path
stringlengths 14
112
| content
stringlengths 0
6.32M
| size
int64 0
6.32M
| max_lines
int64 1
100k
| repo_name
stringclasses 2
values | autogenerated
bool 1
class |
---|---|---|---|---|---|
cosmopolitan/third_party/python/Lib/xmlrpc/client.py | #
# XML-RPC CLIENT LIBRARY
# $Id$
#
# an XML-RPC client interface for Python.
#
# the marshalling and response parser code can also be used to
# implement XML-RPC servers.
#
# Notes:
# this version is designed to work with Python 2.1 or newer.
#
# History:
# 1999-01-14 fl Created
# 1999-01-15 fl Changed dateTime to use localtime
# 1999-01-16 fl Added Binary/base64 element, default to RPC2 service
# 1999-01-19 fl Fixed array data element (from Skip Montanaro)
# 1999-01-21 fl Fixed dateTime constructor, etc.
# 1999-02-02 fl Added fault handling, handle empty sequences, etc.
# 1999-02-10 fl Fixed problem with empty responses (from Skip Montanaro)
# 1999-06-20 fl Speed improvements, pluggable parsers/transports (0.9.8)
# 2000-11-28 fl Changed boolean to check the truth value of its argument
# 2001-02-24 fl Added encoding/Unicode/SafeTransport patches
# 2001-02-26 fl Added compare support to wrappers (0.9.9/1.0b1)
# 2001-03-28 fl Make sure response tuple is a singleton
# 2001-03-29 fl Don't require empty params element (from Nicholas Riley)
# 2001-06-10 fl Folded in _xmlrpclib accelerator support (1.0b2)
# 2001-08-20 fl Base xmlrpclib.Error on built-in Exception (from Paul Prescod)
# 2001-09-03 fl Allow Transport subclass to override getparser
# 2001-09-10 fl Lazy import of urllib, cgi, xmllib (20x import speedup)
# 2001-10-01 fl Remove containers from memo cache when done with them
# 2001-10-01 fl Use faster escape method (80% dumps speedup)
# 2001-10-02 fl More dumps microtuning
# 2001-10-04 fl Make sure import expat gets a parser (from Guido van Rossum)
# 2001-10-10 sm Allow long ints to be passed as ints if they don't overflow
# 2001-10-17 sm Test for int and long overflow (allows use on 64-bit systems)
# 2001-11-12 fl Use repr() to marshal doubles (from Paul Felix)
# 2002-03-17 fl Avoid buffered read when possible (from James Rucker)
# 2002-04-07 fl Added pythondoc comments
# 2002-04-16 fl Added __str__ methods to datetime/binary wrappers
# 2002-05-15 fl Added error constants (from Andrew Kuchling)
# 2002-06-27 fl Merged with Python CVS version
# 2002-10-22 fl Added basic authentication (based on code from Phillip Eby)
# 2003-01-22 sm Add support for the bool type
# 2003-02-27 gvr Remove apply calls
# 2003-04-24 sm Use cStringIO if available
# 2003-04-25 ak Add support for nil
# 2003-06-15 gn Add support for time.struct_time
# 2003-07-12 gp Correct marshalling of Faults
# 2003-10-31 mvl Add multicall support
# 2004-08-20 mvl Bump minimum supported Python version to 2.1
# 2014-12-02 ch/doko Add workaround for gzip bomb vulnerability
#
# Copyright (c) 1999-2002 by Secret Labs AB.
# Copyright (c) 1999-2002 by Fredrik Lundh.
#
# [email protected]
# http://www.pythonware.com
#
# --------------------------------------------------------------------
# The XML-RPC client interface is
#
# Copyright (c) 1999-2002 by Secret Labs AB
# Copyright (c) 1999-2002 by Fredrik Lundh
#
# By obtaining, using, and/or copying this software and/or its
# associated documentation, you agree that you have read, understood,
# and will comply with the following terms and conditions:
#
# Permission to use, copy, modify, and distribute this software and
# its associated documentation for any purpose and without fee is
# hereby granted, provided that the above copyright notice appears in
# all copies, and that both that copyright notice and this permission
# notice appear in supporting documentation, and that the name of
# Secret Labs AB or the author not be used in advertising or publicity
# pertaining to distribution of the software without specific, written
# prior permission.
#
# SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
# TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
# ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
# BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
# DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
# WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
# ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
# OF THIS SOFTWARE.
# --------------------------------------------------------------------
"""
An XML-RPC client interface for Python.
The marshalling and response parser code can also be used to
implement XML-RPC servers.
Exported exceptions:
Error Base class for client errors
ProtocolError Indicates an HTTP protocol error
ResponseError Indicates a broken response package
Fault Indicates an XML-RPC fault package
Exported classes:
ServerProxy Represents a logical connection to an XML-RPC server
MultiCall Executor of boxcared xmlrpc requests
DateTime dateTime wrapper for an ISO 8601 string or time tuple or
localtime integer value to generate a "dateTime.iso8601"
XML-RPC value
Binary binary data wrapper
Marshaller Generate an XML-RPC params chunk from a Python data structure
Unmarshaller Unmarshal an XML-RPC response from incoming XML event message
Transport Handles an HTTP transaction to an XML-RPC server
SafeTransport Handles an HTTPS transaction to an XML-RPC server
Exported constants:
(none)
Exported functions:
getparser Create instance of the fastest available parser & attach
to an unmarshalling object
dumps Convert an argument tuple or a Fault instance to an XML-RPC
request (or response, if the methodresponse option is used).
loads Convert an XML-RPC packet to unmarshalled data plus a method
name (None if not present).
"""
import base64
import sys
import time
from datetime import datetime
from decimal import Decimal
import http.client
import urllib.parse
from xml.parsers import expat
import errno
from io import BytesIO
try:
import gzip
except ImportError:
gzip = None #python can be built without zlib/gzip support
# --------------------------------------------------------------------
# Internal stuff
def escape(s):
s = s.replace("&", "&")
s = s.replace("<", "<")
return s.replace(">", ">",)
# used in User-Agent header sent
__version__ = '%d.%d' % sys.version_info[:2]
# xmlrpc integer limits
MAXINT = 2**31-1
MININT = -2**31
# --------------------------------------------------------------------
# Error constants (from Dan Libby's specification at
# http://xmlrpc-epi.sourceforge.net/specs/rfc.fault_codes.php)
# Ranges of errors
PARSE_ERROR = -32700
SERVER_ERROR = -32600
APPLICATION_ERROR = -32500
SYSTEM_ERROR = -32400
TRANSPORT_ERROR = -32300
# Specific errors
NOT_WELLFORMED_ERROR = -32700
UNSUPPORTED_ENCODING = -32701
INVALID_ENCODING_CHAR = -32702
INVALID_XMLRPC = -32600
METHOD_NOT_FOUND = -32601
INVALID_METHOD_PARAMS = -32602
INTERNAL_ERROR = -32603
# --------------------------------------------------------------------
# Exceptions
##
# Base class for all kinds of client-side errors.
class Error(Exception):
"""Base class for client errors."""
def __str__(self):
return repr(self)
##
# Indicates an HTTP-level protocol error. This is raised by the HTTP
# transport layer, if the server returns an error code other than 200
# (OK).
#
# @param url The target URL.
# @param errcode The HTTP error code.
# @param errmsg The HTTP error message.
# @param headers The HTTP header dictionary.
class ProtocolError(Error):
"""Indicates an HTTP protocol error."""
def __init__(self, url, errcode, errmsg, headers):
Error.__init__(self)
self.url = url
self.errcode = errcode
self.errmsg = errmsg
self.headers = headers
def __repr__(self):
return (
"<%s for %s: %s %s>" %
(self.__class__.__name__, self.url, self.errcode, self.errmsg)
)
##
# Indicates a broken XML-RPC response package. This exception is
# raised by the unmarshalling layer, if the XML-RPC response is
# malformed.
class ResponseError(Error):
"""Indicates a broken response package."""
pass
##
# Indicates an XML-RPC fault response package. This exception is
# raised by the unmarshalling layer, if the XML-RPC response contains
# a fault string. This exception can also be used as a class, to
# generate a fault XML-RPC message.
#
# @param faultCode The XML-RPC fault code.
# @param faultString The XML-RPC fault string.
class Fault(Error):
"""Indicates an XML-RPC fault package."""
def __init__(self, faultCode, faultString, **extra):
Error.__init__(self)
self.faultCode = faultCode
self.faultString = faultString
def __repr__(self):
return "<%s %s: %r>" % (self.__class__.__name__,
self.faultCode, self.faultString)
# --------------------------------------------------------------------
# Special values
##
# Backwards compatibility
boolean = Boolean = bool
##
# Wrapper for XML-RPC DateTime values. This converts a time value to
# the format used by XML-RPC.
# <p>
# The value can be given as a datetime object, as a string in the
# format "yyyymmddThh:mm:ss", as a 9-item time tuple (as returned by
# time.localtime()), or an integer value (as returned by time.time()).
# The wrapper uses time.localtime() to convert an integer to a time
# tuple.
#
# @param value The time, given as a datetime object, an ISO 8601 string,
# a time tuple, or an integer time value.
# Issue #13305: different format codes across platforms
_day0 = datetime(1, 1, 1)
if _day0.strftime('%Y') == '0001': # Mac OS X
def _iso8601_format(value):
return value.strftime("%Y%m%dT%H:%M:%S")
elif _day0.strftime('%4Y') == '0001': # Linux
def _iso8601_format(value):
return value.strftime("%4Y%m%dT%H:%M:%S")
else:
def _iso8601_format(value):
return value.strftime("%Y%m%dT%H:%M:%S").zfill(17)
del _day0
def _strftime(value):
if isinstance(value, datetime):
return _iso8601_format(value)
if not isinstance(value, (tuple, time.struct_time)):
if value == 0:
value = time.time()
value = time.localtime(value)
return "%04d%02d%02dT%02d:%02d:%02d" % value[:6]
class DateTime:
"""DateTime wrapper for an ISO 8601 string or time tuple or
localtime integer value to generate 'dateTime.iso8601' XML-RPC
value.
"""
def __init__(self, value=0):
if isinstance(value, str):
self.value = value
else:
self.value = _strftime(value)
def make_comparable(self, other):
if isinstance(other, DateTime):
s = self.value
o = other.value
elif isinstance(other, datetime):
s = self.value
o = _iso8601_format(other)
elif isinstance(other, str):
s = self.value
o = other
elif hasattr(other, "timetuple"):
s = self.timetuple()
o = other.timetuple()
else:
otype = (hasattr(other, "__class__")
and other.__class__.__name__
or type(other))
raise TypeError("Can't compare %s and %s" %
(self.__class__.__name__, otype))
return s, o
def __lt__(self, other):
s, o = self.make_comparable(other)
return s < o
def __le__(self, other):
s, o = self.make_comparable(other)
return s <= o
def __gt__(self, other):
s, o = self.make_comparable(other)
return s > o
def __ge__(self, other):
s, o = self.make_comparable(other)
return s >= o
def __eq__(self, other):
s, o = self.make_comparable(other)
return s == o
def timetuple(self):
return time.strptime(self.value, "%Y%m%dT%H:%M:%S")
##
# Get date/time value.
#
# @return Date/time value, as an ISO 8601 string.
def __str__(self):
return self.value
def __repr__(self):
return "<%s %r at %#x>" % (self.__class__.__name__, self.value, id(self))
def decode(self, data):
self.value = str(data).strip()
def encode(self, out):
out.write("<value><dateTime.iso8601>")
out.write(self.value)
out.write("</dateTime.iso8601></value>\n")
def _datetime(data):
# decode xml element contents into a DateTime structure.
value = DateTime()
value.decode(data)
return value
def _datetime_type(data):
return datetime.strptime(data, "%Y%m%dT%H:%M:%S")
##
# Wrapper for binary data. This can be used to transport any kind
# of binary data over XML-RPC, using BASE64 encoding.
#
# @param data An 8-bit string containing arbitrary data.
class Binary:
"""Wrapper for binary data."""
def __init__(self, data=None):
if data is None:
data = b""
else:
if not isinstance(data, (bytes, bytearray)):
raise TypeError("expected bytes or bytearray, not %s" %
data.__class__.__name__)
data = bytes(data) # Make a copy of the bytes!
self.data = data
##
# Get buffer contents.
#
# @return Buffer contents, as an 8-bit string.
def __str__(self):
return str(self.data, "latin-1") # XXX encoding?!
def __eq__(self, other):
if isinstance(other, Binary):
other = other.data
return self.data == other
def decode(self, data):
self.data = base64.decodebytes(data)
def encode(self, out):
out.write("<value><base64>\n")
encoded = base64.encodebytes(self.data)
out.write(encoded.decode('ascii'))
out.write("</base64></value>\n")
def _binary(data):
# decode xml element contents into a Binary structure
value = Binary()
value.decode(data)
return value
WRAPPERS = (DateTime, Binary)
# --------------------------------------------------------------------
# XML parsers
class ExpatParser:
# fast expat parser for Python 2.0 and later.
def __init__(self, target):
self._parser = parser = expat.ParserCreate(None, None)
self._target = target
parser.StartElementHandler = target.start
parser.EndElementHandler = target.end
parser.CharacterDataHandler = target.data
encoding = None
target.xml(encoding, None)
def feed(self, data):
self._parser.Parse(data, 0)
def close(self):
try:
parser = self._parser
except AttributeError:
pass
else:
del self._target, self._parser # get rid of circular references
parser.Parse(b"", True) # end of data
# --------------------------------------------------------------------
# XML-RPC marshalling and unmarshalling code
##
# XML-RPC marshaller.
#
# @param encoding Default encoding for 8-bit strings. The default
# value is None (interpreted as UTF-8).
# @see dumps
class Marshaller:
"""Generate an XML-RPC params chunk from a Python data structure.
Create a Marshaller instance for each set of parameters, and use
the "dumps" method to convert your data (represented as a tuple)
to an XML-RPC params chunk. To write a fault response, pass a
Fault instance instead. You may prefer to use the "dumps" module
function for this purpose.
"""
# by the way, if you don't understand what's going on in here,
# that's perfectly ok.
def __init__(self, encoding=None, allow_none=False):
self.memo = {}
self.data = None
self.encoding = encoding
self.allow_none = allow_none
dispatch = {}
def dumps(self, values):
out = []
write = out.append
dump = self.__dump
if isinstance(values, Fault):
# fault instance
write("<fault>\n")
dump({'faultCode': values.faultCode,
'faultString': values.faultString},
write)
write("</fault>\n")
else:
# parameter block
# FIXME: the xml-rpc specification allows us to leave out
# the entire <params> block if there are no parameters.
# however, changing this may break older code (including
# old versions of xmlrpclib.py), so this is better left as
# is for now. See @XMLRPC3 for more information. /F
write("<params>\n")
for v in values:
write("<param>\n")
dump(v, write)
write("</param>\n")
write("</params>\n")
result = "".join(out)
return result
def __dump(self, value, write):
try:
f = self.dispatch[type(value)]
except KeyError:
# check if this object can be marshalled as a structure
if not hasattr(value, '__dict__'):
raise TypeError("cannot marshal %s objects" % type(value))
# check if this class is a sub-class of a basic type,
# because we don't know how to marshal these types
# (e.g. a string sub-class)
for type_ in type(value).__mro__:
if type_ in self.dispatch.keys():
raise TypeError("cannot marshal %s objects" % type(value))
# XXX(twouters): using "_arbitrary_instance" as key as a quick-fix
# for the p3yk merge, this should probably be fixed more neatly.
f = self.dispatch["_arbitrary_instance"]
f(self, value, write)
def dump_nil (self, value, write):
if not self.allow_none:
raise TypeError("cannot marshal None unless allow_none is enabled")
write("<value><nil/></value>")
dispatch[type(None)] = dump_nil
def dump_bool(self, value, write):
write("<value><boolean>")
write(value and "1" or "0")
write("</boolean></value>\n")
dispatch[bool] = dump_bool
def dump_long(self, value, write):
if value > MAXINT or value < MININT:
raise OverflowError("int exceeds XML-RPC limits")
write("<value><int>")
write(str(int(value)))
write("</int></value>\n")
dispatch[int] = dump_long
# backward compatible
dump_int = dump_long
def dump_double(self, value, write):
write("<value><double>")
write(repr(value))
write("</double></value>\n")
dispatch[float] = dump_double
def dump_unicode(self, value, write, escape=escape):
write("<value><string>")
write(escape(value))
write("</string></value>\n")
dispatch[str] = dump_unicode
def dump_bytes(self, value, write):
write("<value><base64>\n")
encoded = base64.encodebytes(value)
write(encoded.decode('ascii'))
write("</base64></value>\n")
dispatch[bytes] = dump_bytes
dispatch[bytearray] = dump_bytes
def dump_array(self, value, write):
i = id(value)
if i in self.memo:
raise TypeError("cannot marshal recursive sequences")
self.memo[i] = None
dump = self.__dump
write("<value><array><data>\n")
for v in value:
dump(v, write)
write("</data></array></value>\n")
del self.memo[i]
dispatch[tuple] = dump_array
dispatch[list] = dump_array
def dump_struct(self, value, write, escape=escape):
i = id(value)
if i in self.memo:
raise TypeError("cannot marshal recursive dictionaries")
self.memo[i] = None
dump = self.__dump
write("<value><struct>\n")
for k, v in value.items():
write("<member>\n")
if not isinstance(k, str):
raise TypeError("dictionary key must be string")
write("<name>%s</name>\n" % escape(k))
dump(v, write)
write("</member>\n")
write("</struct></value>\n")
del self.memo[i]
dispatch[dict] = dump_struct
def dump_datetime(self, value, write):
write("<value><dateTime.iso8601>")
write(_strftime(value))
write("</dateTime.iso8601></value>\n")
dispatch[datetime] = dump_datetime
def dump_instance(self, value, write):
# check for special wrappers
if value.__class__ in WRAPPERS:
self.write = write
value.encode(self)
del self.write
else:
# store instance attributes as a struct (really?)
self.dump_struct(value.__dict__, write)
dispatch[DateTime] = dump_instance
dispatch[Binary] = dump_instance
# XXX(twouters): using "_arbitrary_instance" as key as a quick-fix
# for the p3yk merge, this should probably be fixed more neatly.
dispatch["_arbitrary_instance"] = dump_instance
##
# XML-RPC unmarshaller.
#
# @see loads
class Unmarshaller:
"""Unmarshal an XML-RPC response, based on incoming XML event
messages (start, data, end). Call close() to get the resulting
data structure.
Note that this reader is fairly tolerant, and gladly accepts bogus
XML-RPC data without complaining (but not bogus XML).
"""
# and again, if you don't understand what's going on in here,
# that's perfectly ok.
def __init__(self, use_datetime=False, use_builtin_types=False):
self._type = None
self._stack = []
self._marks = []
self._data = []
self._value = False
self._methodname = None
self._encoding = "utf-8"
self.append = self._stack.append
self._use_datetime = use_builtin_types or use_datetime
self._use_bytes = use_builtin_types
def close(self):
# return response tuple and target method
if self._type is None or self._marks:
raise ResponseError()
if self._type == "fault":
raise Fault(**self._stack[0])
return tuple(self._stack)
def getmethodname(self):
return self._methodname
#
# event handlers
def xml(self, encoding, standalone):
self._encoding = encoding
# FIXME: assert standalone == 1 ???
def start(self, tag, attrs):
# prepare to handle this element
if ':' in tag:
tag = tag.split(':')[-1]
if tag == "array" or tag == "struct":
self._marks.append(len(self._stack))
self._data = []
if self._value and tag not in self.dispatch:
raise ResponseError("unknown tag %r" % tag)
self._value = (tag == "value")
def data(self, text):
self._data.append(text)
def end(self, tag):
# call the appropriate end tag handler
try:
f = self.dispatch[tag]
except KeyError:
if ':' not in tag:
return # unknown tag ?
try:
f = self.dispatch[tag.split(':')[-1]]
except KeyError:
return # unknown tag ?
return f(self, "".join(self._data))
#
# accelerator support
def end_dispatch(self, tag, data):
# dispatch data
try:
f = self.dispatch[tag]
except KeyError:
if ':' not in tag:
return # unknown tag ?
try:
f = self.dispatch[tag.split(':')[-1]]
except KeyError:
return # unknown tag ?
return f(self, data)
#
# element decoders
dispatch = {}
def end_nil (self, data):
self.append(None)
self._value = 0
dispatch["nil"] = end_nil
def end_boolean(self, data):
if data == "0":
self.append(False)
elif data == "1":
self.append(True)
else:
raise TypeError("bad boolean value")
self._value = 0
dispatch["boolean"] = end_boolean
def end_int(self, data):
self.append(int(data))
self._value = 0
dispatch["i1"] = end_int
dispatch["i2"] = end_int
dispatch["i4"] = end_int
dispatch["i8"] = end_int
dispatch["int"] = end_int
dispatch["biginteger"] = end_int
def end_double(self, data):
self.append(float(data))
self._value = 0
dispatch["double"] = end_double
dispatch["float"] = end_double
def end_bigdecimal(self, data):
self.append(Decimal(data))
self._value = 0
dispatch["bigdecimal"] = end_bigdecimal
def end_string(self, data):
if self._encoding:
data = data.decode(self._encoding)
self.append(data)
self._value = 0
dispatch["string"] = end_string
dispatch["name"] = end_string # struct keys are always strings
def end_array(self, data):
mark = self._marks.pop()
# map arrays to Python lists
self._stack[mark:] = [self._stack[mark:]]
self._value = 0
dispatch["array"] = end_array
def end_struct(self, data):
mark = self._marks.pop()
# map structs to Python dictionaries
dict = {}
items = self._stack[mark:]
for i in range(0, len(items), 2):
dict[items[i]] = items[i+1]
self._stack[mark:] = [dict]
self._value = 0
dispatch["struct"] = end_struct
def end_base64(self, data):
value = Binary()
value.decode(data.encode("ascii"))
if self._use_bytes:
value = value.data
self.append(value)
self._value = 0
dispatch["base64"] = end_base64
def end_dateTime(self, data):
value = DateTime()
value.decode(data)
if self._use_datetime:
value = _datetime_type(data)
self.append(value)
dispatch["dateTime.iso8601"] = end_dateTime
def end_value(self, data):
# if we stumble upon a value element with no internal
# elements, treat it as a string element
if self._value:
self.end_string(data)
dispatch["value"] = end_value
def end_params(self, data):
self._type = "params"
dispatch["params"] = end_params
def end_fault(self, data):
self._type = "fault"
dispatch["fault"] = end_fault
def end_methodName(self, data):
if self._encoding:
data = data.decode(self._encoding)
self._methodname = data
self._type = "methodName" # no params
dispatch["methodName"] = end_methodName
## Multicall support
#
class _MultiCallMethod:
# some lesser magic to store calls made to a MultiCall object
# for batch execution
def __init__(self, call_list, name):
self.__call_list = call_list
self.__name = name
def __getattr__(self, name):
return _MultiCallMethod(self.__call_list, "%s.%s" % (self.__name, name))
def __call__(self, *args):
self.__call_list.append((self.__name, args))
class MultiCallIterator:
"""Iterates over the results of a multicall. Exceptions are
raised in response to xmlrpc faults."""
def __init__(self, results):
self.results = results
def __getitem__(self, i):
item = self.results[i]
if type(item) == type({}):
raise Fault(item['faultCode'], item['faultString'])
elif type(item) == type([]):
return item[0]
else:
raise ValueError("unexpected type in multicall result")
class MultiCall:
"""server -> an object used to boxcar method calls
server should be a ServerProxy object.
Methods can be added to the MultiCall using normal
method call syntax e.g.:
multicall = MultiCall(server_proxy)
multicall.add(2,3)
multicall.get_address("Guido")
To execute the multicall, call the MultiCall object e.g.:
add_result, address = multicall()
"""
def __init__(self, server):
self.__server = server
self.__call_list = []
def __repr__(self):
return "<%s at %#x>" % (self.__class__.__name__, id(self))
__str__ = __repr__
def __getattr__(self, name):
return _MultiCallMethod(self.__call_list, name)
def __call__(self):
marshalled_list = []
for name, args in self.__call_list:
marshalled_list.append({'methodName' : name, 'params' : args})
return MultiCallIterator(self.__server.system.multicall(marshalled_list))
# --------------------------------------------------------------------
# convenience functions
FastMarshaller = FastParser = FastUnmarshaller = None
##
# Create a parser object, and connect it to an unmarshalling instance.
# This function picks the fastest available XML parser.
#
# return A (parser, unmarshaller) tuple.
def getparser(use_datetime=False, use_builtin_types=False):
"""getparser() -> parser, unmarshaller
Create an instance of the fastest available parser, and attach it
to an unmarshalling object. Return both objects.
"""
if FastParser and FastUnmarshaller:
if use_builtin_types:
mkdatetime = _datetime_type
mkbytes = base64.decodebytes
elif use_datetime:
mkdatetime = _datetime_type
mkbytes = _binary
else:
mkdatetime = _datetime
mkbytes = _binary
target = FastUnmarshaller(True, False, mkbytes, mkdatetime, Fault)
parser = FastParser(target)
else:
target = Unmarshaller(use_datetime=use_datetime, use_builtin_types=use_builtin_types)
if FastParser:
parser = FastParser(target)
else:
parser = ExpatParser(target)
return parser, target
##
# Convert a Python tuple or a Fault instance to an XML-RPC packet.
#
# @def dumps(params, **options)
# @param params A tuple or Fault instance.
# @keyparam methodname If given, create a methodCall request for
# this method name.
# @keyparam methodresponse If given, create a methodResponse packet.
# If used with a tuple, the tuple must be a singleton (that is,
# it must contain exactly one element).
# @keyparam encoding The packet encoding.
# @return A string containing marshalled data.
def dumps(params, methodname=None, methodresponse=None, encoding=None,
allow_none=False):
"""data [,options] -> marshalled data
Convert an argument tuple or a Fault instance to an XML-RPC
request (or response, if the methodresponse option is used).
In addition to the data object, the following options can be given
as keyword arguments:
methodname: the method name for a methodCall packet
methodresponse: true to create a methodResponse packet.
If this option is used with a tuple, the tuple must be
a singleton (i.e. it can contain only one element).
encoding: the packet encoding (default is UTF-8)
All byte strings in the data structure are assumed to use the
packet encoding. Unicode strings are automatically converted,
where necessary.
"""
assert isinstance(params, (tuple, Fault)), "argument must be tuple or Fault instance"
if isinstance(params, Fault):
methodresponse = 1
elif methodresponse and isinstance(params, tuple):
assert len(params) == 1, "response tuple must be a singleton"
if not encoding:
encoding = "utf-8"
if FastMarshaller:
m = FastMarshaller(encoding)
else:
m = Marshaller(encoding, allow_none)
data = m.dumps(params)
if encoding != "utf-8":
xmlheader = "<?xml version='1.0' encoding='%s'?>\n" % str(encoding)
else:
xmlheader = "<?xml version='1.0'?>\n" # utf-8 is default
# standard XML-RPC wrappings
if methodname:
# a method call
data = (
xmlheader,
"<methodCall>\n"
"<methodName>", methodname, "</methodName>\n",
data,
"</methodCall>\n"
)
elif methodresponse:
# a method response, or a fault structure
data = (
xmlheader,
"<methodResponse>\n",
data,
"</methodResponse>\n"
)
else:
return data # return as is
return "".join(data)
##
# Convert an XML-RPC packet to a Python object. If the XML-RPC packet
# represents a fault condition, this function raises a Fault exception.
#
# @param data An XML-RPC packet, given as an 8-bit string.
# @return A tuple containing the unpacked data, and the method name
# (None if not present).
# @see Fault
def loads(data, use_datetime=False, use_builtin_types=False):
"""data -> unmarshalled data, method name
Convert an XML-RPC packet to unmarshalled data plus a method
name (None if not present).
If the XML-RPC packet represents a fault condition, this function
raises a Fault exception.
"""
p, u = getparser(use_datetime=use_datetime, use_builtin_types=use_builtin_types)
p.feed(data)
p.close()
return u.close(), u.getmethodname()
##
# Encode a string using the gzip content encoding such as specified by the
# Content-Encoding: gzip
# in the HTTP header, as described in RFC 1952
#
# @param data the unencoded data
# @return the encoded data
def gzip_encode(data):
"""data -> gzip encoded data
Encode data using the gzip content encoding as described in RFC 1952
"""
if not gzip:
raise NotImplementedError
f = BytesIO()
with gzip.GzipFile(mode="wb", fileobj=f, compresslevel=1) as gzf:
gzf.write(data)
return f.getvalue()
##
# Decode a string using the gzip content encoding such as specified by the
# Content-Encoding: gzip
# in the HTTP header, as described in RFC 1952
#
# @param data The encoded data
# @keyparam max_decode Maximum bytes to decode (20MB default), use negative
# values for unlimited decoding
# @return the unencoded data
# @raises ValueError if data is not correctly coded.
# @raises ValueError if max gzipped payload length exceeded
def gzip_decode(data, max_decode=20971520):
"""gzip encoded data -> unencoded data
Decode data using the gzip content encoding as described in RFC 1952
"""
if not gzip:
raise NotImplementedError
with gzip.GzipFile(mode="rb", fileobj=BytesIO(data)) as gzf:
try:
if max_decode < 0: # no limit
decoded = gzf.read()
else:
decoded = gzf.read(max_decode + 1)
except OSError:
raise ValueError("invalid data")
if max_decode >= 0 and len(decoded) > max_decode:
raise ValueError("max gzipped payload length exceeded")
return decoded
##
# Return a decoded file-like object for the gzip encoding
# as described in RFC 1952.
#
# @param response A stream supporting a read() method
# @return a file-like object that the decoded data can be read() from
class GzipDecodedResponse(gzip.GzipFile if gzip else object):
"""a file-like object to decode a response encoded with the gzip
method, as described in RFC 1952.
"""
def __init__(self, response):
#response doesn't support tell() and read(), required by
#GzipFile
if not gzip:
raise NotImplementedError
self.io = BytesIO(response.read())
gzip.GzipFile.__init__(self, mode="rb", fileobj=self.io)
def close(self):
try:
gzip.GzipFile.close(self)
finally:
self.io.close()
# --------------------------------------------------------------------
# request dispatcher
class _Method:
# some magic to bind an XML-RPC method to an RPC server.
# supports "nested" methods (e.g. examples.getStateName)
def __init__(self, send, name):
self.__send = send
self.__name = name
def __getattr__(self, name):
return _Method(self.__send, "%s.%s" % (self.__name, name))
def __call__(self, *args):
return self.__send(self.__name, args)
##
# Standard transport class for XML-RPC over HTTP.
# <p>
# You can create custom transports by subclassing this method, and
# overriding selected methods.
class Transport:
"""Handles an HTTP transaction to an XML-RPC server."""
# client identifier (may be overridden)
user_agent = "Python-xmlrpc/%s" % __version__
#if true, we'll request gzip encoding
accept_gzip_encoding = True
# if positive, encode request using gzip if it exceeds this threshold
# note that many servers will get confused, so only use it if you know
# that they can decode such a request
encode_threshold = None #None = don't encode
def __init__(self, use_datetime=False, use_builtin_types=False):
self._use_datetime = use_datetime
self._use_builtin_types = use_builtin_types
self._connection = (None, None)
self._extra_headers = []
##
# Send a complete request, and parse the response.
# Retry request if a cached connection has disconnected.
#
# @param host Target host.
# @param handler Target PRC handler.
# @param request_body XML-RPC request body.
# @param verbose Debugging flag.
# @return Parsed response.
def request(self, host, handler, request_body, verbose=False):
#retry request once if cached connection has gone cold
for i in (0, 1):
try:
return self.single_request(host, handler, request_body, verbose)
except http.client.RemoteDisconnected:
if i:
raise
except OSError as e:
if i or e.errno not in (errno.ECONNRESET, errno.ECONNABORTED,
errno.EPIPE):
raise
def single_request(self, host, handler, request_body, verbose=False):
# issue XML-RPC request
try:
http_conn = self.send_request(host, handler, request_body, verbose)
resp = http_conn.getresponse()
if resp.status == 200:
self.verbose = verbose
return self.parse_response(resp)
except Fault:
raise
except Exception:
#All unexpected errors leave connection in
# a strange state, so we clear it.
self.close()
raise
#We got an error response.
#Discard any response data and raise exception
if resp.getheader("content-length", ""):
resp.read()
raise ProtocolError(
host + handler,
resp.status, resp.reason,
dict(resp.getheaders())
)
##
# Create parser.
#
# @return A 2-tuple containing a parser and an unmarshaller.
def getparser(self):
# get parser and unmarshaller
return getparser(use_datetime=self._use_datetime,
use_builtin_types=self._use_builtin_types)
##
# Get authorization info from host parameter
# Host may be a string, or a (host, x509-dict) tuple; if a string,
# it is checked for a "user:pw@host" format, and a "Basic
# Authentication" header is added if appropriate.
#
# @param host Host descriptor (URL or (URL, x509 info) tuple).
# @return A 3-tuple containing (actual host, extra headers,
# x509 info). The header and x509 fields may be None.
def get_host_info(self, host):
x509 = {}
if isinstance(host, tuple):
host, x509 = host
auth, host = urllib.parse.splituser(host)
if auth:
auth = urllib.parse.unquote_to_bytes(auth)
auth = base64.encodebytes(auth).decode("utf-8")
auth = "".join(auth.split()) # get rid of whitespace
extra_headers = [
("Authorization", "Basic " + auth)
]
else:
extra_headers = []
return host, extra_headers, x509
##
# Connect to server.
#
# @param host Target host.
# @return An HTTPConnection object
def make_connection(self, host):
#return an existing connection if possible. This allows
#HTTP/1.1 keep-alive.
if self._connection and host == self._connection[0]:
return self._connection[1]
# create a HTTP connection object from a host descriptor
chost, self._extra_headers, x509 = self.get_host_info(host)
self._connection = host, http.client.HTTPConnection(chost)
return self._connection[1]
##
# Clear any cached connection object.
# Used in the event of socket errors.
#
def close(self):
host, connection = self._connection
if connection:
self._connection = (None, None)
connection.close()
##
# Send HTTP request.
#
# @param host Host descriptor (URL or (URL, x509 info) tuple).
# @param handler Target RPC handler (a path relative to host)
# @param request_body The XML-RPC request body
# @param debug Enable debugging if debug is true.
# @return An HTTPConnection.
def send_request(self, host, handler, request_body, debug):
connection = self.make_connection(host)
headers = self._extra_headers[:]
if debug:
connection.set_debuglevel(1)
if self.accept_gzip_encoding and gzip:
connection.putrequest("POST", handler, skip_accept_encoding=True)
headers.append(("Accept-Encoding", "gzip"))
else:
connection.putrequest("POST", handler)
headers.append(("Content-Type", "text/xml"))
headers.append(("User-Agent", self.user_agent))
self.send_headers(connection, headers)
self.send_content(connection, request_body)
return connection
##
# Send request headers.
# This function provides a useful hook for subclassing
#
# @param connection httpConnection.
# @param headers list of key,value pairs for HTTP headers
def send_headers(self, connection, headers):
for key, val in headers:
connection.putheader(key, val)
##
# Send request body.
# This function provides a useful hook for subclassing
#
# @param connection httpConnection.
# @param request_body XML-RPC request body.
def send_content(self, connection, request_body):
#optionally encode the request
if (self.encode_threshold is not None and
self.encode_threshold < len(request_body) and
gzip):
connection.putheader("Content-Encoding", "gzip")
request_body = gzip_encode(request_body)
connection.putheader("Content-Length", str(len(request_body)))
connection.endheaders(request_body)
##
# Parse response.
#
# @param file Stream.
# @return Response tuple and target method.
def parse_response(self, response):
# read response data from httpresponse, and parse it
# Check for new http response object, otherwise it is a file object.
if hasattr(response, 'getheader'):
if response.getheader("Content-Encoding", "") == "gzip":
stream = GzipDecodedResponse(response)
else:
stream = response
else:
stream = response
p, u = self.getparser()
while 1:
data = stream.read(1024)
if not data:
break
if self.verbose:
print("body:", repr(data))
p.feed(data)
if stream is not response:
stream.close()
p.close()
return u.close()
##
# Standard transport class for XML-RPC over HTTPS.
class SafeTransport(Transport):
"""Handles an HTTPS transaction to an XML-RPC server."""
def __init__(self, use_datetime=False, use_builtin_types=False, *,
context=None):
super().__init__(use_datetime=use_datetime, use_builtin_types=use_builtin_types)
self.context = context
# FIXME: mostly untested
def make_connection(self, host):
if self._connection and host == self._connection[0]:
return self._connection[1]
if not hasattr(http.client, "HTTPSConnection"):
raise NotImplementedError(
"your version of http.client doesn't support HTTPS")
# create a HTTPS connection object from a host descriptor
# host may be a string, or a (host, x509-dict) tuple
chost, self._extra_headers, x509 = self.get_host_info(host)
self._connection = host, http.client.HTTPSConnection(chost,
None, context=self.context, **(x509 or {}))
return self._connection[1]
##
# Standard server proxy. This class establishes a virtual connection
# to an XML-RPC server.
# <p>
# This class is available as ServerProxy and Server. New code should
# use ServerProxy, to avoid confusion.
#
# @def ServerProxy(uri, **options)
# @param uri The connection point on the server.
# @keyparam transport A transport factory, compatible with the
# standard transport class.
# @keyparam encoding The default encoding used for 8-bit strings
# (default is UTF-8).
# @keyparam verbose Use a true value to enable debugging output.
# (printed to standard output).
# @see Transport
class ServerProxy:
"""uri [,options] -> a logical connection to an XML-RPC server
uri is the connection point on the server, given as
scheme://host/target.
The standard implementation always supports the "http" scheme. If
SSL socket support is available (Python 2.0), it also supports
"https".
If the target part and the slash preceding it are both omitted,
"/RPC2" is assumed.
The following options can be given as keyword arguments:
transport: a transport factory
encoding: the request encoding (default is UTF-8)
All 8-bit strings passed to the server proxy are assumed to use
the given encoding.
"""
def __init__(self, uri, transport=None, encoding=None, verbose=False,
allow_none=False, use_datetime=False, use_builtin_types=False,
*, context=None):
# establish a "logical" server connection
# get the url
type, uri = urllib.parse.splittype(uri)
if type not in ("http", "https"):
raise OSError("unsupported XML-RPC protocol")
self.__host, self.__handler = urllib.parse.splithost(uri)
if not self.__handler:
self.__handler = "/RPC2"
if transport is None:
if type == "https":
handler = SafeTransport
extra_kwargs = {"context": context}
else:
handler = Transport
extra_kwargs = {}
transport = handler(use_datetime=use_datetime,
use_builtin_types=use_builtin_types,
**extra_kwargs)
self.__transport = transport
self.__encoding = encoding or 'utf-8'
self.__verbose = verbose
self.__allow_none = allow_none
def __close(self):
self.__transport.close()
def __request(self, methodname, params):
# call a method on the remote server
request = dumps(params, methodname, encoding=self.__encoding,
allow_none=self.__allow_none).encode(self.__encoding, 'xmlcharrefreplace')
response = self.__transport.request(
self.__host,
self.__handler,
request,
verbose=self.__verbose
)
if len(response) == 1:
response = response[0]
return response
def __repr__(self):
return (
"<%s for %s%s>" %
(self.__class__.__name__, self.__host, self.__handler)
)
__str__ = __repr__
def __getattr__(self, name):
# magic method dispatcher
return _Method(self.__request, name)
# note: to call a remote object with a non-standard name, use
# result getattr(server, "strange-python-name")(args)
def __call__(self, attr):
"""A workaround to get special attributes on the ServerProxy
without interfering with the magic __getattr__
"""
if attr == "close":
return self.__close
elif attr == "transport":
return self.__transport
raise AttributeError("Attribute %r not found" % (attr,))
def __enter__(self):
return self
def __exit__(self, *args):
self.__close()
# compatibility
Server = ServerProxy
# --------------------------------------------------------------------
# test code
if __name__ == "__main__":
# simple test program (from the XML-RPC specification)
# local server, available from Lib/xmlrpc/server.py
server = ServerProxy("http://localhost:8000")
try:
print(server.currentTime.getCurrentTime())
except Error as v:
print("ERROR", v)
multi = MultiCall(server)
multi.getData()
multi.pow(2,9)
multi.add(1,2)
try:
for response in multi():
print(response)
except Error as v:
print("ERROR", v)
| 48,988 | 1,519 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/xmlrpc/server.py | r"""XML-RPC Servers.
This module can be used to create simple XML-RPC servers
by creating a server and either installing functions, a
class instance, or by extending the SimpleXMLRPCServer
class.
It can also be used to handle XML-RPC requests in a CGI
environment using CGIXMLRPCRequestHandler.
The Doc* classes can be used to create XML-RPC servers that
serve pydoc-style documentation in response to HTTP
GET requests. This documentation is dynamically generated
based on the functions and methods registered with the
server.
A list of possible usage patterns follows:
1. Install functions:
server = SimpleXMLRPCServer(("localhost", 8000))
server.register_function(pow)
server.register_function(lambda x,y: x+y, 'add')
server.serve_forever()
2. Install an instance:
class MyFuncs:
def __init__(self):
# make all of the sys functions available through sys.func_name
import sys
self.sys = sys
def _listMethods(self):
# implement this method so that system.listMethods
# knows to advertise the sys methods
return list_public_methods(self) + \
['sys.' + method for method in list_public_methods(self.sys)]
def pow(self, x, y): return pow(x, y)
def add(self, x, y) : return x + y
server = SimpleXMLRPCServer(("localhost", 8000))
server.register_introspection_functions()
server.register_instance(MyFuncs())
server.serve_forever()
3. Install an instance with custom dispatch method:
class Math:
def _listMethods(self):
# this method must be present for system.listMethods
# to work
return ['add', 'pow']
def _methodHelp(self, method):
# this method must be present for system.methodHelp
# to work
if method == 'add':
return "add(2,3) => 5"
elif method == 'pow':
return "pow(x, y[, z]) => number"
else:
# By convention, return empty
# string if no help is available
return ""
def _dispatch(self, method, params):
if method == 'pow':
return pow(*params)
elif method == 'add':
return params[0] + params[1]
else:
raise ValueError('bad method')
server = SimpleXMLRPCServer(("localhost", 8000))
server.register_introspection_functions()
server.register_instance(Math())
server.serve_forever()
4. Subclass SimpleXMLRPCServer:
class MathServer(SimpleXMLRPCServer):
def _dispatch(self, method, params):
try:
# We are forcing the 'export_' prefix on methods that are
# callable through XML-RPC to prevent potential security
# problems
func = getattr(self, 'export_' + method)
except AttributeError:
raise Exception('method "%s" is not supported' % method)
else:
return func(*params)
def export_add(self, x, y):
return x + y
server = MathServer(("localhost", 8000))
server.serve_forever()
5. CGI script:
server = CGIXMLRPCRequestHandler()
server.register_function(pow)
server.handle_request()
"""
# Written by Brian Quinlan ([email protected]).
# Based on code written by Fredrik Lundh.
from xmlrpc.client import Fault, dumps, loads, gzip_encode, gzip_decode
from http.server import BaseHTTPRequestHandler
import html
import http.server
import socketserver
import sys
import os
import re
import pydoc
import inspect
import traceback
try:
import fcntl
except ImportError:
fcntl = None
def resolve_dotted_attribute(obj, attr, allow_dotted_names=True):
"""resolve_dotted_attribute(a, 'b.c.d') => a.b.c.d
Resolves a dotted attribute name to an object. Raises
an AttributeError if any attribute in the chain starts with a '_'.
If the optional allow_dotted_names argument is false, dots are not
supported and this function operates similar to getattr(obj, attr).
"""
if allow_dotted_names:
attrs = attr.split('.')
else:
attrs = [attr]
for i in attrs:
if i.startswith('_'):
raise AttributeError(
'attempt to access private attribute "%s"' % i
)
else:
obj = getattr(obj,i)
return obj
def list_public_methods(obj):
"""Returns a list of attribute strings, found in the specified
object, which represent callable attributes"""
return [member for member in dir(obj)
if not member.startswith('_') and
callable(getattr(obj, member))]
class SimpleXMLRPCDispatcher:
"""Mix-in class that dispatches XML-RPC requests.
This class is used to register XML-RPC method handlers
and then to dispatch them. This class doesn't need to be
instanced directly when used by SimpleXMLRPCServer but it
can be instanced when used by the MultiPathXMLRPCServer
"""
def __init__(self, allow_none=False, encoding=None,
use_builtin_types=False):
self.funcs = {}
self.instance = None
self.allow_none = allow_none
self.encoding = encoding or 'utf-8'
self.use_builtin_types = use_builtin_types
def register_instance(self, instance, allow_dotted_names=False):
"""Registers an instance to respond to XML-RPC requests.
Only one instance can be installed at a time.
If the registered instance has a _dispatch method then that
method will be called with the name of the XML-RPC method and
its parameters as a tuple
e.g. instance._dispatch('add',(2,3))
If the registered instance does not have a _dispatch method
then the instance will be searched to find a matching method
and, if found, will be called. Methods beginning with an '_'
are considered private and will not be called by
SimpleXMLRPCServer.
If a registered function matches an XML-RPC request, then it
will be called instead of the registered instance.
If the optional allow_dotted_names argument is true and the
instance does not have a _dispatch method, method names
containing dots are supported and resolved, as long as none of
the name segments start with an '_'.
*** SECURITY WARNING: ***
Enabling the allow_dotted_names options allows intruders
to access your module's global variables and may allow
intruders to execute arbitrary code on your machine. Only
use this option on a secure, closed network.
"""
self.instance = instance
self.allow_dotted_names = allow_dotted_names
def register_function(self, function, name=None):
"""Registers a function to respond to XML-RPC requests.
The optional name argument can be used to set a Unicode name
for the function.
"""
if name is None:
name = function.__name__
self.funcs[name] = function
def register_introspection_functions(self):
"""Registers the XML-RPC introspection methods in the system
namespace.
see http://xmlrpc.usefulinc.com/doc/reserved.html
"""
self.funcs.update({'system.listMethods' : self.system_listMethods,
'system.methodSignature' : self.system_methodSignature,
'system.methodHelp' : self.system_methodHelp})
def register_multicall_functions(self):
"""Registers the XML-RPC multicall method in the system
namespace.
see http://www.xmlrpc.com/discuss/msgReader$1208"""
self.funcs.update({'system.multicall' : self.system_multicall})
def _marshaled_dispatch(self, data, dispatch_method = None, path = None):
"""Dispatches an XML-RPC method from marshalled (XML) data.
XML-RPC methods are dispatched from the marshalled (XML) data
using the _dispatch method and the result is returned as
marshalled data. For backwards compatibility, a dispatch
function can be provided as an argument (see comment in
SimpleXMLRPCRequestHandler.do_POST) but overriding the
existing method through subclassing is the preferred means
of changing method dispatch behavior.
"""
try:
params, method = loads(data, use_builtin_types=self.use_builtin_types)
# generate response
if dispatch_method is not None:
response = dispatch_method(method, params)
else:
response = self._dispatch(method, params)
# wrap response in a singleton tuple
response = (response,)
response = dumps(response, methodresponse=1,
allow_none=self.allow_none, encoding=self.encoding)
except Fault as fault:
response = dumps(fault, allow_none=self.allow_none,
encoding=self.encoding)
except:
# report exception back to server
exc_type, exc_value, exc_tb = sys.exc_info()
try:
response = dumps(
Fault(1, "%s:%s" % (exc_type, exc_value)),
encoding=self.encoding, allow_none=self.allow_none,
)
finally:
# Break reference cycle
exc_type = exc_value = exc_tb = None
return response.encode(self.encoding, 'xmlcharrefreplace')
def system_listMethods(self):
"""system.listMethods() => ['add', 'subtract', 'multiple']
Returns a list of the methods supported by the server."""
methods = set(self.funcs.keys())
if self.instance is not None:
# Instance can implement _listMethod to return a list of
# methods
if hasattr(self.instance, '_listMethods'):
methods |= set(self.instance._listMethods())
# if the instance has a _dispatch method then we
# don't have enough information to provide a list
# of methods
elif not hasattr(self.instance, '_dispatch'):
methods |= set(list_public_methods(self.instance))
return sorted(methods)
def system_methodSignature(self, method_name):
"""system.methodSignature('add') => [double, int, int]
Returns a list describing the signature of the method. In the
above example, the add method takes two integers as arguments
and returns a double result.
This server does NOT support system.methodSignature."""
# See http://xmlrpc.usefulinc.com/doc/sysmethodsig.html
return 'signatures not supported'
def system_methodHelp(self, method_name):
"""system.methodHelp('add') => "Adds two integers together"
Returns a string containing documentation for the specified method."""
method = None
if method_name in self.funcs:
method = self.funcs[method_name]
elif self.instance is not None:
# Instance can implement _methodHelp to return help for a method
if hasattr(self.instance, '_methodHelp'):
return self.instance._methodHelp(method_name)
# if the instance has a _dispatch method then we
# don't have enough information to provide help
elif not hasattr(self.instance, '_dispatch'):
try:
method = resolve_dotted_attribute(
self.instance,
method_name,
self.allow_dotted_names
)
except AttributeError:
pass
# Note that we aren't checking that the method actually
# be a callable object of some kind
if method is None:
return ""
else:
return pydoc.getdoc(method)
def system_multicall(self, call_list):
"""system.multicall([{'methodName': 'add', 'params': [2, 2]}, ...]) => \
[[4], ...]
Allows the caller to package multiple XML-RPC calls into a single
request.
See http://www.xmlrpc.com/discuss/msgReader$1208
"""
results = []
for call in call_list:
method_name = call['methodName']
params = call['params']
try:
# XXX A marshalling error in any response will fail the entire
# multicall. If someone cares they should fix this.
results.append([self._dispatch(method_name, params)])
except Fault as fault:
results.append(
{'faultCode' : fault.faultCode,
'faultString' : fault.faultString}
)
except:
exc_type, exc_value, exc_tb = sys.exc_info()
try:
results.append(
{'faultCode' : 1,
'faultString' : "%s:%s" % (exc_type, exc_value)}
)
finally:
# Break reference cycle
exc_type = exc_value = exc_tb = None
return results
def _dispatch(self, method, params):
"""Dispatches the XML-RPC method.
XML-RPC calls are forwarded to a registered function that
matches the called XML-RPC method name. If no such function
exists then the call is forwarded to the registered instance,
if available.
If the registered instance has a _dispatch method then that
method will be called with the name of the XML-RPC method and
its parameters as a tuple
e.g. instance._dispatch('add',(2,3))
If the registered instance does not have a _dispatch method
then the instance will be searched to find a matching method
and, if found, will be called.
Methods beginning with an '_' are considered private and will
not be called.
"""
try:
# call the matching registered function
func = self.funcs[method]
except KeyError:
pass
else:
if func is not None:
return func(*params)
raise Exception('method "%s" is not supported' % method)
if self.instance is not None:
if hasattr(self.instance, '_dispatch'):
# call the `_dispatch` method on the instance
return self.instance._dispatch(method, params)
# call the instance's method directly
try:
func = resolve_dotted_attribute(
self.instance,
method,
self.allow_dotted_names
)
except AttributeError:
pass
else:
if func is not None:
return func(*params)
raise Exception('method "%s" is not supported' % method)
class SimpleXMLRPCRequestHandler(BaseHTTPRequestHandler):
"""Simple XML-RPC request handler class.
Handles all HTTP POST requests and attempts to decode them as
XML-RPC requests.
"""
# Class attribute listing the accessible path components;
# paths not on this list will result in a 404 error.
rpc_paths = ('/', '/RPC2')
#if not None, encode responses larger than this, if possible
encode_threshold = 1400 #a common MTU
#Override form StreamRequestHandler: full buffering of output
#and no Nagle.
wbufsize = -1
disable_nagle_algorithm = True
# a re to match a gzip Accept-Encoding
aepattern = re.compile(r"""
\s* ([^\s;]+) \s* #content-coding
(;\s* q \s*=\s* ([0-9\.]+))? #q
""", re.VERBOSE | re.IGNORECASE)
def accept_encodings(self):
r = {}
ae = self.headers.get("Accept-Encoding", "")
for e in ae.split(","):
match = self.aepattern.match(e)
if match:
v = match.group(3)
v = float(v) if v else 1.0
r[match.group(1)] = v
return r
def is_rpc_path_valid(self):
if self.rpc_paths:
return self.path in self.rpc_paths
else:
# If .rpc_paths is empty, just assume all paths are legal
return True
def do_POST(self):
"""Handles the HTTP POST request.
Attempts to interpret all HTTP POST requests as XML-RPC calls,
which are forwarded to the server's _dispatch method for handling.
"""
# Check that the path is legal
if not self.is_rpc_path_valid():
self.report_404()
return
try:
# Get arguments by reading body of request.
# We read this in chunks to avoid straining
# socket.read(); around the 10 or 15Mb mark, some platforms
# begin to have problems (bug #792570).
max_chunk_size = 10*1024*1024
size_remaining = int(self.headers["content-length"])
L = []
while size_remaining:
chunk_size = min(size_remaining, max_chunk_size)
chunk = self.rfile.read(chunk_size)
if not chunk:
break
L.append(chunk)
size_remaining -= len(L[-1])
data = b''.join(L)
data = self.decode_request_content(data)
if data is None:
return #response has been sent
# In previous versions of SimpleXMLRPCServer, _dispatch
# could be overridden in this class, instead of in
# SimpleXMLRPCDispatcher. To maintain backwards compatibility,
# check to see if a subclass implements _dispatch and dispatch
# using that method if present.
response = self.server._marshaled_dispatch(
data, getattr(self, '_dispatch', None), self.path
)
except Exception as e: # This should only happen if the module is buggy
# internal error, report as HTTP server error
self.send_response(500)
# Send information about the exception if requested
if hasattr(self.server, '_send_traceback_header') and \
self.server._send_traceback_header:
self.send_header("X-exception", str(e))
trace = traceback.format_exc()
trace = str(trace.encode('ASCII', 'backslashreplace'), 'ASCII')
self.send_header("X-traceback", trace)
self.send_header("Content-length", "0")
self.end_headers()
else:
self.send_response(200)
self.send_header("Content-type", "text/xml")
if self.encode_threshold is not None:
if len(response) > self.encode_threshold:
q = self.accept_encodings().get("gzip", 0)
if q:
try:
response = gzip_encode(response)
self.send_header("Content-Encoding", "gzip")
except NotImplementedError:
pass
self.send_header("Content-length", str(len(response)))
self.end_headers()
self.wfile.write(response)
def decode_request_content(self, data):
#support gzip encoding of request
encoding = self.headers.get("content-encoding", "identity").lower()
if encoding == "identity":
return data
if encoding == "gzip":
try:
return gzip_decode(data)
except NotImplementedError:
self.send_response(501, "encoding %r not supported" % encoding)
except ValueError:
self.send_response(400, "error decoding gzip content")
else:
self.send_response(501, "encoding %r not supported" % encoding)
self.send_header("Content-length", "0")
self.end_headers()
def report_404 (self):
# Report a 404 error
self.send_response(404)
response = b'No such page'
self.send_header("Content-type", "text/plain")
self.send_header("Content-length", str(len(response)))
self.end_headers()
self.wfile.write(response)
def log_request(self, code='-', size='-'):
"""Selectively log an accepted request."""
if self.server.logRequests:
BaseHTTPRequestHandler.log_request(self, code, size)
class SimpleXMLRPCServer(socketserver.TCPServer,
SimpleXMLRPCDispatcher):
"""Simple XML-RPC server.
Simple XML-RPC server that allows functions and a single instance
to be installed to handle requests. The default implementation
attempts to dispatch XML-RPC calls to the functions or instance
installed in the server. Override the _dispatch method inherited
from SimpleXMLRPCDispatcher to change this behavior.
"""
allow_reuse_address = True
# Warning: this is for debugging purposes only! Never set this to True in
# production code, as will be sending out sensitive information (exception
# and stack trace details) when exceptions are raised inside
# SimpleXMLRPCRequestHandler.do_POST
_send_traceback_header = False
def __init__(self, addr, requestHandler=SimpleXMLRPCRequestHandler,
logRequests=True, allow_none=False, encoding=None,
bind_and_activate=True, use_builtin_types=False):
self.logRequests = logRequests
SimpleXMLRPCDispatcher.__init__(self, allow_none, encoding, use_builtin_types)
socketserver.TCPServer.__init__(self, addr, requestHandler, bind_and_activate)
class MultiPathXMLRPCServer(SimpleXMLRPCServer):
"""Multipath XML-RPC Server
This specialization of SimpleXMLRPCServer allows the user to create
multiple Dispatcher instances and assign them to different
HTTP request paths. This makes it possible to run two or more
'virtual XML-RPC servers' at the same port.
Make sure that the requestHandler accepts the paths in question.
"""
def __init__(self, addr, requestHandler=SimpleXMLRPCRequestHandler,
logRequests=True, allow_none=False, encoding=None,
bind_and_activate=True, use_builtin_types=False):
SimpleXMLRPCServer.__init__(self, addr, requestHandler, logRequests, allow_none,
encoding, bind_and_activate, use_builtin_types)
self.dispatchers = {}
self.allow_none = allow_none
self.encoding = encoding or 'utf-8'
def add_dispatcher(self, path, dispatcher):
self.dispatchers[path] = dispatcher
return dispatcher
def get_dispatcher(self, path):
return self.dispatchers[path]
def _marshaled_dispatch(self, data, dispatch_method = None, path = None):
try:
response = self.dispatchers[path]._marshaled_dispatch(
data, dispatch_method, path)
except:
# report low level exception back to server
# (each dispatcher should have handled their own
# exceptions)
exc_type, exc_value = sys.exc_info()[:2]
try:
response = dumps(
Fault(1, "%s:%s" % (exc_type, exc_value)),
encoding=self.encoding, allow_none=self.allow_none)
response = response.encode(self.encoding, 'xmlcharrefreplace')
finally:
# Break reference cycle
exc_type = exc_value = None
return response
class CGIXMLRPCRequestHandler(SimpleXMLRPCDispatcher):
"""Simple handler for XML-RPC data passed through CGI."""
def __init__(self, allow_none=False, encoding=None, use_builtin_types=False):
SimpleXMLRPCDispatcher.__init__(self, allow_none, encoding, use_builtin_types)
def handle_xmlrpc(self, request_text):
"""Handle a single XML-RPC request"""
response = self._marshaled_dispatch(request_text)
print('Content-Type: text/xml')
print('Content-Length: %d' % len(response))
print()
sys.stdout.flush()
sys.stdout.buffer.write(response)
sys.stdout.buffer.flush()
def handle_get(self):
"""Handle a single HTTP GET request.
Default implementation indicates an error because
XML-RPC uses the POST method.
"""
code = 400
message, explain = BaseHTTPRequestHandler.responses[code]
response = http.server.DEFAULT_ERROR_MESSAGE % \
{
'code' : code,
'message' : message,
'explain' : explain
}
response = response.encode('utf-8')
print('Status: %d %s' % (code, message))
print('Content-Type: %s' % http.server.DEFAULT_ERROR_CONTENT_TYPE)
print('Content-Length: %d' % len(response))
print()
sys.stdout.flush()
sys.stdout.buffer.write(response)
sys.stdout.buffer.flush()
def handle_request(self, request_text=None):
"""Handle a single XML-RPC request passed through a CGI post method.
If no XML data is given then it is read from stdin. The resulting
XML-RPC response is printed to stdout along with the correct HTTP
headers.
"""
if request_text is None and \
os.environ.get('REQUEST_METHOD', None) == 'GET':
self.handle_get()
else:
# POST data is normally available through stdin
try:
length = int(os.environ.get('CONTENT_LENGTH', None))
except (ValueError, TypeError):
length = -1
if request_text is None:
request_text = sys.stdin.read(length)
self.handle_xmlrpc(request_text)
# -----------------------------------------------------------------------------
# Self documenting XML-RPC Server.
class ServerHTMLDoc(pydoc.HTMLDoc):
"""Class used to generate pydoc HTML document for a server"""
def markup(self, text, escape=None, funcs={}, classes={}, methods={}):
"""Mark up some plain text, given a context of symbols to look for.
