path
stringlengths
14
112
content
stringlengths
0
6.32M
size
int64
0
6.32M
max_lines
int64
1
100k
repo_name
stringclasses
2 values
autogenerated
bool
1 class
cosmopolitan/third_party/python/Lib/test/cjkencodings/cp949-utf8.txt
똠방각하 펲시콜라 ㉯㉯납!! 因九月패믤릔궈 ⓡⓖ훀¿¿¿ 긍뒙 ⓔ뎨 ㉯. . 亞영ⓔ능횹 . . . . 서울뤄 뎐학乙 家훀 ! ! !ㅠ.ㅠ 흐흐흐 ㄱㄱㄱ☆ㅠ_ㅠ 어릨 탸콰긐 뎌응 칑九들乙 ㉯드긐 설릌 家훀 . . . . 굴애쉌 ⓔ궈 ⓡ릘㉱긐 因仁川女中까즼 와쒀훀 ! ! 亞영ⓔ 家능궈 ☆上관 없능궈능 亞능뒈훀 글애듴 ⓡ려듀九 싀풔숴훀 어릨 因仁川女中싁⑨들앜!! ㉯㉯납♡ ⌒⌒*
478
10
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/cjkencodings/shift_jis.txt
Python ‚ÌŠJ”­‚́A1990 ”N‚²‚ë‚©‚çŠJŽn‚³‚ê‚Ä‚¢‚Ü‚·B ŠJ”­ŽÒ‚Ì Guido van Rossum ‚Í‹³ˆç—p‚̃vƒƒOƒ‰ƒ~ƒ“ƒOŒ¾ŒêuABCv‚ÌŠJ”­‚ÉŽQ‰Á‚µ‚Ä‚¢‚Ü‚µ‚½‚ªAABC ‚ÍŽÀ—pã‚Ì–Ú“I‚ɂ͂ ‚Ü‚è“K‚µ‚Ä‚¢‚Ü‚¹‚ñ‚Å‚µ‚½B ‚±‚Ì‚½‚߁AGuido ‚Í‚æ‚èŽÀ—p“I‚ȃvƒƒOƒ‰ƒ~ƒ“ƒOŒ¾Œê‚ÌŠJ”­‚ðŠJŽn‚µA‰p‘ BBS •ú‘—‚̃RƒƒfƒB”Ô‘guƒ‚ƒ“ƒeƒB ƒpƒCƒ\ƒ“v‚̃tƒ@ƒ“‚Å‚ ‚é Guido ‚Í‚±‚ÌŒ¾Œê‚ðuPythonv‚Æ–¼‚¯‚Ü‚µ‚½B ‚±‚̂悤‚È”wŒi‚©‚琶‚܂ꂽ Python ‚ÌŒ¾ŒêÝŒv‚́AuƒVƒ“ƒvƒ‹v‚ŁuK“¾‚ª—eˆÕv‚Æ‚¢‚¤–Ú•W‚ɏd“_‚ª’u‚©‚ê‚Ä‚¢‚Ü‚·B ‘½‚­‚̃XƒNƒŠƒvƒgŒnŒ¾Œê‚ł̓†[ƒU‚̖ڐæ‚Ì—˜•֐«‚ð—Dæ‚µ‚ĐFX‚È‹@”\‚ðŒ¾Œê—v‘f‚Æ‚µ‚ÄŽæ‚è“ü‚ê‚éê‡‚ª‘½‚¢‚̂ł·‚ªAPython ‚ł͂»‚¤‚¢‚Á‚½¬×H‚ª’ljÁ‚³‚ê‚邱‚Ƃ͂ ‚܂肠‚è‚Ü‚¹‚ñB Œ¾ŒêŽ©‘̂̋@”\‚͍ŏ¬ŒÀ‚ɉŸ‚³‚¦A•K—v‚È‹@”\‚ÍŠg’£ƒ‚ƒWƒ…[ƒ‹‚Æ‚µ‚ĒljÁ‚·‚éA‚Æ‚¢‚¤‚Ì‚ª Python ‚̃|ƒŠƒV[‚Å‚·B
760
8
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/cjkencodings/iso2022_kr.txt
$)C!] FD@L=c(Python)@: 9h?l1b =10m, 0-7BGQ GA7N1W7!9V >p>n@T4O4Y. FD@L=c@: H?@2@{@N 0m<vAX 5%@LEM 18A6?M 0#4\GOAv88 H?@2@{@N 04C<AvGbGA7N1W7!9V@; Av?xGU4O4Y. FD@L=c@G ?l>F(iPd:)GQ 9.9}0z 5?@{ E8@LGN, 1W8.0m @NEMGA8.FC H/0f@: FD@L=c@; =:E)83FC0z ?)7/ :P>_?!<-?M 4k:N:P@G GC7'F{?!<-@G :|8% >VGC8.DI@L<G 039_@; GR <v @V4B @L;s@{@N >p>n7N 885i>nA]4O4Y. !YC90!3!: 3/>F6s >1~ E-! 1]>x@L @|4O4Y. 1W710E 4Y.
502
8
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/cjkencodings/gb18030.txt
Python£¨ÅÉÉ­£©ÓïÑÔÊÇÒ»ÖÖ¹¦ÄÜÇ¿´ó¶øÍêÉÆµÄͨÓÃÐͼÆËã»ú³ÌÐòÉè¼ÆÓïÑÔ£¬ ÒѾ­¾ßÓÐÊ®¶àÄêµÄ·¢Õ¹ÀúÊ·£¬³ÉÊìÇÒÎȶ¨¡£ÕâÖÖÓïÑÔ¾ßÓзdz£¼ò½Ý¶øÇåÎú µÄÓï·¨ÌØµã£¬ÊʺÏÍê³É¸÷Öָ߲ãÈÎÎñ£¬¼¸ºõ¿ÉÒÔÔÚËùÓеIJÙ×÷ϵͳÖÐ ÔËÐС£ÕâÖÖÓïÑÔ¼òµ¥¶øÇ¿´ó£¬Êʺϸ÷ÖÖÈËʿѧϰʹÓá£Ä¿Ç°£¬»ùÓÚÕâ ÖÖÓïÑÔµÄÏà¹Ø¼¼ÊõÕýÔÚ·ÉËٵķ¢Õ¹£¬Óû§ÊýÁ¿¼±¾çÀ©´ó£¬Ïà¹ØµÄ×ÊÔ´·Ç³£¶à¡£ ÈçºÎÔÚ Python ÖÐʹÓüÈÓÐµÄ C library? ¡¡ÔÚÙYӍ¿Æ¼¼¿ìËÙ°lÕ¹µÄ½ñÌì, é_°l¼°œyԇܛówµÄËÙ¶ÈÊDz»ÈݺöҕµÄ Õnî}. žé¼Ó¿ìé_°l¼°œyԇµÄËÙ¶È, Î҂ƒ±ã³£Ï£ÍûÄÜÀûÓÃһЩÒÑé_°lºÃµÄ library, KÓÐÒ»‚€ fast prototyping µÄ programming language ¿É ¹©Ê¹ÓÃ. ĿǰÓÐÔSÔS¶à¶àµÄ library ÊÇÒÔ C Œ‘³É, ¶ø Python ÊÇÒ»‚€ fast prototyping µÄ programming language. ¹ÊÎ҂ƒÏ£ÍûÄ܌¢¼ÈÓÐµÄ C library Äõ½ Python µÄ­h¾³ÖМyԇ¼°ÕûºÏ. ÆäÖÐ×îÖ÷ÒªÒ²ÊÇÎ҂ƒËù ҪӑՓµÄ†–î}¾ÍÊÇ: ƒ5Ç1ƒ3š3ƒ2±1ƒ3•1 ‚7Ñ6ƒ0Œ4ƒ6„3 ‚8‰5‚8û6ƒ3•5 ƒ3Õ1‚95 ƒ0ý9ƒ3†0 ƒ4Ü3ƒ5ö7ƒ5—5 ƒ5ù5ƒ0‘9‚8ƒ9‚9ü3ƒ0ð4 ƒ2ë9ƒ2ë5‚9ƒ9.
864
16
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/cjkencodings/gb2312-utf8.txt
Python(派森)语言是一种功能强大而完善的通用型计算机程序设计语言, 已经具有十多年的发展历史,成熟且稳定。这种语言具有非常简捷而清晰 的语法特点,适合完成各种高层任务,几乎可以在所有的操作系统中 运行。这种语言简单而强大,适合各种人士学习使用。目前,基于这 种语言的相关技术正在飞速的发展,用户数量急剧扩大,相关的资源非常多。
480
7
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/cjkencodings/big5hkscs.txt
ˆEˆ\Šs‹ÚØ ˆfˆbˆ§ ˆ§ˆ£
23
3
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/cjkencodings/cp949.txt
Œc¹æ°¢ÇÏ ¼„½ÃÄݶó ¨À¨À³³!! ì×ÎúêÅÆÐ’æp±Å ¨Þ¨ÓÄR¢¯¢¯¢¯ ±àŠ– ¨Ñµ³ ¨À. . 䬿µ¨Ñ´ÉÈ . . . . ¼­¿ï·ï µ¯ÇÐëà Ê«ÄR ! ! !¤Ð.¤Ð ÈåÈåÈå ¤¡¤¡¤¡¡Ù¤Ð_¤Ð ¾îŠ ÅËÄâƒO µ®ÀÀ ¯hÎúµéëà ¨ÀµåƒO ¼³j Ê«ÄR . . . . ±¼¾Öšf ¨Ñ±Å ¨Þt¨ÂƒO ì×ìÒô¹åüñé±î£Ž ¿Í¾¬ÄR ! ! 䬿µ¨Ñ Ê«´É±Å ¡Ùß¾°ü ¾ø´É±Å´É 䬴ɵØÄR ±Û¾ÖŠÛ ¨Þ·ÁµàÎú šÃÇ´½¤ÄR ¾îŠ ì×ìÒô¹åüñéšÄ¨ïµéÚ!! ¨À¨À³³¢½ ¡Ò¡Ò*
346
10
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/cjkencodings/iso2022_jp-utf8.txt
Python の開発は、1990 年ごろから開始されています。 開発者の Guido van Rossum は教育用のプログラミング言語「ABC」の開発に参加していましたが、ABC は実用上の目的にはあまり適していませんでした。 このため、Guido はより実用的なプログラミング言語の開発を開始し、英国 BBS 放送のコメディ番組「モンティ パイソン」のファンである Guido はこの言語を「Python」と名づけました。 このような背景から生まれた Python の言語設計は、「シンプル」で「習得が容易」という目標に重点が置かれています。 多くのスクリプト系言語ではユーザの目先の利便性を優先して色々な機能を言語要素として取り入れる場合が多いのですが、Python ではそういった小細工が追加されることはあまりありません。 言語自体の機能は最小限に押さえ、必要な機能は拡張モジュールとして追加する、というのが Python のポリシーです。
1,094
8
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/cjkencodings/iso2022_kr-utf8.txt
◎ 파이썬(Python)은 배우기 쉽고, 강력한 프로그래밍 언어입니다. 파이썬은 효율적인 고수준 데이터 구조와 간단하지만 효율적인 객체지향프로그래밍을 지원합니다. 파이썬의 우아(優雅)한 문법과 동적 타이핑, 그리고 인터프리팅 환경은 파이썬을 스크립팅과 여러 분야에서와 대부분의 플랫폼에서의 빠른 애플리케이션 개발을 할 수 있는 이상적인 언어로 만들어줍니다. ☆첫가끝: 날아라 쓩~ 큼! 금없이 전니다. 그런거 다.
563
8
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/cjkencodings/big5.txt
¦p¦ó¦b Python ¤¤¨Ï¥Î¬J¦³ªº C library? ¡@¦b¸ê°T¬ì§Þ§Ö³tµo®iªº¤µ¤Ñ, ¶}µo¤Î´ú¸Õ³nÅ骺³t«×¬O¤£®e©¿µøªº ½ÒÃD. ¬°¥[§Ö¶}µo¤Î´ú¸Õªº³t«×, §Ú­Ì«K±`§Æ±æ¯à§Q¥Î¤@¨Ç¤w¶}µo¦nªº library, ¨Ã¦³¤@­Ó fast prototyping ªº programming language ¥i ¨Ñ¨Ï¥Î. ¥Ø«e¦³³\³\¦h¦hªº library ¬O¥H C ¼g¦¨, ¦Ó Python ¬O¤@­Ó fast prototyping ªº programming language. ¬G§Ú­Ì§Æ±æ¯à±N¬J¦³ªº C library ®³¨ì Python ªºÀô¹Ò¤¤´ú¸Õ¤Î¾ã¦X. ¨ä¤¤³Ì¥D­n¤]¬O§Ú­Ì©Ò ­n°Q½×ªº°ÝÃD´N¬O:
432
10
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/cjkencodings/big5hkscs-utf8.txt
𠄌Ě鵮罓洆 ÊÊ̄ê êê̄
32
3
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/cjkencodings/euc_kr-utf8.txt
◎ 파이썬(Python)은 배우기 쉽고, 강력한 프로그래밍 언어입니다. 파이썬은 효율적인 고수준 데이터 구조와 간단하지만 효율적인 객체지향프로그래밍을 지원합니다. 파이썬의 우아(優雅)한 문법과 동적 타이핑, 그리고 인터프리팅 환경은 파이썬을 스크립팅과 여러 분야에서와 대부분의 플랫폼에서의 빠른 애플리케이션 개발을 할 수 있는 이상적인 언어로 만들어줍니다. ☆첫가끝: 날아라 쓔쓔쓩~ 닁큼! 뜽금없이 전홥니다. 뷁. 그런거 읎다.
586
8
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/cjkencodings/euc_jisx0213-utf8.txt
Python の開発は、1990 年ごろから開始されています。 開発者の Guido van Rossum は教育用のプログラミング言語「ABC」の開発に参加していましたが、ABC は実用上の目的にはあまり適していませんでした。 このため、Guido はより実用的なプログラミング言語の開発を開始し、英国 BBS 放送のコメディ番組「モンティ パイソン」のファンである Guido はこの言語を「Python」と名づけました。 このような背景から生まれた Python の言語設計は、「シンプル」で「習得が容易」という目標に重点が置かれています。 多くのスクリプト系言語ではユーザの目先の利便性を優先して色々な機能を言語要素として取り入れる場合が多いのですが、Python ではそういった小細工が追加されることはあまりありません。 言語自体の機能は最小限に押さえ、必要な機能は拡張モジュールとして追加する、というのが Python のポリシーです。 ノか゚ ト゚ トキ喝塀 𡚴𪎌 麀齁𩛰
1,144
9
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/cjkencodings/gbk.txt
Python£¨ÅÉÉ­£©ÓïÑÔÊÇÒ»ÖÖ¹¦ÄÜÇ¿´ó¶øÍêÉÆµÄͨÓÃÐͼÆËã»ú³ÌÐòÉè¼ÆÓïÑÔ£¬ ÒѾ­¾ßÓÐÊ®¶àÄêµÄ·¢Õ¹ÀúÊ·£¬³ÉÊìÇÒÎȶ¨¡£ÕâÖÖÓïÑÔ¾ßÓзdz£¼ò½Ý¶øÇåÎú µÄÓï·¨ÌØµã£¬ÊʺÏÍê³É¸÷Öָ߲ãÈÎÎñ£¬¼¸ºõ¿ÉÒÔÔÚËùÓеIJÙ×÷ϵͳÖÐ ÔËÐС£ÕâÖÖÓïÑÔ¼òµ¥¶øÇ¿´ó£¬Êʺϸ÷ÖÖÈËʿѧϰʹÓá£Ä¿Ç°£¬»ùÓÚÕâ ÖÖÓïÑÔµÄÏà¹Ø¼¼ÊõÕýÔÚ·ÉËٵķ¢Õ¹£¬Óû§ÊýÁ¿¼±¾çÀ©´ó£¬Ïà¹ØµÄ×ÊÔ´·Ç³£¶à¡£ ÈçºÎÔÚ Python ÖÐʹÓüÈÓÐµÄ C library? ¡¡ÔÚÙYӍ¿Æ¼¼¿ìËÙ°lÕ¹µÄ½ñÌì, é_°l¼°œyԇܛówµÄËÙ¶ÈÊDz»ÈݺöҕµÄ Õnî}. žé¼Ó¿ìé_°l¼°œyԇµÄËÙ¶È, Î҂ƒ±ã³£Ï£ÍûÄÜÀûÓÃһЩÒÑé_°lºÃµÄ library, KÓÐÒ»‚€ fast prototyping µÄ programming language ¿É ¹©Ê¹ÓÃ. ĿǰÓÐÔSÔS¶à¶àµÄ library ÊÇÒÔ C Œ‘³É, ¶ø Python ÊÇÒ»‚€ fast prototyping µÄ programming language. ¹ÊÎ҂ƒÏ£ÍûÄ܌¢¼ÈÓÐµÄ C library Äõ½ Python µÄ­h¾³ÖМyԇ¼°ÕûºÏ. ÆäÖÐ×îÖ÷ÒªÒ²ÊÇÎ҂ƒËù ҪӑՓµÄ†–î}¾ÍÊÇ:
755
15
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/cjkencodings/johab.txt
™±¤wˆbÐa Í\¯¡Å©œa ÜÀÜÀs!! ñgâœðÚ£‰Ÿ…Š¡ ÜÞÜÓÒzٯٯٯ ‹w–Ó Üѕ ÜÀ. . í<µwÜѓwÒs . . . . ¬á¶‰ž¡ •eÐbðà à;Òz ! ! !‡A.‡A ÓaÓaÓa ˆAˆAˆAÙi‡A_‡A ´áŸš È¡ÅÁ‹z •a·w ×✗iðà ÜÀ—a‹z ¬éŸz à;Òz . . . . Љ´®º Üъ¡ Üޟ‰Ü‹z ñgñbõIíüóéŒa»š µÁ²¡Òz ! ! í<µwÜÑ à;“wŠ¡ Ùi꾉Š´ô“wŠ¡“w í<“w–ÁÒz ‹i´—z Üޝa—A✠¯Î¡®¡Òz ´áŸš ñgñbõIíüó鯂Üï—i´z!! ÜÀÜÀsÙ½ ÙbÙb*
346
10
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/cjkencodings/euc_jp.txt
Python ¤Î³«È¯¤Ï¡¢1990 ǯ¤´¤í¤«¤é³«»Ï¤µ¤ì¤Æ¤¤¤Þ¤¹¡£ ³«È¯¼Ô¤Î Guido van Rossum ¤Ï¶µ°éÍÑ¤Î¥×¥í¥°¥é¥ß¥ó¥°¸À¸ì¡ÖABC¡×¤Î³«È¯¤Ë»²²Ã¤·¤Æ¤¤¤Þ¤·¤¿¤¬¡¢ABC ¤Ï¼ÂÍѾå¤ÎÌÜŪ¤Ë¤Ï¤¢¤Þ¤êŬ¤·¤Æ¤¤¤Þ¤»¤ó¤Ç¤·¤¿¡£ ¤³¤Î¤¿¤á¡¢Guido ¤Ï¤è¤ê¼ÂÍÑŪ¤Ê¥×¥í¥°¥é¥ß¥ó¥°¸À¸ì¤Î³«È¯¤ò³«»Ï¤·¡¢±Ñ¹ñ BBS ÊüÁ÷¤Î¥³¥á¥Ç¥£ÈÖÁȡ֥â¥ó¥Æ¥£ ¥Ñ¥¤¥½¥ó¡×¤Î¥Õ¥¡¥ó¤Ç¤¢¤ë Guido ¤Ï¤³¤Î¸À¸ì¤ò¡ÖPython¡×¤È̾¤Å¤±¤Þ¤·¤¿¡£ ¤³¤Î¤è¤¦¤ÊÇØ·Ê¤«¤éÀ¸¤Þ¤ì¤¿ Python ¤Î¸À¸ìÀ߷פϡ¢¡Ö¥·¥ó¥×¥ë¡×¤Ç¡Ö½¬ÆÀ¤¬ÍưספȤ¤¤¦ÌÜɸ¤Ë½ÅÅÀ¤¬ÃÖ¤«¤ì¤Æ¤¤¤Þ¤¹¡£ ¿¤¯¤Î¥¹¥¯¥ê¥×¥È·Ï¸À¸ì¤Ç¤Ï¥æ¡¼¥¶¤ÎÌÜÀè¤ÎÍøÊØÀ­¤òÍ¥À褷¤Æ¿§¡¹¤Êµ¡Ç½¤ò¸À¸ìÍ×ÁǤȤ·¤Æ¼è¤êÆþ¤ì¤ë¾ì¹ç¤¬Â¿¤¤¤Î¤Ç¤¹¤¬¡¢Python ¤Ç¤Ï¤½¤¦¤¤¤Ã¤¿¾®ºÙ¹©¤¬Äɲ䵤ì¤ë¤³¤È¤Ï¤¢¤Þ¤ê¤¢¤ê¤Þ¤»¤ó¡£ ¸À¸ì¼«ÂΤε¡Ç½¤ÏºÇ¾®¸Â¤Ë²¡¤µ¤¨¡¢É¬Íפʵ¡Ç½¤Ï³ÈÄ¥¥â¥¸¥å¡¼¥ë¤È¤·¤ÆÄɲ乤롢¤È¤¤¤¦¤Î¤¬ Python ¤Î¥Ý¥ê¥·¡¼¤Ç¤¹¡£
760
8
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/cjkencodings/shift_jisx0213.txt
Python ‚ÌŠJ”­‚́A1990 ”N‚²‚ë‚©‚çŠJŽn‚³‚ê‚Ä‚¢‚Ü‚·B ŠJ”­ŽÒ‚Ì Guido van Rossum ‚Í‹³ˆç—p‚̃vƒƒOƒ‰ƒ~ƒ“ƒOŒ¾ŒêuABCv‚ÌŠJ”­‚ÉŽQ‰Á‚µ‚Ä‚¢‚Ü‚µ‚½‚ªAABC ‚ÍŽÀ—pã‚Ì–Ú“I‚ɂ͂ ‚Ü‚è“K‚µ‚Ä‚¢‚Ü‚¹‚ñ‚Å‚µ‚½B ‚±‚Ì‚½‚߁AGuido ‚Í‚æ‚èŽÀ—p“I‚ȃvƒƒOƒ‰ƒ~ƒ“ƒOŒ¾Œê‚ÌŠJ”­‚ðŠJŽn‚µA‰p‘ BBS •ú‘—‚̃RƒƒfƒB”Ô‘guƒ‚ƒ“ƒeƒB ƒpƒCƒ\ƒ“v‚̃tƒ@ƒ“‚Å‚ ‚é Guido ‚Í‚±‚ÌŒ¾Œê‚ðuPythonv‚Æ–¼‚¯‚Ü‚µ‚½B ‚±‚̂悤‚È”wŒi‚©‚琶‚܂ꂽ Python ‚ÌŒ¾ŒêÝŒv‚́AuƒVƒ“ƒvƒ‹v‚ŁuK“¾‚ª—eˆÕv‚Æ‚¢‚¤–Ú•W‚ɏd“_‚ª’u‚©‚ê‚Ä‚¢‚Ü‚·B ‘½‚­‚̃XƒNƒŠƒvƒgŒnŒ¾Œê‚ł̓†[ƒU‚̖ڐæ‚Ì—˜•֐«‚ð—Dæ‚µ‚ĐFX‚È‹@”\‚ðŒ¾Œê—v‘f‚Æ‚µ‚ÄŽæ‚è“ü‚ê‚éê‡‚ª‘½‚¢‚̂ł·‚ªAPython ‚ł͂»‚¤‚¢‚Á‚½¬×H‚ª’ljÁ‚³‚ê‚邱‚Ƃ͂ ‚܂肠‚è‚Ü‚¹‚ñB Œ¾ŒêŽ©‘̂̋@”\‚͍ŏ¬ŒÀ‚ɉŸ‚³‚¦A•K—v‚È‹@”\‚ÍŠg’£ƒ‚ƒWƒ…[ƒ‹‚Æ‚µ‚ĒljÁ‚·‚éA‚Æ‚¢‚¤‚Ì‚ª Python ‚̃|ƒŠƒV[‚Å‚·B ƒm‚õ ƒž ƒgƒLˆKˆy ˜ƒüÖ üÒüæûÔ
789
9
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/audiodata/pluck-pcm8.aiff
FORMäAIFFCOMM ë@ ¬DNAMEPluckAUTHSerhiy StorchakaANNOAudacity Pluck + WahwahSSNDÞÿK1€ËH¿þ¸ú´ó)ëæíäÆâàïàWâûèïØ÷—ûõüûßûú>û¼üfÿÏC ÁQî‚€IR ïÎä c  + Q‹¶D ÖíØûžò$éãúßÂÝÛñÛDÝäþìøõˆûîýýìýöüSý³ÿ_é, è2€§ y ç Ý Ò W a ©›? êÝîü—ôë$äþàÉÞûÜúÜ-Þ-äîí öŠýÞÿÿõÿäýXþÁÿD ç[€{æÉ  î ß Ð @4a σ3 Ðúýõùì/äàÒÞíÝÜÞ>åéí÷šþÆ ûÛÿOþÜÿ?ì- Òe€8/’  Ô Ø %FúT ø€ Æÿþ­öÝì6äàÚÞâÝÝ ßCåïîøµ® ×?þüÿùÿ]â1 ÔU“ïl€ r;Ã Þ K= €û3 ÅùþÃ÷Äí5äßÝÞÝÜÝß@åýïùР Ø(ÿÿÞþdî$ ä :ư ‘ 9kÁ × E( 5‰ÔC ÐéþÛ÷´í)ãÞàÝÙÜÝà7æðúûåœ òÝÿ2þÒýUþ  ÷ !ò‹ à ûÕÅ ? @§±F çÕÿí÷±íã.ÝæÜÔÜÝà+çñóýò£ Ý èùÿ>üØû9û&ÿý  €` ü Ëÿ° > BȘ7 Çþóö»ì÷â7ÜôÛÍÜüÞâé)óõÿõ ±Ë ÷èþ=úìøø:üû "Š. 0 ´t0© ë@& ?èŒ $ÃýìöÍìââ3ÜÛËÝñß äë,öüõ À¿ ßü1÷õô@øþÿ + ýP ¹HY· Î <5 4 ú 9ÎýÜõÜì×â&ÛÛÐÝãáåí)øõ̹ àûôñõñ9õüÿø +¿ÔX Ò jØ ´ *G" Ô AçýÌõâìØâÛ$ÛÞÞÕâ èï$ú ÷Ö·ò èø ð$íõí*òûò %ß¹K÷ ùdÿª S +¹· 5þÆöÛíÞã Û%ÚîÞÏãéñ!üúß¹ã õõúí&êýêð"úñù±0 ëO ³êQ& 'Ù©ÿÏöÏíÞãÛ#ÚüßÐåôëó!þ üæ¾× þòñéæèï"úô  ·( î7þ3ÈÏ?= ñ¬þ+ÿãöÈíØâÿÙ"ØÞÔæèíö" ýìÆÍ û îðäâåî û ú#Åö-ùý#ù8üàÿÃþ$ÿJ û¹è )øöÊëÎà÷Ø"×ÞÙçÞð ù#ïÎÈ ýøêöà Þãîýÿú#&Öä'ùô6øöýÂÿ J ýÅÚ þóÓèÈÞëÖÖÞãêÖôý"#ðÕÇñôåþÛÛãð!÷'(æÚ ÿòí1óûÉó@ 1 üÍÒ üïàåÆÛßÕÖ$àñîÑùô ) ðÚÉçïàØÚ ä ó&ö* (ó× ùìè,ðýÓä 1;ý ÓÌ÷êîáÉÚÓÖ Ø)äóÒÿå .óÛËÿáì Ý ×Û è ø  )÷*%ûÚñæä(ðß Ù>"ØÇûòæüßÐÛÊÙüÝ)êùÜÚ  -"úÜ ÊüÛêÝØÝìý!*ú)ÿ!àý÷ìãã&òêÕ :. ÞÃíïå àÛßÅÞëâ"îüëÔ ö % , à ÇýÓëþÞÚàï!)ÿ&úæøòè âå"õ# ÷Õú05é ÁýÝíåãëãÇãÛæð'þýØç0  ë ÇþÉìôßÛáñ "($ùþ ëõîæâçù%Úí"6 % ÷ ÅþÎïçæüèÑèÐèð%ýåß)# û ÏÁîäàÜâò"&!üûìóëåäëý% #âä 2. ÏÅòóëé êáêÎéîïüõáö& ÝÁðÔàÜâóÿ "%ýîòçåþæ î%%êà*2 ßÃ÷áí êëòêÕéâî ûëð!  îÉñËàòÛâô "" ÿóòææöèò&&ôà øüû1"ð ÇûÓîûêêêâéàîüûõòþ úÕóÊàåÛãõ    ýúóèéðìö$!%ãîøù+*ÔþÎíìçèëðëåðôüûöûþ ßöÍáÜÚüãö  üÿõîìïîüø $# ìêôø *äÿÐëàäúçíùïíòôýüÿøøü é÷Òàרñâ ÷ûøôððñùú#!õëòû÷%óØèÛáïçýðûóôô÷üüý÷÷þû  òùØßÕ×èãù  ÿüû÷õòòùú þïð÷ö ÿãäÝÞèèõõùøöõúúýý÷÷ûû úøàÞÖÕâäøü ýþüÿ÷øóòøøôîõö íááÛåêïúôüõõúöÿþùøùû ùêÞÛÕßæðÿ ýúõúññ÷öÿ  ùíõõþ   ÿöÞèÚæíìÿðòôøñüüùùú  úñÞáÖßèêý úôûïïóôüÿÿê÷ôû"þüÛîÙêñëîïñôìÿúúüøÿ ûößæÖâéè÷   ýõúîîïô÷þéüôû#  ýÿÚóÚîöí îííñçûù ùÿõýùàëÖäêçó øúïîíôòý þ êôþ#ûÿÙöÜñúð ïîéðä÷û öñýûßîÖæëçïý   ýúñïìõïø êõ#ûÿÛöÞòýñ ðÿïæðãõýþ óîüþßòØéîç íø   þûöòíõíò ÿì ô!ûþÝöáñÿð ðýðäðãõÿüðíúàõÛìñèë ô ýüûõñõíï ùíô  üà÷ãñï ïûïäðåôûîîùãøßïòêë òüý þ÷öóïî ô îó   ýäúåòî íúíäîæòùíïùçúâññëëïø þÿùûòóï òú ð ò þéþçöþð íúëæëèîõýîñ úëýåôðíëíôý  þ ûòøþò ñ ÷ÿ òò   íèûýô ïúìèêéëñøÿïò  üïçøïðììñù ÿýñþý÷ ô öû ôñ  ñéÿúøòûîéêëêþî ôúðó þ òéüíôþîíïõý  ÿþ ñüü ø÷ú ýöð  õ êøý÷üòëíìëýì ñöòûô ÿ õ êíùýóïïòø ÿòú ýú ûýùþðÿ   ù ëöûýöìñííûí ïóôøôü   ÷ ììþüøóÿòó÷ü    ó ù þ þþûÿïÿ  ü ëôýþùîôîðúïðóööõúþ   ù îìúû÷ÿôôöû   ô ÷  ýðÿ ÿìòÿþûï÷ïóùññóøõõøü ú ïìùþúþ÷ö÷ú þ   õ öÿð îñÿþüðøñõ÷òòóùõõ÷ÿúþ üñìøüþúøùú ý ÷õñ ïñÿÿýòùòööôóóûõõ÷þùý ýóí÷þþüúúû ý ùôò ñðÿýôúó÷õõÿóôüõööýøûÿþõîõþþüûüý úôóÿ   ôðþõûôøôöþôôýõ÷öý÷úýÿöïôÿþÿýýýþ üôõþ   öðÿÿ÷üõúô÷ýõõþõøõü÷ùüÿøðóþþÿþþÿ ýõ÷ü   øðþÿøýöûôøûöõÿõøõûöøúþùñóýþÿÿÿÿÿ þõ ùû  ûñüùþöüôùú÷ööùöûö÷úüÿûòòüþÿÿÿ ÿöþ  úû ýòûúÿ÷ýôûùù÷÷úöú÷ÿ÷ùûþüôòûþÿ ÷ü  üú ÿóùûÿøþõûøùø÷û÷ú÷ÿ÷ùûýýÿõòúþþøû  þú ôøüøþõüøúùøüøú÷þøùúüþþöÿòÿùÿþÿþÿÿúú úö÷ÿýùþöý÷ûÿúùýøúøýøùúüÿýøþóÿøÿýÿþÿÿûù ûÿ÷÷þþúÿ÷ý÷ûþúùþùûøýøùúûýùþóÿ÷ÿýÿþÿÿÿüù ûþùöþþúÿ÷ý÷üýûúÿùûùüùùúûüúýôþ÷þüÿþÿÿÿýù üýûöýþûÿøþ÷üüûúÿùûùüùùúûüûýõþöþüþþþÿÿþùÿ ýýüöüÿüÿøþ÷ýûûúúüùüùÿùúûüüýöýöþûþþþþÿÿÿùþþüþ÷ûÿüÿùþ÷ýûüûúüúüùÿùúúüýý÷ýöþûþþþÿþÿÿúýÿüÿøúþýÿúþ÷ýúüûúýúüùþùúúûþüøýöýúþýþÿþÿÿûüüùúþýúÿøýùüÿûûþúüúþúúúûÿüùýöýúýýþÿþþÿÿüüüúùþþûÿøþùýþüûþúüúþúúúûüúýöýùýýýÿþþÿÿýûýÿûùýþûÿùþùýþüûÿûüúýúúúûüûü÷ýùýýýþþþþÿýûýþüùýþüÿùþùýýüûÿûüúýúúúûüüü÷ýøýüýþýþþÿþûÿþþýùüþüÿúþùýüüüûýûýúúúûûýüøýøýüýþýþþÿÿÿûþÿýþùüþýúÿùþüýüûýûýúÿúúûûýüùýøýûýþýÿþþÿÿÿüþýÿúûþýûÿùþûýÿüûþûýûÿúúûûþüùüøýûýþýÿþþþÿüýýúûþýûÿùþûýÿüüþûýûþúûûûÿüúüøýûýþýÿýþþÿýýþûûþþüÿúþûýþýüþûýûþûûûûÿüûüøýúýýýÿýþþÿýýþÿüúýþüÿúþúþþýüÿüýûþûûûûüüüùýúýýýÿýþþÿÿþüÿþÿýúýþüÿúÿúþýýüÿüýûþûûûûüýüùýúýýýþýþþÿÿþüÿÿþþûýþýûÿúþýýüÿüýûýûûûûüýüúýúýüýþþþþÿÿÿýÿÿþþûüþýûÿúþüýýüþüýûÿûûüüþüúýúýüýþþÿþþÿÿÿýþþÿûüþþüÿúþüýÿýüþüýûÿûûüüþýûýúýüýþþÿþþÿÿýþþüüþþüÿûþüýÿýüþüýüÿûûüüÿýûýúýûþþþÿþþÿÿýýþüüþþüÿûþûþÿýüÿüýüþûüüüID3 ’ID3@  =?$aTALBPython Test SuiteTIT2PluckTDRC2013TPE1Serhiy StorchakaCOMMAudacity Pluck + Wahwah
6,890
141
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/audiodata/pluck-pcm24.au
.sndM‚+-eÿëKZúT1Ãî+€ÜÖCËÞÀ²aH©˜òø¿è$°}kûþ{]¸WVú>É´°UóP+)˜0ëËb\§æÙšíú>䑽Æ%ëâx„©à¶Ïï))à)"WXØâpgû5Wè>w¿ï„Ø,[÷'*—ûwEõøeüf5ûœNß0üû@îàú48>æ¸ûZüw£ü²ôfÖÚÿ_2ϹuCi zŒÁ»`ÇNQ ¹¢ºîßdTÀ‚d·ÿÿE?€”æIœ³²R·> ¼ ï²²_ØÎ<Û¾䴜 ê-cD¨ Z|Èþ þ+¹† QHoDá‹Ìd;¶ôìë6D [Hֈ¤:Ví¶y/«ØFÎû;rž×òäÄ$Çíé¦ìn\ãŽúSïßÐqÂû«Ýv 2OۗÊñÝ9Û@ÙD^Üݯ&I%äJþ]ìX¤øHjõMOˆœLûJnîœlý(%ó”ý^ÁìŽÄýqö\Qüä!SË ýé¼³kÿm(_9àž˜éòò¬,4¾ ²èÝ·1ÿ·Žo2¿Å3€ #ÿÿçT§"ÐÑ (3 d²ys] jKçŒÁ ­vÝÝQ XiÒ÷ ÝãWѪxPç æ‚ Òah hð©MÒKG›m¥%Ü?ÕÑ åmê'BZÝ¡DN>îÞü£Õ—çÀô³`;ëR$d(äKþPà¾ÍÉ5®ÞŠiûmܯ úžÜQŽ-–!ÞxÎ-¹äÇ©îe¢í( MiödFŠiŒý ¦Þd ÿ>Së=ÿ2oõl¡ÿ‚äýýôSX&þ*ŠÁÜÿi D¸ìèÎvð£ ãt –Q؝Í@çr‹ š[j6û€Iï{R&¾Xæ@§¢ÍÉ|» Mèÿÿ ŒîOÎ úÀßÒC 9ðЁæ ]¦@pO”=4¦`H—|¯ˆÐaáæ ×Ï1¸I ƒø¡ K3Nà ÒúÚ*ÆLÐ YBú÷Âý]$†õŸ÷ùáYì /tíäx+<à¡èҁ¢Þ©íLýÝLDÜË?ÊÖÞá¼>#å(ÚéQÜíÛ­¤÷}šÃDþî¹ÆÕI gLû¶ ¼¡Û§ÿÿ8èOfCþºÜù8ÿmJ*1Jt?8„ËXìfá&U-¿í PÒÒA¥×e~­™þ€~Ç8"K³Ó/ðÁlœ’ë DBÿÿ(¾ .¶ (!Ô)Á ââØ^ž ¯k%¯Uí}F±‡ÿúߜö)T9ª BVøk}1â€ÿØe† ÿF•¾Æƚ‰’ÿÔþK³­EÞö°ÖÝáéìèè6¶Jä¼}‹àsàÚ§Þ˜Ãâð¤Ý%‰ˆÝ· CŽß/ŒCâÏåq﹟î|uˬø€ÂµA?·¡®ÅmÕ ó'båyGi׬æRZ>ÿ=þ¸ôüªÿšù]AÿRÊ]§=!â€pdÞ1Ná ‡›Ôu%!áUoê鬓T ´”}l¤GŽ˜€ ¼ßr¡û.;r õ"Ãò *ŽÞºº ¶ƒ 7}KD}}ùFü^=— -ñ÷_k€§ûã<430Œ ‘/ÅtW«^ùMƒþ°#ÃX÷EÄhí!Ï5ՏäZØ«ÁߨØÝÌdÝþ›Ý¢µÜñ¶3ßÝ-/3¯ß„R@Ôåá¸ýϛïoÆÎZùú”Ð7 … {?Ñr¬õJ5 {<—NØ^0(Âüÿx4íðÿ ^ÞU‹þ§+d”œ¾‰î7$3Ë y#䆣 N :ñ»ÙÆÔ dã°«¶÷üÿÿ (‹‘ÓË ¸l9þײkN'\ÆÁŽ }×¹a |“ .?)‡Eghà•ŸB(öÆ +å5°…ƉåàÍÔ¤yµCòã X±ÐXà(3éX¨þä¸Û¹á÷D†´ Zí6¥)aOãçxiýÞÏà Ý`ÙØPÜàкS݌ „åà<¡7ݲ民œôð¨Aú›û¢Áå __œÓ) °!ò=\ç#–Zõݨ¨±Фÿ`Œ2õfþªÒîÿýJUorþoo b!Œ åŒ÷ÆB ~P!ю ßò󍍊þÒÌ8ÿÿ ¯’Ã°î ¤dûx†Àÿÿ—£Õµ1‘ùÅ}Ÿ µë \¤?ŽˆÚ·”BT :@ƒsä§7€Ò¯±Ì¨‘F3¼  ç¢ÁœõÕ¯mÿ,íö"÷d±VmíGË"rãpí.djÝØ7æ0܂jԞÿܐ·ÉþݲKœÂàш+Ëñçv±nžñîžó÷\ýv ò5䣱¨ ÞiÝá5 èq÷ÇpÀèWçFùèÿ]×>éqüáaØö¼ûQw9ÔíûÝ<&%nÿ`ýÐÕ[—;Ð iµ?Ü L—‰2Š\€»}Ëù`H= }nüÒ­ ÚêËW[¡aÿÿ;uÿ3£lª°Ôo EДÔ€L>Xðû̉ó4˜Š• þ2BÖÊáÈsè{˜o®\—7Ñ, ?.ÊÉMüÇLËþ„óÔóöÄc»ŸøìÈ,÷PŠâ£Ö73dÜÀ¨ô=ÛÀZÍëyÜ­•üĕފîJâ@°Ùné )„þóü¸õpÿø-õóÏ ÛV±µi@GËä¼é°pU Hå÷1Rìè£×þ¹=š úïìfOøÑ%œ9øµF:X½ü<âûU,ˆE‹w  ¦ öã"æãŠ…cŒ‘.âí Ü0.ž :´ž¨J¶tØÐ&0$=3—©¦ò ‡ë9>÷è@:åçí&É,¶*‹Á H¼?•æ,%èw@Ç3Œ8XºÄÄá D$9âí«Ã´…ýûì6|ö:6Í ìâ%(â7Ô3ÖsÜ Ã£rÛPÈË­Ý"æñíßÇB 5ä±Äë.Î,Îàö9üœ¿wüõa Ž´Àký/¿M›JE ‹ BT½ÖqßÒhüñc1X£÷ÕäÎõMQ”ôÚú@s|ø´ àþÄ^Pgóžÿ°v à+ œ†h É€~ƒýPOê•P  sÒ¹pÔêfH.äºäYKgI·g¬ Ö Î[™ oÑ<3ÃÀ 5+÷$= Hn5G í„ùAd;ñhú \q9}î«GΓYý¦ŠÜ‡Uõï¹Ü—셌׌sâ(~&QÛ®C®”ÛíР<Ý»ùão¬á G4uåûšö[í8H)®{øUØrÒ­õc§{Ì't琹iÅžïý« K8mü.àœ<û=pøäô×­— ñüåõñg›9_õ•½§üMÿ2±ìšøP ¦L+Ý`i+¿(½¸†Ô +îÑXœ® öfÒþU M:à¡4j¼#v~ØÇ, 1¯´¨ Ÿ*K’ð×G@UœÈÈÑ"øí [x ð˜*>(" ÔÐ ™´A3E¹çå}ýbQÌB;õ±?â/?ì¢VØ|}âTÜÊۖŸ$WoÛ1PÞ°xÞ¶¥Õ¶†âý° [šècdQíﲿ$iKú—ð áÈ H÷†ÕÖ.æ·¥÷¹òiÚ èGr'Œè…Çø?L ˜ðËW$±:íð§õdÃíÑ»*|ÝòÜã)û:¦s…<CòÄØ uc%l[âß-fMo¹Ã[æK+‡î ÷40 $²ùviùídˆ'|Ìÿ]® ÖªHÕE\ T‡ä–S¼3B‹Ãg m® ²+Ì|;¹‘C7·uv #75» ÃFNÅþ‚µÆ>Æö¦ÉÛd+í¢lÞKóã@ @ÀÛ«`%LÚêÓî÷ÞéuϐNãçn)éÃãr’ñ;e!Ù3ü¢ùD•°úì¢߅ü›W¹EéT4㔍 üûžõ>Bõzú<Îí &N,ê"*ý> ê›t·Àð}Í"üòú_Âìöiñ!£¶*ïLõùjMæÁ±^éW61¯~Må ܵëT!çùOIÿë ö:…³$Êaê ¡/±Q@k«&oàRù$Ë ¿ 'þkyÙ~^‹‹©ÓBý'^ýoÕÿ6çÏB«öî¢Ï»ííͪÞîöãOÂdÛ ä#-ÄÚ?”ü ß<ÐB©åøôXRë²m÷ós±!¸ þ ÁªÚ •…ü>nªæóA<E¾\€×E$ ôÈÁþó¶ òXñŽéK¦ZÚæuÐ肹ï½"ÿúãØê·#ô‰¡Ó¶ K©Ü´ ²^g·a„ __4}('þ ÷KîLÑ9@7Íýþé3¯²švÈVk¯¹Ïñp^D?x%É=0¾AÐ õXƒxìñ 1Ǭë•Õêþ‘­Q+uÿÔÍã ¾ö²SȄWí)VØEâMßÿèšÙà" ¶Ø÷W*úÞÃÔ.iæW„èÙíý@U“ö=³"lG˜ñpü ÚNýõÏ> ì9xŠÿÆM üͳæ ܕ ®iûŠª Æ_îGðÜéäþº¡â7Ê/'åUïl¯îÇ rû´m³, ©1ú2»DZ$¾Rk·#Œ;Å-É;Cö‘"¡‘-X5k&ùãŸýµ#”×ùß 8ô>üÝƒàŸ¡ÿŸ€Ã×þד$͗ÿTÌJ5z!$ØÖ S` @æ”)ûŒOÁ¹ßs|èéT é.)$‰ØøfÞö4\ʘ¹ëýOΏðàî÷àzØ&O"²L×>N#ÚÞ™Ù¿$çOƒÞŒð34 ÛÞù>#0Ì3·æÔ½“÷ ï$¬°¸Î|¿¢Èˆj ký)äøØ,vê‚àöžËà‹¢ çŽÞÒÊ÷ÈãÄÅ/îp‘²ý§GFhÿ£Yœ=úÛ[#$DÌÛ&EÍÖ Š®²ä{Ø67'òŒ—-ùº„YôQ 6à…øiµöŠåý¹7ÂÉÊÿ6 rÂ"J¥XLI ‹' ïƒM¦8ý°ñ*AŸ¤ì'ڍú QABþímBókµÓò•èñâÈ)Ýށ=ë¹ßÖW¦~ÛÖU~uÞòEãoÂêmËÕÿÜô·–ñ®ý×Á"ïo #yñŠé«RýÒð+›MÜÕ³cÇðûÓñgÄô+^pÆåGÎþ¶‚Û÷¢JÛÂYE©ãy¤~ðCP§ô*úÀ§"ÞE!}Þ÷ÅÉ'½žÁ (¡ìæIËó.ÚÜ ôÒ·{ÿw[&*òu–ÖímŒ1šµó<Ò6ûõKɈɚ²ó~²õ@¸³ ý1a“×W Ép]ÁürIý…Íúì vÒaÈ ¥ ü]ÅI~ï´6à™°å>}ÆDöÛ÷"ß1ÕxñOÖ/ß$Ãfà“Øñ:Gî: ÑEðù´¨ôsªQ,m e )Ýâíì fµ¢ÐðfŸ…Ú.»„IÉÚxl"ç‘ï„B`àš_óؓQ.ÆÚ'™ 8­ä”Ò å?ó‘ý£ÆŠ\‚ù*&YùöÃ*¤¤ N”(°—óÊö×n] [ç «×ùA+òìO\ŸèG{,iãð¬ÀÌ!ýZ¬Ól_G»äDµ Q‘1IÓ;¬ £íô)¤ý¦¶ D_ӃŠ4åÌðm)­à÷¤¬’ê×±î½á¤gÉ$êÚÁ\ÓguÖ  “èØÏ )½äËR?KóçWÒ÷œÿåîè9LØ® a5.qéð>E½5ó ÎaüÛTäbõËL¾ÿ¯¬á`{ëÿq áÝú) åh׿Í«ۄР[³èot ­øÿÖ g¥œ¯ëh Õ)[à÷óp*ëÏ)% OûëXEZÚÂP¡ko¢ñÓD´Qæ¼VKä“&(¿\ð@˜µ7&ß!§ 5ÐÙݖR:¨0>“ñ *"fé–n1Û¯äØXãã°ÇŠÈœóû¿¥ò=>oSæoœüN5߉JÐ úÛ¾SʤHقü:ÑÝt[)-êî-äù¡•Ü Š”þÚ#ó ú\Š{ @-þÏߤ"¤ üòúæOQ3Ü*à XëÊKéü÷pÛ~oê]½ÝèiØ£ˆ¬YݶCÖÿìJ2EHýΕe£µ! üQ|*lXúÒÚ)¢ÿ`!€ne_±àÌý ÷ºØìEÒ4ÆãŠ`Z~ãÍ4& Wò,àýÆUùê}YK,ÕïB• 6ê¯L:º…lÌ.B? 1զޞˆÊÈÃ&+¬í…=ï>‘Ãhå(¤ K¡à¸ÅÛÏÎ߉WÅðÞ×jë]Bâz<"¹î ½‰ü£·ëÔDÇÔÓ} ‚ö/, Cg%î® 3«,öÀ !Ùàj ¶)Ç×ãý^œÓ°Ûë1xþ|ÞRэ§Ú«i¨àAôBïZ­ÿY?Ž‹ãGql!Âø~)FÉÿ‰/&³®ú««aw¼hæÈøøÜšòHèÉ N÷â¶Z7Eå^±"jßõÌá#: @!÷kÕëŸû1ú²^AV0ÇcZ`5¤ ‘,™XØéQû ÂÁÈýöúÝ«7íþÉ Qåù ã+…ëB)ãÝ+ÇßOãöVÛ.ææð{|'J½þ¸ýð(º¶ØƒW|ªçdGžÑ_Ux0'J †ô³, HOëªô lcÈHþÐmÉçìð#ô'Ó߄ýpÛé§_çá¾Øq9ñRÝí‘€á ¨3“?."EÌ/¼(6èX$Cîùßþ$ Néë_ õÊ2îìæVâØþâ‰ç‘Â϶ù#>%¢¢àºÒ` –Úä?xˆí9t"(Xr6êQ ;í%}’ D÷‡å kÅ¿9þ{>Îýfïyį*çö/{枻üì„è+ѱ è èÐnâèáÌ-/ð¼r%Vrý^¿cßöå;˜ßŒtMʐäY…)Åx#UC 5•ûýR ¾ÏwÑ×ÁçOîžôä{£à ¡{äÜ"¸â.Á|³ò-'Öç¾F£¢7r{"MÕÆ&ɋ,(!büÎŽ„û阑ìúSóêrëfPålò^‘ä2ÜoëÒü¸ý,›%É©[ ŸÁ#4{â$%ä̹¹àý ¥ø2£ì.Pâ±Ò¼ ¼7Ïõ(1ÒŒòÒ¼óvºë ðÃéå JúêÔ­á°êS1Î,‹é’©î³ï½' ü5ïÈ4Õõ&½…háÍüP°ö’¤$+–zs&„( ¸k ´S ð"ݲñØNÁ7†ðX˜Ôópàs hƒÜ)4Š)âÄjàŽótèú›I‘ÿ{. uà"_á{Ó%¢koGY6KýNhº÷î±^òy.绔åDÜþh[æ³ \îŸ22˜~%Ôÿ}+_£%£êêý[ÚùàÒplQ( ù*MQì25›r:Û ÷MßH…Çýà ÷îᘌí˜@ sêîr ë—æòàŒêöÓÕ^öépœâªÈî½( #îûh¹݉ÃÐà±K–ëxË<%ðzM:1v‘Œ!Vå  þE Kî;Ž?EÉ2µñŒ²ËÒ"à`çò«ÎÛ«²>•âÿŠòôƒÙ)? ^Vû¯¢_Uç" o¢_"ãìqèt±Ž ‡pÑNÿ̛ó˜0òx æJæ±èöyRèÙ¸eÄò±âœ×|Ï&fõåmѬ&ªôÄQ3làÿ šø Ëüá—_"û̖1Xõ”+"õ(Aàð½Ö ͗ǧiû‘¨ÓÚ+îàûŸêU>¨ê¨d*‹êÖ âë}é¥ñà$úî—HüU.ûŒj\SÐó],ìõÄÛ·œòúþ‰þˆ<y>n× ÁúQB“Õ7ó}öÊB{àÇFå Û]ë\ã}¥-›õ§÷Ú² á 0z”TL] ïwkKø’ Š,=Ù ¿èS ýiú0<ó|@èûéY!ð½'ìC£ðö\à.¤du$œQéŽ!j—%:XL N`ãꆟÛî²Rø<8ãÁù[c+ø`Ê*H¸T( ^RÔƒþp°Î. í¹0ì°çŽ2˜¾èÆ XBëI’ð¥që†håRdð9¼ô¡|üϙÍÁ¤¤—·'û`돨öAûsïd1þ;ógdMÑÔè ¨$kñèßàxö%ÍUmá\)ÜË/Ú­¶ü&ÍãŠÅèÌö¥óÛ åŤ°–­ H¥ºšï$ªyMÅ"˜±hü¬ÿ\Òõt-î¡&ì¼mï/sîÕìüNÔøÚ wa· ’-u$4#M °Gì^÷QSêhîô,ýø hÑØ.*Éìl°Ðà ämýÿ׀ÐwFëàX’ä'ÂúSõ禷Æ´íh«ù3Rï)ní«ÉòžeôWÄýmç)¸ädM5²Jü€˜ÿW¾ø6Xø ÂDüçe5@h>³–8lÒ ¾IéPù÷×SÒ%ÏàÄc×§[ØßúñæLâød ²¼÷’Þy³|õïžÎŠ,ûÚ¾_Rq0ó½AêÈø3vû©´WRø7±ô"Qð¸eð†/ñFùxØújv”œ6-ÓÎÇR# Š!M«žý\bõíåá¹ë3·ò™„ûGS÷ÀÅåˆÖÈ%ì@lô>zbóœd³kØtTèÛªäáï ×ç® ýª2ðâàû¥óƒôMwôŒ÷·ªüc³XàæwÍ ö#üéý¥Á÷¾6÷-rþ«cûgF g]çÎÕå îˆ5ò–ù›Ø`LßÅhÕ5‡×,Õè˜qãWL¾ùíC»WÞA¤Ÿ$›× ®ÕñC é ¼…íÏAÛÿ«°üÓûÓF÷+¥õò‹Kò×dù"rúDÇxiGÛ¥Îv SCœ‰<˜?:þûODØïŒhðÑ^÷@öôK ³ ú?‚(®E¤>ãûÿڏ;ã*ù䓼Ý$ÙÞ }èyès>õórõ)äù?uø*„ö‰:õµTúéúÂh‰ݘ‰aý".ýD§÷y„÷$ùû‘ûu´…6 ,VÕ%áôúØ:øûEàñ·Þ~«Ö´øÕàÓâ@äEuø¹]ü«I'ŒcÚ„€åÊÛ²6®à ÒjÈü¾p%ý0Xþûîü»Óÿ¸÷#üø•Ró$5òÆwøýÁø»Ç(ØŠÊû¶‚K¾Äô~ö´ ‡áô‘pîî¦õ€ÉöjX* `ƒ‚×âÀk  嫖cínžáp"áÙAÛóŒåÏ~ê‘Rï›údÚô·áü¯XõLÈõÆîúXäö7ÿVLÿ¸H‚ÌÁQÐþ7ù$<øíù–Öû6µt ªJŒ2ºŒwRù›êÃÞ \ÛblÕ¿‘ßC)æMÍð2OÿÀ¡‡ðÎ;-Ùÿm&,Q"™Ý "÷Ê:Œ‡v"FýöÝ:[ú\¦Öõ^-ú£ ñk;ñó÷JöÊyÿ‰¡Â 3@“×”±¢Mõ© Ï(pùíhõNõˆþà| ×î؋ ÷ÿö[– ÅÿÔöY]ÞN^èOæÚ-ÊæÌíEqìÈÿ¶‹ðuà>ÎòPôHø5ãñXQbÛü=¤ÓL¢sî¾â.üz­ùŒ&ùÓøúæ¸$U²M •{¥m qªICà ú#ñMèÞìæá@\ÖYQß§_è'ÅêàQ(¼ýß+ö{é¢ÃÚŵTƒrüÇB3 ^2†ôÌ8dúÓ\þôv§û/.ï,YïÆEóSôò"ün¿ªøìe$S`3XýWÆlÿC“ÿû?êÒ-÷¨‹ô!jûß½~µ(B"Ç.· Ëïðþ{(üÜÖÛc*ïÛÙ¢‡êC­ñtqë·ÁGûî ¾ÕïC‡ñ€.ôžnìYÿ.ú»3'?4¡6NG¦ú&7üu¹ø˜aÿSI&T¼'! —ÆNi ªû¤®ö[ÔßÅÕæõÖ~)â1¨éŸèêï°0÷êÒ¼ <sÉ®$ êÔà&Ö î~öT´ù ñb<ŒZýßS +õ¨ÎúùMî'Pî•Áﲟô>#÷°6õvÓÏyÓ§ò•ý)W¿òþÚ*íéãpüEžôv¯ûwIÏÌùƒ#þ¤ xAýv Òrý4žÿ–]Ú Só·}Ú¬–îD=ö2Üí›ø ÃÏîòùíø4í4Èñž‹ç<õû7ñùŸ€ $ $ˆUªñù&wÿ¨°õå[þs øû•|w‹uzý`ùU0àCŒë&sÖbrä’#êO´çïùʙómÊ68Å¢=-Z…¥Ìôqx1½¢ ~ öç@z‹ƽøÃ±ú‘ï¤î¨ í)môPÊó~>üýÔøä¬ Ï€ÇXIÈýÀþüÊ ±—éýù])ô¾gþÉ 3#٘·W ûѶÿõªÙÖ+ö>ºÜYÕñM>úœð. …£ï²ÌËqîŠé2Xð-LäP÷µÂû!bø­œ”vq “&iÊö©Ù­‹ñdõÊ¢0 ?/>`ßöý†²ûíßâßîšÙ֚ æ¨1ëëµç["³hïÉLɖý¥ŠÞª © œËCânÑ —‘AËq 0ŒâÃgý#Íúb‰ñÎMïóìz|ôÿ«ïV01sø œVø>P#‹ØÅå,¢~êðâˋõ> è‡ã«L£#R°YãŒ)ûsˆÿ'²Û@Wö¨Þê8ò/Šý™Eñ æðåÐÿÓïÆ®æ;êðRjã%Põ÷ýa;þHƒï~˜6 ‡ .ñó‘¢?î›¶ê޲}´ .IÏnügÍþ¡ðߢÚòTÿØS éU*î¼~ç¬| .híC|U¶øâ+ Í´Ïà!vvu P¥¤û«(Ù »fþ¨E`>û*ö ò”í”õ‡•í(ÖØòË ˞ÿ}ë8ñ¢Z¾·Unc`úìf$ ‚Wôù ñµrÁ!êj~ðq·XûœiþèÝފö`4á< ñ•ÚÿNðe  ·åð¤ïý‡YðFÏä{àðÂÂã®ëõ_íÿ‘÷üî*`)n{ûðq:Uí»¯"ÎqÓIÚqí¢óAoúå엕àìKõ”ÿۊMì4æñèÁ õ`ë¾ Å_ôØ®6žÛ¦ÿ éw·ƒ*eD›!99§Á]³ý‡JÅüóaûë¥õoñb®õáí{Æ«ï«d >øù Z÷Âýõø\EcaTAíJ8ËËóÿ  9÷… úî ä" k|šâ«Áü&Ô³¢àìŽ÷|pã¤ÆñpøgïAþ 3ï78ûÙvïN0ä6ðvå$xôB£Dëû~]±ò­g6Uî ßî1j÷)¸Úêmåµ76ù˜‘"4ãœ5øzšßiPï%)ò `êx°Tëj\ w–ò«j0ü5™Êö¤nÒ6nwMß%¦}#í&K¬ý”M ʋþ¾ÞȌ÷åÀöcïóãúïëZÓîݾ ®ô¥Ì)KX' ¼3u¯íî†|sió~-ry "Ùª5 ¡$ Ëý>6äèÑúB¾ånjò±Ó7•î×1 ¬ií cújvíc5äÞ{î@æØ’ò'£ùJhvìM“¦$7æíiÙK×ïÇûŠ“’…µñ^A!5ºyÏìù§ zRçxbúÎpâü ñ•ñÕÞëñŽ{ë:”¿ïÞüI%øˆ´˜á™}±¾ ©û J|ÊRñËÍ`<¬þ°¶)ÿû‰?ùãõûÏvòâIó2°ï̜ ò Þ@ú¤ÄB”$  ÚðWú ”‹ò¿ ¨ ¡Lª/½î3¹ ‘þ~Yjìé±þ؜ç?‹ö þÀðwg T0írÝú"=ëïvæcuëÀ¯è“ØîÊEXcõ°ÎBý.&Ëæ”'î OÀñK­¸ÀÔP÷9! Ë œ@ ‘[úƒÛ¸ªë“ý™¦åŵô/¼ð…íp¾ ¹ë tÌ.í ¥Bô˜37Zý¿½›Ï _ý¶ k:s3þ«OÚñ®r }Sû“´ìPòLøÁÒþÇoòïc ¨Jò( >Ç÷42ßàÿ)± ÍB&Ãò8P?òDI Åó±¸ CíÆCn±ýÿª5 ^[íWß…èžûµý öô 9BïX(úƒ¸ì%Ñè@yêkÈéתëÕé=ÙñQ9Úðø¾‰FBÿ>ï-òm[ò¨’_{+q ¬¸) _ U Þoü!þçÈïKZØçÖÝø7—ï(,ðk 5'ì<î-]쒾Òñb/[åùX­‚S† Jú £A ä¶ð zâùÿF×"VúVH-ý"0€ˆñÊ}þ„µýšó÷˜e Þ³ô4i AÐö<„&û¿° ßñ¶ñô§%ßÛñ¡<Ø ïñ R,QÞ Å w¿Ésê‹÷ñ±ê]émÿêæúÁ_ø©öaòڄû<ÒîE¡éûëêñ;ë.êo|þË©î ɉô|µy‡úð™ðÚ!#Šó³#NÖ'3m0Ù § …› YÉþë ·ÎòˆÕ¸?éhµüæíðâôÉþÌ<îä&¹!íÆ*Ëïtq4yõ#¨ÒÚýÙ 9] O? ÿ×j8ÿ퉞ú!Sn¹þ¦ã öËññ—ü\üñ< Þ»øŽˆ÷~NxRút< ´õýÈöÈ1DðÓΧ êƒK qJÍ—Å·³@õ°€ ®²êM{"Xø~…ý‹Êy÷”ü^Bò9Æë¥híšïì äë'"ýfì~ ¿ñC«‰öâòªûµlôfrn°Ï<æÚ« æm Ç &tÿä’ jõ&H gáêâÛî\íµùÎKýk%óI›F{ïšéYEï£0 òìu›øÔõ :†Í Á»Dû«ÁH¾›°+uýÿèž?Ìòu½=Šúº$Ž úÛý \úö‰ €ñûôJ^ýš ùNþð[˜ÿì 3:°D²C =‚ ƒ£ ‰lùw{ ¡ƒë[þæöf]Ã<s6û”jý.·ösœìóýñwèí#¼íÚ©ûðíV㠖{ïíˆ.óú½ô“lø@³ôû¤ü ¹Hnv ÁÂ£Û øQ ú’å îA÷H ˆì]¸Ž…ìžkþ‘ü>Zø3ž·ó±¯ÿ£³òCǽóWÒ5x÷ ÖÜüëÏ >£‹º@Å m•'¨ ŽhÇcf† ÍDó~Œ ÀeùN_ v Èo¾¬ÎþJa ­þMKñõþûCûU1ÿ ïé®ÿ=´N<Û'O¡û @Vn7ö Øfüéü ;ëò)ÿôR/÷ ÐýÅAþáù\‡î5øôºËîtðÉúž®ï2­dÚðg|µfó78ö™Vöƒ«õ<ú'hÜuþvÒ õÏué Á‚*çë #[ù(´ äÓî ×$<ìo؁Wúù*ûÙsµ÷L<ÿôی‰ëôÍ8bôöò“£îû,‰ ·ƒÝÿל% n™5 ™«P yŸô¡: ð¡÷–ü eÂ캯 Ð6Püþ“ˆ„ýWa ðÿ™›¢\I¤ŸONÌ 8oXÏ´}ÿĺҙìã?›òîÇo ­ ÿˆþ¡`ûZ'ïƒ÷:7ïÈóRWù?œñ@XñOÈK©óÑøfÙõ†3õaŽøi߆¬ü c‰¬ ~ŠeÚ ŽúGúÃ2 þ?ïÈMÓåìŽí™ù•uþͅhú“‚þÎó÷Éq&ÞöÞ®`ä÷Äà™qúŒz J,þ¥L ]h ¤Tßô{€ ¨ƒ»û p õ÷ vö’ÌԞ×4EÍhÑ[(äûõÉ"ÿ…&Ÿøð_FƜ Ä_¿ìóŸ ý”ÑUV.i;{ˆ î/mÈ`ñÕX.û£ÿ_±þñüG•ðîÊø½ñEîõ%ñ÷ÈòÃï*hòjÔÿió”9ùÿõbÐõˆÖ÷§’ÿ‹ú­Õá)þ¬Ê ÖU +ÜÎü9Ê¡¬ñç£‡ìî¤ŠÇøX¾°úŸxüþ¹þ“ú=ªøïJSùnË«úÚ È!ýä ³òrdWT½–_¸4GŒ!÷fÚ]õ‚™Ošç3r~QíÓ:# [êé\W>”‚ñ"B¶ùc¯cƒ¶Ðç µÖ¢7*f;wâïÁg@ñ8Õ¶ÿ¾ÿmžý`ò†¶ùá¾ò#öŠAö‚Eôvhzó:¿jòóàÑûkÃõ7¤õ×X÷þ™%ùˆ‹s¹ýh …µ š ëbýw,7EóK ­í€-üŽ÷‘íEÕêþÆþþˆ¶ü1ó¡úµT(Vúb—#®ûf8 0Äý R ø©x¼º¥DEÀé§cmùmÊ=ôì¾ÿÄ_e¥4>£&û¢Üx]µ&m?;òLÝ}gôc „Á\¾ ¯¼‚œ½]û¤[†‰ŸñºBqðÅTkßjR/Uÿ³4ý¼7ô$$úåKó”™÷Ã'õn¯õ*ÜÿÙèóþŒ&ô/ü–þõEöqZöxuýÓ¶ø†nû‰Ùû‘ÿPòà þ…¾»’õ ®i$îMø)õÝ,âb8Sþ“<þ ;{ü‡\ãaûé ¼¯üYëŒKýÜÇ Þ„A¤TC•Q““^úžýš©ô¤ØÞVÞãV OùïYÖÛ4N:`Kõ,‡Ñóµ{õÿsB‹p aª¼Æ ²Tœð üÚ9]pô÷ð‰µ´œç$«þVÔõ®4û¹ƒô~¥øÈMô¼šö)jþfÕô¸Ð[rôáýÍ3õ$Ð÷)éö-iýT÷Ô-¶úb?`AýđIyW¡ÿŠÕ.ïöǬc„ï8wÖ±ôÛ|<œÿ(]?sþ•ÛÿT­ë™ýóò‘KýAÕtýcmÇtþnè Á‚•àˆ\m‡X´ü#òÓðô«"6ꟈf˜Sm‘=gz˜K·â‡éY€õg  ’þ­C 4ÿÓk Ýò“£ /b³éÊcöy±Ë}ð—ç4ùÿþ¸M‘“&ÿ5¡÷ŽüÉõE[ùÿÒôd÷XCý õ ØTõþÝûõDiøõì üO¬÷)›¡ùCK·Pü<9˜Çÿ”‹z{Cøh ÿðAû0Éóù3[þ@å‡þ§A¶]Sÿh"jþrîd¹þjénÿ#§ úÙi óÚ>­S1´ͪ3²ýŠ0[õ ?͹ãt;‹V—Q#öP¤êI÷)nð$üîÎ¥ (ÞÃì ØkÅ )1u½§=:Ãøö$çMðÝ•«þOãøÒHÿÿ½øf/ýÊgöðû2ôG«ø“ñûËüö¬x(fõÍAÿÚóõ©Xøê3õ÷û·(öÌÁŠøof÷xúöuÈLþ'bTÞ*ùâNÂÓñlL¡ó^²ÕæýGcåàþ¥>ÐÌÿåÿïo—½ÿmûq»ÿ_ë@Ûÿê€ ÆHî_Þ1 1ùwÏMþÒþ(„õ¯šdéÜ7»ÿʧSË4tª# Y¼•ù²’þûêûWå:=pI ¸B ®Ä žÝ·ûFÀÑ1ñcØËü¦V…þꬴù”µþµ?öËiüX¤ôn¬ù×ú¨B÷ÖdLƒöºkÅ(öQ)ù× öS#û6ö̙©Ú÷ýÆ$xú øÌZü´,6Ëÿaû= Z¬ò´L.nòé¿üI~‡Eþ=Θÿ14üÿ䆚ÿëï}Ön‹ }ÛZ(Ók4VÇe3&-ÿÔ*P@ö–zÍ#þdK_ÐðH0<^Ñ7 ¿¨÷H eQ—úó²QûIrØbKù n鐲ê-r I:U(ýlӁ-ò?¨áû+֏²ã:%Lú¯ÿq÷„AýWgô¼Ÿûµù§§øþJOg÷¹¢{÷âúÏJöÜþúàÖ÷´ÿÖº÷Õ°Kùu_²”û»öþ*üs…!ô p% ò¸RûG2Hþˆ¸ž5ÿ0>!NÕ´¨Ð9×ÎÆ¼1 †š 7›d¨9†ˆøÿ>5ŸRw3÷¬iòüå>Rõ¤ÖŽ'úÿ û‚ /×=üÝH:óúÞúõŹÜ߅ é”6¥ΣóÁfLË;ÿgk¯óV|Ž)ùÏÑŠô¢OSÔû«“ÿÛ²ø8©þmõ/Íûæ­øÅ•ùõ®=pø¢vz÷æ~ûÀÒ÷„—úµQ÷xüÿ&÷ø<m¨ù6{PûF¤ØýH­ý‹›ÿ(HõmrCòº9›úODˆúþZ¥L±þö†PšjDÊÎM¼2FÕº}®ß–ªÔñú“9ÕÏL/ƒ™aøêäF0û ž©J~àëÿBù FËÁ qAþ·8úÁ»ê"&6º$ FØíQ®m„3g®GT±¨ ô´ Kø­`r­0geü–}#SøáÍþ‰Çõ¾~ü¢øvúËwùrullø£hü³Wø(zú«Ù÷ö#þrrø9—§ù%°"ìú·ü9UüŸ^þ…°þ_ öΪÿ€bòë\ÿñÍù`óÿþþêÿã¸þÉâÿÍXçâÿã Üú,¶õ¹ž®’ê46}yÈj@Aˆ§¨oú6{(ú‹ËîèµBCÓK€¥w“Àe¨ ȃvHv¯g½úîƒÅwËr¼ؚ”áEšN˜êATMýö94 ð÷Ê5Q¾ÿ”Neý[ H¸ùŽþà’ö[ý)O÷ŽõûmŠÿù¼úã™`ù;Pýšø°·ú˄øcöý܅øz Å×ù'×´úuĶûü$(ÿfÀýÆoø&hþëÊóSdÿs“ø‹wÿ™«ýÅÿšþ¬HÿšX7EÿÀ2àù,WÄ¡òq)s¶*kVy¦YuË£ v¹› û…&–ùÔãóì[ƒQ˜.ë 5›ì ¡:œ¸"2ûN†9xÿ’áýs҅qhê)ߢñ¾ý÷à×÷!H1|þÛ÷ZEýþø[ú5±ÿÈ÷½ýi÷:šûñgþÛBú $˜ùÀùþv$ù/'û÷øÒíý\½øÈìÿHùC.ÙúS¶ÔûË04¸ýLMùqüþlÖóã·ÿé÷ÒHÿ7ýX:ÿHåþ–êÿX§”DÿˆÃÎ*ÿäIkr¾ÅÀ@]ñ4Ü´û%Óã ôRÇ¥‚‰ü¿Á–Êùj÷@ÚûÖ¿õ¯2%°‚Úg 6²Íæší½hûñ l×þŽ< êw:ãG¼ ,øïw ±¼ÐOù‘¼²£ö˛¸þºY•þ€¡q‰úÚùÿQ;÷ª¦ýéÖ÷ üdýÇßûhÑú2¸ÿ;äù˜¾ûbìù/{üîhù ùE7ù\¾—ìú9Þ[Sû:ìéüã?ú§©ýþ6ôºþj÷5?þáLüۄÿýþ„|ÿÿØÿTv¤¯ÿ´–ìÉAØ'‡wõø,ñ"é§`½vÂéZôýÛheùWêT¿ðêoI€mZˆØ@ nì+ñËü¹¨©ýÆnB«Zã Ù ÅdŸo'²ûCö»Í3ý,[üþÖ¶ƒjû}ÿ{jøRFþ26÷üÃRüÅ9û}jú“ÿèIùó—ûÖ/ù-üšùIä—ÖùwõöOú(Ç„uûF”‰ü‹«ûÇwý õv%þHÑöÁgþ™ üO?þŨþoæþì{}\ÿ*eOÿ½Ù2ÔnÙ²|»±'«²=0ÁˆÎ²¡0¯þՀzÝù‡„ZæÿÚSŒ •Ÿ˜<§ ·J ß\­ý¨4ÒMý.YkÀ;2#d»ô&”Rhòl”œüæÐˆöóØüK._ÿ ã”Vü\ÿ¡!ø÷;þs÷5¡ýûÞyûÜðšSúðzóúK£ü[ùÓü[úùŒÿÿùXùžªL]ú(Øû*(¶üD³üÐsýM›öeñýú öqæþRû»Œþ„àþTaþ±êÈþòCÿV‡ÒDÿàƒ̙šMj‰}÷[¯maH¡Œûÿž]{ùú°YLþÌü²¼„î]iCº€IæÛQ>öþ¬áüÔv£»IQVÄ8#bÙYK1Žgþnû†m÷o¡ûx qÿD¯ü«ÿÊßù—Mþ±{÷vDýkxûõü2òÈû@ïê¹ú•·üíâú×ü8vùÂXÿfÛù»â aú#á€,úöL«þü1ýÀDý¸÷eý²ÏöO„þèû$;þNœþ/Xþ‚ÿ´œþÆX¯ÿ+mÒIÿ³—;˜g?C¯‹Q/Š”Ð ’ÆÅ·>Œ:&ú›êMpýÕ² ¡¯óԝw݈!©£fƒzù]Ïÿ¾Ô/Ôü®õҍ ­z×ÖúS4øaµ{qЦÿØO…bø!u"gú»Ø€·þñWÅ¥ý2åÿí²ú0Ðþæ­÷Ðeý²•úm‡ü•[Aû;—úÝ@ý†[úXæü.¼ùûÒþã¼ùá©öú+ÎTéúÝ¡nûÐ`þ™düÂ}ølaýuöVýܝúpþ¶ýýLþU ÿlþš†C7þþÜÒ¾ÿ„¶¼¬2?þŠ/µ+ð–ÇðÎ5Œå ²V¹û^®: ýS݈ã'/ žw’Ð{zØ!tÓ§O†ü½ùè ²ŸB„mžl§1Š[«‡bù®/3ú!•Úþ°á¾ý­B~úÄÿ`ø<7ýù¶ùëüÐUÿ£mûÙ"gsû#°þ >úš?ü<´ú4’þoú yP7ú9G(úÌÿnû¦ÿ[büŠ7ùtAý< öƒSý§óúÆýëiý¾þ&3ÿ1³þl Ò{þÎjÌÇÿQ$Tãÿø« Ç¢Ø|¬aùŠë‘rO|Èáü3ƒ±ü\ 6ÞëÆ g±>û\‹ßFpVüû–${%)ʔ—¢ÝÓþ‚ÑŒã•Å&t“2ú rDù¯£±îþPÈîþÃ=¶ûQ ÿSXø´>þ={ù‹èý¾þåDü •qiûd¾þ´àúÕ®übæúgýþ 1ú-½± úF*»wú¾úÌçû€» 4üW®úv›ýö×7ýyŽùˆkýÁ@ýrýþÿÿsþEßa”þ¦Ô½¶ÿ&ürÿÉ I.‘%ñOq"'×N÷Ÿ`n2r²cý ÎÛûë– EÃßë²JºÈƒîš}ã–hÜwƒÃýa•Ayÿ`éˆÛï¨ÆœJ‘Fz¤šŸ¹˜*û*øRùj…ÇÜýÜ$$þg5`Xûכÿâù3÷þyýùQøý_²þ(&üdè[Sû¤¤ÿ?àûïü—úžÿý¸LúY1®ú]ÅTú½âæûhÛ¤¶ü1[ûošüÞþ÷KýR™ùkýœhýÝýÚÛþÚ.þ Ýöþ~˜¡þúªÄHÿ–ÎÝ¢W¸ÿh2–R­C·‚Ù0L}ÏýÛ}Ý´û±àöA6\å'ñ¾Z æ ¸™WÀ¾?’ºýìZïþÁvAËÂ÷[þ£ƒ^¤Å¼ ¢ üT¥d¨ùXãPýXÙ?@þ¡¼ˆüW÷ÿ³ºù¶úþ·üù9Pý¥zýrÓü©Ý&kûä5ÿ»_ûL“üëúÓõývkúƒ†Ž úvWà,ú¿û'ÂûU’.Æü±üYËü¹R÷Ûôý/qøÍËý{€ü¸5ýºŠþ´áýÿ¼’®þZfwýþÒg—²ÿhÛnq"mÿ÷xzàÒÖY;WeHGþ˜h¶!û®\Ý¢ÿ˜àÙ *¼TßÁ¢:%  gÌœ+þÎnéþK íDãÚËä´á:×®ÕG« ý~‘ujùvñüüÐØ]ÝþÂ)¬RüÐxÿàîú:“þð¢ù>¹ýæ[üÊDüë#ײü!$û…OýGûSýG‘ú¯L Ÿú’±c¯úÇì5ûIµ©ûõøý4"ü›ø‚¿ýOø—…ýaœüPbý¡þŽßýå9Èþ<…A’þ°;xoÿA-Gÿóð\ÂEžÃ™Çú­e1Z+³ÿ=zÞûÙ¸Â]þ÷ ÈbO´RC<b«›©”œsÿIix¾ýü®0ßvéûµË¾íë²¥ªê­Ýþž+ÍùÅ3¢üLx;þÈØÌžý@n ãú¼&ÿ$×ù^Çþ#¦ü4Øý*Zr8ü\ëwû½ªý­¶û=vý+úÝÒÿ–èú´bâSúׁ.ûF¯zûå ýü”ü„˜ù9æüý½ø}\ýMnûæPýŒ4þdùýÎAÿì…þ!™ÿúþaîÿטWÿŋҁ¾µaM!»,DZzßÿűbü-Ô£ þ\ª³Žõ¨'Ê>•3ãÒ“á’±˜ú +~šýØZ=ó­„÷ÌM Éê·œîi± ÿ«UŠrú=÷$üûÔH“Bþµ>í@ý¦2Jû:[ÿWgù”sþ^êûµHýgáÿûÁü—6±Ðûô)þ†ûp¾ý"û Dÿ-+ú֘_}ú鉮ûG»n·ûÙþ²åüsùûQüí1ø]ý>âû~ý}Šþ5ý½ÞÿªWþ ¶þvýOyþûê:$ÿŸ.¥þ_ñـ/&IÏø—\4­1¿7eüŸáƒ#ýÓøœkΞ˜TrŸˆå,‡KÜr+Ô©|ÞýÚºChñ½þªÕ#Ìæ½”¶ð察¾ŽoúÚÕ2«ûp>¨þŠJ‹ýÿSóû³Üÿ‚ùùÛ¼þ“ÍûNÇý ÿy7üÎ Óùü(Dþ‰û¢ïý+–û9ŽþÐLúüÞBûøä—ûO¡º˜ûԉÿW·ühÍúÁ\üãœø¢lý7@ûýu«ýýÙý³óÿr?ýÿ¬gKþc™<ÑþâYèÿ~lž7;îR#q:È<b:}%‚— (ý%“b<ýeƒQ’è…o6\y)rcvÖû%€(—étÉþ¸BŒG°ÿëOØËð;²''é>vxÄû”„;ùû'¹?þK,¶þJõrTü(ÿªéú/ÿþÅ9ûDý֑þð`ýÜ»üZÞþôÝûÓüýF‰ûg¹þ€–û"ú`ÝûѦZû\kö–ûÕªÿë=üd%û‡üßbøß ý5úÃøýswý¿ý¯¥ÿBý÷gåþU¯&oþΣeÿb&(¶]ü×O–ì›Im½O¨¼!ãœý´¯@µý­hÐC pNµfô¿c¹ñŽmwPgäþHÚ<¼ÿ´àüοÇ1W¶ª(៛-™ˆöübN@åúüçÆtýü‚1æþ†Œ\ü–pÿÎ ú<þñÜúÏÆþšþf~ý4ûÍQüŠÂÿYïüÒýq€û”»þ>ÑûJ\é@û8ßZûlë"dûÛwnÀüduüGðüà*ù4Ûý8núyêýw6ýyNý±ŠÿƒýõÇûþNE ôþÀQkÚÿLÝÝ~ÿõö*³dºs~ó&`âݼ¥þCÝ 8üësNFÿã.YïôRÅîNÃVñöµU¬þ«:1ÿ<»ô&5½]œöÒÄ7~Sý;œ?ÊúôÄÎ*ý£â?îþ¯x¡#üþhÿë²úïþÿ(ú¶…þ63ýà¸ýc~§Wü·êÿ´–ü/…ýªCûÀ®þ ]ûrUxÔûX^û`=—ûæ)ãüiôýºüæ!ù rýA:ú@êý€ßý-ëý¹ƒþïìýùÝ}/þLüåúþ¸…@#ÿ=€ŽqÿÞ=üĔ”Ú/P•6šû¬—ËþË\qüãß3–ÿy(ByÞÕ<à‰Ï6gtõ=]†°?ÿ#H Wþáò惉®¬Ö¡‹Ó }ú;‡nüþ9¢ûÑ7ýGjI˜þÆ ±hý_>†ûUXÿ;¤ú´•þ_­ýcýŽÉmMüâeµüYôýî1ûë8ýæ¥ûšAÉûyj¥Ôû˜¾H:ûôªI:üs¢ý®àüðYúÝýNœúiý©üßýÆçþÈÓþÄ8^þQ_ºDþ¶Tÿ3É?ÿÌî!zìö¼1?¯hÞ¶ UuªÿEsâüý‹xÿ ÿ*«È1%æ9 Ç!Jûƒ$”ÿ«% þ¥¾ÔvìG›ïˆLvîfú•¦ZçþïÏ.cûL[ϦüídOþɕ½Œý¸!ûºûÿYÀúÇUþ…Yüó*ý·"1ý b>Åü‚&þ:Sü)ýÐÇûÁÄÿ±Øû›BÁû²šBü¡ü þPžüþWú¨Ûý` ú ý¢ýü=ýÙ þ þ¥ÿúuþZ·“þ¹³ÿ.ëòÇÿ¾œÔäe†pÌ¿á;U—ÿ®dĘý4$ÿ¥þ£V›ª”,«Ð ”~¬RÑd<†ò`þˆª¿ATY†l/²^ÅÍüMzÕëCËÿ¼˜û¨1Ê¥üœQzþºÆcþÅ)áü1ÿsÿúëÅþ§ü’Qý܎ÿɺý/ãjBü§þþ‹>ü;6ýÉóûèDÿ\Àû½ïÝûÍÐ-tüµì“ü‘6þå=ýRû=ýtéúÖýºŽüAnýð5þt)þ&ÂÿêþiÌOcþÁpë"ÿ/è¬-ÿ·±bUÄ# ÿÞéÖ¥}À8Ó¶©@ýæÁþE¼úº‚ªõr^ç½ç㙊7æ©ÒÔäþˆ˜¥bÆ:lÌwB‘©Ü/2ÿ%'Ày #üÕÀ’üY*OþšnÊ·þMz5çü€Vÿ‰ûöþÅvüC§ýþ¼ÿg¥ýSƒUüË©þÝvüa%ýÑÊüeÿTûáþy^ûë8êü2‘+`ü¤Fÿký$9û×»ýŒlú*›ýÖkûúTþ 'þAóþ?Kÿ•Àþ{ATþÍÏÖéÿ2¡j³ÿ²þ‡cG<0ìš D‹Ÿ'™$JùXýÜ`ÎâýûïâL_Ý&PË~ˆ.ÃJ£6ÄCdµBþ¥‰ñF OÌ^Í&=ƒ%äR 9%ó4ü¦ƒ··ü/¥I(þd‰Òþ ={üÓõÿ¢˜ûh¤þÝeûú÷þ%îÿØýnâx®üõEÿ@zü}CýÒ1ü<þèûúžûíüˆøü<H5ÝüËZÚ
19,865
254
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/audiodata/pluck-pcm8.wav
RIFF\WAVEfmt +"VLISTZINFOINAMPluckIARTSerhiy StorchakaICMTAudacity Pluck + WahwahICRD2013dataÖ‚ˀ±„ˆK†Èƒ?ƒ~8z4s©kšfmdFbŽ`o`×b{h“oXw{u|ˆ{_{‘z¾{<|æO„ÉAŽÑ’n—–ÿ”’ɎҍoNdŒãŠˆŠ«‹ÑŽ ‘6ŽÄŠV†mX{r¤i›cz_B]ˆ[q[Ä]•d~lxu{n}…}l}v|Ó}3߁i†¬‹h—“²——ÿ“'‘Œù‹gŒ]RŠ×ˆ‡“‰áŒ)¿Šj‡]‚n|t“k¤d~`I^{\z\­^­dnmv }^‡ud}Ø~AĀ“„‰‰”Žg’Û––û’fIŒÿ‰nŠ_ŒPŠÀ‡´‡ˆá‹O³‹‡Pƒz}uyl¯d€`R^m]ƒ\™^¾eim”w~F‹{€[Ï~\ž€¿ƒlˆ­Rå”•¸‘¯‹ÿˆ‹‰TŠX‰¥†Æ†z‡Ô‹xœŒ›ˆF„~-v]l¶d„`Z^b]‡]Œ_Ãeonx5€.ƒŠƒ‚‚W€¿~|y݂b†±‹TÕ’”o‘쎊ò‡»‡CŠ^‰“‡Ë†‡½‹’{޳‰E„y~CwDmµdŽ_]]]\‡]…_Àe}o„yPƒ †‚†‹„X‚¨š^~ä€n„¤‰dºF“0ÿ‰¹…ë†A‰W‰Œ‡Å†Žˆ¨‹µ “TÃŠP…i~[w4m©cž^`]Y\„]‚`·fŽpz{e…‰rˆ”†]ƒ²~R}Õ~‰‚‡w‹¡r’ ÿŒC‰{…ÿ…UˆE‰‰‡¿†˜ˆš‹À'“1Æ‹g…Umw1m’c®]f\T\]‚`«gžqs}r‡#Œ]‹™ˆh„y¾|X{¹{¦}„ƒ‰‘àŒ|‰K…ÿ…ˆ0Š€ˆ¾†žˆŠÂH”‘·‹……G~sv;lwb·\t[M\|^…bži©suuŠ1KŽ—Šw„h~½zlx™xº|{„‡†‹¢‘ ®°Š4†ô…°ˆ)ŠkˆÀ†¦‡‡Š¿h“ ‘œ‹¤„C}lvMlbb³\‡[K]q_Œd”k¬v|‚u@“?‘Ž‹†„_|±wƒu€tÀx„~€…‹«‘ ’}ŽÐŒ9‡È…Ùˆ7ŠN‰¼†µ†€‰´‡“ ‘z‹¹„N}\u\lWb¦[™[P]caem©x†„uL•9“€Œ’ƒ`{t˜quq¹u‘|„x‹«’?”TØR‰š…ê‡XŠ4‰ª…Ç…€‡¢Œ ’’T‹Á„g}LublXb•[¤[^^Ub‹h“o¤z‡w’V—7”rŒ˜‚hxŠp¤mumªr{‚…r¥”_˜9”ˏwŠy„ä…ˆ*‡‹ƒÓƒ…Š«‘9“7µ…‡~Fv[m^c‰[¥Zn^Oc€i–q¡|‘ˆz“_™9–cŒ˜€uuzm¦j}jœp¢zˆ…q˜—y›1—±‘–ŠkƒÏƒ …3…j‚с¦„€‰§‘Y”)œ†ŸOvOm^cƒ[£Z|_Petk–s¡~•Š|•f›>—W‹“~‚rqiŸf‡h“o¢zއt’‹š‹Ÿ7š‘’¨‰n·~³H‚O€¿€½ƒ‰™’q—,‘~ˆ«cvHmXbY¢X†^Tfhm’v¢€™Œ}—lœF˜MЉ{npd”ben {’Šz—Ÿ’£Ev’­ˆy}£y¸|`C~¤ʄŽ‹Œ”{š9•hŠ©€xvJkN`wX¢W^Yg^p‹y£ƒ€˜oN˜HŠ}x”jv`‰^cŽnž}”Ž›z£“¦Vžd‘§…†y—t¶xv}BŠ€Ê† ‡—}E—Z‹Ÿ~ˆsShH^kVŸV›^cjUt}¢‡£‘„™pU—G†qt”e~[ƒ[cŽp•“ƒ¡w§¨fžZ›r“m±s†{I€sƒÀ‰±‘‹š|ŸMšR‹”|“o`eF[_U—V¤`qnQyt‚ŸŠ©’‹™p›Z”Iƒgo`†XZŒd‹s›†˜™‡¦vª‹¨sW‰y•l’h¬p}S…d‰±»••œ} S™Lˆˆw™jnaIZSV‹X©dsRe‡•Œ®’––s—[KakŠ]‹W[‰h‰x™ŒšŒ©wª„¥{˜Z‚q”f’d¨p™_ŒYž”¾˜¢›ƒX•Gƒ{rœf|_P[JY|]©j’y\„Z‰‡Œ­Ž¢’z’\ŒJ|[j…]Xƒ]†l‡}•œ¡ªz©¡€“`}wl‘c’c¦rž†j“U–‹–º—®˜˜^‘C€mošeŠ`[_E^kb¢nŸ|k†T‰v‰¥Š¬‡Ž`ŠG}Sk~^“Zˆ`…o„’œ¡”©¦zœ€Žfxrhb‘e¢u£ŒwšUšz—°”µ’™’iA}]m“e•ckcGc[f“p§~}†Xˆg†–†°‰—ŒkŠH~Ilt_”[a‡q€ƒ‰”𢙍†¤y˜~Škunfˆbgžy¥‚ŸZm•¢¶Œ¥w‹E~No„gšf|hQhPhp¥}…e‡_„„ƒ©‡£‹{‹O€And`\—bŽr…‚•“¢š¦Ž¡|”{†lske„dŽk›}¥•‹£bŸd’’‰²†®ˆ‡ŠOErsk–i‹jajNinoš|˜…u†aƒvœ…¦Š‹‹]‚ApT`‚\™b—sˆ‡—Š¢–¥“žƒ}‚nrge~fnš€¥˜“¥jž`Ž…ƒª€²…–‹_…Cwam‹j’krjUibnŠ{˜…‚‡kƒp€Žƒ¡‰”Œn„IqK`r[“bœt“‰‚˜„¢Ž¢’›ˆŒsrffvhˆr—ƒ¦™š¦t`‰x|ž{±„¢p‹G{Sn{jjjbi`n|{‘†ˆˆu‚r~…€™ˆ–Œz†UsJ`e[‡c›uš‹‹™„ ˆŸ—‰ˆ…}zshiplv’…¤™¡¥€›c…nxy«…ª“ƒ‘T~Nmlg‡h‡kpkept|‡ˆ‡ˆ{v{‚~“‡•‚ˆ_vMa\Z|c”vŒ“š‰Ÿ†œˆ“‡†…|unlon|x‹…Ÿ˜¤£‹™l‚jt„x †ª—‘•dPk`dzg„myomrt}‚‡„‡|xx|‡•‡‹iwR`WXqbŒwœŽ™›ˆ™†ƒƒƒ{xtppqyz……˜•£¡“˜u€kr{w”ˆ¥š™™s€Xh[aog}p{sttw|…‚…|}ww~{ˆ”‘‹ŽryX_UWhc‚y˜‘œ–›”‡‹‚|€{wurryz‚ƒ’’ Ÿ˜˜~€opwv‹‰žœœ›€cd]^hhuuyxvuzz‚ƒƒ„}}ww{{ˆ‰’“Žzx`^VUbdx|“œœš—”‹ˆ‚‚}~|wxsrxxŽžš˜†€tnuv„‹–ž›ž‡€maa[ejozt|uuzvƒ†ƒ€~yxy{ƒ‰Ž“yj^[U_fp†”—›œ“™‹‘†‡„}‚z‚uzqqvv€Œšžœ™‹€ymuu~ŒŽ ˜ŸŒv^hZfmlp€rtxq‚|‡„ƒ€|yyz€‡‰’„zq^aV_hj‚}”˜™Ž›‡–†‡…z„t{oost|€ˆ˜žš‘jwt{Žˆ¢’ŸŽ~|[nYjqk…n‚oqtlz‡‡†„€z|x…†’А…{v_fVbihƒw”‰••Šš„™†’Ї‡}„uznnotwƒ“œ™–~‡i|t{‚¤ŒŸ‹}ZsZnvm‰n‚mmqg{y„‹‡‡ƒyu€‚…“ˆ’…}y`kVdjg…s”ƒ’‡˜ƒšˆ–Œˆ‚‚xzonmtsƒ}Žšš—™~i‚t~’£‡ˆ{Yv\qzpŒonipdw{€…‰„vq‚…•ˆ”…}{_nVfkg‡o’}Ž‹„•‚šŠ™‘‰‡€}zqolto„x†—•–™€’jˆu‚’‚£…š†{[v^r}qpofpcu}~’ƒ‰„s‚n‚‚…—ˆ•†|~_rXing‰mxŠ…‚ƒ˜š•ˆŒ~‚{vrmum„r‹”Ž––‚”ltˆ’…¡†˜…{~]vaqpp}pdpcu|”‚ˆ„pƒmƒ„…™‡”‡z€`u[lqhˆkŒt†€‹„•Ž™˜†‘}ˆ|{uqum‚oŠy‘†•‘„“mtŒ‘‰ ‰–‡|€`wcq€oo{odpet{”†„n„nƒ†…™‡’‡y‚cx_orj‡k‰r„|‚††Ž—˜…”}Œ~wvson‰t€•‹†nsŽ‘ŸŒ”Š}„dzer€n‹mzmdnfry“€„„m…o…‡†˜ˆ‡yƒgzbqqk„k‡oƒxƒ‚†Œ”Ž—…–~‡y{rs€o‰rŽz”„ˆŠpŒrŽžŽ’Ž~ˆi~gv~pŠmzkfkhnu‘}ƒ‚n…q†‡ˆ–‰‰z…k}etpm‚k…m‚t„}†‡Œ–†—~“€Œ{rx~r‰rŒw’‰…rˆrŠŽœ€Œmƒh{}t‰ozlhjik€qxƒoƒr†‡‰“‹Œ‹|ˆogxop€l…l‚q„y†‚‹‹Œ’†••€}‡q~}w‰tŠv‘{‹€tƒq†ŒŠ›Žqˆizxˆr{nijkj~ntƒzp€s„†ˆ‘‹‹~‹r…i|mt~n„mo„u†}ІŒ‡“”’~‹q„||‰xˆwz}v€p‚Š†šŠŽŽ‚ŽuŠj„x}‡w|rkmlk}l‹qƒvr{t€„…މ‹u‰jly}s„o€o„r‡x‰€‹ˆ‡Ž€‘‘Žrˆz‚‰}‡z{}y~p‰‚˜†Š„ŒyŠk†v€‡{}vlqmm{m‰o„stxt|ƒŒ†ŠŠŒw‹l…l~|xƒsrƒs‡w‡|‹ƒˆ‰€s‰y…‰€…~‹~~{o‡€—ƒŒ‡…‰|‰k†t‡}~yntnpzo‡p„svvuz~ŠƒŠˆ‚‹yŠn‡lz{ƒwtƒt‡v†{Š€ˆ…Š€Œ‚Œt‰w†‰ƒ…€‰€’€}€p…€•‚‹…†‡‡l…r‚†~{owosyq…q…sxuux€|‰€Š…„ˆzŠo‡lƒy~‚z~wƒv‡w…zŠ~‰ƒ‚†€‰‚Šu‰v†ˆ„„‚‡’‚p€„€“Š„‡†‚†n„q‚…~|pxquwrƒr†syuuwz‡~Šƒ…†|ˆq‡l„x€}~z‚x‡y„z‰}‰‚„€‡ƒˆw‡u†‡„„‚†‚“‚‚q‚‘‚Šƒˆ…„…o„q‚„}ryrvvts†s{uuw~y†}‰…„}‡s‡m„w€~~|‚z‡z„{‰}‰€‚ƒ€…ƒ‡x†t…†„„ƒ„‚’ƒƒƒr‚€‚‚Šƒˆ„……q„p‚ƒ€}tzswuus†t|uvv}x„{ˆ†ƒ~…u†n…u‚€€~~|†{ƒ|ˆ}Š€ƒ‚„ƒ…z…t„…ƒ„‚ƒ‚’ƒ„ƒsƒ‚‚Šƒ‰„†…t„p‚€€~u{txtv~t†t}uwv}wƒzˆ}‡„v…o„tƒ~€}†}ƒ}‡~Š€ƒƒƒ„|„t„ƒƒ„‚‚‚‘ƒ†ƒuƒ~‚‹‚Šƒ‰„‡…v„pƒ€€w|uytw}u…u~uxu|w‚y‡|‡€‚x„p„sƒ~~€€†~ƒ~‡‰€ƒƒ‚„}„uƒƒ„‚‚‚ˆƒw‚|‚‰‚Šƒ‰„‡…x„pƒ~€€x}v{tx{v…uuxu{vx†z‡~€y‚qƒs‚}~€…ƒ†‰€„‚‚ƒ‚„~„uƒ€‚„‚€Ž‚‰‚y‚{‚‡‚Šƒ‰„ˆ„{„qƒ|‚€€y~v|tyzw„v€vyv{v€w†z‡|‚{r‚r‚|~€€„ƒ…€‰„‚‚ƒ‚„„vƒ~ƒ„‚€ŒŠ‚z‚{‚…‚Š‚ˆƒˆ„}„rƒ{‚€zw}t{yxƒwwzvzww…y‡{‚~|€tr{~€€„€ƒ€„€‰…‚‚ƒ„€„w„|ƒ„‚€‹‹‚|‚zƒ‰‚ˆ‚ˆƒ„sƒy‚€{x~u{xy‚x‚w{wzww„y‡{ƒ}}u€r€z€~€~€ƒ€ƒ€„€ˆ…‚‚ƒ„„x„{ƒ„‚€‚‰‚‹‚~‚z‚‰ˆ‚ˆƒƒtƒx‚€|€x~u|xzy‚x|xzw~xƒy‡z„|~~vry€~~‚ƒ€ƒ€ˆ…‚ƒƒ„„z„zƒƒƒ€‚‡‚‹‚€‚z‚€ˆˆ‚ˆ‚‚ƒvƒw‚}€y~v}w{z‚y}xzx}x‚y†z„|}x~sx}~‚ƒ€ƒ€‡†‚ƒƒ„„{„y„‚ƒ€‚†‚‹‚‚‚{‚‡ˆ‚ˆ‚ƒƒw‚w‚~}€zw}w{~z‚y~y{x}xy†z…{€}y~sw}~ƒƒ€††‚ƒƒƒ„|„y„ƒ€ƒ„‚‹‚ƒ‚{‚~‚†ˆ‚‡‚„‚y‚v‚~~€zw}w|}{‚zy{y|yy…z…{€|z}t~w~|~€ƒ‚€††ƒ‚‚ƒ„}„y„€ƒƒƒƒŠ‚„‚|‚}‚…‚ˆ‚‡‚…‚{‚v‚}~€{x~w||{‚zy{y|y€y„z…{|{}u~v~|~~~€ƒ‚€…€†„‚‚ƒ„~„y„„ƒ‚ƒ‰ƒ…ƒ}‚}‚„‚‡‚‡‚…‚|‚v‚|€|x~w}{{z€z|y|yy„z…{‚||}v}v~{~~~€~ƒ‚„€†„‚‚ƒƒ„y„~„ƒƒˆƒ†ƒ~ƒ|‚ƒ‚‡‚‡‚†‚~‚w‚{€|y~w}{|{€z|z|yyƒz…z‚|}}w}v~{~~~~‚‚„€†„‚‚ƒƒ€„z„}„ƒƒ‡ƒ‡ƒƒ|‚‚‚†‚‡‚†‚‚x‚z~€}z~w}z|€{z}z|y~y‚z…zƒ{~|x}v}z~}~~‚~‚ƒ€…„‚‚ƒ€„{„}„ƒƒ†ƒ‡ƒ€ƒ|‚‚†‚‡‚†‚‚y‚z~€}€zx}y|{{~z|z~z‚z…zƒ{|y}v}z}}~~~‚ƒ…€„‚‚ƒ€ƒ|„|„ƒƒ…ƒ‡ƒƒ|ƒ€‚…‚†‚†‚‚‚z‚y~~€{x~y}~|{~z|z~zz„zƒ{€|z}v}y}}~~~‚ƒ…€„ƒ‚ƒƒ}„{„€ƒƒ„ƒ‡ƒ‚ƒ}ƒ‚„‚†‚†‚ƒ‚{‚y}~€{y~y}~|{{|z}zz„z„{€|{|w}y}}}~~€~‚~‚„€…ƒ‚‚ƒ}ƒ{ƒ€ƒƒƒƒ‡ƒƒƒ}ƒ~ƒ„‚†‚†‚ƒ‚|‚y}~€|y~y}}|{{|z}z€zƒz„{|||w}x}|}~}€~‚~‚„€…€ƒ‚ƒ~ƒ{ƒƒƒ‚ƒ‡ƒ„ƒ~ƒ~ƒƒ‚†‚†‚„‚}‚y|~€|z~y}||€|€{}{}z€zƒz„{{}|x}x}|}~}€~‚~‚„„€ƒ‚ƒƒ{ƒ~ƒƒ‚ƒ†ƒ…ƒƒ}ƒ‚‚…‚†‚„‚~‚y‚|~€}€zy~|}€|€{}{}zz‚z„{‚{}|y|x}{}~}~~‚ƒ„€ƒ‚‚‚ƒ|ƒ~ƒ€ƒƒ…ƒ…ƒ€ƒ}ƒ‚…‚…‚„‚‚z‚{~€}€{y~{}|€{~{}{z‚z„{‚{~|y|x}{}~}~~‚~ƒ„€ƒ‚‚€ƒ|ƒ}ƒ€ƒƒ…ƒ…ƒ€ƒ}ƒ€‚„‚…‚…‚€‚z‚{~~€{y~{}|€|~{}{~z{ƒ{‚{|z|x}{}}}}~‚~‚„€ƒ‚‚€ƒ}ƒ}ƒ€ƒƒ„ƒ…ƒƒ~ƒ€ƒ„‚…‚…‚‚{‚{~~€|z~{}~|€|~{}{~{{ƒ{‚{|{|x}z}}}}~‚~‚„€ƒ€‚‚€‚}ƒ}ƒ€ƒƒƒƒ…ƒ‚ƒ~ƒ‚ƒ‚…‚…‚‚‚|‚z}~€|z~z~~}€||}{~{€{ƒ{ƒ{€|||y}z}}}}€~‚~‚ƒƒ€‚‚€‚~ƒ|ƒƒ€ƒƒƒ…ƒ‚ƒ~ƒ‚ƒ‚…‚…‚‚‚}‚z}~€|zz~}}€||}{~{€{ƒ{ƒ{€|}|y}z}}}~}€~~‚ƒ„€‚€‚~‚|ƒƒ€ƒ‚ƒ…ƒƒƒƒ~‚‚‚„‚…‚ƒ‚~‚{}~€}€{z~}}€||}{}{€{‚{ƒ{|}|z}z}|}~~€~~‚ƒƒ€‚‚‚}ƒƒ€ƒ‚ƒ…ƒƒƒƒ~‚‚„‚„‚ƒ‚~‚{|~€}€{z~|}€}€|~|}{{‚{ƒ||~|z}z}|}~~~~‚‚ƒ€ƒ‚‚}‚~ƒ€ƒƒ„ƒ„ƒ€‚~‚‚„‚„‚ƒ‚‚{|~€~€|z~|}}€|~|}{{{ƒ||~}{}z}|}~~~~‚ƒ€ƒ‚€‚}‚~‚€‚‚„‚„‚€‚~‚€‚ƒ‚„‚„‚€‚||~€~€|{~|}}€|~|}|{{ƒ|‚|}{}z}{~~~~~‚ƒ€ƒ€‚‚€‚}‚}‚€‚‚ƒ‚„‚‚~‚€‚ƒ‚„‚„‚||~€~€|{~{~}€||}|~{€|‚|‚|€€€
6,756
4
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/audiodata/pluck-pcm16.au
.snd3¬+.ÿêK\ù1ï€ÛDËà°H«ó¿æµgþ€¸SúB´¯óQ)—ëÍZæÜíùä’Æ'âwà·ï)à)WYâqû4è?wï…Ø,÷'—Žûyõ÷üdûžß0û@ƒú0>êûY¼xü´fÕÿ`ÏC }ÁºÇQ# îáT‚fþH€˜I™·R´ Áï­eÎ:¾ä· æcI WÌ +¼ QHF‹Ë<¶öéD Zֈ=í³3ØEû;žØòä$Éé¦oãúVßÏÂüÝw1ۚñÛÛBD^ݰIäþìWøKõJˆŸûIîý)ñýbì‹ý¡ö[üäSËýé³ÿn_9Ÿéó ,8 èâ.»|2À ÿê§Õ % fyt içŽ ­ÝÝ YÒö ßWÑQæè a d©SH›p#?Ù ãê)Ý Pîü¥—çô³`ëR$däMþNàÀÉ5ފûÜ­ú ÜP-˜Þw-»äÆîgí( MöeŠhýÞbÿAéÿ4õlÿäüýõX&þ+ÁŽÿiD·îÎñ 㠗×Ñçn[h8€H{T½æB¡É Kÿ ÃîQ úßÔ 7І X@v‘4§Jyaà ×Ï3Gƒû 3O ÕÖËÐú÷ý]†õ ùáì /rä{ à¢Ò…Þ¥íQÜÿÜÌÉÞä>!å*éRíÛ¥÷}šÁþóÅþ eMû¶½Û¨ÿ8OgþÜúÿl-G?;Êìg'-À OÒC¦e}œ€8%°/ôj’ Bÿ( / (Ô) ãØ` ®%°îFŽ‹úÜùT9 Bøk4€c —ÅÆ›ÿþL­Fö±Ýâìè6¸äº€àqÚޗâóÝ$Ý Bß2Cáårï¹î}Ëø‚µ@¹®Ä× ñdäG×°O?þ¹üÿù[ÿT]§=âd1O ˆÔu"Upé“U´ïƒl¢‘€ ¿r 0;pøÃñ +Þº · KEzþ÷=œ +ù^€ûã63- –Åo°ùJþ²Ãƒ÷Äií!5Öä[«ßªÝÊÞÝ¡Üó3Ý-4߅@ÓåãýÎïqÏùøÐ }ЮJ z™Ø](ÅÿtóÿÞYþ¤d—½îŽ$3 {ä… Q:ïÚÆÔe°¬øÿ *‘Ò »9ûÛkK`Á‹ ×¹ } .)Ehg™(ú +5¯ˆ‰äÔ¤yCó ZÐW*éWþæÛ¹÷E´!í5)bãèhÞÓàÝcÙÖÜã¸Ýà@7Üæ±ð¨úû£åž^œÕ ®ò>è•\ݨÐÿa2õþ ÒîýUpþo ! å÷Æ !Ð"òŽŠþÌÿ ®Ã³ £ûy‚ÿ–Õ¸Å€ µ [¦?‘ØC @†q§:ѱΦF6 磝կÿíö÷d±VíH"ãr.cÝÚæ܅ԜܓÉݲžàÐ+Íçwnñîóùýsò⣳ ÝÝã æûnèYGùçÿ_>éüáØøûP9Õûß&#ÿcýÎ]; k? L‹‡€ÀÇ`L {üÕ ÙËX¡ÿ=ÿ1o°Ó F•€>ZûŠ4‹ ÿB×Èw˜uX7Õ =ËNÇMþ„óÖöû¡ìÈ÷Pâ¤74Ü¿ôÛ¾ÍíÜ­üÄދîâAÙé )‡óúõÿôõ÷ Ú±¶?Ëççs G÷2ìè¤þ¸=œúíìhøÐœø¶:Xü=ûV†Gv ö"犈Š.å 00 œ´ JtØ)0 8©¤ ‰ë7ú@9ê&Ç¸Š J?•-èwnj8»Å E$8ïóýýì5ö<Íì‚â%â93ÔÜŸÛTËÝ%ñëßÊ þä°ë0,Îö:üœyõ` Àl/¿OH @ÀpßÒüô1U÷ÚÊõPÁôÝ@qø¶~þÆOöÿ® ƒ+ … Ì|ýSèP’ r¹qìH.ºYMF·l ÓÎ] o<3Â5)ù" K4ý ñöeïú„ Z9¬Î’ý©Ü„õòܖì‡×‹â*&Û±­ÛСݼãná#1åÿôí9)°øRvÑõc Ì&ç¹lþ L7ýàœû>øôÙ•ñÿõñh9õ–§ü‚ÿ2íø‚ ¤+àf¿,¶Ô¢îX öÒþ 9¤j¸{ØÃ 5´ *LðGB™ÍÍ"ý X ò*>#ÔÎ œA1‚çäýcÌBõ±â/ì¤Ø{âVۘ$VÛ3Þ¯Þ¸Õµâÿ ZèfOïµ$iú– æ÷‹Ö2㷂õòm J%èˆø= ðÉ$²íòõcíÔ*zòàšû=s;òÇ t%läß*Q¹ÁK*î÷5 $ùx÷dŒxÿc ªMA ZßSÀ@Ä n ±+Îz¹“·u %5¸ÆMþ„Æ>ö¨Ûbí¥ÞJã @Ûª%OÚçîüÞäϕããréÁtñ;!Ùüù–ú¡ßˆ˜¹JP㘠ýõAõwú@í&QêýB꘹ð~"üúaìöñ!·ïùmã±bU1°M ÞëSéOI ø‚³(_ê/Q@k&rP( ¼' kÙ~Œ©Ò %Óÿ8ÏBöïϼíÍÞðãÁÛ$#*ÚCü ßÐDåôYë²ós!¹þ ¬ •ünæõ:¾~×G óÉþŸ´òƒñŽéJ]æŒÑè‚ï"Œú Ø·ôŠÔ Jß _·a _5(' øîL:7Ïþæ3´—ÈX°Ïïb?u=.¿ ó[vñ¬îÔþ“«+ ÿÕãŸö¶Èí.ØâPÿèÙà"¡Ø÷+ÞÃÔ/æWèÚíüVö?"jœn Üýõ>ì:‹ÆMÍ´ Ü ¯û‹ ÆîHðÛ䐹â9/åUnî û¶± «ú1E%R¸#‹Å/:ö’¡-Zhùæýµ#“ùâ8ñüààžÿ ÃØþÖ$ÏÿTJ6 Û Q B•û‹P¹sèê é)Šøfö5ʙëýΐàî÷àØ'"²×>%ÞÙÁçMÞ ð1 Ýù#/5æ”õï'¯Î~¡È‰ ý+ø×-êƒö àŠ èÞÓ÷ãÆÃîý©Eÿ¢úÚ#%Î&DÖ ­ä~4'ôù…ôO6ãøgöý¸ÂËÿ4 ¿J©J Œ ïM ý²)źêڏ RAþîBókÓõèîÈ.Þ}ë½ÖV€ÖT€ÞðãrêmÕþô»îýÛ"î #y‹¬ýð-LÕµÇòúñiô*såEþ¹ÛöKÛÂEã{ðDQóû©Û!‚÷Â'¿Â(¡æJôÚ ù³ÿ|#òwíl1œó=ûõɉšó³@¸ ý1cÕ ÍZüuüÍü Òb ü_Hï¶à—åAÆBÛüßÕ íÖ3$Âà•ñ:î8ÑHù´ôª- c)âë h¢ðhƒÚ2€Éßhç•ïbàš‚Ø“0Ú% <ä’ çó‘¤Åü&XöÃ*§ K(´ó×o [ ­ù?ì|`èE,kð®Éý^ÓiKäC Q1K;¯ ø&ýª BӅ4Ìñ)â÷£”êÖîá£É'Ú¿ÓjÖ —ØÍ)¿äÉBóåÒùÿœåï:Ù `.s?½ó!aÛW`ËOÿ¯á`ì ßÝü ä×è«Ûƒ _èl °øý fŸé )Y÷ö*êÐ% ûêGÚÁ¢pñÒ¶æ»Vä”(¾ðB8ß 7ÙÝS:>’ "d™1¯Ø[áǍœûÀò=pænüP߈Ð۾ʤقü;Ýt)ê1ùžÜ“Ú% û‡ -øæ" ÿúåSÜ) ZÊLüöہê_ÝçØ¦©ÝºÕìJFýÎeÅþ!O*múÒ)£ÿ!œq\àÏý÷»ìF5ã‰]ãÊ&ò*Tê~KÕA 9¬:¾i.E ÔÞ¡ÈÃ(+í…ï?Äå' Mà¸ÛÐ߉ÅñÞÖë^âz"î »ü¦ëFÔÒ „ö/ D%í 5,õ %ëŽàf ¹Ç×ý]Ó³ë0þ€ÞSŒÚ­§àCŒï\þŽäq!Ã÷)Hÿˆ&µúª¬whæÊøÛòJèÇ Qâ´:å\"mõË#< >÷Õîúú³B0Æ[5¤‘›ÕéV ½ÁÍýóÝ®íþ å“ ã/ë?ãàÇÝãøÛ-æÂð|'Kþýñ»Ø‚~çdÔR0+ …³ Jë© mÈþÐÉçìòô%߆þÛèbá¾pñUë„ ¥–,"G/(8$Eùþ Oë^õÌîêæY×âćç”Îù$%¤ÞÕÚçwíu"'Z6è >%| E÷ˆ iÅÃþxÎÿïz­çùæŸüìèÑ®èÐièç)ðÀ%TýaaãåߎL’Y)Å #U 6ûû ÏtÔÁçîžä}à }Ü"·â2yò1ÓD¤r"N•&Ë*!’ü€ûê—ìüóéëhåk`ä1Ýëüý-%É\ Ÿ#5â$äϸ ¦2£.R¯Õ »Ïö0ŔòÒóvë ìé• Gê×á°êRÎ.é‘îµï»)üó1õ*ƒáÐPö¤-y&… ¸ ´ ñݳ×Á9ðWÔöàpmÜ$âÀäósüIÿ/ u"az%jqWMýL½î±òxç¾åBþkæ ]î 0œ%с\%§êûÝàÐn) *N26sÛ ößKÅÃ÷á—í› pêñ ë™òàêøÕ]ésâ¨îÀ "ûjÜÅàMëw=ðz;v!X Ÿ î<?É3ñËÑàcòªÛ­=ãñô…) \[" ¢"åq² ‡ÐÿÏó–òzæIæ²öyèÚeò³{&iãÓ&ôÄ3à Žø üã^ûÍ1Z’"÷Bð¼ ÐÇ¥û“ÓÚîßû’êU§êª)êÖâïé à,îü[û‰_Îô-õŸòþ ‡9AÕ ƒúBÕó}ÊCàÈåÛ`ªã}0õ¤ß  2”K òiû ˆ@ ¾é€ýgú3ózèüéYð½ì£ö]/c$ å!o%7NMãìžîµø9çùX+^*KR!\ÔþpÎ.í¹ì獚èÅWëMð¢ëŠåOð;ô¢üÎЧµûböûucþ=fOÔ ©òßàöÍTá^ÜÉÚ°ü%ã‹éö¦Û 椗 ¦ºðªN#±üÿ\õtî¡ì½ï/î×üMøÜ v¸ -$#M ¯Hì^SêgôŸ*ø dÞ*Ä®áäoÿÖÐxëàZä&úWç£Êífù5ï)í¬òžôYýl+äM³ü€ÿXø6ø¡Düf?@–l ÀéO÷ÙÒ%àÄשØßñæâù ²÷“Þ´õŸ‹úÁP3»ìÇ6û¨Wø:ôð½ðñJùxúj•6ÔÇ#¡!MŸ^õìâë4òšûF÷ÃâÚ%êoð~󚴨vèÛ¬áï ç°ý©ðãû§óŽôPô‰÷ºücYçÌ÷üý§÷½÷/þªûh ^Ö îò ùØ]ßÊÕ0×2è•ãXÀùê"V¥œ °ð »ïAÿ­ü ûÒ÷,õòŒòÖù$úCzhÜÏ Rž<>þþBïðÏ÷Böó ´ ú‚®¥äÿّã(ä—Ý#Þ!èyèrõõõ*ù>ø,öˆõ¶úúhÝŠý"ýE÷y÷%û‘ûv… ,X%ãúÖøþàðހִÕàâAäFø¹ü«ŒƒèÙ9ß €lûrý0þúü¿ÿµ÷%ø—ó!òËøøøÁ$úÁ‘ô"ô“îíõ‚öZ ^†ßoè–ínápáÚÛóåÐê‘ï›úeô¸ü¯õMõÆú\ö3\ÿ|MÊSþ7ù$øù—ûŽ· K3‹wùêÞ ÛdÕ¾ßEæMð1ÿÃ…Ñ,%R˜ &ǏuEýú7ú^¦õ^ú¤ñjñ÷öÉÿŠ¢ 2•”² ÷ Î)ù€íõRõ þå ÔÜ õ\ ÅÿÔöZÞMèQÚ-æÎíCìÿ´ðy<òRôFø8ñWeü:Ö¡ðáü|ù‰ùØúä%³ ”§ qIÄú"ñOÞìáAÖYß§è(êá(ýß÷~¡ÜµƒýC ]ô9úÕô|û(ï4ïÀó…ôñüo«ëgþcVÄÿEÿûêÑ÷ªô ûâ|+"üÉþ{üÜÛdïÙ¡êFñrëºFî¿ïCñôžìÿ1ú5=¤K«ú!ü{ø”ÿU'S* ”Q û¤ö]ßÄæ÷Ö}â3éèì°÷ê ;Ë$ éãÓñõµ aŽýÝ õ§úùî)î”ïµô;÷³óÖyÒô)ÂþØ-éáüGôvûxÐù#þ zü Ôý3ÿ—Ú ó¹Ú«îFö0í  Àîñíúí3ñ ç;û:ùŒŸ ' „§ù)ÿ¨õ[ý•ytýaùUàCë'Öbä“êOçðËóm8Å?W‰øv¿  õéyÈøÃú‘ïî¨í)ôQó@ýÕã Ò}\Æ“þû ´éúbô¹þ!#ظ¢ûÐÿöÙØö<Ü\ñLúð …ï±Îî‡é5ð,äP÷·ûû›x ’jö©°ñcË -D eôý†ûðßßîžÖ˜æ©ëìç[³ïÊÈý§Þ Do —Cpà 1‹Æý!úeñÌïöìyõïU1ø ›úNŽŒÆ êóÊõ@çäM#²ã(ûvÿ$ÛEö¤Þíò-ýœñ ëðßÿÙïÂæ?ðRã$õùý_þJï˜ ˆ-ó ŸîŸ³’z·/Ðüfþ¤ß¢òTØUéSî¿çª 0íBWøâ ÍÞt P¤¬( ½þ§aû)ö ò•íÂõ‡í*òÍ Ìÿ|;¡¶p^ìj €ôú¶Á!댹û›þéÝßö_á=ñ–ÿMðg ¶ð§ý†ðHä{ðÂã±õ]ÿ–üꑍqð9í½"rJr¢Cúè–àíõ•Û‹ì4ñèÂôëÄ ÄôÚ¬¢¢ îµf™;©]ý†üñûîõŒñcõí|ªï­ >ù úûüAdíIÏóû =ô ÿ à o˜®ü&´àì÷|ã¦ñokï= ï5ûÛïMä7ðå%ôBFû}³¬i4î î2ø(ƒ‘m6ù™"ãøyßkï$ò ê{ýën tògü8ŽøÐqJ+xòHý– Êþ¿É÷æöbóçïè_îÚ °ô¥JZ 6¯î†tó~-s "«   ÉýAäëúBåÇò³6îÙ «í úmí`äáîæÙò¤ùJvP£;ígNïÇ‹’·]"»Ïù§|çuúÒâúñ•ñ×ëðë:ïÝLø†›˜³ ¨ {òË@þ¹ÿøBùáûÒòáóïÍ Žò ú¥A– •ðT —ò¿ €M.ð þ‚géþÖç@ö"þ½ð} MíyúëòæcëÀè”îËVõ’Êý2È—îQñL·ÖO; Ê  ú†·ë”ýšåÄô2ðƒísë Ìí ¦ô—9ýÁ¾Ð ^¹ i;3þ¬Ú¯ }û”íòøÅþÄòó ¥ò <÷6àÿ) Í(ò6SòC Å´ AÉmÿ _íXèû ýô 9ïYúƒì&è@êlé×ëØ<ñRÛø¼Kÿï4gò­]. » ] W Ýü#èïJ çÔø;ï%ðm4ì>-ì’ñ_`ù±Q M ¢ å·ŸåÿE$úGý$ñËþ†ý˜÷› Þô4 Cö:)û½ ã´ôªÝñ£× ð SQ Åyu‹ñ³émÿëúÁø«`òÛû=îFéúêôëêqþËî Êô}yúñðÚ#óµL*13 ¥ ˆ Vþ ³ò´éküæíñôþÍîâ¼í,ïs6õ"Õý : M ÿîž!qþ¤ úñîüüó Þø÷~yúr ¸ýÅöÊðÒ¨ êK qJĵõ¯ ¯êPøƒýˆÌ÷•ü\ò<ë¤íœì ë(ýfì~ Àñ¬öŽòªûµôgq±>Ù è  'ÿã lõ% iêâïíùÏýkóIGïš[ï¡ òê øÔ … ÄB°D « úÿê?òw;ú¿ ýúõ ƒûñbý–ùþŽð\ÿí 2±² > ƒ Šùw ¢ëÿöfÃtû”ý.övìðñ|í!íÛûòíU ˜ïíóýôøDôùü£Fy ¾§ ÷ ú” í÷I ì\‘ìœþ’ü@ø0¼ó­ÿ§òÈóX5÷Öüí =A l* ‹Ë` Ëó ÂùM! È¿ÎþK ­þLôþùûWÿïèÿ@LÜPà AV7 Ùüë 9ëõüôUö ýÆþù]î6ôºîvðÇú¡ï1eði´ó8ö™öƒõ=ú&ßþt øt Ã*ì "ù* äî #ìq€úúûÚ÷Oÿ ôÜ‹ôÌdöò¤û, ¹ß֝ ™ š zô¡ ð÷× f¼ ÏRþ‰ýVðÿ›¢I¡M Ÿ7X·ÿÂÕìãŽòòm®ÿþ û[ïƒ÷;ïÇóSù?ñBñNMóøgõ†õcøh‰ü g© e ûúà ÿïÇÖ썐ù—þËkú’þÎ÷Ì$öâ^÷Æšú‹ Lþ¥ \ÿäx ¬¹ qõø ö•ÒÙEi\äõËÿ‰œðcÄÃÀô þV->…î3ÅñØ,þÿ]þôüEðñø»ñIõ"÷ÌòÁ,òjÿó•ùÿõcõˆ÷¨ÿŒú­ãþª !Ýü9¢ñ‚£ìð‰ø[¯¡üýþ•ú=ªøñPùÉúÜ Èýã µsUÁ’c2Ž÷~Úõ„Nèsñ8 æ\ñ%¶cf´ µ¢,c áï€ñ9Öÿ¾ÿnýò†ùãò~ö‹ö‚ôgó=hóäûiõ9õ×÷þ™ù‰sý …!ìýv8óJ"íþ÷îÖþÆþŠü1ú¶'úc$ûf 1ý¡ ö}¶H¿§dùËôì¾Åf4¤ùà['AòJ€ó…^ ®ƒ¾ú^ˆñºrðÄnh1ÿ²ý¾ô"úçó“÷Åõnõ*ÿÛóýŽô.ü—õöqöxýÔø‡ÿû‹ûÿQÃþƒ¿õ iîN*õÛæUþ’þ {ü†åûè½ü[ŠýÞ @ ATú¢šô¤ßVä ø[ÛNaô‰ó´ÿqŽ ^Á ¯  Ü\qôðƒ³¶œ%þVõ°û·ôøÇô¼ö,þdôº\ôŽýÏõ%÷(ö/ý÷Ó¹ú_býÄJWÿŒ-öÊbï9ÖôÜ=ÿ(@þ”ÿVëýô“ý?ýcÇþp ƒà]‡µü#Öô©8ŸhQ ;}K‰Yõh þ« 8Ñ ß“ /µdöyÌð—7ÿüP’ÿ5÷üÈõFùÿôe÷WýõžÚõþÞõF÷ÿõïüM÷+‘ùB¹ü:›ÿ“{øh!ðC0óø5þ@Ãþ¨?`ÿ#þsdþlÿ# ühóÜ«4Ë6ýˆ^õ Ðâ‹VR"øœ÷)òüí¦ )Ä Ùj *u©9ø÷æðß”þQâÕÿýøhýÉöû0ôIø”ûÊö°$õÒÿÖõ®øæõûû´öχøtóúúÅþaÞùäÀñpIóbÓýJäþ§Îÿèÿíšÿlsÿ_Bÿê Æï_3w þÑ*õ®›Ü¼©Êu# Z”ùŽûñS>m º  ßûFÒñdÊü§Xý¯ù’þ·öËüXôpùÖú¨÷ØIö¿ÁöUùÓöWû3öϨ÷ÿ%ú Ïü±:ÿ_û>[ò³0òèüIˆþÎÿ‚3ýÿä†ÿí}o ~ZÓkWe5$ÿÕPö–ÏþbÐH>Î Äó hRúòSûId qŽípJUýlƒò=Æû+æ!ú³ÿo÷†ýWô»ûù¥ùK÷¾x÷úÐöÛúã÷ÿ×÷×Jùw°û½õþ,ür!ô $òºPûI þŠÿ1=P«8ѹ ˜9›¨†ù> x÷« üåS¦ý ø 3;üÞ;úÞ÷¹à é6ÑñiÉÿióY‹ùÔ‡¤Tû«ÿÝø8þõ1ûæøÇùõ=ø£÷éû¿÷†ú´÷yÿ÷÷où5|û¤ýJýŠÿ*õmAò¾—úRˆþ[Lþ÷šÇQ0ÖŸ­˜©ôÚI1™øêHû‹ JáB H žAþ¶:úÀë&º H쯅fJ¬ô±Nøªu0fü™!øãþŠõ½ü¤øúÌùskø¦ü°ø,ú©÷øþqø;•ù(!ú¹:üþˆþ^öÎÿƒòçÿ÷ù\þÿåþÊÿÍèÿãÜ.µ»’ê5Ç@Чú8zú‹ðµDL¤”g ÇxuhúîÆÊsØ—CRæ“Kö< ÷ÌOÿ—cý]HùŽþáö[ý)÷‘ûjÿýúšù<ý™ø±úËøfýÚø}Ãù)µúu·ü%ÿeýÉø#þðóOÿxø‡ÿžýÂÿœþ«ÿš:ÿ½ä\ rs+kzZÊ"¹›û†ŒùÖî‚™êœ ¡"ŒûQ8ÿ“âÓr+¡À÷á×÷ 3þÛZþYú8ÿ÷ý‘÷;ûðþÞúœù½þyù.ûøÓý]øÈùC.úUûÌ3ýNùqþmóåþÿ÷Óÿ8ýVÿKþ•ÿ[‘ÿÉÿéwÂC\5·#æòÊ€ü•ùm@ûÀõ3°Û 5Й¿ûðnþ väH ûu³Ïù“²öË"þ]þrúÛÿQ÷«ýê÷üdýÈûiú2ÿ=ù˜ûcù/üðù Gù[™ú9]û€íüäú¦þôþ÷7þßüÝÿþ…ÿÿT¦ÿ²ð? uüîì½ÄZýÜŽùVWîëKk‹ ’ÿíñüº¨ýÇB[  ÄfmµûAŸö»ý,\þ؁û€ÿyøTþ1÷üÁüÉûzú“ÿèùôû×ùüùGšùvøú(…ûE•ü‹ûÉýŸõwþGöÄþ–üSþÃþrþê€ÿ'iÿ‹ÚmÜ{Ã(±3‡´/þØyùˆ[ÿÚ‹–Ÿ> µ$ýý§Óý.m9%»”Rò–üå‹öðüJ_ÿ ‘üÿžøúþp÷9ýûãûٝúî|úLüZùÔüZùÿ÷ù Lú'’û*üEüÎýQöcýüöpþTû¹þˆþRþ²þïÿTÔÿà͚j[mcE¤úÿž_ùûWþβ¾íi¼HÞ<þ°üÖ¤TU8dWMŽþo†÷pûyrÿ²ü©ÿÌù—þ²÷uýmûü5ûCèú˜üìúü8ùÃÿfù½Ÿú%€úö­üýÁý÷gý°öRþû%þOþ.þ„ÿ³þÈ®ÿ,Óÿ²>dBAŽ-– ’È;=úšOýÕ!¯Öwˆ«e|]ÿ¿0ü°ÐxØT3dz‹ÿ؆ø!#ú»‚þïÉý0ÿïú1þæ÷Ðýµújü…Xû<úÛýŠúTü3ùùþåùâõú-TúÞûÑþ™üÃøkývöVýÛú”þþþSÿmþšEþüÖÿ‚¾2ÿ·ïÈÏ‹‘®ûY?üý"‡ä.Ÿ’|Ùr×Lü¿ú¢Amk‘ˆ‡ù-ú$’þ´ßý®úÄÿø=ýøùíüÐÿ£ûÚeû&þ úšü=ú3þqúTú6úÌû¨ÿZüŠùuý:ö†ý¦úýêýÀþ%ÿ2þmÑþÐÌÿQVÿ÷­ÅÜ©ü‰’Oàü6ü]5î ²ûÜtü÷* Ï““Ô‚–%–ú Fù®³þOþAûOÿTøµþ;ùýþèüsûdþ¶úÔüdúgþ ú,³úD¼úÀÌû üUú{ýöÛýwùŠýÁýqþÿþFbþ¦¿ÿ%ÿÈJôm,K¢3°ýþûðÆé¹†˜å•Þ‚ýcAÿaéܨŸŽ}˜ ˜û*RùkÇýÞþhaûÖÿ„ù3þyùTý]þ,üa_û¡ÿCûüŸúžý¹úXú^RúÂÿûoŸü7ûküâ÷IýTùýžýýÝþØþ#óþƒþþÂÿ˜ÞWÿ3R¶ÚKýÛÝû´ó;ᾡ ›œÀ‘ýíZþÃÃ\¤]¥¼£üTdùYãýZ>þ¢‰üVÿ¶ùµþ¹ù9ý¦ýrü«&ûãÿ½ûLüëúÔývú„útâú¾+ûR3ü ü^ü¶÷ßý-øÏý|ü¶ý¾þ²þ•þW{þЙÿin#þùyÔÔ VHþš³û²ÚÿÕ¹â¡%¡‚œþpþI$Cܶ:°G«ý~uùyûüÒ]þ­üÐÿáú<þîùBýãüÌüëØü!$û…ýGû ýGú° ú“cúÊ3ûM¦ûøý3ü›ø„ýø˜ýbüOý£þýæ:þ<Bþ°xÿCýÿ÷íÅž™üc\ÿ>ŽûÙÃþöʶBžŽž ÿFzýý/y總±¬­þžùÄüMvþÌÉýCú¾ÿ#ùaþ"ü5ý+qü_uû¿ý®û;ý.úÛÿšú²äúÕ1ûDûäýüü…ù:üýøýLûçýŒþeýÎÿíþ!þcÿ™ÿÅӎ½d.ZßÿÆaü/¢þ^³ôªÈ˜à˜š}ýÙ>®øMÈë·ð°ÿ¬‹ú=&ûÓ•þ³ðý£4û;ÿUù—þ\û¸ýfÿþü•³ûôþûsýûÿ+úØ_úêûHnûÚþ³ürùýüêø…ý<û€ý}þ4ý¿ÿªþ ¸þtRþú<ÿž¦aØ0Iú[¯/9ü ‚ý֛Ϙsˆ.…ÞŽÖ|ýÛDðÔ;·±žúÚ3ûp©þˆ ýûXû²ÿƒùÜþ“ûPýŸÿ{üÌÕü(þŠû¡ý.û7þÒúûßûåûN½ûÒÿYüjú¿üæø ý9ûýuýÿý²ÿtýÿhþb@þÝíÿ{o6ïrÈc}‚ý$dýdƒ•‚:vuuü€˜uþAJþPÍŒ³(¨wŽû”=û%¼þH"þHtü'ÿ¬ú/þÆûý×þïýØü`þñûÖýGûfþû$_û£û_ôûÙÿèügû„üâøÝý7úÃýsýÀý®ÿDý÷þW%þϤÿ`+ûÙ•lQ»åý´@ýiDneÁcñnPhþH>ÿ³ÿ¾ÈV¬( .ˆücAúüÇýý1þ‡‹ü˜ÿÌúþïúÑþ þfý6Ìü‹ÿZüýrû”þ@ûIêû8[ûm#ûÚpüdüHüàù5ý9úyýxýyý±ÿýôÉþM þ¾nÿLÞÿô±½q(á¿þB üîKÿæXôUQÀZôXþ©3ÿ;ö%½œÆ}ý=?úõÍý¦>þ²žýÿêúñÿú¸þ5ýãýa¨ü¸ÿµü0ýªû¿þ ûryûYûƒ>ûååügýüãù¤ý>úBýý.ý¹þñýøþLæþ¹?ÿ@‹ÿáû–ÙR’ù™þÌþüç1ÿ{Aß>‰7u<‰=ÿ%þâ臱Ռ |>nþ<û ÕýEJþǰý`ûSÿ@ú¯þfý]ý•hüæü[ýíûíýäûû|¤û›EûøFüvý®üðúýNúýüßýÇþÊþ9þQ»þ·ÿ6<ÿÐë}õ3®à uÿGàýÿ'Ë$ "û&ÿª þ¦Ôxíh–Xþô*ûQËüòKþÍ»ýºû¼ÿXúÊþ‚üøý²&ýAü€þ=üýÔû¿ÿ´ûšDû²Cü¢ü€þRüýú«ý]úýžü”ýÖþ¢þÿûþZ‰þ·ÿ-ôÿ¾ÕeξVÿ®Æý1þ¡­ ±þ˜T=ñþоV…1^ÍOÕDÿ½û¨ÌüšSþºÇþ)üÿuúëþ¨ü’ýÜÿËý/jü©þŠü<ýÊûèÿ]û¾ÞûÌ0üïü‘þäýû:ýyú ý¾ü>ýóþsþ'ÿÄþhRþ¿îÿ.­ÿ·±V$ÿë¥ 8ªýèþCþ€ø\êå‰çÓÔþ‰¥ÆmÍA«/þ*w ü ¾ü\LþÊþM7ü~ÿŒûþÇüCýÿÿgýT‚üÍþÝüaýÒüÿûá{ûé ü0.ü£ÿký%ûÖýú(ýÙû÷þ þ@þAÿ•þ{þÌÚÿ/nÿ±ˆH.î Œ'IýÚÒýøåKÝ(ɊâÆc¶þ¥ŠEQ_%…  &òü¨µü3GþfÐþ“9üÚÿœûnþÚûüþ'ÿ ýqvüøÿ>üýÒü<þèûûüüúü:7üË
13,252
189
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/audiodata/pluck-pcm16.wav
RIFF24WAVEfmt +D¬LISTZINFOINAMPluckIARTSerhiy StorchakaICMTAudacity Pluck + WahwahICRD2013data¬3.êÿ\Kù1ï܀Cß˲ªHó翲k|þW¸>ú²´Oó™)Êë_׿üí‘ä&Æyâ¸à'ï-àTWuâ1ûCès‰ï'Ø,÷‹—zû÷õüfœû0ßBû6úä>]ûu¼¶üÕf_ÿÏ"Cx ¼ÁÈQ¤ßîU‚fÿF€–œI²ºR¹ ·ï\@μµäë DcZ Ê º+ FQGˋ<õ¶êDY ‹Ö9¶í1EØ=û֞æòÆ$¨éoãYúËßÿÂuÝ4–Ûàñ=ÛcD¬ÝKäþYìHøNõ›ˆKûœî)ýó_ýìœý_öáüÍSéý³oÿ8_Ÿôé 6, Ýè5µ€2Å€ÿç%§Î+ c tyk Šç± ÛÝZ öÒÞ ÒWQåé ai N©Jo›%Ö?ç $êŸÝQî§ü䗶ô_Rëe$JäQþ¾à6ɊÞû­Ü¡úMܚ-vÞ¼-Çädî*íL eöiŠýdÞ@ÿé3ÿmõÿþäóý'X*þŽÁjÿ¶DïÌôà ™ ×Ítç k[7€IS{¾Aæ£{ÉP þÈ Mîþ Ïß< Ð^ q@”¥4J|‰ãaÕ 3ÏIùƒ O3Ó ÚÆÐ ûú[ý‡¡õßù ìs/zä £à€Ò¬ÞJíÝÏÜÈäÞ!>+åPéÜí¥|÷Ěîþƌi K¶û¾¦Û;ÿeOþùÜnÿ*I;?Éiì%À-Q AÒ¥e–€y'8±ò/l’E ÿ)/ ( *Ôã ^ذ ¯%îFŠÜúú6TE kø1€c “ÇšÆÿNþC­³öáÝéì·6»ä~tàژÞñâ&ݎÝA 2ßáCså·ï€îÈ„ø?µ¸Ç®Óõ `çG¬×Uû>¾þþûÿ[ùTÿ§]=€âfM1Š sÔ$nUëS“¶‚ï¡l’€¿ ¡r.t;óôÃ) ½Þ´ GK}ùý•=1 õa€æû133 uŬMù±þ‚Ã÷hÄ"íÖ5Z䬩ßÌÝÞ ÝõÜ1/Ý3„ßÕ@áåÐýpïÎúùÐ | Ñ¬Lz ˜]ØÃ(wÿð ÿXÞ¦þ”d¿îŽ6$w ‰äL ô:×ÖÆd¬°øÿ( Ց¶ :ÕPk\ŽÁ º×} - ,cEm’ô(- °5…牤Ô{ñC[ WÐ)Xéæþ¸ÛG÷´8ía)çãkÎÞ!à_ÝÙÙáܹŽÝƒ=àÞ7°æž¨ðú¢ûŸå^Ԝ¯ ?òæ—Z¨ÝÏaÿõ2 þîÒýnUpþ "ä Å÷ Ñ!"ò‹Ìÿ³ «Ãª vûÿ”¸Õ€Å³ _ ¢?ÙA ‚@u8§Ðϱ¦5F  ç ­Õÿõíd÷W±Hí!sãb.ÛÝæƒÜ ÔÜ˳ݚÕàÊ+wçoîñøóuýòáµ£Û åÝå ûnYèGçù_ÿè>äüóØUûÒ9ßû%&`ÿÐý]:l =O ˆ‹»€ÍE`‚ ÏüÝ WË ÿ:4ÿmÓ°H “Y>û‹4Š ÔB#qÈn˜^Ð7@ ÊOLdžþÓóÆöŸ»ÈìS÷ â67ÀÜôÁÛêͯÜÄü‹ÞíBâØ"é„)üóõóÿøõØ ·±AâËínI 3÷é¨è¶þ›=ïúeìÔøš·øW:=üVû‡Gu ÷ å"‚ŠŽä. 10› Ÿ´KÚt%&01ª©„ <ë÷:@ëÅ&ºˆM “?.uèÉ8ŒºÆC ;$ì·Ã÷ý<ì5öÍì&â7â×3 Ü¢TÛË(ÝéñÉß äµ,ëÑ,7öžüxaõ kÀ0N¿I@ ¿qÑßôüW1Ö÷ÏLõÄÙôu@´øÆþNõ°ÿ‚ +†É €OýëPs r¹é1H¸NYGi·Õ ]În 5<À*5ù"K ý4ð ødñ‚ú[ 9«”Î¥ýŠÜëõÜ€ì×'â&¯Û®ۡлÝqãá7ùåù7í¯)UøsÑfõ'Ìêf¹¤øO 7üžà:ûüÖô˜üñõhñ9—õ¦ƒü1ÿíƒø£ â+d-¿¶¡ÔïœX÷ þÒ :¢¼jvÈØ1 ´ M*ïBGœÇÓ÷"] ð +<%ÍԜ 2A€çç_ýFÌ­õ4âžìØSâ ”ÛZ$/Û²Þ·Þ´ÕãW gèP´ïi$—úã ˆ÷/Öç~·ùhò! C-èBø Êð³$ðídõÓí{*ßòœ;ûs=Äòw j%ä,ßO¹,Kí6÷# xùøŠd{`ÿ IªFS è¹SDÅl ´ Ë+}’¹x· ¿5ÀQ‚þ?ƦöeÛ¢íLÞã= °ÛG%ïÚõîêޑÏåãpÃés<ñØ!üù• úžŠß—I¹S•ã þ~Aõxõ>ú íL&$ê=ýœê·€ðù"eúæû ñµó™oùä_±Yþ0²LÞ TëçKOø ƒ'³^ê,DQiq&R&½ 'g‚Ù‰Õ©)û×5ÿEÏíö¼ÏÎíîÞãÁ!Û.#@Ú ü ßAÐåYô°ë oó½!þ®“ ümõæ;޾C×÷ Æ¡þ³ƒòñMéZŽæÏè‚ïŽ"žúÙ·ŠôÒO Ø \c· _5((ø Kî<Ê7îþª3ŸTȱñÏ^x?.=Áø U| ñî¬Ó’þ¯+Ùÿãµö‚È,íØQâæÿâٟ"ùØ*ÃÞ/ÔWæÙèÿíS@öj"›pÛ õý?8ìŒMƶÍÚ ° ŠûÆ HîÜðŽä¼5â3Råoî ´û´¨ 3úE$S¸‹#.Å;’ö¡Y-jäùµý•#ßùô8ÞüŸà ÿ×Ã×þÏ$Rÿ9JÛS ? —‰ûS¹sëèç )ˆgø5ö˜ÊÿëŽÎïàà÷'ز">×%ÞÁÙMçŸÞ4ðÚ ù.#5ç“ø#ï´xΧ„È *ýÖø0êŸöŒàæ ÕÞöÅãÆî—¡ýL ¦ÿ›Üú$#ÌG& Ö¯|ä6ó'ù…Qôà6kø‰ö»ýÉÂ6ÿ Á¦JNˆ ó J#®ý,¸ÅìÚQ Aïþ@nóñÓóè)Ȃ޸ëZÖ}VÖðÞrãlêÖ·ôò×ýñ"|#Š«ÿ+ðMµÕñÇügñ+ôrGå·þøÛIÃÛFyãDðNø÷ªÝ~!Æ÷¾'À£(IæôÚö ¶yÿ$xòÿní19ó ôûˆÉ|óµ¶@ÿ `1ÙÉ ]süýüÍ aÒ aüGµï™à?åFÆöÛßÕò1ÖÂ$•à9ñ;îEѵùô§0c ß)ïe ¤fð…0ڃÜÉj”çïc˜àƒ”Ø-*Ú6 —ää ’ó¤Æ‰÷[&Âö¥*O ±(ól×^ « Aù€ì[Jèh,­ðÍYýoÓEGäP K1®;¢ö)¦ýE „Ó4ñÌ)â£÷”Õêî¢á'É¿ÚiÓ Ö• ÐØ»)Îä<ëóõҞÿïå9Ùa r.>¾óeQÛgI˲ÿ`áÿëâ ùÝæ æ×­‚Û_ lè° ýø e Ÿê \)ô÷ê*Р%êûI½Ú¦lÖñ³½æV“äÀ(?ð 5%ß2 áÙO=”> d"š-µVØåŠÇž½ûBòksæLüŠßоۦÊÙ>üqÝ)ê1 ù ܗ!Úý ‰ þ-à¤"ýæúR*ÜZ KÊøü}ÛêZÝ䍨©¸Ý×IìFÏýeà !Pn*Ñú£)ÿœ!p^Îàý»÷Gì2ŽãWÐã &-òþV}êLÕA9 ®»:mB. Ô ÞË$Ã.ƒíAïÁ+åJ ¹àÑۇßòÅÖÞ^ë{â" üëGÑԅ .öB ñ%3 õ,& égภÖÇaý®Ó4ë~þSގ«Ú©AàŽZïãqÄ!öI)‡ÿµ&«ú«xgÊæÜøHòÊèO ¶â8]ål"Íõ;#> ÷íÕú³úAÈ0Y§5žÔUéÀ ÊÁõý­Ýþí ’å ,ãCëÛãâÇóã3ۉæÆzðK'þïý»„Ø{fçžÐW&0ˆ ²J ¨ëp ÿÇÑþçÉñì(ô„ßþèÛc»ávNññ© “.F"/8(C$ùþO ^ëËõìîWæÙÁ⊑çÑ"ù£%áÒ âÚzív'"Yé6= }%E ‡÷l ¾Å|þýÎ{ï®÷ç æìüè¯Ñ èmÐäè+¿ðT%aýbáåŒßN‘XÈ)W#4 þû vÏÔäÁ¢îzä àܾ+â~.òÕF£rN"–È&.!ü‘æû›ùìêóhëkå`2äÛëý+ýÌ%Y¡ 4#%âÍ亥 §2þW.¬Ö» õÏ3ÅÕòtó ëïéL Óê²áRê-Βéµî»ï)üñ6$õ‰ÊáTö¦*}‚&¹ µ î ¶Ý×7ÁZðñÔvàf+܈ÇâÞxó÷Lÿ0t a"{%lnZKOýº²îyò¼çEågþæY £î0˜Ø%yd¡%þêÜÑàm) N*52rÜö JßÇ Ã÷šá–íu îê šëßò÷ê_Õqé©âÁî lûÝÃâJyë>xð;wX!Ÿ þ <î>5ɉñ×Ë\à°ò©Û@þâõ€ô,] ü£U "¢å"q´„ ÕÉÿ›óvòLæ°æzöÚèe³òœ}g&åÒ&Æô2àŽ øãü^ÍûY1”ö"@ÀðÍ ¦Ç”ûØÓáî‘ûTꪦê.Ñêñâ¡é*à“îXü‹û\Òñ0Áõ»ò þŠü?=؁ €úBÕóAÊÈàå[Û®}ã-©õÚ 3 ’Nî lù‰ @½ ê~jý0ú}óúèYé¿ðì¨Zö/fš$ëk!9%NKïã›·î9øå\ù+dG*U^Ôpþ0ζí ì‹ç›Äè[FëªðëWå7ð£ôÐüÌ¥µdûösûd<þhMÖ§ ôÞßöTÍ]áËÜ®Ú&üŒãç§öÛæ ¥• ¤»ðÀ®J&°ü_ÿqõ¥î¹ì3ïÒîSü×øy ¶¡.$M#¯ I]ìSgê ô*øf ÙË*²ßoäÖÿzÐëZà(äSú©çÅhí5ù'ï¯íœòXôpý&èK²ƒüUÿ8ø¡øB übC=—m½ SéÕ÷(ÒÃà¨×àØæñùâ² “÷Þ´õŸ‹û¿Q3¼ëÈ4©ûY6ø#ô¹ð…ðHñwùlú“9Ð˝#P!Ÿ[ïõá3ë›òGûÀ÷çÔï%j÷w ó¯yØè¯Ûáïªç®ýàð§ûŽóPô‹ô¸÷düWéÌöü§ý½÷-÷­þeû Z’Õï òùaØÄß7Õ,יèXã¼ïùX£š± ïº ð@®ÿü Õû(÷õ‰ò×ò%ùAú|fÞÍT ;AúþF‹ïÓð>÷÷ö° ý €°£äÛÿŽ-ã‘ä(ÝÞ}èoè÷õ'õCù'øŒö²õ!úúj߈#ýEýx÷'÷ûxû‚0 S$áÚúùøôà~ÞµÖáÕ?âG䏸­üƒèÚ7â~ kÿl5ýøþ¾ü·ÿ%÷”ø&óÄòùºø+ˆþÇŠù ‘ôðîõöY^ ‡ßlã™mípáÛáòÛÐå‘êšïhúµô±üKõÈõXú:öTƒÿHÍQ9þ"ùø•ùû¶ J5ˆuùê ÞeÛ¾ÕCßOæ2ðÁÿ‡Ï-$S˜% ɍvFöý=Yú©]õ¤újñ’ñÿöÌö‰ÿ¢3 •’´ øÌ ,|ù íMõõàþÙ ×ø ZÅ ÖÿVöSÞLè1ÚÉæHíì¸ÿuð@MòLô2ø]ñ_@üѤîãzüŒùÕùåú&²” ¨n N¿&úKñïÞ@áZÖ§ß'èàê*ßýö}¡Ý´ƒÿ?a ÷7Óú uô2û)ïÉïóôônü«ìeaXÆDÿûÿÒê©÷ ôãû{+Å"¹ÊwþàücÛþî§Ù>êzñ´ëKîÂ?ï…ñ›ôì.ÿú3@ O§%úwü—øUÿ$W$› M¡¤û\öÆßöæ}Ö3âéìè°ë÷> È%ë ß×îø² ^Þý «õ÷ú)î”î´ï=ô²÷ôÕxÔó)ÀÚþ*æéCüyôuûÑùÿ#x þÒ 4ý˜ÿ ÚºóªÚGî1öíà îôøí4í ñ:ç<û‰ù£" '}¬'ù§ÿ õZþ –xu`ýVùBà)ë_֖äLêóçÉnó7Æ>Y‡ó|º õ æ}ÅÄø’úïªî'íSôþòBÓýåÐ ZÈ‘ýþ² ýé^¾ôþ Ü#µŸÑû÷ÿÖÙ>ö[ÜKñú ðˆ ±ï͉î3é-ðOä¸÷ûûšy‘ kªö¬hñÈ -Cdó‰ýëûåߘîÖ¦æîëYçµÇï̤ýà  Bq– CpÃ/ Â$ýcúÍñöïxìõUï1ø› øR‹Å¢òêÊ?õèäM#²â)uû&ÿBÛ§öéÞ2ò˜ýñè âðØÿÂï?æQð&ã÷õbýFþò—‡ 0ó¢œîµ‘{¶0Ïfü¥þŸßYòPØWé»î­ç/ CíUãøŽ Ïáw O§©*» ¨þb'û#ö‘òÅí†õ*íÍòÊ ÿ8¤¹mbfì ûô¸¿ë!~µ¡ûâþäÝ[ö@á“ñPÿeð· §ð„ýJðyäÅð®ã`õ’ÿîüŽoð<ºí#rJr£Açú–íà–õˆÛ8ìñÅèòÆë Úô®Ÿ§é ¸eœ7¥`…ýòüìûõcñõ}í©­ï= ùõ÷G_ HíÏýó; öü ã m ™®%üµëà~÷£ãsñeDï 9ïÙûNï6äð#åEôCû²­f9î.îø*‚p9™ù Ÿãyøiß'ï ò{êÿkëw òj6üøÓoL({ïK”ýË ¾þÊå÷cöåóëï[Þî® ¥ôJZ 7¬Šîqó-r# ¬ž ‚É @ýêäBúÇå³ò6Ùî« ¡íjúcíàäîÛæ ò¦IùxN¤:híMÇ·^¾Í¨ù|uçÑúûâ•ñÖñòë<ëÞïKˆø˜œ®­ Œ }ñÍ?þ»÷ÿBãùÎûåòó"Ëï ò¤úD‘  V𙠹òˆ O.ï‘ þjéÙþ?ç!ö¿þzðQ víúòëbæÂë’èÌîVõÎ-ýÍ“ îPKñ¹ÔR7Í › ’ „ú·–ë—ýÈå-ôˆðní$ëÒší«“ô<¿ýÁËe ±q 49 ­þÛ­€ ‘ûîòÃøÇþïò© ÿñ@ 4÷ß*ÿÎ &9òQBòÈ ±C Ék^ Xíèûýô: Xïƒú'ì?ènêÕéÙë;SñÛ¼øJÿ/ïn§òa* ¶b S á üêJïŸÖç9ø&ïmð4>ì,•ì dñ\ù­TK £ å ¶ åDÿ%ùI!ýÊñ‡þ™ý™÷Þ 4ôC =ö$ÃûÜ º¦ôߤñÕò Q RÆ xwгñkéìÿÂú¨ødØò>ûFîúéóêëoêÌþîÊ |ô{ïúÛð$²óP&41¦ ˆ W þµ ‹ò¶léâüõíŠôÏþãî¹í*vï4#õÔý; P ÿ íÿ  p¦þ÷ óñüëüä ø~÷ysú¶ ÇýÈöÓð§ê Kr Jų²õ® Mê$|øŽýÉ”÷_ü9ò§ë™í ì&ëhý}ìÀ ñ«Žö«ò´ûhôp³<Úè  ( äÿj &õh ãêïíÏùiýLóEïW¤ï ìò Òø †Â FªK˜´ÿèÿ@vò>¸ú(ø ýöú õû]›ýùþ\ðìÿ3 ±°…: … ‰ yù  ëÿföÃt”û/ýtöòìzñ#íÚíòûVí– ïïúó–ô>øýô¢üEz¾ ¦ø ù •ë K÷ ^쏝ì“þ<ü7ø´µó¡ÿòÈXó6÷×ìü? ‹Ci .ˆ Ì`Ì óÀ OùË ¼ÐIþ­ OþðýþSûÿëï;ÿR×RÃ@ W7Ù êü; ñëQôù Åýþ\ù8î¹ôuîÉðžú5ïbjð³9ó˜ö…ö;õ'úÞuþø t +ì" *ùä î%oì‚øúÜûP÷ ÿÝô‰Íôdñö¦+û¸ ‘Ýמ œ— y ¢ôï Å÷”h ¼Î SýŠWýð—ÿ¥H¡Mž 8X·ÃÿÓãìðòn¯ ÿ¤þWû†ï8÷ÊïQóAùñCNñLóeø‡õcõgøŠüf ©‚ c úÃúþ ÉïԎ쐖ùÌþk‘úÏþË÷%áö_Æ÷˜ŽúI ¦þ] à{© ¼p ÷õ ”öÓÙEh]âøÈ"…ÿ _ðÇÃÁòÿ U/:Š.îÉÖñ,þ^ÿòþGüïð½øGñ%õÉ÷Ãò+kòÿ•óþùdõˆõ¨÷‹ÿ¯úà®þ ß7ü¤€ñ¤ïì‹Xø²žý“þ=ú«ïøTùÌÙúÊ ãýµ rVÀ”b2Ž~÷܁õQçrì< éW•!ñº`g´¶ ¡,eáÂïñ7Ö¾ÿnÿý‡òâù~òŒö€ö ôi8óoÝónû7õ×õ÷šþˆùtý‡ éxý8Jó!€íý÷ðÓÉþ‡þ4ü¹ú$gú!fû3 ýý t¿AæcùÊîô¼Çc4£üÚb"CKò}ö…]® …¼ü]‡¼ñpÆðkl.´ÿ¼ý#ôçú”óÂ÷qõ)õÛÿþó‹1ô–üõqöwöÖý…ø‹ûúRÿÃ…þ½ õjNî)ÝõäWþ þy‰üâéû½ZüÛý AFP”žúœ£ôáTå ø^×R]ø†·óuÿ‹b ¼³ œ Ø_nôð¶³ž$Wþ®õ¹û€ôÇø½ô*öfþ¹ô]ôÐý#õ*÷/ö ýÖ÷µbúbÂýLUŽÿ,Êöb9ï×Ûô=(ÿ@•þUÿìôý‘BýdýÈmþ ‡Ý_…µ$üÓ¬ô6 hQŸ={K†\eõþ°2 ×Ú —- ¶eyöË™ð4M“6ÿ÷ÌüCõúdôW÷ý õØõÞþEõøìõPü)÷‘Dù¶=ü™”ÿzfø$?ð3÷ó5Aþ§þB\ÿ"rþghþ !ÿý hôÚ¬3Í5‰ý[ õÏâŠWQ"ø*÷ïðü¥( Å× m( w¦;öøèÜð—NþåÒføËýö5ûEô–øËû­ö'ÏõÚÿ©õëø÷õ¶ûÏöˆpøøöúÉþeÚçù¿nñN\óØGýå¦þÑäÿñÿ—nÿr`ÿ@ìÿÅ ï_4vÓþ(°õšÛ¿ªÊu$X —ù•êûX:q·  ÜGûÒcñÌ¥üXþ®”ùµþÌöWürôÓù­úÒ÷O¹öÇOöÚùPö8ûÌö©ø!úƺü2dÿ=ûX¸ò*îòIüˆþςÿ2ÿàÿ‹èÿ‚l} \ÑmWb7$ÕÿQ”öÐaþÎK9Õ» ý` VðúUGûan ’ésHVmý€BòÂ,û‘à)­úrÿ…÷Uý¿ôû¦ùùM¼÷z÷ÐúÝöáú÷ÖÿÕ÷Mtù´ºû÷(þxüô$¹òRHû þ›3ÿ;R¬8м ™9™¬‚ý:¤s°÷çüR¥ ü - >Þü9âúò½Þê 6ÐòhËfÿWóŒÓùˆ£UªûÝÿ8øþ1õåûÈøòùBžøä÷Ãû‚÷¸úw÷ÿû÷j9ùzû¦Hý‹ý+ÿiõH¶òPú‡\þMôþ—ËM3՞®˜¨õØL-žåøK‹ûŸKàDF ž @¸þ7Ãúé'¹H í¯ƒiF¨³ôM¬øs1f—ü%ßøŒþ½õ£üøÊúrùm£ø´ü'ø®úô÷sþ:ø–'ù#·ú:Ÿü‡þ]þÑöÿëòóÿaùüÿ þàÿÍþÌÿçåÿÚ0³½ “ëŽ7}ÈAˆ©5ú}Šúð´EK¦“fÈ wvhîúÆËsØ•EPé‘L:ö Ê÷R”ÿe\ýGùßþ\ö*ýŽ÷nûùÿúš;ù›ý¯øÍúcøÝý{øÄ*ù²xú¶$ügÿÆý&øîþPówÿˆøœÿÄý›ÿ«þœÿ5ÃÿÞV£qs+lyZË ¼—Šû‰Ùù陣 œ#ŒOû:‘ÿå~Õp+¡Áä÷Ó&÷-àþVþ[5úÿ÷’ý9÷ôûØþ£ú–Ãùuþ0ùûÔø\ýÊøýFù,WúÍû3Mýsùkþçóüþ×÷3ÿ[ýHÿ–þ[ÿ’‰ÿÐáÿoÇ@^5¶$äõÆ„Àü–lù?þ½ù.µÖ: ËŸ¹õûi’þyâI ùx°ÓŽù¶Êö þYþqÜúPÿ«÷ëý÷iüÃýûh2ú>ÿ–ùeû/ùîü ùC_ù—:ú\€ûîâüªúûý¡ô›þ7÷áþÚüÿ‚þ ÿýWÿ¢·ÿêF uúðê¾Ã[ÛýYùSòêIn‡ ìò¸ü«ÄýDZ  Âgo±Dûžºö)ý^Öþ„|û}ÿPø5þ÷ÃüÇüzûúíÿïùÙûùœüJù—xù÷(ú…Fû”üÅû£ýtõIþÃö—þRüÄþoþðþy.ÿbÿØmÚ}Â)°4†´1Ôþ|ˆùYÝÿŽ“¢:» «ýÐ1ýi> À•Sñ—åü‰óöKü` ÿ”ü¡ÿùøpþ9÷ýàûÝû™ñú{Kú\üÒù]üŒùûÿùN'úû*CüÒüLýgöúýröQþ¼û†þSþ³þòþXÿÐãÿËškYq\L û ÿ[ýùXÍþ±¾íjºKÚA©þ Ñü¨SV8eVNŒpþˆl÷uûsÿ°«üÊÿšù­þ{÷gýû0üAûê—úíüú:üÁùhÿ»ù¡#úõú®üÂýýg÷±ýRöþ&ûOþ.þƒþµÿÅþ²)ÿÓ´ÿ:j<F‰1” ’Æ?9úMÖý ±Óz†«e}\Àÿ/°üÒ |ÖU3b|ŠÚÿƒ$ø ¾úòþÇ0ýñÿ-úëþÌ÷·ýiú…üYŽû<Ýú†ýYú.üþùâþãùô.úTÞúÐûšþÃükøvýUöÞýúþþýUþlÿ›þBÿÓƒÿ¿0µðÉÎŒ±`û9ýŠá1’~ÕxÐR»üû ¡AnmŠˆù1 ú–±þà¯ýÅúÿ<øúýëùÐü¤ÿØûh$û þšú=ü4úpþ úP:úÏú}¨ûZÿ‹ütù=ýö«ýúíý¾ý&þ2ÿmþÑÏþÍQÿUøÿ¬ÇØ®÷Œ’MÝ7ü^ü7ì ±ƒŽüŒÝsùü'#Í•‘Õ€‘‘*’ úG­ù´Oþþ?PûTÿ´ø>þŠùýãþ$ünfûµþÕúeüeú þ-ú±Gú»¿úÌ‚ûZütú ýØözýˆùÁýqýþÿHþ^«þº*ÿÉÿJóp(OŸ0µ ýëû Ä캆˜å•Þ‚dý>dÿçÞ§ž{š —,ûQjùÊÚýgþ`Ùûÿ7ùwþUù]ý)þeü\¤û?ÿûžüžúºýWú\úV»ú eû§0üpûàüI÷UýùžýýÛýÛþþø}þ£úþÄ—ÿÝYþ4Q¶ÚL}Ýýܳûö7ä½£Ÿ››ÂïýYÂþÃ\£_¥»£SügWùäXý@¡þ‰Xü²ÿ¹ù¶þ;ù¥ýrýªü(áû¿ÿIûîüÒúwý„úxúÞÂú'Uû0ü\ü·üÞ÷-ýÑøxý¼ü¶ý¹þýý•YþwÕþ•kÿm#ÿøzÒØ›YGšþµ°ûÛ›ÿØ ¼ß¤#¢œ’þnLþ EÛµ;®HªývuùËübÁþ«Óüßÿ;úñþ>ùçýÉüîüÔ$ü#„ûJýûKý¬ú‘úeÇú6Jû¨÷û4ýšü…øý™ø`ýSüžý‘þäý:=þA°þz?ÿðÿóÁŸ›ùfZ?ÿÚûÂøþÆ ±EœJÿxþý/y溼µ¨°þ€ÆùOütÍþÊAý ºú(ÿ\ù%þ4ü+ýs\üw½û¯ý<û.ýÚúšÿ²úãÙú+Jûçûûý…ü:ùýüøLýçûŒýeþÍýïÿþþbÿ–Éÿϐ½c!,[ÞÇÿb-ü¤[þ¶óªÈ—â–‘™~Ùý=®øMÉê¸î²ªÿ;ú)Ïû˜²þï¦ý1<ûVÿ–ù^þ¶ûgýýÿ•üµñûþmû%ý û.ÿ×ú_éúFûpØû´þrüüùîü€ø@ý}û~ý6þ½ý«ÿ þ¶xþMÿ6£ÿ¢cØ0Jö`©64¢ü‚Õý›Иr‹)ŠÚ’Ó}ÛýCòÒл¹¯¡ŒÞú0rû¨‰þ þýU´ûƒÿÛù”þOû ý{ÿËüÖ(üˆþ¤û+ý9ûÓþùúàÿúçNû¼ÓûYÿhüÂúãü£ø7ýûxýüý´ýtÿüýl_þ@àþê~ÿk9ìrÆez… &ýbfý‚”„9vvr}šsþDFMÎŒ³(¨x‹˜û9*û¶NþNþp*üªÿ/úÇþû×ýñþýÞZüôþÕûGýhûþ$û`û§ZûúÒûíÿdüˆûÞüáø2ýÆúsý¿ý°ýBÿ÷ýVþ%ÑþŸgÿ%ü֙™oP»å³ýBýjAs gÁbómPgJþ<¶ÿûÁÅYª(¡-‰aüDùúËøý6ƒþŽ–üÎÿŽúòþÍú þbþ9ýˋü[ÿüsý•û=þMûæ<ûYmû#ÚûqcüHüáü3ù;ýxúwý{ý°ýÿôýÈOþ ÂþjNÿÝöÿ±½q%ä»FþìüPàÿ_ïVNÆSúS­þ0>ÿò(¼Ÿ“Ã~=ý=ùúʧý>°þ¡ýèÿõúÿ»ú3þâýcý¨¸ü³ÿ1ü©ýÂû þtûwZûûBáûègüýæüŸùCý@úý.ý¹ýðþûý|Mþæ¸þB<ÿÛÿ‘ÝN—ÿþ•Íþäü4yÿBß=Š6v<‰<%ÿ!àþê…²ÔŽ€:pþ:ûÒGýIÇþ°aýWû9ÿ¸ú]þeýýläü\üìýíûæýšûyû¦™ûIóûKqü²ýîü úMýúýáüÄýÍþÿý<Pþº¸þ7ÿ=Íÿí|ö2¯ß xCÿäýü ÿ*È' "ü"¯ÿ©þÒxìi”[ñþ.LûÐìüQÈþ¿·ýºûZÿÈú…þóü¸ý! ý>‚ü;þüÐýÄû¯ÿžûA´ûBü¡üRþüü¬ú\ýú ý’üÖý£þþûÿ[þ‡ºþ/ÿó¾ÿÖeËÁU°ÿÂ7ýý¥þ««’Q ;õ…þÂR‰.`ÌPÓF¼ÿ«ûÈžüP»þÆ þ(!üsÿìú¨þ‘üÞýÉÿ0ýk§üŒþ:üËýèû]ÿ¾ûÜÏû-üê•üàþý;ûuýú¹ýBüðýuþ&þÄÿjþNÄþè4ÿ§¼ÿ®X"é¦ 8©‚ýæGþú‚÷\ëæˆéÐÖˆþ¥ÈiÐ?¬.&|!ü¿ZüOšþÌKþ9}üÿûÉþAüþgÿQý†Éüáþ^üÔý üÿâûyíû6ü'©ügÿ(ýÕûŽý)ú×ýûû þBþ>þ—ÿzþÌþØ2ÿjµÿ…J-ï$!IŽÝýÎüýãJà$͈¥Ãd·¢þŽBS]&…  %ô¦ü¶3üFgþяþ@Ñü¥ÿgûßþùû)þ ÿrýwöü@ÿ~üÑý>üçþüûúü÷>ü3Ïüþÿ
13,369
207
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/audiodata/pluck-pcm32.aiff
FORMhfAIFFCOMM ë @ ¬DNAMEPluckAUTHSerhiy StorchakaANNOAudacity Pluck + WahwahSSNDg`-e¼ÿ띒KZ€úTœ1Ã@î+À€ÜրCàËÞÀÀ²a@H©˜òøü¿è$€°}’kû`þ{]4¸WVú>É ´°UóP+À)˜0ëËb@\§ æÙš`íú>€ä‘½@Æ%ë€âx„ © à¶Ïàï))@à)"€WXØâpgû5WØè>@w¿ï„€Ø,[€÷'*€—ûwE`õøeüdf5 ûœN ß0ü@û@î(à ú48°>æ¸@ûZÃð¼w£€ü²ôTfÖڀÿ_2´Ï¹€u°Ci€ zŒÁ»`ÇNQ ¹€¢º îßdÀTÀ`‚d·€ÿÿÿE?@€”æàIœ³²pR·> ¼  ï²²à_؀Î<Û@¾p䴜À ê-cD¨€ Z| Èþ€ þà+¹†À QHo€DᐋÌd€;€¶ôìë60D€ [H Öˆ¤€:V¸í¶y /«ØFÎÀû;r8ž×òäÄ $Çí€é¦ìàn\`㎀úSïèßÐq€Âû«ÀÝv À2O`ۗÊÀñÝ90Û@ÙÀD^܀ݯ&ÀI%äJ þ]>ìX¤ÀøHjÀõMOˆœLûJnøîœlàý(%¬ó”ðý^ÁxìŽÄàýqLö\QÀüä!„SË ýé¼(³kÿm(_9àž˜Léòò ¬,4¾€ ²@èÝ·à1ÿ ·Ž€o€2¿ÀÅ3 € #ÀÿÿÿçTà§"ÐÑà (3@ d²ys] jK°çŒÁ@ ­vPÝÝQ€ Xi`Ò÷ Ýã€WѪxpPàç 悠 Ò ah€ hð0©MҀKG€›m¥%Ü ?ÕÑ@ åmê'BàZ Ý¡DN>°îÞü£ÕėçÀ€ô³@`;ëR@$d(€äK@þP:à¾Í É5®ÞŠi€ûmܯ €úž¨ÜQŽ@-–!€Þx΀-¹ÀäÇ©àîe¢í(` Mi`ödF0ŠiŒý ¦Þd @ÿ>Skë= ÿ2oçõl¡@ÿ‚Fäý€ýôS°X&þ*ŠÀÁÜ€ÿi ZD¸€ìè2Îvð£P ãtÀ –Q؝`Í@çr‹À š€[j€6û €Iïà{R&¾Xæ@§€¢Í É|»@ Mè ÿÿÿ ŒîOÎ@ úÀpßÒCÀ 9ðPÐæ€ ]¦0@pO€”=p4¦`@H—ø|¯¢ˆÐðaáæ ×0Ï1¸I Àƒø¡ K 3NÀ ÒúÚ*ÐÆL8Ð YBTú÷Âý]$¼†õŸ÷pùáYØì  /tí€äx+<!à¡è`ҁ¢€Þ©íLý€ÝLDÈÜË?@ÊÖàÞá¼@>#€å(Ú`éQÜ íÛ­`¤À÷}°šÃDþÆÕÀIü g°L‚û¶ H¼¡—Û§ÿ@ÿ8èšOfC€þºˆÜù8ÀÿmJ¶*1àJt"?8„@ËX¸ìfáà&U -¿íÀ PÒÀÒA¥×@e~­™þ €~ǀ8"K@³Ó`/ðÁ@lœ’ë€ DBðÿÿÿ(¾À .¶P (!Ô)Á ââ`Ø^žÀ ¯k %¯U@í}ØF±‡ÿúߜö)ØT9ª€ BVøk}ø1 ÿØ e†À ÿF •¾@Æ Æš‰’ÿԕþK³Ì­EÞö°ÖÝáé€ìèèÀ6¶J@ä¼à}‹8àsàÚ§ÀޘÃ@âð¤ Ý%‰ˆØÝ·€ CŽPß/Œ€CâÏåq ï¹Ÿ€î|uÀˬ°ø€Â€µA?€·¡®Åm€Õ4 ó'°b@åyGiÜ׬æ€RZJ>ÿ=Àþ¸ôfüªŒÿš]ù]AXÿRÊ÷]§=!üâ€pdÞè1Nဠ‡›ÀÔu%@!áUoêé¬à“T ´”@ }`l¤G€Ž˜@€ ¼ß0r¡û€.(;r €õ"Ãò€ *Ž Þºº€ ¶ƒð 7}pKD}€}PùF¼ü^x=—@ -ñ÷`_k €§àûã<ð4€30Œ@ ‘/ÅtW«^ùMƒ¨þ°#`ÃX÷EÄhÀí!Ïà5ՏÀäZØ`«Áàߨ؀ÝÌd€Ýþ›ÀÝ¢µ@Üñ¶@3ߐÝ-/À3¯H߄RÀ@Ô€åá¸ýϛ´ïoÆ@ÎZ¨ùú”°Ð7@ …P {?€Ñr¸¬õJ5 {<À—NÀØ^0ÀL(Âüÿx4óíðàÿ ^»ÞU‹Àþ§+Zd”œ¾‰÷7$3Ë y#À䆣 N à:ñ»@Ù`ÆÔ €dãà°«¶€÷üÀÿÿÿ (‹P‘ÓË ¸l9þײ˜kN'\ƈÁŽ€ }×¹a@ |“À .?à)‡Eg€hàð•ŸÐB@(öÆ@ +å€5°@…Æ ‰åà€̀Ԥ@yµàCò〠X±`ÐXà@(3HéX¨€þä¸Û¹áÀ÷D†´ Z€í6¥@)aO@ãçx iý@ÞÏÀà  Ý`€ÙØPÀÜàЀºSH݌ @„å0à<¡`7ݲ@民 œô ð¨A ú›hû¢Ápå __HœÓ)€ °!Pò=\ ç#À–àZõÀݨ¨±àФ ÿ`ŒA2õfþªâÒîÿÀýJ`Uor€þooò b !Œð åðŒ÷ÆB ~P!ю@ ßÐò󰍍ŠþÒÌ8 ÿÿÿ ¯’ðÃ°î ¤dpûx†˜Àÿÿÿ—£ØÕµ1‘ùÅ}Ÿ@ µëð \`¤¸?@ŽˆÚ·`”pBT :ð@ƒ€sä§7€€Ò¯À±Ì¨‘ F3¼€  ç¢ÁœõÕ¯mÀÿ,Ðíö"€÷d@±VmíGË@"rÀãpíÀ.djÀÝØ7@æ0€Ü‚jԞÿ€Ü·@ÉþÂݲKœÂ|àш@+ËñÀçv±ànž€ñîžàó÷\Àýv @ò5 ä £±¨€ ÞiÝá5€ èqP÷Ç pÀðèWçF`ùèˆÿ]×Ú>éq@üáaèØö¼@ûQwH9Ôí@ûÝ<¨&%nÀÿ`'ýÐÕ¨[—°;Ð< iµà?Ü@ L—°‰2@Š\€€»}Ëù`H=€ }n@üÒ­Ð ÚêÀËW[À¡aÿÿÿ;uøÿ3£<lªp°Ôo EÐÀ”Ô'€L>XðûÌЉó 4˜Š•à þ2°BÖʀá Èsè@{€˜o®€\—`7Ñ,€ ?.ÐÊÉ Mü ÇLˀþ„(óÔó€öÄcð»Ÿø€ìÈ,@÷PŠPâ£Ö€73dÀÜÀ¨€ô=pÛÀZ@ÍëyÀÜ­•Àüĕފ@îJHâ@° Ùnàé à)„þÀóü¸0õpÿø-ÓõóÏÐ ÛV±µi€@G Ë伀é°@pU@ HåP÷1RàìÀè£×àþ¹Ž=š €úïèìfO øÑ%pœ9àøµFÈ:X½@ü<â°ûU,@ˆ–E‹0w  ¦˜ öãP"æã€ Š…c€Œ‘à.âí ÜÀ0.ž@ :´ž¨J¶¸tØÐ€&È0$=3— ©¦ò€ ‡pë9>€÷èÀ@:å€çíX&É,¶*8‹Áp H¼€?•æ,%`èw@Ç3àŒ8X€ºÄ@Äá` DÀ$9â@í«0ô…ýû(ì6| ö:6ÐÍ Àìàâ%(àâ7ÔÀ3ÖsÜ Ã£r°ÛPȀË­ÀÝ"æñí0ßÇB 5ä€±Äàë.ÎÀ,Îà€ö9Püœ¿0wüõa Ž´ Àký/À¿M›€JE ‹ BT`½ÖèqàßÒh€üñcÜ1X£@÷ÕäðÎ$õMQ Â”ôÚú@@s|€ø´  àþÄ^îPg€óžÐÿ°v0 àð+ œ†h  É€~ƒàýPOPê•@P  sÒà¹pԀêfàH.äºä¸YKgI·g¬€ Ö PÎ[™À oÑ@<3Ã@À 5+@÷h$=ý Hnà5G€ í„@ùpA d;ñh ú  \qp9}î@«GðΓYý¦Š”܇UÀõï¹ðܗ셌€×ŒsÀâ(~@&QÛ®C®”àÛíÀР<Ý»ù@ão¬`á G 4u€åûš`ö[@í8H@)®{€øUØ rÀÒ­õc§@{àÌ't€琹iŀžïý«j K`8m ü.<àœ<àû=pøøäÀô×­°— @ñüåàõ ñg›à9_@õ•½Ð§ üM¼ÿ2±aìšPøP€ ¦Là+Ý`i+`¿(½¸†@Ô +ÀîÑàXœ®€ öf€ÒþUÀ Mp:à¡4`j¼#€v~ØÇ,@ 1¯Ð´¨€ Ÿ*K’ð×8G@Uœ`ÈÈÑH"øí@ [x  ð˜À*À>(" ÔÐÀ ™´€A3E¹pçå}àýbQÌÌB;€õ±? â/?@ì¢VàØ|}@âTÜÊ`ۖŸ$Wo€Û1P€Þ°x€Þ¶¥ÀÕ¶†âý°€ [šÀècdàQí€ï²¿à$iK€ú—ðÈ áÈ  HØ÷†0Õ Ö.€æ·¥€÷¹ òiÚp è°Grà'Œ(è…Ç`ø?L ˜àðËW$±:@íð§@õdÃ@íÑ»@*|݀òÜã`)àû:¦(s…p<CðòÄØP uc€%l[â@ß-f@Mo`¹Ã[€æÀK+‡î ð÷40€ $²ùvi˜ùíhdˆ'€|ÌPÿ]®S Ö0ªHՀE\P T‡Pä–ìS¼3€Bô‹pÃgÀ m®P ²@+Ì|;๑C€7 ·uv€ #7P5» €ÃF¸NÅøþ‚µêÆ>Æ@ö¦É°Ûd+í¢lÞKóã@@ @ÀðÛ«`€%LÚêÓî÷@Þéu€ÏNãçn),éÃãÀr’ ñ;e!Ù3€ü¢ìùD@•°`úìè¢à߅ü@›WÀ¹Eé€T4 ã”à ü ûžàßõ>BõzPú<Îøí €&N,@ê"*àý> dê›tà·À`ð}̀"üò@ú_ÂØìPöi0ñ!£ ¶*ÀïL@õ ùjMøæÁ ±^éW6€1À¯~Måà ܵ`ëT!@çùÔOIÿ€ë ö:… ³$ʀaHê ¡ /±¼Q@€k«B&oàÀRù$ËZ ¿ 'þÀky€Ù~^@‹‹ ©ÓB€ýð'^ÀýoðÕ@ÿ6çÎÏB«€öî¢ÐÏ»í€íͪÞîöãO Âd¼Û ä€#-ÄÚ?”@ü ß<ÀÐB©€åøàôXR`ë²m÷ ós±!¸ @þ ÁøªÚ@ •…ü>@nª æóAÀ<E€¾\€à×E$@ ôPÈÁþó޶ |òX`ñŽÐéK¦@ZÚàæuÀÐX肹`ï½à"ÿÀúãàØêз#Ðô‰¡ Ó¶@ K©pÜ´ ²Ð^gà·a„ _ _ 4}`('þ ÷KîLÑ@9@Œ7Íý€þéú3¯²Àšv~ÈVk¯¹ Ïñp€^Dk?x%ÀÉÇ=0€¾A¬ÐÐ õ0Xƒxìñ 10Ç`¬ë•Õê`þ‘­Qð+uÿÔÍ`ã ¾`ö²SPȄW@í)VÀØE€âMß`ÿèšÙà@" ¶Ø÷WÀ*úÀÞÀÔ.i€æW„`èÙíý@ÀU“ ö=³°"lG˜ñ)püÀ ÚNÀýõÏ$> `ì9x`ŠÿàÆM @ü€Í³æ@ ܕ  ®i@ûŠªà Æ_ îGðÜé°äþ@º¡@â7Ê /'°åUïl¯°îÇà rÀû´mà³,€ ©1`ú2»ÈDZ $¾~RkÀ·à#Œ;Å-ÉÀ;C€ö‘"ð¡‘€-X5@k&PùãŸðýµ¼#”×@ùß `8ô>ü݃¼àŸ¡ ÿŸ€vÃ×Àþדn$͗ÀÿTÌ J5z!$XØÖ° S`` @怔)ûŒÈOÁÀ¹߀s| èéT€ é.à)$À‰Ø1øfÞÐö4\Ðʘ¹ëýO@Ώð@àî@÷àzðØ&O"²L@×>NÀ#ÚÞ™@Ù¿$@çOƒÀޝŒð34 ÛÞpù>(#0ÌÀ3·æÔ@½P“¨÷ ï$¬À°¸ Î|¿€¢€Èˆj€ kðý)äøØ¨,v€ê‚ààöžË@à‹¢  çŽ ÞÒÊ@÷È ãÄ@Å/°îp‘²àý§GFhÀ0ÿ£Y†œ=€úÛ[ #$DÌۀ&EÍÀÖ Š@®²€ä{Ø`67À'òŒ€—È-ùº¸„Y`ôQ 6à…@øiµÀöŠå€ý¹7ÌÂÉÊÿ6 å r Â"ZJ¥X€LI˜ ‹'@ ïƒM¦È8`ý°ñ*A@Ÿ¤@ì'@ڍú€ QA`Bàþím&BókµÓò•Àèñâ È)Ýށ=Àë¹ßÀÖW¦@~Û`ÖU~u ÞòE@ãoÂàêmË@ÕÿÜ@ô·–@ñ®0ý×ÁÐ"ïo €#yñŠé@«RXýÒð+›pM܀ճcÇðûÓ¨ñgÄ ô+^0pÆÀåG΀þ¶‚þÛ÷¢J$ÛÂY@E©`ãy¤@~°ðCpP§€ô*LúÀ §"`ÞE´!}ހ÷ÅÉ '½ž@Á À(¡ìÀæIË ó.ÚÜ@ ôÒÀ·{€ÿw[ó&*àòu–àÖ ímŒ 1šµ€ó<Òp6øûõKÀɈÉ@š²Gó~ ²õÀ@¸³€ ý°1a“@×W€ Ép]ÁÀürIý… Íúì@ v ÒaȀ ¥p €ü]Å(I~@ï´6Àà™°@å>}@ÆDöÛ÷"ß1€Õx€ñO€Ö/߀$Ãf€à“Ø`ñ:G@î: ÑEð@ù´¨¸ôsªQ ,m@ e @)Ýâ€íìÀ fµP¢ÐàðfŸP… Ú.»@„IàÉÚxÀl"Èç‘ ï„Bà` àš_óXؓQ.ÆÚ'™À 8­°ä”Ò å?Àó‘ý`£ÀÆØŠ\@‚`ù*¸&Yù€öÃà*¤¤€ N”(°—€óÊ`ö€×n]À [ç «× ùA+@ò€ìO€\Ÿ èG{À,iã€ð¬ÀÌ!`ýZ¬¼Ól_€G»°äDµ Q‘@1IÓ°;¬ À£íÀô )¤ý¦¶d D_ӃŠ€4å Ìðm@)­°à ÷¤¬`’àê×± î½àá¤g€É$êÀÚÁ\@Ógu@Ö @ “èðØÏ À)½ÀäËR ?KóçWðÒ÷œÿ°åîè 9L0Ø®à a5À.qéÀð >E ½5€ó ÎPaüÛTäbõ@ËL¾€ÿ¯¬Îá`{Àëÿqà ápÝú)À åhÀ׿Í@«æÛ„Ð [³Àèot@ ­@øÿÖ ` g¥@œ¯àëh  Õð)[àÀ÷óp*ëÏ)ð% O€ûëXPEZÀÚÂP€¡k€o¢2ñÓD`´Q æ¼€VKä“&à(¿\ð@˜àµ@7&Dß!§ 5ÐPÙݖÀR@:¨ 0à>“ñÀ *"f逖n 1Ûd¯äØXã€㰠NJÈœóû¿¥0ò=>ðoS€æoœ üN5߉JÀÐ úÀÛ¾SʤH€Ù‚Àü:єÝt[€)-êî€-ä@ù¡•¨Ü Š@”þØÚ#ó€ ú\Š{¸ @-þπߤð"¤ €üòÀúæOˆQ3`Ü*à€ Xë€ÊKé€ü÷p Û~o@êà]½PÝ@èiðØ£ˆ€¬Y¬Ý¶C€ÖÿPìJ2@EH¸ýΕàe£@`µÀ! üQ|`*lX€úÒÚÈ)¢ÿ`T!€@neC_±àÌÀý ÷ºØ`ìEÒÀ4ƀãŠ`@Z~@ãÍ4à& W@ò,à0ýÆÀUù8ê}Y K, ÕïÀB• 6ꐯLÀ:º…€lÌ.B€? 1PÕ¦ ÞžˆÊÈ`Ã&À+¬5í…=àï>‘€Ãh å(¤ K¡°à¸ÅàÛÏÎ@߉WÀÅð€Þ×jë]Bàâz< "¹@î @½‰ ü£·ÜëÔÀDÇXÔÓ}@ ‚ö/,p Cg0% 3«@,öÀÀ !Ùàî™8Š`àj @ ¶) Ç×ã@ý^œTÓ°ÛÀë1xþ|àÞRÑÀ§€Ú«iÀ¨PàAôB°ïZ­ ÿY´?ÞŽ‹ ãGÀql !Âø~à)FÉÿ‰/f&³®@ú«X«a w¼PhæÈøøÜšøòHèÉÀ N÷°â¶Z 7Eå^± "jßõÌá`#: @!Ð÷ðk ÕëŸû1ú²^¸AV 0Çc€Z`À5¤ €‘, ™X ØàéQûÀ Â`ÁÈýöú Ý«7€íþÉ@ Q åù  €ã+…€ëB)ãÝ+@ÇßO@ãöVÀÛ.Àæ`æ@ð{|0'J½€þ¸ýð(Ôº¶@؃W@|ªÐçdG@ž(Ñ_€Ux°0'J€ †ôð³,€ HO ëªô lcPÈHÀþÐmÚÉç@ìð#@ô'ÓÐ߄€ýpàÛé§À_ç€á¾Ø q9HñRÝí‘€áì ¨30“?.@"EÌ@/¼ (6è@X$Cîù ß þ$0 Né0ë_ ÀõÊ2 îìæVâ ØþÐâÂà‰€ç‘ ϶`ù#>0%¢¢€຀Ò`ˆ – Úä?€xˆ@í9 tÀ"(€Xrð6êQ@ ;íð%}’ D°÷‡å0 kðÅ¿9€þ{>ÆÎýf@ïyÄ@¯*`çö/à{€æž»`üì„xè+€Ñ± @è èÐnâèáÌ -/`ð¼r%Vr€ý^¿¸cÐßö˜å;€˜°ßŒtMÊ@ä Y…h)Åx€€#UC 5•ûýRÈ ¾àÏw@ÑזÁçOîžô€ä{£Àà ¡À{äÜ"À¸`â.Áà|³ò-'PÖç̾PF£„¢7àr{à"MÃ@•ÆÀ&ɋ@,(€!b€üÎ„Ž„ ûéP˜‘èìúSÀóêrPëfP`ålò^‘@ä2ÀÜo`ëҀü¸@ý,›l%É©€[€ ŸÁà#4{â$%à@ä̹À¹àÀý@ ¥ø°2£€ìÈ.P‱ÐÒ¼ ¼7ðÏõ(€1ÒÌŒòÒ¼póvº°ë ðÃ`éå JúPêÔ­àá° êS1Î,‹@钩@î³€ï½@' Àü5„ïÈ 4Րõ&½ð…hpáÍüÀP°ìö’à¤$â+–àzsP&„(À ¸k° ´S ð"ݲñ€ØNÀÁ7†@ðX˜@Ôóp€às hƒÈÜ)4€Š)@âÄj@àŽàótè`ú›ÐI‘xÿ{—.à uàÀ"_á€{Ó %¢@kàoGÀY6KÀýNhPº÷Lî±^ òy.绔 åDÜÀþh[øæ³À \°îŸ@22 ˜~ª%Ôÿ€}+@_£ %£êêý[ Úù`àÒplQÀ(à ù *MQ€ìQ25›€r:°Û` ÷MÐßH…ÀÇýÐà À÷î0ᘌ@í˜@À spêîr` àë—æÀòàŒêöÓ`Õ^öÀépœ âªÈÀî½( #î@ûh¹À݉€ÃИà±`K–èëxË<%ðzMà:1(v‘ÀŒü!VåÀ  @þE  K@î;Ž@?E˜É2µ€ñŒ²€ËÒ"€à`çàò«ÎÛ«²€>•@âÿŠ€ò@ôƒÙ0)? ^Vðû¯x¢_ Uç" oÀ¢_à"ãì€qèt±Ž ‡pPÑNÿ̛nó˜0àòx ðæJæ±è öyRèÙ¸ÀeÄ`ò±â@œ×`|Ïü&fõ€åm€ѬÀ&ªôÄQ`3l àÿÀ š`ø ˈüá—D_"@û̖è1XõÀ”+¸"õ(AàÐð½ÖP ͗Ðǧi@û‘¨(ÓÚ+@îààûŸêU>à¨Àê¨d*‹žêÖ @âë}`é¥ñ@à$ú î—H@üU.<ûŒjx\S ÐHó],ì€õÄÛà·œ òúÐþB‰ˆþˆ³<y >n°×  ÁðúQÀB“(Õ7@ó}ö`ÊB{ÀàÇFå €Û]Ã@«\Àã}¥ -› õ§÷Ú²À áÐ 0z ”TàL]P ïwkK0ø’à Š,°=Ù  ¿ èS  èýiXú0<¸ó|@°èû@éY! ð½'àìC £ðHö\à@.¤`du $œQÀéŽÀ!j—@%:X€L ÆN`ÀãꆠŸÛèî²RÀø<8ˆãÁ ù[c8+ø@`ʐ*H¸ÀT(  l^RàÔƒ€þp°RÎ. @í¹0 ì° çŽ2˜¾¸èÆ àXBpëI’àð¥q€ë†hàåRd@ð9¼ ô¡|`üϙŒÍÁà¤p¤— ·'Ðû`ë`¨VöAàûsï8d1tþ;óägdÀMѨÔè ¨$kñèàßàxö%ÍUmÀá\)@ÜË/@Ú­¶€ü&͘ãŠÅÀèÌ ö¥óPÛ åŐ¤°`–­À H°¥ ºš¸ï$€Ðªy MÅØ"˜P±h€ü¬Ôÿ\Òòõt-pî¡&`ì¼mï/s îÕìàüNÔ0øÚÀ wa0· ’À-u $4À#M °ÀGàì^÷€QS´êhîàô`,ýÐø0 hÑÀØ.È*ÉìÀl€°ÐÀà ämý@ÿ׀ìÐwF@ë àX’ ä'ÂàúSõ 禷€Æ´íh«@ù3RHï)n í«Éòže°ôWÄðýmçD)¸`äd(M5X²JXü€˜àÿW¾6ø6Xˆø ÂàDüçˆe5€@h >³À–8àlÒ ¾I°éPù ÷×SðÒ%ÏàÄcà×§[€Øßú@ñæLðâød` ²¼Ð÷’0Þy€³|`õΊ,àûÚ@¾_pRqÀ0ó˜½AÀê Èø€3v”û©´˜WRxø7±Pô"Qð¸eð†/ñF ùxØðújvø”œ 6-èÓ΀ÇR@# Š!M«€žýà\bÀõíåàá¹®ë3·àò™„@ûGS÷ÀÅ删ÖÈ%ì@€làô>àzb€óœd`³k7ØtTÀè@Ûªä€áÀï ×àç® ýª2ðâà@û¥°óƒôMwÀôŒ0÷·ªÐüc³äXà&æwˆÍ  ö# üé4ý¥Áü÷¾6°÷-rþ«cäûgF g]ç ÎÕå  îˆ 5 ò– ù›¸Ø`L€ßÅh€Õ5‡À×,Õ@è˜q ãWL`¾ùíCØ» WÞàA¤ŸÀ$ ›×` ®ÕñC  é( ¼…€íÏôAÛXÿ«°ü˜ӇûÓFX÷+¥Ðõò‹K0ò×dù"rPúDǰxiGìÛ¥€Îv SCœ‰à<˜`?: þûOlDغïŒhàðÑ^p÷@ öôK ³° ú?‚(À®E`¤>`ãûÿÚ¹;×ã*ù@䓼 Ý$ÙÞ }@èy`ès> õórõ)äàù?uhø*„°ö‰:ÀõµTðúéàúÂh‰¤ݘô‰aHý".týD§÷y„p÷$ùPû‘àûu´`…6€ ,PVÕ@ %`áô úØ:PøûEàñ·@Þ~«@Ö´ø@ÕàÓ@â@ÀäEu€ø¹]8ü«IT'`Œc Ú „€@åÊàÛ²@6®Ààà ÒðjÈÐü¾Pp%ðý0Xþûîjü»Óèÿ¸ð÷#üPø•RÈó$5òÆw øýÁHø»Ç(ØHŠÊžû¶à‚K¾ ÄôÀ~@ö´€ ‡Xá›ô‘ppîõ€ÉÐöjÀX*Ð `ƒ‚×àâÀ`k  @嫈–cÐínž áp" áÙA@ÛóŒ€åÏ~ ê‘R ï› údÚ8ô·á`ü¯XxõLÈõÆîÀúXäö7ÿ°VL|ÿ¸AH‚@ÌÁhQÐöþ7Þù$< øíˆù–Öàû6@µtÜ ªJŒ`2º Œ€ wRù›°êÃ Þ \ÀÛbl€Õ¿‘€ßC)€æMÍð2OàÿÀ¡•‡ð@Î;-Ù`ÿm &, Q"à™Ý€ "÷€Ê: Œ‡Èv"ÀFýöÝÐ:[ú\X¦Ö õ^-°ú£ ñk;Ðñó ÷JÀöÊyPÿ‰)¡Â 3@ “×0”@±¢ÀM õ©€ Ïð(p ùøíh€õNPõˆþà|ø ×î€؋P ÷@ÿö`[–` Å ÿÔJöY]°ÞN^ÀèOæàÚ-ʀæÌÀíEq ìÈ ÿ¶‹^ðuà°>ΠòPàôHø5ãøñXQàbÛdü=¤øÓL¢sˆî¾Pâ.îüz­àùŒ&øùÓøpúæ¸è$Uè²MX •{°¥m@ qªICà ú#èñMèÞìæ@á@\@ÖYQ@ß§_@è'ÅêàQ(¼Àýß+Ôö €{é ¢Ã@ÚÅ µT ƒrpüÇ@B3@ ^2†pôÌj8dPúÓ\xþ`ôv§0û/.Hï,YÀïÆEàóSôò"ðün¿Lªøì`e$pS `3ÀXý@W@Æl€ÿC“nÿû?±êÒ-À÷¨‹Pô!j°ûß½h~µ°(B"Ç.€· ÀËïÀðþ{(üÜÖøÛc*ÀïÛÀÙ¢‡êC­€ñtq ë·ÁÀGû î ¾ÕÐïC‡ ñ€.@ôžn@ìYÿ.ªú» 3'x?4¡6NGø¦bú&7@üu¹ðø˜aÿSI#& T¼è'!` —ÆÀNi ªû¤®hö[Ô°ßÅÕÀæõ€Ö~)Àâ1¨€éŸ€èê0÷êÒp¼À <s°É®`$` êÔ@à&`Ö 0î~ÀöTˆ´ùà ñb<ŒZèýßSà +˜õ¨Î úùMØî'Pàî•ÁÀﲟô>#ð÷°6põvPÓÏÜy Ó§ò•€ýÀ)W`¿ò€þÚ„*íéãpüEž4ôv¯°ûwI¸ÏÌàùƒü#þ¤ xAÐývÀ ÒrPý4žìÿ–]ØÚ S€ó·}ÐÚ¬–€îD= ö2Üðí›øà ÃÏ0î€òù¨íø4 í4Èàñž‹ç<õÀû7ñxùèŸ€P $ 0$ˆ8UPªñÌù&wÿ¨°‚õåp[&þs( ø û@•|€w‹ uz ý`tùU0HàCŒ€ë&s Öbr@ä’#@êO´çïùÀʙ¨ómÊp68`Å¢=-Z0…¥`Ììôq x1ð½¢` ~` ö ç@ z‹`ƽ€øÃ±Hú‘ˆï¤@î¨ @í)môPÊðó~`>üýÔøä䬰 ÏÐ€Ç XI Èý ÀÀþüÊ` ±—éýù`])xô¾gðþÉ  3`#٘@·(W  PûѶ°ÿõªFÙÖ+@ö>º€ÜYÕÀñM>Ðúœð.° …£@ï²Ì€ËqîŠ`é2Xàð-LðäP€÷µÂ û!bPø­Îœ”vq “&€iÊøö©Ù­‹"ñdõÊ¢²x0 ?/€>``ß@öPý†²´ûí0ßâßÀîšÙà֚ @æ¨1@ëëµç["@³h0ïÉLÀɖ`ý¥Š˜Þª0 © œËÀCâ`nÑ —‘`Aˀqà 0pŒâàÃg„ý#ÍDúb‰øñÎM@ïó ìz| ôÿ«ðïV01sø8 œV0ø>XPà#€‹ØÅå@,¡¢~ êðâ@ˋõ> p臘ã«àL£ #R@°YèãŒÀ) ûsˆ ÿ'²NÛ@W@ö¨°Þê8ò/Š0ý™Ehñ æPðåÐ@ÿÓÞïÆ®@æ;ê ðRj@ã%P`õ÷€ýa;¤þHƒ(ï~À˜6Ô ‡ ð.ñ€ó‘P¢?4î›@¶ê@޲€} ´@ `.IÏnðügÍþ¡ð”ߢڀòTÿÐØS éU*î¼~ ç¬| .hàíC|`U¶àøâ+¨  Í´0Ïðà!àvŒvu P¥à¤ûÀ«€(Ù  »f0þ¨EŽ`>°û*ö ðò”p픀õ‡• í(Ö`ØèòËÂà ˞°ÿ}ëø8ñ`¢Zð¾ ·U€ncØ`ú ìf$ ‚Wðôù €ñ µr ÁÈ!êjÀ~ðˆq`·XˆûœièþèˆÝފÀö`4Ðá< àñ•ÚàÿNSðe à ·åpð¤ï@ý‡Y¨ðFϰä{à ðã®ëÀõ_í ÿ‘÷6üî*˜` )ˆn{pûøðq :UØí»¯à"ÎTqÓXIڀqí¢óAàohúå젗•5àìKÀõ”ÿ ۊMì4æ@ñèÁ €õ` ë¾` Å_ÐôØP®6HžÛצÿ: éw·ƒà*@eD°›! 99à`§Áx]³ý‡J(Åðüóaûë¥Põoàñb®àõáðí{Æ«@ï«d >øðù Z÷ ýõÀø\ Ec aTøA@íJ8 ËËðóÿ p 9 ÷…@ úî ä"@ k| šâÀ«ÁÐü&Ô³¢®à쎠÷|p€ã¤Æ ñpø°gŠïAþ€ 3pï78`ûÙv¨ïN0Àä6 ðv0å$x ôB£PDëØû~]p±ò­þg(6Uî @ߘî1jà÷ø)¸hÚèê måµ 76èù˜‘8"4Ðãœ5`øzš0ßiP€ï%)€ò ``êx° Tèëj\ w–ò«@j0€ü5™TÊ8ö¤nhÒ6nwàMß %¦à}#í&8K¬`ý”Mð ʋ°þ¾ÞpȌ ÷åÀ€öcï@óãú@ïë@ZÓpîÝ¾à ®ô¥ÌÀ)€KÂX' ¼ð3uЯí°î†| si€ó~Ð-`ry@ "Ùª5À ¡$  Ëý>t6`äèÑ úB¾ðånj€ò±Ó`7• î×1à ¬i`í c@újvèíc5@äÞ{€î@€æØ’ ò'ð£ùJhHvì M“>¦$7æXíiÙ K׸ïÇû Š“8’…øµñ^A`!50ºy€Ïì(ù§ ØzR çxb€úÎpàâü àñ•ðñÕÞ`ëñ€Ž{¨ë:”À¿ˆïÞü`I%ˆøˆ´ ˜áÈ™}б¾ð ©ûÐ Jà|Ê@R€ñË`Í`ð<¬þ°f¶) ÿû‰:?€ùãõûÏvòâIðó2p°ƒï̜ ðò Þ@@0ú¤ÄÐBÀ”$ˆ Ð Ú`ðWú ”‹ ò¿@ ¨p ¡ LªÀ/½`î3P¹ ‘0þ~YŒjìàé±Àþ؜pç?‹ö þÀðwg€ T0ðírÝ@ú"=ëïvÀæcu@ëÀ¯àè“Ø`îÊE€XcÂõ° ÎBý.&àËæ”'pî €OÀøñK­¸À ÔèP÷@9! Ë€ œ@ ‘[ úƒÛX¸ªë“ý™¦åŵÀô/¼ðð… íp¾` ¹hë tÀÌ.(í @¥Bô˜3`7ZÐý¿X½›XÏ8 _ýжÀ k:s3p€þ«OÚñ@®r }S`û“´°ìPÌòL øÁÒàþÇoˆòïc ¨J°ò(` >Ç@÷42€ßà€ÿ)±ö ÍBP&ÃXò8P?ÀòDIp Å󀱸РCí€ÆC n±ýÿÀªÀ5 ^[íWß`… èžûµý ö˜ô 9B°ïX(€úƒ¸ˆì%Ñ`è@yÀêkÈ@éתÀëÕéà=Ù ñQ9@Úðø¾‰FB´ÿ>Ôï-ò m[|ò¨’à_{¸+qà ¬@¸)@ _` U€ Þoü!þ¤çÈpïKZ€ØçÖÝ ø7—xï(, ðk 5']ì<î@-]x쒾Òñb/p[å`ùX­‚XS† Jú £A` ä ¶ð€ zàâùÿF×\"VúVôH-€ý"0X€ˆØñÊ}€þ„µÚýšó4÷˜e° Þ³0ô4ip AÐö<„à&`û¿°ð ßñà¶ñDô§%°ßÛ ñ¡<°Ø à ïñ0 R,ðQÞÀ Å Pw¿°É`s꜋÷ñ±êP]0ém ÿêæ¼úÁ_Ðø©öÐa@òڄÐû<Ò@îE¡ éûëêñ; ë. êo|`þË©€î ɉPô|µPy‡Lúð™€ðÚ!p#Špó³#ðNÖ'ˆ3mð0Ùà § …› YÉpþë| ·Î òˆÕ¸?héhµ@üædíðâ@ôÉþÌ<îä& ¹!ÀíÆ *ËÜïtq 4ypõ#¨ÀÒÚ(ýÙ@ 9]° ( O? ÿ× j8àÿí‰ žú!S‚n¹€þ¦ãR öˀññ—Аü\,üñ<ø Þ»°øØŽˆ÷~NxRpút<` ´õýÈŒöÈ1`D*ðÓΐ§8 êƒÐKP` qPJÍ0—°Å·Œ³@õ°€€ ®² êM{"Xˆø~…(ý‹Êy(÷”€ü^Bò9ƀë¥h íšï@ì äë'" ýfTì~à ¿ñC«‰löâÀòªpûµl`ôfàrnðϐ<æPÚ«€ æm€ ǀ &tðÿä’ jÐõ&HP gá€êâÛÀî\ªíµ€ùÎK¨ýk%hóI› F{Ðïšé YExï£0@ 0òìu€›°øÔõ@ :@†Í Á»PDû€«ÁðH¾@›i°+€uüýÀÿèž?̐òu½P=аúº $Žð úÛ@ý l\úö‰x €ñ€ûôJ ^ýš ”ùNðþ*ð[˜`ÿì  3:°D²Càè =‚ð ƒÐ£8 ‰lPùw{ ¡ƒðë[Àþæ¨öf]PÃ<s6û”j`ý.· ösœìóý@ñwèàí#¼ íÚ©Àûð íVã@ –{`ïíˆ.èóú½Pô“lø@³èôû¤ü ¹ÜHnXv Á £Ûˆ øQÐ ú’åª îAp÷H0 ˆ ì]¸ Ž…ìžkÀþ‘Èü>Zœø3ž`·˜ó±¯ÿ£³^òCǽTóWÒp5x÷ 0ÖÜüëψ >£@‹º¤@ÅP m•à'¨Â Žh€Çycf †P ÍD°ó~Œ  Àe°ùN_P vè Èo ¾¬Î¸þJa, ­þMKDñõ`þûCûU1pÿ ïé®Àÿ=´ËN<Û'O¡àû  @VnÐ7öˆ Øf üéüd ;ðëò)`ÿàôR/°÷z Ð0ýÅAØþá’ù\‡€î5øÀôºËît@ðÉúž®ï2­€dڀðg|µfHó78 ö™Vðöƒ«@õ<pú'h¨Üuæþv҆ õÏué Á‚`*çë¤ #[Àù(´X äÓ@î × $<`ìo؁WÜúù*ØûÙsµ÷L< ÿ,ôی‰ë|ôÍ8@bôèöò“ð£î û,‰` ·ƒð–Ýÿ@× œ% nð™5† ™«PL yŸô¡:à ð¡à÷–ü ePÂ|ìPº¯“ Ð6PPü‡þ“@ˆ„²ýWa¤ ðÿ™›4¢\xI¤ ŸO@N̐ 8o XÏx´}Xÿĺhҙìã?›Hòîǰo L­ ˜ÿˆfþ¡`|ûZ'8ïƒ`÷:7`ïÈÀóRW€ù?œˆñ@XÈñOÈpK©`óÑÀøfÙ°õ†3`õaŽpøi߀†¬qü c‰@¬¨ ~ŠpeÚ@ ލúG@úÃ2Ð þ?pïÈM ÓåðìŽí€™,ù•u¸þͅžh¨ú“‚ˆþÎóœ÷Éq&ÞÀöÞ®0`äè÷Äà™q@úŒzˆ J,þ¥Lì ]h€ ¤”T˜ßôˆ{€I ¨ƒp»û@ p õ÷€ vÐö’ÌpԞP×4EÍHhѐ[(xäûˆõÈÉÀ"Ðÿ…&zŸøºð_F°Æœˆ Ä_пì€óŸ¶ ý”`рUVH.i;{<ˆ î/m`È`èñÕX`.Dû£øÿ_±…þñ üG•øðîÊÐø½ÈñEî`õ%ñ ÷ȰòÃïÐ*h€òjÔ@ÿiÈó”90ùÿÈõbÐàõˆÖð÷§’Pÿ‹aú­Õèá)¸þ¬ÊØ Ö°U` +ÜÎøü9ÊÈ¡¬ñçP£‡èìŠÇ`øX¾°úŸx´üþ¹°þ“ú=ªìøïJ8Spùn(Ë«8úÚ˜ È!€ýä ³òPrdÆWTü½–=_¸ø4G¬Œ!`÷f€Ú]Põ‚™ÀOšÐç38r~(Q°íÓ:#X [hê é\|W>¶”‚ñ"B@¶ù|c¯Œcƒº¶Ð`ç µÖ ¢7´*f;øw(âhïÁg@@0ñÀ8„Õ¶ ÿ¾ÿmžìý`àò†¶€ùá¾hò#öŠAàö‚Eôv€hz¨ó:¿€jòÐóàÑÐûkÃXõ7¤ õ×X ÷àþ™%¾ùˆ‹Ps¹`ýhh …µ  š ëbÀýw,7E@óKð ­Xí€-`üŽØ÷‘íEòÕêþþÆþþˆ¶ºü1󰡬úµTð(VÀúb—(#®@ûf8€ 0ÄÐý R, ø©x¼,º¥xDE¸Àé#§ðcpmùmàÊ=¨ôìÀ¾ÿxÄ_¨e¥ÐX4>£&xû¢ØÜx`]µ<&mH?;òLÝÐ}gÈôc¾ €„Á\¾D ¯¼@‚œ˜½]pû¤È[†p‰Ÿ°ñºB€q0ðÅT@kß,jRx/U ÿ³4Vý¼7\ô$$°úåK€ó”™à÷Ã'Àõn¯ðõ*ܰÿÙèÌóþŒ&ô/`ü–þìõE€öqZ@öxu`ýÓ¶ø†ØnÈû‰Ù€û‘ÿPò§Ã@ <þ…¾Z»’Øõ ®@i$ÐîMø€)(õÝ,0âb\8þSêþ“<Øþ ;.{˜ü‡\$ãa¨ûé ¨¼¯4üYë`ŒKàýÜÇ\  Þå„ðA¤<TPC• Q““^ðúžý˜š©¨ô¤ØðÞ VÞèãV¬ O ùïtYÖHÛ4˜N:à`KÄõ,X‡Ñóµ{õèÿsB ‹p¸ aª ¼ÆD ²TPœðl üPÚ9Ð]¸p ôð÷øð‰°µT´<œçB$«TþVÔ8õ®4€û¹ƒøô~¥°øÈMô¼š ö)j þfÕ"ô¸Ðà[r@ôá ýÍ3Äõ$А÷)éPö-iýTð÷Ô-@¶°úb? `AýđàIyW¡æÿŠÕ.ï˜öǬ@c„àï8w@Ö±@ôÛ| <œ˜ÿ(]d?s8þ•Û®ÿT­zë™ýóò ‘KpýA՜tèýcm´Çthþnèœ `Á›‚• àˆ¼\m‡XÔÄ´èü#ò˜ÓðÀô«" 6긟ˆ\f˜ØSm‘„=gz˜PK·àâh‡éY€Œõg  ’Ìþ­C¨ 4ÿ°ÓkD Ýòð“£ô /b³éÊc öy±Ë}¨ð—ç 4ùäÿþ¸M‘Z“&Àÿ5¡w÷ŽüÉÐõE[°ùÿÒ ôdÀ÷XC0ý  õ  ØT õ@þÝû6õDipøèõì ÀüO¬t÷)›P¡HùCK·P°ü<9`˜Çÿ”‹Ãz{;C|øh€ ÿðAûÀ0Éóùp3[¬þ@å*‡Ìþ§ºA¶ô]S²ÿh"j¸þrîÂd¹¼þjé@n0ÿ#§ úÙði 0óÈÚ>­S‚1´ˆͪÐ3²8ýŠ0¸[Àõ ?Ð͹hãt¶;ˆ‹èV—LQ@#üöP¤<êÐId÷)n€ð$˜üîΜ¥Ø (ÞPÃì Ø`kÅ´ )1 u½x§=:Ãðøö$ çM`ðÝ•«ìþOãøjÒHqÿÿ½­øf/ ýÊg0öð û2xôG«àø“ñÀûËüxö¬xÀ(f¨õÍAÿÚóÑõ©Xàøê3°õ÷û·(öÌÁ°Šrøof ÷xhúöuÈLàþ'ŠbTPÞ*GùâNhÂÓìñl@L¡œó^²PÕæýGc\åàþ¥>ŠÐÌsÿåÿïo$—½ˆÿmûq»0ÿ_ë?@ÛPÿê€é ÆHî¨_ސ1( Ô1ùwÏèMàþÒþ¬(„ õ¯ šd4éuÜ7€»ÿÀÊP§SœË4Ôtª@#è Y¼•Èù²¨’þØûêûWå:=0pI8 ¸àB4 ®Ä8 žÀÝ·ûFÀ¸Ñ1°ñcØÐËXü¦ÔV…lþꬴ_ù”µxþµ?0öËipüX¤<ôn¬Pù×Hú¨B ÷Öd€Lƒ8öºkÅ(öQ)àù× ÈöS#Ðû68ö̙©Út÷ýÆ $x`ú ø¨ÌZÀü´,È6Ëÿaýû= ÐZ¬²ò´L0.n(ò鿀HüI~‡ETþ=ªÎ˜ ÿ1à4 ü ÿ䆚ìÿëï«}Ön‹Ý }ېZ(&Óèk4¨VÇ eø3°&-ÿÔ*¸P@@ö–z Í#ÔþdK_ìÐðˆH0ô<^úÑ7x ¿¨°÷HJ epQ—¨úó²˜Q`ûIrh؀bK0ùÌ né0²pê-Àr 8I:U(8ýlӈ-˜ò?¨á\û+ÖP²xã:i%L ú¯øÿq÷„APýWg\ô¼Ÿàûµ@ù§§XøþJOgà÷¹¢P{8÷â@úÏJ(öÜþ0úàÖÐ÷´`ÿÖºÍ÷Õ°ÀKèùu_p²”Pû»ˆöþ*8üs…!Ùô pð% (ò¸ R®ûG2hHþˆ¸ ž5ÿ0‹>!+NÕ`´-¨Ð„9×0ÎÆ¼1 †ðš d7Ø›dd¨9 †ˆ„øÿ>5èŸR¤w3÷¬iPòHüå>Rõ¤¤ÖŽ'4ú9ÿ˜ ðû‚Ä /×À=ÜüÝH”:óÐúÞúÐõڹÜx߅ é”À6¥ΣÀóÁ€fLÀË;˜ÿgkV¯ØóV|@Ž)ùÏÑ Šô¢O1SÔZû«“ÿÛ²Òø8©°þmÜõ/Ípûæ­øøÅ•Pùõ®=p¼ø¢vHzx÷æ~ ûÀҀ÷„—PúµQ÷xü@ÿ&\÷ø<@m¨ù6P{P`ûF8¤ØÀýH­hý‹›Xÿ(H‚õmr°C`òº9`›îúODЈúäþZ¥ªL±Óþö†ÜP6šj¨D»ÊÎüM¼W2FÀÕº9}®ßÀ–àªÔÀñút“9°ÕϲLà/ƒâ™aøêäF0@û °ž©@J~ àëPÿuBù FË Á¤ qpAþ·¤8PúÁ» ê"ê&6xº$ô FØ@íQö®mð„3„g®ÐGT¨±¦¨ àô´ ÀK,ø­`pr­¸0¤geü–}ø#SløáÍ`þ‰Çôõ¾~ü¢|øvúË`w–ùruHllHø£hÐü³W0ø(zˆú«Ùh÷ö#ÀþrrRø9ø—§ìù%°˜"ì°ú·ü@9U°üŸ^Äþ…°¸þ_ ˜öΪÐÿ€bÌòë\@ÿñÍRù`óXÿþSþêúÿã¸{þÉâ–ÿÍXfçâDÿã ·ÜúP,·¶õޯ®à’’ê4t6€}yÈj @A¸ˆ§ø¨o¸ú6ˆ{( ú‹Ë¸îèôµB\CÓtK€~¥wp“À°e¨Ô ȃvH@v¯Og½0úîƒ(ÅwöË„r¼ؚ>”á°EšàN˜ÀêAäTÌMýLö94  ðx÷Ê5Q¾Üÿ”N*e$ý[ H¸jùŽ°þà’Lö[ ý)Oü÷ŽõpûmŠPÿù¼múã(™`¤ù;P(ýš0ø°·ú˄ øcö˜ý܅¬øz ÀÅ×Ðù'ר´ðúuÄø¶ûü$(TÿfÀ8ýÆoø&hxþëʞóSdpÿs“tø‹w¨ÿ™«ýÅàÿšŽþ¬HæÿšXØ7EÿÀ2?àùì,sWÄè¡ò‘q)hs¶È*˜kVPy¦\YuÄ裯 vx¹à› 8û…&–¨ùÔã¨ó8ì[¸ƒQ˜.éë X5ø›ìÐ ¡:0œ¸H"2L0ûN†h9x€ÿ’ûáýsÀ҅èqh êÀ)ßТñô¾hý÷à×ä÷!HP1|xþÛ÷ZEªýþøÔ[Æú5±ÿÈc÷½Àýi÷:šÀûñg˜þÛBðú $À˜dùÀùÀþv$Êù/'0û÷høÒíý\½pøÈìÿH\ùCh.Ù°úS¶ÔàûË004¸xýLMÌùqü°þl֐ó㷀ÿéÍ÷ÒH°ÿ7ýX: ÿHå›þ–êÌÿX§1”D¬ÿˆÃ$Î*¤ÿäIjkÈr¾ÅÀP@´]ñ 4Üä´û¸%Ӕã ÈôR°Ç¥ ‚‰hü¿Á´–Ê ùj÷€@ÚhûÖd¿ õ¯Â2%<°‚@Úgp 6²Í昚턽hŒûñ ðl׸þŽ<^ êÔw:ãpG¼Ð ,4øïPw ¤±¼ÐO”ù‘¼²£¨ö˛Ð¸„þº†Y•Žþ€¡6q‰‰úÚùˆÿQ;’÷ª¦ÐýéÖL÷  üd ýÇßÐûxhÑÌú2¸Ðÿ;äéù˜¾(ûbìù/{(üîhüù ù@E7àù\¾—ì8ú9Þ¨[S û:ÀìéBüã?ú§©Èýþ6pôºþj¾÷5?ðþáL2üۄ(ÿýÊþ„|°ÿJÿØ$ÿTvq¤¯°ÿ´–‘ìɀAØø'`‡ wõØø,¤ñ"Ôé§`x½v¤ÂéêZôøýÛhèe˜ùWêT¿˜ð±êoI€²mZ|ˆØì@D n€Äì+ñËÌü¹Ô¨©ŒýÆn€B«PZãPÀ Ù° ˆÅ°dŸTo'°²,ûCÀxö»Í 3ðý,0[ü°þÖ¶nƒjŸû} ÿ{j øRFþ26È÷püÃRàüÅ9èû}j`Ðú“ÀÿèIùó—ûÖ/ ù-àüšðùI䐗ÖlùwõàöOXú(Çh„u°ûF¸”‰jü‹«,ûÇwHý  õv% þHÑdöÁgàþ™ ÌüO?ÜþŨ*þoæ”þì{V}\×ÿ*òeOÿ½0Ù2hÔ¯nÙ²|»p±R'«È²=¨0ÁЈÎ`²¡¶0¯ÐþՀ¬zݨù‡„0Zæ8ÿÚS1¸Œ •HŸ˜„<§h ·J ßè\8­Èý¨4ÒM”ý.YTkÀ8;20#d¬»ôX&””RhTòlp”œ,üæÐàˆ˜öóØ0üK.`_¦ÿ ã5”V~ü\$ÿ¡!éø÷;0þsð÷5¡Ðý¨ûÞyxûÜðøšS2úðàzó“úK£pü[¬ùÓðü[ú|ùŒÿ°ÿùXùžªL]8ú(Øû*8(¶ÀüD³$üÐs ýM›,öeñýú PöqæþRbû»Œ(þ„àlþTaØþ±êüÈÔþòC˜ÿV‡ÒDÌÿàƒÜ̙PšMwj‰È}÷@[¯0mta˜H|¡ŒÀûÿž¾]{€ùú°0YLˆþÌü`²r¼„dî]ÄiC(º€0Iæ,ÛQ>öØþ¬áŒàüÔvÀ£»ðIQ¨VÄh8#äbÙÐY\K1xŽg¼þnûB†m÷o ¡ ûx °qÖÿDõ¯ü«œÿÊß²ù—M0þ±{¼÷vDÐýkxûõÈü2òHÈHû@ïøê¹®ú•·üíâú׸ü8v˜ùÂXÀÿfÛiù»âРa,ú#á €,úöLh«þü1<ýÀDüý¸ì÷eý²ÏäöO„ÐþèÎû$;PþNœ¨þ/X†þ‚àÿ´œþþÆXدXÿ+mwÒIÿ³—*;˜(gÛ?HC¯ ‹Q /Ф”Ð\ ’Æ´Å·l>ŒV:&Hú›êhMp°ýÕ²¨ ¡è¯óÞԝèw݄ˆ!$©£°fƒ(zù€]Ï(ÿ¾ÔÔ/Ô¬ü®õxҍ ­8z×|ÖúHS¨4ø°aµ€{q0ЦìÿØO…bÔø!uð"g´ú»Øp€·ÜþñWÌÅ¥3ý2å(ÿí²ú0Ð`þæ­\÷Ðeý²•¸úm‡ðü•8[AûØ;—úÝ@Àý†[ðúXæpü.¼ØùûÒ8þã¼Âùᩘö¼ú+ΠTé úÝ¡ÀnÌûÐ`Hþ™dÒüÂ}èølaàýu”öV ýܝ úp þ¶.ýýLÌþU ¦ÿl^þš†C7 þþÜ&Ò¾ÿ„¶¼¬ü2?¸þŠX/vµ+@ð–°ÇðøÎ5XŒå* ð²Vÿ¹Hû^®`: 8ýS<Ýàˆtã'D/ žžwÌ’Ѐ{zøØ!8tèÓ§O†°ü½Àùèô ²ŸB„0mlžðl§1hŠ[´«È‡bù®8/3 ú!˜•ÚÚþ°Ôá¾Sý­B$~oúÄpÿ`Áø<7@ýù¶0ùëüÐU ÿ£m ûÙ"Øgs.û#°èþ >*úš?ˆü<´¤ú4’þo,ú yøP7Üú9G€(ÐúÌÿHnû¦Øÿ[bÔüŠ7DùtAHý< ØöƒS ý§ó@úưýëi,ý¾þ&3ÿ1³‹þl –Ò{þÎj´ÌÇÐÿQ$Tã8ÿø« øÇ¢ Ø|¬a(ù¸Šë4‘räO|ÌÈèáhü3ƒ¬± ü\˜ 86ނëÆ` g\±D>èû\ð‹ßF¸pV üû–¼${%)_ʔ`—¢0Ý¼Óþ ‚Ñ4ŒãP•ň&t “2ú rˆDüù¯£±î.þPÈnîtþÃè=¶¼ûQ ÿSXéø´>Ðþ={Fù‹èXý¾þåD¨ü •8qi(ûd¾°þ´à¨úÕ®˜übæúgýPþ 1–ú-½ø± xúF*»w(ú¾úÌçPû€»h 4%üW®Dúv› ýLö×7ýyŽdùˆkýÁ@€ýr¸ýþÿèÿspþE߈a”hþ¦Ô½¶´ÿ&ür ÿÉ ÌI.p‘%ñOèq"\'× N÷ Ÿ`^nð2r^²cý ÎÀÛPûë–è E€ÃßCë²JæºÈ܃î`š}LãÈ–hŒÜwpƒÃôýa•äAyDÿ` éˆpÛï¨ÆàœJ¨‘F˜z¤šŸ¹Ü˜*œû*øRhùj…ÈÇܶýÜ$¼$¸þg5|`XŠûכXÿâßù3÷˜þyýÞùQø°ý_²¸þ(&8üdèÜ[S¤û¤¤àÿ?àñûïˆü—Èúžÿ ý¸L€úY1®Œú]ÅT ú½â˜æ(ûhۀ¤¶ãü1[ÜûošàüÞþà÷K ýR™ÜùkØýœhýÝtýÚÛ¼þÚ. þ Ýö_þ~˜¡ôþúª$ÄH¨ÿ–ÎùÝ¢XW¸qÿh(2–ÎR­øCT·‚Ù0˜Lp}ÏìýÛ}´Ý´Èû±à¸öA6\™å'ñú¾Z¸ æÀ ¸™WÀˆ¾?°’ºÔýì ZïþÁv¨A°Ë0Â÷[þ@£ƒø^ø¤Å¼ Ä¢ ÜüT¥Èd¨8ùX ãPZýXÙì?@Êþ¡¼PˆfüW÷¤ÿ³ºVù¶úþ·üäù9Pý¥z,ýrÓ ü©Ýl&kûä5(ÿ»_ÚûL“ üë˜úÓõÀývk¼úƒ† Ž !úvW¨à,Ôú¿û'Â@ûU’à.ƾü±hüYËäü¹R”÷Ûô`ý/qðøÍËxý{€Pü¸5øýºŠ¤þ´áèýÿ¼Ð’®üþZfœwýüþÒg—²œÿhÛÝnqx"m4ÿh÷x÷zà¸ÒªÖYª;ìWeHGdþ˜hr¶!Hû®\@Ý¢Xÿ˜à€Ù( *r¼T@ßÁd¢:È% à gÌˆœ+|þÎ*né¸þK| íèDã€ÚËèä´áì:×X®Õ°Gø« `ý~‘ujðùvñhü–üÐØœ]ݞþÂ)ƬRQüÐx¼ÿàîéú:“þð¢Þù>¹Pýæ[üÊDüë#ײŒü!`$ û…O¨ýGèûSxýG‘Hú¯L` Ÿšú’±Xc¯\úÇìP5˜ûIµp©Šûõø`ý4"èü›lø‚¿xýOPø—…hýaœTüPb(ý¡þŽß¢ýå˜9Èdþ<…ðA’Äþ°;8xoLÿA-Gˆÿó‹ð\ˆÂEMžÃ<™Çvú­–e1ôZ+’³`ÿ=zÞÜûÙ¸ÈÂ]þ÷ öÈb O:´R¬C<lb܏«›©Ø”`œs ÿIižx¾ýü®x0ßìvôéû¨µËx¾íH먲¥Tªêø­Ý€þž+RÍ,ùÅ3°¢,üLüx;ŒþÈØ̞aý@nT ãÅú¼&(ÿ$×ù^Çðþ#¦îü4Ø ý*Z¨r8¿ü\ë|wLû½ªXý­¶û=vHý+ úÝÒÿ–èÊú´b@âS4úׁ .ûF¯ zDûå @ýü”Xü„˜Lù9æˆüý½(ø}\0ýMnTûæPøýŒ4ÐþdùZýÎAlÿì…cþ!™2ÿúbþŒaî|ÿ×-˜Wÿŋ˜ҁð}¾µÜaMZ!»4,DZzÀßœÿű—bÜü-Ô£ €þ\ª"³Ž\õ‚¨'˜Ê>–•3ãҘ“ᘒ±˜ú +H~š¬ýØZ =óÜ­„¦÷̘M ÉTêÈ·œîiH± èÿ«UÚŠr¼ú=÷ˆ$ü`ûÔH“BŽþµ>Tí@±ý¦2J1û:[ÿWgcù”sþ^êŽûµHxýgáŒÿûÁÖü—6„±Ðûô)ðþ†êûp¾èý"Ðû DÀÿ-+Æú֘ˆ_}@ú鉈®€ûG»Pn·<ûÙþ²å,üshùûQàüí1Äø]ðý>â0û~˜ý}Š þ5ý½Þ¼ÿªWöþ ˆ¶–þvýjOyøþûêJ:$ÄÿŸ.„¥þ`_ñpـ0/&ÌIϘø—\4p­¨1¿º7e0üŸá¬ƒ#\ýÓø”œk”Ξd˜T rŸðˆåÌ,‡KPÜr¨+ôÔ©|ÞèýÚºŒChøñ½þª¤Õ#PÌæÔ½”è¶ðä帯,Ÿ¾‡Žo°úÚՈ2«„ûp>ШþŠJ΋Nýÿ(Sólû³Ü8ÿ‚ù(ùÛ¼þ“Í´ûNÇðý Üÿy7µüÎ ÀÓùŸü(D$þ‰dû¢ï°ý+–û9ŽðþÐL4úü°ÞB’ûøXä—ÌûO¡Ðº˜°ûԉpÿW·)ühÍ|úÁ\xüãœÀø¢l`ý7@ ûÐýu« ýýـý³ó¼ÿr?[ýÿ¬àgK¼þc™Ô<ÑþâYVè¬ÿ~÷lž 7;xîRx#òq:èÈ<Hb:}%Œ‚—‚ (ý%“Ôb<PýeˆƒQŒ’è@…o86\ìy)˜rcvÖ$û%(€(°—é¸tÉÈþ¸ÀBŒG°Âÿë0OظËð;˜²' 'ÃP©>pvx(Äœû”„Ð;ù¸û'ð¹?4þK,¦¶pþJõ~rTZü(¼ÿªéfú/ÿXþÅ9üûD(ý֑Èþð`TýÜ»ËüZތþôÝ ûÓüÀýF‰Xûg¹ðþ€–Dû"ú¨`ÝûѨ¦Zèû\kÀö– ûÕªÐÿë=üd%Èû‡püßbøß (ý5ÈúÃøHýsw$ý¿(ý¯¥´ÿBDý÷gèå„þU¯Ž&oPþÎî£e,ÿb&*(¶È]ül×OŠ–ìÄ›Iìm½8O¨è¼!êãœ\ý´¯\@µ8ý­0hÐdC ÜpNXµÔfôT¿üc¹œñŽØmw„PÔgäàþHÚ¨<¼ÿ´à®üÎH¿üÇ1äW¶xªl(ᘟ›¨-™ˆöübN@å<úüç¨Æt.ýü‚ü1æªþ†ŠŒ\›ü–pøÿÎ lú<ÐþñÜ\úÏÆØþšþf~”ý4ûÔÍQ”üŠÂÿYï*üÒàýq€øû”»þ>ÑÔûJ\Àé@jû8ßhZpûlë@"dûÛwXnÀþüdu$üGððüà*(ù4ۈý8npúyêàýw6ýyN ý±Š\ÿƒ[ýõÇûáþNED ôþÀQœkÚtÿLݰÝ~ÜÿõöÔ*³d¨º€sä~ó&`„âÝZ¼¥´þCݲ 8\üësàNFÿã.9Yï ôRÅî´N ÃVñ”öµðU¬”þ«:¬1ôÿ<»bô4&5½À]Xœö(Ò€Ä7x~SDý;œ€?ÊôúôÄ8Î*dý£âÄ?îJþ¯x8¡#tüþh¼ÿë²$úïþhÿ(mú¶…þ63âýà¸\ýc~`§WVü·ê¬ÿ´–ü/… ýªCûÀ®èþ ]VûrU@xÔRûX^8Hû`ˆ=—dûæ)xã|üiôÔýº,üæ!Èù r0ýA: ú@ê€ý€ßØý-ëüý¹ƒtþïì`ýù݈}/¶þLüvåúÈþ¸…ž@# ÿ=€Žq˜ÿÞ=ÖüÄt””Ú/¸Pö•6PšØû¬W—Ë\þË\†q¸üãßÄ3–<ÿy(>ByhÞÕ<à‰ÏÐ6gÌtõP=](†°(?Øÿ#Hâ W þáòòæƒ|‰¤®¬p֡Ћӌ °}úÌ;‡Ànü@þ–9¢¬û€Ñ7ŠýGjPI˜þÆ ¤±hý_>솦ûUX(ÿ;¤Õú´•@þ_­ ýc€ýŽÉümMíüâeе3üYôlýî1lûë8ý楤ûšA8Éîûyjˆ¥Ô@û˜¾ØH:àûôªÐI:¾üs¢¨ý®àìüðYˆúÝèýNœèúi`ý© üßœýÆçüþÈÓ¾þÄÊ8^þQ_BºDrþ¶TÞœÿ3É?LÿÌÉî!zì¦ö¼´1?"¯hèÞ¶Ü U®uªÿEsâPüý‹LxØÿ ÿ*«ÈÈ1K%æ`9˜ Ç!JÐûƒ $”Èÿ«%¬ þ¥¾âÔv„ìG›ïˆL¨v`î(fú•¦4Zç8þïÏX.cìûL[àϦüíd¤O<þɕ^½Œˆý¸!x‹ûºûxÿYÀÀúÇUpþ…Y:üó*¼ý·ô"1Bý b”>ÅÙü‚&Pþ:S.ü)ýÐÇdûÁÄÿ±Ø"û›¨BÁàû²šÐB üt¡vü ˜þPžúüþW\ú¨Ûàý` ¨ú xý¢ýhü=|ýÙ Ðþ îþ¥¦ÿúuOþZ⇓Îþ¹³ÿ.ëòÇäÿ¾œÊÔä°e†xp0NÌ:¿áæ;ÐU—ÿ®dˆĘÜý4$hÿ¥0þ£V워ª”0,H«Ðj ´”~¬¼Rшdx<†îò`øþˆª†¿A¤TY¤†l`/²ð^ÅdÍüxMzÀÕë˜CË\ÿ¼˜´û¨1ÈÊ¥Öüœ(Qzòþº|Æc‘þŒ)áWü1(ÿsÿÀúëÅ8þ§ü’Q@ý܎Ìÿɺdý/ã¨jBúü§þ(þ‹>¦ü;6$ýÉó€ûèDhÿ\ÀÕû½ïXÝ”ûÍа-tŒüµX쓾ü‘6¨þå=dýRÔû=ýtéèúÖPýºŽàüAnÜýð5Èþt)þ&Â4ÿê—þiÌ|OcþÁpúë"äÿ/èw¬-ÿ·1±b8UÄê# ÈÿÞkéÖp¥}nÀœ8Ӑ¶ü©@¤ýŒæÁdþE¼¼úºŒ‚ª=õrÔ^ú罬çxã™ØŠ78橤ÒdÔäþˆ˜è¥bÀÆ:ClˆÌwpB‘ä©Ü/2tÿ%'À4yœ #|üÕtÀ’üY*4OPþšn>Ê·`þMz‚5ç#ü€V¨ÿ‰YûöXþÅvºüC§ ýþ¼Üÿg¥¼ýSƒU€üË©þÝv$üa%,ýÑÊÀüexÿTûáþØy^Zûë8@êü2‘Œ+`ìü¤Fÿk±ý$9û×»ˆýŒl4ú*›ÈýÖkLûúTÐþ 'bþAóPþ?K”ÿ•À|þ{AHTzþÍÏbÖéHÿ2¡j³ÿ²þT‡càG< 0T욖 DH‹ŸÖ'™¤$œJù֍XÔýÜ`ÎâÔýûïhâàL_vÝ8&PvË~$ˆ.ÔÃJD£6hÄCTdìµBhþ¥j‰ñxF Ǒ^Í,&=8ƒ%(ätR0 9%þó4zü¦ƒ·· ü/¥ôI(žþd‰Ò`þ ²={‹üÓõ¤ÿ¢˜šûh¤XþÝeœûú÷`þ%îVÿØýnâ”x®üõEœÿ@zÆü}CxýÒ1lü<þ萪ûúžðûí·üˆÀø4ü<H05ÝÄüËZÚ¦ID3 ’ID3@  =?$aTALBPython Test SuiteTIT2PluckTDRC2013TPE1Serhiy StorchakaCOMMAudacity Pluck + Wahwah
26,734
264
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/audiodata/pluck-pcm16.aiff
FORM4ºAIFFCOMM ë@ ¬DNAMEPluckAUTHSerhiy StorchakaANNOAudacity Pluck + WahwahSSND3´.ÿêK]ö1ê€á@Ëá±H©õ¿æ²lþ{¸Xú>´±óO)šëÊ]æÚíú䑯(âu àµï*à)WXâqû5è?vï†Ø+÷'—ûvõúügûœß0ûC~ú6>åû[¼yü±fÙÿ]ÏC |ÁºÈQ!¡îâS‚eÿC€I¢¯R» ºï´`Î<¿ä³ ìcC \È +» QJC‹Ï9¶öëD ^օ>í³3ØDû=žÖòæ$Çé§oãúVßÎÂþÝu4ۖñÞÛAD_Ý®KäþìWøHõOˆšûLîœý'öý\ìýö\üåSÊýê³ÿl_;žéó,5 èÞ2¸~2À€ÿæ§#Ò ' fyq mç‹ ®ÝÞ WÒø ÞWÑ Mêå a h©NM›l'?Ô èê$ ݜSîü¦—çô²bëQ$däKþPà¿É6ފûܰúÜT-’Þ}-¶äËîcí) MöeŠiýÞcÿAéÿ4õlÿäýýöX$þ-Á‹ÿkD·îÎñ ⠘×Ïçr [k6€I{T¼æC¡É~ Mÿ ÄîR øßÖ 6Ѕ [@r•4¤LxŽaÞ ÙÏ2Gƒý 3R ÑÛÅÐ úüýY‰õžùãì/xäuà¢Ò€Þ¬íKÝÜÉÎÞß>$å(éSíÛ¥÷|šÃþðÆ gKû¹¹Ûªÿ9Oeþ‘Üùÿm*K?7Íìf&-Á OÒC¥e~›€8$±/ók’ Fþ* . (Ô* ãØ_ ®%±ëF“…úâóT> >øo0€e ÿ—ÄÆÿþM­CöµÝÞìë6¶ä»àsÚޘâóÝ"“Ý Fß.Cäåpïºî|ÍøµC¶®ÇÔ ócäI׬R?þ¹üÿù]ÿS]¨<âd1P †ÔxUsç“W²ï†l¦Ž€ ½r£,;uòÃö 'Þ¾ ³ KF|øÿ=• 1ôb€ûã332 Åv©ùPþ®Ã…÷Äjí 5ØäY¬ß«ÝÈÞÝ Üó4Ý,4߅@ÓåãýÏïnÒù÷Р{Ó¬K z˜Ø_(Æÿtòÿ ÞXþ¦d•¾î$4 yä‡ M:õÕÆØb°­øÿ (‘Ô ¹9þØkM^ÁŒ ×· } .*Efk“(ö ,5±„‰èÔ§wCõ WÐ[%é\þáÛ¾÷A´#í4)dãålÞÍà"Ý_ÙØÜâ¸Ýƒà=7Þæ±œðªúû¥åœ`œÒ ²ò;é•[Ý©Ïÿc2óþ ÒïýUpþo # ä÷Æ !Ð#òŠÿÊÿ ®Ã³ ¢û{€ÿ–Õ·‘Å~ ¶ \£?‹ÝB @‚u§6Ա̨F4 碟խÿíõ÷e±UíJãt.cÝØæ܀ԡ܏ÊÝ´›àÔ+Éçymñðó÷ýuò㣳 ÞÝá èùoèZEùéÿ^>çüåØôûT9ÓûÞ&%ÿaýÑZ> h@ NˆŠ€½É`L {üÔ ÙËY ÿ:ÿ4l°Ö C˜~>Yþ†:… BÒ$Èq˜o^7Ï AÊNÇMþ„óÖöÄ» ìÈ÷Qâ¢77ܼôÛ½ÍíÜ­üÄދïâ?Úé!)ƒôõ ÿýõð ß±³@Ëæéq I÷0íè¤þ¸=œúììjøÎžøµ:Xü=ûW…Hv ú"åЇŠ.å 0/ ´ŸKtØ(0"6©¥ ‰ë7û@7ì&źˆ M?’.èwnj9ºÅ D$:ïòýþì3ö>Íì„â"â:3ÖÜ ¥ÛOË Ý#ñìßÈ ä³ë/,Îö;üšzõ` Àk/¿OH @¿qßÓüñ1Y÷ÖÌõPÁôÜ@sø´€þÄQòÿ³ +‚ Î{ýRëP w¹oëH/ºYMH·h ÕÎ] o<5¿5+ø" L4ü òõcòú€ ^9|®ÎýªÜ…õðܘì„׎â(&Û®°ÛФݹãrá5åûøí7)¯øVqÔõc Ì'è¹h¢û M7ýàœû>øôØ—ñýõñj9õ˜¦ü‚ÿ2íø‚ ¦+Ýj¿'»ÔžðX õÓ < j½vØÈ 1´ *JóG?œÊÎ"ý Y ò(@ ÔÓ ˜A3çãýeÌAõ±â1ì Ø~âUۚ$SÛ6Þ¬Þ»Õ³âÿ \èbTï°$lú• å ÷‰Ö1䷂öòj E+èƒø@ ðÉ$³íïõfíÑ*}òÝœû=p@ò v%mâß,P¹ÀK)ð÷2 'ùuúd‰{ÿ` ªJE TæSºDÅ l ´+Ë}¹‘·u %5¹ÅMþ„Æ>ö§Ûeí¡ÞMã BÛ«%LÚëîöÞêϑãæpéÁvñ8!Üüû–ú¤ß„¹EU㔠!ü€õ@õyú=í &Nê#ý=ꜷð"üúaêøñ ¸îŸùiç±`U1¬P ÜëTéOI ÷…³#eê 4Q=m&pS% ¾' kÙ~Œ©Ò %Òÿ9ÏBöîϾíËÞòãÇÛ#1Ú=üßÐAåôYë° óo!½þ¯ “üoæó=¾Œ‚×C öÉþ¶ò‚ñéL\æŒÑè€ï"ŒúžÚ¶ô‹Ó KÝ ^·b _5(' øîM97Îþê3®œÈV¯ÏôZ?}ÿÿ=3¼ ôZxñ ¬ìÖþ°+ÿÚãœö¶È‚í*ØâPÿçÙá"¡Øõ/Þ¾Ô4æRèÞíúWö="lšp Úý÷=ì:‹ÆLÍ´ Û ±ûˆ ÈîFðÞ䍼â60åVlî û¶² ªú3D%S¶#Å.:ö“Ÿ-[jùãý·#’ùâ8òüßàŸÿ Ã×þ×$ÎÿTJ7 Ú R B“ûŽN¹sèé ê)‰øhö3ʚëüΒàì÷âØ%"²×A ÞÙ»çSޛð4 Üù#04ç•õï&±Îz¦È„ ý$øÝ)ê…öŸàŠ êÞÐúãÃÅîý¨Fÿ¢Ÿú×#)É&IÖ ¯ä|5'õ"ùŠôL6äøhö‹ýºÂÊÿ4 ¾J©J Œ ðMý±+Å·îڍ QCþëEójÓôèðÈ+ށëºÖX}ÖX{ÞöãmênÖô¶óýØ"î #y‹¬ýð-LÕµÇñüñgô,påIþµÛùIÛÃFãyðEN÷ø¨ß!}÷Æ'¾¿(¤æIôÚ ô¹ÿv(òtío1šó>ûöɇžó{µ@¸ ü1c× É_üqýÍüÒ`  ü^Kï²à›å>ÆEÛøßÕóÖ.$Åà“ñ;î9ÑGù´ô­) h)Üï g¢ðhƒÚ1‚ÉÝiç–ï~fà•†Ø’.Ú) 6ä˜ ãó“£Åû&YöÂ*§ L(³ó×n [ ­ùAì]èF,mðªÎýYÓmHäE Q1J;­£ö(ý¨ CӅ3Ìó'â÷¥‘êÙîá¦É#ÚÃÓgÖ ”ØÏ)½äÍ=óéÒöÿŸåí;Ö d.p>¼ó"bÛTeËIÿ´á\ì ÝÝý ä×ç¬Ûƒ ]èp «ù ië )^÷ð*ïÍ%¡ûìCÚÄ¢oñÔ´æ»Xä’(Àð@6ß" 6ÙÝS:>“ "f—2¯ØZâǍšûÃò:ræmüP߈Ðۼʦـü>Ýq)ê1ù Ü ˜Ú þ‡ -ûä"ŸúäSÜ* YÊKüùÛ}ê\ÝèØ¤¬Ý·ÖìKEýÎgÁ! R*múÑ)¤ÿ!žo_àÍý÷¼ìD8ã‡]ãÌ& ò.üWê~JÕB 9®:»l.B ÔÞ ÊÃ&,í…ï?Ãå* JàºÛÎߋÅïÞÙë[â}"î ºü§ëGÔÑ †ö, F%ì 5,ø ð‰àj ·Ç×ý_Ó±ë1þ€ÞRŽÚ«©àAŽï[þ‹çn!Å÷)FÿŒ&°ú®ªwiæÉøÜòJèÇ Pâ¶8å^"lõÊ#= ?÷Õìûú´?0ÉZ5£”•ÜéO ÅÁÆýøÝ«íýåã*ëCãÜÇàã÷Û-æÁð}'Iþýð»Øƒ}çdžÒT0) †´ Gë­ iÈþËÉíìëô-߀Ûçaá¿qñRï€ §–+"H0(4$Aù Žþ Në_õÌîèæ\ÔâÇ„ç•Ïù#%¤ÞÔ Úãzís"+U6î 9% C÷‰ jÅÁþyÎÿïy¯çøæ¡üêèѱè Ðnèá/ðº%Zý[fßå߉QY)È#X 4ûþ ÏxÐÁêîä|à yÜ&µâ0}ò,ÙG£q"O–&È/!Œü„Žûé™ìùóìëeåo\ä3Ýëþý*%ÍX £#1â&äʽÿ ¦2¥.R±Ò ½Ïõ1œòÒówë ïé’ HêØá­êVÎ*é•î±ï¾(üò3õ'‡áÌRö¤,z&„ ¹ ´ ðÝ´ÖÁ;ðUÔöàrhÜ,†âÈÞóvûHÿ+ y"]}%htTOýL¼î±òzçºåGþgæ _î›7•%×|`%¥êûßàÍr$*M28pÝ ößIÈà ÷á›í” yêèë“òåêóÕbéoâ«î¾ #ûiÞÃáLëy;ð|8x‘!V ¡ý î;@É3ñ‹ËÔà_ò­Û­;ãîô†* \þ Y"¦"àu´ †ÑÿÎó–òzæIæ³öwèÝcò´›}&gçÑ&ôÅ2à ø üã^ûÍ1Y“"÷Að½ ÏǦû“ÓÚîßû’êS«ê¦,êÖâééªà!î›üRûZÒó-õÅ·òþ‹û@<Ø ú€BÕó}ÊCàÇåÛ_©ã+õ¨Ý  4‘N îmø Š? ½ê~ýkú.ó~èúéYð¾ì¥ö].e$›ì!h%=JNãíî¶ø8çùZ+`*IS!]ÔþpÎ.í¹ì獚èÄZëHð§ë…åTð9ô¡üÐÍ¡¼û\“öûsgþ9jLÖ ¨ôßßöÍSá^ÜÉÚ°ü%ãæö¨Ú 楖 ¤½ëǧP!²üÿ\õuî ì¾ï-îØüNøÚ xµ£,$#M °FìaOêkô+ø gÛ*ƯáämÿØÐvë àVä)úSç¨Åíjù2ï+í«òŸôWýn*äN²üÿWø7ø¡Cüe?B’p ½éQ÷ØÒ%àÅ×§Øàñæâù ²÷“Þ³öŸ‹úÂM7¸îÇ4ûªVø:ô ð»ðƒñIùwúm‘;ÎÍ#œ!P Yõñàë4ò›ûE÷ÂæÕ%ïi÷x󟱨vèÛ«áï ç¯ýªðãû¥óôNôŒ÷¸ücYèËøüý©÷»÷0þ«ûe Z“Ô ðòøÿØcßÄÕ6×-è˜ãW¾ùïX£š ¯ñ »ð?ÿ¯ü~ ûÐ÷.õòŒò×ù"úFwjÛÎ T<?þüCïðÏ÷Böó ´ ú‚®¥ãÿۏã+ä”Ý$Þ"èwèuõóõ*ù@ø)ö‹õ´úúiÞ‰ý#ýC÷{÷#û“ûu† *Y'áúÙøúàôÞ{Ö¹ÕÝâDäCøºü«†äÜ8ß €lútý-þþü»ÿ¸÷%ø“ó'òÄùøº*ŠüƒÇŒ÷"ô’îðõöY _…álç•íoápáÚÛóåÐêïúcôºü­õNõÆú[ö5Zÿ}MÉUþ5ù&øù˜ûµ I3zùêÞ ÛdÕ¿ßCæOð1ÿÁˆÎ/þ'P› "ËŒvGýõ<ú[¨õ]ú¤ñjñ‘÷öËÿ‰¢ 3“–°ö Í,ù{í õLõþà ×Û ôZ ÇÿÒö[ÞLèSÚ+æÎíEìÿ·ðv>òRôFø7ñYaü@Ñ¥ìåüxùùÑúê!¶ ’§ qJÃú#ñMÞíáBÖWߪè%êâ)ýÞø~¡Ý³†úD ]ô9úÒ ôtû2ï*ïÈóôñüo¬êhþaYÿÉÿAÿýêÑ÷©ô"ûß("ǸËþzüÝÛdîÿÙ¥êBñuë¸GîÁïAñƒô›ìÿ/ú5>¡O¦ú&üxø•ÿV$V' ˜M£û£ö\ßÇæóրâ2éèì°÷ê‚ :Ë$ êâÔðöµ dŠýâõ¬ú÷î(î–ï±ôA÷®öÔxÖï%Äþ×,éäüDôyûuÑù$ u Îý8ÿ”Úó·Ú­îCö4í› Åîòíùí4ñ ç;û:ù‹¢ #%«ù(ÿ¦õ!X —wuýaùTàEë%Ödä‘êQçîÌóm8Ä?Y†ôx¿  øçyÊøÀú”ïî¨í*ôQó?ýÖâ Ó}Zɏÿ ®ê[ô¿þ #Öº¢ûÐÿ÷ÙÖö=Ü]ñJúð „ïµÉîé0ð.äQ÷´û#÷žv “iö«­ñfÉ 0@`öýˆûëßæî—֝æ§ëëç\³ïÊÉý¥ß Fm ™Bpà 1‹Åý#úcñÎïôìyõïT4÷ÿ Ÿ÷Q‹Ç£êñËõ@çãN#°å'ûuÿ'ÛAö¨Þéò2ý–ñ äðçÿÓïÇæ:ðUã#õùýaþGñ˜ †1ó¤îš¸Ž~³.Ñügþ¢ß£òSØVéTî¼ç® +íHRøå Ïàv O§©* ¼þ¥fû%ö"ò”íÀõŒí$òÇ Ïÿ{;¡´r]ìi ôú¶Á!ꀌ¸ûžþæÝàö^á>ñ•ÿOðe ¸ð¤ýˆðGä|ðÃã®õaÿ‘ükð<í»#rKo¦>úå–àïõ“ÛŒì3ñ èÁõëÅ ÁôÝ« § é·cž6¥_ý‡üôûëõñcõí~©ï¬ @ù úýøF` íIÍóþ :÷ û ä lš®ü$µàì÷}ã¤ñsdïE ï8ûÙïPä3ðåôHAû±­h5î î/ú'„p8ù™!ãø{ßhï'ò ê{ÿëk vògü;ŠûÖmN&|îLý“ Ìþ¾É÷æöcóåïë[îÞ ­ô¨LY 5¯î†uó~+u !¬ Ÿ‚ ÈýBäêúCåÇò³6îÙ ªí£úhíeäÞîæÙò¤ùLuN¦8íjLïÈŠ”´`½Îù¨{çvúÑâúñ–ñ×ëïë:ïàFøŽ’ ­ ¬ yîÑ:þ´ÿþ;ùéûËòåóïÍ ò ú£D“ ’ðV –ò¾ ƒ M/ïþ~léþÚç?öþÃðt Wíqú#ëðæbëÃè‘îÍVõÌý1É—îQñM¶ÙK> Ç Ÿ ‘úƒ»ëýžåÂô3ðƒír ë Ìퟧô—8ýÃ¼Ñ _¶ l:3þªÜ® }û”íòøÄþÄòó ¥ò =÷5ßÿ+ Ë*ò5SòB Ȱ EÆn \íYè~ûý ô :ïWú…ì%è@ênéÕëØ=ñQÜø½Hÿï/lòª^- · b R âüéïLœçÙø6ï)ðk5ì</ì’ñb\ù±O P Ÿ æ·ŸåÿF"ûGý#€ñÌþƒýœ÷˜ Þô6 @ö?#ûà ܻô¤ãñÜ î RT Âzt‹ñ´éoÿêúÁø«`òÜû;îHéùêóëêpþÊî Èô~zúïðÜ"ó´O'40 ¨ … Zþ ¹ò‰·éjüäíóôþÌîäºí-ïr7õ!Õý 9 P ÿÿí !oþ¥ úñîü üô ÛøŠ÷‚uúw ²ýÌöÄðÓ§ ëK sIƲõ² ­êN$ø|ýŽÉ÷”ü_ò9ë¦í›ì ë(ýfì~ Àñ¯öŠò­û´ôgr²;Ü æ 'ÿä jõ& hêãîíùÌýnóGHï›Xï¦òïøÕ „ ÅB®Gœ±ÿæBòt?ú¹& úý úø û÷[ýùþ“ðYÿï 1±²€ @  ‰ùv £ëüök¾wû“ý.övìññ{í!íÝûïíW —ïíóúô”ø?ôÿüœMs ä ÷ ü‘ ï÷I ìbŠì¢þŽü@ø5´ó¶ÿŸòÆóY4÷×üë @ŠB m( ŽÈa Ìó ÁùM! ɾÏþI ®þMóþúûVÿïéÿ?NÛOÅ >Z4 Üüç <ëóþôTö ýÆþù]î6ô»îsðËúï5cðhµó8ö™ö„õ;ú)Ûþx õv Ã(î !ù* åî'ìm„ú÷ûÚ÷Jÿô܉ôÎböó¤û- ·‘Þ×› ˜ › zô¢ ï÷Å” g¾ ÍSþˆýYð ÿ—¤IžQ ›;V·ÿÃÓìã’òìs©ÿþ û\ï€÷>ïÄóVù=ñ@ñPLóøgõ†õcøg‹ü h© €f ýú¿ ïÂÚ쉕ù’þÐfú•þÎ÷Ë&öÞc÷ú‰ Mþ£ _ à{ ¨¼ põù ö•ÓØFh\ä÷Ç$ÿ„ ð_ÇÅ¿ó ÿX,=‡î0Èñ×,ýÿ_þñüIðíø¾ñFõ'÷ÆòÇ&òoüó—ùüõfõ‡÷§ÿú­áþ®  Üü:¡ñƒ£ìïŠøY± üþþ”ú>©øñRùÌúÚ Çýæ ³sW¾”c1÷~ÛõQçsí;ŸæZ’ñ$¶dd¶ ¶¢+eâïÁ€ñ:ÓÿÁÿjý ò‚ùæò{öö‚ôhó<hóåûhõ;õÔ÷þ–ùŒqý … ëýx5óNí„ù÷ëÖþÈþ‡ü4ú·&úf ûh 1ý  ùy¹FÀ¨cùËôì¿Åd2¥ûÝ\(?òLò„\ ²€¿û\‰ñ»qðÅmh2ÿ±ý¿ô!úçó”÷Ãõoõ+ÿÙôŠô2ü“õöoözýÓø‡þûŒûÿQÃþ…½õ kîL+õÛäTþ“þ zü‡åûæÁüVýÛ BCR”úžœô£ßXá ÷\ÛN`õ‰ó´ÿp _¿ ±œ Ù^pô ð¶³%þWõ®û¹ôøÈô½ö)þgô¹[ôýÍõ%÷+ö+ý÷Ò·úbaýÂNRÿ-öÈdï7ØôÚ?ÿ&Aþ”ÿWêýõ‘ýAýbÉþm ‚â[‡´ü$Ôô«7 fSž={L‰Yõg þ¬ 7Ò Þ” /µeöxÎð–6ÿýP‘ÿ7÷üÈõGúôb÷[ýõ¡ØõþÜõGøõìüP÷*ùC¸ü<™ÿ•y€øi ðC0óù3þBÂþ§C[ÿ!þucþlÿ& ølðÜ­3Ë7ý†_õ ÏãVQ#öž ÷+ðüî¦ )à Ùl (w¦;øöêðÙ™þLæÒøfýËöû4ôFø–ûËö­'õÏÿÚõªøêõ÷û·öÍŠøp÷úöÉþcÝùãÂñoJó`ÖýFéþ¢Óÿãÿò•ÿpqÿ`Aÿë Äò] 2xþÓ(õ°šÝ¼©Éw! [”ù“ûëX9q ¸  ßûEÒñcÌü§Vÿ«ù—þ´öÌüYômùÙú§÷×Mö¸ÉöMùÛöPû9öÊ«÷þ#úËüµ7ÿ`û>Zòµ/òèüHˆþÏÿ€6ùÿç…ÿí}o |]ÑmUg1)ÿÒQö—ÌþeÎL9Ô ¾÷ gPúõQûI^ k“êpLTým€òBÁû/å#ú³ÿm÷ˆýTô¿ûù©øýP÷ºz÷úÎößúÞ÷ ÿÑ÷ÛHùw²û»öþ+üs!ô #ò»QûGþ‰ÿ2<Q­5Ó¹ ˜9™¬‚ý;¡w÷¬ üæQ§ ÿý 1:üá7úâõ¹â å<ÊødËÿhóXŒùÒ‰£Tû«ÿÜø9þõ0ûæøÇùô?ø¡÷äûÄ÷‚ú·÷yÿ÷únù5|û¢ýLýŠÿ(õp?ò½šúPˆþ\JþúÍL4ÔŸ­™¨ô“ÕM/™øíDûŽŸIãD G žAþ¶:úÀê(¸ Iì®…hF¥ô·Iø®s/iü•$øáþ‹õ½ü£øúÉ ùpnø¢ü¶ø%ú¯÷óþuø8˜ù&"ú¹9üŸþ†þ`öÎÿ€òíÿïùdÿüþÿäþÉÿÎçÿäÝ+¸º –ç8yÎ<‹§ú6}ú‰ò³DN¢–d ÊuxfúðÉÇv×–EOêOö8÷ÊQÿ•dý]Gùþßö\ý)÷ûmÿûúœù9ý›ø±úÊøfýÛø{Æù'µúv¶ü&ÿdýÉø%þìóTÿsøŠÿýÁÿžþªÿš:ÿ½ä[Ÿtq,lw]Ç%¶žûƒŽùÖîƒ˜ë  #‹ûS5ÿ•àƒÓp'¦»÷ÜÛ÷3þÝXþXú8ÿ÷ý÷;ûñþÜú ˜ùÁþvù0ûøÔý\øÉùB0úSûÌ4ýLùsþkóæÿ÷Ñÿ9ýWÿJþ–ÿY”ÿ‰ÎÿärÇ>`3·$åòʁüÀ˜ùiCúÀö2°Û 7Íœ¼ûònþŒ uåG úu´Ïù’³öË þ[þsúÚÿQ÷«ýê÷üdýÈûhú5ÿ:ùšûbù0üíùAùb“ú=Zûîüâú©ýýôŸþœ÷6þâüÚÿþ…ÿÿQ§ÿ´ìD uúðê¿Á]ýِùVVïìGp† Œéóü»¤ýÌ=`Ãhl´ûCžö¹ý'_þփû~ÿzøSþ3÷üÅüÃûú”ÿçùõûÕù‚üšùJ˜ùxõú*„ûF•ü‹ûÇý¡õtþLö¿þ›üOþÄþsþéÿ'gÿÙoØ~Â(²1‰²2þÔ|ù†]ÿÙ‹– < ¸ ýªÏý2j<#¼—Oõ”üæ‰öôüL_ÿ ”üÿŸøøþs÷5ýûÝûÝ›úï|úKü[ùÔü[ùÿúùOú&‘û)üFüÏýOödýüöqþSû»þ„þVþ±þñÿTÖÿÞΙk~\maG£ûÿaùö^þɲ¼ðhºLØBþ¬ü×  PV;^_F’þm‡÷pûyqÿ±üªÿÌù–þ²÷výlûü3û@ìú•üîúü8ùÃÿfù¼¡ú#‚úó°ûÿýÄüÿ÷gý±öQþû$þPþ-þ…ÿ³þƲÿ(Öÿ°>eB@Ž.•Ç>:úMýÕ!°Ôz†ªgz`ÿ½0ü¯Ó |ÖS6`~ˆÿÛ‚ø$!ú¼‚þðÆý3ÿíú1þè÷Îýµúküƒ[ûŒ=úÜý‡úYü.ùýþâùåòú/SúÞ ûÐþšüÁønýsöXýÜúþýûþXÿiþBÿÑÿ‡º5ü ²óÇÎŽ‹µû^<üþ"ˆá2œ”|ÖvÓPü¼û¢@pm‘ˆ†ù.ú%þ¶Ýý±úÇÿø<ýûùéüÒÿ£ûÙhû"þ#ú–üCú.þtúPú;ú̃û¡ÿ_ü‰ùsý@öýªúýêýÁþ$ÿ2þmÒþÎÎÿOWÿ÷¬È×®øŒRýåü1!ü\7ꯄŽü‹ßpüý")ÇšŽÕƒŽ”'“ú Fù­³þQþ<ûRÿSøµþ<ùýþåü"oûhþ²úØü`úkþ ú0¯úHºú¿Îû üUúxýö×ý{ù‡ýÂýqþÿþG_þª»ÿ)ÿÊH“ïs'O 4±ýÿûîÆê¹…šã—Ü„ýaCÿ^ìÚªœ‘{››û(UùhÊýÚ þfaû×ÿƒù3þzùRý`þ(üfYû§ÿ>ûüœú ý¸úYú^Tú½ûf§ü1ûnüâ÷HýUùýŸýýÞþØþ!÷þ|¥þøÆÿ–Ü[ü6P¶ÛJ€ýÚßû±ö8â ¹¥žšŸ¼•ýëZþÃÄ[¤^¤½¡üWbù[àý]<þ¥…üZÿ²ù¹þ¶ù<ý¢ývü§(ûãÿ½ûKüìúÓýwúƒútáúÁ&ûX-üüXü¼÷Ùý2øÍý{ü¸ý¼þ³þþ\wþÔ–ÿjm$þø{ÑםXHþ™´û°Þÿ˜Ú ½à¡& ‚œþ‘oþJ#BÞ ·9±E­ý|yùsüÍ`þ«üÓÿÞú=þïù?ýçüÉüíÖü"#û†ýGû ýGú¯ ú•aúÊ5ûH­ûòý7ü™ø„ýø˜ýaüQý þýä;þ;Dþ­|ÿ>ÿôïߘýd[ÿ=ŽûÚÃþ÷Ç ²F›‘›ÿHzýû3tí²Â³¬¬þ ~ùÇüKyþÈÎý@ ú¼ÿ$ù`þ#ü5ý,oü_wû½ý¯û<ý,úÝÿ˜ú´ãúÖ/ûFûãýþüƒù=üúøýIûìý‡þjýÊÿïþ!ÿþ’`ÿ˜ÿÅӎ¾b!-ZßÿÆcü,¥þ[´ö§Ë•ä“••zýÝ:°÷LÌçºì´ÿ©ú;(ûÒ•þ´íý§2û:ÿYù’þaû´ýhÿýü–³ûóþûqý"û ÿ,ú×`úèûErûÖþ´üsùûüîøý>û€ý{þ8ý»ÿ­þ ¹þtSþø>ÿ›ª]Ü,Mö^¬27ü¡‚ý՛Зu†.†ÝÓýØFïÒкº°¡ŒúÝ2ûoªþˆ ýþTûµÿùÞþ’ûPý ÿyüÏÒü,þ…û¦ý)û<þÎúÿÚûßûV´ûÚÿTüjúÃüáø¥ý4ûývýüý¶ÿqýÿjþ`@þàéÿ~l8îqÈc}‚ý$dýd„“„9uxq}šsþ?LüSÊŽ²'«uŽû–9û+µþOþMqü(ÿ¬ú.þÈúÿýÚþîýÝüYþøûÑýIûfþû$_û¤û_ôûØÿéüfû†üàøßý4úÅýsý¿ý±ÿ@ýùþV'þͤÿc'ûØ–kS¹æý²DýjCodÂcñoMkþH<ÿ·ùÃÆW«( .‰üaCúûÈýû4þƒü“ÿÑú‹þóúÏþ þgý3Ðü‰ÿZüýmûšþ;ûLêû7]ûj%ûÚpücüIüßù7ý6ú{ýwýyý³ÿýøÅþRþÄhÿPÜÿö²»t~'â¾þC!üêOÿäYõQNÃW÷Uþ«2ÿ;÷#¿œÆ}ý=>úöÎý¤@þ¯¡üÿÿìúïÿú¶þ5ýäý`ªü¶ÿ¶ü.ý­û½þûrxûZû„=ûåæüfýüâù¤ý>úEý}ý0ý¹þðýû{þNåþ»>ÿ?Œÿáû–ÚN™ýþ˜þÉüá7ÿwCß;4w<‡?ÿ#!þâæ‹¬Ù‰ |=nþ:ûÐýHKþ·ýZûTÿ<ú´þaýbýlüäüZýîûëýèû™ûy¦ûšHûóKürý±üïúýOúýüÞýÈþÉþ8þR¹þ¹ÿ6>ÿÌïz÷2®à uÿFâüýÿ +È& !ý#ÿ­þ©Òxíg•\þï/ûLÏüïNþʽý¹û½ÿWúÊþƒüöý´$ý >ü…þ6üýÍûÆÿ®ûžAû´Aü üƒþOüÿú¨ýaú ý£üýÙþ¡þÿüþZˆþ¹ÿ0ñÿÂÐk ÈÃWÿ®Äý5ÿþ¤¬ ®–Q :óþ‰ÀSˆ-bÌOÕDÿ¼!û§ËüPþ¼Æþ+üÿvúéþ«üŽýáÿÆý2jü§þŒü<ýÈûêÿ[û¿ÞûÍ.üíü‘þæýû?ýrúý·üDýíþwþ&ÿÄþjMþÄëÿ/®ÿ³¶R'ýì£#5 ¥ý†âþJ÷†ó`çâ‹çÑ×þ†¨ÃpÈG¦2ý*w üÃüYNþœÈþQ2ü…ÿ„û$þÂüEýÿÿfýU‚üÌþÞü`ýÓüÿûázûê ü1,ü£ÿmý"ûÚý‹ú+ýÖûûþ þDþ=ÿ—þ{þÎ×ÿ1nÿ°ŠD2ì Š(J‘ýØÓýùãMÜ'̆ơÆcµþ¦‰GO_&„ *ïüªµü1IþeÑþ>üÕÿ¡ûjþÜûüþ%ÿýozüóÿCüyý×ü8þìûøýüùü<5üÌÿþID3 ’ID3@  =?$aTALBPython Test SuiteTIT2PluckTDRC2013TPE1Serhiy StorchakaCOMMAudacity Pluck + Wahwah
13,505
196
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/audiodata/pluck-pcm32.au
.sndgX+-e¼ÿ띒KZ€úTœ1Ã@î+À€ÜրCàËÞÀÀ²a@H©˜òøü¿è$€°}’kû`þ{]4¸WVú>É ´°UóP+À)˜0ëËb@\§ æÙš`íú>€ä‘½@Æ%ë€âx„ © à¶Ïàï))@à)"€WXØâpgû5WØè>@w¿ï„€Ø,[€÷'*€—ûwE`õøeüdf5 ûœN ß0ü@û@î(à ú48°>æ¸@ûZÃð¼w£€ü²ôTfÖڀÿ_2´Ï¹€u°Ci€ zŒÁ»`ÇNQ ¹€¢º îßdÀTÀ`‚d·€ÿÿÿE?@€”æàIœ³²pR·> ¼  ï²²à_؀Î<Û@¾p䴜À ê-cD¨€ Z| Èþ€ þà+¹†À QHo€DᐋÌd€;€¶ôìë60D€ [H Öˆ¤€:V¸í¶y /«ØFÎÀû;r8ž×òäÄ $Çí€é¦ìàn\`㎀úSïèßÐq€Âû«ÀÝv À2O`ۗÊÀñÝ90Û@ÙÀD^܀ݯ&ÀI%äJ þ]>ìX¤ÀøHjÀõMOˆœLûJnøîœlàý(%¬ó”ðý^ÁxìŽÄàýqLö\QÀüä!„SË ýé¼(³kÿm(_9àž˜Léòò ¬,4¾€ ²@èÝ·à1ÿ ·Ž€o€2¿ÀÅ3 € #ÀÿÿÿçTà§"ÐÑà (3@ d²ys] jK°çŒÁ@ ­vPÝÝQ€ Xi`Ò÷ Ýã€WѪxpPàç 悠 Ò ah€ hð0©MҀKG€›m¥%Ü ?ÕÑ@ åmê'BàZ Ý¡DN>°îÞü£ÕėçÀ€ô³@`;ëR@$d(€äK@þP:à¾Í É5®ÞŠi€ûmܯ €úž¨ÜQŽ@-–!€Þx΀-¹ÀäÇ©àîe¢í(` Mi`ödF0ŠiŒý ¦Þd @ÿ>Skë= ÿ2oçõl¡@ÿ‚Fäý€ýôS°X&þ*ŠÀÁÜ€ÿi ZD¸€ìè2Îvð£P ãtÀ –Q؝`Í@çr‹À š€[j€6û €Iïà{R&¾Xæ@§€¢Í É|»@ Mè ÿÿÿ ŒîOÎ@ úÀpßÒCÀ 9ðPÐæ€ ]¦0@pO€”=p4¦`@H—ø|¯¢ˆÐðaáæ ×0Ï1¸I Àƒø¡ K 3NÀ ÒúÚ*ÐÆL8Ð YBTú÷Âý]$¼†õŸ÷pùáYØì  /tí€äx+<!à¡è`ҁ¢€Þ©íLý€ÝLDÈÜË?@ÊÖàÞá¼@>#€å(Ú`éQÜ íÛ­`¤À÷}°šÃDþÆÕÀIü g°L‚û¶ H¼¡—Û§ÿ@ÿ8èšOfC€þºˆÜù8ÀÿmJ¶*1àJt"?8„@ËX¸ìfáà&U -¿íÀ PÒÀÒA¥×@e~­™þ €~ǀ8"K@³Ó`/ðÁ@lœ’ë€ DBðÿÿÿ(¾À .¶P (!Ô)Á ââ`Ø^žÀ ¯k %¯U@í}ØF±‡ÿúߜö)ØT9ª€ BVøk}ø1 ÿØ e†À ÿF •¾@Æ Æš‰’ÿԕþK³Ì­EÞö°ÖÝáé€ìèèÀ6¶J@ä¼à}‹8àsàÚ§ÀޘÃ@âð¤ Ý%‰ˆØÝ·€ CŽPß/Œ€CâÏåq ï¹Ÿ€î|uÀˬ°ø€Â€µA?€·¡®Åm€Õ4 ó'°b@åyGiÜ׬æ€RZJ>ÿ=Àþ¸ôfüªŒÿš]ù]AXÿRÊ÷]§=!üâ€pdÞè1Nဠ‡›ÀÔu%@!áUoêé¬à“T ´”@ }`l¤G€Ž˜@€ ¼ß0r¡û€.(;r €õ"Ãò€ *Ž Þºº€ ¶ƒð 7}pKD}€}PùF¼ü^x=—@ -ñ÷`_k €§àûã<ð4€30Œ@ ‘/ÅtW«^ùMƒ¨þ°#`ÃX÷EÄhÀí!Ïà5ՏÀäZØ`«Áàߨ؀ÝÌd€Ýþ›ÀÝ¢µ@Üñ¶@3ߐÝ-/À3¯H߄RÀ@Ô€åá¸ýϛ´ïoÆ@ÎZ¨ùú”°Ð7@ …P {?€Ñr¸¬õJ5 {<À—NÀØ^0ÀL(Âüÿx4óíðàÿ ^»ÞU‹Àþ§+Zd”œ¾‰÷7$3Ë y#À䆣 N à:ñ»@Ù`ÆÔ €dãà°«¶€÷üÀÿÿÿ (‹P‘ÓË ¸l9þײ˜kN'\ƈÁŽ€ }×¹a@ |“À .?à)‡Eg€hàð•ŸÐB@(öÆ@ +å€5°@…Æ ‰åà€̀Ԥ@yµàCò〠X±`ÐXà@(3HéX¨€þä¸Û¹áÀ÷D†´ Z€í6¥@)aO@ãçx iý@ÞÏÀà  Ý`€ÙØPÀÜàЀºSH݌ @„å0à<¡`7ݲ@民 œô ð¨A ú›hû¢Ápå __HœÓ)€ °!Pò=\ ç#À–àZõÀݨ¨±àФ ÿ`ŒA2õfþªâÒîÿÀýJ`Uor€þooò b !Œð åðŒ÷ÆB ~P!ю@ ßÐò󰍍ŠþÒÌ8 ÿÿÿ ¯’ðÃ°î ¤dpûx†˜Àÿÿÿ—£ØÕµ1‘ùÅ}Ÿ@ µëð \`¤¸?@ŽˆÚ·`”pBT :ð@ƒ€sä§7€€Ò¯À±Ì¨‘ F3¼€  ç¢ÁœõÕ¯mÀÿ,Ðíö"€÷d@±VmíGË@"rÀãpíÀ.djÀÝØ7@æ0€Ü‚jԞÿ€Ü·@ÉþÂݲKœÂ|àш@+ËñÀçv±ànž€ñîžàó÷\Àýv @ò5 ä £±¨€ ÞiÝá5€ èqP÷Ç pÀðèWçF`ùèˆÿ]×Ú>éq@üáaèØö¼@ûQwH9Ôí@ûÝ<¨&%nÀÿ`'ýÐÕ¨[—°;Ð< iµà?Ü@ L—°‰2@Š\€€»}Ëù`H=€ }n@üÒ­Ð ÚêÀËW[À¡aÿÿÿ;uøÿ3£<lªp°Ôo EÐÀ”Ô'€L>XðûÌЉó 4˜Š•à þ2°BÖʀá Èsè@{€˜o®€\—`7Ñ,€ ?.ÐÊÉ Mü ÇLˀþ„(óÔó€öÄcð»Ÿø€ìÈ,@÷PŠPâ£Ö€73dÀÜÀ¨€ô=pÛÀZ@ÍëyÀÜ­•Àüĕފ@îJHâ@° Ùnàé à)„þÀóü¸0õpÿø-ÓõóÏÐ ÛV±µi€@G Ë伀é°@pU@ HåP÷1RàìÀè£×àþ¹Ž=š €úïèìfO øÑ%pœ9àøµFÈ:X½@ü<â°ûU,@ˆ–E‹0w  ¦˜ öãP"æã€ Š…c€Œ‘à.âí ÜÀ0.ž@ :´ž¨J¶¸tØÐ€&È0$=3— ©¦ò€ ‡pë9>€÷èÀ@:å€çíX&É,¶*8‹Áp H¼€?•æ,%`èw@Ç3àŒ8X€ºÄ@Äá` DÀ$9â@í«0ô…ýû(ì6| ö:6ÐÍ Àìàâ%(àâ7ÔÀ3ÖsÜ Ã£r°ÛPȀË­ÀÝ"æñí0ßÇB 5ä€±Äàë.ÎÀ,Îà€ö9Püœ¿0wüõa Ž´ Àký/À¿M›€JE ‹ BT`½ÖèqàßÒh€üñcÜ1X£@÷ÕäðÎ$õMQ Â”ôÚú@@s|€ø´  àþÄ^îPg€óžÐÿ°v0 àð+ œ†h  É€~ƒàýPOPê•@P  sÒà¹pԀêfàH.äºä¸YKgI·g¬€ Ö PÎ[™À oÑ@<3Ã@À 5+@÷h$=ý Hnà5G€ í„@ùpA d;ñh ú  \qp9}î@«GðΓYý¦Š”܇UÀõï¹ðܗ셌€×ŒsÀâ(~@&QÛ®C®”àÛíÀР<Ý»ù@ão¬`á G 4u€åûš`ö[@í8H@)®{€øUØ rÀÒ­õc§@{àÌ't€琹iŀžïý«j K`8m ü.<àœ<àû=pøøäÀô×­°— @ñüåàõ ñg›à9_@õ•½Ð§ üM¼ÿ2±aìšPøP€ ¦Là+Ý`i+`¿(½¸†@Ô +ÀîÑàXœ®€ öf€ÒþUÀ Mp:à¡4`j¼#€v~ØÇ,@ 1¯Ð´¨€ Ÿ*K’ð×8G@Uœ`ÈÈÑH"øí@ [x  ð˜À*À>(" ÔÐÀ ™´€A3E¹pçå}àýbQÌÌB;€õ±? â/?@ì¢VàØ|}@âTÜÊ`ۖŸ$Wo€Û1P€Þ°x€Þ¶¥ÀÕ¶†âý°€ [šÀècdàQí€ï²¿à$iK€ú—ðÈ áÈ  HØ÷†0Õ Ö.€æ·¥€÷¹ òiÚp è°Grà'Œ(è…Ç`ø?L ˜àðËW$±:@íð§@õdÃ@íÑ»@*|݀òÜã`)àû:¦(s…p<CðòÄØP uc€%l[â@ß-f@Mo`¹Ã[€æÀK+‡î ð÷40€ $²ùvi˜ùíhdˆ'€|ÌPÿ]®S Ö0ªHՀE\P T‡Pä–ìS¼3€Bô‹pÃgÀ m®P ²@+Ì|;๑C€7 ·uv€ #7P5» €ÃF¸NÅøþ‚µêÆ>Æ@ö¦É°Ûd+í¢lÞKóã@@ @ÀðÛ«`€%LÚêÓî÷@Þéu€ÏNãçn),éÃãÀr’ ñ;e!Ù3€ü¢ìùD@•°`úìè¢à߅ü@›WÀ¹Eé€T4 ã”à ü ûžàßõ>BõzPú<Îøí €&N,@ê"*àý> dê›tà·À`ð}̀"üò@ú_ÂØìPöi0ñ!£ ¶*ÀïL@õ ùjMøæÁ ±^éW6€1À¯~Måà ܵ`ëT!@çùÔOIÿ€ë ö:… ³$ʀaHê ¡ /±¼Q@€k«B&oàÀRù$ËZ ¿ 'þÀky€Ù~^@‹‹ ©ÓB€ýð'^ÀýoðÕ@ÿ6çÎÏB«€öî¢ÐÏ»í€íͪÞîöãO Âd¼Û ä€#-ÄÚ?”@ü ß<ÀÐB©€åøàôXR`ë²m÷ ós±!¸ @þ ÁøªÚ@ •…ü>@nª æóAÀ<E€¾\€à×E$@ ôPÈÁþó޶ |òX`ñŽÐéK¦@ZÚàæuÀÐX肹`ï½à"ÿÀúãàØêз#Ðô‰¡ Ó¶@ K©pÜ´ ²Ð^gà·a„ _ _ 4}`('þ ÷KîLÑ@9@Œ7Íý€þéú3¯²Àšv~ÈVk¯¹ Ïñp€^Dk?x%ÀÉÇ=0€¾A¬ÐÐ õ0Xƒxìñ 10Ç`¬ë•Õê`þ‘­Qð+uÿÔÍ`ã ¾`ö²SPȄW@í)VÀØE€âMß`ÿèšÙà@" ¶Ø÷WÀ*úÀÞÀÔ.i€æW„`èÙíý@ÀU“ ö=³°"lG˜ñ)püÀ ÚNÀýõÏ$> `ì9x`ŠÿàÆM @ü€Í³æ@ ܕ  ®i@ûŠªà Æ_ îGðÜé°äþ@º¡@â7Ê /'°åUïl¯°îÇà rÀû´mà³,€ ©1`ú2»ÈDZ $¾~RkÀ·à#Œ;Å-ÉÀ;C€ö‘"ð¡‘€-X5@k&PùãŸðýµ¼#”×@ùß `8ô>ü݃¼àŸ¡ ÿŸ€vÃ×Àþדn$͗ÀÿTÌ J5z!$XØÖ° S`` @怔)ûŒÈOÁÀ¹߀s| èéT€ é.à)$À‰Ø1øfÞÐö4\Ðʘ¹ëýO@Ώð@àî@÷àzðØ&O"²L@×>NÀ#ÚÞ™@Ù¿$@çOƒÀޝŒð34 ÛÞpù>(#0ÌÀ3·æÔ@½P“¨÷ ï$¬À°¸ Î|¿€¢€Èˆj€ kðý)äøØ¨,v€ê‚ààöžË@à‹¢  çŽ ÞÒÊ@÷È ãÄ@Å/°îp‘²àý§GFhÀ0ÿ£Y†œ=€úÛ[ #$DÌۀ&EÍÀÖ Š@®²€ä{Ø`67À'òŒ€—È-ùº¸„Y`ôQ 6à…@øiµÀöŠå€ý¹7ÌÂÉÊÿ6 å r Â"ZJ¥X€LI˜ ‹'@ ïƒM¦È8`ý°ñ*A@Ÿ¤@ì'@ڍú€ QA`Bàþím&BókµÓò•Àèñâ È)Ýށ=Àë¹ßÀÖW¦@~Û`ÖU~u ÞòE@ãoÂàêmË@ÕÿÜ@ô·–@ñ®0ý×ÁÐ"ïo €#yñŠé@«RXýÒð+›pM܀ճcÇðûÓ¨ñgÄ ô+^0pÆÀåG΀þ¶‚þÛ÷¢J$ÛÂY@E©`ãy¤@~°ðCpP§€ô*LúÀ §"`ÞE´!}ހ÷ÅÉ '½ž@Á À(¡ìÀæIË ó.ÚÜ@ ôÒÀ·{€ÿw[ó&*àòu–àÖ ímŒ 1šµ€ó<Òp6øûõKÀɈÉ@š²Gó~ ²õÀ@¸³€ ý°1a“@×W€ Ép]ÁÀürIý… Íúì@ v ÒaȀ ¥p €ü]Å(I~@ï´6Àà™°@å>}@ÆDöÛ÷"ß1€Õx€ñO€Ö/߀$Ãf€à“Ø`ñ:G@î: ÑEð@ù´¨¸ôsªQ ,m@ e @)Ýâ€íìÀ fµP¢ÐàðfŸP… Ú.»@„IàÉÚxÀl"Èç‘ ï„Bà` àš_óXؓQ.ÆÚ'™À 8­°ä”Ò å?Àó‘ý`£ÀÆØŠ\@‚`ù*¸&Yù€öÃà*¤¤€ N”(°—€óÊ`ö€×n]À [ç «× ùA+@ò€ìO€\Ÿ èG{À,iã€ð¬ÀÌ!`ýZ¬¼Ól_€G»°äDµ Q‘@1IÓ°;¬ À£íÀô )¤ý¦¶d D_ӃŠ€4å Ìðm@)­°à ÷¤¬`’àê×± î½àá¤g€É$êÀÚÁ\@Ógu@Ö @ “èðØÏ À)½ÀäËR ?KóçWðÒ÷œÿ°åîè 9L0Ø®à a5À.qéÀð >E ½5€ó ÎPaüÛTäbõ@ËL¾€ÿ¯¬Îá`{Àëÿqà ápÝú)À åhÀ׿Í@«æÛ„Ð [³Àèot@ ­@øÿÖ ` g¥@œ¯àëh  Õð)[àÀ÷óp*ëÏ)ð% O€ûëXPEZÀÚÂP€¡k€o¢2ñÓD`´Q æ¼€VKä“&à(¿\ð@˜àµ@7&Dß!§ 5ÐPÙݖÀR@:¨ 0à>“ñÀ *"f逖n 1Ûd¯äØXã€㰠NJÈœóû¿¥0ò=>ðoS€æoœ üN5߉JÀÐ úÀÛ¾SʤH€Ù‚Àü:єÝt[€)-êî€-ä@ù¡•¨Ü Š@”þØÚ#ó€ ú\Š{¸ @-þπߤð"¤ €üòÀúæOˆQ3`Ü*à€ Xë€ÊKé€ü÷p Û~o@êà]½PÝ@èiðØ£ˆ€¬Y¬Ý¶C€ÖÿPìJ2@EH¸ýΕàe£@`µÀ! üQ|`*lX€úÒÚÈ)¢ÿ`T!€@neC_±àÌÀý ÷ºØ`ìEÒÀ4ƀãŠ`@Z~@ãÍ4à& W@ò,à0ýÆÀUù8ê}Y K, ÕïÀB• 6ꐯLÀ:º…€lÌ.B€? 1PÕ¦ ÞžˆÊÈ`Ã&À+¬5í…=àï>‘€Ãh å(¤ K¡°à¸ÅàÛÏÎ@߉WÀÅð€Þ×jë]Bàâz< "¹@î @½‰ ü£·ÜëÔÀDÇXÔÓ}@ ‚ö/,p Cg0% 3«@,öÀÀ !Ùàî™8Š`àj @ ¶) Ç×ã@ý^œTÓ°ÛÀë1xþ|àÞRÑÀ§€Ú«iÀ¨PàAôB°ïZ­ ÿY´?ÞŽ‹ ãGÀql !Âø~à)FÉÿ‰/f&³®@ú«X«a w¼PhæÈøøÜšøòHèÉÀ N÷°â¶Z 7Eå^± "jßõÌá`#: @!Ð÷ðk ÕëŸû1ú²^¸AV 0Çc€Z`À5¤ €‘, ™X ØàéQûÀ Â`ÁÈýöú Ý«7€íþÉ@ Q åù  €ã+…€ëB)ãÝ+@ÇßO@ãöVÀÛ.Àæ`æ@ð{|0'J½€þ¸ýð(Ôº¶@؃W@|ªÐçdG@ž(Ñ_€Ux°0'J€ †ôð³,€ HO ëªô lcPÈHÀþÐmÚÉç@ìð#@ô'ÓÐ߄€ýpàÛé§À_ç€á¾Ø q9HñRÝí‘€áì ¨30“?.@"EÌ@/¼ (6è@X$Cîù ß þ$0 Né0ë_ ÀõÊ2 îìæVâ ØþÐâÂà‰€ç‘ ϶`ù#>0%¢¢€຀Ò`ˆ – Úä?€xˆ@í9 tÀ"(€Xrð6êQ@ ;íð%}’ D°÷‡å0 kðÅ¿9€þ{>ÆÎýf@ïyÄ@¯*`çö/à{€æž»`üì„xè+€Ñ± @è èÐnâèáÌ -/`ð¼r%Vr€ý^¿¸cÐßö˜å;€˜°ßŒtMÊ@ä Y…h)Åx€€#UC 5•ûýRÈ ¾àÏw@ÑזÁçOîžô€ä{£Àà ¡À{äÜ"À¸`â.Áà|³ò-'PÖç̾PF£„¢7àr{à"MÃ@•ÆÀ&ɋ@,(€!b€üÎ„Ž„ ûéP˜‘èìúSÀóêrPëfP`ålò^‘@ä2ÀÜo`ëҀü¸@ý,›l%É©€[€ ŸÁà#4{â$%à@ä̹À¹àÀý@ ¥ø°2£€ìÈ.P‱ÐÒ¼ ¼7ðÏõ(€1ÒÌŒòÒ¼póvº°ë ðÃ`éå JúPêÔ­àá° êS1Î,‹@钩@î³€ï½@' Àü5„ïÈ 4Րõ&½ð…hpáÍüÀP°ìö’à¤$â+–àzsP&„(À ¸k° ´S ð"ݲñ€ØNÀÁ7†@ðX˜@Ôóp€às hƒÈÜ)4€Š)@âÄj@àŽàótè`ú›ÐI‘xÿ{—.à uàÀ"_á€{Ó %¢@kàoGÀY6KÀýNhPº÷Lî±^ òy.绔 åDÜÀþh[øæ³À \°îŸ@22 ˜~ª%Ôÿ€}+@_£ %£êêý[ Úù`àÒplQÀ(à ù *MQ€ìQ25›€r:°Û` ÷MÐßH…ÀÇýÐà À÷î0ᘌ@í˜@À spêîr` àë—æÀòàŒêöÓ`Õ^öÀépœ âªÈÀî½( #î@ûh¹À݉€ÃИà±`K–èëxË<%ðzMà:1(v‘ÀŒü!VåÀ  @þE  K@î;Ž@?E˜É2µ€ñŒ²€ËÒ"€à`çàò«ÎÛ«²€>•@âÿŠ€ò@ôƒÙ0)? ^Vðû¯x¢_ Uç" oÀ¢_à"ãì€qèt±Ž ‡pPÑNÿ̛nó˜0àòx ðæJæ±è öyRèÙ¸ÀeÄ`ò±â@œ×`|Ïü&fõ€åm€ѬÀ&ªôÄQ`3l àÿÀ š`ø ˈüá—D_"@û̖è1XõÀ”+¸"õ(AàÐð½ÖP ͗Ðǧi@û‘¨(ÓÚ+@îààûŸêU>à¨Àê¨d*‹žêÖ @âë}`é¥ñ@à$ú î—H@üU.<ûŒjx\S ÐHó],ì€õÄÛà·œ òúÐþB‰ˆþˆ³<y >n°×  ÁðúQÀB“(Õ7@ó}ö`ÊB{ÀàÇFå €Û]Ã@«\Àã}¥ -› õ§÷Ú²À áÐ 0z ”TàL]P ïwkK0ø’à Š,°=Ù  ¿ èS  èýiXú0<¸ó|@°èû@éY! ð½'àìC £ðHö\à@.¤`du $œQÀéŽÀ!j—@%:X€L ÆN`ÀãꆠŸÛèî²RÀø<8ˆãÁ ù[c8+ø@`ʐ*H¸ÀT(  l^RàÔƒ€þp°RÎ. @í¹0 ì° çŽ2˜¾¸èÆ àXBpëI’àð¥q€ë†hàåRd@ð9¼ ô¡|`üϙŒÍÁà¤p¤— ·'Ðû`ë`¨VöAàûsï8d1tþ;óägdÀMѨÔè ¨$kñèàßàxö%ÍUmÀá\)@ÜË/@Ú­¶€ü&͘ãŠÅÀèÌ ö¥óPÛ åŐ¤°`–­À H°¥ ºš¸ï$€Ðªy MÅØ"˜P±h€ü¬Ôÿ\Òòõt-pî¡&`ì¼mï/s îÕìàüNÔ0øÚÀ wa0· ’À-u $4À#M °ÀGàì^÷€QS´êhîàô`,ýÐø0 hÑÀØ.È*ÉìÀl€°ÐÀà ämý@ÿ׀ìÐwF@ë àX’ ä'ÂàúSõ 禷€Æ´íh«@ù3RHï)n í«Éòže°ôWÄðýmçD)¸`äd(M5X²JXü€˜àÿW¾6ø6Xˆø ÂàDüçˆe5€@h >³À–8àlÒ ¾I°éPù ÷×SðÒ%ÏàÄcà×§[€Øßú@ñæLðâød` ²¼Ð÷’0Þy€³|`õΊ,àûÚ@¾_pRqÀ0ó˜½AÀê Èø€3v”û©´˜WRxø7±Pô"Qð¸eð†/ñF ùxØðújvø”œ 6-èÓ΀ÇR@# Š!M«€žýà\bÀõíåàá¹®ë3·àò™„@ûGS÷ÀÅ删ÖÈ%ì@€làô>àzb€óœd`³k7ØtTÀè@Ûªä€áÀï ×àç® ýª2ðâà@û¥°óƒôMwÀôŒ0÷·ªÐüc³äXà&æwˆÍ  ö# üé4ý¥Áü÷¾6°÷-rþ«cäûgF g]ç ÎÕå  îˆ 5 ò– ù›¸Ø`L€ßÅh€Õ5‡À×,Õ@è˜q ãWL`¾ùíCØ» WÞàA¤ŸÀ$ ›×` ®ÕñC  é( ¼…€íÏôAÛXÿ«°ü˜ӇûÓFX÷+¥Ðõò‹K0ò×dù"rPúDǰxiGìÛ¥€Îv SCœ‰à<˜`?: þûOlDغïŒhàðÑ^p÷@ öôK ³° ú?‚(À®E`¤>`ãûÿÚ¹;×ã*ù@䓼 Ý$ÙÞ }@èy`ès> õórõ)äàù?uhø*„°ö‰:ÀõµTðúéàúÂh‰¤ݘô‰aHý".týD§÷y„p÷$ùPû‘àûu´`…6€ ,PVÕ@ %`áô úØ:PøûEàñ·@Þ~«@Ö´ø@ÕàÓ@â@ÀäEu€ø¹]8ü«IT'`Œc Ú „€@åÊàÛ²@6®Ààà ÒðjÈÐü¾Pp%ðý0Xþûîjü»Óèÿ¸ð÷#üPø•RÈó$5òÆw øýÁHø»Ç(ØHŠÊžû¶à‚K¾ ÄôÀ~@ö´€ ‡Xá›ô‘ppîõ€ÉÐöjÀX*Ð `ƒ‚×àâÀ`k  @嫈–cÐínž áp" áÙA@ÛóŒ€åÏ~ ê‘R ï› údÚ8ô·á`ü¯XxõLÈõÆîÀúXäö7ÿ°VL|ÿ¸AH‚@ÌÁhQÐöþ7Þù$< øíˆù–Öàû6@µtÜ ªJŒ`2º Œ€ wRù›°êÃ Þ \ÀÛbl€Õ¿‘€ßC)€æMÍð2OàÿÀ¡•‡ð@Î;-Ù`ÿm &, Q"à™Ý€ "÷€Ê: Œ‡Èv"ÀFýöÝÐ:[ú\X¦Ö õ^-°ú£ ñk;Ðñó ÷JÀöÊyPÿ‰)¡Â 3@ “×0”@±¢ÀM õ©€ Ïð(p ùøíh€õNPõˆþà|ø ×î€؋P ÷@ÿö`[–` Å ÿÔJöY]°ÞN^ÀèOæàÚ-ʀæÌÀíEq ìÈ ÿ¶‹^ðuà°>ΠòPàôHø5ãøñXQàbÛdü=¤øÓL¢sˆî¾Pâ.îüz­àùŒ&øùÓøpúæ¸è$Uè²MX •{°¥m@ qªICà ú#èñMèÞìæ@á@\@ÖYQ@ß§_@è'ÅêàQ(¼Àýß+Ôö €{é ¢Ã@ÚÅ µT ƒrpüÇ@B3@ ^2†pôÌj8dPúÓ\xþ`ôv§0û/.Hï,YÀïÆEàóSôò"ðün¿Lªøì`e$pS `3ÀXý@W@Æl€ÿC“nÿû?±êÒ-À÷¨‹Pô!j°ûß½h~µ°(B"Ç.€· ÀËïÀðþ{(üÜÖøÛc*ÀïÛÀÙ¢‡êC­€ñtq ë·ÁÀGû î ¾ÕÐïC‡ ñ€.@ôžn@ìYÿ.ªú» 3'x?4¡6NGø¦bú&7@üu¹ðø˜aÿSI#& T¼è'!` —ÆÀNi ªû¤®hö[Ô°ßÅÕÀæõ€Ö~)Àâ1¨€éŸ€èê0÷êÒp¼À <s°É®`$` êÔ@à&`Ö 0î~ÀöTˆ´ùà ñb<ŒZèýßSà +˜õ¨Î úùMØî'Pàî•ÁÀﲟô>#ð÷°6põvPÓÏÜy Ó§ò•€ýÀ)W`¿ò€þÚ„*íéãpüEž4ôv¯°ûwI¸ÏÌàùƒü#þ¤ xAÐývÀ ÒrPý4žìÿ–]ØÚ S€ó·}ÐÚ¬–€îD= ö2Üðí›øà ÃÏ0î€òù¨íø4 í4Èàñž‹ç<õÀû7ñxùèŸ€P $ 0$ˆ8UPªñÌù&wÿ¨°‚õåp[&þs( ø û@•|€w‹ uz ý`tùU0HàCŒ€ë&s Öbr@ä’#@êO´çïùÀʙ¨ómÊp68`Å¢=-Z0…¥`Ììôq x1ð½¢` ~` ö ç@ z‹`ƽ€øÃ±Hú‘ˆï¤@î¨ @í)môPÊðó~`>üýÔøä䬰 ÏÐ€Ç XI Èý ÀÀþüÊ` ±—éýù`])xô¾gðþÉ  3`#٘@·(W  PûѶ°ÿõªFÙÖ+@ö>º€ÜYÕÀñM>Ðúœð.° …£@ï²Ì€ËqîŠ`é2Xàð-LðäP€÷µÂ û!bPø­Îœ”vq “&€iÊøö©Ù­‹"ñdõÊ¢²x0 ?/€>``ß@öPý†²´ûí0ßâßÀîšÙà֚ @æ¨1@ëëµç["@³h0ïÉLÀɖ`ý¥Š˜Þª0 © œËÀCâ`nÑ —‘`Aˀqà 0pŒâàÃg„ý#ÍDúb‰øñÎM@ïó ìz| ôÿ«ðïV01sø8 œV0ø>XPà#€‹ØÅå@,¡¢~ êðâ@ˋõ> p臘ã«àL£ #R@°YèãŒÀ) ûsˆ ÿ'²NÛ@W@ö¨°Þê8ò/Š0ý™Ehñ æPðåÐ@ÿÓÞïÆ®@æ;ê ðRj@ã%P`õ÷€ýa;¤þHƒ(ï~À˜6Ô ‡ ð.ñ€ó‘P¢?4î›@¶ê@޲€} ´@ `.IÏnðügÍþ¡ð”ߢڀòTÿÐØS éU*î¼~ ç¬| .hàíC|`U¶àøâ+¨  Í´0Ïðà!àvŒvu P¥à¤ûÀ«€(Ù  »f0þ¨EŽ`>°û*ö ðò”p픀õ‡• í(Ö`ØèòËÂà ˞°ÿ}ëø8ñ`¢Zð¾ ·U€ncØ`ú ìf$ ‚Wðôù €ñ µr ÁÈ!êjÀ~ðˆq`·XˆûœièþèˆÝފÀö`4Ðá< àñ•ÚàÿNSðe à ·åpð¤ï@ý‡Y¨ðFϰä{à ðã®ëÀõ_í ÿ‘÷6üî*˜` )ˆn{pûøðq :UØí»¯à"ÎTqÓXIڀqí¢óAàohúå젗•5àìKÀõ”ÿ ۊMì4æ@ñèÁ €õ` ë¾` Å_ÐôØP®6HžÛצÿ: éw·ƒà*@eD°›! 99à`§Áx]³ý‡J(Åðüóaûë¥Põoàñb®àõáðí{Æ«@ï«d >øðù Z÷ ýõÀø\ Ec aTøA@íJ8 ËËðóÿ p 9 ÷…@ úî ä"@ k| šâÀ«ÁÐü&Ô³¢®à쎠÷|p€ã¤Æ ñpø°gŠïAþ€ 3pï78`ûÙv¨ïN0Àä6 ðv0å$x ôB£PDëØû~]p±ò­þg(6Uî @ߘî1jà÷ø)¸hÚèê måµ 76èù˜‘8"4Ðãœ5`øzš0ßiP€ï%)€ò ``êx° Tèëj\ w–ò«@j0€ü5™TÊ8ö¤nhÒ6nwàMß %¦à}#í&8K¬`ý”Mð ʋ°þ¾ÞpȌ ÷åÀ€öcï@óãú@ïë@ZÓpîÝ¾à ®ô¥ÌÀ)€KÂX' ¼ð3uЯí°î†| si€ó~Ð-`ry@ "Ùª5À ¡$  Ëý>t6`äèÑ úB¾ðånj€ò±Ó`7• î×1à ¬i`í c@újvèíc5@äÞ{€î@€æØ’ ò'ð£ùJhHvì M“>¦$7æXíiÙ K׸ïÇû Š“8’…øµñ^A`!50ºy€Ïì(ù§ ØzR çxb€úÎpàâü àñ•ðñÕÞ`ëñ€Ž{¨ë:”À¿ˆïÞü`I%ˆøˆ´ ˜áÈ™}б¾ð ©ûÐ Jà|Ê@R€ñË`Í`ð<¬þ°f¶) ÿû‰:?€ùãõûÏvòâIðó2p°ƒï̜ ðò Þ@@0ú¤ÄÐBÀ”$ˆ Ð Ú`ðWú ”‹ ò¿@ ¨p ¡ LªÀ/½`î3P¹ ‘0þ~YŒjìàé±Àþ؜pç?‹ö þÀðwg€ T0ðírÝ@ú"=ëïvÀæcu@ëÀ¯àè“Ø`îÊE€XcÂõ° ÎBý.&àËæ”'pî €OÀøñK­¸À ÔèP÷@9! Ë€ œ@ ‘[ úƒÛX¸ªë“ý™¦åŵÀô/¼ðð… íp¾` ¹hë tÀÌ.(í @¥Bô˜3`7ZÐý¿X½›XÏ8 _ýжÀ k:s3p€þ«OÚñ@®r }S`û“´°ìPÌòL øÁÒàþÇoˆòïc ¨J°ò(` >Ç@÷42€ßà€ÿ)±ö ÍBP&ÃXò8P?ÀòDIp Å󀱸РCí€ÆC n±ýÿÀªÀ5 ^[íWß`… èžûµý ö˜ô 9B°ïX(€úƒ¸ˆì%Ñ`è@yÀêkÈ@éתÀëÕéà=Ù ñQ9@Úðø¾‰FB´ÿ>Ôï-ò m[|ò¨’à_{¸+qà ¬@¸)@ _` U€ Þoü!þ¤çÈpïKZ€ØçÖÝ ø7—xï(, ðk 5']ì<î@-]x쒾Òñb/p[å`ùX­‚XS† Jú £A` ä ¶ð€ zàâùÿF×\"VúVôH-€ý"0X€ˆØñÊ}€þ„µÚýšó4÷˜e° Þ³0ô4ip AÐö<„à&`û¿°ð ßñà¶ñDô§%°ßÛ ñ¡<°Ø à ïñ0 R,ðQÞÀ Å Pw¿°É`s꜋÷ñ±êP]0ém ÿêæ¼úÁ_Ðø©öÐa@òڄÐû<Ò@îE¡ éûëêñ; ë. êo|`þË©€î ɉPô|µPy‡Lúð™€ðÚ!p#Špó³#ðNÖ'ˆ3mð0Ùà § …› YÉpþë| ·Î òˆÕ¸?héhµ@üædíðâ@ôÉþÌ<îä& ¹!ÀíÆ *ËÜïtq 4ypõ#¨ÀÒÚ(ýÙ@ 9]° ( O? ÿ× j8àÿí‰ žú!S‚n¹€þ¦ãR öˀññ—Аü\,üñ<ø Þ»°øØŽˆ÷~NxRpút<` ´õýÈŒöÈ1`D*ðÓΐ§8 êƒÐKP` qPJÍ0—°Å·Œ³@õ°€€ ®² êM{"Xˆø~…(ý‹Êy(÷”€ü^Bò9ƀë¥h íšï@ì äë'" ýfTì~à ¿ñC«‰löâÀòªpûµl`ôfàrnðϐ<æPÚ«€ æm€ ǀ &tðÿä’ jÐõ&HP gá€êâÛÀî\ªíµ€ùÎK¨ýk%hóI› F{Ðïšé YExï£0@ 0òìu€›°øÔõ@ :@†Í Á»PDû€«ÁðH¾@›i°+€uüýÀÿèž?̐òu½P=аúº $Žð úÛ@ý l\úö‰x €ñ€ûôJ ^ýš ”ùNðþ*ð[˜`ÿì  3:°D²Càè =‚ð ƒÐ£8 ‰lPùw{ ¡ƒðë[Àþæ¨öf]PÃ<s6û”j`ý.· ösœìóý@ñwèàí#¼ íÚ©Àûð íVã@ –{`ïíˆ.èóú½Pô“lø@³èôû¤ü ¹ÜHnXv Á £Ûˆ øQÐ ú’åª îAp÷H0 ˆ ì]¸ Ž…ìžkÀþ‘Èü>Zœø3ž`·˜ó±¯ÿ£³^òCǽTóWÒp5x÷ 0ÖÜüëψ >£@‹º¤@ÅP m•à'¨Â Žh€Çycf †P ÍD°ó~Œ  Àe°ùN_P vè Èo ¾¬Î¸þJa, ­þMKDñõ`þûCûU1pÿ ïé®Àÿ=´ËN<Û'O¡àû  @VnÐ7öˆ Øf üéüd ;ðëò)`ÿàôR/°÷z Ð0ýÅAØþá’ù\‡€î5øÀôºËît@ðÉúž®ï2­€dڀðg|µfHó78 ö™Vðöƒ«@õ<pú'h¨Üuæþv҆ õÏué Á‚`*çë¤ #[Àù(´X äÓ@î × $<`ìo؁WÜúù*ØûÙsµ÷L< ÿ,ôی‰ë|ôÍ8@bôèöò“ð£î û,‰` ·ƒð–Ýÿ@× œ% nð™5† ™«PL yŸô¡:à ð¡à÷–ü ePÂ|ìPº¯“ Ð6PPü‡þ“@ˆ„²ýWa¤ ðÿ™›4¢\xI¤ ŸO@N̐ 8o XÏx´}Xÿĺhҙìã?›Hòîǰo L­ ˜ÿˆfþ¡`|ûZ'8ïƒ`÷:7`ïÈÀóRW€ù?œˆñ@XÈñOÈpK©`óÑÀøfÙ°õ†3`õaŽpøi߀†¬qü c‰@¬¨ ~ŠpeÚ@ ލúG@úÃ2Ð þ?pïÈM ÓåðìŽí€™,ù•u¸þͅžh¨ú“‚ˆþÎóœ÷Éq&ÞÀöÞ®0`äè÷Äà™q@úŒzˆ J,þ¥Lì ]h€ ¤”T˜ßôˆ{€I ¨ƒp»û@ p õ÷€ vÐö’ÌpԞP×4EÍHhѐ[(xäûˆõÈÉÀ"Ðÿ…&zŸøºð_F°Æœˆ Ä_пì€óŸ¶ ý”`рUVH.i;{<ˆ î/m`È`èñÕX`.Dû£øÿ_±…þñ üG•øðîÊÐø½ÈñEî`õ%ñ ÷ȰòÃïÐ*h€òjÔ@ÿiÈó”90ùÿÈõbÐàõˆÖð÷§’Pÿ‹aú­Õèá)¸þ¬ÊØ Ö°U` +ÜÎøü9ÊÈ¡¬ñçP£‡èìŠÇ`øX¾°úŸx´üþ¹°þ“ú=ªìøïJ8Spùn(Ë«8úÚ˜ È!€ýä ³òPrdÆWTü½–=_¸ø4G¬Œ!`÷f€Ú]Põ‚™ÀOšÐç38r~(Q°íÓ:#X [hê é\|W>¶”‚ñ"B@¶ù|c¯Œcƒº¶Ð`ç µÖ ¢7´*f;øw(âhïÁg@@0ñÀ8„Õ¶ ÿ¾ÿmžìý`àò†¶€ùá¾hò#öŠAàö‚Eôv€hz¨ó:¿€jòÐóàÑÐûkÃXõ7¤ õ×X ÷àþ™%¾ùˆ‹Ps¹`ýhh …µ  š ëbÀýw,7E@óKð ­Xí€-`üŽØ÷‘íEòÕêþþÆþþˆ¶ºü1󰡬úµTð(VÀúb—(#®@ûf8€ 0ÄÐý R, ø©x¼,º¥xDE¸Àé#§ðcpmùmàÊ=¨ôìÀ¾ÿxÄ_¨e¥ÐX4>£&xû¢ØÜx`]µ<&mH?;òLÝÐ}gÈôc¾ €„Á\¾D ¯¼@‚œ˜½]pû¤È[†p‰Ÿ°ñºB€q0ðÅT@kß,jRx/U ÿ³4Vý¼7\ô$$°úåK€ó”™à÷Ã'Àõn¯ðõ*ܰÿÙèÌóþŒ&ô/`ü–þìõE€öqZ@öxu`ýÓ¶ø†ØnÈû‰Ù€û‘ÿPò§Ã@ <þ…¾Z»’Øõ ®@i$ÐîMø€)(õÝ,0âb\8þSêþ“<Øþ ;.{˜ü‡\$ãa¨ûé ¨¼¯4üYë`ŒKàýÜÇ\  Þå„ðA¤<TPC• Q““^ðúžý˜š©¨ô¤ØðÞ VÞèãV¬ O ùïtYÖHÛ4˜N:à`KÄõ,X‡Ñóµ{õèÿsB ‹p¸ aª ¼ÆD ²TPœðl üPÚ9Ð]¸p ôð÷øð‰°µT´<œçB$«TþVÔ8õ®4€û¹ƒøô~¥°øÈMô¼š ö)j þfÕ"ô¸Ðà[r@ôá ýÍ3Äõ$А÷)éPö-iýTð÷Ô-@¶°úb? `AýđàIyW¡æÿŠÕ.ï˜öǬ@c„àï8w@Ö±@ôÛ| <œ˜ÿ(]d?s8þ•Û®ÿT­zë™ýóò ‘KpýA՜tèýcm´Çthþnèœ `Á›‚• àˆ¼\m‡XÔÄ´èü#ò˜ÓðÀô«" 6긟ˆ\f˜ØSm‘„=gz˜PK·àâh‡éY€Œõg  ’Ìþ­C¨ 4ÿ°ÓkD Ýòð“£ô /b³éÊc öy±Ë}¨ð—ç 4ùäÿþ¸M‘Z“&Àÿ5¡w÷ŽüÉÐõE[°ùÿÒ ôdÀ÷XC0ý  õ  ØT õ@þÝû6õDipøèõì ÀüO¬t÷)›P¡HùCK·P°ü<9`˜Çÿ”‹Ãz{;C|øh€ ÿðAûÀ0Éóùp3[¬þ@å*‡Ìþ§ºA¶ô]S²ÿh"j¸þrîÂd¹¼þjé@n0ÿ#§ úÙði 0óÈÚ>­S‚1´ˆͪÐ3²8ýŠ0¸[Àõ ?Ð͹hãt¶;ˆ‹èV—LQ@#üöP¤<êÐId÷)n€ð$˜üîΜ¥Ø (ÞPÃì Ø`kÅ´ )1 u½x§=:Ãðøö$ çM`ðÝ•«ìþOãøjÒHqÿÿ½­øf/ ýÊg0öð û2xôG«àø“ñÀûËüxö¬xÀ(f¨õÍAÿÚóÑõ©Xàøê3°õ÷û·(öÌÁ°Šrøof ÷xhúöuÈLàþ'ŠbTPÞ*GùâNhÂÓìñl@L¡œó^²PÕæýGc\åàþ¥>ŠÐÌsÿåÿïo$—½ˆÿmûq»0ÿ_ë?@ÛPÿê€é ÆHî¨_ސ1( Ô1ùwÏèMàþÒþ¬(„ õ¯ šd4éuÜ7€»ÿÀÊP§SœË4Ôtª@#è Y¼•Èù²¨’þØûêûWå:=0pI8 ¸àB4 ®Ä8 žÀÝ·ûFÀ¸Ñ1°ñcØÐËXü¦ÔV…lþꬴ_ù”µxþµ?0öËipüX¤<ôn¬Pù×Hú¨B ÷Öd€Lƒ8öºkÅ(öQ)àù× ÈöS#Ðû68ö̙©Út÷ýÆ $x`ú ø¨ÌZÀü´,È6Ëÿaýû= ÐZ¬²ò´L0.n(ò鿀HüI~‡ETþ=ªÎ˜ ÿ1à4 ü ÿ䆚ìÿëï«}Ön‹Ý }ېZ(&Óèk4¨VÇ eø3°&-ÿÔ*¸P@@ö–z Í#ÔþdK_ìÐðˆH0ô<^úÑ7x ¿¨°÷HJ epQ—¨úó²˜Q`ûIrh؀bK0ùÌ né0²pê-Àr 8I:U(8ýlӈ-˜ò?¨á\û+ÖP²xã:i%L ú¯øÿq÷„APýWg\ô¼Ÿàûµ@ù§§XøþJOgà÷¹¢P{8÷â@úÏJ(öÜþ0úàÖÐ÷´`ÿÖºÍ÷Õ°ÀKèùu_p²”Pû»ˆöþ*8üs…!Ùô pð% (ò¸ R®ûG2hHþˆ¸ ž5ÿ0‹>!+NÕ`´-¨Ð„9×0ÎÆ¼1 †ðš d7Ø›dd¨9 †ˆ„øÿ>5èŸR¤w3÷¬iPòHüå>Rõ¤¤ÖŽ'4ú9ÿ˜ ðû‚Ä /×À=ÜüÝH”:óÐúÞúÐõڹÜx߅ é”À6¥ΣÀóÁ€fLÀË;˜ÿgkV¯ØóV|@Ž)ùÏÑ Šô¢O1SÔZû«“ÿÛ²Òø8©°þmÜõ/Ípûæ­øøÅ•Pùõ®=p¼ø¢vHzx÷æ~ ûÀҀ÷„—PúµQ÷xü@ÿ&\÷ø<@m¨ù6P{P`ûF8¤ØÀýH­hý‹›Xÿ(H‚õmr°C`òº9`›îúODЈúäþZ¥ªL±Óþö†ÜP6šj¨D»ÊÎüM¼W2FÀÕº9}®ßÀ–àªÔÀñút“9°ÕϲLà/ƒâ™aøêäF0@û °ž©@J~ àëPÿuBù FË Á¤ qpAþ·¤8PúÁ» ê"ê&6xº$ô FØ@íQö®mð„3„g®ÐGT¨±¦¨ àô´ ÀK,ø­`pr­¸0¤geü–}ø#SløáÍ`þ‰Çôõ¾~ü¢|øvúË`w–ùruHllHø£hÐü³W0ø(zˆú«Ùh÷ö#ÀþrrRø9ø—§ìù%°˜"ì°ú·ü@9U°üŸ^Äþ…°¸þ_ ˜öΪÐÿ€bÌòë\@ÿñÍRù`óXÿþSþêúÿã¸{þÉâ–ÿÍXfçâDÿã ·ÜúP,·¶õޯ®à’’ê4t6€}yÈj @A¸ˆ§ø¨o¸ú6ˆ{( ú‹Ë¸îèôµB\CÓtK€~¥wp“À°e¨Ô ȃvH@v¯Og½0úîƒ(ÅwöË„r¼ؚ>”á°EšàN˜ÀêAäTÌMýLö94  ðx÷Ê5Q¾Üÿ”N*e$ý[ H¸jùŽ°þà’Lö[ ý)Oü÷ŽõpûmŠPÿù¼múã(™`¤ù;P(ýš0ø°·ú˄ øcö˜ý܅¬øz ÀÅ×Ðù'ר´ðúuÄø¶ûü$(TÿfÀ8ýÆoø&hxþëʞóSdpÿs“tø‹w¨ÿ™«ýÅàÿšŽþ¬HæÿšXØ7EÿÀ2?àùì,sWÄè¡ò‘q)hs¶È*˜kVPy¦\YuÄ裯 vx¹à› 8û…&–¨ùÔã¨ó8ì[¸ƒQ˜.éë X5ø›ìÐ ¡:0œ¸H"2L0ûN†h9x€ÿ’ûáýsÀ҅èqh êÀ)ßТñô¾hý÷à×ä÷!HP1|xþÛ÷ZEªýþøÔ[Æú5±ÿÈc÷½Àýi÷:šÀûñg˜þÛBðú $À˜dùÀùÀþv$Êù/'0û÷høÒíý\½pøÈìÿH\ùCh.Ù°úS¶ÔàûË004¸xýLMÌùqü°þl֐ó㷀ÿéÍ÷ÒH°ÿ7ýX: ÿHå›þ–êÌÿX§1”D¬ÿˆÃ$Î*¤ÿäIjkÈr¾ÅÀP@´]ñ 4Üä´û¸%Ӕã ÈôR°Ç¥ ‚‰hü¿Á´–Ê ùj÷€@ÚhûÖd¿ õ¯Â2%<°‚@Úgp 6²Í昚턽hŒûñ ðl׸þŽ<^ êÔw:ãpG¼Ð ,4øïPw ¤±¼ÐO”ù‘¼²£¨ö˛Ð¸„þº†Y•Žþ€¡6q‰‰úÚùˆÿQ;’÷ª¦ÐýéÖL÷  üd ýÇßÐûxhÑÌú2¸Ðÿ;äéù˜¾(ûbìù/{(üîhüù ù@E7àù\¾—ì8ú9Þ¨[S û:ÀìéBüã?ú§©Èýþ6pôºþj¾÷5?ðþáL2üۄ(ÿýÊþ„|°ÿJÿØ$ÿTvq¤¯°ÿ´–‘ìɀAØø'`‡ wõØø,¤ñ"Ôé§`x½v¤ÂéêZôøýÛhèe˜ùWêT¿˜ð±êoI€²mZ|ˆØì@D n€Äì+ñËÌü¹Ô¨©ŒýÆn€B«PZãPÀ Ù° ˆÅ°dŸTo'°²,ûCÀxö»Í 3ðý,0[ü°þÖ¶nƒjŸû} ÿ{j øRFþ26È÷püÃRàüÅ9èû}j`Ðú“ÀÿèIùó—ûÖ/ ù-àüšðùI䐗ÖlùwõàöOXú(Çh„u°ûF¸”‰jü‹«,ûÇwHý  õv% þHÑdöÁgàþ™ ÌüO?ÜþŨ*þoæ”þì{V}\×ÿ*òeOÿ½0Ù2hÔ¯nÙ²|»p±R'«È²=¨0ÁЈÎ`²¡¶0¯ÐþՀ¬zݨù‡„0Zæ8ÿÚS1¸Œ •HŸ˜„<§h ·J ßè\8­Èý¨4ÒM”ý.YTkÀ8;20#d¬»ôX&””RhTòlp”œ,üæÐàˆ˜öóØ0üK.`_¦ÿ ã5”V~ü\$ÿ¡!éø÷;0þsð÷5¡Ðý¨ûÞyxûÜðøšS2úðàzó“úK£pü[¬ùÓðü[ú|ùŒÿ°ÿùXùžªL]8ú(Øû*8(¶ÀüD³$üÐs ýM›,öeñýú PöqæþRbû»Œ(þ„àlþTaØþ±êüÈÔþòC˜ÿV‡ÒDÌÿàƒÜ̙PšMwj‰È}÷@[¯0mta˜H|¡ŒÀûÿž¾]{€ùú°0YLˆþÌü`²r¼„dî]ÄiC(º€0Iæ,ÛQ>öØþ¬áŒàüÔvÀ£»ðIQ¨VÄh8#äbÙÐY\K1xŽg¼þnûB†m÷o ¡ ûx °qÖÿDõ¯ü«œÿÊß²ù—M0þ±{¼÷vDÐýkxûõÈü2òHÈHû@ïøê¹®ú•·üíâú׸ü8v˜ùÂXÀÿfÛiù»âРa,ú#á €,úöLh«þü1<ýÀDüý¸ì÷eý²ÏäöO„ÐþèÎû$;PþNœ¨þ/X†þ‚àÿ´œþþÆXدXÿ+mwÒIÿ³—*;˜(gÛ?HC¯ ‹Q /Ф”Ð\ ’Æ´Å·l>ŒV:&Hú›êhMp°ýÕ²¨ ¡è¯óÞԝèw݄ˆ!$©£°fƒ(zù€]Ï(ÿ¾ÔÔ/Ô¬ü®õxҍ ­8z×|ÖúHS¨4ø°aµ€{q0ЦìÿØO…bÔø!uð"g´ú»Øp€·ÜþñWÌÅ¥3ý2å(ÿí²ú0Ð`þæ­\÷Ðeý²•¸úm‡ðü•8[AûØ;—úÝ@Àý†[ðúXæpü.¼ØùûÒ8þã¼Âùᩘö¼ú+ΠTé úÝ¡ÀnÌûÐ`Hþ™dÒüÂ}èølaàýu”öV ýܝ úp þ¶.ýýLÌþU ¦ÿl^þš†C7 þþÜ&Ò¾ÿ„¶¼¬ü2?¸þŠX/vµ+@ð–°ÇðøÎ5XŒå* ð²Vÿ¹Hû^®`: 8ýS<Ýàˆtã'D/ žžwÌ’Ѐ{zøØ!8tèÓ§O†°ü½Àùèô ²ŸB„0mlžðl§1hŠ[´«È‡bù®8/3 ú!˜•ÚÚþ°Ôá¾Sý­B$~oúÄpÿ`Áø<7@ýù¶0ùëüÐU ÿ£m ûÙ"Øgs.û#°èþ >*úš?ˆü<´¤ú4’þo,ú yøP7Üú9G€(ÐúÌÿHnû¦Øÿ[bÔüŠ7DùtAHý< ØöƒS ý§ó@úưýëi,ý¾þ&3ÿ1³‹þl –Ò{þÎj´ÌÇÐÿQ$Tã8ÿø« øÇ¢ Ø|¬a(ù¸Šë4‘räO|ÌÈèáhü3ƒ¬± ü\˜ 86ނëÆ` g\±D>èû\ð‹ßF¸pV üû–¼${%)_ʔ`—¢0Ý¼Óþ ‚Ñ4ŒãP•ň&t “2ú rˆDüù¯£±î.þPÈnîtþÃè=¶¼ûQ ÿSXéø´>Ðþ={Fù‹èXý¾þåD¨ü •8qi(ûd¾°þ´à¨úÕ®˜übæúgýPþ 1–ú-½ø± xúF*»w(ú¾úÌçPû€»h 4%üW®Dúv› ýLö×7ýyŽdùˆkýÁ@€ýr¸ýþÿèÿspþE߈a”hþ¦Ô½¶´ÿ&ür ÿÉ ÌI.p‘%ñOèq"\'× N÷ Ÿ`^nð2r^²cý ÎÀÛPûë–è E€ÃßCë²JæºÈ܃î`š}LãÈ–hŒÜwpƒÃôýa•äAyDÿ` éˆpÛï¨ÆàœJ¨‘F˜z¤šŸ¹Ü˜*œû*øRhùj…ÈÇܶýÜ$¼$¸þg5|`XŠûכXÿâßù3÷˜þyýÞùQø°ý_²¸þ(&8üdèÜ[S¤û¤¤àÿ?àñûïˆü—Èúžÿ ý¸L€úY1®Œú]ÅT ú½â˜æ(ûhۀ¤¶ãü1[ÜûošàüÞþà÷K ýR™ÜùkØýœhýÝtýÚÛ¼þÚ. þ Ýö_þ~˜¡ôþúª$ÄH¨ÿ–ÎùÝ¢XW¸qÿh(2–ÎR­øCT·‚Ù0˜Lp}ÏìýÛ}´Ý´Èû±à¸öA6\™å'ñú¾Z¸ æÀ ¸™WÀˆ¾?°’ºÔýì ZïþÁv¨A°Ë0Â÷[þ@£ƒø^ø¤Å¼ Ä¢ ÜüT¥Èd¨8ùX ãPZýXÙì?@Êþ¡¼PˆfüW÷¤ÿ³ºVù¶úþ·üäù9Pý¥z,ýrÓ ü©Ýl&kûä5(ÿ»_ÚûL“ üë˜úÓõÀývk¼úƒ† Ž !úvW¨à,Ôú¿û'Â@ûU’à.ƾü±hüYËäü¹R”÷Ûô`ý/qðøÍËxý{€Pü¸5øýºŠ¤þ´áèýÿ¼Ð’®üþZfœwýüþÒg—²œÿhÛÝnqx"m4ÿh÷x÷zà¸ÒªÖYª;ìWeHGdþ˜hr¶!Hû®\@Ý¢Xÿ˜à€Ù( *r¼T@ßÁd¢:È% à gÌˆœ+|þÎ*né¸þK| íèDã€ÚËèä´áì:×X®Õ°Gø« `ý~‘ujðùvñhü–üÐØœ]ݞþÂ)ƬRQüÐx¼ÿàîéú:“þð¢Þù>¹Pýæ[üÊDüë#ײŒü!`$ û…O¨ýGèûSxýG‘Hú¯L` Ÿšú’±Xc¯\úÇìP5˜ûIµp©Šûõø`ý4"èü›lø‚¿xýOPø—…hýaœTüPb(ý¡þŽß¢ýå˜9Èdþ<…ðA’Äþ°;8xoLÿA-Gˆÿó‹ð\ˆÂEMžÃ<™Çvú­–e1ôZ+’³`ÿ=zÞÜûÙ¸ÈÂ]þ÷ öÈb O:´R¬C<lb܏«›©Ø”`œs ÿIižx¾ýü®x0ßìvôéû¨µËx¾íH먲¥Tªêø­Ý€þž+RÍ,ùÅ3°¢,üLüx;ŒþÈØ̞aý@nT ãÅú¼&(ÿ$×ù^Çðþ#¦îü4Ø ý*Z¨r8¿ü\ë|wLû½ªXý­¶û=vHý+ úÝÒÿ–èÊú´b@âS4úׁ .ûF¯ zDûå @ýü”Xü„˜Lù9æˆüý½(ø}\0ýMnTûæPøýŒ4ÐþdùZýÎAlÿì…cþ!™2ÿúbþŒaî|ÿ×-˜Wÿŋ˜ҁð}¾µÜaMZ!»4,DZzÀßœÿű—bÜü-Ô£ €þ\ª"³Ž\õ‚¨'˜Ê>–•3ãҘ“ᘒ±˜ú +H~š¬ýØZ =óÜ­„¦÷̘M ÉTêÈ·œîiH± èÿ«UÚŠr¼ú=÷ˆ$ü`ûÔH“BŽþµ>Tí@±ý¦2J1û:[ÿWgcù”sþ^êŽûµHxýgáŒÿûÁÖü—6„±Ðûô)ðþ†êûp¾èý"Ðû DÀÿ-+Æú֘ˆ_}@ú鉈®€ûG»Pn·<ûÙþ²å,üshùûQàüí1Äø]ðý>â0û~˜ý}Š þ5ý½Þ¼ÿªWöþ ˆ¶–þvýjOyøþûêJ:$ÄÿŸ.„¥þ`_ñpـ0/&ÌIϘø—\4p­¨1¿º7e0üŸá¬ƒ#\ýÓø”œk”Ξd˜T rŸðˆåÌ,‡KPÜr¨+ôÔ©|ÞèýÚºŒChøñ½þª¤Õ#PÌæÔ½”è¶ðä帯,Ÿ¾‡Žo°úÚՈ2«„ûp>ШþŠJ΋Nýÿ(Sólû³Ü8ÿ‚ù(ùÛ¼þ“Í´ûNÇðý Üÿy7µüÎ ÀÓùŸü(D$þ‰dû¢ï°ý+–û9ŽðþÐL4úü°ÞB’ûøXä—ÌûO¡Ðº˜°ûԉpÿW·)ühÍ|úÁ\xüãœÀø¢l`ý7@ ûÐýu« ýýـý³ó¼ÿr?[ýÿ¬àgK¼þc™Ô<ÑþâYVè¬ÿ~÷lž 7;xîRx#òq:èÈ<Hb:}%Œ‚—‚ (ý%“Ôb<PýeˆƒQŒ’è@…o86\ìy)˜rcvÖ$û%(€(°—é¸tÉÈþ¸ÀBŒG°Âÿë0OظËð;˜²' 'ÃP©>pvx(Äœû”„Ð;ù¸û'ð¹?4þK,¦¶pþJõ~rTZü(¼ÿªéfú/ÿXþÅ9üûD(ý֑Èþð`TýÜ»ËüZތþôÝ ûÓüÀýF‰Xûg¹ðþ€–Dû"ú¨`ÝûѨ¦Zèû\kÀö– ûÕªÐÿë=üd%Èû‡püßbøß (ý5ÈúÃøHýsw$ý¿(ý¯¥´ÿBDý÷gèå„þU¯Ž&oPþÎî£e,ÿb&*(¶È]ül×OŠ–ìÄ›Iìm½8O¨è¼!êãœ\ý´¯\@µ8ý­0hÐdC ÜpNXµÔfôT¿üc¹œñŽØmw„PÔgäàþHÚ¨<¼ÿ´à®üÎH¿üÇ1äW¶xªl(ᘟ›¨-™ˆöübN@å<úüç¨Æt.ýü‚ü1æªþ†ŠŒ\›ü–pøÿÎ lú<ÐþñÜ\úÏÆØþšþf~”ý4ûÔÍQ”üŠÂÿYï*üÒàýq€øû”»þ>ÑÔûJ\Àé@jû8ßhZpûlë@"dûÛwXnÀþüdu$üGððüà*(ù4ۈý8npúyêàýw6ýyN ý±Š\ÿƒ[ýõÇûáþNED ôþÀQœkÚtÿLݰÝ~ÜÿõöÔ*³d¨º€sä~ó&`„âÝZ¼¥´þCݲ 8\üësàNFÿã.9Yï ôRÅî´N ÃVñ”öµðU¬”þ«:¬1ôÿ<»bô4&5½À]Xœö(Ò€Ä7x~SDý;œ€?ÊôúôÄ8Î*dý£âÄ?îJþ¯x8¡#tüþh¼ÿë²$úïþhÿ(mú¶…þ63âýà¸\ýc~`§WVü·ê¬ÿ´–ü/… ýªCûÀ®èþ ]VûrU@xÔRûX^8Hû`ˆ=—dûæ)xã|üiôÔýº,üæ!Èù r0ýA: ú@ê€ý€ßØý-ëüý¹ƒtþïì`ýù݈}/¶þLüvåúÈþ¸…ž@# ÿ=€Žq˜ÿÞ=ÖüÄt””Ú/¸Pö•6PšØû¬W—Ë\þË\†q¸üãßÄ3–<ÿy(>ByhÞÕ<à‰ÏÐ6gÌtõP=](†°(?Øÿ#Hâ W þáòòæƒ|‰¤®¬p֡Ћӌ °}úÌ;‡Ànü@þ–9¢¬û€Ñ7ŠýGjPI˜þÆ ¤±hý_>솦ûUX(ÿ;¤Õú´•@þ_­ ýc€ýŽÉümMíüâeе3üYôlýî1lûë8ý楤ûšA8Éîûyjˆ¥Ô@û˜¾ØH:àûôªÐI:¾üs¢¨ý®àìüðYˆúÝèýNœèúi`ý© üßœýÆçüþÈÓ¾þÄÊ8^þQ_BºDrþ¶TÞœÿ3É?LÿÌÉî!zì¦ö¼´1?"¯hèÞ¶Ü U®uªÿEsâPüý‹LxØÿ ÿ*«ÈÈ1K%æ`9˜ Ç!JÐûƒ $”Èÿ«%¬ þ¥¾âÔv„ìG›ïˆL¨v`î(fú•¦4Zç8þïÏX.cìûL[àϦüíd¤O<þɕ^½Œˆý¸!x‹ûºûxÿYÀÀúÇUpþ…Y:üó*¼ý·ô"1Bý b”>ÅÙü‚&Pþ:S.ü)ýÐÇdûÁÄÿ±Ø"û›¨BÁàû²šÐB üt¡vü ˜þPžúüþW\ú¨Ûàý` ¨ú xý¢ýhü=|ýÙ Ðþ îþ¥¦ÿúuOþZ⇓Îþ¹³ÿ.ëòÇäÿ¾œÊÔä°e†xp0NÌ:¿áæ;ÐU—ÿ®dˆĘÜý4$hÿ¥0þ£V워ª”0,H«Ðj ´”~¬¼Rшdx<†îò`øþˆª†¿A¤TY¤†l`/²ð^ÅdÍüxMzÀÕë˜CË\ÿ¼˜´û¨1ÈÊ¥Öüœ(Qzòþº|Æc‘þŒ)áWü1(ÿsÿÀúëÅ8þ§ü’Q@ý܎Ìÿɺdý/ã¨jBúü§þ(þ‹>¦ü;6$ýÉó€ûèDhÿ\ÀÕû½ïXÝ”ûÍа-tŒüµX쓾ü‘6¨þå=dýRÔû=ýtéèúÖPýºŽàüAnÜýð5Èþt)þ&Â4ÿê—þiÌ|OcþÁpúë"äÿ/èw¬-ÿ·1±b8UÄê# ÈÿÞkéÖp¥}nÀœ8Ӑ¶ü©@¤ýŒæÁdþE¼¼úºŒ‚ª=õrÔ^ú罬çxã™ØŠ78橤ÒdÔäþˆ˜è¥bÀÆ:ClˆÌwpB‘ä©Ü/2tÿ%'À4yœ #|üÕtÀ’üY*4OPþšn>Ê·`þMz‚5ç#ü€V¨ÿ‰YûöXþÅvºüC§ ýþ¼Üÿg¥¼ýSƒU€üË©þÝv$üa%,ýÑÊÀüexÿTûáþØy^Zûë8@êü2‘Œ+`ìü¤Fÿk±ý$9û×»ˆýŒl4ú*›ÈýÖkLûúTÐþ 'bþAóPþ?K”ÿ•À|þ{AHTzþÍÏbÖéHÿ2¡j³ÿ²þT‡càG< 0T욖 DH‹ŸÖ'™¤$œJù֍XÔýÜ`ÎâÔýûïhâàL_vÝ8&PvË~$ˆ.ÔÃJD£6hÄCTdìµBhþ¥j‰ñxF Ǒ^Í,&=8ƒ%(ätR0 9%þó4zü¦ƒ·· ü/¥ôI(žþd‰Ò`þ ²={‹üÓõ¤ÿ¢˜šûh¤XþÝeœûú÷`þ%îVÿØýnâ”x®üõEœÿ@zÆü}CxýÒ1lü<þ萪ûúžðûí·üˆÀø4ü<H05ÝÄüËZÚ¦
26,480
264
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/audiodata/pluck-ulaw.aifc
FORMöAIFCFVER¢€Q@COMM ë@ ¬DulawNAMEPluckAUTHSerhiy StorchakaANNOAudacity Pluck + WahwahSSNDÞÚ|ç—ʾÍÎÞÐ_ F 5š+¥&-$!² .Š!J'¬.=K:N¾LJ­FKQ†m͏¼±‹¬.¨©€«¬±‹³/°¯$µ‡º½º™¸‹²® ±ŽºÅ-åJ4)¤"G¾2Žª#\+?9K.UÆV,X;RŠ[ nˆÞ)ř¸(¯§«–§¨€« ­¶´¸'µ´¹‰¾¢¿«¼‡¶ ¯°¹)ÁÙ-P8¬*#^ JH˜˜$-,´;Tk¿j9h$[‰]nŽè«Ê»»ª±&­‰©©¬%®¶€»-¹¶º¿•Àß½‡·¯¯–·Ü¿ÓIV:E+˜#ý ,Ò¥$(-ª=f߸ãLëkŒ`n¡õÎ+¾˜´®†ª©“­—°¸€¾¸¼¹»œÂŽÃI¿Š¸?¯®£µ£½Íg^ <,”$Ë"¿¶Ž$/-¯? ì ιÐÔÙõcMhCmˆÙ!뷰Ьª/®„±¹ƒÁ’¿º»¬ÁÄÛ¿¸¡¯­M²–»ËCb=,”#±Áɏ%Z.ÊEÓÂÖĸËۛo¤hb†ë-˝»#´’®¬ ¯€´»’ƅļ»¶ÁŽÄ±¾›¸”®¬°ŽºÉ(e= ,›#¡Ëד&±0FL%È»3½ªÄÓ®m–\TŠ_¼Ú³Á>·ž°3¬¯€µ»Kǀǽ»¼¿Ã¦¾¥¸¯ « ®Ž¸'Çi-= ,­"˜%Ý× ™&¡26W3¿µ·¥¾'ÌEmRK’MœmZÌѼ¯´®­¯‡¶R»ǀÈj¾ ºî½Á ¾®¸¯«®“¸ÆÈ_6<,="”7QÆ! (š69~:¹ ¯±¨º=Ê(cI+A¥@’NKßÌÀÅ·ž®®˜´—¹ Ăɗ¾ ¹*½Âœ¿¿º°'«­¢¸Ê[+;+!!•¿2¶#ª*™;PØ9³¬®²¸ÂÌS—>Î9ë8@ËcôÆu·š­¬V±‹¶¿Ç‰¾ ¹¼‘•Âú¼•³¿¬­G¸’ËY:+!œ¥" °%®,š?ÄÊ9¯©«è¶­Í J¡8¦291“:­OjÊ?·™­ª®‰³¼¥Ç…Àº ¼šÆŽÇ뿞¶Ÿ­­·Ë'V:!,!ª"¸'¬/H³Á>­§ ª3¶§Ú(?º0-9-š4¡JØÈ4´ª§«¯=ºCʆÇm¾ À¸ÎŠÑ°Æ´¹™­¬ ´”ÆÀ_<-"¼.#ñ)©1žN­½F«¥©#¶¦ï99F,œ)U*¢/žG½Æ1¯¦§C£ ¨—­©¹*ÎŒÓŸÇ È)ڋàœÌú»œ®ª °£ÁŸk<-"ΞN$7+©5ž\©¹Mª&¤§·«aÖ32( &¿'«.žH±¿8¬¸¤¸  ¥®­›»-ä“f•ßÖóÿ‘Î廦­1¨ ­`½šz#<,!|žÅ%(-­;žî¦µ[¨+¢§¹»L³-0$ª!°$°-ŸL¬¹F¨å ¬¢<¬™¾EYE“R semÍ±¸¶ªL¥ª(¹›ï?;+ >ž¯&/·BžÒ¡°î¦.¡¦ºUA«)< »®#±- X«²s£Iž«œ #®›ÉÅB§7”?<YkºëÄŸ³À¨Y¢§¸ f¾5(+Ÿ¤")8ÜZžÁž­Ë¥/¢¨Á17«$cѰ"²/¢Ü©«ÎŸ>›®›% ³£o¯3¬,–5ÅMî5Ϗº—­·¥OŸ¥¸«O¬/ $§ 1-D7Ö ºš¬¸¥/£ªÐ'.¯ Ãä¶$·6£Â¦¦¿œ<š¸›5¢¼³Cª+­'™0®VÈ#¼—°‘©©£YŸ¦¾½>¥*-!·š$ã6s%Á©¶˜­©¨5¨¯u +¹·Þ¼'»A¦¶¤¡¶›>šÊœM§Öà2ª&­$›/¦ä¶¯¡«§ž£Ò¡©ÏL3£%ON›)­DË»¿¶˜±ž­I­¶S)ȯÏÂ+ÀZª®£Ÿ¯šIšižñ¬ T>+®#­#œ3 Ä)¬©¸¨’¨˜§´¦­ù,.¤$º *!ž-ŸQ*Ä»;¼œº™´¿±¹V*_«½Ç.Î箬£žª›pœH¢ð²&A3(´"®$ž:ž¶=¥¤H¨—«”¬¥¬(³[-¬%ª"*##&«/œ\[ý&èė»§¶+ºd,7ª¯!À1èÏ»ª¥ž¦›ÅB¦\º*:.%½"¯' Bœ®Õ ¢,ªž°”¶œ´>¸_.Ë'¥&S''(å0V°Æ$ÁÌËњÁž¸M¸ê.#¯§!²3ÝÉÙ©¬ž¤œ²žOªMÃ,6*$Ì#±*£Uœª·ž! $¬¬»–Ř½¿¹ä45*¨)¸*!))./¥N¦É9Ã!Ñ;ޣȜ¹··Õ/Ø¥"§5½Àh¨ºž©¬¡Ñ¯VÖ.3'$_%´.¥îœ§¬œ*  ²ÉӚý–Ȩ·Æ=!-¸*­+4*(".ºK¦ÆÔÀ*Ò/ø²ÏŸ»ª¶-Ì24¬"¢8¬¼Ô¦Ìž±ž­¤½µÝx63%&;(¾4§Ïœ¥¤œ8¢»?R¡M—Ëž°0·L.L)®*å*").OL®Â½¾:Ö3\Ç禾¨µGÄ5 $¿"¤:¤¸¸¥ÌŸ¾Ÿ³¨»½ÇWF5((0+Þ;­È¥Ÿö¤#Ç.?®CšÈš¬Ò®_-+'¿(À*0+$/8R¿¾¿½Kß;KØ]¬À©³Û½; N#ª<¡µ«¤¼ŸÃ¢½«ÀÅÇNm9.,..OA¸ÇŸ§ž·¦+Ù)8Í?ŸÂš¨­©#z*#G'Ê,B.-47WÚ¿Ì¿Om?@ãN¯Àª¯À·(> 2"µ>¢±¥£¯¡½¦Å¯ÎÎÒLâ?7001CGÇɦ©Ÿ«§:é*4K>ª½œ¥¥¥6ì' .'Y0L678>OâÆÕÆNY>=bK´¾ª­·²3A("ÕE§®¢¢©£³ªÁ·ÜÙtOþM=944BGØÐ¬¬ŸŸ§§gö/0=<·» ¢¢£zî"$'':9B?<:FFØÓÎËTV==LK½¼­¬°±IA !#@Q¯«£¢¤§«¯·¾ÓØUgQv=@54A@äß°®¢ ¤¦Åý8.9;̸¨ ¤¡¿î, !%*/G8Q9:G;ÑoÄÎõ]B?DLϼ²¬¯°àB)%/wꨤ£¬¥¸­ÃÀÌ[ÚGÖ9H12=<pí¶¯¤ £¥·úC,99eµ±Ÿ§ µy;'&,+v/÷37?1ØN¿ËÎéODEIú¿»¬´°ÊF1 '*ÚZª¯¦¥±£¿¨Ä´ÁÜÉIÍ7J./58Oì½°§¡¢¥­l~*>7M±¾ž¬Ÿ²_R.)1+È-Õ.18+jFÁÀÃÌíFO@lÉÄ­¹¯ÇL;&!((Ï>ª¼©ª¹¤Ê¥Â¬ºÀ¿ZÍ:I-./7>Üΰ«¢¢¦¨eÁ)N7K®Ô¶ ·Ur6-;-»-Ô-,2&JD˸Á¿ÏBt9ôÓɬ½­ÈVC*$)'Æ5«Ò¬¯À¦Ó¤½¨´µ½×ÕAH..,74ÑZ±³¤¥§¥g³)Ø8\­ç¿¢½M};1F/µ/Ý.(/#>Jè¯È»Ì<Þ1ÝÛɪ¾«ÆXM.&+&¿/¬Y±¸ÍªÙ¥¹¦°­¼¿ëTG2/+8.Í>³Â¨©¨¥ü¬*½9ԬٞǤÅKj<3X1³0y/%/":V^¬Ï»Í5Ö.Ö×ȧ¾ªÂOa3(.'¼,¯A¹ÆÛ®Ó§´¥®©¾µbØJ;4-:,Í4·o«±©¨Ø«+³8¾¬ÆžÃ¦ÇLf; 2l/³0X/#0#9qSª×¾Í/Ò-ÒÌȦ¿«ÁIî :+1(½+µ8Ãî޷˪²¥¯§Ã®X¾SM:18,Ö/ºB­Á©®Ì¬,¯6¶­»Ÿ¼¨¿Nì =#1ò.´.M.#/$7ãKªÞÄÍ-Í-ÎÅÇ¥À­ÁDÚ#?.3)Á*¼3ÌN×ÂÅ®²¨°¦Æ«XµcÝ>;6/á.»8¯öª¸Å¯.°5²®´Ÿµª¹UÍ$F%4ø.·-G,$-&3ÞC¬õËÍ,È/ǿ羯¿DÏ&I"22+Ë*Á/Ñ@ÏÖõ³ª²§Æ©\®ÀEM46û/»3²H«Ë¾¹/µ4³¯²¡±¬²_¾(e&;c/º,F+%+(.á:­UÎ×-È1ÿ¾©»³»GÇ+X%70,Ú*Æ-Ö8ÍY¿¶®´©Å¨b«íµLÜ3@d4»2¶=¬j»É3¾3¹±´¢°®¯ÿ¶,Í'JT7¼.G+'))+÷1¯@Ñi.Ð4ÄÁ¼«¸¶·N½.Þ'?./ø+É,Û1ÌBÃÙ¸·µ¬Ã©lªè¯T¿2_X>»7º;®L·ì8Î2µº¤³°¯à±2¾(|H@¾4J-)**)d-³7ÐI0ú6Ìž®··´\·4Ç(S-8d.Ë,ä.Í9ÂTºÅ¶²Á¬}ªå­b·2ÍNS»?½=°G³Z<ü0ֹĥº²²Õ±:¹)Í?X¿>O3+-+*V+·1Ï<4L7ñËȱ»¸´{´9¼*Ü,EW5Ì/ô/Í4ÁA¼ï·¾¿²î­ç­|²3¾HÚºTÁI³M°XB`/|¼Ö¦Ã´¹ÍµC¹*Å;ëÀLU;,1,-M,»/Í68?8PÑàµÃ¹¸ßµ=¸+Ç,`N?Ï6s3Î5Á=¿S¸Ï¾¼å³ë°æ³5»CÉ»ëÆ^·^®gKg/kÀê¨Î¶ÀÉ»S¼+Å7ÜÁY[C-8-0H.À/Ë5<<9FÝ_¹Ð¹¾Ô¸B¹-Á+ßIMÓ=h8Ï8À<ÃJ¹î½ÆßºîµÛ¶8»>üÓÉì»õ­ïVü/sÇõ©Ù·ÉÄ¿x¿,Ç4ØÃhaK/=/5B1È1È5?:9?ïN¼í¹ÈͼHº/¿,ÏDdØHd>Ò<À>ÇHºa¼ÓÛÂð»Õº:¼<½ÌÌØ¿Ü¬ÚpÞ/ëÍë«Ü¸ÍÀÅÙÃ-Ê2ÚÆmfO0@19>4Ò3Å6E9:>pH¿bºÒÉÂN½1¿,Ë?ìÞS`FÖAÀBÊI»[»àÙÊîÀÒ½=¿9Ä¿ÌÍÔÅÖ¬Ôâ×1ÞØá­Û¹Ï¾ÈÍÆ/Ë1ÚÊwnS4E3<;7á5Ä6K9:<aDÄT»åÅÊWÁ5Á,É<Üêd`NÚHÁGÍK¼X»ðÖÑëÇÐÁAÂ8ÆÂÌÍÒËÔ¬ÐÒÑ3×èۯعϽÊÈÇ2Ì0ØÐùuY7I6>99z6Ã7P9;;Z?ÉL¼lÂÓ`Ç9Ä-É:Ôþõa\ßPÂMÎO½ZºþÓÙçÌÑÇHÇ8ÊÈÎÍÔÑÔ­ÐÊÏ6Ón״ֹϼÊÄÈ7Ë0ÖÞíú^:L7A8;_8Ä8Z9=;T>ÏG¾ZÀâpÍ<È.Ê8Ñjãamé[ÃUÏV¿_ºüÏÜáÏÓËNÊ8ÍÏÐÌÖÚ×®ÓÃÑ9Ó\ָչϼËÁÈ;Ê0Ò~âîk=R9E7=T:Æ9e9>:O=×B¿N¿qð×?Í/Í6Ò]Ýb÷óiÅ_Ð_Ái»òÎÝÞÒÕÍXÌ9ÎÜÓËÙâÚ¯Ö¾Ó=ÔSּչм̿ÉAÊ0Ï^Üêÿ?Z;J7@M<É:z:A:L<ß?ÂI¿[áéEÕ1Ñ5ÕVÜaê{}ÇnÐnÄ}»èÌÛÛÒØÍdÍ:ÏüÕÊÚíݲڼ×B×MÙÁعӼ;ÊKÊ1ÎQÙçíDc<O7EH>Ì<ë;E;J<í>ÅF¿QÚmJâ4Ú4ÛOßaêoøÊ|Ï|Çñ»âÊØÙÐÚÍzÌ<Î^ÓÊÙ÷ݵܺÙIÙKÛÈۺ׽оÌWË3ÎJ×éåHn=V8IDAÑ>à=I<I=z>ÈC¿LÔ]Oû7å4âKç`íj÷ÌüÏøÊë¼ÞÉÖÖÏÜÌíÌ>ÍRÑË×ý۸ܸÙRÚIÜÏܻڽԾÎnÍ5ÏE×íâLz?[9MAEÙ@Û>L=H=i>ÌB¿JÏVXj9÷4íGï^õgüÏüÎõÍê½ÞÇÖÔÏÝÌäËAÌLÏÌÔüÙ¼Û·ÙcÚHÜÚÞ¼Ü½×¾ÑæÏ8Ñ@ØùáPúA`:P?IåCØ@Q?H>_?ÏBÁHÍP`^<o4}C\|dyÔ|ÎùÏì¾ßÆ×ÒÏÝÌßËFÌHÎÏÑöÖ¿Ø·ØðØIÛëݾݽپÔ×Ñ;Ó>ÙqáVöDe;U>K~F×BX@I?Z?ÕBÃGËNnY?f5n@rZrbrÚwÎüÑíÀàÅØÐÑÝÍÞËLËEÍÔÏîÔÅ×·×Ú×KÚqܿݾھÖÎÓ>Õ=Úeá[óFi<X=MeH×D_BJAVAÛBÅGÉMøVC_6g>kVlamßpÎ|ÓðÂãÄÚÏÒÜÎÝËQËCÌÜÎèÒËÕ¸ÕÏÕMØ`ÛÄܾۿØËÕDÖ<Ú\â_ñIl>[=OZJØFkDKBSBãCÇFÈKèRH[8a=eRg`içlÏvÔ÷ÅçÄÛÎÔÛÎÝÌZËCÌèÎâÐÏÓ¹ÓÊÔQÖZÙÈÛ¾Û¿ØÈÖJÖ<ÛUáeïKo?]=RQKÛH|EMCPCîCÊFÇKßPMX9^<aOd_fðjÐpÕüÈêÄÝÍÖÚÏÞÍdËDÌzÍßÏÖÒ»ÒÅÓYÕUØÌÚ¿Ú¿ÙÆ×R×<ÛOáhîNsA_=TMMßIðGOEOD~DÌFÇJÚORV;[;^L`^býfÓmÕ{ÊîÄßÌØØÑÞÍrÌEÌdÍÞÎÜнÑÂÑbÓRÖÒÙÀÚÀÙÄ×_×=ÛKàhìQyDc=WJNçJèHSFNEmDÏFÇIÖMYS=Y;\J^]_vcÖjÕuÌòÄãËÚ×ÓßÎ÷ÌHÌZÍÞÎàÏ¿ÐÀÐvÒQÕÛ×ÂÙÁØÄ×z×?ÚHßfëU}Ff>YGOôLäIXGNEeEÔFÈIÒMaQ?W;ZH\[^naÙgÕoÎùÅçËÜÕÕßÏìÍKÍSÍßÎäÏÃпÐêÑQÔçÖÄØÁØÃ׿×BÚFßbéYüHi?[ERsMáJ\HNF_FÙFÉIÏLmPCU;YF[Y]j_ÝdÕlÑ~ÇëÊÞÔ×ßÑçÎNÍOÍäÎçÏÇÏ¿ÏÝÐSÒûÕÇ×Â×Ã×Ú×FÙDÞ^ç\÷Km@]DTeNàKcIOG\FÞGÊHÎKþOGT<WDYW[g^ábÕjÓxÈîÊàÒÙÞÓäÏTÍMÍëÎçÎËÏ¿ÏÕÏVÑmÔÊÖÃ×ÄÖÓ×JÙCÝZå_óMoB_CV\OâLkJPHYGæGÌHÍKíNKR=VBXTZe\è_ÖgÕrÊôÉäÑÛÞÕâÏZÎLÎøÎçÎÏÏ¿ÏÎÏ[ÑcÓÍÕÄÖÄÖÎÖOØCÜVãaïOuDbBXWQåMvKSIWHîGÎHÍKäNOQ>UAWQYc[î^Ød×nÌúÉèÐÝÝÖâÑaÏLÎrÎçÎÔÏÁÏËÏ`Ð^ÒÑÕÅÖÄÖÌÖWØCÛRácíR{FfB[RSêNúKVJVHýHÐIÍKÞMUP@T@VOX`[ø]ÙbØkÍ~ÊëÏßÛØâÓkÏMÎgÎçÏÙÏÃÏÉÏlÐ[ÒØÔÇÕÅÖËÖa×EÛOàdêUþHjC]NUñOðLYJUIqHÔIÍJÛM[PBS?VMX^Z|]Û`ØiÏxÊîÎáÚÚâÔxÐNÏ^ÏèÏÝÏÆÏÇÏýÏZÒÞÔÈÕÆÕÊÖt×FÚMßcèYùJmD^LW~PìM\KUJjIØIÍKØMbOES?UKW]Yt\Þ_ÙgÒsËóÎäÙÜáÖùÒPÏZÏêÏàÏÉÏÆÏêÏZÑèÓÊÕÆÖÉÖí×IÚKÞ`ç[ôLpEaKXoRêN`LUJdIÜIÎKÕMmOHR@UJW[Yn[á_ÚeÔoÌ÷ÎçØÝá×ïÓUÐWÏîÏäÐÌÐÆÏßÐ[ÑöÓÌÕÇÖÉÖà×LÙJÞ^å^ñNtFcIZfSéOgMVK_JáJÏKÔM}OLRAUIWYYk[æ^ÚdÖmÍüÍê×ßàÙëÔYÑTÐöÐæÐÎÐÆÐÙÐ^ÑuÓÎÕÈÖÉÖÚ×OÙIÝ[ä`ïPxHfI\_UêPmNWL]KéJÑKÒMñOORBUGWWYi[ë^ÛcØlÎ}ÍìÖàßÚéÕ]ÒSÑ{ÐèÑÓÑÆÑÔÑbÒkÔÒÕÉÖÉ×Õ×UÙIÝYãbíS}IiH]ZVíQvNYL\KðKÓLÒMéOTRDUFWUYf[ï^ÜcÙkÏzÍîÕâßÛè×dÓRÒoÑéÒ×ÒÈÑÏÑiÒeÔ×ÖÊ×É×ÒØ\ÙJÝVâcìVþKkH^VXñRÿO[M[LýKÖLÑMãOYSFVFXRZd\ø^ÞcÚkÑyÎðÔäÞÜæØkÔSÓhÒëÒÛÒÉÒÍÒuÓbÕÜ×ËØÊØÏØfÚKÝSâdëYüLmI`SYûT÷O]NZLuLÙLÑNÞO^SHVFYPZa\^ßcÛjÔvÎòÓæÝÝæÙuÕUÓaÓíÓÞÓËÓÌÓ÷Ô`Õâ×ÍØÊÙÎÙwÚLÝPâcë\úNnIbPZxUñP`NZMmLÝMÒNÜPfTJWFYN[_]w_âcÜjÖvÏôÒçÜÞåÚþÖXÔ^ÔïÔáÔÍÔËÔêÕ`ÖëØÎÙËÚÍÚðÛNÝOâaë^øOqJdN[nVïReOZNhMàMÓNÚQnTMXFZM\]]r_ædÝjØvÏöÒèÛßåÚö×ZÕ[ÔõÔåÕÏÕËÕáÖb×öÙÐÚËÛÍÛåÜPÝNã^ê`÷RsKeM]hWðSkOZNfMèNÔNÚRüÿÿID3 ’ID3@  =?$aTALBPython Test SuiteTIT2PluckTDRC2013TPE1Serhiy StorchakaCOMMAudacity Pluck + Wahwah
