File size: 6,330 Bytes
516a1d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import kornia as K
import torch
from torchgeo.datasets.geo import NonGeoDataset
import os
from collections.abc import Callable, Sequence
from torch import Tensor
import numpy as np
import rasterio
import cv2
from pyproj import Transformer
from datetime import date
from typing import TypeAlias, ClassVar
import pathlib
from shapely import wkt
import pandas as pd
import tacoreader

import logging
import pdb

logging.getLogger("rasterio").setLevel(logging.ERROR)
Path: TypeAlias = str | os.PathLike[str]

class SenBenchCloudS2(NonGeoDataset):
    url = None
    #base_dir = 'all_imgs'
    all_band_names = ('B01', 'B02', 'B03', 'B04', 'B05', 'B06', 'B07', 'B08', 'B8A', 'B09', 'B10', 'B11', 'B12')

    split_filenames = {
        'train': 'cloudsen12-l1c-train.taco',
        'val': 'cloudsen12-l1c-val.taco',
        'test': 'cloudsen12-l1c-test.taco',
    }

    Cls_index_multi = {
        'clear': 0,
        'thick cloud': 1,
        'thin cloud': 2,
        'cloud shadow': 3,
    }



    def __init__(
        self,
        root: Path = 'data',
        split: str = 'train',
        bands: Sequence[str] = all_band_names,
        transforms: Callable[[dict[str, Tensor]], dict[str, Tensor]] | None = None,
        download: bool = False,
    ) -> None:

        self.root = root
        self.transforms = transforms
        self.download = download
        #self.checksum = checksum

        assert split in ['train', 'val', 'test']

        self.bands = bands
        self.band_indices = [(self.all_band_names.index(b)+1) for b in bands if b in self.all_band_names]

        taco_file = os.path.join(root,self.split_filenames[split])
        self.dataset = tacoreader.load(taco_file)
        self.cache = {}

        # filter corrupted entries
        count = 0
        count_corrupted = 0
        #pdb.set_trace()
        for i in range(len(self.dataset)):
            try:
                sample = self.dataset.read(i)
                s2l1c = sample.read(0) # str
                target = sample.read(1) # str
                coord = sample['stac:centroid'][0] # str
                time_start = sample['stac:time_start'][0] # str
                self.cache[count] = (s2l1c, target, coord, time_start)
                count += 1
            except Exception as e:
                count_corrupted += 1
        self.length = count
        print(split,count,"valid samples.")

        self.reference_date = date(1970, 1, 1)
        self.patch_area = (16*10/1000)**2 # patchsize 16 pix, gsd 10m

    def __len__(self):
        return self.length

    def __getitem__(self, index):

        #pdb.set_trace()

        # if index not in self.cache:
        #     sample = self.dataset.read(index)
        #     s2l1c = sample.read(0) # str
        #     target = sample.read(1) # str
        #     coord = sample['stac:centroid'][0] # str
        #     time_start = sample['stac:time_start'][0] # str
        #     self.cache[index] = (s2l1c, target, coord, time_start)
        # else:
        #pdb.set_trace()
        s2l1c, target, coord, time_start = self.cache[index]

        # Open the files and load data
        with rasterio.open(s2l1c) as src, rasterio.open(target) as dst:
            s2l1c_data = src.read().astype('float32')
            target_data = dst.read(1)
        image = torch.from_numpy(s2l1c_data)
        label = torch.from_numpy(target_data).long()
        
        coord = wkt.loads(coord).coords[0]
        date_obj = pd.to_datetime(time_start, unit='s').date()
        delta = (date_obj - self.reference_date).days
        meta_info = np.array([coord[0], coord[1], delta, self.patch_area]).astype(np.float32)
        meta_info = torch.from_numpy(meta_info)

        sample = {'image': image, 'mask': label, 'meta': meta_info}

        if self.transforms is not None:
            sample = self.transforms(sample)

        return sample


class SegDataAugmentation(torch.nn.Module):
    def __init__(self, split, size, band_stats):
        super().__init__()

        if band_stats is not None:
            mean = band_stats['mean']
            std = band_stats['std']
        else:
            mean = [0.0]
            std = [1.0]

        mean = torch.Tensor(mean)
        std = torch.Tensor(std)

        self.norm = K.augmentation.Normalize(mean=mean, std=std)

        if split == "train":
            self.transform = K.augmentation.AugmentationSequential(
                K.augmentation.Resize(size=size, align_corners=True),
                K.augmentation.RandomRotation(degrees=90, p=0.5, align_corners=True),
                K.augmentation.RandomHorizontalFlip(p=0.5),
                K.augmentation.RandomVerticalFlip(p=0.5),
                data_keys=["input", "mask"],
            )
        else:
            self.transform = K.augmentation.AugmentationSequential(
                K.augmentation.Resize(size=size, align_corners=True),
                data_keys=["input", "mask"],
            )

    @torch.no_grad()
    def forward(self, batch: dict[str,]):
        """Torchgeo returns a dictionary with 'image' and 'label' keys, but engine expects a tuple"""
        x,mask = batch["image"], batch["mask"]
        x = self.norm(x)
        x_out, mask_out = self.transform(x, mask)
        return x_out.squeeze(0), mask_out.squeeze(0).squeeze(0), batch["meta"]


class SenBenchCloudS2Dataset:
    def __init__(self, config):
        self.dataset_config = config
        self.img_size = (config.image_resolution, config.image_resolution)
        self.root_dir = config.data_path
        self.bands = config.band_names
        self.band_stats = config.band_stats

    def create_dataset(self):
        train_transform = SegDataAugmentation(split="train", size=self.img_size, band_stats=self.band_stats)
        eval_transform = SegDataAugmentation(split="test", size=self.img_size, band_stats=self.band_stats)

        dataset_train = SenBenchCloudS2(
            root=self.root_dir, split="train", bands=self.bands, transforms=train_transform
        )
        dataset_val = SenBenchCloudS2(
            root=self.root_dir, split="val", bands=self.bands, transforms=eval_transform
        )
        dataset_test = SenBenchCloudS2(
            root=self.root_dir, split="test", bands=self.bands, transforms=eval_transform
        )

        return dataset_train, dataset_val, dataset_test