Each context dictionary maps object names to anchor names."""
escape = escape or self.escape
results = []
here = 0
# XXX Note that this regular expression does not allow for the
# hyperlinking of arbitrary strings being used as method
# names. Only methods with names consisting of word characters
# and '.'s are hyperlinked.
pattern = re.compile(r'\b((http|ftp)://\S+[\w/]|'
r'RFC[- ]?(\d+)|'
r'PEP[- ]?(\d+)|'
r'(self\.)?((?:\w|\.)+))\b')
while 1:
match = pattern.search(text, here)
if not match: break
start, end = match.span()
results.append(escape(text[here:start]))
all, scheme, rfc, pep, selfdot, name = match.groups()
if scheme:
url = escape(all).replace('"', '"')
results.append('<a href="%s">%s</a>' % (url, url))
elif rfc:
url = 'http://www.rfc-editor.org/rfc/rfc%d.txt' % int(rfc)
results.append('<a href="%s">%s</a>' % (url, escape(all)))
elif pep:
url = 'http://www.python.org/dev/peps/pep-%04d/' % int(pep)
results.append('<a href="%s">%s</a>' % (url, escape(all)))
elif text[end:end+1] == '(':
results.append(self.namelink(name, methods, funcs, classes))
elif selfdot:
results.append('self.<strong>%s</strong>' % name)
else:
results.append(self.namelink(name, classes))
here = end
results.append(escape(text[here:]))
return ''.join(results)
def docroutine(self, object, name, mod=None,
funcs={}, classes={}, methods={}, cl=None):
"""Produce HTML documentation for a function or method object."""
anchor = (cl and cl.__name__ or '') + '-' + name
note = ''
title = '<a name="%s"><strong>%s</strong></a>' % (
self.escape(anchor), self.escape(name))
if inspect.ismethod(object):
args = inspect.getfullargspec(object)
# exclude the argument bound to the instance, it will be
# confusing to the non-Python user
argspec = inspect.formatargspec (
args.args[1:],
args.varargs,
args.varkw,
args.defaults,
annotations=args.annotations,
formatvalue=self.formatvalue
)
elif inspect.isfunction(object):
args = inspect.getfullargspec(object)
argspec = inspect.formatargspec(
args.args, args.varargs, args.varkw, args.defaults,
annotations=args.annotations,
formatvalue=self.formatvalue)
else:
argspec = '(...)'
if isinstance(object, tuple):
argspec = object[0] or argspec
docstring = object[1] or ""
else:
docstring = pydoc.getdoc(object)
decl = title + argspec + (note and self.grey(
'<font face="helvetica, arial">%s</font>' % note))
doc = self.markup(
docstring, self.preformat, funcs, classes, methods)
doc = doc and '<dd><tt>%s</tt></dd>' % doc
return '<dl><dt>%s</dt>%s</dl>\n' % (decl, doc)
def docserver(self, server_name, package_documentation, methods):
"""Produce HTML documentation for an XML-RPC server."""
fdict = {}
for key, value in methods.items():
fdict[key] = '#-' + key
fdict[value] = fdict[key]
server_name = self.escape(server_name)
head = '<big><big><strong>%s</strong></big></big>' % server_name
result = self.heading(head, '#ffffff', '#7799ee')
doc = self.markup(package_documentation, self.preformat, fdict)
doc = doc and '<tt>%s</tt>' % doc
result = result + '<p>%s</p>\n' % doc
contents = []
method_items = sorted(methods.items())
for key, value in method_items:
contents.append(self.docroutine(value, key, funcs=fdict))
result = result + self.bigsection(
'Methods', '#ffffff', '#eeaa77', ''.join(contents))
return result
class XMLRPCDocGenerator:
"""Generates documentation for an XML-RPC server.
This class is designed as mix-in and should not
be constructed directly.
"""
def __init__(self):
# setup variables used for HTML documentation
self.server_name = 'XML-RPC Server Documentation'
self.server_documentation = \
"This server exports the following methods through the XML-RPC "\
"protocol."
self.server_title = 'XML-RPC Server Documentation'
def set_server_title(self, server_title):
"""Set the HTML title of the generated server documentation"""
self.server_title = server_title
def set_server_name(self, server_name):
"""Set the name of the generated HTML server documentation"""
self.server_name = server_name
def set_server_documentation(self, server_documentation):
"""Set the documentation string for the entire server."""
self.server_documentation = server_documentation
def generate_html_documentation(self):
"""generate_html_documentation() => html documentation for the server
Generates HTML documentation for the server using introspection for
installed functions and instances that do not implement the
_dispatch method. Alternatively, instances can choose to implement
the _get_method_argstring(method_name) method to provide the
argument string used in the documentation and the
_methodHelp(method_name) method to provide the help text used
in the documentation."""
methods = {}
for method_name in self.system_listMethods():
if method_name in self.funcs:
method = self.funcs[method_name]
elif self.instance is not None:
method_info = [None, None] # argspec, documentation
if hasattr(self.instance, '_get_method_argstring'):
method_info[0] = self.instance._get_method_argstring(method_name)
if hasattr(self.instance, '_methodHelp'):
method_info[1] = self.instance._methodHelp(method_name)
method_info = tuple(method_info)
if method_info != (None, None):
method = method_info
elif not hasattr(self.instance, '_dispatch'):
try:
method = resolve_dotted_attribute(
self.instance,
method_name
)
except AttributeError:
method = method_info
else:
method = method_info
else:
assert 0, "Could not find method in self.functions and no "\
"instance installed"
methods[method_name] = method
documenter = ServerHTMLDoc()
documentation = documenter.docserver(
self.server_name,
self.server_documentation,
methods
)
return documenter.page(html.escape(self.server_title), documentation)
class DocXMLRPCRequestHandler(SimpleXMLRPCRequestHandler):
"""XML-RPC and documentation request handler class.
Handles all HTTP POST requests and attempts to decode them as
XML-RPC requests.
Handles all HTTP GET requests and interprets them as requests
for documentation.
"""
def do_GET(self):
"""Handles the HTTP GET request.
Interpret all HTTP GET requests as requests for server
documentation.
"""
# Check that the path is legal
if not self.is_rpc_path_valid():
self.report_404()
return
response = self.server.generate_html_documentation().encode('utf-8')
self.send_response(200)
self.send_header("Content-type", "text/html")
self.send_header("Content-length", str(len(response)))
self.end_headers()
self.wfile.write(response)
class DocXMLRPCServer( SimpleXMLRPCServer,
XMLRPCDocGenerator):
"""XML-RPC and HTML documentation server.
Adds the ability to serve server documentation to the capabilities
of SimpleXMLRPCServer.
"""
def __init__(self, addr, requestHandler=DocXMLRPCRequestHandler,
logRequests=True, allow_none=False, encoding=None,
bind_and_activate=True, use_builtin_types=False):
SimpleXMLRPCServer.__init__(self, addr, requestHandler, logRequests,
allow_none, encoding, bind_and_activate,
use_builtin_types)
XMLRPCDocGenerator.__init__(self)
class DocCGIXMLRPCRequestHandler( CGIXMLRPCRequestHandler,
XMLRPCDocGenerator):
"""Handler for XML-RPC data and documentation requests passed through
CGI"""
def handle_get(self):
"""Handles the HTTP GET request.
Interpret all HTTP GET requests as requests for server
documentation.
"""
response = self.generate_html_documentation().encode('utf-8')
print('Content-Type: text/html')
print('Content-Length: %d' % len(response))
print()
sys.stdout.flush()
sys.stdout.buffer.write(response)
sys.stdout.buffer.flush()
def __init__(self):
CGIXMLRPCRequestHandler.__init__(self)
XMLRPCDocGenerator.__init__(self)
if __name__ == '__main__':
import datetime
class ExampleService:
def getData(self):
return '42'
class currentTime:
@staticmethod
def getCurrentTime():
return datetime.datetime.now()
with SimpleXMLRPCServer(("localhost", 8000)) as server:
server.register_function(pow)
server.register_function(lambda x,y: x+y, 'add')
server.register_instance(ExampleService(), allow_dotted_names=True)
server.register_multicall_functions()
print('Serving XML-RPC on localhost port 8000')
print('It is advisable to run this example server within a secure, closed network.')
try:
server.serve_forever()
except KeyboardInterrupt:
print("\nKeyboard interrupt received, exiting.")
sys.exit(0)
| 37,195 | 1,004 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/xmlrpc/__init__.py | # This directory is a Python package.
| 38 | 2 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/curses/ascii.py | """Constants and membership tests for ASCII characters"""
NUL = 0x00 # ^@
SOH = 0x01 # ^A
STX = 0x02 # ^B
ETX = 0x03 # ^C
EOT = 0x04 # ^D
ENQ = 0x05 # ^E
ACK = 0x06 # ^F
BEL = 0x07 # ^G
BS = 0x08 # ^H
TAB = 0x09 # ^I
HT = 0x09 # ^I
LF = 0x0a # ^J
NL = 0x0a # ^J
VT = 0x0b # ^K
FF = 0x0c # ^L
CR = 0x0d # ^M
SO = 0x0e # ^N
SI = 0x0f # ^O
DLE = 0x10 # ^P
DC1 = 0x11 # ^Q
DC2 = 0x12 # ^R
DC3 = 0x13 # ^S
DC4 = 0x14 # ^T
NAK = 0x15 # ^U
SYN = 0x16 # ^V
ETB = 0x17 # ^W
CAN = 0x18 # ^X
EM = 0x19 # ^Y
SUB = 0x1a # ^Z
ESC = 0x1b # ^[
FS = 0x1c # ^\
GS = 0x1d # ^]
RS = 0x1e # ^^
US = 0x1f # ^_
SP = 0x20 # space
DEL = 0x7f # delete
controlnames = [
"NUL", "SOH", "STX", "ETX", "EOT", "ENQ", "ACK", "BEL",
"BS", "HT", "LF", "VT", "FF", "CR", "SO", "SI",
"DLE", "DC1", "DC2", "DC3", "DC4", "NAK", "SYN", "ETB",
"CAN", "EM", "SUB", "ESC", "FS", "GS", "RS", "US",
"SP"
]
def _ctoi(c):
if type(c) == type(""):
return ord(c)
else:
return c
def isalnum(c): return isalpha(c) or isdigit(c)
def isalpha(c): return isupper(c) or islower(c)
def isascii(c): return 0 <= _ctoi(c) <= 127 # ?
def isblank(c): return _ctoi(c) in (9, 32)
def iscntrl(c): return 0 <= _ctoi(c) <= 31 or _ctoi(c) == 127
def isdigit(c): return 48 <= _ctoi(c) <= 57
def isgraph(c): return 33 <= _ctoi(c) <= 126
def islower(c): return 97 <= _ctoi(c) <= 122
def isprint(c): return 32 <= _ctoi(c) <= 126
def ispunct(c): return isgraph(c) and not isalnum(c)
def isspace(c): return _ctoi(c) in (9, 10, 11, 12, 13, 32)
def isupper(c): return 65 <= _ctoi(c) <= 90
def isxdigit(c): return isdigit(c) or \
(65 <= _ctoi(c) <= 70) or (97 <= _ctoi(c) <= 102)
def isctrl(c): return 0 <= _ctoi(c) < 32
def ismeta(c): return _ctoi(c) > 127
def ascii(c):
if type(c) == type(""):
return chr(_ctoi(c) & 0x7f)
else:
return _ctoi(c) & 0x7f
def ctrl(c):
if type(c) == type(""):
return chr(_ctoi(c) & 0x1f)
else:
return _ctoi(c) & 0x1f
def alt(c):
if type(c) == type(""):
return chr(_ctoi(c) | 0x80)
else:
return _ctoi(c) | 0x80
def unctrl(c):
bits = _ctoi(c)
if bits == 0x7f:
rep = "^?"
elif isprint(bits & 0x7f):
rep = chr(bits & 0x7f)
else:
rep = "^" + chr(((bits & 0x7f) | 0x20) + 0x20)
if bits & 0x80:
return "!" + rep
return rep
| 2,547 | 100 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/curses/has_key.py |
#
# Emulation of has_key() function for platforms that don't use ncurses
#
import _curses
# Table mapping curses keys to the terminfo capability name
_capability_names = {
_curses.KEY_A1: 'ka1',
_curses.KEY_A3: 'ka3',
_curses.KEY_B2: 'kb2',
_curses.KEY_BACKSPACE: 'kbs',
_curses.KEY_BEG: 'kbeg',
_curses.KEY_BTAB: 'kcbt',
_curses.KEY_C1: 'kc1',
_curses.KEY_C3: 'kc3',
_curses.KEY_CANCEL: 'kcan',
_curses.KEY_CATAB: 'ktbc',
_curses.KEY_CLEAR: 'kclr',
_curses.KEY_CLOSE: 'kclo',
_curses.KEY_COMMAND: 'kcmd',
_curses.KEY_COPY: 'kcpy',
_curses.KEY_CREATE: 'kcrt',
_curses.KEY_CTAB: 'kctab',
_curses.KEY_DC: 'kdch1',
_curses.KEY_DL: 'kdl1',
_curses.KEY_DOWN: 'kcud1',
_curses.KEY_EIC: 'krmir',
_curses.KEY_END: 'kend',
_curses.KEY_ENTER: 'kent',
_curses.KEY_EOL: 'kel',
_curses.KEY_EOS: 'ked',
_curses.KEY_EXIT: 'kext',
_curses.KEY_F0: 'kf0',
_curses.KEY_F1: 'kf1',
_curses.KEY_F10: 'kf10',
_curses.KEY_F11: 'kf11',
_curses.KEY_F12: 'kf12',
_curses.KEY_F13: 'kf13',
_curses.KEY_F14: 'kf14',
_curses.KEY_F15: 'kf15',
_curses.KEY_F16: 'kf16',
_curses.KEY_F17: 'kf17',
_curses.KEY_F18: 'kf18',
_curses.KEY_F19: 'kf19',
_curses.KEY_F2: 'kf2',
_curses.KEY_F20: 'kf20',
_curses.KEY_F21: 'kf21',
_curses.KEY_F22: 'kf22',
_curses.KEY_F23: 'kf23',
_curses.KEY_F24: 'kf24',
_curses.KEY_F25: 'kf25',
_curses.KEY_F26: 'kf26',
_curses.KEY_F27: 'kf27',
_curses.KEY_F28: 'kf28',
_curses.KEY_F29: 'kf29',
_curses.KEY_F3: 'kf3',
_curses.KEY_F30: 'kf30',
_curses.KEY_F31: 'kf31',
_curses.KEY_F32: 'kf32',
_curses.KEY_F33: 'kf33',
_curses.KEY_F34: 'kf34',
_curses.KEY_F35: 'kf35',
_curses.KEY_F36: 'kf36',
_curses.KEY_F37: 'kf37',
_curses.KEY_F38: 'kf38',
_curses.KEY_F39: 'kf39',
_curses.KEY_F4: 'kf4',
_curses.KEY_F40: 'kf40',
_curses.KEY_F41: 'kf41',
_curses.KEY_F42: 'kf42',
_curses.KEY_F43: 'kf43',
_curses.KEY_F44: 'kf44',
_curses.KEY_F45: 'kf45',
_curses.KEY_F46: 'kf46',
_curses.KEY_F47: 'kf47',
_curses.KEY_F48: 'kf48',
_curses.KEY_F49: 'kf49',
_curses.KEY_F5: 'kf5',
_curses.KEY_F50: 'kf50',
_curses.KEY_F51: 'kf51',
_curses.KEY_F52: 'kf52',
_curses.KEY_F53: 'kf53',
_curses.KEY_F54: 'kf54',
_curses.KEY_F55: 'kf55',
_curses.KEY_F56: 'kf56',
_curses.KEY_F57: 'kf57',
_curses.KEY_F58: 'kf58',
_curses.KEY_F59: 'kf59',
_curses.KEY_F6: 'kf6',
_curses.KEY_F60: 'kf60',
_curses.KEY_F61: 'kf61',
_curses.KEY_F62: 'kf62',
_curses.KEY_F63: 'kf63',
_curses.KEY_F7: 'kf7',
_curses.KEY_F8: 'kf8',
_curses.KEY_F9: 'kf9',
_curses.KEY_FIND: 'kfnd',
_curses.KEY_HELP: 'khlp',
_curses.KEY_HOME: 'khome',
_curses.KEY_IC: 'kich1',
_curses.KEY_IL: 'kil1',
_curses.KEY_LEFT: 'kcub1',
_curses.KEY_LL: 'kll',
_curses.KEY_MARK: 'kmrk',
_curses.KEY_MESSAGE: 'kmsg',
_curses.KEY_MOVE: 'kmov',
_curses.KEY_NEXT: 'knxt',
_curses.KEY_NPAGE: 'knp',
_curses.KEY_OPEN: 'kopn',
_curses.KEY_OPTIONS: 'kopt',
_curses.KEY_PPAGE: 'kpp',
_curses.KEY_PREVIOUS: 'kprv',
_curses.KEY_PRINT: 'kprt',
_curses.KEY_REDO: 'krdo',
_curses.KEY_REFERENCE: 'kref',
_curses.KEY_REFRESH: 'krfr',
_curses.KEY_REPLACE: 'krpl',
_curses.KEY_RESTART: 'krst',
_curses.KEY_RESUME: 'kres',
_curses.KEY_RIGHT: 'kcuf1',
_curses.KEY_SAVE: 'ksav',
_curses.KEY_SBEG: 'kBEG',
_curses.KEY_SCANCEL: 'kCAN',
_curses.KEY_SCOMMAND: 'kCMD',
_curses.KEY_SCOPY: 'kCPY',
_curses.KEY_SCREATE: 'kCRT',
_curses.KEY_SDC: 'kDC',
_curses.KEY_SDL: 'kDL',
_curses.KEY_SELECT: 'kslt',
_curses.KEY_SEND: 'kEND',
_curses.KEY_SEOL: 'kEOL',
_curses.KEY_SEXIT: 'kEXT',
_curses.KEY_SF: 'kind',
_curses.KEY_SFIND: 'kFND',
_curses.KEY_SHELP: 'kHLP',
_curses.KEY_SHOME: 'kHOM',
_curses.KEY_SIC: 'kIC',
_curses.KEY_SLEFT: 'kLFT',
_curses.KEY_SMESSAGE: 'kMSG',
_curses.KEY_SMOVE: 'kMOV',
_curses.KEY_SNEXT: 'kNXT',
_curses.KEY_SOPTIONS: 'kOPT',
_curses.KEY_SPREVIOUS: 'kPRV',
_curses.KEY_SPRINT: 'kPRT',
_curses.KEY_SR: 'kri',
_curses.KEY_SREDO: 'kRDO',
_curses.KEY_SREPLACE: 'kRPL',
_curses.KEY_SRIGHT: 'kRIT',
_curses.KEY_SRSUME: 'kRES',
_curses.KEY_SSAVE: 'kSAV',
_curses.KEY_SSUSPEND: 'kSPD',
_curses.KEY_STAB: 'khts',
_curses.KEY_SUNDO: 'kUND',
_curses.KEY_SUSPEND: 'kspd',
_curses.KEY_UNDO: 'kund',
_curses.KEY_UP: 'kcuu1'
}
def has_key(ch):
if isinstance(ch, str):
ch = ord(ch)
# Figure out the correct capability name for the keycode.
capability_name = _capability_names.get(ch)
if capability_name is None:
return False
#Check the current terminal description for that capability;
#if present, return true, else return false.
if _curses.tigetstr( capability_name ):
return True
else:
return False
if __name__ == '__main__':
# Compare the output of this implementation and the ncurses has_key,
# on platforms where has_key is already available
try:
L = []
_curses.initscr()
for key in _capability_names.keys():
system = _curses.has_key(key)
python = has_key(key)
if system != python:
L.append( 'Mismatch for key %s, system=%i, Python=%i'
% (_curses.keyname( key ), system, python) )
finally:
_curses.endwin()
for i in L: print(i)
| 5,634 | 193 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/curses/panel.py | """curses.panel
Module for using panels with curses.
"""
from _curses_panel import *
| 87 | 7 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/curses/textpad.py | """Simple textbox editing widget with Emacs-like keybindings."""
import curses
import curses.ascii
def rectangle(win, uly, ulx, lry, lrx):
"""Draw a rectangle with corners at the provided upper-left
and lower-right coordinates.
"""
win.vline(uly+1, ulx, curses.ACS_VLINE, lry - uly - 1)
win.hline(uly, ulx+1, curses.ACS_HLINE, lrx - ulx - 1)
win.hline(lry, ulx+1, curses.ACS_HLINE, lrx - ulx - 1)
win.vline(uly+1, lrx, curses.ACS_VLINE, lry - uly - 1)
win.addch(uly, ulx, curses.ACS_ULCORNER)
win.addch(uly, lrx, curses.ACS_URCORNER)
win.addch(lry, lrx, curses.ACS_LRCORNER)
win.addch(lry, ulx, curses.ACS_LLCORNER)
class Textbox:
"""Editing widget using the interior of a window object.
Supports the following Emacs-like key bindings:
Ctrl-A Go to left edge of window.
Ctrl-B Cursor left, wrapping to previous line if appropriate.
Ctrl-D Delete character under cursor.
Ctrl-E Go to right edge (stripspaces off) or end of line (stripspaces on).
Ctrl-F Cursor right, wrapping to next line when appropriate.
Ctrl-G Terminate, returning the window contents.
Ctrl-H Delete character backward.
Ctrl-J Terminate if the window is 1 line, otherwise insert newline.
Ctrl-K If line is blank, delete it, otherwise clear to end of line.
Ctrl-L Refresh screen.
Ctrl-N Cursor down; move down one line.
Ctrl-O Insert a blank line at cursor location.
Ctrl-P Cursor up; move up one line.
Move operations do nothing if the cursor is at an edge where the movement
is not possible. The following synonyms are supported where possible:
KEY_LEFT = Ctrl-B, KEY_RIGHT = Ctrl-F, KEY_UP = Ctrl-P, KEY_DOWN = Ctrl-N
KEY_BACKSPACE = Ctrl-h
"""
def __init__(self, win, insert_mode=False):
self.win = win
self.insert_mode = insert_mode
self._update_max_yx()
self.stripspaces = 1
self.lastcmd = None
win.keypad(1)
def _update_max_yx(self):
maxy, maxx = self.win.getmaxyx()
self.maxy = maxy - 1
self.maxx = maxx - 1
def _end_of_line(self, y):
"""Go to the location of the first blank on the given line,
returning the index of the last non-blank character."""
self._update_max_yx()
last = self.maxx
while True:
if curses.ascii.ascii(self.win.inch(y, last)) != curses.ascii.SP:
last = min(self.maxx, last+1)
break
elif last == 0:
break
last = last - 1
return last
def _insert_printable_char(self, ch):
self._update_max_yx()
(y, x) = self.win.getyx()
backyx = None
while y < self.maxy or x < self.maxx:
if self.insert_mode:
oldch = self.win.inch()
# The try-catch ignores the error we trigger from some curses
# versions by trying to write into the lowest-rightmost spot
# in the window.
try:
self.win.addch(ch)
except curses.error:
pass
if not self.insert_mode or not curses.ascii.isprint(oldch):
break
ch = oldch
(y, x) = self.win.getyx()
# Remember where to put the cursor back since we are in insert_mode
if backyx is None:
backyx = y, x
if backyx is not None:
self.win.move(*backyx)
def do_command(self, ch):
"Process a single editing command."
self._update_max_yx()
(y, x) = self.win.getyx()
self.lastcmd = ch
if curses.ascii.isprint(ch):
if y < self.maxy or x < self.maxx:
self._insert_printable_char(ch)
elif ch == curses.ascii.SOH: # ^a
self.win.move(y, 0)
elif ch in (curses.ascii.STX,curses.KEY_LEFT, curses.ascii.BS,curses.KEY_BACKSPACE):
if x > 0:
self.win.move(y, x-1)
elif y == 0:
pass
elif self.stripspaces:
self.win.move(y-1, self._end_of_line(y-1))
else:
self.win.move(y-1, self.maxx)
if ch in (curses.ascii.BS, curses.KEY_BACKSPACE):
self.win.delch()
elif ch == curses.ascii.EOT: # ^d
self.win.delch()
elif ch == curses.ascii.ENQ: # ^e
if self.stripspaces:
self.win.move(y, self._end_of_line(y))
else:
self.win.move(y, self.maxx)
elif ch in (curses.ascii.ACK, curses.KEY_RIGHT): # ^f
if x < self.maxx:
self.win.move(y, x+1)
elif y == self.maxy:
pass
else:
self.win.move(y+1, 0)
elif ch == curses.ascii.BEL: # ^g
return 0
elif ch == curses.ascii.NL: # ^j
if self.maxy == 0:
return 0
elif y < self.maxy:
self.win.move(y+1, 0)
elif ch == curses.ascii.VT: # ^k
if x == 0 and self._end_of_line(y) == 0:
self.win.deleteln()
else:
# first undo the effect of self._end_of_line
self.win.move(y, x)
self.win.clrtoeol()
elif ch == curses.ascii.FF: # ^l
self.win.refresh()
elif ch in (curses.ascii.SO, curses.KEY_DOWN): # ^n
if y < self.maxy:
self.win.move(y+1, x)
if x > self._end_of_line(y+1):
self.win.move(y+1, self._end_of_line(y+1))
elif ch == curses.ascii.SI: # ^o
self.win.insertln()
elif ch in (curses.ascii.DLE, curses.KEY_UP): # ^p
if y > 0:
self.win.move(y-1, x)
if x > self._end_of_line(y-1):
self.win.move(y-1, self._end_of_line(y-1))
return 1
def gather(self):
"Collect and return the contents of the window."
result = ""
self._update_max_yx()
for y in range(self.maxy+1):
self.win.move(y, 0)
stop = self._end_of_line(y)
if stop == 0 and self.stripspaces:
continue
for x in range(self.maxx+1):
if self.stripspaces and x > stop:
break
result = result + chr(curses.ascii.ascii(self.win.inch(y, x)))
if self.maxy > 0:
result = result + "\n"
return result
def edit(self, validate=None):
"Edit in the widget window and collect the results."
while 1:
ch = self.win.getch()
if validate:
ch = validate(ch)
if not ch:
continue
if not self.do_command(ch):
break
self.win.refresh()
return self.gather()
if __name__ == '__main__':
def test_editbox(stdscr):
ncols, nlines = 9, 4
uly, ulx = 15, 20
stdscr.addstr(uly-2, ulx, "Use Ctrl-G to end editing.")
win = curses.newwin(nlines, ncols, uly, ulx)
rectangle(stdscr, uly-1, ulx-1, uly + nlines, ulx + ncols)
stdscr.refresh()
return Textbox(win).edit()
str = curses.wrapper(test_editbox)
print('Contents of text box:', repr(str))
| 7,657 | 202 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/curses/__init__.py | """curses
The main package for curses support for Python. Normally used by importing
the package, and perhaps a particular module inside it.
import curses
from curses import textpad
curses.initscr()
...
"""
from _curses import *
import os as _os
import sys as _sys
# Some constants, most notably the ACS_* ones, are only added to the C
# _curses module's dictionary after initscr() is called. (Some
# versions of SGI's curses don't define values for those constants
# until initscr() has been called.) This wrapper function calls the
# underlying C initscr(), and then copies the constants from the
# _curses module to the curses package's dictionary. Don't do 'from
# curses import *' if you'll be needing the ACS_* constants.
def initscr():
import _curses, curses
# we call setupterm() here because it raises an error
# instead of calling exit() in error cases.
setupterm(term=_os.environ.get("TERM", "unknown"),
fd=_sys.__stdout__.fileno())
stdscr = _curses.initscr()
for key, value in _curses.__dict__.items():
if key[0:4] == 'ACS_' or key in ('LINES', 'COLS'):
setattr(curses, key, value)
return stdscr
# This is a similar wrapper for start_color(), which adds the COLORS and
# COLOR_PAIRS variables which are only available after start_color() is
# called.
def start_color():
import _curses, curses
retval = _curses.start_color()
if hasattr(_curses, 'COLORS'):
curses.COLORS = _curses.COLORS
if hasattr(_curses, 'COLOR_PAIRS'):
curses.COLOR_PAIRS = _curses.COLOR_PAIRS
return retval
# Import Python has_key() implementation if _curses doesn't contain has_key()
try:
has_key
except NameError:
from .has_key import has_key
# Wrapper for the entire curses-based application. Runs a function which
# should be the rest of your curses-based application. If the application
# raises an exception, wrapper() will restore the terminal to a sane state so
# you can read the resulting traceback.
def wrapper(func, *args, **kwds):
"""Wrapper function that initializes curses and calls another function,
restoring normal keyboard/screen behavior on error.
The callable object 'func' is then passed the main window 'stdscr'
as its first argument, followed by any other arguments passed to
wrapper().
"""
try:
# Initialize curses
stdscr = initscr()
# Turn off echoing of keys, and enter cbreak mode,
# where no buffering is performed on keyboard input
noecho()
cbreak()
# In keypad mode, escape sequences for special keys
# (like the cursor keys) will be interpreted and
# a special value like curses.KEY_LEFT will be returned
stdscr.keypad(1)
# Start color, too. Harmless if the terminal doesn't have
# color; user can test with has_color() later on. The try/catch
# works around a minor bit of over-conscientiousness in the curses
# module -- the error return from C start_color() is ignorable.
try:
start_color()
except:
pass
return func(stdscr, *args, **kwds)
finally:
# Set everything back to normal
if 'stdscr' in locals():
stdscr.keypad(0)
echo()
nocbreak()
endwin()
| 3,366 | 102 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/tkinter/tix.py | # Tix.py -- Tix widget wrappers.
#
# For Tix, see http://tix.sourceforge.net
#
# - Sudhir Shenoy ([email protected]), Dec. 1995.
# based on an idea of Jean-Marc Lugrin ([email protected])
#
# NOTE: In order to minimize changes to Tkinter.py, some of the code here
# (TixWidget.__init__) has been taken from Tkinter (Widget.__init__)
# and will break if there are major changes in Tkinter.
#
# The Tix widgets are represented by a class hierarchy in python with proper
# inheritance of base classes.
#
# As a result after creating a 'w = StdButtonBox', I can write
# w.ok['text'] = 'Who Cares'
# or w.ok['bg'] = w['bg']
# or even w.ok.invoke()
# etc.
#
# Compare the demo tixwidgets.py to the original Tcl program and you will
# appreciate the advantages.
#
import os
import tkinter
from tkinter import *
from tkinter import _cnfmerge
import _tkinter # If this fails your Python may not be configured for Tk
# Some more constants (for consistency with Tkinter)
WINDOW = 'window'
TEXT = 'text'
STATUS = 'status'
IMMEDIATE = 'immediate'
IMAGE = 'image'
IMAGETEXT = 'imagetext'
BALLOON = 'balloon'
AUTO = 'auto'
ACROSSTOP = 'acrosstop'
# A few useful constants for the Grid widget
ASCII = 'ascii'
CELL = 'cell'
COLUMN = 'column'
DECREASING = 'decreasing'
INCREASING = 'increasing'
INTEGER = 'integer'
MAIN = 'main'
MAX = 'max'
REAL = 'real'
ROW = 'row'
S_REGION = 's-region'
X_REGION = 'x-region'
Y_REGION = 'y-region'
# Some constants used by Tkinter dooneevent()
TCL_DONT_WAIT = 1 << 1
TCL_WINDOW_EVENTS = 1 << 2
TCL_FILE_EVENTS = 1 << 3
TCL_TIMER_EVENTS = 1 << 4
TCL_IDLE_EVENTS = 1 << 5
TCL_ALL_EVENTS = 0
# BEWARE - this is implemented by copying some code from the Widget class
# in Tkinter (to override Widget initialization) and is therefore
# liable to break.
# Could probably add this to Tkinter.Misc
class tixCommand:
"""The tix commands provide access to miscellaneous elements
of Tix's internal state and the Tix application context.
Most of the information manipulated by these commands pertains
to the application as a whole, or to a screen or
display, rather than to a particular window.
This is a mixin class, assumed to be mixed to Tkinter.Tk
that supports the self.tk.call method.
"""
def tix_addbitmapdir(self, directory):
"""Tix maintains a list of directories under which
the tix_getimage and tix_getbitmap commands will
search for image files. The standard bitmap directory
is $TIX_LIBRARY/bitmaps. The addbitmapdir command
adds directory into this list. By using this
command, the image files of an applications can
also be located using the tix_getimage or tix_getbitmap
command.
"""
return self.tk.call('tix', 'addbitmapdir', directory)
def tix_cget(self, option):
"""Returns the current value of the configuration
option given by option. Option may be any of the
options described in the CONFIGURATION OPTIONS section.
"""
return self.tk.call('tix', 'cget', option)
def tix_configure(self, cnf=None, **kw):
"""Query or modify the configuration options of the Tix application
context. If no option is specified, returns a dictionary all of the
available options. If option is specified with no value, then the
command returns a list describing the one named option (this list
will be identical to the corresponding sublist of the value
returned if no option is specified). If one or more option-value
pairs are specified, then the command modifies the given option(s)
to have the given value(s); in this case the command returns an
empty string. Option may be any of the configuration options.
"""
# Copied from Tkinter.py
if kw:
cnf = _cnfmerge((cnf, kw))
elif cnf:
cnf = _cnfmerge(cnf)
if cnf is None:
return self._getconfigure('tix', 'configure')
if isinstance(cnf, str):
return self._getconfigure1('tix', 'configure', '-'+cnf)
return self.tk.call(('tix', 'configure') + self._options(cnf))
def tix_filedialog(self, dlgclass=None):
"""Returns the file selection dialog that may be shared among
different calls from this application. This command will create a
file selection dialog widget when it is called the first time. This
dialog will be returned by all subsequent calls to tix_filedialog.
An optional dlgclass parameter can be passed to specified what type
of file selection dialog widget is desired. Possible options are
tix FileSelectDialog or tixExFileSelectDialog.
"""
if dlgclass is not None:
return self.tk.call('tix', 'filedialog', dlgclass)
else:
return self.tk.call('tix', 'filedialog')
def tix_getbitmap(self, name):
"""Locates a bitmap file of the name name.xpm or name in one of the
bitmap directories (see the tix_addbitmapdir command above). By
using tix_getbitmap, you can avoid hard coding the pathnames of the
bitmap files in your application. When successful, it returns the
complete pathname of the bitmap file, prefixed with the character
'@'. The returned value can be used to configure the -bitmap
option of the TK and Tix widgets.
"""
return self.tk.call('tix', 'getbitmap', name)
def tix_getimage(self, name):
"""Locates an image file of the name name.xpm, name.xbm or name.ppm
in one of the bitmap directories (see the addbitmapdir command
above). If more than one file with the same name (but different
extensions) exist, then the image type is chosen according to the
depth of the X display: xbm images are chosen on monochrome
displays and color images are chosen on color displays. By using
tix_ getimage, you can avoid hard coding the pathnames of the
image files in your application. When successful, this command
returns the name of the newly created image, which can be used to
configure the -image option of the Tk and Tix widgets.
"""
return self.tk.call('tix', 'getimage', name)
def tix_option_get(self, name):
"""Gets the options maintained by the Tix
scheme mechanism. Available options include:
active_bg active_fg bg
bold_font dark1_bg dark1_fg
dark2_bg dark2_fg disabled_fg
fg fixed_font font
inactive_bg inactive_fg input1_bg
input2_bg italic_font light1_bg
light1_fg light2_bg light2_fg
menu_font output1_bg output2_bg
select_bg select_fg selector
"""
# could use self.tk.globalgetvar('tixOption', name)
return self.tk.call('tix', 'option', 'get', name)
def tix_resetoptions(self, newScheme, newFontSet, newScmPrio=None):
"""Resets the scheme and fontset of the Tix application to
newScheme and newFontSet, respectively. This affects only those
widgets created after this call. Therefore, it is best to call the
resetoptions command before the creation of any widgets in a Tix
application.
The optional parameter newScmPrio can be given to reset the
priority level of the Tk options set by the Tix schemes.
Because of the way Tk handles the X option database, after Tix has
been has imported and inited, it is not possible to reset the color
schemes and font sets using the tix config command. Instead, the
tix_resetoptions command must be used.
"""
if newScmPrio is not None:
return self.tk.call('tix', 'resetoptions', newScheme, newFontSet, newScmPrio)
else:
return self.tk.call('tix', 'resetoptions', newScheme, newFontSet)
class Tk(tkinter.Tk, tixCommand):
"""Toplevel widget of Tix which represents mostly the main window
of an application. It has an associated Tcl interpreter."""
def __init__(self, screenName=None, baseName=None, className='Tix'):
tkinter.Tk.__init__(self, screenName, baseName, className)
tixlib = os.environ.get('TIX_LIBRARY')
self.tk.eval('global auto_path; lappend auto_path [file dir [info nameof]]')
if tixlib is not None:
self.tk.eval('global auto_path; lappend auto_path {%s}' % tixlib)
self.tk.eval('global tcl_pkgPath; lappend tcl_pkgPath {%s}' % tixlib)
# Load Tix - this should work dynamically or statically
# If it's static, tcl/tix8.1/pkgIndex.tcl should have
# 'load {} Tix'
# If it's dynamic under Unix, tcl/tix8.1/pkgIndex.tcl should have
# 'load libtix8.1.8.3.so Tix'
self.tk.eval('package require Tix')
def destroy(self):
# For safety, remove the delete_window binding before destroy
self.protocol("WM_DELETE_WINDOW", "")
tkinter.Tk.destroy(self)
# The Tix 'tixForm' geometry manager
class Form:
"""The Tix Form geometry manager
Widgets can be arranged by specifying attachments to other widgets.
See Tix documentation for complete details"""
def config(self, cnf={}, **kw):
self.tk.call('tixForm', self._w, *self._options(cnf, kw))
form = config
def __setitem__(self, key, value):
Form.form(self, {key: value})
def check(self):
return self.tk.call('tixForm', 'check', self._w)
def forget(self):
self.tk.call('tixForm', 'forget', self._w)
def grid(self, xsize=0, ysize=0):
if (not xsize) and (not ysize):
x = self.tk.call('tixForm', 'grid', self._w)
y = self.tk.splitlist(x)
z = ()
for x in y:
z = z + (self.tk.getint(x),)
return z
return self.tk.call('tixForm', 'grid', self._w, xsize, ysize)
def info(self, option=None):
if not option:
return self.tk.call('tixForm', 'info', self._w)
if option[0] != '-':
option = '-' + option
return self.tk.call('tixForm', 'info', self._w, option)
def slaves(self):
return [self._nametowidget(x) for x in
self.tk.splitlist(
self.tk.call(
'tixForm', 'slaves', self._w))]
tkinter.Widget.__bases__ = tkinter.Widget.__bases__ + (Form,)
class TixWidget(tkinter.Widget):
"""A TixWidget class is used to package all (or most) Tix widgets.
Widget initialization is extended in two ways:
1) It is possible to give a list of options which must be part of
the creation command (so called Tix 'static' options). These cannot be
given as a 'config' command later.
2) It is possible to give the name of an existing TK widget. These are
child widgets created automatically by a Tix mega-widget. The Tk call
to create these widgets is therefore bypassed in TixWidget.__init__
Both options are for use by subclasses only.
"""
def __init__ (self, master=None, widgetName=None,
static_options=None, cnf={}, kw={}):
# Merge keywords and dictionary arguments
if kw:
cnf = _cnfmerge((cnf, kw))
else:
cnf = _cnfmerge(cnf)
# Move static options into extra. static_options must be
# a list of keywords (or None).
extra=()
# 'options' is always a static option
if static_options:
static_options.append('options')
else:
static_options = ['options']
for k,v in list(cnf.items()):
if k in static_options:
extra = extra + ('-' + k, v)
del cnf[k]
self.widgetName = widgetName
Widget._setup(self, master, cnf)
# If widgetName is None, this is a dummy creation call where the
# corresponding Tk widget has already been created by Tix
if widgetName:
self.tk.call(widgetName, self._w, *extra)
# Non-static options - to be done via a 'config' command
if cnf:
Widget.config(self, cnf)
# Dictionary to hold subwidget names for easier access. We can't
# use the children list because the public Tix names may not be the
# same as the pathname component
self.subwidget_list = {}
# We set up an attribute access function so that it is possible to
# do w.ok['text'] = 'Hello' rather than w.subwidget('ok')['text'] = 'Hello'
# when w is a StdButtonBox.
# We can even do w.ok.invoke() because w.ok is subclassed from the
# Button class if you go through the proper constructors
def __getattr__(self, name):
if name in self.subwidget_list:
return self.subwidget_list[name]
raise AttributeError(name)
def set_silent(self, value):
"""Set a variable without calling its action routine"""
self.tk.call('tixSetSilent', self._w, value)
def subwidget(self, name):
"""Return the named subwidget (which must have been created by
the sub-class)."""
n = self._subwidget_name(name)
if not n:
raise TclError("Subwidget " + name + " not child of " + self._name)
# Remove header of name and leading dot
n = n[len(self._w)+1:]
return self._nametowidget(n)
def subwidgets_all(self):
"""Return all subwidgets."""
names = self._subwidget_names()
if not names:
return []
retlist = []
for name in names:
name = name[len(self._w)+1:]
try:
retlist.append(self._nametowidget(name))
except:
# some of the widgets are unknown e.g. border in LabelFrame
pass
return retlist
def _subwidget_name(self,name):
"""Get a subwidget name (returns a String, not a Widget !)"""
try:
return self.tk.call(self._w, 'subwidget', name)
except TclError:
return None
def _subwidget_names(self):
"""Return the name of all subwidgets."""
try:
x = self.tk.call(self._w, 'subwidgets', '-all')
return self.tk.splitlist(x)
except TclError:
return None
def config_all(self, option, value):
"""Set configuration options for all subwidgets (and self)."""
if option == '':
return
elif not isinstance(option, str):
option = repr(option)
if not isinstance(value, str):
value = repr(value)
names = self._subwidget_names()
for name in names:
self.tk.call(name, 'configure', '-' + option, value)
# These are missing from Tkinter
def image_create(self, imgtype, cnf={}, master=None, **kw):
if not master:
master = tkinter._default_root
if not master:
raise RuntimeError('Too early to create image')
if kw and cnf: cnf = _cnfmerge((cnf, kw))
elif kw: cnf = kw
options = ()
for k, v in cnf.items():
if callable(v):
v = self._register(v)
options = options + ('-'+k, v)
return master.tk.call(('image', 'create', imgtype,) + options)
def image_delete(self, imgname):
try:
self.tk.call('image', 'delete', imgname)
except TclError:
# May happen if the root was destroyed
pass
# Subwidgets are child widgets created automatically by mega-widgets.
# In python, we have to create these subwidgets manually to mirror their
# existence in Tk/Tix.
class TixSubWidget(TixWidget):
"""Subwidget class.
This is used to mirror child widgets automatically created
by Tix/Tk as part of a mega-widget in Python (which is not informed
of this)"""
def __init__(self, master, name,
destroy_physically=1, check_intermediate=1):
if check_intermediate:
path = master._subwidget_name(name)
try:
path = path[len(master._w)+1:]
plist = path.split('.')
except:
plist = []
if not check_intermediate:
# immediate descendant
TixWidget.__init__(self, master, None, None, {'name' : name})
else:
# Ensure that the intermediate widgets exist
parent = master
for i in range(len(plist) - 1):
n = '.'.join(plist[:i+1])
try:
w = master._nametowidget(n)
parent = w
except KeyError:
# Create the intermediate widget
parent = TixSubWidget(parent, plist[i],
destroy_physically=0,
check_intermediate=0)
# The Tk widget name is in plist, not in name
if plist:
name = plist[-1]
TixWidget.__init__(self, parent, None, None, {'name' : name})
self.destroy_physically = destroy_physically
def destroy(self):
# For some widgets e.g., a NoteBook, when we call destructors,
# we must be careful not to destroy the frame widget since this
# also destroys the parent NoteBook thus leading to an exception
# in Tkinter when it finally calls Tcl to destroy the NoteBook
for c in list(self.children.values()): c.destroy()
if self._name in self.master.children:
del self.master.children[self._name]
if self._name in self.master.subwidget_list:
del self.master.subwidget_list[self._name]
if self.destroy_physically:
# This is bypassed only for a few widgets
self.tk.call('destroy', self._w)
# Useful class to create a display style - later shared by many items.
# Contributed by Steffen Kremser
class DisplayStyle:
"""DisplayStyle - handle configuration options shared by
(multiple) Display Items"""
def __init__(self, itemtype, cnf={}, *, master=None, **kw):
if not master:
if 'refwindow' in kw:
master = kw['refwindow']
elif 'refwindow' in cnf:
master = cnf['refwindow']
else:
master = tkinter._default_root
if not master:
raise RuntimeError("Too early to create display style: "
"no root window")
self.tk = master.tk
self.stylename = self.tk.call('tixDisplayStyle', itemtype,
*self._options(cnf,kw) )
def __str__(self):
return self.stylename
def _options(self, cnf, kw):
if kw and cnf:
cnf = _cnfmerge((cnf, kw))
elif kw:
cnf = kw
opts = ()
for k, v in cnf.items():
opts = opts + ('-'+k, v)
return opts
def delete(self):
self.tk.call(self.stylename, 'delete')
def __setitem__(self,key,value):
self.tk.call(self.stylename, 'configure', '-%s'%key, value)
def config(self, cnf={}, **kw):
return self._getconfigure(
self.stylename, 'configure', *self._options(cnf,kw))
def __getitem__(self,key):
return self.tk.call(self.stylename, 'cget', '-%s'%key)
######################################################
### The Tix Widget classes - in alphabetical order ###
######################################################
class Balloon(TixWidget):
"""Balloon help widget.
Subwidget Class
--------- -----
label Label
message Message"""
# FIXME: It should inherit -superclass tixShell
def __init__(self, master=None, cnf={}, **kw):
# static seem to be -installcolormap -initwait -statusbar -cursor
static = ['options', 'installcolormap', 'initwait', 'statusbar',
'cursor']
TixWidget.__init__(self, master, 'tixBalloon', static, cnf, kw)
self.subwidget_list['label'] = _dummyLabel(self, 'label',
destroy_physically=0)
self.subwidget_list['message'] = _dummyLabel(self, 'message',
destroy_physically=0)
def bind_widget(self, widget, cnf={}, **kw):
"""Bind balloon widget to another.
One balloon widget may be bound to several widgets at the same time"""
self.tk.call(self._w, 'bind', widget._w, *self._options(cnf, kw))
def unbind_widget(self, widget):
self.tk.call(self._w, 'unbind', widget._w)
class ButtonBox(TixWidget):
"""ButtonBox - A container for pushbuttons.
Subwidgets are the buttons added with the add method.
"""
def __init__(self, master=None, cnf={}, **kw):
TixWidget.__init__(self, master, 'tixButtonBox',
['orientation', 'options'], cnf, kw)
def add(self, name, cnf={}, **kw):
"""Add a button with given name to box."""
btn = self.tk.call(self._w, 'add', name, *self._options(cnf, kw))
self.subwidget_list[name] = _dummyButton(self, name)
return btn
def invoke(self, name):
if name in self.subwidget_list:
self.tk.call(self._w, 'invoke', name)
class ComboBox(TixWidget):
"""ComboBox - an Entry field with a dropdown menu. The user can select a
choice by either typing in the entry subwidget or selecting from the
listbox subwidget.
Subwidget Class
--------- -----
entry Entry
arrow Button
slistbox ScrolledListBox
tick Button
cross Button : present if created with the fancy option"""
# FIXME: It should inherit -superclass tixLabelWidget
def __init__ (self, master=None, cnf={}, **kw):
TixWidget.__init__(self, master, 'tixComboBox',
['editable', 'dropdown', 'fancy', 'options'],
cnf, kw)
self.subwidget_list['label'] = _dummyLabel(self, 'label')
self.subwidget_list['entry'] = _dummyEntry(self, 'entry')
self.subwidget_list['arrow'] = _dummyButton(self, 'arrow')
self.subwidget_list['slistbox'] = _dummyScrolledListBox(self,
'slistbox')
try:
self.subwidget_list['tick'] = _dummyButton(self, 'tick')
self.subwidget_list['cross'] = _dummyButton(self, 'cross')
except TypeError:
# unavailable when -fancy not specified
pass
# align
def add_history(self, str):
self.tk.call(self._w, 'addhistory', str)
def append_history(self, str):
self.tk.call(self._w, 'appendhistory', str)
def insert(self, index, str):
self.tk.call(self._w, 'insert', index, str)
def pick(self, index):
self.tk.call(self._w, 'pick', index)
class Control(TixWidget):
"""Control - An entry field with value change arrows. The user can
adjust the value by pressing the two arrow buttons or by entering
the value directly into the entry. The new value will be checked
against the user-defined upper and lower limits.
Subwidget Class
--------- -----
incr Button
decr Button
entry Entry
label Label"""
# FIXME: It should inherit -superclass tixLabelWidget
def __init__ (self, master=None, cnf={}, **kw):
TixWidget.__init__(self, master, 'tixControl', ['options'], cnf, kw)
self.subwidget_list['incr'] = _dummyButton(self, 'incr')
self.subwidget_list['decr'] = _dummyButton(self, 'decr')
self.subwidget_list['label'] = _dummyLabel(self, 'label')
self.subwidget_list['entry'] = _dummyEntry(self, 'entry')
def decrement(self):
self.tk.call(self._w, 'decr')
def increment(self):
self.tk.call(self._w, 'incr')
def invoke(self):
self.tk.call(self._w, 'invoke')
def update(self):
self.tk.call(self._w, 'update')
class DirList(TixWidget):
"""DirList - displays a list view of a directory, its previous
directories and its sub-directories. The user can choose one of
the directories displayed in the list or change to another directory.
Subwidget Class
--------- -----
hlist HList
hsb Scrollbar
vsb Scrollbar"""
# FIXME: It should inherit -superclass tixScrolledHList
def __init__(self, master, cnf={}, **kw):
TixWidget.__init__(self, master, 'tixDirList', ['options'], cnf, kw)
self.subwidget_list['hlist'] = _dummyHList(self, 'hlist')
self.subwidget_list['vsb'] = _dummyScrollbar(self, 'vsb')
self.subwidget_list['hsb'] = _dummyScrollbar(self, 'hsb')
def chdir(self, dir):
self.tk.call(self._w, 'chdir', dir)
class DirTree(TixWidget):
"""DirTree - Directory Listing in a hierarchical view.
Displays a tree view of a directory, its previous directories and its
sub-directories. The user can choose one of the directories displayed
in the list or change to another directory.
Subwidget Class
--------- -----
hlist HList
hsb Scrollbar
vsb Scrollbar"""
# FIXME: It should inherit -superclass tixScrolledHList
def __init__(self, master, cnf={}, **kw):
TixWidget.__init__(self, master, 'tixDirTree', ['options'], cnf, kw)
self.subwidget_list['hlist'] = _dummyHList(self, 'hlist')
self.subwidget_list['vsb'] = _dummyScrollbar(self, 'vsb')
self.subwidget_list['hsb'] = _dummyScrollbar(self, 'hsb')
def chdir(self, dir):
self.tk.call(self._w, 'chdir', dir)
class DirSelectBox(TixWidget):
"""DirSelectBox - Motif style file select box.
It is generally used for
the user to choose a file. FileSelectBox stores the files mostly
recently selected into a ComboBox widget so that they can be quickly
selected again.
Subwidget Class
--------- -----
selection ComboBox
filter ComboBox
dirlist ScrolledListBox
filelist ScrolledListBox"""
def __init__(self, master, cnf={}, **kw):
TixWidget.__init__(self, master, 'tixDirSelectBox', ['options'], cnf, kw)
self.subwidget_list['dirlist'] = _dummyDirList(self, 'dirlist')
self.subwidget_list['dircbx'] = _dummyFileComboBox(self, 'dircbx')
class ExFileSelectBox(TixWidget):
"""ExFileSelectBox - MS Windows style file select box.
It provides a convenient method for the user to select files.
Subwidget Class
--------- -----
cancel Button
ok Button
hidden Checkbutton
types ComboBox
dir ComboBox
file ComboBox
dirlist ScrolledListBox
filelist ScrolledListBox"""
def __init__(self, master, cnf={}, **kw):
TixWidget.__init__(self, master, 'tixExFileSelectBox', ['options'], cnf, kw)
self.subwidget_list['cancel'] = _dummyButton(self, 'cancel')
self.subwidget_list['ok'] = _dummyButton(self, 'ok')
self.subwidget_list['hidden'] = _dummyCheckbutton(self, 'hidden')
self.subwidget_list['types'] = _dummyComboBox(self, 'types')
self.subwidget_list['dir'] = _dummyComboBox(self, 'dir')
self.subwidget_list['dirlist'] = _dummyDirList(self, 'dirlist')
self.subwidget_list['file'] = _dummyComboBox(self, 'file')
self.subwidget_list['filelist'] = _dummyScrolledListBox(self, 'filelist')
def filter(self):
self.tk.call(self._w, 'filter')
def invoke(self):
self.tk.call(self._w, 'invoke')
# Should inherit from a Dialog class
class DirSelectDialog(TixWidget):
"""The DirSelectDialog widget presents the directories in the file
system in a dialog window. The user can use this dialog window to
navigate through the file system to select the desired directory.
Subwidgets Class
---------- -----
dirbox DirSelectDialog"""
# FIXME: It should inherit -superclass tixDialogShell
def __init__(self, master, cnf={}, **kw):
TixWidget.__init__(self, master, 'tixDirSelectDialog',
['options'], cnf, kw)
self.subwidget_list['dirbox'] = _dummyDirSelectBox(self, 'dirbox')
# cancel and ok buttons are missing
def popup(self):
self.tk.call(self._w, 'popup')
def popdown(self):
self.tk.call(self._w, 'popdown')
# Should inherit from a Dialog class
class ExFileSelectDialog(TixWidget):
"""ExFileSelectDialog - MS Windows style file select dialog.
It provides a convenient method for the user to select files.
Subwidgets Class
---------- -----
fsbox ExFileSelectBox"""
# FIXME: It should inherit -superclass tixDialogShell
def __init__(self, master, cnf={}, **kw):
TixWidget.__init__(self, master, 'tixExFileSelectDialog',
['options'], cnf, kw)
self.subwidget_list['fsbox'] = _dummyExFileSelectBox(self, 'fsbox')
def popup(self):
self.tk.call(self._w, 'popup')
def popdown(self):
self.tk.call(self._w, 'popdown')
class FileSelectBox(TixWidget):
"""ExFileSelectBox - Motif style file select box.
It is generally used for
the user to choose a file. FileSelectBox stores the files mostly
recently selected into a ComboBox widget so that they can be quickly
selected again.
Subwidget Class
--------- -----
selection ComboBox
filter ComboBox
dirlist ScrolledListBox
filelist ScrolledListBox"""
def __init__(self, master, cnf={}, **kw):
TixWidget.__init__(self, master, 'tixFileSelectBox', ['options'], cnf, kw)
self.subwidget_list['dirlist'] = _dummyScrolledListBox(self, 'dirlist')
self.subwidget_list['filelist'] = _dummyScrolledListBox(self, 'filelist')
self.subwidget_list['filter'] = _dummyComboBox(self, 'filter')
self.subwidget_list['selection'] = _dummyComboBox(self, 'selection')
def apply_filter(self): # name of subwidget is same as command
self.tk.call(self._w, 'filter')
def invoke(self):
self.tk.call(self._w, 'invoke')
# Should inherit from a Dialog class
class FileSelectDialog(TixWidget):
"""FileSelectDialog - Motif style file select dialog.
Subwidgets Class
---------- -----
btns StdButtonBox
fsbox FileSelectBox"""
# FIXME: It should inherit -superclass tixStdDialogShell
def __init__(self, master, cnf={}, **kw):
TixWidget.__init__(self, master, 'tixFileSelectDialog',
['options'], cnf, kw)
self.subwidget_list['btns'] = _dummyStdButtonBox(self, 'btns')
self.subwidget_list['fsbox'] = _dummyFileSelectBox(self, 'fsbox')
def popup(self):
self.tk.call(self._w, 'popup')
def popdown(self):
self.tk.call(self._w, 'popdown')
class FileEntry(TixWidget):
"""FileEntry - Entry field with button that invokes a FileSelectDialog.
The user can type in the filename manually. Alternatively, the user can
press the button widget that sits next to the entry, which will bring
up a file selection dialog.
Subwidgets Class
---------- -----
button Button
entry Entry"""
# FIXME: It should inherit -superclass tixLabelWidget
def __init__(self, master, cnf={}, **kw):
TixWidget.__init__(self, master, 'tixFileEntry',
['dialogtype', 'options'], cnf, kw)
self.subwidget_list['button'] = _dummyButton(self, 'button')
self.subwidget_list['entry'] = _dummyEntry(self, 'entry')
def invoke(self):
self.tk.call(self._w, 'invoke')
def file_dialog(self):
# FIXME: return python object
pass
class HList(TixWidget, XView, YView):
"""HList - Hierarchy display widget can be used to display any data
that have a hierarchical structure, for example, file system directory
trees. The list entries are indented and connected by branch lines
according to their places in the hierarchy.
Subwidgets - None"""
def __init__ (self,master=None,cnf={}, **kw):
TixWidget.__init__(self, master, 'tixHList',
['columns', 'options'], cnf, kw)
def add(self, entry, cnf={}, **kw):
return self.tk.call(self._w, 'add', entry, *self._options(cnf, kw))
def add_child(self, parent=None, cnf={}, **kw):
if not parent:
parent = ''
return self.tk.call(
self._w, 'addchild', parent, *self._options(cnf, kw))
def anchor_set(self, entry):
self.tk.call(self._w, 'anchor', 'set', entry)
def anchor_clear(self):
self.tk.call(self._w, 'anchor', 'clear')
def column_width(self, col=0, width=None, chars=None):
if not chars:
return self.tk.call(self._w, 'column', 'width', col, width)
else:
return self.tk.call(self._w, 'column', 'width', col,
'-char', chars)
def delete_all(self):
self.tk.call(self._w, 'delete', 'all')
def delete_entry(self, entry):
self.tk.call(self._w, 'delete', 'entry', entry)
def delete_offsprings(self, entry):
self.tk.call(self._w, 'delete', 'offsprings', entry)
def delete_siblings(self, entry):
self.tk.call(self._w, 'delete', 'siblings', entry)
def dragsite_set(self, index):
self.tk.call(self._w, 'dragsite', 'set', index)
def dragsite_clear(self):
self.tk.call(self._w, 'dragsite', 'clear')
def dropsite_set(self, index):
self.tk.call(self._w, 'dropsite', 'set', index)
def dropsite_clear(self):
self.tk.call(self._w, 'dropsite', 'clear')
def header_create(self, col, cnf={}, **kw):
self.tk.call(self._w, 'header', 'create', col, *self._options(cnf, kw))
def header_configure(self, col, cnf={}, **kw):
if cnf is None:
return self._getconfigure(self._w, 'header', 'configure', col)
self.tk.call(self._w, 'header', 'configure', col,
*self._options(cnf, kw))
def header_cget(self, col, opt):
return self.tk.call(self._w, 'header', 'cget', col, opt)
def header_exists(self, col):
# A workaround to Tix library bug (issue #25464).
# The documented command is "exists", but only erroneous "exist" is
# accepted.
return self.tk.getboolean(self.tk.call(self._w, 'header', 'exist', col))
header_exist = header_exists
def header_delete(self, col):
self.tk.call(self._w, 'header', 'delete', col)
def header_size(self, col):
return self.tk.call(self._w, 'header', 'size', col)
def hide_entry(self, entry):
self.tk.call(self._w, 'hide', 'entry', entry)
def indicator_create(self, entry, cnf={}, **kw):
self.tk.call(
self._w, 'indicator', 'create', entry, *self._options(cnf, kw))
def indicator_configure(self, entry, cnf={}, **kw):
if cnf is None:
return self._getconfigure(
self._w, 'indicator', 'configure', entry)
self.tk.call(
self._w, 'indicator', 'configure', entry, *self._options(cnf, kw))
def indicator_cget(self, entry, opt):
return self.tk.call(self._w, 'indicator', 'cget', entry, opt)
def indicator_exists(self, entry):
return self.tk.call (self._w, 'indicator', 'exists', entry)
def indicator_delete(self, entry):
self.tk.call(self._w, 'indicator', 'delete', entry)
def indicator_size(self, entry):
return self.tk.call(self._w, 'indicator', 'size', entry)
def info_anchor(self):
return self.tk.call(self._w, 'info', 'anchor')
def info_bbox(self, entry):
return self._getints(
self.tk.call(self._w, 'info', 'bbox', entry)) or None
def info_children(self, entry=None):
c = self.tk.call(self._w, 'info', 'children', entry)
return self.tk.splitlist(c)
def info_data(self, entry):
return self.tk.call(self._w, 'info', 'data', entry)
def info_dragsite(self):
return self.tk.call(self._w, 'info', 'dragsite')
def info_dropsite(self):
return self.tk.call(self._w, 'info', 'dropsite')
def info_exists(self, entry):
return self.tk.call(self._w, 'info', 'exists', entry)
def info_hidden(self, entry):
return self.tk.call(self._w, 'info', 'hidden', entry)
def info_next(self, entry):
return self.tk.call(self._w, 'info', 'next', entry)
def info_parent(self, entry):
return self.tk.call(self._w, 'info', 'parent', entry)
def info_prev(self, entry):
return self.tk.call(self._w, 'info', 'prev', entry)
def info_selection(self):
c = self.tk.call(self._w, 'info', 'selection')
return self.tk.splitlist(c)
def item_cget(self, entry, col, opt):
return self.tk.call(self._w, 'item', 'cget', entry, col, opt)
def item_configure(self, entry, col, cnf={}, **kw):
if cnf is None:
return self._getconfigure(self._w, 'item', 'configure', entry, col)
self.tk.call(self._w, 'item', 'configure', entry, col,
*self._options(cnf, kw))
def item_create(self, entry, col, cnf={}, **kw):
self.tk.call(
self._w, 'item', 'create', entry, col, *self._options(cnf, kw))
def item_exists(self, entry, col):
return self.tk.call(self._w, 'item', 'exists', entry, col)
def item_delete(self, entry, col):
self.tk.call(self._w, 'item', 'delete', entry, col)
def entrycget(self, entry, opt):
return self.tk.call(self._w, 'entrycget', entry, opt)
def entryconfigure(self, entry, cnf={}, **kw):
if cnf is None:
return self._getconfigure(self._w, 'entryconfigure', entry)
self.tk.call(self._w, 'entryconfigure', entry,
*self._options(cnf, kw))
def nearest(self, y):
return self.tk.call(self._w, 'nearest', y)
def see(self, entry):
self.tk.call(self._w, 'see', entry)
def selection_clear(self, cnf={}, **kw):
self.tk.call(self._w, 'selection', 'clear', *self._options(cnf, kw))
def selection_includes(self, entry):
return self.tk.call(self._w, 'selection', 'includes', entry)
def selection_set(self, first, last=None):
self.tk.call(self._w, 'selection', 'set', first, last)
def show_entry(self, entry):
return self.tk.call(self._w, 'show', 'entry', entry)
class InputOnly(TixWidget):
"""InputOnly - Invisible widget. Unix only.
