s = c03 + xx[`IDX(15)]; assign c07 = xx[`IDX(7)] ^ { c07s[22:0], c07s[31:23] }; assign c12s = c08 + c04; assign c12 = xx[`IDX(12)] ^ { c12s[18:0], c12s[31:19] }; assign c01s = c13 + c09; assign c01 = xx[`IDX(1)] ^ { c01s[18:0], c01s[31:19] }; assign c06s = c02 + c14; assign c06 = xx[`IDX(6)] ^ { c06s[18:0], c06s[31:19] }; assign c11s = c07 + c03; assign c11 = xx[`IDX(11)] ^ { c11s[18:0], c11s[31:19] }; assign c00s = c12 + c08; assign c00 = xx[`IDX(0)] ^ { c00s[13:0], c00s[31:14] }; assign c05s = c01 + c13; assign c05 = xx[`IDX(5)] ^ { c05s[13:0], c05s[31:14] }; assign c10s = c06 + c02; assign c10 = xx[`IDX(10)] ^ { c10s[13:0], c10s[31:14] }; assign c15s = c11 + c07; assign c15 = xx[`IDX(15)] ^ { c15s[13:0], c15s[31:14] }; // rows assign r01s = c00d + c03d; assign r01 = c01d ^ { r01s[24:0], r01s[31:25] }; assign r06s = c05d + c04d; assign r06 = c06d ^ { r06s[24:0], r06s[31:25] }; assign r11s = c10d + c09d; assign r11 = c11d ^ { r11s[24:0], r11s[31:25] }; assign r12s = c15d + c14d; assign r12 = c12d ^ { r12s[24:0], r12s[31:25] }; assign r02s = r01 + c00d; assign r02 = c02d ^ { r02s[22:0], r02s[31:23] }; assign r07s = r06 + c05d; assign r07 = c07d ^ { r07s[22:0], r07s[31:23] }; assign r08s = r11 + c10d; assign r08 = c08d ^ { r08s[22:0], r08s[31:23] }; assign r13s = r12 + c15d; assign r13 = c13d ^ { r13s[22:0], r13s[31:23] }; assign r03s = r02 + r01; assign r03 = c03d ^ { r03s[18:0], r03s[31:19] }; assign r04s = r07 + r06; assign r04 = c04d ^ { r04s[18:0], r04s[31:19] }; assign r09s = r08 + r11; assign r09 = c09d ^ { r09s[18:0], r09s[31:19] }; assign r14s = r13 + r12; assign r14 = c14d ^ { r14s[18:0], r14s[31:19] }; assign r00s = r03 + r02; assign r00 = c00d ^ { r00s[13:0], r00s[31:14] }; assign r05s = r04 + r07; assign r05 = c05d ^ { r05s[13:0], r05s[31:14] }; assign r10s = r09 + r08; assign r10 = c10d ^ { r10s[13:0], r10s[31:14] }; assign r15s = r14 + r13; assign r15 = c15d ^ { r15s[13:0], r15s[31:14] }; wire [511:0]xo; // Rename row results assign xo = { r15, r14, r13, r12, r11, r10, r09, r08, r07, r06, r05, r04, r03, r02, r01, r00 }; assign Xaddr = xo[9:0]; // Unregistered output always @ (posedge clk) begin c00d <= c00; c01d <= c01; c02d <= c02; c03d <= c03; c04d <= c04; c05d <= c05; c06d <= c06; c07d <= c07; c08d <= c08; c09d <= c09; c10d <= c10; c11d <= c11; c12d <= c12; c13d <= c13; c14d <= c14; c15d <= c15; out <= xo; // Registered output end endmodule
module salsa (clk, B, Bx, Bo, X0out, Xaddr); // Latency 16 clock cycles, approx 20nS propagation delay (SLOW!) input clk; // input feedback; input [511:0]B; input [511:0]Bx; // output reg [511:0]Bo; // Output is registered output [511:0]Bo; // Output is async output [511:0]X0out; // Becomes new X0 output [9:0] Xaddr; wire [9:0] xa1, xa2, xa3, xa4, ya1, ya2, ya3, ya4; reg [511:0]x1d1, x1d1a; reg [511:0]x1d2, x1d2a; reg [511:0]x1d3, x1d3a; reg [511:0]x1d4, x1d4a; reg [511:0]Xod1, Xod1a; reg [511:0]Xod2, Xod2a; reg [511:0]Xod3, Xod3a; reg [511:0]Xod4, X0out; reg [511:0]xxd1, xxd1a; reg [511:0]xxd2, xxd2a; reg [511:0]xxd3, xxd3a; reg [511:0]xxd4, xxd4a; reg [511:0]yyd1, yyd1a; reg [511:0]yyd2, yyd2a; reg [511:0]yyd3, yyd3a; reg [511:0]yyd4, yyd4a; wire [511:0]xx; // Initial xor wire [511:0]x1; // Salasa core outputs wire [511:0]x2; wire [511:0]x3; wire [511:0]xr; wire [511:0]Xo; // Four salsa iterations. NB use registered salsa_core so 4 clock cycles. salsa_core salsax1 (clk, xx, x1, xa1); salsa_core salsax2 (clk, x1, x2, xa2); salsa_core salsax3 (clk, x2, x3, xa3); salsa_core salsax4 (clk, x3, xr, xa4); wire [511:0]yy; // Initial xor wire [511:0]y1; // Salasa core outputs wire [511:0]y2; wire [511:0]y3; wire [511:0]yr; // Four salsa iterations. NB use registered salsa_core so 4 clock cycles. salsa_core salsay1 (clk, yy, y1, ya1); salsa_core salsay2 (clk, y1, y2, ya2); salsa_core salsay3 (clk, y2, y3, ya3); salsa_core salsay4 (clk, y3, yr, ya4); assign Xaddr = yyd4[9:0] + ya4; genvar i; generate for (i = 0; i < 16; i = i + 1) begin : XX // Initial XOR. NB this adds to the propagation delay of the first salsa, may want register it. assign xx[`IDX(i)] = B[`IDX(i)] ^ Bx[`IDX(i)]; assign Xo[`IDX(i)] = xxd4a[`IDX(i)] + xr[`IDX(i)]; assign yy[`IDX(i)] = x1d4a[`IDX(i)] ^ Xo[`IDX(i)]; assign Bo[`IDX(i)] = yyd4a[`IDX(i)] + yr[`IDX(i)]; // Async output end endgenerate always @ (posedge clk) begin x1d1 <= Bx; x1d1a <= x1d1; x1d2 <= x1d1a; x1d2a <= x1d2; x1d3 <= x1d2a; x1d3a <= x1d3; x1d4 <= x1d3a; x1d4a <= x1d4; Xod1 <= Xo; Xod1a <= Xod1; Xod2 <= Xod1a; Xod2a <= Xod2; Xod3 <= Xod2a; Xod3a <= Xod3; Xod4 <= Xod3a; X0out <= Xod4; // We output this to become new X0 xxd1 <= xx; xxd1a <= xxd1; xxd2 <= xxd1a; xxd2a <= xxd2; xxd3 <= xxd2a; xxd3a <= xxd3; xxd4 <= xxd3a; xxd4a <= xxd4; yyd1 <= yy; yyd1a <= yyd1; yyd2 <= yyd1a; yyd2a <= yyd2; yyd3 <= yyd2a; yyd3a <= yyd3; yyd4 <= yyd3a; yyd4a <= yyd4; end endmodule
module salsa_core (clk, xx, out, Xaddr); input clk; input [511:0]xx; output reg [511:0]out; // Output is registered output [9:0] Xaddr; // Address output unregistered // This is clunky due to my lack of verilog skills but it works so elegance can come later wire [31:0]c00; // Column results wire [31:0]c01; wire [31:0]c02; wire [31:0]c03; wire [31:0]c04; wire [31:0]c05; wire [31:0]c06; wire [31:0]c07; wire [31:0]c08; wire [31:0]c09; wire [31:0]c10; wire [31:0]c11; wire [31:0]c12; wire [31:0]c13; wire [31:0]c14; wire [31:0]c15; wire [31:0]r00; // Row results wire [31:0]r01; wire [31:0]r02; wire [31:0]r03; wire [31:0]r04; wire [31:0]r05; wire [31:0]r06; wire [31:0]r07; wire [31:0]r08; wire [31:0]r09; wire [31:0]r10; wire [31:0]r11; wire [31:0]r12; wire [31:0]r13; wire [31:0]r14; wire [31:0]r15; wire [31:0]c00s; // Column sums wire [31:0]c01s; wire [31:0]c02s; wire [31:0]c03s; wire [31:0]c04s; wire [31:0]c05s; wire [31:0]c06s; wire [31:0]c07s; wire [31:0]c08s; wire [31:0]c09s; wire [31:0]c10s; wire [31:0]c11s; wire [31:0]c12s; wire [31:0]c13s; wire [31:0]c14s; wire [31:0]c15s; wire [31:0]r00s; // Row sums wire [31:0]r01s; wire [31:0]r02s; wire [31:0]r03s; wire [31:0]r04s; wire [31:0]r05s; wire [31:0]r06s; wire [31:0]r07s; wire [31:0]r08s; wire [31:0]r09s; wire [31:0]r10s; wire [31:0]r11s; wire [31:0]r12s; wire [31:0]r13s; wire [31:0]r14s; wire [31:0]r15s; reg [31:0]c00d; // Column results registered reg [31:0]c01d; reg [31:0]c02d; reg [31:0]c03d; reg [31:0]c04d; reg [31:0]c05d; reg [31:0]c06d; reg [31:0]c07d; reg [31:0]c08d; reg [31:0]c09d; reg [31:0]c10d; reg [31:0]c11d; reg [31:0]c12d; reg [31:0]c13d; reg [31:0]c14d; reg [31:0]c15d; /* From scrypt.c #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) for (i = 0; i < 8; i += 2) { // Operate on columns x04 ^= R(x00+x12, 7); x09 ^= R(x05+x01, 7); x14 ^= R(x10+x06, 7); x03 ^= R(x15+x11, 7); x08 ^= R(x04+x00, 9); x13 ^= R(x09+x05, 9); x02 ^= R(x14+x10, 9); x07 ^= R(x03+x15, 9); x12 ^= R(x08+x04,13); x01 ^= R(x13+x09,13); x06 ^= R(x02+x14,13); x11 ^= R(x07+x03,13); x00 ^= R(x12+x08,18); x05 ^= R(x01+x13,18); x10 ^= R(x06+x02,18); x15 ^= R(x11+x07,18); // Operate on rows x01 ^= R(x00+x03, 7); x06 ^= R(x05+x04, 7); x11 ^= R(x10+x09, 7); x12 ^= R(x15+x14, 7); x02 ^= R(x01+x00, 9); x07 ^= R(x06+x05, 9); x08 ^= R(x11+x10, 9); x13 ^= R(x12+x15, 9); x03 ^= R(x02+x01,13); x04 ^= R(x07+x06,13); x09 ^= R(x08+x11,13); x14 ^= R(x13+x12,13); x00 ^= R(x03+x02,18); x05 ^= R(x04+x07,18); x10 ^= R(x09+x08,18); x15 ^= R(x14+x13,18); } */ // cols assign c04s = xx[`IDX(0)] + xx[`IDX(12)]; assign c04 = xx[`IDX(4)] ^ { c04s[24:0], c04s[31:25] }; assign c09s = xx[`IDX(5)] + xx[`IDX(1)]; assign c09 = xx[`IDX(9)] ^ { c09s[24:0], c09s[31:25] }; assign c14s = xx[`IDX(10)] + xx[`IDX(6)]; assign c14 = xx[`IDX(14)] ^ { c14s[24:0], c14s[31:25] }; assign c03s = xx[`IDX(15)] + xx[`IDX(11)]; assign c03 = xx[`IDX(03)] ^ { c03s[24:0], c03s[31:25] }; assign c08s = c04 + xx[`IDX(0)]; assign c08 = xx[`IDX(8)] ^ { c08s[22:0], c08s[31:23] }; assign c13s = c09 + xx[`IDX(5)]; assign c13 = xx[`IDX(13)] ^ { c13s[22:0], c13s[31:23] }; assign c02s = c14 + xx[`IDX(10)]; assign c02 = xx[`IDX(2)] ^ { c02s[22:0], c02s[31:23] }; assign c07s = c03 + xx[`IDX(15)]; assign c07 = xx[`IDX(7)] ^ { c07s[22:0], c07s[31:23] }; assign c12s = c08 + c04; assign c12 = xx[`IDX(12)] ^ { c12s[18:0], c12s[31:19] }; assign c01s = c13 + c09; assign c01 = xx[`IDX(1)] ^ { c01s[18:0], c01s[31:19] }; assign c06s = c02 + c14; assign c06 = xx[`IDX(6)] ^ { c06s[18:0], c06s[31:19] }; assign c11s = c07 + c03; assign c11 = xx[`IDX(11)] ^ { c11s[18:0], c11s[31:19] }; assign c00s = c12 + c08; assign c00 = xx[`IDX(0)] ^ { c00s[13:0], c00s[31:14] }; assign c05s = c01 + c13; assign c05 = xx[`IDX(5)] ^ { c05s[13:0], c05s[31:14] }; assign c10s = c06 + c02; assign c10 = xx[`IDX(10)] ^ { c10s[13:0], c10s[31:14] }; assign c15s = c11 + c07; assign c15 = xx[`IDX(15)] ^ { c15s[13:0], c15s[31:14] }; // rows assign r01s = c00d + c03d; assign r01 = c01d ^ { r01s[24:0], r01s[31:25] }; assign r06s = c05d + c04d; assign r06 = c06d ^ { r06s[24:0], r06s[31:25] }; assign r11s = c10d + c09d; assign r11 = c11d ^ { r11s[24:0], r11s[31:25] }; assign r12s = c15d + c14d; assign r12 = c12d ^ { r12s[24:0], r12s[31:25] }; assign r02s = r01 + c00d; assign r02 = c02d ^ { r02s[22:0], r02s[31:23] }; assign r07s = r06 + c05d; assign r07 = c07d ^ { r07s[22:0], r07s[31:23] }; assign r08s = r11 + c10d; assign r08 = c08d ^ { r08s[22:0], r08s[31:23] }; assign r13s = r12 + c15d; assign r13 = c13d ^ { r13s[22:0], r13s[31:23] }; assign r03s = r02 + r01; assign r03 = c03d ^ { r03s[18:0], r03s[31:19] }; assign r04s = r07 + r06; assign r04 = c04d ^ { r04s[18:0], r04s[31:19] }; assign r09s = r08 + r11; assign r09 = c09d ^ { r09s[18:0], r09s[31:19] }; assign r14s = r13 + r12; assign r14 = c14d ^ { r14s[18:0], r14s[31:19] }; assign r00s = r03 + r02; assign r00 = c00d ^ { r00s[13:0], r00s[31:14] }; assign r05s = r04 + r07; assign r05 = c05d ^ { r05s[13:0], r05s[31:14] }; assign r10s = r09 + r08; assign r10 = c10d ^ { r10s[13:0], r10s[31:14] }; assign r15s = r14 + r13; assign r15 = c15d ^ { r15s[13:0], r15s[31:14] }; wire [511:0]xo; // Rename row results assign xo = { r15, r14, r13, r12, r11, r10, r09, r08, r07, r06, r05, r04, r03, r02, r01, r00 }; assign Xaddr = xo[9:0]; // Unregistered output always @ (posedge clk) begin c00d <= c00; c01d <= c01; c02d <= c02; c03d <= c03; c04d <= c04; c05d <= c05; c06d <= c06; c07d <= c07; c08d <= c08; c09d <= c09; c10d <= c10; c11d <= c11; c12d <= c12; c13d <= c13; c14d <= c14; c15d <= c15; out <= xo; // Registered output end endmodule
