module_content
stringlengths
18
1.05M
module inputs and outputs to the internal signals of the * behavioral model. *************************************************************************/ //Inputs /* wire [C_DIN_WIDTH-1:0] DIN; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE; wire RD_CLK; wire RD_EN; wire RST; wire WR_CLK; wire WR_EN; */ //*************************************************************************** // Dout may change behavior based on latency //*************************************************************************** assign ideal_dout_out[C_DOUT_WIDTH-1:0] = (C_PRELOAD_LATENCY==2 && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) )? ideal_dout_d1: ideal_dout; assign DOUT[C_DOUT_WIDTH-1:0] = ideal_dout_out; //*************************************************************************** // Assign SBITERR and DBITERR based on latency //*************************************************************************** assign SBITERR = (C_ERROR_INJECTION_TYPE == 1 || C_ERROR_INJECTION_TYPE == 3) && (C_PRELOAD_LATENCY == 2 && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) ) ? err_type_d1[0]: err_type[0]; assign DBITERR = (C_ERROR_INJECTION_TYPE == 2 || C_ERROR_INJECTION_TYPE == 3) && (C_PRELOAD_LATENCY==2 && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ? err_type_d1[1]: err_type[1]; //*************************************************************************** // Safety-ckt logic with embedded reg/fabric reg //*************************************************************************** generate if ((C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_EN_SAFETY_CKT==1 && C_USE_EMBEDDED_REG < 3) begin reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1; reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2; reg [1:0] rst_delayed_sft1 =1; reg [1:0] rst_delayed_sft2 =1; reg [1:0] rst_delayed_sft3 =1; reg [1:0] rst_delayed_sft4 =1; // if (C_HAS_VALID == 1) begin // assign valid_out = valid_d1; // end always@(posedge RD_CLK) begin rst_delayed_sft1 <= #`TCQ rd_rst_i; rst_delayed_sft2 <= #`TCQ rst_delayed_sft1; rst_delayed_sft3 <= #`TCQ rst_delayed_sft2; rst_delayed_sft4 <= #`TCQ rst_delayed_sft3; end always@(posedge rst_delayed_sft4 or posedge rd_rst_i or posedge RD_CLK) begin if( rst_delayed_sft4 == 1'b1 || rd_rst_i == 1'b1) ram_rd_en_d1 <= #`TCQ 1'b0; else ram_rd_en_d1 <= #`TCQ ram_rd_en; end always@(posedge rst_delayed_sft2 or posedge RD_CLK) begin if (rst_delayed_sft2 == 1'b1) begin if (C_USE_DOUT_RST == 1'b1) begin @(posedge RD_CLK) ideal_dout_d1 <= #`TCQ dout_reset_val; end end else begin if (ram_rd_en_d1) begin ideal_dout_d1 <= #`TCQ ideal_dout; err_type_d1[0] <= #`TCQ err_type[0]; err_type_d1[1] <= #`TCQ err_type[1]; end end end end endgenerate //*************************************************************************** // Safety-ckt logic with embedded reg + fabric reg //*************************************************************************** generate if ((C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_EN_SAFETY_CKT==1 && C_USE_EMBEDDED_REG == 3) begin reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1; reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2; reg [1:0] rst_delayed_sft1 =1; reg [1:0] rst_delayed_sft2 =1; reg [1:0] rst_delayed_sft3 =1; reg [1:0] rst_delayed_sft4 =1; always@(posedge RD_CLK) begin rst_delayed_sft1 <= #`TCQ rd_rst_i; rst_delayed_sft2 <= #`TCQ rst_delayed_sft1; rst_delayed_sft3 <= #`TCQ rst_delayed_sft2; rst_delayed_sft4 <= #`TCQ rst_delayed_sft3; end always@(posedge rst_delayed_sft4 or posedge rd_rst_i or posedge RD_CLK) begin if( rst_delayed_sft4 == 1'b1 || rd_rst_i == 1'b1) ram_rd_en_d1 <= #`TCQ 1'b0; else begin ram_rd_en_d1 <= #`TCQ ram_rd_en; fab_rd_en_d1 <= #`TCQ ram_rd_en_d1; end end always@(posedge rst_delayed_sft2 or posedge RD_CLK) begin if (rst_delayed_sft2 == 1'b1) begin if (C_USE_DOUT_RST == 1'b1) begin @(posedge RD_CLK) ideal_dout_d1 <= #`TCQ dout_reset_val; ideal_dout_both <= #`TCQ dout_reset_val; end end else begin if (ram_rd_en_d1) begin ideal_dout_both <= #`TCQ ideal_dout; err_type_both[0] <= #`TCQ err_type[0]; err_type_both[1] <= #`TCQ err_type[1]; end if (fab_rd_en_d1) begin ideal_dout_d1 <= #`TCQ ideal_dout_both; err_type_d1[0] <= #`TCQ err_type_both[0]; err_type_d1[1] <= #`TCQ err_type_both[1]; end end end end endgenerate //*************************************************************************** // Overflow may be active-low //*************************************************************************** generate if (C_HAS_OVERFLOW==1) begin : blockOF1 assign OVERFLOW = ideal_overflow ? !C_OVERFLOW_LOW : C_OVERFLOW_LOW; end endgenerate assign PROG_EMPTY = ideal_prog_empty; assign PROG_FULL = ideal_prog_full; //*************************************************************************** // Valid may change behavior based on latency or active-low //*************************************************************************** generate if (C_HAS_VALID==1) begin : blockVL1 assign valid_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & ~EMPTY) : ideal_valid; assign valid_out1 = (C_PRELOAD_LATENCY==2 && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_USE_EMBEDDED_REG < 3)? valid_d1: valid_i; assign valid_out2 = (C_PRELOAD_LATENCY==2 && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_USE_EMBEDDED_REG == 3)? valid_d2: valid_i; assign valid_out = (C_USE_EMBEDDED_REG == 3) ? valid_out2 : valid_out1; assign VALID = valid_out ? !C_VALID_LOW : C_VALID_LOW; end endgenerate //*************************************************************************** // Underflow may change behavior based on latency or active-low //*************************************************************************** generate if (C_HAS_UNDERFLOW==1) begin : blockUF1 assign underflow_i = (C_PRELOAD_LATENCY==0) ? (RD_EN & EMPTY) : ideal_underflow; assign UNDERFLOW = underflow_i ? !C_UNDERFLOW_LOW : C_UNDERFLOW_LOW; end endgenerate //*************************************************************************** // Write acknowledge may be active low //*************************************************************************** generate if (C_HAS_WR_ACK==1) begin : blockWK1 assign WR_ACK = ideal_wr_ack ? !C_WR_ACK_LOW : C_WR_ACK_LOW; end endgenerate //*************************************************************************** // Generate RD_DATA_COUNT if Use Extra Logic option is selected //*************************************************************************** generate if (C_HAS_WR_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : wdc_fwft_ext reg [C_PNTR_WIDTH-1:0] adjusted_wr_pntr = 0; reg [C_PNTR_WIDTH-1:0] adjusted_rd_pntr = 0; wire [C_PNTR_WIDTH-1:0] diff_wr_rd_tmp; wire [C_PNTR_WIDTH:0] diff_wr_rd; reg [C_PNTR_WIDTH:0] wr_data_count_i = 0; always @* begin if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin adjusted_wr_pntr = wr_pntr; adjusted_rd_pntr = 0; adjusted_rd_pntr[C_PNTR_WIDTH-1:C_PNTR_WIDTH-C_RD_PNTR_WIDTH] = rd_pntr_wr; end else if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin adjusted_rd_pntr = rd_pntr_wr; adjusted_wr_pntr = 0; adjusted_wr_pntr[C_PNTR_WIDTH-1:C_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr; end else begin adjusted_wr_pntr = wr_pntr; adjusted_rd_pntr = rd_pntr_wr; end end // always @* assign diff_wr_rd_tmp = adjusted_wr_pntr - adjusted_rd_pntr; assign diff_wr_rd = {1'b0,diff_wr_rd_tmp}; always @ (posedge wr_rst_i or posedge WR_CLK) begin if (wr_rst_i) wr_data_count_i <= 0; else wr_data_count_i <= #`TCQ diff_wr_rd + EXTRA_WORDS_DC; end // always @ (posedge WR_CLK or posedge WR_CLK) always @* begin if (C_WR_PNTR_WIDTH >= C_RD_PNTR_WIDTH) wdc_fwft_ext_as = wr_data_count_i[C_PNTR_WIDTH:0]; else wdc_fwft_ext_as = wr_data_count_i[C_PNTR_WIDTH:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH]; end // always @* end // wdc_fwft_ext endgenerate //*************************************************************************** // Generate RD_DATA_COUNT if Use Extra Logic option is selected //*************************************************************************** reg [C_RD_PNTR_WIDTH:0] rdc_fwft_ext_as = 0; generate if (C_USE_EMBEDDED_REG < 3) begin: rdc_fwft_ext_both if (C_HAS_RD_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : rdc_fwft_ext reg [C_RD_PNTR_WIDTH-1:0] adjusted_wr_pntr_rd = 0; wire [C_RD_PNTR_WIDTH-1:0] diff_rd_wr_tmp; wire [C_RD_PNTR_WIDTH:0] diff_rd_wr; always @* begin if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin adjusted_wr_pntr_rd = 0; adjusted_wr_pntr_rd[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr_rd; end else begin adjusted_wr_pntr_rd = wr_pntr_rd[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH]; end end // always @* assign diff_rd_wr_tmp = adjusted_wr_pntr_rd - rd_pntr; assign diff_rd_wr = {1'b0,diff_rd_wr_tmp}; always @ (posedge rd_rst_i or posedge RD_CLK) begin if (rd_rst_i) begin rdc_fwft_ext_as <= 0; end else begin if (!stage2_valid) rdc_fwft_ext_as <= #`TCQ 0; else if (!stage1_valid && stage2_valid) rdc_fwft_ext_as <= #`TCQ 1; else rdc_fwft_ext_as <= #`TCQ diff_rd_wr + 2'h2; end end // always @ (posedge WR_CLK or posedge WR_CLK) end // rdc_fwft_ext end endgenerate generate if (C_USE_EMBEDDED_REG == 3) begin if (C_HAS_RD_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : rdc_fwft_ext reg [C_RD_PNTR_WIDTH-1:0] adjusted_wr_pntr_rd = 0; wire [C_RD_PNTR_WIDTH-1:0] diff_rd_wr_tmp; wire [C_RD_PNTR_WIDTH:0] diff_rd_wr; always @* begin if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin adjusted_wr_pntr_rd = 0; adjusted_wr_pntr_rd[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr_rd; end else begin adjusted_wr_pntr_rd = wr_pntr_rd[C_WR_PNTR_WIDTH-1:C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH]; end end // always @* assign diff_rd_wr_tmp = adjusted_wr_pntr_rd - rd_pntr; assign diff_rd_wr = {1'b0,diff_rd_wr_tmp}; wire [C_RD_PNTR_WIDTH:0] diff_rd_wr_1; // assign diff_rd_wr_1 = diff_rd_wr +2'h2; always @ (posedge rd_rst_i or posedge RD_CLK) begin if (rd_rst_i) begin rdc_fwft_ext_as <= #`TCQ 0; end else begin //if (fab_read_data_valid_i == 1'b0 && ((ram_valid_i == 1'b0 && read_data_valid_i ==1'b0) || (ram_valid_i == 1'b0 && read_data_valid_i ==1'b1) || (ram_valid_i == 1'b1 && read_data_valid_i ==1'b0) || (ram_valid_i == 1'b1 && read_data_valid_i ==1'b1))) // rdc_fwft_ext_as <= 1'b0; //else if (fab_read_data_valid_i == 1'b1 && ((ram_valid_i == 1'b0 && read_data_valid_i ==1'b0) || (ram_valid_i == 1'b0 && read_data_valid_i ==1'b1))) // rdc_fwft_ext_as <= 1'b1; //else rdc_fwft_ext_as <= diff_rd_wr + 2'h2 ; end end end end endgenerate //*************************************************************************** // Assign the read data count value only if it is selected, // otherwise output zeros. //*************************************************************************** generate if (C_HAS_RD_DATA_COUNT == 1) begin : grdc assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = C_USE_FWFT_DATA_COUNT ? rdc_fwft_ext_as[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH] : rd_data_count_int[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH]; end endgenerate generate if (C_HAS_RD_DATA_COUNT == 0) begin : gnrdc assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = {C_RD_DATA_COUNT_WIDTH{1'b0}}; end endgenerate //*************************************************************************** // Assign the write data count value only if it is selected, // otherwise output zeros //*************************************************************************** generate if (C_HAS_WR_DATA_COUNT == 1) begin : gwdc assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = (C_USE_FWFT_DATA_COUNT == 1) ? wdc_fwft_ext_as[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH] : wr_data_count_int[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH]; end endgenerate generate if (C_HAS_WR_DATA_COUNT == 0) begin : gnwdc assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = {C_WR_DATA_COUNT_WIDTH{1'b0}}; end endgenerate /************************************************************************** * Assorted registers for delayed versions of signals **************************************************************************/ //Capture delayed version of valid generate if (C_HAS_VALID==1) begin : blockVL2 always @(posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i == 1'b1) begin valid_d1 <= 1'b0; valid_d2 <= 1'b0; end else begin valid_d1 <= #`TCQ valid_i; valid_d2 <= #`TCQ valid_d1; end // if (C_USE_EMBEDDED_REG == 3 && (C_EN_SAFETY_CKT == 0 || C_EN_SAFETY_CKT == 1 ) begin // valid_d2 <= #`TCQ valid_d1; // end end end endgenerate //Capture delayed version of dout /************************************************************************** *embedded/fabric reg with no safety ckt **************************************************************************/ generate if (C_USE_EMBEDDED_REG < 3) begin always @(posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i == 1'b1) begin if (C_USE_DOUT_RST == 1'b1) begin @(posedge RD_CLK) ideal_dout_d1 <= #`TCQ dout_reset_val; ideal_dout <= #`TCQ dout_reset_val; end // Reset err_type only if ECC is not selected if (C_USE_ECC == 0) err_type_d1 <= #`TCQ 0; end else if (ram_rd_en_d1) begin ideal_dout_d1 <= #`TCQ ideal_dout; err_type_d1 <= #`TCQ err_type; end end end endgenerate /************************************************************************** *embedded + fabric reg with no safety ckt **************************************************************************/ generate if (C_USE_EMBEDDED_REG == 3) begin always @(posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i == 1'b1) begin if (C_USE_DOUT_RST == 1'b1) begin @(posedge RD_CLK) ideal_dout <= #`TCQ dout_reset_val; ideal_dout_d1 <= #`TCQ dout_reset_val; ideal_dout_both <= #`TCQ dout_reset_val; end // Reset err_type only if ECC is not selected if (C_USE_ECC == 0) begin err_type_d1 <= #`TCQ 0; err_type_both <= #`TCQ 0; end end else begin if (ram_rd_en_d1) begin ideal_dout_both <= #`TCQ ideal_dout; err_type_both <= #`TCQ err_type; end if (fab_rd_en_d1) begin ideal_dout_d1 <= #`TCQ ideal_dout_both; err_type_d1 <= #`TCQ err_type_both; end end end end endgenerate /************************************************************************** * Overflow and Underflow Flag calculation * (handled separately because they don't support rst) **************************************************************************/ generate if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 0) begin : g7s_ovflw always @(posedge WR_CLK) begin ideal_overflow <= #`TCQ WR_EN & FULL; end end else if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 1) begin : g8s_ovflw always @(posedge WR_CLK) begin //ideal_overflow <= #`TCQ WR_EN & (FULL | wr_rst_i); ideal_overflow <= #`TCQ WR_EN & (FULL ); end end endgenerate generate if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 0) begin : g7s_unflw always @(posedge RD_CLK) begin ideal_underflow <= #`TCQ EMPTY & RD_EN; end end else if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 1) begin : g8s_unflw always @(posedge RD_CLK) begin ideal_underflow <= #`TCQ (EMPTY) & RD_EN; //ideal_underflow <= #`TCQ (rd_rst_i | EMPTY) & RD_EN; end end endgenerate /************************************************************************** * Write/Read Pointer Synchronization **************************************************************************/ localparam NO_OF_SYNC_STAGE_INC_G2B = C_SYNCHRONIZER_STAGE + 1; wire [C_WR_PNTR_WIDTH-1:0] wr_pntr_sync_stgs [0:NO_OF_SYNC_STAGE_INC_G2B]; wire [C_RD_PNTR_WIDTH-1:0] rd_pntr_sync_stgs [0:NO_OF_SYNC_STAGE_INC_G2B]; genvar gss; generate for (gss = 1; gss <= NO_OF_SYNC_STAGE_INC_G2B; gss = gss + 1) begin : Sync_stage_inst fifo_generator_v13_1_3_sync_stage #( .C_WIDTH (C_WR_PNTR_WIDTH) ) rd_stg_inst ( .RST (rd_rst_i), .CLK (RD_CLK), .DIN (wr_pntr_sync_stgs[gss-1]), .DOUT (wr_pntr_sync_stgs[gss]) ); fifo_generator_v13_1_3_sync_stage #( .C_WIDTH (C_RD_PNTR_WIDTH) ) wr_stg_inst ( .RST (wr_rst_i), .CLK (WR_CLK), .DIN (rd_pntr_sync_stgs[gss-1]), .DOUT (rd_pntr_sync_stgs[gss]) ); end endgenerate // Sync_stage_inst assign wr_pntr_sync_stgs[0] = wr_pntr_rd1; assign rd_pntr_sync_stgs[0] = rd_pntr_wr1; always@* begin wr_pntr_rd <= wr_pntr_sync_stgs[NO_OF_SYNC_STAGE_INC_G2B]; rd_pntr_wr <= rd_pntr_sync_stgs[NO_OF_SYNC_STAGE_INC_G2B]; end /************************************************************************** * Write Domain Logic **************************************************************************/ reg [C_WR_PNTR_WIDTH-1:0] diff_pntr = 0; always @(posedge WR_CLK or posedge wr_rst_i) begin : gen_fifo_wp if (wr_rst_i == 1'b1 && C_EN_SAFETY_CKT == 0) wr_pntr <= 0; else if (C_EN_SAFETY_CKT == 1 && SAFETY_CKT_WR_RST == 1'b1) wr_pntr <= #`TCQ 0; end always @(posedge WR_CLK or posedge wr_rst_i) begin : gen_fifo_w /****** Reset fifo (case 1)***************************************/ if (wr_rst_i == 1'b1) begin num_wr_bits <= 0; next_num_wr_bits = 0; wr_ptr <= C_WR_DEPTH - 1; rd_ptr_wrclk <= C_RD_DEPTH - 1; ideal_wr_ack <= 0; ideal_wr_count <= 0; tmp_wr_listsize = 0; rd_ptr_wrclk_next <= 0; wr_pntr_rd1 <= 0; end else begin //wr_rst_i==0 wr_pntr_rd1 <= #`TCQ wr_pntr; //Determine the current number of words in the FIFO tmp_wr_listsize = (C_DEPTH_RATIO_RD > 1) ? num_wr_bits/C_DOUT_WIDTH : num_wr_bits/C_DIN_WIDTH; rd_ptr_wrclk_next = rd_ptr; if (rd_ptr_wrclk < rd_ptr_wrclk_next) begin next_num_wr_bits = num_wr_bits - C_DOUT_WIDTH*(rd_ptr_wrclk + C_RD_DEPTH - rd_ptr_wrclk_next); end else begin next_num_wr_bits = num_wr_bits - C_DOUT_WIDTH*(rd_ptr_wrclk - rd_ptr_wrclk_next); end //If this is a write, handle the write by adding the value // to the linked list, and updating all outputs appropriately if (WR_EN == 1'b1) begin if (FULL == 1'b1) begin //If the FIFO is full, do NOT perform the write, // update flags accordingly if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD >= C_FIFO_WR_DEPTH) begin //write unsuccessful - do not change contents //Do not acknowledge the write ideal_wr_ack <= #`TCQ 0; //Reminder that FIFO is still full ideal_wr_count <= #`TCQ num_write_words_sized_i; //If the FIFO is one from full, but reporting full end else if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD == C_FIFO_WR_DEPTH-1) begin //No change to FIFO //Write not successful ideal_wr_ack <= #`TCQ 0; //With DEPTH-1 words in the FIFO, it is almost_full ideal_wr_count <= #`TCQ num_write_words_sized_i; //If the FIFO is completely empty, but it is // reporting FULL for some reason (like reset) end else if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD <= C_FIFO_WR_DEPTH-2) begin //No change to FIFO //Write not successful ideal_wr_ack <= #`TCQ 0; //FIFO is really not close to full, so change flag status. ideal_wr_count <= #`TCQ num_write_words_sized_i; end //(tmp_wr_listsize == 0) end else begin //If the FIFO is full, do NOT perform the write, // update flags accordingly if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD >= C_FIFO_WR_DEPTH) begin //write unsuccessful - do not change contents //Do not acknowledge the write ideal_wr_ack <= #`TCQ 0; //Reminder that FIFO is still full ideal_wr_count <= #`TCQ num_write_words_sized_i; //If the FIFO is one from full end else if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD == C_FIFO_WR_DEPTH-1) begin //Add value on DIN port to FIFO write_fifo; next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH; //Write successful, so issue acknowledge // and no error ideal_wr_ack <= #`TCQ 1; //This write is CAUSING the FIFO to go full ideal_wr_count <= #`TCQ num_write_words_sized_i; //If the FIFO is 2 from full end else if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD == C_FIFO_WR_DEPTH-2) begin //Add value on DIN port to FIFO write_fifo; next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH; //Write successful, so issue acknowledge // and no error ideal_wr_ack <= #`TCQ 1; //Still 2 from full ideal_wr_count <= #`TCQ num_write_words_sized_i; //If the FIFO is not close to being full end else if ((tmp_wr_listsize + C_DEPTH_RATIO_RD - 1)/C_DEPTH_RATIO_RD < C_FIFO_WR_DEPTH-2) begin //Add value on DIN port to FIFO write_fifo; next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH; //Write successful, so issue acknowledge // and no error ideal_wr_ack <= #`TCQ 1; //Not even close to full. ideal_wr_count <= num_write_words_sized_i; end end end else begin //(WR_EN == 1'b1) //If user did not attempt a write, then do not // give ack or err ideal_wr_ack <= #`TCQ 0; ideal_wr_count <= #`TCQ num_write_words_sized_i; end num_wr_bits <= #`TCQ next_num_wr_bits; rd_ptr_wrclk <= #`TCQ rd_ptr; end //wr_rst_i==0 end // gen_fifo_w /*************************************************************************** * Programmable FULL flags ***************************************************************************/ wire [C_WR_PNTR_WIDTH-1:0] pf_thr_assert_val; wire [C_WR_PNTR_WIDTH-1:0] pf_thr_negate_val; generate if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin : FWFT assign pf_thr_assert_val = C_PROG_FULL_THRESH_ASSERT_VAL - EXTRA_WORDS_DC; assign pf_thr_negate_val = C_PROG_FULL_THRESH_NEGATE_VAL - EXTRA_WORDS_DC; end else begin // STD assign pf_thr_assert_val = C_PROG_FULL_THRESH_ASSERT_VAL; assign pf_thr_negate_val = C_PROG_FULL_THRESH_NEGATE_VAL; end endgenerate always @(posedge WR_CLK or posedge wr_rst_i) begin if (wr_rst_i == 1'b1) begin diff_pntr <= 0; end else begin if (ram_wr_en) diff_pntr <= #`TCQ (wr_pntr - adj_rd_pntr_wr + 2'h1); else if (!ram_wr_en) diff_pntr <= #`TCQ (wr_pntr - adj_rd_pntr_wr); end end always @(posedge WR_CLK or posedge RST_FULL_FF) begin : gen_pf if (RST_FULL_FF == 1'b1) begin ideal_prog_full <= C_FULL_FLAGS_RST_VAL; end else begin if (RST_FULL_GEN) ideal_prog_full <= #`TCQ 0; //Single Programmable Full Constant Threshold else if (C_PROG_FULL_TYPE == 1) begin if (FULL == 0) begin if (diff_pntr >= pf_thr_assert_val) ideal_prog_full <= #`TCQ 1; else ideal_prog_full <= #`TCQ 0; end else ideal_prog_full <= #`TCQ ideal_prog_full; //Two Programmable Full Constant Thresholds end else if (C_PROG_FULL_TYPE == 2) begin if (FULL == 0) begin if (diff_pntr >= pf_thr_assert_val) ideal_prog_full <= #`TCQ 1; else if (diff_pntr < pf_thr_negate_val) ideal_prog_full <= #`TCQ 0; else ideal_prog_full <= #`TCQ ideal_prog_full; end else ideal_prog_full <= #`TCQ ideal_prog_full; //Single Programmable Full Threshold Input end else if (C_PROG_FULL_TYPE == 3) begin if (FULL == 0) begin if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin // FWFT if (diff_pntr >= (PROG_FULL_THRESH - EXTRA_WORDS_DC)) ideal_prog_full <= #`TCQ 1; else ideal_prog_full <= #`TCQ 0; end else begin // STD if (diff_pntr >= PROG_FULL_THRESH) ideal_prog_full <= #`TCQ 1; else ideal_prog_full <= #`TCQ 0; end end else ideal_prog_full <= #`TCQ ideal_prog_full; //Two Programmable Full Threshold Inputs end else if (C_PROG_FULL_TYPE == 4) begin if (FULL == 0) begin if (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) begin // FWFT if (diff_pntr >= (PROG_FULL_THRESH_ASSERT - EXTRA_WORDS_DC)) ideal_prog_full <= #`TCQ 1; else if (diff_pntr < (PROG_FULL_THRESH_NEGATE - EXTRA_WORDS_DC)) ideal_prog_full <= #`TCQ 0; else ideal_prog_full <= #`TCQ ideal_prog_full; end else begin // STD if (diff_pntr >= PROG_FULL_THRESH_ASSERT) ideal_prog_full <= #`TCQ 1; else if (diff_pntr < PROG_FULL_THRESH_NEGATE) ideal_prog_full <= #`TCQ 0; else ideal_prog_full <= #`TCQ ideal_prog_full; end end else ideal_prog_full <= #`TCQ ideal_prog_full; end // C_PROG_FULL_TYPE end //wr_rst_i==0 end // /************************************************************************** * Read Domain Logic **************************************************************************/ /********************************************************* * Programmable EMPTY flags *********************************************************/ //Determine the Assert and Negate thresholds for Programmable Empty wire [C_RD_PNTR_WIDTH-1:0] pe_thr_assert_val; wire [C_RD_PNTR_WIDTH-1:0] pe_thr_negate_val; reg [C_RD_PNTR_WIDTH-1:0] diff_pntr_rd = 0; always @(posedge RD_CLK or posedge rd_rst_i) begin : gen_pe if (rd_rst_i) begin diff_pntr_rd <= 0; ideal_prog_empty <= 1'b1; end else begin if (ram_rd_en) diff_pntr_rd <= #`TCQ (adj_wr_pntr_rd - rd_pntr) - 1'h1; else if (!ram_rd_en) diff_pntr_rd <= #`TCQ (adj_wr_pntr_rd - rd_pntr); else diff_pntr_rd <= #`TCQ diff_pntr_rd; if (C_PROG_EMPTY_TYPE == 1) begin if (EMPTY == 0) begin if (diff_pntr_rd <= pe_thr_assert_val) ideal_prog_empty <= #`TCQ 1; else ideal_prog_empty <= #`TCQ 0; end else ideal_prog_empty <= #`TCQ ideal_prog_empty; end else if (C_PROG_EMPTY_TYPE == 2) begin if (EMPTY == 0) begin if (diff_pntr_rd <= pe_thr_assert_val) ideal_prog_empty <= #`TCQ 1; else if (diff_pntr_rd > pe_thr_negate_val) ideal_prog_empty <= #`TCQ 0; else ideal_prog_empty <= #`TCQ ideal_prog_empty; end else ideal_prog_empty <= #`TCQ ideal_prog_empty; end else if (C_PROG_EMPTY_TYPE == 3) begin if (EMPTY == 0) begin if (diff_pntr_rd <= pe_thr_assert_val) ideal_prog_empty <= #`TCQ 1; else ideal_prog_empty <= #`TCQ 0; end else ideal_prog_empty <= #`TCQ ideal_prog_empty; end else if (C_PROG_EMPTY_TYPE == 4) begin if (EMPTY == 0) begin if (diff_pntr_rd <= pe_thr_assert_val) ideal_prog_empty <= #`TCQ 1; else if (diff_pntr_rd > pe_thr_negate_val) ideal_prog_empty <= #`TCQ 0; else ideal_prog_empty <= #`TCQ ideal_prog_empty; end else ideal_prog_empty <= #`TCQ ideal_prog_empty; end //C_PROG_EMPTY_TYPE end end // gen_pe generate if (C_PROG_EMPTY_TYPE == 3) begin : single_pe_thr_input assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? PROG_EMPTY_THRESH - 2'h2 : PROG_EMPTY_THRESH; end endgenerate // single_pe_thr_input generate if (C_PROG_EMPTY_TYPE == 4) begin : multiple_pe_thr_input assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? PROG_EMPTY_THRESH_ASSERT - 2'h2 : PROG_EMPTY_THRESH_ASSERT; assign pe_thr_negate_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? PROG_EMPTY_THRESH_NEGATE - 2'h2 : PROG_EMPTY_THRESH_NEGATE; end endgenerate // multiple_pe_thr_input generate if (C_PROG_EMPTY_TYPE < 3) begin : single_multiple_pe_thr_const assign pe_thr_assert_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? C_PROG_EMPTY_THRESH_ASSERT_VAL - 2'h2 : C_PROG_EMPTY_THRESH_ASSERT_VAL; assign pe_thr_negate_val = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? C_PROG_EMPTY_THRESH_NEGATE_VAL - 2'h2 : C_PROG_EMPTY_THRESH_NEGATE_VAL; end endgenerate // single_multiple_pe_thr_const always @(posedge RD_CLK or posedge rd_rst_i) begin : gen_fifo_rp if (rd_rst_i && C_EN_SAFETY_CKT == 0) rd_pntr <= 0; else if (C_EN_SAFETY_CKT == 1 && SAFETY_CKT_RD_RST == 1'b1) rd_pntr <= #`TCQ 0; end always @(posedge RD_CLK or posedge rd_rst_i) begin : gen_fifo_r_as /****** Reset fifo (case 1)***************************************/ if (rd_rst_i) begin num_rd_bits <= 0; next_num_rd_bits = 0; rd_ptr <= C_RD_DEPTH -1; rd_pntr_wr1 <= 0; wr_ptr_rdclk <= C_WR_DEPTH -1; // DRAM resets asynchronously if (C_MEMORY_TYPE == 2 && C_USE_DOUT_RST == 1) ideal_dout <= dout_reset_val; // Reset err_type only if ECC is not selected if (C_USE_ECC == 0) begin err_type <= 0; err_type_d1 <= 0; err_type_both <= 0; end ideal_valid <= 1'b0; ideal_rd_count <= 0; end else begin //rd_rst_i==0 rd_pntr_wr1 <= #`TCQ rd_pntr; //Determine the current number of words in the FIFO tmp_rd_listsize = (C_DEPTH_RATIO_WR > 1) ? num_rd_bits/C_DIN_WIDTH : num_rd_bits/C_DOUT_WIDTH; wr_ptr_rdclk_next = wr_ptr; if (wr_ptr_rdclk < wr_ptr_rdclk_next) begin next_num_rd_bits = num_rd_bits + C_DIN_WIDTH*(wr_ptr_rdclk +C_WR_DEPTH - wr_ptr_rdclk_next); end else begin next_num_rd_bits = num_rd_bits + C_DIN_WIDTH*(wr_ptr_rdclk - wr_ptr_rdclk_next); end /*****************************************************************/ // Read Operation - Read Latency 1 /*****************************************************************/ if (C_PRELOAD_LATENCY==1 || C_PRELOAD_LATENCY==2) begin ideal_valid <= #`TCQ 1'b0; if (ram_rd_en == 1'b1) begin if (EMPTY == 1'b1) begin //If the FIFO is completely empty, and is reporting empty if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Reminder that FIFO is still empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize <= 0) //If the FIFO is one from empty, but it is reporting empty else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Note that FIFO is no longer empty, but is almost empty (has one word left) ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize == 1) //If the FIFO is two from empty, and is reporting empty else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Fifo has two words, so is neither empty or almost empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize == 2) //If the FIFO is not close to empty, but is reporting that it is // Treat the FIFO as empty this time, but unset EMPTY flags. if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<C_FIFO_RD_DEPTH)) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Note that the FIFO is No Longer Empty or Almost Empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1)) end // else: if(ideal_empty == 1'b1) else //if (ideal_empty == 1'b0) begin //If the FIFO is completely full, and we are successfully reading from it if (tmp_rd_listsize/C_DEPTH_RATIO_WR >= C_FIFO_RD_DEPTH) begin //Read the value from the FIFO read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; //Not close to empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize == C_FIFO_RD_DEPTH) //If the FIFO is not close to being empty else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<=C_FIFO_RD_DEPTH)) begin //Read the value from the FIFO read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; //Not close to empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1)) //If the FIFO is two from empty else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin //Read the value from the FIFO read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; //Fifo is not yet empty. It is going almost_empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize == 2) //If the FIFO is one from empty else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR == 1)) begin //Read the value from the FIFO read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; //Note that FIFO is GOING empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize == 1) //If the FIFO is completely empty else if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize <= 0) end // if (ideal_empty == 1'b0) end //(RD_EN == 1'b1) else //if (RD_EN == 1'b0) begin //If user did not attempt a read, do not give an ack or err ideal_valid <= #`TCQ 1'b0; ideal_rd_count <= #`TCQ num_read_words_sized_i; end // else: !if(RD_EN == 1'b1) /*****************************************************************/ // Read Operation - Read Latency 0 /*****************************************************************/ end else if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) begin ideal_valid <= #`TCQ 1'b0; if (ram_rd_en == 1'b1) begin if (EMPTY == 1'b1) begin //If the FIFO is completely empty, and is reporting empty if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Reminder that FIFO is still empty ideal_rd_count <= #`TCQ num_read_words_sized_i; //If the FIFO is one from empty, but it is reporting empty end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Note that FIFO is no longer empty, but is almost empty (has one word left) ideal_rd_count <= #`TCQ num_read_words_sized_i; //If the FIFO is two from empty, and is reporting empty end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Fifo has two words, so is neither empty or almost empty ideal_rd_count <= #`TCQ num_read_words_sized_i; //If the FIFO is not close to empty, but is reporting that it is // Treat the FIFO as empty this time, but unset EMPTY flags. end else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<C_FIFO_RD_DEPTH)) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Note that the FIFO is No Longer Empty or Almost Empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if ((tmp_rd_listsize > 2) && (tmp_rd_listsize<=C_FIFO_RD_DEPTH-1)) end else begin //If the FIFO is completely full, and we are successfully reading from it if (tmp_rd_listsize/C_DEPTH_RATIO_WR >= C_FIFO_RD_DEPTH) begin //Read the value from the FIFO read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; //Not close to empty ideal_rd_count <= #`TCQ num_read_words_sized_i; //If the FIFO is not close to being empty end else if ((tmp_rd_listsize/C_DEPTH_RATIO_WR > 2) && (tmp_rd_listsize/C_DEPTH_RATIO_WR<=C_FIFO_RD_DEPTH)) begin //Read the value from the FIFO read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; //Not close to empty ideal_rd_count <= #`TCQ num_read_words_sized_i; //If the FIFO is two from empty end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 2) begin //Read the value from the FIFO read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; //Fifo is not yet empty. It is going almost_empty ideal_rd_count <= #`TCQ num_read_words_sized_i; //If the FIFO is one from empty end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR == 1) begin //Read the value from the FIFO read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; //Note that FIFO is GOING empty ideal_rd_count <= #`TCQ num_read_words_sized_i; //If the FIFO is completely empty end else if (tmp_rd_listsize/C_DEPTH_RATIO_WR <= 0) begin //Do not change the contents of the FIFO //Do not acknowledge the read from empty FIFO ideal_valid <= #`TCQ 1'b0; //Reminder that FIFO is still empty ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize <= 0) end // if (ideal_empty == 1'b0) end else begin//(RD_EN == 1'b0) //If user did not attempt a read, do not give an ack or err ideal_valid <= #`TCQ 1'b0; ideal_rd_count <= #`TCQ num_read_words_sized_i; end // else: !if(RD_EN == 1'b1) end //if (C_PRELOAD_REGS==1 && C_PRELOAD_LATENCY==0) num_rd_bits <= #`TCQ next_num_rd_bits; wr_ptr_rdclk <= #`TCQ wr_ptr; end //rd_rst_i==0 end //always gen_fifo_r_as endmodule
module fifo_generator_v13_1_3_beh_ver_ll_afifo /*************************************************************************** * Declare user parameters and their defaults ***************************************************************************/ #( parameter C_DIN_WIDTH = 8, parameter C_DOUT_RST_VAL = "", parameter C_DOUT_WIDTH = 8, parameter C_FULL_FLAGS_RST_VAL = 1, parameter C_HAS_RD_DATA_COUNT = 0, parameter C_HAS_WR_DATA_COUNT = 0, parameter C_RD_DEPTH = 256, parameter C_RD_PNTR_WIDTH = 8, parameter C_USE_DOUT_RST = 0, parameter C_WR_DATA_COUNT_WIDTH = 2, parameter C_WR_DEPTH = 256, parameter C_WR_PNTR_WIDTH = 8, parameter C_FIFO_TYPE = 0 ) /*************************************************************************** * Declare Input and Output Ports ***************************************************************************/ ( input [C_DIN_WIDTH-1:0] DIN, input RD_CLK, input RD_EN, input WR_RST, input RD_RST, input WR_CLK, input WR_EN, output reg [C_DOUT_WIDTH-1:0] DOUT = 0, output reg EMPTY = 1'b1, output reg FULL = C_FULL_FLAGS_RST_VAL ); //----------------------------------------------------------------------------- // Low Latency Asynchronous FIFO //----------------------------------------------------------------------------- // Memory which will be used to simulate a FIFO reg [C_DIN_WIDTH-1:0] memory[C_WR_DEPTH-1:0]; integer i; initial begin for (i = 0; i < C_WR_DEPTH; i = i + 1) memory[i] = 0; end reg [C_WR_PNTR_WIDTH-1:0] wr_pntr_ll_afifo = 0; wire [C_RD_PNTR_WIDTH-1:0] rd_pntr_ll_afifo; reg [C_RD_PNTR_WIDTH-1:0] rd_pntr_ll_afifo_q = 0; reg ll_afifo_full = 1'b0; reg ll_afifo_empty = 1'b1; wire write_allow; wire read_allow; assign write_allow = WR_EN & ~ll_afifo_full; assign read_allow = RD_EN & ~ll_afifo_empty; //----------------------------------------------------------------------------- // Write Pointer Generation //----------------------------------------------------------------------------- always @(posedge WR_CLK or posedge WR_RST) begin if (WR_RST) wr_pntr_ll_afifo <= 0; else if (write_allow) wr_pntr_ll_afifo <= #`TCQ wr_pntr_ll_afifo + 1; end //----------------------------------------------------------------------------- // Read Pointer Generation //----------------------------------------------------------------------------- always @(posedge RD_CLK or posedge RD_RST) begin if (RD_RST) rd_pntr_ll_afifo_q <= 0; else rd_pntr_ll_afifo_q <= #`TCQ rd_pntr_ll_afifo; end assign rd_pntr_ll_afifo = read_allow ? rd_pntr_ll_afifo_q + 1 : rd_pntr_ll_afifo_q; //----------------------------------------------------------------------------- // Fill the Memory //----------------------------------------------------------------------------- always @(posedge WR_CLK) begin if (write_allow) memory[wr_pntr_ll_afifo] <= #`TCQ DIN; end //----------------------------------------------------------------------------- // Generate DOUT //----------------------------------------------------------------------------- always @(posedge RD_CLK) begin DOUT <= #`TCQ memory[rd_pntr_ll_afifo]; end //----------------------------------------------------------------------------- // Generate EMPTY //----------------------------------------------------------------------------- always @(posedge RD_CLK or posedge RD_RST) begin if (RD_RST) ll_afifo_empty <= 1'b1; else ll_afifo_empty <= ((wr_pntr_ll_afifo == rd_pntr_ll_afifo_q) | (read_allow & (wr_pntr_ll_afifo == (rd_pntr_ll_afifo_q + 2'h1)))); end //----------------------------------------------------------------------------- // Generate FULL //----------------------------------------------------------------------------- always @(posedge WR_CLK or posedge WR_RST) begin if (WR_RST) ll_afifo_full <= 1'b1; else ll_afifo_full <= ((rd_pntr_ll_afifo_q == (wr_pntr_ll_afifo + 2'h1)) | (write_allow & (rd_pntr_ll_afifo_q == (wr_pntr_ll_afifo + 2'h2)))); end always @* begin FULL <= ll_afifo_full; EMPTY <= ll_afifo_empty; end endmodule
module inputs and outputs to the internal signals of the * behavioral model. *************************************************************************/ //Inputs /* wire CLK; wire [C_DIN_WIDTH-1:0] DIN; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_ASSERT; wire [C_RD_PNTR_WIDTH-1:0] PROG_EMPTY_THRESH_NEGATE; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_ASSERT; wire [C_WR_PNTR_WIDTH-1:0] PROG_FULL_THRESH_NEGATE; wire RD_EN; wire RST; wire WR_EN; */ // Assign ALMOST_EPMTY generate if (C_HAS_ALMOST_EMPTY == 1) begin : gae assign ALMOST_EMPTY = almost_empty_i; end else begin : gnae assign ALMOST_EMPTY = 0; end endgenerate // gae // Assign ALMOST_FULL generate if (C_HAS_ALMOST_FULL==1) begin : gaf assign ALMOST_FULL = almost_full_i; end else begin : gnaf assign ALMOST_FULL = 0; end endgenerate // gaf // Dout may change behavior based on latency localparam C_FWFT_ENABLED = (C_PRELOAD_LATENCY == 0 && C_PRELOAD_REGS == 1)? 1: 0; assign fwft_enabled = (C_PRELOAD_LATENCY == 0 && C_PRELOAD_REGS == 1)? 1: 0; assign ideal_dout_out= ((C_USE_EMBEDDED_REG>0 && (fwft_enabled == 0)) && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1))? ideal_dout_d1: ideal_dout; assign DOUT = ideal_dout_out; // Assign SBITERR and DBITERR based on latency assign SBITERR = (C_ERROR_INJECTION_TYPE == 1 || C_ERROR_INJECTION_TYPE == 3) && ((C_USE_EMBEDDED_REG>0 && (fwft_enabled == 0)) && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ? err_type_d1[0]: err_type[0]; assign DBITERR = (C_ERROR_INJECTION_TYPE == 2 || C_ERROR_INJECTION_TYPE == 3) && ((C_USE_EMBEDDED_REG>0 && (fwft_enabled == 0)) && (C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1)) ? err_type_d1[1]: err_type[1]; assign EMPTY = empty_i; assign FULL = full_i; //saftey_ckt with one register generate if ((C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_EN_SAFETY_CKT==1 && (C_USE_EMBEDDED_REG == 1 || C_USE_EMBEDDED_REG == 2 )) begin reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1; reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2; reg [1:0] rst_delayed_sft1 =1; reg [1:0] rst_delayed_sft2 =1; reg [1:0] rst_delayed_sft3 =1; reg [1:0] rst_delayed_sft4 =1; always@(posedge CLK) begin rst_delayed_sft1 <= #`TCQ rst_i; rst_delayed_sft2 <= #`TCQ rst_delayed_sft1; rst_delayed_sft3 <= #`TCQ rst_delayed_sft2; rst_delayed_sft4 <= #`TCQ rst_delayed_sft3; end always@(posedge rst_delayed_sft2 or posedge rst_i or posedge CLK) begin if( rst_delayed_sft2 == 1'b1 || rst_i == 1'b1) begin ram_rd_en_d1 <= #`TCQ 1'b0; valid_d1 <= #`TCQ 1'b0; end else begin ram_rd_en_d1 <= #`TCQ (RD_EN && ~(empty_i)); valid_d1 <= #`TCQ valid_i; end end always@(posedge rst_delayed_sft2 or posedge CLK) begin if (rst_delayed_sft2 == 1'b1) begin if (C_USE_DOUT_RST == 1'b1) begin @(posedge CLK) ideal_dout_d1 <= #`TCQ dout_reset_val; end end else if (srst_rrst_busy == 1'b1) begin if (C_USE_DOUT_RST == 1'b1) begin ideal_dout_d1 <= #`TCQ dout_reset_val; end end else if (ram_rd_en_d1) begin ideal_dout_d1 <= #`TCQ ideal_dout; err_type_d1[0] <= #`TCQ err_type[0]; err_type_d1[1] <= #`TCQ err_type[1]; end end end //if endgenerate //safety ckt with both registers generate if ((C_MEMORY_TYPE==0 || C_MEMORY_TYPE==1) && C_EN_SAFETY_CKT==1 && C_USE_EMBEDDED_REG == 3) begin reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1; reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2; reg [1:0] rst_delayed_sft1 =1; reg [1:0] rst_delayed_sft2 =1; reg [1:0] rst_delayed_sft3 =1; reg [1:0] rst_delayed_sft4 =1; always@(posedge CLK) begin rst_delayed_sft1 <= #`TCQ rst_i; rst_delayed_sft2 <= #`TCQ rst_delayed_sft1; rst_delayed_sft3 <= #`TCQ rst_delayed_sft2; rst_delayed_sft4 <= #`TCQ rst_delayed_sft3; end always@(posedge rst_delayed_sft2 or posedge rst_i or posedge CLK) begin if (rst_delayed_sft2 == 1'b1 || rst_i == 1'b1) begin ram_rd_en_d1 <= #`TCQ 1'b0; valid_d1 <= #`TCQ 1'b0; end else begin ram_rd_en_d1 <= #`TCQ (RD_EN && ~(empty_i)); fab_rd_en_d1 <= #`TCQ ram_rd_en_d1; valid_both <= #`TCQ valid_i; valid_d1 <= #`TCQ valid_both; end end always@(posedge rst_delayed_sft2 or posedge CLK) begin if (rst_delayed_sft2 == 1'b1) begin if (C_USE_DOUT_RST == 1'b1) begin @(posedge CLK) ideal_dout_d1 <= #`TCQ dout_reset_val; end end else if (srst_rrst_busy == 1'b1) begin if (C_USE_DOUT_RST == 1'b1) begin ideal_dout_d1 <= #`TCQ dout_reset_val; end end else begin if (ram_rd_en_d1) begin ideal_dout_both <= #`TCQ ideal_dout; err_type_both[0] <= #`TCQ err_type[0]; err_type_both[1] <= #`TCQ err_type[1]; end if (fab_rd_en_d1) begin ideal_dout_d1 <= #`TCQ ideal_dout_both; err_type_d1[0] <= #`TCQ err_type_both[0]; err_type_d1[1] <= #`TCQ err_type_both[1]; end end end end //if endgenerate //Overflow may be active-low generate if (C_HAS_OVERFLOW==1) begin : gof assign OVERFLOW = ideal_overflow ? !C_OVERFLOW_LOW : C_OVERFLOW_LOW; end else begin : gnof assign OVERFLOW = 0; end endgenerate // gof assign PROG_EMPTY = prog_empty_i; assign PROG_FULL = prog_full_i; //Valid may change behavior based on latency or active-low generate if (C_HAS_VALID==1) begin : gvalid assign valid_i = (C_PRELOAD_LATENCY == 0) ? (RD_EN & ~EMPTY) : ideal_valid; assign valid_out = (C_PRELOAD_LATENCY == 2 && C_MEMORY_TYPE < 2) ? valid_d1 : valid_i; assign VALID = valid_out ? !C_VALID_LOW : C_VALID_LOW; end else begin : gnvalid assign VALID = 0; end endgenerate // gvalid //Trim data count differently depending on set widths generate if (C_HAS_DATA_COUNT == 1) begin : gdc always @* begin diff_count <= wr_pntr - rd_pntr; if (C_DATA_COUNT_WIDTH > C_RD_PNTR_WIDTH) begin DATA_COUNT[C_RD_PNTR_WIDTH-1:0] <= diff_count; DATA_COUNT[C_DATA_COUNT_WIDTH-1] <= 1'b0 ; end else begin DATA_COUNT <= diff_count[C_RD_PNTR_WIDTH-1:C_RD_PNTR_WIDTH-C_DATA_COUNT_WIDTH]; end end // end else begin : gndc // always @* DATA_COUNT <= 0; end endgenerate // gdc //Underflow may change behavior based on latency or active-low generate if (C_HAS_UNDERFLOW==1) begin : guf assign underflow_i = ideal_underflow; assign UNDERFLOW = underflow_i ? !C_UNDERFLOW_LOW : C_UNDERFLOW_LOW; end else begin : gnuf assign UNDERFLOW = 0; end endgenerate // guf //Write acknowledge may be active low generate if (C_HAS_WR_ACK==1) begin : gwr_ack assign WR_ACK = ideal_wr_ack ? !C_WR_ACK_LOW : C_WR_ACK_LOW; end else begin : gnwr_ack assign WR_ACK = 0; end endgenerate // gwr_ack /***************************************************************************** * Internal reset logic ****************************************************************************/ assign srst_i = C_EN_SAFETY_CKT ? SAFETY_CKT_WR_RST : C_HAS_SRST ? (SRST | WR_RST_BUSY) : 0; assign rst_i = C_HAS_RST ? RST : 0; assign srst_wrst_busy = srst_i; assign srst_rrst_busy = srst_i; /************************************************************************** * Assorted registers for delayed versions of signals **************************************************************************/ //Capture delayed version of valid generate if (C_HAS_VALID == 1 && (C_USE_EMBEDDED_REG <3)) begin : blockVL20 always @(posedge CLK or posedge rst_i) begin if (rst_i == 1'b1) begin valid_d1 <= 1'b0; end else begin if (srst_rrst_busy) begin valid_d1 <= #`TCQ 1'b0; end else begin valid_d1 <= #`TCQ valid_i; end end end // always @ (posedge CLK or posedge rst_i) end endgenerate // blockVL20 generate if (C_HAS_VALID == 1 && (C_USE_EMBEDDED_REG == 3)) begin always @(posedge CLK or posedge rst_i) begin if (rst_i == 1'b1) begin valid_d1 <= 1'b0; valid_both <= 1'b0; end else begin if (srst_rrst_busy) begin valid_d1 <= #`TCQ 1'b0; valid_both <= #`TCQ 1'b0; end else begin valid_both <= #`TCQ valid_i; valid_d1 <= #`TCQ valid_both; end end end // always @ (posedge CLK or posedge rst_i) end endgenerate // blockVL20 // Determine which stage in FWFT registers are valid reg stage1_valid = 0; reg stage2_valid = 0; generate if (C_PRELOAD_LATENCY == 0) begin : grd_fwft_proc always @ (posedge CLK or posedge rst_i) begin if (rst_i) begin stage1_valid <= #`TCQ 0; stage2_valid <= #`TCQ 0; end else begin if (!stage1_valid && !stage2_valid) begin if (!EMPTY) stage1_valid <= #`TCQ 1'b1; else stage1_valid <= #`TCQ 1'b0; end else if (stage1_valid && !stage2_valid) begin if (EMPTY) begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b1; end else begin stage1_valid <= #`TCQ 1'b1; stage2_valid <= #`TCQ 1'b1; end end else if (!stage1_valid && stage2_valid) begin if (EMPTY && RD_EN) begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b0; end else if (!EMPTY && RD_EN) begin stage1_valid <= #`TCQ 1'b1; stage2_valid <= #`TCQ 1'b0; end else if (!EMPTY && !RD_EN) begin stage1_valid <= #`TCQ 1'b1; stage2_valid <= #`TCQ 1'b1; end else begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b1; end end else if (stage1_valid && stage2_valid) begin if (EMPTY && RD_EN) begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b1; end else begin stage1_valid <= #`TCQ 1'b1; stage2_valid <= #`TCQ 1'b1; end end else begin stage1_valid <= #`TCQ 1'b0; stage2_valid <= #`TCQ 1'b0; end end // rd_rst_i end // always end endgenerate //*************************************************************************** // Assign the read data count value only if it is selected, // otherwise output zeros. //*************************************************************************** generate if (C_HAS_RD_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT ==1) begin : grdc assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = rd_data_count_i_ss[C_RD_PNTR_WIDTH:C_RD_PNTR_WIDTH+1-C_RD_DATA_COUNT_WIDTH]; end endgenerate generate if (C_HAS_RD_DATA_COUNT == 0) begin : gnrdc assign RD_DATA_COUNT[C_RD_DATA_COUNT_WIDTH-1:0] = {C_RD_DATA_COUNT_WIDTH{1'b0}}; end endgenerate //*************************************************************************** // Assign the write data count value only if it is selected, // otherwise output zeros //*************************************************************************** generate if (C_HAS_WR_DATA_COUNT == 1 && C_USE_FWFT_DATA_COUNT == 1) begin : gwdc assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = wr_data_count_i_ss[C_WR_PNTR_WIDTH:C_WR_PNTR_WIDTH+1-C_WR_DATA_COUNT_WIDTH] ; end endgenerate generate if (C_HAS_WR_DATA_COUNT == 0) begin : gnwdc assign WR_DATA_COUNT[C_WR_DATA_COUNT_WIDTH-1:0] = {C_WR_DATA_COUNT_WIDTH{1'b0}}; end endgenerate //reg ram_rd_en_d1 = 1'b0; //Capture delayed version of dout generate if (C_EN_SAFETY_CKT == 0 && (C_USE_EMBEDDED_REG<3)) begin always @(posedge CLK or posedge rst_i) begin if (rst_i == 1'b1) begin // Reset err_type only if ECC is not selected if (C_USE_ECC == 0) begin err_type_d1 <= #`TCQ 0; err_type_both <= #`TCQ 0; end // DRAM and SRAM reset asynchronously if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1) begin ideal_dout_d1 <= #`TCQ dout_reset_val; end ram_rd_en_d1 <= #`TCQ 1'b0; if (C_USE_DOUT_RST == 1) begin @(posedge CLK) ideal_dout_d1 <= #`TCQ dout_reset_val; end end else begin ram_rd_en_d1 <= #`TCQ RD_EN & ~EMPTY; if (srst_rrst_busy) begin ram_rd_en_d1 <= #`TCQ 1'b0; // Reset err_type only if ECC is not selected if (C_USE_ECC == 0) begin err_type_d1 <= #`TCQ 0; err_type_both <= #`TCQ 0; end // Reset DRAM and SRAM based FIFO, BRAM based FIFO is reset above if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1) begin ideal_dout_d1 <= #`TCQ dout_reset_val; end if (C_USE_DOUT_RST == 1) begin // @(posedge CLK) ideal_dout_d1 <= #`TCQ dout_reset_val; end end else begin if (ram_rd_en_d1 ) begin ideal_dout_d1 <= #`TCQ ideal_dout; err_type_d1 <= #`TCQ err_type; end end end end // always end endgenerate //no safety ckt with both registers generate if (C_EN_SAFETY_CKT == 0 && (C_USE_EMBEDDED_REG==3)) begin always @(posedge CLK or posedge rst_i) begin if (rst_i == 1'b1) begin ram_rd_en_d1 <= #`TCQ 1'b0; fab_rd_en_d1 <= #`TCQ 1'b0; // Reset err_type only if ECC is not selected if (C_USE_ECC == 0) begin err_type_d1 <= #`TCQ 0; err_type_both <= #`TCQ 0; end // DRAM and SRAM reset asynchronously if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1) begin ideal_dout_d1 <= #`TCQ dout_reset_val; ideal_dout_both <= #`TCQ dout_reset_val; end if (C_USE_DOUT_RST == 1) begin @(posedge CLK) ideal_dout_d1 <= #`TCQ dout_reset_val; ideal_dout_both <= #`TCQ dout_reset_val; end end else begin if (srst_rrst_busy) begin ram_rd_en_d1 <= #`TCQ 1'b0; fab_rd_en_d1 <= #`TCQ 1'b0; // Reset err_type only if ECC is not selected if (C_USE_ECC == 0) begin err_type_d1 <= #`TCQ 0; err_type_both <= #`TCQ 0; end // Reset DRAM and SRAM based FIFO, BRAM based FIFO is reset above if ((C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3) && C_USE_DOUT_RST == 1) begin ideal_dout_d1 <= #`TCQ dout_reset_val; end if (C_USE_DOUT_RST == 1) begin ideal_dout_d1 <= #`TCQ dout_reset_val; end end else begin ram_rd_en_d1 <= #`TCQ RD_EN & ~EMPTY; fab_rd_en_d1 <= #`TCQ (ram_rd_en_d1); if (ram_rd_en_d1 ) begin ideal_dout_both <= #`TCQ ideal_dout; err_type_both <= #`TCQ err_type; end if (fab_rd_en_d1 ) begin ideal_dout_d1 <= #`TCQ ideal_dout_both; err_type_d1 <= #`TCQ err_type_both; end end end end // always end endgenerate /************************************************************************** * Overflow and Underflow Flag calculation * (handled separately because they don't support rst) **************************************************************************/ generate if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 0) begin : g7s_ovflw always @(posedge CLK) begin ideal_overflow <= #`TCQ WR_EN & full_i; end end else if (C_HAS_OVERFLOW == 1 && IS_8SERIES == 1) begin : g8s_ovflw always @(posedge CLK) begin //ideal_overflow <= #`TCQ WR_EN & (rst_i | full_i); ideal_overflow <= #`TCQ WR_EN & (WR_RST_BUSY | full_i); end end endgenerate // blockOF20 generate if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 0) begin : g7s_unflw always @(posedge CLK) begin ideal_underflow <= #`TCQ empty_i & RD_EN; end end else if (C_HAS_UNDERFLOW == 1 && IS_8SERIES == 1) begin : g8s_unflw always @(posedge CLK) begin //ideal_underflow <= #`TCQ (rst_i | empty_i) & RD_EN; ideal_underflow <= #`TCQ (RD_RST_BUSY | empty_i) & RD_EN; end end endgenerate // blockUF20 /************************** * Read Data Count *************************/ reg [31:0] num_read_words_dc; reg [C_RD_DATA_COUNT_WIDTH-1:0] num_read_words_sized_i; always @(num_rd_bits) begin if (C_USE_FWFT_DATA_COUNT) begin //If using extra logic for FWFT Data Counts, // then scale FIFO contents to read domain, // and add two read words for FWFT stages //This value is only a temporary value and not used in the code. num_read_words_dc = (num_rd_bits/C_DOUT_WIDTH+2); //Trim the read words for use with RD_DATA_COUNT num_read_words_sized_i = num_read_words_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH+1]; end else begin //If not using extra logic for FWFT Data Counts, // then scale FIFO contents to read domain. //This value is only a temporary value and not used in the code. num_read_words_dc = num_rd_bits/C_DOUT_WIDTH; //Trim the read words for use with RD_DATA_COUNT num_read_words_sized_i = num_read_words_dc[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_RD_DATA_COUNT_WIDTH]; end //if (C_USE_FWFT_DATA_COUNT) end //always /************************** * Write Data Count *************************/ reg [31:0] num_write_words_dc; reg [C_WR_DATA_COUNT_WIDTH-1:0] num_write_words_sized_i; always @(num_wr_bits) begin if (C_USE_FWFT_DATA_COUNT) begin //Calculate the Data Count value for the number of write words, // when using First-Word Fall-Through with extra logic for Data // Counts. This takes into consideration the number of words that // are expected to be stored in the FWFT register stages (it always // assumes they are filled). //This value is scaled to the Write Domain. //The expression (((A-1)/B))+1 divides A/B, but takes the // ceiling of the result. //When num_wr_bits==0, set the result manually to prevent // division errors. //EXTRA_WORDS_DC is the number of words added to write_words // due to FWFT. //This value is only a temporary value and not used in the code. num_write_words_dc = (num_wr_bits==0) ? EXTRA_WORDS_DC : (((num_wr_bits-1)/C_DIN_WIDTH)+1) + EXTRA_WORDS_DC ; //Trim the write words for use with WR_DATA_COUNT num_write_words_sized_i = num_write_words_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH+1]; end else begin //Calculate the Data Count value for the number of write words, when NOT // using First-Word Fall-Through with extra logic for Data Counts. This // calculates only the number of words in the internal FIFO. //The expression (((A-1)/B))+1 divides A/B, but takes the // ceiling of the result. //This value is scaled to the Write Domain. //When num_wr_bits==0, set the result manually to prevent // division errors. //This value is only a temporary value and not used in the code. num_write_words_dc = (num_wr_bits==0) ? 0 : ((num_wr_bits-1)/C_DIN_WIDTH)+1; //Trim the read words for use with RD_DATA_COUNT num_write_words_sized_i = num_write_words_dc[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_WR_DATA_COUNT_WIDTH]; end //if (C_USE_FWFT_DATA_COUNT) end //always /************************************************************************* * Write and Read Logic ************************************************************************/ wire write_allow; wire read_allow; wire read_allow_dc; wire write_only; wire read_only; //wire write_only_q; reg write_only_q; //wire read_only_q; reg read_only_q; reg full_reg; reg rst_full_ff_reg1; reg rst_full_ff_reg2; wire ram_full_comb; wire carry; assign write_allow = WR_EN & ~full_i; assign read_allow = RD_EN & ~empty_i; assign read_allow_dc = RD_EN_USER & ~USER_EMPTY_FB; //assign write_only = write_allow & ~read_allow; //assign write_only_q = write_allow_q; //assign read_only = read_allow & ~write_allow; //assign read_only_q = read_allow_q ; wire [C_WR_PNTR_WIDTH-1:0] diff_pntr; wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe; reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_reg1 = 0; reg [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe_reg1 = 0; reg [C_RD_PNTR_WIDTH:0] diff_pntr_pe_asym = 0; wire [C_RD_PNTR_WIDTH:0] adj_wr_pntr_rd_asym ; wire [C_RD_PNTR_WIDTH:0] rd_pntr_asym; reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_reg2 = 0; reg [C_WR_PNTR_WIDTH-1:0] diff_pntr_pe_reg2 = 0; wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_pe_max; wire [C_RD_PNTR_WIDTH-1:0] diff_pntr_max; assign diff_pntr_pe_max = DIFF_MAX_RD; assign diff_pntr_max = DIFF_MAX_WR; generate if (IS_ASYMMETRY == 0) begin : diff_pntr_sym assign write_only = write_allow & ~read_allow; assign read_only = read_allow & ~write_allow; end endgenerate generate if ( IS_ASYMMETRY == 1 && C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : wr_grt_rd assign read_only = read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0]) & ~write_allow; assign write_only = write_allow & ~(read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])); end endgenerate generate if (IS_ASYMMETRY ==1 && C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : rd_grt_wr assign read_only = read_allow & ~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0])); assign write_only = write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0]) & ~read_allow; end endgenerate //----------------------------------------------------------------------------- // Write and Read pointer generation //----------------------------------------------------------------------------- always @(posedge CLK or posedge rst_i) begin if (rst_i && C_EN_SAFETY_CKT == 0) begin wr_pntr <= 0; rd_pntr <= 0; end else begin if (srst_i) begin wr_pntr <= #`TCQ 0; rd_pntr <= #`TCQ 0; end else begin if (write_allow) wr_pntr <= #`TCQ wr_pntr + 1; if (read_allow) rd_pntr <= #`TCQ rd_pntr + 1; end end end generate if (C_FIFO_TYPE == 2) begin : gll_dm_dout always @(posedge CLK) begin if (write_allow) begin if (ENABLE_ERR_INJECTION == 1) memory[wr_pntr] <= #`TCQ {INJECTDBITERR,INJECTSBITERR,DIN}; else memory[wr_pntr] <= #`TCQ DIN; end end reg [C_DATA_WIDTH-1:0] dout_tmp_q; reg [C_DATA_WIDTH-1:0] dout_tmp = 0; reg [C_DATA_WIDTH-1:0] dout_tmp1 = 0; always @(posedge CLK) begin dout_tmp_q <= #`TCQ ideal_dout; end always @* begin if (read_allow) ideal_dout <= memory[rd_pntr]; else ideal_dout <= dout_tmp_q; end end endgenerate // gll_dm_dout /************************************************************************** * Write Domain Logic **************************************************************************/ assign ram_rd_en = RD_EN & !EMPTY; //reg [C_WR_PNTR_WIDTH-1:0] diff_pntr = 0; generate if (C_FIFO_TYPE != 2) begin : gnll_din always @(posedge CLK or posedge rst_i) begin : gen_fifo_w /****** Reset fifo (case 1)***************************************/ if (rst_i == 1'b1) begin num_wr_bits <= #`TCQ 0; next_num_wr_bits = #`TCQ 0; wr_ptr <= #`TCQ C_WR_DEPTH - 1; rd_ptr_wrclk <= #`TCQ C_RD_DEPTH - 1; ideal_wr_ack <= #`TCQ 0; ideal_wr_count <= #`TCQ 0; tmp_wr_listsize = #`TCQ 0; rd_ptr_wrclk_next <= #`TCQ 0; wr_pntr <= #`TCQ 0; wr_pntr_rd1 <= #`TCQ 0; end else begin //rst_i==0 if (srst_wrst_busy) begin num_wr_bits <= #`TCQ 0; next_num_wr_bits = #`TCQ 0; wr_ptr <= #`TCQ C_WR_DEPTH - 1; rd_ptr_wrclk <= #`TCQ C_RD_DEPTH - 1; ideal_wr_ack <= #`TCQ 0; ideal_wr_count <= #`TCQ 0; tmp_wr_listsize = #`TCQ 0; rd_ptr_wrclk_next <= #`TCQ 0; wr_pntr <= #`TCQ 0; wr_pntr_rd1 <= #`TCQ 0; end else begin//srst_i=0 wr_pntr_rd1 <= #`TCQ wr_pntr; //Determine the current number of words in the FIFO tmp_wr_listsize = (C_DEPTH_RATIO_RD > 1) ? num_wr_bits/C_DOUT_WIDTH : num_wr_bits/C_DIN_WIDTH; rd_ptr_wrclk_next = rd_ptr; if (rd_ptr_wrclk < rd_ptr_wrclk_next) begin next_num_wr_bits = num_wr_bits - C_DOUT_WIDTH*(rd_ptr_wrclk + C_RD_DEPTH - rd_ptr_wrclk_next); end else begin next_num_wr_bits = num_wr_bits - C_DOUT_WIDTH*(rd_ptr_wrclk - rd_ptr_wrclk_next); end if (WR_EN == 1'b1) begin if (FULL == 1'b1) begin ideal_wr_ack <= #`TCQ 0; //Reminder that FIFO is still full ideal_wr_count <= #`TCQ num_write_words_sized_i; end else begin write_fifo; next_num_wr_bits = next_num_wr_bits + C_DIN_WIDTH; //Write successful, so issue acknowledge // and no error ideal_wr_ack <= #`TCQ 1; //Not even close to full. ideal_wr_count <= num_write_words_sized_i; //end end end else begin //(WR_EN == 1'b1) //If user did not attempt a write, then do not // give ack or err ideal_wr_ack <= #`TCQ 0; ideal_wr_count <= #`TCQ num_write_words_sized_i; end num_wr_bits <= #`TCQ next_num_wr_bits; rd_ptr_wrclk <= #`TCQ rd_ptr; end //srst_i==0 end //wr_rst_i==0 end // gen_fifo_w end endgenerate generate if (C_FIFO_TYPE < 2 && C_MEMORY_TYPE < 2) begin : gnll_dm_dout always @(posedge CLK) begin if (rst_i || srst_rrst_busy) begin if (C_USE_DOUT_RST == 1) begin ideal_dout <= #`TCQ dout_reset_val; ideal_dout_both <= #`TCQ dout_reset_val; end end end end endgenerate generate if (C_FIFO_TYPE != 2) begin : gnll_dout always @(posedge CLK or posedge rst_i) begin : gen_fifo_r /****** Reset fifo (case 1)***************************************/ if (rst_i) begin num_rd_bits <= #`TCQ 0; next_num_rd_bits = #`TCQ 0; rd_ptr <= #`TCQ C_RD_DEPTH -1; rd_pntr <= #`TCQ 0; //rd_pntr_wr1 <= #`TCQ 0; wr_ptr_rdclk <= #`TCQ C_WR_DEPTH -1; // DRAM resets asynchronously if (C_FIFO_TYPE < 2 && (C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3 )&& C_USE_DOUT_RST == 1) ideal_dout <= #`TCQ dout_reset_val; // Reset err_type only if ECC is not selected if (C_USE_ECC == 0) begin err_type <= #`TCQ 0; err_type_d1 <= 0; err_type_both <= 0; end ideal_valid <= #`TCQ 1'b0; ideal_rd_count <= #`TCQ 0; end else begin //rd_rst_i==0 if (srst_rrst_busy) begin num_rd_bits <= #`TCQ 0; next_num_rd_bits = #`TCQ 0; rd_ptr <= #`TCQ C_RD_DEPTH -1; rd_pntr <= #`TCQ 0; //rd_pntr_wr1 <= #`TCQ 0; wr_ptr_rdclk <= #`TCQ C_WR_DEPTH -1; // DRAM resets synchronously if (C_FIFO_TYPE < 2 && (C_MEMORY_TYPE == 2 || C_MEMORY_TYPE == 3 )&& C_USE_DOUT_RST == 1) ideal_dout <= #`TCQ dout_reset_val; // Reset err_type only if ECC is not selected if (C_USE_ECC == 0) begin err_type <= #`TCQ 0; err_type_d1 <= #`TCQ 0; err_type_both <= #`TCQ 0; end ideal_valid <= #`TCQ 1'b0; ideal_rd_count <= #`TCQ 0; end //srst_i else begin //rd_pntr_wr1 <= #`TCQ rd_pntr; //Determine the current number of words in the FIFO tmp_rd_listsize = (C_DEPTH_RATIO_WR > 1) ? num_rd_bits/C_DIN_WIDTH : num_rd_bits/C_DOUT_WIDTH; wr_ptr_rdclk_next = wr_ptr; if (wr_ptr_rdclk < wr_ptr_rdclk_next) begin next_num_rd_bits = num_rd_bits + C_DIN_WIDTH*(wr_ptr_rdclk +C_WR_DEPTH - wr_ptr_rdclk_next); end else begin next_num_rd_bits = num_rd_bits + C_DIN_WIDTH*(wr_ptr_rdclk - wr_ptr_rdclk_next); end if (RD_EN == 1'b1) begin if (EMPTY == 1'b1) begin ideal_valid <= #`TCQ 1'b0; ideal_rd_count <= #`TCQ num_read_words_sized_i; end else begin read_fifo; next_num_rd_bits = next_num_rd_bits - C_DOUT_WIDTH; //Acknowledge the read from the FIFO, no error ideal_valid <= #`TCQ 1'b1; ideal_rd_count <= #`TCQ num_read_words_sized_i; end // if (tmp_rd_listsize == 2) end num_rd_bits <= #`TCQ next_num_rd_bits; wr_ptr_rdclk <= #`TCQ wr_ptr; end //s_rst_i==0 end //rd_rst_i==0 end //always end endgenerate //----------------------------------------------------------------------------- // Generate diff_pntr for PROG_FULL generation // Generate diff_pntr_pe for PROG_EMPTY generation //----------------------------------------------------------------------------- generate if ((C_PROG_FULL_TYPE != 0 || C_PROG_EMPTY_TYPE != 0) && IS_ASYMMETRY == 0) begin : reg_write_allow always @(posedge CLK ) begin if (rst_i) begin write_only_q <= 1'b0; read_only_q <= 1'b0; diff_pntr_reg1 <= 0; diff_pntr_pe_reg1 <= 0; diff_pntr_reg2 <= 0; diff_pntr_pe_reg2 <= 0; end else begin if (srst_i || srst_wrst_busy || srst_rrst_busy) begin if (srst_rrst_busy) begin read_only_q <= #`TCQ 1'b0; diff_pntr_pe_reg1 <= #`TCQ 0; diff_pntr_pe_reg2 <= #`TCQ 0; end if (srst_wrst_busy) begin write_only_q <= #`TCQ 1'b0; diff_pntr_reg1 <= #`TCQ 0; diff_pntr_reg2 <= #`TCQ 0; end end else begin write_only_q <= #`TCQ write_only; read_only_q <= #`TCQ read_only; diff_pntr_reg2 <= #`TCQ diff_pntr_reg1; diff_pntr_pe_reg2 <= #`TCQ diff_pntr_pe_reg1; // Add 1 to the difference pointer value when only write happens. if (write_only) diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr + 1; else diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr; // Add 1 to the difference pointer value when write or both write & read or no write & read happen. if (read_only) diff_pntr_pe_reg1 <= #`TCQ adj_wr_pntr_rd - rd_pntr - 1; else diff_pntr_pe_reg1 <= #`TCQ adj_wr_pntr_rd - rd_pntr; end end end assign diff_pntr_pe = diff_pntr_pe_reg1; assign diff_pntr = diff_pntr_reg1; end endgenerate // reg_write_allow generate if ((C_PROG_FULL_TYPE != 0 || C_PROG_EMPTY_TYPE != 0) && IS_ASYMMETRY == 1) begin : reg_write_allow_asym assign adj_wr_pntr_rd_asym[C_RD_PNTR_WIDTH:0] = {adj_wr_pntr_rd,1'b1}; assign rd_pntr_asym[C_RD_PNTR_WIDTH:0] = {~rd_pntr,1'b1}; always @(posedge CLK ) begin if (rst_i) begin diff_pntr_pe_asym <= 0; diff_pntr_reg1 <= 0; full_reg <= 0; rst_full_ff_reg1 <= 1; rst_full_ff_reg2 <= 1; diff_pntr_pe_reg1 <= 0; end else begin if (srst_i || srst_wrst_busy || srst_rrst_busy) begin if (srst_wrst_busy) diff_pntr_reg1 <= #`TCQ 0; if (srst_rrst_busy) full_reg <= #`TCQ 0; rst_full_ff_reg1 <= #`TCQ 1; rst_full_ff_reg2 <= #`TCQ 1; diff_pntr_pe_asym <= #`TCQ 0; diff_pntr_pe_reg1 <= #`TCQ 0; end else begin diff_pntr_pe_asym <= #`TCQ adj_wr_pntr_rd_asym + rd_pntr_asym; full_reg <= #`TCQ full_i; rst_full_ff_reg1 <= #`TCQ RST_FULL_FF; rst_full_ff_reg2 <= #`TCQ rst_full_ff_reg1; if (~full_i) begin diff_pntr_reg1 <= #`TCQ wr_pntr - adj_rd_pntr_wr; end end end end assign carry = (~(|(diff_pntr_pe_asym [C_RD_PNTR_WIDTH : 1]))); assign diff_pntr_pe = (full_reg && ~rst_full_ff_reg2 && carry ) ? diff_pntr_pe_max : diff_pntr_pe_asym[C_RD_PNTR_WIDTH:1]; assign diff_pntr = diff_pntr_reg1; end endgenerate // reg_write_allow_asym //----------------------------------------------------------------------------- // Generate FULL flag //----------------------------------------------------------------------------- wire comp0; wire comp1; wire going_full; wire leaving_full; generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gpad assign adj_rd_pntr_wr [C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH] = rd_pntr; assign adj_rd_pntr_wr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0] = 0; end endgenerate generate if (C_WR_PNTR_WIDTH <= C_RD_PNTR_WIDTH) begin : gtrim assign adj_rd_pntr_wr = rd_pntr[C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH]; end endgenerate assign comp1 = (adj_rd_pntr_wr == (wr_pntr + 1'b1)); assign comp0 = (adj_rd_pntr_wr == wr_pntr); generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gf_wp_eq_rp assign going_full = (comp1 & write_allow & ~read_allow); assign leaving_full = (comp0 & read_allow) | RST_FULL_GEN; end endgenerate // Write data width is bigger than read data width // Write depth is smaller than read depth // One write could be equal to 2 or 4 or 8 reads generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gf_asym assign going_full = (comp1 & write_allow & (~ (read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])))); assign leaving_full = (comp0 & read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])) | RST_FULL_GEN; end endgenerate generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gf_wp_gt_rp assign going_full = (comp1 & write_allow & ~read_allow); assign leaving_full =(comp0 & read_allow) | RST_FULL_GEN; end endgenerate assign ram_full_comb = going_full | (~leaving_full & full_i); always @(posedge CLK or posedge RST_FULL_FF) begin if (RST_FULL_FF) full_i <= C_FULL_FLAGS_RST_VAL; else if (srst_wrst_busy) full_i <= #`TCQ C_FULL_FLAGS_RST_VAL; else full_i <= #`TCQ ram_full_comb; end //----------------------------------------------------------------------------- // Generate EMPTY flag //----------------------------------------------------------------------------- wire ecomp0; wire ecomp1; wire going_empty; wire leaving_empty; wire ram_empty_comb; generate if (C_RD_PNTR_WIDTH > C_WR_PNTR_WIDTH) begin : pad assign adj_wr_pntr_rd [C_RD_PNTR_WIDTH-1 : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH] = wr_pntr; assign adj_wr_pntr_rd[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0] = 0; end endgenerate generate if (C_RD_PNTR_WIDTH <= C_WR_PNTR_WIDTH) begin : trim assign adj_wr_pntr_rd = wr_pntr[C_WR_PNTR_WIDTH-1 : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH]; end endgenerate assign ecomp1 = (adj_wr_pntr_rd == (rd_pntr + 1'b1)); assign ecomp0 = (adj_wr_pntr_rd == rd_pntr); generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : ge_wp_eq_rp assign going_empty = (ecomp1 & ~write_allow & read_allow); assign leaving_empty = (ecomp0 & write_allow); end endgenerate generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : ge_wp_gt_rp assign going_empty = (ecomp1 & read_allow & (~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0])))); assign leaving_empty = (ecomp0 & write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0])); end endgenerate generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : ge_wp_lt_rp assign going_empty = (ecomp1 & ~write_allow & read_allow); assign leaving_empty =(ecomp0 & write_allow); end endgenerate assign ram_empty_comb = going_empty | (~leaving_empty & empty_i); always @(posedge CLK or posedge rst_i) begin if (rst_i) empty_i <= 1'b1; else if (srst_rrst_busy) empty_i <= #`TCQ 1'b1; else empty_i <= #`TCQ ram_empty_comb; end always @(posedge CLK or posedge rst_i) begin if (rst_i && C_EN_SAFETY_CKT == 0) begin EMPTY_FB <= 1'b1; end else begin if (srst_rrst_busy || (SAFETY_CKT_WR_RST && C_EN_SAFETY_CKT)) EMPTY_FB <= #`TCQ 1'b1; else EMPTY_FB <= #`TCQ ram_empty_comb; end end // always //----------------------------------------------------------------------------- // Generate Read and write data counts for asymmetic common clock //----------------------------------------------------------------------------- reg [C_GRTR_PNTR_WIDTH :0] count_dc = 0; wire [C_GRTR_PNTR_WIDTH :0] ratio; wire decr_by_one; wire incr_by_ratio; wire incr_by_one; wire decr_by_ratio; localparam IS_FWFT = (C_PRELOAD_REGS == 1 && C_PRELOAD_LATENCY == 0) ? 1 : 0; generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : rd_depth_gt_wr assign ratio = C_DEPTH_RATIO_RD; assign decr_by_one = (IS_FWFT == 1)? read_allow_dc : read_allow; assign incr_by_ratio = write_allow; always @(posedge CLK or posedge rst_i) begin if (rst_i) count_dc <= #`TCQ 0; else if (srst_wrst_busy) count_dc <= #`TCQ 0; else begin if (decr_by_one) begin if (!incr_by_ratio) count_dc <= #`TCQ count_dc - 1; else count_dc <= #`TCQ count_dc - 1 + ratio ; end else begin if (!incr_by_ratio) count_dc <= #`TCQ count_dc ; else count_dc <= #`TCQ count_dc + ratio ; end end end assign rd_data_count_i_ss[C_RD_PNTR_WIDTH : 0] = count_dc; assign wr_data_count_i_ss[C_WR_PNTR_WIDTH : 0] = count_dc[C_RD_PNTR_WIDTH : C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH]; end endgenerate generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : wr_depth_gt_rd assign ratio = C_DEPTH_RATIO_WR; assign incr_by_one = write_allow; assign decr_by_ratio = (IS_FWFT == 1)? read_allow_dc : read_allow; always @(posedge CLK or posedge rst_i) begin if (rst_i) count_dc <= #`TCQ 0; else if (srst_wrst_busy) count_dc <= #`TCQ 0; else begin if (incr_by_one) begin if (!decr_by_ratio) count_dc <= #`TCQ count_dc + 1; else count_dc <= #`TCQ count_dc + 1 - ratio ; end else begin if (!decr_by_ratio) count_dc <= #`TCQ count_dc ; else count_dc <= #`TCQ count_dc - ratio ; end end end assign wr_data_count_i_ss[C_WR_PNTR_WIDTH : 0] = count_dc; assign rd_data_count_i_ss[C_RD_PNTR_WIDTH : 0] = count_dc[C_WR_PNTR_WIDTH : C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH]; end endgenerate //----------------------------------------------------------------------------- // Generate WR_ACK flag //----------------------------------------------------------------------------- always @(posedge CLK or posedge rst_i) begin if (rst_i) ideal_wr_ack <= 1'b0; else if (srst_wrst_busy) ideal_wr_ack <= #`TCQ 1'b0; else if (WR_EN & ~full_i) ideal_wr_ack <= #`TCQ 1'b1; else ideal_wr_ack <= #`TCQ 1'b0; end //----------------------------------------------------------------------------- // Generate VALID flag //----------------------------------------------------------------------------- always @(posedge CLK or posedge rst_i) begin if (rst_i) ideal_valid <= 1'b0; else if (srst_rrst_busy) ideal_valid <= #`TCQ 1'b0; else if (RD_EN & ~empty_i) ideal_valid <= #`TCQ 1'b1; else ideal_valid <= #`TCQ 1'b0; end //----------------------------------------------------------------------------- // Generate ALMOST_FULL flag //----------------------------------------------------------------------------- //generate if (C_HAS_ALMOST_FULL == 1 || C_PROG_FULL_TYPE > 2 || C_PROG_EMPTY_TYPE > 2) begin : gaf_ss wire fcomp2; wire going_afull; wire leaving_afull; wire ram_afull_comb; assign fcomp2 = (adj_rd_pntr_wr == (wr_pntr + 2'h2)); generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gaf_wp_eq_rp assign going_afull = (fcomp2 & write_allow & ~read_allow); assign leaving_afull = (comp1 & read_allow & ~write_allow) | RST_FULL_GEN; end endgenerate // Write data width is bigger than read data width // Write depth is smaller than read depth // One write could be equal to 2 or 4 or 8 reads generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gaf_asym assign going_afull = (fcomp2 & write_allow & (~ (read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])))); assign leaving_afull = (comp1 & (~write_allow) & read_allow & &(rd_pntr[C_RD_PNTR_WIDTH-C_WR_PNTR_WIDTH-1 : 0])) | RST_FULL_GEN; end endgenerate generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gaf_wp_gt_rp assign going_afull = (fcomp2 & write_allow & ~read_allow); assign leaving_afull =((comp0 | comp1 | fcomp2) & read_allow) | RST_FULL_GEN; end endgenerate assign ram_afull_comb = going_afull | (~leaving_afull & almost_full_i); always @(posedge CLK or posedge RST_FULL_FF) begin if (RST_FULL_FF) almost_full_i <= C_FULL_FLAGS_RST_VAL; else if (srst_wrst_busy) almost_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL; else almost_full_i <= #`TCQ ram_afull_comb; end // end endgenerate // gaf_ss //----------------------------------------------------------------------------- // Generate ALMOST_EMPTY flag //----------------------------------------------------------------------------- //generate if (C_HAS_ALMOST_EMPTY == 1) begin : gae_ss wire ecomp2; wire going_aempty; wire leaving_aempty; wire ram_aempty_comb; assign ecomp2 = (adj_wr_pntr_rd == (rd_pntr + 2'h2)); generate if (C_WR_PNTR_WIDTH == C_RD_PNTR_WIDTH) begin : gae_wp_eq_rp assign going_aempty = (ecomp2 & ~write_allow & read_allow); assign leaving_aempty = (ecomp1 & write_allow & ~read_allow); end endgenerate generate if (C_WR_PNTR_WIDTH > C_RD_PNTR_WIDTH) begin : gae_wp_gt_rp assign going_aempty = (ecomp2 & read_allow & (~(write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0])))); assign leaving_aempty = (ecomp1 & ~read_allow & write_allow & &(wr_pntr[C_WR_PNTR_WIDTH-C_RD_PNTR_WIDTH-1 : 0])); end endgenerate generate if (C_WR_PNTR_WIDTH < C_RD_PNTR_WIDTH) begin : gae_wp_lt_rp assign going_aempty = (ecomp2 & ~write_allow & read_allow); assign leaving_aempty =((ecomp2 | ecomp1 |ecomp0) & write_allow); end endgenerate assign ram_aempty_comb = going_aempty | (~leaving_aempty & almost_empty_i); always @(posedge CLK or posedge rst_i) begin if (rst_i) almost_empty_i <= 1'b1; else if (srst_rrst_busy) almost_empty_i <= #`TCQ 1'b1; else almost_empty_i <= #`TCQ ram_aempty_comb; end // end endgenerate // gae_ss //----------------------------------------------------------------------------- // Generate PROG_FULL //----------------------------------------------------------------------------- localparam C_PF_ASSERT_VAL = (C_PRELOAD_LATENCY == 0) ? C_PROG_FULL_THRESH_ASSERT_VAL - EXTRA_WORDS_PF_PARAM : // FWFT C_PROG_FULL_THRESH_ASSERT_VAL; // STD localparam C_PF_NEGATE_VAL = (C_PRELOAD_LATENCY == 0) ? C_PROG_FULL_THRESH_NEGATE_VAL - EXTRA_WORDS_PF_PARAM: // FWFT C_PROG_FULL_THRESH_NEGATE_VAL; // STD //----------------------------------------------------------------------------- // Generate PROG_FULL for single programmable threshold constant //----------------------------------------------------------------------------- wire [C_WR_PNTR_WIDTH-1:0] temp = C_PF_ASSERT_VAL; generate if (C_PROG_FULL_TYPE == 1) begin : single_pf_const always @(posedge CLK or posedge RST_FULL_FF) begin if (RST_FULL_FF && C_HAS_RST) prog_full_i <= C_FULL_FLAGS_RST_VAL; else begin if (srst_wrst_busy) prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL; else if (IS_ASYMMETRY == 0) begin if (RST_FULL_GEN) prog_full_i <= #`TCQ 1'b0; else if (diff_pntr == C_PF_ASSERT_VAL && write_only_q) prog_full_i <= #`TCQ 1'b1; else if (diff_pntr == C_PF_ASSERT_VAL && read_only_q) prog_full_i <= #`TCQ 1'b0; else prog_full_i <= #`TCQ prog_full_i; end else begin if (RST_FULL_GEN) prog_full_i <= #`TCQ 1'b0; else if (~RST_FULL_GEN ) begin if (diff_pntr>= C_PF_ASSERT_VAL ) prog_full_i <= #`TCQ 1'b1; else if ((diff_pntr) < C_PF_ASSERT_VAL ) prog_full_i <= #`TCQ 1'b0; else prog_full_i <= #`TCQ 1'b0; end else prog_full_i <= #`TCQ prog_full_i; end end end end endgenerate // single_pf_const //----------------------------------------------------------------------------- // Generate PROG_FULL for multiple programmable threshold constants //----------------------------------------------------------------------------- generate if (C_PROG_FULL_TYPE == 2) begin : multiple_pf_const always @(posedge CLK or posedge RST_FULL_FF) begin //if (RST_FULL_FF) if (RST_FULL_FF && C_HAS_RST) prog_full_i <= C_FULL_FLAGS_RST_VAL; else begin if (srst_wrst_busy) prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL; else if (IS_ASYMMETRY == 0) begin if (RST_FULL_GEN) prog_full_i <= #`TCQ 1'b0; else if (diff_pntr == C_PF_ASSERT_VAL && write_only_q) prog_full_i <= #`TCQ 1'b1; else if (diff_pntr == C_PF_NEGATE_VAL && read_only_q) prog_full_i <= #`TCQ 1'b0; else prog_full_i <= #`TCQ prog_full_i; end else begin if (RST_FULL_GEN) prog_full_i <= #`TCQ 1'b0; else if (~RST_FULL_GEN ) begin if (diff_pntr >= C_PF_ASSERT_VAL ) prog_full_i <= #`TCQ 1'b1; else if (diff_pntr < C_PF_NEGATE_VAL) prog_full_i <= #`TCQ 1'b0; else prog_full_i <= #`TCQ prog_full_i; end else prog_full_i <= #`TCQ prog_full_i; end end end end endgenerate //multiple_pf_const //----------------------------------------------------------------------------- // Generate PROG_FULL for single programmable threshold input port //----------------------------------------------------------------------------- wire [C_WR_PNTR_WIDTH-1:0] pf3_assert_val = (C_PRELOAD_LATENCY == 0) ? PROG_FULL_THRESH - EXTRA_WORDS_PF: // FWFT PROG_FULL_THRESH; // STD generate if (C_PROG_FULL_TYPE == 3) begin : single_pf_input always @(posedge CLK or posedge RST_FULL_FF) begin//0 //if (RST_FULL_FF) if (RST_FULL_FF && C_HAS_RST) prog_full_i <= C_FULL_FLAGS_RST_VAL; else begin //1 if (srst_wrst_busy) prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL; else if (IS_ASYMMETRY == 0) begin//2 if (RST_FULL_GEN) prog_full_i <= #`TCQ 1'b0; else if (~almost_full_i) begin//3 if (diff_pntr > pf3_assert_val) prog_full_i <= #`TCQ 1'b1; else if (diff_pntr == pf3_assert_val) begin//4 if (read_only_q) prog_full_i <= #`TCQ 1'b0; else prog_full_i <= #`TCQ 1'b1; end else//4 prog_full_i <= #`TCQ 1'b0; end else//3 prog_full_i <= #`TCQ prog_full_i; end //2 else begin//5 if (RST_FULL_GEN) prog_full_i <= #`TCQ 1'b0; else if (~full_i ) begin//6 if (diff_pntr >= pf3_assert_val ) prog_full_i <= #`TCQ 1'b1; else if (diff_pntr < pf3_assert_val) begin//7 prog_full_i <= #`TCQ 1'b0; end//7 end//6 else prog_full_i <= #`TCQ prog_full_i; end//5 end//1 end//0 end endgenerate //single_pf_input //----------------------------------------------------------------------------- // Generate PROG_FULL for multiple programmable threshold input ports //----------------------------------------------------------------------------- wire [C_WR_PNTR_WIDTH-1:0] pf_assert_val = (C_PRELOAD_LATENCY == 0) ? (PROG_FULL_THRESH_ASSERT -EXTRA_WORDS_PF) : // FWFT PROG_FULL_THRESH_ASSERT; // STD wire [C_WR_PNTR_WIDTH-1:0] pf_negate_val = (C_PRELOAD_LATENCY == 0) ? (PROG_FULL_THRESH_NEGATE -EXTRA_WORDS_PF) : // FWFT PROG_FULL_THRESH_NEGATE; // STD generate if (C_PROG_FULL_TYPE == 4) begin : multiple_pf_inputs always @(posedge CLK or posedge RST_FULL_FF) begin if (RST_FULL_FF && C_HAS_RST) prog_full_i <= C_FULL_FLAGS_RST_VAL; else begin if (srst_wrst_busy) prog_full_i <= #`TCQ C_FULL_FLAGS_RST_VAL; else if (IS_ASYMMETRY == 0) begin if (RST_FULL_GEN) prog_full_i <= #`TCQ 1'b0; else if (~almost_full_i) begin if (diff_pntr >= pf_assert_val) prog_full_i <= #`TCQ 1'b1; else if ((diff_pntr == pf_negate_val && read_only_q) || diff_pntr < pf_negate_val) prog_full_i <= #`TCQ 1'b0; else prog_full_i <= #`TCQ prog_full_i; end else prog_full_i <= #`TCQ prog_full_i; end else begin if (RST_FULL_GEN) prog_full_i <= #`TCQ 1'b0; else if (~full_i ) begin if (diff_pntr >= pf_assert_val ) prog_full_i <= #`TCQ 1'b1; else if (diff_pntr < pf_negate_val) prog_full_i <= #`TCQ 1'b0; else prog_full_i <= #`TCQ prog_full_i; end else prog_full_i <= #`TCQ prog_full_i; end end end end endgenerate //multiple_pf_inputs //----------------------------------------------------------------------------- // Generate PROG_EMPTY //----------------------------------------------------------------------------- localparam C_PE_ASSERT_VAL = (C_PRELOAD_LATENCY == 0) ? C_PROG_EMPTY_THRESH_ASSERT_VAL - 2: // FWFT C_PROG_EMPTY_THRESH_ASSERT_VAL; // STD localparam C_PE_NEGATE_VAL = (C_PRELOAD_LATENCY == 0) ? C_PROG_EMPTY_THRESH_NEGATE_VAL - 2: // FWFT C_PROG_EMPTY_THRESH_NEGATE_VAL; // STD //----------------------------------------------------------------------------- // Generate PROG_EMPTY for single programmable threshold constant //----------------------------------------------------------------------------- generate if (C_PROG_EMPTY_TYPE == 1) begin : single_pe_const always @(posedge CLK or posedge rst_i) begin //if (rst_i) if (rst_i && C_HAS_RST) prog_empty_i <= 1'b1; else begin if (srst_rrst_busy) prog_empty_i <= #`TCQ 1'b1; else if (IS_ASYMMETRY == 0) begin if (diff_pntr_pe == C_PE_ASSERT_VAL && read_only_q) prog_empty_i <= #`TCQ 1'b1; else if (diff_pntr_pe == C_PE_ASSERT_VAL && write_only_q) prog_empty_i <= #`TCQ 1'b0; else prog_empty_i <= #`TCQ prog_empty_i; end else begin if (~rst_i ) begin if (diff_pntr_pe <= C_PE_ASSERT_VAL) prog_empty_i <= #`TCQ 1'b1; else if (diff_pntr_pe > C_PE_ASSERT_VAL) prog_empty_i <= #`TCQ 1'b0; end else prog_empty_i <= #`TCQ prog_empty_i; end end end end endgenerate // single_pe_const //----------------------------------------------------------------------------- // Generate PROG_EMPTY for multiple programmable threshold constants //----------------------------------------------------------------------------- generate if (C_PROG_EMPTY_TYPE == 2) begin : multiple_pe_const always @(posedge CLK or posedge rst_i) begin //if (rst_i) if (rst_i && C_HAS_RST) prog_empty_i <= 1'b1; else begin if (srst_rrst_busy) prog_empty_i <= #`TCQ 1'b1; else if (IS_ASYMMETRY == 0) begin if (diff_pntr_pe == C_PE_ASSERT_VAL && read_only_q) prog_empty_i <= #`TCQ 1'b1; else if (diff_pntr_pe == C_PE_NEGATE_VAL && write_only_q) prog_empty_i <= #`TCQ 1'b0; else prog_empty_i <= #`TCQ prog_empty_i; end else begin if (~rst_i ) begin if (diff_pntr_pe <= C_PE_ASSERT_VAL ) prog_empty_i <= #`TCQ 1'b1; else if (diff_pntr_pe > C_PE_NEGATE_VAL) prog_empty_i <= #`TCQ 1'b0; else prog_empty_i <= #`TCQ prog_empty_i; end else prog_empty_i <= #`TCQ prog_empty_i; end end end end endgenerate //multiple_pe_const //----------------------------------------------------------------------------- // Generate PROG_EMPTY for single programmable threshold input port //----------------------------------------------------------------------------- wire [C_RD_PNTR_WIDTH-1:0] pe3_assert_val = (C_PRELOAD_LATENCY == 0) ? (PROG_EMPTY_THRESH -2) : // FWFT PROG_EMPTY_THRESH; // STD generate if (C_PROG_EMPTY_TYPE == 3) begin : single_pe_input always @(posedge CLK or posedge rst_i) begin //if (rst_i) if (rst_i && C_HAS_RST) prog_empty_i <= 1'b1; else begin if (srst_rrst_busy) prog_empty_i <= #`TCQ 1'b1; else if (IS_ASYMMETRY == 0) begin if (~almost_full_i) begin if (diff_pntr_pe < pe3_assert_val) prog_empty_i <= #`TCQ 1'b1; else if (diff_pntr_pe == pe3_assert_val) begin if (write_only_q) prog_empty_i <= #`TCQ 1'b0; else prog_empty_i <= #`TCQ 1'b1; end else prog_empty_i <= #`TCQ 1'b0; end else prog_empty_i <= #`TCQ prog_empty_i; end else begin if (diff_pntr_pe <= pe3_assert_val ) prog_empty_i <= #`TCQ 1'b1; else if (diff_pntr_pe > pe3_assert_val) prog_empty_i <= #`TCQ 1'b0; else prog_empty_i <= #`TCQ prog_empty_i; end end end end endgenerate // single_pe_input //----------------------------------------------------------------------------- // Generate PROG_EMPTY for multiple programmable threshold input ports //----------------------------------------------------------------------------- wire [C_RD_PNTR_WIDTH-1:0] pe4_assert_val = (C_PRELOAD_LATENCY == 0) ? (PROG_EMPTY_THRESH_ASSERT - 2) : // FWFT PROG_EMPTY_THRESH_ASSERT; // STD wire [C_RD_PNTR_WIDTH-1:0] pe4_negate_val = (C_PRELOAD_LATENCY == 0) ? (PROG_EMPTY_THRESH_NEGATE - 2) : // FWFT PROG_EMPTY_THRESH_NEGATE; // STD generate if (C_PROG_EMPTY_TYPE == 4) begin : multiple_pe_inputs always @(posedge CLK or posedge rst_i) begin //if (rst_i) if (rst_i && C_HAS_RST) prog_empty_i <= 1'b1; else begin if (srst_rrst_busy) prog_empty_i <= #`TCQ 1'b1; else if (IS_ASYMMETRY == 0) begin if (~almost_full_i) begin if (diff_pntr_pe <= pe4_assert_val) prog_empty_i <= #`TCQ 1'b1; else if (((diff_pntr_pe == pe4_negate_val) && write_only_q) || (diff_pntr_pe > pe4_negate_val)) begin prog_empty_i <= #`TCQ 1'b0; end else prog_empty_i <= #`TCQ prog_empty_i; end else prog_empty_i <= #`TCQ prog_empty_i; end else begin if (diff_pntr_pe <= pe4_assert_val ) prog_empty_i <= #`TCQ 1'b1; else if (diff_pntr_pe > pe4_negate_val) prog_empty_i <= #`TCQ 1'b0; else prog_empty_i <= #`TCQ prog_empty_i; end end end end endgenerate // multiple_pe_inputs endmodule