Subwidgets - None"""
def __init__ (self,master=None,cnf={}, **kw):
TixWidget.__init__(self, master, 'tixInputOnly', None, cnf, kw)
class LabelEntry(TixWidget):
"""LabelEntry - Entry field with label. Packages an entry widget
and a label into one mega widget. It can be used to simplify the creation
of ``entry-form'' type of interface.
Subwidgets Class
---------- -----
label Label
entry Entry"""
def __init__ (self,master=None,cnf={}, **kw):
TixWidget.__init__(self, master, 'tixLabelEntry',
['labelside','options'], cnf, kw)
self.subwidget_list['label'] = _dummyLabel(self, 'label')
self.subwidget_list['entry'] = _dummyEntry(self, 'entry')
class LabelFrame(TixWidget):
"""LabelFrame - Labelled Frame container. Packages a frame widget
and a label into one mega widget. To create widgets inside a
LabelFrame widget, one creates the new widgets relative to the
frame subwidget and manage them inside the frame subwidget.
Subwidgets Class
---------- -----
label Label
frame Frame"""
def __init__ (self,master=None,cnf={}, **kw):
TixWidget.__init__(self, master, 'tixLabelFrame',
['labelside','options'], cnf, kw)
self.subwidget_list['label'] = _dummyLabel(self, 'label')
self.subwidget_list['frame'] = _dummyFrame(self, 'frame')
class ListNoteBook(TixWidget):
"""A ListNoteBook widget is very similar to the TixNoteBook widget:
it can be used to display many windows in a limited space using a
notebook metaphor. The notebook is divided into a stack of pages
(windows). At one time only one of these pages can be shown.
The user can navigate through these pages by
choosing the name of the desired page in the hlist subwidget."""
def __init__(self, master, cnf={}, **kw):
TixWidget.__init__(self, master, 'tixListNoteBook', ['options'], cnf, kw)
# Is this necessary? It's not an exposed subwidget in Tix.
self.subwidget_list['pane'] = _dummyPanedWindow(self, 'pane',
destroy_physically=0)
self.subwidget_list['hlist'] = _dummyHList(self, 'hlist')
self.subwidget_list['shlist'] = _dummyScrolledHList(self, 'shlist')
def add(self, name, cnf={}, **kw):
self.tk.call(self._w, 'add', name, *self._options(cnf, kw))
self.subwidget_list[name] = TixSubWidget(self, name)
return self.subwidget_list[name]
def page(self, name):
return self.subwidget(name)
def pages(self):
# Can't call subwidgets_all directly because we don't want .nbframe
names = self.tk.splitlist(self.tk.call(self._w, 'pages'))
ret = []
for x in names:
ret.append(self.subwidget(x))
return ret
def raise_page(self, name): # raise is a python keyword
self.tk.call(self._w, 'raise', name)
class Meter(TixWidget):
"""The Meter widget can be used to show the progress of a background
job which may take a long time to execute.
"""
def __init__(self, master=None, cnf={}, **kw):
TixWidget.__init__(self, master, 'tixMeter',
['options'], cnf, kw)
class NoteBook(TixWidget):
"""NoteBook - Multi-page container widget (tabbed notebook metaphor).
Subwidgets Class
---------- -----
nbframe NoteBookFrame
<pages> page widgets added dynamically with the add method"""
def __init__ (self,master=None,cnf={}, **kw):
TixWidget.__init__(self,master,'tixNoteBook', ['options'], cnf, kw)
self.subwidget_list['nbframe'] = TixSubWidget(self, 'nbframe',
destroy_physically=0)
def add(self, name, cnf={}, **kw):
self.tk.call(self._w, 'add', name, *self._options(cnf, kw))
self.subwidget_list[name] = TixSubWidget(self, name)
return self.subwidget_list[name]
def delete(self, name):
self.tk.call(self._w, 'delete', name)
self.subwidget_list[name].destroy()
del self.subwidget_list[name]
def page(self, name):
return self.subwidget(name)
def pages(self):
# Can't call subwidgets_all directly because we don't want .nbframe
names = self.tk.splitlist(self.tk.call(self._w, 'pages'))
ret = []
for x in names:
ret.append(self.subwidget(x))
return ret
def raise_page(self, name): # raise is a python keyword
self.tk.call(self._w, 'raise', name)
def raised(self):
return self.tk.call(self._w, 'raised')
class NoteBookFrame(TixWidget):
# FIXME: This is dangerous to expose to be called on its own.
pass
class OptionMenu(TixWidget):
"""OptionMenu - creates a menu button of options.
Subwidget Class
--------- -----
menubutton Menubutton
menu Menu"""
def __init__(self, master, cnf={}, **kw):
TixWidget.__init__(self, master, 'tixOptionMenu', ['options'], cnf, kw)
self.subwidget_list['menubutton'] = _dummyMenubutton(self, 'menubutton')
self.subwidget_list['menu'] = _dummyMenu(self, 'menu')
def add_command(self, name, cnf={}, **kw):
self.tk.call(self._w, 'add', 'command', name, *self._options(cnf, kw))
def add_separator(self, name, cnf={}, **kw):
self.tk.call(self._w, 'add', 'separator', name, *self._options(cnf, kw))
def delete(self, name):
self.tk.call(self._w, 'delete', name)
def disable(self, name):
self.tk.call(self._w, 'disable', name)
def enable(self, name):
self.tk.call(self._w, 'enable', name)
class PanedWindow(TixWidget):
"""PanedWindow - Multi-pane container widget
allows the user to interactively manipulate the sizes of several
panes. The panes can be arranged either vertically or horizontally.The
user changes the sizes of the panes by dragging the resize handle
between two panes.
Subwidgets Class
---------- -----
<panes> g/p widgets added dynamically with the add method."""
def __init__(self, master, cnf={}, **kw):
TixWidget.__init__(self, master, 'tixPanedWindow', ['orientation', 'options'], cnf, kw)
# add delete forget panecget paneconfigure panes setsize
def add(self, name, cnf={}, **kw):
self.tk.call(self._w, 'add', name, *self._options(cnf, kw))
self.subwidget_list[name] = TixSubWidget(self, name,
check_intermediate=0)
return self.subwidget_list[name]
def delete(self, name):
self.tk.call(self._w, 'delete', name)
self.subwidget_list[name].destroy()
del self.subwidget_list[name]
def forget(self, name):
self.tk.call(self._w, 'forget', name)
def panecget(self, entry, opt):
return self.tk.call(self._w, 'panecget', entry, opt)
def paneconfigure(self, entry, cnf={}, **kw):
if cnf is None:
return self._getconfigure(self._w, 'paneconfigure', entry)
self.tk.call(self._w, 'paneconfigure', entry, *self._options(cnf, kw))
def panes(self):
names = self.tk.splitlist(self.tk.call(self._w, 'panes'))
return [self.subwidget(x) for x in names]
class PopupMenu(TixWidget):
"""PopupMenu widget can be used as a replacement of the tk_popup command.
The advantage of the Tix PopupMenu widget is it requires less application
code to manipulate.
Subwidgets Class
---------- -----
menubutton Menubutton
menu Menu"""
# FIXME: It should inherit -superclass tixShell
def __init__(self, master, cnf={}, **kw):
TixWidget.__init__(self, master, 'tixPopupMenu', ['options'], cnf, kw)
self.subwidget_list['menubutton'] = _dummyMenubutton(self, 'menubutton')
self.subwidget_list['menu'] = _dummyMenu(self, 'menu')
def bind_widget(self, widget):
self.tk.call(self._w, 'bind', widget._w)
def unbind_widget(self, widget):
self.tk.call(self._w, 'unbind', widget._w)
def post_widget(self, widget, x, y):
self.tk.call(self._w, 'post', widget._w, x, y)
class ResizeHandle(TixWidget):
"""Internal widget to draw resize handles on Scrolled widgets."""
def __init__(self, master, cnf={}, **kw):
# There seems to be a Tix bug rejecting the configure method
# Let's try making the flags -static
flags = ['options', 'command', 'cursorfg', 'cursorbg',
'handlesize', 'hintcolor', 'hintwidth',
'x', 'y']
# In fact, x y height width are configurable
TixWidget.__init__(self, master, 'tixResizeHandle',
flags, cnf, kw)
def attach_widget(self, widget):
self.tk.call(self._w, 'attachwidget', widget._w)
def detach_widget(self, widget):
self.tk.call(self._w, 'detachwidget', widget._w)
def hide(self, widget):
self.tk.call(self._w, 'hide', widget._w)
def show(self, widget):
self.tk.call(self._w, 'show', widget._w)
class ScrolledHList(TixWidget):
"""ScrolledHList - HList with automatic scrollbars."""
# FIXME: It should inherit -superclass tixScrolledWidget
def __init__(self, master, cnf={}, **kw):
TixWidget.__init__(self, master, 'tixScrolledHList', ['options'],
cnf, kw)
self.subwidget_list['hlist'] = _dummyHList(self, 'hlist')
self.subwidget_list['vsb'] = _dummyScrollbar(self, 'vsb')
self.subwidget_list['hsb'] = _dummyScrollbar(self, 'hsb')
class ScrolledListBox(TixWidget):
"""ScrolledListBox - Listbox with automatic scrollbars."""
# FIXME: It should inherit -superclass tixScrolledWidget
def __init__(self, master, cnf={}, **kw):
TixWidget.__init__(self, master, 'tixScrolledListBox', ['options'], cnf, kw)
self.subwidget_list['listbox'] = _dummyListbox(self, 'listbox')
self.subwidget_list['vsb'] = _dummyScrollbar(self, 'vsb')
self.subwidget_list['hsb'] = _dummyScrollbar(self, 'hsb')
class ScrolledText(TixWidget):
"""ScrolledText - Text with automatic scrollbars."""
# FIXME: It should inherit -superclass tixScrolledWidget
def __init__(self, master, cnf={}, **kw):
TixWidget.__init__(self, master, 'tixScrolledText', ['options'], cnf, kw)
self.subwidget_list['text'] = _dummyText(self, 'text')
self.subwidget_list['vsb'] = _dummyScrollbar(self, 'vsb')
self.subwidget_list['hsb'] = _dummyScrollbar(self, 'hsb')
class ScrolledTList(TixWidget):
"""ScrolledTList - TList with automatic scrollbars."""
# FIXME: It should inherit -superclass tixScrolledWidget
def __init__(self, master, cnf={}, **kw):
TixWidget.__init__(self, master, 'tixScrolledTList', ['options'],
cnf, kw)
self.subwidget_list['tlist'] = _dummyTList(self, 'tlist')
self.subwidget_list['vsb'] = _dummyScrollbar(self, 'vsb')
self.subwidget_list['hsb'] = _dummyScrollbar(self, 'hsb')
class ScrolledWindow(TixWidget):
"""ScrolledWindow - Window with automatic scrollbars."""
# FIXME: It should inherit -superclass tixScrolledWidget
def __init__(self, master, cnf={}, **kw):
TixWidget.__init__(self, master, 'tixScrolledWindow', ['options'], cnf, kw)
self.subwidget_list['window'] = _dummyFrame(self, 'window')
self.subwidget_list['vsb'] = _dummyScrollbar(self, 'vsb')
self.subwidget_list['hsb'] = _dummyScrollbar(self, 'hsb')
class Select(TixWidget):
"""Select - Container of button subwidgets. It can be used to provide
radio-box or check-box style of selection options for the user.
Subwidgets are buttons added dynamically using the add method."""
# FIXME: It should inherit -superclass tixLabelWidget
def __init__(self, master, cnf={}, **kw):
TixWidget.__init__(self, master, 'tixSelect',
['allowzero', 'radio', 'orientation', 'labelside',
'options'],
cnf, kw)
self.subwidget_list['label'] = _dummyLabel(self, 'label')
def add(self, name, cnf={}, **kw):
self.tk.call(self._w, 'add', name, *self._options(cnf, kw))
self.subwidget_list[name] = _dummyButton(self, name)
return self.subwidget_list[name]
def invoke(self, name):
self.tk.call(self._w, 'invoke', name)
class Shell(TixWidget):
"""Toplevel window.
Subwidgets - None"""
def __init__ (self,master=None,cnf={}, **kw):
TixWidget.__init__(self, master, 'tixShell', ['options', 'title'], cnf, kw)
class DialogShell(TixWidget):
"""Toplevel window, with popup popdown and center methods.
It tells the window manager that it is a dialog window and should be
treated specially. The exact treatment depends on the treatment of
the window manager.
Subwidgets - None"""
# FIXME: It should inherit from Shell
def __init__ (self,master=None,cnf={}, **kw):
TixWidget.__init__(self, master,
'tixDialogShell',
['options', 'title', 'mapped',
'minheight', 'minwidth',
'parent', 'transient'], cnf, kw)
def popdown(self):
self.tk.call(self._w, 'popdown')
def popup(self):
self.tk.call(self._w, 'popup')
def center(self):
self.tk.call(self._w, 'center')
class StdButtonBox(TixWidget):
"""StdButtonBox - Standard Button Box (OK, Apply, Cancel and Help) """
def __init__(self, master=None, cnf={}, **kw):
TixWidget.__init__(self, master, 'tixStdButtonBox',
['orientation', 'options'], cnf, kw)
self.subwidget_list['ok'] = _dummyButton(self, 'ok')
self.subwidget_list['apply'] = _dummyButton(self, 'apply')
self.subwidget_list['cancel'] = _dummyButton(self, 'cancel')
self.subwidget_list['help'] = _dummyButton(self, 'help')
def invoke(self, name):
if name in self.subwidget_list:
self.tk.call(self._w, 'invoke', name)
class TList(TixWidget, XView, YView):
"""TList - Hierarchy display widget which can be
used to display data in a tabular format. The list entries of a TList
widget are similar to the entries in the Tk listbox widget. The main
differences are (1) the TList widget can display the list entries in a
two dimensional format and (2) you can use graphical images as well as
multiple colors and fonts for the list entries.
Subwidgets - None"""
def __init__ (self,master=None,cnf={}, **kw):
TixWidget.__init__(self, master, 'tixTList', ['options'], cnf, kw)
def active_set(self, index):
self.tk.call(self._w, 'active', 'set', index)
def active_clear(self):
self.tk.call(self._w, 'active', 'clear')
def anchor_set(self, index):
self.tk.call(self._w, 'anchor', 'set', index)
def anchor_clear(self):
self.tk.call(self._w, 'anchor', 'clear')
def delete(self, from_, to=None):
self.tk.call(self._w, 'delete', from_, to)
def dragsite_set(self, index):
self.tk.call(self._w, 'dragsite', 'set', index)
def dragsite_clear(self):
self.tk.call(self._w, 'dragsite', 'clear')
def dropsite_set(self, index):
self.tk.call(self._w, 'dropsite', 'set', index)
def dropsite_clear(self):
self.tk.call(self._w, 'dropsite', 'clear')
def insert(self, index, cnf={}, **kw):
self.tk.call(self._w, 'insert', index, *self._options(cnf, kw))
def info_active(self):
return self.tk.call(self._w, 'info', 'active')
def info_anchor(self):
return self.tk.call(self._w, 'info', 'anchor')
def info_down(self, index):
return self.tk.call(self._w, 'info', 'down', index)
def info_left(self, index):
return self.tk.call(self._w, 'info', 'left', index)
def info_right(self, index):
return self.tk.call(self._w, 'info', 'right', index)
def info_selection(self):
c = self.tk.call(self._w, 'info', 'selection')
return self.tk.splitlist(c)
def info_size(self):
return self.tk.call(self._w, 'info', 'size')
def info_up(self, index):
return self.tk.call(self._w, 'info', 'up', index)
def nearest(self, x, y):
return self.tk.call(self._w, 'nearest', x, y)
def see(self, index):
self.tk.call(self._w, 'see', index)
def selection_clear(self, cnf={}, **kw):
self.tk.call(self._w, 'selection', 'clear', *self._options(cnf, kw))
def selection_includes(self, index):
return self.tk.call(self._w, 'selection', 'includes', index)
def selection_set(self, first, last=None):
self.tk.call(self._w, 'selection', 'set', first, last)
class Tree(TixWidget):
"""Tree - The tixTree widget can be used to display hierarchical
data in a tree form. The user can adjust
the view of the tree by opening or closing parts of the tree."""
# FIXME: It should inherit -superclass tixScrolledWidget
def __init__(self, master=None, cnf={}, **kw):
TixWidget.__init__(self, master, 'tixTree',
['options'], cnf, kw)
self.subwidget_list['hlist'] = _dummyHList(self, 'hlist')
self.subwidget_list['vsb'] = _dummyScrollbar(self, 'vsb')
self.subwidget_list['hsb'] = _dummyScrollbar(self, 'hsb')
def autosetmode(self):
'''This command calls the setmode method for all the entries in this
Tree widget: if an entry has no child entries, its mode is set to
none. Otherwise, if the entry has any hidden child entries, its mode is
set to open; otherwise its mode is set to close.'''
self.tk.call(self._w, 'autosetmode')
def close(self, entrypath):
'''Close the entry given by entryPath if its mode is close.'''
self.tk.call(self._w, 'close', entrypath)
def getmode(self, entrypath):
'''Returns the current mode of the entry given by entryPath.'''
return self.tk.call(self._w, 'getmode', entrypath)
def open(self, entrypath):
'''Open the entry given by entryPath if its mode is open.'''
self.tk.call(self._w, 'open', entrypath)
def setmode(self, entrypath, mode='none'):
'''This command is used to indicate whether the entry given by
entryPath has children entries and whether the children are visible. mode
must be one of open, close or none. If mode is set to open, a (+)
indicator is drawn next the entry. If mode is set to close, a (-)
indicator is drawn next the entry. If mode is set to none, no
indicators will be drawn for this entry. The default mode is none. The
open mode indicates the entry has hidden children and this entry can be
opened by the user. The close mode indicates that all the children of the
entry are now visible and the entry can be closed by the user.'''
self.tk.call(self._w, 'setmode', entrypath, mode)
# Could try subclassing Tree for CheckList - would need another arg to init
class CheckList(TixWidget):
"""The CheckList widget
displays a list of items to be selected by the user. CheckList acts
similarly to the Tk checkbutton or radiobutton widgets, except it is
capable of handling many more items than checkbuttons or radiobuttons.
"""
# FIXME: It should inherit -superclass tixTree
def __init__(self, master=None, cnf={}, **kw):
TixWidget.__init__(self, master, 'tixCheckList',
['options', 'radio'], cnf, kw)
self.subwidget_list['hlist'] = _dummyHList(self, 'hlist')
self.subwidget_list['vsb'] = _dummyScrollbar(self, 'vsb')
self.subwidget_list['hsb'] = _dummyScrollbar(self, 'hsb')
def autosetmode(self):
'''This command calls the setmode method for all the entries in this
Tree widget: if an entry has no child entries, its mode is set to
none. Otherwise, if the entry has any hidden child entries, its mode is
set to open; otherwise its mode is set to close.'''
self.tk.call(self._w, 'autosetmode')
def close(self, entrypath):
'''Close the entry given by entryPath if its mode is close.'''
self.tk.call(self._w, 'close', entrypath)
def getmode(self, entrypath):
'''Returns the current mode of the entry given by entryPath.'''
return self.tk.call(self._w, 'getmode', entrypath)
def open(self, entrypath):
'''Open the entry given by entryPath if its mode is open.'''
self.tk.call(self._w, 'open', entrypath)
def getselection(self, mode='on'):
'''Returns a list of items whose status matches status. If status is
not specified, the list of items in the "on" status will be returned.
Mode can be on, off, default'''
return self.tk.splitlist(self.tk.call(self._w, 'getselection', mode))
def getstatus(self, entrypath):
'''Returns the current status of entryPath.'''
return self.tk.call(self._w, 'getstatus', entrypath)
def setstatus(self, entrypath, mode='on'):
'''Sets the status of entryPath to be status. A bitmap will be
displayed next to the entry its status is on, off or default.'''
self.tk.call(self._w, 'setstatus', entrypath, mode)
###########################################################################
### The subclassing below is used to instantiate the subwidgets in each ###
### mega widget. This allows us to access their methods directly. ###
###########################################################################
class _dummyButton(Button, TixSubWidget):
def __init__(self, master, name, destroy_physically=1):
TixSubWidget.__init__(self, master, name, destroy_physically)
class _dummyCheckbutton(Checkbutton, TixSubWidget):
def __init__(self, master, name, destroy_physically=1):
TixSubWidget.__init__(self, master, name, destroy_physically)
class _dummyEntry(Entry, TixSubWidget):
def __init__(self, master, name, destroy_physically=1):
TixSubWidget.__init__(self, master, name, destroy_physically)
class _dummyFrame(Frame, TixSubWidget):
def __init__(self, master, name, destroy_physically=1):
TixSubWidget.__init__(self, master, name, destroy_physically)
class _dummyLabel(Label, TixSubWidget):
def __init__(self, master, name, destroy_physically=1):
TixSubWidget.__init__(self, master, name, destroy_physically)
class _dummyListbox(Listbox, TixSubWidget):
def __init__(self, master, name, destroy_physically=1):
TixSubWidget.__init__(self, master, name, destroy_physically)
class _dummyMenu(Menu, TixSubWidget):
def __init__(self, master, name, destroy_physically=1):
TixSubWidget.__init__(self, master, name, destroy_physically)
class _dummyMenubutton(Menubutton, TixSubWidget):
def __init__(self, master, name, destroy_physically=1):
TixSubWidget.__init__(self, master, name, destroy_physically)
class _dummyScrollbar(Scrollbar, TixSubWidget):
def __init__(self, master, name, destroy_physically=1):
TixSubWidget.__init__(self, master, name, destroy_physically)
class _dummyText(Text, TixSubWidget):
def __init__(self, master, name, destroy_physically=1):
TixSubWidget.__init__(self, master, name, destroy_physically)
class _dummyScrolledListBox(ScrolledListBox, TixSubWidget):
def __init__(self, master, name, destroy_physically=1):
TixSubWidget.__init__(self, master, name, destroy_physically)
self.subwidget_list['listbox'] = _dummyListbox(self, 'listbox')
self.subwidget_list['vsb'] = _dummyScrollbar(self, 'vsb')
self.subwidget_list['hsb'] = _dummyScrollbar(self, 'hsb')
class _dummyHList(HList, TixSubWidget):
def __init__(self, master, name, destroy_physically=1):
TixSubWidget.__init__(self, master, name, destroy_physically)
class _dummyScrolledHList(ScrolledHList, TixSubWidget):
def __init__(self, master, name, destroy_physically=1):
TixSubWidget.__init__(self, master, name, destroy_physically)
self.subwidget_list['hlist'] = _dummyHList(self, 'hlist')
self.subwidget_list['vsb'] = _dummyScrollbar(self, 'vsb')
self.subwidget_list['hsb'] = _dummyScrollbar(self, 'hsb')
class _dummyTList(TList, TixSubWidget):
def __init__(self, master, name, destroy_physically=1):
TixSubWidget.__init__(self, master, name, destroy_physically)
class _dummyComboBox(ComboBox, TixSubWidget):
def __init__(self, master, name, destroy_physically=1):
TixSubWidget.__init__(self, master, name, ['fancy',destroy_physically])
self.subwidget_list['label'] = _dummyLabel(self, 'label')
self.subwidget_list['entry'] = _dummyEntry(self, 'entry')
self.subwidget_list['arrow'] = _dummyButton(self, 'arrow')
self.subwidget_list['slistbox'] = _dummyScrolledListBox(self,
'slistbox')
try:
self.subwidget_list['tick'] = _dummyButton(self, 'tick')
#cross Button : present if created with the fancy option
self.subwidget_list['cross'] = _dummyButton(self, 'cross')
except TypeError:
# unavailable when -fancy not specified
pass
class _dummyDirList(DirList, TixSubWidget):
def __init__(self, master, name, destroy_physically=1):
TixSubWidget.__init__(self, master, name, destroy_physically)
self.subwidget_list['hlist'] = _dummyHList(self, 'hlist')
self.subwidget_list['vsb'] = _dummyScrollbar(self, 'vsb')
self.subwidget_list['hsb'] = _dummyScrollbar(self, 'hsb')
class _dummyDirSelectBox(DirSelectBox, TixSubWidget):
def __init__(self, master, name, destroy_physically=1):
TixSubWidget.__init__(self, master, name, destroy_physically)
self.subwidget_list['dirlist'] = _dummyDirList(self, 'dirlist')
self.subwidget_list['dircbx'] = _dummyFileComboBox(self, 'dircbx')
class _dummyExFileSelectBox(ExFileSelectBox, TixSubWidget):
def __init__(self, master, name, destroy_physically=1):
TixSubWidget.__init__(self, master, name, destroy_physically)
self.subwidget_list['cancel'] = _dummyButton(self, 'cancel')
self.subwidget_list['ok'] = _dummyButton(self, 'ok')
self.subwidget_list['hidden'] = _dummyCheckbutton(self, 'hidden')
self.subwidget_list['types'] = _dummyComboBox(self, 'types')
self.subwidget_list['dir'] = _dummyComboBox(self, 'dir')
self.subwidget_list['dirlist'] = _dummyScrolledListBox(self, 'dirlist')
self.subwidget_list['file'] = _dummyComboBox(self, 'file')
self.subwidget_list['filelist'] = _dummyScrolledListBox(self, 'filelist')
class _dummyFileSelectBox(FileSelectBox, TixSubWidget):
def __init__(self, master, name, destroy_physically=1):
TixSubWidget.__init__(self, master, name, destroy_physically)
self.subwidget_list['dirlist'] = _dummyScrolledListBox(self, 'dirlist')
self.subwidget_list['filelist'] = _dummyScrolledListBox(self, 'filelist')
self.subwidget_list['filter'] = _dummyComboBox(self, 'filter')
self.subwidget_list['selection'] = _dummyComboBox(self, 'selection')
class _dummyFileComboBox(ComboBox, TixSubWidget):
def __init__(self, master, name, destroy_physically=1):
TixSubWidget.__init__(self, master, name, destroy_physically)
self.subwidget_list['dircbx'] = _dummyComboBox(self, 'dircbx')
class _dummyStdButtonBox(StdButtonBox, TixSubWidget):
def __init__(self, master, name, destroy_physically=1):
TixSubWidget.__init__(self, master, name, destroy_physically)
self.subwidget_list['ok'] = _dummyButton(self, 'ok')
self.subwidget_list['apply'] = _dummyButton(self, 'apply')
self.subwidget_list['cancel'] = _dummyButton(self, 'cancel')
self.subwidget_list['help'] = _dummyButton(self, 'help')
class _dummyNoteBookFrame(NoteBookFrame, TixSubWidget):
def __init__(self, master, name, destroy_physically=0):
TixSubWidget.__init__(self, master, name, destroy_physically)
class _dummyPanedWindow(PanedWindow, TixSubWidget):
def __init__(self, master, name, destroy_physically=1):
TixSubWidget.__init__(self, master, name, destroy_physically)
########################
### Utility Routines ###
########################
#mike Should tixDestroy be exposed as a wrapper? - but not for widgets.
def OptionName(widget):
'''Returns the qualified path name for the widget. Normally used to set
default options for subwidgets. See tixwidgets.py'''
return widget.tk.call('tixOptionName', widget._w)
# Called with a dictionary argument of the form
# {'*.c':'C source files', '*.txt':'Text Files', '*':'All files'}
# returns a string which can be used to configure the fsbox file types
# in an ExFileSelectBox. i.e.,
# '{{*} {* - All files}} {{*.c} {*.c - C source files}} {{*.txt} {*.txt - Text Files}}'
def FileTypeList(dict):
s = ''
for type in dict.keys():
s = s + '{{' + type + '} {' + type + ' - ' + dict[type] + '}} '
return s
# Still to be done:
# tixIconView
class CObjView(TixWidget):
"""This file implements the Canvas Object View widget. This is a base
class of IconView. It implements automatic placement/adjustment of the
scrollbars according to the canvas objects inside the canvas subwidget.
The scrollbars are adjusted so that the canvas is just large enough
to see all the objects.
"""
# FIXME: It should inherit -superclass tixScrolledWidget
pass
class Grid(TixWidget, XView, YView):
'''The Tix Grid command creates a new window and makes it into a
tixGrid widget. Additional options, may be specified on the command
line or in the option database to configure aspects such as its cursor
and relief.
A Grid widget displays its contents in a two dimensional grid of cells.
Each cell may contain one Tix display item, which may be in text,
graphics or other formats. See the DisplayStyle class for more information
about Tix display items. Individual cells, or groups of cells, can be
formatted with a wide range of attributes, such as its color, relief and
border.
Subwidgets - None'''
# valid specific resources as of Tk 8.4
# editdonecmd, editnotifycmd, floatingcols, floatingrows, formatcmd,
# highlightbackground, highlightcolor, leftmargin, itemtype, selectmode,
# selectunit, topmargin,
def __init__(self, master=None, cnf={}, **kw):
static= []
self.cnf= cnf
TixWidget.__init__(self, master, 'tixGrid', static, cnf, kw)
# valid options as of Tk 8.4
# anchor, bdtype, cget, configure, delete, dragsite, dropsite, entrycget,
# edit, entryconfigure, format, geometryinfo, info, index, move, nearest,
# selection, set, size, unset, xview, yview
def anchor_clear(self):
"""Removes the selection anchor."""
self.tk.call(self, 'anchor', 'clear')
def anchor_get(self):
"Get the (x,y) coordinate of the current anchor cell"
return self._getints(self.tk.call(self, 'anchor', 'get'))
def anchor_set(self, x, y):
"""Set the selection anchor to the cell at (x, y)."""
self.tk.call(self, 'anchor', 'set', x, y)
def delete_row(self, from_, to=None):
"""Delete rows between from_ and to inclusive.
If to is not provided, delete only row at from_"""
if to is None:
self.tk.call(self, 'delete', 'row', from_)
else:
self.tk.call(self, 'delete', 'row', from_, to)
def delete_column(self, from_, to=None):
"""Delete columns between from_ and to inclusive.
If to is not provided, delete only column at from_"""
if to is None:
self.tk.call(self, 'delete', 'column', from_)
else:
self.tk.call(self, 'delete', 'column', from_, to)
def edit_apply(self):
"""If any cell is being edited, de-highlight the cell and applies
the changes."""
self.tk.call(self, 'edit', 'apply')
def edit_set(self, x, y):
"""Highlights the cell at (x, y) for editing, if the -editnotify
command returns True for this cell."""
self.tk.call(self, 'edit', 'set', x, y)
def entrycget(self, x, y, option):
"Get the option value for cell at (x,y)"
if option and option[0] != '-':
option = '-' + option
return self.tk.call(self, 'entrycget', x, y, option)
def entryconfigure(self, x, y, cnf=None, **kw):
return self._configure(('entryconfigure', x, y), cnf, kw)
# def format
# def index
def info_exists(self, x, y):
"Return True if display item exists at (x,y)"
return self._getboolean(self.tk.call(self, 'info', 'exists', x, y))
def info_bbox(self, x, y):
# This seems to always return '', at least for 'text' displayitems
return self.tk.call(self, 'info', 'bbox', x, y)
def move_column(self, from_, to, offset):
"""Moves the range of columns from position FROM through TO by
the distance indicated by OFFSET. For example, move_column(2, 4, 1)
moves the columns 2,3,4 to columns 3,4,5."""
self.tk.call(self, 'move', 'column', from_, to, offset)
def move_row(self, from_, to, offset):
"""Moves the range of rows from position FROM through TO by
the distance indicated by OFFSET.
For example, move_row(2, 4, 1) moves the rows 2,3,4 to rows 3,4,5."""
self.tk.call(self, 'move', 'row', from_, to, offset)
def nearest(self, x, y):
"Return coordinate of cell nearest pixel coordinate (x,y)"
return self._getints(self.tk.call(self, 'nearest', x, y))
# def selection adjust
# def selection clear
# def selection includes
# def selection set
# def selection toggle
def set(self, x, y, itemtype=None, **kw):
args= self._options(self.cnf, kw)
if itemtype is not None:
args= ('-itemtype', itemtype) + args
self.tk.call(self, 'set', x, y, *args)
def size_column(self, index, **kw):
"""Queries or sets the size of the column given by
INDEX. INDEX may be any non-negative
integer that gives the position of a given column.
INDEX can also be the string "default"; in this case, this command
queries or sets the default size of all columns.
When no option-value pair is given, this command returns a tuple
containing the current size setting of the given column. When
option-value pairs are given, the corresponding options of the
size setting of the given column are changed. Options may be one
of the follwing:
pad0 pixels
Specifies the paddings to the left of a column.
pad1 pixels
Specifies the paddings to the right of a column.
size val
Specifies the width of a column. Val may be:
"auto" -- the width of the column is set to the
width of the widest cell in the column;
a valid Tk screen distance unit;
or a real number following by the word chars
(e.g. 3.4chars) that sets the width of the column to the
given number of characters."""
return self.tk.splitlist(self.tk.call(self._w, 'size', 'column', index,
*self._options({}, kw)))
def size_row(self, index, **kw):
"""Queries or sets the size of the row given by
INDEX. INDEX may be any non-negative
integer that gives the position of a given row .
INDEX can also be the string "default"; in this case, this command
queries or sets the default size of all rows.
When no option-value pair is given, this command returns a list con-
taining the current size setting of the given row . When option-value
pairs are given, the corresponding options of the size setting of the
given row are changed. Options may be one of the follwing:
pad0 pixels
Specifies the paddings to the top of a row.
pad1 pixels
Specifies the paddings to the bottom of a row.
size val
Specifies the height of a row. Val may be:
"auto" -- the height of the row is set to the
height of the highest cell in the row;
a valid Tk screen distance unit;
or a real number following by the word chars
(e.g. 3.4chars) that sets the height of the row to the
given number of characters."""
return self.tk.splitlist(self.tk.call(
self, 'size', 'row', index, *self._options({}, kw)))
def unset(self, x, y):
"""Clears the cell at (x, y) by removing its display item."""
self.tk.call(self._w, 'unset', x, y)
class ScrolledGrid(Grid):
'''Scrolled Grid widgets'''
# FIXME: It should inherit -superclass tixScrolledWidget
def __init__(self, master=None, cnf={}, **kw):
static= []
self.cnf= cnf
TixWidget.__init__(self, master, 'tixScrolledGrid', static, cnf, kw)
| 77,088 | 1,947 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/tkinter/scrolledtext.py | """A ScrolledText widget feels like a text widget but also has a
vertical scroll bar on its right. (Later, options may be added to
add a horizontal bar as well, to make the bars disappear
automatically when not needed, to move them to the other side of the
window, etc.)
Configuration options are passed to the Text widget.
A Frame widget is inserted between the master and the text, to hold
the Scrollbar widget.
Most methods calls are inherited from the Text widget; Pack, Grid and
Place methods are redirected to the Frame widget however.
"""
__all__ = ['ScrolledText']
from tkinter import Frame, Text, Scrollbar, Pack, Grid, Place
from tkinter.constants import RIGHT, LEFT, Y, BOTH
class ScrolledText(Text):
def __init__(self, master=None, **kw):
self.frame = Frame(master)
self.vbar = Scrollbar(self.frame)
self.vbar.pack(side=RIGHT, fill=Y)
kw.update({'yscrollcommand': self.vbar.set})
Text.__init__(self, self.frame, **kw)
self.pack(side=LEFT, fill=BOTH, expand=True)
self.vbar['command'] = self.yview
# Copy geometry methods of self.frame without overriding Text
# methods -- hack!
text_meths = vars(Text).keys()
methods = vars(Pack).keys() | vars(Grid).keys() | vars(Place).keys()
methods = methods.difference(text_meths)
for m in methods:
if m[0] != '_' and m != 'config' and m != 'configure':
setattr(self, m, getattr(self.frame, m))
def __str__(self):
return str(self.frame)
def example():
from tkinter.constants import END
stext = ScrolledText(bg='white', height=10)
stext.insert(END, __doc__)
stext.pack(fill=BOTH, side=LEFT, expand=True)
stext.focus_set()
stext.mainloop()
if __name__ == "__main__":
example()
| 1,814 | 55 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/tkinter/simpledialog.py | #
# An Introduction to Tkinter
#
# Copyright (c) 1997 by Fredrik Lundh
#
# This copyright applies to Dialog, askinteger, askfloat and asktring
#
# [email protected]
# http://www.pythonware.com
#
"""This modules handles dialog boxes.
It contains the following public symbols:
SimpleDialog -- A simple but flexible modal dialog box
Dialog -- a base class for dialogs
askinteger -- get an integer from the user
askfloat -- get a float from the user
askstring -- get a string from the user
"""
from tkinter import *
from tkinter import messagebox
import tkinter # used at _QueryDialog for tkinter._default_root
class SimpleDialog:
def __init__(self, master,
text='', buttons=[], default=None, cancel=None,
title=None, class_=None):
if class_:
self.root = Toplevel(master, class_=class_)
else:
self.root = Toplevel(master)
if title:
self.root.title(title)
self.root.iconname(title)
self.message = Message(self.root, text=text, aspect=400)
self.message.pack(expand=1, fill=BOTH)
self.frame = Frame(self.root)
self.frame.pack()
self.num = default
self.cancel = cancel
self.default = default
self.root.bind('<Return>', self.return_event)
for num in range(len(buttons)):
s = buttons[num]
b = Button(self.frame, text=s,
command=(lambda self=self, num=num: self.done(num)))
if num == default:
b.config(relief=RIDGE, borderwidth=8)
b.pack(side=LEFT, fill=BOTH, expand=1)
self.root.protocol('WM_DELETE_WINDOW', self.wm_delete_window)
self._set_transient(master)
def _set_transient(self, master, relx=0.5, rely=0.3):
widget = self.root
widget.withdraw() # Remain invisible while we figure out the geometry
widget.transient(master)
widget.update_idletasks() # Actualize geometry information
if master.winfo_ismapped():
m_width = master.winfo_width()
m_height = master.winfo_height()
m_x = master.winfo_rootx()
m_y = master.winfo_rooty()
else:
m_width = master.winfo_screenwidth()
m_height = master.winfo_screenheight()
m_x = m_y = 0
w_width = widget.winfo_reqwidth()
w_height = widget.winfo_reqheight()
x = m_x + (m_width - w_width) * relx
y = m_y + (m_height - w_height) * rely
if x+w_width > master.winfo_screenwidth():
x = master.winfo_screenwidth() - w_width
elif x < 0:
x = 0
if y+w_height > master.winfo_screenheight():
y = master.winfo_screenheight() - w_height
elif y < 0:
y = 0
widget.geometry("+%d+%d" % (x, y))
widget.deiconify() # Become visible at the desired location
def go(self):
self.root.wait_visibility()
self.root.grab_set()
self.root.mainloop()
self.root.destroy()
return self.num
def return_event(self, event):
if self.default is None:
self.root.bell()
else:
self.done(self.default)
def wm_delete_window(self):
if self.cancel is None:
self.root.bell()
else:
self.done(self.cancel)
def done(self, num):
self.num = num
self.root.quit()
class Dialog(Toplevel):
'''Class to open dialogs.
This class is intended as a base class for custom dialogs
'''
def __init__(self, parent, title = None):
'''Initialize a dialog.
Arguments:
parent -- a parent window (the application window)
title -- the dialog title
'''
Toplevel.__init__(self, parent)
self.withdraw() # remain invisible for now
# If the master is not viewable, don't
# make the child transient, or else it
# would be opened withdrawn
if parent.winfo_viewable():
self.transient(parent)
if title:
self.title(title)
self.parent = parent
self.result = None
body = Frame(self)
self.initial_focus = self.body(body)
body.pack(padx=5, pady=5)
self.buttonbox()
if not self.initial_focus:
self.initial_focus = self
self.protocol("WM_DELETE_WINDOW", self.cancel)
if self.parent is not None:
self.geometry("+%d+%d" % (parent.winfo_rootx()+50,
parent.winfo_rooty()+50))
self.deiconify() # become visible now
self.initial_focus.focus_set()
# wait for window to appear on screen before calling grab_set
self.wait_visibility()
self.grab_set()
self.wait_window(self)
def destroy(self):
'''Destroy the window'''
self.initial_focus = None
Toplevel.destroy(self)
#
# construction hooks
def body(self, master):
'''create dialog body.
return widget that should have initial focus.
This method should be overridden, and is called
by the __init__ method.
'''
pass
def buttonbox(self):
'''add standard button box.
override if you do not want the standard buttons
'''
box = Frame(self)
w = Button(box, text="OK", width=10, command=self.ok, default=ACTIVE)
w.pack(side=LEFT, padx=5, pady=5)
w = Button(box, text="Cancel", width=10, command=self.cancel)
w.pack(side=LEFT, padx=5, pady=5)
self.bind("<Return>", self.ok)
self.bind("<Escape>", self.cancel)
box.pack()
#
# standard button semantics
def ok(self, event=None):
if not self.validate():
self.initial_focus.focus_set() # put focus back
return
self.withdraw()
self.update_idletasks()
try:
self.apply()
finally:
self.cancel()
def cancel(self, event=None):
# put focus back to the parent window
if self.parent is not None:
self.parent.focus_set()
self.destroy()
#
# command hooks
def validate(self):
'''validate the data
This method is called automatically to validate the data before the
dialog is destroyed. By default, it always validates OK.
'''
return 1 # override
def apply(self):
'''process the data
This method is called automatically to process the data, *after*
the dialog is destroyed. By default, it does nothing.
'''
pass # override
# --------------------------------------------------------------------
# convenience dialogues
class _QueryDialog(Dialog):
def __init__(self, title, prompt,
initialvalue=None,
minvalue = None, maxvalue = None,
parent = None):
if not parent:
parent = tkinter._default_root
self.prompt = prompt
self.minvalue = minvalue
self.maxvalue = maxvalue
self.initialvalue = initialvalue
Dialog.__init__(self, parent, title)
def destroy(self):
self.entry = None
Dialog.destroy(self)
def body(self, master):
w = Label(master, text=self.prompt, justify=LEFT)
w.grid(row=0, padx=5, sticky=W)
self.entry = Entry(master, name="entry")
self.entry.grid(row=1, padx=5, sticky=W+E)
if self.initialvalue is not None:
self.entry.insert(0, self.initialvalue)
self.entry.select_range(0, END)
return self.entry
def validate(self):
try:
result = self.getresult()
except ValueError:
messagebox.showwarning(
"Illegal value",
self.errormessage + "\nPlease try again",
parent = self
)
return 0
if self.minvalue is not None and result < self.minvalue:
messagebox.showwarning(
"Too small",
"The allowed minimum value is %s. "
"Please try again." % self.minvalue,
parent = self
)
return 0
if self.maxvalue is not None and result > self.maxvalue:
messagebox.showwarning(
"Too large",
"The allowed maximum value is %s. "
"Please try again." % self.maxvalue,
parent = self
)
return 0
self.result = result
return 1
class _QueryInteger(_QueryDialog):
errormessage = "Not an integer."
def getresult(self):
return self.getint(self.entry.get())
def askinteger(title, prompt, **kw):
'''get an integer from the user
Arguments:
title -- the dialog title
prompt -- the label text
**kw -- see SimpleDialog class
Return value is an integer
'''
d = _QueryInteger(title, prompt, **kw)
return d.result
class _QueryFloat(_QueryDialog):
errormessage = "Not a floating point value."
def getresult(self):
return self.getdouble(self.entry.get())
def askfloat(title, prompt, **kw):
'''get a float from the user
Arguments:
title -- the dialog title
prompt -- the label text
**kw -- see SimpleDialog class
Return value is a float
'''
d = _QueryFloat(title, prompt, **kw)
return d.result
class _QueryString(_QueryDialog):
def __init__(self, *args, **kw):
if "show" in kw:
self.__show = kw["show"]
del kw["show"]
else:
self.__show = None
_QueryDialog.__init__(self, *args, **kw)
def body(self, master):
entry = _QueryDialog.body(self, master)
if self.__show is not None:
entry.configure(show=self.__show)
return entry
def getresult(self):
return self.entry.get()
def askstring(title, prompt, **kw):
'''get a string from the user
Arguments:
title -- the dialog title
prompt -- the label text
**kw -- see SimpleDialog class
Return value is a string
'''
d = _QueryString(title, prompt, **kw)
return d.result
if __name__ == '__main__':
def test():
root = Tk()
def doit(root=root):
d = SimpleDialog(root,
text="This is a test dialog. "
"Would this have been an actual dialog, "
"the buttons below would have been glowing "
"in soft pink light.\n"
"Do you believe this?",
buttons=["Yes", "No", "Cancel"],
default=0,
cancel=2,
title="Test Dialog")
print(d.go())
print(askinteger("Spam", "Egg count", initialvalue=12*12))
print(askfloat("Spam", "Egg weight\n(in tons)", minvalue=1,
maxvalue=100))
print(askstring("Spam", "Egg label"))
t = Button(root, text='Test', command=doit)
t.pack()
q = Button(root, text='Quit', command=t.quit)
q.pack()
t.mainloop()
test()
| 11,424 | 424 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/tkinter/dialog.py | # dialog.py -- Tkinter interface to the tk_dialog script.
from tkinter import *
from tkinter import _cnfmerge
DIALOG_ICON = 'questhead'
class Dialog(Widget):
def __init__(self, master=None, cnf={}, **kw):
cnf = _cnfmerge((cnf, kw))
self.widgetName = '__dialog__'
Widget._setup(self, master, cnf)
self.num = self.tk.getint(
self.tk.call(
'tk_dialog', self._w,
cnf['title'], cnf['text'],
cnf['bitmap'], cnf['default'],
*cnf['strings']))
try: Widget.destroy(self)
except TclError: pass
def destroy(self): pass
def _test():
d = Dialog(None, {'title': 'File Modified',
'text':
'File "Python.h" has been modified'
' since the last time it was saved.'
' Do you want to save it before'
' exiting the application.',
'bitmap': DIALOG_ICON,
'default': 0,
'strings': ('Save File',
'Discard Changes',
'Return to Editor')})
print(d.num)
if __name__ == '__main__':
t = Button(None, {'text': 'Test',
'command': _test,
Pack: {}})
q = Button(None, {'text': 'Quit',
'command': t.quit,
Pack: {}})
t.mainloop()
| 1,509 | 47 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/tkinter/commondialog.py | # base class for tk common dialogues
#
# this module provides a base class for accessing the common
# dialogues available in Tk 4.2 and newer. use filedialog,
# colorchooser, and messagebox to access the individual
# dialogs.
#
# written by Fredrik Lundh, May 1997
#
from tkinter import *
class Dialog:
command = None
def __init__(self, master=None, **options):
self.master = master
self.options = options
if not master and options.get('parent'):
self.master = options['parent']
def _fixoptions(self):
pass # hook
def _fixresult(self, widget, result):
return result # hook
def show(self, **options):
# update instance options
for k, v in options.items():
self.options[k] = v
self._fixoptions()
# we need a dummy widget to properly process the options
# (at least as long as we use Tkinter 1.63)
w = Frame(self.master)
try:
s = w.tk.call(self.command, *w._options(self.options))
s = self._fixresult(w, s)
finally:
try:
# get rid of the widget
w.destroy()
except:
pass
return s
| 1,247 | 56 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/tkinter/dnd.py | """Drag-and-drop support for Tkinter.
This is very preliminary. I currently only support dnd *within* one
application, between different windows (or within the same window).
I am trying to make this as generic as possible -- not dependent on
the use of a particular widget or icon type, etc. I also hope that
this will work with Pmw.
To enable an object to be dragged, you must create an event binding
for it that starts the drag-and-drop process. Typically, you should
bind <ButtonPress> to a callback function that you write. The function
should call Tkdnd.dnd_start(source, event), where 'source' is the
object to be dragged, and 'event' is the event that invoked the call
(the argument to your callback function). Even though this is a class
instantiation, the returned instance should not be stored -- it will
be kept alive automatically for the duration of the drag-and-drop.
When a drag-and-drop is already in process for the Tk interpreter, the
call is *ignored*; this normally averts starting multiple simultaneous
dnd processes, e.g. because different button callbacks all
dnd_start().
The object is *not* necessarily a widget -- it can be any
application-specific object that is meaningful to potential
drag-and-drop targets.
Potential drag-and-drop targets are discovered as follows. Whenever
the mouse moves, and at the start and end of a drag-and-drop move, the
Tk widget directly under the mouse is inspected. This is the target
widget (not to be confused with the target object, yet to be
determined). If there is no target widget, there is no dnd target
object. If there is a target widget, and it has an attribute
dnd_accept, this should be a function (or any callable object). The
function is called as dnd_accept(source, event), where 'source' is the
object being dragged (the object passed to dnd_start() above), and
'event' is the most recent event object (generally a <Motion> event;
it can also be <ButtonPress> or <ButtonRelease>). If the dnd_accept()
function returns something other than None, this is the new dnd target
object. If dnd_accept() returns None, or if the target widget has no
dnd_accept attribute, the target widget's parent is considered as the
target widget, and the search for a target object is repeated from
there. If necessary, the search is repeated all the way up to the
root widget. If none of the target widgets can produce a target
object, there is no target object (the target object is None).
The target object thus produced, if any, is called the new target
object. It is compared with the old target object (or None, if there
was no old target widget). There are several cases ('source' is the
source object, and 'event' is the most recent event object):
- Both the old and new target objects are None. Nothing happens.
- The old and new target objects are the same object. Its method
dnd_motion(source, event) is called.
- The old target object was None, and the new target object is not
None. The new target object's method dnd_enter(source, event) is
called.
- The new target object is None, and the old target object is not
None. The old target object's method dnd_leave(source, event) is
called.
- The old and new target objects differ and neither is None. The old
target object's method dnd_leave(source, event), and then the new
target object's method dnd_enter(source, event) is called.
Once this is done, the new target object replaces the old one, and the
Tk mainloop proceeds. The return value of the methods mentioned above
is ignored; if they raise an exception, the normal exception handling
mechanisms take over.
The drag-and-drop processes can end in two ways: a final target object
is selected, or no final target object is selected. When a final
target object is selected, it will always have been notified of the
potential drop by a call to its dnd_enter() method, as described
above, and possibly one or more calls to its dnd_motion() method; its
dnd_leave() method has not been called since the last call to
dnd_enter(). The target is notified of the drop by a call to its
method dnd_commit(source, event).
If no final target object is selected, and there was an old target
object, its dnd_leave(source, event) method is called to complete the
dnd sequence.
Finally, the source object is notified that the drag-and-drop process
is over, by a call to source.dnd_end(target, event), specifying either
the selected target object, or None if no target object was selected.
The source object can use this to implement the commit action; this is
sometimes simpler than to do it in the target's dnd_commit(). The
target's dnd_commit() method could then simply be aliased to
dnd_leave().
At any time during a dnd sequence, the application can cancel the
sequence by calling the cancel() method on the object returned by
dnd_start(). This will call dnd_leave() if a target is currently
active; it will never call dnd_commit().
"""
import tkinter
# The factory function
def dnd_start(source, event):
h = DndHandler(source, event)
if h.root:
return h
else:
return None
# The class that does the work
class DndHandler:
root = None
def __init__(self, source, event):
if event.num > 5:
return
root = event.widget._root()
try:
root.__dnd
return # Don't start recursive dnd
except AttributeError:
root.__dnd = self
self.root = root
self.source = source
self.target = None
self.initial_button = button = event.num
self.initial_widget = widget = event.widget
self.release_pattern = "<B%d-ButtonRelease-%d>" % (button, button)
self.save_cursor = widget['cursor'] or ""
widget.bind(self.release_pattern, self.on_release)
widget.bind("<Motion>", self.on_motion)
widget['cursor'] = "hand2"
def __del__(self):
root = self.root
self.root = None
if root:
try:
del root.__dnd
except AttributeError:
pass
def on_motion(self, event):
x, y = event.x_root, event.y_root
target_widget = self.initial_widget.winfo_containing(x, y)
source = self.source
new_target = None
while target_widget:
try:
attr = target_widget.dnd_accept
except AttributeError:
pass
else:
new_target = attr(source, event)
if new_target:
break
target_widget = target_widget.master
old_target = self.target
if old_target is new_target:
if old_target:
old_target.dnd_motion(source, event)
else:
if old_target:
self.target = None
old_target.dnd_leave(source, event)
if new_target:
new_target.dnd_enter(source, event)
self.target = new_target
def on_release(self, event):
self.finish(event, 1)
def cancel(self, event=None):
self.finish(event, 0)
def finish(self, event, commit=0):
target = self.target
source = self.source
widget = self.initial_widget
root = self.root
try:
del root.__dnd
self.initial_widget.unbind(self.release_pattern)
self.initial_widget.unbind("<Motion>")
widget['cursor'] = self.save_cursor
self.target = self.source = self.initial_widget = self.root = None
if target:
if commit:
target.dnd_commit(source, event)
else:
target.dnd_leave(source, event)
finally:
source.dnd_end(target, event)
# ----------------------------------------------------------------------
# The rest is here for testing and demonstration purposes only!
class Icon:
def __init__(self, name):
self.name = name
self.canvas = self.label = self.id = None
def attach(self, canvas, x=10, y=10):
if canvas is self.canvas:
self.canvas.coords(self.id, x, y)
return
if self.canvas:
self.detach()
if not canvas:
return
label = tkinter.Label(canvas, text=self.name,
borderwidth=2, relief="raised")
id = canvas.create_window(x, y, window=label, anchor="nw")
self.canvas = canvas
self.label = label
self.id = id
label.bind("<ButtonPress>", self.press)
def detach(self):
canvas = self.canvas
if not canvas:
return
id = self.id
label = self.label
self.canvas = self.label = self.id = None
canvas.delete(id)
label.destroy()
def press(self, event):
if dnd_start(self, event):
# where the pointer is relative to the label widget:
self.x_off = event.x
self.y_off = event.y
# where the widget is relative to the canvas:
self.x_orig, self.y_orig = self.canvas.coords(self.id)
def move(self, event):
x, y = self.where(self.canvas, event)
self.canvas.coords(self.id, x, y)
def putback(self):
self.canvas.coords(self.id, self.x_orig, self.y_orig)
def where(self, canvas, event):
# where the corner of the canvas is relative to the screen:
x_org = canvas.winfo_rootx()
y_org = canvas.winfo_rooty()
# where the pointer is relative to the canvas widget:
x = event.x_root - x_org
y = event.y_root - y_org
# compensate for initial pointer offset
return x - self.x_off, y - self.y_off
def dnd_end(self, target, event):
pass
class Tester:
def __init__(self, root):
self.top = tkinter.Toplevel(root)
self.canvas = tkinter.Canvas(self.top, width=100, height=100)
self.canvas.pack(fill="both", expand=1)
self.canvas.dnd_accept = self.dnd_accept
def dnd_accept(self, source, event):
return self
def dnd_enter(self, source, event):
self.canvas.focus_set() # Show highlight border
x, y = source.where(self.canvas, event)
x1, y1, x2, y2 = source.canvas.bbox(source.id)
dx, dy = x2-x1, y2-y1
self.dndid = self.canvas.create_rectangle(x, y, x+dx, y+dy)
self.dnd_motion(source, event)
def dnd_motion(self, source, event):
x, y = source.where(self.canvas, event)
x1, y1, x2, y2 = self.canvas.bbox(self.dndid)
self.canvas.move(self.dndid, x-x1, y-y1)
def dnd_leave(self, source, event):
self.top.focus_set() # Hide highlight border
self.canvas.delete(self.dndid)
self.dndid = None
def dnd_commit(self, source, event):
self.dnd_leave(source, event)
x, y = source.where(self.canvas, event)
source.attach(self.canvas, x, y)
def test():
root = tkinter.Tk()
root.geometry("+1+1")
tkinter.Button(command=root.quit, text="Quit").pack()
t1 = Tester(root)
t1.top.geometry("+1+60")
t2 = Tester(root)
t2.top.geometry("+120+60")
t3 = Tester(root)
t3.top.geometry("+240+60")
i1 = Icon("ICON1")
i2 = Icon("ICON2")
i3 = Icon("ICON3")
i1.attach(t1.canvas)
i2.attach(t2.canvas)
i3.attach(t3.canvas)
root.mainloop()
if __name__ == '__main__':
test()
| 11,488 | 322 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/tkinter/constants.py | # Symbolic constants for Tk
# Booleans
NO=FALSE=OFF=0
YES=TRUE=ON=1
# -anchor and -sticky
N='n'
S='s'
W='w'
E='e'
NW='nw'
SW='sw'
NE='ne'
SE='se'
NS='ns'
EW='ew'
NSEW='nsew'
CENTER='center'
# -fill
NONE='none'
X='x'
Y='y'
BOTH='both'
# -side
LEFT='left'
TOP='top'
RIGHT='right'
BOTTOM='bottom'
# -relief
RAISED='raised'
SUNKEN='sunken'
FLAT='flat'
RIDGE='ridge'
GROOVE='groove'
SOLID = 'solid'
# -orient
HORIZONTAL='horizontal'
VERTICAL='vertical'
# -tabs
NUMERIC='numeric'
# -wrap
CHAR='char'
WORD='word'
# -align
BASELINE='baseline'
# -bordermode
INSIDE='inside'
OUTSIDE='outside'
# Special tags, marks and insert positions
SEL='sel'
SEL_FIRST='sel.first'
SEL_LAST='sel.last'
END='end'
INSERT='insert'
CURRENT='current'
ANCHOR='anchor'
ALL='all' # e.g. Canvas.delete(ALL)
# Text widget and button states
NORMAL='normal'
DISABLED='disabled'
ACTIVE='active'
# Canvas state
HIDDEN='hidden'
# Menu item types
CASCADE='cascade'
CHECKBUTTON='checkbutton'
COMMAND='command'
RADIOBUTTON='radiobutton'
SEPARATOR='separator'
# Selection modes for list boxes
SINGLE='single'
BROWSE='browse'
MULTIPLE='multiple'
EXTENDED='extended'
# Activestyle for list boxes
# NONE='none' is also valid
DOTBOX='dotbox'
UNDERLINE='underline'
# Various canvas styles
PIESLICE='pieslice'
CHORD='chord'
ARC='arc'
FIRST='first'
LAST='last'
BUTT='butt'
PROJECTING='projecting'
ROUND='round'
BEVEL='bevel'
MITER='miter'
# Arguments to xview/yview
MOVETO='moveto'
SCROLL='scroll'
UNITS='units'
PAGES='pages'
| 1,493 | 111 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/tkinter/__main__.py | """Main entry point"""
import sys
if sys.argv[0].endswith("__main__.py"):
sys.argv[0] = "python -m tkinter"
from . import _test as main
main()
| 148 | 8 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/tkinter/colorchooser.py | # tk common color chooser dialogue
#
# this module provides an interface to the native color dialogue
# available in Tk 4.2 and newer.
#
# written by Fredrik Lundh, May 1997
#
# fixed initialcolor handling in August 1998
#
#
# options (all have default values):
#
# - initialcolor: color to mark as selected when dialog is displayed
# (given as an RGB triplet or a Tk color string)
#
# - parent: which window to place the dialog on top of
#
# - title: dialog title
#
from tkinter.commondialog import Dialog
#
# color chooser class
class Chooser(Dialog):
"Ask for a color"
command = "tk_chooseColor"
def _fixoptions(self):
try:
# make sure initialcolor is a tk color string
color = self.options["initialcolor"]
if isinstance(color, tuple):
# assume an RGB triplet
self.options["initialcolor"] = "#%02x%02x%02x" % color
except KeyError:
pass
def _fixresult(self, widget, result):
# result can be somethings: an empty tuple, an empty string or
# a Tcl_Obj, so this somewhat weird check handles that
if not result or not str(result):
return None, None # canceled
# to simplify application code, the color chooser returns
# an RGB tuple together with the Tk color string
r, g, b = widget.winfo_rgb(result)
return (r/256, g/256, b/256), str(result)
#
# convenience stuff
def askcolor(color = None, **options):
"Ask for a color"
if color:
options = options.copy()
options["initialcolor"] = color
return Chooser(**options).show()
# --------------------------------------------------------------------
# test stuff
if __name__ == "__main__":
print("color", askcolor())
| 1,791 | 73 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/tkinter/font.py | # Tkinter font wrapper
#
# written by Fredrik Lundh, February 1998
#
__version__ = "0.9"
import itertools
import tkinter
# weight/slant
NORMAL = "normal"
ROMAN = "roman"
BOLD = "bold"
ITALIC = "italic"
def nametofont(name):
"""Given the name of a tk named font, returns a Font representation.