module salsa (clk, B, Bx, Bo, X0out, Xaddr); // Latency 16 clock cycles, approx 20nS propagation delay (SLOW!) input clk; // input feedback; input [511:0]B; input [511:0]Bx; // output reg [511:0]Bo; // Output is registered output [511:0]Bo; // Output is async output [511:0]X0out; // Becomes new X0 output [9:0] Xaddr; wire [9:0] xa1, xa2, xa3, xa4, ya1, ya2, ya3, ya4; reg [511:0]x1d1, x1d1a; reg [511:0]x1d2, x1d2a; reg [511:0]x1d3, x1d3a; reg [511:0]x1d4, x1d4a; reg [511:0]Xod1, Xod1a; reg [511:0]Xod2, Xod2a; reg [511:0]Xod3, Xod3a; reg [511:0]Xod4, X0out; reg [511:0]xxd1, xxd1a; reg [511:0]xxd2, xxd2a; reg [511:0]xxd3, xxd3a; reg [511:0]xxd4, xxd4a; reg [511:0]yyd1, yyd1a; reg [511:0]yyd2, yyd2a; reg [511:0]yyd3, yyd3a; reg [511:0]yyd4, yyd4a; wire [511:0]xx; // Initial xor wire [511:0]x1; // Salasa core outputs wire [511:0]x2; wire [511:0]x3; wire [511:0]xr; wire [511:0]Xo; // Four salsa iterations. NB use registered salsa_core so 4 clock cycles. salsa_core salsax1 (clk, xx, x1, xa1); salsa_core salsax2 (clk, x1, x2, xa2); salsa_core salsax3 (clk, x2, x3, xa3); salsa_core salsax4 (clk, x3, xr, xa4); wire [511:0]yy; // Initial xor wire [511:0]y1; // Salasa core outputs wire [511:0]y2; wire [511:0]y3; wire [511:0]yr; // Four salsa iterations. NB use registered salsa_core so 4 clock cycles. salsa_core salsay1 (clk, yy, y1, ya1); salsa_core salsay2 (clk, y1, y2, ya2); salsa_core salsay3 (clk, y2, y3, ya3); salsa_core salsay4 (clk, y3, yr, ya4); assign Xaddr = yyd4[9:0] + ya4; genvar i; generate for (i = 0; i < 16; i = i + 1) begin : XX // Initial XOR. NB this adds to the propagation delay of the first salsa, may want register it. assign xx[`IDX(i)] = B[`IDX(i)] ^ Bx[`IDX(i)]; assign Xo[`IDX(i)] = xxd4a[`IDX(i)] + xr[`IDX(i)]; assign yy[`IDX(i)] = x1d4a[`IDX(i)] ^ Xo[`IDX(i)]; assign Bo[`IDX(i)] = yyd4a[`IDX(i)] + yr[`IDX(i)]; // Async output end endgenerate always @ (posedge clk) begin x1d1 <= Bx; x1d1a <= x1d1; x1d2 <= x1d1a; x1d2a <= x1d2; x1d3 <= x1d2a; x1d3a <= x1d3; x1d4 <= x1d3a; x1d4a <= x1d4; Xod1 <= Xo; Xod1a <= Xod1; Xod2 <= Xod1a; Xod2a <= Xod2; Xod3 <= Xod2a; Xod3a <= Xod3; Xod4 <= Xod3a; X0out <= Xod4; // We output this to become new X0 xxd1 <= xx; xxd1a <= xxd1; xxd2 <= xxd1a; xxd2a <= xxd2; xxd3 <= xxd2a; xxd3a <= xxd3; xxd4 <= xxd3a; xxd4a <= xxd4; yyd1 <= yy; yyd1a <= yyd1; yyd2 <= yyd1a; yyd2a <= yyd2; yyd3 <= yyd2a; yyd3a <= yyd3; yyd4 <= yyd3a; yyd4a <= yyd4; end endmodule
module salsa_core (clk, xx, out, Xaddr); input clk; input [511:0]xx; output reg [511:0]out; // Output is registered output [9:0] Xaddr; // Address output unregistered // This is clunky due to my lack of verilog skills but it works so elegance can come later wire [31:0]c00; // Column results wire [31:0]c01; wire [31:0]c02; wire [31:0]c03; wire [31:0]c04; wire [31:0]c05; wire [31:0]c06; wire [31:0]c07; wire [31:0]c08; wire [31:0]c09; wire [31:0]c10; wire [31:0]c11; wire [31:0]c12; wire [31:0]c13; wire [31:0]c14; wire [31:0]c15; wire [31:0]r00; // Row results wire [31:0]r01; wire [31:0]r02; wire [31:0]r03; wire [31:0]r04; wire [31:0]r05; wire [31:0]r06; wire [31:0]r07; wire [31:0]r08; wire [31:0]r09; wire [31:0]r10; wire [31:0]r11; wire [31:0]r12; wire [31:0]r13; wire [31:0]r14; wire [31:0]r15; wire [31:0]c00s; // Column sums wire [31:0]c01s; wire [31:0]c02s; wire [31:0]c03s; wire [31:0]c04s; wire [31:0]c05s; wire [31:0]c06s; wire [31:0]c07s; wire [31:0]c08s; wire [31:0]c09s; wire [31:0]c10s; wire [31:0]c11s; wire [31:0]c12s; wire [31:0]c13s; wire [31:0]c14s; wire [31:0]c15s; wire [31:0]r00s; // Row sums wire [31:0]r01s; wire [31:0]r02s; wire [31:0]r03s; wire [31:0]r04s; wire [31:0]r05s; wire [31:0]r06s; wire [31:0]r07s; wire [31:0]r08s; wire [31:0]r09s; wire [31:0]r10s; wire [31:0]r11s; wire [31:0]r12s; wire [31:0]r13s; wire [31:0]r14s; wire [31:0]r15s; reg [31:0]c00d; // Column results registered reg [31:0]c01d; reg [31:0]c02d; reg [31:0]c03d; reg [31:0]c04d; reg [31:0]c05d; reg [31:0]c06d; reg [31:0]c07d; reg [31:0]c08d; reg [31:0]c09d; reg [31:0]c10d; reg [31:0]c11d; reg [31:0]c12d; reg [31:0]c13d; reg [31:0]c14d; reg [31:0]c15d; /* From scrypt.c #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) for (i = 0; i < 8; i += 2) { // Operate on columns x04 ^= R(x00+x12, 7); x09 ^= R(x05+x01, 7); x14 ^= R(x10+x06, 7); x03 ^= R(x15+x11, 7); x08 ^= R(x04+x00, 9); x13 ^= R(x09+x05, 9); x02 ^= R(x14+x10, 9); x07 ^= R(x03+x15, 9); x12 ^= R(x08+x04,13); x01 ^= R(x13+x09,13); x06 ^= R(x02+x14,13); x11 ^= R(x07+x03,13); x00 ^= R(x12+x08,18); x05 ^= R(x01+x13,18); x10 ^= R(x06+x02,18); x15 ^= R(x11+x07,18); // Operate on rows x01 ^= R(x00+x03, 7); x06 ^= R(x05+x04, 7); x11 ^= R(x10+x09, 7); x12 ^= R(x15+x14, 7); x02 ^= R(x01+x00, 9); x07 ^= R(x06+x05, 9); x08 ^= R(x11+x10, 9); x13 ^= R(x12+x15, 9); x03 ^= R(x02+x01,13); x04 ^= R(x07+x06,13); x09 ^= R(x08+x11,13); x14 ^= R(x13+x12,13); x00 ^= R(x03+x02,18); x05 ^= R(x04+x07,18); x10 ^= R(x09+x08,18); x15 ^= R(x14+x13,18); } */ // cols assign c04s = xx[`IDX(0)] + xx[`IDX(12)]; assign c04 = xx[`IDX(4)] ^ { c04s[24:0], c04s[31:25] }; assign c09s = xx[`IDX(5)] + xx[`IDX(1)]; assign c09 = xx[`IDX(9)] ^ { c09s[24:0], c09s[31:25] }; assign c14s = xx[`IDX(10)] + xx[`IDX(6)]; assign c14 = xx[`IDX(14)] ^ { c14s[24:0], c14s[31:25] }; assign c03s = xx[`IDX(15)] + xx[`IDX(11)]; assign c03 = xx[`IDX(03)] ^ { c03s[24:0], c03s[31:25] }; assign c08s = c04 + xx[`IDX(0)]; assign c08 = xx[`IDX(8)] ^ { c08s[22:0], c08s[31:23] }; assign c13s = c09 + xx[`IDX(5)]; assign c13 = xx[`IDX(13)] ^ { c13s[22:0], c13s[31:23] }; assign c02s = c14 + xx[`IDX(10)]; assign c02 = xx[`IDX(2)] ^ { c02s[22:0], c02s[31:23] }; assign c07s = c03 + xx[`IDX(15)]; assign c07 = xx[`IDX(7)] ^ { c07s[22:0], c07s[31:23] }; assign c12s = c08 + c04; assign c12 = xx[`IDX(12)] ^ { c12s[18:0], c12s[31:19] }; assign c01s = c13 + c09; assign c01 = xx[`IDX(1)] ^ { c01s[18:0], c01s[31:19] }; assign c06s = c02 + c14; assign c06 = xx[`IDX(6)] ^ { c06s[18:0], c06s[31:19] }; assign c11s = c07 + c03; assign c11 = xx[`IDX(11)] ^ { c11s[18:0], c11s[31:19] }; assign c00s = c12 + c08; assign c00 = xx[`IDX(0)] ^ { c00s[13:0], c00s[31:14] }; assign c05s = c01 + c13; assign c05 = xx[`IDX(5)] ^ { c05s[13:0], c05s[31:14] }; assign c10s = c06 + c02; assign c10 = xx[`IDX(10)] ^ { c10s[13:0], c10s[31:14] }; assign c15s = c11 + c07; assign c15 = xx[`IDX(15)] ^ { c15s[13:0], c15s[31:14] }; // rows assign r01s = c00d + c03d; assign r01 = c01d ^ { r01s[24:0], r01s[31:25] }; assign r06s = c05d + c04d; assign r06 = c06d ^ { r06s[24:0], r06s[31:25] }; assign r11s = c10d + c09d; assign r11 = c11d ^ { r11s[24:0], r11s[31:25] }; assign r12s = c15d + c14d; assign r12 = c12d ^ { r12s[24:0], r12s[31:25] }; assign r02s = r01 + c00d; assign r02 = c02d ^ { r02s[22:0], r02s[31:23] }; assign r07s = r06 + c05d; assign r07 = c07d ^ { r07s[22:0], r07s[31:23] }; assign r08s = r11 + c10d; assign r08 = c08d ^ { r08s[22:0], r08s[31:23] }; assign r13s = r12 + c15d; assign r13 = c13d ^ { r13s[22:0], r13s[31:23] }; assign r03s = r02 + r01; assign r03 = c03d ^ { r03s[18:0], r03s[31:19] }; assign r04s = r07 + r06; assign r04 = c04d ^ { r04s[18:0], r04s[31:19] }; assign r09s = r08 + r11; assign r09 = c09d ^ { r09s[18:0], r09s[31:19] }; assign r14s = r13 + r12; assign r14 = c14d ^ { r14s[18:0], r14s[31:19] }; assign r00s = r03 + r02; assign r00 = c00d ^ { r00s[13:0], r00s[31:14] }; assign r05s = r04 + r07; assign r05 = c05d ^ { r05s[13:0], r05s[31:14] }; assign r10s = r09 + r08; assign r10 = c10d ^ { r10s[13:0], r10s[31:14] }; assign r15s = r14 + r13; assign r15 = c15d ^ { r15s[13:0], r15s[31:14] }; wire [511:0]xo; // Rename row results assign xo = { r15, r14, r13, r12, r11, r10, r09, r08, r07, r06, r05, r04, r03, r02, r01, r00 }; assign Xaddr = xo[9:0]; // Unregistered output always @ (posedge clk) begin c00d <= c00; c01d <= c01; c02d <= c02; c03d <= c03; c04d <= c04; c05d <= c05; c06d <= c06; c07d <= c07; c08d <= c08; c09d <= c09; c10d <= c10; c11d <= c11; c12d <= c12; c13d <= c13; c14d <= c14; c15d <= c15; out <= xo; // Registered output end endmodule
module Barrel_Shifter #(parameter SWR=26, parameter EWR=5) //Implicit bit + Significand Width (23 bits for simple format, 52 bits for Double format) //+ guard Bit + round bit /*#(parameter SWR=55, parameter EWR=6)*/ ( input wire clk, input wire rst, input wire load_i, input wire [EWR-1:0] Shift_Value_i, input wire [SWR-1:0] Shift_Data_i, input wire Left_Right_i, input wire Bit_Shift_i, /////////////////////////////////////////////7 output wire [SWR-1:0] N_mant_o ); wire [SWR-1:0] Data_Reg; ////////////////////////////////////////////////////7 Mux_Array #(.SWR(SWR),.EWR(EWR)) Mux_Array( .clk(clk), .rst(rst), .load_i(load_i), .Data_i(Shift_Data_i), .FSM_left_right_i(Left_Right_i), .Shift_Value_i(Shift_Value_i), .bit_shift_i(Bit_Shift_i), .Data_o(Data_Reg) ); RegisterAdd #(.W(SWR)) Output_Reg( .clk(clk), .rst(rst), .load(load_i), .D(Data_Reg), .Q(N_mant_o) ); endmodule
module that // instantiates this one. always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin data_valid <= 0; root <= 0; end else begin data_valid <= start_gen[OUTPUT_BITS-1]; if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]) root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1; else root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]; end end endmodule
module that // instantiates this one. always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin data_valid <= 0; root <= 0; end else begin data_valid <= start_gen[OUTPUT_BITS-1]; if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]) root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1; else root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]; end end endmodule
module that // instantiates this one. always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin data_valid <= 0; root <= 0; end else begin data_valid <= start_gen[OUTPUT_BITS-1]; if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]) root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1; else root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]; end end endmodule
module that // instantiates this one. always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin data_valid <= 0; root <= 0; end else begin data_valid <= start_gen[OUTPUT_BITS-1]; if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]) root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1; else root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]; end end endmodule
module that // instantiates this one. always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin data_valid <= 0; root <= 0; end else begin data_valid <= start_gen[OUTPUT_BITS-1]; if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]) root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1; else root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]; end end endmodule