6,910
14
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/audiodata/pluck-pcm8.au
.sndÖ+ÿK1€ËH¿þ¸ú´ó)ëæíäÆâàïàWâûèïØ÷—ûõüûßûú>û¼üfÿÏC ÁQî‚€IR ïÎä c  + Q‹¶D ÖíØûžò$éãúßÂÝÛñÛDÝäþìøõˆûîýýìýöüSý³ÿ_é, è2€§ y ç Ý Ò W a ©›? êÝîü—ôë$äþàÉÞûÜúÜ-Þ-äîí öŠýÞÿÿõÿäýXþÁÿD ç[€{æÉ  î ß Ð @4a σ3 Ðúýõùì/äàÒÞíÝÜÞ>åéí÷šþÆ ûÛÿOþÜÿ?ì- Òe€8/’  Ô Ø %FúT ø€ Æÿþ­öÝì6äàÚÞâÝÝ ßCåïîøµ® ×?þüÿùÿ]â1 ÔU“ïl€ r;Ã Þ K= €û3 ÅùþÃ÷Äí5äßÝÝÝÜÝß@åýïùР Ø(ÿÿÞþdî$ ä :ư ‘ 9kÁ × E( 5‰ÔC ÐéþÛ÷´í)ãÞàÝÙÜÝà7æðúûåœ òÝÿ2þÒýUþ  ÷ !òŠ à ûÕÅ ? @§±F çÕÿí÷±íã.ÝæÜÔÜÝà+çñóýò£ Ý èùÿ>üØû9û&ÿý  €` ü Ëÿ° > BȘ7 Çþóö»ì÷â7ÜôÛÍÜüÞâé)ôõÿõ ±Ë ÷èþ=úìøø:üû "Š. 0 ´t0© ë@& ?èŒ $ÃýìöÍìââ3ÜÛËÝñß äë,öüõ À¿ ßü1÷õô@øþÿ + ýP ¹HY· Î <5 5 ú 9ÎýÜõÜì×â&ÛÛÐÝãáåí)øõ̹ àûôñõñ9õüÿø +¿ÔX Ò jØ ´ *G" Ô AçýÌõâìØâÛ$ÛÞÞÕâ èï$ú ÷Ö·ò èø ð$íõí*òûò %ß¹K÷ ùdÿª S +¹· 5þÆöÛíÞã Û%ÚîÞÏãéñ!üúß¹ã õõúí&êýêð"úñù±0 ëO ³êQ& 'Ù©ÿÏöÏíÞãÛ#ÚüßÐåôëó!þ üæ¾× þòñéæèï"úô  ·( î7þ3ÈÏ?= ñ¬þ+ÿãöÈíØâÿÙ"ØÞÔæèíö" ýìÆÍ û îðäâåî û ú#Åö-ùý#ù8üàÿÃþ$ÿJ û¹è )øöÊëÎà÷Ø"×ÞÙçÞð ù#ïÎÈ ýøêöà Þãîýÿú#&Öä'ùô6øöýÂÿ J ýÅÚ þóÓèÈÞëÖÖÞãêÖôý"#ðÕÇñôåþÛÛãð!÷'(æÚ ÿòí1óûÉó@ 1 üÍÒ üïàåÆÛßÕÖ$àñîÑùô ) ðÚÉçïàØÚ ä ó&ö* (ó× ùìè,ðýÓä 1;ý ÓÌ÷êîáÉÚÓÖ Ø)äóÒÿå .óÛËÿáì Ý ×Û è ø  )÷*%ûÚñæä(ðß Ù>"ØÇûòæüßÐÛÊÙüÝ)êùÜÚ  -"úÜ ÊüÛêÝØÝìý!*ú)ÿ!àý÷ìãã&òêÕ :. ÞÃíïå àÛßÅÞëâ"îüëÔ ö % , à ÇýÓëþÞÚàï!)ÿ&úæøòè âå"õ# ÷Õú05é ÁýÝîåãëãÇãÛæð'þýØç0  ë ÇþÉìôßÛáñ "($ùþ ëõîæâçù%Úí"6 % ÷ ÅþÎïçæüèÑèÐèð%ýåß)# û ÏÁîäàÜâò"&!üûìóëåäëý% #âä 2. ÏÅòóëé êáêÎéîïüõáö& ÝÁðÔàÜâóÿ "%ýîòçåþæ î%%êà*2 ßÃ÷áí êëòêÕéâî ûëð!  îÉñËàòÛâô "" ÿóòææöèò&&ôà øüû1"ð ÇûÓîûêêêâéàîüûõòþ úÕóÊàåÛãõ    ýúóèéðìö$!%ãîøù+*ÔþÎíìçèëðëåðôüûöûþ ßöÍáÜÚüãö  üÿõîìïîüø $# ìêôø *äÿÐëàäúçíùïíòôýüÿøøü é÷Òàרñâ ÷ûøôððñùú#!õëòû÷%óØèÛáïçýðûóôô÷üüý÷÷þû  òøØßÕ×èãù  ÿüû÷õòòùú þïð÷ö ÿãäÝÞèèõõùøöõúúýý÷÷ûû úøàÞÖÕâäøü ýþüÿ÷øóòøøôîõö íááÛåêïúôüõõúöÿþùøùû ùêÞÛÕßæðÿ ýúõúññ÷öÿ  ùíõõþ   ÿöÞèÚæíìÿðòôøñüüùùú  úñÞáÖßèêý úôûïïóôüÿÿê÷ôû"þüÛïÙêñëîïñôìÿúúüøÿ ûößæÖâéè÷   ýõúîîïô÷þéüôû#  ýÿÚóÚîöí îííñçûù ùÿõýùàëÖäêçó øúïîíôóý þ éôþ#ûÿÙöÜñúð ïîéðä÷û öñýûßîÖæëçïý   ýúñïìôïø êõ#ûÿÛöÞòýñ ðÿïæðãõýþ óîüþßòØéîç íø   þûöòíõíò ÿì ô!ûþÝöáñÿð ðýðäðãõÿüðíúàõÛìñèë ô ýüûõñôíï ùíô  üà÷ãñï ïûïäðåôûîîùãøßïòêë òüý þ÷öóïî ô îó   ýäúåòî íúíäîæòùíïùçúâññëëïø þÿùûòóï òú ð ò þéþçöþð íúëæëèîõýîñ úëýåôðíëíôý  þ ûòøþò ñ ÷ÿ òò   íèûýô ïúìèêéëñøÿïò  üïçøïðììñù ÿýñþý÷ ô öû ôñ  ñéÿúøòûîéêëêþî ôúðó þ òéüíôþîíïõý  ÿþ ñüü ø÷ú ýöð  õ êøý÷üòëíìëýì ñöòûô ÿ õ êíùýóïïòø ÿòú ýú ûýùþðÿ   ù ëöûýöìñííûí ïóôøôü   ÷ ììþüøóÿòó÷ü    ó ù þ þþûÿïÿ  ü ëôýþùîôîðúïðóööõúþ   ù îìúû÷ÿôôöû   ô ÷  ýðÿ ÿìòÿþûï÷ïóùññóøõõøü ú ïìùþúþ÷ö÷ú þ   õ öÿð îñÿþüðøñõ÷òòóùõõ÷ÿúþ üñìøýþúøùú ý ÷õñ ïñÿÿýòùòööôóóûõõ÷þùý ýóí÷þþüúúû ý øôò ñðÿýôúó÷õõÿóôüõööýøûÿþõîõþþüûüý úôóÿ   ôðþõûôøôöþôôýõ÷öý÷úýÿöïôÿþÿýýýþ üôõþ   öðÿ÷üõùô÷ýõõþõøõü÷ùüÿøðóþþÿþþÿ ýõ÷ü   øðþøýöûôøûöõÿõøõûöøúþùñóýþÿÿÿÿÿ þõ ùû  ûñüùþöüôùú÷ööùöûö÷úüÿûòòüþÿÿÿ ÿöþ  úû ýòûúÿ÷ýôûùù÷÷úöú÷ÿ÷ùûþüôòûþÿ ÷ü  üú ÿóùûÿøþõûøùø÷û÷ú÷ÿ÷ùûýýÿõòúþþøû  þú ôøüøþõüøúùøüøú÷þøùúüþþöÿòÿùÿþÿþÿÿúú úö÷ÿýùþöý÷ûÿúùýøúøýøùúüÿýøþóÿøÿýÿþÿÿûù ûÿ÷÷þýúÿ÷ý÷ûþúùþùûøýøùúûýùþóÿ÷ÿýÿþÿÿÿüù ûþùöþþúÿ÷ý÷üýûúÿùûùüùùúûüúýôþ÷þüþþÿÿÿýù üýûöýþûÿøþ÷üüûúÿùûùüùùúûüûýõþöþüþþþÿÿþùÿ ýýüöüÿüÿøþ÷ýûûúúüùüùÿùúûüüýöýöþûþþþþÿÿÿùþþüþ÷ûÿüÿùþ÷ýûüûúüúüùÿùúúüýý÷ýöþûþþþÿþÿÿúýÿüÿøúþýÿúþ÷ýúüûúýúüùþùúúûþüøýöýúþýþÿþþÿûýüùúþýúÿøýùüÿûûþúüúþúúúûÿüùýöýúýýþÿþþÿÿüüüúùþþûÿøþùýþüûþúüúþúúúûüúýöýùýýýÿþþÿÿýûýÿûùýþûÿùþùýþüûÿûüúýúúúûüûü÷ýùýýýþþþþÿýûýþüùýþüÿùþùýýüûÿûüúýúúúûüüü÷ýøýüýþþþþÿþûÿþþýùüþüÿúþùýüüüûýûýúúúûûýüøýøýüýþýþþÿÿÿûþÿþþùüþýúÿùþüýüûýûýúÿúúûûþüùüøýûýþýÿþþÿÿÿüþýÿúûþýûÿùþûýÿüûþûýûÿúúûûþüùüøýûýþýÿþþþÿüýýúûþþûÿùþûýÿüüþûýûþûûûûÿüúüøýûýýýÿþþþÿýýþûûþþüÿúþûýþýüþûýûþûûûûÿüûüøýúýýýÿýþþÿýýþÿüúýþüÿúþúþþýüÿüýûþûûûûüüüùýúýýýÿýþþÿÿþüÿþÿýúýþýÿúÿúþýýüÿüýûþûûûûüýüùýúýýýþýþþÿÿþüÿÿþþûýþýûÿúþýýüüýûýûûûûüýüúýúýüýþþþþÿÿÿüÿÿþþûüþýûÿúþüýýüþüýûÿûûüüþüúýúýüýþþÿþþÿÿÿýþþÿûüþþüÿúþüýÿýüþüýûÿûûüüþýûýúýüýþþÿþþÿÿýþþüüþþüÿûþüþÿýüþüýüÿûûüüÿýûýúýûþþþÿþþÿÿýýþüüþþüÿûþûþÿýüÿüýüþûüüüÿ
6,636
142
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/audiodata/pluck-alaw.aifc
FORMöAIFCFVER¢€Q@COMM ë@ ¬DalawNAMEPluckAUTHSerhiy StorchakaANNOAudacity Pluck + WahwahSSNDÞôT§Ú½æ*•?ï§ú%ÏþM$b'± 9™   f†6/gz•d5f„bºg%¬_=套:˜¡‡‚*ƒª*‡§˜¡ž›=šœ­‘”‘°“¡™(„'˜¤‘1íÇ6f-·Ž c5;4•77¤4€Kk(gsâpv}¡u&\¢Ïí³“…‚†¼‚*‚ª†#„Ÿ«“ œ4Ÿ3 •ˆê†—­ …,›ºé4÷/†·O >5f4`4³5³Ÿ(r5YêY[u£H:\¤Ú†æ––˜ ‡£ƒ*ƒ«‡ …>ª–52‘¥ë¿è͔­’=…*…¼’Èê2ýap-m²Õ 354ý4Œ5º,E8̓ÁdÞ7Y¦C4\‹Ñºû•³Ÿ3…¬*€¹„²›.“ª•“—06–·î¤ïaꠓk…*…‰ŸŽ”9åZN!4¾ä 754ë45¥šh'Þ!ûþò÷1кAzZo^¢ô콒0› ‡.„®˜*©é¸ê;‘5–†é§ìÊ껓ˆ…*‡e™¼–8ço@;8¿˜54444é4á5¥tæm2ý"îðì“ç6õ±]Z5@¬Þ緗Ÿ¸…9†&šªŸ.–¸â¯ì:—1—é¤ì˜•±“¿…(†0›¥‘2áD7'± ‹5 464ç4ñ ¾ ˜bdà-–”ì4ý…\¼J3r M—ôžé“µ›‡(šªœ;–gãªã0”8–—ëºï•“¥…#†&…¤“ ã0[&‡ ²4 404É4ñ ° ‹qê"œ4’Œ•äm_º}6g¹e¶\täü—…Ÿ…„*š­|–?ãªáY•&‘Ü”ºî‹•…¥…>,„¾“âà9B$¾47<4|5⋱U&…?˜‚‘æA»aiŒh¸{gÍäè풴„(…²Ÿ½'ì¨á½• ”¥î¶ë둺›†)„‰“·æ;u<¼4ë7?45³~öž:†%„™“ïä5}½ûÙ¥häFÐâQ’°„"‡p˜¡$ê§ã£•'=—»î¿îח¿žê†)„`“¹ç=w441¶7Œ724 ›…±kìæ…<€$†Ú‡ú fˆ¹„yYæk’°‡%0…£ž3—ã¯è6‘'—°â¤ãÙ괝µ‡-‡0’¥ç q<6€7·7550“†·`žé‡1‚'ôk‘·°ˆfö៷5$§š‘oæ¬à\• è“ú¡ü›âŸ°„$†'Ÿ¿âèB975 —7·75= Óƒµz„”b†5Œ$ƒ Ýb¶s‰´c”⚍‚oŽ&‚½„ƒú¦ýµã&àô¡Ã¶äז¶„6 ›‰îŠY==5 û7´7z52ƒµJ€e€ Ž%‚1’†CðŠ ê†´`˜ë‡““Š'„‡±–ƾD¼Ì>ð=ÓºÕ»øÄ–Œ‡‚!„C”°W >6T6´6í50 ‡´ÜŒœu‚‰9<–dž››µd‡b‚ÇŠ‡´8ˆ‡³•mw´m¹| S;G·_§å˜“d$€±Ýk?= 6´1…56 5’n´üˆ›Üˆ=>‘si –5… ˜‹w™PŽa´†¶1‹„¶áín‚¾kw;Y‘٧쵞è‚wˆ8‚7“ŠD•3>51Š1Ž5 0Ët´é´„猈0‚9éA7ÿ7› ™ˆÊ€†úµ¶…± ‹7žŽ]…†½íe>Üø¥–½„’yŠ<3“x† 9750‚1· 2lðŠ‘±‡“ŒŽ7>þ … ï6Æ7’ŽîŒê¶°“±ˆ1—žo€‡³…p3à—½›¸€€‰wµ3Œ<•”Œ >731’6±Á3S逝²‡ƒƒ‚7…?P 4’1Ï7—–iŒˆ±°æ·e7ðÁ ‡±ŒÆ56…‹º´Žüˆ6€9ød‰ x527?6{4±‡l4ç7–띲˜´„a‡4?}7à4š6ø4îèt€…‰µ…°a±[µÓ† r„ ‡ ¶‹ì†0ƒ“ƒ¸‚²Ÿ5„;׏‘ 7585´Š~ì0–—·‘³Ÿê˜ 9q3M5†7” ãú҇‰µ±R¶`‰Ò™ iŸ„´´0Ž`‚½¿‡Œ‡ž:u4†€  9 7 †¶Juï6• ïƒì½–‚‘>F>57… èÛù–´Œ±í·nJ‘ ”š ‹n·…óŠ7ˆ€´›¾·Ÿ“8M=ç  }22Ç·p›âé5äçÿ±é´“e“=Ù: ›4‚™Èá÷€†´¶™µ~eï䘎s·€’´Š‡†–¼í²”ê=Æ8ƒ“ =záï ÿωඐ’’4ó:0 ö4Œ‚”è[‚‘´ƒ·†‹ÿ…pð L ŸÜ·†·‹ ™áý°Ô¼àƒ’5â; “‡0‘gâòèü֙ùµ–€å>? 7†‰†—òä´˜´‡Ž”œÉV •‚þ¶Œ¶ˆ –j}‹e½ç´›’9d3d…Ç xd„ðKãڌ•ƒœcì0? 7ë Ž““Œäµ•Šž‚–”ãqbχ෌µ·ÑŽ ãj…o°à°†ü„0L= ëè|ê•ë”gÍgöI†è€žõ”5< 47{ ˆœ†—Šï‰”†èíãz_xi“㊍·´’Œ÷åjµî°‚„€W2 c ænqôêäëy_jhÁz…耚è’3 16œ‰˜ŒŽšˆ”ŒíšúûüdÀjocãፀ´µ†Ûg”·ŒŒÞ67  wdyÀâóâzw@gŸ•„’™n6501 ðm„ˆ‰ƒŽžé’Ë÷P~Õencöþ‡‡µŠEÑ’–‹‰‰ŽWÝ 45njbböýûçspdg”—‡†›˜ai 510h…†‰‰‚š“•òösEQhihÇ͘…ˆ‹íÔ䓃‹Ž‹êÜ 7ccÿRìûÐInjldø—™†š›Ân5705 Vމ†Œ“„ïèäuôcð`Rߝš‹‰Œ’×oGœ˜µ‚ŠœW57 QÑjö{êçúÛylma×떇Ÿ›æb5 15ôu…Œ˜ŽëƒìŸéÊáaåfyߔ›‹ˆ„^Ue™•´‡Š™M|76àðXbéèïäßbyh_á쇐…ãd5 1ø—€€æŒî‡‘èëuåaÊû›†‰ˆŒƒGéxg…ò´Š’sS77–ò flç“éèønPÐòᆔ‡àqo 1 âü‡…èý•ƒŸœ”öói`üt˜ž‚ŒEž÷K‡Å´ëˆ”eU64bœÉfښà–äÏÉõပâve51  ë‡w˜“å€÷Œ›„—ëÙscåjžî‚€ƒŒÔ‡”ò‡÷´ãígX75vžW  qN‡ù–åððñà‚•€îy@56 —…iâõ…ýŸ…€•œ@öfå’]˜ƒƒöž•‡âµïãdD4 _žv S}ñ•åüüäàŒëéaÜ 7”œïßϒ瀙Œ…ï„v•}eð‘n„䆚„–µ—ƒë{Þ  ÓŸeÁgÏìååúíãŒè‡élõ k5é—ä{ñî텙‚›âvœAÉÀ–…Ñ€“íš›™„ŸŠœsåcÖ’c Ïo†Ñçåàãëšêlþ açéÿhùñ™‚âƒK…UèmeÔ–™`ç•œž…™‹˜‡™M•G F‘b À„sûñàïꕃ–ž–`ãvôâðåtïꝅŸƒí‚@†ßdËiF–‡X–ᕐ˜Ÿ‰›……Uåfr—`Öšhÿ[þì闆“’z”Ì jÖáõänï÷“’œ‡ï€^€Ú…sëBv–‘„e’ÞûŽž›…˜•T`h•fFžþa×ä필’’ŸK’ã}FçÇåîr‘흙é†TÇ‡@’åz}–j”›cžtÔðì‘™™ó˜åkvêxq’ødÒçᘖ“ŸTŸ—ËmqäÐåéi—Ý’•ë™Ü„Å„T™•`ô–réaže›vnBT—ðïŸåœoâÙèdse–åkÿœ̜“ãC{jøPûéê}“ù•—ǞٛĞ–oá–ÙâN’N…EgZ^èØ‚ûèá–}—íÊétJo`èçbÈMþ•ò“néÂaeýZùèïfÝ”â̑ܜõ–ï—ýáޖЄÝpÔSãр÷’áìëVêãöïZ@goààkkÝz—ߐàå”a–êùlFö`Füèã`‘@—ýõîҖð‘—î”ää÷êʇôRÌÙåنʐåèíôïæôí_ExhüâmR`ê@‘ýáî{”ëçkÞÌ}Cbðiènæa–u–Â÷æÜèü”êìêäåòíð†òÀñÎöÄõø•àåâçôæQ\rmÃìgClìr–ÇâæqééæËØFB{ô`écåg—w–ÒðÿÞãþénîãîäåüçò‡ÿüÿöÚõšöù”æàãäöþÖQwaWï~thád”_îýBãìáòÕÐCJÂ~îeøx”t‘Õý÷Åäÿã`ãæàúåòÿó‡þæùý]ñŸðù—æìàçðÎÜ×OdiLìtrøc•tèÀRåàæüXÁC_ÛuïpþqêL‘ÔùËÀùýç{æåøþäñôö„ýïÿýKð“óù—çéàæüÕÁÜY|mrâGxñoë{ëSÒökååüIÉ@ÑÐ[íLþLéX–ÓúÈÏüóåväûËýç÷Àôšñ•ýò}ð—óþ—äëáiæùNËØÕktfheáWidÍkîaêuÃØmóÿópË@ØTTã]þ\íT–ÚäõõüöåGåùÔóçôßəô—ñnñe÷éöý—啿gæû÷ÚßlAxm`äÙmfßíbêô_fÀôõxÍCØ]ÖæTùTàӗÀæö÷þôåWäûLýæ÷ÖȜʑ÷a÷gõàõ‘ñ”þ•äqäûfñÛÇ`]pfliÿÂaaWàoëdòHy×ÇÀgÄBÜYÖäÔøÖæÞ—ÌáñðùÊåßäå}ÿçñÔʓʓô|ôaÊøÈ–ô”ò•û\åùmñßÀdWjJeimôhõe`[änèføpvXÑÜcÝOÑEÔùÔûÑ娔ÏãðòùÈäÇçiädùäòÔ÷—õ’ôAôaËôΗ˔ñ•ÿÄøÿhöÖÃ~×iBjaÄoöhj`Mjùné`åBLRUoUKTFVòTû×øÞ•ÌâñüùÉäÍçbä`úøÿÑðëö’öÒöaõÙɕȔ÷•òñÿý÷SÃpÑlGsgUbñnvhaktkónïcç{\tjD]hStS@SôQúÔÿÜèÂíöþÿÉåÎçdçmåòùÜòíñ’ñôñgôRËëȕõ•ðøýóôGÀuÓb[veG`ñmMnfipiÊoícáeÖpoLEYp^C_ÌRûTýÒîÆìôøüËúÉççoäÊûÚüçó“óùðeöBõì˕õêöçólðõJÀBÓa^uytföbYlgn}nÁoãbàgÛ}`uCD|ZB[Å_øQòÑíÅìÊúòõøÉätçoäÛúÁþùýòæòðt÷àõ•õêöàðgðõsÀGÒd]kH||gõ`Tmel~oÜoæbãgÌ~evNCxFMDÝXþRóÔàØìÉåðôùÎåGäläWåÍùñü–üâýwósöåôëõë÷âñ}ñõxÀZÜzPiMreeÌaÒcxmxlUläbãfôx|puOdBO@ÔDý_óTæÜìÂäööÿÌúSämäFåÎøËþ”ÿîÿ@ý|ðý÷èôè÷ìñLñõgÂ[ßVlAqf{ÅgÛ`}b{m\løbàaðzt}wKfNIMQFðXóQåÓìÁçôñýÌûÖå`ätåÎûÂùëþèÿQüóõöî÷éöìñWñjô`ÂEÙsTbDwc~ÐdÆavc{mDmòbàaýeC|kqt`KuO\C÷EóRøÖâÅçÊóóÍùÞågåråÍúÆùïþêþØÿòÅðìöéöïñÄñnôbÌ@ÛwÔa[jum|PeÃfH`{bLb÷báaþd_~oswbutHYLÈFó^ÿUãÙæÏòñÌÿÅú{åxåÆúÅøàùêùÈþ}ü×óãñîñïñôñb÷lÎOÅKÑg_hIlrD{ÂgAaycJbÎcçaûdÕxcrqltquZNÃ@ðXýVàÝæÃü÷ÏýÆøråeåÙúÅøçùêùóùpÿ_òæðïñìñýñf÷oÉtÄLÓeRnMoqHyÀdYf~`wcÄcäaågß{g|pnvrtGHÚMðEóSæÐæÆÿõÎóÁþtûdúÖúÅøøùëùûùuÿFýåóìðìðøñxöoËpÁ@ÝxQlAnwqÇeQg}aq`Ýcû`ågÆzxsiqwAJÜOöFñ\ä×áÚþÈÈñÀÿCødûSûÅøóøéùçùCþNüÿóíðíðäðvöoÊ|ÀFß|TbEnu|}Ø{×dpfp`Õ`þaågÏes~hrhqxwBuÖI÷@öYåUæÙùÌÊöÀýYùeûEûÅø÷ùïùáù^þuüöòãðíðçðCömõxÂFÙsÕ`XoH{sÓxÒewgsaS`òaågõeu~n}kpevLtTKõBö[ùVæÝøÃôôÀòVþ{øOøÚøÉùâùãùÕþtüÏòàóâðæðPñbôeÌAÛwÖf_lLdqU~ÞeKgrfXa÷aågöeAym}kpgqIwPJÎM÷EüSçÓûÆ÷ÊÀðÖüùtùØùÂùáùâùØþtÿÚòæóâðáðßñaôgÏBÅuÐdRmCgw]|Ø{BdsfFaÈaúgðe_ya}hsfquw]JÃLôDò]äÖúÅöÉÃöÝýsþqùÜùÆþäþâùÌþJÿÑòäóãðáðÂñd÷fÎNÇNÒ{PbFftDrØxEepgBfÃføgòeTyd|isaqtw^uÄOôFð_åÔúØñÌÃ÷ÞòwÿrþÑþÅþøþâþ÷þNüQòøóàðáðôñx÷aÉuÇBÝ~V`DaJLsÙ~_zqdIgÛfÿgüeÒyx|nscqqw[uÙNõFö^ûUúÞðÂÂôÛðNü}ÿTÿÚÿýÿâÿòÿ@üYòüðáñáñóösôaÉwÆAÜ}Ta[`ItqßQ{wdJgÒgýgüeÛyr}lpbvswDuÒNËAôYùWúÜóÀÌõÚñFý|ü]ÿÛüñüàüùüXüDòñðæñáöüöKôfÈpÁFÞpÕgY`OqvÓ}UxueudÕgðdÿeÁyw}bpbv|tFJÖNÎAõYüVúÒòÇÎÈÅö^ò}ýZüÙüõýáüúüPý@óËñçöæöù÷EôgÈ}ÀFÙwÔd_aB}w×rÑ~IztdQd÷dÿzÏyO}`pbw~t@KUOÍAõXòQûÓýÄÉÉÄ÷PósýCýßýÏýçýäýÖòBóÀñåöæ÷û÷QõdÉ~ÀAÙJ×z]a@~tVsÓB{te_dÈeüzË~DrfqbwxuMHVLÁFËXðQøÐüÅËÏÄôÕðvòNòÝòÀòåòçòØóBðÙöû÷çôúôÒõzÉxÀCÙNÖyRfFxu\pÝ|GytzZeÂeý{ô\sevbteJNISMÄFÈYöQùÑüÛõÍÇõÑñtóuòÑóÇóùóçóÃð@ñÑ÷þôçõåõÇÊÎ{ÁLØBÖ|PgGeHZqÒ}Yyt{DeÚzò{ô|ÔÕUID3 ’ID3@  =?$aTALBPython Test SuiteTIT2PluckTDRC2013TPE1Serhiy StorchakaCOMMAudacity Pluck + Wahwah
6,910
54
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/audiodata/pluck-pcm24.wav
RIFFNWAVEfmt +fLISTZINFOINAMPluckIARTSerhiy StorchakaICMTAudacity Pluck + WahwahICRD2013data‚Me-ëÿZKTúÃ1+îÖ܀CÀÞËa²˜©Høò$è¿}°ûk]{þVW¸É>úU°´+Pó0˜)bËë§\šÙæ>úí½‘äë%Ƅxâ©϶à))ï")àØXWgpâW5û>è¿w„ï[,Ø*'÷—Ewûeøõü5fNœûü0ßî@ûà84ú¸æ>ÃZû£w¼ô²üÚÖf2_ÿ¹ÏuiCŒz `»ÁNǹ Qº¢dßîÀT‚·dÿÿ?E€æ”œI²³>·R ¼ ²²ïØ_Û<ξœ´ä-ê ¨Dc|Z þÈþ †¹+ oHQáDd̋;ìô¶6ëDH[ ¤ˆÖV:y¶í«/ÎFØr;ûמÄäòíÇ$ì¦é\nŽãïSúqÐß«û vÝO2ʗÛ9ÝñÙ@ÛÜ^D&¯Ý%IJä]þ¤XìjHøOMõLœˆnJûlœî%(ý”óÁ^ýĎìqýQ\ö!äü ËS¼éýk³(mÿà9_˜žòò鬾4,² ·Ýèÿ1Ž·o¿23Å€# ÿÿTçÐ"§Ñ3( ²d ]syKj ÁŒçv­ QÝÝiX ÷ÒãÝ ªÑWxP ç‚æÒ haðh ÒM©GK¥m›Ü%ÑÕ?må B'êZD¡Ý>NÞîÕ£üÀç—³ô;`Rë(d$KäPþ;à®5ÉiŠÞmû ¯ÜžúŽQÜ!–-ÎxÞ¹-©Çä¢eî(íiM FdöŒiЦ ý dÞS>ÿ=ëo2ÿ¡lõ‚ÿýäSôý&XŠ*þ܍Á iÿ¸DèìvΣðtã Q– Ø@Í‹rçš j[û6€ïI&R{X¾§@æÍ¢»|ÉèM ÿÿ’Å ÎOîÀú CÒßð9 æÐ¦] Op@=”`¦4—H¯|Јæáa× ¸1Ï I¡øƒK ÃN3úÒ *ÚLÆY ÐBÂ÷ú$]ý†÷ŸõYáù ìít/+xä<è¡à¢Ò©ÞýLíLÝD?ËÜÖʼáÞ#>Ú(åÜQé­Ûí¤}÷DÚ¹îþÕÆIg L ¶û¡¼ÿ§Ûè8ÿCfOºþ8ùÜJmÿ1*tJ„8?XËáfìU&í¿-ÒP AÒ×¥­~eþ™€Ç~K"8Ó³Áð/œlë’BD ÿÿ¾(¶. !( Á)Ôâ⠞^Øk¯ U¯%}í±Fÿ‡œßú)öª9TVB }køâ1€Øÿ†eFÿ ¾•ƉšÆ’Ôÿ³KþÞE­Ö°öéáÝèèìJ¶6¼ä‹}àsà§ÚØޤðâ‰%݈·ݎC Œ/ßÏâCq培ïu|î¬Ë€ø?Aµ¡·mÅ®Õ'ó byåiGæ¬×ZR=ÿ>ô¸þªüšÿA]ùÊRÿ§]!=p€âÞdáN1›‡ %uÔá!êoU¬é T“”´¤ƒï}G¤l˜Ž€ß¼ û¡r. r;"õòÎ* ººÞƒ¶ 7 }}DK}Fù^ü—=ñ- ÷k_€§<ãû4Œ03/‘ WtÅ^«ƒMù#°þXƒÃE÷hÄÏ!íÕ5ØZäÁ«بßdÌݛþݵ¢Ý¶ñÜß3/-ݯ3R„ßÔ@¸áå›ÏýÆoïZΔúù7Ѕ ?{ rÑõ¬5J<{ N—0^ØüÂ(4xÿðí^ ÿ‹UÞ+§þœ”d‰¾î7Ë3$#y £†ä N »ñ:Ù ÔÆãd¶«°ü÷ÿÿ‹( Ëӑl¸ þ9²×'NkÆ\ŽÁ} a¹×“| ?. ‡)gEàhŸ•BÆö(å+ °5ƅàå‰Í¤ÔµyãòC±X àXÐ3(¨Xé¸äþá¹Û†D÷Z ´¥6íOa)xçãýiÏÞ à`ÝPØÙÐàÜSº ŒÝå„¡<à²Ý7‘°æôœA¨ð›úÁ¢û å__)Ӝ!° \=ò#ç–õZ¨¨Ý±¤ÐŒ`ÿfõ2ªþÿîÒJýroUooþb Œ!å ŒBÆ÷P~ ŽÑ!ß óòÒþŠ8Ìÿÿ’¯ î°Ãd¤ †xûÀÿÿ£—1µÕù‘Ÿ}Åëµ \ ¤?ˆŽ·Ú”TB: ƒ@äs€7§¯Ò̱‘¨¼3F  Á¢çõœm¯Õ,ÿ"öíd÷mV±ËGír"ípãjd.7ØÝ0æj‚ÜÿžÔ·ÜþÉK²ÝœˆÑàñË+±vçžnžîñ\÷ó vý5òÂ䨱£iÞ 5áÝqè Ç÷ÀpçWèFèù×]ÿqé>aáü¼öØwQûíÔ9<Ýûn%&`ÿÕÐý—[Ð;µi Ü?—L 2‰\Š}»€ùË=H`n} ­ÒüêÚ [WËa¡ÿÿu;£3ÿªloÔ°ÐE ԔL€ðX>Ìûó‰˜4•Š2þ ÊÖBáèsÈ{®o˜—\,Ñ7.? ÉÊüMËLǝ„þóÔócÄöøŸ»,ÈìŠP÷Ö£âd37¨ÀÜ=ôZÀÛyë͕­Ü•ÄüŠÞJî°@ânُ éþ„)¸üópõ-øÿÏóõVÛ iµ±G@¼ä˰éUpåH R1÷ì×£è¹þ š=ïúOfì%Ñø9œFµø½X:â<ü,Uûˆ‹E w¦ ãö ãæ"c…Š‘Œíâ.Ü ž.0: ¨ž´¶JÐØt&=$0—3ò¦©‡ >9ëè÷å:@íç,É&*¶Á‹¼H æ•?%,@wè3ÇX8ŒÄºáÄD â9$«í…´Ãûý|6ì6:ö ́ì(%âÔ7âsÖ3à Ür£ÈPÛ­Ëæ"ÝíñBÇß5 äıÎ.ëàÎ,9ö¿œüüwaõ´Ž ýkÀ/›M¿EJ‹ TB Ö½qhÒßcñü£X1äÕ÷ÎQMõ”ÂúÚô|s@ ´øà^ÄþgPžóv°ÿà œ +h†€É ƒ~OPý•ꠏPÒs Ôp¹fêä.HäºgKYI¬g· Ö ™[ÎÑo Ã3< À+5÷=$nH G5„í ùA;dhñúq\ î}9G«Y“Ί¦ýU‡Ü¹ïõ—ÜŒ…ìsŒ×~(âQ&C®Û”®íÛ< Ðù»Ý¬oãG áu4šûå[öH8í{®)ØUør­Ò§cõ{t'̐çÅi¹ïž«ýK m8.ü<œàp=ûäø­×ô —åüñõ›gñ_9½•õ§Mü±2ÿšìPøL¦ `Ý++i½(¿†¸+ ÔÑXfö UþÒM à:4¡#¼j~v,ÇØ¯1 ¨´Ÿ ’K*×ðU@GœÈÈÑíø"x[ ˜ð *(> "ÐÔ´™ E3A¹}åçQbý;BÌ?±õ?/âV¢ì}|ØÜTâÊŸ–ÛoW$P1Ûx°Þ¥¶Þ†¶Õ°ýâš[ dcèíQ¿²ïKi$ð—úÈá H †÷Տ.Öæ¥·¹÷Úiòè rGŒ'DžèL?ø˜ WËð:±$§ðíÃdõ»ÑíÝ|*ãÜò)¦:û…sC<ØÄòcu [l%âf-ßoM[ùæ‡+K î04÷²$ ivùíù'ˆdÌ|®]ÿÖ ÕHª\E‡T –ä3¼SB‹gîm ² Ì+;|C‘¹7vu·7# »5FÃÅNµ‚þÆ>ÆÉ¦ö+dÛl¢íóKÞ@ãÀ@ `«ÛL%ÓêÚ÷îuéÞNÏçã)nãÃé’re;ñ3Ù!¢üDù°•ìú¢ü…ßW›éE¹4T”ãü žûB>õzõÎ<ú í,N&*"ê >ýt›êÀ·Í}ðòü"Â_úìiö£!ñ*¶LïõMjùÁæé^±6W1~¯åMµÜ !TëùçÿIOë:ö …Ê$³a¡ ê±/@Q«kào&ùRË$ ¿ þ'yk^~ً‹BÓ©ý^'oýÕç6ÿ«BÏ¢îöí»ÏªÍíöîÞOãdÂä ÛÄ-#”?Ú ü<ß©BÐøåRXôm²ë÷±só ¸!Á þÚª…• >üªnAóæE<\¾€$E×ô ÁÈóþ ¶XòŽñ¦KéÚZuæÐ蹂½ïÿ"ãúêØ#·¡‰ô¶Ó©K ´Ü² g^„a·_ _}4þ'(K÷ ÑLî@9ýÍ7éþ²¯3vškVȹ¯pñÏD^%x?É0=A¾Ðõ ƒXìx1 ñÇ•ë¬êÕ‘þQ­u+ÍÔÿ¾ ãS²öW„ÈV)íEØßMâšèÿàÙ¶ "W÷Øú*ÃÞi.ԄWæÙè@ýí“U³=öGl"ñ˜üpNÚ Ïõý >x9ìÿŠ MÆüæ³Í•Ü i® ªŠû_Æ GîéÜðþä¡ºÊ7â'/ïUå¯lÇîr m´û,³1© »2úZD¾$kR·;Œ#É-ÅC;"‘ö‘¡5X-&kŸãùµýה# ßù>ô8ƒÝü¡Ÿà€Ÿÿ×Ó×þ—Í$ÌTÿz5J$!ÖØ`S æ@ )”ŒûÁOß¹|sTéè.é $)؉Þfø\4ö¹˜ÊOýëðÎîàzà÷O&ØL²"N>×Ú#™Þ$¿ÙƒO猝Þ43ðÞÛ >ùÌ0#·3Ôæ½“ ÷¬$︰¿|΢jˆÈk ä)ýØøv,à‚ê˞ö¢‹àŽç ÊÒÞÈ÷Äã/ÅpG§ýhFY£ÿ=œ[ÛúD$#ÛÌÍE&Š Ö²®Ø{ä76Œò'—-ºùY„ Qô…à6µiøåŠö7¹ýÊÉ 6ÿr "ÂX¥JIL'‹ ƒï ¦M8ñ°ýA*¤¸Å'ìúÚAQ BmíþBµkó•òÓâñèÝ)È=Þß¹ë¦WÖÛ~UÖu~EòÞÂoãËmêÜÿՖ·ô®ñÁ×ýoï" ñy#éŠR«Òý›+ðÜM³ÕcðÇÓûÄgñ^+ôÆpÎG傶þ¢÷ÛJYÂÛ©E¤yã~Cð§P*ôÀú"§EÞÞ}!ÉÅ÷ž½' Áì¡(ËIæ.óÜÚÒô {·ÿ*&–uòÖŒmíµš1Ò<ó6KõûɈɲš~óõ²³¸@ý “a1W×pÉ Á]Irü…ýìúÍv ÈaÒ¥ Å]ü~I6´ï°™à}>åöDÆ"÷Û1ßxÕOñß/ÖfÃ$ؓàG:ñ :îðEѨ´ùsôQªm, e âÝ)ìíµf ТŸfð…».ÚI„xÚÉ"l‘çB„ï`_šàóQ“ØÆ.™'Ú­8 Ҕä?å ý‘ó£Æ\Š‚*ùùY&Ãö¤¤*”N —°(Êóö]n×ç[ ׫ +AùòOìŸ\{Gèãi,À¬ð!̬Zý_lÓ»GµDä‘Q I1Ó ¬;í£ô¤)¶¦ý_D ŠƒÓå4mðÌ­)à¬¤÷’±×ê½îg¤áê$É\ÁÚugÓ Öè“  Ïؽ)RËäK?Wçóœ÷ҝÿèîåL9®Ø5a éq.ðE>5½Î óüaäTÛõb¾Lˬ¯ÿ{`áqÿëá )úÝhå Íæ×«Є۳[ toè­ Öÿø¥g ¯œhëÕ à[)pó÷ë*)ÏO %XëûZEPÂÚk¡¢oDÓñQ´¼æKV&“ä\¿(˜@ðµ&7§!ßÐ5 –ÝÙR¨:0ñ“>* éf"n–Û1ä¯ãXذãȊÇ󜥿û>=òSoœoæ5NüJ‰ßú ÐS¾ÛH¤Ê‚ÙÑ:ü[tÝ-)îêä-•¡ùŠ Üþ”ó#Ú\ú {Š@ Ïþ-¤ß ¤"òüOæú3Qà*ÜëX éKÊp÷üo~Ûê½]Ýi舣ØY¬C¶ÝÿÖ2JìHE•Îý£eÂµü !|QXl*ÚÒú¢)`ÿ€!en±_Ìà ýغ÷ÒEìÆ4`Šã~Z4ÍãW &à,òÆýùUY}ê,KïՕBê6 L¯…º:ÌlB.?1 ¦ÕˆžÞÈÊ&ì+=…í‘>ïhä(å¡K ŸàÎÏÛW‰ßðÅj×ÞB]ë<zâ¹" ·£üÔëÇD}Óԝ‚ ,/ögC ®î%«3 Àö,Ù! ™îŠ jà)¶ ã×ǜ^ýÛ°Óx1ë|þÑRÞ§i«Ú¨ôAàB­ZïYÿ?‹ŽGãlqÂ!~øÉF)/‰ÿ®³&«úa«¼whøÈæšÜøHòÉè÷N Z¶âE7±^åßj"áÌõ:#!@ ÷kŸëÕ1û^²úVAcÇ0`Z ¤5,‘X™ØûQé ÈÁúöý7«ÝÉþíQ ùå …+ã)Bë+ÝãOßÇVöã.ۍæ¦Ã|{ð½J'¸þ(ðý¶ºWƒØª|Gdçž_ÑxUJ'0ô† ,³OH ôªëcl HÈmÐþçÉ#ðìÓ'ô„ßpý§éÛç_ؾá9qÝRñ‘íá€3¨ ?“.ÌE"¼/è6(XîC$ùߐ$þéN _ë2ÊõìîâVæþØÂ≑ç¶Ï>#ù¢¢%ºà`Ò– ?äڈx9ít("rXQê6í; ’}%D å‡÷k 9¿Å>{þfýÎÄyï*¯/öç{»žæ„ìü+è ±Ñè èânÐÌáè/-r¼ðrV%¿^ýcöß;å˜tŒßÊM䐅YxÅ)CU#•5 Rýû¾ wÏ×ÑOçÁôžî£{ä¡ àä{"܁¸Á.â³|'-òçÖ¾£F7¢{rÃM"ƕ‹É&(,b!΁ü„Žéû‘˜SúìrêóPfëòlå‘^2äoÜÒë¸ü›,ý©É%[ÁŸ {4#%$â¹Ìäà¹ýø¥ £2ìâP.±¼Ò7¼ (õÏÒ1’żÒòºvó ëÃðåéúJ ­Ôê°á1Sê‹,Ω’é³î½ï '5üÈïÕ4½&õh…üÍá°P’ö$¤–+sz(„&k¸ S´ "ð ñ²ÝN؆7Á˜XðpóÔ sàƒh4)Ü)ŠjÄâŽàètó›ú‘I{ÿ.àu á_"Ó{¢%kGo6YKhNý÷º^±î.yò”»çÜDå[hþ³æ\ Ÿî22~˜ÿÔ%+}£_ê£%[ýêùÚpÒàQl(ù QM*ì›52:rÛM÷ …HßýÇ Ãî÷Œ˜á@˜ís rîê æ—ëŒàòÓöêö^՜péȪâ(½îî# ¹hû‰ÝÐñà–KËxë%<Mzð1:‘vŒåV!  EþK Ž;îE?µ2ɲŒñ"ÒËç`àΫò²«Û•>Šÿâòكô?)V^ ¯û_¢çUo "_¢ìã"èqtޱp‡ NÑ›Ìÿ0˜ó xòJæè±æRyö¸ÙèÄeâ±òלÏ|õf&må¬Ñª&QÄôl3ÿàš Ë ø—áü"_–ÌûõX1+”(õ"àAÖ½ð—Í i§Ç¨‘û+ÚÓàû>Uê¨d¨ê‹* Öê}ëâñ¥éú$àH—î.UüjŒûS\Ð]óì,ÛÄõœ·úòþ‰ˆþy<n>×Á Qú“B7Õö}ó{BÊFÇà åÃ]Û\«¥}ã›-÷§õ²Úá z0 T”]Lwï Kk’ø,Š Ù=¿ Sè iý<0ú@|óûè!Yé'½ðCìð£à\ö¤.udQœ$Žé—j!X:% L`N†êã۟R²î8<øÁãc[ùø+Ê`¸H*(T R^ƒÔ°pþ .Î0¹í°ì2Žç¾˜ ÆèBX’Iëq¥ðh†ëdRå¼9ð|¡ô™ÏüÁͤ—¤'·ë`û¨Aöïsû1dó;þdgÑMèÔ$¨ kèñxàß%ömUÍ)\á/Ëܶ­ÚÍ&üŊãÌèó¥öÛÅå °¤­–H ¥šº$ïÂyªÅM˜"h±¬üÒ\ÿ-tõ&¡îm¼ìs/ïìÕîÔNüÚøaw ·’ u-4$M#° G÷^ìSQîhêôý,øÑh .ØìÉ*lа àýmä€×ÿFwÐë’XàÂ'äõSú·¦ç´Æ«híR3ùn)ïÉ«íežòÄWôçmý¸)dä5MJ²˜€ü¾WÿX6øÂ øDçü5eh@³>8–ÒlI¾ ùPéS×÷Ï%ÒcÄà[§×úߨLæñdøâ¼² ’÷yÞ|³ïõΞ,ŠÚû_¾qRó0A½êøÈv3´©ûRW±7øQ"ôe¸ð/†ðFñØxùvjúœ”-6ÎÓRÇŠ #«M!ýžb\åíõ¹á·3넙òSGûÅÀ÷ˆåÈÖ@ì%l>ôbzdœók³TtØèäªÛá× ï ®ç2ªýàâð¥ûƒówMôŒôª·÷³cüàXwæ Í#öéüÁ¥ý6¾÷r-÷c«þFgûg ç]ΏåÕˆî 5–ò›ùL`ØhÅ߇5ÕÕ,×q˜èLWã¾Cíù»ÞWAŸ¤$כÕ® Cñé …¼ ÏíÛA°«ÿüÓFÓû¥+÷õK‹òd×òr"ùÇDúxGi¥ÛvÎCS ‰œ˜<:?OûþØDhŒï^Ñð@÷Kôö³ ?ú (‚E®>¤ûãÚÿ;ù*㼓äÙ$Ý} Þyè>sèróõä)õu?ù„*ø:‰öTµõéúÂú‰h˜Ýa‰."ý§Dý„y÷ù$÷‘û´uû6…, ÕV%ôá:ØúEûø·ñà«~Þø´ÖÓàÕ@âuEä]¹øI«ü'cŒÚ€„Êå²Û®6àÒ Èj¾ü%pX0ýîûþÓ»ü¸ÿü#÷R•ø5$ówÆòÁýøÇ»øØ(ʊ¶ûK‚¾ôÄ~´ö‡ áp‘ô¦îîɀõjö*Xƒ` ׂÀâ k «åc–žní"páAÙáŒóÛ~ÏåR‘ê›ïÚdúá·ôX¯üÈLõîÆõäXúÿ7öLV¸ÿ‚HÁÌÐQ7þ<$ùíøÖ–ù6ûtµª ŒJº2ŒRw›ùÃê\ Þlbۑ¿Õ)CßÍMæO2ð¡Àÿð‡;ÎÙ-mÿ,&"Qݙ÷" :ʇŒ"vFÝöý[:\úÖ¦-^õ £ú;kñóñJ÷yÊö‰ÿ¡@3 ד”¢±M©õÏ p(ùhíNõˆõ|àþî× ‹Ø÷ öÿ–[Å Ôÿ]Yö^NÞæOèÊ-ÚÌæqEíÈ싶ÿàuðÎ>PòHôã5øQXñÛb¤=üLÓs¢¾î.â­zü&ŒùøÓù¸æúU$M²{• m¥ªq CI Ã#úèMñæìÞ\@áQYÖ_§ßÅ'èQàê¼(+ßýöé{âÅÚTµrƒÇü3B2^ †Ìôd8\Óúþ§vô./ûY,ïEÆïSó"òô¿nüøªì$eS3`ýXWlÆ“Cÿ?ûÿ-Òꋨ÷j!ô½ßûµ~B(.Ç" ·ïËð({þÖÜü*cÛÛ٭CêqtñÁ·ëûG îÕ¾‡Cï.€ñnžôYì.ÿ»ú'34?6¡GN¦7&ú¹uüa˜øISÿ&¼T!'Ɨ iNª ®¤ûÔ[öÕÅßõæ)~Ö¨1âŸéïêè0°Òê÷¼s< ®É$Ôê &à Ö~îTöù´ñ <bZŒSßý+ ΨõMùúP'îÁ•ï#>ô6°÷võÏÓy§Ó•òýW)ò¿Úþí*pãéžEü¯vôIwûÌσù¤þ#Ax výrÒ ž4ý]–ÿS Ú}·ó–¬Ú=DîÜ2öø›íÏà îùò4øíÈ4틞ñõ<çñ7ûù€Ÿ $ ˆ$Uñªw&ù°¨ÿåõ[sþø û|•‹wzu`ý0UùŒCàs&ërbÖ#’ä´Oêùïç™ÊÊmó68¢Å-=Z¥…Ìqô1x¢½~ ö @ç‹z½Æ±Ãø‘ú¤ï ¨îm)íÊPô~óü>øÔý¬äÏ Ç€IXýÈÀÊüþ—± ùýé)]g¾ôÉþ3 ˜Ù#·W ¶Ñûªõÿ+ÖÙº>öÕYÜ>Mñœú.𣅠̲ïqËŠîX2éL-ðPäµ÷b!û­ø”œqv&“ ÊiÙ©ö‹­õdñ¢Ê 0/?>ß`ö²†ýíûßâßÙšî šÖ1¨æµëë"[çh³LÉï–ÉŠ¥ýªÞ© œ ËâCÑn‘— ËAqÂ0 âŒgÃÍ#ý‰búMÎñóï|zì«ÿô0Vïs1øVœ >øP#؋åÅ,~¢âðê‹Ë >õ‡è«ã£LR#Y°Œã)ˆsû²'ÿW@Û¨ö8êފ/òE™ýñæ ÐåðÓÿ®Æïê;æjRðP%ã÷õ;aýƒHþ~ï6˜ ‡ ñ.‘ó?¢›îê¶²Ž}´ I.nÏÍgüð¡þÚ¢ßÿTò SØ*Ué~¼î|¬çh. |Cí¶U+âø ´ÍÏ!àvuv ¥Pû¤«Ù(f» E¨þ>`*û ö”ò”Â핇õÖ(íØÂËòžË ë}ÿñ8Z¢¾U·cnú`$fìW‚ ùôñrµÁjê!ð~qX·iœûèþŠÞÝ4`ö <áڕñNÿ eðå· ï¤ðY‡ýÏFðà{äÂÂðë®ãí_õ÷‘ÿ*îü`){nûqðU:¯»íÎ"ÓqÚIíqó¢Aoìåú•—Kìàÿ”õMŠÛæ4ìñ Áè`õ¾Âë_Å Øô6®۞ÿ¦wé ƒ·*De!›99Á§³]J‡ýÅaóü¥ëûoõ®bñáõÆ{í«d«ïø> Z ùÂ÷õý\øcETaA8JíËË ÿó9 …÷îú "ä |k âšÁ«Ô&ü¢³Žìàp|÷ƤãøpñgþAï3 87ïvÙû0Nï6ävðx$å£BôëD]~ûò±­gU6 îßj1î÷¸)ځêåmµ67‘˜ù4"5œãšzøPiß)%ï` ò°xêT\jë–w «ò0j™5üʏ¤ön6ÒwnßM¦%#}&í¬KM”ý‹Ê Þ¾þŒÈÀå÷ïcöúãóëïÓZ¾Ýî® Ì¥ô)K'X¼ u3í¯|†îis~ó-yrÙ" 5ª¡ $Ë >ý6Ñèä¾BúŒÇåÓ±ò•71×îi¬ c ívjú5cí{Þä@î’Øæ'ò£hJùìv“M$¦æ7Ùií×KûÇ…’ñµA^5!yºìÏ §ùRzbxçpÎú üâ•ñÞÕññë{Ž”:ë¿üÞï%I´ˆøá˜}™¾±û© J Ê|RËñ`ͬ<°þ)¶‰ûÿ?õãùvÏûIâò2ó°œÌï Þ ò@ĤúB$” ڐ úWð‹” ¿ò¨ ¡ ªL½/3‘ Y~þìj±霨þ‹?ç öÀþgwð0T Ýrí="úvïëucæ¯ÀëØ“èEÊîcX°õBÎ&.ýæË'” îÀO­KñÀ¸Ô÷P!9Ë @œ [‘ ۃúª¸“릙ýµÅå¼/ô…ð¾pí¹ t ë.Ì íB¥3˜ôZ7¿Âý›½Ïý_ ¶k s:3O«þñÚr®S} ´“ûPìLòÒÁøoÇþcïòJ¨ (òÇ> 24÷àß±)ÿBÍ Ã&8ò?PIDòóÅ ¸±íC CƱnÿýª5[^ ßWí…žèµûö ýôB9 (X︃úÑ%ìy@èÈkêª×ééÕëÙ=9QñðÚ‰¾øBF>ÿò-ï[m’¨ò{_q+¬ )¸_ U oÞ þ!üÈçZKïØÝÖç—7ø,(ï kð'5î<ì]-¾’ìÒ/bñå[Xù‚­†SúJ A£ ä ð¶z ùâ×FÿV"Vú-H0"ýˆ€}Êñµ„þóšýe˜÷³Þ i4ôÐA „<ö&°¿ûñß ñ¶%§ôÛß<¡ñ Øñï ,R ÞQ Å ¿wÉês÷‹ê±ñ]méæêÿ_Áúö©øa„ÚòÒ<û¡Eîëûé;ñê.ë|oê©Ëþî‰É µ|ô‡y™ðú!ÚðŠ##³óÖN'm3Ù0§ ›… ÉY ëþη Ոò?¸µhéæüâðíɍô<Ìþ&äî!¹ÆíË*qtïy4¨#õÚÒÙý]9 ?O ×ÿ j8‰íÿúžS!¹nã¦þËö —ññ\ü<ñü»Þ øˆŽN~÷Rx<túõ´ Èý1ÈöDÎÓð§ƒê Kq ÍJ—·Å@³€°õ²® {MêX"…~ø‹ýyÊ”÷B^üÆ9òh¥ëïšíä ì"'ëfý~ì¿ Cñ‰«âöªòlµûfônrϰæ<«Úmæ Ç t& ’äÿj H&õág Ûâê\îµíKÎù%ký›Ió{FéšïEY0£ï uìò›õÔø: ͆»Á ûDÁ«¾H›+°uýžèÿÌ?½uòŠ=ºúŽ$Ûú  ý\‰öúñ€ Jôû^ šýNùþ˜[ð ìÿ:3 D°C²‚= ƒ £l‰ {wùƒ¡ [ëæþ]fö<Ã6sj”û·.ýœsöýóìèwñ¼#í©ÚíðûãVí{– ˆíï.½úól“ô³@ø¤ûô¹ ünHvÂÁ Û£Qø ú å’Aî H÷ˆ ¸]셎kžì‘þZ>üž3ø·¯±ó³£ÿCò½ÇÒWóx5 ÷ÜÖÏëü£> º‹Å@•m ¨'hŽ Çfc†DÍ Œ~óeÀ _Nùv oÈ ¬¾ÎaJþ­ KMþõñCûþ1Uû ÿ®éï´=ÿ<N'Û¡O»Ã@ nVö7fØ üéü; )òëÿ/Rô÷Ð AÅýáþ‡\ùø5î˺ôtîÉð®žú­2ïÚd|gðfµ87óV™ö«ƒö<õh'úuÜÒvþÏõ éu‚Á ç*ë[# ´(ùÓä × î<$ØoìW*ùúsÙûµ<L÷ÿŒÛôë‰8Íôôb“òö,ûƒ· ÿÝ×%œn 5™«™ PŸy :¡ô¡ð Â÷ü–e Â쯺6Ð üP“þ„ˆaWý ð›™ÿ\¢¤IOŸÌN o8ÏX}´ºÄÿ™Ò?ã원Çîò o ­ˆÿ`¡þ'Zûƒï7:÷ÈïWRóœ?ùñX@ÈOñ©KÑóÙfø3†õŽaõßiø¬†ü‰c ¬Š~ ÚeŽ Gú2Ãú?þ MÈïåÓíŽì™u•ù…Íþh‚“úóÎþqÉ÷Þ&®Þöä`àÄ÷q™zŒú,J L¥þh] ¤ Tô߀{ƒ¨ û» p ÷õv ̒öžÔ4×ÍEÑh([ûäõÉ"&…ÿøŸF_ðœÆ _Ä쿟ó”ý ÑVUi.{; ˆm/î`ÈXÕñ.£û±_ÿñþ•GüÊîð½øîEññ%õÈ÷ïÃòh*Ôjòiÿ9”óÿùÐbõֈõ’§÷‹ÿÕ­ú)áʬþÖ U+ ÎÜÊ9ü¬¡çñ‡£¤îìNJ¾Xøú°xŸ¹þü“þ=úªJïøSnù«ËÚú!È äýò³ drTW½–¸_G4!Œf÷]Ú™‚õšO3ç~rQÓí#:[ ê\é>W‚”B"ñù¶¯cƒcжçÖµ 7¢*;fwâgÁï@ñ8¶Õ¾ÿžmÿ`ý¶†ò¾áù#òAŠöE‚övôzh¿:óòjÑàóÃkû¤7õX×õ÷%™þ‹ˆù¹shýµ… š  bë,wýE7Kó­ -€íŽü‘÷EíêÕþÆþ¶ˆþó1ü¡TµúV(—bú®#8fûÄ0 R ý©ø ¼x¥ºEDéÀ§cmmù=Êìôÿ¾_Ä¥e>4&£¢ûxܵ]m&;?ÝLòg}cô Á„¾\¼¯ œ‚]½¤û†[Ÿ‰BºñqTÅðßkRjU/4³ÿ7¼ý$$ôKåú™”ó'Ã÷¯nõÜ*õèÙÿþó&Œ/ôþ–üEõZqöuxö¶Óý†ønىû‘ûòPÿà ¾…þ’»® õ$iøMî),Ýõbâ8S<“þ; þ{\‡üaã éû¯¼ëYüKŒÇÜý Þ„¤AT•C“Q^“ýžú©šؤôÞÞVVãO ïùÖY4Û:NK`,õч{µóõBsÿp‹ªa ƼT² ðœü 9Ú]pô÷‰ðµ´眫$ÔVþ4®õƒ¹û¥~ôMÈøš¼ôj)öÕfþиôr[áô3ÍýÐ$õé)÷i-öTý-Ô÷¶?búA`‘ÄýyI¡WՊÿï.¬Çö„cw8ï±Ö|Ûôœ<](ÿs?ەþ­Tÿ™ëòóýK‘ÕAýtmcýtÇènþ Á•‚ˆàm\X‡´ò#üðÓ"«ôê6ˆŸ˜fmS‘g=˜z·Kâ釀Y gõ’ þC­ÿ4 kÓòÝ £“b/ é³Êc±yö}Ëç—ðù4¸þÿ‘M&“¡5ÿŽ÷Éü[EõÒÿùdôCX÷ ý õTØõûÝþiDõø ìõ¬Oü›)÷¡KCùP·9<üǘ‹”ÿ{zChøÿ ûAðÉ0ùó[3å@þ‡Â§þ¶AS]hÿj"îrþ¹déjþn§#ÿÙú ió>ÚS­´1ªÍ²30Šý[? õ¹Ítã;‹—VQ#Pö¤êIn)÷$ðÎîü¥Þ( ìÃØ Åk1) ½u=§Ã:$öøMçÝ𫕏OþøãHÒ½ÿÿ/føgÊýðö2û«Gôñ“øüËûx¬öf(AÍõóÚÿX©õ3êø÷õ(·ûÁÌöŠfoøx÷uöúLÈ'þTb*ÞNâùӁlñ¡L²^óæÕcGýàå>¥þÌÐåÿoïÿ½—ûmÿ»që_ÿÛ@€êÿHÆ îÞ_1 ù1ÏwMþÒþ„(¯õdšé7Üÿ»ÊS§4˪t#¼Y •²ùþ’ûêûåW=:Ip¸ B® Äž ·ÝÀFû1ÑØcñ˝¦ü…Vêþ´¬µ”ù?µþiËö¤Xü¬nô×ùB¨údÖ÷ƒLkºö(Å)Qö ×ù#Sö6û™ÌöÚ©Æý÷x$ø úZÌ,´üË6aÿ =û¬ZL´òn.¿éò~IüE‡=þ˜Î1ÿ4üäÿš†ïëÿÖ}‹nÛ} (ZÓ4kÇVe3-&*Ôÿ@Pz–ö#ÍKdþ_ðÐ0H^<7Ѩ¿ H÷e —Q²óúQrIûØKbùén ²-ê r:I(UÓlý-¨?ò¡ÃÖ+û²:ãL%¯úqÿA„÷gWýŸ¼ôµû§§ùJþøgO¢¹÷{â÷JÏúþÜöÖàú´÷ºÖÿ°Õ÷K_uù”²»ûö*þ…sü!p ô %¸òR2GûH¸ˆþ5ž0ÿ!>ÕN´Ш×9ÆÎ1¼† š7d›9¨ˆ†ÿø5>RŸ3wi¬÷ò>åüõRÖ¤'Žúÿ ‚û×/ =HÝüó:úÞúÅõܹ…ß”é ¥6£ÎÁóLf;Ëkgÿ¯|Vó)ŽÑÏùôŠO¢ÔS“«û²Ûÿ©8ømþÍ/õ­æû•Åø®õùp=v¢øz~æ÷ÒÀû—„÷Qµúüx÷&ÿ<ø÷¨m6ùP{Fûؤ­Hý›‹ýH(ÿrmõC9ºò›DOúúˆ¥Zþ±L†öþPjšDÎʼMF2ºÕ}ß®–Ôªúñ9“ÏÕLƒ/a™äêø0F û©ž~JëàÿùBËF Áq A·þ8»Áú"ê6&$ºØF Qím®3„®gTG± ¨ ´ôK`­ø­r0eg}–üS#ÍáøÇ‰þ~¾õ¢üvøËúwurùllh£øW³üz(øÙ«ú#ö÷rrþ9ø§—°%ùì"ü·úU9^Ÿü°…þ _þªÎöb€ÿ\ëòÍñÿó`ùþÿêþ¸ãÿâÉþXÍÿâç ãÿúÜ,õ¶ž¹®’ê46y}jÈA@§ˆo¨6ú({ˋúèîBµÓC€Kw¥À“¨eƒÈ Hv¯v½gîúƒwÅ˼ršØá”šE˜NAêTýM49öð 5Ê÷¾QN”ÿe [ý¸HŽù’àþ[öO)ýõŽ÷Šmû¼ùÿãú`™P;ùšý·°ø„Ëúöcø…Üý zø×Å×'ù´Äuúû¶($üÀfÿoÆýh&øÊëþdSó“sÿw‹ø«™ÿÅýšÿH¬þXšÿE72Àÿùà,ÄWò¡)q¶s*Vk¦yuY£Ëv ¹ ›&…û–ãÔùó[ìQƒ.˜ ë5ì›:¡ ¸œ2"†Nûx9’ÿýás…Òhqêß)ñ¢¾ýà÷×H!÷|1÷ÛþEZøþý[±5úÈÿ½÷iýš:÷gñûBÛþ$ ú˜ùÀù$vþ'/ù÷ûíÒø½\ýìÈøHÿCùÙ.¶SúÔ0Ëû¸4MLýüqùÖlþ·ãóéÿHÒ÷7ÿ:XýåHÿê–þ§XÿD”Èÿ*ÎIäÿk¾rÀÅ@ñ]Ü4û´Ó% ãRô¥Ç‰‚Á¿üʖ÷jùÚ@Öû¿¯õ%2‚°gÚ²6 æÍíšh½ ñû×l<Žþê :wã¼G, ïø w¼±Oм‘ù£²›Ëö¸ºþ•Y¡€þ‰qùÚú;Qÿ¦ª÷Öéý ÷düßÇýûÑh¸2úä;ÿ¾˜ùìbû{/ùhîüù ù7E¾\ùì—Þ9úS[:ûéì?ãü©§ú6þýºôjþ?5÷Láþ„Ûüýÿ|„þÿØÿvTÿ¯¤–´ÿÉìØA'‡õw,ø"ñ§é`v½éÂôZhÛýeêWù¿Tðoê€IZm؈@n +ìËñ¹ü©¨nÆý«BãZÙ  ÅŸd'o²CûÍ»ö3,ýü[¶Öþjƒ}ûj{ÿFRø62þ÷RÃü9Åüj}û“úIèÿ—óù/Öû-ùšüäIù֗õwùOöÇ(úu„Fû‰”«‹üwÇû ý%võÑHþgÁö ™þ?Oü¨Åþæoþ{ìþ\}*ÿOe½ÿ2ÙÔn²Ù»|±Â«'=²Á0Έ¡²¯0€ÕþÝz„‡ùæZSÚÿ Œ•˜Ÿ§<J· ß \­4¨ýMÒY.ýÀk2;d#ô»&”hRlòœ”ÐæüˆØóö.Kü_ã ÿV”\ü!¡ÿ;÷øsþ¡5÷ýyÞûðÜûSšðúóz£Kú[üÓùú[üÿŒùXùÿªžù]L(ú؏*û¶(³DüsÐü›Mýñeö úýæqöRþŒ»ûà„þaTþê±þÈCòþ‡VÿDÒƒàÿ™ÌMš‰j÷}¯[maHŒ¡ûžÿ{]°úùLYÌþü²„¼]îCi€ºæIQÛö>á¬þvÔü»£IQÄV#8ÙbY1KgŽûnþm†o÷¡ xûqDÿ¯«üßÊÿM—ù{±þDv÷xkýõûò2üÈï@û¹ê·•úâíü×úv8üXÂùÛfÿâ»ùa á#ú,€Löúþ«1üDÀý¸ýe÷ϲý„Oöèþ;$ûœNþX/þ‚þœ´ÿXÆþ¯m+ÿIÒ—³ÿ˜;g?¯CQ‹Š/Д ƒ·ÅŒ>&:ê›úpM²Õý¡ ó¯ÔÝw!ˆ£©ƒfùzÏ]Ô¾ÿÔ/õ®üÒ­ ×zúÖSø4µaq{¦ŠOØÿb…u!øg"Ø»ú·€Wñþ¥Åå2ý²íÿÐ0ú­æþeÐ÷•²ý‡mú•üA[û—;@Ýú[†ýæXú¼.üÒûù¼ãþ©áùöÎ+úéT¡Ýún`Ðûd™þ}ÂüaløuýVöÜýpú¶þLýý Uþlÿ†šþ7CÜþþ¾Ò¶„ÿ¬¼?2Šþ/+µ–ððÇ5Î匠V²¹®^û :Sý݈'ã /wžВz{!Øt§Ó†O½üèù² Ÿ„Bmž§l1[Š«b‡®ù3/!úڕ°þ¾áB­ý~Äú`ÿ7<ø¶ùýëùUÐüm£ÿ"Ùûsg°#û> þ?šú´<ü’4úoþy ú7PG9ú(ÿÌún¦ûb[ÿ7ŠüAtù <ýSƒöó§ýÆúiëý¾ý3&þ³1ÿ lþ{ÒjÎþÇÌ$QÿãTøÿ «¢Ç|Øa¬ùëŠr‘|OÈáƒ3ü±\ü Þ6Æëg ±>\û‹FßVp–ûü{$)%”Ê¢—ݏþÓтãŒŕt&2“r úD£¯ùî±ÈPþîÃþ¶= QûXSÿ>´ø{=þè‹ù¾ýDåþ• üiq¾dûà´þ®Õúæbüýgú1 þ½-ú ±*Fúw»ú¾úçÌ»€û4 ®Wü›vúý7×öŽyýkˆù@ÁýrýÿþýsÿßEþ”aÔ¦þ¶½ü&ÿr Éÿ.I%‘Oñ"q×'÷N`Ÿnr2c²Î ýÛ–ëûE ßòëJȺîƒ}šãh–wÜÕaýyA`ÿˆéïÛƨJœF‘¤zŸš¹*˜ø*ûR…jùÜÇ$Üý$5gþX`›×ûâÿ÷3ùýyþøQù²_ý&(þèdüS[¤¤ûà?ÿïû—üÿžúL¸ý1Yú®Å]úTâ½úæÛhû¶¤[1üšoûþÞüK÷™RýkùhœýÝýÛÚý.ÚþÝ þö˜~þ¡ªúþHÄΖÿ¢Ý¸Whÿ–2­RC‚·0ÙLÏ}}Ûý´Ýà±ûAö\6'åñZ¾æ ¸ W™À?¾º’ìýïZvÁþAË÷Âþ[ƒ£^Ť ¼ ¢¥Tü¨dXùPãÙXý@?¼¡þˆ÷Wüº³ÿú¶ùü·þP9ùz¥ýÓrýÝ©ük&5äû_»ÿ“LûëüõÓúkvý†ƒú ŽWvú,àû¿úÂ'’UûÆ.±üËYüR¹üôÛ÷q/ýËÍø€{ý5¸üŠºýá´þ¼ÿý®’fZþýwgÒþ²—Ûhÿqnm"ÿx÷àzÒYÖ;eWGHh˜þ!¶\®û¢Ýà˜ÿÙ* T¼Áß:¢ %g ́+œΐþénKþí ãDËÚäá´×:Õ®G «‘~ýjuñvùüØÐüÝ])ÂþR¬xÐüîàÿ“:ú¢ðþ¹>ù[æýDÊü#ëü²×!ü$O…ûGýSû‘GýL¯úŸ ±’ú¯cìÇú5µIû©øõû"4ý›ü¿‚øOý…—øœaýbPü¡ýߎþåýÈ9…<þ’A;°þox-AÿGóÿ\ðEÂÞǙ­ú1e+Z³z=ÿލ¸Ùû] ÷þbÈOR´<Cb«©›”sœiIÿ¾x®üýß0vûé˵í¾ë¥²êªÝ­+žþÍ3Åù¢Lü;xØÈþžÌn@ýã &¼ú×$ÿÇ^ù¦#þØ4üZ*ý8rë\üwª½û¶­ýv=û+ýÒÝúè–ÿb´úSâ×ú.¯Fûz åû”üý˜„üæ9ù½ýü\}ønMýPæû4ŒýùdþAÎý…ìÿ™!þúÿþîa×ÿW˜‹ÅÿÒµ¾Ma»!D,zZß±ÅÿbÔ-ü £ª\þ޳õ'¨>Ê3•Òãᓱ’ú˜+ š~ZØýó=„­Ì÷ MÉꜷiî ±U«ÿrŠ÷=úü$HÔûB“>µþ@í¦ýJ2[:ûgWÿs”ùê^þHµûágýÁûÿ6—üб)ôû†þ¾pû"ýD û+-ÿ˜Öú}_‰éú®»Gû·nÙûå²þsüQûù1íü]øâ>ý~ûŠ}ý5þÞ½ýWªÿ þ¶ývþyOêûþ$:.Ÿÿþ¥ñ_€Ù&/ÏI—ø4\­¿1e7áŸü#ƒøÓýkœžÎT˜Ÿråˆ,K‡rÜ+©ÔÞ|ºÚýhC½ñªþ#ÕæÌ”½ð¶å¯¾ŸoŽÕÚú«2>pû¨JŠþ‹ÿýóSܳûù‚ÿ¼Ûù͓þÇNû ý7yÿ ÎüùÓD(ü‰þï¢û–+ýŽ9ûLÐþüúBÞøû—ä¡Oû˜º‰Ôû·WÿÍhü\Áúœãül¢ø@7ýû«uýÙýýó³ý?rÿ¬ÿýKg™cþÑ<Yâþè~ÿžl;7Rî#:q<È:b%}—‚( “%ý<beýQƒè’o…\6)ycrÖv%û(€é—Ét¸þŒB°GëÿØOðË;'²Ã'>©xvč„”ûù;'û?¹,Kþ¶õJþTr(üéªÿÿ/ú9ÅþDû‘Öý`ðþý»ÜÞZüÝôþüÓû‰Fý¹gû–€þú"ûÝ`ÑûZ¦k\û–öªÕû=ëÿ%dü‡ûbßü ßø5ýøÃúwsý¿ý¥¯ýBÿg÷ýå¯Uþo&Îþe£&bÿ¶(]üO×ì–I›½m¨O!¼œã¯´ýµ@­ýÐh CNpµôf¿¹cŽñwmPägÚHþ¼<à´ÿÎü¿1ǶWªá(›Ÿ™-öˆNbüå@çüútÆ‚üýæ1†þ\Œp–ü Îÿ<úÜñþÆÏúšþ~fþû4ýQÍŠüïYÿÒü€qý»”ûÑ>þ\Jû@éß8ûZëlûd"wÛûÀnudüðGü*àüÛ4ùn8ýêyú6wýNyýбýƒÿõýûÇENþô QÀþÚkÝLÿ~Ýöõÿ*d³ºsó~`&Ý⥼ÝCþ8 sëüFN.ãÿïYôÅRîNÃñVµö¬U:«þ1»<ÿô5&½]öœҐ7ÄS~œ;ýÊ?Äôú*Îâ£ýî?x¯þ#¡hþü²ëÿþïú(ÿ…¶ú36þ¸àý~cýW§ê·ü–´ÿ…/üCªý®Àû] þUrûÔx^Xû`û—=)æûãôiüºý!æür ù:Aýê@ú߀ýë-ýƒ¹ýìïþÝùý/}üLþúå…¸þ#@€=ÿqŽ=ÞÿÄü””/ÚP6•š¬û˗\Ëþqßãü–3(yÿyBÕÞà<ωg6õt]=°†?H#ÿW òáþƒæ‰¬®¡ÖӋ ú}‡;ünþ¢9û7ÑjGý˜I Æþh±>_ý†XUû¤;ÿ•´ú­_þcýɎýMmeâüµôYü1îý8ëû¥æýAšûÉjyûÔ¥¾˜û:Hªôû:I¢süà®ýYðüÝúœNýiú©ýßüçÆýÓÈþÄþ^8_QþDºT¶þÉ3ÿ?Ìÿ!îìz¼ö?1h¯¶ÞU ªusEÿâ‹ýüxÿ ÿ«*1Èæ%9Ç J!ƒû”$%«ÿ ¾¥þvÔGìï›Lˆvîúf¦•çZÏïþc.[Lû¦ÏdíüO•ÉþŒ½!¸ýûºûÀYÿUÇúY…þ*óü·ý1"b ýÅ>&‚üS:þ)üÇÐýÄÁûرÿ›ûÁBš²ûBü¡ üžPþWþüÛ¨ú `ý úý¢ý=ü Ùý þ¥þuúÿÎZþ“‡¹þ³ë.ÿÇòœ¾ÿäÔ†epÌá¿;—Ud®ÿ˜Ä$4ý¥ÿV£þ›”ª,Ы ~”¬ÑRd†<`òªˆþA¿YTl†²/Å^üÍzMëÕËC¼ÿ˜1¨û¥ÊœüzQºþcÆÅþá)1üÿsÿÅëú§þQ’üŽÜýºÉÿã/ýBjþ§ü>‹þ6;üóÉýDèûÀ\ÿï½ûÝÐÍût-µü“ì6‘ü=åþRý=ûétýÖúŽºýnAü5ðý)tþÂ&þªÃÿÌiþcOpÁþ"ëè/ÿ-¬·ÿb±ÄU #ÞÿÖé}¥ÀÓ8¶@©ýÁæ¼Eþºúª‚rõ^½çç™ã7Š©æÒäÔ˜ˆþb¥:ÆlwÌ‘BÜ©2/%ÿÀ'y# Õü’À*YüOnšþ·ÊzMþç5V€ü‰ÿöûvÅþ§Cü¼þý¥gÿSýUƒ©ËüvÝþ%aüÊÑýeüTÿþáû^y8ëûê‘2ü`+F¤ükÿ9$ý»×ûlŒý›*úkÖýTúû' þóAþK?þÀ•ÿA{þTÏÍþéÖ¡2ÿ³jþ²ÿc‡<G0šìD Ÿ‹™'$ùJX`ÜýâÎïûýâ_LÝP&~Ë.ˆJÃ6£CÄdBµ¥þñ‰ FÌOÍ^=&%ƒäR9 %4óƒ¦ü··¥/ü(I‰dþÒ þ{=õÓü˜¢ÿ¤hûeÝþ÷úûî%þØÿâný®xEõüz@ÿC}ü1Òý<üèþžúûíûˆüøH<üÝ5ZËüÚ
19,984
255
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/audiodata/pluck-ulaw.au
.sndÖ+Ú|è—ʾÍÎÞÐ_ F 5š+¥&-$!² .Š!J'¬.=K:N¾LJ­FKQ†m͏»±‹¬.¨©€«¬±‹³/°¯$µ‡º½º™¸‹²® ±ŽºÅ-äJ4)¤"G¾2Žª#\+?9K.UÆV,X;RŠ[ nˆÞ)ř¸(¯§«–§¨€« ­¶´¸'µ´¹‰¾¢¿«¼‡¶ ¯°¹)ÁÙ-Q8¬*#^ JH˜˜$-,´;Tk¿j9h$[‰]mŽé«Ê»»ª±&­‰©©¬%®¶€»-¸¶º¿•Àß½‡·¯¯–·Ý¿ÓIV:E+˜#ý ,Ó¥$(-ª=f߸âLëkŒ`n¡õÎ+¾˜´®†ª©“­—°¸€¾¸¼¹»œÂŽÃI¿Š¸?¯®£´£½Íh^ <,”$Ë"¿¶Ž$/-¯? ì ιÐÔÙôcMhClˆÙ!뷰Ьª/®„±¹ƒÁ’¿º»¬ÁÄÜ¿¸¡¯­M²–»ËCb=,”#±Áɏ%Z.ÊEÓÂÖĸËۛn¤hb†ë-˝¼$´’®¬ ¯€´»’ƅļ¼¶ÁŽÄ±¾›¸”®¬°ŽºÉ(e= ,›#¡Ëד&±0FL%È»3½ªÄÒ®m–\TŠ_¼Ú³Á>·ž°3¬¯€µ»Kǀǽ»¼¿Ã¦¾¥¸¯ « ®Ž¸'Çi-= ,­"˜%ÝÖ ™&¡26W3¿µ·¥¾'ÌEmRK’MœmZÌÒ¼¯´®­¯‡µR»ǀÈj¾ ºî½Â ¾®¸¯«®“¸ÆÈ_6<,="”7RÆ! (š69~:¹ ¯±¨º=Ê(cI+A¥@’NKßÌÀÅ·ž®®˜´—¹ Ăɗ¾ ¹*½Âœ¿¿º°'«­¢¸Ê[+;+!!•¿2¶#ª*™;PØ9³¬®²¸ÂÌS—>Î9ë8@ËdõÆu·š­¬V±‹¶¿Ç‰¾ ¹¼‘•Âú¼•³¿¬­G¸’ËX:,!œ¥" °%®,š?ÄÊ9¯©«ç¶­Í J¡8¦291“:­OjÊ?·™­ª®‰³¼¥Ç…Àº ¼šÆŽÇ뿞¶Ÿ­­·Ì'V:!,!ª"¸'¬/H³Á=­§ ª3¶§Ú(?º0-9-š4¡JØÈ4´ª§«¯=ºCʆÇm¾ À¸ÎŠÑ°Æ´¹™®¬ ´”ÆÀ_<-"¼.#ñ)©1žM­½F«¥©#¶¦ï99F,œ)U*¢/žG½Æ1¯¦§C£ ¨—­©¹*ÎŒÓŸÇ È)ڋàœÌû»œ®ª °£ÁŸk<-"ΞN$7+©5ž\©¹Mª&¤§·«aÖ32( &¿'«.žH±¿8¬¸¤¸  ¥®­›»-ä“f•ßÖóþ‘Î廦­1¨ ­`½šz#<,!|žÅ%(-­;žî¦µ[¨+¢§¹»L³-0$ª!°$°-ŸL¬¹F¨å ¬¢<¬™¾EYE“R semÍ±¸¶ªL¥ª(¹›ï?;+ >ž¯&/·BžÒ¡°î¦.¡¦ºUA«)< »®#±- Y«²t£Iž«œ #®›ÉÅB§7”?<YkºëÄŸ³À¨Y¢§¸ f¾5(+Ÿ£")8ÜZžÁž­Ë¥/¢¨Â17«$cѰ"²/¢Ü©«Îž>›®›% ³£o¯3¬,–5ÅMî5Ϗº—­·¥OŸ¥¸«O¬/ $§ 1-D7Ö ºš¬¸¥/£ªÐ'/¯ Ãä¶$·6£Â¦¦¿œ<š¸›5¢¼³Bª+­'™0®VÈ#¼—°‘©©£YŸ¦¾½>¥*-!·š$ã6s%À©¶˜­©¨5¨¯u +¹·Þ¼'»A¦¶¤¡¶›>šÊœM§Öà2ª&­$›/¦ä¶¯¡«§ž£Ò¡©ÏL3£%ON›)­DË»¿¶˜±ž­I­¶S)ȯÏÂ+ÀZª®£Ÿ¯šIšižñ¬ T>+®#­#œ3 Ä)¬©¸¨’¨˜§´¦­ù,.¤$º *!ž-ŸP*Ä»;¼œº™´¿±¹V*_«½Ç.Í箬£žª›pœH¢ð²&A3(´"®$ž:ž¶=¥¤H¨—«”¬¥¬(³[-¬%ª"*##&«/œ\[½&èė»§¶+ºd,7ª¯!À1èÏ»ª¥ž¦›ÅB¦\º*:.%½"¯' Bœ®Õ ¢,ªž°”¶œ´>¸_.Ë'¥&S''(ä0V°Æ$ÁÌËњÁž¸M¸ê.#¯§!±3ÝÉÙ©¬ž¤œ²žOªMÃ,6*$Ì#±*£Uœª·ž! $¬¬»–Ř½¿¹ä45*¨)¸*!))./¥M¦É9Ã!Ñ;ޣȜ¹··Õ/Ø¥"§5½Àh¨ºž¨¬¡Ñ¯VÕ.3'$_%´.¥îœ¦¬œ*  ²ÉӚý–Ȩ·Æ=!-¸*­+4*(".ºK¦ÆÔÀ*Ñ/ø²ÏŸ»ª¶-Ì24¬"¢7¬¼Ô¦Ìž±ž­¤½µÝx63%&;(¾4§Ïœ¥¤œ8¢»?R¡M—Ëž°0·L.L)®*å*").OL®Â½¾:Ö3\Ç禾¨µGÄ5 $¿"¤:¤¸¸¥ÌŸ¾Ÿ³¨»½ÇWF5((0+Þ;­È¥Ÿö¤#Ç.?®CšÈš¬Ò®_-+'¿(À*0+$/8R¿¾¿½Kß;KØ]¬À©³Û½: N#ª<¡µ«¤¼ŸÃ¢½«ÀÅÇNm9.,..OA¸ÇŸ§ž·¦+Ù)8Í?ŸÂš¨­©#z*#G'Ê,B.-47WÚ¿Ì¿Om?@ãM¯Àª¯À·(> 2"µ>¢±¥£¯¡½¦Å¯ÎÎÒLâ?7001CGÇɦ©Ÿ«§:é*4K>ª½œ¥¥¦6ì' .'Y0L678>OâÆÕÆNY>=bK´¾ª­·²3A("ÕE§®¢¢©£³ªÁ·ÜÙuOþM=944BF×Ь¬ŸŸ§§g÷/0=<·º ¢¢£zî"$'':9B?<:FFØÓÎËTV==LK½¼­¬°±IA !#@Q¯«£¢¤§«¯·¾ÓØUgQv=@54A@åß°®¢ ¤¦Åü8.9;̸¨ ¤¡¿î, !%*/G8Q9:G;ÑoÄÎõ]B?DLϼ²¬¯°àB)%/wꨤ£¬¥¸­ÃÀÌ[ÚGÖ9H12<<pí¶¯¤ £¥·úC,99eµ±Ÿ§ µy;'&,+v/÷37?1ØN¿ËÎéODEIú¿»¬´°ÊF1 '*ÚZª¯¦¥±£¿¨Ä´ÁÜÉIÍ7J./58Oì½°§¡¢¥­k*>7M±¾ž¬Ÿ²_R.)1+È-Õ.18+jFÁÀÃÌíFO@lÉÄ­¹¯ÇL;&!((Ï>ª¼©ª¹¤Ê¥Â¬ºÀ¿ZÍ:I-./7>Üΰ«¢¢¦¨eÁ)O7K®Ô¶ ·Ur6-;-»-Ô-,2&JD˸Á¿ÏBt9óÓɬ½­ÈVC*$)'Æ5«Ò¬¯À¦Ó¤¾¨´µ½ØÕ@H..,74ÑZ±³¤¥§¥g³)Ø8\­ç¿¢½M~;1F/µ/Ý.(/#>Jè¯È»Ì<Þ1ÝÛɪ¾«ÆXM.&+&¿/¬Y±¸ÍªÙ¥¹¦°­¼¿ëTG2/+8.Í>³Â¨©¨¥ü¬*½9ԬٞǤÅKj<3X1³0y/%/":V^¬Ï»Í5Ö.Ö×ȧ¾ªÂOa3(.'¼,¯A¹ÆÛ®Ó§´¥®©¾µbØJ;4-:,Í4·o«±©¨Ø«+³8¾¬ÆžÃ¦ÇLf; 2l/³0X/#0#9qSª×¾Í/Ò-ÒÌȦ¿«ÁIî :+1(½+µ8Ãí޷˪²¥¯§Ã®X¾SM:18,Ö/ºB­Á©®Ì¬,¯6¶­»Ÿ¼¨¿Nì =#1ò.´.M.#/$7ãKªÞÄÍ-Í-ÎÅÇ¥À­ÁDÚ#?.3)Á*¼3ÌN×ÂÅ®²¨°¦Æ«XµcÝ>;6/â.»8¯öª¸Å¯.°5²®´Ÿµª¹UÍ$F%4ø.·-G,$-&3ÞC¬õËÍ,È/ǿ羯¿DÐ&I"22+Ë*Á/Ñ@Ï×õ³ª²§Æ©\®~ÀEM46û/»3²H«Ë¾¹/µ4³¯²¡±¬²_¾(e&;c/º,F+%+(.â:­UÎ×-È1ÿ¾©»³»HÇ+X%70,Ú*Æ-Ö8ÍY¿¶®´©Å¨b«ìµLÜ3@d4»2¶=¬j»É3¾3¹±´¢°®¯¶,Í'JT7¼.G+'))+÷1¯@Ñi.Ð4ÄÁ¼«¸¶·N½.Þ'?./ù+É,Û1ÌAÃÙ¸·µ¬Ã©lªè¯T¿2_X>»7º;®L·ì8Î2µº¤³°¯à±2¾(|H@¾4J-)**)d-³7ÏI0û6Ìž®··´\·4Ç(S-8d.Ë,å.Í9ÂTºÅ¶²Á¬}ªå­a·2ÍNS»?½=°G³Z<ü0ֹĥº²²Õ±:¹)Í?X¿>O3+-+*W+·1Ï<4L7ñËȱ»¸´{´9¼*Ü,EW5Ì/ô/Í4ÁA¼ï·¾¿²í­ç­|²3¾HÚ»TÁI³M°XB`/}¼Ö¦Ã´¹ÍµC¹*Å;ëÀLU;,1,-M,»/Í68?8PÑàµÃ¹¹ßµ=¸+Ç,`N?Ï6t3Î5Á=¿S¸Ï¾¼å³ë°æ³5»CÉ»ëÆ^·^®gKg/kÀé¨Î¶ÀÉ»S¼+Å7ÜÁZ[C-8-0H.À/Ë5<;9FÜ_¹Ð¹¾Ô¸B¹-Á+ßIMÓ=h8Ï8À<ÃJ¹î½ÆßºîµÛµ8»>üÓÉì»õ­ïVü/rÇö©Ù·ÉÄ¿x¿,Ç4ØÃhaK.=/5B1È1È5?99?ïN¼ìºÈͼHº/¿,ÏDdØHd>Ò<À>ÇHºb¼ÓÛÂð»Öº:¼<½ÌÌØ¿Ü¬ÚoÞ/ëÍë«Ü¹ÍÀÅÚÃ-Ê2ÚÆmfO0@19>4Ò3Å6E9:>qH¿bºÒÉÂN½1¿,Ë?ìÞS`FÖAÀBÊI»[»àÙÊîÀÒ½=¿:Ä¿ÌÍÔÅÖ¬Ôâ×1ÞØá­Û¹Ï¾ÈÍÆ/Ë1ÚÊwnT4E3<;7á5Ä6K9:=aDÄS»åÅÊWÁ5Á,É<Üêd`NÚHÁGÍK¼X»ðÖÑëÇÐÁAÂ8ÇÂÌÍÒËÓ¬ÐÒÑ3×èۯعϽÊÈÇ2Ì0ØÐùuY7I6>99z6Ã7P9;;Z?ÉL¼lÂÓ`Æ9Ä-É:Ôþõa\ßPÂMÎO½ZºþÓÙçÌÑÇHÇ8ÊÈÎÍÔÑÕ­ÐÊÏ6Óo״ֹϼÊÄÈ7Ë/ÖÞíû^:L7A8;_8Ä8Z9=;T>ÏG¾YÀâpÍ<È.Ê8Ñjãalè[ÃUÏV¿_ºýÏÜáÏÓËNÊ8ÍÏÐÌÖÙØ®ÓÃÑ9Ó\ָչϼËÁÈ;Ê0Òÿãîk=R9E7=T:Æ9e9>:O=×B¿N¿qï×?Í/Í6Ò]ÝböôiÅ_Ð_Ái»òÎÝÞÒÕÍXÌ9ÎÜÓËÙâÚ¯Ö¾Ó=ÔSּչм̿ÉAÊ0Ï^Üê?Z;J7@M<É:z:A:L<ß?ÂI¿[áéEÕ1Ñ5ÕVÜbê|}ÇnÐmÄ|»èÌÛÛÒØÍdÍ:ÏüÔÊÚíݲڼ×B×MÙÀعӼ;ÊJÊ1ÎQÙçíDc<O7EH>Ì<ë;E;J<í>ÅF¿QÚmJâ4Ú4ÛOßaêoøÊ|Ï}Èñ¼âÊØÙÐÚÍyÌ<Î_ÓÊÙ÷ݵܺÙIÙKÛÈۺ׽оÌWË3ÎJ×éåHn>V8IDAÑ>à=I<I=z>ÈC¿LÔ]Oû7å4âKæ`íj÷ÌüÏøÊë¼ÞÉ×ÖÏÜÌíÌ>ÍRÑË×ý۸ܸÚRÚIÜÏܻڽԾÎnÍ5ÏE×íâLz?[9M@EÚ@Û>L=H=i>ÌB¿JÏVXj9ö4îGï^õgüÏüÎõÍê½ÞÇÖÔÏÝÌäËAÌLÏÌÔüÙ¼Û·ÙcÚHÜÚÝ¼Ü½×¾ÑæÏ8Ñ@ØùáPûA`:P?IåCØ@Q?H>_?ÏBÁHÌP`^<o4~C\{dxÔ{ÎúÏì¾ßÆ×ÒÏÝÌßËFÌHÎÏÑõÖ¿Ø·ØðØIÛëݾݽپÔ×Ñ;Ó>ÙqáVöDe;U>K~F×BX@I?Z?ÕBÃGËNnZ?f5n@rZrbrÚwÎüÑíÀàÅØÐÑÝÍÞËLËEÍÔÏîÔÅÖ·×Ú×KÙqܿݾھÖÏÓ>Õ=Úeá[óFi<X=MeH×D_BJAVAÛCÅGÉMøVC_6g>kVlamßpÎ{ÓñÂãÄÚÏÒÜÎÝËQËCÌÛÏèÒËÕ¸ÕÏÖMØ`ÛÄܾۿØËÕDÖ<Ú\â_ðIl>[=OZJØFkDKBSBãCÇFÈKèRH[8a=eRg`içlÏvÔ÷ÅçÄÜÎÔÛÎÝÌZËCÌéÎãÐÏÓ¹ÓÊÔQÖZÙÈÛ¾Û¿ØÈÖJÖ<ÛUáeïKo?]=RQKÛH|EMCPCîCÊFÇJßPMX9^<aOd_fïjÐpÔüÈêÃÝÍÖÚÏÞÍdËDÌzÍßÏÖÑ»ÒÅÓYÕUØÍÚ¿Ú¿ÙÆ×S×<ÛOáhîNsA_=TMMßIïGOEOD~DÌFÇJÚORV;[;^L`^býfÓlÕ{ÊíÄßÌØØÑÞÎsÌEÌdÍÞÎÜнÑÂÑbÓRÖÓÙÀÚÀÙÄ×_×=ÚKàhìQxDb=WJNçJèHSFNDnDÏFÇIÖNYT=Y;\J^]_udÖjÕuÌóÄãËÚ×ÓßÎ÷ÍHÌZÍÞÎßÏ¿ÐÀÐwÒQÕÛØÂÙÁØÃ×z×?ÚHßfëU}Ff>YGOôLãIXGNEfEÔFÈIÒMaQ?W;ZH\[^naÙgÕpÏøÅçËÜÕÕßÏìÍKÌSÍßÎäÏÃпÐêÑQÔçÖÄØÁØÃ׿×AÚFßbéYüHi?[ERsMáJ\HNF_FÙFÉIÏLmPCU<YE[Y]j_ÝdÕlÑ~ÇëÊÞÔ×ßÑçÎNÍOÍäÎæÏÇÏ¿ÏÜÐSÒûÕÇ×Â×Ã×Ú×FÙDÞ^ç\÷Km@]DTfNàKcIOG\FÞGËHÎKþOGT<WDYW[g^ábÕjÓxÈîÊàÒÙÞÓäÏTÍMÍëÎçÏËÏ¿ÏÔÏVÑmÔÊÖÃ×ÄÖÓ×JÙCÝZå_óMoB_CV]OáLkJPHYGæGÌHÍKíNKR=VBXTZe\è_ÖgÕrÊôÉäÑÛÞÔãÏZÎLÎøÎçÎÏÏ¿ÏÎÏ[ÑcÓÍÕÄÖÄÖÎÖOØCÜVãaïOvDcBXWQåMvKSIWHîGÎHÍKäNOQ>UAWQYb[î^Ød×nÌûÉèÐÝÝÖâÑaÏLÎrÎçÏÔÏÁÏËÏ`Ð^ÒÑÕÅÖÅÖÌÖWØCÛRácìR{FfBZRSêNúLVJVHþHÐIÍKÞMUP?T@VOX`[ø]ÙbØkÍ}ÊëÏßÜØâÓkÏMÎgÎçÏÙÏÃÏÉÏlÐ[ÒØÔÇÕÅÖËÖa×DÛOàdêUþHiC\NUñOðLYJUIqHÔIÍJÛM[PBS?VMX^Z}\Û`ØiÏxÊîÎáÚÚâÔwÐNÏ^ÏèÏÝÏÆÏÇÏýÏZÑÞÔÈÕÆÖÊÖt×FÚMßcéYùJmD^LW~PìM\KTJjIØIÍKØMcOES?UKW]Yt\Þ_ÙgÒsËóÎäÙÜáÖùÒPÏZÏêÏàÏÉÏÆÏêÐZÑèÓÊÕÆÖÉÖí×IÚKÞ`ç[õLoEaKXoRêN`LUJdIÜIÎKÕMmOHS@UJW[Yn[á^ÙeÔoÌøÎçØÝáØïÓUÐVÏîÏäÐÌÐÅÏßÐ[ÑöÓÌÕÇÖÉÖà×LÙJÞ^å^ñNtFdIZfTêOgMVK_JáJÏKÔM|OLRAUIWYYl[æ^ÚdÖmÍýÍê×ßàÙëÔYÑTÐ÷ÐæÐÎÐÆÐÙÐ^ÑvÔÎÕÈÖÉÖÚ×OÙIÝ[ä`îPyHfI\_UêPmMWL]KéJÑKÒMòOORBUGWWYi[ë^ÛcØlÎ~ÍìÖàßÚéÖ^ÒSÑ{ÑèÑÒÑÆÑÔÑbÒkÔÒÕÉÖÉ×Õ×UÙIÝXãbíS|IiH]ZWíQvNYL\KðKÓLÒMéOSSDUFWUYf[ï^ÜcÙkÏ{ÍîÔâßÛç×dÓSÒoÑéÒ×ÒÈÑÏÑiÒeÔ×ÖÊ×É×ÑØ\ÚJÝVãdìVþKkH^VXñRÿO[M[LýKÖLÑMãOYSFVFXRZd\ø^ÞcÚjÑyÎïÔäÞÜæØlÔSÓhÒëÒÛÒÉÒÍÒtÓaÕÜ×ËØÊØÏØfÚKÝSâdëYüLmI`SYûT÷O]NZLuLÙLÑNÞO^SHVFYPZa\~^ßcÛjÔwÎòÓæÝÝæÙuÕUÓbÓìÓÞÓËÓÌÓøÔ`Õâ×ÍØÊÙÎÙwÚLÝPâcë\úNnIbPZxUòQ`NZMmLÜMÒNÜPfTJWFYN[_]w_âcÜjÖvÏôÒçÜÞåÚÿÖWÔ]ÓïÔáÔÍÔËÔêÕ`ÖëØÎÙËÚÍÚðÛNÝOâaë^øOpJdN[nVïReOZNhMàMÓNÚPnUMXFZM\]]r_ædÝjØuÏöÒèÛßåÚõ×ZÕ[ÔõÔåÕÏÕËÕáÖb×öÙÐÚËÛÍÛåÜQÞNã_ê`÷RsKeM]hWðSkOZNfMèNÔNÚRüÿ
6,638
14
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/audiodata/pluck-pcm24.aiff
FORMNAIFFCOMM ë@ ¬DNAMEPluckAUTHSerhiy StorchakaANNOAudacity Pluck + WahwahSSNDMŠ-eÿëKZúT1Ãî+€ÜÖCËÞÀ²aH©˜òø¿è$°}kûþ{]¸WVú>É´°UóP+)˜0ëËb\§æÙšíú>䑽Æ%ëâx„©à¶Ïï))à)"WXØâpgû5Wè>w¿ï„Ø,[÷'*—ûwEõøeüf5ûœNß0üû@îàú48>æ¸ûZüw£ü²ôfÖÚÿ_2ϹuCi zŒÁ»`ÇNQ ¹¢ºîßdTÀ‚d·ÿÿE?€”æIœ³²R·> ¼ ï²²_ØÎ<Û¾䴜 ê-cD¨ Z|Èþ þ+¹† QHoDá‹Ìd;¶ôìë6D [Hֈ¤:Ví¶y/«ØFÎû;rž×òäÄ$Çíé¦ìn\ãŽúSïßÐqÂû«Ýv 2OۗÊñÝ9Û@ÙD^Üݯ&I%äJþ]ìX¤øHjõMOˆœLûJnîœlý(%ó”ý^ÁìŽÄýqö\Qüä!SË ýé¼³kÿm(_9àž˜éòò¬,4¾ ²èÝ·1ÿ·Žo2¿Å3€ #ÿÿçT§"ÐÑ (3 d²ys] jKçŒÁ ­vÝÝQ XiÒ÷ ÝãWѪxPç æ‚ Òah hð©MÒKG›m¥%Ü?ÕÑ åmê'BZÝ¡DN>îÞü£Õ—çÀô³`;ëR$d(äKþPà¾ÍÉ5®ÞŠiûmܯ úžÜQŽ-–!ÞxÎ-¹äÇ©îe¢í( MiödFŠiŒý ¦Þd ÿ>Së=ÿ2oõl¡ÿ‚äýýôSX&þ*ŠÁÜÿi D¸ìèÎvð£ ãt –Q؝Í@çr‹ š[j6û€Iï{R&¾Xæ@§¢ÍÉ|» Mèÿÿ ŒîOÎ úÀßÒC 9ðЁæ ]¦@pO”=4¦`H—|¯ˆÐaáæ ×Ï1¸I ƒø¡ K3Nà ÒúÚ*ÆLÐ YBú÷Âý]$†õŸ÷ùáYì /tíäx+<à¡èҁ¢Þ©íLýÝLDÜË?ÊÖÞá¼>#å(ÚéQÜíÛ­¤÷}šÃDþî¹ÆÕI gLû¶ ¼¡Û§ÿÿ8èOfCþºÜù8ÿmJ*1Jt?8„ËXìfá&U-¿í PÒÒA¥×e~­™þ€~Ç8"K³Ó/ðÁlœ’ë DBÿÿ(¾ .¶ (!Ô)Á ââØ^ž ¯k%¯Uí}F±‡ÿúߜö)T9ª BVøk}1â€ÿØe† ÿF•¾Æƚ‰’ÿÔþK³­EÞö°ÖÝáéìèè6¶Jä¼}‹àsàÚ§Þ˜Ãâð¤Ý%‰ˆÝ· CŽß/ŒCâÏåq﹟î|uˬø€ÂµA?·¡®ÅmÕ ó'båyGi׬æRZ>ÿ=þ¸ôüªÿšù]AÿRÊ]§=!â€pdÞ1Ná ‡›Ôu%!áUoê鬓T ´”}l¤GŽ˜€ ¼ßr¡û.;r õ"Ãò *ŽÞºº ¶ƒ 7}KD}}ùFü^=— -ñ÷_k€§ûã<430Œ ‘/ÅtW«^ùMƒþ°#ÃX÷EÄhí!Ï5ՏäZØ«ÁߨØÝÌdÝþ›Ý¢µÜñ¶3ßÝ-/3¯ß„R@Ôåá¸ýϛïoÆÎZùú”Ð7 … {?Ñr¬õJ5 {<—NØ^0(Âüÿx4íðÿ ^ÞU‹þ§+d”œ¾‰î7$3Ë y#䆣 N :ñ»ÙÆÔ dã°«¶÷üÿÿ (‹‘ÓË ¸l9þײkN'\ÆÁŽ }×¹a |“ .?)‡Eghà•ŸB(öÆ +å5°…ƉåàÍÔ¤yµCòã X±ÐXà(3éX¨þä¸Û¹á÷D†´ Zí6¥)aOãçxiýÞÏà Ý`ÙØPÜàкS݌ „åà<¡7ݲ民œôð¨Aú›û¢Áå __œÓ) °!ò=\ç#–Zõݨ¨±Фÿ`Œ2õfþªÒîÿýJUorþoo b!Œ åŒ÷ÆB ~P!ю ßò󍍊þÒÌ8ÿÿ ¯’Ã°î ¤dûx†Àÿÿ—£Õµ1‘ùÅ}Ÿ µë \¤?ŽˆÚ·”BT :@ƒsä§7€Ò¯±Ì¨‘F3¼  ç¢ÁœõÕ¯mÿ,íö"÷d±VmíGË"rãpí.djÝØ7æ0܂jԞÿܐ·ÉþݲKœÂàш+Ëñçv±nžñîžó÷\ýv ò5䣱¨ ÞiÝá5 èq÷ÇpÀèWçFùèÿ]×>éqüáaØö¼ûQw9ÔíûÝ<&%nÿ`ýÐÕ[—;Ð iµ?Ü L—‰2Š\€»}Ëù`H= }nüÒ­ ÚêËW[¡aÿÿ;uÿ3£lª°Ôo EДÔ€L>Xðû̉ó4˜Š• þ2BÖÊáÈsè{˜o®\—7Ñ, ?.ÊÉMüÇLËþ„óÔóöÄc»ŸøìÈ,÷PŠâ£Ö73dÜÀ¨ô=ÛÀZÍëyÜ­•üĕފîJâ@°Ùné )„þóü¸õpÿø-õóÏ ÛV±µi@GËä¼é°pU Hå÷1Rìè£×þ¹=š úïìfOøÑ%œ9øµF:X½ü<âûU,ˆE‹w  ¦ öã"æãŠ…cŒ‘.âí Ü0.ž :´ž¨J¶tØÐ&0$=3—©¦ò ‡ë9>÷è@:åçí&É,¶*‹Á H¼?•æ,%èw@Ç3Œ8XºÄÄá D$9âí«Ã´…ýûì6|ö:6Í ìâ%(â7Ô3ÖsÜ Ã£rÛPÈË­Ý"æñíßÇB 5ä±Äë.Î,Îàö9üœ¿wüõa Ž´Àký/¿M›JE ‹ BT½ÖqßÒhüñc1X£÷ÕäÎõMQ”ôÚú@s|ø´ àþÄ^Pgóžÿ°v à+ œ†h É€~ƒýPOê•P  sÒ¹pÔêfH.äºäYKgI·g¬ Ö Î[™ oÑ<3ÃÀ 5+÷$= Hn5G í„ùAd;ñhú \q9}î«GΓYý¦ŠÜ‡Uõï¹Ü—셌׌sâ(~&QÛ®C®”ÛíР<Ý»ùão¬á G4uåûšö[í8H)®{øUØrÒ­õc§{Ì't琹iÅžïý« K8mü.àœ<û=pøäô×­— ñüåõñg›9_õ•½§üMÿ2±ìšøP ¦L+Ý`i+¿(½¸†Ô +îÑXœ® öfÒþU M:à¡4j¼#v~ØÇ, 1¯´¨ Ÿ*K’ð×G@UœÈÈÑ"øí [x ð˜*>(" ÔÐ ™´A3E¹çå}ýbQÌB;õ±?â/?ì¢VØ|}âTÜÊۖŸ$WoÛ1PÞ°xÞ¶¥Õ¶†âý° [šècdQíﲿ$iKú—ð áÈ H÷†ÕÖ.æ·¥÷¹òiÚ èGr'Œè…Çø?L ˜ðËW$±:íð§õdÃíÑ»*|ÝòÜã)û:¦s…<CòÄØ uc%l[âß-fMo¹Ã[æK+‡î ÷40 $²ùviùídˆ'|Ìÿ]® ÖªHÕE\ T‡ä–S¼3B‹Ãg m® ²+Ì|;¹‘C7·uv #75» ÃFNÅþ‚µÆ>Æö¦ÉÛd+í¢lÞKóã@ @ÀÛ«`%LÚêÓî÷ÞéuϐNãçn)éÃãr’ñ;e!Ù3ü¢ùD•°úì¢߅ü›W¹EéT4㔍 üûžõ>Bõzú<Îí &N,ê"*ý> ê›t·Àð}Í"üòú_Âìöiñ!£¶*ïLõùjMæÁ±^éW61¯~Må ܵëT!çùOIÿë ö:…³$Êaê ¡/±Q@k«&oàRù$Ë ¿ 'þkyÙ~^‹‹©ÓBý'^ýoÕÿ6çÏB«öî¢Ï»ííͪÞîöãOÂdÛ ä#-ÄÚ?”ü ß<ÐB©åøôXRë²m÷ós±!¸ þ ÁªÚ •…ü>nªæóA<E¾\€×E$ ôÈÁþó¶ òXñŽéK¦ZÚæuÐ肹ï½"ÿúãØê·#ô‰¡Ó¶ K©Ü´ ²^g·a„ __4}('þ ÷KîLÑ9@7Íýþé3¯²švÈVk¯¹Ïñp^D?x%É=0¾AÐ õXƒxìñ 1Ǭë•Õêþ‘­Q+uÿÔÍã ¾ö²SȄWí)VØEâMßÿèšÙà" ¶Ø÷W*úÞÃÔ.iæW„èÙíý@U“ö=³"lG˜ñpü ÚNýõÏ> ì9xŠÿÆM üͳæ ܕ ®iûŠª Æ_îGðÜéäþº¡â7Ê/'åUïl¯îÇ rû´m³, ©1ú2»DZ$¾Rk·#Œ;Å-É;Cö‘"¡‘-X5k&ùãŸýµ#”×ùß 8ô>üÝƒàŸ¡ÿŸ€Ã×þד$͗ÿTÌJ5z!$ØÖ S` @æ”)ûŒOÁ¹ßs|èéT é.)$‰ØøfÞö4\ʘ¹ëýOΏðàî÷àzØ&O"²L×>N#ÚÞ™Ù¿$çOƒÞŒð34 ÛÞù>#0Ì3·æÔ½“÷ ï$¬°¸Î|¿¢Èˆj ký)äøØ,vê‚àöžËà‹¢ çŽÞÒÊ÷ÈãÄÅ/îp‘²ý§GFhÿ£Yœ=úÛ[#$DÌÛ&EÍÖ Š®²ä{Ø67'òŒ—-ùº„YôQ 6à…øiµöŠåý¹7ÂÉÊÿ6 rÂ"J¥XLI ‹' ïƒM¦8ý°ñ*AŸ¤ì'ڍú QABþímBókµÓò•èñâÈ)Ýށ=ë¹ßÖW¦~ÛÖU~uÞòEãoÂêmËÕÿÜô·–ñ®ý×Á"ïo #yñŠé«RýÒð+›MÜÕ³cÇðûÓñgÄô+^pÆåGÎþ¶‚Û÷¢JÛÂYE©ãy¤~ðCP§ô*úÀ§"ÞE!}Þ÷ÅÉ'½žÁ (¡ìæIËó.ÚÜ ôÒ·{ÿw[&*òu–ÖímŒ1šµó<Ò6ûõKɈɚ²ó~²õ@¸³ ý1a“×W Ép]ÁürIý…Íúì vÒaÈ ¥ ü]ÅI~ï´6à™°å>}ÆDöÛ÷"ß1ÕxñOÖ/ß$Ãfà“Øñ:Gî: ÑEðù´¨ôsªQ,m e )Ýâíì fµ¢ÐðfŸ…Ú.»„IÉÚxl"ç‘ï„B`àš_óؓQ.ÆÚ'™ 8­ä”Ò å?ó‘ý£ÆŠ\‚ù*&YùöÃ*¤¤ N”(°—óÊö×n] [ç «×ùA+òìO\ŸèG{,iãð¬ÀÌ!ýZ¬Ól_G»äDµ Q‘1IÓ;¬ £íô)¤ý¦¶ D_ӃŠ4åÌðm)­à÷¤¬’ê×±î½á¤gÉ$êÚÁ\ÓguÖ  “èØÏ )½äËR?KóçWÒ÷œÿåîè9LØ® a5.qéð>E½5ó ÎaüÛTäbõËL¾ÿ¯¬á`{ëÿq áÝú) åh׿Í«ۄР[³èot ­øÿÖ g¥œ¯ëh Õ)[à÷óp*ëÏ)% OûëXEZÚÂP¡ko¢ñÓD´Qæ¼VKä“&(¿\ð@˜µ7&ß!§ 5ÐÙݖR:¨0>“ñ *"fé–n1Û¯äØXãã°ÇŠÈœóû¿¥ò=>oSæoœüN5߉JÐ úÛ¾SʤHقü:ÑÝt[)-êî-äù¡•Ü Š”þÚ#ó ú\Š{ @-þÏߤ"¤ üòúæOQ3Ü*à XëÊKéü÷pÛ~oê]½ÝèiØ£ˆ¬YݶCÖÿìJ2EHýΕe£µ! üQ|*lXúÒÚ)¢ÿ`!€ne_±àÌý ÷ºØìEÒ4ÆãŠ`Z~ãÍ4& Wò,àýÆUùê}YK,ÕïB• 6ê¯L:º…lÌ.B? 1զޞˆÊÈÃ&+¬í…=ï>‘Ãhå(¤ K¡à¸ÅÛÏÎ߉WÅðÞ×jë]Bâz<"¹î ½‰ü£·ëÔDÇÔÓ} ‚ö/, Cg%î® 3«,öÀ !Ùàj ¶)Ç×ãý^œÓ°Ûë1xþ|ÞRэ§Ú«i¨àAôBïZ­ÿY?Ž‹ãGql!Âø~)FÉÿ‰/&³®ú««aw¼hæÈøøÜšòHèÉ N÷â¶Z7Eå^±"jßõÌá#: @!÷kÕëŸû1ú²^AV0ÇcZ`5¤ ‘,™XØéQû ÂÁÈýöúÝ«7íþÉ Qåù ã+…ëB)ãÝ+ÇßOãöVÛ.ææð{|'J½þ¸ýð(º¶ØƒW|ªçdGžÑ_Ux0'J †ô³, HOëªô lcÈHþÐmÉçìð#ô'Ó߄ýpÛé§_çá¾Øq9ñRÝí‘€á ¨3“?."EÌ/¼(6èX$Cîùßþ$ Néë_ õÊ2îìæVâØþâ‰ç‘Â϶ù#>%¢¢àºÒ` –Úä?xˆí9t"(Xr6êQ ;í%}’ D÷‡å kÅ¿9þ{>Îýfïyį*çö/{枻üì„è+ѱ è èÐnâèáÌ-/ð¼r%Vrý^¿cßöå;˜ßŒtMʐäY…)Åx#UC 5•ûýR ¾ÏwÑ×ÁçOîžôä{£à ¡{äÜ"¸â.Á|³ò-'Öç¾F£¢7r{"MÕÆ&ɋ,(!büÎŽ„û阑ìúSóêrëfPålò^‘ä2ÜoëÒü¸ý,›%É©[ ŸÁ#4{â$%ä̹¹àý ¥ø2£ì.Pâ±Ò¼ ¼7Ïõ(1ÒŒòÒ¼óvºë ðÃéå JúêÔ­á°êS1Î,‹é’©î³ï½' ü5ïÈ4Õõ&½…háÍüP°ö’¤$+–zs&„( ¸k ´S ð"ݲñØNÁ7†ðX˜Ôópàs hƒÜ)4Š)âÄjàŽótèú›I‘ÿ{. uà"_á{Ó%¢koGY6KýNhº÷î±^òy.绔åDÜþh[æ³ \îŸ22˜~%Ôÿ}+_£%£êêý[ÚùàÒplQ( ù*MQì25›r:Û ÷MßH…Çýà ÷îᘌí˜@ sêîr ë—æòàŒêöÓÕ^öépœâªÈî½( #îûh¹݉ÃÐà±K–ëxË<%ðzM:1v‘Œ!Vå  þE Kî;Ž?EÉ2µñŒ²ËÒ"à`çò«ÎÛ«²>•âÿŠòôƒÙ)? ^Vû¯¢_Uç" o¢_"ãìqèt±Ž ‡pÑNÿ̛ó˜0òx æJæ±èöyRèÙ¸eÄò±âœ×|Ï&fõåmѬ&ªôÄQ3làÿ šø Ëüá—_"û̖1Xõ”+"õ(Aàð½Ö ͗ǧiû‘¨ÓÚ+îàûŸêU>¨ê¨d*‹êÖ âë}é¥ñà$úî—HüU.ûŒj\SÐó],ìõÄÛ·œòúþ‰þˆ<y>n× ÁúQB“Õ7ó}öÊB{àÇFå Û]ë\ã}¥-›õ§÷Ú² á 0z”TL] ïwkKø’ Š,=Ù ¿èS ýiú0<ó|@èûéY!ð½'ìC£ðö\à.¤du$œQéŽ!j—%:XL N`ãꆟÛî²Rø<8ãÁù[c+ø`Ê*H¸T( ^RÔƒþp°Î. í¹0ì°çŽ2˜¾èÆ XBëI’ð¥që†håRdð9¼ô¡|üϙÍÁ¤¤—·'û`돨öAûsïd1þ;ógdMÑÔè ¨$kñèßàxö%ÍUmá\)ÜË/Ú­¶ü&ÍãŠÅèÌö¥óÛ åŤ°–­ H¥ºšï$ªyMÅ"˜±hü¬ÿ\Òõt-î¡&ì¼mï/sîÕìüNÔøÚ wa· ’-u$4#M °Gì^÷QSêhîô,ýø hÑØ.*Éìl°Ðà ämýÿ׀ÐwFëàX’ä'ÂúSõ禷Æ´íh«ù3Rï)ní«ÉòžeôWÄýmç)¸ädM5²Jü€˜ÿW¾ø6Xø ÂDüçe5@h>³–8lÒ ¾IéPù÷×SÒ%ÏàÄc×§[ØßúñæLâød ²¼÷’Þy³|õïžÎŠ,ûÚ¾_Rq0ó½AêÈø3vû©´WRø7±ô"Qð¸eð†/ñFùxØújv”œ6-ÓÎÇR# Š!M«žý\bõíåá¹ë3·ò™„ûGS÷ÀÅåˆÖÈ%ì@lô>zbóœd³kØtTèÛªäáï ×ç® ýª2ðâàû¥óƒôMwôŒ÷·ªüc³XàæwÍ ö#üéý¥Á÷¾6÷-rþ«cûgF g]çÎÕå îˆ5ò–ù›Ø`LßÅhÕ5‡×,Õè˜qãWL¾ùíC»WÞA¤Ÿ$›× ®ÕñC é ¼…íÏAÛÿ«°üÓûÓF÷+¥õò‹Kò×dù"rúDÇxiGÛ¥Îv SCœ‰<˜?:þûODØïŒhðÑ^÷@öôK ³ ú?‚(®E¤>ãûÿڏ;ã*ù䓼Ý$ÙÞ }èyès>õórõ)äù?uø*„ö‰:õµTúéúÂh‰ݘ‰aý".ýD§÷y„÷$ùû‘ûu´…6 ,VÕ%áôúØ:øûEàñ·Þ~«Ö´øÕàÓâ@äEuø¹]ü«I'ŒcÚ„€åÊÛ²6®à ÒjÈü¾p%ý0Xþûîü»Óÿ¸÷#üø•Ró$5òÆwøýÁø»Ç(ØŠÊû¶‚K¾Äô~ö´ ‡áô‘pîî¦õ€ÉöjX* `ƒ‚×âÀk  嫖cínžáp"áÙAÛóŒåÏ~ê‘Rï›údÚô·áü¯XõLÈõÆîúXäö7ÿVLÿ¸H‚ÌÁQÐþ7ù$<øíù–Öû6µt ªJŒ2ºŒwRù›êÃÞ \ÛblÕ¿‘ßC)æMÍð2OÿÀ¡‡ðÎ;-Ùÿm&,Q"™Ý "÷Ê:Œ‡v"FýöÝ:[ú\¦Öõ^-ú£ ñk;ñó÷JöÊyÿ‰¡Â 3@“×”±¢Mõ© Ï(pùíhõNõˆþà| ×î؋ ÷ÿö[– ÅÿÔöY]ÞN^èOæÚ-ÊæÌíEqìÈÿ¶‹ðuà>ÎòPôHø5ãñXQbÛü=¤ÓL¢sî¾â.üz­ùŒ&ùÓøúæ¸$U²M •{¥m qªICà ú#ñMèÞìæá@\ÖYQß§_è'ÅêàQ(¼ýß+ö{é¢ÃÚŵTƒrüÇB3 ^2†ôÌ8dúÓ\þôv§û/.ï,YïÆEóSôò"ün¿ªøìe$S`3XýWÆlÿC“ÿû?êÒ-÷¨‹ô!jûß½~µ(B"Ç.· Ëïðþ{(üÜÖÛc*ïÛÙ¢‡êC­ñtqë·ÁGûî ¾ÕïC‡ñ€.ôžnìYÿ.ú»3'?4¡6NG¦ú&7üu¹ø˜aÿSI&T¼'! —ÆNi ªû¤®ö[ÔßÅÕæõÖ~)â1¨éŸèêï°0÷êÒ¼ <sÉ®$ êÔà&Ö î~öT´ù ñb<ŒZýßS +õ¨ÎúùMî'Pî•Áﲟô>#÷°6õvÓÏyÓ§ò•ý)W¿òþÚ*íéãpüEžôv¯ûwIÏÌùƒ#þ¤ xAýv Òrý4žÿ–]Ú Só·}Ú¬–îD=ö2Üí›ø ÃÏîòùíø4í4Èñž‹ç<õû7ñùŸ€ $ $ˆUªñù&wÿ¨°õå[þs øû•|w‹uzý`ùU0àCŒë&sÖbrä’#êO´çïùʙómÊ68Å¢=-Z…¥Ìôqx1½¢ ~ öç@z‹ƽøÃ±ú‘ï¤î¨ í)môPÊó~>üýÔøä¬ Ï€ÇXIÈýÀþüÊ ±—éýù])ô¾gþÉ 3#٘·W ûѶÿõªÙÖ+ö>ºÜYÕñM>úœð. …£ï²ÌËqîŠé2Xð-LäP÷µÂû!bø­œ”vq “&iÊö©Ù­‹ñdõÊ¢0 ?/>`ßöý†²ûíßâßîšÙ֚ æ¨1ëëµç["³hïÉLɖý¥ŠÞª © œËCânÑ —‘AËq 0ŒâÃgý#Íúb‰ñÎMïóìz|ôÿ«ïV01sø œVø>P#‹ØÅå,¢~êðâˋõ> è‡ã«L£#R°YãŒ)ûsˆÿ'²Û@Wö¨Þê8ò/Šý™Eñ æðåÐÿÓïÆ®æ;êðRjã%Põ÷ýa;þHƒï~˜6 ‡ .ñó‘¢?î›¶ê޲}´ .IÏnügÍþ¡ðߢÚòTÿØS éU*î¼~ç¬| .híC|U¶øâ+ Í´Ïà!vvu P¥¤û«(Ù »fþ¨E`>û*ö ò”í”õ‡•í(ÖØòË ˞ÿ}ë8ñ¢Z¾·Unc`úìf$ ‚Wôù ñµrÁ!êj~ðq·XûœiþèÝފö`4á< ñ•ÚÿNðe  ·åð¤ïý‡YðFÏä{àðÂÂã®ëõ_íÿ‘÷üî*`)n{ûðq:Uí»¯"ÎqÓIÚqí¢óAoúå엕àìKõ”ÿۊMì4æñèÁ õ`ë¾ Å_ôØ®6žÛ¦ÿ éw·ƒ*eD›!99§Á]³ý‡JÅüóaûë¥õoñb®õáí{Æ«ï«d >øù Z÷Âýõø\EcaTAíJ8ËËóÿ  9÷… úî ä" k|šâ«Áü&Ô³¢àìŽ÷|pã¤ÆñpøgïAþ 3ï78ûÙvïN0ä6ðvå$xôB£Dëû~]±ò­g6Uî ßî1j÷)¸Úêmåµ76ù˜‘"4ãœ5øzšßiPï%)ò `êx°Tëj\ w–ò«j0ü5™Êö¤nÒ6nwMß%¦}#í&K¬ý”M ʋþ¾ÞȌ÷åÀöcïóãúïëZÓîݾ ®ô¥Ì)KX' ¼3u¯íî†|sió~-ry "Ùª5 ¡$ Ëý>6äèÑúB¾ånjò±Ó7•î×1 ¬ií cújvíc5äÞ{î@æØ’ò'£ùJhvìM“¦$7æíiÙK×ïÇûŠ“’…µñ^A!5ºyÏìù§ zRçxbúÎpâü ñ•ñÕÞëñŽ{ë:”¿ïÞüI%øˆ´˜á™}±¾ ©û J|ÊRñËÍ`<¬þ°¶)ÿû‰?ùãõûÏvòâIó2°ï̜ ò Þ@ú¤ÄB”$  ÚðWú ”‹ò¿ ¨ ¡Lª/½î3¹ ‘þ~Yjìé±þ؜ç?‹ö þÀðwg T0írÝú"=ëïvæcuëÀ¯è“ØîÊEXcõ°ÎBý.&Ëæ”'î OÀñK­¸ÀÔP÷9! Ë œ@ ‘[úƒÛ¸ªë“ý™¦åŵô/¼ð…íp¾ ¹ë tÌ.í ¥Bô˜37Zý¿½›Ï _ý¶ k:s3þ«OÚñ®r }Sû“´ìPòLøÁÒþÇoòïc ¨Jò( >Ç÷42ßàÿ)± ÍB&Ãò8P?òDI Åó±¸ CíÆCn±ýÿª5 ^[íWß…èžûµý öô 9BïX(úƒ¸ì%Ñè@yêkÈéתëÕé=ÙñQ9Úðø¾‰FBÿ>ï-òm[ò¨’_{+q ¬¸) _ U Þoü!þçÈïKZØçÖÝø7—ï(,ðk 5'ì<î-]쒾Òñb/[åùX­‚S† Jú £A ä¶ð zâùÿF×"VúVH-ý"0€ˆñÊ}þ„µýšó÷˜e Þ³ô4i AÐö<„&û¿° ßñ¶ñô§%ßÛñ¡<Ø ïñ R,QÞ Å w¿Ésê‹÷ñ±ê]émÿêæúÁ_ø©öaòڄû<ÒîE¡éûëêñ;ë.êo|þË©î ɉô|µy‡úð™ðÚ!#Šó³#NÖ'3m0Ù § …› YÉþë ·ÎòˆÕ¸?éhµüæíðâôÉþÌ<îä&¹!íÆ*Ëïtq4yõ#¨ÒÚýÙ 9] O? ÿ×j8ÿ퉞ú!Sn¹þ¦ã öËññ—ü\üñ< Þ»øŽˆ÷~NxRút< ´õýÈöÈ1DðÓΧ êƒK qJÍ—Å·³@õ°€ ®²êM{"Xø~…ý‹Êy÷”ü^Bò9Æë¥híšïì äë'"ýfì~ ¿ñC«‰öâòªûµlôfrn°Ï<æÚ« æm Ç &tÿä’ jõ&H gáêâÛî\íµùÎKýk%óI›F{ïšéYEï£0 òìu›øÔõ :†Í Á»Dû«ÁH¾›°+uýÿèž?Ìòu½=Šúº$Ž úÛý \úö‰ €ñûôJ^ýš ùNþð[˜ÿì 3:°D²C =‚ ƒ£ ‰lùw{ ¡ƒë[þæöf]Ã<s6û”jý.·ösœìóýñwèí#¼íÚ©ûðíV㠖{ïíˆ.óú½ô“lø@³ôû¤ü ¹Hnv ÁÂ£Û øQ ú’å îA÷H ˆì]¸Ž…ìžkþ‘ü>Zø3ž·ó±¯ÿ£³òCǽóWÒ5x÷ ÖÜüëÏ >£‹º@Å m•'¨ ŽhÇcf† ÍDó~Œ ÀeùN_ v Èo¾¬ÎþJa ­þMKñõþûCûU1ÿ ïé®ÿ=´N<Û'O¡û @Vn7ö Øfüéü ;ëò)ÿôR/÷ ÐýÅAþáù\‡î5øôºËîtðÉúž®ï2­dÚðg|µfó78ö™Vöƒ«õ<ú'hÜuþvÒ õÏué Á‚*çë #[ù(´ äÓî ×$<ìo؁Wúù*ûÙsµ÷L<ÿôی‰ëôÍ8bôöò“£îû,‰ ·ƒÝÿל% n™5 ™«P yŸô¡: ð¡÷–ü eÂ캯 Ð6Püþ“ˆ„ýWa ðÿ™›¢\I¤ŸONÌ 8oXÏ´}ÿĺҙìã?›òîÇo ­ ÿˆþ¡`ûZ'ïƒ÷:7ïÈóRWù?œñ@XñOÈK©óÑøfÙõ†3õaŽøi߆¬ü c‰¬ ~ŠeÚ ŽúGúÃ2 þ?ïÈMÓåìŽí™ù•uþͅhú“‚þÎó÷Éq&ÞöÞ®`ä÷Äà™qúŒz J,þ¥L ]h ¤Tßô{€ ¨ƒ»û p õ÷ vö’ÌԞ×4EÍhÑ[(äûõÉ"ÿ…&Ÿøð_FƜ Ä_¿ìóŸ ý”ÑUV.i;{ˆ î/mÈ`ñÕX.û£ÿ_±þñüG•ðîÊø½ñEîõ%ñ÷ÈòÃï*hòjÔÿió”9ùÿõbÐõˆÖ÷§’ÿ‹ú­Õá)þ¬Ê ÖU +ÜÎü9Ê¡¬ñç£‡ìî¤ŠÇøX¾°úŸxüþ¹þ“ú=ªøïJSùnË«úÚ È!ýä ³òrdWT½–_¸4GŒ!÷fÚ]õ‚™Ošç3r~QíÓ:# [êé\W>”‚ñ"B¶ùc¯cƒ¶Ðç µÖ¢7*f;wâïÁg@ñ8Õ¶ÿ¾ÿmžý`ò†¶ùá¾ò#öŠAö‚Eôvhzó:¿jòóàÑûkÃõ7¤õ×X÷þ™%ùˆ‹s¹ýh …µ š ëbýw,7EóK ­í€-üŽ÷‘íEÕêþÆþþˆ¶ü1ó¡úµT(Vúb—#®ûf8 0Äý R ø©x¼º¥DEÀé§cmùmÊ=ôì¾ÿÄ_e¥4>£&û¢Üx]µ&m?;òLÝ}gôc „Á\¾ ¯¼‚œ½]û¤[†‰ŸñºBqðÅTkßjR/Uÿ³4ý¼7ô$$úåKó”™÷Ã'õn¯õ*ÜÿÙèóþŒ&ô/ü–þõEöqZöxuýÓ¶ø†nû‰Ùû‘ÿPòà þ…¾»’õ ®i$îMø)õÝ,âb8Sþ“<þ ;{ü‡\ãaûé ¼¯üYëŒKýÜÇ Þ„A¤TC•Q““^úžýš©ô¤ØÞVÞãV OùïYÖÛ4N:`Kõ,‡Ñóµ{õÿsB‹p aª¼Æ ²Tœð üÚ9]pô÷ð‰µ´œç$«þVÔõ®4û¹ƒô~¥øÈMô¼šö)jþfÕô¸Ð[rôáýÍ3õ$Ð÷)éö-iýT÷Ô-¶úb?`AýđIyW¡ÿŠÕ.ïöǬc„ï8wÖ±ôÛ|<œÿ(]?sþ•ÛÿT­ë™ýóò‘KýAÕtýcmÇtþnè Á‚•àˆ\m‡X´ü#òÓðô«"6ꟈf˜Sm‘=gz˜K·â‡éY€õg  ’þ­C 4ÿÓk Ýò“£ /b³éÊcöy±Ë}ð—ç4ùÿþ¸M‘“&ÿ5¡÷ŽüÉõE[ùÿÒôd÷XCý õ ØTõþÝûõDiøõì üO¬÷)›¡ùCK·Pü<9˜Çÿ”‹z{Cøh ÿðAû0Éóù3[þ@å‡þ§A¶]Sÿh"jþrîd¹þjénÿ#§ úÙi óÚ>­S1´ͪ3²ýŠ0[õ ?͹ãt;‹V—Q#öP¤êI÷)nð$üîÎ¥ (ÞÃì ØkÅ )1u½§=:Ãøö$çMðÝ•«þOãøÒHÿÿ½øf/ýÊgöðû2ôG«ø“ñûËüö¬x(fõÍAÿÚóõ©Xøê3õ÷û·(öÌÁŠøof÷xúöuÈLþ'bTÞ*ùâNÂÓñlL¡ó^²ÕæýGcåàþ¥>ÐÌÿåÿïo—½ÿmûq»ÿ_ë@Ûÿê€ ÆHî_Þ1 1ùwÏMþÒþ(„õ¯šdéÜ7»ÿʧSË4tª# Y¼•ù²’þûêûWå:=pI ¸B ®Ä žÝ·ûFÀÑ1ñcØËü¦V…þꬴù”µþµ?öËiüX¤ôn¬ù×ú¨B÷ÖdLƒöºkÅ(öQ)ù× öS#û6ö̙©Ú÷ýÆ$xú øÌZü´,6Ëÿaû= Z¬ò´L.nòé¿üI~‡Eþ=Θÿ14üÿ䆚ÿëï}Ön‹ }ÛZ(Ók4VÇe3&-ÿÔ*P@ö–zÍ#þdK_ÐðH0<^Ñ7 ¿¨÷H eQ—úó²QûIrØbKù n鐲ê-r I:U(ýlӁ-ò?¨áû+֏²ã:%Lú¯ÿq÷„AýWgô¼Ÿûµù§§øþJOg÷¹¢{÷âúÏJöÜþúàÖ÷´ÿÖº÷Õ°Kùu_²”û»öþ*üs…!ô p% ò¸RûG2Hþˆ¸ž5ÿ0>!NÕ´¨Ð9×ÎÆ¼1 †š 7›d¨9†ˆøÿ>5ŸRw3÷¬iòüå>Rõ¤ÖŽ'úÿ û‚ /×=üÝH:óúÞúõŹÜ߅ é”6¥ΣóÁfLË;ÿgk¯óV|Ž)ùÏÑŠô¢OSÔû«“ÿÛ²ø8©þmõ/Íûæ­øÅ•ùõ®=pø¢vz÷æ~ûÀÒ÷„—úµQ÷xüÿ&÷ø<m¨ù6{PûF¤ØýH­ý‹›ÿ(HõmrCòº9›úODˆúþZ¥L±þö†PšjDÊÎM¼2FÕº}®ß–ªÔñú“9ÕÏL/ƒ™aøêäF0û ž©J~àëÿBù FËÁ qAþ·8úÁ»ê"&6º$ FØíQ®m„3g®GT±¨ ô´ Kø­`r­0geü–}#SøáÍþ‰Çõ¾~ü¢øvúËwùrullø£hü³Wø(zú«Ù÷ö#þrrø9—§ù%°"ìú·ü9UüŸ^þ…°þ_ öΪÿ€bòë\ÿñÍù`óÿþþêÿã¸þÉâÿÍXçâÿã Üú,¶õ¹ž®’ê46}yÈj@Aˆ§¨oú6{(ú‹ËîèµBCÓK€¥w“Àe¨ ȃvHv¯g½úîƒÅwËr¼ؚ”áEšN˜êATMýö94 ð÷Ê5Q¾ÿ”Neý[ H¸ùŽþà’ö[ý)O÷ŽõûmŠÿù¼úã™`ù;Pýšø°·ú˄øcöý܅øz Å×ù'×´úuĶûü$(ÿfÀýÆoø&hþëÊóSdÿs“ø‹wÿ™«ýÅÿšþ¬HÿšX7EÿÀ2àù,WÄ¡òq)s¶*kVy¦YuË£ v¹› û…&–ùÔãóì[ƒQ˜.ë 5›ì ¡:œ¸"2ûN†9xÿ’áýs҅qhê)ߢñ¾ý÷à×÷!H1|þÛ÷ZEýþø[ú5±ÿÈ÷½ýi÷:šûñgþÛBú $˜ùÀùþv$ù/'û÷øÒíý\½øÈìÿHùC.ÙúS¶ÔûË04¸ýLMùqüþlÖóã·ÿé÷ÒHÿ7ýX:ÿHåþ–êÿX§”DÿˆÃÎ*ÿäIkr¾ÅÀ@]ñ4Ü´û%Óã ôRÇ¥‚‰ü¿Á–Êùj÷@ÚûÖ¿õ¯2%°‚Úg 6²Íæší½hûñ l×þŽ< êw:ãG¼ ,øïw ±¼ÐOù‘¼²£ö˛¸þºY•þ€¡q‰úÚùÿQ;÷ª¦ýéÖ÷ üdýÇßûhÑú2¸ÿ;äù˜¾ûbìù/{üîhù ùE7ù\¾—ìú9Þ[Sû:ìéüã?ú§©ýþ6ôºþj÷5?þáLüۄÿýþ„|ÿÿØÿTv¤¯ÿ´–ìÉAØ'‡wõø,ñ"é§`½vÂéZôýÛheùWêT¿ðêoI€mZˆØ@ nì+ñËü¹¨©ýÆnB«Zã Ù ÅdŸo'²ûCö»Í3ý,[üþÖ¶ƒjû}ÿ{jøRFþ26÷üÃRüÅ9û}jú“ÿèIùó—ûÖ/ù-üšùIä—ÖùwõöOú(Ç„uûF”‰ü‹«ûÇwý õv%þHÑöÁgþ™ üO?þŨþoæþì{}\ÿ*eOÿ½Ù2ÔnÙ²|»±'«²=0ÁˆÎ²¡0¯þՀzÝù‡„ZæÿÚSŒ •Ÿ˜<§ ·J ß\­ý¨4ÒMý.YkÀ;2#d»ô&”Rhòl”œüæÐˆöóØüK._ÿ ã”Vü\ÿ¡!ø÷;þs÷5¡ýûÞyûÜðšSúðzóúK£ü[ùÓü[úùŒÿÿùXùžªL]ú(Øû*(¶üD³üÐsýM›öeñýú öqæþRû»Œþ„àþTaþ±êÈþòCÿV‡ÒDÿàƒ̙šMj‰}÷[¯maH¡Œûÿž]{ùú°YLþÌü²¼„î]iCº€IæÛQ>öþ¬áüÔv£»IQVÄ8#bÙYK1Žgþnû†m÷o¡ûx qÿD¯ü«ÿÊßù—Mþ±{÷vDýkxûõü2òÈû@ïê¹ú•·üíâú×ü8vùÂXÿfÛù»â aú#á€,úöL«þü1ýÀDý¸÷eý²ÏöO„þèû$;þNœþ/Xþ‚ÿ´œþÆX¯ÿ+mÒIÿ³—;˜g?C¯‹Q/Š”Ð ’ÆÅ·>Œ:&ú›êMpýÕ² ¡¯óԝw݈!©£fƒzù]Ïÿ¾Ô/Ôü®õҍ ­z×ÖúS4øaµ{qЦÿØO…bø!u"gú»Ø€·þñWÅ¥ý2åÿí²ú0Ðþæ­÷Ðeý²•úm‡ü•[Aû;—úÝ@ý†[úXæü.¼ùûÒþã¼ùá©öú+ÎTéúÝ¡nûÐ`þ™düÂ}ølaýuöVýܝúpþ¶ýýLþU ÿlþš†C7þþÜÒ¾ÿ„¶¼¬2?þŠ/µ+ð–ÇðÎ5Œå ²V¹û^®: ýS݈ã'/ žw’Ð{zØ!tÓ§O†ü½ùè ²ŸB„mžl§1Š[«‡bù®/3ú!•Úþ°á¾ý­B~úÄÿ`ø<7ýù¶ùëüÐUÿ£mûÙ"gsû#°þ >úš?ü<´ú4’þoú yP7ú9G(úÌÿnû¦ÿ[büŠ7ùtAý< öƒSý§óúÆýëiý¾þ&3ÿ1³þl Ò{þÎjÌÇÿQ$Tãÿø« Ç¢Ø|¬aùŠë‘rO|Èáü3ƒ±ü\ 6ÞëÆ g±>û\‹ßFpVüû–${%)ʔ—¢ÝÓþ‚ÑŒã•Å&t“2ú rDù¯£±îþPÈîþÃ=¶ûQ ÿSXø´>þ={ù‹èý¾þåDü •qiûd¾þ´àúÕ®übæúgýþ 1ú-½± úF*»wú¾úÌçû€» 4üW®úv›ýö×7ýyŽùˆkýÁ@ýrýþÿÿsþEßa”þ¦Ô½¶ÿ&ürÿÉ I.‘%ñOq"'×N÷Ÿ`n2r²cý ÎÛûë– EÃßë²JºÈƒîš}ã–hÜwƒÃýa•Ayÿ`éˆÛï¨ÆœJ‘Fz¤šŸ¹˜*û*øRùj…ÇÜýÜ$$þg5`Xûכÿâù3÷þyýùQøý_²þ(&üdè[Sû¤¤ÿ?àûïü—úžÿý¸LúY1®ú]ÅTú½âæûhÛ¤¶ü1[ûošüÞþ÷KýR™ùkýœhýÝýÚÛþÚ.þ Ýöþ~˜¡þúªÄHÿ–ÎÝ¢W¸ÿh2–R­C·‚Ù0L}ÏýÛ}Ý´û±àöA6\å'ñ¾Z æ ¸™WÀ¾?’ºýìZïþÁvAËÂ÷[þ£ƒ^¤Å¼ ¢ üT¥d¨ùXãPýXÙ?@þ¡¼ˆüW÷ÿ³ºù¶úþ·üù9Pý¥zýrÓü©Ý&kûä5ÿ»_ûL“üëúÓõývkúƒ†Ž úvWà,ú¿û'ÂûU’.Æü±üYËü¹R÷Ûôý/qøÍËý{€ü¸5ýºŠþ´áýÿ¼’®þZfwýþÒg—²ÿhÛnq"mÿ÷xzàÒÖY;WeHGþ˜h¶!û®\Ý¢ÿ˜àÙ *¼TßÁ¢:%  gÌœ+þÎnéþK íDãÚËä´á:×®ÕG« ý~‘ujùvñüüÐØ]ÝþÂ)¬RüÐxÿàîú:“þð¢ù>¹ýæ[üÊDüë#ײü!$û…OýGûSýG‘ú¯L Ÿú’±c¯úÇì5ûIµ©ûõøý4"ü›ø‚¿ýOø—…ýaœüPbý¡þŽßýå9Èþ<…A’þ°;xoÿA-Gÿóð\ÂEžÃ™Çú­e1Z+³ÿ=zÞûÙ¸Â]þ÷ ÈbO´RC<b«›©”œsÿIix¾ýü®0ßvéûµË¾íë²¥ªê­Ýþž+ÍùÅ3¢üLx;þÈØÌžý@n ãú¼&ÿ$×ù^Çþ#¦ü4Øý*Zr8ü\ëwû½ªý­¶û=vý+úÝÒÿ–èú´bâSúׁ.ûF¯zûå ýü”ü„˜ù9æüý½ø}\ýMnûæPýŒ4þdùýÎAÿì…þ!™ÿúþaîÿטWÿŋҁ¾µaM!»,DZzßÿűbü-Ô£ þ\ª³Žõ¨'Ê>•3ãÒ“á’±˜ú +~šýØZ=ó­„÷ÌM Éê·œîi± ÿ«UŠrú=÷$üûÔH“Bþµ>í@ý¦2Jû:[ÿWgù”sþ^êûµHýgáÿûÁü—6±Ðûô)þ†ûp¾ý"û Dÿ-+ú֘_}ú鉮ûG»n·ûÙþ²åüsùûQüí1ø]ý>âû~ý}Šþ5ý½ÞÿªWþ ¶þvýOyþûê:$ÿŸ.¥þ_ñـ/&IÏø—\4­1¿7eüŸáƒ#ýÓøœkΞ˜TrŸˆå,‡KÜr+Ô©|ÞýÚºChñ½þªÕ#Ìæ½”¶ð察¾ŽoúÚÕ2«ûp>¨þŠJ‹ýÿSóû³Üÿ‚ùùÛ¼þ“ÍûNÇý ÿy7üÎ Óùü(Dþ‰û¢ïý+–û9ŽþÐLúüÞBûøä—ûO¡º˜ûԉÿW·ühÍúÁ\üãœø¢lý7@ûýu«ýýÙý³óÿr?ýÿ¬gKþc™<ÑþâYèÿ~lž7;îR#q:È<b:}%‚— (ý%“b<ýeƒQ’è…o6\y)rcvÖû%€(—étÉþ¸BŒG°ÿëOØËð;²''é>vxÄû”„;ùû'¹?þK,¶þJõrTü(ÿªéú/ÿþÅ9ûDý֑þð`ýÜ»üZÞþôÝûÓüýF‰ûg¹þ€–û"ú`ÝûѦZû\kö–ûÕªÿë=üd%û‡üßbøß ý5úÃøýswý¿ý¯¥ÿBý÷gåþU¯&oþΣeÿb&(¶]ü×O–ì›Im½O¨¼!ãœý´¯@µý­hÐC pNµfô¿c¹ñŽmwPgäþHÚ<¼ÿ´àüοÇ1W¶ª(៛-™ˆöübN@åúüçÆtýü‚1æþ†Œ\ü–pÿÎ ú<þñÜúÏÆþšþf~ý4ûÍQüŠÂÿYïüÒýq€û”»þ>ÑûJ\é@û8ßZûlë"dûÛwnÀüduüGðüà*ù4Ûý8núyêýw6ýyNý±ŠÿƒýõÇûþNE ôþÀQkÚÿLÝÝ~ÿõö*³dºs~ó&`âݼ¥þCÝ 8üësNFÿã.YïôRÅîNÃVñöµU¬þ«:1ÿ<»ô&5½]œöÒÄ7~Sý;œ?ÊúôÄÎ*ý£â?îþ¯x¡#üþhÿë²úïþÿ(ú¶…þ63ýà¸ýc~§Wü·êÿ´–ü/…ýªCûÀ®þ ]ûrUxÔûX^û`=—ûæ)ãüiôýºüæ!ù rýA:ú@êý€ßý-ëý¹ƒþïìýùÝ}/þLüåúþ¸…@#ÿ=€ŽqÿÞ=üĔ”Ú/P•6šû¬—ËþË\qüãß3–ÿy(ByÞÕ<à‰Ï6gtõ=]†°?ÿ#H Wþáò惉®¬Ö¡‹Ó }ú;‡nüþ9¢ûÑ7ýGjI˜þÆ ±hý_>†ûUXÿ;¤ú´•þ_­ýcýŽÉmMüâeµüYôýî1ûë8ýæ¥ûšAÉûyj¥Ôû˜¾H:ûôªI:üs¢ý®àüðYúÝýNœúiý©üßýÆçþÈÓþÄ8^þQ_ºDþ¶Tÿ3É?ÿÌî!zìö¼1?¯hÞ¶ UuªÿEsâüý‹xÿ ÿ*«È1%æ9 Ç!Jûƒ$”ÿ«% þ¥¾ÔvìG›ïˆLvîfú•¦ZçþïÏ.cûL[ϦüídOþɕ½Œý¸!ûºûÿYÀúÇUþ…Yüó*ý·"1ý b>Åü‚&þ:Sü)ýÐÇûÁÄÿ±Øû›BÁû²šBü¡ü þPžüþWú¨Ûý` ú ý¢ýü=ýÙ þ þ¥ÿúuþZ·“þ¹³ÿ.ëòÇÿ¾œÔäe†pÌ¿á;U—ÿ®dĘý4$ÿ¥þ£V›ª”,«Ð ”~¬RÑd<†ò`þˆª¿ATY†l/²^ÅÍüMzÕëCËÿ¼˜û¨1Ê¥üœQzþºÆcþÅ)áü1ÿsÿúëÅþ§ü’Qý܎ÿɺý/ãjBü§þþ‹>ü;6ýÉóûèDÿ\Àû½ïÝûÍÐ-tüµì“ü‘6þå=ýRû=ýtéúÖýºŽüAnýð5þt)þ&ÂÿêþiÌOcþÁpë"ÿ/è¬-ÿ·±bUÄ# ÿÞéÖ¥}À8Ó¶©@ýæÁþE¼úº‚ªõr^ç½ç㙊7æ©ÒÔäþˆ˜¥bÆ:lÌwB‘©Ü/2ÿ%'Ày #üÕÀ’üY*OþšnÊ·þMz5çü€Vÿ‰ûöþÅvüC§ýþ¼ÿg¥ýSƒUüË©þÝvüa%ýÑÊüeÿTûáþy^ûë8êü2‘+`ü¤Fÿký$9û×»ýŒlú*›ýÖkûúTþ 'þAóþ?Kÿ•Àþ{ATþÍÏÖéÿ2¡j³ÿ²þ‡cG<0ìš D‹Ÿ'™$JùXýÜ`ÎâýûïâL_Ý&PË~ˆ.ÃJ£6ÄCdµBþ¥‰ñF OÌ^Í&=ƒ%äR 9%ó4ü¦ƒ··ü/¥I(þd‰Òþ ={üÓõÿ¢˜ûh¤þÝeûú÷þ%îÿØýnâx®üõEÿ@zü}CýÒ1ü<þèûúžûíüˆøü<H5ÝüËZÚID3 ’ID3@  =?$aTALBPython Test SuiteTIT2PluckTDRC2013TPE1Serhiy StorchakaCOMMAudacity Pluck + Wahwah
20,119
254
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/audiodata/pluck-pcm32.wav
RIFFÞgWAVEfmt +ˆX LISTZINFOINAMPluckIARTSerhiy StorchakaICMTAudacity Pluck + WahwahICRD2013dataXg¼e-’ëÿ€ZKœTú@Ã1À+î€Ö܀àCÀÀÞË@a²˜©Hüøò€$迒}°`ûk4]{þVW¸ É>úU°´À+Pó0˜)@bËë §\`šÙæ€>úí@½‘ä€ë%Æ „xâ ©à϶à@))ï€")àØXWgpâØW5û@>è¿w€„ï€[,؀*'÷—`Ewûeøõdü 5f Nœû@ü0ß(î@û à°84ú@¸æ>ðÃZû€£w¼Tô²ü€ÚÖf´2_ÿ€¹ϰu€iCŒz `»ÁNÇ€¹ Q º¢Àdßî`ÀT‚€·dÿÿÿ@?E€à攜Ip²³>·R  ¼ à²²ï€Ø_@Û<Îp¾Àœ´ä-ê €¨Dc |Z €þÈàþ À†¹+ €oHQáD€d̋€;ìô¶06ë€D H[ €¤ˆÖ¸V: y¶í«/ÀÎFØ8r;ûמ Ääò€íÇ$àì¦é`\n€ŽãèïSú€qÐßÀ«ûÂÀ vÝ`O2ÀʗÛ09ÝñÀÙ@ۀÜ^DÀ&¯Ý%I Jä>]þÀ¤XìÀjHøOMõLœˆønJûàlœî¬%(ýð”óxÁ^ýàĎìLqýÀQ\ö„!äü ËS(¼éýk³(mÿà9_L˜ž òò鬀¾4,@² à·Ýè ÿ1€Ž·€oÀ¿2 3Å€À# ÿÿÿàTçÐ"§àÑ@3( ²d ]sy°Kj @ÁŒçPv­ €QÝÝ`iX ÷ҀãÝ ªÑWpxàP ç ‚æ Ò €ha0ðh €ÒM©€GK¥m› Ü%@ÑÕ?må àB'ê ZD¡Ý°>NÞîÄÕ£ü€Àç—@³ô;`@Rë€(d$@Kä:Pþ Í¾à®5ɀiŠÞmû€ ¯Ü¨žú@ŽQ܀!–-€ÎxÞÀ¹-à©Çä¢eî`(í`iM 0FdöŒiЦ ý@ dÞkS>ÿ =ëço2ÿ@¡lõF‚ÿ€ýä°Sôý&XÀŠ*þ€ÜÁZ iÿ€¸D2èìvÎP£ðÀtã Q– `Ø@ÍÀ‹r瀚 €j[ û6€àïI&R{X¾€§@æ Í¢@»|É èM ÿÿÿ’Å @ÎOîpÀú ÀCÒßPð9 €æÐ0¦] €Op@p=”@`¦4ø—H¢¯|ðЈæáa0× ¸1ÏÀ I¡øƒ K €ÃN3úÒ Ð*Ú8LÆY ÐTBÂ÷ú¼$]ý†p÷ŸõØYáù  ì€ít/+xä!<`è¡à€¢Ò©Þ€ýLíLÝÈD@?ËÜàÖÊ@¼áހ#>`Ú(å ÜQé`­ÛíÀ¤°}÷DÚ¦¹îþÀÕÆüI°g ‚LH ¶û—¡¼@ÿ§Ûšè8ÿ€CfOˆºþÀ8ùܶJmÿà1*"tJ@„8?¸XËàáfì U&Àí¿-ÀÒP AÒ@×¥­~e þ™€€Ç~@K"8`Ó³@Áð/œl€ë’ðBD ÿÿÿÀ¾(P¶. !( Á)Ô`ââ Àž^Ø k¯ @U¯%Ø}í±Fÿ‡œßúØ)ö€ª9TVB ø}kø€â1€ ØÿÀ†e Fÿ @¾• Æ‰šÆ’•Ôÿ̳KþÞE­Ö°ö€éáÝÀèèì@J¶6à¼ä8‹}àsàÀ§Ú@Ã˜Þ ¤ðâ‰%ÝØˆ€·ÝPŽC €Œ/ßÏâC q借¹ïÀu|ˀ€ø€?Aµ¡·€mÅ®4Õ°'ó @byåÜiG€æ¬×JZRÀ=ÿ>fô¸þŒªü]šÿXA]ù÷ÊRÿ§]ü!=p€âèÞd€áN1À›‡ @%uÔá!êoUà¬é T“@”´ ¤ƒï`}€G¤l@˜Ž€0ß¼ €û¡r(.€ r;"õ€òà Ž* €ººÞðƒ¶ 7 p}€}DKP}¼Fùx^ü@—=ñ- `÷ k_€à§ð<ãû€4@Œ03/‘ WtÅ^«¨ƒMù`#°þXƒÃE÷ÀhÄàÏ!íÀÕ5`ØZäàÁ«€Ø¨ß€dÌÝÀ›þÝ@µ¢Ý@¶ñܐß3À/-ÝH¯3ÀR„߀Ô@¸á崛Ïý@Æoï¨Zΰ”úù@7ÐP… €?{ ¸rÑõ¬ 5JÀ<{ ÀN—À0^ØLüÂ(ó4xÿàðí»^ ÿÀ‹UÞZ+§þœ”d÷‰¾ î7Ë3$À#y £†äà N @»ñ:`Ù€ ÔÆàãd€¶«°Àü÷ÿÿÿP‹( Ëӑl¸ þ9˜²×'NkˆÆ\€ŽÁ} @a¹×À“| à?. ‡)€gEðàhП•@B@Æö(€å+ @°5 Æ…€à剀Í@¤Ôàµy€ãòC`±X @àXÐH3(€¨Xé¸äþÀá¹Û†D÷€Z ´@¥6í@Oa) xçã@ýiÀÏÞ  à€`ÝÀPØÙ€ÐàÜHSº@ ŒÝ0å„`¡<à@²Ý7 ‘°æ ôœ A¨ðh›úpÁ¢û åH__€)ӜP!°  \=òÀ#çà–ÀõZ¨¨Ýà± ¤ÐAŒ`ÿfõ2âªþÀÿîÒ`Jý€roUòooþ b ðŒ!ðå ŒBÆ÷P~ @ŽÑ!Ðß °óòÒþŠ 8Ìÿÿÿ𒯠î°Ãpd¤ ˜†xûÀÿÿÿØ£—1µÕù‘@Ÿ}Åðëµ `\ ¸¤@?ˆŽ`·Úp”TBð: €ƒ@äs€€7§À¯Ò̱ ‘¨€¼3F  Á¢çõœÀm¯ÕÐ,ÿ€"öí@d÷mV±@ËGíÀr"ÀípãÀjd.@7ØÝ€0æj‚Ü€ÿžÔ@·ÜÂþÉK²Ý|œ@ˆÑàÀñË+à±v瀞nàžîñÀ\÷ó@ vý 5ò Â䀨±£iÞ €5áÝPqè  Ç÷ðÀpçWè`FˆèùÚ×]ÿ@qé>èaáü@¼öØHwQû@íÔ9¨<ÝûÀn%&'`ÿ¨ÕÐý°—[<Ð;àµi @Ü?°—L @2‰€\Š}»€ùË€=H`@n} ЭÒüÀêÚ À[WËa¡ÿÿÿøu;<£3ÿpªloÔ°ÀÐE 'ԔL€ðX>ÐÌû ó‰˜4à•Š°2þ €ÊÖB á@èsȀ{€®o˜`—\€,Ñ7Ð.? ÉÊ üM€ËLÇ(„þ€óÔóðcÄö€øŸ»@,ÈìPŠP÷€Ö£âÀd37€¨ÀÜp=ô@ZÀÛÀyëÍÀ•­Ü•Äü@ŠÞHJî °@âànÙà éÀþ„)0¸üópõÓ-øÿÐÏóõVÛ €iµ± G@€¼äË@°é@UpPåH àR1÷Àìàף莹þ€ š=èïú Ofìp%Ñøà9œÈFµø@½X:°â<ü@,Uû–ˆ0‹E w˜¦ Pãö €ãæ" €c…Šà‘Œíâ.ÀÜ @ž.0: ¨ž´¸¶J€ÐØtȁ&=$0 —3€ò¦©p‡ €>9ëÀè÷€å:@Xíç,É&8*¶pÁ‹€¼H æ•?`%,@wèà3Ç€X8Œ@ĺ`áÄÀD @â9$0«í…´Ã(ûý |6ìÐ6:öÀ Íàìà(%âÀÔ7âsÖ3à ܰr£€ÈPÛÀ­Ëæ"Ý0íñBÇߐ5 €äàıÀÎ.ë€àÎ,P9ö0¿œüüw aõ ´Ž ýkÀÀ/€›M¿EJ‹ `TB èÖ½àq€hÒßÜcñü@£X1ðäÕ÷$ΠQMõ”Â@úÚô€|s@  ´øàî^Äþ€gPОó0v°ÿðà œ + h†€É àƒ~POPý@•ꠏPàÒs €Ôp¹àfêä.H¸äºgKYI€¬g·P Ö À™[Î@Ño @Ã3< À@+5h÷ý=$ànH €G5@„í pù A;d hñ úpq\ @î}9ðG«Y“Î”Š¦ýÀU‡Üð¹ïõ—Ü€Œ…ìÀsŒ×@~(âQ&C®Ûà”®ÀíÛ< Ð@ù»Ý`¬oã G á€u4`šûå@[ö@H8í€{®) ØUøÀr­Ò@§cõà{€t'̐ç€Åi¹ïžj«ý`K m8<.üà<œàøp=ûÀäø°­×ô@ —àåüñ õà›gñ@_9н•õ §¼Müa±2ÿPšì€PøàL¦ `Ý+`+i½(¿@†¸À+ ÔàÑœX€fö ÀUþÒpM à:`4¡€#¼j~v@,ÇØÐ¯1 €¨´Ÿ ’K*8×ðU@G`œÈÈHÑ@íø" x[ À˜ð À*(> "ÀÐԀ´™ E3Ap¹à}åçÌQbý€;BÌ ?±õ@?/âàV¢ì@}|ØÜTâ`ÊŸ–Û€oW$€P1ۀx°ÞÀ¥¶Þ†¶Õ€°ýâÀš[ àdcè€íQ࿲ï€Ki$Èð—ú Èá ØH 0†÷ Õ€.Öæ€¥· ¹÷pÚiò°è àrG(Œ'`Džè L?øà˜ WËð@:±$@§ðí@Ãdõ@»Ñí€Ý|*`ãÜòà)(¦:ûp…sðC<PØÄò€cu [l%@â@f-ß`oM€[ùÀæ‡+Kð î€04÷²$ ˜ivùhíù€'ˆdPÌ|S®]ÿ0Ö €ÕHªP\EP‡T ì–ä€3¼SôBp‹ÀgÃP®m @² Ì+à;|€C‘¹ 7€vu·P7# € »5¸FÃøÅN굂þ@Æ>ưɦö+dÛl¢íóKÞ@@ãðÀ@ €`«ÛL%ÓêÚ@÷î€uéÞNÏçã,)nÀãÃ頒re;ñ€3Ù!ì¢ü@Dù`°•èìúà¢@ü…ßÀW›€éE¹ 4Tà”ã ü àžû߁B>õPzõøÎ<ú€ í@,N&à*"êd >ýàt›ê`À·€Í}ð@òü"ØÂ_úPì0iö £!ñÀ*¶@Lï õøMjù Áæé^±€6WÀ1~¯àåM`µÜ @!TëÔùç€ÿIO ë:ö  …€Ê$³Ha ¡ ê¼±/€@QB«kÀào&ùRZË$ ¿ Àþ'€yk@^~Ù ‹‹€BÓ©ðýÀ^'ðoý@ÕÎç6ÿ€«BÏТîö€í»ÏªÍíöîÞ Oã¼d€ä ÛÄ-#@”?ڐ üÀ<߀©BÐàøå`RXôm²ë ÷±só@ ¸!øÁ þ@Úª…• @>ü ªnÀAóæ€E<\¾à€@$E×Pô ÁÈŽóþ| ¶`XòÐŽñ@¦KéàÚZÀuæXÐè`¹‚à½ïÀÿ"àãúÐêØÐ#· ¡‰ô@¶Óp©K ´Üв àg^„a· _  _`}4þ'(K÷ @ÑLîŒ@9€ýÍ7úéþÀ²¯3~vškVÈ ¹¯€pñÏkD^À%x?ÇÉ€0=¬A¾ÐÐ0õ ƒXìx01 ñ`Ç•ë¬`êÕ‘þðQ­u+`ÍÔÿ`¾ ãPS²ö@W„ÈÀV)í€EØ`ßMâšèÿ@àÙ¶ "ÀW÷ØÀú*€Ãހi.Ô`„WæÙèÀ@ýí “U°³=öGl")ñ˜ÀüpÀNÚ $Ïõý` >`x9ìàÿŠ@ Mƀü@æ³Í •Ü @i® ઊû _Æ Gî°éÜð@þä@¡º Ê7â°'/ïUå°¯làÇîÀr àm´û€,³`1© È»2ú ZD~¾$ÀkRà·;Œ#ÀÉ-ŀC;ð"‘ö€‘¡@5X-P&kðŸãù¼µý@ה#` ßù>ô8¼ƒÝü ¡Ÿàv€ŸÿÀ×Ãn“×þÀ—Í$ ÌTÿz5JX$!°ÖØ``S €æ@ )”ÈŒûÀÁO€ß¹ |s€Téèà.é À$)1؉ÐÞføÐ\4ö¹˜Ê@Oýë@ðÎ@îàðzà÷O&Ø@L²"ÀN>×Ú#@™Þ@$¿ÙÀƒOçŒÞ 43ðpÞÛ (>ùÀÌ0#·3@ÔæP½¨“ ÷À¬$ï ¸°€¿|΀¢€jˆÈðk ä)ý¨Øø€v,àà‚ê@˞ö ¢‹à Žç @ÊÒÞ È÷@Äã°/Åpî಑G§ýÀhF0†Y£ÿ€=œ [ÛúD$#€ÛÌÀÍE&@Š ր²®`Ø{äÀ76€Œò'ȗ-¸ºù`Y„ Qô@…à6Àµiø€åŠöÌ7¹ýÊÉÂå 6ÿ r Z"€X¥J˜IL@'‹ ƒï ȦM`8ñ°ý@A*@¤¸Å@'ì€úÚ`AQ àB&míþBµkóÀ•òÓ âñèÝ)ÈÀ=ÞÀß¹ë@¦WÖ`Û~UÖ u~@EòÞàÂoã@Ëmê@ÜÿÕ@–·ô0®ñÐÁ×ýoï"€ ñy#@éŠXR«Òýp›+ð€ÜM³ÕcðǨÓû Ägñ0^+ôÀÆp€ÎGåþ‚¶þ¢÷Û$J@YÂÛ`©E@¤yã°~pCð€§PL*ô Àú`"§´EÞ€Þ}! ÉÅ÷@ž½'À ÁÀì¡( ËIæ.ó@ÜÚÀÒô €{·ó[wÿà*&à–uò Ö Œm퀵š1pÒ<óø6ÀKõû@ɈÉG²š ~óÀõ²€³¸@°ý @“a1€W×pÉ ÀÁ]Irü …ý@ìúÍ v €ÈaÒp¥ € (Å]ü@~IÀ6´ï@°™à@}>åöDÆ"÷ۀ1߀xՀOñ€ß/րfÃ$`ؓà@G:ñ :î@ðEѸ¨´ùsô Qª@m,@ e €âÝ)ÀìíPµf àТPŸfð …@».ÚàI„ÀxÚÉÈ"l ‘çàB„ï `_šàXóQ“ØÆ.À™'Ú°­8 ҔäÀ?å `ý‘óÀ£ØÆ@\Š`‚¸*ù€ùY&àÃö€¤¤*”N €—°(`Êó€öÀ]nאç[  ×« @+Aù€ò€O젟\À{Gè€ãi,À¬ð`!̼¬Zý€_lÓ°»G µDä@‘Q I1°ÓÀ ¬;Àí£ ô¤)d¶¦ý_D €ŠƒÓ å4@mð̰­) à`¬¤÷à’ ±×êà½î€g¤áÀê$É@\ÁÚ@ugÓ@ Öðè“ À ÏØÀ½) RËäK?ðWçóœ÷Ò°ÿ èîå0L9à®ØÀ5a Àéq. ð E>€5½PÎ óüaäTÛ@õb€¾LËά¯ÿÀ{`áàqÿëpá À)úÝÀhå @Íæ×æ«ЄÛÀ³[ @toè@­  Öÿø`@¥g ௜ hëðÕ Àà[)pó÷ë*ð)Ï€O %PXëûÀZE€PÂڀk¡2¢o`DÓñ Q´€¼æKVà&“ä\¿(à˜@ð@µD&7§!ßPÐ5 À–ÝÙ@R ¨:à0Àñ“>* €éf" n–dÛ1䯀ãXØ °ãȊÇóœ0¥¿ûð>=ò€So œoæ5NüÀJ‰ßÀú ÐS¾Û€H¤ÊÀ‚Ù”Ñ:ü€[tÝ-)€îê@ä-¨•¡ù@Š ÜØþ”€ó#ڐ\ú ¸{Š@ €Ïþ-ð¤ß€ ¤"ÀòüˆOæú`3Q€à*܀ëX €éKÊ p÷ü@o~ÛàêP½]@Ýði耈£Ø¬Y¬€C¶ÝPÿÖ@2Jì¸HEà•Îý@£e`ÂÀµü !`|Q€Xl*ÈÚÒú¢)T`ÿ@€!Cen±_ÀÌà ý`غ÷ÀÒEì€Æ4@`Šã@~Zà4Íã@W &0à,òÀÆý8ùU Y}ê ,KÀïՕBê6 ÀL¯€…º:Ìl€B. ?P1  ¦ÕˆžÞ`ÈÊÀ&Ã5¬+à=…퀑>ï hà ¤(å°¡K àŸà@ÎÏÛÀW‰ß€ðÅj×ÞàB]ë <zâ@¹"@ î ‰½Ü·£üÀÔëXÇD@}Óԝ‚ p,/ö0gC €®î%@«3 ÀÀö,àÙ! 8™î`Š@ jà )¶ @ã×ÇTœ^ýÀÛ°Óx1ëà|þÀÑRހ§Ài«ÚP¨ôAà°B ­Zï´YÿÞ? ‹ŽÀGã lqÂ!à~øÉF)f/‰ÿ@®³&X«ú a«P¼whøÈæøšÜøHòÀÉè°÷N  Z¶âE7 ±^åßj"`áÌõ:#Ð!@ ð÷ kŸëÕ1û¸^²ú VA€cÇ0À`Z€ ¤5 ,‘ X™àØÀûQé` ÈÁ úöý€7«Ý@Éþí Q  ùå€ €…+ã)Bë@+Ýã@OßÇÀVöãÀ.Û`æ@¦Ã0|{ð€½J'¸þÔ(ðý@¶º@WƒØÐª|@Gdç(ž€_ѰxU€J'0ðô† €,³ OH ôªëPcl ÀHÈÚmÐþ@çÉ@#ðìÐÓ'ô€„ßàpýÀ§éۀç_ ؾáH9qÝRñ‘íìá€03¨ ?“@.@ÌE" ¼/@è6(XîC$ ù ß0$þ0éN À _ë 2Êõìî âVæÐþØàÂ  Â‘ç`¶Ï0>#ù€¢¢%€ºàˆ`Ò – €?äÚ@ˆx 9íÀt€("ðrX@Qê6ðí; ’}%°D 0å‡÷ðk €9¿ÅÆ>{þ@fýÎ@Äyï`*¯à/öç€{`»žæx„ìü€+è@ ±Ñè èânÐ Ìáè`/-r¼ð€rV%¸¿^ýНc˜ö߀;尘tŒß@ÊM äh…Y€xÅ)€CU#•5 ÈRýûྠ@wϖ×ÑOçÁ€ôžîÀ£{äÀ¡ àä{À"Ü`¸àÁ.â³|P'-òÌçÖP¾„£Fà7¢à{r@ÃM"Àƕ@‹É&€(,€b!„΁ü „ŽPéû葘ÀSúìPrêó`Pfëòlå@‘^À2ä`oÜ€Òë@¸ül›,ý€©É%€[àÁŸ {4#à%$â@À¹ÌäÀà¹@ý°ø¥ €£2Èì€âP.б ¼Òð7¼ €(õÏÌÒ1’Åp¼Òò°ºvó ë`Ãð åéPúJ à­Ôê °á1Sê@‹,Î@©’逳î@½ïÀ '„5ü ÈïÕ4ð½&õph…ÀüÍáì°Pà’öâ$¤à–+PszÀ(„&°k¸ S´ "ð €ñ²ÝÀNØ@†7Á@˜Xð€póÔ sàȃh€4)Ü@)Š@jÄâàŽà`ètóЛúx‘I—{ÿà.Ààu €á_" Ó{@¢%àkÀGo6YÀKPhNýL÷º ^±î.yò ”»çÀÜDåø[hþÀ³æ°\ @Ÿî 22ª~˜€ÿÔ%@+} £_ê£% [ýê`ùÚpÒàÀQlà( ù €QM*Q쀛52°:r`ÛÐM÷ À…HßÐýÇÀ Ã0î÷@Œ˜áÀ@˜íps `rîêà Àæ—ëŒàò`ÓöêÀö^Õ œpéÀȪâ (½î@î# À¹hû€‰Ý˜ÐÃ`±àè–KËxë%<àMzð(1:À‘vüŒÀåV!@   Eþ@K @Ž;î˜E?€µ2ɀ²Œñ€"ÒËàç`àÎ«ò€²«Û@•>€Šÿâ@ò0كô?)ðV^ x¯û _¢çUÀo "à_¢€ìã"èqt ޱPp‡ NÑn›Ìÿà0˜óð xòJæ è±æRyöÀ¸Ùè`Äe@â±ò`לüÏ|€õf&€måÀ¬Ñª&`QÄô l3Àÿà`š ˆË øD—áü@"_è–ÌûÀõX1¸+”(õ"ÐàAPÖ½ðÐ—Í @i§Ç(¨‘û@+ÚÓààûà>UêÀ¨d¨êž‹*@ Öê`}ëâ@ñ¥é ú$à@H—î<.UüxjŒû S\HÐ]ó€ì,àÛÄõ œ·ÐúòBþˆ‰³ˆþ y<°n> ×ðÁ ÀQú(“B@7Õ`ö}óÀ{BÊFÇà€ å@Ã]ÛÀ\« ¥}㠛-÷§õÀ²ÚÐá z0 àT”P]Lwï 0Kkà’ø°,Š  Ù= ¿  Sèè Xiý¸<0ú°@|ó@ûè !Yéà'½ð CìHð£@à\ö`¤. udÀQœ$ÀŽé@—j!€X:%Æ LÀ`N †êãè۟ÀR²îˆ8<ø Áã8c[ù@ø+Ê`À¸H* (Tl àR^€ƒÔR°pþ@ .Î 0¹í °ì2Žç¸¾˜à ÆèpBXà’Ië€q¥ðàh†ë@dRå ¼9ð`|¡ôŒ™ÏüàÁÍp¤ —¤Ð'·`ë`ûV¨àAö8ïsût1däó;þÀdg¨ÑM èԐ$¨ kàèñxàߐ%öÀmUÍ@)\á@/Ë܀¶­Ú˜Í&üÀŊã ÌèPó¥öېÅå `°¤À­–°H  ¥¸šº€$ïЍ yªØÅMP˜"€h±Ô¬üòÒ\ÿp-tõ`&¡îm¼ì s/ïàìÕî0ÔNüÀÚø0aw ·À’  u-À4$M#À° àG€÷^ì´SQàîhê`ôÐý,0øÀÑh È.ØÀìÉ*€lÀа à@ýmäì€×ÿ@FwÐ 렒XààÂ'ä õSú€·¦ç´Æ@«híHR3ù n)ïÉ«í°ežòðÄWôDçmý`¸)(däX5MXJ²à˜€ü6¾WÿˆX6øà øDˆçü€5e h@À³>à8–Òl°I¾ ùPéðS×÷Ï%ÒàcÄà€[§×@úߨðLæñ`døâм² 0’÷€yÞ`|³ ïõΞà,Š@Úûp_¾ÀqR˜ó0ÀA½ ê€øÈ”v3˜´©ûxRWP±7øQ"ôe¸ð/†ð FñðØxùøvjú œ”è-6€ÎÓ@RÇŠ #€«M!àýžÀb\àåíõ®¹áà·3ë@„™òSGûÅÀ÷ ˆåÈÖ€@ì%àlà>ô€bz`dœó7k³ÀTtØ@è€äªÛÀáà× ï ®ç2ªý@àâð°¥ûƒóÀwMô0ŒôЪ·÷ä³cü&àXˆwæ  Í #ö4éüüÁ¥ý°6¾÷r-÷äc«þFgûg ç]Ώ åÕ ˆî 5 –ò¸›ù€L`؀hÅßÀ‡5Õ@Õ,× q˜è`LWã¾ØCíù »àÞWAÀŸ¤ $`כÕ® Cñ(é €…¼ ôÏíXÛA°«ÿ˜ü‡ÓXFÓûÐ¥+÷õ0K‹òd×òPr"ù°ÇDúxìGi€¥Û vÎCS à‰œ`˜< :?lOûþºØDàhŒïp^Ñð @÷Kôö°³ ?ú À(‚`E®`>¤ûã¹Úÿ×;@ù*ã ¼“äÙ$Ý@} Þ`yè >sèróõàä)õhu?ù°„*øÀ:‰öðTµõàéúÂú¤‰hô˜ÝHa‰t."ý§Dýp„y÷Pù$÷à‘û`´uû€6…P, @ÕV `% ôáP:ØúEûø@·ñà@«~Þ@ø´Ö@ÓàÕÀ@â€uEä8]¹øTI«ü`' cŒ Ú@€„àÊå@²ÛÀ®6ààðÒ ÐÈjP¾üð%pX0ýjîûþèÓ»üð¸ÿPü#÷ÈR•ø5$ó wÆòHÁýøÇ»øHØ(žÊŠà¶ûK‚ ¾ÀôÄ@~€´öX‡ ›ápp‘ô ¦îîÐɀõÀjöÐ*Xƒ` àׂ`Àâ k@ ˆ«åÐc– žní "pá@AÙဌóÛ ~Ïå R‘ê ›ï8Údú`á·ôxX¯üÈLõÀîÆõäXú°ÿ7ö|LVA¸ÿ@‚HhÁÌöÐQÞ7þ <$ùˆíøà֖ù@6ûÜtµª `ŒJ º2€Œ Rw°›ù ÃêÀ\ ހlbۀ‘¿Õ€)CßÍMæàO2ð•¡Àÿ@ð‡;Î`Ù- mÿ ,&à"Q€Ý™€÷"  :ÊȇŒÀ"vFÐÝöý[:X\ú Ö¦°-^õ £úÐ;kñ óñÀJ÷PyÊö)‰ÿ¡ @3 0ד@”À¢± M€©õðÏ p(øù€híPNõˆõø|àþ€î× P‹Ø@÷ `öÿ`–[ Å JÔÿ°]YöÀ^NÞàæOè€Ê-ÚÀÌæ qEí Èì^‹¶ÿ°àuð Î>àPòHôøã5øàQXñdÛbø¤=üLÓˆs¢P¾îî.âà­züø&ŒùpøÓùè¸æúèU$XM²°{• @m¥ªq CI Ãè#úèMñ@æìÞ@\@á@QYÖ@_§ßÅ'èQàêÀ¼(Ô+ßý ö€ é{@â ÅÚ Tµprƒ@Çü@3B2^ p†jÌôPd8x\Óú`þ0§vôH./ûÀY,ïàEÆïSóð"òôL¿nüøª`ìp$e SÀ3`@ýX@W€lÆn“Cÿ±?ûÿÀ-ÒêP‹¨÷°j!ôh½ßû°µ~B(€.Ç"À ·ÀïËð({þøÖÜüÀ*cÛÀÛـ­Cê qtñÀÁ·ë ûG îÐÕ¾ ‡Cï@.€ñ@nžôYìª.ÿ »úx'34?6¡øGNb¦@7&úð¹uüa˜ø#ISÿ &è¼T`!'ÀƗ iNª h®¤û°Ô[öÀÕÅ߀õæÀ)~ր¨1‟é€ïêè0°pÒê÷À¼°s< `®É`$@Ôê `&à0 ÖÀ~îˆTöàù´ñ <bèZŒàSßý˜+  Î¨õØMùúàP'îÀÁ•ïð#>ôp6°÷PvõÜÏÓ y§Ó€•òÀý`W)€ò¿„Úþí*pãé4žEü°¯vô¸IwûàÌÏüƒù¤þ#ÐAx ÀvýPrÒ ìž4ýØ]–ÿ€S ÚÐ}·ó€–¬Ú =DîðÜ2öàø›í0Ïà €î¨ùò 4øíàÈ4틞ñÀõ<çxñ7ûèùP€Ÿ0 $ 8ˆ$PUÌñªw&ù‚°¨ÿpåõ&[(sþ ø @û€|• ‹w zut`ýH0Uù€ŒCà s&ë@rbÖ@#’ä´OêÀùï稙ÊpÊmó6`8¢Å-=0Z`¥…ìÌ qôð1x`¢½`~ ö  @ç`‹z€½ÆH±Ãøˆ‘ú@¤ï@ ¨îm)íðÊPô`~óü>äøÔý°¬äÐÏ Ç€ IX ýÈÀÀ`Êüþ—± `ùýéx)]ðg¾ô Éþ`3 @˜Ù#(· WP °¶ÑûFªõÿ@+Öـº>öÀÕYÜÐ>Mñœú°.ð@£… €Ì²ïqË`ŠîàX2éðL-ð€Pä µ÷Pb!ûέø”œqv€&“ øÊiÙ©ö"‹­õdñ²¢Êx 0€/?`>@ß`Pö´²†ý0íûÀßâßàٚî@ šÖ@1¨æµëë@"[ç0h³ÀLÉï`–É˜Š¥ý0ªÞ© œ ÀË`âCÑn`‘— €ËAàq Âp0 à⌄gÃDÍ#ýø‰bú@MÎñ óï |zìð«ÿô0Vïs18ø0Vœ X>øàP€#؋@åÅ¡, ~¢@âðê‹Ëp >õ˜‡èà«ã £L@R#èY°ÀŒã ) ˆsûN²'ÿ@W@Û°¨ö8êÞ0Š/òhE™ýñPæ @ÐåðÞÓÿ@®Æï ê;æ@jRð`P%ã€÷õ¤;aý(ƒHþÀ~ïÔ6˜ð ‡ €ñ.P‘ó4?¢@›î@ê¶€²Ž }@´` I.ðnÏÍgü”ð¡þ€Ú¢ßÐÿTò SØ*Ué ~¼î|¬çàh. `|Cíà¶U¨+âø  0´ÍðÏà!àŒvuv à¥PÀû¤€« Ù(0f» ŽE¨þ°>`*ûð öp”ò€”Âí •‡õ`Ö(íèØàÂËò°žË øë}ÿ`ñ8ðZ¢ ¾€U·Øcn ú`$fìðW‚ € ùô ñ rµÈÁÀjê!ˆð~`qˆX·èiœûˆèþÀŠÞÝÐ4`öà <áàڕñSNÿà eðpå· @ï¤ð¨Y‡ý°ÏFð à{äÂÂðÀë®ã í_õ6÷‘ÿ˜*îü `ˆ)p{nøû qðØU:௻íTÎ"XÓq€ÚIíqó¢àAho ìåú5•—ÀKìà ÿ”õMŠÛ@æ4ìñ€ Áè `õ`¾ÂëÐ_Å PØôH6®×۞:ÿ¦wé àƒ·@*°De !›à99`xÁ§³](J‡ýðÅaóüP¥ëûàoõà®bñðáõÆ{í@« d«ïðø> Z ù Â÷Àõý \ø cEøTa@A 8JíðËËp ÿó 9 @…÷îú @"ä |k ÀâšÐÁ«Ô&ü®¢³ Žìà€p|÷ Æ¤ã°øpñŠg€þAïp3 `87ï¨vÙûÀ0Nï 6ä0vð x$åP£BôØëDp]~ûò±þ­(gU6@ î˜ßàj1îø÷h¸)èځ êåm µè678‘˜ùÐ4"`5œã0šzø€Pi߀)%ï`` ò °xêèT \j됖w @«ò€0jT™5ü8ʏ¤öhn6Òàwn ßMà¦%#}8&í`¬KðM”ý°‹Ê pÞ¾þ ŒÈ€Àå÷@ïcö@úãó@ëïpÓZà¾Ýî® ÀÌ¥ô€)ÂK'Xð¼ Ðu3°í¯ |†î€isÐ~ó`-@yrÙ" À5ª¡  $Ë t>ý`6 Ñèäð¾Bú€ŒÇå`Ó±ò •7à1×î`i¬ @c íèvjú@5cí€{Þä€@î ’Øæð'ò£HhJù ìv>“M$¦Xæ7 Ùií¸×K ûÇï8“Šø…’ñµ`A^05!€yº(ìÏØ §ù Rz€bxçàpÎúà üâð•ñ`ÞÕñ€ñë¨{ŽÀ”:눿`üÞïˆ%I ´ˆøÈá˜Ð}™ð¾±Ðû© àJ @Ê|€R`Ëñð`ͬ<f°þ )¶:‰ûÿ€?õãùvÏûðIâòp2óƒ°œÌïð @Þ ò0@ÐĤúÀBˆ$”Ð `ڐ úW𠋔 @¿òp¨  ¡ ÀªL`½/P30‘ ŒY~þàìjÀ±épœØþ‹?ç öÀþ€gwðð0T @Ýrí="úÀvïë@ucæà¯Àë`ؓè€EÊîÂcX °õBÎà&.ýæËp'”€ îøÀO­Kñ À¸èÔ@÷P !9€Ë @œ  [‘ Xۃúª¸“릙ýÀµÅåð¼/ô …ð`¾píh¹ Àt ë(.Ì@ íB¥`3˜ôÐZ7X¿ÂýX›½8ÏÐý_ À¶k s:p3€O«þ@ñÚ r®`S} °´“ûÌPì LòàÒÁøˆoÇþ cïò°J¨ `(ò@Ç> €24÷€àßö±)ÿPBÍ XÃ&8òÀ?PpIDò€óŠи±€íC  CƱnÀÿýÀª5[^ `ßWí …žèµû˜ö ýô°B9 €(Xƒú`Ñ%ìÀy@è@ÈkêÀª×éàéÕë Ù=@9QñðÚ‰¾ø´BFÔ>ÿ ò-ï|[mà’¨ò¸{_àq+@¬ @)¸`_ €U oÞ ¤þ!üpÈç€ZKï؝ ÝÖçx—7ø ,(ï kð]'5@î<ìx]-¾’ìÒp/bñ`å[XùX‚­†SúJ `A£  ä €ð¶àz ùâ\×FÿV"ôVú€-HX0"ý؈€€}ÊñÚµ„þ4óšý°e˜÷0³Þ pi4ôÐA à„<ö`&ð°¿ûàñß Dñ¶°%§ô Ûß°<¡ñà Ø0ñï ð,R ÀÞQP Å °¿w`Éœês÷‹Pê±ñ0] m鼿êÿÐ_ÁúÐö©ø@aЄÚò@Ò<û ¡Eîëûé ;ñê .ë`|oꀩËþ îP‰É Pµ|ôL‡y€™ðúp!ÚðpŠ#ð#³óÖNˆ'ðm3àÙ0§ ›… pÉY |ëþ η Ոòh?¸@µhédæü@âðíÉô<Ìþ &äîÀ!¹ ÆíÜË* qtïpy4À¨#õ(ÚÒ@Ùý°]9 ( ?O ×ÿ jà8 ‰íÿúž‚S!€¹nRã¦þ€Ëö Зññ,\üø<ñü°»Þ ØøˆŽN~÷pRx`<túõ´ ŒÈý`1Èö*DÎÓð8§Ѓê PK`Pq 0ÍJ°—Œ·Å@³€€°õ ²® {MêˆX"(…~ø‹ý(yÊ€”÷B^ü€Æ9ò h¥ë@ïšíä ì "'ëTfýà~ì¿ Cñl‰«Àâöpªò`lµûàfôÃnrÏ°Pæ<€«Ú€mæ €Ç ðt& ’äÿÐj PH&õ€ág ÀÛâêª\í¨KÎùh%ký ›IóÐ{F éšïxEY@0£ï0 €uìò°›@õÔø@: ͆P»Á €ûDðÁ«@¾Hi›€+°üuÀýžèÿÌ?P½uò°Š= ºúðŽ$@Ûú l ý\x‰öú€ñ€  Jôû^” šýðNù*þ`˜[ð ìÿ:3 D°àC²èð‚= Ѓ 8£Pl‰ {wùðƒ¡ À[ë¨æþP]fö<Ã6s`j”û ·.ýœsö@ýóìàèwñ ¼#íÀ©Úí ðû@ãVí`{– ˆíïè.P½úól“ôè³@ø¤ûôܹ üXnH v ÂÁ ˆÛ£ÐQø ú ªå’pAî 0H÷ ˆ ¸]ì…ŽÀkžìÈ‘þœZ>ü`ž3ø˜·¯±ó^³£ÿCòT½ÇpÒWóx50 ÷ÜÖˆÏëü@£> ¤º‹PÅ@à•m ¨'€hŽ yÇ fcP†°DÍ  Œ~ó°eÀ P_Nùèv  oÈ ¬¾¸Î,aJþ­ DKMþ`õñCûþp1Uû ÿÀ®éïË´=ÿ<N'Ûà¡O »Ã@ ÐnVˆö7 fØ düéüð; `)òëàÿ°/Rôz÷0Ð ØAÅý’áþ€‡\ùÀø5îËºô@tîÉ𐮞ú€­2ï€Úd|gðHfµ 87óðV™ö@«ƒöp<õ¨h'úæu܆ÒvþÏõ éu`‚Á ç*¤ëÀ[# X´(ù@Óä  × î`<$ØoìÜWØ*ùúsÙûµ <L÷,ÿŒÛô|ë‰@8Íôèôbð“òö î£`‰,ûðƒ· –@ÿݠא%œðn †5™«™ LPŸy à:¡ôà¡ð Â÷ü–Pe |ÂP쓯ºP6Ð ‡üP@“þ²„ˆ¤aWý ð4›™ÿx\¢ ¤I@OŸÌN o8xÏXX}´hºÄÿ™Ò?ãìH›°ÇîòL o˜ ­fˆÿ|`¡þ8'Zû`ƒï`7:÷ÀÈï€WRóˆœ?ùñÈX@pÈOñ`©KÀÑó°Ùfø`3†õpŽaõ€ßiøq¬†ü@‰c ¨¬pŠ~ @Úe¨Ž @GúÐ2Ãúp?þ MÈïðåÓ€íŽì,™¸u•ùž…Íþ¨hˆ‚“úœóÎþqÉ÷ÀÞ&0®Þöèä`àÄ÷@q™ˆzŒú,J ìL¥þ€h] ”¤ ˜TˆôßI€{pƒ¨ @û» p €÷õÐv p̒öPžÔ4×HÍEÑhx([ˆûäÈõÀÉÐ"z&…ÿºøŸ°F_ðˆœÆ Ð_Āì¿¶Ÿó`”ý €ÑHVUi.<{; ˆ`m/îè`È`XÕñD.ø£û…±_ÿ ñþø•GüÐÊîðȍ½ø`îEñ ñ%õ°È÷ÐïÃò€h*@ÔjòÈiÿ09”óÈÿùàÐbõðֈõP’§÷a‹ÿèÕ­ú¸)áØÊ¬þ°Ö `U+ øÎÜÈÊ9ü¬¡Pçñ臣€¤îì`NJ¾Xøú°´xŸ°¹þü“þ=ú읪8JïøpS(nù8«Ë˜Úú€!È äýPò³ ÆdrüTW½=–ø¸_¬G4`!Œ€f÷P]ÚÀ™‚õКO83ç(~r°QÓíX#:h[  ê|\é¶>W‚”@B"ñ|ù¶Œ¯cºƒc`жç Öµ ´7¢*ø;f(whâ@gÁï0@Àñ„8 ¶Õ¾ÿìžmÿà`ý€¶†òh¾áù#òàAŠöE‚ö€vô¨zh€¿:óÐòjÐÑàóXÃkû ¤7õ X×õà÷¾%™þP‹ˆù`¹shhý µ… š  Àbë,wý@E7ðKóX­ `-€í؎ü‘÷òEíþêÕþÆþº¶ˆþ°ó1ü¬¡ðTµúÀV((—bú@®#€8fûÐÄ0 ,R ý©ø ,¼xx¥º¸ED#éÀð§pcmàmù¨=ÊÀìôxÿ¾¨_ÄÐ¥eX>4x&£Ø¢û`xÜ<µ]Hm&;?ÐÝLòÈg}¾cô€ Á„D¾\@¼¯ ˜œ‚p]½Ȥûp†[°Ÿ‰€Bºñ0q@TÅð,ßkxRj U/V4³ÿ\7¼ý°$$ô€Kåúà™”óÀ'Ã÷ð¯nõ°Ü*õÌèÙÿþó&Œ`/ôìþ–ü€Eõ@Zqö`uxö¶Óý؆øÈn€Ù‰û‘û§òPÿ@Ã< Z¾…þؒ»@® õÐ$i€øMî()0,Ýõ\bâþ8êSØ<“þ.; þ˜{$\‡ü¨a㨠éû4¯¼`ëYüàKŒ\ÇÜý  åÞð„<¤APT •C“Qð^“˜ýžú¨©šðؤô ÞèÞV¬Vã O tïùHÖY˜4Ûà:NÄK`X,õч{µóèõ Bsÿ¸p‹ ªa DƼPT² lðœPü Ð9Ú¸] pðôø÷°‰ðTµ<´BçœT«$8ÔVþ€4®õøƒ¹û°¥~ôMÈø š¼ô j)ö"Õfþàиô@r[ áôÄ3ÍýÐ$õPé)÷i-öðTý@-Ô÷°¶ ?búA`à‘ÄýyIæ¡WՊÿ˜ï.@¬Çöà„c@w8ï@±Ö |Ûô˜œ<d](ÿ8s?®Û•þz­Tÿ™ë òóýpK‘œÕAýèt´mcýhtÇœènþ` ›Á •‚¼ˆàm\ÔX‡Ä萴˜ò#üÀðÓ "«ô¸ê6\ˆŸؘfmS„‘g=P˜zà·Khâ里€Y gõ̒ þ¨C­°ÿ4 DkÓðòÝ ô£“b/ é³Ê c±yö¨}Ë ç—ðäù4¸þÿZ‘MÀ&“w¡5ÿŽ÷ÐÉü°[Eõ ÒÿùÀdô0CX÷  ý  õ TØ@õ6ûÝþpiDõèøÀ ìõt¬OüP›)÷H¡KCù°P·`9<üǘ˔ÿ;{z|C€høÿ ÀûAðÉ0pùó¬[3*å@þ̇º§þô¶A²S]hÿ¸j"Âîrþ¼¹d@éjþ0n§#ÿðÙú 0 iÈó>Ú‚S­ˆ´1ЪÍ8²3¸0ŠýÀ[Ð? õh¹Í¶tãˆ;è‹L—V@Qü#Pö<¤ÐêdI€n)÷˜$ðœÎîüؐ¥PÞ( ìÃ`Ø ´Åk 1) x½u=§ðÃ: $öø`MçÝð쫕OþjøãqHÒ­½ÿÿ /fø0gÊý ðöx2ûà«GôÀñ“øxüËûÀx¬ö¨f(AÍõÑóÚÿàX©õ°3êø÷õ(·û°ÁÌörŠ foøhx÷uöúàLÈŠ'þPTbG*ÞhNâùìÓÂ@lñœ¡LP²^óæÕ\cGýàåŠ>¥þsÌÐåÿ$oïÿˆ½—ûmÿ0»q?ë_ÿPÛ@é€êÿHÆ ¨îÞ_(1Ô ù1èÏwàM¬þÒþ „( ¯õ4dšué€7ÜÀÿ»PÊœS§Ô4Ë@ªtè#¼Y È•¨²ùØþ’ûêûåW0=:8Ipภ4B® 8ÄÀž ·Ý¸ÀFû°1ÑÐØcñXËԝ¦ül…Vêþ_´¬xµ”ù0?µþpiËö<¤XüP¬nôH×ù B¨ú€dÖ÷8ƒLkºö(Åà)QöÈ ×ùÐ#Sö86û™ÌötÚ© Æý÷`x$¨ø úÀZÌÈ,´üË6ýaÿÐ =û²¬Z0L´ò(n.€¿éòH~IüTE‡ª=þ ˜Îà1ÿ 4 üäÿ욆«ïëÿÖ}݋nÛ} &(ZèÓ¨4k ÇVøe°3-&¸*Ôÿ@@P z–öÔ#ÍKdþì_ˆðÐô0Hú^<x7Ѱ¨¿ JH÷pe ¨—Q˜²óú`QhrIû€Ø0KbÌù0én p²À-ê8 r:I8(UˆÓlý˜-¨?ò\¡ÃPÖ+ûx²i:ã L%ø¯úqÿPA„÷\gWýàŸ¼ô@µûX§§ùJþøàgOP¢¹÷8{@â÷(JÏú0þÜöÐÖàú`´÷ͺÖÿÀ°Õ÷èKp_uùP”²ˆ»ûö8*þ…süÙ!ðp ô( % ¸ò®Rh2GûH ¸ˆþ5ž‹0ÿ+!>`ÕN-´„Ш0×9ÆÎ1¼ð† d šØ7dd› 9¨„ˆ†ÿøè5>¤RŸ3wPi¬÷Hò>åü¤õRÖ¤4'Ž9ú˜ÿð ĂûÀ×/ Ü=”HÝüÐó:ÐúÞúšÅõxܹ …ßÀ”é ¥6À£Î€ÁóÀLf˜;ËVkgÿد@|Vó)Ž ÑÏùôŠ1O¢ZÔS“«ûÒ²Ûÿ°©8øÜmþpÍ/õø­æûP•Åø®õù¼p=Hv¢øxz ~æ÷€ÒÀûP—„÷Qµú@üx÷\&ÿ@<ø÷¨mP6ù`P{8FûÀؤh­HýX›‹ý‚H(ÿ°rmõ`C`9ºòî›ÐDOúäúˆª¥ZþÓ±L܆öþ6P¨jš»DüÎÊW¼MÀF29ºÕ}Àß®à–ÀÔªtúñ°9“²ÏÕàLâƒ/a™äêø@0F° û@©ž ~JPëàuÿùB ËF ¤Ápq A¤·þP8 »Áúê"êx6&ô$º@ØF öQíðm®„3„Юg¨TG¦±à ¨À ´ô,Kp`­ø¸­r¤0egø}–ülS#`Íáøôljþ~¾õ|¢üvø`Ëú–wHurùHllÐh£ø0W³üˆz(øhÙ«úÀ#ö÷Rrrþø9øì§—˜°%ù°ì"@ü·ú°U9Ä^Ÿü¸°…þ˜ _þЪÎöÌb€ÿ@\ëòRÍñÿXó`ùSþÿúêþ{¸ãÿ–âÉþfXÍÿDâç· ãÿPúÜ·,Äõ¶¯ž¹à®’’êt4€6y} jȸA@ø§ˆ¸o¨ˆ6ú ({¸Ë‹úôèî\BµtÓC~€Kpw¥°À“Ô¨eƒÈ @HvO¯v0½gîú(ƒöwń˼r>šØ°á”àšEÀ˜NäAêÌTLýM 49öxð 5Ê÷ܾQ*N”ÿ$e [ýj¸H°ŽùL’àþ [öüO)ýpõŽ÷PŠmûm¼ùÿ(ãú¤`™(P;ù0šý·°ø „Ëú˜öcø¬…ÜýÀ zøÐ×ÅØ×'ùð´øÄuúû¶T($ü8ÀfÿoÆýxh&øžÊëþpdSót“sÿ¨w‹ø«™ÿàÅýŽšÿæH¬þØXšÿE7?2Àÿìùàs,èÄW‘ò¡h)qȶs˜*PVk\¦yÄuYØ£Ëxv à¹8 ›&…û¨–¨ãÔù8ó¸[ìQƒé.˜X ëø5Ðì›0:¡ H¸œL2"0h†Nû€x9û’ÿýáÀsè…Ò hqÀêÐß)ôñ¢h¾ýà÷ä×PH!÷x|1÷ÛþªEZÔøþýƏ[±5úcÈÿÀ½÷iýÀš:÷˜gñûðBÛþÀ$ úd˜ÀùÀùÊ$vþ0'/ùh÷ûíÒøp½\ýìÈø\HÿhCù°Ù.¶SúàÔ00Ëûx¸4ÌMLý°üqùÖlþ€·ãóÍéÿ°HÒ÷7ÿ :Xý›åHÿÌê–þ1§Xÿ¬D”$Èÿ¤*ÎjIäÿÈk¾rPÀÅ´@ ñ]äÜ4¸û´”Ó%È ã°Rô ¥Çh‰‚´Á¿ü Ê–€÷jùhÚ@dÖû ¿¯õ<%2@‚°pgڐ²6 ˜æÍ„회h½ð ñû¸×l^<ŽþÔê :wpãмG4, Pïø¤ w¼±”Oм‘ù¨£²ЛËö„¸†ºþŽ•Y6¡€þ‰‰qˆùÚú’;QÿЦª÷LÖéý  ÷ düÐßÇýxûÌÑhи2úéä;ÿ(¾˜ùìbû({/ùühîü@ù ùà7E¾\ù8ì—¨Þ9ú S[À:ûBéì?ãüÈ©§úp6þýºô¾jþð?5÷2Láþ(„ÛüÊýÿ°|„þJÿ$ØÿqvTÿ°¯¤‘–´ÿ€ÉìøØA`' ‡Øõw¤,øÔ"ñ§éx`¤v½êéÂøôZèhÛý˜eêWù˜¿T±ðoê²€I|ZmìØˆD@€n Ä+ìÌËñÔ¹üŒ©¨€nÆýP«BPãZÀ°Ù ˆ °ÅTŸd°'o,²ÀCûx Í»öð30,ý°ü[n¶ÖþŸjƒ }û j{ÿFRøÈ62þp÷àRÃüè9Åü`j}ûÐÀ“úIèÿ—óù /Öûà-ùðšüäIùl֗àõwùXOöhÇ(ú°u„¸Fûj‰”,«‹üHwÇû  ý %võdÑHþàgÁöÌ ™þÜ?Oü*¨Åþ”æoþV{ìþ×\}ò*ÿOe0½ÿh2Ù¯Ôn²Ùp»|R±ÂÈ«'¨=²ÐÁ0`Έ¶¡²Я0¬€Õþ¨Ýz0„‡ù8æZ1SÚÿ¸ ŒH•„˜Ÿh§<J· èß 8\È­4¨ý”MÒTY.ý8Àk02;¬d#Xô»”&”ThRplò,œ”àÐæü˜ˆØóö0`.Kü¦_5ã ÿ~V”$\üé!¡ÿ0;÷øðsþС5÷¨ýxyÞûøðÜû2Sšàðú“ózp£Kú¬[üðÓù|ú[ü°ÿŒùXùÿªžù8]L(úØ8*ûÀ¶($³Dü sÐü,›MýñeöP úýæqöbRþ(Œ»ûlà„þØaTþüê±þÔȘCòþ‡VÿÌDÒ܃àÿP™ÌwMšÈ‰j@÷}0¯[tm˜a|HÀŒ¡û¾žÿ€{]0°úùˆLYÌþ`ür²d„¼Ä]î(Ci0€º,æIQÛØö>Œá¬þàÀvÔüð»£I¨QhÄVä#8ÐÙb\Yx1K¼gŽBûnþm† o÷ ¡° xûÖqõDÿ¯œ«ü²ßÊÿ0M—ù¼{±þÐDv÷xkýÈõûHò2üHÈøï@û®¹ê·•úâíü¸×ú˜v8üÀXÂùiÛfÿÐâ»ù,a  á#ú,€hLöúþ«<1üüDÀýì¸ýe÷äϲýЄOöÎèþP;$û¨œNþ†X/þà‚þþœ´ÿØXÆþX¯wm+ÿIÒ*—³ÿ(˜;ÛgH? ¯C Q‹¤Š/\Д ´Æ’l·ÅVŒ>H&:hê›ú°pM¨²Õýè¡ Þó¯èÔ„Ýw$!ˆ°£©(ƒf€ùz(Ï]ÔÔ¾ÿ¬Ô/xõ®üÒ8­ |×zHúÖ¨S°ø4€µa0q{즊OØÿÔb…ðu!ø´g"pØ»úÜ·€ÌWñþ3¥Å(å2ý²íÿ`Ð0ú\­æþeÐ÷¸•²ýð‡mú8•üA[؍û—;À@Ýúð[†ýpæXúؼ.ü8Òûù¼ãþ˜©áù¼ö Î+ú éTÀ¡ÝúÌnH`ÐûÒd™þè}Âüàalø”uý Vö Üý pú.¶þÌLýý¦ Uþ^lÿ†šþ 7C&Üþþ¾Ò¶„ÿü¬¼¸?2XŠþv/@+µ°–ðøðÇX5Î*åŒð ÿV²H¹`®^û8 :<SýàÝtˆD'ãž /Ìwž€Ð’øz{8!Øèt§Ó°†OÀ½üôèù² Ÿ0„Blmðž§lh1´[ŠÈ«b‡8®ù 3/˜!úÚڕÔ°þS¾á$B­ýo~pÄúÁ`ÿ@7<ø0¶ùýëù UÐü m£ÿØ"Ùû.sgè°#û*> þˆ?šú¤´<ü’4ú,oþøy úÜ7P€G9úÐ(HÿÌúnئûÔb[ÿD7ŠüHAtùØ <ý Sƒö@ó§ý°Æú,iëý¾ý3&þ‹³1ÿ– lþ{Ò´jÎþÐÇÌ$Qÿ8ãTøÿø « ¢Ç|Ø(a¬¸ù4ëŠär‘Ì|OèÈhᬃ3ü ±˜\ü8 ‚Þ6`Æë\g D±è>ð\û‹¸Fß Vp¼–ûü{$_)%`”Ê0¢—¼Ý þÓ4тP㌈ŕ t&2“ˆr úüD£¯ù.î±nÈPþtîèÃþ¼¶= QûéXSÿÐ>´øF{=þXè‹ù¾ý¨Dåþ8• ü(iq°¾dû¨à´þ˜®ÕúæbüPýgú–1 þø½-úx ±*Fú(w»ú¾úPçÌh»€û%4 D®Wü ›vúLý7×ödŽyýkˆù€@Áý¸rýèÿþýpsÿˆßEþh”aÔ¦þ´¶½ü&ÿ rÌ Éÿp.I%‘èOñ\"q ×' ÷N^`Ÿðn^r2c²ÀÎ ýPÛè–ëû€E CßòëæJÜȺ`îƒL}šÈãŒh–pwÜôÃä•aýDyA `ÿpˆéïÛàÆ¨¨Jœ˜F‘¤zŸšܹœ*˜ø*ûhRȅjù¶ÜǼ$Üý¸$|5gþŠX`X›×ûßâÿ˜÷3ùÞýyþ°øQù¸²_ý8&(þÜèdü¤S[तûñà?ÿˆïûȗü ÿžú€L¸ý1YúŒ®Å]ú T˜â½ú(æ€Ûhû㶤Ü[1üàšoûàþÞü K÷ܙRýØkùhœýtÝý¼ÛÚý .ÚþÝ þ_ö˜~þô¡$ªúþ¨HÄùΖÿX¢Ýq¸W(hÿΖ2ø­RTC‚·˜0ÙpLìÏ}´}Ûýȴݸà±ûAö™\6'åúñ¸Z¾Àæ ¸ W™ˆÀ°?¾Ôº’ ìýïZ¨vÁþ°A0ː÷Â@þ[øƒ£ø^ŤÄ ¼Ü ¢È¥Tü8¨d XùZPãìÙXýÊ@?P¼¡þfˆ¤÷WüVº³ÿú¶ùäü·þP9ù,z¥ý ÓrýlÝ©ük&(5äûÚ_»ÿ “Lû˜ëüÀõÓú¼kvý †ƒú! ލWvúÔ,àû¿ú@Â'à’Uû¾Æ.h±üäËYü”R¹ü`ôÛ÷ðq/ýxËÍøP€{ýø5¸ü¤Šºýèá´þмÿýü®’œfZþüýwgÒþœ²—ÝÛhÿxqn4m"hÿ÷x÷¸àzªÒªYÖì;eWdGHrh˜þH!¶@\®ûX¢Ý€à˜ÿ(Ùr* @T¼dÁßÈ:¢à %g ˆÌ|+œ*ΐþ¸én|Kþèí €ãDèËÚäìá´X×:°Õ®øG` «‘~ýðjuhñvù–üœØÐüžÝ]Æ)ÂþQR¬¼xÐüéîàÿ“:úÞ¢ðþP¹>ù[æýDÊü#ëüŒ²×`!ü $¨O…ûèGýxSûH‘Gý`L¯úšŸ X±’ú\¯cPìÇú˜5pµIûŠ©`øõûè"4ýl›üx¿‚øPOýh…—øTœaý(bPü¡ý¢ßŽþ˜åýdÈ9ð…<þĒA8;°þLox-AÿˆG‹óÿˆ\ðMEÂ<ÞvǙ–­úô1e’+Z`³z=ÿÜލȸÙû]Âö ÷þ bÈ:O¬R´l<CÜb«Ø©›`” sœžiIÿ¾xx®üýìß0ôv¨ûéx˵Hí¾¨ëT¥²øêª€Ý­R+žþ,Ͱ3Åù,¢üLüŒ;xØÈþažÌTn@ýÅã (&¼ú×$ÿðÇ^ùî¦#þ Ø4ü¨Z*ý¿8r|ë\üLwXª½û¶­ýHv=û +ýÒÝúÊè–ÿ@b´ú4S⠁×ú. ¯FûDz@ åûX”üýL˜„üˆæ9ù(½ýü0\}øTnMýøPæûÐ4ŒýZùdþlAÎýc…ìÿ2™!þbúÿŒþ|îa-×ÿW˜˜‹ÅÿðÒ}Üµ¾ZMa4»!D,ÀzZœß—±ÅÿÜbÔ-ü€ £"ª\þ\޳‚õ˜'¨–>ʐ3•˜Òã˜á“±’ú˜H+ ¬š~ ZØýÜó=¦„­˜Ì÷ MTÉÈꜷHiîè ±ÚU«ÿ¼rŠˆ÷=ú`ü$HÔûŽB“T>µþ±@í¦ý1J2[:ûcgWÿs”ùŽê^þxHµûŒágýÖÁûÿ„6—üбð)ôûê†þè¾pûÐ"ýÀD ûÆ+-ÿˆ˜Öú@}_ˆ‰éú€®P»Gû<·nÙû,å²þhsüàQûùÄ1íüð]ø0â>ý˜~û Š}ý5þ¼Þ½ýöWªÿˆ þ–¶jývþøyOJêûþÄ$:„.Ÿÿ`þ¥pñ_0€ÙÌ&/˜ÏI—øp4\¨­º¿10e7¬áŸü\#ƒ”øÓý”kœdžÎ T˜ðŸrÌåˆ,PK‡¨rÜô+©ÔèÞ|ŒºÚýøhC½ñ¤ªþP#ÕÔæÌ蔽äð¶¸å,¯‡¾Ÿ°oŽˆÕÚú„«2Ð>pû¨ÎJŠþN‹(ÿýlóS8ܳû(ù‚ÿ¼Ûù´Í“þðÇNû܁ ýµ7yÿÀ ÎüŸùÓ$D(üd‰þ°ï¢û–+ýðŽ9û4LÐþ°üú’BÞXøû̗äСOû°˜ºp‰Ôû)·Wÿ|Íhüx\ÁúÀœãü`l¢ø @7ýÐû «uý€Ùýý¼ó³ý[?rÿà¬ÿý¼KgԙcþÑ<VYâþ¬è÷~ÿ žlx;7xRîò#è:qH<È:bŒ%}‚—‚( ԓ%ýP<bˆeýŒQƒ@è’8o…ì\6˜)ycr$Öv(%û°(€¸é—ÈÉtÀ¸þŒB°G0ëÿ¸ØOð˘; '²PÃ'p>©(xvœÄЄ”û¸ù;ð'û4?¹¦,Kþp¶~õJþZTr¼(üféªÿXÿ/úü9Åþ(DûȑÖýT`ðþý˻܌ÞZü ÝôþÀüÓûX‰Fýð¹gûD–€þ¨ú"ûÝ`¨ÑûèZ¦Àk\û –öЪÕû=ëÿÈ%düp‡ûbßü( ßøÈ5ýHøÃú$wsý(¿ý´¥¯ýDBÿèg÷ý„åޝUþPo&îÎþ,e£*&bÿȶ(]lüŠO×Äì–ìI›8½mè¨Oê!¼\œã\¯´ý8µ@0­ýdÐhÜ CXNpÔµTôfü¿œ¹c؎ñ„wmÔPàäg¨ÚHþ¼<®à´ÿHÎüü¿ä1Çx¶Wlª˜á(¨›Ÿ™-öˆNbü<å@¨çüú.tÆü‚üýªæ1Іþ›\Œøp–ül ÎÿÐ<ú\ÜñþØÆÏúšþ”~fþÔû4ý”QÍŠü*ïYÿàÒüø€qý»”ûÔÑ>þÀ\Jûj@éhß8ûpZ@ëlûd"XwÛûþÀn$udüððGü(*àüˆÛ4ùpn8ýàêyú6wý Nyý\бý[ƒÿõýáûÇDENþô œQÀþtÚk°ÝLÿÜ~ÝÔöõÿ*¨d³€ºäsó~„`&ZÝâ´¥¼²ÝCþ\8 àsëüFN9.ãÿ ïYôÅR´î NÔñVðµö”¬U¬:«þô1b»<ÿ4ô5&À½X](öœ€Òx7ÄDS~€œ;ýôÊ?8Äôúd*ÎÄâ£ýJî?8x¯þt#¡¼hþü$²ëÿhþïúm(ÿ…¶úâ36þ\¸àý`~cýVW§¬ê·ü–´ÿ …/üCªýè®ÀûV] þ@UrûRÔx8^XûHˆ`ûd—=x)æû|ãÔôiü,ºýÈ!æü0r ù :Aý€ê@úØß€ýüë-ýtƒ¹ý`ìïþˆÝùý¶/}vüLþÈúåž…¸þ #@€=ÿ˜qŽÖ=ÞÿtÄü””¸/ÚöPP6•ؚW¬û\˗†\Ëþ¸qÄßãü<–3>(yÿhyBÕÞà<ÐωÌg6Põt(]=(°†Ø?âH#ÿ W òòáþ|ƒæ¤‰p¬®С֌Ӌ° Ìú}À‡;@ün–þ¬¢9€ûŠ7ÑPjGý˜I¤ Æþh±ì>_ý¦†(XUûÕ¤;ÿ@•´ú ­_þ€cýüɎýíMmÐeâü3µlôYül1îý8ëû¤¥æý8AšûîɈjyû@Ô¥ؾ˜ûà:HЪôû¾:I¨¢süìà®ýˆYðüèÝúèœNý`iú ©ýœßüüçÆý¾ÓÈþÊÄþ^8B_QþrDºÞT¶þœÉ3ÿL?ÉÌÿ!î¦ìz´¼ö"?1èh¯ܶÞ®U ªusEÿPâL‹ýüØxÿ ÿÈ«*K1È`æ%˜9Ç ÐJ! ƒûȔ$¬%«ÿ â¾¥þ„vÔGìLˆ`v(îúf4¦•8çZXÏïþìc.à[Lû¦Ï¤díü<O^•ÉþˆŒ½x!¸ý‹xûºûÀÀYÿpUÇú:Y…þ¼*óüô·ýB1"”b ýÙÅ>P&‚ü.S:þ)üdÇÐýÄÁû"رÿ¨›ûàÁBК²û Btüv¡˜ üúžPþ\WþüàÛ¨ú¨ `ýx úhý¢ý|=üÐ Ùýî þ¦¥þOuúÿ²ÎZþΓ‡¹þ³ë.ÿäÇòʜ¾ÿ°äÔx†e0pN:Ìæá¿Ð;—Uˆd®ÿܘÄh$4ý0¥ÿìV£þŒ›0”ªH,jЫ´ ~”¼¬ˆÑRxdî†<ø`ò†ªˆþ¤A¿¤YT`l†ð²/dÅ^xüÍÀzM˜ëÕ\ËC¼ÿ´˜È1¨ûÖ¥Ê(œüòzQ|ºþ‘cƒÅþWá)(1üÀÿsÿ8Åëú§þ@Q’ü̎ÜýdºÉÿ¨ã/ýúBj(þ§ü¦>‹þ$6;ü€óÉýhDèûÕÀ\ÿXï½û”ݰÐÍûŒt-Xµü¾“ì¨6‘üd=åþÔRý=ûèétýPÖúàŽºýÜnAüÈ5ðý)tþ4Â&þ—ªÃÿ|ÌiþcOúpÁþä"ëwè/ÿ-¬1·ÿ8b±êÄUÈ #kÞÿpÖén}¥œÀÓ8ü¶¤@©ŒýdÁæ¼¼EþŒºú=ª‚Ôrõú^¬½çxçؙã87Ф©ædÒäÔ蘈þÀb¥C:ƈlpwÌä‘BÜ©t2/%ÿ4À'œy|# tÕü’À4*YüPO>nšþ`·Ê‚zMþ#ç5¨V€üY‰ÿXöûºvÅþ §Cüܼþý¼¥gÿSý€Uƒ©Ëü$vÝþ,%aüÀÊÑýxeüTÿØþáûZ^y@8ëûꌑ2üì`+F¤ü±kÿ9$ýˆ»×û4lŒýț*úLkÖýÐTúûb' þPóAþ”K?þ|À•ÿHA{þzTbÏÍþHé֝¡2ÿ³jTþ²ÿàc‡ <GT0–šìHD ֟‹¤™'œ$ÖùJÔX`ÜýÔâÎhïûýàâv_L8ÝvP&$~ËÔ.ˆDJÃh6£TCÄìdhBµj¥þxñ‰ FŒÌO,Í^8=&(%ƒtä0R9 þ%z4óƒ¦ü ··ô¥/üž(I‰dþ`Ò² þ‹{=¤õÓüš˜¢ÿX¤hûœeÝþ`÷úûVî%þØÿ”âný®xœEõüÆz@ÿxC}ül1Òý<üªèþðžúû·íûÀˆü4ø0H<üÄÝ5ZËü¦Ú
26,598
264
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/test_import/__main__.py
import unittest unittest.main('test.test_import')
51
4
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/test_import/__init__.py
# We import importlib *ASAP* in order to test #15386 import importlib import importlib.util from importlib._bootstrap_external import _get_sourcefile import builtins import marshal import os import platform import py_compile import random import stat import sys import time import unittest import unittest.mock as mock import textwrap import errno import shutil import contextlib import test.support from test.support import ( EnvironmentVarGuard, TESTFN, check_warnings, forget, is_jython, make_legacy_pyc, rmtree, run_unittest, swap_attr, swap_item, temp_umask, unlink, unload, create_empty_file, cpython_only, TESTFN_UNENCODABLE, temp_dir, DirsOnSysPath) from test.support import script_helper from test.test_importlib.util import uncache try: import threading except ImportError as e: threading = None skip_if_dont_write_bytecode = unittest.skipIf( sys.dont_write_bytecode, "test meaningful only when writing bytecode") def remove_files(name): for f in (name + ".py", name + ".pyc", name + ".pyw", name + "$py.class"): unlink(f) rmtree('__pycache__') @contextlib.contextmanager def _ready_to_import(name=None, source=""): # sets up a temporary directory and removes it # creates the module file # temporarily clears the module from sys.modules (if any) # reverts or removes the module when cleaning up name = name or "spam" with temp_dir() as tempdir: path = script_helper.make_script(tempdir, name, source) old_module = sys.modules.pop(name, None) try: sys.path.insert(0, tempdir) yield name, path sys.path.remove(tempdir) finally: if old_module is not None: sys.modules[name] = old_module elif name in sys.modules: del sys.modules[name] class ImportTests(unittest.TestCase): def setUp(self): remove_files(TESTFN) importlib.invalidate_caches() def tearDown(self): unload(TESTFN) def test_import_raises_ModuleNotFoundError(self): with self.assertRaises(ModuleNotFoundError): import something_that_should_not_exist_anywhere def test_from_import_missing_module_raises_ModuleNotFoundError(self): with self.assertRaises(ModuleNotFoundError): from something_that_should_not_exist_anywhere import blah def test_from_import_missing_attr_raises_ImportError(self): with self.assertRaises(ImportError): from importlib import something_that_should_not_exist_anywhere def test_case_sensitivity(self): # Brief digression to test that import is case-sensitive: if we got # this far, we know for sure that "random" exists. with self.assertRaises(ImportError): import RAnDoM def test_double_const(self): # Another brief digression to test the accuracy of manifest float # constants. from test import double_const # don't blink -- that *was* the test def test_import(self): def test_with_extension(ext): # The extension is normally ".py", perhaps ".pyw". source = TESTFN + ext if is_jython: pyc = TESTFN + "$py.class" else: pyc = TESTFN + ".pyc" with open(source, "w") as f: print("# This tests Python's ability to import a", ext, "file.", file=f) a = random.randrange(1000) b = random.randrange(1000) print("a =", a, file=f) print("b =", b, file=f) if TESTFN in sys.modules: del sys.modules[TESTFN] importlib.invalidate_caches() try: try: mod = __import__(TESTFN) except ImportError as err: self.fail("import from %s failed: %s" % (ext, err)) self.assertEqual(mod.a, a, "module loaded (%s) but contents invalid" % mod) self.assertEqual(mod.b, b, "module loaded (%s) but contents invalid" % mod) finally: forget(TESTFN) unlink(source) unlink(pyc) sys.path.insert(0, os.curdir) try: test_with_extension(".py") if sys.platform.startswith("win"): for ext in [".PY", ".Py", ".pY", ".pyw", ".PYW", ".pYw"]: test_with_extension(ext) finally: del sys.path[0] def test_module_with_large_stack(self, module='longlist'): # Regression test for http://bugs.python.org/issue561858. filename = module + '.py' # Create a file with a list of 65000 elements. with open(filename, 'w') as f: f.write('d = [\n') for i in range(65000): f.write('"",\n') f.write(']') try: # Compile & remove .py file; we only need .pyc. # Bytecode must be relocated from the PEP 3147 bytecode-only location. py_compile.compile(filename) finally: unlink(filename) # Need to be able to load from current dir. sys.path.append('') importlib.invalidate_caches() namespace = {} try: make_legacy_pyc(filename) # This used to crash. exec('import ' + module, None, namespace) finally: # Cleanup. del sys.path[-1] unlink(filename + 'c') unlink(filename + 'o') # Remove references to the module (unload the module) namespace.clear() try: del sys.modules[module] except KeyError: pass def test_failing_import_sticks(self): source = TESTFN + ".py" with open(source, "w") as f: print("a = 1/0", file=f) # New in 2.4, we shouldn't be able to import that no matter how often # we try. sys.path.insert(0, os.curdir) importlib.invalidate_caches() if TESTFN in sys.modules: del sys.modules[TESTFN] try: for i in [1, 2, 3]: self.assertRaises(ZeroDivisionError, __import__, TESTFN) self.assertNotIn(TESTFN, sys.modules, "damaged module in sys.modules on %i try" % i) finally: del sys.path[0] remove_files(TESTFN) def test_import_name_binding(self): # import x.y.z binds x in the current namespace import test as x import test.support self.assertIs(x, test, x.__name__) self.assertTrue(hasattr(test.support, "__file__")) # import x.y.z as w binds z as w import test.support as y self.assertIs(y, test.support, y.__name__) def test_failing_reload(self): # A failing reload should leave the module object in sys.modules. source = TESTFN + os.extsep + "py" with open(source, "w") as f: f.write("a = 1\nb=2\n") sys.path.insert(0, os.curdir) try: mod = __import__(TESTFN) self.assertIn(TESTFN, sys.modules) self.assertEqual(mod.a, 1, "module has wrong attribute values") self.assertEqual(mod.b, 2, "module has wrong attribute values") # On WinXP, just replacing the .py file wasn't enough to # convince reload() to reparse it. Maybe the timestamp didn't # move enough. We force it to get reparsed by removing the # compiled file too. remove_files(TESTFN) # Now damage the module. with open(source, "w") as f: f.write("a = 10\nb=20//0\n") self.assertRaises(ZeroDivisionError, importlib.reload, mod) # But we still expect the module to be in sys.modules. mod = sys.modules.get(TESTFN) self.assertIsNotNone(mod, "expected module to be in sys.modules") # We should have replaced a w/ 10, but the old b value should # stick. self.assertEqual(mod.a, 10, "module has wrong attribute values") self.assertEqual(mod.b, 2, "module has wrong attribute values") finally: del sys.path[0] remove_files(TESTFN) unload(TESTFN) @skip_if_dont_write_bytecode def test_file_to_source(self): # check if __file__ points to the source file where available source = TESTFN + ".py" with open(source, "w") as f: f.write("test = None\n") sys.path.insert(0, os.curdir) try: mod = __import__(TESTFN) self.assertTrue(mod.__file__.endswith('.py')) os.remove(source) del sys.modules[TESTFN] make_legacy_pyc(source) importlib.invalidate_caches() mod = __import__(TESTFN) base, ext = os.path.splitext(mod.__file__) self.assertEqual(ext, '.pyc') finally: del sys.path[0] remove_files(TESTFN) if TESTFN in sys.modules: del sys.modules[TESTFN] def test_import_by_filename(self): path = os.path.abspath(TESTFN) encoding = sys.getfilesystemencoding() try: path.encode(encoding) except UnicodeEncodeError: self.skipTest('path is not encodable to {}'.format(encoding)) with self.assertRaises(ImportError) as c: __import__(path) def test_import_in_del_does_not_crash(self): # Issue 4236 testfn = script_helper.make_script('', TESTFN, textwrap.dedent("""\ import sys class C: def __del__(self): import importlib sys.argv.insert(0, C()) """)) script_helper.assert_python_ok(testfn) @skip_if_dont_write_bytecode def test_timestamp_overflow(self): # A modification timestamp larger than 2**32 should not be a problem # when importing a module (issue #11235). sys.path.insert(0, os.curdir) try: source = TESTFN + ".py" compiled = importlib.util.cache_from_source(source) with open(source, 'w') as f: pass try: os.utime(source, (2 ** 33 - 5, 2 ** 33 - 5)) except OverflowError: self.skipTest("cannot set modification time to large integer") except OSError as e: if e.errno not in (getattr(errno, 'EOVERFLOW', None), getattr(errno, 'EINVAL', None)): raise self.skipTest("cannot set modification time to large integer ({})".format(e)) __import__(TESTFN) # The pyc file was created. os.stat(compiled) finally: del sys.path[0] remove_files(TESTFN) def test_bogus_fromlist(self): try: __import__('http', fromlist=['blah']) except ImportError: self.fail("fromlist must allow bogus names") @cpython_only def test_delete_builtins_import(self): args = ["-c", "del __builtins__.__import__; import os"] popen = script_helper.spawn_python(*args) stdout, stderr = popen.communicate() self.assertIn(b"ImportError", stdout) def test_from_import_message_for_nonexistent_module(self): with self.assertRaisesRegex(ImportError, "^No module named 'bogus'"): from bogus import foo def test_from_import_message_for_existing_module(self): with self.assertRaisesRegex(ImportError, "^cannot import name 'bogus'"): from re import bogus def test_from_import_AttributeError(self): # Issue #24492: trying to import an attribute that raises an # AttributeError should lead to an ImportError. class AlwaysAttributeError: def __getattr__(self, _): raise AttributeError module_name = 'test_from_import_AttributeError' self.addCleanup(unload, module_name) sys.modules[module_name] = AlwaysAttributeError() with self.assertRaises(ImportError): from test_from_import_AttributeError import does_not_exist @cpython_only def test_issue31492(self): # There shouldn't be an assertion failure in case of failing to import # from a module with a bad __name__ attribute, or in case of failing # to access an attribute of such a module. with swap_attr(os, '__name__', None): with self.assertRaises(ImportError): from os import does_not_exist with self.assertRaises(AttributeError): os.does_not_exist @unittest.skipUnless(threading != None, "concurrency requires threading") def test_concurrency(self): sys.path.insert(0, os.path.join(os.path.dirname(__file__), 'data')) try: exc = None def run(): event.wait() try: import package except BaseException as e: nonlocal exc exc = e for i in range(10): event = threading.Event() threads = [threading.Thread(target=run) for x in range(2)] try: with test.support.start_threads(threads, event.set): time.sleep(0) finally: sys.modules.pop('package', None) sys.modules.pop('package.submodule', None) if exc is not None: raise exc finally: del sys.path[0] @skip_if_dont_write_bytecode class FilePermissionTests(unittest.TestCase): # tests for file mode on cached .pyc files @unittest.skipUnless(os.name == 'posix', "test meaningful only on posix systems") def test_creation_mode(self): mask = 0o022 with temp_umask(mask), _ready_to_import() as (name, path): cached_path = importlib.util.cache_from_source(path) module = __import__(name) if not os.path.exists(cached_path): self.fail("__import__ did not result in creation of " "a .pyc file") stat_info = os.stat(cached_path) # Check that the umask is respected, and the executable bits # aren't set. self.assertEqual(oct(stat.S_IMODE(stat_info.st_mode)), oct(0o666 & ~mask)) @unittest.skipUnless(os.name == 'posix', "test meaningful only on posix systems") def test_cached_mode_issue_2051(self): # permissions of .pyc should match those of .py, regardless of mask mode = 0o600 with temp_umask(0o022), _ready_to_import() as (name, path): cached_path = importlib.util.cache_from_source(path) os.chmod(path, mode) __import__(name) if not os.path.exists(cached_path): self.fail("__import__ did not result in creation of " "a .pyc file") stat_info = os.stat(cached_path) self.assertEqual(oct(stat.S_IMODE(stat_info.st_mode)), oct(mode)) @unittest.skipUnless(os.name == 'posix', "test meaningful only on posix systems") def test_cached_readonly(self): mode = 0o400 with temp_umask(0o022), _ready_to_import() as (name, path): cached_path = importlib.util.cache_from_source(path) os.chmod(path, mode) __import__(name) if not os.path.exists(cached_path): self.fail("__import__ did not result in creation of " "a .pyc file") stat_info = os.stat(cached_path) expected = mode | 0o200 # Account for fix for issue #6074 self.assertEqual(oct(stat.S_IMODE(stat_info.st_mode)), oct(expected)) def test_pyc_always_writable(self): # Initially read-only .pyc files on Windows used to cause problems # with later updates, see issue #6074 for details with _ready_to_import() as (name, path): # Write a Python file, make it read-only and import it with open(path, 'w') as f: f.write("x = 'original'\n") # Tweak the mtime of the source to ensure pyc gets updated later s = os.stat(path) os.utime(path, (s.st_atime, s.st_mtime-100000000)) os.chmod(path, 0o400) m = __import__(name) self.assertEqual(m.x, 'original') # Change the file and then reimport it os.chmod(path, 0o600) with open(path, 'w') as f: f.write("x = 'rewritten'\n") unload(name) importlib.invalidate_caches() m = __import__(name) self.assertEqual(m.x, 'rewritten') # Now delete the source file and check the pyc was rewritten unlink(path) unload(name) importlib.invalidate_caches() bytecode_only = path + "c" os.rename(importlib.util.cache_from_source(path), bytecode_only) m = __import__(name) self.assertEqual(m.x, 'rewritten') class PycRewritingTests(unittest.TestCase): # Test that the `co_filename` attribute on code objects always points # to the right file, even when various things happen (e.g. both the .py # and the .pyc file are renamed). module_name = "unlikely_module_name" module_source = """ import sys code_filename = sys._getframe().f_code.co_filename module_filename = __file__ constant = 1 def func(): pass func_filename = func.__code__.co_filename """ dir_name = os.path.abspath(TESTFN) file_name = os.path.join(dir_name, module_name) + os.extsep + "py" compiled_name = importlib.util.cache_from_source(file_name) def setUp(self): self.sys_path = sys.path[:] self.orig_module = sys.modules.pop(self.module_name, None) os.mkdir(self.dir_name) with open(self.file_name, "w") as f: f.write(self.module_source) sys.path.insert(0, self.dir_name) importlib.invalidate_caches() def tearDown(self): sys.path[:] = self.sys_path if self.orig_module is not None: sys.modules[self.module_name] = self.orig_module else: unload(self.module_name) unlink(self.file_name) unlink(self.compiled_name) rmtree(self.dir_name) def import_module(self): ns = globals() __import__(self.module_name, ns, ns) return sys.modules[self.module_name] def test_basics(self): mod = self.import_module() self.assertEqual(mod.module_filename, self.file_name) self.assertEqual(mod.code_filename, self.file_name) self.assertEqual(mod.func_filename, self.file_name) del sys.modules[self.module_name] mod = self.import_module() self.assertEqual(mod.module_filename, self.file_name) self.assertEqual(mod.code_filename, self.file_name) self.assertEqual(mod.func_filename, self.file_name) def test_incorrect_code_name(self): py_compile.compile(self.file_name, dfile="another_module.py") mod = self.import_module() self.assertEqual(mod.module_filename, self.file_name) self.assertEqual(mod.code_filename, self.file_name) self.assertEqual(mod.func_filename, self.file_name) def test_module_without_source(self): target = "another_module.py" py_compile.compile(self.file_name, dfile=target) os.remove(self.file_name) pyc_file = make_legacy_pyc(self.file_name) importlib.invalidate_caches() mod = self.import_module() self.assertEqual(mod.module_filename, pyc_file) self.assertEqual(mod.code_filename, target) self.assertEqual(mod.func_filename, target) def test_foreign_code(self): py_compile.compile(self.file_name) with open(self.compiled_name, "rb") as f: header = f.read(12) code = marshal.load(f) constants = list(code.co_consts) foreign_code = importlib.import_module.__code__ pos = constants.index(1) constants[pos] = foreign_code code = type(code)(code.co_argcount, code.co_kwonlyargcount, code.co_nlocals, code.co_stacksize, code.co_flags, code.co_code, tuple(constants), code.co_names, code.co_varnames, code.co_filename, code.co_name, code.co_firstlineno, code.co_lnotab, code.co_freevars, code.co_cellvars) with open(self.compiled_name, "wb") as f: f.write(header) marshal.dump(code, f) mod = self.import_module() self.assertEqual(mod.constant.co_filename, foreign_code.co_filename) class PathsTests(unittest.TestCase): SAMPLES = ('test', 'test\u00e4\u00f6\u00fc\u00df', 'test\u00e9\u00e8', 'test\u00b0\u00b3\u00b2') path = TESTFN def setUp(self): os.mkdir(self.path) self.syspath = sys.path[:] def tearDown(self): rmtree(self.path) sys.path[:] = self.syspath # Regression test for http://bugs.python.org/issue1293. def test_trailing_slash(self): with open(os.path.join(self.path, 'test_trailing_slash.py'), 'w') as f: f.write("testdata = 'test_trailing_slash'") sys.path.append(self.path+'/') mod = __import__("test_trailing_slash") self.assertEqual(mod.testdata, 'test_trailing_slash') unload("test_trailing_slash") # Regression test for http://bugs.python.org/issue3677. @unittest.skipUnless(sys.platform == 'win32', 'Windows-specific') def test_UNC_path(self): with open(os.path.join(self.path, 'test_unc_path.py'), 'w') as f: f.write("testdata = 'test_unc_path'") importlib.invalidate_caches() # Create the UNC path, like \\myhost\c$\foo\bar. path = os.path.abspath(self.path) import socket hn = socket.gethostname() drive = path[0] unc = "\\\\%s\\%s$"%(hn, drive) unc += path[2:] try: os.listdir(unc) except OSError as e: if e.errno in (errno.EPERM, errno.EACCES, errno.ENOENT): # See issue #15338 self.skipTest("cannot access administrative share %r" % (unc,)) raise sys.path.insert(0, unc) try: mod = __import__("test_unc_path") except ImportError as e: self.fail("could not import 'test_unc_path' from %r: %r" % (unc, e)) self.assertEqual(mod.testdata, 'test_unc_path') self.assertTrue(mod.__file__.startswith(unc), mod.__file__) unload("test_unc_path") class RelativeImportTests(unittest.TestCase): def tearDown(self): unload("test.relimport") setUp = tearDown def test_relimport_star(self): # This will import * from .test_import. from .. import relimport self.assertTrue(hasattr(relimport, "RelativeImportTests")) def test_issue3221(self): # Note for mergers: the 'absolute' tests from the 2.x branch # are missing in Py3k because implicit relative imports are # a thing of the past # # Regression test for http://bugs.python.org/issue3221. def check_relative(): exec("from . import relimport", ns) # Check relative import OK with __package__ and __name__ correct ns = dict(__package__='test', __name__='test.notarealmodule') check_relative() # Check relative import OK with only __name__ wrong ns = dict(__package__='test', __name__='notarealpkg.notarealmodule') check_relative() # Check relative import fails with only __package__ wrong ns = dict(__package__='foo', __name__='test.notarealmodule') self.assertRaises(ModuleNotFoundError, check_relative) # Check relative import fails with __package__ and __name__ wrong ns = dict(__package__='foo', __name__='notarealpkg.notarealmodule') self.assertRaises(ModuleNotFoundError, check_relative) # Check relative import fails with package set to a non-string ns = dict(__package__=object()) self.assertRaises(TypeError, check_relative) def test_absolute_import_without_future(self): # If explicit relative import syntax is used, then do not try # to perform an absolute import in the face of failure. # Issue #7902. with self.assertRaises(ImportError): from .os import sep self.fail("explicit relative import triggered an " "implicit absolute import") def test_import_from_non_package(self): path = os.path.join(os.path.dirname(__file__), 'data', 'package2') with uncache('submodule1', 'submodule2'), DirsOnSysPath(path): with self.assertRaises(ImportError): import submodule1 self.assertNotIn('submodule1', sys.modules) self.assertNotIn('submodule2', sys.modules) def test_import_from_unloaded_package(self): with uncache('package2', 'package2.submodule1', 'package2.submodule2'), \ DirsOnSysPath(os.path.join(os.path.dirname(__file__), 'data')): import package2.submodule1 package2.submodule1.submodule2 class OverridingImportBuiltinTests(unittest.TestCase): def test_override_builtin(self): # Test that overriding builtins.__import__ can bypass sys.modules. import os def foo(): import os return os self.assertEqual(foo(), os) # Quick sanity check. with swap_attr(builtins, "__import__", lambda *x: 5): self.assertEqual(foo(), 5) # Test what happens when we shadow __import__ in globals(); this # currently does not impact the import process, but if this changes, # other code will need to change, so keep this test as a tripwire. with swap_item(globals(), "__import__", lambda *x: 5): self.assertEqual(foo(), os) class PycacheTests(unittest.TestCase): # Test the various PEP 3147/488-related behaviors. def _clean(self): forget(TESTFN) rmtree('__pycache__') unlink(self.source) def setUp(self): self.source = TESTFN + '.py' self._clean() with open(self.source, 'w') as fp: print('# This is a test file written by test_import.py', file=fp) sys.path.insert(0, os.curdir) importlib.invalidate_caches() def tearDown(self): assert sys.path[0] == os.curdir, 'Unexpected sys.path[0]' del sys.path[0] self._clean() @skip_if_dont_write_bytecode def test_import_pyc_path(self): self.assertFalse(os.path.exists('__pycache__')) __import__(TESTFN) self.assertTrue(os.path.exists('__pycache__')) pyc_path = importlib.util.cache_from_source(self.source) self.assertTrue(os.path.exists(pyc_path), 'bytecode file {!r} for {!r} does not ' 'exist'.format(pyc_path, TESTFN)) @unittest.skipUnless(os.name == 'posix', "test meaningful only on posix systems") @unittest.skipIf(hasattr(os, 'geteuid') and os.geteuid() == 0, "due to varying filesystem permission semantics (issue #11956)") @skip_if_dont_write_bytecode def test_unwritable_directory(self): # When the umask causes the new __pycache__ directory to be # unwritable, the import still succeeds but no .pyc file is written. with temp_umask(0o222): __import__(TESTFN) self.assertTrue(os.path.exists('__pycache__')) pyc_path = importlib.util.cache_from_source(self.source) self.assertFalse(os.path.exists(pyc_path), 'bytecode file {!r} for {!r} ' 'exists'.format(pyc_path, TESTFN)) @skip_if_dont_write_bytecode def test_missing_source(self): # With PEP 3147 cache layout, removing the source but leaving the pyc # file does not satisfy the import. __import__(TESTFN) pyc_file = importlib.util.cache_from_source(self.source) self.assertTrue(os.path.exists(pyc_file)) os.remove(self.source) forget(TESTFN) importlib.invalidate_caches() self.assertRaises(ImportError, __import__, TESTFN) @skip_if_dont_write_bytecode def test_missing_source_legacy(self): # Like test_missing_source() except that for backward compatibility, # when the pyc file lives where the py file would have been (and named # without the tag), it is importable. The __file__ of the imported # module is the pyc location. __import__(TESTFN) # pyc_file gets removed in _clean() via tearDown(). pyc_file = make_legacy_pyc(self.source) os.remove(self.source) unload(TESTFN) importlib.invalidate_caches() m = __import__(TESTFN) try: self.assertEqual(m.__file__, os.path.join(os.curdir, os.path.relpath(pyc_file))) finally: os.remove(pyc_file) def test___cached__(self): # Modules now also have an __cached__ that points to the pyc file. m = __import__(TESTFN) pyc_file = importlib.util.cache_from_source(TESTFN + '.py') self.assertEqual(m.__cached__, os.path.join(os.curdir, pyc_file)) @skip_if_dont_write_bytecode def test___cached___legacy_pyc(self): # Like test___cached__() except that for backward compatibility, # when the pyc file lives where the py file would have been (and named # without the tag), it is importable. The __cached__ of the imported # module is the pyc location. __import__(TESTFN) # pyc_file gets removed in _clean() via tearDown(). pyc_file = make_legacy_pyc(self.source) os.remove(self.source) unload(TESTFN) importlib.invalidate_caches() m = __import__(TESTFN) self.assertEqual(m.__cached__, os.path.join(os.curdir, os.path.relpath(pyc_file))) @skip_if_dont_write_bytecode def test_package___cached__(self): # Like test___cached__ but for packages. def cleanup(): rmtree('pep3147') unload('pep3147.foo') unload('pep3147') os.mkdir('pep3147') self.addCleanup(cleanup) # Touch the __init__.py with open(os.path.join('pep3147', '__init__.py'), 'w'): pass with open(os.path.join('pep3147', 'foo.py'), 'w'): pass importlib.invalidate_caches() m = __import__('pep3147.foo') init_pyc = importlib.util.cache_from_source( os.path.join('pep3147', '__init__.py')) self.assertEqual(m.__cached__, os.path.join(os.curdir, init_pyc)) foo_pyc = importlib.util.cache_from_source(os.path.join('pep3147', 'foo.py')) self.assertEqual(sys.modules['pep3147.foo'].__cached__, os.path.join(os.curdir, foo_pyc)) def test_package___cached___from_pyc(self): # Like test___cached__ but ensuring __cached__ when imported from a # PEP 3147 pyc file. def cleanup(): rmtree('pep3147') unload('pep3147.foo') unload('pep3147') os.mkdir('pep3147') self.addCleanup(cleanup) # Touch the __init__.py with open(os.path.join('pep3147', '__init__.py'), 'w'): pass with open(os.path.join('pep3147', 'foo.py'), 'w'): pass importlib.invalidate_caches() m = __import__('pep3147.foo') unload('pep3147.foo') unload('pep3147') importlib.invalidate_caches() m = __import__('pep3147.foo') init_pyc = importlib.util.cache_from_source( os.path.join('pep3147', '__init__.py')) self.assertEqual(m.__cached__, os.path.join(os.curdir, init_pyc)) foo_pyc = importlib.util.cache_from_source(os.path.join('pep3147', 'foo.py')) self.assertEqual(sys.modules['pep3147.foo'].__cached__, os.path.join(os.curdir, foo_pyc)) def test_recompute_pyc_same_second(self): # Even when the source file doesn't change timestamp, a change in # source size is enough to trigger recomputation of the pyc file. __import__(TESTFN) unload(TESTFN) with open(self.source, 'a') as fp: print("x = 5", file=fp) m = __import__(TESTFN) self.assertEqual(m.x, 5) class TestSymbolicallyLinkedPackage(unittest.TestCase): package_name = 'sample' tagged = package_name + '-tagged' def setUp(self): test.support.rmtree(self.tagged) test.support.rmtree(self.package_name) self.orig_sys_path = sys.path[:] # create a sample package; imagine you have a package with a tag and # you want to symbolically link it from its untagged name. os.mkdir(self.tagged) self.addCleanup(test.support.rmtree, self.tagged) init_file = os.path.join(self.tagged, '__init__.py') test.support.create_empty_file(init_file) assert os.path.exists(init_file) # now create a symlink to the tagged package # sample -> sample-tagged os.symlink(self.tagged, self.package_name, target_is_directory=True) self.addCleanup(test.support.unlink, self.package_name) importlib.invalidate_caches() self.assertEqual(os.path.isdir(self.package_name), True) assert os.path.isfile(os.path.join(self.package_name, '__init__.py')) def tearDown(self): sys.path[:] = self.orig_sys_path # regression test for issue6727 @unittest.skipUnless( not hasattr(sys, 'getwindowsversion') or sys.getwindowsversion() >= (6, 0), "Windows Vista or later required") @test.support.skip_unless_symlink def test_symlinked_dir_importable(self): # make sure sample can only be imported from the current directory. sys.path[:] = ['.'] assert os.path.exists(self.package_name) assert os.path.exists(os.path.join(self.package_name, '__init__.py')) # Try to import the package importlib.import_module(self.package_name) @cpython_only class ImportlibBootstrapTests(unittest.TestCase): # These tests check that importlib is bootstrapped. def test_frozen_importlib(self): mod = sys.modules['_frozen_importlib'] self.assertTrue(mod) def test_frozen_importlib_is_bootstrap(self): from importlib import _bootstrap mod = sys.modules['_frozen_importlib'] self.assertIs(mod, _bootstrap) self.assertEqual(mod.__name__, 'importlib._bootstrap') self.assertEqual(mod.__package__, 'importlib') self.assertTrue(mod.__file__.endswith('_bootstrap.py'), mod.__file__) def test_frozen_importlib_external_is_bootstrap_external(self): from importlib import _bootstrap_external mod = sys.modules['_frozen_importlib_external'] self.assertIs(mod, _bootstrap_external) self.assertEqual(mod.__name__, 'importlib._bootstrap_external') self.assertEqual(mod.__package__, 'importlib') self.assertTrue(mod.__file__.endswith('_bootstrap_external.py'), mod.__file__) def test_there_can_be_only_one(self): # Issue #15386 revealed a tricky loophole in the bootstrapping # This test is technically redundant, since the bug caused importing # this test module to crash completely, but it helps prove the point from importlib import machinery mod = sys.modules['_frozen_importlib'] self.assertIs(machinery.ModuleSpec, mod.ModuleSpec) @cpython_only class GetSourcefileTests(unittest.TestCase): """Test importlib._bootstrap_external._get_sourcefile() as used by the C API. Because of the peculiarities of the need of this function, the tests are knowingly whitebox tests. """ def test_get_sourcefile(self): # Given a valid bytecode path, return the path to the corresponding # source file if it exists. with mock.patch('importlib._bootstrap_external._path_isfile') as _path_isfile: _path_isfile.return_value = True; path = TESTFN + '.pyc' expect = TESTFN + '.py' self.assertEqual(_get_sourcefile(path), expect) def test_get_sourcefile_no_source(self): # Given a valid bytecode path without a corresponding source path, # return the original bytecode path. with mock.patch('importlib._bootstrap_external._path_isfile') as _path_isfile: _path_isfile.return_value = False; path = TESTFN + '.pyc' self.assertEqual(_get_sourcefile(path), path) def test_get_sourcefile_bad_ext(self): # Given a path with an invalid bytecode extension, return the # bytecode path passed as the argument. path = TESTFN + '.bad_ext' self.assertEqual(_get_sourcefile(path), path) class ImportTracebackTests(unittest.TestCase): def setUp(self): os.mkdir(TESTFN) self.old_path = sys.path[:] sys.path.insert(0, TESTFN) def tearDown(self): sys.path[:] = self.old_path rmtree(TESTFN) def create_module(self, mod, contents, ext=".py"): fname = os.path.join(TESTFN, mod + ext) with open(fname, "w") as f: f.write(contents) self.addCleanup(unload, mod) importlib.invalidate_caches() return fname def assert_traceback(self, tb, files): deduped_files = [] while tb: code = tb.tb_frame.f_code fn = code.co_filename if not deduped_files or fn != deduped_files[-1]: deduped_files.append(fn) tb = tb.tb_next self.assertEqual(len(deduped_files), len(files), deduped_files) for fn, pat in zip(deduped_files, files): self.assertIn(pat, fn) def test_nonexistent_module(self): try: # assertRaises() clears __traceback__ import nonexistent_xyzzy except ImportError as e: tb = e.__traceback__ else: self.fail("ImportError should have been raised") self.assert_traceback(tb, [__file__]) def test_nonexistent_module_nested(self): self.create_module("foo", "import nonexistent_xyzzy") try: import foo except ImportError as e: tb = e.__traceback__ else: self.fail("ImportError should have been raised") self.assert_traceback(tb, [__file__, 'foo.py']) def test_exec_failure(self): self.create_module("foo", "1/0") try: import foo except ZeroDivisionError as e: tb = e.__traceback__ else: self.fail("ZeroDivisionError should have been raised") self.assert_traceback(tb, [__file__, 'foo.py']) def test_exec_failure_nested(self): self.create_module("foo", "import bar") self.create_module("bar", "1/0") try: import foo except ZeroDivisionError as e: tb = e.__traceback__ else: self.fail("ZeroDivisionError should have been raised") self.assert_traceback(tb, [__file__, 'foo.py', 'bar.py']) # A few more examples from issue #15425 def test_syntax_error(self): self.create_module("foo", "invalid syntax is invalid") try: import foo except SyntaxError as e: tb = e.__traceback__ else: self.fail("SyntaxError should have been raised") self.assert_traceback(tb, [__file__]) def _setup_broken_package(self, parent, child): pkg_name = "_parent_foo" self.addCleanup(unload, pkg_name) pkg_path = os.path.join(TESTFN, pkg_name) os.mkdir(pkg_path) # Touch the __init__.py init_path = os.path.join(pkg_path, '__init__.py') with open(init_path, 'w') as f: f.write(parent) bar_path = os.path.join(pkg_path, 'bar.py') with open(bar_path, 'w') as f: f.write(child) importlib.invalidate_caches() return init_path, bar_path def test_broken_submodule(self): init_path, bar_path = self._setup_broken_package("", "1/0") try: import _parent_foo.bar except ZeroDivisionError as e: tb = e.__traceback__ else: self.fail("ZeroDivisionError should have been raised") self.assert_traceback(tb, [__file__, bar_path]) def test_broken_from(self): init_path, bar_path = self._setup_broken_package("", "1/0") try: from _parent_foo import bar except ZeroDivisionError as e: tb = e.__traceback__ else: self.fail("ImportError should have been raised") self.assert_traceback(tb, [__file__, bar_path]) def test_broken_parent(self): init_path, bar_path = self._setup_broken_package("1/0", "") try: import _parent_foo.bar except ZeroDivisionError as e: tb = e.__traceback__ else: self.fail("ZeroDivisionError should have been raised") self.assert_traceback(tb, [__file__, init_path]) def test_broken_parent_from(self): init_path, bar_path = self._setup_broken_package("1/0", "") try: from _parent_foo import bar except ZeroDivisionError as e: tb = e.__traceback__ else: self.fail("ZeroDivisionError should have been raised") self.assert_traceback(tb, [__file__, init_path]) @cpython_only def test_import_bug(self): # We simulate a bug in importlib and check that it's not stripped # away from the traceback. self.create_module("foo", "") importlib = sys.modules['_frozen_importlib_external'] if 'load_module' in vars(importlib.SourceLoader): old_exec_module = importlib.SourceLoader.exec_module else: old_exec_module = None try: def exec_module(*args): 1/0 importlib.SourceLoader.exec_module = exec_module try: import foo except ZeroDivisionError as e: tb = e.__traceback__ else: self.fail("ZeroDivisionError should have been raised") self.assert_traceback(tb, [__file__, '<frozen importlib', __file__]) finally: if old_exec_module is None: del importlib.SourceLoader.exec_module else: importlib.SourceLoader.exec_module = old_exec_module @unittest.skipUnless(TESTFN_UNENCODABLE, 'need TESTFN_UNENCODABLE') def test_unencodable_filename(self): # Issue #11619: The Python parser and the import machinery must not # encode filenames, especially on Windows pyname = script_helper.make_script('', TESTFN_UNENCODABLE, 'pass') self.addCleanup(unlink, pyname) name = pyname[:-3] script_helper.assert_python_ok("-c", "mod = __import__(%a)" % name, __isolated=False) class CircularImportTests(unittest.TestCase): """See the docstrings of the modules being imported for the purpose of the test.""" def tearDown(self): """Make sure no modules pre-exist in sys.modules which are being used to test.""" for key in list(sys.modules.keys()): if key.startswith('test.test_import.data.circular_imports'): del sys.modules[key] def test_direct(self): try: import test.test_import.data.circular_imports.basic except ImportError: self.fail('circular import through relative imports failed') def test_indirect(self): try: import test.test_import.data.circular_imports.indirect except ImportError: self.fail('relative import in module contributing to circular ' 'import failed') def test_subpackage(self): try: import test.test_import.data.circular_imports.subpackage except ImportError: self.fail('circular import involving a subpackage failed') def test_rebinding(self): try: import test.test_import.data.circular_imports.rebinding as rebinding except ImportError: self.fail('circular import with rebinding of module attribute failed') from test.test_import.data.circular_imports.subpkg import util self.assertIs(util.util, rebinding.util) if __name__ == '__main__': # Test needs to be a package, so we can do relative imports. unittest.main()
45,649
1,207
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/test_import/data/package/submodule.py
0
1
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/test_import/data/package/__init__.py
import package.submodule package.submodule
43
3
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/test_import/data/circular_imports/basic.py
"""Circular imports through direct, relative imports.""" from . import basic2
78
3
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/test_import/data/circular_imports/subpackage.py
"""Circular import involving a sub-package.""" from .subpkg import subpackage2
79
3
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/test_import/data/circular_imports/rebinding2.py
from .subpkg import util from . import rebinding util = util.util
66
4
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/test_import/data/circular_imports/util.py
def util(): pass
21
3
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/test_import/data/circular_imports/rebinding.py
"""Test the binding of names when a circular import shares the same name as an attribute.""" from .rebinding2 import util
122
4
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/test_import/data/circular_imports/indirect.py
from . import basic, basic2
28
2
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/test_import/data/circular_imports/basic2.py
from . import basic
20
2
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/test_import/data/circular_imports/subpkg/util.py
def util(): pass
21
3
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/test_import/data/circular_imports/subpkg/subpackage2.py
#from .util import util from .. import subpackage
50
3
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/test_import/data/package2/submodule1.py
import sys sys.modules.pop(__package__, None) from . import submodule2
71
4
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/test_import/data/package2/submodule2.py
0
1
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/dtracedata/assert_usable.d
BEGIN { printf("probe: success\n"); exit(0); }
55
6
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/dtracedata/gc.py
import gc def start(): gc.collect(0) gc.collect(1) gc.collect(2) l = [] l.append(l) del l gc.collect(2) gc.collect() start()
155
14
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/dtracedata/instance.py
import gc class old_style_class(): pass class new_style_class(object): pass a = old_style_class() del a gc.collect() b = new_style_class() del b gc.collect() a = old_style_class() del old_style_class gc.collect() b = new_style_class() del new_style_class gc.collect() del a gc.collect() del b gc.collect()
317
25
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/dtracedata/line.d
python$target:::line /(copyinstr(arg1)=="test_line")/ { printf("%d\t%s:%s:%s:%d\n", timestamp, probename, basename(copyinstr(arg0)), copyinstr(arg1), arg2); }
179
8
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/dtracedata/call_stack.stp.expected