module fifo_generator_v13_1_3_bhv_ver_preload0 #( parameter C_DOUT_RST_VAL = "", parameter C_DOUT_WIDTH = 8, parameter C_HAS_RST = 0, parameter C_ENABLE_RST_SYNC = 0, parameter C_HAS_SRST = 0, parameter C_USE_EMBEDDED_REG = 0, parameter C_EN_SAFETY_CKT = 0, parameter C_USE_DOUT_RST = 0, parameter C_USE_ECC = 0, parameter C_USERVALID_LOW = 0, parameter C_USERUNDERFLOW_LOW = 0, parameter C_MEMORY_TYPE = 0, parameter C_FIFO_TYPE = 0 ) ( //Inputs input SAFETY_CKT_RD_RST, input RD_CLK, input RD_RST, input SRST, input WR_RST_BUSY, input RD_RST_BUSY, input RD_EN, input FIFOEMPTY, input [C_DOUT_WIDTH-1:0] FIFODATA, input FIFOSBITERR, input FIFODBITERR, //Outputs output reg [C_DOUT_WIDTH-1:0] USERDATA, output USERVALID, output USERUNDERFLOW, output USEREMPTY, output USERALMOSTEMPTY, output RAMVALID, output FIFORDEN, output reg USERSBITERR, output reg USERDBITERR, output reg STAGE2_REG_EN, output fab_read_data_valid_i_o, output read_data_valid_i_o, output ram_valid_i_o, output [1:0] VALID_STAGES ); //Internal signals wire preloadstage1; wire preloadstage2; reg ram_valid_i; reg fab_valid; reg read_data_valid_i; reg fab_read_data_valid_i; reg fab_read_data_valid_i_1; reg ram_valid_i_d; reg read_data_valid_i_d; reg fab_read_data_valid_i_d; wire ram_regout_en; reg ram_regout_en_d1; reg ram_regout_en_d2; wire fab_regout_en; wire ram_rd_en; reg empty_i = 1'b1; reg empty_sckt = 1'b1; reg sckt_rrst_q = 1'b0; reg sckt_rrst_done = 1'b0; reg empty_q = 1'b1; reg rd_en_q = 1'b0; reg almost_empty_i = 1'b1; reg almost_empty_q = 1'b1; wire rd_rst_i; wire srst_i; reg [C_DOUT_WIDTH-1:0] userdata_both; wire uservalid_both; wire uservalid_one; reg user_sbiterr_both = 1'b0; reg user_dbiterr_both = 1'b0; assign ram_valid_i_o = ram_valid_i; assign read_data_valid_i_o = read_data_valid_i; assign fab_read_data_valid_i_o = fab_read_data_valid_i; /************************************************************************* * FUNCTIONS *************************************************************************/ /************************************************************************* * hexstr_conv * Converts a string of type hex to a binary value (for C_DOUT_RST_VAL) ***********************************************************************/ function [C_DOUT_WIDTH-1:0] hexstr_conv; input [(C_DOUT_WIDTH*8)-1:0] def_data; integer index,i,j; reg [3:0] bin; begin index = 0; hexstr_conv = 'b0; for( i=C_DOUT_WIDTH-1; i>=0; i=i-1 ) begin case (def_data[7:0]) 8'b00000000 : begin bin = 4'b0000; i = -1; end 8'b00110000 : bin = 4'b0000; 8'b00110001 : bin = 4'b0001; 8'b00110010 : bin = 4'b0010; 8'b00110011 : bin = 4'b0011; 8'b00110100 : bin = 4'b0100; 8'b00110101 : bin = 4'b0101; 8'b00110110 : bin = 4'b0110; 8'b00110111 : bin = 4'b0111; 8'b00111000 : bin = 4'b1000; 8'b00111001 : bin = 4'b1001; 8'b01000001 : bin = 4'b1010; 8'b01000010 : bin = 4'b1011; 8'b01000011 : bin = 4'b1100; 8'b01000100 : bin = 4'b1101; 8'b01000101 : bin = 4'b1110; 8'b01000110 : bin = 4'b1111; 8'b01100001 : bin = 4'b1010; 8'b01100010 : bin = 4'b1011; 8'b01100011 : bin = 4'b1100; 8'b01100100 : bin = 4'b1101; 8'b01100101 : bin = 4'b1110; 8'b01100110 : bin = 4'b1111; default : begin bin = 4'bx; end endcase for( j=0; j<4; j=j+1) begin if ((index*4)+j < C_DOUT_WIDTH) begin hexstr_conv[(index*4)+j] = bin[j]; end end index = index + 1; def_data = def_data >> 8; end end endfunction //************************************************************************* // Set power-on states for regs //************************************************************************* initial begin ram_valid_i = 1'b0; fab_valid = 1'b0; read_data_valid_i = 1'b0; fab_read_data_valid_i = 1'b0; fab_read_data_valid_i_1 = 1'b0; USERDATA = hexstr_conv(C_DOUT_RST_VAL); userdata_both = hexstr_conv(C_DOUT_RST_VAL); USERSBITERR = 1'b0; USERDBITERR = 1'b0; user_sbiterr_both = 1'b0; user_dbiterr_both = 1'b0; end //initial //*************************************************************************** // connect up optional reset //*************************************************************************** assign rd_rst_i = (C_HAS_RST == 1 || C_ENABLE_RST_SYNC == 0) ? RD_RST : 0; assign srst_i = C_EN_SAFETY_CKT ? SAFETY_CKT_RD_RST : C_HAS_SRST ? SRST : 0; reg sckt_rd_rst_fwft = 1'b0; reg fwft_rst_done_i = 1'b0; wire fwft_rst_done; assign fwft_rst_done = C_EN_SAFETY_CKT ? fwft_rst_done_i : 1'b1; always @ (posedge RD_CLK) begin sckt_rd_rst_fwft <= #`TCQ SAFETY_CKT_RD_RST; end always @ (posedge rd_rst_i or posedge RD_CLK) begin if (rd_rst_i) fwft_rst_done_i <= 1'b0; else if (sckt_rd_rst_fwft & ~SAFETY_CKT_RD_RST) fwft_rst_done_i <= #`TCQ 1'b1; end localparam INVALID = 0; localparam STAGE1_VALID = 2; localparam STAGE2_VALID = 1; localparam BOTH_STAGES_VALID = 3; reg [1:0] curr_fwft_state = INVALID; reg [1:0] next_fwft_state = INVALID; generate if (C_USE_EMBEDDED_REG < 3 && C_FIFO_TYPE != 2) begin always @* begin case (curr_fwft_state) INVALID: begin if (~FIFOEMPTY) next_fwft_state <= STAGE1_VALID; else next_fwft_state <= INVALID; end STAGE1_VALID: begin if (FIFOEMPTY) next_fwft_state <= STAGE2_VALID; else next_fwft_state <= BOTH_STAGES_VALID; end STAGE2_VALID: begin if (FIFOEMPTY && RD_EN) next_fwft_state <= INVALID; else if (~FIFOEMPTY && RD_EN) next_fwft_state <= STAGE1_VALID; else if (~FIFOEMPTY && ~RD_EN) next_fwft_state <= BOTH_STAGES_VALID; else next_fwft_state <= STAGE2_VALID; end BOTH_STAGES_VALID: begin if (FIFOEMPTY && RD_EN) next_fwft_state <= STAGE2_VALID; else if (~FIFOEMPTY && RD_EN) next_fwft_state <= BOTH_STAGES_VALID; else next_fwft_state <= BOTH_STAGES_VALID; end default: next_fwft_state <= INVALID; endcase end always @ (posedge rd_rst_i or posedge RD_CLK) begin if (rd_rst_i && C_EN_SAFETY_CKT == 0) curr_fwft_state <= INVALID; else if (srst_i) curr_fwft_state <= #`TCQ INVALID; else curr_fwft_state <= #`TCQ next_fwft_state; end always @* begin case (curr_fwft_state) INVALID: STAGE2_REG_EN <= 1'b0; STAGE1_VALID: STAGE2_REG_EN <= 1'b1; STAGE2_VALID: STAGE2_REG_EN <= 1'b0; BOTH_STAGES_VALID: STAGE2_REG_EN <= RD_EN; default: STAGE2_REG_EN <= 1'b0; endcase end assign VALID_STAGES = curr_fwft_state; //*************************************************************************** // preloadstage2 indicates that stage2 needs to be updated. This is true // whenever read_data_valid is false, and RAM_valid is true. //*************************************************************************** assign preloadstage2 = ram_valid_i & (~read_data_valid_i | RD_EN ); //*************************************************************************** // preloadstage1 indicates that stage1 needs to be updated. This is true // whenever the RAM has data (RAM_EMPTY is false), and either RAM_Valid is // false (indicating that Stage1 needs updating), or preloadstage2 is active // (indicating that Stage2 is going to update, so Stage1, therefore, must // also be updated to keep it valid. //*************************************************************************** assign preloadstage1 = ((~ram_valid_i | preloadstage2) & ~FIFOEMPTY); //*************************************************************************** // Calculate RAM_REGOUT_EN // The output registers are controlled by the ram_regout_en signal. // These registers should be updated either when the output in Stage2 is // invalid (preloadstage2), OR when the user is reading, in which case the // Stage2 value will go invalid unless it is replenished. //*************************************************************************** assign ram_regout_en = preloadstage2; //*************************************************************************** // Calculate RAM_RD_EN // RAM_RD_EN will be asserted whenever the RAM needs to be read in order to // update the value in Stage1. // One case when this happens is when preloadstage1=true, which indicates // that the data in Stage1 or Stage2 is invalid, and needs to automatically // be updated. // The other case is when the user is reading from the FIFO, which // guarantees that Stage1 or Stage2 will be invalid on the next clock // cycle, unless it is replinished by data from the memory. So, as long // as the RAM has data in it, a read of the RAM should occur. //*************************************************************************** assign ram_rd_en = (RD_EN & ~FIFOEMPTY) | preloadstage1; end endgenerate // gnll_fifo reg curr_state = 0; reg next_state = 0; reg leaving_empty_fwft = 0; reg going_empty_fwft = 0; reg empty_i_q = 0; reg ram_rd_en_fwft = 0; generate if (C_FIFO_TYPE == 2) begin : gll_fifo always @* begin // FSM fo FWFT case (curr_state) 1'b0: begin if (~FIFOEMPTY) next_state <= 1'b1; else next_state <= 1'b0; end 1'b1: begin if (FIFOEMPTY && RD_EN) next_state <= 1'b0; else next_state <= 1'b1; end default: next_state <= 1'b0; endcase end always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) begin empty_i <= 1'b1; empty_i_q <= 1'b1; ram_valid_i <= 1'b0; end else if (srst_i) begin empty_i <= #`TCQ 1'b1; empty_i_q <= #`TCQ 1'b1; ram_valid_i <= #`TCQ 1'b0; end else begin empty_i <= #`TCQ going_empty_fwft | (~leaving_empty_fwft & empty_i); empty_i_q <= #`TCQ FIFOEMPTY; ram_valid_i <= #`TCQ next_state; end end //always always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i && C_EN_SAFETY_CKT == 0) begin curr_state <= 1'b0; end else if (srst_i) begin curr_state <= #`TCQ 1'b0; end else begin curr_state <= #`TCQ next_state; end end //always wire fe_of_empty; assign fe_of_empty = empty_i_q & ~FIFOEMPTY; always @* begin // Finding leaving empty case (curr_state) 1'b0: leaving_empty_fwft <= fe_of_empty; 1'b1: leaving_empty_fwft <= 1'b1; default: leaving_empty_fwft <= 1'b0; endcase end always @* begin // Finding going empty case (curr_state) 1'b1: going_empty_fwft <= FIFOEMPTY & RD_EN; default: going_empty_fwft <= 1'b0; endcase end always @* begin // Generating FWFT rd_en case (curr_state) 1'b0: ram_rd_en_fwft <= ~FIFOEMPTY; 1'b1: ram_rd_en_fwft <= ~FIFOEMPTY & RD_EN; default: ram_rd_en_fwft <= 1'b0; endcase end assign ram_regout_en = ram_rd_en_fwft; //assign ram_regout_en_d1 = ram_rd_en_fwft; //assign ram_regout_en_d2 = ram_rd_en_fwft; assign ram_rd_en = ram_rd_en_fwft; end endgenerate // gll_fifo //*************************************************************************** // Calculate RAMVALID_P0_OUT // RAMVALID_P0_OUT indicates that the data in Stage1 is valid. // // If the RAM is being read from on this clock cycle (ram_rd_en=1), then // RAMVALID_P0_OUT is certainly going to be true. // If the RAM is not being read from, but the output registers are being // updated to fill Stage2 (ram_regout_en=1), then Stage1 will be emptying, // therefore causing RAMVALID_P0_OUT to be false. // Otherwise, RAMVALID_P0_OUT will remain unchanged. //*************************************************************************** // PROCESS regout_valid generate if (C_FIFO_TYPE < 2) begin : gnll_fifo_ram_valid always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) begin // asynchronous reset (active high) ram_valid_i <= #`TCQ 1'b0; end else begin if (srst_i) begin // synchronous reset (active high) ram_valid_i <= #`TCQ 1'b0; end else begin if (ram_rd_en == 1'b1) begin ram_valid_i <= #`TCQ 1'b1; end else begin if (ram_regout_en == 1'b1) ram_valid_i <= #`TCQ 1'b0; else ram_valid_i <= #`TCQ ram_valid_i; end end //srst_i end //rd_rst_i end //always end endgenerate // gnll_fifo_ram_valid //*************************************************************************** // Calculate READ_DATA_VALID // READ_DATA_VALID indicates whether the value in Stage2 is valid or not. // Stage2 has valid data whenever Stage1 had valid data and // ram_regout_en_i=1, such that the data in Stage1 is propogated // into Stage2. //*************************************************************************** generate if(C_USE_EMBEDDED_REG < 3) begin always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) read_data_valid_i <= #`TCQ 1'b0; else if (srst_i) read_data_valid_i <= #`TCQ 1'b0; else read_data_valid_i <= #`TCQ ram_valid_i | (read_data_valid_i & ~RD_EN); end //always end endgenerate //************************************************************************** // Calculate EMPTY // Defined as the inverse of READ_DATA_VALID // // Description: // // If read_data_valid_i indicates that the output is not valid, // and there is no valid data on the output of the ram to preload it // with, then we will report empty. // // If there is no valid data on the output of the ram and we are // reading, then the FIFO will go empty. // //************************************************************************** generate if (C_FIFO_TYPE < 2 && C_USE_EMBEDDED_REG < 3) begin : gnll_fifo_empty always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) begin // asynchronous reset (active high) empty_i <= #`TCQ 1'b1; end else begin if (srst_i) begin // synchronous reset (active high) empty_i <= #`TCQ 1'b1; end else begin // rising clock edge empty_i <= #`TCQ (~ram_valid_i & ~read_data_valid_i) | (~ram_valid_i & RD_EN); end end end //always end endgenerate // gnll_fifo_empty // Register RD_EN from user to calculate USERUNDERFLOW. // Register empty_i to calculate USERUNDERFLOW. always @ (posedge RD_CLK) begin rd_en_q <= #`TCQ RD_EN; empty_q <= #`TCQ empty_i; end //always //*************************************************************************** // Calculate user_almost_empty // user_almost_empty is defined such that, unless more words are written // to the FIFO, the next read will cause the FIFO to go EMPTY. // // In most cases, whenever the output registers are updated (due to a user // read or a preload condition), then user_almost_empty will update to // whatever RAM_EMPTY is. // // The exception is when the output is valid, the user is not reading, and // Stage1 is not empty. In this condition, Stage1 will be preloaded from the // memory, so we need to make sure user_almost_empty deasserts properly under // this condition. //*************************************************************************** generate if ( C_USE_EMBEDDED_REG < 3) begin always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) begin // asynchronous reset (active high) almost_empty_i <= #`TCQ 1'b1; almost_empty_q <= #`TCQ 1'b1; end else begin // rising clock edge if (srst_i) begin // synchronous reset (active high) almost_empty_i <= #`TCQ 1'b1; almost_empty_q <= #`TCQ 1'b1; end else begin if ((ram_regout_en) | (~FIFOEMPTY & read_data_valid_i & ~RD_EN)) begin almost_empty_i <= #`TCQ FIFOEMPTY; end almost_empty_q <= #`TCQ empty_i; end end end //always end endgenerate // BRAM resets synchronously generate if (C_EN_SAFETY_CKT==0 && C_USE_EMBEDDED_REG < 3) begin always @ ( posedge rd_rst_i) begin if (rd_rst_i || srst_i) begin if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2) @(posedge RD_CLK) USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL); end end //always always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) begin //asynchronous reset (active high) if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF USERSBITERR <= #`TCQ 0; USERDBITERR <= #`TCQ 0; end // DRAM resets asynchronously if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) begin //asynchronous reset (active high) USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL); end end else begin // rising clock edge if (srst_i) begin if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF USERSBITERR <= #`TCQ 0; USERDBITERR <= #`TCQ 0; end if (C_USE_DOUT_RST == 1) begin USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL); end end else if (fwft_rst_done) begin if (ram_regout_en) begin USERDATA <= #`TCQ FIFODATA; USERSBITERR <= #`TCQ FIFOSBITERR; USERDBITERR <= #`TCQ FIFODBITERR; end end end end //always end //if endgenerate //safety ckt with one register generate if (C_EN_SAFETY_CKT==1 && C_USE_EMBEDDED_REG < 3) begin reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1; reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2; reg [1:0] rst_delayed_sft1 =1; reg [1:0] rst_delayed_sft2 =1; reg [1:0] rst_delayed_sft3 =1; reg [1:0] rst_delayed_sft4 =1; always@(posedge RD_CLK) begin rst_delayed_sft1 <= #`TCQ rd_rst_i; rst_delayed_sft2 <= #`TCQ rst_delayed_sft1; rst_delayed_sft3 <= #`TCQ rst_delayed_sft2; rst_delayed_sft4 <= #`TCQ rst_delayed_sft3; end always @ (posedge RD_CLK) begin if (rd_rst_i || srst_i) begin if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2 && rst_delayed_sft1 == 1'b1) begin @(posedge RD_CLK) USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL); end end end //always always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) begin //asynchronous reset (active high) if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF USERSBITERR <= #`TCQ 0; USERDBITERR <= #`TCQ 0; end // DRAM resets asynchronously if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2)begin //asynchronous reset (active high) //@(posedge RD_CLK) USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL); end end else begin // rising clock edge if (srst_i) begin if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF USERSBITERR <= #`TCQ 0; USERDBITERR <= #`TCQ 0; end if (C_USE_DOUT_RST == 1) begin // @(posedge RD_CLK) USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL); end end else if (fwft_rst_done) begin if (ram_regout_en == 1'b1 && rd_rst_i == 1'b0) begin USERDATA <= #`TCQ FIFODATA; USERSBITERR <= #`TCQ FIFOSBITERR; USERDBITERR <= #`TCQ FIFODBITERR; end end end end //always end //if endgenerate generate if (C_USE_EMBEDDED_REG == 3 && C_FIFO_TYPE != 2) begin always @* begin case (curr_fwft_state) INVALID: begin if (~FIFOEMPTY) next_fwft_state <= STAGE1_VALID; else next_fwft_state <= INVALID; end STAGE1_VALID: begin if (FIFOEMPTY) next_fwft_state <= STAGE2_VALID; else next_fwft_state <= BOTH_STAGES_VALID; end STAGE2_VALID: begin if (FIFOEMPTY && RD_EN) next_fwft_state <= INVALID; else if (~FIFOEMPTY && RD_EN) next_fwft_state <= STAGE1_VALID; else if (~FIFOEMPTY && ~RD_EN) next_fwft_state <= BOTH_STAGES_VALID; else next_fwft_state <= STAGE2_VALID; end BOTH_STAGES_VALID: begin if (FIFOEMPTY && RD_EN) next_fwft_state <= STAGE2_VALID; else if (~FIFOEMPTY && RD_EN) next_fwft_state <= BOTH_STAGES_VALID; else next_fwft_state <= BOTH_STAGES_VALID; end default: next_fwft_state <= INVALID; endcase end always @ (posedge rd_rst_i or posedge RD_CLK) begin if (rd_rst_i && C_EN_SAFETY_CKT == 0) curr_fwft_state <= INVALID; else if (srst_i) curr_fwft_state <= #`TCQ INVALID; else curr_fwft_state <= #`TCQ next_fwft_state; end always @ (posedge RD_CLK or posedge rd_rst_i) begin : proc_delay if (rd_rst_i == 1) begin ram_regout_en_d1 <= #`TCQ 1'b0; end else begin if (srst_i == 1'b1) ram_regout_en_d1 <= #`TCQ 1'b0; else ram_regout_en_d1 <= #`TCQ ram_regout_en; end end //always // assign fab_regout_en = ((ram_regout_en_d1 & ~(ram_regout_en_d2) & empty_i) | (RD_EN & !empty_i)); assign fab_regout_en = ((ram_valid_i == 1'b0 || ram_valid_i == 1'b1) && read_data_valid_i == 1'b1 && fab_read_data_valid_i == 1'b0 )? 1'b1: ((ram_valid_i == 1'b0 || ram_valid_i == 1'b1) && read_data_valid_i == 1'b1 && fab_read_data_valid_i == 1'b1) ? RD_EN : 1'b0; always @ (posedge RD_CLK or posedge rd_rst_i) begin : proc_delay1 if (rd_rst_i == 1) begin ram_regout_en_d2 <= #`TCQ 1'b0; end else begin if (srst_i == 1'b1) ram_regout_en_d2 <= #`TCQ 1'b0; else ram_regout_en_d2 <= #`TCQ ram_regout_en_d1; end end //always always @* begin case (curr_fwft_state) INVALID: STAGE2_REG_EN <= 1'b0; STAGE1_VALID: STAGE2_REG_EN <= 1'b1; STAGE2_VALID: STAGE2_REG_EN <= 1'b0; BOTH_STAGES_VALID: STAGE2_REG_EN <= RD_EN; default: STAGE2_REG_EN <= 1'b0; endcase end always @ (posedge RD_CLK) begin ram_valid_i_d <= #`TCQ ram_valid_i; read_data_valid_i_d <= #`TCQ read_data_valid_i; fab_read_data_valid_i_d <= #`TCQ fab_read_data_valid_i; end assign VALID_STAGES = curr_fwft_state; //*************************************************************************** // preloadstage2 indicates that stage2 needs to be updated. This is true // whenever read_data_valid is false, and RAM_valid is true. //*************************************************************************** assign preloadstage2 = ram_valid_i & (~read_data_valid_i | RD_EN ); //*************************************************************************** // preloadstage1 indicates that stage1 needs to be updated. This is true // whenever the RAM has data (RAM_EMPTY is false), and either RAM_Valid is // false (indicating that Stage1 needs updating), or preloadstage2 is active // (indicating that Stage2 is going to update, so Stage1, therefore, must // also be updated to keep it valid. //*************************************************************************** assign preloadstage1 = ((~ram_valid_i | preloadstage2) & ~FIFOEMPTY); //*************************************************************************** // Calculate RAM_REGOUT_EN // The output registers are controlled by the ram_regout_en signal. // These registers should be updated either when the output in Stage2 is // invalid (preloadstage2), OR when the user is reading, in which case the // Stage2 value will go invalid unless it is replenished. //*************************************************************************** assign ram_regout_en = (ram_valid_i == 1'b1 && (read_data_valid_i == 1'b0 || fab_read_data_valid_i == 1'b0)) ? 1'b1 : (read_data_valid_i == 1'b1 && fab_read_data_valid_i == 1'b1 && ram_valid_i == 1'b1) ? RD_EN : 1'b0; //*************************************************************************** // Calculate RAM_RD_EN // RAM_RD_EN will be asserted whenever the RAM needs to be read in order to // update the value in Stage1. // One case when this happens is when preloadstage1=true, which indicates // that the data in Stage1 or Stage2 is invalid, and needs to automatically // be updated. // The other case is when the user is reading from the FIFO, which // guarantees that Stage1 or Stage2 will be invalid on the next clock // cycle, unless it is replinished by data from the memory. So, as long // as the RAM has data in it, a read of the RAM should occur. //*************************************************************************** assign ram_rd_en = ((RD_EN | ~ fab_read_data_valid_i) & ~FIFOEMPTY) | preloadstage1; end endgenerate // gnll_fifo //*************************************************************************** // Calculate RAMVALID_P0_OUT // RAMVALID_P0_OUT indicates that the data in Stage1 is valid. // // If the RAM is being read from on this clock cycle (ram_rd_en=1), then // RAMVALID_P0_OUT is certainly going to be true. // If the RAM is not being read from, but the output registers are being // updated to fill Stage2 (ram_regout_en=1), then Stage1 will be emptying, // therefore causing RAMVALID_P0_OUT to be false // Otherwise, RAMVALID_P0_OUT will remain unchanged. //*************************************************************************** // PROCESS regout_valid generate if (C_FIFO_TYPE < 2 && C_USE_EMBEDDED_REG == 3) begin : gnll_fifo_fab_valid always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) begin // asynchronous reset (active high) fab_valid <= #`TCQ 1'b0; end else begin if (srst_i) begin // synchronous reset (active high) fab_valid <= #`TCQ 1'b0; end else begin if (ram_regout_en == 1'b1) begin fab_valid <= #`TCQ 1'b1; end else begin if (fab_regout_en == 1'b1) fab_valid <= #`TCQ 1'b0; else fab_valid <= #`TCQ fab_valid; end end //srst_i end //rd_rst_i end //always end endgenerate // gnll_fifo_fab_valid //*************************************************************************** // Calculate READ_DATA_VALID // READ_DATA_VALID indicates whether the value in Stage2 is valid or not. // Stage2 has valid data whenever Stage1 had valid data and // ram_regout_en_i=1, such that the data in Stage1 is propogated // into Stage2. //*************************************************************************** generate if(C_USE_EMBEDDED_REG == 3) begin always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) read_data_valid_i <= #`TCQ 1'b0; else if (srst_i) read_data_valid_i <= #`TCQ 1'b0; else begin if (ram_regout_en == 1'b1) begin read_data_valid_i <= #`TCQ 1'b1; end else begin if (fab_regout_en == 1'b1) read_data_valid_i <= #`TCQ 1'b0; else read_data_valid_i <= #`TCQ read_data_valid_i; end end end //always end endgenerate //generate if(C_USE_EMBEDDED_REG == 3) begin // always @ (posedge RD_CLK or posedge rd_rst_i) begin // if (rd_rst_i) // read_data_valid_i <= #`TCQ 1'b0; // else if (srst_i) // read_data_valid_i <= #`TCQ 1'b0; // // if (ram_regout_en == 1'b1) begin // fab_read_data_valid_i <= #`TCQ 1'b0; // end else begin // if (fab_regout_en == 1'b1) // fab_read_data_valid_i <= #`TCQ 1'b1; // else // fab_read_data_valid_i <= #`TCQ fab_read_data_valid_i; // end // end //always //end //endgenerate generate if(C_USE_EMBEDDED_REG == 3 ) begin always @ (posedge RD_CLK or posedge rd_rst_i) begin :fabout_dvalid if (rd_rst_i) fab_read_data_valid_i <= #`TCQ 1'b0; else if (srst_i) fab_read_data_valid_i <= #`TCQ 1'b0; else fab_read_data_valid_i <= #`TCQ fab_valid | (fab_read_data_valid_i & ~RD_EN); end //always end endgenerate always @ (posedge RD_CLK ) begin : proc_del1 begin fab_read_data_valid_i_1 <= #`TCQ fab_read_data_valid_i; end end //always //************************************************************************** // Calculate EMPTY // Defined as the inverse of READ_DATA_VALID // // Description: // // If read_data_valid_i indicates that the output is not valid, // and there is no valid data on the output of the ram to preload it // with, then we will report empty. // // If there is no valid data on the output of the ram and we are // reading, then the FIFO will go empty. // //************************************************************************** generate if (C_FIFO_TYPE < 2 && C_USE_EMBEDDED_REG == 3 ) begin : gnll_fifo_empty_both always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) begin // asynchronous reset (active high) empty_i <= #`TCQ 1'b1; end else begin if (srst_i) begin // synchronous reset (active high) empty_i <= #`TCQ 1'b1; end else begin // rising clock edge empty_i <= #`TCQ (~fab_valid & ~fab_read_data_valid_i) | (~fab_valid & RD_EN); end end end //always end endgenerate // gnll_fifo_empty_both // Register RD_EN from user to calculate USERUNDERFLOW. // Register empty_i to calculate USERUNDERFLOW. always @ (posedge RD_CLK) begin rd_en_q <= #`TCQ RD_EN; empty_q <= #`TCQ empty_i; end //always //*************************************************************************** // Calculate user_almost_empty // user_almost_empty is defined such that, unless more words are written // to the FIFO, the next read will cause the FIFO to go EMPTY. // // In most cases, whenever the output registers are updated (due to a user // read or a preload condition), then user_almost_empty will update to // whatever RAM_EMPTY is. // // The exception is when the output is valid, the user is not reading, and // Stage1 is not empty. In this condition, Stage1 will be preloaded from the // memory, so we need to make sure user_almost_empty deasserts properly under // this condition. //*************************************************************************** reg FIFOEMPTY_1; generate if (C_USE_EMBEDDED_REG == 3 ) begin always @(posedge RD_CLK) begin FIFOEMPTY_1 <= #`TCQ FIFOEMPTY; end end endgenerate generate if (C_USE_EMBEDDED_REG == 3 ) begin always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) begin // asynchronous reset (active high) almost_empty_i <= #`TCQ 1'b1; almost_empty_q <= #`TCQ 1'b1; end else begin // rising clock edge if (srst_i) begin // synchronous reset (active high) almost_empty_i <= #`TCQ 1'b1; almost_empty_q <= #`TCQ 1'b1; end else begin if ((fab_regout_en) | (ram_valid_i & fab_read_data_valid_i & ~RD_EN)) begin almost_empty_i <= #`TCQ (~ram_valid_i); end almost_empty_q <= #`TCQ empty_i; end end end //always end endgenerate always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) begin empty_sckt <= #`TCQ 1'b1; sckt_rrst_q <= #`TCQ 1'b0; sckt_rrst_done <= #`TCQ 1'b0; end else begin sckt_rrst_q <= #`TCQ SAFETY_CKT_RD_RST; if (sckt_rrst_q && ~SAFETY_CKT_RD_RST) begin sckt_rrst_done <= #`TCQ 1'b1; end else if (sckt_rrst_done) begin // rising clock edge empty_sckt <= #`TCQ 1'b0; end end end //always // assign USEREMPTY = C_EN_SAFETY_CKT ? (sckt_rrst_done ? empty_i : empty_sckt) : empty_i; assign USEREMPTY = empty_i; assign USERALMOSTEMPTY = almost_empty_i; assign FIFORDEN = ram_rd_en; assign RAMVALID = (C_USE_EMBEDDED_REG == 3)? fab_valid : ram_valid_i; assign uservalid_both = (C_USERVALID_LOW && C_USE_EMBEDDED_REG == 3) ? ~fab_read_data_valid_i : ((C_USERVALID_LOW == 0 && C_USE_EMBEDDED_REG == 3) ? fab_read_data_valid_i : 1'b0); assign uservalid_one = (C_USERVALID_LOW && C_USE_EMBEDDED_REG < 3) ? ~read_data_valid_i :((C_USERVALID_LOW == 0 && C_USE_EMBEDDED_REG < 3) ? read_data_valid_i : 1'b0); assign USERVALID = (C_USE_EMBEDDED_REG == 3) ? uservalid_both : uservalid_one; assign USERUNDERFLOW = C_USERUNDERFLOW_LOW ? ~(empty_q & rd_en_q) : empty_q & rd_en_q; //no safety ckt with both reg generate if (C_EN_SAFETY_CKT==0 && C_USE_EMBEDDED_REG == 3 ) begin always @ (posedge RD_CLK) begin if (rd_rst_i || srst_i) begin if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2) USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL); userdata_both <= #`TCQ hexstr_conv(C_DOUT_RST_VAL); user_sbiterr_both <= #`TCQ 0; user_dbiterr_both <= #`TCQ 0; end end //always always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) begin //asynchronous reset (active high) if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF USERSBITERR <= #`TCQ 0; USERDBITERR <= #`TCQ 0; user_sbiterr_both <= #`TCQ 0; user_dbiterr_both <= #`TCQ 0; end // DRAM resets asynchronously if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) begin //asynchronous reset (active high) USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL); userdata_both <= #`TCQ hexstr_conv(C_DOUT_RST_VAL); user_sbiterr_both <= #`TCQ 0; user_dbiterr_both <= #`TCQ 0; end end else begin // rising clock edge if (srst_i) begin if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF USERSBITERR <= #`TCQ 0; USERDBITERR <= #`TCQ 0; user_sbiterr_both <= #`TCQ 0; user_dbiterr_both <= #`TCQ 0; end if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) begin USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL); userdata_both <= #`TCQ hexstr_conv(C_DOUT_RST_VAL); user_sbiterr_both <= #`TCQ 0; user_dbiterr_both <= #`TCQ 0; end end else begin if (fwft_rst_done) begin if (ram_regout_en) begin userdata_both <= #`TCQ FIFODATA; user_dbiterr_both <= #`TCQ FIFODBITERR; user_sbiterr_both <= #`TCQ FIFOSBITERR; end if (fab_regout_en) begin USERDATA <= #`TCQ userdata_both; USERDBITERR <= #`TCQ user_dbiterr_both; USERSBITERR <= #`TCQ user_sbiterr_both; end end end end end //always end //if endgenerate //safety_ckt with both registers generate if (C_EN_SAFETY_CKT==1 && C_USE_EMBEDDED_REG == 3) begin reg [C_DOUT_WIDTH-1:0] dout_rst_val_d1; reg [C_DOUT_WIDTH-1:0] dout_rst_val_d2; reg [1:0] rst_delayed_sft1 =1; reg [1:0] rst_delayed_sft2 =1; reg [1:0] rst_delayed_sft3 =1; reg [1:0] rst_delayed_sft4 =1; always@(posedge RD_CLK) begin rst_delayed_sft1 <= #`TCQ rd_rst_i; rst_delayed_sft2 <= #`TCQ rst_delayed_sft1; rst_delayed_sft3 <= #`TCQ rst_delayed_sft2; rst_delayed_sft4 <= #`TCQ rst_delayed_sft3; end always @ (posedge RD_CLK) begin if (rd_rst_i || srst_i) begin if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE < 2 && rst_delayed_sft1 == 1'b1) begin @(posedge RD_CLK) USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL); userdata_both <= #`TCQ hexstr_conv(C_DOUT_RST_VAL); user_sbiterr_both <= #`TCQ 0; user_dbiterr_both <= #`TCQ 0; end end end //always always @ (posedge RD_CLK or posedge rd_rst_i) begin if (rd_rst_i) begin //asynchronous reset (active high) if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF USERSBITERR <= #`TCQ 0; USERDBITERR <= #`TCQ 0; user_sbiterr_both <= #`TCQ 0; user_dbiterr_both <= #`TCQ 0; end // DRAM resets asynchronously if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2)begin //asynchronous reset (active high) USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL); userdata_both <= #`TCQ hexstr_conv(C_DOUT_RST_VAL); user_sbiterr_both <= #`TCQ 0; user_dbiterr_both <= #`TCQ 0; end end else begin // rising clock edge if (srst_i) begin if (C_USE_ECC == 0) begin // Reset S/DBITERR only if ECC is OFF USERSBITERR <= #`TCQ 0; USERDBITERR <= #`TCQ 0; user_sbiterr_both <= #`TCQ 0; user_dbiterr_both <= #`TCQ 0; end if (C_USE_DOUT_RST == 1 && C_MEMORY_TYPE == 2) begin USERDATA <= #`TCQ hexstr_conv(C_DOUT_RST_VAL); end end else if (fwft_rst_done) begin if (ram_regout_en == 1'b1 && rd_rst_i == 1'b0) begin userdata_both <= #`TCQ FIFODATA; user_dbiterr_both <= #`TCQ FIFODBITERR; user_sbiterr_both <= #`TCQ FIFOSBITERR; end if (fab_regout_en == 1'b1 && rd_rst_i == 1'b0) begin USERDATA <= #`TCQ userdata_both; USERDBITERR <= #`TCQ user_dbiterr_both; USERSBITERR <= #`TCQ user_sbiterr_both; end end end end //always end //if endgenerate endmodule
module fifo_generator_v13_1_3_axic_reg_slice # ( parameter C_FAMILY = "virtex7", parameter C_DATA_WIDTH = 32, parameter C_REG_CONFIG = 32'h00000000 ) ( // System Signals input wire ACLK, input wire ARESET, // Slave side input wire [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, input wire S_VALID, output wire S_READY, // Master side output wire [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA, output wire M_VALID, input wire M_READY ); generate //////////////////////////////////////////////////////////////////// // // Both FWD and REV mode // //////////////////////////////////////////////////////////////////// if (C_REG_CONFIG == 32'h00000000) begin reg [1:0] state; localparam [1:0] ZERO = 2'b10, ONE = 2'b11, TWO = 2'b01; reg [C_DATA_WIDTH-1:0] storage_data1 = 0; reg [C_DATA_WIDTH-1:0] storage_data2 = 0; reg load_s1; wire load_s2; wire load_s1_from_s2; reg s_ready_i; //local signal of output wire m_valid_i; //local signal of output // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; reg areset_d1; // Reset delay register always @(posedge ACLK) begin areset_d1 <= ARESET; end // Load storage1 with either slave side data or from storage2 always @(posedge ACLK) begin if (load_s1) if (load_s1_from_s2) storage_data1 <= storage_data2; else storage_data1 <= S_PAYLOAD_DATA; end // Load storage2 with slave side data always @(posedge ACLK) begin if (load_s2) storage_data2 <= S_PAYLOAD_DATA; end assign M_PAYLOAD_DATA = storage_data1; // Always load s2 on a valid transaction even if it's unnecessary assign load_s2 = S_VALID & s_ready_i; // Loading s1 always @ * begin if ( ((state == ZERO) && (S_VALID == 1)) || // Load when empty on slave transaction // Load when ONE if we both have read and write at the same time ((state == ONE) && (S_VALID == 1) && (M_READY == 1)) || // Load when TWO and we have a transaction on Master side ((state == TWO) && (M_READY == 1))) load_s1 = 1'b1; else load_s1 = 1'b0; end // always @ * assign load_s1_from_s2 = (state == TWO); // State Machine for handling output signals always @(posedge ACLK) begin if (ARESET) begin s_ready_i <= 1'b0; state <= ZERO; end else if (areset_d1) begin s_ready_i <= 1'b1; end else begin case (state) // No transaction stored locally ZERO: if (S_VALID) state <= ONE; // Got one so move to ONE // One transaction stored locally ONE: begin if (M_READY & ~S_VALID) state <= ZERO; // Read out one so move to ZERO if (~M_READY & S_VALID) begin state <= TWO; // Got another one so move to TWO s_ready_i <= 1'b0; end end // TWO transaction stored locally TWO: if (M_READY) begin state <= ONE; // Read out one so move to ONE s_ready_i <= 1'b1; end endcase // case (state) end end // always @ (posedge ACLK) assign m_valid_i = state[0]; end // if (C_REG_CONFIG == 1) //////////////////////////////////////////////////////////////////// // // 1-stage pipeline register with bubble cycle, both FWD and REV pipelining // Operates same as 1-deep FIFO // //////////////////////////////////////////////////////////////////// else if (C_REG_CONFIG == 32'h00000001) begin reg [C_DATA_WIDTH-1:0] storage_data1 = 0; reg s_ready_i; //local signal of output reg m_valid_i; //local signal of output // assign local signal to its output signal assign S_READY = s_ready_i; assign M_VALID = m_valid_i; reg areset_d1; // Reset delay register always @(posedge ACLK) begin areset_d1 <= ARESET; end // Load storage1 with slave side data always @(posedge ACLK) begin if (ARESET) begin s_ready_i <= 1'b0; m_valid_i <= 1'b0; end else if (areset_d1) begin s_ready_i <= 1'b1; end else if (m_valid_i & M_READY) begin s_ready_i <= 1'b1; m_valid_i <= 1'b0; end else if (S_VALID & s_ready_i) begin s_ready_i <= 1'b0; m_valid_i <= 1'b1; end if (~m_valid_i) begin storage_data1 <= S_PAYLOAD_DATA; end end assign M_PAYLOAD_DATA = storage_data1; end // if (C_REG_CONFIG == 7) else begin : default_case // Passthrough assign M_PAYLOAD_DATA = S_PAYLOAD_DATA; assign M_VALID = S_VALID; assign S_READY = M_READY; end endgenerate endmodule
module dividerp1(input wire clk, output wire clk_out); //-- Valor por defecto de la velocidad en baudios parameter M = `T_100ms; //-- Numero de bits para almacenar el divisor de baudios localparam N = $clog2(M); //-- Registro para implementar el contador modulo M reg [N-1:0] divcounter = 0; //-- Contador módulo M always @(posedge clk) divcounter <= (divcounter == M - 1) ? 0 : divcounter + 1; //-- Sacar un pulso de anchura 1 ciclo de reloj si el generador assign clk_out = (divcounter == 0) ? 1 : 0; endmodule
module dividerp1(input wire clk, output wire clk_out); //-- Valor por defecto de la velocidad en baudios parameter M = `T_100ms; //-- Numero de bits para almacenar el divisor de baudios localparam N = $clog2(M); //-- Registro para implementar el contador modulo M reg [N-1:0] divcounter = 0; //-- Contador módulo M always @(posedge clk) divcounter <= (divcounter == M - 1) ? 0 : divcounter + 1; //-- Sacar un pulso de anchura 1 ciclo de reloj si el generador assign clk_out = (divcounter == 0) ? 1 : 0; endmodule
module dividerp1(input wire clk, output wire clk_out); //-- Valor por defecto de la velocidad en baudios parameter M = `T_100ms; //-- Numero de bits para almacenar el divisor de baudios localparam N = $clog2(M); //-- Registro para implementar el contador modulo M reg [N-1:0] divcounter = 0; //-- Contador módulo M always @(posedge clk) divcounter <= (divcounter == M - 1) ? 0 : divcounter + 1; //-- Sacar un pulso de anchura 1 ciclo de reloj si el generador assign clk_out = (divcounter == 0) ? 1 : 0; endmodule
module dividerp1(input wire clk, output wire clk_out); //-- Valor por defecto de la velocidad en baudios parameter M = `T_100ms; //-- Numero de bits para almacenar el divisor de baudios localparam N = $clog2(M); //-- Registro para implementar el contador modulo M reg [N-1:0] divcounter = 0; //-- Contador módulo M always @(posedge clk) divcounter <= (divcounter == M - 1) ? 0 : divcounter + 1; //-- Sacar un pulso de anchura 1 ciclo de reloj si el generador assign clk_out = (divcounter == 0) ? 1 : 0; endmodule
module duc(input clock, input reset, input enable, input [3:0] rate1, input [3:0] rate2, output strobe, input [31:0] freq, input [15:0] i_in, input [15:0] q_in, output [15:0] i_out, output [15:0] q_out ); parameter bw = 16; parameter zw = 16; wire [15:0] i_interp_out, q_interp_out; wire [31:0] phase; wire strobe1, strobe2; reg [3:0] strobe_ctr1,strobe_ctr2; always @(posedge clock) if(reset | ~enable) strobe_ctr2 <= #1 4'd0; else if(strobe2) strobe_ctr2 <= #1 4'd0; else strobe_ctr2 <= #1 strobe_ctr2 + 4'd1; always @(posedge clock) if(reset | ~enable) strobe_ctr1 <= #1 4'd0; else if(strobe1) strobe_ctr1 <= #1 4'd0; else if(strobe2) strobe_ctr1 <= #1 strobe_ctr1 + 4'd1; assign strobe2 = enable & ( strobe_ctr2 == rate2 ); assign strobe1 = strobe2 & ( strobe_ctr1 == rate1 ); assign strobe = strobe1; function [2:0] log_ceil; input [3:0] val; log_ceil = val[3] ? 3'd4 : val[2] ? 3'd3 : val[1] ? 3'd2 : 3'd1; endfunction wire [2:0] shift1 = log_ceil(rate1); wire [2:0] shift2 = log_ceil(rate2); cordic #(.bitwidth(bw),.zwidth(zw),.stages(16)) cordic(.clock(clock), .reset(reset), .enable(enable), .xi(i_interp_out), .yi(q_interp_out), .zi(phase[31:32-zw]), .xo(i_out), .yo(q_out), .zo() ); cic_interp_2stage #(.bw(bw),.N(4)) interp_i(.clock(clock),.reset(reset),.enable(enable), .strobe1(strobe1),.strobe2(strobe2),.strobe3(1'b1),.shift1(shift1),.shift2(shift2), .signal_in(i_in),.signal_out(i_interp_out)); cic_interp_2stage #(.bw(bw),.N(4)) interp_q(.clock(clock),.reset(reset),.enable(enable), .strobe1(strobe1),.strobe2(strobe2),.strobe3(1'b1),.shift1(shift1),.shift2(shift2), .signal_in(q_in),.signal_out(q_interp_out)); phase_acc #(.resolution(32)) nco (.clk(clock),.reset(reset),.enable(enable), .freq(freq),.phase(phase)); endmodule
module duc(input clock, input reset, input enable, input [3:0] rate1, input [3:0] rate2, output strobe, input [31:0] freq, input [15:0] i_in, input [15:0] q_in, output [15:0] i_out, output [15:0] q_out ); parameter bw = 16; parameter zw = 16; wire [15:0] i_interp_out, q_interp_out; wire [31:0] phase; wire strobe1, strobe2; reg [3:0] strobe_ctr1,strobe_ctr2; always @(posedge clock) if(reset | ~enable) strobe_ctr2 <= #1 4'd0; else if(strobe2) strobe_ctr2 <= #1 4'd0; else strobe_ctr2 <= #1 strobe_ctr2 + 4'd1; always @(posedge clock) if(reset | ~enable) strobe_ctr1 <= #1 4'd0; else if(strobe1) strobe_ctr1 <= #1 4'd0; else if(strobe2) strobe_ctr1 <= #1 strobe_ctr1 + 4'd1; assign strobe2 = enable & ( strobe_ctr2 == rate2 ); assign strobe1 = strobe2 & ( strobe_ctr1 == rate1 ); assign strobe = strobe1; function [2:0] log_ceil; input [3:0] val; log_ceil = val[3] ? 3'd4 : val[2] ? 3'd3 : val[1] ? 3'd2 : 3'd1; endfunction wire [2:0] shift1 = log_ceil(rate1); wire [2:0] shift2 = log_ceil(rate2); cordic #(.bitwidth(bw),.zwidth(zw),.stages(16)) cordic(.clock(clock), .reset(reset), .enable(enable), .xi(i_interp_out), .yi(q_interp_out), .zi(phase[31:32-zw]), .xo(i_out), .yo(q_out), .zo() ); cic_interp_2stage #(.bw(bw),.N(4)) interp_i(.clock(clock),.reset(reset),.enable(enable), .strobe1(strobe1),.strobe2(strobe2),.strobe3(1'b1),.shift1(shift1),.shift2(shift2), .signal_in(i_in),.signal_out(i_interp_out)); cic_interp_2stage #(.bw(bw),.N(4)) interp_q(.clock(clock),.reset(reset),.enable(enable), .strobe1(strobe1),.strobe2(strobe2),.strobe3(1'b1),.shift1(shift1),.shift2(shift2), .signal_in(q_in),.signal_out(q_interp_out)); phase_acc #(.resolution(32)) nco (.clk(clock),.reset(reset),.enable(enable), .freq(freq),.phase(phase)); endmodule
module duc(input clock, input reset, input enable, input [3:0] rate1, input [3:0] rate2, output strobe, input [31:0] freq, input [15:0] i_in, input [15:0] q_in, output [15:0] i_out, output [15:0] q_out ); parameter bw = 16; parameter zw = 16; wire [15:0] i_interp_out, q_interp_out; wire [31:0] phase; wire strobe1, strobe2; reg [3:0] strobe_ctr1,strobe_ctr2; always @(posedge clock) if(reset | ~enable) strobe_ctr2 <= #1 4'd0; else if(strobe2) strobe_ctr2 <= #1 4'd0; else strobe_ctr2 <= #1 strobe_ctr2 + 4'd1; always @(posedge clock) if(reset | ~enable) strobe_ctr1 <= #1 4'd0; else if(strobe1) strobe_ctr1 <= #1 4'd0; else if(strobe2) strobe_ctr1 <= #1 strobe_ctr1 + 4'd1; assign strobe2 = enable & ( strobe_ctr2 == rate2 ); assign strobe1 = strobe2 & ( strobe_ctr1 == rate1 ); assign strobe = strobe1; function [2:0] log_ceil; input [3:0] val; log_ceil = val[3] ? 3'd4 : val[2] ? 3'd3 : val[1] ? 3'd2 : 3'd1; endfunction wire [2:0] shift1 = log_ceil(rate1); wire [2:0] shift2 = log_ceil(rate2); cordic #(.bitwidth(bw),.zwidth(zw),.stages(16)) cordic(.clock(clock), .reset(reset), .enable(enable), .xi(i_interp_out), .yi(q_interp_out), .zi(phase[31:32-zw]), .xo(i_out), .yo(q_out), .zo() ); cic_interp_2stage #(.bw(bw),.N(4)) interp_i(.clock(clock),.reset(reset),.enable(enable), .strobe1(strobe1),.strobe2(strobe2),.strobe3(1'b1),.shift1(shift1),.shift2(shift2), .signal_in(i_in),.signal_out(i_interp_out)); cic_interp_2stage #(.bw(bw),.N(4)) interp_q(.clock(clock),.reset(reset),.enable(enable), .strobe1(strobe1),.strobe2(strobe2),.strobe3(1'b1),.shift1(shift1),.shift2(shift2), .signal_in(q_in),.signal_out(q_interp_out)); phase_acc #(.resolution(32)) nco (.clk(clock),.reset(reset),.enable(enable), .freq(freq),.phase(phase)); endmodule
module axi_crossbar_v2_1_addr_decoder # ( parameter C_FAMILY = "none", parameter integer C_NUM_TARGETS = 2, // Number of decode targets = [1:16] parameter integer C_NUM_TARGETS_LOG = 1, // Log2(C_NUM_TARGETS) parameter integer C_NUM_RANGES = 1, // Number of alternative ranges that // can match each target [1:16] parameter integer C_ADDR_WIDTH = 32, // Width of decoder operand and of // each base and high address [2:64] parameter integer C_TARGET_ENC = 0, // Enable encoded target output parameter integer C_TARGET_HOT = 1, // Enable 1-hot target output parameter integer C_REGION_ENC = 0, // Enable REGION output parameter [C_NUM_TARGETS*C_NUM_RANGES*64-1:0] C_BASE_ADDR = {C_NUM_TARGETS*C_NUM_RANGES*64{1'b1}}, parameter [C_NUM_TARGETS*C_NUM_RANGES*64-1:0] C_HIGH_ADDR = {C_NUM_TARGETS*C_NUM_RANGES*64{1'b0}}, parameter [C_NUM_TARGETS:0] C_TARGET_QUAL = {C_NUM_TARGETS{1'b1}}, // Indicates whether each target has connectivity. // Format: C_NUM_TARGETS{Bit1}. parameter integer C_RESOLUTION = 0, // Number of low-order ADDR bits that can be ignored when decoding. parameter integer C_COMPARATOR_THRESHOLD = 6 // Number of decoded ADDR bits above which will implement comparator_static. ) ( input wire [C_ADDR_WIDTH-1:0] ADDR, // Decoder input operand output wire [C_NUM_TARGETS-1:0] TARGET_HOT, // Target matching address (1-hot) output wire [C_NUM_TARGETS_LOG-1:0] TARGET_ENC, // Target matching address (encoded) output wire MATCH, // Decode successful output wire [3:0] REGION // Range within target matching address (encoded) ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. genvar target_cnt; genvar region_cnt; ///////////////////////////////////////////////////////////////////////////// // Function to detect addrs is in the addressable range. // Only compare 4KB page address (ignore low-order 12 bits) function decode_address; input [C_ADDR_WIDTH-1:0] base, high, addr; reg [C_ADDR_WIDTH-C_RESOLUTION-1:0] mask; reg [C_ADDR_WIDTH-C_RESOLUTION-1:0] addr_page; reg [C_ADDR_WIDTH-C_RESOLUTION-1:0] base_page; reg [C_ADDR_WIDTH-C_RESOLUTION-1:0] high_page; begin addr_page = addr[C_RESOLUTION+:C_ADDR_WIDTH-C_RESOLUTION]; base_page = base[C_RESOLUTION+:C_ADDR_WIDTH-C_RESOLUTION]; high_page = high[C_RESOLUTION+:C_ADDR_WIDTH-C_RESOLUTION]; if (base[C_ADDR_WIDTH-1] & ~high[C_ADDR_WIDTH-1]) begin decode_address = 1'b0; end else begin mask = base_page ^ high_page; if ( (base_page & ~mask) == (addr_page & ~mask) ) begin decode_address = 1'b1; end else begin decode_address = 1'b0; end end end endfunction // Generates a binary coded from onehotone encoded function [3:0] f_hot2enc ( input [15:0] one_hot ); begin f_hot2enc[0] = |(one_hot & 16'b1010101010101010); f_hot2enc[1] = |(one_hot & 16'b1100110011001100); f_hot2enc[2] = |(one_hot & 16'b1111000011110000); f_hot2enc[3] = |(one_hot & 16'b1111111100000000); end endfunction ///////////////////////////////////////////////////////////////////////////// // Internal signals wire [C_NUM_TARGETS-1:0] TARGET_HOT_I; // Target matching address (1-hot). wire [C_NUM_TARGETS*C_NUM_RANGES-1:0] ADDRESS_HIT; // For address hit (1-hot). wire [C_NUM_TARGETS*C_NUM_RANGES-1:0] ADDRESS_HIT_REG; // For address hit (1-hot). wire [C_NUM_RANGES-1:0] REGION_HOT; // Reginon matching address (1-hot). wire [3:0] TARGET_ENC_I; // Internal version of encoded hit. ///////////////////////////////////////////////////////////////////////////// // Generate detection per region per target. generate for (target_cnt = 0; target_cnt < C_NUM_TARGETS; target_cnt = target_cnt + 1) begin : gen_target for (region_cnt = 0; region_cnt < C_NUM_RANGES; region_cnt = region_cnt + 1) begin : gen_region // Detect if this is an address hit (including used region decoding). if ((C_ADDR_WIDTH - C_RESOLUTION) > C_COMPARATOR_THRESHOLD) begin : gen_comparator_static if (C_TARGET_QUAL[target_cnt] && ((C_BASE_ADDR[(target_cnt*C_NUM_RANGES+region_cnt)*64 +: C_ADDR_WIDTH] == 0) || (C_HIGH_ADDR[(target_cnt*C_NUM_RANGES+region_cnt)*64 +: C_ADDR_WIDTH] != 0))) begin : gen_addr_range generic_baseblocks_v2_1_comparator_static # ( .C_FAMILY("rtl"), .C_VALUE(C_BASE_ADDR[(target_cnt*C_NUM_RANGES+region_cnt)*64+C_RESOLUTION +: C_ADDR_WIDTH-C_RESOLUTION]), .C_DATA_WIDTH(C_ADDR_WIDTH-C_RESOLUTION) ) addr_decode_comparator ( .CIN(1'b1), .A(ADDR[C_RESOLUTION +: C_ADDR_WIDTH-C_RESOLUTION] & ~(C_BASE_ADDR[(target_cnt*C_NUM_RANGES+region_cnt)*64+C_RESOLUTION +: C_ADDR_WIDTH-C_RESOLUTION] ^ C_HIGH_ADDR[(target_cnt*C_NUM_RANGES+region_cnt)*64+C_RESOLUTION +: C_ADDR_WIDTH-C_RESOLUTION])), .COUT(ADDRESS_HIT[target_cnt*C_NUM_RANGES + region_cnt]) ); end else begin : gen_null_range assign ADDRESS_HIT[target_cnt*C_NUM_RANGES + region_cnt] = 1'b0; end end else begin : gen_no_comparator_static assign ADDRESS_HIT[target_cnt*C_NUM_RANGES + region_cnt] = C_TARGET_QUAL[target_cnt] ? decode_address( C_BASE_ADDR[(target_cnt*C_NUM_RANGES+region_cnt)*64 +: C_ADDR_WIDTH], C_HIGH_ADDR[(target_cnt*C_NUM_RANGES+region_cnt)*64 +: C_ADDR_WIDTH], ADDR) : 1'b0; end // gen_comparator_static assign ADDRESS_HIT_REG[region_cnt*C_NUM_TARGETS+target_cnt] = ADDRESS_HIT[target_cnt*C_NUM_RANGES + region_cnt]; assign REGION_HOT[region_cnt] = | ADDRESS_HIT_REG[region_cnt*C_NUM_TARGETS +: C_NUM_TARGETS]; end // gen_region // All regions are non-overlapping // => Or all the region detections for this target to determine if it is a hit. assign TARGET_HOT_I[target_cnt] = | ADDRESS_HIT[target_cnt*C_NUM_RANGES +: C_NUM_RANGES]; end // gen_target endgenerate ///////////////////////////////////////////////////////////////////////////// // All regions are non-overlapping // => Or all the target hit detections if it is a match. assign MATCH = | TARGET_HOT_I; ///////////////////////////////////////////////////////////////////////////// // Assign conditional onehot target output signal. generate if (C_TARGET_HOT == 1) begin : USE_TARGET_ONEHOT assign TARGET_HOT = MATCH ? TARGET_HOT_I : 1; end else begin : NO_TARGET_ONEHOT assign TARGET_HOT = {C_NUM_TARGETS{1'b0}}; end endgenerate ///////////////////////////////////////////////////////////////////////////// // Assign conditional encoded target output signal. generate if (C_TARGET_ENC == 1) begin : USE_TARGET_ENCODED assign TARGET_ENC_I = f_hot2enc(TARGET_HOT_I); assign TARGET_ENC = TARGET_ENC_I[C_NUM_TARGETS_LOG-1:0]; end else begin : NO_TARGET_ENCODED assign TARGET_ENC = {C_NUM_TARGETS_LOG{1'b0}}; end endgenerate ///////////////////////////////////////////////////////////////////////////// // Assign conditional encoded region output signal. generate if (C_TARGET_ENC == 1) begin : USE_REGION_ENCODED assign REGION = f_hot2enc(REGION_HOT); end else begin : NO_REGION_ENCODED assign REGION = 4'b0; end endgenerate endmodule
module Tenth_Phase //Module Parameters /***SINGLE PRECISION***/ // W = 32 // EW = 8 // SW = 23 /***DOUBLE PRECISION***/ // W = 64 // EW = 11 // SW = 52 # (parameter W = 32, parameter EW = 8, parameter SW = 23) // # (parameter W = 64, parameter EW = 11, parameter SW = 52) ( //INPUTS input wire clk, //Clock Signal input wire rst, //Reset Signal input wire load_i, input wire sel_a_i, //Overflow/add/subt result's mux's selector input wire sel_b_i, //underflow/add/subt result's mux's selector input wire sign_i, //Sign of the largest Operand input wire [EW-1:0] exp_ieee_i, //Final Exponent input wire [SW-1:0] sgf_ieee_i,//Final Significand //OUTPUTS output wire [W-1:0] final_result_ieee_o //Final Result ); //Wire Connection signals wire [SW-1:0] Sgf_S_mux; wire [EW-1:0] Exp_S_mux; wire Sign_S_mux; wire [W-1:0] final_result_reg; wire overunder; wire [EW-1:0] exp_mux_D1; wire [SW-1:0] sgf_mux_D1; ////////////////////////////////////////////////////////// assign overunder = sel_a_i | sel_b_i; Mux_3x1 #(.W(1)) Sign_Mux ( .ctrl({sel_a_i,sel_b_i}), .D0(sign_i), .D1(1'b1), .D2(1'b0), .S(Sign_S_mux) ); Multiplexer_AC #(.W(EW)) Exp_Mux ( .ctrl(overunder), .D0(exp_ieee_i), .D1(exp_mux_D1), .S(Exp_S_mux) ); Multiplexer_AC #(.W(SW)) Sgf_Mux ( .ctrl(overunder), .D0(sgf_ieee_i), .D1(sgf_mux_D1), .S(Sgf_S_mux) ); ///////////////////////////////////////////////////////// generate if(W == 32) begin assign exp_mux_D1 =8'hff; assign sgf_mux_D1 =23'd0; end else begin assign exp_mux_D1 =11'hfff; assign sgf_mux_D1 =52'd0; end endgenerate //////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////// RegisterAdd #(.W(W)) Final_Result_IEEE ( .clk(clk), .rst(rst), .load(load_i), .D({Sign_S_mux,Exp_S_mux,Sgf_S_mux}), .Q(final_result_ieee_o) ); endmodule
module Tenth_Phase //Module Parameters /***SINGLE PRECISION***/ // W = 32 // EW = 8 // SW = 23 /***DOUBLE PRECISION***/ // W = 64 // EW = 11 // SW = 52 # (parameter W = 32, parameter EW = 8, parameter SW = 23) // # (parameter W = 64, parameter EW = 11, parameter SW = 52) ( //INPUTS input wire clk, //Clock Signal input wire rst, //Reset Signal input wire load_i, input wire sel_a_i, //Overflow/add/subt result's mux's selector input wire sel_b_i, //underflow/add/subt result's mux's selector input wire sign_i, //Sign of the largest Operand input wire [EW-1:0] exp_ieee_i, //Final Exponent input wire [SW-1:0] sgf_ieee_i,//Final Significand //OUTPUTS output wire [W-1:0] final_result_ieee_o //Final Result ); //Wire Connection signals wire [SW-1:0] Sgf_S_mux; wire [EW-1:0] Exp_S_mux; wire Sign_S_mux; wire [W-1:0] final_result_reg; wire overunder; wire [EW-1:0] exp_mux_D1; wire [SW-1:0] sgf_mux_D1; ////////////////////////////////////////////////////////// assign overunder = sel_a_i | sel_b_i; Mux_3x1 #(.W(1)) Sign_Mux ( .ctrl({sel_a_i,sel_b_i}), .D0(sign_i), .D1(1'b1), .D2(1'b0), .S(Sign_S_mux) ); Multiplexer_AC #(.W(EW)) Exp_Mux ( .ctrl(overunder), .D0(exp_ieee_i), .D1(exp_mux_D1), .S(Exp_S_mux) ); Multiplexer_AC #(.W(SW)) Sgf_Mux ( .ctrl(overunder), .D0(sgf_ieee_i), .D1(sgf_mux_D1), .S(Sgf_S_mux) ); ///////////////////////////////////////////////////////// generate if(W == 32) begin assign exp_mux_D1 =8'hff; assign sgf_mux_D1 =23'd0; end else begin assign exp_mux_D1 =11'hfff; assign sgf_mux_D1 =52'd0; end endgenerate //////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////// RegisterAdd #(.W(W)) Final_Result_IEEE ( .clk(clk), .rst(rst), .load(load_i), .D({Sign_S_mux,Exp_S_mux,Sgf_S_mux}), .Q(final_result_ieee_o) ); endmodule
module adder( input_a, input_b, input_a_stb, input_b_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack, input_b_ack); input clk; input rst; input [31:0] input_a; input input_a_stb; output input_a_ack; input [31:0] input_b; input input_b_stb; output input_b_ack; output [31:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [31:0] s_output_z; reg s_input_a_ack; reg s_input_b_ack; reg [3:0] state; parameter get_a = 4'd0, get_b = 4'd1, unpack = 4'd2, special_cases = 4'd3, align = 4'd4, add_0 = 4'd5, add_1 = 4'd6, normalise_1 = 4'd7, normalise_2 = 4'd8, round = 4'd9, pack = 4'd10, put_z = 4'd11; reg [31:0] a, b, z; reg [26:0] a_m, b_m; reg [23:0] z_m; reg [9:0] a_e, b_e, z_e; reg a_s, b_s, z_s; reg guard, round_bit, sticky; reg [27:0] sum; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= get_b; end end get_b: begin s_input_b_ack <= 1; if (s_input_b_ack && input_b_stb) begin b <= input_b; s_input_b_ack <= 0; state <= unpack; end end unpack: begin a_m <= {a[22 : 0], 3'd0}; b_m <= {b[22 : 0], 3'd0}; a_e <= a[30 : 23] - 127; b_e <= b[30 : 23] - 127; a_s <= a[31]; b_s <= b[31]; state <= special_cases; end special_cases: begin //if a is NaN or b is NaN return NaN if ((a_e == 128 && a_m != 0) || (b_e == 128 && b_m != 0)) begin z[31] <= 1; z[30:23] <= 255; z[22] <= 1; z[21:0] <= 0; state <= put_z; //if a is inf return inf end else if (a_e == 128) begin z[31] <= a_s; z[30:23] <= 255; z[22:0] <= 0; state <= put_z; //if b is inf return inf end else if (b_e == 128) begin z[31] <= b_s; z[30:23] <= 255; z[22:0] <= 0; state <= put_z; //if a is zero return b end else if ((($signed(a_e) == -127) && (a_m == 0)) && (($signed(b_e) == -127) && (b_m == 0))) begin z[31] <= a_s & b_s; z[30:23] <= b_e[7:0] + 127; z[22:0] <= b_m[26:3]; state <= put_z; //if a is zero return b end else if (($signed(a_e) == -127) && (a_m == 0)) begin z[31] <= b_s; z[30:23] <= b_e[7:0] + 127; z[22:0] <= b_m[26:3]; state <= put_z; //if b is zero return a end else if (($signed(b_e) == -127) && (b_m == 0)) begin z[31] <= a_s; z[30:23] <= a_e[7:0] + 127; z[22:0] <= a_m[26:3]; state <= put_z; end else begin //Denormalised Number if ($signed(a_e) == -127) begin a_e <= -126; end else begin a_m[26] <= 1; end //Denormalised Number if ($signed(b_e) == -127) begin b_e <= -126; end else begin b_m[26] <= 1; end state <= align; end end align: begin if ($signed(a_e) > $signed(b_e)) begin b_e <= b_e + 1; b_m <= b_m >> 1; b_m[0] <= b_m[0] | b_m[1]; end else if ($signed(a_e) < $signed(b_e)) begin a_e <= a_e + 1; a_m <= a_m >> 1; a_m[0] <= a_m[0] | a_m[1]; end else begin state <= add_0; end end add_0: begin z_e <= a_e; if (a_s == b_s) begin sum <= a_m + b_m; z_s <= a_s; end else begin if (a_m >= b_m) begin sum <= a_m - b_m; z_s <= a_s; end else begin sum <= b_m - a_m; z_s <= b_s; end end state <= add_1; end add_1: begin if (sum[27]) begin z_m <= sum[27:4]; guard <= sum[3]; round_bit <= sum[2]; sticky <= sum[1] | sum[0]; z_e <= z_e + 1; end else begin z_m <= sum[26:3]; guard <= sum[2]; round_bit <= sum[1]; sticky <= sum[0]; end state <= normalise_1; end normalise_1: begin if (z_m[23] == 0 && $signed(z_e) > -126) begin z_e <= z_e - 1; z_m <= z_m << 1; z_m[0] <= guard; guard <= round_bit; round_bit <= 0; end else begin state <= normalise_2; end end normalise_2: begin if ($signed(z_e) < -126) begin z_e <= z_e + 1; z_m <= z_m >> 1; guard <= z_m[0]; round_bit <= guard; sticky <= sticky | round_bit; end else begin state <= round; end end round: begin if (guard && (round_bit | sticky | z_m[0])) begin z_m <= z_m + 1; if (z_m == 24'hffffff) begin z_e <=z_e + 1; end end state <= pack; end pack: begin z[22 : 0] <= z_m[22:0]; z[30 : 23] <= z_e[7:0] + 127; z[31] <= z_s; if ($signed(z_e) == -126 && z_m[23] == 0) begin z[30 : 23] <= 0; end //if overflow occurs, return inf if ($signed(z_e) > 127) begin z[22 : 0] <= 0; z[30 : 23] <= 255; z[31] <= z_s; end state <= put_z; end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_input_b_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign input_b_ack = s_input_b_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module divider( input_a, input_b, input_a_stb, input_b_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack, input_b_ack); input clk; input rst; input [31:0] input_a; input input_a_stb; output input_a_ack; input [31:0] input_b; input input_b_stb; output input_b_ack; output [31:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [31:0] s_output_z; reg s_input_a_ack; reg s_input_b_ack; reg [3:0] state; parameter get_a = 4'd0, get_b = 4'd1, unpack = 4'd2, special_cases = 4'd3, normalise_a = 4'd4, normalise_b = 4'd5, divide_0 = 4'd6, divide_1 = 4'd7, divide_2 = 4'd8, divide_3 = 4'd9, normalise_1 = 4'd10, normalise_2 = 4'd11, round = 4'd12, pack = 4'd13, put_z = 4'd14; reg [31:0] a, b, z; reg [23:0] a_m, b_m, z_m; reg [9:0] a_e, b_e, z_e; reg a_s, b_s, z_s; reg guard, round_bit, sticky; reg [50:0] quotient, divisor, dividend, remainder; reg [5:0] count; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= get_b; end end get_b: begin s_input_b_ack <= 1; if (s_input_b_ack && input_b_stb) begin b <= input_b; s_input_b_ack <= 0; state <= unpack; end end unpack: begin a_m <= a[22 : 0]; b_m <= b[22 : 0]; a_e <= a[30 : 23] - 127; b_e <= b[30 : 23] - 127; a_s <= a[31]; b_s <= b[31]; state <= special_cases; end special_cases: begin //if a is NaN or b is NaN return NaN if ((a_e == 128 && a_m != 0) || (b_e == 128 && b_m != 0)) begin z[31] <= 1; z[30:23] <= 255; z[22] <= 1; z[21:0] <= 0; state <= put_z; //if a is inf and b is inf return NaN end else if ((a_e == 128) && (b_e == 128)) begin z[31] <= 1; z[30:23] <= 255; z[22] <= 1; z[21:0] <= 0; state <= put_z; //if a is inf return inf end else if (a_e == 128) begin z[31] <= a_s ^ b_s; z[30:23] <= 255; z[22:0] <= 0; state <= put_z; //if b is zero return NaN if ($signed(b_e == -127) && (b_m == 0)) begin z[31] <= 1; z[30:23] <= 255; z[22] <= 1; z[21:0] <= 0; state <= put_z; end //if b is inf return zero end else if (b_e == 128) begin z[31] <= a_s ^ b_s; z[30:23] <= 0; z[22:0] <= 0; state <= put_z; //if a is zero return zero end else if (($signed(a_e) == -127) && (a_m == 0)) begin z[31] <= a_s ^ b_s; z[30:23] <= 0; z[22:0] <= 0; state <= put_z; //if b is zero return NaN if (($signed(b_e) == -127) && (b_m == 0)) begin z[31] <= 1; z[30:23] <= 255; z[22] <= 1; z[21:0] <= 0; state <= put_z; end //if b is zero return inf end else if (($signed(b_e) == -127) && (b_m == 0)) begin z[31] <= a_s ^ b_s; z[30:23] <= 255; z[22:0] <= 0; state <= put_z; end else begin //Denormalised Number if ($signed(a_e) == -127) begin a_e <= -126; end else begin a_m[23] <= 1; end //Denormalised Number if ($signed(b_e) == -127) begin b_e <= -126; end else begin b_m[23] <= 1; end state <= normalise_a; end end normalise_a: begin if (a_m[23]) begin state <= normalise_b; end else begin a_m <= a_m << 1; a_e <= a_e - 1; end end normalise_b: begin if (b_m[23]) begin state <= divide_0; end else begin b_m <= b_m << 1; b_e <= b_e - 1; end end divide_0: begin z_s <= a_s ^ b_s; z_e <= a_e - b_e; quotient <= 0; remainder <= 0; count <= 0; dividend <= a_m << 27; divisor <= b_m; state <= divide_1; end divide_1: begin quotient <= quotient << 1; remainder <= remainder << 1; remainder[0] <= dividend[50]; dividend <= dividend << 1; state <= divide_2; end divide_2: begin if (remainder >= divisor) begin quotient[0] <= 1; remainder <= remainder - divisor; end if (count == 49) begin state <= divide_3; end else begin count <= count + 1; state <= divide_1; end end divide_3: begin z_m <= quotient[26:3]; guard <= quotient[2]; round_bit <= quotient[1]; sticky <= quotient[0] | (remainder != 0); state <= normalise_1; end normalise_1: begin if (z_m[23] == 0 && $signed(z_e) > -126) begin z_e <= z_e - 1; z_m <= z_m << 1; z_m[0] <= guard; guard <= round_bit; round_bit <= 0; end else begin state <= normalise_2; end end normalise_2: begin if ($signed(z_e) < -126) begin z_e <= z_e + 1; z_m <= z_m >> 1; guard <= z_m[0]; round_bit <= guard; sticky <= sticky | round_bit; end else begin state <= round; end end round: begin if (guard && (round_bit | sticky | z_m[0])) begin z_m <= z_m + 1; if (z_m == 24'hffffff) begin z_e <=z_e + 1; end end state <= pack; end pack: begin z[22 : 0] <= z_m[22:0]; z[30 : 23] <= z_e[7:0] + 127; z[31] <= z_s; if ($signed(z_e) == -126 && z_m[23] == 0) begin z[30 : 23] <= 0; end //if overflow occurs, return inf if ($signed(z_e) > 127) begin z[22 : 0] <= 0; z[30 : 23] <= 255; z[31] <= z_s; end state <= put_z; end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_input_b_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign input_b_ack = s_input_b_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module multiplier( input_a, input_b, input_a_stb, input_b_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack, input_b_ack); input clk; input rst; input [31:0] input_a; input input_a_stb; output input_a_ack; input [31:0] input_b; input input_b_stb; output input_b_ack; output [31:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [31:0] s_output_z; reg s_input_a_ack; reg s_input_b_ack; reg [3:0] state; parameter get_a = 4'd0, get_b = 4'd1, unpack = 4'd2, special_cases = 4'd3, normalise_a = 4'd4, normalise_b = 4'd5, multiply_0 = 4'd6, multiply_1 = 4'd7, normalise_1 = 4'd8, normalise_2 = 4'd9, round = 4'd10, pack = 4'd11, put_z = 4'd12; reg [31:0] a, b, z; reg [23:0] a_m, b_m, z_m; reg [9:0] a_e, b_e, z_e; reg a_s, b_s, z_s; reg guard, round_bit, sticky; reg [49:0] product; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= get_b; end end get_b: begin s_input_b_ack <= 1; if (s_input_b_ack && input_b_stb) begin b <= input_b; s_input_b_ack <= 0; state <= unpack; end end unpack: begin a_m <= a[22 : 0]; b_m <= b[22 : 0]; a_e <= a[30 : 23] - 127; b_e <= b[30 : 23] - 127; a_s <= a[31]; b_s <= b[31]; state <= special_cases; end special_cases: begin //if a is NaN or b is NaN return NaN if ((a_e == 128 && a_m != 0) || (b_e == 128 && b_m != 0)) begin z[31] <= 1; z[30:23] <= 255; z[22] <= 1; z[21:0] <= 0; state <= put_z; //if a is inf return inf end else if (a_e == 128) begin z[31] <= a_s ^ b_s; z[30:23] <= 255; z[22:0] <= 0; state <= put_z; //if b is zero return NaN if ($signed(b_e == -127) && (b_m == 0)) begin z[31] <= 1; z[30:23] <= 255; z[22] <= 1; z[21:0] <= 0; state <= put_z; end //if b is inf return inf end else if (b_e == 128) begin z[31] <= a_s ^ b_s; z[30:23] <= 255; z[22:0] <= 0; state <= put_z; //if a is zero return zero end else if (($signed(a_e) == -127) && (a_m == 0)) begin z[31] <= a_s ^ b_s; z[30:23] <= 0; z[22:0] <= 0; state <= put_z; //if b is zero return zero end else if (($signed(b_e) == -127) && (b_m == 0)) begin z[31] <= a_s ^ b_s; z[30:23] <= 0; z[22:0] <= 0; state <= put_z; end else begin //Denormalised Number if ($signed(a_e) == -127) begin a_e <= -126; end else begin a_m[23] <= 1; end //Denormalised Number if ($signed(b_e) == -127) begin b_e <= -126; end else begin b_m[23] <= 1; end state <= normalise_a; end end normalise_a: begin if (a_m[23]) begin state <= normalise_b; end else begin a_m <= a_m << 1; a_e <= a_e - 1; end end normalise_b: begin if (b_m[23]) begin state <= multiply_0; end else begin b_m <= b_m << 1; b_e <= b_e - 1; end end multiply_0: begin z_s <= a_s ^ b_s; z_e <= a_e + b_e + 1; product <= a_m * b_m * 4; state <= multiply_1; end multiply_1: begin z_m <= product[49:26]; guard <= product[25]; round_bit <= product[24]; sticky <= (product[23:0] != 0); state <= normalise_1; end normalise_1: begin if (z_m[23] == 0) begin z_e <= z_e - 1; z_m <= z_m << 1; z_m[0] <= guard; guard <= round_bit; round_bit <= 0; end else begin state <= normalise_2; end end normalise_2: begin if ($signed(z_e) < -126) begin z_e <= z_e + 1; z_m <= z_m >> 1; guard <= z_m[0]; round_bit <= guard; sticky <= sticky | round_bit; end else begin state <= round; end end round: begin if (guard && (round_bit | sticky | z_m[0])) begin z_m <= z_m + 1; if (z_m == 24'hffffff) begin z_e <=z_e + 1; end end state <= pack; end pack: begin z[22 : 0] <= z_m[22:0]; z[30 : 23] <= z_e[7:0] + 127; z[31] <= z_s; if ($signed(z_e) == -126 && z_m[23] == 0) begin z[30 : 23] <= 0; end //if overflow occurs, return inf if ($signed(z_e) > 127) begin z[22 : 0] <= 0; z[30 : 23] <= 255; z[31] <= z_s; end state <= put_z; end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_input_b_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign input_b_ack = s_input_b_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module double_divider( input_a, input_b, input_a_stb, input_b_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack, input_b_ack); input clk; input rst; input [63:0] input_a; input input_a_stb; output input_a_ack; input [63:0] input_b; input input_b_stb; output input_b_ack; output [63:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [63:0] s_output_z; reg s_input_a_ack; reg s_input_b_ack; reg [3:0] state; parameter get_a = 4'd0, get_b = 4'd1, unpack = 4'd2, special_cases = 4'd3, normalise_a = 4'd4, normalise_b = 4'd5, divide_0 = 4'd6, divide_1 = 4'd7, divide_2 = 4'd8, divide_3 = 4'd9, normalise_1 = 4'd10, normalise_2 = 4'd11, round = 4'd12, pack = 4'd13, put_z = 4'd14; reg [63:0] a, b, z; reg [52:0] a_m, b_m, z_m; reg [12:0] a_e, b_e, z_e; reg a_s, b_s, z_s; reg guard, round_bit, sticky; reg [108:0] quotient, divisor, dividend, remainder; reg [6:0] count; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= get_b; end end get_b: begin s_input_b_ack <= 1; if (s_input_b_ack && input_b_stb) begin b <= input_b; s_input_b_ack <= 0; state <= unpack; end end unpack: begin a_m <= a[51 : 0]; b_m <= b[51 : 0]; a_e <= a[62 : 52] - 1023; b_e <= b[62 : 52] - 1023; a_s <= a[63]; b_s <= b[63]; state <= special_cases; end special_cases: begin //if a is NaN or b is NaN return NaN if ((a_e == 1024 && a_m != 0) || (b_e == 1024 && b_m != 0)) begin z[63] <= 1; z[62:52] <= 2047; z[51] <= 1; z[50:0] <= 0; state <= put_z; //if a is inf and b is inf return NaN end else if ((a_e == 1024) && (b_e == 1024)) begin z[63] <= 1; z[62:52] <= 2047; z[51] <= 1; z[50:0] <= 0; state <= put_z; //if a is inf return inf end else if (a_e == 1024) begin z[63] <= a_s ^ b_s; z[62:52] <= 2047; z[51:0] <= 0; state <= put_z; //if b is zero return NaN if ($signed(b_e == -1023) && (b_m == 0)) begin z[63] <= 1; z[62:52] <= 2047; z[51] <= 1; z[50:0] <= 0; state <= put_z; end //if b is inf return zero end else if (b_e == 1024) begin z[63] <= a_s ^ b_s; z[62:52] <= 0; z[51:0] <= 0; state <= put_z; //if a is zero return zero end else if (($signed(a_e) == -1023) && (a_m == 0)) begin z[63] <= a_s ^ b_s; z[62:52] <= 0; z[51:0] <= 0; state <= put_z; //if b is zero return NaN if (($signed(b_e) == -1023) && (b_m == 0)) begin z[63] <= 1; z[62:52] <= 2047; z[51] <= 1; z[50:0] <= 0; state <= put_z; end //if b is zero return inf end else if (($signed(b_e) == -1023) && (b_m == 0)) begin z[63] <= a_s ^ b_s; z[62:52] <= 2047; z[51:0] <= 0; state <= put_z; end else begin //Denormalised Number if ($signed(a_e) == -1023) begin a_e <= -1022; end else begin a_m[52] <= 1; end //Denormalised Number if ($signed(b_e) == -1023) begin b_e <= -1022; end else begin b_m[52] <= 1; end state <= normalise_a; end end normalise_a: begin if (a_m[52]) begin state <= normalise_b; end else begin a_m <= a_m << 1; a_e <= a_e - 1; end end normalise_b: begin if (b_m[52]) begin state <= divide_0; end else begin b_m <= b_m << 1; b_e <= b_e - 1; end end divide_0: begin z_s <= a_s ^ b_s; z_e <= a_e - b_e; quotient <= 0; remainder <= 0; count <= 0; dividend <= a_m << 56; divisor <= b_m; state <= divide_1; end divide_1: begin quotient <= quotient << 1; remainder <= remainder << 1; remainder[0] <= dividend[108]; dividend <= dividend << 1; state <= divide_2; end divide_2: begin if (remainder >= divisor) begin quotient[0] <= 1; remainder <= remainder - divisor; end if (count == 107) begin state <= divide_3; end else begin count <= count + 1; state <= divide_1; end end divide_3: begin z_m <= quotient[55:3]; guard <= quotient[2]; round_bit <= quotient[1]; sticky <= quotient[0] | (remainder != 0); state <= normalise_1; end normalise_1: begin if (z_m[52] == 0 && $signed(z_e) > -1022) begin z_e <= z_e - 1; z_m <= z_m << 1; z_m[0] <= guard; guard <= round_bit; round_bit <= 0; end else begin state <= normalise_2; end end normalise_2: begin if ($signed(z_e) < -1022) begin z_e <= z_e + 1; z_m <= z_m >> 1; guard <= z_m[0]; round_bit <= guard; sticky <= sticky | round_bit; end else begin state <= round; end end round: begin if (guard && (round_bit | sticky | z_m[0])) begin z_m <= z_m + 1; if (z_m == 53'hffffff) begin z_e <=z_e + 1; end end state <= pack; end pack: begin z[51 : 0] <= z_m[51:0]; z[62 : 52] <= z_e[10:0] + 1023; z[63] <= z_s; if ($signed(z_e) == -1022 && z_m[52] == 0) begin z[62 : 52] <= 0; end //if overflow occurs, return inf if ($signed(z_e) > 1023) begin z[51 : 0] <= 0; z[62 : 52] <= 2047; z[63] <= z_s; end state <= put_z; end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_input_b_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign input_b_ack = s_input_b_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module double_multiplier( input_a, input_b, input_a_stb, input_b_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack, input_b_ack); input clk; input rst; input [63:0] input_a; input input_a_stb; output input_a_ack; input [63:0] input_b; input input_b_stb; output input_b_ack; output [63:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [63:0] s_output_z; reg s_input_a_ack; reg s_input_b_ack; reg [3:0] state; parameter get_a = 4'd0, get_b = 4'd1, unpack = 4'd2, special_cases = 4'd3, normalise_a = 4'd4, normalise_b = 4'd5, multiply_0 = 4'd6, multiply_1 = 4'd7, normalise_1 = 4'd8, normalise_2 = 4'd9, round = 4'd10, pack = 4'd11, put_z = 4'd12; reg [63:0] a, b, z; reg [52:0] a_m, b_m, z_m; reg [12:0] a_e, b_e, z_e; reg a_s, b_s, z_s; reg guard, round_bit, sticky; reg [107:0] product; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= get_b; end end get_b: begin s_input_b_ack <= 1; if (s_input_b_ack && input_b_stb) begin b <= input_b; s_input_b_ack <= 0; state <= unpack; end end unpack: begin a_m <= a[51 : 0]; b_m <= b[51 : 0]; a_e <= a[62 : 52] - 1023; b_e <= b[62 : 52] - 1023; a_s <= a[63]; b_s <= b[63]; state <= special_cases; end special_cases: begin //if a is NaN or b is NaN return NaN if ((a_e == 1024 && a_m != 0) || (b_e == 1024 && b_m != 0)) begin z[63] <= 1; z[62:52] <= 2047; z[51] <= 1; z[50:0] <= 0; state <= put_z; //if a is inf return inf end else if (a_e == 1024) begin z[63] <= a_s ^ b_s; z[62:52] <= 2047; z[51:0] <= 0; state <= put_z; //if b is zero return NaN if ($signed(b_e == -1023) && (b_m == 0)) begin z[63] <= 1; z[62:52] <= 2047; z[51] <= 1; z[50:0] <= 0; state <= put_z; end //if b is inf return inf end else if (b_e == 1024) begin z[63] <= a_s ^ b_s; z[62:52] <= 2047; z[51:0] <= 0; state <= put_z; //if a is zero return zero end else if (($signed(a_e) == -1023) && (a_m == 0)) begin z[63] <= a_s ^ b_s; z[62:52] <= 0; z[51:0] <= 0; state <= put_z; //if b is zero return zero end else if (($signed(b_e) == -1023) && (b_m == 0)) begin z[63] <= a_s ^ b_s; z[62:52] <= 0; z[51:0] <= 0; state <= put_z; end else begin //Denormalised Number if ($signed(a_e) == -1023) begin a_e <= -1022; end else begin a_m[52] <= 1; end //Denormalised Number if ($signed(b_e) == -1023) begin b_e <= -1022; end else begin b_m[52] <= 1; end state <= normalise_a; end end normalise_a: begin if (a_m[52]) begin state <= normalise_b; end else begin a_m <= a_m << 1; a_e <= a_e - 1; end end normalise_b: begin if (b_m[52]) begin state <= multiply_0; end else begin b_m <= b_m << 1; b_e <= b_e - 1; end end multiply_0: begin z_s <= a_s ^ b_s; z_e <= a_e + b_e + 1; product <= a_m * b_m * 4; state <= multiply_1; end multiply_1: begin z_m <= product[107:55]; guard <= product[54]; round_bit <= product[53]; sticky <= (product[52:0] != 0); state <= normalise_1; end normalise_1: begin if (z_m[52] == 0) begin z_e <= z_e - 1; z_m <= z_m << 1; z_m[0] <= guard; guard <= round_bit; round_bit <= 0; end else begin state <= normalise_2; end end normalise_2: begin if ($signed(z_e) < -1022) begin z_e <= z_e + 1; z_m <= z_m >> 1; guard <= z_m[0]; round_bit <= guard; sticky <= sticky | round_bit; end else begin state <= round; end end round: begin if (guard && (round_bit | sticky | z_m[0])) begin z_m <= z_m + 1; if (z_m == 53'hffffff) begin z_e <=z_e + 1; end end state <= pack; end pack: begin z[51 : 0] <= z_m[51:0]; z[62 : 52] <= z_e[11:0] + 1023; z[63] <= z_s; if ($signed(z_e) == -1022 && z_m[52] == 0) begin z[62 : 52] <= 0; end //if overflow occurs, return inf if ($signed(z_e) > 1023) begin z[51 : 0] <= 0; z[62 : 52] <= 2047; z[63] <= z_s; end state <= put_z; end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_input_b_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign input_b_ack = s_input_b_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module double_adder( input_a, input_b, input_a_stb, input_b_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack, input_b_ack); input clk; input rst; input [63:0] input_a; input input_a_stb; output input_a_ack; input [63:0] input_b; input input_b_stb; output input_b_ack; output [63:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [63:0] s_output_z; reg s_input_a_ack; reg s_input_b_ack; reg [3:0] state; parameter get_a = 4'd0, get_b = 4'd1, unpack = 4'd2, special_cases = 4'd3, align = 4'd4, add_0 = 4'd5, add_1 = 4'd6, normalise_1 = 4'd7, normalise_2 = 4'd8, round = 4'd9, pack = 4'd10, put_z = 4'd11; reg [63:0] a, b, z; reg [55:0] a_m, b_m; reg [52:0] z_m; reg [12:0] a_e, b_e, z_e; reg a_s, b_s, z_s; reg guard, round_bit, sticky; reg [56:0] sum; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= get_b; end end get_b: begin s_input_b_ack <= 1; if (s_input_b_ack && input_b_stb) begin b <= input_b; s_input_b_ack <= 0; state <= unpack; end end unpack: begin a_m <= {a[51 : 0], 3'd0}; b_m <= {b[51 : 0], 3'd0}; a_e <= a[62 : 52] - 1023; b_e <= b[62 : 52] - 1023; a_s <= a[63]; b_s <= b[63]; state <= special_cases; end special_cases: begin //if a is NaN or b is NaN return NaN if ((a_e == 1024 && a_m != 0) || (b_e == 1024 && b_m != 0)) begin z[63] <= 1; z[62:52] <= 2047; z[51] <= 1; z[50:0] <= 0; state <= put_z; //if a is inf return inf end else if (a_e == 1024) begin z[63] <= a_s; z[62:52] <= 2047; z[51:0] <= 0; state <= put_z; //if b is inf return inf end else if (b_e == 1024) begin z[63] <= b_s; z[62:52] <= 2047; z[51:0] <= 0; state <= put_z; //if a is zero return b end else if ((($signed(a_e) == -1023) && (a_m == 0)) && (($signed(b_e) == -1023) && (b_m == 0))) begin z[63] <= a_s & b_s; z[62:52] <= b_e[10:0] + 1023; z[51:0] <= b_m[55:3]; state <= put_z; //if a is zero return b end else if (($signed(a_e) == -1023) && (a_m == 0)) begin z[63] <= b_s; z[62:52] <= b_e[10:0] + 1023; z[51:0] <= b_m[55:3]; state <= put_z; //if b is zero return a end else if (($signed(b_e) == -1023) && (b_m == 0)) begin z[63] <= a_s; z[62:52] <= a_e[10:0] + 1023; z[51:0] <= a_m[55:3]; state <= put_z; end else begin //Denormalised Number if ($signed(a_e) == -1023) begin a_e <= -1022; end else begin a_m[55] <= 1; end //Denormalised Number if ($signed(b_e) == -1023) begin b_e <= -1022; end else begin b_m[55] <= 1; end state <= align; end end align: begin if ($signed(a_e) > $signed(b_e)) begin b_e <= b_e + 1; b_m <= b_m >> 1; b_m[0] <= b_m[0] | b_m[1]; end else if ($signed(a_e) < $signed(b_e)) begin a_e <= a_e + 1; a_m <= a_m >> 1; a_m[0] <= a_m[0] | a_m[1]; end else begin state <= add_0; end end add_0: begin z_e <= a_e; if (a_s == b_s) begin sum <= {1'd0, a_m} + b_m; z_s <= a_s; end else begin if (a_m > b_m) begin sum <= {1'd0, a_m} - b_m; z_s <= a_s; end else begin sum <= {1'd0, b_m} - a_m; z_s <= b_s; end end state <= add_1; end add_1: begin if (sum[56]) begin z_m <= sum[56:4]; guard <= sum[3]; round_bit <= sum[2]; sticky <= sum[1] | sum[0]; z_e <= z_e + 1; end else begin z_m <= sum[55:3]; guard <= sum[2]; round_bit <= sum[1]; sticky <= sum[0]; end state <= normalise_1; end normalise_1: begin if (z_m[52] == 0 && $signed(z_e) > -1022) begin z_e <= z_e - 1; z_m <= z_m << 1; z_m[0] <= guard; guard <= round_bit; round_bit <= 0; end else begin state <= normalise_2; end end normalise_2: begin if ($signed(z_e) < -1022) begin z_e <= z_e + 1; z_m <= z_m >> 1; guard <= z_m[0]; round_bit <= guard; sticky <= sticky | round_bit; end else begin state <= round; end end round: begin if (guard && (round_bit | sticky | z_m[0])) begin z_m <= z_m + 1; if (z_m == 53'h1fffffffffffff) begin z_e <=z_e + 1; end end state <= pack; end pack: begin z[51 : 0] <= z_m[51:0]; z[62 : 52] <= z_e[10:0] + 1023; z[63] <= z_s; if ($signed(z_e) == -1022 && z_m[52] == 0) begin z[62 : 52] <= 0; end //if overflow occurs, return inf if ($signed(z_e) > 1023) begin z[51 : 0] <= 0; z[62 : 52] <= 2047; z[63] <= z_s; end state <= put_z; end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_input_b_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign input_b_ack = s_input_b_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module int_to_float( input_a, input_a_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack); input clk; input rst; input [31:0] input_a; input input_a_stb; output input_a_ack; output [31:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [31:0] s_output_z; reg s_input_a_ack; reg s_input_b_ack; reg [2:0] state; parameter get_a = 3'd0, convert_0 = 3'd1, convert_1 = 3'd2, convert_2 = 3'd3, round = 3'd4, pack = 3'd5, put_z = 3'd6; reg [31:0] a, z, value; reg [23:0] z_m; reg [7:0] z_r; reg [7:0] z_e; reg z_s; reg guard, round_bit, sticky; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= convert_0; end end convert_0: begin if ( a == 0 ) begin z_s <= 0; z_m <= 0; z_e <= -127; state <= pack; end else begin value <= a[31] ? -a : a; z_s <= a[31]; state <= convert_1; end end convert_1: begin z_e <= 31; z_m <= value[31:8]; z_r <= value[7:0]; state <= convert_2; end convert_2: begin if (!z_m[23]) begin z_e <= z_e - 1; z_m <= z_m << 1; z_m[0] <= z_r[7]; z_r <= z_r << 1; end else begin guard <= z_r[7]; round_bit <= z_r[6]; sticky <= z_r[5:0] != 0; state <= round; end end round: begin if (guard && (round_bit || sticky || z_m[0])) begin z_m <= z_m + 1; if (z_m == 24'hffffff) begin z_e <=z_e + 1; end end state <= pack; end pack: begin z[22 : 0] <= z_m[22:0]; z[30 : 23] <= z_e + 127; z[31] <= z_s; state <= put_z; end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module float_to_int( input_a, input_a_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack); input clk; input rst; input [31:0] input_a; input input_a_stb; output input_a_ack; output [31:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [31:0] s_output_z; reg s_input_a_ack; reg [2:0] state; parameter get_a = 3'd0, special_cases = 3'd1, unpack = 3'd2, convert = 3'd3, put_z = 3'd4; reg [31:0] a_m, a, z; reg [8:0] a_e; reg a_s; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= unpack; end end unpack: begin a_m[31:8] <= {1'b1, a[22 : 0]}; a_m[7:0] <= 0; a_e <= a[30 : 23] - 127; a_s <= a[31]; state <= special_cases; end special_cases: begin if ($signed(a_e) == -127) begin z <= 0; state <= put_z; end else if ($signed(a_e) > 31) begin z <= 32'h80000000; state <= put_z; end else begin state <= convert; end end convert: begin if ($signed(a_e) < 31 && a_m) begin a_e <= a_e + 1; a_m <= a_m >> 1; end else begin if (a_m[31]) begin z <= 32'h80000000; end else begin z <= a_s ? -a_m : a_m; end state <= put_z; end end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module long_to_double( input_a, input_a_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack); input clk; input rst; input [63:0] input_a; input input_a_stb; output input_a_ack; output [63:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [63:0] s_output_z; reg s_input_a_ack; reg s_input_b_ack; reg [2:0] state; parameter get_a = 3'd0, convert_0 = 3'd1, convert_1 = 3'd2, convert_2 = 3'd3, round = 3'd4, pack = 3'd5, put_z = 3'd6; reg [63:0] a, z, value; reg [52:0] z_m; reg [10:0] z_r; reg [10:0] z_e; reg z_s; reg guard, round_bit, sticky; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= convert_0; end end convert_0: begin if ( a == 0 ) begin z_s <= 0; z_m <= 0; z_e <= -1023; state <= pack; end else begin value <= a[63] ? -a : a; z_s <= a[63]; state <= convert_1; end end convert_1: begin z_e <= 63; z_m <= value[63:11]; z_r <= value[10:0]; state <= convert_2; end convert_2: begin if (!z_m[52]) begin z_e <= z_e - 1; z_m <= z_m << 1; z_m[0] <= z_r[10]; z_r <= z_r << 1; end else begin guard <= z_r[10]; round_bit <= z_r[9]; sticky <= z_r[8:0] != 0; state <= round; end end round: begin if (guard && (round_bit || sticky || z_m[0])) begin z_m <= z_m + 1; if (z_m == 53'h1fffffffffffff) begin z_e <=z_e + 1; end end state <= pack; end pack: begin z[51 : 0] <= z_m[51:0]; z[62 : 52] <= z_e + 1023; z[63] <= z_s; state <= put_z; end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module double_to_long( input_a, input_a_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack); input clk; input rst; input [63:0] input_a; input input_a_stb; output input_a_ack; output [63:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [63:0] s_output_z; reg s_input_a_ack; reg [2:0] state; parameter get_a = 3'd0, special_cases = 3'd1, unpack = 3'd2, convert = 3'd3, put_z = 3'd4; reg [63:0] a_m, a, z; reg [11:0] a_e; reg a_s; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= unpack; end end unpack: begin a_m[63:11] <= {1'b1, a[51 : 0]}; a_m[10:0] <= 0; a_e <= a[62 : 52] - 1023; a_s <= a[63]; state <= special_cases; end special_cases: begin if ($signed(a_e) == -1023) begin //zero z <= 0; state <= put_z; end else if ($signed(a_e) == 1024 && a[51:0] != 0) begin //nan z <= 64'h8000000000000000; state <= put_z; end else if ($signed(a_e) > 63) begin //too big if (a_s) begin z <= 64'h8000000000000000; end else begin z <= 64'h0000000000000000; end state <= put_z; end else begin state <= convert; end end convert: begin if ($signed(a_e) < 63 && a_m) begin a_e <= a_e + 1; a_m <= a_m >> 1; end else begin if (a_m[63] && a_s) begin z <= 64'h8000000000000000; end else begin z <= a_s ? -a_m : a_m; end state <= put_z; end end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module float_to_double( input_a, input_a_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack); input clk; input rst; input [31:0] input_a; input input_a_stb; output input_a_ack; output [63:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [63:0] s_output_z; reg s_input_a_ack; reg s_input_b_ack; reg [1:0] state; parameter get_a = 3'd0, convert_0 = 3'd1, normalise_0 = 3'd2, put_z = 3'd3; reg [63:0] z; reg [10:0] z_e; reg [52:0] z_m; reg [31:0] a; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= convert_0; end end convert_0: begin z[63] <= a[31]; z[62:52] <= (a[30:23] - 127) + 1023; z[51:0] <= {a[22:0], 29'd0}; if (a[30:23] == 255) begin z[62:52] <= 2047; end state <= put_z; if (a[30:23] == 0) begin if (a[23:0]) begin state <= normalise_0; z_e <= 897; z_m <= {1'd0, a[22:0], 29'd0}; end z[62:52] <= 0; end end normalise_0: begin if (z_m[52]) begin z[62:52] <= z_e; z[51:0] <= z_m[51:0]; state <= put_z; end else begin z_m <= {z_m[51:0], 1'd0}; z_e <= z_e - 1; end end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module double_to_float( input_a, input_a_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack); input clk; input rst; input [63:0] input_a; input input_a_stb; output input_a_ack; output [31:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [31:0] s_output_z; reg s_input_a_ack; reg [1:0] state; parameter get_a = 3'd0, unpack = 3'd1, denormalise = 3'd2, put_z = 3'd3; reg [63:0] a; reg [31:0] z; reg [10:0] z_e; reg [23:0] z_m; reg guard; reg round; reg sticky; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= unpack; end end unpack: begin z[31] <= a[63]; state <= put_z; if (a[62:52] == 0) begin z[30:23] <= 0; z[22:0] <= 0; end else if (a[62:52] < 897) begin z[30:23] <= 0; z_m <= {1'd1, a[51:29]}; z_e <= a[62:52]; guard <= a[28]; round <= a[27]; sticky <= a[26:0] != 0; state <= denormalise; end else if (a[62:52] == 2047) begin z[30:23] <= 255; z[22:0] <= 0; if (a[51:0]) begin z[22] <= 1; end end else if (a[62:52] > 1150) begin z[30:23] <= 255; z[22:0] <= 0; end else begin z[30:23] <= (a[62:52] - 1023) + 127; if (a[28] && (a[27] || a[26:0])) begin z[22:0] <= a[51:29] + 1; end else begin z[22:0] <= a[51:29]; end end end denormalise: begin if (z_e == 897 || (z_m == 0 && guard == 0)) begin state <= put_z; z[22:0] <= z_m; if (guard && (round || sticky)) begin z[22:0] <= z_m + 1; end end else begin z_e <= z_e + 1; z_m <= {1'd0, z_m[23:1]}; guard <= z_m[0]; round <= guard; sticky <= sticky | round; end end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module adder( input_a, input_b, input_a_stb, input_b_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack, input_b_ack); input clk; input rst; input [31:0] input_a; input input_a_stb; output input_a_ack; input [31:0] input_b; input input_b_stb; output input_b_ack; output [31:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [31:0] s_output_z; reg s_input_a_ack; reg s_input_b_ack; reg [3:0] state; parameter get_a = 4'd0, get_b = 4'd1, unpack = 4'd2, special_cases = 4'd3, align = 4'd4, add_0 = 4'd5, add_1 = 4'd6, normalise_1 = 4'd7, normalise_2 = 4'd8, round = 4'd9, pack = 4'd10, put_z = 4'd11; reg [31:0] a, b, z; reg [26:0] a_m, b_m; reg [23:0] z_m; reg [9:0] a_e, b_e, z_e; reg a_s, b_s, z_s; reg guard, round_bit, sticky; reg [27:0] sum; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= get_b; end end get_b: begin s_input_b_ack <= 1; if (s_input_b_ack && input_b_stb) begin b <= input_b; s_input_b_ack <= 0; state <= unpack; end end unpack: begin a_m <= {a[22 : 0], 3'd0}; b_m <= {b[22 : 0], 3'd0}; a_e <= a[30 : 23] - 127; b_e <= b[30 : 23] - 127; a_s <= a[31]; b_s <= b[31]; state <= special_cases; end special_cases: begin //if a is NaN or b is NaN return NaN if ((a_e == 128 && a_m != 0) || (b_e == 128 && b_m != 0)) begin z[31] <= 1; z[30:23] <= 255; z[22] <= 1; z[21:0] <= 0; state <= put_z; //if a is inf return inf end else if (a_e == 128) begin z[31] <= a_s; z[30:23] <= 255; z[22:0] <= 0; state <= put_z; //if b is inf return inf end else if (b_e == 128) begin z[31] <= b_s; z[30:23] <= 255; z[22:0] <= 0; state <= put_z; //if a is zero return b end else if ((($signed(a_e) == -127) && (a_m == 0)) && (($signed(b_e) == -127) && (b_m == 0))) begin z[31] <= a_s & b_s; z[30:23] <= b_e[7:0] + 127; z[22:0] <= b_m[26:3]; state <= put_z; //if a is zero return b end else if (($signed(a_e) == -127) && (a_m == 0)) begin z[31] <= b_s; z[30:23] <= b_e[7:0] + 127; z[22:0] <= b_m[26:3]; state <= put_z; //if b is zero return a end else if (($signed(b_e) == -127) && (b_m == 0)) begin z[31] <= a_s; z[30:23] <= a_e[7:0] + 127; z[22:0] <= a_m[26:3]; state <= put_z; end else begin //Denormalised Number if ($signed(a_e) == -127) begin a_e <= -126; end else begin a_m[26] <= 1; end //Denormalised Number if ($signed(b_e) == -127) begin b_e <= -126; end else begin b_m[26] <= 1; end state <= align; end end align: begin if ($signed(a_e) > $signed(b_e)) begin b_e <= b_e + 1; b_m <= b_m >> 1; b_m[0] <= b_m[0] | b_m[1]; end else if ($signed(a_e) < $signed(b_e)) begin a_e <= a_e + 1; a_m <= a_m >> 1; a_m[0] <= a_m[0] | a_m[1]; end else begin state <= add_0; end end add_0: begin z_e <= a_e; if (a_s == b_s) begin sum <= a_m + b_m; z_s <= a_s; end else begin if (a_m >= b_m) begin sum <= a_m - b_m; z_s <= a_s; end else begin sum <= b_m - a_m; z_s <= b_s; end end state <= add_1; end add_1: begin if (sum[27]) begin z_m <= sum[27:4]; guard <= sum[3]; round_bit <= sum[2]; sticky <= sum[1] | sum[0]; z_e <= z_e + 1; end else begin z_m <= sum[26:3]; guard <= sum[2]; round_bit <= sum[1]; sticky <= sum[0]; end state <= normalise_1; end normalise_1: begin if (z_m[23] == 0 && $signed(z_e) > -126) begin z_e <= z_e - 1; z_m <= z_m << 1; z_m[0] <= guard; guard <= round_bit; round_bit <= 0; end else begin state <= normalise_2; end end normalise_2: begin if ($signed(z_e) < -126) begin z_e <= z_e + 1; z_m <= z_m >> 1; guard <= z_m[0]; round_bit <= guard; sticky <= sticky | round_bit; end else begin state <= round; end end round: begin if (guard && (round_bit | sticky | z_m[0])) begin z_m <= z_m + 1; if (z_m == 24'hffffff) begin z_e <=z_e + 1; end end state <= pack; end pack: begin z[22 : 0] <= z_m[22:0]; z[30 : 23] <= z_e[7:0] + 127; z[31] <= z_s; if ($signed(z_e) == -126 && z_m[23] == 0) begin z[30 : 23] <= 0; end //if overflow occurs, return inf if ($signed(z_e) > 127) begin z[22 : 0] <= 0; z[30 : 23] <= 255; z[31] <= z_s; end state <= put_z; end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_input_b_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign input_b_ack = s_input_b_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module divider( input_a, input_b, input_a_stb, input_b_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack, input_b_ack); input clk; input rst; input [31:0] input_a; input input_a_stb; output input_a_ack; input [31:0] input_b; input input_b_stb; output input_b_ack; output [31:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [31:0] s_output_z; reg s_input_a_ack; reg s_input_b_ack; reg [3:0] state; parameter get_a = 4'd0, get_b = 4'd1, unpack = 4'd2, special_cases = 4'd3, normalise_a = 4'd4, normalise_b = 4'd5, divide_0 = 4'd6, divide_1 = 4'd7, divide_2 = 4'd8, divide_3 = 4'd9, normalise_1 = 4'd10, normalise_2 = 4'd11, round = 4'd12, pack = 4'd13, put_z = 4'd14; reg [31:0] a, b, z; reg [23:0] a_m, b_m, z_m; reg [9:0] a_e, b_e, z_e; reg a_s, b_s, z_s; reg guard, round_bit, sticky; reg [50:0] quotient, divisor, dividend, remainder; reg [5:0] count; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= get_b; end end get_b: begin s_input_b_ack <= 1; if (s_input_b_ack && input_b_stb) begin b <= input_b; s_input_b_ack <= 0; state <= unpack; end end unpack: begin a_m <= a[22 : 0]; b_m <= b[22 : 0]; a_e <= a[30 : 23] - 127; b_e <= b[30 : 23] - 127; a_s <= a[31]; b_s <= b[31]; state <= special_cases; end special_cases: begin //if a is NaN or b is NaN return NaN if ((a_e == 128 && a_m != 0) || (b_e == 128 && b_m != 0)) begin z[31] <= 1; z[30:23] <= 255; z[22] <= 1; z[21:0] <= 0; state <= put_z; //if a is inf and b is inf return NaN end else if ((a_e == 128) && (b_e == 128)) begin z[31] <= 1; z[30:23] <= 255; z[22] <= 1; z[21:0] <= 0; state <= put_z; //if a is inf return inf end else if (a_e == 128) begin z[31] <= a_s ^ b_s; z[30:23] <= 255; z[22:0] <= 0; state <= put_z; //if b is zero return NaN if ($signed(b_e == -127) && (b_m == 0)) begin z[31] <= 1; z[30:23] <= 255; z[22] <= 1; z[21:0] <= 0; state <= put_z; end //if b is inf return zero end else if (b_e == 128) begin z[31] <= a_s ^ b_s; z[30:23] <= 0; z[22:0] <= 0; state <= put_z; //if a is zero return zero end else if (($signed(a_e) == -127) && (a_m == 0)) begin z[31] <= a_s ^ b_s; z[30:23] <= 0; z[22:0] <= 0; state <= put_z; //if b is zero return NaN if (($signed(b_e) == -127) && (b_m == 0)) begin z[31] <= 1; z[30:23] <= 255; z[22] <= 1; z[21:0] <= 0; state <= put_z; end //if b is zero return inf end else if (($signed(b_e) == -127) && (b_m == 0)) begin z[31] <= a_s ^ b_s; z[30:23] <= 255; z[22:0] <= 0; state <= put_z; end else begin //Denormalised Number if ($signed(a_e) == -127) begin a_e <= -126; end else begin a_m[23] <= 1; end //Denormalised Number if ($signed(b_e) == -127) begin b_e <= -126; end else begin b_m[23] <= 1; end state <= normalise_a; end end normalise_a: begin if (a_m[23]) begin state <= normalise_b; end else begin a_m <= a_m << 1; a_e <= a_e - 1; end end normalise_b: begin if (b_m[23]) begin state <= divide_0; end else begin b_m <= b_m << 1; b_e <= b_e - 1; end end divide_0: begin z_s <= a_s ^ b_s; z_e <= a_e - b_e; quotient <= 0; remainder <= 0; count <= 0; dividend <= a_m << 27; divisor <= b_m; state <= divide_1; end divide_1: begin quotient <= quotient << 1; remainder <= remainder << 1; remainder[0] <= dividend[50]; dividend <= dividend << 1; state <= divide_2; end divide_2: begin if (remainder >= divisor) begin quotient[0] <= 1; remainder <= remainder - divisor; end if (count == 49) begin state <= divide_3; end else begin count <= count + 1; state <= divide_1; end end divide_3: begin z_m <= quotient[26:3]; guard <= quotient[2]; round_bit <= quotient[1]; sticky <= quotient[0] | (remainder != 0); state <= normalise_1; end normalise_1: begin if (z_m[23] == 0 && $signed(z_e) > -126) begin z_e <= z_e - 1; z_m <= z_m << 1; z_m[0] <= guard; guard <= round_bit; round_bit <= 0; end else begin state <= normalise_2; end end normalise_2: begin if ($signed(z_e) < -126) begin z_e <= z_e + 1; z_m <= z_m >> 1; guard <= z_m[0]; round_bit <= guard; sticky <= sticky | round_bit; end else begin state <= round; end end round: begin if (guard && (round_bit | sticky | z_m[0])) begin z_m <= z_m + 1; if (z_m == 24'hffffff) begin z_e <=z_e + 1; end end state <= pack; end pack: begin z[22 : 0] <= z_m[22:0]; z[30 : 23] <= z_e[7:0] + 127; z[31] <= z_s; if ($signed(z_e) == -126 && z_m[23] == 0) begin z[30 : 23] <= 0; end //if overflow occurs, return inf if ($signed(z_e) > 127) begin z[22 : 0] <= 0; z[30 : 23] <= 255; z[31] <= z_s; end state <= put_z; end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_input_b_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign input_b_ack = s_input_b_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module multiplier( input_a, input_b, input_a_stb, input_b_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack, input_b_ack); input clk; input rst; input [31:0] input_a; input input_a_stb; output input_a_ack; input [31:0] input_b; input input_b_stb; output input_b_ack; output [31:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [31:0] s_output_z; reg s_input_a_ack; reg s_input_b_ack; reg [3:0] state; parameter get_a = 4'd0, get_b = 4'd1, unpack = 4'd2, special_cases = 4'd3, normalise_a = 4'd4, normalise_b = 4'd5, multiply_0 = 4'd6, multiply_1 = 4'd7, normalise_1 = 4'd8, normalise_2 = 4'd9, round = 4'd10, pack = 4'd11, put_z = 4'd12; reg [31:0] a, b, z; reg [23:0] a_m, b_m, z_m; reg [9:0] a_e, b_e, z_e; reg a_s, b_s, z_s; reg guard, round_bit, sticky; reg [49:0] product; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= get_b; end end get_b: begin s_input_b_ack <= 1; if (s_input_b_ack && input_b_stb) begin b <= input_b; s_input_b_ack <= 0; state <= unpack; end end unpack: begin a_m <= a[22 : 0]; b_m <= b[22 : 0]; a_e <= a[30 : 23] - 127; b_e <= b[30 : 23] - 127; a_s <= a[31]; b_s <= b[31]; state <= special_cases; end special_cases: begin //if a is NaN or b is NaN return NaN if ((a_e == 128 && a_m != 0) || (b_e == 128 && b_m != 0)) begin z[31] <= 1; z[30:23] <= 255; z[22] <= 1; z[21:0] <= 0; state <= put_z; //if a is inf return inf end else if (a_e == 128) begin z[31] <= a_s ^ b_s; z[30:23] <= 255; z[22:0] <= 0; state <= put_z; //if b is zero return NaN if ($signed(b_e == -127) && (b_m == 0)) begin z[31] <= 1; z[30:23] <= 255; z[22] <= 1; z[21:0] <= 0; state <= put_z; end //if b is inf return inf end else if (b_e == 128) begin z[31] <= a_s ^ b_s; z[30:23] <= 255; z[22:0] <= 0; state <= put_z; //if a is zero return zero end else if (($signed(a_e) == -127) && (a_m == 0)) begin z[31] <= a_s ^ b_s; z[30:23] <= 0; z[22:0] <= 0; state <= put_z; //if b is zero return zero end else if (($signed(b_e) == -127) && (b_m == 0)) begin z[31] <= a_s ^ b_s; z[30:23] <= 0; z[22:0] <= 0; state <= put_z; end else begin //Denormalised Number if ($signed(a_e) == -127) begin a_e <= -126; end else begin a_m[23] <= 1; end //Denormalised Number if ($signed(b_e) == -127) begin b_e <= -126; end else begin b_m[23] <= 1; end state <= normalise_a; end end normalise_a: begin if (a_m[23]) begin state <= normalise_b; end else begin a_m <= a_m << 1; a_e <= a_e - 1; end end normalise_b: begin if (b_m[23]) begin state <= multiply_0; end else begin b_m <= b_m << 1; b_e <= b_e - 1; end end multiply_0: begin z_s <= a_s ^ b_s; z_e <= a_e + b_e + 1; product <= a_m * b_m * 4; state <= multiply_1; end multiply_1: begin z_m <= product[49:26]; guard <= product[25]; round_bit <= product[24]; sticky <= (product[23:0] != 0); state <= normalise_1; end normalise_1: begin if (z_m[23] == 0) begin z_e <= z_e - 1; z_m <= z_m << 1; z_m[0] <= guard; guard <= round_bit; round_bit <= 0; end else begin state <= normalise_2; end end normalise_2: begin if ($signed(z_e) < -126) begin z_e <= z_e + 1; z_m <= z_m >> 1; guard <= z_m[0]; round_bit <= guard; sticky <= sticky | round_bit; end else begin state <= round; end end round: begin if (guard && (round_bit | sticky | z_m[0])) begin z_m <= z_m + 1; if (z_m == 24'hffffff) begin z_e <=z_e + 1; end end state <= pack; end pack: begin z[22 : 0] <= z_m[22:0]; z[30 : 23] <= z_e[7:0] + 127; z[31] <= z_s; if ($signed(z_e) == -126 && z_m[23] == 0) begin z[30 : 23] <= 0; end //if overflow occurs, return inf if ($signed(z_e) > 127) begin z[22 : 0] <= 0; z[30 : 23] <= 255; z[31] <= z_s; end state <= put_z; end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_input_b_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign input_b_ack = s_input_b_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module double_divider( input_a, input_b, input_a_stb, input_b_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack, input_b_ack); input clk; input rst; input [63:0] input_a; input input_a_stb; output input_a_ack; input [63:0] input_b; input input_b_stb; output input_b_ack; output [63:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [63:0] s_output_z; reg s_input_a_ack; reg s_input_b_ack; reg [3:0] state; parameter get_a = 4'd0, get_b = 4'd1, unpack = 4'd2, special_cases = 4'd3, normalise_a = 4'd4, normalise_b = 4'd5, divide_0 = 4'd6, divide_1 = 4'd7, divide_2 = 4'd8, divide_3 = 4'd9, normalise_1 = 4'd10, normalise_2 = 4'd11, round = 4'd12, pack = 4'd13, put_z = 4'd14; reg [63:0] a, b, z; reg [52:0] a_m, b_m, z_m; reg [12:0] a_e, b_e, z_e; reg a_s, b_s, z_s; reg guard, round_bit, sticky; reg [108:0] quotient, divisor, dividend, remainder; reg [6:0] count; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= get_b; end end get_b: begin s_input_b_ack <= 1; if (s_input_b_ack && input_b_stb) begin b <= input_b; s_input_b_ack <= 0; state <= unpack; end end unpack: begin a_m <= a[51 : 0]; b_m <= b[51 : 0]; a_e <= a[62 : 52] - 1023; b_e <= b[62 : 52] - 1023; a_s <= a[63]; b_s <= b[63]; state <= special_cases; end special_cases: begin //if a is NaN or b is NaN return NaN if ((a_e == 1024 && a_m != 0) || (b_e == 1024 && b_m != 0)) begin z[63] <= 1; z[62:52] <= 2047; z[51] <= 1; z[50:0] <= 0; state <= put_z; //if a is inf and b is inf return NaN end else if ((a_e == 1024) && (b_e == 1024)) begin z[63] <= 1; z[62:52] <= 2047; z[51] <= 1; z[50:0] <= 0; state <= put_z; //if a is inf return inf end else if (a_e == 1024) begin z[63] <= a_s ^ b_s; z[62:52] <= 2047; z[51:0] <= 0; state <= put_z; //if b is zero return NaN if ($signed(b_e == -1023) && (b_m == 0)) begin z[63] <= 1; z[62:52] <= 2047; z[51] <= 1; z[50:0] <= 0; state <= put_z; end //if b is inf return zero end else if (b_e == 1024) begin z[63] <= a_s ^ b_s; z[62:52] <= 0; z[51:0] <= 0; state <= put_z; //if a is zero return zero end else if (($signed(a_e) == -1023) && (a_m == 0)) begin z[63] <= a_s ^ b_s; z[62:52] <= 0; z[51:0] <= 0; state <= put_z; //if b is zero return NaN if (($signed(b_e) == -1023) && (b_m == 0)) begin z[63] <= 1; z[62:52] <= 2047; z[51] <= 1; z[50:0] <= 0; state <= put_z; end //if b is zero return inf end else if (($signed(b_e) == -1023) && (b_m == 0)) begin z[63] <= a_s ^ b_s; z[62:52] <= 2047; z[51:0] <= 0; state <= put_z; end else begin //Denormalised Number if ($signed(a_e) == -1023) begin a_e <= -1022; end else begin a_m[52] <= 1; end //Denormalised Number if ($signed(b_e) == -1023) begin b_e <= -1022; end else begin b_m[52] <= 1; end state <= normalise_a; end end normalise_a: begin if (a_m[52]) begin state <= normalise_b; end else begin a_m <= a_m << 1; a_e <= a_e - 1; end end normalise_b: begin if (b_m[52]) begin state <= divide_0; end else begin b_m <= b_m << 1; b_e <= b_e - 1; end end divide_0: begin z_s <= a_s ^ b_s; z_e <= a_e - b_e; quotient <= 0; remainder <= 0; count <= 0; dividend <= a_m << 56; divisor <= b_m; state <= divide_1; end divide_1: begin quotient <= quotient << 1; remainder <= remainder << 1; remainder[0] <= dividend[108]; dividend <= dividend << 1; state <= divide_2; end divide_2: begin if (remainder >= divisor) begin quotient[0] <= 1; remainder <= remainder - divisor; end if (count == 107) begin state <= divide_3; end else begin count <= count + 1; state <= divide_1; end end divide_3: begin z_m <= quotient[55:3]; guard <= quotient[2]; round_bit <= quotient[1]; sticky <= quotient[0] | (remainder != 0); state <= normalise_1; end normalise_1: begin if (z_m[52] == 0 && $signed(z_e) > -1022) begin z_e <= z_e - 1; z_m <= z_m << 1; z_m[0] <= guard; guard <= round_bit; round_bit <= 0; end else begin state <= normalise_2; end end normalise_2: begin if ($signed(z_e) < -1022) begin z_e <= z_e + 1; z_m <= z_m >> 1; guard <= z_m[0]; round_bit <= guard; sticky <= sticky | round_bit; end else begin state <= round; end end round: begin if (guard && (round_bit | sticky | z_m[0])) begin z_m <= z_m + 1; if (z_m == 53'hffffff) begin z_e <=z_e + 1; end end state <= pack; end pack: begin z[51 : 0] <= z_m[51:0]; z[62 : 52] <= z_e[10:0] + 1023; z[63] <= z_s; if ($signed(z_e) == -1022 && z_m[52] == 0) begin z[62 : 52] <= 0; end //if overflow occurs, return inf if ($signed(z_e) > 1023) begin z[51 : 0] <= 0; z[62 : 52] <= 2047; z[63] <= z_s; end state <= put_z; end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_input_b_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign input_b_ack = s_input_b_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module double_multiplier( input_a, input_b, input_a_stb, input_b_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack, input_b_ack); input clk; input rst; input [63:0] input_a; input input_a_stb; output input_a_ack; input [63:0] input_b; input input_b_stb; output input_b_ack; output [63:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [63:0] s_output_z; reg s_input_a_ack; reg s_input_b_ack; reg [3:0] state; parameter get_a = 4'd0, get_b = 4'd1, unpack = 4'd2, special_cases = 4'd3, normalise_a = 4'd4, normalise_b = 4'd5, multiply_0 = 4'd6, multiply_1 = 4'd7, normalise_1 = 4'd8, normalise_2 = 4'd9, round = 4'd10, pack = 4'd11, put_z = 4'd12; reg [63:0] a, b, z; reg [52:0] a_m, b_m, z_m; reg [12:0] a_e, b_e, z_e; reg a_s, b_s, z_s; reg guard, round_bit, sticky; reg [107:0] product; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= get_b; end end get_b: begin s_input_b_ack <= 1; if (s_input_b_ack && input_b_stb) begin b <= input_b; s_input_b_ack <= 0; state <= unpack; end end unpack: begin a_m <= a[51 : 0]; b_m <= b[51 : 0]; a_e <= a[62 : 52] - 1023; b_e <= b[62 : 52] - 1023; a_s <= a[63]; b_s <= b[63]; state <= special_cases; end special_cases: begin //if a is NaN or b is NaN return NaN if ((a_e == 1024 && a_m != 0) || (b_e == 1024 && b_m != 0)) begin z[63] <= 1; z[62:52] <= 2047; z[51] <= 1; z[50:0] <= 0; state <= put_z; //if a is inf return inf end else if (a_e == 1024) begin z[63] <= a_s ^ b_s; z[62:52] <= 2047; z[51:0] <= 0; state <= put_z; //if b is zero return NaN if ($signed(b_e == -1023) && (b_m == 0)) begin z[63] <= 1; z[62:52] <= 2047; z[51] <= 1; z[50:0] <= 0; state <= put_z; end //if b is inf return inf end else if (b_e == 1024) begin z[63] <= a_s ^ b_s; z[62:52] <= 2047; z[51:0] <= 0; state <= put_z; //if a is zero return zero end else if (($signed(a_e) == -1023) && (a_m == 0)) begin z[63] <= a_s ^ b_s; z[62:52] <= 0; z[51:0] <= 0; state <= put_z; //if b is zero return zero end else if (($signed(b_e) == -1023) && (b_m == 0)) begin z[63] <= a_s ^ b_s; z[62:52] <= 0; z[51:0] <= 0; state <= put_z; end else begin //Denormalised Number if ($signed(a_e) == -1023) begin a_e <= -1022; end else begin a_m[52] <= 1; end //Denormalised Number if ($signed(b_e) == -1023) begin b_e <= -1022; end else begin b_m[52] <= 1; end state <= normalise_a; end end normalise_a: begin if (a_m[52]) begin state <= normalise_b; end else begin a_m <= a_m << 1; a_e <= a_e - 1; end end normalise_b: begin if (b_m[52]) begin state <= multiply_0; end else begin b_m <= b_m << 1; b_e <= b_e - 1; end end multiply_0: begin z_s <= a_s ^ b_s; z_e <= a_e + b_e + 1; product <= a_m * b_m * 4; state <= multiply_1; end multiply_1: begin z_m <= product[107:55]; guard <= product[54]; round_bit <= product[53]; sticky <= (product[52:0] != 0); state <= normalise_1; end normalise_1: begin if (z_m[52] == 0) begin z_e <= z_e - 1; z_m <= z_m << 1; z_m[0] <= guard; guard <= round_bit; round_bit <= 0; end else begin state <= normalise_2; end end normalise_2: begin if ($signed(z_e) < -1022) begin z_e <= z_e + 1; z_m <= z_m >> 1; guard <= z_m[0]; round_bit <= guard; sticky <= sticky | round_bit; end else begin state <= round; end end round: begin if (guard && (round_bit | sticky | z_m[0])) begin z_m <= z_m + 1; if (z_m == 53'hffffff) begin z_e <=z_e + 1; end end state <= pack; end pack: begin z[51 : 0] <= z_m[51:0]; z[62 : 52] <= z_e[11:0] + 1023; z[63] <= z_s; if ($signed(z_e) == -1022 && z_m[52] == 0) begin z[62 : 52] <= 0; end //if overflow occurs, return inf if ($signed(z_e) > 1023) begin z[51 : 0] <= 0; z[62 : 52] <= 2047; z[63] <= z_s; end state <= put_z; end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_input_b_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign input_b_ack = s_input_b_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module double_adder( input_a, input_b, input_a_stb, input_b_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack, input_b_ack); input clk; input rst; input [63:0] input_a; input input_a_stb; output input_a_ack; input [63:0] input_b; input input_b_stb; output input_b_ack; output [63:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [63:0] s_output_z; reg s_input_a_ack; reg s_input_b_ack; reg [3:0] state; parameter get_a = 4'd0, get_b = 4'd1, unpack = 4'd2, special_cases = 4'd3, align = 4'd4, add_0 = 4'd5, add_1 = 4'd6, normalise_1 = 4'd7, normalise_2 = 4'd8, round = 4'd9, pack = 4'd10, put_z = 4'd11; reg [63:0] a, b, z; reg [55:0] a_m, b_m; reg [52:0] z_m; reg [12:0] a_e, b_e, z_e; reg a_s, b_s, z_s; reg guard, round_bit, sticky; reg [56:0] sum; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= get_b; end end get_b: begin s_input_b_ack <= 1; if (s_input_b_ack && input_b_stb) begin b <= input_b; s_input_b_ack <= 0; state <= unpack; end end unpack: begin a_m <= {a[51 : 0], 3'd0}; b_m <= {b[51 : 0], 3'd0}; a_e <= a[62 : 52] - 1023; b_e <= b[62 : 52] - 1023; a_s <= a[63]; b_s <= b[63]; state <= special_cases; end special_cases: begin //if a is NaN or b is NaN return NaN if ((a_e == 1024 && a_m != 0) || (b_e == 1024 && b_m != 0)) begin z[63] <= 1; z[62:52] <= 2047; z[51] <= 1; z[50:0] <= 0; state <= put_z; //if a is inf return inf end else if (a_e == 1024) begin z[63] <= a_s; z[62:52] <= 2047; z[51:0] <= 0; state <= put_z; //if b is inf return inf end else if (b_e == 1024) begin z[63] <= b_s; z[62:52] <= 2047; z[51:0] <= 0; state <= put_z; //if a is zero return b end else if ((($signed(a_e) == -1023) && (a_m == 0)) && (($signed(b_e) == -1023) && (b_m == 0))) begin z[63] <= a_s & b_s; z[62:52] <= b_e[10:0] + 1023; z[51:0] <= b_m[55:3]; state <= put_z; //if a is zero return b end else if (($signed(a_e) == -1023) && (a_m == 0)) begin z[63] <= b_s; z[62:52] <= b_e[10:0] + 1023; z[51:0] <= b_m[55:3]; state <= put_z; //if b is zero return a end else if (($signed(b_e) == -1023) && (b_m == 0)) begin z[63] <= a_s; z[62:52] <= a_e[10:0] + 1023; z[51:0] <= a_m[55:3]; state <= put_z; end else begin //Denormalised Number if ($signed(a_e) == -1023) begin a_e <= -1022; end else begin a_m[55] <= 1; end //Denormalised Number if ($signed(b_e) == -1023) begin b_e <= -1022; end else begin b_m[55] <= 1; end state <= align; end end align: begin if ($signed(a_e) > $signed(b_e)) begin b_e <= b_e + 1; b_m <= b_m >> 1; b_m[0] <= b_m[0] | b_m[1]; end else if ($signed(a_e) < $signed(b_e)) begin a_e <= a_e + 1; a_m <= a_m >> 1; a_m[0] <= a_m[0] | a_m[1]; end else begin state <= add_0; end end add_0: begin z_e <= a_e; if (a_s == b_s) begin sum <= {1'd0, a_m} + b_m; z_s <= a_s; end else begin if (a_m > b_m) begin sum <= {1'd0, a_m} - b_m; z_s <= a_s; end else begin sum <= {1'd0, b_m} - a_m; z_s <= b_s; end end state <= add_1; end add_1: begin if (sum[56]) begin z_m <= sum[56:4]; guard <= sum[3]; round_bit <= sum[2]; sticky <= sum[1] | sum[0]; z_e <= z_e + 1; end else begin z_m <= sum[55:3]; guard <= sum[2]; round_bit <= sum[1]; sticky <= sum[0]; end state <= normalise_1; end normalise_1: begin if (z_m[52] == 0 && $signed(z_e) > -1022) begin z_e <= z_e - 1; z_m <= z_m << 1; z_m[0] <= guard; guard <= round_bit; round_bit <= 0; end else begin state <= normalise_2; end end normalise_2: begin if ($signed(z_e) < -1022) begin z_e <= z_e + 1; z_m <= z_m >> 1; guard <= z_m[0]; round_bit <= guard; sticky <= sticky | round_bit; end else begin state <= round; end end round: begin if (guard && (round_bit | sticky | z_m[0])) begin z_m <= z_m + 1; if (z_m == 53'h1fffffffffffff) begin z_e <=z_e + 1; end end state <= pack; end pack: begin z[51 : 0] <= z_m[51:0]; z[62 : 52] <= z_e[10:0] + 1023; z[63] <= z_s; if ($signed(z_e) == -1022 && z_m[52] == 0) begin z[62 : 52] <= 0; end //if overflow occurs, return inf if ($signed(z_e) > 1023) begin z[51 : 0] <= 0; z[62 : 52] <= 2047; z[63] <= z_s; end state <= put_z; end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_input_b_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign input_b_ack = s_input_b_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module int_to_float( input_a, input_a_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack); input clk; input rst; input [31:0] input_a; input input_a_stb; output input_a_ack; output [31:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [31:0] s_output_z; reg s_input_a_ack; reg s_input_b_ack; reg [2:0] state; parameter get_a = 3'd0, convert_0 = 3'd1, convert_1 = 3'd2, convert_2 = 3'd3, round = 3'd4, pack = 3'd5, put_z = 3'd6; reg [31:0] a, z, value; reg [23:0] z_m; reg [7:0] z_r; reg [7:0] z_e; reg z_s; reg guard, round_bit, sticky; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= convert_0; end end convert_0: begin if ( a == 0 ) begin z_s <= 0; z_m <= 0; z_e <= -127; state <= pack; end else begin value <= a[31] ? -a : a; z_s <= a[31]; state <= convert_1; end end convert_1: begin z_e <= 31; z_m <= value[31:8]; z_r <= value[7:0]; state <= convert_2; end convert_2: begin if (!z_m[23]) begin z_e <= z_e - 1; z_m <= z_m << 1; z_m[0] <= z_r[7]; z_r <= z_r << 1; end else begin guard <= z_r[7]; round_bit <= z_r[6]; sticky <= z_r[5:0] != 0; state <= round; end end round: begin if (guard && (round_bit || sticky || z_m[0])) begin z_m <= z_m + 1; if (z_m == 24'hffffff) begin z_e <=z_e + 1; end end state <= pack; end pack: begin z[22 : 0] <= z_m[22:0]; z[30 : 23] <= z_e + 127; z[31] <= z_s; state <= put_z; end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module float_to_int( input_a, input_a_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack); input clk; input rst; input [31:0] input_a; input input_a_stb; output input_a_ack; output [31:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [31:0] s_output_z; reg s_input_a_ack; reg [2:0] state; parameter get_a = 3'd0, special_cases = 3'd1, unpack = 3'd2, convert = 3'd3, put_z = 3'd4; reg [31:0] a_m, a, z; reg [8:0] a_e; reg a_s; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= unpack; end end unpack: begin a_m[31:8] <= {1'b1, a[22 : 0]}; a_m[7:0] <= 0; a_e <= a[30 : 23] - 127; a_s <= a[31]; state <= special_cases; end special_cases: begin if ($signed(a_e) == -127) begin z <= 0; state <= put_z; end else if ($signed(a_e) > 31) begin z <= 32'h80000000; state <= put_z; end else begin state <= convert; end end convert: begin if ($signed(a_e) < 31 && a_m) begin a_e <= a_e + 1; a_m <= a_m >> 1; end else begin if (a_m[31]) begin z <= 32'h80000000; end else begin z <= a_s ? -a_m : a_m; end state <= put_z; end end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module long_to_double( input_a, input_a_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack); input clk; input rst; input [63:0] input_a; input input_a_stb; output input_a_ack; output [63:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [63:0] s_output_z; reg s_input_a_ack; reg s_input_b_ack; reg [2:0] state; parameter get_a = 3'd0, convert_0 = 3'd1, convert_1 = 3'd2, convert_2 = 3'd3, round = 3'd4, pack = 3'd5, put_z = 3'd6; reg [63:0] a, z, value; reg [52:0] z_m; reg [10:0] z_r; reg [10:0] z_e; reg z_s; reg guard, round_bit, sticky; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= convert_0; end end convert_0: begin if ( a == 0 ) begin z_s <= 0; z_m <= 0; z_e <= -1023; state <= pack; end else begin value <= a[63] ? -a : a; z_s <= a[63]; state <= convert_1; end end convert_1: begin z_e <= 63; z_m <= value[63:11]; z_r <= value[10:0]; state <= convert_2; end convert_2: begin if (!z_m[52]) begin z_e <= z_e - 1; z_m <= z_m << 1; z_m[0] <= z_r[10]; z_r <= z_r << 1; end else begin guard <= z_r[10]; round_bit <= z_r[9]; sticky <= z_r[8:0] != 0; state <= round; end end round: begin if (guard && (round_bit || sticky || z_m[0])) begin z_m <= z_m + 1; if (z_m == 53'h1fffffffffffff) begin z_e <=z_e + 1; end end state <= pack; end pack: begin z[51 : 0] <= z_m[51:0]; z[62 : 52] <= z_e + 1023; z[63] <= z_s; state <= put_z; end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module double_to_long( input_a, input_a_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack); input clk; input rst; input [63:0] input_a; input input_a_stb; output input_a_ack; output [63:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [63:0] s_output_z; reg s_input_a_ack; reg [2:0] state; parameter get_a = 3'd0, special_cases = 3'd1, unpack = 3'd2, convert = 3'd3, put_z = 3'd4; reg [63:0] a_m, a, z; reg [11:0] a_e; reg a_s; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= unpack; end end unpack: begin a_m[63:11] <= {1'b1, a[51 : 0]}; a_m[10:0] <= 0; a_e <= a[62 : 52] - 1023; a_s <= a[63]; state <= special_cases; end special_cases: begin if ($signed(a_e) == -1023) begin //zero z <= 0; state <= put_z; end else if ($signed(a_e) == 1024 && a[51:0] != 0) begin //nan z <= 64'h8000000000000000; state <= put_z; end else if ($signed(a_e) > 63) begin //too big if (a_s) begin z <= 64'h8000000000000000; end else begin z <= 64'h0000000000000000; end state <= put_z; end else begin state <= convert; end end convert: begin if ($signed(a_e) < 63 && a_m) begin a_e <= a_e + 1; a_m <= a_m >> 1; end else begin if (a_m[63] && a_s) begin z <= 64'h8000000000000000; end else begin z <= a_s ? -a_m : a_m; end state <= put_z; end end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module float_to_double( input_a, input_a_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack); input clk; input rst; input [31:0] input_a; input input_a_stb; output input_a_ack; output [63:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [63:0] s_output_z; reg s_input_a_ack; reg s_input_b_ack; reg [1:0] state; parameter get_a = 3'd0, convert_0 = 3'd1, normalise_0 = 3'd2, put_z = 3'd3; reg [63:0] z; reg [10:0] z_e; reg [52:0] z_m; reg [31:0] a; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= convert_0; end end convert_0: begin z[63] <= a[31]; z[62:52] <= (a[30:23] - 127) + 1023; z[51:0] <= {a[22:0], 29'd0}; if (a[30:23] == 255) begin z[62:52] <= 2047; end state <= put_z; if (a[30:23] == 0) begin if (a[23:0]) begin state <= normalise_0; z_e <= 897; z_m <= {1'd0, a[22:0], 29'd0}; end z[62:52] <= 0; end end normalise_0: begin if (z_m[52]) begin z[62:52] <= z_e; z[51:0] <= z_m[51:0]; state <= put_z; end else begin z_m <= {z_m[51:0], 1'd0}; z_e <= z_e - 1; end end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module double_to_float( input_a, input_a_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack); input clk; input rst; input [63:0] input_a; input input_a_stb; output input_a_ack; output [31:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [31:0] s_output_z; reg s_input_a_ack; reg [1:0] state; parameter get_a = 3'd0, unpack = 3'd1, denormalise = 3'd2, put_z = 3'd3; reg [63:0] a; reg [31:0] z; reg [10:0] z_e; reg [23:0] z_m; reg guard; reg round; reg sticky; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= unpack; end end unpack: begin z[31] <= a[63]; state <= put_z; if (a[62:52] == 0) begin z[30:23] <= 0; z[22:0] <= 0; end else if (a[62:52] < 897) begin z[30:23] <= 0; z_m <= {1'd1, a[51:29]}; z_e <= a[62:52]; guard <= a[28]; round <= a[27]; sticky <= a[26:0] != 0; state <= denormalise; end else if (a[62:52] == 2047) begin z[30:23] <= 255; z[22:0] <= 0; if (a[51:0]) begin z[22] <= 1; end end else if (a[62:52] > 1150) begin z[30:23] <= 255; z[22:0] <= 0; end else begin z[30:23] <= (a[62:52] - 1023) + 127; if (a[28] && (a[27] || a[26:0])) begin z[22:0] <= a[51:29] + 1; end else begin z[22:0] <= a[51:29]; end end end denormalise: begin if (z_e == 897 || (z_m == 0 && guard == 0)) begin state <= put_z; z[22:0] <= z_m; if (guard && (round || sticky)) begin z[22:0] <= z_m + 1; end end else begin z_e <= z_e + 1; z_m <= {1'd0, z_m[23:1]}; guard <= z_m[0]; round <= guard; sticky <= sticky | round; end end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module adder( input_a, input_b, input_a_stb, input_b_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack, input_b_ack); input clk; input rst; input [31:0] input_a; input input_a_stb; output input_a_ack; input [31:0] input_b; input input_b_stb; output input_b_ack; output [31:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [31:0] s_output_z; reg s_input_a_ack; reg s_input_b_ack; reg [3:0] state; parameter get_a = 4'd0, get_b = 4'd1, unpack = 4'd2, special_cases = 4'd3, align = 4'd4, add_0 = 4'd5, add_1 = 4'd6, normalise_1 = 4'd7, normalise_2 = 4'd8, round = 4'd9, pack = 4'd10, put_z = 4'd11; reg [31:0] a, b, z; reg [26:0] a_m, b_m; reg [23:0] z_m; reg [9:0] a_e, b_e, z_e; reg a_s, b_s, z_s; reg guard, round_bit, sticky; reg [27:0] sum; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= get_b; end end get_b: begin s_input_b_ack <= 1; if (s_input_b_ack && input_b_stb) begin b <= input_b; s_input_b_ack <= 0; state <= unpack; end end unpack: begin a_m <= {a[22 : 0], 3'd0}; b_m <= {b[22 : 0], 3'd0}; a_e <= a[30 : 23] - 127; b_e <= b[30 : 23] - 127; a_s <= a[31]; b_s <= b[31]; state <= special_cases; end special_cases: begin //if a is NaN or b is NaN return NaN if ((a_e == 128 && a_m != 0) || (b_e == 128 && b_m != 0)) begin z[31] <= 1; z[30:23] <= 255; z[22] <= 1; z[21:0] <= 0; state <= put_z; //if a is inf return inf end else if (a_e == 128) begin z[31] <= a_s; z[30:23] <= 255; z[22:0] <= 0; state <= put_z; //if b is inf return inf end else if (b_e == 128) begin z[31] <= b_s; z[30:23] <= 255; z[22:0] <= 0; state <= put_z; //if a is zero return b end else if ((($signed(a_e) == -127) && (a_m == 0)) && (($signed(b_e) == -127) && (b_m == 0))) begin z[31] <= a_s & b_s; z[30:23] <= b_e[7:0] + 127; z[22:0] <= b_m[26:3]; state <= put_z; //if a is zero return b end else if (($signed(a_e) == -127) && (a_m == 0)) begin z[31] <= b_s; z[30:23] <= b_e[7:0] + 127; z[22:0] <= b_m[26:3]; state <= put_z; //if b is zero return a end else if (($signed(b_e) == -127) && (b_m == 0)) begin z[31] <= a_s; z[30:23] <= a_e[7:0] + 127; z[22:0] <= a_m[26:3]; state <= put_z; end else begin //Denormalised Number if ($signed(a_e) == -127) begin a_e <= -126; end else begin a_m[26] <= 1; end //Denormalised Number if ($signed(b_e) == -127) begin b_e <= -126; end else begin b_m[26] <= 1; end state <= align; end end align: begin if ($signed(a_e) > $signed(b_e)) begin b_e <= b_e + 1; b_m <= b_m >> 1; b_m[0] <= b_m[0] | b_m[1]; end else if ($signed(a_e) < $signed(b_e)) begin a_e <= a_e + 1; a_m <= a_m >> 1; a_m[0] <= a_m[0] | a_m[1]; end else begin state <= add_0; end end add_0: begin z_e <= a_e; if (a_s == b_s) begin sum <= a_m + b_m; z_s <= a_s; end else begin if (a_m >= b_m) begin sum <= a_m - b_m; z_s <= a_s; end else begin sum <= b_m - a_m; z_s <= b_s; end end state <= add_1; end add_1: begin if (sum[27]) begin z_m <= sum[27:4]; guard <= sum[3]; round_bit <= sum[2]; sticky <= sum[1] | sum[0]; z_e <= z_e + 1; end else begin z_m <= sum[26:3]; guard <= sum[2]; round_bit <= sum[1]; sticky <= sum[0]; end state <= normalise_1; end normalise_1: begin if (z_m[23] == 0 && $signed(z_e) > -126) begin z_e <= z_e - 1; z_m <= z_m << 1; z_m[0] <= guard; guard <= round_bit; round_bit <= 0; end else begin state <= normalise_2; end end normalise_2: begin if ($signed(z_e) < -126) begin z_e <= z_e + 1; z_m <= z_m >> 1; guard <= z_m[0]; round_bit <= guard; sticky <= sticky | round_bit; end else begin state <= round; end end round: begin if (guard && (round_bit | sticky | z_m[0])) begin z_m <= z_m + 1; if (z_m == 24'hffffff) begin z_e <=z_e + 1; end end state <= pack; end pack: begin z[22 : 0] <= z_m[22:0]; z[30 : 23] <= z_e[7:0] + 127; z[31] <= z_s; if ($signed(z_e) == -126 && z_m[23] == 0) begin z[30 : 23] <= 0; end //if overflow occurs, return inf if ($signed(z_e) > 127) begin z[22 : 0] <= 0; z[30 : 23] <= 255; z[31] <= z_s; end state <= put_z; end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_input_b_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign input_b_ack = s_input_b_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module divider( input_a, input_b, input_a_stb, input_b_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack, input_b_ack); input clk; input rst; input [31:0] input_a; input input_a_stb; output input_a_ack; input [31:0] input_b; input input_b_stb; output input_b_ack; output [31:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [31:0] s_output_z; reg s_input_a_ack; reg s_input_b_ack; reg [3:0] state; parameter get_a = 4'd0, get_b = 4'd1, unpack = 4'd2, special_cases = 4'd3, normalise_a = 4'd4, normalise_b = 4'd5, divide_0 = 4'd6, divide_1 = 4'd7, divide_2 = 4'd8, divide_3 = 4'd9, normalise_1 = 4'd10, normalise_2 = 4'd11, round = 4'd12, pack = 4'd13, put_z = 4'd14; reg [31:0] a, b, z; reg [23:0] a_m, b_m, z_m; reg [9:0] a_e, b_e, z_e; reg a_s, b_s, z_s; reg guard, round_bit, sticky; reg [50:0] quotient, divisor, dividend, remainder; reg [5:0] count; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= get_b; end end get_b: begin s_input_b_ack <= 1; if (s_input_b_ack && input_b_stb) begin b <= input_b; s_input_b_ack <= 0; state <= unpack; end end unpack: begin a_m <= a[22 : 0]; b_m <= b[22 : 0]; a_e <= a[30 : 23] - 127; b_e <= b[30 : 23] - 127; a_s <= a[31]; b_s <= b[31]; state <= special_cases; end special_cases: begin //if a is NaN or b is NaN return NaN if ((a_e == 128 && a_m != 0) || (b_e == 128 && b_m != 0)) begin z[31] <= 1; z[30:23] <= 255; z[22] <= 1; z[21:0] <= 0; state <= put_z; //if a is inf and b is inf return NaN end else if ((a_e == 128) && (b_e == 128)) begin z[31] <= 1; z[30:23] <= 255; z[22] <= 1; z[21:0] <= 0; state <= put_z; //if a is inf return inf end else if (a_e == 128) begin z[31] <= a_s ^ b_s; z[30:23] <= 255; z[22:0] <= 0; state <= put_z; //if b is zero return NaN if ($signed(b_e == -127) && (b_m == 0)) begin z[31] <= 1; z[30:23] <= 255; z[22] <= 1; z[21:0] <= 0; state <= put_z; end //if b is inf return zero end else if (b_e == 128) begin z[31] <= a_s ^ b_s; z[30:23] <= 0; z[22:0] <= 0; state <= put_z; //if a is zero return zero end else if (($signed(a_e) == -127) && (a_m == 0)) begin z[31] <= a_s ^ b_s; z[30:23] <= 0; z[22:0] <= 0; state <= put_z; //if b is zero return NaN if (($signed(b_e) == -127) && (b_m == 0)) begin z[31] <= 1; z[30:23] <= 255; z[22] <= 1; z[21:0] <= 0; state <= put_z; end //if b is zero return inf end else if (($signed(b_e) == -127) && (b_m == 0)) begin z[31] <= a_s ^ b_s; z[30:23] <= 255; z[22:0] <= 0; state <= put_z; end else begin //Denormalised Number if ($signed(a_e) == -127) begin a_e <= -126; end else begin a_m[23] <= 1; end //Denormalised Number if ($signed(b_e) == -127) begin b_e <= -126; end else begin b_m[23] <= 1; end state <= normalise_a; end end normalise_a: begin if (a_m[23]) begin state <= normalise_b; end else begin a_m <= a_m << 1; a_e <= a_e - 1; end end normalise_b: begin if (b_m[23]) begin state <= divide_0; end else begin b_m <= b_m << 1; b_e <= b_e - 1; end end divide_0: begin z_s <= a_s ^ b_s; z_e <= a_e - b_e; quotient <= 0; remainder <= 0; count <= 0; dividend <= a_m << 27; divisor <= b_m; state <= divide_1; end divide_1: begin quotient <= quotient << 1; remainder <= remainder << 1; remainder[0] <= dividend[50]; dividend <= dividend << 1; state <= divide_2; end divide_2: begin if (remainder >= divisor) begin quotient[0] <= 1; remainder <= remainder - divisor; end if (count == 49) begin state <= divide_3; end else begin count <= count + 1; state <= divide_1; end end divide_3: begin z_m <= quotient[26:3]; guard <= quotient[2]; round_bit <= quotient[1]; sticky <= quotient[0] | (remainder != 0); state <= normalise_1; end normalise_1: begin if (z_m[23] == 0 && $signed(z_e) > -126) begin z_e <= z_e - 1; z_m <= z_m << 1; z_m[0] <= guard; guard <= round_bit; round_bit <= 0; end else begin state <= normalise_2; end end normalise_2: begin if ($signed(z_e) < -126) begin z_e <= z_e + 1; z_m <= z_m >> 1; guard <= z_m[0]; round_bit <= guard; sticky <= sticky | round_bit; end else begin state <= round; end end round: begin if (guard && (round_bit | sticky | z_m[0])) begin z_m <= z_m + 1; if (z_m == 24'hffffff) begin z_e <=z_e + 1; end end state <= pack; end pack: begin z[22 : 0] <= z_m[22:0]; z[30 : 23] <= z_e[7:0] + 127; z[31] <= z_s; if ($signed(z_e) == -126 && z_m[23] == 0) begin z[30 : 23] <= 0; end //if overflow occurs, return inf if ($signed(z_e) > 127) begin z[22 : 0] <= 0; z[30 : 23] <= 255; z[31] <= z_s; end state <= put_z; end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_input_b_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign input_b_ack = s_input_b_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module multiplier( input_a, input_b, input_a_stb, input_b_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack, input_b_ack); input clk; input rst; input [31:0] input_a; input input_a_stb; output input_a_ack; input [31:0] input_b; input input_b_stb; output input_b_ack; output [31:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [31:0] s_output_z; reg s_input_a_ack; reg s_input_b_ack; reg [3:0] state; parameter get_a = 4'd0, get_b = 4'd1, unpack = 4'd2, special_cases = 4'd3, normalise_a = 4'd4, normalise_b = 4'd5, multiply_0 = 4'd6, multiply_1 = 4'd7, normalise_1 = 4'd8, normalise_2 = 4'd9, round = 4'd10, pack = 4'd11, put_z = 4'd12; reg [31:0] a, b, z; reg [23:0] a_m, b_m, z_m; reg [9:0] a_e, b_e, z_e; reg a_s, b_s, z_s; reg guard, round_bit, sticky; reg [49:0] product; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= get_b; end end get_b: begin s_input_b_ack <= 1; if (s_input_b_ack && input_b_stb) begin b <= input_b; s_input_b_ack <= 0; state <= unpack; end end unpack: begin a_m <= a[22 : 0]; b_m <= b[22 : 0]; a_e <= a[30 : 23] - 127; b_e <= b[30 : 23] - 127; a_s <= a[31]; b_s <= b[31]; state <= special_cases; end special_cases: begin //if a is NaN or b is NaN return NaN if ((a_e == 128 && a_m != 0) || (b_e == 128 && b_m != 0)) begin z[31] <= 1; z[30:23] <= 255; z[22] <= 1; z[21:0] <= 0; state <= put_z; //if a is inf return inf end else if (a_e == 128) begin z[31] <= a_s ^ b_s; z[30:23] <= 255; z[22:0] <= 0; state <= put_z; //if b is zero return NaN if ($signed(b_e == -127) && (b_m == 0)) begin z[31] <= 1; z[30:23] <= 255; z[22] <= 1; z[21:0] <= 0; state <= put_z; end //if b is inf return inf end else if (b_e == 128) begin z[31] <= a_s ^ b_s; z[30:23] <= 255; z[22:0] <= 0; state <= put_z; //if a is zero return zero end else if (($signed(a_e) == -127) && (a_m == 0)) begin z[31] <= a_s ^ b_s; z[30:23] <= 0; z[22:0] <= 0; state <= put_z; //if b is zero return zero end else if (($signed(b_e) == -127) && (b_m == 0)) begin z[31] <= a_s ^ b_s; z[30:23] <= 0; z[22:0] <= 0; state <= put_z; end else begin //Denormalised Number if ($signed(a_e) == -127) begin a_e <= -126; end else begin a_m[23] <= 1; end //Denormalised Number if ($signed(b_e) == -127) begin b_e <= -126; end else begin b_m[23] <= 1; end state <= normalise_a; end end normalise_a: begin if (a_m[23]) begin state <= normalise_b; end else begin a_m <= a_m << 1; a_e <= a_e - 1; end end normalise_b: begin if (b_m[23]) begin state <= multiply_0; end else begin b_m <= b_m << 1; b_e <= b_e - 1; end end multiply_0: begin z_s <= a_s ^ b_s; z_e <= a_e + b_e + 1; product <= a_m * b_m * 4; state <= multiply_1; end multiply_1: begin z_m <= product[49:26]; guard <= product[25]; round_bit <= product[24]; sticky <= (product[23:0] != 0); state <= normalise_1; end normalise_1: begin if (z_m[23] == 0) begin z_e <= z_e - 1; z_m <= z_m << 1; z_m[0] <= guard; guard <= round_bit; round_bit <= 0; end else begin state <= normalise_2; end end normalise_2: begin if ($signed(z_e) < -126) begin z_e <= z_e + 1; z_m <= z_m >> 1; guard <= z_m[0]; round_bit <= guard; sticky <= sticky | round_bit; end else begin state <= round; end end round: begin if (guard && (round_bit | sticky | z_m[0])) begin z_m <= z_m + 1; if (z_m == 24'hffffff) begin z_e <=z_e + 1; end end state <= pack; end pack: begin z[22 : 0] <= z_m[22:0]; z[30 : 23] <= z_e[7:0] + 127; z[31] <= z_s; if ($signed(z_e) == -126 && z_m[23] == 0) begin z[30 : 23] <= 0; end //if overflow occurs, return inf if ($signed(z_e) > 127) begin z[22 : 0] <= 0; z[30 : 23] <= 255; z[31] <= z_s; end state <= put_z; end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_input_b_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign input_b_ack = s_input_b_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module double_divider( input_a, input_b, input_a_stb, input_b_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack, input_b_ack); input clk; input rst; input [63:0] input_a; input input_a_stb; output input_a_ack; input [63:0] input_b; input input_b_stb; output input_b_ack; output [63:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [63:0] s_output_z; reg s_input_a_ack; reg s_input_b_ack; reg [3:0] state; parameter get_a = 4'd0, get_b = 4'd1, unpack = 4'd2, special_cases = 4'd3, normalise_a = 4'd4, normalise_b = 4'd5, divide_0 = 4'd6, divide_1 = 4'd7, divide_2 = 4'd8, divide_3 = 4'd9, normalise_1 = 4'd10, normalise_2 = 4'd11, round = 4'd12, pack = 4'd13, put_z = 4'd14; reg [63:0] a, b, z; reg [52:0] a_m, b_m, z_m; reg [12:0] a_e, b_e, z_e; reg a_s, b_s, z_s; reg guard, round_bit, sticky; reg [108:0] quotient, divisor, dividend, remainder; reg [6:0] count; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= get_b; end end get_b: begin s_input_b_ack <= 1; if (s_input_b_ack && input_b_stb) begin b <= input_b; s_input_b_ack <= 0; state <= unpack; end end unpack: begin a_m <= a[51 : 0]; b_m <= b[51 : 0]; a_e <= a[62 : 52] - 1023; b_e <= b[62 : 52] - 1023; a_s <= a[63]; b_s <= b[63]; state <= special_cases; end special_cases: begin //if a is NaN or b is NaN return NaN if ((a_e == 1024 && a_m != 0) || (b_e == 1024 && b_m != 0)) begin z[63] <= 1; z[62:52] <= 2047; z[51] <= 1; z[50:0] <= 0; state <= put_z; //if a is inf and b is inf return NaN end else if ((a_e == 1024) && (b_e == 1024)) begin z[63] <= 1; z[62:52] <= 2047; z[51] <= 1; z[50:0] <= 0; state <= put_z; //if a is inf return inf end else if (a_e == 1024) begin z[63] <= a_s ^ b_s; z[62:52] <= 2047; z[51:0] <= 0; state <= put_z; //if b is zero return NaN if ($signed(b_e == -1023) && (b_m == 0)) begin z[63] <= 1; z[62:52] <= 2047; z[51] <= 1; z[50:0] <= 0; state <= put_z; end //if b is inf return zero end else if (b_e == 1024) begin z[63] <= a_s ^ b_s; z[62:52] <= 0; z[51:0] <= 0; state <= put_z; //if a is zero return zero end else if (($signed(a_e) == -1023) && (a_m == 0)) begin z[63] <= a_s ^ b_s; z[62:52] <= 0; z[51:0] <= 0; state <= put_z; //if b is zero return NaN if (($signed(b_e) == -1023) && (b_m == 0)) begin z[63] <= 1; z[62:52] <= 2047; z[51] <= 1; z[50:0] <= 0; state <= put_z; end //if b is zero return inf end else if (($signed(b_e) == -1023) && (b_m == 0)) begin z[63] <= a_s ^ b_s; z[62:52] <= 2047; z[51:0] <= 0; state <= put_z; end else begin //Denormalised Number if ($signed(a_e) == -1023) begin a_e <= -1022; end else begin a_m[52] <= 1; end //Denormalised Number if ($signed(b_e) == -1023) begin b_e <= -1022; end else begin b_m[52] <= 1; end state <= normalise_a; end end normalise_a: begin if (a_m[52]) begin state <= normalise_b; end else begin a_m <= a_m << 1; a_e <= a_e - 1; end end normalise_b: begin if (b_m[52]) begin state <= divide_0; end else begin b_m <= b_m << 1; b_e <= b_e - 1; end end divide_0: begin z_s <= a_s ^ b_s; z_e <= a_e - b_e; quotient <= 0; remainder <= 0; count <= 0; dividend <= a_m << 56; divisor <= b_m; state <= divide_1; end divide_1: begin quotient <= quotient << 1; remainder <= remainder << 1; remainder[0] <= dividend[108]; dividend <= dividend << 1; state <= divide_2; end divide_2: begin if (remainder >= divisor) begin quotient[0] <= 1; remainder <= remainder - divisor; end if (count == 107) begin state <= divide_3; end else begin count <= count + 1; state <= divide_1; end end divide_3: begin z_m <= quotient[55:3]; guard <= quotient[2]; round_bit <= quotient[1]; sticky <= quotient[0] | (remainder != 0); state <= normalise_1; end normalise_1: begin if (z_m[52] == 0 && $signed(z_e) > -1022) begin z_e <= z_e - 1; z_m <= z_m << 1; z_m[0] <= guard; guard <= round_bit; round_bit <= 0; end else begin state <= normalise_2; end end normalise_2: begin if ($signed(z_e) < -1022) begin z_e <= z_e + 1; z_m <= z_m >> 1; guard <= z_m[0]; round_bit <= guard; sticky <= sticky | round_bit; end else begin state <= round; end end round: begin if (guard && (round_bit | sticky | z_m[0])) begin z_m <= z_m + 1; if (z_m == 53'hffffff) begin z_e <=z_e + 1; end end state <= pack; end pack: begin z[51 : 0] <= z_m[51:0]; z[62 : 52] <= z_e[10:0] + 1023; z[63] <= z_s; if ($signed(z_e) == -1022 && z_m[52] == 0) begin z[62 : 52] <= 0; end //if overflow occurs, return inf if ($signed(z_e) > 1023) begin z[51 : 0] <= 0; z[62 : 52] <= 2047; z[63] <= z_s; end state <= put_z; end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_input_b_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign input_b_ack = s_input_b_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module double_multiplier( input_a, input_b, input_a_stb, input_b_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack, input_b_ack); input clk; input rst; input [63:0] input_a; input input_a_stb; output input_a_ack; input [63:0] input_b; input input_b_stb; output input_b_ack; output [63:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [63:0] s_output_z; reg s_input_a_ack; reg s_input_b_ack; reg [3:0] state; parameter get_a = 4'd0, get_b = 4'd1, unpack = 4'd2, special_cases = 4'd3, normalise_a = 4'd4, normalise_b = 4'd5, multiply_0 = 4'd6, multiply_1 = 4'd7, normalise_1 = 4'd8, normalise_2 = 4'd9, round = 4'd10, pack = 4'd11, put_z = 4'd12; reg [63:0] a, b, z; reg [52:0] a_m, b_m, z_m; reg [12:0] a_e, b_e, z_e; reg a_s, b_s, z_s; reg guard, round_bit, sticky; reg [107:0] product; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= get_b; end end get_b: begin s_input_b_ack <= 1; if (s_input_b_ack && input_b_stb) begin b <= input_b; s_input_b_ack <= 0; state <= unpack; end end unpack: begin a_m <= a[51 : 0]; b_m <= b[51 : 0]; a_e <= a[62 : 52] - 1023; b_e <= b[62 : 52] - 1023; a_s <= a[63]; b_s <= b[63]; state <= special_cases; end special_cases: begin //if a is NaN or b is NaN return NaN if ((a_e == 1024 && a_m != 0) || (b_e == 1024 && b_m != 0)) begin z[63] <= 1; z[62:52] <= 2047; z[51] <= 1; z[50:0] <= 0; state <= put_z; //if a is inf return inf end else if (a_e == 1024) begin z[63] <= a_s ^ b_s; z[62:52] <= 2047; z[51:0] <= 0; state <= put_z; //if b is zero return NaN if ($signed(b_e == -1023) && (b_m == 0)) begin z[63] <= 1; z[62:52] <= 2047; z[51] <= 1; z[50:0] <= 0; state <= put_z; end //if b is inf return inf end else if (b_e == 1024) begin z[63] <= a_s ^ b_s; z[62:52] <= 2047; z[51:0] <= 0; state <= put_z; //if a is zero return zero end else if (($signed(a_e) == -1023) && (a_m == 0)) begin z[63] <= a_s ^ b_s; z[62:52] <= 0; z[51:0] <= 0; state <= put_z; //if b is zero return zero end else if (($signed(b_e) == -1023) && (b_m == 0)) begin z[63] <= a_s ^ b_s; z[62:52] <= 0; z[51:0] <= 0; state <= put_z; end else begin //Denormalised Number if ($signed(a_e) == -1023) begin a_e <= -1022; end else begin a_m[52] <= 1; end //Denormalised Number if ($signed(b_e) == -1023) begin b_e <= -1022; end else begin b_m[52] <= 1; end state <= normalise_a; end end normalise_a: begin if (a_m[52]) begin state <= normalise_b; end else begin a_m <= a_m << 1; a_e <= a_e - 1; end end normalise_b: begin if (b_m[52]) begin state <= multiply_0; end else begin b_m <= b_m << 1; b_e <= b_e - 1; end end multiply_0: begin z_s <= a_s ^ b_s; z_e <= a_e + b_e + 1; product <= a_m * b_m * 4; state <= multiply_1; end multiply_1: begin z_m <= product[107:55]; guard <= product[54]; round_bit <= product[53]; sticky <= (product[52:0] != 0); state <= normalise_1; end normalise_1: begin if (z_m[52] == 0) begin z_e <= z_e - 1; z_m <= z_m << 1; z_m[0] <= guard; guard <= round_bit; round_bit <= 0; end else begin state <= normalise_2; end end normalise_2: begin if ($signed(z_e) < -1022) begin z_e <= z_e + 1; z_m <= z_m >> 1; guard <= z_m[0]; round_bit <= guard; sticky <= sticky | round_bit; end else begin state <= round; end end round: begin if (guard && (round_bit | sticky | z_m[0])) begin z_m <= z_m + 1; if (z_m == 53'hffffff) begin z_e <=z_e + 1; end end state <= pack; end pack: begin z[51 : 0] <= z_m[51:0]; z[62 : 52] <= z_e[11:0] + 1023; z[63] <= z_s; if ($signed(z_e) == -1022 && z_m[52] == 0) begin z[62 : 52] <= 0; end //if overflow occurs, return inf if ($signed(z_e) > 1023) begin z[51 : 0] <= 0; z[62 : 52] <= 2047; z[63] <= z_s; end state <= put_z; end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_input_b_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign input_b_ack = s_input_b_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module double_adder( input_a, input_b, input_a_stb, input_b_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack, input_b_ack); input clk; input rst; input [63:0] input_a; input input_a_stb; output input_a_ack; input [63:0] input_b; input input_b_stb; output input_b_ack; output [63:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [63:0] s_output_z; reg s_input_a_ack; reg s_input_b_ack; reg [3:0] state; parameter get_a = 4'd0, get_b = 4'd1, unpack = 4'd2, special_cases = 4'd3, align = 4'd4, add_0 = 4'd5, add_1 = 4'd6, normalise_1 = 4'd7, normalise_2 = 4'd8, round = 4'd9, pack = 4'd10, put_z = 4'd11; reg [63:0] a, b, z; reg [55:0] a_m, b_m; reg [52:0] z_m; reg [12:0] a_e, b_e, z_e; reg a_s, b_s, z_s; reg guard, round_bit, sticky; reg [56:0] sum; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= get_b; end end get_b: begin s_input_b_ack <= 1; if (s_input_b_ack && input_b_stb) begin b <= input_b; s_input_b_ack <= 0; state <= unpack; end end unpack: begin a_m <= {a[51 : 0], 3'd0}; b_m <= {b[51 : 0], 3'd0}; a_e <= a[62 : 52] - 1023; b_e <= b[62 : 52] - 1023; a_s <= a[63]; b_s <= b[63]; state <= special_cases; end special_cases: begin //if a is NaN or b is NaN return NaN if ((a_e == 1024 && a_m != 0) || (b_e == 1024 && b_m != 0)) begin z[63] <= 1; z[62:52] <= 2047; z[51] <= 1; z[50:0] <= 0; state <= put_z; //if a is inf return inf end else if (a_e == 1024) begin z[63] <= a_s; z[62:52] <= 2047; z[51:0] <= 0; state <= put_z; //if b is inf return inf end else if (b_e == 1024) begin z[63] <= b_s; z[62:52] <= 2047; z[51:0] <= 0; state <= put_z; //if a is zero return b end else if ((($signed(a_e) == -1023) && (a_m == 0)) && (($signed(b_e) == -1023) && (b_m == 0))) begin z[63] <= a_s & b_s; z[62:52] <= b_e[10:0] + 1023; z[51:0] <= b_m[55:3]; state <= put_z; //if a is zero return b end else if (($signed(a_e) == -1023) && (a_m == 0)) begin z[63] <= b_s; z[62:52] <= b_e[10:0] + 1023; z[51:0] <= b_m[55:3]; state <= put_z; //if b is zero return a end else if (($signed(b_e) == -1023) && (b_m == 0)) begin z[63] <= a_s; z[62:52] <= a_e[10:0] + 1023; z[51:0] <= a_m[55:3]; state <= put_z; end else begin //Denormalised Number if ($signed(a_e) == -1023) begin a_e <= -1022; end else begin a_m[55] <= 1; end //Denormalised Number if ($signed(b_e) == -1023) begin b_e <= -1022; end else begin b_m[55] <= 1; end state <= align; end end align: begin if ($signed(a_e) > $signed(b_e)) begin b_e <= b_e + 1; b_m <= b_m >> 1; b_m[0] <= b_m[0] | b_m[1]; end else if ($signed(a_e) < $signed(b_e)) begin a_e <= a_e + 1; a_m <= a_m >> 1; a_m[0] <= a_m[0] | a_m[1]; end else begin state <= add_0; end end add_0: begin z_e <= a_e; if (a_s == b_s) begin sum <= {1'd0, a_m} + b_m; z_s <= a_s; end else begin if (a_m > b_m) begin sum <= {1'd0, a_m} - b_m; z_s <= a_s; end else begin sum <= {1'd0, b_m} - a_m; z_s <= b_s; end end state <= add_1; end add_1: begin if (sum[56]) begin z_m <= sum[56:4]; guard <= sum[3]; round_bit <= sum[2]; sticky <= sum[1] | sum[0]; z_e <= z_e + 1; end else begin z_m <= sum[55:3]; guard <= sum[2]; round_bit <= sum[1]; sticky <= sum[0]; end state <= normalise_1; end normalise_1: begin if (z_m[52] == 0 && $signed(z_e) > -1022) begin z_e <= z_e - 1; z_m <= z_m << 1; z_m[0] <= guard; guard <= round_bit; round_bit <= 0; end else begin state <= normalise_2; end end normalise_2: begin if ($signed(z_e) < -1022) begin z_e <= z_e + 1; z_m <= z_m >> 1; guard <= z_m[0]; round_bit <= guard; sticky <= sticky | round_bit; end else begin state <= round; end end round: begin if (guard && (round_bit | sticky | z_m[0])) begin z_m <= z_m + 1; if (z_m == 53'h1fffffffffffff) begin z_e <=z_e + 1; end end state <= pack; end pack: begin z[51 : 0] <= z_m[51:0]; z[62 : 52] <= z_e[10:0] + 1023; z[63] <= z_s; if ($signed(z_e) == -1022 && z_m[52] == 0) begin z[62 : 52] <= 0; end //if overflow occurs, return inf if ($signed(z_e) > 1023) begin z[51 : 0] <= 0; z[62 : 52] <= 2047; z[63] <= z_s; end state <= put_z; end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_input_b_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign input_b_ack = s_input_b_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module int_to_float( input_a, input_a_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack); input clk; input rst; input [31:0] input_a; input input_a_stb; output input_a_ack; output [31:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [31:0] s_output_z; reg s_input_a_ack; reg s_input_b_ack; reg [2:0] state; parameter get_a = 3'd0, convert_0 = 3'd1, convert_1 = 3'd2, convert_2 = 3'd3, round = 3'd4, pack = 3'd5, put_z = 3'd6; reg [31:0] a, z, value; reg [23:0] z_m; reg [7:0] z_r; reg [7:0] z_e; reg z_s; reg guard, round_bit, sticky; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= convert_0; end end convert_0: begin if ( a == 0 ) begin z_s <= 0; z_m <= 0; z_e <= -127; state <= pack; end else begin value <= a[31] ? -a : a; z_s <= a[31]; state <= convert_1; end end convert_1: begin z_e <= 31; z_m <= value[31:8]; z_r <= value[7:0]; state <= convert_2; end convert_2: begin if (!z_m[23]) begin z_e <= z_e - 1; z_m <= z_m << 1; z_m[0] <= z_r[7]; z_r <= z_r << 1; end else begin guard <= z_r[7]; round_bit <= z_r[6]; sticky <= z_r[5:0] != 0; state <= round; end end round: begin if (guard && (round_bit || sticky || z_m[0])) begin z_m <= z_m + 1; if (z_m == 24'hffffff) begin z_e <=z_e + 1; end end state <= pack; end pack: begin z[22 : 0] <= z_m[22:0]; z[30 : 23] <= z_e + 127; z[31] <= z_s; state <= put_z; end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module float_to_int( input_a, input_a_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack); input clk; input rst; input [31:0] input_a; input input_a_stb; output input_a_ack; output [31:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [31:0] s_output_z; reg s_input_a_ack; reg [2:0] state; parameter get_a = 3'd0, special_cases = 3'd1, unpack = 3'd2, convert = 3'd3, put_z = 3'd4; reg [31:0] a_m, a, z; reg [8:0] a_e; reg a_s; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= unpack; end end unpack: begin a_m[31:8] <= {1'b1, a[22 : 0]}; a_m[7:0] <= 0; a_e <= a[30 : 23] - 127; a_s <= a[31]; state <= special_cases; end special_cases: begin if ($signed(a_e) == -127) begin z <= 0; state <= put_z; end else if ($signed(a_e) > 31) begin z <= 32'h80000000; state <= put_z; end else begin state <= convert; end end convert: begin if ($signed(a_e) < 31 && a_m) begin a_e <= a_e + 1; a_m <= a_m >> 1; end else begin if (a_m[31]) begin z <= 32'h80000000; end else begin z <= a_s ? -a_m : a_m; end state <= put_z; end end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module long_to_double( input_a, input_a_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack); input clk; input rst; input [63:0] input_a; input input_a_stb; output input_a_ack; output [63:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [63:0] s_output_z; reg s_input_a_ack; reg s_input_b_ack; reg [2:0] state; parameter get_a = 3'd0, convert_0 = 3'd1, convert_1 = 3'd2, convert_2 = 3'd3, round = 3'd4, pack = 3'd5, put_z = 3'd6; reg [63:0] a, z, value; reg [52:0] z_m; reg [10:0] z_r; reg [10:0] z_e; reg z_s; reg guard, round_bit, sticky; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= convert_0; end end convert_0: begin if ( a == 0 ) begin z_s <= 0; z_m <= 0; z_e <= -1023; state <= pack; end else begin value <= a[63] ? -a : a; z_s <= a[63]; state <= convert_1; end end convert_1: begin z_e <= 63; z_m <= value[63:11]; z_r <= value[10:0]; state <= convert_2; end convert_2: begin if (!z_m[52]) begin z_e <= z_e - 1; z_m <= z_m << 1; z_m[0] <= z_r[10]; z_r <= z_r << 1; end else begin guard <= z_r[10]; round_bit <= z_r[9]; sticky <= z_r[8:0] != 0; state <= round; end end round: begin if (guard && (round_bit || sticky || z_m[0])) begin z_m <= z_m + 1; if (z_m == 53'h1fffffffffffff) begin z_e <=z_e + 1; end end state <= pack; end pack: begin z[51 : 0] <= z_m[51:0]; z[62 : 52] <= z_e + 1023; z[63] <= z_s; state <= put_z; end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module double_to_long( input_a, input_a_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack); input clk; input rst; input [63:0] input_a; input input_a_stb; output input_a_ack; output [63:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [63:0] s_output_z; reg s_input_a_ack; reg [2:0] state; parameter get_a = 3'd0, special_cases = 3'd1, unpack = 3'd2, convert = 3'd3, put_z = 3'd4; reg [63:0] a_m, a, z; reg [11:0] a_e; reg a_s; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= unpack; end end unpack: begin a_m[63:11] <= {1'b1, a[51 : 0]}; a_m[10:0] <= 0; a_e <= a[62 : 52] - 1023; a_s <= a[63]; state <= special_cases; end special_cases: begin if ($signed(a_e) == -1023) begin //zero z <= 0; state <= put_z; end else if ($signed(a_e) == 1024 && a[51:0] != 0) begin //nan z <= 64'h8000000000000000; state <= put_z; end else if ($signed(a_e) > 63) begin //too big if (a_s) begin z <= 64'h8000000000000000; end else begin z <= 64'h0000000000000000; end state <= put_z; end else begin state <= convert; end end convert: begin if ($signed(a_e) < 63 && a_m) begin a_e <= a_e + 1; a_m <= a_m >> 1; end else begin if (a_m[63] && a_s) begin z <= 64'h8000000000000000; end else begin z <= a_s ? -a_m : a_m; end state <= put_z; end end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module float_to_double( input_a, input_a_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack); input clk; input rst; input [31:0] input_a; input input_a_stb; output input_a_ack; output [63:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [63:0] s_output_z; reg s_input_a_ack; reg s_input_b_ack; reg [1:0] state; parameter get_a = 3'd0, convert_0 = 3'd1, normalise_0 = 3'd2, put_z = 3'd3; reg [63:0] z; reg [10:0] z_e; reg [52:0] z_m; reg [31:0] a; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= convert_0; end end convert_0: begin z[63] <= a[31]; z[62:52] <= (a[30:23] - 127) + 1023; z[51:0] <= {a[22:0], 29'd0}; if (a[30:23] == 255) begin z[62:52] <= 2047; end state <= put_z; if (a[30:23] == 0) begin if (a[23:0]) begin state <= normalise_0; z_e <= 897; z_m <= {1'd0, a[22:0], 29'd0}; end z[62:52] <= 0; end end normalise_0: begin if (z_m[52]) begin z[62:52] <= z_e; z[51:0] <= z_m[51:0]; state <= put_z; end else begin z_m <= {z_m[51:0], 1'd0}; z_e <= z_e - 1; end end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module double_to_float( input_a, input_a_stb, output_z_ack, clk, rst, output_z, output_z_stb, input_a_ack); input clk; input rst; input [63:0] input_a; input input_a_stb; output input_a_ack; output [31:0] output_z; output output_z_stb; input output_z_ack; reg s_output_z_stb; reg [31:0] s_output_z; reg s_input_a_ack; reg [1:0] state; parameter get_a = 3'd0, unpack = 3'd1, denormalise = 3'd2, put_z = 3'd3; reg [63:0] a; reg [31:0] z; reg [10:0] z_e; reg [23:0] z_m; reg guard; reg round; reg sticky; always @(posedge clk) begin case(state) get_a: begin s_input_a_ack <= 1; if (s_input_a_ack && input_a_stb) begin a <= input_a; s_input_a_ack <= 0; state <= unpack; end end unpack: begin z[31] <= a[63]; state <= put_z; if (a[62:52] == 0) begin z[30:23] <= 0; z[22:0] <= 0; end else if (a[62:52] < 897) begin z[30:23] <= 0; z_m <= {1'd1, a[51:29]}; z_e <= a[62:52]; guard <= a[28]; round <= a[27]; sticky <= a[26:0] != 0; state <= denormalise; end else if (a[62:52] == 2047) begin z[30:23] <= 255; z[22:0] <= 0; if (a[51:0]) begin z[22] <= 1; end end else if (a[62:52] > 1150) begin z[30:23] <= 255; z[22:0] <= 0; end else begin z[30:23] <= (a[62:52] - 1023) + 127; if (a[28] && (a[27] || a[26:0])) begin z[22:0] <= a[51:29] + 1; end else begin z[22:0] <= a[51:29]; end end end denormalise: begin if (z_e == 897 || (z_m == 0 && guard == 0)) begin state <= put_z; z[22:0] <= z_m; if (guard && (round || sticky)) begin z[22:0] <= z_m + 1; end end else begin z_e <= z_e + 1; z_m <= {1'd0, z_m[23:1]}; guard <= z_m[0]; round <= guard; sticky <= sticky | round; end end put_z: begin s_output_z_stb <= 1; s_output_z <= z; if (s_output_z_stb && output_z_ack) begin s_output_z_stb <= 0; state <= get_a; end end endcase if (rst == 1) begin state <= get_a; s_input_a_ack <= 0; s_output_z_stb <= 0; end end assign input_a_ack = s_input_a_ack; assign output_z_stb = s_output_z_stb; assign output_z = s_output_z; endmodule
