Upload senbench_dfc2020_wrapper.py
Browse files
dfc2020_s1s2/senbench_dfc2020_wrapper.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import kornia as K
|
2 |
+
import torch
|
3 |
+
from torchgeo.datasets.geo import NonGeoDataset
|
4 |
+
import os
|
5 |
+
from collections.abc import Callable, Sequence
|
6 |
+
from torch import Tensor
|
7 |
+
import numpy as np
|
8 |
+
import rasterio
|
9 |
+
import cv2
|
10 |
+
from pyproj import Transformer
|
11 |
+
from datetime import date
|
12 |
+
from typing import TypeAlias, ClassVar
|
13 |
+
import pathlib
|
14 |
+
|
15 |
+
import logging
|
16 |
+
|
17 |
+
logging.getLogger("rasterio").setLevel(logging.ERROR)
|
18 |
+
Path: TypeAlias = str | os.PathLike[str]
|
19 |
+
|
20 |
+
class SenBenchDFC2020(NonGeoDataset):
|
21 |
+
url = None
|
22 |
+
#base_dir = 'all_imgs'
|
23 |
+
splits = ('train', 'val', 'test')
|
24 |
+
|
25 |
+
label_filenames = {
|
26 |
+
'train': 'dfc-train-new.csv',
|
27 |
+
'val': 'dfc-val-new.csv',
|
28 |
+
'test': 'dfc-test-new.csv',
|
29 |
+
}
|
30 |
+
s1_band_names = (
|
31 |
+
'VV', 'VH'
|
32 |
+
)
|
33 |
+
s2_band_names = (
|
34 |
+
'B01', 'B02', 'B03', 'B04', 'B05', 'B06', 'B07', 'B08', 'B8A', 'B09', 'B10', 'B11', 'B12'
|
35 |
+
)
|
36 |
+
|
37 |
+
rgb_band_names = ('B04', 'B03', 'B02')
|
38 |
+
|
39 |
+
Cls_index = {
|
40 |
+
'Background': 0, # to be ignored
|
41 |
+
'Forest': 1,
|
42 |
+
'Shrubland': 2,
|
43 |
+
'Savanna': 3, # none, to be ignored
|
44 |
+
'Grassland': 4,
|
45 |
+
'Wetland': 5,
|
46 |
+
'Cropland': 6,
|
47 |
+
'Urban/Built-up': 7,
|
48 |
+
'Snow/Ice': 8, # none, to be ignored
|
49 |
+
'Barren': 9,
|
50 |
+
'Water': 10
|
51 |
+
}
|
52 |
+
|
53 |
+
cls_mapping = {0:255, 1:0, 2:1, 3:255, 4:2, 5:3, 6:4, 7:5, 8:255, 9:6, 10:7} # 8 valid classes
|
54 |
+
|
55 |
+
def __init__(
|
56 |
+
self,
|
57 |
+
root: Path = 'data',
|
58 |
+
split: str = 'train',
|
59 |
+
bands: Sequence[str] = s2_band_names,
|
60 |
+
modality = 's2',
|
61 |
+
transforms: Callable[[dict[str, Tensor]], dict[str, Tensor]] | None = None,
|
62 |
+
download: bool = False,
|
63 |
+
) -> None:
|
64 |
+
|
65 |
+
self.root = root
|
66 |
+
self.transforms = transforms
|
67 |
+
self.download = download
|
68 |
+
#self.checksum = checksum
|
69 |
+
|
70 |
+
assert split in ['train', 'val', 'test']
|
71 |
+
|
72 |
+
self.bands = bands
|
73 |
+
self.modality = modality
|
74 |
+
if self.modality== 's1':
|
75 |
+
self.all_band_names = self.s1_band_names
|
76 |
+
else:
|
77 |
+
self.all_band_names = self.s2_band_names
|
78 |
+
self.band_indices = [(self.all_band_names.index(b)+1) for b in bands if b in self.all_band_names]
|
79 |
+
|
80 |
+
self.img_dir = os.path.join(self.root, modality)
|
81 |
+
self.label_dir = os.path.join(self.root, 'dfc')
|
82 |
+
|
83 |
+
self.label_csv = os.path.join(self.root, self.label_filenames[split])
|
84 |
+
self.label_fnames = []
|
85 |
+
with open(self.label_csv, 'r') as f:
|
86 |
+
lines = f.readlines()
|
87 |
+
for line in lines:
|
88 |
+
fname = line.strip()
|
89 |
+
self.label_fnames.append(fname)
|
90 |
+
|
91 |
+
#self.reference_date = date(1970, 1, 1)
|
92 |
+
self.patch_area = (16*10/1000)**2 # patchsize 8 pix, gsd 300m
|
93 |
+
|
94 |
+
def __len__(self):
|
95 |
+
return len(self.label_fnames)
|
96 |
+
|
97 |
+
def __getitem__(self, index):
|
98 |
+
|
99 |
+
images, meta_infos = self._load_image(index)
|
100 |
+
label = self._load_target(index)
|
101 |
+
sample = {'image': images, 'mask': label, 'meta': meta_infos}
|
102 |
+
|
103 |
+
if self.transforms is not None:
|
104 |
+
sample = self.transforms(sample)
|
105 |
+
|
106 |
+
return sample
|
107 |
+
|
108 |
+
|
109 |
+
def _load_image(self, index):
|
110 |
+
|
111 |
+
label_fname = self.label_fnames[index]
|
112 |
+
img_fname = label_fname.replace('dfc',self.modality)
|
113 |
+
img_path = os.path.join(self.img_dir, img_fname)
|
114 |
+
|
115 |
+
with rasterio.open(img_path) as src:
|
116 |
+
img = src.read(self.band_indices).astype('float32')
|
117 |
+
img = torch.from_numpy(img)
|
118 |
+
|
119 |
+
# # get lon, lat
|
120 |
+
# cx,cy = src.xy(src.height // 2, src.width // 2)
|
121 |
+