function__entry:call_stack.py:start:23 function__entry:call_stack.py:function_1:1 function__return:call_stack.py:function_1:2 function__entry:call_stack.py:function_2:5 function__entry:call_stack.py:function_1:1 function__return:call_stack.py:function_1:2 function__return:call_stack.py:function_2:6 function__entry:call_stack.py:function_3:9 function__return:call_stack.py:function_3:10 function__entry:call_stack.py:function_4:13 function__return:call_stack.py:function_4:14 function__entry:call_stack.py:function_5:18 function__return:call_stack.py:function_5:21 function__return:call_stack.py:start:28
606
15
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/dtracedata/assert_usable.stp
probe begin { println("probe: success") exit () }
54
6
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/dtracedata/gc.d.expected
gc-start:0 gc-done:0 gc-start:1 gc-done:0 gc-start:2 gc-done:0 gc-start:2 gc-done:1
84
9
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/dtracedata/gc.stp.expected
gc__start:0 gc__done:0 gc__start:1 gc__done:0 gc__start:2 gc__done:0 gc__start:2 gc__done:1
92
9
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/dtracedata/line.py
def test_line(): a = 1 print('# Preamble', a) for i in range(2): a = i b = i+2 c = i+3 if c < 4: a = c d = a + b +c print('#', a, b, c, d) a = 1 print('# Epilogue', a) if __name__ == '__main__': test_line()
293
18
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/dtracedata/call_stack.d.expected
function-entry:call_stack.py:start:23 function-entry: call_stack.py:function_1:1 function-entry: call_stack.py:function_3:9 function-return: call_stack.py:function_3:10 function-return: call_stack.py:function_1:2 function-entry: call_stack.py:function_2:5 function-entry: call_stack.py:function_1:1 function-entry: call_stack.py:function_3:9 function-return: call_stack.py:function_3:10 function-return: call_stack.py:function_1:2 function-return: call_stack.py:function_2:6 function-entry: call_stack.py:function_3:9 function-return: call_stack.py:function_3:10 function-entry: call_stack.py:function_4:13 function-return: call_stack.py:function_4:14 function-entry: call_stack.py:function_5:18 function-return: call_stack.py:function_5:21 function-return:call_stack.py:start:28
797
19
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/dtracedata/line.d.expected
line:line.py:test_line:2 line:line.py:test_line:3 line:line.py:test_line:4 line:line.py:test_line:5 line:line.py:test_line:6 line:line.py:test_line:7 line:line.py:test_line:8 line:line.py:test_line:9 line:line.py:test_line:10 line:line.py:test_line:11 line:line.py:test_line:4 line:line.py:test_line:5 line:line.py:test_line:6 line:line.py:test_line:7 line:line.py:test_line:8 line:line.py:test_line:10 line:line.py:test_line:11 line:line.py:test_line:4 line:line.py:test_line:12 line:line.py:test_line:13
506
21
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/dtracedata/call_stack.d
self int indent; python$target:::function-entry /copyinstr(arg1) == "start"/ { self->trace = 1; } python$target:::function-entry /self->trace/ { printf("%d\t%*s:", timestamp, 15, probename); printf("%*s", self->indent, ""); printf("%s:%s:%d\n", basename(copyinstr(arg0)), copyinstr(arg1), arg2); self->indent++; } python$target:::function-return /self->trace/ { self->indent--; printf("%d\t%*s:", timestamp, 15, probename); printf("%*s", self->indent, ""); printf("%s:%s:%d\n", basename(copyinstr(arg0)), copyinstr(arg1), arg2); } python$target:::function-return /copyinstr(arg1) == "start"/ { self->trace = 0; }
659
32
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/dtracedata/gc.d
python$target:::function-entry /copyinstr(arg1) == "start"/ { self->trace = 1; } python$target:::gc-start, python$target:::gc-done /self->trace/ { printf("%d\t%s:%ld\n", timestamp, probename, arg0); } python$target:::function-return /copyinstr(arg1) == "start"/ { self->trace = 0; }
297
19
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/dtracedata/call_stack.py
def function_1(): function_3(1, 2) # Check stacktrace def function_2(): function_1() # CALL_FUNCTION_VAR def function_3(dummy, dummy2): pass # CALL_FUNCTION_KW def function_4(**dummy): return 1 return 2 # unreachable # CALL_FUNCTION_VAR_KW def function_5(dummy, dummy2, **dummy3): if False: return 7 return 8 def start(): function_1() function_2() function_3(1, 2) function_4(test=42) function_5(*(1, 2), **{"test": 42}) start()
492
31
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/dtracedata/gc.stp
global tracing probe process.mark("function__entry") { funcname = user_string($arg2); if (funcname == "start") { tracing = 1; } } probe process.mark("gc__start"), process.mark("gc__done") { if (tracing) { printf("%d\t%s:%ld\n", gettimeofday_us(), $$name, $arg1); } } probe process.mark("function__return") { funcname = user_string($arg2); if (funcname == "start") { tracing = 0; } }
444
27
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/dtracedata/call_stack.stp
global tracing function basename:string(path:string) { last_token = token = tokenize(path, "/"); while (token != "") { last_token = token; token = tokenize("", "/"); } return last_token; } probe process.mark("function__entry") { funcname = user_string($arg2); if (funcname == "start") { tracing = 1; } } probe process.mark("function__entry"), process.mark("function__return") { filename = user_string($arg1); funcname = user_string($arg2); lineno = $arg3; if (tracing) { printf("%d\t%s:%s:%s:%d\n", gettimeofday_us(), $$name, basename(filename), funcname, lineno); } } probe process.mark("function__return") { funcname = user_string($arg2); if (funcname == "start") { tracing = 0; } }
807
42
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/ddReduce.decTest
------------------------------------------------------------------------ -- ddReduce.decTest -- remove trailing zeros from a decDouble -- -- Copyright (c) IBM Corporation, 2003, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 precision: 16 maxExponent: 384 minExponent: -383 extended: 1 clamp: 1 rounding: half_even ddred001 reduce '1' -> '1' ddred002 reduce '-1' -> '-1' ddred003 reduce '1.00' -> '1' ddred004 reduce '-1.00' -> '-1' ddred005 reduce '0' -> '0' ddred006 reduce '0.00' -> '0' ddred007 reduce '00.0' -> '0' ddred008 reduce '00.00' -> '0' ddred009 reduce '00' -> '0' ddred010 reduce '0E+1' -> '0' ddred011 reduce '0E+5' -> '0' ddred012 reduce '-2' -> '-2' ddred013 reduce '2' -> '2' ddred014 reduce '-2.00' -> '-2' ddred015 reduce '2.00' -> '2' ddred016 reduce '-0' -> '-0' ddred017 reduce '-0.00' -> '-0' ddred018 reduce '-00.0' -> '-0' ddred019 reduce '-00.00' -> '-0' ddred020 reduce '-00' -> '-0' ddred021 reduce '-0E+5' -> '-0' ddred022 reduce '-0E+1' -> '-0' ddred030 reduce '+0.1' -> '0.1' ddred031 reduce '-0.1' -> '-0.1' ddred032 reduce '+0.01' -> '0.01' ddred033 reduce '-0.01' -> '-0.01' ddred034 reduce '+0.001' -> '0.001' ddred035 reduce '-0.001' -> '-0.001' ddred036 reduce '+0.000001' -> '0.000001' ddred037 reduce '-0.000001' -> '-0.000001' ddred038 reduce '+0.000000000001' -> '1E-12' ddred039 reduce '-0.000000000001' -> '-1E-12' ddred041 reduce 1.1 -> 1.1 ddred042 reduce 1.10 -> 1.1 ddred043 reduce 1.100 -> 1.1 ddred044 reduce 1.110 -> 1.11 ddred045 reduce -1.1 -> -1.1 ddred046 reduce -1.10 -> -1.1 ddred047 reduce -1.100 -> -1.1 ddred048 reduce -1.110 -> -1.11 ddred049 reduce 9.9 -> 9.9 ddred050 reduce 9.90 -> 9.9 ddred051 reduce 9.900 -> 9.9 ddred052 reduce 9.990 -> 9.99 ddred053 reduce -9.9 -> -9.9 ddred054 reduce -9.90 -> -9.9 ddred055 reduce -9.900 -> -9.9 ddred056 reduce -9.990 -> -9.99 -- some trailing fractional zeros with zeros in units ddred060 reduce 10.0 -> 1E+1 ddred061 reduce 10.00 -> 1E+1 ddred062 reduce 100.0 -> 1E+2 ddred063 reduce 100.00 -> 1E+2 ddred064 reduce 1.1000E+3 -> 1.1E+3 ddred065 reduce 1.10000E+3 -> 1.1E+3 ddred066 reduce -10.0 -> -1E+1 ddred067 reduce -10.00 -> -1E+1 ddred068 reduce -100.0 -> -1E+2 ddred069 reduce -100.00 -> -1E+2 ddred070 reduce -1.1000E+3 -> -1.1E+3 ddred071 reduce -1.10000E+3 -> -1.1E+3 -- some insignificant trailing zeros with positive exponent ddred080 reduce 10E+1 -> 1E+2 ddred081 reduce 100E+1 -> 1E+3 ddred082 reduce 1.0E+2 -> 1E+2 ddred083 reduce 1.0E+3 -> 1E+3 ddred084 reduce 1.1E+3 -> 1.1E+3 ddred085 reduce 1.00E+3 -> 1E+3 ddred086 reduce 1.10E+3 -> 1.1E+3 ddred087 reduce -10E+1 -> -1E+2 ddred088 reduce -100E+1 -> -1E+3 ddred089 reduce -1.0E+2 -> -1E+2 ddred090 reduce -1.0E+3 -> -1E+3 ddred091 reduce -1.1E+3 -> -1.1E+3 ddred092 reduce -1.00E+3 -> -1E+3 ddred093 reduce -1.10E+3 -> -1.1E+3 -- some significant trailing zeros, were we to be trimming ddred100 reduce 11 -> 11 ddred101 reduce 10 -> 1E+1 ddred102 reduce 10. -> 1E+1 ddred103 reduce 1.1E+1 -> 11 ddred104 reduce 1.0E+1 -> 1E+1 ddred105 reduce 1.10E+2 -> 1.1E+2 ddred106 reduce 1.00E+2 -> 1E+2 ddred107 reduce 1.100E+3 -> 1.1E+3 ddred108 reduce 1.000E+3 -> 1E+3 ddred109 reduce 1.000000E+6 -> 1E+6 ddred110 reduce -11 -> -11 ddred111 reduce -10 -> -1E+1 ddred112 reduce -10. -> -1E+1 ddred113 reduce -1.1E+1 -> -11 ddred114 reduce -1.0E+1 -> -1E+1 ddred115 reduce -1.10E+2 -> -1.1E+2 ddred116 reduce -1.00E+2 -> -1E+2 ddred117 reduce -1.100E+3 -> -1.1E+3 ddred118 reduce -1.000E+3 -> -1E+3 ddred119 reduce -1.00000E+5 -> -1E+5 ddred120 reduce -1.000000E+6 -> -1E+6 ddred121 reduce -10.00000E+6 -> -1E+7 ddred122 reduce -100.0000E+6 -> -1E+8 ddred123 reduce -1000.000E+6 -> -1E+9 ddred124 reduce -10000.00E+6 -> -1E+10 ddred125 reduce -100000.0E+6 -> -1E+11 ddred126 reduce -1000000.E+6 -> -1E+12 -- examples from decArith ddred140 reduce '2.1' -> '2.1' ddred141 reduce '-2.0' -> '-2' ddred142 reduce '1.200' -> '1.2' ddred143 reduce '-120' -> '-1.2E+2' ddred144 reduce '120.00' -> '1.2E+2' ddred145 reduce '0.00' -> '0' -- Nmax, Nmin, Ntiny -- note origami effect on some of these ddred151 reduce 9.999999999999999E+384 -> 9.999999999999999E+384 ddred152 reduce 9.999999000000000E+380 -> 9.99999900000E+380 ddred153 reduce 9.999999999990000E+384 -> 9.999999999990000E+384 ddred154 reduce 1E-383 -> 1E-383 ddred155 reduce 1.000000000000000E-383 -> 1E-383 ddred156 reduce 2.000E-395 -> 2E-395 Subnormal ddred157 reduce 1E-398 -> 1E-398 Subnormal ddred161 reduce -1E-398 -> -1E-398 Subnormal ddred162 reduce -2.000E-395 -> -2E-395 Subnormal ddred163 reduce -1.000000000000000E-383 -> -1E-383 ddred164 reduce -1E-383 -> -1E-383 ddred165 reduce -9.999999000000000E+380 -> -9.99999900000E+380 ddred166 reduce -9.999999999990000E+384 -> -9.999999999990000E+384 ddred167 reduce -9.999999999999990E+384 -> -9.999999999999990E+384 ddred168 reduce -9.999999999999999E+384 -> -9.999999999999999E+384 ddred169 reduce -9.999999999999990E+384 -> -9.999999999999990E+384 -- specials (reduce does not affect payload) ddred820 reduce 'Inf' -> 'Infinity' ddred821 reduce '-Inf' -> '-Infinity' ddred822 reduce NaN -> NaN ddred823 reduce sNaN -> NaN Invalid_operation ddred824 reduce NaN101 -> NaN101 ddred825 reduce sNaN010 -> NaN10 Invalid_operation ddred827 reduce -NaN -> -NaN ddred828 reduce -sNaN -> -NaN Invalid_operation ddred829 reduce -NaN101 -> -NaN101 ddred830 reduce -sNaN010 -> -NaN10 Invalid_operation -- Null test ddred900 reduce # -> NaN Invalid_operation
7,278
183
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/xor.decTest
------------------------------------------------------------------------ -- xor.decTest -- digitwise logical XOR -- -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 extended: 1 precision: 9 rounding: half_up maxExponent: 999 minExponent: -999 -- Sanity check (truth table) xorx001 xor 0 0 -> 0 xorx002 xor 0 1 -> 1 xorx003 xor 1 0 -> 1 xorx004 xor 1 1 -> 0 xorx005 xor 1100 1010 -> 110 xorx006 xor 1111 10 -> 1101 -- and at msd and msd-1 xorx010 xor 000000000 000000000 -> 0 xorx011 xor 000000000 100000000 -> 100000000 xorx012 xor 100000000 000000000 -> 100000000 xorx013 xor 100000000 100000000 -> 0 xorx014 xor 000000000 000000000 -> 0 xorx015 xor 000000000 010000000 -> 10000000 xorx016 xor 010000000 000000000 -> 10000000 xorx017 xor 010000000 010000000 -> 0 -- Various lengths -- 123456789 123456789 123456789 xorx021 xor 111111111 111111111 -> 0 xorx022 xor 111111111111 111111111 -> 0 xorx023 xor 11111111 11111111 -> 0 xorx025 xor 1111111 1111111 -> 0 xorx026 xor 111111 111111 -> 0 xorx027 xor 11111 11111 -> 0 xorx028 xor 1111 1111 -> 0 xorx029 xor 111 111 -> 0 xorx031 xor 11 11 -> 0 xorx032 xor 1 1 -> 0 xorx033 xor 111111111111 1111111111 -> 0 xorx034 xor 11111111111 11111111111 -> 0 xorx035 xor 1111111111 111111111111 -> 0 xorx036 xor 111111111 1111111111111 -> 0 xorx040 xor 111111111 111111111111 -> 0 xorx041 xor 11111111 111111111111 -> 100000000 xorx042 xor 11111111 111111111 -> 100000000 xorx043 xor 1111111 100000010 -> 101111101 xorx044 xor 111111 100000100 -> 100111011 xorx045 xor 11111 100001000 -> 100010111 xorx046 xor 1111 100010000 -> 100011111 xorx047 xor 111 100100000 -> 100100111 xorx048 xor 11 101000000 -> 101000011 xorx049 xor 1 110000000 -> 110000001 xorx050 xor 1111111111 1 -> 111111110 xorx051 xor 111111111 1 -> 111111110 xorx052 xor 11111111 1 -> 11111110 xorx053 xor 1111111 1 -> 1111110 xorx054 xor 111111 1 -> 111110 xorx055 xor 11111 1 -> 11110 xorx056 xor 1111 1 -> 1110 xorx057 xor 111 1 -> 110 xorx058 xor 11 1 -> 10 xorx059 xor 1 1 -> 0 xorx060 xor 1111111111 0 -> 111111111 xorx061 xor 111111111 0 -> 111111111 xorx062 xor 11111111 0 -> 11111111 xorx063 xor 1111111 0 -> 1111111 xorx064 xor 111111 0 -> 111111 xorx065 xor 11111 0 -> 11111 xorx066 xor 1111 0 -> 1111 xorx067 xor 111 0 -> 111 xorx068 xor 11 0 -> 11 xorx069 xor 1 0 -> 1 xorx070 xor 1 1111111111 -> 111111110 xorx071 xor 1 111111111 -> 111111110 xorx072 xor 1 11111111 -> 11111110 xorx073 xor 1 1111111 -> 1111110 xorx074 xor 1 111111 -> 111110 xorx075 xor 1 11111 -> 11110 xorx076 xor 1 1111 -> 1110 xorx077 xor 1 111 -> 110 xorx078 xor 1 11 -> 10 xorx079 xor 1 1 -> 0 xorx080 xor 0 1111111111 -> 111111111 xorx081 xor 0 111111111 -> 111111111 xorx082 xor 0 11111111 -> 11111111 xorx083 xor 0 1111111 -> 1111111 xorx084 xor 0 111111 -> 111111 xorx085 xor 0 11111 -> 11111 xorx086 xor 0 1111 -> 1111 xorx087 xor 0 111 -> 111 xorx088 xor 0 11 -> 11 xorx089 xor 0 1 -> 1 xorx090 xor 011111111 111101111 -> 100010000 xorx091 xor 101111111 111101111 -> 10010000 xorx092 xor 110111111 111101111 -> 1010000 xorx093 xor 111011111 111101111 -> 110000 xorx094 xor 111101111 111101111 -> 0 xorx095 xor 111110111 111101111 -> 11000 xorx096 xor 111111011 111101111 -> 10100 xorx097 xor 111111101 111101111 -> 10010 xorx098 xor 111111110 111101111 -> 10001 xorx100 xor 111101111 011111111 -> 100010000 xorx101 xor 111101111 101111111 -> 10010000 xorx102 xor 111101111 110111111 -> 1010000 xorx103 xor 111101111 111011111 -> 110000 xorx104 xor 111101111 111101111 -> 0 xorx105 xor 111101111 111110111 -> 11000 xorx106 xor 111101111 111111011 -> 10100 xorx107 xor 111101111 111111101 -> 10010 xorx108 xor 111101111 111111110 -> 10001 -- non-0/1 should not be accepted, nor should signs xorx220 xor 111111112 111111111 -> NaN Invalid_operation xorx221 xor 333333333 333333333 -> NaN Invalid_operation xorx222 xor 555555555 555555555 -> NaN Invalid_operation xorx223 xor 777777777 777777777 -> NaN Invalid_operation xorx224 xor 999999999 999999999 -> NaN Invalid_operation xorx225 xor 222222222 999999999 -> NaN Invalid_operation xorx226 xor 444444444 999999999 -> NaN Invalid_operation xorx227 xor 666666666 999999999 -> NaN Invalid_operation xorx228 xor 888888888 999999999 -> NaN Invalid_operation xorx229 xor 999999999 222222222 -> NaN Invalid_operation xorx230 xor 999999999 444444444 -> NaN Invalid_operation xorx231 xor 999999999 666666666 -> NaN Invalid_operation xorx232 xor 999999999 888888888 -> NaN Invalid_operation -- a few randoms xorx240 xor 567468689 -934981942 -> NaN Invalid_operation xorx241 xor 567367689 934981942 -> NaN Invalid_operation xorx242 xor -631917772 -706014634 -> NaN Invalid_operation xorx243 xor -756253257 138579234 -> NaN Invalid_operation xorx244 xor 835590149 567435400 -> NaN Invalid_operation -- test MSD xorx250 xor 200000000 100000000 -> NaN Invalid_operation xorx251 xor 700000000 100000000 -> NaN Invalid_operation xorx252 xor 800000000 100000000 -> NaN Invalid_operation xorx253 xor 900000000 100000000 -> NaN Invalid_operation xorx254 xor 200000000 000000000 -> NaN Invalid_operation xorx255 xor 700000000 000000000 -> NaN Invalid_operation xorx256 xor 800000000 000000000 -> NaN Invalid_operation xorx257 xor 900000000 000000000 -> NaN Invalid_operation xorx258 xor 100000000 200000000 -> NaN Invalid_operation xorx259 xor 100000000 700000000 -> NaN Invalid_operation xorx260 xor 100000000 800000000 -> NaN Invalid_operation xorx261 xor 100000000 900000000 -> NaN Invalid_operation xorx262 xor 000000000 200000000 -> NaN Invalid_operation xorx263 xor 000000000 700000000 -> NaN Invalid_operation xorx264 xor 000000000 800000000 -> NaN Invalid_operation xorx265 xor 000000000 900000000 -> NaN Invalid_operation -- test MSD-1 xorx270 xor 020000000 100000000 -> NaN Invalid_operation xorx271 xor 070100000 100000000 -> NaN Invalid_operation xorx272 xor 080010000 100000001 -> NaN Invalid_operation xorx273 xor 090001000 100000010 -> NaN Invalid_operation xorx274 xor 100000100 020010100 -> NaN Invalid_operation xorx275 xor 100000000 070001000 -> NaN Invalid_operation xorx276 xor 100000010 080010100 -> NaN Invalid_operation xorx277 xor 100000000 090000010 -> NaN Invalid_operation -- test LSD xorx280 xor 001000002 100000000 -> NaN Invalid_operation xorx281 xor 000000007 100000000 -> NaN Invalid_operation xorx282 xor 000000008 100000000 -> NaN Invalid_operation xorx283 xor 000000009 100000000 -> NaN Invalid_operation xorx284 xor 100000000 000100002 -> NaN Invalid_operation xorx285 xor 100100000 001000007 -> NaN Invalid_operation xorx286 xor 100010000 010000008 -> NaN Invalid_operation xorx287 xor 100001000 100000009 -> NaN Invalid_operation -- test Middie xorx288 xor 001020000 100000000 -> NaN Invalid_operation xorx289 xor 000070001 100000000 -> NaN Invalid_operation xorx290 xor 000080000 100010000 -> NaN Invalid_operation xorx291 xor 000090000 100001000 -> NaN Invalid_operation xorx292 xor 100000010 000020100 -> NaN Invalid_operation xorx293 xor 100100000 000070010 -> NaN Invalid_operation xorx294 xor 100010100 000080001 -> NaN Invalid_operation xorx295 xor 100001000 000090000 -> NaN Invalid_operation -- signs xorx296 xor -100001000 -000000000 -> NaN Invalid_operation xorx297 xor -100001000 000010000 -> NaN Invalid_operation xorx298 xor 100001000 -000000000 -> NaN Invalid_operation xorx299 xor 100001000 000011000 -> 100010000 -- Nmax, Nmin, Ntiny xorx331 xor 2 9.99999999E+999 -> NaN Invalid_operation xorx332 xor 3 1E-999 -> NaN Invalid_operation xorx333 xor 4 1.00000000E-999 -> NaN Invalid_operation xorx334 xor 5 1E-1007 -> NaN Invalid_operation xorx335 xor 6 -1E-1007 -> NaN Invalid_operation xorx336 xor 7 -1.00000000E-999 -> NaN Invalid_operation xorx337 xor 8 -1E-999 -> NaN Invalid_operation xorx338 xor 9 -9.99999999E+999 -> NaN Invalid_operation xorx341 xor 9.99999999E+999 -18 -> NaN Invalid_operation xorx342 xor 1E-999 01 -> NaN Invalid_operation xorx343 xor 1.00000000E-999 -18 -> NaN Invalid_operation xorx344 xor 1E-1007 18 -> NaN Invalid_operation xorx345 xor -1E-1007 -10 -> NaN Invalid_operation xorx346 xor -1.00000000E-999 18 -> NaN Invalid_operation xorx347 xor -1E-999 10 -> NaN Invalid_operation xorx348 xor -9.99999999E+999 -18 -> NaN Invalid_operation -- A few other non-integers xorx361 xor 1.0 1 -> NaN Invalid_operation xorx362 xor 1E+1 1 -> NaN Invalid_operation xorx363 xor 0.0 1 -> NaN Invalid_operation xorx364 xor 0E+1 1 -> NaN Invalid_operation xorx365 xor 9.9 1 -> NaN Invalid_operation xorx366 xor 9E+1 1 -> NaN Invalid_operation xorx371 xor 0 1.0 -> NaN Invalid_operation xorx372 xor 0 1E+1 -> NaN Invalid_operation xorx373 xor 0 0.0 -> NaN Invalid_operation xorx374 xor 0 0E+1 -> NaN Invalid_operation xorx375 xor 0 9.9 -> NaN Invalid_operation xorx376 xor 0 9E+1 -> NaN Invalid_operation -- All Specials are in error xorx780 xor -Inf -Inf -> NaN Invalid_operation xorx781 xor -Inf -1000 -> NaN Invalid_operation xorx782 xor -Inf -1 -> NaN Invalid_operation xorx783 xor -Inf -0 -> NaN Invalid_operation xorx784 xor -Inf 0 -> NaN Invalid_operation xorx785 xor -Inf 1 -> NaN Invalid_operation xorx786 xor -Inf 1000 -> NaN Invalid_operation xorx787 xor -1000 -Inf -> NaN Invalid_operation xorx788 xor -Inf -Inf -> NaN Invalid_operation xorx789 xor -1 -Inf -> NaN Invalid_operation xorx790 xor -0 -Inf -> NaN Invalid_operation xorx791 xor 0 -Inf -> NaN Invalid_operation xorx792 xor 1 -Inf -> NaN Invalid_operation xorx793 xor 1000 -Inf -> NaN Invalid_operation xorx794 xor Inf -Inf -> NaN Invalid_operation xorx800 xor Inf -Inf -> NaN Invalid_operation xorx801 xor Inf -1000 -> NaN Invalid_operation xorx802 xor Inf -1 -> NaN Invalid_operation xorx803 xor Inf -0 -> NaN Invalid_operation xorx804 xor Inf 0 -> NaN Invalid_operation xorx805 xor Inf 1 -> NaN Invalid_operation xorx806 xor Inf 1000 -> NaN Invalid_operation xorx807 xor Inf Inf -> NaN Invalid_operation xorx808 xor -1000 Inf -> NaN Invalid_operation xorx809 xor -Inf Inf -> NaN Invalid_operation xorx810 xor -1 Inf -> NaN Invalid_operation xorx811 xor -0 Inf -> NaN Invalid_operation xorx812 xor 0 Inf -> NaN Invalid_operation xorx813 xor 1 Inf -> NaN Invalid_operation xorx814 xor 1000 Inf -> NaN Invalid_operation xorx815 xor Inf Inf -> NaN Invalid_operation xorx821 xor NaN -Inf -> NaN Invalid_operation xorx822 xor NaN -1000 -> NaN Invalid_operation xorx823 xor NaN -1 -> NaN Invalid_operation xorx824 xor NaN -0 -> NaN Invalid_operation xorx825 xor NaN 0 -> NaN Invalid_operation xorx826 xor NaN 1 -> NaN Invalid_operation xorx827 xor NaN 1000 -> NaN Invalid_operation xorx828 xor NaN Inf -> NaN Invalid_operation xorx829 xor NaN NaN -> NaN Invalid_operation xorx830 xor -Inf NaN -> NaN Invalid_operation xorx831 xor -1000 NaN -> NaN Invalid_operation xorx832 xor -1 NaN -> NaN Invalid_operation xorx833 xor -0 NaN -> NaN Invalid_operation xorx834 xor 0 NaN -> NaN Invalid_operation xorx835 xor 1 NaN -> NaN Invalid_operation xorx836 xor 1000 NaN -> NaN Invalid_operation xorx837 xor Inf NaN -> NaN Invalid_operation xorx841 xor sNaN -Inf -> NaN Invalid_operation xorx842 xor sNaN -1000 -> NaN Invalid_operation xorx843 xor sNaN -1 -> NaN Invalid_operation xorx844 xor sNaN -0 -> NaN Invalid_operation xorx845 xor sNaN 0 -> NaN Invalid_operation xorx846 xor sNaN 1 -> NaN Invalid_operation xorx847 xor sNaN 1000 -> NaN Invalid_operation xorx848 xor sNaN NaN -> NaN Invalid_operation xorx849 xor sNaN sNaN -> NaN Invalid_operation xorx850 xor NaN sNaN -> NaN Invalid_operation xorx851 xor -Inf sNaN -> NaN Invalid_operation xorx852 xor -1000 sNaN -> NaN Invalid_operation xorx853 xor -1 sNaN -> NaN Invalid_operation xorx854 xor -0 sNaN -> NaN Invalid_operation xorx855 xor 0 sNaN -> NaN Invalid_operation xorx856 xor 1 sNaN -> NaN Invalid_operation xorx857 xor 1000 sNaN -> NaN Invalid_operation xorx858 xor Inf sNaN -> NaN Invalid_operation xorx859 xor NaN sNaN -> NaN Invalid_operation -- propagating NaNs xorx861 xor NaN1 -Inf -> NaN Invalid_operation xorx862 xor +NaN2 -1000 -> NaN Invalid_operation xorx863 xor NaN3 1000 -> NaN Invalid_operation xorx864 xor NaN4 Inf -> NaN Invalid_operation xorx865 xor NaN5 +NaN6 -> NaN Invalid_operation xorx866 xor -Inf NaN7 -> NaN Invalid_operation xorx867 xor -1000 NaN8 -> NaN Invalid_operation xorx868 xor 1000 NaN9 -> NaN Invalid_operation xorx869 xor Inf +NaN10 -> NaN Invalid_operation xorx871 xor sNaN11 -Inf -> NaN Invalid_operation xorx872 xor sNaN12 -1000 -> NaN Invalid_operation xorx873 xor sNaN13 1000 -> NaN Invalid_operation xorx874 xor sNaN14 NaN17 -> NaN Invalid_operation xorx875 xor sNaN15 sNaN18 -> NaN Invalid_operation xorx876 xor NaN16 sNaN19 -> NaN Invalid_operation xorx877 xor -Inf +sNaN20 -> NaN Invalid_operation xorx878 xor -1000 sNaN21 -> NaN Invalid_operation xorx879 xor 1000 sNaN22 -> NaN Invalid_operation xorx880 xor Inf sNaN23 -> NaN Invalid_operation xorx881 xor +NaN25 +sNaN24 -> NaN Invalid_operation xorx882 xor -NaN26 NaN28 -> NaN Invalid_operation xorx883 xor -sNaN27 sNaN29 -> NaN Invalid_operation xorx884 xor 1000 -NaN30 -> NaN Invalid_operation xorx885 xor 1000 -sNaN31 -> NaN Invalid_operation
15,994
336
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/dsEncode.decTest
------------------------------------------------------------------------ -- dsEncode.decTest -- decimal four-byte format testcases -- -- Copyright (c) IBM Corporation, 2000, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ -- [Previously called decimal32.decTest] version: 2.59 -- This set of tests is for the four-byte concrete representation. -- Its characteristics are: -- -- 1 bit sign -- 5 bits combination field -- 6 bits exponent continuation -- 20 bits coefficient continuation -- -- Total exponent length 8 bits -- Total coefficient length 24 bits (7 digits) -- -- Elimit = 191 (maximum encoded exponent) -- Emax = 96 (largest exponent value) -- Emin = -95 (smallest exponent value) -- bias = 101 (subtracted from encoded exponent) = -Etiny -- The testcases here have only exactly representable data on the -- 'left-hand-side'; rounding from strings is tested in 'base' -- testcase groups. extended: 1 clamp: 1 precision: 7 rounding: half_up maxExponent: 96 minExponent: -95 -- General testcases -- (mostly derived from the Strawman 4 document and examples) decs001 apply #A23003D0 -> -7.50 decs002 apply -7.50 -> #A23003D0 -- derivative canonical plain strings decs003 apply #A26003D0 -> -7.50E+3 decs004 apply -7.50E+3 -> #A26003D0 decs005 apply #A25003D0 -> -750 decs006 apply -750 -> #A25003D0 decs007 apply #A24003D0 -> -75.0 decs008 apply -75.0 -> #A24003D0 decs009 apply #A22003D0 -> -0.750 decs010 apply -0.750 -> #A22003D0 decs011 apply #A21003D0 -> -0.0750 decs012 apply -0.0750 -> #A21003D0 decs013 apply #A1f003D0 -> -0.000750 decs014 apply -0.000750 -> #A1f003D0 decs015 apply #A1d003D0 -> -0.00000750 decs016 apply -0.00000750 -> #A1d003D0 decs017 apply #A1c003D0 -> -7.50E-7 decs018 apply -7.50E-7 -> #A1c003D0 -- Normality decs020 apply 1234567 -> #2654d2e7 decs021 apply -1234567 -> #a654d2e7 decs022 apply 1111111 -> #26524491 -- Nmax and similar decs031 apply 9.999999E+96 -> #77f3fcff decs032 apply #77f3fcff -> 9.999999E+96 decs033 apply 1.234567E+96 -> #47f4d2e7 decs034 apply #47f4d2e7 -> 1.234567E+96 -- fold-downs (more below) decs035 apply 1.23E+96 -> #47f4c000 Clamped decs036 apply #47f4c000 -> 1.230000E+96 decs037 apply 1E+96 -> #47f00000 Clamped decs038 apply #47f00000 -> 1.000000E+96 decs051 apply 12345 -> #225049c5 decs052 apply #225049c5 -> 12345 decs053 apply 1234 -> #22500534 decs054 apply #22500534 -> 1234 decs055 apply 123 -> #225000a3 decs056 apply #225000a3 -> 123 decs057 apply 12 -> #22500012 decs058 apply #22500012 -> 12 decs059 apply 1 -> #22500001 decs060 apply #22500001 -> 1 decs061 apply 1.23 -> #223000a3 decs062 apply #223000a3 -> 1.23 decs063 apply 123.45 -> #223049c5 decs064 apply #223049c5 -> 123.45 -- Nmin and below decs071 apply 1E-95 -> #00600001 decs072 apply #00600001 -> 1E-95 decs073 apply 1.000000E-95 -> #04000000 decs074 apply #04000000 -> 1.000000E-95 decs075 apply 1.000001E-95 -> #04000001 decs076 apply #04000001 -> 1.000001E-95 decs077 apply 0.100000E-95 -> #00020000 Subnormal decs07x apply 1.00000E-96 -> 1.00000E-96 Subnormal decs078 apply #00020000 -> 1.00000E-96 Subnormal decs079 apply 0.000010E-95 -> #00000010 Subnormal decs080 apply #00000010 -> 1.0E-100 Subnormal decs081 apply 0.000001E-95 -> #00000001 Subnormal decs082 apply #00000001 -> 1E-101 Subnormal decs083 apply 1e-101 -> #00000001 Subnormal decs084 apply #00000001 -> 1E-101 Subnormal decs08x apply 1e-101 -> 1E-101 Subnormal -- underflows cannot be tested; just check edge case decs090 apply 1e-101 -> #00000001 Subnormal -- same again, negatives -- -- Nmax and similar decs122 apply -9.999999E+96 -> #f7f3fcff decs123 apply #f7f3fcff -> -9.999999E+96 decs124 apply -1.234567E+96 -> #c7f4d2e7 decs125 apply #c7f4d2e7 -> -1.234567E+96 -- fold-downs (more below) decs130 apply -1.23E+96 -> #c7f4c000 Clamped decs131 apply #c7f4c000 -> -1.230000E+96 decs132 apply -1E+96 -> #c7f00000 Clamped decs133 apply #c7f00000 -> -1.000000E+96 decs151 apply -12345 -> #a25049c5 decs152 apply #a25049c5 -> -12345 decs153 apply -1234 -> #a2500534 decs154 apply #a2500534 -> -1234 decs155 apply -123 -> #a25000a3 decs156 apply #a25000a3 -> -123 decs157 apply -12 -> #a2500012 decs158 apply #a2500012 -> -12 decs159 apply -1 -> #a2500001 decs160 apply #a2500001 -> -1 decs161 apply -1.23 -> #a23000a3 decs162 apply #a23000a3 -> -1.23 decs163 apply -123.45 -> #a23049c5 decs164 apply #a23049c5 -> -123.45 -- Nmin and below decs171 apply -1E-95 -> #80600001 decs172 apply #80600001 -> -1E-95 decs173 apply -1.000000E-95 -> #84000000 decs174 apply #84000000 -> -1.000000E-95 decs175 apply -1.000001E-95 -> #84000001 decs176 apply #84000001 -> -1.000001E-95 decs177 apply -0.100000E-95 -> #80020000 Subnormal decs178 apply #80020000 -> -1.00000E-96 Subnormal decs179 apply -0.000010E-95 -> #80000010 Subnormal decs180 apply #80000010 -> -1.0E-100 Subnormal decs181 apply -0.000001E-95 -> #80000001 Subnormal decs182 apply #80000001 -> -1E-101 Subnormal decs183 apply -1e-101 -> #80000001 Subnormal decs184 apply #80000001 -> -1E-101 Subnormal -- underflow edge case decs190 apply -1e-101 -> #80000001 Subnormal -- zeros decs400 apply 0E-400 -> #00000000 Clamped decs401 apply 0E-101 -> #00000000 decs402 apply #00000000 -> 0E-101 decs403 apply 0.000000E-95 -> #00000000 decs404 apply #00000000 -> 0E-101 decs405 apply 0E-2 -> #22300000 decs406 apply #22300000 -> 0.00 decs407 apply 0 -> #22500000 decs408 apply #22500000 -> 0 decs409 apply 0E+3 -> #22800000 decs410 apply #22800000 -> 0E+3 decs411 apply 0E+90 -> #43f00000 decs412 apply #43f00000 -> 0E+90 -- clamped zeros... decs413 apply 0E+91 -> #43f00000 Clamped decs414 apply #43f00000 -> 0E+90 decs415 apply 0E+96 -> #43f00000 Clamped decs416 apply #43f00000 -> 0E+90 decs417 apply 0E+400 -> #43f00000 Clamped decs418 apply #43f00000 -> 0E+90 -- negative zeros decs420 apply -0E-400 -> #80000000 Clamped decs421 apply -0E-101 -> #80000000 decs422 apply #80000000 -> -0E-101 decs423 apply -0.000000E-95 -> #80000000 decs424 apply #80000000 -> -0E-101 decs425 apply -0E-2 -> #a2300000 decs426 apply #a2300000 -> -0.00 decs427 apply -0 -> #a2500000 decs428 apply #a2500000 -> -0 decs429 apply -0E+3 -> #a2800000 decs430 apply #a2800000 -> -0E+3 decs431 apply -0E+90 -> #c3f00000 decs432 apply #c3f00000 -> -0E+90 -- clamped zeros... decs433 apply -0E+91 -> #c3f00000 Clamped decs434 apply #c3f00000 -> -0E+90 decs435 apply -0E+96 -> #c3f00000 Clamped decs436 apply #c3f00000 -> -0E+90 decs437 apply -0E+400 -> #c3f00000 Clamped decs438 apply #c3f00000 -> -0E+90 -- Specials decs500 apply Infinity -> #78000000 decs501 apply #78787878 -> #78000000 decs502 apply #78000000 -> Infinity decs503 apply #79797979 -> #78000000 decs504 apply #79000000 -> Infinity decs505 apply #7a7a7a7a -> #78000000 decs506 apply #7a000000 -> Infinity decs507 apply #7b7b7b7b -> #78000000 decs508 apply #7b000000 -> Infinity decs509 apply #7c7c7c7c -> #7c0c7c7c decs510 apply NaN -> #7c000000 decs511 apply #7c000000 -> NaN decs512 apply #7d7d7d7d -> #7c0d7d7d decs513 apply #7d000000 -> NaN decs514 apply #7e7e7e7e -> #7e0e7c7e decs515 apply #7e000000 -> sNaN decs516 apply #7f7f7f7f -> #7e0f7c7f decs517 apply #7f000000 -> sNaN decs518 apply #7fffffff -> sNaN999999 decs519 apply #7fffffff -> #7e03fcff decs520 apply -Infinity -> #f8000000 decs521 apply #f8787878 -> #f8000000 decs522 apply #f8000000 -> -Infinity decs523 apply #f9797979 -> #f8000000 decs524 apply #f9000000 -> -Infinity decs525 apply #fa7a7a7a -> #f8000000 decs526 apply #fa000000 -> -Infinity decs527 apply #fb7b7b7b -> #f8000000 decs528 apply #fb000000 -> -Infinity decs529 apply -NaN -> #fc000000 decs530 apply #fc7c7c7c -> #fc0c7c7c decs531 apply #fc000000 -> -NaN decs532 apply #fd7d7d7d -> #fc0d7d7d decs533 apply #fd000000 -> -NaN decs534 apply #fe7e7e7e -> #fe0e7c7e decs535 apply #fe000000 -> -sNaN decs536 apply #ff7f7f7f -> #fe0f7c7f decs537 apply #ff000000 -> -sNaN decs538 apply #ffffffff -> -sNaN999999 decs539 apply #ffffffff -> #fe03fcff -- diagnostic NaNs decs540 apply NaN -> #7c000000 decs541 apply NaN0 -> #7c000000 decs542 apply NaN1 -> #7c000001 decs543 apply NaN12 -> #7c000012 decs544 apply NaN79 -> #7c000079 decs545 apply NaN12345 -> #7c0049c5 decs546 apply NaN123456 -> #7c028e56 decs547 apply NaN799799 -> #7c0f7fdf decs548 apply NaN999999 -> #7c03fcff -- fold-down full sequence decs601 apply 1E+96 -> #47f00000 Clamped decs602 apply #47f00000 -> 1.000000E+96 decs603 apply 1E+95 -> #43f20000 Clamped decs604 apply #43f20000 -> 1.00000E+95 decs605 apply 1E+94 -> #43f04000 Clamped decs606 apply #43f04000 -> 1.0000E+94 decs607 apply 1E+93 -> #43f00400 Clamped decs608 apply #43f00400 -> 1.000E+93 decs609 apply 1E+92 -> #43f00080 Clamped decs610 apply #43f00080 -> 1.00E+92 decs611 apply 1E+91 -> #43f00010 Clamped decs612 apply #43f00010 -> 1.0E+91 decs613 apply 1E+90 -> #43f00001 decs614 apply #43f00001 -> 1E+90 -- Selected DPD codes decs700 apply #22500000 -> 0 decs701 apply #22500009 -> 9 decs702 apply #22500010 -> 10 decs703 apply #22500019 -> 19 decs704 apply #22500020 -> 20 decs705 apply #22500029 -> 29 decs706 apply #22500030 -> 30 decs707 apply #22500039 -> 39 decs708 apply #22500040 -> 40 decs709 apply #22500049 -> 49 decs710 apply #22500050 -> 50 decs711 apply #22500059 -> 59 decs712 apply #22500060 -> 60 decs713 apply #22500069 -> 69 decs714 apply #22500070 -> 70 decs715 apply #22500071 -> 71 decs716 apply #22500072 -> 72 decs717 apply #22500073 -> 73 decs718 apply #22500074 -> 74 decs719 apply #22500075 -> 75 decs720 apply #22500076 -> 76 decs721 apply #22500077 -> 77 decs722 apply #22500078 -> 78 decs723 apply #22500079 -> 79 decs730 apply #2250029e -> 994 decs731 apply #2250029f -> 995 decs732 apply #225002a0 -> 520 decs733 apply #225002a1 -> 521 -- DPD: one of each of the huffman groups decs740 apply #225003f7 -> 777 decs741 apply #225003f8 -> 778 decs742 apply #225003eb -> 787 decs743 apply #2250037d -> 877 decs744 apply #2250039f -> 997 decs745 apply #225003bf -> 979 decs746 apply #225003df -> 799 decs747 apply #2250006e -> 888 -- DPD all-highs cases (includes the 24 redundant codes) decs750 apply #2250006e -> 888 decs751 apply #2250016e -> 888 decs752 apply #2250026e -> 888 decs753 apply #2250036e -> 888 decs754 apply #2250006f -> 889 decs755 apply #2250016f -> 889 decs756 apply #2250026f -> 889 decs757 apply #2250036f -> 889 decs760 apply #2250007e -> 898 decs761 apply #2250017e -> 898 decs762 apply #2250027e -> 898 decs763 apply #2250037e -> 898 decs764 apply #2250007f -> 899 decs765 apply #2250017f -> 899 decs766 apply #2250027f -> 899 decs767 apply #2250037f -> 899 decs770 apply #225000ee -> 988 decs771 apply #225001ee -> 988 decs772 apply #225002ee -> 988 decs773 apply #225003ee -> 988 decs774 apply #225000ef -> 989 decs775 apply #225001ef -> 989 decs776 apply #225002ef -> 989 decs777 apply #225003ef -> 989 decs780 apply #225000fe -> 998 decs781 apply #225001fe -> 998 decs782 apply #225002fe -> 998 decs783 apply #225003fe -> 998 decs784 apply #225000ff -> 999 decs785 apply #225001ff -> 999 decs786 apply #225002ff -> 999 decs787 apply #225003ff -> 999 -- narrowing case decs790 apply 2.00E-99 -> #00000100 Subnormal decs791 apply #00000100 -> 2.00E-99 Subnormal
15,514
373
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/ddFMA.decTest
------------------------------------------------------------------------ -- ddFMA.decTest -- decDouble Fused Multiply Add -- -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 precision: 16 maxExponent: 384 minExponent: -383 extended: 1 clamp: 1 rounding: half_even -- These tests comprese three parts: -- 1. Sanity checks and other three-operand tests (especially those -- where the fused operation makes a difference) -- 2. Multiply tests (third operand is neutral zero [0E+emax]) -- 3. Addition tests (first operand is 1) -- The multiply and addition tests are extensive because FMA may have -- its own dedicated multiplication or addition routine(s), and they -- also inherently check the left-to-right properties. -- Sanity checks ddfma0001 fma 1 1 1 -> 2 ddfma0002 fma 1 1 2 -> 3 ddfma0003 fma 2 2 3 -> 7 ddfma0004 fma 9 9 9 -> 90 ddfma0005 fma -1 1 1 -> 0 ddfma0006 fma -1 1 2 -> 1 ddfma0007 fma -2 2 3 -> -1 ddfma0008 fma -9 9 9 -> -72 ddfma0011 fma 1 -1 1 -> 0 ddfma0012 fma 1 -1 2 -> 1 ddfma0013 fma 2 -2 3 -> -1 ddfma0014 fma 9 -9 9 -> -72 ddfma0015 fma 1 1 -1 -> 0 ddfma0016 fma 1 1 -2 -> -1 ddfma0017 fma 2 2 -3 -> 1 ddfma0018 fma 9 9 -9 -> 72 -- non-integer exacts ddfma0100 fma 25.2 63.6 -438 -> 1164.72 ddfma0101 fma 0.301 0.380 334 -> 334.114380 ddfma0102 fma 49.2 -4.8 23.3 -> -212.86 ddfma0103 fma 4.22 0.079 -94.6 -> -94.26662 ddfma0104 fma 903 0.797 0.887 -> 720.578 ddfma0105 fma 6.13 -161 65.9 -> -921.03 ddfma0106 fma 28.2 727 5.45 -> 20506.85 ddfma0107 fma 4 605 688 -> 3108 ddfma0108 fma 93.3 0.19 0.226 -> 17.953 ddfma0109 fma 0.169 -341 5.61 -> -52.019 ddfma0110 fma -72.2 30 -51.2 -> -2217.2 ddfma0111 fma -0.409 13 20.4 -> 15.083 ddfma0112 fma 317 77.0 19.0 -> 24428.0 ddfma0113 fma 47 6.58 1.62 -> 310.88 ddfma0114 fma 1.36 0.984 0.493 -> 1.83124 ddfma0115 fma 72.7 274 1.56 -> 19921.36 ddfma0116 fma 335 847 83 -> 283828 ddfma0117 fma 666 0.247 25.4 -> 189.902 ddfma0118 fma -3.87 3.06 78.0 -> 66.1578 ddfma0119 fma 0.742 192 35.6 -> 178.064 ddfma0120 fma -91.6 5.29 0.153 -> -484.411 -- cases where result is different from separate multiply + add; each -- is preceded by the result of unfused multiply and add -- [this is about 20% of all similar cases in general] -- -> 7.123356429257969E+16 ddfma0201 fma 27583489.6645 2582471078.04 2593183.42371 -> 7.123356429257970E+16 Inexact Rounded -- -> 22813275328.80506 ddfma0208 fma 24280.355566 939577.397653 2032.013252 -> 22813275328.80507 Inexact Rounded -- -> -2.030397734278062E+16 ddfma0209 fma 7848976432 -2586831.2281 137903.517909 -> -2.030397734278061E+16 Inexact Rounded -- -> 2040774094814.077 ddfma0217 fma 56890.388731 35872030.4255 339337.123410 -> 2040774094814.078 Inexact Rounded -- -> 2.714469575205049E+18 ddfma0220 fma 7533543.57445 360317763928 5073392.31638 -> 2.714469575205050E+18 Inexact Rounded -- -> 1.011676297716716E+19 ddfma0223 fma 739945255.563 13672312784.1 -994381.53572 -> 1.011676297716715E+19 Inexact Rounded -- -> -2.914135721455315E+23 ddfma0224 fma -413510957218 704729988550 9234162614.0 -> -2.914135721455314E+23 Inexact Rounded -- -> 2.620119863365786E+17 ddfma0226 fma 437484.00601 598906432790 894450638.442 -> 2.620119863365787E+17 Inexact Rounded -- -> 1.272647995808178E+19 ddfma0253 fma 73287556929 173651305.784 -358312568.389 -> 1.272647995808177E+19 Inexact Rounded -- -> -1.753769320861851E+18 ddfma0257 fma 203258304486 -8628278.8066 153127.446727 -> -1.753769320861850E+18 Inexact Rounded -- -> -1.550737835263346E+17 ddfma0260 fma 42560533.1774 -3643605282.86 178277.96377 -> -1.550737835263347E+17 Inexact Rounded -- -> 2.897624620576005E+22 ddfma0269 fma 142656587375 203118879670 604576103991 -> 2.897624620576004E+22 Inexact Rounded -- Cases where multiply would overflow or underflow if separate fma0300 fma 9e+384 10 0 -> Infinity Overflow Inexact Rounded fma0301 fma 1e+384 10 0 -> Infinity Overflow Inexact Rounded fma0302 fma 1e+384 10 -1e+384 -> 9.000000000000000E+384 Clamped fma0303 fma 1e+384 10 -9e+384 -> 1.000000000000000E+384 Clamped -- subnormal etc. fma0305 fma 1e-398 0.1 0 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped fma0306 fma 1e-398 0.1 1 -> 1.000000000000000 Inexact Rounded fma0307 fma 1e-398 0.1 1e-398 -> 1E-398 Underflow Subnormal Inexact Rounded -- Infinite combinations ddfma0800 fma Inf Inf Inf -> Infinity ddfma0801 fma Inf Inf -Inf -> NaN Invalid_operation ddfma0802 fma Inf -Inf Inf -> NaN Invalid_operation ddfma0803 fma Inf -Inf -Inf -> -Infinity ddfma0804 fma -Inf Inf Inf -> NaN Invalid_operation ddfma0805 fma -Inf Inf -Inf -> -Infinity ddfma0806 fma -Inf -Inf Inf -> Infinity ddfma0807 fma -Inf -Inf -Inf -> NaN Invalid_operation -- Triple NaN propagation ddfma0900 fma NaN2 NaN3 NaN5 -> NaN2 ddfma0901 fma 0 NaN3 NaN5 -> NaN3 ddfma0902 fma 0 0 NaN5 -> NaN5 -- first sNaN wins (consider qNaN from earlier sNaN being -- overridden by an sNaN in third operand) ddfma0903 fma sNaN1 sNaN2 sNaN3 -> NaN1 Invalid_operation ddfma0904 fma 0 sNaN2 sNaN3 -> NaN2 Invalid_operation ddfma0905 fma 0 0 sNaN3 -> NaN3 Invalid_operation ddfma0906 fma sNaN1 sNaN2 sNaN3 -> NaN1 Invalid_operation ddfma0907 fma NaN7 sNaN2 sNaN3 -> NaN2 Invalid_operation ddfma0908 fma NaN7 NaN5 sNaN3 -> NaN3 Invalid_operation -- MULTIPLICATION TESTS ------------------------------------------------ -- sanity checks ddfma2000 fma 2 2 0e+384 -> 4 ddfma2001 fma 2 3 0e+384 -> 6 ddfma2002 fma 5 1 0e+384 -> 5 ddfma2003 fma 5 2 0e+384 -> 10 ddfma2004 fma 1.20 2 0e+384 -> 2.40 ddfma2005 fma 1.20 0 0e+384 -> 0.00 ddfma2006 fma 1.20 -2 0e+384 -> -2.40 ddfma2007 fma -1.20 2 0e+384 -> -2.40 ddfma2008 fma -1.20 0 0e+384 -> 0.00 ddfma2009 fma -1.20 -2 0e+384 -> 2.40 ddfma2010 fma 5.09 7.1 0e+384 -> 36.139 ddfma2011 fma 2.5 4 0e+384 -> 10.0 ddfma2012 fma 2.50 4 0e+384 -> 10.00 ddfma2013 fma 1.23456789 1.00000000 0e+384 -> 1.234567890000000 Rounded ddfma2015 fma 2.50 4 0e+384 -> 10.00 ddfma2016 fma 9.999999999 9.999999999 0e+384 -> 99.99999998000000 Inexact Rounded ddfma2017 fma 9.999999999 -9.999999999 0e+384 -> -99.99999998000000 Inexact Rounded ddfma2018 fma -9.999999999 9.999999999 0e+384 -> -99.99999998000000 Inexact Rounded ddfma2019 fma -9.999999999 -9.999999999 0e+384 -> 99.99999998000000 Inexact Rounded -- zeros, etc. ddfma2021 fma 0 0 0e+384 -> 0 ddfma2022 fma 0 -0 0e+384 -> 0 ddfma2023 fma -0 0 0e+384 -> 0 ddfma2024 fma -0 -0 0e+384 -> 0 ddfma2025 fma -0.0 -0.0 0e+384 -> 0.00 ddfma2026 fma -0.0 -0.0 0e+384 -> 0.00 ddfma2027 fma -0.0 -0.0 0e+384 -> 0.00 ddfma2028 fma -0.0 -0.0 0e+384 -> 0.00 ddfma2030 fma 5.00 1E-3 0e+384 -> 0.00500 ddfma2031 fma 00.00 0.000 0e+384 -> 0.00000 ddfma2032 fma 00.00 0E-3 0e+384 -> 0.00000 -- rhs is 0 ddfma2033 fma 0E-3 00.00 0e+384 -> 0.00000 -- lhs is 0 ddfma2034 fma -5.00 1E-3 0e+384 -> -0.00500 ddfma2035 fma -00.00 0.000 0e+384 -> 0.00000 ddfma2036 fma -00.00 0E-3 0e+384 -> 0.00000 -- rhs is 0 ddfma2037 fma -0E-3 00.00 0e+384 -> 0.00000 -- lhs is 0 ddfma2038 fma 5.00 -1E-3 0e+384 -> -0.00500 ddfma2039 fma 00.00 -0.000 0e+384 -> 0.00000 ddfma2040 fma 00.00 -0E-3 0e+384 -> 0.00000 -- rhs is 0 ddfma2041 fma 0E-3 -00.00 0e+384 -> 0.00000 -- lhs is 0 ddfma2042 fma -5.00 -1E-3 0e+384 -> 0.00500 ddfma2043 fma -00.00 -0.000 0e+384 -> 0.00000 ddfma2044 fma -00.00 -0E-3 0e+384 -> 0.00000 -- rhs is 0 ddfma2045 fma -0E-3 -00.00 -0e+384 -> 0.00000 -- lhs is 0 ddfma2046 fma -0E-3 00.00 -0e+384 -> -0.00000 ddfma2047 fma 0E-3 -00.00 -0e+384 -> -0.00000 ddfma2048 fma 0E-3 00.00 -0e+384 -> 0.00000 -- examples from decarith ddfma2050 fma 1.20 3 0e+384 -> 3.60 ddfma2051 fma 7 3 0e+384 -> 21 ddfma2052 fma 0.9 0.8 0e+384 -> 0.72 ddfma2053 fma 0.9 -0 0e+384 -> 0.0 ddfma2054 fma 654321 654321 0e+384 -> 428135971041 ddfma2060 fma 123.45 1e7 0e+384 -> 1.2345E+9 ddfma2061 fma 123.45 1e8 0e+384 -> 1.2345E+10 ddfma2062 fma 123.45 1e+9 0e+384 -> 1.2345E+11 ddfma2063 fma 123.45 1e10 0e+384 -> 1.2345E+12 ddfma2064 fma 123.45 1e11 0e+384 -> 1.2345E+13 ddfma2065 fma 123.45 1e12 0e+384 -> 1.2345E+14 ddfma2066 fma 123.45 1e13 0e+384 -> 1.2345E+15 -- test some intermediate lengths -- 1234567890123456 ddfma2080 fma 0.1 1230123456456789 0e+384 -> 123012345645678.9 ddfma2084 fma 0.1 1230123456456789 0e+384 -> 123012345645678.9 ddfma2090 fma 1230123456456789 0.1 0e+384 -> 123012345645678.9 ddfma2094 fma 1230123456456789 0.1 0e+384 -> 123012345645678.9 -- test some more edge cases and carries ddfma2101 fma 9 9 0e+384 -> 81 ddfma2102 fma 9 90 0e+384 -> 810 ddfma2103 fma 9 900 0e+384 -> 8100 ddfma2104 fma 9 9000 0e+384 -> 81000 ddfma2105 fma 9 90000 0e+384 -> 810000 ddfma2106 fma 9 900000 0e+384 -> 8100000 ddfma2107 fma 9 9000000 0e+384 -> 81000000 ddfma2108 fma 9 90000000 0e+384 -> 810000000 ddfma2109 fma 9 900000000 0e+384 -> 8100000000 ddfma2110 fma 9 9000000000 0e+384 -> 81000000000 ddfma2111 fma 9 90000000000 0e+384 -> 810000000000 ddfma2112 fma 9 900000000000 0e+384 -> 8100000000000 ddfma2113 fma 9 9000000000000 0e+384 -> 81000000000000 ddfma2114 fma 9 90000000000000 0e+384 -> 810000000000000 ddfma2115 fma 9 900000000000000 0e+384 -> 8100000000000000 --ddfma2116 fma 9 9000000000000000 0e+384 -> 81000000000000000 --ddfma2117 fma 9 90000000000000000 0e+384 -> 810000000000000000 --ddfma2118 fma 9 900000000000000000 0e+384 -> 8100000000000000000 --ddfma2119 fma 9 9000000000000000000 0e+384 -> 81000000000000000000 --ddfma2120 fma 9 90000000000000000000 0e+384 -> 810000000000000000000 --ddfma2121 fma 9 900000000000000000000 0e+384 -> 8100000000000000000000 --ddfma2122 fma 9 9000000000000000000000 0e+384 -> 81000000000000000000000 --ddfma2123 fma 9 90000000000000000000000 0e+384 -> 810000000000000000000000 -- test some more edge cases without carries ddfma2131 fma 3 3 0e+384 -> 9 ddfma2132 fma 3 30 0e+384 -> 90 ddfma2133 fma 3 300 0e+384 -> 900 ddfma2134 fma 3 3000 0e+384 -> 9000 ddfma2135 fma 3 30000 0e+384 -> 90000 ddfma2136 fma 3 300000 0e+384 -> 900000 ddfma2137 fma 3 3000000 0e+384 -> 9000000 ddfma2138 fma 3 30000000 0e+384 -> 90000000 ddfma2139 fma 3 300000000 0e+384 -> 900000000 ddfma2140 fma 3 3000000000 0e+384 -> 9000000000 ddfma2141 fma 3 30000000000 0e+384 -> 90000000000 ddfma2142 fma 3 300000000000 0e+384 -> 900000000000 ddfma2143 fma 3 3000000000000 0e+384 -> 9000000000000 ddfma2144 fma 3 30000000000000 0e+384 -> 90000000000000 ddfma2145 fma 3 300000000000000 0e+384 -> 900000000000000 -- test some edge cases with exact rounding ddfma2301 fma 9 9 0e+384 -> 81 ddfma2302 fma 9 90 0e+384 -> 810 ddfma2303 fma 9 900 0e+384 -> 8100 ddfma2304 fma 9 9000 0e+384 -> 81000 ddfma2305 fma 9 90000 0e+384 -> 810000 ddfma2306 fma 9 900000 0e+384 -> 8100000 ddfma2307 fma 9 9000000 0e+384 -> 81000000 ddfma2308 fma 9 90000000 0e+384 -> 810000000 ddfma2309 fma 9 900000000 0e+384 -> 8100000000 ddfma2310 fma 9 9000000000 0e+384 -> 81000000000 ddfma2311 fma 9 90000000000 0e+384 -> 810000000000 ddfma2312 fma 9 900000000000 0e+384 -> 8100000000000 ddfma2313 fma 9 9000000000000 0e+384 -> 81000000000000 ddfma2314 fma 9 90000000000000 0e+384 -> 810000000000000 ddfma2315 fma 9 900000000000000 0e+384 -> 8100000000000000 ddfma2316 fma 9 9000000000000000 0e+384 -> 8.100000000000000E+16 Rounded ddfma2317 fma 90 9000000000000000 0e+384 -> 8.100000000000000E+17 Rounded ddfma2318 fma 900 9000000000000000 0e+384 -> 8.100000000000000E+18 Rounded ddfma2319 fma 9000 9000000000000000 0e+384 -> 8.100000000000000E+19 Rounded ddfma2320 fma 90000 9000000000000000 0e+384 -> 8.100000000000000E+20 Rounded ddfma2321 fma 900000 9000000000000000 0e+384 -> 8.100000000000000E+21 Rounded ddfma2322 fma 9000000 9000000000000000 0e+384 -> 8.100000000000000E+22 Rounded ddfma2323 fma 90000000 9000000000000000 0e+384 -> 8.100000000000000E+23 Rounded -- tryzeros cases ddfma2504 fma 0E-260 1000E-260 0e+384 -> 0E-398 Clamped ddfma2505 fma 100E+260 0E+260 0e+384 -> 0E+369 Clamped -- mixed with zeros ddfma2541 fma 0 -1 0e+384 -> 0 ddfma2542 fma -0 -1 0e+384 -> 0 ddfma2543 fma 0 1 0e+384 -> 0 ddfma2544 fma -0 1 0e+384 -> 0 ddfma2545 fma -1 0 0e+384 -> 0 ddfma2546 fma -1 -0 0e+384 -> 0 ddfma2547 fma 1 0 0e+384 -> 0 ddfma2548 fma 1 -0 0e+384 -> 0 ddfma2551 fma 0.0 -1 0e+384 -> 0.0 ddfma2552 fma -0.0 -1 0e+384 -> 0.0 ddfma2553 fma 0.0 1 0e+384 -> 0.0 ddfma2554 fma -0.0 1 0e+384 -> 0.0 ddfma2555 fma -1.0 0 0e+384 -> 0.0 ddfma2556 fma -1.0 -0 0e+384 -> 0.0 ddfma2557 fma 1.0 0 0e+384 -> 0.0 ddfma2558 fma 1.0 -0 0e+384 -> 0.0 ddfma2561 fma 0 -1.0 0e+384 -> 0.0 ddfma2562 fma -0 -1.0 0e+384 -> 0.0 ddfma2563 fma 0 1.0 0e+384 -> 0.0 ddfma2564 fma -0 1.0 0e+384 -> 0.0 ddfma2565 fma -1 0.0 0e+384 -> 0.0 ddfma2566 fma -1 -0.0 0e+384 -> 0.0 ddfma2567 fma 1 0.0 0e+384 -> 0.0 ddfma2568 fma 1 -0.0 0e+384 -> 0.0 ddfma2571 fma 0.0 -1.0 0e+384 -> 0.00 ddfma2572 fma -0.0 -1.0 0e+384 -> 0.00 ddfma2573 fma 0.0 1.0 0e+384 -> 0.00 ddfma2574 fma -0.0 1.0 0e+384 -> 0.00 ddfma2575 fma -1.0 0.0 0e+384 -> 0.00 ddfma2576 fma -1.0 -0.0 0e+384 -> 0.00 ddfma2577 fma 1.0 0.0 0e+384 -> 0.00 ddfma2578 fma 1.0 -0.0 0e+384 -> 0.00 -- Specials ddfma2580 fma Inf -Inf 0e+384 -> -Infinity ddfma2581 fma Inf -1000 0e+384 -> -Infinity ddfma2582 fma Inf -1 0e+384 -> -Infinity ddfma2583 fma Inf -0 0e+384 -> NaN Invalid_operation ddfma2584 fma Inf 0 0e+384 -> NaN Invalid_operation ddfma2585 fma Inf 1 0e+384 -> Infinity ddfma2586 fma Inf 1000 0e+384 -> Infinity ddfma2587 fma Inf Inf 0e+384 -> Infinity ddfma2588 fma -1000 Inf 0e+384 -> -Infinity ddfma2589 fma -Inf Inf 0e+384 -> -Infinity ddfma2590 fma -1 Inf 0e+384 -> -Infinity ddfma2591 fma -0 Inf 0e+384 -> NaN Invalid_operation ddfma2592 fma 0 Inf 0e+384 -> NaN Invalid_operation ddfma2593 fma 1 Inf 0e+384 -> Infinity ddfma2594 fma 1000 Inf 0e+384 -> Infinity ddfma2595 fma Inf Inf 0e+384 -> Infinity ddfma2600 fma -Inf -Inf 0e+384 -> Infinity ddfma2601 fma -Inf -1000 0e+384 -> Infinity ddfma2602 fma -Inf -1 0e+384 -> Infinity ddfma2603 fma -Inf -0 0e+384 -> NaN Invalid_operation ddfma2604 fma -Inf 0 0e+384 -> NaN Invalid_operation ddfma2605 fma -Inf 1 0e+384 -> -Infinity ddfma2606 fma -Inf 1000 0e+384 -> -Infinity ddfma2607 fma -Inf Inf 0e+384 -> -Infinity ddfma2608 fma -1000 Inf 0e+384 -> -Infinity ddfma2609 fma -Inf -Inf 0e+384 -> Infinity ddfma2610 fma -1 -Inf 0e+384 -> Infinity ddfma2611 fma -0 -Inf 0e+384 -> NaN Invalid_operation ddfma2612 fma 0 -Inf 0e+384 -> NaN Invalid_operation ddfma2613 fma 1 -Inf 0e+384 -> -Infinity ddfma2614 fma 1000 -Inf 0e+384 -> -Infinity ddfma2615 fma Inf -Inf 0e+384 -> -Infinity ddfma2621 fma NaN -Inf 0e+384 -> NaN ddfma2622 fma NaN -1000 0e+384 -> NaN ddfma2623 fma NaN -1 0e+384 -> NaN ddfma2624 fma NaN -0 0e+384 -> NaN ddfma2625 fma NaN 0 0e+384 -> NaN ddfma2626 fma NaN 1 0e+384 -> NaN ddfma2627 fma NaN 1000 0e+384 -> NaN ddfma2628 fma NaN Inf 0e+384 -> NaN ddfma2629 fma NaN NaN 0e+384 -> NaN ddfma2630 fma -Inf NaN 0e+384 -> NaN ddfma2631 fma -1000 NaN 0e+384 -> NaN ddfma2632 fma -1 NaN 0e+384 -> NaN ddfma2633 fma -0 NaN 0e+384 -> NaN ddfma2634 fma 0 NaN 0e+384 -> NaN ddfma2635 fma 1 NaN 0e+384 -> NaN ddfma2636 fma 1000 NaN 0e+384 -> NaN ddfma2637 fma Inf NaN 0e+384 -> NaN ddfma2641 fma sNaN -Inf 0e+384 -> NaN Invalid_operation ddfma2642 fma sNaN -1000 0e+384 -> NaN Invalid_operation ddfma2643 fma sNaN -1 0e+384 -> NaN Invalid_operation ddfma2644 fma sNaN -0 0e+384 -> NaN Invalid_operation ddfma2645 fma sNaN 0 0e+384 -> NaN Invalid_operation ddfma2646 fma sNaN 1 0e+384 -> NaN Invalid_operation ddfma2647 fma sNaN 1000 0e+384 -> NaN Invalid_operation ddfma2648 fma sNaN NaN 0e+384 -> NaN Invalid_operation ddfma2649 fma sNaN sNaN 0e+384 -> NaN Invalid_operation ddfma2650 fma NaN sNaN 0e+384 -> NaN Invalid_operation ddfma2651 fma -Inf sNaN 0e+384 -> NaN Invalid_operation ddfma2652 fma -1000 sNaN 0e+384 -> NaN Invalid_operation ddfma2653 fma -1 sNaN 0e+384 -> NaN Invalid_operation ddfma2654 fma -0 sNaN 0e+384 -> NaN Invalid_operation ddfma2655 fma 0 sNaN 0e+384 -> NaN Invalid_operation ddfma2656 fma 1 sNaN 0e+384 -> NaN Invalid_operation ddfma2657 fma 1000 sNaN 0e+384 -> NaN Invalid_operation ddfma2658 fma Inf sNaN 0e+384 -> NaN Invalid_operation ddfma2659 fma NaN sNaN 0e+384 -> NaN Invalid_operation -- propagating NaNs ddfma2661 fma NaN9 -Inf 0e+384 -> NaN9 ddfma2662 fma NaN8 999 0e+384 -> NaN8 ddfma2663 fma NaN71 Inf 0e+384 -> NaN71 ddfma2664 fma NaN6 NaN5 0e+384 -> NaN6 ddfma2665 fma -Inf NaN4 0e+384 -> NaN4 ddfma2666 fma -999 NaN33 0e+384 -> NaN33 ddfma2667 fma Inf NaN2 0e+384 -> NaN2 ddfma2671 fma sNaN99 -Inf 0e+384 -> NaN99 Invalid_operation ddfma2672 fma sNaN98 -11 0e+384 -> NaN98 Invalid_operation ddfma2673 fma sNaN97 NaN 0e+384 -> NaN97 Invalid_operation ddfma2674 fma sNaN16 sNaN94 0e+384 -> NaN16 Invalid_operation ddfma2675 fma NaN95 sNaN93 0e+384 -> NaN93 Invalid_operation ddfma2676 fma -Inf sNaN92 0e+384 -> NaN92 Invalid_operation ddfma2677 fma 088 sNaN91 0e+384 -> NaN91 Invalid_operation ddfma2678 fma Inf sNaN90 0e+384 -> NaN90 Invalid_operation ddfma2679 fma NaN sNaN89 0e+384 -> NaN89 Invalid_operation ddfma2681 fma -NaN9 -Inf 0e+384 -> -NaN9 ddfma2682 fma -NaN8 999 0e+384 -> -NaN8 ddfma2683 fma -NaN71 Inf 0e+384 -> -NaN71 ddfma2684 fma -NaN6 -NaN5 0e+384 -> -NaN6 ddfma2685 fma -Inf -NaN4 0e+384 -> -NaN4 ddfma2686 fma -999 -NaN33 0e+384 -> -NaN33 ddfma2687 fma Inf -NaN2 0e+384 -> -NaN2 ddfma2691 fma -sNaN99 -Inf 0e+384 -> -NaN99 Invalid_operation ddfma2692 fma -sNaN98 -11 0e+384 -> -NaN98 Invalid_operation ddfma2693 fma -sNaN97 NaN 0e+384 -> -NaN97 Invalid_operation ddfma2694 fma -sNaN16 -sNaN94 0e+384 -> -NaN16 Invalid_operation ddfma2695 fma -NaN95 -sNaN93 0e+384 -> -NaN93 Invalid_operation ddfma2696 fma -Inf -sNaN92 0e+384 -> -NaN92 Invalid_operation ddfma2697 fma 088 -sNaN91 0e+384 -> -NaN91 Invalid_operation ddfma2698 fma Inf -sNaN90 0e+384 -> -NaN90 Invalid_operation ddfma2699 fma -NaN -sNaN89 0e+384 -> -NaN89 Invalid_operation ddfma2701 fma -NaN -Inf 0e+384 -> -NaN ddfma2702 fma -NaN 999 0e+384 -> -NaN ddfma2703 fma -NaN Inf 0e+384 -> -NaN ddfma2704 fma -NaN -NaN 0e+384 -> -NaN ddfma2705 fma -Inf -NaN0 0e+384 -> -NaN ddfma2706 fma -999 -NaN 0e+384 -> -NaN ddfma2707 fma Inf -NaN 0e+384 -> -NaN ddfma2711 fma -sNaN -Inf 0e+384 -> -NaN Invalid_operation ddfma2712 fma -sNaN -11 0e+384 -> -NaN Invalid_operation ddfma2713 fma -sNaN00 NaN 0e+384 -> -NaN Invalid_operation ddfma2714 fma -sNaN -sNaN 0e+384 -> -NaN Invalid_operation ddfma2715 fma -NaN -sNaN 0e+384 -> -NaN Invalid_operation ddfma2716 fma -Inf -sNaN 0e+384 -> -NaN Invalid_operation ddfma2717 fma 088 -sNaN 0e+384 -> -NaN Invalid_operation ddfma2718 fma Inf -sNaN 0e+384 -> -NaN Invalid_operation ddfma2719 fma -NaN -sNaN 0e+384 -> -NaN Invalid_operation -- overflow and underflow tests .. note subnormal results -- signs ddfma2751 fma 1e+277 1e+311 0e+384 -> Infinity Overflow Inexact Rounded ddfma2752 fma 1e+277 -1e+311 0e+384 -> -Infinity Overflow Inexact Rounded ddfma2753 fma -1e+277 1e+311 0e+384 -> -Infinity Overflow Inexact Rounded ddfma2754 fma -1e+277 -1e+311 0e+384 -> Infinity Overflow Inexact Rounded ddfma2755 fma 1e-277 1e-311 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped ddfma2756 fma 1e-277 -1e-311 0e+384 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped ddfma2757 fma -1e-277 1e-311 0e+384 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped ddfma2758 fma -1e-277 -1e-311 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -- 'subnormal' boundary (all hard underflow or overflow in base arithemtic) ddfma2760 fma 1e-291 1e-101 0e+384 -> 1E-392 Subnormal ddfma2761 fma 1e-291 1e-102 0e+384 -> 1E-393 Subnormal ddfma2762 fma 1e-291 1e-103 0e+384 -> 1E-394 Subnormal ddfma2763 fma 1e-291 1e-104 0e+384 -> 1E-395 Subnormal ddfma2764 fma 1e-291 1e-105 0e+384 -> 1E-396 Subnormal ddfma2765 fma 1e-291 1e-106 0e+384 -> 1E-397 Subnormal ddfma2766 fma 1e-291 1e-107 0e+384 -> 1E-398 Subnormal ddfma2767 fma 1e-291 1e-108 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped ddfma2768 fma 1e-291 1e-109 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped ddfma2769 fma 1e-291 1e-110 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -- [no equivalent of 'subnormal' for overflow] ddfma2770 fma 1e+60 1e+321 0e+384 -> 1.000000000000E+381 Clamped ddfma2771 fma 1e+60 1e+322 0e+384 -> 1.0000000000000E+382 Clamped ddfma2772 fma 1e+60 1e+323 0e+384 -> 1.00000000000000E+383 Clamped ddfma2773 fma 1e+60 1e+324 0e+384 -> 1.000000000000000E+384 Clamped ddfma2774 fma 1e+60 1e+325 0e+384 -> Infinity Overflow Inexact Rounded ddfma2775 fma 1e+60 1e+326 0e+384 -> Infinity Overflow Inexact Rounded ddfma2776 fma 1e+60 1e+327 0e+384 -> Infinity Overflow Inexact Rounded ddfma2777 fma 1e+60 1e+328 0e+384 -> Infinity Overflow Inexact Rounded ddfma2778 fma 1e+60 1e+329 0e+384 -> Infinity Overflow Inexact Rounded ddfma2779 fma 1e+60 1e+330 0e+384 -> Infinity Overflow Inexact Rounded ddfma2801 fma 1.0000E-394 1 0e+384 -> 1.0000E-394 Subnormal ddfma2802 fma 1.000E-394 1e-1 0e+384 -> 1.000E-395 Subnormal ddfma2803 fma 1.00E-394 1e-2 0e+384 -> 1.00E-396 Subnormal ddfma2804 fma 1.0E-394 1e-3 0e+384 -> 1.0E-397 Subnormal ddfma2805 fma 1.0E-394 1e-4 0e+384 -> 1E-398 Subnormal Rounded ddfma2806 fma 1.3E-394 1e-4 0e+384 -> 1E-398 Underflow Subnormal Inexact Rounded ddfma2807 fma 1.5E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded ddfma2808 fma 1.7E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded ddfma2809 fma 2.3E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded ddfma2810 fma 2.5E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded ddfma2811 fma 2.7E-394 1e-4 0e+384 -> 3E-398 Underflow Subnormal Inexact Rounded ddfma2812 fma 1.49E-394 1e-4 0e+384 -> 1E-398 Underflow Subnormal Inexact Rounded ddfma2813 fma 1.50E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded ddfma2814 fma 1.51E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded ddfma2815 fma 2.49E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded ddfma2816 fma 2.50E-394 1e-4 0e+384 -> 2E-398 Underflow Subnormal Inexact Rounded ddfma2817 fma 2.51E-394 1e-4 0e+384 -> 3E-398 Underflow Subnormal Inexact Rounded ddfma2818 fma 1E-394 1e-4 0e+384 -> 1E-398 Subnormal ddfma2819 fma 3E-394 1e-5 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped ddfma2820 fma 5E-394 1e-5 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped ddfma2821 fma 7E-394 1e-5 0e+384 -> 1E-398 Underflow Subnormal Inexact Rounded ddfma2822 fma 9E-394 1e-5 0e+384 -> 1E-398 Underflow Subnormal Inexact Rounded ddfma2823 fma 9.9E-394 1e-5 0e+384 -> 1E-398 Underflow Subnormal Inexact Rounded ddfma2824 fma 1E-394 -1e-4 0e+384 -> -1E-398 Subnormal ddfma2825 fma 3E-394 -1e-5 0e+384 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped ddfma2826 fma -5E-394 1e-5 0e+384 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped ddfma2827 fma 7E-394 -1e-5 0e+384 -> -1E-398 Underflow Subnormal Inexact Rounded ddfma2828 fma -9E-394 1e-5 0e+384 -> -1E-398 Underflow Subnormal Inexact Rounded ddfma2829 fma 9.9E-394 -1e-5 0e+384 -> -1E-398 Underflow Subnormal Inexact Rounded ddfma2830 fma 3.0E-394 -1e-5 0e+384 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped ddfma2831 fma 1.0E-199 1e-200 0e+384 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped ddfma2832 fma 1.0E-199 1e-199 0e+384 -> 1E-398 Subnormal Rounded ddfma2833 fma 1.0E-199 1e-198 0e+384 -> 1.0E-397 Subnormal ddfma2834 fma 2.0E-199 2e-198 0e+384 -> 4.0E-397 Subnormal ddfma2835 fma 4.0E-199 4e-198 0e+384 -> 1.60E-396 Subnormal ddfma2836 fma 10.0E-199 10e-198 0e+384 -> 1.000E-395 Subnormal ddfma2837 fma 30.0E-199 30e-198 0e+384 -> 9.000E-395 Subnormal ddfma2838 fma 40.0E-199 40e-188 0e+384 -> 1.6000E-384 Subnormal ddfma2839 fma 40.0E-199 40e-187 0e+384 -> 1.6000E-383 ddfma2840 fma 40.0E-199 40e-186 0e+384 -> 1.6000E-382 -- Long operand overflow may be a different path ddfma2870 fma 100 9.999E+383 0e+384 -> Infinity Inexact Overflow Rounded ddfma2871 fma 100 -9.999E+383 0e+384 -> -Infinity Inexact Overflow Rounded ddfma2872 fma 9.999E+383 100 0e+384 -> Infinity Inexact Overflow Rounded ddfma2873 fma -9.999E+383 100 0e+384 -> -Infinity Inexact Overflow Rounded -- check for double-rounded subnormals ddfma2881 fma 1.2347E-355 1.2347E-40 0e+384 -> 1.524E-395 Inexact Rounded Subnormal Underflow ddfma2882 fma 1.234E-355 1.234E-40 0e+384 -> 1.523E-395 Inexact Rounded Subnormal Underflow ddfma2883 fma 1.23E-355 1.23E-40 0e+384 -> 1.513E-395 Inexact Rounded Subnormal Underflow ddfma2884 fma 1.2E-355 1.2E-40 0e+384 -> 1.44E-395 Subnormal ddfma2885 fma 1.2E-355 1.2E-41 0e+384 -> 1.44E-396 Subnormal ddfma2886 fma 1.2E-355 1.2E-42 0e+384 -> 1.4E-397 Subnormal Inexact Rounded Underflow ddfma2887 fma 1.2E-355 1.3E-42 0e+384 -> 1.6E-397 Subnormal Inexact Rounded Underflow ddfma2888 fma 1.3E-355 1.3E-42 0e+384 -> 1.7E-397 Subnormal Inexact Rounded Underflow ddfma2889 fma 1.3E-355 1.3E-43 0e+384 -> 2E-398 Subnormal Inexact Rounded Underflow ddfma2890 fma 1.3E-356 1.3E-43 0e+384 -> 0E-398 Clamped Subnormal Inexact Rounded Underflow ddfma2891 fma 1.2345E-39 1.234E-355 0e+384 -> 1.5234E-394 Inexact Rounded Subnormal Underflow ddfma2892 fma 1.23456E-39 1.234E-355 0e+384 -> 1.5234E-394 Inexact Rounded Subnormal Underflow ddfma2893 fma 1.2345E-40 1.234E-355 0e+384 -> 1.523E-395 Inexact Rounded Subnormal Underflow ddfma2894 fma 1.23456E-40 1.234E-355 0e+384 -> 1.523E-395 Inexact Rounded Subnormal Underflow ddfma2895 fma 1.2345E-41 1.234E-355 0e+384 -> 1.52E-396 Inexact Rounded Subnormal Underflow ddfma2896 fma 1.23456E-41 1.234E-355 0e+384 -> 1.52E-396 Inexact Rounded Subnormal Underflow -- Now explore the case where we get a normal result with Underflow ddfma2900 fma 0.3000000000E-191 0.3000000000E-191 0e+384 -> 9.00000000000000E-384 Subnormal Rounded ddfma2901 fma 0.3000000001E-191 0.3000000001E-191 0e+384 -> 9.00000000600000E-384 Underflow Inexact Subnormal Rounded ddfma2902 fma 9.999999999999999E-383 0.0999999999999 0e+384 -> 9.99999999999000E-384 Underflow Inexact Subnormal Rounded ddfma2903 fma 9.999999999999999E-383 0.09999999999999 0e+384 -> 9.99999999999900E-384 Underflow Inexact Subnormal Rounded ddfma2904 fma 9.999999999999999E-383 0.099999999999999 0e+384 -> 9.99999999999990E-384 Underflow Inexact Subnormal Rounded ddfma2905 fma 9.999999999999999E-383 0.0999999999999999 0e+384 -> 9.99999999999999E-384 Underflow Inexact Subnormal Rounded -- prove operands are exact ddfma2906 fma 9.999999999999999E-383 1 0e+384 -> 9.999999999999999E-383 ddfma2907 fma 1 0.09999999999999999 0e+384 -> 0.09999999999999999 -- the next rounds to Nmin ddfma2908 fma 9.999999999999999E-383 0.09999999999999999 0e+384 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded -- hugest ddfma2909 fma 9999999999999999 9999999999999999 0e+384 -> 9.999999999999998E+31 Inexact Rounded -- Null tests ddfma2990 fma 10 # 0e+384 -> NaN Invalid_operation ddfma2991 fma # 10 0e+384 -> NaN Invalid_operation -- ADDITION TESTS ------------------------------------------------------ -- [first group are 'quick confidence check'] ddfma3001 fma 1 1 1 -> 2 ddfma3002 fma 1 2 3 -> 5 ddfma3003 fma 1 '5.75' '3.3' -> 9.05 ddfma3004 fma 1 '5' '-3' -> 2 ddfma3005 fma 1 '-5' '-3' -> -8 ddfma3006 fma 1 '-7' '2.5' -> -4.5 ddfma3007 fma 1 '0.7' '0.3' -> 1.0 ddfma3008 fma 1 '1.25' '1.25' -> 2.50 ddfma3009 fma 1 '1.23456789' '1.00000000' -> '2.23456789' ddfma3010 fma 1 '1.23456789' '1.00000011' -> '2.23456800' -- 1234567890123456 1234567890123456 ddfma3011 fma 1 '0.4444444444444446' '0.5555555555555555' -> '1.000000000000000' Inexact Rounded ddfma3012 fma 1 '0.4444444444444445' '0.5555555555555555' -> '1.000000000000000' Rounded ddfma3013 fma 1 '0.4444444444444444' '0.5555555555555555' -> '0.9999999999999999' ddfma3014 fma 1 '4444444444444444' '0.49' -> '4444444444444444' Inexact Rounded ddfma3015 fma 1 '4444444444444444' '0.499' -> '4444444444444444' Inexact Rounded ddfma3016 fma 1 '4444444444444444' '0.4999' -> '4444444444444444' Inexact Rounded ddfma3017 fma 1 '4444444444444444' '0.5000' -> '4444444444444444' Inexact Rounded ddfma3018 fma 1 '4444444444444444' '0.5001' -> '4444444444444445' Inexact Rounded ddfma3019 fma 1 '4444444444444444' '0.501' -> '4444444444444445' Inexact Rounded ddfma3020 fma 1 '4444444444444444' '0.51' -> '4444444444444445' Inexact Rounded ddfma3021 fma 1 0 1 -> 1 ddfma3022 fma 1 1 1 -> 2 ddfma3023 fma 1 2 1 -> 3 ddfma3024 fma 1 3 1 -> 4 ddfma3025 fma 1 4 1 -> 5 ddfma3026 fma 1 5 1 -> 6 ddfma3027 fma 1 6 1 -> 7 ddfma3028 fma 1 7 1 -> 8 ddfma3029 fma 1 8 1 -> 9 ddfma3030 fma 1 9 1 -> 10 -- some carrying effects ddfma3031 fma 1 '0.9998' '0.0000' -> '0.9998' ddfma3032 fma 1 '0.9998' '0.0001' -> '0.9999' ddfma3033 fma 1 '0.9998' '0.0002' -> '1.0000' ddfma3034 fma 1 '0.9998' '0.0003' -> '1.0001' ddfma3035 fma 1 '70' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded ddfma3036 fma 1 '700' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded ddfma3037 fma 1 '7000' '10000e+16' -> '1.000000000000000E+20' Inexact Rounded ddfma3038 fma 1 '70000' '10000e+16' -> '1.000000000000001E+20' Inexact Rounded ddfma3039 fma 1 '700000' '10000e+16' -> '1.000000000000007E+20' Rounded -- symmetry: ddfma3040 fma 1 '10000e+16' '70' -> '1.000000000000000E+20' Inexact Rounded ddfma3041 fma 1 '10000e+16' '700' -> '1.000000000000000E+20' Inexact Rounded ddfma3042 fma 1 '10000e+16' '7000' -> '1.000000000000000E+20' Inexact Rounded ddfma3044 fma 1 '10000e+16' '70000' -> '1.000000000000001E+20' Inexact Rounded ddfma3045 fma 1 '10000e+16' '700000' -> '1.000000000000007E+20' Rounded -- same, without rounding ddfma3046 fma 1 '10000e+9' '7' -> '10000000000007' ddfma3047 fma 1 '10000e+9' '70' -> '10000000000070' ddfma3048 fma 1 '10000e+9' '700' -> '10000000000700' ddfma3049 fma 1 '10000e+9' '7000' -> '10000000007000' ddfma3050 fma 1 '10000e+9' '70000' -> '10000000070000' ddfma3051 fma 1 '10000e+9' '700000' -> '10000000700000' ddfma3052 fma 1 '10000e+9' '7000000' -> '10000007000000' -- examples from decarith ddfma3053 fma 1 '12' '7.00' -> '19.00' ddfma3054 fma 1 '1.3' '-1.07' -> '0.23' ddfma3055 fma 1 '1.3' '-1.30' -> '0.00' ddfma3056 fma 1 '1.3' '-2.07' -> '-0.77' ddfma3057 fma 1 '1E+2' '1E+4' -> '1.01E+4' -- leading zero preservation ddfma3061 fma 1 1 '0.0001' -> '1.0001' ddfma3062 fma 1 1 '0.00001' -> '1.00001' ddfma3063 fma 1 1 '0.000001' -> '1.000001' ddfma3064 fma 1 1 '0.0000001' -> '1.0000001' ddfma3065 fma 1 1 '0.00000001' -> '1.00000001' -- some funny zeros [in case of bad signum] ddfma3070 fma 1 1 0 -> 1 ddfma3071 fma 1 1 0. -> 1 ddfma3072 fma 1 1 .0 -> 1.0 ddfma3073 fma 1 1 0.0 -> 1.0 ddfma3074 fma 1 1 0.00 -> 1.00 ddfma3075 fma 1 0 1 -> 1 ddfma3076 fma 1 0. 1 -> 1 ddfma3077 fma 1 .0 1 -> 1.0 ddfma3078 fma 1 0.0 1 -> 1.0 ddfma3079 fma 1 0.00 1 -> 1.00 -- some carries ddfma3080 fma 1 999999998 1 -> 999999999 ddfma3081 fma 1 999999999 1 -> 1000000000 ddfma3082 fma 1 99999999 1 -> 100000000 ddfma3083 fma 1 9999999 1 -> 10000000 ddfma3084 fma 1 999999 1 -> 1000000 ddfma3085 fma 1 99999 1 -> 100000 ddfma3086 fma 1 9999 1 -> 10000 ddfma3087 fma 1 999 1 -> 1000 ddfma3088 fma 1 99 1 -> 100 ddfma3089 fma 1 9 1 -> 10 -- more LHS swaps ddfma3090 fma 1 '-56267E-10' 0 -> '-0.0000056267' ddfma3091 fma 1 '-56267E-6' 0 -> '-0.056267' ddfma3092 fma 1 '-56267E-5' 0 -> '-0.56267' ddfma3093 fma 1 '-56267E-4' 0 -> '-5.6267' ddfma3094 fma 1 '-56267E-3' 0 -> '-56.267' ddfma3095 fma 1 '-56267E-2' 0 -> '-562.67' ddfma3096 fma 1 '-56267E-1' 0 -> '-5626.7' ddfma3097 fma 1 '-56267E-0' 0 -> '-56267' ddfma3098 fma 1 '-5E-10' 0 -> '-5E-10' ddfma3099 fma 1 '-5E-7' 0 -> '-5E-7' ddfma3100 fma 1 '-5E-6' 0 -> '-0.000005' ddfma3101 fma 1 '-5E-5' 0 -> '-0.00005' ddfma3102 fma 1 '-5E-4' 0 -> '-0.0005' ddfma3103 fma 1 '-5E-1' 0 -> '-0.5' ddfma3104 fma 1 '-5E0' 0 -> '-5' ddfma3105 fma 1 '-5E1' 0 -> '-50' ddfma3106 fma 1 '-5E5' 0 -> '-500000' ddfma3107 fma 1 '-5E15' 0 -> '-5000000000000000' ddfma3108 fma 1 '-5E16' 0 -> '-5.000000000000000E+16' Rounded ddfma3109 fma 1 '-5E17' 0 -> '-5.000000000000000E+17' Rounded ddfma3110 fma 1 '-5E18' 0 -> '-5.000000000000000E+18' Rounded ddfma3111 fma 1 '-5E100' 0 -> '-5.000000000000000E+100' Rounded -- more RHS swaps ddfma3113 fma 1 0 '-56267E-10' -> '-0.0000056267' ddfma3114 fma 1 0 '-56267E-6' -> '-0.056267' ddfma3116 fma 1 0 '-56267E-5' -> '-0.56267' ddfma3117 fma 1 0 '-56267E-4' -> '-5.6267' ddfma3119 fma 1 0 '-56267E-3' -> '-56.267' ddfma3120 fma 1 0 '-56267E-2' -> '-562.67' ddfma3121 fma 1 0 '-56267E-1' -> '-5626.7' ddfma3122 fma 1 0 '-56267E-0' -> '-56267' ddfma3123 fma 1 0 '-5E-10' -> '-5E-10' ddfma3124 fma 1 0 '-5E-7' -> '-5E-7' ddfma3125 fma 1 0 '-5E-6' -> '-0.000005' ddfma3126 fma 1 0 '-5E-5' -> '-0.00005' ddfma3127 fma 1 0 '-5E-4' -> '-0.0005' ddfma3128 fma 1 0 '-5E-1' -> '-0.5' ddfma3129 fma 1 0 '-5E0' -> '-5' ddfma3130 fma 1 0 '-5E1' -> '-50' ddfma3131 fma 1 0 '-5E5' -> '-500000' ddfma3132 fma 1 0 '-5E15' -> '-5000000000000000' ddfma3133 fma 1 0 '-5E16' -> '-5.000000000000000E+16' Rounded ddfma3134 fma 1 0 '-5E17' -> '-5.000000000000000E+17' Rounded ddfma3135 fma 1 0 '-5E18' -> '-5.000000000000000E+18' Rounded ddfma3136 fma 1 0 '-5E100' -> '-5.000000000000000E+100' Rounded -- related ddfma3137 fma 1 1 '0E-19' -> '1.000000000000000' Rounded ddfma3138 fma 1 -1 '0E-19' -> '-1.000000000000000' Rounded ddfma3139 fma 1 '0E-19' 1 -> '1.000000000000000' Rounded ddfma3140 fma 1 '0E-19' -1 -> '-1.000000000000000' Rounded ddfma3141 fma 1 1E+11 0.0000 -> '100000000000.0000' ddfma3142 fma 1 1E+11 0.00000 -> '100000000000.0000' Rounded ddfma3143 fma 1 0.000 1E+12 -> '1000000000000.000' ddfma3144 fma 1 0.0000 1E+12 -> '1000000000000.000' Rounded -- [some of the next group are really constructor tests] ddfma3146 fma 1 '00.0' 0 -> '0.0' ddfma3147 fma 1 '0.00' 0 -> '0.00' ddfma3148 fma 1 0 '0.00' -> '0.00' ddfma3149 fma 1 0 '00.0' -> '0.0' ddfma3150 fma 1 '00.0' '0.00' -> '0.00' ddfma3151 fma 1 '0.00' '00.0' -> '0.00' ddfma3152 fma 1 '3' '.3' -> '3.3' ddfma3153 fma 1 '3.' '.3' -> '3.3' ddfma3154 fma 1 '3.0' '.3' -> '3.3' ddfma3155 fma 1 '3.00' '.3' -> '3.30' ddfma3156 fma 1 '3' '3' -> '6' ddfma3157 fma 1 '3' '+3' -> '6' ddfma3158 fma 1 '3' '-3' -> '0' ddfma3159 fma 1 '0.3' '-0.3' -> '0.0' ddfma3160 fma 1 '0.03' '-0.03' -> '0.00' -- try borderline precision, with carries, etc. ddfma3161 fma 1 '1E+12' '-1' -> '999999999999' ddfma3162 fma 1 '1E+12' '1.11' -> '1000000000001.11' ddfma3163 fma 1 '1.11' '1E+12' -> '1000000000001.11' ddfma3164 fma 1 '-1' '1E+12' -> '999999999999' ddfma3165 fma 1 '7E+12' '-1' -> '6999999999999' ddfma3166 fma 1 '7E+12' '1.11' -> '7000000000001.11' ddfma3167 fma 1 '1.11' '7E+12' -> '7000000000001.11' ddfma3168 fma 1 '-1' '7E+12' -> '6999999999999' rounding: half_up -- 1.234567890123456 1234567890123456 1 234567890123456 ddfma3170 fma 1 '4.444444444444444' '0.5555555555555567' -> '5.000000000000001' Inexact Rounded ddfma3171 fma 1 '4.444444444444444' '0.5555555555555566' -> '5.000000000000001' Inexact Rounded ddfma3172 fma 1 '4.444444444444444' '0.5555555555555565' -> '5.000000000000001' Inexact Rounded ddfma3173 fma 1 '4.444444444444444' '0.5555555555555564' -> '5.000000000000000' Inexact Rounded ddfma3174 fma 1 '4.444444444444444' '0.5555555555555553' -> '4.999999999999999' Inexact Rounded ddfma3175 fma 1 '4.444444444444444' '0.5555555555555552' -> '4.999999999999999' Inexact Rounded ddfma3176 fma 1 '4.444444444444444' '0.5555555555555551' -> '4.999999999999999' Inexact Rounded ddfma3177 fma 1 '4.444444444444444' '0.5555555555555550' -> '4.999999999999999' Rounded ddfma3178 fma 1 '4.444444444444444' '0.5555555555555545' -> '4.999999999999999' Inexact Rounded ddfma3179 fma 1 '4.444444444444444' '0.5555555555555544' -> '4.999999999999998' Inexact Rounded ddfma3180 fma 1 '4.444444444444444' '0.5555555555555543' -> '4.999999999999998' Inexact Rounded ddfma3181 fma 1 '4.444444444444444' '0.5555555555555542' -> '4.999999999999998' Inexact Rounded ddfma3182 fma 1 '4.444444444444444' '0.5555555555555541' -> '4.999999999999998' Inexact Rounded ddfma3183 fma 1 '4.444444444444444' '0.5555555555555540' -> '4.999999999999998' Rounded -- and some more, including residue effects and different roundings rounding: half_up ddfma3200 fma 1 '1234560123456789' 0 -> '1234560123456789' ddfma3201 fma 1 '1234560123456789' 0.000000001 -> '1234560123456789' Inexact Rounded ddfma3202 fma 1 '1234560123456789' 0.000001 -> '1234560123456789' Inexact Rounded ddfma3203 fma 1 '1234560123456789' 0.1 -> '1234560123456789' Inexact Rounded ddfma3204 fma 1 '1234560123456789' 0.4 -> '1234560123456789' Inexact Rounded ddfma3205 fma 1 '1234560123456789' 0.49 -> '1234560123456789' Inexact Rounded ddfma3206 fma 1 '1234560123456789' 0.499999 -> '1234560123456789' Inexact Rounded ddfma3207 fma 1 '1234560123456789' 0.499999999 -> '1234560123456789' Inexact Rounded ddfma3208 fma 1 '1234560123456789' 0.5 -> '1234560123456790' Inexact Rounded ddfma3209 fma 1 '1234560123456789' 0.500000001 -> '1234560123456790' Inexact Rounded ddfma3210 fma 1 '1234560123456789' 0.500001 -> '1234560123456790' Inexact Rounded ddfma3211 fma 1 '1234560123456789' 0.51 -> '1234560123456790' Inexact Rounded ddfma3212 fma 1 '1234560123456789' 0.6 -> '1234560123456790' Inexact Rounded ddfma3213 fma 1 '1234560123456789' 0.9 -> '1234560123456790' Inexact Rounded ddfma3214 fma 1 '1234560123456789' 0.99999 -> '1234560123456790' Inexact Rounded ddfma3215 fma 1 '1234560123456789' 0.999999999 -> '1234560123456790' Inexact Rounded ddfma3216 fma 1 '1234560123456789' 1 -> '1234560123456790' ddfma3217 fma 1 '1234560123456789' 1.000000001 -> '1234560123456790' Inexact Rounded ddfma3218 fma 1 '1234560123456789' 1.00001 -> '1234560123456790' Inexact Rounded ddfma3219 fma 1 '1234560123456789' 1.1 -> '1234560123456790' Inexact Rounded rounding: half_even ddfma3220 fma 1 '1234560123456789' 0 -> '1234560123456789' ddfma3221 fma 1 '1234560123456789' 0.000000001 -> '1234560123456789' Inexact Rounded ddfma3222 fma 1 '1234560123456789' 0.000001 -> '1234560123456789' Inexact Rounded ddfma3223 fma 1 '1234560123456789' 0.1 -> '1234560123456789' Inexact Rounded ddfma3224 fma 1 '1234560123456789' 0.4 -> '1234560123456789' Inexact Rounded ddfma3225 fma 1 '1234560123456789' 0.49 -> '1234560123456789' Inexact Rounded ddfma3226 fma 1 '1234560123456789' 0.499999 -> '1234560123456789' Inexact Rounded ddfma3227 fma 1 '1234560123456789' 0.499999999 -> '1234560123456789' Inexact Rounded ddfma3228 fma 1 '1234560123456789' 0.5 -> '1234560123456790' Inexact Rounded ddfma3229 fma 1 '1234560123456789' 0.500000001 -> '1234560123456790' Inexact Rounded ddfma3230 fma 1 '1234560123456789' 0.500001 -> '1234560123456790' Inexact Rounded ddfma3231 fma 1 '1234560123456789' 0.51 -> '1234560123456790' Inexact Rounded ddfma3232 fma 1 '1234560123456789' 0.6 -> '1234560123456790' Inexact Rounded ddfma3233 fma 1 '1234560123456789' 0.9 -> '1234560123456790' Inexact Rounded ddfma3234 fma 1 '1234560123456789' 0.99999 -> '1234560123456790' Inexact Rounded ddfma3235 fma 1 '1234560123456789' 0.999999999 -> '1234560123456790' Inexact Rounded ddfma3236 fma 1 '1234560123456789' 1 -> '1234560123456790' ddfma3237 fma 1 '1234560123456789' 1.00000001 -> '1234560123456790' Inexact Rounded ddfma3238 fma 1 '1234560123456789' 1.00001 -> '1234560123456790' Inexact Rounded ddfma3239 fma 1 '1234560123456789' 1.1 -> '1234560123456790' Inexact Rounded -- critical few with even bottom digit... ddfma3240 fma 1 '1234560123456788' 0.499999999 -> '1234560123456788' Inexact Rounded ddfma3241 fma 1 '1234560123456788' 0.5 -> '1234560123456788' Inexact Rounded ddfma3242 fma 1 '1234560123456788' 0.500000001 -> '1234560123456789' Inexact Rounded rounding: down ddfma3250 fma 1 '1234560123456789' 0 -> '1234560123456789' ddfma3251 fma 1 '1234560123456789' 0.000000001 -> '1234560123456789' Inexact Rounded ddfma3252 fma 1 '1234560123456789' 0.000001 -> '1234560123456789' Inexact Rounded ddfma3253 fma 1 '1234560123456789' 0.1 -> '1234560123456789' Inexact Rounded ddfma3254 fma 1 '1234560123456789' 0.4 -> '1234560123456789' Inexact Rounded ddfma3255 fma 1 '1234560123456789' 0.49 -> '1234560123456789' Inexact Rounded ddfma3256 fma 1 '1234560123456789' 0.499999 -> '1234560123456789' Inexact Rounded ddfma3257 fma 1 '1234560123456789' 0.499999999 -> '1234560123456789' Inexact Rounded ddfma3258 fma 1 '1234560123456789' 0.5 -> '1234560123456789' Inexact Rounded ddfma3259 fma 1 '1234560123456789' 0.500000001 -> '1234560123456789' Inexact Rounded ddfma3260 fma 1 '1234560123456789' 0.500001 -> '1234560123456789' Inexact Rounded ddfma3261 fma 1 '1234560123456789' 0.51 -> '1234560123456789' Inexact Rounded ddfma3262 fma 1 '1234560123456789' 0.6 -> '1234560123456789' Inexact Rounded ddfma3263 fma 1 '1234560123456789' 0.9 -> '1234560123456789' Inexact Rounded ddfma3264 fma 1 '1234560123456789' 0.99999 -> '1234560123456789' Inexact Rounded ddfma3265 fma 1 '1234560123456789' 0.999999999 -> '1234560123456789' Inexact Rounded ddfma3266 fma 1 '1234560123456789' 1 -> '1234560123456790' ddfma3267 fma 1 '1234560123456789' 1.00000001 -> '1234560123456790' Inexact Rounded ddfma3268 fma 1 '1234560123456789' 1.00001 -> '1234560123456790' Inexact Rounded ddfma3269 fma 1 '1234560123456789' 1.1 -> '1234560123456790' Inexact Rounded -- 1 in last place tests rounding: half_up ddfma3301 fma 1 -1 1 -> 0 ddfma3302 fma 1 0 1 -> 1 ddfma3303 fma 1 1 1 -> 2 ddfma3304 fma 1 12 1 -> 13 ddfma3305 fma 1 98 1 -> 99 ddfma3306 fma 1 99 1 -> 100 ddfma3307 fma 1 100 1 -> 101 ddfma3308 fma 1 101 1 -> 102 ddfma3309 fma 1 -1 -1 -> -2 ddfma3310 fma 1 0 -1 -> -1 ddfma3311 fma 1 1 -1 -> 0 ddfma3312 fma 1 12 -1 -> 11 ddfma3313 fma 1 98 -1 -> 97 ddfma3314 fma 1 99 -1 -> 98 ddfma3315 fma 1 100 -1 -> 99 ddfma3316 fma 1 101 -1 -> 100 ddfma3321 fma 1 -0.01 0.01 -> 0.00 ddfma3322 fma 1 0.00 0.01 -> 0.01 ddfma3323 fma 1 0.01 0.01 -> 0.02 ddfma3324 fma 1 0.12 0.01 -> 0.13 ddfma3325 fma 1 0.98 0.01 -> 0.99 ddfma3326 fma 1 0.99 0.01 -> 1.00 ddfma3327 fma 1 1.00 0.01 -> 1.01 ddfma3328 fma 1 1.01 0.01 -> 1.02 ddfma3329 fma 1 -0.01 -0.01 -> -0.02 ddfma3330 fma 1 0.00 -0.01 -> -0.01 ddfma3331 fma 1 0.01 -0.01 -> 0.00 ddfma3332 fma 1 0.12 -0.01 -> 0.11 ddfma3333 fma 1 0.98 -0.01 -> 0.97 ddfma3334 fma 1 0.99 -0.01 -> 0.98 ddfma3335 fma 1 1.00 -0.01 -> 0.99 ddfma3336 fma 1 1.01 -0.01 -> 1.00 -- some more cases where adding 0 affects the coefficient ddfma3340 fma 1 1E+3 0 -> 1000 ddfma3341 fma 1 1E+15 0 -> 1000000000000000 ddfma3342 fma 1 1E+16 0 -> 1.000000000000000E+16 Rounded ddfma3343 fma 1 1E+20 0 -> 1.000000000000000E+20 Rounded -- which simply follow from these cases ... ddfma3344 fma 1 1E+3 1 -> 1001 ddfma3345 fma 1 1E+15 1 -> 1000000000000001 ddfma3346 fma 1 1E+16 1 -> 1.000000000000000E+16 Inexact Rounded ddfma3347 fma 1 1E+20 1 -> 1.000000000000000E+20 Inexact Rounded ddfma3348 fma 1 1E+3 7 -> 1007 ddfma3349 fma 1 1E+15 7 -> 1000000000000007 ddfma3350 fma 1 1E+16 7 -> 1.000000000000001E+16 Inexact Rounded ddfma3351 fma 1 1E+20 7 -> 1.000000000000000E+20 Inexact Rounded -- tryzeros cases rounding: half_up ddfma3360 fma 1 0E+50 10000E+1 -> 1.0000E+5 ddfma3361 fma 1 0E-50 10000E+1 -> 100000.0000000000 Rounded ddfma3362 fma 1 10000E+1 0E-50 -> 100000.0000000000 Rounded ddfma3363 fma 1 10000E+1 10000E-50 -> 100000.0000000000 Rounded Inexact ddfma3364 fma 1 9.999999999999999E+384 -9.999999999999999E+384 -> 0E+369 -- a curiosity from JSR 13 testing rounding: half_down ddfma3370 fma 1 999999999999999 815 -> 1000000000000814 ddfma3371 fma 1 9999999999999999 815 -> 1.000000000000081E+16 Rounded Inexact rounding: half_up ddfma3372 fma 1 999999999999999 815 -> 1000000000000814 ddfma3373 fma 1 9999999999999999 815 -> 1.000000000000081E+16 Rounded Inexact rounding: half_even ddfma3374 fma 1 999999999999999 815 -> 1000000000000814 ddfma3375 fma 1 9999999999999999 815 -> 1.000000000000081E+16 Rounded Inexact -- ulp replacement tests ddfma3400 fma 1 1 77e-14 -> 1.00000000000077 ddfma3401 fma 1 1 77e-15 -> 1.000000000000077 ddfma3402 fma 1 1 77e-16 -> 1.000000000000008 Inexact Rounded ddfma3403 fma 1 1 77e-17 -> 1.000000000000001 Inexact Rounded ddfma3404 fma 1 1 77e-18 -> 1.000000000000000 Inexact Rounded ddfma3405 fma 1 1 77e-19 -> 1.000000000000000 Inexact Rounded ddfma3406 fma 1 1 77e-299 -> 1.000000000000000 Inexact Rounded ddfma3410 fma 1 10 77e-14 -> 10.00000000000077 ddfma3411 fma 1 10 77e-15 -> 10.00000000000008 Inexact Rounded ddfma3412 fma 1 10 77e-16 -> 10.00000000000001 Inexact Rounded ddfma3413 fma 1 10 77e-17 -> 10.00000000000000 Inexact Rounded ddfma3414 fma 1 10 77e-18 -> 10.00000000000000 Inexact Rounded ddfma3415 fma 1 10 77e-19 -> 10.00000000000000 Inexact Rounded ddfma3416 fma 1 10 77e-299 -> 10.00000000000000 Inexact Rounded ddfma3420 fma 1 77e-14 1 -> 1.00000000000077 ddfma3421 fma 1 77e-15 1 -> 1.000000000000077 ddfma3422 fma 1 77e-16 1 -> 1.000000000000008 Inexact Rounded ddfma3423 fma 1 77e-17 1 -> 1.000000000000001 Inexact Rounded ddfma3424 fma 1 77e-18 1 -> 1.000000000000000 Inexact Rounded ddfma3425 fma 1 77e-19 1 -> 1.000000000000000 Inexact Rounded ddfma3426 fma 1 77e-299 1 -> 1.000000000000000 Inexact Rounded ddfma3430 fma 1 77e-14 10 -> 10.00000000000077 ddfma3431 fma 1 77e-15 10 -> 10.00000000000008 Inexact Rounded ddfma3432 fma 1 77e-16 10 -> 10.00000000000001 Inexact Rounded ddfma3433 fma 1 77e-17 10 -> 10.00000000000000 Inexact Rounded ddfma3434 fma 1 77e-18 10 -> 10.00000000000000 Inexact Rounded ddfma3435 fma 1 77e-19 10 -> 10.00000000000000 Inexact Rounded ddfma3436 fma 1 77e-299 10 -> 10.00000000000000 Inexact Rounded -- negative ulps ddfma36440 fma 1 1 -77e-14 -> 0.99999999999923 ddfma36441 fma 1 1 -77e-15 -> 0.999999999999923 ddfma36442 fma 1 1 -77e-16 -> 0.9999999999999923 ddfma36443 fma 1 1 -77e-17 -> 0.9999999999999992 Inexact Rounded ddfma36444 fma 1 1 -77e-18 -> 0.9999999999999999 Inexact Rounded ddfma36445 fma 1 1 -77e-19 -> 1.000000000000000 Inexact Rounded ddfma36446 fma 1 1 -77e-99 -> 1.000000000000000 Inexact Rounded ddfma36450 fma 1 10 -77e-14 -> 9.99999999999923 ddfma36451 fma 1 10 -77e-15 -> 9.999999999999923 ddfma36452 fma 1 10 -77e-16 -> 9.999999999999992 Inexact Rounded ddfma36453 fma 1 10 -77e-17 -> 9.999999999999999 Inexact Rounded ddfma36454 fma 1 10 -77e-18 -> 10.00000000000000 Inexact Rounded ddfma36455 fma 1 10 -77e-19 -> 10.00000000000000 Inexact Rounded ddfma36456 fma 1 10 -77e-99 -> 10.00000000000000 Inexact Rounded ddfma36460 fma 1 -77e-14 1 -> 0.99999999999923 ddfma36461 fma 1 -77e-15 1 -> 0.999999999999923 ddfma36462 fma 1 -77e-16 1 -> 0.9999999999999923 ddfma36463 fma 1 -77e-17 1 -> 0.9999999999999992 Inexact Rounded ddfma36464 fma 1 -77e-18 1 -> 0.9999999999999999 Inexact Rounded ddfma36465 fma 1 -77e-19 1 -> 1.000000000000000 Inexact Rounded ddfma36466 fma 1 -77e-99 1 -> 1.000000000000000 Inexact Rounded ddfma36470 fma 1 -77e-14 10 -> 9.99999999999923 ddfma36471 fma 1 -77e-15 10 -> 9.999999999999923 ddfma36472 fma 1 -77e-16 10 -> 9.999999999999992 Inexact Rounded ddfma36473 fma 1 -77e-17 10 -> 9.999999999999999 Inexact Rounded ddfma36474 fma 1 -77e-18 10 -> 10.00000000000000 Inexact Rounded ddfma36475 fma 1 -77e-19 10 -> 10.00000000000000 Inexact Rounded ddfma36476 fma 1 -77e-99 10 -> 10.00000000000000 Inexact Rounded -- negative ulps ddfma36480 fma 1 -1 77e-14 -> -0.99999999999923 ddfma36481 fma 1 -1 77e-15 -> -0.999999999999923 ddfma36482 fma 1 -1 77e-16 -> -0.9999999999999923 ddfma36483 fma 1 -1 77e-17 -> -0.9999999999999992 Inexact Rounded ddfma36484 fma 1 -1 77e-18 -> -0.9999999999999999 Inexact Rounded ddfma36485 fma 1 -1 77e-19 -> -1.000000000000000 Inexact Rounded ddfma36486 fma 1 -1 77e-99 -> -1.000000000000000 Inexact Rounded ddfma36490 fma 1 -10 77e-14 -> -9.99999999999923 ddfma36491 fma 1 -10 77e-15 -> -9.999999999999923 ddfma36492 fma 1 -10 77e-16 -> -9.999999999999992 Inexact Rounded ddfma36493 fma 1 -10 77e-17 -> -9.999999999999999 Inexact Rounded ddfma36494 fma 1 -10 77e-18 -> -10.00000000000000 Inexact Rounded ddfma36495 fma 1 -10 77e-19 -> -10.00000000000000 Inexact Rounded ddfma36496 fma 1 -10 77e-99 -> -10.00000000000000 Inexact Rounded ddfma36500 fma 1 77e-14 -1 -> -0.99999999999923 ddfma36501 fma 1 77e-15 -1 -> -0.999999999999923 ddfma36502 fma 1 77e-16 -1 -> -0.9999999999999923 ddfma36503 fma 1 77e-17 -1 -> -0.9999999999999992 Inexact Rounded ddfma36504 fma 1 77e-18 -1 -> -0.9999999999999999 Inexact Rounded ddfma36505 fma 1 77e-19 -1 -> -1.000000000000000 Inexact Rounded ddfma36506 fma 1 77e-99 -1 -> -1.000000000000000 Inexact Rounded ddfma36510 fma 1 77e-14 -10 -> -9.99999999999923 ddfma36511 fma 1 77e-15 -10 -> -9.999999999999923 ddfma36512 fma 1 77e-16 -10 -> -9.999999999999992 Inexact Rounded ddfma36513 fma 1 77e-17 -10 -> -9.999999999999999 Inexact Rounded ddfma36514 fma 1 77e-18 -10 -> -10.00000000000000 Inexact Rounded ddfma36515 fma 1 77e-19 -10 -> -10.00000000000000 Inexact Rounded ddfma36516 fma 1 77e-99 -10 -> -10.00000000000000 Inexact Rounded -- and a couple more with longer RHS ddfma36520 fma 1 1 -7777e-16 -> 0.9999999999992223 ddfma36521 fma 1 1 -7777e-17 -> 0.9999999999999222 Inexact Rounded ddfma36522 fma 1 1 -7777e-18 -> 0.9999999999999922 Inexact Rounded ddfma36523 fma 1 1 -7777e-19 -> 0.9999999999999992 Inexact Rounded ddfma36524 fma 1 1 -7777e-20 -> 0.9999999999999999 Inexact Rounded ddfma36525 fma 1 1 -7777e-21 -> 1.000000000000000 Inexact Rounded ddfma36526 fma 1 1 -7777e-22 -> 1.000000000000000 Inexact Rounded -- and some more residue effects and different roundings rounding: half_up ddfma36540 fma 1 '6543210123456789' 0 -> '6543210123456789' ddfma36541 fma 1 '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded ddfma36542 fma 1 '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded ddfma36543 fma 1 '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded ddfma36544 fma 1 '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded ddfma36545 fma 1 '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded ddfma36546 fma 1 '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded ddfma36547 fma 1 '6543210123456789' 0.499999999 -> '6543210123456789' Inexact Rounded ddfma36548 fma 1 '6543210123456789' 0.5 -> '6543210123456790' Inexact Rounded ddfma36549 fma 1 '6543210123456789' 0.500000001 -> '6543210123456790' Inexact Rounded ddfma36550 fma 1 '6543210123456789' 0.500001 -> '6543210123456790' Inexact Rounded ddfma36551 fma 1 '6543210123456789' 0.51 -> '6543210123456790' Inexact Rounded ddfma36552 fma 1 '6543210123456789' 0.6 -> '6543210123456790' Inexact Rounded ddfma36553 fma 1 '6543210123456789' 0.9 -> '6543210123456790' Inexact Rounded ddfma36554 fma 1 '6543210123456789' 0.99999 -> '6543210123456790' Inexact Rounded ddfma36555 fma 1 '6543210123456789' 0.999999999 -> '6543210123456790' Inexact Rounded ddfma36556 fma 1 '6543210123456789' 1 -> '6543210123456790' ddfma36557 fma 1 '6543210123456789' 1.000000001 -> '6543210123456790' Inexact Rounded ddfma36558 fma 1 '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded ddfma36559 fma 1 '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded rounding: half_even ddfma36560 fma 1 '6543210123456789' 0 -> '6543210123456789' ddfma36561 fma 1 '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded ddfma36562 fma 1 '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded ddfma36563 fma 1 '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded ddfma36564 fma 1 '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded ddfma36565 fma 1 '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded ddfma36566 fma 1 '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded ddfma36567 fma 1 '6543210123456789' 0.499999999 -> '6543210123456789' Inexact Rounded ddfma36568 fma 1 '6543210123456789' 0.5 -> '6543210123456790' Inexact Rounded ddfma36569 fma 1 '6543210123456789' 0.500000001 -> '6543210123456790' Inexact Rounded ddfma36570 fma 1 '6543210123456789' 0.500001 -> '6543210123456790' Inexact Rounded ddfma36571 fma 1 '6543210123456789' 0.51 -> '6543210123456790' Inexact Rounded ddfma36572 fma 1 '6543210123456789' 0.6 -> '6543210123456790' Inexact Rounded ddfma36573 fma 1 '6543210123456789' 0.9 -> '6543210123456790' Inexact Rounded ddfma36574 fma 1 '6543210123456789' 0.99999 -> '6543210123456790' Inexact Rounded ddfma36575 fma 1 '6543210123456789' 0.999999999 -> '6543210123456790' Inexact Rounded ddfma36576 fma 1 '6543210123456789' 1 -> '6543210123456790' ddfma36577 fma 1 '6543210123456789' 1.00000001 -> '6543210123456790' Inexact Rounded ddfma36578 fma 1 '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded ddfma36579 fma 1 '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded -- critical few with even bottom digit... ddfma37540 fma 1 '6543210123456788' 0.499999999 -> '6543210123456788' Inexact Rounded ddfma37541 fma 1 '6543210123456788' 0.5 -> '6543210123456788' Inexact Rounded ddfma37542 fma 1 '6543210123456788' 0.500000001 -> '6543210123456789' Inexact Rounded rounding: down ddfma37550 fma 1 '6543210123456789' 0 -> '6543210123456789' ddfma37551 fma 1 '6543210123456789' 0.000000001 -> '6543210123456789' Inexact Rounded ddfma37552 fma 1 '6543210123456789' 0.000001 -> '6543210123456789' Inexact Rounded ddfma37553 fma 1 '6543210123456789' 0.1 -> '6543210123456789' Inexact Rounded ddfma37554 fma 1 '6543210123456789' 0.4 -> '6543210123456789' Inexact Rounded ddfma37555 fma 1 '6543210123456789' 0.49 -> '6543210123456789' Inexact Rounded ddfma37556 fma 1 '6543210123456789' 0.499999 -> '6543210123456789' Inexact Rounded ddfma37557 fma 1 '6543210123456789' 0.499999999 -> '6543210123456789' Inexact Rounded ddfma37558 fma 1 '6543210123456789' 0.5 -> '6543210123456789' Inexact Rounded ddfma37559 fma 1 '6543210123456789' 0.500000001 -> '6543210123456789' Inexact Rounded ddfma37560 fma 1 '6543210123456789' 0.500001 -> '6543210123456789' Inexact Rounded ddfma37561 fma 1 '6543210123456789' 0.51 -> '6543210123456789' Inexact Rounded ddfma37562 fma 1 '6543210123456789' 0.6 -> '6543210123456789' Inexact Rounded ddfma37563 fma 1 '6543210123456789' 0.9 -> '6543210123456789' Inexact Rounded ddfma37564 fma 1 '6543210123456789' 0.99999 -> '6543210123456789' Inexact Rounded ddfma37565 fma 1 '6543210123456789' 0.999999999 -> '6543210123456789' Inexact Rounded ddfma37566 fma 1 '6543210123456789' 1 -> '6543210123456790' ddfma37567 fma 1 '6543210123456789' 1.00000001 -> '6543210123456790' Inexact Rounded ddfma37568 fma 1 '6543210123456789' 1.00001 -> '6543210123456790' Inexact Rounded ddfma37569 fma 1 '6543210123456789' 1.1 -> '6543210123456790' Inexact Rounded -- verify a query rounding: down ddfma37661 fma 1 1e-398 9.000000000000000E+384 -> 9.000000000000000E+384 Inexact Rounded ddfma37662 fma 1 0 9.000000000000000E+384 -> 9.000000000000000E+384 Rounded ddfma37663 fma 1 1e-388 9.000000000000000E+374 -> 9.000000000000000E+374 Inexact Rounded ddfma37664 fma 1 0 9.000000000000000E+374 -> 9.000000000000000E+374 Rounded -- more zeros, etc. rounding: half_even ddfma37701 fma 1 5.00 1.00E-3 -> 5.00100 ddfma37702 fma 1 00.00 0.000 -> 0.000 ddfma37703 fma 1 00.00 0E-3 -> 0.000 ddfma37704 fma 1 0E-3 00.00 -> 0.000 ddfma37710 fma 1 0E+3 00.00 -> 0.00 ddfma37711 fma 1 0E+3 00.0 -> 0.0 ddfma37712 fma 1 0E+3 00. -> 0 ddfma37713 fma 1 0E+3 00.E+1 -> 0E+1 ddfma37714 fma 1 0E+3 00.E+2 -> 0E+2 ddfma37715 fma 1 0E+3 00.E+3 -> 0E+3 ddfma37716 fma 1 0E+3 00.E+4 -> 0E+3 ddfma37717 fma 1 0E+3 00.E+5 -> 0E+3 ddfma37718 fma 1 0E+3 -00.0 -> 0.0 ddfma37719 fma 1 0E+3 -00. -> 0 ddfma37731 fma 1 0E+3 -00.E+1 -> 0E+1 ddfma37720 fma 1 00.00 0E+3 -> 0.00 ddfma37721 fma 1 00.0 0E+3 -> 0.0 ddfma37722 fma 1 00. 0E+3 -> 0 ddfma37723 fma 1 00.E+1 0E+3 -> 0E+1 ddfma37724 fma 1 00.E+2 0E+3 -> 0E+2 ddfma37725 fma 1 00.E+3 0E+3 -> 0E+3 ddfma37726 fma 1 00.E+4 0E+3 -> 0E+3 ddfma37727 fma 1 00.E+5 0E+3 -> 0E+3 ddfma37728 fma 1 -00.00 0E+3 -> 0.00 ddfma37729 fma 1 -00.0 0E+3 -> 0.0 ddfma37730 fma 1 -00. 0E+3 -> 0 ddfma37732 fma 1 0 0 -> 0 ddfma37733 fma 1 0 -0 -> 0 ddfma37734 fma 1 -0 0 -> 0 ddfma37735 fma 1 -0 -0 -> -0 -- IEEE 854 special case ddfma37736 fma 1 1 -1 -> 0 ddfma37737 fma 1 -1 -1 -> -2 ddfma37738 fma 1 1 1 -> 2 ddfma37739 fma 1 -1 1 -> 0 ddfma37741 fma 1 0 -1 -> -1 ddfma37742 fma 1 -0 -1 -> -1 ddfma37743 fma 1 0 1 -> 1 ddfma37744 fma 1 -0 1 -> 1 ddfma37745 fma 1 -1 0 -> -1 ddfma37746 fma 1 -1 -0 -> -1 ddfma37747 fma 1 1 0 -> 1 ddfma37748 fma 1 1 -0 -> 1 ddfma37751 fma 1 0.0 -1 -> -1.0 ddfma37752 fma 1 -0.0 -1 -> -1.0 ddfma37753 fma 1 0.0 1 -> 1.0 ddfma37754 fma 1 -0.0 1 -> 1.0 ddfma37755 fma 1 -1.0 0 -> -1.0 ddfma37756 fma 1 -1.0 -0 -> -1.0 ddfma37757 fma 1 1.0 0 -> 1.0 ddfma37758 fma 1 1.0 -0 -> 1.0 ddfma37761 fma 1 0 -1.0 -> -1.0 ddfma37762 fma 1 -0 -1.0 -> -1.0 ddfma37763 fma 1 0 1.0 -> 1.0 ddfma37764 fma 1 -0 1.0 -> 1.0 ddfma37765 fma 1 -1 0.0 -> -1.0 ddfma37766 fma 1 -1 -0.0 -> -1.0 ddfma37767 fma 1 1 0.0 -> 1.0 ddfma37768 fma 1 1 -0.0 -> 1.0 ddfma37771 fma 1 0.0 -1.0 -> -1.0 ddfma37772 fma 1 -0.0 -1.0 -> -1.0 ddfma37773 fma 1 0.0 1.0 -> 1.0 ddfma37774 fma 1 -0.0 1.0 -> 1.0 ddfma37775 fma 1 -1.0 0.0 -> -1.0 ddfma37776 fma 1 -1.0 -0.0 -> -1.0 ddfma37777 fma 1 1.0 0.0 -> 1.0 ddfma37778 fma 1 1.0 -0.0 -> 1.0 -- Specials ddfma37780 fma 1 -Inf -Inf -> -Infinity ddfma37781 fma 1 -Inf -1000 -> -Infinity ddfma37782 fma 1 -Inf -1 -> -Infinity ddfma37783 fma 1 -Inf -0 -> -Infinity ddfma37784 fma 1 -Inf 0 -> -Infinity ddfma37785 fma 1 -Inf 1 -> -Infinity ddfma37786 fma 1 -Inf 1000 -> -Infinity ddfma37787 fma 1 -1000 -Inf -> -Infinity ddfma37788 fma 1 -Inf -Inf -> -Infinity ddfma37789 fma 1 -1 -Inf -> -Infinity ddfma37790 fma 1 -0 -Inf -> -Infinity ddfma37791 fma 1 0 -Inf -> -Infinity ddfma37792 fma 1 1 -Inf -> -Infinity ddfma37793 fma 1 1000 -Inf -> -Infinity ddfma37794 fma 1 Inf -Inf -> NaN Invalid_operation ddfma37800 fma 1 Inf -Inf -> NaN Invalid_operation ddfma37801 fma 1 Inf -1000 -> Infinity ddfma37802 fma 1 Inf -1 -> Infinity ddfma37803 fma 1 Inf -0 -> Infinity ddfma37804 fma 1 Inf 0 -> Infinity ddfma37805 fma 1 Inf 1 -> Infinity ddfma37806 fma 1 Inf 1000 -> Infinity ddfma37807 fma 1 Inf Inf -> Infinity ddfma37808 fma 1 -1000 Inf -> Infinity ddfma37809 fma 1 -Inf Inf -> NaN Invalid_operation ddfma37810 fma 1 -1 Inf -> Infinity ddfma37811 fma 1 -0 Inf -> Infinity ddfma37812 fma 1 0 Inf -> Infinity ddfma37813 fma 1 1 Inf -> Infinity ddfma37814 fma 1 1000 Inf -> Infinity ddfma37815 fma 1 Inf Inf -> Infinity ddfma37821 fma 1 NaN -Inf -> NaN ddfma37822 fma 1 NaN -1000 -> NaN ddfma37823 fma 1 NaN -1 -> NaN ddfma37824 fma 1 NaN -0 -> NaN ddfma37825 fma 1 NaN 0 -> NaN ddfma37826 fma 1 NaN 1 -> NaN ddfma37827 fma 1 NaN 1000 -> NaN ddfma37828 fma 1 NaN Inf -> NaN ddfma37829 fma 1 NaN NaN -> NaN ddfma37830 fma 1 -Inf NaN -> NaN ddfma37831 fma 1 -1000 NaN -> NaN ddfma37832 fma 1 -1 NaN -> NaN ddfma37833 fma 1 -0 NaN -> NaN ddfma37834 fma 1 0 NaN -> NaN ddfma37835 fma 1 1 NaN -> NaN ddfma37836 fma 1 1000 NaN -> NaN ddfma37837 fma 1 Inf NaN -> NaN ddfma37841 fma 1 sNaN -Inf -> NaN Invalid_operation ddfma37842 fma 1 sNaN -1000 -> NaN Invalid_operation ddfma37843 fma 1 sNaN -1 -> NaN Invalid_operation ddfma37844 fma 1 sNaN -0 -> NaN Invalid_operation ddfma37845 fma 1 sNaN 0 -> NaN Invalid_operation ddfma37846 fma 1 sNaN 1 -> NaN Invalid_operation ddfma37847 fma 1 sNaN 1000 -> NaN Invalid_operation ddfma37848 fma 1 sNaN NaN -> NaN Invalid_operation ddfma37849 fma 1 sNaN sNaN -> NaN Invalid_operation ddfma37850 fma 1 NaN sNaN -> NaN Invalid_operation ddfma37851 fma 1 -Inf sNaN -> NaN Invalid_operation ddfma37852 fma 1 -1000 sNaN -> NaN Invalid_operation ddfma37853 fma 1 -1 sNaN -> NaN Invalid_operation ddfma37854 fma 1 -0 sNaN -> NaN Invalid_operation ddfma37855 fma 1 0 sNaN -> NaN Invalid_operation ddfma37856 fma 1 1 sNaN -> NaN Invalid_operation ddfma37857 fma 1 1000 sNaN -> NaN Invalid_operation ddfma37858 fma 1 Inf sNaN -> NaN Invalid_operation ddfma37859 fma 1 NaN sNaN -> NaN Invalid_operation -- propagating NaNs ddfma37861 fma 1 NaN1 -Inf -> NaN1 ddfma37862 fma 1 +NaN2 -1000 -> NaN2 ddfma37863 fma 1 NaN3 1000 -> NaN3 ddfma37864 fma 1 NaN4 Inf -> NaN4 ddfma37865 fma 1 NaN5 +NaN6 -> NaN5 ddfma37866 fma 1 -Inf NaN7 -> NaN7 ddfma37867 fma 1 -1000 NaN8 -> NaN8 ddfma37868 fma 1 1000 NaN9 -> NaN9 ddfma37869 fma 1 Inf +NaN10 -> NaN10 ddfma37871 fma 1 sNaN11 -Inf -> NaN11 Invalid_operation ddfma37872 fma 1 sNaN12 -1000 -> NaN12 Invalid_operation ddfma37873 fma 1 sNaN13 1000 -> NaN13 Invalid_operation ddfma37874 fma 1 sNaN14 NaN17 -> NaN14 Invalid_operation ddfma37875 fma 1 sNaN15 sNaN18 -> NaN15 Invalid_operation ddfma37876 fma 1 NaN16 sNaN19 -> NaN19 Invalid_operation ddfma37877 fma 1 -Inf +sNaN20 -> NaN20 Invalid_operation ddfma37878 fma 1 -1000 sNaN21 -> NaN21 Invalid_operation ddfma37879 fma 1 1000 sNaN22 -> NaN22 Invalid_operation ddfma37880 fma 1 Inf sNaN23 -> NaN23 Invalid_operation ddfma37881 fma 1 +NaN25 +sNaN24 -> NaN24 Invalid_operation ddfma37882 fma 1 -NaN26 NaN28 -> -NaN26 ddfma37883 fma 1 -sNaN27 sNaN29 -> -NaN27 Invalid_operation ddfma37884 fma 1 1000 -NaN30 -> -NaN30 ddfma37885 fma 1 1000 -sNaN31 -> -NaN31 Invalid_operation -- Here we explore near the boundary of rounding a subnormal to Nmin ddfma37575 fma 1 1E-383 -1E-398 -> 9.99999999999999E-384 Subnormal ddfma37576 fma 1 -1E-383 +1E-398 -> -9.99999999999999E-384 Subnormal -- check overflow edge case -- 1234567890123456 ddfma37972 apply 9.999999999999999E+384 -> 9.999999999999999E+384 ddfma37973 fma 1 9.999999999999999E+384 1 -> 9.999999999999999E+384 Inexact Rounded ddfma37974 fma 1 9999999999999999E+369 1 -> 9.999999999999999E+384 Inexact Rounded ddfma37975 fma 1 9999999999999999E+369 1E+369 -> Infinity Overflow Inexact Rounded ddfma37976 fma 1 9999999999999999E+369 9E+368 -> Infinity Overflow Inexact Rounded ddfma37977 fma 1 9999999999999999E+369 8E+368 -> Infinity Overflow Inexact Rounded ddfma37978 fma 1 9999999999999999E+369 7E+368 -> Infinity Overflow Inexact Rounded ddfma37979 fma 1 9999999999999999E+369 6E+368 -> Infinity Overflow Inexact Rounded ddfma37980 fma 1 9999999999999999E+369 5E+368 -> Infinity Overflow Inexact Rounded ddfma37981 fma 1 9999999999999999E+369 4E+368 -> 9.999999999999999E+384 Inexact Rounded ddfma37982 fma 1 9999999999999999E+369 3E+368 -> 9.999999999999999E+384 Inexact Rounded ddfma37983 fma 1 9999999999999999E+369 2E+368 -> 9.999999999999999E+384 Inexact Rounded ddfma37984 fma 1 9999999999999999E+369 1E+368 -> 9.999999999999999E+384 Inexact Rounded ddfma37985 apply -9.999999999999999E+384 -> -9.999999999999999E+384 ddfma37986 fma 1 -9.999999999999999E+384 -1 -> -9.999999999999999E+384 Inexact Rounded ddfma37987 fma 1 -9999999999999999E+369 -1 -> -9.999999999999999E+384 Inexact Rounded ddfma37988 fma 1 -9999999999999999E+369 -1E+369 -> -Infinity Overflow Inexact Rounded ddfma37989 fma 1 -9999999999999999E+369 -9E+368 -> -Infinity Overflow Inexact Rounded ddfma37990 fma 1 -9999999999999999E+369 -8E+368 -> -Infinity Overflow Inexact Rounded ddfma37991 fma 1 -9999999999999999E+369 -7E+368 -> -Infinity Overflow Inexact Rounded ddfma37992 fma 1 -9999999999999999E+369 -6E+368 -> -Infinity Overflow Inexact Rounded ddfma37993 fma 1 -9999999999999999E+369 -5E+368 -> -Infinity Overflow Inexact Rounded ddfma37994 fma 1 -9999999999999999E+369 -4E+368 -> -9.999999999999999E+384 Inexact Rounded ddfma37995 fma 1 -9999999999999999E+369 -3E+368 -> -9.999999999999999E+384 Inexact Rounded ddfma37996 fma 1 -9999999999999999E+369 -2E+368 -> -9.999999999999999E+384 Inexact Rounded ddfma37997 fma 1 -9999999999999999E+369 -1E+368 -> -9.999999999999999E+384 Inexact Rounded -- And for round down full and subnormal results rounding: down ddfma371100 fma 1 1e+2 -1e-383 -> 99.99999999999999 Rounded Inexact ddfma371101 fma 1 1e+1 -1e-383 -> 9.999999999999999 Rounded Inexact ddfma371103 fma 1 +1 -1e-383 -> 0.9999999999999999 Rounded Inexact ddfma371104 fma 1 1e-1 -1e-383 -> 0.09999999999999999 Rounded Inexact ddfma371105 fma 1 1e-2 -1e-383 -> 0.009999999999999999 Rounded Inexact ddfma371106 fma 1 1e-3 -1e-383 -> 0.0009999999999999999 Rounded Inexact ddfma371107 fma 1 1e-4 -1e-383 -> 0.00009999999999999999 Rounded Inexact ddfma371108 fma 1 1e-5 -1e-383 -> 0.000009999999999999999 Rounded Inexact ddfma371109 fma 1 1e-6 -1e-383 -> 9.999999999999999E-7 Rounded Inexact rounding: ceiling ddfma371110 fma 1 -1e+2 +1e-383 -> -99.99999999999999 Rounded Inexact ddfma371111 fma 1 -1e+1 +1e-383 -> -9.999999999999999 Rounded Inexact ddfma371113 fma 1 -1 +1e-383 -> -0.9999999999999999 Rounded Inexact ddfma371114 fma 1 -1e-1 +1e-383 -> -0.09999999999999999 Rounded Inexact ddfma371115 fma 1 -1e-2 +1e-383 -> -0.009999999999999999 Rounded Inexact ddfma371116 fma 1 -1e-3 +1e-383 -> -0.0009999999999999999 Rounded Inexact ddfma371117 fma 1 -1e-4 +1e-383 -> -0.00009999999999999999 Rounded Inexact ddfma371118 fma 1 -1e-5 +1e-383 -> -0.000009999999999999999 Rounded Inexact ddfma371119 fma 1 -1e-6 +1e-383 -> -9.999999999999999E-7 Rounded Inexact -- tests based on Gunnar Degnbol's edge case rounding: half_even ddfma371300 fma 1 1E16 -0.5 -> 1.000000000000000E+16 Inexact Rounded ddfma371310 fma 1 1E16 -0.51 -> 9999999999999999 Inexact Rounded ddfma371311 fma 1 1E16 -0.501 -> 9999999999999999 Inexact Rounded ddfma371312 fma 1 1E16 -0.5001 -> 9999999999999999 Inexact Rounded ddfma371313 fma 1 1E16 -0.50001 -> 9999999999999999 Inexact Rounded ddfma371314 fma 1 1E16 -0.500001 -> 9999999999999999 Inexact Rounded ddfma371315 fma 1 1E16 -0.5000001 -> 9999999999999999 Inexact Rounded ddfma371316 fma 1 1E16 -0.50000001 -> 9999999999999999 Inexact Rounded ddfma371317 fma 1 1E16 -0.500000001 -> 9999999999999999 Inexact Rounded ddfma371318 fma 1 1E16 -0.5000000001 -> 9999999999999999 Inexact Rounded ddfma371319 fma 1 1E16 -0.50000000001 -> 9999999999999999 Inexact Rounded ddfma371320 fma 1 1E16 -0.500000000001 -> 9999999999999999 Inexact Rounded ddfma371321 fma 1 1E16 -0.5000000000001 -> 9999999999999999 Inexact Rounded ddfma371322 fma 1 1E16 -0.50000000000001 -> 9999999999999999 Inexact Rounded ddfma371323 fma 1 1E16 -0.500000000000001 -> 9999999999999999 Inexact Rounded ddfma371324 fma 1 1E16 -0.5000000000000001 -> 9999999999999999 Inexact Rounded ddfma371325 fma 1 1E16 -0.5000000000000000 -> 1.000000000000000E+16 Inexact Rounded ddfma371326 fma 1 1E16 -0.500000000000000 -> 1.000000000000000E+16 Inexact Rounded ddfma371327 fma 1 1E16 -0.50000000000000 -> 1.000000000000000E+16 Inexact Rounded ddfma371328 fma 1 1E16 -0.5000000000000 -> 1.000000000000000E+16 Inexact Rounded ddfma371329 fma 1 1E16 -0.500000000000 -> 1.000000000000000E+16 Inexact Rounded ddfma371330 fma 1 1E16 -0.50000000000 -> 1.000000000000000E+16 Inexact Rounded ddfma371331 fma 1 1E16 -0.5000000000 -> 1.000000000000000E+16 Inexact Rounded ddfma371332 fma 1 1E16 -0.500000000 -> 1.000000000000000E+16 Inexact Rounded ddfma371333 fma 1 1E16 -0.50000000 -> 1.000000000000000E+16 Inexact Rounded ddfma371334 fma 1 1E16 -0.5000000 -> 1.000000000000000E+16 Inexact Rounded ddfma371335 fma 1 1E16 -0.500000 -> 1.000000000000000E+16 Inexact Rounded ddfma371336 fma 1 1E16 -0.50000 -> 1.000000000000000E+16 Inexact Rounded ddfma371337 fma 1 1E16 -0.5000 -> 1.000000000000000E+16 Inexact Rounded ddfma371338 fma 1 1E16 -0.500 -> 1.000000000000000E+16 Inexact Rounded ddfma371339 fma 1 1E16 -0.50 -> 1.000000000000000E+16 Inexact Rounded ddfma371340 fma 1 1E16 -5000000.000010001 -> 9999999995000000 Inexact Rounded ddfma371341 fma 1 1E16 -5000000.000000001 -> 9999999995000000 Inexact Rounded ddfma371349 fma 1 9999999999999999 0.4 -> 9999999999999999 Inexact Rounded ddfma371350 fma 1 9999999999999999 0.49 -> 9999999999999999 Inexact Rounded ddfma371351 fma 1 9999999999999999 0.499 -> 9999999999999999 Inexact Rounded ddfma371352 fma 1 9999999999999999 0.4999 -> 9999999999999999 Inexact Rounded ddfma371353 fma 1 9999999999999999 0.49999 -> 9999999999999999 Inexact Rounded ddfma371354 fma 1 9999999999999999 0.499999 -> 9999999999999999 Inexact Rounded ddfma371355 fma 1 9999999999999999 0.4999999 -> 9999999999999999 Inexact Rounded ddfma371356 fma 1 9999999999999999 0.49999999 -> 9999999999999999 Inexact Rounded ddfma371357 fma 1 9999999999999999 0.499999999 -> 9999999999999999 Inexact Rounded ddfma371358 fma 1 9999999999999999 0.4999999999 -> 9999999999999999 Inexact Rounded ddfma371359 fma 1 9999999999999999 0.49999999999 -> 9999999999999999 Inexact Rounded ddfma371360 fma 1 9999999999999999 0.499999999999 -> 9999999999999999 Inexact Rounded ddfma371361 fma 1 9999999999999999 0.4999999999999 -> 9999999999999999 Inexact Rounded ddfma371362 fma 1 9999999999999999 0.49999999999999 -> 9999999999999999 Inexact Rounded ddfma371363 fma 1 9999999999999999 0.499999999999999 -> 9999999999999999 Inexact Rounded ddfma371364 fma 1 9999999999999999 0.4999999999999999 -> 9999999999999999 Inexact Rounded ddfma371365 fma 1 9999999999999999 0.5000000000000000 -> 1.000000000000000E+16 Inexact Rounded ddfma371367 fma 1 9999999999999999 0.500000000000000 -> 1.000000000000000E+16 Inexact Rounded ddfma371368 fma 1 9999999999999999 0.50000000000000 -> 1.000000000000000E+16 Inexact Rounded ddfma371369 fma 1 9999999999999999 0.5000000000000 -> 1.000000000000000E+16 Inexact Rounded ddfma371370 fma 1 9999999999999999 0.500000000000 -> 1.000000000000000E+16 Inexact Rounded ddfma371371 fma 1 9999999999999999 0.50000000000 -> 1.000000000000000E+16 Inexact Rounded ddfma371372 fma 1 9999999999999999 0.5000000000 -> 1.000000000000000E+16 Inexact Rounded ddfma371373 fma 1 9999999999999999 0.500000000 -> 1.000000000000000E+16 Inexact Rounded ddfma371374 fma 1 9999999999999999 0.50000000 -> 1.000000000000000E+16 Inexact Rounded ddfma371375 fma 1 9999999999999999 0.5000000 -> 1.000000000000000E+16 Inexact Rounded ddfma371376 fma 1 9999999999999999 0.500000 -> 1.000000000000000E+16 Inexact Rounded ddfma371377 fma 1 9999999999999999 0.50000 -> 1.000000000000000E+16 Inexact Rounded ddfma371378 fma 1 9999999999999999 0.5000 -> 1.000000000000000E+16 Inexact Rounded ddfma371379 fma 1 9999999999999999 0.500 -> 1.000000000000000E+16 Inexact Rounded ddfma371380 fma 1 9999999999999999 0.50 -> 1.000000000000000E+16 Inexact Rounded ddfma371381 fma 1 9999999999999999 0.5 -> 1.000000000000000E+16 Inexact Rounded ddfma371382 fma 1 9999999999999999 0.5000000000000001 -> 1.000000000000000E+16 Inexact Rounded ddfma371383 fma 1 9999999999999999 0.500000000000001 -> 1.000000000000000E+16 Inexact Rounded ddfma371384 fma 1 9999999999999999 0.50000000000001 -> 1.000000000000000E+16 Inexact Rounded ddfma371385 fma 1 9999999999999999 0.5000000000001 -> 1.000000000000000E+16 Inexact Rounded ddfma371386 fma 1 9999999999999999 0.500000000001 -> 1.000000000000000E+16 Inexact Rounded ddfma371387 fma 1 9999999999999999 0.50000000001 -> 1.000000000000000E+16 Inexact Rounded ddfma371388 fma 1 9999999999999999 0.5000000001 -> 1.000000000000000E+16 Inexact Rounded ddfma371389 fma 1 9999999999999999 0.500000001 -> 1.000000000000000E+16 Inexact Rounded ddfma371390 fma 1 9999999999999999 0.50000001 -> 1.000000000000000E+16 Inexact Rounded ddfma371391 fma 1 9999999999999999 0.5000001 -> 1.000000000000000E+16 Inexact Rounded ddfma371392 fma 1 9999999999999999 0.500001 -> 1.000000000000000E+16 Inexact Rounded ddfma371393 fma 1 9999999999999999 0.50001 -> 1.000000000000000E+16 Inexact Rounded ddfma371394 fma 1 9999999999999999 0.5001 -> 1.000000000000000E+16 Inexact Rounded ddfma371395 fma 1 9999999999999999 0.501 -> 1.000000000000000E+16 Inexact Rounded ddfma371396 fma 1 9999999999999999 0.51 -> 1.000000000000000E+16 Inexact Rounded -- More GD edge cases, where difference between the unadjusted -- exponents is larger than the maximum precision and one side is 0 ddfma371420 fma 1 0 1.123456789012345 -> 1.123456789012345 ddfma371421 fma 1 0 1.123456789012345E-1 -> 0.1123456789012345 ddfma371422 fma 1 0 1.123456789012345E-2 -> 0.01123456789012345 ddfma371423 fma 1 0 1.123456789012345E-3 -> 0.001123456789012345 ddfma371424 fma 1 0 1.123456789012345E-4 -> 0.0001123456789012345 ddfma371425 fma 1 0 1.123456789012345E-5 -> 0.00001123456789012345 ddfma371426 fma 1 0 1.123456789012345E-6 -> 0.000001123456789012345 ddfma371427 fma 1 0 1.123456789012345E-7 -> 1.123456789012345E-7 ddfma371428 fma 1 0 1.123456789012345E-8 -> 1.123456789012345E-8 ddfma371429 fma 1 0 1.123456789012345E-9 -> 1.123456789012345E-9 ddfma371430 fma 1 0 1.123456789012345E-10 -> 1.123456789012345E-10 ddfma371431 fma 1 0 1.123456789012345E-11 -> 1.123456789012345E-11 ddfma371432 fma 1 0 1.123456789012345E-12 -> 1.123456789012345E-12 ddfma371433 fma 1 0 1.123456789012345E-13 -> 1.123456789012345E-13 ddfma371434 fma 1 0 1.123456789012345E-14 -> 1.123456789012345E-14 ddfma371435 fma 1 0 1.123456789012345E-15 -> 1.123456789012345E-15 ddfma371436 fma 1 0 1.123456789012345E-16 -> 1.123456789012345E-16 ddfma371437 fma 1 0 1.123456789012345E-17 -> 1.123456789012345E-17 ddfma371438 fma 1 0 1.123456789012345E-18 -> 1.123456789012345E-18 ddfma371439 fma 1 0 1.123456789012345E-19 -> 1.123456789012345E-19 -- same, reversed 0 ddfma371440 fma 1 1.123456789012345 0 -> 1.123456789012345 ddfma371441 fma 1 1.123456789012345E-1 0 -> 0.1123456789012345 ddfma371442 fma 1 1.123456789012345E-2 0 -> 0.01123456789012345 ddfma371443 fma 1 1.123456789012345E-3 0 -> 0.001123456789012345 ddfma371444 fma 1 1.123456789012345E-4 0 -> 0.0001123456789012345 ddfma371445 fma 1 1.123456789012345E-5 0 -> 0.00001123456789012345 ddfma371446 fma 1 1.123456789012345E-6 0 -> 0.000001123456789012345 ddfma371447 fma 1 1.123456789012345E-7 0 -> 1.123456789012345E-7 ddfma371448 fma 1 1.123456789012345E-8 0 -> 1.123456789012345E-8 ddfma371449 fma 1 1.123456789012345E-9 0 -> 1.123456789012345E-9 ddfma371450 fma 1 1.123456789012345E-10 0 -> 1.123456789012345E-10 ddfma371451 fma 1 1.123456789012345E-11 0 -> 1.123456789012345E-11 ddfma371452 fma 1 1.123456789012345E-12 0 -> 1.123456789012345E-12 ddfma371453 fma 1 1.123456789012345E-13 0 -> 1.123456789012345E-13 ddfma371454 fma 1 1.123456789012345E-14 0 -> 1.123456789012345E-14 ddfma371455 fma 1 1.123456789012345E-15 0 -> 1.123456789012345E-15 ddfma371456 fma 1 1.123456789012345E-16 0 -> 1.123456789012345E-16 ddfma371457 fma 1 1.123456789012345E-17 0 -> 1.123456789012345E-17 ddfma371458 fma 1 1.123456789012345E-18 0 -> 1.123456789012345E-18 ddfma371459 fma 1 1.123456789012345E-19 0 -> 1.123456789012345E-19 -- same, Es on the 0 ddfma371460 fma 1 1.123456789012345 0E-0 -> 1.123456789012345 ddfma371461 fma 1 1.123456789012345 0E-1 -> 1.123456789012345 ddfma371462 fma 1 1.123456789012345 0E-2 -> 1.123456789012345 ddfma371463 fma 1 1.123456789012345 0E-3 -> 1.123456789012345 ddfma371464 fma 1 1.123456789012345 0E-4 -> 1.123456789012345 ddfma371465 fma 1 1.123456789012345 0E-5 -> 1.123456789012345 ddfma371466 fma 1 1.123456789012345 0E-6 -> 1.123456789012345 ddfma371467 fma 1 1.123456789012345 0E-7 -> 1.123456789012345 ddfma371468 fma 1 1.123456789012345 0E-8 -> 1.123456789012345 ddfma371469 fma 1 1.123456789012345 0E-9 -> 1.123456789012345 ddfma371470 fma 1 1.123456789012345 0E-10 -> 1.123456789012345 ddfma371471 fma 1 1.123456789012345 0E-11 -> 1.123456789012345 ddfma371472 fma 1 1.123456789012345 0E-12 -> 1.123456789012345 ddfma371473 fma 1 1.123456789012345 0E-13 -> 1.123456789012345 ddfma371474 fma 1 1.123456789012345 0E-14 -> 1.123456789012345 ddfma371475 fma 1 1.123456789012345 0E-15 -> 1.123456789012345 -- next four flag Rounded because the 0 extends the result ddfma371476 fma 1 1.123456789012345 0E-16 -> 1.123456789012345 Rounded ddfma371477 fma 1 1.123456789012345 0E-17 -> 1.123456789012345 Rounded ddfma371478 fma 1 1.123456789012345 0E-18 -> 1.123456789012345 Rounded ddfma371479 fma 1 1.123456789012345 0E-19 -> 1.123456789012345 Rounded -- sum of two opposite-sign operands is exactly 0 and floor => -0 rounding: half_up -- exact zeros from zeros ddfma371500 fma 1 0 0E-19 -> 0E-19 ddfma371501 fma 1 -0 0E-19 -> 0E-19 ddfma371502 fma 1 0 -0E-19 -> 0E-19 ddfma371503 fma 1 -0 -0E-19 -> -0E-19 -- exact zeros from non-zeros ddfma371511 fma 1 -11 11 -> 0 ddfma371512 fma 1 11 -11 -> 0 rounding: half_down -- exact zeros from zeros ddfma371520 fma 1 0 0E-19 -> 0E-19 ddfma371521 fma 1 -0 0E-19 -> 0E-19 ddfma371522 fma 1 0 -0E-19 -> 0E-19 ddfma371523 fma 1 -0 -0E-19 -> -0E-19 -- exact zeros from non-zeros ddfma371531 fma 1 -11 11 -> 0 ddfma371532 fma 1 11 -11 -> 0 rounding: half_even -- exact zeros from zeros ddfma371540 fma 1 0 0E-19 -> 0E-19 ddfma371541 fma 1 -0 0E-19 -> 0E-19 ddfma371542 fma 1 0 -0E-19 -> 0E-19 ddfma371543 fma 1 -0 -0E-19 -> -0E-19 -- exact zeros from non-zeros ddfma371551 fma 1 -11 11 -> 0 ddfma371552 fma 1 11 -11 -> 0 rounding: up -- exact zeros from zeros ddfma371560 fma 1 0 0E-19 -> 0E-19 ddfma371561 fma 1 -0 0E-19 -> 0E-19 ddfma371562 fma 1 0 -0E-19 -> 0E-19 ddfma371563 fma 1 -0 -0E-19 -> -0E-19 -- exact zeros from non-zeros ddfma371571 fma 1 -11 11 -> 0 ddfma371572 fma 1 11 -11 -> 0 rounding: down -- exact zeros from zeros ddfma371580 fma 1 0 0E-19 -> 0E-19 ddfma371581 fma 1 -0 0E-19 -> 0E-19 ddfma371582 fma 1 0 -0E-19 -> 0E-19 ddfma371583 fma 1 -0 -0E-19 -> -0E-19 -- exact zeros from non-zeros ddfma371591 fma 1 -11 11 -> 0 ddfma371592 fma 1 11 -11 -> 0 rounding: ceiling -- exact zeros from zeros ddfma371600 fma 1 0 0E-19 -> 0E-19 ddfma371601 fma 1 -0 0E-19 -> 0E-19 ddfma371602 fma 1 0 -0E-19 -> 0E-19 ddfma371603 fma 1 -0 -0E-19 -> -0E-19 -- exact zeros from non-zeros ddfma371611 fma 1 -11 11 -> 0 ddfma371612 fma 1 11 -11 -> 0 -- and the extra-special ugly case; unusual minuses marked by -- * rounding: floor -- exact zeros from zeros ddfma371620 fma 1 0 0E-19 -> 0E-19 ddfma371621 fma 1 -0 0E-19 -> -0E-19 -- * ddfma371622 fma 1 0 -0E-19 -> -0E-19 -- * ddfma371623 fma 1 -0 -0E-19 -> -0E-19 -- exact zeros from non-zeros ddfma371631 fma 1 -11 11 -> -0 -- * ddfma371632 fma 1 11 -11 -> -0 -- * -- Examples from SQL proposal (Krishna Kulkarni) ddfma371701 fma 1 130E-2 120E-2 -> 2.50 ddfma371702 fma 1 130E-2 12E-1 -> 2.50 ddfma371703 fma 1 130E-2 1E0 -> 2.30 ddfma371704 fma 1 1E2 1E4 -> 1.01E+4 ddfma371705 fma 1 130E-2 -120E-2 -> 0.10 ddfma371706 fma 1 130E-2 -12E-1 -> 0.10 ddfma371707 fma 1 130E-2 -1E0 -> 0.30 ddfma371708 fma 1 1E2 -1E4 -> -9.9E+3 -- Gappy coefficients; check residue handling even with full coefficient gap rounding: half_even ddfma375001 fma 1 1234567890123456 1 -> 1234567890123457 ddfma375002 fma 1 1234567890123456 0.6 -> 1234567890123457 Inexact Rounded ddfma375003 fma 1 1234567890123456 0.06 -> 1234567890123456 Inexact Rounded ddfma375004 fma 1 1234567890123456 6E-3 -> 1234567890123456 Inexact Rounded ddfma375005 fma 1 1234567890123456 6E-4 -> 1234567890123456 Inexact Rounded ddfma375006 fma 1 1234567890123456 6E-5 -> 1234567890123456 Inexact Rounded ddfma375007 fma 1 1234567890123456 6E-6 -> 1234567890123456 Inexact Rounded ddfma375008 fma 1 1234567890123456 6E-7 -> 1234567890123456 Inexact Rounded ddfma375009 fma 1 1234567890123456 6E-8 -> 1234567890123456 Inexact Rounded ddfma375010 fma 1 1234567890123456 6E-9 -> 1234567890123456 Inexact Rounded ddfma375011 fma 1 1234567890123456 6E-10 -> 1234567890123456 Inexact Rounded ddfma375012 fma 1 1234567890123456 6E-11 -> 1234567890123456 Inexact Rounded ddfma375013 fma 1 1234567890123456 6E-12 -> 1234567890123456 Inexact Rounded ddfma375014 fma 1 1234567890123456 6E-13 -> 1234567890123456 Inexact Rounded ddfma375015 fma 1 1234567890123456 6E-14 -> 1234567890123456 Inexact Rounded ddfma375016 fma 1 1234567890123456 6E-15 -> 1234567890123456 Inexact Rounded ddfma375017 fma 1 1234567890123456 6E-16 -> 1234567890123456 Inexact Rounded ddfma375018 fma 1 1234567890123456 6E-17 -> 1234567890123456 Inexact Rounded ddfma375019 fma 1 1234567890123456 6E-18 -> 1234567890123456 Inexact Rounded ddfma375020 fma 1 1234567890123456 6E-19 -> 1234567890123456 Inexact Rounded ddfma375021 fma 1 1234567890123456 6E-20 -> 1234567890123456 Inexact Rounded -- widening second argument at gap ddfma375030 fma 1 12345678 1 -> 12345679 ddfma375031 fma 1 12345678 0.1 -> 12345678.1 ddfma375032 fma 1 12345678 0.12 -> 12345678.12 ddfma375033 fma 1 12345678 0.123 -> 12345678.123 ddfma375034 fma 1 12345678 0.1234 -> 12345678.1234 ddfma375035 fma 1 12345678 0.12345 -> 12345678.12345 ddfma375036 fma 1 12345678 0.123456 -> 12345678.123456 ddfma375037 fma 1 12345678 0.1234567 -> 12345678.1234567 ddfma375038 fma 1 12345678 0.12345678 -> 12345678.12345678 ddfma375039 fma 1 12345678 0.123456789 -> 12345678.12345679 Inexact Rounded ddfma375040 fma 1 12345678 0.123456785 -> 12345678.12345678 Inexact Rounded ddfma375041 fma 1 12345678 0.1234567850 -> 12345678.12345678 Inexact Rounded ddfma375042 fma 1 12345678 0.1234567851 -> 12345678.12345679 Inexact Rounded ddfma375043 fma 1 12345678 0.12345678501 -> 12345678.12345679 Inexact Rounded ddfma375044 fma 1 12345678 0.123456785001 -> 12345678.12345679 Inexact Rounded ddfma375045 fma 1 12345678 0.1234567850001 -> 12345678.12345679 Inexact Rounded ddfma375046 fma 1 12345678 0.12345678500001 -> 12345678.12345679 Inexact Rounded ddfma375047 fma 1 12345678 0.123456785000001 -> 12345678.12345679 Inexact Rounded ddfma375048 fma 1 12345678 0.1234567850000001 -> 12345678.12345679 Inexact Rounded ddfma375049 fma 1 12345678 0.1234567850000000 -> 12345678.12345678 Inexact Rounded -- 90123456 rounding: half_even ddfma375050 fma 1 12345678 0.0234567750000000 -> 12345678.02345678 Inexact Rounded ddfma375051 fma 1 12345678 0.0034567750000000 -> 12345678.00345678 Inexact Rounded ddfma375052 fma 1 12345678 0.0004567750000000 -> 12345678.00045678 Inexact Rounded ddfma375053 fma 1 12345678 0.0000567750000000 -> 12345678.00005678 Inexact Rounded ddfma375054 fma 1 12345678 0.0000067750000000 -> 12345678.00000678 Inexact Rounded ddfma375055 fma 1 12345678 0.0000007750000000 -> 12345678.00000078 Inexact Rounded ddfma375056 fma 1 12345678 0.0000000750000000 -> 12345678.00000008 Inexact Rounded ddfma375057 fma 1 12345678 0.0000000050000000 -> 12345678.00000000 Inexact Rounded ddfma375060 fma 1 12345678 0.0234567750000001 -> 12345678.02345678 Inexact Rounded ddfma375061 fma 1 12345678 0.0034567750000001 -> 12345678.00345678 Inexact Rounded ddfma375062 fma 1 12345678 0.0004567750000001 -> 12345678.00045678 Inexact Rounded ddfma375063 fma 1 12345678 0.0000567750000001 -> 12345678.00005678 Inexact Rounded ddfma375064 fma 1 12345678 0.0000067750000001 -> 12345678.00000678 Inexact Rounded ddfma375065 fma 1 12345678 0.0000007750000001 -> 12345678.00000078 Inexact Rounded ddfma375066 fma 1 12345678 0.0000000750000001 -> 12345678.00000008 Inexact Rounded ddfma375067 fma 1 12345678 0.0000000050000001 -> 12345678.00000001 Inexact Rounded -- far-out residues (full coefficient gap is 16+15 digits) rounding: up ddfma375070 fma 1 12345678 1E-8 -> 12345678.00000001 ddfma375071 fma 1 12345678 1E-9 -> 12345678.00000001 Inexact Rounded ddfma375072 fma 1 12345678 1E-10 -> 12345678.00000001 Inexact Rounded ddfma375073 fma 1 12345678 1E-11 -> 12345678.00000001 Inexact Rounded ddfma375074 fma 1 12345678 1E-12 -> 12345678.00000001 Inexact Rounded ddfma375075 fma 1 12345678 1E-13 -> 12345678.00000001 Inexact Rounded ddfma375076 fma 1 12345678 1E-14 -> 12345678.00000001 Inexact Rounded ddfma375077 fma 1 12345678 1E-15 -> 12345678.00000001 Inexact Rounded ddfma375078 fma 1 12345678 1E-16 -> 12345678.00000001 Inexact Rounded ddfma375079 fma 1 12345678 1E-17 -> 12345678.00000001 Inexact Rounded ddfma375080 fma 1 12345678 1E-18 -> 12345678.00000001 Inexact Rounded ddfma375081 fma 1 12345678 1E-19 -> 12345678.00000001 Inexact Rounded ddfma375082 fma 1 12345678 1E-20 -> 12345678.00000001 Inexact Rounded ddfma375083 fma 1 12345678 1E-25 -> 12345678.00000001 Inexact Rounded ddfma375084 fma 1 12345678 1E-30 -> 12345678.00000001 Inexact Rounded ddfma375085 fma 1 12345678 1E-31 -> 12345678.00000001 Inexact Rounded ddfma375086 fma 1 12345678 1E-32 -> 12345678.00000001 Inexact Rounded ddfma375087 fma 1 12345678 1E-33 -> 12345678.00000001 Inexact Rounded ddfma375088 fma 1 12345678 1E-34 -> 12345678.00000001 Inexact Rounded ddfma375089 fma 1 12345678 1E-35 -> 12345678.00000001 Inexact Rounded -- desctructive subtraction (from remainder tests) -- +++ some of these will be off-by-one remainder vs remainderNear ddfma4000 fma -1234567890123454 1.000000000000001 1234567890123456 -> 0.765432109876546 ddfma4001 fma -1234567890123443 1.00000000000001 1234567890123456 -> 0.65432109876557 ddfma4002 fma -1234567890123332 1.0000000000001 1234567890123456 -> 0.5432109876668 ddfma4003 fma -308641972530863 4.000000000000001 1234567890123455 -> 2.691358027469137 ddfma4004 fma -308641972530863 4.000000000000001 1234567890123456 -> 3.691358027469137 ddfma4005 fma -246913578024696 4.9999999999999 1234567890123456 -> 0.6913578024696 ddfma4006 fma -246913578024691 4.99999999999999 1234567890123456 -> 3.46913578024691 ddfma4007 fma -246913578024691 4.999999999999999 1234567890123456 -> 1.246913578024691 ddfma4008 fma -246913578024691 5.000000000000001 1234567890123456 -> 0.753086421975309 ddfma4009 fma -246913578024690 5.00000000000001 1234567890123456 -> 3.53086421975310 ddfma4010 fma -246913578024686 5.0000000000001 1234567890123456 -> 1.3086421975314 ddfma4011 fma -1234567890123455 1.000000000000001 1234567890123456 -> -0.234567890123455 ddfma4012 fma -1234567890123444 1.00000000000001 1234567890123456 -> -0.34567890123444 ddfma4013 fma -1234567890123333 1.0000000000001 1234567890123456 -> -0.4567890123333 ddfma4014 fma -308641972530864 4.000000000000001 1234567890123455 -> -1.308641972530864 ddfma4015 fma -308641972530864 4.000000000000001 1234567890123456 -> -0.308641972530864 ddfma4016 fma -246913578024696 4.9999999999999 1234567890123456 -> 0.6913578024696 ddfma4017 fma -246913578024692 4.99999999999999 1234567890123456 -> -1.53086421975308 ddfma4018 fma -246913578024691 4.999999999999999 1234567890123456 -> 1.246913578024691 ddfma4019 fma -246913578024691 5.000000000000001 1234567890123456 -> 0.753086421975309 ddfma4020 fma -246913578024691 5.00000000000001 1234567890123456 -> -1.46913578024691 ddfma4021 fma -246913578024686 5.0000000000001 1234567890123456 -> 1.3086421975314 -- Null tests ddfma39990 fma 1 10 # -> NaN Invalid_operation ddfma39991 fma 1 # 10 -> NaN Invalid_operation