module that // instantiates this one. always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin data_valid <= 0; root <= 0; end else begin data_valid <= start_gen[OUTPUT_BITS-1]; if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]) root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1; else root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]; end end endmodule
module that // instantiates this one. always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin data_valid <= 0; root <= 0; end else begin data_valid <= start_gen[OUTPUT_BITS-1]; if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]) root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1; else root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]; end end endmodule
module that // instantiates this one. always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin data_valid <= 0; root <= 0; end else begin data_valid <= start_gen[OUTPUT_BITS-1]; if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]) root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1; else root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]; end end endmodule
module that // instantiates this one. always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin data_valid <= 0; root <= 0; end else begin data_valid <= start_gen[OUTPUT_BITS-1]; if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]) root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1; else root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]; end end endmodule
module that // instantiates this one. always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin data_valid <= 0; root <= 0; end else begin data_valid <= start_gen[OUTPUT_BITS-1]; if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]) root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1; else root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]; end end endmodule
module altera_avalon_st_pipeline_base ( clk, reset, in_ready, in_valid, in_data, out_ready, out_valid, out_data ); parameter SYMBOLS_PER_BEAT = 1; parameter BITS_PER_SYMBOL = 8; parameter PIPELINE_READY = 1; localparam DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL; input clk; input reset; output in_ready; input in_valid; input [DATA_WIDTH-1:0] in_data; input out_ready; output out_valid; output [DATA_WIDTH-1:0] out_data; reg full0; reg full1; reg [DATA_WIDTH-1:0] data0; reg [DATA_WIDTH-1:0] data1; assign out_valid = full1; assign out_data = data1; generate if (PIPELINE_READY == 1) begin : REGISTERED_READY_PLINE assign in_ready = !full0; always @(posedge clk, posedge reset) begin if (reset) begin data0 <= {DATA_WIDTH{1'b0}}; data1 <= {DATA_WIDTH{1'b0}}; end else begin // ---------------------------- // always load the second slot if we can // ---------------------------- if (~full0) data0 <= in_data; // ---------------------------- // first slot is loaded either from the second, // or with new data // ---------------------------- if (~full1 || (out_ready && out_valid)) begin if (full0) data1 <= data0; else data1 <= in_data; end end end always @(posedge clk or posedge reset) begin if (reset) begin full0 <= 1'b0; full1 <= 1'b0; end else begin // no data in pipeline if (~full0 & ~full1) begin if (in_valid) begin full1 <= 1'b1; end end // ~f1 & ~f0 // one datum in pipeline if (full1 & ~full0) begin if (in_valid & ~out_ready) begin full0 <= 1'b1; end // back to empty if (~in_valid & out_ready) begin full1 <= 1'b0; end end // f1 & ~f0 // two data in pipeline if (full1 & full0) begin // go back to one datum state if (out_ready) begin full0 <= 1'b0; end end // end go back to one datum stage end end end else begin : UNREGISTERED_READY_PLINE // in_ready will be a pass through of the out_ready signal as it is not registered assign in_ready = (~full1) | out_ready; always @(posedge clk or posedge reset) begin if (reset) begin data1 <= 'b0; full1 <= 1'b0; end else begin if (in_ready) begin data1 <= in_data; full1 <= in_valid; end end end end endgenerate endmodule
module altera_avalon_st_pipeline_base ( clk, reset, in_ready, in_valid, in_data, out_ready, out_valid, out_data ); parameter SYMBOLS_PER_BEAT = 1; parameter BITS_PER_SYMBOL = 8; parameter PIPELINE_READY = 1; localparam DATA_WIDTH = SYMBOLS_PER_BEAT * BITS_PER_SYMBOL; input clk; input reset; output in_ready; input in_valid; input [DATA_WIDTH-1:0] in_data; input out_ready; output out_valid; output [DATA_WIDTH-1:0] out_data; reg full0; reg full1; reg [DATA_WIDTH-1:0] data0; reg [DATA_WIDTH-1:0] data1; assign out_valid = full1; assign out_data = data1; generate if (PIPELINE_READY == 1) begin : REGISTERED_READY_PLINE assign in_ready = !full0; always @(posedge clk, posedge reset) begin if (reset) begin data0 <= {DATA_WIDTH{1'b0}}; data1 <= {DATA_WIDTH{1'b0}}; end else begin // ---------------------------- // always load the second slot if we can // ---------------------------- if (~full0) data0 <= in_data; // ---------------------------- // first slot is loaded either from the second, // or with new data // ---------------------------- if (~full1 || (out_ready && out_valid)) begin if (full0) data1 <= data0; else data1 <= in_data; end end end always @(posedge clk or posedge reset) begin if (reset) begin full0 <= 1'b0; full1 <= 1'b0; end else begin // no data in pipeline if (~full0 & ~full1) begin if (in_valid) begin full1 <= 1'b1; end end // ~f1 & ~f0 // one datum in pipeline if (full1 & ~full0) begin if (in_valid & ~out_ready) begin full0 <= 1'b1; end // back to empty if (~in_valid & out_ready) begin full1 <= 1'b0; end end // f1 & ~f0 // two data in pipeline if (full1 & full0) begin // go back to one datum state if (out_ready) begin full0 <= 1'b0; end end // end go back to one datum stage end end end else begin : UNREGISTERED_READY_PLINE // in_ready will be a pass through of the out_ready signal as it is not registered assign in_ready = (~full1) | out_ready; always @(posedge clk or posedge reset) begin if (reset) begin data1 <= 'b0; full1 <= 1'b0; end else begin if (in_ready) begin data1 <= in_data; full1 <= in_valid; end end end end endgenerate endmodule
module processing_system7_v5_5_aw_atc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6, spartan6 or later. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of checker. // Range: >= 1. parameter integer C_AXI_ADDR_WIDTH = 32, // Width of all ADDR signals on SI and MI side of checker. // Range: 32. parameter integer C_AXI_AWUSER_WIDTH = 1, // Width of AWUSER signals. // Range: >= 1. parameter integer C_FIFO_DEPTH_LOG = 4 ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface output reg cmd_w_valid, output wire cmd_w_check, output wire [C_AXI_ID_WIDTH-1:0] cmd_w_id, input wire cmd_w_ready, input wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr, input wire cmd_b_ready, // Slave Interface Write Address Port input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR, input wire [4-1:0] S_AXI_AWLEN, input wire [3-1:0] S_AXI_AWSIZE, input wire [2-1:0] S_AXI_AWBURST, input wire [2-1:0] S_AXI_AWLOCK, input wire [4-1:0] S_AXI_AWCACHE, input wire [3-1:0] S_AXI_AWPROT, input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER, input wire S_AXI_AWVALID, output wire S_AXI_AWREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID, output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR, output wire [4-1:0] M_AXI_AWLEN, output wire [3-1:0] M_AXI_AWSIZE, output wire [2-1:0] M_AXI_AWBURST, output wire [2-1:0] M_AXI_AWLOCK, output wire [4-1:0] M_AXI_AWCACHE, output wire [3-1:0] M_AXI_AWPROT, output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER, output wire M_AXI_AWVALID, input wire M_AXI_AWREADY ); ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Constants for burst types. localparam [2-1:0] C_FIX_BURST = 2'b00; localparam [2-1:0] C_INCR_BURST = 2'b01; localparam [2-1:0] C_WRAP_BURST = 2'b10; // Constants for size. localparam [3-1:0] C_OPTIMIZED_SIZE = 3'b011; // Constants for length. localparam [4-1:0] C_OPTIMIZED_LEN = 4'b0011; // Constants for cacheline address. localparam [4-1:0] C_NO_ADDR_OFFSET = 5'b0; // Command FIFO settings localparam C_FIFO_WIDTH = C_AXI_ID_WIDTH + 1; localparam C_FIFO_DEPTH = 2 ** C_FIFO_DEPTH_LOG; ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// integer index; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Transaction properties. wire access_is_incr; wire access_is_wrap; wire access_is_coherent; wire access_optimized_size; wire incr_addr_boundary; wire incr_is_optimized; wire wrap_is_optimized; wire access_is_optimized; // Command FIFO. wire cmd_w_push; reg cmd_full; reg [C_FIFO_DEPTH_LOG-1:0] addr_ptr; wire [C_FIFO_DEPTH_LOG-1:0] all_addr_ptr; reg [C_FIFO_WIDTH-1:0] data_srl[C_FIFO_DEPTH-1:0]; ///////////////////////////////////////////////////////////////////////////// // Transaction Decode: // // Detect if transaction is of correct typ, size and length to qualify as // an optimized transaction that has to be checked for errors. // ///////////////////////////////////////////////////////////////////////////// // Transaction burst type. assign access_is_incr = ( S_AXI_AWBURST == C_INCR_BURST ); assign access_is_wrap = ( S_AXI_AWBURST == C_WRAP_BURST ); // Transaction has to be Coherent. assign access_is_coherent = ( S_AXI_AWUSER[0] == 1'b1 ) & ( S_AXI_AWCACHE[1] == 1'b1 ); // Transaction cacheline boundary address. assign incr_addr_boundary = ( S_AXI_AWADDR[4:0] == C_NO_ADDR_OFFSET ); // Transaction length & size. assign access_optimized_size = ( S_AXI_AWSIZE == C_OPTIMIZED_SIZE ) & ( S_AXI_AWLEN == C_OPTIMIZED_LEN ); // Transaction is optimized. assign incr_is_optimized = access_is_incr & access_is_coherent & access_optimized_size & incr_addr_boundary; assign wrap_is_optimized = access_is_wrap & access_is_coherent & access_optimized_size; assign access_is_optimized = ( incr_is_optimized | wrap_is_optimized ); ///////////////////////////////////////////////////////////////////////////// // Command FIFO: // // Since supported write interleaving is only 1, it is safe to use only a // simple SRL based FIFO as a command queue. // ///////////////////////////////////////////////////////////////////////////// // Determine when transaction infromation is pushed to the FIFO. assign cmd_w_push = S_AXI_AWVALID & M_AXI_AWREADY & ~cmd_full; // SRL FIFO Pointer. always @ (posedge ACLK) begin if (ARESET) begin addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}}; end else begin if ( cmd_w_push & ~cmd_w_ready ) begin addr_ptr <= addr_ptr + 1; end else if ( ~cmd_w_push & cmd_w_ready ) begin addr_ptr <= addr_ptr - 1; end end end // Total number of buffered commands. assign all_addr_ptr = addr_ptr + cmd_b_addr + 2; // FIFO Flags. always @ (posedge ACLK) begin if (ARESET) begin cmd_full <= 1'b0; cmd_w_valid <= 1'b0; end else begin if ( cmd_w_push & ~cmd_w_ready ) begin cmd_w_valid <= 1'b1; end else if ( ~cmd_w_push & cmd_w_ready ) begin cmd_w_valid <= ( addr_ptr != 0 ); end if ( cmd_w_push & ~cmd_b_ready ) begin // Going to full. cmd_full <= ( all_addr_ptr == C_FIFO_DEPTH-3 ); end else if ( ~cmd_w_push & cmd_b_ready ) begin // Pop in middle of queue doesn't affect full status. cmd_full <= ( all_addr_ptr == C_FIFO_DEPTH-2 ); end end end // Infere SRL for storage. always @ (posedge ACLK) begin if ( cmd_w_push ) begin for (index = 0; index < C_FIFO_DEPTH-1 ; index = index + 1) begin data_srl[index+1] <= data_srl[index]; end data_srl[0] <= {access_is_optimized, S_AXI_AWID}; end end // Get current transaction info. assign {cmd_w_check, cmd_w_id} = data_srl[addr_ptr]; ///////////////////////////////////////////////////////////////////////////// // Transaction Throttling: // // Stall commands if FIFO is full. // ///////////////////////////////////////////////////////////////////////////// // Propagate masked valid. assign M_AXI_AWVALID = S_AXI_AWVALID & ~cmd_full; // Return ready with push back. assign S_AXI_AWREADY = M_AXI_AWREADY & ~cmd_full; ///////////////////////////////////////////////////////////////////////////// // Address Write propagation: // // All information is simply forwarded on from the SI- to MI-Side untouched. // ///////////////////////////////////////////////////////////////////////////// // 1:1 mapping. assign M_AXI_AWID = S_AXI_AWID; assign M_AXI_AWADDR = S_AXI_AWADDR; assign M_AXI_AWLEN = S_AXI_AWLEN; assign M_AXI_AWSIZE = S_AXI_AWSIZE; assign M_AXI_AWBURST = S_AXI_AWBURST; assign M_AXI_AWLOCK = S_AXI_AWLOCK; assign M_AXI_AWCACHE = S_AXI_AWCACHE; assign M_AXI_AWPROT = S_AXI_AWPROT; assign M_AXI_AWUSER = S_AXI_AWUSER; endmodule
module processing_system7_v5_5_aw_atc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6, spartan6 or later. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of checker. // Range: >= 1. parameter integer C_AXI_ADDR_WIDTH = 32, // Width of all ADDR signals on SI and MI side of checker. // Range: 32. parameter integer C_AXI_AWUSER_WIDTH = 1, // Width of AWUSER signals. // Range: >= 1. parameter integer C_FIFO_DEPTH_LOG = 4 ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface output reg cmd_w_valid, output wire cmd_w_check, output wire [C_AXI_ID_WIDTH-1:0] cmd_w_id, input wire cmd_w_ready, input wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr, input wire cmd_b_ready, // Slave Interface Write Address Port input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR, input wire [4-1:0] S_AXI_AWLEN, input wire [3-1:0] S_AXI_AWSIZE, input wire [2-1:0] S_AXI_AWBURST, input wire [2-1:0] S_AXI_AWLOCK, input wire [4-1:0] S_AXI_AWCACHE, input wire [3-1:0] S_AXI_AWPROT, input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER, input wire S_AXI_AWVALID, output wire S_AXI_AWREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID, output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR, output wire [4-1:0] M_AXI_AWLEN, output wire [3-1:0] M_AXI_AWSIZE, output wire [2-1:0] M_AXI_AWBURST, output wire [2-1:0] M_AXI_AWLOCK, output wire [4-1:0] M_AXI_AWCACHE, output wire [3-1:0] M_AXI_AWPROT, output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER, output wire M_AXI_AWVALID, input wire M_AXI_AWREADY ); ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Constants for burst types. localparam [2-1:0] C_FIX_BURST = 2'b00; localparam [2-1:0] C_INCR_BURST = 2'b01; localparam [2-1:0] C_WRAP_BURST = 2'b10; // Constants for size. localparam [3-1:0] C_OPTIMIZED_SIZE = 3'b011; // Constants for length. localparam [4-1:0] C_OPTIMIZED_LEN = 4'b0011; // Constants for cacheline address. localparam [4-1:0] C_NO_ADDR_OFFSET = 5'b0; // Command FIFO settings localparam C_FIFO_WIDTH = C_AXI_ID_WIDTH + 1; localparam C_FIFO_DEPTH = 2 ** C_FIFO_DEPTH_LOG; ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// integer index; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Transaction properties. wire access_is_incr; wire access_is_wrap; wire access_is_coherent; wire access_optimized_size; wire incr_addr_boundary; wire incr_is_optimized; wire wrap_is_optimized; wire access_is_optimized; // Command FIFO. wire cmd_w_push; reg cmd_full; reg [C_FIFO_DEPTH_LOG-1:0] addr_ptr; wire [C_FIFO_DEPTH_LOG-1:0] all_addr_ptr; reg [C_FIFO_WIDTH-1:0] data_srl[C_FIFO_DEPTH-1:0]; ///////////////////////////////////////////////////////////////////////////// // Transaction Decode: // // Detect if transaction is of correct typ, size and length to qualify as // an optimized transaction that has to be checked for errors. // ///////////////////////////////////////////////////////////////////////////// // Transaction burst type. assign access_is_incr = ( S_AXI_AWBURST == C_INCR_BURST ); assign access_is_wrap = ( S_AXI_AWBURST == C_WRAP_BURST ); // Transaction has to be Coherent. assign access_is_coherent = ( S_AXI_AWUSER[0] == 1'b1 ) & ( S_AXI_AWCACHE[1] == 1'b1 ); // Transaction cacheline boundary address. assign incr_addr_boundary = ( S_AXI_AWADDR[4:0] == C_NO_ADDR_OFFSET ); // Transaction length & size. assign access_optimized_size = ( S_AXI_AWSIZE == C_OPTIMIZED_SIZE ) & ( S_AXI_AWLEN == C_OPTIMIZED_LEN ); // Transaction is optimized. assign incr_is_optimized = access_is_incr & access_is_coherent & access_optimized_size & incr_addr_boundary; assign wrap_is_optimized = access_is_wrap & access_is_coherent & access_optimized_size; assign access_is_optimized = ( incr_is_optimized | wrap_is_optimized ); ///////////////////////////////////////////////////////////////////////////// // Command FIFO: // // Since supported write interleaving is only 1, it is safe to use only a // simple SRL based FIFO as a command queue. // ///////////////////////////////////////////////////////////////////////////// // Determine when transaction infromation is pushed to the FIFO. assign cmd_w_push = S_AXI_AWVALID & M_AXI_AWREADY & ~cmd_full; // SRL FIFO Pointer. always @ (posedge ACLK) begin if (ARESET) begin addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}}; end else begin if ( cmd_w_push & ~cmd_w_ready ) begin addr_ptr <= addr_ptr + 1; end else if ( ~cmd_w_push & cmd_w_ready ) begin addr_ptr <= addr_ptr - 1; end end end // Total number of buffered commands. assign all_addr_ptr = addr_ptr + cmd_b_addr + 2; // FIFO Flags. always @ (posedge ACLK) begin if (ARESET) begin cmd_full <= 1'b0; cmd_w_valid <= 1'b0; end else begin if ( cmd_w_push & ~cmd_w_ready ) begin cmd_w_valid <= 1'b1; end else if ( ~cmd_w_push & cmd_w_ready ) begin cmd_w_valid <= ( addr_ptr != 0 ); end if ( cmd_w_push & ~cmd_b_ready ) begin // Going to full. cmd_full <= ( all_addr_ptr == C_FIFO_DEPTH-3 ); end else if ( ~cmd_w_push & cmd_b_ready ) begin // Pop in middle of queue doesn't affect full status. cmd_full <= ( all_addr_ptr == C_FIFO_DEPTH-2 ); end end end // Infere SRL for storage. always @ (posedge ACLK) begin if ( cmd_w_push ) begin for (index = 0; index < C_FIFO_DEPTH-1 ; index = index + 1) begin data_srl[index+1] <= data_srl[index]; end data_srl[0] <= {access_is_optimized, S_AXI_AWID}; end end // Get current transaction info. assign {cmd_w_check, cmd_w_id} = data_srl[addr_ptr]; ///////////////////////////////////////////////////////////////////////////// // Transaction Throttling: // // Stall commands if FIFO is full. // ///////////////////////////////////////////////////////////////////////////// // Propagate masked valid. assign M_AXI_AWVALID = S_AXI_AWVALID & ~cmd_full; // Return ready with push back. assign S_AXI_AWREADY = M_AXI_AWREADY & ~cmd_full; ///////////////////////////////////////////////////////////////////////////// // Address Write propagation: // // All information is simply forwarded on from the SI- to MI-Side untouched. // ///////////////////////////////////////////////////////////////////////////// // 1:1 mapping. assign M_AXI_AWID = S_AXI_AWID; assign M_AXI_AWADDR = S_AXI_AWADDR; assign M_AXI_AWLEN = S_AXI_AWLEN; assign M_AXI_AWSIZE = S_AXI_AWSIZE; assign M_AXI_AWBURST = S_AXI_AWBURST; assign M_AXI_AWLOCK = S_AXI_AWLOCK; assign M_AXI_AWCACHE = S_AXI_AWCACHE; assign M_AXI_AWPROT = S_AXI_AWPROT; assign M_AXI_AWUSER = S_AXI_AWUSER; endmodule
module processing_system7_v5_5_aw_atc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6, spartan6 or later. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of checker. // Range: >= 1. parameter integer C_AXI_ADDR_WIDTH = 32, // Width of all ADDR signals on SI and MI side of checker. // Range: 32. parameter integer C_AXI_AWUSER_WIDTH = 1, // Width of AWUSER signals. // Range: >= 1. parameter integer C_FIFO_DEPTH_LOG = 4 ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface output reg cmd_w_valid, output wire cmd_w_check, output wire [C_AXI_ID_WIDTH-1:0] cmd_w_id, input wire cmd_w_ready, input wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr, input wire cmd_b_ready, // Slave Interface Write Address Port input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR, input wire [4-1:0] S_AXI_AWLEN, input wire [3-1:0] S_AXI_AWSIZE, input wire [2-1:0] S_AXI_AWBURST, input wire [2-1:0] S_AXI_AWLOCK, input wire [4-1:0] S_AXI_AWCACHE, input wire [3-1:0] S_AXI_AWPROT, input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER, input wire S_AXI_AWVALID, output wire S_AXI_AWREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID, output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR, output wire [4-1:0] M_AXI_AWLEN, output wire [3-1:0] M_AXI_AWSIZE, output wire [2-1:0] M_AXI_AWBURST, output wire [2-1:0] M_AXI_AWLOCK, output wire [4-1:0] M_AXI_AWCACHE, output wire [3-1:0] M_AXI_AWPROT, output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER, output wire M_AXI_AWVALID, input wire M_AXI_AWREADY ); ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Constants for burst types. localparam [2-1:0] C_FIX_BURST = 2'b00; localparam [2-1:0] C_INCR_BURST = 2'b01; localparam [2-1:0] C_WRAP_BURST = 2'b10; // Constants for size. localparam [3-1:0] C_OPTIMIZED_SIZE = 3'b011; // Constants for length. localparam [4-1:0] C_OPTIMIZED_LEN = 4'b0011; // Constants for cacheline address. localparam [4-1:0] C_NO_ADDR_OFFSET = 5'b0; // Command FIFO settings localparam C_FIFO_WIDTH = C_AXI_ID_WIDTH + 1; localparam C_FIFO_DEPTH = 2 ** C_FIFO_DEPTH_LOG; ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// integer index; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Transaction properties. wire access_is_incr; wire access_is_wrap; wire access_is_coherent; wire access_optimized_size; wire incr_addr_boundary; wire incr_is_optimized; wire wrap_is_optimized; wire access_is_optimized; // Command