"""
return Font(name=name, exists=True)
class Font:
"""Represents a named font.
Constructor options are:
font -- font specifier (name, system font, or (family, size, style)-tuple)
name -- name to use for this font configuration (defaults to a unique name)
exists -- does a named font by this name already exist?
Creates a new named font if False, points to the existing font if True.
Raises _tkinter.TclError if the assertion is false.
the following are ignored if font is specified:
family -- font 'family', e.g. Courier, Times, Helvetica
size -- font size in points
weight -- font thickness: NORMAL, BOLD
slant -- font slant: ROMAN, ITALIC
underline -- font underlining: false (0), true (1)
overstrike -- font strikeout: false (0), true (1)
"""
counter = itertools.count(1)
def _set(self, kw):
options = []
for k, v in kw.items():
options.append("-"+k)
options.append(str(v))
return tuple(options)
def _get(self, args):
options = []
for k in args:
options.append("-"+k)
return tuple(options)
def _mkdict(self, args):
options = {}
for i in range(0, len(args), 2):
options[args[i][1:]] = args[i+1]
return options
def __init__(self, root=None, font=None, name=None, exists=False,
**options):
if not root:
root = tkinter._default_root
tk = getattr(root, 'tk', root)
if font:
# get actual settings corresponding to the given font
font = tk.splitlist(tk.call("font", "actual", font))
else:
font = self._set(options)
if not name:
name = "font" + str(next(self.counter))
self.name = name
if exists:
self.delete_font = False
# confirm font exists
if self.name not in tk.splitlist(tk.call("font", "names")):
raise tkinter._tkinter.TclError(
"named font %s does not already exist" % (self.name,))
# if font config info supplied, apply it
if font:
tk.call("font", "configure", self.name, *font)
else:
# create new font (raises TclError if the font exists)
tk.call("font", "create", self.name, *font)
self.delete_font = True
self._tk = tk
self._split = tk.splitlist
self._call = tk.call
def __str__(self):
return self.name
def __eq__(self, other):
return isinstance(other, Font) and self.name == other.name
def __getitem__(self, key):
return self.cget(key)
def __setitem__(self, key, value):
self.configure(**{key: value})
def __del__(self):
try:
if self.delete_font:
self._call("font", "delete", self.name)
except Exception:
pass
def copy(self):
"Return a distinct copy of the current font"
return Font(self._tk, **self.actual())
def actual(self, option=None, displayof=None):
"Return actual font attributes"
args = ()
if displayof:
args = ('-displayof', displayof)
if option:
args = args + ('-' + option, )
return self._call("font", "actual", self.name, *args)
else:
return self._mkdict(
self._split(self._call("font", "actual", self.name, *args)))
def cget(self, option):
"Get font attribute"
return self._call("font", "config", self.name, "-"+option)
def config(self, **options):
"Modify font attributes"
if options:
self._call("font", "config", self.name,
*self._set(options))
else:
return self._mkdict(
self._split(self._call("font", "config", self.name)))
configure = config
def measure(self, text, displayof=None):
"Return text width"
args = (text,)
if displayof:
args = ('-displayof', displayof, text)
return self._tk.getint(self._call("font", "measure", self.name, *args))
def metrics(self, *options, **kw):
"""Return font metrics.
For best performance, create a dummy widget
using this font before calling this method."""
args = ()
displayof = kw.pop('displayof', None)
if displayof:
args = ('-displayof', displayof)
if options:
args = args + self._get(options)
return self._tk.getint(
self._call("font", "metrics", self.name, *args))
else:
res = self._split(self._call("font", "metrics", self.name, *args))
options = {}
for i in range(0, len(res), 2):
options[res[i][1:]] = self._tk.getint(res[i+1])
return options
def families(root=None, displayof=None):
"Get font families (as a tuple)"
if not root:
root = tkinter._default_root
args = ()
if displayof:
args = ('-displayof', displayof)
return root.tk.splitlist(root.tk.call("font", "families", *args))
def names(root=None):
"Get names of defined fonts (as a tuple)"
if not root:
root = tkinter._default_root
return root.tk.splitlist(root.tk.call("font", "names"))
# --------------------------------------------------------------------
# test stuff
if __name__ == "__main__":
root = tkinter.Tk()
# create a font
f = Font(family="times", size=30, weight=NORMAL)
print(f.actual())
print(f.actual("family"))
print(f.actual("weight"))
print(f.config())
print(f.cget("family"))
print(f.cget("weight"))
print(names())
print(f.measure("hello"), f.metrics("linespace"))
print(f.metrics(displayof=root))
f = Font(font=("Courier", 20, "bold"))
print(f.measure("hello"), f.metrics("linespace", displayof=root))
w = tkinter.Label(root, text="Hello, world", font=f)
w.pack()
w = tkinter.Button(root, text="Quit!", command=root.destroy)
w.pack()
fb = Font(font=w["font"]).copy()
fb.config(weight=BOLD)
w.config(font=fb)
tkinter.mainloop()
| 6,581 | 233 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/tkinter/filedialog.py | """File selection dialog classes.
Classes:
- FileDialog
- LoadFileDialog
- SaveFileDialog
This module also presents tk common file dialogues, it provides interfaces
to the native file dialogues available in Tk 4.2 and newer, and the
directory dialogue available in Tk 8.3 and newer.
These interfaces were written by Fredrik Lundh, May 1997.
"""
from tkinter import *
from tkinter.dialog import Dialog
from tkinter import commondialog
import os
import fnmatch
dialogstates = {}
class FileDialog:
"""Standard file selection dialog -- no checks on selected file.
Usage:
d = FileDialog(master)
fname = d.go(dir_or_file, pattern, default, key)
if fname is None: ...canceled...
else: ...open file...
All arguments to go() are optional.
The 'key' argument specifies a key in the global dictionary
'dialogstates', which keeps track of the values for the directory
and pattern arguments, overriding the values passed in (it does
not keep track of the default argument!). If no key is specified,
the dialog keeps no memory of previous state. Note that memory is
kept even when the dialog is canceled. (All this emulates the
behavior of the Macintosh file selection dialogs.)
"""
title = "File Selection Dialog"
def __init__(self, master, title=None):
if title is None: title = self.title
self.master = master
self.directory = None
self.top = Toplevel(master)
self.top.title(title)
self.top.iconname(title)
self.botframe = Frame(self.top)
self.botframe.pack(side=BOTTOM, fill=X)
self.selection = Entry(self.top)
self.selection.pack(side=BOTTOM, fill=X)
self.selection.bind('<Return>', self.ok_event)
self.filter = Entry(self.top)
self.filter.pack(side=TOP, fill=X)
self.filter.bind('<Return>', self.filter_command)
self.midframe = Frame(self.top)
self.midframe.pack(expand=YES, fill=BOTH)
self.filesbar = Scrollbar(self.midframe)
self.filesbar.pack(side=RIGHT, fill=Y)
self.files = Listbox(self.midframe, exportselection=0,
yscrollcommand=(self.filesbar, 'set'))
self.files.pack(side=RIGHT, expand=YES, fill=BOTH)
btags = self.files.bindtags()
self.files.bindtags(btags[1:] + btags[:1])
self.files.bind('<ButtonRelease-1>', self.files_select_event)
self.files.bind('<Double-ButtonRelease-1>', self.files_double_event)
self.filesbar.config(command=(self.files, 'yview'))
self.dirsbar = Scrollbar(self.midframe)
self.dirsbar.pack(side=LEFT, fill=Y)
self.dirs = Listbox(self.midframe, exportselection=0,
yscrollcommand=(self.dirsbar, 'set'))
self.dirs.pack(side=LEFT, expand=YES, fill=BOTH)
self.dirsbar.config(command=(self.dirs, 'yview'))
btags = self.dirs.bindtags()
self.dirs.bindtags(btags[1:] + btags[:1])
self.dirs.bind('<ButtonRelease-1>', self.dirs_select_event)
self.dirs.bind('<Double-ButtonRelease-1>', self.dirs_double_event)
self.ok_button = Button(self.botframe,
text="OK",
command=self.ok_command)
self.ok_button.pack(side=LEFT)
self.filter_button = Button(self.botframe,
text="Filter",
command=self.filter_command)
self.filter_button.pack(side=LEFT, expand=YES)
self.cancel_button = Button(self.botframe,
text="Cancel",
command=self.cancel_command)
self.cancel_button.pack(side=RIGHT)
self.top.protocol('WM_DELETE_WINDOW', self.cancel_command)
# XXX Are the following okay for a general audience?
self.top.bind('<Alt-w>', self.cancel_command)
self.top.bind('<Alt-W>', self.cancel_command)
def go(self, dir_or_file=os.curdir, pattern="*", default="", key=None):
if key and key in dialogstates:
self.directory, pattern = dialogstates[key]
else:
dir_or_file = os.path.expanduser(dir_or_file)
if os.path.isdir(dir_or_file):
self.directory = dir_or_file
else:
self.directory, default = os.path.split(dir_or_file)
self.set_filter(self.directory, pattern)
self.set_selection(default)
self.filter_command()
self.selection.focus_set()
self.top.wait_visibility() # window needs to be visible for the grab
self.top.grab_set()
self.how = None
self.master.mainloop() # Exited by self.quit(how)
if key:
directory, pattern = self.get_filter()
if self.how:
directory = os.path.dirname(self.how)
dialogstates[key] = directory, pattern
self.top.destroy()
return self.how
def quit(self, how=None):
self.how = how
self.master.quit() # Exit mainloop()
def dirs_double_event(self, event):
self.filter_command()
def dirs_select_event(self, event):
dir, pat = self.get_filter()
subdir = self.dirs.get('active')
dir = os.path.normpath(os.path.join(self.directory, subdir))
self.set_filter(dir, pat)
def files_double_event(self, event):
self.ok_command()
def files_select_event(self, event):
file = self.files.get('active')
self.set_selection(file)
def ok_event(self, event):
self.ok_command()
def ok_command(self):
self.quit(self.get_selection())
def filter_command(self, event=None):
dir, pat = self.get_filter()
try:
names = os.listdir(dir)
except OSError:
self.master.bell()
return
self.directory = dir
self.set_filter(dir, pat)
names.sort()
subdirs = [os.pardir]
matchingfiles = []
for name in names:
fullname = os.path.join(dir, name)
if os.path.isdir(fullname):
subdirs.append(name)
elif fnmatch.fnmatch(name, pat):
matchingfiles.append(name)
self.dirs.delete(0, END)
for name in subdirs:
self.dirs.insert(END, name)
self.files.delete(0, END)
for name in matchingfiles:
self.files.insert(END, name)
head, tail = os.path.split(self.get_selection())
if tail == os.curdir: tail = ''
self.set_selection(tail)
def get_filter(self):
filter = self.filter.get()
filter = os.path.expanduser(filter)
if filter[-1:] == os.sep or os.path.isdir(filter):
filter = os.path.join(filter, "*")
return os.path.split(filter)
def get_selection(self):
file = self.selection.get()
file = os.path.expanduser(file)
return file
def cancel_command(self, event=None):
self.quit()
def set_filter(self, dir, pat):
if not os.path.isabs(dir):
try:
pwd = os.getcwd()
except OSError:
pwd = None
if pwd:
dir = os.path.join(pwd, dir)
dir = os.path.normpath(dir)
self.filter.delete(0, END)
self.filter.insert(END, os.path.join(dir or os.curdir, pat or "*"))
def set_selection(self, file):
self.selection.delete(0, END)
self.selection.insert(END, os.path.join(self.directory, file))
class LoadFileDialog(FileDialog):
"""File selection dialog which checks that the file exists."""
title = "Load File Selection Dialog"
def ok_command(self):
file = self.get_selection()
if not os.path.isfile(file):
self.master.bell()
else:
self.quit(file)
class SaveFileDialog(FileDialog):
"""File selection dialog which checks that the file may be created."""
title = "Save File Selection Dialog"
def ok_command(self):
file = self.get_selection()
if os.path.exists(file):
if os.path.isdir(file):
self.master.bell()
return
d = Dialog(self.top,
title="Overwrite Existing File Question",
text="Overwrite existing file %r?" % (file,),
bitmap='questhead',
default=1,
strings=("Yes", "Cancel"))
if d.num != 0:
return
else:
head, tail = os.path.split(file)
if not os.path.isdir(head):
self.master.bell()
return
self.quit(file)
# For the following classes and modules:
#
# options (all have default values):
#
# - defaultextension: added to filename if not explicitly given
#
# - filetypes: sequence of (label, pattern) tuples. the same pattern
# may occur with several patterns. use "*" as pattern to indicate
# all files.
#
# - initialdir: initial directory. preserved by dialog instance.
#
# - initialfile: initial file (ignored by the open dialog). preserved
# by dialog instance.
#
# - parent: which window to place the dialog on top of
#
# - title: dialog title
#
# - multiple: if true user may select more than one file
#
# options for the directory chooser:
#
# - initialdir, parent, title: see above
#
# - mustexist: if true, user must pick an existing directory
#
class _Dialog(commondialog.Dialog):
def _fixoptions(self):
try:
# make sure "filetypes" is a tuple
self.options["filetypes"] = tuple(self.options["filetypes"])
except KeyError:
pass
def _fixresult(self, widget, result):
if result:
# keep directory and filename until next time
# convert Tcl path objects to strings
try:
result = result.string
except AttributeError:
# it already is a string
pass
path, file = os.path.split(result)
self.options["initialdir"] = path
self.options["initialfile"] = file
self.filename = result # compatibility
return result
#
# file dialogs
class Open(_Dialog):
"Ask for a filename to open"
command = "tk_getOpenFile"
def _fixresult(self, widget, result):
if isinstance(result, tuple):
# multiple results:
result = tuple([getattr(r, "string", r) for r in result])
if result:
path, file = os.path.split(result[0])
self.options["initialdir"] = path
# don't set initialfile or filename, as we have multiple of these
return result
if not widget.tk.wantobjects() and "multiple" in self.options:
# Need to split result explicitly
return self._fixresult(widget, widget.tk.splitlist(result))
return _Dialog._fixresult(self, widget, result)
class SaveAs(_Dialog):
"Ask for a filename to save as"
command = "tk_getSaveFile"
# the directory dialog has its own _fix routines.
class Directory(commondialog.Dialog):
"Ask for a directory"
command = "tk_chooseDirectory"
def _fixresult(self, widget, result):
if result:
# convert Tcl path objects to strings
try:
result = result.string
except AttributeError:
# it already is a string
pass
# keep directory until next time
self.options["initialdir"] = result
self.directory = result # compatibility
return result
#
# convenience stuff
def askopenfilename(**options):
"Ask for a filename to open"
return Open(**options).show()
def asksaveasfilename(**options):
"Ask for a filename to save as"
return SaveAs(**options).show()
def askopenfilenames(**options):
"""Ask for multiple filenames to open
Returns a list of filenames or empty list if
cancel button selected
"""
options["multiple"]=1
return Open(**options).show()
# FIXME: are the following perhaps a bit too convenient?
def askopenfile(mode = "r", **options):
"Ask for a filename to open, and returned the opened file"
filename = Open(**options).show()
if filename:
return open(filename, mode)
return None
def askopenfiles(mode = "r", **options):
"""Ask for multiple filenames and return the open file
objects
returns a list of open file objects or an empty list if
cancel selected
"""
files = askopenfilenames(**options)
if files:
ofiles=[]
for filename in files:
ofiles.append(open(filename, mode))
files=ofiles
return files
def asksaveasfile(mode = "w", **options):
"Ask for a filename to save as, and returned the opened file"
filename = SaveAs(**options).show()
if filename:
return open(filename, mode)
return None
def askdirectory (**options):
"Ask for a directory, and return the file name"
return Directory(**options).show()
# --------------------------------------------------------------------
# test stuff
def test():
"""Simple test program."""
root = Tk()
root.withdraw()
fd = LoadFileDialog(root)
loadfile = fd.go(key="test")
fd = SaveFileDialog(root)
savefile = fd.go(key="test")
print(loadfile, savefile)
# Since the file name may contain non-ASCII characters, we need
# to find an encoding that likely supports the file name, and
# displays correctly on the terminal.
# Start off with UTF-8
enc = "utf-8"
import sys
# See whether CODESET is defined
try:
import locale
locale.setlocale(locale.LC_ALL,'')
enc = locale.nl_langinfo(locale.CODESET)
except (ImportError, AttributeError):
pass
# dialog for openening files
openfilename=askopenfilename(filetypes=[("all files", "*")])
try:
fp=open(openfilename,"r")
fp.close()
except:
print("Could not open File: ")
print(sys.exc_info()[1])
print("open", openfilename.encode(enc))
# dialog for saving files
saveasfilename=asksaveasfilename()
print("saveas", saveasfilename.encode(enc))
if __name__ == '__main__':
test()
| 14,502 | 480 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/tkinter/ttk.py | """Ttk wrapper.
This module provides classes to allow using Tk themed widget set.
Ttk is based on a revised and enhanced version of
TIP #48 (http://tip.tcl.tk/48) specified style engine.
Its basic idea is to separate, to the extent possible, the code
implementing a widget's behavior from the code implementing its
appearance. Widget class bindings are primarily responsible for
maintaining the widget state and invoking callbacks, all aspects
of the widgets appearance lies at Themes.
"""
__version__ = "0.3.1"
__author__ = "Guilherme Polo <[email protected]>"
__all__ = ["Button", "Checkbutton", "Combobox", "Entry", "Frame", "Label",
"Labelframe", "LabelFrame", "Menubutton", "Notebook", "Panedwindow",
"PanedWindow", "Progressbar", "Radiobutton", "Scale", "Scrollbar",
"Separator", "Sizegrip", "Style", "Treeview",
# Extensions
"LabeledScale", "OptionMenu",
# functions
"tclobjs_to_py", "setup_master"]
import tkinter
from tkinter import _flatten, _join, _stringify, _splitdict
_sentinel = object()
# Verify if Tk is new enough to not need the Tile package
_REQUIRE_TILE = True if tkinter.TkVersion < 8.5 else False
def _load_tile(master):
if _REQUIRE_TILE:
import os
tilelib = os.environ.get('TILE_LIBRARY')
if tilelib:
# append custom tile path to the list of directories that
# Tcl uses when attempting to resolve packages with the package
# command
master.tk.eval(
'global auto_path; '
'lappend auto_path {%s}' % tilelib)
master.tk.eval('package require tile') # TclError may be raised here
master._tile_loaded = True
def _format_optvalue(value, script=False):
"""Internal function."""
if script:
# if caller passes a Tcl script to tk.call, all the values need to
# be grouped into words (arguments to a command in Tcl dialect)
value = _stringify(value)
elif isinstance(value, (list, tuple)):
value = _join(value)
return value
def _format_optdict(optdict, script=False, ignore=None):
"""Formats optdict to a tuple to pass it to tk.call.
E.g. (script=False):
{'foreground': 'blue', 'padding': [1, 2, 3, 4]} returns:
('-foreground', 'blue', '-padding', '1 2 3 4')"""
opts = []
for opt, value in optdict.items():
if not ignore or opt not in ignore:
opts.append("-%s" % opt)
if value is not None:
opts.append(_format_optvalue(value, script))
return _flatten(opts)
def _mapdict_values(items):
# each value in mapdict is expected to be a sequence, where each item
# is another sequence containing a state (or several) and a value
# E.g. (script=False):
# [('active', 'selected', 'grey'), ('focus', [1, 2, 3, 4])]
# returns:
# ['active selected', 'grey', 'focus', [1, 2, 3, 4]]
opt_val = []
for *state, val in items:
# hacks for backward compatibility
state[0] # raise IndexError if empty
if len(state) == 1:
# if it is empty (something that evaluates to False), then
# format it to Tcl code to denote the "normal" state
state = state[0] or ''
else:
# group multiple states
state = ' '.join(state) # raise TypeError if not str
opt_val.append(state)
if val is not None:
opt_val.append(val)
return opt_val
def _format_mapdict(mapdict, script=False):
"""Formats mapdict to pass it to tk.call.
E.g. (script=False):
{'expand': [('active', 'selected', 'grey'), ('focus', [1, 2, 3, 4])]}
returns:
('-expand', '{active selected} grey focus {1, 2, 3, 4}')"""
opts = []
for opt, value in mapdict.items():
opts.extend(("-%s" % opt,
_format_optvalue(_mapdict_values(value), script)))
return _flatten(opts)
def _format_elemcreate(etype, script=False, *args, **kw):
"""Formats args and kw according to the given element factory etype."""
spec = None
opts = ()
if etype in ("image", "vsapi"):
if etype == "image": # define an element based on an image
# first arg should be the default image name
iname = args[0]
# next args, if any, are statespec/value pairs which is almost
# a mapdict, but we just need the value
imagespec = _join(_mapdict_values(args[1:]))
spec = "%s %s" % (iname, imagespec)
else:
# define an element whose visual appearance is drawn using the
# Microsoft Visual Styles API which is responsible for the
# themed styles on Windows XP and Vista.
# Availability: Tk 8.6, Windows XP and Vista.
class_name, part_id = args[:2]
statemap = _join(_mapdict_values(args[2:]))
spec = "%s %s %s" % (class_name, part_id, statemap)
opts = _format_optdict(kw, script)
elif etype == "from": # clone an element
# it expects a themename and optionally an element to clone from,
# otherwise it will clone {} (empty element)
spec = args[0] # theme name
if len(args) > 1: # elementfrom specified
opts = (_format_optvalue(args[1], script),)
if script:
spec = '{%s}' % spec
opts = ' '.join(opts)
return spec, opts
def _format_layoutlist(layout, indent=0, indent_size=2):
"""Formats a layout list so we can pass the result to ttk::style
layout and ttk::style settings. Note that the layout doesn't have to
be a list necessarily.
E.g.:
[("Menubutton.background", None),
("Menubutton.button", {"children":
[("Menubutton.focus", {"children":
[("Menubutton.padding", {"children":
[("Menubutton.label", {"side": "left", "expand": 1})]
})]
})]
}),
("Menubutton.indicator", {"side": "right"})
]
returns:
Menubutton.background
Menubutton.button -children {
Menubutton.focus -children {
Menubutton.padding -children {
Menubutton.label -side left -expand 1
}
}
}
Menubutton.indicator -side right"""
script = []
for layout_elem in layout:
elem, opts = layout_elem
opts = opts or {}
fopts = ' '.join(_format_optdict(opts, True, ("children",)))
head = "%s%s%s" % (' ' * indent, elem, (" %s" % fopts) if fopts else '')
if "children" in opts:
script.append(head + " -children {")
indent += indent_size
newscript, indent = _format_layoutlist(opts['children'], indent,
indent_size)
script.append(newscript)
indent -= indent_size
script.append('%s}' % (' ' * indent))
else:
script.append(head)
return '\n'.join(script), indent
def _script_from_settings(settings):
"""Returns an appropriate script, based on settings, according to
theme_settings definition to be used by theme_settings and
theme_create."""
script = []
# a script will be generated according to settings passed, which
# will then be evaluated by Tcl
for name, opts in settings.items():
# will format specific keys according to Tcl code
if opts.get('configure'): # format 'configure'
s = ' '.join(_format_optdict(opts['configure'], True))
script.append("ttk::style configure %s %s;" % (name, s))
if opts.get('map'): # format 'map'
s = ' '.join(_format_mapdict(opts['map'], True))
script.append("ttk::style map %s %s;" % (name, s))
if 'layout' in opts: # format 'layout' which may be empty
if not opts['layout']:
s = 'null' # could be any other word, but this one makes sense
else:
s, _ = _format_layoutlist(opts['layout'])
script.append("ttk::style layout %s {\n%s\n}" % (name, s))
if opts.get('element create'): # format 'element create'
eopts = opts['element create']
etype = eopts[0]
# find where args end, and where kwargs start
argc = 1 # etype was the first one
while argc < len(eopts) and not hasattr(eopts[argc], 'items'):
argc += 1
elemargs = eopts[1:argc]
elemkw = eopts[argc] if argc < len(eopts) and eopts[argc] else {}
spec, opts = _format_elemcreate(etype, True, *elemargs, **elemkw)
script.append("ttk::style element create %s %s %s %s" % (
name, etype, spec, opts))
return '\n'.join(script)
def _list_from_statespec(stuple):
"""Construct a list from the given statespec tuple according to the
accepted statespec accepted by _format_mapdict."""
nval = []
for val in stuple:
typename = getattr(val, 'typename', None)
if typename is None:
nval.append(val)
else: # this is a Tcl object
val = str(val)
if typename == 'StateSpec':
val = val.split()
nval.append(val)
it = iter(nval)
return [_flatten(spec) for spec in zip(it, it)]
def _list_from_layouttuple(tk, ltuple):
"""Construct a list from the tuple returned by ttk::layout, this is
somewhat the reverse of _format_layoutlist."""
ltuple = tk.splitlist(ltuple)
res = []
indx = 0
while indx < len(ltuple):
name = ltuple[indx]
opts = {}
res.append((name, opts))
indx += 1
while indx < len(ltuple): # grab name's options
opt, val = ltuple[indx:indx + 2]
if not opt.startswith('-'): # found next name
break
opt = opt[1:] # remove the '-' from the option
indx += 2
if opt == 'children':
val = _list_from_layouttuple(tk, val)
opts[opt] = val
return res
def _val_or_dict(tk, options, *args):
"""Format options then call Tk command with args and options and return
the appropriate result.
If no option is specified, a dict is returned. If an option is
specified with the None value, the value for that option is returned.
Otherwise, the function just sets the passed options and the caller
shouldn't be expecting a return value anyway."""
options = _format_optdict(options)
res = tk.call(*(args + options))
if len(options) % 2: # option specified without a value, return its value
return res
return _splitdict(tk, res, conv=_tclobj_to_py)
def _convert_stringval(value):
"""Converts a value to, hopefully, a more appropriate Python object."""
value = str(value)
try:
value = int(value)
except (ValueError, TypeError):
pass
return value
def _to_number(x):
if isinstance(x, str):
if '.' in x:
x = float(x)
else:
x = int(x)
return x
def _tclobj_to_py(val):
"""Return value converted from Tcl object to Python object."""
if val and hasattr(val, '__len__') and not isinstance(val, str):
if getattr(val[0], 'typename', None) == 'StateSpec':
val = _list_from_statespec(val)
else:
val = list(map(_convert_stringval, val))
elif hasattr(val, 'typename'): # some other (single) Tcl object
val = _convert_stringval(val)
return val
def tclobjs_to_py(adict):
"""Returns adict with its values converted from Tcl objects to Python
objects."""
for opt, val in adict.items():
adict[opt] = _tclobj_to_py(val)
return adict
def setup_master(master=None):
"""If master is not None, itself is returned. If master is None,
the default master is returned if there is one, otherwise a new
master is created and returned.
If it is not allowed to use the default root and master is None,
RuntimeError is raised."""
if master is None:
if tkinter._support_default_root:
master = tkinter._default_root or tkinter.Tk()
else:
raise RuntimeError(
"No master specified and tkinter is "
"configured to not support default root")
return master
class Style(object):
"""Manipulate style database."""
_name = "ttk::style"
def __init__(self, master=None):
master = setup_master(master)
if not getattr(master, '_tile_loaded', False):
# Load tile now, if needed
_load_tile(master)
self.master = master
self.tk = self.master.tk
def configure(self, style, query_opt=None, **kw):
"""Query or sets the default value of the specified option(s) in
style.
Each key in kw is an option and each value is either a string or
a sequence identifying the value for that option."""
if query_opt is not None:
kw[query_opt] = None
result = _val_or_dict(self.tk, kw, self._name, "configure", style)
if result or query_opt:
return result
def map(self, style, query_opt=None, **kw):
"""Query or sets dynamic values of the specified option(s) in
style.
Each key in kw is an option and each value should be a list or a
tuple (usually) containing statespecs grouped in tuples, or list,
or something else of your preference. A statespec is compound of
one or more states and then a value."""
if query_opt is not None:
return _list_from_statespec(self.tk.splitlist(
self.tk.call(self._name, "map", style, '-%s' % query_opt)))
return _splitdict(
self.tk,
self.tk.call(self._name, "map", style, *_format_mapdict(kw)),
conv=_tclobj_to_py)
def lookup(self, style, option, state=None, default=None):
"""Returns the value specified for option in style.
If state is specified it is expected to be a sequence of one
or more states. If the default argument is set, it is used as
a fallback value in case no specification for option is found."""
state = ' '.join(state) if state else ''
return self.tk.call(self._name, "lookup", style, '-%s' % option,
state, default)
def layout(self, style, layoutspec=None):
"""Define the widget layout for given style. If layoutspec is
omitted, return the layout specification for given style.
layoutspec is expected to be a list or an object different than
None that evaluates to False if you want to "turn off" that style.
If it is a list (or tuple, or something else), each item should be
a tuple where the first item is the layout name and the second item
should have the format described below:
LAYOUTS
A layout can contain the value None, if takes no options, or
a dict of options specifying how to arrange the element.
The layout mechanism uses a simplified version of the pack
geometry manager: given an initial cavity, each element is
allocated a parcel. Valid options/values are:
side: whichside
Specifies which side of the cavity to place the
element; one of top, right, bottom or left. If
omitted, the element occupies the entire cavity.
sticky: nswe
Specifies where the element is placed inside its
allocated parcel.
children: [sublayout... ]
Specifies a list of elements to place inside the
element. Each element is a tuple (or other sequence)
where the first item is the layout name, and the other
is a LAYOUT."""
lspec = None
if layoutspec:
lspec = _format_layoutlist(layoutspec)[0]
elif layoutspec is not None: # will disable the layout ({}, '', etc)
lspec = "null" # could be any other word, but this may make sense
# when calling layout(style) later
return _list_from_layouttuple(self.tk,
self.tk.call(self._name, "layout", style, lspec))
def element_create(self, elementname, etype, *args, **kw):
"""Create a new element in the current theme of given etype."""
spec, opts = _format_elemcreate(etype, False, *args, **kw)
self.tk.call(self._name, "element", "create", elementname, etype,
spec, *opts)
def element_names(self):
"""Returns the list of elements defined in the current theme."""
return tuple(n.lstrip('-') for n in self.tk.splitlist(
self.tk.call(self._name, "element", "names")))
def element_options(self, elementname):
"""Return the list of elementname's options."""
return tuple(o.lstrip('-') for o in self.tk.splitlist(
self.tk.call(self._name, "element", "options", elementname)))
def theme_create(self, themename, parent=None, settings=None):
"""Creates a new theme.
It is an error if themename already exists. If parent is
specified, the new theme will inherit styles, elements and
layouts from the specified parent theme. If settings are present,
they are expected to have the same syntax used for theme_settings."""
script = _script_from_settings(settings) if settings else ''
if parent:
self.tk.call(self._name, "theme", "create", themename,
"-parent", parent, "-settings", script)
else:
self.tk.call(self._name, "theme", "create", themename,
"-settings", script)
def theme_settings(self, themename, settings):
"""Temporarily sets the current theme to themename, apply specified
settings and then restore the previous theme.
Each key in settings is a style and each value may contain the
keys 'configure', 'map', 'layout' and 'element create' and they
are expected to have the same format as specified by the methods
configure, map, layout and element_create respectively."""
script = _script_from_settings(settings)
self.tk.call(self._name, "theme", "settings", themename, script)
def theme_names(self):
"""Returns a list of all known themes."""
return self.tk.splitlist(self.tk.call(self._name, "theme", "names"))
def theme_use(self, themename=None):
"""If themename is None, returns the theme in use, otherwise, set
the current theme to themename, refreshes all widgets and emits
a <<ThemeChanged>> event."""
if themename is None:
# Starting on Tk 8.6, checking this global is no longer needed
# since it allows doing self.tk.call(self._name, "theme", "use")
return self.tk.eval("return $ttk::currentTheme")
# using "ttk::setTheme" instead of "ttk::style theme use" causes
# the variable currentTheme to be updated, also, ttk::setTheme calls
# "ttk::style theme use" in order to change theme.
self.tk.call("ttk::setTheme", themename)
class Widget(tkinter.Widget):
"""Base class for Tk themed widgets."""
def __init__(self, master, widgetname, kw=None):
"""Constructs a Ttk Widget with the parent master.
STANDARD OPTIONS
class, cursor, takefocus, style
SCROLLABLE WIDGET OPTIONS
xscrollcommand, yscrollcommand
LABEL WIDGET OPTIONS
text, textvariable, underline, image, compound, width
WIDGET STATES
active, disabled, focus, pressed, selected, background,
readonly, alternate, invalid
"""
master = setup_master(master)
if not getattr(master, '_tile_loaded', False):
# Load tile now, if needed
_load_tile(master)
tkinter.Widget.__init__(self, master, widgetname, kw=kw)
def identify(self, x, y):
"""Returns the name of the element at position x, y, or the empty
string if the point does not lie within any element.
x and y are pixel coordinates relative to the widget."""
return self.tk.call(self._w, "identify", x, y)
def instate(self, statespec, callback=None, *args, **kw):
"""Test the widget's state.
If callback is not specified, returns True if the widget state
matches statespec and False otherwise. If callback is specified,
then it will be invoked with *args, **kw if the widget state
matches statespec. statespec is expected to be a sequence."""
ret = self.tk.getboolean(
self.tk.call(self._w, "instate", ' '.join(statespec)))
if ret and callback:
return callback(*args, **kw)
return ret
def state(self, statespec=None):
"""Modify or inquire widget state.
Widget state is returned if statespec is None, otherwise it is
set according to the statespec flags and then a new state spec
is returned indicating which flags were changed. statespec is
expected to be a sequence."""
if statespec is not None:
statespec = ' '.join(statespec)
return self.tk.splitlist(str(self.tk.call(self._w, "state", statespec)))
class Button(Widget):
"""Ttk Button widget, displays a textual label and/or image, and
evaluates a command when pressed."""
def __init__(self, master=None, **kw):
"""Construct a Ttk Button widget with the parent master.
STANDARD OPTIONS
class, compound, cursor, image, state, style, takefocus,
text, textvariable, underline, width
WIDGET-SPECIFIC OPTIONS
command, default, width
"""
Widget.__init__(self, master, "ttk::button", kw)
def invoke(self):
"""Invokes the command associated with the button."""
return self.tk.call(self._w, "invoke")
class Checkbutton(Widget):
"""Ttk Checkbutton widget which is either in on- or off-state."""
def __init__(self, master=None, **kw):
"""Construct a Ttk Checkbutton widget with the parent master.
STANDARD OPTIONS
class, compound, cursor, image, state, style, takefocus,
text, textvariable, underline, width
WIDGET-SPECIFIC OPTIONS
command, offvalue, onvalue, variable
"""
Widget.__init__(self, master, "ttk::checkbutton", kw)
def invoke(self):
"""Toggles between the selected and deselected states and
invokes the associated command. If the widget is currently
selected, sets the option variable to the offvalue option
and deselects the widget; otherwise, sets the option variable
to the option onvalue.
Returns the result of the associated command."""
return self.tk.call(self._w, "invoke")
class Entry(Widget, tkinter.Entry):
"""Ttk Entry widget displays a one-line text string and allows that
string to be edited by the user."""
def __init__(self, master=None, widget=None, **kw):
"""Constructs a Ttk Entry widget with the parent master.
STANDARD OPTIONS
class, cursor, style, takefocus, xscrollcommand
WIDGET-SPECIFIC OPTIONS
exportselection, invalidcommand, justify, show, state,
textvariable, validate, validatecommand, width
VALIDATION MODES
none, key, focus, focusin, focusout, all
"""
Widget.__init__(self, master, widget or "ttk::entry", kw)
def bbox(self, index):
"""Return a tuple of (x, y, width, height) which describes the
bounding box of the character given by index."""
return self._getints(self.tk.call(self._w, "bbox", index))
def identify(self, x, y):
"""Returns the name of the element at position x, y, or the
empty string if the coordinates are outside the window."""
return self.tk.call(self._w, "identify", x, y)
def validate(self):
"""Force revalidation, independent of the conditions specified
by the validate option. Returns False if validation fails, True
if it succeeds. Sets or clears the invalid state accordingly."""
return self.tk.getboolean(self.tk.call(self._w, "validate"))
class Combobox(Entry):
"""Ttk Combobox widget combines a text field with a pop-down list of
values."""
def __init__(self, master=None, **kw):
"""Construct a Ttk Combobox widget with the parent master.
STANDARD OPTIONS
class, cursor, style, takefocus
WIDGET-SPECIFIC OPTIONS
exportselection, justify, height, postcommand, state,
textvariable, values, width
"""
Entry.__init__(self, master, "ttk::combobox", **kw)
def current(self, newindex=None):
"""If newindex is supplied, sets the combobox value to the
element at position newindex in the list of values. Otherwise,
returns the index of the current value in the list of values
or -1 if the current value does not appear in the list."""
if newindex is None:
return self.tk.getint(self.tk.call(self._w, "current"))
return self.tk.call(self._w, "current", newindex)
def set(self, value):
"""Sets the value of the combobox to value."""
self.tk.call(self._w, "set", value)
class Frame(Widget):
"""Ttk Frame widget is a container, used to group other widgets
together."""
def __init__(self, master=None, **kw):
"""Construct a Ttk Frame with parent master.
STANDARD OPTIONS
class, cursor, style, takefocus
WIDGET-SPECIFIC OPTIONS
borderwidth, relief, padding, width, height
"""
Widget.__init__(self, master, "ttk::frame", kw)
class Label(Widget):
"""Ttk Label widget displays a textual label and/or image."""
def __init__(self, master=None, **kw):
"""Construct a Ttk Label with parent master.
STANDARD OPTIONS
class, compound, cursor, image, style, takefocus, text,
textvariable, underline, width
WIDGET-SPECIFIC OPTIONS
anchor, background, font, foreground, justify, padding,
relief, text, wraplength
"""
Widget.__init__(self, master, "ttk::label", kw)
class Labelframe(Widget):
"""Ttk Labelframe widget is a container used to group other widgets
together. It has an optional label, which may be a plain text string
or another widget."""
def __init__(self, master=None, **kw):
"""Construct a Ttk Labelframe with parent master.
STANDARD OPTIONS
class, cursor, style, takefocus
WIDGET-SPECIFIC OPTIONS
labelanchor, text, underline, padding, labelwidget, width,
height
"""
Widget.__init__(self, master, "ttk::labelframe", kw)
LabelFrame = Labelframe # tkinter name compatibility
class Menubutton(Widget):
"""Ttk Menubutton widget displays a textual label and/or image, and
displays a menu when pressed."""
def __init__(self, master=None, **kw):
"""Construct a Ttk Menubutton with parent master.
STANDARD OPTIONS
class, compound, cursor, image, state, style, takefocus,
text, textvariable, underline, width
WIDGET-SPECIFIC OPTIONS
direction, menu
"""
Widget.__init__(self, master, "ttk::menubutton", kw)
class Notebook(Widget):
"""Ttk Notebook widget manages a collection of windows and displays
a single one at a time. Each child window is associated with a tab,
which the user may select to change the currently-displayed window."""
def __init__(self, master=None, **kw):
"""Construct a Ttk Notebook with parent master.
STANDARD OPTIONS
class, cursor, style, takefocus
WIDGET-SPECIFIC OPTIONS
height, padding, width
TAB OPTIONS
state, sticky, padding, text, image, compound, underline
TAB IDENTIFIERS (tab_id)
The tab_id argument found in several methods may take any of
the following forms:
* An integer between zero and the number of tabs
* The name of a child window
* A positional specification of the form "@x,y", which
defines the tab
* The string "current", which identifies the
currently-selected tab
* The string "end", which returns the number of tabs (only
valid for method index)
"""
Widget.__init__(self, master, "ttk::notebook", kw)
def add(self, child, **kw):
"""Adds a new tab to the notebook.
If window is currently managed by the notebook but hidden, it is
restored to its previous position."""
self.tk.call(self._w, "add", child, *(_format_optdict(kw)))
def forget(self, tab_id):
"""Removes the tab specified by tab_id, unmaps and unmanages the
associated window."""
self.tk.call(self._w, "forget", tab_id)
def hide(self, tab_id):
"""Hides the tab specified by tab_id.
The tab will not be displayed, but the associated window remains
managed by the notebook and its configuration remembered. Hidden
tabs may be restored with the add command."""
self.tk.call(self._w, "hide", tab_id)
def identify(self, x, y):
"""Returns the name of the tab element at position x, y, or the
empty string if none."""
return self.tk.call(self._w, "identify", x, y)
def index(self, tab_id):
"""Returns the numeric index of the tab specified by tab_id, or
the total number of tabs if tab_id is the string "end"."""
return self.tk.getint(self.tk.call(self._w, "index", tab_id))
def insert(self, pos, child, **kw):
"""Inserts a pane at the specified position.
pos is either the string end, an integer index, or the name of
a managed child. If child is already managed by the notebook,
moves it to the specified position."""
self.tk.call(self._w, "insert", pos, child, *(_format_optdict(kw)))
def select(self, tab_id=None):
"""Selects the specified tab.
The associated child window will be displayed, and the
previously-selected window (if different) is unmapped. If tab_id
is omitted, returns the widget name of the currently selected
pane."""
return self.tk.call(self._w, "select", tab_id)
def tab(self, tab_id, option=None, **kw):
"""Query or modify the options of the specific tab_id.
If kw is not given, returns a dict of the tab option values. If option
is specified, returns the value of that option. Otherwise, sets the
options to the corresponding values."""
if option is not None:
kw[option] = None
return _val_or_dict(self.tk, kw, self._w, "tab", tab_id)
def tabs(self):
"""Returns a list of windows managed by the notebook."""
return self.tk.splitlist(self.tk.call(self._w, "tabs") or ())
def enable_traversal(self):
"""Enable keyboard traversal for a toplevel window containing
this notebook.
This will extend the bindings for the toplevel window containing
this notebook as follows:
Control-Tab: selects the tab following the currently selected
one
Shift-Control-Tab: selects the tab preceding the currently
selected one
Alt-K: where K is the mnemonic (underlined) character of any
tab, will select that tab.
Multiple notebooks in a single toplevel may be enabled for
traversal, including nested notebooks. However, notebook traversal
only works properly if all panes are direct children of the
notebook."""
# The only, and good, difference I see is about mnemonics, which works
# after calling this method. Control-Tab and Shift-Control-Tab always
# works (here at least).
self.tk.call("ttk::notebook::enableTraversal", self._w)
class Panedwindow(Widget, tkinter.PanedWindow):
"""Ttk Panedwindow widget displays a number of subwindows, stacked
either vertically or horizontally."""
def __init__(self, master=None, **kw):
"""Construct a Ttk Panedwindow with parent master.
STANDARD OPTIONS
class, cursor, style, takefocus
WIDGET-SPECIFIC OPTIONS
orient, width, height
PANE OPTIONS
weight
"""
Widget.__init__(self, master, "ttk::panedwindow", kw)
forget = tkinter.PanedWindow.forget # overrides Pack.forget
def insert(self, pos, child, **kw):
"""Inserts a pane at the specified positions.
pos is either the string end, and integer index, or the name
of a child. If child is already managed by the paned window,
moves it to the specified position."""
self.tk.call(self._w, "insert", pos, child, *(_format_optdict(kw)))
def pane(self, pane, option=None, **kw):
"""Query or modify the options of the specified pane.
pane is either an integer index or the name of a managed subwindow.
If kw is not given, returns a dict of the pane option values. If
option is specified then the value for that option is returned.
Otherwise, sets the options to the corresponding values."""
if option is not None:
kw[option] = None
return _val_or_dict(self.tk, kw, self._w, "pane", pane)
def sashpos(self, index, newpos=None):
"""If newpos is specified, sets the position of sash number index.
May adjust the positions of adjacent sashes to ensure that
positions are monotonically increasing. Sash positions are further
constrained to be between 0 and the total size of the widget.
Returns the new position of sash number index."""
return self.tk.getint(self.tk.call(self._w, "sashpos", index, newpos))
PanedWindow = Panedwindow # tkinter name compatibility
class Progressbar(Widget):
"""Ttk Progressbar widget shows the status of a long-running
operation. They can operate in two modes: determinate mode shows the
amount completed relative to the total amount of work to be done, and
indeterminate mode provides an animated display to let the user know
that something is happening."""
def __init__(self, master=None, **kw):
"""Construct a Ttk Progressbar with parent master.
STANDARD OPTIONS
class, cursor, style, takefocus
WIDGET-SPECIFIC OPTIONS
orient, length, mode, maximum, value, variable, phase
"""
Widget.__init__(self, master, "ttk::progressbar", kw)
def start(self, interval=None):
"""Begin autoincrement mode: schedules a recurring timer event
that calls method step every interval milliseconds.
interval defaults to 50 milliseconds (20 steps/second) if omitted."""
self.tk.call(self._w, "start", interval)
def step(self, amount=None):
"""Increments the value option by amount.
amount defaults to 1.0 if omitted."""
self.tk.call(self._w, "step", amount)
def stop(self):
"""Stop autoincrement mode: cancels any recurring timer event
initiated by start."""
self.tk.call(self._w, "stop")
class Radiobutton(Widget):
"""Ttk Radiobutton widgets are used in groups to show or change a
set of mutually-exclusive options."""
def __init__(self, master=None, **kw):
"""Construct a Ttk Radiobutton with parent master.
STANDARD OPTIONS
class, compound, cursor, image, state, style, takefocus,
text, textvariable, underline, width
WIDGET-SPECIFIC OPTIONS
command, value, variable
"""
Widget.__init__(self, master, "ttk::radiobutton", kw)
def invoke(self):
"""Sets the option variable to the option value, selects the
widget, and invokes the associated command.
Returns the result of the command, or an empty string if
no command is specified."""
return self.tk.call(self._w, "invoke")
class Scale(Widget, tkinter.Scale):
"""Ttk Scale widget is typically used to control the numeric value of
a linked variable that varies uniformly over some range."""
def __init__(self, master=None, **kw):
"""Construct a Ttk Scale with parent master.
STANDARD OPTIONS
class, cursor, style, takefocus
WIDGET-SPECIFIC OPTIONS
command, from, length, orient, to, value, variable
"""
Widget.__init__(self, master, "ttk::scale", kw)
def configure(self, cnf=None, **kw):
"""Modify or query scale options.
Setting a value for any of the "from", "from_" or "to" options
generates a <<RangeChanged>> event."""
if cnf:
kw.update(cnf)
Widget.configure(self, **kw)
if any(['from' in kw, 'from_' in kw, 'to' in kw]):
self.event_generate('<<RangeChanged>>')
def get(self, x=None, y=None):
"""Get the current value of the value option, or the value
corresponding to the coordinates x, y if they are specified.
x and y are pixel coordinates relative to the scale widget
origin."""
return self.tk.call(self._w, 'get', x, y)
class Scrollbar(Widget, tkinter.Scrollbar):
"""Ttk Scrollbar controls the viewport of a scrollable widget."""
def __init__(self, master=None, **kw):
"""Construct a Ttk Scrollbar with parent master.
STANDARD OPTIONS
class, cursor, style, takefocus
WIDGET-SPECIFIC OPTIONS
command, orient
"""
Widget.__init__(self, master, "ttk::scrollbar", kw)
class Separator(Widget):
"""Ttk Separator widget displays a horizontal or vertical separator
bar."""
def __init__(self, master=None, **kw):
"""Construct a Ttk Separator with parent master.
STANDARD OPTIONS
class, cursor, style, takefocus
WIDGET-SPECIFIC OPTIONS
orient
"""
Widget.__init__(self, master, "ttk::separator", kw)
class Sizegrip(Widget):
"""Ttk Sizegrip allows the user to resize the containing toplevel
window by pressing and dragging the grip."""
def __init__(self, master=None, **kw):
"""Construct a Ttk Sizegrip with parent master.
STANDARD OPTIONS
class, cursor, state, style, takefocus
"""
Widget.__init__(self, master, "ttk::sizegrip", kw)
class Treeview(Widget, tkinter.XView, tkinter.YView):
"""Ttk Treeview widget displays a hierarchical collection of items.
Each item has a textual label, an optional image, and an optional list
of data values. The data values are displayed in successive columns
after the tree label."""
def __init__(self, master=None, **kw):
"""Construct a Ttk Treeview with parent master.
STANDARD OPTIONS
class, cursor, style, takefocus, xscrollcommand,
yscrollcommand
WIDGET-SPECIFIC OPTIONS
columns, displaycolumns, height, padding, selectmode, show
ITEM OPTIONS
text, image, values, open, tags
TAG OPTIONS
foreground, background, font, image
"""
Widget.__init__(self, master, "ttk::treeview", kw)
def bbox(self, item, column=None):
"""Returns the bounding box (relative to the treeview widget's
window) of the specified item in the form x y width height.
If column is specified, returns the bounding box of that cell.
If the item is not visible (i.e., if it is a descendant of a
closed item or is scrolled offscreen), returns an empty string."""
return self._getints(self.tk.call(self._w, "bbox", item, column)) or ''
def get_children(self, item=None):
"""Returns a tuple of children belonging to item.
If item is not specified, returns root children."""
return self.tk.splitlist(
self.tk.call(self._w, "children", item or '') or ())
def set_children(self, item, *newchildren):
"""Replaces item's child with newchildren.
Children present in item that are not present in newchildren
are detached from tree. No items in newchildren may be an
ancestor of item."""
self.tk.call(self._w, "children", item, newchildren)
def column(self, column, option=None, **kw):
"""Query or modify the options for the specified column.
If kw is not given, returns a dict of the column option values. If
option is specified then the value for that option is returned.
Otherwise, sets the options to the corresponding values."""
if option is not None:
kw[option] = None
return _val_or_dict(self.tk, kw, self._w, "column", column)
def delete(self, *items):
"""Delete all specified items and all their descendants. The root
item may not be deleted."""
self.tk.call(self._w, "delete", items)
def detach(self, *items):
"""Unlinks all of the specified items from the tree.
The items and all of their descendants are still present, and may
be reinserted at another point in the tree, but will not be
displayed. The root item may not be detached."""
self.tk.call(self._w, "detach", items)
def exists(self, item):
"""Returns True if the specified item is present in the tree,
False otherwise."""
return self.tk.getboolean(self.tk.call(self._w, "exists", item))
def focus(self, item=None):
"""If item is specified, sets the focus item to item. Otherwise,
returns the current focus item, or '' if there is none."""
return self.tk.call(self._w, "focus", item)
def heading(self, column, option=None, **kw):
"""Query or modify the heading options for the specified column.
If kw is not given, returns a dict of the heading option values. If
option is specified then the value for that option is returned.
Otherwise, sets the options to the corresponding values.
Valid options/values are:
text: text
The text to display in the column heading
image: image_name
Specifies an image to display to the right of the column
heading
anchor: anchor
Specifies how the heading text should be aligned. One of
the standard Tk anchor values
command: callback
A callback to be invoked when the heading label is
pressed.
To configure the tree column heading, call this with column = "#0" """
cmd = kw.get('command')
if cmd and not isinstance(cmd, str):
# callback not registered yet, do it now
kw['command'] = self.master.register(cmd, self._substitute)
if option is not None:
kw[option] = None
return _val_or_dict(self.tk, kw, self._w, 'heading', column)
def identify(self, component, x, y):
"""Returns a description of the specified component under the
point given by x and y, or the empty string if no such component
is present at that position."""
return self.tk.call(self._w, "identify", component, x, y)
def identify_row(self, y):
"""Returns the item ID of the item at position y."""
return self.identify("row", 0, y)
def identify_column(self, x):
"""Returns the data column identifier of the cell at position x.
The tree column has ID #0."""
return self.identify("column", x, 0)
def identify_region(self, x, y):
"""Returns one of:
heading: Tree heading area.
separator: Space between two columns headings;
tree: The tree area.
cell: A data cell.
* Availability: Tk 8.6"""
return self.identify("region", x, y)
def identify_element(self, x, y):
"""Returns the element at position x, y.
* Availability: Tk 8.6"""
return self.identify("element", x, y)
def index(self, item):
"""Returns the integer index of item within its parent's list
of children."""
return self.tk.getint(self.tk.call(self._w, "index", item))
def insert(self, parent, index, iid=None, **kw):
"""Creates a new item and return the item identifier of the newly
created item.
parent is the item ID of the parent item, or the empty string
to create a new top-level item. index is an integer, or the value
end, specifying where in the list of parent's children to insert
the new item. If index is less than or equal to zero, the new node
is inserted at the beginning, if index is greater than or equal to
the current number of children, it is inserted at the end. If iid
is specified, it is used as the item identifier, iid must not
already exist in the tree. Otherwise, a new unique identifier
is generated."""
opts = _format_optdict(kw)
if iid is not None:
res = self.tk.call(self._w, "insert", parent, index,
"-id", iid, *opts)
else:
res = self.tk.call(self._w, "insert", parent, index, *opts)
return res
def item(self, item, option=None, **kw):
"""Query or modify the options for the specified item.
If no options are given, a dict with options/values for the item
is returned. If option is specified then the value for that option
is returned. Otherwise, sets the options to the corresponding
values as given by kw."""
if option is not None:
kw[option] = None
return _val_or_dict(self.tk, kw, self._w, "item", item)
def move(self, item, parent, index):
"""Moves item to position index in parent's list of children.
It is illegal to move an item under one of its descendants. If
index is less than or equal to zero, item is moved to the
beginning, if greater than or equal to the number of children,
it is moved to the end. If item was detached it is reattached."""
self.tk.call(self._w, "move", item, parent, index)
reattach = move # A sensible method name for reattaching detached items
def next(self, item):
"""Returns the identifier of item's next sibling, or '' if item
is the last child of its parent."""
return self.tk.call(self._w, "next", item)
def parent(self, item):
"""Returns the ID of the parent of item, or '' if item is at the
top level of the hierarchy."""
return self.tk.call(self._w, "parent", item)
def prev(self, item):
"""Returns the identifier of item's previous sibling, or '' if
item is the first child of its parent."""
return self.tk.call(self._w, "prev", item)
def see(self, item):
"""Ensure that item is visible.
Sets all of item's ancestors open option to True, and scrolls
the widget if necessary so that item is within the visible
portion of the tree."""
self.tk.call(self._w, "see", item)
def selection(self, selop=_sentinel, items=None):
"""Returns the tuple of selected items."""
if selop is _sentinel:
selop = None
elif selop is None:
import warnings
warnings.warn(
"The selop=None argument of selection() is deprecated "
"and will be removed in Python 3.8",
DeprecationWarning, 3)
elif selop in ('set', 'add', 'remove', 'toggle'):
import warnings
warnings.warn(
"The selop argument of selection() is deprecated "
"and will be removed in Python 3.8, "
"use selection_%s() instead" % (selop,),
DeprecationWarning, 3)
else:
raise TypeError('Unsupported operation')
return self.tk.splitlist(self.tk.call(self._w, "selection", selop, items))
def _selection(self, selop, items):
if len(items) == 1 and isinstance(items[0], (tuple, list)):
items = items[0]
self.tk.call(self._w, "selection", selop, items)
def selection_set(self, *items):
"""The specified items becomes the new selection."""
self._selection("set", items)
def selection_add(self, *items):
"""Add all of the specified items to the selection."""
self._selection("add", items)
def selection_remove(self, *items):
"""Remove all of the specified items from the selection."""
self._selection("remove", items)
def selection_toggle(self, *items):
"""Toggle the selection state of each specified item."""
self._selection("toggle", items)
def set(self, item, column=None, value=None):
"""Query or set the value of given item.
With one argument, return a dictionary of column/value pairs
for the specified item. With two arguments, return the current
value of the specified column. With three arguments, set the
value of given column in given item to the specified value."""
res = self.tk.call(self._w, "set", item, column, value)
if column is None and value is None:
return _splitdict(self.tk, res,
cut_minus=False, conv=_tclobj_to_py)
else:
return res
def tag_bind(self, tagname, sequence=None, callback=None):
"""Bind a callback for the given event sequence to the tag tagname.
When an event is delivered to an item, the callbacks for each
of the item's tags option are called."""
self._bind((self._w, "tag", "bind", tagname), sequence, callback, add=0)
def tag_configure(self, tagname, option=None, **kw):
"""Query or modify the options for the specified tagname.
If kw is not given, returns a dict of the option settings for tagname.
If option is specified, returns the value for that option for the
specified tagname. Otherwise, sets the options to the corresponding
values for the given tagname."""
if option is not None:
kw[option] = None
return _val_or_dict(self.tk, kw, self._w, "tag", "configure",
tagname)
def tag_has(self, tagname, item=None):
"""If item is specified, returns 1 or 0 depending on whether the
specified item has the given tagname. Otherwise, returns a list of
all items which have the specified tag.
* Availability: Tk 8.6"""
if item is None:
return self.tk.splitlist(
self.tk.call(self._w, "tag", "has", tagname))
else:
return self.tk.getboolean(
self.tk.call(self._w, "tag", "has", tagname, item))
# Extensions
class LabeledScale(Frame):
"""A Ttk Scale widget with a Ttk Label widget indicating its
current value.
The Ttk Scale can be accessed through instance.scale, and Ttk Label
can be accessed through instance.label"""
def __init__(self, master=None, variable=None, from_=0, to=10, **kw):
"""Construct a horizontal LabeledScale with parent master, a
variable to be associated with the Ttk Scale widget and its range.