100,482
1,699
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/nextminus.decTest
------------------------------------------------------------------------ -- nextminus.decTest -- decimal next that is less [754r nextdown] -- -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 extended: 1 precision: 9 rounding: half_up maxExponent: 384 minexponent: -383 nextm001 nextminus 0.999999995 -> 0.999999994 nextm002 nextminus 0.999999996 -> 0.999999995 nextm003 nextminus 0.999999997 -> 0.999999996 nextm004 nextminus 0.999999998 -> 0.999999997 nextm005 nextminus 0.999999999 -> 0.999999998 nextm006 nextminus 1.00000000 -> 0.999999999 nextm007 nextminus 1.0 -> 0.999999999 nextm008 nextminus 1 -> 0.999999999 nextm009 nextminus 1.00000001 -> 1.00000000 nextm010 nextminus 1.00000002 -> 1.00000001 nextm011 nextminus 1.00000003 -> 1.00000002 nextm012 nextminus 1.00000004 -> 1.00000003 nextm013 nextminus 1.00000005 -> 1.00000004 nextm014 nextminus 1.00000006 -> 1.00000005 nextm015 nextminus 1.00000007 -> 1.00000006 nextm016 nextminus 1.00000008 -> 1.00000007 nextm017 nextminus 1.00000009 -> 1.00000008 nextm018 nextminus 1.00000010 -> 1.00000009 nextm019 nextminus 1.00000011 -> 1.00000010 nextm020 nextminus 1.00000012 -> 1.00000011 nextm021 nextminus -0.999999995 -> -0.999999996 nextm022 nextminus -0.999999996 -> -0.999999997 nextm023 nextminus -0.999999997 -> -0.999999998 nextm024 nextminus -0.999999998 -> -0.999999999 nextm025 nextminus -0.999999999 -> -1.00000000 nextm026 nextminus -1.00000000 -> -1.00000001 nextm027 nextminus -1.0 -> -1.00000001 nextm028 nextminus -1 -> -1.00000001 nextm029 nextminus -1.00000001 -> -1.00000002 nextm030 nextminus -1.00000002 -> -1.00000003 nextm031 nextminus -1.00000003 -> -1.00000004 nextm032 nextminus -1.00000004 -> -1.00000005 nextm033 nextminus -1.00000005 -> -1.00000006 nextm034 nextminus -1.00000006 -> -1.00000007 nextm035 nextminus -1.00000007 -> -1.00000008 nextm036 nextminus -1.00000008 -> -1.00000009 nextm037 nextminus -1.00000009 -> -1.00000010 nextm038 nextminus -1.00000010 -> -1.00000011 nextm039 nextminus -1.00000011 -> -1.00000012 -- input operand is >precision nextm041 nextminus 1.00000010998 -> 1.00000010 nextm042 nextminus 1.00000010999 -> 1.00000010 nextm043 nextminus 1.00000011000 -> 1.00000010 nextm044 nextminus 1.00000011001 -> 1.00000011 nextm045 nextminus 1.00000011002 -> 1.00000011 nextm046 nextminus 1.00000011002 -> 1.00000011 nextm047 nextminus 1.00000011052 -> 1.00000011 nextm048 nextminus 1.00000011552 -> 1.00000011 nextm049 nextminus -1.00000010998 -> -1.00000011 nextm050 nextminus -1.00000010999 -> -1.00000011 nextm051 nextminus -1.00000011000 -> -1.00000012 nextm052 nextminus -1.00000011001 -> -1.00000012 nextm053 nextminus -1.00000011002 -> -1.00000012 nextm054 nextminus -1.00000011002 -> -1.00000012 nextm055 nextminus -1.00000011052 -> -1.00000012 nextm056 nextminus -1.00000011552 -> -1.00000012 -- ultra-tiny inputs nextm060 nextminus 1E-99999 -> 0E-391 nextm061 nextminus 1E-999999999 -> 0E-391 nextm062 nextminus 1E-391 -> 0E-391 nextm063 nextminus -1E-99999 -> -1E-391 nextm064 nextminus -1E-999999999 -> -1E-391 nextm065 nextminus -1E-391 -> -2E-391 -- Zeros nextm100 nextminus -0 -> -1E-391 nextm101 nextminus 0 -> -1E-391 nextm102 nextminus 0.00 -> -1E-391 nextm103 nextminus -0.00 -> -1E-391 nextm104 nextminus 0E-300 -> -1E-391 nextm105 nextminus 0E+300 -> -1E-391 nextm106 nextminus 0E+30000 -> -1E-391 nextm107 nextminus -0E+30000 -> -1E-391 precision: 9 maxExponent: 999 minexponent: -999 -- specials nextm150 nextminus Inf -> 9.99999999E+999 nextm151 nextminus -Inf -> -Infinity nextm152 nextminus NaN -> NaN nextm153 nextminus sNaN -> NaN Invalid_operation nextm154 nextminus NaN77 -> NaN77 nextm155 nextminus sNaN88 -> NaN88 Invalid_operation nextm156 nextminus -NaN -> -NaN nextm157 nextminus -sNaN -> -NaN Invalid_operation nextm158 nextminus -NaN77 -> -NaN77 nextm159 nextminus -sNaN88 -> -NaN88 Invalid_operation -- Nmax, Nmin, Ntiny, subnormals nextm170 nextminus 9.99999999E+999 -> 9.99999998E+999 nextm171 nextminus 9.99999998E+999 -> 9.99999997E+999 nextm172 nextminus 1E-999 -> 9.9999999E-1000 nextm173 nextminus 1.00000000E-999 -> 9.9999999E-1000 nextm174 nextminus 9E-1007 -> 8E-1007 nextm175 nextminus 9.9E-1006 -> 9.8E-1006 nextm176 nextminus 9.9999E-1003 -> 9.9998E-1003 nextm177 nextminus 9.9999999E-1000 -> 9.9999998E-1000 nextm178 nextminus 9.9999998E-1000 -> 9.9999997E-1000 nextm179 nextminus 9.9999997E-1000 -> 9.9999996E-1000 nextm180 nextminus 0E-1007 -> -1E-1007 nextm181 nextminus 1E-1007 -> 0E-1007 nextm182 nextminus 2E-1007 -> 1E-1007 nextm183 nextminus -0E-1007 -> -1E-1007 nextm184 nextminus -1E-1007 -> -2E-1007 nextm185 nextminus -2E-1007 -> -3E-1007 nextm186 nextminus -10E-1007 -> -1.1E-1006 nextm187 nextminus -100E-1007 -> -1.01E-1005 nextm188 nextminus -100000E-1007 -> -1.00001E-1002 nextm189 nextminus -1.0000E-999 -> -1.00000001E-999 nextm190 nextminus -1.00000000E-999 -> -1.00000001E-999 nextm191 nextminus -1E-999 -> -1.00000001E-999 nextm192 nextminus -9.99999998E+999 -> -9.99999999E+999 nextm193 nextminus -9.99999999E+999 -> -Infinity -- Null tests nextm900 nextminus # -> NaN Invalid_operation
6,794
149
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/ddCompareTotal.decTest
------------------------------------------------------------------------ -- ddCompareTotal.decTest -- decDouble comparison using total ordering-- -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 -- Note that we cannot assume add/subtract tests cover paths adequately, -- here, because the code might be quite different (comparison cannot -- overflow or underflow, so actual subtractions are not necessary). -- Similarly, comparetotal will have some radically different paths -- than compare. -- All operands and results are decDoubles. precision: 16 maxExponent: 384 minExponent: -383 extended: 1 clamp: 1 rounding: half_even -- sanity checks ddcot001 comparetotal -2 -2 -> 0 ddcot002 comparetotal -2 -1 -> -1 ddcot003 comparetotal -2 0 -> -1 ddcot004 comparetotal -2 1 -> -1 ddcot005 comparetotal -2 2 -> -1 ddcot006 comparetotal -1 -2 -> 1 ddcot007 comparetotal -1 -1 -> 0 ddcot008 comparetotal -1 0 -> -1 ddcot009 comparetotal -1 1 -> -1 ddcot010 comparetotal -1 2 -> -1 ddcot011 comparetotal 0 -2 -> 1 ddcot012 comparetotal 0 -1 -> 1 ddcot013 comparetotal 0 0 -> 0 ddcot014 comparetotal 0 1 -> -1 ddcot015 comparetotal 0 2 -> -1 ddcot016 comparetotal 1 -2 -> 1 ddcot017 comparetotal 1 -1 -> 1 ddcot018 comparetotal 1 0 -> 1 ddcot019 comparetotal 1 1 -> 0 ddcot020 comparetotal 1 2 -> -1 ddcot021 comparetotal 2 -2 -> 1 ddcot022 comparetotal 2 -1 -> 1 ddcot023 comparetotal 2 0 -> 1 ddcot025 comparetotal 2 1 -> 1 ddcot026 comparetotal 2 2 -> 0 ddcot031 comparetotal -20 -20 -> 0 ddcot032 comparetotal -20 -10 -> -1 ddcot033 comparetotal -20 00 -> -1 ddcot034 comparetotal -20 10 -> -1 ddcot035 comparetotal -20 20 -> -1 ddcot036 comparetotal -10 -20 -> 1 ddcot037 comparetotal -10 -10 -> 0 ddcot038 comparetotal -10 00 -> -1 ddcot039 comparetotal -10 10 -> -1 ddcot040 comparetotal -10 20 -> -1 ddcot041 comparetotal 00 -20 -> 1 ddcot042 comparetotal 00 -10 -> 1 ddcot043 comparetotal 00 00 -> 0 ddcot044 comparetotal 00 10 -> -1 ddcot045 comparetotal 00 20 -> -1 ddcot046 comparetotal 10 -20 -> 1 ddcot047 comparetotal 10 -10 -> 1 ddcot048 comparetotal 10 00 -> 1 ddcot049 comparetotal 10 10 -> 0 ddcot050 comparetotal 10 20 -> -1 ddcot051 comparetotal 20 -20 -> 1 ddcot052 comparetotal 20 -10 -> 1 ddcot053 comparetotal 20 00 -> 1 ddcot055 comparetotal 20 10 -> 1 ddcot056 comparetotal 20 20 -> 0 ddcot061 comparetotal -2.0 -2.0 -> 0 ddcot062 comparetotal -2.0 -1.0 -> -1 ddcot063 comparetotal -2.0 0.0 -> -1 ddcot064 comparetotal -2.0 1.0 -> -1 ddcot065 comparetotal -2.0 2.0 -> -1 ddcot066 comparetotal -1.0 -2.0 -> 1 ddcot067 comparetotal -1.0 -1.0 -> 0 ddcot068 comparetotal -1.0 0.0 -> -1 ddcot069 comparetotal -1.0 1.0 -> -1 ddcot070 comparetotal -1.0 2.0 -> -1 ddcot071 comparetotal 0.0 -2.0 -> 1 ddcot072 comparetotal 0.0 -1.0 -> 1 ddcot073 comparetotal 0.0 0.0 -> 0 ddcot074 comparetotal 0.0 1.0 -> -1 ddcot075 comparetotal 0.0 2.0 -> -1 ddcot076 comparetotal 1.0 -2.0 -> 1 ddcot077 comparetotal 1.0 -1.0 -> 1 ddcot078 comparetotal 1.0 0.0 -> 1 ddcot079 comparetotal 1.0 1.0 -> 0 ddcot080 comparetotal 1.0 2.0 -> -1 ddcot081 comparetotal 2.0 -2.0 -> 1 ddcot082 comparetotal 2.0 -1.0 -> 1 ddcot083 comparetotal 2.0 0.0 -> 1 ddcot085 comparetotal 2.0 1.0 -> 1 ddcot086 comparetotal 2.0 2.0 -> 0 -- now some cases which might overflow if subtract were used ddcot090 comparetotal 9.99999999E+384 9.99999999E+384 -> 0 ddcot091 comparetotal -9.99999999E+384 9.99999999E+384 -> -1 ddcot092 comparetotal 9.99999999E+384 -9.99999999E+384 -> 1 ddcot093 comparetotal -9.99999999E+384 -9.99999999E+384 -> 0 -- some differing length/exponent cases -- in this first group, compare would compare all equal ddcot100 comparetotal 7.0 7.0 -> 0 ddcot101 comparetotal 7.0 7 -> -1 ddcot102 comparetotal 7 7.0 -> 1 ddcot103 comparetotal 7E+0 7.0 -> 1 ddcot104 comparetotal 70E-1 7.0 -> 0 ddcot105 comparetotal 0.7E+1 7 -> 0 ddcot106 comparetotal 70E-1 7 -> -1 ddcot107 comparetotal 7.0 7E+0 -> -1 ddcot108 comparetotal 7.0 70E-1 -> 0 ddcot109 comparetotal 7 0.7E+1 -> 0 ddcot110 comparetotal 7 70E-1 -> 1 ddcot120 comparetotal 8.0 7.0 -> 1 ddcot121 comparetotal 8.0 7 -> 1 ddcot122 comparetotal 8 7.0 -> 1 ddcot123 comparetotal 8E+0 7.0 -> 1 ddcot124 comparetotal 80E-1 7.0 -> 1 ddcot125 comparetotal 0.8E+1 7 -> 1 ddcot126 comparetotal 80E-1 7 -> 1 ddcot127 comparetotal 8.0 7E+0 -> 1 ddcot128 comparetotal 8.0 70E-1 -> 1 ddcot129 comparetotal 8 0.7E+1 -> 1 ddcot130 comparetotal 8 70E-1 -> 1 ddcot140 comparetotal 8.0 9.0 -> -1 ddcot141 comparetotal 8.0 9 -> -1 ddcot142 comparetotal 8 9.0 -> -1 ddcot143 comparetotal 8E+0 9.0 -> -1 ddcot144 comparetotal 80E-1 9.0 -> -1 ddcot145 comparetotal 0.8E+1 9 -> -1 ddcot146 comparetotal 80E-1 9 -> -1 ddcot147 comparetotal 8.0 9E+0 -> -1 ddcot148 comparetotal 8.0 90E-1 -> -1 ddcot149 comparetotal 8 0.9E+1 -> -1 ddcot150 comparetotal 8 90E-1 -> -1 -- and again, with sign changes -+ .. ddcot200 comparetotal -7.0 7.0 -> -1 ddcot201 comparetotal -7.0 7 -> -1 ddcot202 comparetotal -7 7.0 -> -1 ddcot203 comparetotal -7E+0 7.0 -> -1 ddcot204 comparetotal -70E-1 7.0 -> -1 ddcot205 comparetotal -0.7E+1 7 -> -1 ddcot206 comparetotal -70E-1 7 -> -1 ddcot207 comparetotal -7.0 7E+0 -> -1 ddcot208 comparetotal -7.0 70E-1 -> -1 ddcot209 comparetotal -7 0.7E+1 -> -1 ddcot210 comparetotal -7 70E-1 -> -1 ddcot220 comparetotal -8.0 7.0 -> -1 ddcot221 comparetotal -8.0 7 -> -1 ddcot222 comparetotal -8 7.0 -> -1 ddcot223 comparetotal -8E+0 7.0 -> -1 ddcot224 comparetotal -80E-1 7.0 -> -1 ddcot225 comparetotal -0.8E+1 7 -> -1 ddcot226 comparetotal -80E-1 7 -> -1 ddcot227 comparetotal -8.0 7E+0 -> -1 ddcot228 comparetotal -8.0 70E-1 -> -1 ddcot229 comparetotal -8 0.7E+1 -> -1 ddcot230 comparetotal -8 70E-1 -> -1 ddcot240 comparetotal -8.0 9.0 -> -1 ddcot241 comparetotal -8.0 9 -> -1 ddcot242 comparetotal -8 9.0 -> -1 ddcot243 comparetotal -8E+0 9.0 -> -1 ddcot244 comparetotal -80E-1 9.0 -> -1 ddcot245 comparetotal -0.8E+1 9 -> -1 ddcot246 comparetotal -80E-1 9 -> -1 ddcot247 comparetotal -8.0 9E+0 -> -1 ddcot248 comparetotal -8.0 90E-1 -> -1 ddcot249 comparetotal -8 0.9E+1 -> -1 ddcot250 comparetotal -8 90E-1 -> -1 -- and again, with sign changes +- .. ddcot300 comparetotal 7.0 -7.0 -> 1 ddcot301 comparetotal 7.0 -7 -> 1 ddcot302 comparetotal 7 -7.0 -> 1 ddcot303 comparetotal 7E+0 -7.0 -> 1 ddcot304 comparetotal 70E-1 -7.0 -> 1 ddcot305 comparetotal .7E+1 -7 -> 1 ddcot306 comparetotal 70E-1 -7 -> 1 ddcot307 comparetotal 7.0 -7E+0 -> 1 ddcot308 comparetotal 7.0 -70E-1 -> 1 ddcot309 comparetotal 7 -.7E+1 -> 1 ddcot310 comparetotal 7 -70E-1 -> 1 ddcot320 comparetotal 8.0 -7.0 -> 1 ddcot321 comparetotal 8.0 -7 -> 1 ddcot322 comparetotal 8 -7.0 -> 1 ddcot323 comparetotal 8E+0 -7.0 -> 1 ddcot324 comparetotal 80E-1 -7.0 -> 1 ddcot325 comparetotal .8E+1 -7 -> 1 ddcot326 comparetotal 80E-1 -7 -> 1 ddcot327 comparetotal 8.0 -7E+0 -> 1 ddcot328 comparetotal 8.0 -70E-1 -> 1 ddcot329 comparetotal 8 -.7E+1 -> 1 ddcot330 comparetotal 8 -70E-1 -> 1 ddcot340 comparetotal 8.0 -9.0 -> 1 ddcot341 comparetotal 8.0 -9 -> 1 ddcot342 comparetotal 8 -9.0 -> 1 ddcot343 comparetotal 8E+0 -9.0 -> 1 ddcot344 comparetotal 80E-1 -9.0 -> 1 ddcot345 comparetotal .8E+1 -9 -> 1 ddcot346 comparetotal 80E-1 -9 -> 1 ddcot347 comparetotal 8.0 -9E+0 -> 1 ddcot348 comparetotal 8.0 -90E-1 -> 1 ddcot349 comparetotal 8 -.9E+1 -> 1 ddcot350 comparetotal 8 -90E-1 -> 1 -- and again, with sign changes -- .. ddcot400 comparetotal -7.0 -7.0 -> 0 ddcot401 comparetotal -7.0 -7 -> 1 ddcot402 comparetotal -7 -7.0 -> -1 ddcot403 comparetotal -7E+0 -7.0 -> -1 ddcot404 comparetotal -70E-1 -7.0 -> 0 ddcot405 comparetotal -.7E+1 -7 -> 0 ddcot406 comparetotal -70E-1 -7 -> 1 ddcot407 comparetotal -7.0 -7E+0 -> 1 ddcot408 comparetotal -7.0 -70E-1 -> 0 ddcot409 comparetotal -7 -.7E+1 -> 0 ddcot410 comparetotal -7 -70E-1 -> -1 ddcot420 comparetotal -8.0 -7.0 -> -1 ddcot421 comparetotal -8.0 -7 -> -1 ddcot422 comparetotal -8 -7.0 -> -1 ddcot423 comparetotal -8E+0 -7.0 -> -1 ddcot424 comparetotal -80E-1 -7.0 -> -1 ddcot425 comparetotal -.8E+1 -7 -> -1 ddcot426 comparetotal -80E-1 -7 -> -1 ddcot427 comparetotal -8.0 -7E+0 -> -1 ddcot428 comparetotal -8.0 -70E-1 -> -1 ddcot429 comparetotal -8 -.7E+1 -> -1 ddcot430 comparetotal -8 -70E-1 -> -1 ddcot440 comparetotal -8.0 -9.0 -> 1 ddcot441 comparetotal -8.0 -9 -> 1 ddcot442 comparetotal -8 -9.0 -> 1 ddcot443 comparetotal -8E+0 -9.0 -> 1 ddcot444 comparetotal -80E-1 -9.0 -> 1 ddcot445 comparetotal -.8E+1 -9 -> 1 ddcot446 comparetotal -80E-1 -9 -> 1 ddcot447 comparetotal -8.0 -9E+0 -> 1 ddcot448 comparetotal -8.0 -90E-1 -> 1 ddcot449 comparetotal -8 -.9E+1 -> 1 ddcot450 comparetotal -8 -90E-1 -> 1 -- testcases that subtract to lots of zeros at boundaries [pgr] ddcot473 comparetotal 123.4560000000000E-89 123.456E-89 -> -1 ddcot474 comparetotal 123.456000000000E+89 123.456E+89 -> -1 ddcot475 comparetotal 123.45600000000E-89 123.456E-89 -> -1 ddcot476 comparetotal 123.4560000000E+89 123.456E+89 -> -1 ddcot477 comparetotal 123.456000000E-89 123.456E-89 -> -1 ddcot478 comparetotal 123.45600000E+89 123.456E+89 -> -1 ddcot479 comparetotal 123.4560000E-89 123.456E-89 -> -1 ddcot480 comparetotal 123.456000E+89 123.456E+89 -> -1 ddcot481 comparetotal 123.45600E-89 123.456E-89 -> -1 ddcot482 comparetotal 123.4560E+89 123.456E+89 -> -1 ddcot483 comparetotal 123.456E-89 123.456E-89 -> 0 ddcot487 comparetotal 123.456E+89 123.4560000000000E+89 -> 1 ddcot488 comparetotal 123.456E-89 123.456000000000E-89 -> 1 ddcot489 comparetotal 123.456E+89 123.45600000000E+89 -> 1 ddcot490 comparetotal 123.456E-89 123.4560000000E-89 -> 1 ddcot491 comparetotal 123.456E+89 123.456000000E+89 -> 1 ddcot492 comparetotal 123.456E-89 123.45600000E-89 -> 1 ddcot493 comparetotal 123.456E+89 123.4560000E+89 -> 1 ddcot494 comparetotal 123.456E-89 123.456000E-89 -> 1 ddcot495 comparetotal 123.456E+89 123.45600E+89 -> 1 ddcot496 comparetotal 123.456E-89 123.4560E-89 -> 1 ddcot497 comparetotal 123.456E+89 123.456E+89 -> 0 -- wide-ranging, around precision; signs equal ddcot498 comparetotal 1 1E-17 -> 1 ddcot499 comparetotal 1 1E-16 -> 1 ddcot500 comparetotal 1 1E-15 -> 1 ddcot501 comparetotal 1 1E-14 -> 1 ddcot502 comparetotal 1 1E-13 -> 1 ddcot503 comparetotal 1 1E-12 -> 1 ddcot504 comparetotal 1 1E-11 -> 1 ddcot505 comparetotal 1 1E-10 -> 1 ddcot506 comparetotal 1 1E-9 -> 1 ddcot507 comparetotal 1 1E-8 -> 1 ddcot508 comparetotal 1 1E-7 -> 1 ddcot509 comparetotal 1 1E-6 -> 1 ddcot510 comparetotal 1 1E-5 -> 1 ddcot511 comparetotal 1 1E-4 -> 1 ddcot512 comparetotal 1 1E-3 -> 1 ddcot513 comparetotal 1 1E-2 -> 1 ddcot514 comparetotal 1 1E-1 -> 1 ddcot515 comparetotal 1 1E-0 -> 0 ddcot516 comparetotal 1 1E+1 -> -1 ddcot517 comparetotal 1 1E+2 -> -1 ddcot518 comparetotal 1 1E+3 -> -1 ddcot519 comparetotal 1 1E+4 -> -1 ddcot521 comparetotal 1 1E+5 -> -1 ddcot522 comparetotal 1 1E+6 -> -1 ddcot523 comparetotal 1 1E+7 -> -1 ddcot524 comparetotal 1 1E+8 -> -1 ddcot525 comparetotal 1 1E+9 -> -1 ddcot526 comparetotal 1 1E+10 -> -1 ddcot527 comparetotal 1 1E+11 -> -1 ddcot528 comparetotal 1 1E+12 -> -1 ddcot529 comparetotal 1 1E+13 -> -1 ddcot530 comparetotal 1 1E+14 -> -1 ddcot531 comparetotal 1 1E+15 -> -1 ddcot532 comparetotal 1 1E+16 -> -1 ddcot533 comparetotal 1 1E+17 -> -1 -- LR swap ddcot538 comparetotal 1E-17 1 -> -1 ddcot539 comparetotal 1E-16 1 -> -1 ddcot540 comparetotal 1E-15 1 -> -1 ddcot541 comparetotal 1E-14 1 -> -1 ddcot542 comparetotal 1E-13 1 -> -1 ddcot543 comparetotal 1E-12 1 -> -1 ddcot544 comparetotal 1E-11 1 -> -1 ddcot545 comparetotal 1E-10 1 -> -1 ddcot546 comparetotal 1E-9 1 -> -1 ddcot547 comparetotal 1E-8 1 -> -1 ddcot548 comparetotal 1E-7 1 -> -1 ddcot549 comparetotal 1E-6 1 -> -1 ddcot550 comparetotal 1E-5 1 -> -1 ddcot551 comparetotal 1E-4 1 -> -1 ddcot552 comparetotal 1E-3 1 -> -1 ddcot553 comparetotal 1E-2 1 -> -1 ddcot554 comparetotal 1E-1 1 -> -1 ddcot555 comparetotal 1E-0 1 -> 0 ddcot556 comparetotal 1E+1 1 -> 1 ddcot557 comparetotal 1E+2 1 -> 1 ddcot558 comparetotal 1E+3 1 -> 1 ddcot559 comparetotal 1E+4 1 -> 1 ddcot561 comparetotal 1E+5 1 -> 1 ddcot562 comparetotal 1E+6 1 -> 1 ddcot563 comparetotal 1E+7 1 -> 1 ddcot564 comparetotal 1E+8 1 -> 1 ddcot565 comparetotal 1E+9 1 -> 1 ddcot566 comparetotal 1E+10 1 -> 1 ddcot567 comparetotal 1E+11 1 -> 1 ddcot568 comparetotal 1E+12 1 -> 1 ddcot569 comparetotal 1E+13 1 -> 1 ddcot570 comparetotal 1E+14 1 -> 1 ddcot571 comparetotal 1E+15 1 -> 1 ddcot572 comparetotal 1E+16 1 -> 1 ddcot573 comparetotal 1E+17 1 -> 1 -- similar with a useful coefficient, one side only ddcot578 comparetotal 0.000000987654321 1E-17 -> 1 ddcot579 comparetotal 0.000000987654321 1E-16 -> 1 ddcot580 comparetotal 0.000000987654321 1E-15 -> 1 ddcot581 comparetotal 0.000000987654321 1E-14 -> 1 ddcot582 comparetotal 0.000000987654321 1E-13 -> 1 ddcot583 comparetotal 0.000000987654321 1E-12 -> 1 ddcot584 comparetotal 0.000000987654321 1E-11 -> 1 ddcot585 comparetotal 0.000000987654321 1E-10 -> 1 ddcot586 comparetotal 0.000000987654321 1E-9 -> 1 ddcot587 comparetotal 0.000000987654321 1E-8 -> 1 ddcot588 comparetotal 0.000000987654321 1E-7 -> 1 ddcot589 comparetotal 0.000000987654321 1E-6 -> -1 ddcot590 comparetotal 0.000000987654321 1E-5 -> -1 ddcot591 comparetotal 0.000000987654321 1E-4 -> -1 ddcot592 comparetotal 0.000000987654321 1E-3 -> -1 ddcot593 comparetotal 0.000000987654321 1E-2 -> -1 ddcot594 comparetotal 0.000000987654321 1E-1 -> -1 ddcot595 comparetotal 0.000000987654321 1E-0 -> -1 ddcot596 comparetotal 0.000000987654321 1E+1 -> -1 ddcot597 comparetotal 0.000000987654321 1E+2 -> -1 ddcot598 comparetotal 0.000000987654321 1E+3 -> -1 ddcot599 comparetotal 0.000000987654321 1E+4 -> -1 -- check some unit-y traps ddcot600 comparetotal 12 12.2345 -> -1 ddcot601 comparetotal 12.0 12.2345 -> -1 ddcot602 comparetotal 12.00 12.2345 -> -1 ddcot603 comparetotal 12.000 12.2345 -> -1 ddcot604 comparetotal 12.0000 12.2345 -> -1 ddcot605 comparetotal 12.00000 12.2345 -> -1 ddcot606 comparetotal 12.000000 12.2345 -> -1 ddcot607 comparetotal 12.0000000 12.2345 -> -1 ddcot608 comparetotal 12.00000000 12.2345 -> -1 ddcot609 comparetotal 12.000000000 12.2345 -> -1 ddcot610 comparetotal 12.1234 12 -> 1 ddcot611 comparetotal 12.1234 12.0 -> 1 ddcot612 comparetotal 12.1234 12.00 -> 1 ddcot613 comparetotal 12.1234 12.000 -> 1 ddcot614 comparetotal 12.1234 12.0000 -> 1 ddcot615 comparetotal 12.1234 12.00000 -> 1 ddcot616 comparetotal 12.1234 12.000000 -> 1 ddcot617 comparetotal 12.1234 12.0000000 -> 1 ddcot618 comparetotal 12.1234 12.00000000 -> 1 ddcot619 comparetotal 12.1234 12.000000000 -> 1 ddcot620 comparetotal -12 -12.2345 -> 1 ddcot621 comparetotal -12.0 -12.2345 -> 1 ddcot622 comparetotal -12.00 -12.2345 -> 1 ddcot623 comparetotal -12.000 -12.2345 -> 1 ddcot624 comparetotal -12.0000 -12.2345 -> 1 ddcot625 comparetotal -12.00000 -12.2345 -> 1 ddcot626 comparetotal -12.000000 -12.2345 -> 1 ddcot627 comparetotal -12.0000000 -12.2345 -> 1 ddcot628 comparetotal -12.00000000 -12.2345 -> 1 ddcot629 comparetotal -12.000000000 -12.2345 -> 1 ddcot630 comparetotal -12.1234 -12 -> -1 ddcot631 comparetotal -12.1234 -12.0 -> -1 ddcot632 comparetotal -12.1234 -12.00 -> -1 ddcot633 comparetotal -12.1234 -12.000 -> -1 ddcot634 comparetotal -12.1234 -12.0000 -> -1 ddcot635 comparetotal -12.1234 -12.00000 -> -1 ddcot636 comparetotal -12.1234 -12.000000 -> -1 ddcot637 comparetotal -12.1234 -12.0000000 -> -1 ddcot638 comparetotal -12.1234 -12.00000000 -> -1 ddcot639 comparetotal -12.1234 -12.000000000 -> -1 -- extended zeros ddcot640 comparetotal 0 0 -> 0 ddcot641 comparetotal 0 -0 -> 1 ddcot642 comparetotal 0 -0.0 -> 1 ddcot643 comparetotal 0 0.0 -> 1 ddcot644 comparetotal -0 0 -> -1 ddcot645 comparetotal -0 -0 -> 0 ddcot646 comparetotal -0 -0.0 -> -1 ddcot647 comparetotal -0 0.0 -> -1 ddcot648 comparetotal 0.0 0 -> -1 ddcot649 comparetotal 0.0 -0 -> 1 ddcot650 comparetotal 0.0 -0.0 -> 1 ddcot651 comparetotal 0.0 0.0 -> 0 ddcot652 comparetotal -0.0 0 -> -1 ddcot653 comparetotal -0.0 -0 -> 1 ddcot654 comparetotal -0.0 -0.0 -> 0 ddcot655 comparetotal -0.0 0.0 -> -1 ddcot656 comparetotal -0E1 0.0 -> -1 ddcot657 comparetotal -0E2 0.0 -> -1 ddcot658 comparetotal 0E1 0.0 -> 1 ddcot659 comparetotal 0E2 0.0 -> 1 ddcot660 comparetotal -0E1 0 -> -1 ddcot661 comparetotal -0E2 0 -> -1 ddcot662 comparetotal 0E1 0 -> 1 ddcot663 comparetotal 0E2 0 -> 1 ddcot664 comparetotal -0E1 -0E1 -> 0 ddcot665 comparetotal -0E2 -0E1 -> -1 ddcot666 comparetotal 0E1 -0E1 -> 1 ddcot667 comparetotal 0E2 -0E1 -> 1 ddcot668 comparetotal -0E1 -0E2 -> 1 ddcot669 comparetotal -0E2 -0E2 -> 0 ddcot670 comparetotal 0E1 -0E2 -> 1 ddcot671 comparetotal 0E2 -0E2 -> 1 ddcot672 comparetotal -0E1 0E1 -> -1 ddcot673 comparetotal -0E2 0E1 -> -1 ddcot674 comparetotal 0E1 0E1 -> 0 ddcot675 comparetotal 0E2 0E1 -> 1 ddcot676 comparetotal -0E1 0E2 -> -1 ddcot677 comparetotal -0E2 0E2 -> -1 ddcot678 comparetotal 0E1 0E2 -> -1 ddcot679 comparetotal 0E2 0E2 -> 0 -- trailing zeros; unit-y ddcot680 comparetotal 12 12 -> 0 ddcot681 comparetotal 12 12.0 -> 1 ddcot682 comparetotal 12 12.00 -> 1 ddcot683 comparetotal 12 12.000 -> 1 ddcot684 comparetotal 12 12.0000 -> 1 ddcot685 comparetotal 12 12.00000 -> 1 ddcot686 comparetotal 12 12.000000 -> 1 ddcot687 comparetotal 12 12.0000000 -> 1 ddcot688 comparetotal 12 12.00000000 -> 1 ddcot689 comparetotal 12 12.000000000 -> 1 ddcot690 comparetotal 12 12 -> 0 ddcot691 comparetotal 12.0 12 -> -1 ddcot692 comparetotal 12.00 12 -> -1 ddcot693 comparetotal 12.000 12 -> -1 ddcot694 comparetotal 12.0000 12 -> -1 ddcot695 comparetotal 12.00000 12 -> -1 ddcot696 comparetotal 12.000000 12 -> -1 ddcot697 comparetotal 12.0000000 12 -> -1 ddcot698 comparetotal 12.00000000 12 -> -1 ddcot699 comparetotal 12.000000000 12 -> -1 -- old long operand checks ddcot701 comparetotal 12345678000 1 -> 1 ddcot702 comparetotal 1 12345678000 -> -1 ddcot703 comparetotal 1234567800 1 -> 1 ddcot704 comparetotal 1 1234567800 -> -1 ddcot705 comparetotal 1234567890 1 -> 1 ddcot706 comparetotal 1 1234567890 -> -1 ddcot707 comparetotal 1234567891 1 -> 1 ddcot708 comparetotal 1 1234567891 -> -1 ddcot709 comparetotal 12345678901 1 -> 1 ddcot710 comparetotal 1 12345678901 -> -1 ddcot711 comparetotal 1234567896 1 -> 1 ddcot712 comparetotal 1 1234567896 -> -1 ddcot713 comparetotal -1234567891 1 -> -1 ddcot714 comparetotal 1 -1234567891 -> 1 ddcot715 comparetotal -12345678901 1 -> -1 ddcot716 comparetotal 1 -12345678901 -> 1 ddcot717 comparetotal -1234567896 1 -> -1 ddcot718 comparetotal 1 -1234567896 -> 1 -- old residue cases ddcot740 comparetotal 1 0.9999999 -> 1 ddcot741 comparetotal 1 0.999999 -> 1 ddcot742 comparetotal 1 0.99999 -> 1 ddcot743 comparetotal 1 1.0000 -> 1 ddcot744 comparetotal 1 1.00001 -> -1 ddcot745 comparetotal 1 1.000001 -> -1 ddcot746 comparetotal 1 1.0000001 -> -1 ddcot750 comparetotal 0.9999999 1 -> -1 ddcot751 comparetotal 0.999999 1 -> -1 ddcot752 comparetotal 0.99999 1 -> -1 ddcot753 comparetotal 1.0000 1 -> -1 ddcot754 comparetotal 1.00001 1 -> 1 ddcot755 comparetotal 1.000001 1 -> 1 ddcot756 comparetotal 1.0000001 1 -> 1 -- Specials ddcot780 comparetotal Inf -Inf -> 1 ddcot781 comparetotal Inf -1000 -> 1 ddcot782 comparetotal Inf -1 -> 1 ddcot783 comparetotal Inf -0 -> 1 ddcot784 comparetotal Inf 0 -> 1 ddcot785 comparetotal Inf 1 -> 1 ddcot786 comparetotal Inf 1000 -> 1 ddcot787 comparetotal Inf Inf -> 0 ddcot788 comparetotal -1000 Inf -> -1 ddcot789 comparetotal -Inf Inf -> -1 ddcot790 comparetotal -1 Inf -> -1 ddcot791 comparetotal -0 Inf -> -1 ddcot792 comparetotal 0 Inf -> -1 ddcot793 comparetotal 1 Inf -> -1 ddcot794 comparetotal 1000 Inf -> -1 ddcot795 comparetotal Inf Inf -> 0 ddcot800 comparetotal -Inf -Inf -> 0 ddcot801 comparetotal -Inf -1000 -> -1 ddcot802 comparetotal -Inf -1 -> -1 ddcot803 comparetotal -Inf -0 -> -1 ddcot804 comparetotal -Inf 0 -> -1 ddcot805 comparetotal -Inf 1 -> -1 ddcot806 comparetotal -Inf 1000 -> -1 ddcot807 comparetotal -Inf Inf -> -1 ddcot808 comparetotal -Inf -Inf -> 0 ddcot809 comparetotal -1000 -Inf -> 1 ddcot810 comparetotal -1 -Inf -> 1 ddcot811 comparetotal -0 -Inf -> 1 ddcot812 comparetotal 0 -Inf -> 1 ddcot813 comparetotal 1 -Inf -> 1 ddcot814 comparetotal 1000 -Inf -> 1 ddcot815 comparetotal Inf -Inf -> 1 ddcot821 comparetotal NaN -Inf -> 1 ddcot822 comparetotal NaN -1000 -> 1 ddcot823 comparetotal NaN -1 -> 1 ddcot824 comparetotal NaN -0 -> 1 ddcot825 comparetotal NaN 0 -> 1 ddcot826 comparetotal NaN 1 -> 1 ddcot827 comparetotal NaN 1000 -> 1 ddcot828 comparetotal NaN Inf -> 1 ddcot829 comparetotal NaN NaN -> 0 ddcot830 comparetotal -Inf NaN -> -1 ddcot831 comparetotal -1000 NaN -> -1 ddcot832 comparetotal -1 NaN -> -1 ddcot833 comparetotal -0 NaN -> -1 ddcot834 comparetotal 0 NaN -> -1 ddcot835 comparetotal 1 NaN -> -1 ddcot836 comparetotal 1000 NaN -> -1 ddcot837 comparetotal Inf NaN -> -1 ddcot838 comparetotal -NaN -NaN -> 0 ddcot839 comparetotal +NaN -NaN -> 1 ddcot840 comparetotal -NaN +NaN -> -1 ddcot841 comparetotal sNaN -sNaN -> 1 ddcot842 comparetotal sNaN -NaN -> 1 ddcot843 comparetotal sNaN -Inf -> 1 ddcot844 comparetotal sNaN -1000 -> 1 ddcot845 comparetotal sNaN -1 -> 1 ddcot846 comparetotal sNaN -0 -> 1 ddcot847 comparetotal sNaN 0 -> 1 ddcot848 comparetotal sNaN 1 -> 1 ddcot849 comparetotal sNaN 1000 -> 1 ddcot850 comparetotal sNaN NaN -> -1 ddcot851 comparetotal sNaN sNaN -> 0 ddcot852 comparetotal -sNaN sNaN -> -1 ddcot853 comparetotal -NaN sNaN -> -1 ddcot854 comparetotal -Inf sNaN -> -1 ddcot855 comparetotal -1000 sNaN -> -1 ddcot856 comparetotal -1 sNaN -> -1 ddcot857 comparetotal -0 sNaN -> -1 ddcot858 comparetotal 0 sNaN -> -1 ddcot859 comparetotal 1 sNaN -> -1 ddcot860 comparetotal 1000 sNaN -> -1 ddcot861 comparetotal Inf sNaN -> -1 ddcot862 comparetotal NaN sNaN -> 1 ddcot863 comparetotal sNaN sNaN -> 0 ddcot871 comparetotal -sNaN -sNaN -> 0 ddcot872 comparetotal -sNaN -NaN -> 1 ddcot873 comparetotal -sNaN -Inf -> -1 ddcot874 comparetotal -sNaN -1000 -> -1 ddcot875 comparetotal -sNaN -1 -> -1 ddcot876 comparetotal -sNaN -0 -> -1 ddcot877 comparetotal -sNaN 0 -> -1 ddcot878 comparetotal -sNaN 1 -> -1 ddcot879 comparetotal -sNaN 1000 -> -1 ddcot880 comparetotal -sNaN NaN -> -1 ddcot881 comparetotal -sNaN sNaN -> -1 ddcot882 comparetotal -sNaN -sNaN -> 0 ddcot883 comparetotal -NaN -sNaN -> -1 ddcot884 comparetotal -Inf -sNaN -> 1 ddcot885 comparetotal -1000 -sNaN -> 1 ddcot886 comparetotal -1 -sNaN -> 1 ddcot887 comparetotal -0 -sNaN -> 1 ddcot888 comparetotal 0 -sNaN -> 1 ddcot889 comparetotal 1 -sNaN -> 1 ddcot890 comparetotal 1000 -sNaN -> 1 ddcot891 comparetotal Inf -sNaN -> 1 ddcot892 comparetotal NaN -sNaN -> 1 ddcot893 comparetotal sNaN -sNaN -> 1 -- NaNs with payload ddcot960 comparetotal NaN9 -Inf -> 1 ddcot961 comparetotal NaN8 999 -> 1 ddcot962 comparetotal NaN77 Inf -> 1 ddcot963 comparetotal -NaN67 NaN5 -> -1 ddcot964 comparetotal -Inf -NaN4 -> 1 ddcot965 comparetotal -999 -NaN33 -> 1 ddcot966 comparetotal Inf NaN2 -> -1 ddcot970 comparetotal -NaN41 -NaN42 -> 1 ddcot971 comparetotal +NaN41 -NaN42 -> 1 ddcot972 comparetotal -NaN41 +NaN42 -> -1 ddcot973 comparetotal +NaN41 +NaN42 -> -1 ddcot974 comparetotal -NaN42 -NaN01 -> -1 ddcot975 comparetotal +NaN42 -NaN01 -> 1 ddcot976 comparetotal -NaN42 +NaN01 -> -1 ddcot977 comparetotal +NaN42 +NaN01 -> 1 ddcot980 comparetotal -sNaN771 -sNaN772 -> 1 ddcot981 comparetotal +sNaN771 -sNaN772 -> 1 ddcot982 comparetotal -sNaN771 +sNaN772 -> -1 ddcot983 comparetotal +sNaN771 +sNaN772 -> -1 ddcot984 comparetotal -sNaN772 -sNaN771 -> -1 ddcot985 comparetotal +sNaN772 -sNaN771 -> 1 ddcot986 comparetotal -sNaN772 +sNaN771 -> -1 ddcot987 comparetotal +sNaN772 +sNaN771 -> 1 ddcot991 comparetotal -sNaN99 -Inf -> -1 ddcot992 comparetotal sNaN98 -11 -> 1 ddcot993 comparetotal sNaN97 NaN -> -1 ddcot994 comparetotal sNaN16 sNaN94 -> -1 ddcot995 comparetotal NaN85 sNaN83 -> 1 ddcot996 comparetotal -Inf sNaN92 -> -1 ddcot997 comparetotal 088 sNaN81 -> -1 ddcot998 comparetotal Inf sNaN90 -> -1 ddcot999 comparetotal NaN -sNaN89 -> 1 -- spread zeros ddcot1110 comparetotal 0E-383 0 -> -1 ddcot1111 comparetotal 0E-383 -0 -> 1 ddcot1112 comparetotal -0E-383 0 -> -1 ddcot1113 comparetotal -0E-383 -0 -> 1 ddcot1114 comparetotal 0E-383 0E+384 -> -1 ddcot1115 comparetotal 0E-383 -0E+384 -> 1 ddcot1116 comparetotal -0E-383 0E+384 -> -1 ddcot1117 comparetotal -0E-383 -0E+384 -> 1 ddcot1118 comparetotal 0 0E+384 -> -1 ddcot1119 comparetotal 0 -0E+384 -> 1 ddcot1120 comparetotal -0 0E+384 -> -1 ddcot1121 comparetotal -0 -0E+384 -> 1 ddcot1130 comparetotal 0E+384 0 -> 1 ddcot1131 comparetotal 0E+384 -0 -> 1 ddcot1132 comparetotal -0E+384 0 -> -1 ddcot1133 comparetotal -0E+384 -0 -> -1 ddcot1134 comparetotal 0E+384 0E-383 -> 1 ddcot1135 comparetotal 0E+384 -0E-383 -> 1 ddcot1136 comparetotal -0E+384 0E-383 -> -1 ddcot1137 comparetotal -0E+384 -0E-383 -> -1 ddcot1138 comparetotal 0 0E-383 -> 1 ddcot1139 comparetotal 0 -0E-383 -> 1 ddcot1140 comparetotal -0 0E-383 -> -1 ddcot1141 comparetotal -0 -0E-383 -> -1 -- Null tests ddcot9990 comparetotal 10 # -> NaN Invalid_operation ddcot9991 comparetotal # 10 -> NaN Invalid_operation
29,932
707
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/ddBase.decTest
------------------------------------------------------------------------ -- ddBase.decTest -- base decDouble <--> string conversions -- -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 -- This file tests base conversions from string to a decimal number -- and back to a string (in Scientific form) -- Note that unlike other operations the operand is subject to rounding -- to conform to emax and precision settings (that is, numbers will -- conform to rules and exponent will be in permitted range). The -- 'left hand side', therefore, may have numbers that cannot be -- represented in a decDouble. Some testcases go to the limit of the -- next-wider format, and hence these testcases may also be used to -- test narrowing and widening operations. precision: 16 maxExponent: 384 minExponent: -383 extended: 1 clamp: 1 rounding: half_even ddbas001 toSci 0 -> 0 ddbas002 toSci 1 -> 1 ddbas003 toSci 1.0 -> 1.0 ddbas004 toSci 1.00 -> 1.00 ddbas005 toSci 10 -> 10 ddbas006 toSci 1000 -> 1000 ddbas007 toSci 10.0 -> 10.0 ddbas008 toSci 10.1 -> 10.1 ddbas009 toSci 10.4 -> 10.4 ddbas010 toSci 10.5 -> 10.5 ddbas011 toSci 10.6 -> 10.6 ddbas012 toSci 10.9 -> 10.9 ddbas013 toSci 11.0 -> 11.0 ddbas014 toSci 1.234 -> 1.234 ddbas015 toSci 0.123 -> 0.123 ddbas016 toSci 0.012 -> 0.012 ddbas017 toSci -0 -> -0 ddbas018 toSci -0.0 -> -0.0 ddbas019 toSci -00.00 -> -0.00 ddbas021 toSci -1 -> -1 ddbas022 toSci -1.0 -> -1.0 ddbas023 toSci -0.1 -> -0.1 ddbas024 toSci -9.1 -> -9.1 ddbas025 toSci -9.11 -> -9.11 ddbas026 toSci -9.119 -> -9.119 ddbas027 toSci -9.999 -> -9.999 ddbas030 toSci '123456789.123456' -> '123456789.123456' ddbas031 toSci '123456789.000000' -> '123456789.000000' ddbas032 toSci '123456789123456' -> '123456789123456' ddbas033 toSci '0.0000123456789' -> '0.0000123456789' ddbas034 toSci '0.00000123456789' -> '0.00000123456789' ddbas035 toSci '0.000000123456789' -> '1.23456789E-7' ddbas036 toSci '0.0000000123456789' -> '1.23456789E-8' ddbas037 toSci '0.123456789012344' -> '0.123456789012344' ddbas038 toSci '0.123456789012345' -> '0.123456789012345' -- test finite bounds (Negs of, then 0, Ntiny, Nmin, other, Nmax) ddbsn001 toSci -9.999999999999999E+384 -> -9.999999999999999E+384 ddbsn002 toSci -1E-383 -> -1E-383 ddbsn003 toSci -1E-398 -> -1E-398 Subnormal ddbsn004 toSci -0 -> -0 ddbsn005 toSci +0 -> 0 ddbsn006 toSci +1E-398 -> 1E-398 Subnormal ddbsn007 toSci +1E-383 -> 1E-383 ddbsn008 toSci +9.999999999999999E+384 -> 9.999999999999999E+384 -- String [many more examples are implicitly tested elsewhere] -- strings without E cannot generate E in result ddbas040 toSci "12" -> '12' ddbas041 toSci "-76" -> '-76' ddbas042 toSci "12.76" -> '12.76' ddbas043 toSci "+12.76" -> '12.76' ddbas044 toSci "012.76" -> '12.76' ddbas045 toSci "+0.003" -> '0.003' ddbas046 toSci "17." -> '17' ddbas047 toSci ".5" -> '0.5' ddbas048 toSci "044" -> '44' ddbas049 toSci "0044" -> '44' ddbas050 toSci "0.0005" -> '0.0005' ddbas051 toSci "00.00005" -> '0.00005' ddbas052 toSci "0.000005" -> '0.000005' ddbas053 toSci "0.0000050" -> '0.0000050' ddbas054 toSci "0.0000005" -> '5E-7' ddbas055 toSci "0.00000005" -> '5E-8' ddbas056 toSci "12345678.543210" -> '12345678.543210' ddbas057 toSci "2345678.543210" -> '2345678.543210' ddbas058 toSci "345678.543210" -> '345678.543210' ddbas059 toSci "0345678.54321" -> '345678.54321' ddbas060 toSci "345678.5432" -> '345678.5432' ddbas061 toSci "+345678.5432" -> '345678.5432' ddbas062 toSci "+0345678.5432" -> '345678.5432' ddbas063 toSci "+00345678.5432" -> '345678.5432' ddbas064 toSci "-345678.5432" -> '-345678.5432' ddbas065 toSci "-0345678.5432" -> '-345678.5432' ddbas066 toSci "-00345678.5432" -> '-345678.5432' -- examples ddbas067 toSci "5E-6" -> '0.000005' ddbas068 toSci "50E-7" -> '0.0000050' ddbas069 toSci "5E-7" -> '5E-7' -- [No exotics as no Unicode] -- rounded with dots in all (including edge) places ddbas071 toSci .1234567890123456123 -> 0.1234567890123456 Inexact Rounded ddbas072 toSci 1.234567890123456123 -> 1.234567890123456 Inexact Rounded ddbas073 toSci 12.34567890123456123 -> 12.34567890123456 Inexact Rounded ddbas074 toSci 123.4567890123456123 -> 123.4567890123456 Inexact Rounded ddbas075 toSci 1234.567890123456123 -> 1234.567890123456 Inexact Rounded ddbas076 toSci 12345.67890123456123 -> 12345.67890123456 Inexact Rounded ddbas077 toSci 123456.7890123456123 -> 123456.7890123456 Inexact Rounded ddbas078 toSci 1234567.890123456123 -> 1234567.890123456 Inexact Rounded ddbas079 toSci 12345678.90123456123 -> 12345678.90123456 Inexact Rounded ddbas080 toSci 123456789.0123456123 -> 123456789.0123456 Inexact Rounded ddbas081 toSci 1234567890.123456123 -> 1234567890.123456 Inexact Rounded ddbas082 toSci 12345678901.23456123 -> 12345678901.23456 Inexact Rounded ddbas083 toSci 123456789012.3456123 -> 123456789012.3456 Inexact Rounded ddbas084 toSci 1234567890123.456123 -> 1234567890123.456 Inexact Rounded ddbas085 toSci 12345678901234.56123 -> 12345678901234.56 Inexact Rounded ddbas086 toSci 123456789012345.6123 -> 123456789012345.6 Inexact Rounded ddbas087 toSci 1234567890123456.123 -> 1234567890123456 Inexact Rounded ddbas088 toSci 12345678901234561.23 -> 1.234567890123456E+16 Inexact Rounded ddbas089 toSci 123456789012345612.3 -> 1.234567890123456E+17 Inexact Rounded ddbas090 toSci 1234567890123456123. -> 1.234567890123456E+18 Inexact Rounded -- Numbers with E ddbas130 toSci "0.000E-1" -> '0.0000' ddbas131 toSci "0.000E-2" -> '0.00000' ddbas132 toSci "0.000E-3" -> '0.000000' ddbas133 toSci "0.000E-4" -> '0E-7' ddbas134 toSci "0.00E-2" -> '0.0000' ddbas135 toSci "0.00E-3" -> '0.00000' ddbas136 toSci "0.00E-4" -> '0.000000' ddbas137 toSci "0.00E-5" -> '0E-7' ddbas138 toSci "+0E+9" -> '0E+9' ddbas139 toSci "-0E+9" -> '-0E+9' ddbas140 toSci "1E+9" -> '1E+9' ddbas141 toSci "1e+09" -> '1E+9' ddbas142 toSci "1E+90" -> '1E+90' ddbas143 toSci "+1E+009" -> '1E+9' ddbas144 toSci "0E+9" -> '0E+9' ddbas145 toSci "1E+9" -> '1E+9' ddbas146 toSci "1E+09" -> '1E+9' ddbas147 toSci "1e+90" -> '1E+90' ddbas148 toSci "1E+009" -> '1E+9' ddbas149 toSci "000E+9" -> '0E+9' ddbas150 toSci "1E9" -> '1E+9' ddbas151 toSci "1e09" -> '1E+9' ddbas152 toSci "1E90" -> '1E+90' ddbas153 toSci "1E009" -> '1E+9' ddbas154 toSci "0E9" -> '0E+9' ddbas155 toSci "0.000e+0" -> '0.000' ddbas156 toSci "0.000E-1" -> '0.0000' ddbas157 toSci "4E+9" -> '4E+9' ddbas158 toSci "44E+9" -> '4.4E+10' ddbas159 toSci "0.73e-7" -> '7.3E-8' ddbas160 toSci "00E+9" -> '0E+9' ddbas161 toSci "00E-9" -> '0E-9' ddbas162 toSci "10E+9" -> '1.0E+10' ddbas163 toSci "10E+09" -> '1.0E+10' ddbas164 toSci "10e+90" -> '1.0E+91' ddbas165 toSci "10E+009" -> '1.0E+10' ddbas166 toSci "100e+9" -> '1.00E+11' ddbas167 toSci "100e+09" -> '1.00E+11' ddbas168 toSci "100E+90" -> '1.00E+92' ddbas169 toSci "100e+009" -> '1.00E+11' ddbas170 toSci "1.265" -> '1.265' ddbas171 toSci "1.265E-20" -> '1.265E-20' ddbas172 toSci "1.265E-8" -> '1.265E-8' ddbas173 toSci "1.265E-4" -> '0.0001265' ddbas174 toSci "1.265E-3" -> '0.001265' ddbas175 toSci "1.265E-2" -> '0.01265' ddbas176 toSci "1.265E-1" -> '0.1265' ddbas177 toSci "1.265E-0" -> '1.265' ddbas178 toSci "1.265E+1" -> '12.65' ddbas179 toSci "1.265E+2" -> '126.5' ddbas180 toSci "1.265E+3" -> '1265' ddbas181 toSci "1.265E+4" -> '1.265E+4' ddbas182 toSci "1.265E+8" -> '1.265E+8' ddbas183 toSci "1.265E+20" -> '1.265E+20' ddbas190 toSci "12.65" -> '12.65' ddbas191 toSci "12.65E-20" -> '1.265E-19' ddbas192 toSci "12.65E-8" -> '1.265E-7' ddbas193 toSci "12.65E-4" -> '0.001265' ddbas194 toSci "12.65E-3" -> '0.01265' ddbas195 toSci "12.65E-2" -> '0.1265' ddbas196 toSci "12.65E-1" -> '1.265' ddbas197 toSci "12.65E-0" -> '12.65' ddbas198 toSci "12.65E+1" -> '126.5' ddbas199 toSci "12.65E+2" -> '1265' ddbas200 toSci "12.65E+3" -> '1.265E+4' ddbas201 toSci "12.65E+4" -> '1.265E+5' ddbas202 toSci "12.65E+8" -> '1.265E+9' ddbas203 toSci "12.65E+20" -> '1.265E+21' ddbas210 toSci "126.5" -> '126.5' ddbas211 toSci "126.5E-20" -> '1.265E-18' ddbas212 toSci "126.5E-8" -> '0.000001265' ddbas213 toSci "126.5E-4" -> '0.01265' ddbas214 toSci "126.5E-3" -> '0.1265' ddbas215 toSci "126.5E-2" -> '1.265' ddbas216 toSci "126.5E-1" -> '12.65' ddbas217 toSci "126.5E-0" -> '126.5' ddbas218 toSci "126.5E+1" -> '1265' ddbas219 toSci "126.5E+2" -> '1.265E+4' ddbas220 toSci "126.5E+3" -> '1.265E+5' ddbas221 toSci "126.5E+4" -> '1.265E+6' ddbas222 toSci "126.5E+8" -> '1.265E+10' ddbas223 toSci "126.5E+20" -> '1.265E+22' ddbas230 toSci "1265" -> '1265' ddbas231 toSci "1265E-20" -> '1.265E-17' ddbas232 toSci "1265E-8" -> '0.00001265' ddbas233 toSci "1265E-4" -> '0.1265' ddbas234 toSci "1265E-3" -> '1.265' ddbas235 toSci "1265E-2" -> '12.65' ddbas236 toSci "1265E-1" -> '126.5' ddbas237 toSci "1265E-0" -> '1265' ddbas238 toSci "1265E+1" -> '1.265E+4' ddbas239 toSci "1265E+2" -> '1.265E+5' ddbas240 toSci "1265E+3" -> '1.265E+6' ddbas241 toSci "1265E+4" -> '1.265E+7' ddbas242 toSci "1265E+8" -> '1.265E+11' ddbas243 toSci "1265E+20" -> '1.265E+23' ddbas244 toSci "1265E-9" -> '0.000001265' ddbas245 toSci "1265E-10" -> '1.265E-7' ddbas246 toSci "1265E-11" -> '1.265E-8' ddbas247 toSci "1265E-12" -> '1.265E-9' ddbas250 toSci "0.1265" -> '0.1265' ddbas251 toSci "0.1265E-20" -> '1.265E-21' ddbas252 toSci "0.1265E-8" -> '1.265E-9' ddbas253 toSci "0.1265E-4" -> '0.00001265' ddbas254 toSci "0.1265E-3" -> '0.0001265' ddbas255 toSci "0.1265E-2" -> '0.001265' ddbas256 toSci "0.1265E-1" -> '0.01265' ddbas257 toSci "0.1265E-0" -> '0.1265' ddbas258 toSci "0.1265E+1" -> '1.265' ddbas259 toSci "0.1265E+2" -> '12.65' ddbas260 toSci "0.1265E+3" -> '126.5' ddbas261 toSci "0.1265E+4" -> '1265' ddbas262 toSci "0.1265E+8" -> '1.265E+7' ddbas263 toSci "0.1265E+20" -> '1.265E+19' -- some more negative zeros [systematic tests below] ddbas290 toSci "-0.000E-1" -> '-0.0000' ddbas291 toSci "-0.000E-2" -> '-0.00000' ddbas292 toSci "-0.000E-3" -> '-0.000000' ddbas293 toSci "-0.000E-4" -> '-0E-7' ddbas294 toSci "-0.00E-2" -> '-0.0000' ddbas295 toSci "-0.00E-3" -> '-0.00000' ddbas296 toSci "-0.0E-2" -> '-0.000' ddbas297 toSci "-0.0E-3" -> '-0.0000' ddbas298 toSci "-0E-2" -> '-0.00' ddbas299 toSci "-0E-3" -> '-0.000' -- Engineering notation tests ddbas301 toSci 10e12 -> 1.0E+13 ddbas302 toEng 10e12 -> 10E+12 ddbas303 toSci 10e11 -> 1.0E+12 ddbas304 toEng 10e11 -> 1.0E+12 ddbas305 toSci 10e10 -> 1.0E+11 ddbas306 toEng 10e10 -> 100E+9 ddbas307 toSci 10e9 -> 1.0E+10 ddbas308 toEng 10e9 -> 10E+9 ddbas309 toSci 10e8 -> 1.0E+9 ddbas310 toEng 10e8 -> 1.0E+9 ddbas311 toSci 10e7 -> 1.0E+8 ddbas312 toEng 10e7 -> 100E+6 ddbas313 toSci 10e6 -> 1.0E+7 ddbas314 toEng 10e6 -> 10E+6 ddbas315 toSci 10e5 -> 1.0E+6 ddbas316 toEng 10e5 -> 1.0E+6 ddbas317 toSci 10e4 -> 1.0E+5 ddbas318 toEng 10e4 -> 100E+3 ddbas319 toSci 10e3 -> 1.0E+4 ddbas320 toEng 10e3 -> 10E+3 ddbas321 toSci 10e2 -> 1.0E+3 ddbas322 toEng 10e2 -> 1.0E+3 ddbas323 toSci 10e1 -> 1.0E+2 ddbas324 toEng 10e1 -> 100 ddbas325 toSci 10e0 -> 10 ddbas326 toEng 10e0 -> 10 ddbas327 toSci 10e-1 -> 1.0 ddbas328 toEng 10e-1 -> 1.0 ddbas329 toSci 10e-2 -> 0.10 ddbas330 toEng 10e-2 -> 0.10 ddbas331 toSci 10e-3 -> 0.010 ddbas332 toEng 10e-3 -> 0.010 ddbas333 toSci 10e-4 -> 0.0010 ddbas334 toEng 10e-4 -> 0.0010 ddbas335 toSci 10e-5 -> 0.00010 ddbas336 toEng 10e-5 -> 0.00010 ddbas337 toSci 10e-6 -> 0.000010 ddbas338 toEng 10e-6 -> 0.000010 ddbas339 toSci 10e-7 -> 0.0000010 ddbas340 toEng 10e-7 -> 0.0000010 ddbas341 toSci 10e-8 -> 1.0E-7 ddbas342 toEng 10e-8 -> 100E-9 ddbas343 toSci 10e-9 -> 1.0E-8 ddbas344 toEng 10e-9 -> 10E-9 ddbas345 toSci 10e-10 -> 1.0E-9 ddbas346 toEng 10e-10 -> 1.0E-9 ddbas347 toSci 10e-11 -> 1.0E-10 ddbas348 toEng 10e-11 -> 100E-12 ddbas349 toSci 10e-12 -> 1.0E-11 ddbas350 toEng 10e-12 -> 10E-12 ddbas351 toSci 10e-13 -> 1.0E-12 ddbas352 toEng 10e-13 -> 1.0E-12 ddbas361 toSci 7E12 -> 7E+12 ddbas362 toEng 7E12 -> 7E+12 ddbas363 toSci 7E11 -> 7E+11 ddbas364 toEng 7E11 -> 700E+9 ddbas365 toSci 7E10 -> 7E+10 ddbas366 toEng 7E10 -> 70E+9 ddbas367 toSci 7E9 -> 7E+9 ddbas368 toEng 7E9 -> 7E+9 ddbas369 toSci 7E8 -> 7E+8 ddbas370 toEng 7E8 -> 700E+6 ddbas371 toSci 7E7 -> 7E+7 ddbas372 toEng 7E7 -> 70E+6 ddbas373 toSci 7E6 -> 7E+6 ddbas374 toEng 7E6 -> 7E+6 ddbas375 toSci 7E5 -> 7E+5 ddbas376 toEng 7E5 -> 700E+3 ddbas377 toSci 7E4 -> 7E+4 ddbas378 toEng 7E4 -> 70E+3 ddbas379 toSci 7E3 -> 7E+3 ddbas380 toEng 7E3 -> 7E+3 ddbas381 toSci 7E2 -> 7E+2 ddbas382 toEng 7E2 -> 700 ddbas383 toSci 7E1 -> 7E+1 ddbas384 toEng 7E1 -> 70 ddbas385 toSci 7E0 -> 7 ddbas386 toEng 7E0 -> 7 ddbas387 toSci 7E-1 -> 0.7 ddbas388 toEng 7E-1 -> 0.7 ddbas389 toSci 7E-2 -> 0.07 ddbas390 toEng 7E-2 -> 0.07 ddbas391 toSci 7E-3 -> 0.007 ddbas392 toEng 7E-3 -> 0.007 ddbas393 toSci 7E-4 -> 0.0007 ddbas394 toEng 7E-4 -> 0.0007 ddbas395 toSci 7E-5 -> 0.00007 ddbas396 toEng 7E-5 -> 0.00007 ddbas397 toSci 7E-6 -> 0.000007 ddbas398 toEng 7E-6 -> 0.000007 ddbas399 toSci 7E-7 -> 7E-7 ddbas400 toEng 7E-7 -> 700E-9 ddbas401 toSci 7E-8 -> 7E-8 ddbas402 toEng 7E-8 -> 70E-9 ddbas403 toSci 7E-9 -> 7E-9 ddbas404 toEng 7E-9 -> 7E-9 ddbas405 toSci 7E-10 -> 7E-10 ddbas406 toEng 7E-10 -> 700E-12 ddbas407 toSci 7E-11 -> 7E-11 ddbas408 toEng 7E-11 -> 70E-12 ddbas409 toSci 7E-12 -> 7E-12 ddbas410 toEng 7E-12 -> 7E-12 ddbas411 toSci 7E-13 -> 7E-13 ddbas412 toEng 7E-13 -> 700E-15 -- Exacts remain exact up to precision .. rounding: half_up ddbas420 toSci 100 -> 100 ddbas421 toEng 100 -> 100 ddbas422 toSci 1000 -> 1000 ddbas423 toEng 1000 -> 1000 ddbas424 toSci 999.9 -> 999.9 ddbas425 toEng 999.9 -> 999.9 ddbas426 toSci 1000.0 -> 1000.0 ddbas427 toEng 1000.0 -> 1000.0 ddbas428 toSci 1000.1 -> 1000.1 ddbas429 toEng 1000.1 -> 1000.1 ddbas430 toSci 10000 -> 10000 ddbas431 toEng 10000 -> 10000 ddbas432 toSci 100000 -> 100000 ddbas433 toEng 100000 -> 100000 ddbas434 toSci 1000000 -> 1000000 ddbas435 toEng 1000000 -> 1000000 ddbas436 toSci 10000000 -> 10000000 ddbas437 toEng 10000000 -> 10000000 ddbas438 toSci 100000000 -> 100000000 ddbas439 toEng 1000000000000000 -> 1000000000000000 ddbas440 toSci 10000000000000000 -> 1.000000000000000E+16 Rounded ddbas441 toEng 10000000000000000 -> 10.00000000000000E+15 Rounded ddbas442 toSci 10000000000000001 -> 1.000000000000000E+16 Rounded Inexact ddbas443 toEng 10000000000000001 -> 10.00000000000000E+15 Rounded Inexact ddbas444 toSci 10000000000000003 -> 1.000000000000000E+16 Rounded Inexact ddbas445 toEng 10000000000000003 -> 10.00000000000000E+15 Rounded Inexact ddbas446 toSci 10000000000000005 -> 1.000000000000001E+16 Rounded Inexact ddbas447 toEng 10000000000000005 -> 10.00000000000001E+15 Rounded Inexact ddbas448 toSci 100000000000000050 -> 1.000000000000001E+17 Rounded Inexact ddbas449 toEng 100000000000000050 -> 100.0000000000001E+15 Rounded Inexact ddbas450 toSci 10000000000000009 -> 1.000000000000001E+16 Rounded Inexact ddbas451 toEng 10000000000000009 -> 10.00000000000001E+15 Rounded Inexact ddbas452 toSci 100000000000000000 -> 1.000000000000000E+17 Rounded ddbas453 toEng 100000000000000000 -> 100.0000000000000E+15 Rounded ddbas454 toSci 100000000000000003 -> 1.000000000000000E+17 Rounded Inexact ddbas455 toEng 100000000000000003 -> 100.0000000000000E+15 Rounded Inexact ddbas456 toSci 100000000000000005 -> 1.000000000000000E+17 Rounded Inexact ddbas457 toEng 100000000000000005 -> 100.0000000000000E+15 Rounded Inexact ddbas458 toSci 100000000000000009 -> 1.000000000000000E+17 Rounded Inexact ddbas459 toEng 100000000000000009 -> 100.0000000000000E+15 Rounded Inexact ddbas460 toSci 1000000000000000000 -> 1.000000000000000E+18 Rounded ddbas461 toEng 1000000000000000000 -> 1.000000000000000E+18 Rounded ddbas462 toSci 1000000000000000300 -> 1.000000000000000E+18 Rounded Inexact ddbas463 toEng 1000000000000000300 -> 1.000000000000000E+18 Rounded Inexact ddbas464 toSci 1000000000000000500 -> 1.000000000000001E+18 Rounded Inexact ddbas465 toEng 1000000000000000500 -> 1.000000000000001E+18 Rounded Inexact ddbas466 toSci 1000000000000000900 -> 1.000000000000001E+18 Rounded Inexact ddbas467 toEng 1000000000000000900 -> 1.000000000000001E+18 Rounded Inexact ddbas468 toSci 10000000000000000000 -> 1.000000000000000E+19 Rounded ddbas469 toEng 10000000000000000000 -> 10.00000000000000E+18 Rounded ddbas470 toSci 10000000000000003000 -> 1.000000000000000E+19 Rounded Inexact ddbas471 toEng 10000000000000003000 -> 10.00000000000000E+18 Rounded Inexact ddbas472 toSci 10000000000000005000 -> 1.000000000000001E+19 Rounded Inexact ddbas473 toEng 10000000000000005000 -> 10.00000000000001E+18 Rounded Inexact ddbas474 toSci 10000000000000009000 -> 1.000000000000001E+19 Rounded Inexact ddbas475 toEng 10000000000000009000 -> 10.00000000000001E+18 Rounded Inexact -- check rounding modes heeded rounding: ceiling ddbsr401 toSci 1.1111111111123450 -> 1.111111111112345 Rounded ddbsr402 toSci 1.11111111111234549 -> 1.111111111112346 Rounded Inexact ddbsr403 toSci 1.11111111111234550 -> 1.111111111112346 Rounded Inexact ddbsr404 toSci 1.11111111111234551 -> 1.111111111112346 Rounded Inexact rounding: up ddbsr405 toSci 1.1111111111123450 -> 1.111111111112345 Rounded ddbsr406 toSci 1.11111111111234549 -> 1.111111111112346 Rounded Inexact ddbsr407 toSci 1.11111111111234550 -> 1.111111111112346 Rounded Inexact ddbsr408 toSci 1.11111111111234551 -> 1.111111111112346 Rounded Inexact rounding: floor ddbsr410 toSci 1.1111111111123450 -> 1.111111111112345 Rounded ddbsr411 toSci 1.11111111111234549 -> 1.111111111112345 Rounded Inexact ddbsr412 toSci 1.11111111111234550 -> 1.111111111112345 Rounded Inexact ddbsr413 toSci 1.11111111111234551 -> 1.111111111112345 Rounded Inexact rounding: half_down ddbsr415 toSci 1.1111111111123450 -> 1.111111111112345 Rounded ddbsr416 toSci 1.11111111111234549 -> 1.111111111112345 Rounded Inexact ddbsr417 toSci 1.11111111111234550 -> 1.111111111112345 Rounded Inexact ddbsr418 toSci 1.11111111111234650 -> 1.111111111112346 Rounded Inexact ddbsr419 toSci 1.11111111111234551 -> 1.111111111112346 Rounded Inexact rounding: half_even ddbsr421 toSci 1.1111111111123450 -> 1.111111111112345 Rounded ddbsr422 toSci 1.11111111111234549 -> 1.111111111112345 Rounded Inexact ddbsr423 toSci 1.11111111111234550 -> 1.111111111112346 Rounded Inexact ddbsr424 toSci 1.11111111111234650 -> 1.111111111112346 Rounded Inexact ddbsr425 toSci 1.11111111111234551 -> 1.111111111112346 Rounded Inexact rounding: down ddbsr426 toSci 1.1111111111123450 -> 1.111111111112345 Rounded ddbsr427 toSci 1.11111111111234549 -> 1.111111111112345 Rounded Inexact ddbsr428 toSci 1.11111111111234550 -> 1.111111111112345 Rounded Inexact ddbsr429 toSci 1.11111111111234551 -> 1.111111111112345 Rounded Inexact rounding: half_up ddbsr431 toSci 1.1111111111123450 -> 1.111111111112345 Rounded ddbsr432 toSci 1.11111111111234549 -> 1.111111111112345 Rounded Inexact ddbsr433 toSci 1.11111111111234550 -> 1.111111111112346 Rounded Inexact ddbsr434 toSci 1.11111111111234650 -> 1.111111111112347 Rounded Inexact ddbsr435 toSci 1.11111111111234551 -> 1.111111111112346 Rounded Inexact -- negatives rounding: ceiling ddbsr501 toSci -1.1111111111123450 -> -1.111111111112345 Rounded ddbsr502 toSci -1.11111111111234549 -> -1.111111111112345 Rounded Inexact ddbsr503 toSci -1.11111111111234550 -> -1.111111111112345 Rounded Inexact ddbsr504 toSci -1.11111111111234551 -> -1.111111111112345 Rounded Inexact rounding: up ddbsr505 toSci -1.1111111111123450 -> -1.111111111112345 Rounded ddbsr506 toSci -1.11111111111234549 -> -1.111111111112346 Rounded Inexact ddbsr507 toSci -1.11111111111234550 -> -1.111111111112346 Rounded Inexact ddbsr508 toSci -1.11111111111234551 -> -1.111111111112346 Rounded Inexact rounding: floor ddbsr510 toSci -1.1111111111123450 -> -1.111111111112345 Rounded ddbsr511 toSci -1.11111111111234549 -> -1.111111111112346 Rounded Inexact ddbsr512 toSci -1.11111111111234550 -> -1.111111111112346 Rounded Inexact ddbsr513 toSci -1.11111111111234551 -> -1.111111111112346 Rounded Inexact rounding: half_down ddbsr515 toSci -1.1111111111123450 -> -1.111111111112345 Rounded ddbsr516 toSci -1.11111111111234549 -> -1.111111111112345 Rounded Inexact ddbsr517 toSci -1.11111111111234550 -> -1.111111111112345 Rounded Inexact ddbsr518 toSci -1.11111111111234650 -> -1.111111111112346 Rounded Inexact ddbsr519 toSci -1.11111111111234551 -> -1.111111111112346 Rounded Inexact rounding: half_even ddbsr521 toSci -1.1111111111123450 -> -1.111111111112345 Rounded ddbsr522 toSci -1.11111111111234549 -> -1.111111111112345 Rounded Inexact ddbsr523 toSci -1.11111111111234550 -> -1.111111111112346 Rounded Inexact ddbsr524 toSci -1.11111111111234650 -> -1.111111111112346 Rounded Inexact ddbsr525 toSci -1.11111111111234551 -> -1.111111111112346 Rounded Inexact rounding: down ddbsr526 toSci -1.1111111111123450 -> -1.111111111112345 Rounded ddbsr527 toSci -1.11111111111234549 -> -1.111111111112345 Rounded Inexact ddbsr528 toSci -1.11111111111234550 -> -1.111111111112345 Rounded Inexact ddbsr529 toSci -1.11111111111234551 -> -1.111111111112345 Rounded Inexact rounding: half_up ddbsr531 toSci -1.1111111111123450 -> -1.111111111112345 Rounded ddbsr532 toSci -1.11111111111234549 -> -1.111111111112345 Rounded Inexact ddbsr533 toSci -1.11111111111234550 -> -1.111111111112346 Rounded Inexact ddbsr534 toSci -1.11111111111234650 -> -1.111111111112347 Rounded Inexact ddbsr535 toSci -1.11111111111234551 -> -1.111111111112346 Rounded Inexact rounding: half_even -- The 'baddies' tests from DiagBigDecimal, plus some new ones ddbas500 toSci '1..2' -> NaN Conversion_syntax ddbas501 toSci '.' -> NaN Conversion_syntax ddbas502 toSci '..' -> NaN Conversion_syntax ddbas503 toSci '++1' -> NaN Conversion_syntax ddbas504 toSci '--1' -> NaN Conversion_syntax ddbas505 toSci '-+1' -> NaN Conversion_syntax ddbas506 toSci '+-1' -> NaN Conversion_syntax ddbas507 toSci '12e' -> NaN Conversion_syntax ddbas508 toSci '12e++' -> NaN Conversion_syntax ddbas509 toSci '12f4' -> NaN Conversion_syntax ddbas510 toSci ' +1' -> NaN Conversion_syntax ddbas511 toSci '+ 1' -> NaN Conversion_syntax ddbas512 toSci '12 ' -> NaN Conversion_syntax ddbas513 toSci ' + 1' -> NaN Conversion_syntax ddbas514 toSci ' - 1 ' -> NaN Conversion_syntax ddbas515 toSci 'x' -> NaN Conversion_syntax ddbas516 toSci '-1-' -> NaN Conversion_syntax ddbas517 toSci '12-' -> NaN Conversion_syntax ddbas518 toSci '3+' -> NaN Conversion_syntax ddbas519 toSci '' -> NaN Conversion_syntax ddbas520 toSci '1e-' -> NaN Conversion_syntax ddbas521 toSci '7e99999a' -> NaN Conversion_syntax ddbas522 toSci '7e123567890x' -> NaN Conversion_syntax ddbas523 toSci '7e12356789012x' -> NaN Conversion_syntax ddbas524 toSci '' -> NaN Conversion_syntax ddbas525 toSci 'e100' -> NaN Conversion_syntax ddbas526 toSci '\u0e5a' -> NaN Conversion_syntax ddbas527 toSci '\u0b65' -> NaN Conversion_syntax ddbas528 toSci '123,65' -> NaN Conversion_syntax ddbas529 toSci '1.34.5' -> NaN Conversion_syntax ddbas530 toSci '.123.5' -> NaN Conversion_syntax ddbas531 toSci '01.35.' -> NaN Conversion_syntax ddbas532 toSci '01.35-' -> NaN Conversion_syntax ddbas533 toSci '0000..' -> NaN Conversion_syntax ddbas534 toSci '.0000.' -> NaN Conversion_syntax ddbas535 toSci '00..00' -> NaN Conversion_syntax ddbas536 toSci '111e*123' -> NaN Conversion_syntax ddbas537 toSci '111e123-' -> NaN Conversion_syntax ddbas538 toSci '111e+12+' -> NaN Conversion_syntax ddbas539 toSci '111e1-3-' -> NaN Conversion_syntax ddbas540 toSci '111e1*23' -> NaN Conversion_syntax ddbas541 toSci '111e1e+3' -> NaN Conversion_syntax ddbas542 toSci '1e1.0' -> NaN Conversion_syntax ddbas543 toSci '1e123e' -> NaN Conversion_syntax ddbas544 toSci 'ten' -> NaN Conversion_syntax ddbas545 toSci 'ONE' -> NaN Conversion_syntax ddbas546 toSci '1e.1' -> NaN Conversion_syntax ddbas547 toSci '1e1.' -> NaN Conversion_syntax ddbas548 toSci '1ee' -> NaN Conversion_syntax ddbas549 toSci 'e+1' -> NaN Conversion_syntax ddbas550 toSci '1.23.4' -> NaN Conversion_syntax ddbas551 toSci '1.2.1' -> NaN Conversion_syntax ddbas552 toSci '1E+1.2' -> NaN Conversion_syntax ddbas553 toSci '1E+1.2.3' -> NaN Conversion_syntax ddbas554 toSci '1E++1' -> NaN Conversion_syntax ddbas555 toSci '1E--1' -> NaN Conversion_syntax ddbas556 toSci '1E+-1' -> NaN Conversion_syntax ddbas557 toSci '1E-+1' -> NaN Conversion_syntax ddbas558 toSci '1E''1' -> NaN Conversion_syntax ddbas559 toSci "1E""1" -> NaN Conversion_syntax ddbas560 toSci "1E""""" -> NaN Conversion_syntax -- Near-specials ddbas561 toSci "qNaN" -> NaN Conversion_syntax ddbas562 toSci "NaNq" -> NaN Conversion_syntax ddbas563 toSci "NaNs" -> NaN Conversion_syntax ddbas564 toSci "Infi" -> NaN Conversion_syntax ddbas565 toSci "Infin" -> NaN Conversion_syntax ddbas566 toSci "Infini" -> NaN Conversion_syntax ddbas567 toSci "Infinit" -> NaN Conversion_syntax ddbas568 toSci "-Infinit" -> NaN Conversion_syntax ddbas569 toSci "0Inf" -> NaN Conversion_syntax ddbas570 toSci "9Inf" -> NaN Conversion_syntax ddbas571 toSci "-0Inf" -> NaN Conversion_syntax ddbas572 toSci "-9Inf" -> NaN Conversion_syntax ddbas573 toSci "-sNa" -> NaN Conversion_syntax ddbas574 toSci "xNaN" -> NaN Conversion_syntax ddbas575 toSci "0sNaN" -> NaN Conversion_syntax -- some baddies with dots and Es and dots and specials ddbas576 toSci 'e+1' -> NaN Conversion_syntax ddbas577 toSci '.e+1' -> NaN Conversion_syntax ddbas578 toSci '+.e+1' -> NaN Conversion_syntax ddbas579 toSci '-.e+' -> NaN Conversion_syntax ddbas580 toSci '-.e' -> NaN Conversion_syntax ddbas581 toSci 'E+1' -> NaN Conversion_syntax ddbas582 toSci '.E+1' -> NaN Conversion_syntax ddbas583 toSci '+.E+1' -> NaN Conversion_syntax ddbas584 toSci '-.E+' -> NaN Conversion_syntax ddbas585 toSci '-.E' -> NaN Conversion_syntax ddbas586 toSci '.NaN' -> NaN Conversion_syntax ddbas587 toSci '-.NaN' -> NaN Conversion_syntax ddbas588 toSci '+.sNaN' -> NaN Conversion_syntax ddbas589 toSci '+.Inf' -> NaN Conversion_syntax ddbas590 toSci '.Infinity' -> NaN Conversion_syntax -- Zeros ddbas601 toSci 0.000000000 -> 0E-9 ddbas602 toSci 0.00000000 -> 0E-8 ddbas603 toSci 0.0000000 -> 0E-7 ddbas604 toSci 0.000000 -> 0.000000 ddbas605 toSci 0.00000 -> 0.00000 ddbas606 toSci 0.0000 -> 0.0000 ddbas607 toSci 0.000 -> 0.000 ddbas608 toSci 0.00 -> 0.00 ddbas609 toSci 0.0 -> 0.0 ddbas610 toSci .0 -> 0.0 ddbas611 toSci 0. -> 0 ddbas612 toSci -.0 -> -0.0 ddbas613 toSci -0. -> -0 ddbas614 toSci -0.0 -> -0.0 ddbas615 toSci -0.00 -> -0.00 ddbas616 toSci -0.000 -> -0.000 ddbas617 toSci -0.0000 -> -0.0000 ddbas618 toSci -0.00000 -> -0.00000 ddbas619 toSci -0.000000 -> -0.000000 ddbas620 toSci -0.0000000 -> -0E-7 ddbas621 toSci -0.00000000 -> -0E-8 ddbas622 toSci -0.000000000 -> -0E-9 ddbas630 toSci 0.00E+0 -> 0.00 ddbas631 toSci 0.00E+1 -> 0.0 ddbas632 toSci 0.00E+2 -> 0 ddbas633 toSci 0.00E+3 -> 0E+1 ddbas634 toSci 0.00E+4 -> 0E+2 ddbas635 toSci 0.00E+5 -> 0E+3 ddbas636 toSci 0.00E+6 -> 0E+4 ddbas637 toSci 0.00E+7 -> 0E+5 ddbas638 toSci 0.00E+8 -> 0E+6 ddbas639 toSci 0.00E+9 -> 0E+7 ddbas640 toSci 0.0E+0 -> 0.0 ddbas641 toSci 0.0E+1 -> 0 ddbas642 toSci 0.0E+2 -> 0E+1 ddbas643 toSci 0.0E+3 -> 0E+2 ddbas644 toSci 0.0E+4 -> 0E+3 ddbas645 toSci 0.0E+5 -> 0E+4 ddbas646 toSci 0.0E+6 -> 0E+5 ddbas647 toSci 0.0E+7 -> 0E+6 ddbas648 toSci 0.0E+8 -> 0E+7 ddbas649 toSci 0.0E+9 -> 0E+8 ddbas650 toSci 0E+0 -> 0 ddbas651 toSci 0E+1 -> 0E+1 ddbas652 toSci 0E+2 -> 0E+2 ddbas653 toSci 0E+3 -> 0E+3 ddbas654 toSci 0E+4 -> 0E+4 ddbas655 toSci 0E+5 -> 0E+5 ddbas656 toSci 0E+6 -> 0E+6 ddbas657 toSci 0E+7 -> 0E+7 ddbas658 toSci 0E+8 -> 0E+8 ddbas659 toSci 0E+9 -> 0E+9 ddbas660 toSci 0.0E-0 -> 0.0 ddbas661 toSci 0.0E-1 -> 0.00 ddbas662 toSci 0.0E-2 -> 0.000 ddbas663 toSci 0.0E-3 -> 0.0000 ddbas664 toSci 0.0E-4 -> 0.00000 ddbas665 toSci 0.0E-5 -> 0.000000 ddbas666 toSci 0.0E-6 -> 0E-7 ddbas667 toSci 0.0E-7 -> 0E-8 ddbas668 toSci 0.0E-8 -> 0E-9 ddbas669 toSci 0.0E-9 -> 0E-10 ddbas670 toSci 0.00E-0 -> 0.00 ddbas671 toSci 0.00E-1 -> 0.000 ddbas672 toSci 0.00E-2 -> 0.0000 ddbas673 toSci 0.00E-3 -> 0.00000 ddbas674 toSci 0.00E-4 -> 0.000000 ddbas675 toSci 0.00E-5 -> 0E-7 ddbas676 toSci 0.00E-6 -> 0E-8 ddbas677 toSci 0.00E-7 -> 0E-9 ddbas678 toSci 0.00E-8 -> 0E-10 ddbas679 toSci 0.00E-9 -> 0E-11 ddbas680 toSci 000000. -> 0 ddbas681 toSci 00000. -> 0 ddbas682 toSci 0000. -> 0 ddbas683 toSci 000. -> 0 ddbas684 toSci 00. -> 0 ddbas685 toSci 0. -> 0 ddbas686 toSci +00000. -> 0 ddbas687 toSci -00000. -> -0 ddbas688 toSci +0. -> 0 ddbas689 toSci -0. -> -0 -- Specials ddbas700 toSci "NaN" -> NaN ddbas701 toSci "nan" -> NaN ddbas702 toSci "nAn" -> NaN ddbas703 toSci "NAN" -> NaN ddbas704 toSci "+NaN" -> NaN ddbas705 toSci "+nan" -> NaN ddbas706 toSci "+nAn" -> NaN ddbas707 toSci "+NAN" -> NaN ddbas708 toSci "-NaN" -> -NaN ddbas709 toSci "-nan" -> -NaN ddbas710 toSci "-nAn" -> -NaN ddbas711 toSci "-NAN" -> -NaN ddbas712 toSci 'NaN0' -> NaN ddbas713 toSci 'NaN1' -> NaN1 ddbas714 toSci 'NaN12' -> NaN12 ddbas715 toSci 'NaN123' -> NaN123 ddbas716 toSci 'NaN1234' -> NaN1234 ddbas717 toSci 'NaN01' -> NaN1 ddbas718 toSci 'NaN012' -> NaN12 ddbas719 toSci 'NaN0123' -> NaN123 ddbas720 toSci 'NaN01234' -> NaN1234 ddbas721 toSci 'NaN001' -> NaN1 ddbas722 toSci 'NaN0012' -> NaN12 ddbas723 toSci 'NaN00123' -> NaN123 ddbas724 toSci 'NaN001234' -> NaN1234 ddbas725 toSci 'NaN1234567890123456' -> NaN Conversion_syntax ddbas726 toSci 'NaN123e+1' -> NaN Conversion_syntax ddbas727 toSci 'NaN12.45' -> NaN Conversion_syntax ddbas728 toSci 'NaN-12' -> NaN Conversion_syntax ddbas729 toSci 'NaN+12' -> NaN Conversion_syntax ddbas730 toSci "sNaN" -> sNaN ddbas731 toSci "snan" -> sNaN ddbas732 toSci "SnAn" -> sNaN ddbas733 toSci "SNAN" -> sNaN ddbas734 toSci "+sNaN" -> sNaN ddbas735 toSci "+snan" -> sNaN ddbas736 toSci "+SnAn" -> sNaN ddbas737 toSci "+SNAN" -> sNaN ddbas738 toSci "-sNaN" -> -sNaN ddbas739 toSci "-snan" -> -sNaN ddbas740 toSci "-SnAn" -> -sNaN ddbas741 toSci "-SNAN" -> -sNaN ddbas742 toSci 'sNaN0000' -> sNaN ddbas743 toSci 'sNaN7' -> sNaN7 ddbas744 toSci 'sNaN007234' -> sNaN7234 ddbas745 toSci 'sNaN7234561234567890' -> NaN Conversion_syntax ddbas746 toSci 'sNaN72.45' -> NaN Conversion_syntax ddbas747 toSci 'sNaN-72' -> NaN Conversion_syntax ddbas748 toSci "Inf" -> Infinity ddbas749 toSci "inf" -> Infinity ddbas750 toSci "iNf" -> Infinity ddbas751 toSci "INF" -> Infinity ddbas752 toSci "+Inf" -> Infinity ddbas753 toSci "+inf" -> Infinity ddbas754 toSci "+iNf" -> Infinity ddbas755 toSci "+INF" -> Infinity ddbas756 toSci "-Inf" -> -Infinity ddbas757 toSci "-inf" -> -Infinity ddbas758 toSci "-iNf" -> -Infinity ddbas759 toSci "-INF" -> -Infinity ddbas760 toSci "Infinity" -> Infinity ddbas761 toSci "infinity" -> Infinity ddbas762 toSci "iNfInItY" -> Infinity ddbas763 toSci "INFINITY" -> Infinity ddbas764 toSci "+Infinity" -> Infinity ddbas765 toSci "+infinity" -> Infinity ddbas766 toSci "+iNfInItY" -> Infinity ddbas767 toSci "+INFINITY" -> Infinity ddbas768 toSci "-Infinity" -> -Infinity ddbas769 toSci "-infinity" -> -Infinity ddbas770 toSci "-iNfInItY" -> -Infinity ddbas771 toSci "-INFINITY" -> -Infinity -- Specials and zeros for toEng ddbast772 toEng "NaN" -> NaN ddbast773 toEng "-Infinity" -> -Infinity ddbast774 toEng "-sNaN" -> -sNaN ddbast775 toEng "-NaN" -> -NaN ddbast776 toEng "+Infinity" -> Infinity ddbast778 toEng "+sNaN" -> sNaN ddbast779 toEng "+NaN" -> NaN ddbast780 toEng "INFINITY" -> Infinity ddbast781 toEng "SNAN" -> sNaN ddbast782 toEng "NAN" -> NaN ddbast783 toEng "infinity" -> Infinity ddbast784 toEng "snan" -> sNaN ddbast785 toEng "nan" -> NaN ddbast786 toEng "InFINITY" -> Infinity ddbast787 toEng "SnAN" -> sNaN ddbast788 toEng "nAN" -> NaN ddbast789 toEng "iNfinity" -> Infinity ddbast790 toEng "sNan" -> sNaN ddbast791 toEng "Nan" -> NaN ddbast792 toEng "Infinity" -> Infinity ddbast793 toEng "sNaN" -> sNaN -- Zero toEng, etc. ddbast800 toEng 0e+1 -> "0.00E+3" -- doc example ddbast801 toEng 0.000000000 -> 0E-9 ddbast802 toEng 0.00000000 -> 0.00E-6 ddbast803 toEng 0.0000000 -> 0.0E-6 ddbast804 toEng 0.000000 -> 0.000000 ddbast805 toEng 0.00000 -> 0.00000 ddbast806 toEng 0.0000 -> 0.0000 ddbast807 toEng 0.000 -> 0.000 ddbast808 toEng 0.00 -> 0.00 ddbast809 toEng 0.0 -> 0.0 ddbast810 toEng .0 -> 0.0 ddbast811 toEng 0. -> 0 ddbast812 toEng -.0 -> -0.0 ddbast813 toEng -0. -> -0 ddbast814 toEng -0.0 -> -0.0 ddbast815 toEng -0.00 -> -0.00 ddbast816 toEng -0.000 -> -0.000 ddbast817 toEng -0.0000 -> -0.0000 ddbast818 toEng -0.00000 -> -0.00000 ddbast819 toEng -0.000000 -> -0.000000 ddbast820 toEng -0.0000000 -> -0.0E-6 ddbast821 toEng -0.00000000 -> -0.00E-6 ddbast822 toEng -0.000000000 -> -0E-9 ddbast830 toEng 0.00E+0 -> 0.00 ddbast831 toEng 0.00E+1 -> 0.0 ddbast832 toEng 0.00E+2 -> 0 ddbast833 toEng 0.00E+3 -> 0.00E+3 ddbast834 toEng 0.00E+4 -> 0.0E+3 ddbast835 toEng 0.00E+5 -> 0E+3 ddbast836 toEng 0.00E+6 -> 0.00E+6 ddbast837 toEng 0.00E+7 -> 0.0E+6 ddbast838 toEng 0.00E+8 -> 0E+6 ddbast839 toEng 0.00E+9 -> 0.00E+9 ddbast840 toEng 0.0E+0 -> 0.0 ddbast841 toEng 0.0E+1 -> 0 ddbast842 toEng 0.0E+2 -> 0.00E+3 ddbast843 toEng 0.0E+3 -> 0.0E+3 ddbast844 toEng 0.0E+4 -> 0E+3 ddbast845 toEng 0.0E+5 -> 0.00E+6 ddbast846 toEng 0.0E+6 -> 0.0E+6 ddbast847 toEng 0.0E+7 -> 0E+6 ddbast848 toEng 0.0E+8 -> 0.00E+9 ddbast849 toEng 0.0E+9 -> 0.0E+9 ddbast850 toEng 0E+0 -> 0 ddbast851 toEng 0E+1 -> 0.00E+3 ddbast852 toEng 0E+2 -> 0.0E+3 ddbast853 toEng 0E+3 -> 0E+3 ddbast854 toEng 0E+4 -> 0.00E+6 ddbast855 toEng 0E+5 -> 0.0E+6 ddbast856 toEng 0E+6 -> 0E+6 ddbast857 toEng 0E+7 -> 0.00E+9 ddbast858 toEng 0E+8 -> 0.0E+9 ddbast859 toEng 0E+9 -> 0E+9 ddbast860 toEng 0.0E-0 -> 0.0 ddbast861 toEng 0.0E-1 -> 0.00 ddbast862 toEng 0.0E-2 -> 0.000 ddbast863 toEng 0.0E-3 -> 0.0000 ddbast864 toEng 0.0E-4 -> 0.00000 ddbast865 toEng 0.0E-5 -> 0.000000 ddbast866 toEng 0.0E-6 -> 0.0E-6 ddbast867 toEng 0.0E-7 -> 0.00E-6 ddbast868 toEng 0.0E-8 -> 0E-9 ddbast869 toEng 0.0E-9 -> 0.0E-9 ddbast870 toEng 0.00E-0 -> 0.00 ddbast871 toEng 0.00E-1 -> 0.000 ddbast872 toEng 0.00E-2 -> 0.0000 ddbast873 toEng 0.00E-3 -> 0.00000 ddbast874 toEng 0.00E-4 -> 0.000000 ddbast875 toEng 0.00E-5 -> 0.0E-6 ddbast876 toEng 0.00E-6 -> 0.00E-6 ddbast877 toEng 0.00E-7 -> 0E-9 ddbast878 toEng 0.00E-8 -> 0.0E-9 ddbast879 toEng 0.00E-9 -> 0.00E-9 -- long input strings ddbas801 tosci '01234567890123456' -> 1234567890123456 ddbas802 tosci '001234567890123456' -> 1234567890123456 ddbas803 tosci '0001234567890123456' -> 1234567890123456 ddbas804 tosci '00001234567890123456' -> 1234567890123456 ddbas805 tosci '000001234567890123456' -> 1234567890123456 ddbas806 tosci '0000001234567890123456' -> 1234567890123456 ddbas807 tosci '00000001234567890123456' -> 1234567890123456 ddbas808 tosci '000000001234567890123456' -> 1234567890123456 ddbas809 tosci '0000000001234567890123456' -> 1234567890123456 ddbas810 tosci '00000000001234567890123456' -> 1234567890123456 ddbas811 tosci '0.1234567890123456' -> 0.1234567890123456 ddbas812 tosci '0.01234567890123456' -> 0.01234567890123456 ddbas813 tosci '0.001234567890123456' -> 0.001234567890123456 ddbas814 tosci '0.0001234567890123456' -> 0.0001234567890123456 ddbas815 tosci '0.00001234567890123456' -> 0.00001234567890123456 ddbas816 tosci '0.000001234567890123456' -> 0.000001234567890123456 ddbas817 tosci '0.0000001234567890123456' -> 1.234567890123456E-7 ddbas818 tosci '0.00000001234567890123456' -> 1.234567890123456E-8 ddbas819 tosci '0.000000001234567890123456' -> 1.234567890123456E-9 ddbas820 tosci '0.0000000001234567890123456' -> 1.234567890123456E-10 ddbas821 tosci '12345678901234567890' -> 1.234567890123457E+19 Inexact Rounded ddbas822 tosci '123456789012345678901' -> 1.234567890123457E+20 Inexact Rounded ddbas823 tosci '1234567890123456789012' -> 1.234567890123457E+21 Inexact Rounded ddbas824 tosci '12345678901234567890123' -> 1.234567890123457E+22 Inexact Rounded ddbas825 tosci '123456789012345678901234' -> 1.234567890123457E+23 Inexact Rounded ddbas826 tosci '1234567890123456789012345' -> 1.234567890123457E+24 Inexact Rounded ddbas827 tosci '12345678901234567890123456' -> 1.234567890123457E+25 Inexact Rounded ddbas828 tosci '123456789012345678901234567' -> 1.234567890123457E+26 Inexact Rounded ddbas829 tosci '1234567890123456789012345678' -> 1.234567890123457E+27 Inexact Rounded -- subnormals and overflows ddbas906 toSci '99e999999999' -> Infinity Overflow Inexact Rounded ddbas907 toSci '999e999999999' -> Infinity Overflow Inexact Rounded ddbas908 toSci '0.9e-999999999' -> 0E-398 Underflow Subnormal Inexact Rounded Clamped ddbas909 toSci '0.09e-999999999' -> 0E-398 Underflow Subnormal Inexact Rounded Clamped ddbas910 toSci '0.1e1000000000' -> Infinity Overflow Inexact Rounded ddbas911 toSci '10e-1000000000' -> 0E-398 Underflow Subnormal Inexact Rounded Clamped ddbas912 toSci '0.9e9999999999' -> Infinity Overflow Inexact Rounded ddbas913 toSci '99e-9999999999' -> 0E-398 Underflow Subnormal Inexact Rounded Clamped ddbas914 toSci '111e9999999999' -> Infinity Overflow Inexact Rounded ddbas915 toSci '1111e-9999999999' -> 0E-398 Underflow Subnormal Inexact Rounded Clamped ddbas916 toSci '1111e-99999999999' -> 0E-398 Underflow Subnormal Inexact Rounded Clamped ddbas917 toSci '7e1000000000' -> Infinity Overflow Inexact Rounded -- negatives the same ddbas918 toSci '-99e999999999' -> -Infinity Overflow Inexact Rounded ddbas919 toSci '-999e999999999' -> -Infinity Overflow Inexact Rounded ddbas920 toSci '-0.9e-999999999' -> -0E-398 Underflow Subnormal Inexact Rounded Clamped ddbas921 toSci '-0.09e-999999999' -> -0E-398 Underflow Subnormal Inexact Rounded Clamped ddbas922 toSci '-0.1e1000000000' -> -Infinity Overflow Inexact Rounded ddbas923 toSci '-10e-1000000000' -> -0E-398 Underflow Subnormal Inexact Rounded Clamped ddbas924 toSci '-0.9e9999999999' -> -Infinity Overflow Inexact Rounded ddbas925 toSci '-99e-9999999999' -> -0E-398 Underflow Subnormal Inexact Rounded Clamped ddbas926 toSci '-111e9999999999' -> -Infinity Overflow Inexact Rounded ddbas927 toSci '-1111e-9999999999' -> -0E-398 Underflow Subnormal Inexact Rounded Clamped ddbas928 toSci '-1111e-99999999999' -> -0E-398 Underflow Subnormal Inexact Rounded Clamped ddbas929 toSci '-7e1000000000' -> -Infinity Overflow Inexact Rounded -- overflow results at different rounding modes rounding: ceiling ddbas930 toSci '7e10000' -> Infinity Overflow Inexact Rounded ddbas931 toSci '-7e10000' -> -9.999999999999999E+384 Overflow Inexact Rounded rounding: up ddbas932 toSci '7e10000' -> Infinity Overflow Inexact Rounded ddbas933 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded rounding: down ddbas934 toSci '7e10000' -> 9.999999999999999E+384 Overflow Inexact Rounded ddbas935 toSci '-7e10000' -> -9.999999999999999E+384 Overflow Inexact Rounded rounding: floor ddbas936 toSci '7e10000' -> 9.999999999999999E+384 Overflow Inexact Rounded ddbas937 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded rounding: half_up ddbas938 toSci '7e10000' -> Infinity Overflow Inexact Rounded ddbas939 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded rounding: half_even ddbas940 toSci '7e10000' -> Infinity Overflow Inexact Rounded ddbas941 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded rounding: half_down ddbas942 toSci '7e10000' -> Infinity Overflow Inexact Rounded ddbas943 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded rounding: half_even -- Now check 854/754r some subnormals and underflow to 0 ddbem400 toSci 1.0000E-383 -> 1.0000E-383 ddbem401 toSci 0.1E-394 -> 1E-395 Subnormal ddbem402 toSci 0.1000E-394 -> 1.000E-395 Subnormal ddbem403 toSci 0.0100E-394 -> 1.00E-396 Subnormal ddbem404 toSci 0.0010E-394 -> 1.0E-397 Subnormal ddbem405 toSci 0.0001E-394 -> 1E-398 Subnormal ddbem406 toSci 0.00010E-394 -> 1E-398 Subnormal Rounded ddbem407 toSci 0.00013E-394 -> 1E-398 Underflow Subnormal Inexact Rounded ddbem408 toSci 0.00015E-394 -> 2E-398 Underflow Subnormal Inexact Rounded ddbem409 toSci 0.00017E-394 -> 2E-398 Underflow Subnormal Inexact Rounded ddbem410 toSci 0.00023E-394 -> 2E-398 Underflow Subnormal Inexact Rounded ddbem411 toSci 0.00025E-394 -> 2E-398 Underflow Subnormal Inexact Rounded ddbem412 toSci 0.00027E-394 -> 3E-398 Underflow Subnormal Inexact Rounded ddbem413 toSci 0.000149E-394 -> 1E-398 Underflow Subnormal Inexact Rounded ddbem414 toSci 0.000150E-394 -> 2E-398 Underflow Subnormal Inexact Rounded ddbem415 toSci 0.000151E-394 -> 2E-398 Underflow Subnormal Inexact Rounded ddbem416 toSci 0.000249E-394 -> 2E-398 Underflow Subnormal Inexact Rounded ddbem417 toSci 0.000250E-394 -> 2E-398 Underflow Subnormal Inexact Rounded ddbem418 toSci 0.000251E-394 -> 3E-398 Underflow Subnormal Inexact Rounded ddbem419 toSci 0.00009E-394 -> 1E-398 Underflow Subnormal Inexact Rounded ddbem420 toSci 0.00005E-394 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped ddbem421 toSci 0.00003E-394 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped ddbem422 toSci 0.000009E-394 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped ddbem423 toSci 0.000005E-394 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped ddbem424 toSci 0.000003E-394 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped ddbem425 toSci 0.001049E-394 -> 1.0E-397 Underflow Subnormal Inexact Rounded ddbem426 toSci 0.001050E-394 -> 1.0E-397 Underflow Subnormal Inexact Rounded ddbem427 toSci 0.001051E-394 -> 1.1E-397 Underflow Subnormal Inexact Rounded ddbem428 toSci 0.001149E-394 -> 1.1E-397 Underflow Subnormal Inexact Rounded ddbem429 toSci 0.001150E-394 -> 1.2E-397 Underflow Subnormal Inexact Rounded ddbem430 toSci 0.001151E-394 -> 1.2E-397 Underflow Subnormal Inexact Rounded ddbem432 toSci 0.010049E-394 -> 1.00E-396 Underflow Subnormal Inexact Rounded ddbem433 toSci 0.010050E-394 -> 1.00E-396 Underflow Subnormal Inexact Rounded ddbem434 toSci 0.010051E-394 -> 1.01E-396 Underflow Subnormal Inexact Rounded ddbem435 toSci 0.010149E-394 -> 1.01E-396 Underflow Subnormal Inexact Rounded ddbem436 toSci 0.010150E-394 -> 1.02E-396 Underflow Subnormal Inexact Rounded ddbem437 toSci 0.010151E-394 -> 1.02E-396 Underflow Subnormal Inexact Rounded ddbem440 toSci 0.10103E-394 -> 1.010E-395 Underflow Subnormal Inexact Rounded ddbem441 toSci 0.10105E-394 -> 1.010E-395 Underflow Subnormal Inexact Rounded ddbem442 toSci 0.10107E-394 -> 1.011E-395 Underflow Subnormal Inexact Rounded ddbem443 toSci 0.10113E-394 -> 1.011E-395 Underflow Subnormal Inexact Rounded ddbem444 toSci 0.10115E-394 -> 1.012E-395 Underflow Subnormal Inexact Rounded ddbem445 toSci 0.10117E-394 -> 1.012E-395 Underflow Subnormal Inexact Rounded ddbem450 toSci 1.10730E-395 -> 1.107E-395 Underflow Subnormal Inexact Rounded ddbem451 toSci 1.10750E-395 -> 1.108E-395 Underflow Subnormal Inexact Rounded ddbem452 toSci 1.10770E-395 -> 1.108E-395 Underflow Subnormal Inexact Rounded ddbem453 toSci 1.10830E-395 -> 1.108E-395 Underflow Subnormal Inexact Rounded ddbem454 toSci 1.10850E-395 -> 1.108E-395 Underflow Subnormal Inexact Rounded ddbem455 toSci 1.10870E-395 -> 1.109E-395 Underflow Subnormal Inexact Rounded -- make sure sign OK ddbem456 toSci -0.10103E-394 -> -1.010E-395 Underflow Subnormal Inexact Rounded ddbem457 toSci -0.10105E-394 -> -1.010E-395 Underflow Subnormal Inexact Rounded ddbem458 toSci -0.10107E-394 -> -1.011E-395 Underflow Subnormal Inexact Rounded ddbem459 toSci -0.10113E-394 -> -1.011E-395 Underflow Subnormal Inexact Rounded ddbem460 toSci -0.10115E-394 -> -1.012E-395 Underflow Subnormal Inexact Rounded ddbem461 toSci -0.10117E-394 -> -1.012E-395 Underflow Subnormal Inexact Rounded -- '999s' cases ddbem464 toSci 999999E-395 -> 9.99999E-390 Subnormal ddbem465 toSci 99999.0E-394 -> 9.99990E-390 Subnormal ddbem466 toSci 99999.E-394 -> 9.9999E-390 Subnormal ddbem467 toSci 9999.9E-394 -> 9.9999E-391 Subnormal ddbem468 toSci 999.99E-394 -> 9.9999E-392 Subnormal ddbem469 toSci 99.999E-394 -> 9.9999E-393 Subnormal ddbem470 toSci 9.9999E-394 -> 9.9999E-394 Subnormal ddbem471 toSci 0.99999E-394 -> 1.0000E-394 Underflow Subnormal Inexact Rounded ddbem472 toSci 0.099999E-394 -> 1.000E-395 Underflow Subnormal Inexact Rounded ddbem473 toSci 0.0099999E-394 -> 1.00E-396 Underflow Subnormal Inexact Rounded ddbem474 toSci 0.00099999E-394 -> 1.0E-397 Underflow Subnormal Inexact Rounded ddbem475 toSci 0.000099999E-394 -> 1E-398 Underflow Subnormal Inexact Rounded ddbem476 toSci 0.0000099999E-394 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped ddbem477 toSci 0.00000099999E-394 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped ddbem478 toSci 0.000000099999E-394 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -- Exponents with insignificant leading zeros ddbas1001 toSci 1e999999999 -> Infinity Overflow Inexact Rounded ddbas1002 toSci 1e0999999999 -> Infinity Overflow Inexact Rounded ddbas1003 toSci 1e00999999999 -> Infinity Overflow Inexact Rounded ddbas1004 toSci 1e000999999999 -> Infinity Overflow Inexact Rounded ddbas1005 toSci 1e000000000000999999999 -> Infinity Overflow Inexact Rounded ddbas1006 toSci 1e000000000001000000007 -> Infinity Overflow Inexact Rounded ddbas1007 toSci 1e-999999999 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped ddbas1008 toSci 1e-0999999999 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped ddbas1009 toSci 1e-00999999999 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped ddbas1010 toSci 1e-000999999999 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped ddbas1011 toSci 1e-000000000000999999999 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped ddbas1012 toSci 1e-000000000001000000007 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -- check for double-rounded subnormals ddbas1041 toSci 1.1111111111152444E-384 -> 1.11111111111524E-384 Inexact Rounded Subnormal Underflow ddbas1042 toSci 1.1111111111152445E-384 -> 1.11111111111524E-384 Inexact Rounded Subnormal Underflow ddbas1043 toSci 1.1111111111152446E-384 -> 1.11111111111524E-384 Inexact Rounded Subnormal Underflow -- clamped large normals ddbas1070 toSci 1E+369 -> 1E+369 ddbas1071 toSci 1E+370 -> 1.0E+370 Clamped ddbas1072 toSci 1E+378 -> 1.000000000E+378 Clamped ddbas1073 toSci 1E+384 -> 1.000000000000000E+384 Clamped ddbas1074 toSci 1E+385 -> Infinity Overflow Inexact Rounded -- clamped zeros [see also clamp.decTest] ddbas1075 toSci 0e+10000 -> 0E+369 Clamped ddbas1076 toSci 0e-10000 -> 0E-398 Clamped ddbas1077 toSci -0e+10000 -> -0E+369 Clamped ddbas1078 toSci -0e-10000 -> -0E-398 Clamped -- extreme values from next-wider ddbas1101 toSci -9.99999999999999999999999999999999E+6144 -> -Infinity Overflow Inexact Rounded ddbas1102 toSci -1E-6143 -> -0E-398 Inexact Rounded Subnormal Underflow Clamped ddbas1103 toSci -1E-6176 -> -0E-398 Inexact Rounded Subnormal Underflow Clamped ddbas1104 toSci -0 -> -0 ddbas1105 toSci +0 -> 0 ddbas1106 toSci +1E-6176 -> 0E-398 Inexact Rounded Subnormal Underflow Clamped ddbas1107 toSci +1E-6173 -> 0E-398 Inexact Rounded Subnormal Underflow Clamped ddbas1108 toSci +9.99999999999999999999999999999999E+6144 -> Infinity Overflow Inexact Rounded
53,353
1,105
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/nexttoward.decTest
------------------------------------------------------------------------ -- nexttoward.decTest -- decimal next toward rhs [754r nextafter] -- -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 extended: 1 precision: 9 rounding: half_up maxExponent: 384 minexponent: -383 -- Sanity check with a scattering of numerics nextt001 nexttoward 10 10 -> 10 nextt002 nexttoward -10 -10 -> -10 nextt003 nexttoward 1 10 -> 1.00000001 nextt004 nexttoward 1 -10 -> 0.999999999 nextt005 nexttoward -1 10 -> -0.999999999 nextt006 nexttoward -1 -10 -> -1.00000001 nextt007 nexttoward 0 10 -> 1E-391 Underflow Subnormal Inexact Rounded nextt008 nexttoward 0 -10 -> -1E-391 Underflow Subnormal Inexact Rounded nextt009 nexttoward 9.99999999E+384 +Infinity -> Infinity Overflow Inexact Rounded nextt010 nexttoward -9.99999999E+384 -Infinity -> -Infinity Overflow Inexact Rounded ------- lhs=rhs -- finites nextt101 nexttoward 7 7 -> 7 nextt102 nexttoward -7 -7 -> -7 nextt103 nexttoward 75 75 -> 75 nextt104 nexttoward -75 -75 -> -75 nextt105 nexttoward 7.50 7.5 -> 7.50 nextt106 nexttoward -7.50 -7.50 -> -7.50 nextt107 nexttoward 7.500 7.5000 -> 7.500 nextt108 nexttoward -7.500 -7.5 -> -7.500 -- zeros nextt111 nexttoward 0 0 -> 0 nextt112 nexttoward -0 -0 -> -0 nextt113 nexttoward 0E+4 0 -> 0E+4 nextt114 nexttoward -0E+4 -0 -> -0E+4 nextt115 nexttoward 0.0000 0.00000 -> 0.0000 nextt116 nexttoward -0.0000 -0.00 -> -0.0000 nextt117 nexttoward 0E-141 0 -> 0E-141 nextt118 nexttoward -0E-141 -000 -> -0E-141 -- full coefficients, alternating bits nextt121 nexttoward 268268268 268268268 -> 268268268 nextt122 nexttoward -268268268 -268268268 -> -268268268 nextt123 nexttoward 134134134 134134134 -> 134134134 nextt124 nexttoward -134134134 -134134134 -> -134134134 -- Nmax, Nmin, Ntiny nextt131 nexttoward 9.99999999E+384 9.99999999E+384 -> 9.99999999E+384 nextt132 nexttoward 1E-383 1E-383 -> 1E-383 nextt133 nexttoward 1.00000000E-383 1.00000000E-383 -> 1.00000000E-383 nextt134 nexttoward 1E-391 1E-391 -> 1E-391 nextt135 nexttoward -1E-391 -1E-391 -> -1E-391 nextt136 nexttoward -1.00000000E-383 -1.00000000E-383 -> -1.00000000E-383 nextt137 nexttoward -1E-383 -1E-383 -> -1E-383 nextt138 nexttoward -9.99999999E+384 -9.99999999E+384 -> -9.99999999E+384 ------- lhs<rhs nextt201 nexttoward 0.999999995 Infinity -> 0.999999996 nextt202 nexttoward 0.999999996 Infinity -> 0.999999997 nextt203 nexttoward 0.999999997 Infinity -> 0.999999998 nextt204 nexttoward 0.999999998 Infinity -> 0.999999999 nextt205 nexttoward 0.999999999 Infinity -> 1.00000000 nextt206 nexttoward 1.00000000 Infinity -> 1.00000001 nextt207 nexttoward 1.0 Infinity -> 1.00000001 nextt208 nexttoward 1 Infinity -> 1.00000001 nextt209 nexttoward 1.00000001 Infinity -> 1.00000002 nextt210 nexttoward 1.00000002 Infinity -> 1.00000003 nextt211 nexttoward 1.00000003 Infinity -> 1.00000004 nextt212 nexttoward 1.00000004 Infinity -> 1.00000005 nextt213 nexttoward 1.00000005 Infinity -> 1.00000006 nextt214 nexttoward 1.00000006 Infinity -> 1.00000007 nextt215 nexttoward 1.00000007 Infinity -> 1.00000008 nextt216 nexttoward 1.00000008 Infinity -> 1.00000009 nextt217 nexttoward 1.00000009 Infinity -> 1.00000010 nextt218 nexttoward 1.00000010 Infinity -> 1.00000011 nextt219 nexttoward 1.00000011 Infinity -> 1.00000012 nextt221 nexttoward -0.999999995 Infinity -> -0.999999994 nextt222 nexttoward -0.999999996 Infinity -> -0.999999995 nextt223 nexttoward -0.999999997 Infinity -> -0.999999996 nextt224 nexttoward -0.999999998 Infinity -> -0.999999997 nextt225 nexttoward -0.999999999 Infinity -> -0.999999998 nextt226 nexttoward -1.00000000 Infinity -> -0.999999999 nextt227 nexttoward -1.0 Infinity -> -0.999999999 nextt228 nexttoward -1 Infinity -> -0.999999999 nextt229 nexttoward -1.00000001 Infinity -> -1.00000000 nextt230 nexttoward -1.00000002 Infinity -> -1.00000001 nextt231 nexttoward -1.00000003 Infinity -> -1.00000002 nextt232 nexttoward -1.00000004 Infinity -> -1.00000003 nextt233 nexttoward -1.00000005 Infinity -> -1.00000004 nextt234 nexttoward -1.00000006 Infinity -> -1.00000005 nextt235 nexttoward -1.00000007 Infinity -> -1.00000006 nextt236 nexttoward -1.00000008 Infinity -> -1.00000007 nextt237 nexttoward -1.00000009 Infinity -> -1.00000008 nextt238 nexttoward -1.00000010 Infinity -> -1.00000009 nextt239 nexttoward -1.00000011 Infinity -> -1.00000010 nextt240 nexttoward -1.00000012 Infinity -> -1.00000011 -- input operand is >precision nextt241 nexttoward 1.00000010998 Infinity -> 1.00000011 nextt242 nexttoward 1.00000010999 Infinity -> 1.00000011 nextt243 nexttoward 1.00000011000 Infinity -> 1.00000012 nextt244 nexttoward 1.00000011001 Infinity -> 1.00000012 nextt245 nexttoward 1.00000011002 Infinity -> 1.00000012 nextt246 nexttoward 1.00000011002 Infinity -> 1.00000012 nextt247 nexttoward 1.00000011052 Infinity -> 1.00000012 nextt248 nexttoward 1.00000011552 Infinity -> 1.00000012 nextt249 nexttoward -1.00000010998 Infinity -> -1.00000010 nextt250 nexttoward -1.00000010999 Infinity -> -1.00000010 nextt251 nexttoward -1.00000011000 Infinity -> -1.00000010 nextt252 nexttoward -1.00000011001 Infinity -> -1.00000011 nextt253 nexttoward -1.00000011002 Infinity -> -1.00000011 nextt254 nexttoward -1.00000011002 Infinity -> -1.00000011 nextt255 nexttoward -1.00000011052 Infinity -> -1.00000011 nextt256 nexttoward -1.00000011552 Infinity -> -1.00000011 -- ultra-tiny inputs nextt260 nexttoward 1E-99999 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded nextt261 nexttoward 1E-999999999 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded nextt262 nexttoward 1E-391 Infinity -> 2E-391 Underflow Subnormal Inexact Rounded nextt263 nexttoward -1E-99999 Infinity -> -0E-391 Underflow Subnormal Inexact Rounded Clamped nextt264 nexttoward -1E-999999999 Infinity -> -0E-391 Underflow Subnormal Inexact Rounded Clamped nextt265 nexttoward -1E-391 Infinity -> -0E-391 Underflow Subnormal Inexact Rounded Clamped -- Zeros nextt300 nexttoward 0 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded nextt301 nexttoward 0.00 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded nextt302 nexttoward 0E-300 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded nextt303 nexttoward 0E+300 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded nextt304 nexttoward 0E+30000 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded nextt305 nexttoward -0 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded nextt306 nexttoward -0.00 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded nextt307 nexttoward -0E-300 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded nextt308 nexttoward -0E+300 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded nextt309 nexttoward -0E+30000 Infinity -> 1E-391 Underflow Subnormal Inexact Rounded -- specials nextt350 nexttoward Inf Infinity -> Infinity nextt351 nexttoward -Inf Infinity -> -9.99999999E+384 nextt352 nexttoward NaN Infinity -> NaN nextt353 nexttoward sNaN Infinity -> NaN Invalid_operation nextt354 nexttoward NaN77 Infinity -> NaN77 nextt355 nexttoward sNaN88 Infinity -> NaN88 Invalid_operation nextt356 nexttoward -NaN Infinity -> -NaN nextt357 nexttoward -sNaN Infinity -> -NaN Invalid_operation nextt358 nexttoward -NaN77 Infinity -> -NaN77 nextt359 nexttoward -sNaN88 Infinity -> -NaN88 Invalid_operation -- Nmax, Nmin, Ntiny, subnormals maxExponent: 999 minexponent: -999 nextt370 nexttoward 9.99999999E+999 Infinity -> Infinity Overflow Inexact Rounded nextt371 nexttoward 9.99999998E+999 Infinity -> 9.99999999E+999 nextt372 nexttoward 1E-999 Infinity -> 1.00000001E-999 nextt373 nexttoward 1.00000000E-999 Infinity -> 1.00000001E-999 nextt374 nexttoward 0.999999999E-999 Infinity -> 1.00000000E-999 nextt375 nexttoward 0.99999999E-999 Infinity -> 1.00000000E-999 nextt376 nexttoward 9E-1007 Infinity -> 1.0E-1006 Underflow Subnormal Inexact Rounded nextt377 nexttoward 9.9E-1006 Infinity -> 1.00E-1005 Underflow Subnormal Inexact Rounded nextt378 nexttoward 9.9999E-1003 Infinity -> 1.00000E-1002 Underflow Subnormal Inexact Rounded nextt379 nexttoward 9.9999998E-1000 Infinity -> 9.9999999E-1000 Underflow Subnormal Inexact Rounded nextt380 nexttoward 9.9999997E-1000 Infinity -> 9.9999998E-1000 Underflow Subnormal Inexact Rounded nextt381 nexttoward 0E-1007 Infinity -> 1E-1007 Underflow Subnormal Inexact Rounded nextt382 nexttoward 1E-1007 Infinity -> 2E-1007 Underflow Subnormal Inexact Rounded nextt383 nexttoward 2E-1007 Infinity -> 3E-1007 Underflow Subnormal Inexact Rounded nextt385 nexttoward -0E-1007 Infinity -> 1E-1007 Underflow Subnormal Inexact Rounded nextt386 nexttoward -1E-1007 Infinity -> -0E-1007 Underflow Subnormal Inexact Rounded Clamped nextt387 nexttoward -2E-1007 Infinity -> -1E-1007 Underflow Subnormal Inexact Rounded nextt388 nexttoward -10E-1007 Infinity -> -9E-1007 Underflow Subnormal Inexact Rounded nextt389 nexttoward -100E-1007 Infinity -> -9.9E-1006 Underflow Subnormal Inexact Rounded nextt390 nexttoward -100000E-1007 Infinity -> -9.9999E-1003 Underflow Subnormal Inexact Rounded nextt391 nexttoward -1.0000E-999 Infinity -> -9.9999999E-1000 Underflow Subnormal Inexact Rounded nextt392 nexttoward -1.00000000E-999 Infinity -> -9.9999999E-1000 Underflow Subnormal Inexact Rounded nextt393 nexttoward -1E-999 Infinity -> -9.9999999E-1000 Underflow Subnormal Inexact Rounded nextt394 nexttoward -9.99999998E+999 Infinity -> -9.99999997E+999 nextt395 nexttoward -9.99999999E+999 Infinity -> -9.99999998E+999 ------- lhs>rhs maxExponent: 384 minexponent: -383 nextt401 nexttoward 0.999999995 -Infinity -> 0.999999994 nextt402 nexttoward 0.999999996 -Infinity -> 0.999999995 nextt403 nexttoward 0.999999997 -Infinity -> 0.999999996 nextt404 nexttoward 0.999999998 -Infinity -> 0.999999997 nextt405 nexttoward 0.999999999 -Infinity -> 0.999999998 nextt406 nexttoward 1.00000000 -Infinity -> 0.999999999 nextt407 nexttoward 1.0 -Infinity -> 0.999999999 nextt408 nexttoward 1 -Infinity -> 0.999999999 nextt409 nexttoward 1.00000001 -Infinity -> 1.00000000 nextt410 nexttoward 1.00000002 -Infinity -> 1.00000001 nextt411 nexttoward 1.00000003 -Infinity -> 1.00000002 nextt412 nexttoward 1.00000004 -Infinity -> 1.00000003 nextt413 nexttoward 1.00000005 -Infinity -> 1.00000004 nextt414 nexttoward 1.00000006 -Infinity -> 1.00000005 nextt415 nexttoward 1.00000007 -Infinity -> 1.00000006 nextt416 nexttoward 1.00000008 -Infinity -> 1.00000007 nextt417 nexttoward 1.00000009 -Infinity -> 1.00000008 nextt418 nexttoward 1.00000010 -Infinity -> 1.00000009 nextt419 nexttoward 1.00000011 -Infinity -> 1.00000010 nextt420 nexttoward 1.00000012 -Infinity -> 1.00000011 nextt421 nexttoward -0.999999995 -Infinity -> -0.999999996 nextt422 nexttoward -0.999999996 -Infinity -> -0.999999997 nextt423 nexttoward -0.999999997 -Infinity -> -0.999999998 nextt424 nexttoward -0.999999998 -Infinity -> -0.999999999 nextt425 nexttoward -0.999999999 -Infinity -> -1.00000000 nextt426 nexttoward -1.00000000 -Infinity -> -1.00000001 nextt427 nexttoward -1.0 -Infinity -> -1.00000001 nextt428 nexttoward -1 -Infinity -> -1.00000001 nextt429 nexttoward -1.00000001 -Infinity -> -1.00000002 nextt430 nexttoward -1.00000002 -Infinity -> -1.00000003 nextt431 nexttoward -1.00000003 -Infinity -> -1.00000004 nextt432 nexttoward -1.00000004 -Infinity -> -1.00000005 nextt433 nexttoward -1.00000005 -Infinity -> -1.00000006 nextt434 nexttoward -1.00000006 -Infinity -> -1.00000007 nextt435 nexttoward -1.00000007 -Infinity -> -1.00000008 nextt436 nexttoward -1.00000008 -Infinity -> -1.00000009 nextt437 nexttoward -1.00000009 -Infinity -> -1.00000010 nextt438 nexttoward -1.00000010 -Infinity -> -1.00000011 nextt439 nexttoward -1.00000011 -Infinity -> -1.00000012 -- input operand is >precision nextt441 nexttoward 1.00000010998 -Infinity -> 1.00000010 nextt442 nexttoward 1.00000010999 -Infinity -> 1.00000010 nextt443 nexttoward 1.00000011000 -Infinity -> 1.00000010 nextt444 nexttoward 1.00000011001 -Infinity -> 1.00000011 nextt445 nexttoward 1.00000011002 -Infinity -> 1.00000011 nextt446 nexttoward 1.00000011002 -Infinity -> 1.00000011 nextt447 nexttoward 1.00000011052 -Infinity -> 1.00000011 nextt448 nexttoward 1.00000011552 -Infinity -> 1.00000011 nextt449 nexttoward -1.00000010998 -Infinity -> -1.00000011 nextt450 nexttoward -1.00000010999 -Infinity -> -1.00000011 nextt451 nexttoward -1.00000011000 -Infinity -> -1.00000012 nextt452 nexttoward -1.00000011001 -Infinity -> -1.00000012 nextt453 nexttoward -1.00000011002 -Infinity -> -1.00000012 nextt454 nexttoward -1.00000011002 -Infinity -> -1.00000012 nextt455 nexttoward -1.00000011052 -Infinity -> -1.00000012 nextt456 nexttoward -1.00000011552 -Infinity -> -1.00000012 -- ultra-tiny inputs nextt460 nexttoward 1E-99999 -Infinity -> 0E-391 Underflow Subnormal Inexact Rounded Clamped nextt461 nexttoward 1E-999999999 -Infinity -> 0E-391 Underflow Subnormal Inexact Rounded Clamped nextt462 nexttoward 1E-391 -Infinity -> 0E-391 Underflow Subnormal Inexact Rounded Clamped nextt463 nexttoward -1E-99999 -Infinity -> -1E-391 Underflow Subnormal Inexact Rounded nextt464 nexttoward -1E-999999999 -Infinity -> -1E-391 Underflow Subnormal Inexact Rounded nextt465 nexttoward -1E-391 -Infinity -> -2E-391 Underflow Subnormal Inexact Rounded -- Zeros nextt500 nexttoward -0 -Infinity -> -1E-391 Underflow Subnormal Inexact Rounded nextt501 nexttoward 0 -Infinity -> -1E-391 Underflow Subnormal Inexact Rounded nextt502 nexttoward 0.00 -Infinity -> -1E-391 Underflow Subnormal Inexact Rounded nextt503 nexttoward -0.00 -Infinity -> -1E-391 Underflow Subnormal Inexact Rounded nextt504 nexttoward 0E-300 -Infinity -> -1E-391 Underflow Subnormal Inexact Rounded nextt505 nexttoward 0E+300 -Infinity -> -1E-391 Underflow Subnormal Inexact Rounded nextt506 nexttoward 0E+30000 -Infinity -> -1E-391 Underflow Subnormal Inexact Rounded nextt507 nexttoward -0E+30000 -Infinity -> -1E-391 Underflow Subnormal Inexact Rounded nextt508 nexttoward 0.00 -0.0000 -> -0.00 -- specials nextt550 nexttoward Inf -Infinity -> 9.99999999E+384 nextt551 nexttoward -Inf -Infinity -> -Infinity nextt552 nexttoward NaN -Infinity -> NaN nextt553 nexttoward sNaN -Infinity -> NaN Invalid_operation nextt554 nexttoward NaN77 -Infinity -> NaN77 nextt555 nexttoward sNaN88 -Infinity -> NaN88 Invalid_operation nextt556 nexttoward -NaN -Infinity -> -NaN nextt557 nexttoward -sNaN -Infinity -> -NaN Invalid_operation nextt558 nexttoward -NaN77 -Infinity -> -NaN77 nextt559 nexttoward -sNaN88 -Infinity -> -NaN88 Invalid_operation -- Nmax, Nmin, Ntiny, subnormals maxExponent: 999 minexponent: -999 nextt570 nexttoward 9.99999999E+999 -Infinity -> 9.99999998E+999 nextt571 nexttoward 9.99999998E+999 -Infinity -> 9.99999997E+999 nextt572 nexttoward 1E-999 -Infinity -> 9.9999999E-1000 Underflow Subnormal Inexact Rounded nextt573 nexttoward 1.00000000E-999 -Infinity -> 9.9999999E-1000 Underflow Subnormal Inexact Rounded nextt574 nexttoward 9E-1007 -Infinity -> 8E-1007 Underflow Subnormal Inexact Rounded nextt575 nexttoward 9.9E-1006 -Infinity -> 9.8E-1006 Underflow Subnormal Inexact Rounded nextt576 nexttoward 9.9999E-1003 -Infinity -> 9.9998E-1003 Underflow Subnormal Inexact Rounded nextt577 nexttoward 9.9999999E-1000 -Infinity -> 9.9999998E-1000 Underflow Subnormal Inexact Rounded nextt578 nexttoward 9.9999998E-1000 -Infinity -> 9.9999997E-1000 Underflow Subnormal Inexact Rounded nextt579 nexttoward 9.9999997E-1000 -Infinity -> 9.9999996E-1000 Underflow Subnormal Inexact Rounded nextt580 nexttoward 0E-1007 -Infinity -> -1E-1007 Underflow Subnormal Inexact Rounded nextt581 nexttoward 1E-1007 -Infinity -> 0E-1007 Underflow Subnormal Inexact Rounded Clamped nextt582 nexttoward 2E-1007 -Infinity -> 1E-1007 Underflow Subnormal Inexact Rounded nextt583 nexttoward -0E-1007 -Infinity -> -1E-1007 Underflow Subnormal Inexact Rounded nextt584 nexttoward -1E-1007 -Infinity -> -2E-1007 Underflow Subnormal Inexact Rounded nextt585 nexttoward -2E-1007 -Infinity -> -3E-1007 Underflow Subnormal Inexact Rounded nextt586 nexttoward -10E-1007 -Infinity -> -1.1E-1006 Underflow Subnormal Inexact Rounded nextt587 nexttoward -100E-1007 -Infinity -> -1.01E-1005 Underflow Subnormal Inexact Rounded nextt588 nexttoward -100000E-1007 -Infinity -> -1.00001E-1002 Underflow Subnormal Inexact Rounded nextt589 nexttoward -1.0000E-999 -Infinity -> -1.00000001E-999 nextt590 nexttoward -1.00000000E-999 -Infinity -> -1.00000001E-999 nextt591 nexttoward -1E-999 -Infinity -> -1.00000001E-999 nextt592 nexttoward -9.99999998E+999 -Infinity -> -9.99999999E+999 nextt593 nexttoward -9.99999999E+999 -Infinity -> -Infinity Overflow Inexact Rounded ------- Specials maxExponent: 384 minexponent: -383 nextt780 nexttoward -Inf -Inf -> -Infinity nextt781 nexttoward -Inf -1000 -> -9.99999999E+384 nextt782 nexttoward -Inf -1 -> -9.99999999E+384 nextt783 nexttoward -Inf -0 -> -9.99999999E+384 nextt784 nexttoward -Inf 0 -> -9.99999999E+384 nextt785 nexttoward -Inf 1 -> -9.99999999E+384 nextt786 nexttoward -Inf 1000 -> -9.99999999E+384 nextt787 nexttoward -1000 -Inf -> -1000.00001 nextt788 nexttoward -Inf -Inf -> -Infinity nextt789 nexttoward -1 -Inf -> -1.00000001 nextt790 nexttoward -0 -Inf -> -1E-391 Underflow Subnormal Inexact Rounded nextt791 nexttoward 0 -Inf -> -1E-391 Underflow Subnormal Inexact Rounded nextt792 nexttoward 1 -Inf -> 0.999999999 nextt793 nexttoward 1000 -Inf -> 999.999999 nextt794 nexttoward Inf -Inf -> 9.99999999E+384 nextt800 nexttoward Inf -Inf -> 9.99999999E+384 nextt801 nexttoward Inf -1000 -> 9.99999999E+384 nextt802 nexttoward Inf -1 -> 9.99999999E+384 nextt803 nexttoward Inf -0 -> 9.99999999E+384 nextt804 nexttoward Inf 0 -> 9.99999999E+384 nextt805 nexttoward Inf 1 -> 9.99999999E+384 nextt806 nexttoward Inf 1000 -> 9.99999999E+384 nextt807 nexttoward Inf Inf -> Infinity nextt808 nexttoward -1000 Inf -> -999.999999 nextt809 nexttoward -Inf Inf -> -9.99999999E+384 nextt810 nexttoward -1 Inf -> -0.999999999 nextt811 nexttoward -0 Inf -> 1E-391 Underflow Subnormal Inexact Rounded nextt812 nexttoward 0 Inf -> 1E-391 Underflow Subnormal Inexact Rounded nextt813 nexttoward 1 Inf -> 1.00000001 nextt814 nexttoward 1000 Inf -> 1000.00001 nextt815 nexttoward Inf Inf -> Infinity nextt821 nexttoward NaN -Inf -> NaN nextt822 nexttoward NaN -1000 -> NaN nextt823 nexttoward NaN -1 -> NaN nextt824 nexttoward NaN -0 -> NaN nextt825 nexttoward NaN 0 -> NaN nextt826 nexttoward NaN 1 -> NaN nextt827 nexttoward NaN 1000 -> NaN nextt828 nexttoward NaN Inf -> NaN nextt829 nexttoward NaN NaN -> NaN nextt830 nexttoward -Inf NaN -> NaN nextt831 nexttoward -1000 NaN -> NaN nextt832 nexttoward -1 NaN -> NaN nextt833 nexttoward -0 NaN -> NaN nextt834 nexttoward 0 NaN -> NaN nextt835 nexttoward 1 NaN -> NaN nextt836 nexttoward 1000 NaN -> NaN nextt837 nexttoward Inf NaN -> NaN nextt841 nexttoward sNaN -Inf -> NaN Invalid_operation nextt842 nexttoward sNaN -1000 -> NaN Invalid_operation nextt843 nexttoward sNaN -1 -> NaN Invalid_operation nextt844 nexttoward sNaN -0 -> NaN Invalid_operation nextt845 nexttoward sNaN 0 -> NaN Invalid_operation nextt846 nexttoward sNaN 1 -> NaN Invalid_operation nextt847 nexttoward sNaN 1000 -> NaN Invalid_operation nextt848 nexttoward sNaN NaN -> NaN Invalid_operation nextt849 nexttoward sNaN sNaN -> NaN Invalid_operation nextt850 nexttoward NaN sNaN -> NaN Invalid_operation nextt851 nexttoward -Inf sNaN -> NaN Invalid_operation nextt852 nexttoward -1000 sNaN -> NaN Invalid_operation nextt853 nexttoward -1 sNaN -> NaN Invalid_operation nextt854 nexttoward -0 sNaN -> NaN Invalid_operation nextt855 nexttoward 0 sNaN -> NaN Invalid_operation nextt856 nexttoward 1 sNaN -> NaN Invalid_operation nextt857 nexttoward 1000 sNaN -> NaN Invalid_operation nextt858 nexttoward Inf sNaN -> NaN Invalid_operation nextt859 nexttoward NaN sNaN -> NaN Invalid_operation -- propagating NaNs nextt861 nexttoward NaN1 -Inf -> NaN1 nextt862 nexttoward +NaN2 -1000 -> NaN2 nextt863 nexttoward NaN3 1000 -> NaN3 nextt864 nexttoward NaN4 Inf -> NaN4 nextt865 nexttoward NaN5 +NaN6 -> NaN5 nextt866 nexttoward -Inf NaN7 -> NaN7 nextt867 nexttoward -1000 NaN8 -> NaN8 nextt868 nexttoward 1000 NaN9 -> NaN9 nextt869 nexttoward Inf +NaN10 -> NaN10 nextt871 nexttoward sNaN11 -Inf -> NaN11 Invalid_operation nextt872 nexttoward sNaN12 -1000 -> NaN12 Invalid_operation nextt873 nexttoward sNaN13 1000 -> NaN13 Invalid_operation nextt874 nexttoward sNaN14 NaN17 -> NaN14 Invalid_operation nextt875 nexttoward sNaN15 sNaN18 -> NaN15 Invalid_operation nextt876 nexttoward NaN16 sNaN19 -> NaN19 Invalid_operation nextt877 nexttoward -Inf +sNaN20 -> NaN20 Invalid_operation nextt878 nexttoward -1000 sNaN21 -> NaN21 Invalid_operation nextt879 nexttoward 1000 sNaN22 -> NaN22 Invalid_operation nextt880 nexttoward Inf sNaN23 -> NaN23 Invalid_operation nextt881 nexttoward +NaN25 +sNaN24 -> NaN24 Invalid_operation nextt882 nexttoward -NaN26 NaN28 -> -NaN26 nextt883 nexttoward -sNaN27 sNaN29 -> -NaN27 Invalid_operation nextt884 nexttoward 1000 -NaN30 -> -NaN30 nextt885 nexttoward 1000 -sNaN31 -> -NaN31 Invalid_operation -- Null tests nextt900 nexttoward 1 # -> NaN Invalid_operation nextt901 nexttoward # 1 -> NaN Invalid_operation