module soc_design_niosII_core_cpu_debug_slave_tck ( // inputs: MonDReg, break_readreg, dbrk_hit0_latch, dbrk_hit1_latch, dbrk_hit2_latch, dbrk_hit3_latch, debugack, ir_in, jtag_state_rti, monitor_error, monitor_ready, reset_n, resetlatch, tck, tdi, tracemem_on, tracemem_trcdata, tracemem_tw, trc_im_addr, trc_on, trc_wrap, trigbrktype, trigger_state_1, vs_cdr, vs_sdr, vs_uir, // outputs: ir_out, jrst_n, sr, st_ready_test_idle, tdo ) ; output [ 1: 0] ir_out; output jrst_n; output [ 37: 0] sr; output st_ready_test_idle; output tdo; input [ 31: 0] MonDReg; input [ 31: 0] break_readreg; input dbrk_hit0_latch; input dbrk_hit1_latch; input dbrk_hit2_latch; input dbrk_hit3_latch; input debugack; input [ 1: 0] ir_in; input jtag_state_rti; input monitor_error; input monitor_ready; input reset_n; input resetlatch; input tck; input tdi; input tracemem_on; input [ 35: 0] tracemem_trcdata; input tracemem_tw; input [ 6: 0] trc_im_addr; input trc_on; input trc_wrap; input trigbrktype; input trigger_state_1; input vs_cdr; input vs_sdr; input vs_uir; reg [ 2: 0] DRsize /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=\"D101,D103,R101\"" */; wire debugack_sync; reg [ 1: 0] ir_out; wire jrst_n; wire monitor_ready_sync; reg [ 37: 0] sr /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=\"D101,D103,R101\"" */; wire st_ready_test_idle; wire tdo; wire unxcomplemented_resetxx1; wire unxcomplemented_resetxx2; always @(posedge tck) begin if (vs_cdr) case (ir_in) 2'b00: begin sr[35] <= debugack_sync; sr[34] <= monitor_error; sr[33] <= resetlatch; sr[32 : 1] <= MonDReg; sr[0] <= monitor_ready_sync; end // 2'b00 2'b01: begin sr[35 : 0] <= tracemem_trcdata; sr[37] <= tracemem_tw; sr[36] <= tracemem_on; end // 2'b01 2'b10: begin sr[37] <= trigger_state_1; sr[36] <= dbrk_hit3_latch; sr[35] <= dbrk_hit2_latch; sr[34] <= dbrk_hit1_latch; sr[33] <= dbrk_hit0_latch; sr[32 : 1] <= break_readreg; sr[0] <= trigbrktype; end // 2'b10 2'b11: begin sr[15 : 2] <= trc_im_addr; sr[1] <= trc_wrap; sr[0] <= trc_on; end // 2'b11 endcase // ir_in if (vs_sdr) case (DRsize) 3'b000: begin sr <= {tdi, sr[37 : 2], tdi}; end // 3'b000 3'b001: begin sr <= {tdi, sr[37 : 9], tdi, sr[7 : 1]}; end // 3'b001 3'b010: begin sr <= {tdi, sr[37 : 17], tdi, sr[15 : 1]}; end // 3'b010 3'b011: begin sr <= {tdi, sr[37 : 33], tdi, sr[31 : 1]}; end // 3'b011 3'b100: begin sr <= {tdi, sr[37], tdi, sr[35 : 1]}; end // 3'b100 3'b101: begin sr <= {tdi, sr[37 : 1]}; end // 3'b101 default: begin sr <= {tdi, sr[37 : 2], tdi}; end // default endcase // DRsize if (vs_uir) case (ir_in) 2'b00: begin DRsize <= 3'b100; end // 2'b00 2'b01: begin DRsize <= 3'b101; end // 2'b01 2'b10: begin DRsize <= 3'b101; end // 2'b10 2'b11: begin DRsize <= 3'b010; end // 2'b11 endcase // ir_in end assign tdo = sr[0]; assign st_ready_test_idle = jtag_state_rti; assign unxcomplemented_resetxx1 = jrst_n; altera_std_synchronizer the_altera_std_synchronizer1 ( .clk (tck), .din (debugack), .dout (debugack_sync), .reset_n (unxcomplemented_resetxx1) ); defparam the_altera_std_synchronizer1.depth = 2; assign unxcomplemented_resetxx2 = jrst_n; altera_std_synchronizer the_altera_std_synchronizer2 ( .clk (tck), .din (monitor_ready), .dout (monitor_ready_sync), .reset_n (unxcomplemented_resetxx2) ); defparam the_altera_std_synchronizer2.depth = 2; always @(posedge tck or negedge jrst_n) begin if (jrst_n == 0) ir_out <= 2'b0; else ir_out <= {debugack_sync, monitor_ready_sync}; end //synthesis translate_off //////////////// SIMULATION-ONLY CONTENTS assign jrst_n = reset_n; //////////////// END SIMULATION-ONLY CONTENTS //synthesis translate_on //synthesis read_comments_as_HDL on // assign jrst_n = 1; //synthesis read_comments_as_HDL off endmodule
module soc_design_niosII_core_cpu_debug_slave_tck ( // inputs: MonDReg, break_readreg, dbrk_hit0_latch, dbrk_hit1_latch, dbrk_hit2_latch, dbrk_hit3_latch, debugack, ir_in, jtag_state_rti, monitor_error, monitor_ready, reset_n, resetlatch, tck, tdi, tracemem_on, tracemem_trcdata, tracemem_tw, trc_im_addr, trc_on, trc_wrap, trigbrktype, trigger_state_1, vs_cdr, vs_sdr, vs_uir, // outputs: ir_out, jrst_n, sr, st_ready_test_idle, tdo ) ; output [ 1: 0] ir_out; output jrst_n; output [ 37: 0] sr; output st_ready_test_idle; output tdo; input [ 31: 0] MonDReg; input [ 31: 0] break_readreg; input dbrk_hit0_latch; input dbrk_hit1_latch; input dbrk_hit2_latch; input dbrk_hit3_latch; input debugack; input [ 1: 0] ir_in; input jtag_state_rti; input monitor_error; input monitor_ready; input reset_n; input resetlatch; input tck; input tdi; input tracemem_on; input [ 35: 0] tracemem_trcdata; input tracemem_tw; input [ 6: 0] trc_im_addr; input trc_on; input trc_wrap; input trigbrktype; input trigger_state_1; input vs_cdr; input vs_sdr; input vs_uir; reg [ 2: 0] DRsize /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=\"D101,D103,R101\"" */; wire debugack_sync; reg [ 1: 0] ir_out; wire jrst_n; wire monitor_ready_sync; reg [ 37: 0] sr /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=\"D101,D103,R101\"" */; wire st_ready_test_idle; wire tdo; wire unxcomplemented_resetxx1; wire unxcomplemented_resetxx2; always @(posedge tck) begin if (vs_cdr) case (ir_in) 2'b00: begin sr[35] <= debugack_sync; sr[34] <= monitor_error; sr[33] <= resetlatch; sr[32 : 1] <= MonDReg; sr[0] <= monitor_ready_sync; end // 2'b00 2'b01: begin sr[35 : 0] <= tracemem_trcdata; sr[37] <= tracemem_tw; sr[36] <= tracemem_on; end // 2'b01 2'b10: begin sr[37] <= trigger_state_1; sr[36] <= dbrk_hit3_latch; sr[35] <= dbrk_hit2_latch; sr[34] <= dbrk_hit1_latch; sr[33] <= dbrk_hit0_latch; sr[32 : 1] <= break_readreg; sr[0] <= trigbrktype; end // 2'b10 2'b11: begin sr[15 : 2] <= trc_im_addr; sr[1] <= trc_wrap; sr[0] <= trc_on; end // 2'b11 endcase // ir_in if (vs_sdr) case (DRsize) 3'b000: begin sr <= {tdi, sr[37 : 2], tdi}; end // 3'b000 3'b001: begin sr <= {tdi, sr[37 : 9], tdi, sr[7 : 1]}; end // 3'b001 3'b010: begin sr <= {tdi, sr[37 : 17], tdi, sr[15 : 1]}; end // 3'b010 3'b011: begin sr <= {tdi, sr[37 : 33], tdi, sr[31 : 1]}; end // 3'b011 3'b100: begin sr <= {tdi, sr[37], tdi, sr[35 : 1]}; end // 3'b100 3'b101: begin sr <= {tdi, sr[37 : 1]}; end // 3'b101 default: begin sr <= {tdi, sr[37 : 2], tdi}; end // default endcase // DRsize if (vs_uir) case (ir_in) 2'b00: begin DRsize <= 3'b100; end // 2'b00 2'b01: begin DRsize <= 3'b101; end // 2'b01 2'b10: begin DRsize <= 3'b101; end // 2'b10 2'b11: begin DRsize <= 3'b010; end // 2'b11 endcase // ir_in end assign tdo = sr[0]; assign st_ready_test_idle = jtag_state_rti; assign unxcomplemented_resetxx1 = jrst_n; altera_std_synchronizer the_altera_std_synchronizer1 ( .clk (tck), .din (debugack), .dout (debugack_sync), .reset_n (unxcomplemented_resetxx1) ); defparam the_altera_std_synchronizer1.depth = 2; assign unxcomplemented_resetxx2 = jrst_n; altera_std_synchronizer the_altera_std_synchronizer2 ( .clk (tck), .din (monitor_ready), .dout (monitor_ready_sync), .reset_n (unxcomplemented_resetxx2) ); defparam the_altera_std_synchronizer2.depth = 2; always @(posedge tck or negedge jrst_n) begin if (jrst_n == 0) ir_out <= 2'b0; else ir_out <= {debugack_sync, monitor_ready_sync}; end //synthesis translate_off //////////////// SIMULATION-ONLY CONTENTS assign jrst_n = reset_n; //////////////// END SIMULATION-ONLY CONTENTS //synthesis translate_on //synthesis read_comments_as_HDL on // assign jrst_n = 1; //synthesis read_comments_as_HDL off endmodule
module soc_design_niosII_core_cpu_debug_slave_sysclk ( // inputs: clk, ir_in, sr, vs_udr, vs_uir, // outputs: jdo, take_action_break_a, take_action_break_b, take_action_break_c, take_action_ocimem_a, take_action_ocimem_b, take_action_tracectrl, take_no_action_break_a, take_no_action_break_b, take_no_action_break_c, take_no_action_ocimem_a ) ; output [ 37: 0] jdo; output take_action_break_a; output take_action_break_b; output take_action_break_c; output take_action_ocimem_a; output take_action_ocimem_b; output take_action_tracectrl; output take_no_action_break_a; output take_no_action_break_b; output take_no_action_break_c; output take_no_action_ocimem_a; input clk; input [ 1: 0] ir_in; input [ 37: 0] sr; input vs_udr; input vs_uir; reg enable_action_strobe /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=\"D101,D103\"" */; reg [ 1: 0] ir /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=\"D101,R101\"" */; reg [ 37: 0] jdo /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=\"D101,R101\"" */; reg jxuir /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=\"D101,D103\"" */; reg sync2_udr /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=\"D101,D103\"" */; reg sync2_uir /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=\"D101,D103\"" */; wire sync_udr; wire sync_uir; wire take_action_break_a; wire take_action_break_b; wire take_action_break_c; wire take_action_ocimem_a; wire take_action_ocimem_b; wire take_action_tracectrl; wire take_no_action_break_a; wire take_no_action_break_b; wire take_no_action_break_c; wire take_no_action_ocimem_a; wire unxunused_resetxx3; wire unxunused_resetxx4; reg update_jdo_strobe /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=\"D101,D103\"" */; assign unxunused_resetxx3 = 1'b1; altera_std_synchronizer the_altera_std_synchronizer3 ( .clk (clk), .din (vs_udr), .dout (sync_udr), .reset_n (unxunused_resetxx3) ); defparam the_altera_std_synchronizer3.depth = 2; assign unxunused_resetxx4 = 1'b1; altera_std_synchronizer the_altera_std_synchronizer4 ( .clk (clk), .din (vs_uir), .dout (sync_uir), .reset_n (unxunused_resetxx4) ); defparam the_altera_std_synchronizer4.depth = 2; always @(posedge clk) begin sync2_udr <= sync_udr; update_jdo_strobe <= sync_udr & ~sync2_udr; enable_action_strobe <= update_jdo_strobe; sync2_uir <= sync_uir; jxuir <= sync_uir & ~sync2_uir; end assign take_action_ocimem_a = enable_action_strobe && (ir == 2'b00) && ~jdo[35] && jdo[34]; assign take_no_action_ocimem_a = enable_action_strobe && (ir == 2'b00) && ~jdo[35] && ~jdo[34]; assign take_action_ocimem_b = enable_action_strobe && (ir == 2'b00) && jdo[35]; assign take_action_break_a = enable_action_strobe && (ir == 2'b10) && ~jdo[36] && jdo[37]; assign take_no_action_break_a = enable_action_strobe && (ir == 2'b10) && ~jdo[36] && ~jdo[37]; assign take_action_break_b = enable_action_strobe && (ir == 2'b10) && jdo[36] && ~jdo[35] && jdo[37]; assign take_no_action_break_b = enable_action_strobe && (ir == 2'b10) && jdo[36] && ~jdo[35] && ~jdo[37]; assign take_action_break_c = enable_action_strobe && (ir == 2'b10) && jdo[36] && jdo[35] && jdo[37]; assign take_no_action_break_c = enable_action_strobe && (ir == 2'b10) && jdo[36] && jdo[35] && ~jdo[37]; assign take_action_tracectrl = enable_action_strobe && (ir == 2'b11) && jdo[15]; always @(posedge clk) begin if (jxuir) ir <= ir_in; if (update_jdo_strobe) jdo <= sr; end endmodule
module soc_design_niosII_core_cpu_debug_slave_sysclk ( // inputs: clk, ir_in, sr, vs_udr, vs_uir, // outputs: jdo, take_action_break_a, take_action_break_b, take_action_break_c, take_action_ocimem_a, take_action_ocimem_b, take_action_tracectrl, take_no_action_break_a, take_no_action_break_b, take_no_action_break_c, take_no_action_ocimem_a ) ; output [ 37: 0] jdo; output take_action_break_a; output take_action_break_b; output take_action_break_c; output take_action_ocimem_a; output take_action_ocimem_b; output take_action_tracectrl; output take_no_action_break_a; output take_no_action_break_b; output take_no_action_break_c; output take_no_action_ocimem_a; input clk; input [ 1: 0] ir_in; input [ 37: 0] sr; input vs_udr; input vs_uir; reg enable_action_strobe /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=\"D101,D103\"" */; reg [ 1: 0] ir /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=\"D101,R101\"" */; reg [ 37: 0] jdo /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=\"D101,R101\"" */; reg jxuir /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=\"D101,D103\"" */; reg sync2_udr /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=\"D101,D103\"" */; reg sync2_uir /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=\"D101,D103\"" */; wire sync_udr; wire sync_uir; wire take_action_break_a; wire take_action_break_b; wire take_action_break_c; wire take_action_ocimem_a; wire take_action_ocimem_b; wire take_action_tracectrl; wire take_no_action_break_a; wire take_no_action_break_b; wire take_no_action_break_c; wire take_no_action_ocimem_a; wire unxunused_resetxx3; wire unxunused_resetxx4; reg update_jdo_strobe /* synthesis ALTERA_ATTRIBUTE = "SUPPRESS_DA_RULE_INTERNAL=\"D101,D103\"" */; assign unxunused_resetxx3 = 1'b1; altera_std_synchronizer the_altera_std_synchronizer3 ( .clk (clk), .din (vs_udr), .dout (sync_udr), .reset_n (unxunused_resetxx3) ); defparam the_altera_std_synchronizer3.depth = 2; assign unxunused_resetxx4 = 1'b1; altera_std_synchronizer the_altera_std_synchronizer4 ( .clk (clk), .din (vs_uir), .dout (sync_uir), .reset_n (unxunused_resetxx4) ); defparam the_altera_std_synchronizer4.depth = 2; always @(posedge clk) begin sync2_udr <= sync_udr; update_jdo_strobe <= sync_udr & ~sync2_udr; enable_action_strobe <= update_jdo_strobe; sync2_uir <= sync_uir; jxuir <= sync_uir & ~sync2_uir; end assign take_action_ocimem_a = enable_action_strobe && (ir == 2'b00) && ~jdo[35] && jdo[34]; assign take_no_action_ocimem_a = enable_action_strobe && (ir == 2'b00) && ~jdo[35] && ~jdo[34]; assign take_action_ocimem_b = enable_action_strobe && (ir == 2'b00) && jdo[35]; assign take_action_break_a = enable_action_strobe && (ir == 2'b10) && ~jdo[36] && jdo[37]; assign take_no_action_break_a = enable_action_strobe && (ir == 2'b10) && ~jdo[36] && ~jdo[37]; assign take_action_break_b = enable_action_strobe && (ir == 2'b10) && jdo[36] && ~jdo[35] && jdo[37]; assign take_no_action_break_b = enable_action_strobe && (ir == 2'b10) && jdo[36] && ~jdo[35] && ~jdo[37]; assign take_action_break_c = enable_action_strobe && (ir == 2'b10) && jdo[36] && jdo[35] && jdo[37]; assign take_no_action_break_c = enable_action_strobe && (ir == 2'b10) && jdo[36] && jdo[35] && ~jdo[37]; assign take_action_tracectrl = enable_action_strobe && (ir == 2'b11) && jdo[15]; always @(posedge clk) begin if (jxuir) ir <= ir_in; if (update_jdo_strobe) jdo <= sr; end endmodule
module processing_system7_v5_5_b_atc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6, spartan6 or later. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of checker. // Range: >= 1. parameter integer C_AXI_BUSER_WIDTH = 1, // Width of AWUSER signals. // Range: >= 1. parameter integer C_FIFO_DEPTH_LOG = 4 ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface input wire cmd_b_push, input wire cmd_b_error, input wire [C_AXI_ID_WIDTH-1:0] cmd_b_id, output wire cmd_b_ready, output wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr, output reg cmd_b_full, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID, output reg [2-1:0] S_AXI_BRESP, output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER, output wire S_AXI_BVALID, input wire S_AXI_BREADY, // Master Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID, input wire [2-1:0] M_AXI_BRESP, input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER, input wire M_AXI_BVALID, output wire M_AXI_BREADY, // Trigger detection output reg ERROR_TRIGGER, output reg [C_AXI_ID_WIDTH-1:0] ERROR_TRANSACTION_ID ); ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Constants for packing levels. localparam [2-1:0] C_RESP_OKAY = 2'b00; localparam [2-1:0] C_RESP_EXOKAY = 2'b01; localparam [2-1:0] C_RESP_SLVERROR = 2'b10; localparam [2-1:0] C_RESP_DECERR = 2'b11; // Command FIFO settings localparam C_FIFO_WIDTH = C_AXI_ID_WIDTH + 1; localparam C_FIFO_DEPTH = 2 ** C_FIFO_DEPTH_LOG; ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// integer index; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Command Queue. reg [C_FIFO_DEPTH_LOG-1:0] addr_ptr; reg [C_FIFO_WIDTH-1:0] data_srl[C_FIFO_DEPTH-1:0]; reg cmd_b_valid; wire cmd_b_ready_i; wire inject_error; wire [C_AXI_ID_WIDTH-1:0] current_id; // Search command. wire found_match; wire use_match; wire matching_id; // Manage valid command. wire write_valid_cmd; reg [C_FIFO_DEPTH-2:0] valid_cmd; reg [C_FIFO_DEPTH-2:0] updated_valid_cmd; reg [C_FIFO_DEPTH-2:0] next_valid_cmd; reg [C_FIFO_DEPTH_LOG-1:0] search_addr_ptr; reg [C_FIFO_DEPTH_LOG-1:0] collapsed_addr_ptr; // Pipelined data reg [C_AXI_ID_WIDTH-1:0] M_AXI_BID_I; reg [2-1:0] M_AXI_BRESP_I; reg [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER_I; reg M_AXI_BVALID_I; wire M_AXI_BREADY_I; ///////////////////////////////////////////////////////////////////////////// // Command Queue: // // Keep track of depth of Queue to generate full flag. // // Also generate valid to mark pressence of commands in Queue. // // Maintain Queue and extract data from currently searched entry. // ///////////////////////////////////////////////////////////////////////////// // SRL FIFO Pointer. always @ (posedge ACLK) begin if (ARESET) begin addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}}; end else begin if ( cmd_b_push & ~cmd_b_ready_i ) begin // Pushing data increase length/addr. addr_ptr <= addr_ptr + 1; end else if ( cmd_b_ready_i ) begin // Collapse addr when data is popped. addr_ptr <= collapsed_addr_ptr; end end end // FIFO Flags. always @ (posedge ACLK) begin if (ARESET) begin cmd_b_full <= 1'b0; cmd_b_valid <= 1'b0; end else begin if ( cmd_b_push & ~cmd_b_ready_i ) begin cmd_b_full <= ( addr_ptr == C_FIFO_DEPTH-3 ); cmd_b_valid <= 1'b1; end else if ( ~cmd_b_push & cmd_b_ready_i ) begin cmd_b_full <= 1'b0; cmd_b_valid <= ( collapsed_addr_ptr != C_FIFO_DEPTH-1 ); end end end // Infere SRL for storage. always @ (posedge ACLK) begin if ( cmd_b_push ) begin for (index = 0; index < C_FIFO_DEPTH-1 ; index = index + 1) begin data_srl[index+1] <= data_srl[index]; end data_srl[0] <= {cmd_b_error, cmd_b_id}; end end // Get current transaction info. assign {inject_error, current_id} = data_srl[search_addr_ptr]; // Assign outputs. assign cmd_b_addr = collapsed_addr_ptr; ///////////////////////////////////////////////////////////////////////////// // Search Command Queue: // // Search for matching valid command in queue. // // A command is found when an valid entry with correct ID is found. The queue // is search from the oldest entry, i.e. from a high value. // When new commands are pushed the search address has to be updated to always // start the search from the oldest available. // ///////////////////////////////////////////////////////////////////////////// // Handle search addr. always @ (posedge ACLK) begin if (ARESET) begin search_addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}}; end else begin if ( cmd_b_ready_i ) begin // Collapse addr when data is popped. search_addr_ptr <= collapsed_addr_ptr; end else if ( M_AXI_BVALID_I & cmd_b_valid & ~found_match & ~cmd_b_push ) begin // Skip non valid command. search_addr_ptr <= search_addr_ptr - 1; end else if ( cmd_b_push ) begin search_addr_ptr <= search_addr_ptr + 1; end end end // Check if searched command is valid and match ID (for existing response on MI side). assign matching_id = ( M_AXI_BID_I == current_id ); assign found_match = valid_cmd[search_addr_ptr] & matching_id & M_AXI_BVALID_I; assign use_match = found_match & S_AXI_BREADY; ///////////////////////////////////////////////////////////////////////////// // Track Used Commands: // // Actions that affect Valid Command: // * When a new command is pushed // => Shift valid vector one step // * When a command is used // => Clear corresponding valid bit // ///////////////////////////////////////////////////////////////////////////// // Valid command status is updated when a command is used or a new one is pushed. assign write_valid_cmd = cmd_b_push | cmd_b_ready_i; // Update the used command valid bit. always @ * begin updated_valid_cmd = valid_cmd; updated_valid_cmd[search_addr_ptr] = ~use_match; end // Shift valid vector when command is pushed. always @ * begin if ( cmd_b_push ) begin next_valid_cmd = {updated_valid_cmd[C_FIFO_DEPTH-3:0], 1'b1}; end else begin next_valid_cmd = updated_valid_cmd; end end // Valid signals for next cycle. always @ (posedge ACLK) begin if (ARESET) begin valid_cmd <= {C_FIFO_WIDTH{1'b0}}; end else if ( write_valid_cmd ) begin valid_cmd <= next_valid_cmd; end end // Detect oldest available command in Queue. always @ * begin // Default to empty. collapsed_addr_ptr = {C_FIFO_DEPTH_LOG{1'b1}}; for (index = 0; index < C_FIFO_DEPTH-2 ; index = index + 1) begin if ( next_valid_cmd[index] ) begin collapsed_addr_ptr = index; end end end ///////////////////////////////////////////////////////////////////////////// // Pipe incoming data: // // The B channel is piped to improve timing and avoid impact in search // mechanism due to late arriving signals. // ///////////////////////////////////////////////////////////////////////////// // Clock data. always @ (posedge ACLK) begin if (ARESET) begin M_AXI_BID_I <= {C_AXI_ID_WIDTH{1'b0}}; M_AXI_BRESP_I <= 2'b00; M_AXI_BUSER_I <= {C_AXI_BUSER_WIDTH{1'b0}}; M_AXI_BVALID_I <= 1'b0; end else begin if ( M_AXI_BREADY_I | ~M_AXI_BVALID_I ) begin M_AXI_BVALID_I <= 1'b0; end if (M_AXI_BVALID & ( M_AXI_BREADY_I | ~M_AXI_BVALID_I) ) begin M_AXI_BID_I <= M_AXI_BID; M_AXI_BRESP_I <= M_AXI_BRESP; M_AXI_BUSER_I <= M_AXI_BUSER; M_AXI_BVALID_I <= 1'b1; end end end // Generate ready to get new transaction. assign M_AXI_BREADY = M_AXI_BREADY_I | ~M_AXI_BVALID_I; ///////////////////////////////////////////////////////////////////////////// // Inject Error: // // BRESP is modified according to command information. // ///////////////////////////////////////////////////////////////////////////// // Inject error in response. always @ * begin if ( inject_error ) begin S_AXI_BRESP = C_RESP_SLVERROR; end else begin S_AXI_BRESP = M_AXI_BRESP_I; end end // Handle interrupt generation. always @ (posedge ACLK) begin if (ARESET) begin ERROR_TRIGGER <= 1'b0; ERROR_TRANSACTION_ID <= {C_AXI_ID_WIDTH{1'b0}}; end else begin if ( inject_error & cmd_b_ready_i ) begin ERROR_TRIGGER <= 1'b1; ERROR_TRANSACTION_ID <= M_AXI_BID_I; end else begin ERROR_TRIGGER <= 1'b0; end end end ///////////////////////////////////////////////////////////////////////////// // Transaction Throttling: // // Response is passed forward when a matching entry has been found in queue. // Both ready and valid are set when the command is completed. // ///////////////////////////////////////////////////////////////////////////// // Propagate masked valid. assign S_AXI_BVALID = M_AXI_BVALID_I & cmd_b_valid & found_match; // Return ready with push back. assign M_AXI_BREADY_I = cmd_b_valid & use_match; // Command has been handled. assign cmd_b_ready_i = M_AXI_BVALID_I & cmd_b_valid & use_match; assign cmd_b_ready = cmd_b_ready_i; ///////////////////////////////////////////////////////////////////////////// // Write Response Propagation: // // All information is simply forwarded on from MI- to SI-Side untouched. // ///////////////////////////////////////////////////////////////////////////// // 1:1 mapping. assign S_AXI_BID = M_AXI_BID_I; assign S_AXI_BUSER = M_AXI_BUSER_I; endmodule
module processing_system7_v5_5_b_atc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6, spartan6 or later. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of checker. // Range: >= 1. parameter integer C_AXI_BUSER_WIDTH = 1, // Width of AWUSER signals. // Range: >= 1. parameter integer C_FIFO_DEPTH_LOG = 4 ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface input wire cmd_b_push, input wire cmd_b_error, input wire [C_AXI_ID_WIDTH-1:0] cmd_b_id, output wire cmd_b_ready, output wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr, output reg cmd_b_full, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID, output reg [2-1:0] S_AXI_BRESP, output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER, output wire S_AXI_BVALID, input wire S_AXI_BREADY, // Master Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID, input wire [2-1:0] M_AXI_BRESP, input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER, input wire M_AXI_BVALID, output wire M_AXI_BREADY, // Trigger detection output reg ERROR_TRIGGER, output reg [C_AXI_ID_WIDTH-1:0] ERROR_TRANSACTION_ID ); ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Constants for packing levels. localparam [2-1:0] C_RESP_OKAY = 2'b00; localparam [2-1:0] C_RESP_EXOKAY = 2'b01; localparam [2-1:0] C_RESP_SLVERROR = 2'b10; localparam [2-1:0] C_RESP_DECERR = 2'b11; // Command FIFO settings localparam C_FIFO_WIDTH = C_AXI_ID_WIDTH + 1; localparam C_FIFO_DEPTH = 2 ** C_FIFO_DEPTH_LOG; ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// integer index; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Command Queue. reg [C_FIFO_DEPTH_LOG-1:0] addr_ptr; reg [C_FIFO_WIDTH-1:0] data_srl[C_FIFO_DEPTH-1:0]; reg cmd_b_valid; wire cmd_b_ready_i; wire inject_error; wire [C_AXI_ID_WIDTH-1:0] current_id; // Search command. wire found_match; wire use_match; wire matching_id; // Manage valid command. wire write_valid_cmd; reg [C_FIFO_DEPTH-2:0] valid_cmd; reg [C_FIFO_DEPTH-2:0] updated_valid_cmd; reg [C_FIFO_DEPTH-2:0] next_valid_cmd; reg [C_FIFO_DEPTH_LOG-1:0] search_addr_ptr; reg [C_FIFO_DEPTH_LOG-1:0] collapsed_addr_ptr; // Pipelined data reg [C_AXI_ID_WIDTH-1:0] M_AXI_BID_I; reg [2-1:0] M_AXI_BRESP_I; reg [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER_I; reg M_AXI_BVALID_I; wire M_AXI_BREADY_I; ///////////////////////////////////////////////////////////////////////////// // Command Queue: // // Keep track of depth of Queue to generate full flag. // // Also generate valid to mark pressence of commands in Queue. // // Maintain Queue and extract data from currently searched entry. // ///////////////////////////////////////////////////////////////////////////// // SRL FIFO Pointer. always @ (posedge ACLK) begin if (ARESET) begin addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}}; end else begin if ( cmd_b_push & ~cmd_b_ready_i ) begin // Pushing data increase length/addr. addr_ptr <= addr_ptr + 1; end else if ( cmd_b_ready_i ) begin // Collapse addr when data is popped. addr_ptr <= collapsed_addr_ptr; end end end // FIFO Flags. always @ (posedge ACLK) begin if (ARESET) begin cmd_b_full <= 1'b0; cmd_b_valid <= 1'b0; end else begin if ( cmd_b_push & ~cmd_b_ready_i ) begin cmd_b_full <= ( addr_ptr == C_FIFO_DEPTH-3 ); cmd_b_valid <= 1'b1; end else if ( ~cmd_b_push & cmd_b_ready_i ) begin cmd_b_full <= 1'b0; cmd_b_valid <= ( collapsed_addr_ptr != C_FIFO_DEPTH-1 ); end end end // Infere SRL for storage. always @ (posedge ACLK) begin if ( cmd_b_push ) begin for (index = 0; index < C_FIFO_DEPTH-1 ; index = index + 1) begin data_srl[index+1] <= data_srl[index]; end data_srl[0] <= {cmd_b_error, cmd_b_id}; end end // Get current transaction info. assign {inject_error, current_id} = data_srl[search_addr_ptr]; // Assign outputs. assign cmd_b_addr = collapsed_addr_ptr; ///////////////////////////////////////////////////////////////////////////// // Search Command Queue: // // Search for matching valid command in queue. // // A command is found when an valid entry with correct ID is found. The queue // is search from the oldest entry, i.e. from a high value. // When new commands are pushed the search address has to be updated to always // start the search from the oldest available. // ///////////////////////////////////////////////////////////////////////////// // Handle search addr. always @ (posedge ACLK) begin if (ARESET) begin search_addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}}; end else begin if ( cmd_b_ready_i ) begin // Collapse addr when data is popped. search_addr_ptr <= collapsed_addr_ptr; end else if ( M_AXI_BVALID_I & cmd_b_valid & ~found_match & ~cmd_b_push ) begin // Skip non valid command. search_addr_ptr <= search_addr_ptr - 1; end else if ( cmd_b_push ) begin search_addr_ptr <= search_addr_ptr + 1; end end end // Check if searched command is valid and match ID (for existing response on MI side). assign matching_id = ( M_AXI_BID_I == current_id ); assign found_match = valid_cmd[search_addr_ptr] & matching_id & M_AXI_BVALID_I; assign use_match = found_match & S_AXI_BREADY; ///////////////////////////////////////////////////////////////////////////// // Track Used Commands: // // Actions that affect Valid Command: // * When a new command is pushed // => Shift valid vector one step // * When a command is used // => Clear corresponding valid bit // ///////////////////////////////////////////////////////////////////////////// // Valid command status is updated when a command is used or a new one is pushed. assign write_valid_cmd = cmd_b_push | cmd_b_ready_i; // Update the used command valid bit. always @ * begin updated_valid_cmd = valid_cmd; updated_valid_cmd[search_addr_ptr] = ~use_match; end // Shift valid vector when command is pushed. always @ * begin if ( cmd_b_push ) begin next_valid_cmd = {updated_valid_cmd[C_FIFO_DEPTH-3:0], 1'b1}; end else begin next_valid_cmd = updated_valid_cmd; end end // Valid signals for next cycle. always @ (posedge ACLK) begin if (ARESET) begin valid_cmd <= {C_FIFO_WIDTH{1'b0}}; end else if ( write_valid_cmd ) begin valid_cmd <= next_valid_cmd; end end // Detect oldest available command in Queue. always @ * begin // Default to empty. collapsed_addr_ptr = {C_FIFO_DEPTH_LOG{1'b1}}; for (index = 0; index < C_FIFO_DEPTH-2 ; index = index + 1) begin if ( next_valid_cmd[index] ) begin collapsed_addr_ptr = index; end end end ///////////////////////////////////////////////////////////////////////////// // Pipe incoming data: // // The B channel is piped to improve timing and avoid impact in search // mechanism due to late arriving signals. // ///////////////////////////////////////////////////////////////////////////// // Clock data. always @ (posedge ACLK) begin if (ARESET) begin M_AXI_BID_I <= {C_AXI_ID_WIDTH{1'b0}}; M_AXI_BRESP_I <= 2'b00; M_AXI_BUSER_I <= {C_AXI_BUSER_WIDTH{1'b0}}; M_AXI_BVALID_I <= 1'b0; end else begin if ( M_AXI_BREADY_I | ~M_AXI_BVALID_I ) begin M_AXI_BVALID_I <= 1'b0; end if (M_AXI_BVALID & ( M_AXI_BREADY_I | ~M_AXI_BVALID_I) ) begin M_AXI_BID_I <= M_AXI_BID; M_AXI_BRESP_I <= M_AXI_BRESP; M_AXI_BUSER_I <= M_AXI_BUSER; M_AXI_BVALID_I <= 1'b1; end end end // Generate ready to get new transaction. assign M_AXI_BREADY = M_AXI_BREADY_I | ~M_AXI_BVALID_I; ///////////////////////////////////////////////////////////////////////////// // Inject Error: // // BRESP is modified according to command information. // ///////////////////////////////////////////////////////////////////////////// // Inject error in response. always @ * begin if ( inject_error ) begin S_AXI_BRESP = C_RESP_SLVERROR; end else begin S_AXI_BRESP = M_AXI_BRESP_I; end end // Handle interrupt generation. always @ (posedge ACLK) begin if (ARESET) begin ERROR_TRIGGER <= 1'b0; ERROR_TRANSACTION_ID <= {C_AXI_ID_WIDTH{1'b0}}; end else begin if ( inject_error & cmd_b_ready_i ) begin ERROR_TRIGGER <= 1'b1; ERROR_TRANSACTION_ID <= M_AXI_BID_I; end else begin ERROR_TRIGGER <= 1'b0; end end end ///////////////////////////////////////////////////////////////////////////// // Transaction Throttling: // // Response is passed forward when a matching entry has been found in queue. // Both ready and valid are set when the command is completed. // ///////////////////////////////////////////////////////////////////////////// // Propagate masked valid. assign S_AXI_BVALID = M_AXI_BVALID_I & cmd_b_valid & found_match; // Return ready with push back. assign M_AXI_BREADY_I = cmd_b_valid & use_match; // Command has been handled. assign cmd_b_ready_i = M_AXI_BVALID_I & cmd_b_valid & use_match; assign cmd_b_ready = cmd_b_ready_i; ///////////////////////////////////////////////////////////////////////////// // Write Response Propagation: // // All information is simply forwarded on from MI- to SI-Side untouched. // ///////////////////////////////////////////////////////////////////////////// // 1:1 mapping. assign S_AXI_BID = M_AXI_BID_I; assign S_AXI_BUSER = M_AXI_BUSER_I; endmodule
module processing_system7_v5_5_b_atc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6, spartan6 or later. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of checker. // Range: >= 1. parameter integer C_AXI_BUSER_WIDTH = 1, // Width of AWUSER signals. // Range: >= 1. parameter integer C_FIFO_DEPTH_LOG = 4 ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface input wire cmd_b_push, input wire cmd_b_error, input wire [C_AXI_ID_WIDTH-1:0] cmd_b_id, output wire cmd_b_ready, output wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr, output reg cmd_b_full, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID, output reg [2-1:0] S_AXI_BRESP, output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER, output wire S_AXI_BVALID, input wire S_AXI_BREADY, // Master Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID, input wire [2-1:0] M_AXI_BRESP, input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER, input wire M_AXI_BVALID, output wire M_AXI_BREADY, // Trigger detection output reg ERROR_TRIGGER, output reg [C_AXI_ID_WIDTH-1:0] ERROR_TRANSACTION_ID ); ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Constants for packing levels. localparam [2-1:0] C_RESP_OKAY = 2'b00; localparam [2-1:0] C_RESP_EXOKAY = 2'b01; localparam [2-1:0] C_RESP_SLVERROR = 2'b10; localparam [2-1:0] C_RESP_DECERR = 2'b11; // Command FIFO settings localparam C_FIFO_WIDTH = C_AXI_ID_WIDTH + 1; localparam C_FIFO_DEPTH = 2 ** C_FIFO_DEPTH_LOG; ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// integer index; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Command Queue. reg [C_FIFO_DEPTH_LOG-1:0] addr_ptr; reg [C_FIFO_WIDTH-1:0] data_srl[C_FIFO_DEPTH-1:0]; reg cmd_b_valid; wire cmd_b_ready_i; wire inject_error; wire [C_AXI_ID_WIDTH-1:0] current_id; // Search command. wire found_match; wire use_match; wire matching_id; // Manage valid command. wire write_valid_cmd; reg [C_FIFO_DEPTH-2:0] valid_cmd; reg [C_FIFO_DEPTH-2:0] updated_valid_cmd; reg [C_FIFO_DEPTH-2:0] next_valid_cmd; reg [C_FIFO_DEPTH_LOG-1:0] search_addr_ptr; reg [C_FIFO_DEPTH_LOG-1:0] collapsed_addr_ptr; // Pipelined data reg [C_AXI_ID_WIDTH-1:0] M_AXI_BID_I; reg [2-1:0] M_AXI_BRESP_I; reg [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER_I; reg M_AXI_BVALID_I; wire M_AXI_BREADY_I; ///////////////////////////////////////////////////////////////////////////// // Command Queue: // // Keep track of depth of Queue to generate full flag. // // Also generate valid to mark pressence of commands in Queue. // // Maintain Queue and extract data from currently searched entry. // ///////////////////////////////////////////////////////////////////////////// // SRL FIFO Pointer. always @ (posedge ACLK) begin if (ARESET) begin addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}}; end else begin if ( cmd_b_push & ~cmd_b_ready_i ) begin // Pushing data increase length/addr. addr_ptr <= addr_ptr + 1; end else if ( cmd_b_ready_i ) begin // Collapse addr when data is popped. addr_ptr <= collapsed_addr_ptr; end end end // FIFO Flags. always @ (posedge ACLK) begin if (ARESET) begin cmd_b_full <= 1'b0; cmd_b_valid <= 1'b0; end else begin if ( cmd_b_push & ~cmd_b_ready_i ) begin cmd_b_full <= ( addr_ptr == C_FIFO_DEPTH-3 ); cmd_b_valid <= 1'b1; end else if ( ~cmd_b_push & cmd_b_ready_i ) begin cmd_b_full <= 1'b0; cmd_b_valid <= ( collapsed_addr_ptr != C_FIFO_DEPTH-1 ); end end end // Infere SRL for storage. always @ (posedge ACLK) begin if ( cmd_b_push ) begin for (index = 0; index < C_FIFO_DEPTH-1 ; index = index + 1) begin data_srl[index+1] <= data_srl[index]; end data_srl[0] <= {cmd_b_error, cmd_b_id}; end end // Get current transaction info. assign {inject_error, current_id} = data_srl[search_addr_ptr]; // Assign outputs. assign cmd_b_addr = collapsed_addr_ptr; ///////////////////////////////////////////////////////////////////////////// // Search Command Queue: // // Search for matching valid command in queue. // // A command is found when an valid entry with correct ID is found. The queue // is search from the oldest entry, i.e. from a high value. // When new commands are pushed the search address has to be updated to always // start the search from the oldest available. // ///////////////////////////////////////////////////////////////////////////// // Handle search addr. always @ (posedge ACLK) begin if (ARESET) begin search_addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}}; end else begin if ( cmd_b_ready_i ) begin // Collapse addr when data is popped. search_addr_ptr <= collapsed_addr_ptr; end else if ( M_AXI_BVALID_I & cmd_b_valid & ~found_match & ~cmd_b_push ) begin // Skip non valid command. search_addr_ptr <= search_addr_ptr - 1; end else if ( cmd_b_push ) begin search_addr_ptr <= search_addr_ptr + 1; end end end // Check if searched command is valid and match ID (for existing response on MI side). assign matching_id = ( M_AXI_BID_I == current_id ); assign found_match = valid_cmd[search_addr_ptr] & matching_id & M_AXI_BVALID_I; assign use_match = found_match & S_AXI_BREADY; ///////////////////////////////////////////////////////////////////////////// // Track Used Commands: // // Actions that affect Valid Command: // * When a new command is pushed // => Shift valid vector one step // * When a command is used // => Clear corresponding valid bit // ///////////////////////////////////////////////////////////////////////////// // Valid command status is updated when a command is used or a new one is pushed. assign write_valid_cmd = cmd_b_push | cmd_b_ready_i; // Update the used command valid bit. always @ * begin updated_valid_cmd = valid_cmd; updated_valid_cmd[search_addr_ptr] = ~use_match; end // Shift valid vector when command is pushed. always @ * begin if ( cmd_b_push ) begin next_valid_cmd = {updated_valid_cmd[C_FIFO_DEPTH-3:0], 1'b1}; end else begin next_valid_cmd = updated_valid_cmd; end end // Valid signals for next cycle. always @ (posedge ACLK) begin if (ARESET) begin valid_cmd <= {C_FIFO_WIDTH{1'b0}}; end else if ( write_valid_cmd ) begin valid_cmd <= next_valid_cmd; end end // Detect oldest available command in Queue. always @ * begin // Default to empty. collapsed_addr_ptr = {C_FIFO_DEPTH_LOG{1'b1}}; for (index = 0; index < C_FIFO_DEPTH-2 ; index = index + 1) begin if ( next_valid_cmd[index] ) begin collapsed_addr_ptr = index; end end end ///////////////////////////////////////////////////////////////////////////// // Pipe incoming data: // // The B channel is piped to improve timing and avoid impact in search // mechanism due to late arriving signals. // ///////////////////////////////////////////////////////////////////////////// // Clock data. always @ (posedge ACLK) begin if (ARESET) begin M_AXI_BID_I <= {C_AXI_ID_WIDTH{1'b0}}; M_AXI_BRESP_I <= 2'b00; M_AXI_BUSER_I <= {C_AXI_BUSER_WIDTH{1'b0}}; M_AXI_BVALID_I <= 1'b0; end else begin if ( M_AXI_BREADY_I | ~M_AXI_BVALID_I ) begin M_AXI_BVALID_I <= 1'b0; end if (M_AXI_BVALID & ( M_AXI_BREADY_I | ~M_AXI_BVALID_I) ) begin M_AXI_BID_I <= M_AXI_BID; M_AXI_BRESP_I <= M_AXI_BRESP; M_AXI_BUSER_I <= M_AXI_BUSER; M_AXI_BVALID_I <= 1'b1; end end end // Generate ready to get new transaction. assign M_AXI_BREADY = M_AXI_BREADY_I | ~M_AXI_BVALID_I; ///////////////////////////////////////////////////////////////////////////// // Inject Error: // // BRESP is modified according to command information. // ///////////////////////////////////////////////////////////////////////////// // Inject error in response. always @ * begin if ( inject_error ) begin S_AXI_BRESP = C_RESP_SLVERROR; end else begin S_AXI_BRESP = M_AXI_BRESP_I; end end // Handle interrupt generation. always @ (posedge ACLK) begin if (ARESET) begin ERROR_TRIGGER <= 1'b0; ERROR_TRANSACTION_ID <= {C_AXI_ID_WIDTH{1'b0}}; end else begin if ( inject_error & cmd_b_ready_i ) begin ERROR_TRIGGER <= 1'b1; ERROR_TRANSACTION_ID <= M_AXI_BID_I; end else begin ERROR_TRIGGER <= 1'b0; end end end ///////////////////////////////////////////////////////////////////////////// // Transaction Throttling: // // Response is passed forward when a matching entry has been found in queue. // Both ready and valid are set when the command is completed. // ///////////////////////////////////////////////////////////////////////////// // Propagate masked valid. assign S_AXI_BVALID = M_AXI_BVALID_I & cmd_b_valid & found_match; // Return ready with push back. assign M_AXI_BREADY_I = cmd_b_valid & use_match; // Command has been handled. assign cmd_b_ready_i = M_AXI_BVALID_I & cmd_b_valid & use_match; assign cmd_b_ready = cmd_b_ready_i; ///////////////////////////////////////////////////////////////////////////// // Write Response Propagation: // // All information is simply forwarded on from MI- to SI-Side untouched. // ///////////////////////////////////////////////////////////////////////////// // 1:1 mapping. assign S_AXI_BID = M_AXI_BID_I; assign S_AXI_BUSER = M_AXI_BUSER_I; endmodule
module processing_system7_v5_5_b_atc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6, spartan6 or later. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of checker. // Range: >= 1. parameter integer C_AXI_BUSER_WIDTH = 1, // Width of AWUSER signals. // Range: >= 1. parameter integer C_FIFO_DEPTH_LOG = 4 ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface input wire cmd_b_push, input wire cmd_b_error, input wire [C_AXI_ID_WIDTH-1:0] cmd_b_id, output wire cmd_b_ready, output wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr, output reg cmd_b_full, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID, output reg [2-1:0] S_AXI_BRESP, output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER, output wire S_AXI_BVALID, input wire S_AXI_BREADY, // Master Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID, input wire [2-1:0] M_AXI_BRESP, input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER, input wire M_AXI_BVALID, output wire M_AXI_BREADY, // Trigger detection output reg ERROR_TRIGGER, output reg [C_AXI_ID_WIDTH-1:0] ERROR_TRANSACTION_ID ); ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Constants for packing levels. localparam [2-1:0] C_RESP_OKAY = 2'b00; localparam [2-1:0] C_RESP_EXOKAY = 2'b01; localparam [2-1:0] C_RESP_SLVERROR = 2'b10; localparam [2-1:0] C_RESP_DECERR = 2'b11; // Command FIFO settings localparam C_FIFO_WIDTH = C_AXI_ID_WIDTH + 1; localparam C_FIFO_DEPTH = 2 ** C_FIFO_DEPTH_LOG; ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// integer index; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Command Queue. reg [C_FIFO_DEPTH_LOG-1:0] addr_ptr; reg [C_FIFO_WIDTH-1:0] data_srl[C_FIFO_DEPTH-1:0]; reg cmd_b_valid; wire cmd_b_ready_i; wire inject_error; wire [C_AXI_ID_WIDTH-1:0] current_id; // Search command. wire found_match; wire use_match; wire matching_id; // Manage valid command. wire write_valid_cmd; reg [C_FIFO_DEPTH-2:0] valid_cmd; reg [C_FIFO_DEPTH-2:0] updated_valid_cmd; reg [C_FIFO_DEPTH-2:0] next_valid_cmd; reg [C_FIFO_DEPTH_LOG-1:0] search_addr_ptr; reg [C_FIFO_DEPTH_LOG-1:0] collapsed_addr_ptr; // Pipelined data reg [C_AXI_ID_WIDTH-1:0] M_AXI_BID_I; reg [2-1:0] M_AXI_BRESP_I; reg [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER_I; reg M_AXI_BVALID_I; wire M_AXI_BREADY_I; ///////////////////////////////////////////////////////////////////////////// // Command Queue: // // Keep track of depth of Queue to generate full flag. // // Also generate valid to mark pressence of commands in Queue. // // Maintain Queue and extract data from currently searched entry. // ///////////////////////////////////////////////////////////////////////////// // SRL FIFO Pointer. always @ (posedge ACLK) begin if (ARESET) begin addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}}; end else begin if ( cmd_b_push & ~cmd_b_ready_i ) begin // Pushing data increase length/addr. addr_ptr <= addr_ptr + 1; end else if ( cmd_b_ready_i ) begin // Collapse addr when data is popped. addr_ptr <= collapsed_addr_ptr; end end end // FIFO Flags. always @ (posedge ACLK) begin if (ARESET) begin cmd_b_full <= 1'b0; cmd_b_valid <= 1'b0; end else begin if ( cmd_b_push & ~cmd_b_ready_i ) begin cmd_b_full <= ( addr_ptr == C_FIFO_DEPTH-3 ); cmd_b_valid <= 1'b1; end else if ( ~cmd_b_push & cmd_b_ready_i ) begin cmd_b_full <= 1'b0; cmd_b_valid <= ( collapsed_addr_ptr != C_FIFO_DEPTH-1 ); end end end // Infere SRL for storage. always @ (posedge ACLK) begin if ( cmd_b_push ) begin for (index = 0; index < C_FIFO_DEPTH-1 ; index = index + 1) begin data_srl[index+1] <= data_srl[index]; end data_srl[0] <= {cmd_b_error, cmd_b_id}; end end // Get current transaction info. assign {inject_error, current_id} = data_srl[search_addr_ptr]; // Assign outputs. assign cmd_b_addr = collapsed_addr_ptr; ///////////////////////////////////////////////////////////////////////////// // Search Command Queue: // // Search for matching valid command in queue. // // A command is found when an valid entry with correct ID is found. The queue // is search from the oldest entry, i.e. from a high value. // When new commands are pushed the search address has to be updated to always // start the search from the oldest available. // ///////////////////////////////////////////////////////////////////////////// // Handle search addr. always @ (posedge ACLK) begin if (ARESET) begin search_addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}}; end else begin if ( cmd_b_ready_i ) begin // Collapse addr when data is popped. search_addr_ptr <= collapsed_addr_ptr; end else if ( M_AXI_BVALID_I & cmd_b_valid & ~found_match & ~cmd_b_push ) begin // Skip non valid command. search_addr_ptr <= search_addr_ptr - 1; end else if ( cmd_b_push ) begin search_addr_ptr <= search_addr_ptr + 1; end end end // Check if searched command is valid and match ID (for existing response on MI side). assign matching_id = ( M_AXI_BID_I == current_id ); assign found_match = valid_cmd[search_addr_ptr] & matching_id & M_AXI_BVALID_I; assign use_match = found_match & S_AXI_BREADY; ///////////////////////////////////////////////////////////////////////////// // Track Used Commands: // // Actions that affect Valid Command: // * When a new command is pushed // => Shift valid vector one step // * When a command is used // => Clear corresponding valid bit // ///////////////////////////////////////////////////////////////////////////// // Valid command status is updated when a command is used or a new one is pushed. assign write_valid_cmd = cmd_b_push | cmd_b_ready_i; // Update the used command valid bit. always @ * begin updated_valid_cmd = valid_cmd; updated_valid_cmd[search_addr_ptr] = ~use_match; end // Shift valid vector when command is pushed. always @ * begin if ( cmd_b_push ) begin next_valid_cmd = {updated_valid_cmd[C_FIFO_DEPTH-3:0], 1'b1}; end else begin next_valid_cmd = updated_valid_cmd; end end // Valid signals for next cycle. always @ (posedge ACLK) begin if (ARESET) begin valid_cmd <= {C_FIFO_WIDTH{1'b0}}; end else if ( write_valid_cmd ) begin valid_cmd <= next_valid_cmd; end end // Detect oldest available command in Queue. always @ * begin // Default to empty. collapsed_addr_ptr = {C_FIFO_DEPTH_LOG{1'b1}}; for (index = 0; index < C_FIFO_DEPTH-2 ; index = index + 1) begin if ( next_valid_cmd[index] ) begin collapsed_addr_ptr = index; end end end ///////////////////////////////////////////////////////////////////////////// // Pipe incoming data: // // The B channel is piped to improve timing and avoid impact in search // mechanism due to late arriving signals. // ///////////////////////////////////////////////////////////////////////////// // Clock data. always @ (posedge ACLK) begin if (ARESET) begin M_AXI_BID_I <= {C_AXI_ID_WIDTH{1'b0}}; M_AXI_BRESP_I <= 2'b00; M_AXI_BUSER_I <= {C_AXI_BUSER_WIDTH{1'b0}}; M_AXI_BVALID_I <= 1'b0; end else begin if ( M_AXI_BREADY_I | ~M_AXI_BVALID_I ) begin M_AXI_BVALID_I <= 1'b0; end if (M_AXI_BVALID & ( M_AXI_BREADY_I | ~M_AXI_BVALID_I) ) begin M_AXI_BID_I <= M_AXI_BID; M_AXI_BRESP_I <= M_AXI_BRESP; M_AXI_BUSER_I <= M_AXI_BUSER; M_AXI_BVALID_I <= 1'b1; end end end // Generate ready to get new transaction. assign M_AXI_BREADY = M_AXI_BREADY_I | ~M_AXI_BVALID_I; ///////////////////////////////////////////////////////////////////////////// // Inject Error: // // BRESP is modified according to command information. // ///////////////////////////////////////////////////////////////////////////// // Inject error in response. always @ * begin if ( inject_error ) begin S_AXI_BRESP = C_RESP_SLVERROR; end else begin S_AXI_BRESP = M_AXI_BRESP_I; end end // Handle interrupt generation. always @ (posedge ACLK) begin if (ARESET) begin ERROR_TRIGGER <= 1'b0; ERROR_TRANSACTION_ID <= {C_AXI_ID_WIDTH{1'b0}}; end else begin if ( inject_error & cmd_b_ready_i ) begin ERROR_TRIGGER <= 1'b1; ERROR_TRANSACTION_ID <= M_AXI_BID_I; end else begin ERROR_TRIGGER <= 1'b0; end end end ///////////////////////////////////////////////////////////////////////////// // Transaction Throttling: // // Response is passed forward when a matching entry has been found in queue. // Both ready and valid are set when the command is completed. // ///////////////////////////////////////////////////////////////////////////// // Propagate masked valid. assign S_AXI_BVALID = M_AXI_BVALID_I & cmd_b_valid & found_match; // Return ready with push back. assign M_AXI_BREADY_I = cmd_b_valid & use_match; // Command has been handled. assign cmd_b_ready_i = M_AXI_BVALID_I & cmd_b_valid & use_match; assign cmd_b_ready = cmd_b_ready_i; ///////////////////////////////////////////////////////////////////////////// // Write Response Propagation: // // All information is simply forwarded on from MI- to SI-Side untouched. // ///////////////////////////////////////////////////////////////////////////// // 1:1 mapping. assign S_AXI_BID = M_AXI_BID_I; assign S_AXI_BUSER = M_AXI_BUSER_I; endmodule
module processing_system7_v5_5_b_atc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6, spartan6 or later. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of checker. // Range: >= 1. parameter integer C_AXI_BUSER_WIDTH = 1, // Width of AWUSER signals. // Range: >= 1. parameter integer C_FIFO_DEPTH_LOG = 4 ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface input wire cmd_b_push, input wire cmd_b_error, input wire [C_AXI_ID_WIDTH-1:0] cmd_b_id, output wire cmd_b_ready, output wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr, output reg cmd_b_full, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID, output reg [2-1:0] S_AXI_BRESP, output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER, output wire S_AXI_BVALID, input wire S_AXI_BREADY, // Master Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID, input wire [2-1:0] M_AXI_BRESP, input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER, input wire M_AXI_BVALID, output wire M_AXI_BREADY, // Trigger detection output reg ERROR_TRIGGER, output reg [C_AXI_ID_WIDTH-1:0] ERROR_TRANSACTION_ID ); ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Constants for packing levels. localparam [2-1:0] C_RESP_OKAY = 2'b00; localparam [2-1:0] C_RESP_EXOKAY = 2'b01; localparam [2-1:0] C_RESP_SLVERROR = 2'b10; localparam [2-1:0] C_RESP_DECERR = 2'b11; // Command FIFO settings localparam C_FIFO_WIDTH = C_AXI_ID_WIDTH + 1; localparam C_FIFO_DEPTH = 2 ** C_FIFO_DEPTH_LOG; ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// integer index; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Command Queue. reg [C_FIFO_DEPTH_LOG-1:0] addr_ptr; reg [C_FIFO_WIDTH-1:0] data_srl[C_FIFO_DEPTH-1:0]; reg cmd_b_valid; wire cmd_b_ready_i; wire inject_error; wire [C_AXI_ID_WIDTH-1:0] current_id; // Search command. wire found_match; wire use_match; wire matching_id; // Manage valid command. wire write_valid_cmd; reg [C_FIFO_DEPTH-2:0] valid_cmd; reg [C_FIFO_DEPTH-2:0] updated_valid_cmd; reg [C_FIFO_DEPTH-2:0] next_valid_cmd; reg [C_FIFO_DEPTH_LOG-1:0] search_addr_ptr; reg [C_FIFO_DEPTH_LOG-1:0] collapsed_addr_ptr; // Pipelined data reg [C_AXI_ID_WIDTH-1:0] M_AXI_BID_I; reg [2-1:0] M_AXI_BRESP_I; reg [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER_I; reg M_AXI_BVALID_I; wire M_AXI_BREADY_I; ///////////////////////////////////////////////////////////////////////////// // Command Queue: // // Keep track of depth of Queue to generate full flag. // // Also generate valid to mark pressence of commands in Queue. // // Maintain Queue and extract data from currently searched entry. // ///////////////////////////////////////////////////////////////////////////// // SRL FIFO Pointer. always @ (posedge ACLK) begin if (ARESET) begin addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}}; end else begin if ( cmd_b_push & ~cmd_b_ready_i ) begin // Pushing data increase length/addr. addr_ptr <= addr_ptr + 1; end else if ( cmd_b_ready_i ) begin // Collapse addr when data is popped. addr_ptr <= collapsed_addr_ptr; end end end // FIFO Flags. always @ (posedge ACLK) begin if (ARESET) begin cmd_b_full <= 1'b0; cmd_b_valid <= 1'b0; end else begin if ( cmd_b_push & ~cmd_b_ready_i ) begin cmd_b_full <= ( addr_ptr == C_FIFO_DEPTH-3 ); cmd_b_valid <= 1'b1; end else if ( ~cmd_b_push & cmd_b_ready_i ) begin cmd_b_full <= 1'b0; cmd_b_valid <= ( collapsed_addr_ptr != C_FIFO_DEPTH-1 ); end end end // Infere SRL for storage. always @ (posedge ACLK) begin if ( cmd_b_push ) begin for (index = 0; index < C_FIFO_DEPTH-1 ; index = index + 1) begin data_srl[index+1] <= data_srl[index]; end data_srl[0] <= {cmd_b_error, cmd_b_id}; end end // Get current transaction info. assign {inject_error, current_id} = data_srl[search_addr_ptr]; // Assign outputs. assign cmd_b_addr = collapsed_addr_ptr; ///////////////////////////////////////////////////////////////////////////// // Search Command Queue: // // Search for matching valid command in queue. // // A command is found when an valid entry with correct ID is found. The queue // is search from the oldest entry, i.e. from a high value. // When new commands are pushed the search address has to be updated to always // start the search from the oldest available. // ///////////////////////////////////////////////////////////////////////////// // Handle search addr. always @ (posedge ACLK) begin if (ARESET) begin search_addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}}; end else begin if ( cmd_b_ready_i ) begin // Collapse addr when data is popped. search_addr_ptr <= collapsed_addr_ptr; end else if ( M_AXI_BVALID_I & cmd_b_valid & ~found_match & ~cmd_b_push ) begin // Skip non valid command. search_addr_ptr <= search_addr_ptr - 1; end else if ( cmd_b_push ) begin search_addr_ptr <= search_addr_ptr + 1; end end end // Check if searched command is valid and match ID (for existing response on MI side). assign matching_id = ( M_AXI_BID_I == current_id ); assign found_match = valid_cmd[search_addr_ptr] & matching_id & M_AXI_BVALID_I; assign use_match = found_match & S_AXI_BREADY; ///////////////////////////////////////////////////////////////////////////// // Track Used Commands: // // Actions that affect Valid Command: // * When a new command is pushed // => Shift valid vector one step // * When a command is used // => Clear corresponding valid bit // ///////////////////////////////////////////////////////////////////////////// // Valid command status is updated when a command is used or a new one is pushed. assign write_valid_cmd = cmd_b_push | cmd_b_ready_i; // Update the used command valid bit. always @ * begin updated_valid_cmd = valid_cmd; updated_valid_cmd[search_addr_ptr] = ~use_match; end // Shift valid vector when command is pushed. always @ * begin if ( cmd_b_push ) begin next_valid_cmd = {updated_valid_cmd[C_FIFO_DEPTH-3:0], 1'b1}; end else begin next_valid_cmd = updated_valid_cmd; end end // Valid signals for next cycle. always @ (posedge ACLK) begin if (ARESET) begin valid_cmd <= {C_FIFO_WIDTH{1'b0}}; end else if ( write_valid_cmd ) begin valid_cmd <= next_valid_cmd; end end // Detect oldest available command in Queue. always @ * begin // Default to empty. collapsed_addr_ptr = {C_FIFO_DEPTH_LOG{1'b1}}; for (index = 0; index < C_FIFO_DEPTH-2 ; index = index + 1) begin if ( next_valid_cmd[index] ) begin collapsed_addr_ptr = index; end end end ///////////////////////////////////////////////////////////////////////////// // Pipe incoming data: // // The B channel is piped to improve timing and avoid impact in search // mechanism due to late arriving signals. // ///////////////////////////////////////////////////////////////////////////// // Clock data. always @ (posedge ACLK) begin if (ARESET) begin M_AXI_BID_I <= {C_AXI_ID_WIDTH{1'b0}}; M_AXI_BRESP_I <= 2'b00; M_AXI_BUSER_I <= {C_AXI_BUSER_WIDTH{1'b0}}; M_AXI_BVALID_I <= 1'b0; end else begin if ( M_AXI_BREADY_I | ~M_AXI_BVALID_I ) begin M_AXI_BVALID_I <= 1'b0; end if (M_AXI_BVALID & ( M_AXI_BREADY_I | ~M_AXI_BVALID_I) ) begin M_AXI_BID_I <= M_AXI_BID; M_AXI_BRESP_I <= M_AXI_BRESP; M_AXI_BUSER_I <= M_AXI_BUSER; M_AXI_BVALID_I <= 1'b1; end end end // Generate ready to get new transaction. assign M_AXI_BREADY = M_AXI_BREADY_I | ~M_AXI_BVALID_I; ///////////////////////////////////////////////////////////////////////////// // Inject Error: // // BRESP is modified according to command information. // ///////////////////////////////////////////////////////////////////////////// // Inject error in response. always @ * begin if ( inject_error ) begin S_AXI_BRESP = C_RESP_SLVERROR; end else begin S_AXI_BRESP = M_AXI_BRESP_I; end end // Handle interrupt generation. always @ (posedge ACLK) begin if (ARESET) begin ERROR_TRIGGER <= 1'b0; ERROR_TRANSACTION_ID <= {C_AXI_ID_WIDTH{1'b0}}; end else begin if ( inject_error & cmd_b_ready_i ) begin ERROR_TRIGGER <= 1'b1; ERROR_TRANSACTION_ID <= M_AXI_BID_I; end else begin ERROR_TRIGGER <= 1'b0; end end end ///////////////////////////////////////////////////////////////////////////// // Transaction Throttling: // // Response is passed forward when a matching entry has been found in queue. // Both ready and valid are set when the command is completed. // ///////////////////////////////////////////////////////////////////////////// // Propagate masked valid. assign S_AXI_BVALID = M_AXI_BVALID_I & cmd_b_valid & found_match; // Return ready with push back. assign M_AXI_BREADY_I = cmd_b_valid & use_match; // Command has been handled. assign cmd_b_ready_i = M_AXI_BVALID_I & cmd_b_valid & use_match; assign cmd_b_ready = cmd_b_ready_i; ///////////////////////////////////////////////////////////////////////////// // Write Response Propagation: // // All information is simply forwarded on from MI- to SI-Side untouched. // ///////////////////////////////////////////////////////////////////////////// // 1:1 mapping. assign S_AXI_BID = M_AXI_BID_I; assign S_AXI_BUSER = M_AXI_BUSER_I; endmodule
module processing_system7_v5_5_b_atc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6, spartan6 or later. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of checker. // Range: >= 1. parameter integer C_AXI_BUSER_WIDTH = 1, // Width of AWUSER signals. // Range: >= 1. parameter integer C_FIFO_DEPTH_LOG = 4 ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface input wire cmd_b_push, input wire cmd_b_error, input wire [C_AXI_ID_WIDTH-1:0] cmd_b_id, output wire cmd_b_ready, output wire [C_FIFO_DEPTH_LOG-1:0] cmd_b_addr, output reg cmd_b_full, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID, output reg [2-1:0] S_AXI_BRESP, output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER, output wire S_AXI_BVALID, input wire S_AXI_BREADY, // Master Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID, input wire [2-1:0] M_AXI_BRESP, input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER, input wire M_AXI_BVALID, output wire M_AXI_BREADY, // Trigger detection output reg ERROR_TRIGGER, output reg [C_AXI_ID_WIDTH-1:0] ERROR_TRANSACTION_ID ); ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Constants for packing levels. localparam [2-1:0] C_RESP_OKAY = 2'b00; localparam [2-1:0] C_RESP_EXOKAY = 2'b01; localparam [2-1:0] C_RESP_SLVERROR = 2'b10; localparam [2-1:0] C_RESP_DECERR = 2'b11; // Command FIFO settings localparam C_FIFO_WIDTH = C_AXI_ID_WIDTH + 1; localparam C_FIFO_DEPTH = 2 ** C_FIFO_DEPTH_LOG; ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// integer index; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Command Queue. reg [C_FIFO_DEPTH_LOG-1:0] addr_ptr; reg [C_FIFO_WIDTH-1:0] data_srl[C_FIFO_DEPTH-1:0]; reg cmd_b_valid; wire cmd_b_ready_i; wire inject_error; wire [C_AXI_ID_WIDTH-1:0] current_id; // Search command. wire found_match; wire use_match; wire matching_id; // Manage valid command. wire write_valid_cmd; reg [C_FIFO_DEPTH-2:0] valid_cmd; reg [C_FIFO_DEPTH-2:0] updated_valid_cmd; reg [C_FIFO_DEPTH-2:0] next_valid_cmd; reg [C_FIFO_DEPTH_LOG-1:0] search_addr_ptr; reg [C_FIFO_DEPTH_LOG-1:0] collapsed_addr_ptr; // Pipelined data reg [C_AXI_ID_WIDTH-1:0] M_AXI_BID_I; reg [2-1:0] M_AXI_BRESP_I; reg [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER_I; reg M_AXI_BVALID_I; wire M_AXI_BREADY_I; ///////////////////////////////////////////////////////////////////////////// // Command Queue: // // Keep track of depth of Queue to generate full flag. // // Also generate valid to mark pressence of commands in Queue. // // Maintain Queue and extract data from currently searched entry. // ///////////////////////////////////////////////////////////////////////////// // SRL FIFO Pointer. always @ (posedge ACLK) begin if (ARESET) begin addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}}; end else begin if ( cmd_b_push & ~cmd_b_ready_i ) begin // Pushing data increase length/addr. addr_ptr <= addr_ptr + 1; end else if ( cmd_b_ready_i ) begin // Collapse addr when data is popped. addr_ptr <= collapsed_addr_ptr; end end end // FIFO Flags. always @ (posedge ACLK) begin if (ARESET) begin cmd_b_full <= 1'b0; cmd_b_valid <= 1'b0; end else begin if ( cmd_b_push & ~cmd_b_ready_i ) begin cmd_b_full <= ( addr_ptr == C_FIFO_DEPTH-3 ); cmd_b_valid <= 1'b1; end else if ( ~cmd_b_push & cmd_b_ready_i ) begin cmd_b_full <= 1'b0; cmd_b_valid <= ( collapsed_addr_ptr != C_FIFO_DEPTH-1 ); end end end // Infere SRL for storage. always @ (posedge ACLK) begin if ( cmd_b_push ) begin for (index = 0; index < C_FIFO_DEPTH-1 ; index = index + 1) begin data_srl[index+1] <= data_srl[index]; end data_srl[0] <= {cmd_b_error, cmd_b_id}; end end // Get current transaction info. assign {inject_error, current_id} = data_srl[search_addr_ptr]; // Assign outputs. assign cmd_b_addr = collapsed_addr_ptr; ///////////////////////////////////////////////////////////////////////////// // Search Command Queue: // // Search for matching valid command in queue. // // A command is found when an valid entry with correct ID is found. The queue // is search from the oldest entry, i.e. from a high value. // When new commands are pushed the search address has to be updated to always // start the search from the oldest available. // ///////////////////////////////////////////////////////////////////////////// // Handle search addr. always @ (posedge ACLK) begin if (ARESET) begin search_addr_ptr <= {C_FIFO_DEPTH_LOG{1'b1}}; end else begin if ( cmd_b_ready_i ) begin // Collapse addr when data is popped. search_addr_ptr <= collapsed_addr_ptr; end else if ( M_AXI_BVALID_I & cmd_b_valid & ~found_match & ~cmd_b_push ) begin // Skip non valid command. search_addr_ptr <= search_addr_ptr - 1; end else if ( cmd_b_push ) begin search_addr_ptr <= search_addr_ptr + 1; end end end // Check if searched command is valid and match ID (for existing response on MI side). assign matching_id = ( M_AXI_BID_I == current_id ); assign found_match = valid_cmd[search_addr_ptr] & matching_id & M_AXI_BVALID_I; assign use_match = found_match & S_AXI_BREADY; ///////////////////////////////////////////////////////////////////////////// // Track Used Commands: // // Actions that affect Valid Command: // * When a new command is pushed // => Shift valid vector one step // * When a command is used // => Clear corresponding valid bit // ///////////////////////////////////////////////////////////////////////////// // Valid command status is updated when a command is used or a new one is pushed. assign write_valid_cmd = cmd_b_push | cmd_b_ready_i; // Update the used command valid bit. always @ * begin updated_valid_cmd = valid_cmd; updated_valid_cmd[search_addr_ptr] = ~use_match; end // Shift valid vector when command is pushed. always @ * begin if ( cmd_b_push ) begin next_valid_cmd = {updated_valid_cmd[C_FIFO_DEPTH-3:0], 1'b1}; end else begin next_valid_cmd = updated_valid_cmd; end end // Valid signals for next cycle. always @ (posedge ACLK) begin if (ARESET) begin valid_cmd <= {C_FIFO_WIDTH{1'b0}}; end else if ( write_valid_cmd ) begin valid_cmd <= next_valid_cmd; end end // Detect oldest available command in Queue. always @ * begin // Default to empty. collapsed_addr_ptr = {C_FIFO_DEPTH_LOG{1'b1}}; for (index = 0; index < C_FIFO_DEPTH-2 ; index = index + 1) begin if ( next_valid_cmd[index] ) begin collapsed_addr_ptr = index; end end end ///////////////////////////////////////////////////////////////////////////// // Pipe incoming data: // // The B channel is piped to improve timing and avoid impact in search // mechanism due to late arriving signals. // ///////////////////////////////////////////////////////////////////////////// // Clock data. always @ (posedge ACLK) begin if (ARESET) begin M_AXI_BID_I <= {C_AXI_ID_WIDTH{1'b0}}; M_AXI_BRESP_I <= 2'b00; M_AXI_BUSER_I <= {C_AXI_BUSER_WIDTH{1'b0}}; M_AXI_BVALID_I <= 1'b0; end else begin if ( M_AXI_BREADY_I | ~M_AXI_BVALID_I ) begin M_AXI_BVALID_I <= 1'b0; end if (M_AXI_BVALID & ( M_AXI_BREADY_I | ~M_AXI_BVALID_I) ) begin M_AXI_BID_I <= M_AXI_BID; M_AXI_BRESP_I <= M_AXI_BRESP; M_AXI_BUSER_I <= M_AXI_BUSER; M_AXI_BVALID_I <= 1'b1; end end end // Generate ready to get new transaction. assign M_AXI_BREADY = M_AXI_BREADY_I | ~M_AXI_BVALID_I; ///////////////////////////////////////////////////////////////////////////// // Inject Error: // // BRESP is modified according to command information. // ///////////////////////////////////////////////////////////////////////////// // Inject error in response. always @ * begin if ( inject_error ) begin S_AXI_BRESP = C_RESP_SLVERROR; end else begin S_AXI_BRESP = M_AXI_BRESP_I; end end // Handle interrupt generation. always @ (posedge ACLK) begin if (ARESET) begin ERROR_TRIGGER <= 1'b0; ERROR_TRANSACTION_ID <= {C_AXI_ID_WIDTH{1'b0}}; end else begin if ( inject_error & cmd_b_ready_i ) begin ERROR_TRIGGER <= 1'b1; ERROR_TRANSACTION_ID <= M_AXI_BID_I; end else begin ERROR_TRIGGER <= 1'b0; end end end ///////////////////////////////////////////////////////////////////////////// // Transaction Throttling: // // Response is passed forward when a matching entry has been found in queue. // Both ready and valid are set when the command is completed. // ///////////////////////////////////////////////////////////////////////////// // Propagate masked valid. assign S_AXI_BVALID = M_AXI_BVALID_I & cmd_b_valid & found_match; // Return ready with push back. assign M_AXI_BREADY_I = cmd_b_valid & use_match; // Command has been handled. assign cmd_b_ready_i = M_AXI_BVALID_I & cmd_b_valid & use_match; assign cmd_b_ready = cmd_b_ready_i; ///////////////////////////////////////////////////////////////////////////// // Write Response Propagation: // // All information is simply forwarded on from MI- to SI-Side untouched. // ///////////////////////////////////////////////////////////////////////////// // 1:1 mapping. assign S_AXI_BID = M_AXI_BID_I; assign S_AXI_BUSER = M_AXI_BUSER_I; endmodule
module Priority_Codec_32( input wire [25:0] Data_Dec_i, output reg [4:0] Data_Bin_o ); always @(Data_Dec_i) begin if(~Data_Dec_i[25]) begin Data_Bin_o = 5'b00000;//0 end else if(~Data_Dec_i[24]) begin Data_Bin_o = 5'b00001;//1 end else if(~Data_Dec_i[23]) begin Data_Bin_o = 5'b00010;//2 end else if(~Data_Dec_i[22]) begin Data_Bin_o = 5'b00011;//3 end else if(~Data_Dec_i[21]) begin Data_Bin_o = 5'b00100;//4 end else if(~Data_Dec_i[20]) begin Data_Bin_o = 5'b00101;//5 end else if(~Data_Dec_i[19]) begin Data_Bin_o = 5'b00110;//6 end else if(~Data_Dec_i[18]) begin Data_Bin_o = 5'b00111;//7 end else if(~Data_Dec_i[17]) begin Data_Bin_o = 5'b01000;//8 end else if(~Data_Dec_i[16]) begin Data_Bin_o = 5'b01001;//9 end else if(~Data_Dec_i[15]) begin Data_Bin_o = 5'b01010;//10 end else if(~Data_Dec_i[14]) begin Data_Bin_o = 5'b01011;//11 end else if(~Data_Dec_i[13]) begin Data_Bin_o = 5'b01100;//12 end else if(~Data_Dec_i[12]) begin Data_Bin_o = 5'b01101;//13 end else if(~Data_Dec_i[11]) begin Data_Bin_o = 5'b01110;//14 end else if(~Data_Dec_i[10]) begin Data_Bin_o = 5'b01111;//15 end else if(~Data_Dec_i[9]) begin Data_Bin_o = 5'b10000;//16 end else if(~Data_Dec_i[8]) begin Data_Bin_o = 5'b10001;//17 end else if(~Data_Dec_i[7]) begin Data_Bin_o = 5'b10010;//18 end else if(~Data_Dec_i[6]) begin Data_Bin_o = 5'b10011;//19 end else if(~Data_Dec_i[5]) begin Data_Bin_o = 5'b10100;//20 end else if(~Data_Dec_i[4]) begin Data_Bin_o = 5'b10101;//21 end else if(~Data_Dec_i[3]) begin Data_Bin_o = 5'b10110;//22 end else if(~Data_Dec_i[2]) begin Data_Bin_o = 5'b10111;//23 end else if(~Data_Dec_i[1]) begin Data_Bin_o = 5'b11000;//24 end else if(~Data_Dec_i[0]) begin Data_Bin_o = 5'b10101;//25 end else Data_Bin_o = 5'b00000;//zero value end endmodule
module Priority_Codec_32( input wire [25:0] Data_Dec_i, output reg [4:0] Data_Bin_o ); always @(Data_Dec_i) begin if(~Data_Dec_i[25]) begin Data_Bin_o = 5'b00000;//0 end else if(~Data_Dec_i[24]) begin Data_Bin_o = 5'b00001;//1 end else if(~Data_Dec_i[23]) begin Data_Bin_o = 5'b00010;//2 end else if(~Data_Dec_i[22]) begin Data_Bin_o = 5'b00011;//3 end else if(~Data_Dec_i[21]) begin Data_Bin_o = 5'b00100;//4 end else if(~Data_Dec_i[20]) begin Data_Bin_o = 5'b00101;//5 end else if(~Data_Dec_i[19]) begin Data_Bin_o = 5'b00110;//6 end else if(~Data_Dec_i[18]) begin Data_Bin_o = 5'b00111;//7 end else if(~Data_Dec_i[17]) begin Data_Bin_o = 5'b01000;//8 end else if(~Data_Dec_i[16]) begin Data_Bin_o = 5'b01001;//9 end else if(~Data_Dec_i[15]) begin Data_Bin_o = 5'b01010;//10 end else if(~Data_Dec_i[14]) begin Data_Bin_o = 5'b01011;//11 end else if(~Data_Dec_i[13]) begin Data_Bin_o = 5'b01100;//12 end else if(~Data_Dec_i[12]) begin Data_Bin_o = 5'b01101;//13 end else if(~Data_Dec_i[11]) begin Data_Bin_o = 5'b01110;//14 end else if(~Data_Dec_i[10]) begin Data_Bin_o = 5'b01111;//15 end else if(~Data_Dec_i[9]) begin Data_Bin_o = 5'b10000;//16 end else if(~Data_Dec_i[8]) begin Data_Bin_o = 5'b10001;//17 end else if(~Data_Dec_i[7]) begin Data_Bin_o = 5'b10010;//18 end else if(~Data_Dec_i[6]) begin Data_Bin_o = 5'b10011;//19 end else if(~Data_Dec_i[5]) begin Data_Bin_o = 5'b10100;//20 end else if(~Data_Dec_i[4]) begin Data_Bin_o = 5'b10101;//21 end else if(~Data_Dec_i[3]) begin Data_Bin_o = 5'b10110;//22 end else if(~Data_Dec_i[2]) begin Data_Bin_o = 5'b10111;//23 end else if(~Data_Dec_i[1]) begin Data_Bin_o = 5'b11000;//24 end else if(~Data_Dec_i[0]) begin Data_Bin_o = 5'b10101;//25 end else Data_Bin_o = 5'b00000;//zero value end endmodule
module Priority_Codec_32( input wire [25:0] Data_Dec_i, output reg [4:0] Data_Bin_o ); always @(Data_Dec_i) begin if(~Data_Dec_i[25]) begin Data_Bin_o = 5'b00000;//0 end else if(~Data_Dec_i[24]) begin Data_Bin_o = 5'b00001;//1 end else if(~Data_Dec_i[23]) begin Data_Bin_o = 5'b00010;//2 end else if(~Data_Dec_i[22]) begin Data_Bin_o = 5'b00011;//3 end else if(~Data_Dec_i[21]) begin Data_Bin_o = 5'b00100;//4 end else if(~Data_Dec_i[20]) begin Data_Bin_o = 5'b00101;//5 end else if(~Data_Dec_i[19]) begin Data_Bin_o = 5'b00110;//6 end else if(~Data_Dec_i[18]) begin Data_Bin_o = 5'b00111;//7 end else if(~Data_Dec_i[17]) begin Data_Bin_o = 5'b01000;//8 end else if(~Data_Dec_i[16]) begin Data_Bin_o = 5'b01001;//9 end else if(~Data_Dec_i[15]) begin Data_Bin_o = 5'b01010;//10 end else if(~Data_Dec_i[14]) begin Data_Bin_o = 5'b01011;//11 end else if(~Data_Dec_i[13]) begin Data_Bin_o = 5'b01100;//12 end else if(~Data_Dec_i[12]) begin Data_Bin_o = 5'b01101;//13 end else if(~Data_Dec_i[11]) begin Data_Bin_o = 5'b01110;//14 end else if(~Data_Dec_i[10]) begin Data_Bin_o = 5'b01111;//15 end else if(~Data_Dec_i[9]) begin Data_Bin_o = 5'b10000;//16 end else if(~Data_Dec_i[8]) begin Data_Bin_o = 5'b10001;//17 end else if(~Data_Dec_i[7]) begin Data_Bin_o = 5'b10010;//18 end else if(~Data_Dec_i[6]) begin Data_Bin_o = 5'b10011;//19 end else if(~Data_Dec_i[5]) begin Data_Bin_o = 5'b10100;//20 end else if(~Data_Dec_i[4]) begin Data_Bin_o = 5'b10101;//21 end else if(~Data_Dec_i[3]) begin Data_Bin_o = 5'b10110;//22 end else if(~Data_Dec_i[2]) begin Data_Bin_o = 5'b10111;//23 end else if(~Data_Dec_i[1]) begin Data_Bin_o = 5'b11000;//24 end else if(~Data_Dec_i[0]) begin Data_Bin_o = 5'b10101;//25 end else Data_Bin_o = 5'b00000;//zero value end endmodule
module clk_test( input clk, input sysclk, output [31:0] snes_sysclk_freq ); reg [31:0] snes_sysclk_freq_r; assign snes_sysclk_freq = snes_sysclk_freq_r; reg [31:0] sysclk_counter; reg [31:0] sysclk_value; initial snes_sysclk_freq_r = 32'hFFFFFFFF; initial sysclk_counter = 0; initial sysclk_value = 0; reg [1:0] sysclk_sreg; always @(posedge clk) sysclk_sreg <= {sysclk_sreg[0], sysclk}; wire sysclk_rising = (sysclk_sreg == 2'b01); always @(posedge clk) begin if(sysclk_counter < 96000000) begin sysclk_counter <= sysclk_counter + 1; if(sysclk_rising) sysclk_value <= sysclk_value + 1; end else begin snes_sysclk_freq_r <= sysclk_value; sysclk_counter <= 0; sysclk_value <= 0; end end endmodule
module axi_infrastructure_v1_1_vector2axi # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter integer C_AXI_PROTOCOL = 0, parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AWPAYLOAD_WIDTH = 61, parameter integer C_WPAYLOAD_WIDTH = 73, parameter integer C_BPAYLOAD_WIDTH = 6, parameter integer C_ARPAYLOAD_WIDTH = 61, parameter integer C_RPAYLOAD_WIDTH = 69 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// // Slave Interface Write Address Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen, output wire [3-1:0] m_axi_awsize, output wire [2-1:0] m_axi_awburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock, output wire [4-1:0] m_axi_awcache, output wire [3-1:0] m_axi_awprot, output wire [4-1:0] m_axi_awregion, output wire [4-1:0] m_axi_awqos, output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser, // Slave Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid, output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata, output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb, output wire m_axi_wlast, output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser, // Slave Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid, input wire [2-1:0] m_axi_bresp, input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser, // Slave Interface Read Address Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen, output wire [3-1:0] m_axi_arsize, output wire [2-1:0] m_axi_arburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock, output wire [4-1:0] m_axi_arcache, output wire [3-1:0] m_axi_arprot, output wire [4-1:0] m_axi_arregion, output wire [4-1:0] m_axi_arqos, output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser, // Slave Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid, input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata, input wire [2-1:0] m_axi_rresp, input wire m_axi_rlast, input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser, // payloads input wire [C_AWPAYLOAD_WIDTH-1:0] m_awpayload, input wire [C_WPAYLOAD_WIDTH-1:0] m_wpayload, output wire [C_BPAYLOAD_WIDTH-1:0] m_bpayload, input wire [C_ARPAYLOAD_WIDTH-1:0] m_arpayload, output wire [C_RPAYLOAD_WIDTH-1:0] m_rpayload ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// `include "axi_infrastructure_v1_1_header.vh" //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // AXI4, AXI4LITE, AXI3 packing assign m_axi_awaddr = m_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH]; assign m_axi_awprot = m_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH]; assign m_axi_wdata = m_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH]; assign m_axi_wstrb = m_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH]; assign m_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH] = m_axi_bresp; assign m_axi_araddr = m_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH]; assign m_axi_arprot = m_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH]; assign m_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH] = m_axi_rdata; assign m_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH] = m_axi_rresp; generate if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing assign m_axi_awsize = m_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] ; assign m_axi_awburst = m_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH]; assign m_axi_awcache = m_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH]; assign m_axi_awlen = m_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] ; assign m_axi_awlock = m_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] ; assign m_axi_awid = m_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] ; assign m_axi_awqos = m_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] ; assign m_axi_wlast = m_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] ; if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing assign m_axi_wid = m_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] ; end else begin : gen_no_axi3_wid_packing assign m_axi_wid = 1'b0; end assign m_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH] = m_axi_bid; assign m_axi_arsize = m_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] ; assign m_axi_arburst = m_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH]; assign m_axi_arcache = m_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH]; assign m_axi_arlen = m_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] ; assign m_axi_arlock = m_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] ; assign m_axi_arid = m_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] ; assign m_axi_arqos = m_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] ; assign m_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH] = m_axi_rlast; assign m_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH] = m_axi_rid ; if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals assign m_axi_awregion = m_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH]; assign m_axi_arregion = m_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH]; end else begin : gen_no_region_signals assign m_axi_awregion = 'b0; assign m_axi_arregion = 'b0; end if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals assign m_axi_awuser = m_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH]; assign m_axi_wuser = m_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] ; assign m_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH] = m_axi_buser ; assign m_axi_aruser = m_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH]; assign m_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH] = m_axi_ruser ; end else begin : gen_no_user_signals assign m_axi_awuser = 'b0; assign m_axi_wuser = 'b0; assign m_axi_aruser = 'b0; end end else begin : gen_axi4lite_packing assign m_axi_awsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3; assign m_axi_awburst = 'b0; assign m_axi_awcache = 'b0; assign m_axi_awlen = 'b0; assign m_axi_awlock = 'b0; assign m_axi_awid = 'b0; assign m_axi_awqos = 'b0; assign m_axi_wlast = 1'b1; assign m_axi_wid = 'b0; assign m_axi_arsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3; assign m_axi_arburst = 'b0; assign m_axi_arcache = 'b0; assign m_axi_arlen = 'b0; assign m_axi_arlock = 'b0; assign m_axi_arid = 'b0; assign m_axi_arqos = 'b0; assign m_axi_awregion = 'b0; assign m_axi_arregion = 'b0; assign m_axi_awuser = 'b0; assign m_axi_wuser = 'b0; assign m_axi_aruser = 'b0; end endgenerate endmodule
