Copernicus-Pretrain / README.md
wangyi111's picture
Update task_categories (#1)
d17e109 verified
metadata
license: cc-by-4.0
size_categories:
  - 10M<n<100M
task_categories:
  - image-classification
  - image-feature-extraction
pretty_name: Copernicus-Pretrain
tags:
  - earth-observation
  - remote-sensing
  - foundation-model
  - pretrain
  - self-supervised-learning
  - sentinel

Dataset Card for Copernicus-Pretrain

Copernicus-Pretrain is a large-scale EO pretraining dataset with 18.7M aligned images covering all major Sentinel missions (S1,2,3,5P).

Officially named Copernicus-Pretrain, also referred to as SSL4EO-S ("S" means Sentinel), as an extension of SSL4EO-S12 to the whole Sentinel series.

Dataset Details

Copernicus-Pretrain contains 18.7M aligned imagery from all major Sentinel missions in operation (Sentinel-1 SAR, Sentinel-2 multispectral reflectance, Sentinel-3 multispectral radiance, and Sentinel-5P atmospheric variables), as well as an elevation product Copernicus DEM GLO-30. The images are organized into ~310K regional grids (0.25°x0.25°, consistent with ERA5), densely covering the whole land surface and near-land ocean with eight distinct Sentinel modalities.

Modality GSD Image size # Grid cells # Patches # Timestamps # Total images
Sentinel-1 GRD SAR 10 m 264×264×2 247,723 1,067,267 ~4 4,227,387
Sentinel-2 TOA MS 10 m 264×264×13 247,723 1,067,267 ~4 4,218,065
Sentinel-3 OLCI MS 300 m 96×96×21 281,375 281,375 ~8 2,189,561
Sentinel-5P CO atmos. 1 km 28×28 306,097 306,097 1–12 2,104,735
Sentinel-5P NO2 atmos. 1 km 28×28 291,449 291,449 1–12 1,752,558
Sentinel-5P SO2 atmos. 1 km 28×28 262,259 262,259 1–12 1,366,452
Sentinel-5P O3 atmos. 1 km 28×28 306,218 306,218 1–12 2,556,631
Copernicus DEM elevation 30 m 960×960 297,665 297,665 1 297,665
Copernicus-Pretrain 312,567 3,879,597 18,713,054

Related Sources

License

CC-BY-4.0.

Citation

@misc{wang2025unifiedcopernicusfoundationmodel,
      title={Towards a Unified Copernicus Foundation Model for Earth Vision}, 
      author={Yi Wang and Zhitong Xiong and Chenying Liu and Adam J. Stewart and Thomas Dujardin and Nikolaos Ioannis Bountos and Angelos Zavras and Franziska Gerken and Ioannis Papoutsis and Laura Leal-Taixé and Xiao Xiang Zhu},
      year={2025},
      eprint={2503.11849},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2503.11849}, 
}