If variable is not specified, a tkinter.IntVar is created.
WIDGET-SPECIFIC OPTIONS
compound: 'top' or 'bottom'
Specifies how to display the label relative to the scale.
Defaults to 'top'.
"""
self._label_top = kw.pop('compound', 'top') == 'top'
Frame.__init__(self, master, **kw)
self._variable = variable or tkinter.IntVar(master)
self._variable.set(from_)
self._last_valid = from_
self.label = Label(self)
self.scale = Scale(self, variable=self._variable, from_=from_, to=to)
self.scale.bind('<<RangeChanged>>', self._adjust)
# position scale and label according to the compound option
scale_side = 'bottom' if self._label_top else 'top'
label_side = 'top' if scale_side == 'bottom' else 'bottom'
self.scale.pack(side=scale_side, fill='x')
tmp = Label(self).pack(side=label_side) # place holder
self.label.place(anchor='n' if label_side == 'top' else 's')
# update the label as scale or variable changes
self.__tracecb = self._variable.trace_variable('w', self._adjust)
self.bind('<Configure>', self._adjust)
self.bind('<Map>', self._adjust)
def destroy(self):
"""Destroy this widget and possibly its associated variable."""
try:
self._variable.trace_vdelete('w', self.__tracecb)
except AttributeError:
pass
else:
del self._variable
super().destroy()
self.label = None
self.scale = None
def _adjust(self, *args):
"""Adjust the label position according to the scale."""
def adjust_label():
self.update_idletasks() # "force" scale redraw
x, y = self.scale.coords()
if self._label_top:
y = self.scale.winfo_y() - self.label.winfo_reqheight()
else:
y = self.scale.winfo_reqheight() + self.label.winfo_reqheight()
self.label.place_configure(x=x, y=y)
from_ = _to_number(self.scale['from'])
to = _to_number(self.scale['to'])
if to < from_:
from_, to = to, from_
newval = self._variable.get()
if not from_ <= newval <= to:
# value outside range, set value back to the last valid one
self.value = self._last_valid
return
self._last_valid = newval
self.label['text'] = newval
self.after_idle(adjust_label)
def _get_value(self):
"""Return current scale value."""
return self._variable.get()
def _set_value(self, val):
"""Set new scale value."""
self._variable.set(val)
value = property(_get_value, _set_value)
class OptionMenu(Menubutton):
"""Themed OptionMenu, based after tkinter's OptionMenu, which allows
the user to select a value from a menu."""
def __init__(self, master, variable, default=None, *values, **kwargs):
"""Construct a themed OptionMenu widget with master as the parent,
the resource textvariable set to variable, the initially selected
value specified by the default parameter, the menu values given by
*values and additional keywords.
WIDGET-SPECIFIC OPTIONS
style: stylename
Menubutton style.
direction: 'above', 'below', 'left', 'right', or 'flush'
Menubutton direction.
command: callback
A callback that will be invoked after selecting an item.
"""
kw = {'textvariable': variable, 'style': kwargs.pop('style', None),
'direction': kwargs.pop('direction', None)}
Menubutton.__init__(self, master, **kw)
self['menu'] = tkinter.Menu(self, tearoff=False)
self._variable = variable
self._callback = kwargs.pop('command', None)
if kwargs:
raise tkinter.TclError('unknown option -%s' % (
next(iter(kwargs.keys()))))
self.set_menu(default, *values)
def __getitem__(self, item):
if item == 'menu':
return self.nametowidget(Menubutton.__getitem__(self, item))
return Menubutton.__getitem__(self, item)
def set_menu(self, default=None, *values):
"""Build a new menu of radiobuttons with *values and optionally
a default value."""
menu = self['menu']
menu.delete(0, 'end')
for val in values:
menu.add_radiobutton(label=val,
command=tkinter._setit(self._variable, val, self._callback),
variable=self._variable)
if default:
self._variable.set(default)
def destroy(self):
"""Destroy this widget and its associated variable."""
try:
del self._variable
except AttributeError:
pass
super().destroy()
| 57,090 | 1,656 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/tkinter/messagebox.py | # tk common message boxes
#
# this module provides an interface to the native message boxes
# available in Tk 4.2 and newer.
#
# written by Fredrik Lundh, May 1997
#
#
# options (all have default values):
#
# - default: which button to make default (one of the reply codes)
#
# - icon: which icon to display (see below)
#
# - message: the message to display
#
# - parent: which window to place the dialog on top of
#
# - title: dialog title
#
# - type: dialog type; that is, which buttons to display (see below)
#
from tkinter.commondialog import Dialog
#
# constants
# icons
ERROR = "error"
INFO = "info"
QUESTION = "question"
WARNING = "warning"
# types
ABORTRETRYIGNORE = "abortretryignore"
OK = "ok"
OKCANCEL = "okcancel"
RETRYCANCEL = "retrycancel"
YESNO = "yesno"
YESNOCANCEL = "yesnocancel"
# replies
ABORT = "abort"
RETRY = "retry"
IGNORE = "ignore"
OK = "ok"
CANCEL = "cancel"
YES = "yes"
NO = "no"
#
# message dialog class
class Message(Dialog):
"A message box"
command = "tk_messageBox"
#
# convenience stuff
# Rename _icon and _type options to allow overriding them in options
def _show(title=None, message=None, _icon=None, _type=None, **options):
if _icon and "icon" not in options: options["icon"] = _icon
if _type and "type" not in options: options["type"] = _type
if title: options["title"] = title
if message: options["message"] = message
res = Message(**options).show()
# In some Tcl installations, yes/no is converted into a boolean.
if isinstance(res, bool):
if res:
return YES
return NO
# In others we get a Tcl_Obj.
return str(res)
def showinfo(title=None, message=None, **options):
"Show an info message"
return _show(title, message, INFO, OK, **options)
def showwarning(title=None, message=None, **options):
"Show a warning message"
return _show(title, message, WARNING, OK, **options)
def showerror(title=None, message=None, **options):
"Show an error message"
return _show(title, message, ERROR, OK, **options)
def askquestion(title=None, message=None, **options):
"Ask a question"
return _show(title, message, QUESTION, YESNO, **options)
def askokcancel(title=None, message=None, **options):
"Ask if operation should proceed; return true if the answer is ok"
s = _show(title, message, QUESTION, OKCANCEL, **options)
return s == OK
def askyesno(title=None, message=None, **options):
"Ask a question; return true if the answer is yes"
s = _show(title, message, QUESTION, YESNO, **options)
return s == YES
def askyesnocancel(title=None, message=None, **options):
"Ask a question; return true if the answer is yes, None if cancelled."
s = _show(title, message, QUESTION, YESNOCANCEL, **options)
# s might be a Tcl index object, so convert it to a string
s = str(s)
if s == CANCEL:
return None
return s == YES
def askretrycancel(title=None, message=None, **options):
"Ask if operation should be retried; return true if the answer is yes"
s = _show(title, message, WARNING, RETRYCANCEL, **options)
return s == RETRY
# --------------------------------------------------------------------
# test stuff
if __name__ == "__main__":
print("info", showinfo("Spam", "Egg Information"))
print("warning", showwarning("Spam", "Egg Warning"))
print("error", showerror("Spam", "Egg Alert"))
print("question", askquestion("Spam", "Question?"))
print("proceed", askokcancel("Spam", "Proceed?"))
print("yes/no", askyesno("Spam", "Got it?"))
print("yes/no/cancel", askyesnocancel("Spam", "Want it?"))
print("try again", askretrycancel("Spam", "Try again?"))
| 3,701 | 135 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/tkinter/__init__.py | """Wrapper functions for Tcl/Tk.
Tkinter provides classes which allow the display, positioning and
control of widgets. Toplevel widgets are Tk and Toplevel. Other
widgets are Frame, Label, Entry, Text, Canvas, Button, Radiobutton,
Checkbutton, Scale, Listbox, Scrollbar, OptionMenu, Spinbox
LabelFrame and PanedWindow.
Properties of the widgets are specified with keyword arguments.
Keyword arguments have the same name as the corresponding resource
under Tk.
Widgets are positioned with one of the geometry managers Place, Pack
or Grid. These managers can be called with methods place, pack, grid
available in every Widget.
Actions are bound to events by resources (e.g. keyword argument
command) or with the method bind.
Example (Hello, World):
import tkinter
from tkinter.constants import *
tk = tkinter.Tk()
frame = tkinter.Frame(tk, relief=RIDGE, borderwidth=2)
frame.pack(fill=BOTH,expand=1)
label = tkinter.Label(frame, text="Hello, World")
label.pack(fill=X, expand=1)
button = tkinter.Button(frame,text="Exit",command=tk.destroy)
button.pack(side=BOTTOM)
tk.mainloop()
"""
import enum
import sys
import _tkinter # If this fails your Python may not be configured for Tk
TclError = _tkinter.TclError
from tkinter.constants import *
import re
wantobjects = 1
TkVersion = float(_tkinter.TK_VERSION)
TclVersion = float(_tkinter.TCL_VERSION)
READABLE = _tkinter.READABLE
WRITABLE = _tkinter.WRITABLE
EXCEPTION = _tkinter.EXCEPTION
_magic_re = re.compile(r'([\\{}])')
_space_re = re.compile(r'([\s])', re.ASCII)
def _join(value):
"""Internal function."""
return ' '.join(map(_stringify, value))
def _stringify(value):
"""Internal function."""
if isinstance(value, (list, tuple)):
if len(value) == 1:
value = _stringify(value[0])
if _magic_re.search(value):
value = '{%s}' % value
else:
value = '{%s}' % _join(value)
else:
value = str(value)
if not value:
value = '{}'
elif _magic_re.search(value):
# add '\' before special characters and spaces
value = _magic_re.sub(r'\\\1', value)
value = value.replace('\n', r'\n')
value = _space_re.sub(r'\\\1', value)
if value[0] == '"':
value = '\\' + value
elif value[0] == '"' or _space_re.search(value):
value = '{%s}' % value
return value
def _flatten(seq):
"""Internal function."""
res = ()
for item in seq:
if isinstance(item, (tuple, list)):
res = res + _flatten(item)
elif item is not None:
res = res + (item,)
return res
try: _flatten = _tkinter._flatten
except AttributeError: pass
def _cnfmerge(cnfs):
"""Internal function."""
if isinstance(cnfs, dict):
return cnfs
elif isinstance(cnfs, (type(None), str)):
return cnfs
else:
cnf = {}
for c in _flatten(cnfs):
try:
cnf.update(c)
except (AttributeError, TypeError) as msg:
print("_cnfmerge: fallback due to:", msg)
for k, v in c.items():
cnf[k] = v
return cnf
try: _cnfmerge = _tkinter._cnfmerge
except AttributeError: pass
def _splitdict(tk, v, cut_minus=True, conv=None):
"""Return a properly formatted dict built from Tcl list pairs.
If cut_minus is True, the supposed '-' prefix will be removed from
keys. If conv is specified, it is used to convert values.
Tcl list is expected to contain an even number of elements.
"""
t = tk.splitlist(v)
if len(t) % 2:
raise RuntimeError('Tcl list representing a dict is expected '
'to contain an even number of elements')
it = iter(t)
dict = {}
for key, value in zip(it, it):
key = str(key)
if cut_minus and key[0] == '-':
key = key[1:]
if conv:
value = conv(value)
dict[key] = value
return dict
class EventType(str, enum.Enum):
KeyPress = '2'
Key = KeyPress,
KeyRelease = '3'
ButtonPress = '4'
Button = ButtonPress,
ButtonRelease = '5'
Motion = '6'
Enter = '7'
Leave = '8'
FocusIn = '9'
FocusOut = '10'
Keymap = '11' # undocumented
Expose = '12'
GraphicsExpose = '13' # undocumented
NoExpose = '14' # undocumented
Visibility = '15'
Create = '16'
Destroy = '17'
Unmap = '18'
Map = '19'
MapRequest = '20'
Reparent = '21'
Configure = '22'
ConfigureRequest = '23'
Gravity = '24'
ResizeRequest = '25'
Circulate = '26'
CirculateRequest = '27'
Property = '28'
SelectionClear = '29' # undocumented
SelectionRequest = '30' # undocumented
Selection = '31' # undocumented
Colormap = '32'
ClientMessage = '33' # undocumented
Mapping = '34' # undocumented
VirtualEvent = '35', # undocumented
Activate = '36',
Deactivate = '37',
MouseWheel = '38',
def __str__(self):
return self.name
class Event:
"""Container for the properties of an event.
Instances of this type are generated if one of the following events occurs:
KeyPress, KeyRelease - for keyboard events
ButtonPress, ButtonRelease, Motion, Enter, Leave, MouseWheel - for mouse events
Visibility, Unmap, Map, Expose, FocusIn, FocusOut, Circulate,
Colormap, Gravity, Reparent, Property, Destroy, Activate,
Deactivate - for window events.
If a callback function for one of these events is registered
using bind, bind_all, bind_class, or tag_bind, the callback is
called with an Event as first argument. It will have the
following attributes (in braces are the event types for which
the attribute is valid):
serial - serial number of event
num - mouse button pressed (ButtonPress, ButtonRelease)
focus - whether the window has the focus (Enter, Leave)
height - height of the exposed window (Configure, Expose)
width - width of the exposed window (Configure, Expose)
keycode - keycode of the pressed key (KeyPress, KeyRelease)
state - state of the event as a number (ButtonPress, ButtonRelease,
Enter, KeyPress, KeyRelease,
Leave, Motion)
state - state as a string (Visibility)
time - when the event occurred
x - x-position of the mouse
y - y-position of the mouse
x_root - x-position of the mouse on the screen
(ButtonPress, ButtonRelease, KeyPress, KeyRelease, Motion)
y_root - y-position of the mouse on the screen
(ButtonPress, ButtonRelease, KeyPress, KeyRelease, Motion)
char - pressed character (KeyPress, KeyRelease)
send_event - see X/Windows documentation
keysym - keysym of the event as a string (KeyPress, KeyRelease)
keysym_num - keysym of the event as a number (KeyPress, KeyRelease)
type - type of the event as a number
widget - widget in which the event occurred
delta - delta of wheel movement (MouseWheel)
"""
def __repr__(self):
attrs = {k: v for k, v in self.__dict__.items() if v != '??'}
if not self.char:
del attrs['char']
elif self.char != '??':
attrs['char'] = repr(self.char)
if not getattr(self, 'send_event', True):
del attrs['send_event']
if self.state == 0:
del attrs['state']
elif isinstance(self.state, int):
state = self.state
mods = ('Shift', 'Lock', 'Control',
'Mod1', 'Mod2', 'Mod3', 'Mod4', 'Mod5',
'Button1', 'Button2', 'Button3', 'Button4', 'Button5')
s = []
for i, n in enumerate(mods):
if state & (1 << i):
s.append(n)
state = state & ~((1<< len(mods)) - 1)
if state or not s:
s.append(hex(state))
attrs['state'] = '|'.join(s)
if self.delta == 0:
del attrs['delta']
# widget usually is known
# serial and time are not very interesting
# keysym_num duplicates keysym
# x_root and y_root mostly duplicate x and y
keys = ('send_event',
'state', 'keysym', 'keycode', 'char',
'num', 'delta', 'focus',
'x', 'y', 'width', 'height')
return '<%s event%s>' % (
self.type,
''.join(' %s=%s' % (k, attrs[k]) for k in keys if k in attrs)
)
_support_default_root = 1
_default_root = None
def NoDefaultRoot():
"""Inhibit setting of default root window.
Call this function to inhibit that the first instance of
Tk is used for windows without an explicit parent window.
"""
global _support_default_root
_support_default_root = 0
global _default_root
_default_root = None
del _default_root
def _tkerror(err):
"""Internal function."""
pass
def _exit(code=0):
"""Internal function. Calling it will raise the exception SystemExit."""
try:
code = int(code)
except ValueError:
pass
raise SystemExit(code)
_varnum = 0
class Variable:
"""Class to define value holders for e.g. buttons.
Subclasses StringVar, IntVar, DoubleVar, BooleanVar are specializations
that constrain the type of the value returned from get()."""
_default = ""
_tk = None
_tclCommands = None
def __init__(self, master=None, value=None, name=None):
"""Construct a variable
MASTER can be given as master widget.
VALUE is an optional value (defaults to "")
NAME is an optional Tcl name (defaults to PY_VARnum).
If NAME matches an existing variable and VALUE is omitted
then the existing value is retained.
"""
# check for type of NAME parameter to override weird error message
# raised from Modules/_tkinter.c:SetVar like:
# TypeError: setvar() takes exactly 3 arguments (2 given)
if name is not None and not isinstance(name, str):
raise TypeError("name must be a string")
global _varnum
if not master:
master = _default_root
self._root = master._root()
self._tk = master.tk
if name:
self._name = name
else:
self._name = 'PY_VAR' + repr(_varnum)
_varnum += 1
if value is not None:
self.initialize(value)
elif not self._tk.getboolean(self._tk.call("info", "exists", self._name)):
self.initialize(self._default)
def __del__(self):
"""Unset the variable in Tcl."""
if self._tk is None:
return
if self._tk.getboolean(self._tk.call("info", "exists", self._name)):
self._tk.globalunsetvar(self._name)
if self._tclCommands is not None:
for name in self._tclCommands:
#print '- Tkinter: deleted command', name
self._tk.deletecommand(name)
self._tclCommands = None
def __str__(self):
"""Return the name of the variable in Tcl."""
return self._name
def set(self, value):
"""Set the variable to VALUE."""
return self._tk.globalsetvar(self._name, value)
initialize = set
def get(self):
"""Return value of variable."""
return self._tk.globalgetvar(self._name)
def _register(self, callback):
f = CallWrapper(callback, None, self._root).__call__
cbname = repr(id(f))
try:
callback = callback.__func__
except AttributeError:
pass
try:
cbname = cbname + callback.__name__
except AttributeError:
pass
self._tk.createcommand(cbname, f)
if self._tclCommands is None:
self._tclCommands = []
self._tclCommands.append(cbname)
return cbname
def trace_add(self, mode, callback):
"""Define a trace callback for the variable.
Mode is one of "read", "write", "unset", or a list or tuple of
such strings.
Callback must be a function which is called when the variable is
read, written or unset.
Return the name of the callback.
"""
cbname = self._register(callback)
self._tk.call('trace', 'add', 'variable',
self._name, mode, (cbname,))
return cbname
def trace_remove(self, mode, cbname):
"""Delete the trace callback for a variable.
Mode is one of "read", "write", "unset" or a list or tuple of
such strings. Must be same as were specified in trace_add().
cbname is the name of the callback returned from trace_add().
"""
self._tk.call('trace', 'remove', 'variable',
self._name, mode, cbname)
for m, ca in self.trace_info():
if self._tk.splitlist(ca)[0] == cbname:
break
else:
self._tk.deletecommand(cbname)
try:
self._tclCommands.remove(cbname)
except ValueError:
pass
def trace_info(self):
"""Return all trace callback information."""
splitlist = self._tk.splitlist
return [(splitlist(k), v) for k, v in map(splitlist,
splitlist(self._tk.call('trace', 'info', 'variable', self._name)))]
def trace_variable(self, mode, callback):
"""Define a trace callback for the variable.
MODE is one of "r", "w", "u" for read, write, undefine.
CALLBACK must be a function which is called when
the variable is read, written or undefined.
Return the name of the callback.
This deprecated method wraps a deprecated Tcl method that will
likely be removed in the future. Use trace_add() instead.
"""
# TODO: Add deprecation warning
cbname = self._register(callback)
self._tk.call("trace", "variable", self._name, mode, cbname)
return cbname
trace = trace_variable
def trace_vdelete(self, mode, cbname):
"""Delete the trace callback for a variable.
MODE is one of "r", "w", "u" for read, write, undefine.
CBNAME is the name of the callback returned from trace_variable or trace.
This deprecated method wraps a deprecated Tcl method that will
likely be removed in the future. Use trace_remove() instead.
"""
# TODO: Add deprecation warning
self._tk.call("trace", "vdelete", self._name, mode, cbname)
cbname = self._tk.splitlist(cbname)[0]
for m, ca in self.trace_info():
if self._tk.splitlist(ca)[0] == cbname:
break
else:
self._tk.deletecommand(cbname)
try:
self._tclCommands.remove(cbname)
except ValueError:
pass
def trace_vinfo(self):
"""Return all trace callback information.
This deprecated method wraps a deprecated Tcl method that will
likely be removed in the future. Use trace_info() instead.
"""
# TODO: Add deprecation warning
return [self._tk.splitlist(x) for x in self._tk.splitlist(
self._tk.call("trace", "vinfo", self._name))]
def __eq__(self, other):
"""Comparison for equality (==).
Note: if the Variable's master matters to behavior
also compare self._master == other._master
"""
return self.__class__.__name__ == other.__class__.__name__ \
and self._name == other._name
class StringVar(Variable):
"""Value holder for strings variables."""
_default = ""
def __init__(self, master=None, value=None, name=None):
"""Construct a string variable.
MASTER can be given as master widget.
VALUE is an optional value (defaults to "")
NAME is an optional Tcl name (defaults to PY_VARnum).
If NAME matches an existing variable and VALUE is omitted
then the existing value is retained.
"""
Variable.__init__(self, master, value, name)
def get(self):
"""Return value of variable as string."""
value = self._tk.globalgetvar(self._name)
if isinstance(value, str):
return value
return str(value)
class IntVar(Variable):
"""Value holder for integer variables."""
_default = 0
def __init__(self, master=None, value=None, name=None):
"""Construct an integer variable.
MASTER can be given as master widget.
VALUE is an optional value (defaults to 0)
NAME is an optional Tcl name (defaults to PY_VARnum).
If NAME matches an existing variable and VALUE is omitted
then the existing value is retained.
"""
Variable.__init__(self, master, value, name)
def get(self):
"""Return the value of the variable as an integer."""
value = self._tk.globalgetvar(self._name)
try:
return self._tk.getint(value)
except (TypeError, TclError):
return int(self._tk.getdouble(value))
class DoubleVar(Variable):
"""Value holder for float variables."""
_default = 0.0
def __init__(self, master=None, value=None, name=None):
"""Construct a float variable.
MASTER can be given as master widget.
VALUE is an optional value (defaults to 0.0)
NAME is an optional Tcl name (defaults to PY_VARnum).
If NAME matches an existing variable and VALUE is omitted
then the existing value is retained.
"""
Variable.__init__(self, master, value, name)
def get(self):
"""Return the value of the variable as a float."""
return self._tk.getdouble(self._tk.globalgetvar(self._name))
class BooleanVar(Variable):
"""Value holder for boolean variables."""
_default = False
def __init__(self, master=None, value=None, name=None):
"""Construct a boolean variable.
MASTER can be given as master widget.
VALUE is an optional value (defaults to False)
NAME is an optional Tcl name (defaults to PY_VARnum).
If NAME matches an existing variable and VALUE is omitted
then the existing value is retained.
"""
Variable.__init__(self, master, value, name)
def set(self, value):
"""Set the variable to VALUE."""
return self._tk.globalsetvar(self._name, self._tk.getboolean(value))
initialize = set
def get(self):
"""Return the value of the variable as a bool."""
try:
return self._tk.getboolean(self._tk.globalgetvar(self._name))
except TclError:
raise ValueError("invalid literal for getboolean()")
def mainloop(n=0):
"""Run the main loop of Tcl."""
_default_root.tk.mainloop(n)
getint = int
getdouble = float
def getboolean(s):
"""Convert true and false to integer values 1 and 0."""
try:
return _default_root.tk.getboolean(s)
except TclError:
raise ValueError("invalid literal for getboolean()")
# Methods defined on both toplevel and interior widgets
class Misc:
"""Internal class.
Base class which defines methods common for interior widgets."""
# used for generating child widget names
_last_child_ids = None
# XXX font command?
_tclCommands = None
def destroy(self):
"""Internal function.
Delete all Tcl commands created for
this widget in the Tcl interpreter."""
if self._tclCommands is not None:
for name in self._tclCommands:
#print '- Tkinter: deleted command', name
self.tk.deletecommand(name)
self._tclCommands = None
def deletecommand(self, name):
"""Internal function.
Delete the Tcl command provided in NAME."""
#print '- Tkinter: deleted command', name
self.tk.deletecommand(name)
try:
self._tclCommands.remove(name)
except ValueError:
pass
def tk_strictMotif(self, boolean=None):
"""Set Tcl internal variable, whether the look and feel
should adhere to Motif.
A parameter of 1 means adhere to Motif (e.g. no color
change if mouse passes over slider).
Returns the set value."""
return self.tk.getboolean(self.tk.call(
'set', 'tk_strictMotif', boolean))
def tk_bisque(self):
"""Change the color scheme to light brown as used in Tk 3.6 and before."""
self.tk.call('tk_bisque')
def tk_setPalette(self, *args, **kw):
"""Set a new color scheme for all widget elements.
A single color as argument will cause that all colors of Tk
widget elements are derived from this.
Alternatively several keyword parameters and its associated
colors can be given. The following keywords are valid:
activeBackground, foreground, selectColor,
activeForeground, highlightBackground, selectBackground,
background, highlightColor, selectForeground,
disabledForeground, insertBackground, troughColor."""
self.tk.call(('tk_setPalette',)
+ _flatten(args) + _flatten(list(kw.items())))
def wait_variable(self, name='PY_VAR'):
"""Wait until the variable is modified.
A parameter of type IntVar, StringVar, DoubleVar or
BooleanVar must be given."""
self.tk.call('tkwait', 'variable', name)
waitvar = wait_variable # XXX b/w compat
def wait_window(self, window=None):
"""Wait until a WIDGET is destroyed.
If no parameter is given self is used."""
if window is None:
window = self
self.tk.call('tkwait', 'window', window._w)
def wait_visibility(self, window=None):
"""Wait until the visibility of a WIDGET changes
(e.g. it appears).
If no parameter is given self is used."""
if window is None:
window = self
self.tk.call('tkwait', 'visibility', window._w)
def setvar(self, name='PY_VAR', value='1'):
"""Set Tcl variable NAME to VALUE."""
self.tk.setvar(name, value)
def getvar(self, name='PY_VAR'):
"""Return value of Tcl variable NAME."""
return self.tk.getvar(name)
def getint(self, s):
try:
return self.tk.getint(s)
except TclError as exc:
raise ValueError(str(exc))
def getdouble(self, s):
try:
return self.tk.getdouble(s)
except TclError as exc:
raise ValueError(str(exc))
def getboolean(self, s):
"""Return a boolean value for Tcl boolean values true and false given as parameter."""
try:
return self.tk.getboolean(s)
except TclError:
raise ValueError("invalid literal for getboolean()")
def focus_set(self):
"""Direct input focus to this widget.
If the application currently does not have the focus
this widget will get the focus if the application gets
the focus through the window manager."""
self.tk.call('focus', self._w)
focus = focus_set # XXX b/w compat?
def focus_force(self):
"""Direct input focus to this widget even if the
application does not have the focus. Use with
caution!"""
self.tk.call('focus', '-force', self._w)
def focus_get(self):
"""Return the widget which has currently the focus in the
application.
Use focus_displayof to allow working with several
displays. Return None if application does not have
the focus."""
name = self.tk.call('focus')
if name == 'none' or not name: return None
return self._nametowidget(name)
def focus_displayof(self):
"""Return the widget which has currently the focus on the
display where this widget is located.
Return None if the application does not have the focus."""
name = self.tk.call('focus', '-displayof', self._w)
if name == 'none' or not name: return None
return self._nametowidget(name)
def focus_lastfor(self):
"""Return the widget which would have the focus if top level
for this widget gets the focus from the window manager."""
name = self.tk.call('focus', '-lastfor', self._w)
if name == 'none' or not name: return None
return self._nametowidget(name)
def tk_focusFollowsMouse(self):
"""The widget under mouse will get automatically focus. Can not
be disabled easily."""
self.tk.call('tk_focusFollowsMouse')
def tk_focusNext(self):
"""Return the next widget in the focus order which follows
widget which has currently the focus.
The focus order first goes to the next child, then to
the children of the child recursively and then to the
next sibling which is higher in the stacking order. A
widget is omitted if it has the takefocus resource set
to 0."""
name = self.tk.call('tk_focusNext', self._w)
if not name: return None
return self._nametowidget(name)
def tk_focusPrev(self):
"""Return previous widget in the focus order. See tk_focusNext for details."""
name = self.tk.call('tk_focusPrev', self._w)
if not name: return None
return self._nametowidget(name)
def after(self, ms, func=None, *args):
"""Call function once after given time.
MS specifies the time in milliseconds. FUNC gives the
function which shall be called. Additional parameters
are given as parameters to the function call. Return
identifier to cancel scheduling with after_cancel."""
if not func:
# I'd rather use time.sleep(ms*0.001)
self.tk.call('after', ms)
return None
else:
def callit():
try:
func(*args)
finally:
try:
self.deletecommand(name)
except TclError:
pass
callit.__name__ = func.__name__
name = self._register(callit)
return self.tk.call('after', ms, name)
def after_idle(self, func, *args):
"""Call FUNC once if the Tcl main loop has no event to
process.
Return an identifier to cancel the scheduling with
after_cancel."""
return self.after('idle', func, *args)
def after_cancel(self, id):
"""Cancel scheduling of function identified with ID.
Identifier returned by after or after_idle must be
given as first parameter.
"""
if not id:
raise ValueError('id must be a valid identifier returned from '
'after or after_idle')
try:
data = self.tk.call('after', 'info', id)
script = self.tk.splitlist(data)[0]
self.deletecommand(script)
except TclError:
pass
self.tk.call('after', 'cancel', id)
def bell(self, displayof=0):
"""Ring a display's bell."""
self.tk.call(('bell',) + self._displayof(displayof))
# Clipboard handling:
def clipboard_get(self, **kw):
"""Retrieve data from the clipboard on window's display.
The window keyword defaults to the root window of the Tkinter
application.
The type keyword specifies the form in which the data is
to be returned and should be an atom name such as STRING
or FILE_NAME. Type defaults to STRING, except on X11, where the default
is to try UTF8_STRING and fall back to STRING.
This command is equivalent to:
selection_get(CLIPBOARD)
"""
if 'type' not in kw and self._windowingsystem == 'x11':
try:
kw['type'] = 'UTF8_STRING'
return self.tk.call(('clipboard', 'get') + self._options(kw))
except TclError:
del kw['type']
return self.tk.call(('clipboard', 'get') + self._options(kw))
def clipboard_clear(self, **kw):
"""Clear the data in the Tk clipboard.
A widget specified for the optional displayof keyword
argument specifies the target display."""
if 'displayof' not in kw: kw['displayof'] = self._w
self.tk.call(('clipboard', 'clear') + self._options(kw))
def clipboard_append(self, string, **kw):
"""Append STRING to the Tk clipboard.
A widget specified at the optional displayof keyword
argument specifies the target display. The clipboard
can be retrieved with selection_get."""
if 'displayof' not in kw: kw['displayof'] = self._w
self.tk.call(('clipboard', 'append') + self._options(kw)
+ ('--', string))
# XXX grab current w/o window argument
def grab_current(self):
"""Return widget which has currently the grab in this application
or None."""
name = self.tk.call('grab', 'current', self._w)
if not name: return None
return self._nametowidget(name)
def grab_release(self):
"""Release grab for this widget if currently set."""
self.tk.call('grab', 'release', self._w)
def grab_set(self):
"""Set grab for this widget.
A grab directs all events to this and descendant
widgets in the application."""
self.tk.call('grab', 'set', self._w)
def grab_set_global(self):
"""Set global grab for this widget.
A global grab directs all events to this and
descendant widgets on the display. Use with caution -
other applications do not get events anymore."""
self.tk.call('grab', 'set', '-global', self._w)
def grab_status(self):
"""Return None, "local" or "global" if this widget has
no, a local or a global grab."""
status = self.tk.call('grab', 'status', self._w)
if status == 'none': status = None
return status
def option_add(self, pattern, value, priority = None):
"""Set a VALUE (second parameter) for an option
PATTERN (first parameter).
An optional third parameter gives the numeric priority
(defaults to 80)."""
self.tk.call('option', 'add', pattern, value, priority)
def option_clear(self):
"""Clear the option database.
It will be reloaded if option_add is called."""
self.tk.call('option', 'clear')
def option_get(self, name, className):
"""Return the value for an option NAME for this widget
with CLASSNAME.
Values with higher priority override lower values."""
return self.tk.call('option', 'get', self._w, name, className)
def option_readfile(self, fileName, priority = None):
"""Read file FILENAME into the option database.
An optional second parameter gives the numeric
priority."""
self.tk.call('option', 'readfile', fileName, priority)
def selection_clear(self, **kw):
"""Clear the current X selection."""
if 'displayof' not in kw: kw['displayof'] = self._w
self.tk.call(('selection', 'clear') + self._options(kw))
def selection_get(self, **kw):
"""Return the contents of the current X selection.
A keyword parameter selection specifies the name of
the selection and defaults to PRIMARY. A keyword
parameter displayof specifies a widget on the display
to use. A keyword parameter type specifies the form of data to be
fetched, defaulting to STRING except on X11, where UTF8_STRING is tried
before STRING."""
if 'displayof' not in kw: kw['displayof'] = self._w
if 'type' not in kw and self._windowingsystem == 'x11':
try:
kw['type'] = 'UTF8_STRING'
return self.tk.call(('selection', 'get') + self._options(kw))
except TclError:
del kw['type']
return self.tk.call(('selection', 'get') + self._options(kw))
def selection_handle(self, command, **kw):
"""Specify a function COMMAND to call if the X
selection owned by this widget is queried by another
application.
This function must return the contents of the
selection. The function will be called with the
arguments OFFSET and LENGTH which allows the chunking
of very long selections. The following keyword
parameters can be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME)."""
name = self._register(command)
self.tk.call(('selection', 'handle') + self._options(kw)
+ (self._w, name))
def selection_own(self, **kw):
"""Become owner of X selection.
A keyword parameter selection specifies the name of
the selection (default PRIMARY)."""
self.tk.call(('selection', 'own') +
self._options(kw) + (self._w,))
def selection_own_get(self, **kw):
"""Return owner of X selection.
The following keyword parameter can
be provided:
selection - name of the selection (default PRIMARY),
type - type of the selection (e.g. STRING, FILE_NAME)."""
if 'displayof' not in kw: kw['displayof'] = self._w
name = self.tk.call(('selection', 'own') + self._options(kw))
if not name: return None
return self._nametowidget(name)
def send(self, interp, cmd, *args):
"""Send Tcl command CMD to different interpreter INTERP to be executed."""
return self.tk.call(('send', interp, cmd) + args)
def lower(self, belowThis=None):
"""Lower this widget in the stacking order."""
self.tk.call('lower', self._w, belowThis)
def tkraise(self, aboveThis=None):
"""Raise this widget in the stacking order."""
self.tk.call('raise', self._w, aboveThis)
lift = tkraise
def winfo_atom(self, name, displayof=0):
"""Return integer which represents atom NAME."""
args = ('winfo', 'atom') + self._displayof(displayof) + (name,)
return self.tk.getint(self.tk.call(args))
def winfo_atomname(self, id, displayof=0):
"""Return name of atom with identifier ID."""
args = ('winfo', 'atomname') \
+ self._displayof(displayof) + (id,)
return self.tk.call(args)
def winfo_cells(self):
"""Return number of cells in the colormap for this widget."""
return self.tk.getint(
self.tk.call('winfo', 'cells', self._w))
def winfo_children(self):
"""Return a list of all widgets which are children of this widget."""
result = []
for child in self.tk.splitlist(
self.tk.call('winfo', 'children', self._w)):
try:
# Tcl sometimes returns extra windows, e.g. for
# menus; those need to be skipped
result.append(self._nametowidget(child))
except KeyError:
pass
return result
def winfo_class(self):
"""Return window class name of this widget."""
return self.tk.call('winfo', 'class', self._w)
def winfo_colormapfull(self):
"""Return true if at the last color request the colormap was full."""
return self.tk.getboolean(
self.tk.call('winfo', 'colormapfull', self._w))
def winfo_containing(self, rootX, rootY, displayof=0):
"""Return the widget which is at the root coordinates ROOTX, ROOTY."""
args = ('winfo', 'containing') \
+ self._displayof(displayof) + (rootX, rootY)
name = self.tk.call(args)
if not name: return None
return self._nametowidget(name)
def winfo_depth(self):
"""Return the number of bits per pixel."""
return self.tk.getint(self.tk.call('winfo', 'depth', self._w))
def winfo_exists(self):
"""Return true if this widget exists."""
return self.tk.getint(
self.tk.call('winfo', 'exists', self._w))
def winfo_fpixels(self, number):
"""Return the number of pixels for the given distance NUMBER
(e.g. "3c") as float."""
return self.tk.getdouble(self.tk.call(
'winfo', 'fpixels', self._w, number))
def winfo_geometry(self):
"""Return geometry string for this widget in the form "widthxheight+X+Y"."""
return self.tk.call('winfo', 'geometry', self._w)
def winfo_height(self):
"""Return height of this widget."""
return self.tk.getint(
self.tk.call('winfo', 'height', self._w))
def winfo_id(self):
"""Return identifier ID for this widget."""
return int(self.tk.call('winfo', 'id', self._w), 0)
def winfo_interps(self, displayof=0):
"""Return the name of all Tcl interpreters for this display."""
args = ('winfo', 'interps') + self._displayof(displayof)
return self.tk.splitlist(self.tk.call(args))
def winfo_ismapped(self):
"""Return true if this widget is mapped."""
return self.tk.getint(
self.tk.call('winfo', 'ismapped', self._w))
def winfo_manager(self):
"""Return the window manager name for this widget."""
return self.tk.call('winfo', 'manager', self._w)
def winfo_name(self):
"""Return the name of this widget."""
return self.tk.call('winfo', 'name', self._w)
def winfo_parent(self):
"""Return the name of the parent of this widget."""
return self.tk.call('winfo', 'parent', self._w)
def winfo_pathname(self, id, displayof=0):
"""Return the pathname of the widget given by ID."""
args = ('winfo', 'pathname') \
+ self._displayof(displayof) + (id,)
return self.tk.call(args)
def winfo_pixels(self, number):
"""Rounded integer value of winfo_fpixels."""
return self.tk.getint(
self.tk.call('winfo', 'pixels', self._w, number))
def winfo_pointerx(self):
"""Return the x coordinate of the pointer on the root window."""
return self.tk.getint(
self.tk.call('winfo', 'pointerx', self._w))
def winfo_pointerxy(self):
"""Return a tuple of x and y coordinates of the pointer on the root window."""
return self._getints(
self.tk.call('winfo', 'pointerxy', self._w))
def winfo_pointery(self):
"""Return the y coordinate of the pointer on the root window."""
return self.tk.getint(
self.tk.call('winfo', 'pointery', self._w))
def winfo_reqheight(self):
"""Return requested height of this widget."""
return self.tk.getint(
self.tk.call('winfo', 'reqheight', self._w))
def winfo_reqwidth(self):
"""Return requested width of this widget."""
return self.tk.getint(
self.tk.call('winfo', 'reqwidth', self._w))
def winfo_rgb(self, color):
"""Return tuple of decimal values for red, green, blue for
COLOR in this widget."""
return self._getints(
self.tk.call('winfo', 'rgb', self._w, color))
def winfo_rootx(self):
"""Return x coordinate of upper left corner of this widget on the
root window."""
return self.tk.getint(
self.tk.call('winfo', 'rootx', self._w))
def winfo_rooty(self):
"""Return y coordinate of upper left corner of this widget on the
root window."""
return self.tk.getint(
self.tk.call('winfo', 'rooty', self._w))
def winfo_screen(self):
"""Return the screen name of this widget."""
return self.tk.call('winfo', 'screen', self._w)
def winfo_screencells(self):
"""Return the number of the cells in the colormap of the screen
of this widget."""
return self.tk.getint(
self.tk.call('winfo', 'screencells', self._w))
def winfo_screendepth(self):
"""Return the number of bits per pixel of the root window of the
screen of this widget."""
return self.tk.getint(
self.tk.call('winfo', 'screendepth', self._w))
def winfo_screenheight(self):
"""Return the number of pixels of the height of the screen of this widget
in pixel."""
return self.tk.getint(
self.tk.call('winfo', 'screenheight', self._w))
def winfo_screenmmheight(self):
"""Return the number of pixels of the height of the screen of
this widget in mm."""
return self.tk.getint(
self.tk.call('winfo', 'screenmmheight', self._w))
def winfo_screenmmwidth(self):
"""Return the number of pixels of the width of the screen of
this widget in mm."""
return self.tk.getint(
self.tk.call('winfo', 'screenmmwidth', self._w))
def winfo_screenvisual(self):
"""Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the default
colormodel of this screen."""
return self.tk.call('winfo', 'screenvisual', self._w)
def winfo_screenwidth(self):
"""Return the number of pixels of the width of the screen of
this widget in pixel."""
return self.tk.getint(
self.tk.call('winfo', 'screenwidth', self._w))
def winfo_server(self):
"""Return information of the X-Server of the screen of this widget in
the form "XmajorRminor vendor vendorVersion"."""
return self.tk.call('winfo', 'server', self._w)
def winfo_toplevel(self):
"""Return the toplevel widget of this widget."""
return self._nametowidget(self.tk.call(
'winfo', 'toplevel', self._w))
def winfo_viewable(self):
"""Return true if the widget and all its higher ancestors are mapped."""
return self.tk.getint(
self.tk.call('winfo', 'viewable', self._w))
def winfo_visual(self):
"""Return one of the strings directcolor, grayscale, pseudocolor,
staticcolor, staticgray, or truecolor for the
colormodel of this widget."""
return self.tk.call('winfo', 'visual', self._w)
def winfo_visualid(self):
"""Return the X identifier for the visual for this widget."""
return self.tk.call('winfo', 'visualid', self._w)
def winfo_visualsavailable(self, includeids=False):
"""Return a list of all visuals available for the screen
of this widget.
Each item in the list consists of a visual name (see winfo_visual), a
depth and if includeids is true is given also the X identifier."""
data = self.tk.call('winfo', 'visualsavailable', self._w,
'includeids' if includeids else None)
data = [self.tk.splitlist(x) for x in self.tk.splitlist(data)]
return [self.__winfo_parseitem(x) for x in data]
def __winfo_parseitem(self, t):
"""Internal function."""
return t[:1] + tuple(map(self.__winfo_getint, t[1:]))
def __winfo_getint(self, x):
"""Internal function."""
return int(x, 0)
def winfo_vrootheight(self):
"""Return the height of the virtual root window associated with this
widget in pixels. If there is no virtual root window return the
height of the screen."""
return self.tk.getint(
self.tk.call('winfo', 'vrootheight', self._w))
def winfo_vrootwidth(self):
"""Return the width of the virtual root window associated with this
widget in pixel. If there is no virtual root window return the
width of the screen."""
return self.tk.getint(
self.tk.call('winfo', 'vrootwidth', self._w))
def winfo_vrootx(self):
"""Return the x offset of the virtual root relative to the root
window of the screen of this widget."""
return self.tk.getint(
self.tk.call('winfo', 'vrootx', self._w))
def winfo_vrooty(self):
"""Return the y offset of the virtual root relative to the root
window of the screen of this widget."""
return self.tk.getint(
self.tk.call('winfo', 'vrooty', self._w))
def winfo_width(self):
"""Return the width of this widget."""
return self.tk.getint(
self.tk.call('winfo', 'width', self._w))
def winfo_x(self):
"""Return the x coordinate of the upper left corner of this widget
in the parent."""
return self.tk.getint(
self.tk.call('winfo', 'x', self._w))
def winfo_y(self):
"""Return the y coordinate of the upper left corner of this widget
in the parent."""
return self.tk.getint(
self.tk.call('winfo', 'y', self._w))
def update(self):
"""Enter event loop until all pending events have been processed by Tcl."""
self.tk.call('update')
def update_idletasks(self):
"""Enter event loop until all idle callbacks have been called. This
will update the display of windows but not process events caused by
the user."""
self.tk.call('update', 'idletasks')
def bindtags(self, tagList=None):
"""Set or get the list of bindtags for this widget.
With no argument return the list of all bindtags associated with
this widget. With a list of strings as argument the bindtags are
set to this list. The bindtags determine in which order events are
processed (see bind)."""
if tagList is None:
return self.tk.splitlist(
self.tk.call('bindtags', self._w))
else:
self.tk.call('bindtags', self._w, tagList)
def _bind(self, what, sequence, func, add, needcleanup=1):
"""Internal function."""
if isinstance(func, str):
self.tk.call(what + (sequence, func))
elif func:
funcid = self._register(func, self._substitute,
needcleanup)
cmd = ('%sif {"[%s %s]" == "break"} break\n'
%
(add and '+' or '',
funcid, self._subst_format_str))
self.tk.call(what + (sequence, cmd))
return funcid
elif sequence:
return self.tk.call(what + (sequence,))
else:
return self.tk.splitlist(self.tk.call(what))
def bind(self, sequence=None, func=None, add=None):
"""Bind to this widget at event SEQUENCE a call to function FUNC.
SEQUENCE is a string of concatenated event
patterns. An event pattern is of the form
<MODIFIER-MODIFIER-TYPE-DETAIL> where MODIFIER is one
of Control, Mod2, M2, Shift, Mod3, M3, Lock, Mod4, M4,
Button1, B1, Mod5, M5 Button2, B2, Meta, M, Button3,
B3, Alt, Button4, B4, Double, Button5, B5 Triple,
Mod1, M1. TYPE is one of Activate, Enter, Map,
ButtonPress, Button, Expose, Motion, ButtonRelease
FocusIn, MouseWheel, Circulate, FocusOut, Property,
Colormap, Gravity Reparent, Configure, KeyPress, Key,
Unmap, Deactivate, KeyRelease Visibility, Destroy,
Leave and DETAIL is the button number for ButtonPress,
ButtonRelease and DETAIL is the Keysym for KeyPress and
KeyRelease. Examples are
<Control-Button-1> for pressing Control and mouse button 1 or
<Alt-A> for pressing A and the Alt key (KeyPress can be omitted).
An event pattern can also be a virtual event of the form
<<AString>> where AString can be arbitrary. This
event can be generated by event_generate.
If events are concatenated they must appear shortly
after each other.
FUNC will be called if the event sequence occurs with an
instance of Event as argument. If the return value of FUNC is
"break" no further bound function is invoked.
An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function.
Bind will return an identifier to allow deletion of the bound function with
unbind without memory leak.
If FUNC or SEQUENCE is omitted the bound function or list
of bound events are returned."""
return self._bind(('bind', self._w), sequence, func, add)
def unbind(self, sequence, funcid=None):
"""Unbind for this widget for event SEQUENCE the
function identified with FUNCID."""
self.tk.call('bind', self._w, sequence, '')
if funcid:
self.deletecommand(funcid)
def bind_all(self, sequence=None, func=None, add=None):
"""Bind to all widgets at an event SEQUENCE a call to function FUNC.
An additional boolean parameter ADD specifies whether FUNC will
be called additionally to the other bound function or whether
it will replace the previous function. See bind for the return value."""
return self._bind(('bind', 'all'), sequence, func, add, 0)
def unbind_all(self, sequence):
"""Unbind for all widgets for event SEQUENCE all functions."""
self.tk.call('bind', 'all' , sequence, '')
def bind_class(self, className, sequence=None, func=None, add=None):
"""Bind to widgets with bindtag CLASSNAME at event
SEQUENCE a call of function FUNC. An additional
boolean parameter ADD specifies whether FUNC will be
called additionally to the other bound function or
whether it will replace the previous function. See bind for
the return value."""
return self._bind(('bind', className), sequence, func, add, 0)
def unbind_class(self, className, sequence):
"""Unbind for all widgets with bindtag CLASSNAME for event SEQUENCE
all functions."""
self.tk.call('bind', className , sequence, '')
def mainloop(self, n=0):
"""Call the mainloop of Tk."""
self.tk.mainloop(n)
def quit(self):
"""Quit the Tcl interpreter. All widgets will be destroyed."""
self.tk.quit()
def _getints(self, string):
"""Internal function."""
if string:
return tuple(map(self.tk.getint, self.tk.splitlist(string)))
def _getdoubles(self, string):
"""Internal function."""
if string:
return tuple(map(self.tk.getdouble, self.tk.splitlist(string)))
def _getboolean(self, string):
"""Internal function."""
if string:
return self.tk.getboolean(string)
def _displayof(self, displayof):
"""Internal function."""
if displayof:
return ('-displayof', displayof)
if displayof is None:
return ('-displayof', self._w)
return ()
@property
def _windowingsystem(self):
"""Internal function."""
try:
return self._root()._windowingsystem_cached
except AttributeError:
ws = self._root()._windowingsystem_cached = \
self.tk.call('tk', 'windowingsystem')
return ws
def _options(self, cnf, kw = None):
"""Internal function."""
if kw:
cnf = _cnfmerge((cnf, kw))
else:
cnf = _cnfmerge(cnf)
res = ()
for k, v in cnf.items():
if v is not None:
if k[-1] == '_': k = k[:-1]
if callable(v):
v = self._register(v)
elif isinstance(v, (tuple, list)):
nv = []
for item in v:
if isinstance(item, int):
nv.append(str(item))
elif isinstance(item, str):
nv.append(_stringify(item))
else:
break
else:
v = ' '.join(nv)
res = res + ('-'+k, v)
return res
def nametowidget(self, name):
"""Return the Tkinter instance of a widget identified by
its Tcl name NAME."""
name = str(name).split('.')
w = self
if not name[0]:
w = w._root()
name = name[1:]
for n in name:
if not n:
break
w = w.children[n]
return w
_nametowidget = nametowidget
def _register(self, func, subst=None, needcleanup=1):
"""Return a newly created Tcl function. If this
function is called, the Python function FUNC will
be executed. An optional function SUBST can
be given which will be executed before FUNC."""
f = CallWrapper(func, subst, self).__call__
name = repr(id(f))
try:
func = func.__func__
except AttributeError:
pass
try:
name = name + func.__name__
except AttributeError:
pass
self.tk.createcommand(name, f)
if needcleanup:
if self._tclCommands is None:
self._tclCommands = []
self._tclCommands.append(name)
return name
register = _register
def _root(self):
"""Internal function."""
w = self
while w.master: w = w.master
return w
_subst_format = ('%#', '%b', '%f', '%h', '%k',
'%s', '%t', '%w', '%x', '%y',
'%A', '%E', '%K', '%N', '%W', '%T', '%X', '%Y', '%D')
_subst_format_str = " ".join(_subst_format)
def _substitute(self, *args):
"""Internal function."""
if len(args) != len(self._subst_format): return args
getboolean = self.tk.getboolean
getint = self.tk.getint
def getint_event(s):
"""Tk changed behavior in 8.4.2, returning "??" rather more often."""
try:
return getint(s)
except (ValueError, TclError):
return s
nsign, b, f, h, k, s, t, w, x, y, A, E, K, N, W, T, X, Y, D = args
# Missing: (a, c, d, m, o, v, B, R)
e = Event()
# serial field: valid for all events
# number of button: ButtonPress and ButtonRelease events only
# height field: Configure, ConfigureRequest, Create,
# ResizeRequest, and Expose events only
# keycode field: KeyPress and KeyRelease events only
# time field: "valid for events that contain a time field"
# width field: Configure, ConfigureRequest, Create, ResizeRequest,
# and Expose events only
# x field: "valid for events that contain an x field"
# y field: "valid for events that contain a y field"
# keysym as decimal: KeyPress and KeyRelease events only
# x_root, y_root fields: ButtonPress, ButtonRelease, KeyPress,
# KeyRelease, and Motion events
e.serial = getint(nsign)
e.num = getint_event(b)
try: e.focus = getboolean(f)
except TclError: pass
e.height = getint_event(h)
e.keycode = getint_event(k)
e.state = getint_event(s)
e.time = getint_event(t)
e.width = getint_event(w)
e.x = getint_event(x)
e.y = getint_event(y)
e.char = A
try: e.send_event = getboolean(E)
except TclError: pass
e.keysym = K
e.keysym_num = getint_event(N)
try:
e.type = EventType(T)
except ValueError:
e.type = T
try:
e.widget = self._nametowidget(W)
except KeyError:
e.widget = W
e.x_root = getint_event(X)
e.y_root = getint_event(Y)
try:
e.delta = getint(D)
except (ValueError, TclError):
e.delta = 0
return (e,)
def _report_exception(self):
"""Internal function."""
exc, val, tb = sys.exc_info()
root = self._root()
root.report_callback_exception(exc, val, tb)
def _getconfigure(self, *args):
"""Call Tcl configure command and return the result as a dict."""
cnf = {}
for x in self.tk.splitlist(self.tk.call(*args)):
x = self.tk.splitlist(x)
cnf[x[0][1:]] = (x[0][1:],) + x[1:]
return cnf
def _getconfigure1(self, *args):
x = self.tk.splitlist(self.tk.call(*args))
return (x[0][1:],) + x[1:]
def _configure(self, cmd, cnf, kw):
"""Internal function."""
if kw:
cnf = _cnfmerge((cnf, kw))
elif cnf:
cnf = _cnfmerge(cnf)
if cnf is None:
return self._getconfigure(_flatten((self._w, cmd)))
if isinstance(cnf, str):
return self._getconfigure1(_flatten((self._w, cmd, '-'+cnf)))
self.tk.call(_flatten((self._w, cmd)) + self._options(cnf))
# These used to be defined in Widget:
def configure(self, cnf=None, **kw):
"""Configure resources of a widget.
The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method keys.
"""
return self._configure('configure', cnf, kw)
config = configure
def cget(self, key):
"""Return the resource value for a KEY given as string."""
return self.tk.call(self._w, 'cget', '-' + key)
__getitem__ = cget
def __setitem__(self, key, value):
self.configure({key: value})
def keys(self):
"""Return a list of all resource names of this widget."""
splitlist = self.tk.splitlist
return [splitlist(x)[0][1:] for x in
splitlist(self.tk.call(self._w, 'configure'))]
def __str__(self):
"""Return the window path name of this widget."""
return self._w
def __repr__(self):
return '<%s.%s object %s>' % (
self.__class__.__module__, self.__class__.__qualname__, self._w)
# Pack methods that apply to the master
_noarg_ = ['_noarg_']
def pack_propagate(self, flag=_noarg_):
"""Set or get the status for propagation of geometry information.
A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given the current setting will be returned.
"""
if flag is Misc._noarg_:
return self._getboolean(self.tk.call(
'pack', 'propagate', self._w))
else:
self.tk.call('pack', 'propagate', self._w, flag)
propagate = pack_propagate
def pack_slaves(self):
"""Return a list of all slaves of this widget
in its packing order."""
return [self._nametowidget(x) for x in
self.tk.splitlist(
self.tk.call('pack', 'slaves', self._w))]
slaves = pack_slaves
# Place method that applies to the master
def place_slaves(self):
"""Return a list of all slaves of this widget
in its packing order."""
return [self._nametowidget(x) for x in
self.tk.splitlist(
self.tk.call(
'place', 'slaves', self._w))]
# Grid methods that apply to the master
def grid_anchor(self, anchor=None): # new in Tk 8.5
"""The anchor value controls how to place the grid within the
master when no row/column has any weight.
The default anchor is nw."""
self.tk.call('grid', 'anchor', self._w, anchor)
anchor = grid_anchor
def grid_bbox(self, column=None, row=None, col2=None, row2=None):
"""Return a tuple of integer coordinates for the bounding
box of this widget controlled by the geometry manager grid.
If COLUMN, ROW is given the bounding box applies from
the cell with row and column 0 to the specified
cell. If COL2 and ROW2 are given the bounding box
starts at that cell.
The returned integers specify the offset of the upper left
corner in the master widget and the width and height.
"""
args = ('grid', 'bbox', self._w)
if column is not None and row is not None:
args = args + (column, row)
if col2 is not None and row2 is not None:
args = args + (col2, row2)
return self._getints(self.tk.call(*args)) or None
bbox = grid_bbox
def _gridconvvalue(self, value):
if isinstance(value, (str, _tkinter.Tcl_Obj)):
try:
svalue = str(value)
if not svalue:
return None
elif '.' in svalue:
return self.tk.getdouble(svalue)
else:
return self.tk.getint(svalue)
except (ValueError, TclError):
pass
return value
def _grid_configure(self, command, index, cnf, kw):
"""Internal function."""
if isinstance(cnf, str) and not kw:
if cnf[-1:] == '_':
cnf = cnf[:-1]
if cnf[:1] != '-':
cnf = '-'+cnf
options = (cnf,)
else:
options = self._options(cnf, kw)
if not options:
return _splitdict(
self.tk,
self.tk.call('grid', command, self._w, index),
conv=self._gridconvvalue)
res = self.tk.call(
('grid', command, self._w, index)
+ options)
if len(options) == 1:
return self._gridconvvalue(res)
def grid_columnconfigure(self, index, cnf={}, **kw):
"""Configure column INDEX of a grid.
Valid resources are minsize (minimum size of the column),
weight (how much does additional space propagate to this column)
and pad (how much space to let additionally)."""
return self._grid_configure('columnconfigure', index, cnf, kw)
columnconfigure = grid_columnconfigure
def grid_location(self, x, y):
"""Return a tuple of column and row which identify the cell
at which the pixel at position X and Y inside the master
widget is located."""
return self._getints(
self.tk.call(
'grid', 'location', self._w, x, y)) or None
def grid_propagate(self, flag=_noarg_):
"""Set or get the status for propagation of geometry information.
A boolean argument specifies whether the geometry information
of the slaves will determine the size of this widget. If no argument
is given, the current setting will be returned.
"""
if flag is Misc._noarg_:
return self._getboolean(self.tk.call(
'grid', 'propagate', self._w))
else:
self.tk.call('grid', 'propagate', self._w, flag)
def grid_rowconfigure(self, index, cnf={}, **kw):
"""Configure row INDEX of a grid.