module axi_infrastructure_v1_1_vector2axi # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter integer C_AXI_PROTOCOL = 0, parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AWPAYLOAD_WIDTH = 61, parameter integer C_WPAYLOAD_WIDTH = 73, parameter integer C_BPAYLOAD_WIDTH = 6, parameter integer C_ARPAYLOAD_WIDTH = 61, parameter integer C_RPAYLOAD_WIDTH = 69 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// // Slave Interface Write Address Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen, output wire [3-1:0] m_axi_awsize, output wire [2-1:0] m_axi_awburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock, output wire [4-1:0] m_axi_awcache, output wire [3-1:0] m_axi_awprot, output wire [4-1:0] m_axi_awregion, output wire [4-1:0] m_axi_awqos, output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser, // Slave Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid, output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata, output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb, output wire m_axi_wlast, output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser, // Slave Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid, input wire [2-1:0] m_axi_bresp, input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser, // Slave Interface Read Address Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen, output wire [3-1:0] m_axi_arsize, output wire [2-1:0] m_axi_arburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock, output wire [4-1:0] m_axi_arcache, output wire [3-1:0] m_axi_arprot, output wire [4-1:0] m_axi_arregion, output wire [4-1:0] m_axi_arqos, output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser, // Slave Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid, input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata, input wire [2-1:0] m_axi_rresp, input wire m_axi_rlast, input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser, // payloads input wire [C_AWPAYLOAD_WIDTH-1:0] m_awpayload, input wire [C_WPAYLOAD_WIDTH-1:0] m_wpayload, output wire [C_BPAYLOAD_WIDTH-1:0] m_bpayload, input wire [C_ARPAYLOAD_WIDTH-1:0] m_arpayload, output wire [C_RPAYLOAD_WIDTH-1:0] m_rpayload ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// `include "axi_infrastructure_v1_1_header.vh" //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // AXI4, AXI4LITE, AXI3 packing assign m_axi_awaddr = m_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH]; assign m_axi_awprot = m_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH]; assign m_axi_wdata = m_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH]; assign m_axi_wstrb = m_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH]; assign m_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH] = m_axi_bresp; assign m_axi_araddr = m_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH]; assign m_axi_arprot = m_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH]; assign m_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH] = m_axi_rdata; assign m_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH] = m_axi_rresp; generate if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing assign m_axi_awsize = m_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] ; assign m_axi_awburst = m_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH]; assign m_axi_awcache = m_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH]; assign m_axi_awlen = m_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] ; assign m_axi_awlock = m_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] ; assign m_axi_awid = m_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] ; assign m_axi_awqos = m_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] ; assign m_axi_wlast = m_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] ; if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing assign m_axi_wid = m_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] ; end else begin : gen_no_axi3_wid_packing assign m_axi_wid = 1'b0; end assign m_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH] = m_axi_bid; assign m_axi_arsize = m_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] ; assign m_axi_arburst = m_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH]; assign m_axi_arcache = m_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH]; assign m_axi_arlen = m_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] ; assign m_axi_arlock = m_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] ; assign m_axi_arid = m_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] ; assign m_axi_arqos = m_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] ; assign m_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH] = m_axi_rlast; assign m_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH] = m_axi_rid ; if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals assign m_axi_awregion = m_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH]; assign m_axi_arregion = m_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH]; end else begin : gen_no_region_signals assign m_axi_awregion = 'b0; assign m_axi_arregion = 'b0; end if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals assign m_axi_awuser = m_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH]; assign m_axi_wuser = m_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] ; assign m_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH] = m_axi_buser ; assign m_axi_aruser = m_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH]; assign m_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH] = m_axi_ruser ; end else begin : gen_no_user_signals assign m_axi_awuser = 'b0; assign m_axi_wuser = 'b0; assign m_axi_aruser = 'b0; end end else begin : gen_axi4lite_packing assign m_axi_awsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3; assign m_axi_awburst = 'b0; assign m_axi_awcache = 'b0; assign m_axi_awlen = 'b0; assign m_axi_awlock = 'b0; assign m_axi_awid = 'b0; assign m_axi_awqos = 'b0; assign m_axi_wlast = 1'b1; assign m_axi_wid = 'b0; assign m_axi_arsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3; assign m_axi_arburst = 'b0; assign m_axi_arcache = 'b0; assign m_axi_arlen = 'b0; assign m_axi_arlock = 'b0; assign m_axi_arid = 'b0; assign m_axi_arqos = 'b0; assign m_axi_awregion = 'b0; assign m_axi_arregion = 'b0; assign m_axi_awuser = 'b0; assign m_axi_wuser = 'b0; assign m_axi_aruser = 'b0; end endgenerate endmodule
module axi_infrastructure_v1_1_vector2axi # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter integer C_AXI_PROTOCOL = 0, parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AWPAYLOAD_WIDTH = 61, parameter integer C_WPAYLOAD_WIDTH = 73, parameter integer C_BPAYLOAD_WIDTH = 6, parameter integer C_ARPAYLOAD_WIDTH = 61, parameter integer C_RPAYLOAD_WIDTH = 69 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// // Slave Interface Write Address Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen, output wire [3-1:0] m_axi_awsize, output wire [2-1:0] m_axi_awburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock, output wire [4-1:0] m_axi_awcache, output wire [3-1:0] m_axi_awprot, output wire [4-1:0] m_axi_awregion, output wire [4-1:0] m_axi_awqos, output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser, // Slave Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid, output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata, output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb, output wire m_axi_wlast, output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser, // Slave Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid, input wire [2-1:0] m_axi_bresp, input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser, // Slave Interface Read Address Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen, output wire [3-1:0] m_axi_arsize, output wire [2-1:0] m_axi_arburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock, output wire [4-1:0] m_axi_arcache, output wire [3-1:0] m_axi_arprot, output wire [4-1:0] m_axi_arregion, output wire [4-1:0] m_axi_arqos, output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser, // Slave Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid, input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata, input wire [2-1:0] m_axi_rresp, input wire m_axi_rlast, input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser, // payloads input wire [C_AWPAYLOAD_WIDTH-1:0] m_awpayload, input wire [C_WPAYLOAD_WIDTH-1:0] m_wpayload, output wire [C_BPAYLOAD_WIDTH-1:0] m_bpayload, input wire [C_ARPAYLOAD_WIDTH-1:0] m_arpayload, output wire [C_RPAYLOAD_WIDTH-1:0] m_rpayload ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// `include "axi_infrastructure_v1_1_header.vh" //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // AXI4, AXI4LITE, AXI3 packing assign m_axi_awaddr = m_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH]; assign m_axi_awprot = m_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH]; assign m_axi_wdata = m_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH]; assign m_axi_wstrb = m_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH]; assign m_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH] = m_axi_bresp; assign m_axi_araddr = m_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH]; assign m_axi_arprot = m_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH]; assign m_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH] = m_axi_rdata; assign m_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH] = m_axi_rresp; generate if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing assign m_axi_awsize = m_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] ; assign m_axi_awburst = m_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH]; assign m_axi_awcache = m_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH]; assign m_axi_awlen = m_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] ; assign m_axi_awlock = m_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] ; assign m_axi_awid = m_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] ; assign m_axi_awqos = m_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] ; assign m_axi_wlast = m_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] ; if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing assign m_axi_wid = m_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] ; end else begin : gen_no_axi3_wid_packing assign m_axi_wid = 1'b0; end assign m_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH] = m_axi_bid; assign m_axi_arsize = m_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] ; assign m_axi_arburst = m_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH]; assign m_axi_arcache = m_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH]; assign m_axi_arlen = m_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] ; assign m_axi_arlock = m_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] ; assign m_axi_arid = m_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] ; assign m_axi_arqos = m_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] ; assign m_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH] = m_axi_rlast; assign m_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH] = m_axi_rid ; if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals assign m_axi_awregion = m_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH]; assign m_axi_arregion = m_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH]; end else begin : gen_no_region_signals assign m_axi_awregion = 'b0; assign m_axi_arregion = 'b0; end if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals assign m_axi_awuser = m_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH]; assign m_axi_wuser = m_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] ; assign m_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH] = m_axi_buser ; assign m_axi_aruser = m_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH]; assign m_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH] = m_axi_ruser ; end else begin : gen_no_user_signals assign m_axi_awuser = 'b0; assign m_axi_wuser = 'b0; assign m_axi_aruser = 'b0; end end else begin : gen_axi4lite_packing assign m_axi_awsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3; assign m_axi_awburst = 'b0; assign m_axi_awcache = 'b0; assign m_axi_awlen = 'b0; assign m_axi_awlock = 'b0; assign m_axi_awid = 'b0; assign m_axi_awqos = 'b0; assign m_axi_wlast = 1'b1; assign m_axi_wid = 'b0; assign m_axi_arsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3; assign m_axi_arburst = 'b0; assign m_axi_arcache = 'b0; assign m_axi_arlen = 'b0; assign m_axi_arlock = 'b0; assign m_axi_arid = 'b0; assign m_axi_arqos = 'b0; assign m_axi_awregion = 'b0; assign m_axi_arregion = 'b0; assign m_axi_awuser = 'b0; assign m_axi_wuser = 'b0; assign m_axi_aruser = 'b0; end endgenerate endmodule
module axi_infrastructure_v1_1_vector2axi # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter integer C_AXI_PROTOCOL = 0, parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AWPAYLOAD_WIDTH = 61, parameter integer C_WPAYLOAD_WIDTH = 73, parameter integer C_BPAYLOAD_WIDTH = 6, parameter integer C_ARPAYLOAD_WIDTH = 61, parameter integer C_RPAYLOAD_WIDTH = 69 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// // Slave Interface Write Address Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen, output wire [3-1:0] m_axi_awsize, output wire [2-1:0] m_axi_awburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock, output wire [4-1:0] m_axi_awcache, output wire [3-1:0] m_axi_awprot, output wire [4-1:0] m_axi_awregion, output wire [4-1:0] m_axi_awqos, output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser, // Slave Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid, output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata, output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb, output wire m_axi_wlast, output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser, // Slave Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid, input wire [2-1:0] m_axi_bresp, input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser, // Slave Interface Read Address Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen, output wire [3-1:0] m_axi_arsize, output wire [2-1:0] m_axi_arburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock, output wire [4-1:0] m_axi_arcache, output wire [3-1:0] m_axi_arprot, output wire [4-1:0] m_axi_arregion, output wire [4-1:0] m_axi_arqos, output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser, // Slave Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid, input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata, input wire [2-1:0] m_axi_rresp, input wire m_axi_rlast, input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser, // payloads input wire [C_AWPAYLOAD_WIDTH-1:0] m_awpayload, input wire [C_WPAYLOAD_WIDTH-1:0] m_wpayload, output wire [C_BPAYLOAD_WIDTH-1:0] m_bpayload, input wire [C_ARPAYLOAD_WIDTH-1:0] m_arpayload, output wire [C_RPAYLOAD_WIDTH-1:0] m_rpayload ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// `include "axi_infrastructure_v1_1_header.vh" //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // AXI4, AXI4LITE, AXI3 packing assign m_axi_awaddr = m_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH]; assign m_axi_awprot = m_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH]; assign m_axi_wdata = m_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH]; assign m_axi_wstrb = m_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH]; assign m_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH] = m_axi_bresp; assign m_axi_araddr = m_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH]; assign m_axi_arprot = m_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH]; assign m_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH] = m_axi_rdata; assign m_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH] = m_axi_rresp; generate if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing assign m_axi_awsize = m_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] ; assign m_axi_awburst = m_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH]; assign m_axi_awcache = m_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH]; assign m_axi_awlen = m_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] ; assign m_axi_awlock = m_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] ; assign m_axi_awid = m_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] ; assign m_axi_awqos = m_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] ; assign m_axi_wlast = m_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] ; if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing assign m_axi_wid = m_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] ; end else begin : gen_no_axi3_wid_packing assign m_axi_wid = 1'b0; end assign m_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH] = m_axi_bid; assign m_axi_arsize = m_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] ; assign m_axi_arburst = m_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH]; assign m_axi_arcache = m_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH]; assign m_axi_arlen = m_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] ; assign m_axi_arlock = m_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] ; assign m_axi_arid = m_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] ; assign m_axi_arqos = m_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] ; assign m_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH] = m_axi_rlast; assign m_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH] = m_axi_rid ; if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals assign m_axi_awregion = m_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH]; assign m_axi_arregion = m_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH]; end else begin : gen_no_region_signals assign m_axi_awregion = 'b0; assign m_axi_arregion = 'b0; end if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals assign m_axi_awuser = m_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH]; assign m_axi_wuser = m_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] ; assign m_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH] = m_axi_buser ; assign m_axi_aruser = m_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH]; assign m_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH] = m_axi_ruser ; end else begin : gen_no_user_signals assign m_axi_awuser = 'b0; assign m_axi_wuser = 'b0; assign m_axi_aruser = 'b0; end end else begin : gen_axi4lite_packing assign m_axi_awsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3; assign m_axi_awburst = 'b0; assign m_axi_awcache = 'b0; assign m_axi_awlen = 'b0; assign m_axi_awlock = 'b0; assign m_axi_awid = 'b0; assign m_axi_awqos = 'b0; assign m_axi_wlast = 1'b1; assign m_axi_wid = 'b0; assign m_axi_arsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3; assign m_axi_arburst = 'b0; assign m_axi_arcache = 'b0; assign m_axi_arlen = 'b0; assign m_axi_arlock = 'b0; assign m_axi_arid = 'b0; assign m_axi_arqos = 'b0; assign m_axi_awregion = 'b0; assign m_axi_arregion = 'b0; assign m_axi_awuser = 'b0; assign m_axi_wuser = 'b0; assign m_axi_aruser = 'b0; end endgenerate endmodule
module blk_mem_LUT ( clka, ena, addra, douta ); (* X_INTERFACE_INFO = "xilinx.com:interface:bram:1.0 BRAM_PORTA CLK" *) input wire clka; (* X_INTERFACE_INFO = "xilinx.com:interface:bram:1.0 BRAM_PORTA EN" *) input wire ena; (* X_INTERFACE_INFO = "xilinx.com:interface:bram:1.0 BRAM_PORTA ADDR" *) input wire [3 : 0] addra; (* X_INTERFACE_INFO = "xilinx.com:interface:bram:1.0 BRAM_PORTA DOUT" *) output wire [15 : 0] douta; blk_mem_gen_v8_3_3 #( .C_FAMILY("artix7"), .C_XDEVICEFAMILY("artix7"), .C_ELABORATION_DIR("./"), .C_INTERFACE_TYPE(0), .C_AXI_TYPE(1), .C_AXI_SLAVE_TYPE(0), .C_USE_BRAM_BLOCK(0), .C_ENABLE_32BIT_ADDRESS(0), .C_CTRL_ECC_ALGO("NONE"), .C_HAS_AXI_ID(0), .C_AXI_ID_WIDTH(4), .C_MEM_TYPE(3), .C_BYTE_SIZE(9), .C_ALGORITHM(1), .C_PRIM_TYPE(1), .C_LOAD_INIT_FILE(1), .C_INIT_FILE_NAME("blk_mem_LUT.mif"), .C_INIT_FILE("blk_mem_LUT.mem"), .C_USE_DEFAULT_DATA(0), .C_DEFAULT_DATA("0"), .C_HAS_RSTA(0), .C_RST_PRIORITY_A("CE"), .C_RSTRAM_A(0), .C_INITA_VAL("0"), .C_HAS_ENA(1), .C_HAS_REGCEA(0), .C_USE_BYTE_WEA(0), .C_WEA_WIDTH(1), .C_WRITE_MODE_A("WRITE_FIRST"), .C_WRITE_WIDTH_A(16), .C_READ_WIDTH_A(16), .C_WRITE_DEPTH_A(16), .C_READ_DEPTH_A(16), .C_ADDRA_WIDTH(4), .C_HAS_RSTB(0), .C_RST_PRIORITY_B("CE"), .C_RSTRAM_B(0), .C_INITB_VAL("0"), .C_HAS_ENB(0), .C_HAS_REGCEB(0), .C_USE_BYTE_WEB(0), .C_WEB_WIDTH(1), .C_WRITE_MODE_B("WRITE_FIRST"), .C_WRITE_WIDTH_B(16), .C_READ_WIDTH_B(16), .C_WRITE_DEPTH_B(16), .C_READ_DEPTH_B(16), .C_ADDRB_WIDTH(4), .C_HAS_MEM_OUTPUT_REGS_A(1), .C_HAS_MEM_OUTPUT_REGS_B(0), .C_HAS_MUX_OUTPUT_REGS_A(0), .C_HAS_MUX_OUTPUT_REGS_B(0), .C_MUX_PIPELINE_STAGES(0), .C_HAS_SOFTECC_INPUT_REGS_A(0), .C_HAS_SOFTECC_OUTPUT_REGS_B(0), .C_USE_SOFTECC(0), .C_USE_ECC(0), .C_EN_ECC_PIPE(0), .C_HAS_INJECTERR(0), .C_SIM_COLLISION_CHECK("ALL"), .C_COMMON_CLK(0), .C_DISABLE_WARN_BHV_COLL(0), .C_EN_SLEEP_PIN(0), .C_USE_URAM(0), .C_EN_RDADDRA_CHG(0), .C_EN_RDADDRB_CHG(0), .C_EN_DEEPSLEEP_PIN(0), .C_EN_SHUTDOWN_PIN(0), .C_EN_SAFETY_CKT(0), .C_DISABLE_WARN_BHV_RANGE(0), .C_COUNT_36K_BRAM("0"), .C_COUNT_18K_BRAM("1"), .C_EST_POWER_SUMMARY("Estimated Power for IP : 2.7096 mW") ) inst ( .clka(clka), .rsta(1'D0), .ena(ena), .regcea(1'D0), .wea(1'B0), .addra(addra), .dina(16'B0), .douta(douta), .clkb(1'D0), .rstb(1'D0), .enb(1'D0), .regceb(1'D0), .web(1'B0), .addrb(4'B0), .dinb(16'B0), .doutb(), .injectsbiterr(1'D0), .injectdbiterr(1'D0), .eccpipece(1'D0), .sbiterr(), .dbiterr(), .rdaddrecc(), .sleep(1'D0), .deepsleep(1'D0), .shutdown(1'D0), .rsta_busy(), .rstb_busy(), .s_aclk(1'H0), .s_aresetn(1'D0), .s_axi_awid(4'B0), .s_axi_awaddr(32'B0), .s_axi_awlen(8'B0), .s_axi_awsize(3'B0), .s_axi_awburst(2'B0), .s_axi_awvalid(1'D0), .s_axi_awready(), .s_axi_wdata(16'B0), .s_axi_wstrb(1'B0), .s_axi_wlast(1'D0), .s_axi_wvalid(1'D0), .s_axi_wready(), .s_axi_bid(), .s_axi_bresp(), .s_axi_bvalid(), .s_axi_bready(1'D0), .s_axi_arid(4'B0), .s_axi_araddr(32'B0), .s_axi_arlen(8'B0), .s_axi_arsize(3'B0), .s_axi_arburst(2'B0), .s_axi_arvalid(1'D0), .s_axi_arready(), .s_axi_rid(), .s_axi_rdata(), .s_axi_rresp(), .s_axi_rlast(), .s_axi_rvalid(), .s_axi_rready(1'D0), .s_axi_injectsbiterr(1'D0), .s_axi_injectdbiterr(1'D0), .s_axi_sbiterr(), .s_axi_dbiterr(), .s_axi_rdaddrecc() ); endmodule
module wb_sum_buffer #( parameter BUFFER_SIZE = 16, // How much buffer is allocated for both directions. parameter ADDR_WIDTH = 16, // The width of the address. parameter DATA_WIDTH = 32, // The width of the both transferred and inputted data. parameter BASE_ADDRESS = 'h0F00, // The first referred address of the master. parameter BUFFER_INDEX_WIDTH = $clog2(BUFFER_SIZE), // How many bits are needed to index the buffer. parameter COLUMN_WIDTH = 1 // Width of each column in sum. ) ( // Interface: wb_slave input [ADDR_WIDTH-1:0] adr_i, // The address of the data. input cyc_i, // Asserted by master for transfer. input [DATA_WIDTH-1:0] dat_i, // Data from master to slave. input stb_i, // Asserted, when this specific slave is selected. input we_i, // Write = 1, Read = 0. output reg ack_o, // Slave asserts acknowledge. output reg [DATA_WIDTH-1:0] dat_o, // Data from slave to master. output reg err_o, // Indicates abnormal cycle termination. // Interface: wb_system input clk_i, // The mandatory clock, as this is synchronous logic. input rst_i // The mandatory reset, as this is synchronous logic. ); // WARNING: EVERYTHING ON AND ABOVE THIS LINE MAY BE OVERWRITTEN BY KACTUS2!!! // The contained buffer. reg [DATA_WIDTH-1:0] memory [BUFFER_SIZE-1:0]; // The result of the operation. reg [DATA_WIDTH-1:0] result; // The position of the next input data. reg [BUFFER_INDEX_WIDTH-1:0] index; // Addressable unit bits. localparam AUB = 8; // How many AUBs come in each input and output. localparam AU_IN_DATA = DATA_WIDTH/AUB; // The state. reg [0:0] state; // The value that was previously in the current index. integer lastValue; // The value that will be in the current index. integer newValue; // Used to iterate the buffer. integer iterator; // The available states. parameter [0:0] S_WAIT = 1'd0, // Waiting for cyc_i & stb_i S_DEASSERT = 1'd1; // Deassert acknowledgement. always @(posedge clk_i or posedge rst_i) begin if(rst_i == 1'b1) begin ack_o <= 0; // Obviously, there is nothing to acknowledge by default. dat_o <= 0; // No output by default. err_o <= 0; // No error by default. state <= S_WAIT; // Wait signals from the masters at reset. result <= 0; index <= 0; // The buffer is zeroed in reset. for (iterator = 0; iterator < BUFFER_SIZE; iterator = iterator +1) begin memory[iterator] <= 0; end end else begin if (state == S_WAIT) begin // Wait signal from the master. if ( cyc_i == 1 && stb_i == 1 ) begin // Master ok, check the address. if (adr_i == BUFFER_SIZE+BASE_ADDRESS && we_i == 1) begin // Address of the new value. ack_o <= 1; // Memorize for while what the new value will replace. lastValue = memory[index]; // The new value. Values may be scaled if so desired. newValue = dat_i * COLUMN_WIDTH; // Place the value in the correct index. memory[index] <= newValue; // The result of the sum: Remove the replaced value, add the new value. result <= result - lastValue + newValue; // Step to the next index, which will be zero if the current index is the last. if (index < BUFFER_SIZE-1) begin index <= index + 1; end else begin index <= 0; end end else if (adr_i == BUFFER_SIZE+BASE_ADDRESS+AU_IN_DATA && we_i == 0) begin // Address of the result was read, so output it. ack_o <= 1; dat_o = result; end else begin // The specified address out-of-scope -> error! err_o <= 1; end // Next thing is to deassert. state <= S_DEASSERT; end end else if (state == S_DEASSERT) begin // Deassert acknowlegement, get ready to receive next one. ack_o <= 0; err_o <= 0; state <= S_WAIT; end else $display("ERROR: Unkown state: %d", state); end end endmodule
module sky130_fd_sc_lp__a221o ( X , A1 , A2 , B1 , B2 , C1 , VPWR, VGND, VPB , VNB ); output X ; input A1 ; input A2 ; input B1 ; input B2 ; input C1 ; input VPWR; input VGND; input VPB ; input VNB ; endmodule
module sky130_fd_sc_ms__fahcon ( COUT_N, SUM , A , B , CI , VPWR , VGND , VPB , VNB ); // Module ports output COUT_N; output SUM ; input A ; input B ; input CI ; input VPWR ; input VGND ; input VPB ; input VNB ; // Local signals wire xor0_out_SUM ; wire pwrgood_pp0_out_SUM ; wire a_b ; wire a_ci ; wire b_ci ; wire or0_out_coutn ; wire pwrgood_pp1_out_coutn; // Name Output Other arguments xor xor0 (xor0_out_SUM , A, B, CI ); sky130_fd_sc_ms__udp_pwrgood_pp$PG pwrgood_pp0 (pwrgood_pp0_out_SUM , xor0_out_SUM, VPWR, VGND ); buf buf0 (SUM , pwrgood_pp0_out_SUM ); nor nor0 (a_b , A, B ); nor nor1 (a_ci , A, CI ); nor nor2 (b_ci , B, CI ); or or0 (or0_out_coutn , a_b, a_ci, b_ci ); sky130_fd_sc_ms__udp_pwrgood_pp$PG pwrgood_pp1 (pwrgood_pp1_out_coutn, or0_out_coutn, VPWR, VGND); buf buf1 (COUT_N , pwrgood_pp1_out_coutn ); endmodule
module gtwizard_ultrascale_v1_7_1_gtye4_common #( // ------------------------------------------------------------------------------------------------------------------- // Parameters relating to GTYE4_COMMON primitive // ------------------------------------------------------------------------------------------------------------------- // primitive wrapper parameters which override corresponding GTYE4_COMMON primitive parameters parameter [0:0] GTYE4_COMMON_AEN_QPLL0_FBDIV = 1'b1, parameter [0:0] GTYE4_COMMON_AEN_QPLL1_FBDIV = 1'b1, parameter [0:0] GTYE4_COMMON_AEN_SDM0TOGGLE = 1'b0, parameter [0:0] GTYE4_COMMON_AEN_SDM1TOGGLE = 1'b0, parameter [0:0] GTYE4_COMMON_A_SDM0TOGGLE = 1'b0, parameter [8:0] GTYE4_COMMON_A_SDM1DATA_HIGH = 9'b000000000, parameter [15:0] GTYE4_COMMON_A_SDM1DATA_LOW = 16'b0000000000000000, parameter [0:0] GTYE4_COMMON_A_SDM1TOGGLE = 1'b0, parameter [15:0] GTYE4_COMMON_BIAS_CFG0 = 16'h0000, parameter [15:0] GTYE4_COMMON_BIAS_CFG1 = 16'h0000, parameter [15:0] GTYE4_COMMON_BIAS_CFG2 = 16'h0000, parameter [15:0] GTYE4_COMMON_BIAS_CFG3 = 16'h0000, parameter [15:0] GTYE4_COMMON_BIAS_CFG4 = 16'h0000, parameter [15:0] GTYE4_COMMON_BIAS_CFG_RSVD = 16'h0000, parameter [15:0] GTYE4_COMMON_COMMON_CFG0 = 16'h0000, parameter [15:0] GTYE4_COMMON_COMMON_CFG1 = 16'h0000, parameter [15:0] GTYE4_COMMON_POR_CFG = 16'h0000, parameter [15:0] GTYE4_COMMON_PPF0_CFG = 16'h0F00, parameter [15:0] GTYE4_COMMON_PPF1_CFG = 16'h0F00, parameter GTYE4_COMMON_QPLL0CLKOUT_RATE = "FULL", parameter [15:0] GTYE4_COMMON_QPLL0_CFG0 = 16'h391C, parameter [15:0] GTYE4_COMMON_QPLL0_CFG1 = 16'h0000, parameter [15:0] GTYE4_COMMON_QPLL0_CFG1_G3 = 16'h0020, parameter [15:0] GTYE4_COMMON_QPLL0_CFG2 = 16'h0F80, parameter [15:0] GTYE4_COMMON_QPLL0_CFG2_G3 = 16'h0F80, parameter [15:0] GTYE4_COMMON_QPLL0_CFG3 = 16'h0120, parameter [15:0] GTYE4_COMMON_QPLL0_CFG4 = 16'h0002, parameter [9:0] GTYE4_COMMON_QPLL0_CP = 10'b0000011111, parameter [9:0] GTYE4_COMMON_QPLL0_CP_G3 = 10'b0000011111, parameter integer GTYE4_COMMON_QPLL0_FBDIV = 66, parameter integer GTYE4_COMMON_QPLL0_FBDIV_G3 = 80, parameter [15:0] GTYE4_COMMON_QPLL0_INIT_CFG0 = 16'h0000, parameter [7:0] GTYE4_COMMON_QPLL0_INIT_CFG1 = 8'h00, parameter [15:0] GTYE4_COMMON_QPLL0_LOCK_CFG = 16'h01E8, parameter [15:0] GTYE4_COMMON_QPLL0_LOCK_CFG_G3 = 16'h21E8, parameter [9:0] GTYE4_COMMON_QPLL0_LPF = 10'b1011111111, parameter [9:0] GTYE4_COMMON_QPLL0_LPF_G3 = 10'b1111111111, parameter [0:0] GTYE4_COMMON_QPLL0_PCI_EN = 1'b0, parameter [0:0] GTYE4_COMMON_QPLL0_RATE_SW_USE_DRP = 1'b0, parameter integer GTYE4_COMMON_QPLL0_REFCLK_DIV = 1, parameter [15:0] GTYE4_COMMON_QPLL0_SDM_CFG0 = 16'h0040, parameter [15:0] GTYE4_COMMON_QPLL0_SDM_CFG1 = 16'h0000, parameter [15:0] GTYE4_COMMON_QPLL0_SDM_CFG2 = 16'h0000, parameter GTYE4_COMMON_QPLL1CLKOUT_RATE = "FULL", parameter [15:0] GTYE4_COMMON_QPLL1_CFG0 = 16'h691C, parameter [15:0] GTYE4_COMMON_QPLL1_CFG1 = 16'h0020, parameter [15:0] GTYE4_COMMON_QPLL1_CFG1_G3 = 16'h0020, parameter [15:0] GTYE4_COMMON_QPLL1_CFG2 = 16'h0F80, parameter [15:0] GTYE4_COMMON_QPLL1_CFG2_G3 = 16'h0F80, parameter [15:0] GTYE4_COMMON_QPLL1_CFG3 = 16'h0120, parameter [15:0] GTYE4_COMMON_QPLL1_CFG4 = 16'h0002, parameter [9:0] GTYE4_COMMON_QPLL1_CP = 10'b0000011111, parameter [9:0] GTYE4_COMMON_QPLL1_CP_G3 = 10'b0000011111, parameter integer GTYE4_COMMON_QPLL1_FBDIV = 66, parameter integer GTYE4_COMMON_QPLL1_FBDIV_G3 = 80, parameter [15:0] GTYE4_COMMON_QPLL1_INIT_CFG0 = 16'h0000, parameter [7:0] GTYE4_COMMON_QPLL1_INIT_CFG1 = 8'h00, parameter [15:0] GTYE4_COMMON_QPLL1_LOCK_CFG = 16'h01E8, parameter [15:0] GTYE4_COMMON_QPLL1_LOCK_CFG_G3 = 16'h21E8, parameter [9:0] GTYE4_COMMON_QPLL1_LPF = 10'b1011111111, parameter [9:0] GTYE4_COMMON_QPLL1_LPF_G3 = 10'b1111111111, parameter [0:0] GTYE4_COMMON_QPLL1_PCI_EN = 1'b0, parameter [0:0] GTYE4_COMMON_QPLL1_RATE_SW_USE_DRP = 1'b0, parameter integer GTYE4_COMMON_QPLL1_REFCLK_DIV = 1, parameter [15:0] GTYE4_COMMON_QPLL1_SDM_CFG0 = 16'h0000, parameter [15:0] GTYE4_COMMON_QPLL1_SDM_CFG1 = 16'h0000, parameter [15:0] GTYE4_COMMON_QPLL1_SDM_CFG2 = 16'h0000, parameter [15:0] GTYE4_COMMON_RSVD_ATTR0 = 16'h0000, parameter [15:0] GTYE4_COMMON_RSVD_ATTR1 = 16'h0000, parameter [15:0] GTYE4_COMMON_RSVD_ATTR2 = 16'h0000, parameter [15:0] GTYE4_COMMON_RSVD_ATTR3 = 16'h0000, parameter [1:0] GTYE4_COMMON_RXRECCLKOUT0_SEL = 2'b00, parameter [1:0] GTYE4_COMMON_RXRECCLKOUT1_SEL = 2'b00, parameter [0:0] GTYE4_COMMON_SARC_ENB = 1'b0, parameter [0:0] GTYE4_COMMON_SARC_SEL = 1'b0, parameter [15:0] GTYE4_COMMON_SDM0INITSEED0_0 = 16'b0000000000000000, parameter [8:0] GTYE4_COMMON_SDM0INITSEED0_1 = 9'b000000000, parameter [15:0] GTYE4_COMMON_SDM1INITSEED0_0 = 16'b0000000000000000, parameter [8:0] GTYE4_COMMON_SDM1INITSEED0_1 = 9'b000000000, parameter GTYE4_COMMON_SIM_MODE = "FAST", parameter GTYE4_COMMON_SIM_RESET_SPEEDUP = "TRUE", parameter GTYE4_COMMON_SIM_DEVICE = "ULTRASCALE_PLUS", parameter [15:0] GTYE4_COMMON_UB_CFG0 = 16'h0000, parameter [15:0] GTYE4_COMMON_UB_CFG1 = 16'h0000, parameter [15:0] GTYE4_COMMON_UB_CFG2 = 16'h0000, parameter [15:0] GTYE4_COMMON_UB_CFG3 = 16'h0000, parameter [15:0] GTYE4_COMMON_UB_CFG4 = 16'h0000, parameter [15:0] GTYE4_COMMON_UB_CFG5 = 16'h0400, parameter [15:0] GTYE4_COMMON_UB_CFG6 = 16'h0000, // primitive wrapper parameters which specify GTYE4_COMMON primitive input port default driver values parameter [0:0] GTYE4_COMMON_BGBYPASSB_VAL = 1'b0, parameter [0:0] GTYE4_COMMON_BGMONITORENB_VAL = 1'b0, parameter [0:0] GTYE4_COMMON_BGPDB_VAL = 1'b0, parameter [4:0] GTYE4_COMMON_BGRCALOVRD_VAL = 5'b0, parameter [0:0] GTYE4_COMMON_BGRCALOVRDENB_VAL = 1'b0, parameter [15:0] GTYE4_COMMON_DRPADDR_VAL = 16'b0, parameter [0:0] GTYE4_COMMON_DRPCLK_VAL = 1'b0, parameter [15:0] GTYE4_COMMON_DRPDI_VAL = 16'b0, parameter [0:0] GTYE4_COMMON_DRPEN_VAL = 1'b0, parameter [0:0] GTYE4_COMMON_DRPWE_VAL = 1'b0, parameter [0:0] GTYE4_COMMON_GTGREFCLK0_VAL = 1'b0, parameter [0:0] GTYE4_COMMON_GTGREFCLK1_VAL = 1'b0, parameter [0:0] GTYE4_COMMON_GTNORTHREFCLK00_VAL = 1'b0, parameter [0:0] GTYE4_COMMON_GTNORTHREFCLK01_VAL = 1'b0, parameter [0:0] GTYE4_COMMON_GTNORTHREFCLK10_VAL = 1'b0, parameter [0:0] GTYE4_COMMON_GTNORTHREFCLK11_VAL = 1'b0, parameter [0:0] GTYE4_COMMON_GTREFCLK00_VAL = 1'b0, parameter [0:0] GTYE4_COMMON_GTREFCLK01_VAL = 1'b0, parameter [0:0] GTYE4_COMMON_GTREFCLK10_VAL = 1'b0, parameter [0:0] GTYE4_COMMON_GTREFCLK11_VAL = 1'b0, parameter [0:0] GTYE4_COMMON_GTSOUTHREFCLK00_VAL = 1'b0, parameter [0:0] GTYE4_COMMON_GTSOUTHREFCLK01_VAL = 1'b0, parameter [0:0] GTYE4_COMMON_GTSOUTHREFCLK10_VAL = 1'b0, parameter [0:0] GTYE4_COMMON_GTSOUTHREFCLK11_VAL = 1'b0, parameter [2:0] GTYE4_COMMON_PCIERATEQPLL0_VAL = 3'b0, parameter [2:0] GTYE4_COMMON_PCIERATEQPLL1_VAL = 3'b0, parameter [7:0] GTYE4_COMMON_PMARSVD0_VAL = 8'b0, parameter [7:0] GTYE4_COMMON_PMARSVD1_VAL = 8'b0, parameter [0:0] GTYE4_COMMON_QPLL0CLKRSVD0_VAL = 1'b0, parameter [0:0] GTYE4_COMMON_QPLL0CLKRSVD1_VAL = 1'b0, parameter [7:0] GTYE4_COMMON_QPLL0FBDIV_VAL = 8'b0, parameter [0:0] GTYE4_COMMON_QPLL0LOCKDETCLK_VAL = 1'b0, parameter [0:0] GTYE4_COMMON_QPLL0LOCKEN_VAL = 1'b0, parameter [0:0] GTYE4_COMMON_QPLL0PD_VAL = 1'b0, parameter [2:0] GTYE4_COMMON_QPLL0REFCLKSEL_VAL = 3'b0, parameter [0:0] GTYE4_COMMON_QPLL0RESET_VAL = 1'b0, parameter [0:0] GTYE4_COMMON_QPLL1CLKRSVD0_VAL = 1'b0, parameter [0:0] GTYE4_COMMON_QPLL1CLKRSVD1_VAL = 1'b0, parameter [7:0] GTYE4_COMMON_QPLL1FBDIV_VAL = 8'b0, parameter [0:0] GTYE4_COMMON_QPLL1LOCKDETCLK_VAL = 1'b0, parameter [0:0] GTYE4_COMMON_QPLL1LOCKEN_VAL = 1'b0, parameter [0:0] GTYE4_COMMON_QPLL1PD_VAL = 1'b0, parameter [2:0] GTYE4_COMMON_QPLL1REFCLKSEL_VAL = 3'b0, parameter [0:0] GTYE4_COMMON_QPLL1RESET_VAL = 1'b0, parameter [7:0] GTYE4_COMMON_QPLLRSVD1_VAL = 8'b0, parameter [4:0] GTYE4_COMMON_QPLLRSVD2_VAL = 5'b0, parameter [4:0] GTYE4_COMMON_QPLLRSVD3_VAL = 5'b0, parameter [7:0] GTYE4_COMMON_QPLLRSVD4_VAL = 8'b0, parameter [0:0] GTYE4_COMMON_RCALENB_VAL = 1'b0, parameter [24:0] GTYE4_COMMON_SDM0DATA_VAL = 25'b0, parameter [0:0] GTYE4_COMMON_SDM0RESET_VAL = 1'b0, parameter [0:0] GTYE4_COMMON_SDM0TOGGLE_VAL = 1'b0, parameter [1:0] GTYE4_COMMON_SDM0WIDTH_VAL = 2'b0, parameter [24:0] GTYE4_COMMON_SDM1DATA_VAL = 25'b0, parameter [0:0] GTYE4_COMMON_SDM1RESET_VAL = 1'b0, parameter [0:0] GTYE4_COMMON_SDM1TOGGLE_VAL = 1'b0, parameter [1:0] GTYE4_COMMON_SDM1WIDTH_VAL = 2'b0, parameter [0:0] GTYE4_COMMON_UBCFGSTREAMEN_VAL = 1'b0, parameter [15:0] GTYE4_COMMON_UBDO_VAL = 16'b0, parameter [0:0] GTYE4_COMMON_UBDRDY_VAL = 1'b0, parameter [0:0] GTYE4_COMMON_UBENABLE_VAL = 1'b0, parameter [1:0] GTYE4_COMMON_UBGPI_VAL = 2'b0, parameter [1:0] GTYE4_COMMON_UBINTR_VAL = 2'b0, parameter [0:0] GTYE4_COMMON_UBIOLMBRST_VAL = 1'b0, parameter [0:0] GTYE4_COMMON_UBMBRST_VAL = 1'b0, parameter [0:0] GTYE4_COMMON_UBMDMCAPTURE_VAL = 1'b0, parameter [0:0] GTYE4_COMMON_UBMDMDBGRST_VAL = 1'b0, parameter [0:0] GTYE4_COMMON_UBMDMDBGUPDATE_VAL = 1'b0, parameter [3:0] GTYE4_COMMON_UBMDMREGEN_VAL = 4'b0, parameter [0:0] GTYE4_COMMON_UBMDMSHIFT_VAL = 1'b0, parameter [0:0] GTYE4_COMMON_UBMDMSYSRST_VAL = 1'b0, parameter [0:0] GTYE4_COMMON_UBMDMTCK_VAL = 1'b0, parameter [0:0] GTYE4_COMMON_UBMDMTDI_VAL = 1'b0, // primitive wrapper parameters which control GTYE4_COMMON primitive input port tie-off enablement parameter [0:0] GTYE4_COMMON_BGBYPASSB_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_BGMONITORENB_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_BGPDB_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_BGRCALOVRD_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_BGRCALOVRDENB_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_DRPADDR_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_DRPCLK_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_DRPDI_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_DRPEN_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_DRPWE_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_GTGREFCLK0_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_GTGREFCLK1_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_GTNORTHREFCLK00_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_GTNORTHREFCLK01_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_GTNORTHREFCLK10_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_GTNORTHREFCLK11_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_GTREFCLK00_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_GTREFCLK01_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_GTREFCLK10_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_GTREFCLK11_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_GTSOUTHREFCLK00_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_GTSOUTHREFCLK01_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_GTSOUTHREFCLK10_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_GTSOUTHREFCLK11_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_PCIERATEQPLL0_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_PCIERATEQPLL1_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_PMARSVD0_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_PMARSVD1_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_QPLL0CLKRSVD0_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_QPLL0CLKRSVD1_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_QPLL0FBDIV_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_QPLL0LOCKDETCLK_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_QPLL0LOCKEN_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_QPLL0PD_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_QPLL0REFCLKSEL_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_QPLL0RESET_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_QPLL1CLKRSVD0_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_QPLL1CLKRSVD1_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_QPLL1FBDIV_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_QPLL1LOCKDETCLK_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_QPLL1LOCKEN_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_QPLL1PD_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_QPLL1REFCLKSEL_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_QPLL1RESET_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_QPLLRSVD1_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_QPLLRSVD2_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_QPLLRSVD3_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_QPLLRSVD4_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_RCALENB_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_SDM0DATA_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_SDM0RESET_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_SDM0TOGGLE_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_SDM0WIDTH_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_SDM1DATA_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_SDM1RESET_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_SDM1TOGGLE_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_SDM1WIDTH_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_UBCFGSTREAMEN_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_UBDO_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_UBDRDY_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_UBENABLE_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_UBGPI_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_UBINTR_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_UBIOLMBRST_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_UBMBRST_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_UBMDMCAPTURE_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_UBMDMDBGRST_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_UBMDMDBGUPDATE_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_UBMDMREGEN_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_UBMDMSHIFT_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_UBMDMSYSRST_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_UBMDMTCK_TIE_EN = 1'b0, parameter [0:0] GTYE4_COMMON_UBMDMTDI_TIE_EN = 1'b0 )( // ------------------------------------------------------------------------------------------------------------------- // Ports relating to GTYE4_COMMON primitive // ------------------------------------------------------------------------------------------------------------------- // primitive wrapper input ports which can drive corresponding GTYE4_COMMON primitive input ports input wire [ 0:0] GTYE4_COMMON_BGBYPASSB, input wire [ 0:0] GTYE4_COMMON_BGMONITORENB, input wire [ 0:0] GTYE4_COMMON_BGPDB, input wire [ 4:0] GTYE4_COMMON_BGRCALOVRD, input wire [ 0:0] GTYE4_COMMON_BGRCALOVRDENB, input wire [15:0] GTYE4_COMMON_DRPADDR, input wire [ 0:0] GTYE4_COMMON_DRPCLK, input wire [15:0] GTYE4_COMMON_DRPDI, input wire [ 0:0] GTYE4_COMMON_DRPEN, input wire [ 0:0] GTYE4_COMMON_DRPWE, input wire [ 0:0] GTYE4_COMMON_GTGREFCLK0, input wire [ 0:0] GTYE4_COMMON_GTGREFCLK1, input wire [ 0:0] GTYE4_COMMON_GTNORTHREFCLK00, input wire [ 0:0] GTYE4_COMMON_GTNORTHREFCLK01, input wire [ 0:0] GTYE4_COMMON_GTNORTHREFCLK10, input wire [ 0:0] GTYE4_COMMON_GTNORTHREFCLK11, input wire [ 0:0] GTYE4_COMMON_GTREFCLK00, input wire [ 0:0] GTYE4_COMMON_GTREFCLK01, input wire [ 0:0] GTYE4_COMMON_GTREFCLK10, input wire [ 0:0] GTYE4_COMMON_GTREFCLK11, input wire [ 0:0] GTYE4_COMMON_GTSOUTHREFCLK00, input wire [ 0:0] GTYE4_COMMON_GTSOUTHREFCLK01, input wire [ 0:0] GTYE4_COMMON_GTSOUTHREFCLK10, input wire [ 0:0] GTYE4_COMMON_GTSOUTHREFCLK11, input wire [ 2:0] GTYE4_COMMON_PCIERATEQPLL0, input wire [ 2:0] GTYE4_COMMON_PCIERATEQPLL1, input wire [ 7:0] GTYE4_COMMON_PMARSVD0, input wire [ 7:0] GTYE4_COMMON_PMARSVD1, input wire [ 0:0] GTYE4_COMMON_QPLL0CLKRSVD0, input wire [ 0:0] GTYE4_COMMON_QPLL0CLKRSVD1, input wire [ 7:0] GTYE4_COMMON_QPLL0FBDIV, input wire [ 0:0] GTYE4_COMMON_QPLL0LOCKDETCLK, input wire [ 0:0] GTYE4_COMMON_QPLL0LOCKEN, input wire [ 0:0] GTYE4_COMMON_QPLL0PD, input wire [ 2:0] GTYE4_COMMON_QPLL0REFCLKSEL, input wire [ 0:0] GTYE4_COMMON_QPLL0RESET, input wire [ 0:0] GTYE4_COMMON_QPLL1CLKRSVD0, input wire [ 0:0] GTYE4_COMMON_QPLL1CLKRSVD1, input wire [ 7:0] GTYE4_COMMON_QPLL1FBDIV, input wire [ 0:0] GTYE4_COMMON_QPLL1LOCKDETCLK, input wire [ 0:0] GTYE4_COMMON_QPLL1LOCKEN, input wire [ 0:0] GTYE4_COMMON_QPLL1PD, input wire [ 2:0] GTYE4_COMMON_QPLL1REFCLKSEL, input wire [ 0:0] GTYE4_COMMON_QPLL1RESET, input wire [ 7:0] GTYE4_COMMON_QPLLRSVD1, input wire [ 4:0] GTYE4_COMMON_QPLLRSVD2, input wire [ 4:0] GTYE4_COMMON_QPLLRSVD3, input wire [ 7:0] GTYE4_COMMON_QPLLRSVD4, input wire [ 0:0] GTYE4_COMMON_RCALENB, input wire [24:0] GTYE4_COMMON_SDM0DATA, input wire [ 0:0] GTYE4_COMMON_SDM0RESET, input wire [ 0:0] GTYE4_COMMON_SDM0TOGGLE, input wire [ 1:0] GTYE4_COMMON_SDM0WIDTH, input wire [24:0] GTYE4_COMMON_SDM1DATA, input wire [ 0:0] GTYE4_COMMON_SDM1RESET, input wire [ 0:0] GTYE4_COMMON_SDM1TOGGLE, input wire [ 1:0] GTYE4_COMMON_SDM1WIDTH, input wire [ 0:0] GTYE4_COMMON_UBCFGSTREAMEN, input wire [15:0] GTYE4_COMMON_UBDO, input wire [ 0:0] GTYE4_COMMON_UBDRDY, input wire [ 0:0] GTYE4_COMMON_UBENABLE, input wire [ 1:0] GTYE4_COMMON_UBGPI, input wire [ 1:0] GTYE4_COMMON_UBINTR, input wire [ 0:0] GTYE4_COMMON_UBIOLMBRST, input wire [ 0:0] GTYE4_COMMON_UBMBRST, input wire [ 0:0] GTYE4_COMMON_UBMDMCAPTURE, input wire [ 0:0] GTYE4_COMMON_UBMDMDBGRST, input wire [ 0:0] GTYE4_COMMON_UBMDMDBGUPDATE, input wire [ 3:0] GTYE4_COMMON_UBMDMREGEN, input wire [ 0:0] GTYE4_COMMON_UBMDMSHIFT, input wire [ 0:0] GTYE4_COMMON_UBMDMSYSRST, input wire [ 0:0] GTYE4_COMMON_UBMDMTCK, input wire [ 0:0] GTYE4_COMMON_UBMDMTDI, // primitive wrapper output ports which are driven by corresponding GTYE4_COMMON primitive output ports output wire [15:0] GTYE4_COMMON_DRPDO, output wire [ 0:0] GTYE4_COMMON_DRPRDY, output wire [ 7:0] GTYE4_COMMON_PMARSVDOUT0, output wire [ 7:0] GTYE4_COMMON_PMARSVDOUT1, output wire [ 0:0] GTYE4_COMMON_QPLL0FBCLKLOST, output wire [ 0:0] GTYE4_COMMON_QPLL0LOCK, output wire [ 0:0] GTYE4_COMMON_QPLL0OUTCLK, output wire [ 0:0] GTYE4_COMMON_QPLL0OUTREFCLK, output wire [ 0:0] GTYE4_COMMON_QPLL0REFCLKLOST, output wire [ 0:0] GTYE4_COMMON_QPLL1FBCLKLOST, output wire [ 0:0] GTYE4_COMMON_QPLL1LOCK, output wire [ 0:0] GTYE4_COMMON_QPLL1OUTCLK, output wire [ 0:0] GTYE4_COMMON_QPLL1OUTREFCLK, output wire [ 0:0] GTYE4_COMMON_QPLL1REFCLKLOST, output wire [ 7:0] GTYE4_COMMON_QPLLDMONITOR0, output wire [ 7:0] GTYE4_COMMON_QPLLDMONITOR1, output wire [ 0:0] GTYE4_COMMON_REFCLKOUTMONITOR0, output wire [ 0:0] GTYE4_COMMON_REFCLKOUTMONITOR1, output wire [ 1:0] GTYE4_COMMON_RXRECCLK0SEL, output wire [ 1:0] GTYE4_COMMON_RXRECCLK1SEL, output wire [ 3:0] GTYE4_COMMON_SDM0FINALOUT, output wire [14:0] GTYE4_COMMON_SDM0TESTDATA, output wire [ 3:0] GTYE4_COMMON_SDM1FINALOUT, output wire [14:0] GTYE4_COMMON_SDM1TESTDATA, output wire [15:0] GTYE4_COMMON_UBDADDR, output wire [ 0:0] GTYE4_COMMON_UBDEN, output wire [15:0] GTYE4_COMMON_UBDI, output wire [ 0:0] GTYE4_COMMON_UBDWE, output wire [ 0:0] GTYE4_COMMON_UBMDMTDO, output wire [ 0:0] GTYE4_COMMON_UBRSVDOUT, output wire [ 0:0] GTYE4_COMMON_UBTXUART ); // ------------------------------------------------------------------------------------------------------------------- // HDL generation of wiring and instances relating to GTYE4_COMMON primitive // ------------------------------------------------------------------------------------------------------------------- generate if (1) begin : gtye4_common_gen // for each GTYE4_COMMON primitive input port, declare a properly-sized vector wire [ 0:0] GTYE4_COMMON_BGBYPASSB_int; wire [ 0:0] GTYE4_COMMON_BGMONITORENB_int; wire [ 0:0] GTYE4_COMMON_BGPDB_int; wire [ 4:0] GTYE4_COMMON_BGRCALOVRD_int; wire [ 0:0] GTYE4_COMMON_BGRCALOVRDENB_int; wire [15:0] GTYE4_COMMON_DRPADDR_int; wire [ 0:0] GTYE4_COMMON_DRPCLK_int; wire [15:0] GTYE4_COMMON_DRPDI_int; wire [ 0:0] GTYE4_COMMON_DRPEN_int; wire [ 0:0] GTYE4_COMMON_DRPWE_int; wire [ 0:0] GTYE4_COMMON_GTGREFCLK0_int; wire [ 0:0] GTYE4_COMMON_GTGREFCLK1_int; wire [ 0:0] GTYE4_COMMON_GTNORTHREFCLK00_int; wire [ 0:0] GTYE4_COMMON_GTNORTHREFCLK01_int; wire [ 0:0] GTYE4_COMMON_GTNORTHREFCLK10_int; wire [ 0:0] GTYE4_COMMON_GTNORTHREFCLK11_int; wire [ 0:0] GTYE4_COMMON_GTREFCLK00_int; wire [ 0:0] GTYE4_COMMON_GTREFCLK01_int; wire [ 0:0] GTYE4_COMMON_GTREFCLK10_int; wire [ 0:0] GTYE4_COMMON_GTREFCLK11_int; wire [ 0:0] GTYE4_COMMON_GTSOUTHREFCLK00_int; wire [ 0:0] GTYE4_COMMON_GTSOUTHREFCLK01_int; wire [ 0:0] GTYE4_COMMON_GTSOUTHREFCLK10_int; wire [ 0:0] GTYE4_COMMON_GTSOUTHREFCLK11_int; wire [ 2:0] GTYE4_COMMON_PCIERATEQPLL0_int; wire [ 2:0] GTYE4_COMMON_PCIERATEQPLL1_int; wire [ 7:0] GTYE4_COMMON_PMARSVD0_int; wire [ 7:0] GTYE4_COMMON_PMARSVD1_int; wire [ 0:0] GTYE4_COMMON_QPLL0CLKRSVD0_int; wire [ 0:0] GTYE4_COMMON_QPLL0CLKRSVD1_int; wire [ 7:0] GTYE4_COMMON_QPLL0FBDIV_int; wire [ 0:0] GTYE4_COMMON_QPLL0LOCKDETCLK_int; wire [ 0:0] GTYE4_COMMON_QPLL0LOCKEN_int; wire [ 0:0] GTYE4_COMMON_QPLL0PD_int; wire [ 2:0] GTYE4_COMMON_QPLL0REFCLKSEL_int; wire [ 0:0] GTYE4_COMMON_QPLL0RESET_int; wire [ 0:0] GTYE4_COMMON_QPLL1CLKRSVD0_int; wire [ 0:0] GTYE4_COMMON_QPLL1CLKRSVD1_int; wire [ 7:0] GTYE4_COMMON_QPLL1FBDIV_int; wire [ 0:0] GTYE4_COMMON_QPLL1LOCKDETCLK_int; wire [ 0:0] GTYE4_COMMON_QPLL1LOCKEN_int; wire [ 0:0] GTYE4_COMMON_QPLL1PD_int; wire [ 2:0] GTYE4_COMMON_QPLL1REFCLKSEL_int; wire [ 0:0] GTYE4_COMMON_QPLL1RESET_int; wire [ 7:0] GTYE4_COMMON_QPLLRSVD1_int; wire [ 4:0] GTYE4_COMMON_QPLLRSVD2_int; wire [ 4:0] GTYE4_COMMON_QPLLRSVD3_int; wire [ 7:0] GTYE4_COMMON_QPLLRSVD4_int; wire [ 0:0] GTYE4_COMMON_RCALENB_int; wire [24:0] GTYE4_COMMON_SDM0DATA_int; wire [ 0:0] GTYE4_COMMON_SDM0RESET_int; wire [ 0:0] GTYE4_COMMON_SDM0TOGGLE_int; wire [ 1:0] GTYE4_COMMON_SDM0WIDTH_int; wire [24:0] GTYE4_COMMON_SDM1DATA_int; wire [ 0:0] GTYE4_COMMON_SDM1RESET_int; wire [ 0:0] GTYE4_COMMON_SDM1TOGGLE_int; wire [ 1:0] GTYE4_COMMON_SDM1WIDTH_int; wire [ 0:0] GTYE4_COMMON_UBCFGSTREAMEN_int; wire [15:0] GTYE4_COMMON_UBDO_int; wire [ 0:0] GTYE4_COMMON_UBDRDY_int; wire [ 0:0] GTYE4_COMMON_UBENABLE_int; wire [ 1:0] GTYE4_COMMON_UBGPI_int; wire [ 1:0] GTYE4_COMMON_UBINTR_int; wire [ 0:0] GTYE4_COMMON_UBIOLMBRST_int; wire [ 0:0] GTYE4_COMMON_UBMBRST_int; wire [ 0:0] GTYE4_COMMON_UBMDMCAPTURE_int; wire [ 0:0] GTYE4_COMMON_UBMDMDBGRST_int; wire [ 0:0] GTYE4_COMMON_UBMDMDBGUPDATE_int; wire [ 3:0] GTYE4_COMMON_UBMDMREGEN_int; wire [ 0:0] GTYE4_COMMON_UBMDMSHIFT_int; wire [ 0:0] GTYE4_COMMON_UBMDMSYSRST_int; wire [ 0:0] GTYE4_COMMON_UBMDMTCK_int; wire [ 0:0] GTYE4_COMMON_UBMDMTDI_int; // assign each vector either the corresponding tie-off value or the corresponding input port if (GTYE4_COMMON_BGBYPASSB_TIE_EN == 1'b1) assign GTYE4_COMMON_BGBYPASSB_int = GTYE4_COMMON_BGBYPASSB_VAL; else assign GTYE4_COMMON_BGBYPASSB_int = GTYE4_COMMON_BGBYPASSB; if (GTYE4_COMMON_BGMONITORENB_TIE_EN == 1'b1) assign GTYE4_COMMON_BGMONITORENB_int = GTYE4_COMMON_BGMONITORENB_VAL; else assign GTYE4_COMMON_BGMONITORENB_int = GTYE4_COMMON_BGMONITORENB; if (GTYE4_COMMON_BGPDB_TIE_EN == 1'b1) assign GTYE4_COMMON_BGPDB_int = GTYE4_COMMON_BGPDB_VAL; else assign GTYE4_COMMON_BGPDB_int = GTYE4_COMMON_BGPDB; if (GTYE4_COMMON_BGRCALOVRD_TIE_EN == 1'b1) assign GTYE4_COMMON_BGRCALOVRD_int = GTYE4_COMMON_BGRCALOVRD_VAL; else assign GTYE4_COMMON_BGRCALOVRD_int = GTYE4_COMMON_BGRCALOVRD; if (GTYE4_COMMON_BGRCALOVRDENB_TIE_EN == 1'b1) assign GTYE4_COMMON_BGRCALOVRDENB_int = GTYE4_COMMON_BGRCALOVRDENB_VAL; else assign GTYE4_COMMON_BGRCALOVRDENB_int = GTYE4_COMMON_BGRCALOVRDENB; if (GTYE4_COMMON_DRPADDR_TIE_EN == 1'b1) assign GTYE4_COMMON_DRPADDR_int = GTYE4_COMMON_DRPADDR_VAL; else assign GTYE4_COMMON_DRPADDR_int = GTYE4_COMMON_DRPADDR; if (GTYE4_COMMON_DRPCLK_TIE_EN == 1'b1) assign GTYE4_COMMON_DRPCLK_int = GTYE4_COMMON_DRPCLK_VAL; else assign GTYE4_COMMON_DRPCLK_int = GTYE4_COMMON_DRPCLK; if (GTYE4_COMMON_DRPDI_TIE_EN == 1'b1) assign GTYE4_COMMON_DRPDI_int = GTYE4_COMMON_DRPDI_VAL; else assign GTYE4_COMMON_DRPDI_int = GTYE4_COMMON_DRPDI; if (GTYE4_COMMON_DRPEN_TIE_EN == 1'b1) assign GTYE4_COMMON_DRPEN_int = GTYE4_COMMON_DRPEN_VAL; else assign GTYE4_COMMON_DRPEN_int = GTYE4_COMMON_DRPEN; if (GTYE4_COMMON_DRPWE_TIE_EN == 1'b1) assign GTYE4_COMMON_DRPWE_int = GTYE4_COMMON_DRPWE_VAL; else assign GTYE4_COMMON_DRPWE_int = GTYE4_COMMON_DRPWE; if (GTYE4_COMMON_GTGREFCLK0_TIE_EN == 1'b1) assign GTYE4_COMMON_GTGREFCLK0_int = GTYE4_COMMON_GTGREFCLK0_VAL; else assign GTYE4_COMMON_GTGREFCLK0_int = GTYE4_COMMON_GTGREFCLK0; if (GTYE4_COMMON_GTGREFCLK1_TIE_EN == 1'b1) assign GTYE4_COMMON_GTGREFCLK1_int = GTYE4_COMMON_GTGREFCLK1_VAL; else assign GTYE4_COMMON_GTGREFCLK1_int = GTYE4_COMMON_GTGREFCLK1; if (GTYE4_COMMON_GTNORTHREFCLK00_TIE_EN == 1'b1) assign GTYE4_COMMON_GTNORTHREFCLK00_int = GTYE4_COMMON_GTNORTHREFCLK00_VAL; else assign GTYE4_COMMON_GTNORTHREFCLK00_int = GTYE4_COMMON_GTNORTHREFCLK00; if (GTYE4_COMMON_GTNORTHREFCLK01_TIE_EN == 1'b1) assign GTYE4_COMMON_GTNORTHREFCLK01_int = GTYE4_COMMON_GTNORTHREFCLK01_VAL; else assign GTYE4_COMMON_GTNORTHREFCLK01_int = GTYE4_COMMON_GTNORTHREFCLK01; if (GTYE4_COMMON_GTNORTHREFCLK10_TIE_EN == 1'b1) assign GTYE4_COMMON_GTNORTHREFCLK10_int = GTYE4_COMMON_GTNORTHREFCLK10_VAL; else assign GTYE4_COMMON_GTNORTHREFCLK10_int = GTYE4_COMMON_GTNORTHREFCLK10; if (GTYE4_COMMON_GTNORTHREFCLK11_TIE_EN == 1'b1) assign GTYE4_COMMON_GTNORTHREFCLK11_int = GTYE4_COMMON_GTNORTHREFCLK11_VAL; else assign GTYE4_COMMON_GTNORTHREFCLK11_int = GTYE4_COMMON_GTNORTHREFCLK11; if (GTYE4_COMMON_GTREFCLK00_TIE_EN == 1'b1) assign GTYE4_COMMON_GTREFCLK00_int = GTYE4_COMMON_GTREFCLK00_VAL; else assign GTYE4_COMMON_GTREFCLK00_int = GTYE4_COMMON_GTREFCLK00; if (GTYE4_COMMON_GTREFCLK01_TIE_EN == 1'b1) assign GTYE4_COMMON_GTREFCLK01_int = GTYE4_COMMON_GTREFCLK01_VAL; else assign GTYE4_COMMON_GTREFCLK01_int = GTYE4_COMMON_GTREFCLK01; if (GTYE4_COMMON_GTREFCLK10_TIE_EN == 1'b1) assign GTYE4_COMMON_GTREFCLK10_int = GTYE4_COMMON_GTREFCLK10_VAL; else assign GTYE4_COMMON_GTREFCLK10_int = GTYE4_COMMON_GTREFCLK10; if (GTYE4_COMMON_GTREFCLK11_TIE_EN == 1'b1) assign GTYE4_COMMON_GTREFCLK11_int = GTYE4_COMMON_GTREFCLK11_VAL; else assign GTYE4_COMMON_GTREFCLK11_int = GTYE4_COMMON_GTREFCLK11; if (GTYE4_COMMON_GTSOUTHREFCLK00_TIE_EN == 1'b1) assign GTYE4_COMMON_GTSOUTHREFCLK00_int = GTYE4_COMMON_GTSOUTHREFCLK00_VAL; else assign GTYE4_COMMON_GTSOUTHREFCLK00_int = GTYE4_COMMON_GTSOUTHREFCLK00; if (GTYE4_COMMON_GTSOUTHREFCLK01_TIE_EN == 1'b1) assign GTYE4_COMMON_GTSOUTHREFCLK01_int = GTYE4_COMMON_GTSOUTHREFCLK01_VAL; else assign GTYE4_COMMON_GTSOUTHREFCLK01_int = GTYE4_COMMON_GTSOUTHREFCLK01; if (GTYE4_COMMON_GTSOUTHREFCLK10_TIE_EN == 1'b1) assign GTYE4_COMMON_GTSOUTHREFCLK10_int = GTYE4_COMMON_GTSOUTHREFCLK10_VAL; else assign GTYE4_COMMON_GTSOUTHREFCLK10_int = GTYE4_COMMON_GTSOUTHREFCLK10; if (GTYE4_COMMON_GTSOUTHREFCLK11_TIE_EN == 1'b1) assign GTYE4_COMMON_GTSOUTHREFCLK11_int = GTYE4_COMMON_GTSOUTHREFCLK11_VAL; else assign GTYE4_COMMON_GTSOUTHREFCLK11_int = GTYE4_COMMON_GTSOUTHREFCLK11; if (GTYE4_COMMON_PCIERATEQPLL0_TIE_EN == 1'b1) assign GTYE4_COMMON_PCIERATEQPLL0_int = GTYE4_COMMON_PCIERATEQPLL0_VAL; else assign GTYE4_COMMON_PCIERATEQPLL0_int = GTYE4_COMMON_PCIERATEQPLL0; if (GTYE4_COMMON_PCIERATEQPLL1_TIE_EN == 1'b1) assign GTYE4_COMMON_PCIERATEQPLL1_int = GTYE4_COMMON_PCIERATEQPLL1_VAL; else assign GTYE4_COMMON_PCIERATEQPLL1_int = GTYE4_COMMON_PCIERATEQPLL1; if (GTYE4_COMMON_PMARSVD0_TIE_EN == 1'b1) assign GTYE4_COMMON_PMARSVD0_int = GTYE4_COMMON_PMARSVD0_VAL; else assign GTYE4_COMMON_PMARSVD0_int = GTYE4_COMMON_PMARSVD0; if (GTYE4_COMMON_PMARSVD1_TIE_EN == 1'b1) assign GTYE4_COMMON_PMARSVD1_int = GTYE4_COMMON_PMARSVD1_VAL; else assign GTYE4_COMMON_PMARSVD1_int = GTYE4_COMMON_PMARSVD1; if (GTYE4_COMMON_QPLL0CLKRSVD0_TIE_EN == 1'b1) assign GTYE4_COMMON_QPLL0CLKRSVD0_int = GTYE4_COMMON_QPLL0CLKRSVD0_VAL; else assign GTYE4_COMMON_QPLL0CLKRSVD0_int = GTYE4_COMMON_QPLL0CLKRSVD0; if (GTYE4_COMMON_QPLL0CLKRSVD1_TIE_EN == 1'b1) assign GTYE4_COMMON_QPLL0CLKRSVD1_int = GTYE4_COMMON_QPLL0CLKRSVD1_VAL; else assign GTYE4_COMMON_QPLL0CLKRSVD1_int = GTYE4_COMMON_QPLL0CLKRSVD1; if (GTYE4_COMMON_QPLL0FBDIV_TIE_EN == 1'b1) assign GTYE4_COMMON_QPLL0FBDIV_int = GTYE4_COMMON_QPLL0FBDIV_VAL; else assign GTYE4_COMMON_QPLL0FBDIV_int = GTYE4_COMMON_QPLL0FBDIV; if (GTYE4_COMMON_QPLL0LOCKDETCLK_TIE_EN == 1'b1) assign GTYE4_COMMON_QPLL0LOCKDETCLK_int = GTYE4_COMMON_QPLL0LOCKDETCLK_VAL; else assign GTYE4_COMMON_QPLL0LOCKDETCLK_int = GTYE4_COMMON_QPLL0LOCKDETCLK; if (GTYE4_COMMON_QPLL0LOCKEN_TIE_EN == 1'b1) assign GTYE4_COMMON_QPLL0LOCKEN_int = GTYE4_COMMON_QPLL0LOCKEN_VAL; else assign GTYE4_COMMON_QPLL0LOCKEN_int = GTYE4_COMMON_QPLL0LOCKEN; if (GTYE4_COMMON_QPLL0PD_TIE_EN == 1'b1) assign GTYE4_COMMON_QPLL0PD_int = GTYE4_COMMON_QPLL0PD_VAL; else assign GTYE4_COMMON_QPLL0PD_int = GTYE4_COMMON_QPLL0PD; if (GTYE4_COMMON_QPLL0REFCLKSEL_TIE_EN == 1'b1) assign GTYE4_COMMON_QPLL0REFCLKSEL_int = GTYE4_COMMON_QPLL0REFCLKSEL_VAL; else assign GTYE4_COMMON_QPLL0REFCLKSEL_int = GTYE4_COMMON_QPLL0REFCLKSEL; if (GTYE4_COMMON_QPLL0RESET_TIE_EN == 1'b1) assign GTYE4_COMMON_QPLL0RESET_int = GTYE4_COMMON_QPLL0RESET_VAL; else assign GTYE4_COMMON_QPLL0RESET_int = GTYE4_COMMON_QPLL0RESET; if (GTYE4_COMMON_QPLL1CLKRSVD0_TIE_EN == 1'b1) assign GTYE4_COMMON_QPLL1CLKRSVD0_int = GTYE4_COMMON_QPLL1CLKRSVD0_VAL; else assign GTYE4_COMMON_QPLL1CLKRSVD0_int = GTYE4_COMMON_QPLL1CLKRSVD0; if (GTYE4_COMMON_QPLL1CLKRSVD1_TIE_EN == 1'b1) assign GTYE4_COMMON_QPLL1CLKRSVD1_int = GTYE4_COMMON_QPLL1CLKRSVD1_VAL; else assign GTYE4_COMMON_QPLL1CLKRSVD1_int = GTYE4_COMMON_QPLL1CLKRSVD1; if (GTYE4_COMMON_QPLL1FBDIV_TIE_EN == 1'b1) assign GTYE4_COMMON_QPLL1FBDIV_int = GTYE4_COMMON_QPLL1FBDIV_VAL; else assign GTYE4_COMMON_QPLL1FBDIV_int = GTYE4_COMMON_QPLL1FBDIV; if (GTYE4_COMMON_QPLL1LOCKDETCLK_TIE_EN == 1'b1) assign GTYE4_COMMON_QPLL1LOCKDETCLK_int = GTYE4_COMMON_QPLL1LOCKDETCLK_VAL; else assign GTYE4_COMMON_QPLL1LOCKDETCLK_int = GTYE4_COMMON_QPLL1LOCKDETCLK; if (GTYE4_COMMON_QPLL1LOCKEN_TIE_EN == 1'b1) assign GTYE4_COMMON_QPLL1LOCKEN_int = GTYE4_COMMON_QPLL1LOCKEN_VAL; else assign GTYE4_COMMON_QPLL1LOCKEN_int = GTYE4_COMMON_QPLL1LOCKEN; if (GTYE4_COMMON_QPLL1PD_TIE_EN == 1'b1) assign GTYE4_COMMON_QPLL1PD_int = GTYE4_COMMON_QPLL1PD_VAL; else assign GTYE4_COMMON_QPLL1PD_int = GTYE4_COMMON_QPLL1PD; if (GTYE4_COMMON_QPLL1REFCLKSEL_TIE_EN == 1'b1) assign GTYE4_COMMON_QPLL1REFCLKSEL_int = GTYE4_COMMON_QPLL1REFCLKSEL_VAL; else assign GTYE4_COMMON_QPLL1REFCLKSEL_int = GTYE4_COMMON_QPLL1REFCLKSEL; if (GTYE4_COMMON_QPLL1RESET_TIE_EN == 1'b1) assign GTYE4_COMMON_QPLL1RESET_int = GTYE4_COMMON_QPLL1RESET_VAL; else assign GTYE4_COMMON_QPLL1RESET_int = GTYE4_COMMON_QPLL1RESET; if (GTYE4_COMMON_QPLLRSVD1_TIE_EN == 1'b1) assign GTYE4_COMMON_QPLLRSVD1_int = GTYE4_COMMON_QPLLRSVD1_VAL; else assign GTYE4_COMMON_QPLLRSVD1_int = GTYE4_COMMON_QPLLRSVD1; if (GTYE4_COMMON_QPLLRSVD2_TIE_EN == 1'b1) assign GTYE4_COMMON_QPLLRSVD2_int = GTYE4_COMMON_QPLLRSVD2_VAL; else assign GTYE4_COMMON_QPLLRSVD2_int = GTYE4_COMMON_QPLLRSVD2; if (GTYE4_COMMON_QPLLRSVD3_TIE_EN == 1'b1) assign GTYE4_COMMON_QPLLRSVD3_int = GTYE4_COMMON_QPLLRSVD3_VAL; else assign GTYE4_COMMON_QPLLRSVD3_int = GTYE4_COMMON_QPLLRSVD3; if (GTYE4_COMMON_QPLLRSVD4_TIE_EN == 1'b1) assign GTYE4_COMMON_QPLLRSVD4_int = GTYE4_COMMON_QPLLRSVD4_VAL; else assign GTYE4_COMMON_QPLLRSVD4_int = GTYE4_COMMON_QPLLRSVD4; if (GTYE4_COMMON_RCALENB_TIE_EN == 1'b1) assign GTYE4_COMMON_RCALENB_int = GTYE4_COMMON_RCALENB_VAL; else assign GTYE4_COMMON_RCALENB_int = GTYE4_COMMON_RCALENB; if (GTYE4_COMMON_SDM0DATA_TIE_EN == 1'b1) assign GTYE4_COMMON_SDM0DATA_int = GTYE4_COMMON_SDM0DATA_VAL; else assign GTYE4_COMMON_SDM0DATA_int = GTYE4_COMMON_SDM0DATA; if (GTYE4_COMMON_SDM0RESET_TIE_EN == 1'b1) assign GTYE4_COMMON_SDM0RESET_int = GTYE4_COMMON_SDM0RESET_VAL; else assign GTYE4_COMMON_SDM0RESET_int = GTYE4_COMMON_SDM0RESET; if (GTYE4_COMMON_SDM0TOGGLE_TIE_EN == 1'b1) assign GTYE4_COMMON_SDM0TOGGLE_int = GTYE4_COMMON_SDM0TOGGLE_VAL; else assign GTYE4_COMMON_SDM0TOGGLE_int = GTYE4_COMMON_SDM0TOGGLE; if (GTYE4_COMMON_SDM0WIDTH_TIE_EN == 1'b1) assign GTYE4_COMMON_SDM0WIDTH_int = GTYE4_COMMON_SDM0WIDTH_VAL; else assign GTYE4_COMMON_SDM0WIDTH_int = GTYE4_COMMON_SDM0WIDTH; if (GTYE4_COMMON_SDM1DATA_TIE_EN == 1'b1) assign GTYE4_COMMON_SDM1DATA_int = GTYE4_COMMON_SDM1DATA_VAL; else assign GTYE4_COMMON_SDM1DATA_int = GTYE4_COMMON_SDM1DATA; if (GTYE4_COMMON_SDM1RESET_TIE_EN == 1'b1) assign GTYE4_COMMON_SDM1RESET_int = GTYE4_COMMON_SDM1RESET_VAL; else assign GTYE4_COMMON_SDM1RESET_int = GTYE4_COMMON_SDM1RESET; if (GTYE4_COMMON_SDM1TOGGLE_TIE_EN == 1'b1) assign GTYE4_COMMON_SDM1TOGGLE_int = GTYE4_COMMON_SDM1TOGGLE_VAL; else assign GTYE4_COMMON_SDM1TOGGLE_int = GTYE4_COMMON_SDM1TOGGLE; if (GTYE4_COMMON_SDM1WIDTH_TIE_EN == 1'b1) assign GTYE4_COMMON_SDM1WIDTH_int = GTYE4_COMMON_SDM1WIDTH_VAL; else assign GTYE4_COMMON_SDM1WIDTH_int = GTYE4_COMMON_SDM1WIDTH; if (GTYE4_COMMON_UBCFGSTREAMEN_TIE_EN == 1'b1) assign GTYE4_COMMON_UBCFGSTREAMEN_int = GTYE4_COMMON_UBCFGSTREAMEN_VAL; else assign GTYE4_COMMON_UBCFGSTREAMEN_int = GTYE4_COMMON_UBCFGSTREAMEN; if (GTYE4_COMMON_UBDO_TIE_EN == 1'b1) assign GTYE4_COMMON_UBDO_int = GTYE4_COMMON_UBDO_VAL; else assign GTYE4_COMMON_UBDO_int = GTYE4_COMMON_UBDO; if (GTYE4_COMMON_UBDRDY_TIE_EN == 1'b1) assign GTYE4_COMMON_UBDRDY_int = GTYE4_COMMON_UBDRDY_VAL; else assign GTYE4_COMMON_UBDRDY_int = GTYE4_COMMON_UBDRDY; if (GTYE4_COMMON_UBENABLE_TIE_EN == 1'b1) assign GTYE4_COMMON_UBENABLE_int = GTYE4_COMMON_UBENABLE_VAL; else assign GTYE4_COMMON_UBENABLE_int = GTYE4_COMMON_UBENABLE; if (GTYE4_COMMON_UBGPI_TIE_EN == 1'b1) assign GTYE4_COMMON_UBGPI_int = GTYE4_COMMON_UBGPI_VAL; else assign GTYE4_COMMON_UBGPI_int = GTYE4_COMMON_UBGPI; if (GTYE4_COMMON_UBINTR_TIE_EN == 1'b1) assign GTYE4_COMMON_UBINTR_int = GTYE4_COMMON_UBINTR_VAL; else assign GTYE4_COMMON_UBINTR_int = GTYE4_COMMON_UBINTR; if (GTYE4_COMMON_UBIOLMBRST_TIE_EN == 1'b1) assign GTYE4_COMMON_UBIOLMBRST_int = GTYE4_COMMON_UBIOLMBRST_VAL; else assign GTYE4_COMMON_UBIOLMBRST_int = GTYE4_COMMON_UBIOLMBRST; if (GTYE4_COMMON_UBMBRST_TIE_EN == 1'b1) assign GTYE4_COMMON_UBMBRST_int = GTYE4_COMMON_UBMBRST_VAL; else assign GTYE4_COMMON_UBMBRST_int = GTYE4_COMMON_UBMBRST; if (GTYE4_COMMON_UBMDMCAPTURE_TIE_EN == 1'b1) assign GTYE4_COMMON_UBMDMCAPTURE_int = GTYE4_COMMON_UBMDMCAPTURE_VAL; else assign GTYE4_COMMON_UBMDMCAPTURE_int = GTYE4_COMMON_UBMDMCAPTURE; if (GTYE4_COMMON_UBMDMDBGRST_TIE_EN == 1'b1) assign GTYE4_COMMON_UBMDMDBGRST_int = GTYE4_COMMON_UBMDMDBGRST_VAL; else assign GTYE4_COMMON_UBMDMDBGRST_int = GTYE4_COMMON_UBMDMDBGRST; if (GTYE4_COMMON_UBMDMDBGUPDATE_TIE_EN == 1'b1) assign GTYE4_COMMON_UBMDMDBGUPDATE_int = GTYE4_COMMON_UBMDMDBGUPDATE_VAL; else assign GTYE4_COMMON_UBMDMDBGUPDATE_int = GTYE4_COMMON_UBMDMDBGUPDATE; if (GTYE4_COMMON_UBMDMREGEN_TIE_EN == 1'b1) assign GTYE4_COMMON_UBMDMREGEN_int = GTYE4_COMMON_UBMDMREGEN_VAL; else assign GTYE4_COMMON_UBMDMREGEN_int = GTYE4_COMMON_UBMDMREGEN; if (GTYE4_COMMON_UBMDMSHIFT_TIE_EN == 1'b1) assign GTYE4_COMMON_UBMDMSHIFT_int = GTYE4_COMMON_UBMDMSHIFT_VAL; else assign GTYE4_COMMON_UBMDMSHIFT_int = GTYE4_COMMON_UBMDMSHIFT; if (GTYE4_COMMON_UBMDMSYSRST_TIE_EN == 1'b1) assign GTYE4_COMMON_UBMDMSYSRST_int = GTYE4_COMMON_UBMDMSYSRST_VAL; else assign GTYE4_COMMON_UBMDMSYSRST_int = GTYE4_COMMON_UBMDMSYSRST; if (GTYE4_COMMON_UBMDMTCK_TIE_EN == 1'b1) assign GTYE4_COMMON_UBMDMTCK_int = GTYE4_COMMON_UBMDMTCK_VAL; else assign GTYE4_COMMON_UBMDMTCK_int = GTYE4_COMMON_UBMDMTCK; if (GTYE4_COMMON_UBMDMTDI_TIE_EN == 1'b1) assign GTYE4_COMMON_UBMDMTDI_int = GTYE4_COMMON_UBMDMTDI_VAL; else assign GTYE4_COMMON_UBMDMTDI_int = GTYE4_COMMON_UBMDMTDI; // generate the GTYE4_COMMON primitive instance, mapping parameters and ports GTYE4_COMMON #( .AEN_QPLL0_FBDIV (GTYE4_COMMON_AEN_QPLL0_FBDIV ), .AEN_QPLL1_FBDIV (GTYE4_COMMON_AEN_QPLL1_FBDIV ), .AEN_SDM0TOGGLE (GTYE4_COMMON_AEN_SDM0TOGGLE ), .AEN_SDM1TOGGLE (GTYE4_COMMON_AEN_SDM1TOGGLE ), .A_SDM0TOGGLE (GTYE4_COMMON_A_SDM0TOGGLE ), .A_SDM1DATA_HIGH (GTYE4_COMMON_A_SDM1DATA_HIGH ), .A_SDM1DATA_LOW (GTYE4_COMMON_A_SDM1DATA_LOW ), .A_SDM1TOGGLE (GTYE4_COMMON_A_SDM1TOGGLE ), .BIAS_CFG0 (GTYE4_COMMON_BIAS_CFG0 ), .BIAS_CFG1 (GTYE4_COMMON_BIAS_CFG1 ), .BIAS_CFG2 (GTYE4_COMMON_BIAS_CFG2 ), .BIAS_CFG3 (GTYE4_COMMON_BIAS_CFG3 ), .BIAS_CFG4 (GTYE4_COMMON_BIAS_CFG4 ), .BIAS_CFG_RSVD (GTYE4_COMMON_BIAS_CFG_RSVD ), .COMMON_CFG0 (GTYE4_COMMON_COMMON_CFG0 ), .COMMON_CFG1 (GTYE4_COMMON_COMMON_CFG1 ), .POR_CFG (GTYE4_COMMON_POR_CFG ), .PPF0_CFG (GTYE4_COMMON_PPF0_CFG ), .PPF1_CFG (GTYE4_COMMON_PPF1_CFG ), .QPLL0CLKOUT_RATE (GTYE4_COMMON_QPLL0CLKOUT_RATE ), .QPLL0_CFG0 (GTYE4_COMMON_QPLL0_CFG0 ), .QPLL0_CFG1 (GTYE4_COMMON_QPLL0_CFG1 ), .QPLL0_CFG1_G3 (GTYE4_COMMON_QPLL0_CFG1_G3 ), .QPLL0_CFG2 (GTYE4_COMMON_QPLL0_CFG2 ), .QPLL0_CFG2_G3 (GTYE4_COMMON_QPLL0_CFG2_G3 ), .QPLL0_CFG3 (GTYE4_COMMON_QPLL0_CFG3 ), .QPLL0_CFG4 (GTYE4_COMMON_QPLL0_CFG4 ), .QPLL0_CP (GTYE4_COMMON_QPLL0_CP ), .QPLL0_CP_G3 (GTYE4_COMMON_QPLL0_CP_G3 ), .QPLL0_FBDIV (GTYE4_COMMON_QPLL0_FBDIV ), .QPLL0_FBDIV_G3 (GTYE4_COMMON_QPLL0_FBDIV_G3 ), .QPLL0_INIT_CFG0 (GTYE4_COMMON_QPLL0_INIT_CFG0 ), .QPLL0_INIT_CFG1 (GTYE4_COMMON_QPLL0_INIT_CFG1 ), .QPLL0_LOCK_CFG (GTYE4_COMMON_QPLL0_LOCK_CFG ), .QPLL0_LOCK_CFG_G3 (GTYE4_COMMON_QPLL0_LOCK_CFG_G3 ), .QPLL0_LPF (GTYE4_COMMON_QPLL0_LPF ), .QPLL0_LPF_G3 (GTYE4_COMMON_QPLL0_LPF_G3 ), .QPLL0_PCI_EN (GTYE4_COMMON_QPLL0_PCI_EN ), .QPLL0_RATE_SW_USE_DRP (GTYE4_COMMON_QPLL0_RATE_SW_USE_DRP), .QPLL0_REFCLK_DIV (GTYE4_COMMON_QPLL0_REFCLK_DIV ), .QPLL0_SDM_CFG0 (GTYE4_COMMON_QPLL0_SDM_CFG0 ), .QPLL0_SDM_CFG1 (GTYE4_COMMON_QPLL0_SDM_CFG1 ), .QPLL0_SDM_CFG2 (GTYE4_COMMON_QPLL0_SDM_CFG2 ), .QPLL1CLKOUT_RATE (GTYE4_COMMON_QPLL1CLKOUT_RATE ), .QPLL1_CFG0 (GTYE4_COMMON_QPLL1_CFG0 ), .QPLL1_CFG1 (GTYE4_COMMON_QPLL1_CFG1 ), .QPLL1_CFG1_G3 (GTYE4_COMMON_QPLL1_CFG1_G3 ), .QPLL1_CFG2 (GTYE4_COMMON_QPLL1_CFG2 ), .QPLL1_CFG2_G3 (GTYE4_COMMON_QPLL1_CFG2_G3 ), .QPLL1_CFG3 (GTYE4_COMMON_QPLL1_CFG3 ), .QPLL1_CFG4 (GTYE4_COMMON_QPLL1_CFG4 ), .QPLL1_CP (GTYE4_COMMON_QPLL1_CP ), .QPLL1_CP_G3 (GTYE4_COMMON_QPLL1_CP_G3 ), .QPLL1_FBDIV (GTYE4_COMMON_QPLL1_FBDIV ), .QPLL1_FBDIV_G3 (GTYE4_COMMON_QPLL1_FBDIV_G3 ), .QPLL1_INIT_CFG0 (GTYE4_COMMON_QPLL1_INIT_CFG0 ), .QPLL1_INIT_CFG1 (GTYE4_COMMON_QPLL1_INIT_CFG1 ), .QPLL1_LOCK_CFG (GTYE4_COMMON_QPLL1_LOCK_CFG ), .QPLL1_LOCK_CFG_G3 (GTYE4_COMMON_QPLL1_LOCK_CFG_G3 ), .QPLL1_LPF (GTYE4_COMMON_QPLL1_LPF ), .QPLL1_LPF_G3 (GTYE4_COMMON_QPLL1_LPF_G3 ), .QPLL1_PCI_EN (GTYE4_COMMON_QPLL1_PCI_EN ), .QPLL1_RATE_SW_USE_DRP (GTYE4_COMMON_QPLL1_RATE_SW_USE_DRP), .QPLL1_REFCLK_DIV (GTYE4_COMMON_QPLL1_REFCLK_DIV ), .QPLL1_SDM_CFG0 (GTYE4_COMMON_QPLL1_SDM_CFG0 ), .QPLL1_SDM_CFG1 (GTYE4_COMMON_QPLL1_SDM_CFG1 ), .QPLL1_SDM_CFG2 (GTYE4_COMMON_QPLL1_SDM_CFG2 ), .RSVD_ATTR0 (GTYE4_COMMON_RSVD_ATTR0 ), .RSVD_ATTR1 (GTYE4_COMMON_RSVD_ATTR1 ), .RSVD_ATTR2 (GTYE4_COMMON_RSVD_ATTR2 ), .RSVD_ATTR3 (GTYE4_COMMON_RSVD_ATTR3 ), .RXRECCLKOUT0_SEL (GTYE4_COMMON_RXRECCLKOUT0_SEL ), .RXRECCLKOUT1_SEL (GTYE4_COMMON_RXRECCLKOUT1_SEL ), .SARC_ENB (GTYE4_COMMON_SARC_ENB ), .SARC_SEL (GTYE4_COMMON_SARC_SEL ), .SDM0INITSEED0_0 (GTYE4_COMMON_SDM0INITSEED0_0 ), .SDM0INITSEED0_1 (GTYE4_COMMON_SDM0INITSEED0_1 ), .SDM1INITSEED0_0 (GTYE4_COMMON_SDM1INITSEED0_0 ), .SDM1INITSEED0_1 (GTYE4_COMMON_SDM1INITSEED0_1 ), .SIM_MODE (GTYE4_COMMON_SIM_MODE ), .SIM_RESET_SPEEDUP (GTYE4_COMMON_SIM_RESET_SPEEDUP ), .SIM_DEVICE (GTYE4_COMMON_SIM_DEVICE ), .UB_CFG0 (GTYE4_COMMON_UB_CFG0 ), .UB_CFG1 (GTYE4_COMMON_UB_CFG1 ), .UB_CFG2 (GTYE4_COMMON_UB_CFG2 ), .UB_CFG3 (GTYE4_COMMON_UB_CFG3 ), .UB_CFG4 (GTYE4_COMMON_UB_CFG4 ), .UB_CFG5 (GTYE4_COMMON_UB_CFG5 ), .UB_CFG6 (GTYE4_COMMON_UB_CFG6 ) ) GTYE4_COMMON_PRIM_INST ( .BGBYPASSB (GTYE4_COMMON_BGBYPASSB_int [ 0:0]), .BGMONITORENB (GTYE4_COMMON_BGMONITORENB_int [ 0:0]), .BGPDB (GTYE4_COMMON_BGPDB_int [ 0:0]), .BGRCALOVRD (GTYE4_COMMON_BGRCALOVRD_int [ 4:0]), .BGRCALOVRDENB (GTYE4_COMMON_BGRCALOVRDENB_int [ 0:0]), .DRPADDR (GTYE4_COMMON_DRPADDR_int [15:0]), .DRPCLK (GTYE4_COMMON_DRPCLK_int [ 0:0]), .DRPDI (GTYE4_COMMON_DRPDI_int [15:0]), .DRPEN (GTYE4_COMMON_DRPEN_int [ 0:0]), .DRPWE (GTYE4_COMMON_DRPWE_int [ 0:0]), .GTGREFCLK0 (GTYE4_COMMON_GTGREFCLK0_int [ 0:0]), .GTGREFCLK1 (GTYE4_COMMON_GTGREFCLK1_int [ 0:0]), .GTNORTHREFCLK00 (GTYE4_COMMON_GTNORTHREFCLK00_int [ 0:0]), .GTNORTHREFCLK01 (GTYE4_COMMON_GTNORTHREFCLK01_int [ 0:0]), .GTNORTHREFCLK10 (GTYE4_COMMON_GTNORTHREFCLK10_int [ 0:0]), .GTNORTHREFCLK11 (GTYE4_COMMON_GTNORTHREFCLK11_int [ 0:0]), .GTREFCLK00 (GTYE4_COMMON_GTREFCLK00_int [ 0:0]), .GTREFCLK01 (GTYE4_COMMON_GTREFCLK01_int [ 0:0]), .GTREFCLK10 (GTYE4_COMMON_GTREFCLK10_int [ 0:0]), .GTREFCLK11 (GTYE4_COMMON_GTREFCLK11_int [ 0:0]), .GTSOUTHREFCLK00 (GTYE4_COMMON_GTSOUTHREFCLK00_int [ 0:0]), .GTSOUTHREFCLK01 (GTYE4_COMMON_GTSOUTHREFCLK01_int [ 0:0]), .GTSOUTHREFCLK10 (GTYE4_COMMON_GTSOUTHREFCLK10_int [ 0:0]), .GTSOUTHREFCLK11 (GTYE4_COMMON_GTSOUTHREFCLK11_int [ 0:0]), .PCIERATEQPLL0 (GTYE4_COMMON_PCIERATEQPLL0_int [ 2:0]), .PCIERATEQPLL1 (GTYE4_COMMON_PCIERATEQPLL1_int [ 2:0]), .PMARSVD0 (GTYE4_COMMON_PMARSVD0_int [ 7:0]), .PMARSVD1 (GTYE4_COMMON_PMARSVD1_int [ 7:0]), .QPLL0CLKRSVD0 (GTYE4_COMMON_QPLL0CLKRSVD0_int [ 0:0]), .QPLL0CLKRSVD1 (GTYE4_COMMON_QPLL0CLKRSVD1_int [ 0:0]), .QPLL0FBDIV (GTYE4_COMMON_QPLL0FBDIV_int [ 7:0]), .QPLL0LOCKDETCLK (GTYE4_COMMON_QPLL0LOCKDETCLK_int [ 0:0]), .QPLL0LOCKEN (GTYE4_COMMON_QPLL0LOCKEN_int [ 0:0]), .QPLL0PD (GTYE4_COMMON_QPLL0PD_int [ 0:0]), .QPLL0REFCLKSEL (GTYE4_COMMON_QPLL0REFCLKSEL_int [ 2:0]), .QPLL0RESET (GTYE4_COMMON_QPLL0RESET_int [ 0:0]), .QPLL1CLKRSVD0 (GTYE4_COMMON_QPLL1CLKRSVD0_int [ 0:0]), .QPLL1CLKRSVD1 (GTYE4_COMMON_QPLL1CLKRSVD1_int [ 0:0]), .QPLL1FBDIV (GTYE4_COMMON_QPLL1FBDIV_int [ 7:0]), .QPLL1LOCKDETCLK (GTYE4_COMMON_QPLL1LOCKDETCLK_int [ 0:0]), .QPLL1LOCKEN (GTYE4_COMMON_QPLL1LOCKEN_int [ 0:0]), .QPLL1PD (GTYE4_COMMON_QPLL1PD_int [ 0:0]), .QPLL1REFCLKSEL (GTYE4_COMMON_QPLL1REFCLKSEL_int [ 2:0]), .QPLL1RESET (GTYE4_COMMON_QPLL1RESET_int [ 0:0]), .QPLLRSVD1 (GTYE4_COMMON_QPLLRSVD1_int [ 7:0]), .QPLLRSVD2 (GTYE4_COMMON_QPLLRSVD2_int [ 4:0]), .QPLLRSVD3 (GTYE4_COMMON_QPLLRSVD3_int [ 4:0]), .QPLLRSVD4 (GTYE4_COMMON_QPLLRSVD4_int [ 7:0]), .RCALENB (GTYE4_COMMON_RCALENB_int [ 0:0]), .SDM0DATA (GTYE4_COMMON_SDM0DATA_int [24:0]), .SDM0RESET (GTYE4_COMMON_SDM0RESET_int [ 0:0]), .SDM0TOGGLE (GTYE4_COMMON_SDM0TOGGLE_int [ 0:0]), .SDM0WIDTH (GTYE4_COMMON_SDM0WIDTH_int [ 1:0]), .SDM1DATA (GTYE4_COMMON_SDM1DATA_int [24:0]), .SDM1RESET (GTYE4_COMMON_SDM1RESET_int [ 0:0]), .SDM1TOGGLE (GTYE4_COMMON_SDM1TOGGLE_int [ 0:0]), .SDM1WIDTH (GTYE4_COMMON_SDM1WIDTH_int [ 1:0]), .UBCFGSTREAMEN (GTYE4_COMMON_UBCFGSTREAMEN_int [ 0:0]), .UBDO (GTYE4_COMMON_UBDO_int [15:0]), .UBDRDY (GTYE4_COMMON_UBDRDY_int [ 0:0]), .UBENABLE (GTYE4_COMMON_UBENABLE_int [ 0:0]), .UBGPI (GTYE4_COMMON_UBGPI_int [ 1:0]), .UBINTR (GTYE4_COMMON_UBINTR_int [ 1:0]), .UBIOLMBRST (GTYE4_COMMON_UBIOLMBRST_int [ 0:0]), .UBMBRST (GTYE4_COMMON_UBMBRST_int [ 0:0]), .UBMDMCAPTURE (GTYE4_COMMON_UBMDMCAPTURE_int [ 0:0]), .UBMDMDBGRST (GTYE4_COMMON_UBMDMDBGRST_int [ 0:0]), .UBMDMDBGUPDATE (GTYE4_COMMON_UBMDMDBGUPDATE_int [ 0:0]), .UBMDMREGEN (GTYE4_COMMON_UBMDMREGEN_int [ 3:0]), .UBMDMSHIFT (GTYE4_COMMON_UBMDMSHIFT_int [ 0:0]), .UBMDMSYSRST (GTYE4_COMMON_UBMDMSYSRST_int [ 0:0]), .UBMDMTCK (GTYE4_COMMON_UBMDMTCK_int [ 0:0]), .UBMDMTDI (GTYE4_COMMON_UBMDMTDI_int [ 0:0]), .DRPDO (GTYE4_COMMON_DRPDO [15:0]), .DRPRDY (GTYE4_COMMON_DRPRDY [ 0:0]), .PMARSVDOUT0 (GTYE4_COMMON_PMARSVDOUT0 [ 7:0]), .PMARSVDOUT1 (GTYE4_COMMON_PMARSVDOUT1 [ 7:0]), .QPLL0FBCLKLOST (GTYE4_COMMON_QPLL0FBCLKLOST [ 0:0]), .QPLL0LOCK (GTYE4_COMMON_QPLL0LOCK [ 0:0]), .QPLL0OUTCLK (GTYE4_COMMON_QPLL0OUTCLK [ 0:0]), .QPLL0OUTREFCLK (GTYE4_COMMON_QPLL0OUTREFCLK [ 0:0]), .QPLL0REFCLKLOST (GTYE4_COMMON_QPLL0REFCLKLOST [ 0:0]), .QPLL1FBCLKLOST (GTYE4_COMMON_QPLL1FBCLKLOST [ 0:0]), .QPLL1LOCK (GTYE4_COMMON_QPLL1LOCK [ 0:0]), .QPLL1OUTCLK (GTYE4_COMMON_QPLL1OUTCLK [ 0:0]), .QPLL1OUTREFCLK (GTYE4_COMMON_QPLL1OUTREFCLK [ 0:0]), .QPLL1REFCLKLOST (GTYE4_COMMON_QPLL1REFCLKLOST [ 0:0]), .QPLLDMONITOR0 (GTYE4_COMMON_QPLLDMONITOR0 [ 7:0]), .QPLLDMONITOR1 (GTYE4_COMMON_QPLLDMONITOR1 [ 7:0]), .REFCLKOUTMONITOR0 (GTYE4_COMMON_REFCLKOUTMONITOR0 [ 0:0]), .REFCLKOUTMONITOR1 (GTYE4_COMMON_REFCLKOUTMONITOR1 [ 0:0]), .RXRECCLK0SEL (GTYE4_COMMON_RXRECCLK0SEL [ 1:0]), .RXRECCLK1SEL (GTYE4_COMMON_RXRECCLK1SEL [ 1:0]), .SDM0FINALOUT (GTYE4_COMMON_SDM0FINALOUT [ 3:0]), .SDM0TESTDATA (GTYE4_COMMON_SDM0TESTDATA [14:0]), .SDM1FINALOUT (GTYE4_COMMON_SDM1FINALOUT [ 3:0]), .SDM1TESTDATA (GTYE4_COMMON_SDM1TESTDATA [14:0]), .UBDADDR (GTYE4_COMMON_UBDADDR [15:0]), .UBDEN (GTYE4_COMMON_UBDEN [ 0:0]), .UBDI (GTYE4_COMMON_UBDI [15:0]), .UBDWE (GTYE4_COMMON_UBDWE [ 0:0]), .UBMDMTDO (GTYE4_COMMON_UBMDMTDO [ 0:0]), .UBRSVDOUT (GTYE4_COMMON_UBRSVDOUT [ 0:0]), .UBTXUART (GTYE4_COMMON_UBTXUART [ 0:0]) ); end endgenerate endmodule
module sky130_fd_sc_hdll__inv_4 ( Y , A , VPWR, VGND, VPB , VNB ); output Y ; input A ; input VPWR; input VGND; input VPB ; input VNB ; sky130_fd_sc_hdll__inv base ( .Y(Y), .A(A), .VPWR(VPWR), .VGND(VGND), .VPB(VPB), .VNB(VNB) ); endmodule
module sky130_fd_sc_hdll__inv_4 ( Y, A ); output Y; input A; // Voltage supply signals supply1 VPWR; supply0 VGND; supply1 VPB ; supply0 VNB ; sky130_fd_sc_hdll__inv base ( .Y(Y), .A(A) ); endmodule
module map_wall_edge ( input pixel_clk_i, input [11:0] pixel_x_i, input [11:0] pixel_y_i, input pixel_valid_i, output [9:0] led_strip_address_o, output led_strip_address_valid_o ); //parameter VSYNC_VBI_LINE_COUNT = 29; // good for 24-bit color mode? parameter VSYNC_VBI_LINE_COUNT = 16; // good for 16-bit color mode? parameter X = 0; parameter Y_START = 2 + VSYNC_VBI_LINE_COUNT; parameter Y_END = Y_START + 237; assign led_strip_address_valid_o = pixel_valid_i && (pixel_x_i == X) && (pixel_y_i >= Y_START) && (pixel_y_i < Y_END); assign led_strip_address_o = pixel_y_i - Y_START; endmodule
module will not accept new data from the FIFO assign hold = 1'b0; usb_input usbtest( .clk(clock), .reset(reset), // USB FTDI I/O .data(data[7:0]), .rxf(rxf), .rd(rd), // Interface .out(out[7:0]), .newout(newout), .hold(hold) ); wire [3:0] hundreds; wire [3:0] tens; wire [3:0] ones; BCD inputToBCD( .number({1'b0, audioSelector}), .hundreds(hundreds), .tens(tens), .ones(ones) ); reg lastAudioTrigger; reg [2:0] third = 0; reg lastReady; // Set of 4 addresses that represent a playback sequence // First track in bottom 23 bits[22:0]. Last track in top bits [91:68]. reg [91:0] playbackSeq = 2; reg [22:0] trackEndAddr = 0; reg playing = 0; reg lastPlaying = 0; reg [15:0] bytesRxed = 0; assign hexdisp = {playbackSeq[30:23], playbackSeq[7:0], 1'h0 ,trackEndAddr, 1'h0, raddr[22:0]}; reg [7:0] dataFromFifo; always @ (posedge rd) begin dataFromFifo <= out; // out & data have same results end always @ (posedge clock) begin lastAudioTrigger <= audioTrigger; lastReady <= ready; lastPlaying <= playing; if (startSwitch) begin // write USB RX data if switch is up if (writeSwitch) begin writemode <= 1'b1; doread <= 1'b0; //dowrite <= 1'b0; // only write on new data // WATCH OUT!! if (newout) begin bytesRxed <= bytesRxed + 1; wdata <= {dataFromFifo, 8'b0};//{out, 8'b0}; dowrite <= 1'b1; end end // if button is DOWN - scroll through addresses via buttons if (~writeSwitch) begin dowrite <= 1'b0; writemode <= 1'b0; doread <= 1'b1; if (playing & ready) begin // REMOVE audioTrigger if (raddr < trackEndAddr) begin // Normal 48K Playback raddr <= raddr + 1; to_ac97_data <= frdata[15:8]; // PUT BACK end else begin if (playbackSeq[45:23] < UNUSED_INDEX) begin // change raddr to next track raddr <= playbackSeq[45:23] * TRACK_LENGTH; // shift playbackSeq down playbackSeq <= {UNUSED_INDEX, playbackSeq[91:23]}; // update trackEndAddr trackEndAddr <= playbackSeq[45:23] * TRACK_LENGTH + TRACK_LENGTH; end else if (playbackSeq[45:23] == UNUSED_INDEX) begin playing <= 0; raddr <= 0; // reset for safety - lower than UNUSED_ADDR end end end // if (playing & audioTrigger & ready) // if entering this state, assign start address if (audioTrigger & ~lastAudioTrigger) begin playing <= 1; case(ones) 0: playbackSeq[91:23] <= {UNUSED_INDEX, USED_INDEX, PERCENT_INDEX}; 1: playbackSeq[91:23] <= {USED_INDEX, PERCENT_INDEX, ONE_INDEX}; 2: playbackSeq[91:23] <= {USED_INDEX, PERCENT_INDEX, TWO_INDEX}; 3: playbackSeq[91:23] <= {USED_INDEX, PERCENT_INDEX, THREE_INDEX}; 4: playbackSeq[91:23] <= {USED_INDEX, PERCENT_INDEX, FOUR_INDEX}; 5: playbackSeq[91:23] <= {USED_INDEX, PERCENT_INDEX, FIVE_INDEX}; 6: playbackSeq[91:23] <= {USED_INDEX, PERCENT_INDEX, SIX_INDEX}; 7: playbackSeq[91:23] <= {USED_INDEX, PERCENT_INDEX, SEVEN_INDEX}; 8: playbackSeq[91:23] <= {USED_INDEX, PERCENT_INDEX, EIGHT_INDEX}; 9: playbackSeq[91:23] <= {USED_INDEX, PERCENT_INDEX, NINE_INDEX}; default: playbackSeq <= {USED_INDEX, PERCENT_INDEX, UNUSED_INDEX}; // error endcase case (tens) 0: playbackSeq[22:0] <= SKIP_INDEX; 1: playbackSeq[22:0] <= TEN_INDEX; 2: playbackSeq[22:0] <= TWENTY_INDEX; 3: playbackSeq[22:0] <= THIRTY_INDEX; 4: playbackSeq[22:0] <= FOURTY_INDEX; 5: playbackSeq[22:0] <= FIFTY_INDEX; 6: playbackSeq[22:0] <= SIXTY_INDEX; 7: playbackSeq[22:0] <= SEVENTY_INDEX; 8: playbackSeq[22:0] <= EIGHTY_INDEX; 9: playbackSeq[22:0] <= NINETY_INDEX; default: playbackSeq[22:0] <= UNUSED_INDEX; endcase case (hundreds) 0: begin end 1: playbackSeq <= {UNUSED_INDEX, USED_INDEX, PERCENT_INDEX, HUNDRED_INDEX}; // error endcase case (audioSelector) 11: playbackSeq <= {UNUSED_INDEX, USED_INDEX, PERCENT_INDEX, ELEVEN_INDEX}; 12: playbackSeq <= {UNUSED_INDEX, USED_INDEX, PERCENT_INDEX, TWELVE_INDEX}; 13: playbackSeq <= {UNUSED_INDEX, USED_INDEX, PERCENT_INDEX, THIRTEEN_INDEX}; 14: playbackSeq <= {UNUSED_INDEX, USED_INDEX, PERCENT_INDEX, FOURTEEN_INDEX}; 15: playbackSeq <= {UNUSED_INDEX, USED_INDEX, PERCENT_INDEX, FIFTEEN_INDEX}; 16: playbackSeq <= {USED_INDEX, PERCENT_INDEX, TEEN_INDEX, SIX_INDEX}; 17: playbackSeq <= {USED_INDEX, PERCENT_INDEX, TEEN_INDEX, SEVEN_INDEX}; 18: playbackSeq <= {USED_INDEX, PERCENT_INDEX, TEEN_INDEX, EIGHT_INDEX}; 19: playbackSeq <= {USED_INDEX, PERCENT_INDEX, TEEN_INDEX, NINE_INDEX}; default: begin end endcase end // if (audioTrigger & ~lastAudioTrigger) // just started playing - need to set raddr // Assuming this happens once playbackSeq has been properly set if (playing & ~lastPlaying) begin if (playbackSeq[22:0] == SKIP_INDEX) begin playbackSeq <= {UNUSED_INDEX, playbackSeq[91:23]}; raddr <= playbackSeq[45:23] * TRACK_LENGTH; trackEndAddr <= playbackSeq[45:23] * TRACK_LENGTH + TRACK_LENGTH; end else begin raddr <= playbackSeq[22:0] * TRACK_LENGTH; trackEndAddr <= playbackSeq[22:0] * TRACK_LENGTH + TRACK_LENGTH; end end end // if (~writeSwitch) end // if (startSwitch) else begin // TO ENABLE RESET: // writemode <= 1 // dowrite <= 0 // doread <= 0 // to be safe // Reset First, Write Second, Read Later writemode <= 1'h1; doread <= 1'h0; dowrite <= 1'h0; end end // always @ endmodule
module IOBUFDS_INTERMDISABLE (O, IO, IOB, I, IBUFDISABLE, INTERMDISABLE, T); `ifdef XIL_TIMING parameter LOC = "UNPLACED"; `endif // `ifdef XIL_TIMING parameter DIFF_TERM = "FALSE"; parameter DQS_BIAS = "FALSE"; parameter IBUF_LOW_PWR = "TRUE"; parameter IOSTANDARD = "DEFAULT"; parameter SIM_DEVICE = "7SERIES"; parameter SLEW = "SLOW"; parameter USE_IBUFDISABLE = "TRUE"; localparam MODULE_NAME = "IOBUFDS_INTERMDISABLE"; output O; inout IO; inout IOB; input I; input IBUFDISABLE; input INTERMDISABLE; input T; wire i_in, io_in, iob_in, ibufdisable_in, intermdisable_in, t_in; reg o_out, io_out, iob_out; reg O_int; wire out_val; reg DQS_BIAS_BINARY = 1'b0; reg USE_IBUFDISABLE_BINARY = 1'b0; wire t_or_gts; wire not_t_or_ibufdisable; // wire disable_out; tri0 GTS = glbl.GTS; assign O = (USE_IBUFDISABLE_BINARY == 1'b0) ? o_out : ((not_t_or_ibufdisable === 1'b1) ? out_val : ((not_t_or_ibufdisable === 1'b0) ? o_out : 1'bx)); assign intermdisable_in = INTERMDISABLE; assign i_in = I; assign ibufdisable_in = IBUFDISABLE; assign t_in = T; assign io_in = IO; assign iob_in = IOB; assign t_or_gts = GTS || t_in; assign IO = t_or_gts ? 1'bz : i_in; assign IOB = t_or_gts ? 1'bz : ~i_in; // assign disable_out = intermdisable_in && ibufdisable_in; assign not_t_or_ibufdisable = ~t_in || ibufdisable_in; initial begin case (DQS_BIAS) "TRUE" : DQS_BIAS_BINARY <= #1 1'b1; "FALSE" : DQS_BIAS_BINARY <= #1 1'b0; default : begin $display("Attribute Syntax Error : The attribute DQS_BIAS on %s instance %m is set to %s. Legal values for this attribute are TRUE or FALSE.", MODULE_NAME, DQS_BIAS); #1 $finish; end endcase case (DIFF_TERM) "TRUE", "FALSE" : ; default : begin $display("Attribute Syntax Error : The attribute DIFF_TERM on %s instance %m is set to %s. Legal values for this attribute are TRUE or FALSE.", MODULE_NAME, DIFF_TERM); #1 $finish; end endcase // case(DIFF_TERM) case (IBUF_LOW_PWR) "FALSE", "TRUE" : ; default : begin $display("Attribute Syntax Error : The attribute IBUF_LOW_PWR on %s instance %m is set to %s. Legal values for this attribute are TRUE or FALSE.", MODULE_NAME, IBUF_LOW_PWR); #1 $finish; end endcase if((IOSTANDARD == "LVDS_25") || (IOSTANDARD == "LVDSEXT_25")) begin $display("DRC Warning : The IOSTANDARD attribute on IOBUFDS_DCIEN instance %m is set to %s. LVDS_25 is a fixed impedance structure optimized to 100ohm differential. If the intended usage is a bus architecture, please use BLVDS. This is only intended to be used in point to point transmissions that do not have turn around timing requirements", IOSTANDARD); end case (USE_IBUFDISABLE) "TRUE" : USE_IBUFDISABLE_BINARY <= #1 1'b1; "FALSE" : USE_IBUFDISABLE_BINARY <= #1 1'b0; default : begin $display("Attribute Syntax Error : The attribute USE_IBUFDISABLE on %s instance %m is set to %s. Legal values for this attribute are TRUE or FALSE.", MODULE_NAME, USE_IBUFDISABLE); #1 $finish; end endcase if ((SIM_DEVICE != "7SERIES") && (SIM_DEVICE != "ULTRASCALE") && (SIM_DEVICE != "VERSAL_AI_CORE") && (SIM_DEVICE != "VERSAL_AI_CORE_ES1") && (SIM_DEVICE != "VERSAL_AI_CORE_ES2") && (SIM_DEVICE != "VERSAL_AI_EDGE") && (SIM_DEVICE != "VERSAL_AI_EDGE_ES1") && (SIM_DEVICE != "VERSAL_AI_EDGE_ES2") && (SIM_DEVICE != "VERSAL_AI_RF") && (SIM_DEVICE != "VERSAL_AI_RF_ES1") && (SIM_DEVICE != "VERSAL_AI_RF_ES2") && (SIM_DEVICE != "VERSAL_HBM") && (SIM_DEVICE != "VERSAL_HBM_ES1") && (SIM_DEVICE != "VERSAL_HBM_ES2") && (SIM_DEVICE != "VERSAL_PREMIUM") && (SIM_DEVICE != "VERSAL_PREMIUM_ES1") && (SIM_DEVICE != "VERSAL_PREMIUM_ES2") && (SIM_DEVICE != "VERSAL_PRIME") && (SIM_DEVICE != "VERSAL_PRIME_ES1") && (SIM_DEVICE != "VERSAL_PRIME_ES2")) begin $display("Error: [Unisim %s-106] SIM_DEVICE attribute is set to %s. Legal values for this attribute are 7SERIES, ULTRASCALE, VERSAL_AI_CORE, VERSAL_AI_CORE_ES1, VERSAL_AI_CORE_ES2, VERSAL_AI_EDGE, VERSAL_AI_EDGE_ES1, VERSAL_AI_EDGE_ES2, VERSAL_AI_RF, VERSAL_AI_RF_ES1, VERSAL_AI_RF_ES2, VERSAL_HBM, VERSAL_HBM_ES1, VERSAL_HBM_ES2, VERSAL_PREMIUM, VERSAL_PREMIUM_ES1, VERSAL_PREMIUM_ES2, VERSAL_PRIME, VERSAL_PRIME_ES1 or VERSAL_PRIME_ES2. Instance: %m", MODULE_NAME, SIM_DEVICE); #1 $finish; end end generate case (SIM_DEVICE) "7SERIES" : begin assign out_val = 1'b1; end default : begin assign out_val = 1'b0; end endcase endgenerate always @(io_in or iob_in or DQS_BIAS_BINARY) begin if (io_in == 1'b1 && iob_in == 1'b0) o_out <= 1'b1; else if (io_in == 1'b0 && iob_in == 1'b1) o_out <= 1'b0; else if ((io_in === 1'bz || io_in == 1'b0) && (iob_in === 1'bz || iob_in == 1'b1)) if (DQS_BIAS_BINARY == 1'b1) o_out <= 1'b0; else o_out <= 1'bx; else if (io_in === 1'bx || iob_in === 1'bx) o_out <= 1'bx; end `ifdef XIL_TIMING specify (I => IO) = (0:0:0, 0:0:0); (I => IOB) = (0:0:0, 0:0:0); (IO => O) = (0:0:0, 0:0:0); (IO => IOB) = (0:0:0, 0:0:0); (IOB => O) = (0:0:0, 0:0:0); (IOB => IO) = (0:0:0, 0:0:0); (IBUFDISABLE => O) = (0:0:0, 0:0:0); (IBUFDISABLE => IO) = (0:0:0, 0:0:0); (IBUFDISABLE => IOB) = (0:0:0, 0:0:0); (INTERMDISABLE => O) = (0:0:0, 0:0:0); (INTERMDISABLE => IO) = (0:0:0, 0:0:0); (INTERMDISABLE => IOB) = (0:0:0, 0:0:0); (I => O) = (0:0:0, 0:0:0); (T => O) = (0:0:0, 0:0:0); (T => IO) = (0:0:0, 0:0:0); (T => IOB) = (0:0:0, 0:0:0); specparam PATHPULSE$ = 0; endspecify `endif // `ifdef XIL_TIMING endmodule