24,798
427
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/ddClass.decTest
------------------------------------------------------------------------ -- ddClass.decTest -- decDouble Class operations -- -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 -- [New 2006.11.27] precision: 16 maxExponent: 384 minExponent: -383 extended: 1 clamp: 1 rounding: half_even ddcla001 class 0 -> +Zero ddcla002 class 0.00 -> +Zero ddcla003 class 0E+5 -> +Zero ddcla004 class 1E-396 -> +Subnormal ddcla005 class 0.1E-383 -> +Subnormal ddcla006 class 0.999999999999999E-383 -> +Subnormal ddcla007 class 1.000000000000000E-383 -> +Normal ddcla008 class 1E-383 -> +Normal ddcla009 class 1E-100 -> +Normal ddcla010 class 1E-10 -> +Normal ddcla012 class 1E-1 -> +Normal ddcla013 class 1 -> +Normal ddcla014 class 2.50 -> +Normal ddcla015 class 100.100 -> +Normal ddcla016 class 1E+30 -> +Normal ddcla017 class 1E+384 -> +Normal ddcla018 class 9.999999999999999E+384 -> +Normal ddcla019 class Inf -> +Infinity ddcla021 class -0 -> -Zero ddcla022 class -0.00 -> -Zero ddcla023 class -0E+5 -> -Zero ddcla024 class -1E-396 -> -Subnormal ddcla025 class -0.1E-383 -> -Subnormal ddcla026 class -0.999999999999999E-383 -> -Subnormal ddcla027 class -1.000000000000000E-383 -> -Normal ddcla028 class -1E-383 -> -Normal ddcla029 class -1E-100 -> -Normal ddcla030 class -1E-10 -> -Normal ddcla032 class -1E-1 -> -Normal ddcla033 class -1 -> -Normal ddcla034 class -2.50 -> -Normal ddcla035 class -100.100 -> -Normal ddcla036 class -1E+30 -> -Normal ddcla037 class -1E+384 -> -Normal ddcla038 class -9.999999999999999E+384 -> -Normal ddcla039 class -Inf -> -Infinity ddcla041 class NaN -> NaN ddcla042 class -NaN -> NaN ddcla043 class +NaN12345 -> NaN ddcla044 class sNaN -> sNaN ddcla045 class -sNaN -> sNaN ddcla046 class +sNaN12345 -> sNaN
3,831
77
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/dqPlus.decTest
------------------------------------------------------------------------ -- dqPlus.decTest -- decQuad 0+x -- -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 -- All operands and results are decQuads. extended: 1 clamp: 1 precision: 34 maxExponent: 6144 minExponent: -6143 rounding: half_even -- Sanity check dqpls001 plus +7.50 -> 7.50 -- Infinities dqpls011 plus Infinity -> Infinity dqpls012 plus -Infinity -> -Infinity -- NaNs, 0 payload ddqls021 plus NaN -> NaN ddqls022 plus -NaN -> -NaN ddqls023 plus sNaN -> NaN Invalid_operation ddqls024 plus -sNaN -> -NaN Invalid_operation -- NaNs, non-0 payload ddqls031 plus NaN13 -> NaN13 ddqls032 plus -NaN13 -> -NaN13 ddqls033 plus sNaN13 -> NaN13 Invalid_operation ddqls034 plus -sNaN13 -> -NaN13 Invalid_operation ddqls035 plus NaN70 -> NaN70 ddqls036 plus -NaN70 -> -NaN70 ddqls037 plus sNaN101 -> NaN101 Invalid_operation ddqls038 plus -sNaN101 -> -NaN101 Invalid_operation -- finites dqpls101 plus 7 -> 7 dqpls102 plus -7 -> -7 dqpls103 plus 75 -> 75 dqpls104 plus -75 -> -75 dqpls105 plus 7.50 -> 7.50 dqpls106 plus -7.50 -> -7.50 dqpls107 plus 7.500 -> 7.500 dqpls108 plus -7.500 -> -7.500 -- zeros dqpls111 plus 0 -> 0 dqpls112 plus -0 -> 0 dqpls113 plus 0E+4 -> 0E+4 dqpls114 plus -0E+4 -> 0E+4 dqpls115 plus 0.0000 -> 0.0000 dqpls116 plus -0.0000 -> 0.0000 dqpls117 plus 0E-141 -> 0E-141 dqpls118 plus -0E-141 -> 0E-141 -- full coefficients, alternating bits dqpls121 plus 2682682682682682682682682682682682 -> 2682682682682682682682682682682682 dqpls122 plus -2682682682682682682682682682682682 -> -2682682682682682682682682682682682 dqpls123 plus 1341341341341341341341341341341341 -> 1341341341341341341341341341341341 dqpls124 plus -1341341341341341341341341341341341 -> -1341341341341341341341341341341341 -- Nmax, Nmin, Ntiny dqpls131 plus 9.999999999999999999999999999999999E+6144 -> 9.999999999999999999999999999999999E+6144 dqpls132 plus 1E-6143 -> 1E-6143 dqpls133 plus 1.000000000000000000000000000000000E-6143 -> 1.000000000000000000000000000000000E-6143 dqpls134 plus 1E-6176 -> 1E-6176 Subnormal dqpls135 plus -1E-6176 -> -1E-6176 Subnormal dqpls136 plus -1.000000000000000000000000000000000E-6143 -> -1.000000000000000000000000000000000E-6143 dqpls137 plus -1E-6143 -> -1E-6143 dqpls138 plus -9.999999999999999999999999999999999E+6144 -> -9.999999999999999999999999999999999E+6144
4,024
89
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/clamp.decTest
------------------------------------------------------------------------ -- clamp.decTest -- clamped exponent tests (format-independent) -- -- Copyright (c) IBM Corporation, 2000, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 -- This set of tests uses the same limits as the 8-byte concrete -- representation, but applies clamping without using format-specific -- conversions. extended: 1 precision: 16 rounding: half_even maxExponent: 384 minExponent: -383 clamp: 1 -- General testcases -- Normality clam010 apply 1234567890123456 -> 1234567890123456 clam011 apply 1234567890123456.0 -> 1234567890123456 Rounded clam012 apply 1234567890123456.1 -> 1234567890123456 Rounded Inexact clam013 apply -1234567890123456 -> -1234567890123456 clam014 apply -1234567890123456.0 -> -1234567890123456 Rounded clam015 apply -1234567890123456.1 -> -1234567890123456 Rounded Inexact -- Nmax and similar clam022 apply 9.999999999999999E+384 -> 9.999999999999999E+384 clam024 apply 1.234567890123456E+384 -> 1.234567890123456E+384 -- fold-downs (more below) clam030 apply 1.23E+384 -> 1.230000000000000E+384 Clamped clam032 apply 1E+384 -> 1.000000000000000E+384 Clamped clam051 apply 12345 -> 12345 clam053 apply 1234 -> 1234 clam055 apply 123 -> 123 clam057 apply 12 -> 12 clam059 apply 1 -> 1 clam061 apply 1.23 -> 1.23 clam063 apply 123.45 -> 123.45 -- Nmin and below clam071 apply 1E-383 -> 1E-383 clam073 apply 1.000000000000000E-383 -> 1.000000000000000E-383 clam075 apply 1.000000000000001E-383 -> 1.000000000000001E-383 clam077 apply 0.100000000000000E-383 -> 1.00000000000000E-384 Subnormal clam079 apply 0.000000000000010E-383 -> 1.0E-397 Subnormal clam081 apply 0.00000000000001E-383 -> 1E-397 Subnormal clam083 apply 0.000000000000001E-383 -> 1E-398 Subnormal -- underflows clam090 apply 1e-398 -> #0000000000000001 Subnormal clam091 apply 1.9e-398 -> #0000000000000002 Subnormal Underflow Inexact Rounded clam092 apply 1.1e-398 -> #0000000000000001 Subnormal Underflow Inexact Rounded clam093 apply 1.00000000001e-398 -> #0000000000000001 Subnormal Underflow Inexact Rounded clam094 apply 1.00000000000001e-398 -> #0000000000000001 Subnormal Underflow Inexact Rounded clam095 apply 1.000000000000001e-398 -> #0000000000000001 Subnormal Underflow Inexact Rounded clam096 apply 0.1e-398 -> #0000000000000000 Subnormal Underflow Inexact Rounded Clamped clam097 apply 0.00000000001e-398 -> #0000000000000000 Subnormal Underflow Inexact Rounded Clamped clam098 apply 0.00000000000001e-398 -> #0000000000000000 Subnormal Underflow Inexact Rounded Clamped clam099 apply 0.000000000000001e-398 -> #0000000000000000 Subnormal Underflow Inexact Rounded Clamped -- Same again, negatives -- Nmax and similar clam122 apply -9.999999999999999E+384 -> -9.999999999999999E+384 clam124 apply -1.234567890123456E+384 -> -1.234567890123456E+384 -- fold-downs (more below) clam130 apply -1.23E+384 -> -1.230000000000000E+384 Clamped clam132 apply -1E+384 -> -1.000000000000000E+384 Clamped clam151 apply -12345 -> -12345 clam153 apply -1234 -> -1234 clam155 apply -123 -> -123 clam157 apply -12 -> -12 clam159 apply -1 -> -1 clam161 apply -1.23 -> -1.23 clam163 apply -123.45 -> -123.45 -- Nmin and below clam171 apply -1E-383 -> -1E-383 clam173 apply -1.000000000000000E-383 -> -1.000000000000000E-383 clam175 apply -1.000000000000001E-383 -> -1.000000000000001E-383 clam177 apply -0.100000000000000E-383 -> -1.00000000000000E-384 Subnormal clam179 apply -0.000000000000010E-383 -> -1.0E-397 Subnormal clam181 apply -0.00000000000001E-383 -> -1E-397 Subnormal clam183 apply -0.000000000000001E-383 -> -1E-398 Subnormal -- underflows clam189 apply -1e-398 -> #8000000000000001 Subnormal clam190 apply -1.0e-398 -> #8000000000000001 Subnormal Rounded clam191 apply -1.9e-398 -> #8000000000000002 Subnormal Underflow Inexact Rounded clam192 apply -1.1e-398 -> #8000000000000001 Subnormal Underflow Inexact Rounded clam193 apply -1.00000000001e-398 -> #8000000000000001 Subnormal Underflow Inexact Rounded clam194 apply -1.00000000000001e-398 -> #8000000000000001 Subnormal Underflow Inexact Rounded clam195 apply -1.000000000000001e-398 -> #8000000000000001 Subnormal Underflow Inexact Rounded clam196 apply -0.1e-398 -> #8000000000000000 Subnormal Underflow Inexact Rounded Clamped clam197 apply -0.00000000001e-398 -> #8000000000000000 Subnormal Underflow Inexact Rounded Clamped clam198 apply -0.00000000000001e-398 -> #8000000000000000 Subnormal Underflow Inexact Rounded Clamped clam199 apply -0.000000000000001e-398 -> #8000000000000000 Subnormal Underflow Inexact Rounded Clamped -- zeros clam401 apply 0E-500 -> 0E-398 Clamped clam402 apply 0E-400 -> 0E-398 Clamped clam403 apply 0E-398 -> 0E-398 clam404 apply 0.000000000000000E-383 -> 0E-398 clam405 apply 0E-2 -> 0.00 clam406 apply 0 -> 0 clam407 apply 0E+3 -> 0E+3 clam408 apply 0E+369 -> 0E+369 -- clamped zeros... clam410 apply 0E+370 -> 0E+369 Clamped clam411 apply 0E+384 -> 0E+369 Clamped clam412 apply 0E+400 -> 0E+369 Clamped clam413 apply 0E+500 -> 0E+369 Clamped -- negative zeros clam420 apply -0E-500 -> -0E-398 Clamped clam421 apply -0E-400 -> -0E-398 Clamped clam422 apply -0E-398 -> -0E-398 clam423 apply -0.000000000000000E-383 -> -0E-398 clam424 apply -0E-2 -> -0.00 clam425 apply -0 -> -0 clam426 apply -0E+3 -> -0E+3 clam427 apply -0E+369 -> -0E+369 -- clamped zeros... clam431 apply -0E+370 -> -0E+369 Clamped clam432 apply -0E+384 -> -0E+369 Clamped clam433 apply -0E+400 -> -0E+369 Clamped clam434 apply -0E+500 -> -0E+369 Clamped -- fold-down full sequence clam601 apply 1E+384 -> 1.000000000000000E+384 Clamped clam603 apply 1E+383 -> 1.00000000000000E+383 Clamped clam605 apply 1E+382 -> 1.0000000000000E+382 Clamped clam607 apply 1E+381 -> 1.000000000000E+381 Clamped clam609 apply 1E+380 -> 1.00000000000E+380 Clamped clam611 apply 1E+379 -> 1.0000000000E+379 Clamped clam613 apply 1E+378 -> 1.000000000E+378 Clamped clam615 apply 1E+377 -> 1.00000000E+377 Clamped clam617 apply 1E+376 -> 1.0000000E+376 Clamped clam619 apply 1E+375 -> 1.000000E+375 Clamped clam621 apply 1E+374 -> 1.00000E+374 Clamped clam623 apply 1E+373 -> 1.0000E+373 Clamped clam625 apply 1E+372 -> 1.000E+372 Clamped clam627 apply 1E+371 -> 1.00E+371 Clamped clam629 apply 1E+370 -> 1.0E+370 Clamped clam631 apply 1E+369 -> 1E+369 clam633 apply 1E+368 -> 1E+368 -- same with 9s clam641 apply 9E+384 -> 9.000000000000000E+384 Clamped clam643 apply 9E+383 -> 9.00000000000000E+383 Clamped clam645 apply 9E+382 -> 9.0000000000000E+382 Clamped clam647 apply 9E+381 -> 9.000000000000E+381 Clamped clam649 apply 9E+380 -> 9.00000000000E+380 Clamped clam651 apply 9E+379 -> 9.0000000000E+379 Clamped clam653 apply 9E+378 -> 9.000000000E+378 Clamped clam655 apply 9E+377 -> 9.00000000E+377 Clamped clam657 apply 9E+376 -> 9.0000000E+376 Clamped clam659 apply 9E+375 -> 9.000000E+375 Clamped clam661 apply 9E+374 -> 9.00000E+374 Clamped clam663 apply 9E+373 -> 9.0000E+373 Clamped clam665 apply 9E+372 -> 9.000E+372 Clamped clam667 apply 9E+371 -> 9.00E+371 Clamped clam669 apply 9E+370 -> 9.0E+370 Clamped clam671 apply 9E+369 -> 9E+369 clam673 apply 9E+368 -> 9E+368 -- subnormals clamped to 0-Etiny precision: 16 maxExponent: 384 minExponent: -383 clam681 apply 7E-398 -> 7E-398 Subnormal clam682 apply 0E-398 -> 0E-398 clam683 apply 7E-399 -> 1E-398 Subnormal Underflow Inexact Rounded clam684 apply 4E-399 -> 0E-398 Clamped Subnormal Underflow Inexact Rounded clam685 apply 7E-400 -> 0E-398 Clamped Subnormal Underflow Inexact Rounded clam686 apply 7E-401 -> 0E-398 Clamped Subnormal Underflow Inexact Rounded clam687 apply 0E-399 -> 0E-398 Clamped clam688 apply 0E-400 -> 0E-398 Clamped clam689 apply 0E-401 -> 0E-398 Clamped -- example from documentation precision: 7 rounding: half_even maxExponent: +96 minExponent: -95 clamp: 0 clam700 apply 1.23E+96 -> 1.23E+96 clamp: 1 clam701 apply 1.23E+96 -> 1.230000E+96 Clamped
11,009
212
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/or.decTest
------------------------------------------------------------------------ -- or.decTest -- digitwise logical OR -- -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 extended: 1 precision: 9 rounding: half_up maxExponent: 999 minExponent: -999 -- Sanity check (truth table) orx001 or 0 0 -> 0 orx002 or 0 1 -> 1 orx003 or 1 0 -> 1 orx004 or 1 1 -> 1 orx005 or 1100 1010 -> 1110 -- and at msd and msd-1 orx006 or 000000000 000000000 -> 0 orx007 or 000000000 100000000 -> 100000000 orx008 or 100000000 000000000 -> 100000000 orx009 or 100000000 100000000 -> 100000000 orx010 or 000000000 000000000 -> 0 orx011 or 000000000 010000000 -> 10000000 orx012 or 010000000 000000000 -> 10000000 orx013 or 010000000 010000000 -> 10000000 -- Various lengths -- 123456789 123456789 123456789 orx021 or 111111111 111111111 -> 111111111 orx022 or 111111111111 111111111 -> 111111111 orx023 or 11111111 11111111 -> 11111111 orx025 or 1111111 1111111 -> 1111111 orx026 or 111111 111111 -> 111111 orx027 or 11111 11111 -> 11111 orx028 or 1111 1111 -> 1111 orx029 or 111 111 -> 111 orx031 or 11 11 -> 11 orx032 or 1 1 -> 1 orx033 or 111111111111 1111111111 -> 111111111 orx034 or 11111111111 11111111111 -> 111111111 orx035 or 1111111111 111111111111 -> 111111111 orx036 or 111111111 1111111111111 -> 111111111 orx040 or 111111111 111111111111 -> 111111111 orx041 or 11111111 111111111111 -> 111111111 orx042 or 11111111 111111111 -> 111111111 orx043 or 1111111 100000010 -> 101111111 orx044 or 111111 100000100 -> 100111111 orx045 or 11111 100001000 -> 100011111 orx046 or 1111 100010000 -> 100011111 orx047 or 111 100100000 -> 100100111 orx048 or 11 101000000 -> 101000011 orx049 or 1 110000000 -> 110000001 orx050 or 1111111111 1 -> 111111111 orx051 or 111111111 1 -> 111111111 orx052 or 11111111 1 -> 11111111 orx053 or 1111111 1 -> 1111111 orx054 or 111111 1 -> 111111 orx055 or 11111 1 -> 11111 orx056 or 1111 1 -> 1111 orx057 or 111 1 -> 111 orx058 or 11 1 -> 11 orx059 or 1 1 -> 1 orx060 or 1111111111 0 -> 111111111 orx061 or 111111111 0 -> 111111111 orx062 or 11111111 0 -> 11111111 orx063 or 1111111 0 -> 1111111 orx064 or 111111 0 -> 111111 orx065 or 11111 0 -> 11111 orx066 or 1111 0 -> 1111 orx067 or 111 0 -> 111 orx068 or 11 0 -> 11 orx069 or 1 0 -> 1 orx070 or 1 1111111111 -> 111111111 orx071 or 1 111111111 -> 111111111 orx072 or 1 11111111 -> 11111111 orx073 or 1 1111111 -> 1111111 orx074 or 1 111111 -> 111111 orx075 or 1 11111 -> 11111 orx076 or 1 1111 -> 1111 orx077 or 1 111 -> 111 orx078 or 1 11 -> 11 orx079 or 1 1 -> 1 orx080 or 0 1111111111 -> 111111111 orx081 or 0 111111111 -> 111111111 orx082 or 0 11111111 -> 11111111 orx083 or 0 1111111 -> 1111111 orx084 or 0 111111 -> 111111 orx085 or 0 11111 -> 11111 orx086 or 0 1111 -> 1111 orx087 or 0 111 -> 111 orx088 or 0 11 -> 11 orx089 or 0 1 -> 1 orx090 or 011111111 111101111 -> 111111111 orx091 or 101111111 111101111 -> 111111111 orx092 or 110111111 111101111 -> 111111111 orx093 or 111011111 111101111 -> 111111111 orx094 or 111101111 111101111 -> 111101111 orx095 or 111110111 111101111 -> 111111111 orx096 or 111111011 111101111 -> 111111111 orx097 or 111111101 111101111 -> 111111111 orx098 or 111111110 111101111 -> 111111111 orx100 or 111101111 011111111 -> 111111111 orx101 or 111101111 101111111 -> 111111111 orx102 or 111101111 110111111 -> 111111111 orx103 or 111101111 111011111 -> 111111111 orx104 or 111101111 111101111 -> 111101111 orx105 or 111101111 111110111 -> 111111111 orx106 or 111101111 111111011 -> 111111111 orx107 or 111101111 111111101 -> 111111111 orx108 or 111101111 111111110 -> 111111111 -- non-0/1 should not be accepted, nor should signs orx220 or 111111112 111111111 -> NaN Invalid_operation orx221 or 333333333 333333333 -> NaN Invalid_operation orx222 or 555555555 555555555 -> NaN Invalid_operation orx223 or 777777777 777777777 -> NaN Invalid_operation orx224 or 999999999 999999999 -> NaN Invalid_operation orx225 or 222222222 999999999 -> NaN Invalid_operation orx226 or 444444444 999999999 -> NaN Invalid_operation orx227 or 666666666 999999999 -> NaN Invalid_operation orx228 or 888888888 999999999 -> NaN Invalid_operation orx229 or 999999999 222222222 -> NaN Invalid_operation orx230 or 999999999 444444444 -> NaN Invalid_operation orx231 or 999999999 666666666 -> NaN Invalid_operation orx232 or 999999999 888888888 -> NaN Invalid_operation -- a few randoms orx240 or 567468689 -934981942 -> NaN Invalid_operation orx241 or 567367689 934981942 -> NaN Invalid_operation orx242 or -631917772 -706014634 -> NaN Invalid_operation orx243 or -756253257 138579234 -> NaN Invalid_operation orx244 or 835590149 567435400 -> NaN Invalid_operation -- test MSD orx250 or 200000000 100000000 -> NaN Invalid_operation orx251 or 700000000 100000000 -> NaN Invalid_operation orx252 or 800000000 100000000 -> NaN Invalid_operation orx253 or 900000000 100000000 -> NaN Invalid_operation orx254 or 200000000 000000000 -> NaN Invalid_operation orx255 or 700000000 000000000 -> NaN Invalid_operation orx256 or 800000000 000000000 -> NaN Invalid_operation orx257 or 900000000 000000000 -> NaN Invalid_operation orx258 or 100000000 200000000 -> NaN Invalid_operation orx259 or 100000000 700000000 -> NaN Invalid_operation orx260 or 100000000 800000000 -> NaN Invalid_operation orx261 or 100000000 900000000 -> NaN Invalid_operation orx262 or 000000000 200000000 -> NaN Invalid_operation orx263 or 000000000 700000000 -> NaN Invalid_operation orx264 or 000000000 800000000 -> NaN Invalid_operation orx265 or 000000000 900000000 -> NaN Invalid_operation -- test MSD-1 orx270 or 020000000 100000000 -> NaN Invalid_operation orx271 or 070100000 100000000 -> NaN Invalid_operation orx272 or 080010000 100000001 -> NaN Invalid_operation orx273 or 090001000 100000010 -> NaN Invalid_operation orx274 or 100000100 020010100 -> NaN Invalid_operation orx275 or 100000000 070001000 -> NaN Invalid_operation orx276 or 100000010 080010100 -> NaN Invalid_operation orx277 or 100000000 090000010 -> NaN Invalid_operation -- test LSD orx280 or 001000002 100000000 -> NaN Invalid_operation orx281 or 000000007 100000000 -> NaN Invalid_operation orx282 or 000000008 100000000 -> NaN Invalid_operation orx283 or 000000009 100000000 -> NaN Invalid_operation orx284 or 100000000 000100002 -> NaN Invalid_operation orx285 or 100100000 001000007 -> NaN Invalid_operation orx286 or 100010000 010000008 -> NaN Invalid_operation orx287 or 100001000 100000009 -> NaN Invalid_operation -- test Middie orx288 or 001020000 100000000 -> NaN Invalid_operation orx289 or 000070001 100000000 -> NaN Invalid_operation orx290 or 000080000 100010000 -> NaN Invalid_operation orx291 or 000090000 100001000 -> NaN Invalid_operation orx292 or 100000010 000020100 -> NaN Invalid_operation orx293 or 100100000 000070010 -> NaN Invalid_operation orx294 or 100010100 000080001 -> NaN Invalid_operation orx295 or 100001000 000090000 -> NaN Invalid_operation -- signs orx296 or -100001000 -000000000 -> NaN Invalid_operation orx297 or -100001000 000010000 -> NaN Invalid_operation orx298 or 100001000 -000000000 -> NaN Invalid_operation orx299 or 100001000 000011000 -> 100011000 -- Nmax, Nmin, Ntiny orx331 or 2 9.99999999E+999 -> NaN Invalid_operation orx332 or 3 1E-999 -> NaN Invalid_operation orx333 or 4 1.00000000E-999 -> NaN Invalid_operation orx334 or 5 1E-1007 -> NaN Invalid_operation orx335 or 6 -1E-1007 -> NaN Invalid_operation orx336 or 7 -1.00000000E-999 -> NaN Invalid_operation orx337 or 8 -1E-999 -> NaN Invalid_operation orx338 or 9 -9.99999999E+999 -> NaN Invalid_operation orx341 or 9.99999999E+999 -18 -> NaN Invalid_operation orx342 or 1E-999 01 -> NaN Invalid_operation orx343 or 1.00000000E-999 -18 -> NaN Invalid_operation orx344 or 1E-1007 18 -> NaN Invalid_operation orx345 or -1E-1007 -10 -> NaN Invalid_operation orx346 or -1.00000000E-999 18 -> NaN Invalid_operation orx347 or -1E-999 10 -> NaN Invalid_operation orx348 or -9.99999999E+999 -18 -> NaN Invalid_operation -- A few other non-integers orx361 or 1.0 1 -> NaN Invalid_operation orx362 or 1E+1 1 -> NaN Invalid_operation orx363 or 0.0 1 -> NaN Invalid_operation orx364 or 0E+1 1 -> NaN Invalid_operation orx365 or 9.9 1 -> NaN Invalid_operation orx366 or 9E+1 1 -> NaN Invalid_operation orx371 or 0 1.0 -> NaN Invalid_operation orx372 or 0 1E+1 -> NaN Invalid_operation orx373 or 0 0.0 -> NaN Invalid_operation orx374 or 0 0E+1 -> NaN Invalid_operation orx375 or 0 9.9 -> NaN Invalid_operation orx376 or 0 9E+1 -> NaN Invalid_operation -- All Specials are in error orx780 or -Inf -Inf -> NaN Invalid_operation orx781 or -Inf -1000 -> NaN Invalid_operation orx782 or -Inf -1 -> NaN Invalid_operation orx783 or -Inf -0 -> NaN Invalid_operation orx784 or -Inf 0 -> NaN Invalid_operation orx785 or -Inf 1 -> NaN Invalid_operation orx786 or -Inf 1000 -> NaN Invalid_operation orx787 or -1000 -Inf -> NaN Invalid_operation orx788 or -Inf -Inf -> NaN Invalid_operation orx789 or -1 -Inf -> NaN Invalid_operation orx790 or -0 -Inf -> NaN Invalid_operation orx791 or 0 -Inf -> NaN Invalid_operation orx792 or 1 -Inf -> NaN Invalid_operation orx793 or 1000 -Inf -> NaN Invalid_operation orx794 or Inf -Inf -> NaN Invalid_operation orx800 or Inf -Inf -> NaN Invalid_operation orx801 or Inf -1000 -> NaN Invalid_operation orx802 or Inf -1 -> NaN Invalid_operation orx803 or Inf -0 -> NaN Invalid_operation orx804 or Inf 0 -> NaN Invalid_operation orx805 or Inf 1 -> NaN Invalid_operation orx806 or Inf 1000 -> NaN Invalid_operation orx807 or Inf Inf -> NaN Invalid_operation orx808 or -1000 Inf -> NaN Invalid_operation orx809 or -Inf Inf -> NaN Invalid_operation orx810 or -1 Inf -> NaN Invalid_operation orx811 or -0 Inf -> NaN Invalid_operation orx812 or 0 Inf -> NaN Invalid_operation orx813 or 1 Inf -> NaN Invalid_operation orx814 or 1000 Inf -> NaN Invalid_operation orx815 or Inf Inf -> NaN Invalid_operation orx821 or NaN -Inf -> NaN Invalid_operation orx822 or NaN -1000 -> NaN Invalid_operation orx823 or NaN -1 -> NaN Invalid_operation orx824 or NaN -0 -> NaN Invalid_operation orx825 or NaN 0 -> NaN Invalid_operation orx826 or NaN 1 -> NaN Invalid_operation orx827 or NaN 1000 -> NaN Invalid_operation orx828 or NaN Inf -> NaN Invalid_operation orx829 or NaN NaN -> NaN Invalid_operation orx830 or -Inf NaN -> NaN Invalid_operation orx831 or -1000 NaN -> NaN Invalid_operation orx832 or -1 NaN -> NaN Invalid_operation orx833 or -0 NaN -> NaN Invalid_operation orx834 or 0 NaN -> NaN Invalid_operation orx835 or 1 NaN -> NaN Invalid_operation orx836 or 1000 NaN -> NaN Invalid_operation orx837 or Inf NaN -> NaN Invalid_operation orx841 or sNaN -Inf -> NaN Invalid_operation orx842 or sNaN -1000 -> NaN Invalid_operation orx843 or sNaN -1 -> NaN Invalid_operation orx844 or sNaN -0 -> NaN Invalid_operation orx845 or sNaN 0 -> NaN Invalid_operation orx846 or sNaN 1 -> NaN Invalid_operation orx847 or sNaN 1000 -> NaN Invalid_operation orx848 or sNaN NaN -> NaN Invalid_operation orx849 or sNaN sNaN -> NaN Invalid_operation orx850 or NaN sNaN -> NaN Invalid_operation orx851 or -Inf sNaN -> NaN Invalid_operation orx852 or -1000 sNaN -> NaN Invalid_operation orx853 or -1 sNaN -> NaN Invalid_operation orx854 or -0 sNaN -> NaN Invalid_operation orx855 or 0 sNaN -> NaN Invalid_operation orx856 or 1 sNaN -> NaN Invalid_operation orx857 or 1000 sNaN -> NaN Invalid_operation orx858 or Inf sNaN -> NaN Invalid_operation orx859 or NaN sNaN -> NaN Invalid_operation -- propagating NaNs orx861 or NaN1 -Inf -> NaN Invalid_operation orx862 or +NaN2 -1000 -> NaN Invalid_operation orx863 or NaN3 1000 -> NaN Invalid_operation orx864 or NaN4 Inf -> NaN Invalid_operation orx865 or NaN5 +NaN6 -> NaN Invalid_operation orx866 or -Inf NaN7 -> NaN Invalid_operation orx867 or -1000 NaN8 -> NaN Invalid_operation orx868 or 1000 NaN9 -> NaN Invalid_operation orx869 or Inf +NaN10 -> NaN Invalid_operation orx871 or sNaN11 -Inf -> NaN Invalid_operation orx872 or sNaN12 -1000 -> NaN Invalid_operation orx873 or sNaN13 1000 -> NaN Invalid_operation orx874 or sNaN14 NaN17 -> NaN Invalid_operation orx875 or sNaN15 sNaN18 -> NaN Invalid_operation orx876 or NaN16 sNaN19 -> NaN Invalid_operation orx877 or -Inf +sNaN20 -> NaN Invalid_operation orx878 or -1000 sNaN21 -> NaN Invalid_operation orx879 or 1000 sNaN22 -> NaN Invalid_operation orx880 or Inf sNaN23 -> NaN Invalid_operation orx881 or +NaN25 +sNaN24 -> NaN Invalid_operation orx882 or -NaN26 NaN28 -> NaN Invalid_operation orx883 or -sNaN27 sNaN29 -> NaN Invalid_operation orx884 or 1000 -NaN30 -> NaN Invalid_operation orx885 or 1000 -sNaN31 -> NaN Invalid_operation
15,523
335
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/ddMinus.decTest
------------------------------------------------------------------------ -- ddMinus.decTest -- decDouble 0-x -- -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 -- All operands and results are decDoubles. precision: 16 maxExponent: 384 minExponent: -383 extended: 1 clamp: 1 rounding: half_even -- Sanity check ddmns001 minus +7.50 -> -7.50 -- Infinities ddmns011 minus Infinity -> -Infinity ddmns012 minus -Infinity -> Infinity -- NaNs, 0 payload ddmns021 minus NaN -> NaN ddmns022 minus -NaN -> -NaN ddmns023 minus sNaN -> NaN Invalid_operation ddmns024 minus -sNaN -> -NaN Invalid_operation -- NaNs, non-0 payload ddmns031 minus NaN13 -> NaN13 ddmns032 minus -NaN13 -> -NaN13 ddmns033 minus sNaN13 -> NaN13 Invalid_operation ddmns034 minus -sNaN13 -> -NaN13 Invalid_operation ddmns035 minus NaN70 -> NaN70 ddmns036 minus -NaN70 -> -NaN70 ddmns037 minus sNaN101 -> NaN101 Invalid_operation ddmns038 minus -sNaN101 -> -NaN101 Invalid_operation -- finites ddmns101 minus 7 -> -7 ddmns102 minus -7 -> 7 ddmns103 minus 75 -> -75 ddmns104 minus -75 -> 75 ddmns105 minus 7.50 -> -7.50 ddmns106 minus -7.50 -> 7.50 ddmns107 minus 7.500 -> -7.500 ddmns108 minus -7.500 -> 7.500 -- zeros ddmns111 minus 0 -> 0 ddmns112 minus -0 -> 0 ddmns113 minus 0E+4 -> 0E+4 ddmns114 minus -0E+4 -> 0E+4 ddmns115 minus 0.0000 -> 0.0000 ddmns116 minus -0.0000 -> 0.0000 ddmns117 minus 0E-141 -> 0E-141 ddmns118 minus -0E-141 -> 0E-141 -- full coefficients, alternating bits ddmns121 minus 2682682682682682 -> -2682682682682682 ddmns122 minus -2682682682682682 -> 2682682682682682 ddmns123 minus 1341341341341341 -> -1341341341341341 ddmns124 minus -1341341341341341 -> 1341341341341341 -- Nmax, Nmin, Ntiny ddmns131 minus 9.999999999999999E+384 -> -9.999999999999999E+384 ddmns132 minus 1E-383 -> -1E-383 ddmns133 minus 1.000000000000000E-383 -> -1.000000000000000E-383 ddmns134 minus 1E-398 -> -1E-398 Subnormal ddmns135 minus -1E-398 -> 1E-398 Subnormal ddmns136 minus -1.000000000000000E-383 -> 1.000000000000000E-383 ddmns137 minus -1E-383 -> 1E-383 ddmns138 minus -9.999999999999999E+384 -> 9.999999999999999E+384
3,702
89
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/quantize.decTest
------------------------------------------------------------------------ -- quantize.decTest -- decimal quantize operation -- -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 -- Most of the tests here assume a "regular pattern", where the -- sign and coefficient are +1. -- 2004.03.15 Underflow for quantize is suppressed -- 2005.06.08 More extensive tests for 'does not fit' extended: 1 precision: 9 rounding: half_up maxExponent: 999 minexponent: -999 -- sanity checks quax001 quantize 0 1e0 -> 0 quax002 quantize 1 1e0 -> 1 quax003 quantize 0.1 1e+2 -> 0E+2 Inexact Rounded quax005 quantize 0.1 1e+1 -> 0E+1 Inexact Rounded quax006 quantize 0.1 1e0 -> 0 Inexact Rounded quax007 quantize 0.1 1e-1 -> 0.1 quax008 quantize 0.1 1e-2 -> 0.10 quax009 quantize 0.1 1e-3 -> 0.100 quax010 quantize 0.9 1e+2 -> 0E+2 Inexact Rounded quax011 quantize 0.9 1e+1 -> 0E+1 Inexact Rounded quax012 quantize 0.9 1e+0 -> 1 Inexact Rounded quax013 quantize 0.9 1e-1 -> 0.9 quax014 quantize 0.9 1e-2 -> 0.90 quax015 quantize 0.9 1e-3 -> 0.900 -- negatives quax021 quantize -0 1e0 -> -0 quax022 quantize -1 1e0 -> -1 quax023 quantize -0.1 1e+2 -> -0E+2 Inexact Rounded quax025 quantize -0.1 1e+1 -> -0E+1 Inexact Rounded quax026 quantize -0.1 1e0 -> -0 Inexact Rounded quax027 quantize -0.1 1e-1 -> -0.1 quax028 quantize -0.1 1e-2 -> -0.10 quax029 quantize -0.1 1e-3 -> -0.100 quax030 quantize -0.9 1e+2 -> -0E+2 Inexact Rounded quax031 quantize -0.9 1e+1 -> -0E+1 Inexact Rounded quax032 quantize -0.9 1e+0 -> -1 Inexact Rounded quax033 quantize -0.9 1e-1 -> -0.9 quax034 quantize -0.9 1e-2 -> -0.90 quax035 quantize -0.9 1e-3 -> -0.900 quax036 quantize -0.5 1e+2 -> -0E+2 Inexact Rounded quax037 quantize -0.5 1e+1 -> -0E+1 Inexact Rounded quax038 quantize -0.5 1e+0 -> -1 Inexact Rounded quax039 quantize -0.5 1e-1 -> -0.5 quax040 quantize -0.5 1e-2 -> -0.50 quax041 quantize -0.5 1e-3 -> -0.500 quax042 quantize -0.9 1e+2 -> -0E+2 Inexact Rounded quax043 quantize -0.9 1e+1 -> -0E+1 Inexact Rounded quax044 quantize -0.9 1e+0 -> -1 Inexact Rounded quax045 quantize -0.9 1e-1 -> -0.9 quax046 quantize -0.9 1e-2 -> -0.90 quax047 quantize -0.9 1e-3 -> -0.900 -- examples from Specification quax060 quantize 2.17 0.001 -> 2.170 quax061 quantize 2.17 0.01 -> 2.17 quax062 quantize 2.17 0.1 -> 2.2 Inexact Rounded quax063 quantize 2.17 1e+0 -> 2 Inexact Rounded quax064 quantize 2.17 1e+1 -> 0E+1 Inexact Rounded quax065 quantize -Inf Inf -> -Infinity quax066 quantize 2 Inf -> NaN Invalid_operation quax067 quantize -0.1 1 -> -0 Inexact Rounded quax068 quantize -0 1e+5 -> -0E+5 quax069 quantize +35236450.6 1e-2 -> NaN Invalid_operation quax070 quantize -35236450.6 1e-2 -> NaN Invalid_operation quax071 quantize 217 1e-1 -> 217.0 quax072 quantize 217 1e+0 -> 217 quax073 quantize 217 1e+1 -> 2.2E+2 Inexact Rounded quax074 quantize 217 1e+2 -> 2E+2 Inexact Rounded -- general tests .. quax089 quantize 12 1e+4 -> 0E+4 Inexact Rounded quax090 quantize 12 1e+3 -> 0E+3 Inexact Rounded quax091 quantize 12 1e+2 -> 0E+2 Inexact Rounded quax092 quantize 12 1e+1 -> 1E+1 Inexact Rounded quax093 quantize 1.2345 1e-2 -> 1.23 Inexact Rounded quax094 quantize 1.2355 1e-2 -> 1.24 Inexact Rounded quax095 quantize 1.2345 1e-6 -> 1.234500 quax096 quantize 9.9999 1e-2 -> 10.00 Inexact Rounded quax097 quantize 0.0001 1e-2 -> 0.00 Inexact Rounded quax098 quantize 0.001 1e-2 -> 0.00 Inexact Rounded quax099 quantize 0.009 1e-2 -> 0.01 Inexact Rounded quax100 quantize 92 1e+2 -> 1E+2 Inexact Rounded quax101 quantize -1 1e0 -> -1 quax102 quantize -1 1e-1 -> -1.0 quax103 quantize -1 1e-2 -> -1.00 quax104 quantize 0 1e0 -> 0 quax105 quantize 0 1e-1 -> 0.0 quax106 quantize 0 1e-2 -> 0.00 quax107 quantize 0.00 1e0 -> 0 quax108 quantize 0 1e+1 -> 0E+1 quax109 quantize 0 1e+2 -> 0E+2 quax110 quantize +1 1e0 -> 1 quax111 quantize +1 1e-1 -> 1.0 quax112 quantize +1 1e-2 -> 1.00 quax120 quantize 1.04 1e-3 -> 1.040 quax121 quantize 1.04 1e-2 -> 1.04 quax122 quantize 1.04 1e-1 -> 1.0 Inexact Rounded quax123 quantize 1.04 1e0 -> 1 Inexact Rounded quax124 quantize 1.05 1e-3 -> 1.050 quax125 quantize 1.05 1e-2 -> 1.05 quax126 quantize 1.05 1e-1 -> 1.1 Inexact Rounded quax131 quantize 1.05 1e0 -> 1 Inexact Rounded quax132 quantize 1.06 1e-3 -> 1.060 quax133 quantize 1.06 1e-2 -> 1.06 quax134 quantize 1.06 1e-1 -> 1.1 Inexact Rounded quax135 quantize 1.06 1e0 -> 1 Inexact Rounded quax140 quantize -10 1e-2 -> -10.00 quax141 quantize +1 1e-2 -> 1.00 quax142 quantize +10 1e-2 -> 10.00 quax143 quantize 1E+10 1e-2 -> NaN Invalid_operation quax144 quantize 1E-10 1e-2 -> 0.00 Inexact Rounded quax145 quantize 1E-3 1e-2 -> 0.00 Inexact Rounded quax146 quantize 1E-2 1e-2 -> 0.01 quax147 quantize 1E-1 1e-2 -> 0.10 quax148 quantize 0E-10 1e-2 -> 0.00 quax150 quantize 1.0600 1e-5 -> 1.06000 quax151 quantize 1.0600 1e-4 -> 1.0600 quax152 quantize 1.0600 1e-3 -> 1.060 Rounded quax153 quantize 1.0600 1e-2 -> 1.06 Rounded quax154 quantize 1.0600 1e-1 -> 1.1 Inexact Rounded quax155 quantize 1.0600 1e0 -> 1 Inexact Rounded -- base tests with non-1 coefficients quax161 quantize 0 -9e0 -> 0 quax162 quantize 1 -7e0 -> 1 quax163 quantize 0.1 -1e+2 -> 0E+2 Inexact Rounded quax165 quantize 0.1 0e+1 -> 0E+1 Inexact Rounded quax166 quantize 0.1 2e0 -> 0 Inexact Rounded quax167 quantize 0.1 3e-1 -> 0.1 quax168 quantize 0.1 44e-2 -> 0.10 quax169 quantize 0.1 555e-3 -> 0.100 quax170 quantize 0.9 6666e+2 -> 0E+2 Inexact Rounded quax171 quantize 0.9 -777e+1 -> 0E+1 Inexact Rounded quax172 quantize 0.9 -88e+0 -> 1 Inexact Rounded quax173 quantize 0.9 -9e-1 -> 0.9 quax174 quantize 0.9 0e-2 -> 0.90 quax175 quantize 0.9 1.1e-3 -> 0.9000 -- negatives quax181 quantize -0 1.1e0 -> -0.0 quax182 quantize -1 -1e0 -> -1 quax183 quantize -0.1 11e+2 -> -0E+2 Inexact Rounded quax185 quantize -0.1 111e+1 -> -0E+1 Inexact Rounded quax186 quantize -0.1 71e0 -> -0 Inexact Rounded quax187 quantize -0.1 -91e-1 -> -0.1 quax188 quantize -0.1 -.1e-2 -> -0.100 quax189 quantize -0.1 -1e-3 -> -0.100 quax190 quantize -0.9 0e+2 -> -0E+2 Inexact Rounded quax191 quantize -0.9 -0e+1 -> -0E+1 Inexact Rounded quax192 quantize -0.9 -10e+0 -> -1 Inexact Rounded quax193 quantize -0.9 100e-1 -> -0.9 quax194 quantize -0.9 999e-2 -> -0.90 -- +ve exponents .. quax201 quantize -1 1e+0 -> -1 quax202 quantize -1 1e+1 -> -0E+1 Inexact Rounded quax203 quantize -1 1e+2 -> -0E+2 Inexact Rounded quax204 quantize 0 1e+0 -> 0 quax205 quantize 0 1e+1 -> 0E+1 quax206 quantize 0 1e+2 -> 0E+2 quax207 quantize +1 1e+0 -> 1 quax208 quantize +1 1e+1 -> 0E+1 Inexact Rounded quax209 quantize +1 1e+2 -> 0E+2 Inexact Rounded quax220 quantize 1.04 1e+3 -> 0E+3 Inexact Rounded quax221 quantize 1.04 1e+2 -> 0E+2 Inexact Rounded quax222 quantize 1.04 1e+1 -> 0E+1 Inexact Rounded quax223 quantize 1.04 1e+0 -> 1 Inexact Rounded quax224 quantize 1.05 1e+3 -> 0E+3 Inexact Rounded quax225 quantize 1.05 1e+2 -> 0E+2 Inexact Rounded quax226 quantize 1.05 1e+1 -> 0E+1 Inexact Rounded quax227 quantize 1.05 1e+0 -> 1 Inexact Rounded quax228 quantize 1.05 1e+3 -> 0E+3 Inexact Rounded quax229 quantize 1.05 1e+2 -> 0E+2 Inexact Rounded quax230 quantize 1.05 1e+1 -> 0E+1 Inexact Rounded quax231 quantize 1.05 1e+0 -> 1 Inexact Rounded quax232 quantize 1.06 1e+3 -> 0E+3 Inexact Rounded quax233 quantize 1.06 1e+2 -> 0E+2 Inexact Rounded quax234 quantize 1.06 1e+1 -> 0E+1 Inexact Rounded quax235 quantize 1.06 1e+0 -> 1 Inexact Rounded quax240 quantize -10 1e+1 -> -1E+1 Rounded quax241 quantize +1 1e+1 -> 0E+1 Inexact Rounded quax242 quantize +10 1e+1 -> 1E+1 Rounded quax243 quantize 1E+1 1e+1 -> 1E+1 -- underneath this is E+1 quax244 quantize 1E+2 1e+1 -> 1.0E+2 -- underneath this is E+1 quax245 quantize 1E+3 1e+1 -> 1.00E+3 -- underneath this is E+1 quax246 quantize 1E+4 1e+1 -> 1.000E+4 -- underneath this is E+1 quax247 quantize 1E+5 1e+1 -> 1.0000E+5 -- underneath this is E+1 quax248 quantize 1E+6 1e+1 -> 1.00000E+6 -- underneath this is E+1 quax249 quantize 1E+7 1e+1 -> 1.000000E+7 -- underneath this is E+1 quax250 quantize 1E+8 1e+1 -> 1.0000000E+8 -- underneath this is E+1 quax251 quantize 1E+9 1e+1 -> 1.00000000E+9 -- underneath this is E+1 -- next one tries to add 9 zeros quax252 quantize 1E+10 1e+1 -> NaN Invalid_operation quax253 quantize 1E-10 1e+1 -> 0E+1 Inexact Rounded quax254 quantize 1E-2 1e+1 -> 0E+1 Inexact Rounded quax255 quantize 0E-10 1e+1 -> 0E+1 quax256 quantize -0E-10 1e+1 -> -0E+1 quax257 quantize -0E-1 1e+1 -> -0E+1 quax258 quantize -0 1e+1 -> -0E+1 quax259 quantize -0E+1 1e+1 -> -0E+1 quax260 quantize -10 1e+2 -> -0E+2 Inexact Rounded quax261 quantize +1 1e+2 -> 0E+2 Inexact Rounded quax262 quantize +10 1e+2 -> 0E+2 Inexact Rounded quax263 quantize 1E+1 1e+2 -> 0E+2 Inexact Rounded quax264 quantize 1E+2 1e+2 -> 1E+2 quax265 quantize 1E+3 1e+2 -> 1.0E+3 quax266 quantize 1E+4 1e+2 -> 1.00E+4 quax267 quantize 1E+5 1e+2 -> 1.000E+5 quax268 quantize 1E+6 1e+2 -> 1.0000E+6 quax269 quantize 1E+7 1e+2 -> 1.00000E+7 quax270 quantize 1E+8 1e+2 -> 1.000000E+8 quax271 quantize 1E+9 1e+2 -> 1.0000000E+9 quax272 quantize 1E+10 1e+2 -> 1.00000000E+10 quax273 quantize 1E-10 1e+2 -> 0E+2 Inexact Rounded quax274 quantize 1E-2 1e+2 -> 0E+2 Inexact Rounded quax275 quantize 0E-10 1e+2 -> 0E+2 quax280 quantize -10 1e+3 -> -0E+3 Inexact Rounded quax281 quantize +1 1e+3 -> 0E+3 Inexact Rounded quax282 quantize +10 1e+3 -> 0E+3 Inexact Rounded quax283 quantize 1E+1 1e+3 -> 0E+3 Inexact Rounded quax284 quantize 1E+2 1e+3 -> 0E+3 Inexact Rounded quax285 quantize 1E+3 1e+3 -> 1E+3 quax286 quantize 1E+4 1e+3 -> 1.0E+4 quax287 quantize 1E+5 1e+3 -> 1.00E+5 quax288 quantize 1E+6 1e+3 -> 1.000E+6 quax289 quantize 1E+7 1e+3 -> 1.0000E+7 quax290 quantize 1E+8 1e+3 -> 1.00000E+8 quax291 quantize 1E+9 1e+3 -> 1.000000E+9 quax292 quantize 1E+10 1e+3 -> 1.0000000E+10 quax293 quantize 1E-10 1e+3 -> 0E+3 Inexact Rounded quax294 quantize 1E-2 1e+3 -> 0E+3 Inexact Rounded quax295 quantize 0E-10 1e+3 -> 0E+3 -- round up from below [sign wrong in JIT compiler once] quax300 quantize 0.0078 1e-5 -> 0.00780 quax301 quantize 0.0078 1e-4 -> 0.0078 quax302 quantize 0.0078 1e-3 -> 0.008 Inexact Rounded quax303 quantize 0.0078 1e-2 -> 0.01 Inexact Rounded quax304 quantize 0.0078 1e-1 -> 0.0 Inexact Rounded quax305 quantize 0.0078 1e0 -> 0 Inexact Rounded quax306 quantize 0.0078 1e+1 -> 0E+1 Inexact Rounded quax307 quantize 0.0078 1e+2 -> 0E+2 Inexact Rounded quax310 quantize -0.0078 1e-5 -> -0.00780 quax311 quantize -0.0078 1e-4 -> -0.0078 quax312 quantize -0.0078 1e-3 -> -0.008 Inexact Rounded quax313 quantize -0.0078 1e-2 -> -0.01 Inexact Rounded quax314 quantize -0.0078 1e-1 -> -0.0 Inexact Rounded quax315 quantize -0.0078 1e0 -> -0 Inexact Rounded quax316 quantize -0.0078 1e+1 -> -0E+1 Inexact Rounded quax317 quantize -0.0078 1e+2 -> -0E+2 Inexact Rounded quax320 quantize 0.078 1e-5 -> 0.07800 quax321 quantize 0.078 1e-4 -> 0.0780 quax322 quantize 0.078 1e-3 -> 0.078 quax323 quantize 0.078 1e-2 -> 0.08 Inexact Rounded quax324 quantize 0.078 1e-1 -> 0.1 Inexact Rounded quax325 quantize 0.078 1e0 -> 0 Inexact Rounded quax326 quantize 0.078 1e+1 -> 0E+1 Inexact Rounded quax327 quantize 0.078 1e+2 -> 0E+2 Inexact Rounded quax330 quantize -0.078 1e-5 -> -0.07800 quax331 quantize -0.078 1e-4 -> -0.0780 quax332 quantize -0.078 1e-3 -> -0.078 quax333 quantize -0.078 1e-2 -> -0.08 Inexact Rounded quax334 quantize -0.078 1e-1 -> -0.1 Inexact Rounded quax335 quantize -0.078 1e0 -> -0 Inexact Rounded quax336 quantize -0.078 1e+1 -> -0E+1 Inexact Rounded quax337 quantize -0.078 1e+2 -> -0E+2 Inexact Rounded quax340 quantize 0.78 1e-5 -> 0.78000 quax341 quantize 0.78 1e-4 -> 0.7800 quax342 quantize 0.78 1e-3 -> 0.780 quax343 quantize 0.78 1e-2 -> 0.78 quax344 quantize 0.78 1e-1 -> 0.8 Inexact Rounded quax345 quantize 0.78 1e0 -> 1 Inexact Rounded quax346 quantize 0.78 1e+1 -> 0E+1 Inexact Rounded quax347 quantize 0.78 1e+2 -> 0E+2 Inexact Rounded quax350 quantize -0.78 1e-5 -> -0.78000 quax351 quantize -0.78 1e-4 -> -0.7800 quax352 quantize -0.78 1e-3 -> -0.780 quax353 quantize -0.78 1e-2 -> -0.78 quax354 quantize -0.78 1e-1 -> -0.8 Inexact Rounded quax355 quantize -0.78 1e0 -> -1 Inexact Rounded quax356 quantize -0.78 1e+1 -> -0E+1 Inexact Rounded quax357 quantize -0.78 1e+2 -> -0E+2 Inexact Rounded quax360 quantize 7.8 1e-5 -> 7.80000 quax361 quantize 7.8 1e-4 -> 7.8000 quax362 quantize 7.8 1e-3 -> 7.800 quax363 quantize 7.8 1e-2 -> 7.80 quax364 quantize 7.8 1e-1 -> 7.8 quax365 quantize 7.8 1e0 -> 8 Inexact Rounded quax366 quantize 7.8 1e+1 -> 1E+1 Inexact Rounded quax367 quantize 7.8 1e+2 -> 0E+2 Inexact Rounded quax368 quantize 7.8 1e+3 -> 0E+3 Inexact Rounded quax370 quantize -7.8 1e-5 -> -7.80000 quax371 quantize -7.8 1e-4 -> -7.8000 quax372 quantize -7.8 1e-3 -> -7.800 quax373 quantize -7.8 1e-2 -> -7.80 quax374 quantize -7.8 1e-1 -> -7.8 quax375 quantize -7.8 1e0 -> -8 Inexact Rounded quax376 quantize -7.8 1e+1 -> -1E+1 Inexact Rounded quax377 quantize -7.8 1e+2 -> -0E+2 Inexact Rounded quax378 quantize -7.8 1e+3 -> -0E+3 Inexact Rounded -- some individuals precision: 9 quax380 quantize 352364.506 1e-2 -> 352364.51 Inexact Rounded quax381 quantize 3523645.06 1e-2 -> 3523645.06 quax382 quantize 35236450.6 1e-2 -> NaN Invalid_operation quax383 quantize 352364506 1e-2 -> NaN Invalid_operation quax384 quantize -352364.506 1e-2 -> -352364.51 Inexact Rounded quax385 quantize -3523645.06 1e-2 -> -3523645.06 quax386 quantize -35236450.6 1e-2 -> NaN Invalid_operation quax387 quantize -352364506 1e-2 -> NaN Invalid_operation rounding: down quax389 quantize 35236450.6 1e-2 -> NaN Invalid_operation -- ? should that one instead have been: -- quax389 quantize 35236450.6 1e-2 -> NaN Invalid_operation rounding: half_up -- and a few more from e-mail discussions precision: 7 quax391 quantize 12.34567 1e-3 -> 12.346 Inexact Rounded quax392 quantize 123.4567 1e-3 -> 123.457 Inexact Rounded quax393 quantize 1234.567 1e-3 -> 1234.567 quax394 quantize 12345.67 1e-3 -> NaN Invalid_operation quax395 quantize 123456.7 1e-3 -> NaN Invalid_operation quax396 quantize 1234567. 1e-3 -> NaN Invalid_operation -- some 9999 round-up cases precision: 9 quax400 quantize 9.999 1e-5 -> 9.99900 quax401 quantize 9.999 1e-4 -> 9.9990 quax402 quantize 9.999 1e-3 -> 9.999 quax403 quantize 9.999 1e-2 -> 10.00 Inexact Rounded quax404 quantize 9.999 1e-1 -> 10.0 Inexact Rounded quax405 quantize 9.999 1e0 -> 10 Inexact Rounded quax406 quantize 9.999 1e1 -> 1E+1 Inexact Rounded quax407 quantize 9.999 1e2 -> 0E+2 Inexact Rounded quax410 quantize 0.999 1e-5 -> 0.99900 quax411 quantize 0.999 1e-4 -> 0.9990 quax412 quantize 0.999 1e-3 -> 0.999 quax413 quantize 0.999 1e-2 -> 1.00 Inexact Rounded quax414 quantize 0.999 1e-1 -> 1.0 Inexact Rounded quax415 quantize 0.999 1e0 -> 1 Inexact Rounded quax416 quantize 0.999 1e1 -> 0E+1 Inexact Rounded quax420 quantize 0.0999 1e-5 -> 0.09990 quax421 quantize 0.0999 1e-4 -> 0.0999 quax422 quantize 0.0999 1e-3 -> 0.100 Inexact Rounded quax423 quantize 0.0999 1e-2 -> 0.10 Inexact Rounded quax424 quantize 0.0999 1e-1 -> 0.1 Inexact Rounded quax425 quantize 0.0999 1e0 -> 0 Inexact Rounded quax426 quantize 0.0999 1e1 -> 0E+1 Inexact Rounded quax430 quantize 0.00999 1e-5 -> 0.00999 quax431 quantize 0.00999 1e-4 -> 0.0100 Inexact Rounded quax432 quantize 0.00999 1e-3 -> 0.010 Inexact Rounded quax433 quantize 0.00999 1e-2 -> 0.01 Inexact Rounded quax434 quantize 0.00999 1e-1 -> 0.0 Inexact Rounded quax435 quantize 0.00999 1e0 -> 0 Inexact Rounded quax436 quantize 0.00999 1e1 -> 0E+1 Inexact Rounded quax440 quantize 0.000999 1e-5 -> 0.00100 Inexact Rounded quax441 quantize 0.000999 1e-4 -> 0.0010 Inexact Rounded quax442 quantize 0.000999 1e-3 -> 0.001 Inexact Rounded quax443 quantize 0.000999 1e-2 -> 0.00 Inexact Rounded quax444 quantize 0.000999 1e-1 -> 0.0 Inexact Rounded quax445 quantize 0.000999 1e0 -> 0 Inexact Rounded quax446 quantize 0.000999 1e1 -> 0E+1 Inexact Rounded precision: 8 quax449 quantize 9.999E-15 1e-23 -> NaN Invalid_operation quax450 quantize 9.999E-15 1e-22 -> 9.9990000E-15 quax451 quantize 9.999E-15 1e-21 -> 9.999000E-15 quax452 quantize 9.999E-15 1e-20 -> 9.99900E-15 quax453 quantize 9.999E-15 1e-19 -> 9.9990E-15 quax454 quantize 9.999E-15 1e-18 -> 9.999E-15 quax455 quantize 9.999E-15 1e-17 -> 1.000E-14 Inexact Rounded quax456 quantize 9.999E-15 1e-16 -> 1.00E-14 Inexact Rounded quax457 quantize 9.999E-15 1e-15 -> 1.0E-14 Inexact Rounded quax458 quantize 9.999E-15 1e-14 -> 1E-14 Inexact Rounded quax459 quantize 9.999E-15 1e-13 -> 0E-13 Inexact Rounded quax460 quantize 9.999E-15 1e-12 -> 0E-12 Inexact Rounded quax461 quantize 9.999E-15 1e-11 -> 0E-11 Inexact Rounded quax462 quantize 9.999E-15 1e-10 -> 0E-10 Inexact Rounded quax463 quantize 9.999E-15 1e-9 -> 0E-9 Inexact Rounded quax464 quantize 9.999E-15 1e-8 -> 0E-8 Inexact Rounded quax465 quantize 9.999E-15 1e-7 -> 0E-7 Inexact Rounded quax466 quantize 9.999E-15 1e-6 -> 0.000000 Inexact Rounded quax467 quantize 9.999E-15 1e-5 -> 0.00000 Inexact Rounded quax468 quantize 9.999E-15 1e-4 -> 0.0000 Inexact Rounded quax469 quantize 9.999E-15 1e-3 -> 0.000 Inexact Rounded quax470 quantize 9.999E-15 1e-2 -> 0.00 Inexact Rounded quax471 quantize 9.999E-15 1e-1 -> 0.0 Inexact Rounded quax472 quantize 9.999E-15 1e0 -> 0 Inexact Rounded quax473 quantize 9.999E-15 1e1 -> 0E+1 Inexact Rounded precision: 7 quax900 quantize 9.999E-15 1e-22 -> NaN Invalid_operation quax901 quantize 9.999E-15 1e-21 -> 9.999000E-15 quax902 quantize 9.999E-15 1e-20 -> 9.99900E-15 quax903 quantize 9.999E-15 1e-19 -> 9.9990E-15 quax904 quantize 9.999E-15 1e-18 -> 9.999E-15 quax905 quantize 9.999E-15 1e-17 -> 1.000E-14 Inexact Rounded quax906 quantize 9.999E-15 1e-16 -> 1.00E-14 Inexact Rounded quax907 quantize 9.999E-15 1e-15 -> 1.0E-14 Inexact Rounded quax908 quantize 9.999E-15 1e-14 -> 1E-14 Inexact Rounded quax909 quantize 9.999E-15 1e-13 -> 0E-13 Inexact Rounded quax910 quantize 9.999E-15 1e-12 -> 0E-12 Inexact Rounded quax911 quantize 9.999E-15 1e-11 -> 0E-11 Inexact Rounded quax912 quantize 9.999E-15 1e-10 -> 0E-10 Inexact Rounded quax913 quantize 9.999E-15 1e-9 -> 0E-9 Inexact Rounded quax914 quantize 9.999E-15 1e-8 -> 0E-8 Inexact Rounded quax915 quantize 9.999E-15 1e-7 -> 0E-7 Inexact Rounded quax916 quantize 9.999E-15 1e-6 -> 0.000000 Inexact Rounded quax917 quantize 9.999E-15 1e-5 -> 0.00000 Inexact Rounded quax918 quantize 9.999E-15 1e-4 -> 0.0000 Inexact Rounded quax919 quantize 9.999E-15 1e-3 -> 0.000 Inexact Rounded quax920 quantize 9.999E-15 1e-2 -> 0.00 Inexact Rounded quax921 quantize 9.999E-15 1e-1 -> 0.0 Inexact Rounded quax922 quantize 9.999E-15 1e0 -> 0 Inexact Rounded quax923 quantize 9.999E-15 1e1 -> 0E+1 Inexact Rounded precision: 6 quax930 quantize 9.999E-15 1e-22 -> NaN Invalid_operation quax931 quantize 9.999E-15 1e-21 -> NaN Invalid_operation quax932 quantize 9.999E-15 1e-20 -> 9.99900E-15 quax933 quantize 9.999E-15 1e-19 -> 9.9990E-15 quax934 quantize 9.999E-15 1e-18 -> 9.999E-15 quax935 quantize 9.999E-15 1e-17 -> 1.000E-14 Inexact Rounded quax936 quantize 9.999E-15 1e-16 -> 1.00E-14 Inexact Rounded quax937 quantize 9.999E-15 1e-15 -> 1.0E-14 Inexact Rounded quax938 quantize 9.999E-15 1e-14 -> 1E-14 Inexact Rounded quax939 quantize 9.999E-15 1e-13 -> 0E-13 Inexact Rounded quax940 quantize 9.999E-15 1e-12 -> 0E-12 Inexact Rounded quax941 quantize 9.999E-15 1e-11 -> 0E-11 Inexact Rounded quax942 quantize 9.999E-15 1e-10 -> 0E-10 Inexact Rounded quax943 quantize 9.999E-15 1e-9 -> 0E-9 Inexact Rounded quax944 quantize 9.999E-15 1e-8 -> 0E-8 Inexact Rounded quax945 quantize 9.999E-15 1e-7 -> 0E-7 Inexact Rounded quax946 quantize 9.999E-15 1e-6 -> 0.000000 Inexact Rounded quax947 quantize 9.999E-15 1e-5 -> 0.00000 Inexact Rounded quax948 quantize 9.999E-15 1e-4 -> 0.0000 Inexact Rounded quax949 quantize 9.999E-15 1e-3 -> 0.000 Inexact Rounded quax950 quantize 9.999E-15 1e-2 -> 0.00 Inexact Rounded quax951 quantize 9.999E-15 1e-1 -> 0.0 Inexact Rounded quax952 quantize 9.999E-15 1e0 -> 0 Inexact Rounded quax953 quantize 9.999E-15 1e1 -> 0E+1 Inexact Rounded precision: 3 quax960 quantize 9.999E-15 1e-22 -> NaN Invalid_operation quax961 quantize 9.999E-15 1e-21 -> NaN Invalid_operation quax962 quantize 9.999E-15 1e-20 -> NaN Invalid_operation quax963 quantize 9.999E-15 1e-19 -> NaN Invalid_operation quax964 quantize 9.999E-15 1e-18 -> NaN Invalid_operation quax965 quantize 9.999E-15 1e-17 -> NaN Invalid_operation quax966 quantize 9.999E-15 1e-16 -> 1.00E-14 Inexact Rounded quax967 quantize 9.999E-15 1e-15 -> 1.0E-14 Inexact Rounded quax968 quantize 9.999E-15 1e-14 -> 1E-14 Inexact Rounded quax969 quantize 9.999E-15 1e-13 -> 0E-13 Inexact Rounded quax970 quantize 9.999E-15 1e-12 -> 0E-12 Inexact Rounded quax971 quantize 9.999E-15 1e-11 -> 0E-11 Inexact Rounded quax972 quantize 9.999E-15 1e-10 -> 0E-10 Inexact Rounded quax973 quantize 9.999E-15 1e-9 -> 0E-9 Inexact Rounded quax974 quantize 9.999E-15 1e-8 -> 0E-8 Inexact Rounded quax975 quantize 9.999E-15 1e-7 -> 0E-7 Inexact Rounded quax976 quantize 9.999E-15 1e-6 -> 0.000000 Inexact Rounded quax977 quantize 9.999E-15 1e-5 -> 0.00000 Inexact Rounded quax978 quantize 9.999E-15 1e-4 -> 0.0000 Inexact Rounded quax979 quantize 9.999E-15 1e-3 -> 0.000 Inexact Rounded quax980 quantize 9.999E-15 1e-2 -> 0.00 Inexact Rounded quax981 quantize 9.999E-15 1e-1 -> 0.0 Inexact Rounded quax982 quantize 9.999E-15 1e0 -> 0 Inexact Rounded quax983 quantize 9.999E-15 1e1 -> 0E+1 Inexact Rounded -- Fung Lee's case & similar precision: 3 quax1001 quantize 0.000 0.001 -> 0.000 quax1002 quantize 0.001 0.001 -> 0.001 quax1003 quantize 0.0012 0.001 -> 0.001 Inexact Rounded quax1004 quantize 0.0018 0.001 -> 0.002 Inexact Rounded quax1005 quantize 0.501 0.001 -> 0.501 quax1006 quantize 0.5012 0.001 -> 0.501 Inexact Rounded quax1007 quantize 0.5018 0.001 -> 0.502 Inexact Rounded quax1008 quantize 0.999 0.001 -> 0.999 quax1009 quantize 0.9992 0.001 -> 0.999 Inexact Rounded quax1010 quantize 0.9998 0.001 -> NaN Invalid_operation quax1011 quantize 1.0001 0.001 -> NaN Invalid_operation quax1012 quantize 1.0051 0.001 -> NaN Invalid_operation quax1013 quantize 1.0551 0.001 -> NaN Invalid_operation quax1014 quantize 1.5551 0.001 -> NaN Invalid_operation quax1015 quantize 1.9999 0.001 -> NaN Invalid_operation -- long operand checks [rhs checks removed] maxexponent: 999 minexponent: -999 precision: 9 quax481 quantize 12345678000 1e+3 -> 1.2345678E+10 Rounded quax482 quantize 1234567800 1e+1 -> 1.23456780E+9 Rounded quax483 quantize 1234567890 1e+1 -> 1.23456789E+9 Rounded quax484 quantize 1234567891 1e+1 -> 1.23456789E+9 Inexact Rounded quax485 quantize 12345678901 1e+2 -> 1.23456789E+10 Inexact Rounded quax486 quantize 1234567896 1e+1 -> 1.23456790E+9 Inexact Rounded -- a potential double-round quax487 quantize 1234.987643 1e-4 -> 1234.9876 Inexact Rounded quax488 quantize 1234.987647 1e-4 -> 1234.9876 Inexact Rounded precision: 15 quax491 quantize 12345678000 1e+3 -> 1.2345678E+10 Rounded quax492 quantize 1234567800 1e+1 -> 1.23456780E+9 Rounded quax493 quantize 1234567890 1e+1 -> 1.23456789E+9 Rounded quax494 quantize 1234567891 1e+1 -> 1.23456789E+9 Inexact Rounded quax495 quantize 12345678901 1e+2 -> 1.23456789E+10 Inexact Rounded quax496 quantize 1234567896 1e+1 -> 1.23456790E+9 Inexact Rounded quax497 quantize 1234.987643 1e-4 -> 1234.9876 Inexact Rounded quax498 quantize 1234.987647 1e-4 -> 1234.9876 Inexact Rounded -- Zeros quax500 quantize 0 1e1 -> 0E+1 quax501 quantize 0 1e0 -> 0 quax502 quantize 0 1e-1 -> 0.0 quax503 quantize 0.0 1e-1 -> 0.0 quax504 quantize 0.0 1e0 -> 0 quax505 quantize 0.0 1e+1 -> 0E+1 quax506 quantize 0E+1 1e-1 -> 0.0 quax507 quantize 0E+1 1e0 -> 0 quax508 quantize 0E+1 1e+1 -> 0E+1 quax509 quantize -0 1e1 -> -0E+1 quax510 quantize -0 1e0 -> -0 quax511 quantize -0 1e-1 -> -0.0 quax512 quantize -0.0 1e-1 -> -0.0 quax513 quantize -0.0 1e0 -> -0 quax514 quantize -0.0 1e+1 -> -0E+1 quax515 quantize -0E+1 1e-1 -> -0.0 quax516 quantize -0E+1 1e0 -> -0 quax517 quantize -0E+1 1e+1 -> -0E+1 -- Suspicious RHS values maxexponent: 999999999 minexponent: -999999999 precision: 15 quax520 quantize 1.234 1e999999000 -> 0E+999999000 Inexact Rounded quax521 quantize 123.456 1e999999000 -> 0E+999999000 Inexact Rounded quax522 quantize 1.234 1e999999999 -> 0E+999999999 Inexact Rounded quax523 quantize 123.456 1e999999999 -> 0E+999999999 Inexact Rounded quax524 quantize 123.456 1e1000000000 -> NaN Invalid_operation quax525 quantize 123.456 1e12345678903 -> NaN Invalid_operation -- next four are "won't fit" overflows quax526 quantize 1.234 1e-999999000 -> NaN Invalid_operation quax527 quantize 123.456 1e-999999000 -> NaN Invalid_operation quax528 quantize 1.234 1e-999999999 -> NaN Invalid_operation quax529 quantize 123.456 1e-999999999 -> NaN Invalid_operation quax530 quantize 123.456 1e-1000000014 -> NaN Invalid_operation quax531 quantize 123.456 1e-12345678903 -> NaN Invalid_operation maxexponent: 999 minexponent: -999 precision: 15 quax532 quantize 1.234E+999 1e999 -> 1E+999 Inexact Rounded quax533 quantize 1.234E+998 1e999 -> 0E+999 Inexact Rounded quax534 quantize 1.234 1e999 -> 0E+999 Inexact Rounded quax535 quantize 1.234 1e1000 -> NaN Invalid_operation quax536 quantize 1.234 1e5000 -> NaN Invalid_operation quax537 quantize 0 1e-999 -> 0E-999 -- next two are "won't fit" overflows quax538 quantize 1.234 1e-999 -> NaN Invalid_operation quax539 quantize 1.234 1e-1000 -> NaN Invalid_operation quax540 quantize 1.234 1e-5000 -> NaN Invalid_operation -- [more below] -- check bounds (lhs maybe out of range for destination, etc.) precision: 7 quax541 quantize 1E+999 1e+999 -> 1E+999 quax542 quantize 1E+1000 1e+999 -> NaN Invalid_operation quax543 quantize 1E+999 1e+1000 -> NaN Invalid_operation quax544 quantize 1E-999 1e-999 -> 1E-999 quax545 quantize 1E-1000 1e-999 -> 0E-999 Inexact Rounded quax546 quantize 1E-999 1e-1000 -> 1.0E-999 quax547 quantize 1E-1005 1e-999 -> 0E-999 Inexact Rounded quax548 quantize 1E-1006 1e-999 -> 0E-999 Inexact Rounded quax549 quantize 1E-1007 1e-999 -> 0E-999 Inexact Rounded quax550 quantize 1E-998 1e-1005 -> NaN Invalid_operation -- won't fit quax551 quantize 1E-999 1e-1005 -> 1.000000E-999 quax552 quantize 1E-1000 1e-1005 -> 1.00000E-1000 Subnormal quax553 quantize 1E-999 1e-1006 -> NaN Invalid_operation quax554 quantize 1E-999 1e-1007 -> NaN Invalid_operation -- related subnormal rounding quax555 quantize 1.666666E-999 1e-1005 -> 1.666666E-999 quax556 quantize 1.666666E-1000 1e-1005 -> 1.66667E-1000 Subnormal Inexact Rounded quax557 quantize 1.666666E-1001 1e-1005 -> 1.6667E-1001 Subnormal Inexact Rounded quax558 quantize 1.666666E-1002 1e-1005 -> 1.667E-1002 Subnormal Inexact Rounded quax559 quantize 1.666666E-1003 1e-1005 -> 1.67E-1003 Subnormal Inexact Rounded quax560 quantize 1.666666E-1004 1e-1005 -> 1.7E-1004 Subnormal Inexact Rounded quax561 quantize 1.666666E-1005 1e-1005 -> 2E-1005 Subnormal Inexact Rounded quax562 quantize 1.666666E-1006 1e-1005 -> 0E-1005 Inexact Rounded quax563 quantize 1.666666E-1007 1e-1005 -> 0E-1005 Inexact Rounded -- Specials quax580 quantize Inf -Inf -> Infinity quax581 quantize Inf 1e-1000 -> NaN Invalid_operation quax582 quantize Inf 1e-1 -> NaN Invalid_operation quax583 quantize Inf 1e0 -> NaN Invalid_operation quax584 quantize Inf 1e1 -> NaN Invalid_operation quax585 quantize Inf 1e1000 -> NaN Invalid_operation quax586 quantize Inf Inf -> Infinity quax587 quantize -1000 Inf -> NaN Invalid_operation quax588 quantize -Inf Inf -> -Infinity quax589 quantize -1 Inf -> NaN Invalid_operation quax590 quantize 0 Inf -> NaN Invalid_operation quax591 quantize 1 Inf -> NaN Invalid_operation quax592 quantize 1000 Inf -> NaN Invalid_operation quax593 quantize Inf Inf -> Infinity quax594 quantize Inf 1e-0 -> NaN Invalid_operation quax595 quantize -0 Inf -> NaN Invalid_operation quax600 quantize -Inf -Inf -> -Infinity quax601 quantize -Inf 1e-1000 -> NaN Invalid_operation quax602 quantize -Inf 1e-1 -> NaN Invalid_operation quax603 quantize -Inf 1e0 -> NaN Invalid_operation quax604 quantize -Inf 1e1 -> NaN Invalid_operation quax605 quantize -Inf 1e1000 -> NaN Invalid_operation quax606 quantize -Inf Inf -> -Infinity quax607 quantize -1000 Inf -> NaN Invalid_operation quax608 quantize -Inf -Inf -> -Infinity quax609 quantize -1 -Inf -> NaN Invalid_operation quax610 quantize 0 -Inf -> NaN Invalid_operation quax611 quantize 1 -Inf -> NaN Invalid_operation quax612 quantize 1000 -Inf -> NaN Invalid_operation quax613 quantize Inf -Inf -> Infinity quax614 quantize -Inf 1e-0 -> NaN Invalid_operation quax615 quantize -0 -Inf -> NaN Invalid_operation quax621 quantize NaN -Inf -> NaN quax622 quantize NaN 1e-1000 -> NaN quax623 quantize NaN 1e-1 -> NaN quax624 quantize NaN 1e0 -> NaN quax625 quantize NaN 1e1 -> NaN quax626 quantize NaN 1e1000 -> NaN quax627 quantize NaN Inf -> NaN quax628 quantize NaN NaN -> NaN quax629 quantize -Inf NaN -> NaN quax630 quantize -1000 NaN -> NaN quax631 quantize -1 NaN -> NaN quax632 quantize 0 NaN -> NaN quax633 quantize 1 NaN -> NaN quax634 quantize 1000 NaN -> NaN quax635 quantize Inf NaN -> NaN quax636 quantize NaN 1e-0 -> NaN quax637 quantize -0 NaN -> NaN quax641 quantize sNaN -Inf -> NaN Invalid_operation quax642 quantize sNaN 1e-1000 -> NaN Invalid_operation quax643 quantize sNaN 1e-1 -> NaN Invalid_operation quax644 quantize sNaN 1e0 -> NaN Invalid_operation quax645 quantize sNaN 1e1 -> NaN Invalid_operation quax646 quantize sNaN 1e1000 -> NaN Invalid_operation quax647 quantize sNaN NaN -> NaN Invalid_operation quax648 quantize sNaN sNaN -> NaN Invalid_operation quax649 quantize NaN sNaN -> NaN Invalid_operation quax650 quantize -Inf sNaN -> NaN Invalid_operation quax651 quantize -1000 sNaN -> NaN Invalid_operation quax652 quantize -1 sNaN -> NaN Invalid_operation quax653 quantize 0 sNaN -> NaN Invalid_operation quax654 quantize 1 sNaN -> NaN Invalid_operation quax655 quantize 1000 sNaN -> NaN Invalid_operation quax656 quantize Inf sNaN -> NaN Invalid_operation quax657 quantize NaN sNaN -> NaN Invalid_operation quax658 quantize sNaN 1e-0 -> NaN Invalid_operation quax659 quantize -0 sNaN -> NaN Invalid_operation -- propagating NaNs quax661 quantize NaN9 -Inf -> NaN9 quax662 quantize NaN8 919 -> NaN8 quax663 quantize NaN71 Inf -> NaN71 quax664 quantize NaN6 NaN5 -> NaN6 quax665 quantize -Inf NaN4 -> NaN4 quax666 quantize -919 NaN31 -> NaN31 quax667 quantize Inf NaN2 -> NaN2 quax671 quantize sNaN99 -Inf -> NaN99 Invalid_operation quax672 quantize sNaN98 -11 -> NaN98 Invalid_operation quax673 quantize sNaN97 NaN -> NaN97 Invalid_operation quax674 quantize sNaN16 sNaN94 -> NaN16 Invalid_operation quax675 quantize NaN95 sNaN93 -> NaN93 Invalid_operation quax676 quantize -Inf sNaN92 -> NaN92 Invalid_operation quax677 quantize 088 sNaN91 -> NaN91 Invalid_operation quax678 quantize Inf sNaN90 -> NaN90 Invalid_operation quax679 quantize NaN sNaN88 -> NaN88 Invalid_operation quax681 quantize -NaN9 -Inf -> -NaN9 quax682 quantize -NaN8 919 -> -NaN8 quax683 quantize -NaN71 Inf -> -NaN71 quax684 quantize -NaN6 -NaN5 -> -NaN6 quax685 quantize -Inf -NaN4 -> -NaN4 quax686 quantize -919 -NaN31 -> -NaN31 quax687 quantize Inf -NaN2 -> -NaN2 quax691 quantize -sNaN99 -Inf -> -NaN99 Invalid_operation quax692 quantize -sNaN98 -11 -> -NaN98 Invalid_operation quax693 quantize -sNaN97 NaN -> -NaN97 Invalid_operation quax694 quantize -sNaN16 sNaN94 -> -NaN16 Invalid_operation quax695 quantize -NaN95 -sNaN93 -> -NaN93 Invalid_operation quax696 quantize -Inf -sNaN92 -> -NaN92 Invalid_operation quax697 quantize 088 -sNaN91 -> -NaN91 Invalid_operation quax698 quantize Inf -sNaN90 -> -NaN90 Invalid_operation quax699 quantize NaN -sNaN88 -> -NaN88 Invalid_operation -- subnormals and underflow precision: 4 maxexponent: 999 minexponent: -999 quax710 quantize 1.00E-999 1e-999 -> 1E-999 Rounded quax711 quantize 0.1E-999 2e-1000 -> 1E-1000 Subnormal quax712 quantize 0.10E-999 3e-1000 -> 1E-1000 Subnormal Rounded quax713 quantize 0.100E-999 4e-1000 -> 1E-1000 Subnormal Rounded quax714 quantize 0.01E-999 5e-1001 -> 1E-1001 Subnormal -- next is rounded to Emin quax715 quantize 0.999E-999 1e-999 -> 1E-999 Inexact Rounded quax716 quantize 0.099E-999 10e-1000 -> 1E-1000 Inexact Rounded Subnormal quax717 quantize 0.009E-999 1e-1001 -> 1E-1001 Inexact Rounded Subnormal quax718 quantize 0.001E-999 1e-1001 -> 0E-1001 Inexact Rounded quax719 quantize 0.0009E-999 1e-1001 -> 0E-1001 Inexact Rounded quax720 quantize 0.0001E-999 1e-1001 -> 0E-1001 Inexact Rounded quax730 quantize -1.00E-999 1e-999 -> -1E-999 Rounded quax731 quantize -0.1E-999 1e-999 -> -0E-999 Rounded Inexact quax732 quantize -0.10E-999 1e-999 -> -0E-999 Rounded Inexact quax733 quantize -0.100E-999 1e-999 -> -0E-999 Rounded Inexact quax734 quantize -0.01E-999 1e-999 -> -0E-999 Inexact Rounded -- next is rounded to Emin quax735 quantize -0.999E-999 90e-999 -> -1E-999 Inexact Rounded quax736 quantize -0.099E-999 -1e-999 -> -0E-999 Inexact Rounded quax737 quantize -0.009E-999 -1e-999 -> -0E-999 Inexact Rounded quax738 quantize -0.001E-999 -0e-999 -> -0E-999 Inexact Rounded quax739 quantize -0.0001E-999 0e-999 -> -0E-999 Inexact Rounded quax740 quantize -1.00E-999 1e-1000 -> -1.0E-999 Rounded quax741 quantize -0.1E-999 1e-1000 -> -1E-1000 Subnormal quax742 quantize -0.10E-999 1e-1000 -> -1E-1000 Subnormal Rounded quax743 quantize -0.100E-999 1e-1000 -> -1E-1000 Subnormal Rounded quax744 quantize -0.01E-999 1e-1000 -> -0E-1000 Inexact Rounded -- next is rounded to Emin quax745 quantize -0.999E-999 1e-1000 -> -1.0E-999 Inexact Rounded quax746 quantize -0.099E-999 1e-1000 -> -1E-1000 Inexact Rounded Subnormal quax747 quantize -0.009E-999 1e-1000 -> -0E-1000 Inexact Rounded quax748 quantize -0.001E-999 1e-1000 -> -0E-1000 Inexact Rounded quax749 quantize -0.0001E-999 1e-1000 -> -0E-1000 Inexact Rounded quax750 quantize -1.00E-999 1e-1001 -> -1.00E-999 quax751 quantize -0.1E-999 1e-1001 -> -1.0E-1000 Subnormal quax752 quantize -0.10E-999 1e-1001 -> -1.0E-1000 Subnormal quax753 quantize -0.100E-999 1e-1001 -> -1.0E-1000 Subnormal Rounded quax754 quantize -0.01E-999 1e-1001 -> -1E-1001 Subnormal -- next is rounded to Emin quax755 quantize -0.999E-999 1e-1001 -> -1.00E-999 Inexact Rounded quax756 quantize -0.099E-999 1e-1001 -> -1.0E-1000 Inexact Rounded Subnormal quax757 quantize -0.009E-999 1e-1001 -> -1E-1001 Inexact Rounded Subnormal quax758 quantize -0.001E-999 1e-1001 -> -0E-1001 Inexact Rounded quax759 quantize -0.0001E-999 1e-1001 -> -0E-1001 Inexact Rounded quax760 quantize -1.00E-999 1e-1002 -> -1.000E-999 quax761 quantize -0.1E-999 1e-1002 -> -1.00E-1000 Subnormal quax762 quantize -0.10E-999 1e-1002 -> -1.00E-1000 Subnormal quax763 quantize -0.100E-999 1e-1002 -> -1.00E-1000 Subnormal quax764 quantize -0.01E-999 1e-1002 -> -1.0E-1001 Subnormal quax765 quantize -0.999E-999 1e-1002 -> -9.99E-1000 Subnormal quax766 quantize -0.099E-999 1e-1002 -> -9.9E-1001 Subnormal quax767 quantize -0.009E-999 1e-1002 -> -9E-1002 Subnormal quax768 quantize -0.001E-999 1e-1002 -> -1E-1002 Subnormal quax769 quantize -0.0001E-999 1e-1002 -> -0E-1002 Inexact Rounded -- rhs must be no less than Etiny quax770 quantize -1.00E-999 1e-1003 -> NaN Invalid_operation quax771 quantize -0.1E-999 1e-1003 -> NaN Invalid_operation quax772 quantize -0.10E-999 1e-1003 -> NaN Invalid_operation quax773 quantize -0.100E-999 1e-1003 -> NaN Invalid_operation quax774 quantize -0.01E-999 1e-1003 -> NaN Invalid_operation quax775 quantize -0.999E-999 1e-1003 -> NaN Invalid_operation quax776 quantize -0.099E-999 1e-1003 -> NaN Invalid_operation quax777 quantize -0.009E-999 1e-1003 -> NaN Invalid_operation quax778 quantize -0.001E-999 1e-1003 -> NaN Invalid_operation quax779 quantize -0.0001E-999 1e-1003 -> NaN Invalid_operation quax780 quantize -0.0001E-999 1e-1004 -> NaN Invalid_operation precision: 9 maxExponent: 999999999 minexponent: -999999999 -- some extremes derived from Rescale testcases quax801 quantize 0 1e1000000000 -> NaN Invalid_operation quax802 quantize 0 1e-1000000000 -> 0E-1000000000 quax803 quantize 0 1e2000000000 -> NaN Invalid_operation quax804 quantize 0 1e-2000000000 -> NaN Invalid_operation quax805 quantize 0 1e3000000000 -> NaN Invalid_operation quax806 quantize 0 1e-3000000000 -> NaN Invalid_operation quax807 quantize 0 1e4000000000 -> NaN Invalid_operation quax808 quantize 0 1e-4000000000 -> NaN Invalid_operation quax809 quantize 0 1e5000000000 -> NaN Invalid_operation quax810 quantize 0 1e-5000000000 -> NaN Invalid_operation quax811 quantize 0 1e6000000000 -> NaN Invalid_operation quax812 quantize 0 1e-6000000000 -> NaN Invalid_operation quax813 quantize 0 1e7000000000 -> NaN Invalid_operation quax814 quantize 0 1e-7000000000 -> NaN Invalid_operation quax815 quantize 0 1e8000000000 -> NaN Invalid_operation quax816 quantize 0 1e-8000000000 -> NaN Invalid_operation quax817 quantize 0 1e9000000000 -> NaN Invalid_operation quax818 quantize 0 1e-9000000000 -> NaN Invalid_operation quax819 quantize 0 1e9999999999 -> NaN Invalid_operation quax820 quantize 0 1e-9999999999 -> NaN Invalid_operation quax821 quantize 0 1e10000000000 -> NaN Invalid_operation quax822 quantize 0 1e-10000000000 -> NaN Invalid_operation quax843 quantize 0 1e999999999 -> 0E+999999999 quax844 quantize 0 1e1000000000 -> NaN Invalid_operation quax845 quantize 0 1e-999999999 -> 0E-999999999 quax846 quantize 0 1e-1000000000 -> 0E-1000000000 quax847 quantize 0 1e-1000000001 -> 0E-1000000001 quax848 quantize 0 1e-1000000002 -> 0E-1000000002 quax849 quantize 0 1e-1000000003 -> 0E-1000000003 quax850 quantize 0 1e-1000000004 -> 0E-1000000004 quax851 quantize 0 1e-1000000005 -> 0E-1000000005 quax852 quantize 0 1e-1000000006 -> 0E-1000000006 quax853 quantize 0 1e-1000000007 -> 0E-1000000007 quax854 quantize 0 1e-1000000008 -> NaN Invalid_operation quax861 quantize 1 1e+2147483649 -> NaN Invalid_operation quax862 quantize 1 1e+2147483648 -> NaN Invalid_operation quax863 quantize 1 1e+2147483647 -> NaN Invalid_operation quax864 quantize 1 1e-2147483647 -> NaN Invalid_operation quax865 quantize 1 1e-2147483648 -> NaN Invalid_operation quax866 quantize 1 1e-2147483649 -> NaN Invalid_operation -- More from Fung Lee precision: 16 rounding: half_up maxExponent: 384 minExponent: -383 quax1021 quantize 8.666666666666000E+384 1.000000000000000E+384 -> 8.666666666666000E+384 quax1022 quantize 64#8.666666666666000E+384 64#1.000000000000000E+384 -> 8.666666666666000E+384 quax1023 quantize 64#8.666666666666000E+384 128#1.000000000000000E+384 -> 8.666666666666000E+384 quax1024 quantize 64#8.666666666666000E+384 64#1E+384 -> 8.666666666666000E+384 quax1025 quantize 64#8.666666666666000E+384 64#1E+384 -> 64#8.666666666666000E+384 quax1026 quantize 64#8.666666666666000E+384 128#1E+384 -> 64#9E+384 Inexact Rounded Clamped quax1027 quantize 64#8.666666666666000E+323 64#1E+31 -> NaN Invalid_operation quax1028 quantize 64#8.666666666666000E+323 128#1E+31 -> NaN Invalid_operation quax1029 quantize 64#8.66666666E+3 128#1E+10 -> 64#0E10 Inexact Rounded quax1030 quantize 8.66666666E+3 1E+3 -> 9E+3 Inexact Rounded -- Int and uInt32 edge values for testing conversions quax1040 quantize -2147483646 0 -> -2147483646 quax1041 quantize -2147483647 0 -> -2147483647 quax1042 quantize -2147483648 0 -> -2147483648 quax1043 quantize -2147483649 0 -> -2147483649 quax1044 quantize 2147483646 0 -> 2147483646 quax1045 quantize 2147483647 0 -> 2147483647 quax1046 quantize 2147483648 0 -> 2147483648 quax1047 quantize 2147483649 0 -> 2147483649 quax1048 quantize 4294967294 0 -> 4294967294 quax1049 quantize 4294967295 0 -> 4294967295 quax1050 quantize 4294967296 0 -> 4294967296 quax1051 quantize 4294967297 0 -> 4294967297 -- and powers of ten for same quax1101 quantize 5000000000 0 -> 5000000000 quax1102 quantize 4000000000 0 -> 4000000000 quax1103 quantize 2000000000 0 -> 2000000000 quax1104 quantize 1000000000 0 -> 1000000000 quax1105 quantize 0100000000 0 -> 100000000 quax1106 quantize 0010000000 0 -> 10000000 quax1107 quantize 0001000000 0 -> 1000000 quax1108 quantize 0000100000 0 -> 100000 quax1109 quantize 0000010000 0 -> 10000 quax1110 quantize 0000001000 0 -> 1000 quax1111 quantize 0000000100 0 -> 100 quax1112 quantize 0000000010 0 -> 10 quax1113 quantize 0000000001 0 -> 1 quax1114 quantize 0000000000 0 -> 0 -- and powers of ten for same quax1121 quantize -5000000000 0 -> -5000000000 quax1122 quantize -4000000000 0 -> -4000000000 quax1123 quantize -2000000000 0 -> -2000000000 quax1124 quantize -1000000000 0 -> -1000000000 quax1125 quantize -0100000000 0 -> -100000000 quax1126 quantize -0010000000 0 -> -10000000 quax1127 quantize -0001000000 0 -> -1000000 quax1128 quantize -0000100000 0 -> -100000 quax1129 quantize -0000010000 0 -> -10000 quax1130 quantize -0000001000 0 -> -1000 quax1131 quantize -0000000100 0 -> -100 quax1132 quantize -0000000010 0 -> -10 quax1133 quantize -0000000001 0 -> -1 quax1134 quantize -0000000000 0 -> -0 -- Some miscellany precision: 34 rounding: half_up maxExponent: 6144 minExponent: -6143 -- 1 2 3 -- 1 234567890123456789012345678901234 quax0a1 quantize 8.555555555555555555555555555555555E+6143 1E+6143 -> 9E+6143 Inexact Rounded quax0a2 quantize 128#8.555555555555555555555555555555555E+6143 128#1E+6143 -> 8.55555555555555555555555555555556E+6143 Rounded Inexact quax0a3 quantize 128#8.555555555555555555555555555555555E+6144 128#1E+6144 -> 8.555555555555555555555555555555555E+6144 -- payload decapitate precision: 5 quax62100 quantize 11 -sNaN1234567890 -> -NaN67890 Invalid_operation -- Null tests quax998 quantize 10 # -> NaN Invalid_operation quax999 quantize # 1e10 -> NaN Invalid_operation
47,282
949
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/dqMaxMag.decTest
------------------------------------------------------------------------ -- dqMaxMag.decTest -- decQuad maxnummag -- -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 -- we assume that base comparison is tested in compare.decTest, so -- these mainly cover special cases and rounding extended: 1 clamp: 1 precision: 34 maxExponent: 6144 minExponent: -6143 rounding: half_even -- sanity checks dqmxg001 maxmag -2 -2 -> -2 dqmxg002 maxmag -2 -1 -> -2 dqmxg003 maxmag -2 0 -> -2 dqmxg004 maxmag -2 1 -> -2 dqmxg005 maxmag -2 2 -> 2 dqmxg006 maxmag -1 -2 -> -2 dqmxg007 maxmag -1 -1 -> -1 dqmxg008 maxmag -1 0 -> -1 dqmxg009 maxmag -1 1 -> 1 dqmxg010 maxmag -1 2 -> 2 dqmxg011 maxmag 0 -2 -> -2 dqmxg012 maxmag 0 -1 -> -1 dqmxg013 maxmag 0 0 -> 0 dqmxg014 maxmag 0 1 -> 1 dqmxg015 maxmag 0 2 -> 2 dqmxg016 maxmag 1 -2 -> -2 dqmxg017 maxmag 1 -1 -> 1 dqmxg018 maxmag 1 0 -> 1 dqmxg019 maxmag 1 1 -> 1 dqmxg020 maxmag 1 2 -> 2 dqmxg021 maxmag 2 -2 -> 2 dqmxg022 maxmag 2 -1 -> 2 dqmxg023 maxmag 2 0 -> 2 dqmxg025 maxmag 2 1 -> 2 dqmxg026 maxmag 2 2 -> 2 -- extended zeros dqmxg030 maxmag 0 0 -> 0 dqmxg031 maxmag 0 -0 -> 0 dqmxg032 maxmag 0 -0.0 -> 0 dqmxg033 maxmag 0 0.0 -> 0 dqmxg034 maxmag -0 0 -> 0 -- note: -0 = 0, but 0 chosen dqmxg035 maxmag -0 -0 -> -0 dqmxg036 maxmag -0 -0.0 -> -0.0 dqmxg037 maxmag -0 0.0 -> 0.0 dqmxg038 maxmag 0.0 0 -> 0 dqmxg039 maxmag 0.0 -0 -> 0.0 dqmxg040 maxmag 0.0 -0.0 -> 0.0 dqmxg041 maxmag 0.0 0.0 -> 0.0 dqmxg042 maxmag -0.0 0 -> 0 dqmxg043 maxmag -0.0 -0 -> -0.0 dqmxg044 maxmag -0.0 -0.0 -> -0.0 dqmxg045 maxmag -0.0 0.0 -> 0.0 dqmxg050 maxmag -0E1 0E1 -> 0E+1 dqmxg051 maxmag -0E2 0E2 -> 0E+2 dqmxg052 maxmag -0E2 0E1 -> 0E+1 dqmxg053 maxmag -0E1 0E2 -> 0E+2 dqmxg054 maxmag 0E1 -0E1 -> 0E+1 dqmxg055 maxmag 0E2 -0E2 -> 0E+2 dqmxg056 maxmag 0E2 -0E1 -> 0E+2 dqmxg057 maxmag 0E1 -0E2 -> 0E+1 dqmxg058 maxmag 0E1 0E1 -> 0E+1 dqmxg059 maxmag 0E2 0E2 -> 0E+2 dqmxg060 maxmag 0E2 0E1 -> 0E+2 dqmxg061 maxmag 0E1 0E2 -> 0E+2 dqmxg062 maxmag -0E1 -0E1 -> -0E+1 dqmxg063 maxmag -0E2 -0E2 -> -0E+2 dqmxg064 maxmag -0E2 -0E1 -> -0E+1 dqmxg065 maxmag -0E1 -0E2 -> -0E+1 -- Specials dqmxg090 maxmag Inf -Inf -> Infinity dqmxg091 maxmag Inf -1000 -> Infinity dqmxg092 maxmag Inf -1 -> Infinity dqmxg093 maxmag Inf -0 -> Infinity dqmxg094 maxmag Inf 0 -> Infinity dqmxg095 maxmag Inf 1 -> Infinity dqmxg096 maxmag Inf 1000 -> Infinity dqmxg097 maxmag Inf Inf -> Infinity dqmxg098 maxmag -1000 Inf -> Infinity dqmxg099 maxmag -Inf Inf -> Infinity dqmxg100 maxmag -1 Inf -> Infinity dqmxg101 maxmag -0 Inf -> Infinity dqmxg102 maxmag 0 Inf -> Infinity dqmxg103 maxmag 1 Inf -> Infinity dqmxg104 maxmag 1000 Inf -> Infinity dqmxg105 maxmag Inf Inf -> Infinity dqmxg120 maxmag -Inf -Inf -> -Infinity dqmxg121 maxmag -Inf -1000 -> -Infinity dqmxg122 maxmag -Inf -1 -> -Infinity dqmxg123 maxmag -Inf -0 -> -Infinity dqmxg124 maxmag -Inf 0 -> -Infinity dqmxg125 maxmag -Inf 1 -> -Infinity dqmxg126 maxmag -Inf 1000 -> -Infinity dqmxg127 maxmag -Inf Inf -> Infinity dqmxg128 maxmag -Inf -Inf -> -Infinity dqmxg129 maxmag -1000 -Inf -> -Infinity dqmxg130 maxmag -1 -Inf -> -Infinity dqmxg131 maxmag -0 -Inf -> -Infinity dqmxg132 maxmag 0 -Inf -> -Infinity dqmxg133 maxmag 1 -Inf -> -Infinity dqmxg134 maxmag 1000 -Inf -> -Infinity dqmxg135 maxmag Inf -Inf -> Infinity -- 2004.08.02 754r chooses number over NaN in mixed cases dqmxg141 maxmag NaN -Inf -> -Infinity dqmxg142 maxmag NaN -1000 -> -1000 dqmxg143 maxmag NaN -1 -> -1 dqmxg144 maxmag NaN -0 -> -0 dqmxg145 maxmag NaN 0 -> 0 dqmxg146 maxmag NaN 1 -> 1 dqmxg147 maxmag NaN 1000 -> 1000 dqmxg148 maxmag NaN Inf -> Infinity dqmxg149 maxmag NaN NaN -> NaN dqmxg150 maxmag -Inf NaN -> -Infinity dqmxg151 maxmag -1000 NaN -> -1000 dqmxg152 maxmag -1 NaN -> -1 dqmxg153 maxmag -0 NaN -> -0 dqmxg154 maxmag 0 NaN -> 0 dqmxg155 maxmag 1 NaN -> 1 dqmxg156 maxmag 1000 NaN -> 1000 dqmxg157 maxmag Inf NaN -> Infinity dqmxg161 maxmag sNaN -Inf -> NaN Invalid_operation dqmxg162 maxmag sNaN -1000 -> NaN Invalid_operation dqmxg163 maxmag sNaN -1 -> NaN Invalid_operation dqmxg164 maxmag sNaN -0 -> NaN Invalid_operation dqmxg165 maxmag sNaN 0 -> NaN Invalid_operation dqmxg166 maxmag sNaN 1 -> NaN Invalid_operation dqmxg167 maxmag sNaN 1000 -> NaN Invalid_operation dqmxg168 maxmag sNaN NaN -> NaN Invalid_operation dqmxg169 maxmag sNaN sNaN -> NaN Invalid_operation dqmxg170 maxmag NaN sNaN -> NaN Invalid_operation dqmxg171 maxmag -Inf sNaN -> NaN Invalid_operation dqmxg172 maxmag -1000 sNaN -> NaN Invalid_operation dqmxg173 maxmag -1 sNaN -> NaN Invalid_operation dqmxg174 maxmag -0 sNaN -> NaN Invalid_operation dqmxg175 maxmag 0 sNaN -> NaN Invalid_operation dqmxg176 maxmag 1 sNaN -> NaN Invalid_operation dqmxg177 maxmag 1000 sNaN -> NaN Invalid_operation dqmxg178 maxmag Inf sNaN -> NaN Invalid_operation dqmxg179 maxmag NaN sNaN -> NaN Invalid_operation -- propagating NaNs dqmxg181 maxmag NaN9 -Inf -> -Infinity dqmxg182 maxmag NaN8 9 -> 9 dqmxg183 maxmag -NaN7 Inf -> Infinity dqmxg184 maxmag -NaN1 NaN11 -> -NaN1 dqmxg185 maxmag NaN2 NaN12 -> NaN2 dqmxg186 maxmag -NaN13 -NaN7 -> -NaN13 dqmxg187 maxmag NaN14 -NaN5 -> NaN14 dqmxg188 maxmag -Inf NaN4 -> -Infinity dqmxg189 maxmag -9 -NaN3 -> -9 dqmxg190 maxmag Inf NaN2 -> Infinity dqmxg191 maxmag sNaN99 -Inf -> NaN99 Invalid_operation dqmxg192 maxmag sNaN98 -1 -> NaN98 Invalid_operation dqmxg193 maxmag -sNaN97 NaN -> -NaN97 Invalid_operation dqmxg194 maxmag sNaN96 sNaN94 -> NaN96 Invalid_operation dqmxg195 maxmag NaN95 sNaN93 -> NaN93 Invalid_operation dqmxg196 maxmag -Inf sNaN92 -> NaN92 Invalid_operation dqmxg197 maxmag 0 sNaN91 -> NaN91 Invalid_operation dqmxg198 maxmag Inf -sNaN90 -> -NaN90 Invalid_operation dqmxg199 maxmag NaN sNaN89 -> NaN89 Invalid_operation -- old rounding checks dqmxg221 maxmag 12345678000 1 -> 12345678000 dqmxg222 maxmag 1 12345678000 -> 12345678000 dqmxg223 maxmag 1234567800 1 -> 1234567800 dqmxg224 maxmag 1 1234567800 -> 1234567800 dqmxg225 maxmag 1234567890 1 -> 1234567890 dqmxg226 maxmag 1 1234567890 -> 1234567890 dqmxg227 maxmag 1234567891 1 -> 1234567891 dqmxg228 maxmag 1 1234567891 -> 1234567891 dqmxg229 maxmag 12345678901 1 -> 12345678901 dqmxg230 maxmag 1 12345678901 -> 12345678901 dqmxg231 maxmag 1234567896 1 -> 1234567896 dqmxg232 maxmag 1 1234567896 -> 1234567896 dqmxg233 maxmag -1234567891 1 -> -1234567891 dqmxg234 maxmag 1 -1234567891 -> -1234567891 dqmxg235 maxmag -12345678901 1 -> -12345678901 dqmxg236 maxmag 1 -12345678901 -> -12345678901 dqmxg237 maxmag -1234567896 1 -> -1234567896 dqmxg238 maxmag 1 -1234567896 -> -1234567896 -- from examples dqmxg280 maxmag '3' '2' -> '3' dqmxg281 maxmag '-10' '3' -> '-10' dqmxg282 maxmag '1.0' '1' -> '1' dqmxg283 maxmag '1' '1.0' -> '1' dqmxg284 maxmag '7' 'NaN' -> '7' -- expanded list from min/max 754r purple prose -- [explicit tests for exponent ordering] dqmxg401 maxmag Inf 1.1 -> Infinity dqmxg402 maxmag 1.1 1 -> 1.1 dqmxg403 maxmag 1 1.0 -> 1 dqmxg404 maxmag 1.0 0.1 -> 1.0 dqmxg405 maxmag 0.1 0.10 -> 0.1 dqmxg406 maxmag 0.10 0.100 -> 0.10 dqmxg407 maxmag 0.10 0 -> 0.10 dqmxg408 maxmag 0 0.0 -> 0 dqmxg409 maxmag 0.0 -0 -> 0.0 dqmxg410 maxmag 0.0 -0.0 -> 0.0 dqmxg411 maxmag 0.00 -0.0 -> 0.00 dqmxg412 maxmag 0.0 -0.00 -> 0.0 dqmxg413 maxmag 0 -0.0 -> 0 dqmxg414 maxmag 0 -0 -> 0 dqmxg415 maxmag -0.0 -0 -> -0.0 dqmxg416 maxmag -0 -0.100 -> -0.100 dqmxg417 maxmag -0.100 -0.10 -> -0.100 dqmxg418 maxmag -0.10 -0.1 -> -0.10 dqmxg419 maxmag -0.1 -1.0 -> -1.0 dqmxg420 maxmag -1.0 -1 -> -1.0 dqmxg421 maxmag -1 -1.1 -> -1.1 dqmxg423 maxmag -1.1 -Inf -> -Infinity -- same with operands reversed dqmxg431 maxmag 1.1 Inf -> Infinity dqmxg432 maxmag 1 1.1 -> 1.1 dqmxg433 maxmag 1.0 1 -> 1 dqmxg434 maxmag 0.1 1.0 -> 1.0 dqmxg435 maxmag 0.10 0.1 -> 0.1 dqmxg436 maxmag 0.100 0.10 -> 0.10 dqmxg437 maxmag 0 0.10 -> 0.10 dqmxg438 maxmag 0.0 0 -> 0 dqmxg439 maxmag -0 0.0 -> 0.0 dqmxg440 maxmag -0.0 0.0 -> 0.0 dqmxg441 maxmag -0.0 0.00 -> 0.00 dqmxg442 maxmag -0.00 0.0 -> 0.0 dqmxg443 maxmag -0.0 0 -> 0 dqmxg444 maxmag -0 0 -> 0 dqmxg445 maxmag -0 -0.0 -> -0.0 dqmxg446 maxmag -0.100 -0 -> -0.100 dqmxg447 maxmag -0.10 -0.100 -> -0.100 dqmxg448 maxmag -0.1 -0.10 -> -0.10 dqmxg449 maxmag -1.0 -0.1 -> -1.0 dqmxg450 maxmag -1 -1.0 -> -1.0 dqmxg451 maxmag -1.1 -1 -> -1.1 dqmxg453 maxmag -Inf -1.1 -> -Infinity -- largies dqmxg460 maxmag 1000 1E+3 -> 1E+3 dqmxg461 maxmag 1E+3 1000 -> 1E+3 dqmxg462 maxmag 1000 -1E+3 -> 1000 dqmxg463 maxmag 1E+3 -1000 -> 1E+3 dqmxg464 maxmag -1000 1E+3 -> 1E+3 dqmxg465 maxmag -1E+3 1000 -> 1000 dqmxg466 maxmag -1000 -1E+3 -> -1000 dqmxg467 maxmag -1E+3 -1000 -> -1000 -- subnormals dqmxg510 maxmag 1.00E-6143 0 -> 1.00E-6143 dqmxg511 maxmag 0.1E-6143 0 -> 1E-6144 Subnormal dqmxg512 maxmag 0.10E-6143 0 -> 1.0E-6144 Subnormal dqmxg513 maxmag 0.100E-6143 0 -> 1.00E-6144 Subnormal dqmxg514 maxmag 0.01E-6143 0 -> 1E-6145 Subnormal dqmxg515 maxmag 0.999E-6143 0 -> 9.99E-6144 Subnormal dqmxg516 maxmag 0.099E-6143 0 -> 9.9E-6145 Subnormal dqmxg517 maxmag 0.009E-6143 0 -> 9E-6146 Subnormal dqmxg518 maxmag 0.001E-6143 0 -> 1E-6146 Subnormal dqmxg519 maxmag 0.0009E-6143 0 -> 9E-6147 Subnormal dqmxg520 maxmag 0.0001E-6143 0 -> 1E-6147 Subnormal dqmxg530 maxmag -1.00E-6143 0 -> -1.00E-6143 dqmxg531 maxmag -0.1E-6143 0 -> -1E-6144 Subnormal dqmxg532 maxmag -0.10E-6143 0 -> -1.0E-6144 Subnormal dqmxg533 maxmag -0.100E-6143 0 -> -1.00E-6144 Subnormal dqmxg534 maxmag -0.01E-6143 0 -> -1E-6145 Subnormal dqmxg535 maxmag -0.999E-6143 0 -> -9.99E-6144 Subnormal dqmxg536 maxmag -0.099E-6143 0 -> -9.9E-6145 Subnormal dqmxg537 maxmag -0.009E-6143 0 -> -9E-6146 Subnormal dqmxg538 maxmag -0.001E-6143 0 -> -1E-6146 Subnormal dqmxg539 maxmag -0.0009E-6143 0 -> -9E-6147 Subnormal dqmxg540 maxmag -0.0001E-6143 0 -> -1E-6147 Subnormal -- Null tests dqmxg900 maxmag 10 # -> NaN Invalid_operation dqmxg901 maxmag # 10 -> NaN Invalid_operation
12,485
305
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/ddMaxMag.decTest
------------------------------------------------------------------------ -- ddMaxMag.decTest -- decDouble maxnummag -- -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 -- we assume that base comparison is tested in compare.decTest, so -- these mainly cover special cases and rounding precision: 16 maxExponent: 384 minExponent: -383 extended: 1 clamp: 1 rounding: half_even -- sanity checks ddmxg001 maxmag -2 -2 -> -2 ddmxg002 maxmag -2 -1 -> -2 ddmxg003 maxmag -2 0 -> -2 ddmxg004 maxmag -2 1 -> -2 ddmxg005 maxmag -2 2 -> 2 ddmxg006 maxmag -1 -2 -> -2 ddmxg007 maxmag -1 -1 -> -1 ddmxg008 maxmag -1 0 -> -1 ddmxg009 maxmag -1 1 -> 1 ddmxg010 maxmag -1 2 -> 2 ddmxg011 maxmag 0 -2 -> -2 ddmxg012 maxmag 0 -1 -> -1 ddmxg013 maxmag 0 0 -> 0 ddmxg014 maxmag 0 1 -> 1 ddmxg015 maxmag 0 2 -> 2 ddmxg016 maxmag 1 -2 -> -2 ddmxg017 maxmag 1 -1 -> 1 ddmxg018 maxmag 1 0 -> 1 ddmxg019 maxmag 1 1 -> 1 ddmxg020 maxmag 1 2 -> 2 ddmxg021 maxmag 2 -2 -> 2 ddmxg022 maxmag 2 -1 -> 2 ddmxg023 maxmag 2 0 -> 2 ddmxg025 maxmag 2 1 -> 2 ddmxg026 maxmag 2 2 -> 2 -- extended zeros ddmxg030 maxmag 0 0 -> 0 ddmxg031 maxmag 0 -0 -> 0 ddmxg032 maxmag 0 -0.0 -> 0 ddmxg033 maxmag 0 0.0 -> 0 ddmxg034 maxmag -0 0 -> 0 -- note: -0 = 0, but 0 chosen ddmxg035 maxmag -0 -0 -> -0 ddmxg036 maxmag -0 -0.0 -> -0.0 ddmxg037 maxmag -0 0.0 -> 0.0 ddmxg038 maxmag 0.0 0 -> 0 ddmxg039 maxmag 0.0 -0 -> 0.0 ddmxg040 maxmag 0.0 -0.0 -> 0.0 ddmxg041 maxmag 0.0 0.0 -> 0.0 ddmxg042 maxmag -0.0 0 -> 0 ddmxg043 maxmag -0.0 -0 -> -0.0 ddmxg044 maxmag -0.0 -0.0 -> -0.0 ddmxg045 maxmag -0.0 0.0 -> 0.0 ddmxg050 maxmag -0E1 0E1 -> 0E+1 ddmxg051 maxmag -0E2 0E2 -> 0E+2 ddmxg052 maxmag -0E2 0E1 -> 0E+1 ddmxg053 maxmag -0E1 0E2 -> 0E+2 ddmxg054 maxmag 0E1 -0E1 -> 0E+1 ddmxg055 maxmag 0E2 -0E2 -> 0E+2 ddmxg056 maxmag 0E2 -0E1 -> 0E+2 ddmxg057 maxmag 0E1 -0E2 -> 0E+1 ddmxg058 maxmag 0E1 0E1 -> 0E+1 ddmxg059 maxmag 0E2 0E2 -> 0E+2 ddmxg060 maxmag 0E2 0E1 -> 0E+2 ddmxg061 maxmag 0E1 0E2 -> 0E+2 ddmxg062 maxmag -0E1 -0E1 -> -0E+1 ddmxg063 maxmag -0E2 -0E2 -> -0E+2 ddmxg064 maxmag -0E2 -0E1 -> -0E+1 ddmxg065 maxmag -0E1 -0E2 -> -0E+1 -- Specials ddmxg090 maxmag Inf -Inf -> Infinity ddmxg091 maxmag Inf -1000 -> Infinity ddmxg092 maxmag Inf -1 -> Infinity ddmxg093 maxmag Inf -0 -> Infinity ddmxg094 maxmag Inf 0 -> Infinity ddmxg095 maxmag Inf 1 -> Infinity ddmxg096 maxmag Inf 1000 -> Infinity ddmxg097 maxmag Inf Inf -> Infinity ddmxg098 maxmag -1000 Inf -> Infinity ddmxg099 maxmag -Inf Inf -> Infinity ddmxg100 maxmag -1 Inf -> Infinity ddmxg101 maxmag -0 Inf -> Infinity ddmxg102 maxmag 0 Inf -> Infinity ddmxg103 maxmag 1 Inf -> Infinity ddmxg104 maxmag 1000 Inf -> Infinity ddmxg105 maxmag Inf Inf -> Infinity ddmxg120 maxmag -Inf -Inf -> -Infinity ddmxg121 maxmag -Inf -1000 -> -Infinity ddmxg122 maxmag -Inf -1 -> -Infinity ddmxg123 maxmag -Inf -0 -> -Infinity ddmxg124 maxmag -Inf 0 -> -Infinity ddmxg125 maxmag -Inf 1 -> -Infinity ddmxg126 maxmag -Inf 1000 -> -Infinity ddmxg127 maxmag -Inf Inf -> Infinity ddmxg128 maxmag -Inf -Inf -> -Infinity ddmxg129 maxmag -1000 -Inf -> -Infinity ddmxg130 maxmag -1 -Inf -> -Infinity ddmxg131 maxmag -0 -Inf -> -Infinity ddmxg132 maxmag 0 -Inf -> -Infinity ddmxg133 maxmag 1 -Inf -> -Infinity ddmxg134 maxmag 1000 -Inf -> -Infinity ddmxg135 maxmag Inf -Inf -> Infinity -- 2004.08.02 754r chooses number over NaN in mixed cases ddmxg141 maxmag NaN -Inf -> -Infinity ddmxg142 maxmag NaN -1000 -> -1000 ddmxg143 maxmag NaN -1 -> -1 ddmxg144 maxmag NaN -0 -> -0 ddmxg145 maxmag NaN 0 -> 0 ddmxg146 maxmag NaN 1 -> 1 ddmxg147 maxmag NaN 1000 -> 1000 ddmxg148 maxmag NaN Inf -> Infinity ddmxg149 maxmag NaN NaN -> NaN ddmxg150 maxmag -Inf NaN -> -Infinity ddmxg151 maxmag -1000 NaN -> -1000 ddmxg152 maxmag -1 NaN -> -1 ddmxg153 maxmag -0 NaN -> -0 ddmxg154 maxmag 0 NaN -> 0 ddmxg155 maxmag 1 NaN -> 1 ddmxg156 maxmag 1000 NaN -> 1000 ddmxg157 maxmag Inf NaN -> Infinity ddmxg161 maxmag sNaN -Inf -> NaN Invalid_operation ddmxg162 maxmag sNaN -1000 -> NaN Invalid_operation ddmxg163 maxmag sNaN -1 -> NaN Invalid_operation ddmxg164 maxmag sNaN -0 -> NaN Invalid_operation ddmxg165 maxmag sNaN 0 -> NaN Invalid_operation ddmxg166 maxmag sNaN 1 -> NaN Invalid_operation ddmxg167 maxmag sNaN 1000 -> NaN Invalid_operation ddmxg168 maxmag sNaN NaN -> NaN Invalid_operation ddmxg169 maxmag sNaN sNaN -> NaN Invalid_operation ddmxg170 maxmag NaN sNaN -> NaN Invalid_operation ddmxg171 maxmag -Inf sNaN -> NaN Invalid_operation ddmxg172 maxmag -1000 sNaN -> NaN Invalid_operation ddmxg173 maxmag -1 sNaN -> NaN Invalid_operation ddmxg174 maxmag -0 sNaN -> NaN Invalid_operation ddmxg175 maxmag 0 sNaN -> NaN Invalid_operation ddmxg176 maxmag 1 sNaN -> NaN Invalid_operation ddmxg177 maxmag 1000 sNaN -> NaN Invalid_operation ddmxg178 maxmag Inf sNaN -> NaN Invalid_operation ddmxg179 maxmag NaN sNaN -> NaN Invalid_operation -- propagating NaNs ddmxg181 maxmag NaN9 -Inf -> -Infinity ddmxg182 maxmag NaN8 9 -> 9 ddmxg183 maxmag -NaN7 Inf -> Infinity ddmxg184 maxmag -NaN1 NaN11 -> -NaN1 ddmxg185 maxmag NaN2 NaN12 -> NaN2 ddmxg186 maxmag -NaN13 -NaN7 -> -NaN13 ddmxg187 maxmag NaN14 -NaN5 -> NaN14 ddmxg188 maxmag -Inf NaN4 -> -Infinity ddmxg189 maxmag -9 -NaN3 -> -9 ddmxg190 maxmag Inf NaN2 -> Infinity ddmxg191 maxmag sNaN99 -Inf -> NaN99 Invalid_operation ddmxg192 maxmag sNaN98 -1 -> NaN98 Invalid_operation ddmxg193 maxmag -sNaN97 NaN -> -NaN97 Invalid_operation ddmxg194 maxmag sNaN96 sNaN94 -> NaN96 Invalid_operation ddmxg195 maxmag NaN95 sNaN93 -> NaN93 Invalid_operation ddmxg196 maxmag -Inf sNaN92 -> NaN92 Invalid_operation ddmxg197 maxmag 0 sNaN91 -> NaN91 Invalid_operation ddmxg198 maxmag Inf -sNaN90 -> -NaN90 Invalid_operation ddmxg199 maxmag NaN sNaN89 -> NaN89 Invalid_operation -- old rounding checks ddmxg221 maxmag 12345678000 1 -> 12345678000 ddmxg222 maxmag 1 12345678000 -> 12345678000 ddmxg223 maxmag 1234567800 1 -> 1234567800 ddmxg224 maxmag 1 1234567800 -> 1234567800 ddmxg225 maxmag 1234567890 1 -> 1234567890 ddmxg226 maxmag 1 1234567890 -> 1234567890 ddmxg227 maxmag 1234567891 1 -> 1234567891 ddmxg228 maxmag 1 1234567891 -> 1234567891 ddmxg229 maxmag 12345678901 1 -> 12345678901 ddmxg230 maxmag 1 12345678901 -> 12345678901 ddmxg231 maxmag 1234567896 1 -> 1234567896 ddmxg232 maxmag 1 1234567896 -> 1234567896 ddmxg233 maxmag -1234567891 1 -> -1234567891 ddmxg234 maxmag 1 -1234567891 -> -1234567891 ddmxg235 maxmag -12345678901 1 -> -12345678901 ddmxg236 maxmag 1 -12345678901 -> -12345678901 ddmxg237 maxmag -1234567896 1 -> -1234567896 ddmxg238 maxmag 1 -1234567896 -> -1234567896 -- from examples ddmxg280 maxmag '3' '2' -> '3' ddmxg281 maxmag '-10' '3' -> '-10' ddmxg282 maxmag '1.0' '1' -> '1' ddmxg283 maxmag '1' '1.0' -> '1' ddmxg284 maxmag '7' 'NaN' -> '7' -- expanded list from min/max 754r purple prose -- [explicit tests for exponent ordering] ddmxg401 maxmag Inf 1.1 -> Infinity ddmxg402 maxmag 1.1 1 -> 1.1 ddmxg403 maxmag 1 1.0 -> 1 ddmxg404 maxmag 1.0 0.1 -> 1.0 ddmxg405 maxmag 0.1 0.10 -> 0.1 ddmxg406 maxmag 0.10 0.100 -> 0.10 ddmxg407 maxmag 0.10 0 -> 0.10 ddmxg408 maxmag 0 0.0 -> 0 ddmxg409 maxmag 0.0 -0 -> 0.0 ddmxg410 maxmag 0.0 -0.0 -> 0.0 ddmxg411 maxmag 0.00 -0.0 -> 0.00 ddmxg412 maxmag 0.0 -0.00 -> 0.0 ddmxg413 maxmag 0 -0.0 -> 0 ddmxg414 maxmag 0 -0 -> 0 ddmxg415 maxmag -0.0 -0 -> -0.0 ddmxg416 maxmag -0 -0.100 -> -0.100 ddmxg417 maxmag -0.100 -0.10 -> -0.100 ddmxg418 maxmag -0.10 -0.1 -> -0.10 ddmxg419 maxmag -0.1 -1.0 -> -1.0 ddmxg420 maxmag -1.0 -1 -> -1.0 ddmxg421 maxmag -1 -1.1 -> -1.1 ddmxg423 maxmag -1.1 -Inf -> -Infinity -- same with operands reversed ddmxg431 maxmag 1.1 Inf -> Infinity ddmxg432 maxmag 1 1.1 -> 1.1 ddmxg433 maxmag 1.0 1 -> 1 ddmxg434 maxmag 0.1 1.0 -> 1.0 ddmxg435 maxmag 0.10 0.1 -> 0.1 ddmxg436 maxmag 0.100 0.10 -> 0.10 ddmxg437 maxmag 0 0.10 -> 0.10 ddmxg438 maxmag 0.0 0 -> 0 ddmxg439 maxmag -0 0.0 -> 0.0 ddmxg440 maxmag -0.0 0.0 -> 0.0 ddmxg441 maxmag -0.0 0.00 -> 0.00 ddmxg442 maxmag -0.00 0.0 -> 0.0 ddmxg443 maxmag -0.0 0 -> 0 ddmxg444 maxmag -0 0 -> 0 ddmxg445 maxmag -0 -0.0 -> -0.0 ddmxg446 maxmag -0.100 -0 -> -0.100 ddmxg447 maxmag -0.10 -0.100 -> -0.100 ddmxg448 maxmag -0.1 -0.10 -> -0.10 ddmxg449 maxmag -1.0 -0.1 -> -1.0 ddmxg450 maxmag -1 -1.0 -> -1.0 ddmxg451 maxmag -1.1 -1 -> -1.1 ddmxg453 maxmag -Inf -1.1 -> -Infinity -- largies ddmxg460 maxmag 1000 1E+3 -> 1E+3 ddmxg461 maxmag 1E+3 1000 -> 1E+3 ddmxg462 maxmag 1000 -1E+3 -> 1000 ddmxg463 maxmag 1E+3 -1000 -> 1E+3 ddmxg464 maxmag -1000 1E+3 -> 1E+3 ddmxg465 maxmag -1E+3 1000 -> 1000 ddmxg466 maxmag -1000 -1E+3 -> -1000 ddmxg467 maxmag -1E+3 -1000 -> -1000 -- subnormals ddmxg510 maxmag 1.00E-383 0 -> 1.00E-383 ddmxg511 maxmag 0.1E-383 0 -> 1E-384 Subnormal ddmxg512 maxmag 0.10E-383 0 -> 1.0E-384 Subnormal ddmxg513 maxmag 0.100E-383 0 -> 1.00E-384 Subnormal ddmxg514 maxmag 0.01E-383 0 -> 1E-385 Subnormal ddmxg515 maxmag 0.999E-383 0 -> 9.99E-384 Subnormal ddmxg516 maxmag 0.099E-383 0 -> 9.9E-385 Subnormal ddmxg517 maxmag 0.009E-383 0 -> 9E-386 Subnormal ddmxg518 maxmag 0.001E-383 0 -> 1E-386 Subnormal ddmxg519 maxmag 0.0009E-383 0 -> 9E-387 Subnormal ddmxg520 maxmag 0.0001E-383 0 -> 1E-387 Subnormal ddmxg530 maxmag -1.00E-383 0 -> -1.00E-383 ddmxg531 maxmag -0.1E-383 0 -> -1E-384 Subnormal ddmxg532 maxmag -0.10E-383 0 -> -1.0E-384 Subnormal ddmxg533 maxmag -0.100E-383 0 -> -1.00E-384 Subnormal ddmxg534 maxmag -0.01E-383 0 -> -1E-385 Subnormal ddmxg535 maxmag -0.999E-383 0 -> -9.99E-384 Subnormal ddmxg536 maxmag -0.099E-383 0 -> -9.9E-385 Subnormal ddmxg537 maxmag -0.009E-383 0 -> -9E-386 Subnormal ddmxg538 maxmag -0.001E-383 0 -> -1E-386 Subnormal ddmxg539 maxmag -0.0009E-383 0 -> -9E-387 Subnormal ddmxg540 maxmag -0.0001E-383 0 -> -1E-387 Subnormal -- Null tests ddmxg900 maxmag 10 # -> NaN Invalid_operation ddmxg901 maxmag # 10 -> NaN Invalid_operation
12,439
305
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/dqQuantize.decTest