FIFO. wire cmd_w_push; reg cmd_full; reg [C_FIFO_DEPTH_LOG-1:0] addr_ptr; wire [C_FIFO_DEPTH_LOG-1:0] all_addr_ptr; reg [C_FIFO_WIDTH-1:0] data_srl[C_FIFO_DEPTH-1:0]; ///////////////////////////////////////////////////////////////////////////// // Transaction Decode: // // Detect if transaction is of correct typ, size and length to qualify as // an optimized transaction that has to be checked for errors. // ///////////////////////////////////////////////////////////////////////////// // Transaction burst type. assign access_is_incr = ( S_AXI_AWBURST == C_INCR_BURST ); assign access_is_wrap = ( S_AXI_AWBURST == C_WRAP_BURST ); // Transaction has to be Coherent. assign access_is_coherent = ( S_AXI_AWUSER[0] == 1'b1 ) & ( S_AXI_AWCACHE[1] == 1'b1 ); // Transaction cacheline boundary address. assign incr_addr_boundary = ( S_AXI_AWADDR[4:0] == C_NO_ADDR_OFFSET ); // Transaction length & size. assign access_optimized_size = ( S_AXI_AWSIZE == C_OPTIMIZED_SIZE ) & ( S_AXI_AWLEN == C_OPTIMIZED_LEN ); // Transaction is optimized. assign incr_is_optimized = access_is_incr & access_is_coherent & access_optimized_size & incr_addr_boundary; assign wrap_is_optimized = access_is_wrap & access_is_coherent & access_optimized_size; assign access_is_optimized = ( incr_is_optimized | wrap_is_optimized ); ///////////////////////////////////////////////////////////////////////////// // Command FIFO: // // Since supported write interleaving is only 1, it is safe to use only a // simple SRL based FIFO as a command queue. // ///////////////////////////////////////////////////////////////////////////// // Determine when transaction infromation is pushed to the FIFO. assign cmd_w_push = S_AXI_AWVALID & M_AXI_AWREADY & ~cmd_full; // SRL FIFO Pointer. always @ (posedge ACLK) begin if (ARESET) begin addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}}; end else begin if ( cmd_w_push & ~cmd_w_ready ) begin addr_ptr <= addr_ptr + 1; end else if ( ~cmd_w_push & cmd_w_ready ) begin addr_ptr <= addr_ptr - 1; end end end // Total number of buffered commands. assign all_addr_ptr = addr_ptr + cmd_b_addr + 2; // FIFO Flags. always @ (posedge ACLK) begin if (ARESET) begin cmd_full <= 1'b0; cmd_w_valid <= 1'b0; end else begin if ( cmd_w_push & ~cmd_w_ready ) begin cmd_w_valid <= 1'b1; end else if ( ~cmd_w_push & cmd_w_ready ) begin cmd_w_valid <= ( addr_ptr != 0 ); end if ( cmd_w_push & ~cmd_b_ready ) begin // Going to full. cmd_full <= ( all_addr_ptr == C_FIFO_DEPTH-3 ); end else if ( ~cmd_w_push & cmd_b_ready ) begin // Pop in middle of queue doesn't affect full status. cmd_full <= ( all_addr_ptr == C_FIFO_DEPTH-2 ); end end end // Infere SRL for storage. always @ (posedge ACLK) begin if ( cmd_w_push ) begin for (index = 0; index < C_FIFO_DEPTH-1 ; index = index + 1) begin data_srl[index+1] <= data_srl[index]; end data_srl[0] <= {access_is_optimized, S_AXI_AWID}; end end // Get current transaction info. assign {cmd_w_check, cmd_w_id} = data_srl[addr_ptr]; ///////////////////////////////////////////////////////////////////////////// // Transaction Throttling: // // Stall commands if FIFO is full. // ///////////////////////////////////////////////////////////////////////////// // Propagate masked valid. assign M_AXI_AWVALID = S_AXI_AWVALID & ~cmd_full; // Return ready with push back. assign S_AXI_AWREADY = M_AXI_AWREADY & ~cmd_full; ///////////////////////////////////////////////////////////////////////////// // Address Write propagation: // // All information is simply forwarded on from the SI- to MI-Side untouched. // ///////////////////////////////////////////////////////////////////////////// // 1:1 mapping. assign M_AXI_AWID = S_AXI_AWID; assign M_AXI_AWADDR = S_AXI_AWADDR; assign M_AXI_AWLEN = S_AXI_AWLEN; assign M_AXI_AWSIZE = S_AXI_AWSIZE; assign M_AXI_AWBURST = S_AXI_AWBURST; assign M_AXI_AWLOCK = S_AXI_AWLOCK; assign M_AXI_AWCACHE = S_AXI_AWCACHE; assign M_AXI_AWPROT = S_AXI_AWPROT; assign M_AXI_AWUSER = S_AXI_AWUSER; endmodule
module processing_system7_v5_5_aw_atc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6, spartan6 or later. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of checker. // Range: >= 1. parameter integer C_AXI_ADDR_WIDTH = 32, // Width of all ADDR signals on SI and MI side of checker. // Range: 32. parameter integer C_AXI_AWUSER_WIDTH = 1, // Width of AWUSER signals. // Range: >= 1. parameter integer C_FIFO_DEPTH_LOG = 4 ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface output reg cmd_w_valid, output wire cmd_w_check, output wire [C_AXI_ID_WIDTH-1:0] cmd_w_id, input wire cmd_w_ready, input wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr, input wire cmd_b_ready, // Slave Interface Write Address Port input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR, input wire [4-1:0] S_AXI_AWLEN, input wire [3-1:0] S_AXI_AWSIZE, input wire [2-1:0] S_AXI_AWBURST, input wire [2-1:0] S_AXI_AWLOCK, input wire [4-1:0] S_AXI_AWCACHE, input wire [3-1:0] S_AXI_AWPROT, input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER, input wire S_AXI_AWVALID, output wire S_AXI_AWREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID, output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR, output wire [4-1:0] M_AXI_AWLEN, output wire [3-1:0] M_AXI_AWSIZE, output wire [2-1:0] M_AXI_AWBURST, output wire [2-1:0] M_AXI_AWLOCK, output wire [4-1:0] M_AXI_AWCACHE, output wire [3-1:0] M_AXI_AWPROT, output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER, output wire M_AXI_AWVALID, input wire M_AXI_AWREADY ); ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Constants for burst types. localparam [2-1:0] C_FIX_BURST = 2'b00; localparam [2-1:0] C_INCR_BURST = 2'b01; localparam [2-1:0] C_WRAP_BURST = 2'b10; // Constants for size. localparam [3-1:0] C_OPTIMIZED_SIZE = 3'b011; // Constants for length. localparam [4-1:0] C_OPTIMIZED_LEN = 4'b0011; // Constants for cacheline address. localparam [4-1:0] C_NO_ADDR_OFFSET = 5'b0; // Command FIFO settings localparam C_FIFO_WIDTH = C_AXI_ID_WIDTH + 1; localparam C_FIFO_DEPTH = 2 ** C_FIFO_DEPTH_LOG; ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// integer index; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Transaction properties. wire access_is_incr; wire access_is_wrap; wire access_is_coherent; wire access_optimized_size; wire incr_addr_boundary; wire incr_is_optimized; wire wrap_is_optimized; wire access_is_optimized; // Command FIFO. wire cmd_w_push; reg cmd_full; reg [C_FIFO_DEPTH_LOG-1:0] addr_ptr; wire [C_FIFO_DEPTH_LOG-1:0] all_addr_ptr; reg [C_FIFO_WIDTH-1:0] data_srl[C_FIFO_DEPTH-1:0]; ///////////////////////////////////////////////////////////////////////////// // Transaction Decode: // // Detect if transaction is of correct typ, size and length to qualify as // an optimized transaction that has to be checked for errors. // ///////////////////////////////////////////////////////////////////////////// // Transaction burst type. assign access_is_incr = ( S_AXI_AWBURST == C_INCR_BURST ); assign access_is_wrap = ( S_AXI_AWBURST == C_WRAP_BURST ); // Transaction has to be Coherent. assign access_is_coherent = ( S_AXI_AWUSER[0] == 1'b1 ) & ( S_AXI_AWCACHE[1] == 1'b1 ); // Transaction cacheline boundary address. assign incr_addr_boundary = ( S_AXI_AWADDR[4:0] == C_NO_ADDR_OFFSET ); // Transaction length & size. assign access_optimized_size = ( S_AXI_AWSIZE == C_OPTIMIZED_SIZE ) & ( S_AXI_AWLEN == C_OPTIMIZED_LEN ); // Transaction is optimized. assign incr_is_optimized = access_is_incr & access_is_coherent & access_optimized_size & incr_addr_boundary; assign wrap_is_optimized = access_is_wrap & access_is_coherent & access_optimized_size; assign access_is_optimized = ( incr_is_optimized | wrap_is_optimized ); ///////////////////////////////////////////////////////////////////////////// // Command FIFO: // // Since supported write interleaving is only 1, it is safe to use only a // simple SRL based FIFO as a command queue. // ///////////////////////////////////////////////////////////////////////////// // Determine when transaction infromation is pushed to the FIFO. assign cmd_w_push = S_AXI_AWVALID & M_AXI_AWREADY & ~cmd_full; // SRL FIFO Pointer. always @ (posedge ACLK) begin if (ARESET) begin addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}}; end else begin if ( cmd_w_push & ~cmd_w_ready ) begin addr_ptr <= addr_ptr + 1; end else if ( ~cmd_w_push & cmd_w_ready ) begin addr_ptr <= addr_ptr - 1; end end end // Total number of buffered commands. assign all_addr_ptr = addr_ptr + cmd_b_addr + 2; // FIFO Flags. always @ (posedge ACLK) begin if (ARESET) begin cmd_full <= 1'b0; cmd_w_valid <= 1'b0; end else begin if ( cmd_w_push & ~cmd_w_ready ) begin cmd_w_valid <= 1'b1; end else if ( ~cmd_w_push & cmd_w_ready ) begin cmd_w_valid <= ( addr_ptr != 0 ); end if ( cmd_w_push & ~cmd_b_ready ) begin // Going to full. cmd_full <= ( all_addr_ptr == C_FIFO_DEPTH-3 ); end else if ( ~cmd_w_push & cmd_b_ready ) begin // Pop in middle of queue doesn't affect full status. cmd_full <= ( all_addr_ptr == C_FIFO_DEPTH-2 ); end end end // Infere SRL for storage. always @ (posedge ACLK) begin if ( cmd_w_push ) begin for (index = 0; index < C_FIFO_DEPTH-1 ; index = index + 1) begin data_srl[index+1] <= data_srl[index]; end data_srl[0] <= {access_is_optimized, S_AXI_AWID}; end end // Get current transaction info. assign {cmd_w_check, cmd_w_id} = data_srl[addr_ptr]; ///////////////////////////////////////////////////////////////////////////// // Transaction Throttling: // // Stall commands if FIFO is full. // ///////////////////////////////////////////////////////////////////////////// // Propagate masked valid. assign M_AXI_AWVALID = S_AXI_AWVALID & ~cmd_full; // Return ready with push back. assign S_AXI_AWREADY = M_AXI_AWREADY & ~cmd_full; ///////////////////////////////////////////////////////////////////////////// // Address Write propagation: // // All information is simply forwarded on from the SI- to MI-Side untouched. // ///////////////////////////////////////////////////////////////////////////// // 1:1 mapping. assign M_AXI_AWID = S_AXI_AWID; assign M_AXI_AWADDR = S_AXI_AWADDR; assign M_AXI_AWLEN = S_AXI_AWLEN; assign M_AXI_AWSIZE = S_AXI_AWSIZE; assign M_AXI_AWBURST = S_AXI_AWBURST; assign M_AXI_AWLOCK = S_AXI_AWLOCK; assign M_AXI_AWCACHE = S_AXI_AWCACHE; assign M_AXI_AWPROT = S_AXI_AWPROT; assign M_AXI_AWUSER = S_AXI_AWUSER; endmodule