# if src.crs.to_string() != 'EPSG:4326':
|
122 |
+
# # convert to lon, lat
|
123 |
+
# crs_transformer = Transformer.from_crs(src.crs, 'epsg:4326', always_xy=True)
|
124 |
+
# lon, lat = crs_transformer.transform(cx,cy)
|
125 |
+
# else:
|
126 |
+
# lon, lat = cx, cy
|
127 |
+
# # get time
|
128 |
+
# img_fname = os.path.basename(s3_path)
|
129 |
+
# date_str = img_fname.split('____')[1][:8]
|
130 |
+
# date_obj = date(int(date_str[:4]), int(date_str[4:6]), int(date_str[6:8]))
|
131 |
+
# delta = (date_obj - self.reference_date).days
|
132 |
+
meta_info = np.array([np.nan, np.nan, np.nan, self.patch_area]).astype(np.float32)
|
133 |
+
meta_info = torch.from_numpy(meta_info)
|
134 |
+
|
135 |
+
return img, meta_info
|
136 |
+
|
137 |
+
def _load_target(self, index):
|
138 |
+
|
139 |
+
label_fname = self.label_fnames[index]
|
140 |
+
label_path = os.path.join(self.label_dir, label_fname)
|
141 |
+
|
142 |
+
with rasterio.open(label_path) as src:
|
143 |
+
label = src.read(1)
|
144 |
+
# label[label==0] = 256
|
145 |
+
# label = label - 1
|
146 |
+
label_remap = label.copy()
|
147 |
+
for orig_label, new_label in self.cls_mapping.items():
|
148 |
+
label_remap[label == orig_label] = new_label
|
149 |
+
|
150 |
+
labels = torch.from_numpy(label_remap).long()
|
151 |
+
|
152 |
+
return labels
|
153 |
+
|
154 |
+
|
155 |
+
|
156 |
+
class SegDataAugmentation(torch.nn.Module):
|
157 |
+
|
158 |
+
def __init__(self, split, size, band_stats):
|
159 |
+
super().__init__()
|
160 |
+
|
161 |
+
if band_stats is not None:
|
162 |
+
mean = band_stats['mean']
|
163 |
+
std = band_stats['std']
|
164 |
+
else:
|
165 |
+
mean = [0.0]
|
166 |
+
std = [1.0]
|
167 |
+
|
168 |
+
mean = torch.Tensor(mean)
|
169 |
+
std = torch.Tensor(std)
|
170 |
+
|
171 |
+
self.norm = K.augmentation.Normalize(mean=mean, std=std)
|
172 |
+
|
173 |
+
if split == "train":
|
174 |
+
self.transform = K.augmentation.AugmentationSequential(
|
175 |
+
K.augmentation.Resize(size=size, align_corners=True),
|
176 |
+
#K.augmentation.RandomResizedCrop(size=size, scale=(0.8,1.0)),
|
177 |
+
K.augmentation.RandomRotation(degrees=90, p=0.5, align_corners=True),
|
178 |
+
K.augmentation.RandomHorizontalFlip(p=0.5),
|
179 |
+
K.augmentation.RandomVerticalFlip(p=0.5),
|
180 |
+
data_keys=["input", "mask"],
|
181 |
+
)
|
182 |
+
else:
|
183 |
+
self.transform = K.augmentation.AugmentationSequential(
|
184 |
+
K.augmentation.Resize(size=size, align_corners=True),
|
185 |
+
data_keys=["input", "mask"],
|
186 |
+
)
|
187 |
+
|
188 |
+
@torch.no_grad()
|
189 |
+
def forward(self, batch: dict[str,]):
|
190 |
+
"""Torchgeo returns a dictionary with 'image' and 'label' keys, but engine expects a tuple"""
|
191 |
+
x,mask = batch["image"], batch["mask"]
|
192 |
+
x = self.norm(x)
|
193 |
+
x_out, mask_out = self.transform(x, mask)
|
194 |
+
return x_out.squeeze(0), mask_out.squeeze(0).squeeze(0), batch["meta"]
|
195 |
+
|
196 |
+
|
197 |
+
class SenBenchDFC2020Dataset:
|
198 |
+
def __init__(self, config):
|
199 |
+
self.dataset_config = config
|
200 |
+
self.img_size = (config.image_resolution, config.image_resolution)
|
201 |
+
self.root_dir = config.data_path
|
202 |
+
self.bands = config.band_names
|
203 |
+
self.modality = config.modality
|
204 |
+
self.band_stats = config.band_stats
|
205 |
+
|
206 |
+
def create_dataset(self):
|
207 |
+
train_transform = SegDataAugmentation(split="train", size=self.img_size, band_stats=self.band_stats)
|
208 |
+
eval_transform = SegDataAugmentation(split="test", size=self.img_size, band_stats=self.band_stats)
|
209 |
+
|
210 |
+
dataset_train = SenBenchDFC2020(
|
211 |
+
root=self.root_dir, split="train", bands=self.bands, modality=self.modality, transforms=train_transform
|
212 |
+
)
|
213 |
+
dataset_val = SenBenchDFC2020(
|
214 |
+
root=self.root_dir, split="val", bands=self.bands, modality=self.modality, transforms=eval_transform
|
215 |
+
)
|
216 |
+
dataset_test = SenBenchDFC2020(
|
217 |
+
root=self.root_dir, split="test", bands=self.bands, modality=self.modality, transforms=eval_transform
|
218 |
+
)
|
219 |
+
|
220 |
+
return dataset_train, dataset_val, dataset_test
|