module source #(parameter Thold = 5) ( input wire clk, // -- input -------------------------------------------------- >>>>> input wire active_des_engine_din, // -- output ------------------------------------------------- >>>>> output reg start_strobe_dout, output reg [0:63] plaintext_dout, output reg [0:63] key_dout ); task encrypt; input [0:63] plaintext; input [0:63] key; begin if (active_des_engine_din) wait(active_des_engine_din == 0); plaintext_dout = plaintext; key_dout = key; start_strobe_dout = 1; @(posedge clk); #(Thold); //$display("plaintext:", plaintext_dout); //$display("key:", key_dout); plaintext_dout = {64{1'bx}}; key_dout = {64{1'bx}}; start_strobe_dout = 0; end endtask : encrypt endmodule
module DecodeUnitRegisterTwo( input CLK, input input_IN, wren_IN, input [2:0] writeAd_IN, input ADR_MUX_IN, write_IN, PC_load_IN, input SPR_w_IN, SPR_i_IN, SPR_d_IN, input [2:0] cond_IN, op2_IN, input SW_IN, MAD_MUX_IN, output input_OUT, wren_OUT, output [2:0] writeAd_OUT, output ADR_MUX_OUT, write_OUT, PC_load_OUT, output SPR_w_OUT, SPR_i_OUT, SPR_d_OUT, output [2:0] cond_OUT, op2_OUT, output SW_OUT, MAD_MUX_OUT); reg in, wren; reg [2:0] writeAd; reg adrmux, write, pcload; reg [2:0] cond, opera2; reg sprw,spri,sprd; reg sw, mad; always @ (posedge CLK) begin in <= input_IN; wren <= wren_IN; writeAd <= writeAd_IN; adrmux <= ADR_MUX_IN; write <= write_IN; pcload <= PC_load_IN; cond <= cond_IN; opera2 <= op2_IN; sprw <= SPR_w_IN; spri <= SPR_i_IN; sprd <= SPR_d_IN; sw <= SW_IN; mad <= MAD_MUX_IN; end // always @ (posedge CLK) assign input_OUT = in; assign wren_OUT = wren; assign writeAd_OUT = writeAd; assign ADR_MUX_OUT = adrmux; assign write_OUT = write; assign PC_load_OUT = pcload; assign cond_OUT = cond; assign op2_OUT = opera2; assign SPR_w_OUT = sprw; assign SPR_i_OUT = spri; assign SPR_d_OUT = sprd; assign SW_OUT = sw; assign MAD_MUX_OUT = mad; endmodule
module block_design_processing_system7_0_0 ( USB0_PORT_INDCTL, USB0_VBUS_PWRSELECT, USB0_VBUS_PWRFAULT, M_AXI_GP0_ARVALID, M_AXI_GP0_AWVALID, M_AXI_GP0_BREADY, M_AXI_GP0_RREADY, M_AXI_GP0_WLAST, M_AXI_GP0_WVALID, M_AXI_GP0_ARID, M_AXI_GP0_AWID, M_AXI_GP0_WID, M_AXI_GP0_ARBURST, M_AXI_GP0_ARLOCK, M_AXI_GP0_ARSIZE, M_AXI_GP0_AWBURST, M_AXI_GP0_AWLOCK, M_AXI_GP0_AWSIZE, M_AXI_GP0_ARPROT, M_AXI_GP0_AWPROT, M_AXI_GP0_ARADDR, M_AXI_GP0_AWADDR, M_AXI_GP0_WDATA, M_AXI_GP0_ARCACHE, M_AXI_GP0_ARLEN, M_AXI_GP0_ARQOS, M_AXI_GP0_AWCACHE, M_AXI_GP0_AWLEN, M_AXI_GP0_AWQOS, M_AXI_GP0_WSTRB, M_AXI_GP0_ACLK, M_AXI_GP0_ARREADY, M_AXI_GP0_AWREADY, M_AXI_GP0_BVALID, M_AXI_GP0_RLAST, M_AXI_GP0_RVALID, M_AXI_GP0_WREADY, M_AXI_GP0_BID, M_AXI_GP0_RID, M_AXI_GP0_BRESP, M_AXI_GP0_RRESP, M_AXI_GP0_RDATA, S_AXI_HP0_ARREADY, S_AXI_HP0_AWREADY, S_AXI_HP0_BVALID, S_AXI_HP0_RLAST, S_AXI_HP0_RVALID, S_AXI_HP0_WREADY, S_AXI_HP0_BRESP, S_AXI_HP0_RRESP, S_AXI_HP0_BID, S_AXI_HP0_RID, S_AXI_HP0_RDATA, S_AXI_HP0_RCOUNT, S_AXI_HP0_WCOUNT, S_AXI_HP0_RACOUNT, S_AXI_HP0_WACOUNT, S_AXI_HP0_ACLK, S_AXI_HP0_ARVALID, S_AXI_HP0_AWVALID, S_AXI_HP0_BREADY, S_AXI_HP0_RDISSUECAP1_EN, S_AXI_HP0_RREADY, S_AXI_HP0_WLAST, S_AXI_HP0_WRISSUECAP1_EN, S_AXI_HP0_WVALID, S_AXI_HP0_ARBURST, S_AXI_HP0_ARLOCK, S_AXI_HP0_ARSIZE, S_AXI_HP0_AWBURST, S_AXI_HP0_AWLOCK, S_AXI_HP0_AWSIZE, S_AXI_HP0_ARPROT, S_AXI_HP0_AWPROT, S_AXI_HP0_ARADDR, S_AXI_HP0_AWADDR, S_AXI_HP0_ARCACHE, S_AXI_HP0_ARLEN, S_AXI_HP0_ARQOS, S_AXI_HP0_AWCACHE, S_AXI_HP0_AWLEN, S_AXI_HP0_AWQOS, S_AXI_HP0_ARID, S_AXI_HP0_AWID, S_AXI_HP0_WID, S_AXI_HP0_WDATA, S_AXI_HP0_WSTRB, IRQ_F2P, FCLK_CLK0, FCLK_RESET0_N, MIO, DDR_CAS_n, DDR_CKE, DDR_Clk_n, DDR_Clk, DDR_CS_n, DDR_DRSTB, DDR_ODT, DDR_RAS_n, DDR_WEB, DDR_BankAddr, DDR_Addr, DDR_VRN, DDR_VRP, DDR_DM, DDR_DQ, DDR_DQS_n, DDR_DQS, PS_SRSTB, PS_CLK, PS_PORB ); (* X_INTERFACE_INFO = "xilinx.com:display_processing_system7:usbctrl:1.0 USBIND_0 PORT_INDCTL" *) output wire [1 : 0] USB0_PORT_INDCTL; (* X_INTERFACE_INFO = "xilinx.com:display_processing_system7:usbctrl:1.0 USBIND_0 VBUS_PWRSELECT" *) output wire USB0_VBUS_PWRSELECT; (* X_INTERFACE_INFO = "xilinx.com:display_processing_system7:usbctrl:1.0 USBIND_0 VBUS_PWRFAULT" *) input wire USB0_VBUS_PWRFAULT; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 ARVALID" *) output wire M_AXI_GP0_ARVALID; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 AWVALID" *) output wire M_AXI_GP0_AWVALID; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 BREADY" *) output wire M_AXI_GP0_BREADY; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 RREADY" *) output wire M_AXI_GP0_RREADY; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 WLAST" *) output wire M_AXI_GP0_WLAST; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 WVALID" *) output wire M_AXI_GP0_WVALID; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 ARID" *) output wire [11 : 0] M_AXI_GP0_ARID; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 AWID" *) output wire [11 : 0] M_AXI_GP0_AWID; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 WID" *) output wire [11 : 0] M_AXI_GP0_WID; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 ARBURST" *) output wire [1 : 0] M_AXI_GP0_ARBURST; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 ARLOCK" *) output wire [1 : 0] M_AXI_GP0_ARLOCK; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 ARSIZE" *) output wire [2 : 0] M_AXI_GP0_ARSIZE; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 AWBURST" *) output wire [1 : 0] M_AXI_GP0_AWBURST; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 AWLOCK" *) output wire [1 : 0] M_AXI_GP0_AWLOCK; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 AWSIZE" *) output wire [2 : 0] M_AXI_GP0_AWSIZE; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 ARPROT" *) output wire [2 : 0] M_AXI_GP0_ARPROT; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 AWPROT" *) output wire [2 : 0] M_AXI_GP0_AWPROT; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 ARADDR" *) output wire [31 : 0] M_AXI_GP0_ARADDR; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 AWADDR" *) output wire [31 : 0] M_AXI_GP0_AWADDR; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 WDATA" *) output wire [31 : 0] M_AXI_GP0_WDATA; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 ARCACHE" *) output wire [3 : 0] M_AXI_GP0_ARCACHE; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 ARLEN" *) output wire [3 : 0] M_AXI_GP0_ARLEN; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 ARQOS" *) output wire [3 : 0] M_AXI_GP0_ARQOS; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 AWCACHE" *) output wire [3 : 0] M_AXI_GP0_AWCACHE; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 AWLEN" *) output wire [3 : 0] M_AXI_GP0_AWLEN; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 AWQOS" *) output wire [3 : 0] M_AXI_GP0_AWQOS; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 WSTRB" *) output wire [3 : 0] M_AXI_GP0_WSTRB; (* X_INTERFACE_INFO = "xilinx.com:signal:clock:1.0 M_AXI_GP0_ACLK CLK" *) input wire M_AXI_GP0_ACLK; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 ARREADY" *) input wire M_AXI_GP0_ARREADY; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 AWREADY" *) input wire M_AXI_GP0_AWREADY; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 BVALID" *) input wire M_AXI_GP0_BVALID; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 RLAST" *) input wire M_AXI_GP0_RLAST; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 RVALID" *) input wire M_AXI_GP0_RVALID; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 WREADY" *) input wire M_AXI_GP0_WREADY; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 BID" *) input wire [11 : 0] M_AXI_GP0_BID; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 RID" *) input wire [11 : 0] M_AXI_GP0_RID; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 BRESP" *) input wire [1 : 0] M_AXI_GP0_BRESP; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 RRESP" *) input wire [1 : 0] M_AXI_GP0_RRESP; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 M_AXI_GP0 RDATA" *) input wire [31 : 0] M_AXI_GP0_RDATA; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 ARREADY" *) output wire S_AXI_HP0_ARREADY; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 AWREADY" *) output wire S_AXI_HP0_AWREADY; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 BVALID" *) output wire S_AXI_HP0_BVALID; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 RLAST" *) output wire S_AXI_HP0_RLAST; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 RVALID" *) output wire S_AXI_HP0_RVALID; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 WREADY" *) output wire S_AXI_HP0_WREADY; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 BRESP" *) output wire [1 : 0] S_AXI_HP0_BRESP; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 RRESP" *) output wire [1 : 0] S_AXI_HP0_RRESP; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 BID" *) output wire [5 : 0] S_AXI_HP0_BID; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 RID" *) output wire [5 : 0] S_AXI_HP0_RID; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 RDATA" *) output wire [63 : 0] S_AXI_HP0_RDATA; (* X_INTERFACE_INFO = "xilinx.com:display_processing_system7:hpstatusctrl:1.0 S_AXI_HP0_FIFO_CTRL RCOUNT" *) output wire [7 : 0] S_AXI_HP0_RCOUNT; (* X_INTERFACE_INFO = "xilinx.com:display_processing_system7:hpstatusctrl:1.0 S_AXI_HP0_FIFO_CTRL WCOUNT" *) output wire [7 : 0] S_AXI_HP0_WCOUNT; (* X_INTERFACE_INFO = "xilinx.com:display_processing_system7:hpstatusctrl:1.0 S_AXI_HP0_FIFO_CTRL RACOUNT" *) output wire [2 : 0] S_AXI_HP0_RACOUNT; (* X_INTERFACE_INFO = "xilinx.com:display_processing_system7:hpstatusctrl:1.0 S_AXI_HP0_FIFO_CTRL WACOUNT" *) output wire [5 : 0] S_AXI_HP0_WACOUNT; (* X_INTERFACE_INFO = "xilinx.com:signal:clock:1.0 S_AXI_HP0_ACLK CLK" *) input wire S_AXI_HP0_ACLK; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 ARVALID" *) input wire S_AXI_HP0_ARVALID; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 AWVALID" *) input wire S_AXI_HP0_AWVALID; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 BREADY" *) input wire S_AXI_HP0_BREADY; (* X_INTERFACE_INFO = "xilinx.com:display_processing_system7:hpstatusctrl:1.0 S_AXI_HP0_FIFO_CTRL RDISSUECAPEN" *) input wire S_AXI_HP0_RDISSUECAP1_EN; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 RREADY" *) input wire S_AXI_HP0_RREADY; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 WLAST" *) input wire S_AXI_HP0_WLAST; (* X_INTERFACE_INFO = "xilinx.com:display_processing_system7:hpstatusctrl:1.0 S_AXI_HP0_FIFO_CTRL WRISSUECAPEN" *) input wire S_AXI_HP0_WRISSUECAP1_EN; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 WVALID" *) input wire S_AXI_HP0_WVALID; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 ARBURST" *) input wire [1 : 0] S_AXI_HP0_ARBURST; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 ARLOCK" *) input wire [1 : 0] S_AXI_HP0_ARLOCK; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 ARSIZE" *) input wire [2 : 0] S_AXI_HP0_ARSIZE; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 AWBURST" *) input wire [1 : 0] S_AXI_HP0_AWBURST; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 AWLOCK" *) input wire [1 : 0] S_AXI_HP0_AWLOCK; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 AWSIZE" *) input wire [2 : 0] S_AXI_HP0_AWSIZE; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 ARPROT" *) input wire [2 : 0] S_AXI_HP0_ARPROT; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 AWPROT" *) input wire [2 : 0] S_AXI_HP0_AWPROT; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 ARADDR" *) input wire [31 : 0] S_AXI_HP0_ARADDR; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 AWADDR" *) input wire [31 : 0] S_AXI_HP0_AWADDR; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 ARCACHE" *) input wire [3 : 0] S_AXI_HP0_ARCACHE; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 ARLEN" *) input wire [3 : 0] S_AXI_HP0_ARLEN; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 ARQOS" *) input wire [3 : 0] S_AXI_HP0_ARQOS; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 AWCACHE" *) input wire [3 : 0] S_AXI_HP0_AWCACHE; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 AWLEN" *) input wire [3 : 0] S_AXI_HP0_AWLEN; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 AWQOS" *) input wire [3 : 0] S_AXI_HP0_AWQOS; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 ARID" *) input wire [5 : 0] S_AXI_HP0_ARID; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 AWID" *) input wire [5 : 0] S_AXI_HP0_AWID; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 WID" *) input wire [5 : 0] S_AXI_HP0_WID; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 WDATA" *) input wire [63 : 0] S_AXI_HP0_WDATA; (* X_INTERFACE_INFO = "xilinx.com:interface:aximm:1.0 S_AXI_HP0 WSTRB" *) input wire [7 : 0] S_AXI_HP0_WSTRB; (* X_INTERFACE_INFO = "xilinx.com:signal:interrupt:1.0 IRQ_F2P INTERRUPT" *) input wire [0 : 0] IRQ_F2P; (* X_INTERFACE_INFO = "xilinx.com:signal:clock:1.0 FCLK_CLK0 CLK" *) output wire FCLK_CLK0; (* X_INTERFACE_INFO = "xilinx.com:signal:reset:1.0 FCLK_RESET0_N RST" *) output wire FCLK_RESET0_N; (* X_INTERFACE_INFO = "xilinx.com:display_processing_system7:fixedio:1.0 FIXED_IO MIO" *) inout wire [53 : 0] MIO; (* X_INTERFACE_INFO = "xilinx.com:interface:ddrx:1.0 DDR CAS_N" *) inout wire DDR_CAS_n; (* X_INTERFACE_INFO = "xilinx.com:interface:ddrx:1.0 DDR CKE" *) inout wire DDR_CKE; (* X_INTERFACE_INFO = "xilinx.com:interface:ddrx:1.0 DDR CK_N" *) inout wire DDR_Clk_n; (* X_INTERFACE_INFO = "xilinx.com:interface:ddrx:1.0 DDR CK_P" *) inout wire DDR_Clk; (* X_INTERFACE_INFO = "xilinx.com:interface:ddrx:1.0 DDR CS_N" *) inout wire DDR_CS_n; (* X_INTERFACE_INFO = "xilinx.com:interface:ddrx:1.0 DDR RESET_N" *) inout wire DDR_DRSTB; (* X_INTERFACE_INFO = "xilinx.com:interface:ddrx:1.0 DDR ODT" *) inout wire DDR_ODT; (* X_INTERFACE_INFO = "xilinx.com:interface:ddrx:1.0 DDR RAS_N" *) inout wire DDR_RAS_n; (* X_INTERFACE_INFO = "xilinx.com:interface:ddrx:1.0 DDR WE_N" *) inout wire DDR_WEB; (* X_INTERFACE_INFO = "xilinx.com:interface:ddrx:1.0 DDR BA" *) inout wire [2 : 0] DDR_BankAddr; (* X_INTERFACE_INFO = "xilinx.com:interface:ddrx:1.0 DDR ADDR" *) inout wire [14 : 0] DDR_Addr; (* X_INTERFACE_INFO = "xilinx.com:display_processing_system7:fixedio:1.0 FIXED_IO DDR_VRN" *) inout wire DDR_VRN; (* X_INTERFACE_INFO = "xilinx.com:display_processing_system7:fixedio:1.0 FIXED_IO DDR_VRP" *) inout wire DDR_VRP; (* X_INTERFACE_INFO = "xilinx.com:interface:ddrx:1.0 DDR DM" *) inout wire [3 : 0] DDR_DM; (* X_INTERFACE_INFO = "xilinx.com:interface:ddrx:1.0 DDR DQ" *) inout wire [31 : 0] DDR_DQ; (* X_INTERFACE_INFO = "xilinx.com:interface:ddrx:1.0 DDR DQS_N" *) inout wire [3 : 0] DDR_DQS_n; (* X_INTERFACE_INFO = "xilinx.com:interface:ddrx:1.0 DDR DQS_P" *) inout wire [3 : 0] DDR_DQS; (* X_INTERFACE_INFO = "xilinx.com:display_processing_system7:fixedio:1.0 FIXED_IO PS_SRSTB" *) inout wire PS_SRSTB; (* X_INTERFACE_INFO = "xilinx.com:display_processing_system7:fixedio:1.0 FIXED_IO PS_CLK" *) inout wire PS_CLK; (* X_INTERFACE_INFO = "xilinx.com:display_processing_system7:fixedio:1.0 FIXED_IO PS_PORB" *) inout wire PS_PORB; processing_system7_v5_5_processing_system7 #( .C_EN_EMIO_PJTAG(0), .C_EN_EMIO_ENET0(0), .C_EN_EMIO_ENET1(0), .C_EN_EMIO_TRACE(0), .C_INCLUDE_TRACE_BUFFER(0), .C_TRACE_BUFFER_FIFO_SIZE(128), .USE_TRACE_DATA_EDGE_DETECTOR(0), .C_TRACE_PIPELINE_WIDTH(8), .C_TRACE_BUFFER_CLOCK_DELAY(12), .C_EMIO_GPIO_WIDTH(64), .C_INCLUDE_ACP_TRANS_CHECK(0), .C_USE_DEFAULT_ACP_USER_VAL(0), .C_S_AXI_ACP_ARUSER_VAL(31), .C_S_AXI_ACP_AWUSER_VAL(31), .C_M_AXI_GP0_ID_WIDTH(12), .C_M_AXI_GP0_ENABLE_STATIC_REMAP(0), .C_M_AXI_GP1_ID_WIDTH(12), .C_M_AXI_GP1_ENABLE_STATIC_REMAP(0), .C_S_AXI_GP0_ID_WIDTH(6), .C_S_AXI_GP1_ID_WIDTH(6), .C_S_AXI_ACP_ID_WIDTH(3), .C_S_AXI_HP0_ID_WIDTH(6), .C_S_AXI_HP0_DATA_WIDTH(64), .C_S_AXI_HP1_ID_WIDTH(6), .C_S_AXI_HP1_DATA_WIDTH(64), .C_S_AXI_HP2_ID_WIDTH(6), .C_S_AXI_HP2_DATA_WIDTH(64), .C_S_AXI_HP3_ID_WIDTH(6), .C_S_AXI_HP3_DATA_WIDTH(64), .C_M_AXI_GP0_THREAD_ID_WIDTH(12), .C_M_AXI_GP1_THREAD_ID_WIDTH(12), .C_NUM_F2P_INTR_INPUTS(1), .C_IRQ_F2P_MODE("DIRECT"), .C_DQ_WIDTH(32), .C_DQS_WIDTH(4), .C_DM_WIDTH(4), .C_MIO_PRIMITIVE(54), .C_TRACE_INTERNAL_WIDTH(2), .C_USE_AXI_NONSECURE(0), .C_USE_M_AXI_GP0(1), .C_USE_M_AXI_GP1(0), .C_USE_S_AXI_GP0(0), .C_USE_S_AXI_HP0(1), .C_USE_S_AXI_HP1(0), .C_USE_S_AXI_HP2(0), .C_USE_S_AXI_HP3(0), .C_USE_S_AXI_ACP(0), .C_PS7_SI_REV("PRODUCTION"), .C_FCLK_CLK0_BUF("true"), .C_FCLK_CLK1_BUF("false"), .C_FCLK_CLK2_BUF("false"), .C_FCLK_CLK3_BUF("false"), .C_PACKAGE_NAME("clg400") ) inst ( .CAN0_PHY_TX(), .CAN0_PHY_RX(1'B0), .CAN1_PHY_TX(), .CAN1_PHY_RX(1'B0), .ENET0_GMII_TX_EN(), .ENET0_GMII_TX_ER(), .ENET0_MDIO_MDC(), .ENET0_MDIO_O(), .ENET0_MDIO_T(), .ENET0_PTP_DELAY_REQ_RX(), .ENET0_PTP_DELAY_REQ_TX(), .ENET0_PTP_PDELAY_REQ_RX(), .ENET0_PTP_PDELAY_REQ_TX(), .ENET0_PTP_PDELAY_RESP_RX(), .ENET0_PTP_PDELAY_RESP_TX(), .ENET0_PTP_SYNC_FRAME_RX(), .ENET0_PTP_SYNC_FRAME_TX(), .ENET0_SOF_RX(), .ENET0_SOF_TX(), .ENET0_GMII_TXD(), .ENET0_GMII_COL(1'B0), .ENET0_GMII_CRS(1'B0), .ENET0_GMII_RX_CLK(1'B0), .ENET0_GMII_RX_DV(1'B0), .ENET0_GMII_RX_ER(1'B0), .ENET0_GMII_TX_CLK(1'B0), .ENET0_MDIO_I(1'B0), .ENET0_EXT_INTIN(1'B0), .ENET0_GMII_RXD(8'B0), .ENET1_GMII_TX_EN(), .ENET1_GMII_TX_ER(), .ENET1_MDIO_MDC(), .ENET1_MDIO_O(), .ENET1_MDIO_T(), .ENET1_PTP_DELAY_REQ_RX(), .ENET1_PTP_DELAY_REQ_TX(), .ENET1_PTP_PDELAY_REQ_RX(), .ENET1_PTP_PDELAY_REQ_TX(), .ENET1_PTP_PDELAY_RESP_RX(), .ENET1_PTP_PDELAY_RESP_TX(), .ENET1_PTP_SYNC_FRAME_RX(), .ENET1_PTP_SYNC_FRAME_TX(), .ENET1_SOF_RX(), .ENET1_SOF_TX(), .ENET1_GMII_TXD(), .ENET1_GMII_COL(1'B0), .ENET1_GMII_CRS(1'B0), .ENET1_GMII_RX_CLK(1'B0), .ENET1_GMII_RX_DV(1'B0), .ENET1_GMII_RX_ER(1'B0), .ENET1_GMII_TX_CLK(1'B0), .ENET1_MDIO_I(1'B0), .ENET1_EXT_INTIN(1'B0), .ENET1_GMII_RXD(8'B0), .GPIO_I(64'B0), .GPIO_O(), .GPIO_T(), .I2C0_SDA_I(1'B0), .I2C0_SDA_O(), .I2C0_SDA_T(), .I2C0_SCL_I(1'B0), .I2C0_SCL_O(), .I2C0_SCL_T(), .I2C1_SDA_I(1'B0), .I2C1_SDA_O(), .I2C1_SDA_T(), .I2C1_SCL_I(1'B0), .I2C1_SCL_O(), .I2C1_SCL_T(), .PJTAG_TCK(1'B0), .PJTAG_TMS(1'B0), .PJTAG_TDI(1'B0), .PJTAG_TDO(), .SDIO0_CLK(), .SDIO0_CLK_FB(1'B0), .SDIO0_CMD_O(), .SDIO0_CMD_I(1'B0), .SDIO0_CMD_T(), .SDIO0_DATA_I(4'B0), .SDIO0_DATA_O(), .SDIO0_DATA_T(), .SDIO0_LED(), .SDIO0_CDN(1'B0), .SDIO0_WP(1'B0), .SDIO0_BUSPOW(), .SDIO0_BUSVOLT(), .SDIO1_CLK(), .SDIO1_CLK_FB(1'B0), .SDIO1_CMD_O(), .SDIO1_CMD_I(1'B0), .SDIO1_CMD_T(), .SDIO1_DATA_I(4'B0), .SDIO1_DATA_O(), .SDIO1_DATA_T(), .SDIO1_LED(), .SDIO1_CDN(1'B0), .SDIO1_WP(1'B0), .SDIO1_BUSPOW(), .SDIO1_BUSVOLT(), .SPI0_SCLK_I(1'B0), .SPI0_SCLK_O(), .SPI0_SCLK_T(), .SPI0_MOSI_I(1'B0), .SPI0_MOSI_O(), .SPI0_MOSI_T(), .SPI0_MISO_I(1'B0), .SPI0_MISO_O(), .SPI0_MISO_T(), .SPI0_SS_I(1'B0), .SPI0_SS_O(), .SPI0_SS1_O(), .SPI0_SS2_O(), .SPI0_SS_T(), .SPI1_SCLK_I(1'B0), .SPI1_SCLK_O(), .SPI1_SCLK_T(), .SPI1_MOSI_I(1'B0), .SPI1_MOSI_O(), .SPI1_MOSI_T(), .SPI1_MISO_I(1'B0), .SPI1_MISO_O(), .SPI1_MISO_T(), .SPI1_SS_I(1'B0), .SPI1_SS_O(), .SPI1_SS1_O(), .SPI1_SS2_O(), .SPI1_SS_T(), .UART0_DTRN(), .UART0_RTSN(), .UART0_TX(), .UART0_CTSN(1'B0), .UART0_DCDN(1'B0), .UART0_DSRN(1'B0), .UART0_RIN(1'B0), .UART0_RX(1'B1), .UART1_DTRN(), .UART1_RTSN(), .UART1_TX(), .UART1_CTSN(1'B0), .UART1_DCDN(1'B0), .UART1_DSRN(1'B0), .UART1_RIN(1'B0), .UART1_RX(1'B1), .TTC0_WAVE0_OUT(), .TTC0_WAVE1_OUT(), .TTC0_WAVE2_OUT(), .TTC0_CLK0_IN(1'B0), .TTC0_CLK1_IN(1'B0), .TTC0_CLK2_IN(1'B0), .TTC1_WAVE0_OUT(), .TTC1_WAVE1_OUT(), .TTC1_WAVE2_OUT(), .TTC1_CLK0_IN(1'B0), .TTC1_CLK1_IN(1'B0), .TTC1_CLK2_IN(1'B0), .WDT_CLK_IN(1'B0), .WDT_RST_OUT(), .TRACE_CLK(1'B0), .TRACE_CLK_OUT(), .TRACE_CTL(), .TRACE_DATA(), .USB0_PORT_INDCTL(USB0_PORT_INDCTL), .USB0_VBUS_PWRSELECT(USB0_VBUS_PWRSELECT), .USB0_VBUS_PWRFAULT(USB0_VBUS_PWRFAULT), .USB1_PORT_INDCTL(), .USB1_VBUS_PWRSELECT(), .USB1_VBUS_PWRFAULT(1'B0), .SRAM_INTIN(1'B0), .M_AXI_GP0_ARVALID(M_AXI_GP0_ARVALID), .M_AXI_GP0_AWVALID(M_AXI_GP0_AWVALID), .M_AXI_GP0_BREADY(M_AXI_GP0_BREADY), .M_AXI_GP0_RREADY(M_AXI_GP0_RREADY), .M_AXI_GP0_WLAST(M_AXI_GP0_WLAST), .M_AXI_GP0_WVALID(M_AXI_GP0_WVALID), .M_AXI_GP0_ARID(M_AXI_GP0_ARID), .M_AXI_GP0_AWID(M_AXI_GP0_AWID), .M_AXI_GP0_WID(M_AXI_GP0_WID), .M_AXI_GP0_ARBURST(M_AXI_GP0_ARBURST), .M_AXI_GP0_ARLOCK(M_AXI_GP0_ARLOCK), .M_AXI_GP0_ARSIZE(M_AXI_GP0_ARSIZE), .M_AXI_GP0_AWBURST(M_AXI_GP0_AWBURST), .M_AXI_GP0_AWLOCK(M_AXI_GP0_AWLOCK), .M_AXI_GP0_AWSIZE(M_AXI_GP0_AWSIZE), .M_AXI_GP0_ARPROT(M_AXI_GP0_ARPROT), .M_AXI_GP0_AWPROT(M_AXI_GP0_AWPROT), .M_AXI_GP0_ARADDR(M_AXI_GP0_ARADDR), .M_AXI_GP0_AWADDR(M_AXI_GP0_AWADDR), .M_AXI_GP0_WDATA(M_AXI_GP0_WDATA), .M_AXI_GP0_ARCACHE(M_AXI_GP0_ARCACHE), .M_AXI_GP0_ARLEN(M_AXI_GP0_ARLEN), .M_AXI_GP0_ARQOS(M_AXI_GP0_ARQOS), .M_AXI_GP0_AWCACHE(M_AXI_GP0_AWCACHE), .M_AXI_GP0_AWLEN(M_AXI_GP0_AWLEN), .M_AXI_GP0_AWQOS(M_AXI_GP0_AWQOS), .M_AXI_GP0_WSTRB(M_AXI_GP0_WSTRB), .M_AXI_GP0_ACLK(M_AXI_GP0_ACLK), .M_AXI_GP0_ARREADY(M_AXI_GP0_ARREADY), .M_AXI_GP0_AWREADY(M_AXI_GP0_AWREADY), .M_AXI_GP0_BVALID(M_AXI_GP0_BVALID), .M_AXI_GP0_RLAST(M_AXI_GP0_RLAST), .M_AXI_GP0_RVALID(M_AXI_GP0_RVALID), .M_AXI_GP0_WREADY(M_AXI_GP0_WREADY), .M_AXI_GP0_BID(M_AXI_GP0_BID), .M_AXI_GP0_RID(M_AXI_GP0_RID), .M_AXI_GP0_BRESP(M_AXI_GP0_BRESP), .M_AXI_GP0_RRESP(M_AXI_GP0_RRESP), .M_AXI_GP0_RDATA(M_AXI_GP0_RDATA), .M_AXI_GP1_ARVALID(), .M_AXI_GP1_AWVALID(), .M_AXI_GP1_BREADY(), .M_AXI_GP1_RREADY(), .M_AXI_GP1_WLAST(), .M_AXI_GP1_WVALID(), .M_AXI_GP1_ARID(), .M_AXI_GP1_AWID(), .M_AXI_GP1_WID(), .M_AXI_GP1_ARBURST(), .M_AXI_GP1_ARLOCK(), .M_AXI_GP1_ARSIZE(), .M_AXI_GP1_AWBURST(), .M_AXI_GP1_AWLOCK(), .M_AXI_GP1_AWSIZE(), .M_AXI_GP1_ARPROT(), .M_AXI_GP1_AWPROT(), .M_AXI_GP1_ARADDR(), .M_AXI_GP1_AWADDR(), .M_AXI_GP1_WDATA(), .M_AXI_GP1_ARCACHE(), .M_AXI_GP1_ARLEN(), .M_AXI_GP1_ARQOS(), .M_AXI_GP1_AWCACHE(), .M_AXI_GP1_AWLEN(), .M_AXI_GP1_AWQOS(), .M_AXI_GP1_WSTRB(), .M_AXI_GP1_ACLK(1'B0), .M_AXI_GP1_ARREADY(1'B0), .M_AXI_GP1_AWREADY(1'B0), .M_AXI_GP1_BVALID(1'B0), .M_AXI_GP1_RLAST(1'B0), .M_AXI_GP1_RVALID(1'B0), .M_AXI_GP1_WREADY(1'B0), .M_AXI_GP1_BID(12'B0), .M_AXI_GP1_RID(12'B0), .M_AXI_GP1_BRESP(2'B0), .M_AXI_GP1_RRESP(2'B0), .M_AXI_GP1_RDATA(32'B0), .S_AXI_GP0_ARREADY(), .S_AXI_GP0_AWREADY(), .S_AXI_GP0_BVALID(), .S_AXI_GP0_RLAST(), .S_AXI_GP0_RVALID(), .S_AXI_GP0_WREADY(), .S_AXI_GP0_BRESP(), .S_AXI_GP0_RRESP(), .S_AXI_GP0_RDATA(), .S_AXI_GP0_BID(), .S_AXI_GP0_RID(), .S_AXI_GP0_ACLK(1'B0), .S_AXI_GP0_ARVALID(1'B0), .S_AXI_GP0_AWVALID(1'B0), .S_AXI_GP0_BREADY(1'B0), .S_AXI_GP0_RREADY(1'B0), .S_AXI_GP0_WLAST(1'B0), .S_AXI_GP0_WVALID(1'B0), .S_AXI_GP0_ARBURST(2'B0), .S_AXI_GP0_ARLOCK(2'B0), .S_AXI_GP0_ARSIZE(3'B0), .S_AXI_GP0_AWBURST(2'B0), .S_AXI_GP0_AWLOCK(2'B0), .S_AXI_GP0_AWSIZE(3'B0), .S_AXI_GP0_ARPROT(3'B0), .S_AXI_GP0_AWPROT(3'B0), .S_AXI_GP0_ARADDR(32'B0), .S_AXI_GP0_AWADDR(32'B0), .S_AXI_GP0_WDATA(32'B0), .S_AXI_GP0_ARCACHE(4'B0), .S_AXI_GP0_ARLEN(4'B0), .S_AXI_GP0_ARQOS(4'B0), .S_AXI_GP0_AWCACHE(4'B0), .S_AXI_GP0_AWLEN(4'B0), .S_AXI_GP0_AWQOS(4'B0), .S_AXI_GP0_WSTRB(4'B0), .S_AXI_GP0_ARID(6'B0), .S_AXI_GP0_AWID(6'B0), .S_AXI_GP0_WID(6'B0), .S_AXI_GP1_ARREADY(), .S_AXI_GP1_AWREADY(), .S_AXI_GP1_BVALID(), .S_AXI_GP1_RLAST(), .S_AXI_GP1_RVALID(), .S_AXI_GP1_WREADY(), .S_AXI_GP1_BRESP(), .S_AXI_GP1_RRESP(), .S_AXI_GP1_RDATA(), .S_AXI_GP1_BID(), .S_AXI_GP1_RID(), .S_AXI_GP1_ACLK(1'B0), .S_AXI_GP1_ARVALID(1'B0), .S_AXI_GP1_AWVALID(1'B0), .S_AXI_GP1_BREADY(1'B0), .S_AXI_GP1_RREADY(1'B0), .S_AXI_GP1_WLAST(1'B0), .S_AXI_GP1_WVALID(1'B0), .S_AXI_GP1_ARBURST(2'B0), .S_AXI_GP1_ARLOCK(2'B0), .S_AXI_GP1_ARSIZE(3'B0), .S_AXI_GP1_AWBURST(2'B0), .S_AXI_GP1_AWLOCK(2'B0), .S_AXI_GP1_AWSIZE(3'B0), .S_AXI_GP1_ARPROT(3'B0), .S_AXI_GP1_AWPROT(3'B0), .S_AXI_GP1_ARADDR(32'B0), .S_AXI_GP1_AWADDR(32'B0), .S_AXI_GP1_WDATA(32'B0), .S_AXI_GP1_ARCACHE(4'B0), .S_AXI_GP1_ARLEN(4'B0), .S_AXI_GP1_ARQOS(4'B0), .S_AXI_GP1_AWCACHE(4'B0), .S_AXI_GP1_AWLEN(4'B0), .S_AXI_GP1_AWQOS(4'B0), .S_AXI_GP1_WSTRB(4'B0), .S_AXI_GP1_ARID(6'B0), .S_AXI_GP1_AWID(6'B0), .S_AXI_GP1_WID(6'B0), .S_AXI_ACP_ARREADY(), .S_AXI_ACP_AWREADY(), .S_AXI_ACP_BVALID(), .S_AXI_ACP_RLAST(), .S_AXI_ACP_RVALID(), .S_AXI_ACP_WREADY(), .S_AXI_ACP_BRESP(), .S_AXI_ACP_RRESP(), .S_AXI_ACP_BID(), .S_AXI_ACP_RID(), .S_AXI_ACP_RDATA(), .S_AXI_ACP_ACLK(1'B0), .S_AXI_ACP_ARVALID(1'B0), .S_AXI_ACP_AWVALID(1'B0), .S_AXI_ACP_BREADY(1'B0), .S_AXI_ACP_RREADY(1'B0), .S_AXI_ACP_WLAST(1'B0), .S_AXI_ACP_WVALID(1'B0), .S_AXI_ACP_ARID(3'B0), .S_AXI_ACP_ARPROT(3'B0), .S_AXI_ACP_AWID(3'B0), .S_AXI_ACP_AWPROT(3'B0), .S_AXI_ACP_WID(3'B0), .S_AXI_ACP_ARADDR(32'B0), .S_AXI_ACP_AWADDR(32'B0), .S_AXI_ACP_ARCACHE(4'B0), .S_AXI_ACP_ARLEN(4'B0), .S_AXI_ACP_ARQOS(4'B0), .S_AXI_ACP_AWCACHE(4'B0), .S_AXI_ACP_AWLEN(4'B0), .S_AXI_ACP_AWQOS(4'B0), .S_AXI_ACP_ARBURST(2'B0), .S_AXI_ACP_ARLOCK(2'B0), .S_AXI_ACP_ARSIZE(3'B0), .S_AXI_ACP_AWBURST(2'B0), .S_AXI_ACP_AWLOCK(2'B0), .S_AXI_ACP_AWSIZE(3'B0), .S_AXI_ACP_ARUSER(5'B0), .S_AXI_ACP_AWUSER(5'B0), .S_AXI_ACP_WDATA(64'B0), .S_AXI_ACP_WSTRB(8'B0), .S_AXI_HP0_ARREADY(S_AXI_HP0_ARREADY), .S_AXI_HP0_AWREADY(S_AXI_HP0_AWREADY), .S_AXI_HP0_BVALID(S_AXI_HP0_BVALID), .S_AXI_HP0_RLAST(S_AXI_HP0_RLAST), .S_AXI_HP0_RVALID(S_AXI_HP0_RVALID), .S_AXI_HP0_WREADY(S_AXI_HP0_WREADY), .S_AXI_HP0_BRESP(S_AXI_HP0_BRESP), .S_AXI_HP0_RRESP(S_AXI_HP0_RRESP), .S_AXI_HP0_BID(S_AXI_HP0_BID), .S_AXI_HP0_RID(S_AXI_HP0_RID), .S_AXI_HP0_RDATA(S_AXI_HP0_RDATA), .S_AXI_HP0_RCOUNT(S_AXI_HP0_RCOUNT), .S_AXI_HP0_WCOUNT(S_AXI_HP0_WCOUNT), .S_AXI_HP0_RACOUNT(S_AXI_HP0_RACOUNT), .S_AXI_HP0_WACOUNT(S_AXI_HP0_WACOUNT), .S_AXI_HP0_ACLK(S_AXI_HP0_ACLK), .S_AXI_HP0_ARVALID(S_AXI_HP0_ARVALID), .S_AXI_HP0_AWVALID(S_AXI_HP0_AWVALID), .S_AXI_HP0_BREADY(S_AXI_HP0_BREADY), .S_AXI_HP0_RDISSUECAP1_EN(S_AXI_HP0_RDISSUECAP1_EN), .S_AXI_HP0_RREADY(S_AXI_HP0_RREADY), .S_AXI_HP0_WLAST(S_AXI_HP0_WLAST), .S_AXI_HP0_WRISSUECAP1_EN(S_AXI_HP0_WRISSUECAP1_EN), .S_AXI_HP0_WVALID(S_AXI_HP0_WVALID), .S_AXI_HP0_ARBURST(S_AXI_HP0_ARBURST), .S_AXI_HP0_ARLOCK(S_AXI_HP0_ARLOCK), .S_AXI_HP0_ARSIZE(S_AXI_HP0_ARSIZE), .S_AXI_HP0_AWBURST(S_AXI_HP0_AWBURST), .S_AXI_HP0_AWLOCK(S_AXI_HP0_AWLOCK), .S_AXI_HP0_AWSIZE(S_AXI_HP0_AWSIZE), .S_AXI_HP0_ARPROT(S_AXI_HP0_ARPROT), .S_AXI_HP0_AWPROT(S_AXI_HP0_AWPROT), .S_AXI_HP0_ARADDR(S_AXI_HP0_ARADDR), .S_AXI_HP0_AWADDR(S_AXI_HP0_AWADDR), .S_AXI_HP0_ARCACHE(S_AXI_HP0_ARCACHE), .S_AXI_HP0_ARLEN(S_AXI_HP0_ARLEN), .S_AXI_HP0_ARQOS(S_AXI_HP0_ARQOS), .S_AXI_HP0_AWCACHE(S_AXI_HP0_AWCACHE), .S_AXI_HP0_AWLEN(S_AXI_HP0_AWLEN), .S_AXI_HP0_AWQOS(S_AXI_HP0_AWQOS), .S_AXI_HP0_ARID(S_AXI_HP0_ARID), .S_AXI_HP0_AWID(S_AXI_HP0_AWID), .S_AXI_HP0_WID(S_AXI_HP0_WID), .S_AXI_HP0_WDATA(S_AXI_HP0_WDATA), .S_AXI_HP0_WSTRB(S_AXI_HP0_WSTRB), .S_AXI_HP1_ARREADY(), .S_AXI_HP1_AWREADY(), .S_AXI_HP1_BVALID(), .S_AXI_HP1_RLAST(), .S_AXI_HP1_RVALID(), .S_AXI_HP1_WREADY(), .S_AXI_HP1_BRESP(), .S_AXI_HP1_RRESP(), .S_AXI_HP1_BID(), .S_AXI_HP1_RID(), .S_AXI_HP1_RDATA(), .S_AXI_HP1_RCOUNT(), .S_AXI_HP1_WCOUNT(), .S_AXI_HP1_RACOUNT(), .S_AXI_HP1_WACOUNT(), .S_AXI_HP1_ACLK(1'B0), .S_AXI_HP1_ARVALID(1'B0), .S_AXI_HP1_AWVALID(1'B0), .S_AXI_HP1_BREADY(1'B0), .S_AXI_HP1_RDISSUECAP1_EN(1'B0), .S_AXI_HP1_RREADY(1'B0), .S_AXI_HP1_WLAST(1'B0), .S_AXI_HP1_WRISSUECAP1_EN(1'B0), .S_AXI_HP1_WVALID(1'B0), .S_AXI_HP1_ARBURST(2'B0), .S_AXI_HP1_ARLOCK(2'B0), .S_AXI_HP1_ARSIZE(3'B0), .S_AXI_HP1_AWBURST(2'B0), .S_AXI_HP1_AWLOCK(2'B0), .S_AXI_HP1_AWSIZE(3'B0), .S_AXI_HP1_ARPROT(3'B0), .S_AXI_HP1_AWPROT(3'B0), .S_AXI_HP1_ARADDR(32'B0), .S_AXI_HP1_AWADDR(32'B0), .S_AXI_HP1_ARCACHE(4'B0), .S_AXI_HP1_ARLEN(4'B0), .S_AXI_HP1_ARQOS(4'B0), .S_AXI_HP1_AWCACHE(4'B0), .S_AXI_HP1_AWLEN(4'B0), .S_AXI_HP1_AWQOS(4'B0), .S_AXI_HP1_ARID(6'B0), .S_AXI_HP1_AWID(6'B0), .S_AXI_HP1_WID(6'B0), .S_AXI_HP1_WDATA(64'B0), .S_AXI_HP1_WSTRB(8'B0), .S_AXI_HP2_ARREADY(), .S_AXI_HP2_AWREADY(), .S_AXI_HP2_BVALID(), .S_AXI_HP2_RLAST(), .S_AXI_HP2_RVALID(), .S_AXI_HP2_WREADY(), .S_AXI_HP2_BRESP(), .S_AXI_HP2_RRESP(), .S_AXI_HP2_BID(), .S_AXI_HP2_RID(), .S_AXI_HP2_RDATA(), .S_AXI_HP2_RCOUNT(), .S_AXI_HP2_WCOUNT(), .S_AXI_HP2_RACOUNT(), .S_AXI_HP2_WACOUNT(), .S_AXI_HP2_ACLK(1'B0), .S_AXI_HP2_ARVALID(1'B0), .S_AXI_HP2_AWVALID(1'B0), .S_AXI_HP2_BREADY(1'B0), .S_AXI_HP2_RDISSUECAP1_EN(1'B0), .S_AXI_HP2_RREADY(1'B0), .S_AXI_HP2_WLAST(1'B0), .S_AXI_HP2_WRISSUECAP1_EN(1'B0), .S_AXI_HP2_WVALID(1'B0), .S_AXI_HP2_ARBURST(2'B0), .S_AXI_HP2_ARLOCK(2'B0), .S_AXI_HP2_ARSIZE(3'B0), .S_AXI_HP2_AWBURST(2'B0), .S_AXI_HP2_AWLOCK(2'B0), .S_AXI_HP2_AWSIZE(3'B0), .S_AXI_HP2_ARPROT(3'B0), .S_AXI_HP2_AWPROT(3'B0), .S_AXI_HP2_ARADDR(32'B0), .S_AXI_HP2_AWADDR(32'B0), .S_AXI_HP2_ARCACHE(4'B0), .S_AXI_HP2_ARLEN(4'B0), .S_AXI_HP2_ARQOS(4'B0), .S_AXI_HP2_AWCACHE(4'B0), .S_AXI_HP2_AWLEN(4'B0), .S_AXI_HP2_AWQOS(4'B0), .S_AXI_HP2_ARID(6'B0), .S_AXI_HP2_AWID(6'B0), .S_AXI_HP2_WID(6'B0), .S_AXI_HP2_WDATA(64'B0), .S_AXI_HP2_WSTRB(8'B0), .S_AXI_HP3_ARREADY(), .S_AXI_HP3_AWREADY(), .S_AXI_HP3_BVALID(), .S_AXI_HP3_RLAST(), .S_AXI_HP3_RVALID(), .S_AXI_HP3_WREADY(), .S_AXI_HP3_BRESP(), .S_AXI_HP3_RRESP(), .S_AXI_HP3_BID(), .S_AXI_HP3_RID(), .S_AXI_HP3_RDATA(), .S_AXI_HP3_RCOUNT(), .S_AXI_HP3_WCOUNT(), .S_AXI_HP3_RACOUNT(), .S_AXI_HP3_WACOUNT(), .S_AXI_HP3_ACLK(1'B0), .S_AXI_HP3_ARVALID(1'B0), .S_AXI_HP3_AWVALID(1'B0), .S_AXI_HP3_BREADY(1'B0), .S_AXI_HP3_RDISSUECAP1_EN(1'B0), .S_AXI_HP3_RREADY(1'B0), .S_AXI_HP3_WLAST(1'B0), .S_AXI_HP3_WRISSUECAP1_EN(1'B0), .S_AXI_HP3_WVALID(1'B0), .S_AXI_HP3_ARBURST(2'B0), .S_AXI_HP3_ARLOCK(2'B0), .S_AXI_HP3_ARSIZE(3'B0), .S_AXI_HP3_AWBURST(2'B0), .S_AXI_HP3_AWLOCK(2'B0), .S_AXI_HP3_AWSIZE(3'B0), .S_AXI_HP3_ARPROT(3'B0), .S_AXI_HP3_AWPROT(3'B0), .S_AXI_HP3_ARADDR(32'B0), .S_AXI_HP3_AWADDR(32'B0), .S_AXI_HP3_ARCACHE(4'B0), .S_AXI_HP3_ARLEN(4'B0), .S_AXI_HP3_ARQOS(4'B0), .S_AXI_HP3_AWCACHE(4'B0), .S_AXI_HP3_AWLEN(4'B0), .S_AXI_HP3_AWQOS(4'B0), .S_AXI_HP3_ARID(6'B0), .S_AXI_HP3_AWID(6'B0), .S_AXI_HP3_WID(6'B0), .S_AXI_HP3_WDATA(64'B0), .S_AXI_HP3_WSTRB(8'B0), .IRQ_P2F_DMAC_ABORT(), .IRQ_P2F_DMAC0(), .IRQ_P2F_DMAC1(), .IRQ_P2F_DMAC2(), .IRQ_P2F_DMAC3(), .IRQ_P2F_DMAC4(), .IRQ_P2F_DMAC5(), .IRQ_P2F_DMAC6(), .IRQ_P2F_DMAC7(), .IRQ_P2F_SMC(), .IRQ_P2F_QSPI(), .IRQ_P2F_CTI(), .IRQ_P2F_GPIO(), .IRQ_P2F_USB0(), .IRQ_P2F_ENET0(), .IRQ_P2F_ENET_WAKE0(), .IRQ_P2F_SDIO0(), .IRQ_P2F_I2C0(), .IRQ_P2F_SPI0(), .IRQ_P2F_UART0(), .IRQ_P2F_CAN0(), .IRQ_P2F_USB1(), .IRQ_P2F_ENET1(), .IRQ_P2F_ENET_WAKE1(), .IRQ_P2F_SDIO1(), .IRQ_P2F_I2C1(), .IRQ_P2F_SPI1(), .IRQ_P2F_UART1(), .IRQ_P2F_CAN1(), .IRQ_F2P(IRQ_F2P), .Core0_nFIQ(1'B0), .Core0_nIRQ(1'B0), .Core1_nFIQ(1'B0), .Core1_nIRQ(1'B0), .DMA0_DATYPE(), .DMA0_DAVALID(), .DMA0_DRREADY(), .DMA1_DATYPE(), .DMA1_DAVALID(), .DMA1_DRREADY(), .DMA2_DATYPE(), .DMA2_DAVALID(), .DMA2_DRREADY(), .DMA3_DATYPE(), .DMA3_DAVALID(), .DMA3_DRREADY(), .DMA0_ACLK(1'B0), .DMA0_DAREADY(1'B0), .DMA0_DRLAST(1'B0), .DMA0_DRVALID(1'B0), .DMA1_ACLK(1'B0), .DMA1_DAREADY(1'B0), .DMA1_DRLAST(1'B0), .DMA1_DRVALID(1'B0), .DMA2_ACLK(1'B0), .DMA2_DAREADY(1'B0), .DMA2_DRLAST(1'B0), .DMA2_DRVALID(1'B0), .DMA3_ACLK(1'B0), .DMA3_DAREADY(1'B0), .DMA3_DRLAST(1'B0), .DMA3_DRVALID(1'B0), .DMA0_DRTYPE(2'B0), .DMA1_DRTYPE(2'B0), .DMA2_DRTYPE(2'B0), .DMA3_DRTYPE(2'B0), .FCLK_CLK0(FCLK_CLK0), .FCLK_CLK1(), .FCLK_CLK2(), .FCLK_CLK3(), .FCLK_CLKTRIG0_N(1'B0), .FCLK_CLKTRIG1_N(1'B0), .FCLK_CLKTRIG2_N(1'B0), .FCLK_CLKTRIG3_N(1'B0), .FCLK_RESET0_N(FCLK_RESET0_N), .FCLK_RESET1_N(), .FCLK_RESET2_N(), .FCLK_RESET3_N(), .FTMD_TRACEIN_DATA(32'B0), .FTMD_TRACEIN_VALID(1'B0), .FTMD_TRACEIN_CLK(1'B0), .FTMD_TRACEIN_ATID(4'B0), .FTMT_F2P_TRIG_0(1'B0), .FTMT_F2P_TRIGACK_0(), .FTMT_F2P_TRIG_1(1'B0), .FTMT_F2P_TRIGACK_1(), .FTMT_F2P_TRIG_2(1'B0), .FTMT_F2P_TRIGACK_2(), .FTMT_F2P_TRIG_3(1'B0), .FTMT_F2P_TRIGACK_3(), .FTMT_F2P_DEBUG(32'B0), .FTMT_P2F_TRIGACK_0(1'B0), .FTMT_P2F_TRIG_0(), .FTMT_P2F_TRIGACK_1(1'B0), .FTMT_P2F_TRIG_1(), .FTMT_P2F_TRIGACK_2(1'B0), .FTMT_P2F_TRIG_2(), .FTMT_P2F_TRIGACK_3(1'B0), .FTMT_P2F_TRIG_3(), .FTMT_P2F_DEBUG(), .FPGA_IDLE_N(1'B0), .EVENT_EVENTO(), .EVENT_STANDBYWFE(), .EVENT_STANDBYWFI(), .EVENT_EVENTI(1'B0), .DDR_ARB(4'B0), .MIO(MIO), .DDR_CAS_n(DDR_CAS_n), .DDR_CKE(DDR_CKE), .DDR_Clk_n(DDR_Clk_n), .DDR_Clk(DDR_Clk), .DDR_CS_n(DDR_CS_n), .DDR_DRSTB(DDR_DRSTB), .DDR_ODT(DDR_ODT), .DDR_RAS_n(DDR_RAS_n), .DDR_WEB(DDR_WEB), .DDR_BankAddr(DDR_BankAddr), .DDR_Addr(DDR_Addr), .DDR_VRN(DDR_VRN), .DDR_VRP(DDR_VRP), .DDR_DM(DDR_DM), .DDR_DQ(DDR_DQ), .DDR_DQS_n(DDR_DQS_n), .DDR_DQS(DDR_DQS), .PS_SRSTB(PS_SRSTB), .PS_CLK(PS_CLK), .PS_PORB(PS_PORB) ); endmodule
module actually). // Until CS# asserts though keep the bits counter reset... if (spi_cs_n) next_bits = 0; // Output on falling edge of sclk when cs asserted... if (!spi_cs_n && dly_sclk && !spi_sclk && !byteDone) begin // next_txBuffer = {txBuffer,1'b1}; next_bits = bits + 1'b1; next_byteDone = &bits; end next_tx = (spi_cs_n || byteDone) ? 1'b1 : next_txBuffer[~bits]; end // // Control FSM for sending 32 bit words out SPI interface... // parameter [1:0] INIT = 0, IDLE = 1, SEND = 2, POLL = 3; reg [1:0] state, next_state; initial state = INIT; always @(posedge clk, posedge rst) if (rst) begin state <= INIT; sampled_send_data <= 32'h0; sampled_send_valid <= 4'h0; bytesel <= 3'h0; busy <= 1'b0; end else begin state <= next_state; sampled_send_data <= next_sampled_send_data; sampled_send_valid <= next_sampled_send_valid; bytesel <= next_bytesel; busy <= next_busy; end always @* begin next_state = state; next_sampled_send_data = sampled_send_data; next_sampled_send_valid = sampled_send_valid; next_bytesel = bytesel; next_busy = (state != IDLE) || send || !byteDone; writeReset = 1'b0; writeByte = 1'b0; case (state) // when write is '1', data will be available with next cycle INIT : begin writeReset = 1'b1; next_sampled_send_data = 32'h0; next_sampled_send_valid = 4'hF; next_bytesel = 3'h0; next_busy = 1'b0; next_state = IDLE; end IDLE : begin next_sampled_send_data = send_data; next_sampled_send_valid = send_valid; next_bytesel = 0; if (send) next_state = SEND; else if (query_id) // output dword containing "SLA1" signature begin next_sampled_send_data = 32'h534c4131; // "SLA1" next_sampled_send_valid = 4'hF; next_state = SEND; end else if (query_dataIn) begin next_sampled_send_data = dataIn; next_sampled_send_valid = 4'hF; next_state = SEND; end end SEND : // output dword send by controller... begin writeByte = 1'b1; next_bytesel = bytesel + 1'b1; next_state = POLL; end POLL : begin if (byteDone) next_state = (~|bytesel) ? IDLE : SEND; end default : next_state = INIT; endcase end endmodule
module sky130_fd_sc_hdll__sdlclkp_4 ( GCLK, SCE , GATE, CLK , VPWR, VGND, VPB , VNB ); output GCLK; input SCE ; input GATE; input CLK ; input VPWR; input VGND; input VPB ; input VNB ; sky130_fd_sc_hdll__sdlclkp base ( .GCLK(GCLK), .SCE(SCE), .GATE(GATE), .CLK(CLK), .VPWR(VPWR), .VGND(VGND), .VPB(VPB), .VNB(VNB) ); endmodule
module sky130_fd_sc_hdll__sdlclkp_4 ( GCLK, SCE , GATE, CLK ); output GCLK; input SCE ; input GATE; input CLK ; // Voltage supply signals supply1 VPWR; supply0 VGND; supply1 VPB ; supply0 VNB ; sky130_fd_sc_hdll__sdlclkp base ( .GCLK(GCLK), .SCE(SCE), .GATE(GATE), .CLK(CLK) ); endmodule
module avalon_camera ( // Avalon clock interface signals input clk, input reset_n, // Signals for Avalon-MM slave port input [4:0] avs_s1_address, input avs_s1_read, output reg [31:0] avs_s1_readdata, input avs_s1_write, input [31:0] avs_s1_writedata, // Control signals to export to the image_capture output avs_export_start_capture, output [23:0] avs_export_capture_imgsize, output [31:0] avs_export_buff, input avs_export_image_captured, input avs_export_capture_standby, // Registers to export to the camera_config output [15:0] avs_export_width, output [15:0] avs_export_height, output [15:0] avs_export_start_row, output [15:0] avs_export_start_column, output [15:0] avs_export_row_size, output [15:0] avs_export_column_size, output [15:0] avs_export_row_mode, output [15:0] avs_export_column_mode, output [15:0] avs_export_exposure, //soft reset output avs_export_cam_soft_reset_n ); // Addresses of the registers to control image_capture `define ADDR_START_CAPTURE 5'h00 `define ADDR_CAPTURE_IMGSIZE 5'h01 `define ADDR_BUFF 5'h02 `define ADDR_IMGCAPTURED 5'h03 `define ADDR_CAPTURE_STANDBY 5'h04 // Addresses of the registers to control camera_config `define ADDR_WIDTH 5'h09 `define ADDR_HEIGHT 5'h0a `define ADDR_START_ROW 5'h0b `define ADDR_START_COLUMN 5'h0c `define ADDR_ROW_SIZE 5'h0d `define ADDR_COLUMN_SIZE 5'h0e `define ADDR_ROW_MODE 5'h0f `define ADDR_COLUMN_MODE 5'h10 `define ADDR_EXPOSURE 5'h11 // Address of the soft reset `define SOFT_RESET_N 5'h1F //last address // Camera configuration registers default values. parameter WIDTH = 16'd320; parameter HEIGHT = 16'd240; parameter START_ROW = 16'h0036; parameter START_COLUMN = 16'h0010; parameter ROW_SIZE = 16'h059f; parameter COLUMN_SIZE = 16'h077f; parameter ROW_MODE = 16'h0002; parameter COLUMN_MODE = 16'h0002; parameter EXPOSURE = 16'h07c0; // image_capture registers reg start_capture; reg [23:0] capture_imgsize; reg [31:0] buff; reg imgcaptured; wire standby; // camera_config registers reg [15:0] data_width; reg [15:0] data_height; reg [15:0] data_start_row; reg [15:0] data_start_column; reg [15:0] data_row_size; reg [15:0] data_column_size; reg [15:0] data_row_mode; reg [15:0] data_column_mode; reg [15:0] data_exposure; //soft_reset reg reg cam_soft_reset_n; // Read/Write registers always @(posedge clk or negedge reset_n) begin if (!reset_n) begin start_capture <= 1'b0; capture_imgsize <= 24'd0; buff[31:0] <= 32'd0; data_width[15:0] <= WIDTH[15:0]; data_height[15:0] <= HEIGHT[15:0]; data_start_row[15:0] <= START_ROW[15:0]; data_start_column[15:0] <= START_COLUMN[15:0]; data_row_size[15:0] <= ROW_SIZE[15:0]; data_column_size[15:0] <= COLUMN_SIZE[15:0]; data_row_mode[15:0] <= ROW_MODE[15:0]; data_column_mode[15:0] <= COLUMN_MODE[15:0]; data_exposure[15:0] <= EXPOSURE[15:0]; cam_soft_reset_n <= 1; end else begin if (avs_s1_read) begin case (avs_s1_address) // image_capture `ADDR_START_CAPTURE: avs_s1_readdata[31:0] <= {31'b0, start_capture}; `ADDR_CAPTURE_IMGSIZE: avs_s1_readdata[31:0] <= {8'b0, capture_imgsize}; `ADDR_BUFF: avs_s1_readdata[31:0] <= buff; `ADDR_IMGCAPTURED: avs_s1_readdata[31:0] <= {31'b0, imgcaptured}; `ADDR_CAPTURE_STANDBY: avs_s1_readdata[31:0] <= {31'b0, standby}; // camera_config `ADDR_WIDTH: avs_s1_readdata[15:0] <= data_width[15:0]; `ADDR_HEIGHT: avs_s1_readdata[15:0] <= data_height[15:0]; `ADDR_START_ROW: avs_s1_readdata[15:0] <= data_start_row[15:0]; `ADDR_START_COLUMN: avs_s1_readdata[15:0] <= data_start_column[15:0]; `ADDR_ROW_SIZE: avs_s1_readdata[15:0] <= data_row_size[15:0]; `ADDR_COLUMN_SIZE: avs_s1_readdata[15:0] <= data_column_size[15:0]; `ADDR_ROW_MODE: avs_s1_readdata[15:0] <= data_row_mode[15:0]; `ADDR_COLUMN_MODE: avs_s1_readdata[15:0] <= data_column_mode[15:0]; `ADDR_EXPOSURE: avs_s1_readdata[15:0] <= data_exposure[15:0]; // soft reset `SOFT_RESET_N: avs_s1_readdata[31:0] <= {31'b0, cam_soft_reset_n}; default: avs_s1_readdata[31:0] <= {32'b0}; endcase end // Routine when avs_s1_read is FALSE. else begin if (avs_s1_write) begin case (avs_s1_address) // image_capture `ADDR_START_CAPTURE: start_capture <= avs_s1_writedata[0]; `ADDR_CAPTURE_IMGSIZE: capture_imgsize <= avs_s1_writedata[23:0]; `ADDR_BUFF: buff <= avs_s1_writedata[31:0]; //`ADDR_CAPTURE_STANDBY://not writable // camera_config `ADDR_WIDTH: data_width[15:0] <= avs_s1_writedata[15:0]; `ADDR_HEIGHT: data_height[15:0] <= avs_s1_writedata[15:0]; `ADDR_START_ROW: data_start_row[15:0] <= avs_s1_writedata[15:0]; `ADDR_START_COLUMN: data_start_column[15:0] <= avs_s1_writedata[15:0]; `ADDR_ROW_SIZE: data_row_size[15:0] <= avs_s1_writedata[15:0]; `ADDR_COLUMN_SIZE: data_column_size[15:0] <= avs_s1_writedata[15:0]; `ADDR_ROW_MODE: data_row_mode[15:0] <= avs_s1_writedata[15:0]; `ADDR_COLUMN_MODE: data_column_mode[15:0] <= avs_s1_writedata[15:0]; `ADDR_EXPOSURE: data_exposure[15:0] <= avs_s1_writedata[15:0]; // soft reset `SOFT_RESET_N: cam_soft_reset_n <= avs_s1_writedata[0]; endcase end end end end // imgcaptured registers // This signals come from the capture_image component and may be clocked // by a different clock. That is why asynchronous set is done here // to set this signal. The processor uses this signals to know that // one line has been captured and can read the buffer. The processor is // in charge of erasing these signals through the avalon bus. // The standby signal can also be used to know when a capture finished. always @(posedge clk or negedge reset_n or posedge avs_export_image_captured) begin if (avs_export_image_captured) imgcaptured <= 1'b1; else if (!reset_n) imgcaptured <= 1'b0; else begin if (avs_s1_write == 1) begin case (avs_s1_address) `ADDR_IMGCAPTURED: imgcaptured <= avs_s1_writedata[0]; endcase end end end // Control signals to export to the image capture assign avs_export_start_capture = start_capture; assign avs_export_capture_imgsize = capture_imgsize; assign avs_export_buff = buff; assign standby = avs_export_capture_standby; // Registers to export to the camera_config assign avs_export_start_row[15:0] = data_start_row[15:0]; assign avs_export_start_column[15:0] = data_start_column[15:0]; assign avs_export_row_size[15:0] = data_row_size[15:0]; assign avs_export_column_size[15:0] = data_column_size[15:0]; assign avs_export_row_mode[15:0] = data_row_mode[15:0]; assign avs_export_column_mode[15:0] = data_column_mode[15:0]; assign avs_export_exposure[15:0] = data_exposure[15:0]; // Registers to export to the camera_config an assign avs_export_width[15:0] = data_width[15:0]; assign avs_export_height[15:0] = data_height[15:0]; //soft reset assign avs_export_cam_soft_reset_n = cam_soft_reset_n; endmodule
module Alice4 ( //////////////////////// Clock Input //////////////////////// input CLOCK_50, // 50 MHz input CLOCK_50_2, // 50 MHz //////////////////////// Push Button //////////////////////// input [2:0] BUTTON, // Pushbutton[2:0] //////////////////////// DPDT Switch //////////////////////// // input [9:0] SW, // Toggle Switch[9:0] //////////////////////// 7-SEG Dispaly //////////////////////// output [6:0] HEX0_D, // Seven Segment Digit 0 output HEX0_DP, // Seven Segment Digit DP 0 output [6:0] HEX1_D, // Seven Segment Digit 1 output HEX1_DP, // Seven Segment Digit DP 1 output [6:0] HEX2_D, // Seven Segment Digit 2 output HEX2_DP, // Seven Segment Digit DP 2 output [6:0] HEX3_D, // Seven Segment Digit 3 output HEX3_DP, // Seven Segment Digit DP 3 //////////////////////////// LED //////////////////////////// output [9:0] LEDG, // LED Green[9:0] //////////////////////////// UART //////////////////////////// // output UART_TXD, // UART Transmitter // input UART_RXD, // UART Receiver // output UART_CTS, // UART Clear To Send // input UART_RTS, // UART Request To Send /////////////////////// SDRAM Interface //////////////////////// inout [15:0] DRAM_DQ, // SDRAM Data bus 16 Bits output [12:0] DRAM_ADDR, // SDRAM Address bus 13 Bits output DRAM_LDQM, // SDRAM Low-byte Data Mask output DRAM_UDQM, // SDRAM High-byte Data Mask output DRAM_WE_N, // SDRAM Write Enable output DRAM_CAS_N, // SDRAM Column Address Strobe output DRAM_RAS_N, // SDRAM Row Address Strobe output DRAM_CS_N, // SDRAM Chip Select output DRAM_BA_0, // SDRAM Bank Address 0 output DRAM_BA_1, // SDRAM Bank Address 1 output DRAM_CLK, // SDRAM Clock output DRAM_CKE, // SDRAM Clock Enable //////////////////////// Flash Interface //////////////////////// // inout [14:0] FL_DQ, // FLASH Data bus 15 Bits // inout FL_DQ15_AM1, // FLASH Data bus Bit 15 or Address A-1 // output [21:0] FL_ADDR, // FLASH Address bus 22 Bits // output FL_WE_N, // FLASH Write Enable // output FL_RST_N, // FLASH Reset // output FL_OE_N, // FLASH Output Enable // output FL_CE_N, // FLASH Chip Enable // output FL_WP_N, // FLASH Hardware Write Protect // output FL_BYTE_N, // FLASH Selects 8/16-bit mode // input FL_RY, // FLASH Ready/Busy //////////////////// LCD Module 16X2 //////////////////////////// // inout [7:0] LCD_DATA, // LCD Data bus 8 bits // output LCD_BLON, // LCD Back Light ON/OFF // output LCD_RW, // LCD Read/Write Select, 0 = Write, 1 = Read // output LCD_EN, // LCD Enable // output LCD_RS, // LCD Command/Data Select, 0 = Command, 1 = Data //////////////////// SD Card Interface //////////////////////// // inout SD_DAT0, // SD Card Data 0 // inout SD_DAT3, // SD Card Data 3 // inout SD_CMD, // SD Card Command Signal // output SD_CLK, // SD Card Clock // input SD_WP_N, // SD Card Write Protect //////////////////////// PS2 //////////////////////////////// // inout PS2_KBDAT, // PS2 Keyboard Data // inout PS2_KBCLK, // PS2 Keyboard Clock // inout PS2_MSDAT, // PS2 Mouse Data // inout PS2_MSCLK, // PS2 Mouse Clock //////////////////////// VGA //////////////////////////// output VGA_HS, // VGA H_SYNC output VGA_VS, // VGA V_SYNC output [3:0] VGA_R, // VGA Red[3:0] output [3:0] VGA_G, // VGA Green[3:0] output [3:0] VGA_B, // VGA Blue[3:0] //////////////////////// GPIO //////////////////////////////// // input [1:0] GPIO0_CLKIN, // GPIO Connection 0 Clock In Bus // output [1:0] GPIO0_CLKOUT, // GPIO Connection 0 Clock Out Bus // inout [31:0] GPIO0_D, // GPIO Connection 0 Data Bus // input [1:0] GPIO1_CLKIN, // GPIO Connection 1 Clock In Bus // output [1:0] GPIO1_CLKOUT, // GPIO Connection 1 Clock Out Bus inout [31:0] GPIO1_D // GPIO Connection 1 Data Bus ); // Generic useful debug counter. reg [30:0] counter; // What's displayed on the 7-segment display. reg [15:0] debug_number; reg [15:0] debug_number_nxt; wire [15:0] debug_number_sdram_test; // Button for resetting system, active low. wire reset_n = BUTTON[2]; // The pixel clock of the video output, from the PLL. wire vga_pixel_clock; // Host-side VGA parameters. wire [3:0] m_vga_r; wire [3:0] m_vga_g; wire [3:0] m_vga_b; wire m_vga_request; wire m_vga_top_of_screen; reg m_vga_top_of_screen_latched; // VGA_side VGA parameters. wire [3:0] s_vga_r; wire [3:0] s_vga_g; wire [3:0] s_vga_b; // Hook up to pins to hardware. assign VGA_R = s_vga_r; assign VGA_G = s_vga_g; assign VGA_B = s_vga_b; // Whether the SDRAM PLL has locked. wire sdram_clk_locked; // Debugging LEDs. assign LEDG[0] = sdram_clk_locked; assign LEDG[9:1] = counter[30:22]; // Clock that we're actually running our logic on. wire our_clock = DRAM_CLK; reg vga_fifo_clear; reg vga_fifo_clear_nxt; wire [11:0] vga_fifo_input; wire vga_fifo_wrclk; wire [11:0] vga_fifo_output; wire vga_fifo_rdempty; wire [7:0] vga_fifo_wrusedw; wire vga_fifo_almost_full = vga_fifo_wrusedw[7]; reg vga_fifo_wrreq; reg vga_fifo_wrreq_nxt; // State machine states. localparam STATE_START = 0; localparam STATE_RESET = 1; localparam STATE_GOING = 2; localparam STATE_PAUSED = 3; localparam STATE_STOPPED = 4; reg [9:0] x; // [0,640) reg [9:0] x_nxt; reg [9:0] y; // [0,480) reg [9:0] y_nxt; reg [2:0] state; reg [2:0] state_nxt; reg [15:0] pixel_count; reg [15:0] pixel_count_nxt; // Convert the debug_number to four hex digits. SEG7_LUT_4 seg7_lut_4( .oSEG0(HEX0_D), .oSEG0_DP(HEX0_DP), .oSEG1(HEX1_D), .oSEG1_DP(HEX1_DP), .oSEG2(HEX2_D), .oSEG2_DP(HEX2_DP), .oSEG3(HEX3_D), .oSEG3_DP(HEX3_DP), .iDIG(debug_number_sdram_test) ); // Generate the VGA pixel clock. Vga_clock vga_clock( .inclk0(CLOCK_50_2), .c0(vga_pixel_clock) ); // Generate all signals for the VGA. /* Vga_control vga_control( // Host Side .oCurrent_X(), .oCurrent_Y(), .oAddress(), .iRed(m_vga_r), .iGreen(m_vga_g), .iBlue(m_vga_b), .oRequest(m_vga_request), .oTopOfScreen(m_vga_top_of_screen), // VGA Side .oVGA_R(s_vga_r), .oVGA_G(s_vga_g), .oVGA_B(s_vga_b), .oVGA_HS(VGA_HS), .oVGA_VS(VGA_VS), .oVGA_BLANK(), .oVGA_CLOCK(), // Control Signal .iCLK(vga_pixel_clock), .iRST_N(reset_n) ); */ // Generate all signals for the LCD. LCD_control lcd_control( // Host Side .iRed(m_lcd_r), .iGreen(m_lcd_g), .iBlue(m_lcd_b), .oCurrent_X(lcd_x), .oCurrent_Y(lcd_y), .oAddress(), .oRequest(), .oTopOfScreen(), // LCD Side .oLCD_R(s_lcd_r), .oLCD_G(s_lcd_g), .oLCD_B(s_lcd_b), .oLCD_HS(lcd_hs), .oLCD_VS(lcd_vs), .oLCD_DE(lcd_de), // Control Signal .iCLK(vga_pixel_clock), .iRST_N(reset_n) ); // FIFO to pass data from RAM to VGA. VGA_FIFO vga_fifo( // Inputs. .aclr(vga_fifo_clear), .data(vga_fifo_input), .rdclk(vga_pixel_clock), .rdreq(m_vga_request), .wrclk(vga_fifo_wrclk), .wrreq(vga_fifo_wrreq), // Outputs. .q(vga_fifo_output), .rdempty(vga_fifo_rdempty), .wrfull(), .wrusedw(vga_fifo_wrusedw) ); // PLL for the SDRAM clock. SDRAM_clock sdram_clock( .areset(!reset_n), .inclk0(CLOCK_50), .c0(DRAM_CLK), .locked(sdram_clk_locked) ); // Test of SDRAM. // Convert from 13 to 12 bits for address. wire [11:0] dram_addr; assign DRAM_ADDR = { 1'b0, dram_addr }; SDRAM_test sdram_test( .reset_n(reset_n), .dram_dq(DRAM_DQ), .dram_addr(dram_addr), .dram_ldqm(DRAM_LDQM), .dram_udqm(DRAM_UDQM), .dram_we_n(DRAM_WE_N), .dram_cas_n(DRAM_CAS_N), .dram_ras_n(DRAM_RAS_N), .dram_cs_n(DRAM_CS_N), .dram_ba_0(DRAM_BA_0), .dram_ba_1(DRAM_BA_1), .dram_clk(DRAM_CLK), .dram_cke(DRAM_CKE), .dram_clk_locked(sdram_clk_locked), .debug_number(debug_number_sdram_test) ); `ifdef NOTDEF always @(posedge DRAM_CLK or negedge reset_n) begin if (!reset_n) begin counter <= 0; end else begin counter <= counter + 1'b1; /* if (counter == 50_000_000) begin counter <= 0; end */ end end `endif assign vga_fifo_input = (x == 0 || x == 639 || y == 0 || y == 479) ? 12'hF00 : (x[4] ^ y[4]) ? 12'h000 : 12'hFFF; assign vga_fifo_wrclk = our_clock; // Use magenta if the FIFO is empty. assign m_vga_r = vga_fifo_rdempty ? 4'b1111 : vga_fifo_output[11:8]; assign m_vga_g = vga_fifo_rdempty ? 4'b0000 : vga_fifo_output[7:4]; assign m_vga_b = vga_fifo_rdempty ? 4'b1111 : vga_fifo_output[3:0]; // Initialize our variables. initial begin counter <= 0; debug_number <= 16'h0000; end // Compute the next values of the input to the FIFO. always @(*) begin state_nxt = state; x_nxt = x; y_nxt = y; vga_fifo_clear_nxt = vga_fifo_clear; vga_fifo_wrreq_nxt = 0; pixel_count_nxt = pixel_count; debug_number_nxt = debug_number; case (state) STATE_START: begin state_nxt = STATE_RESET; vga_fifo_clear_nxt = 1; // debug_number_nxt = debug_number + 1; end STATE_RESET: begin state_nxt = STATE_GOING; vga_fifo_clear_nxt = 0; x_nxt = 1'b0; y_nxt = 1'b0; pixel_count_nxt = 1; end STATE_GOING: begin if (vga_fifo_almost_full) begin state_nxt = STATE_PAUSED; end else begin if (x == 639) begin x_nxt = 1'b0; if (y == 479) begin state_nxt = STATE_STOPPED; // debug_number_nxt = pixel_count; end else begin y_nxt = y + 1'b1; vga_fifo_wrreq_nxt = 1'b1; pixel_count_nxt = pixel_count + 1'b1; end end else begin x_nxt = x + 1'b1; vga_fifo_wrreq_nxt = 1'b1; pixel_count_nxt = pixel_count + 1'b1; end end end STATE_PAUSED: begin if (!vga_fifo_almost_full) begin state_nxt = STATE_GOING; end end STATE_STOPPED: begin // Nothing. end endcase end // Clock next values into the current ones. always @(posedge our_clock) begin m_vga_top_of_screen_latched <= m_vga_top_of_screen; if (m_vga_top_of_screen_latched) begin state <= STATE_START; x <= 0; y <= 0; vga_fifo_clear <= 0; vga_fifo_wrreq <= 0; end else begin state <= state_nxt; x <= x_nxt; y <= y_nxt; vga_fifo_clear <= vga_fifo_clear_nxt; vga_fifo_wrreq <= vga_fifo_wrreq_nxt; end pixel_count <= pixel_count_nxt; debug_number <= debug_number_nxt; end // ****************** Nothing used below here. `ifdef NOTDEF reg signed [19:0] w0_row; reg signed [19:0] w1_row; reg signed [19:0] w2_row; wire signed [19:0] w0; wire signed [19:0] w1; wire signed [19:0] w2; assign w0 = 128_400 + m_vga_x*(-140) + m_vga_y*(-220); assign w1 = -6000 + m_vga_x*(280) + m_vga_y*(-220); assign w2 = -30000 + m_vga_x*(-140) + m_vga_y*(440); wire insideTriangle = 1; // w0 >= 0 && w1 >= 0 && w2 >= 0; //assign m_vga_r = insideTriangle ? (w0/6160) : 4'b0000; //assign m_vga_g = insideTriangle ? (w1/6160) : 4'b0000; //assign m_vga_b = insideTriangle ? (w2/6160) : 4'b0000; `endif `ifdef NOTDEF always @(m_vga_x or m_vga_y) begin if (m_vga_x == 0 && m_vga_y == 0) begin w0_row <= 128_400; w1_row <= -6_000; w2_row <= -30_000; w0 <= w0_row; w1 <= w1_row; w2 <= w2_row; end else if (m_vga_x == 0) begin w0_row <= w0_row - 220; w1_row <= w1_row - 220; w2_row <= w2_row + 440; w0 <= w0_row; w1 <= w1_row; w2 <= w2_row; end else begin w0 <= w0 - 140; w1 <= w1 + 280; w2 <= w2 - 140; end end `endif // LCD test code. reg [7:0] horiz_prescale; reg [2:0] color_counter; wire [7:0] red = color_counter[0] ? 8'hFF : 8'h00; wire [7:0] green = color_counter[1] ? 8'hFF : 8'h00; wire [7:0] blue = color_counter[2] ? 8'hFF : 8'h00; wire [9:0] lcd_x; wire [9:0] lcd_y; wire lcd_checkerboard = lcd_x[4] ^ lcd_y[4]; wire [7:0] m_lcd_r = lcd_checkerboard ? red : 8'h00; wire [7:0] m_lcd_g = lcd_checkerboard ? green : 8'h00; wire [7:0] m_lcd_b = lcd_checkerboard ? blue : 8'h00; wire [7:0] s_lcd_r; wire [7:0] s_lcd_g; wire [7:0] s_lcd_b; wire lcd_hs; wire lcd_vs; wire lcd_de; wire lcd_display_on = 1'b1; assign { GPIO1_D[16:15], GPIO1_D[13:10] } = s_lcd_r[7:2]; assign { GPIO1_D[23:19], GPIO1_D[17] } = s_lcd_g[7:2]; assign { GPIO1_D[31], GPIO1_D[29:26], GPIO1_D[24] } = s_lcd_b[7:2]; assign GPIO1_D[2] = vga_pixel_clock; assign GPIO1_D[4] = lcd_hs; assign GPIO1_D[5] = lcd_vs; assign GPIO1_D[7] = lcd_de; assign GPIO1_D[8] = lcd_display_on; always @(posedge vga_pixel_clock) begin if (!lcd_de) begin horiz_prescale <= 8'd0; color_counter <= 3'd1; end else begin if (horiz_prescale == 8'd115) begin horiz_prescale <= 8'd0; color_counter <= color_counter + 3'd1; end else begin horiz_prescale <= horiz_prescale + 8'd1; end end end endmodule
module axi_basic_tx #( parameter C_DATA_WIDTH = 128, // RX/TX interface data width parameter C_FAMILY = "X7", // Targeted FPGA family parameter C_ROOT_PORT = "FALSE", // PCIe block is in root port mode parameter C_PM_PRIORITY = "FALSE", // Disable TX packet boundary thrtl parameter TCQ = 1, // Clock to Q time // Do not override parameters below this line parameter REM_WIDTH = (C_DATA_WIDTH == 128) ? 2 : 1, // trem/rrem width parameter STRB_WIDTH = C_DATA_WIDTH / 8 // TSTRB width ) ( //---------------------------------------------// // User Design I/O // //---------------------------------------------// // AXI TX //----------- input [C_DATA_WIDTH-1:0] s_axis_tx_tdata, // TX data from user input s_axis_tx_tvalid, // TX data is valid output s_axis_tx_tready, // TX ready for data input [STRB_WIDTH-1:0] s_axis_tx_tstrb, // TX strobe byte enables input s_axis_tx_tlast, // TX data is last input [3:0] s_axis_tx_tuser, // TX user signals // User Misc. //----------- input user_turnoff_ok, // Turnoff OK from user input user_tcfg_gnt, // Send cfg OK from user //---------------------------------------------// // PCIe Block I/O // //---------------------------------------------// // TRN TX //----------- output [C_DATA_WIDTH-1:0] trn_td, // TX data from block output trn_tsof, // TX start of packet output trn_teof, // TX end of packet output trn_tsrc_rdy, // TX source ready input trn_tdst_rdy, // TX destination ready output trn_tsrc_dsc, // TX source discontinue output [REM_WIDTH-1:0] trn_trem, // TX remainder output trn_terrfwd, // TX error forward output trn_tstr, // TX streaming enable input [5:0] trn_tbuf_av, // TX buffers available output trn_tecrc_gen, // TX ECRC generate // TRN Misc. //----------- input trn_tcfg_req, // TX config request output trn_tcfg_gnt, // RX config grant input trn_lnk_up, // PCIe link up // 7 Series/Virtex6 PM //----------- input [2:0] cfg_pcie_link_state, // Encoded PCIe link state // Virtex6 PM //----------- input cfg_pm_send_pme_to, // PM send PME turnoff msg input [1:0] cfg_pmcsr_powerstate, // PMCSR power state input [31:0] trn_rdllp_data, // RX DLLP data input trn_rdllp_src_rdy, // RX DLLP source ready // Virtex6/Spartan6 PM //----------- input cfg_to_turnoff, // Turnoff request output cfg_turnoff_ok, // Turnoff grant // System //----------- input user_clk, // user clock from block input user_rst // user reset from block ); wire tready_thrtl; //---------------------------------------------// // TX Data Pipeline // //---------------------------------------------// axi_basic_tx_pipeline #( .C_DATA_WIDTH( C_DATA_WIDTH ), .C_PM_PRIORITY( C_PM_PRIORITY ), .TCQ( TCQ ), .REM_WIDTH( REM_WIDTH ), .STRB_WIDTH( STRB_WIDTH ) ) tx_pipeline_inst ( // Incoming AXI RX //----------- .s_axis_tx_tdata( s_axis_tx_tdata ), .s_axis_tx_tready( s_axis_tx_tready ), .s_axis_tx_tvalid( s_axis_tx_tvalid ), .s_axis_tx_tstrb( s_axis_tx_tstrb ), .s_axis_tx_tlast( s_axis_tx_tlast ), .s_axis_tx_tuser( s_axis_tx_tuser ), // Outgoing TRN TX //----------- .trn_td( trn_td ), .trn_tsof( trn_tsof ), .trn_teof( trn_teof ), .trn_tsrc_rdy( trn_tsrc_rdy ), .trn_tdst_rdy( trn_tdst_rdy ), .trn_tsrc_dsc( trn_tsrc_dsc ), .trn_trem( trn_trem ), .trn_terrfwd( trn_terrfwd ), .trn_tstr( trn_tstr ), .trn_tecrc_gen( trn_tecrc_gen ), .trn_lnk_up( trn_lnk_up ), // System //----------- .tready_thrtl( tready_thrtl ), .user_clk( user_clk ), .user_rst( user_rst ) ); //---------------------------------------------// // TX Throttle Controller // //---------------------------------------------// generate if(C_PM_PRIORITY == "FALSE") begin : thrtl_ctl_enabled axi_basic_tx_thrtl_ctl #( .C_DATA_WIDTH( C_DATA_WIDTH ), .C_FAMILY( C_FAMILY ), .C_ROOT_PORT( C_ROOT_PORT ), .TCQ( TCQ ) ) tx_thrl_ctl_inst ( // Outgoing AXI TX //----------- .s_axis_tx_tdata( s_axis_tx_tdata ), .s_axis_tx_tvalid( s_axis_tx_tvalid ), .s_axis_tx_tuser( s_axis_tx_tuser ), .s_axis_tx_tlast( s_axis_tx_tlast ), // User Misc. //----------- .user_turnoff_ok( user_turnoff_ok ), .user_tcfg_gnt( user_tcfg_gnt ), // Incoming TRN RX //----------- .trn_tbuf_av( trn_tbuf_av ), .trn_tdst_rdy( trn_tdst_rdy ), // TRN Misc. //----------- .trn_tcfg_req( trn_tcfg_req ), .trn_tcfg_gnt( trn_tcfg_gnt ), .trn_lnk_up( trn_lnk_up ), // 7 Seriesq/Virtex6 PM //----------- .cfg_pcie_link_state( cfg_pcie_link_state ), // Virtex6 PM //----------- .cfg_pm_send_pme_to( cfg_pm_send_pme_to ), .cfg_pmcsr_powerstate( cfg_pmcsr_powerstate ), .trn_rdllp_data( trn_rdllp_data ), .trn_rdllp_src_rdy( trn_rdllp_src_rdy ), // Spartan6 PM //----------- .cfg_to_turnoff( cfg_to_turnoff ), .cfg_turnoff_ok( cfg_turnoff_ok ), // System //----------- .tready_thrtl( tready_thrtl ), .user_clk( user_clk ), .user_rst( user_rst ) ); end else begin : thrtl_ctl_disabled assign tready_thrtl = 1'b0; assign cfg_turnoff_ok = user_turnoff_ok; assign trn_tcfg_gnt = user_tcfg_gnt; end endgenerate endmodule
module hps_sdram ( input wire pll_ref_clk, // pll_ref_clk.clk input wire global_reset_n, // global_reset.reset_n input wire soft_reset_n, // soft_reset.reset_n output wire [14:0] mem_a, // memory.mem_a output wire [2:0] mem_ba, // .mem_ba output wire [0:0] mem_ck, // .mem_ck output wire [0:0] mem_ck_n, // .mem_ck_n output wire [0:0] mem_cke, // .mem_cke output wire [0:0] mem_cs_n, // .mem_cs_n output wire [3:0] mem_dm, // .mem_dm output wire [0:0] mem_ras_n, // .mem_ras_n output wire [0:0] mem_cas_n, // .mem_cas_n output wire [0:0] mem_we_n, // .mem_we_n output wire mem_reset_n, // .mem_reset_n inout wire [31:0] mem_dq, // .mem_dq inout wire [3:0] mem_dqs, // .mem_dqs inout wire [3:0] mem_dqs_n, // .mem_dqs_n output wire [0:0] mem_odt, // .mem_odt input wire oct_rzqin // oct.rzqin ); wire pll_afi_clk_clk; // pll:afi_clk -> [c0:afi_clk, p0:afi_clk] wire pll_afi_half_clk_clk; // pll:afi_half_clk -> [c0:afi_half_clk, p0:afi_half_clk] wire [4:0] p0_afi_afi_rlat; // p0:afi_rlat -> c0:afi_rlat wire p0_afi_afi_cal_success; // p0:afi_cal_success -> c0:afi_cal_success wire [79:0] p0_afi_afi_rdata; // p0:afi_rdata -> c0:afi_rdata wire [3:0] p0_afi_afi_wlat; // p0:afi_wlat -> c0:afi_wlat wire p0_afi_afi_cal_fail; // p0:afi_cal_fail -> c0:afi_cal_fail wire [0:0] p0_afi_afi_rdata_valid; // p0:afi_rdata_valid -> c0:afi_rdata_valid wire p0_afi_reset_reset; // p0:afi_reset_n -> c0:afi_reset_n wire [4:0] c0_afi_afi_rdata_en_full; // c0:afi_rdata_en_full -> p0:afi_rdata_en_full wire [0:0] c0_afi_afi_rst_n; // c0:afi_rst_n -> p0:afi_rst_n wire [4:0] c0_afi_afi_dqs_burst; // c0:afi_dqs_burst -> p0:afi_dqs_burst wire [19:0] c0_afi_afi_addr; // c0:afi_addr -> p0:afi_addr wire [9:0] c0_afi_afi_dm; // c0:afi_dm -> p0:afi_dm wire [0:0] c0_afi_afi_mem_clk_disable; // c0:afi_mem_clk_disable -> p0:afi_mem_clk_disable wire [0:0] c0_afi_afi_we_n; // c0:afi_we_n -> p0:afi_we_n wire [4:0] c0_afi_afi_rdata_en; // c0:afi_rdata_en -> p0:afi_rdata_en wire [1:0] c0_afi_afi_odt; // c0:afi_odt -> p0:afi_odt wire [0:0] c0_afi_afi_ras_n; // c0:afi_ras_n -> p0:afi_ras_n wire [1:0] c0_afi_afi_cke; // c0:afi_cke -> p0:afi_cke wire [4:0] c0_afi_afi_wdata_valid; // c0:afi_wdata_valid -> p0:afi_wdata_valid wire [79:0] c0_afi_afi_wdata; // c0:afi_wdata -> p0:afi_wdata wire [2:0] c0_afi_afi_ba; // c0:afi_ba -> p0:afi_ba wire [0:0] c0_afi_afi_cas_n; // c0:afi_cas_n -> p0:afi_cas_n wire [1:0] c0_afi_afi_cs_n; // c0:afi_cs_n -> p0:afi_cs_n wire [7:0] c0_hard_phy_cfg_cfg_tmrd; // c0:cfg_tmrd -> p0:cfg_tmrd wire [23:0] c0_hard_phy_cfg_cfg_dramconfig; // c0:cfg_dramconfig -> p0:cfg_dramconfig wire [7:0] c0_hard_phy_cfg_cfg_rowaddrwidth; // c0:cfg_rowaddrwidth -> p0:cfg_rowaddrwidth wire [7:0] c0_hard_phy_cfg_cfg_devicewidth; // c0:cfg_devicewidth -> p0:cfg_devicewidth wire [15:0] c0_hard_phy_cfg_cfg_trefi; // c0:cfg_trefi -> p0:cfg_trefi wire [7:0] c0_hard_phy_cfg_cfg_tcl; // c0:cfg_tcl -> p0:cfg_tcl wire [7:0] c0_hard_phy_cfg_cfg_csaddrwidth; // c0:cfg_csaddrwidth -> p0:cfg_csaddrwidth wire [7:0] c0_hard_phy_cfg_cfg_coladdrwidth; // c0:cfg_coladdrwidth -> p0:cfg_coladdrwidth wire [7:0] c0_hard_phy_cfg_cfg_trfc; // c0:cfg_trfc -> p0:cfg_trfc wire [7:0] c0_hard_phy_cfg_cfg_addlat; // c0:cfg_addlat -> p0:cfg_addlat wire [7:0] c0_hard_phy_cfg_cfg_bankaddrwidth; // c0:cfg_bankaddrwidth -> p0:cfg_bankaddrwidth wire [7:0] c0_hard_phy_cfg_cfg_interfacewidth; // c0:cfg_interfacewidth -> p0:cfg_interfacewidth wire [7:0] c0_hard_phy_cfg_cfg_twr; // c0:cfg_twr -> p0:cfg_twr wire [7:0] c0_hard_phy_cfg_cfg_caswrlat; // c0:cfg_caswrlat -> p0:cfg_caswrlat wire p0_ctl_clk_clk; // p0:ctl_clk -> c0:ctl_clk wire p0_ctl_reset_reset; // p0:ctl_reset_n -> c0:ctl_reset_n wire p0_io_int_io_intaficalfail; // p0:io_intaficalfail -> c0:io_intaficalfail wire p0_io_int_io_intaficalsuccess; // p0:io_intaficalsuccess -> c0:io_intaficalsuccess wire [15:0] oct_oct_sharing_parallelterminationcontrol; // oct:parallelterminationcontrol -> p0:parallelterminationcontrol wire [15:0] oct_oct_sharing_seriesterminationcontrol; // oct:seriesterminationcontrol -> p0:seriesterminationcontrol wire pll_pll_sharing_pll_write_clk; // pll:pll_write_clk -> p0:pll_write_clk wire pll_pll_sharing_pll_avl_clk; // pll:pll_avl_clk -> p0:pll_avl_clk wire pll_pll_sharing_pll_write_clk_pre_phy_clk; // pll:pll_write_clk_pre_phy_clk -> p0:pll_write_clk_pre_phy_clk wire pll_pll_sharing_pll_addr_cmd_clk; // pll:pll_addr_cmd_clk -> p0:pll_addr_cmd_clk wire pll_pll_sharing_pll_config_clk; // pll:pll_config_clk -> p0:pll_config_clk wire pll_pll_sharing_pll_avl_phy_clk; // pll:pll_avl_phy_clk -> p0:pll_avl_phy_clk wire pll_pll_sharing_afi_phy_clk; // pll:afi_phy_clk -> p0:afi_phy_clk wire pll_pll_sharing_pll_mem_clk; // pll:pll_mem_clk -> p0:pll_mem_clk wire pll_pll_sharing_pll_locked; // pll:pll_locked -> p0:pll_locked wire pll_pll_sharing_pll_mem_phy_clk; // pll:pll_mem_phy_clk -> p0:pll_mem_phy_clk wire p0_dll_clk_clk; // p0:dll_clk -> dll:clk wire p0_dll_sharing_dll_pll_locked; // p0:dll_pll_locked -> dll:dll_pll_locked wire [6:0] dll_dll_sharing_dll_delayctrl; // dll:dll_delayctrl -> p0:dll_delayctrl hps_sdram_pll pll ( .global_reset_n (global_reset_n), // global_reset.reset_n .pll_ref_clk (pll_ref_clk), // pll_ref_clk.clk .afi_clk (pll_afi_clk_clk), // afi_clk.clk .afi_half_clk (pll_afi_half_clk_clk), // afi_half_clk.clk .pll_mem_clk (pll_pll_sharing_pll_mem_clk), // pll_sharing.pll_mem_clk .pll_write_clk (pll_pll_sharing_pll_write_clk), // .pll_write_clk .pll_locked (pll_pll_sharing_pll_locked), // .pll_locked .pll_write_clk_pre_phy_clk (pll_pll_sharing_pll_write_clk_pre_phy_clk), // .pll_write_clk_pre_phy_clk .pll_addr_cmd_clk (pll_pll_sharing_pll_addr_cmd_clk), // .pll_addr_cmd_clk .pll_avl_clk (pll_pll_sharing_pll_avl_clk), // .pll_avl_clk .pll_config_clk (pll_pll_sharing_pll_config_clk), // .pll_config_clk .pll_mem_phy_clk (pll_pll_sharing_pll_mem_phy_clk), // .pll_mem_phy_clk .afi_phy_clk (pll_pll_sharing_afi_phy_clk), // .afi_phy_clk .pll_avl_phy_clk (pll_pll_sharing_pll_avl_phy_clk) // .pll_avl_phy_clk ); hps_sdram_p0 p0 ( .global_reset_n (global_reset_n), // global_reset.reset_n .soft_reset_n (soft_reset_n), // soft_reset.reset_n .afi_reset_n (p0_afi_reset_reset), // afi_reset.reset_n .afi_reset_export_n (), // afi_reset_export.reset_n .ctl_reset_n (p0_ctl_reset_reset), // ctl_reset.reset_n .afi_clk (pll_afi_clk_clk), // afi_clk.clk .afi_half_clk (pll_afi_half_clk_clk), // afi_half_clk.clk .ctl_clk (p0_ctl_clk_clk), // ctl_clk.clk .avl_clk (), // avl_clk.clk .avl_reset_n (), // avl_reset.reset_n .scc_clk (), // scc_clk.clk .scc_reset_n (), // scc_reset.reset_n .avl_address (), // avl.address .avl_write (), // .write .avl_writedata (), // .writedata .avl_read (), // .read .avl_readdata (), // .readdata .avl_waitrequest (), // .waitrequest .dll_clk (p0_dll_clk_clk), // dll_clk.clk .afi_addr (c0_afi_afi_addr), // afi.afi_addr .afi_ba (c0_afi_afi_ba), // .afi_ba .afi_cke (c0_afi_afi_cke), // .afi_cke .afi_cs_n (c0_afi_afi_cs_n), // .afi_cs_n .afi_ras_n (c0_afi_afi_ras_n), // .afi_ras_n .afi_we_n (c0_afi_afi_we_n), // .afi_we_n .afi_cas_n (c0_afi_afi_cas_n), // .afi_cas_n .afi_rst_n (c0_afi_afi_rst_n), // .afi_rst_n .afi_odt (c0_afi_afi_odt), // .afi_odt .afi_dqs_burst (c0_afi_afi_dqs_burst), // .afi_dqs_burst .afi_wdata_valid (c0_afi_afi_wdata_valid), // .afi_wdata_valid .afi_wdata (c0_afi_afi_wdata), // .afi_wdata .afi_dm (c0_afi_afi_dm), // .afi_dm .afi_rdata (p0_afi_afi_rdata), // .afi_rdata .afi_rdata_en (c0_afi_afi_rdata_en), // .afi_rdata_en .afi_rdata_en_full (c0_afi_afi_rdata_en_full), // .afi_rdata_en_full .afi_rdata_valid (p0_afi_afi_rdata_valid), // .afi_rdata_valid .afi_wlat (p0_afi_afi_wlat), // .afi_wlat .afi_rlat (p0_afi_afi_rlat), // .afi_rlat .afi_cal_success (p0_afi_afi_cal_success), // .afi_cal_success .afi_cal_fail (p0_afi_afi_cal_fail), // .afi_cal_fail .scc_data (), // scc.scc_data .scc_dqs_ena (), // .scc_dqs_ena .scc_dqs_io_ena (), // .scc_dqs_io_ena .scc_dq_ena (), // .scc_dq_ena .scc_dm_ena (), // .scc_dm_ena .capture_strobe_tracking (), // .capture_strobe_tracking .scc_upd (), // .scc_upd .cfg_addlat (c0_hard_phy_cfg_cfg_addlat), // hard_phy_cfg.cfg_addlat .cfg_bankaddrwidth (c0_hard_phy_cfg_cfg_bankaddrwidth), // .cfg_bankaddrwidth .cfg_caswrlat (c0_hard_phy_cfg_cfg_caswrlat), // .cfg_caswrlat .cfg_coladdrwidth (c0_hard_phy_cfg_cfg_coladdrwidth), // .cfg_coladdrwidth .cfg_csaddrwidth (c0_hard_phy_cfg_cfg_csaddrwidth), // .cfg_csaddrwidth .cfg_devicewidth (c0_hard_phy_cfg_cfg_devicewidth), // .cfg_devicewidth .cfg_dramconfig (c0_hard_phy_cfg_cfg_dramconfig), // .cfg_dramconfig .cfg_interfacewidth (c0_hard_phy_cfg_cfg_interfacewidth), // .cfg_interfacewidth .cfg_rowaddrwidth (c0_hard_phy_cfg_cfg_rowaddrwidth), // .cfg_rowaddrwidth .cfg_tcl (c0_hard_phy_cfg_cfg_tcl), // .cfg_tcl .cfg_tmrd (c0_hard_phy_cfg_cfg_tmrd), // .cfg_tmrd .cfg_trefi (c0_hard_phy_cfg_cfg_trefi), // .cfg_trefi .cfg_trfc (c0_hard_phy_cfg_cfg_trfc), // .cfg_trfc .cfg_twr (c0_hard_phy_cfg_cfg_twr), // .cfg_twr .afi_mem_clk_disable (c0_afi_afi_mem_clk_disable), // afi_mem_clk_disable.afi_mem_clk_disable .pll_mem_clk (pll_pll_sharing_pll_mem_clk), // pll_sharing.pll_mem_clk .pll_write_clk (pll_pll_sharing_pll_write_clk), // .pll_write_clk .pll_locked (pll_pll_sharing_pll_locked), // .pll_locked .pll_write_clk_pre_phy_clk (pll_pll_sharing_pll_write_clk_pre_phy_clk), // .pll_write_clk_pre_phy_clk .pll_addr_cmd_clk (pll_pll_sharing_pll_addr_cmd_clk), // .pll_addr_cmd_clk .pll_avl_clk (pll_pll_sharing_pll_avl_clk), // .pll_avl_clk .pll_config_clk (pll_pll_sharing_pll_config_clk), // .pll_config_clk .pll_mem_phy_clk (pll_pll_sharing_pll_mem_phy_clk), // .pll_mem_phy_clk .afi_phy_clk (pll_pll_sharing_afi_phy_clk), // .afi_phy_clk .pll_avl_phy_clk (pll_pll_sharing_pll_avl_phy_clk), // .pll_avl_phy_clk .dll_pll_locked (p0_dll_sharing_dll_pll_locked), // dll_sharing.dll_pll_locked .dll_delayctrl (dll_dll_sharing_dll_delayctrl), // .dll_delayctrl .seriesterminationcontrol (oct_oct_sharing_seriesterminationcontrol), // oct_sharing.seriesterminationcontrol .parallelterminationcontrol (oct_oct_sharing_parallelterminationcontrol), // .parallelterminationcontrol .mem_a (mem_a), // memory.mem_a .mem_ba (mem_ba), // .mem_ba .mem_ck (mem_ck), // .mem_ck .mem_ck_n (mem_ck_n), // .mem_ck_n .mem_cke (mem_cke), // .mem_cke .mem_cs_n (mem_cs_n), // .mem_cs_n .mem_dm (mem_dm), // .mem_dm .mem_ras_n (mem_ras_n), // .mem_ras_n .mem_cas_n (mem_cas_n), // .mem_cas_n .mem_we_n (mem_we_n), // .mem_we_n .mem_reset_n (mem_reset_n), // .mem_reset_n .mem_dq (mem_dq), // .mem_dq .mem_dqs (mem_dqs), // .mem_dqs .mem_dqs_n (mem_dqs_n), // .mem_dqs_n .mem_odt (mem_odt), // .mem_odt .io_intaficalfail (p0_io_int_io_intaficalfail), // io_int.io_intaficalfail .io_intaficalsuccess (p0_io_int_io_intaficalsuccess), // .io_intaficalsuccess .csr_soft_reset_req (1'b0), // (terminated) .io_intaddrdout (64'b0000000000000000000000000000000000000000000000000000000000000000), // (terminated) .io_intbadout (12'b000000000000), // (terminated) .io_intcasndout (4'b0000), // (terminated) .io_intckdout (4'b0000), // (terminated) .io_intckedout (8'b00000000), // (terminated) .io_intckndout (4'b0000), // (terminated) .io_intcsndout (8'b00000000), // (terminated) .io_intdmdout (20'b00000000000000000000), // (terminated) .io_intdqdin (), // (terminated) .io_intdqdout (180'b000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000), // (terminated) .io_intdqoe (90'b000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000), // (terminated) .io_intdqsbdout (20'b00000000000000000000), // (terminated) .io_intdqsboe (10'b0000000000), // (terminated) .io_intdqsdout (20'b00000000000000000000), // (terminated) .io_intdqslogicdqsena (10'b0000000000), // (terminated) .io_intdqslogicfiforeset (5'b00000), // (terminated) .io_intdqslogicincrdataen (10'b0000000000), // (terminated) .io_intdqslogicincwrptr (10'b0000000000), // (terminated) .io_intdqslogicoct (10'b0000000000), // (terminated) .io_intdqslogicrdatavalid (), // (terminated) .io_intdqslogicreadlatency (25'b0000000000000000000000000), // (terminated) .io_intdqsoe (10'b0000000000), // (terminated) .io_intodtdout (8'b00000000), // (terminated) .io_intrasndout (4'b0000), // (terminated) .io_intresetndout (4'b0000), // (terminated) .io_intwendout (4'b0000), // (terminated) .io_intafirlat (), // (terminated) .io_intafiwlat () // (terminated) ); altera_mem_if_hhp_qseq_synth_top #( .MEM_IF_DM_WIDTH (4), .MEM_IF_DQS_WIDTH (4), .MEM_IF_CS_WIDTH (1), .MEM_IF_DQ_WIDTH (32) ) seq ( ); altera_mem_if_hard_memory_controller_top_cyclonev #( .MEM_IF_DQS_WIDTH (4), .MEM_IF_CS_WIDTH (1), .MEM_IF_CHIP_BITS (1), .MEM_IF_CLK_PAIR_COUNT (1), .CSR_ADDR_WIDTH (10), .CSR_DATA_WIDTH (8), .CSR_BE_WIDTH (1), .AVL_ADDR_WIDTH (27), .AVL_DATA_WIDTH (64), .AVL_SIZE_WIDTH (3), .AVL_DATA_WIDTH_PORT_0 (1), .AVL_ADDR_WIDTH_PORT_0 (1), .AVL_NUM_SYMBOLS_PORT_0 (1), .LSB_WFIFO_PORT_0 (5), .MSB_WFIFO_PORT_0 (5), .LSB_RFIFO_PORT_0 (5), .MSB_RFIFO_PORT_0 (5), .AVL_DATA_WIDTH_PORT_1 (1), .AVL_ADDR_WIDTH_PORT_1 (1), .AVL_NUM_SYMBOLS_PORT_1 (1), .LSB_WFIFO_PORT_1 (5), .MSB_WFIFO_PORT_1 (5), .LSB_RFIFO_PORT_1 (5), .MSB_RFIFO_PORT_1 (5), .AVL_DATA_WIDTH_PORT_2 (1), .AVL_ADDR_WIDTH_PORT_2 (1), .AVL_NUM_SYMBOLS_PORT_2 (1), .LSB_WFIFO_PORT_2 (5), .MSB_WFIFO_PORT_2 (5), .LSB_RFIFO_PORT_2 (5), .MSB_RFIFO_PORT_2 (5), .AVL_DATA_WIDTH_PORT_3 (1), .AVL_ADDR_WIDTH_PORT_3 (1), .AVL_NUM_SYMBOLS_PORT_3 (1), .LSB_WFIFO_PORT_3 (5), .MSB_WFIFO_PORT_3 (5), .LSB_RFIFO_PORT_3 (5), .MSB_RFIFO_PORT_3 (5), .AVL_DATA_WIDTH_PORT_4 (1), .AVL_ADDR_WIDTH_PORT_4 (1), .AVL_NUM_SYMBOLS_PORT_4 (1), .LSB_WFIFO_PORT_4 (5), .MSB_WFIFO_PORT_4 (5), .LSB_RFIFO_PORT_4 (5), .MSB_RFIFO_PORT_4 (5), .AVL_DATA_WIDTH_PORT_5 (1), .AVL_ADDR_WIDTH_PORT_5 (1), .AVL_NUM_SYMBOLS_PORT_5 (1), .LSB_WFIFO_PORT_5 (5), .MSB_WFIFO_PORT_5 (5), .LSB_RFIFO_PORT_5 (5), .MSB_RFIFO_PORT_5 (5), .ENUM_ATTR_COUNTER_ONE_RESET ("DISABLED"), .ENUM_ATTR_COUNTER_ZERO_RESET ("DISABLED"), .ENUM_ATTR_STATIC_CONFIG_VALID ("DISABLED"), .ENUM_AUTO_PCH_ENABLE_0 ("DISABLED"), .ENUM_AUTO_PCH_ENABLE_1 ("DISABLED"), .ENUM_AUTO_PCH_ENABLE_2 ("DISABLED"), .ENUM_AUTO_PCH_ENABLE_3 ("DISABLED"), .ENUM_AUTO_PCH_ENABLE_4 ("DISABLED"), .ENUM_AUTO_PCH_ENABLE_5 ("DISABLED"), .ENUM_CAL_REQ ("DISABLED"), .ENUM_CFG_BURST_LENGTH ("BL_8"), .ENUM_CFG_INTERFACE_WIDTH ("DWIDTH_32"), .ENUM_CFG_SELF_RFSH_EXIT_CYCLES ("SELF_RFSH_EXIT_CYCLES_512"), .ENUM_CFG_STARVE_LIMIT ("STARVE_LIMIT_10"), .ENUM_CFG_TYPE ("DDR3"), .ENUM_CLOCK_OFF_0 ("DISABLED"), .ENUM_CLOCK_OFF_1 ("DISABLED"), .ENUM_CLOCK_OFF_2 ("DISABLED"), .ENUM_CLOCK_OFF_3 ("DISABLED"), .ENUM_CLOCK_OFF_4 ("DISABLED"), .ENUM_CLOCK_OFF_5 ("DISABLED"), .ENUM_CLR_INTR ("NO_CLR_INTR"), .ENUM_CMD_PORT_IN_USE_0 ("FALSE"), .ENUM_CMD_PORT_IN_USE_1 ("FALSE"), .ENUM_CMD_PORT_IN_USE_2 ("FALSE"), .ENUM_CMD_PORT_IN_USE_3 ("FALSE"), .ENUM_CMD_PORT_IN_USE_4 ("FALSE"), .ENUM_CMD_PORT_IN_USE_5 ("FALSE"), .ENUM_CPORT0_RDY_ALMOST_FULL ("NOT_FULL"), .ENUM_CPORT0_RFIFO_MAP ("FIFO_0"), .ENUM_CPORT0_TYPE ("DISABLE"), .ENUM_CPORT0_WFIFO_MAP ("FIFO_0"), .ENUM_CPORT1_RDY_ALMOST_FULL ("NOT_FULL"), .ENUM_CPORT1_RFIFO_MAP ("FIFO_0"), .ENUM_CPORT1_TYPE ("DISABLE"), .ENUM_CPORT1_WFIFO_MAP ("FIFO_0"), .ENUM_CPORT2_RDY_ALMOST_FULL ("NOT_FULL"), .ENUM_CPORT2_RFIFO_MAP ("FIFO_0"), .ENUM_CPORT2_TYPE ("DISABLE"), .ENUM_CPORT2_WFIFO_MAP ("FIFO_0"), .ENUM_CPORT3_RDY_ALMOST_FULL ("NOT_FULL"), .ENUM_CPORT3_RFIFO_MAP ("FIFO_0"), .ENUM_CPORT3_TYPE ("DISABLE"), .ENUM_CPORT3_WFIFO_MAP ("FIFO_0"), .ENUM_CPORT4_RDY_ALMOST_FULL ("NOT_FULL"), .ENUM_CPORT4_RFIFO_MAP ("FIFO_0"), .ENUM_CPORT4_TYPE ("DISABLE"), .ENUM_CPORT4_WFIFO_MAP ("FIFO_0"), .ENUM_CPORT5_RDY_ALMOST_FULL ("NOT_FULL"), .ENUM_CPORT5_RFIFO_MAP ("FIFO_0"), .ENUM_CPORT5_TYPE ("DISABLE"), .ENUM_CPORT5_WFIFO_MAP ("FIFO_0"), .ENUM_CTL_ADDR_ORDER ("CHIP_ROW_BANK_COL"), .ENUM_CTL_ECC_ENABLED ("CTL_ECC_DISABLED"), .ENUM_CTL_ECC_RMW_ENABLED ("CTL_ECC_RMW_DISABLED"), .ENUM_CTL_REGDIMM_ENABLED ("REGDIMM_DISABLED"), .ENUM_CTL_USR_REFRESH ("CTL_USR_REFRESH_DISABLED"), .ENUM_CTRL_WIDTH ("DATA_WIDTH_64_BIT"), .ENUM_DELAY_BONDING ("BONDING_LATENCY_0"), .ENUM_DFX_BYPASS_ENABLE ("DFX_BYPASS_DISABLED"), .ENUM_DISABLE_MERGING ("MERGING_ENABLED"), .ENUM_ECC_DQ_WIDTH ("ECC_DQ_WIDTH_0"), .ENUM_ENABLE_ATPG ("DISABLED"), .ENUM_ENABLE_BONDING_0 ("DISABLED"), .ENUM_ENABLE_BONDING_1 ("DISABLED"), .ENUM_ENABLE_BONDING_2 ("DISABLED"), .ENUM_ENABLE_BONDING_3 ("DISABLED"), .ENUM_ENABLE_BONDING_4 ("DISABLED"), .ENUM_ENABLE_BONDING_5 ("DISABLED"), .ENUM_ENABLE_BONDING_WRAPBACK ("DISABLED"), .ENUM_ENABLE_DQS_TRACKING ("ENABLED"), .ENUM_ENABLE_ECC_CODE_OVERWRITES ("DISABLED"), .ENUM_ENABLE_FAST_EXIT_PPD ("DISABLED"), .ENUM_ENABLE_INTR ("DISABLED"), .ENUM_ENABLE_NO_DM ("DISABLED"), .ENUM_ENABLE_PIPELINEGLOBAL ("DISABLED"), .ENUM_GANGED_ARF ("DISABLED"), .ENUM_GEN_DBE ("GEN_DBE_DISABLED"), .ENUM_GEN_SBE ("GEN_SBE_DISABLED"), .ENUM_INC_SYNC ("FIFO_SET_2"), .ENUM_LOCAL_IF_CS_WIDTH ("ADDR_WIDTH_0"), .ENUM_MASK_CORR_DROPPED_INTR ("DISABLED"), .ENUM_MASK_DBE_INTR ("DISABLED"), .ENUM_MASK_SBE_INTR ("DISABLED"), .ENUM_MEM_IF_AL ("AL_0"), .ENUM_MEM_IF_BANKADDR_WIDTH ("ADDR_WIDTH_3"), .ENUM_MEM_IF_BURSTLENGTH ("MEM_IF_BURSTLENGTH_8"), .ENUM_MEM_IF_COLADDR_WIDTH ("ADDR_WIDTH_10"), .ENUM_MEM_IF_CS_PER_RANK ("MEM_IF_CS_PER_RANK_1"), .ENUM_MEM_IF_CS_WIDTH ("MEM_IF_CS_WIDTH_1"), .ENUM_MEM_IF_DQ_PER_CHIP ("MEM_IF_DQ_PER_CHIP_8"), .ENUM_MEM_IF_DQS_WIDTH ("DQS_WIDTH_4"), .ENUM_MEM_IF_DWIDTH ("MEM_IF_DWIDTH_32"), .ENUM_MEM_IF_MEMTYPE ("DDR3_SDRAM"), .ENUM_MEM_IF_ROWADDR_WIDTH ("ADDR_WIDTH_15"), .ENUM_MEM_IF_SPEEDBIN ("DDR3_1600_8_8_8"), .ENUM_MEM_IF_TCCD ("TCCD_4"), .ENUM_MEM_IF_TCL ("TCL_7"), .ENUM_MEM_IF_TCWL ("TCWL_7"), .ENUM_MEM_IF_TFAW ("TFAW_15"), .ENUM_MEM_IF_TMRD ("TMRD_4"), .ENUM_MEM_IF_TRAS ("TRAS_14"), .ENUM_MEM_IF_TRC ("TRC_20"), .ENUM_MEM_IF_TRCD ("TRCD_6"), .ENUM_MEM_IF_TRP ("TRP_6"), .ENUM_MEM_IF_TRRD ("TRRD_3"), .ENUM_MEM_IF_TRTP ("TRTP_3"), .ENUM_MEM_IF_TWR ("TWR_6"), .ENUM_MEM_IF_TWTR ("TWTR_4"), .ENUM_MMR_CFG_MEM_BL ("MP_BL_8"), .ENUM_OUTPUT_REGD ("DISABLED"), .ENUM_PDN_EXIT_CYCLES ("SLOW_EXIT"), .ENUM_PORT0_WIDTH ("PORT_32_BIT"), .ENUM_PORT1_WIDTH ("PORT_32_BIT"), .ENUM_PORT2_WIDTH ("PORT_32_BIT"), .ENUM_PORT3_WIDTH ("PORT_32_BIT"), .ENUM_PORT4_WIDTH ("PORT_32_BIT"), .ENUM_PORT5_WIDTH ("PORT_32_BIT"), .ENUM_PRIORITY_0_0 ("WEIGHT_0"), .ENUM_PRIORITY_0_1 ("WEIGHT_0"), .ENUM_PRIORITY_0_2 ("WEIGHT_0"), .ENUM_PRIORITY_0_3 ("WEIGHT_0"), .ENUM_PRIORITY_0_4 ("WEIGHT_0"), .ENUM_PRIORITY_0_5 ("WEIGHT_0"), .ENUM_PRIORITY_1_0 ("WEIGHT_0"), .ENUM_PRIORITY_1_1 ("WEIGHT_0"), .ENUM_PRIORITY_1_2 ("WEIGHT_0"), .ENUM_PRIORITY_1_3 ("WEIGHT_0"), .ENUM_PRIORITY_1_4 ("WEIGHT_0"), .ENUM_PRIORITY_1_5 ("WEIGHT_0"), .ENUM_PRIORITY_2_0 ("WEIGHT_0"), .ENUM_PRIORITY_2_1 ("WEIGHT_0"), .ENUM_PRIORITY_2_2 ("WEIGHT_0"), .ENUM_PRIORITY_2_3 ("WEIGHT_0"), .ENUM_PRIORITY_2_4 ("WEIGHT_0"), .ENUM_PRIORITY_2_5 ("WEIGHT_0"), .ENUM_PRIORITY_3_0 ("WEIGHT_0"), .ENUM_PRIORITY_3_1 ("WEIGHT_0"), .ENUM_PRIORITY_3_2 ("WEIGHT_0"), .ENUM_PRIORITY_3_3 ("WEIGHT_0"), .ENUM_PRIORITY_3_4 ("WEIGHT_0"), .ENUM_PRIORITY_3_5 ("WEIGHT_0"), .ENUM_PRIORITY_4_0 ("WEIGHT_0"), .ENUM_PRIORITY_4_1 ("WEIGHT_0"), .ENUM_PRIORITY_4_2 ("WEIGHT_0"), .ENUM_PRIORITY_4_3 ("WEIGHT_0"), .ENUM_PRIORITY_4_4 ("WEIGHT_0"), .ENUM_PRIORITY_4_5 ("WEIGHT_0"), .ENUM_PRIORITY_5_0 ("WEIGHT_0"), .ENUM_PRIORITY_5_1 ("WEIGHT_0"), .ENUM_PRIORITY_5_2 ("WEIGHT_0"), .ENUM_PRIORITY_5_3 ("WEIGHT_0"), .ENUM_PRIORITY_5_4 ("WEIGHT_0"), .ENUM_PRIORITY_5_5 ("WEIGHT_0"), .ENUM_PRIORITY_6_0 ("WEIGHT_0"), .ENUM_PRIORITY_6_1 ("WEIGHT_0"), .ENUM_PRIORITY_6_2 ("WEIGHT_0"), .ENUM_PRIORITY_6_3 ("WEIGHT_0"), .ENUM_PRIORITY_6_4 ("WEIGHT_0"), .ENUM_PRIORITY_6_5 ("WEIGHT_0"), .ENUM_PRIORITY_7_0 ("WEIGHT_0"), .ENUM_PRIORITY_7_1 ("WEIGHT_0"), .ENUM_PRIORITY_7_2 ("WEIGHT_0"), .ENUM_PRIORITY_7_3 ("WEIGHT_0"), .ENUM_PRIORITY_7_4 ("WEIGHT_0"), .ENUM_PRIORITY_7_5 ("WEIGHT_0"), .ENUM_RCFG_STATIC_WEIGHT_0 ("WEIGHT_0"), .ENUM_RCFG_STATIC_WEIGHT_1 ("WEIGHT_0"), .ENUM_RCFG_STATIC_WEIGHT_2 ("WEIGHT_0"), .ENUM_RCFG_STATIC_WEIGHT_3 ("WEIGHT_0"), .ENUM_RCFG_STATIC_WEIGHT_4 ("WEIGHT_0"), .ENUM_RCFG_STATIC_WEIGHT_5 ("WEIGHT_0"), .ENUM_RCFG_USER_PRIORITY_0 ("PRIORITY_1"), .ENUM_RCFG_USER_PRIORITY_1 ("PRIORITY_1"), .ENUM_RCFG_USER_PRIORITY_2 ("PRIORITY_1"), .ENUM_RCFG_USER_PRIORITY_3 ("PRIORITY_1"), .ENUM_RCFG_USER_PRIORITY_4 ("PRIORITY_1"), .ENUM_RCFG_USER_PRIORITY_5 ("PRIORITY_1"), .ENUM_RD_DWIDTH_0 ("DWIDTH_0"), .ENUM_RD_DWIDTH_1 ("DWIDTH_0"), .ENUM_RD_DWIDTH_2 ("DWIDTH_0"), .ENUM_RD_DWIDTH_3 ("DWIDTH_0"), .ENUM_RD_DWIDTH_4 ("DWIDTH_0"), .ENUM_RD_DWIDTH_5 ("DWIDTH_0"), .ENUM_RD_FIFO_IN_USE_0 ("FALSE"), .ENUM_RD_FIFO_IN_USE_1 ("FALSE"), .ENUM_RD_FIFO_IN_USE_2 ("FALSE"), .ENUM_RD_FIFO_IN_USE_3 ("FALSE"), .ENUM_RD_PORT_INFO_0 ("USE_NO"), .ENUM_RD_PORT_INFO_1 ("USE_NO"), .ENUM_RD_PORT_INFO_2 ("USE_NO"), .ENUM_RD_PORT_INFO_3 ("USE_NO"), .ENUM_RD_PORT_INFO_4 ("USE_NO"), .ENUM_RD_PORT_INFO_5 ("USE_NO"), .ENUM_READ_ODT_CHIP ("ODT_DISABLED"), .ENUM_REORDER_DATA ("DATA_REORDERING"), .ENUM_RFIFO0_CPORT_MAP ("CMD_PORT_0"), .ENUM_RFIFO1_CPORT_MAP ("CMD_PORT_0"), .ENUM_RFIFO2_CPORT_MAP ("CMD_PORT_0"), .ENUM_RFIFO3_CPORT_MAP ("CMD_PORT_0"), .ENUM_SINGLE_READY_0 ("CONCATENATE_RDY"), .ENUM_SINGLE_READY_1 ("CONCATENATE_RDY"), .ENUM_SINGLE_READY_2 ("CONCATENATE_RDY"), .ENUM_SINGLE_READY_3 ("CONCATENATE_RDY"), .ENUM_STATIC_WEIGHT_0 ("WEIGHT_0"), .ENUM_STATIC_WEIGHT_1 ("WEIGHT_0"), .ENUM_STATIC_WEIGHT_2 ("WEIGHT_0"), .ENUM_STATIC_WEIGHT_3 ("WEIGHT_0"), .ENUM_STATIC_WEIGHT_4 ("WEIGHT_0"), .ENUM_STATIC_WEIGHT_5 ("WEIGHT_0"), .ENUM_SYNC_MODE_0 ("ASYNCHRONOUS"), .ENUM_SYNC_MODE_1 ("ASYNCHRONOUS"), .ENUM_SYNC_MODE_2 ("ASYNCHRONOUS"), .ENUM_SYNC_MODE_3 ("ASYNCHRONOUS"), .ENUM_SYNC_MODE_4 ("ASYNCHRONOUS"), .ENUM_SYNC_MODE_5 ("ASYNCHRONOUS"), .ENUM_TEST_MODE ("NORMAL_MODE"), .ENUM_THLD_JAR1_0 ("THRESHOLD_32"), .ENUM_THLD_JAR1_1 ("THRESHOLD_32"), .ENUM_THLD_JAR1_2 ("THRESHOLD_32"), .ENUM_THLD_JAR1_3 ("THRESHOLD_32"), .ENUM_THLD_JAR1_4 ("THRESHOLD_32"), .ENUM_THLD_JAR1_5 ("THRESHOLD_32"), .ENUM_THLD_JAR2_0 ("THRESHOLD_16"), .ENUM_THLD_JAR2_1 ("THRESHOLD_16"), .ENUM_THLD_JAR2_2 ("THRESHOLD_16"), .ENUM_THLD_JAR2_3 ("THRESHOLD_16"), .ENUM_THLD_JAR2_4 ("THRESHOLD_16"), .ENUM_THLD_JAR2_5 ("THRESHOLD_16"), .ENUM_USE_ALMOST_EMPTY_0 ("EMPTY"), .ENUM_USE_ALMOST_EMPTY_1 ("EMPTY"), .ENUM_USE_ALMOST_EMPTY_2 ("EMPTY"), .ENUM_USE_ALMOST_EMPTY_3 ("EMPTY"), .ENUM_USER_ECC_EN ("DISABLE"), .ENUM_USER_PRIORITY_0 ("PRIORITY_1"), .ENUM_USER_PRIORITY_1 ("PRIORITY_1"), .ENUM_USER_PRIORITY_2 ("PRIORITY_1"), .ENUM_USER_PRIORITY_3 ("PRIORITY_1"), .ENUM_USER_PRIORITY_4 ("PRIORITY_1"), .ENUM_USER_PRIORITY_5 ("PRIORITY_1"), .ENUM_WFIFO0_CPORT_MAP ("CMD_PORT_0"), .ENUM_WFIFO0_RDY_ALMOST_FULL ("NOT_FULL"), .ENUM_WFIFO1_CPORT_MAP ("CMD_PORT_0"), .ENUM_WFIFO1_RDY_ALMOST_FULL ("NOT_FULL"), .ENUM_WFIFO2_CPORT_MAP ("CMD_PORT_0"), .ENUM_WFIFO2_RDY_ALMOST_FULL ("NOT_FULL"), .ENUM_WFIFO3_CPORT_MAP ("CMD_PORT_0"), .ENUM_WFIFO3_RDY_ALMOST_FULL ("NOT_FULL"), .ENUM_WR_DWIDTH_0 ("DWIDTH_0"), .ENUM_WR_DWIDTH_1 ("DWIDTH_0"), .ENUM_WR_DWIDTH_2 ("DWIDTH_0"), .ENUM_WR_DWIDTH_3 ("DWIDTH_0"), .ENUM_WR_DWIDTH_4 ("DWIDTH_0"), .ENUM_WR_DWIDTH_5 ("DWIDTH_0"), .ENUM_WR_FIFO_IN_USE_0 ("FALSE"), .ENUM_WR_FIFO_IN_USE_1 ("FALSE"), .ENUM_WR_FIFO_IN_USE_2 ("FALSE"), .ENUM_WR_FIFO_IN_USE_3 ("FALSE"), .ENUM_WR_PORT_INFO_0 ("USE_NO"), .ENUM_WR_PORT_INFO_1 ("USE_NO"), .ENUM_WR_PORT_INFO_2 ("USE_NO"), .ENUM_WR_PORT_INFO_3 ("USE_NO"), .ENUM_WR_PORT_INFO_4 ("USE_NO"), .ENUM_WR_PORT_INFO_5 ("USE_NO"), .ENUM_WRITE_ODT_CHIP ("WRITE_CHIP0_ODT0_CHIP1"), .INTG_MEM_AUTO_PD_CYCLES (0), .INTG_CYC_TO_RLD_JARS_0 (1), .INTG_CYC_TO_RLD_JARS_1 (1), .INTG_CYC_TO_RLD_JARS_2 (1), .INTG_CYC_TO_RLD_JARS_3 (1), .INTG_CYC_TO_RLD_JARS_4 (1), .INTG_CYC_TO_RLD_JARS_5 (1), .INTG_EXTRA_CTL_CLK_ACT_TO_ACT (0), .INTG_EXTRA_CTL_CLK_ACT_TO_ACT_DIFF_BANK (0), .INTG_EXTRA_CTL_CLK_ACT_TO_PCH (0), .INTG_EXTRA_CTL_CLK_ACT_TO_RDWR (0), .INTG_EXTRA_CTL_CLK_ARF_PERIOD (0), .INTG_EXTRA_CTL_CLK_ARF_TO_VALID (0), .INTG_EXTRA_CTL_CLK_FOUR_ACT_TO_ACT (0), .INTG_EXTRA_CTL_CLK_PCH_ALL_TO_VALID (0), .INTG_EXTRA_CTL_CLK_PCH_TO_VALID (0), .INTG_EXTRA_CTL_CLK_PDN_PERIOD (0), .INTG_EXTRA_CTL_CLK_PDN_TO_VALID (0), .INTG_EXTRA_CTL_CLK_RD_AP_TO_VALID (0), .INTG_EXTRA_CTL_CLK_RD_TO_PCH (0), .INTG_EXTRA_CTL_CLK_RD_TO_RD (0), .INTG_EXTRA_CTL_CLK_RD_TO_RD_DIFF_CHIP (0), .INTG_EXTRA_CTL_CLK_RD_TO_WR (2), .INTG_EXTRA_CTL_CLK_RD_TO_WR_BC (2), .INTG_EXTRA_CTL_CLK_RD_TO_WR_DIFF_CHIP (2), .INTG_EXTRA_CTL_CLK_SRF_TO_VALID (0), .INTG_EXTRA_CTL_CLK_SRF_TO_ZQ_CAL (0), .INTG_EXTRA_CTL_CLK_WR_AP_TO_VALID (0), .INTG_EXTRA_CTL_CLK_WR_TO_PCH (0), .INTG_EXTRA_CTL_CLK_WR_TO_RD (3), .INTG_EXTRA_CTL_CLK_WR_TO_RD_BC (3), .INTG_EXTRA_CTL_CLK_WR_TO_RD_DIFF_CHIP (3), .INTG_EXTRA_CTL_CLK_WR_TO_WR (0), .INTG_EXTRA_CTL_CLK_WR_TO_WR_DIFF_CHIP (0), .INTG_MEM_IF_TREFI (3120), .INTG_MEM_IF_TRFC (120), .INTG_RCFG_SUM_WT_PRIORITY_0 (0), .INTG_RCFG_SUM_WT_PRIORITY_1 (0), .INTG_RCFG_SUM_WT_PRIORITY_2 (0), .INTG_RCFG_SUM_WT_PRIORITY_3 (0), .INTG_RCFG_SUM_WT_PRIORITY_4 (0), .INTG_RCFG_SUM_WT_PRIORITY_5 (0), .INTG_RCFG_SUM_WT_PRIORITY_6 (0), .INTG_RCFG_SUM_WT_PRIORITY_7 (0), .INTG_SUM_WT_PRIORITY_0 (0), .INTG_SUM_WT_PRIORITY_1 (0), .INTG_SUM_WT_PRIORITY_2 (0), .INTG_SUM_WT_PRIORITY_3 (0), .INTG_SUM_WT_PRIORITY_4 (0), .INTG_SUM_WT_PRIORITY_5 (0), .INTG_SUM_WT_PRIORITY_6 (0), .INTG_SUM_WT_PRIORITY_7 (0), .INTG_POWER_SAVING_EXIT_CYCLES (5), .INTG_MEM_CLK_ENTRY_CYCLES (10), .ENUM_ENABLE_BURST_INTERRUPT ("DISABLED"), .ENUM_ENABLE_BURST_TERMINATE ("DISABLED"), .AFI_RATE_RATIO (1), .AFI_ADDR_WIDTH (15), .AFI_BANKADDR_WIDTH (3), .AFI_CONTROL_WIDTH (1), .AFI_CS_WIDTH (1), .AFI_DM_WIDTH (8), .AFI_DQ_WIDTH (64), .AFI_ODT_WIDTH (1), .AFI_WRITE_DQS_WIDTH (4), .AFI_RLAT_WIDTH (6), .AFI_WLAT_WIDTH (6), .HARD_PHY (1) ) c0 ( .afi_clk (pll_afi_clk_clk), // afi_clk.clk .afi_reset_n (p0_afi_reset_reset), // afi_reset.reset_n .ctl_reset_n (p0_ctl_reset_reset), // ctl_reset.reset_n .afi_half_clk (pll_afi_half_clk_clk), // afi_half_clk.clk .ctl_clk (p0_ctl_clk_clk), // ctl_clk.clk .local_init_done (), // status.local_init_done .local_cal_success (), // .local_cal_success .local_cal_fail (), // .local_cal_fail .afi_addr (c0_afi_afi_addr), // afi.afi_addr .afi_ba (c0_afi_afi_ba), // .afi_ba .afi_cke (c0_afi_afi_cke), // .afi_cke .afi_cs_n (c0_afi_afi_cs_n), // .afi_cs_n .afi_ras_n (c0_afi_afi_ras_n), // .afi_ras_n .afi_we_n (c0_afi_afi_we_n), // .afi_we_n .afi_cas_n (c0_afi_afi_cas_n), // .afi_cas_n .afi_rst_n (c0_afi_afi_rst_n), // .afi_rst_n .afi_odt (c0_afi_afi_odt), // .afi_odt .afi_mem_clk_disable (c0_afi_afi_mem_clk_disable), // .afi_mem_clk_disable .afi_init_req (), // .afi_init_req .afi_cal_req (), // .afi_cal_req .afi_seq_busy (), // .afi_seq_busy .afi_ctl_refresh_done (), // .afi_ctl_refresh_done .afi_ctl_long_idle (), // .afi_ctl_long_idle .afi_dqs_burst (c0_afi_afi_dqs_burst), // .afi_dqs_burst .afi_wdata_valid (c0_afi_afi_wdata_valid), // .afi_wdata_valid .afi_wdata (c0_afi_afi_wdata), // .afi_wdata .afi_dm (c0_afi_afi_dm), // .afi_dm .afi_rdata (p0_afi_afi_rdata), // .afi_rdata .afi_rdata_en (c0_afi_afi_rdata_en), // .afi_rdata_en .afi_rdata_en_full (c0_afi_afi_rdata_en_full), // .afi_rdata_en_full .afi_rdata_valid (p0_afi_afi_rdata_valid), // .afi_rdata_valid .afi_wlat (p0_afi_afi_wlat), // .afi_wlat .afi_rlat (p0_afi_afi_rlat), // .afi_rlat .afi_cal_success (p0_afi_afi_cal_success), // .afi_cal_success .afi_cal_fail (p0_afi_afi_cal_fail), // .afi_cal_fail .cfg_addlat (c0_hard_phy_cfg_cfg_addlat), // hard_phy_cfg.cfg_addlat .cfg_bankaddrwidth (c0_hard_phy_cfg_cfg_bankaddrwidth), // .cfg_bankaddrwidth .cfg_caswrlat (c0_hard_phy_cfg_cfg_caswrlat), // .cfg_caswrlat .cfg_coladdrwidth (c0_hard_phy_cfg_cfg_coladdrwidth), // .cfg_coladdrwidth .cfg_csaddrwidth (c0_hard_phy_cfg_cfg_csaddrwidth), // .cfg_csaddrwidth .cfg_devicewidth (c0_hard_phy_cfg_cfg_devicewidth), // .cfg_devicewidth .cfg_dramconfig (c0_hard_phy_cfg_cfg_dramconfig), // .cfg_dramconfig .cfg_interfacewidth (c0_hard_phy_cfg_cfg_interfacewidth), // .cfg_interfacewidth .cfg_rowaddrwidth (c0_hard_phy_cfg_cfg_rowaddrwidth), // .cfg_rowaddrwidth .cfg_tcl (c0_hard_phy_cfg_cfg_tcl), // .cfg_tcl .cfg_tmrd (c0_hard_phy_cfg_cfg_tmrd), // .cfg_tmrd .cfg_trefi (c0_hard_phy_cfg_cfg_trefi), // .cfg_trefi .cfg_trfc (c0_hard_phy_cfg_cfg_trfc), // .cfg_trfc .cfg_twr (c0_hard_phy_cfg_cfg_twr), // .cfg_twr .io_intaficalfail (p0_io_int_io_intaficalfail), // io_int.io_intaficalfail .io_intaficalsuccess (p0_io_int_io_intaficalsuccess), // .io_intaficalsuccess .mp_cmd_clk_0 (1'b0), // (terminated) .mp_cmd_reset_n_0 (1'b1), // (terminated) .mp_cmd_clk_1 (1'b0), // (terminated) .mp_cmd_reset_n_1 (1'b1), // (terminated) .mp_cmd_clk_2 (1'b0), // (terminated) .mp_cmd_reset_n_2 (1'b1), // (terminated) .mp_cmd_clk_3 (1'b0), // (terminated) .mp_cmd_reset_n_3 (1'b1), // (terminated) .mp_cmd_clk_4 (1'b0), // (terminated) .mp_cmd_reset_n_4 (1'b1), // (terminated) .mp_cmd_clk_5 (1'b0), // (terminated) .mp_cmd_reset_n_5 (1'b1), // (terminated) .mp_rfifo_clk_0 (1'b0), // (terminated) .mp_rfifo_reset_n_0 (1'b1), // (terminated) .mp_wfifo_clk_0 (1'b0), // (terminated) .mp_wfifo_reset_n_0 (1'b1), // (terminated) .mp_rfifo_clk_1 (1'b0), // (terminated) .mp_rfifo_reset_n_1 (1'b1), // (terminated) .mp_wfifo_clk_1 (1'b0), // (terminated) .mp_wfifo_reset_n_1 (1'b1), // (terminated) .mp_rfifo_clk_2 (1'b0), // (terminated) .mp_rfifo_reset_n_2 (1'b1), // (terminated) .mp_wfifo_clk_2 (1'b0), // (terminated) .mp_wfifo_reset_n_2 (1'b1), // (terminated) .mp_rfifo_clk_3 (1'b0), // (terminated) .mp_rfifo_reset_n_3 (1'b1), // (terminated) .mp_wfifo_clk_3 (1'b0), // (terminated) .mp_wfifo_reset_n_3 (1'b1), // (terminated) .csr_clk (1'b0), // (terminated) .csr_reset_n (1'b1), // (terminated) .avl_ready_0 (), // (terminated) .avl_burstbegin_0 (1'b0), // (terminated) .avl_addr_0 (1'b0), // (terminated) .avl_rdata_valid_0 (), // (terminated) .avl_rdata_0 (), // (terminated) .avl_wdata_0 (1'b0), // (terminated) .avl_be_0 (1'b0), // (terminated) .avl_read_req_0 (1'b0), // (terminated) .avl_write_req_0 (1'b0), // (terminated) .avl_size_0 (3'b000), // (terminated) .avl_ready_1 (), // (terminated) .avl_burstbegin_1 (1'b0), // (terminated) .avl_addr_1 (1'b0), // (terminated) .avl_rdata_valid_1 (), // (terminated) .avl_rdata_1 (), // (terminated) .avl_wdata_1 (1'b0), // (terminated) .avl_be_1 (1'b0), // (terminated) .avl_read_req_1 (1'b0), // (terminated) .avl_write_req_1 (1'b0), // (terminated) .avl_size_1 (3'b000), // (terminated) .avl_ready_2 (), // (terminated) .avl_burstbegin_2 (1'b0), // (terminated) .avl_addr_2 (1'b0), // (terminated) .avl_rdata_valid_2 (), // (terminated) .avl_rdata_2 (), // (terminated) .avl_wdata_2 (1'b0), // (terminated) .avl_be_2 (1'b0), // (terminated) .avl_read_req_2 (1'b0), // (terminated) .avl_write_req_2 (1'b0), // (terminated) .avl_size_2 (3'b000), // (terminated) .avl_ready_3 (), // (terminated) .avl_burstbegin_3 (1'b0), // (terminated) .avl_addr_3 (1'b0), // (terminated) .avl_rdata_valid_3 (), // (terminated) .avl_rdata_3 (), // (terminated) .avl_wdata_3 (1'b0), // (terminated) .avl_be_3 (1'b0), // (terminated) .avl_read_req_3 (1'b0), // (terminated) .avl_write_req_3 (1'b0), // (terminated) .avl_size_3 (3'b000), // (terminated) .avl_ready_4 (), // (terminated) .avl_burstbegin_4 (1'b0), // (terminated) .avl_addr_4 (1'b0), // (terminated) .avl_rdata_valid_4 (), // (terminated) .avl_rdata_4 (), // (terminated) .avl_wdata_4 (1'b0), // (terminated) .avl_be_4 (1'b0), // (terminated) .avl_read_req_4 (1'b0), // (terminated) .avl_write_req_4 (1'b0), // (terminated) .avl_size_4 (3'b000), // (terminated) .avl_ready_5 (), // (terminated) .avl_burstbegin_5 (1'b0), // (terminated) .avl_addr_5 (1'b0), // (terminated) .avl_rdata_valid_5 (), // (terminated) .avl_rdata_5 (), // (terminated) .avl_wdata_5 (1'b0), // (terminated) .avl_be_5 (1'b0), // (terminated) .avl_read_req_5 (1'b0), // (terminated) .avl_write_req_5 (1'b0), // (terminated) .avl_size_5 (3'b000), // (terminated) .csr_write_req (1'b0), // (terminated) .csr_read_req (1'b0), // (terminated) .csr_waitrequest (), // (terminated) .csr_addr (10'b0000000000), // (terminated) .csr_be (1'b0), // (terminated) .csr_wdata (8'b00000000), // (terminated) .csr_rdata (), // (terminated) .csr_rdata_valid (), // (terminated) .local_multicast (1'b0), // (terminated) .local_refresh_req (1'b0), // (terminated) .local_refresh_chip (1'b0), // (terminated) .local_refresh_ack (), // (terminated) .local_self_rfsh_req (1'b0), // (terminated) .local_self_rfsh_chip (1'b0), // (terminated) .local_self_rfsh_ack (), // (terminated) .local_deep_powerdn_req (1'b0), // (terminated) .local_deep_powerdn_chip (1'b0), // (terminated) .local_deep_powerdn_ack (), // (terminated) .local_powerdn_ack (), // (terminated) .local_priority (1'b0), // (terminated) .bonding_in_1 (4'b0000), // (terminated) .bonding_in_2 (6'b000000), // (terminated) .bonding_in_3 (6'b000000), // (terminated) .bonding_out_1 (), // (terminated) .bonding_out_2 (), // (terminated) .bonding_out_3 () // (terminated) ); altera_mem_if_oct_cyclonev #( .OCT_TERM_CONTROL_WIDTH (16) ) oct ( .oct_rzqin (oct_rzqin), // oct.rzqin .seriesterminationcontrol (oct_oct_sharing_seriesterminationcontrol), // oct_sharing.seriesterminationcontrol .parallelterminationcontrol (oct_oct_sharing_parallelterminationcontrol) // .parallelterminationcontrol ); altera_mem_if_dll_cyclonev #( .DLL_DELAY_CTRL_WIDTH (7), .DLL_OFFSET_CTRL_WIDTH (6), .DELAY_BUFFER_MODE ("HIGH"), .DELAY_CHAIN_LENGTH (8), .DLL_INPUT_FREQUENCY_PS_STR ("2500 ps") ) dll ( .clk (p0_dll_clk_clk), // clk.clk .dll_pll_locked (p0_dll_sharing_dll_pll_locked), // dll_sharing.dll_pll_locked .dll_delayctrl (dll_dll_sharing_dll_delayctrl) // .dll_delayctrl ); endmodule
module jt12_pcm( input rst, input clk, input clk_en /* synthesis direct_enable */, input zero, input signed [8:0] pcm, input pcm_wr, output reg signed [8:0] pcm_resampled ); // reg [2:0] ratesel; // reg [3:0] cnt8; // reg wrcnt, wrclr; reg last_zero; wire zero_edge = !last_zero && zero; /* always @(posedge clk) if(rst) begin cnt8 <= 4'd0; wrclr <= 1'd0; ratesel <= 3'd1; wrcnt <= 1'b0; end else if(clk_en) begin if( pcm_wr ) begin if( wrcnt ) begin // case( cnt8[3:2] ) // 2'd3: ratesel <= 3'b111; // x8 // 2'd2: ratesel <= 3'b011; // x4 // 2'd1: ratesel <= 3'b001; // x2 // 2'd0: ratesel <= 3'b000; // x1 // endcase cnt8 <= 4'd0; wrcnt <= 1'b0; end else wrcnt <= 1'b1; end else if( cnt8!=4'hf && zero ) cnt8 <= cnt8 + 4'd1; end */ // up-rate PCM samples reg rate1, rate2; //, rate4, rate8; reg cen1, cen2; //, cen4, cen8; always @(posedge clk, posedge rst) if(rst) rate2 <= 1'b0; else begin last_zero <= zero; rate1 <= zero_edge; if(zero_edge) begin rate2 <= ~rate2; // if(rate2) begin // rate4 <= ~rate4; // if(rate4) rate8<=~rate8; // end end end always @(posedge clk) begin cen1 <= rate1; cen2 <= rate1 && rate2; // cen4 <= rate1 && rate2 && rate4; // cen8 <= rate1 && rate2 && rate4 && rate8; end wire signed [8:0] pcm3; //,pcm2, pcm1; //always @(posedge clk) if( clk_en ) // pcm_resampled <= ratesel[0] ? pcm3 : pcm; always @(*) pcm_resampled = pcm3; // rate x2 //wire signed [8:0] pcm_in2 = ratesel[1] ? pcm2 : pcm; jt12_interpol #(.calcw(10),.inw(9),.rate(2),.m(1),.n(2)) u_uprate_3( .clk ( clk ), .rst ( rst ), .cen_in ( cen2 ), .cen_out( cen1 ), // .snd_in ( pcm_in2 ), .snd_in ( pcm ), .snd_out( pcm3 ) ); /* // rate x2 wire signed [8:0] pcm_in1 = ratesel[2] ? pcm1 : pcm; jt12_interpol #(.calcw(10),.inw(9),.rate(2),.m(1),.n(2)) u_uprate_2( .clk ( clk ), .rst ( rst ), .cen_in ( cen4 ), .cen_out( cen2 ), .snd_in ( pcm_in1 ), .snd_out( pcm2 ) ); // rate x2 jt12_interpol #(.calcw(10),.inw(9),.rate(2),.m(1),.n(2)) u_uprate_1( .clk ( clk ), .rst ( rst ), .cen_in ( cen8 ), .cen_out( cen4 ), .snd_in ( pcm ), .snd_out( pcm1 ) ); */ endmodule
module erx_clocks (/*AUTOARG*/ // Outputs rx_lclk, rx_lclk_div4, rx_active, erx_nreset, erx_io_nreset, // Inputs sys_nreset, soft_reset, tx_active, sys_clk, rx_clkin ); //Frequency Settings (Mhz) parameter FREQ_RXCLK = 300; parameter FREQ_IDELAY = 200; parameter RXCLK_PHASE = 0; // 270; parameter PLL_VCO_MULT = 4; // RX parameter TARGET = `CFG_TARGET; // "XILINX", "ALTERA" etc //Override reset counter size for simulation `ifdef TARGET_SIM parameter RCW = 4; // reset counter width `else parameter RCW = 8; // reset counter width `endif //Don't touch these! (derived parameters) localparam real RXCLK_PERIOD = 1000.000000 / FREQ_RXCLK; //? Why is the period needed here? localparam integer IREF_DIVIDE = PLL_VCO_MULT * FREQ_RXCLK / FREQ_IDELAY; localparam integer RXCLK_DIVIDE = PLL_VCO_MULT; //1:1 //Input clock, reset, config interface input sys_nreset; // active low system reset (hw) input soft_reset; // rx enable signal (sw) input tx_active; // tx active input //Main input clocks input sys_clk; // always on input clk cclk/TX MMCM input rx_clkin; // input clk for RX only PLL //RX Clocks output rx_lclk; // rx high speed clock for DDR IO output rx_lclk_div4; // rx slow clock for logic //Reset output rx_active; // rx active output erx_nreset; // reset for rx core logic output erx_io_nreset; // io reset (synced to high speed clock) //############ //# WIRES //############ //Idelay controller wire idelay_reset; wire idelay_ready; //ignore this? wire idelay_ref_clk; //pll outputs wire rx_lclk_pll; wire rx_lclk_div4_pll; wire idelay_ref_clk_pll; //PLL wire rx_lclk_fb; wire rx_nreset_in; //########################### // RESET STATE MACHINE //########################### reg [RCW:0] reset_counter = 'b0; //works b/c of free running counter! reg heartbeat; wire pll_locked_sync; reg [2:0] reset_state; wire pll_reset; reg rx_nreset; wire pll_locked; //Reset assign rx_nreset_in = sys_nreset & tx_active; //wrap around counter that generates a 1 cycle heartbeat always @ (posedge sys_clk) begin reset_counter[RCW-1:0] <= reset_counter[RCW-1:0]+1'b1; heartbeat <= ~(|reset_counter[RCW-1:0]); end `define RX_RESET_ALL 3'b000 `define RX_START_PLL 3'b001 `define RX_ACTIVE 3'b010 //Reset sequence state machine always @ (posedge sys_clk or negedge rx_nreset_in) if(!rx_nreset_in) reset_state[2:0] <= `RX_RESET_ALL; else if(heartbeat) case(reset_state[2:0]) `RX_RESET_ALL : if(~soft_reset) reset_state[2:0] <= `RX_START_PLL; `RX_START_PLL : if(pll_locked_sync & idelay_ready) reset_state[2:0] <= `RX_ACTIVE; `RX_ACTIVE: if(soft_reset) reset_state[2:0] <= `RX_RESET_ALL; //stay there until next reset endcase // case (reset_state[2:0]) assign pll_reset = (reset_state[2:0]==`RX_RESET_ALL); assign idelay_reset = (reset_state[2:0]==`RX_RESET_ALL); //Reset for RX (pipeline to improve timing) always @ (posedge sys_clk) rx_nreset <= ~(reset_state[2:0] != `RX_ACTIVE); //active indicator assign rx_active = (reset_state[2:0] == `RX_ACTIVE); //############################# //#RESET SYNCING //############################# oh_rsync rsync_io (// Outputs .nrst_out (erx_io_nreset), // Inputs .clk (rx_lclk), .nrst_in (rx_nreset) ); oh_rsync rsync_core (// Outputs .nrst_out (erx_nreset), // Inputs .clk (rx_lclk_div4), .nrst_in (rx_nreset) ); generate if(TARGET=="XILINX") begin //########################### // PLL RX //########################### PLLE2_ADV #( .BANDWIDTH("OPTIMIZED"), .CLKFBOUT_MULT(PLL_VCO_MULT), .CLKFBOUT_PHASE(0.0), .CLKIN1_PERIOD(RXCLK_PERIOD), .CLKOUT0_DIVIDE(128), .CLKOUT1_DIVIDE(128), .CLKOUT2_DIVIDE(128), .CLKOUT3_DIVIDE(IREF_DIVIDE), // idelay ref clk .CLKOUT4_DIVIDE(RXCLK_DIVIDE), // rx_lclk .CLKOUT5_DIVIDE(RXCLK_DIVIDE*4), // rx_lclk_div4 .CLKOUT0_DUTY_CYCLE(0.5), .CLKOUT1_DUTY_CYCLE(0.5), .CLKOUT2_DUTY_CYCLE(0.5), .CLKOUT3_DUTY_CYCLE(0.5), .CLKOUT4_DUTY_CYCLE(0.5), .CLKOUT5_DUTY_CYCLE(0.5), .CLKOUT0_PHASE(0.0), .CLKOUT1_PHASE(0.0), .CLKOUT2_PHASE(0.0), .CLKOUT3_PHASE(0.0), .CLKOUT4_PHASE(0.0),//RXCLK_PHASE .CLKOUT5_PHASE(0.0),//RXCLK_PHASE/4 .DIVCLK_DIVIDE(1.0), .REF_JITTER1(0.01), .STARTUP_WAIT("FALSE") ) pll_rx ( .CLKOUT0(), .CLKOUT1(), .CLKOUT2(), .CLKOUT3(idelay_ref_clk_pll), .CLKOUT4(rx_lclk_pll), .CLKOUT5(rx_lclk_div4_pll), .PWRDWN(1'b0), .RST(pll_reset), .CLKFBIN(rx_lclk_fb), .CLKFBOUT(rx_lclk_fb), .CLKIN1(rx_clkin), .CLKIN2(1'b0), .CLKINSEL(1'b1), .DADDR(7'b0), .DCLK(1'b0), .DEN(1'b0), .DI(16'b0), .DWE(1'b0), .DRDY(),//?? .DO(), //?? .LOCKED(pll_locked) ); //Clock network BUFG i_lclk_bufg (.I(rx_lclk_pll), .O(rx_lclk)); //300Mhz BUFG i_lclk_div4_bufg (.I(rx_lclk_div4_pll), .O(rx_lclk_div4)); //(300Mhz/4) BUFG i_idelay_bufg (.I(idelay_ref_clk_pll),.O(idelay_ref_clk));//idelay ctrl clock //two clock synchronizer for lock signal oh_dsync dsync (.dout (pll_locked_sync), .clk (sys_clk), .nreset (1'b1), .din (pll_locked) ); //########################### // Idelay controller //########################### `define IDELAYCTRL_WONT_SYNTHESIZE `ifdef IDELAYCTRL_WONT_SYNTHESIZE assign idelay_ready = 'b1; `else (* IODELAY_GROUP = "IDELAY_GROUP" *) // Group name for IDELAYCTRL IDELAYCTRL #( .SIM_DEVICE("ULTRASCALE_PLUS_ES2") ) idelayctrl_inst ( .RDY(idelay_ready), // check ready flag in reset sequence? .REFCLK(idelay_ref_clk),//200MHz clk (78ps tap delay) .RST(idelay_reset) ); `endif end // if (TARGET=="XILINX") endgenerate endmodule
module ddr3_s4_uniphy_example_if0_p0_iss_probe ( probe_input ); parameter WIDTH = 1; parameter ID_NAME = "PROB"; input [WIDTH-1:0] probe_input; altsource_probe iss_probe_inst ( .probe (probe_input), .source () // synopsys translate_off , .clrn (), .ena (), .ir_in (), .ir_out (), .jtag_state_cdr (), .jtag_state_cir (), .jtag_state_e1dr (), .jtag_state_sdr (), .jtag_state_tlr (), .jtag_state_udr (), .jtag_state_uir (), .raw_tck (), .source_clk (), .source_ena (), .tdi (), .tdo (), .usr1 () // synopsys translate_on ); defparam iss_probe_inst.enable_metastability = "NO", iss_probe_inst.instance_id = ID_NAME, iss_probe_inst.probe_width = WIDTH, iss_probe_inst.sld_auto_instance_index = "YES", iss_probe_inst.sld_instance_index = 0, iss_probe_inst.source_initial_value = "0", iss_probe_inst.source_width = 0; endmodule
module SerialInterface( input clk, input next_out, input reset_n, input [11:0] fft_out1, input [11:0] fft_out2, output reg next_data, output reg data ); localparam s0 = 3'b000; localparam s1 = 3'b001; localparam s2 = 3'b010; localparam s3 = 3'b011; localparam s4 = 3'b100; localparam s5 = 3'b101; localparam s6 = 3'b110; localparam s7 = 3'b111; reg [2:0] state, nextState; reg [10:0] addr_counter; reg [3:0] bit_counter; reg [11:0] temp; reg reset_addr_counter, incre_addr_counter1, incre_addr_counter2, we_a, we_b, reset_bit_counter, incre_bit_counter, update_output; wire [11:0] q_a, q_b; wire [10:0] addr_a, addr_b; Serial_Ram ram_inst (.data_a(fft_out1), .data_b(fft_out2), .addr_a(addr_a), .addr_b(addr_b), .we_a(we_a), .we_b(we_b), .q_a(q_a), .q_b(q_b), .clk(clk)); initial begin addr_counter = 0; we_a = 0; we_b = 0; next_data = 0; data = 0; bit_counter = 0; update_output = 0; end assign addr_a = addr_counter; assign addr_b = addr_counter+1; always @ (posedge clk) begin if(!reset_n) begin state <= s0; end else begin state <= nextState; end end always @ (posedge clk) begin //address counter if(reset_addr_counter) addr_counter <= 0; else if(incre_addr_counter1) addr_counter <= addr_counter + 1; else if(incre_addr_counter2) addr_counter <= addr_counter + 2; //bit counter if(reset_bit_counter) bit_counter <= 0; else if(incre_bit_counter) bit_counter <= bit_counter + 1; if(update_output) begin data <= q_a[11-bit_counter]; end end always @ * begin reset_addr_counter = 0; incre_addr_counter1 = 0; incre_addr_counter2 = 0; next_data = 0; we_a = 0; we_b = 0; reset_bit_counter = 0; incre_bit_counter = 0; update_output = 0; case(state) //Wait until the FFT starts to output s0: begin if(next_out) nextState = s1; else nextState = s0; end s1: begin nextState = s2; we_a = 1; we_b = 1; end //load fft magnitude into buffer s2: begin nextState = s3; we_a = 1; we_b = 1; end //check if received 2048 samples & increament counter if needed s3: begin we_a = 1; we_b = 1; if(addr_counter == 2046) begin reset_addr_counter = 1; nextState = s4; end else begin incre_addr_counter2 = 1; nextState = s2; end end //asserts the beginning of the output data stream s4: begin next_data = 1; nextState = s5; we_a = 0; we_b = 0; end s5: begin update_output = 1; next_data = 1; nextState = s6; we_a = 0; we_b = 0; end s6: begin we_a = 0; we_b = 0; next_data = 1; if(bit_counter == 11 && addr_counter == 2047) begin reset_addr_counter = 1; reset_bit_counter = 1; nextState = s0; end else if(bit_counter == 11) begin reset_bit_counter = 1; incre_addr_counter1 = 1; nextState = s5; end else begin incre_bit_counter = 1; nextState = s5; end end endcase end endmodule
module decalper_eb_ot_sdeen_pot_pi_dehcac_xnilix(slowest_sync_clk, ext_reset_in, aux_reset_in, mb_debug_sys_rst, dcm_locked, mb_reset, bus_struct_reset, peripheral_reset, interconnect_aresetn, peripheral_aresetn) /* synthesis syn_black_box black_box_pad_pin="slowest_sync_clk,ext_reset_in,aux_reset_in,mb_debug_sys_rst,dcm_locked,mb_reset,bus_struct_reset[0:0],peripheral_reset[0:0],interconnect_aresetn[0:0],peripheral_aresetn[0:0]" */; input slowest_sync_clk; input ext_reset_in; input aux_reset_in; input mb_debug_sys_rst; input dcm_locked; output mb_reset; output [0:0]bus_struct_reset; output [0:0]peripheral_reset; output [0:0]interconnect_aresetn; output [0:0]peripheral_aresetn; endmodule
module ddr2_clock ( // 250 MHz clock and reset input wire clk_250mhz, input wire rst_250mhz, // Output clocks to MCB output wire mcb_clk_0, output wire mcb_clk_180, output wire mcb_drp_clk, output wire mcb_clk_locked ); wire clkfb; wire mcb_clk_0_int; wire mcb_clk_180_int; wire mcb_drp_clk_int; // input is 250 MHz // output0/1 are 250 MHz * 5 / 2 = 625 MHz (MCB 2x clock) // output2 is 625 MHz / 10 = 62.5 MHz (MCB DRP clock) PLL_ADV # ( .BANDWIDTH ("OPTIMIZED"), .CLKIN1_PERIOD (4.000), .CLKIN2_PERIOD (4.000), .CLKOUT0_DIVIDE (1), .CLKOUT1_DIVIDE (1), .CLKOUT2_DIVIDE (10), .CLKOUT3_DIVIDE (1), .CLKOUT4_DIVIDE (1), .CLKOUT5_DIVIDE (1), .CLKOUT0_PHASE (0.000), .CLKOUT1_PHASE (180.000), .CLKOUT2_PHASE (0.000), .CLKOUT3_PHASE (0.000), .CLKOUT4_PHASE (0.000), .CLKOUT5_PHASE (0.000), .CLKOUT0_DUTY_CYCLE (0.500), .CLKOUT1_DUTY_CYCLE (0.500), .CLKOUT2_DUTY_CYCLE (0.500), .CLKOUT3_DUTY_CYCLE (0.500), .CLKOUT4_DUTY_CYCLE (0.500), .CLKOUT5_DUTY_CYCLE (0.500), .SIM_DEVICE ("SPARTAN6"), .COMPENSATION ("INTERNAL"), .DIVCLK_DIVIDE (2), .CLKFBOUT_MULT (5), .CLKFBOUT_PHASE (0.0), .REF_JITTER (0.025000) ) mcb_pll ( .CLKFBIN (clkfb), .CLKINSEL (1'b1), .CLKIN1 (clk_250mhz), .CLKIN2 (1'b0), .DADDR (5'b0), .DCLK (1'b0), .DEN (1'b0), .DI (16'b0), .DWE (1'b0), .REL (1'b0), .RST (rst_250mhz), .CLKFBDCM (), .CLKFBOUT (clkfb), .CLKOUTDCM0 (), .CLKOUTDCM1 (), .CLKOUTDCM2 (), .CLKOUTDCM3 (), .CLKOUTDCM4 (), .CLKOUTDCM5 (), .CLKOUT0 (mcb_clk_0), .CLKOUT1 (mcb_clk_180), .CLKOUT2 (mcb_drp_clk_int), .CLKOUT3 (), .CLKOUT4 (), .CLKOUT5 (), .DO (), .DRDY (), .LOCKED (mcb_clk_locked) ); BUFGCE mcb_drp_clk_bufg_inst ( .I(mcb_drp_clk_int), .O(mcb_drp_clk), .CE(mcb_clk_locked) ); endmodule
module clkdiv(input in, output out); parameter CLK_DIVIDER_WIDTH = `CLK_DIVIDER_WIDTH; parameter CLK_DIVIDER_VALUE = `CLK_DIVIDER_VALUE; reg [CLK_DIVIDER_WIDTH-1:0] _icounter; reg _internal_clk; assign out = _internal_clk; initial begin _icounter = {(CLK_DIVIDER_WIDTH){1'b0}}; _internal_clk = 0; end always @(posedge in) begin _internal_clk = (_icounter == {CLK_DIVIDER_VALUE} ) ? ~_internal_clk : _internal_clk; _icounter = (_icounter == {CLK_DIVIDER_VALUE} ) ? 0 : _icounter + 1; end endmodule
module COUNTER( input [7:0] DATA, input NCCLR, input NCCKEN, input CCK, input NCLOAD, input RCK, output [7:0] QDATA); parameter CLK_DIVIDER_WIDTH = 8; reg [CLK_DIVIDER_WIDTH-1:0] _icounter; assign QDATA = _icounter; initial begin _icounter = {(CLK_DIVIDER_WIDTH){1'b0}}; end always @(posedge CCK, negedge NCCKEN, negedge NCCLR) begin if (~NCCKEN) begin if (~NCCLR) begin _icounter = 8'h0; end else if (~NCLOAD) begin _icounter = DATA; end else begin if (CCK == 1) begin _icounter = _icounter + 1; end end end end endmodule
module bsg_trace_replay #( parameter payload_width_p =80 , parameter rom_addr_width_p=6 , parameter counter_width_p=`BSG_MIN(payload_width_p,16) , parameter debug_p = 1 , parameter finish_on_error_p = 1 //The operation code is always 4 bits. , parameter opcode_width_lp = 4 ) ( input clk_i , input reset_i , input en_i // input channel , input v_i , input [payload_width_p-1:0] data_i , output logic ready_o // output channel , output logic v_o , output logic [payload_width_p-1:0] data_o , input yumi_i // connection to rom // note: asynchronous reads , output [rom_addr_width_p-1:0] rom_addr_o , input [payload_width_p+4-1:0] rom_data_i // true outputs , output logic done_o , output logic error_o ); // 0: wait one cycle // 1: send data // 2: receive data (and check its value) // 3: assert done_o; test complete. // 4: end test; call $finish // 5: decrement cycle counter; wait for cycle_counter == 0 // 6: initialized cycle counter with 16 bits // in theory, we could add branching, etc. // before we know it, we have a processor =) typedef enum logic [opcode_width_lp-1:0] { eNop=4'd0, eSend=4'd1, eReceive=4'd2, eDone=4'd3, eFinish=4'd4, eCycleDec=4'd5, eCycleInit=4'd6 } eOp; logic [counter_width_p-1:0] cycle_ctr_r, cycle_ctr_n; logic [rom_addr_width_p-1:0] addr_r, addr_n; logic done_r, done_n; logic error_r, error_n; assign rom_addr_o = addr_r; assign data_o = rom_data_i[0+:payload_width_p]; assign done_o = done_r; assign error_o = error_r; always_ff @(posedge clk_i) begin if (reset_i) begin addr_r <= 0; done_r <= 0; error_r <= 0; cycle_ctr_r <= 16'b1; end else begin addr_r <= addr_n; done_r <= done_n; error_r <= error_n; cycle_ctr_r <= cycle_ctr_n; end end // always_ff @ logic [3:0] op; assign op = rom_data_i[payload_width_p+:4]; logic instr_completed; assign addr_n = instr_completed ? (addr_r+1'b1) : addr_r; // handle outputs always_comb begin // defaults; not sending and not receiving unless done v_o = 1'b0; ready_o = done_r; done_n = done_r; if (!done_r & en_i & ~reset_i) begin case (op) eSend: v_o = 1'b1; eReceive: ready_o = 1'b1; eDone: done_n = 1'b1; default: begin end endcase end end // always_comb // next instruction logic always_comb begin instr_completed = 1'b0; error_n = error_r; cycle_ctr_n = cycle_ctr_r; if (!done_r & en_i & ~reset_i) begin case (op) eNop: instr_completed = 1'b1; eSend: if (yumi_i) instr_completed = 1'b1; eReceive: begin if (v_i) begin instr_completed = 1'b1; if (error_r == 0) error_n = data_i != data_o; end end eDone: instr_completed = 1'b1; eFinish: instr_completed = 1'b1; eCycleDec: begin cycle_ctr_n = cycle_ctr_r - 1'b1; instr_completed = ~(|cycle_ctr_r); end eCycleInit: begin cycle_ctr_n = rom_data_i[counter_width_p-1:0]; instr_completed = 1'b1; end default: begin error_n = 1'b1; instr_completed = 1'b1; end endcase // case (op) end end // non-synthesizeable components always @(negedge clk_i) begin if (instr_completed & ~reset_i & ~done_r) begin case(op) eNop: begin end eSend: begin if (debug_p >= 2) begin $display("### bsg_trace_replay SEND %d'b%b (%m)", payload_width_p,data_o); end end eReceive: begin if (data_i !== data_o) begin $display("############################################################################"); $display("### bsg_trace_replay RECEIVE unmatched (%m) "); $display("### "); $display("### FAIL (trace mismatch) = %h", data_i); $display("### expected = %h\n", data_o); $display("############################################################################"); if (finish_on_error_p == 1) begin $finish(); end end else begin if (debug_p >= 2) begin $display("### bsg_trace_replay RECEIVE matched %h (%m)", data_o); end end // else: !if(data_i != data_o) end eDone: begin if (debug_p >= 1) begin $display("############################################################################"); $display("###### bsg_trace_replay DONE done_o=1 (trace finished addr=%x) (%m)",rom_addr_o); $display("############################################################################"); end end eFinish: begin if (debug_p >= 1) begin $display("############################################################################"); $display("###### bsg_trace_replay FINISH (trace finished; CALLING $finish) (%m)"); $display("############################################################################"); end $finish; end eCycleDec: begin if (debug_p >= 2) begin $display("### bsg_trace_replay CYCLE DEC cycle_ctr_r = %x (%m)",cycle_ctr_r); end end eCycleInit: begin if (debug_p >= 2) begin $display("### bsg_trace_replay CYCLE INIT = %x (%m)",cycle_ctr_n); end end default: begin $error("### bsg_trace_replay UNKNOWN op %x (%m)\n", op); if (finish_on_error_p == 1) begin $finish(); end end endcase // case (op) end // if (instr_completed & ~reset_i & ~done_r) end // always @ (negedge clk_i) endmodule
module lights_mm_interconnect_0 ( input wire clk_0_clk_clk, // clk_0_clk.clk input wire nios2_qsys_0_reset_n_reset_bridge_in_reset_reset, // nios2_qsys_0_reset_n_reset_bridge_in_reset.reset input wire [13:0] nios2_qsys_0_data_master_address, // nios2_qsys_0_data_master.address output wire nios2_qsys_0_data_master_waitrequest, // .waitrequest input wire [3:0] nios2_qsys_0_data_master_byteenable, // .byteenable input wire nios2_qsys_0_data_master_read, // .read output wire [31:0] nios2_qsys_0_data_master_readdata, // .readdata input wire nios2_qsys_0_data_master_write, // .write input wire [31:0] nios2_qsys_0_data_master_writedata, // .writedata input wire nios2_qsys_0_data_master_debugaccess, // .debugaccess input wire [12:0] nios2_qsys_0_instruction_master_address, // nios2_qsys_0_instruction_master.address output wire nios2_qsys_0_instruction_master_waitrequest, // .waitrequest input wire nios2_qsys_0_instruction_master_read, // .read output wire [31:0] nios2_qsys_0_instruction_master_readdata, // .readdata output wire [0:0] jtag_uart_0_avalon_jtag_slave_address, // jtag_uart_0_avalon_jtag_slave.address output wire jtag_uart_0_avalon_jtag_slave_write, // .write output wire jtag_uart_0_avalon_jtag_slave_read, // .read input wire [31:0] jtag_uart_0_avalon_jtag_slave_readdata, // .readdata output wire [31:0] jtag_uart_0_avalon_jtag_slave_writedata, // .writedata input wire jtag_uart_0_avalon_jtag_slave_waitrequest, // .waitrequest output wire jtag_uart_0_avalon_jtag_slave_chipselect, // .chipselect output wire [1:0] LEDs_s1_address, // LEDs_s1.address output wire LEDs_s1_write, // .write input wire [31:0] LEDs_s1_readdata, // .readdata output wire [31:0] LEDs_s1_writedata, // .writedata output wire LEDs_s1_chipselect, // .chipselect output wire [8:0] nios2_qsys_0_jtag_debug_module_address, // nios2_qsys_0_jtag_debug_module.address output wire nios2_qsys_0_jtag_debug_module_write, // .write output wire nios2_qsys_0_jtag_debug_module_read, // .read input wire [31:0] nios2_qsys_0_jtag_debug_module_readdata, // .readdata output wire [31:0] nios2_qsys_0_jtag_debug_module_writedata, // .writedata output wire [3:0] nios2_qsys_0_jtag_debug_module_byteenable, // .byteenable input wire nios2_qsys_0_jtag_debug_module_waitrequest, // .waitrequest output wire nios2_qsys_0_jtag_debug_module_debugaccess, // .debugaccess output wire [9:0] onchip_memory2_0_s1_address, // onchip_memory2_0_s1.address output wire onchip_memory2_0_s1_write, // .write input wire [31:0] onchip_memory2_0_s1_readdata, // .readdata output wire [31:0] onchip_memory2_0_s1_writedata, // .writedata output wire [3:0] onchip_memory2_0_s1_byteenable, // .byteenable output wire onchip_memory2_0_s1_chipselect, // .chipselect output wire onchip_memory2_0_s1_clken, // .clken output wire [1:0] switches_s1_address, // switches_s1.address input wire [31:0] switches_s1_readdata // .readdata ); wire nios2_qsys_0_data_master_translator_avalon_universal_master_0_waitrequest; // nios2_qsys_0_data_master_agent:av_waitrequest -> nios2_qsys_0_data_master_translator:uav_waitrequest wire [31:0] nios2_qsys_0_data_master_translator_avalon_universal_master_0_readdata; // nios2_qsys_0_data_master_agent:av_readdata -> nios2_qsys_0_data_master_translator:uav_readdata wire nios2_qsys_0_data_master_translator_avalon_universal_master_0_debugaccess; // nios2_qsys_0_data_master_translator:uav_debugaccess -> nios2_qsys_0_data_master_agent:av_debugaccess wire [13:0] nios2_qsys_0_data_master_translator_avalon_universal_master_0_address; // nios2_qsys_0_data_master_translator:uav_address -> nios2_qsys_0_data_master_agent:av_address wire nios2_qsys_0_data_master_translator_avalon_universal_master_0_read; // nios2_qsys_0_data_master_translator:uav_read -> nios2_qsys_0_data_master_agent:av_read wire [3:0] nios2_qsys_0_data_master_translator_avalon_universal_master_0_byteenable; // nios2_qsys_0_data_master_translator:uav_byteenable -> nios2_qsys_0_data_master_agent:av_byteenable wire nios2_qsys_0_data_master_translator_avalon_universal_master_0_readdatavalid; // nios2_qsys_0_data_master_agent:av_readdatavalid -> nios2_qsys_0_data_master_translator:uav_readdatavalid wire nios2_qsys_0_data_master_translator_avalon_universal_master_0_lock; // nios2_qsys_0_data_master_translator:uav_lock -> nios2_qsys_0_data_master_agent:av_lock wire nios2_qsys_0_data_master_translator_avalon_universal_master_0_write; // nios2_qsys_0_data_master_translator:uav_write -> nios2_qsys_0_data_master_agent:av_write wire [31:0] nios2_qsys_0_data_master_translator_avalon_universal_master_0_writedata; // nios2_qsys_0_data_master_translator:uav_writedata -> nios2_qsys_0_data_master_agent:av_writedata wire [2:0] nios2_qsys_0_data_master_translator_avalon_universal_master_0_burstcount; // nios2_qsys_0_data_master_translator:uav_burstcount -> nios2_qsys_0_data_master_agent:av_burstcount wire rsp_mux_src_valid; // rsp_mux:src_valid -> nios2_qsys_0_data_master_agent:rp_valid wire [89:0] rsp_mux_src_data; // rsp_mux:src_data -> nios2_qsys_0_data_master_agent:rp_data wire rsp_mux_src_ready; // nios2_qsys_0_data_master_agent:rp_ready -> rsp_mux:src_ready wire [4:0] rsp_mux_src_channel; // rsp_mux:src_channel -> nios2_qsys_0_data_master_agent:rp_channel wire rsp_mux_src_startofpacket; // rsp_mux:src_startofpacket -> nios2_qsys_0_data_master_agent:rp_startofpacket wire rsp_mux_src_endofpacket; // rsp_mux:src_endofpacket -> nios2_qsys_0_data_master_agent:rp_endofpacket wire nios2_qsys_0_instruction_master_translator_avalon_universal_master_0_waitrequest; // nios2_qsys_0_instruction_master_agent:av_waitrequest -> nios2_qsys_0_instruction_master_translator:uav_waitrequest wire [31:0] nios2_qsys_0_instruction_master_translator_avalon_universal_master_0_readdata; // nios2_qsys_0_instruction_master_agent:av_readdata -> nios2_qsys_0_instruction_master_translator:uav_readdata wire nios2_qsys_0_instruction_master_translator_avalon_universal_master_0_debugaccess; // nios2_qsys_0_instruction_master_translator:uav_debugaccess -> nios2_qsys_0_instruction_master_agent:av_debugaccess wire [13:0] nios2_qsys_0_instruction_master_translator_avalon_universal_master_0_address; // nios2_qsys_0_instruction_master_translator:uav_address -> nios2_qsys_0_instruction_master_agent:av_address wire nios2_qsys_0_instruction_master_translator_avalon_universal_master_0_read; // nios2_qsys_0_instruction_master_translator:uav_read -> nios2_qsys_0_instruction_master_agent:av_read wire [3:0] nios2_qsys_0_instruction_master_translator_avalon_universal_master_0_byteenable; // nios2_qsys_0_instruction_master_translator:uav_byteenable -> nios2_qsys_0_instruction_master_agent:av_byteenable wire nios2_qsys_0_instruction_master_translator_avalon_universal_master_0_readdatavalid; // nios2_qsys_0_instruction_master_agent:av_readdatavalid -> nios2_qsys_0_instruction_master_translator:uav_readdatavalid wire nios2_qsys_0_instruction_master_translator_avalon_universal_master_0_lock; // nios2_qsys_0_instruction_master_translator:uav_lock -> nios2_qsys_0_instruction_master_agent:av_lock wire nios2_qsys_0_instruction_master_translator_avalon_universal_master_0_write; // nios2_qsys_0_instruction_master_translator:uav_write -> nios2_qsys_0_instruction_master_agent:av_write wire [31:0] nios2_qsys_0_instruction_master_translator_avalon_universal_master_0_writedata; // nios2_qsys_0_instruction_master_translator:uav_writedata -> nios2_qsys_0_instruction_master_agent:av_writedata wire [2:0] nios2_qsys_0_instruction_master_translator_avalon_universal_master_0_burstcount; // nios2_qsys_0_instruction_master_translator:uav_burstcount -> nios2_qsys_0_instruction_master_agent:av_burstcount wire rsp_mux_001_src_valid; // rsp_mux_001:src_valid -> nios2_qsys_0_instruction_master_agent:rp_valid wire [89:0] rsp_mux_001_src_data; // rsp_mux_001:src_data -> nios2_qsys_0_instruction_master_agent:rp_data wire rsp_mux_001_src_ready; // nios2_qsys_0_instruction_master_agent:rp_ready -> rsp_mux_001:src_ready wire [4:0] rsp_mux_001_src_channel; // rsp_mux_001:src_channel -> nios2_qsys_0_instruction_master_agent:rp_channel wire rsp_mux_001_src_startofpacket; // rsp_mux_001:src_startofpacket -> nios2_qsys_0_instruction_master_agent:rp_startofpacket wire rsp_mux_001_src_endofpacket; // rsp_mux_001:src_endofpacket -> nios2_qsys_0_instruction_master_agent:rp_endofpacket wire [31:0] jtag_uart_0_avalon_jtag_slave_agent_m0_readdata; // jtag_uart_0_avalon_jtag_slave_translator:uav_readdata -> jtag_uart_0_avalon_jtag_slave_agent:m0_readdata wire jtag_uart_0_avalon_jtag_slave_agent_m0_waitrequest; // jtag_uart_0_avalon_jtag_slave_translator:uav_waitrequest -> jtag_uart_0_avalon_jtag_slave_agent:m0_waitrequest wire jtag_uart_0_avalon_jtag_slave_agent_m0_debugaccess; // jtag_uart_0_avalon_jtag_slave_agent:m0_debugaccess -> jtag_uart_0_avalon_jtag_slave_translator:uav_debugaccess wire [13:0] jtag_uart_0_avalon_jtag_slave_agent_m0_address; // jtag_uart_0_avalon_jtag_slave_agent:m0_address -> jtag_uart_0_avalon_jtag_slave_translator:uav_address wire [3:0] jtag_uart_0_avalon_jtag_slave_agent_m0_byteenable; // jtag_uart_0_avalon_jtag_slave_agent:m0_byteenable -> jtag_uart_0_avalon_jtag_slave_translator:uav_byteenable wire jtag_uart_0_avalon_jtag_slave_agent_m0_read; // jtag_uart_0_avalon_jtag_slave_agent:m0_read -> jtag_uart_0_avalon_jtag_slave_translator:uav_read wire jtag_uart_0_avalon_jtag_slave_agent_m0_readdatavalid; // jtag_uart_0_avalon_jtag_slave_translator:uav_readdatavalid -> jtag_uart_0_avalon_jtag_slave_agent:m0_readdatavalid wire jtag_uart_0_avalon_jtag_slave_agent_m0_lock; // jtag_uart_0_avalon_jtag_slave_agent:m0_lock -> jtag_uart_0_avalon_jtag_slave_translator:uav_lock wire [31:0] jtag_uart_0_avalon_jtag_slave_agent_m0_writedata; // jtag_uart_0_avalon_jtag_slave_agent:m0_writedata -> jtag_uart_0_avalon_jtag_slave_translator:uav_writedata wire jtag_uart_0_avalon_jtag_slave_agent_m0_write; // jtag_uart_0_avalon_jtag_slave_agent:m0_write -> jtag_uart_0_avalon_jtag_slave_translator:uav_write wire [2:0] jtag_uart_0_avalon_jtag_slave_agent_m0_burstcount; // jtag_uart_0_avalon_jtag_slave_agent:m0_burstcount -> jtag_uart_0_avalon_jtag_slave_translator:uav_burstcount wire jtag_uart_0_avalon_jtag_slave_agent_rf_source_valid; // jtag_uart_0_avalon_jtag_slave_agent:rf_source_valid -> jtag_uart_0_avalon_jtag_slave_agent_rsp_fifo:in_valid wire [90:0] jtag_uart_0_avalon_jtag_slave_agent_rf_source_data; // jtag_uart_0_avalon_jtag_slave_agent:rf_source_data -> jtag_uart_0_avalon_jtag_slave_agent_rsp_fifo:in_data wire jtag_uart_0_avalon_jtag_slave_agent_rf_source_ready; // jtag_uart_0_avalon_jtag_slave_agent_rsp_fifo:in_ready -> jtag_uart_0_avalon_jtag_slave_agent:rf_source_ready wire jtag_uart_0_avalon_jtag_slave_agent_rf_source_startofpacket; // jtag_uart_0_avalon_jtag_slave_agent:rf_source_startofpacket -> jtag_uart_0_avalon_jtag_slave_agent_rsp_fifo:in_startofpacket wire jtag_uart_0_avalon_jtag_slave_agent_rf_source_endofpacket; // jtag_uart_0_avalon_jtag_slave_agent:rf_source_endofpacket -> jtag_uart_0_avalon_jtag_slave_agent_rsp_fifo:in_endofpacket wire jtag_uart_0_avalon_jtag_slave_agent_rsp_fifo_out_valid; // jtag_uart_0_avalon_jtag_slave_agent_rsp_fifo:out_valid -> jtag_uart_0_avalon_jtag_slave_agent:rf_sink_valid wire [90:0] jtag_uart_0_avalon_jtag_slave_agent_rsp_fifo_out_data; // jtag_uart_0_avalon_jtag_slave_agent_rsp_fifo:out_data -> jtag_uart_0_avalon_jtag_slave_agent:rf_sink_data wire jtag_uart_0_avalon_jtag_slave_agent_rsp_fifo_out_ready; // jtag_uart_0_avalon_jtag_slave_agent:rf_sink_ready -> jtag_uart_0_avalon_jtag_slave_agent_rsp_fifo:out_ready wire jtag_uart_0_avalon_jtag_slave_agent_rsp_fifo_out_startofpacket; // jtag_uart_0_avalon_jtag_slave_agent_rsp_fifo:out_startofpacket -> jtag_uart_0_avalon_jtag_slave_agent:rf_sink_startofpacket wire jtag_uart_0_avalon_jtag_slave_agent_rsp_fifo_out_endofpacket; // jtag_uart_0_avalon_jtag_slave_agent_rsp_fifo:out_endofpacket -> jtag_uart_0_avalon_jtag_slave_agent:rf_sink_endofpacket wire cmd_mux_src_valid; // cmd_mux:src_valid -> jtag_uart_0_avalon_jtag_slave_agent:cp_valid wire [89:0] cmd_mux_src_data; // cmd_mux:src_data -> jtag_uart_0_avalon_jtag_slave_agent:cp_data wire cmd_mux_src_ready; // jtag_uart_0_avalon_jtag_slave_agent:cp_ready -> cmd_mux:src_ready wire [4:0] cmd_mux_src_channel; // cmd_mux:src_channel -> jtag_uart_0_avalon_jtag_slave_agent:cp_channel wire cmd_mux_src_startofpacket; // cmd_mux:src_startofpacket -> jtag_uart_0_avalon_jtag_slave_agent:cp_startofpacket wire cmd_mux_src_endofpacket; // cmd_mux:src_endofpacket -> jtag_uart_0_avalon_jtag_slave_agent:cp_endofpacket wire [31:0] nios2_qsys_0_jtag_debug_module_agent_m0_readdata; // nios2_qsys_0_jtag_debug_module_translator:uav_readdata -> nios2_qsys_0_jtag_debug_module_agent:m0_readdata wire nios2_qsys_0_jtag_debug_module_agent_m0_waitrequest; // nios2_qsys_0_jtag_debug_module_translator:uav_waitrequest -> nios2_qsys_0_jtag_debug_module_agent:m0_waitrequest wire nios2_qsys_0_jtag_debug_module_agent_m0_debugaccess; // nios2_qsys_0_jtag_debug_module_agent:m0_debugaccess -> nios2_qsys_0_jtag_debug_module_translator:uav_debugaccess wire [13:0] nios2_qsys_0_jtag_debug_module_agent_m0_address; // nios2_qsys_0_jtag_debug_module_agent:m0_address -> nios2_qsys_0_jtag_debug_module_translator:uav_address wire [3:0] nios2_qsys_0_jtag_debug_module_agent_m0_byteenable; // nios2_qsys_0_jtag_debug_module_agent:m0_byteenable -> nios2_qsys_0_jtag_debug_module_translator:uav_byteenable wire nios2_qsys_0_jtag_debug_module_agent_m0_read; // nios2_qsys_0_jtag_debug_module_agent:m0_read -> nios2_qsys_0_jtag_debug_module_translator:uav_read wire nios2_qsys_0_jtag_debug_module_agent_m0_readdatavalid; // nios2_qsys_0_jtag_debug_module_translator:uav_readdatavalid -> nios2_qsys_0_jtag_debug_module_agent:m0_readdatavalid wire nios2_qsys_0_jtag_debug_module_agent_m0_lock; // nios2_qsys_0_jtag_debug_module_agent:m0_lock -> nios2_qsys_0_jtag_debug_module_translator:uav_lock wire [31:0] nios2_qsys_0_jtag_debug_module_agent_m0_writedata; // nios2_qsys_0_jtag_debug_module_agent:m0_writedata -> nios2_qsys_0_jtag_debug_module_translator:uav_writedata wire nios2_qsys_0_jtag_debug_module_agent_m0_write; // nios2_qsys_0_jtag_debug_module_agent:m0_write -> nios2_qsys_0_jtag_debug_module_translator:uav_write wire [2:0] nios2_qsys_0_jtag_debug_module_agent_m0_burstcount; // nios2_qsys_0_jtag_debug_module_agent:m0_burstcount -> nios2_qsys_0_jtag_debug_module_translator:uav_burstcount wire nios2_qsys_0_jtag_debug_module_agent_rf_source_valid; // nios2_qsys_0_jtag_debug_module_agent:rf_source_valid -> nios2_qsys_0_jtag_debug_module_agent_rsp_fifo:in_valid wire [90:0] nios2_qsys_0_jtag_debug_module_agent_rf_source_data; // nios2_qsys_0_jtag_debug_module_agent:rf_source_data -> nios2_qsys_0_jtag_debug_module_agent_rsp_fifo:in_data wire nios2_qsys_0_jtag_debug_module_agent_rf_source_ready; // nios2_qsys_0_jtag_debug_module_agent_rsp_fifo:in_ready -> nios2_qsys_0_jtag_debug_module_agent:rf_source_ready wire nios2_qsys_0_jtag_debug_module_agent_rf_source_startofpacket; // nios2_qsys_0_jtag_debug_module_agent:rf_source_startofpacket -> nios2_qsys_0_jtag_debug_module_agent_rsp_fifo:in_startofpacket wire nios2_qsys_0_jtag_debug_module_agent_rf_source_endofpacket; // nios2_qsys_0_jtag_debug_module_agent:rf_source_endofpacket -> nios2_qsys_0_jtag_debug_module_agent_rsp_fifo:in_endofpacket wire nios2_qsys_0_jtag_debug_module_agent_rsp_fifo_out_valid; // nios2_qsys_0_jtag_debug_module_agent_rsp_fifo:out_valid -> nios2_qsys_0_jtag_debug_module_agent:rf_sink_valid wire [90:0] nios2_qsys_0_jtag_debug_module_agent_rsp_fifo_out_data; // nios2_qsys_0_jtag_debug_module_agent_rsp_fifo:out_data -> nios2_qsys_0_jtag_debug_module_agent:rf_sink_data wire nios2_qsys_0_jtag_debug_module_agent_rsp_fifo_out_ready; // nios2_qsys_0_jtag_debug_module_agent:rf_sink_ready -> nios2_qsys_0_jtag_debug_module_agent_rsp_fifo:out_ready wire nios2_qsys_0_jtag_debug_module_agent_rsp_fifo_out_startofpacket; // nios2_qsys_0_jtag_debug_module_agent_rsp_fifo:out_startofpacket -> nios2_qsys_0_jtag_debug_module_agent:rf_sink_startofpacket wire nios2_qsys_0_jtag_debug_module_agent_rsp_fifo_out_endofpacket; // nios2_qsys_0_jtag_debug_module_agent_rsp_fifo:out_endofpacket -> nios2_qsys_0_jtag_debug_module_agent:rf_sink_endofpacket wire cmd_mux_001_src_valid; // cmd_mux_001:src_valid -> nios2_qsys_0_jtag_debug_module_agent:cp_valid wire [89:0] cmd_mux_001_src_data; // cmd_mux_001:src_data -> nios2_qsys_0_jtag_debug_module_agent:cp_data wire cmd_mux_001_src_ready; // nios2_qsys_0_jtag_debug_module_agent:cp_ready -> cmd_mux_001:src_ready wire [4:0] cmd_mux_001_src_channel; // cmd_mux_001:src_channel -> nios2_qsys_0_jtag_debug_module_agent:cp_channel wire cmd_mux_001_src_startofpacket; // cmd_mux_001:src_startofpacket -> nios2_qsys_0_jtag_debug_module_agent:cp_startofpacket wire cmd_mux_001_src_endofpacket; // cmd_mux_001:src_endofpacket -> nios2_qsys_0_jtag_debug_module_agent:cp_endofpacket wire [31:0] onchip_memory2_0_s1_agent_m0_readdata; // onchip_memory2_0_s1_translator:uav_readdata -> onchip_memory2_0_s1_agent:m0_readdata wire onchip_memory2_0_s1_agent_m0_waitrequest; // onchip_memory2_0_s1_translator:uav_waitrequest -> onchip_memory2_0_s1_agent:m0_waitrequest wire onchip_memory2_0_s1_agent_m0_debugaccess; // onchip_memory2_0_s1_agent:m0_debugaccess -> onchip_memory2_0_s1_translator:uav_debugaccess wire [13:0] onchip_memory2_0_s1_agent_m0_address; // onchip_memory2_0_s1_agent:m0_address -> onchip_memory2_0_s1_translator:uav_address wire [3:0] onchip_memory2_0_s1_agent_m0_byteenable; // onchip_memory2_0_s1_agent:m0_byteenable -> onchip_memory2_0_s1_translator:uav_byteenable wire onchip_memory2_0_s1_agent_m0_read; // onchip_memory2_0_s1_agent:m0_read -> onchip_memory2_0_s1_translator:uav_read wire onchip_memory2_0_s1_agent_m0_readdatavalid; // onchip_memory2_0_s1_translator:uav_readdatavalid -> onchip_memory2_0_s1_agent:m0_readdatavalid wire onchip_memory2_0_s1_agent_m0_lock; // onchip_memory2_0_s1_agent:m0_lock -> onchip_memory2_0_s1_translator:uav_lock wire [31:0] onchip_memory2_0_s1_agent_m0_writedata; // onchip_memory2_0_s1_agent:m0_writedata -> onchip_memory2_0_s1_translator:uav_writedata wire onchip_memory2_0_s1_agent_m0_write; // onchip_memory2_0_s1_agent:m0_write -> onchip_memory2_0_s1_translator:uav_write wire [2:0] onchip_memory2_0_s1_agent_m0_burstcount; // onchip_memory2_0_s1_agent:m0_burstcount -> onchip_memory2_0_s1_translator:uav_burstcount wire onchip_memory2_0_s1_agent_rf_source_valid; // onchip_memory2_0_s1_agent:rf_source_valid -> onchip_memory2_0_s1_agent_rsp_fifo:in_valid wire [90:0] onchip_memory2_0_s1_agent_rf_source_data; // onchip_memory2_0_s1_agent:rf_source_data -> onchip_memory2_0_s1_agent_rsp_fifo:in_data wire onchip_memory2_0_s1_agent_rf_source_ready; // onchip_memory2_0_s1_agent_rsp_fifo:in_ready -> onchip_memory2_0_s1_agent:rf_source_ready wire onchip_memory2_0_s1_agent_rf_source_startofpacket; // onchip_memory2_0_s1_agent:rf_source_startofpacket -> onchip_memory2_0_s1_agent_rsp_fifo:in_startofpacket wire onchip_memory2_0_s1_agent_rf_source_endofpacket; // onchip_memory2_0_s1_agent:rf_source_endofpacket -> onchip_memory2_0_s1_agent_rsp_fifo:in_endofpacket wire onchip_memory2_0_s1_agent_rsp_fifo_out_valid; // onchip_memory2_0_s1_agent_rsp_fifo:out_valid -> onchip_memory2_0_s1_agent:rf_sink_valid wire [90:0] onchip_memory2_0_s1_agent_rsp_fifo_out_data; // onchip_memory2_0_s1_agent_rsp_fifo:out_data -> onchip_memory2_0_s1_agent:rf_sink_data wire onchip_memory2_0_s1_agent_rsp_fifo_out_ready; // onchip_memory2_0_s1_agent:rf_sink_ready -> onchip_memory2_0_s1_agent_rsp_fifo:out_ready wire onchip_memory2_0_s1_agent_rsp_fifo_out_startofpacket; // onchip_memory2_0_s1_agent_rsp_fifo:out_startofpacket -> onchip_memory2_0_s1_agent:rf_sink_startofpacket wire onchip_memory2_0_s1_agent_rsp_fifo_out_endofpacket; // onchip_memory2_0_s1_agent_rsp_fifo:out_endofpacket -> onchip_memory2_0_s1_agent:rf_sink_endofpacket wire cmd_mux_002_src_valid; // cmd_mux_002:src_valid -> onchip_memory2_0_s1_agent:cp_valid wire [89:0] cmd_mux_002_src_data; // cmd_mux_002:src_data -> onchip_memory2_0_s1_agent:cp_data wire cmd_mux_002_src_ready; // onchip_memory2_0_s1_agent:cp_ready -> cmd_mux_002:src_ready wire [4:0] cmd_mux_002_src_channel; // cmd_mux_002:src_channel -> onchip_memory2_0_s1_agent:cp_channel wire cmd_mux_002_src_startofpacket; // cmd_mux_002:src_startofpacket -> onchip_memory2_0_s1_agent:cp_startofpacket wire cmd_mux_002_src_endofpacket; // cmd_mux_002:src_endofpacket -> onchip_memory2_0_s1_agent:cp_endofpacket wire [31:0] switches_s1_agent_m0_readdata; // switches_s1_translator:uav_readdata -> switches_s1_agent:m0_readdata wire switches_s1_agent_m0_waitrequest; // switches_s1_translator:uav_waitrequest -> switches_s1_agent:m0_waitrequest wire switches_s1_agent_m0_debugaccess; // switches_s1_agent:m0_debugaccess -> switches_s1_translator:uav_debugaccess wire [13:0] switches_s1_agent_m0_address; // switches_s1_agent:m0_address -> switches_s1_translator:uav_address wire [3:0] switches_s1_agent_m0_byteenable; // switches_s1_agent:m0_byteenable -> switches_s1_translator:uav_byteenable wire switches_s1_agent_m0_read; // switches_s1_agent:m0_read -> switches_s1_translator:uav_read wire switches_s1_agent_m0_readdatavalid; // switches_s1_translator:uav_readdatavalid -> switches_s1_agent:m0_readdatavalid wire switches_s1_agent_m0_lock; // switches_s1_agent:m0_lock -> switches_s1_translator:uav_lock wire [31:0] switches_s1_agent_m0_writedata; // switches_s1_agent:m0_writedata -> switches_s1_translator:uav_writedata wire switches_s1_agent_m0_write; // switches_s1_agent:m0_write -> switches_s1_translator:uav_write wire [2:0] switches_s1_agent_m0_burstcount; // switches_s1_agent:m0_burstcount -> switches_s1_translator:uav_burstcount wire switches_s1_agent_rf_source_valid; // switches_s1_agent:rf_source_valid -> switches_s1_agent_rsp_fifo:in_valid wire [90:0] switches_s1_agent_rf_source_data; // switches_s1_agent:rf_source_data -> switches_s1_agent_rsp_fifo:in_data wire switches_s1_agent_rf_source_ready; // switches_s1_agent_rsp_fifo:in_ready -> switches_s1_agent:rf_source_ready wire switches_s1_agent_rf_source_startofpacket; // switches_s1_agent:rf_source_startofpacket -> switches_s1_agent_rsp_fifo:in_startofpacket wire switches_s1_agent_rf_source_endofpacket; // switches_s1_agent:rf_source_endofpacket -> switches_s1_agent_rsp_fifo:in_endofpacket wire switches_s1_agent_rsp_fifo_out_valid; // switches_s1_agent_rsp_fifo:out_valid -> switches_s1_agent:rf_sink_valid wire [90:0] switches_s1_agent_rsp_fifo_out_data; // switches_s1_agent_rsp_fifo:out_data -> switches_s1_agent:rf_sink_data wire switches_s1_agent_rsp_fifo_out_ready; // switches_s1_agent:rf_sink_ready -> switches_s1_agent_rsp_fifo:out_ready wire switches_s1_agent_rsp_fifo_out_startofpacket; // switches_s1_agent_rsp_fifo:out_startofpacket -> switches_s1_agent:rf_sink_startofpacket wire switches_s1_agent_rsp_fifo_out_endofpacket; // switches_s1_agent_rsp_fifo:out_endofpacket -> switches_s1_agent:rf_sink_endofpacket wire cmd_mux_003_src_valid; // cmd_mux_003:src_valid -> switches_s1_agent:cp_valid wire [89:0] cmd_mux_003_src_data; // cmd_mux_003:src_data -> switches_s1_agent:cp_data wire cmd_mux_003_src_ready; // switches_s1_agent:cp_ready -> cmd_mux_003:src_ready wire [4:0] cmd_mux_003_src_channel; // cmd_mux_003:src_channel -> switches_s1_agent:cp_channel wire cmd_mux_003_src_startofpacket; // cmd_mux_003:src_startofpacket -> switches_s1_agent:cp_startofpacket wire cmd_mux_003_src_endofpacket; // cmd_mux_003:src_endofpacket -> switches_s1_agent:cp_endofpacket wire [31:0] leds_s1_agent_m0_readdata; // LEDs_s1_translator:uav_readdata -> LEDs_s1_agent:m0_readdata wire leds_s1_agent_m0_waitrequest; // LEDs_s1_translator:uav_waitrequest -> LEDs_s1_agent:m0_waitrequest wire leds_s1_agent_m0_debugaccess; // LEDs_s1_agent:m0_debugaccess -> LEDs_s1_translator:uav_debugaccess wire [13:0] leds_s1_agent_m0_address; // LEDs_s1_agent:m0_address -> LEDs_s1_translator:uav_address wire [3:0] leds_s1_agent_m0_byteenable; // LEDs_s1_agent:m0_byteenable -> LEDs_s1_translator:uav_byteenable wire leds_s1_agent_m0_read; // LEDs_s1_agent:m0_read -> LEDs_s1_translator:uav_read wire leds_s1_agent_m0_readdatavalid; // LEDs_s1_translator:uav_readdatavalid -> LEDs_s1_agent:m0_readdatavalid wire leds_s1_agent_m0_lock; // LEDs_s1_agent:m0_lock -> LEDs_s1_translator:uav_lock wire [31:0] leds_s1_agent_m0_writedata; // LEDs_s1_agent:m0_writedata -> LEDs_s1_translator:uav_writedata wire leds_s1_agent_m0_write; // LEDs_s1_agent:m0_write -> LEDs_s1_translator:uav_write wire [2:0] leds_s1_agent_m0_burstcount; // LEDs_s1_agent:m0_burstcount -> LEDs_s1_translator:uav_burstcount wire leds_s1_agent_rf_source_valid; // LEDs_s1_agent:rf_source_valid -> LEDs_s1_agent_rsp_fifo:in_valid wire [90:0] leds_s1_agent_rf_source_data; // LEDs_s1_agent:rf_source_data -> LEDs_s1_agent_rsp_fifo:in_data wire leds_s1_agent_rf_source_ready; // LEDs_s1_agent_rsp_fifo:in_ready -> LEDs_s1_agent:rf_source_ready wire leds_s1_agent_rf_source_startofpacket; // LEDs_s1_agent:rf_source_startofpacket -> LEDs_s1_agent_rsp_fifo:in_startofpacket wire leds_s1_agent_rf_source_endofpacket; // LEDs_s1_agent:rf_source_endofpacket -> LEDs_s1_agent_rsp_fifo:in_endofpacket wire leds_s1_agent_rsp_fifo_out_valid; // LEDs_s1_agent_rsp_fifo:out_valid -> LEDs_s1_agent:rf_sink_valid wire [90:0] leds_s1_agent_rsp_fifo_out_data; // LEDs_s1_agent_rsp_fifo:out_data -> LEDs_s1_agent:rf_sink_data wire leds_s1_agent_rsp_fifo_out_ready; // LEDs_s1_agent:rf_sink_ready -> LEDs_s1_agent_rsp_fifo:out_ready wire leds_s1_agent_rsp_fifo_out_startofpacket; // LEDs_s1_agent_rsp_fifo:out_startofpacket -> LEDs_s1_agent:rf_sink_startofpacket wire leds_s1_agent_rsp_fifo_out_endofpacket; // LEDs_s1_agent_rsp_fifo:out_endofpacket -> LEDs_s1_agent:rf_sink_endofpacket wire cmd_mux_004_src_valid; // cmd_mux_004:src_valid -> LEDs_s1_agent:cp_valid wire [89:0] cmd_mux_004_src_data; // cmd_mux_004:src_data -> LEDs_s1_agent:cp_data wire cmd_mux_004_src_ready; // LEDs_s1_agent:cp_ready -> cmd_mux_004:src_ready wire [4:0] cmd_mux_004_src_channel; // cmd_mux_004:src_channel -> LEDs_s1_agent:cp_channel wire cmd_mux_004_src_startofpacket; // cmd_mux_004:src_startofpacket -> LEDs_s1_agent:cp_startofpacket wire cmd_mux_004_src_endofpacket; // cmd_mux_004:src_endofpacket -> LEDs_s1_agent:cp_endofpacket wire nios2_qsys_0_data_master_agent_cp_valid; // nios2_qsys_0_data_master_agent:cp_valid -> router:sink_valid wire [89:0] nios2_qsys_0_data_master_agent_cp_data; // nios2_qsys_0_data_master_agent:cp_data -> router:sink_data wire nios2_qsys_0_data_master_agent_cp_ready; // router:sink_ready -> nios2_qsys_0_data_master_agent:cp_ready wire nios2_qsys_0_data_master_agent_cp_startofpacket; // nios2_qsys_0_data_master_agent:cp_startofpacket -> router:sink_startofpacket wire nios2_qsys_0_data_master_agent_cp_endofpacket; // nios2_qsys_0_data_master_agent:cp_endofpacket -> router:sink_endofpacket wire router_src_valid; // router:src_valid -> cmd_demux:sink_valid wire [89:0] router_src_data; // router:src_data -> cmd_demux:sink_data wire router_src_ready; // cmd_demux:sink_ready -> router:src_ready wire [4:0] router_src_channel; // router:src_channel -> cmd_demux:sink_channel wire router_src_startofpacket; // router:src_startofpacket -> cmd_demux:sink_startofpacket wire router_src_endofpacket; // router:src_endofpacket -> cmd_demux:sink_endofpacket wire nios2_qsys_0_instruction_master_agent_cp_valid; // nios2_qsys_0_instruction_master_agent:cp_valid -> router_001:sink_valid wire [89:0] nios2_qsys_0_instruction_master_agent_cp_data; // nios2_qsys_0_instruction_master_agent:cp_data -> router_001:sink_data wire nios2_qsys_0_instruction_master_agent_cp_ready; // router_001:sink_ready -> nios2_qsys_0_instruction_master_agent:cp_ready wire nios2_qsys_0_instruction_master_agent_cp_startofpacket; // nios2_qsys_0_instruction_master_agent:cp_startofpacket -> router_001:sink_startofpacket wire nios2_qsys_0_instruction_master_agent_cp_endofpacket; // nios2_qsys_0_instruction_master_agent:cp_endofpacket -> router_001:sink_endofpacket wire router_001_src_valid; // router_001:src_valid -> cmd_demux_001:sink_valid wire [89:0] router_001_src_data; // router_001:src_data -> cmd_demux_001:sink_data wire router_001_src_ready; // cmd_demux_001:sink_ready -> router_001:src_ready wire [4:0] router_001_src_channel; // router_001:src_channel -> cmd_demux_001:sink_channel wire router_001_src_startofpacket; // router_001:src_startofpacket -> cmd_demux_001:sink_startofpacket wire router_001_src_endofpacket; // router_001:src_endofpacket -> cmd_demux_001:sink_endofpacket wire jtag_uart_0_avalon_jtag_slave_agent_rp_valid; // jtag_uart_0_avalon_jtag_slave_agent:rp_valid -> router_002:sink_valid wire [89:0] jtag_uart_0_avalon_jtag_slave_agent_rp_data; // jtag_uart_0_avalon_jtag_slave_agent:rp_data -> router_002:sink_data wire jtag_uart_0_avalon_jtag_slave_agent_rp_ready; // router_002:sink_ready -> jtag_uart_0_avalon_jtag_slave_agent:rp_ready wire jtag_uart_0_avalon_jtag_slave_agent_rp_startofpacket; // jtag_uart_0_avalon_jtag_slave_agent:rp_startofpacket -> router_002:sink_startofpacket wire jtag_uart_0_avalon_jtag_slave_agent_rp_endofpacket; // jtag_uart_0_avalon_jtag_slave_agent:rp_endofpacket -> router_002:sink_endofpacket wire router_002_src_valid; // router_002:src_valid -> rsp_demux:sink_valid wire [89:0] router_002_src_data; // router_002:src_data -> rsp_demux:sink_data wire router_002_src_ready; // rsp_demux:sink_ready -> router_002:src_ready wire [4:0] router_002_src_channel; // router_002:src_channel -> rsp_demux:sink_channel wire router_002_src_startofpacket; // router_002:src_startofpacket -> rsp_demux:sink_startofpacket wire router_002_src_endofpacket; // router_002:src_endofpacket -> rsp_demux:sink_endofpacket wire nios2_qsys_0_jtag_debug_module_agent_rp_valid; // nios2_qsys_0_jtag_debug_module_agent:rp_valid -> router_003:sink_valid wire [89:0] nios2_qsys_0_jtag_debug_module_agent_rp_data; // nios2_qsys_0_jtag_debug_module_agent:rp_data -> router_003:sink_data wire nios2_qsys_0_jtag_debug_module_agent_rp_ready; // router_003:sink_ready -> nios2_qsys_0_jtag_debug_module_agent:rp_ready wire nios2_qsys_0_jtag_debug_module_agent_rp_startofpacket; // nios2_qsys_0_jtag_debug_module_agent:rp_startofpacket -> router_003:sink_startofpacket wire nios2_qsys_0_jtag_debug_module_agent_rp_endofpacket; // nios2_qsys_0_jtag_debug_module_agent:rp_endofpacket -> router_003:sink_endofpacket wire router_003_src_valid; // router_003:src_valid -> rsp_demux_001:sink_valid wire [89:0] router_003_src_data; // router_003:src_data -> rsp_demux_001:sink_data wire router_003_src_ready; // rsp_demux_001:sink_ready -> router_003:src_ready wire [4:0] router_003_src_channel; // router_003:src_channel -> rsp_demux_001:sink_channel wire router_003_src_startofpacket; // router_003:src_startofpacket -> rsp_demux_001:sink_startofpacket wire router_003_src_endofpacket; // router_003:src_endofpacket -> rsp_demux_001:sink_endofpacket wire onchip_memory2_0_s1_agent_rp_valid; // onchip_memory2_0_s1_agent:rp_valid -> router_004:sink_valid wire [89:0] onchip_memory2_0_s1_agent_rp_data; // onchip_memory2_0_s1_agent:rp_data -> router_004:sink_data wire onchip_memory2_0_s1_agent_rp_ready; // router_004:sink_ready -> onchip_memory2_0_s1_agent:rp_ready wire onchip_memory2_0_s1_agent_rp_startofpacket; // onchip_memory2_0_s1_agent:rp_startofpacket -> router_004:sink_startofpacket wire onchip_memory2_0_s1_agent_rp_endofpacket; // onchip_memory2_0_s1_agent:rp_endofpacket -> router_004:sink_endofpacket wire router_004_src_valid; // router_004:src_valid -> rsp_demux_002:sink_valid wire [89:0] router_004_src_data; // router_004:src_data -> rsp_demux_002:sink_data wire router_004_src_ready; // rsp_demux_002:sink_ready -> router_004:src_ready wire [4:0] router_004_src_channel; // router_004:src_channel -> rsp_demux_002:sink_channel wire router_004_src_startofpacket; // router_004:src_startofpacket -> rsp_demux_002:sink_startofpacket wire router_004_src_endofpacket; // router_004:src_endofpacket -> rsp_demux_002:sink_endofpacket wire switches_s1_agent_rp_valid; // switches_s1_agent:rp_valid -> router_005:sink_valid wire [89:0] switches_s1_agent_rp_data; // switches_s1_agent:rp_data -> router_005:sink_data wire switches_s1_agent_rp_ready; // router_005:sink_ready -> switches_s1_agent:rp_ready wire switches_s1_agent_rp_startofpacket; // switches_s1_agent:rp_startofpacket -> router_005:sink_startofpacket wire switches_s1_agent_rp_endofpacket; // switches_s1_agent:rp_endofpacket -> router_005:sink_endofpacket wire router_005_src_valid; // router_005:src_valid -> rsp_demux_003:sink_valid wire [89:0] router_005_src_data; // router_005:src_data -> rsp_demux_003:sink_data wire router_005_src_ready; // rsp_demux_003:sink_ready -> router_005:src_ready wire [4:0] router_005_src_channel; // router_005:src_channel -> rsp_demux_003:sink_channel wire router_005_src_startofpacket; // router_005:src_startofpacket -> rsp_demux_003:sink_startofpacket wire router_005_src_endofpacket; // router_005:src_endofpacket -> rsp_demux_003:sink_endofpacket wire leds_s1_agent_rp_valid; // LEDs_s1_agent:rp_valid -> router_006:sink_valid wire [89:0] leds_s1_agent_rp_data; // LEDs_s1_agent:rp_data -> router_006:sink_data wire leds_s1_agent_rp_ready; // router_006:sink_ready -> LEDs_s1_agent:rp_ready wire leds_s1_agent_rp_startofpacket; // LEDs_s1_agent:rp_startofpacket -> router_006:sink_startofpacket wire leds_s1_agent_rp_endofpacket; // LEDs_s1_agent:rp_endofpacket -> router_006:sink_endofpacket wire router_006_src_valid; // router_006:src_valid -> rsp_demux_004:sink_valid wire [89:0] router_006_src_data; // router_006:src_data -> rsp_demux_004:sink_data wire router_006_src_ready; // rsp_demux_004:sink_ready -> router_006:src_ready wire [4:0] router_006_src_channel; // router_006:src_channel -> rsp_demux_004:sink_channel wire router_006_src_startofpacket; // router_006:src_startofpacket -> rsp_demux_004:sink_startofpacket wire router_006_src_endofpacket; // router_006:src_endofpacket -> rsp_demux_004:sink_endofpacket wire cmd_demux_src0_valid; // cmd_demux:src0_valid -> cmd_mux:sink0_valid wire [89:0] cmd_demux_src0_data; // cmd_demux:src0_data -> cmd_mux:sink0_data wire cmd_demux_src0_ready; // cmd_mux:sink0_ready -> cmd_demux:src0_ready wire [4:0] cmd_demux_src0_channel; // cmd_demux:src0_channel -> cmd_mux:sink0_channel wire cmd_demux_src0_startofpacket; // cmd_demux:src0_startofpacket -> cmd_mux:sink0_startofpacket wire cmd_demux_src0_endofpacket; // cmd_demux:src0_endofpacket -> cmd_mux:sink0_endofpacket wire cmd_demux_src1_valid; // cmd_demux:src1_valid -> cmd_mux_001:sink0_valid wire [89:0] cmd_demux_src1_data; // cmd_demux:src1_data -> cmd_mux_001:sink0_data wire cmd_demux_src1_ready; // cmd_mux_001:sink0_ready -> cmd_demux:src1_ready wire [4:0] cmd_demux_src1_channel; // cmd_demux:src1_channel -> cmd_mux_001:sink0_channel wire cmd_demux_src1_startofpacket; // cmd_demux:src1_startofpacket -> cmd_mux_001:sink0_startofpacket wire cmd_demux_src1_endofpacket; // cmd_demux:src1_endofpacket -> cmd_mux_001:sink0_endofpacket wire cmd_demux_src2_valid; // cmd_demux:src2_valid -> cmd_mux_002:sink0_valid wire [89:0] cmd_demux_src2_data; // cmd_demux:src2_data -> cmd_mux_002:sink0_data wire cmd_demux_src2_ready; // cmd_mux_002:sink0_ready -> cmd_demux:src2_ready wire [4:0] cmd_demux_src2_channel; // cmd_demux:src2_channel -> cmd_mux_002:sink0_channel wire cmd_demux_src2_startofpacket; // cmd_demux:src2_startofpacket -> cmd_mux_002:sink0_startofpacket wire cmd_demux_src2_endofpacket; // cmd_demux:src2_endofpacket -> cmd_mux_002:sink0_endofpacket wire cmd_demux_src3_valid; // cmd_demux:src3_valid -> cmd_mux_003:sink0_valid wire [89:0] cmd_demux_src3_data; // cmd_demux:src3_data -> cmd_mux_003:sink0_data wire cmd_demux_src3_ready; // cmd_mux_003:sink0_ready -> cmd_demux:src3_ready wire [4:0] cmd_demux_src3_channel; // cmd_demux:src3_channel -> cmd_mux_003:sink0_channel wire cmd_demux_src3_startofpacket; // cmd_demux:src3_startofpacket -> cmd_mux_003:sink0_startofpacket wire cmd_demux_src3_endofpacket; // cmd_demux:src3_endofpacket -> cmd_mux_003:sink0_endofpacket wire cmd_demux_src4_valid; // cmd_demux:src4_valid -> cmd_mux_004:sink0_valid wire [89:0] cmd_demux_src4_data; // cmd_demux:src4_data -> cmd_mux_004:sink0_data wire cmd_demux_src4_ready; // cmd_mux_004:sink0_ready -> cmd_demux:src4_ready wire [4:0] cmd_demux_src4_channel; // cmd_demux:src4_channel -> cmd_mux_004:sink0_channel wire cmd_demux_src4_startofpacket; // cmd_demux:src4_startofpacket -> cmd_mux_004:sink0_startofpacket wire cmd_demux_src4_endofpacket; // cmd_demux:src4_endofpacket -> cmd_mux_004:sink0_endofpacket wire cmd_demux_001_src0_valid; // cmd_demux_001:src0_valid -> cmd_mux_001:sink1_valid wire [89:0] cmd_demux_001_src0_data; // cmd_demux_001:src0_data -> cmd_mux_001:sink1_data wire cmd_demux_001_src0_ready; // cmd_mux_001:sink1_ready -> cmd_demux_001:src0_ready wire [4:0] cmd_demux_001_src0_channel; // cmd_demux_001:src0_channel -> cmd_mux_001:sink1_channel wire cmd_demux_001_src0_startofpacket; // cmd_demux_001:src0_startofpacket -> cmd_mux_001:sink1_startofpacket wire cmd_demux_001_src0_endofpacket; // cmd_demux_001:src0_endofpacket -> cmd_mux_001:sink1_endofpacket wire cmd_demux_001_src1_valid; // cmd_demux_001:src1_valid -> cmd_mux_002:sink1_valid wire [89:0] cmd_demux_001_src1_data; // cmd_demux_001:src1_data -> cmd_mux_002:sink1_data wire cmd_demux_001_src1_ready; // cmd_mux_002:sink1_ready -> cmd_demux_001:src1_ready wire [4:0] cmd_demux_001_src1_channel; // cmd_demux_001:src1_channel -> cmd_mux_002:sink1_channel wire cmd_demux_001_src1_startofpacket; // cmd_demux_001:src1_startofpacket -> cmd_mux_002:sink1_startofpacket wire cmd_demux_001_src1_endofpacket; // cmd_demux_001:src1_endofpacket -> cmd_mux_002:sink1_endofpacket wire rsp_demux_src0_valid; // rsp_demux:src0_valid -> rsp_mux:sink0_valid wire [89:0] rsp_demux_src0_data; // rsp_demux:src0_data -> rsp_mux:sink0_data wire rsp_demux_src0_ready; // rsp_mux:sink0_ready -> rsp_demux:src0_ready wire [4:0] rsp_demux_src0_channel; // rsp_demux:src0_channel -> rsp_mux:sink0_channel wire rsp_demux_src0_startofpacket; // rsp_demux:src0_startofpacket -> rsp_mux:sink0_startofpacket wire rsp_demux_src0_endofpacket; // rsp_demux:src0_endofpacket -> rsp_mux:sink0_endofpacket wire rsp_demux_001_src0_valid; // rsp_demux_001:src0_valid -> rsp_mux:sink1_valid wire [89:0] rsp_demux_001_src0_data; // rsp_demux_001:src0_data -> rsp_mux:sink1_data wire rsp_demux_001_src0_ready; // rsp_mux:sink1_ready -> rsp_demux_001:src0_ready wire [4:0] rsp_demux_001_src0_channel; // rsp_demux_001:src0_channel -> rsp_mux:sink1_channel wire rsp_demux_001_src0_startofpacket; // rsp_demux_001:src0_startofpacket -> rsp_mux:sink1_startofpacket wire rsp_demux_001_src0_endofpacket; // rsp_demux_001:src0_endofpacket -> rsp_mux:sink1_endofpacket wire rsp_demux_001_src1_valid; // rsp_demux_001:src1_valid -> rsp_mux_001:sink0_valid wire [89:0] rsp_demux_001_src1_data; // rsp_demux_001:src1_data -> rsp_mux_001:sink0_data wire rsp_demux_001_src1_ready; // rsp_mux_001:sink0_ready -> rsp_demux_001:src1_ready wire [4:0] rsp_demux_001_src1_channel; // rsp_demux_001:src1_channel -> rsp_mux_001:sink0_channel wire rsp_demux_001_src1_startofpacket; // rsp_demux_001:src1_startofpacket -> rsp_mux_001:sink0_startofpacket wire rsp_demux_001_src1_endofpacket; // rsp_demux_001:src1_endofpacket -> rsp_mux_001:sink0_endofpacket wire rsp_demux_002_src0_valid; // rsp_demux_002:src0_valid -> rsp_mux:sink2_valid wire [89:0] rsp_demux_002_src0_data; // rsp_demux_002:src0_data -> rsp_mux:sink2_data wire rsp_demux_002_src0_ready; // rsp_mux:sink2_ready -> rsp_demux_002:src0_ready wire [4:0] rsp_demux_002_src0_channel; // rsp_demux_002:src0_channel -> rsp_mux:sink2_channel wire rsp_demux_002_src0_startofpacket; // rsp_demux_002:src0_startofpacket -> rsp_mux:sink2_startofpacket wire rsp_demux_002_src0_endofpacket; // rsp_demux_002:src0_endofpacket -> rsp_mux:sink2_endofpacket wire rsp_demux_002_src1_valid; // rsp_demux_002:src1_valid -> rsp_mux_001:sink1_valid wire [89:0] rsp_demux_002_src1_data; // rsp_demux_002:src1_data -> rsp_mux_001:sink1_data wire rsp_demux_002_src1_ready; // rsp_mux_001:sink1_ready -> rsp_demux_002:src1_ready wire [4:0] rsp_demux_002_src1_channel; // rsp_demux_002:src1_channel -> rsp_mux_001:sink1_channel wire rsp_demux_002_src1_startofpacket; // rsp_demux_002:src1_startofpacket -> rsp_mux_001:sink1_startofpacket wire rsp_demux_002_src1_endofpacket; // rsp_demux_002:src1_endofpacket -> rsp_mux_001:sink1_endofpacket wire rsp_demux_003_src0_valid; // rsp_demux_003:src0_valid -> rsp_mux:sink3_valid wire [89:0] rsp_demux_003_src0_data; // rsp_demux_003:src0_data -> rsp_mux:sink3_data wire rsp_demux_003_src0_ready; // rsp_mux:sink3_ready -> rsp_demux_003:src0_ready wire [4:0] rsp_demux_003_src0_channel; // rsp_demux_003:src0_channel -> rsp_mux:sink3_channel wire rsp_demux_003_src0_startofpacket; // rsp_demux_003:src0_startofpacket -> rsp_mux:sink3_startofpacket wire rsp_demux_003_src0_endofpacket; // rsp_demux_003:src0_endofpacket -> rsp_mux:sink3_endofpacket wire rsp_demux_004_src0_valid; // rsp_demux_004:src0_valid -> rsp_mux:sink4_valid wire [89:0] rsp_demux_004_src0_data; // rsp_demux_004:src0_data -> rsp_mux:sink4_data wire rsp_demux_004_src0_ready; // rsp_mux:sink4_ready -> rsp_demux_004:src0_ready wire [4:0] rsp_demux_004_src0_channel; // rsp_demux_004:src0_channel -> rsp_mux:sink4_channel wire rsp_demux_004_src0_startofpacket; // rsp_demux_004:src0_startofpacket -> rsp_mux:sink4_startofpacket wire rsp_demux_004_src0_endofpacket; // rsp_demux_004:src0_endofpacket -> rsp_mux:sink4_endofpacket wire jtag_uart_0_avalon_jtag_slave_agent_rdata_fifo_src_valid; // jtag_uart_0_avalon_jtag_slave_agent:rdata_fifo_src_valid -> avalon_st_adapter:in_0_valid wire [33:0] jtag_uart_0_avalon_jtag_slave_agent_rdata_fifo_src_data; // jtag_uart_0_avalon_jtag_slave_agent:rdata_fifo_src_data -> avalon_st_adapter:in_0_data wire jtag_uart_0_avalon_jtag_slave_agent_rdata_fifo_src_ready; // avalon_st_adapter:in_0_ready -> jtag_uart_0_avalon_jtag_slave_agent:rdata_fifo_src_ready wire avalon_st_adapter_out_0_valid; // avalon_st_adapter:out_0_valid -> jtag_uart_0_avalon_jtag_slave_agent:rdata_fifo_sink_valid wire [33:0] avalon_st_adapter_out_0_data; // avalon_st_adapter:out_0_data -> jtag_uart_0_avalon_jtag_slave_agent:rdata_fifo_sink_data wire avalon_st_adapter_out_0_ready; // jtag_uart_0_avalon_jtag_slave_agent:rdata_fifo_sink_ready -> avalon_st_adapter:out_0_ready wire [0:0] avalon_st_adapter_out_0_error; // avalon_st_adapter:out_0_error -> jtag_uart_0_avalon_jtag_slave_agent:rdata_fifo_sink_error wire nios2_qsys_0_jtag_debug_module_agent_rdata_fifo_src_valid; // nios2_qsys_0_jtag_debug_module_agent:rdata_fifo_src_valid -> avalon_st_adapter_001:in_0_valid wire [33:0] nios2_qsys_0_jtag_debug_module_agent_rdata_fifo_src_data; // nios2_qsys_0_jtag_debug_module_agent:rdata_fifo_src_data -> avalon_st_adapter_001:in_0_data wire nios2_qsys_0_jtag_debug_module_agent_rdata_fifo_src_ready; // avalon_st_adapter_001:in_0_ready -> nios2_qsys_0_jtag_debug_module_agent:rdata_fifo_src_ready wire avalon_st_adapter_001_out_0_valid; // avalon_st_adapter_001:out_0_valid -> nios2_qsys_0_jtag_debug_module_agent:rdata_fifo_sink_valid wire [33:0] avalon_st_adapter_001_out_0_data; // avalon_st_adapter_001:out_0_data -> nios2_qsys_0_jtag_debug_module_agent:rdata_fifo_sink_data wire avalon_st_adapter_001_out_0_ready; // nios2_qsys_0_jtag_debug_module_agent:rdata_fifo_sink_ready -> avalon_st_adapter_001:out_0_ready wire [0:0] avalon_st_adapter_001_out_0_error; // avalon_st_adapter_001:out_0_error -> nios2_qsys_0_jtag_debug_module_agent:rdata_fifo_sink_error wire onchip_memory2_0_s1_agent_rdata_fifo_src_valid; // onchip_memory2_0_s1_agent:rdata_fifo_src_valid -> avalon_st_adapter_002:in_0_valid wire [33:0] onchip_memory2_0_s1_agent_rdata_fifo_src_data; // onchip_memory2_0_s1_agent:rdata_fifo_src_data -> avalon_st_adapter_002:in_0_data wire onchip_memory2_0_s1_agent_rdata_fifo_src_ready; // avalon_st_adapter_002:in_0_ready -> onchip_memory2_0_s1_agent:rdata_fifo_src_ready wire avalon_st_adapter_002_out_0_valid; // avalon_st_adapter_002:out_0_valid -> onchip_memory2_0_s1_agent:rdata_fifo_sink_valid wire [33:0] avalon_st_adapter_002_out_0_data; // avalon_st_adapter_002:out_0_data -> onchip_memory2_0_s1_agent:rdata_fifo_sink_data wire avalon_st_adapter_002_out_0_ready; // onchip_memory2_0_s1_agent:rdata_fifo_sink_ready -> avalon_st_adapter_002:out_0_ready wire [0:0] avalon_st_adapter_002_out_0_error; // avalon_st_adapter_002:out_0_error -> onchip_memory2_0_s1_agent:rdata_fifo_sink_error wire switches_s1_agent_rdata_fifo_src_valid; // switches_s1_agent:rdata_fifo_src_valid -> avalon_st_adapter_003:in_0_valid wire [33:0] switches_s1_agent_rdata_fifo_src_data; // switches_s1_agent:rdata_fifo_src_data -> avalon_st_adapter_003:in_0_data wire switches_s1_agent_rdata_fifo_src_ready; // avalon_st_adapter_003:in_0_ready -> switches_s1_agent:rdata_fifo_src_ready wire avalon_st_adapter_003_out_0_valid; // avalon_st_adapter_003:out_0_valid -> switches_s1_agent:rdata_fifo_sink_valid wire [33:0] avalon_st_adapter_003_out_0_data; // avalon_st_adapter_003:out_0_data -> switches_s1_agent:rdata_fifo_sink_data wire avalon_st_adapter_003_out_0_ready; // switches_s1_agent:rdata_fifo_sink_ready -> avalon_st_adapter_003:out_0_ready wire [0:0] avalon_st_adapter_003_out_0_error; // avalon_st_adapter_003:out_0_error -> switches_s1_agent:rdata_fifo_sink_error wire leds_s1_agent_rdata_fifo_src_valid; // LEDs_s1_agent:rdata_fifo_src_valid -> avalon_st_adapter_004:in_0_valid wire [33:0] leds_s1_agent_rdata_fifo_src_data; // LEDs_s1_agent:rdata_fifo_src_data -> avalon_st_adapter_004:in_0_data wire leds_s1_agent_rdata_fifo_src_ready; // avalon_st_adapter_004:in_0_ready -> LEDs_s1_agent:rdata_fifo_src_ready wire avalon_st_adapter_004_out_0_valid; // avalon_st_adapter_004:out_0_valid -> LEDs_s1_agent:rdata_fifo_sink_valid wire [33:0] avalon_st_adapter_004_out_0_data; // avalon_st_adapter_004:out_0_data -> LEDs_s1_agent:rdata_fifo_sink_data wire avalon_st_adapter_004_out_0_ready; // LEDs_s1_agent:rdata_fifo_sink_ready -> avalon_st_adapter_004:out_0_ready wire [0:0] avalon_st_adapter_004_out_0_error; // avalon_st_adapter_004:out_0_error -> LEDs_s1_agent:rdata_fifo_sink_error altera_merlin_master_translator #( .AV_ADDRESS_W (14), .AV_DATA_W (32), .AV_BURSTCOUNT_W (1), .AV_BYTEENABLE_W (4), .UAV_ADDRESS_W (14), .UAV_BURSTCOUNT_W (3), .USE_READ (1), .USE_WRITE (1), .USE_BEGINBURSTTRANSFER (0), .USE_BEGINTRANSFER (0), .USE_CHIPSELECT (0), .USE_BURSTCOUNT (0), .USE_READDATAVALID (0), .USE_WAITREQUEST (1), .USE_READRESPONSE (0), .USE_WRITERESPONSE (0), .AV_SYMBOLS_PER_WORD (4), .AV_ADDRESS_SYMBOLS (1), .AV_BURSTCOUNT_SYMBOLS (0), .AV_CONSTANT_BURST_BEHAVIOR (0), .UAV_CONSTANT_BURST_BEHAVIOR (0), .AV_LINEWRAPBURSTS (0), .AV_REGISTERINCOMINGSIGNALS (1) ) nios2_qsys_0_data_master_translator ( .