module processing_system7_v5_5_aw_atc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6, spartan6 or later. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of checker. // Range: >= 1. parameter integer C_AXI_ADDR_WIDTH = 32, // Width of all ADDR signals on SI and MI side of checker. // Range: 32. parameter integer C_AXI_AWUSER_WIDTH = 1, // Width of AWUSER signals. // Range: >= 1. parameter integer C_FIFO_DEPTH_LOG = 4 ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface output reg cmd_w_valid, output wire cmd_w_check, output wire [C_AXI_ID_WIDTH-1:0] cmd_w_id, input wire cmd_w_ready, input wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr, input wire cmd_b_ready, // Slave Interface Write Address Port input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR, input wire [4-1:0] S_AXI_AWLEN, input wire [3-1:0] S_AXI_AWSIZE, input wire [2-1:0] S_AXI_AWBURST, input wire [2-1:0] S_AXI_AWLOCK, input wire [4-1:0] S_AXI_AWCACHE, input wire [3-1:0] S_AXI_AWPROT, input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER, input wire S_AXI_AWVALID, output wire S_AXI_AWREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID, output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR, output wire [4-1:0] M_AXI_AWLEN, output wire [3-1:0] M_AXI_AWSIZE, output wire [2-1:0] M_AXI_AWBURST, output wire [2-1:0] M_AXI_AWLOCK, output wire [4-1:0] M_AXI_AWCACHE, output wire [3-1:0] M_AXI_AWPROT, output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER, output wire M_AXI_AWVALID, input wire M_AXI_AWREADY ); ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Constants for burst types. localparam [2-1:0] C_FIX_BURST = 2'b00; localparam [2-1:0] C_INCR_BURST = 2'b01; localparam [2-1:0] C_WRAP_BURST = 2'b10; // Constants for size. localparam [3-1:0] C_OPTIMIZED_SIZE = 3'b011; // Constants for length. localparam [4-1:0] C_OPTIMIZED_LEN = 4'b0011; // Constants for cacheline address. localparam [4-1:0] C_NO_ADDR_OFFSET = 5'b0; // Command FIFO settings localparam C_FIFO_WIDTH = C_AXI_ID_WIDTH + 1; localparam C_FIFO_DEPTH = 2 ** C_FIFO_DEPTH_LOG; ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// integer index; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Transaction properties. wire access_is_incr; wire access_is_wrap; wire access_is_coherent; wire access_optimized_size; wire incr_addr_boundary; wire incr_is_optimized; wire wrap_is_optimized; wire access_is_optimized; // Command FIFO. wire cmd_w_push; reg cmd_full; reg [C_FIFO_DEPTH_LOG-1:0] addr_ptr; wire [C_FIFO_DEPTH_LOG-1:0] all_addr_ptr; reg [C_FIFO_WIDTH-1:0] data_srl[C_FIFO_DEPTH-1:0]; ///////////////////////////////////////////////////////////////////////////// // Transaction Decode: // // Detect if transaction is of correct typ, size and length to qualify as // an optimized transaction that has to be checked for errors. // ///////////////////////////////////////////////////////////////////////////// // Transaction burst type. assign access_is_incr = ( S_AXI_AWBURST == C_INCR_BURST ); assign access_is_wrap = ( S_AXI_AWBURST == C_WRAP_BURST ); // Transaction has to be Coherent. assign access_is_coherent = ( S_AXI_AWUSER[0] == 1'b1 ) & ( S_AXI_AWCACHE[1] == 1'b1 ); // Transaction cacheline boundary address. assign incr_addr_boundary = ( S_AXI_AWADDR[4:0] == C_NO_ADDR_OFFSET ); // Transaction length & size. assign access_optimized_size = ( S_AXI_AWSIZE == C_OPTIMIZED_SIZE ) & ( S_AXI_AWLEN == C_OPTIMIZED_LEN ); // Transaction is optimized. assign incr_is_optimized = access_is_incr & access_is_coherent & access_optimized_size & incr_addr_boundary; assign wrap_is_optimized = access_is_wrap & access_is_coherent & access_optimized_size; assign access_is_optimized = ( incr_is_optimized | wrap_is_optimized ); ///////////////////////////////////////////////////////////////////////////// // Command FIFO: // // Since supported write interleaving is only 1, it is safe to use only a // simple SRL based FIFO as a command queue. // ///////////////////////////////////////////////////////////////////////////// // Determine when transaction infromation is pushed to the FIFO. assign cmd_w_push = S_AXI_AWVALID & M_AXI_AWREADY & ~cmd_full; // SRL FIFO Pointer. always @ (posedge ACLK) begin if (ARESET) begin addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}}; end else begin if ( cmd_w_push & ~cmd_w_ready ) begin addr_ptr <= addr_ptr + 1; end else if ( ~cmd_w_push & cmd_w_ready ) begin addr_ptr <= addr_ptr - 1; end end end // Total number of buffered commands. assign all_addr_ptr = addr_ptr + cmd_b_addr + 2; // FIFO Flags. always @ (posedge ACLK) begin if (ARESET) begin cmd_full <= 1'b0; cmd_w_valid <= 1'b0; end else begin if ( cmd_w_push & ~cmd_w_ready ) begin cmd_w_valid <= 1'b1; end else if ( ~cmd_w_push & cmd_w_ready ) begin cmd_w_valid <= ( addr_ptr != 0 ); end if ( cmd_w_push & ~cmd_b_ready ) begin // Going to full. cmd_full <= ( all_addr_ptr == C_FIFO_DEPTH-3 ); end else if ( ~cmd_w_push & cmd_b_ready ) begin // Pop in middle of queue doesn't affect full status. cmd_full <= ( all_addr_ptr == C_FIFO_DEPTH-2 ); end end end // Infere SRL for storage. always @ (posedge ACLK) begin if ( cmd_w_push ) begin for (index = 0; index < C_FIFO_DEPTH-1 ; index = index + 1) begin data_srl[index+1] <= data_srl[index]; end data_srl[0] <= {access_is_optimized, S_AXI_AWID}; end end // Get current transaction info. assign {cmd_w_check, cmd_w_id} = data_srl[addr_ptr]; ///////////////////////////////////////////////////////////////////////////// // Transaction Throttling: // // Stall commands if FIFO is full. // ///////////////////////////////////////////////////////////////////////////// // Propagate masked valid. assign M_AXI_AWVALID = S_AXI_AWVALID & ~cmd_full; // Return ready with push back. assign S_AXI_AWREADY = M_AXI_AWREADY & ~cmd_full; ///////////////////////////////////////////////////////////////////////////// // Address Write propagation: // // All information is simply forwarded on from the SI- to MI-Side untouched. // ///////////////////////////////////////////////////////////////////////////// // 1:1 mapping. assign M_AXI_AWID = S_AXI_AWID; assign M_AXI_AWADDR = S_AXI_AWADDR; assign M_AXI_AWLEN = S_AXI_AWLEN; assign M_AXI_AWSIZE = S_AXI_AWSIZE; assign M_AXI_AWBURST = S_AXI_AWBURST; assign M_AXI_AWLOCK = S_AXI_AWLOCK; assign M_AXI_AWCACHE = S_AXI_AWCACHE; assign M_AXI_AWPROT = S_AXI_AWPROT; assign M_AXI_AWUSER = S_AXI_AWUSER; endmodule
module processing_system7_v5_5_aw_atc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6, spartan6 or later. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of checker. // Range: >= 1. parameter integer C_AXI_ADDR_WIDTH = 32, // Width of all ADDR signals on SI and MI side of checker. // Range: 32. parameter integer C_AXI_AWUSER_WIDTH = 1, // Width of AWUSER signals. // Range: >= 1. parameter integer C_FIFO_DEPTH_LOG = 4 ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface output reg cmd_w_valid, output wire cmd_w_check, output wire [C_AXI_ID_WIDTH-1:0] cmd_w_id, input wire cmd_w_ready, input wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr, input wire cmd_b_ready, // Slave Interface Write Address Port input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR, input wire [4-1:0] S_AXI_AWLEN, input wire [3-1:0] S_AXI_AWSIZE, input wire [2-1:0] S_AXI_AWBURST, input wire [2-1:0] S_AXI_AWLOCK, input wire [4-1:0] S_AXI_AWCACHE, input wire [3-1:0] S_AXI_AWPROT, input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER, input wire S_AXI_AWVALID, output wire S_AXI_AWREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID, output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR, output wire [4-1:0] M_AXI_AWLEN, output wire [3-1:0] M_AXI_AWSIZE, output wire [2-1:0] M_AXI_AWBURST, output wire [2-1:0] M_AXI_AWLOCK, output wire [4-1:0] M_AXI_AWCACHE, output wire [3-1:0] M_AXI_AWPROT, output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER, output wire M_AXI_AWVALID, input wire M_AXI_AWREADY ); ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Constants for burst types. localparam [2-1:0] C_FIX_BURST = 2'b00; localparam [2-1:0] C_INCR_BURST = 2'b01; localparam [2-1:0] C_WRAP_BURST = 2'b10; // Constants for size. localparam [3-1:0] C_OPTIMIZED_SIZE = 3'b011; // Constants for length. localparam [4-1:0] C_OPTIMIZED_LEN = 4'b0011; // Constants for cacheline address. localparam [4-1:0] C_NO_ADDR_OFFSET = 5'b0; // Command FIFO settings localparam C_FIFO_WIDTH = C_AXI_ID_WIDTH + 1; localparam C_FIFO_DEPTH = 2 ** C_FIFO_DEPTH_LOG; ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// integer index; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Transaction properties. wire access_is_incr; wire access_is_wrap; wire access_is_coherent; wire access_optimized_size; wire incr_addr_boundary; wire incr_is_optimized; wire wrap_is_optimized; wire access_is_optimized; // Command FIFO. wire cmd_w_push; reg cmd_full; reg [C_FIFO_DEPTH_LOG-1:0] addr_ptr; wire [C_FIFO_DEPTH_LOG-1:0] all_addr_ptr; reg [C_FIFO_WIDTH-1:0] data_srl[C_FIFO_DEPTH-1:0]; ///////////////////////////////////////////////////////////////////////////// // Transaction Decode: // // Detect if transaction is of correct typ, size and length to qualify as // an optimized transaction that has to be checked for errors. // ///////////////////////////////////////////////////////////////////////////// // Transaction burst type. assign access_is_incr = ( S_AXI_AWBURST == C_INCR_BURST ); assign access_is_wrap = ( S_AXI_AWBURST == C_WRAP_BURST ); // Transaction has to be Coherent. assign access_is_coherent = ( S_AXI_AWUSER[0] == 1'b1 ) & ( S_AXI_AWCACHE[1] == 1'b1 ); // Transaction cacheline boundary address. assign incr_addr_boundary = ( S_AXI_AWADDR[4:0] == C_NO_ADDR_OFFSET ); // Transaction length & size. assign access_optimized_size = ( S_AXI_AWSIZE == C_OPTIMIZED_SIZE ) & ( S_AXI_AWLEN == C_OPTIMIZED_LEN ); // Transaction is optimized. assign incr_is_optimized = access_is_incr & access_is_coherent & access_optimized_size & incr_addr_boundary; assign wrap_is_optimized = access_is_wrap & access_is_coherent & access_optimized_size; assign access_is_optimized = ( incr_is_optimized | wrap_is_optimized ); ///////////////////////////////////////////////////////////////////////////// // Command FIFO: // // Since supported write interleaving is only 1, it is safe to use only a // simple SRL based FIFO as a command queue. // ///////////////////////////////////////////////////////////////////////////// // Determine when transaction infromation is pushed to the FIFO. assign cmd_w_push = S_AXI_AWVALID & M_AXI_AWREADY & ~cmd_full; // SRL FIFO Pointer. always @ (posedge ACLK) begin if (ARESET) begin addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}}; end else begin if ( cmd_w_push & ~cmd_w_ready ) begin addr_ptr <= addr_ptr + 1; end else if ( ~cmd_w_push & cmd_w_ready ) begin addr_ptr <= addr_ptr - 1; end end end // Total number of buffered