------------------------------------------------------------------------ -- dqQuantize.decTest -- decQuad quantize operation -- -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 -- Most of the tests here assume a "regular pattern", where the -- sign and coefficient are +1. -- 2004.03.15 Underflow for quantize is suppressed -- 2005.06.08 More extensive tests for 'does not fit' -- [Forked from quantize.decTest 2006.11.25] extended: 1 clamp: 1 precision: 34 maxExponent: 6144 minExponent: -6143 rounding: half_even -- sanity checks dqqua001 quantize 0 1e0 -> 0 dqqua002 quantize 1 1e0 -> 1 dqqua003 quantize 0.1 1e+2 -> 0E+2 Inexact Rounded dqqua005 quantize 0.1 1e+1 -> 0E+1 Inexact Rounded dqqua006 quantize 0.1 1e0 -> 0 Inexact Rounded dqqua007 quantize 0.1 1e-1 -> 0.1 dqqua008 quantize 0.1 1e-2 -> 0.10 dqqua009 quantize 0.1 1e-3 -> 0.100 dqqua010 quantize 0.9 1e+2 -> 0E+2 Inexact Rounded dqqua011 quantize 0.9 1e+1 -> 0E+1 Inexact Rounded dqqua012 quantize 0.9 1e+0 -> 1 Inexact Rounded dqqua013 quantize 0.9 1e-1 -> 0.9 dqqua014 quantize 0.9 1e-2 -> 0.90 dqqua015 quantize 0.9 1e-3 -> 0.900 -- negatives dqqua021 quantize -0 1e0 -> -0 dqqua022 quantize -1 1e0 -> -1 dqqua023 quantize -0.1 1e+2 -> -0E+2 Inexact Rounded dqqua025 quantize -0.1 1e+1 -> -0E+1 Inexact Rounded dqqua026 quantize -0.1 1e0 -> -0 Inexact Rounded dqqua027 quantize -0.1 1e-1 -> -0.1 dqqua028 quantize -0.1 1e-2 -> -0.10 dqqua029 quantize -0.1 1e-3 -> -0.100 dqqua030 quantize -0.9 1e+2 -> -0E+2 Inexact Rounded dqqua031 quantize -0.9 1e+1 -> -0E+1 Inexact Rounded dqqua032 quantize -0.9 1e+0 -> -1 Inexact Rounded dqqua033 quantize -0.9 1e-1 -> -0.9 dqqua034 quantize -0.9 1e-2 -> -0.90 dqqua035 quantize -0.9 1e-3 -> -0.900 dqqua036 quantize -0.5 1e+2 -> -0E+2 Inexact Rounded dqqua037 quantize -0.5 1e+1 -> -0E+1 Inexact Rounded dqqua038 quantize -0.5 1e+0 -> -0 Inexact Rounded dqqua039 quantize -0.5 1e-1 -> -0.5 dqqua040 quantize -0.5 1e-2 -> -0.50 dqqua041 quantize -0.5 1e-3 -> -0.500 dqqua042 quantize -0.9 1e+2 -> -0E+2 Inexact Rounded dqqua043 quantize -0.9 1e+1 -> -0E+1 Inexact Rounded dqqua044 quantize -0.9 1e+0 -> -1 Inexact Rounded dqqua045 quantize -0.9 1e-1 -> -0.9 dqqua046 quantize -0.9 1e-2 -> -0.90 dqqua047 quantize -0.9 1e-3 -> -0.900 -- examples from Specification dqqua060 quantize 2.17 0.001 -> 2.170 dqqua061 quantize 2.17 0.01 -> 2.17 dqqua062 quantize 2.17 0.1 -> 2.2 Inexact Rounded dqqua063 quantize 2.17 1e+0 -> 2 Inexact Rounded dqqua064 quantize 2.17 1e+1 -> 0E+1 Inexact Rounded dqqua065 quantize -Inf Inf -> -Infinity dqqua066 quantize 2 Inf -> NaN Invalid_operation dqqua067 quantize -0.1 1 -> -0 Inexact Rounded dqqua068 quantize -0 1e+5 -> -0E+5 dqqua069 quantize +123451234567899876543216789012345.6 1e-2 -> NaN Invalid_operation dqqua070 quantize -987651234567899876543214335236450.6 1e-2 -> NaN Invalid_operation dqqua071 quantize 217 1e-1 -> 217.0 dqqua072 quantize 217 1e+0 -> 217 dqqua073 quantize 217 1e+1 -> 2.2E+2 Inexact Rounded dqqua074 quantize 217 1e+2 -> 2E+2 Inexact Rounded -- general tests .. dqqua089 quantize 12 1e+4 -> 0E+4 Inexact Rounded dqqua090 quantize 12 1e+3 -> 0E+3 Inexact Rounded dqqua091 quantize 12 1e+2 -> 0E+2 Inexact Rounded dqqua092 quantize 12 1e+1 -> 1E+1 Inexact Rounded dqqua093 quantize 1.2345 1e-2 -> 1.23 Inexact Rounded dqqua094 quantize 1.2355 1e-2 -> 1.24 Inexact Rounded dqqua095 quantize 1.2345 1e-6 -> 1.234500 dqqua096 quantize 9.9999 1e-2 -> 10.00 Inexact Rounded dqqua097 quantize 0.0001 1e-2 -> 0.00 Inexact Rounded dqqua098 quantize 0.001 1e-2 -> 0.00 Inexact Rounded dqqua099 quantize 0.009 1e-2 -> 0.01 Inexact Rounded dqqua100 quantize 92 1e+2 -> 1E+2 Inexact Rounded dqqua101 quantize -1 1e0 -> -1 dqqua102 quantize -1 1e-1 -> -1.0 dqqua103 quantize -1 1e-2 -> -1.00 dqqua104 quantize 0 1e0 -> 0 dqqua105 quantize 0 1e-1 -> 0.0 dqqua106 quantize 0 1e-2 -> 0.00 dqqua107 quantize 0.00 1e0 -> 0 dqqua108 quantize 0 1e+1 -> 0E+1 dqqua109 quantize 0 1e+2 -> 0E+2 dqqua110 quantize +1 1e0 -> 1 dqqua111 quantize +1 1e-1 -> 1.0 dqqua112 quantize +1 1e-2 -> 1.00 dqqua120 quantize 1.04 1e-3 -> 1.040 dqqua121 quantize 1.04 1e-2 -> 1.04 dqqua122 quantize 1.04 1e-1 -> 1.0 Inexact Rounded dqqua123 quantize 1.04 1e0 -> 1 Inexact Rounded dqqua124 quantize 1.05 1e-3 -> 1.050 dqqua125 quantize 1.05 1e-2 -> 1.05 dqqua126 quantize 1.05 1e-1 -> 1.0 Inexact Rounded dqqua131 quantize 1.05 1e0 -> 1 Inexact Rounded dqqua132 quantize 1.06 1e-3 -> 1.060 dqqua133 quantize 1.06 1e-2 -> 1.06 dqqua134 quantize 1.06 1e-1 -> 1.1 Inexact Rounded dqqua135 quantize 1.06 1e0 -> 1 Inexact Rounded dqqua140 quantize -10 1e-2 -> -10.00 dqqua141 quantize +1 1e-2 -> 1.00 dqqua142 quantize +10 1e-2 -> 10.00 dqqua143 quantize 1E+37 1e-2 -> NaN Invalid_operation dqqua144 quantize 1E-37 1e-2 -> 0.00 Inexact Rounded dqqua145 quantize 1E-3 1e-2 -> 0.00 Inexact Rounded dqqua146 quantize 1E-2 1e-2 -> 0.01 dqqua147 quantize 1E-1 1e-2 -> 0.10 dqqua148 quantize 0E-37 1e-2 -> 0.00 dqqua150 quantize 1.0600 1e-5 -> 1.06000 dqqua151 quantize 1.0600 1e-4 -> 1.0600 dqqua152 quantize 1.0600 1e-3 -> 1.060 Rounded dqqua153 quantize 1.0600 1e-2 -> 1.06 Rounded dqqua154 quantize 1.0600 1e-1 -> 1.1 Inexact Rounded dqqua155 quantize 1.0600 1e0 -> 1 Inexact Rounded -- a couple where rounding was different in base tests rounding: half_up dqqua157 quantize -0.5 1e+0 -> -1 Inexact Rounded dqqua158 quantize 1.05 1e-1 -> 1.1 Inexact Rounded dqqua159 quantize 1.06 1e0 -> 1 Inexact Rounded rounding: half_even -- base tests with non-1 coefficients dqqua161 quantize 0 -9e0 -> 0 dqqua162 quantize 1 -7e0 -> 1 dqqua163 quantize 0.1 -1e+2 -> 0E+2 Inexact Rounded dqqua165 quantize 0.1 0e+1 -> 0E+1 Inexact Rounded dqqua166 quantize 0.1 2e0 -> 0 Inexact Rounded dqqua167 quantize 0.1 3e-1 -> 0.1 dqqua168 quantize 0.1 44e-2 -> 0.10 dqqua169 quantize 0.1 555e-3 -> 0.100 dqqua170 quantize 0.9 6666e+2 -> 0E+2 Inexact Rounded dqqua171 quantize 0.9 -777e+1 -> 0E+1 Inexact Rounded dqqua172 quantize 0.9 -88e+0 -> 1 Inexact Rounded dqqua173 quantize 0.9 -9e-1 -> 0.9 dqqua174 quantize 0.9 0e-2 -> 0.90 dqqua175 quantize 0.9 1.1e-3 -> 0.9000 -- negatives dqqua181 quantize -0 1.1e0 -> -0.0 dqqua182 quantize -1 -1e0 -> -1 dqqua183 quantize -0.1 11e+2 -> -0E+2 Inexact Rounded dqqua185 quantize -0.1 111e+1 -> -0E+1 Inexact Rounded dqqua186 quantize -0.1 71e0 -> -0 Inexact Rounded dqqua187 quantize -0.1 -91e-1 -> -0.1 dqqua188 quantize -0.1 -.1e-2 -> -0.100 dqqua189 quantize -0.1 -1e-3 -> -0.100 dqqua190 quantize -0.9 0e+2 -> -0E+2 Inexact Rounded dqqua191 quantize -0.9 -0e+1 -> -0E+1 Inexact Rounded dqqua192 quantize -0.9 -10e+0 -> -1 Inexact Rounded dqqua193 quantize -0.9 100e-1 -> -0.9 dqqua194 quantize -0.9 999e-2 -> -0.90 -- +ve exponents .. dqqua201 quantize -1 1e+0 -> -1 dqqua202 quantize -1 1e+1 -> -0E+1 Inexact Rounded dqqua203 quantize -1 1e+2 -> -0E+2 Inexact Rounded dqqua204 quantize 0 1e+0 -> 0 dqqua205 quantize 0 1e+1 -> 0E+1 dqqua206 quantize 0 1e+2 -> 0E+2 dqqua207 quantize +1 1e+0 -> 1 dqqua208 quantize +1 1e+1 -> 0E+1 Inexact Rounded dqqua209 quantize +1 1e+2 -> 0E+2 Inexact Rounded dqqua220 quantize 1.04 1e+3 -> 0E+3 Inexact Rounded dqqua221 quantize 1.04 1e+2 -> 0E+2 Inexact Rounded dqqua222 quantize 1.04 1e+1 -> 0E+1 Inexact Rounded dqqua223 quantize 1.04 1e+0 -> 1 Inexact Rounded dqqua224 quantize 1.05 1e+3 -> 0E+3 Inexact Rounded dqqua225 quantize 1.05 1e+2 -> 0E+2 Inexact Rounded dqqua226 quantize 1.05 1e+1 -> 0E+1 Inexact Rounded dqqua227 quantize 1.05 1e+0 -> 1 Inexact Rounded dqqua228 quantize 1.05 1e+3 -> 0E+3 Inexact Rounded dqqua229 quantize 1.05 1e+2 -> 0E+2 Inexact Rounded dqqua230 quantize 1.05 1e+1 -> 0E+1 Inexact Rounded dqqua231 quantize 1.05 1e+0 -> 1 Inexact Rounded dqqua232 quantize 1.06 1e+3 -> 0E+3 Inexact Rounded dqqua233 quantize 1.06 1e+2 -> 0E+2 Inexact Rounded dqqua234 quantize 1.06 1e+1 -> 0E+1 Inexact Rounded dqqua235 quantize 1.06 1e+0 -> 1 Inexact Rounded dqqua240 quantize -10 1e+1 -> -1E+1 Rounded dqqua241 quantize +1 1e+1 -> 0E+1 Inexact Rounded dqqua242 quantize +10 1e+1 -> 1E+1 Rounded dqqua243 quantize 1E+1 1e+1 -> 1E+1 -- underneath this is E+1 dqqua244 quantize 1E+2 1e+1 -> 1.0E+2 -- underneath this is E+1 dqqua245 quantize 1E+3 1e+1 -> 1.00E+3 -- underneath this is E+1 dqqua246 quantize 1E+4 1e+1 -> 1.000E+4 -- underneath this is E+1 dqqua247 quantize 1E+5 1e+1 -> 1.0000E+5 -- underneath this is E+1 dqqua248 quantize 1E+6 1e+1 -> 1.00000E+6 -- underneath this is E+1 dqqua249 quantize 1E+7 1e+1 -> 1.000000E+7 -- underneath this is E+1 dqqua250 quantize 1E+8 1e+1 -> 1.0000000E+8 -- underneath this is E+1 dqqua251 quantize 1E+9 1e+1 -> 1.00000000E+9 -- underneath this is E+1 -- next one tries to add 9 zeros dqqua252 quantize 1E+37 1e+1 -> NaN Invalid_operation dqqua253 quantize 1E-37 1e+1 -> 0E+1 Inexact Rounded dqqua254 quantize 1E-2 1e+1 -> 0E+1 Inexact Rounded dqqua255 quantize 0E-37 1e+1 -> 0E+1 dqqua256 quantize -0E-37 1e+1 -> -0E+1 dqqua257 quantize -0E-1 1e+1 -> -0E+1 dqqua258 quantize -0 1e+1 -> -0E+1 dqqua259 quantize -0E+1 1e+1 -> -0E+1 dqqua260 quantize -10 1e+2 -> -0E+2 Inexact Rounded dqqua261 quantize +1 1e+2 -> 0E+2 Inexact Rounded dqqua262 quantize +10 1e+2 -> 0E+2 Inexact Rounded dqqua263 quantize 1E+1 1e+2 -> 0E+2 Inexact Rounded dqqua264 quantize 1E+2 1e+2 -> 1E+2 dqqua265 quantize 1E+3 1e+2 -> 1.0E+3 dqqua266 quantize 1E+4 1e+2 -> 1.00E+4 dqqua267 quantize 1E+5 1e+2 -> 1.000E+5 dqqua268 quantize 1E+6 1e+2 -> 1.0000E+6 dqqua269 quantize 1E+7 1e+2 -> 1.00000E+7 dqqua270 quantize 1E+8 1e+2 -> 1.000000E+8 dqqua271 quantize 1E+9 1e+2 -> 1.0000000E+9 dqqua272 quantize 1E+10 1e+2 -> 1.00000000E+10 dqqua273 quantize 1E-10 1e+2 -> 0E+2 Inexact Rounded dqqua274 quantize 1E-2 1e+2 -> 0E+2 Inexact Rounded dqqua275 quantize 0E-10 1e+2 -> 0E+2 dqqua280 quantize -10 1e+3 -> -0E+3 Inexact Rounded dqqua281 quantize +1 1e+3 -> 0E+3 Inexact Rounded dqqua282 quantize +10 1e+3 -> 0E+3 Inexact Rounded dqqua283 quantize 1E+1 1e+3 -> 0E+3 Inexact Rounded dqqua284 quantize 1E+2 1e+3 -> 0E+3 Inexact Rounded dqqua285 quantize 1E+3 1e+3 -> 1E+3 dqqua286 quantize 1E+4 1e+3 -> 1.0E+4 dqqua287 quantize 1E+5 1e+3 -> 1.00E+5 dqqua288 quantize 1E+6 1e+3 -> 1.000E+6 dqqua289 quantize 1E+7 1e+3 -> 1.0000E+7 dqqua290 quantize 1E+8 1e+3 -> 1.00000E+8 dqqua291 quantize 1E+9 1e+3 -> 1.000000E+9 dqqua292 quantize 1E+10 1e+3 -> 1.0000000E+10 dqqua293 quantize 1E-10 1e+3 -> 0E+3 Inexact Rounded dqqua294 quantize 1E-2 1e+3 -> 0E+3 Inexact Rounded dqqua295 quantize 0E-10 1e+3 -> 0E+3 -- round up from below [sign wrong in JIT compiler once] dqqua300 quantize 0.0078 1e-5 -> 0.00780 dqqua301 quantize 0.0078 1e-4 -> 0.0078 dqqua302 quantize 0.0078 1e-3 -> 0.008 Inexact Rounded dqqua303 quantize 0.0078 1e-2 -> 0.01 Inexact Rounded dqqua304 quantize 0.0078 1e-1 -> 0.0 Inexact Rounded dqqua305 quantize 0.0078 1e0 -> 0 Inexact Rounded dqqua306 quantize 0.0078 1e+1 -> 0E+1 Inexact Rounded dqqua307 quantize 0.0078 1e+2 -> 0E+2 Inexact Rounded dqqua310 quantize -0.0078 1e-5 -> -0.00780 dqqua311 quantize -0.0078 1e-4 -> -0.0078 dqqua312 quantize -0.0078 1e-3 -> -0.008 Inexact Rounded dqqua313 quantize -0.0078 1e-2 -> -0.01 Inexact Rounded dqqua314 quantize -0.0078 1e-1 -> -0.0 Inexact Rounded dqqua315 quantize -0.0078 1e0 -> -0 Inexact Rounded dqqua316 quantize -0.0078 1e+1 -> -0E+1 Inexact Rounded dqqua317 quantize -0.0078 1e+2 -> -0E+2 Inexact Rounded dqqua320 quantize 0.078 1e-5 -> 0.07800 dqqua321 quantize 0.078 1e-4 -> 0.0780 dqqua322 quantize 0.078 1e-3 -> 0.078 dqqua323 quantize 0.078 1e-2 -> 0.08 Inexact Rounded dqqua324 quantize 0.078 1e-1 -> 0.1 Inexact Rounded dqqua325 quantize 0.078 1e0 -> 0 Inexact Rounded dqqua326 quantize 0.078 1e+1 -> 0E+1 Inexact Rounded dqqua327 quantize 0.078 1e+2 -> 0E+2 Inexact Rounded dqqua330 quantize -0.078 1e-5 -> -0.07800 dqqua331 quantize -0.078 1e-4 -> -0.0780 dqqua332 quantize -0.078 1e-3 -> -0.078 dqqua333 quantize -0.078 1e-2 -> -0.08 Inexact Rounded dqqua334 quantize -0.078 1e-1 -> -0.1 Inexact Rounded dqqua335 quantize -0.078 1e0 -> -0 Inexact Rounded dqqua336 quantize -0.078 1e+1 -> -0E+1 Inexact Rounded dqqua337 quantize -0.078 1e+2 -> -0E+2 Inexact Rounded dqqua340 quantize 0.78 1e-5 -> 0.78000 dqqua341 quantize 0.78 1e-4 -> 0.7800 dqqua342 quantize 0.78 1e-3 -> 0.780 dqqua343 quantize 0.78 1e-2 -> 0.78 dqqua344 quantize 0.78 1e-1 -> 0.8 Inexact Rounded dqqua345 quantize 0.78 1e0 -> 1 Inexact Rounded dqqua346 quantize 0.78 1e+1 -> 0E+1 Inexact Rounded dqqua347 quantize 0.78 1e+2 -> 0E+2 Inexact Rounded dqqua350 quantize -0.78 1e-5 -> -0.78000 dqqua351 quantize -0.78 1e-4 -> -0.7800 dqqua352 quantize -0.78 1e-3 -> -0.780 dqqua353 quantize -0.78 1e-2 -> -0.78 dqqua354 quantize -0.78 1e-1 -> -0.8 Inexact Rounded dqqua355 quantize -0.78 1e0 -> -1 Inexact Rounded dqqua356 quantize -0.78 1e+1 -> -0E+1 Inexact Rounded dqqua357 quantize -0.78 1e+2 -> -0E+2 Inexact Rounded dqqua360 quantize 7.8 1e-5 -> 7.80000 dqqua361 quantize 7.8 1e-4 -> 7.8000 dqqua362 quantize 7.8 1e-3 -> 7.800 dqqua363 quantize 7.8 1e-2 -> 7.80 dqqua364 quantize 7.8 1e-1 -> 7.8 dqqua365 quantize 7.8 1e0 -> 8 Inexact Rounded dqqua366 quantize 7.8 1e+1 -> 1E+1 Inexact Rounded dqqua367 quantize 7.8 1e+2 -> 0E+2 Inexact Rounded dqqua368 quantize 7.8 1e+3 -> 0E+3 Inexact Rounded dqqua370 quantize -7.8 1e-5 -> -7.80000 dqqua371 quantize -7.8 1e-4 -> -7.8000 dqqua372 quantize -7.8 1e-3 -> -7.800 dqqua373 quantize -7.8 1e-2 -> -7.80 dqqua374 quantize -7.8 1e-1 -> -7.8 dqqua375 quantize -7.8 1e0 -> -8 Inexact Rounded dqqua376 quantize -7.8 1e+1 -> -1E+1 Inexact Rounded dqqua377 quantize -7.8 1e+2 -> -0E+2 Inexact Rounded dqqua378 quantize -7.8 1e+3 -> -0E+3 Inexact Rounded -- some individuals dqqua380 quantize 1122334455667788991234567352364.506 1e-2 -> 1122334455667788991234567352364.51 Inexact Rounded dqqua381 quantize 11223344556677889912345673523645.06 1e-2 -> 11223344556677889912345673523645.06 dqqua382 quantize 112233445566778899123456735236450.6 1e-2 -> NaN Invalid_operation dqqua383 quantize 1122334455667788991234567352364506 1e-2 -> NaN Invalid_operation dqqua384 quantize -1122334455667788991234567352364.506 1e-2 -> -1122334455667788991234567352364.51 Inexact Rounded dqqua385 quantize -11223344556677889912345673523645.06 1e-2 -> -11223344556677889912345673523645.06 dqqua386 quantize -112233445566778899123456735236450.6 1e-2 -> NaN Invalid_operation dqqua387 quantize -1122334455667788991234567352364506 1e-2 -> NaN Invalid_operation rounding: down dqqua389 quantize 112233445566778899123456735236450.6 1e-2 -> NaN Invalid_operation rounding: half_up -- and a few more from e-mail discussions dqqua391 quantize 11223344556677889912345678912.34567 1e-3 -> 11223344556677889912345678912.346 Inexact Rounded dqqua392 quantize 112233445566778899123456789123.4567 1e-3 -> 112233445566778899123456789123.457 Inexact Rounded dqqua393 quantize 1122334455667788991234567891234567. 1e-3 -> NaN Invalid_operation -- some 9999 round-up cases dqqua400 quantize 9.999 1e-5 -> 9.99900 dqqua401 quantize 9.999 1e-4 -> 9.9990 dqqua402 quantize 9.999 1e-3 -> 9.999 dqqua403 quantize 9.999 1e-2 -> 10.00 Inexact Rounded dqqua404 quantize 9.999 1e-1 -> 10.0 Inexact Rounded dqqua405 quantize 9.999 1e0 -> 10 Inexact Rounded dqqua406 quantize 9.999 1e1 -> 1E+1 Inexact Rounded dqqua407 quantize 9.999 1e2 -> 0E+2 Inexact Rounded dqqua410 quantize 0.999 1e-5 -> 0.99900 dqqua411 quantize 0.999 1e-4 -> 0.9990 dqqua412 quantize 0.999 1e-3 -> 0.999 dqqua413 quantize 0.999 1e-2 -> 1.00 Inexact Rounded dqqua414 quantize 0.999 1e-1 -> 1.0 Inexact Rounded dqqua415 quantize 0.999 1e0 -> 1 Inexact Rounded dqqua416 quantize 0.999 1e1 -> 0E+1 Inexact Rounded dqqua420 quantize 0.0999 1e-5 -> 0.09990 dqqua421 quantize 0.0999 1e-4 -> 0.0999 dqqua422 quantize 0.0999 1e-3 -> 0.100 Inexact Rounded dqqua423 quantize 0.0999 1e-2 -> 0.10 Inexact Rounded dqqua424 quantize 0.0999 1e-1 -> 0.1 Inexact Rounded dqqua425 quantize 0.0999 1e0 -> 0 Inexact Rounded dqqua426 quantize 0.0999 1e1 -> 0E+1 Inexact Rounded dqqua430 quantize 0.00999 1e-5 -> 0.00999 dqqua431 quantize 0.00999 1e-4 -> 0.0100 Inexact Rounded dqqua432 quantize 0.00999 1e-3 -> 0.010 Inexact Rounded dqqua433 quantize 0.00999 1e-2 -> 0.01 Inexact Rounded dqqua434 quantize 0.00999 1e-1 -> 0.0 Inexact Rounded dqqua435 quantize 0.00999 1e0 -> 0 Inexact Rounded dqqua436 quantize 0.00999 1e1 -> 0E+1 Inexact Rounded dqqua440 quantize 0.000999 1e-5 -> 0.00100 Inexact Rounded dqqua441 quantize 0.000999 1e-4 -> 0.0010 Inexact Rounded dqqua442 quantize 0.000999 1e-3 -> 0.001 Inexact Rounded dqqua443 quantize 0.000999 1e-2 -> 0.00 Inexact Rounded dqqua444 quantize 0.000999 1e-1 -> 0.0 Inexact Rounded dqqua445 quantize 0.000999 1e0 -> 0 Inexact Rounded dqqua446 quantize 0.000999 1e1 -> 0E+1 Inexact Rounded dqqua1001 quantize 0.000 0.001 -> 0.000 dqqua1002 quantize 0.001 0.001 -> 0.001 dqqua1003 quantize 0.0012 0.001 -> 0.001 Inexact Rounded dqqua1004 quantize 0.0018 0.001 -> 0.002 Inexact Rounded dqqua1005 quantize 0.501 0.001 -> 0.501 dqqua1006 quantize 0.5012 0.001 -> 0.501 Inexact Rounded dqqua1007 quantize 0.5018 0.001 -> 0.502 Inexact Rounded dqqua1008 quantize 0.999 0.001 -> 0.999 dqqua481 quantize 12345678000 1e+3 -> 1.2345678E+10 Rounded dqqua482 quantize 1234567800 1e+1 -> 1.23456780E+9 Rounded dqqua483 quantize 1234567890 1e+1 -> 1.23456789E+9 Rounded dqqua484 quantize 1234567891 1e+1 -> 1.23456789E+9 Inexact Rounded dqqua485 quantize 12345678901 1e+2 -> 1.23456789E+10 Inexact Rounded dqqua486 quantize 1234567896 1e+1 -> 1.23456790E+9 Inexact Rounded -- a potential double-round dqqua487 quantize 1234.987643 1e-4 -> 1234.9876 Inexact Rounded dqqua488 quantize 1234.987647 1e-4 -> 1234.9876 Inexact Rounded dqqua491 quantize 12345678000 1e+3 -> 1.2345678E+10 Rounded dqqua492 quantize 1234567800 1e+1 -> 1.23456780E+9 Rounded dqqua493 quantize 1234567890 1e+1 -> 1.23456789E+9 Rounded dqqua494 quantize 1234567891 1e+1 -> 1.23456789E+9 Inexact Rounded dqqua495 quantize 12345678901 1e+2 -> 1.23456789E+10 Inexact Rounded dqqua496 quantize 1234567896 1e+1 -> 1.23456790E+9 Inexact Rounded dqqua497 quantize 1234.987643 1e-4 -> 1234.9876 Inexact Rounded dqqua498 quantize 1234.987647 1e-4 -> 1234.9876 Inexact Rounded -- Zeros dqqua500 quantize 0 1e1 -> 0E+1 dqqua501 quantize 0 1e0 -> 0 dqqua502 quantize 0 1e-1 -> 0.0 dqqua503 quantize 0.0 1e-1 -> 0.0 dqqua504 quantize 0.0 1e0 -> 0 dqqua505 quantize 0.0 1e+1 -> 0E+1 dqqua506 quantize 0E+1 1e-1 -> 0.0 dqqua507 quantize 0E+1 1e0 -> 0 dqqua508 quantize 0E+1 1e+1 -> 0E+1 dqqua509 quantize -0 1e1 -> -0E+1 dqqua510 quantize -0 1e0 -> -0 dqqua511 quantize -0 1e-1 -> -0.0 dqqua512 quantize -0.0 1e-1 -> -0.0 dqqua513 quantize -0.0 1e0 -> -0 dqqua514 quantize -0.0 1e+1 -> -0E+1 dqqua515 quantize -0E+1 1e-1 -> -0.0 dqqua516 quantize -0E+1 1e0 -> -0 dqqua517 quantize -0E+1 1e+1 -> -0E+1 -- #519 here once a problem dqqua518 quantize 0 0E-3 -> 0.000 dqqua519 quantize 0 0E-33 -> 0E-33 dqqua520 quantize 0.00000000000000000000000000000000 0E-33 -> 0E-33 dqqua521 quantize 0.000000000000000000000000000000000 0E-33 -> 0E-33 -- Some non-zeros with lots of padding on the right dqqua523 quantize 1 0E-33 -> 1.000000000000000000000000000000000 dqqua524 quantize 12 0E-32 -> 12.00000000000000000000000000000000 dqqua525 quantize 123 0E-31 -> 123.0000000000000000000000000000000 dqqua526 quantize 123 0E-32 -> NaN Invalid_operation dqqua527 quantize 123.4 0E-31 -> 123.4000000000000000000000000000000 dqqua528 quantize 123.4 0E-32 -> NaN Invalid_operation -- Suspicious RHS values dqqua530 quantize 1.234 1e359 -> 0E+359 Inexact Rounded dqqua531 quantize 123.456 1e359 -> 0E+359 Inexact Rounded dqqua532 quantize 1.234 1e359 -> 0E+359 Inexact Rounded dqqua533 quantize 123.456 1e359 -> 0E+359 Inexact Rounded -- next four are "won't fit" overflows dqqua536 quantize 1.234 1e-299 -> NaN Invalid_operation dqqua537 quantize 123.456 1e-299 -> NaN Invalid_operation dqqua538 quantize 1.234 1e-299 -> NaN Invalid_operation dqqua539 quantize 123.456 1e-299 -> NaN Invalid_operation dqqua542 quantize 1.234E+299 1e299 -> 1E+299 Inexact Rounded dqqua543 quantize 1.234E+298 1e299 -> 0E+299 Inexact Rounded dqqua544 quantize 1.234 1e299 -> 0E+299 Inexact Rounded dqqua547 quantize 0 1e-299 -> 0E-299 -- next two are "won't fit" overflows dqqua548 quantize 1.234 1e-299 -> NaN Invalid_operation dqqua549 quantize 1.234 1e-300 -> NaN Invalid_operation -- [more below] -- Specials dqqua580 quantize Inf -Inf -> Infinity dqqua581 quantize Inf 1e-299 -> NaN Invalid_operation dqqua582 quantize Inf 1e-1 -> NaN Invalid_operation dqqua583 quantize Inf 1e0 -> NaN Invalid_operation dqqua584 quantize Inf 1e1 -> NaN Invalid_operation dqqua585 quantize Inf 1e299 -> NaN Invalid_operation dqqua586 quantize Inf Inf -> Infinity dqqua587 quantize -1000 Inf -> NaN Invalid_operation dqqua588 quantize -Inf Inf -> -Infinity dqqua589 quantize -1 Inf -> NaN Invalid_operation dqqua590 quantize 0 Inf -> NaN Invalid_operation dqqua591 quantize 1 Inf -> NaN Invalid_operation dqqua592 quantize 1000 Inf -> NaN Invalid_operation dqqua593 quantize Inf Inf -> Infinity dqqua594 quantize Inf 1e-0 -> NaN Invalid_operation dqqua595 quantize -0 Inf -> NaN Invalid_operation dqqua600 quantize -Inf -Inf -> -Infinity dqqua601 quantize -Inf 1e-299 -> NaN Invalid_operation dqqua602 quantize -Inf 1e-1 -> NaN Invalid_operation dqqua603 quantize -Inf 1e0 -> NaN Invalid_operation dqqua604 quantize -Inf 1e1 -> NaN Invalid_operation dqqua605 quantize -Inf 1e299 -> NaN Invalid_operation dqqua606 quantize -Inf Inf -> -Infinity dqqua607 quantize -1000 Inf -> NaN Invalid_operation dqqua608 quantize -Inf -Inf -> -Infinity dqqua609 quantize -1 -Inf -> NaN Invalid_operation dqqua610 quantize 0 -Inf -> NaN Invalid_operation dqqua611 quantize 1 -Inf -> NaN Invalid_operation dqqua612 quantize 1000 -Inf -> NaN Invalid_operation dqqua613 quantize Inf -Inf -> Infinity dqqua614 quantize -Inf 1e-0 -> NaN Invalid_operation dqqua615 quantize -0 -Inf -> NaN Invalid_operation dqqua621 quantize NaN -Inf -> NaN dqqua622 quantize NaN 1e-299 -> NaN dqqua623 quantize NaN 1e-1 -> NaN dqqua624 quantize NaN 1e0 -> NaN dqqua625 quantize NaN 1e1 -> NaN dqqua626 quantize NaN 1e299 -> NaN dqqua627 quantize NaN Inf -> NaN dqqua628 quantize NaN NaN -> NaN dqqua629 quantize -Inf NaN -> NaN dqqua630 quantize -1000 NaN -> NaN dqqua631 quantize -1 NaN -> NaN dqqua632 quantize 0 NaN -> NaN dqqua633 quantize 1 NaN -> NaN dqqua634 quantize 1000 NaN -> NaN dqqua635 quantize Inf NaN -> NaN dqqua636 quantize NaN 1e-0 -> NaN dqqua637 quantize -0 NaN -> NaN dqqua641 quantize sNaN -Inf -> NaN Invalid_operation dqqua642 quantize sNaN 1e-299 -> NaN Invalid_operation dqqua643 quantize sNaN 1e-1 -> NaN Invalid_operation dqqua644 quantize sNaN 1e0 -> NaN Invalid_operation dqqua645 quantize sNaN 1e1 -> NaN Invalid_operation dqqua646 quantize sNaN 1e299 -> NaN Invalid_operation dqqua647 quantize sNaN NaN -> NaN Invalid_operation dqqua648 quantize sNaN sNaN -> NaN Invalid_operation dqqua649 quantize NaN sNaN -> NaN Invalid_operation dqqua650 quantize -Inf sNaN -> NaN Invalid_operation dqqua651 quantize -1000 sNaN -> NaN Invalid_operation dqqua652 quantize -1 sNaN -> NaN Invalid_operation dqqua653 quantize 0 sNaN -> NaN Invalid_operation dqqua654 quantize 1 sNaN -> NaN Invalid_operation dqqua655 quantize 1000 sNaN -> NaN Invalid_operation dqqua656 quantize Inf sNaN -> NaN Invalid_operation dqqua657 quantize NaN sNaN -> NaN Invalid_operation dqqua658 quantize sNaN 1e-0 -> NaN Invalid_operation dqqua659 quantize -0 sNaN -> NaN Invalid_operation -- propagating NaNs dqqua661 quantize NaN9 -Inf -> NaN9 dqqua662 quantize NaN8 919 -> NaN8 dqqua663 quantize NaN71 Inf -> NaN71 dqqua664 quantize NaN6 NaN5 -> NaN6 dqqua665 quantize -Inf NaN4 -> NaN4 dqqua666 quantize -919 NaN31 -> NaN31 dqqua667 quantize Inf NaN2 -> NaN2 dqqua671 quantize sNaN99 -Inf -> NaN99 Invalid_operation dqqua672 quantize sNaN98 -11 -> NaN98 Invalid_operation dqqua673 quantize sNaN97 NaN -> NaN97 Invalid_operation dqqua674 quantize sNaN16 sNaN94 -> NaN16 Invalid_operation dqqua675 quantize NaN95 sNaN93 -> NaN93 Invalid_operation dqqua676 quantize -Inf sNaN92 -> NaN92 Invalid_operation dqqua677 quantize 088 sNaN91 -> NaN91 Invalid_operation dqqua678 quantize Inf sNaN90 -> NaN90 Invalid_operation dqqua679 quantize NaN sNaN88 -> NaN88 Invalid_operation dqqua681 quantize -NaN9 -Inf -> -NaN9 dqqua682 quantize -NaN8 919 -> -NaN8 dqqua683 quantize -NaN71 Inf -> -NaN71 dqqua684 quantize -NaN6 -NaN5 -> -NaN6 dqqua685 quantize -Inf -NaN4 -> -NaN4 dqqua686 quantize -919 -NaN31 -> -NaN31 dqqua687 quantize Inf -NaN2 -> -NaN2 dqqua691 quantize -sNaN99 -Inf -> -NaN99 Invalid_operation dqqua692 quantize -sNaN98 -11 -> -NaN98 Invalid_operation dqqua693 quantize -sNaN97 NaN -> -NaN97 Invalid_operation dqqua694 quantize -sNaN16 sNaN94 -> -NaN16 Invalid_operation dqqua695 quantize -NaN95 -sNaN93 -> -NaN93 Invalid_operation dqqua696 quantize -Inf -sNaN92 -> -NaN92 Invalid_operation dqqua697 quantize 088 -sNaN91 -> -NaN91 Invalid_operation dqqua698 quantize Inf -sNaN90 -> -NaN90 Invalid_operation dqqua699 quantize NaN -sNaN88 -> -NaN88 Invalid_operation -- subnormals and underflow dqqua710 quantize 1.00E-6143 1e-6143 -> 1E-6143 Rounded dqqua711 quantize 0.1E-6143 2e-6144 -> 1E-6144 Subnormal dqqua712 quantize 0.10E-6143 3e-6144 -> 1E-6144 Subnormal Rounded dqqua713 quantize 0.100E-6143 4e-6144 -> 1E-6144 Subnormal Rounded dqqua714 quantize 0.01E-6143 5e-6145 -> 1E-6145 Subnormal -- next is rounded to Emin dqqua715 quantize 0.999E-6143 1e-6143 -> 1E-6143 Inexact Rounded dqqua716 quantize 0.099E-6143 10e-6144 -> 1E-6144 Inexact Rounded Subnormal dqqua717 quantize 0.009E-6143 1e-6145 -> 1E-6145 Inexact Rounded Subnormal dqqua718 quantize 0.001E-6143 1e-6145 -> 0E-6145 Inexact Rounded dqqua719 quantize 0.0009E-6143 1e-6145 -> 0E-6145 Inexact Rounded dqqua720 quantize 0.0001E-6143 1e-6145 -> 0E-6145 Inexact Rounded dqqua730 quantize -1.00E-6143 1e-6143 -> -1E-6143 Rounded dqqua731 quantize -0.1E-6143 1e-6143 -> -0E-6143 Rounded Inexact dqqua732 quantize -0.10E-6143 1e-6143 -> -0E-6143 Rounded Inexact dqqua733 quantize -0.100E-6143 1e-6143 -> -0E-6143 Rounded Inexact dqqua734 quantize -0.01E-6143 1e-6143 -> -0E-6143 Inexact Rounded -- next is rounded to Emin dqqua735 quantize -0.999E-6143 90e-6143 -> -1E-6143 Inexact Rounded dqqua736 quantize -0.099E-6143 -1e-6143 -> -0E-6143 Inexact Rounded dqqua737 quantize -0.009E-6143 -1e-6143 -> -0E-6143 Inexact Rounded dqqua738 quantize -0.001E-6143 -0e-6143 -> -0E-6143 Inexact Rounded dqqua739 quantize -0.0001E-6143 0e-6143 -> -0E-6143 Inexact Rounded dqqua740 quantize -1.00E-6143 1e-6144 -> -1.0E-6143 Rounded dqqua741 quantize -0.1E-6143 1e-6144 -> -1E-6144 Subnormal dqqua742 quantize -0.10E-6143 1e-6144 -> -1E-6144 Subnormal Rounded dqqua743 quantize -0.100E-6143 1e-6144 -> -1E-6144 Subnormal Rounded dqqua744 quantize -0.01E-6143 1e-6144 -> -0E-6144 Inexact Rounded -- next is rounded to Emin dqqua745 quantize -0.999E-6143 1e-6144 -> -1.0E-6143 Inexact Rounded dqqua746 quantize -0.099E-6143 1e-6144 -> -1E-6144 Inexact Rounded Subnormal dqqua747 quantize -0.009E-6143 1e-6144 -> -0E-6144 Inexact Rounded dqqua748 quantize -0.001E-6143 1e-6144 -> -0E-6144 Inexact Rounded dqqua749 quantize -0.0001E-6143 1e-6144 -> -0E-6144 Inexact Rounded dqqua750 quantize -1.00E-6143 1e-6145 -> -1.00E-6143 dqqua751 quantize -0.1E-6143 1e-6145 -> -1.0E-6144 Subnormal dqqua752 quantize -0.10E-6143 1e-6145 -> -1.0E-6144 Subnormal dqqua753 quantize -0.100E-6143 1e-6145 -> -1.0E-6144 Subnormal Rounded dqqua754 quantize -0.01E-6143 1e-6145 -> -1E-6145 Subnormal -- next is rounded to Emin dqqua755 quantize -0.999E-6143 1e-6145 -> -1.00E-6143 Inexact Rounded dqqua756 quantize -0.099E-6143 1e-6145 -> -1.0E-6144 Inexact Rounded Subnormal dqqua757 quantize -0.009E-6143 1e-6145 -> -1E-6145 Inexact Rounded Subnormal dqqua758 quantize -0.001E-6143 1e-6145 -> -0E-6145 Inexact Rounded dqqua759 quantize -0.0001E-6143 1e-6145 -> -0E-6145 Inexact Rounded dqqua760 quantize -1.00E-6143 1e-6146 -> -1.000E-6143 dqqua761 quantize -0.1E-6143 1e-6146 -> -1.00E-6144 Subnormal dqqua762 quantize -0.10E-6143 1e-6146 -> -1.00E-6144 Subnormal dqqua763 quantize -0.100E-6143 1e-6146 -> -1.00E-6144 Subnormal dqqua764 quantize -0.01E-6143 1e-6146 -> -1.0E-6145 Subnormal dqqua765 quantize -0.999E-6143 1e-6146 -> -9.99E-6144 Subnormal dqqua766 quantize -0.099E-6143 1e-6146 -> -9.9E-6145 Subnormal dqqua767 quantize -0.009E-6143 1e-6146 -> -9E-6146 Subnormal dqqua768 quantize -0.001E-6143 1e-6146 -> -1E-6146 Subnormal dqqua769 quantize -0.0001E-6143 1e-6146 -> -0E-6146 Inexact Rounded -- More from Fung Lee -- the next four would appear to be in error, but they are misleading (the -- operands will be clamped to a lower exponent) and so are omitted -- dqqua1021 quantize 8.666666666666000E+6144 1.000000000000000E+6144 -> 8.666666666666000000000000000000000E+6144 Clamped -- dqqua1022 quantize -8.666666666666000E+6144 1.000000000000000E+6144 -> -8.666666666666000000000000000000000E+6144 Clamped -- dqqua1027 quantize 8.666666666666000E+323 1E+31 -> NaN Invalid_operation -- dqqua1030 quantize 8.66666666E+3 1E+3 -> 9E+3 Inexact Rounded -- Int and uInt32 edge values for testing conversions dqqua1040 quantize -2147483646 0 -> -2147483646 dqqua1041 quantize -2147483647 0 -> -2147483647 dqqua1042 quantize -2147483648 0 -> -2147483648 dqqua1043 quantize -2147483649 0 -> -2147483649 dqqua1044 quantize 2147483646 0 -> 2147483646 dqqua1045 quantize 2147483647 0 -> 2147483647 dqqua1046 quantize 2147483648 0 -> 2147483648 dqqua1047 quantize 2147483649 0 -> 2147483649 dqqua1048 quantize 4294967294 0 -> 4294967294 dqqua1049 quantize 4294967295 0 -> 4294967295 dqqua1050 quantize 4294967296 0 -> 4294967296 dqqua1051 quantize 4294967297 0 -> 4294967297 -- Rounding swathe rounding: half_even dqqua1100 quantize 1.2300 1.00 -> 1.23 Rounded dqqua1101 quantize 1.2301 1.00 -> 1.23 Inexact Rounded dqqua1102 quantize 1.2310 1.00 -> 1.23 Inexact Rounded dqqua1103 quantize 1.2350 1.00 -> 1.24 Inexact Rounded dqqua1104 quantize 1.2351 1.00 -> 1.24 Inexact Rounded dqqua1105 quantize 1.2450 1.00 -> 1.24 Inexact Rounded dqqua1106 quantize 1.2451 1.00 -> 1.25 Inexact Rounded dqqua1107 quantize 1.2360 1.00 -> 1.24 Inexact Rounded dqqua1108 quantize 1.2370 1.00 -> 1.24 Inexact Rounded dqqua1109 quantize 1.2399 1.00 -> 1.24 Inexact Rounded rounding: half_up dqqua1200 quantize 1.2300 1.00 -> 1.23 Rounded dqqua1201 quantize 1.2301 1.00 -> 1.23 Inexact Rounded dqqua1202 quantize 1.2310 1.00 -> 1.23 Inexact Rounded dqqua1203 quantize 1.2350 1.00 -> 1.24 Inexact Rounded dqqua1204 quantize 1.2351 1.00 -> 1.24 Inexact Rounded dqqua1205 quantize 1.2450 1.00 -> 1.25 Inexact Rounded dqqua1206 quantize 1.2451 1.00 -> 1.25 Inexact Rounded dqqua1207 quantize 1.2360 1.00 -> 1.24 Inexact Rounded dqqua1208 quantize 1.2370 1.00 -> 1.24 Inexact Rounded dqqua1209 quantize 1.2399 1.00 -> 1.24 Inexact Rounded rounding: half_down dqqua1300 quantize 1.2300 1.00 -> 1.23 Rounded dqqua1301 quantize 1.2301 1.00 -> 1.23 Inexact Rounded dqqua1302 quantize 1.2310 1.00 -> 1.23 Inexact Rounded dqqua1303 quantize 1.2350 1.00 -> 1.23 Inexact Rounded dqqua1304 quantize 1.2351 1.00 -> 1.24 Inexact Rounded dqqua1305 quantize 1.2450 1.00 -> 1.24 Inexact Rounded dqqua1306 quantize 1.2451 1.00 -> 1.25 Inexact Rounded dqqua1307 quantize 1.2360 1.00 -> 1.24 Inexact Rounded dqqua1308 quantize 1.2370 1.00 -> 1.24 Inexact Rounded dqqua1309 quantize 1.2399 1.00 -> 1.24 Inexact Rounded rounding: up dqqua1400 quantize 1.2300 1.00 -> 1.23 Rounded dqqua1401 quantize 1.2301 1.00 -> 1.24 Inexact Rounded dqqua1402 quantize 1.2310 1.00 -> 1.24 Inexact Rounded dqqua1403 quantize 1.2350 1.00 -> 1.24 Inexact Rounded dqqua1404 quantize 1.2351 1.00 -> 1.24 Inexact Rounded dqqua1405 quantize 1.2450 1.00 -> 1.25 Inexact Rounded dqqua1406 quantize 1.2451 1.00 -> 1.25 Inexact Rounded dqqua1407 quantize 1.2360 1.00 -> 1.24 Inexact Rounded dqqua1408 quantize 1.2370 1.00 -> 1.24 Inexact Rounded dqqua1409 quantize 1.2399 1.00 -> 1.24 Inexact Rounded dqqua1411 quantize -1.2399 1.00 -> -1.24 Inexact Rounded rounding: down dqqua1500 quantize 1.2300 1.00 -> 1.23 Rounded dqqua1501 quantize 1.2301 1.00 -> 1.23 Inexact Rounded dqqua1502 quantize 1.2310 1.00 -> 1.23 Inexact Rounded dqqua1503 quantize 1.2350 1.00 -> 1.23 Inexact Rounded dqqua1504 quantize 1.2351 1.00 -> 1.23 Inexact Rounded dqqua1505 quantize 1.2450 1.00 -> 1.24 Inexact Rounded dqqua1506 quantize 1.2451 1.00 -> 1.24 Inexact Rounded dqqua1507 quantize 1.2360 1.00 -> 1.23 Inexact Rounded dqqua1508 quantize 1.2370 1.00 -> 1.23 Inexact Rounded dqqua1509 quantize 1.2399 1.00 -> 1.23 Inexact Rounded dqqua1511 quantize -1.2399 1.00 -> -1.23 Inexact Rounded rounding: ceiling dqqua1600 quantize 1.2300 1.00 -> 1.23 Rounded dqqua1601 quantize 1.2301 1.00 -> 1.24 Inexact Rounded dqqua1602 quantize 1.2310 1.00 -> 1.24 Inexact Rounded dqqua1603 quantize 1.2350 1.00 -> 1.24 Inexact Rounded dqqua1604 quantize 1.2351 1.00 -> 1.24 Inexact Rounded dqqua1605 quantize 1.2450 1.00 -> 1.25 Inexact Rounded dqqua1606 quantize 1.2451 1.00 -> 1.25 Inexact Rounded dqqua1607 quantize 1.2360 1.00 -> 1.24 Inexact Rounded dqqua1608 quantize 1.2370 1.00 -> 1.24 Inexact Rounded dqqua1609 quantize 1.2399 1.00 -> 1.24 Inexact Rounded dqqua1611 quantize -1.2399 1.00 -> -1.23 Inexact Rounded rounding: floor dqqua1700 quantize 1.2300 1.00 -> 1.23 Rounded dqqua1701 quantize 1.2301 1.00 -> 1.23 Inexact Rounded dqqua1702 quantize 1.2310 1.00 -> 1.23 Inexact Rounded dqqua1703 quantize 1.2350 1.00 -> 1.23 Inexact Rounded dqqua1704 quantize 1.2351 1.00 -> 1.23 Inexact Rounded dqqua1705 quantize 1.2450 1.00 -> 1.24 Inexact Rounded dqqua1706 quantize 1.2451 1.00 -> 1.24 Inexact Rounded dqqua1707 quantize 1.2360 1.00 -> 1.23 Inexact Rounded dqqua1708 quantize 1.2370 1.00 -> 1.23 Inexact Rounded dqqua1709 quantize 1.2399 1.00 -> 1.23 Inexact Rounded dqqua1711 quantize -1.2399 1.00 -> -1.24 Inexact Rounded rounding: 05up dqqua1800 quantize 1.2000 1.00 -> 1.20 Rounded dqqua1801 quantize 1.2001 1.00 -> 1.21 Inexact Rounded dqqua1802 quantize 1.2010 1.00 -> 1.21 Inexact Rounded dqqua1803 quantize 1.2050 1.00 -> 1.21 Inexact Rounded dqqua1804 quantize 1.2051 1.00 -> 1.21 Inexact Rounded dqqua1807 quantize 1.2060 1.00 -> 1.21 Inexact Rounded dqqua1808 quantize 1.2070 1.00 -> 1.21 Inexact Rounded dqqua1809 quantize 1.2099 1.00 -> 1.21 Inexact Rounded dqqua1811 quantize -1.2099 1.00 -> -1.21 Inexact Rounded dqqua1900 quantize 1.2100 1.00 -> 1.21 Rounded dqqua1901 quantize 1.2101 1.00 -> 1.21 Inexact Rounded dqqua1902 quantize 1.2110 1.00 -> 1.21 Inexact Rounded dqqua1903 quantize 1.2150 1.00 -> 1.21 Inexact Rounded dqqua1904 quantize 1.2151 1.00 -> 1.21 Inexact Rounded dqqua1907 quantize 1.2160 1.00 -> 1.21 Inexact Rounded dqqua1908 quantize 1.2170 1.00 -> 1.21 Inexact Rounded dqqua1909 quantize 1.2199 1.00 -> 1.21 Inexact Rounded dqqua1911 quantize -1.2199 1.00 -> -1.21 Inexact Rounded dqqua2000 quantize 1.2400 1.00 -> 1.24 Rounded dqqua2001 quantize 1.2401 1.00 -> 1.24 Inexact Rounded dqqua2002 quantize 1.2410 1.00 -> 1.24 Inexact Rounded dqqua2003 quantize 1.2450 1.00 -> 1.24 Inexact Rounded dqqua2004 quantize 1.2451 1.00 -> 1.24 Inexact Rounded dqqua2007 quantize 1.2460 1.00 -> 1.24 Inexact Rounded dqqua2008 quantize 1.2470 1.00 -> 1.24 Inexact Rounded dqqua2009 quantize 1.2499 1.00 -> 1.24 Inexact Rounded dqqua2011 quantize -1.2499 1.00 -> -1.24 Inexact Rounded dqqua2100 quantize 1.2500 1.00 -> 1.25 Rounded dqqua2101 quantize 1.2501 1.00 -> 1.26 Inexact Rounded dqqua2102 quantize 1.2510 1.00 -> 1.26 Inexact Rounded dqqua2103 quantize 1.2550 1.00 -> 1.26 Inexact Rounded dqqua2104 quantize 1.2551 1.00 -> 1.26 Inexact Rounded dqqua2107 quantize 1.2560 1.00 -> 1.26 Inexact Rounded dqqua2108 quantize 1.2570 1.00 -> 1.26 Inexact Rounded dqqua2109 quantize 1.2599 1.00 -> 1.26 Inexact Rounded dqqua2111 quantize -1.2599 1.00 -> -1.26 Inexact Rounded dqqua2200 quantize 1.2600 1.00 -> 1.26 Rounded dqqua2201 quantize 1.2601 1.00 -> 1.26 Inexact Rounded dqqua2202 quantize 1.2610 1.00 -> 1.26 Inexact Rounded dqqua2203 quantize 1.2650 1.00 -> 1.26 Inexact Rounded dqqua2204 quantize 1.2651 1.00 -> 1.26 Inexact Rounded dqqua2207 quantize 1.2660 1.00 -> 1.26 Inexact Rounded dqqua2208 quantize 1.2670 1.00 -> 1.26 Inexact Rounded dqqua2209 quantize 1.2699 1.00 -> 1.26 Inexact Rounded dqqua2211 quantize -1.2699 1.00 -> -1.26 Inexact Rounded dqqua2300 quantize 1.2900 1.00 -> 1.29 Rounded dqqua2301 quantize 1.2901 1.00 -> 1.29 Inexact Rounded dqqua2302 quantize 1.2910 1.00 -> 1.29 Inexact Rounded dqqua2303 quantize 1.2950 1.00 -> 1.29 Inexact Rounded dqqua2304 quantize 1.2951 1.00 -> 1.29 Inexact Rounded dqqua2307 quantize 1.2960 1.00 -> 1.29 Inexact Rounded dqqua2308 quantize 1.2970 1.00 -> 1.29 Inexact Rounded dqqua2309 quantize 1.2999 1.00 -> 1.29 Inexact Rounded dqqua2311 quantize -1.2999 1.00 -> -1.29 Inexact Rounded -- Null tests dqqua998 quantize 10 # -> NaN Invalid_operation dqqua999 quantize # 1e10 -> NaN Invalid_operation
42,256
837
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/minmag.decTest
------------------------------------------------------------------------ -- minmag.decTest -- decimal minimum by magnitude -- -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 -- we assume that base comparison is tested in compare.decTest, so -- these mainly cover special cases and rounding extended: 1 precision: 9 rounding: half_up maxExponent: 384 minexponent: -383 -- sanity checks mngx001 minmag -2 -2 -> -2 mngx002 minmag -2 -1 -> -1 mngx003 minmag -2 0 -> 0 mngx004 minmag -2 1 -> 1 mngx005 minmag -2 2 -> -2 mngx006 minmag -1 -2 -> -1 mngx007 minmag -1 -1 -> -1 mngx008 minmag -1 0 -> 0 mngx009 minmag -1 1 -> -1 mngx010 minmag -1 2 -> -1 mngx011 minmag 0 -2 -> 0 mngx012 minmag 0 -1 -> 0 mngx013 minmag 0 0 -> 0 mngx014 minmag 0 1 -> 0 mngx015 minmag 0 2 -> 0 mngx016 minmag 1 -2 -> 1 mngx017 minmag 1 -1 -> -1 mngx018 minmag 1 0 -> 0 mngx019 minmag 1 1 -> 1 mngx020 minmag 1 2 -> 1 mngx021 minmag 2 -2 -> -2 mngx022 minmag 2 -1 -> -1 mngx023 minmag 2 0 -> 0 mngx025 minmag 2 1 -> 1 mngx026 minmag 2 2 -> 2 -- extended zeros mngx030 minmag 0 0 -> 0 mngx031 minmag 0 -0 -> -0 mngx032 minmag 0 -0.0 -> -0.0 mngx033 minmag 0 0.0 -> 0.0 mngx034 minmag -0 0 -> -0 mngx035 minmag -0 -0 -> -0 mngx036 minmag -0 -0.0 -> -0 mngx037 minmag -0 0.0 -> -0 mngx038 minmag 0.0 0 -> 0.0 mngx039 minmag 0.0 -0 -> -0 mngx040 minmag 0.0 -0.0 -> -0.0 mngx041 minmag 0.0 0.0 -> 0.0 mngx042 minmag -0.0 0 -> -0.0 mngx043 minmag -0.0 -0 -> -0 mngx044 minmag -0.0 -0.0 -> -0.0 mngx045 minmag -0.0 0.0 -> -0.0 mngx046 minmag 0E1 -0E1 -> -0E+1 mngx047 minmag -0E1 0E2 -> -0E+1 mngx048 minmag 0E2 0E1 -> 0E+1 mngx049 minmag 0E1 0E2 -> 0E+1 mngx050 minmag -0E3 -0E2 -> -0E+3 mngx051 minmag -0E2 -0E3 -> -0E+3 -- Specials precision: 9 mngx090 minmag Inf -Inf -> -Infinity mngx091 minmag Inf -1000 -> -1000 mngx092 minmag Inf -1 -> -1 mngx093 minmag Inf -0 -> -0 mngx094 minmag Inf 0 -> 0 mngx095 minmag Inf 1 -> 1 mngx096 minmag Inf 1000 -> 1000 mngx097 minmag Inf Inf -> Infinity mngx098 minmag -1000 Inf -> -1000 mngx099 minmag -Inf Inf -> -Infinity mngx100 minmag -1 Inf -> -1 mngx101 minmag -0 Inf -> -0 mngx102 minmag 0 Inf -> 0 mngx103 minmag 1 Inf -> 1 mngx104 minmag 1000 Inf -> 1000 mngx105 minmag Inf Inf -> Infinity mngx120 minmag -Inf -Inf -> -Infinity mngx121 minmag -Inf -1000 -> -1000 mngx122 minmag -Inf -1 -> -1 mngx123 minmag -Inf -0 -> -0 mngx124 minmag -Inf 0 -> 0 mngx125 minmag -Inf 1 -> 1 mngx126 minmag -Inf 1000 -> 1000 mngx127 minmag -Inf Inf -> -Infinity mngx128 minmag -Inf -Inf -> -Infinity mngx129 minmag -1000 -Inf -> -1000 mngx130 minmag -1 -Inf -> -1 mngx131 minmag -0 -Inf -> -0 mngx132 minmag 0 -Inf -> 0 mngx133 minmag 1 -Inf -> 1 mngx134 minmag 1000 -Inf -> 1000 mngx135 minmag Inf -Inf -> -Infinity -- 2004.08.02 754r chooses number over NaN in mixed cases mngx141 minmag NaN -Inf -> -Infinity mngx142 minmag NaN -1000 -> -1000 mngx143 minmag NaN -1 -> -1 mngx144 minmag NaN -0 -> -0 mngx145 minmag NaN 0 -> 0 mngx146 minmag NaN 1 -> 1 mngx147 minmag NaN 1000 -> 1000 mngx148 minmag NaN Inf -> Infinity mngx149 minmag NaN NaN -> NaN mngx150 minmag -Inf NaN -> -Infinity mngx151 minmag -1000 NaN -> -1000 mngx152 minmag -1 -NaN -> -1 mngx153 minmag -0 NaN -> -0 mngx154 minmag 0 -NaN -> 0 mngx155 minmag 1 NaN -> 1 mngx156 minmag 1000 NaN -> 1000 mngx157 minmag Inf NaN -> Infinity mngx161 minmag sNaN -Inf -> NaN Invalid_operation mngx162 minmag sNaN -1000 -> NaN Invalid_operation mngx163 minmag sNaN -1 -> NaN Invalid_operation mngx164 minmag sNaN -0 -> NaN Invalid_operation mngx165 minmag -sNaN 0 -> -NaN Invalid_operation mngx166 minmag -sNaN 1 -> -NaN Invalid_operation mngx167 minmag sNaN 1000 -> NaN Invalid_operation mngx168 minmag sNaN NaN -> NaN Invalid_operation mngx169 minmag sNaN sNaN -> NaN Invalid_operation mngx170 minmag NaN sNaN -> NaN Invalid_operation mngx171 minmag -Inf sNaN -> NaN Invalid_operation mngx172 minmag -1000 sNaN -> NaN Invalid_operation mngx173 minmag -1 sNaN -> NaN Invalid_operation mngx174 minmag -0 sNaN -> NaN Invalid_operation mngx175 minmag 0 sNaN -> NaN Invalid_operation mngx176 minmag 1 sNaN -> NaN Invalid_operation mngx177 minmag 1000 sNaN -> NaN Invalid_operation mngx178 minmag Inf sNaN -> NaN Invalid_operation mngx179 minmag NaN sNaN -> NaN Invalid_operation -- propagating NaNs mngx181 minmag NaN9 -Inf -> -Infinity mngx182 minmag -NaN8 9990 -> 9990 mngx183 minmag NaN71 Inf -> Infinity mngx184 minmag NaN1 NaN54 -> NaN1 mngx185 minmag NaN22 -NaN53 -> NaN22 mngx186 minmag -NaN3 NaN6 -> -NaN3 mngx187 minmag -NaN44 NaN7 -> -NaN44 mngx188 minmag -Inf NaN41 -> -Infinity mngx189 minmag -9999 -NaN33 -> -9999 mngx190 minmag Inf NaN2 -> Infinity mngx191 minmag sNaN99 -Inf -> NaN99 Invalid_operation mngx192 minmag sNaN98 -11 -> NaN98 Invalid_operation mngx193 minmag -sNaN97 NaN8 -> -NaN97 Invalid_operation mngx194 minmag sNaN69 sNaN94 -> NaN69 Invalid_operation mngx195 minmag NaN95 sNaN93 -> NaN93 Invalid_operation mngx196 minmag -Inf sNaN92 -> NaN92 Invalid_operation mngx197 minmag 088 sNaN91 -> NaN91 Invalid_operation mngx198 minmag Inf -sNaN90 -> -NaN90 Invalid_operation mngx199 minmag NaN sNaN86 -> NaN86 Invalid_operation -- rounding checks -- chosen is rounded, or not maxExponent: 999 minexponent: -999 precision: 9 mngx201 minmag -12345678000 1 -> 1 mngx202 minmag 1 -12345678000 -> 1 mngx203 minmag -1234567800 1 -> 1 mngx204 minmag 1 -1234567800 -> 1 mngx205 minmag -1234567890 1 -> 1 mngx206 minmag 1 -1234567890 -> 1 mngx207 minmag -1234567891 1 -> 1 mngx208 minmag 1 -1234567891 -> 1 mngx209 minmag -12345678901 1 -> 1 mngx210 minmag 1 -12345678901 -> 1 mngx211 minmag -1234567896 1 -> 1 mngx212 minmag 1 -1234567896 -> 1 mngx213 minmag 1234567891 1 -> 1 mngx214 minmag 1 1234567891 -> 1 mngx215 minmag 12345678901 1 -> 1 mngx216 minmag 1 12345678901 -> 1 mngx217 minmag 1234567896 1 -> 1 mngx218 minmag 1 1234567896 -> 1 precision: 15 mngx221 minmag -12345678000 1 -> 1 mngx222 minmag 1 -12345678000 -> 1 mngx223 minmag -1234567800 1 -> 1 mngx224 minmag 1 -1234567800 -> 1 mngx225 minmag -1234567890 1 -> 1 mngx226 minmag 1 -1234567890 -> 1 mngx227 minmag -1234567891 1 -> 1 mngx228 minmag 1 -1234567891 -> 1 mngx229 minmag -12345678901 1 -> 1 mngx230 minmag 1 -12345678901 -> 1 mngx231 minmag -1234567896 1 -> 1 mngx232 minmag 1 -1234567896 -> 1 mngx233 minmag 1234567891 1 -> 1 mngx234 minmag 1 1234567891 -> 1 mngx235 minmag 12345678901 1 -> 1 mngx236 minmag 1 12345678901 -> 1 mngx237 minmag 1234567896 1 -> 1 mngx238 minmag 1 1234567896 -> 1 -- from examples mngx280 minmag '3' '2' -> '2' mngx281 minmag '-10' '3' -> '3' mngx282 minmag '1.0' '1' -> '1.0' mngx283 minmag '1' '1.0' -> '1.0' mngx284 minmag '7' 'NaN' -> '7' -- overflow and underflow tests .. subnormal results [inputs] now allowed maxExponent: 999999999 minexponent: -999999999 mngx330 minmag -1.23456789012345E-0 -9E+999999999 -> -1.23456789012345 mngx331 minmag -9E+999999999 -1.23456789012345E-0 -> -1.23456789012345 mngx332 minmag -0.100 -9E-999999999 -> -9E-999999999 mngx333 minmag -9E-999999999 -0.100 -> -9E-999999999 mngx335 minmag +1.23456789012345E-0 -9E+999999999 -> 1.23456789012345 mngx336 minmag -9E+999999999 1.23456789012345E-0 -> 1.23456789012345 mngx337 minmag +0.100 -9E-999999999 -> -9E-999999999 mngx338 minmag -9E-999999999 0.100 -> -9E-999999999 mngx339 minmag -1e-599999999 -1e-400000001 -> -1E-599999999 mngx340 minmag -1e-599999999 -1e-400000000 -> -1E-599999999 mngx341 minmag -1e-600000000 -1e-400000000 -> -1E-600000000 mngx342 minmag -9e-999999998 -0.01 -> -9E-999999998 mngx343 minmag -9e-999999998 -0.1 -> -9E-999999998 mngx344 minmag -0.01 -9e-999999998 -> -9E-999999998 mngx345 minmag -1e599999999 -1e400000001 -> -1E+400000001 mngx346 minmag -1e599999999 -1e400000000 -> -1E+400000000 mngx347 minmag -1e600000000 -1e400000000 -> -1E+400000000 mngx348 minmag -9e999999998 -100 -> -100 mngx349 minmag -9e999999998 -10 -> -10 mngx350 minmag -100 -9e999999998 -> -100 -- signs mngx351 minmag -1e+777777777 -1e+411111111 -> -1E+411111111 mngx352 minmag -1e+777777777 +1e+411111111 -> 1E+411111111 mngx353 minmag +1e+777777777 -1e+411111111 -> -1E+411111111 mngx354 minmag +1e+777777777 +1e+411111111 -> 1E+411111111 mngx355 minmag -1e-777777777 -1e-411111111 -> -1E-777777777 mngx356 minmag -1e-777777777 +1e-411111111 -> -1E-777777777 mngx357 minmag +1e-777777777 -1e-411111111 -> 1E-777777777 mngx358 minmag +1e-777777777 +1e-411111111 -> 1E-777777777 -- expanded list from min/max 754r purple prose -- [explicit tests for exponent ordering] mngx401 minmag Inf 1.1 -> 1.1 mngx402 minmag 1.1 1 -> 1 mngx403 minmag 1 1.0 -> 1.0 mngx404 minmag 1.0 0.1 -> 0.1 mngx405 minmag 0.1 0.10 -> 0.10 mngx406 minmag 0.10 0.100 -> 0.100 mngx407 minmag 0.10 0 -> 0 mngx408 minmag 0 0.0 -> 0.0 mngx409 minmag 0.0 -0 -> -0 mngx410 minmag 0.0 -0.0 -> -0.0 mngx411 minmag 0.00 -0.0 -> -0.0 mngx412 minmag 0.0 -0.00 -> -0.00 mngx413 minmag 0 -0.0 -> -0.0 mngx414 minmag 0 -0 -> -0 mngx415 minmag -0.0 -0 -> -0 mngx416 minmag -0 -0.100 -> -0 mngx417 minmag -0.100 -0.10 -> -0.10 mngx418 minmag -0.10 -0.1 -> -0.1 mngx419 minmag -0.1 -1.0 -> -0.1 mngx420 minmag -1.0 -1 -> -1 mngx421 minmag -1 -1.1 -> -1 mngx423 minmag -1.1 -Inf -> -1.1 -- same with operands reversed mngx431 minmag 1.1 Inf -> 1.1 mngx432 minmag 1 1.1 -> 1 mngx433 minmag 1.0 1 -> 1.0 mngx434 minmag 0.1 1.0 -> 0.1 mngx435 minmag 0.10 0.1 -> 0.10 mngx436 minmag 0.100 0.10 -> 0.100 mngx437 minmag 0 0.10 -> 0 mngx438 minmag 0.0 0 -> 0.0 mngx439 minmag -0 0.0 -> -0 mngx440 minmag -0.0 0.0 -> -0.0 mngx441 minmag -0.0 0.00 -> -0.0 mngx442 minmag -0.00 0.0 -> -0.00 mngx443 minmag -0.0 0 -> -0.0 mngx444 minmag -0 0 -> -0 mngx445 minmag -0 -0.0 -> -0 mngx446 minmag -0.100 -0 -> -0 mngx447 minmag -0.10 -0.100 -> -0.10 mngx448 minmag -0.1 -0.10 -> -0.1 mngx449 minmag -1.0 -0.1 -> -0.1 mngx450 minmag -1 -1.0 -> -1 mngx451 minmag -1.1 -1 -> -1 mngx453 minmag -Inf -1.1 -> -1.1 -- largies mngx460 minmag 1000 1E+3 -> 1000 mngx461 minmag 1E+3 1000 -> 1000 mngx462 minmag 1000 -1E+3 -> -1E+3 mngx463 minmag 1E+3 -1000 -> -1000 mngx464 minmag -1000 1E+3 -> -1000 mngx465 minmag -1E+3 1000 -> -1E+3 mngx466 minmag -1000 -1E+3 -> -1E+3 mngx467 minmag -1E+3 -1000 -> -1E+3 -- rounding (results treated as though plus) maxexponent: 999999999 minexponent: -999999999 precision: 3 mngx470 minmag 1 5 -> 1 mngx471 minmag 10 50 -> 10 mngx472 minmag 100 500 -> 100 mngx473 minmag 1000 5000 -> 1.00E+3 Rounded mngx474 minmag 10000 50000 -> 1.00E+4 Rounded mngx475 minmag 6 50 -> 6 mngx476 minmag 66 500 -> 66 mngx477 minmag 666 5000 -> 666 mngx478 minmag 6666 50000 -> 6.67E+3 Rounded Inexact mngx479 minmag 66666 500000 -> 6.67E+4 Rounded Inexact mngx480 minmag 33333 500000 -> 3.33E+4 Rounded Inexact mngx481 minmag 75401 1 -> 1 mngx482 minmag 75402 10 -> 10 mngx483 minmag 75403 100 -> 100 mngx484 minmag 75404 1000 -> 1.00E+3 Rounded mngx485 minmag 75405 10000 -> 1.00E+4 Rounded mngx486 minmag 75406 6 -> 6 mngx487 minmag 75407 66 -> 66 mngx488 minmag 75408 666 -> 666 mngx489 minmag 75409 6666 -> 6.67E+3 Rounded Inexact mngx490 minmag 75410 66666 -> 6.67E+4 Rounded Inexact mngx491 minmag 75411 33333 -> 3.33E+4 Rounded Inexact -- overflow tests maxexponent: 999999999 minexponent: -999999999 precision: 3 mngx500 minmag 9.999E+999999999 0 -> 0 mngx501 minmag -9.999E+999999999 0 -> 0 -- subnormals and underflow precision: 3 maxexponent: 999 minexponent: -999 mngx510 minmag 1.00E-999 0 -> 0 mngx511 minmag 0.1E-999 0 -> 0 mngx512 minmag 0.10E-999 0 -> 0 mngx513 minmag 0.100E-999 0 -> 0 mngx514 minmag 0.01E-999 0 -> 0 mngx515 minmag 0.999E-999 0 -> 0 mngx516 minmag 0.099E-999 0 -> 0 mngx517 minmag 0.009E-999 0 -> 0 mngx518 minmag 0.001E-999 0 -> 0 mngx519 minmag 0.0009E-999 0 -> 0 mngx520 minmag 0.0001E-999 0 -> 0 mngx530 minmag -1.00E-999 0 -> 0 mngx531 minmag -0.1E-999 0 -> 0 mngx532 minmag -0.10E-999 0 -> 0 mngx533 minmag -0.100E-999 0 -> 0 mngx534 minmag -0.01E-999 0 -> 0 mngx535 minmag -0.999E-999 0 -> 0 mngx536 minmag -0.099E-999 0 -> 0 mngx537 minmag -0.009E-999 0 -> 0 mngx538 minmag -0.001E-999 0 -> 0 mngx539 minmag -0.0009E-999 0 -> 0 mngx540 minmag -0.0001E-999 0 -> 0 -- Null tests mng900 minmag 10 # -> NaN Invalid_operation mng901 minmag # 10 -> NaN Invalid_operation
15,048
391
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/decSingle.decTest
------------------------------------------------------------------------ -- decSingle.decTest -- run all decSingle decimal arithmetic tests -- -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 -- decSingle tests dectest: dsBase dectest: dsEncode
1,456
26
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/decQuad.decTest
------------------------------------------------------------------------ -- decQuad.decTest -- run all decQuad decimal arithmetic tests -- -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 -- decQuad tests dectest: dqAbs dectest: dqAdd dectest: dqAnd dectest: dqBase dectest: dqCanonical dectest: dqClass dectest: dqCompare dectest: dqCompareSig dectest: dqCompareTotal dectest: dqCompareTotalMag dectest: dqCopy dectest: dqCopyAbs dectest: dqCopyNegate dectest: dqCopySign dectest: dqDivide dectest: dqDivideInt dectest: dqEncode dectest: dqFMA dectest: dqInvert dectest: dqLogB dectest: dqMax dectest: dqMaxMag dectest: dqMin dectest: dqMinMag dectest: dqMinus dectest: dqMultiply dectest: dqNextMinus dectest: dqNextPlus dectest: dqNextToward dectest: dqOr dectest: dqPlus dectest: dqQuantize dectest: dqReduce dectest: dqRemainder dectest: dqRemainderNear dectest: dqRotate dectest: dqSameQuantum dectest: dqScaleB dectest: dqShift dectest: dqSubtract dectest: dqToIntegral dectest: dqXor
2,207
66
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/ddDivide.decTest
------------------------------------------------------------------------ -- ddDivide.decTest -- decDouble division -- -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 precision: 16 maxExponent: 384 minExponent: -383 extended: 1 clamp: 1 rounding: half_even -- sanity checks dddiv001 divide 1 1 -> 1 dddiv002 divide 2 1 -> 2 dddiv003 divide 1 2 -> 0.5 dddiv004 divide 2 2 -> 1 dddiv005 divide 0 1 -> 0 dddiv006 divide 0 2 -> 0 dddiv007 divide 1 3 -> 0.3333333333333333 Inexact Rounded dddiv008 divide 2 3 -> 0.6666666666666667 Inexact Rounded dddiv009 divide 3 3 -> 1 dddiv010 divide 2.4 1 -> 2.4 dddiv011 divide 2.4 -1 -> -2.4 dddiv012 divide -2.4 1 -> -2.4 dddiv013 divide -2.4 -1 -> 2.4 dddiv014 divide 2.40 1 -> 2.40 dddiv015 divide 2.400 1 -> 2.400 dddiv016 divide 2.4 2 -> 1.2 dddiv017 divide 2.400 2 -> 1.200 dddiv018 divide 2. 2 -> 1 dddiv019 divide 20 20 -> 1 dddiv020 divide 187 187 -> 1 dddiv021 divide 5 2 -> 2.5 dddiv022 divide 50 20 -> 2.5 dddiv023 divide 500 200 -> 2.5 dddiv024 divide 50.0 20.0 -> 2.5 dddiv025 divide 5.00 2.00 -> 2.5 dddiv026 divide 5 2.0 -> 2.5 dddiv027 divide 5 2.000 -> 2.5 dddiv028 divide 5 0.20 -> 25 dddiv029 divide 5 0.200 -> 25 dddiv030 divide 10 1 -> 10 dddiv031 divide 100 1 -> 100 dddiv032 divide 1000 1 -> 1000 dddiv033 divide 1000 100 -> 10 dddiv035 divide 1 2 -> 0.5 dddiv036 divide 1 4 -> 0.25 dddiv037 divide 1 8 -> 0.125 dddiv038 divide 1 16 -> 0.0625 dddiv039 divide 1 32 -> 0.03125 dddiv040 divide 1 64 -> 0.015625 dddiv041 divide 1 -2 -> -0.5 dddiv042 divide 1 -4 -> -0.25 dddiv043 divide 1 -8 -> -0.125 dddiv044 divide 1 -16 -> -0.0625 dddiv045 divide 1 -32 -> -0.03125 dddiv046 divide 1 -64 -> -0.015625 dddiv047 divide -1 2 -> -0.5 dddiv048 divide -1 4 -> -0.25 dddiv049 divide -1 8 -> -0.125 dddiv050 divide -1 16 -> -0.0625 dddiv051 divide -1 32 -> -0.03125 dddiv052 divide -1 64 -> -0.015625 dddiv053 divide -1 -2 -> 0.5 dddiv054 divide -1 -4 -> 0.25 dddiv055 divide -1 -8 -> 0.125 dddiv056 divide -1 -16 -> 0.0625 dddiv057 divide -1 -32 -> 0.03125 dddiv058 divide -1 -64 -> 0.015625 -- bcdTime dddiv060 divide 1 7 -> 0.1428571428571429 Inexact Rounded dddiv061 divide 1.2345678 1.9876543 -> 0.6211179680490717 Inexact Rounded -- 1234567890123456 dddiv071 divide 9999999999999999 1 -> 9999999999999999 dddiv072 divide 999999999999999 1 -> 999999999999999 dddiv073 divide 99999999999999 1 -> 99999999999999 dddiv074 divide 9999999999999 1 -> 9999999999999 dddiv075 divide 999999999999 1 -> 999999999999 dddiv076 divide 99999999999 1 -> 99999999999 dddiv077 divide 9999999999 1 -> 9999999999 dddiv078 divide 999999999 1 -> 999999999 dddiv079 divide 99999999 1 -> 99999999 dddiv080 divide 9999999 1 -> 9999999 dddiv081 divide 999999 1 -> 999999 dddiv082 divide 99999 1 -> 99999 dddiv083 divide 9999 1 -> 9999 dddiv084 divide 999 1 -> 999 dddiv085 divide 99 1 -> 99 dddiv086 divide 9 1 -> 9 dddiv090 divide 0. 1 -> 0 dddiv091 divide .0 1 -> 0.0 dddiv092 divide 0.00 1 -> 0.00 dddiv093 divide 0.00E+9 1 -> 0E+7 dddiv094 divide 0.0000E-50 1 -> 0E-54 dddiv095 divide 1 1E-8 -> 1E+8 dddiv096 divide 1 1E-9 -> 1E+9 dddiv097 divide 1 1E-10 -> 1E+10 dddiv098 divide 1 1E-11 -> 1E+11 dddiv099 divide 1 1E-12 -> 1E+12 dddiv100 divide 1 1 -> 1 dddiv101 divide 1 2 -> 0.5 dddiv102 divide 1 3 -> 0.3333333333333333 Inexact Rounded dddiv103 divide 1 4 -> 0.25 dddiv104 divide 1 5 -> 0.2 dddiv105 divide 1 6 -> 0.1666666666666667 Inexact Rounded dddiv106 divide 1 7 -> 0.1428571428571429 Inexact Rounded dddiv107 divide 1 8 -> 0.125 dddiv108 divide 1 9 -> 0.1111111111111111 Inexact Rounded dddiv109 divide 1 10 -> 0.1 dddiv110 divide 1 1 -> 1 dddiv111 divide 2 1 -> 2 dddiv112 divide 3 1 -> 3 dddiv113 divide 4 1 -> 4 dddiv114 divide 5 1 -> 5 dddiv115 divide 6 1 -> 6 dddiv116 divide 7 1 -> 7 dddiv117 divide 8 1 -> 8 dddiv118 divide 9 1 -> 9 dddiv119 divide 10 1 -> 10 dddiv120 divide 3E+1 0.001 -> 3E+4 dddiv121 divide 2.200 2 -> 1.100 dddiv130 divide 12345 4.999 -> 2469.493898779756 Inexact Rounded dddiv131 divide 12345 4.99 -> 2473.947895791583 Inexact Rounded dddiv132 divide 12345 4.9 -> 2519.387755102041 Inexact Rounded dddiv133 divide 12345 5 -> 2469 dddiv134 divide 12345 5.1 -> 2420.588235294118 Inexact Rounded dddiv135 divide 12345 5.01 -> 2464.071856287425 Inexact Rounded dddiv136 divide 12345 5.001 -> 2468.506298740252 Inexact Rounded -- test possibly imprecise results dddiv220 divide 391 597 -> 0.6549413735343384 Inexact Rounded dddiv221 divide 391 -597 -> -0.6549413735343384 Inexact Rounded dddiv222 divide -391 597 -> -0.6549413735343384 Inexact Rounded dddiv223 divide -391 -597 -> 0.6549413735343384 Inexact Rounded -- test some cases that are close to exponent overflow, some with coefficient padding dddiv270 divide 1 1e384 -> 1E-384 Subnormal dddiv271 divide 1 0.9e384 -> 1.11111111111111E-384 Rounded Inexact Subnormal Underflow dddiv272 divide 1 0.99e384 -> 1.01010101010101E-384 Rounded Inexact Subnormal Underflow dddiv273 divide 1 0.9999999999999999e384 -> 1.00000000000000E-384 Rounded Inexact Subnormal Underflow dddiv274 divide 9e384 1 -> 9.000000000000000E+384 Clamped dddiv275 divide 9.9e384 1 -> 9.900000000000000E+384 Clamped dddiv276 divide 9.99e384 1 -> 9.990000000000000E+384 Clamped dddiv277 divide 9.9999999999999e384 1 -> 9.999999999999900E+384 Clamped dddiv278 divide 9.99999999999999e384 1 -> 9.999999999999990E+384 Clamped dddiv279 divide 9.999999999999999e384 1 -> 9.999999999999999E+384 dddiv285 divide 9.9e384 1.1 -> 9.000000000000000E+384 Clamped dddiv286 divide 9.99e384 1.1 -> 9.081818181818182E+384 Inexact Rounded dddiv287 divide 9.9999999999999e384 1.1 -> 9.090909090909000E+384 Clamped dddiv288 divide 9.99999999999999e384 1.1 -> 9.090909090909082E+384 Inexact Rounded dddiv289 divide 9.999999999999999e384 1.1 -> 9.090909090909090E+384 Clamped -- Divide into 0 tests dddiv301 divide 0 7 -> 0 dddiv302 divide 0 7E-5 -> 0E+5 dddiv303 divide 0 7E-1 -> 0E+1 dddiv304 divide 0 7E+1 -> 0.0 dddiv305 divide 0 7E+5 -> 0.00000 dddiv306 divide 0 7E+6 -> 0.000000 dddiv307 divide 0 7E+7 -> 0E-7 dddiv308 divide 0 70E-5 -> 0E+5 dddiv309 divide 0 70E-1 -> 0E+1 dddiv310 divide 0 70E+0 -> 0 dddiv311 divide 0 70E+1 -> 0.0 dddiv312 divide 0 70E+5 -> 0.00000 dddiv313 divide 0 70E+6 -> 0.000000 dddiv314 divide 0 70E+7 -> 0E-7 dddiv315 divide 0 700E-5 -> 0E+5 dddiv316 divide 0 700E-1 -> 0E+1 dddiv317 divide 0 700E+0 -> 0 dddiv318 divide 0 700E+1 -> 0.0 dddiv319 divide 0 700E+5 -> 0.00000 dddiv320 divide 0 700E+6 -> 0.000000 dddiv321 divide 0 700E+7 -> 0E-7 dddiv322 divide 0 700E+77 -> 0E-77 dddiv331 divide 0E-3 7E-5 -> 0E+2 dddiv332 divide 0E-3 7E-1 -> 0.00 dddiv333 divide 0E-3 7E+1 -> 0.0000 dddiv334 divide 0E-3 7E+5 -> 0E-8 dddiv335 divide 0E-1 7E-5 -> 0E+4 dddiv336 divide 0E-1 7E-1 -> 0 dddiv337 divide 0E-1 7E+1 -> 0.00 dddiv338 divide 0E-1 7E+5 -> 0.000000 dddiv339 divide 0E+1 7E-5 -> 0E+6 dddiv340 divide 0E+1 7E-1 -> 0E+2 dddiv341 divide 0E+1 7E+1 -> 0 dddiv342 divide 0E+1 7E+5 -> 0.0000 dddiv343 divide 0E+3 7E-5 -> 0E+8 dddiv344 divide 0E+3 7E-1 -> 0E+4 dddiv345 divide 0E+3 7E+1 -> 0E+2 dddiv346 divide 0E+3 7E+5 -> 0.00 -- These were 'input rounding' dddiv441 divide 12345678000 1 -> 12345678000 dddiv442 divide 1 12345678000 -> 8.100000664200054E-11 Inexact Rounded dddiv443 divide 1234567800 1 -> 1234567800 dddiv444 divide 1 1234567800 -> 8.100000664200054E-10 Inexact Rounded dddiv445 divide 1234567890 1 -> 1234567890 dddiv446 divide 1 1234567890 -> 8.100000073710001E-10 Inexact Rounded dddiv447 divide 1234567891 1 -> 1234567891 dddiv448 divide 1 1234567891 -> 8.100000067149001E-10 Inexact Rounded dddiv449 divide 12345678901 1 -> 12345678901 dddiv450 divide 1 12345678901 -> 8.100000073053901E-11 Inexact Rounded dddiv451 divide 1234567896 1 -> 1234567896 dddiv452 divide 1 1234567896 -> 8.100000034344000E-10 Inexact Rounded -- high-lows dddiv453 divide 1e+1 1 -> 1E+1 dddiv454 divide 1e+1 1.0 -> 1E+1 dddiv455 divide 1e+1 1.00 -> 1E+1 dddiv456 divide 1e+2 2 -> 5E+1 dddiv457 divide 1e+2 2.0 -> 5E+1 dddiv458 divide 1e+2 2.00 -> 5E+1 -- some from IEEE discussions dddiv460 divide 3e0 2e0 -> 1.5 dddiv461 divide 30e-1 2e0 -> 1.5 dddiv462 divide 300e-2 2e0 -> 1.50 dddiv464 divide 3000e-3 2e0 -> 1.500 dddiv465 divide 3e0 20e-1 -> 1.5 dddiv466 divide 30e-1 20e-1 -> 1.5 dddiv467 divide 300e-2 20e-1 -> 1.5 dddiv468 divide 3000e-3 20e-1 -> 1.50 dddiv469 divide 3e0 200e-2 -> 1.5 dddiv470 divide 30e-1 200e-2 -> 1.5 dddiv471 divide 300e-2 200e-2 -> 1.5 dddiv472 divide 3000e-3 200e-2 -> 1.5 dddiv473 divide 3e0 2000e-3 -> 1.5 dddiv474 divide 30e-1 2000e-3 -> 1.5 dddiv475 divide 300e-2 2000e-3 -> 1.5 dddiv476 divide 3000e-3 2000e-3 -> 1.5 -- some reciprocals dddiv480 divide 1 1.0E+33 -> 1E-33 dddiv481 divide 1 10E+33 -> 1E-34 dddiv482 divide 1 1.0E-33 -> 1E+33 dddiv483 divide 1 10E-33 -> 1E+32 -- RMS discussion table dddiv484 divide 0e5 1e3 -> 0E+2 dddiv485 divide 0e5 2e3 -> 0E+2 dddiv486 divide 0e5 10e2 -> 0E+3 dddiv487 divide 0e5 20e2 -> 0E+3 dddiv488 divide 0e5 100e1 -> 0E+4 dddiv489 divide 0e5 200e1 -> 0E+4 dddiv491 divide 1e5 1e3 -> 1E+2 dddiv492 divide 1e5 2e3 -> 5E+1 dddiv493 divide 1e5 10e2 -> 1E+2 dddiv494 divide 1e5 20e2 -> 5E+1 dddiv495 divide 1e5 100e1 -> 1E+2 dddiv496 divide 1e5 200e1 -> 5E+1 -- tryzeros cases rounding: half_up dddiv497 divide 0E+380 1000E-13 -> 0E+369 Clamped dddiv498 divide 0E-390 1000E+13 -> 0E-398 Clamped rounding: half_up -- focus on trailing zeros issues dddiv500 divide 1 9.9 -> 0.1010101010101010 Inexact Rounded dddiv501 divide 1 9.09 -> 0.1100110011001100 Inexact Rounded dddiv502 divide 1 9.009 -> 0.1110001110001110 Inexact Rounded dddiv511 divide 1 2 -> 0.5 dddiv512 divide 1.0 2 -> 0.5 dddiv513 divide 1.00 2 -> 0.50 dddiv514 divide 1.000 2 -> 0.500 dddiv515 divide 1.0000 2 -> 0.5000 dddiv516 divide 1.00000 2 -> 0.50000 dddiv517 divide 1.000000 2 -> 0.500000 dddiv518 divide 1.0000000 2 -> 0.5000000 dddiv519 divide 1.00 2.00 -> 0.5 dddiv521 divide 2 1 -> 2 dddiv522 divide 2 1.0 -> 2 dddiv523 divide 2 1.00 -> 2 dddiv524 divide 2 1.000 -> 2 dddiv525 divide 2 1.0000 -> 2 dddiv526 divide 2 1.00000 -> 2 dddiv527 divide 2 1.000000 -> 2 dddiv528 divide 2 1.0000000 -> 2 dddiv529 divide 2.00 1.00 -> 2 dddiv530 divide 2.40 2 -> 1.20 dddiv531 divide 2.40 4 -> 0.60 dddiv532 divide 2.40 10 -> 0.24 dddiv533 divide 2.40 2.0 -> 1.2 dddiv534 divide 2.40 4.0 -> 0.6 dddiv535 divide 2.40 10.0 -> 0.24 dddiv536 divide 2.40 2.00 -> 1.2 dddiv537 divide 2.40 4.00 -> 0.6 dddiv538 divide 2.40 10.00 -> 0.24 dddiv539 divide 0.9 0.1 -> 9 dddiv540 divide 0.9 0.01 -> 9E+1 dddiv541 divide 0.9 0.001 -> 9E+2 dddiv542 divide 5 2 -> 2.5 dddiv543 divide 5 2.0 -> 2.5 dddiv544 divide 5 2.00 -> 2.5 dddiv545 divide 5 20 -> 0.25 dddiv546 divide 5 20.0 -> 0.25 dddiv547 divide 2.400 2 -> 1.200 dddiv548 divide 2.400 2.0 -> 1.20 dddiv549 divide 2.400 2.400 -> 1 dddiv550 divide 240 1 -> 240 dddiv551 divide 240 10 -> 24 dddiv552 divide 240 100 -> 2.4 dddiv553 divide 240 1000 -> 0.24 dddiv554 divide 2400 1 -> 2400 dddiv555 divide 2400 10 -> 240 dddiv556 divide 2400 100 -> 24 dddiv557 divide 2400 1000 -> 2.4 -- +ve exponent dddiv600 divide 2.4E+9 2 -> 1.2E+9 dddiv601 divide 2.40E+9 2 -> 1.20E+9 dddiv602 divide 2.400E+9 2 -> 1.200E+9 dddiv603 divide 2.4000E+9 2 -> 1.2000E+9 dddiv604 divide 24E+8 2 -> 1.2E+9 dddiv605 divide 240E+7 2 -> 1.20E+9 dddiv606 divide 2400E+6 2 -> 1.200E+9 dddiv607 divide 24000E+5 2 -> 1.2000E+9 -- more zeros, etc. dddiv731 divide 5.00 1E-3 -> 5.00E+3 dddiv732 divide 00.00 0.000 -> NaN Division_undefined dddiv733 divide 00.00 0E-3 -> NaN Division_undefined dddiv734 divide 0 -0 -> NaN Division_undefined dddiv735 divide -0 0 -> NaN Division_undefined dddiv736 divide -0 -0 -> NaN Division_undefined dddiv741 divide 0 -1 -> -0 dddiv742 divide -0 -1 -> 0 dddiv743 divide 0 1 -> 0 dddiv744 divide -0 1 -> -0 dddiv745 divide -1 0 -> -Infinity Division_by_zero dddiv746 divide -1 -0 -> Infinity Division_by_zero dddiv747 divide 1 0 -> Infinity Division_by_zero dddiv748 divide 1 -0 -> -Infinity Division_by_zero dddiv751 divide 0.0 -1 -> -0.0 dddiv752 divide -0.0 -1 -> 0.0 dddiv753 divide 0.0 1 -> 0.0 dddiv754 divide -0.0 1 -> -0.0 dddiv755 divide -1.0 0 -> -Infinity Division_by_zero dddiv756 divide -1.0 -0 -> Infinity Division_by_zero dddiv757 divide 1.0 0 -> Infinity Division_by_zero dddiv758 divide 1.0 -0 -> -Infinity Division_by_zero dddiv761 divide 0 -1.0 -> -0E+1 dddiv762 divide -0 -1.0 -> 0E+1 dddiv763 divide 0 1.0 -> 0E+1 dddiv764 divide -0 1.0 -> -0E+1 dddiv765 divide -1 0.0 -> -Infinity Division_by_zero dddiv766 divide -1 -0.0 -> Infinity Division_by_zero dddiv767 divide 1 0.0 -> Infinity Division_by_zero dddiv768 divide 1 -0.0 -> -Infinity Division_by_zero dddiv771 divide 0.0 -1.0 -> -0 dddiv772 divide -0.0 -1.0 -> 0 dddiv773 divide 0.0 1.0 -> 0 dddiv774 divide -0.0 1.0 -> -0 dddiv775 divide -1.0 0.0 -> -Infinity Division_by_zero dddiv776 divide -1.0 -0.0 -> Infinity Division_by_zero dddiv777 divide 1.0 0.0 -> Infinity Division_by_zero dddiv778 divide 1.0 -0.0 -> -Infinity Division_by_zero -- Specials dddiv780 divide Inf -Inf -> NaN Invalid_operation dddiv781 divide Inf -1000 -> -Infinity dddiv782 divide Inf -1 -> -Infinity dddiv783 divide Inf -0 -> -Infinity dddiv784 divide Inf 0 -> Infinity dddiv785 divide Inf 1 -> Infinity dddiv786 divide Inf 1000 -> Infinity dddiv787 divide Inf Inf -> NaN Invalid_operation dddiv788 divide -1000 Inf -> -0E-398 Clamped dddiv789 divide -Inf Inf -> NaN Invalid_operation dddiv790 divide -1 Inf -> -0E-398 Clamped dddiv791 divide -0 Inf -> -0E-398 Clamped dddiv792 divide 0 Inf -> 0E-398 Clamped dddiv793 divide 1 Inf -> 0E-398 Clamped dddiv794 divide 1000 Inf -> 0E-398 Clamped dddiv795 divide Inf Inf -> NaN Invalid_operation dddiv800 divide -Inf -Inf -> NaN Invalid_operation dddiv801 divide -Inf -1000 -> Infinity dddiv802 divide -Inf -1 -> Infinity dddiv803 divide -Inf -0 -> Infinity dddiv804 divide -Inf 0 -> -Infinity dddiv805 divide -Inf 1 -> -Infinity dddiv806 divide -Inf 1000 -> -Infinity dddiv807 divide -Inf Inf -> NaN Invalid_operation dddiv808 divide -1000 Inf -> -0E-398 Clamped dddiv809 divide -Inf -Inf -> NaN Invalid_operation dddiv810 divide -1 -Inf -> 0E-398 Clamped dddiv811 divide -0 -Inf -> 0E-398 Clamped dddiv812 divide 0 -Inf -> -0E-398 Clamped dddiv813 divide 1 -Inf -> -0E-398 Clamped dddiv814 divide 1000 -Inf -> -0E-398 Clamped dddiv815 divide Inf -Inf -> NaN Invalid_operation dddiv821 divide NaN -Inf -> NaN dddiv822 divide NaN -1000 -> NaN dddiv823 divide NaN -1 -> NaN dddiv824 divide NaN -0 -> NaN dddiv825 divide NaN 0 -> NaN dddiv826 divide NaN 1 -> NaN dddiv827 divide NaN 1000 -> NaN dddiv828 divide NaN Inf -> NaN dddiv829 divide NaN NaN -> NaN dddiv830 divide -Inf NaN -> NaN dddiv831 divide -1000 NaN -> NaN dddiv832 divide -1 NaN -> NaN dddiv833 divide -0 NaN -> NaN dddiv834 divide 0 NaN -> NaN dddiv835 divide 1 NaN -> NaN dddiv836 divide 1000 NaN -> NaN dddiv837 divide Inf NaN -> NaN dddiv841 divide sNaN -Inf -> NaN Invalid_operation dddiv842 divide sNaN -1000 -> NaN Invalid_operation dddiv843 divide sNaN -1 -> NaN Invalid_operation dddiv844 divide sNaN -0 -> NaN Invalid_operation dddiv845 divide sNaN 0 -> NaN Invalid_operation dddiv846 divide sNaN 1 -> NaN Invalid_operation dddiv847 divide sNaN 1000 -> NaN Invalid_operation dddiv848 divide sNaN NaN -> NaN Invalid_operation dddiv849 divide sNaN sNaN -> NaN Invalid_operation dddiv850 divide NaN sNaN -> NaN Invalid_operation dddiv851 divide -Inf sNaN -> NaN Invalid_operation dddiv852 divide -1000 sNaN -> NaN Invalid_operation dddiv853 divide -1 sNaN -> NaN Invalid_operation dddiv854 divide -0 sNaN -> NaN Invalid_operation dddiv855 divide 0 sNaN -> NaN Invalid_operation dddiv856 divide 1 sNaN -> NaN Invalid_operation dddiv857 divide 1000 sNaN -> NaN Invalid_operation dddiv858 divide Inf sNaN -> NaN Invalid_operation dddiv859 divide NaN sNaN -> NaN Invalid_operation -- propagating NaNs dddiv861 divide NaN9 -Inf -> NaN9 dddiv862 divide NaN8 1000 -> NaN8 dddiv863 divide NaN7 Inf -> NaN7 dddiv864 divide NaN6 NaN5 -> NaN6 dddiv865 divide -Inf NaN4 -> NaN4 dddiv866 divide -1000 NaN3 -> NaN3 dddiv867 divide Inf NaN2 -> NaN2 dddiv871 divide sNaN99 -Inf -> NaN99 Invalid_operation dddiv872 divide sNaN98 -1 -> NaN98 Invalid_operation dddiv873 divide sNaN97 NaN -> NaN97 Invalid_operation dddiv874 divide sNaN96 sNaN94 -> NaN96 Invalid_operation dddiv875 divide NaN95 sNaN93 -> NaN93 Invalid_operation dddiv876 divide -Inf sNaN92 -> NaN92 Invalid_operation dddiv877 divide 0 sNaN91 -> NaN91 Invalid_operation dddiv878 divide Inf sNaN90 -> NaN90 Invalid_operation dddiv879 divide NaN sNaN89 -> NaN89 Invalid_operation dddiv881 divide -NaN9 -Inf -> -NaN9 dddiv882 divide -NaN8 1000 -> -NaN8 dddiv883 divide -NaN7 Inf -> -NaN7 dddiv884 divide -NaN6 -NaN5 -> -NaN6 dddiv885 divide -Inf -NaN4 -> -NaN4 dddiv886 divide -1000 -NaN3 -> -NaN3 dddiv887 divide Inf -NaN2 -> -NaN2 dddiv891 divide -sNaN99 -Inf -> -NaN99 Invalid_operation dddiv892 divide -sNaN98 -1 -> -NaN98 Invalid_operation dddiv893 divide -sNaN97 NaN -> -NaN97 Invalid_operation dddiv894 divide -sNaN96 -sNaN94 -> -NaN96 Invalid_operation dddiv895 divide -NaN95 -sNaN93 -> -NaN93 Invalid_operation dddiv896 divide -Inf -sNaN92 -> -NaN92 Invalid_operation dddiv897 divide 0 -sNaN91 -> -NaN91 Invalid_operation dddiv898 divide Inf -sNaN90 -> -NaN90 Invalid_operation dddiv899 divide -NaN -sNaN89 -> -NaN89 Invalid_operation -- Various flavours of divide by 0 dddiv901 divide 0 0 -> NaN Division_undefined dddiv902 divide 0.0E5 0 -> NaN Division_undefined dddiv903 divide 0.000 0 -> NaN Division_undefined dddiv904 divide 0.0001 0 -> Infinity Division_by_zero dddiv905 divide 0.01 0 -> Infinity Division_by_zero dddiv906 divide 0.1 0 -> Infinity Division_by_zero dddiv907 divide 1 0 -> Infinity Division_by_zero dddiv908 divide 1 0.0 -> Infinity Division_by_zero dddiv909 divide 10 0.0 -> Infinity Division_by_zero dddiv910 divide 1E+100 0.0 -> Infinity Division_by_zero dddiv911 divide 1E+100 0 -> Infinity Division_by_zero dddiv921 divide -0.0001 0 -> -Infinity Division_by_zero dddiv922 divide -0.01 0 -> -Infinity Division_by_zero dddiv923 divide -0.1 0 -> -Infinity Division_by_zero dddiv924 divide -1 0 -> -Infinity Division_by_zero dddiv925 divide -1 0.0 -> -Infinity Division_by_zero dddiv926 divide -10 0.0 -> -Infinity Division_by_zero dddiv927 divide -1E+100 0.0 -> -Infinity Division_by_zero dddiv928 divide -1E+100 0 -> -Infinity Division_by_zero dddiv931 divide 0.0001 -0 -> -Infinity Division_by_zero dddiv932 divide 0.01 -0 -> -Infinity Division_by_zero dddiv933 divide 0.1 -0 -> -Infinity Division_by_zero dddiv934 divide 1 -0 -> -Infinity Division_by_zero dddiv935 divide 1 -0.0 -> -Infinity Division_by_zero dddiv936 divide 10 -0.0 -> -Infinity Division_by_zero dddiv937 divide 1E+100 -0.0 -> -Infinity Division_by_zero dddiv938 divide 1E+100 -0 -> -Infinity Division_by_zero dddiv941 divide -0.0001 -0 -> Infinity Division_by_zero dddiv942 divide -0.01 -0 -> Infinity Division_by_zero dddiv943 divide -0.1 -0 -> Infinity Division_by_zero dddiv944 divide -1 -0 -> Infinity Division_by_zero dddiv945 divide -1 -0.0 -> Infinity Division_by_zero dddiv946 divide -10 -0.0 -> Infinity Division_by_zero dddiv947 divide -1E+100 -0.0 -> Infinity Division_by_zero dddiv948 divide -1E+100 -0 -> Infinity Division_by_zero -- Examples from SQL proposal (Krishna Kulkarni) dddiv1021 divide 1E0 1E0 -> 1 dddiv1022 divide 1E0 2E0 -> 0.5 dddiv1023 divide 1E0 3E0 -> 0.3333333333333333 Inexact Rounded dddiv1024 divide 100E-2 1000E-3 -> 1 dddiv1025 divide 24E-1 2E0 -> 1.2 dddiv1026 divide 2400E-3 2E0 -> 1.200 dddiv1027 divide 5E0 2E0 -> 2.5 dddiv1028 divide 5E0 20E-1 -> 2.5 dddiv1029 divide 5E0 2000E-3 -> 2.5 dddiv1030 divide 5E0 2E-1 -> 25 dddiv1031 divide 5E0 20E-2 -> 25 dddiv1032 divide 480E-2 3E0 -> 1.60 dddiv1033 divide 47E-1 2E0 -> 2.35 -- ECMAScript bad examples rounding: half_down dddiv1040 divide 5 9 -> 0.5555555555555556 Inexact Rounded rounding: half_even dddiv1041 divide 6 11 -> 0.5454545454545455 Inexact Rounded -- overflow and underflow tests .. note subnormal results -- signs dddiv1051 divide 1e+277 1e-311 -> Infinity Overflow Inexact Rounded dddiv1052 divide 1e+277 -1e-311 -> -Infinity Overflow Inexact Rounded dddiv1053 divide -1e+277 1e-311 -> -Infinity Overflow Inexact Rounded dddiv1054 divide -1e+277 -1e-311 -> Infinity Overflow Inexact Rounded dddiv1055 divide 1e-277 1e+311 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped dddiv1056 divide 1e-277 -1e+311 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped dddiv1057 divide -1e-277 1e+311 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped dddiv1058 divide -1e-277 -1e+311 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -- 'subnormal' boundary (all hard underflow or overflow in base arithemtic) dddiv1060 divide 1e-291 1e+101 -> 1E-392 Subnormal dddiv1061 divide 1e-291 1e+102 -> 1E-393 Subnormal dddiv1062 divide 1e-291 1e+103 -> 1E-394 Subnormal dddiv1063 divide 1e-291 1e+104 -> 1E-395 Subnormal dddiv1064 divide 1e-291 1e+105 -> 1E-396 Subnormal dddiv1065 divide 1e-291 1e+106 -> 1E-397 Subnormal dddiv1066 divide 1e-291 1e+107 -> 1E-398 Subnormal dddiv1067 divide 1e-291 1e+108 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped dddiv1068 divide 1e-291 1e+109 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped dddiv1069 divide 1e-291 1e+110 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped -- [no equivalent of 'subnormal' for overflow] dddiv1070 divide 1e+60 1e-321 -> 1.000000000000E+381 Clamped dddiv1071 divide 1e+60 1e-322 -> 1.0000000000000E+382 Clamped dddiv1072 divide 1e+60 1e-323 -> 1.00000000000000E+383 Clamped dddiv1073 divide 1e+60 1e-324 -> 1.000000000000000E+384 Clamped dddiv1074 divide 1e+60 1e-325 -> Infinity Overflow Inexact Rounded dddiv1075 divide 1e+60 1e-326 -> Infinity Overflow Inexact Rounded dddiv1076 divide 1e+60 1e-327 -> Infinity Overflow Inexact Rounded dddiv1077 divide 1e+60 1e-328 -> Infinity Overflow Inexact Rounded dddiv1078 divide 1e+60 1e-329 -> Infinity Overflow Inexact Rounded dddiv1079 divide 1e+60 1e-330 -> Infinity Overflow Inexact Rounded dddiv1101 divide 1.0000E-394 1 -> 1.0000E-394 Subnormal dddiv1102 divide 1.000E-394 1e+1 -> 1.000E-395 Subnormal dddiv1103 divide 1.00E-394 1e+2 -> 1.00E-396 Subnormal dddiv1104 divide 1.0E-394 1e+3 -> 1.0E-397 Subnormal dddiv1105 divide 1.0E-394 1e+4 -> 1E-398 Subnormal Rounded dddiv1106 divide 1.3E-394 1e+4 -> 1E-398 Underflow Subnormal Inexact Rounded dddiv1107 divide 1.5E-394 1e+4 -> 2E-398 Underflow Subnormal Inexact Rounded dddiv1108 divide 1.7E-394 1e+4 -> 2E-398 Underflow Subnormal Inexact Rounded dddiv1109 divide 2.3E-394 1e+4 -> 2E-398 Underflow Subnormal Inexact Rounded dddiv1110 divide 2.5E-394 1e+4 -> 2E-398 Underflow Subnormal Inexact Rounded dddiv1111 divide 2.7E-394 1e+4 -> 3E-398 Underflow Subnormal Inexact Rounded dddiv1112 divide 1.49E-394 1e+4 -> 1E-398 Underflow Subnormal Inexact Rounded dddiv1113 divide 1.50E-394 1e+4 -> 2E-398 Underflow Subnormal Inexact Rounded dddiv1114 divide 1.51E-394 1e+4 -> 2E-398 Underflow Subnormal Inexact Rounded dddiv1115 divide 2.49E-394 1e+4 -> 2E-398 Underflow Subnormal Inexact Rounded dddiv1116 divide 2.50E-394 1e+4 -> 2E-398 Underflow Subnormal Inexact Rounded dddiv1117 divide 2.51E-394 1e+4 -> 3E-398 Underflow Subnormal Inexact Rounded dddiv1118 divide 1E-394 1e+4 -> 1E-398 Subnormal dddiv1119 divide 3E-394 1e+5 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped dddiv1120 divide 5E-394 1e+5 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped dddiv1121 divide 7E-394 1e+5 -> 1E-398 Underflow Subnormal Inexact Rounded dddiv1122 divide 9E-394 1e+5 -> 1E-398 Underflow Subnormal Inexact Rounded dddiv1123 divide 9.9E-394 1e+5 -> 1E-398 Underflow Subnormal Inexact Rounded dddiv1124 divide 1E-394 -1e+4 -> -1E-398 Subnormal dddiv1125 divide 3E-394 -1e+5 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped dddiv1126 divide -5E-394 1e+5 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped dddiv1127 divide 7E-394 -1e+5 -> -1E-398 Underflow Subnormal Inexact Rounded dddiv1128 divide -9E-394 1e+5 -> -1E-398 Underflow Subnormal Inexact Rounded dddiv1129 divide 9.9E-394 -1e+5 -> -1E-398 Underflow Subnormal Inexact Rounded dddiv1130 divide 3.0E-394 -1e+5 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped dddiv1131 divide 1.0E-199 1e+200 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped dddiv1132 divide 1.0E-199 1e+199 -> 1E-398 Subnormal Rounded dddiv1133 divide 1.0E-199 1e+198 -> 1.0E-397 Subnormal dddiv1134 divide 2.0E-199 2e+198 -> 1.0E-397 Subnormal dddiv1135 divide 4.0E-199 4e+198 -> 1.0E-397 Subnormal dddiv1136 divide 10.0E-199 10e+198 -> 1.0E-397 Subnormal dddiv1137 divide 30.0E-199 30e+198 -> 1.0E-397 Subnormal -- randoms dddiv2010 divide -3.303226714900711E-35 8.796578842713183E+73 -> -3.755126594058783E-109 Inexact Rounded dddiv2011 divide 933153327821073.6 68782181090246.25 -> 13.56678885475763 Inexact Rounded dddiv2012 divide 5.04752436057906E-72 -8.179481771238642E+64 -> -6.170958627632835E-137 Inexact Rounded dddiv2013 divide -3707613309582318 3394911196503.048 -> -1092.109070010836 Inexact Rounded dddiv2014 divide 99689.0555190461 -4.735208553891464 -> -21052.72753765411 Inexact Rounded dddiv2015 divide -1447915775613329 269750797.8184875 -> -5367605.164925653 Inexact Rounded dddiv2016 divide -9.394881304225258E-19 -830585.0252671636 -> 1.131116143251358E-24 Inexact Rounded dddiv2017 divide -1.056283432738934 88.58754555124013 -> -0.01192361100159352 Inexact Rounded dddiv2018 divide 5763220933343.081 689089567025052.1 -> 0.008363529516524456 Inexact Rounded dddiv2019 divide 873819.122103216 9.740612494523300E-49 -> 8.970884763093948E+53 Inexact Rounded dddiv2020 divide 8022914.838533576 6178.566801742713 -> 1298.507420243583 Inexact Rounded dddiv2021 divide 203982.7605650363 -2158.283639053435 -> -94.51156320422168 Inexact Rounded dddiv2022 divide 803.6310547013030 7101143795399.238 -> 1.131692411611166E-10 Inexact Rounded dddiv2023 divide 9.251697842123399E-82 -1.342350220606119E-7 -> -6.892163982321936E-75 Inexact Rounded dddiv2024 divide -1.980600645637992E-53 -5.474262753214457E+77 -> 3.618022617703168E-131 Inexact Rounded dddiv2025 divide -210.0322996351690 -8.580951835872843E+80 -> 2.447657365434971E-79 Inexact Rounded dddiv2026 divide -1.821980314020370E+85 -3.018915267138165 -> 6.035215144503042E+84 Inexact Rounded dddiv2027 divide -772264503601.1047 5.158258271408988E-86 -> -1.497141986630614E+97 Inexact Rounded dddiv2028 divide -767.0532415847106 2.700027228028939E-59 -> -2.840909282772941E+61 Inexact Rounded dddiv2029 divide 496724.8548250093 7.32700588163100E+66 -> 6.779370220929013E-62 Inexact Rounded dddiv2030 divide -304232651447703.9 -108.9730808657440 -> 2791814721862.565 Inexact Rounded dddiv2031 divide -7.233817192699405E+42 -5711302004.149411 -> 1.266579352211430E+33 Inexact Rounded dddiv2032 divide -9.999221444912745E+96 4010569406446197 -> -2.493217404202250E+81 Inexact Rounded dddiv2033 divide -1837272.061937622 8.356322838066762 -> -219866.0939196882 Inexact Rounded dddiv2034 divide 2168.517555606529 209.1910258615061 -> 10.36620737756784 Inexact Rounded dddiv2035 divide -1.884389790576371E+88 2.95181953870583E+20 -> -6.383824505079828E+67 Inexact Rounded dddiv2036 divide 732263.6037438196 961222.3634446889 -> 0.7618045850698269 Inexact Rounded dddiv2037 divide -813461419.0348336 5.376293753809143E+84 -> -1.513052404285927E-76 Inexact Rounded dddiv2038 divide -45562133508108.50 -9.776843494690107E+51 -> 4.660208945029519E-39 Inexact Rounded dddiv2039 divide -6.489393172441016E+80 -9101965.097852113 -> 7.129661674897421E+73 Inexact Rounded dddiv2040 divide 3.694576237117349E+93 6683512.012622003 -> 5.527896456443912E+86 Inexact Rounded dddiv2041 divide -2.252877726403272E+19 -7451913256.181367 -> 3023220546.125531 Inexact Rounded dddiv2042 divide 518303.1989111842 50.01587020474133 -> 10362.77479107123 Inexact Rounded dddiv2043 divide 2.902087881880103E+24 33.32400992305702 -> 8.708699488989578E+22 Inexact Rounded dddiv2044 divide 549619.4559510557 1660824845196338 -> 3.309316196351104E-10 Inexact Rounded dddiv2045 divide -6775670774684043 8292152023.077262 -> -817118.4941891062 Inexact Rounded dddiv2046 divide -77.50923921524079 -5.636882655425815E+74 -> 1.375037302588405E-73 Inexact Rounded dddiv2047 divide -2.984889459605149E-10 -88106156784122.99 -> 3.387833005721384E-24 Inexact Rounded dddiv2048 divide 0.949517293997085 44767115.96450998 -> 2.121015110175589E-8 Inexact Rounded dddiv2049 divide -2760937211.084521 -1087015876975408 -> 0.000002539923537057024 Inexact Rounded dddiv2050 divide 28438351.85030536 -4.209397904088624E-47 -> -6.755919135770688E+53 Inexact Rounded dddiv2051 divide -85562731.6820956 -7.166045442530185E+45 -> 1.194002080621542E-38 Inexact Rounded dddiv2052 divide 2533802852165.25 7154.119606235955 -> 354173957.3317501 Inexact Rounded dddiv2053 divide -8858831346851.474 97.59734208801716 -> -90769186509.83577 Inexact Rounded dddiv2054 divide 176783629801387.5 840073263.3109817 -> 210438.3480848206 Inexact Rounded dddiv2055 divide -493506471796175.6 79733894790822.03 -> -6.189418854940746 Inexact Rounded dddiv2056 divide 790.1682542103445 829.9449370367435 -> 0.9520731062371214 Inexact Rounded dddiv2057 divide -8920459838.583164 -4767.889187899214 -> 1870945.294035581 Inexact Rounded dddiv2058 divide 53536687164422.1 53137.5007032689 -> 1007512330.385698 Inexact Rounded dddiv2059 divide 4.051532311146561E-74 -2.343089768972261E+94 -> -1.729140882606332E-168 Inexact Rounded dddiv2060 divide -14847758778636.88 3.062543516383807E-43 -> -4.848178874587497E+55 Inexact Rounded -- Division probably has pre-rounding, so need to test rounding -- explicitly rather than assume included through other tests; -- tests include simple rounding and also the tricky cases of sticky -- bits following two zeros -- -- 1/99999 gives 0.0000100001000010000100001000010000100001 -- 1234567890123456 -- -- 1/999999 gives 0.000001000001000001000001000001000001000001 -- 1234567890123456 rounding: ceiling dddiv3001 divide 1 3 -> 0.3333333333333334 Inexact Rounded dddiv3002 divide 2 3 -> 0.6666666666666667 Inexact Rounded dddiv3003 divide 1 99999 -> 0.00001000010000100002 Inexact Rounded dddiv3004 divide 1 999999 -> 0.000001000001000001001 Inexact Rounded rounding: floor dddiv3011 divide 1 3 -> 0.3333333333333333 Inexact Rounded dddiv3012 divide 2 3 -> 0.6666666666666666 Inexact Rounded dddiv3013 divide 1 99999 -> 0.00001000010000100001 Inexact Rounded dddiv3014 divide 1 999999 -> 0.000001000001000001000 Inexact Rounded rounding: up dddiv3021 divide 1 3 -> 0.3333333333333334 Inexact Rounded dddiv3022 divide 2 3 -> 0.6666666666666667 Inexact Rounded dddiv3023 divide 1 99999 -> 0.00001000010000100002 Inexact Rounded dddiv3024 divide 1 999999 -> 0.000001000001000001001 Inexact Rounded rounding: down dddiv3031 divide 1 3 -> 0.3333333333333333 Inexact Rounded dddiv3032 divide 2 3 -> 0.6666666666666666 Inexact Rounded dddiv3033 divide 1 99999 -> 0.00001000010000100001 Inexact Rounded dddiv3034 divide 1 999999 -> 0.000001000001000001000 Inexact Rounded rounding: half_up dddiv3041 divide 1 3 -> 0.3333333333333333 Inexact Rounded dddiv3042 divide 2 3 -> 0.6666666666666667 Inexact Rounded dddiv3043 divide 1 99999 -> 0.00001000010000100001 Inexact Rounded dddiv3044 divide 1 999999 -> 0.000001000001000001000 Inexact Rounded rounding: half_down dddiv3051 divide 1 3 -> 0.3333333333333333 Inexact Rounded dddiv3052 divide 2 3 -> 0.6666666666666667 Inexact Rounded dddiv3053 divide 1 99999 -> 0.00001000010000100001 Inexact Rounded dddiv3054 divide 1 999999 -> 0.000001000001000001000 Inexact Rounded rounding: half_even dddiv3061 divide 1 3 -> 0.3333333333333333 Inexact Rounded dddiv3062 divide 2 3 -> 0.6666666666666667 Inexact Rounded dddiv3063 divide 1 99999 -> 0.00001000010000100001 Inexact Rounded dddiv3064 divide 1 999999 -> 0.000001000001000001000 Inexact Rounded rounding: 05up dddiv3071 divide 1 3 -> 0.3333333333333333 Inexact Rounded dddiv3072 divide 2 3 -> 0.6666666666666666 Inexact Rounded dddiv3073 divide 1 99999 -> 0.00001000010000100001 Inexact Rounded dddiv3074 divide 1 999999 -> 0.000001000001000001001 Inexact Rounded -- random divide tests with result near 1 rounding: half_even dddiv4001 divide 3195385192916917 3195385192946695 -> 0.9999999999906809 Inexact Rounded dddiv4002 divide 1393723067526993 1393723067519475 -> 1.000000000005394 Inexact Rounded dddiv4003 divide 759985543702302 759985543674015 -> 1.000000000037220 Inexact Rounded dddiv4004 divide 9579158456027302 9579158456036864 -> 0.9999999999990018 Inexact Rounded dddiv4005 divide 7079398299143569 7079398299156904 -> 0.9999999999981164 Inexact Rounded dddiv4006 divide 6636169255366598 6636169255336386 -> 1.000000000004553 Inexact Rounded dddiv4007 divide 6964813971340090 6964813971321554 -> 1.000000000002661 Inexact Rounded dddiv4008 divide 4182275225480784 4182275225454009 -> 1.000000000006402 Inexact Rounded dddiv4009 divide 9228325124938029 9228325124918730 -> 1.000000000002091 Inexact Rounded dddiv4010 divide 3428346338630192 3428346338609843 -> 1.000000000005936 Inexact Rounded dddiv4011 divide 2143511550722893 2143511550751754 -> 0.9999999999865356 Inexact Rounded dddiv4012 divide 1672732924396785 1672732924401811 -> 0.9999999999969953 Inexact Rounded dddiv4013 divide 4190714611948216 4190714611948664 -> 0.9999999999998931 Inexact Rounded dddiv4014 divide 3942254800848877 3942254800814556 -> 1.000000000008706 Inexact Rounded dddiv4015 divide 2854459826952334 2854459826960762 -> 0.9999999999970474 Inexact Rounded dddiv4016 divide 2853258953664731 2853258953684471 -> 0.9999999999930816 Inexact Rounded dddiv4017 divide 9453512638125978 9453512638146425 -> 0.9999999999978371 Inexact Rounded dddiv4018 divide 339476633940369 339476633912887 -> 1.000000000080954 Inexact Rounded dddiv4019 divide 4542181492688467 4542181492697735 -> 0.9999999999979596 Inexact Rounded dddiv4020 divide 7312600192399197 7312600192395424 -> 1.000000000000516 Inexact Rounded dddiv4021 divide 1811674985570111 1811674985603935 -> 0.9999999999813300 Inexact Rounded dddiv4022 divide 1706462639003481 1706462639017740 -> 0.9999999999916441 Inexact Rounded dddiv4023 divide 6697052654940368 6697052654934110 -> 1.000000000000934 Inexact Rounded dddiv4024 divide 5015283664277539 5015283664310719 -> 0.9999999999933842 Inexact Rounded dddiv4025 divide 2359501561537464 2359501561502464 -> 1.000000000014834 Inexact Rounded dddiv4026 divide 2669850227909157 2669850227901548 -> 1.000000000002850 Inexact Rounded dddiv4027 divide 9329725546974648 9329725547002445 -> 0.9999999999970206 Inexact Rounded dddiv4028 divide 3228562867071248 3228562867106206 -> 0.9999999999891723 Inexact Rounded dddiv4029 divide 4862226644921175 4862226644909380 -> 1.000000000002426 Inexact Rounded dddiv4030 divide 1022267997054529 1022267997071329 -> 0.9999999999835660 Inexact Rounded dddiv4031 divide 1048777482023719 1048777482000948 -> 1.000000000021712 Inexact Rounded dddiv4032 divide 9980113777337098 9980113777330539 -> 1.000000000000657 Inexact Rounded dddiv4033 divide 7506839167963908 7506839167942901 -> 1.000000000002798 Inexact Rounded dddiv4034 divide 231119751977860 231119751962453 -> 1.000000000066662 Inexact Rounded dddiv4035 divide 4034903664762962 4034903664795526 -> 0.9999999999919294 Inexact Rounded dddiv4036 divide 5700122152274696 5700122152251386 -> 1.000000000004089 Inexact Rounded dddiv4037 divide 6869599590293110 6869599590293495 -> 0.9999999999999440 Inexact Rounded dddiv4038 divide 5576281960092797 5576281960105579 -> 0.9999999999977078 Inexact Rounded dddiv4039 divide 2304844888381318 2304844888353073 -> 1.000000000012255 Inexact Rounded dddiv4040 divide 3265933651656452 3265933651682779 -> 0.9999999999919389 Inexact Rounded dddiv4041 divide 5235714985079914 5235714985066131 -> 1.000000000002632 Inexact Rounded dddiv4042 divide 5578481572827551 5578481572822945 -> 1.000000000000826 Inexact Rounded dddiv4043 divide 4909616081396134 4909616081373076 -> 1.000000000004696 Inexact Rounded dddiv4044 divide 636447224349537 636447224338757 -> 1.000000000016938 Inexact Rounded dddiv4045 divide 1539373428396640 1539373428364727 -> 1.000000000020731 Inexact Rounded dddiv4046 divide 2028786707377893 2028786707378866 -> 0.9999999999995204 Inexact Rounded dddiv4047 divide 137643260486222 137643260487419 -> 0.9999999999913036 Inexact Rounded dddiv4048 divide 247451519746765 247451519752267 -> 0.9999999999777653 Inexact Rounded dddiv4049 divide 7877858475022054 7877858474999794 -> 1.000000000002826 Inexact Rounded dddiv4050 divide 7333242694766258 7333242694744628 -> 1.000000000002950 Inexact Rounded dddiv4051 divide 124051503698592 124051503699397 -> 0.9999999999935108 Inexact Rounded dddiv4052 divide 8944737432385188 8944737432406860 -> 0.9999999999975771 Inexact Rounded dddiv4053 divide 9883948923406874 9883948923424843 -> 0.9999999999981820 Inexact Rounded dddiv4054 divide 6829178741654284 6829178741671973 -> 0.9999999999974098 Inexact Rounded dddiv4055 divide 7342752479768122 7342752479793385 -> 0.9999999999965595 Inexact Rounded dddiv4056 divide 8066426579008783 8066426578977563 -> 1.000000000003870 Inexact Rounded dddiv4057 divide 8992775071383295 8992775071352712 -> 1.000000000003401 Inexact Rounded dddiv4058 divide 5485011755545641 5485011755543611 -> 1.000000000000370 Inexact Rounded dddiv4059 divide 5779983054353918 5779983054365300 -> 0.9999999999980308 Inexact Rounded dddiv4060 divide 9502265102713774 9502265102735208 -> 0.9999999999977443 Inexact Rounded dddiv4061 divide 2109558399130981 2109558399116281 -> 1.000000000006968 Inexact Rounded dddiv4062 divide 5296182636350471 5296182636351521 -> 0.9999999999998017 Inexact Rounded dddiv4063 divide 1440019225591883 1440019225601844 -> 0.9999999999930827 Inexact Rounded dddiv4064 divide 8182110791881341 8182110791847174 -> 1.000000000004176 Inexact Rounded dddiv4065 divide 489098235512060 489098235534516 -> 0.9999999999540869 Inexact Rounded dddiv4066 divide 6475687084782038 6475687084756089 -> 1.000000000004007 Inexact Rounded dddiv4067 divide 8094348555736948 8094348555759236 -> 0.9999999999972465 Inexact Rounded dddiv4068 divide 1982766816291543 1982766816309463 -> 0.9999999999909621 Inexact Rounded dddiv4069 divide 9277314300113251 9277314300084467 -> 1.000000000003103 Inexact Rounded dddiv4070 divide 4335532959318934 4335532959293167 -> 1.000000000005943 Inexact Rounded dddiv4071 divide 7767113032981348 7767113032968132 -> 1.000000000001702 Inexact Rounded dddiv4072 divide 1578548053342868 1578548053370448 -> 0.9999999999825282 Inexact Rounded dddiv4073 divide 3790420686666898 3790420686636315 -> 1.000000000008068 Inexact Rounded dddiv4074 divide 871682421955147 871682421976441 -> 0.9999999999755714 Inexact Rounded dddiv4075 divide 744141054479940 744141054512329 -> 0.9999999999564746 Inexact Rounded dddiv4076 divide 8956824183670735 8956824183641741 -> 1.000000000003237 Inexact Rounded dddiv4077 divide 8337291694485682 8337291694451193 -> 1.000000000004137 Inexact Rounded dddiv4078 divide 4107775944683669 4107775944657097 -> 1.000000000006469 Inexact Rounded dddiv4079 divide 8691900057964648 8691900057997555 -> 0.9999999999962141 Inexact Rounded dddiv4080 divide 2229528520536462 2229528520502337 -> 1.000000000015306 Inexact Rounded dddiv4081 divide 398442083774322 398442083746273 -> 1.000000000070397 Inexact Rounded dddiv4082 divide 5319819776808759 5319819776838313 -> 0.9999999999944445 Inexact Rounded dddiv4083 divide 7710491299066855 7710491299041858 -> 1.000000000003242 Inexact Rounded dddiv4084 divide 9083231296087266 9083231296058160 -> 1.000000000003204 Inexact Rounded dddiv4085 divide 3566873574904559 3566873574890328 -> 1.000000000003990 Inexact Rounded dddiv4086 divide 596343290550525 596343290555614 -> 0.9999999999914663 Inexact Rounded dddiv4087 divide 278227925093192 278227925068104 -> 1.000000000090171 Inexact Rounded dddiv4088 divide 3292902958490649 3292902958519881 -> 0.9999999999911227 Inexact Rounded dddiv4089 divide 5521871364245881 5521871364229536 -> 1.000000000002960 Inexact Rounded dddiv4090 divide 2406505602883617 2406505602857997 -> 1.000000000010646 Inexact Rounded dddiv4091 divide 7741146984869208 7741146984867255 -> 1.000000000000252 Inexact Rounded dddiv4092 divide 4576041832414909 4576041832405102 -> 1.000000000002143 Inexact Rounded dddiv4093 divide 9183756982878057 9183756982901934 -> 0.9999999999974001 Inexact Rounded dddiv4094 divide 6215736513855159 6215736513870342 -> 0.9999999999975573 Inexact Rounded dddiv4095 divide 248554968534533 248554968551417 -> 0.9999999999320714 Inexact Rounded dddiv4096 divide 376314165668645 376314165659755 -> 1.000000000023624 Inexact Rounded dddiv4097 divide 5513569249809718 5513569249808906 -> 1.000000000000147 Inexact Rounded dddiv4098 divide 3367992242167904 3367992242156228 -> 1.000000000003467 Inexact Rounded dddiv4099 divide 6134869538966967 6134869538985986 -> 0.9999999999968999 Inexact Rounded -- Null tests dddiv9998 divide 10 # -> NaN Invalid_operation dddiv9999 divide # 10 -> NaN Invalid_operation
47,274
864
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/copyabs.decTest
------------------------------------------------------------------------ -- copyAbs.decTest -- quiet copy and set sign to zero -- -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 extended: 1 precision: 9 rounding: half_up maxExponent: 999 minExponent: -999 -- Sanity check cpax001 copyabs +7.50 -> 7.50 -- Infinities cpax011 copyabs Infinity -> Infinity cpax012 copyabs -Infinity -> Infinity -- NaNs, 0 payload cpax021 copyabs NaN -> NaN cpax022 copyabs -NaN -> NaN cpax023 copyabs sNaN -> sNaN cpax024 copyabs -sNaN -> sNaN -- NaNs, non-0 payload cpax031 copyabs NaN10 -> NaN10 cpax032 copyabs -NaN15 -> NaN15 cpax033 copyabs sNaN15 -> sNaN15 cpax034 copyabs -sNaN10 -> sNaN10 cpax035 copyabs NaN7 -> NaN7 cpax036 copyabs -NaN7 -> NaN7 cpax037 copyabs sNaN101 -> sNaN101 cpax038 copyabs -sNaN101 -> sNaN101 -- finites cpax101 copyabs 7 -> 7 cpax102 copyabs -7 -> 7 cpax103 copyabs 75 -> 75 cpax104 copyabs -75 -> 75 cpax105 copyabs 7.10 -> 7.10 cpax106 copyabs -7.10 -> 7.10 cpax107 copyabs 7.500 -> 7.500 cpax108 copyabs -7.500 -> 7.500 -- zeros cpax111 copyabs 0 -> 0 cpax112 copyabs -0 -> 0 cpax113 copyabs 0E+6 -> 0E+6 cpax114 copyabs -0E+6 -> 0E+6 cpax115 copyabs 0.0000 -> 0.0000 cpax116 copyabs -0.0000 -> 0.0000 cpax117 copyabs 0E-141 -> 0E-141 cpax118 copyabs -0E-141 -> 0E-141 -- full coefficients, alternating bits cpax121 copyabs 268268268 -> 268268268 cpax122 copyabs -268268268 -> 268268268 cpax123 copyabs 134134134 -> 134134134 cpax124 copyabs -134134134 -> 134134134 -- Nmax, Nmin, Ntiny cpax131 copyabs 9.99999999E+999 -> 9.99999999E+999 cpax132 copyabs 1E-999 -> 1E-999 cpax133 copyabs 1.00000000E-999 -> 1.00000000E-999 cpax134 copyabs 1E-1007 -> 1E-1007 cpax135 copyabs -1E-1007 -> 1E-1007 cpax136 copyabs -1.00000000E-999 -> 1.00000000E-999 cpax137 copyabs -1E-999 -> 1E-999 cpax199 copyabs -9.99999999E+999 -> 9.99999999E+999
3,398
87
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/ddPlus.decTest
------------------------------------------------------------------------ -- ddPlus.decTest -- decDouble 0+x -- -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 -- All operands and results are decDoubles. precision: 16 maxExponent: 384 minExponent: -383 extended: 1 clamp: 1 rounding: half_even -- Sanity check ddpls001 plus +7.50 -> 7.50 -- Infinities ddpls011 plus Infinity -> Infinity ddpls012 plus -Infinity -> -Infinity -- NaNs, 0 payload ddpls021 plus NaN -> NaN ddpls022 plus -NaN -> -NaN ddpls023 plus sNaN -> NaN Invalid_operation ddpls024 plus -sNaN -> -NaN Invalid_operation -- NaNs, non-0 payload ddpls031 plus NaN13 -> NaN13 ddpls032 plus -NaN13 -> -NaN13 ddpls033 plus sNaN13 -> NaN13 Invalid_operation ddpls034 plus -sNaN13 -> -NaN13 Invalid_operation ddpls035 plus NaN70 -> NaN70 ddpls036 plus -NaN70 -> -NaN70 ddpls037 plus sNaN101 -> NaN101 Invalid_operation ddpls038 plus -sNaN101 -> -NaN101 Invalid_operation -- finites ddpls101 plus 7 -> 7 ddpls102 plus -7 -> -7 ddpls103 plus 75 -> 75 ddpls104 plus -75 -> -75 ddpls105 plus 7.50 -> 7.50 ddpls106 plus -7.50 -> -7.50 ddpls107 plus 7.500 -> 7.500 ddpls108 plus -7.500 -> -7.500 -- zeros ddpls111 plus 0 -> 0 ddpls112 plus -0 -> 0 ddpls113 plus 0E+4 -> 0E+4 ddpls114 plus -0E+4 -> 0E+4 ddpls115 plus 0.0000 -> 0.0000 ddpls116 plus -0.0000 -> 0.0000 ddpls117 plus 0E-141 -> 0E-141 ddpls118 plus -0E-141 -> 0E-141 -- full coefficients, alternating bits ddpls121 plus 2682682682682682 -> 2682682682682682 ddpls122 plus -2682682682682682 -> -2682682682682682 ddpls123 plus 1341341341341341 -> 1341341341341341 ddpls124 plus -1341341341341341 -> -1341341341341341 -- Nmax, Nmin, Ntiny ddpls131 plus 9.999999999999999E+384 -> 9.999999999999999E+384 ddpls132 plus 1E-383 -> 1E-383 ddpls133 plus 1.000000000000000E-383 -> 1.000000000000000E-383 ddpls134 plus 1E-398 -> 1E-398 Subnormal ddpls135 plus -1E-398 -> -1E-398 Subnormal ddpls136 plus -1.000000000000000E-383 -> -1.000000000000000E-383 ddpls137 plus -1E-383 -> -1E-383 ddpls138 plus -9.999999999999999E+384 -> -9.999999999999999E+384
3,658
89
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/ddCompareTotalMag.decTest
------------------------------------------------------------------------ -- ddCompareTotalMag.decTest -- decDouble comparison; abs. total order-- -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 -- Note that we cannot assume add/subtract tests cover paths adequately, -- here, because the code might be quite different (comparison cannot -- overflow or underflow, so actual subtractions are not necessary). -- Similarly, comparetotal will have some radically different paths -- than compare. -- All operands and results are decDoubles. precision: 16 maxExponent: 384 minExponent: -383 extended: 1 clamp: 1 rounding: half_even -- sanity checks ddctm001 comparetotmag -2 -2 -> 0 ddctm002 comparetotmag -2 -1 -> 1 ddctm003 comparetotmag -2 0 -> 1 ddctm004 comparetotmag -2 1 -> 1 ddctm005 comparetotmag -2 2 -> 0 ddctm006 comparetotmag -1 -2 -> -1 ddctm007 comparetotmag -1 -1 -> 0 ddctm008 comparetotmag -1 0 -> 1 ddctm009 comparetotmag -1 1 -> 0 ddctm010 comparetotmag -1 2 -> -1 ddctm011 comparetotmag 0 -2 -> -1 ddctm012 comparetotmag 0 -1 -> -1 ddctm013 comparetotmag 0 0 -> 0 ddctm014 comparetotmag 0 1 -> -1 ddctm015 comparetotmag 0 2 -> -1 ddctm016 comparetotmag 1 -2 -> -1 ddctm017 comparetotmag 1 -1 -> 0 ddctm018 comparetotmag 1 0 -> 1 ddctm019 comparetotmag 1 1 -> 0 ddctm020 comparetotmag 1 2 -> -1 ddctm021 comparetotmag 2 -2 -> 0 ddctm022 comparetotmag 2 -1 -> 1 ddctm023 comparetotmag 2 0 -> 1 ddctm025 comparetotmag 2 1 -> 1 ddctm026 comparetotmag 2 2 -> 0 ddctm031 comparetotmag -20 -20 -> 0 ddctm032 comparetotmag -20 -10 -> 1 ddctm033 comparetotmag -20 00 -> 1 ddctm034 comparetotmag -20 10 -> 1 ddctm035 comparetotmag -20 20 -> 0 ddctm036 comparetotmag -10 -20 -> -1 ddctm037 comparetotmag -10 -10 -> 0 ddctm038 comparetotmag -10 00 -> 1 ddctm039 comparetotmag -10 10 -> 0 ddctm040 comparetotmag -10 20 -> -1 ddctm041 comparetotmag 00 -20 -> -1 ddctm042 comparetotmag 00 -10 -> -1 ddctm043 comparetotmag 00 00 -> 0 ddctm044 comparetotmag 00 10 -> -1 ddctm045 comparetotmag 00 20 -> -1 ddctm046 comparetotmag 10 -20 -> -1 ddctm047 comparetotmag 10 -10 -> 0 ddctm048 comparetotmag 10 00 -> 1 ddctm049 comparetotmag 10 10 -> 0 ddctm050 comparetotmag 10 20 -> -1 ddctm051 comparetotmag 20 -20 -> 0 ddctm052 comparetotmag 20 -10 -> 1 ddctm053 comparetotmag 20 00 -> 1 ddctm055 comparetotmag 20 10 -> 1 ddctm056 comparetotmag 20 20 -> 0 ddctm061 comparetotmag -2.0 -2.0 -> 0 ddctm062 comparetotmag -2.0 -1.0 -> 1 ddctm063 comparetotmag -2.0 0.0 -> 1 ddctm064 comparetotmag -2.0 1.0 -> 1 ddctm065 comparetotmag -2.0 2.0 -> 0 ddctm066 comparetotmag -1.0 -2.0 -> -1 ddctm067 comparetotmag -1.0 -1.0 -> 0 ddctm068 comparetotmag -1.0 0.0 -> 1 ddctm069 comparetotmag -1.0 1.0 -> 0 ddctm070 comparetotmag -1.0 2.0 -> -1 ddctm071 comparetotmag 0.0 -2.0 -> -1 ddctm072 comparetotmag 0.0 -1.0 -> -1 ddctm073 comparetotmag 0.0 0.0 -> 0 ddctm074 comparetotmag 0.0 1.0 -> -1 ddctm075 comparetotmag 0.0 2.0 -> -1 ddctm076 comparetotmag 1.0 -2.0 -> -1 ddctm077 comparetotmag 1.0 -1.0 -> 0 ddctm078 comparetotmag 1.0 0.0 -> 1 ddctm079 comparetotmag 1.0 1.0 -> 0 ddctm080 comparetotmag 1.0 2.0 -> -1 ddctm081 comparetotmag 2.0 -2.0 -> 0 ddctm082 comparetotmag 2.0 -1.0 -> 1 ddctm083 comparetotmag 2.0 0.0 -> 1 ddctm085 comparetotmag 2.0 1.0 -> 1 ddctm086 comparetotmag 2.0 2.0 -> 0 -- now some cases which might overflow if subtract were used ddctm090 comparetotmag 9.99999999E+384 9.99999999E+384 -> 0 ddctm091 comparetotmag -9.99999999E+384 9.99999999E+384 -> 0 ddctm092 comparetotmag 9.99999999E+384 -9.99999999E+384 -> 0 ddctm093 comparetotmag -9.99999999E+384 -9.99999999E+384 -> 0 -- some differing length/exponent cases -- in this first group, compare would compare all equal ddctm100 comparetotmag 7.0 7.0 -> 0 ddctm101 comparetotmag 7.0 7 -> -1 ddctm102 comparetotmag 7 7.0 -> 1 ddctm103 comparetotmag 7E+0 7.0 -> 1 ddctm104 comparetotmag 70E-1 7.0 -> 0 ddctm105 comparetotmag 0.7E+1 7 -> 0 ddctm106 comparetotmag 70E-1 7 -> -1 ddctm107 comparetotmag 7.0 7E+0 -> -1 ddctm108 comparetotmag 7.0 70E-1 -> 0 ddctm109 comparetotmag 7 0.7E+1 -> 0 ddctm110 comparetotmag 7 70E-1 -> 1 ddctm120 comparetotmag 8.0 7.0 -> 1 ddctm121 comparetotmag 8.0 7 -> 1 ddctm122 comparetotmag 8 7.0 -> 1 ddctm123 comparetotmag 8E+0 7.0 -> 1 ddctm124 comparetotmag 80E-1 7.0 -> 1 ddctm125 comparetotmag 0.8E+1 7 -> 1 ddctm126 comparetotmag 80E-1 7 -> 1 ddctm127 comparetotmag 8.0 7E+0 -> 1 ddctm128 comparetotmag 8.0 70E-1 -> 1 ddctm129 comparetotmag 8 0.7E+1 -> 1 ddctm130 comparetotmag 8 70E-1 -> 1 ddctm140 comparetotmag 8.0 9.0 -> -1 ddctm141 comparetotmag 8.0 9 -> -1 ddctm142 comparetotmag 8 9.0 -> -1 ddctm143 comparetotmag 8E+0 9.0 -> -1 ddctm144 comparetotmag 80E-1 9.0 -> -1 ddctm145 comparetotmag 0.8E+1 9 -> -1 ddctm146 comparetotmag 80E-1 9 -> -1 ddctm147 comparetotmag 8.0 9E+0 -> -1 ddctm148 comparetotmag 8.0 90E-1 -> -1 ddctm149 comparetotmag 8 0.9E+1 -> -1 ddctm150 comparetotmag 8 90E-1 -> -1 -- and again, with sign changes -+ .. ddctm200 comparetotmag -7.0 7.0 -> 0 ddctm201 comparetotmag -7.0 7 -> -1 ddctm202 comparetotmag -7 7.0 -> 1 ddctm203 comparetotmag -7E+0 7.0 -> 1 ddctm204 comparetotmag -70E-1 7.0 -> 0 ddctm205 comparetotmag -0.7E+1 7 -> 0 ddctm206 comparetotmag -70E-1 7 -> -1 ddctm207 comparetotmag -7.0 7E+0 -> -1 ddctm208 comparetotmag -7.0 70E-1 -> 0 ddctm209 comparetotmag -7 0.7E+1 -> 0 ddctm210 comparetotmag -7 70E-1 -> 1 ddctm220 comparetotmag -8.0 7.0 -> 1 ddctm221 comparetotmag -8.0 7 -> 1 ddctm222 comparetotmag -8 7.0 -> 1 ddctm223 comparetotmag -8E+0 7.0 -> 1 ddctm224 comparetotmag -80E-1 7.0 -> 1 ddctm225 comparetotmag -0.8E+1 7 -> 1 ddctm226 comparetotmag -80E-1 7 -> 1 ddctm227 comparetotmag -8.0 7E+0 -> 1 ddctm228 comparetotmag -8.0 70E-1 -> 1 ddctm229 comparetotmag -8 0.7E+1 -> 1 ddctm230 comparetotmag -8 70E-1 -> 1 ddctm240 comparetotmag -8.0 9.0 -> -1 ddctm241 comparetotmag -8.0 9 -> -1 ddctm242 comparetotmag -8 9.0 -> -1 ddctm243 comparetotmag -8E+0 9.0 -> -1 ddctm244 comparetotmag -80E-1 9.0 -> -1 ddctm245 comparetotmag -0.8E+1 9 -> -1 ddctm246 comparetotmag -80E-1 9 -> -1 ddctm247 comparetotmag -8.0 9E+0 -> -1 ddctm248 comparetotmag -8.0 90E-1 -> -1 ddctm249 comparetotmag -8 0.9E+1 -> -1 ddctm250 comparetotmag -8 90E-1 -> -1 -- and again, with sign changes +- .. ddctm300 comparetotmag 7.0 -7.0 -> 0 ddctm301 comparetotmag 7.0 -7 -> -1 ddctm302 comparetotmag 7 -7.0 -> 1 ddctm303 comparetotmag 7E+0 -7.0 -> 1 ddctm304 comparetotmag 70E-1 -7.0 -> 0 ddctm305 comparetotmag .7E+1 -7 -> 0 ddctm306 comparetotmag 70E-1 -7 -> -1 ddctm307 comparetotmag 7.0 -7E+0 -> -1 ddctm308 comparetotmag 7.0 -70E-1 -> 0 ddctm309 comparetotmag 7 -.7E+1 -> 0 ddctm310 comparetotmag 7 -70E-1 -> 1 ddctm320 comparetotmag 8.0 -7.0 -> 1 ddctm321 comparetotmag 8.0 -7 -> 1 ddctm322 comparetotmag 8 -7.0 -> 1 ddctm323 comparetotmag 8E+0 -7.0 -> 1 ddctm324 comparetotmag 80E-1 -7.0 -> 1 ddctm325 comparetotmag .8E+1 -7 -> 1 ddctm326 comparetotmag 80E-1 -7 -> 1 ddctm327 comparetotmag 8.0 -7E+0 -> 1 ddctm328 comparetotmag 8.0 -70E-1 -> 1 ddctm329 comparetotmag 8 -.7E+1 -> 1 ddctm330 comparetotmag 8 -70E-1 -> 1 ddctm340 comparetotmag 8.0 -9.0 -> -1 ddctm341 comparetotmag 8.0 -9 -> -1 ddctm342 comparetotmag 8 -9.0 -> -1 ddctm343 comparetotmag 8E+0 -9.0 -> -1 ddctm344 comparetotmag 80E-1 -9.0 -> -1 ddctm345 comparetotmag .8E+1 -9 -> -1 ddctm346 comparetotmag 80E-1 -9 -> -1 ddctm347 comparetotmag 8.0 -9E+0 -> -1 ddctm348 comparetotmag 8.0 -90E-1 -> -1 ddctm349 comparetotmag 8 -.9E+1 -> -1 ddctm350 comparetotmag 8 -90E-1 -> -1 -- and again, with sign changes -- .. ddctm400 comparetotmag -7.0 -7.0 -> 0 ddctm401 comparetotmag -7.0 -7 -> -1 ddctm402 comparetotmag -7 -7.0 -> 1 ddctm403 comparetotmag -7E+0 -7.0 -> 1 ddctm404 comparetotmag -70E-1 -7.0 -> 0 ddctm405 comparetotmag -.7E+1 -7 -> 0 ddctm406 comparetotmag -70E-1 -7 -> -1 ddctm407 comparetotmag -7.0 -7E+0 -> -1 ddctm408 comparetotmag -7.0 -70E-1 -> 0 ddctm409 comparetotmag -7 -.7E+1 -> 0 ddctm410 comparetotmag -7 -70E-1 -> 1 ddctm420 comparetotmag -8.0 -7.0 -> 1 ddctm421 comparetotmag -8.0 -7 -> 1 ddctm422 comparetotmag -8 -7.0 -> 1 ddctm423 comparetotmag -8E+0 -7.0 -> 1 ddctm424 comparetotmag -80E-1 -7.0 -> 1 ddctm425 comparetotmag -.8E+1 -7 -> 1 ddctm426 comparetotmag -80E-1 -7 -> 1 ddctm427 comparetotmag -8.0 -7E+0 -> 1 ddctm428 comparetotmag -8.0 -70E-1 -> 1 ddctm429 comparetotmag -8 -.7E+1 -> 1 ddctm430 comparetotmag -8 -70E-1 -> 1 ddctm440 comparetotmag -8.0 -9.0 -> -1 ddctm441 comparetotmag -8.0 -9 -> -1 ddctm442 comparetotmag -8 -9.0 -> -1 ddctm443 comparetotmag -8E+0 -9.0 -> -1 ddctm444 comparetotmag -80E-1 -9.0 -> -1 ddctm445 comparetotmag -.8E+1 -9 -> -1 ddctm446 comparetotmag -80E-1 -9 -> -1 ddctm447 comparetotmag -8.0 -9E+0 -> -1 ddctm448 comparetotmag -8.0 -90E-1 -> -1 ddctm449 comparetotmag -8 -.9E+1 -> -1 ddctm450 comparetotmag -8 -90E-1 -> -1 -- testcases that subtract to lots of zeros at boundaries [pgr] ddctm473 comparetotmag 123.4560000000000E-89 123.456E-89 -> -1 ddctm474 comparetotmag 123.456000000000E+89 123.456E+89 -> -1 ddctm475 comparetotmag 123.45600000000E-89 123.456E-89 -> -1 ddctm476 comparetotmag 123.4560000000E+89 123.456E+89 -> -1 ddctm477 comparetotmag 123.456000000E-89 123.456E-89 -> -1 ddctm478 comparetotmag 123.45600000E+89 123.456E+89 -> -1 ddctm479 comparetotmag 123.4560000E-89 123.456E-89 -> -1 ddctm480 comparetotmag 123.456000E+89 123.456E+89 -> -1 ddctm481 comparetotmag 123.45600E-89 123.456E-89 -> -1 ddctm482 comparetotmag 123.4560E+89 123.456E+89 -> -1 ddctm483 comparetotmag 123.456E-89 123.456E-89 -> 0 ddctm487 comparetotmag 123.456E+89 123.4560000000000E+89 -> 1 ddctm488 comparetotmag 123.456E-89 123.456000000000E-89 -> 1 ddctm489 comparetotmag 123.456E+89 123.45600000000E+89 -> 1 ddctm490 comparetotmag 123.456E-89 123.4560000000E-89 -> 1 ddctm491 comparetotmag 123.456E+89 123.456000000E+89 -> 1 ddctm492 comparetotmag 123.456E-89 123.45600000E-89 -> 1 ddctm493 comparetotmag 123.456E+89 123.4560000E+89 -> 1 ddctm494 comparetotmag 123.456E-89 123.456000E-89 -> 1 ddctm495 comparetotmag 123.456E+89 123.45600E+89 -> 1 ddctm496 comparetotmag 123.456E-89 123.4560E-89 -> 1 ddctm497 comparetotmag 123.456E+89 123.456E+89 -> 0 -- wide-ranging, around precision; signs equal ddctm498 comparetotmag 1 1E-17 -> 1 ddctm499 comparetotmag 1 1E-16 -> 1 ddctm500 comparetotmag 1 1E-15 -> 1 ddctm501 comparetotmag 1 1E-14 -> 1 ddctm502 comparetotmag 1 1E-13 -> 1 ddctm503 comparetotmag 1 1E-12 -> 1 ddctm504 comparetotmag 1 1E-11 -> 1 ddctm505 comparetotmag 1 1E-10 -> 1 ddctm506 comparetotmag 1 1E-9 -> 1 ddctm507 comparetotmag 1 1E-8 -> 1 ddctm508 comparetotmag 1 1E-7 -> 1 ddctm509 comparetotmag 1 1E-6 -> 1 ddctm510 comparetotmag 1 1E-5 -> 1 ddctm511 comparetotmag 1 1E-4 -> 1 ddctm512 comparetotmag 1 1E-3 -> 1 ddctm513 comparetotmag 1 1E-2 -> 1 ddctm514 comparetotmag 1 1E-1 -> 1 ddctm515 comparetotmag 1 1E-0 -> 0 ddctm516 comparetotmag 1 1E+1 -> -1 ddctm517 comparetotmag 1 1E+2 -> -1 ddctm518 comparetotmag 1 1E+3 -> -1 ddctm519 comparetotmag 1 1E+4 -> -1 ddctm521 comparetotmag 1 1E+5 -> -1 ddctm522 comparetotmag 1 1E+6 -> -1 ddctm523 comparetotmag 1 1E+7 -> -1 ddctm524 comparetotmag 1 1E+8 -> -1 ddctm525 comparetotmag 1 1E+9 -> -1 ddctm526 comparetotmag 1 1E+10 -> -1 ddctm527 comparetotmag 1 1E+11 -> -1 ddctm528 comparetotmag 1 1E+12 -> -1 ddctm529 comparetotmag 1 1E+13 -> -1 ddctm530 comparetotmag 1 1E+14 -> -1 ddctm531 comparetotmag 1 1E+15 -> -1 ddctm532 comparetotmag 1 1E+16 -> -1 ddctm533 comparetotmag 1 1E+17 -> -1 -- LR swap ddctm538 comparetotmag 1E-17 1 -> -1 ddctm539 comparetotmag 1E-16 1 -> -1 ddctm540 comparetotmag 1E-15 1 -> -1 ddctm541 comparetotmag 1E-14 1 -> -1 ddctm542 comparetotmag 1E-13 1 -> -1 ddctm543 comparetotmag 1E-12 1 -> -1 ddctm544 comparetotmag 1E-11 1 -> -1 ddctm545 comparetotmag 1E-10 1 -> -1 ddctm546 comparetotmag 1E-9 1 -> -1 ddctm547 comparetotmag 1E-8 1 -> -1 ddctm548 comparetotmag 1E-7 1 -> -1 ddctm549 comparetotmag 1E-6 1 -> -1 ddctm550 comparetotmag 1E-5 1 -> -1 ddctm551 comparetotmag 1E-4 1 -> -1 ddctm552 comparetotmag 1E-3 1 -> -1 ddctm553 comparetotmag 1E-2 1 -> -1 ddctm554 comparetotmag 1E-1 1 -> -1 ddctm555 comparetotmag 1E-0 1 -> 0 ddctm556 comparetotmag 1E+1 1 -> 1 ddctm557 comparetotmag 1E+2 1 -> 1 ddctm558 comparetotmag 1E+3 1 -> 1 ddctm559 comparetotmag 1E+4 1 -> 1 ddctm561 comparetotmag 1E+5 1 -> 1 ddctm562 comparetotmag 1E+6 1 -> 1 ddctm563 comparetotmag 1E+7 1 -> 1 ddctm564 comparetotmag 1E+8 1 -> 1 ddctm565 comparetotmag 1E+9 1 -> 1 ddctm566 comparetotmag 1E+10 1 -> 1 ddctm567 comparetotmag 1E+11 1 -> 1 ddctm568 comparetotmag 1E+12 1 -> 1 ddctm569 comparetotmag 1E+13 1 -> 1 ddctm570 comparetotmag 1E+14 1 -> 1 ddctm571 comparetotmag 1E+15 1 -> 1 ddctm572 comparetotmag 1E+16 1 -> 1 ddctm573 comparetotmag 1E+17 1 -> 1 -- similar with a useful coefficient, one side only ddctm578 comparetotmag 0.000000987654321 1E-17 -> 1 ddctm579 comparetotmag 0.000000987654321 1E-16 -> 1 ddctm580 comparetotmag 0.000000987654321 1E-15 -> 1 ddctm581 comparetotmag 0.000000987654321 1E-14 -> 1 ddctm582 comparetotmag 0.000000987654321 1E-13 -> 1 ddctm583 comparetotmag 0.000000987654321 1E-12 -> 1 ddctm584 comparetotmag 0.000000987654321 1E-11 -> 1 ddctm585 comparetotmag 0.000000987654321 1E-10 -> 1 ddctm586 comparetotmag 0.000000987654321 1E-9 -> 1 ddctm587 comparetotmag 0.000000987654321 1E-8 -> 1 ddctm588 comparetotmag 0.000000987654321 1E-7 -> 1 ddctm589 comparetotmag 0.000000987654321 1E-6 -> -1 ddctm590 comparetotmag 0.000000987654321 1E-5 -> -1 ddctm591 comparetotmag 0.000000987654321 1E-4 -> -1 ddctm592 comparetotmag 0.000000987654321 1E-3 -> -1 ddctm593 comparetotmag 0.000000987654321 1E-2 -> -1 ddctm594 comparetotmag 0.000000987654321 1E-1 -> -1 ddctm595 comparetotmag 0.000000987654321 1E-0 -> -1 ddctm596 comparetotmag 0.000000987654321 1E+1 -> -1 ddctm597 comparetotmag 0.000000987654321 1E+2 -> -1 ddctm598 comparetotmag 0.000000987654321 1E+3 -> -1 ddctm599 comparetotmag 0.000000987654321 1E+4 -> -1 -- check some unit-y traps ddctm600 comparetotmag 12 12.2345 -> -1 ddctm601 comparetotmag 12.0 12.2345 -> -1 ddctm602 comparetotmag 12.00 12.2345 -> -1 ddctm603 comparetotmag 12.000 12.2345 -> -1 ddctm604 comparetotmag 12.0000 12.2345 -> -1 ddctm605 comparetotmag 12.00000 12.2345 -> -1 ddctm606 comparetotmag 12.000000 12.2345 -> -1 ddctm607 comparetotmag 12.0000000 12.2345 -> -1 ddctm608 comparetotmag 12.00000000 12.2345 -> -1 ddctm609 comparetotmag 12.000000000 12.2345 -> -1 ddctm610 comparetotmag 12.1234 12 -> 1 ddctm611 comparetotmag 12.1234 12.0 -> 1 ddctm612 comparetotmag 12.1234 12.00 -> 1 ddctm613 comparetotmag 12.1234 12.000 -> 1 ddctm614 comparetotmag 12.1234 12.0000 -> 1 ddctm615 comparetotmag 12.1234 12.00000 -> 1 ddctm616 comparetotmag 12.1234 12.000000 -> 1 ddctm617 comparetotmag 12.1234 12.0000000 -> 1 ddctm618 comparetotmag 12.1234 12.00000000 -> 1 ddctm619 comparetotmag 12.1234 12.000000000 -> 1 ddctm620 comparetotmag -12 -12.2345 -> -1 ddctm621 comparetotmag -12.0 -12.2345 -> -1 ddctm622 comparetotmag -12.00 -12.2345 -> -1 ddctm623 comparetotmag -12.000 -12.2345 -> -1 ddctm624 comparetotmag -12.0000 -12.2345 -> -1 ddctm625 comparetotmag -12.00000 -12.2345 -> -1 ddctm626 comparetotmag -12.000000 -12.2345 -> -1 ddctm627 comparetotmag -12.0000000 -12.2345 -> -1 ddctm628 comparetotmag -12.00000000 -12.2345 -> -1 ddctm629 comparetotmag -12.000000000 -12.2345 -> -1 ddctm630 comparetotmag -12.1234 -12 -> 1 ddctm631 comparetotmag -12.1234 -12.0 -> 1 ddctm632 comparetotmag -12.1234 -12.00 -> 1 ddctm633 comparetotmag -12.1234 -12.000 -> 1 ddctm634 comparetotmag -12.1234 -12.0000 -> 1 ddctm635 comparetotmag -12.1234 -12.00000 -> 1 ddctm636 comparetotmag -12.1234 -12.000000 -> 1 ddctm637 comparetotmag -12.1234 -12.0000000 -> 1 ddctm638 comparetotmag -12.1234 -12.00000000 -> 1 ddctm639 comparetotmag -12.1234 -12.000000000 -> 1 -- extended zeros ddctm640 comparetotmag 0 0 -> 0 ddctm641 comparetotmag 0 -0 -> 0 ddctm642 comparetotmag 0 -0.0 -> 1 ddctm643 comparetotmag 0 0.0 -> 1 ddctm644 comparetotmag -0 0 -> 0 ddctm645 comparetotmag -0 -0 -> 0 ddctm646 comparetotmag -0 -0.0 -> 1 ddctm647 comparetotmag -0 0.0 -> 1 ddctm648 comparetotmag 0.0 0 -> -1 ddctm649 comparetotmag 0.0 -0 -> -1 ddctm650 comparetotmag 0.0 -0.0 -> 0 ddctm651 comparetotmag 0.0 0.0 -> 0 ddctm652 comparetotmag -0.0 0 -> -1 ddctm653 comparetotmag -0.0 -0 -> -1 ddctm654 comparetotmag -0.0 -0.0 -> 0 ddctm655 comparetotmag -0.0 0.0 -> 0 ddctm656 comparetotmag -0E1 0.0 -> 1 ddctm657 comparetotmag -0E2 0.0 -> 1 ddctm658 comparetotmag 0E1 0.0 -> 1 ddctm659 comparetotmag 0E2 0.0 -> 1 ddctm660 comparetotmag -0E1 0 -> 1 ddctm661 comparetotmag -0E2 0 -> 1 ddctm662 comparetotmag 0E1 0 -> 1 ddctm663 comparetotmag 0E2 0 -> 1 ddctm664 comparetotmag -0E1 -0E1 -> 0 ddctm665 comparetotmag -0E2 -0E1 -> 1 ddctm666 comparetotmag 0E1 -0E1 -> 0 ddctm667 comparetotmag 0E2 -0E1 -> 1 ddctm668 comparetotmag -0E1 -0E2 -> -1 ddctm669 comparetotmag -0E2 -0E2 -> 0 ddctm670 comparetotmag 0E1 -0E2 -> -1 ddctm671 comparetotmag 0E2 -0E2 -> 0 ddctm672 comparetotmag -0E1 0E1 -> 0 ddctm673 comparetotmag -0E2 0E1 -> 1 ddctm674 comparetotmag 0E1 0E1 -> 0 ddctm675 comparetotmag 0E2 0E1 -> 1 ddctm676 comparetotmag -0E1 0E2 -> -1 ddctm677 comparetotmag -0E2 0E2 -> 0 ddctm678 comparetotmag 0E1 0E2 -> -1 ddctm679 comparetotmag 0E2 0E2 -> 0 -- trailing zeros; unit-y ddctm680 comparetotmag 12 12 -> 0 ddctm681 comparetotmag 12 12.0 -> 1 ddctm682 comparetotmag 12 12.00 -> 1 ddctm683 comparetotmag 12 12.000 -> 1 ddctm684 comparetotmag 12 12.0000 -> 1 ddctm685 comparetotmag 12 12.00000 -> 1 ddctm686 comparetotmag 12 12.000000 -> 1 ddctm687 comparetotmag 12 12.0000000 -> 1 ddctm688 comparetotmag 12 12.00000000 -> 1 ddctm689 comparetotmag 12 12.000000000 -> 1 ddctm690 comparetotmag 12 12 -> 0 ddctm691 comparetotmag 12.0 12 -> -1 ddctm692 comparetotmag 12.00 12 -> -1 ddctm693 comparetotmag 12.000 12 -> -1 ddctm694 comparetotmag 12.0000 12 -> -1 ddctm695 comparetotmag 12.00000 12 -> -1 ddctm696 comparetotmag 12.000000 12 -> -1 ddctm697 comparetotmag 12.0000000 12 -> -1 ddctm698 comparetotmag 12.00000000 12 -> -1 ddctm699 comparetotmag 12.000000000 12 -> -1 -- old long operand checks ddctm701 comparetotmag 12345678000 1 -> 1 ddctm702 comparetotmag 1 12345678000 -> -1 ddctm703 comparetotmag 1234567800 1 -> 1 ddctm704 comparetotmag 1 1234567800 -> -1 ddctm705 comparetotmag 1234567890 1 -> 1 ddctm706 comparetotmag 1 1234567890 -> -1 ddctm707 comparetotmag 1234567891 1 -> 1 ddctm708 comparetotmag 1 1234567891 -> -1 ddctm709 comparetotmag 12345678901 1 -> 1 ddctm710 comparetotmag 1 12345678901 -> -1 ddctm711 comparetotmag 1234567896 1 -> 1 ddctm712 comparetotmag 1 1234567896 -> -1 ddctm713 comparetotmag -1234567891 1 -> 1 ddctm714 comparetotmag 1 -1234567891 -> -1 ddctm715 comparetotmag -12345678901 1 -> 1 ddctm716 comparetotmag 1 -12345678901 -> -1 ddctm717 comparetotmag -1234567896 1 -> 1 ddctm718 comparetotmag 1 -1234567896 -> -1 -- old residue cases ddctm740 comparetotmag 1 0.9999999 -> 1 ddctm741 comparetotmag 1 0.999999 -> 1 ddctm742 comparetotmag 1 0.99999 -> 1 ddctm743 comparetotmag 1 1.0000 -> 1 ddctm744 comparetotmag 1 1.00001 -> -1 ddctm745 comparetotmag 1 1.000001 -> -1 ddctm746 comparetotmag 1 1.0000001 -> -1 ddctm750 comparetotmag 0.9999999 1 -> -1 ddctm751 comparetotmag 0.999999 1 -> -1 ddctm752 comparetotmag 0.99999 1 -> -1 ddctm753 comparetotmag 1.0000 1 -> -1 ddctm754 comparetotmag 1.00001 1 -> 1 ddctm755 comparetotmag 1.000001 1 -> 1 ddctm756 comparetotmag 1.0000001 1 -> 1 -- Specials ddctm780 comparetotmag Inf -Inf -> 0 ddctm781 comparetotmag Inf -1000 -> 1 ddctm782 comparetotmag Inf -1 -> 1 ddctm783 comparetotmag Inf -0 -> 1 ddctm784 comparetotmag Inf 0 -> 1 ddctm785 comparetotmag Inf 1 -> 1 ddctm786 comparetotmag Inf 1000 -> 1 ddctm787 comparetotmag Inf Inf -> 0 ddctm788 comparetotmag -1000 Inf -> -1 ddctm789 comparetotmag -Inf Inf -> 0 ddctm790 comparetotmag -1 Inf -> -1 ddctm791 comparetotmag -0 Inf -> -1 ddctm792 comparetotmag 0 Inf -> -1 ddctm793 comparetotmag 1 Inf -> -1 ddctm794 comparetotmag 1000 Inf -> -1 ddctm795 comparetotmag Inf Inf -> 0 ddctm800 comparetotmag -Inf -Inf -> 0 ddctm801 comparetotmag -Inf -1000 -> 1 ddctm802 comparetotmag -Inf -1 -> 1 ddctm803 comparetotmag -Inf -0 -> 1 ddctm804 comparetotmag -Inf 0 -> 1 ddctm805 comparetotmag -Inf 1 -> 1 ddctm806 comparetotmag -Inf 1000 -> 1 ddctm807 comparetotmag -Inf Inf -> 0 ddctm808 comparetotmag -Inf -Inf -> 0 ddctm809 comparetotmag -1000 -Inf -> -1 ddctm810 comparetotmag -1 -Inf -> -1 ddctm811 comparetotmag -0 -Inf -> -1 ddctm812 comparetotmag 0 -Inf -> -1 ddctm813 comparetotmag 1 -Inf -> -1 ddctm814 comparetotmag 1000 -Inf -> -1 ddctm815 comparetotmag Inf -Inf -> 0 ddctm821 comparetotmag NaN -Inf -> 1 ddctm822 comparetotmag NaN -1000 -> 1 ddctm823 comparetotmag NaN -1 -> 1 ddctm824 comparetotmag NaN -0 -> 1 ddctm825 comparetotmag NaN 0 -> 1 ddctm826 comparetotmag NaN 1 -> 1 ddctm827 comparetotmag NaN 1000 -> 1 ddctm828 comparetotmag NaN Inf -> 1 ddctm829 comparetotmag NaN NaN -> 0 ddctm830 comparetotmag -Inf NaN -> -1 ddctm831 comparetotmag -1000 NaN -> -1 ddctm832 comparetotmag -1 NaN -> -1 ddctm833 comparetotmag -0 NaN -> -1 ddctm834 comparetotmag 0 NaN -> -1 ddctm835 comparetotmag 1 NaN -> -1 ddctm836 comparetotmag 1000 NaN -> -1 ddctm837 comparetotmag Inf NaN -> -1 ddctm838 comparetotmag -NaN -NaN -> 0 ddctm839 comparetotmag +NaN -NaN -> 0 ddctm840 comparetotmag -NaN +NaN -> 0 ddctm841 comparetotmag sNaN -sNaN -> 0 ddctm842 comparetotmag sNaN -NaN -> -1 ddctm843 comparetotmag sNaN -Inf -> 1 ddctm844 comparetotmag sNaN -1000 -> 1 ddctm845 comparetotmag sNaN -1 -> 1 ddctm846 comparetotmag sNaN -0 -> 1 ddctm847 comparetotmag sNaN 0 -> 1 ddctm848 comparetotmag sNaN 1 -> 1 ddctm849 comparetotmag sNaN 1000 -> 1 ddctm850 comparetotmag sNaN NaN -> -1 ddctm851 comparetotmag sNaN sNaN -> 0 ddctm852 comparetotmag -sNaN sNaN -> 0 ddctm853 comparetotmag -NaN sNaN -> 1 ddctm854 comparetotmag -Inf sNaN -> -1 ddctm855 comparetotmag -1000 sNaN -> -1 ddctm856 comparetotmag -1 sNaN -> -1 ddctm857 comparetotmag -0 sNaN -> -1 ddctm858 comparetotmag 0 sNaN -> -1 ddctm859 comparetotmag 1 sNaN -> -1 ddctm860 comparetotmag 1000 sNaN -> -1 ddctm861 comparetotmag Inf sNaN -> -1 ddctm862 comparetotmag NaN sNaN -> 1 ddctm863 comparetotmag sNaN sNaN -> 0 ddctm871 comparetotmag -sNaN -sNaN -> 0 ddctm872 comparetotmag -sNaN -NaN -> -1 ddctm873 comparetotmag -sNaN -Inf -> 1 ddctm874 comparetotmag -sNaN -1000 -> 1 ddctm875 comparetotmag -sNaN -1 -> 1 ddctm876 comparetotmag -sNaN -0 -> 1 ddctm877 comparetotmag -sNaN 0 -> 1 ddctm878 comparetotmag -sNaN 1 -> 1 ddctm879 comparetotmag -sNaN 1000 -> 1 ddctm880 comparetotmag -sNaN NaN -> -1 ddctm881 comparetotmag -sNaN sNaN -> 0 ddctm882 comparetotmag -sNaN -sNaN -> 0 ddctm883 comparetotmag -NaN -sNaN -> 1 ddctm884 comparetotmag -Inf -sNaN -> -1 ddctm885 comparetotmag -1000 -sNaN -> -1 ddctm886 comparetotmag -1 -sNaN -> -1 ddctm887 comparetotmag -0 -sNaN -> -1 ddctm888 comparetotmag 0 -sNaN -> -1 ddctm889 comparetotmag 1 -sNaN -> -1 ddctm890 comparetotmag 1000 -sNaN -> -1 ddctm891 comparetotmag Inf -sNaN -> -1 ddctm892 comparetotmag NaN -sNaN -> 1 ddctm893 comparetotmag sNaN -sNaN -> 0 -- NaNs with payload ddctm960 comparetotmag NaN9 -Inf -> 1 ddctm961 comparetotmag NaN8 999 -> 1 ddctm962 comparetotmag NaN77 Inf -> 1 ddctm963 comparetotmag -NaN67 NaN5 -> 1 ddctm964 comparetotmag -Inf -NaN4 -> -1 ddctm965 comparetotmag -999 -NaN33 -> -1 ddctm966 comparetotmag Inf NaN2 -> -1 ddctm970 comparetotmag -NaN41 -NaN42 -> -1 ddctm971 comparetotmag +NaN41 -NaN42 -> -1 ddctm972 comparetotmag -NaN41 +NaN42 -> -1 ddctm973 comparetotmag +NaN41 +NaN42 -> -1 ddctm974 comparetotmag -NaN42 -NaN01 -> 1 ddctm975 comparetotmag +NaN42 -NaN01 -> 1 ddctm976 comparetotmag -NaN42 +NaN01 -> 1 ddctm977 comparetotmag +NaN42 +NaN01 -> 1 ddctm980 comparetotmag -sNaN771 -sNaN772 -> -1 ddctm981 comparetotmag +sNaN771 -sNaN772 -> -1 ddctm982 comparetotmag -sNaN771 +sNaN772 -> -1 ddctm983 comparetotmag +sNaN771 +sNaN772 -> -1 ddctm984 comparetotmag -sNaN772 -sNaN771 -> 1 ddctm985 comparetotmag +sNaN772 -sNaN771 -> 1 ddctm986 comparetotmag -sNaN772 +sNaN771 -> 1 ddctm987 comparetotmag +sNaN772 +sNaN771 -> 1 ddctm991 comparetotmag -sNaN99 -Inf -> 1 ddctm992 comparetotmag sNaN98 -11 -> 1 ddctm993 comparetotmag sNaN97 NaN -> -1 ddctm994 comparetotmag sNaN16 sNaN94 -> -1 ddctm995 comparetotmag NaN85 sNaN83 -> 1 ddctm996 comparetotmag -Inf sNaN92 -> -1 ddctm997 comparetotmag 088 sNaN81 -> -1 ddctm998 comparetotmag Inf sNaN90 -> -1 ddctm999 comparetotmag NaN -sNaN89 -> 1 -- spread zeros ddctm1110 comparetotmag 0E-383 0 -> -1 ddctm1111 comparetotmag 0E-383 -0 -> -1 ddctm1112 comparetotmag -0E-383 0 -> -1 ddctm1113 comparetotmag -0E-383 -0 -> -1 ddctm1114 comparetotmag 0E-383 0E+384 -> -1 ddctm1115 comparetotmag 0E-383 -0E+384 -> -1 ddctm1116 comparetotmag -0E-383 0E+384 -> -1 ddctm1117 comparetotmag -0E-383 -0E+384 -> -1 ddctm1118 comparetotmag 0 0E+384 -> -1 ddctm1119 comparetotmag 0 -0E+384 -> -1 ddctm1120 comparetotmag -0 0E+384 -> -1 ddctm1121 comparetotmag -0 -0E+384 -> -1 ddctm1130 comparetotmag 0E+384 0 -> 1 ddctm1131 comparetotmag 0E+384 -0 -> 1 ddctm1132 comparetotmag -0E+384 0 -> 1 ddctm1133 comparetotmag -0E+384 -0 -> 1 ddctm1134 comparetotmag 0E+384 0E-383 -> 1 ddctm1135 comparetotmag 0E+384 -0E-383 -> 1 ddctm1136 comparetotmag -0E+384 0E-383 -> 1 ddctm1137 comparetotmag -0E+384 -0E-383 -> 1 ddctm1138 comparetotmag 0 0E-383 -> 1 ddctm1139 comparetotmag 0 -0E-383 -> 1 ddctm1140 comparetotmag -0 0E-383 -> 1 ddctm1141 comparetotmag -0 -0E-383 -> 1 -- Null tests ddctm9990 comparetotmag 10 # -> NaN Invalid_operation ddctm9991 comparetotmag # 10 -> NaN Invalid_operation
31,712
707
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/reduce.decTest