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // reset.reset .uav_address (nios2_qsys_0_data_master_translator_avalon_universal_master_0_address), // avalon_universal_master_0.address .uav_burstcount (nios2_qsys_0_data_master_translator_avalon_universal_master_0_burstcount), // .burstcount .uav_read (nios2_qsys_0_data_master_translator_avalon_universal_master_0_read), // .read .uav_write (nios2_qsys_0_data_master_translator_avalon_universal_master_0_write), // .write .uav_waitrequest (nios2_qsys_0_data_master_translator_avalon_universal_master_0_waitrequest), // .waitrequest .uav_readdatavalid (nios2_qsys_0_data_master_translator_avalon_universal_master_0_readdatavalid), // .readdatavalid .uav_byteenable (nios2_qsys_0_data_master_translator_avalon_universal_master_0_byteenable), // .byteenable .uav_readdata (nios2_qsys_0_data_master_translator_avalon_universal_master_0_readdata), // .readdata .uav_writedata (nios2_qsys_0_data_master_translator_avalon_universal_master_0_writedata), // .writedata .uav_lock (nios2_qsys_0_data_master_translator_avalon_universal_master_0_lock), // .lock .uav_debugaccess (nios2_qsys_0_data_master_translator_avalon_universal_master_0_debugaccess), // .debugaccess .av_address (nios2_qsys_0_data_master_address), // avalon_anti_master_0.address .av_waitrequest (nios2_qsys_0_data_master_waitrequest), // .waitrequest .av_byteenable (nios2_qsys_0_data_master_byteenable), // .byteenable .av_read (nios2_qsys_0_data_master_read), // .read .av_readdata (nios2_qsys_0_data_master_readdata), // .readdata .av_write (nios2_qsys_0_data_master_write), // .write .av_writedata (nios2_qsys_0_data_master_writedata), // .writedata .av_debugaccess (nios2_qsys_0_data_master_debugaccess), // .debugaccess .av_burstcount (1'b1), // (terminated) .av_beginbursttransfer (1'b0), // (terminated) .av_begintransfer (1'b0), // (terminated) .av_chipselect (1'b0), // (terminated) .av_readdatavalid (), // (terminated) .av_lock (1'b0), // (terminated) .uav_clken (), // (terminated) .av_clken (1'b1), // (terminated) .uav_response (2'b00), // (terminated) .av_response (), // (terminated) .uav_writeresponsevalid (1'b0), // (terminated) .av_writeresponsevalid () // (terminated) ); altera_merlin_master_translator #( .AV_ADDRESS_W (13), .AV_DATA_W (32), .AV_BURSTCOUNT_W (1), .AV_BYTEENABLE_W (4), .UAV_ADDRESS_W (14), .UAV_BURSTCOUNT_W (3), .USE_READ (1), .USE_WRITE (0), .USE_BEGINBURSTTRANSFER (0), .USE_BEGINTRANSFER (0), .USE_CHIPSELECT (0), .USE_BURSTCOUNT (0), .USE_READDATAVALID (0), .USE_WAITREQUEST (1), .USE_READRESPONSE (0), .USE_WRITERESPONSE (0), .AV_SYMBOLS_PER_WORD (4), .AV_ADDRESS_SYMBOLS (1), .AV_BURSTCOUNT_SYMBOLS (0), .AV_CONSTANT_BURST_BEHAVIOR (0), .UAV_CONSTANT_BURST_BEHAVIOR (0), .AV_LINEWRAPBURSTS (1), .AV_REGISTERINCOMINGSIGNALS (0) ) nios2_qsys_0_instruction_master_translator ( .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // reset.reset .uav_address (nios2_qsys_0_instruction_master_translator_avalon_universal_master_0_address), // avalon_universal_master_0.address .uav_burstcount (nios2_qsys_0_instruction_master_translator_avalon_universal_master_0_burstcount), // .burstcount .uav_read (nios2_qsys_0_instruction_master_translator_avalon_universal_master_0_read), // .read .uav_write (nios2_qsys_0_instruction_master_translator_avalon_universal_master_0_write), // .write .uav_waitrequest (nios2_qsys_0_instruction_master_translator_avalon_universal_master_0_waitrequest), // .waitrequest .uav_readdatavalid (nios2_qsys_0_instruction_master_translator_avalon_universal_master_0_readdatavalid), // .readdatavalid .uav_byteenable (nios2_qsys_0_instruction_master_translator_avalon_universal_master_0_byteenable), // .byteenable .uav_readdata (nios2_qsys_0_instruction_master_translator_avalon_universal_master_0_readdata), // .readdata .uav_writedata (nios2_qsys_0_instruction_master_translator_avalon_universal_master_0_writedata), // .writedata .uav_lock (nios2_qsys_0_instruction_master_translator_avalon_universal_master_0_lock), // .lock .uav_debugaccess (nios2_qsys_0_instruction_master_translator_avalon_universal_master_0_debugaccess), // .debugaccess .av_address (nios2_qsys_0_instruction_master_address), // avalon_anti_master_0.address .av_waitrequest (nios2_qsys_0_instruction_master_waitrequest), // .waitrequest .av_read (nios2_qsys_0_instruction_master_read), // .read .av_readdata (nios2_qsys_0_instruction_master_readdata), // .readdata .av_burstcount (1'b1), // (terminated) .av_byteenable (4'b1111), // (terminated) .av_beginbursttransfer (1'b0), // (terminated) .av_begintransfer (1'b0), // (terminated) .av_chipselect (1'b0), // (terminated) .av_readdatavalid (), // (terminated) .av_write (1'b0), // (terminated) .av_writedata (32'b00000000000000000000000000000000), // (terminated) .av_lock (1'b0), // (terminated) .av_debugaccess (1'b0), // (terminated) .uav_clken (), // (terminated) .av_clken (1'b1), // (terminated) .uav_response (2'b00), // (terminated) .av_response (), // (terminated) .uav_writeresponsevalid (1'b0), // (terminated) .av_writeresponsevalid () // (terminated) ); altera_merlin_slave_translator #( .AV_ADDRESS_W (1), .AV_DATA_W (32), .UAV_DATA_W (32), .AV_BURSTCOUNT_W (1), .AV_BYTEENABLE_W (1), .UAV_BYTEENABLE_W (4), .UAV_ADDRESS_W (14), .UAV_BURSTCOUNT_W (3), .AV_READLATENCY (0), .USE_READDATAVALID (0), .USE_WAITREQUEST (1), .USE_UAV_CLKEN (0), .USE_READRESPONSE (0), .USE_WRITERESPONSE (0), .AV_SYMBOLS_PER_WORD (4), .AV_ADDRESS_SYMBOLS (0), .AV_BURSTCOUNT_SYMBOLS (0), .AV_CONSTANT_BURST_BEHAVIOR (0), .UAV_CONSTANT_BURST_BEHAVIOR (0), .AV_REQUIRE_UNALIGNED_ADDRESSES (0), .CHIPSELECT_THROUGH_READLATENCY (0), .AV_READ_WAIT_CYCLES (1), .AV_WRITE_WAIT_CYCLES (0), .AV_SETUP_WAIT_CYCLES (0), .AV_DATA_HOLD_CYCLES (0) ) jtag_uart_0_avalon_jtag_slave_translator ( .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // reset.reset .uav_address (jtag_uart_0_avalon_jtag_slave_agent_m0_address), // avalon_universal_slave_0.address .uav_burstcount (jtag_uart_0_avalon_jtag_slave_agent_m0_burstcount), // .burstcount .uav_read (jtag_uart_0_avalon_jtag_slave_agent_m0_read), // .read .uav_write (jtag_uart_0_avalon_jtag_slave_agent_m0_write), // .write .uav_waitrequest (jtag_uart_0_avalon_jtag_slave_agent_m0_waitrequest), // .waitrequest .uav_readdatavalid (jtag_uart_0_avalon_jtag_slave_agent_m0_readdatavalid), // .readdatavalid .uav_byteenable (jtag_uart_0_avalon_jtag_slave_agent_m0_byteenable), // .byteenable .uav_readdata (jtag_uart_0_avalon_jtag_slave_agent_m0_readdata), // .readdata .uav_writedata (jtag_uart_0_avalon_jtag_slave_agent_m0_writedata), // .writedata .uav_lock (jtag_uart_0_avalon_jtag_slave_agent_m0_lock), // .lock .uav_debugaccess (jtag_uart_0_avalon_jtag_slave_agent_m0_debugaccess), // .debugaccess .av_address (jtag_uart_0_avalon_jtag_slave_address), // avalon_anti_slave_0.address .av_write (jtag_uart_0_avalon_jtag_slave_write), // .write .av_read (jtag_uart_0_avalon_jtag_slave_read), // .read .av_readdata (jtag_uart_0_avalon_jtag_slave_readdata), // .readdata .av_writedata (jtag_uart_0_avalon_jtag_slave_writedata), // .writedata .av_waitrequest (jtag_uart_0_avalon_jtag_slave_waitrequest), // .waitrequest .av_chipselect (jtag_uart_0_avalon_jtag_slave_chipselect), // .chipselect .av_begintransfer (), // (terminated) .av_beginbursttransfer (), // (terminated) .av_burstcount (), // (terminated) .av_byteenable (), // (terminated) .av_readdatavalid (1'b0), // (terminated) .av_writebyteenable (), // (terminated) .av_lock (), // (terminated) .av_clken (), // (terminated) .uav_clken (1'b0), // (terminated) .av_debugaccess (), // (terminated) .av_outputenable (), // (terminated) .uav_response (), // (terminated) .av_response (2'b00), // (terminated) .uav_writeresponsevalid (), // (terminated) .av_writeresponsevalid (1'b0) // (terminated) ); altera_merlin_slave_translator #( .AV_ADDRESS_W (9), .AV_DATA_W (32), .UAV_DATA_W (32), .AV_BURSTCOUNT_W (1), .AV_BYTEENABLE_W (4), .UAV_BYTEENABLE_W (4), .UAV_ADDRESS_W (14), .UAV_BURSTCOUNT_W (3), .AV_READLATENCY (0), .USE_READDATAVALID (0), .USE_WAITREQUEST (1), .USE_UAV_CLKEN (0), .USE_READRESPONSE (0), .USE_WRITERESPONSE (0), .AV_SYMBOLS_PER_WORD (4), .AV_ADDRESS_SYMBOLS (0), .AV_BURSTCOUNT_SYMBOLS (0), .AV_CONSTANT_BURST_BEHAVIOR (0), .UAV_CONSTANT_BURST_BEHAVIOR (0), .AV_REQUIRE_UNALIGNED_ADDRESSES (0), .CHIPSELECT_THROUGH_READLATENCY (0), .AV_READ_WAIT_CYCLES (1), .AV_WRITE_WAIT_CYCLES (0), .AV_SETUP_WAIT_CYCLES (0), .AV_DATA_HOLD_CYCLES (0) ) nios2_qsys_0_jtag_debug_module_translator ( .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // reset.reset .uav_address (nios2_qsys_0_jtag_debug_module_agent_m0_address), // avalon_universal_slave_0.address .uav_burstcount (nios2_qsys_0_jtag_debug_module_agent_m0_burstcount), // .burstcount .uav_read (nios2_qsys_0_jtag_debug_module_agent_m0_read), // .read .uav_write (nios2_qsys_0_jtag_debug_module_agent_m0_write), // .write .uav_waitrequest (nios2_qsys_0_jtag_debug_module_agent_m0_waitrequest), // .waitrequest .uav_readdatavalid (nios2_qsys_0_jtag_debug_module_agent_m0_readdatavalid), // .readdatavalid .uav_byteenable (nios2_qsys_0_jtag_debug_module_agent_m0_byteenable), // .byteenable .uav_readdata (nios2_qsys_0_jtag_debug_module_agent_m0_readdata), // .readdata .uav_writedata (nios2_qsys_0_jtag_debug_module_agent_m0_writedata), // .writedata .uav_lock (nios2_qsys_0_jtag_debug_module_agent_m0_lock), // .lock .uav_debugaccess (nios2_qsys_0_jtag_debug_module_agent_m0_debugaccess), // .debugaccess .av_address (nios2_qsys_0_jtag_debug_module_address), // avalon_anti_slave_0.address .av_write (nios2_qsys_0_jtag_debug_module_write), // .write .av_read (nios2_qsys_0_jtag_debug_module_read), // .read .av_readdata (nios2_qsys_0_jtag_debug_module_readdata), // .readdata .av_writedata (nios2_qsys_0_jtag_debug_module_writedata), // .writedata .av_byteenable (nios2_qsys_0_jtag_debug_module_byteenable), // .byteenable .av_waitrequest (nios2_qsys_0_jtag_debug_module_waitrequest), // .waitrequest .av_debugaccess (nios2_qsys_0_jtag_debug_module_debugaccess), // .debugaccess .av_begintransfer (), // (terminated) .av_beginbursttransfer (), // (terminated) .av_burstcount (), // (terminated) .av_readdatavalid (1'b0), // (terminated) .av_writebyteenable (), // (terminated) .av_lock (), // (terminated) .av_chipselect (), // (terminated) .av_clken (), // (terminated) .uav_clken (1'b0), // (terminated) .av_outputenable (), // (terminated) .uav_response (), // (terminated) .av_response (2'b00), // (terminated) .uav_writeresponsevalid (), // (terminated) .av_writeresponsevalid (1'b0) // (terminated) ); altera_merlin_slave_translator #( .AV_ADDRESS_W (10), .AV_DATA_W (32), .UAV_DATA_W (32), .AV_BURSTCOUNT_W (1), .AV_BYTEENABLE_W (4), .UAV_BYTEENABLE_W (4), .UAV_ADDRESS_W (14), .UAV_BURSTCOUNT_W (3), .AV_READLATENCY (1), .USE_READDATAVALID (0), .USE_WAITREQUEST (0), .USE_UAV_CLKEN (0), .USE_READRESPONSE (0), .USE_WRITERESPONSE (0), .AV_SYMBOLS_PER_WORD (4), .AV_ADDRESS_SYMBOLS (0), .AV_BURSTCOUNT_SYMBOLS (0), .AV_CONSTANT_BURST_BEHAVIOR (0), .UAV_CONSTANT_BURST_BEHAVIOR (0), .AV_REQUIRE_UNALIGNED_ADDRESSES (0), .CHIPSELECT_THROUGH_READLATENCY (0), .AV_READ_WAIT_CYCLES (0), .AV_WRITE_WAIT_CYCLES (0), .AV_SETUP_WAIT_CYCLES (0), .AV_DATA_HOLD_CYCLES (0) ) onchip_memory2_0_s1_translator ( .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // reset.reset .uav_address (onchip_memory2_0_s1_agent_m0_address), // avalon_universal_slave_0.address .uav_burstcount (onchip_memory2_0_s1_agent_m0_burstcount), // .burstcount .uav_read (onchip_memory2_0_s1_agent_m0_read), // .read .uav_write (onchip_memory2_0_s1_agent_m0_write), // .write .uav_waitrequest (onchip_memory2_0_s1_agent_m0_waitrequest), // .waitrequest .uav_readdatavalid (onchip_memory2_0_s1_agent_m0_readdatavalid), // .readdatavalid .uav_byteenable (onchip_memory2_0_s1_agent_m0_byteenable), // .byteenable .uav_readdata (onchip_memory2_0_s1_agent_m0_readdata), // .readdata .uav_writedata (onchip_memory2_0_s1_agent_m0_writedata), // .writedata .uav_lock (onchip_memory2_0_s1_agent_m0_lock), // .lock .uav_debugaccess (onchip_memory2_0_s1_agent_m0_debugaccess), // .debugaccess .av_address (onchip_memory2_0_s1_address), // avalon_anti_slave_0.address .av_write (onchip_memory2_0_s1_write), // .write .av_readdata (onchip_memory2_0_s1_readdata), // .readdata .av_writedata (onchip_memory2_0_s1_writedata), // .writedata .av_byteenable (onchip_memory2_0_s1_byteenable), // .byteenable .av_chipselect (onchip_memory2_0_s1_chipselect), // .chipselect .av_clken (onchip_memory2_0_s1_clken), // .clken .av_read (), // (terminated) .av_begintransfer (), // (terminated) .av_beginbursttransfer (), // (terminated) .av_burstcount (), // (terminated) .av_readdatavalid (1'b0), // (terminated) .av_waitrequest (1'b0), // (terminated) .av_writebyteenable (), // (terminated) .av_lock (), // (terminated) .uav_clken (1'b0), // (terminated) .av_debugaccess (), // (terminated) .av_outputenable (), // (terminated) .uav_response (), // (terminated) .av_response (2'b00), // (terminated) .uav_writeresponsevalid (), // (terminated) .av_writeresponsevalid (1'b0) // (terminated) ); altera_merlin_slave_translator #( .AV_ADDRESS_W (2), .AV_DATA_W (32), .UAV_DATA_W (32), .AV_BURSTCOUNT_W (1), .AV_BYTEENABLE_W (1), .UAV_BYTEENABLE_W (4), .UAV_ADDRESS_W (14), .UAV_BURSTCOUNT_W (3), .AV_READLATENCY (0), .USE_READDATAVALID (0), .USE_WAITREQUEST (0), .USE_UAV_CLKEN (0), .USE_READRESPONSE (0), .USE_WRITERESPONSE (0), .AV_SYMBOLS_PER_WORD (4), .AV_ADDRESS_SYMBOLS (0), .AV_BURSTCOUNT_SYMBOLS (0), .AV_CONSTANT_BURST_BEHAVIOR (0), .UAV_CONSTANT_BURST_BEHAVIOR (0), .AV_REQUIRE_UNALIGNED_ADDRESSES (0), .CHIPSELECT_THROUGH_READLATENCY (0), .AV_READ_WAIT_CYCLES (1), .AV_WRITE_WAIT_CYCLES (0), .AV_SETUP_WAIT_CYCLES (0), .AV_DATA_HOLD_CYCLES (0) ) switches_s1_translator ( .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // reset.reset .uav_address (switches_s1_agent_m0_address), // avalon_universal_slave_0.address .uav_burstcount (switches_s1_agent_m0_burstcount), // .burstcount .uav_read (switches_s1_agent_m0_read), // .read .uav_write (switches_s1_agent_m0_write), // .write .uav_waitrequest (switches_s1_agent_m0_waitrequest), // .waitrequest .uav_readdatavalid (switches_s1_agent_m0_readdatavalid), // .readdatavalid .uav_byteenable (switches_s1_agent_m0_byteenable), // .byteenable .uav_readdata (switches_s1_agent_m0_readdata), // .readdata .uav_writedata (switches_s1_agent_m0_writedata), // .writedata .uav_lock (switches_s1_agent_m0_lock), // .lock .uav_debugaccess (switches_s1_agent_m0_debugaccess), // .debugaccess .av_address (switches_s1_address), // avalon_anti_slave_0.address .av_readdata (switches_s1_readdata), // .readdata .av_write (), // (terminated) .av_read (), // (terminated) .av_writedata (), // (terminated) .av_begintransfer (), // (terminated) .av_beginbursttransfer (), // (terminated) .av_burstcount (), // (terminated) .av_byteenable (), // (terminated) .av_readdatavalid (1'b0), // (terminated) .av_waitrequest (1'b0), // (terminated) .av_writebyteenable (), // (terminated) .av_lock (), // (terminated) .av_chipselect (), // (terminated) .av_clken (), // (terminated) .uav_clken (1'b0), // (terminated) .av_debugaccess (), // (terminated) .av_outputenable (), // (terminated) .uav_response (), // (terminated) .av_response (2'b00), // (terminated) .uav_writeresponsevalid (), // (terminated) .av_writeresponsevalid (1'b0) // (terminated) ); altera_merlin_slave_translator #( .AV_ADDRESS_W (2), .AV_DATA_W (32), .UAV_DATA_W (32), .AV_BURSTCOUNT_W (1), .AV_BYTEENABLE_W (1), .UAV_BYTEENABLE_W (4), .UAV_ADDRESS_W (14), .UAV_BURSTCOUNT_W (3), .AV_READLATENCY (0), .USE_READDATAVALID (0), .USE_WAITREQUEST (0), .USE_UAV_CLKEN (0), .USE_READRESPONSE (0), .USE_WRITERESPONSE (0), .AV_SYMBOLS_PER_WORD (4), .AV_ADDRESS_SYMBOLS (0), .AV_BURSTCOUNT_SYMBOLS (0), .AV_CONSTANT_BURST_BEHAVIOR (0), .UAV_CONSTANT_BURST_BEHAVIOR (0), .AV_REQUIRE_UNALIGNED_ADDRESSES (0), .CHIPSELECT_THROUGH_READLATENCY (0), .AV_READ_WAIT_CYCLES (1), .AV_WRITE_WAIT_CYCLES (0), .AV_SETUP_WAIT_CYCLES (0), .AV_DATA_HOLD_CYCLES (0) ) leds_s1_translator ( .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // reset.reset .uav_address (leds_s1_agent_m0_address), // avalon_universal_slave_0.address .uav_burstcount (leds_s1_agent_m0_burstcount), // .burstcount .uav_read (leds_s1_agent_m0_read), // .read .uav_write (leds_s1_agent_m0_write), // .write .uav_waitrequest (leds_s1_agent_m0_waitrequest), // .waitrequest .uav_readdatavalid (leds_s1_agent_m0_readdatavalid), // .readdatavalid .uav_byteenable (leds_s1_agent_m0_byteenable), // .byteenable .uav_readdata (leds_s1_agent_m0_readdata), // .readdata .uav_writedata (leds_s1_agent_m0_writedata), // .writedata .uav_lock (leds_s1_agent_m0_lock), // .lock .uav_debugaccess (leds_s1_agent_m0_debugaccess), // .debugaccess .av_address (LEDs_s1_address), // avalon_anti_slave_0.address .av_write (LEDs_s1_write), // .write .av_readdata (LEDs_s1_readdata), // .readdata .av_writedata (LEDs_s1_writedata), // .writedata .av_chipselect (LEDs_s1_chipselect), // .chipselect .av_read (), // (terminated) .av_begintransfer (), // (terminated) .av_beginbursttransfer (), // (terminated) .av_burstcount (), // (terminated) .av_byteenable (), // (terminated) .av_readdatavalid (1'b0), // (terminated) .av_waitrequest (1'b0), // (terminated) .av_writebyteenable (), // (terminated) .av_lock (), // (terminated) .av_clken (), // (terminated) .uav_clken (1'b0), // (terminated) .av_debugaccess (), // (terminated) .av_outputenable (), // (terminated) .uav_response (), // (terminated) .av_response (2'b00), // (terminated) .uav_writeresponsevalid (), // (terminated) .av_writeresponsevalid (1'b0) // (terminated) ); altera_merlin_master_agent #( .PKT_ORI_BURST_SIZE_H (89), .PKT_ORI_BURST_SIZE_L (87), .PKT_RESPONSE_STATUS_H (86), .PKT_RESPONSE_STATUS_L (85), .PKT_QOS_H (70), .PKT_QOS_L (70), .PKT_DATA_SIDEBAND_H (68), .PKT_DATA_SIDEBAND_L (68), .PKT_ADDR_SIDEBAND_H (67), .PKT_ADDR_SIDEBAND_L (67), .PKT_BURST_TYPE_H (66), .PKT_BURST_TYPE_L (65), .PKT_CACHE_H (84), .PKT_CACHE_L (81), .PKT_THREAD_ID_H (77), .PKT_THREAD_ID_L (77), .PKT_BURST_SIZE_H (64), .PKT_BURST_SIZE_L (62), .PKT_TRANS_EXCLUSIVE (55), .PKT_TRANS_LOCK (54), .PKT_BEGIN_BURST (69), .PKT_PROTECTION_H (80), .PKT_PROTECTION_L (78), .PKT_BURSTWRAP_H (61), .PKT_BURSTWRAP_L (59), .PKT_BYTE_CNT_H (58), .PKT_BYTE_CNT_L (56), .PKT_ADDR_H (49), .PKT_ADDR_L (36), .PKT_TRANS_COMPRESSED_READ (50), .PKT_TRANS_POSTED (51), .PKT_TRANS_WRITE (52), .PKT_TRANS_READ (53), .PKT_DATA_H (31), .PKT_DATA_L (0), .PKT_BYTEEN_H (35), .PKT_BYTEEN_L (32), .PKT_SRC_ID_H (73), .PKT_SRC_ID_L (71), .PKT_DEST_ID_H (76), .PKT_DEST_ID_L (74), .ST_DATA_W (90), .ST_CHANNEL_W (5), .AV_BURSTCOUNT_W (3), .SUPPRESS_0_BYTEEN_RSP (0), .ID (0), .BURSTWRAP_VALUE (7), .CACHE_VALUE (0), .SECURE_ACCESS_BIT (1), .USE_READRESPONSE (0), .USE_WRITERESPONSE (0) ) nios2_qsys_0_data_master_agent ( .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // clk_reset.reset .av_address (nios2_qsys_0_data_master_translator_avalon_universal_master_0_address), // av.address .av_write (nios2_qsys_0_data_master_translator_avalon_universal_master_0_write), // .write .av_read (nios2_qsys_0_data_master_translator_avalon_universal_master_0_read), // .read .av_writedata (nios2_qsys_0_data_master_translator_avalon_universal_master_0_writedata), // .writedata .av_readdata (nios2_qsys_0_data_master_translator_avalon_universal_master_0_readdata), // .readdata .av_waitrequest (nios2_qsys_0_data_master_translator_avalon_universal_master_0_waitrequest), // .waitrequest .av_readdatavalid (nios2_qsys_0_data_master_translator_avalon_universal_master_0_readdatavalid), // .readdatavalid .av_byteenable (nios2_qsys_0_data_master_translator_avalon_universal_master_0_byteenable), // .byteenable .av_burstcount (nios2_qsys_0_data_master_translator_avalon_universal_master_0_burstcount), // .burstcount .av_debugaccess (nios2_qsys_0_data_master_translator_avalon_universal_master_0_debugaccess), // .debugaccess .av_lock (nios2_qsys_0_data_master_translator_avalon_universal_master_0_lock), // .lock .cp_valid (nios2_qsys_0_data_master_agent_cp_valid), // cp.valid .cp_data (nios2_qsys_0_data_master_agent_cp_data), // .data .cp_startofpacket (nios2_qsys_0_data_master_agent_cp_startofpacket), // .startofpacket .cp_endofpacket (nios2_qsys_0_data_master_agent_cp_endofpacket), // .endofpacket .cp_ready (nios2_qsys_0_data_master_agent_cp_ready), // .ready .rp_valid (rsp_mux_src_valid), // rp.valid .rp_data (rsp_mux_src_data), // .data .rp_channel (rsp_mux_src_channel), // .channel .rp_startofpacket (rsp_mux_src_startofpacket), // .startofpacket .rp_endofpacket (rsp_mux_src_endofpacket), // .endofpacket .rp_ready (rsp_mux_src_ready), // .ready .av_response (), // (terminated) .av_writeresponsevalid () // (terminated) ); altera_merlin_master_agent #( .PKT_ORI_BURST_SIZE_H (89), .PKT_ORI_BURST_SIZE_L (87), .PKT_RESPONSE_STATUS_H (86), .PKT_RESPONSE_STATUS_L (85), .PKT_QOS_H (70), .PKT_QOS_L (70), .PKT_DATA_SIDEBAND_H (68), .PKT_DATA_SIDEBAND_L (68), .PKT_ADDR_SIDEBAND_H (67), .PKT_ADDR_SIDEBAND_L (67), .PKT_BURST_TYPE_H (66), .PKT_BURST_TYPE_L (65), .PKT_CACHE_H (84), .PKT_CACHE_L (81), .PKT_THREAD_ID_H (77), .PKT_THREAD_ID_L (77), .PKT_BURST_SIZE_H (64), .PKT_BURST_SIZE_L (62), .PKT_TRANS_EXCLUSIVE (55), .PKT_TRANS_LOCK (54), .PKT_BEGIN_BURST (69), .PKT_PROTECTION_H (80), .PKT_PROTECTION_L (78), .PKT_BURSTWRAP_H (61), .PKT_BURSTWRAP_L (59), .PKT_BYTE_CNT_H (58), .PKT_BYTE_CNT_L (56), .PKT_ADDR_H (49), .PKT_ADDR_L (36), .PKT_TRANS_COMPRESSED_READ (50), .PKT_TRANS_POSTED (51), .PKT_TRANS_WRITE (52), .PKT_TRANS_READ (53), .PKT_DATA_H (31), .PKT_DATA_L (0), .PKT_BYTEEN_H (35), .PKT_BYTEEN_L (32), .PKT_SRC_ID_H (73), .PKT_SRC_ID_L (71), .PKT_DEST_ID_H (76), .PKT_DEST_ID_L (74), .ST_DATA_W (90), .ST_CHANNEL_W (5), .AV_BURSTCOUNT_W (3), .SUPPRESS_0_BYTEEN_RSP (0), .ID (1), .BURSTWRAP_VALUE (3), .CACHE_VALUE (0), .SECURE_ACCESS_BIT (1), .USE_READRESPONSE (0), .USE_WRITERESPONSE (0) ) nios2_qsys_0_instruction_master_agent ( .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // clk_reset.reset .av_address (nios2_qsys_0_instruction_master_translator_avalon_universal_master_0_address), // av.address .av_write (nios2_qsys_0_instruction_master_translator_avalon_universal_master_0_write), // .write .av_read (nios2_qsys_0_instruction_master_translator_avalon_universal_master_0_read), // .read .av_writedata (nios2_qsys_0_instruction_master_translator_avalon_universal_master_0_writedata), // .writedata .av_readdata (nios2_qsys_0_instruction_master_translator_avalon_universal_master_0_readdata), // .readdata .av_waitrequest (nios2_qsys_0_instruction_master_translator_avalon_universal_master_0_waitrequest), // .waitrequest .av_readdatavalid (nios2_qsys_0_instruction_master_translator_avalon_universal_master_0_readdatavalid), // .readdatavalid .av_byteenable (nios2_qsys_0_instruction_master_translator_avalon_universal_master_0_byteenable), // .byteenable .av_burstcount (nios2_qsys_0_instruction_master_translator_avalon_universal_master_0_burstcount), // .burstcount .av_debugaccess (nios2_qsys_0_instruction_master_translator_avalon_universal_master_0_debugaccess), // .debugaccess .av_lock (nios2_qsys_0_instruction_master_translator_avalon_universal_master_0_lock), // .lock .cp_valid (nios2_qsys_0_instruction_master_agent_cp_valid), // cp.valid .cp_data (nios2_qsys_0_instruction_master_agent_cp_data), // .data .cp_startofpacket (nios2_qsys_0_instruction_master_agent_cp_startofpacket), // .startofpacket .cp_endofpacket (nios2_qsys_0_instruction_master_agent_cp_endofpacket), // .endofpacket .cp_ready (nios2_qsys_0_instruction_master_agent_cp_ready), // .ready .rp_valid (rsp_mux_001_src_valid), // rp.valid .rp_data (rsp_mux_001_src_data), // .data .rp_channel (rsp_mux_001_src_channel), // .channel .rp_startofpacket (rsp_mux_001_src_startofpacket), // .startofpacket .rp_endofpacket (rsp_mux_001_src_endofpacket), // .endofpacket .rp_ready (rsp_mux_001_src_ready), // .ready .av_response (), // (terminated) .av_writeresponsevalid () // (terminated) ); altera_merlin_slave_agent #( .PKT_ORI_BURST_SIZE_H (89), .PKT_ORI_BURST_SIZE_L (87), .PKT_RESPONSE_STATUS_H (86), .PKT_RESPONSE_STATUS_L (85), .PKT_BURST_SIZE_H (64), .PKT_BURST_SIZE_L (62), .PKT_TRANS_LOCK (54), .PKT_BEGIN_BURST (69), .PKT_PROTECTION_H (80), .PKT_PROTECTION_L (78), .PKT_BURSTWRAP_H (61), .PKT_BURSTWRAP_L (59), .PKT_BYTE_CNT_H (58), .PKT_BYTE_CNT_L (56), .PKT_ADDR_H (49), .PKT_ADDR_L (36), .PKT_TRANS_COMPRESSED_READ (50), .PKT_TRANS_POSTED (51), .PKT_TRANS_WRITE (52), .PKT_TRANS_READ (53), .PKT_DATA_H (31), .PKT_DATA_L (0), .PKT_BYTEEN_H (35), .PKT_BYTEEN_L (32), .PKT_SRC_ID_H (73), .PKT_SRC_ID_L (71), .PKT_DEST_ID_H (76), .PKT_DEST_ID_L (74), .PKT_SYMBOL_W (8), .ST_CHANNEL_W (5), .ST_DATA_W (90), .AVS_BURSTCOUNT_W (3), .SUPPRESS_0_BYTEEN_CMD (0), .PREVENT_FIFO_OVERFLOW (1), .USE_READRESPONSE (0), .USE_WRITERESPONSE (0), .ECC_ENABLE (0) ) jtag_uart_0_avalon_jtag_slave_agent ( .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // clk_reset.reset .m0_address (jtag_uart_0_avalon_jtag_slave_agent_m0_address), // m0.address .m0_burstcount (jtag_uart_0_avalon_jtag_slave_agent_m0_burstcount), // .burstcount .m0_byteenable (jtag_uart_0_avalon_jtag_slave_agent_m0_byteenable), // .byteenable .m0_debugaccess (jtag_uart_0_avalon_jtag_slave_agent_m0_debugaccess), // .debugaccess .m0_lock (jtag_uart_0_avalon_jtag_slave_agent_m0_lock), // .lock .m0_readdata (jtag_uart_0_avalon_jtag_slave_agent_m0_readdata), // .readdata .m0_readdatavalid (jtag_uart_0_avalon_jtag_slave_agent_m0_readdatavalid), // .readdatavalid .m0_read (jtag_uart_0_avalon_jtag_slave_agent_m0_read), // .read .m0_waitrequest (jtag_uart_0_avalon_jtag_slave_agent_m0_waitrequest), // .waitrequest .m0_writedata (jtag_uart_0_avalon_jtag_slave_agent_m0_writedata), // .writedata .m0_write (jtag_uart_0_avalon_jtag_slave_agent_m0_write), // .write .rp_endofpacket (jtag_uart_0_avalon_jtag_slave_agent_rp_endofpacket), // rp.endofpacket .rp_ready (jtag_uart_0_avalon_jtag_slave_agent_rp_ready), // .ready .rp_valid (jtag_uart_0_avalon_jtag_slave_agent_rp_valid), // .valid .rp_data (jtag_uart_0_avalon_jtag_slave_agent_rp_data), // .data .rp_startofpacket (jtag_uart_0_avalon_jtag_slave_agent_rp_startofpacket), // .startofpacket .cp_ready (cmd_mux_src_ready), // cp.ready .cp_valid (cmd_mux_src_valid), // .valid .cp_data (cmd_mux_src_data), // .data .cp_startofpacket (cmd_mux_src_startofpacket), // .startofpacket .cp_endofpacket (cmd_mux_src_endofpacket), // .endofpacket .cp_channel (cmd_mux_src_channel), // .channel .rf_sink_ready (jtag_uart_0_avalon_jtag_slave_agent_rsp_fifo_out_ready), // rf_sink.ready .rf_sink_valid (jtag_uart_0_avalon_jtag_slave_agent_rsp_fifo_out_valid), // .valid .rf_sink_startofpacket (jtag_uart_0_avalon_jtag_slave_agent_rsp_fifo_out_startofpacket), // .startofpacket .rf_sink_endofpacket (jtag_uart_0_avalon_jtag_slave_agent_rsp_fifo_out_endofpacket), // .endofpacket .rf_sink_data (jtag_uart_0_avalon_jtag_slave_agent_rsp_fifo_out_data), // .data .rf_source_ready (jtag_uart_0_avalon_jtag_slave_agent_rf_source_ready), // rf_source.ready .rf_source_valid (jtag_uart_0_avalon_jtag_slave_agent_rf_source_valid), // .valid .rf_source_startofpacket (jtag_uart_0_avalon_jtag_slave_agent_rf_source_startofpacket), // .startofpacket .rf_source_endofpacket (jtag_uart_0_avalon_jtag_slave_agent_rf_source_endofpacket), // .endofpacket .rf_source_data (jtag_uart_0_avalon_jtag_slave_agent_rf_source_data), // .data .rdata_fifo_sink_ready (avalon_st_adapter_out_0_ready), // rdata_fifo_sink.ready .rdata_fifo_sink_valid (avalon_st_adapter_out_0_valid), // .valid .rdata_fifo_sink_data (avalon_st_adapter_out_0_data), // .data .rdata_fifo_sink_error (avalon_st_adapter_out_0_error), // .error .rdata_fifo_src_ready (jtag_uart_0_avalon_jtag_slave_agent_rdata_fifo_src_ready), // rdata_fifo_src.ready .rdata_fifo_src_valid (jtag_uart_0_avalon_jtag_slave_agent_rdata_fifo_src_valid), // .valid .rdata_fifo_src_data (jtag_uart_0_avalon_jtag_slave_agent_rdata_fifo_src_data), // .data .m0_response (2'b00), // (terminated) .m0_writeresponsevalid (1'b0) // (terminated) ); altera_avalon_sc_fifo #( .SYMBOLS_PER_BEAT (1), .BITS_PER_SYMBOL (91), .FIFO_DEPTH (2), .CHANNEL_WIDTH (0), .ERROR_WIDTH (0), .USE_PACKETS (1), .USE_FILL_LEVEL (0), .EMPTY_LATENCY (1), .USE_MEMORY_BLOCKS (0), .USE_STORE_FORWARD (0), .USE_ALMOST_FULL_IF (0), .USE_ALMOST_EMPTY_IF (0) ) jtag_uart_0_avalon_jtag_slave_agent_rsp_fifo ( .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // clk_reset.reset .in_data (jtag_uart_0_avalon_jtag_slave_agent_rf_source_data), // in.data .in_valid (jtag_uart_0_avalon_jtag_slave_agent_rf_source_valid), // .valid .in_ready (jtag_uart_0_avalon_jtag_slave_agent_rf_source_ready), // .ready .in_startofpacket (jtag_uart_0_avalon_jtag_slave_agent_rf_source_startofpacket), // .startofpacket .in_endofpacket (jtag_uart_0_avalon_jtag_slave_agent_rf_source_endofpacket), // .endofpacket .out_data (jtag_uart_0_avalon_jtag_slave_agent_rsp_fifo_out_data), // out.data .out_valid (jtag_uart_0_avalon_jtag_slave_agent_rsp_fifo_out_valid), // .valid .out_ready (jtag_uart_0_avalon_jtag_slave_agent_rsp_fifo_out_ready), // .ready .out_startofpacket (jtag_uart_0_avalon_jtag_slave_agent_rsp_fifo_out_startofpacket), // .startofpacket .out_endofpacket (jtag_uart_0_avalon_jtag_slave_agent_rsp_fifo_out_endofpacket), // .endofpacket .csr_address (2'b00), // (terminated) .csr_read (1'b0), // (terminated) .csr_write (1'b0), // (terminated) .csr_readdata (), // (terminated) .csr_writedata (32'b00000000000000000000000000000000), // (terminated) .almost_full_data (), // (terminated) .almost_empty_data (), // (terminated) .in_empty (1'b0), // (terminated) .out_empty (), // (terminated) .in_error (1'b0), // (terminated) .out_error (), // (terminated) .in_channel (1'b0), // (terminated) .out_channel () // (terminated) ); altera_merlin_slave_agent #( .PKT_ORI_BURST_SIZE_H (89), .PKT_ORI_BURST_SIZE_L (87), .PKT_RESPONSE_STATUS_H (86), .PKT_RESPONSE_STATUS_L (85), .PKT_BURST_SIZE_H (64), .PKT_BURST_SIZE_L (62), .PKT_TRANS_LOCK (54), .PKT_BEGIN_BURST (69), .PKT_PROTECTION_H (80), .PKT_PROTECTION_L (78), .PKT_BURSTWRAP_H (61), .PKT_BURSTWRAP_L (59), .PKT_BYTE_CNT_H (58), .PKT_BYTE_CNT_L (56), .PKT_ADDR_H (49), .PKT_ADDR_L (36), .PKT_TRANS_COMPRESSED_READ (50), .PKT_TRANS_POSTED (51), .PKT_TRANS_WRITE (52), .PKT_TRANS_READ (53), .PKT_DATA_H (31), .PKT_DATA_L (0), .PKT_BYTEEN_H (35), .PKT_BYTEEN_L (32), .PKT_SRC_ID_H (73), .PKT_SRC_ID_L (71), .PKT_DEST_ID_H (76), .PKT_DEST_ID_L (74), .PKT_SYMBOL_W (8), .ST_CHANNEL_W (5), .ST_DATA_W (90), .AVS_BURSTCOUNT_W (3), .SUPPRESS_0_BYTEEN_CMD (0), .PREVENT_FIFO_OVERFLOW (1), .USE_READRESPONSE (0), .USE_WRITERESPONSE (0), .ECC_ENABLE (0) ) nios2_qsys_0_jtag_debug_module_agent ( .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // clk_reset.reset .m0_address (nios2_qsys_0_jtag_debug_module_agent_m0_address), // m0.address .m0_burstcount (nios2_qsys_0_jtag_debug_module_agent_m0_burstcount), // .burstcount .m0_byteenable (nios2_qsys_0_jtag_debug_module_agent_m0_byteenable), // .byteenable .m0_debugaccess (nios2_qsys_0_jtag_debug_module_agent_m0_debugaccess), // .debugaccess .m0_lock (nios2_qsys_0_jtag_debug_module_agent_m0_lock), // .lock .m0_readdata (nios2_qsys_0_jtag_debug_module_agent_m0_readdata), // .readdata .m0_readdatavalid (nios2_qsys_0_jtag_debug_module_agent_m0_readdatavalid), // .readdatavalid .m0_read (nios2_qsys_0_jtag_debug_module_agent_m0_read), // .read .m0_waitrequest (nios2_qsys_0_jtag_debug_module_agent_m0_waitrequest), // .waitrequest .m0_writedata (nios2_qsys_0_jtag_debug_module_agent_m0_writedata), // .writedata .m0_write (nios2_qsys_0_jtag_debug_module_agent_m0_write), // .write .rp_endofpacket (nios2_qsys_0_jtag_debug_module_agent_rp_endofpacket), // rp.endofpacket .rp_ready (nios2_qsys_0_jtag_debug_module_agent_rp_ready), // .ready .rp_valid (nios2_qsys_0_jtag_debug_module_agent_rp_valid), // .valid .rp_data (nios2_qsys_0_jtag_debug_module_agent_rp_data), // .data .rp_startofpacket (nios2_qsys_0_jtag_debug_module_agent_rp_startofpacket), // .startofpacket .cp_ready (cmd_mux_001_src_ready), // cp.ready .cp_valid (cmd_mux_001_src_valid), // .valid .cp_data (cmd_mux_001_src_data), // .data .cp_startofpacket (cmd_mux_001_src_startofpacket), // .startofpacket .cp_endofpacket (cmd_mux_001_src_endofpacket), // .endofpacket .cp_channel (cmd_mux_001_src_channel), // .channel .rf_sink_ready (nios2_qsys_0_jtag_debug_module_agent_rsp_fifo_out_ready), // rf_sink.ready .rf_sink_valid (nios2_qsys_0_jtag_debug_module_agent_rsp_fifo_out_valid), // .valid .rf_sink_startofpacket (nios2_qsys_0_jtag_debug_module_agent_rsp_fifo_out_startofpacket), // .startofpacket .rf_sink_endofpacket (nios2_qsys_0_jtag_debug_module_agent_rsp_fifo_out_endofpacket), // .endofpacket .rf_sink_data (nios2_qsys_0_jtag_debug_module_agent_rsp_fifo_out_data), // .data .rf_source_ready (nios2_qsys_0_jtag_debug_module_agent_rf_source_ready), // rf_source.ready .rf_source_valid (nios2_qsys_0_jtag_debug_module_agent_rf_source_valid), // .valid .rf_source_startofpacket (nios2_qsys_0_jtag_debug_module_agent_rf_source_startofpacket), // .startofpacket .rf_source_endofpacket (nios2_qsys_0_jtag_debug_module_agent_rf_source_endofpacket), // .endofpacket .rf_source_data (nios2_qsys_0_jtag_debug_module_agent_rf_source_data), // .data .rdata_fifo_sink_ready (avalon_st_adapter_001_out_0_ready), // rdata_fifo_sink.ready .rdata_fifo_sink_valid (avalon_st_adapter_001_out_0_valid), // .valid .rdata_fifo_sink_data (avalon_st_adapter_001_out_0_data), // .data .rdata_fifo_sink_error (avalon_st_adapter_001_out_0_error), // .error .rdata_fifo_src_ready (nios2_qsys_0_jtag_debug_module_agent_rdata_fifo_src_ready), // rdata_fifo_src.ready .rdata_fifo_src_valid (nios2_qsys_0_jtag_debug_module_agent_rdata_fifo_src_valid), // .valid .rdata_fifo_src_data (nios2_qsys_0_jtag_debug_module_agent_rdata_fifo_src_data), // .data .m0_response (2'b00), // (terminated) .m0_writeresponsevalid (1'b0) // (terminated) ); altera_avalon_sc_fifo #( .SYMBOLS_PER_BEAT (1), .BITS_PER_SYMBOL (91), .FIFO_DEPTH (2), .CHANNEL_WIDTH (0), .ERROR_WIDTH (0), .USE_PACKETS (1), .USE_FILL_LEVEL (0), .EMPTY_LATENCY (1), .USE_MEMORY_BLOCKS (0), .USE_STORE_FORWARD (0), .USE_ALMOST_FULL_IF (0), .USE_ALMOST_EMPTY_IF (0) ) nios2_qsys_0_jtag_debug_module_agent_rsp_fifo ( .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // clk_reset.reset .in_data (nios2_qsys_0_jtag_debug_module_agent_rf_source_data), // in.data .in_valid (nios2_qsys_0_jtag_debug_module_agent_rf_source_valid), // .valid .in_ready (nios2_qsys_0_jtag_debug_module_agent_rf_source_ready), // .ready .in_startofpacket (nios2_qsys_0_jtag_debug_module_agent_rf_source_startofpacket), // .startofpacket .in_endofpacket (nios2_qsys_0_jtag_debug_module_agent_rf_source_endofpacket), // .endofpacket .out_data (nios2_qsys_0_jtag_debug_module_agent_rsp_fifo_out_data), // out.data .out_valid (nios2_qsys_0_jtag_debug_module_agent_rsp_fifo_out_valid), // .valid .out_ready (nios2_qsys_0_jtag_debug_module_agent_rsp_fifo_out_ready), // .ready .out_startofpacket (nios2_qsys_0_jtag_debug_module_agent_rsp_fifo_out_startofpacket), // .startofpacket .out_endofpacket (nios2_qsys_0_jtag_debug_module_agent_rsp_fifo_out_endofpacket), // .endofpacket .csr_address (2'b00), // (terminated) .csr_read (1'b0), // (terminated) .csr_write (1'b0), // (terminated) .csr_readdata (), // (terminated) .csr_writedata (32'b00000000000000000000000000000000), // (terminated) .almost_full_data (), // (terminated) .almost_empty_data (), // (terminated) .in_empty (1'b0), // (terminated) .out_empty (), // (terminated) .in_error (1'b0), // (terminated) .out_error (), // (terminated) .in_channel (1'b0), // (terminated) .out_channel () // (terminated) ); altera_merlin_slave_agent #( .PKT_ORI_BURST_SIZE_H (89), .PKT_ORI_BURST_SIZE_L (87), .PKT_RESPONSE_STATUS_H (86), .PKT_RESPONSE_STATUS_L (85), .PKT_BURST_SIZE_H (64), .PKT_BURST_SIZE_L (62), .PKT_TRANS_LOCK (54), .PKT_BEGIN_BURST (69), .PKT_PROTECTION_H (80), .PKT_PROTECTION_L (78), .PKT_BURSTWRAP_H (61), .PKT_BURSTWRAP_L (59), .PKT_BYTE_CNT_H (58), .PKT_BYTE_CNT_L (56), .PKT_ADDR_H (49), .PKT_ADDR_L (36), .PKT_TRANS_COMPRESSED_READ (50), .PKT_TRANS_POSTED (51), .PKT_TRANS_WRITE (52), .PKT_TRANS_READ (53), .PKT_DATA_H (31), .PKT_DATA_L (0), .PKT_BYTEEN_H (35), .PKT_BYTEEN_L (32), .PKT_SRC_ID_H (73), .PKT_SRC_ID_L (71), .PKT_DEST_ID_H (76), .PKT_DEST_ID_L (74), .PKT_SYMBOL_W (8), .ST_CHANNEL_W (5), .ST_DATA_W (90), .AVS_BURSTCOUNT_W (3), .SUPPRESS_0_BYTEEN_CMD (0), .PREVENT_FIFO_OVERFLOW (1), .USE_READRESPONSE (0), .USE_WRITERESPONSE (0), .ECC_ENABLE (0) ) onchip_memory2_0_s1_agent ( .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // clk_reset.reset .m0_address (onchip_memory2_0_s1_agent_m0_address), // m0.address .m0_burstcount (onchip_memory2_0_s1_agent_m0_burstcount), // .burstcount .m0_byteenable (onchip_memory2_0_s1_agent_m0_byteenable), // .byteenable .m0_debugaccess (onchip_memory2_0_s1_agent_m0_debugaccess), // .debugaccess .m0_lock (onchip_memory2_0_s1_agent_m0_lock), // .lock .m0_readdata (onchip_memory2_0_s1_agent_m0_readdata), // .readdata .m0_readdatavalid (onchip_memory2_0_s1_agent_m0_readdatavalid), // .readdatavalid .m0_read (onchip_memory2_0_s1_agent_m0_read), // .read .m0_waitrequest (onchip_memory2_0_s1_agent_m0_waitrequest), // .waitrequest .m0_writedata (onchip_memory2_0_s1_agent_m0_writedata), // .writedata .m0_write (onchip_memory2_0_s1_agent_m0_write), // .write .rp_endofpacket (onchip_memory2_0_s1_agent_rp_endofpacket), // rp.endofpacket .rp_ready (onchip_memory2_0_s1_agent_rp_ready), // .ready .rp_valid (onchip_memory2_0_s1_agent_rp_valid), // .valid .rp_data (onchip_memory2_0_s1_agent_rp_data), // .data .rp_startofpacket (onchip_memory2_0_s1_agent_rp_startofpacket), // .startofpacket .cp_ready (cmd_mux_002_src_ready), // cp.ready .cp_valid (cmd_mux_002_src_valid), // .valid .cp_data (cmd_mux_002_src_data), // .data .cp_startofpacket (cmd_mux_002_src_startofpacket), // .startofpacket .cp_endofpacket (cmd_mux_002_src_endofpacket), // .endofpacket .cp_channel (cmd_mux_002_src_channel), // .channel .rf_sink_ready (onchip_memory2_0_s1_agent_rsp_fifo_out_ready), // rf_sink.ready .rf_sink_valid (onchip_memory2_0_s1_agent_rsp_fifo_out_valid), // .valid .rf_sink_startofpacket (onchip_memory2_0_s1_agent_rsp_fifo_out_startofpacket), // .startofpacket .rf_sink_endofpacket (onchip_memory2_0_s1_agent_rsp_fifo_out_endofpacket), // .endofpacket .rf_sink_data (onchip_memory2_0_s1_agent_rsp_fifo_out_data), // .data .rf_source_ready (onchip_memory2_0_s1_agent_rf_source_ready), // rf_source.ready .rf_source_valid (onchip_memory2_0_s1_agent_rf_source_valid), // .valid .rf_source_startofpacket (onchip_memory2_0_s1_agent_rf_source_startofpacket), // .startofpacket .rf_source_endofpacket (onchip_memory2_0_s1_agent_rf_source_endofpacket), // .endofpacket .rf_source_data (onchip_memory2_0_s1_agent_rf_source_data), // .data .rdata_fifo_sink_ready (avalon_st_adapter_002_out_0_ready), // rdata_fifo_sink.ready .rdata_fifo_sink_valid (avalon_st_adapter_002_out_0_valid), // .valid .rdata_fifo_sink_data (avalon_st_adapter_002_out_0_data), // .data .rdata_fifo_sink_error (avalon_st_adapter_002_out_0_error), // .error .rdata_fifo_src_ready (onchip_memory2_0_s1_agent_rdata_fifo_src_ready), // rdata_fifo_src.ready .rdata_fifo_src_valid (onchip_memory2_0_s1_agent_rdata_fifo_src_valid), // .valid .rdata_fifo_src_data (onchip_memory2_0_s1_agent_rdata_fifo_src_data), // .data .m0_response (2'b00), // (terminated) .m0_writeresponsevalid (1'b0) // (terminated) ); altera_avalon_sc_fifo #( .SYMBOLS_PER_BEAT (1), .BITS_PER_SYMBOL (91), .FIFO_DEPTH (2), .CHANNEL_WIDTH (0), .ERROR_WIDTH (0), .USE_PACKETS (1), .USE_FILL_LEVEL (0), .EMPTY_LATENCY (1), .USE_MEMORY_BLOCKS (0), .USE_STORE_FORWARD (0), .USE_ALMOST_FULL_IF (0), .USE_ALMOST_EMPTY_IF (0) ) onchip_memory2_0_s1_agent_rsp_fifo ( .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // clk_reset.reset .in_data (onchip_memory2_0_s1_agent_rf_source_data), // in.data .in_valid (onchip_memory2_0_s1_agent_rf_source_valid), // .valid .in_ready (onchip_memory2_0_s1_agent_rf_source_ready), // .ready .in_startofpacket (onchip_memory2_0_s1_agent_rf_source_startofpacket), // .startofpacket .in_endofpacket (onchip_memory2_0_s1_agent_rf_source_endofpacket), // .endofpacket .out_data (onchip_memory2_0_s1_agent_rsp_fifo_out_data), // out.data .out_valid (onchip_memory2_0_s1_agent_rsp_fifo_out_valid), // .valid .out_ready (onchip_memory2_0_s1_agent_rsp_fifo_out_ready), // .ready .out_startofpacket (onchip_memory2_0_s1_agent_rsp_fifo_out_startofpacket), // .startofpacket .out_endofpacket (onchip_memory2_0_s1_agent_rsp_fifo_out_endofpacket), // .endofpacket .csr_address (2'b00), // (terminated) .csr_read (1'b0), // (terminated) .csr_write (1'b0), // (terminated) .csr_readdata (), // (terminated) .csr_writedata (32'b00000000000000000000000000000000), // (terminated) .almost_full_data (), // (terminated) .almost_empty_data (), // (terminated) .in_empty (1'b0), // (terminated) .out_empty (), // (terminated) .in_error (1'b0), // (terminated) .out_error (), // (terminated) .in_channel (1'b0), // (terminated) .out_channel () // (terminated) ); altera_merlin_slave_agent #( .PKT_ORI_BURST_SIZE_H (89), .PKT_ORI_BURST_SIZE_L (87), .PKT_RESPONSE_STATUS_H (86), .PKT_RESPONSE_STATUS_L (85), .PKT_BURST_SIZE_H (64), .PKT_BURST_SIZE_L (62), .PKT_TRANS_LOCK (54), .PKT_BEGIN_BURST (69), .PKT_PROTECTION_H (80), .PKT_PROTECTION_L (78), .PKT_BURSTWRAP_H (61), .PKT_BURSTWRAP_L (59), .PKT_BYTE_CNT_H (58), .PKT_BYTE_CNT_L (56), .PKT_ADDR_H (49), .PKT_ADDR_L (36), .PKT_TRANS_COMPRESSED_READ (50), .PKT_TRANS_POSTED (51), .PKT_TRANS_WRITE (52), .PKT_TRANS_READ (53), .PKT_DATA_H (31), .PKT_DATA_L (0), .PKT_BYTEEN_H (35), .PKT_BYTEEN_L (32), .PKT_SRC_ID_H (73), .PKT_SRC_ID_L (71), .PKT_DEST_ID_H (76), .PKT_DEST_ID_L (74), .PKT_SYMBOL_W (8), .ST_CHANNEL_W (5), .ST_DATA_W (90), .AVS_BURSTCOUNT_W (3), .SUPPRESS_0_BYTEEN_CMD (0), .PREVENT_FIFO_OVERFLOW (1), .USE_READRESPONSE (0), .USE_WRITERESPONSE (0), .ECC_ENABLE (0) ) switches_s1_agent ( .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // clk_reset.reset .m0_address (switches_s1_agent_m0_address), // m0.address .m0_burstcount (switches_s1_agent_m0_burstcount), // .burstcount .m0_byteenable (switches_s1_agent_m0_byteenable), // .byteenable .m0_debugaccess (switches_s1_agent_m0_debugaccess), // .debugaccess .m0_lock (switches_s1_agent_m0_lock), // .lock .m0_readdata (switches_s1_agent_m0_readdata), // .readdata .m0_readdatavalid (switches_s1_agent_m0_readdatavalid), // .readdatavalid .m0_read (switches_s1_agent_m0_read), // .read .m0_waitrequest (switches_s1_agent_m0_waitrequest), // .waitrequest .m0_writedata (switches_s1_agent_m0_writedata), // .writedata .m0_write (switches_s1_agent_m0_write), // .write .rp_endofpacket (switches_s1_agent_rp_endofpacket), // rp.endofpacket .rp_ready (switches_s1_agent_rp_ready), // .ready .rp_valid (switches_s1_agent_rp_valid), // .valid .rp_data (switches_s1_agent_rp_data), // .data .rp_startofpacket (switches_s1_agent_rp_startofpacket), // .startofpacket .cp_ready (cmd_mux_003_src_ready), // cp.ready .cp_valid (cmd_mux_003_src_valid), // .valid .cp_data (cmd_mux_003_src_data), // .data .cp_startofpacket (cmd_mux_003_src_startofpacket), // .startofpacket .cp_endofpacket (cmd_mux_003_src_endofpacket), // .endofpacket .cp_channel (cmd_mux_003_src_channel), // .channel .rf_sink_ready (switches_s1_agent_rsp_fifo_out_ready), // rf_sink.ready .rf_sink_valid (switches_s1_agent_rsp_fifo_out_valid), // .valid .rf_sink_startofpacket (switches_s1_agent_rsp_fifo_out_startofpacket), // .startofpacket .rf_sink_endofpacket (switches_s1_agent_rsp_fifo_out_endofpacket), // .endofpacket .rf_sink_data (switches_s1_agent_rsp_fifo_out_data), // .data .rf_source_ready (switches_s1_agent_rf_source_ready), // rf_source.ready .rf_source_valid (switches_s1_agent_rf_source_valid), // .valid .rf_source_startofpacket (switches_s1_agent_rf_source_startofpacket), // .startofpacket .rf_source_endofpacket (switches_s1_agent_rf_source_endofpacket), // .endofpacket .rf_source_data (switches_s1_agent_rf_source_data), // .data .rdata_fifo_sink_ready (avalon_st_adapter_003_out_0_ready), // rdata_fifo_sink.ready .rdata_fifo_sink_valid (avalon_st_adapter_003_out_0_valid), // .valid .rdata_fifo_sink_data (avalon_st_adapter_003_out_0_data), // .data .rdata_fifo_sink_error (avalon_st_adapter_003_out_0_error), // .error .rdata_fifo_src_ready (switches_s1_agent_rdata_fifo_src_ready), // rdata_fifo_src.ready .rdata_fifo_src_valid (switches_s1_agent_rdata_fifo_src_valid), // .valid .rdata_fifo_src_data (switches_s1_agent_rdata_fifo_src_data), // .data .m0_response (2'b00), // (terminated) .m0_writeresponsevalid (1'b0) // (terminated) ); altera_avalon_sc_fifo #( .SYMBOLS_PER_BEAT (1), .BITS_PER_SYMBOL (91), .FIFO_DEPTH (2), .CHANNEL_WIDTH (0), .ERROR_WIDTH (0), .USE_PACKETS (1), .USE_FILL_LEVEL (0), .EMPTY_LATENCY (1), .USE_MEMORY_BLOCKS (0), .USE_STORE_FORWARD (0), .USE_ALMOST_FULL_IF (0), .USE_ALMOST_EMPTY_IF (0) ) switches_s1_agent_rsp_fifo ( .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // clk_reset.reset .in_data (switches_s1_agent_rf_source_data), // in.data .in_valid (switches_s1_agent_rf_source_valid), // .valid .in_ready (switches_s1_agent_rf_source_ready), // .ready .in_startofpacket (switches_s1_agent_rf_source_startofpacket), // .startofpacket .in_endofpacket (switches_s1_agent_rf_source_endofpacket), // .endofpacket .out_data (switches_s1_agent_rsp_fifo_out_data), // out.data .out_valid (switches_s1_agent_rsp_fifo_out_valid), // .valid .out_ready (switches_s1_agent_rsp_fifo_out_ready), // .ready .out_startofpacket (switches_s1_agent_rsp_fifo_out_startofpacket), // .startofpacket .out_endofpacket (switches_s1_agent_rsp_fifo_out_endofpacket), // .endofpacket .csr_address (2'b00), // (terminated) .csr_read (1'b0), // (terminated) .csr_write (1'b0), // (terminated) .csr_readdata (), // (terminated) .csr_writedata (32'b00000000000000000000000000000000), // (terminated) .almost_full_data (), // (terminated) .almost_empty_data (), // (terminated) .in_empty (1'b0), // (terminated) .out_empty (), // (terminated) .in_error (1'b0), // (terminated) .out_error (), // (terminated) .in_channel (1'b0), // (terminated) .out_channel () // (terminated) ); altera_merlin_slave_agent #( .PKT_ORI_BURST_SIZE_H (89), .PKT_ORI_BURST_SIZE_L (87), .PKT_RESPONSE_STATUS_H (86), .PKT_RESPONSE_STATUS_L (85), .PKT_BURST_SIZE_H (64), .PKT_BURST_SIZE_L (62), .PKT_TRANS_LOCK (54), .PKT_BEGIN_BURST (69), .PKT_PROTECTION_H (80), .PKT_PROTECTION_L (78), .PKT_BURSTWRAP_H (61), .PKT_BURSTWRAP_L (59), .PKT_BYTE_CNT_H (58), .PKT_BYTE_CNT_L (56), .PKT_ADDR_H (49), .PKT_ADDR_L (36), .PKT_TRANS_COMPRESSED_READ (50), .PKT_TRANS_POSTED (51), .PKT_TRANS_WRITE (52), .PKT_TRANS_READ (53), .PKT_DATA_H (31), .PKT_DATA_L (0), .PKT_BYTEEN_H (35), .PKT_BYTEEN_L (32), .PKT_SRC_ID_H (73), .PKT_SRC_ID_L (71), .PKT_DEST_ID_H (76), .PKT_DEST_ID_L (74), .PKT_SYMBOL_W (8), .ST_CHANNEL_W (5), .ST_DATA_W (90), .AVS_BURSTCOUNT_W (3), .SUPPRESS_0_BYTEEN_CMD (0), .PREVENT_FIFO_OVERFLOW (1), .USE_READRESPONSE (0), .USE_WRITERESPONSE (0), .ECC_ENABLE (0) ) leds_s1_agent ( .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // clk_reset.reset .m0_address (leds_s1_agent_m0_address), // m0.address .m0_burstcount (leds_s1_agent_m0_burstcount), // .burstcount .m0_byteenable (leds_s1_agent_m0_byteenable), // .byteenable .m0_debugaccess (leds_s1_agent_m0_debugaccess), // .debugaccess .m0_lock (leds_s1_agent_m0_lock), // .lock .m0_readdata (leds_s1_agent_m0_readdata), // .readdata .m0_readdatavalid (leds_s1_agent_m0_readdatavalid), // .readdatavalid .m0_read (leds_s1_agent_m0_read), // .read .m0_waitrequest (leds_s1_agent_m0_waitrequest), // .waitrequest .m0_writedata (leds_s1_agent_m0_writedata), // .writedata .m0_write (leds_s1_agent_m0_write), // .write .rp_endofpacket (leds_s1_agent_rp_endofpacket), // rp.endofpacket .rp_ready (leds_s1_agent_rp_ready), // .ready .rp_valid (leds_s1_agent_rp_valid), // .valid .rp_data (leds_s1_agent_rp_data), // .data .rp_startofpacket (leds_s1_agent_rp_startofpacket), // .startofpacket .cp_ready (cmd_mux_004_src_ready), // cp.ready .cp_valid (cmd_mux_004_src_valid), // .valid .cp_data (cmd_mux_004_src_data), // .data .cp_startofpacket (cmd_mux_004_src_startofpacket), // .startofpacket .cp_endofpacket (cmd_mux_004_src_endofpacket), // .endofpacket .cp_channel (cmd_mux_004_src_channel), // .channel .rf_sink_ready (leds_s1_agent_rsp_fifo_out_ready), // rf_sink.ready .rf_sink_valid (leds_s1_agent_rsp_fifo_out_valid), // .valid .rf_sink_startofpacket (leds_s1_agent_rsp_fifo_out_startofpacket), // .startofpacket .rf_sink_endofpacket (leds_s1_agent_rsp_fifo_out_endofpacket), // .endofpacket .rf_sink_data (leds_s1_agent_rsp_fifo_out_data), // .data .rf_source_ready (leds_s1_agent_rf_source_ready), // rf_source.ready .rf_source_valid (leds_s1_agent_rf_source_valid), // .valid .rf_source_startofpacket (leds_s1_agent_rf_source_startofpacket), // .startofpacket .rf_source_endofpacket (leds_s1_agent_rf_source_endofpacket), // .endofpacket .rf_source_data (leds_s1_agent_rf_source_data), // .data .rdata_fifo_sink_ready (avalon_st_adapter_004_out_0_ready), // rdata_fifo_sink.ready .rdata_fifo_sink_valid (avalon_st_adapter_004_out_0_valid), // .valid .rdata_fifo_sink_data (avalon_st_adapter_004_out_0_data), // .data .rdata_fifo_sink_error (avalon_st_adapter_004_out_0_error), // .error .rdata_fifo_src_ready (leds_s1_agent_rdata_fifo_src_ready), // rdata_fifo_src.ready .rdata_fifo_src_valid (leds_s1_agent_rdata_fifo_src_valid), // .valid .rdata_fifo_src_data (leds_s1_agent_rdata_fifo_src_data), // .data .m0_response (2'b00), // (terminated) .m0_writeresponsevalid (1'b0) // (terminated) ); altera_avalon_sc_fifo #( .SYMBOLS_PER_BEAT (1), .BITS_PER_SYMBOL (91), .FIFO_DEPTH (2), .CHANNEL_WIDTH (0), .ERROR_WIDTH (0), .USE_PACKETS (1), .USE_FILL_LEVEL (0), .EMPTY_LATENCY (1), .USE_MEMORY_BLOCKS (0), .USE_STORE_FORWARD (0), .USE_ALMOST_FULL_IF (0), .USE_ALMOST_EMPTY_IF (0) ) leds_s1_agent_rsp_fifo ( .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // clk_reset.reset .in_data (leds_s1_agent_rf_source_data), // in.data .in_valid (leds_s1_agent_rf_source_valid), // .valid .in_ready (leds_s1_agent_rf_source_ready), // .ready .in_startofpacket (leds_s1_agent_rf_source_startofpacket), // .startofpacket .in_endofpacket (leds_s1_agent_rf_source_endofpacket), // .endofpacket .out_data (leds_s1_agent_rsp_fifo_out_data), // out.data .out_valid (leds_s1_agent_rsp_fifo_out_valid), // .valid .out_ready (leds_s1_agent_rsp_fifo_out_ready), // .ready .out_startofpacket (leds_s1_agent_rsp_fifo_out_startofpacket), // .startofpacket .out_endofpacket (leds_s1_agent_rsp_fifo_out_endofpacket), // .endofpacket .csr_address (2'b00), // (terminated) .csr_read (1'b0), // (terminated) .csr_write (1'b0), // (terminated) .csr_readdata (), // (terminated) .csr_writedata (32'b00000000000000000000000000000000), // (terminated) .almost_full_data (), // (terminated) .almost_empty_data (), // (terminated) .in_empty (1'b0), // (terminated) .out_empty (), // (terminated) .in_error (1'b0), // (terminated) .out_error (), // (terminated) .in_channel (1'b0), // (terminated) .out_channel () // (terminated) ); lights_mm_interconnect_0_router router ( .sink_ready (nios2_qsys_0_data_master_agent_cp_ready), // sink.ready .sink_valid (nios2_qsys_0_data_master_agent_cp_valid), // .valid .sink_data (nios2_qsys_0_data_master_agent_cp_data), // .data .sink_startofpacket (nios2_qsys_0_data_master_agent_cp_startofpacket), // .startofpacket .sink_endofpacket (nios2_qsys_0_data_master_agent_cp_endofpacket), // .endofpacket .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // clk_reset.reset .src_ready (router_src_ready), // src.ready .src_valid (router_src_valid), // .valid .src_data (router_src_data), // .data .src_channel (router_src_channel), // .channel .src_startofpacket (router_src_startofpacket), // .startofpacket .src_endofpacket (router_src_endofpacket) // .endofpacket ); lights_mm_interconnect_0_router_001 router_001 ( .sink_ready (nios2_qsys_0_instruction_master_agent_cp_ready), // sink.ready .sink_valid (nios2_qsys_0_instruction_master_agent_cp_valid), // .valid .sink_data (nios2_qsys_0_instruction_master_agent_cp_data), // .data .sink_startofpacket (nios2_qsys_0_instruction_master_agent_cp_startofpacket), // .startofpacket .sink_endofpacket (nios2_qsys_0_instruction_master_agent_cp_endofpacket), // .endofpacket .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // clk_reset.reset .src_ready (router_001_src_ready), // src.ready .src_valid (router_001_src_valid), // .valid .src_data (router_001_src_data), // .data .src_channel (router_001_src_channel), // .channel .src_startofpacket (router_001_src_startofpacket), // .startofpacket .src_endofpacket (router_001_src_endofpacket) // .endofpacket ); lights_mm_interconnect_0_router_002 router_002 ( .sink_ready (jtag_uart_0_avalon_jtag_slave_agent_rp_ready), // sink.ready .sink_valid (jtag_uart_0_avalon_jtag_slave_agent_rp_valid), // .valid .sink_data (jtag_uart_0_avalon_jtag_slave_agent_rp_data), // .data .sink_startofpacket (jtag_uart_0_avalon_jtag_slave_agent_rp_startofpacket), // .startofpacket .sink_endofpacket (jtag_uart_0_avalon_jtag_slave_agent_rp_endofpacket), // .endofpacket .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // clk_reset.reset .src_ready (router_002_src_ready), // src.ready .src_valid (router_002_src_valid), // .valid .src_data (router_002_src_data), // .data .src_channel (router_002_src_channel), // .channel .src_startofpacket (router_002_src_startofpacket), // .startofpacket .src_endofpacket (router_002_src_endofpacket) // .endofpacket ); lights_mm_interconnect_0_router_003 router_003 ( .sink_ready (nios2_qsys_0_jtag_debug_module_agent_rp_ready), // sink.ready .sink_valid (nios2_qsys_0_jtag_debug_module_agent_rp_valid), // .valid .sink_data (nios2_qsys_0_jtag_debug_module_agent_rp_data), // .data .sink_startofpacket (nios2_qsys_0_jtag_debug_module_agent_rp_startofpacket), // .startofpacket .sink_endofpacket (nios2_qsys_0_jtag_debug_module_agent_rp_endofpacket), // .endofpacket .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // clk_reset.reset .src_ready (router_003_src_ready), // src.ready .src_valid (router_003_src_valid), // .valid .src_data (router_003_src_data), // .data .src_channel (router_003_src_channel), // .channel .src_startofpacket (router_003_src_startofpacket), // .startofpacket .src_endofpacket (router_003_src_endofpacket) // .endofpacket ); lights_mm_interconnect_0_router_003 router_004 ( .sink_ready (onchip_memory2_0_s1_agent_rp_ready), // sink.ready .sink_valid (onchip_memory2_0_s1_agent_rp_valid), // .valid .sink_data (onchip_memory2_0_s1_agent_rp_data), // .data .sink_startofpacket (onchip_memory2_0_s1_agent_rp_startofpacket), // .startofpacket .sink_endofpacket (onchip_memory2_0_s1_agent_rp_endofpacket), // .endofpacket .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // clk_reset.reset .src_ready (router_004_src_ready), // src.ready .src_valid (router_004_src_valid), // .valid .src_data (router_004_src_data), // .data .src_channel (router_004_src_channel), // .channel .src_startofpacket (router_004_src_startofpacket), // .startofpacket .src_endofpacket (router_004_src_endofpacket) // .endofpacket ); lights_mm_interconnect_0_router_002 router_005 ( .sink_ready (switches_s1_agent_rp_ready), // sink.ready .sink_valid (switches_s1_agent_rp_valid), // .valid .sink_data (switches_s1_agent_rp_data), // .data .sink_startofpacket (switches_s1_agent_rp_startofpacket), // .startofpacket .sink_endofpacket (switches_s1_agent_rp_endofpacket), // .endofpacket .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // clk_reset.reset .src_ready (router_005_src_ready), // src.ready .src_valid (router_005_src_valid), // .valid .src_data (router_005_src_data), // .data .src_channel (router_005_src_channel), // .channel .src_startofpacket (router_005_src_startofpacket), // .startofpacket .src_endofpacket (router_005_src_endofpacket) // .endofpacket ); lights_mm_interconnect_0_router_002 router_006 ( .sink_ready (leds_s1_agent_rp_ready), // sink.ready .sink_valid (leds_s1_agent_rp_valid), // .valid .sink_data (leds_s1_agent_rp_data), // .data .sink_startofpacket (leds_s1_agent_rp_startofpacket), // .startofpacket .sink_endofpacket (leds_s1_agent_rp_endofpacket), // .endofpacket .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // clk_reset.reset .src_ready (router_006_src_ready), // src.ready .src_valid (router_006_src_valid), // .valid .src_data (router_006_src_data), // .data .src_channel (router_006_src_channel), // .channel .src_startofpacket (router_006_src_startofpacket), // .startofpacket .src_endofpacket (router_006_src_endofpacket) // .endofpacket ); lights_mm_interconnect_0_cmd_demux cmd_demux ( .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // clk_reset.reset .sink_ready (router_src_ready), // sink.ready .sink_channel (router_src_channel), // .channel .sink_data (router_src_data), // .data .sink_startofpacket (router_src_startofpacket), // .startofpacket .sink_endofpacket (router_src_endofpacket), // .endofpacket .sink_valid (router_src_valid), // .valid .src0_ready (cmd_demux_src0_ready), // src0.ready .src0_valid (cmd_demux_src0_valid), // .valid .src0_data (cmd_demux_src0_data), // .data .src0_channel (cmd_demux_src0_channel), // .channel .src0_startofpacket (cmd_demux_src0_startofpacket), // .startofpacket .src0_endofpacket (cmd_demux_src0_endofpacket), // .endofpacket .src1_ready (cmd_demux_src1_ready), // src1.ready .src1_valid (cmd_demux_src1_valid), // .valid .src1_data (cmd_demux_src1_data), // .data .src1_channel (cmd_demux_src1_channel), // .channel .src1_startofpacket (cmd_demux_src1_startofpacket), // .startofpacket .src1_endofpacket (cmd_demux_src1_endofpacket), // .endofpacket .src2_ready (cmd_demux_src2_ready), // src2.ready .src2_valid (cmd_demux_src2_valid), // .valid .src2_data (cmd_demux_src2_data), // .data .src2_channel (cmd_demux_src2_channel), // .channel .src2_startofpacket (cmd_demux_src2_startofpacket), // .startofpacket .src2_endofpacket (cmd_demux_src2_endofpacket), // .endofpacket .src3_ready (cmd_demux_src3_ready), // src3.ready .src3_valid (cmd_demux_src3_valid), // .valid .src3_data (cmd_demux_src3_data), // .data .src3_channel (cmd_demux_src3_channel), // .channel .src3_startofpacket (cmd_demux_src3_startofpacket), // .startofpacket .src3_endofpacket (cmd_demux_src3_endofpacket), // .endofpacket .src4_ready (cmd_demux_src4_ready), // src4.ready .src4_valid (cmd_demux_src4_valid), // .valid .src4_data (cmd_demux_src4_data), // .data .src4_channel (cmd_demux_src4_channel), // .channel .src4_startofpacket (cmd_demux_src4_startofpacket), // .startofpacket .src4_endofpacket (cmd_demux_src4_endofpacket) // .endofpacket ); lights_mm_interconnect_0_cmd_demux_001 cmd_demux_001 ( .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // clk_reset.reset .sink_ready (router_001_src_ready), // sink.ready .sink_channel (router_001_src_channel), // .channel .sink_data (router_001_src_data), // .data .sink_startofpacket (router_001_src_startofpacket), // .startofpacket .sink_endofpacket (router_001_src_endofpacket), // .endofpacket .sink_valid (router_001_src_valid), // .valid .src0_ready (cmd_demux_001_src0_ready), // src0.ready .src0_valid (cmd_demux_001_src0_valid), // .valid .src0_data (cmd_demux_001_src0_data), // .data .src0_channel (cmd_demux_001_src0_channel), // .channel .src0_startofpacket (cmd_demux_001_src0_startofpacket), // .startofpacket .src0_endofpacket (cmd_demux_001_src0_endofpacket), // .endofpacket .src1_ready (cmd_demux_001_src1_ready), // src1.ready .src1_valid (cmd_demux_001_src1_valid), // .valid .src1_data (cmd_demux_001_src1_data), // .data .src1_channel (cmd_demux_001_src1_channel), // .channel .src1_startofpacket (cmd_demux_001_src1_startofpacket), // .startofpacket .src1_endofpacket (cmd_demux_001_src1_endofpacket) // .endofpacket ); lights_mm_interconnect_0_cmd_mux cmd_mux ( .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // clk_reset.reset .src_ready (cmd_mux_src_ready), // src.ready .src_valid (cmd_mux_src_valid), // .valid .src_data (cmd_mux_src_data), // .data .src_channel (cmd_mux_src_channel), // .channel .src_startofpacket (cmd_mux_src_startofpacket), // .startofpacket .src_endofpacket (cmd_mux_src_endofpacket), // .endofpacket .sink0_ready (cmd_demux_src0_ready), // sink0.ready .sink0_valid (cmd_demux_src0_valid), // .valid .sink0_channel (cmd_demux_src0_channel), // .channel .sink0_data (cmd_demux_src0_data), // .data .sink0_startofpacket (cmd_demux_src0_startofpacket), // .startofpacket .sink0_endofpacket (cmd_demux_src0_endofpacket) // .endofpacket ); lights_mm_interconnect_0_cmd_mux_001 cmd_mux_001 ( .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // clk_reset.reset .src_ready (cmd_mux_001_src_ready), // src.ready .src_valid (cmd_mux_001_src_valid), // .valid .src_data (cmd_mux_001_src_data), // .data .src_channel (cmd_mux_001_src_channel), // .channel .src_startofpacket (cmd_mux_001_src_startofpacket), // .startofpacket .src_endofpacket (cmd_mux_001_src_endofpacket), // .endofpacket .sink0_ready (cmd_demux_src1_ready), // sink0.ready .sink0_valid (cmd_demux_src1_valid), // .valid .sink0_channel (cmd_demux_src1_channel), // .channel .sink0_data (cmd_demux_src1_data), // .data .sink0_startofpacket (cmd_demux_src1_startofpacket), // .startofpacket .sink0_endofpacket (cmd_demux_src1_endofpacket), // .endofpacket .sink1_ready (cmd_demux_001_src0_ready), // sink1.ready .sink1_valid (cmd_demux_001_src0_valid), // .valid .sink1_channel (cmd_demux_001_src0_channel), // .channel .sink1_data (cmd_demux_001_src0_data), // .data .sink1_startofpacket (cmd_demux_001_src0_startofpacket), // .startofpacket .sink1_endofpacket (cmd_demux_001_src0_endofpacket) // .endofpacket ); lights_mm_interconnect_0_cmd_mux_001 cmd_mux_002 ( .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // clk_reset.reset .src_ready (cmd_mux_002_src_ready), // src.ready .src_valid (cmd_mux_002_src_valid), // .valid .src_data (cmd_mux_002_src_data), // .data .src_channel (cmd_mux_002_src_channel), // .channel .src_startofpacket (cmd_mux_002_src_startofpacket), // .startofpacket .src_endofpacket (cmd_mux_002_src_endofpacket), // .endofpacket .sink0_ready (cmd_demux_src2_ready), // sink0.ready .sink0_valid (cmd_demux_src2_valid), // .valid .sink0_channel (cmd_demux_src2_channel), // .channel .sink0_data (cmd_demux_src2_data), // .data .sink0_startofpacket (cmd_demux_src2_startofpacket), // .startofpacket .sink0_endofpacket (cmd_demux_src2_endofpacket), // .endofpacket .sink1_ready (cmd_demux_001_src1_ready), // sink1.ready .sink1_valid (cmd_demux_001_src1_valid), // .valid .sink1_channel (cmd_demux_001_src1_channel), // .channel .sink1_data (cmd_demux_001_src1_data), // .data .sink1_startofpacket (cmd_demux_001_src1_startofpacket), // .startofpacket .sink1_endofpacket (cmd_demux_001_src1_endofpacket) // .endofpacket ); lights_mm_interconnect_0_cmd_mux cmd_mux_003 ( .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // clk_reset.reset .src_ready (cmd_mux_003_src_ready), // src.ready .src_valid (cmd_mux_003_src_valid), // .valid .src_data (cmd_mux_003_src_data), // .data .src_channel (cmd_mux_003_src_channel), // .channel .src_startofpacket (cmd_mux_003_src_startofpacket), // .startofpacket .src_endofpacket (cmd_mux_003_src_endofpacket), // .endofpacket .sink0_ready (cmd_demux_src3_ready), // sink0.ready .sink0_valid (cmd_demux_src3_valid), // .valid .sink0_channel (cmd_demux_src3_channel), // .channel .sink0_data (cmd_demux_src3_data), // .data .sink0_startofpacket (cmd_demux_src3_startofpacket), // .startofpacket .sink0_endofpacket (cmd_demux_src3_endofpacket) // .endofpacket ); lights_mm_interconnect_0_cmd_mux cmd_mux_004 ( .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // clk_reset.reset .src_ready (cmd_mux_004_src_ready), // src.ready .src_valid (cmd_mux_004_src_valid), // .valid .src_data (cmd_mux_004_src_data), // .data .src_channel (cmd_mux_004_src_channel), // .channel .src_startofpacket (cmd_mux_004_src_startofpacket), // .startofpacket .src_endofpacket (cmd_mux_004_src_endofpacket), // .endofpacket .sink0_ready (cmd_demux_src4_ready), // sink0.ready .sink0_valid (cmd_demux_src4_valid), // .valid .sink0_channel (cmd_demux_src4_channel), // .channel .sink0_data (cmd_demux_src4_data), // .data .sink0_startofpacket (cmd_demux_src4_startofpacket), // .startofpacket .sink0_endofpacket (cmd_demux_src4_endofpacket) // .endofpacket ); lights_mm_interconnect_0_rsp_demux rsp_demux ( .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // clk_reset.reset .sink_ready (router_002_src_ready), // sink.ready .sink_channel (router_002_src_channel), // .channel .sink_data (router_002_src_data), // .data .sink_startofpacket (router_002_src_startofpacket), // .startofpacket .sink_endofpacket (router_002_src_endofpacket), // .endofpacket .sink_valid (router_002_src_valid), // .valid .src0_ready (rsp_demux_src0_ready), // src0.ready .src0_valid (rsp_demux_src0_valid), // .valid .src0_data (rsp_demux_src0_data), // .data .src0_channel (rsp_demux_src0_channel), // .channel .src0_startofpacket (rsp_demux_src0_startofpacket), // .startofpacket .src0_endofpacket (rsp_demux_src0_endofpacket) // .endofpacket ); lights_mm_interconnect_0_cmd_demux_001 rsp_demux_001 ( .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // clk_reset.reset .sink_ready (router_003_src_ready), // sink.ready .sink_channel (router_003_src_channel), // .channel .sink_data (router_003_src_data), // .data .sink_startofpacket (router_003_src_startofpacket), // .startofpacket .sink_endofpacket (router_003_src_endofpacket), // .endofpacket .sink_valid (router_003_src_valid), // .valid .src0_ready (rsp_demux_001_src0_ready), // src0.ready .src0_valid (rsp_demux_001_src0_valid), // .valid .src0_data (rsp_demux_001_src0_data), // .data .src0_channel (rsp_demux_001_src0_channel), // .channel .src0_startofpacket (rsp_demux_001_src0_startofpacket), // .startofpacket .src0_endofpacket (rsp_demux_001_src0_endofpacket), // .endofpacket .src1_ready (rsp_demux_001_src1_ready), // src1.ready .src1_valid (rsp_demux_001_src1_valid), // .valid .src1_data (rsp_demux_001_src1_data), // .data .src1_channel (rsp_demux_001_src1_channel), // .channel .src1_startofpacket (rsp_demux_001_src1_startofpacket), // .startofpacket .src1_endofpacket (rsp_demux_001_src1_endofpacket) // .endofpacket ); lights_mm_interconnect_0_cmd_demux_001 rsp_demux_002 ( .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // clk_reset.reset .sink_ready (router_004_src_ready), // sink.ready .sink_channel (router_004_src_channel), // .channel .sink_data (router_004_src_data), // .data .sink_startofpacket (router_004_src_startofpacket), // .startofpacket .sink_endofpacket (router_004_src_endofpacket), // .endofpacket .sink_valid (router_004_src_valid), // .valid .src0_ready (rsp_demux_002_src0_ready), // src0.ready .src0_valid (rsp_demux_002_src0_valid), // .valid .src0_data (rsp_demux_002_src0_data), // .data .src0_channel (rsp_demux_002_src0_channel), // .channel .src0_startofpacket (rsp_demux_002_src0_startofpacket), // .startofpacket .src0_endofpacket (rsp_demux_002_src0_endofpacket), // .endofpacket .src1_ready (rsp_demux_002_src1_ready), // src1.ready .src1_valid (rsp_demux_002_src1_valid), // .valid .src1_data (rsp_demux_002_src1_data), // .data .src1_channel (rsp_demux_002_src1_channel), // .channel .src1_startofpacket (rsp_demux_002_src1_startofpacket), // .startofpacket .src1_endofpacket (rsp_demux_002_src1_endofpacket) // .endofpacket ); lights_mm_interconnect_0_rsp_demux rsp_demux_003 ( .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // clk_reset.reset .sink_ready (router_005_src_ready), // sink.ready .sink_channel (router_005_src_channel), // .channel .sink_data (router_005_src_data), // .data .sink_startofpacket (router_005_src_startofpacket), // .startofpacket .sink_endofpacket (router_005_src_endofpacket), // .endofpacket .sink_valid (router_005_src_valid), // .valid .src0_ready (rsp_demux_003_src0_ready), // src0.ready .src0_valid (rsp_demux_003_src0_valid), // .valid .src0_data (rsp_demux_003_src0_data), // .data .src0_channel (rsp_demux_003_src0_channel), // .channel .src0_startofpacket (rsp_demux_003_src0_startofpacket), // .startofpacket .src0_endofpacket (rsp_demux_003_src0_endofpacket) // .endofpacket ); lights_mm_interconnect_0_rsp_demux rsp_demux_004 ( .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // clk_reset.reset .sink_ready (router_006_src_ready), // sink.ready .sink_channel (router_006_src_channel), // .channel .sink_data (router_006_src_data), // .data .sink_startofpacket (router_006_src_startofpacket), // .startofpacket .sink_endofpacket (router_006_src_endofpacket), // .endofpacket .sink_valid (router_006_src_valid), // .valid .src0_ready (rsp_demux_004_src0_ready), // src0.ready .src0_valid (rsp_demux_004_src0_valid), // .valid .src0_data (rsp_demux_004_src0_data), // .data .src0_channel (rsp_demux_004_src0_channel), // .channel .src0_startofpacket (rsp_demux_004_src0_startofpacket), // .startofpacket .src0_endofpacket (rsp_demux_004_src0_endofpacket) // .endofpacket ); lights_mm_interconnect_0_rsp_mux rsp_mux ( .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // clk_reset.reset .src_ready (rsp_mux_src_ready), // src.ready .src_valid (rsp_mux_src_valid), // .valid .src_data (rsp_mux_src_data), // .data .src_channel (rsp_mux_src_channel), // .channel .src_startofpacket (rsp_mux_src_startofpacket), // .startofpacket .src_endofpacket (rsp_mux_src_endofpacket), // .endofpacket .sink0_ready (rsp_demux_src0_ready), // sink0.ready .sink0_valid (rsp_demux_src0_valid), // .valid .sink0_channel (rsp_demux_src0_channel), // .channel .sink0_data (rsp_demux_src0_data), // .data .sink0_startofpacket (rsp_demux_src0_startofpacket), // .startofpacket .sink0_endofpacket (rsp_demux_src0_endofpacket), // .endofpacket .sink1_ready (rsp_demux_001_src0_ready), // sink1.ready .sink1_valid (rsp_demux_001_src0_valid), // .valid .sink1_channel (rsp_demux_001_src0_channel), // .channel .sink1_data (rsp_demux_001_src0_data), // .data .sink1_startofpacket (rsp_demux_001_src0_startofpacket), // .startofpacket .sink1_endofpacket (rsp_demux_001_src0_endofpacket), // .endofpacket .sink2_ready (rsp_demux_002_src0_ready), // sink2.ready .sink2_valid (rsp_demux_002_src0_valid), // .valid .sink2_channel (rsp_demux_002_src0_channel), // .channel .sink2_data (rsp_demux_002_src0_data), // .data .sink2_startofpacket (rsp_demux_002_src0_startofpacket), // .startofpacket .sink2_endofpacket (rsp_demux_002_src0_endofpacket), // .endofpacket .sink3_ready (rsp_demux_003_src0_ready), // sink3.ready .sink3_valid (rsp_demux_003_src0_valid), // .valid .sink3_channel (rsp_demux_003_src0_channel), // .channel .sink3_data (rsp_demux_003_src0_data), // .data .sink3_startofpacket (rsp_demux_003_src0_startofpacket), // .startofpacket .sink3_endofpacket (rsp_demux_003_src0_endofpacket), // .endofpacket .sink4_ready (rsp_demux_004_src0_ready), // sink4.ready .sink4_valid (rsp_demux_004_src0_valid), // .valid .sink4_channel (rsp_demux_004_src0_channel), // .channel .sink4_data (rsp_demux_004_src0_data), // .data .sink4_startofpacket (rsp_demux_004_src0_startofpacket), // .startofpacket .sink4_endofpacket (rsp_demux_004_src0_endofpacket) // .endofpacket ); lights_mm_interconnect_0_rsp_mux_001 rsp_mux_001 ( .clk (clk_0_clk_clk), // clk.clk .reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // clk_reset.reset .src_ready (rsp_mux_001_src_ready), // src.ready .src_valid (rsp_mux_001_src_valid), // .valid .src_data (rsp_mux_001_src_data), // .data .src_channel (rsp_mux_001_src_channel), // .channel .src_startofpacket (rsp_mux_001_src_startofpacket), // .startofpacket .src_endofpacket (rsp_mux_001_src_endofpacket), // .endofpacket .sink0_ready (rsp_demux_001_src1_ready), // sink0.ready .sink0_valid (rsp_demux_001_src1_valid), // .valid .sink0_channel (rsp_demux_001_src1_channel), // .channel .sink0_data (rsp_demux_001_src1_data), // .data .sink0_startofpacket (rsp_demux_001_src1_startofpacket), // .startofpacket .sink0_endofpacket (rsp_demux_001_src1_endofpacket), // .endofpacket .sink1_ready (rsp_demux_002_src1_ready), // sink1.ready .sink1_valid (rsp_demux_002_src1_valid), // .valid .sink1_channel (rsp_demux_002_src1_channel), // .channel .sink1_data (rsp_demux_002_src1_data), // .data .sink1_startofpacket (rsp_demux_002_src1_startofpacket), // .startofpacket .sink1_endofpacket (rsp_demux_002_src1_endofpacket) // .endofpacket ); lights_mm_interconnect_0_avalon_st_adapter #( .inBitsPerSymbol (34), .inUsePackets (0), .inDataWidth (34), .inChannelWidth (0), .inErrorWidth (0), .inUseEmptyPort (0), .inUseValid (1), .inUseReady (1), .inReadyLatency (0), .outDataWidth (34), .outChannelWidth (0), .outErrorWidth (1), .outUseEmptyPort (0), .outUseValid (1), .outUseReady (1), .outReadyLatency (0) ) avalon_st_adapter ( .in_clk_0_clk (clk_0_clk_clk), // in_clk_0.clk .in_rst_0_reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // in_rst_0.reset .in_0_data (jtag_uart_0_avalon_jtag_slave_agent_rdata_fifo_src_data), // in_0.data .in_0_valid (jtag_uart_0_avalon_jtag_slave_agent_rdata_fifo_src_valid), // .valid .in_0_ready (jtag_uart_0_avalon_jtag_slave_agent_rdata_fifo_src_ready), // .ready .out_0_data (avalon_st_adapter_out_0_data), // out_0.data .out_0_valid (avalon_st_adapter_out_0_valid), // .valid .out_0_ready (avalon_st_adapter_out_0_ready), // .ready .out_0_error (avalon_st_adapter_out_0_error) // .error ); lights_mm_interconnect_0_avalon_st_adapter #( .inBitsPerSymbol (34), .inUsePackets (0), .inDataWidth (34), .inChannelWidth (0), .inErrorWidth (0), .inUseEmptyPort (0), .inUseValid (1), .inUseReady (1), .inReadyLatency (0), .outDataWidth (34), .outChannelWidth (0), .outErrorWidth (1), .outUseEmptyPort (0), .outUseValid (1), .outUseReady (1), .outReadyLatency (0) ) avalon_st_adapter_001 ( .in_clk_0_clk (clk_0_clk_clk), // in_clk_0.clk .in_rst_0_reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // in_rst_0.reset .in_0_data (nios2_qsys_0_jtag_debug_module_agent_rdata_fifo_src_data), // in_0.data .in_0_valid (nios2_qsys_0_jtag_debug_module_agent_rdata_fifo_src_valid), // .valid .in_0_ready (nios2_qsys_0_jtag_debug_module_agent_rdata_fifo_src_ready), // .ready .out_0_data (avalon_st_adapter_001_out_0_data), // out_0.data .out_0_valid (avalon_st_adapter_001_out_0_valid), // .valid .out_0_ready (avalon_st_adapter_001_out_0_ready), // .ready .out_0_error (avalon_st_adapter_001_out_0_error) // .error ); lights_mm_interconnect_0_avalon_st_adapter #( .inBitsPerSymbol (34), .inUsePackets (0), .inDataWidth (34), .inChannelWidth (0), .inErrorWidth (0), .inUseEmptyPort (0), .inUseValid (1), .inUseReady (1), .inReadyLatency (0), .outDataWidth (34), .outChannelWidth (0), .outErrorWidth (1), .outUseEmptyPort (0), .outUseValid (1), .outUseReady (1), .outReadyLatency (0) ) avalon_st_adapter_002 ( .in_clk_0_clk (clk_0_clk_clk), // in_clk_0.clk .in_rst_0_reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // in_rst_0.reset .in_0_data (onchip_memory2_0_s1_agent_rdata_fifo_src_data), // in_0.data .in_0_valid (onchip_memory2_0_s1_agent_rdata_fifo_src_valid), // .valid .in_0_ready (onchip_memory2_0_s1_agent_rdata_fifo_src_ready), // .ready .out_0_data (avalon_st_adapter_002_out_0_data), // out_0.data .out_0_valid (avalon_st_adapter_002_out_0_valid), // .valid .out_0_ready (avalon_st_adapter_002_out_0_ready), // .ready .out_0_error (avalon_st_adapter_002_out_0_error) // .error ); lights_mm_interconnect_0_avalon_st_adapter #( .inBitsPerSymbol (34), .inUsePackets (0), .inDataWidth (34), .inChannelWidth (0), .inErrorWidth (0), .inUseEmptyPort (0), .inUseValid (1), .inUseReady (1), .inReadyLatency (0), .outDataWidth (34), .outChannelWidth (0), .outErrorWidth (1), .outUseEmptyPort (0), .outUseValid (1), .outUseReady (1), .outReadyLatency (0) ) avalon_st_adapter_003 ( .in_clk_0_clk (clk_0_clk_clk), // in_clk_0.clk .in_rst_0_reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // in_rst_0.reset .in_0_data (switches_s1_agent_rdata_fifo_src_data), // in_0.data .in_0_valid (switches_s1_agent_rdata_fifo_src_valid), // .valid .in_0_ready (switches_s1_agent_rdata_fifo_src_ready), // .ready .out_0_data (avalon_st_adapter_003_out_0_data), // out_0.data .out_0_valid (avalon_st_adapter_003_out_0_valid), // .valid .out_0_ready (avalon_st_adapter_003_out_0_ready), // .ready .out_0_error (avalon_st_adapter_003_out_0_error) // .error ); lights_mm_interconnect_0_avalon_st_adapter #( .inBitsPerSymbol (34), .inUsePackets (0), .inDataWidth (34), .inChannelWidth (0), .inErrorWidth (0), .inUseEmptyPort (0), .inUseValid (1), .inUseReady (1), .inReadyLatency (0), .outDataWidth (34), .outChannelWidth (0), .outErrorWidth (1), .outUseEmptyPort (0), .outUseValid (1), .outUseReady (1), .outReadyLatency (0) ) avalon_st_adapter_004 ( .in_clk_0_clk (clk_0_clk_clk), // in_clk_0.clk .in_rst_0_reset (nios2_qsys_0_reset_n_reset_bridge_in_reset_reset), // in_rst_0.reset .in_0_data (leds_s1_agent_rdata_fifo_src_data), // in_0.data .in_0_valid (leds_s1_agent_rdata_fifo_src_valid), // .valid .in_0_ready (leds_s1_agent_rdata_fifo_src_ready), // .ready .out_0_data (avalon_st_adapter_004_out_0_data), // out_0.data .out_0_valid (avalon_st_adapter_004_out_0_valid), // .valid .out_0_ready (avalon_st_adapter_004_out_0_ready), // .ready .out_0_error (avalon_st_adapter_004_out_0_error) // .error ); endmodule
module tx_hdr_fifo #(parameter C_DEPTH_PACKETS = 10, parameter C_MAX_HDR_WIDTH = 128, parameter C_PIPELINE_OUTPUT = 1, parameter C_PIPELINE_INPUT = 1, parameter C_VENDOR = "ALTERA" ) ( // Interface: Clocks input CLK, // Interface: Reset input RST_IN, // Interface: WR_TX_HDR input WR_TX_HDR_VALID, input [(C_MAX_HDR_WIDTH)-1:0] WR_TX_HDR, input [`SIG_LEN_W-1:0] WR_TX_HDR_PAYLOAD_LEN, input [`SIG_NONPAY_W-1:0] WR_TX_HDR_NONPAY_LEN, input [`SIG_PACKETLEN_W-1:0] WR_TX_HDR_PACKET_LEN, input WR_TX_HDR_NOPAYLOAD, output WR_TX_HDR_READY, // Interface: RD_TX_HDR output RD_TX_HDR_VALID, output [(C_MAX_HDR_WIDTH)-1:0] RD_TX_HDR, output [`SIG_LEN_W-1:0] RD_TX_HDR_PAYLOAD_LEN, output [`SIG_NONPAY_W-1:0] RD_TX_HDR_NONPAY_LEN, output [`SIG_PACKETLEN_W-1:0] RD_TX_HDR_PACKET_LEN, output RD_TX_HDR_NOPAYLOAD, input RD_TX_HDR_READY ); // Size of the header, plus the three metadata signals localparam C_WIDTH = (C_MAX_HDR_WIDTH) + `SIG_NONPAY_W + `SIG_PACKETLEN_W + 1 + `SIG_LEN_W; wire RST; wire wWrTxHdrReady; wire wWrTxHdrValid; wire [(C_MAX_HDR_WIDTH)-1:0] wWrTxHdr; wire [`SIG_NONPAY_W-1:0] wWrTxHdrNonpayLen; wire [`SIG_PACKETLEN_W-1:0] wWrTxHdrPacketLen; wire [`SIG_LEN_W-1:0] wWrTxHdrPayloadLen; wire wWrTxHdrNoPayload; wire wRdTxHdrReady; wire wRdTxHdrValid; wire [C_MAX_HDR_WIDTH-1:0] wRdTxHdr; wire [`SIG_NONPAY_W-1:0] wRdTxHdrNonpayLen; wire [`SIG_PACKETLEN_W-1:0] wRdTxHdrPacketLen; wire [`SIG_LEN_W-1:0] wRdTxHdrPayloadLen; wire wRdTxHdrNoPayload; assign RST = RST_IN; pipeline #( .C_DEPTH (C_PIPELINE_INPUT?1:0), .C_USE_MEMORY (0), /*AUTOINSTPARAM*/ // Parameters .C_WIDTH (C_WIDTH)) input_pipeline_inst ( // Outputs .WR_DATA_READY (WR_TX_HDR_READY), .RD_DATA ({wWrTxHdr,wWrTxHdrNonpayLen,wWrTxHdrPacketLen,wWrTxHdrPayloadLen,wWrTxHdrNoPayload}), .RD_DATA_VALID (wWrTxHdrValid), // Inputs .WR_DATA ({WR_TX_HDR,WR_TX_HDR_NONPAY_LEN,WR_TX_HDR_PACKET_LEN,WR_TX_HDR_PAYLOAD_LEN,WR_TX_HDR_NOPAYLOAD}), .WR_DATA_VALID (WR_TX_HDR_VALID), .RD_DATA_READY (wWrTxHdrReady), /*AUTOINST*/ // Inputs .CLK (CLK), .RST_IN (RST_IN)); fifo #( // Parameters .C_DELAY (0), /*AUTOINSTPARAM*/ // Parameters .C_WIDTH (C_WIDTH), .C_DEPTH (C_DEPTH_PACKETS)) fifo_inst ( // Outputs .RD_DATA ({wRdTxHdr,wRdTxHdrNonpayLen,wRdTxHdrPacketLen,wRdTxHdrPayloadLen,wRdTxHdrNoPayload}), .WR_READY (wWrTxHdrReady), .RD_VALID (wRdTxHdrValid), // Inputs .WR_DATA ({wWrTxHdr,wWrTxHdrNonpayLen,wWrTxHdrPacketLen,wWrTxHdrPayloadLen,wWrTxHdrNoPayload}), .WR_VALID (wWrTxHdrValid), .RD_READY (wRdTxHdrReady), /*AUTOINST*/ // Inputs .CLK (CLK), .RST (RST)); pipeline #( .C_DEPTH (C_PIPELINE_OUTPUT?1:0), .C_USE_MEMORY (0), /*AUTOINSTPARAM*/ // Parameters .C_WIDTH (C_WIDTH)) output_pipeline_inst ( // Outputs .WR_DATA_READY (wRdTxHdrReady), .RD_DATA ({RD_TX_HDR,RD_TX_HDR_NONPAY_LEN,RD_TX_HDR_PACKET_LEN,RD_TX_HDR_PAYLOAD_LEN,RD_TX_HDR_NOPAYLOAD}), .RD_DATA_VALID (RD_TX_HDR_VALID), // Inputs .WR_DATA ({wRdTxHdr,wRdTxHdrNonpayLen,wRdTxHdrPacketLen,wRdTxHdrPayloadLen,wRdTxHdrNoPayload}), .WR_DATA_VALID (wRdTxHdrValid), .RD_DATA_READY (RD_TX_HDR_READY), /*AUTOINST*/ // Inputs .CLK (CLK), .RST_IN (RST_IN)); endmodule