Valid resources are minsize (minimum size of the row),
weight (how much does additional space propagate to this row)
and pad (how much space to let additionally)."""
return self._grid_configure('rowconfigure', index, cnf, kw)
rowconfigure = grid_rowconfigure
def grid_size(self):
"""Return a tuple of the number of column and rows in the grid."""
return self._getints(
self.tk.call('grid', 'size', self._w)) or None
size = grid_size
def grid_slaves(self, row=None, column=None):
"""Return a list of all slaves of this widget
in its packing order."""
args = ()
if row is not None:
args = args + ('-row', row)
if column is not None:
args = args + ('-column', column)
return [self._nametowidget(x) for x in
self.tk.splitlist(self.tk.call(
('grid', 'slaves', self._w) + args))]
# Support for the "event" command, new in Tk 4.2.
# By Case Roole.
def event_add(self, virtual, *sequences):
"""Bind a virtual event VIRTUAL (of the form <<Name>>)
to an event SEQUENCE such that the virtual event is triggered
whenever SEQUENCE occurs."""
args = ('event', 'add', virtual) + sequences
self.tk.call(args)
def event_delete(self, virtual, *sequences):
"""Unbind a virtual event VIRTUAL from SEQUENCE."""
args = ('event', 'delete', virtual) + sequences
self.tk.call(args)
def event_generate(self, sequence, **kw):
"""Generate an event SEQUENCE. Additional
keyword arguments specify parameter of the event
(e.g. x, y, rootx, rooty)."""
args = ('event', 'generate', self._w, sequence)
for k, v in kw.items():
args = args + ('-%s' % k, str(v))
self.tk.call(args)
def event_info(self, virtual=None):
"""Return a list of all virtual events or the information
about the SEQUENCE bound to the virtual event VIRTUAL."""
return self.tk.splitlist(
self.tk.call('event', 'info', virtual))
# Image related commands
def image_names(self):
"""Return a list of all existing image names."""
return self.tk.splitlist(self.tk.call('image', 'names'))
def image_types(self):
"""Return a list of all available image types (e.g. photo bitmap)."""
return self.tk.splitlist(self.tk.call('image', 'types'))
class CallWrapper:
"""Internal class. Stores function to call when some user
defined Tcl function is called e.g. after an event occurred."""
def __init__(self, func, subst, widget):
"""Store FUNC, SUBST and WIDGET as members."""
self.func = func
self.subst = subst
self.widget = widget
def __call__(self, *args):
"""Apply first function SUBST to arguments, than FUNC."""
try:
if self.subst:
args = self.subst(*args)
return self.func(*args)
except SystemExit:
raise
except:
self.widget._report_exception()
class XView:
"""Mix-in class for querying and changing the horizontal position
of a widget's window."""
def xview(self, *args):
"""Query and change the horizontal position of the view."""
res = self.tk.call(self._w, 'xview', *args)
if not args:
return self._getdoubles(res)
def xview_moveto(self, fraction):
"""Adjusts the view in the window so that FRACTION of the
total width of the canvas is off-screen to the left."""
self.tk.call(self._w, 'xview', 'moveto', fraction)
def xview_scroll(self, number, what):
"""Shift the x-view according to NUMBER which is measured in "units"
or "pages" (WHAT)."""
self.tk.call(self._w, 'xview', 'scroll', number, what)
class YView:
"""Mix-in class for querying and changing the vertical position
of a widget's window."""
def yview(self, *args):
"""Query and change the vertical position of the view."""
res = self.tk.call(self._w, 'yview', *args)
if not args:
return self._getdoubles(res)
def yview_moveto(self, fraction):
"""Adjusts the view in the window so that FRACTION of the
total height of the canvas is off-screen to the top."""
self.tk.call(self._w, 'yview', 'moveto', fraction)
def yview_scroll(self, number, what):
"""Shift the y-view according to NUMBER which is measured in
"units" or "pages" (WHAT)."""
self.tk.call(self._w, 'yview', 'scroll', number, what)
class Wm:
"""Provides functions for the communication with the window manager."""
def wm_aspect(self,
minNumer=None, minDenom=None,
maxNumer=None, maxDenom=None):
"""Instruct the window manager to set the aspect ratio (width/height)
of this widget to be between MINNUMER/MINDENOM and MAXNUMER/MAXDENOM. Return a tuple
of the actual values if no argument is given."""
return self._getints(
self.tk.call('wm', 'aspect', self._w,
minNumer, minDenom,
maxNumer, maxDenom))
aspect = wm_aspect
def wm_attributes(self, *args):
"""This subcommand returns or sets platform specific attributes
The first form returns a list of the platform specific flags and
their values. The second form returns the value for the specific
option. The third form sets one or more of the values. The values
are as follows:
On Windows, -disabled gets or sets whether the window is in a
disabled state. -toolwindow gets or sets the style of the window
to toolwindow (as defined in the MSDN). -topmost gets or sets
whether this is a topmost window (displays above all other
windows).
On Macintosh, XXXXX
On Unix, there are currently no special attribute values.
"""
args = ('wm', 'attributes', self._w) + args
return self.tk.call(args)
attributes=wm_attributes
def wm_client(self, name=None):
"""Store NAME in WM_CLIENT_MACHINE property of this widget. Return
current value."""
return self.tk.call('wm', 'client', self._w, name)
client = wm_client
def wm_colormapwindows(self, *wlist):
"""Store list of window names (WLIST) into WM_COLORMAPWINDOWS property
of this widget. This list contains windows whose colormaps differ from their
parents. Return current list of widgets if WLIST is empty."""
if len(wlist) > 1:
wlist = (wlist,) # Tk needs a list of windows here
args = ('wm', 'colormapwindows', self._w) + wlist
if wlist:
self.tk.call(args)
else:
return [self._nametowidget(x)
for x in self.tk.splitlist(self.tk.call(args))]
colormapwindows = wm_colormapwindows
def wm_command(self, value=None):
"""Store VALUE in WM_COMMAND property. It is the command
which shall be used to invoke the application. Return current
command if VALUE is None."""
return self.tk.call('wm', 'command', self._w, value)
command = wm_command
def wm_deiconify(self):
"""Deiconify this widget. If it was never mapped it will not be mapped.
On Windows it will raise this widget and give it the focus."""
return self.tk.call('wm', 'deiconify', self._w)
deiconify = wm_deiconify
def wm_focusmodel(self, model=None):
"""Set focus model to MODEL. "active" means that this widget will claim
the focus itself, "passive" means that the window manager shall give
the focus. Return current focus model if MODEL is None."""
return self.tk.call('wm', 'focusmodel', self._w, model)
focusmodel = wm_focusmodel
def wm_forget(self, window): # new in Tk 8.5
"""The window will be unmapped from the screen and will no longer
be managed by wm. toplevel windows will be treated like frame
windows once they are no longer managed by wm, however, the menu
option configuration will be remembered and the menus will return
once the widget is managed again."""
self.tk.call('wm', 'forget', window)
forget = wm_forget
def wm_frame(self):
"""Return identifier for decorative frame of this widget if present."""
return self.tk.call('wm', 'frame', self._w)
frame = wm_frame
def wm_geometry(self, newGeometry=None):
"""Set geometry to NEWGEOMETRY of the form =widthxheight+x+y. Return
current value if None is given."""
return self.tk.call('wm', 'geometry', self._w, newGeometry)
geometry = wm_geometry
def wm_grid(self,
baseWidth=None, baseHeight=None,
widthInc=None, heightInc=None):
"""Instruct the window manager that this widget shall only be
resized on grid boundaries. WIDTHINC and HEIGHTINC are the width and
height of a grid unit in pixels. BASEWIDTH and BASEHEIGHT are the
number of grid units requested in Tk_GeometryRequest."""
return self._getints(self.tk.call(
'wm', 'grid', self._w,
baseWidth, baseHeight, widthInc, heightInc))
grid = wm_grid
def wm_group(self, pathName=None):
"""Set the group leader widgets for related widgets to PATHNAME. Return
the group leader of this widget if None is given."""
return self.tk.call('wm', 'group', self._w, pathName)
group = wm_group
def wm_iconbitmap(self, bitmap=None, default=None):
"""Set bitmap for the iconified widget to BITMAP. Return
the bitmap if None is given.
Under Windows, the DEFAULT parameter can be used to set the icon
for the widget and any descendents that don't have an icon set
explicitly. DEFAULT can be the relative path to a .ico file
(example: root.iconbitmap(default='myicon.ico') ). See Tk
documentation for more information."""
if default:
return self.tk.call('wm', 'iconbitmap', self._w, '-default', default)
else:
return self.tk.call('wm', 'iconbitmap', self._w, bitmap)
iconbitmap = wm_iconbitmap
def wm_iconify(self):
"""Display widget as icon."""
return self.tk.call('wm', 'iconify', self._w)
iconify = wm_iconify
def wm_iconmask(self, bitmap=None):
"""Set mask for the icon bitmap of this widget. Return the
mask if None is given."""
return self.tk.call('wm', 'iconmask', self._w, bitmap)
iconmask = wm_iconmask
def wm_iconname(self, newName=None):
"""Set the name of the icon for this widget. Return the name if
None is given."""
return self.tk.call('wm', 'iconname', self._w, newName)
iconname = wm_iconname
def wm_iconphoto(self, default=False, *args): # new in Tk 8.5
"""Sets the titlebar icon for this window based on the named photo
images passed through args. If default is True, this is applied to
all future created toplevels as well.
The data in the images is taken as a snapshot at the time of
invocation. If the images are later changed, this is not reflected
to the titlebar icons. Multiple images are accepted to allow
different images sizes to be provided. The window manager may scale
provided icons to an appropriate size.
On Windows, the images are packed into a Windows icon structure.
This will override an icon specified to wm_iconbitmap, and vice
versa.
On X, the images are arranged into the _NET_WM_ICON X property,
which most modern window managers support. An icon specified by
wm_iconbitmap may exist simultaneously.
On Macintosh, this currently does nothing."""
if default:
self.tk.call('wm', 'iconphoto', self._w, "-default", *args)
else:
self.tk.call('wm', 'iconphoto', self._w, *args)
iconphoto = wm_iconphoto
def wm_iconposition(self, x=None, y=None):
"""Set the position of the icon of this widget to X and Y. Return
a tuple of the current values of X and X if None is given."""
return self._getints(self.tk.call(
'wm', 'iconposition', self._w, x, y))
iconposition = wm_iconposition
def wm_iconwindow(self, pathName=None):
"""Set widget PATHNAME to be displayed instead of icon. Return the current
value if None is given."""
return self.tk.call('wm', 'iconwindow', self._w, pathName)
iconwindow = wm_iconwindow
def wm_manage(self, widget): # new in Tk 8.5
"""The widget specified will become a stand alone top-level window.
The window will be decorated with the window managers title bar,
etc."""
self.tk.call('wm', 'manage', widget)
manage = wm_manage
def wm_maxsize(self, width=None, height=None):
"""Set max WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given."""
return self._getints(self.tk.call(
'wm', 'maxsize', self._w, width, height))
maxsize = wm_maxsize
def wm_minsize(self, width=None, height=None):
"""Set min WIDTH and HEIGHT for this widget. If the window is gridded
the values are given in grid units. Return the current values if None
is given."""
return self._getints(self.tk.call(
'wm', 'minsize', self._w, width, height))
minsize = wm_minsize
def wm_overrideredirect(self, boolean=None):
"""Instruct the window manager to ignore this widget
if BOOLEAN is given with 1. Return the current value if None
is given."""
return self._getboolean(self.tk.call(
'wm', 'overrideredirect', self._w, boolean))
overrideredirect = wm_overrideredirect
def wm_positionfrom(self, who=None):
"""Instruct the window manager that the position of this widget shall
be defined by the user if WHO is "user", and by its own policy if WHO is
"program"."""
return self.tk.call('wm', 'positionfrom', self._w, who)
positionfrom = wm_positionfrom
def wm_protocol(self, name=None, func=None):
"""Bind function FUNC to command NAME for this widget.
Return the function bound to NAME if None is given. NAME could be
e.g. "WM_SAVE_YOURSELF" or "WM_DELETE_WINDOW"."""
if callable(func):
command = self._register(func)
else:
command = func
return self.tk.call(
'wm', 'protocol', self._w, name, command)
protocol = wm_protocol
def wm_resizable(self, width=None, height=None):
"""Instruct the window manager whether this width can be resized
in WIDTH or HEIGHT. Both values are boolean values."""
return self.tk.call('wm', 'resizable', self._w, width, height)
resizable = wm_resizable
def wm_sizefrom(self, who=None):
"""Instruct the window manager that the size of this widget shall
be defined by the user if WHO is "user", and by its own policy if WHO is
"program"."""
return self.tk.call('wm', 'sizefrom', self._w, who)
sizefrom = wm_sizefrom
def wm_state(self, newstate=None):
"""Query or set the state of this widget as one of normal, icon,
iconic (see wm_iconwindow), withdrawn, or zoomed (Windows only)."""
return self.tk.call('wm', 'state', self._w, newstate)
state = wm_state
def wm_title(self, string=None):
"""Set the title of this widget."""
return self.tk.call('wm', 'title', self._w, string)
title = wm_title
def wm_transient(self, master=None):
"""Instruct the window manager that this widget is transient
with regard to widget MASTER."""
return self.tk.call('wm', 'transient', self._w, master)
transient = wm_transient
def wm_withdraw(self):
"""Withdraw this widget from the screen such that it is unmapped
and forgotten by the window manager. Re-draw it with wm_deiconify."""
return self.tk.call('wm', 'withdraw', self._w)
withdraw = wm_withdraw
class Tk(Misc, Wm):
"""Toplevel widget of Tk which represents mostly the main window
of an application. It has an associated Tcl interpreter."""
_w = '.'
def __init__(self, screenName=None, baseName=None, className='Tk',
useTk=1, sync=0, use=None):
"""Return a new Toplevel widget on screen SCREENNAME. A new Tcl interpreter will
be created. BASENAME will be used for the identification of the profile file (see
readprofile).
It is constructed from sys.argv[0] without extensions if None is given. CLASSNAME
is the name of the widget class."""
self.master = None
self.children = {}
self._tkloaded = 0
# to avoid recursions in the getattr code in case of failure, we
# ensure that self.tk is always _something_.
self.tk = None
if baseName is None:
import os
baseName = os.path.basename(sys.argv[0])
baseName, ext = os.path.splitext(baseName)
if ext not in ('.py', '.pyc'):
baseName = baseName + ext
interactive = 0
self.tk = _tkinter.create(screenName, baseName, className, interactive, wantobjects, useTk, sync, use)
if useTk:
self._loadtk()
if not sys.flags.ignore_environment:
# Issue #16248: Honor the -E flag to avoid code injection.
self.readprofile(baseName, className)
def loadtk(self):
if not self._tkloaded:
self.tk.loadtk()
self._loadtk()
def _loadtk(self):
self._tkloaded = 1
global _default_root
# Version sanity checks
tk_version = self.tk.getvar('tk_version')
if tk_version != _tkinter.TK_VERSION:
raise RuntimeError("tk.h version (%s) doesn't match libtk.a version (%s)"
% (_tkinter.TK_VERSION, tk_version))
# Under unknown circumstances, tcl_version gets coerced to float
tcl_version = str(self.tk.getvar('tcl_version'))
if tcl_version != _tkinter.TCL_VERSION:
raise RuntimeError("tcl.h version (%s) doesn't match libtcl.a version (%s)" \
% (_tkinter.TCL_VERSION, tcl_version))
# Create and register the tkerror and exit commands
# We need to inline parts of _register here, _ register
# would register differently-named commands.
if self._tclCommands is None:
self._tclCommands = []
self.tk.createcommand('tkerror', _tkerror)
self.tk.createcommand('exit', _exit)
self._tclCommands.append('tkerror')
self._tclCommands.append('exit')
if _support_default_root and not _default_root:
_default_root = self
self.protocol("WM_DELETE_WINDOW", self.destroy)
def destroy(self):
"""Destroy this and all descendants widgets. This will
end the application of this Tcl interpreter."""
for c in list(self.children.values()): c.destroy()
self.tk.call('destroy', self._w)
Misc.destroy(self)
global _default_root
if _support_default_root and _default_root is self:
_default_root = None
def readprofile(self, baseName, className):
"""Internal function. It reads BASENAME.tcl and CLASSNAME.tcl into
the Tcl Interpreter and calls exec on the contents of BASENAME.py and
CLASSNAME.py if such a file exists in the home directory."""
import os
if 'HOME' in os.environ: home = os.environ['HOME']
else: home = os.curdir
class_tcl = os.path.join(home, '.%s.tcl' % className)
class_py = os.path.join(home, '.%s.py' % className)
base_tcl = os.path.join(home, '.%s.tcl' % baseName)
base_py = os.path.join(home, '.%s.py' % baseName)
dir = {'self': self}
exec('from tkinter import *', dir)
if os.path.isfile(class_tcl):
self.tk.call('source', class_tcl)
if os.path.isfile(class_py):
exec(open(class_py).read(), dir)
if os.path.isfile(base_tcl):
self.tk.call('source', base_tcl)
if os.path.isfile(base_py):
exec(open(base_py).read(), dir)
def report_callback_exception(self, exc, val, tb):
"""Report callback exception on sys.stderr.
Applications may want to override this internal function, and
should when sys.stderr is None."""
import traceback
print("Exception in Tkinter callback", file=sys.stderr)
sys.last_type = exc
sys.last_value = val
sys.last_traceback = tb
traceback.print_exception(exc, val, tb)
def __getattr__(self, attr):
"Delegate attribute access to the interpreter object"
return getattr(self.tk, attr)
# Ideally, the classes Pack, Place and Grid disappear, the
# pack/place/grid methods are defined on the Widget class, and
# everybody uses w.pack_whatever(...) instead of Pack.whatever(w,
# ...), with pack(), place() and grid() being short for
# pack_configure(), place_configure() and grid_columnconfigure(), and
# forget() being short for pack_forget(). As a practical matter, I'm
# afraid that there is too much code out there that may be using the
# Pack, Place or Grid class, so I leave them intact -- but only as
# backwards compatibility features. Also note that those methods that
# take a master as argument (e.g. pack_propagate) have been moved to
# the Misc class (which now incorporates all methods common between
# toplevel and interior widgets). Again, for compatibility, these are
# copied into the Pack, Place or Grid class.
def Tcl(screenName=None, baseName=None, className='Tk', useTk=0):
return Tk(screenName, baseName, className, useTk)
class Pack:
"""Geometry manager Pack.
Base class to use the methods pack_* in every widget."""
def pack_configure(self, cnf={}, **kw):
"""Pack a widget in the parent widget. Use as options:
after=widget - pack it after you have packed widget
anchor=NSEW (or subset) - position widget according to
given direction
before=widget - pack it before you will pack widget
expand=bool - expand widget if parent size grows
fill=NONE or X or Y or BOTH - fill widget if widget grows
in=master - use master to contain this widget
in_=master - see 'in' option description
ipadx=amount - add internal padding in x direction
ipady=amount - add internal padding in y direction
padx=amount - add padding in x direction
pady=amount - add padding in y direction
side=TOP or BOTTOM or LEFT or RIGHT - where to add this widget.
"""
self.tk.call(
('pack', 'configure', self._w)
+ self._options(cnf, kw))
pack = configure = config = pack_configure
def pack_forget(self):
"""Unmap this widget and do not use it for the packing order."""
self.tk.call('pack', 'forget', self._w)
forget = pack_forget
def pack_info(self):
"""Return information about the packing options
for this widget."""
d = _splitdict(self.tk, self.tk.call('pack', 'info', self._w))
if 'in' in d:
d['in'] = self.nametowidget(d['in'])
return d
info = pack_info
propagate = pack_propagate = Misc.pack_propagate
slaves = pack_slaves = Misc.pack_slaves
class Place:
"""Geometry manager Place.
Base class to use the methods place_* in every widget."""
def place_configure(self, cnf={}, **kw):
"""Place a widget in the parent widget. Use as options:
in=master - master relative to which the widget is placed
in_=master - see 'in' option description
x=amount - locate anchor of this widget at position x of master
y=amount - locate anchor of this widget at position y of master
relx=amount - locate anchor of this widget between 0.0 and 1.0
relative to width of master (1.0 is right edge)
rely=amount - locate anchor of this widget between 0.0 and 1.0
relative to height of master (1.0 is bottom edge)
anchor=NSEW (or subset) - position anchor according to given direction
width=amount - width of this widget in pixel
height=amount - height of this widget in pixel
relwidth=amount - width of this widget between 0.0 and 1.0
relative to width of master (1.0 is the same width
as the master)
relheight=amount - height of this widget between 0.0 and 1.0
relative to height of master (1.0 is the same
height as the master)
bordermode="inside" or "outside" - whether to take border width of
master widget into account
"""
self.tk.call(
('place', 'configure', self._w)
+ self._options(cnf, kw))
place = configure = config = place_configure
def place_forget(self):
"""Unmap this widget."""
self.tk.call('place', 'forget', self._w)
forget = place_forget
def place_info(self):
"""Return information about the placing options
for this widget."""
d = _splitdict(self.tk, self.tk.call('place', 'info', self._w))
if 'in' in d:
d['in'] = self.nametowidget(d['in'])
return d
info = place_info
slaves = place_slaves = Misc.place_slaves
class Grid:
"""Geometry manager Grid.
Base class to use the methods grid_* in every widget."""
# Thanks to Masazumi Yoshikawa ([email protected])
def grid_configure(self, cnf={}, **kw):
"""Position a widget in the parent widget in a grid. Use as options:
column=number - use cell identified with given column (starting with 0)
columnspan=number - this widget will span several columns
in=master - use master to contain this widget
in_=master - see 'in' option description
ipadx=amount - add internal padding in x direction
ipady=amount - add internal padding in y direction
padx=amount - add padding in x direction
pady=amount - add padding in y direction
row=number - use cell identified with given row (starting with 0)
rowspan=number - this widget will span several rows
sticky=NSEW - if cell is larger on which sides will this
widget stick to the cell boundary
"""
self.tk.call(
('grid', 'configure', self._w)
+ self._options(cnf, kw))
grid = configure = config = grid_configure
bbox = grid_bbox = Misc.grid_bbox
columnconfigure = grid_columnconfigure = Misc.grid_columnconfigure
def grid_forget(self):
"""Unmap this widget."""
self.tk.call('grid', 'forget', self._w)
forget = grid_forget
def grid_remove(self):
"""Unmap this widget but remember the grid options."""
self.tk.call('grid', 'remove', self._w)
def grid_info(self):
"""Return information about the options
for positioning this widget in a grid."""
d = _splitdict(self.tk, self.tk.call('grid', 'info', self._w))
if 'in' in d:
d['in'] = self.nametowidget(d['in'])
return d
info = grid_info
location = grid_location = Misc.grid_location
propagate = grid_propagate = Misc.grid_propagate
rowconfigure = grid_rowconfigure = Misc.grid_rowconfigure
size = grid_size = Misc.grid_size
slaves = grid_slaves = Misc.grid_slaves
class BaseWidget(Misc):
"""Internal class."""
def _setup(self, master, cnf):
"""Internal function. Sets up information about children."""
if _support_default_root:
global _default_root
if not master:
if not _default_root:
_default_root = Tk()
master = _default_root
self.master = master
self.tk = master.tk
name = None
if 'name' in cnf:
name = cnf['name']
del cnf['name']
if not name:
name = self.__class__.__name__.lower()
if master._last_child_ids is None:
master._last_child_ids = {}
count = master._last_child_ids.get(name, 0) + 1
master._last_child_ids[name] = count
if count == 1:
name = '!%s' % (name,)
else:
name = '!%s%d' % (name, count)
self._name = name
if master._w=='.':
self._w = '.' + name
else:
self._w = master._w + '.' + name
self.children = {}
if self._name in self.master.children:
self.master.children[self._name].destroy()
self.master.children[self._name] = self
def __init__(self, master, widgetName, cnf={}, kw={}, extra=()):
"""Construct a widget with the parent widget MASTER, a name WIDGETNAME
and appropriate options."""
if kw:
cnf = _cnfmerge((cnf, kw))
self.widgetName = widgetName
BaseWidget._setup(self, master, cnf)
if self._tclCommands is None:
self._tclCommands = []
classes = [(k, v) for k, v in cnf.items() if isinstance(k, type)]
for k, v in classes:
del cnf[k]
self.tk.call(
(widgetName, self._w) + extra + self._options(cnf))
for k, v in classes:
k.configure(self, v)
def destroy(self):
"""Destroy this and all descendants widgets."""
for c in list(self.children.values()): c.destroy()
self.tk.call('destroy', self._w)
if self._name in self.master.children:
del self.master.children[self._name]
Misc.destroy(self)
def _do(self, name, args=()):
# XXX Obsolete -- better use self.tk.call directly!
return self.tk.call((self._w, name) + args)
class Widget(BaseWidget, Pack, Place, Grid):
"""Internal class.
Base class for a widget which can be positioned with the geometry managers
Pack, Place or Grid."""
pass
class Toplevel(BaseWidget, Wm):
"""Toplevel widget, e.g. for dialogs."""
def __init__(self, master=None, cnf={}, **kw):
"""Construct a toplevel widget with the parent MASTER.
Valid resource names: background, bd, bg, borderwidth, class,
colormap, container, cursor, height, highlightbackground,
highlightcolor, highlightthickness, menu, relief, screen, takefocus,
use, visual, width."""
if kw:
cnf = _cnfmerge((cnf, kw))
extra = ()
for wmkey in ['screen', 'class_', 'class', 'visual',
'colormap']:
if wmkey in cnf:
val = cnf[wmkey]
# TBD: a hack needed because some keys
# are not valid as keyword arguments
if wmkey[-1] == '_': opt = '-'+wmkey[:-1]
else: opt = '-'+wmkey
extra = extra + (opt, val)
del cnf[wmkey]
BaseWidget.__init__(self, master, 'toplevel', cnf, {}, extra)
root = self._root()
self.iconname(root.iconname())
self.title(root.title())
self.protocol("WM_DELETE_WINDOW", self.destroy)
class Button(Widget):
"""Button widget."""
def __init__(self, master=None, cnf={}, **kw):
"""Construct a button widget with the parent MASTER.
STANDARD OPTIONS
activebackground, activeforeground, anchor,
background, bitmap, borderwidth, cursor,
disabledforeground, font, foreground
highlightbackground, highlightcolor,
highlightthickness, image, justify,
padx, pady, relief, repeatdelay,
repeatinterval, takefocus, text,
textvariable, underline, wraplength
WIDGET-SPECIFIC OPTIONS
command, compound, default, height,
overrelief, state, width
"""
Widget.__init__(self, master, 'button', cnf, kw)
def flash(self):
"""Flash the button.
This is accomplished by redisplaying
the button several times, alternating between active and
normal colors. At the end of the flash the button is left
in the same normal/active state as when the command was
invoked. This command is ignored if the button's state is
disabled.
"""
self.tk.call(self._w, 'flash')
def invoke(self):
"""Invoke the command associated with the button.
The return value is the return value from the command,
or an empty string if there is no command associated with
the button. This command is ignored if the button's state
is disabled.
"""
return self.tk.call(self._w, 'invoke')
class Canvas(Widget, XView, YView):
"""Canvas widget to display graphical elements like lines or text."""
def __init__(self, master=None, cnf={}, **kw):
"""Construct a canvas widget with the parent MASTER.
Valid resource names: background, bd, bg, borderwidth, closeenough,
confine, cursor, height, highlightbackground, highlightcolor,
highlightthickness, insertbackground, insertborderwidth,
insertofftime, insertontime, insertwidth, offset, relief,
scrollregion, selectbackground, selectborderwidth, selectforeground,
state, takefocus, width, xscrollcommand, xscrollincrement,
yscrollcommand, yscrollincrement."""
Widget.__init__(self, master, 'canvas', cnf, kw)
def addtag(self, *args):
"""Internal function."""
self.tk.call((self._w, 'addtag') + args)
def addtag_above(self, newtag, tagOrId):
"""Add tag NEWTAG to all items above TAGORID."""
self.addtag(newtag, 'above', tagOrId)
def addtag_all(self, newtag):
"""Add tag NEWTAG to all items."""
self.addtag(newtag, 'all')
def addtag_below(self, newtag, tagOrId):
"""Add tag NEWTAG to all items below TAGORID."""
self.addtag(newtag, 'below', tagOrId)
def addtag_closest(self, newtag, x, y, halo=None, start=None):
"""Add tag NEWTAG to item which is closest to pixel at X, Y.
If several match take the top-most.
All items closer than HALO are considered overlapping (all are
closests). If START is specified the next below this tag is taken."""
self.addtag(newtag, 'closest', x, y, halo, start)
def addtag_enclosed(self, newtag, x1, y1, x2, y2):
"""Add tag NEWTAG to all items in the rectangle defined
by X1,Y1,X2,Y2."""
self.addtag(newtag, 'enclosed', x1, y1, x2, y2)
def addtag_overlapping(self, newtag, x1, y1, x2, y2):
"""Add tag NEWTAG to all items which overlap the rectangle
defined by X1,Y1,X2,Y2."""
self.addtag(newtag, 'overlapping', x1, y1, x2, y2)
def addtag_withtag(self, newtag, tagOrId):
"""Add tag NEWTAG to all items with TAGORID."""
self.addtag(newtag, 'withtag', tagOrId)
def bbox(self, *args):
"""Return a tuple of X1,Y1,X2,Y2 coordinates for a rectangle
which encloses all items with tags specified as arguments."""
return self._getints(
self.tk.call((self._w, 'bbox') + args)) or None
def tag_unbind(self, tagOrId, sequence, funcid=None):
"""Unbind for all items with TAGORID for event SEQUENCE the
function identified with FUNCID."""
self.tk.call(self._w, 'bind', tagOrId, sequence, '')
if funcid:
self.deletecommand(funcid)
def tag_bind(self, tagOrId, sequence=None, func=None, add=None):
"""Bind to all items with TAGORID at event SEQUENCE a call to function FUNC.
An additional boolean parameter ADD specifies whether FUNC will be
called additionally to the other bound function or whether it will
replace the previous function. See bind for the return value."""
return self._bind((self._w, 'bind', tagOrId),
sequence, func, add)
def canvasx(self, screenx, gridspacing=None):
"""Return the canvas x coordinate of pixel position SCREENX rounded
to nearest multiple of GRIDSPACING units."""
return self.tk.getdouble(self.tk.call(
self._w, 'canvasx', screenx, gridspacing))
def canvasy(self, screeny, gridspacing=None):
"""Return the canvas y coordinate of pixel position SCREENY rounded
to nearest multiple of GRIDSPACING units."""
return self.tk.getdouble(self.tk.call(
self._w, 'canvasy', screeny, gridspacing))
def coords(self, *args):
"""Return a list of coordinates for the item given in ARGS."""
# XXX Should use _flatten on args
return [self.tk.getdouble(x) for x in
self.tk.splitlist(
self.tk.call((self._w, 'coords') + args))]
def _create(self, itemType, args, kw): # Args: (val, val, ..., cnf={})
"""Internal function."""
args = _flatten(args)
cnf = args[-1]
if isinstance(cnf, (dict, tuple)):
args = args[:-1]
else:
cnf = {}
return self.tk.getint(self.tk.call(
self._w, 'create', itemType,
*(args + self._options(cnf, kw))))
def create_arc(self, *args, **kw):
"""Create arc shaped region with coordinates x1,y1,x2,y2."""
return self._create('arc', args, kw)
def create_bitmap(self, *args, **kw):
"""Create bitmap with coordinates x1,y1."""
return self._create('bitmap', args, kw)
def create_image(self, *args, **kw):
"""Create image item with coordinates x1,y1."""
return self._create('image', args, kw)
def create_line(self, *args, **kw):
"""Create line with coordinates x1,y1,...,xn,yn."""
return self._create('line', args, kw)
def create_oval(self, *args, **kw):
"""Create oval with coordinates x1,y1,x2,y2."""
return self._create('oval', args, kw)
def create_polygon(self, *args, **kw):
"""Create polygon with coordinates x1,y1,...,xn,yn."""
return self._create('polygon', args, kw)
def create_rectangle(self, *args, **kw):
"""Create rectangle with coordinates x1,y1,x2,y2."""
return self._create('rectangle', args, kw)
def create_text(self, *args, **kw):
"""Create text with coordinates x1,y1."""
return self._create('text', args, kw)
def create_window(self, *args, **kw):
"""Create window with coordinates x1,y1,x2,y2."""
return self._create('window', args, kw)
def dchars(self, *args):
"""Delete characters of text items identified by tag or id in ARGS (possibly
several times) from FIRST to LAST character (including)."""
self.tk.call((self._w, 'dchars') + args)
def delete(self, *args):
"""Delete items identified by all tag or ids contained in ARGS."""
self.tk.call((self._w, 'delete') + args)
def dtag(self, *args):
"""Delete tag or id given as last arguments in ARGS from items
identified by first argument in ARGS."""
self.tk.call((self._w, 'dtag') + args)
def find(self, *args):
"""Internal function."""
return self._getints(
self.tk.call((self._w, 'find') + args)) or ()
def find_above(self, tagOrId):
"""Return items above TAGORID."""
return self.find('above', tagOrId)
def find_all(self):
"""Return all items."""
return self.find('all')
def find_below(self, tagOrId):
"""Return all items below TAGORID."""
return self.find('below', tagOrId)
def find_closest(self, x, y, halo=None, start=None):
"""Return item which is closest to pixel at X, Y.
If several match take the top-most.
All items closer than HALO are considered overlapping (all are
closest). If START is specified the next below this tag is taken."""
return self.find('closest', x, y, halo, start)
def find_enclosed(self, x1, y1, x2, y2):
"""Return all items in rectangle defined
by X1,Y1,X2,Y2."""
return self.find('enclosed', x1, y1, x2, y2)
def find_overlapping(self, x1, y1, x2, y2):
"""Return all items which overlap the rectangle
defined by X1,Y1,X2,Y2."""
return self.find('overlapping', x1, y1, x2, y2)
def find_withtag(self, tagOrId):
"""Return all items with TAGORID."""
return self.find('withtag', tagOrId)
def focus(self, *args):
"""Set focus to the first item specified in ARGS."""
return self.tk.call((self._w, 'focus') + args)
def gettags(self, *args):
"""Return tags associated with the first item specified in ARGS."""
return self.tk.splitlist(
self.tk.call((self._w, 'gettags') + args))
def icursor(self, *args):
"""Set cursor at position POS in the item identified by TAGORID.
In ARGS TAGORID must be first."""
self.tk.call((self._w, 'icursor') + args)
def index(self, *args):
"""Return position of cursor as integer in item specified in ARGS."""
return self.tk.getint(self.tk.call((self._w, 'index') + args))
def insert(self, *args):
"""Insert TEXT in item TAGORID at position POS. ARGS must
be TAGORID POS TEXT."""
self.tk.call((self._w, 'insert') + args)
def itemcget(self, tagOrId, option):
"""Return the resource value for an OPTION for item TAGORID."""
return self.tk.call(
(self._w, 'itemcget') + (tagOrId, '-'+option))
def itemconfigure(self, tagOrId, cnf=None, **kw):
"""Configure resources of an item TAGORID.
The values for resources are specified as keyword
arguments. To get an overview about
the allowed keyword arguments call the method without arguments.
"""
return self._configure(('itemconfigure', tagOrId), cnf, kw)
itemconfig = itemconfigure
# lower, tkraise/lift hide Misc.lower, Misc.tkraise/lift,
# so the preferred name for them is tag_lower, tag_raise
# (similar to tag_bind, and similar to the Text widget);
# unfortunately can't delete the old ones yet (maybe in 1.6)
def tag_lower(self, *args):
"""Lower an item TAGORID given in ARGS
(optional below another item)."""
self.tk.call((self._w, 'lower') + args)
lower = tag_lower
def move(self, *args):
"""Move an item TAGORID given in ARGS."""
self.tk.call((self._w, 'move') + args)
def postscript(self, cnf={}, **kw):
"""Print the contents of the canvas to a postscript
file. Valid options: colormap, colormode, file, fontmap,
height, pageanchor, pageheight, pagewidth, pagex, pagey,
rotate, width, x, y."""
return self.tk.call((self._w, 'postscript') +
self._options(cnf, kw))
def tag_raise(self, *args):
"""Raise an item TAGORID given in ARGS
(optional above another item)."""
self.tk.call((self._w, 'raise') + args)
lift = tkraise = tag_raise
def scale(self, *args):
"""Scale item TAGORID with XORIGIN, YORIGIN, XSCALE, YSCALE."""
self.tk.call((self._w, 'scale') + args)
def scan_mark(self, x, y):
"""Remember the current X, Y coordinates."""
self.tk.call(self._w, 'scan', 'mark', x, y)
def scan_dragto(self, x, y, gain=10):
"""Adjust the view of the canvas to GAIN times the
difference between X and Y and the coordinates given in
scan_mark."""
self.tk.call(self._w, 'scan', 'dragto', x, y, gain)
def select_adjust(self, tagOrId, index):
"""Adjust the end of the selection near the cursor of an item TAGORID to index."""
self.tk.call(self._w, 'select', 'adjust', tagOrId, index)
def select_clear(self):
"""Clear the selection if it is in this widget."""
self.tk.call(self._w, 'select', 'clear')
def select_from(self, tagOrId, index):
"""Set the fixed end of a selection in item TAGORID to INDEX."""
self.tk.call(self._w, 'select', 'from', tagOrId, index)
def select_item(self):
"""Return the item which has the selection."""
return self.tk.call(self._w, 'select', 'item') or None
def select_to(self, tagOrId, index):
"""Set the variable end of a selection in item TAGORID to INDEX."""
self.tk.call(self._w, 'select', 'to', tagOrId, index)
def type(self, tagOrId):
"""Return the type of the item TAGORID."""
return self.tk.call(self._w, 'type', tagOrId) or None
class Checkbutton(Widget):
"""Checkbutton widget which is either in on- or off-state."""
def __init__(self, master=None, cnf={}, **kw):
"""Construct a checkbutton widget with the parent MASTER.
Valid resource names: activebackground, activeforeground, anchor,
background, bd, bg, bitmap, borderwidth, command, cursor,
disabledforeground, fg, font, foreground, height,
highlightbackground, highlightcolor, highlightthickness, image,
indicatoron, justify, offvalue, onvalue, padx, pady, relief,
selectcolor, selectimage, state, takefocus, text, textvariable,
underline, variable, width, wraplength."""
Widget.__init__(self, master, 'checkbutton', cnf, kw)
def deselect(self):
"""Put the button in off-state."""
self.tk.call(self._w, 'deselect')
def flash(self):
"""Flash the button."""
self.tk.call(self._w, 'flash')
def invoke(self):
"""Toggle the button and invoke a command if given as resource."""
return self.tk.call(self._w, 'invoke')
def select(self):
"""Put the button in on-state."""
self.tk.call(self._w, 'select')
def toggle(self):
"""Toggle the button."""
self.tk.call(self._w, 'toggle')
class Entry(Widget, XView):
"""Entry widget which allows displaying simple text."""
def __init__(self, master=None, cnf={}, **kw):
"""Construct an entry widget with the parent MASTER.
Valid resource names: background, bd, bg, borderwidth, cursor,
exportselection, fg, font, foreground, highlightbackground,
highlightcolor, highlightthickness, insertbackground,
insertborderwidth, insertofftime, insertontime, insertwidth,
invalidcommand, invcmd, justify, relief, selectbackground,
selectborderwidth, selectforeground, show, state, takefocus,
textvariable, validate, validatecommand, vcmd, width,
xscrollcommand."""
Widget.__init__(self, master, 'entry', cnf, kw)
def delete(self, first, last=None):
"""Delete text from FIRST to LAST (not included)."""
self.tk.call(self._w, 'delete', first, last)
def get(self):
"""Return the text."""
return self.tk.call(self._w, 'get')
def icursor(self, index):
"""Insert cursor at INDEX."""
self.tk.call(self._w, 'icursor', index)
def index(self, index):
"""Return position of cursor."""
return self.tk.getint(self.tk.call(
self._w, 'index', index))
def insert(self, index, string):
"""Insert STRING at INDEX."""
self.tk.call(self._w, 'insert', index, string)
def scan_mark(self, x):
"""Remember the current X, Y coordinates."""
self.tk.call(self._w, 'scan', 'mark', x)
def scan_dragto(self, x):
"""Adjust the view of the canvas to 10 times the
difference between X and Y and the coordinates given in
scan_mark."""
self.tk.call(self._w, 'scan', 'dragto', x)
def selection_adjust(self, index):
"""Adjust the end of the selection near the cursor to INDEX."""
self.tk.call(self._w, 'selection', 'adjust', index)
select_adjust = selection_adjust
def selection_clear(self):
"""Clear the selection if it is in this widget."""
self.tk.call(self._w, 'selection', 'clear')
select_clear = selection_clear
def selection_from(self, index):
"""Set the fixed end of a selection to INDEX."""
self.tk.call(self._w, 'selection', 'from', index)
select_from = selection_from
def selection_present(self):
"""Return True if there are characters selected in the entry, False
otherwise."""
return self.tk.getboolean(
self.tk.call(self._w, 'selection', 'present'))
select_present = selection_present
def selection_range(self, start, end):
"""Set the selection from START to END (not included)."""
self.tk.call(self._w, 'selection', 'range', start, end)
select_range = selection_range
def selection_to(self, index):
"""Set the variable end of a selection to INDEX."""
self.tk.call(self._w, 'selection', 'to', index)
select_to = selection_to
class Frame(Widget):
"""Frame widget which may contain other widgets and can have a 3D border."""
def __init__(self, master=None, cnf={}, **kw):
"""Construct a frame widget with the parent MASTER.
Valid resource names: background, bd, bg, borderwidth, class,
colormap, container, cursor, height, highlightbackground,
highlightcolor, highlightthickness, relief, takefocus, visual, width."""
cnf = _cnfmerge((cnf, kw))
extra = ()
if 'class_' in cnf:
extra = ('-class', cnf['class_'])
del cnf['class_']
elif 'class' in cnf:
extra = ('-class', cnf['class'])
del cnf['class']
Widget.__init__(self, master, 'frame', cnf, {}, extra)
class Label(Widget):
"""Label widget which can display text and bitmaps."""
def __init__(self, master=None, cnf={}, **kw):
"""Construct a label widget with the parent MASTER.
STANDARD OPTIONS
activebackground, activeforeground, anchor,
background, bitmap, borderwidth, cursor,
disabledforeground, font, foreground,
highlightbackground, highlightcolor,
highlightthickness, image, justify,
padx, pady, relief, takefocus, text,
textvariable, underline, wraplength
WIDGET-SPECIFIC OPTIONS
height, state, width
"""
Widget.__init__(self, master, 'label', cnf, kw)
class Listbox(Widget, XView, YView):
"""Listbox widget which can display a list of strings."""
def __init__(self, master=None, cnf={}, **kw):
"""Construct a listbox widget with the parent MASTER.
Valid resource names: background, bd, bg, borderwidth, cursor,
exportselection, fg, font, foreground, height, highlightbackground,
highlightcolor, highlightthickness, relief, selectbackground,
selectborderwidth, selectforeground, selectmode, setgrid, takefocus,
width, xscrollcommand, yscrollcommand, listvariable."""
Widget.__init__(self, master, 'listbox', cnf, kw)
def activate(self, index):
"""Activate item identified by INDEX."""
self.tk.call(self._w, 'activate', index)
def bbox(self, index):
"""Return a tuple of X1,Y1,X2,Y2 coordinates for a rectangle
which encloses the item identified by the given index."""
return self._getints(self.tk.call(self._w, 'bbox', index)) or None
def curselection(self):
"""Return the indices of currently selected item."""
return self._getints(self.tk.call(self._w, 'curselection')) or ()
def delete(self, first, last=None):
"""Delete items from FIRST to LAST (included)."""
self.tk.call(self._w, 'delete', first, last)
def get(self, first, last=None):
"""Get list of items from FIRST to LAST (included)."""
if last is not None:
return self.tk.splitlist(self.tk.call(
self._w, 'get', first, last))
else:
return self.tk.call(self._w, 'get', first)
def index(self, index):
"""Return index of item identified with INDEX."""
i = self.tk.call(self._w, 'index', index)
if i == 'none': return None
return self.tk.getint(i)
def insert(self, index, *elements):
"""Insert ELEMENTS at INDEX."""
self.tk.call((self._w, 'insert', index) + elements)
def nearest(self, y):
"""Get index of item which is nearest to y coordinate Y."""
return self.tk.getint(self.tk.call(
self._w, 'nearest', y))
def scan_mark(self, x, y):
"""Remember the current X, Y coordinates."""
self.tk.call(self._w, 'scan', 'mark', x, y)
def scan_dragto(self, x, y):
"""Adjust the view of the listbox to 10 times the
difference between X and Y and the coordinates given in
scan_mark."""
self.tk.call(self._w, 'scan', 'dragto', x, y)
def see(self, index):
"""Scroll such that INDEX is visible."""
self.tk.call(self._w, 'see', index)
def selection_anchor(self, index):
"""Set the fixed end oft the selection to INDEX."""
self.tk.call(self._w, 'selection', 'anchor', index)
select_anchor = selection_anchor
def selection_clear(self, first, last=None):
"""Clear the selection from FIRST to LAST (included)."""
self.tk.call(self._w,
'selection', 'clear', first, last)
select_clear = selection_clear
def selection_includes(self, index):
"""Return 1 if INDEX is part of the selection."""
return self.tk.getboolean(self.tk.call(
self._w, 'selection', 'includes', index))
select_includes = selection_includes
def selection_set(self, first, last=None):
"""Set the selection from FIRST to LAST (included) without
changing the currently selected elements."""
self.tk.call(self._w, 'selection', 'set', first, last)
select_set = selection_set
def size(self):
"""Return the number of elements in the listbox."""
return self.tk.getint(self.tk.call(self._w, 'size'))
def itemcget(self, index, option):
"""Return the resource value for an ITEM and an OPTION."""
return self.tk.call(
(self._w, 'itemcget') + (index, '-'+option))
def itemconfigure(self, index, cnf=None, **kw):
"""Configure resources of an ITEM.
The values for resources are specified as keyword arguments.
To get an overview about the allowed keyword arguments
call the method without arguments.
Valid resource names: background, bg, foreground, fg,
selectbackground, selectforeground."""
return self._configure(('itemconfigure', index), cnf, kw)
itemconfig = itemconfigure
class Menu(Widget):
"""Menu widget which allows displaying menu bars, pull-down menus and pop-up menus."""
def __init__(self, master=None, cnf={}, **kw):
"""Construct menu widget with the parent MASTER.
Valid resource names: activebackground, activeborderwidth,
activeforeground, background, bd, bg, borderwidth, cursor,
disabledforeground, fg, font, foreground, postcommand, relief,
selectcolor, takefocus, tearoff, tearoffcommand, title, type."""
Widget.__init__(self, master, 'menu', cnf, kw)
def tk_popup(self, x, y, entry=""):
"""Post the menu at position X,Y with entry ENTRY."""
self.tk.call('tk_popup', self._w, x, y, entry)
def activate(self, index):
"""Activate entry at INDEX."""
self.tk.call(self._w, 'activate', index)
def add(self, itemType, cnf={}, **kw):
"""Internal function."""
self.tk.call((self._w, 'add', itemType) +
self._options(cnf, kw))
def add_cascade(self, cnf={}, **kw):
"""Add hierarchical menu item."""
self.add('cascade', cnf or kw)
def add_checkbutton(self, cnf={}, **kw):
"""Add checkbutton menu item."""
self.add('checkbutton', cnf or kw)
def add_command(self, cnf={}, **kw):
"""Add command menu item."""
self.add('command', cnf or kw)
def add_radiobutton(self, cnf={}, **kw):
"""Addd radio menu item."""
self.add('radiobutton', cnf or kw)
def add_separator(self, cnf={}, **kw):
"""Add separator."""
self.add('separator', cnf or kw)
def insert(self, index, itemType, cnf={}, **kw):
"""Internal function."""
self.tk.call((self._w, 'insert', index, itemType) +
self._options(cnf, kw))
def insert_cascade(self, index, cnf={}, **kw):
"""Add hierarchical menu item at INDEX."""
self.insert(index, 'cascade', cnf or kw)
def insert_checkbutton(self, index, cnf={}, **kw):
"""Add checkbutton menu item at INDEX."""
self.insert(index, 'checkbutton', cnf or kw)
def insert_command(self, index, cnf={}, **kw):
"""Add command menu item at INDEX."""
self.insert(index, 'command', cnf or kw)
def insert_radiobutton(self, index, cnf={}, **kw):
"""Addd radio menu item at INDEX."""
self.insert(index, 'radiobutton', cnf or kw)
def insert_separator(self, index, cnf={}, **kw):
"""Add separator at INDEX."""
self.insert(index, 'separator', cnf or kw)
def delete(self, index1, index2=None):
"""Delete menu items between INDEX1 and INDEX2 (included)."""
if index2 is None:
index2 = index1
num_index1, num_index2 = self.index(index1), self.index(index2)
if (num_index1 is None) or (num_index2 is None):
num_index1, num_index2 = 0, -1
for i in range(num_index1, num_index2 + 1):
if 'command' in self.entryconfig(i):
c = str(self.entrycget(i, 'command'))
if c:
self.deletecommand(c)
self.tk.call(self._w, 'delete', index1, index2)
def entrycget(self, index, option):
"""Return the resource value of a menu item for OPTION at INDEX."""
return self.tk.call(self._w, 'entrycget', index, '-' + option)
def entryconfigure(self, index, cnf=None, **kw):
"""Configure a menu item at INDEX."""
return self._configure(('entryconfigure', index), cnf, kw)
entryconfig = entryconfigure
def index(self, index):
"""Return the index of a menu item identified by INDEX."""
i = self.tk.call(self._w, 'index', index)
if i == 'none': return None
return self.tk.getint(i)
def invoke(self, index):
"""Invoke a menu item identified by INDEX and execute
the associated command."""
return self.tk.call(self._w, 'invoke', index)
def post(self, x, y):
"""Display a menu at position X,Y."""
self.tk.call(self._w, 'post', x, y)
def type(self, index):
"""Return the type of the menu item at INDEX."""
return self.tk.call(self._w, 'type', index)
def unpost(self):
"""Unmap a menu."""
self.tk.call(self._w, 'unpost')
def xposition(self, index): # new in Tk 8.5
"""Return the x-position of the leftmost pixel of the menu item
at INDEX."""
return self.tk.getint(self.tk.call(self._w, 'xposition', index))
def yposition(self, index):
"""Return the y-position of the topmost pixel of the menu item at INDEX."""
return self.tk.getint(self.tk.call(
self._w, 'yposition', index))
class Menubutton(Widget):
"""Menubutton widget, obsolete since Tk8.0."""
def __init__(self, master=None, cnf={}, **kw):
Widget.__init__(self, master, 'menubutton', cnf, kw)
class Message(Widget):
"""Message widget to display multiline text. Obsolete since Label does it too."""
def __init__(self, master=None, cnf={}, **kw):
Widget.__init__(self, master, 'message', cnf, kw)
class Radiobutton(Widget):
"""Radiobutton widget which shows only one of several buttons in on-state."""
def __init__(self, master=None, cnf={}, **kw):
"""Construct a radiobutton widget with the parent MASTER.
Valid resource names: activebackground, activeforeground, anchor,
background, bd, bg, bitmap, borderwidth, command, cursor,
disabledforeground, fg, font, foreground, height,
highlightbackground, highlightcolor, highlightthickness, image,
indicatoron, justify, padx, pady, relief, selectcolor, selectimage,
state, takefocus, text, textvariable, underline, value, variable,
width, wraplength."""
Widget.__init__(self, master, 'radiobutton', cnf, kw)
def deselect(self):
"""Put the button in off-state."""
self.tk.call(self._w, 'deselect')
def flash(self):
"""Flash the button."""
self.tk.call(self._w, 'flash')
def invoke(self):
"""Toggle the button and invoke a command if given as resource."""
return self.tk.call(self._w, 'invoke')
def select(self):
"""Put the button in on-state."""
self.tk.call(self._w, 'select')
class Scale(Widget):
"""Scale widget which can display a numerical scale."""
def __init__(self, master=None, cnf={}, **kw):
"""Construct a scale widget with the parent MASTER.
Valid resource names: activebackground, background, bigincrement, bd,
bg, borderwidth, command, cursor, digits, fg, font, foreground, from,
highlightbackground, highlightcolor, highlightthickness, label,
length, orient, relief, repeatdelay, repeatinterval, resolution,
showvalue, sliderlength, sliderrelief, state, takefocus,
tickinterval, to, troughcolor, variable, width."""
Widget.__init__(self, master, 'scale', cnf, kw)
def get(self):
"""Get the current value as integer or float."""
value = self.tk.call(self._w, 'get')
try:
return self.tk.getint(value)
except (ValueError, TypeError, TclError):
return self.tk.getdouble(value)
def set(self, value):
"""Set the value to VALUE."""
self.tk.call(self._w, 'set', value)
def coords(self, value=None):
"""Return a tuple (X,Y) of the point along the centerline of the
trough that corresponds to VALUE or the current value if None is
given."""
return self._getints(self.tk.call(self._w, 'coords', value))
def identify(self, x, y):
"""Return where the point X,Y lies. Valid return values are "slider",
"though1" and "though2"."""
return self.tk.call(self._w, 'identify', x, y)
class Scrollbar(Widget):
"""Scrollbar widget which displays a slider at a certain position."""
def __init__(self, master=None, cnf={}, **kw):
"""Construct a scrollbar widget with the parent MASTER.
Valid resource names: activebackground, activerelief,
background, bd, bg, borderwidth, command, cursor,
elementborderwidth, highlightbackground,
highlightcolor, highlightthickness, jump, orient,
relief, repeatdelay, repeatinterval, takefocus,
troughcolor, width."""
Widget.__init__(self, master, 'scrollbar', cnf, kw)
def activate(self, index=None):
"""Marks the element indicated by index as active.
The only index values understood by this method are "arrow1",
"slider", or "arrow2". If any other value is specified then no
element of the scrollbar will be active. If index is not specified,
the method returns the name of the element that is currently active,
or None if no element is active."""
return self.tk.call(self._w, 'activate', index) or None
def delta(self, deltax, deltay):
"""Return the fractional change of the scrollbar setting if it
would be moved by DELTAX or DELTAY pixels."""
return self.tk.getdouble(
self.tk.call(self._w, 'delta', deltax, deltay))
def fraction(self, x, y):
"""Return the fractional value which corresponds to a slider
position of X,Y."""
return self.tk.getdouble(self.tk.call(self._w, 'fraction', x, y))
def identify(self, x, y):
"""Return the element under position X,Y as one of
"arrow1","slider","arrow2" or ""."""
return self.tk.call(self._w, 'identify', x, y)
def get(self):
"""Return the current fractional values (upper and lower end)
of the slider position."""
return self._getdoubles(self.tk.call(self._w, 'get'))
def set(self, first, last):
"""Set the fractional values of the slider position (upper and
lower ends as value between 0 and 1)."""
self.tk.call(self._w, 'set', first, last)
class Text(Widget, XView, YView):
"""Text widget which can display text in various forms."""
def __init__(self, master=None, cnf={}, **kw):
"""Construct a text widget with the parent MASTER.
STANDARD OPTIONS
background, borderwidth, cursor,
exportselection, font, foreground,
highlightbackground, highlightcolor,
highlightthickness, insertbackground,
insertborderwidth, insertofftime,
insertontime, insertwidth, padx, pady,
relief, selectbackground,
selectborderwidth, selectforeground,
setgrid, takefocus,
xscrollcommand, yscrollcommand,
WIDGET-SPECIFIC OPTIONS
autoseparators, height, maxundo,
spacing1, spacing2, spacing3,
state, tabs, undo, width, wrap,
"""
Widget.__init__(self, master, 'text', cnf, kw)
def bbox(self, index):
"""Return a tuple of (x,y,width,height) which gives the bounding
box of the visible part of the character at the given index."""
return self._getints(
self.tk.call(self._w, 'bbox', index)) or None
def compare(self, index1, op, index2):
"""Return whether between index INDEX1 and index INDEX2 the
relation OP is satisfied. OP is one of <, <=, ==, >=, >, or !=."""
return self.tk.getboolean(self.tk.call(
self._w, 'compare', index1, op, index2))
def count(self, index1, index2, *args): # new in Tk 8.5
"""Counts the number of relevant things between the two indices.
If index1 is after index2, the result will be a negative number
(and this holds for each of the possible options).
The actual items which are counted depends on the options given by
args. The result is a list of integers, one for the result of each
counting option given. Valid counting options are "chars",
"displaychars", "displayindices", "displaylines", "indices",
"lines", "xpixels" and "ypixels". There is an additional possible
option "update", which if given then all subsequent options ensure
that any possible out of date information is recalculated."""
args = ['-%s' % arg for arg in args if not arg.startswith('-')]
args += [index1, index2]
res = self.tk.call(self._w, 'count', *args) or None
if res is not None and len(args) <= 3:
return (res, )
else:
return res
def debug(self, boolean=None):
"""Turn on the internal consistency checks of the B-Tree inside the text
widget according to BOOLEAN."""
if boolean is None:
return self.tk.getboolean(self.tk.call(self._w, 'debug'))
self.tk.call(self._w, 'debug', boolean)
def delete(self, index1, index2=None):
"""Delete the characters between INDEX1 and INDEX2 (not included)."""
self.tk.call(self._w, 'delete', index1, index2)
def dlineinfo(self, index):
"""Return tuple (x,y,width,height,baseline) giving the bounding box
and baseline position of the visible part of the line containing
the character at INDEX."""
return self._getints(self.tk.call(self._w, 'dlineinfo', index))
def dump(self, index1, index2=None, command=None, **kw):
"""Return the contents of the widget between index1 and index2.
The type of contents returned in filtered based on the keyword
parameters; if 'all', 'image', 'mark', 'tag', 'text', or 'window' are
given and true, then the corresponding items are returned. The result
is a list of triples of the form (key, value, index). If none of the
keywords are true then 'all' is used by default.
If the 'command' argument is given, it is called once for each element
of the list of triples, with the values of each triple serving as the
arguments to the function. In this case the list is not returned."""
args = []
func_name = None
result = None
if not command:
# Never call the dump command without the -command flag, since the
# output could involve Tcl quoting and would be a pain to parse
# right. Instead just set the command to build a list of triples
# as if we had done the parsing.
result = []
def append_triple(key, value, index, result=result):
result.append((key, value, index))
command = append_triple
try:
if not isinstance(command, str):
func_name = command = self._register(command)
args += ["-command", command]
for key in kw:
if kw[key]: args.append("-" + key)
args.append(index1)
if index2:
args.append(index2)
self.tk.call(self._w, "dump", *args)
return result
finally:
if func_name:
self.deletecommand(func_name)
## new in tk8.4
def edit(self, *args):
"""Internal method
This method controls the undo mechanism and
the modified flag. The exact behavior of the
command depends on the option argument that
follows the edit argument. The following forms
of the command are currently supported:
edit_modified, edit_redo, edit_reset, edit_separator
and edit_undo
"""
return self.tk.call(self._w, 'edit', *args)
def edit_modified(self, arg=None):
"""Get or Set the modified flag
If arg is not specified, returns the modified
flag of the widget. The insert, delete, edit undo and
edit redo commands or the user can set or clear the
modified flag. If boolean is specified, sets the
modified flag of the widget to arg.
"""
return self.edit("modified", arg)
def edit_redo(self):
"""Redo the last undone edit
When the undo option is true, reapplies the last
undone edits provided no other edits were done since
then. Generates an error when the redo stack is empty.
Does nothing when the undo option is false.
"""
return self.edit("redo")
def edit_reset(self):
"""Clears the undo and redo stacks
"""
return self.edit("reset")
def edit_separator(self):
"""Inserts a separator (boundary) on the undo stack.
Does nothing when the undo option is false
"""
return self.edit("separator")
def edit_undo(self):
"""Undoes the last edit action
If the undo option is true. An edit action is defined
as all the insert and delete commands that are recorded
on the undo stack in between two separators. Generates
an error when the undo stack is empty. Does nothing
when the undo option is false
"""
return self.edit("undo")
def get(self, index1, index2=None):
"""Return the text from INDEX1 to INDEX2 (not included)."""
return self.tk.call(self._w, 'get', index1, index2)
# (Image commands are new in 8.0)
def image_cget(self, index, option):
"""Return the value of OPTION of an embedded image at INDEX."""
if option[:1] != "-":
option = "-" + option
if option[-1:] == "_":
option = option[:-1]
return self.tk.call(self._w, "image", "cget", index, option)
def image_configure(self, index, cnf=None, **kw):
"""Configure an embedded image at INDEX."""
return self._configure(('image', 'configure', index), cnf, kw)
def image_create(self, index, cnf={}, **kw):
"""Create an embedded image at INDEX."""
return self.tk.call(
self._w, "image", "create", index,
*self._options(cnf, kw))
def image_names(self):
"""Return all names of embedded images in this widget."""
return self.tk.call(self._w, "image", "names")
def index(self, index):
"""Return the index in the form line.char for INDEX."""
return str(self.tk.call(self._w, 'index', index))
def insert(self, index, chars, *args):
"""Insert CHARS before the characters at INDEX. An additional
tag can be given in ARGS. Additional CHARS and tags can follow in ARGS."""
self.tk.call((self._w, 'insert', index, chars) + args)
def mark_gravity(self, markName, direction=None):
"""Change the gravity of a mark MARKNAME to DIRECTION (LEFT or RIGHT).
Return the current value if None is given for DIRECTION."""
return self.tk.call(
(self._w, 'mark', 'gravity', markName, direction))
def mark_names(self):
"""Return all mark names."""
return self.tk.splitlist(self.tk.call(
self._w, 'mark', 'names'))
def mark_set(self, markName, index):
"""Set mark MARKNAME before the character at INDEX."""
self.tk.call(self._w, 'mark', 'set', markName, index)
def mark_unset(self, *markNames):
"""Delete all marks in MARKNAMES."""
self.tk.call((self._w, 'mark', 'unset') + markNames)
def mark_next(self, index):
"""Return the name of the next mark after INDEX."""
return self.tk.call(self._w, 'mark', 'next', index) or None
def mark_previous(self, index):
"""Return the name of the previous mark before INDEX."""
return self.tk.call(self._w, 'mark', 'previous', index) or None
def peer_create(self, newPathName, cnf={}, **kw): # new in Tk 8.5
"""Creates a peer text widget with the given newPathName, and any
optional standard configuration options. By default the peer will
have the same start and end line as the parent widget, but
these can be overridden with the standard configuration options."""
self.tk.call(self._w, 'peer', 'create', newPathName,
*self._options(cnf, kw))
def peer_names(self): # new in Tk 8.5
"""Returns a list of peers of this widget (this does not include
the widget itself)."""
return self.tk.splitlist(self.tk.call(self._w, 'peer', 'names'))
def replace(self, index1, index2, chars, *args): # new in Tk 8.5
"""Replaces the range of characters between index1 and index2 with
the given characters and tags specified by args.
