Copernicus-Bench / biomass_s3olci /dataset_biomass_s3olci.py
wangyi111's picture
Upload dataset_biomass_s3olci.py
c9dfc89 verified
raw
history blame
4.53 kB
from torch.utils.data import DataLoader, Dataset
import cv2
import os
import rasterio
import torch
import numpy as np
from pyproj import Transformer
from datetime import date
S3_OLCI_SCALE = [0.0139465,0.0133873,0.0121481,0.0115198,0.0100953,0.0123538,0.00879161,0.00876539,
0.0095103,0.00773378,0.00675523,0.0071996,0.00749684,0.0086512,0.00526779,0.00530267,
0.00493004,0.00549962,0.00502847,0.00326378,0.00324118]
BIOMASS_MEAN = 93.8317
BIOMASS_STD = 110.5369
class S3OLCI_BiomassDataset(Dataset):
'''
4000/1000 train/test images 94x94x21 (full dataset is 25K)
CCI biomass regression 282x282
nodata: -inf
time series: 1-4 images / location
'''
def __init__(self, root_dir, split='train', mode='static'):
self.root_dir = root_dir
self.split = split
self.mode = mode
self.img_dir = os.path.join(root_dir, split, 's3_olci')
self.biomass_dir = os.path.join(root_dir, split, 'biomass')
self.fnames = os.listdir(self.biomass_dir)
if self.mode == 'static':
self.static_csv = os.path.join(root_dir, split, 'static_fnames.csv')
with open(self.static_csv, 'r') as f:
lines = f.readlines()
self.static_img = {}
for line in lines:
dirname = line.strip().split(',')[0]
img_fname = line.strip().split(',')[1]
self.static_img[dirname] = img_fname
def __len__(self):
return len(self.fnames)
def __getitem__(self, idx):
fname = self.fnames[idx]
biomass_path = os.path.join(self.biomass_dir, fname)
s3_path = os.path.join(self.img_dir, fname.replace('.tif',''))
if self.mode == 'static':
img_fname = self.static_img[fname.replace('.tif','')]
s3_paths = [os.path.join(s3_path, img_fname)]
else:
img_fnames = os.listdir(s3_path)
s3_paths = []
for img_fname in img_fnames:
s3_paths.append(os.path.join(s3_path, img_fname))
imgs = []
img_paths = []
meta_infos = []
for img_path in s3_paths:
with rasterio.open(img_path) as src:
img = src.read()
chs = []
for b in range(21):
#ch = cv2.resize(img[b], (94,94), interpolation=cv2.INTER_CUBIC)
ch = cv2.resize(img[b], (282,282), interpolation=cv2.INTER_CUBIC)
chs.append(ch)
img = np.stack(chs)
img[np.isnan(img)] = 0
for b in range(21):
img[b] = img[b]*S3_OLCI_SCALE[b]
img = torch.from_numpy(img).float()
if self.meta:
cx,cy = src.xy(src.height // 2, src.width // 2)
#crs_transformer = Transformer.from_crs(src.crs, 'epsg:4326')
#lon, lat = crs_transformer.transform(cx,cy)
lon, lat = cx, cy
img_fname = os.path.basename(img_path)
date_str = img_fname.split('_')[1][:8]
date_obj = date(int(date_str[:4]), int(date_str[4:6]), int(date_str[6:8]))
delta = (date_obj - self.reference_date).days
meta_info = np.array([lon, lat, delta, np.nan]).astype(np.float32)
else:
meta_info = np.array([np.nan,np.nan,np.nan,np.nan]).astype(np.float32)
imgs.append(img)
img_paths.append(img_path)
if self.mode == 'series':
# pad to 4 images if less than 4
while len(imgs) < 4:
imgs.append(img)
img_paths.append(img_path)
meta_infos.append(meta_info)
with rasterio.open(biomass_path) as src:
biomass = src.read(1)
biomass = cv2.resize(biomass, (282,282), interpolation=cv2.INTER_CUBIC) # 0-650
biomass = torch.from_numpy(biomass.astype('float32'))
biomass = (biomass - BIOMASS_MEAN) / BIOMASS_STD # 0-center normalized
if self.mode == 'static':
return imgs[0], meta_infos[0], biomass # 94x94x21, 282x282
elif self.mode == 'series':
return imgs[0], imgs[1], imgs[2], imgs[3], meta_infos[0], meta_infos[1], meta_infos[2], meta_infos[3], biomass # 94x94x21, 94x94x21, 94x94x21, 94x94x21, 282x282