------------------------------------------------------------------------ -- reduce.decTest -- remove trailing zeros -- -- Copyright (c) IBM Corporation, 2003, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ -- [This used to be called normalize.] version: 2.59 extended: 1 precision: 9 rounding: half_up maxExponent: 999 minexponent: -999 redx001 reduce '1' -> '1' redx002 reduce '-1' -> '-1' redx003 reduce '1.00' -> '1' redx004 reduce '-1.00' -> '-1' redx005 reduce '0' -> '0' redx006 reduce '0.00' -> '0' redx007 reduce '00.0' -> '0' redx008 reduce '00.00' -> '0' redx009 reduce '00' -> '0' redx010 reduce '0E+1' -> '0' redx011 reduce '0E+5' -> '0' redx012 reduce '-2' -> '-2' redx013 reduce '2' -> '2' redx014 reduce '-2.00' -> '-2' redx015 reduce '2.00' -> '2' redx016 reduce '-0' -> '-0' redx017 reduce '-0.00' -> '-0' redx018 reduce '-00.0' -> '-0' redx019 reduce '-00.00' -> '-0' redx020 reduce '-00' -> '-0' redx021 reduce '-0E+5' -> '-0' redx022 reduce '-0E+1' -> '-0' redx030 reduce '+0.1' -> '0.1' redx031 reduce '-0.1' -> '-0.1' redx032 reduce '+0.01' -> '0.01' redx033 reduce '-0.01' -> '-0.01' redx034 reduce '+0.001' -> '0.001' redx035 reduce '-0.001' -> '-0.001' redx036 reduce '+0.000001' -> '0.000001' redx037 reduce '-0.000001' -> '-0.000001' redx038 reduce '+0.000000000001' -> '1E-12' redx039 reduce '-0.000000000001' -> '-1E-12' redx041 reduce 1.1 -> 1.1 redx042 reduce 1.10 -> 1.1 redx043 reduce 1.100 -> 1.1 redx044 reduce 1.110 -> 1.11 redx045 reduce -1.1 -> -1.1 redx046 reduce -1.10 -> -1.1 redx047 reduce -1.100 -> -1.1 redx048 reduce -1.110 -> -1.11 redx049 reduce 9.9 -> 9.9 redx050 reduce 9.90 -> 9.9 redx051 reduce 9.900 -> 9.9 redx052 reduce 9.990 -> 9.99 redx053 reduce -9.9 -> -9.9 redx054 reduce -9.90 -> -9.9 redx055 reduce -9.900 -> -9.9 redx056 reduce -9.990 -> -9.99 -- some trailing fractional zeros with zeros in units redx060 reduce 10.0 -> 1E+1 redx061 reduce 10.00 -> 1E+1 redx062 reduce 100.0 -> 1E+2 redx063 reduce 100.00 -> 1E+2 redx064 reduce 1.1000E+3 -> 1.1E+3 redx065 reduce 1.10000E+3 -> 1.1E+3 redx066 reduce -10.0 -> -1E+1 redx067 reduce -10.00 -> -1E+1 redx068 reduce -100.0 -> -1E+2 redx069 reduce -100.00 -> -1E+2 redx070 reduce -1.1000E+3 -> -1.1E+3 redx071 reduce -1.10000E+3 -> -1.1E+3 -- some insignificant trailing zeros with positive exponent redx080 reduce 10E+1 -> 1E+2 redx081 reduce 100E+1 -> 1E+3 redx082 reduce 1.0E+2 -> 1E+2 redx083 reduce 1.0E+3 -> 1E+3 redx084 reduce 1.1E+3 -> 1.1E+3 redx085 reduce 1.00E+3 -> 1E+3 redx086 reduce 1.10E+3 -> 1.1E+3 redx087 reduce -10E+1 -> -1E+2 redx088 reduce -100E+1 -> -1E+3 redx089 reduce -1.0E+2 -> -1E+2 redx090 reduce -1.0E+3 -> -1E+3 redx091 reduce -1.1E+3 -> -1.1E+3 redx092 reduce -1.00E+3 -> -1E+3 redx093 reduce -1.10E+3 -> -1.1E+3 -- some significant trailing zeros, were we to be trimming redx100 reduce 11 -> 11 redx101 reduce 10 -> 1E+1 redx102 reduce 10. -> 1E+1 redx103 reduce 1.1E+1 -> 11 redx104 reduce 1.0E+1 -> 1E+1 redx105 reduce 1.10E+2 -> 1.1E+2 redx106 reduce 1.00E+2 -> 1E+2 redx107 reduce 1.100E+3 -> 1.1E+3 redx108 reduce 1.000E+3 -> 1E+3 redx109 reduce 1.000000E+6 -> 1E+6 redx110 reduce -11 -> -11 redx111 reduce -10 -> -1E+1 redx112 reduce -10. -> -1E+1 redx113 reduce -1.1E+1 -> -11 redx114 reduce -1.0E+1 -> -1E+1 redx115 reduce -1.10E+2 -> -1.1E+2 redx116 reduce -1.00E+2 -> -1E+2 redx117 reduce -1.100E+3 -> -1.1E+3 redx118 reduce -1.000E+3 -> -1E+3 redx119 reduce -1.00000E+5 -> -1E+5 redx120 reduce -1.000000E+6 -> -1E+6 redx121 reduce -10.00000E+6 -> -1E+7 redx122 reduce -100.0000E+6 -> -1E+8 redx123 reduce -1000.000E+6 -> -1E+9 redx124 reduce -10000.00E+6 -> -1E+10 redx125 reduce -100000.0E+6 -> -1E+11 redx126 reduce -1000000.E+6 -> -1E+12 -- examples from decArith redx140 reduce '2.1' -> '2.1' redx141 reduce '-2.0' -> '-2' redx142 reduce '1.200' -> '1.2' redx143 reduce '-120' -> '-1.2E+2' redx144 reduce '120.00' -> '1.2E+2' redx145 reduce '0.00' -> '0' -- overflow tests maxexponent: 999999999 minexponent: -999999999 precision: 3 redx160 reduce 9.999E+999999999 -> Infinity Inexact Overflow Rounded redx161 reduce -9.999E+999999999 -> -Infinity Inexact Overflow Rounded -- subnormals and underflow precision: 3 maxexponent: 999 minexponent: -999 redx210 reduce 1.00E-999 -> 1E-999 redx211 reduce 0.1E-999 -> 1E-1000 Subnormal redx212 reduce 0.10E-999 -> 1E-1000 Subnormal redx213 reduce 0.100E-999 -> 1E-1000 Subnormal Rounded redx214 reduce 0.01E-999 -> 1E-1001 Subnormal -- next is rounded to Emin redx215 reduce 0.999E-999 -> 1E-999 Inexact Rounded Subnormal Underflow redx216 reduce 0.099E-999 -> 1E-1000 Inexact Rounded Subnormal Underflow redx217 reduce 0.009E-999 -> 1E-1001 Inexact Rounded Subnormal Underflow redx218 reduce 0.001E-999 -> 0 Inexact Rounded Subnormal Underflow Clamped redx219 reduce 0.0009E-999 -> 0 Inexact Rounded Subnormal Underflow Clamped redx220 reduce 0.0001E-999 -> 0 Inexact Rounded Subnormal Underflow Clamped redx230 reduce -1.00E-999 -> -1E-999 redx231 reduce -0.1E-999 -> -1E-1000 Subnormal redx232 reduce -0.10E-999 -> -1E-1000 Subnormal redx233 reduce -0.100E-999 -> -1E-1000 Subnormal Rounded redx234 reduce -0.01E-999 -> -1E-1001 Subnormal -- next is rounded to Emin redx235 reduce -0.999E-999 -> -1E-999 Inexact Rounded Subnormal Underflow redx236 reduce -0.099E-999 -> -1E-1000 Inexact Rounded Subnormal Underflow redx237 reduce -0.009E-999 -> -1E-1001 Inexact Rounded Subnormal Underflow redx238 reduce -0.001E-999 -> -0 Inexact Rounded Subnormal Underflow Clamped redx239 reduce -0.0009E-999 -> -0 Inexact Rounded Subnormal Underflow Clamped redx240 reduce -0.0001E-999 -> -0 Inexact Rounded Subnormal Underflow Clamped -- more reshaping precision: 9 redx260 reduce '56260E-10' -> '0.000005626' redx261 reduce '56260E-5' -> '0.5626' redx262 reduce '56260E-2' -> '562.6' redx263 reduce '56260E-1' -> '5626' redx265 reduce '56260E-0' -> '5.626E+4' redx266 reduce '56260E+0' -> '5.626E+4' redx267 reduce '56260E+1' -> '5.626E+5' redx268 reduce '56260E+2' -> '5.626E+6' redx269 reduce '56260E+3' -> '5.626E+7' redx270 reduce '56260E+4' -> '5.626E+8' redx271 reduce '56260E+5' -> '5.626E+9' redx272 reduce '56260E+6' -> '5.626E+10' redx280 reduce '-56260E-10' -> '-0.000005626' redx281 reduce '-56260E-5' -> '-0.5626' redx282 reduce '-56260E-2' -> '-562.6' redx283 reduce '-56260E-1' -> '-5626' redx285 reduce '-56260E-0' -> '-5.626E+4' redx286 reduce '-56260E+0' -> '-5.626E+4' redx287 reduce '-56260E+1' -> '-5.626E+5' redx288 reduce '-56260E+2' -> '-5.626E+6' redx289 reduce '-56260E+3' -> '-5.626E+7' redx290 reduce '-56260E+4' -> '-5.626E+8' redx291 reduce '-56260E+5' -> '-5.626E+9' redx292 reduce '-56260E+6' -> '-5.626E+10' -- FL test precision: 40 redx295 reduce 9892345673.0123456780000000000 -> 9892345673.012345678 -- specials redx820 reduce 'Inf' -> 'Infinity' redx821 reduce '-Inf' -> '-Infinity' redx822 reduce NaN -> NaN redx823 reduce sNaN -> NaN Invalid_operation redx824 reduce NaN101 -> NaN101 redx825 reduce sNaN010 -> NaN10 Invalid_operation redx827 reduce -NaN -> -NaN redx828 reduce -sNaN -> -NaN Invalid_operation redx829 reduce -NaN101 -> -NaN101 redx830 reduce -sNaN010 -> -NaN10 Invalid_operation -- payload decapitate precision: 5 redx62100 reduce sNaN1234567890 -> NaN67890 Invalid_operation -- Null test redx900 reduce # -> NaN Invalid_operation
9,319
235
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/multiply.decTest
------------------------------------------------------------------------ -- multiply.decTest -- decimal multiplication -- -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 extended: 1 precision: 9 rounding: half_up maxExponent: 384 minexponent: -383 -- sanity checks (as base, above) mulx000 multiply 2 2 -> 4 mulx001 multiply 2 3 -> 6 mulx002 multiply 5 1 -> 5 mulx003 multiply 5 2 -> 10 mulx004 multiply 1.20 2 -> 2.40 mulx005 multiply 1.20 0 -> 0.00 mulx006 multiply 1.20 -2 -> -2.40 mulx007 multiply -1.20 2 -> -2.40 mulx008 multiply -1.20 0 -> -0.00 mulx009 multiply -1.20 -2 -> 2.40 mulx010 multiply 5.09 7.1 -> 36.139 mulx011 multiply 2.5 4 -> 10.0 mulx012 multiply 2.50 4 -> 10.00 mulx013 multiply 1.23456789 1.00000000 -> 1.23456789 Rounded mulx014 multiply 9.999999999 9.999999999 -> 100.000000 Inexact Rounded mulx015 multiply 2.50 4 -> 10.00 precision: 6 mulx016 multiply 2.50 4 -> 10.00 mulx017 multiply 9.999999999 9.999999999 -> 100.000 Inexact Rounded mulx018 multiply 9.999999999 -9.999999999 -> -100.000 Inexact Rounded mulx019 multiply -9.999999999 9.999999999 -> -100.000 Inexact Rounded mulx020 multiply -9.999999999 -9.999999999 -> 100.000 Inexact Rounded -- 1999.12.21: next one is an edge case if intermediate longs are used precision: 15 mulx059 multiply 999999999999 9765625 -> 9.76562499999023E+18 Inexact Rounded precision: 30 mulx160 multiply 999999999999 9765625 -> 9765624999990234375 precision: 9 ----- -- zeros, etc. mulx021 multiply 0 0 -> 0 mulx022 multiply 0 -0 -> -0 mulx023 multiply -0 0 -> -0 mulx024 multiply -0 -0 -> 0 mulx025 multiply -0.0 -0.0 -> 0.00 mulx026 multiply -0.0 -0.0 -> 0.00 mulx027 multiply -0.0 -0.0 -> 0.00 mulx028 multiply -0.0 -0.0 -> 0.00 mulx030 multiply 5.00 1E-3 -> 0.00500 mulx031 multiply 00.00 0.000 -> 0.00000 mulx032 multiply 00.00 0E-3 -> 0.00000 -- rhs is 0 mulx033 multiply 0E-3 00.00 -> 0.00000 -- lhs is 0 mulx034 multiply -5.00 1E-3 -> -0.00500 mulx035 multiply -00.00 0.000 -> -0.00000 mulx036 multiply -00.00 0E-3 -> -0.00000 -- rhs is 0 mulx037 multiply -0E-3 00.00 -> -0.00000 -- lhs is 0 mulx038 multiply 5.00 -1E-3 -> -0.00500 mulx039 multiply 00.00 -0.000 -> -0.00000 mulx040 multiply 00.00 -0E-3 -> -0.00000 -- rhs is 0 mulx041 multiply 0E-3 -00.00 -> -0.00000 -- lhs is 0 mulx042 multiply -5.00 -1E-3 -> 0.00500 mulx043 multiply -00.00 -0.000 -> 0.00000 mulx044 multiply -00.00 -0E-3 -> 0.00000 -- rhs is 0 mulx045 multiply -0E-3 -00.00 -> 0.00000 -- lhs is 0 -- examples from decarith mulx050 multiply 1.20 3 -> 3.60 mulx051 multiply 7 3 -> 21 mulx052 multiply 0.9 0.8 -> 0.72 mulx053 multiply 0.9 -0 -> -0.0 mulx054 multiply 654321 654321 -> 4.28135971E+11 Inexact Rounded mulx060 multiply 123.45 1e7 -> 1.2345E+9 mulx061 multiply 123.45 1e8 -> 1.2345E+10 mulx062 multiply 123.45 1e+9 -> 1.2345E+11 mulx063 multiply 123.45 1e10 -> 1.2345E+12 mulx064 multiply 123.45 1e11 -> 1.2345E+13 mulx065 multiply 123.45 1e12 -> 1.2345E+14 mulx066 multiply 123.45 1e13 -> 1.2345E+15 -- test some intermediate lengths precision: 9 mulx080 multiply 0.1 123456789 -> 12345678.9 mulx081 multiply 0.1 1234567891 -> 123456789 Inexact Rounded mulx082 multiply 0.1 12345678912 -> 1.23456789E+9 Inexact Rounded mulx083 multiply 0.1 12345678912345 -> 1.23456789E+12 Inexact Rounded mulx084 multiply 0.1 123456789 -> 12345678.9 precision: 8 mulx085 multiply 0.1 12345678912 -> 1.2345679E+9 Inexact Rounded mulx086 multiply 0.1 12345678912345 -> 1.2345679E+12 Inexact Rounded precision: 7 mulx087 multiply 0.1 12345678912 -> 1.234568E+9 Inexact Rounded mulx088 multiply 0.1 12345678912345 -> 1.234568E+12 Inexact Rounded precision: 9 mulx090 multiply 123456789 0.1 -> 12345678.9 mulx091 multiply 1234567891 0.1 -> 123456789 Inexact Rounded mulx092 multiply 12345678912 0.1 -> 1.23456789E+9 Inexact Rounded mulx093 multiply 12345678912345 0.1 -> 1.23456789E+12 Inexact Rounded mulx094 multiply 123456789 0.1 -> 12345678.9 precision: 8 mulx095 multiply 12345678912 0.1 -> 1.2345679E+9 Inexact Rounded mulx096 multiply 12345678912345 0.1 -> 1.2345679E+12 Inexact Rounded precision: 7 mulx097 multiply 12345678912 0.1 -> 1.234568E+9 Inexact Rounded mulx098 multiply 12345678912345 0.1 -> 1.234568E+12 Inexact Rounded -- test some more edge cases and carries maxexponent: 9999 minexponent: -9999 precision: 33 mulx101 multiply 9 9 -> 81 mulx102 multiply 9 90 -> 810 mulx103 multiply 9 900 -> 8100 mulx104 multiply 9 9000 -> 81000 mulx105 multiply 9 90000 -> 810000 mulx106 multiply 9 900000 -> 8100000 mulx107 multiply 9 9000000 -> 81000000 mulx108 multiply 9 90000000 -> 810000000 mulx109 multiply 9 900000000 -> 8100000000 mulx110 multiply 9 9000000000 -> 81000000000 mulx111 multiply 9 90000000000 -> 810000000000 mulx112 multiply 9 900000000000 -> 8100000000000 mulx113 multiply 9 9000000000000 -> 81000000000000 mulx114 multiply 9 90000000000000 -> 810000000000000 mulx115 multiply 9 900000000000000 -> 8100000000000000 mulx116 multiply 9 9000000000000000 -> 81000000000000000 mulx117 multiply 9 90000000000000000 -> 810000000000000000 mulx118 multiply 9 900000000000000000 -> 8100000000000000000 mulx119 multiply 9 9000000000000000000 -> 81000000000000000000 mulx120 multiply 9 90000000000000000000 -> 810000000000000000000 mulx121 multiply 9 900000000000000000000 -> 8100000000000000000000 mulx122 multiply 9 9000000000000000000000 -> 81000000000000000000000 mulx123 multiply 9 90000000000000000000000 -> 810000000000000000000000 -- test some more edge cases without carries mulx131 multiply 3 3 -> 9 mulx132 multiply 3 30 -> 90 mulx133 multiply 3 300 -> 900 mulx134 multiply 3 3000 -> 9000 mulx135 multiply 3 30000 -> 90000 mulx136 multiply 3 300000 -> 900000 mulx137 multiply 3 3000000 -> 9000000 mulx138 multiply 3 30000000 -> 90000000 mulx139 multiply 3 300000000 -> 900000000 mulx140 multiply 3 3000000000 -> 9000000000 mulx141 multiply 3 30000000000 -> 90000000000 mulx142 multiply 3 300000000000 -> 900000000000 mulx143 multiply 3 3000000000000 -> 9000000000000 mulx144 multiply 3 30000000000000 -> 90000000000000 mulx145 multiply 3 300000000000000 -> 900000000000000 mulx146 multiply 3 3000000000000000 -> 9000000000000000 mulx147 multiply 3 30000000000000000 -> 90000000000000000 mulx148 multiply 3 300000000000000000 -> 900000000000000000 mulx149 multiply 3 3000000000000000000 -> 9000000000000000000 mulx150 multiply 3 30000000000000000000 -> 90000000000000000000 mulx151 multiply 3 300000000000000000000 -> 900000000000000000000 mulx152 multiply 3 3000000000000000000000 -> 9000000000000000000000 mulx153 multiply 3 30000000000000000000000 -> 90000000000000000000000 maxexponent: 999999999 minexponent: -999999999 precision: 9 -- test some cases that are close to exponent overflow/underflow mulx170 multiply 1 9e999999999 -> 9E+999999999 mulx171 multiply 1 9.9e999999999 -> 9.9E+999999999 mulx172 multiply 1 9.99e999999999 -> 9.99E+999999999 mulx173 multiply 9e999999999 1 -> 9E+999999999 mulx174 multiply 9.9e999999999 1 -> 9.9E+999999999 mulx176 multiply 9.99e999999999 1 -> 9.99E+999999999 mulx177 multiply 1 9.99999999e999999999 -> 9.99999999E+999999999 mulx178 multiply 9.99999999e999999999 1 -> 9.99999999E+999999999 mulx180 multiply 0.1 9e-999999998 -> 9E-999999999 mulx181 multiply 0.1 99e-999999998 -> 9.9E-999999998 mulx182 multiply 0.1 999e-999999998 -> 9.99E-999999997 mulx183 multiply 0.1 9e-999999998 -> 9E-999999999 mulx184 multiply 0.1 99e-999999998 -> 9.9E-999999998 mulx185 multiply 0.1 999e-999999998 -> 9.99E-999999997 mulx186 multiply 0.1 999e-999999997 -> 9.99E-999999996 mulx187 multiply 0.1 9999e-999999997 -> 9.999E-999999995 mulx188 multiply 0.1 99999e-999999997 -> 9.9999E-999999994 mulx190 multiply 1 9e-999999998 -> 9E-999999998 mulx191 multiply 1 99e-999999998 -> 9.9E-999999997 mulx192 multiply 1 999e-999999998 -> 9.99E-999999996 mulx193 multiply 9e-999999998 1 -> 9E-999999998 mulx194 multiply 99e-999999998 1 -> 9.9E-999999997 mulx195 multiply 999e-999999998 1 -> 9.99E-999999996 mulx196 multiply 1e-599999999 1e-400000000 -> 1E-999999999 mulx197 multiply 1e-600000000 1e-399999999 -> 1E-999999999 mulx198 multiply 1.2e-599999999 1.2e-400000000 -> 1.44E-999999999 mulx199 multiply 1.2e-600000000 1.2e-399999999 -> 1.44E-999999999 mulx201 multiply 1e599999999 1e400000000 -> 1E+999999999 mulx202 multiply 1e600000000 1e399999999 -> 1E+999999999 mulx203 multiply 1.2e599999999 1.2e400000000 -> 1.44E+999999999 mulx204 multiply 1.2e600000000 1.2e399999999 -> 1.44E+999999999 -- long operand triangle precision: 33 mulx246 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.290801193369671916511992830 Inexact Rounded precision: 32 mulx247 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.29080119336967191651199283 Inexact Rounded precision: 31 mulx248 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.2908011933696719165119928 Inexact Rounded precision: 30 mulx249 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.290801193369671916511993 Inexact Rounded precision: 29 mulx250 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.29080119336967191651199 Inexact Rounded precision: 28 mulx251 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.2908011933696719165120 Inexact Rounded precision: 27 mulx252 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.290801193369671916512 Inexact Rounded precision: 26 mulx253 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.29080119336967191651 Inexact Rounded precision: 25 mulx254 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.2908011933696719165 Inexact Rounded precision: 24 mulx255 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.290801193369671917 Inexact Rounded precision: 23 mulx256 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.29080119336967192 Inexact Rounded precision: 22 mulx257 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.2908011933696719 Inexact Rounded precision: 21 mulx258 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.290801193369672 Inexact Rounded precision: 20 mulx259 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.29080119336967 Inexact Rounded precision: 19 mulx260 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.2908011933697 Inexact Rounded precision: 18 mulx261 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.290801193370 Inexact Rounded precision: 17 mulx262 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.29080119337 Inexact Rounded precision: 16 mulx263 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.2908011934 Inexact Rounded precision: 15 mulx264 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.290801193 Inexact Rounded precision: 14 mulx265 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.29080119 Inexact Rounded precision: 13 mulx266 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.2908012 Inexact Rounded precision: 12 mulx267 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.290801 Inexact Rounded precision: 11 mulx268 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.29080 Inexact Rounded precision: 10 mulx269 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.2908 Inexact Rounded precision: 9 mulx270 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.291 Inexact Rounded precision: 8 mulx271 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.29 Inexact Rounded precision: 7 mulx272 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433.3 Inexact Rounded precision: 6 mulx273 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 145433 Inexact Rounded precision: 5 mulx274 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 1.4543E+5 Inexact Rounded precision: 4 mulx275 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 1.454E+5 Inexact Rounded precision: 3 mulx276 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 1.45E+5 Inexact Rounded precision: 2 mulx277 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 1.5E+5 Inexact Rounded precision: 1 mulx278 multiply 30269.587755640502150977251770554 4.8046009735990873395936309640543 -> 1E+5 Inexact Rounded -- test some edge cases with exact rounding maxexponent: 9999 minexponent: -9999 precision: 9 mulx301 multiply 9 9 -> 81 mulx302 multiply 9 90 -> 810 mulx303 multiply 9 900 -> 8100 mulx304 multiply 9 9000 -> 81000 mulx305 multiply 9 90000 -> 810000 mulx306 multiply 9 900000 -> 8100000 mulx307 multiply 9 9000000 -> 81000000 mulx308 multiply 9 90000000 -> 810000000 mulx309 multiply 9 900000000 -> 8.10000000E+9 Rounded mulx310 multiply 9 9000000000 -> 8.10000000E+10 Rounded mulx311 multiply 9 90000000000 -> 8.10000000E+11 Rounded mulx312 multiply 9 900000000000 -> 8.10000000E+12 Rounded mulx313 multiply 9 9000000000000 -> 8.10000000E+13 Rounded mulx314 multiply 9 90000000000000 -> 8.10000000E+14 Rounded mulx315 multiply 9 900000000000000 -> 8.10000000E+15 Rounded mulx316 multiply 9 9000000000000000 -> 8.10000000E+16 Rounded mulx317 multiply 9 90000000000000000 -> 8.10000000E+17 Rounded mulx318 multiply 9 900000000000000000 -> 8.10000000E+18 Rounded mulx319 multiply 9 9000000000000000000 -> 8.10000000E+19 Rounded mulx320 multiply 9 90000000000000000000 -> 8.10000000E+20 Rounded mulx321 multiply 9 900000000000000000000 -> 8.10000000E+21 Rounded mulx322 multiply 9 9000000000000000000000 -> 8.10000000E+22 Rounded mulx323 multiply 9 90000000000000000000000 -> 8.10000000E+23 Rounded -- fastpath breakers precision: 29 mulx330 multiply 1.491824697641270317824852952837224 1.105170918075647624811707826490246514675628614562883537345747603 -> 1.6487212707001281468486507878 Inexact Rounded precision: 55 mulx331 multiply 0.8958341352965282506768545828765117803873717284891040428 0.8958341352965282506768545828765117803873717284891040428 -> 0.8025187979624784829842553829934069955890983696752228299 Inexact Rounded -- tryzeros cases precision: 7 rounding: half_up maxExponent: 92 minexponent: -92 mulx504 multiply 0E-60 1000E-60 -> 0E-98 Clamped mulx505 multiply 100E+60 0E+60 -> 0E+92 Clamped -- mixed with zeros maxexponent: 999999999 minexponent: -999999999 precision: 9 mulx541 multiply 0 -1 -> -0 mulx542 multiply -0 -1 -> 0 mulx543 multiply 0 1 -> 0 mulx544 multiply -0 1 -> -0 mulx545 multiply -1 0 -> -0 mulx546 multiply -1 -0 -> 0 mulx547 multiply 1 0 -> 0 mulx548 multiply 1 -0 -> -0 mulx551 multiply 0.0 -1 -> -0.0 mulx552 multiply -0.0 -1 -> 0.0 mulx553 multiply 0.0 1 -> 0.0 mulx554 multiply -0.0 1 -> -0.0 mulx555 multiply -1.0 0 -> -0.0 mulx556 multiply -1.0 -0 -> 0.0 mulx557 multiply 1.0 0 -> 0.0 mulx558 multiply 1.0 -0 -> -0.0 mulx561 multiply 0 -1.0 -> -0.0 mulx562 multiply -0 -1.0 -> 0.0 mulx563 multiply 0 1.0 -> 0.0 mulx564 multiply -0 1.0 -> -0.0 mulx565 multiply -1 0.0 -> -0.0 mulx566 multiply -1 -0.0 -> 0.0 mulx567 multiply 1 0.0 -> 0.0 mulx568 multiply 1 -0.0 -> -0.0 mulx571 multiply 0.0 -1.0 -> -0.00 mulx572 multiply -0.0 -1.0 -> 0.00 mulx573 multiply 0.0 1.0 -> 0.00 mulx574 multiply -0.0 1.0 -> -0.00 mulx575 multiply -1.0 0.0 -> -0.00 mulx576 multiply -1.0 -0.0 -> 0.00 mulx577 multiply 1.0 0.0 -> 0.00 mulx578 multiply 1.0 -0.0 -> -0.00 -- Specials mulx580 multiply Inf -Inf -> -Infinity mulx581 multiply Inf -1000 -> -Infinity mulx582 multiply Inf -1 -> -Infinity mulx583 multiply Inf -0 -> NaN Invalid_operation mulx584 multiply Inf 0 -> NaN Invalid_operation mulx585 multiply Inf 1 -> Infinity mulx586 multiply Inf 1000 -> Infinity mulx587 multiply Inf Inf -> Infinity mulx588 multiply -1000 Inf -> -Infinity mulx589 multiply -Inf Inf -> -Infinity mulx590 multiply -1 Inf -> -Infinity mulx591 multiply -0 Inf -> NaN Invalid_operation mulx592 multiply 0 Inf -> NaN Invalid_operation mulx593 multiply 1 Inf -> Infinity mulx594 multiply 1000 Inf -> Infinity mulx595 multiply Inf Inf -> Infinity mulx600 multiply -Inf -Inf -> Infinity mulx601 multiply -Inf -1000 -> Infinity mulx602 multiply -Inf -1 -> Infinity mulx603 multiply -Inf -0 -> NaN Invalid_operation mulx604 multiply -Inf 0 -> NaN Invalid_operation mulx605 multiply -Inf 1 -> -Infinity mulx606 multiply -Inf 1000 -> -Infinity mulx607 multiply -Inf Inf -> -Infinity mulx608 multiply -1000 Inf -> -Infinity mulx609 multiply -Inf -Inf -> Infinity mulx610 multiply -1 -Inf -> Infinity mulx611 multiply -0 -Inf -> NaN Invalid_operation mulx612 multiply 0 -Inf -> NaN Invalid_operation mulx613 multiply 1 -Inf -> -Infinity mulx614 multiply 1000 -Inf -> -Infinity mulx615 multiply Inf -Inf -> -Infinity mulx621 multiply NaN -Inf -> NaN mulx622 multiply NaN -1000 -> NaN mulx623 multiply NaN -1 -> NaN mulx624 multiply NaN -0 -> NaN mulx625 multiply NaN 0 -> NaN mulx626 multiply NaN 1 -> NaN mulx627 multiply NaN 1000 -> NaN mulx628 multiply NaN Inf -> NaN mulx629 multiply NaN NaN -> NaN mulx630 multiply -Inf NaN -> NaN mulx631 multiply -1000 NaN -> NaN mulx632 multiply -1 NaN -> NaN mulx633 multiply -0 NaN -> NaN mulx634 multiply 0 NaN -> NaN mulx635 multiply 1 NaN -> NaN mulx636 multiply 1000 NaN -> NaN mulx637 multiply Inf NaN -> NaN mulx641 multiply sNaN -Inf -> NaN Invalid_operation mulx642 multiply sNaN -1000 -> NaN Invalid_operation mulx643 multiply sNaN -1 -> NaN Invalid_operation mulx644 multiply sNaN -0 -> NaN Invalid_operation mulx645 multiply sNaN 0 -> NaN Invalid_operation mulx646 multiply sNaN 1 -> NaN Invalid_operation mulx647 multiply sNaN 1000 -> NaN Invalid_operation mulx648 multiply sNaN NaN -> NaN Invalid_operation mulx649 multiply sNaN sNaN -> NaN Invalid_operation mulx650 multiply NaN sNaN -> NaN Invalid_operation mulx651 multiply -Inf sNaN -> NaN Invalid_operation mulx652 multiply -1000 sNaN -> NaN Invalid_operation mulx653 multiply -1 sNaN -> NaN Invalid_operation mulx654 multiply -0 sNaN -> NaN Invalid_operation mulx655 multiply 0 sNaN -> NaN Invalid_operation mulx656 multiply 1 sNaN -> NaN Invalid_operation mulx657 multiply 1000 sNaN -> NaN Invalid_operation mulx658 multiply Inf sNaN -> NaN Invalid_operation mulx659 multiply NaN sNaN -> NaN Invalid_operation -- propagating NaNs mulx661 multiply NaN9 -Inf -> NaN9 mulx662 multiply NaN8 999 -> NaN8 mulx663 multiply NaN71 Inf -> NaN71 mulx664 multiply NaN6 NaN5 -> NaN6 mulx665 multiply -Inf NaN4 -> NaN4 mulx666 multiply -999 NaN33 -> NaN33 mulx667 multiply Inf NaN2 -> NaN2 mulx671 multiply sNaN99 -Inf -> NaN99 Invalid_operation mulx672 multiply sNaN98 -11 -> NaN98 Invalid_operation mulx673 multiply sNaN97 NaN -> NaN97 Invalid_operation mulx674 multiply sNaN16 sNaN94 -> NaN16 Invalid_operation mulx675 multiply NaN95 sNaN93 -> NaN93 Invalid_operation mulx676 multiply -Inf sNaN92 -> NaN92 Invalid_operation mulx677 multiply 088 sNaN91 -> NaN91 Invalid_operation mulx678 multiply Inf sNaN90 -> NaN90 Invalid_operation mulx679 multiply NaN sNaN89 -> NaN89 Invalid_operation mulx681 multiply -NaN9 -Inf -> -NaN9 mulx682 multiply -NaN8 999 -> -NaN8 mulx683 multiply -NaN71 Inf -> -NaN71 mulx684 multiply -NaN6 -NaN5 -> -NaN6 mulx685 multiply -Inf -NaN4 -> -NaN4 mulx686 multiply -999 -NaN33 -> -NaN33 mulx687 multiply Inf -NaN2 -> -NaN2 mulx691 multiply -sNaN99 -Inf -> -NaN99 Invalid_operation mulx692 multiply -sNaN98 -11 -> -NaN98 Invalid_operation mulx693 multiply -sNaN97 NaN -> -NaN97 Invalid_operation mulx694 multiply -sNaN16 -sNaN94 -> -NaN16 Invalid_operation mulx695 multiply -NaN95 -sNaN93 -> -NaN93 Invalid_operation mulx696 multiply -Inf -sNaN92 -> -NaN92 Invalid_operation mulx697 multiply 088 -sNaN91 -> -NaN91 Invalid_operation mulx698 multiply Inf -sNaN90 -> -NaN90 Invalid_operation mulx699 multiply -NaN -sNaN89 -> -NaN89 Invalid_operation mulx701 multiply -NaN -Inf -> -NaN mulx702 multiply -NaN 999 -> -NaN mulx703 multiply -NaN Inf -> -NaN mulx704 multiply -NaN -NaN -> -NaN mulx705 multiply -Inf -NaN0 -> -NaN mulx706 multiply -999 -NaN -> -NaN mulx707 multiply Inf -NaN -> -NaN mulx711 multiply -sNaN -Inf -> -NaN Invalid_operation mulx712 multiply -sNaN -11 -> -NaN Invalid_operation mulx713 multiply -sNaN00 NaN -> -NaN Invalid_operation mulx714 multiply -sNaN -sNaN -> -NaN Invalid_operation mulx715 multiply -NaN -sNaN -> -NaN Invalid_operation mulx716 multiply -Inf -sNaN -> -NaN Invalid_operation mulx717 multiply 088 -sNaN -> -NaN Invalid_operation mulx718 multiply Inf -sNaN -> -NaN Invalid_operation mulx719 multiply -NaN -sNaN -> -NaN Invalid_operation -- overflow and underflow tests .. note subnormal results maxexponent: 999999999 minexponent: -999999999 mulx730 multiply +1.23456789012345E-0 9E+999999999 -> Infinity Inexact Overflow Rounded mulx731 multiply 9E+999999999 +1.23456789012345E-0 -> Infinity Inexact Overflow Rounded mulx732 multiply +0.100 9E-999999999 -> 9.00E-1000000000 Subnormal mulx733 multiply 9E-999999999 +0.100 -> 9.00E-1000000000 Subnormal mulx735 multiply -1.23456789012345E-0 9E+999999999 -> -Infinity Inexact Overflow Rounded mulx736 multiply 9E+999999999 -1.23456789012345E-0 -> -Infinity Inexact Overflow Rounded mulx737 multiply -0.100 9E-999999999 -> -9.00E-1000000000 Subnormal mulx738 multiply 9E-999999999 -0.100 -> -9.00E-1000000000 Subnormal mulx739 multiply 1e-599999999 1e-400000001 -> 1E-1000000000 Subnormal mulx740 multiply 1e-599999999 1e-400000000 -> 1E-999999999 mulx741 multiply 1e-600000000 1e-400000000 -> 1E-1000000000 Subnormal mulx742 multiply 9e-999999998 0.01 -> 9E-1000000000 Subnormal mulx743 multiply 9e-999999998 0.1 -> 9E-999999999 mulx744 multiply 0.01 9e-999999998 -> 9E-1000000000 Subnormal mulx745 multiply 1e599999999 1e400000001 -> Infinity Overflow Inexact Rounded mulx746 multiply 1e599999999 1e400000000 -> 1E+999999999 mulx747 multiply 1e600000000 1e400000000 -> Infinity Overflow Inexact Rounded mulx748 multiply 9e999999998 100 -> Infinity Overflow Inexact Rounded mulx749 multiply 9e999999998 10 -> 9.0E+999999999 mulx750 multiply 100 9e999999998 -> Infinity Overflow Inexact Rounded -- signs mulx751 multiply 1e+777777777 1e+411111111 -> Infinity Overflow Inexact Rounded mulx752 multiply 1e+777777777 -1e+411111111 -> -Infinity Overflow Inexact Rounded mulx753 multiply -1e+777777777 1e+411111111 -> -Infinity Overflow Inexact Rounded mulx754 multiply -1e+777777777 -1e+411111111 -> Infinity Overflow Inexact Rounded mulx755 multiply 1e-777777777 1e-411111111 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped mulx756 multiply 1e-777777777 -1e-411111111 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped mulx757 multiply -1e-777777777 1e-411111111 -> -0E-1000000007 Underflow Subnormal Inexact Rounded Clamped mulx758 multiply -1e-777777777 -1e-411111111 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -- 'subnormal' boundary (all hard underflow or overflow in base arithemtic) precision: 9 mulx760 multiply 1e-600000000 1e-400000001 -> 1E-1000000001 Subnormal mulx761 multiply 1e-600000000 1e-400000002 -> 1E-1000000002 Subnormal mulx762 multiply 1e-600000000 1e-400000003 -> 1E-1000000003 Subnormal mulx763 multiply 1e-600000000 1e-400000004 -> 1E-1000000004 Subnormal mulx764 multiply 1e-600000000 1e-400000005 -> 1E-1000000005 Subnormal mulx765 multiply 1e-600000000 1e-400000006 -> 1E-1000000006 Subnormal mulx766 multiply 1e-600000000 1e-400000007 -> 1E-1000000007 Subnormal mulx767 multiply 1e-600000000 1e-400000008 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped mulx768 multiply 1e-600000000 1e-400000009 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped mulx769 multiply 1e-600000000 1e-400000010 -> 0E-1000000007 Underflow Subnormal Inexact Rounded Clamped -- [no equivalent of 'subnormal' for overflow] mulx770 multiply 1e+600000000 1e+400000001 -> Infinity Overflow Inexact Rounded mulx771 multiply 1e+600000000 1e+400000002 -> Infinity Overflow Inexact Rounded mulx772 multiply 1e+600000000 1e+400000003 -> Infinity Overflow Inexact Rounded mulx773 multiply 1e+600000000 1e+400000004 -> Infinity Overflow Inexact Rounded mulx774 multiply 1e+600000000 1e+400000005 -> Infinity Overflow Inexact Rounded mulx775 multiply 1e+600000000 1e+400000006 -> Infinity Overflow Inexact Rounded mulx776 multiply 1e+600000000 1e+400000007 -> Infinity Overflow Inexact Rounded mulx777 multiply 1e+600000000 1e+400000008 -> Infinity Overflow Inexact Rounded mulx778 multiply 1e+600000000 1e+400000009 -> Infinity Overflow Inexact Rounded mulx779 multiply 1e+600000000 1e+400000010 -> Infinity Overflow Inexact Rounded -- 'subnormal' test edge condition at higher precisions precision: 99 mulx780 multiply 1e-600000000 1e-400000007 -> 1E-1000000007 Subnormal mulx781 multiply 1e-600000000 1e-400000008 -> 1E-1000000008 Subnormal mulx782 multiply 1e-600000000 1e-400000097 -> 1E-1000000097 Subnormal mulx783 multiply 1e-600000000 1e-400000098 -> 0E-1000000097 Underflow Subnormal Inexact Rounded Clamped precision: 999 mulx784 multiply 1e-600000000 1e-400000997 -> 1E-1000000997 Subnormal mulx785 multiply 1e-600000000 1e-400000998 -> 0E-1000000997 Underflow Subnormal Inexact Rounded Clamped -- following testcases [through mulx800] not yet run against code precision: 9999 mulx786 multiply 1e-600000000 1e-400009997 -> 1E-1000009997 Subnormal mulx787 multiply 1e-600000000 1e-400009998 -> 0E-1000009997 Underflow Subnormal Inexact Rounded Clamped precision: 99999 mulx788 multiply 1e-600000000 1e-400099997 -> 1E-1000099997 Subnormal mulx789 multiply 1e-600000000 1e-400099998 -> 0E-1000099997 Underflow Subnormal Inexact Rounded Clamped precision: 999999 mulx790 multiply 1e-600000000 1e-400999997 -> 1E-1000999997 Subnormal mulx791 multiply 1e-600000000 1e-400999998 -> 0E-1000999997 Underflow Subnormal Inexact Rounded Clamped precision: 9999999 mulx792 multiply 1e-600000000 1e-409999997 -> 1E-1009999997 Subnormal mulx793 multiply 1e-600000000 1e-409999998 -> 0E-1009999997 Underflow Subnormal Inexact Rounded Clamped precision: 99999999 mulx794 multiply 1e-600000000 1e-499999997 -> 1E-1099999997 Subnormal mulx795 multiply 1e-600000000 1e-499999998 -> 0E-1099999997 Underflow Subnormal Inexact Rounded Clamped precision: 999999999 mulx796 multiply 1e-999999999 1e-999999997 -> 1E-1999999996 Subnormal mulx797 multiply 1e-999999999 1e-999999998 -> 1E-1999999997 Subnormal mulx798 multiply 1e-999999999 1e-999999999 -> 0E-1999999997 Underflow Subnormal Inexact Rounded Clamped mulx799 multiply 1e-600000000 1e-400000007 -> 1E-1000000007 Subnormal mulx800 multiply 1e-600000000 1e-400000008 -> 1E-1000000008 Subnormal -- test subnormals rounding precision: 5 maxExponent: 999 minexponent: -999 rounding: half_even mulx801 multiply 1.0000E-999 1 -> 1.0000E-999 mulx802 multiply 1.000E-999 1e-1 -> 1.000E-1000 Subnormal mulx803 multiply 1.00E-999 1e-2 -> 1.00E-1001 Subnormal mulx804 multiply 1.0E-999 1e-3 -> 1.0E-1002 Subnormal mulx805 multiply 1.0E-999 1e-4 -> 1E-1003 Subnormal Rounded mulx806 multiply 1.3E-999 1e-4 -> 1E-1003 Underflow Subnormal Inexact Rounded mulx807 multiply 1.5E-999 1e-4 -> 2E-1003 Underflow Subnormal Inexact Rounded mulx808 multiply 1.7E-999 1e-4 -> 2E-1003 Underflow Subnormal Inexact Rounded mulx809 multiply 2.3E-999 1e-4 -> 2E-1003 Underflow Subnormal Inexact Rounded mulx810 multiply 2.5E-999 1e-4 -> 2E-1003 Underflow Subnormal Inexact Rounded mulx811 multiply 2.7E-999 1e-4 -> 3E-1003 Underflow Subnormal Inexact Rounded mulx812 multiply 1.49E-999 1e-4 -> 1E-1003 Underflow Subnormal Inexact Rounded mulx813 multiply 1.50E-999 1e-4 -> 2E-1003 Underflow Subnormal Inexact Rounded mulx814 multiply 1.51E-999 1e-4 -> 2E-1003 Underflow Subnormal Inexact Rounded mulx815 multiply 2.49E-999 1e-4 -> 2E-1003 Underflow Subnormal Inexact Rounded mulx816 multiply 2.50E-999 1e-4 -> 2E-1003 Underflow Subnormal Inexact Rounded mulx817 multiply 2.51E-999 1e-4 -> 3E-1003 Underflow Subnormal Inexact Rounded mulx818 multiply 1E-999 1e-4 -> 1E-1003 Subnormal mulx819 multiply 3E-999 1e-5 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped mulx820 multiply 5E-999 1e-5 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped mulx821 multiply 7E-999 1e-5 -> 1E-1003 Underflow Subnormal Inexact Rounded mulx822 multiply 9E-999 1e-5 -> 1E-1003 Underflow Subnormal Inexact Rounded mulx823 multiply 9.9E-999 1e-5 -> 1E-1003 Underflow Subnormal Inexact Rounded mulx824 multiply 1E-999 -1e-4 -> -1E-1003 Subnormal mulx825 multiply 3E-999 -1e-5 -> -0E-1003 Underflow Subnormal Inexact Rounded Clamped mulx826 multiply -5E-999 1e-5 -> -0E-1003 Underflow Subnormal Inexact Rounded Clamped mulx827 multiply 7E-999 -1e-5 -> -1E-1003 Underflow Subnormal Inexact Rounded mulx828 multiply -9E-999 1e-5 -> -1E-1003 Underflow Subnormal Inexact Rounded mulx829 multiply 9.9E-999 -1e-5 -> -1E-1003 Underflow Subnormal Inexact Rounded mulx830 multiply 3.0E-999 -1e-5 -> -0E-1003 Underflow Subnormal Inexact Rounded Clamped mulx831 multiply 1.0E-501 1e-501 -> 1.0E-1002 Subnormal mulx832 multiply 2.0E-501 2e-501 -> 4.0E-1002 Subnormal mulx833 multiply 4.0E-501 4e-501 -> 1.60E-1001 Subnormal mulx834 multiply 10.0E-501 10e-501 -> 1.000E-1000 Subnormal mulx835 multiply 30.0E-501 30e-501 -> 9.000E-1000 Subnormal mulx836 multiply 40.0E-501 40e-501 -> 1.6000E-999 -- squares mulx840 multiply 1E-502 1e-502 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped mulx841 multiply 1E-501 1e-501 -> 1E-1002 Subnormal mulx842 multiply 2E-501 2e-501 -> 4E-1002 Subnormal mulx843 multiply 4E-501 4e-501 -> 1.6E-1001 Subnormal mulx844 multiply 10E-501 10e-501 -> 1.00E-1000 Subnormal mulx845 multiply 30E-501 30e-501 -> 9.00E-1000 Subnormal mulx846 multiply 40E-501 40e-501 -> 1.600E-999 -- cubes mulx850 multiply 1E-670 1e-335 -> 0E-1003 Underflow Subnormal Inexact Rounded Clamped mulx851 multiply 1E-668 1e-334 -> 1E-1002 Subnormal mulx852 multiply 4E-668 2e-334 -> 8E-1002 Subnormal mulx853 multiply 9E-668 3e-334 -> 2.7E-1001 Subnormal mulx854 multiply 16E-668 4e-334 -> 6.4E-1001 Subnormal mulx855 multiply 25E-668 5e-334 -> 1.25E-1000 Subnormal mulx856 multiply 10E-668 100e-334 -> 1.000E-999 -- test derived from result of 0.099 ** 999 at 15 digits with unlimited exponent precision: 19 mulx860 multiply 6636851557994578716E-520 6636851557994578716E-520 -> 4.40477986028551E-1003 Underflow Subnormal Inexact Rounded -- Long operand overflow may be a different path precision: 3 maxExponent: 999999999 minexponent: -999999999 mulx870 multiply 1 9.999E+999999999 -> Infinity Inexact Overflow Rounded mulx871 multiply 1 -9.999E+999999999 -> -Infinity Inexact Overflow Rounded mulx872 multiply 9.999E+999999999 1 -> Infinity Inexact Overflow Rounded mulx873 multiply -9.999E+999999999 1 -> -Infinity Inexact Overflow Rounded -- check for double-rounded subnormals precision: 5 maxexponent: 79 minexponent: -79 mulx881 multiply 1.2347E-40 1.2347E-40 -> 1.524E-80 Inexact Rounded Subnormal Underflow mulx882 multiply 1.234E-40 1.234E-40 -> 1.523E-80 Inexact Rounded Subnormal Underflow mulx883 multiply 1.23E-40 1.23E-40 -> 1.513E-80 Inexact Rounded Subnormal Underflow mulx884 multiply 1.2E-40 1.2E-40 -> 1.44E-80 Subnormal mulx885 multiply 1.2E-40 1.2E-41 -> 1.44E-81 Subnormal mulx886 multiply 1.2E-40 1.2E-42 -> 1.4E-82 Subnormal Inexact Rounded Underflow mulx887 multiply 1.2E-40 1.3E-42 -> 1.6E-82 Subnormal Inexact Rounded Underflow mulx888 multiply 1.3E-40 1.3E-42 -> 1.7E-82 Subnormal Inexact Rounded Underflow mulx889 multiply 1.3E-40 1.3E-43 -> 2E-83 Subnormal Inexact Rounded Underflow mulx890 multiply 1.3E-41 1.3E-43 -> 0E-83 Clamped Subnormal Inexact Rounded Underflow mulx891 multiply 1.2345E-39 1.234E-40 -> 1.5234E-79 Inexact Rounded mulx892 multiply 1.23456E-39 1.234E-40 -> 1.5234E-79 Inexact Rounded mulx893 multiply 1.2345E-40 1.234E-40 -> 1.523E-80 Inexact Rounded Subnormal Underflow mulx894 multiply 1.23456E-40 1.234E-40 -> 1.523E-80 Inexact Rounded Subnormal Underflow mulx895 multiply 1.2345E-41 1.234E-40 -> 1.52E-81 Inexact Rounded Subnormal Underflow mulx896 multiply 1.23456E-41 1.234E-40 -> 1.52E-81 Inexact Rounded Subnormal Underflow -- Now explore the case where we get a normal result with Underflow precision: 16 rounding: half_up maxExponent: 384 minExponent: -383 mulx900 multiply 0.3000000000E-191 0.3000000000E-191 -> 9.00000000000000E-384 Subnormal Rounded mulx901 multiply 0.3000000001E-191 0.3000000001E-191 -> 9.00000000600000E-384 Underflow Inexact Subnormal Rounded mulx902 multiply 9.999999999999999E-383 0.0999999999999 -> 9.99999999999000E-384 Underflow Inexact Subnormal Rounded mulx903 multiply 9.999999999999999E-383 0.09999999999999 -> 9.99999999999900E-384 Underflow Inexact Subnormal Rounded mulx904 multiply 9.999999999999999E-383 0.099999999999999 -> 9.99999999999990E-384 Underflow Inexact Subnormal Rounded mulx905 multiply 9.999999999999999E-383 0.0999999999999999 -> 9.99999999999999E-384 Underflow Inexact Subnormal Rounded -- prove operands are exact mulx906 multiply 9.999999999999999E-383 1 -> 9.999999999999999E-383 mulx907 multiply 1 0.09999999999999999 -> 0.09999999999999999 -- the next rounds to Nmin mulx908 multiply 9.999999999999999E-383 0.09999999999999999 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded mulx909 multiply 9.999999999999999E-383 0.099999999999999999 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded mulx910 multiply 9.999999999999999E-383 0.0999999999999999999 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded mulx911 multiply 9.999999999999999E-383 0.09999999999999999999 -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded -- Examples from SQL proposal (Krishna Kulkarni) precision: 34 rounding: half_up maxExponent: 6144 minExponent: -6143 mulx1001 multiply 130E-2 120E-2 -> 1.5600 mulx1002 multiply 130E-2 12E-1 -> 1.560 mulx1003 multiply 130E-2 1E0 -> 1.30 mulx1004 multiply 1E2 1E4 -> 1E+6 -- payload decapitate precision: 5 mulx1010 multiply 11 -sNaN1234567890 -> -NaN67890 Invalid_operation -- Null tests mulx990 multiply 10 # -> NaN Invalid_operation mulx991 multiply # 10 -> NaN Invalid_operation
38,314
732
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/ddToIntegral.decTest
------------------------------------------------------------------------ -- ddToIntegral.decTest -- round Double to integral value -- -- Copyright (c) IBM Corporation, 2001, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 -- This set of tests tests the extended specification 'round-to-integral -- value-exact' operations (from IEEE 854, later modified in 754r). -- All non-zero results are defined as being those from either copy or -- quantize, so those are assumed to have been tested extensively -- elsewhere; the tests here are for integrity, rounding mode, etc. -- Also, it is assumed the test harness will use these tests for both -- ToIntegralExact (which does set Inexact) and the fixed-name -- functions (which do not set Inexact). -- Note that decNumber implements an earlier definition of toIntegral -- which never sets Inexact; the decTest operator for that is called -- 'tointegral' instead of 'tointegralx'. precision: 16 maxExponent: 384 minExponent: -383 extended: 1 clamp: 1 rounding: half_even ddintx001 tointegralx 0 -> 0 ddintx002 tointegralx 0.0 -> 0 ddintx003 tointegralx 0.1 -> 0 Inexact Rounded ddintx004 tointegralx 0.2 -> 0 Inexact Rounded ddintx005 tointegralx 0.3 -> 0 Inexact Rounded ddintx006 tointegralx 0.4 -> 0 Inexact Rounded ddintx007 tointegralx 0.5 -> 0 Inexact Rounded ddintx008 tointegralx 0.6 -> 1 Inexact Rounded ddintx009 tointegralx 0.7 -> 1 Inexact Rounded ddintx010 tointegralx 0.8 -> 1 Inexact Rounded ddintx011 tointegralx 0.9 -> 1 Inexact Rounded ddintx012 tointegralx 1 -> 1 ddintx013 tointegralx 1.0 -> 1 Rounded ddintx014 tointegralx 1.1 -> 1 Inexact Rounded ddintx015 tointegralx 1.2 -> 1 Inexact Rounded ddintx016 tointegralx 1.3 -> 1 Inexact Rounded ddintx017 tointegralx 1.4 -> 1 Inexact Rounded ddintx018 tointegralx 1.5 -> 2 Inexact Rounded ddintx019 tointegralx 1.6 -> 2 Inexact Rounded ddintx020 tointegralx 1.7 -> 2 Inexact Rounded ddintx021 tointegralx 1.8 -> 2 Inexact Rounded ddintx022 tointegralx 1.9 -> 2 Inexact Rounded -- negatives ddintx031 tointegralx -0 -> -0 ddintx032 tointegralx -0.0 -> -0 ddintx033 tointegralx -0.1 -> -0 Inexact Rounded ddintx034 tointegralx -0.2 -> -0 Inexact Rounded ddintx035 tointegralx -0.3 -> -0 Inexact Rounded ddintx036 tointegralx -0.4 -> -0 Inexact Rounded ddintx037 tointegralx -0.5 -> -0 Inexact Rounded ddintx038 tointegralx -0.6 -> -1 Inexact Rounded ddintx039 tointegralx -0.7 -> -1 Inexact Rounded ddintx040 tointegralx -0.8 -> -1 Inexact Rounded ddintx041 tointegralx -0.9 -> -1 Inexact Rounded ddintx042 tointegralx -1 -> -1 ddintx043 tointegralx -1.0 -> -1 Rounded ddintx044 tointegralx -1.1 -> -1 Inexact Rounded ddintx045 tointegralx -1.2 -> -1 Inexact Rounded ddintx046 tointegralx -1.3 -> -1 Inexact Rounded ddintx047 tointegralx -1.4 -> -1 Inexact Rounded ddintx048 tointegralx -1.5 -> -2 Inexact Rounded ddintx049 tointegralx -1.6 -> -2 Inexact Rounded ddintx050 tointegralx -1.7 -> -2 Inexact Rounded ddintx051 tointegralx -1.8 -> -2 Inexact Rounded ddintx052 tointegralx -1.9 -> -2 Inexact Rounded -- next two would be NaN using quantize(x, 0) ddintx053 tointegralx 10E+60 -> 1.0E+61 ddintx054 tointegralx -10E+60 -> -1.0E+61 -- numbers around precision ddintx060 tointegralx '56267E-17' -> '0' Inexact Rounded ddintx061 tointegralx '56267E-5' -> '1' Inexact Rounded ddintx062 tointegralx '56267E-2' -> '563' Inexact Rounded ddintx063 tointegralx '56267E-1' -> '5627' Inexact Rounded ddintx065 tointegralx '56267E-0' -> '56267' ddintx066 tointegralx '56267E+0' -> '56267' ddintx067 tointegralx '56267E+1' -> '5.6267E+5' ddintx068 tointegralx '56267E+9' -> '5.6267E+13' ddintx069 tointegralx '56267E+10' -> '5.6267E+14' ddintx070 tointegralx '56267E+11' -> '5.6267E+15' ddintx071 tointegralx '56267E+12' -> '5.6267E+16' ddintx072 tointegralx '56267E+13' -> '5.6267E+17' ddintx073 tointegralx '1.23E+96' -> '1.23E+96' ddintx074 tointegralx '1.23E+384' -> #47fd300000000000 Clamped ddintx080 tointegralx '-56267E-10' -> '-0' Inexact Rounded ddintx081 tointegralx '-56267E-5' -> '-1' Inexact Rounded ddintx082 tointegralx '-56267E-2' -> '-563' Inexact Rounded ddintx083 tointegralx '-56267E-1' -> '-5627' Inexact Rounded ddintx085 tointegralx '-56267E-0' -> '-56267' ddintx086 tointegralx '-56267E+0' -> '-56267' ddintx087 tointegralx '-56267E+1' -> '-5.6267E+5' ddintx088 tointegralx '-56267E+9' -> '-5.6267E+13' ddintx089 tointegralx '-56267E+10' -> '-5.6267E+14' ddintx090 tointegralx '-56267E+11' -> '-5.6267E+15' ddintx091 tointegralx '-56267E+12' -> '-5.6267E+16' ddintx092 tointegralx '-56267E+13' -> '-5.6267E+17' ddintx093 tointegralx '-1.23E+96' -> '-1.23E+96' ddintx094 tointegralx '-1.23E+384' -> #c7fd300000000000 Clamped -- subnormal inputs ddintx100 tointegralx 1E-299 -> 0 Inexact Rounded ddintx101 tointegralx 0.1E-299 -> 0 Inexact Rounded ddintx102 tointegralx 0.01E-299 -> 0 Inexact Rounded ddintx103 tointegralx 0E-299 -> 0 -- specials and zeros ddintx120 tointegralx 'Inf' -> Infinity ddintx121 tointegralx '-Inf' -> -Infinity ddintx122 tointegralx NaN -> NaN ddintx123 tointegralx sNaN -> NaN Invalid_operation ddintx124 tointegralx 0 -> 0 ddintx125 tointegralx -0 -> -0 ddintx126 tointegralx 0.000 -> 0 ddintx127 tointegralx 0.00 -> 0 ddintx128 tointegralx 0.0 -> 0 ddintx129 tointegralx 0 -> 0 ddintx130 tointegralx 0E-3 -> 0 ddintx131 tointegralx 0E-2 -> 0 ddintx132 tointegralx 0E-1 -> 0 ddintx133 tointegralx 0E-0 -> 0 ddintx134 tointegralx 0E+1 -> 0E+1 ddintx135 tointegralx 0E+2 -> 0E+2 ddintx136 tointegralx 0E+3 -> 0E+3 ddintx137 tointegralx 0E+4 -> 0E+4 ddintx138 tointegralx 0E+5 -> 0E+5 ddintx139 tointegralx -0.000 -> -0 ddintx140 tointegralx -0.00 -> -0 ddintx141 tointegralx -0.0 -> -0 ddintx142 tointegralx -0 -> -0 ddintx143 tointegralx -0E-3 -> -0 ddintx144 tointegralx -0E-2 -> -0 ddintx145 tointegralx -0E-1 -> -0 ddintx146 tointegralx -0E-0 -> -0 ddintx147 tointegralx -0E+1 -> -0E+1 ddintx148 tointegralx -0E+2 -> -0E+2 ddintx149 tointegralx -0E+3 -> -0E+3 ddintx150 tointegralx -0E+4 -> -0E+4 ddintx151 tointegralx -0E+5 -> -0E+5 -- propagating NaNs ddintx152 tointegralx NaN808 -> NaN808 ddintx153 tointegralx sNaN080 -> NaN80 Invalid_operation ddintx154 tointegralx -NaN808 -> -NaN808 ddintx155 tointegralx -sNaN080 -> -NaN80 Invalid_operation ddintx156 tointegralx -NaN -> -NaN ddintx157 tointegralx -sNaN -> -NaN Invalid_operation -- examples rounding: half_up ddintx200 tointegralx 2.1 -> 2 Inexact Rounded ddintx201 tointegralx 100 -> 100 ddintx202 tointegralx 100.0 -> 100 Rounded ddintx203 tointegralx 101.5 -> 102 Inexact Rounded ddintx204 tointegralx -101.5 -> -102 Inexact Rounded ddintx205 tointegralx 10E+5 -> 1.0E+6 ddintx206 tointegralx 7.89E+77 -> 7.89E+77 ddintx207 tointegralx -Inf -> -Infinity -- all rounding modes rounding: half_even ddintx210 tointegralx 55.5 -> 56 Inexact Rounded ddintx211 tointegralx 56.5 -> 56 Inexact Rounded ddintx212 tointegralx 57.5 -> 58 Inexact Rounded ddintx213 tointegralx -55.5 -> -56 Inexact Rounded ddintx214 tointegralx -56.5 -> -56 Inexact Rounded ddintx215 tointegralx -57.5 -> -58 Inexact Rounded rounding: half_up ddintx220 tointegralx 55.5 -> 56 Inexact Rounded ddintx221 tointegralx 56.5 -> 57 Inexact Rounded ddintx222 tointegralx 57.5 -> 58 Inexact Rounded ddintx223 tointegralx -55.5 -> -56 Inexact Rounded ddintx224 tointegralx -56.5 -> -57 Inexact Rounded ddintx225 tointegralx -57.5 -> -58 Inexact Rounded rounding: half_down ddintx230 tointegralx 55.5 -> 55 Inexact Rounded ddintx231 tointegralx 56.5 -> 56 Inexact Rounded ddintx232 tointegralx 57.5 -> 57 Inexact Rounded ddintx233 tointegralx -55.5 -> -55 Inexact Rounded ddintx234 tointegralx -56.5 -> -56 Inexact Rounded ddintx235 tointegralx -57.5 -> -57 Inexact Rounded rounding: up ddintx240 tointegralx 55.3 -> 56 Inexact Rounded ddintx241 tointegralx 56.3 -> 57 Inexact Rounded ddintx242 tointegralx 57.3 -> 58 Inexact Rounded ddintx243 tointegralx -55.3 -> -56 Inexact Rounded ddintx244 tointegralx -56.3 -> -57 Inexact Rounded ddintx245 tointegralx -57.3 -> -58 Inexact Rounded rounding: down ddintx250 tointegralx 55.7 -> 55 Inexact Rounded ddintx251 tointegralx 56.7 -> 56 Inexact Rounded ddintx252 tointegralx 57.7 -> 57 Inexact Rounded ddintx253 tointegralx -55.7 -> -55 Inexact Rounded ddintx254 tointegralx -56.7 -> -56 Inexact Rounded ddintx255 tointegralx -57.7 -> -57 Inexact Rounded rounding: ceiling ddintx260 tointegralx 55.3 -> 56 Inexact Rounded ddintx261 tointegralx 56.3 -> 57 Inexact Rounded ddintx262 tointegralx 57.3 -> 58 Inexact Rounded ddintx263 tointegralx -55.3 -> -55 Inexact Rounded ddintx264 tointegralx -56.3 -> -56 Inexact Rounded ddintx265 tointegralx -57.3 -> -57 Inexact Rounded rounding: floor ddintx270 tointegralx 55.7 -> 55 Inexact Rounded ddintx271 tointegralx 56.7 -> 56 Inexact Rounded ddintx272 tointegralx 57.7 -> 57 Inexact Rounded ddintx273 tointegralx -55.7 -> -56 Inexact Rounded ddintx274 tointegralx -56.7 -> -57 Inexact Rounded ddintx275 tointegralx -57.7 -> -58 Inexact Rounded -- Int and uInt32 edge values for testing conversions ddintx300 tointegralx -2147483646 -> -2147483646 ddintx301 tointegralx -2147483647 -> -2147483647 ddintx302 tointegralx -2147483648 -> -2147483648 ddintx303 tointegralx -2147483649 -> -2147483649 ddintx304 tointegralx 2147483646 -> 2147483646 ddintx305 tointegralx 2147483647 -> 2147483647 ddintx306 tointegralx 2147483648 -> 2147483648 ddintx307 tointegralx 2147483649 -> 2147483649 ddintx308 tointegralx 4294967294 -> 4294967294 ddintx309 tointegralx 4294967295 -> 4294967295 ddintx310 tointegralx 4294967296 -> 4294967296 ddintx311 tointegralx 4294967297 -> 4294967297
11,935
258
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/dqClass.decTest
------------------------------------------------------------------------ -- dqClass.decTest -- decQuad Class operations -- -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 -- [New 2006.11.27] extended: 1 clamp: 1 precision: 34 maxExponent: 6144 minExponent: -6143 rounding: half_even dqcla001 class 0 -> +Zero dqcla002 class 0.00 -> +Zero dqcla003 class 0E+5 -> +Zero dqcla004 class 1E-6176 -> +Subnormal dqcla005 class 0.1E-6143 -> +Subnormal dqcla006 class 0.99999999999999999999999999999999E-6143 -> +Subnormal dqcla007 class 1.00000000000000000000000000000000E-6143 -> +Normal dqcla008 class 1E-6143 -> +Normal dqcla009 class 1E-100 -> +Normal dqcla010 class 1E-10 -> +Normal dqcla012 class 1E-1 -> +Normal dqcla013 class 1 -> +Normal dqcla014 class 2.50 -> +Normal dqcla015 class 100.100 -> +Normal dqcla016 class 1E+30 -> +Normal dqcla017 class 1E+6144 -> +Normal dqcla018 class 9.99999999999999999999999999999999E+6144 -> +Normal dqcla019 class Inf -> +Infinity dqcla021 class -0 -> -Zero dqcla022 class -0.00 -> -Zero dqcla023 class -0E+5 -> -Zero dqcla024 class -1E-6176 -> -Subnormal dqcla025 class -0.1E-6143 -> -Subnormal dqcla026 class -0.99999999999999999999999999999999E-6143 -> -Subnormal dqcla027 class -1.00000000000000000000000000000000E-6143 -> -Normal dqcla028 class -1E-6143 -> -Normal dqcla029 class -1E-100 -> -Normal dqcla030 class -1E-10 -> -Normal dqcla032 class -1E-1 -> -Normal dqcla033 class -1 -> -Normal dqcla034 class -2.50 -> -Normal dqcla035 class -100.100 -> -Normal dqcla036 class -1E+30 -> -Normal dqcla037 class -1E+6144 -> -Normal dqcla0614 class -9.99999999999999999999999999999999E+6144 -> -Normal dqcla039 class -Inf -> -Infinity dqcla041 class NaN -> NaN dqcla042 class -NaN -> NaN dqcla043 class +NaN12345 -> NaN dqcla044 class sNaN -> sNaN dqcla045 class -sNaN -> sNaN dqcla046 class +sNaN12345 -> sNaN
3,943
78
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/ddNextPlus.decTest
------------------------------------------------------------------------ -- ddNextPlus.decTest -- decDouble next that is greater [754r nextup] -- -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 -- All operands and results are decDoubles. precision: 16 maxExponent: 384 minExponent: -383 extended: 1 clamp: 1 rounding: half_even ddnextp001 nextplus 0.9999999999999995 -> 0.9999999999999996 ddnextp002 nextplus 0.9999999999999996 -> 0.9999999999999997 ddnextp003 nextplus 0.9999999999999997 -> 0.9999999999999998 ddnextp004 nextplus 0.9999999999999998 -> 0.9999999999999999 ddnextp005 nextplus 0.9999999999999999 -> 1.000000000000000 ddnextp006 nextplus 1.000000000000000 -> 1.000000000000001 ddnextp007 nextplus 1.0 -> 1.000000000000001 ddnextp008 nextplus 1 -> 1.000000000000001 ddnextp009 nextplus 1.000000000000001 -> 1.000000000000002 ddnextp010 nextplus 1.000000000000002 -> 1.000000000000003 ddnextp011 nextplus 1.000000000000003 -> 1.000000000000004 ddnextp012 nextplus 1.000000000000004 -> 1.000000000000005 ddnextp013 nextplus 1.000000000000005 -> 1.000000000000006 ddnextp014 nextplus 1.000000000000006 -> 1.000000000000007 ddnextp015 nextplus 1.000000000000007 -> 1.000000000000008 ddnextp016 nextplus 1.000000000000008 -> 1.000000000000009 ddnextp017 nextplus 1.000000000000009 -> 1.000000000000010 ddnextp018 nextplus 1.000000000000010 -> 1.000000000000011 ddnextp019 nextplus 1.000000000000011 -> 1.000000000000012 ddnextp021 nextplus -0.9999999999999995 -> -0.9999999999999994 ddnextp022 nextplus -0.9999999999999996 -> -0.9999999999999995 ddnextp023 nextplus -0.9999999999999997 -> -0.9999999999999996 ddnextp024 nextplus -0.9999999999999998 -> -0.9999999999999997 ddnextp025 nextplus -0.9999999999999999 -> -0.9999999999999998 ddnextp026 nextplus -1.000000000000000 -> -0.9999999999999999 ddnextp027 nextplus -1.0 -> -0.9999999999999999 ddnextp028 nextplus -1 -> -0.9999999999999999 ddnextp029 nextplus -1.000000000000001 -> -1.000000000000000 ddnextp030 nextplus -1.000000000000002 -> -1.000000000000001 ddnextp031 nextplus -1.000000000000003 -> -1.000000000000002 ddnextp032 nextplus -1.000000000000004 -> -1.000000000000003 ddnextp033 nextplus -1.000000000000005 -> -1.000000000000004 ddnextp034 nextplus -1.000000000000006 -> -1.000000000000005 ddnextp035 nextplus -1.000000000000007 -> -1.000000000000006 ddnextp036 nextplus -1.000000000000008 -> -1.000000000000007 ddnextp037 nextplus -1.000000000000009 -> -1.000000000000008 ddnextp038 nextplus -1.000000000000010 -> -1.000000000000009 ddnextp039 nextplus -1.000000000000011 -> -1.000000000000010 ddnextp040 nextplus -1.000000000000012 -> -1.000000000000011 -- Zeros ddnextp100 nextplus 0 -> 1E-398 ddnextp101 nextplus 0.00 -> 1E-398 ddnextp102 nextplus 0E-300 -> 1E-398 ddnextp103 nextplus 0E+300 -> 1E-398 ddnextp104 nextplus 0E+30000 -> 1E-398 ddnextp105 nextplus -0 -> 1E-398 ddnextp106 nextplus -0.00 -> 1E-398 ddnextp107 nextplus -0E-300 -> 1E-398 ddnextp108 nextplus -0E+300 -> 1E-398 ddnextp109 nextplus -0E+30000 -> 1E-398 -- specials ddnextp150 nextplus Inf -> Infinity ddnextp151 nextplus -Inf -> -9.999999999999999E+384 ddnextp152 nextplus NaN -> NaN ddnextp153 nextplus sNaN -> NaN Invalid_operation ddnextp154 nextplus NaN77 -> NaN77 ddnextp155 nextplus sNaN88 -> NaN88 Invalid_operation ddnextp156 nextplus -NaN -> -NaN ddnextp157 nextplus -sNaN -> -NaN Invalid_operation ddnextp158 nextplus -NaN77 -> -NaN77 ddnextp159 nextplus -sNaN88 -> -NaN88 Invalid_operation -- Nmax, Nmin, Ntiny, subnormals ddnextp170 nextplus -9.999999999999999E+384 -> -9.999999999999998E+384 ddnextp171 nextplus -9.999999999999998E+384 -> -9.999999999999997E+384 ddnextp172 nextplus -1E-383 -> -9.99999999999999E-384 ddnextp173 nextplus -1.000000000000000E-383 -> -9.99999999999999E-384 ddnextp174 nextplus -9E-398 -> -8E-398 ddnextp175 nextplus -9.9E-397 -> -9.8E-397 ddnextp176 nextplus -9.99999999999E-387 -> -9.99999999998E-387 ddnextp177 nextplus -9.99999999999999E-384 -> -9.99999999999998E-384 ddnextp178 nextplus -9.99999999999998E-384 -> -9.99999999999997E-384 ddnextp179 nextplus -9.99999999999997E-384 -> -9.99999999999996E-384 ddnextp180 nextplus -0E-398 -> 1E-398 ddnextp181 nextplus -1E-398 -> -0E-398 ddnextp182 nextplus -2E-398 -> -1E-398 ddnextp183 nextplus 0E-398 -> 1E-398 ddnextp184 nextplus 1E-398 -> 2E-398 ddnextp185 nextplus 2E-398 -> 3E-398 ddnextp186 nextplus 10E-398 -> 1.1E-397 ddnextp187 nextplus 100E-398 -> 1.01E-396 ddnextp188 nextplus 100000E-398 -> 1.00001E-393 ddnextp189 nextplus 1.00000000000E-383 -> 1.000000000000001E-383 ddnextp190 nextplus 1.000000000000000E-383 -> 1.000000000000001E-383 ddnextp191 nextplus 1E-383 -> 1.000000000000001E-383 ddnextp192 nextplus 9.999999999999998E+384 -> 9.999999999999999E+384 ddnextp193 nextplus 9.999999999999999E+384 -> Infinity -- Null tests ddnextp900 nextplus # -> NaN Invalid_operation
6,599
125
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/dqToIntegral.decTest
------------------------------------------------------------------------ -- dqToIntegral.decTest -- round Quad to integral value -- -- Copyright (c) IBM Corporation, 2001, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 -- This set of tests tests the extended specification 'round-to-integral -- value-exact' operations (from IEEE 854, later modified in 754r). -- All non-zero results are defined as being those from either copy or -- quantize, so those are assumed to have been tested extensively -- elsewhere; the tests here are for integrity, rounding mode, etc. -- Also, it is assumed the test harness will use these tests for both -- ToIntegralExact (which does set Inexact) and the fixed-name -- functions (which do not set Inexact). -- Note that decNumber implements an earlier definition of toIntegral -- which never sets Inexact; the decTest operator for that is called -- 'tointegral' instead of 'tointegralx'. extended: 1 clamp: 1 precision: 34 maxExponent: 6144 minExponent: -6143 rounding: half_even dqintx001 tointegralx 0 -> 0 dqintx002 tointegralx 0.0 -> 0 dqintx003 tointegralx 0.1 -> 0 Inexact Rounded dqintx004 tointegralx 0.2 -> 0 Inexact Rounded dqintx005 tointegralx 0.3 -> 0 Inexact Rounded dqintx006 tointegralx 0.4 -> 0 Inexact Rounded dqintx007 tointegralx 0.5 -> 0 Inexact Rounded dqintx008 tointegralx 0.6 -> 1 Inexact Rounded dqintx009 tointegralx 0.7 -> 1 Inexact Rounded dqintx010 tointegralx 0.8 -> 1 Inexact Rounded dqintx011 tointegralx 0.9 -> 1 Inexact Rounded dqintx012 tointegralx 1 -> 1 dqintx013 tointegralx 1.0 -> 1 Rounded dqintx014 tointegralx 1.1 -> 1 Inexact Rounded dqintx015 tointegralx 1.2 -> 1 Inexact Rounded dqintx016 tointegralx 1.3 -> 1 Inexact Rounded dqintx017 tointegralx 1.4 -> 1 Inexact Rounded dqintx018 tointegralx 1.5 -> 2 Inexact Rounded dqintx019 tointegralx 1.6 -> 2 Inexact Rounded dqintx020 tointegralx 1.7 -> 2 Inexact Rounded dqintx021 tointegralx 1.8 -> 2 Inexact Rounded dqintx022 tointegralx 1.9 -> 2 Inexact Rounded -- negatives dqintx031 tointegralx -0 -> -0 dqintx032 tointegralx -0.0 -> -0 dqintx033 tointegralx -0.1 -> -0 Inexact Rounded dqintx034 tointegralx -0.2 -> -0 Inexact Rounded dqintx035 tointegralx -0.3 -> -0 Inexact Rounded dqintx036 tointegralx -0.4 -> -0 Inexact Rounded dqintx037 tointegralx -0.5 -> -0 Inexact Rounded dqintx038 tointegralx -0.6 -> -1 Inexact Rounded dqintx039 tointegralx -0.7 -> -1 Inexact Rounded dqintx040 tointegralx -0.8 -> -1 Inexact Rounded dqintx041 tointegralx -0.9 -> -1 Inexact Rounded dqintx042 tointegralx -1 -> -1 dqintx043 tointegralx -1.0 -> -1 Rounded dqintx044 tointegralx -1.1 -> -1 Inexact Rounded dqintx045 tointegralx -1.2 -> -1 Inexact Rounded dqintx046 tointegralx -1.3 -> -1 Inexact Rounded dqintx047 tointegralx -1.4 -> -1 Inexact Rounded dqintx048 tointegralx -1.5 -> -2 Inexact Rounded dqintx049 tointegralx -1.6 -> -2 Inexact Rounded dqintx050 tointegralx -1.7 -> -2 Inexact Rounded dqintx051 tointegralx -1.8 -> -2 Inexact Rounded dqintx052 tointegralx -1.9 -> -2 Inexact Rounded -- next two would be NaN using quantize(x, 0) dqintx053 tointegralx 10E+60 -> 1.0E+61 dqintx054 tointegralx -10E+60 -> -1.0E+61 -- numbers around precision dqintx060 tointegralx '56267E-17' -> '0' Inexact Rounded dqintx061 tointegralx '56267E-5' -> '1' Inexact Rounded dqintx062 tointegralx '56267E-2' -> '563' Inexact Rounded dqintx063 tointegralx '56267E-1' -> '5627' Inexact Rounded dqintx065 tointegralx '56267E-0' -> '56267' dqintx066 tointegralx '56267E+0' -> '56267' dqintx067 tointegralx '56267E+1' -> '5.6267E+5' dqintx068 tointegralx '56267E+9' -> '5.6267E+13' dqintx069 tointegralx '56267E+10' -> '5.6267E+14' dqintx070 tointegralx '56267E+11' -> '5.6267E+15' dqintx071 tointegralx '56267E+12' -> '5.6267E+16' dqintx072 tointegralx '56267E+13' -> '5.6267E+17' dqintx073 tointegralx '1.23E+96' -> '1.23E+96' dqintx074 tointegralx '1.23E+6144' -> #47ffd300000000000000000000000000 Clamped dqintx080 tointegralx '-56267E-10' -> '-0' Inexact Rounded dqintx081 tointegralx '-56267E-5' -> '-1' Inexact Rounded dqintx082 tointegralx '-56267E-2' -> '-563' Inexact Rounded dqintx083 tointegralx '-56267E-1' -> '-5627' Inexact Rounded dqintx085 tointegralx '-56267E-0' -> '-56267' dqintx086 tointegralx '-56267E+0' -> '-56267' dqintx087 tointegralx '-56267E+1' -> '-5.6267E+5' dqintx088 tointegralx '-56267E+9' -> '-5.6267E+13' dqintx089 tointegralx '-56267E+10' -> '-5.6267E+14' dqintx090 tointegralx '-56267E+11' -> '-5.6267E+15' dqintx091 tointegralx '-56267E+12' -> '-5.6267E+16' dqintx092 tointegralx '-56267E+13' -> '-5.6267E+17' dqintx093 tointegralx '-1.23E+96' -> '-1.23E+96' dqintx094 tointegralx '-1.23E+6144' -> #c7ffd300000000000000000000000000 Clamped -- subnormal inputs dqintx100 tointegralx 1E-299 -> 0 Inexact Rounded dqintx101 tointegralx 0.1E-299 -> 0 Inexact Rounded dqintx102 tointegralx 0.01E-299 -> 0 Inexact Rounded dqintx103 tointegralx 0E-299 -> 0 -- specials and zeros dqintx120 tointegralx 'Inf' -> Infinity dqintx121 tointegralx '-Inf' -> -Infinity dqintx122 tointegralx NaN -> NaN dqintx123 tointegralx sNaN -> NaN Invalid_operation dqintx124 tointegralx 0 -> 0 dqintx125 tointegralx -0 -> -0 dqintx126 tointegralx 0.000 -> 0 dqintx127 tointegralx 0.00 -> 0 dqintx128 tointegralx 0.0 -> 0 dqintx129 tointegralx 0 -> 0 dqintx130 tointegralx 0E-3 -> 0 dqintx131 tointegralx 0E-2 -> 0 dqintx132 tointegralx 0E-1 -> 0 dqintx133 tointegralx 0E-0 -> 0 dqintx134 tointegralx 0E+1 -> 0E+1 dqintx135 tointegralx 0E+2 -> 0E+2 dqintx136 tointegralx 0E+3 -> 0E+3 dqintx137 tointegralx 0E+4 -> 0E+4 dqintx138 tointegralx 0E+5 -> 0E+5 dqintx139 tointegralx -0.000 -> -0 dqintx140 tointegralx -0.00 -> -0 dqintx141 tointegralx -0.0 -> -0 dqintx142 tointegralx -0 -> -0 dqintx143 tointegralx -0E-3 -> -0 dqintx144 tointegralx -0E-2 -> -0 dqintx145 tointegralx -0E-1 -> -0 dqintx146 tointegralx -0E-0 -> -0 dqintx147 tointegralx -0E+1 -> -0E+1 dqintx148 tointegralx -0E+2 -> -0E+2 dqintx149 tointegralx -0E+3 -> -0E+3 dqintx150 tointegralx -0E+4 -> -0E+4 dqintx151 tointegralx -0E+5 -> -0E+5 -- propagating NaNs dqintx152 tointegralx NaN808 -> NaN808 dqintx153 tointegralx sNaN080 -> NaN80 Invalid_operation dqintx154 tointegralx -NaN808 -> -NaN808 dqintx155 tointegralx -sNaN080 -> -NaN80 Invalid_operation dqintx156 tointegralx -NaN -> -NaN dqintx157 tointegralx -sNaN -> -NaN Invalid_operation -- examples rounding: half_up dqintx200 tointegralx 2.1 -> 2 Inexact Rounded dqintx201 tointegralx 100 -> 100 dqintx202 tointegralx 100.0 -> 100 Rounded dqintx203 tointegralx 101.5 -> 102 Inexact Rounded dqintx204 tointegralx -101.5 -> -102 Inexact Rounded dqintx205 tointegralx 10E+5 -> 1.0E+6 dqintx206 tointegralx 7.89E+77 -> 7.89E+77 dqintx207 tointegralx -Inf -> -Infinity -- all rounding modes rounding: half_even dqintx210 tointegralx 55.5 -> 56 Inexact Rounded dqintx211 tointegralx 56.5 -> 56 Inexact Rounded dqintx212 tointegralx 57.5 -> 58 Inexact Rounded dqintx213 tointegralx -55.5 -> -56 Inexact Rounded dqintx214 tointegralx -56.5 -> -56 Inexact Rounded dqintx215 tointegralx -57.5 -> -58 Inexact Rounded rounding: half_up dqintx220 tointegralx 55.5 -> 56 Inexact Rounded dqintx221 tointegralx 56.5 -> 57 Inexact Rounded dqintx222 tointegralx 57.5 -> 58 Inexact Rounded dqintx223 tointegralx -55.5 -> -56 Inexact Rounded dqintx224 tointegralx -56.5 -> -57 Inexact Rounded dqintx225 tointegralx -57.5 -> -58 Inexact Rounded rounding: half_down dqintx230 tointegralx 55.5 -> 55 Inexact Rounded dqintx231 tointegralx 56.5 -> 56 Inexact Rounded dqintx232 tointegralx 57.5 -> 57 Inexact Rounded dqintx233 tointegralx -55.5 -> -55 Inexact Rounded dqintx234 tointegralx -56.5 -> -56 Inexact Rounded dqintx235 tointegralx -57.5 -> -57 Inexact Rounded rounding: up dqintx240 tointegralx 55.3 -> 56 Inexact Rounded dqintx241 tointegralx 56.3 -> 57 Inexact Rounded dqintx242 tointegralx 57.3 -> 58 Inexact Rounded dqintx243 tointegralx -55.3 -> -56 Inexact Rounded dqintx244 tointegralx -56.3 -> -57 Inexact Rounded dqintx245 tointegralx -57.3 -> -58 Inexact Rounded rounding: down dqintx250 tointegralx 55.7 -> 55 Inexact Rounded dqintx251 tointegralx 56.7 -> 56 Inexact Rounded dqintx252 tointegralx 57.7 -> 57 Inexact Rounded dqintx253 tointegralx -55.7 -> -55 Inexact Rounded dqintx254 tointegralx -56.7 -> -56 Inexact Rounded dqintx255 tointegralx -57.7 -> -57 Inexact Rounded rounding: ceiling dqintx260 tointegralx 55.3 -> 56 Inexact Rounded dqintx261 tointegralx 56.3 -> 57 Inexact Rounded dqintx262 tointegralx 57.3 -> 58 Inexact Rounded dqintx263 tointegralx -55.3 -> -55 Inexact Rounded dqintx264 tointegralx -56.3 -> -56 Inexact Rounded dqintx265 tointegralx -57.3 -> -57 Inexact Rounded rounding: floor dqintx270 tointegralx 55.7 -> 55 Inexact Rounded dqintx271 tointegralx 56.7 -> 56 Inexact Rounded dqintx272 tointegralx 57.7 -> 57 Inexact Rounded dqintx273 tointegralx -55.7 -> -56 Inexact Rounded dqintx274 tointegralx -56.7 -> -57 Inexact Rounded dqintx275 tointegralx -57.7 -> -58 Inexact Rounded -- Int and uInt32 edge values for testing conversions dqintx300 tointegralx -2147483646 -> -2147483646 dqintx301 tointegralx -2147483647 -> -2147483647 dqintx302 tointegralx -2147483648 -> -2147483648 dqintx303 tointegralx -2147483649 -> -2147483649 dqintx304 tointegralx 2147483646 -> 2147483646 dqintx305 tointegralx 2147483647 -> 2147483647 dqintx306 tointegralx 2147483648 -> 2147483648 dqintx307 tointegralx 2147483649 -> 2147483649 dqintx308 tointegralx 4294967294 -> 4294967294 dqintx309 tointegralx 4294967295 -> 4294967295 dqintx310 tointegralx 4294967296 -> 4294967296 dqintx311 tointegralx 4294967297 -> 4294967297
11,967
258
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/ddLogB.decTest
------------------------------------------------------------------------ -- ddLogB.decTest -- integral 754r adjusted exponent, for decDoubles -- -- Copyright (c) IBM Corporation, 2005, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 precision: 16 maxExponent: 384 minExponent: -383 extended: 1 clamp: 1 rounding: half_even -- basics ddlogb000 logb 0 -> -Infinity Division_by_zero ddlogb001 logb 1E-398 -> -398 ddlogb002 logb 1E-383 -> -383 ddlogb003 logb 0.001 -> -3 ddlogb004 logb 0.03 -> -2 ddlogb005 logb 1 -> 0 ddlogb006 logb 2 -> 0 ddlogb007 logb 2.5 -> 0 ddlogb008 logb 2.500 -> 0 ddlogb009 logb 10 -> 1 ddlogb010 logb 70 -> 1 ddlogb011 logb 100 -> 2 ddlogb012 logb 333 -> 2 ddlogb013 logb 9E+384 -> 384 ddlogb014 logb +Infinity -> Infinity -- negatives appear to be treated as positives ddlogb021 logb -0 -> -Infinity Division_by_zero ddlogb022 logb -1E-398 -> -398 ddlogb023 logb -9E-383 -> -383 ddlogb024 logb -0.001 -> -3 ddlogb025 logb -1 -> 0 ddlogb026 logb -2 -> 0 ddlogb027 logb -10 -> 1 ddlogb028 logb -70 -> 1 ddlogb029 logb -100 -> 2 ddlogb030 logb -9E+384 -> 384 ddlogb031 logb -Infinity -> Infinity -- zeros ddlogb111 logb 0 -> -Infinity Division_by_zero ddlogb112 logb -0 -> -Infinity Division_by_zero ddlogb113 logb 0E+4 -> -Infinity Division_by_zero ddlogb114 logb -0E+4 -> -Infinity Division_by_zero ddlogb115 logb 0.0000 -> -Infinity Division_by_zero ddlogb116 logb -0.0000 -> -Infinity Division_by_zero ddlogb117 logb 0E-141 -> -Infinity Division_by_zero ddlogb118 logb -0E-141 -> -Infinity Division_by_zero -- full coefficients, alternating bits ddlogb121 logb 268268268 -> 8 ddlogb122 logb -268268268 -> 8 ddlogb123 logb 134134134 -> 8 ddlogb124 logb -134134134 -> 8 -- Nmax, Nmin, Ntiny ddlogb131 logb 9.999999999999999E+384 -> 384 ddlogb132 logb 1E-383 -> -383 ddlogb133 logb 1.000000000000000E-383 -> -383 ddlogb134 logb 1E-398 -> -398 ddlogb135 logb -1E-398 -> -398 ddlogb136 logb -1.000000000000000E-383 -> -383 ddlogb137 logb -1E-383 -> -383 ddlogb138 logb -9.999999999999999E+384 -> 384 -- ones ddlogb0061 logb 1 -> 0 ddlogb0062 logb 1.0 -> 0 ddlogb0063 logb 1.000000000000000 -> 0 -- notable cases -- exact powers of 10 ddlogb1100 logb 1 -> 0 ddlogb1101 logb 10 -> 1 ddlogb1102 logb 100 -> 2 ddlogb1103 logb 1000 -> 3 ddlogb1104 logb 10000 -> 4 ddlogb1105 logb 100000 -> 5 ddlogb1106 logb 1000000 -> 6 ddlogb1107 logb 10000000 -> 7 ddlogb1108 logb 100000000 -> 8 ddlogb1109 logb 1000000000 -> 9 ddlogb1110 logb 10000000000 -> 10 ddlogb1111 logb 100000000000 -> 11 ddlogb1112 logb 1000000000000 -> 12 ddlogb1113 logb 0.00000000001 -> -11 ddlogb1114 logb 0.0000000001 -> -10 ddlogb1115 logb 0.000000001 -> -9 ddlogb1116 logb 0.00000001 -> -8 ddlogb1117 logb 0.0000001 -> -7 ddlogb1118 logb 0.000001 -> -6 ddlogb1119 logb 0.00001 -> -5 ddlogb1120 logb 0.0001 -> -4 ddlogb1121 logb 0.001 -> -3 ddlogb1122 logb 0.01 -> -2 ddlogb1123 logb 0.1 -> -1 ddlogb1124 logb 1E-99 -> -99 ddlogb1125 logb 1E-100 -> -100 ddlogb1127 logb 1E-299 -> -299 ddlogb1126 logb 1E-383 -> -383 -- suggestions from Ilan Nehama ddlogb1400 logb 10E-3 -> -2 ddlogb1401 logb 10E-2 -> -1 ddlogb1402 logb 100E-2 -> 0 ddlogb1403 logb 1000E-2 -> 1 ddlogb1404 logb 10000E-2 -> 2 ddlogb1405 logb 10E-1 -> 0 ddlogb1406 logb 100E-1 -> 1 ddlogb1407 logb 1000E-1 -> 2 ddlogb1408 logb 10000E-1 -> 3 ddlogb1409 logb 10E0 -> 1 ddlogb1410 logb 100E0 -> 2 ddlogb1411 logb 1000E0 -> 3 ddlogb1412 logb 10000E0 -> 4 ddlogb1413 logb 10E1 -> 2 ddlogb1414 logb 100E1 -> 3 ddlogb1415 logb 1000E1 -> 4 ddlogb1416 logb 10000E1 -> 5 ddlogb1417 logb 10E2 -> 3 ddlogb1418 logb 100E2 -> 4 ddlogb1419 logb 1000E2 -> 5 ddlogb1420 logb 10000E2 -> 6 -- special values ddlogb820 logb Infinity -> Infinity ddlogb821 logb 0 -> -Infinity Division_by_zero ddlogb822 logb NaN -> NaN ddlogb823 logb sNaN -> NaN Invalid_operation -- propagating NaNs ddlogb824 logb sNaN123 -> NaN123 Invalid_operation ddlogb825 logb -sNaN321 -> -NaN321 Invalid_operation ddlogb826 logb NaN456 -> NaN456 ddlogb827 logb -NaN654 -> -NaN654 ddlogb828 logb NaN1 -> NaN1 -- Null test ddlogb900 logb # -> NaN Invalid_operation
6,081
160
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/comparetotal.decTest
------------------------------------------------------------------------ -- comparetotal.decTest -- decimal comparison using total ordering -- -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 -- Note that we cannot assume add/subtract tests cover paths adequately, -- here, because the code might be quite different (comparison cannot -- overflow or underflow, so actual subtractions are not necessary). -- Similarly, comparetotal will have some radically different paths -- than compare. extended: 1 precision: 16 rounding: half_up maxExponent: 384 minExponent: -383 -- sanity checks cotx001 comparetotal -2 -2 -> 0 cotx002 comparetotal -2 -1 -> -1 cotx003 comparetotal -2 0 -> -1 cotx004 comparetotal -2 1 -> -1 cotx005 comparetotal -2 2 -> -1 cotx006 comparetotal -1 -2 -> 1 cotx007 comparetotal -1 -1 -> 0 cotx008 comparetotal -1 0 -> -1 cotx009 comparetotal -1 1 -> -1 cotx010 comparetotal -1 2 -> -1 cotx011 comparetotal 0 -2 -> 1 cotx012 comparetotal 0 -1 -> 1 cotx013 comparetotal 0 0 -> 0 cotx014 comparetotal 0 1 -> -1 cotx015 comparetotal 0 2 -> -1 cotx016 comparetotal 1 -2 -> 1 cotx017 comparetotal 1 -1 -> 1 cotx018 comparetotal 1 0 -> 1 cotx019 comparetotal 1 1 -> 0 cotx020 comparetotal 1 2 -> -1 cotx021 comparetotal 2 -2 -> 1 cotx022 comparetotal 2 -1 -> 1 cotx023 comparetotal 2 0 -> 1 cotx025 comparetotal 2 1 -> 1 cotx026 comparetotal 2 2 -> 0 cotx031 comparetotal -20 -20 -> 0 cotx032 comparetotal -20 -10 -> -1 cotx033 comparetotal -20 00 -> -1 cotx034 comparetotal -20 10 -> -1 cotx035 comparetotal -20 20 -> -1 cotx036 comparetotal -10 -20 -> 1 cotx037 comparetotal -10 -10 -> 0 cotx038 comparetotal -10 00 -> -1 cotx039 comparetotal -10 10 -> -1 cotx040 comparetotal -10 20 -> -1 cotx041 comparetotal 00 -20 -> 1 cotx042 comparetotal 00 -10 -> 1 cotx043 comparetotal 00 00 -> 0 cotx044 comparetotal 00 10 -> -1 cotx045 comparetotal 00 20 -> -1 cotx046 comparetotal 10 -20 -> 1 cotx047 comparetotal 10 -10 -> 1 cotx048 comparetotal 10 00 -> 1 cotx049 comparetotal 10 10 -> 0 cotx050 comparetotal 10 20 -> -1 cotx051 comparetotal 20 -20 -> 1 cotx052 comparetotal 20 -10 -> 1 cotx053 comparetotal 20 00 -> 1 cotx055 comparetotal 20 10 -> 1 cotx056 comparetotal 20 20 -> 0 cotx061 comparetotal -2.0 -2.0 -> 0 cotx062 comparetotal -2.0 -1.0 -> -1 cotx063 comparetotal -2.0 0.0 -> -1 cotx064 comparetotal -2.0 1.0 -> -1 cotx065 comparetotal -2.0 2.0 -> -1 cotx066 comparetotal -1.0 -2.0 -> 1 cotx067 comparetotal -1.0 -1.0 -> 0 cotx068 comparetotal -1.0 0.0 -> -1 cotx069 comparetotal -1.0 1.0 -> -1 cotx070 comparetotal -1.0 2.0 -> -1 cotx071 comparetotal 0.0 -2.0 -> 1 cotx072 comparetotal 0.0 -1.0 -> 1 cotx073 comparetotal 0.0 0.0 -> 0 cotx074 comparetotal 0.0 1.0 -> -1 cotx075 comparetotal 0.0 2.0 -> -1 cotx076 comparetotal 1.0 -2.0 -> 1 cotx077 comparetotal 1.0 -1.0 -> 1 cotx078 comparetotal 1.0 0.0 -> 1 cotx079 comparetotal 1.0 1.0 -> 0 cotx080 comparetotal 1.0 2.0 -> -1 cotx081 comparetotal 2.0 -2.0 -> 1 cotx082 comparetotal 2.0 -1.0 -> 1 cotx083 comparetotal 2.0 0.0 -> 1 cotx085 comparetotal 2.0 1.0 -> 1 cotx086 comparetotal 2.0 2.0 -> 0 -- now some cases which might overflow if subtract were used maxexponent: 999999999 minexponent: -999999999 cotx090 comparetotal 9.99999999E+999999999 9.99999999E+999999999 -> 0 cotx091 comparetotal -9.99999999E+999999999 9.99999999E+999999999 -> -1 cotx092 comparetotal 9.99999999E+999999999 -9.99999999E+999999999 -> 1 cotx093 comparetotal -9.99999999E+999999999 -9.99999999E+999999999 -> 0 -- Examples cotx094 comparetotal 12.73 127.9 -> -1 cotx095 comparetotal -127 12 -> -1 cotx096 comparetotal 12.30 12.3 -> -1 cotx097 comparetotal 12.30 12.30 -> 0 cotx098 comparetotal 12.3 12.300 -> 1 cotx099 comparetotal 12.3 NaN -> -1 -- some differing length/exponent cases -- in this first group, compare would compare all equal cotx100 comparetotal 7.0 7.0 -> 0 cotx101 comparetotal 7.0 7 -> -1 cotx102 comparetotal 7 7.0 -> 1 cotx103 comparetotal 7E+0 7.0 -> 1 cotx104 comparetotal 70E-1 7.0 -> 0 cotx105 comparetotal 0.7E+1 7 -> 0 cotx106 comparetotal 70E-1 7 -> -1 cotx107 comparetotal 7.0 7E+0 -> -1 cotx108 comparetotal 7.0 70E-1 -> 0 cotx109 comparetotal 7 0.7E+1 -> 0 cotx110 comparetotal 7 70E-1 -> 1 cotx120 comparetotal 8.0 7.0 -> 1 cotx121 comparetotal 8.0 7 -> 1 cotx122 comparetotal 8 7.0 -> 1 cotx123 comparetotal 8E+0 7.0 -> 1 cotx124 comparetotal 80E-1 7.0 -> 1 cotx125 comparetotal 0.8E+1 7 -> 1 cotx126 comparetotal 80E-1 7 -> 1 cotx127 comparetotal 8.0 7E+0 -> 1 cotx128 comparetotal 8.0 70E-1 -> 1 cotx129 comparetotal 8 0.7E+1 -> 1 cotx130 comparetotal 8 70E-1 -> 1 cotx140 comparetotal 8.0 9.0 -> -1 cotx141 comparetotal 8.0 9 -> -1 cotx142 comparetotal 8 9.0 -> -1 cotx143 comparetotal 8E+0 9.0 -> -1 cotx144 comparetotal 80E-1 9.0 -> -1 cotx145 comparetotal 0.8E+1 9 -> -1 cotx146 comparetotal 80E-1 9 -> -1 cotx147 comparetotal 8.0 9E+0 -> -1 cotx148 comparetotal 8.0 90E-1 -> -1 cotx149 comparetotal 8 0.9E+1 -> -1 cotx150 comparetotal 8 90E-1 -> -1 -- and again, with sign changes -+ .. cotx200 comparetotal -7.0 7.0 -> -1 cotx201 comparetotal -7.0 7 -> -1 cotx202 comparetotal -7 7.0 -> -1 cotx203 comparetotal -7E+0 7.0 -> -1 cotx204 comparetotal -70E-1 7.0 -> -1 cotx205 comparetotal -0.7E+1 7 -> -1 cotx206 comparetotal -70E-1 7 -> -1 cotx207 comparetotal -7.0 7E+0 -> -1 cotx208 comparetotal -7.0 70E-1 -> -1 cotx209 comparetotal -7 0.7E+1 -> -1 cotx210 comparetotal -7 70E-1 -> -1 cotx220 comparetotal -8.0 7.0 -> -1 cotx221 comparetotal -8.0 7 -> -1 cotx222 comparetotal -8 7.0 -> -1 cotx223 comparetotal -8E+0 7.0 -> -1 cotx224 comparetotal -80E-1 7.0 -> -1 cotx225 comparetotal -0.8E+1 7 -> -1 cotx226 comparetotal -80E-1 7 -> -1 cotx227 comparetotal -8.0 7E+0 -> -1 cotx228 comparetotal -8.0 70E-1 -> -1 cotx229 comparetotal -8 0.7E+1 -> -1 cotx230 comparetotal -8 70E-1 -> -1 cotx240 comparetotal -8.0 9.0 -> -1 cotx241 comparetotal -8.0 9 -> -1 cotx242 comparetotal -8 9.0 -> -1 cotx243 comparetotal -8E+0 9.0 -> -1 cotx244 comparetotal -80E-1 9.0 -> -1 cotx245 comparetotal -0.8E+1 9 -> -1 cotx246 comparetotal -80E-1 9 -> -1 cotx247 comparetotal -8.0 9E+0 -> -1 cotx248 comparetotal -8.0 90E-1 -> -1 cotx249 comparetotal -8 0.9E+1 -> -1 cotx250 comparetotal -8 90E-1 -> -1 -- and again, with sign changes +- .. cotx300 comparetotal 7.0 -7.0 -> 1 cotx301 comparetotal 7.0 -7 -> 1 cotx302 comparetotal 7 -7.0 -> 1 cotx303 comparetotal 7E+0 -7.0 -> 1 cotx304 comparetotal 70E-1 -7.0 -> 1 cotx305 comparetotal .7E+1 -7 -> 1 cotx306 comparetotal 70E-1 -7 -> 1 cotx307 comparetotal 7.0 -7E+0 -> 1 cotx308 comparetotal 7.0 -70E-1 -> 1 cotx309 comparetotal 7 -.7E+1 -> 1 cotx310 comparetotal 7 -70E-1 -> 1 cotx320 comparetotal 8.0 -7.0 -> 1 cotx321 comparetotal 8.0 -7 -> 1 cotx322 comparetotal 8 -7.0 -> 1 cotx323 comparetotal 8E+0 -7.0 -> 1 cotx324 comparetotal 80E-1 -7.0 -> 1 cotx325 comparetotal .8E+1 -7 -> 1 cotx326 comparetotal 80E-1 -7 -> 1 cotx327 comparetotal 8.0 -7E+0 -> 1 cotx328 comparetotal 8.0 -70E-1 -> 1 cotx329 comparetotal 8 -.7E+1 -> 1 cotx330 comparetotal 8 -70E-1 -> 1 cotx340 comparetotal 8.0 -9.0 -> 1 cotx341 comparetotal 8.0 -9 -> 1 cotx342 comparetotal 8 -9.0 -> 1 cotx343 comparetotal 8E+0 -9.0 -> 1 cotx344 comparetotal 80E-1 -9.0 -> 1 cotx345 comparetotal .8E+1 -9 -> 1 cotx346 comparetotal 80E-1 -9 -> 1 cotx347 comparetotal 8.0 -9E+0 -> 1 cotx348 comparetotal 8.0 -90E-1 -> 1 cotx349 comparetotal 8 -.9E+1 -> 1 cotx350 comparetotal 8 -90E-1 -> 1 -- and again, with sign changes -- .. cotx400 comparetotal -7.0 -7.0 -> 0 cotx401 comparetotal -7.0 -7 -> 1 cotx402 comparetotal -7 -7.0 -> -1 cotx403 comparetotal -7E+0 -7.0 -> -1 cotx404 comparetotal -70E-1 -7.0 -> 0 cotx405 comparetotal -.7E+1 -7 -> 0 cotx406 comparetotal -70E-1 -7 -> 1 cotx407 comparetotal -7.0 -7E+0 -> 1 cotx408 comparetotal -7.0 -70E-1 -> 0 cotx409 comparetotal -7 -.7E+1 -> 0 cotx410 comparetotal -7 -70E-1 -> -1 cotx420 comparetotal -8.0 -7.0 -> -1 cotx421 comparetotal -8.0 -7 -> -1 cotx422 comparetotal -8 -7.0 -> -1 cotx423 comparetotal -8E+0 -7.0 -> -1 cotx424 comparetotal -80E-1 -7.0 -> -1 cotx425 comparetotal -.8E+1 -7 -> -1 cotx426 comparetotal -80E-1 -7 -> -1 cotx427 comparetotal -8.0 -7E+0 -> -1 cotx428 comparetotal -8.0 -70E-1 -> -1 cotx429 comparetotal -8 -.7E+1 -> -1 cotx430 comparetotal -8 -70E-1 -> -1 cotx440 comparetotal -8.0 -9.0 -> 1 cotx441 comparetotal -8.0 -9 -> 1 cotx442 comparetotal -8 -9.0 -> 1 cotx443 comparetotal -8E+0 -9.0 -> 1 cotx444 comparetotal -80E-1 -9.0 -> 1 cotx445 comparetotal -.8E+1 -9 -> 1 cotx446 comparetotal -80E-1 -9 -> 1 cotx447 comparetotal -8.0 -9E+0 -> 1 cotx448 comparetotal -8.0 -90E-1 -> 1 cotx449 comparetotal -8 -.9E+1 -> 1 cotx450 comparetotal -8 -90E-1 -> 1 -- testcases that subtract to lots of zeros at boundaries [pgr] precision: 40 cotx470 comparetotal 123.4560000000000000E789 123.456E789 -> -1 cotx471 comparetotal 123.456000000000000E-89 123.456E-89 -> -1 cotx472 comparetotal 123.45600000000000E789 123.456E789 -> -1 cotx473 comparetotal 123.4560000000000E-89 123.456E-89 -> -1 cotx474 comparetotal 123.456000000000E789 123.456E789 -> -1 cotx475 comparetotal 123.45600000000E-89 123.456E-89 -> -1 cotx476 comparetotal 123.4560000000E789 123.456E789 -> -1 cotx477 comparetotal 123.456000000E-89 123.456E-89 -> -1 cotx478 comparetotal 123.45600000E789 123.456E789 -> -1 cotx479 comparetotal 123.4560000E-89 123.456E-89 -> -1 cotx480 comparetotal 123.456000E789 123.456E789 -> -1 cotx481 comparetotal 123.45600E-89 123.456E-89 -> -1 cotx482 comparetotal 123.4560E789 123.456E789 -> -1 cotx483 comparetotal 123.456E-89 123.456E-89 -> 0 cotx484 comparetotal 123.456E-89 123.4560000000000000E-89 -> 1 cotx485 comparetotal 123.456E789 123.456000000000000E789 -> 1 cotx486 comparetotal 123.456E-89 123.45600000000000E-89 -> 1 cotx487 comparetotal 123.456E789 123.4560000000000E789 -> 1 cotx488 comparetotal 123.456E-89 123.456000000000E-89 -> 1 cotx489 comparetotal 123.456E789 123.45600000000E789 -> 1 cotx490 comparetotal 123.456E-89 123.4560000000E-89 -> 1 cotx491 comparetotal 123.456E789 123.456000000E789 -> 1 cotx492 comparetotal 123.456E-89 123.45600000E-89 -> 1 cotx493 comparetotal 123.456E789 123.4560000E789 -> 1 cotx494 comparetotal 123.456E-89 123.456000E-89 -> 1 cotx495 comparetotal 123.456E789 123.45600E789 -> 1 cotx496 comparetotal 123.456E-89 123.4560E-89 -> 1 cotx497 comparetotal 123.456E789 123.456E789 -> 0 -- wide-ranging, around precision; signs equal precision: 9 cotx500 comparetotal 1 1E-15 -> 1 cotx501 comparetotal 1 1E-14 -> 1 cotx502 comparetotal 1 1E-13 -> 1 cotx503 comparetotal 1 1E-12 -> 1 cotx504 comparetotal 1 1E-11 -> 1 cotx505 comparetotal 1 1E-10 -> 1 cotx506 comparetotal 1 1E-9 -> 1 cotx507 comparetotal 1 1E-8 -> 1 cotx508 comparetotal 1 1E-7 -> 1 cotx509 comparetotal 1 1E-6 -> 1 cotx510 comparetotal 1 1E-5 -> 1 cotx511 comparetotal 1 1E-4 -> 1 cotx512 comparetotal 1 1E-3 -> 1 cotx513 comparetotal 1 1E-2 -> 1 cotx514 comparetotal 1 1E-1 -> 1 cotx515 comparetotal 1 1E-0 -> 0 cotx516 comparetotal 1 1E+1 -> -1 cotx517 comparetotal 1 1E+2 -> -1 cotx518 comparetotal 1 1E+3 -> -1 cotx519 comparetotal 1 1E+4 -> -1 cotx521 comparetotal 1 1E+5 -> -1 cotx522 comparetotal 1 1E+6 -> -1 cotx523 comparetotal 1 1E+7 -> -1 cotx524 comparetotal 1 1E+8 -> -1 cotx525 comparetotal 1 1E+9 -> -1 cotx526 comparetotal 1 1E+10 -> -1 cotx527 comparetotal 1 1E+11 -> -1 cotx528 comparetotal 1 1E+12 -> -1 cotx529 comparetotal 1 1E+13 -> -1 cotx530 comparetotal 1 1E+14 -> -1 cotx531 comparetotal 1 1E+15 -> -1 -- LR swap cotx540 comparetotal 1E-15 1 -> -1 cotx541 comparetotal 1E-14 1 -> -1 cotx542 comparetotal 1E-13 1 -> -1 cotx543 comparetotal 1E-12 1 -> -1 cotx544 comparetotal 1E-11 1 -> -1 cotx545 comparetotal 1E-10 1 -> -1 cotx546 comparetotal 1E-9 1 -> -1 cotx547 comparetotal 1E-8 1 -> -1 cotx548 comparetotal 1E-7 1 -> -1 cotx549 comparetotal 1E-6 1 -> -1 cotx550 comparetotal 1E-5 1 -> -1 cotx551 comparetotal 1E-4 1 -> -1 cotx552 comparetotal 1E-3 1 -> -1 cotx553 comparetotal 1E-2 1 -> -1 cotx554 comparetotal 1E-1 1 -> -1 cotx555 comparetotal 1E-0 1 -> 0 cotx556 comparetotal 1E+1 1 -> 1 cotx557 comparetotal 1E+2 1 -> 1 cotx558 comparetotal 1E+3 1 -> 1 cotx559 comparetotal 1E+4 1 -> 1 cotx561 comparetotal 1E+5 1 -> 1 cotx562 comparetotal 1E+6 1 -> 1 cotx563 comparetotal 1E+7 1 -> 1 cotx564 comparetotal 1E+8 1 -> 1 cotx565 comparetotal 1E+9 1 -> 1 cotx566 comparetotal 1E+10 1 -> 1 cotx567 comparetotal 1E+11 1 -> 1 cotx568 comparetotal 1E+12 1 -> 1 cotx569 comparetotal 1E+13 1 -> 1 cotx570 comparetotal 1E+14 1 -> 1 cotx571 comparetotal 1E+15 1 -> 1 -- similar with an useful coefficient, one side only cotx580 comparetotal 0.000000987654321 1E-15 -> 1 cotx581 comparetotal 0.000000987654321 1E-14 -> 1 cotx582 comparetotal 0.000000987654321 1E-13 -> 1 cotx583 comparetotal 0.000000987654321 1E-12 -> 1 cotx584 comparetotal 0.000000987654321 1E-11 -> 1 cotx585 comparetotal 0.000000987654321 1E-10 -> 1 cotx586 comparetotal 0.000000987654321 1E-9 -> 1 cotx587 comparetotal 0.000000987654321 1E-8 -> 1 cotx588 comparetotal 0.000000987654321 1E-7 -> 1 cotx589 comparetotal 0.000000987654321 1E-6 -> -1 cotx590 comparetotal 0.000000987654321 1E-5 -> -1 cotx591 comparetotal 0.000000987654321 1E-4 -> -1 cotx592 comparetotal 0.000000987654321 1E-3 -> -1 cotx593 comparetotal 0.000000987654321 1E-2 -> -1 cotx594 comparetotal 0.000000987654321 1E-1 -> -1 cotx595 comparetotal 0.000000987654321 1E-0 -> -1 cotx596 comparetotal 0.000000987654321 1E+1 -> -1 cotx597 comparetotal 0.000000987654321 1E+2 -> -1 cotx598 comparetotal 0.000000987654321 1E+3 -> -1 cotx599 comparetotal 0.000000987654321 1E+4 -> -1 -- check some unit-y traps precision: 20 cotx600 comparetotal 12 12.2345 -> -1 cotx601 comparetotal 12.0 12.2345 -> -1 cotx602 comparetotal 12.00 12.2345 -> -1 cotx603 comparetotal 12.000 12.2345 -> -1 cotx604 comparetotal 12.0000 12.2345 -> -1 cotx605 comparetotal 12.00000 12.2345 -> -1 cotx606 comparetotal 12.000000 12.2345 -> -1 cotx607 comparetotal 12.0000000 12.2345 -> -1 cotx608 comparetotal 12.00000000 12.2345 -> -1 cotx609 comparetotal 12.000000000 12.2345 -> -1 cotx610 comparetotal 12.1234 12 -> 1 cotx611 comparetotal 12.1234 12.0 -> 1 cotx612 comparetotal 12.1234 12.00 -> 1 cotx613 comparetotal 12.1234 12.000 -> 1 cotx614 comparetotal 12.1234 12.0000 -> 1 cotx615 comparetotal 12.1234 12.00000 -> 1 cotx616 comparetotal 12.1234 12.000000 -> 1 cotx617 comparetotal 12.1234 12.0000000 -> 1 cotx618 comparetotal 12.1234 12.00000000 -> 1 cotx619 comparetotal 12.1234 12.000000000 -> 1 cotx620 comparetotal -12 -12.2345 -> 1 cotx621 comparetotal -12.0 -12.2345 -> 1 cotx622 comparetotal -12.00 -12.2345 -> 1 cotx623 comparetotal -12.000 -12.2345 -> 1 cotx624 comparetotal -12.0000 -12.2345 -> 1 cotx625 comparetotal -12.00000 -12.2345 -> 1 cotx626 comparetotal -12.000000 -12.2345 -> 1 cotx627 comparetotal -12.0000000 -12.2345 -> 1 cotx628 comparetotal -12.00000000 -12.2345 -> 1 cotx629 comparetotal -12.000000000 -12.2345 -> 1 cotx630 comparetotal -12.1234 -12 -> -1 cotx631 comparetotal -12.1234 -12.0 -> -1 cotx632 comparetotal -12.1234 -12.00 -> -1 cotx633 comparetotal -12.1234 -12.000 -> -1 cotx634 comparetotal -12.1234 -12.0000 -> -1 cotx635 comparetotal -12.1234 -12.00000 -> -1 cotx636 comparetotal -12.1234 -12.000000 -> -1 cotx637 comparetotal -12.1234 -12.0000000 -> -1 cotx638 comparetotal -12.1234 -12.00000000 -> -1 cotx639 comparetotal -12.1234 -12.000000000 -> -1 precision: 9 -- extended zeros cotx640 comparetotal 0 0 -> 0 cotx641 comparetotal 0 -0 -> 1 cotx642 comparetotal 0 -0.0 -> 1 cotx643 comparetotal 0 0.0 -> 1 cotx644 comparetotal -0 0 -> -1 cotx645 comparetotal -0 -0 -> 0 cotx646 comparetotal -0 -0.0 -> -1 cotx647 comparetotal -0 0.0 -> -1 cotx648 comparetotal 0.0 0 -> -1 cotx649 comparetotal 0.0 -0 -> 1 cotx650 comparetotal 0.0 -0.0 -> 1 cotx651 comparetotal 0.0 0.0 -> 0 cotx652 comparetotal -0.0 0 -> -1 cotx653 comparetotal -0.0 -0 -> 1 cotx654 comparetotal -0.0 -0.0 -> 0 cotx655 comparetotal -0.0 0.0 -> -1 cotx656 comparetotal -0E1 0.0 -> -1 cotx657 comparetotal -0E2 0.0 -> -1 cotx658 comparetotal 0E1 0.0 -> 1 cotx659 comparetotal 0E2 0.0 -> 1 cotx660 comparetotal -0E1 0 -> -1 cotx661 comparetotal -0E2 0 -> -1 cotx662 comparetotal 0E1 0 -> 1 cotx663 comparetotal 0E2 0 -> 1 cotx664 comparetotal -0E1 -0E1 -> 0 cotx665 comparetotal -0E2 -0E1 -> -1 cotx666 comparetotal 0E1 -0E1 -> 1 cotx667 comparetotal 0E2 -0E1 -> 1 cotx668 comparetotal -0E1 -0E2 -> 1 cotx669 comparetotal -0E2 -0E2 -> 0 cotx670 comparetotal 0E1 -0E2 -> 1 cotx671 comparetotal 0E2 -0E2 -> 1 cotx672 comparetotal -0E1 0E1 -> -1 cotx673 comparetotal -0E2 0E1 -> -1 cotx674 comparetotal 0E1 0E1 -> 0 cotx675 comparetotal 0E2 0E1 -> 1 cotx676 comparetotal -0E1 0E2 -> -1 cotx677 comparetotal -0E2 0E2 -> -1 cotx678 comparetotal 0E1 0E2 -> -1 cotx679 comparetotal 0E2 0E2 -> 0 -- trailing zeros; unit-y precision: 20 cotx680 comparetotal 12 12 -> 0 cotx681 comparetotal 12 12.0 -> 1 cotx682 comparetotal 12 12.00 -> 1 cotx683 comparetotal 12 12.000 -> 1 cotx684 comparetotal 12 12.0000 -> 1 cotx685 comparetotal 12 12.00000 -> 1 cotx686 comparetotal 12 12.000000 -> 1 cotx687 comparetotal 12 12.0000000 -> 1 cotx688 comparetotal 12 12.00000000 -> 1 cotx689 comparetotal 12 12.000000000 -> 1 cotx690 comparetotal 12 12 -> 0 cotx691 comparetotal 12.0 12 -> -1 cotx692 comparetotal 12.00 12 -> -1 cotx693 comparetotal 12.000 12 -> -1 cotx694 comparetotal 12.0000 12 -> -1 cotx695 comparetotal 12.00000 12 -> -1 cotx696 comparetotal 12.000000 12 -> -1 cotx697 comparetotal 12.0000000 12 -> -1 cotx698 comparetotal 12.00000000 12 -> -1 cotx699 comparetotal 12.000000000 12 -> -1 -- long operand checks maxexponent: 999 minexponent: -999 precision: 9 cotx701 comparetotal 12345678000 1 -> 1 cotx702 comparetotal 1 12345678000 -> -1 cotx703 comparetotal 1234567800 1 -> 1 cotx704 comparetotal 1 1234567800 -> -1 cotx705 comparetotal 1234567890 1 -> 1 cotx706 comparetotal 1 1234567890 -> -1 cotx707 comparetotal 1234567891 1 -> 1 cotx708 comparetotal 1 1234567891 -> -1 cotx709 comparetotal 12345678901 1 -> 1 cotx710 comparetotal 1 12345678901 -> -1 cotx711 comparetotal 1234567896 1 -> 1 cotx712 comparetotal 1 1234567896 -> -1 cotx713 comparetotal -1234567891 1 -> -1 cotx714 comparetotal 1 -1234567891 -> 1 cotx715 comparetotal -12345678901 1 -> -1 cotx716 comparetotal 1 -12345678901 -> 1 cotx717 comparetotal -1234567896 1 -> -1 cotx718 comparetotal 1 -1234567896 -> 1 precision: 15 -- same with plenty of precision cotx721 comparetotal 12345678000 1 -> 1 cotx722 comparetotal 1 12345678000 -> -1 cotx723 comparetotal 1234567800 1 -> 1 cotx724 comparetotal 1 1234567800 -> -1 cotx725 comparetotal 1234567890 1 -> 1 cotx726 comparetotal 1 1234567890 -> -1 cotx727 comparetotal 1234567891 1 -> 1 cotx728 comparetotal 1 1234567891 -> -1 cotx729 comparetotal 12345678901 1 -> 1 cotx730 comparetotal 1 12345678901 -> -1 cotx731 comparetotal 1234567896 1 -> 1 cotx732 comparetotal 1 1234567896 -> -1 -- residue cases precision: 5 cotx740 comparetotal 1 0.9999999 -> 1 cotx741 comparetotal 1 0.999999 -> 1 cotx742 comparetotal 1 0.99999 -> 1 cotx743 comparetotal 1 1.0000 -> 1 cotx744 comparetotal 1 1.00001 -> -1 cotx745 comparetotal 1 1.000001 -> -1 cotx746 comparetotal 1 1.0000001 -> -1 cotx750 comparetotal 0.9999999 1 -> -1 cotx751 comparetotal 0.999999 1 -> -1 cotx752 comparetotal 0.99999 1 -> -1 cotx753 comparetotal 1.0000 1 -> -1 cotx754 comparetotal 1.00001 1 -> 1 cotx755 comparetotal 1.000001 1 -> 1 cotx756 comparetotal 1.0000001 1 -> 1 -- a selection of longies cotx760 comparetotal -36852134.84194296250843579428931 -5830629.8347085025808756560357940 -> -1 cotx761 comparetotal -36852134.84194296250843579428931 -36852134.84194296250843579428931 -> 0 cotx762 comparetotal -36852134.94194296250843579428931 -36852134.84194296250843579428931 -> -1 cotx763 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 -- precisions above or below the difference should have no effect precision: 11 cotx764 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 precision: 10 cotx765 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 precision: 9 cotx766 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 precision: 8 cotx767 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 precision: 7 cotx768 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 precision: 6 cotx769 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 precision: 5 cotx770 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 precision: 4 cotx771 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 precision: 3 cotx772 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 precision: 2 cotx773 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 precision: 1 cotx774 comparetotal -36852134.84194296250843579428931 -36852134.94194296250843579428931 -> 1 -- Specials precision: 9 cotx780 comparetotal Inf -Inf -> 1 cotx781 comparetotal Inf -1000 -> 1 cotx782 comparetotal Inf -1 -> 1 cotx783 comparetotal Inf -0 -> 1 cotx784 comparetotal Inf 0 -> 1 cotx785 comparetotal Inf 1 -> 1 cotx786 comparetotal Inf 1000 -> 1 cotx787 comparetotal Inf Inf -> 0 cotx788 comparetotal -1000 Inf -> -1 cotx789 comparetotal -Inf Inf -> -1 cotx790 comparetotal -1 Inf -> -1 cotx791 comparetotal -0 Inf -> -1 cotx792 comparetotal 0 Inf -> -1 cotx793 comparetotal 1 Inf -> -1 cotx794 comparetotal 1000 Inf -> -1 cotx795 comparetotal Inf Inf -> 0 cotx800 comparetotal -Inf -Inf -> 0 cotx801 comparetotal -Inf -1000 -> -1 cotx802 comparetotal -Inf -1 -> -1 cotx803 comparetotal -Inf -0 -> -1 cotx804 comparetotal -Inf 0 -> -1 cotx805 comparetotal -Inf 1 -> -1 cotx806 comparetotal -Inf 1000 -> -1 cotx807 comparetotal -Inf Inf -> -1 cotx808 comparetotal -Inf -Inf -> 0 cotx809 comparetotal -1000 -Inf -> 1 cotx810 comparetotal -1 -Inf -> 1 cotx811 comparetotal -0 -Inf -> 1 cotx812 comparetotal 0 -Inf -> 1 cotx813 comparetotal 1 -Inf -> 1 cotx814 comparetotal 1000 -Inf -> 1 cotx815 comparetotal Inf -Inf -> 1 cotx821 comparetotal NaN -Inf -> 1 cotx822 comparetotal NaN -1000 -> 1 cotx823 comparetotal NaN -1 -> 1 cotx824 comparetotal NaN -0 -> 1 cotx825 comparetotal NaN 0 -> 1 cotx826 comparetotal NaN 1 -> 1 cotx827 comparetotal NaN 1000 -> 1 cotx828 comparetotal NaN Inf -> 1 cotx829 comparetotal NaN NaN -> 0 cotx830 comparetotal -Inf NaN -> -1 cotx831 comparetotal -1000 NaN -> -1 cotx832 comparetotal -1 NaN -> -1 cotx833 comparetotal -0 NaN -> -1 cotx834 comparetotal 0 NaN -> -1 cotx835 comparetotal 1 NaN -> -1 cotx836 comparetotal 1000 NaN -> -1 cotx837 comparetotal Inf NaN -> -1 cotx838 comparetotal -NaN -NaN -> 0 cotx839 comparetotal +NaN -NaN -> 1 cotx840 comparetotal -NaN +NaN -> -1 cotx841 comparetotal sNaN -sNaN -> 1 cotx842 comparetotal sNaN -NaN -> 1 cotx843 comparetotal sNaN -Inf -> 1 cotx844 comparetotal sNaN -1000 -> 1 cotx845 comparetotal sNaN -1 -> 1 cotx846 comparetotal sNaN -0 -> 1 cotx847 comparetotal sNaN 0 -> 1 cotx848 comparetotal sNaN 1 -> 1 cotx849 comparetotal sNaN 1000 -> 1 cotx850 comparetotal sNaN NaN -> -1 cotx851 comparetotal sNaN sNaN -> 0 cotx852 comparetotal -sNaN sNaN -> -1 cotx853 comparetotal -NaN sNaN -> -1 cotx854 comparetotal -Inf sNaN -> -1 cotx855 comparetotal -1000 sNaN -> -1 cotx856 comparetotal -1 sNaN -> -1 cotx857 comparetotal -0 sNaN -> -1 cotx858 comparetotal 0 sNaN -> -1 cotx859 comparetotal 1 sNaN -> -1 cotx860 comparetotal 1000 sNaN -> -1 cotx861 comparetotal Inf sNaN -> -1 cotx862 comparetotal NaN sNaN -> 1 cotx863 comparetotal sNaN sNaN -> 0 cotx871 comparetotal -sNaN -sNaN -> 0 cotx872 comparetotal -sNaN -NaN -> 1 cotx873 comparetotal -sNaN -Inf -> -1 cotx874 comparetotal -sNaN -1000 -> -1 cotx875 comparetotal -sNaN -1 -> -1 cotx876 comparetotal -sNaN -0 -> -1 cotx877 comparetotal -sNaN 0 -> -1 cotx878 comparetotal -sNaN 1 -> -1 cotx879 comparetotal -sNaN 1000 -> -1 cotx880 comparetotal -sNaN NaN -> -1 cotx881 comparetotal -sNaN sNaN -> -1 cotx882 comparetotal -sNaN -sNaN -> 0 cotx883 comparetotal -NaN -sNaN -> -1 cotx884 comparetotal -Inf -sNaN -> 1 cotx885 comparetotal -1000 -sNaN -> 1 cotx886 comparetotal -1 -sNaN -> 1 cotx887 comparetotal -0 -sNaN -> 1 cotx888 comparetotal 0 -sNaN -> 1 cotx889 comparetotal 1 -sNaN -> 1 cotx890 comparetotal 1000 -sNaN -> 1 cotx891 comparetotal Inf -sNaN -> 1 cotx892 comparetotal NaN -sNaN -> 1 cotx893 comparetotal sNaN -sNaN -> 1 -- NaNs with payload cotx960 comparetotal NaN9 -Inf -> 1 cotx961 comparetotal NaN8 999 -> 1 cotx962 comparetotal NaN77 Inf -> 1 cotx963 comparetotal -NaN67 NaN5 -> -1 cotx964 comparetotal -Inf -NaN4 -> 1 cotx965 comparetotal -999 -NaN33 -> 1 cotx966 comparetotal Inf NaN2 -> -1 cotx970 comparetotal -NaN41 -NaN42 -> 1 cotx971 comparetotal +NaN41 -NaN42 -> 1 cotx972 comparetotal -NaN41 +NaN42 -> -1 cotx973 comparetotal +NaN41 +NaN42 -> -1 cotx974 comparetotal -NaN42 -NaN01 -> -1 cotx975 comparetotal +NaN42 -NaN01 -> 1 cotx976 comparetotal -NaN42 +NaN01 -> -1 cotx977 comparetotal +NaN42 +NaN01 -> 1 cotx980 comparetotal -sNaN771 -sNaN772 -> 1 cotx981 comparetotal +sNaN771 -sNaN772 -> 1 cotx982 comparetotal -sNaN771 +sNaN772 -> -1 cotx983 comparetotal +sNaN771 +sNaN772 -> -1 cotx984 comparetotal -sNaN772 -sNaN771 -> -1 cotx985 comparetotal +sNaN772 -sNaN771 -> 1 cotx986 comparetotal -sNaN772 +sNaN771 -> -1 cotx987 comparetotal +sNaN772 +sNaN771 -> 1 cotx991 comparetotal -sNaN99 -Inf -> -1 cotx992 comparetotal sNaN98 -11 -> 1 cotx993 comparetotal sNaN97 NaN -> -1 cotx994 comparetotal sNaN16 sNaN94 -> -1 cotx995 comparetotal NaN85 sNaN83 -> 1 cotx996 comparetotal -Inf sNaN92 -> -1 cotx997 comparetotal 088 sNaN81 -> -1 cotx998 comparetotal Inf sNaN90 -> -1 cotx999 comparetotal NaN -sNaN89 -> 1 -- overflow and underflow tests .. subnormal results now allowed maxExponent: 999999999 minexponent: -999999999 cotx1080 comparetotal +1.23456789012345E-0 9E+999999999 -> -1 cotx1081 comparetotal 9E+999999999 +1.23456789012345E-0 -> 1 cotx1082 comparetotal +0.100 9E-999999999 -> 1 cotx1083 comparetotal 9E-999999999 +0.100 -> -1 cotx1085 comparetotal -1.23456789012345E-0 9E+999999999 -> -1 cotx1086 comparetotal 9E+999999999 -1.23456789012345E-0 -> 1 cotx1087 comparetotal -0.100 9E-999999999 -> -1 cotx1088 comparetotal 9E-999999999 -0.100 -> 1 cotx1089 comparetotal 1e-599999999 1e-400000001 -> -1 cotx1090 comparetotal 1e-599999999 1e-400000000 -> -1 cotx1091 comparetotal 1e-600000000 1e-400000000 -> -1 cotx1092 comparetotal 9e-999999998 0.01 -> -1 cotx1093 comparetotal 9e-999999998 0.1 -> -1 cotx1094 comparetotal 0.01 9e-999999998 -> 1 cotx1095 comparetotal 1e599999999 1e400000001 -> 1 cotx1096 comparetotal 1e599999999 1e400000000 -> 1 cotx1097 comparetotal 1e600000000 1e400000000 -> 1 cotx1098 comparetotal 9e999999998 100 -> 1 cotx1099 comparetotal 9e999999998 10 -> 1 cotx1100 comparetotal 100 9e999999998 -> -1 -- signs cotx1101 comparetotal 1e+777777777 1e+411111111 -> 1 cotx1102 comparetotal 1e+777777777 -1e+411111111 -> 1 cotx1103 comparetotal -1e+777777777 1e+411111111 -> -1 cotx1104 comparetotal -1e+777777777 -1e+411111111 -> -1 cotx1105 comparetotal 1e-777777777 1e-411111111 -> -1 cotx1106 comparetotal 1e-777777777 -1e-411111111 -> 1 cotx1107 comparetotal -1e-777777777 1e-411111111 -> -1 cotx1108 comparetotal -1e-777777777 -1e-411111111 -> 1 -- spread zeros cotx1110 comparetotal 0E-383 0 -> -1 cotx1111 comparetotal 0E-383 -0 -> 1 cotx1112 comparetotal -0E-383 0 -> -1 cotx1113 comparetotal -0E-383 -0 -> 1 cotx1114 comparetotal 0E-383 0E+384 -> -1 cotx1115 comparetotal 0E-383 -0E+384 -> 1 cotx1116 comparetotal -0E-383 0E+384 -> -1 cotx1117 comparetotal -0E-383 -0E+384 -> 1 cotx1118 comparetotal 0 0E+384 -> -1 cotx1119 comparetotal 0 -0E+384 -> 1 cotx1120 comparetotal -0 0E+384 -> -1 cotx1121 comparetotal -0 -0E+384 -> 1 cotx1130 comparetotal 0E+384 0 -> 1 cotx1131 comparetotal 0E+384 -0 -> 1 cotx1132 comparetotal -0E+384 0 -> -1 cotx1133 comparetotal -0E+384 -0 -> -1 cotx1134 comparetotal 0E+384 0E-383 -> 1 cotx1135 comparetotal 0E+384 -0E-383 -> 1 cotx1136 comparetotal -0E+384 0E-383 -> -1 cotx1137 comparetotal -0E+384 -0E-383 -> -1 cotx1138 comparetotal 0 0E-383 -> 1 cotx1139 comparetotal 0 -0E-383 -> 1 cotx1140 comparetotal -0 0E-383 -> -1 cotx1141 comparetotal -0 -0E-383 -> -1 -- Null tests cotx9990 comparetotal 10 # -> NaN Invalid_operation cotx9991 comparetotal # 10 -> NaN Invalid_operation
33,625
799
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/dsBase.decTest