commands. assign all_addr_ptr = addr_ptr + cmd_b_addr + 2; // FIFO Flags. always @ (posedge ACLK) begin if (ARESET) begin cmd_full <= 1'b0; cmd_w_valid <= 1'b0; end else begin if ( cmd_w_push & ~cmd_w_ready ) begin cmd_w_valid <= 1'b1; end else if ( ~cmd_w_push & cmd_w_ready ) begin cmd_w_valid <= ( addr_ptr != 0 ); end if ( cmd_w_push & ~cmd_b_ready ) begin // Going to full. cmd_full <= ( all_addr_ptr == C_FIFO_DEPTH-3 ); end else if ( ~cmd_w_push & cmd_b_ready ) begin // Pop in middle of queue doesn't affect full status. cmd_full <= ( all_addr_ptr == C_FIFO_DEPTH-2 ); end end end // Infere SRL for storage. always @ (posedge ACLK) begin if ( cmd_w_push ) begin for (index = 0; index < C_FIFO_DEPTH-1 ; index = index + 1) begin data_srl[index+1] <= data_srl[index]; end data_srl[0] <= {access_is_optimized, S_AXI_AWID}; end end // Get current transaction info. assign {cmd_w_check, cmd_w_id} = data_srl[addr_ptr]; ///////////////////////////////////////////////////////////////////////////// // Transaction Throttling: // // Stall commands if FIFO is full. // ///////////////////////////////////////////////////////////////////////////// // Propagate masked valid. assign M_AXI_AWVALID = S_AXI_AWVALID & ~cmd_full; // Return ready with push back. assign S_AXI_AWREADY = M_AXI_AWREADY & ~cmd_full; ///////////////////////////////////////////////////////////////////////////// // Address Write propagation: // // All information is simply forwarded on from the SI- to MI-Side untouched. // ///////////////////////////////////////////////////////////////////////////// // 1:1 mapping. assign M_AXI_AWID = S_AXI_AWID; assign M_AXI_AWADDR = S_AXI_AWADDR; assign M_AXI_AWLEN = S_AXI_AWLEN; assign M_AXI_AWSIZE = S_AXI_AWSIZE; assign M_AXI_AWBURST = S_AXI_AWBURST; assign M_AXI_AWLOCK = S_AXI_AWLOCK; assign M_AXI_AWCACHE = S_AXI_AWCACHE; assign M_AXI_AWPROT = S_AXI_AWPROT; assign M_AXI_AWUSER = S_AXI_AWUSER; endmodule
module processing_system7_v5_5_aw_atc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6, spartan6 or later. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of checker. // Range: >= 1. parameter integer C_AXI_ADDR_WIDTH = 32, // Width of all ADDR signals on SI and MI side of checker. // Range: 32. parameter integer C_AXI_AWUSER_WIDTH = 1, // Width of AWUSER signals. // Range: >= 1. parameter integer C_FIFO_DEPTH_LOG = 4 ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface output reg cmd_w_valid, output wire cmd_w_check, output wire [C_AXI_ID_WIDTH-1:0] cmd_w_id, input wire cmd_w_ready, input wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr, input wire cmd_b_ready, // Slave Interface Write Address Port input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR, input wire [4-1:0] S_AXI_AWLEN, input wire [3-1:0] S_AXI_AWSIZE, input wire [2-1:0] S_AXI_AWBURST, input wire [2-1:0] S_AXI_AWLOCK, input wire [4-1:0] S_AXI_AWCACHE, input wire [3-1:0] S_AXI_AWPROT, input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER, input wire S_AXI_AWVALID, output wire S_AXI_AWREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID, output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR, output wire [4-1:0] M_AXI_AWLEN, output wire [3-1:0] M_AXI_AWSIZE, output wire [2-1:0] M_AXI_AWBURST, output wire [2-1:0] M_AXI_AWLOCK, output wire [4-1:0] M_AXI_AWCACHE, output wire [3-1:0] M_AXI_AWPROT, output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER, output wire M_AXI_AWVALID, input wire M_AXI_AWREADY ); ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Constants for burst types. localparam [2-1:0] C_FIX_BURST = 2'b00; localparam [2-1:0] C_INCR_BURST = 2'b01; localparam [2-1:0] C_WRAP_BURST = 2'b10; // Constants for size. localparam [3-1:0] C_OPTIMIZED_SIZE = 3'b011; // Constants for length. localparam [4-1:0] C_OPTIMIZED_LEN = 4'b0011; // Constants for cacheline address. localparam [4-1:0] C_NO_ADDR_OFFSET = 5'b0; // Command FIFO settings localparam C_FIFO_WIDTH = C_AXI_ID_WIDTH + 1; localparam C_FIFO_DEPTH = 2 ** C_FIFO_DEPTH_LOG; ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// integer index; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Transaction properties. wire access_is_incr; wire access_is_wrap; wire access_is_coherent; wire access_optimized_size; wire incr_addr_boundary; wire incr_is_optimized; wire wrap_is_optimized; wire access_is_optimized; // Command FIFO. wire cmd_w_push; reg cmd_full; reg [C_FIFO_DEPTH_LOG-1:0] addr_ptr; wire [C_FIFO_DEPTH_LOG-1:0] all_addr_ptr; reg [C_FIFO_WIDTH-1:0] data_srl[C_FIFO_DEPTH-1:0]; ///////////////////////////////////////////////////////////////////////////// // Transaction Decode: // // Detect if transaction is of correct typ, size and length to qualify as // an optimized transaction that has to be checked for errors. // ///////////////////////////////////////////////////////////////////////////// // Transaction burst type. assign access_is_incr = ( S_AXI_AWBURST == C_INCR_BURST ); assign access_is_wrap = ( S_AXI_AWBURST == C_WRAP_BURST ); // Transaction has to be Coherent. assign access_is_coherent = ( S_AXI_AWUSER[0] == 1'b1 ) & ( S_AXI_AWCACHE[1] == 1'b1 ); // Transaction cacheline boundary address. assign incr_addr_boundary = ( S_AXI_AWADDR[4:0] == C_NO_ADDR_OFFSET ); // Transaction length & size. assign access_optimized_size = ( S_AXI_AWSIZE == C_OPTIMIZED_SIZE ) & ( S_AXI_AWLEN == C_OPTIMIZED_LEN ); // Transaction is optimized. assign incr_is_optimized = access_is_incr & access_is_coherent & access_optimized_size & incr_addr_boundary; assign wrap_is_optimized = access_is_wrap & access_is_coherent & access_optimized_size; assign access_is_optimized = ( incr_is_optimized | wrap_is_optimized ); ///////////////////////////////////////////////////////////////////////////// // Command FIFO: // // Since supported write interleaving is only 1, it is safe to use only a // simple SRL based FIFO as a command queue. // ///////////////////////////////////////////////////////////////////////////// // Determine when transaction infromation is pushed to the FIFO. assign cmd_w_push = S_AXI_AWVALID & M_AXI_AWREADY & ~cmd_full; // SRL FIFO Pointer. always @ (posedge ACLK) begin if (ARESET) begin addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}}; end else begin if ( cmd_w_push & ~cmd_w_ready ) begin addr_ptr <= addr_ptr + 1; end else if ( ~cmd_w_push & cmd_w_ready ) begin addr_ptr <= addr_ptr - 1; end end end // Total number of buffered commands. assign all_addr_ptr = addr_ptr + cmd_b_addr + 2; // FIFO Flags. always @ (posedge ACLK) begin if (ARESET) begin cmd_full <= 1'b0; cmd_w_valid <= 1'b0; end else begin if ( cmd_w_push & ~cmd_w_ready ) begin cmd_w_valid <= 1'b1; end else if ( ~cmd_w_push & cmd_w_ready ) begin cmd_w_valid <= ( addr_ptr != 0 ); end if ( cmd_w_push & ~cmd_b_ready ) begin // Going to full. cmd_full <= ( all_addr_ptr == C_FIFO_DEPTH-3 ); end else if ( ~cmd_w_push & cmd_b_ready ) begin // Pop in middle of queue doesn't affect full status. cmd_full <= ( all_addr_ptr == C_FIFO_DEPTH-2 ); end end end // Infere SRL for storage. always @ (posedge ACLK) begin if ( cmd_w_push ) begin for (index = 0; index < C_FIFO_DEPTH-1 ; index = index + 1) begin data_srl[index+1] <= data_srl[index]; end data_srl[0] <= {access_is_optimized, S_AXI_AWID}; end end // Get current transaction info. assign {cmd_w_check, cmd_w_id} = data_srl[addr_ptr]; ///////////////////////////////////////////////////////////////////////////// // Transaction Throttling: // // Stall commands if FIFO is full. // ///////////////////////////////////////////////////////////////////////////// // Propagate masked valid. assign M_AXI_AWVALID = S_AXI_AWVALID & ~cmd_full; // Return ready with push back. assign S_AXI_AWREADY = M_AXI_AWREADY & ~cmd_full; ///////////////////////////////////////////////////////////////////////////// // Address Write propagation: // // All information is simply forwarded on from the SI- to MI-Side untouched. // ///////////////////////////////////////////////////////////////////////////// // 1:1 mapping. assign M_AXI_AWID = S_AXI_AWID; assign M_AXI_AWADDR = S_AXI_AWADDR; assign M_AXI_AWLEN = S_AXI_AWLEN; assign M_AXI_AWSIZE = S_AXI_AWSIZE; assign M_AXI_AWBURST = S_AXI_AWBURST; assign M_AXI_AWLOCK = S_AXI_AWLOCK; assign M_AXI_AWCACHE = S_AXI_AWCACHE; assign M_AXI_AWPROT = S_AXI_AWPROT; assign M_AXI_AWUSER = S_AXI_AWUSER; endmodule
module processing_system7_v5_5_aw_atc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6, spartan6 or later. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of checker. // Range: >= 1. parameter integer C_AXI_ADDR_WIDTH = 32, // Width of all ADDR signals on SI and MI side of checker. // Range: 32. parameter integer C_AXI_AWUSER_WIDTH = 1, // Width of AWUSER signals. // Range: >= 1. parameter integer C_FIFO_DEPTH_LOG = 4 ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface output reg cmd_w_valid, output wire cmd_w_check, output wire [C_AXI_ID_WIDTH-1:0] cmd_w_id, input wire cmd_w_ready, input wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr, input wire cmd_b_ready, // Slave Interface Write Address Port input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR, input wire [4-1:0] S_AXI_AWLEN, input wire [3-1:0] S_AXI_AWSIZE, input wire [2-1:0] S_AXI_AWBURST, input wire [2-1:0] S_AXI_AWLOCK, input wire [4-1:0] S_AXI_AWCACHE, input wire [3-1:0] S_AXI_AWPROT, input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER, input wire S_AXI_AWVALID, output wire S_AXI_AWREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID, output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR, output wire [4-1:0] M_AXI_AWLEN, output wire [3-1:0] M_AXI_AWSIZE, output wire [2-1:0] M_AXI_AWBURST, output wire [2-1:0] M_AXI_AWLOCK, output wire [4-1:0] M_AXI_AWCACHE, output wire [3-1:0] M_AXI_AWPROT, output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER, output wire M_AXI_AWVALID, input wire M_AXI_AWREADY ); ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Constants for burst types. localparam [2-1:0] C_FIX_BURST = 2'b00; localparam [2-1:0] C_INCR_BURST = 2'b01; localparam [2-1:0] C_WRAP_BURST = 2'b10; // Constants for size. localparam [3-1:0] C_OPTIMIZED_SIZE = 3'b011; // Constants for length. localparam [4-1:0] C_OPTIMIZED_LEN = 4'b0011; // Constants for cacheline address. localparam [4-1:0] C_NO_ADDR_OFFSET = 5'b0; // Command FIFO settings localparam C_FIFO_WIDTH = C_AXI_ID_WIDTH + 1; localparam C_FIFO_DEPTH = 2 ** C_FIFO_DEPTH_LOG; ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// integer index; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Transaction properties. wire access_is_incr; wire access_is_wrap; wire access_is_coherent; wire