See the method insert for some more information about args, and the
method delete for information about the indices."""
self.tk.call(self._w, 'replace', index1, index2, chars, *args)
def scan_mark(self, x, y):
"""Remember the current X, Y coordinates."""
self.tk.call(self._w, 'scan', 'mark', x, y)
def scan_dragto(self, x, y):
"""Adjust the view of the text to 10 times the
difference between X and Y and the coordinates given in
scan_mark."""
self.tk.call(self._w, 'scan', 'dragto', x, y)
def search(self, pattern, index, stopindex=None,
forwards=None, backwards=None, exact=None,
regexp=None, nocase=None, count=None, elide=None):
"""Search PATTERN beginning from INDEX until STOPINDEX.
Return the index of the first character of a match or an
empty string."""
args = [self._w, 'search']
if forwards: args.append('-forwards')
if backwards: args.append('-backwards')
if exact: args.append('-exact')
if regexp: args.append('-regexp')
if nocase: args.append('-nocase')
if elide: args.append('-elide')
if count: args.append('-count'); args.append(count)
if pattern and pattern[0] == '-': args.append('--')
args.append(pattern)
args.append(index)
if stopindex: args.append(stopindex)
return str(self.tk.call(tuple(args)))
def see(self, index):
"""Scroll such that the character at INDEX is visible."""
self.tk.call(self._w, 'see', index)
def tag_add(self, tagName, index1, *args):
"""Add tag TAGNAME to all characters between INDEX1 and index2 in ARGS.
Additional pairs of indices may follow in ARGS."""
self.tk.call(
(self._w, 'tag', 'add', tagName, index1) + args)
def tag_unbind(self, tagName, sequence, funcid=None):
"""Unbind for all characters with TAGNAME for event SEQUENCE the
function identified with FUNCID."""
self.tk.call(self._w, 'tag', 'bind', tagName, sequence, '')
if funcid:
self.deletecommand(funcid)
def tag_bind(self, tagName, sequence, func, add=None):
"""Bind to all characters with TAGNAME at event SEQUENCE a call to function FUNC.
An additional boolean parameter ADD specifies whether FUNC will be
called additionally to the other bound function or whether it will
replace the previous function. See bind for the return value."""
return self._bind((self._w, 'tag', 'bind', tagName),
sequence, func, add)
def tag_cget(self, tagName, option):
"""Return the value of OPTION for tag TAGNAME."""
if option[:1] != '-':
option = '-' + option
if option[-1:] == '_':
option = option[:-1]
return self.tk.call(self._w, 'tag', 'cget', tagName, option)
def tag_configure(self, tagName, cnf=None, **kw):
"""Configure a tag TAGNAME."""
return self._configure(('tag', 'configure', tagName), cnf, kw)
tag_config = tag_configure
def tag_delete(self, *tagNames):
"""Delete all tags in TAGNAMES."""
self.tk.call((self._w, 'tag', 'delete') + tagNames)
def tag_lower(self, tagName, belowThis=None):
"""Change the priority of tag TAGNAME such that it is lower
than the priority of BELOWTHIS."""
self.tk.call(self._w, 'tag', 'lower', tagName, belowThis)
def tag_names(self, index=None):
"""Return a list of all tag names."""
return self.tk.splitlist(
self.tk.call(self._w, 'tag', 'names', index))
def tag_nextrange(self, tagName, index1, index2=None):
"""Return a list of start and end index for the first sequence of
characters between INDEX1 and INDEX2 which all have tag TAGNAME.
The text is searched forward from INDEX1."""
return self.tk.splitlist(self.tk.call(
self._w, 'tag', 'nextrange', tagName, index1, index2))
def tag_prevrange(self, tagName, index1, index2=None):
"""Return a list of start and end index for the first sequence of
characters between INDEX1 and INDEX2 which all have tag TAGNAME.
The text is searched backwards from INDEX1."""
return self.tk.splitlist(self.tk.call(
self._w, 'tag', 'prevrange', tagName, index1, index2))
def tag_raise(self, tagName, aboveThis=None):
"""Change the priority of tag TAGNAME such that it is higher
than the priority of ABOVETHIS."""
self.tk.call(
self._w, 'tag', 'raise', tagName, aboveThis)
def tag_ranges(self, tagName):
"""Return a list of ranges of text which have tag TAGNAME."""
return self.tk.splitlist(self.tk.call(
self._w, 'tag', 'ranges', tagName))
def tag_remove(self, tagName, index1, index2=None):
"""Remove tag TAGNAME from all characters between INDEX1 and INDEX2."""
self.tk.call(
self._w, 'tag', 'remove', tagName, index1, index2)
def window_cget(self, index, option):
"""Return the value of OPTION of an embedded window at INDEX."""
if option[:1] != '-':
option = '-' + option
if option[-1:] == '_':
option = option[:-1]
return self.tk.call(self._w, 'window', 'cget', index, option)
def window_configure(self, index, cnf=None, **kw):
"""Configure an embedded window at INDEX."""
return self._configure(('window', 'configure', index), cnf, kw)
window_config = window_configure
def window_create(self, index, cnf={}, **kw):
"""Create a window at INDEX."""
self.tk.call(
(self._w, 'window', 'create', index)
+ self._options(cnf, kw))
def window_names(self):
"""Return all names of embedded windows in this widget."""
return self.tk.splitlist(
self.tk.call(self._w, 'window', 'names'))
def yview_pickplace(self, *what):
"""Obsolete function, use see."""
self.tk.call((self._w, 'yview', '-pickplace') + what)
class _setit:
"""Internal class. It wraps the command in the widget OptionMenu."""
def __init__(self, var, value, callback=None):
self.__value = value
self.__var = var
self.__callback = callback
def __call__(self, *args):
self.__var.set(self.__value)
if self.__callback:
self.__callback(self.__value, *args)
class OptionMenu(Menubutton):
"""OptionMenu which allows the user to select a value from a menu."""
def __init__(self, master, variable, value, *values, **kwargs):
"""Construct an optionmenu widget with the parent MASTER, with
the resource textvariable set to VARIABLE, the initially selected
value VALUE, the other menu values VALUES and an additional
keyword argument command."""
kw = {"borderwidth": 2, "textvariable": variable,
"indicatoron": 1, "relief": RAISED, "anchor": "c",
"highlightthickness": 2}
Widget.__init__(self, master, "menubutton", kw)
self.widgetName = 'tk_optionMenu'
menu = self.__menu = Menu(self, name="menu", tearoff=0)
self.menuname = menu._w
# 'command' is the only supported keyword
callback = kwargs.get('command')
if 'command' in kwargs:
del kwargs['command']
if kwargs:
raise TclError('unknown option -'+kwargs.keys()[0])
menu.add_command(label=value,
command=_setit(variable, value, callback))
for v in values:
menu.add_command(label=v,
command=_setit(variable, v, callback))
self["menu"] = menu
def __getitem__(self, name):
if name == 'menu':
return self.__menu
return Widget.__getitem__(self, name)
def destroy(self):
"""Destroy this widget and the associated menu."""
Menubutton.destroy(self)
self.__menu = None
class Image:
"""Base class for images."""
_last_id = 0
def __init__(self, imgtype, name=None, cnf={}, master=None, **kw):
self.name = None
if not master:
master = _default_root
if not master:
raise RuntimeError('Too early to create image')
self.tk = getattr(master, 'tk', master)
if not name:
Image._last_id += 1
name = "pyimage%r" % (Image._last_id,) # tk itself would use image<x>
if kw and cnf: cnf = _cnfmerge((cnf, kw))
elif kw: cnf = kw
options = ()
for k, v in cnf.items():
if callable(v):
v = self._register(v)
options = options + ('-'+k, v)
self.tk.call(('image', 'create', imgtype, name,) + options)
self.name = name
def __str__(self): return self.name
def __del__(self):
if self.name:
try:
self.tk.call('image', 'delete', self.name)
except TclError:
# May happen if the root was destroyed
pass
def __setitem__(self, key, value):
self.tk.call(self.name, 'configure', '-'+key, value)
def __getitem__(self, key):
return self.tk.call(self.name, 'configure', '-'+key)
def configure(self, **kw):
"""Configure the image."""
res = ()
for k, v in _cnfmerge(kw).items():
if v is not None:
if k[-1] == '_': k = k[:-1]
if callable(v):
v = self._register(v)
res = res + ('-'+k, v)
self.tk.call((self.name, 'config') + res)
config = configure
def height(self):
"""Return the height of the image."""
return self.tk.getint(
self.tk.call('image', 'height', self.name))
def type(self):
"""Return the type of the image, e.g. "photo" or "bitmap"."""
return self.tk.call('image', 'type', self.name)
def width(self):
"""Return the width of the image."""
return self.tk.getint(
self.tk.call('image', 'width', self.name))
class PhotoImage(Image):
"""Widget which can display images in PGM, PPM, GIF, PNG format."""
def __init__(self, name=None, cnf={}, master=None, **kw):
"""Create an image with NAME.
Valid resource names: data, format, file, gamma, height, palette,
width."""
Image.__init__(self, 'photo', name, cnf, master, **kw)
def blank(self):
"""Display a transparent image."""
self.tk.call(self.name, 'blank')
def cget(self, option):
"""Return the value of OPTION."""
return self.tk.call(self.name, 'cget', '-' + option)
# XXX config
def __getitem__(self, key):
return self.tk.call(self.name, 'cget', '-' + key)
# XXX copy -from, -to, ...?
def copy(self):
"""Return a new PhotoImage with the same image as this widget."""
destImage = PhotoImage(master=self.tk)
self.tk.call(destImage, 'copy', self.name)
return destImage
def zoom(self, x, y=''):
"""Return a new PhotoImage with the same image as this widget
but zoom it with a factor of x in the X direction and y in the Y
direction. If y is not given, the default value is the same as x.
"""
destImage = PhotoImage(master=self.tk)
if y=='': y=x
self.tk.call(destImage, 'copy', self.name, '-zoom',x,y)
return destImage
def subsample(self, x, y=''):
"""Return a new PhotoImage based on the same image as this widget
but use only every Xth or Yth pixel. If y is not given, the
default value is the same as x.
"""
destImage = PhotoImage(master=self.tk)
if y=='': y=x
self.tk.call(destImage, 'copy', self.name, '-subsample',x,y)
return destImage
def get(self, x, y):
"""Return the color (red, green, blue) of the pixel at X,Y."""
return self.tk.call(self.name, 'get', x, y)
def put(self, data, to=None):
"""Put row formatted colors to image starting from
position TO, e.g. image.put("{red green} {blue yellow}", to=(4,6))"""
args = (self.name, 'put', data)
if to:
if to[0] == '-to':
to = to[1:]
args = args + ('-to',) + tuple(to)
self.tk.call(args)
# XXX read
def write(self, filename, format=None, from_coords=None):
"""Write image to file FILENAME in FORMAT starting from
position FROM_COORDS."""
args = (self.name, 'write', filename)
if format:
args = args + ('-format', format)
if from_coords:
args = args + ('-from',) + tuple(from_coords)
self.tk.call(args)
class BitmapImage(Image):
"""Widget which can display images in XBM format."""
def __init__(self, name=None, cnf={}, master=None, **kw):
"""Create a bitmap with NAME.
Valid resource names: background, data, file, foreground, maskdata, maskfile."""
Image.__init__(self, 'bitmap', name, cnf, master, **kw)
def image_names():
return _default_root.tk.splitlist(_default_root.tk.call('image', 'names'))
def image_types():
return _default_root.tk.splitlist(_default_root.tk.call('image', 'types'))
class Spinbox(Widget, XView):
"""spinbox widget."""
def __init__(self, master=None, cnf={}, **kw):
"""Construct a spinbox widget with the parent MASTER.
STANDARD OPTIONS
activebackground, background, borderwidth,
cursor, exportselection, font, foreground,
highlightbackground, highlightcolor,
highlightthickness, insertbackground,
insertborderwidth, insertofftime,
insertontime, insertwidth, justify, relief,
repeatdelay, repeatinterval,
selectbackground, selectborderwidth
selectforeground, takefocus, textvariable
xscrollcommand.
WIDGET-SPECIFIC OPTIONS
buttonbackground, buttoncursor,
buttondownrelief, buttonuprelief,
command, disabledbackground,
disabledforeground, format, from,
invalidcommand, increment,
readonlybackground, state, to,
validate, validatecommand values,
width, wrap,
"""
Widget.__init__(self, master, 'spinbox', cnf, kw)
def bbox(self, index):
"""Return a tuple of X1,Y1,X2,Y2 coordinates for a
rectangle which encloses the character given by index.
The first two elements of the list give the x and y
coordinates of the upper-left corner of the screen
area covered by the character (in pixels relative
to the widget) and the last two elements give the
width and height of the character, in pixels. The
bounding box may refer to a region outside the
visible area of the window.
"""
return self._getints(self.tk.call(self._w, 'bbox', index)) or None
def delete(self, first, last=None):
"""Delete one or more elements of the spinbox.
First is the index of the first character to delete,
and last is the index of the character just after
the last one to delete. If last isn't specified it
defaults to first+1, i.e. a single character is
deleted. This command returns an empty string.
"""
return self.tk.call(self._w, 'delete', first, last)
def get(self):
"""Returns the spinbox's string"""
return self.tk.call(self._w, 'get')
def icursor(self, index):
"""Alter the position of the insertion cursor.
The insertion cursor will be displayed just before
the character given by index. Returns an empty string
"""
return self.tk.call(self._w, 'icursor', index)
def identify(self, x, y):
"""Returns the name of the widget at position x, y
Return value is one of: none, buttondown, buttonup, entry
"""
return self.tk.call(self._w, 'identify', x, y)
def index(self, index):
"""Returns the numerical index corresponding to index
"""
return self.tk.call(self._w, 'index', index)
def insert(self, index, s):
"""Insert string s at index
Returns an empty string.
"""
return self.tk.call(self._w, 'insert', index, s)
def invoke(self, element):
"""Causes the specified element to be invoked
The element could be buttondown or buttonup
triggering the action associated with it.
"""
return self.tk.call(self._w, 'invoke', element)
def scan(self, *args):
"""Internal function."""
return self._getints(
self.tk.call((self._w, 'scan') + args)) or ()
def scan_mark(self, x):
"""Records x and the current view in the spinbox window;
used in conjunction with later scan dragto commands.
Typically this command is associated with a mouse button
press in the widget. It returns an empty string.
"""
return self.scan("mark", x)
def scan_dragto(self, x):
"""Compute the difference between the given x argument
and the x argument to the last scan mark command
It then adjusts the view left or right by 10 times the
difference in x-coordinates. This command is typically
associated with mouse motion events in the widget, to
produce the effect of dragging the spinbox at high speed
through the window. The return value is an empty string.
"""
return self.scan("dragto", x)
def selection(self, *args):
"""Internal function."""
return self._getints(
self.tk.call((self._w, 'selection') + args)) or ()
def selection_adjust(self, index):
"""Locate the end of the selection nearest to the character
given by index,
Then adjust that end of the selection to be at index
(i.e including but not going beyond index). The other
end of the selection is made the anchor point for future
select to commands. If the selection isn't currently in
the spinbox, then a new selection is created to include
the characters between index and the most recent selection
anchor point, inclusive.
"""
return self.selection("adjust", index)
def selection_clear(self):
"""Clear the selection
If the selection isn't in this widget then the
command has no effect.
"""
return self.selection("clear")
def selection_element(self, element=None):
"""Sets or gets the currently selected element.
If a spinbutton element is specified, it will be
displayed depressed.
"""
return self.tk.call(self._w, 'selection', 'element', element)
###########################################################################
class LabelFrame(Widget):
"""labelframe widget."""
def __init__(self, master=None, cnf={}, **kw):
"""Construct a labelframe widget with the parent MASTER.
STANDARD OPTIONS
borderwidth, cursor, font, foreground,
highlightbackground, highlightcolor,
highlightthickness, padx, pady, relief,
takefocus, text
WIDGET-SPECIFIC OPTIONS
background, class, colormap, container,
height, labelanchor, labelwidget,
visual, width
"""
Widget.__init__(self, master, 'labelframe', cnf, kw)
########################################################################
class PanedWindow(Widget):
"""panedwindow widget."""
def __init__(self, master=None, cnf={}, **kw):
"""Construct a panedwindow widget with the parent MASTER.
STANDARD OPTIONS
background, borderwidth, cursor, height,
orient, relief, width
WIDGET-SPECIFIC OPTIONS
handlepad, handlesize, opaqueresize,
sashcursor, sashpad, sashrelief,
sashwidth, showhandle,
"""
Widget.__init__(self, master, 'panedwindow', cnf, kw)
def add(self, child, **kw):
"""Add a child widget to the panedwindow in a new pane.
The child argument is the name of the child widget
followed by pairs of arguments that specify how to
manage the windows. The possible options and values
are the ones accepted by the paneconfigure method.
"""
self.tk.call((self._w, 'add', child) + self._options(kw))
def remove(self, child):
"""Remove the pane containing child from the panedwindow
All geometry management options for child will be forgotten.
"""
self.tk.call(self._w, 'forget', child)
forget=remove
def identify(self, x, y):
"""Identify the panedwindow component at point x, y
If the point is over a sash or a sash handle, the result
is a two element list containing the index of the sash or
handle, and a word indicating whether it is over a sash
or a handle, such as {0 sash} or {2 handle}. If the point
is over any other part of the panedwindow, the result is
an empty list.
"""
return self.tk.call(self._w, 'identify', x, y)
def proxy(self, *args):
"""Internal function."""
return self._getints(
self.tk.call((self._w, 'proxy') + args)) or ()
def proxy_coord(self):
"""Return the x and y pair of the most recent proxy location
"""
return self.proxy("coord")
def proxy_forget(self):
"""Remove the proxy from the display.
"""
return self.proxy("forget")
def proxy_place(self, x, y):
"""Place the proxy at the given x and y coordinates.
"""
return self.proxy("place", x, y)
def sash(self, *args):
"""Internal function."""
return self._getints(
self.tk.call((self._w, 'sash') + args)) or ()
def sash_coord(self, index):
"""Return the current x and y pair for the sash given by index.
Index must be an integer between 0 and 1 less than the
number of panes in the panedwindow. The coordinates given are
those of the top left corner of the region containing the sash.
pathName sash dragto index x y This command computes the
difference between the given coordinates and the coordinates
given to the last sash coord command for the given sash. It then
moves that sash the computed difference. The return value is the
empty string.
"""
return self.sash("coord", index)
def sash_mark(self, index):
"""Records x and y for the sash given by index;
Used in conjunction with later dragto commands to move the sash.
"""
return self.sash("mark", index)
def sash_place(self, index, x, y):
"""Place the sash given by index at the given coordinates
"""
return self.sash("place", index, x, y)
def panecget(self, child, option):
"""Query a management option for window.
Option may be any value allowed by the paneconfigure subcommand
"""
return self.tk.call(
(self._w, 'panecget') + (child, '-'+option))
def paneconfigure(self, tagOrId, cnf=None, **kw):
"""Query or modify the management options for window.
If no option is specified, returns a list describing all
of the available options for pathName. If option is
specified with no value, then the command returns a list
describing the one named option (this list will be identical
to the corresponding sublist of the value returned if no
option is specified). If one or more option-value pairs are
specified, then the command modifies the given widget
option(s) to have the given value(s); in this case the
command returns an empty string. The following options
are supported:
after window
Insert the window after the window specified. window
should be the name of a window already managed by pathName.
before window
Insert the window before the window specified. window
should be the name of a window already managed by pathName.
height size
Specify a height for the window. The height will be the
outer dimension of the window including its border, if
any. If size is an empty string, or if -height is not
specified, then the height requested internally by the
window will be used initially; the height may later be
adjusted by the movement of sashes in the panedwindow.
Size may be any value accepted by Tk_GetPixels.
minsize n
Specifies that the size of the window cannot be made
less than n. This constraint only affects the size of
the widget in the paned dimension -- the x dimension
for horizontal panedwindows, the y dimension for
vertical panedwindows. May be any value accepted by
Tk_GetPixels.
padx n
Specifies a non-negative value indicating how much
extra space to leave on each side of the window in
the X-direction. The value may have any of the forms
accepted by Tk_GetPixels.
pady n
Specifies a non-negative value indicating how much
extra space to leave on each side of the window in
the Y-direction. The value may have any of the forms
accepted by Tk_GetPixels.
sticky style
If a window's pane is larger than the requested
dimensions of the window, this option may be used
to position (or stretch) the window within its pane.
Style is a string that contains zero or more of the
characters n, s, e or w. The string can optionally
contains spaces or commas, but they are ignored. Each
letter refers to a side (north, south, east, or west)
that the window will "stick" to. If both n and s
(or e and w) are specified, the window will be
stretched to fill the entire height (or width) of
its cavity.
width size
Specify a width for the window. The width will be
the outer dimension of the window including its
border, if any. If size is an empty string, or
if -width is not specified, then the width requested
internally by the window will be used initially; the
width may later be adjusted by the movement of sashes
in the panedwindow. Size may be any value accepted by
Tk_GetPixels.
"""
if cnf is None and not kw:
return self._getconfigure(self._w, 'paneconfigure', tagOrId)
if isinstance(cnf, str) and not kw:
return self._getconfigure1(
self._w, 'paneconfigure', tagOrId, '-'+cnf)
self.tk.call((self._w, 'paneconfigure', tagOrId) +
self._options(cnf, kw))
paneconfig = paneconfigure
def panes(self):
"""Returns an ordered list of the child panes."""
return self.tk.splitlist(self.tk.call(self._w, 'panes'))
# Test:
def _test():
root = Tk()
text = "This is Tcl/Tk version %s" % TclVersion
text += "\nThis should be a cedilla: \xe7"
label = Label(root, text=text)
label.pack()
test = Button(root, text="Click me!",
command=lambda root=root: root.test.configure(
text="[%s]" % root.test['text']))
test.pack()
root.test = test
quit = Button(root, text="QUIT", command=root.destroy)
quit.pack()
# The following three commands are needed so the window pops
# up on top on Windows...
root.iconify()
root.update()
root.deiconify()
root.mainloop()
if __name__ == '__main__':
_test()
| 166,971 | 4,009 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/tkinter/test/runtktests.py | """
Use this module to get and run all tk tests.
tkinter tests should live in a package inside the directory where this file
lives, like test_tkinter.
Extensions also should live in packages following the same rule as above.
"""
import os
import importlib
import test.support
this_dir_path = os.path.abspath(os.path.dirname(__file__))
def is_package(path):
for name in os.listdir(path):
if name in ('__init__.py', '__init__.pyc'):
return True
return False
def get_tests_modules(basepath=this_dir_path, gui=True, packages=None):
"""This will import and yield modules whose names start with test_
and are inside packages found in the path starting at basepath.
If packages is specified it should contain package names that
want their tests collected.
"""
py_ext = '.py'
for dirpath, dirnames, filenames in os.walk(basepath):
for dirname in list(dirnames):
if dirname[0] == '.':
dirnames.remove(dirname)
if is_package(dirpath) and filenames:
pkg_name = dirpath[len(basepath) + len(os.sep):].replace('/', '.')
if packages and pkg_name not in packages:
continue
filenames = filter(
lambda x: x.startswith('test_') and x.endswith(py_ext),
filenames)
for name in filenames:
try:
yield importlib.import_module(
".%s.%s" % (pkg_name, name[:-len(py_ext)]),
"tkinter.test")
except test.support.ResourceDenied:
if gui:
raise
def get_tests(text=True, gui=True, packages=None):
"""Yield all the tests in the modules found by get_tests_modules.
If nogui is True, only tests that do not require a GUI will be
returned."""
attrs = []
if text:
attrs.append('tests_nogui')
if gui:
attrs.append('tests_gui')
for module in get_tests_modules(gui=gui, packages=packages):
for attr in attrs:
for test in getattr(module, attr, ()):
yield test
if __name__ == "__main__":
test.support.run_unittest(*get_tests())
| 2,230 | 70 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/tkinter/test/README | Writing new tests
=================
Precaution
----------
New tests should always use only one Tk window at once, like all the
current tests do. This means that you have to destroy the current window
before creating another one, and clean up after the test. The motivation
behind this is that some tests may depend on having its window focused
while it is running to work properly, and it may be hard to force focus
on your window across platforms (right now only test_traversal at
test_ttk.test_widgets.NotebookTest depends on this).
| 566 | 15 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/tkinter/test/support.py | import functools
import re
import tkinter
import unittest
class AbstractTkTest:
@classmethod
def setUpClass(cls):
cls._old_support_default_root = tkinter._support_default_root
destroy_default_root()
tkinter.NoDefaultRoot()
cls.root = tkinter.Tk()
cls.wantobjects = cls.root.wantobjects()
# De-maximize main window.
# Some window managers can maximize new windows.
cls.root.wm_state('normal')
try:
cls.root.wm_attributes('-zoomed', False)
except tkinter.TclError:
pass
@classmethod
def tearDownClass(cls):
cls.root.update_idletasks()
cls.root.destroy()
del cls.root
tkinter._default_root = None
tkinter._support_default_root = cls._old_support_default_root
def setUp(self):
self.root.deiconify()
def tearDown(self):
for w in self.root.winfo_children():
w.destroy()
self.root.withdraw()
def destroy_default_root():
if getattr(tkinter, '_default_root', None):
tkinter._default_root.update_idletasks()
tkinter._default_root.destroy()
tkinter._default_root = None
def simulate_mouse_click(widget, x, y):
"""Generate proper events to click at the x, y position (tries to act
like an X server)."""
widget.event_generate('<Enter>', x=0, y=0)
widget.event_generate('<Motion>', x=x, y=y)
widget.event_generate('<ButtonPress-1>', x=x, y=y)
widget.event_generate('<ButtonRelease-1>', x=x, y=y)
import _tkinter
tcl_version = tuple(map(int, _tkinter.TCL_VERSION.split('.')))
def requires_tcl(*version):
if len(version) <= 2:
return unittest.skipUnless(tcl_version >= version,
'requires Tcl version >= ' + '.'.join(map(str, version)))
def deco(test):
@functools.wraps(test)
def newtest(self):
if get_tk_patchlevel() < version:
self.skipTest('requires Tcl version >= ' +
'.'.join(map(str, version)))
test(self)
return newtest
return deco
_tk_patchlevel = None
def get_tk_patchlevel():
global _tk_patchlevel
if _tk_patchlevel is None:
tcl = tkinter.Tcl()
patchlevel = tcl.call('info', 'patchlevel')
m = re.fullmatch(r'(\d+)\.(\d+)([ab.])(\d+)', patchlevel)
major, minor, releaselevel, serial = m.groups()
major, minor, serial = int(major), int(minor), int(serial)
releaselevel = {'a': 'alpha', 'b': 'beta', '.': 'final'}[releaselevel]
if releaselevel == 'final':
_tk_patchlevel = major, minor, serial, releaselevel, 0
else:
_tk_patchlevel = major, minor, 0, releaselevel, serial
return _tk_patchlevel
units = {
'c': 72 / 2.54, # centimeters
'i': 72, # inches
'm': 72 / 25.4, # millimeters
'p': 1, # points
}
def pixels_conv(value):
return float(value[:-1]) * units[value[-1:]]
def tcl_obj_eq(actual, expected):
if actual == expected:
return True
if isinstance(actual, _tkinter.Tcl_Obj):
if isinstance(expected, str):
return str(actual) == expected
if isinstance(actual, tuple):
if isinstance(expected, tuple):
return (len(actual) == len(expected) and
all(tcl_obj_eq(act, exp)
for act, exp in zip(actual, expected)))
return False
def widget_eq(actual, expected):
if actual == expected:
return True
if isinstance(actual, (str, tkinter.Widget)):
if isinstance(expected, (str, tkinter.Widget)):
return str(actual) == str(expected)
return False
| 3,722 | 118 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/tkinter/test/widget_tests.py | # Common tests for test_tkinter/test_widgets.py and test_ttk/test_widgets.py
import unittest
import sys
import tkinter
from tkinter.ttk import Scale
from tkinter.test.support import (AbstractTkTest, tcl_version, requires_tcl,
get_tk_patchlevel, pixels_conv, tcl_obj_eq)
import test.support
noconv = False
if get_tk_patchlevel() < (8, 5, 11):
noconv = str
pixels_round = round
if get_tk_patchlevel()[:3] == (8, 5, 11):
# Issue #19085: Workaround a bug in Tk
# http://core.tcl.tk/tk/info/3497848
pixels_round = int
_sentinel = object()
class AbstractWidgetTest(AbstractTkTest):
_conv_pixels = staticmethod(pixels_round)
_conv_pad_pixels = None
_stringify = False
@property
def scaling(self):
try:
return self._scaling
except AttributeError:
self._scaling = float(self.root.call('tk', 'scaling'))
return self._scaling
def _str(self, value):
if not self._stringify and self.wantobjects and tcl_version >= (8, 6):
return value
if isinstance(value, tuple):
return ' '.join(map(self._str, value))
return str(value)
def assertEqual2(self, actual, expected, msg=None, eq=object.__eq__):
if eq(actual, expected):
return
self.assertEqual(actual, expected, msg)
def checkParam(self, widget, name, value, *, expected=_sentinel,
conv=False, eq=None):
widget[name] = value
if expected is _sentinel:
expected = value
if conv:
expected = conv(expected)
if self._stringify or not self.wantobjects:
if isinstance(expected, tuple):
expected = tkinter._join(expected)
else:
expected = str(expected)
if eq is None:
eq = tcl_obj_eq
self.assertEqual2(widget[name], expected, eq=eq)
self.assertEqual2(widget.cget(name), expected, eq=eq)
# XXX
if not isinstance(widget, Scale):
t = widget.configure(name)
self.assertEqual(len(t), 5)
self.assertEqual2(t[4], expected, eq=eq)
def checkInvalidParam(self, widget, name, value, errmsg=None, *,
keep_orig=True):
orig = widget[name]
if errmsg is not None:
errmsg = errmsg.format(value)
with self.assertRaises(tkinter.TclError) as cm:
widget[name] = value
if errmsg is not None:
self.assertEqual(str(cm.exception), errmsg)
if keep_orig:
self.assertEqual(widget[name], orig)
else:
widget[name] = orig
with self.assertRaises(tkinter.TclError) as cm:
widget.configure({name: value})
if errmsg is not None:
self.assertEqual(str(cm.exception), errmsg)
if keep_orig:
self.assertEqual(widget[name], orig)
else:
widget[name] = orig
def checkParams(self, widget, name, *values, **kwargs):
for value in values:
self.checkParam(widget, name, value, **kwargs)
def checkIntegerParam(self, widget, name, *values, **kwargs):
self.checkParams(widget, name, *values, **kwargs)
self.checkInvalidParam(widget, name, '',
errmsg='expected integer but got ""')
self.checkInvalidParam(widget, name, '10p',
errmsg='expected integer but got "10p"')
self.checkInvalidParam(widget, name, 3.2,
errmsg='expected integer but got "3.2"')
def checkFloatParam(self, widget, name, *values, conv=float, **kwargs):
for value in values:
self.checkParam(widget, name, value, conv=conv, **kwargs)
self.checkInvalidParam(widget, name, '',
errmsg='expected floating-point number but got ""')
self.checkInvalidParam(widget, name, 'spam',
errmsg='expected floating-point number but got "spam"')
def checkBooleanParam(self, widget, name):
for value in (False, 0, 'false', 'no', 'off'):
self.checkParam(widget, name, value, expected=0)
for value in (True, 1, 'true', 'yes', 'on'):
self.checkParam(widget, name, value, expected=1)
self.checkInvalidParam(widget, name, '',
errmsg='expected boolean value but got ""')
self.checkInvalidParam(widget, name, 'spam',
errmsg='expected boolean value but got "spam"')
def checkColorParam(self, widget, name, *, allow_empty=None, **kwargs):
self.checkParams(widget, name,
'#ff0000', '#00ff00', '#0000ff', '#123456',
'red', 'green', 'blue', 'white', 'black', 'grey',
**kwargs)
self.checkInvalidParam(widget, name, 'spam',
errmsg='unknown color name "spam"')
def checkCursorParam(self, widget, name, **kwargs):
self.checkParams(widget, name, 'arrow', 'watch', 'cross', '',**kwargs)
if tcl_version >= (8, 5):
self.checkParam(widget, name, 'none')
self.checkInvalidParam(widget, name, 'spam',
errmsg='bad cursor spec "spam"')
def checkCommandParam(self, widget, name):
def command(*args):
pass
widget[name] = command
self.assertTrue(widget[name])
self.checkParams(widget, name, '')
def checkEnumParam(self, widget, name, *values, errmsg=None, **kwargs):
self.checkParams(widget, name, *values, **kwargs)
if errmsg is None:
errmsg2 = ' %s "{}": must be %s%s or %s' % (
name,
', '.join(values[:-1]),
',' if len(values) > 2 else '',
values[-1])
self.checkInvalidParam(widget, name, '',
errmsg='ambiguous' + errmsg2)
errmsg = 'bad' + errmsg2
self.checkInvalidParam(widget, name, 'spam', errmsg=errmsg)
def checkPixelsParam(self, widget, name, *values,
conv=None, keep_orig=True, **kwargs):
if conv is None:
conv = self._conv_pixels
for value in values:
expected = _sentinel
conv1 = conv
if isinstance(value, str):
if conv1 and conv1 is not str:
expected = pixels_conv(value) * self.scaling
conv1 = round
self.checkParam(widget, name, value, expected=expected,
conv=conv1, **kwargs)
self.checkInvalidParam(widget, name, '6x',
errmsg='bad screen distance "6x"', keep_orig=keep_orig)
self.checkInvalidParam(widget, name, 'spam',
errmsg='bad screen distance "spam"', keep_orig=keep_orig)
def checkReliefParam(self, widget, name):
self.checkParams(widget, name,
'flat', 'groove', 'raised', 'ridge', 'solid', 'sunken')
errmsg='bad relief "spam": must be '\
'flat, groove, raised, ridge, solid, or sunken'
if tcl_version < (8, 6):
errmsg = None
self.checkInvalidParam(widget, name, 'spam',
errmsg=errmsg)
def checkImageParam(self, widget, name):
image = tkinter.PhotoImage(master=self.root, name='image1')
self.checkParam(widget, name, image, conv=str)
self.checkInvalidParam(widget, name, 'spam',
errmsg='image "spam" doesn\'t exist')
widget[name] = ''
def checkVariableParam(self, widget, name, var):
self.checkParam(widget, name, var, conv=str)
def assertIsBoundingBox(self, bbox):
self.assertIsNotNone(bbox)
self.assertIsInstance(bbox, tuple)
if len(bbox) != 4:
self.fail('Invalid bounding box: %r' % (bbox,))
for item in bbox:
if not isinstance(item, int):
self.fail('Invalid bounding box: %r' % (bbox,))
break
def test_keys(self):
widget = self.create()
keys = widget.keys()
# XXX
if not isinstance(widget, Scale):
self.assertEqual(sorted(keys), sorted(widget.configure()))
for k in keys:
widget[k]
# Test if OPTIONS contains all keys
if test.support.verbose:
aliases = {
'bd': 'borderwidth',
'bg': 'background',
'fg': 'foreground',
'invcmd': 'invalidcommand',
'vcmd': 'validatecommand',
}
keys = set(keys)
expected = set(self.OPTIONS)
for k in sorted(keys - expected):
if not (k in aliases and
aliases[k] in keys and
aliases[k] in expected):
print('%s.OPTIONS doesn\'t contain "%s"' %
(self.__class__.__name__, k))
class StandardOptionsTests:
STANDARD_OPTIONS = (
'activebackground', 'activeborderwidth', 'activeforeground', 'anchor',
'background', 'bitmap', 'borderwidth', 'compound', 'cursor',
'disabledforeground', 'exportselection', 'font', 'foreground',
'highlightbackground', 'highlightcolor', 'highlightthickness',
'image', 'insertbackground', 'insertborderwidth',
'insertofftime', 'insertontime', 'insertwidth',
'jump', 'justify', 'orient', 'padx', 'pady', 'relief',
'repeatdelay', 'repeatinterval',
'selectbackground', 'selectborderwidth', 'selectforeground',
'setgrid', 'takefocus', 'text', 'textvariable', 'troughcolor',
'underline', 'wraplength', 'xscrollcommand', 'yscrollcommand',
)
def test_activebackground(self):
widget = self.create()
self.checkColorParam(widget, 'activebackground')
def test_activeborderwidth(self):
widget = self.create()
self.checkPixelsParam(widget, 'activeborderwidth',
0, 1.3, 2.9, 6, -2, '10p')
def test_activeforeground(self):
widget = self.create()
self.checkColorParam(widget, 'activeforeground')
def test_anchor(self):
widget = self.create()
self.checkEnumParam(widget, 'anchor',
'n', 'ne', 'e', 'se', 's', 'sw', 'w', 'nw', 'center')
def test_background(self):
widget = self.create()
self.checkColorParam(widget, 'background')
if 'bg' in self.OPTIONS:
self.checkColorParam(widget, 'bg')
def test_bitmap(self):
widget = self.create()
self.checkParam(widget, 'bitmap', 'questhead')
self.checkParam(widget, 'bitmap', 'gray50')
filename = test.support.findfile('python.xbm', subdir='imghdrdata')
self.checkParam(widget, 'bitmap', '@' + filename)
# Cocoa Tk widgets don't detect invalid -bitmap values
# See https://core.tcl.tk/tk/info/31cd33dbf0
if not ('aqua' in self.root.tk.call('tk', 'windowingsystem') and
'AppKit' in self.root.winfo_server()):
self.checkInvalidParam(widget, 'bitmap', 'spam',
errmsg='bitmap "spam" not defined')
def test_borderwidth(self):
widget = self.create()
self.checkPixelsParam(widget, 'borderwidth',
0, 1.3, 2.6, 6, -2, '10p')
if 'bd' in self.OPTIONS:
self.checkPixelsParam(widget, 'bd', 0, 1.3, 2.6, 6, -2, '10p')
def test_compound(self):
widget = self.create()
self.checkEnumParam(widget, 'compound',
'bottom', 'center', 'left', 'none', 'right', 'top')
def test_cursor(self):
widget = self.create()
self.checkCursorParam(widget, 'cursor')
def test_disabledforeground(self):
widget = self.create()
self.checkColorParam(widget, 'disabledforeground')
def test_exportselection(self):
widget = self.create()
self.checkBooleanParam(widget, 'exportselection')
def test_font(self):
widget = self.create()
self.checkParam(widget, 'font',
'-Adobe-Helvetica-Medium-R-Normal--*-120-*-*-*-*-*-*')
self.checkInvalidParam(widget, 'font', '',
errmsg='font "" doesn\'t exist')
def test_foreground(self):
widget = self.create()
self.checkColorParam(widget, 'foreground')
if 'fg' in self.OPTIONS:
self.checkColorParam(widget, 'fg')
def test_highlightbackground(self):
widget = self.create()
self.checkColorParam(widget, 'highlightbackground')
def test_highlightcolor(self):
widget = self.create()
self.checkColorParam(widget, 'highlightcolor')
def test_highlightthickness(self):
widget = self.create()
self.checkPixelsParam(widget, 'highlightthickness',
0, 1.3, 2.6, 6, '10p')
self.checkParam(widget, 'highlightthickness', -2, expected=0,
conv=self._conv_pixels)
@unittest.skipIf(sys.platform == 'darwin',
'crashes with Cocoa Tk (issue19733)')
def test_image(self):
widget = self.create()
self.checkImageParam(widget, 'image')
def test_insertbackground(self):
widget = self.create()
self.checkColorParam(widget, 'insertbackground')
def test_insertborderwidth(self):
widget = self.create()
self.checkPixelsParam(widget, 'insertborderwidth',
0, 1.3, 2.6, 6, -2, '10p')
def test_insertofftime(self):
widget = self.create()
self.checkIntegerParam(widget, 'insertofftime', 100)
def test_insertontime(self):
widget = self.create()
self.checkIntegerParam(widget, 'insertontime', 100)
def test_insertwidth(self):
widget = self.create()
self.checkPixelsParam(widget, 'insertwidth', 1.3, 2.6, -2, '10p')
def test_jump(self):
widget = self.create()
self.checkBooleanParam(widget, 'jump')
def test_justify(self):
widget = self.create()
self.checkEnumParam(widget, 'justify', 'left', 'right', 'center',
errmsg='bad justification "{}": must be '
'left, right, or center')
self.checkInvalidParam(widget, 'justify', '',
errmsg='ambiguous justification "": must be '
'left, right, or center')
def test_orient(self):
widget = self.create()
self.assertEqual(str(widget['orient']), self.default_orient)
self.checkEnumParam(widget, 'orient', 'horizontal', 'vertical')
def test_padx(self):
widget = self.create()
self.checkPixelsParam(widget, 'padx', 3, 4.4, 5.6, -2, '12m',
conv=self._conv_pad_pixels)
def test_pady(self):
widget = self.create()
self.checkPixelsParam(widget, 'pady', 3, 4.4, 5.6, -2, '12m',
conv=self._conv_pad_pixels)
def test_relief(self):
widget = self.create()
self.checkReliefParam(widget, 'relief')
def test_repeatdelay(self):
widget = self.create()
self.checkIntegerParam(widget, 'repeatdelay', -500, 500)
def test_repeatinterval(self):
widget = self.create()
self.checkIntegerParam(widget, 'repeatinterval', -500, 500)
def test_selectbackground(self):
widget = self.create()
self.checkColorParam(widget, 'selectbackground')
def test_selectborderwidth(self):
widget = self.create()
self.checkPixelsParam(widget, 'selectborderwidth', 1.3, 2.6, -2, '10p')
def test_selectforeground(self):
widget = self.create()
self.checkColorParam(widget, 'selectforeground')
def test_setgrid(self):
widget = self.create()
self.checkBooleanParam(widget, 'setgrid')
def test_state(self):
widget = self.create()
self.checkEnumParam(widget, 'state', 'active', 'disabled', 'normal')
def test_takefocus(self):
widget = self.create()
self.checkParams(widget, 'takefocus', '0', '1', '')
def test_text(self):
widget = self.create()
self.checkParams(widget, 'text', '', 'any string')
def test_textvariable(self):
widget = self.create()
var = tkinter.StringVar(self.root)
self.checkVariableParam(widget, 'textvariable', var)
def test_troughcolor(self):
widget = self.create()
self.checkColorParam(widget, 'troughcolor')
def test_underline(self):
widget = self.create()
self.checkIntegerParam(widget, 'underline', 0, 1, 10)
def test_wraplength(self):
widget = self.create()
self.checkPixelsParam(widget, 'wraplength', 100)
def test_xscrollcommand(self):
widget = self.create()
self.checkCommandParam(widget, 'xscrollcommand')
def test_yscrollcommand(self):
widget = self.create()
self.checkCommandParam(widget, 'yscrollcommand')
# non-standard but common options
def test_command(self):
widget = self.create()
self.checkCommandParam(widget, 'command')
def test_indicatoron(self):
widget = self.create()
self.checkBooleanParam(widget, 'indicatoron')
def test_offrelief(self):
widget = self.create()
self.checkReliefParam(widget, 'offrelief')
def test_overrelief(self):
widget = self.create()
self.checkReliefParam(widget, 'overrelief')
def test_selectcolor(self):
widget = self.create()
self.checkColorParam(widget, 'selectcolor')
def test_selectimage(self):
widget = self.create()
self.checkImageParam(widget, 'selectimage')
@requires_tcl(8, 5)
def test_tristateimage(self):
widget = self.create()
self.checkImageParam(widget, 'tristateimage')
@requires_tcl(8, 5)
def test_tristatevalue(self):
widget = self.create()
self.checkParam(widget, 'tristatevalue', 'unknowable')
def test_variable(self):
widget = self.create()
var = tkinter.DoubleVar(self.root)
self.checkVariableParam(widget, 'variable', var)
class IntegerSizeTests:
def test_height(self):
widget = self.create()
self.checkIntegerParam(widget, 'height', 100, -100, 0)
def test_width(self):
widget = self.create()
self.checkIntegerParam(widget, 'width', 402, -402, 0)
class PixelSizeTests:
def test_height(self):
widget = self.create()
self.checkPixelsParam(widget, 'height', 100, 101.2, 102.6, -100, 0, '3c')
def test_width(self):
widget = self.create()
self.checkPixelsParam(widget, 'width', 402, 403.4, 404.6, -402, 0, '5i')
def add_standard_options(*source_classes):
# This decorator adds test_xxx methods from source classes for every xxx
# option in the OPTIONS class attribute if they are not defined explicitly.
def decorator(cls):
for option in cls.OPTIONS:
methodname = 'test_' + option
if not hasattr(cls, methodname):
for source_class in source_classes:
if hasattr(source_class, methodname):
setattr(cls, methodname,
getattr(source_class, methodname))
break
else:
def test(self, option=option):
widget = self.create()
widget[option]
raise AssertionError('Option "%s" is not tested in %s' %
(option, cls.__name__))
test.__name__ = methodname
setattr(cls, methodname, test)
return cls
return decorator
def setUpModule():
if test.support.verbose:
tcl = tkinter.Tcl()
print('patchlevel =', tcl.call('info', 'patchlevel'))
| 20,069 | 549 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/tkinter/test/__init__.py | 0 | 1 | jart/cosmopolitan | false |
|
cosmopolitan/third_party/python/Lib/tkinter/test/test_ttk/test_functions.py | # -*- encoding: utf-8 -*-
import unittest
from tkinter import ttk
class MockTkApp:
def splitlist(self, arg):
if isinstance(arg, tuple):
return arg
return arg.split(':')
def wantobjects(self):
return True
class MockTclObj(object):
typename = 'test'
def __init__(self, val):
self.val = val
def __str__(self):
return str(self.val)
class MockStateSpec(object):
typename = 'StateSpec'
def __init__(self, *args):
self.val = args
def __str__(self):
return ' '.join(self.val)
class InternalFunctionsTest(unittest.TestCase):
def test_format_optdict(self):
def check_against(fmt_opts, result):
for i in range(0, len(fmt_opts), 2):
self.assertEqual(result.pop(fmt_opts[i]), fmt_opts[i + 1])
if result:
self.fail("result still got elements: %s" % result)
# passing an empty dict should return an empty object (tuple here)
self.assertFalse(ttk._format_optdict({}))
# check list formatting
check_against(
ttk._format_optdict({'fg': 'blue', 'padding': [1, 2, 3, 4]}),
{'-fg': 'blue', '-padding': '1 2 3 4'})
# check tuple formatting (same as list)
check_against(
ttk._format_optdict({'test': (1, 2, '', 0)}),
{'-test': '1 2 {} 0'})
# check untouched values
check_against(
ttk._format_optdict({'test': {'left': 'as is'}}),
{'-test': {'left': 'as is'}})
# check script formatting
check_against(
ttk._format_optdict(
{'test': [1, -1, '', '2m', 0], 'test2': 3,
'test3': '', 'test4': 'abc def',
'test5': '"abc"', 'test6': '{}',
'test7': '} -spam {'}, script=True),
{'-test': '{1 -1 {} 2m 0}', '-test2': '3',
'-test3': '{}', '-test4': '{abc def}',
'-test5': '{"abc"}', '-test6': r'\{\}',
'-test7': r'\}\ -spam\ \{'})
opts = {'αβγ': True, 'á': False}
orig_opts = opts.copy()
# check if giving unicode keys is fine
check_against(ttk._format_optdict(opts), {'-αβγ': True, '-á': False})
# opts should remain unchanged
self.assertEqual(opts, orig_opts)
# passing values with spaces inside a tuple/list
check_against(
ttk._format_optdict(
{'option': ('one two', 'three')}),
{'-option': '{one two} three'})
check_against(
ttk._format_optdict(
{'option': ('one\ttwo', 'three')}),
{'-option': '{one\ttwo} three'})
# passing empty strings inside a tuple/list
check_against(
ttk._format_optdict(
{'option': ('', 'one')}),
{'-option': '{} one'})
# passing values with braces inside a tuple/list
check_against(
ttk._format_optdict(
{'option': ('one} {two', 'three')}),
{'-option': r'one\}\ \{two three'})
# passing quoted strings inside a tuple/list
check_against(
ttk._format_optdict(
{'option': ('"one"', 'two')}),
{'-option': '{"one"} two'})
check_against(
ttk._format_optdict(
{'option': ('{one}', 'two')}),
{'-option': r'\{one\} two'})
# ignore an option
amount_opts = len(ttk._format_optdict(opts, ignore=('á'))) / 2
self.assertEqual(amount_opts, len(opts) - 1)
# ignore non-existing options
amount_opts = len(ttk._format_optdict(opts, ignore=('á', 'b'))) / 2
self.assertEqual(amount_opts, len(opts) - 1)
# ignore every option
self.assertFalse(ttk._format_optdict(opts, ignore=list(opts.keys())))
def test_format_mapdict(self):
opts = {'a': [('b', 'c', 'val'), ('d', 'otherval'), ('', 'single')]}
result = ttk._format_mapdict(opts)
self.assertEqual(len(result), len(list(opts.keys())) * 2)
self.assertEqual(result, ('-a', '{b c} val d otherval {} single'))
self.assertEqual(ttk._format_mapdict(opts, script=True),
('-a', '{{b c} val d otherval {} single}'))
self.assertEqual(ttk._format_mapdict({2: []}), ('-2', ''))
opts = {'üñÃÄódè': [('á', 'vãl')]}
result = ttk._format_mapdict(opts)
self.assertEqual(result, ('-üñÃÄódè', 'á vãl'))
# empty states
valid = {'opt': [('', '', 'hi')]}
self.assertEqual(ttk._format_mapdict(valid), ('-opt', '{ } hi'))
# when passing multiple states, they all must be strings
invalid = {'opt': [(1, 2, 'valid val')]}
self.assertRaises(TypeError, ttk._format_mapdict, invalid)
invalid = {'opt': [([1], '2', 'valid val')]}
self.assertRaises(TypeError, ttk._format_mapdict, invalid)
# but when passing a single state, it can be anything
valid = {'opt': [[1, 'value']]}
self.assertEqual(ttk._format_mapdict(valid), ('-opt', '1 value'))
# special attention to single states which evaluate to False
for stateval in (None, 0, False, '', set()): # just some samples
valid = {'opt': [(stateval, 'value')]}
self.assertEqual(ttk._format_mapdict(valid),
('-opt', '{} value'))
# values must be iterable
opts = {'a': None}
self.assertRaises(TypeError, ttk._format_mapdict, opts)
# items in the value must have size >= 2
self.assertRaises(IndexError, ttk._format_mapdict,
{'a': [('invalid', )]})
def test_format_elemcreate(self):
self.assertTrue(ttk._format_elemcreate(None), (None, ()))
## Testing type = image
# image type expects at least an image name, so this should raise
# IndexError since it tries to access the index 0 of an empty tuple
self.assertRaises(IndexError, ttk._format_elemcreate, 'image')
# don't format returned values as a tcl script
# minimum acceptable for image type
self.assertEqual(ttk._format_elemcreate('image', False, 'test'),
("test ", ()))
# specifying a state spec
self.assertEqual(ttk._format_elemcreate('image', False, 'test',
('', 'a')), ("test {} a", ()))
# state spec with multiple states
self.assertEqual(ttk._format_elemcreate('image', False, 'test',
('a', 'b', 'c')), ("test {a b} c", ()))
# state spec and options
self.assertEqual(ttk._format_elemcreate('image', False, 'test',
('a', 'b'), a='x'), ("test a b", ("-a", "x")))
# format returned values as a tcl script
# state spec with multiple states and an option with a multivalue
self.assertEqual(ttk._format_elemcreate('image', True, 'test',
('a', 'b', 'c', 'd'), x=[2, 3]), ("{test {a b c} d}", "-x {2 3}"))
## Testing type = vsapi
# vsapi type expects at least a class name and a part_id, so this
# should raise a ValueError since it tries to get two elements from
# an empty tuple
self.assertRaises(ValueError, ttk._format_elemcreate, 'vsapi')
# don't format returned values as a tcl script
# minimum acceptable for vsapi
self.assertEqual(ttk._format_elemcreate('vsapi', False, 'a', 'b'),
("a b ", ()))
# now with a state spec with multiple states
self.assertEqual(ttk._format_elemcreate('vsapi', False, 'a', 'b',
('a', 'b', 'c')), ("a b {a b} c", ()))
# state spec and option
self.assertEqual(ttk._format_elemcreate('vsapi', False, 'a', 'b',
('a', 'b'), opt='x'), ("a b a b", ("-opt", "x")))
# format returned values as a tcl script
# state spec with a multivalue and an option
self.assertEqual(ttk._format_elemcreate('vsapi', True, 'a', 'b',
('a', 'b', [1, 2]), opt='x'), ("{a b {a b} {1 2}}", "-opt x"))
# Testing type = from
# from type expects at least a type name
self.assertRaises(IndexError, ttk._format_elemcreate, 'from')
self.assertEqual(ttk._format_elemcreate('from', False, 'a'),
('a', ()))
self.assertEqual(ttk._format_elemcreate('from', False, 'a', 'b'),
('a', ('b', )))
self.assertEqual(ttk._format_elemcreate('from', True, 'a', 'b'),
('{a}', 'b'))
def test_format_layoutlist(self):
def sample(indent=0, indent_size=2):
return ttk._format_layoutlist(
[('a', {'other': [1, 2, 3], 'children':
[('b', {'children':
[('c', {'children':
[('d', {'nice': 'opt'})], 'something': (1, 2)
})]
})]
})], indent=indent, indent_size=indent_size)[0]
def sample_expected(indent=0, indent_size=2):
spaces = lambda amount=0: ' ' * (amount + indent)
return (
"%sa -other {1 2 3} -children {\n"
"%sb -children {\n"
"%sc -something {1 2} -children {\n"
"%sd -nice opt\n"
"%s}\n"
"%s}\n"
"%s}" % (spaces(), spaces(indent_size),
spaces(2 * indent_size), spaces(3 * indent_size),
spaces(2 * indent_size), spaces(indent_size), spaces()))
# empty layout
self.assertEqual(ttk._format_layoutlist([])[0], '')
# _format_layoutlist always expects the second item (in every item)
# to act like a dict (except when the value evaluates to False).
self.assertRaises(AttributeError,
ttk._format_layoutlist, [('a', 'b')])
smallest = ttk._format_layoutlist([('a', None)], indent=0)
self.assertEqual(smallest,
ttk._format_layoutlist([('a', '')], indent=0))
self.assertEqual(smallest[0], 'a')
# testing indentation levels
self.assertEqual(sample(), sample_expected())
for i in range(4):
self.assertEqual(sample(i), sample_expected(i))
self.assertEqual(sample(i, i), sample_expected(i, i))
# invalid layout format, different kind of exceptions will be
# raised by internal functions
# plain wrong format
self.assertRaises(ValueError, ttk._format_layoutlist,
['bad', 'format'])
# will try to use iteritems in the 'bad' string
self.assertRaises(AttributeError, ttk._format_layoutlist,
[('name', 'bad')])
# bad children formatting
self.assertRaises(ValueError, ttk._format_layoutlist,
[('name', {'children': {'a': None}})])
def test_script_from_settings(self):
# empty options
self.assertFalse(ttk._script_from_settings({'name':
{'configure': None, 'map': None, 'element create': None}}))
# empty layout
self.assertEqual(
ttk._script_from_settings({'name': {'layout': None}}),
"ttk::style layout name {\nnull\n}")
configdict = {'αβγ': True, 'á': False}
self.assertTrue(
ttk._script_from_settings({'name': {'configure': configdict}}))
mapdict = {'üñÃÄódè': [('á', 'vãl')]}
self.assertTrue(
ttk._script_from_settings({'name': {'map': mapdict}}))
# invalid image element
self.assertRaises(IndexError,
ttk._script_from_settings, {'name': {'element create': ['image']}})
# minimal valid image
self.assertTrue(ttk._script_from_settings({'name':
{'element create': ['image', 'name']}}))
image = {'thing': {'element create':
['image', 'name', ('state1', 'state2', 'val')]}}
self.assertEqual(ttk._script_from_settings(image),
"ttk::style element create thing image {name {state1 state2} val} ")
image['thing']['element create'].append({'opt': 30})
self.assertEqual(ttk._script_from_settings(image),
"ttk::style element create thing image {name {state1 state2} val} "
"-opt 30")
image['thing']['element create'][-1]['opt'] = [MockTclObj(3),
MockTclObj('2m')]
self.assertEqual(ttk._script_from_settings(image),
"ttk::style element create thing image {name {state1 state2} val} "
"-opt {3 2m}")
def test_tclobj_to_py(self):
self.assertEqual(
ttk._tclobj_to_py((MockStateSpec('a', 'b'), 'val')),
[('a', 'b', 'val')])
self.assertEqual(
ttk._tclobj_to_py([MockTclObj('1'), 2, MockTclObj('3m')]),
[1, 2, '3m'])
def test_list_from_statespec(self):
def test_it(sspec, value, res_value, states):
self.assertEqual(ttk._list_from_statespec(
(sspec, value)), [states + (res_value, )])
states_even = tuple('state%d' % i for i in range(6))
statespec = MockStateSpec(*states_even)
test_it(statespec, 'val', 'val', states_even)
test_it(statespec, MockTclObj('val'), 'val', states_even)
states_odd = tuple('state%d' % i for i in range(5))
statespec = MockStateSpec(*states_odd)
test_it(statespec, 'val', 'val', states_odd)
test_it(('a', 'b', 'c'), MockTclObj('val'), 'val', ('a', 'b', 'c'))
def test_list_from_layouttuple(self):
tk = MockTkApp()
# empty layout tuple
self.assertFalse(ttk._list_from_layouttuple(tk, ()))
# shortest layout tuple
self.assertEqual(ttk._list_from_layouttuple(tk, ('name', )),
[('name', {})])
# not so interesting ltuple
sample_ltuple = ('name', '-option', 'value')
self.assertEqual(ttk._list_from_layouttuple(tk, sample_ltuple),
[('name', {'option': 'value'})])
# empty children
self.assertEqual(ttk._list_from_layouttuple(tk,
('something', '-children', ())),
[('something', {'children': []})]
)
# more interesting ltuple
ltuple = (
'name', '-option', 'niceone', '-children', (
('otherone', '-children', (
('child', )), '-otheropt', 'othervalue'
)
)
)
self.assertEqual(ttk._list_from_layouttuple(tk, ltuple),
[('name', {'option': 'niceone', 'children':
[('otherone', {'otheropt': 'othervalue', 'children':
[('child', {})]
})]
})]
)
# bad tuples
self.assertRaises(ValueError, ttk._list_from_layouttuple, tk,
('name', 'no_minus'))
self.assertRaises(ValueError, ttk._list_from_layouttuple, tk,
('name', 'no_minus', 'value'))
self.assertRaises(ValueError, ttk._list_from_layouttuple, tk,
('something', '-children')) # no children
def test_val_or_dict(self):
def func(res, opt=None, val=None):
if opt is None:
return res
if val is None:
return "test val"
return (opt, val)
tk = MockTkApp()
tk.call = func
self.assertEqual(ttk._val_or_dict(tk, {}, '-test:3'),
{'test': '3'})
self.assertEqual(ttk._val_or_dict(tk, {}, ('-test', 3)),
{'test': 3})
self.assertEqual(ttk._val_or_dict(tk, {'test': None}, 'x:y'),
'test val')
self.assertEqual(ttk._val_or_dict(tk, {'test': 3}, 'x:y'),
{'test': 3})
def test_convert_stringval(self):
tests = (
(0, 0), ('09', 9), ('a', 'a'), ('áÃ', 'áÃ'), ([], '[]'),
(None, 'None')
)
for orig, expected in tests:
self.assertEqual(ttk._convert_stringval(orig), expected)
class TclObjsToPyTest(unittest.TestCase):
def test_unicode(self):
adict = {'opt': 'välúè'}
self.assertEqual(ttk.tclobjs_to_py(adict), {'opt': 'välúè'})
adict['opt'] = MockTclObj(adict['opt'])
self.assertEqual(ttk.tclobjs_to_py(adict), {'opt': 'välúè'})
def test_multivalues(self):
adict = {'opt': [1, 2, 3, 4]}
self.assertEqual(ttk.tclobjs_to_py(adict), {'opt': [1, 2, 3, 4]})
adict['opt'] = [1, 'xm', 3]
self.assertEqual(ttk.tclobjs_to_py(adict), {'opt': [1, 'xm', 3]})
adict['opt'] = (MockStateSpec('a', 'b'), 'válũè')
self.assertEqual(ttk.tclobjs_to_py(adict),
{'opt': [('a', 'b', 'válũè')]})
self.assertEqual(ttk.tclobjs_to_py({'x': ['y z']}),
{'x': ['y z']})
def test_nosplit(self):
self.assertEqual(ttk.tclobjs_to_py({'text': 'some text'}),
{'text': 'some text'})
tests_nogui = (InternalFunctionsTest, TclObjsToPyTest)
if __name__ == "__main__":
from test.support import run_unittest
run_unittest(*tests_nogui)
| 17,129 | 462 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/tkinter/test/test_ttk/test_widgets.py | import unittest
import tkinter
from tkinter import ttk, TclError
from test.support import requires
import sys
from tkinter.test.test_ttk.test_functions import MockTclObj
from tkinter.test.support import (AbstractTkTest, tcl_version, get_tk_patchlevel,
simulate_mouse_click)
from tkinter.test.widget_tests import (add_standard_options, noconv,
AbstractWidgetTest, StandardOptionsTests, IntegerSizeTests, PixelSizeTests,
setUpModule)
requires('gui')
class StandardTtkOptionsTests(StandardOptionsTests):
def test_class(self):
widget = self.create()
self.assertEqual(widget['class'], '')
errmsg='attempt to change read-only option'
if get_tk_patchlevel() < (8, 6, 0, 'beta', 3):
errmsg='Attempt to change read-only option'
self.checkInvalidParam(widget, 'class', 'Foo', errmsg=errmsg)
widget2 = self.create(class_='Foo')
self.assertEqual(widget2['class'], 'Foo')
def test_padding(self):
widget = self.create()
self.checkParam(widget, 'padding', 0, expected=('0',))
self.checkParam(widget, 'padding', 5, expected=('5',))
self.checkParam(widget, 'padding', (5, 6), expected=('5', '6'))
self.checkParam(widget, 'padding', (5, 6, 7),
expected=('5', '6', '7'))
self.checkParam(widget, 'padding', (5, 6, 7, 8),
expected=('5', '6', '7', '8'))
self.checkParam(widget, 'padding', ('5p', '6p', '7p', '8p'))
self.checkParam(widget, 'padding', (), expected='')
def test_style(self):
widget = self.create()
self.assertEqual(widget['style'], '')
errmsg = 'Layout Foo not found'
if hasattr(self, 'default_orient'):
errmsg = ('Layout %s.Foo not found' %
getattr(self, 'default_orient').title())
self.checkInvalidParam(widget, 'style', 'Foo',
errmsg=errmsg)
widget2 = self.create(class_='Foo')
self.assertEqual(widget2['class'], 'Foo')
# XXX
pass
class WidgetTest(AbstractTkTest, unittest.TestCase):
"""Tests methods available in every ttk widget."""