------------------------------------------------------------------------ -- dsBase.decTest -- base decSingle <--> string conversions -- -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 -- This file tests base conversions from string to a decimal number -- and back to a string (in Scientific form) -- Note that unlike other operations the operand is subject to rounding -- to conform to emax and precision settings (that is, numbers will -- conform to rules and exponent will be in permitted range). The -- 'left hand side', therefore, may have numbers that cannot be -- represented in a decSingle. Some testcases go to the limit of the -- next-wider format, and hence these testcases may also be used to -- test narrowing and widening operations. extended: 1 clamp: 1 precision: 7 maxExponent: 96 minExponent: -95 rounding: half_even dsbas001 toSci 0 -> 0 dsbas002 toSci 1 -> 1 dsbas003 toSci 1.0 -> 1.0 dsbas004 toSci 1.00 -> 1.00 dsbas005 toSci 10 -> 10 dsbas006 toSci 1000 -> 1000 dsbas007 toSci 10.0 -> 10.0 dsbas008 toSci 10.1 -> 10.1 dsbas009 toSci 10.4 -> 10.4 dsbas010 toSci 10.5 -> 10.5 dsbas011 toSci 10.6 -> 10.6 dsbas012 toSci 10.9 -> 10.9 dsbas013 toSci 11.0 -> 11.0 dsbas014 toSci 1.234 -> 1.234 dsbas015 toSci 0.123 -> 0.123 dsbas016 toSci 0.012 -> 0.012 dsbas017 toSci -0 -> -0 dsbas018 toSci -0.0 -> -0.0 dsbas019 toSci -00.00 -> -0.00 dsbas021 toSci -1 -> -1 dsbas022 toSci -1.0 -> -1.0 dsbas023 toSci -0.1 -> -0.1 dsbas024 toSci -9.1 -> -9.1 dsbas025 toSci -9.11 -> -9.11 dsbas026 toSci -9.119 -> -9.119 dsbas027 toSci -9.999 -> -9.999 dsbas030 toSci '1234.567' -> '1234.567' dsbas031 toSci '1234.000' -> '1234.000' dsbas032 toSci '1234912' -> '1234912' dsbas033 toSci '0.00001234567' -> '0.00001234567' dsbas034 toSci '0.000001234567' -> '0.000001234567' dsbas035 toSci '0.0000001234567' -> '1.234567E-7' dsbas036 toSci '0.00000001234567' -> '1.234567E-8' dsbas037 toSci '0.1234564' -> '0.1234564' dsbas038 toSci '0.1234565' -> '0.1234565' -- test finite bounds (Negs of, then 0, Ntiny, Nmin, other, Nmax) dsbsn001 toSci -9.999999E+96 -> -9.999999E+96 dsbsn002 toSci -1E-95 -> -1E-95 dsbsn003 toSci -1E-101 -> -1E-101 Subnormal dsbsn004 toSci -0 -> -0 dsbsn005 toSci +0 -> 0 dsbsn006 toSci +1E-101 -> 1E-101 Subnormal dsbsn007 toSci +1E-95 -> 1E-95 dsbsn008 toSci +9.999999E+96 -> 9.999999E+96 -- String [many more examples are implicitly tested elsewhere] -- strings without E cannot generate E in result dsbas040 toSci "12" -> '12' dsbas041 toSci "-76" -> '-76' dsbas042 toSci "12.76" -> '12.76' dsbas043 toSci "+12.76" -> '12.76' dsbas044 toSci "012.76" -> '12.76' dsbas045 toSci "+0.003" -> '0.003' dsbas046 toSci "17." -> '17' dsbas047 toSci ".5" -> '0.5' dsbas048 toSci "044" -> '44' dsbas049 toSci "0044" -> '44' dsbas050 toSci "0.0005" -> '0.0005' dsbas051 toSci "00.00005" -> '0.00005' dsbas052 toSci "0.000005" -> '0.000005' dsbas053 toSci "0.0000050" -> '0.0000050' dsbas054 toSci "0.0000005" -> '5E-7' dsbas055 toSci "0.00000005" -> '5E-8' dsbas056 toSci "12678.54" -> '12678.54' dsbas057 toSci "2678.543" -> '2678.543' dsbas058 toSci "345678.5" -> '345678.5' dsbas059 toSci "0678.5432" -> '678.5432' dsbas060 toSci "678.5432" -> '678.5432' dsbas061 toSci "+678.5432" -> '678.5432' dsbas062 toSci "+0678.5432" -> '678.5432' dsbas063 toSci "+00678.5432" -> '678.5432' dsbas064 toSci "-678.5432" -> '-678.5432' dsbas065 toSci "-0678.5432" -> '-678.5432' dsbas066 toSci "-00678.5432" -> '-678.5432' -- examples dsbas067 toSci "5E-6" -> '0.000005' dsbas068 toSci "50E-7" -> '0.0000050' dsbas069 toSci "5E-7" -> '5E-7' -- [No exotics as no Unicode] -- rounded with dots in all (including edge) places dsbas071 toSci .1234567890123456 -> 0.1234568 Inexact Rounded dsbas072 toSci 1.234567890123456 -> 1.234568 Inexact Rounded dsbas073 toSci 12.34567890123456 -> 12.34568 Inexact Rounded dsbas074 toSci 123.4567890123456 -> 123.4568 Inexact Rounded dsbas075 toSci 1234.567890123456 -> 1234.568 Inexact Rounded dsbas076 toSci 12345.67890123456 -> 12345.68 Inexact Rounded dsbas077 toSci 123456.7890123456 -> 123456.8 Inexact Rounded dsbas078 toSci 1234567.890123456 -> 1234568 Inexact Rounded dsbas079 toSci 12345678.90123456 -> 1.234568E+7 Inexact Rounded dsbas080 toSci 123456789.0123456 -> 1.234568E+8 Inexact Rounded dsbas081 toSci 1234567890.123456 -> 1.234568E+9 Inexact Rounded dsbas082 toSci 12345678901.23456 -> 1.234568E+10 Inexact Rounded dsbas083 toSci 123456789012.3456 -> 1.234568E+11 Inexact Rounded dsbas084 toSci 1234567890123.456 -> 1.234568E+12 Inexact Rounded dsbas085 toSci 12345678901234.56 -> 1.234568E+13 Inexact Rounded dsbas086 toSci 123456789012345.6 -> 1.234568E+14 Inexact Rounded dsbas087 toSci 1234567890123456. -> 1.234568E+15 Inexact Rounded dsbas088 toSci 1234567890123456 -> 1.234568E+15 Inexact Rounded -- Numbers with E dsbas130 toSci "0.000E-1" -> '0.0000' dsbas131 toSci "0.000E-2" -> '0.00000' dsbas132 toSci "0.000E-3" -> '0.000000' dsbas133 toSci "0.000E-4" -> '0E-7' dsbas134 toSci "0.00E-2" -> '0.0000' dsbas135 toSci "0.00E-3" -> '0.00000' dsbas136 toSci "0.00E-4" -> '0.000000' dsbas137 toSci "0.00E-5" -> '0E-7' dsbas138 toSci "+0E+9" -> '0E+9' dsbas139 toSci "-0E+9" -> '-0E+9' dsbas140 toSci "1E+9" -> '1E+9' dsbas141 toSci "1e+09" -> '1E+9' dsbas142 toSci "1E+90" -> '1E+90' dsbas143 toSci "+1E+009" -> '1E+9' dsbas144 toSci "0E+9" -> '0E+9' dsbas145 toSci "1E+9" -> '1E+9' dsbas146 toSci "1E+09" -> '1E+9' dsbas147 toSci "1e+90" -> '1E+90' dsbas148 toSci "1E+009" -> '1E+9' dsbas149 toSci "000E+9" -> '0E+9' dsbas150 toSci "1E9" -> '1E+9' dsbas151 toSci "1e09" -> '1E+9' dsbas152 toSci "1E90" -> '1E+90' dsbas153 toSci "1E009" -> '1E+9' dsbas154 toSci "0E9" -> '0E+9' dsbas155 toSci "0.000e+0" -> '0.000' dsbas156 toSci "0.000E-1" -> '0.0000' dsbas157 toSci "4E+9" -> '4E+9' dsbas158 toSci "44E+9" -> '4.4E+10' dsbas159 toSci "0.73e-7" -> '7.3E-8' dsbas160 toSci "00E+9" -> '0E+9' dsbas161 toSci "00E-9" -> '0E-9' dsbas162 toSci "10E+9" -> '1.0E+10' dsbas163 toSci "10E+09" -> '1.0E+10' dsbas164 toSci "10e+90" -> '1.0E+91' dsbas165 toSci "10E+009" -> '1.0E+10' dsbas166 toSci "100e+9" -> '1.00E+11' dsbas167 toSci "100e+09" -> '1.00E+11' dsbas168 toSci "100E+90" -> '1.00E+92' dsbas169 toSci "100e+009" -> '1.00E+11' dsbas170 toSci "1.265" -> '1.265' dsbas171 toSci "1.265E-20" -> '1.265E-20' dsbas172 toSci "1.265E-8" -> '1.265E-8' dsbas173 toSci "1.265E-4" -> '0.0001265' dsbas174 toSci "1.265E-3" -> '0.001265' dsbas175 toSci "1.265E-2" -> '0.01265' dsbas176 toSci "1.265E-1" -> '0.1265' dsbas177 toSci "1.265E-0" -> '1.265' dsbas178 toSci "1.265E+1" -> '12.65' dsbas179 toSci "1.265E+2" -> '126.5' dsbas180 toSci "1.265E+3" -> '1265' dsbas181 toSci "1.265E+4" -> '1.265E+4' dsbas182 toSci "1.265E+8" -> '1.265E+8' dsbas183 toSci "1.265E+20" -> '1.265E+20' dsbas190 toSci "12.65" -> '12.65' dsbas191 toSci "12.65E-20" -> '1.265E-19' dsbas192 toSci "12.65E-8" -> '1.265E-7' dsbas193 toSci "12.65E-4" -> '0.001265' dsbas194 toSci "12.65E-3" -> '0.01265' dsbas195 toSci "12.65E-2" -> '0.1265' dsbas196 toSci "12.65E-1" -> '1.265' dsbas197 toSci "12.65E-0" -> '12.65' dsbas198 toSci "12.65E+1" -> '126.5' dsbas199 toSci "12.65E+2" -> '1265' dsbas200 toSci "12.65E+3" -> '1.265E+4' dsbas201 toSci "12.65E+4" -> '1.265E+5' dsbas202 toSci "12.65E+8" -> '1.265E+9' dsbas203 toSci "12.65E+20" -> '1.265E+21' dsbas210 toSci "126.5" -> '126.5' dsbas211 toSci "126.5E-20" -> '1.265E-18' dsbas212 toSci "126.5E-8" -> '0.000001265' dsbas213 toSci "126.5E-4" -> '0.01265' dsbas214 toSci "126.5E-3" -> '0.1265' dsbas215 toSci "126.5E-2" -> '1.265' dsbas216 toSci "126.5E-1" -> '12.65' dsbas217 toSci "126.5E-0" -> '126.5' dsbas218 toSci "126.5E+1" -> '1265' dsbas219 toSci "126.5E+2" -> '1.265E+4' dsbas220 toSci "126.5E+3" -> '1.265E+5' dsbas221 toSci "126.5E+4" -> '1.265E+6' dsbas222 toSci "126.5E+8" -> '1.265E+10' dsbas223 toSci "126.5E+20" -> '1.265E+22' dsbas230 toSci "1265" -> '1265' dsbas231 toSci "1265E-20" -> '1.265E-17' dsbas232 toSci "1265E-8" -> '0.00001265' dsbas233 toSci "1265E-4" -> '0.1265' dsbas234 toSci "1265E-3" -> '1.265' dsbas235 toSci "1265E-2" -> '12.65' dsbas236 toSci "1265E-1" -> '126.5' dsbas237 toSci "1265E-0" -> '1265' dsbas238 toSci "1265E+1" -> '1.265E+4' dsbas239 toSci "1265E+2" -> '1.265E+5' dsbas240 toSci "1265E+3" -> '1.265E+6' dsbas241 toSci "1265E+4" -> '1.265E+7' dsbas242 toSci "1265E+8" -> '1.265E+11' dsbas243 toSci "1265E+20" -> '1.265E+23' dsbas250 toSci "0.1265" -> '0.1265' dsbas251 toSci "0.1265E-20" -> '1.265E-21' dsbas252 toSci "0.1265E-8" -> '1.265E-9' dsbas253 toSci "0.1265E-4" -> '0.00001265' dsbas254 toSci "0.1265E-3" -> '0.0001265' dsbas255 toSci "0.1265E-2" -> '0.001265' dsbas256 toSci "0.1265E-1" -> '0.01265' dsbas257 toSci "0.1265E-0" -> '0.1265' dsbas258 toSci "0.1265E+1" -> '1.265' dsbas259 toSci "0.1265E+2" -> '12.65' dsbas260 toSci "0.1265E+3" -> '126.5' dsbas261 toSci "0.1265E+4" -> '1265' dsbas262 toSci "0.1265E+8" -> '1.265E+7' dsbas263 toSci "0.1265E+20" -> '1.265E+19' -- some more negative zeros [systematic tests below] dsbas290 toSci "-0.000E-1" -> '-0.0000' dsbas291 toSci "-0.000E-2" -> '-0.00000' dsbas292 toSci "-0.000E-3" -> '-0.000000' dsbas293 toSci "-0.000E-4" -> '-0E-7' dsbas294 toSci "-0.00E-2" -> '-0.0000' dsbas295 toSci "-0.00E-3" -> '-0.00000' dsbas296 toSci "-0.0E-2" -> '-0.000' dsbas297 toSci "-0.0E-3" -> '-0.0000' dsbas298 toSci "-0E-2" -> '-0.00' dsbas299 toSci "-0E-3" -> '-0.000' -- Engineering notation tests dsbas301 toSci 10e12 -> 1.0E+13 dsbas302 toEng 10e12 -> 10E+12 dsbas303 toSci 10e11 -> 1.0E+12 dsbas304 toEng 10e11 -> 1.0E+12 dsbas305 toSci 10e10 -> 1.0E+11 dsbas306 toEng 10e10 -> 100E+9 dsbas307 toSci 10e9 -> 1.0E+10 dsbas308 toEng 10e9 -> 10E+9 dsbas309 toSci 10e8 -> 1.0E+9 dsbas310 toEng 10e8 -> 1.0E+9 dsbas311 toSci 10e7 -> 1.0E+8 dsbas312 toEng 10e7 -> 100E+6 dsbas313 toSci 10e6 -> 1.0E+7 dsbas314 toEng 10e6 -> 10E+6 dsbas315 toSci 10e5 -> 1.0E+6 dsbas316 toEng 10e5 -> 1.0E+6 dsbas317 toSci 10e4 -> 1.0E+5 dsbas318 toEng 10e4 -> 100E+3 dsbas319 toSci 10e3 -> 1.0E+4 dsbas320 toEng 10e3 -> 10E+3 dsbas321 toSci 10e2 -> 1.0E+3 dsbas322 toEng 10e2 -> 1.0E+3 dsbas323 toSci 10e1 -> 1.0E+2 dsbas324 toEng 10e1 -> 100 dsbas325 toSci 10e0 -> 10 dsbas326 toEng 10e0 -> 10 dsbas327 toSci 10e-1 -> 1.0 dsbas328 toEng 10e-1 -> 1.0 dsbas329 toSci 10e-2 -> 0.10 dsbas330 toEng 10e-2 -> 0.10 dsbas331 toSci 10e-3 -> 0.010 dsbas332 toEng 10e-3 -> 0.010 dsbas333 toSci 10e-4 -> 0.0010 dsbas334 toEng 10e-4 -> 0.0010 dsbas335 toSci 10e-5 -> 0.00010 dsbas336 toEng 10e-5 -> 0.00010 dsbas337 toSci 10e-6 -> 0.000010 dsbas338 toEng 10e-6 -> 0.000010 dsbas339 toSci 10e-7 -> 0.0000010 dsbas340 toEng 10e-7 -> 0.0000010 dsbas341 toSci 10e-8 -> 1.0E-7 dsbas342 toEng 10e-8 -> 100E-9 dsbas343 toSci 10e-9 -> 1.0E-8 dsbas344 toEng 10e-9 -> 10E-9 dsbas345 toSci 10e-10 -> 1.0E-9 dsbas346 toEng 10e-10 -> 1.0E-9 dsbas347 toSci 10e-11 -> 1.0E-10 dsbas348 toEng 10e-11 -> 100E-12 dsbas349 toSci 10e-12 -> 1.0E-11 dsbas350 toEng 10e-12 -> 10E-12 dsbas351 toSci 10e-13 -> 1.0E-12 dsbas352 toEng 10e-13 -> 1.0E-12 dsbas361 toSci 7E12 -> 7E+12 dsbas362 toEng 7E12 -> 7E+12 dsbas363 toSci 7E11 -> 7E+11 dsbas364 toEng 7E11 -> 700E+9 dsbas365 toSci 7E10 -> 7E+10 dsbas366 toEng 7E10 -> 70E+9 dsbas367 toSci 7E9 -> 7E+9 dsbas368 toEng 7E9 -> 7E+9 dsbas369 toSci 7E8 -> 7E+8 dsbas370 toEng 7E8 -> 700E+6 dsbas371 toSci 7E7 -> 7E+7 dsbas372 toEng 7E7 -> 70E+6 dsbas373 toSci 7E6 -> 7E+6 dsbas374 toEng 7E6 -> 7E+6 dsbas375 toSci 7E5 -> 7E+5 dsbas376 toEng 7E5 -> 700E+3 dsbas377 toSci 7E4 -> 7E+4 dsbas378 toEng 7E4 -> 70E+3 dsbas379 toSci 7E3 -> 7E+3 dsbas380 toEng 7E3 -> 7E+3 dsbas381 toSci 7E2 -> 7E+2 dsbas382 toEng 7E2 -> 700 dsbas383 toSci 7E1 -> 7E+1 dsbas384 toEng 7E1 -> 70 dsbas385 toSci 7E0 -> 7 dsbas386 toEng 7E0 -> 7 dsbas387 toSci 7E-1 -> 0.7 dsbas388 toEng 7E-1 -> 0.7 dsbas389 toSci 7E-2 -> 0.07 dsbas390 toEng 7E-2 -> 0.07 dsbas391 toSci 7E-3 -> 0.007 dsbas392 toEng 7E-3 -> 0.007 dsbas393 toSci 7E-4 -> 0.0007 dsbas394 toEng 7E-4 -> 0.0007 dsbas395 toSci 7E-5 -> 0.00007 dsbas396 toEng 7E-5 -> 0.00007 dsbas397 toSci 7E-6 -> 0.000007 dsbas398 toEng 7E-6 -> 0.000007 dsbas399 toSci 7E-7 -> 7E-7 dsbas400 toEng 7E-7 -> 700E-9 dsbas401 toSci 7E-8 -> 7E-8 dsbas402 toEng 7E-8 -> 70E-9 dsbas403 toSci 7E-9 -> 7E-9 dsbas404 toEng 7E-9 -> 7E-9 dsbas405 toSci 7E-10 -> 7E-10 dsbas406 toEng 7E-10 -> 700E-12 dsbas407 toSci 7E-11 -> 7E-11 dsbas408 toEng 7E-11 -> 70E-12 dsbas409 toSci 7E-12 -> 7E-12 dsbas410 toEng 7E-12 -> 7E-12 dsbas411 toSci 7E-13 -> 7E-13 dsbas412 toEng 7E-13 -> 700E-15 -- Exacts remain exact up to precision .. dsbas420 toSci 100 -> 100 dsbas422 toSci 1000 -> 1000 dsbas424 toSci 999.9 -> 999.9 dsbas426 toSci 1000.0 -> 1000.0 dsbas428 toSci 1000.1 -> 1000.1 dsbas430 toSci 10000 -> 10000 dsbas432 toSci 1000 -> 1000 dsbas434 toSci 10000 -> 10000 dsbas436 toSci 100000 -> 100000 dsbas438 toSci 1000000 -> 1000000 dsbas440 toSci 10000000 -> 1.000000E+7 Rounded dsbas442 toSci 10000000 -> 1.000000E+7 Rounded dsbas444 toSci 10000003 -> 1.000000E+7 Rounded Inexact dsbas446 toSci 10000005 -> 1.000000E+7 Rounded Inexact dsbas448 toSci 100000050 -> 1.000000E+8 Rounded Inexact dsbas450 toSci 10000009 -> 1.000001E+7 Rounded Inexact dsbas452 toSci 100000000 -> 1.000000E+8 Rounded dsbas454 toSci 100000003 -> 1.000000E+8 Rounded Inexact dsbas456 toSci 100000005 -> 1.000000E+8 Rounded Inexact dsbas458 toSci 100000009 -> 1.000000E+8 Rounded Inexact dsbas460 toSci 1000000000 -> 1.000000E+9 Rounded dsbas462 toSci 1000000300 -> 1.000000E+9 Rounded Inexact dsbas464 toSci 1000000500 -> 1.000000E+9 Rounded Inexact dsbas466 toSci 1000000900 -> 1.000001E+9 Rounded Inexact dsbas468 toSci 10000000000 -> 1.000000E+10 Rounded dsbas470 toSci 10000003000 -> 1.000000E+10 Rounded Inexact dsbas472 toSci 10000005000 -> 1.000000E+10 Rounded Inexact dsbas474 toSci 10000009000 -> 1.000001E+10 Rounded Inexact -- check rounding modes heeded rounding: ceiling dsbsr401 toSci 1.1123450 -> 1.112345 Rounded dsbsr402 toSci 1.11234549 -> 1.112346 Rounded Inexact dsbsr403 toSci 1.11234550 -> 1.112346 Rounded Inexact dsbsr404 toSci 1.11234551 -> 1.112346 Rounded Inexact rounding: up dsbsr405 toSci 1.1123450 -> 1.112345 Rounded dsbsr406 toSci 1.11234549 -> 1.112346 Rounded Inexact dsbsr407 toSci 1.11234550 -> 1.112346 Rounded Inexact dsbsr408 toSci 1.11234551 -> 1.112346 Rounded Inexact rounding: floor dsbsr410 toSci 1.1123450 -> 1.112345 Rounded dsbsr411 toSci 1.11234549 -> 1.112345 Rounded Inexact dsbsr412 toSci 1.11234550 -> 1.112345 Rounded Inexact dsbsr413 toSci 1.11234551 -> 1.112345 Rounded Inexact rounding: half_down dsbsr415 toSci 1.1123450 -> 1.112345 Rounded dsbsr416 toSci 1.11234549 -> 1.112345 Rounded Inexact dsbsr417 toSci 1.11234550 -> 1.112345 Rounded Inexact dsbsr418 toSci 1.11234650 -> 1.112346 Rounded Inexact dsbsr419 toSci 1.11234551 -> 1.112346 Rounded Inexact rounding: half_even dsbsr421 toSci 1.1123450 -> 1.112345 Rounded dsbsr422 toSci 1.11234549 -> 1.112345 Rounded Inexact dsbsr423 toSci 1.11234550 -> 1.112346 Rounded Inexact dsbsr424 toSci 1.11234650 -> 1.112346 Rounded Inexact dsbsr425 toSci 1.11234551 -> 1.112346 Rounded Inexact rounding: down dsbsr426 toSci 1.1123450 -> 1.112345 Rounded dsbsr427 toSci 1.11234549 -> 1.112345 Rounded Inexact dsbsr428 toSci 1.11234550 -> 1.112345 Rounded Inexact dsbsr429 toSci 1.11234551 -> 1.112345 Rounded Inexact rounding: half_up dsbsr431 toSci 1.1123450 -> 1.112345 Rounded dsbsr432 toSci 1.11234549 -> 1.112345 Rounded Inexact dsbsr433 toSci 1.11234550 -> 1.112346 Rounded Inexact dsbsr434 toSci 1.11234650 -> 1.112347 Rounded Inexact dsbsr435 toSci 1.11234551 -> 1.112346 Rounded Inexact -- negatives rounding: ceiling dsbsr501 toSci -1.1123450 -> -1.112345 Rounded dsbsr502 toSci -1.11234549 -> -1.112345 Rounded Inexact dsbsr503 toSci -1.11234550 -> -1.112345 Rounded Inexact dsbsr504 toSci -1.11234551 -> -1.112345 Rounded Inexact rounding: up dsbsr505 toSci -1.1123450 -> -1.112345 Rounded dsbsr506 toSci -1.11234549 -> -1.112346 Rounded Inexact dsbsr507 toSci -1.11234550 -> -1.112346 Rounded Inexact dsbsr508 toSci -1.11234551 -> -1.112346 Rounded Inexact rounding: floor dsbsr510 toSci -1.1123450 -> -1.112345 Rounded dsbsr511 toSci -1.11234549 -> -1.112346 Rounded Inexact dsbsr512 toSci -1.11234550 -> -1.112346 Rounded Inexact dsbsr513 toSci -1.11234551 -> -1.112346 Rounded Inexact rounding: half_down dsbsr515 toSci -1.1123450 -> -1.112345 Rounded dsbsr516 toSci -1.11234549 -> -1.112345 Rounded Inexact dsbsr517 toSci -1.11234550 -> -1.112345 Rounded Inexact dsbsr518 toSci -1.11234650 -> -1.112346 Rounded Inexact dsbsr519 toSci -1.11234551 -> -1.112346 Rounded Inexact rounding: half_even dsbsr521 toSci -1.1123450 -> -1.112345 Rounded dsbsr522 toSci -1.11234549 -> -1.112345 Rounded Inexact dsbsr523 toSci -1.11234550 -> -1.112346 Rounded Inexact dsbsr524 toSci -1.11234650 -> -1.112346 Rounded Inexact dsbsr525 toSci -1.11234551 -> -1.112346 Rounded Inexact rounding: down dsbsr526 toSci -1.1123450 -> -1.112345 Rounded dsbsr527 toSci -1.11234549 -> -1.112345 Rounded Inexact dsbsr528 toSci -1.11234550 -> -1.112345 Rounded Inexact dsbsr529 toSci -1.11234551 -> -1.112345 Rounded Inexact rounding: half_up dsbsr531 toSci -1.1123450 -> -1.112345 Rounded dsbsr532 toSci -1.11234549 -> -1.112345 Rounded Inexact dsbsr533 toSci -1.11234550 -> -1.112346 Rounded Inexact dsbsr534 toSci -1.11234650 -> -1.112347 Rounded Inexact dsbsr535 toSci -1.11234551 -> -1.112346 Rounded Inexact rounding: half_even -- The 'baddies' tests from DiagBigDecimal, plus some new ones dsbas500 toSci '1..2' -> NaN Conversion_syntax dsbas501 toSci '.' -> NaN Conversion_syntax dsbas502 toSci '..' -> NaN Conversion_syntax dsbas503 toSci '++1' -> NaN Conversion_syntax dsbas504 toSci '--1' -> NaN Conversion_syntax dsbas505 toSci '-+1' -> NaN Conversion_syntax dsbas506 toSci '+-1' -> NaN Conversion_syntax dsbas507 toSci '12e' -> NaN Conversion_syntax dsbas508 toSci '12e++' -> NaN Conversion_syntax dsbas509 toSci '12f4' -> NaN Conversion_syntax dsbas510 toSci ' +1' -> NaN Conversion_syntax dsbas511 toSci '+ 1' -> NaN Conversion_syntax dsbas512 toSci '12 ' -> NaN Conversion_syntax dsbas513 toSci ' + 1' -> NaN Conversion_syntax dsbas514 toSci ' - 1 ' -> NaN Conversion_syntax dsbas515 toSci 'x' -> NaN Conversion_syntax dsbas516 toSci '-1-' -> NaN Conversion_syntax dsbas517 toSci '12-' -> NaN Conversion_syntax dsbas518 toSci '3+' -> NaN Conversion_syntax dsbas519 toSci '' -> NaN Conversion_syntax dsbas520 toSci '1e-' -> NaN Conversion_syntax dsbas521 toSci '7e99999a' -> NaN Conversion_syntax dsbas522 toSci '7e123567890x' -> NaN Conversion_syntax dsbas523 toSci '7e12356789012x' -> NaN Conversion_syntax dsbas524 toSci '' -> NaN Conversion_syntax dsbas525 toSci 'e100' -> NaN Conversion_syntax dsbas526 toSci '\u0e5a' -> NaN Conversion_syntax dsbas527 toSci '\u0b65' -> NaN Conversion_syntax dsbas528 toSci '123,65' -> NaN Conversion_syntax dsbas529 toSci '1.34.5' -> NaN Conversion_syntax dsbas530 toSci '.123.5' -> NaN Conversion_syntax dsbas531 toSci '01.35.' -> NaN Conversion_syntax dsbas532 toSci '01.35-' -> NaN Conversion_syntax dsbas533 toSci '0000..' -> NaN Conversion_syntax dsbas534 toSci '.0000.' -> NaN Conversion_syntax dsbas535 toSci '00..00' -> NaN Conversion_syntax dsbas536 toSci '111e*123' -> NaN Conversion_syntax dsbas537 toSci '111e123-' -> NaN Conversion_syntax dsbas538 toSci '111e+12+' -> NaN Conversion_syntax dsbas539 toSci '111e1-3-' -> NaN Conversion_syntax dsbas540 toSci '111e1*23' -> NaN Conversion_syntax dsbas541 toSci '111e1e+3' -> NaN Conversion_syntax dsbas542 toSci '1e1.0' -> NaN Conversion_syntax dsbas543 toSci '1e123e' -> NaN Conversion_syntax dsbas544 toSci 'ten' -> NaN Conversion_syntax dsbas545 toSci 'ONE' -> NaN Conversion_syntax dsbas546 toSci '1e.1' -> NaN Conversion_syntax dsbas547 toSci '1e1.' -> NaN Conversion_syntax dsbas548 toSci '1ee' -> NaN Conversion_syntax dsbas549 toSci 'e+1' -> NaN Conversion_syntax dsbas550 toSci '1.23.4' -> NaN Conversion_syntax dsbas551 toSci '1.2.1' -> NaN Conversion_syntax dsbas552 toSci '1E+1.2' -> NaN Conversion_syntax dsbas553 toSci '1E+1.2.3' -> NaN Conversion_syntax dsbas554 toSci '1E++1' -> NaN Conversion_syntax dsbas555 toSci '1E--1' -> NaN Conversion_syntax dsbas556 toSci '1E+-1' -> NaN Conversion_syntax dsbas557 toSci '1E-+1' -> NaN Conversion_syntax dsbas558 toSci '1E''1' -> NaN Conversion_syntax dsbas559 toSci "1E""1" -> NaN Conversion_syntax dsbas560 toSci "1E""""" -> NaN Conversion_syntax -- Near-specials dsbas561 toSci "qNaN" -> NaN Conversion_syntax dsbas562 toSci "NaNq" -> NaN Conversion_syntax dsbas563 toSci "NaNs" -> NaN Conversion_syntax dsbas564 toSci "Infi" -> NaN Conversion_syntax dsbas565 toSci "Infin" -> NaN Conversion_syntax dsbas566 toSci "Infini" -> NaN Conversion_syntax dsbas567 toSci "Infinit" -> NaN Conversion_syntax dsbas568 toSci "-Infinit" -> NaN Conversion_syntax dsbas569 toSci "0Inf" -> NaN Conversion_syntax dsbas570 toSci "9Inf" -> NaN Conversion_syntax dsbas571 toSci "-0Inf" -> NaN Conversion_syntax dsbas572 toSci "-9Inf" -> NaN Conversion_syntax dsbas573 toSci "-sNa" -> NaN Conversion_syntax dsbas574 toSci "xNaN" -> NaN Conversion_syntax dsbas575 toSci "0sNaN" -> NaN Conversion_syntax -- some baddies with dots and Es and dots and specials dsbas576 toSci 'e+1' -> NaN Conversion_syntax dsbas577 toSci '.e+1' -> NaN Conversion_syntax dsbas578 toSci '+.e+1' -> NaN Conversion_syntax dsbas579 toSci '-.e+' -> NaN Conversion_syntax dsbas580 toSci '-.e' -> NaN Conversion_syntax dsbas581 toSci 'E+1' -> NaN Conversion_syntax dsbas582 toSci '.E+1' -> NaN Conversion_syntax dsbas583 toSci '+.E+1' -> NaN Conversion_syntax dsbas584 toSci '-.E+' -> NaN Conversion_syntax dsbas585 toSci '-.E' -> NaN Conversion_syntax dsbas586 toSci '.NaN' -> NaN Conversion_syntax dsbas587 toSci '-.NaN' -> NaN Conversion_syntax dsbas588 toSci '+.sNaN' -> NaN Conversion_syntax dsbas589 toSci '+.Inf' -> NaN Conversion_syntax dsbas590 toSci '.Infinity' -> NaN Conversion_syntax -- Zeros dsbas601 toSci 0.000000000 -> 0E-9 dsbas602 toSci 0.00000000 -> 0E-8 dsbas603 toSci 0.0000000 -> 0E-7 dsbas604 toSci 0.000000 -> 0.000000 dsbas605 toSci 0.00000 -> 0.00000 dsbas606 toSci 0.0000 -> 0.0000 dsbas607 toSci 0.000 -> 0.000 dsbas608 toSci 0.00 -> 0.00 dsbas609 toSci 0.0 -> 0.0 dsbas610 toSci .0 -> 0.0 dsbas611 toSci 0. -> 0 dsbas612 toSci -.0 -> -0.0 dsbas613 toSci -0. -> -0 dsbas614 toSci -0.0 -> -0.0 dsbas615 toSci -0.00 -> -0.00 dsbas616 toSci -0.000 -> -0.000 dsbas617 toSci -0.0000 -> -0.0000 dsbas618 toSci -0.00000 -> -0.00000 dsbas619 toSci -0.000000 -> -0.000000 dsbas620 toSci -0.0000000 -> -0E-7 dsbas621 toSci -0.00000000 -> -0E-8 dsbas622 toSci -0.000000000 -> -0E-9 dsbas630 toSci 0.00E+0 -> 0.00 dsbas631 toSci 0.00E+1 -> 0.0 dsbas632 toSci 0.00E+2 -> 0 dsbas633 toSci 0.00E+3 -> 0E+1 dsbas634 toSci 0.00E+4 -> 0E+2 dsbas635 toSci 0.00E+5 -> 0E+3 dsbas636 toSci 0.00E+6 -> 0E+4 dsbas637 toSci 0.00E+7 -> 0E+5 dsbas638 toSci 0.00E+8 -> 0E+6 dsbas639 toSci 0.00E+9 -> 0E+7 dsbas640 toSci 0.0E+0 -> 0.0 dsbas641 toSci 0.0E+1 -> 0 dsbas642 toSci 0.0E+2 -> 0E+1 dsbas643 toSci 0.0E+3 -> 0E+2 dsbas644 toSci 0.0E+4 -> 0E+3 dsbas645 toSci 0.0E+5 -> 0E+4 dsbas646 toSci 0.0E+6 -> 0E+5 dsbas647 toSci 0.0E+7 -> 0E+6 dsbas648 toSci 0.0E+8 -> 0E+7 dsbas649 toSci 0.0E+9 -> 0E+8 dsbas650 toSci 0E+0 -> 0 dsbas651 toSci 0E+1 -> 0E+1 dsbas652 toSci 0E+2 -> 0E+2 dsbas653 toSci 0E+3 -> 0E+3 dsbas654 toSci 0E+4 -> 0E+4 dsbas655 toSci 0E+5 -> 0E+5 dsbas656 toSci 0E+6 -> 0E+6 dsbas657 toSci 0E+7 -> 0E+7 dsbas658 toSci 0E+8 -> 0E+8 dsbas659 toSci 0E+9 -> 0E+9 dsbas660 toSci 0.0E-0 -> 0.0 dsbas661 toSci 0.0E-1 -> 0.00 dsbas662 toSci 0.0E-2 -> 0.000 dsbas663 toSci 0.0E-3 -> 0.0000 dsbas664 toSci 0.0E-4 -> 0.00000 dsbas665 toSci 0.0E-5 -> 0.000000 dsbas666 toSci 0.0E-6 -> 0E-7 dsbas667 toSci 0.0E-7 -> 0E-8 dsbas668 toSci 0.0E-8 -> 0E-9 dsbas669 toSci 0.0E-9 -> 0E-10 dsbas670 toSci 0.00E-0 -> 0.00 dsbas671 toSci 0.00E-1 -> 0.000 dsbas672 toSci 0.00E-2 -> 0.0000 dsbas673 toSci 0.00E-3 -> 0.00000 dsbas674 toSci 0.00E-4 -> 0.000000 dsbas675 toSci 0.00E-5 -> 0E-7 dsbas676 toSci 0.00E-6 -> 0E-8 dsbas677 toSci 0.00E-7 -> 0E-9 dsbas678 toSci 0.00E-8 -> 0E-10 dsbas679 toSci 0.00E-9 -> 0E-11 dsbas680 toSci 000000. -> 0 dsbas681 toSci 00000. -> 0 dsbas682 toSci 0000. -> 0 dsbas683 toSci 000. -> 0 dsbas684 toSci 00. -> 0 dsbas685 toSci 0. -> 0 dsbas686 toSci +00000. -> 0 dsbas687 toSci -00000. -> -0 dsbas688 toSci +0. -> 0 dsbas689 toSci -0. -> -0 -- Specials dsbas700 toSci "NaN" -> NaN dsbas701 toSci "nan" -> NaN dsbas702 toSci "nAn" -> NaN dsbas703 toSci "NAN" -> NaN dsbas704 toSci "+NaN" -> NaN dsbas705 toSci "+nan" -> NaN dsbas706 toSci "+nAn" -> NaN dsbas707 toSci "+NAN" -> NaN dsbas708 toSci "-NaN" -> -NaN dsbas709 toSci "-nan" -> -NaN dsbas710 toSci "-nAn" -> -NaN dsbas711 toSci "-NAN" -> -NaN dsbas712 toSci 'NaN0' -> NaN dsbas713 toSci 'NaN1' -> NaN1 dsbas714 toSci 'NaN12' -> NaN12 dsbas715 toSci 'NaN123' -> NaN123 dsbas716 toSci 'NaN1234' -> NaN1234 dsbas717 toSci 'NaN01' -> NaN1 dsbas718 toSci 'NaN012' -> NaN12 dsbas719 toSci 'NaN0123' -> NaN123 dsbas720 toSci 'NaN01234' -> NaN1234 dsbas721 toSci 'NaN001' -> NaN1 dsbas722 toSci 'NaN0012' -> NaN12 dsbas723 toSci 'NaN00123' -> NaN123 dsbas724 toSci 'NaN001234' -> NaN1234 dsbas725 toSci 'NaN1234567890123456' -> NaN Conversion_syntax dsbas726 toSci 'NaN123e+1' -> NaN Conversion_syntax dsbas727 toSci 'NaN12.45' -> NaN Conversion_syntax dsbas728 toSci 'NaN-12' -> NaN Conversion_syntax dsbas729 toSci 'NaN+12' -> NaN Conversion_syntax dsbas730 toSci "sNaN" -> sNaN dsbas731 toSci "snan" -> sNaN dsbas732 toSci "SnAn" -> sNaN dsbas733 toSci "SNAN" -> sNaN dsbas734 toSci "+sNaN" -> sNaN dsbas735 toSci "+snan" -> sNaN dsbas736 toSci "+SnAn" -> sNaN dsbas737 toSci "+SNAN" -> sNaN dsbas738 toSci "-sNaN" -> -sNaN dsbas739 toSci "-snan" -> -sNaN dsbas740 toSci "-SnAn" -> -sNaN dsbas741 toSci "-SNAN" -> -sNaN dsbas742 toSci 'sNaN0000' -> sNaN dsbas743 toSci 'sNaN7' -> sNaN7 dsbas744 toSci 'sNaN007234' -> sNaN7234 dsbas745 toSci 'sNaN7234561234567890' -> NaN Conversion_syntax dsbas746 toSci 'sNaN72.45' -> NaN Conversion_syntax dsbas747 toSci 'sNaN-72' -> NaN Conversion_syntax dsbas748 toSci "Inf" -> Infinity dsbas749 toSci "inf" -> Infinity dsbas750 toSci "iNf" -> Infinity dsbas751 toSci "INF" -> Infinity dsbas752 toSci "+Inf" -> Infinity dsbas753 toSci "+inf" -> Infinity dsbas754 toSci "+iNf" -> Infinity dsbas755 toSci "+INF" -> Infinity dsbas756 toSci "-Inf" -> -Infinity dsbas757 toSci "-inf" -> -Infinity dsbas758 toSci "-iNf" -> -Infinity dsbas759 toSci "-INF" -> -Infinity dsbas760 toSci "Infinity" -> Infinity dsbas761 toSci "infinity" -> Infinity dsbas762 toSci "iNfInItY" -> Infinity dsbas763 toSci "INFINITY" -> Infinity dsbas764 toSci "+Infinity" -> Infinity dsbas765 toSci "+infinity" -> Infinity dsbas766 toSci "+iNfInItY" -> Infinity dsbas767 toSci "+INFINITY" -> Infinity dsbas768 toSci "-Infinity" -> -Infinity dsbas769 toSci "-infinity" -> -Infinity dsbas770 toSci "-iNfInItY" -> -Infinity dsbas771 toSci "-INFINITY" -> -Infinity -- Specials and zeros for toEng dsbast772 toEng "NaN" -> NaN dsbast773 toEng "-Infinity" -> -Infinity dsbast774 toEng "-sNaN" -> -sNaN dsbast775 toEng "-NaN" -> -NaN dsbast776 toEng "+Infinity" -> Infinity dsbast778 toEng "+sNaN" -> sNaN dsbast779 toEng "+NaN" -> NaN dsbast780 toEng "INFINITY" -> Infinity dsbast781 toEng "SNAN" -> sNaN dsbast782 toEng "NAN" -> NaN dsbast783 toEng "infinity" -> Infinity dsbast784 toEng "snan" -> sNaN dsbast785 toEng "nan" -> NaN dsbast786 toEng "InFINITY" -> Infinity dsbast787 toEng "SnAN" -> sNaN dsbast788 toEng "nAN" -> NaN dsbast789 toEng "iNfinity" -> Infinity dsbast790 toEng "sNan" -> sNaN dsbast791 toEng "Nan" -> NaN dsbast792 toEng "Infinity" -> Infinity dsbast793 toEng "sNaN" -> sNaN -- Zero toEng, etc. dsbast800 toEng 0e+1 -> "0.00E+3" -- doc example dsbast801 toEng 0.000000000 -> 0E-9 dsbast802 toEng 0.00000000 -> 0.00E-6 dsbast803 toEng 0.0000000 -> 0.0E-6 dsbast804 toEng 0.000000 -> 0.000000 dsbast805 toEng 0.00000 -> 0.00000 dsbast806 toEng 0.0000 -> 0.0000 dsbast807 toEng 0.000 -> 0.000 dsbast808 toEng 0.00 -> 0.00 dsbast809 toEng 0.0 -> 0.0 dsbast810 toEng .0 -> 0.0 dsbast811 toEng 0. -> 0 dsbast812 toEng -.0 -> -0.0 dsbast813 toEng -0. -> -0 dsbast814 toEng -0.0 -> -0.0 dsbast815 toEng -0.00 -> -0.00 dsbast816 toEng -0.000 -> -0.000 dsbast817 toEng -0.0000 -> -0.0000 dsbast818 toEng -0.00000 -> -0.00000 dsbast819 toEng -0.000000 -> -0.000000 dsbast820 toEng -0.0000000 -> -0.0E-6 dsbast821 toEng -0.00000000 -> -0.00E-6 dsbast822 toEng -0.000000000 -> -0E-9 dsbast830 toEng 0.00E+0 -> 0.00 dsbast831 toEng 0.00E+1 -> 0.0 dsbast832 toEng 0.00E+2 -> 0 dsbast833 toEng 0.00E+3 -> 0.00E+3 dsbast834 toEng 0.00E+4 -> 0.0E+3 dsbast835 toEng 0.00E+5 -> 0E+3 dsbast836 toEng 0.00E+6 -> 0.00E+6 dsbast837 toEng 0.00E+7 -> 0.0E+6 dsbast838 toEng 0.00E+8 -> 0E+6 dsbast839 toEng 0.00E+9 -> 0.00E+9 dsbast840 toEng 0.0E+0 -> 0.0 dsbast841 toEng 0.0E+1 -> 0 dsbast842 toEng 0.0E+2 -> 0.00E+3 dsbast843 toEng 0.0E+3 -> 0.0E+3 dsbast844 toEng 0.0E+4 -> 0E+3 dsbast845 toEng 0.0E+5 -> 0.00E+6 dsbast846 toEng 0.0E+6 -> 0.0E+6 dsbast847 toEng 0.0E+7 -> 0E+6 dsbast848 toEng 0.0E+8 -> 0.00E+9 dsbast849 toEng 0.0E+9 -> 0.0E+9 dsbast850 toEng 0E+0 -> 0 dsbast851 toEng 0E+1 -> 0.00E+3 dsbast852 toEng 0E+2 -> 0.0E+3 dsbast853 toEng 0E+3 -> 0E+3 dsbast854 toEng 0E+4 -> 0.00E+6 dsbast855 toEng 0E+5 -> 0.0E+6 dsbast856 toEng 0E+6 -> 0E+6 dsbast857 toEng 0E+7 -> 0.00E+9 dsbast858 toEng 0E+8 -> 0.0E+9 dsbast859 toEng 0E+9 -> 0E+9 dsbast860 toEng 0.0E-0 -> 0.0 dsbast861 toEng 0.0E-1 -> 0.00 dsbast862 toEng 0.0E-2 -> 0.000 dsbast863 toEng 0.0E-3 -> 0.0000 dsbast864 toEng 0.0E-4 -> 0.00000 dsbast865 toEng 0.0E-5 -> 0.000000 dsbast866 toEng 0.0E-6 -> 0.0E-6 dsbast867 toEng 0.0E-7 -> 0.00E-6 dsbast868 toEng 0.0E-8 -> 0E-9 dsbast869 toEng 0.0E-9 -> 0.0E-9 dsbast870 toEng 0.00E-0 -> 0.00 dsbast871 toEng 0.00E-1 -> 0.000 dsbast872 toEng 0.00E-2 -> 0.0000 dsbast873 toEng 0.00E-3 -> 0.00000 dsbast874 toEng 0.00E-4 -> 0.000000 dsbast875 toEng 0.00E-5 -> 0.0E-6 dsbast876 toEng 0.00E-6 -> 0.00E-6 dsbast877 toEng 0.00E-7 -> 0E-9 dsbast878 toEng 0.00E-8 -> 0.0E-9 dsbast879 toEng 0.00E-9 -> 0.00E-9 -- long input strings dsbas801 tosci '01234567' -> 1234567 dsbas802 tosci '001234567' -> 1234567 dsbas803 tosci '0001234567' -> 1234567 dsbas804 tosci '00001234567' -> 1234567 dsbas805 tosci '000001234567' -> 1234567 dsbas806 tosci '0000001234567' -> 1234567 dsbas807 tosci '00000001234567' -> 1234567 dsbas808 tosci '000000001234567' -> 1234567 dsbas809 tosci '0000000001234567' -> 1234567 dsbas810 tosci '00000000001234567' -> 1234567 dsbas811 tosci '0.1234567' -> 0.1234567 dsbas812 tosci '0.01234567' -> 0.01234567 dsbas813 tosci '0.001234567' -> 0.001234567 dsbas814 tosci '0.0001234567' -> 0.0001234567 dsbas815 tosci '0.00001234567' -> 0.00001234567 dsbas816 tosci '0.000001234567' -> 0.000001234567 dsbas817 tosci '0.0000001234567' -> 1.234567E-7 dsbas818 tosci '0.00000001234567' -> 1.234567E-8 dsbas819 tosci '0.000000001234567' -> 1.234567E-9 dsbas820 tosci '0.0000000001234567' -> 1.234567E-10 dsbas821 tosci '123456790' -> 1.234568E+8 Inexact Rounded dsbas822 tosci '1234567901' -> 1.234568E+9 Inexact Rounded dsbas823 tosci '12345679012' -> 1.234568E+10 Inexact Rounded dsbas824 tosci '123456790123' -> 1.234568E+11 Inexact Rounded dsbas825 tosci '1234567901234' -> 1.234568E+12 Inexact Rounded dsbas826 tosci '12345679012345' -> 1.234568E+13 Inexact Rounded dsbas827 tosci '123456790123456' -> 1.234568E+14 Inexact Rounded dsbas828 tosci '1234567901234567' -> 1.234568E+15 Inexact Rounded dsbas829 tosci '1234567890123456' -> 1.234568E+15 Inexact Rounded -- subnormals and overflows dsbas906 toSci '99e999999999' -> Infinity Overflow Inexact Rounded dsbas907 toSci '999e999999999' -> Infinity Overflow Inexact Rounded dsbas908 toSci '0.9e-999999999' -> 0E-101 Underflow Subnormal Inexact Rounded Clamped dsbas909 toSci '0.09e-999999999' -> 0E-101 Underflow Subnormal Inexact Rounded Clamped dsbas910 toSci '0.1e1000000000' -> Infinity Overflow Inexact Rounded dsbas911 toSci '10e-1000000000' -> 0E-101 Underflow Subnormal Inexact Rounded Clamped dsbas912 toSci '0.9e9999999999' -> Infinity Overflow Inexact Rounded dsbas913 toSci '99e-9999999999' -> 0E-101 Underflow Subnormal Inexact Rounded Clamped dsbas914 toSci '111e9999999999' -> Infinity Overflow Inexact Rounded dsbas915 toSci '1111e-9999999999' -> 0E-101 Underflow Subnormal Inexact Rounded Clamped dsbas916 toSci '1111e-99999999999' -> 0E-101 Underflow Subnormal Inexact Rounded Clamped dsbas917 toSci '7e1000000000' -> Infinity Overflow Inexact Rounded -- negatives the same dsbas918 toSci '-99e999999999' -> -Infinity Overflow Inexact Rounded dsbas919 toSci '-999e999999999' -> -Infinity Overflow Inexact Rounded dsbas920 toSci '-0.9e-999999999' -> -0E-101 Underflow Subnormal Inexact Rounded Clamped dsbas921 toSci '-0.09e-999999999' -> -0E-101 Underflow Subnormal Inexact Rounded Clamped dsbas922 toSci '-0.1e1000000000' -> -Infinity Overflow Inexact Rounded dsbas923 toSci '-10e-1000000000' -> -0E-101 Underflow Subnormal Inexact Rounded Clamped dsbas924 toSci '-0.9e9999999999' -> -Infinity Overflow Inexact Rounded dsbas925 toSci '-99e-9999999999' -> -0E-101 Underflow Subnormal Inexact Rounded Clamped dsbas926 toSci '-111e9999999999' -> -Infinity Overflow Inexact Rounded dsbas927 toSci '-1111e-9999999999' -> -0E-101 Underflow Subnormal Inexact Rounded Clamped dsbas928 toSci '-1111e-99999999999' -> -0E-101 Underflow Subnormal Inexact Rounded Clamped dsbas929 toSci '-7e1000000000' -> -Infinity Overflow Inexact Rounded -- overflow results at different rounding modes rounding: ceiling dsbas930 toSci '7e10000' -> Infinity Overflow Inexact Rounded dsbas931 toSci '-7e10000' -> -9.999999E+96 Overflow Inexact Rounded rounding: up dsbas932 toSci '7e10000' -> Infinity Overflow Inexact Rounded dsbas933 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded rounding: down dsbas934 toSci '7e10000' -> 9.999999E+96 Overflow Inexact Rounded dsbas935 toSci '-7e10000' -> -9.999999E+96 Overflow Inexact Rounded rounding: floor dsbas936 toSci '7e10000' -> 9.999999E+96 Overflow Inexact Rounded dsbas937 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded rounding: half_up dsbas938 toSci '7e10000' -> Infinity Overflow Inexact Rounded dsbas939 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded rounding: half_even dsbas940 toSci '7e10000' -> Infinity Overflow Inexact Rounded dsbas941 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded rounding: half_down dsbas942 toSci '7e10000' -> Infinity Overflow Inexact Rounded dsbas943 toSci '-7e10000' -> -Infinity Overflow Inexact Rounded rounding: half_even -- Now check 854/754r some subnormals and underflow to 0 dsbem400 toSci 1.0000E-86 -> 1.0000E-86 dsbem401 toSci 0.1E-97 -> 1E-98 Subnormal dsbem402 toSci 0.1000E-97 -> 1.000E-98 Subnormal dsbem403 toSci 0.0100E-97 -> 1.00E-99 Subnormal dsbem404 toSci 0.0010E-97 -> 1.0E-100 Subnormal dsbem405 toSci 0.0001E-97 -> 1E-101 Subnormal dsbem406 toSci 0.00010E-97 -> 1E-101 Subnormal Rounded dsbem407 toSci 0.00013E-97 -> 1E-101 Underflow Subnormal Inexact Rounded dsbem408 toSci 0.00015E-97 -> 2E-101 Underflow Subnormal Inexact Rounded dsbem409 toSci 0.00017E-97 -> 2E-101 Underflow Subnormal Inexact Rounded dsbem410 toSci 0.00023E-97 -> 2E-101 Underflow Subnormal Inexact Rounded dsbem411 toSci 0.00025E-97 -> 2E-101 Underflow Subnormal Inexact Rounded dsbem412 toSci 0.00027E-97 -> 3E-101 Underflow Subnormal Inexact Rounded dsbem413 toSci 0.000149E-97 -> 1E-101 Underflow Subnormal Inexact Rounded dsbem414 toSci 0.000150E-97 -> 2E-101 Underflow Subnormal Inexact Rounded dsbem415 toSci 0.000151E-97 -> 2E-101 Underflow Subnormal Inexact Rounded dsbem416 toSci 0.000249E-97 -> 2E-101 Underflow Subnormal Inexact Rounded dsbem417 toSci 0.000250E-97 -> 2E-101 Underflow Subnormal Inexact Rounded dsbem418 toSci 0.000251E-97 -> 3E-101 Underflow Subnormal Inexact Rounded dsbem419 toSci 0.00009E-97 -> 1E-101 Underflow Subnormal Inexact Rounded dsbem420 toSci 0.00005E-97 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped dsbem421 toSci 0.00003E-97 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped dsbem422 toSci 0.000009E-97 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped dsbem423 toSci 0.000005E-97 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped dsbem424 toSci 0.000003E-97 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped dsbem425 toSci 0.001049E-97 -> 1.0E-100 Underflow Subnormal Inexact Rounded dsbem426 toSci 0.001050E-97 -> 1.0E-100 Underflow Subnormal Inexact Rounded dsbem427 toSci 0.001051E-97 -> 1.1E-100 Underflow Subnormal Inexact Rounded dsbem428 toSci 0.001149E-97 -> 1.1E-100 Underflow Subnormal Inexact Rounded dsbem429 toSci 0.001150E-97 -> 1.2E-100 Underflow Subnormal Inexact Rounded dsbem430 toSci 0.001151E-97 -> 1.2E-100 Underflow Subnormal Inexact Rounded dsbem432 toSci 0.010049E-97 -> 1.00E-99 Underflow Subnormal Inexact Rounded dsbem433 toSci 0.010050E-97 -> 1.00E-99 Underflow Subnormal Inexact Rounded dsbem434 toSci 0.010051E-97 -> 1.01E-99 Underflow Subnormal Inexact Rounded dsbem435 toSci 0.010149E-97 -> 1.01E-99 Underflow Subnormal Inexact Rounded dsbem436 toSci 0.010150E-97 -> 1.02E-99 Underflow Subnormal Inexact Rounded dsbem437 toSci 0.010151E-97 -> 1.02E-99 Underflow Subnormal Inexact Rounded dsbem440 toSci 0.10103E-97 -> 1.010E-98 Underflow Subnormal Inexact Rounded dsbem441 toSci 0.10105E-97 -> 1.010E-98 Underflow Subnormal Inexact Rounded dsbem442 toSci 0.10107E-97 -> 1.011E-98 Underflow Subnormal Inexact Rounded dsbem443 toSci 0.10113E-97 -> 1.011E-98 Underflow Subnormal Inexact Rounded dsbem444 toSci 0.10115E-97 -> 1.012E-98 Underflow Subnormal Inexact Rounded dsbem445 toSci 0.10117E-97 -> 1.012E-98 Underflow Subnormal Inexact Rounded dsbem450 toSci 1.10730E-98 -> 1.107E-98 Underflow Subnormal Inexact Rounded dsbem451 toSci 1.10750E-98 -> 1.108E-98 Underflow Subnormal Inexact Rounded dsbem452 toSci 1.10770E-98 -> 1.108E-98 Underflow Subnormal Inexact Rounded dsbem453 toSci 1.10830E-98 -> 1.108E-98 Underflow Subnormal Inexact Rounded dsbem454 toSci 1.10850E-98 -> 1.108E-98 Underflow Subnormal Inexact Rounded dsbem455 toSci 1.10870E-98 -> 1.109E-98 Underflow Subnormal Inexact Rounded -- make sure sign OK dsbem456 toSci -0.10103E-97 -> -1.010E-98 Underflow Subnormal Inexact Rounded dsbem457 toSci -0.10105E-97 -> -1.010E-98 Underflow Subnormal Inexact Rounded dsbem458 toSci -0.10107E-97 -> -1.011E-98 Underflow Subnormal Inexact Rounded dsbem459 toSci -0.10113E-97 -> -1.011E-98 Underflow Subnormal Inexact Rounded dsbem460 toSci -0.10115E-97 -> -1.012E-98 Underflow Subnormal Inexact Rounded dsbem461 toSci -0.10117E-97 -> -1.012E-98 Underflow Subnormal Inexact Rounded -- '999s' cases dsbem464 toSci 999999E-98 -> 9.99999E-93 dsbem465 toSci 99999.0E-97 -> 9.99990E-93 dsbem466 toSci 99999.E-97 -> 9.9999E-93 dsbem467 toSci 9999.9E-97 -> 9.9999E-94 dsbem468 toSci 999.99E-97 -> 9.9999E-95 dsbem469 toSci 99.999E-97 -> 9.9999E-96 Subnormal dsbem470 toSci 9.9999E-97 -> 9.9999E-97 Subnormal dsbem471 toSci 0.99999E-97 -> 1.0000E-97 Underflow Subnormal Inexact Rounded dsbem472 toSci 0.099999E-97 -> 1.000E-98 Underflow Subnormal Inexact Rounded dsbem473 toSci 0.0099999E-97 -> 1.00E-99 Underflow Subnormal Inexact Rounded dsbem474 toSci 0.00099999E-97 -> 1.0E-100 Underflow Subnormal Inexact Rounded dsbem475 toSci 0.000099999E-97 -> 1E-101 Underflow Subnormal Inexact Rounded dsbem476 toSci 0.0000099999E-97 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped dsbem477 toSci 0.00000099999E-97 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped dsbem478 toSci 0.000000099999E-97 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped -- Exponents with insignificant leading zeros dsbas1001 toSci 1e999999999 -> Infinity Overflow Inexact Rounded dsbas1002 toSci 1e0999999999 -> Infinity Overflow Inexact Rounded dsbas1003 toSci 1e00999999999 -> Infinity Overflow Inexact Rounded dsbas1004 toSci 1e000999999999 -> Infinity Overflow Inexact Rounded dsbas1005 toSci 1e000000000000999999999 -> Infinity Overflow Inexact Rounded dsbas1006 toSci 1e000000000001000000007 -> Infinity Overflow Inexact Rounded dsbas1007 toSci 1e-999999999 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped dsbas1008 toSci 1e-0999999999 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped dsbas1009 toSci 1e-00999999999 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped dsbas1010 toSci 1e-000999999999 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped dsbas1011 toSci 1e-000000000000999999999 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped dsbas1012 toSci 1e-000000000001000000007 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped -- check for double-rounded subnormals dsbas1041 toSci 1.1152444E-96 -> 1.11524E-96 Inexact Rounded Subnormal Underflow dsbas1042 toSci 1.1152445E-96 -> 1.11524E-96 Inexact Rounded Subnormal Underflow dsbas1043 toSci 1.1152446E-96 -> 1.11524E-96 Inexact Rounded Subnormal Underflow -- clamped zeros [see also clamp.decTest] dsbas1075 toSci 0e+10000 -> 0E+90 Clamped dsbas1076 toSci 0e-10000 -> 0E-101 Clamped dsbas1077 toSci -0e+10000 -> -0E+90 Clamped dsbas1078 toSci -0e-10000 -> -0E-101 Clamped -- extreme values from next-wider dsbas1101 toSci -9.999999999999999E+384 -> -Infinity Overflow Inexact Rounded dsbas1102 toSci -1E-383 -> -0E-101 Inexact Rounded Subnormal Underflow Clamped dsbas1103 toSci -1E-398 -> -0E-101 Inexact Rounded Subnormal Underflow Clamped dsbas1104 toSci -0 -> -0 dsbas1105 toSci +0 -> 0 dsbas1106 toSci +1E-398 -> 0E-101 Inexact Rounded Subnormal Underflow Clamped dsbas1107 toSci +1E-383 -> 0E-101 Inexact Rounded Subnormal Underflow Clamped dsbas1108 toSci +9.999999999999999E+384 -> Infinity Overflow Inexact Rounded -- narrowing case dsbas1110 toSci 2.000000000000000E-99 -> 2.00E-99 Rounded Subnormal
48,504
1,063
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/dqRotate.decTest
------------------------------------------------------------------------ -- dqRotate.decTest -- rotate decQuad coefficient left or right -- -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 extended: 1 clamp: 1 precision: 34 maxExponent: 6144 minExponent: -6143 rounding: half_even -- Sanity check dqrot001 rotate 0 0 -> 0 dqrot002 rotate 0 2 -> 0 dqrot003 rotate 1 2 -> 100 dqrot004 rotate 1 33 -> 1000000000000000000000000000000000 dqrot005 rotate 1 34 -> 1 dqrot006 rotate 1 -1 -> 1000000000000000000000000000000000 dqrot007 rotate 0 -2 -> 0 dqrot008 rotate 1234567890123456789012345678901234 -1 -> 4123456789012345678901234567890123 dqrot009 rotate 1234567890123456789012345678901234 -33 -> 2345678901234567890123456789012341 dqrot010 rotate 1234567890123456789012345678901234 -34 -> 1234567890123456789012345678901234 dqrot011 rotate 9934567890123456789012345678901234 -33 -> 9345678901234567890123456789012349 dqrot012 rotate 9934567890123456789012345678901234 -34 -> 9934567890123456789012345678901234 -- rhs must be an integer dqrot015 rotate 1 1.5 -> NaN Invalid_operation dqrot016 rotate 1 1.0 -> NaN Invalid_operation dqrot017 rotate 1 0.1 -> NaN Invalid_operation dqrot018 rotate 1 0.0 -> NaN Invalid_operation dqrot019 rotate 1 1E+1 -> NaN Invalid_operation dqrot020 rotate 1 1E+99 -> NaN Invalid_operation dqrot021 rotate 1 Inf -> NaN Invalid_operation dqrot022 rotate 1 -Inf -> NaN Invalid_operation -- and |rhs| <= precision dqrot025 rotate 1 -1000 -> NaN Invalid_operation dqrot026 rotate 1 -35 -> NaN Invalid_operation dqrot027 rotate 1 35 -> NaN Invalid_operation dqrot028 rotate 1 1000 -> NaN Invalid_operation -- full pattern dqrot030 rotate 1234567890123456789012345678901234 -34 -> 1234567890123456789012345678901234 dqrot031 rotate 1234567890123456789012345678901234 -33 -> 2345678901234567890123456789012341 dqrot032 rotate 1234567890123456789012345678901234 -32 -> 3456789012345678901234567890123412 dqrot033 rotate 1234567890123456789012345678901234 -31 -> 4567890123456789012345678901234123 dqrot034 rotate 1234567890123456789012345678901234 -30 -> 5678901234567890123456789012341234 dqrot035 rotate 1234567890123456789012345678901234 -29 -> 6789012345678901234567890123412345 dqrot036 rotate 1234567890123456789012345678901234 -28 -> 7890123456789012345678901234123456 dqrot037 rotate 1234567890123456789012345678901234 -27 -> 8901234567890123456789012341234567 dqrot038 rotate 1234567890123456789012345678901234 -26 -> 9012345678901234567890123412345678 dqrot039 rotate 1234567890123456789012345678901234 -25 -> 123456789012345678901234123456789 dqrot040 rotate 1234567890123456789012345678901234 -24 -> 1234567890123456789012341234567890 dqrot041 rotate 1234567890123456789012345678901234 -23 -> 2345678901234567890123412345678901 dqrot042 rotate 1234567890123456789012345678901234 -22 -> 3456789012345678901234123456789012 dqrot043 rotate 1234567890123456789012345678901234 -21 -> 4567890123456789012341234567890123 dqrot044 rotate 1234567890123456789012345678901234 -20 -> 5678901234567890123412345678901234 dqrot045 rotate 1234567890123456789012345678901234 -19 -> 6789012345678901234123456789012345 dqrot047 rotate 1234567890123456789012345678901234 -18 -> 7890123456789012341234567890123456 dqrot048 rotate 1234567890123456789012345678901234 -17 -> 8901234567890123412345678901234567 dqrot049 rotate 1234567890123456789012345678901234 -16 -> 9012345678901234123456789012345678 dqrot050 rotate 1234567890123456789012345678901234 -15 -> 123456789012341234567890123456789 dqrot051 rotate 1234567890123456789012345678901234 -14 -> 1234567890123412345678901234567890 dqrot052 rotate 1234567890123456789012345678901234 -13 -> 2345678901234123456789012345678901 dqrot053 rotate 1234567890123456789012345678901234 -12 -> 3456789012341234567890123456789012 dqrot054 rotate 1234567890123456789012345678901234 -11 -> 4567890123412345678901234567890123 dqrot055 rotate 1234567890123456789012345678901234 -10 -> 5678901234123456789012345678901234 dqrot056 rotate 1234567890123456789012345678901234 -9 -> 6789012341234567890123456789012345 dqrot057 rotate 1234567890123456789012345678901234 -8 -> 7890123412345678901234567890123456 dqrot058 rotate 1234567890123456789012345678901234 -7 -> 8901234123456789012345678901234567 dqrot059 rotate 1234567890123456789012345678901234 -6 -> 9012341234567890123456789012345678 dqrot060 rotate 1234567890123456789012345678901234 -5 -> 123412345678901234567890123456789 dqrot061 rotate 1234567890123456789012345678901234 -4 -> 1234123456789012345678901234567890 dqrot062 rotate 1234567890123456789012345678901234 -3 -> 2341234567890123456789012345678901 dqrot063 rotate 1234567890123456789012345678901234 -2 -> 3412345678901234567890123456789012 dqrot064 rotate 1234567890123456789012345678901234 -1 -> 4123456789012345678901234567890123 dqrot065 rotate 1234567890123456789012345678901234 -0 -> 1234567890123456789012345678901234 dqrot066 rotate 1234567890123456789012345678901234 +0 -> 1234567890123456789012345678901234 dqrot067 rotate 1234567890123456789012345678901234 +1 -> 2345678901234567890123456789012341 dqrot068 rotate 1234567890123456789012345678901234 +2 -> 3456789012345678901234567890123412 dqrot069 rotate 1234567890123456789012345678901234 +3 -> 4567890123456789012345678901234123 dqrot070 rotate 1234567890123456789012345678901234 +4 -> 5678901234567890123456789012341234 dqrot071 rotate 1234567890123456789012345678901234 +5 -> 6789012345678901234567890123412345 dqrot072 rotate 1234567890123456789012345678901234 +6 -> 7890123456789012345678901234123456 dqrot073 rotate 1234567890123456789012345678901234 +7 -> 8901234567890123456789012341234567 dqrot074 rotate 1234567890123456789012345678901234 +8 -> 9012345678901234567890123412345678 dqrot075 rotate 1234567890123456789012345678901234 +9 -> 123456789012345678901234123456789 dqrot076 rotate 1234567890123456789012345678901234 +10 -> 1234567890123456789012341234567890 dqrot077 rotate 1234567890123456789012345678901234 +11 -> 2345678901234567890123412345678901 dqrot078 rotate 1234567890123456789012345678901234 +12 -> 3456789012345678901234123456789012 dqrot079 rotate 1234567890123456789012345678901234 +13 -> 4567890123456789012341234567890123 dqrot080 rotate 1234567890123456789012345678901234 +14 -> 5678901234567890123412345678901234 dqrot081 rotate 1234567890123456789012345678901234 +15 -> 6789012345678901234123456789012345 dqrot082 rotate 1234567890123456789012345678901234 +16 -> 7890123456789012341234567890123456 dqrot083 rotate 1234567890123456789012345678901234 +17 -> 8901234567890123412345678901234567 dqrot084 rotate 1234567890123456789012345678901234 +18 -> 9012345678901234123456789012345678 dqrot085 rotate 1234567890123456789012345678901234 +19 -> 123456789012341234567890123456789 dqrot086 rotate 1234567890123456789012345678901234 +20 -> 1234567890123412345678901234567890 dqrot087 rotate 1234567890123456789012345678901234 +21 -> 2345678901234123456789012345678901 dqrot088 rotate 1234567890123456789012345678901234 +22 -> 3456789012341234567890123456789012 dqrot089 rotate 1234567890123456789012345678901234 +23 -> 4567890123412345678901234567890123 dqrot090 rotate 1234567890123456789012345678901234 +24 -> 5678901234123456789012345678901234 dqrot091 rotate 1234567890123456789012345678901234 +25 -> 6789012341234567890123456789012345 dqrot092 rotate 1234567890123456789012345678901234 +26 -> 7890123412345678901234567890123456 dqrot093 rotate 1234567890123456789012345678901234 +27 -> 8901234123456789012345678901234567 dqrot094 rotate 1234567890123456789012345678901234 +28 -> 9012341234567890123456789012345678 dqrot095 rotate 1234567890123456789012345678901234 +29 -> 123412345678901234567890123456789 dqrot096 rotate 1234567890123456789012345678901234 +30 -> 1234123456789012345678901234567890 dqrot097 rotate 1234567890123456789012345678901234 +31 -> 2341234567890123456789012345678901 dqrot098 rotate 1234567890123456789012345678901234 +32 -> 3412345678901234567890123456789012 dqrot099 rotate 1234567890123456789012345678901234 +33 -> 4123456789012345678901234567890123 dqrot100 rotate 1234567890123456789012345678901234 +34 -> 1234567890123456789012345678901234 -- zeros dqrot270 rotate 0E-10 +29 -> 0E-10 dqrot271 rotate 0E-10 -29 -> 0E-10 dqrot272 rotate 0.000 +29 -> 0.000 dqrot273 rotate 0.000 -29 -> 0.000 dqrot274 rotate 0E+10 +29 -> 0E+10 dqrot275 rotate 0E+10 -29 -> 0E+10 dqrot276 rotate -0E-10 +29 -> -0E-10 dqrot277 rotate -0E-10 -29 -> -0E-10 dqrot278 rotate -0.000 +29 -> -0.000 dqrot279 rotate -0.000 -29 -> -0.000 dqrot280 rotate -0E+10 +29 -> -0E+10 dqrot281 rotate -0E+10 -29 -> -0E+10 -- Nmax, Nmin, Ntiny dqrot141 rotate 9.999999999999999999999999999999999E+6144 -1 -> 9.999999999999999999999999999999999E+6144 dqrot142 rotate 9.999999999999999999999999999999999E+6144 -33 -> 9.999999999999999999999999999999999E+6144 dqrot143 rotate 9.999999999999999999999999999999999E+6144 1 -> 9.999999999999999999999999999999999E+6144 dqrot144 rotate 9.999999999999999999999999999999999E+6144 33 -> 9.999999999999999999999999999999999E+6144 dqrot145 rotate 1E-6143 -1 -> 1.000000000000000000000000000000000E-6110 dqrot146 rotate 1E-6143 -33 -> 1.0E-6142 dqrot147 rotate 1E-6143 1 -> 1.0E-6142 dqrot148 rotate 1E-6143 33 -> 1.000000000000000000000000000000000E-6110 dqrot151 rotate 1.000000000000000000000000000000000E-6143 -1 -> 1.00000000000000000000000000000000E-6144 dqrot152 rotate 1.000000000000000000000000000000000E-6143 -33 -> 1E-6176 dqrot153 rotate 1.000000000000000000000000000000000E-6143 1 -> 1E-6176 dqrot154 rotate 1.000000000000000000000000000000000E-6143 33 -> 1.00000000000000000000000000000000E-6144 dqrot155 rotate 9.000000000000000000000000000000000E-6143 -1 -> 9.00000000000000000000000000000000E-6144 dqrot156 rotate 9.000000000000000000000000000000000E-6143 -33 -> 9E-6176 dqrot157 rotate 9.000000000000000000000000000000000E-6143 1 -> 9E-6176 dqrot158 rotate 9.000000000000000000000000000000000E-6143 33 -> 9.00000000000000000000000000000000E-6144 dqrot160 rotate 1E-6176 -1 -> 1.000000000000000000000000000000000E-6143 dqrot161 rotate 1E-6176 -33 -> 1.0E-6175 dqrot162 rotate 1E-6176 1 -> 1.0E-6175 dqrot163 rotate 1E-6176 33 -> 1.000000000000000000000000000000000E-6143 -- negatives dqrot171 rotate -9.999999999999999999999999999999999E+6144 -1 -> -9.999999999999999999999999999999999E+6144 dqrot172 rotate -9.999999999999999999999999999999999E+6144 -33 -> -9.999999999999999999999999999999999E+6144 dqrot173 rotate -9.999999999999999999999999999999999E+6144 1 -> -9.999999999999999999999999999999999E+6144 dqrot174 rotate -9.999999999999999999999999999999999E+6144 33 -> -9.999999999999999999999999999999999E+6144 dqrot175 rotate -1E-6143 -1 -> -1.000000000000000000000000000000000E-6110 dqrot176 rotate -1E-6143 -33 -> -1.0E-6142 dqrot177 rotate -1E-6143 1 -> -1.0E-6142 dqrot178 rotate -1E-6143 33 -> -1.000000000000000000000000000000000E-6110 dqrot181 rotate -1.000000000000000000000000000000000E-6143 -1 -> -1.00000000000000000000000000000000E-6144 dqrot182 rotate -1.000000000000000000000000000000000E-6143 -33 -> -1E-6176 dqrot183 rotate -1.000000000000000000000000000000000E-6143 1 -> -1E-6176 dqrot184 rotate -1.000000000000000000000000000000000E-6143 33 -> -1.00000000000000000000000000000000E-6144 dqrot185 rotate -9.000000000000000000000000000000000E-6143 -1 -> -9.00000000000000000000000000000000E-6144 dqrot186 rotate -9.000000000000000000000000000000000E-6143 -33 -> -9E-6176 dqrot187 rotate -9.000000000000000000000000000000000E-6143 1 -> -9E-6176 dqrot188 rotate -9.000000000000000000000000000000000E-6143 33 -> -9.00000000000000000000000000000000E-6144 dqrot190 rotate -1E-6176 -1 -> -1.000000000000000000000000000000000E-6143 dqrot191 rotate -1E-6176 -33 -> -1.0E-6175 dqrot192 rotate -1E-6176 1 -> -1.0E-6175 dqrot193 rotate -1E-6176 33 -> -1.000000000000000000000000000000000E-6143 -- more negatives (of sanities) dqrot201 rotate -0 0 -> -0 dqrot202 rotate -0 2 -> -0 dqrot203 rotate -1 2 -> -100 dqrot204 rotate -1 33 -> -1000000000000000000000000000000000 dqrot205 rotate -1 34 -> -1 dqrot206 rotate -1 -1 -> -1000000000000000000000000000000000 dqrot207 rotate -0 -2 -> -0 dqrot208 rotate -1234567890123456789012345678901234 -1 -> -4123456789012345678901234567890123 dqrot209 rotate -1234567890123456789012345678901234 -33 -> -2345678901234567890123456789012341 dqrot210 rotate -1234567890123456789012345678901234 -34 -> -1234567890123456789012345678901234 dqrot211 rotate -9934567890123456789012345678901234 -33 -> -9345678901234567890123456789012349 dqrot212 rotate -9934567890123456789012345678901234 -34 -> -9934567890123456789012345678901234 -- Specials; NaNs are handled as usual dqrot781 rotate -Inf -8 -> -Infinity dqrot782 rotate -Inf -1 -> -Infinity dqrot783 rotate -Inf -0 -> -Infinity dqrot784 rotate -Inf 0 -> -Infinity dqrot785 rotate -Inf 1 -> -Infinity dqrot786 rotate -Inf 8 -> -Infinity dqrot787 rotate -1000 -Inf -> NaN Invalid_operation dqrot788 rotate -Inf -Inf -> NaN Invalid_operation dqrot789 rotate -1 -Inf -> NaN Invalid_operation dqrot790 rotate -0 -Inf -> NaN Invalid_operation dqrot791 rotate 0 -Inf -> NaN Invalid_operation dqrot792 rotate 1 -Inf -> NaN Invalid_operation dqrot793 rotate 1000 -Inf -> NaN Invalid_operation dqrot794 rotate Inf -Inf -> NaN Invalid_operation dqrot800 rotate Inf -Inf -> NaN Invalid_operation dqrot801 rotate Inf -8 -> Infinity dqrot802 rotate Inf -1 -> Infinity dqrot803 rotate Inf -0 -> Infinity dqrot804 rotate Inf 0 -> Infinity dqrot805 rotate Inf 1 -> Infinity dqrot806 rotate Inf 8 -> Infinity dqrot807 rotate Inf Inf -> NaN Invalid_operation dqrot808 rotate -1000 Inf -> NaN Invalid_operation dqrot809 rotate -Inf Inf -> NaN Invalid_operation dqrot810 rotate -1 Inf -> NaN Invalid_operation dqrot811 rotate -0 Inf -> NaN Invalid_operation dqrot812 rotate 0 Inf -> NaN Invalid_operation dqrot813 rotate 1 Inf -> NaN Invalid_operation dqrot814 rotate 1000 Inf -> NaN Invalid_operation dqrot815 rotate Inf Inf -> NaN Invalid_operation dqrot821 rotate NaN -Inf -> NaN dqrot822 rotate NaN -1000 -> NaN dqrot823 rotate NaN -1 -> NaN dqrot824 rotate NaN -0 -> NaN dqrot825 rotate NaN 0 -> NaN dqrot826 rotate NaN 1 -> NaN dqrot827 rotate NaN 1000 -> NaN dqrot828 rotate NaN Inf -> NaN dqrot829 rotate NaN NaN -> NaN dqrot830 rotate -Inf NaN -> NaN dqrot831 rotate -1000 NaN -> NaN dqrot832 rotate -1 NaN -> NaN dqrot833 rotate -0 NaN -> NaN dqrot834 rotate 0 NaN -> NaN dqrot835 rotate 1 NaN -> NaN dqrot836 rotate 1000 NaN -> NaN dqrot837 rotate Inf NaN -> NaN dqrot841 rotate sNaN -Inf -> NaN Invalid_operation dqrot842 rotate sNaN -1000 -> NaN Invalid_operation dqrot843 rotate sNaN -1 -> NaN Invalid_operation dqrot844 rotate sNaN -0 -> NaN Invalid_operation dqrot845 rotate sNaN 0 -> NaN Invalid_operation dqrot846 rotate sNaN 1 -> NaN Invalid_operation dqrot847 rotate sNaN 1000 -> NaN Invalid_operation dqrot848 rotate sNaN NaN -> NaN Invalid_operation dqrot849 rotate sNaN sNaN -> NaN Invalid_operation dqrot850 rotate NaN sNaN -> NaN Invalid_operation dqrot851 rotate -Inf sNaN -> NaN Invalid_operation dqrot852 rotate -1000 sNaN -> NaN Invalid_operation dqrot853 rotate -1 sNaN -> NaN Invalid_operation dqrot854 rotate -0 sNaN -> NaN Invalid_operation dqrot855 rotate 0 sNaN -> NaN Invalid_operation dqrot856 rotate 1 sNaN -> NaN Invalid_operation dqrot857 rotate 1000 sNaN -> NaN Invalid_operation dqrot858 rotate Inf sNaN -> NaN Invalid_operation dqrot859 rotate NaN sNaN -> NaN Invalid_operation -- propagating NaNs dqrot861 rotate NaN1 -Inf -> NaN1 dqrot862 rotate +NaN2 -1000 -> NaN2 dqrot863 rotate NaN3 1000 -> NaN3 dqrot864 rotate NaN4 Inf -> NaN4 dqrot865 rotate NaN5 +NaN6 -> NaN5 dqrot866 rotate -Inf NaN7 -> NaN7 dqrot867 rotate -1000 NaN8 -> NaN8 dqrot868 rotate 1000 NaN9 -> NaN9 dqrot869 rotate Inf +NaN10 -> NaN10 dqrot871 rotate sNaN11 -Inf -> NaN11 Invalid_operation dqrot872 rotate sNaN12 -1000 -> NaN12 Invalid_operation dqrot873 rotate sNaN13 1000 -> NaN13 Invalid_operation dqrot874 rotate sNaN14 NaN17 -> NaN14 Invalid_operation dqrot875 rotate sNaN15 sNaN18 -> NaN15 Invalid_operation dqrot876 rotate NaN16 sNaN19 -> NaN19 Invalid_operation dqrot877 rotate -Inf +sNaN20 -> NaN20 Invalid_operation dqrot878 rotate -1000 sNaN21 -> NaN21 Invalid_operation dqrot879 rotate 1000 sNaN22 -> NaN22 Invalid_operation dqrot880 rotate Inf sNaN23 -> NaN23 Invalid_operation dqrot881 rotate +NaN25 +sNaN24 -> NaN24 Invalid_operation dqrot882 rotate -NaN26 NaN28 -> -NaN26 dqrot883 rotate -sNaN27 sNaN29 -> -NaN27 Invalid_operation dqrot884 rotate 1000 -NaN30 -> -NaN30 dqrot885 rotate 1000 -sNaN31 -> -NaN31 Invalid_operation
20,682
299
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/ddQuantize.decTest
------------------------------------------------------------------------ -- ddQuantize.decTest -- decDouble quantize operation -- -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 -- Most of the tests here assume a "regular pattern", where the -- sign and coefficient are +1. -- 2004.03.15 Underflow for quantize is suppressed -- 2005.06.08 More extensive tests for 'does not fit' precision: 16 maxExponent: 384 minExponent: -383 extended: 1 clamp: 1 rounding: half_even -- sanity checks ddqua001 quantize 0 1e0 -> 0 ddqua002 quantize 1 1e0 -> 1 ddqua003 quantize 0.1 1e+2 -> 0E+2 Inexact Rounded ddqua005 quantize 0.1 1e+1 -> 0E+1 Inexact Rounded ddqua006 quantize 0.1 1e0 -> 0 Inexact Rounded ddqua007 quantize 0.1 1e-1 -> 0.1 ddqua008 quantize 0.1 1e-2 -> 0.10 ddqua009 quantize 0.1 1e-3 -> 0.100 ddqua010 quantize 0.9 1e+2 -> 0E+2 Inexact Rounded ddqua011 quantize 0.9 1e+1 -> 0E+1 Inexact Rounded ddqua012 quantize 0.9 1e+0 -> 1 Inexact Rounded ddqua013 quantize 0.9 1e-1 -> 0.9 ddqua014 quantize 0.9 1e-2 -> 0.90 ddqua015 quantize 0.9 1e-3 -> 0.900 -- negatives ddqua021 quantize -0 1e0 -> -0 ddqua022 quantize -1 1e0 -> -1 ddqua023 quantize -0.1 1e+2 -> -0E+2 Inexact Rounded ddqua025 quantize -0.1 1e+1 -> -0E+1 Inexact Rounded ddqua026 quantize -0.1 1e0 -> -0 Inexact Rounded ddqua027 quantize -0.1 1e-1 -> -0.1 ddqua028 quantize -0.1 1e-2 -> -0.10 ddqua029 quantize -0.1 1e-3 -> -0.100 ddqua030 quantize -0.9 1e+2 -> -0E+2 Inexact Rounded ddqua031 quantize -0.9 1e+1 -> -0E+1 Inexact Rounded ddqua032 quantize -0.9 1e+0 -> -1 Inexact Rounded ddqua033 quantize -0.9 1e-1 -> -0.9 ddqua034 quantize -0.9 1e-2 -> -0.90 ddqua035 quantize -0.9 1e-3 -> -0.900 ddqua036 quantize -0.5 1e+2 -> -0E+2 Inexact Rounded ddqua037 quantize -0.5 1e+1 -> -0E+1 Inexact Rounded ddqua038 quantize -0.5 1e+0 -> -0 Inexact Rounded ddqua039 quantize -0.5 1e-1 -> -0.5 ddqua040 quantize -0.5 1e-2 -> -0.50 ddqua041 quantize -0.5 1e-3 -> -0.500 ddqua042 quantize -0.9 1e+2 -> -0E+2 Inexact Rounded ddqua043 quantize -0.9 1e+1 -> -0E+1 Inexact Rounded ddqua044 quantize -0.9 1e+0 -> -1 Inexact Rounded ddqua045 quantize -0.9 1e-1 -> -0.9 ddqua046 quantize -0.9 1e-2 -> -0.90 ddqua047 quantize -0.9 1e-3 -> -0.900 -- examples from Specification ddqua060 quantize 2.17 0.001 -> 2.170 ddqua061 quantize 2.17 0.01 -> 2.17 ddqua062 quantize 2.17 0.1 -> 2.2 Inexact Rounded ddqua063 quantize 2.17 1e+0 -> 2 Inexact Rounded ddqua064 quantize 2.17 1e+1 -> 0E+1 Inexact Rounded ddqua065 quantize -Inf Inf -> -Infinity ddqua066 quantize 2 Inf -> NaN Invalid_operation ddqua067 quantize -0.1 1 -> -0 Inexact Rounded ddqua068 quantize -0 1e+5 -> -0E+5 ddqua069 quantize +123456789012345.6 1e-2 -> NaN Invalid_operation ddqua070 quantize -987654335236450.6 1e-2 -> NaN Invalid_operation ddqua071 quantize 217 1e-1 -> 217.0 ddqua072 quantize 217 1e+0 -> 217 ddqua073 quantize 217 1e+1 -> 2.2E+2 Inexact Rounded ddqua074 quantize 217 1e+2 -> 2E+2 Inexact Rounded -- general tests .. ddqua089 quantize 12 1e+4 -> 0E+4 Inexact Rounded ddqua090 quantize 12 1e+3 -> 0E+3 Inexact Rounded ddqua091 quantize 12 1e+2 -> 0E+2 Inexact Rounded ddqua092 quantize 12 1e+1 -> 1E+1 Inexact Rounded ddqua093 quantize 1.2345 1e-2 -> 1.23 Inexact Rounded ddqua094 quantize 1.2355 1e-2 -> 1.24 Inexact Rounded ddqua095 quantize 1.2345 1e-6 -> 1.234500 ddqua096 quantize 9.9999 1e-2 -> 10.00 Inexact Rounded ddqua097 quantize 0.0001 1e-2 -> 0.00 Inexact Rounded ddqua098 quantize 0.001 1e-2 -> 0.00 Inexact Rounded ddqua099 quantize 0.009 1e-2 -> 0.01 Inexact Rounded ddqua100 quantize 92 1e+2 -> 1E+2 Inexact Rounded ddqua101 quantize -1 1e0 -> -1 ddqua102 quantize -1 1e-1 -> -1.0 ddqua103 quantize -1 1e-2 -> -1.00 ddqua104 quantize 0 1e0 -> 0 ddqua105 quantize 0 1e-1 -> 0.0 ddqua106 quantize 0 1e-2 -> 0.00 ddqua107 quantize 0.00 1e0 -> 0 ddqua108 quantize 0 1e+1 -> 0E+1 ddqua109 quantize 0 1e+2 -> 0E+2 ddqua110 quantize +1 1e0 -> 1 ddqua111 quantize +1 1e-1 -> 1.0 ddqua112 quantize +1 1e-2 -> 1.00 ddqua120 quantize 1.04 1e-3 -> 1.040 ddqua121 quantize 1.04 1e-2 -> 1.04 ddqua122 quantize 1.04 1e-1 -> 1.0 Inexact Rounded ddqua123 quantize 1.04 1e0 -> 1 Inexact Rounded ddqua124 quantize 1.05 1e-3 -> 1.050 ddqua125 quantize 1.05 1e-2 -> 1.05 ddqua126 quantize 1.05 1e-1 -> 1.0 Inexact Rounded ddqua131 quantize 1.05 1e0 -> 1 Inexact Rounded ddqua132 quantize 1.06 1e-3 -> 1.060 ddqua133 quantize 1.06 1e-2 -> 1.06 ddqua134 quantize 1.06 1e-1 -> 1.1 Inexact Rounded ddqua135 quantize 1.06 1e0 -> 1 Inexact Rounded ddqua140 quantize -10 1e-2 -> -10.00 ddqua141 quantize +1 1e-2 -> 1.00 ddqua142 quantize +10 1e-2 -> 10.00 ddqua143 quantize 1E+17 1e-2 -> NaN Invalid_operation ddqua144 quantize 1E-17 1e-2 -> 0.00 Inexact Rounded ddqua145 quantize 1E-3 1e-2 -> 0.00 Inexact Rounded ddqua146 quantize 1E-2 1e-2 -> 0.01 ddqua147 quantize 1E-1 1e-2 -> 0.10 ddqua148 quantize 0E-17 1e-2 -> 0.00 ddqua150 quantize 1.0600 1e-5 -> 1.06000 ddqua151 quantize 1.0600 1e-4 -> 1.0600 ddqua152 quantize 1.0600 1e-3 -> 1.060 Rounded ddqua153 quantize 1.0600 1e-2 -> 1.06 Rounded ddqua154 quantize 1.0600 1e-1 -> 1.1 Inexact Rounded ddqua155 quantize 1.0600 1e0 -> 1 Inexact Rounded -- a couple where rounding was different in base tests rounding: half_up ddqua157 quantize -0.5 1e+0 -> -1 Inexact Rounded ddqua158 quantize 1.05 1e-1 -> 1.1 Inexact Rounded ddqua159 quantize 1.06 1e0 -> 1 Inexact Rounded rounding: half_even -- base tests with non-1 coefficients ddqua161 quantize 0 -9e0 -> 0 ddqua162 quantize 1 -7e0 -> 1 ddqua163 quantize 0.1 -1e+2 -> 0E+2 Inexact Rounded ddqua165 quantize 0.1 0e+1 -> 0E+1 Inexact Rounded ddqua166 quantize 0.1 2e0 -> 0 Inexact Rounded ddqua167 quantize 0.1 3e-1 -> 0.1 ddqua168 quantize 0.1 44e-2 -> 0.10 ddqua169 quantize 0.1 555e-3 -> 0.100 ddqua170 quantize 0.9 6666e+2 -> 0E+2 Inexact Rounded ddqua171 quantize 0.9 -777e+1 -> 0E+1 Inexact Rounded ddqua172 quantize 0.9 -88e+0 -> 1 Inexact Rounded ddqua173 quantize 0.9 -9e-1 -> 0.9 ddqua174 quantize 0.9 0e-2 -> 0.90 ddqua175 quantize 0.9 1.1e-3 -> 0.9000 -- negatives ddqua181 quantize -0 1.1e0 -> -0.0 ddqua182 quantize -1 -1e0 -> -1 ddqua183 quantize -0.1 11e+2 -> -0E+2 Inexact Rounded ddqua185 quantize -0.1 111e+1 -> -0E+1 Inexact Rounded ddqua186 quantize -0.1 71e0 -> -0 Inexact Rounded ddqua187 quantize -0.1 -91e-1 -> -0.1 ddqua188 quantize -0.1 -.1e-2 -> -0.100 ddqua189 quantize -0.1 -1e-3 -> -0.100 ddqua190 quantize -0.9 0e+2 -> -0E+2 Inexact Rounded ddqua191 quantize -0.9 -0e+1 -> -0E+1 Inexact Rounded ddqua192 quantize -0.9 -10e+0 -> -1 Inexact Rounded ddqua193 quantize -0.9 100e-1 -> -0.9 ddqua194 quantize -0.9 999e-2 -> -0.90 -- +ve exponents .. ddqua201 quantize -1 1e+0 -> -1 ddqua202 quantize -1 1e+1 -> -0E+1 Inexact Rounded ddqua203 quantize -1 1e+2 -> -0E+2 Inexact Rounded ddqua204 quantize 0 1e+0 -> 0 ddqua205 quantize 0 1e+1 -> 0E+1 ddqua206 quantize 0 1e+2 -> 0E+2 ddqua207 quantize +1 1e+0 -> 1 ddqua208 quantize +1 1e+1 -> 0E+1 Inexact Rounded ddqua209 quantize +1 1e+2 -> 0E+2 Inexact Rounded ddqua220 quantize 1.04 1e+3 -> 0E+3 Inexact Rounded ddqua221 quantize 1.04 1e+2 -> 0E+2 Inexact Rounded ddqua222 quantize 1.04 1e+1 -> 0E+1 Inexact Rounded ddqua223 quantize 1.04 1e+0 -> 1 Inexact Rounded ddqua224 quantize 1.05 1e+3 -> 0E+3 Inexact Rounded ddqua225 quantize 1.05 1e+2 -> 0E+2 Inexact Rounded ddqua226 quantize 1.05 1e+1 -> 0E+1 Inexact Rounded ddqua227 quantize 1.05 1e+0 -> 1 Inexact Rounded ddqua228 quantize 1.05 1e+3 -> 0E+3 Inexact Rounded ddqua229 quantize 1.05 1e+2 -> 0E+2 Inexact Rounded ddqua230 quantize 1.05 1e+1 -> 0E+1 Inexact Rounded ddqua231 quantize 1.05 1e+0 -> 1 Inexact Rounded ddqua232 quantize 1.06 1e+3 -> 0E+3 Inexact Rounded ddqua233 quantize 1.06 1e+2 -> 0E+2 Inexact Rounded ddqua234 quantize 1.06 1e+1 -> 0E+1 Inexact Rounded ddqua235 quantize 1.06 1e+0 -> 1 Inexact Rounded ddqua240 quantize -10 1e+1 -> -1E+1 Rounded ddqua241 quantize +1 1e+1 -> 0E+1 Inexact Rounded ddqua242 quantize +10 1e+1 -> 1E+1 Rounded ddqua243 quantize 1E+1 1e+1 -> 1E+1 -- underneath this is E+1 ddqua244 quantize 1E+2 1e+1 -> 1.0E+2 -- underneath this is E+1 ddqua245 quantize 1E+3 1e+1 -> 1.00E+3 -- underneath this is E+1 ddqua246 quantize 1E+4 1e+1 -> 1.000E+4 -- underneath this is E+1 ddqua247 quantize 1E+5 1e+1 -> 1.0000E+5 -- underneath this is E+1 ddqua248 quantize 1E+6 1e+1 -> 1.00000E+6 -- underneath this is E+1 ddqua249 quantize 1E+7 1e+1 -> 1.000000E+7 -- underneath this is E+1 ddqua250 quantize 1E+8 1e+1 -> 1.0000000E+8 -- underneath this is E+1 ddqua251 quantize 1E+9 1e+1 -> 1.00000000E+9 -- underneath this is E+1 -- next one tries to add 9 zeros ddqua252 quantize 1E+17 1e+1 -> NaN Invalid_operation ddqua253 quantize 1E-17 1e+1 -> 0E+1 Inexact Rounded ddqua254 quantize 1E-2 1e+1 -> 0E+1 Inexact Rounded ddqua255 quantize 0E-17 1e+1 -> 0E+1 ddqua256 quantize -0E-17 1e+1 -> -0E+1 ddqua257 quantize -0E-1 1e+1 -> -0E+1 ddqua258 quantize -0 1e+1 -> -0E+1 ddqua259 quantize -0E+1 1e+1 -> -0E+1 ddqua260 quantize -10 1e+2 -> -0E+2 Inexact Rounded ddqua261 quantize +1 1e+2 -> 0E+2 Inexact Rounded ddqua262 quantize +10 1e+2 -> 0E+2 Inexact Rounded ddqua263 quantize 1E+1 1e+2 -> 0E+2 Inexact Rounded ddqua264 quantize 1E+2 1e+2 -> 1E+2 ddqua265 quantize 1E+3 1e+2 -> 1.0E+3 ddqua266 quantize 1E+4 1e+2 -> 1.00E+4 ddqua267 quantize 1E+5 1e+2 -> 1.000E+5 ddqua268 quantize 1E+6 1e+2 -> 1.0000E+6 ddqua269 quantize 1E+7 1e+2 -> 1.00000E+7 ddqua270 quantize 1E+8 1e+2 -> 1.000000E+8 ddqua271 quantize 1E+9 1e+2 -> 1.0000000E+9 ddqua272 quantize 1E+10 1e+2 -> 1.00000000E+10 ddqua273 quantize 1E-10 1e+2 -> 0E+2 Inexact Rounded ddqua274 quantize 1E-2 1e+2 -> 0E+2 Inexact Rounded ddqua275 quantize 0E-10 1e+2 -> 0E+2 ddqua280 quantize -10 1e+3 -> -0E+3 Inexact Rounded ddqua281 quantize +1 1e+3 -> 0E+3 Inexact Rounded ddqua282 quantize +10 1e+3 -> 0E+3 Inexact Rounded ddqua283 quantize 1E+1 1e+3 -> 0E+3 Inexact Rounded ddqua284 quantize 1E+2 1e+3 -> 0E+3 Inexact Rounded ddqua285 quantize 1E+3 1e+3 -> 1E+3 ddqua286 quantize 1E+4 1e+3 -> 1.0E+4 ddqua287 quantize 1E+5 1e+3 -> 1.00E+5 ddqua288 quantize 1E+6 1e+3 -> 1.000E+6 ddqua289 quantize 1E+7 1e+3 -> 1.0000E+7 ddqua290 quantize 1E+8 1e+3 -> 1.00000E+8 ddqua291 quantize 1E+9 1e+3 -> 1.000000E+9 ddqua292 quantize 1E+10 1e+3 -> 1.0000000E+10 ddqua293 quantize 1E-10 1e+3 -> 0E+3 Inexact Rounded ddqua294 quantize 1E-2 1e+3 -> 0E+3 Inexact Rounded ddqua295 quantize 0E-10 1e+3 -> 0E+3 -- round up from below [sign wrong in JIT compiler once] ddqua300 quantize 0.0078 1e-5 -> 0.00780 ddqua301 quantize 0.0078 1e-4 -> 0.0078 ddqua302 quantize 0.0078 1e-3 -> 0.008 Inexact Rounded ddqua303 quantize 0.0078 1e-2 -> 0.01 Inexact Rounded ddqua304 quantize 0.0078 1e-1 -> 0.0 Inexact Rounded ddqua305 quantize 0.0078 1e0 -> 0 Inexact Rounded ddqua306 quantize 0.0078 1e+1 -> 0E+1 Inexact Rounded ddqua307 quantize 0.0078 1e+2 -> 0E+2 Inexact Rounded ddqua310 quantize -0.0078 1e-5 -> -0.00780 ddqua311 quantize -0.0078 1e-4 -> -0.0078 ddqua312 quantize -0.0078 1e-3 -> -0.008 Inexact Rounded ddqua313 quantize -0.0078 1e-2 -> -0.01 Inexact Rounded ddqua314 quantize -0.0078 1e-1 -> -0.0 Inexact Rounded ddqua315 quantize -0.0078 1e0 -> -0 Inexact Rounded ddqua316 quantize -0.0078 1e+1 -> -0E+1 Inexact Rounded ddqua317 quantize -0.0078 1e+2 -> -0E+2 Inexact Rounded ddqua320 quantize 0.078 1e-5 -> 0.07800 ddqua321 quantize 0.078 1e-4 -> 0.0780 ddqua322 quantize 0.078 1e-3 -> 0.078 ddqua323 quantize 0.078 1e-2 -> 0.08 Inexact Rounded ddqua324 quantize 0.078 1e-1 -> 0.1 Inexact Rounded ddqua325 quantize 0.078 1e0 -> 0 Inexact Rounded ddqua326 quantize 0.078 1e+1 -> 0E+1 Inexact Rounded ddqua327 quantize 0.078 1e+2 -> 0E+2 Inexact Rounded ddqua330 quantize -0.078 1e-5 -> -0.07800 ddqua331 quantize -0.078 1e-4 -> -0.0780 ddqua332 quantize -0.078 1e-3 -> -0.078 ddqua333 quantize -0.078 1e-2 -> -0.08 Inexact Rounded ddqua334 quantize -0.078 1e-1 -> -0.1 Inexact Rounded ddqua335 quantize -0.078 1e0 -> -0 Inexact Rounded ddqua336 quantize -0.078 1e+1 -> -0E+1 Inexact Rounded ddqua337 quantize -0.078 1e+2 -> -0E+2 Inexact Rounded ddqua340 quantize 0.78 1e-5 -> 0.78000 ddqua341 quantize 0.78 1e-4 -> 0.7800 ddqua342 quantize 0.78 1e-3 -> 0.780 ddqua343 quantize 0.78 1e-2 -> 0.78 ddqua344 quantize 0.78 1e-1 -> 0.8 Inexact Rounded ddqua345 quantize 0.78 1e0 -> 1 Inexact Rounded ddqua346 quantize 0.78 1e+1 -> 0E+1 Inexact Rounded ddqua347 quantize 0.78 1e+2 -> 0E+2 Inexact Rounded ddqua350 quantize -0.78 1e-5 -> -0.78000 ddqua351 quantize -0.78 1e-4 -> -0.7800 ddqua352 quantize -0.78 1e-3 -> -0.780 ddqua353 quantize -0.78 1e-2 -> -0.78 ddqua354 quantize -0.78 1e-1 -> -0.8 Inexact Rounded ddqua355 quantize -0.78 1e0 -> -1 Inexact Rounded ddqua356 quantize -0.78 1e+1 -> -0E+1 Inexact Rounded ddqua357 quantize -0.78 1e+2 -> -0E+2 Inexact Rounded ddqua360 quantize 7.8 1e-5 -> 7.80000 ddqua361 quantize 7.8 1e-4 -> 7.8000 ddqua362 quantize 7.8 1e-3 -> 7.800 ddqua363 quantize 7.8 1e-2 -> 7.80 ddqua364 quantize 7.8 1e-1 -> 7.8 ddqua365 quantize 7.8 1e0 -> 8 Inexact Rounded ddqua366 quantize 7.8 1e+1 -> 1E+1 Inexact Rounded ddqua367 quantize 7.8 1e+2 -> 0E+2 Inexact Rounded ddqua368 quantize 7.8 1e+3 -> 0E+3 Inexact Rounded ddqua370 quantize -7.8 1e-5 -> -7.80000 ddqua371 quantize -7.8 1e-4 -> -7.8000 ddqua372 quantize -7.8 1e-3 -> -7.800 ddqua373 quantize -7.8 1e-2 -> -7.80 ddqua374 quantize -7.8 1e-1 -> -7.8 ddqua375 quantize -7.8 1e0 -> -8 Inexact Rounded ddqua376 quantize -7.8 1e+1 -> -1E+1 Inexact Rounded ddqua377 quantize -7.8 1e+2 -> -0E+2 Inexact Rounded ddqua378 quantize -7.8 1e+3 -> -0E+3 Inexact Rounded -- some individuals ddqua380 quantize 1234567352364.506 1e-2 -> 1234567352364.51 Inexact Rounded ddqua381 quantize 12345673523645.06 1e-2 -> 12345673523645.06 ddqua382 quantize 123456735236450.6 1e-2 -> NaN Invalid_operation ddqua383 quantize 1234567352364506 1e-2 -> NaN Invalid_operation ddqua384 quantize -1234567352364.506 1e-2 -> -1234567352364.51 Inexact Rounded ddqua385 quantize -12345673523645.06 1e-2 -> -12345673523645.06 ddqua386 quantize -123456735236450.6 1e-2 -> NaN Invalid_operation ddqua387 quantize -1234567352364506 1e-2 -> NaN Invalid_operation rounding: down ddqua389 quantize 123456735236450.6 1e-2 -> NaN Invalid_operation -- ? should that one instead have been: -- ddqua389 quantize 123456735236450.6 1e-2 -> NaN Invalid_operation rounding: half_up -- and a few more from e-mail discussions ddqua391 quantize 12345678912.34567 1e-3 -> 12345678912.346 Inexact Rounded ddqua392 quantize 123456789123.4567 1e-3 -> 123456789123.457 Inexact Rounded ddqua393 quantize 1234567891234.567 1e-3 -> 1234567891234.567 ddqua394 quantize 12345678912345.67 1e-3 -> NaN Invalid_operation ddqua395 quantize 123456789123456.7 1e-3 -> NaN Invalid_operation ddqua396 quantize 1234567891234567. 1e-3 -> NaN Invalid_operation -- some 9999 round-up cases ddqua400 quantize 9.999 1e-5 -> 9.99900 ddqua401 quantize 9.999 1e-4 -> 9.9990 ddqua402 quantize 9.999 1e-3 -> 9.999 ddqua403 quantize 9.999 1e-2 -> 10.00 Inexact Rounded ddqua404 quantize 9.999 1e-1 -> 10.0 Inexact Rounded ddqua405 quantize 9.999 1e0 -> 10 Inexact Rounded ddqua406 quantize 9.999 1e1 -> 1E+1 Inexact Rounded ddqua407 quantize 9.999 1e2 -> 0E+2 Inexact Rounded ddqua410 quantize 0.999 1e-5 -> 0.99900 ddqua411 quantize 0.999 1e-4 -> 0.9990 ddqua412 quantize 0.999 1e-3 -> 0.999 ddqua413 quantize 0.999 1e-2 -> 1.00 Inexact Rounded ddqua414 quantize 0.999 1e-1 -> 1.0 Inexact Rounded ddqua415 quantize 0.999 1e0 -> 1 Inexact Rounded ddqua416 quantize 0.999 1e1 -> 0E+1 Inexact Rounded ddqua420 quantize 0.0999 1e-5 -> 0.09990 ddqua421 quantize 0.0999 1e-4 -> 0.0999 ddqua422 quantize 0.0999 1e-3 -> 0.100 Inexact Rounded ddqua423 quantize 0.0999 1e-2 -> 0.10 Inexact Rounded ddqua424 quantize 0.0999 1e-1 -> 0.1 Inexact Rounded ddqua425 quantize 0.0999 1e0 -> 0 Inexact Rounded ddqua426 quantize 0.0999 1e1 -> 0E+1 Inexact Rounded ddqua430 quantize 0.00999 1e-5 -> 0.00999 ddqua431 quantize 0.00999 1e-4 -> 0.0100 Inexact Rounded ddqua432 quantize 0.00999 1e-3 -> 0.010 Inexact Rounded ddqua433 quantize 0.00999 1e-2 -> 0.01 Inexact Rounded ddqua434 quantize 0.00999 1e-1 -> 0.0 Inexact Rounded ddqua435 quantize 0.00999 1e0 -> 0 Inexact Rounded ddqua436 quantize 0.00999 1e1 -> 0E+1 Inexact Rounded ddqua440 quantize 0.000999 1e-5 -> 0.00100 Inexact Rounded ddqua441 quantize 0.000999 1e-4 -> 0.0010 Inexact Rounded ddqua442 quantize 0.000999 1e-3 -> 0.001 Inexact Rounded ddqua443 quantize 0.000999 1e-2 -> 0.00 Inexact Rounded ddqua444 quantize 0.000999 1e-1 -> 0.0 Inexact Rounded ddqua445 quantize 0.000999 1e0 -> 0 Inexact Rounded ddqua446 quantize 0.000999 1e1 -> 0E+1 Inexact Rounded ddqua1001 quantize 0.000 0.001 -> 0.000 ddqua1002 quantize 0.001 0.001 -> 0.001 ddqua1003 quantize 0.0012 0.001 -> 0.001 Inexact Rounded ddqua1004 quantize 0.0018 0.001 -> 0.002 Inexact Rounded ddqua1005 quantize 0.501 0.001 -> 0.501 ddqua1006 quantize 0.5012 0.001 -> 0.501 Inexact Rounded ddqua1007 quantize 0.5018 0.001 -> 0.502 Inexact Rounded ddqua1008 quantize 0.999 0.001 -> 0.999 ddqua481 quantize 12345678000 1e+3 -> 1.2345678E+10 Rounded ddqua482 quantize 1234567800 1e+1 -> 1.23456780E+9 Rounded ddqua483 quantize 1234567890 1e+1 -> 1.23456789E+9 Rounded ddqua484 quantize 1234567891 1e+1 -> 1.23456789E+9 Inexact Rounded ddqua485 quantize 12345678901 1e+2 -> 1.23456789E+10 Inexact Rounded ddqua486 quantize 1234567896 1e+1 -> 1.23456790E+9 Inexact Rounded -- a potential double-round ddqua487 quantize 1234.987643 1e-4 -> 1234.9876 Inexact Rounded ddqua488 quantize 1234.987647 1e-4 -> 1234.9876 Inexact Rounded ddqua491 quantize 12345678000 1e+3 -> 1.2345678E+10 Rounded ddqua492 quantize 1234567800 1e+1 -> 1.23456780E+9 Rounded ddqua493 quantize 1234567890 1e+1 -> 1.23456789E+9 Rounded ddqua494 quantize 1234567891 1e+1 -> 1.23456789E+9 Inexact Rounded ddqua495 quantize 12345678901 1e+2 -> 1.23456789E+10 Inexact Rounded ddqua496 quantize 1234567896 1e+1 -> 1.23456790E+9 Inexact Rounded ddqua497 quantize 1234.987643 1e-4 -> 1234.9876 Inexact Rounded ddqua498 quantize 1234.987647 1e-4 -> 1234.9876 Inexact Rounded -- Zeros ddqua500 quantize 0 1e1 -> 0E+1 ddqua501 quantize 0 1e0 -> 0 ddqua502 quantize 0 1e-1 -> 0.0 ddqua503 quantize 0.0 1e-1 -> 0.0 ddqua504 quantize 0.0 1e0 -> 0 ddqua505 quantize 0.0 1e+1 -> 0E+1 ddqua506 quantize 0E+1 1e-1 -> 0.0 ddqua507 quantize 0E+1 1e0 -> 0 ddqua508 quantize 0E+1 1e+1 -> 0E+1 ddqua509 quantize -0 1e1 -> -0E+1 ddqua510 quantize -0 1e0 -> -0 ddqua511 quantize -0 1e-1 -> -0.0 ddqua512 quantize -0.0 1e-1 -> -0.0 ddqua513 quantize -0.0 1e0 -> -0 ddqua514 quantize -0.0 1e+1 -> -0E+1 ddqua515 quantize -0E+1 1e-1 -> -0.0 ddqua516 quantize -0E+1 1e0 -> -0 ddqua517 quantize -0E+1 1e+1 -> -0E+1 -- Suspicious RHS values ddqua520 quantize 1.234 1e359 -> 0E+359 Inexact Rounded ddqua521 quantize 123.456 1e359 -> 0E+359 Inexact Rounded ddqua522 quantize 1.234 1e359 -> 0E+359 Inexact Rounded ddqua523 quantize 123.456 1e359 -> 0E+359 Inexact Rounded -- next four are "won't fit" overfl ddqua526 quantize 1.234 1e-299 -> NaN Invalid_operation ddqua527 quantize 123.456 1e-299 -> NaN Invalid_operation ddqua528 quantize 1.234 1e-299 -> NaN Invalid_operation ddqua529 quantize 123.456 1e-299 -> NaN Invalid_operation ddqua532 quantize 1.234E+299 1e299 -> 1E+299 Inexact Rounded ddqua533 quantize 1.234E+298 1e299 -> 0E+299 Inexact Rounded ddqua534 quantize 1.234 1e299 -> 0E+299 Inexact Rounded ddqua537 quantize 0 1e-299 -> 0E-299 -- next two are "won't fit" overflows ddqua538 quantize 1.234 1e-299 -> NaN Invalid_operation ddqua539 quantize 1.234 1e-300 -> NaN Invalid_operation -- [more below] -- Specials ddqua580 quantize Inf -Inf -> Infinity ddqua581 quantize Inf 1e-299 -> NaN Invalid_operation ddqua582 quantize Inf 1e-1 -> NaN Invalid_operation ddqua583 quantize Inf 1e0 -> NaN Invalid_operation ddqua584 quantize Inf 1e1 -> NaN Invalid_operation ddqua585 quantize Inf 1e299 -> NaN Invalid_operation ddqua586 quantize Inf Inf -> Infinity ddqua587 quantize -1000 Inf -> NaN Invalid_operation ddqua588 quantize -Inf Inf -> -Infinity ddqua589 quantize -1 Inf -> NaN Invalid_operation ddqua590 quantize 0 Inf -> NaN Invalid_operation ddqua591 quantize 1 Inf -> NaN Invalid_operation ddqua592 quantize 1000 Inf -> NaN Invalid_operation ddqua593 quantize Inf Inf -> Infinity ddqua594 quantize Inf 1e-0 -> NaN Invalid_operation ddqua595 quantize -0 Inf -> NaN Invalid_operation ddqua600 quantize -Inf -Inf -> -Infinity ddqua601 quantize -Inf 1e-299 -> NaN Invalid_operation ddqua602 quantize -Inf 1e-1 -> NaN Invalid_operation ddqua603 quantize -Inf 1e0 -> NaN Invalid_operation ddqua604 quantize -Inf 1e1 -> NaN Invalid_operation ddqua605 quantize -Inf 1e299 -> NaN Invalid_operation ddqua606 quantize -Inf Inf -> -Infinity ddqua607 quantize -1000 Inf -> NaN Invalid_operation ddqua608 quantize -Inf -Inf -> -Infinity ddqua609 quantize -1 -Inf -> NaN Invalid_operation ddqua610 quantize 0 -Inf -> NaN Invalid_operation ddqua611 quantize 1 -Inf -> NaN Invalid_operation ddqua612 quantize 1000 -Inf -> NaN Invalid_operation ddqua613 quantize Inf -Inf -> Infinity ddqua614 quantize -Inf 1e-0 -> NaN Invalid_operation ddqua615 quantize -0 -Inf -> NaN Invalid_operation ddqua621 quantize NaN -Inf -> NaN ddqua622 quantize NaN 1e-299 -> NaN ddqua623 quantize NaN 1e-1 -> NaN ddqua624 quantize NaN 1e0 -> NaN ddqua625 quantize NaN 1e1 -> NaN ddqua626 quantize NaN 1e299 -> NaN ddqua627 quantize NaN Inf -> NaN ddqua628 quantize NaN NaN -> NaN ddqua629 quantize -Inf NaN -> NaN ddqua630 quantize -1000 NaN -> NaN ddqua631 quantize -1 NaN -> NaN ddqua632 quantize 0 NaN -> NaN ddqua633 quantize 1 NaN -> NaN ddqua634 quantize 1000 NaN -> NaN ddqua635 quantize Inf NaN -> NaN ddqua636 quantize NaN 1e-0 -> NaN ddqua637 quantize -0 NaN -> NaN ddqua641 quantize sNaN -Inf -> NaN Invalid_operation ddqua642 quantize sNaN 1e-299 -> NaN Invalid_operation ddqua643 quantize sNaN 1e-1 -> NaN Invalid_operation ddqua644 quantize sNaN 1e0 -> NaN Invalid_operation ddqua645 quantize sNaN 1e1 -> NaN Invalid_operation ddqua646 quantize sNaN 1e299 -> NaN Invalid_operation ddqua647 quantize sNaN NaN -> NaN Invalid_operation ddqua648 quantize sNaN sNaN -> NaN Invalid_operation ddqua649 quantize NaN sNaN -> NaN Invalid_operation ddqua650 quantize -Inf sNaN -> NaN Invalid_operation ddqua651 quantize -1000 sNaN -> NaN Invalid_operation ddqua652 quantize -1 sNaN -> NaN Invalid_operation ddqua653 quantize 0 sNaN -> NaN Invalid_operation ddqua654 quantize 1 sNaN -> NaN Invalid_operation ddqua655 quantize 1000 sNaN -> NaN Invalid_operation ddqua656 quantize Inf sNaN -> NaN Invalid_operation ddqua657 quantize NaN sNaN -> NaN Invalid_operation ddqua658 quantize sNaN 1e-0 -> NaN Invalid_operation ddqua659 quantize -0 sNaN -> NaN Invalid_operation -- propagating NaNs ddqua661 quantize NaN9 -Inf -> NaN9 ddqua662 quantize NaN8 919 -> NaN8 ddqua663 quantize NaN71 Inf -> NaN71 ddqua664 quantize NaN6 NaN5 -> NaN6 ddqua665 quantize -Inf NaN4 -> NaN4 ddqua666 quantize -919 NaN31 -> NaN31 ddqua667 quantize Inf NaN2 -> NaN2 ddqua671 quantize sNaN99 -Inf -> NaN99 Invalid_operation ddqua672 quantize sNaN98 -11 -> NaN98 Invalid_operation ddqua673 quantize sNaN97 NaN -> NaN97 Invalid_operation ddqua674 quantize sNaN16 sNaN94 -> NaN16 Invalid_operation ddqua675 quantize NaN95 sNaN93 -> NaN93 Invalid_operation ddqua676 quantize -Inf sNaN92 -> NaN92 Invalid_operation ddqua677 quantize 088 sNaN91 -> NaN91 Invalid_operation ddqua678 quantize Inf sNaN90 -> NaN90 Invalid_operation ddqua679 quantize NaN sNaN88 -> NaN88 Invalid_operation ddqua681 quantize -NaN9 -Inf -> -NaN9 ddqua682 quantize -NaN8 919 -> -NaN8 ddqua683 quantize -NaN71 Inf -> -NaN71 ddqua684 quantize -NaN6 -NaN5 -> -NaN6 ddqua685 quantize -Inf -NaN4 -> -NaN4 ddqua686 quantize -919 -NaN31 -> -NaN31 ddqua687 quantize Inf -NaN2 -> -NaN2 ddqua691 quantize -sNaN99 -Inf -> -NaN99 Invalid_operation ddqua692 quantize -sNaN98 -11 -> -NaN98 Invalid_operation ddqua693 quantize -sNaN97 NaN -> -NaN97 Invalid_operation ddqua694 quantize -sNaN16 sNaN94 -> -NaN16 Invalid_operation ddqua695 quantize -NaN95 -sNaN93 -> -NaN93 Invalid_operation ddqua696 quantize -Inf -sNaN92 -> -NaN92 Invalid_operation ddqua697 quantize 088 -sNaN91 -> -NaN91 Invalid_operation ddqua698 quantize Inf -sNaN90 -> -NaN90 Invalid_operation ddqua699 quantize NaN -sNaN88 -> -NaN88 Invalid_operation -- subnormals and underflow ddqua710 quantize 1.00E-383 1e-383 -> 1E-383 Rounded ddqua711 quantize 0.1E-383 2e-384 -> 1E-384 Subnormal ddqua712 quantize 0.10E-383 3e-384 -> 1E-384 Subnormal Rounded ddqua713 quantize 0.100E-383 4e-384 -> 1E-384 Subnormal Rounded ddqua714 quantize 0.01E-383 5e-385 -> 1E-385 Subnormal -- next is rounded to Emin ddqua715 quantize 0.999E-383 1e-383 -> 1E-383 Inexact Rounded ddqua716 quantize 0.099E-383 10e-384 -> 1E-384 Inexact Rounded Subnormal ddqua717 quantize 0.009E-383 1e-385 -> 1E-385 Inexact Rounded Subnormal ddqua718 quantize 0.001E-383 1e-385 -> 0E-385 Inexact Rounded ddqua719 quantize 0.0009E-383 1e-385 -> 0E-385 Inexact Rounded ddqua720 quantize 0.0001E-383 1e-385 -> 0E-385 Inexact Rounded ddqua730 quantize -1.00E-383 1e-383 -> -1E-383 Rounded ddqua731 quantize -0.1E-383 1e-383 -> -0E-383 Rounded Inexact ddqua732 quantize -0.10E-383 1e-383 -> -0E-383 Rounded Inexact ddqua733 quantize -0.100E-383 1e-383 -> -0E-383 Rounded Inexact ddqua734 quantize -0.01E-383 1e-383 -> -0E-383 Inexact Rounded -- next is rounded to Emin ddqua735 quantize -0.999E-383 90e-383 -> -1E-383 Inexact Rounded ddqua736 quantize -0.099E-383 -1e-383 -> -0E-383 Inexact Rounded ddqua737 quantize -0.009E-383 -1e-383 -> -0E-383 Inexact Rounded ddqua738 quantize -0.001E-383 -0e-383 -> -0E-383 Inexact Rounded ddqua739 quantize -0.0001E-383 0e-383 -> -0E-383 Inexact Rounded ddqua740 quantize -1.00E-383 1e-384 -> -1.0E-383 Rounded ddqua741 quantize -0.1E-383 1e-384 -> -1E-384 Subnormal ddqua742 quantize -0.10E-383 1e-384 -> -1E-384 Subnormal Rounded ddqua743 quantize -0.100E-383 1e-384 -> -1E-384 Subnormal Rounded ddqua744 quantize -0.01E-383 1e-384 -> -0E-384 Inexact Rounded -- next is rounded to Emin ddqua745 quantize -0.999E-383 1e-384 -> -1.0E-383 Inexact Rounded ddqua746 quantize -0.099E-383 1e-384 -> -1E-384 Inexact Rounded Subnormal ddqua747 quantize -0.009E-383 1e-384 -> -0E-384 Inexact Rounded ddqua748 quantize -0.001E-383 1e-384 -> -0E-384 Inexact Rounded ddqua749 quantize -0.0001E-383 1e-384 -> -0E-384 Inexact Rounded ddqua750 quantize -1.00E-383 1e-385 -> -1.00E-383 ddqua751 quantize -0.1E-383 1e-385 -> -1.0E-384 Subnormal ddqua752 quantize -0.10E-383 1e-385 -> -1.0E-384 Subnormal ddqua753 quantize -0.100E-383 1e-385 -> -1.0E-384 Subnormal Rounded ddqua754 quantize -0.01E-383 1e-385 -> -1E-385 Subnormal -- next is rounded to Emin ddqua755 quantize -0.999E-383 1e-385 -> -1.00E-383 Inexact Rounded ddqua756 quantize -0.099E-383 1e-385 -> -1.0E-384 Inexact Rounded Subnormal ddqua757 quantize -0.009E-383 1e-385 -> -1E-385 Inexact Rounded Subnormal ddqua758 quantize -0.001E-383 1e-385 -> -0E-385 Inexact Rounded ddqua759 quantize -0.0001E-383 1e-385 -> -0E-385 Inexact Rounded ddqua760 quantize -1.00E-383 1e-386 -> -1.000E-383 ddqua761 quantize -0.1E-383 1e-386 -> -1.00E-384 Subnormal ddqua762 quantize -0.10E-383 1e-386 -> -1.00E-384 Subnormal ddqua763 quantize -0.100E-383 1e-386 -> -1.00E-384 Subnormal ddqua764 quantize -0.01E-383 1e-386 -> -1.0E-385 Subnormal ddqua765 quantize -0.999E-383 1e-386 -> -9.99E-384 Subnormal ddqua766 quantize -0.099E-383 1e-386 -> -9.9E-385 Subnormal ddqua767 quantize -0.009E-383 1e-386 -> -9E-386 Subnormal ddqua768 quantize -0.001E-383 1e-386 -> -1E-386 Subnormal ddqua769 quantize -0.0001E-383 1e-386 -> -0E-386 Inexact Rounded -- More from Fung Lee ddqua1021 quantize 8.666666666666000E+384 1.000000000000000E+384 -> 8.666666666666000E+384 ddqua1022 quantize -8.666666666666000E+384 1.000000000000000E+384 -> -8.666666666666000E+384 ddqua1027 quantize 8.666666666666000E+323 1E+31 -> NaN Invalid_operation ddqua1029 quantize 8.66666666E+3 1E+3 -> 9E+3 Inexact Rounded --ddqua1030 quantize 8.666666666666000E+384 1E+384 -> 9.000000000000000E+384 Rounded Inexact --ddqua1031 quantize 8.666666666666000E+384 1E+384 -> 8.666666666666000E+384 Rounded --ddqua1032 quantize 8.666666666666000E+384 1E+383 -> 8.666666666666000E+384 Rounded --ddqua1033 quantize 8.666666666666000E+384 1E+382 -> 8.666666666666000E+384 Rounded --ddqua1034 quantize 8.666666666666000E+384 1E+381 -> 8.666666666666000E+384 Rounded --ddqua1035 quantize 8.666666666666000E+384 1E+380 -> 8.666666666666000E+384 Rounded -- Int and uInt32 edge values for testing conversions ddqua1040 quantize -2147483646 0 -> -2147483646 ddqua1041 quantize -2147483647 0 -> -2147483647 ddqua1042 quantize -2147483648 0 -> -2147483648 ddqua1043 quantize -2147483649 0 -> -2147483649 ddqua1044 quantize 2147483646 0 -> 2147483646 ddqua1045 quantize 2147483647 0 -> 2147483647 ddqua1046 quantize 2147483648 0 -> 2147483648 ddqua1047 quantize 2147483649 0 -> 2147483649 ddqua1048 quantize 4294967294 0 -> 4294967294 ddqua1049 quantize 4294967295 0 -> 4294967295 ddqua1050 quantize 4294967296 0 -> 4294967296 ddqua1051 quantize 4294967297 0 -> 4294967297 -- Rounding swathe rounding: half_even ddqua1100 quantize 1.2300 1.00 -> 1.23 Rounded ddqua1101 quantize 1.2301 1.00 -> 1.23 Inexact Rounded ddqua1102 quantize 1.2310 1.00 -> 1.23 Inexact Rounded ddqua1103 quantize 1.2350 1.00 -> 1.24 Inexact Rounded ddqua1104 quantize 1.2351 1.00 -> 1.24 Inexact Rounded ddqua1105 quantize 1.2450 1.00 -> 1.24 Inexact Rounded ddqua1106 quantize 1.2451 1.00 -> 1.25 Inexact Rounded ddqua1107 quantize 1.2360 1.00 -> 1.24 Inexact Rounded ddqua1108 quantize 1.2370 1.00 -> 1.24 Inexact Rounded ddqua1109 quantize 1.2399 1.00 -> 1.24 Inexact Rounded rounding: half_up ddqua1200 quantize 1.2300 1.00 -> 1.23 Rounded ddqua1201 quantize 1.2301 1.00 -> 1.23 Inexact Rounded ddqua1202 quantize 1.2310 1.00 -> 1.23 Inexact Rounded ddqua1203 quantize 1.2350 1.00 -> 1.24 Inexact Rounded ddqua1204 quantize 1.2351 1.00 -> 1.24 Inexact Rounded ddqua1205 quantize 1.2450 1.00 -> 1.25 Inexact Rounded ddqua1206 quantize 1.2451 1.00 -> 1.25 Inexact Rounded ddqua1207 quantize 1.2360 1.00 -> 1.24 Inexact Rounded ddqua1208 quantize 1.2370 1.00 -> 1.24 Inexact Rounded ddqua1209 quantize 1.2399 1.00 -> 1.24 Inexact Rounded rounding: half_down ddqua1300 quantize 1.2300 1.00 -> 1.23 Rounded ddqua1301 quantize 1.2301 1.00 -> 1.23 Inexact Rounded ddqua1302 quantize 1.2310 1.00 -> 1.23 Inexact Rounded ddqua1303 quantize 1.2350 1.00 -> 1.23 Inexact Rounded ddqua1304 quantize 1.2351 1.00 -> 1.24 Inexact Rounded ddqua1305 quantize 1.2450 1.00 -> 1.24 Inexact Rounded ddqua1306 quantize 1.2451 1.00 -> 1.25 Inexact Rounded ddqua1307 quantize 1.2360 1.00 -> 1.24 Inexact Rounded ddqua1308 quantize 1.2370 1.00 -> 1.24 Inexact Rounded ddqua1309 quantize 1.2399 1.00 -> 1.24 Inexact Rounded rounding: up ddqua1400 quantize 1.2300 1.00 -> 1.23 Rounded ddqua1401 quantize 1.2301 1.00 -> 1.24 Inexact Rounded ddqua1402 quantize 1.2310 1.00 -> 1.24 Inexact Rounded ddqua1403 quantize 1.2350 1.00 -> 1.24 Inexact Rounded ddqua1404 quantize 1.2351 1.00 -> 1.24 Inexact Rounded ddqua1405 quantize 1.2450 1.00 -> 1.25 Inexact Rounded ddqua1406 quantize 1.2451 1.00 -> 1.25 Inexact Rounded ddqua1407 quantize 1.2360 1.00 -> 1.24 Inexact Rounded ddqua1408 quantize 1.2370 1.00 -> 1.24 Inexact Rounded ddqua1409 quantize 1.2399 1.00 -> 1.24 Inexact Rounded ddqua1411 quantize -1.2399 1.00 -> -1.24 Inexact Rounded rounding: down ddqua1500 quantize 1.2300 1.00 -> 1.23 Rounded ddqua1501 quantize 1.2301 1.00 -> 1.23 Inexact Rounded ddqua1502 quantize 1.2310 1.00 -> 1.23 Inexact Rounded ddqua1503 quantize 1.2350 1.00 -> 1.23 Inexact Rounded ddqua1504 quantize 1.2351 1.00 -> 1.23 Inexact Rounded ddqua1505 quantize 1.2450 1.00 -> 1.24 Inexact Rounded ddqua1506 quantize 1.2451 1.00 -> 1.24 Inexact Rounded ddqua1507 quantize 1.2360 1.00 -> 1.23 Inexact Rounded ddqua1508 quantize 1.2370 1.00 -> 1.23 Inexact Rounded ddqua1509 quantize 1.2399 1.00 -> 1.23 Inexact Rounded ddqua1511 quantize -1.2399 1.00 -> -1.23 Inexact Rounded rounding: ceiling ddqua1600 quantize 1.2300 1.00 -> 1.23 Rounded ddqua1601 quantize 1.2301 1.00 -> 1.24 Inexact Rounded ddqua1602 quantize 1.2310 1.00 -> 1.24 Inexact Rounded ddqua1603 quantize 1.2350 1.00 -> 1.24 Inexact Rounded ddqua1604 quantize 1.2351 1.00 -> 1.24 Inexact Rounded ddqua1605 quantize 1.2450 1.00 -> 1.25 Inexact Rounded ddqua1606 quantize 1.2451 1.00 -> 1.25 Inexact Rounded ddqua1607 quantize 1.2360 1.00 -> 1.24 Inexact Rounded ddqua1608 quantize 1.2370 1.00 -> 1.24 Inexact Rounded ddqua1609 quantize 1.2399 1.00 -> 1.24 Inexact Rounded ddqua1611 quantize -1.2399 1.00 -> -1.23 Inexact Rounded rounding: floor ddqua1700 quantize 1.2300 1.00 -> 1.23 Rounded ddqua1701 quantize 1.2301 1.00 -> 1.23 Inexact Rounded ddqua1702 quantize 1.2310 1.00 -> 1.23 Inexact Rounded ddqua1703 quantize 1.2350 1.00 -> 1.23 Inexact Rounded ddqua1704 quantize 1.2351 1.00 -> 1.23 Inexact Rounded ddqua1705 quantize 1.2450 1.00 -> 1.24 Inexact Rounded ddqua1706 quantize 1.2451 1.00 -> 1.24 Inexact Rounded ddqua1707 quantize 1.2360 1.00 -> 1.23 Inexact Rounded ddqua1708 quantize 1.2370 1.00 -> 1.23 Inexact Rounded ddqua1709 quantize 1.2399 1.00 -> 1.23 Inexact Rounded ddqua1711 quantize -1.2399 1.00 -> -1.24 Inexact Rounded rounding: 05up ddqua1800 quantize 1.2000 1.00 -> 1.20 Rounded ddqua1801 quantize 1.2001 1.00 -> 1.21 Inexact Rounded ddqua1802 quantize 1.2010 1.00 -> 1.21 Inexact Rounded ddqua1803 quantize 1.2050 1.00 -> 1.21 Inexact Rounded ddqua1804 quantize 1.2051 1.00 -> 1.21 Inexact Rounded ddqua1807 quantize 1.2060 1.00 -> 1.21 Inexact Rounded ddqua1808 quantize 1.2070 1.00 -> 1.21 Inexact Rounded ddqua1809 quantize 1.2099 1.00 -> 1.21 Inexact Rounded ddqua1811 quantize -1.2099 1.00 -> -1.21 Inexact Rounded ddqua1900 quantize 1.2100 1.00 -> 1.21 Rounded ddqua1901 quantize 1.2101 1.00 -> 1.21 Inexact Rounded ddqua1902 quantize 1.2110 1.00 -> 1.21 Inexact Rounded ddqua1903 quantize 1.2150 1.00 -> 1.21 Inexact Rounded ddqua1904 quantize 1.2151 1.00 -> 1.21 Inexact Rounded ddqua1907 quantize 1.2160 1.00 -> 1.21 Inexact Rounded ddqua1908 quantize 1.2170 1.00 -> 1.21 Inexact Rounded ddqua1909 quantize 1.2199 1.00 -> 1.21 Inexact Rounded ddqua1911 quantize -1.2199 1.00 -> -1.21 Inexact Rounded ddqua2000 quantize 1.2400 1.00 -> 1.24 Rounded ddqua2001 quantize 1.2401 1.00 -> 1.24 Inexact Rounded ddqua2002 quantize 1.2410 1.00 -> 1.24 Inexact Rounded ddqua2003 quantize 1.2450 1.00 -> 1.24 Inexact Rounded ddqua2004 quantize 1.2451 1.00 -> 1.24 Inexact Rounded ddqua2007 quantize 1.2460 1.00 -> 1.24 Inexact Rounded ddqua2008 quantize 1.2470 1.00 -> 1.24 Inexact Rounded ddqua2009 quantize 1.2499 1.00 -> 1.24 Inexact Rounded ddqua2011 quantize -1.2499 1.00 -> -1.24 Inexact Rounded ddqua2100 quantize 1.2500 1.00 -> 1.25 Rounded ddqua2101 quantize 1.2501 1.00 -> 1.26 Inexact Rounded ddqua2102 quantize 1.2510 1.00 -> 1.26 Inexact Rounded ddqua2103 quantize 1.2550 1.00 -> 1.26 Inexact Rounded ddqua2104 quantize 1.2551 1.00 -> 1.26 Inexact Rounded ddqua2107 quantize 1.2560 1.00 -> 1.26 Inexact Rounded ddqua2108 quantize 1.2570 1.00 -> 1.26 Inexact Rounded ddqua2109 quantize 1.2599 1.00 -> 1.26 Inexact Rounded ddqua2111 quantize -1.2599 1.00 -> -1.26 Inexact Rounded ddqua2200 quantize 1.2600 1.00 -> 1.26 Rounded ddqua2201 quantize 1.2601 1.00 -> 1.26 Inexact Rounded ddqua2202 quantize 1.2610 1.00 -> 1.26 Inexact Rounded ddqua2203 quantize 1.2650 1.00 -> 1.26 Inexact Rounded ddqua2204 quantize 1.2651 1.00 -> 1.26 Inexact Rounded ddqua2207 quantize 1.2660 1.00 -> 1.26 Inexact Rounded ddqua2208 quantize 1.2670 1.00 -> 1.26 Inexact Rounded ddqua2209 quantize 1.2699 1.00 -> 1.26 Inexact Rounded ddqua2211 quantize -1.2699 1.00 -> -1.26 Inexact Rounded ddqua2300 quantize 1.2900 1.00 -> 1.29 Rounded ddqua2301 quantize 1.2901 1.00 -> 1.29 Inexact Rounded ddqua2302 quantize 1.2910 1.00 -> 1.29 Inexact Rounded ddqua2303 quantize 1.2950 1.00 -> 1.29 Inexact Rounded ddqua2304 quantize 1.2951 1.00 -> 1.29 Inexact Rounded ddqua2307 quantize 1.2960 1.00 -> 1.29 Inexact Rounded ddqua2308 quantize 1.2970 1.00 -> 1.29 Inexact Rounded ddqua2309 quantize 1.2999 1.00 -> 1.29 Inexact Rounded ddqua2311 quantize -1.2999 1.00 -> -1.29 Inexact Rounded -- Null tests rounding: half_even ddqua998 quantize 10 # -> NaN Invalid_operation ddqua999 quantize # 1e10 -> NaN Invalid_operation
41,660
834
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/ddCopy.decTest
------------------------------------------------------------------------ -- ddCopy.decTest -- quiet decDouble copy -- -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 -- All operands and results are decDoubles. precision: 16 maxExponent: 384 minExponent: -383 extended: 1 clamp: 1 rounding: half_even -- Sanity check ddcpy001 copy +7.50 -> 7.50 -- Infinities ddcpy011 copy Infinity -> Infinity ddcpy012 copy -Infinity -> -Infinity -- NaNs, 0 payload ddcpy021 copy NaN -> NaN ddcpy022 copy -NaN -> -NaN ddcpy023 copy sNaN -> sNaN ddcpy024 copy -sNaN -> -sNaN -- NaNs, non-0 payload ddcpy031 copy NaN10 -> NaN10 ddcpy032 copy -NaN10 -> -NaN10 ddcpy033 copy sNaN10 -> sNaN10 ddcpy034 copy -sNaN10 -> -sNaN10 ddcpy035 copy NaN7 -> NaN7 ddcpy036 copy -NaN7 -> -NaN7 ddcpy037 copy sNaN101 -> sNaN101 ddcpy038 copy -sNaN101 -> -sNaN101 -- finites ddcpy101 copy 7 -> 7 ddcpy102 copy -7 -> -7 ddcpy103 copy 75 -> 75 ddcpy104 copy -75 -> -75 ddcpy105 copy 7.50 -> 7.50 ddcpy106 copy -7.50 -> -7.50 ddcpy107 copy 7.500 -> 7.500 ddcpy108 copy -7.500 -> -7.500 -- zeros ddcpy111 copy 0 -> 0 ddcpy112 copy -0 -> -0 ddcpy113 copy 0E+4 -> 0E+4 ddcpy114 copy -0E+4 -> -0E+4 ddcpy115 copy 0.0000 -> 0.0000 ddcpy116 copy -0.0000 -> -0.0000 ddcpy117 copy 0E-141 -> 0E-141 ddcpy118 copy -0E-141 -> -0E-141 -- full coefficients, alternating bits ddcpy121 copy 2682682682682682 -> 2682682682682682 ddcpy122 copy -2682682682682682 -> -2682682682682682 ddcpy123 copy 1341341341341341 -> 1341341341341341 ddcpy124 copy -1341341341341341 -> -1341341341341341 -- Nmax, Nmin, Ntiny ddcpy131 copy 9.999999999999999E+384 -> 9.999999999999999E+384 ddcpy132 copy 1E-383 -> 1E-383 ddcpy133 copy 1.000000000000000E-383 -> 1.000000000000000E-383 ddcpy134 copy 1E-398 -> 1E-398 ddcpy135 copy -1E-398 -> -1E-398 ddcpy136 copy -1.000000000000000E-383 -> -1.000000000000000E-383 ddcpy137 copy -1E-383 -> -1E-383 ddcpy138 copy -9.999999999999999E+384 -> -9.999999999999999E+384
3,533
89
jart/cosmopolitan
false
cosmopolitan/third_party/python/Lib/test/decimaltestdata/remainderNear.decTest
------------------------------------------------------------------------ -- remainderNear.decTest -- decimal remainder-near (IEEE remainder) -- -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- ------------------------------------------------------------------------ -- Please see the document "General Decimal Arithmetic Testcases" -- -- at http://www2.hursley.ibm.com/decimal for the description of -- -- these testcases. -- -- -- -- These testcases are experimental ('beta' versions), and they -- -- may contain errors. They are offered on an as-is basis. In -- -- particular, achieving the same results as the tests here is not -- -- a guarantee that an implementation complies with any Standard -- -- or specification. The tests are not exhaustive. -- -- -- -- Please send comments, suggestions, and corrections to the author: -- -- Mike Cowlishaw, IBM Fellow -- -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- -- [email protected] -- ------------------------------------------------------------------------ version: 2.59 extended: 1 precision: 9 rounding: half_up maxExponent: 384 minexponent: -383 rmnx001 remaindernear 1 1 -> 0 rmnx002 remaindernear 2 1 -> 0 rmnx003 remaindernear 1 2 -> 1 rmnx004 remaindernear 2 2 -> 0 rmnx005 remaindernear 0 1 -> 0 rmnx006 remaindernear 0 2 -> 0 rmnx007 remaindernear 1 3 -> 1 rmnx008 remaindernear 2 3 -> -1 rmnx009 remaindernear 3 3 -> 0 rmnx010 remaindernear 2.4 1 -> 0.4 rmnx011 remaindernear 2.4 -1 -> 0.4 rmnx012 remaindernear -2.4 1 -> -0.4 rmnx013 remaindernear -2.4 -1 -> -0.4 rmnx014 remaindernear 2.40 1 -> 0.40 rmnx015 remaindernear 2.400 1 -> 0.400 rmnx016 remaindernear 2.4 2 -> 0.4 rmnx017 remaindernear 2.400 2 -> 0.400 rmnx018 remaindernear 2. 2 -> 0 rmnx019 remaindernear 20 20 -> 0 rmnx020 remaindernear 187 187 -> 0 rmnx021 remaindernear 5 2 -> 1 rmnx022 remaindernear 5 2.0 -> 1.0 rmnx023 remaindernear 5 2.000 -> 1.000 rmnx024 remaindernear 5 0.200 -> 0.000 rmnx025 remaindernear 5 0.200 -> 0.000 rmnx030 remaindernear 1 2 -> 1 rmnx031 remaindernear 1 4 -> 1 rmnx032 remaindernear 1 8 -> 1 rmnx033 remaindernear 1 16 -> 1 rmnx034 remaindernear 1 32 -> 1 rmnx035 remaindernear 1 64 -> 1 rmnx040 remaindernear 1 -2 -> 1 rmnx041 remaindernear 1 -4 -> 1 rmnx042 remaindernear 1 -8 -> 1 rmnx043 remaindernear 1 -16 -> 1 rmnx044 remaindernear 1 -32 -> 1 rmnx045 remaindernear 1 -64 -> 1 rmnx050 remaindernear -1 2 -> -1 rmnx051 remaindernear -1 4 -> -1 rmnx052 remaindernear -1 8 -> -1 rmnx053 remaindernear -1 16 -> -1 rmnx054 remaindernear -1 32 -> -1 rmnx055 remaindernear -1 64 -> -1 rmnx060 remaindernear -1 -2 -> -1 rmnx061 remaindernear -1 -4 -> -1 rmnx062 remaindernear -1 -8 -> -1 rmnx063 remaindernear -1 -16 -> -1 rmnx064 remaindernear -1 -32 -> -1 rmnx065 remaindernear -1 -64 -> -1 rmnx066 remaindernear 999999997 1 -> 0 rmnx067 remaindernear 999999997.4 1 -> 0.4 rmnx068 remaindernear 999999997.5 1 -> -0.5 rmnx069 remaindernear 999999997.9 1 -> -0.1 rmnx070 remaindernear 999999997.999 1 -> -0.001 rmnx071 remaindernear 999999998 1 -> 0 rmnx072 remaindernear 999999998.4 1 -> 0.4 rmnx073 remaindernear 999999998.5 1 -> 0.5 rmnx074 remaindernear 999999998.9 1 -> -0.1 rmnx075 remaindernear 999999998.999 1 -> -0.001 rmnx076 remaindernear 999999999 1 -> 0 rmnx077 remaindernear 999999999.4 1 -> 0.4 rmnx078 remaindernear 999999999.5 1 -> NaN Division_impossible rmnx079 remaindernear 999999999.9 1 -> NaN Division_impossible rmnx080 remaindernear 999999999.999 1 -> NaN Division_impossible precision: 6 rmnx081 remaindernear 999999999 1 -> NaN Division_impossible rmnx082 remaindernear 99999999 1 -> NaN Division_impossible rmnx083 remaindernear 9999999 1 -> NaN Division_impossible rmnx084 remaindernear 999999 1 -> 0 rmnx085 remaindernear 99999 1 -> 0 rmnx086 remaindernear 9999 1 -> 0 rmnx087 remaindernear 999 1 -> 0 rmnx088 remaindernear 99 1 -> 0 rmnx089 remaindernear 9 1 -> 0 precision: 9 rmnx090 remaindernear 0. 1 -> 0 rmnx091 remaindernear .0 1 -> 0.0 rmnx092 remaindernear 0.00 1 -> 0.00 rmnx093 remaindernear 0.00E+9 1 -> 0 rmnx094 remaindernear 0.0000E-50 1 -> 0E-54 -- Various flavours of remaindernear by 0 precision: 9 maxexponent: 999999999 minexponent: -999999999 rmnx101 remaindernear 0 0 -> NaN Division_undefined rmnx102 remaindernear 0 -0 -> NaN Division_undefined rmnx103 remaindernear -0 0 -> NaN Division_undefined rmnx104 remaindernear -0 -0 -> NaN Division_undefined rmnx105 remaindernear 0.0E5 0 -> NaN Division_undefined rmnx106 remaindernear 0.000 0 -> NaN Division_undefined -- [Some think this next group should be Division_by_zero exception, -- but IEEE 854 is explicit that it is Invalid operation .. for -- remaindernear-near, anyway] rmnx107 remaindernear 0.0001 0 -> NaN Invalid_operation rmnx108 remaindernear 0.01 0 -> NaN Invalid_operation rmnx109 remaindernear 0.1 0 -> NaN Invalid_operation rmnx110 remaindernear 1 0 -> NaN Invalid_operation rmnx111 remaindernear 1 0.0 -> NaN Invalid_operation rmnx112 remaindernear 10 0.0 -> NaN Invalid_operation rmnx113 remaindernear 1E+100 0.0 -> NaN Invalid_operation rmnx114 remaindernear 1E+1000 0 -> NaN Invalid_operation rmnx115 remaindernear 0.0001 -0 -> NaN Invalid_operation rmnx116 remaindernear 0.01 -0 -> NaN Invalid_operation rmnx119 remaindernear 0.1 -0 -> NaN Invalid_operation rmnx120 remaindernear 1 -0 -> NaN Invalid_operation rmnx121 remaindernear 1 -0.0 -> NaN Invalid_operation rmnx122 remaindernear 10 -0.0 -> NaN Invalid_operation rmnx123 remaindernear 1E+100 -0.0 -> NaN Invalid_operation rmnx124 remaindernear 1E+1000 -0 -> NaN Invalid_operation -- and zeros on left rmnx130 remaindernear 0 1 -> 0 rmnx131 remaindernear 0 -1 -> 0 rmnx132 remaindernear 0.0 1 -> 0.0 rmnx133 remaindernear 0.0 -1 -> 0.0 rmnx134 remaindernear -0 1 -> -0 rmnx135 remaindernear -0 -1 -> -0 rmnx136 remaindernear -0.0 1 -> -0.0 rmnx137 remaindernear -0.0 -1 -> -0.0 -- 0.5ers rmmx143 remaindernear 0.5 2 -> 0.5 rmmx144 remaindernear 0.5 2.1 -> 0.5 rmmx145 remaindernear 0.5 2.01 -> 0.50 rmmx146 remaindernear 0.5 2.001 -> 0.500 rmmx147 remaindernear 0.50 2 -> 0.50 rmmx148 remaindernear 0.50 2.01 -> 0.50 rmmx149 remaindernear 0.50 2.001 -> 0.500 -- some differences from remainder rmnx150 remaindernear 0.4 1.020 -> 0.400 rmnx151 remaindernear 0.50 1.020 -> 0.500 rmnx152 remaindernear 0.51 1.020 -> 0.510 rmnx153 remaindernear 0.52 1.020 -> -0.500 rmnx154 remaindernear 0.6 1.020 -> -0.420 rmnx155 remaindernear 0.49 1 -> 0.49 rmnx156 remaindernear 0.50 1 -> 0.50 rmnx157 remaindernear 1.50 1 -> -0.50 rmnx158 remaindernear 2.50 1 -> 0.50 rmnx159 remaindernear 9.50 1 -> -0.50 rmnx160 remaindernear 0.51 1 -> -0.49 -- the nasty division-by-1 cases rmnx161 remaindernear 0.4 1 -> 0.4 rmnx162 remaindernear 0.45 1 -> 0.45 rmnx163 remaindernear 0.455 1 -> 0.455 rmnx164 remaindernear 0.4555 1 -> 0.4555 rmnx165 remaindernear 0.45555 1 -> 0.45555 rmnx166 remaindernear 0.455555 1 -> 0.455555 rmnx167 remaindernear 0.4555555 1 -> 0.4555555 rmnx168 remaindernear 0.45555555 1 -> 0.45555555 rmnx169 remaindernear 0.455555555 1 -> 0.455555555 -- with spill... rmnx171 remaindernear 0.5 1 -> 0.5 rmnx172 remaindernear 0.55 1 -> -0.45 rmnx173 remaindernear 0.555 1 -> -0.445 rmnx174 remaindernear 0.5555 1 -> -0.4445 rmnx175 remaindernear 0.55555 1 -> -0.44445 rmnx176 remaindernear 0.555555 1 -> -0.444445 rmnx177 remaindernear 0.5555555 1 -> -0.4444445 rmnx178 remaindernear 0.55555555 1 -> -0.44444445 rmnx179 remaindernear 0.555555555 1 -> -0.444444445 -- progression rmnx180 remaindernear 1 1 -> 0 rmnx181 remaindernear 1 2 -> 1 rmnx182 remaindernear 1 3 -> 1 rmnx183 remaindernear 1 4 -> 1 rmnx184 remaindernear 1 5 -> 1 rmnx185 remaindernear 1 6 -> 1 rmnx186 remaindernear 1 7 -> 1 rmnx187 remaindernear 1 8 -> 1 rmnx188 remaindernear 1 9 -> 1 rmnx189 remaindernear 1 10 -> 1 rmnx190 remaindernear 1 1 -> 0 rmnx191 remaindernear 2 1 -> 0 rmnx192 remaindernear 3 1 -> 0 rmnx193 remaindernear 4 1 -> 0 rmnx194 remaindernear 5 1 -> 0 rmnx195 remaindernear 6 1 -> 0 rmnx196 remaindernear 7 1 -> 0 rmnx197 remaindernear 8 1 -> 0 rmnx198 remaindernear 9 1 -> 0 rmnx199 remaindernear 10 1 -> 0 -- Various flavours of remaindernear by 0 maxexponent: 999999999 minexponent: -999999999 rmnx201 remaindernear 0 0 -> NaN Division_undefined rmnx202 remaindernear 0.0E5 0 -> NaN Division_undefined rmnx203 remaindernear 0.000 0 -> NaN Division_undefined rmnx204 remaindernear 0.0001 0 -> NaN Invalid_operation rmnx205 remaindernear 0.01 0 -> NaN Invalid_operation rmnx206 remaindernear 0.1 0 -> NaN Invalid_operation rmnx207 remaindernear 1 0 -> NaN Invalid_operation rmnx208 remaindernear 1 0.0 -> NaN Invalid_operation rmnx209 remaindernear 10 0.0 -> NaN Invalid_operation rmnx210 remaindernear 1E+100 0.0 -> NaN Invalid_operation rmnx211 remaindernear 1E+1000 0 -> NaN Invalid_operation -- tests from the extended specification rmnx221 remaindernear 2.1 3 -> -0.9 rmnx222 remaindernear 10 6 -> -2 rmnx223 remaindernear 10 3 -> 1 rmnx224 remaindernear -10 3 -> -1 rmnx225 remaindernear 10.2 1 -> 0.2 rmnx226 remaindernear 10 0.3 -> 0.1 rmnx227 remaindernear 3.6 1.3 -> -0.3 -- some differences from remainder rmnx231 remaindernear 0.4 1.020 -> 0.400 rmnx232 remaindernear 0.50 1.020 -> 0.500 rmnx233 remaindernear 0.51 1.020 -> 0.510 rmnx234 remaindernear 0.52 1.020 -> -0.500 rmnx235 remaindernear 0.6 1.020 -> -0.420 -- test some cases that are close to exponent overflow maxexponent: 999999999 minexponent: -999999999 rmnx270 remaindernear 1 1e999999999 -> 1 rmnx271 remaindernear 1 0.9e999999999 -> 1 rmnx272 remaindernear 1 0.99e999999999 -> 1 rmnx273 remaindernear 1 0.999999999e999999999 -> 1 rmnx274 remaindernear 9e999999999 1 -> NaN Division_impossible rmnx275 remaindernear 9.9e999999999 1 -> NaN Division_impossible rmnx276 remaindernear 9.99e999999999 1 -> NaN Division_impossible rmnx277 remaindernear 9.99999999e999999999 1 -> NaN Division_impossible rmnx280 remaindernear 0.1 9e-999999999 -> NaN Division_impossible rmnx281 remaindernear 0.1 99e-999999999 -> NaN Division_impossible rmnx282 remaindernear 0.1 999e-999999999 -> NaN Division_impossible rmnx283 remaindernear 0.1 9e-999999998 -> NaN Division_impossible rmnx284 remaindernear 0.1 99e-999999998 -> NaN Division_impossible rmnx285 remaindernear 0.1 999e-999999998 -> NaN Division_impossible rmnx286 remaindernear 0.1 999e-999999997 -> NaN Division_impossible rmnx287 remaindernear 0.1 9999e-999999997 -> NaN Division_impossible rmnx288 remaindernear 0.1 99999e-999999997 -> NaN Division_impossible -- rmnx3xx are from DiagBigDecimal rmnx301 remaindernear 1 3 -> 1 rmnx302 remaindernear 5 5 -> 0 rmnx303 remaindernear 13 10 -> 3 rmnx304 remaindernear 13 50 -> 13 rmnx305 remaindernear 13 100 -> 13 rmnx306 remaindernear 13 1000 -> 13 rmnx307 remaindernear .13 1 -> 0.13 rmnx308 remaindernear 0.133 1 -> 0.133 rmnx309 remaindernear 0.1033 1 -> 0.1033 rmnx310 remaindernear 1.033 1 -> 0.033 rmnx311 remaindernear 10.33 1 -> 0.33 rmnx312 remaindernear 10.33 10 -> 0.33 rmnx313 remaindernear 103.3 1 -> 0.3 rmnx314 remaindernear 133 10 -> 3 rmnx315 remaindernear 1033 10 -> 3 rmnx316 remaindernear 1033 50 -> -17 rmnx317 remaindernear 101.0 3 -> -1.0 rmnx318 remaindernear 102.0 3 -> 0.0 rmnx319 remaindernear 103.0 3 -> 1.0 rmnx320 remaindernear 2.40 1 -> 0.40 rmnx321 remaindernear 2.400 1 -> 0.400 rmnx322 remaindernear 2.4 1 -> 0.4 rmnx323 remaindernear 2.4 2 -> 0.4 rmnx324 remaindernear 2.400 2 -> 0.400 rmnx325 remaindernear 1 0.3 -> 0.1 rmnx326 remaindernear 1 0.30 -> 0.10 rmnx327 remaindernear 1 0.300 -> 0.100 rmnx328 remaindernear 1 0.3000 -> 0.1000 rmnx329 remaindernear 1.0 0.3 -> 0.1 rmnx330 remaindernear 1.00 0.3 -> 0.10 rmnx331 remaindernear 1.000 0.3 -> 0.100 rmnx332 remaindernear 1.0000 0.3 -> 0.1000 rmnx333 remaindernear 0.5 2 -> 0.5 rmnx334 remaindernear 0.5 2.1 -> 0.5 rmnx335 remaindernear 0.5 2.01 -> 0.50 rmnx336 remaindernear 0.5 2.001 -> 0.500 rmnx337 remaindernear 0.50 2 -> 0.50 rmnx338 remaindernear 0.50 2.01 -> 0.50 rmnx339 remaindernear 0.50 2.001 -> 0.500 rmnx340 remaindernear 0.5 0.5000001 -> -1E-7 rmnx341 remaindernear 0.5 0.50000001 -> -1E-8 rmnx342 remaindernear 0.5 0.500000001 -> -1E-9 rmnx343 remaindernear 0.5 0.5000000001 -> -1E-10 rmnx344 remaindernear 0.5 0.50000000001 -> -1E-11 rmnx345 remaindernear 0.5 0.4999999 -> 1E-7 rmnx346 remaindernear 0.5 0.49999999 -> 1E-8 rmnx347 remaindernear 0.5 0.499999999 -> 1E-9 rmnx348 remaindernear 0.5 0.4999999999 -> 1E-10 rmnx349 remaindernear 0.5 0.49999999999 -> 1E-11 rmnx350 remaindernear 0.03 7 -> 0.03 rmnx351 remaindernear 5 2 -> 1 rmnx352 remaindernear 4.1 2 -> 0.1 rmnx353 remaindernear 4.01 2 -> 0.01 rmnx354 remaindernear 4.001 2 -> 0.001 rmnx355 remaindernear 4.0001 2 -> 0.0001 rmnx356 remaindernear 4.00001 2 -> 0.00001 rmnx357 remaindernear 4.000001 2 -> 0.000001 rmnx358 remaindernear 4.0000001 2 -> 1E-7 rmnx360 remaindernear 1.2 0.7345 -> -0.2690 rmnx361 remaindernear 0.8 12 -> 0.8 rmnx362 remaindernear 0.8 0.2 -> 0.0 rmnx363 remaindernear 0.8 0.3 -> -0.1 rmnx364 remaindernear 0.800 12 -> 0.800 rmnx365 remaindernear 0.800 1.7 -> 0.800 rmnx366 remaindernear 2.400 2 -> 0.400 precision: 6 rmnx371 remaindernear 2.400 2 -> 0.400 precision: 3 rmnx372 remaindernear 12345678900000 12e+12 -> 3.46E+11 Inexact Rounded precision: 5 rmnx381 remaindernear 12345 1 -> 0 rmnx382 remaindernear 12345 1.0001 -> -0.2344 rmnx383 remaindernear 12345 1.001 -> -0.333 rmnx384 remaindernear 12345 1.01 -> -0.23 rmnx385 remaindernear 12345 1.1 -> -0.3 rmnx386 remaindernear 12355 4 -> -1 rmnx387 remaindernear 12345 4 -> 1 rmnx388 remaindernear 12355 4.0001 -> -1.3089 rmnx389 remaindernear 12345 4.0001 -> 0.6914 rmnx390 remaindernear 12345 4.9 -> 1.9 rmnx391 remaindernear 12345 4.99 -> -0.26 rmnx392 remaindernear 12345 4.999 -> 2.469 rmnx393 remaindernear 12345 4.9999 -> 0.2469 rmnx394 remaindernear 12345 5 -> 0 rmnx395 remaindernear 12345 5.0001 -> -0.2469 rmnx396 remaindernear 12345 5.001 -> -2.469 rmnx397 remaindernear 12345 5.01 -> 0.36 rmnx398 remaindernear 12345 5.1 -> -2.1 precision: 9 -- some nasty division-by-1 cases [some similar above] rmnx401 remaindernear 0.4 1 -> 0.4 rmnx402 remaindernear 0.45 1 -> 0.45 rmnx403 remaindernear 0.455 1 -> 0.455 rmnx404 remaindernear 0.4555 1 -> 0.4555 rmnx405 remaindernear 0.45555 1 -> 0.45555 rmnx406 remaindernear 0.455555 1 -> 0.455555 rmnx407 remaindernear 0.4555555 1 -> 0.4555555 rmnx408 remaindernear 0.45555555 1 -> 0.45555555 rmnx409 remaindernear 0.455555555 1 -> 0.455555555 -- some tricky LHSs rmnx420 remaindernear 99999999.999999999 1E+8 -> -1E-9 rmnx421 remaindernear 999999999.999999999 1E+9 -> -1E-9 precision: 9 rmnx430 remaindernear 0.455555555 1 -> 0.455555555 precision: 8 rmnx431 remaindernear 0.455555555 1 -> 0.45555556 Inexact Rounded precision: 7 rmnx432 remaindernear 0.455555555 1 -> 0.4555556 Inexact Rounded precision: 6 rmnx433 remaindernear 0.455555555 1 -> 0.455556 Inexact Rounded precision: 5 rmnx434 remaindernear 0.455555555 1 -> 0.45556 Inexact Rounded precision: 4 rmnx435 remaindernear 0.455555555 1 -> 0.4556 Inexact Rounded precision: 3 rmnx436 remaindernear 0.455555555 1 -> 0.456 Inexact Rounded precision: 2 rmnx437 remaindernear 0.455555555 1 -> 0.46 Inexact Rounded precision: 1 rmnx438 remaindernear 0.455555555 1 -> 0.5 Inexact Rounded -- early tests; from text descriptions precision: 9 rmnx601 remaindernear 10 6 -> -2 rmnx602 remaindernear -10 6 -> 2 rmnx603 remaindernear 11 3 -> -1 rmnx604 remaindernear 11 5 -> 1 rmnx605 remaindernear 7.7 8 -> -0.3 rmnx606 remaindernear 31.5 3 -> 1.5 -- i=10 rmnx607 remaindernear 34.5 3 -> -1.5 -- i=11 -- zero signs rmnx650 remaindernear 1 1 -> 0 rmnx651 remaindernear -1 1 -> -0 rmnx652 remaindernear 1 -1 -> 0 rmnx653 remaindernear -1 -1 -> -0 rmnx654 remaindernear 0 1 -> 0 rmnx655 remaindernear -0 1 -> -0 rmnx656 remaindernear 0 -1 -> 0 rmnx657 remaindernear -0 -1 -> -0 rmnx658 remaindernear 0.00 1 -> 0.00 rmnx659 remaindernear -0.00 1 -> -0.00 -- Specials rmnx680 remaindernear Inf -Inf -> NaN Invalid_operation rmnx681 remaindernear Inf -1000 -> NaN Invalid_operation rmnx682 remaindernear Inf -1 -> NaN Invalid_operation rmnx683 remaindernear Inf 0 -> NaN Invalid_operation rmnx684 remaindernear Inf -0 -> NaN Invalid_operation rmnx685 remaindernear Inf 1 -> NaN Invalid_operation rmnx686 remaindernear Inf 1000 -> NaN Invalid_operation rmnx687 remaindernear Inf Inf -> NaN Invalid_operation rmnx688 remaindernear -1000 Inf -> -1000 rmnx689 remaindernear -Inf Inf -> NaN Invalid_operation rmnx691 remaindernear -1 Inf -> -1 rmnx692 remaindernear 0 Inf -> 0 rmnx693 remaindernear -0 Inf -> -0 rmnx694 remaindernear 1 Inf -> 1 rmnx695 remaindernear 1000 Inf -> 1000 rmnx696 remaindernear Inf Inf -> NaN Invalid_operation rmnx700 remaindernear -Inf -Inf -> NaN Invalid_operation rmnx701 remaindernear -Inf -1000 -> NaN Invalid_operation rmnx702 remaindernear -Inf -1 -> NaN Invalid_operation rmnx703 remaindernear -Inf -0 -> NaN Invalid_operation rmnx704 remaindernear -Inf 0 -> NaN Invalid_operation rmnx705 remaindernear -Inf 1 -> NaN Invalid_operation rmnx706 remaindernear -Inf 1000 -> NaN Invalid_operation rmnx707 remaindernear -Inf Inf -> NaN Invalid_operation rmnx708 remaindernear -Inf -Inf -> NaN Invalid_operation rmnx709 remaindernear -1000 Inf -> -1000 rmnx710 remaindernear -1 -Inf -> -1 rmnx711 remaindernear -0 -Inf -> -0 rmnx712 remaindernear 0 -Inf -> 0 rmnx713 remaindernear 1 -Inf -> 1 rmnx714 remaindernear 1000 -Inf -> 1000 rmnx715 remaindernear Inf -Inf -> NaN Invalid_operation rmnx721 remaindernear NaN -Inf -> NaN rmnx722 remaindernear NaN -1000 -> NaN rmnx723 remaindernear NaN -1 -> NaN rmnx724 remaindernear NaN -0 -> NaN rmnx725 remaindernear NaN 0 -> NaN rmnx726 remaindernear NaN 1 -> NaN rmnx727 remaindernear NaN 1000 -> NaN rmnx728 remaindernear NaN Inf -> NaN rmnx729 remaindernear NaN NaN -> NaN rmnx730 remaindernear -Inf NaN -> NaN rmnx731 remaindernear -1000 NaN -> NaN rmnx732 remaindernear -1 -NaN -> -NaN rmnx733 remaindernear -0 NaN -> NaN rmnx734 remaindernear 0 NaN -> NaN rmnx735 remaindernear 1 NaN -> NaN rmnx736 remaindernear 1000 NaN -> NaN rmnx737 remaindernear Inf NaN -> NaN rmnx741 remaindernear sNaN -Inf -> NaN Invalid_operation rmnx742 remaindernear sNaN -1000 -> NaN Invalid_operation rmnx743 remaindernear -sNaN -1 -> -NaN Invalid_operation rmnx744 remaindernear sNaN -0 -> NaN Invalid_operation rmnx745 remaindernear sNaN 0 -> NaN Invalid_operation rmnx746 remaindernear sNaN 1 -> NaN Invalid_operation rmnx747 remaindernear sNaN 1000 -> NaN Invalid_operation rmnx749 remaindernear sNaN NaN -> NaN Invalid_operation rmnx750 remaindernear sNaN sNaN -> NaN Invalid_operation rmnx751 remaindernear NaN sNaN -> NaN Invalid_operation rmnx752 remaindernear -Inf sNaN -> NaN Invalid_operation rmnx753 remaindernear -1000 sNaN -> NaN Invalid_operation rmnx754 remaindernear -1 sNaN -> NaN Invalid_operation rmnx755 remaindernear -0 -sNaN -> -NaN Invalid_operation rmnx756 remaindernear 0 sNaN -> NaN Invalid_operation rmnx757 remaindernear 1 sNaN -> NaN Invalid_operation rmnx758 remaindernear 1000 sNaN -> NaN Invalid_operation rmnx759 remaindernear Inf sNaN -> NaN Invalid_operation rmnx760 remaindernear NaN sNaN -> NaN Invalid_operation -- propaging NaNs rmnx761 remaindernear NaN1 NaN7 -> NaN1 rmnx762 remaindernear sNaN2 NaN8 -> NaN2 Invalid_operation rmnx763 remaindernear NaN3 -sNaN9 -> -NaN9 Invalid_operation rmnx764 remaindernear sNaN4 sNaN10 -> NaN4 Invalid_operation rmnx765 remaindernear 15 NaN11 -> NaN11 rmnx766 remaindernear NaN6 NaN12 -> NaN6 rmnx767 remaindernear Inf -NaN13 -> -NaN13 rmnx768 remaindernear NaN14 -Inf -> NaN14 rmnx769 remaindernear 0 NaN15 -> NaN15 rmnx770 remaindernear -NaN16 -0 -> -NaN16 -- test some cases that are close to exponent overflow maxexponent: 999999999 minexponent: -999999999 rmnx780 remaindernear 1 1e999999999 -> 1 rmnx781 remaindernear 1 0.9e999999999 -> 1 rmnx782 remaindernear 1 0.99e999999999 -> 1 rmnx783 remaindernear 1 0.999999999e999999999 -> 1 rmnx784 remaindernear 9e999999999 1 -> NaN Division_impossible rmnx785 remaindernear 9.9e999999999 1 -> NaN Division_impossible rmnx786 remaindernear 9.99e999999999 1 -> NaN Division_impossible rmnx787 remaindernear 9.99999999e999999999 1 -> NaN Division_impossible -- overflow and underflow tests [from divide] precision: 9 maxexponent: 999999999 minexponent: -999999999 rmnx790 remaindernear +1.23456789012345E-0 9E+999999999 -> 1.23456789 Inexact Rounded rmnx791 remaindernear 9E+999999999 +0.23456789012345E-0 -> NaN Division_impossible rmnx792 remaindernear +0.100 9E+999999999 -> 0.100 rmnx793 remaindernear 9E-999999999 +9.100 -> 9E-999999999 rmnx795 remaindernear -1.23456789012345E-0 9E+999999999 -> -1.23456789 Inexact Rounded rmnx796 remaindernear 9E+999999999 -0.83456789012345E-0 -> NaN Division_impossible rmnx797 remaindernear -0.100 9E+999999999 -> -0.100 rmnx798 remaindernear 9E-999999999 -9.100 -> 9E-999999999 -- long operands checks maxexponent: 999 minexponent: -999 precision: 9 rmnx801 remaindernear 12345678000 100 -> 0 rmnx802 remaindernear 1 12345678000 -> 1 rmnx803 remaindernear 1234567800 10 -> 0 rmnx804 remaindernear 1 1234567800 -> 1 rmnx805 remaindernear 1234567890 10 -> 0 rmnx806 remaindernear 1 1234567890 -> 1 rmnx807 remaindernear 1234567891 10 -> 1 rmnx808 remaindernear 1 1234567891 -> 1 rmnx809 remaindernear 12345678901 100 -> 1 rmnx810 remaindernear 1 12345678901 -> 1 rmnx811 remaindernear 1234567896 10 -> -4 rmnx812 remaindernear 1 1234567896 -> 1 precision: 15 rmnx841 remaindernear 12345678000 100 -> 0 rmnx842 remaindernear 1 12345678000 -> 1 rmnx843 remaindernear 1234567800 10 -> 0 rmnx844 remaindernear 1 1234567800 -> 1 rmnx845 remaindernear 1234567890 10 -> 0 rmnx846 remaindernear 1 1234567890 -> 1 rmnx847 remaindernear 1234567891 10 -> 1 rmnx848 remaindernear 1 1234567891 -> 1 rmnx849 remaindernear 12345678901 100 -> 1 rmnx850 remaindernear 1 12345678901 -> 1 rmnx851 remaindernear 1234567896 10 -> -4 rmnx852 remaindernear 1 1234567896 -> 1 -- Null tests rmnx900 remaindernear 10 # -> NaN Invalid_operation rmnx901 remaindernear # 10 -> NaN Invalid_operation
25,018
573
jart/cosmopolitan
false