access_optimized_size; wire incr_addr_boundary; wire incr_is_optimized; wire wrap_is_optimized; wire access_is_optimized; // Command FIFO. wire cmd_w_push; reg cmd_full; reg [C_FIFO_DEPTH_LOG-1:0] addr_ptr; wire [C_FIFO_DEPTH_LOG-1:0] all_addr_ptr; reg [C_FIFO_WIDTH-1:0] data_srl[C_FIFO_DEPTH-1:0]; ///////////////////////////////////////////////////////////////////////////// // Transaction Decode: // // Detect if transaction is of correct typ, size and length to qualify as // an optimized transaction that has to be checked for errors. // ///////////////////////////////////////////////////////////////////////////// // Transaction burst type. assign access_is_incr = ( S_AXI_AWBURST == C_INCR_BURST ); assign access_is_wrap = ( S_AXI_AWBURST == C_WRAP_BURST ); // Transaction has to be Coherent. assign access_is_coherent = ( S_AXI_AWUSER[0] == 1'b1 ) & ( S_AXI_AWCACHE[1] == 1'b1 ); // Transaction cacheline boundary address. assign incr_addr_boundary = ( S_AXI_AWADDR[4:0] == C_NO_ADDR_OFFSET ); // Transaction length & size. assign access_optimized_size = ( S_AXI_AWSIZE == C_OPTIMIZED_SIZE ) & ( S_AXI_AWLEN == C_OPTIMIZED_LEN ); // Transaction is optimized. assign incr_is_optimized = access_is_incr & access_is_coherent & access_optimized_size & incr_addr_boundary; assign wrap_is_optimized = access_is_wrap & access_is_coherent & access_optimized_size; assign access_is_optimized = ( incr_is_optimized | wrap_is_optimized ); ///////////////////////////////////////////////////////////////////////////// // Command FIFO: // // Since supported write interleaving is only 1, it is safe to use only a // simple SRL based FIFO as a command queue. // ///////////////////////////////////////////////////////////////////////////// // Determine when transaction infromation is pushed to the FIFO. assign cmd_w_push = S_AXI_AWVALID & M_AXI_AWREADY & ~cmd_full; // SRL FIFO Pointer. always @ (posedge ACLK) begin if (ARESET) begin addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}}; end else begin if ( cmd_w_push & ~cmd_w_ready ) begin addr_ptr <= addr_ptr + 1; end else if ( ~cmd_w_push & cmd_w_ready ) begin addr_ptr <= addr_ptr - 1; end end end // Total number of buffered commands. assign all_addr_ptr = addr_ptr + cmd_b_addr + 2; // FIFO Flags. always @ (posedge ACLK) begin if (ARESET) begin cmd_full <= 1'b0; cmd_w_valid <= 1'b0; end else begin if ( cmd_w_push & ~cmd_w_ready ) begin cmd_w_valid <= 1'b1; end else if ( ~cmd_w_push & cmd_w_ready ) begin cmd_w_valid <= ( addr_ptr != 0 ); end if ( cmd_w_push & ~cmd_b_ready ) begin // Going to full. cmd_full <= ( all_addr_ptr == C_FIFO_DEPTH-3 ); end else if ( ~cmd_w_push & cmd_b_ready ) begin // Pop in middle of queue doesn't affect full status. cmd_full <= ( all_addr_ptr == C_FIFO_DEPTH-2 ); end end end // Infere SRL for storage. always @ (posedge ACLK) begin if ( cmd_w_push ) begin for (index = 0; index < C_FIFO_DEPTH-1 ; index = index + 1) begin data_srl[index+1] <= data_srl[index]; end data_srl[0] <= {access_is_optimized, S_AXI_AWID}; end end // Get current transaction info. assign {cmd_w_check, cmd_w_id} = data_srl[addr_ptr]; ///////////////////////////////////////////////////////////////////////////// // Transaction Throttling: // // Stall commands if FIFO is full. // ///////////////////////////////////////////////////////////////////////////// // Propagate masked valid. assign M_AXI_AWVALID = S_AXI_AWVALID & ~cmd_full; // Return ready with push back. assign S_AXI_AWREADY = M_AXI_AWREADY & ~cmd_full; ///////////////////////////////////////////////////////////////////////////// // Address Write propagation: // // All information is simply forwarded on from the SI- to MI-Side untouched. // ///////////////////////////////////////////////////////////////////////////// // 1:1 mapping. assign M_AXI_AWID = S_AXI_AWID; assign M_AXI_AWADDR = S_AXI_AWADDR; assign M_AXI_AWLEN = S_AXI_AWLEN; assign M_AXI_AWSIZE = S_AXI_AWSIZE; assign M_AXI_AWBURST = S_AXI_AWBURST; assign M_AXI_AWLOCK = S_AXI_AWLOCK; assign M_AXI_AWCACHE = S_AXI_AWCACHE; assign M_AXI_AWPROT = S_AXI_AWPROT; assign M_AXI_AWUSER = S_AXI_AWUSER; endmodule
module adc_interface (input clock, input reset, input enable, input wire [6:0] serial_addr, input wire [31:0] serial_data, input serial_strobe, input wire [11:0] rx_a_a, input wire [11:0] rx_b_a, input wire [11:0] rx_a_b, input wire [11:0] rx_b_b, output wire [31:0] rssi_0, output wire [31:0] rssi_1, output wire [31:0] rssi_2, output wire [31:0] rssi_3, output reg [15:0] ddc0_in_i, output reg [15:0] ddc0_in_q, output reg [15:0] ddc1_in_i, output reg [15:0] ddc1_in_q, output reg [15:0] ddc2_in_i, output reg [15:0] ddc2_in_q, output reg [15:0] ddc3_in_i, output reg [15:0] ddc3_in_q, output wire [3:0] rx_numchan); // Buffer at input to chip reg [11:0] adc0,adc1,adc2,adc3; always @(posedge clock) begin adc0 <= #1 rx_a_a; adc1 <= #1 rx_b_a; adc2 <= #1 rx_a_b; adc3 <= #1 rx_b_b; end // then scale and subtract dc offset wire [3:0] dco_en; wire [15:0] adc0_corr,adc1_corr,adc2_corr,adc3_corr; setting_reg #(`FR_DC_OFFSET_CL_EN) sr_dco_en(.clock(clock),.reset(reset),.strobe(serial_strobe),.addr(serial_addr),.in(serial_data), .out(dco_en)); rx_dcoffset #(`FR_ADC_OFFSET_0) rx_dcoffset0(.clock(clock),.enable(dco_en[0]),.reset(reset),.adc_in({adc0[11],adc0,3'b0}),.adc_out(adc0_corr), .serial_addr(serial_addr),.serial_data(serial_data),.serial_strobe(serial_strobe)); rx_dcoffset #(`FR_ADC_OFFSET_1) rx_dcoffset1(.clock(clock),.enable(dco_en[1]),.reset(reset),.adc_in({adc1[11],adc1,3'b0}),.adc_out(adc1_corr), .serial_addr(serial_addr),.serial_data(serial_data),.serial_strobe(serial_strobe)); rx_dcoffset #(`FR_ADC_OFFSET_2) rx_dcoffset2(.clock(clock),.enable(dco_en[2]),.reset(reset),.adc_in({adc2[11],adc2,3'b0}),.adc_out(adc2_corr), .serial_addr(serial_addr),.serial_data(serial_data),.serial_strobe(serial_strobe)); rx_dcoffset #(`FR_ADC_OFFSET_3) rx_dcoffset3(.clock(clock),.enable(dco_en[3]),.reset(reset),.adc_in({adc3[11],adc3,3'b0}),.adc_out(adc3_corr), .serial_addr(serial_addr),.serial_data(serial_data),.serial_strobe(serial_strobe)); // Level sensing for AGC rssi rssi_block_0 (.clock(clock),.reset(reset),.enable(enable),.adc(adc0),.rssi(rssi_0[15:0]),.over_count(rssi_0[31:16])); rssi rssi_block_1 (.clock(clock),.reset(reset),.enable(enable),.adc(adc1),.rssi(rssi_1[15:0]),.over_count(rssi_1[31:16])); rssi rssi_block_2 (.clock(clock),.reset(reset),.enable(enable),.adc(adc2),.rssi(rssi_2[15:0]),.over_count(rssi_2[31:16])); rssi rssi_block_3 (.clock(clock),.reset(reset),.enable(enable),.adc(adc3),.rssi(rssi_3[15:0]),.over_count(rssi_3[31:16])); // And mux to the appropriate outputs wire [3:0] ddc3mux,ddc2mux,ddc1mux,ddc0mux; wire rx_realsignals; setting_reg #(`FR_RX_MUX) sr_rxmux(.clock(clock),.reset(reset),.strobe(serial_strobe),.addr(serial_addr), .in(serial_data),.out({ddc3mux,ddc2mux,ddc1mux,ddc0mux,rx_realsignals,rx_numchan[3:1]})); assign rx_numchan[0] = 1'b0; always @(posedge clock) begin ddc0_in_i <= #1 ddc0mux[1] ? (ddc0mux[0] ? adc3_corr : adc2_corr) : (ddc0mux[0] ? adc1_corr : adc0_corr); ddc0_in_q <= #1 rx_realsignals ? 16'd0 : ddc0mux[3] ? (ddc0mux[2] ? adc3_corr : adc2_corr) : (ddc0mux[2] ? adc1_corr : adc0_corr); ddc1_in_i <= #1 ddc1mux[1] ? (ddc1mux[0] ? adc3_corr : adc2_corr) : (ddc1mux[0] ? adc1_corr : adc0_corr); ddc1_in_q <= #1 rx_realsignals ? 16'd0 : ddc1mux[3] ? (ddc1mux[2] ? adc3_corr : adc2_corr) : (ddc1mux[2] ? adc1_corr : adc0_corr); ddc2_in_i <= #1 ddc2mux[1] ? (ddc2mux[0] ? adc3_corr : adc2_corr) : (ddc2mux[0] ? adc1_corr : adc0_corr); ddc2_in_q <= #1 rx_realsignals ? 16'd0 : ddc2mux[3] ? (ddc2mux[2] ? adc3_corr : adc2_corr) : (ddc2mux[2] ? adc1_corr : adc0_corr); ddc3_in_i <= #1 ddc3mux[1] ? (ddc3mux[0] ? adc3_corr : adc2_corr) : (ddc3mux[0] ? adc1_corr : adc0_corr); ddc3_in_q <= #1 rx_realsignals ? 16'd0 : ddc3mux[3] ? (ddc3mux[2] ? adc3_corr : adc2_corr) : (ddc3mux[2] ? adc1_corr : adc0_corr); end endmodule
module traffic; parameter on = 1, off = 0, red_tics = 35, amber_tics = 3, green_tics = 20; reg clock, red, amber, green; // will stop the simulation after 1000 time units initial begin: stop_at #1000; $stop; end // initialize the lights and set up monitoring of registers initial begin: Init red = off; amber = off; green = off; $display(" Time green amber red"); $monitor("%3d %b %b %b", $time, green, amber, red); end // task to wait for 'tics' positive edge clocks // before turning light off task light; output color; input [31:0] tics; begin repeat(tics) // wait to detect tics positive edges on clock @(posedge clock); color = off; end endtask // waveform for clock period of 2 time units always begin: clock_wave #1 clock = 0; #1 clock = 1; end always begin: main_process red = on; light(red, red_tics); // call task to wait green = on; light(green, green_tics); amber = on; light(amber, amber_tics); end endmodule
module traffic; parameter on = 1, off = 0, red_tics = 35, amber_tics = 3, green_tics = 20; reg clock, red, amber, green; // will stop the simulation after 1000 time units initial begin: stop_at #1000; $stop; end // initialize the lights and set up monitoring of registers initial begin: Init red = off; amber = off; green = off; $display(" Time green amber red"); $monitor("%3d %b %b %b", $time, green, amber, red); end // task to wait for 'tics' positive edge clocks // before turning light off task light; output color; input [31:0] tics; begin repeat(tics) // wait to detect tics positive edges on clock @(posedge clock); color = off; end endtask // waveform for clock period of 2 time units always begin: clock_wave #1 clock = 0; #1 clock = 1; end always begin: main_process red = on; light(red, red_tics); // call task to wait green = on; light(green, green_tics); amber = on; light(amber, amber_tics); end endmodule
module traffic; parameter on = 1, off = 0, red_tics = 35, amber_tics = 3, green_tics = 20; reg clock, red, amber, green; // will stop the simulation after 1000 time units initial begin: stop_at #1000; $stop; end // initialize the lights and set up monitoring of registers initial begin: Init red = off; amber = off; green = off; $display(" Time green amber red"); $monitor("%3d %b %b %b", $time, green, amber, red); end // task to wait for 'tics' positive edge clocks // before turning light off task light; output color; input [31:0] tics; begin repeat(tics) // wait to detect tics positive edges on clock @(posedge clock); color = off; end endtask // waveform for clock period of 2 time units always begin: clock_wave #1 clock = 0; #1 clock = 1; end always begin: main_process red = on; light(red, red_tics); // call task to wait green = on; light(green, green_tics); amber = on; light(amber, amber_tics); end endmodule