def setUp(self):
super().setUp()
self.widget = ttk.Button(self.root, width=0, text="Text")
self.widget.pack()
self.widget.wait_visibility()
def test_identify(self):
self.widget.update_idletasks()
self.assertEqual(self.widget.identify(
int(self.widget.winfo_width() / 2),
int(self.widget.winfo_height() / 2)
), "label")
self.assertEqual(self.widget.identify(-1, -1), "")
self.assertRaises(tkinter.TclError, self.widget.identify, None, 5)
self.assertRaises(tkinter.TclError, self.widget.identify, 5, None)
self.assertRaises(tkinter.TclError, self.widget.identify, 5, '')
def test_widget_state(self):
# XXX not sure about the portability of all these tests
self.assertEqual(self.widget.state(), ())
self.assertEqual(self.widget.instate(['!disabled']), True)
# changing from !disabled to disabled
self.assertEqual(self.widget.state(['disabled']), ('!disabled', ))
# no state change
self.assertEqual(self.widget.state(['disabled']), ())
# change back to !disable but also active
self.assertEqual(self.widget.state(['!disabled', 'active']),
('!active', 'disabled'))
# no state changes, again
self.assertEqual(self.widget.state(['!disabled', 'active']), ())
self.assertEqual(self.widget.state(['active', '!disabled']), ())
def test_cb(arg1, **kw):
return arg1, kw
self.assertEqual(self.widget.instate(['!disabled'],
test_cb, "hi", **{"msg": "there"}),
('hi', {'msg': 'there'}))
# attempt to set invalid statespec
currstate = self.widget.state()
self.assertRaises(tkinter.TclError, self.widget.instate,
['badstate'])
self.assertRaises(tkinter.TclError, self.widget.instate,
['disabled', 'badstate'])
# verify that widget didn't change its state
self.assertEqual(currstate, self.widget.state())
# ensuring that passing None as state doesn't modify current state
self.widget.state(['active', '!disabled'])
self.assertEqual(self.widget.state(), ('active', ))
class AbstractToplevelTest(AbstractWidgetTest, PixelSizeTests):
_conv_pixels = noconv
@add_standard_options(StandardTtkOptionsTests)
class FrameTest(AbstractToplevelTest, unittest.TestCase):
OPTIONS = (
'borderwidth', 'class', 'cursor', 'height',
'padding', 'relief', 'style', 'takefocus',
'width',
)
def create(self, **kwargs):
return ttk.Frame(self.root, **kwargs)
@add_standard_options(StandardTtkOptionsTests)
class LabelFrameTest(AbstractToplevelTest, unittest.TestCase):
OPTIONS = (
'borderwidth', 'class', 'cursor', 'height',
'labelanchor', 'labelwidget',
'padding', 'relief', 'style', 'takefocus',
'text', 'underline', 'width',
)
def create(self, **kwargs):
return ttk.LabelFrame(self.root, **kwargs)
def test_labelanchor(self):
widget = self.create()
self.checkEnumParam(widget, 'labelanchor',
'e', 'en', 'es', 'n', 'ne', 'nw', 's', 'se', 'sw', 'w', 'wn', 'ws',
errmsg='Bad label anchor specification {}')
self.checkInvalidParam(widget, 'labelanchor', 'center')
def test_labelwidget(self):
widget = self.create()
label = ttk.Label(self.root, text='Mupp', name='foo')
self.checkParam(widget, 'labelwidget', label, expected='.foo')
label.destroy()
class AbstractLabelTest(AbstractWidgetTest):
def checkImageParam(self, widget, name):
image = tkinter.PhotoImage(master=self.root, name='image1')
image2 = tkinter.PhotoImage(master=self.root, name='image2')
self.checkParam(widget, name, image, expected=('image1',))
self.checkParam(widget, name, 'image1', expected=('image1',))
self.checkParam(widget, name, (image,), expected=('image1',))
self.checkParam(widget, name, (image, 'active', image2),
expected=('image1', 'active', 'image2'))
self.checkParam(widget, name, 'image1 active image2',
expected=('image1', 'active', 'image2'))
self.checkInvalidParam(widget, name, 'spam',
errmsg='image "spam" doesn\'t exist')
def test_compound(self):
widget = self.create()
self.checkEnumParam(widget, 'compound',
'none', 'text', 'image', 'center',
'top', 'bottom', 'left', 'right')
def test_state(self):
widget = self.create()
self.checkParams(widget, 'state', 'active', 'disabled', 'normal')
def test_width(self):
widget = self.create()
self.checkParams(widget, 'width', 402, -402, 0)
@add_standard_options(StandardTtkOptionsTests)
class LabelTest(AbstractLabelTest, unittest.TestCase):
OPTIONS = (
'anchor', 'background', 'borderwidth',
'class', 'compound', 'cursor', 'font', 'foreground',
'image', 'justify', 'padding', 'relief', 'state', 'style',
'takefocus', 'text', 'textvariable',
'underline', 'width', 'wraplength',
)
_conv_pixels = noconv
def create(self, **kwargs):
return ttk.Label(self.root, **kwargs)
def test_font(self):
widget = self.create()
self.checkParam(widget, 'font',
'-Adobe-Helvetica-Medium-R-Normal--*-120-*-*-*-*-*-*')
@add_standard_options(StandardTtkOptionsTests)
class ButtonTest(AbstractLabelTest, unittest.TestCase):
OPTIONS = (
'class', 'command', 'compound', 'cursor', 'default',
'image', 'padding', 'state', 'style',
'takefocus', 'text', 'textvariable',
'underline', 'width',
)
def create(self, **kwargs):
return ttk.Button(self.root, **kwargs)
def test_default(self):
widget = self.create()
self.checkEnumParam(widget, 'default', 'normal', 'active', 'disabled')
def test_invoke(self):
success = []
btn = ttk.Button(self.root, command=lambda: success.append(1))
btn.invoke()
self.assertTrue(success)
@add_standard_options(StandardTtkOptionsTests)
class CheckbuttonTest(AbstractLabelTest, unittest.TestCase):
OPTIONS = (
'class', 'command', 'compound', 'cursor',
'image',
'offvalue', 'onvalue',
'padding', 'state', 'style',
'takefocus', 'text', 'textvariable',
'underline', 'variable', 'width',
)
def create(self, **kwargs):
return ttk.Checkbutton(self.root, **kwargs)
def test_offvalue(self):
widget = self.create()
self.checkParams(widget, 'offvalue', 1, 2.3, '', 'any string')
def test_onvalue(self):
widget = self.create()
self.checkParams(widget, 'onvalue', 1, 2.3, '', 'any string')
def test_invoke(self):
success = []
def cb_test():
success.append(1)
return "cb test called"
cbtn = ttk.Checkbutton(self.root, command=cb_test)
# the variable automatically created by ttk.Checkbutton is actually
# undefined till we invoke the Checkbutton
self.assertEqual(cbtn.state(), ('alternate', ))
self.assertRaises(tkinter.TclError, cbtn.tk.globalgetvar,
cbtn['variable'])
res = cbtn.invoke()
self.assertEqual(res, "cb test called")
self.assertEqual(cbtn['onvalue'],
cbtn.tk.globalgetvar(cbtn['variable']))
self.assertTrue(success)
cbtn['command'] = ''
res = cbtn.invoke()
self.assertFalse(str(res))
self.assertLessEqual(len(success), 1)
self.assertEqual(cbtn['offvalue'],
cbtn.tk.globalgetvar(cbtn['variable']))
@add_standard_options(IntegerSizeTests, StandardTtkOptionsTests)
class EntryTest(AbstractWidgetTest, unittest.TestCase):
OPTIONS = (
'background', 'class', 'cursor',
'exportselection', 'font', 'foreground',
'invalidcommand', 'justify',
'show', 'state', 'style', 'takefocus', 'textvariable',
'validate', 'validatecommand', 'width', 'xscrollcommand',
)
def setUp(self):
super().setUp()
self.entry = self.create()
def create(self, **kwargs):
return ttk.Entry(self.root, **kwargs)
def test_invalidcommand(self):
widget = self.create()
self.checkCommandParam(widget, 'invalidcommand')
def test_show(self):
widget = self.create()
self.checkParam(widget, 'show', '*')
self.checkParam(widget, 'show', '')
self.checkParam(widget, 'show', ' ')
def test_state(self):
widget = self.create()
self.checkParams(widget, 'state',
'disabled', 'normal', 'readonly')
def test_validate(self):
widget = self.create()
self.checkEnumParam(widget, 'validate',
'all', 'key', 'focus', 'focusin', 'focusout', 'none')
def test_validatecommand(self):
widget = self.create()
self.checkCommandParam(widget, 'validatecommand')
def test_bbox(self):
self.assertIsBoundingBox(self.entry.bbox(0))
self.assertRaises(tkinter.TclError, self.entry.bbox, 'noindex')
self.assertRaises(tkinter.TclError, self.entry.bbox, None)
def test_identify(self):
self.entry.pack()
self.entry.wait_visibility()
self.entry.update_idletasks()
# bpo-27313: macOS Cocoa widget differs from X, allow either
if sys.platform == 'darwin':
self.assertIn(self.entry.identify(5, 5),
("textarea", "Combobox.button") )
else:
self.assertEqual(self.entry.identify(5, 5), "textarea")
self.assertEqual(self.entry.identify(-1, -1), "")
self.assertRaises(tkinter.TclError, self.entry.identify, None, 5)
self.assertRaises(tkinter.TclError, self.entry.identify, 5, None)
self.assertRaises(tkinter.TclError, self.entry.identify, 5, '')
def test_validation_options(self):
success = []
test_invalid = lambda: success.append(True)
self.entry['validate'] = 'none'
self.entry['validatecommand'] = lambda: False
self.entry['invalidcommand'] = test_invalid
self.entry.validate()
self.assertTrue(success)
self.entry['invalidcommand'] = ''
self.entry.validate()
self.assertEqual(len(success), 1)
self.entry['invalidcommand'] = test_invalid
self.entry['validatecommand'] = lambda: True
self.entry.validate()
self.assertEqual(len(success), 1)
self.entry['validatecommand'] = ''
self.entry.validate()
self.assertEqual(len(success), 1)
self.entry['validatecommand'] = True
self.assertRaises(tkinter.TclError, self.entry.validate)
def test_validation(self):
validation = []
def validate(to_insert):
if not 'a' <= to_insert.lower() <= 'z':
validation.append(False)
return False
validation.append(True)
return True
self.entry['validate'] = 'key'
self.entry['validatecommand'] = self.entry.register(validate), '%S'
self.entry.insert('end', 1)
self.entry.insert('end', 'a')
self.assertEqual(validation, [False, True])
self.assertEqual(self.entry.get(), 'a')
def test_revalidation(self):
def validate(content):
for letter in content:
if not 'a' <= letter.lower() <= 'z':
return False
return True
self.entry['validatecommand'] = self.entry.register(validate), '%P'
self.entry.insert('end', 'avocado')
self.assertEqual(self.entry.validate(), True)
self.assertEqual(self.entry.state(), ())
self.entry.delete(0, 'end')
self.assertEqual(self.entry.get(), '')
self.entry.insert('end', 'a1b')
self.assertEqual(self.entry.validate(), False)
self.assertEqual(self.entry.state(), ('invalid', ))
self.entry.delete(1)
self.assertEqual(self.entry.validate(), True)
self.assertEqual(self.entry.state(), ())
@add_standard_options(IntegerSizeTests, StandardTtkOptionsTests)
class ComboboxTest(EntryTest, unittest.TestCase):
OPTIONS = (
'background', 'class', 'cursor', 'exportselection',
'font', 'foreground', 'height', 'invalidcommand',
'justify', 'postcommand', 'show', 'state', 'style',
'takefocus', 'textvariable',
'validate', 'validatecommand', 'values',
'width', 'xscrollcommand',
)
def setUp(self):
super().setUp()
self.combo = self.create()
def create(self, **kwargs):
return ttk.Combobox(self.root, **kwargs)
def test_height(self):
widget = self.create()
self.checkParams(widget, 'height', 100, 101.2, 102.6, -100, 0, '1i')
def _show_drop_down_listbox(self):
width = self.combo.winfo_width()
self.combo.event_generate('<ButtonPress-1>', x=width - 5, y=5)
self.combo.event_generate('<ButtonRelease-1>', x=width - 5, y=5)
self.combo.update_idletasks()
def test_virtual_event(self):
success = []
self.combo['values'] = [1]
self.combo.bind('<<ComboboxSelected>>',
lambda evt: success.append(True))
self.combo.pack()
self.combo.wait_visibility()
height = self.combo.winfo_height()
self._show_drop_down_listbox()
self.combo.update()
self.combo.event_generate('<Return>')
self.combo.update()
self.assertTrue(success)
def test_postcommand(self):
success = []
self.combo['postcommand'] = lambda: success.append(True)
self.combo.pack()
self.combo.wait_visibility()
self._show_drop_down_listbox()
self.assertTrue(success)
# testing postcommand removal
self.combo['postcommand'] = ''
self._show_drop_down_listbox()
self.assertEqual(len(success), 1)
def test_values(self):
def check_get_current(getval, currval):
self.assertEqual(self.combo.get(), getval)
self.assertEqual(self.combo.current(), currval)
self.assertEqual(self.combo['values'],
() if tcl_version < (8, 5) else '')
check_get_current('', -1)
self.checkParam(self.combo, 'values', 'mon tue wed thur',
expected=('mon', 'tue', 'wed', 'thur'))
self.checkParam(self.combo, 'values', ('mon', 'tue', 'wed', 'thur'))
self.checkParam(self.combo, 'values', (42, 3.14, '', 'any string'))
self.checkParam(self.combo, 'values', '',
expected='' if get_tk_patchlevel() < (8, 5, 10) else ())
self.combo['values'] = ['a', 1, 'c']
self.combo.set('c')
check_get_current('c', 2)
self.combo.current(0)
check_get_current('a', 0)
self.combo.set('d')
check_get_current('d', -1)
# testing values with empty string
self.combo.set('')
self.combo['values'] = (1, 2, '', 3)
check_get_current('', 2)
# testing values with empty string set through configure
self.combo.configure(values=[1, '', 2])
self.assertEqual(self.combo['values'],
('1', '', '2') if self.wantobjects else
'1 {} 2')
# testing values with spaces
self.combo['values'] = ['a b', 'a\tb', 'a\nb']
self.assertEqual(self.combo['values'],
('a b', 'a\tb', 'a\nb') if self.wantobjects else
'{a b} {a\tb} {a\nb}')
# testing values with special characters
self.combo['values'] = [r'a\tb', '"a"', '} {']
self.assertEqual(self.combo['values'],
(r'a\tb', '"a"', '} {') if self.wantobjects else
r'a\\tb {"a"} \}\ \{')
# out of range
self.assertRaises(tkinter.TclError, self.combo.current,
len(self.combo['values']))
# it expects an integer (or something that can be converted to int)
self.assertRaises(tkinter.TclError, self.combo.current, '')
# testing creating combobox with empty string in values
combo2 = ttk.Combobox(self.root, values=[1, 2, ''])
self.assertEqual(combo2['values'],
('1', '2', '') if self.wantobjects else '1 2 {}')
combo2.destroy()
@add_standard_options(IntegerSizeTests, StandardTtkOptionsTests)
class PanedWindowTest(AbstractWidgetTest, unittest.TestCase):
OPTIONS = (
'class', 'cursor', 'height',
'orient', 'style', 'takefocus', 'width',
)
def setUp(self):
super().setUp()
self.paned = self.create()
def create(self, **kwargs):
return ttk.PanedWindow(self.root, **kwargs)
def test_orient(self):
widget = self.create()
self.assertEqual(str(widget['orient']), 'vertical')
errmsg='attempt to change read-only option'
if get_tk_patchlevel() < (8, 6, 0, 'beta', 3):
errmsg='Attempt to change read-only option'
self.checkInvalidParam(widget, 'orient', 'horizontal',
errmsg=errmsg)
widget2 = self.create(orient='horizontal')
self.assertEqual(str(widget2['orient']), 'horizontal')
def test_add(self):
# attempt to add a child that is not a direct child of the paned window
label = ttk.Label(self.paned)
child = ttk.Label(label)
self.assertRaises(tkinter.TclError, self.paned.add, child)
label.destroy()
child.destroy()
# another attempt
label = ttk.Label(self.root)
child = ttk.Label(label)
self.assertRaises(tkinter.TclError, self.paned.add, child)
child.destroy()
label.destroy()
good_child = ttk.Label(self.root)
self.paned.add(good_child)
# re-adding a child is not accepted
self.assertRaises(tkinter.TclError, self.paned.add, good_child)
other_child = ttk.Label(self.paned)
self.paned.add(other_child)
self.assertEqual(self.paned.pane(0), self.paned.pane(1))
self.assertRaises(tkinter.TclError, self.paned.pane, 2)
good_child.destroy()
other_child.destroy()
self.assertRaises(tkinter.TclError, self.paned.pane, 0)
def test_forget(self):
self.assertRaises(tkinter.TclError, self.paned.forget, None)
self.assertRaises(tkinter.TclError, self.paned.forget, 0)
self.paned.add(ttk.Label(self.root))
self.paned.forget(0)
self.assertRaises(tkinter.TclError, self.paned.forget, 0)
def test_insert(self):
self.assertRaises(tkinter.TclError, self.paned.insert, None, 0)
self.assertRaises(tkinter.TclError, self.paned.insert, 0, None)
self.assertRaises(tkinter.TclError, self.paned.insert, 0, 0)
child = ttk.Label(self.root)
child2 = ttk.Label(self.root)
child3 = ttk.Label(self.root)
self.assertRaises(tkinter.TclError, self.paned.insert, 0, child)
self.paned.insert('end', child2)
self.paned.insert(0, child)
self.assertEqual(self.paned.panes(), (str(child), str(child2)))
self.paned.insert(0, child2)
self.assertEqual(self.paned.panes(), (str(child2), str(child)))
self.paned.insert('end', child3)
self.assertEqual(self.paned.panes(),
(str(child2), str(child), str(child3)))
# reinserting a child should move it to its current position
panes = self.paned.panes()
self.paned.insert('end', child3)
self.assertEqual(panes, self.paned.panes())
# moving child3 to child2 position should result in child2 ending up
# in previous child position and child ending up in previous child3
# position
self.paned.insert(child2, child3)
self.assertEqual(self.paned.panes(),
(str(child3), str(child2), str(child)))
def test_pane(self):
self.assertRaises(tkinter.TclError, self.paned.pane, 0)
child = ttk.Label(self.root)
self.paned.add(child)
self.assertIsInstance(self.paned.pane(0), dict)
self.assertEqual(self.paned.pane(0, weight=None),
0 if self.wantobjects else '0')
# newer form for querying a single option
self.assertEqual(self.paned.pane(0, 'weight'),
0 if self.wantobjects else '0')
self.assertEqual(self.paned.pane(0), self.paned.pane(str(child)))
self.assertRaises(tkinter.TclError, self.paned.pane, 0,
badoption='somevalue')
def test_sashpos(self):
self.assertRaises(tkinter.TclError, self.paned.sashpos, None)
self.assertRaises(tkinter.TclError, self.paned.sashpos, '')
self.assertRaises(tkinter.TclError, self.paned.sashpos, 0)
child = ttk.Label(self.paned, text='a')
self.paned.add(child, weight=1)
self.assertRaises(tkinter.TclError, self.paned.sashpos, 0)
child2 = ttk.Label(self.paned, text='b')
self.paned.add(child2)
self.assertRaises(tkinter.TclError, self.paned.sashpos, 1)
self.paned.pack(expand=True, fill='both')
self.paned.wait_visibility()
curr_pos = self.paned.sashpos(0)
self.paned.sashpos(0, 1000)
self.assertNotEqual(curr_pos, self.paned.sashpos(0))
self.assertIsInstance(self.paned.sashpos(0), int)
@add_standard_options(StandardTtkOptionsTests)
class RadiobuttonTest(AbstractLabelTest, unittest.TestCase):
OPTIONS = (
'class', 'command', 'compound', 'cursor',
'image',
'padding', 'state', 'style',
'takefocus', 'text', 'textvariable',
'underline', 'value', 'variable', 'width',
)
def create(self, **kwargs):
return ttk.Radiobutton(self.root, **kwargs)
def test_value(self):
widget = self.create()
self.checkParams(widget, 'value', 1, 2.3, '', 'any string')
def test_invoke(self):
success = []
def cb_test():
success.append(1)
return "cb test called"
myvar = tkinter.IntVar(self.root)
cbtn = ttk.Radiobutton(self.root, command=cb_test,
variable=myvar, value=0)
cbtn2 = ttk.Radiobutton(self.root, command=cb_test,
variable=myvar, value=1)
if self.wantobjects:
conv = lambda x: x
else:
conv = int
res = cbtn.invoke()
self.assertEqual(res, "cb test called")
self.assertEqual(conv(cbtn['value']), myvar.get())
self.assertEqual(myvar.get(),
conv(cbtn.tk.globalgetvar(cbtn['variable'])))
self.assertTrue(success)
cbtn2['command'] = ''
res = cbtn2.invoke()
self.assertEqual(str(res), '')
self.assertLessEqual(len(success), 1)
self.assertEqual(conv(cbtn2['value']), myvar.get())
self.assertEqual(myvar.get(),
conv(cbtn.tk.globalgetvar(cbtn['variable'])))
self.assertEqual(str(cbtn['variable']), str(cbtn2['variable']))
class MenubuttonTest(AbstractLabelTest, unittest.TestCase):
OPTIONS = (
'class', 'compound', 'cursor', 'direction',
'image', 'menu', 'padding', 'state', 'style',
'takefocus', 'text', 'textvariable',
'underline', 'width',
)
def create(self, **kwargs):
return ttk.Menubutton(self.root, **kwargs)
def test_direction(self):
widget = self.create()
self.checkEnumParam(widget, 'direction',
'above', 'below', 'left', 'right', 'flush')
def test_menu(self):
widget = self.create()
menu = tkinter.Menu(widget, name='menu')
self.checkParam(widget, 'menu', menu, conv=str)
menu.destroy()
@add_standard_options(StandardTtkOptionsTests)
class ScaleTest(AbstractWidgetTest, unittest.TestCase):
OPTIONS = (
'class', 'command', 'cursor', 'from', 'length',
'orient', 'style', 'takefocus', 'to', 'value', 'variable',
)
_conv_pixels = noconv
default_orient = 'horizontal'
def setUp(self):
super().setUp()
self.scale = self.create()
self.scale.pack()
self.scale.update()
def create(self, **kwargs):
return ttk.Scale(self.root, **kwargs)
def test_from(self):
widget = self.create()
self.checkFloatParam(widget, 'from', 100, 14.9, 15.1, conv=False)
def test_length(self):
widget = self.create()
self.checkPixelsParam(widget, 'length', 130, 131.2, 135.6, '5i')
def test_to(self):
widget = self.create()
self.checkFloatParam(widget, 'to', 300, 14.9, 15.1, -10, conv=False)
def test_value(self):
widget = self.create()
self.checkFloatParam(widget, 'value', 300, 14.9, 15.1, -10, conv=False)
def test_custom_event(self):
failure = [1, 1, 1] # will need to be empty
funcid = self.scale.bind('<<RangeChanged>>', lambda evt: failure.pop())
self.scale['from'] = 10
self.scale['from_'] = 10
self.scale['to'] = 3
self.assertFalse(failure)
failure = [1, 1, 1]
self.scale.configure(from_=2, to=5)
self.scale.configure(from_=0, to=-2)
self.scale.configure(to=10)
self.assertFalse(failure)
def test_get(self):
if self.wantobjects:
conv = lambda x: x
else:
conv = float
scale_width = self.scale.winfo_width()
self.assertEqual(self.scale.get(scale_width, 0), self.scale['to'])
self.assertEqual(conv(self.scale.get(0, 0)), conv(self.scale['from']))
self.assertEqual(self.scale.get(), self.scale['value'])
self.scale['value'] = 30
self.assertEqual(self.scale.get(), self.scale['value'])
self.assertRaises(tkinter.TclError, self.scale.get, '', 0)
self.assertRaises(tkinter.TclError, self.scale.get, 0, '')
def test_set(self):
if self.wantobjects:
conv = lambda x: x
else:
conv = float
# set restricts the max/min values according to the current range
max = conv(self.scale['to'])
new_max = max + 10
self.scale.set(new_max)
self.assertEqual(conv(self.scale.get()), max)
min = conv(self.scale['from'])
self.scale.set(min - 1)
self.assertEqual(conv(self.scale.get()), min)
# changing directly the variable doesn't impose this limitation tho
var = tkinter.DoubleVar(self.root)
self.scale['variable'] = var
var.set(max + 5)
self.assertEqual(conv(self.scale.get()), var.get())
self.assertEqual(conv(self.scale.get()), max + 5)
del var
# the same happens with the value option
self.scale['value'] = max + 10
self.assertEqual(conv(self.scale.get()), max + 10)
self.assertEqual(conv(self.scale.get()), conv(self.scale['value']))
# nevertheless, note that the max/min values we can get specifying
# x, y coords are the ones according to the current range
self.assertEqual(conv(self.scale.get(0, 0)), min)
self.assertEqual(conv(self.scale.get(self.scale.winfo_width(), 0)), max)
self.assertRaises(tkinter.TclError, self.scale.set, None)
@add_standard_options(StandardTtkOptionsTests)
class ProgressbarTest(AbstractWidgetTest, unittest.TestCase):
OPTIONS = (
'class', 'cursor', 'orient', 'length',
'mode', 'maximum', 'phase',
'style', 'takefocus', 'value', 'variable',
)
_conv_pixels = noconv
default_orient = 'horizontal'
def create(self, **kwargs):
return ttk.Progressbar(self.root, **kwargs)
def test_length(self):
widget = self.create()
self.checkPixelsParam(widget, 'length', 100.1, 56.7, '2i')
def test_maximum(self):
widget = self.create()
self.checkFloatParam(widget, 'maximum', 150.2, 77.7, 0, -10, conv=False)
def test_mode(self):
widget = self.create()
self.checkEnumParam(widget, 'mode', 'determinate', 'indeterminate')
def test_phase(self):
# XXX
pass
def test_value(self):
widget = self.create()
self.checkFloatParam(widget, 'value', 150.2, 77.7, 0, -10,
conv=False)
@unittest.skipIf(sys.platform == 'darwin',
'ttk.Scrollbar is special on MacOSX')
@add_standard_options(StandardTtkOptionsTests)
class ScrollbarTest(AbstractWidgetTest, unittest.TestCase):
OPTIONS = (
'class', 'command', 'cursor', 'orient', 'style', 'takefocus',
)
default_orient = 'vertical'
def create(self, **kwargs):
return ttk.Scrollbar(self.root, **kwargs)
@add_standard_options(IntegerSizeTests, StandardTtkOptionsTests)
class NotebookTest(AbstractWidgetTest, unittest.TestCase):
OPTIONS = (
'class', 'cursor', 'height', 'padding', 'style', 'takefocus', 'width',
)
def setUp(self):
super().setUp()
self.nb = self.create(padding=0)
self.child1 = ttk.Label(self.root)
self.child2 = ttk.Label(self.root)
self.nb.add(self.child1, text='a')
self.nb.add(self.child2, text='b')
def create(self, **kwargs):
return ttk.Notebook(self.root, **kwargs)
def test_tab_identifiers(self):
self.nb.forget(0)
self.nb.hide(self.child2)
self.assertRaises(tkinter.TclError, self.nb.tab, self.child1)
self.assertEqual(self.nb.index('end'), 1)
self.nb.add(self.child2)
self.assertEqual(self.nb.index('end'), 1)
self.nb.select(self.child2)
self.assertTrue(self.nb.tab('current'))
self.nb.add(self.child1, text='a')
self.nb.pack()
self.nb.wait_visibility()
if sys.platform == 'darwin':
tb_idx = "@20,5"
else:
tb_idx = "@5,5"
self.assertEqual(self.nb.tab(tb_idx), self.nb.tab('current'))
for i in range(5, 100, 5):
try:
if self.nb.tab('@%d, 5' % i, text=None) == 'a':
break
except tkinter.TclError:
pass
else:
self.fail("Tab with text 'a' not found")
def test_add_and_hidden(self):
self.assertRaises(tkinter.TclError, self.nb.hide, -1)
self.assertRaises(tkinter.TclError, self.nb.hide, 'hi')
self.assertRaises(tkinter.TclError, self.nb.hide, None)
self.assertRaises(tkinter.TclError, self.nb.add, None)
self.assertRaises(tkinter.TclError, self.nb.add, ttk.Label(self.root),
unknown='option')
tabs = self.nb.tabs()
self.nb.hide(self.child1)
self.nb.add(self.child1)
self.assertEqual(self.nb.tabs(), tabs)
child = ttk.Label(self.root)
self.nb.add(child, text='c')
tabs = self.nb.tabs()
curr = self.nb.index('current')
# verify that the tab gets readded at its previous position
child2_index = self.nb.index(self.child2)
self.nb.hide(self.child2)
self.nb.add(self.child2)
self.assertEqual(self.nb.tabs(), tabs)
self.assertEqual(self.nb.index(self.child2), child2_index)
self.assertEqual(str(self.child2), self.nb.tabs()[child2_index])
# but the tab next to it (not hidden) is the one selected now
self.assertEqual(self.nb.index('current'), curr + 1)
def test_forget(self):
self.assertRaises(tkinter.TclError, self.nb.forget, -1)
self.assertRaises(tkinter.TclError, self.nb.forget, 'hi')
self.assertRaises(tkinter.TclError, self.nb.forget, None)
tabs = self.nb.tabs()
child1_index = self.nb.index(self.child1)
self.nb.forget(self.child1)
self.assertNotIn(str(self.child1), self.nb.tabs())
self.assertEqual(len(tabs) - 1, len(self.nb.tabs()))
self.nb.add(self.child1)
self.assertEqual(self.nb.index(self.child1), 1)
self.assertNotEqual(child1_index, self.nb.index(self.child1))
def test_index(self):
self.assertRaises(tkinter.TclError, self.nb.index, -1)
self.assertRaises(tkinter.TclError, self.nb.index, None)
self.assertIsInstance(self.nb.index('end'), int)
self.assertEqual(self.nb.index(self.child1), 0)
self.assertEqual(self.nb.index(self.child2), 1)
self.assertEqual(self.nb.index('end'), 2)
def test_insert(self):
# moving tabs
tabs = self.nb.tabs()
self.nb.insert(1, tabs[0])
self.assertEqual(self.nb.tabs(), (tabs[1], tabs[0]))
self.nb.insert(self.child1, self.child2)
self.assertEqual(self.nb.tabs(), tabs)
self.nb.insert('end', self.child1)
self.assertEqual(self.nb.tabs(), (tabs[1], tabs[0]))
self.nb.insert('end', 0)
self.assertEqual(self.nb.tabs(), tabs)
# bad moves
self.assertRaises(tkinter.TclError, self.nb.insert, 2, tabs[0])
self.assertRaises(tkinter.TclError, self.nb.insert, -1, tabs[0])
# new tab
child3 = ttk.Label(self.root)
self.nb.insert(1, child3)
self.assertEqual(self.nb.tabs(), (tabs[0], str(child3), tabs[1]))
self.nb.forget(child3)
self.assertEqual(self.nb.tabs(), tabs)
self.nb.insert(self.child1, child3)
self.assertEqual(self.nb.tabs(), (str(child3), ) + tabs)
self.nb.forget(child3)
self.assertRaises(tkinter.TclError, self.nb.insert, 2, child3)
self.assertRaises(tkinter.TclError, self.nb.insert, -1, child3)
# bad inserts
self.assertRaises(tkinter.TclError, self.nb.insert, 'end', None)
self.assertRaises(tkinter.TclError, self.nb.insert, None, 0)
self.assertRaises(tkinter.TclError, self.nb.insert, None, None)
def test_select(self):
self.nb.pack()
self.nb.wait_visibility()
success = []
tab_changed = []
self.child1.bind('<Unmap>', lambda evt: success.append(True))
self.nb.bind('<<NotebookTabChanged>>',
lambda evt: tab_changed.append(True))
self.assertEqual(self.nb.select(), str(self.child1))
self.nb.select(self.child2)
self.assertTrue(success)
self.assertEqual(self.nb.select(), str(self.child2))
self.nb.update()
self.assertTrue(tab_changed)
def test_tab(self):
self.assertRaises(tkinter.TclError, self.nb.tab, -1)
self.assertRaises(tkinter.TclError, self.nb.tab, 'notab')
self.assertRaises(tkinter.TclError, self.nb.tab, None)
self.assertIsInstance(self.nb.tab(self.child1), dict)
self.assertEqual(self.nb.tab(self.child1, text=None), 'a')
# newer form for querying a single option
self.assertEqual(self.nb.tab(self.child1, 'text'), 'a')
self.nb.tab(self.child1, text='abc')
self.assertEqual(self.nb.tab(self.child1, text=None), 'abc')
self.assertEqual(self.nb.tab(self.child1, 'text'), 'abc')
def test_tabs(self):
self.assertEqual(len(self.nb.tabs()), 2)
self.nb.forget(self.child1)
self.nb.forget(self.child2)
self.assertEqual(self.nb.tabs(), ())
def test_traversal(self):
self.nb.pack()
self.nb.wait_visibility()
self.nb.select(0)
simulate_mouse_click(self.nb, 5, 5)
self.nb.focus_force()
self.nb.event_generate('<Control-Tab>')
self.assertEqual(self.nb.select(), str(self.child2))
self.nb.focus_force()
self.nb.event_generate('<Shift-Control-Tab>')
self.assertEqual(self.nb.select(), str(self.child1))
self.nb.focus_force()
self.nb.event_generate('<Shift-Control-Tab>')
self.assertEqual(self.nb.select(), str(self.child2))
self.nb.tab(self.child1, text='a', underline=0)
self.nb.enable_traversal()
self.nb.focus_force()
simulate_mouse_click(self.nb, 5, 5)
if sys.platform == 'darwin':
self.nb.event_generate('<Option-a>')
else:
self.nb.event_generate('<Alt-a>')
self.assertEqual(self.nb.select(), str(self.child1))
@add_standard_options(StandardTtkOptionsTests)
class TreeviewTest(AbstractWidgetTest, unittest.TestCase):
OPTIONS = (
'class', 'columns', 'cursor', 'displaycolumns',
'height', 'padding', 'selectmode', 'show',
'style', 'takefocus', 'xscrollcommand', 'yscrollcommand',
)
def setUp(self):
super().setUp()
self.tv = self.create(padding=0)
def create(self, **kwargs):
return ttk.Treeview(self.root, **kwargs)
def test_columns(self):
widget = self.create()
self.checkParam(widget, 'columns', 'a b c',
expected=('a', 'b', 'c'))
self.checkParam(widget, 'columns', ('a', 'b', 'c'))
self.checkParam(widget, 'columns', (),
expected='' if get_tk_patchlevel() < (8, 5, 10) else ())
def test_displaycolumns(self):
widget = self.create()
widget['columns'] = ('a', 'b', 'c')
self.checkParam(widget, 'displaycolumns', 'b a c',
expected=('b', 'a', 'c'))
self.checkParam(widget, 'displaycolumns', ('b', 'a', 'c'))
self.checkParam(widget, 'displaycolumns', '#all',
expected=('#all',))
self.checkParam(widget, 'displaycolumns', (2, 1, 0))
self.checkInvalidParam(widget, 'displaycolumns', ('a', 'b', 'd'),
errmsg='Invalid column index d')
self.checkInvalidParam(widget, 'displaycolumns', (1, 2, 3),
errmsg='Column index 3 out of bounds')
self.checkInvalidParam(widget, 'displaycolumns', (1, -2),
errmsg='Column index -2 out of bounds')
def test_height(self):
widget = self.create()
self.checkPixelsParam(widget, 'height', 100, -100, 0, '3c', conv=False)
self.checkPixelsParam(widget, 'height', 101.2, 102.6, conv=noconv)
def test_selectmode(self):
widget = self.create()
self.checkEnumParam(widget, 'selectmode',
'none', 'browse', 'extended')
def test_show(self):
widget = self.create()
self.checkParam(widget, 'show', 'tree headings',
expected=('tree', 'headings'))
self.checkParam(widget, 'show', ('tree', 'headings'))
self.checkParam(widget, 'show', ('headings', 'tree'))
self.checkParam(widget, 'show', 'tree', expected=('tree',))
self.checkParam(widget, 'show', 'headings', expected=('headings',))
def test_bbox(self):
self.tv.pack()
self.assertEqual(self.tv.bbox(''), '')
self.tv.wait_visibility()
self.tv.update()
item_id = self.tv.insert('', 'end')
children = self.tv.get_children()
self.assertTrue(children)
bbox = self.tv.bbox(children[0])
self.assertIsBoundingBox(bbox)
# compare width in bboxes
self.tv['columns'] = ['test']
self.tv.column('test', width=50)
bbox_column0 = self.tv.bbox(children[0], 0)
root_width = self.tv.column('#0', width=None)
if not self.wantobjects:
root_width = int(root_width)
self.assertEqual(bbox_column0[0], bbox[0] + root_width)
# verify that bbox of a closed item is the empty string
child1 = self.tv.insert(item_id, 'end')
self.assertEqual(self.tv.bbox(child1), '')
def test_children(self):
# no children yet, should get an empty tuple
self.assertEqual(self.tv.get_children(), ())
item_id = self.tv.insert('', 'end')
self.assertIsInstance(self.tv.get_children(), tuple)
self.assertEqual(self.tv.get_children()[0], item_id)
# add item_id and child3 as children of child2
child2 = self.tv.insert('', 'end')
child3 = self.tv.insert('', 'end')
self.tv.set_children(child2, item_id, child3)
self.assertEqual(self.tv.get_children(child2), (item_id, child3))
# child3 has child2 as parent, thus trying to set child2 as a children
# of child3 should result in an error
self.assertRaises(tkinter.TclError,
self.tv.set_children, child3, child2)
# remove child2 children
self.tv.set_children(child2)
self.assertEqual(self.tv.get_children(child2), ())
# remove root's children
self.tv.set_children('')
self.assertEqual(self.tv.get_children(), ())
def test_column(self):
# return a dict with all options/values
self.assertIsInstance(self.tv.column('#0'), dict)
# return a single value of the given option
if self.wantobjects:
self.assertIsInstance(self.tv.column('#0', width=None), int)
# set a new value for an option
self.tv.column('#0', width=10)
# testing new way to get option value
self.assertEqual(self.tv.column('#0', 'width'),
10 if self.wantobjects else '10')
self.assertEqual(self.tv.column('#0', width=None),
10 if self.wantobjects else '10')
# check read-only option
self.assertRaises(tkinter.TclError, self.tv.column, '#0', id='X')
self.assertRaises(tkinter.TclError, self.tv.column, 'invalid')
invalid_kws = [
{'unknown_option': 'some value'}, {'stretch': 'wrong'},
{'anchor': 'wrong'}, {'width': 'wrong'}, {'minwidth': 'wrong'}
]
for kw in invalid_kws:
self.assertRaises(tkinter.TclError, self.tv.column, '#0',
**kw)
def test_delete(self):
self.assertRaises(tkinter.TclError, self.tv.delete, '#0')
item_id = self.tv.insert('', 'end')
item2 = self.tv.insert(item_id, 'end')
self.assertEqual(self.tv.get_children(), (item_id, ))
self.assertEqual(self.tv.get_children(item_id), (item2, ))
self.tv.delete(item_id)
self.assertFalse(self.tv.get_children())
# reattach should fail
self.assertRaises(tkinter.TclError,
self.tv.reattach, item_id, '', 'end')
# test multiple item delete
item1 = self.tv.insert('', 'end')
item2 = self.tv.insert('', 'end')
self.assertEqual(self.tv.get_children(), (item1, item2))
self.tv.delete(item1, item2)
self.assertFalse(self.tv.get_children())
def test_detach_reattach(self):
item_id = self.tv.insert('', 'end')
item2 = self.tv.insert(item_id, 'end')
# calling detach without items is valid, although it does nothing
prev = self.tv.get_children()
self.tv.detach() # this should do nothing
self.assertEqual(prev, self.tv.get_children())
self.assertEqual(self.tv.get_children(), (item_id, ))
self.assertEqual(self.tv.get_children(item_id), (item2, ))
# detach item with children
self.tv.detach(item_id)
self.assertFalse(self.tv.get_children())
# reattach item with children
self.tv.reattach(item_id, '', 'end')
self.assertEqual(self.tv.get_children(), (item_id, ))
self.assertEqual(self.tv.get_children(item_id), (item2, ))
# move a children to the root
self.tv.move(item2, '', 'end')
self.assertEqual(self.tv.get_children(), (item_id, item2))
self.assertEqual(self.tv.get_children(item_id), ())
# bad values
self.assertRaises(tkinter.TclError,
self.tv.reattach, 'nonexistent', '', 'end')
self.assertRaises(tkinter.TclError,
self.tv.detach, 'nonexistent')
self.assertRaises(tkinter.TclError,
self.tv.reattach, item2, 'otherparent', 'end')
self.assertRaises(tkinter.TclError,
self.tv.reattach, item2, '', 'invalid')
# multiple detach
self.tv.detach(item_id, item2)
self.assertEqual(self.tv.get_children(), ())
self.assertEqual(self.tv.get_children(item_id), ())
def test_exists(self):
self.assertEqual(self.tv.exists('something'), False)
self.assertEqual(self.tv.exists(''), True)
self.assertEqual(self.tv.exists({}), False)
# the following will make a tk.call equivalent to
# tk.call(treeview, "exists") which should result in an error
# in the tcl interpreter since tk requires an item.
self.assertRaises(tkinter.TclError, self.tv.exists, None)
def test_focus(self):
# nothing is focused right now
self.assertEqual(self.tv.focus(), '')
item1 = self.tv.insert('', 'end')
self.tv.focus(item1)
self.assertEqual(self.tv.focus(), item1)
self.tv.delete(item1)
self.assertEqual(self.tv.focus(), '')
# try focusing inexistent item
self.assertRaises(tkinter.TclError, self.tv.focus, 'hi')
def test_heading(self):
# check a dict is returned
self.assertIsInstance(self.tv.heading('#0'), dict)
# check a value is returned
self.tv.heading('#0', text='hi')
self.assertEqual(self.tv.heading('#0', 'text'), 'hi')
self.assertEqual(self.tv.heading('#0', text=None), 'hi')
# invalid option
self.assertRaises(tkinter.TclError, self.tv.heading, '#0',
background=None)
# invalid value
self.assertRaises(tkinter.TclError, self.tv.heading, '#0',
anchor=1)
def test_heading_callback(self):
def simulate_heading_click(x, y):
simulate_mouse_click(self.tv, x, y)
self.tv.update()
success = [] # no success for now
self.tv.pack()
self.tv.wait_visibility()
self.tv.heading('#0', command=lambda: success.append(True))
self.tv.column('#0', width=100)
self.tv.update()
# assuming that the coords (5, 5) fall into heading #0
simulate_heading_click(5, 5)
if not success:
self.fail("The command associated to the treeview heading wasn't "
"invoked.")
success = []
commands = self.tv.master._tclCommands
self.tv.heading('#0', command=str(self.tv.heading('#0', command=None)))
self.assertEqual(commands, self.tv.master._tclCommands)
simulate_heading_click(5, 5)
if not success:
self.fail("The command associated to the treeview heading wasn't "
"invoked.")
# XXX The following raises an error in a tcl interpreter, but not in
# Python
#self.tv.heading('#0', command='I dont exist')
#simulate_heading_click(5, 5)
def test_index(self):
# item 'what' doesn't exist
self.assertRaises(tkinter.TclError, self.tv.index, 'what')
self.assertEqual(self.tv.index(''), 0)
item1 = self.tv.insert('', 'end')
item2 = self.tv.insert('', 'end')
c1 = self.tv.insert(item1, 'end')
c2 = self.tv.insert(item1, 'end')
self.assertEqual(self.tv.index(item1), 0)
self.assertEqual(self.tv.index(c1), 0)
self.assertEqual(self.tv.index(c2), 1)
self.assertEqual(self.tv.index(item2), 1)
self.tv.move(item2, '', 0)
self.assertEqual(self.tv.index(item2), 0)
self.assertEqual(self.tv.index(item1), 1)
# check that index still works even after its parent and siblings
# have been detached
self.tv.detach(item1)
self.assertEqual(self.tv.index(c2), 1)
self.tv.detach(c1)
self.assertEqual(self.tv.index(c2), 0)
# but it fails after item has been deleted
self.tv.delete(item1)
self.assertRaises(tkinter.TclError, self.tv.index, c2)
def test_insert_item(self):
# parent 'none' doesn't exist
self.assertRaises(tkinter.TclError, self.tv.insert, 'none', 'end')
# open values
self.assertRaises(tkinter.TclError, self.tv.insert, '', 'end',
open='')
self.assertRaises(tkinter.TclError, self.tv.insert, '', 'end',
open='please')
self.assertFalse(self.tv.delete(self.tv.insert('', 'end', open=True)))
self.assertFalse(self.tv.delete(self.tv.insert('', 'end', open=False)))
# invalid index
self.assertRaises(tkinter.TclError, self.tv.insert, '', 'middle')
# trying to duplicate item id is invalid
itemid = self.tv.insert('', 'end', 'first-item')
self.assertEqual(itemid, 'first-item')
self.assertRaises(tkinter.TclError, self.tv.insert, '', 'end',
'first-item')
self.assertRaises(tkinter.TclError, self.tv.insert, '', 'end',
MockTclObj('first-item'))
# unicode values
value = '\xe1ba'
item = self.tv.insert('', 'end', values=(value, ))
self.assertEqual(self.tv.item(item, 'values'),
(value,) if self.wantobjects else value)
self.assertEqual(self.tv.item(item, values=None),
(value,) if self.wantobjects else value)
self.tv.item(item, values=self.root.splitlist(self.tv.item(item, values=None)))
self.assertEqual(self.tv.item(item, values=None),
(value,) if self.wantobjects else value)
self.assertIsInstance(self.tv.item(item), dict)
# erase item values
self.tv.item(item, values='')
self.assertFalse(self.tv.item(item, values=None))
# item tags
item = self.tv.insert('', 'end', tags=[1, 2, value])
self.assertEqual(self.tv.item(item, tags=None),
('1', '2', value) if self.wantobjects else
'1 2 %s' % value)
self.tv.item(item, tags=[])
self.assertFalse(self.tv.item(item, tags=None))
self.tv.item(item, tags=(1, 2))
self.assertEqual(self.tv.item(item, tags=None),
('1', '2') if self.wantobjects else '1 2')
# values with spaces
item = self.tv.insert('', 'end', values=('a b c',
'%s %s' % (value, value)))
self.assertEqual(self.tv.item(item, values=None),
('a b c', '%s %s' % (value, value)) if self.wantobjects else
'{a b c} {%s %s}' % (value, value))
# text
self.assertEqual(self.tv.item(
self.tv.insert('', 'end', text="Label here"), text=None),
"Label here")
self.assertEqual(self.tv.item(
self.tv.insert('', 'end', text=value), text=None),
value)
# test for values which are not None
itemid = self.tv.insert('', 'end', 0)
self.assertEqual(itemid, '0')
itemid = self.tv.insert('', 'end', 0.0)
self.assertEqual(itemid, '0.0')
# this is because False resolves to 0 and element with 0 iid is already present
self.assertRaises(tkinter.TclError, self.tv.insert, '', 'end', False)
self.assertRaises(tkinter.TclError, self.tv.insert, '', 'end', '')
def test_selection(self):
self.assertRaises(TypeError, self.tv.selection, 'spam')
# item 'none' doesn't exist
self.assertRaises(tkinter.TclError, self.tv.selection_set, 'none')
self.assertRaises(tkinter.TclError, self.tv.selection_add, 'none')
self.assertRaises(tkinter.TclError, self.tv.selection_remove, 'none')
self.assertRaises(tkinter.TclError, self.tv.selection_toggle, 'none')
item1 = self.tv.insert('', 'end')
item2 = self.tv.insert('', 'end')
c1 = self.tv.insert(item1, 'end')
c2 = self.tv.insert(item1, 'end')
c3 = self.tv.insert(item1, 'end')
self.assertEqual(self.tv.selection(), ())
self.tv.selection_set(c1, item2)
self.assertEqual(self.tv.selection(), (c1, item2))
self.tv.selection_set(c2)
self.assertEqual(self.tv.selection(), (c2,))
self.tv.selection_add(c1, item2)
self.assertEqual(self.tv.selection(), (c1, c2, item2))
self.tv.selection_add(item1)
self.assertEqual(self.tv.selection(), (item1, c1, c2, item2))
self.tv.selection_add()
self.assertEqual(self.tv.selection(), (item1, c1, c2, item2))
self.tv.selection_remove(item1, c3)
self.assertEqual(self.tv.selection(), (c1, c2, item2))
self.tv.selection_remove(c2)
self.assertEqual(self.tv.selection(), (c1, item2))
self.tv.selection_remove()
self.assertEqual(self.tv.selection(), (c1, item2))
self.tv.selection_toggle(c1, c3)
self.assertEqual(self.tv.selection(), (c3, item2))
self.tv.selection_toggle(item2)
self.assertEqual(self.tv.selection(), (c3,))
self.tv.selection_toggle()
self.assertEqual(self.tv.selection(), (c3,))
self.tv.insert('', 'end', id='with spaces')
self.tv.selection_set('with spaces')
self.assertEqual(self.tv.selection(), ('with spaces',))
self.tv.insert('', 'end', id='{brace')
self.tv.selection_set('{brace')
self.assertEqual(self.tv.selection(), ('{brace',))
self.tv.insert('', 'end', id='unicode\u20ac')
self.tv.selection_set('unicode\u20ac')
self.assertEqual(self.tv.selection(), ('unicode\u20ac',))
self.tv.insert('', 'end', id=b'bytes\xe2\x82\xac')
self.tv.selection_set(b'bytes\xe2\x82\xac')
self.assertEqual(self.tv.selection(), ('bytes\xe2\x82\xac',))
self.tv.selection_set()
self.assertEqual(self.tv.selection(), ())
# Old interface
self.tv.selection_set((c1, item2))
self.assertEqual(self.tv.selection(), (c1, item2))
self.tv.selection_add((c1, item1))
self.assertEqual(self.tv.selection(), (item1, c1, item2))
self.tv.selection_remove((item1, c3))
self.assertEqual(self.tv.selection(), (c1, item2))
self.tv.selection_toggle((c1, c3))
self.assertEqual(self.tv.selection(), (c3, item2))
if sys.version_info >= (3, 8):
import warnings
warnings.warn(
'Deprecated API of Treeview.selection() should be removed')
self.tv.selection_set()
self.assertEqual(self.tv.selection(), ())
with self.assertWarns(DeprecationWarning):
self.tv.selection('set', (c1, item2))
self.assertEqual(self.tv.selection(), (c1, item2))
with self.assertWarns(DeprecationWarning):
self.tv.selection('add', (c1, item1))
self.assertEqual(self.tv.selection(), (item1, c1, item2))
with self.assertWarns(DeprecationWarning):
self.tv.selection('remove', (item1, c3))
self.assertEqual(self.tv.selection(), (c1, item2))
with self.assertWarns(DeprecationWarning):
self.tv.selection('toggle', (c1, c3))
self.assertEqual(self.tv.selection(), (c3, item2))
with self.assertWarns(DeprecationWarning):
selection = self.tv.selection(None)
self.assertEqual(selection, (c3, item2))
def test_set(self):
self.tv['columns'] = ['A', 'B']
item = self.tv.insert('', 'end', values=['a', 'b'])
self.assertEqual(self.tv.set(item), {'A': 'a', 'B': 'b'})
self.tv.set(item, 'B', 'a')
self.assertEqual(self.tv.item(item, values=None),
('a', 'a') if self.wantobjects else 'a a')
self.tv['columns'] = ['B']
self.assertEqual(self.tv.set(item), {'B': 'a'})
self.tv.set(item, 'B', 'b')
self.assertEqual(self.tv.set(item, column='B'), 'b')
self.assertEqual(self.tv.item(item, values=None),
('b', 'a') if self.wantobjects else 'b a')
self.tv.set(item, 'B', 123)
self.assertEqual(self.tv.set(item, 'B'),
123 if self.wantobjects else '123')
self.assertEqual(self.tv.item(item, values=None),
(123, 'a') if self.wantobjects else '123 a')
self.assertEqual(self.tv.set(item),
{'B': 123} if self.wantobjects else {'B': '123'})
# inexistent column
self.assertRaises(tkinter.TclError, self.tv.set, item, 'A')
self.assertRaises(tkinter.TclError, self.tv.set, item, 'A', 'b')
# inexistent item
self.assertRaises(tkinter.TclError, self.tv.set, 'notme')
def test_tag_bind(self):
events = []
item1 = self.tv.insert('', 'end', tags=['call'])
item2 = self.tv.insert('', 'end', tags=['call'])
self.tv.tag_bind('call', '<ButtonPress-1>',
lambda evt: events.append(1))
self.tv.tag_bind('call', '<ButtonRelease-1>',
lambda evt: events.append(2))
self.tv.pack()
self.tv.wait_visibility()
self.tv.update()
pos_y = set()
found = set()
for i in range(0, 100, 10):
if len(found) == 2: # item1 and item2 already found
break
item_id = self.tv.identify_row(i)
if item_id and item_id not in found:
pos_y.add(i)
found.add(item_id)
self.assertEqual(len(pos_y), 2) # item1 and item2 y pos
for y in pos_y:
simulate_mouse_click(self.tv, 0, y)
# by now there should be 4 things in the events list, since each
# item had a bind for two events that were simulated above
self.assertEqual(len(events), 4)
for evt in zip(events[::2], events[1::2]):
self.assertEqual(evt, (1, 2))
def test_tag_configure(self):
# Just testing parameter passing for now
self.assertRaises(TypeError, self.tv.tag_configure)
self.assertRaises(tkinter.TclError, self.tv.tag_configure,
'test', sky='blue')
self.tv.tag_configure('test', foreground='blue')
self.assertEqual(str(self.tv.tag_configure('test', 'foreground')),
'blue')
self.assertEqual(str(self.tv.tag_configure('test', foreground=None)),
'blue')
self.assertIsInstance(self.tv.tag_configure('test'), dict)
def test_tag_has(self):
item1 = self.tv.insert('', 'end', text='Item 1', tags=['tag1'])
item2 = self.tv.insert('', 'end', text='Item 2', tags=['tag2'])
self.assertRaises(TypeError, self.tv.tag_has)
self.assertRaises(TclError, self.tv.tag_has, 'tag1', 'non-existing')
self.assertTrue(self.tv.tag_has('tag1', item1))
self.assertFalse(self.tv.tag_has('tag1', item2))
self.assertFalse(self.tv.tag_has('tag2', item1))
self.assertTrue(self.tv.tag_has('tag2', item2))
self.assertFalse(self.tv.tag_has('tag3', item1))
self.assertFalse(self.tv.tag_has('tag3', item2))
self.assertEqual(self.tv.tag_has('tag1'), (item1,))
self.assertEqual(self.tv.tag_has('tag2'), (item2,))
self.assertEqual(self.tv.tag_has('tag3'), ())
@add_standard_options(StandardTtkOptionsTests)
class SeparatorTest(AbstractWidgetTest, unittest.TestCase):
OPTIONS = (
'class', 'cursor', 'orient', 'style', 'takefocus',
# 'state'?
)
default_orient = 'horizontal'
def create(self, **kwargs):
return ttk.Separator(self.root, **kwargs)
@add_standard_options(StandardTtkOptionsTests)
class SizegripTest(AbstractWidgetTest, unittest.TestCase):
OPTIONS = (
'class', 'cursor', 'style', 'takefocus',
# 'state'?
)
def create(self, **kwargs):
return ttk.Sizegrip(self.root, **kwargs)
tests_gui = (
ButtonTest, CheckbuttonTest, ComboboxTest, EntryTest,
FrameTest, LabelFrameTest, LabelTest, MenubuttonTest,
NotebookTest, PanedWindowTest, ProgressbarTest,
RadiobuttonTest, ScaleTest, ScrollbarTest, SeparatorTest,
SizegripTest, TreeviewTest, WidgetTest,
)
if __name__ == "__main__":
unittest.main()
| 62,539 | 1,722 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/tkinter/test/test_ttk/test_extensions.py | import sys
import unittest
import tkinter
from tkinter import ttk
from test.support import requires, run_unittest, swap_attr
from tkinter.test.support import AbstractTkTest, destroy_default_root
requires('gui')
class LabeledScaleTest(AbstractTkTest, unittest.TestCase):
def tearDown(self):
self.root.update_idletasks()
super().tearDown()
def test_widget_destroy(self):
# automatically created variable
x = ttk.LabeledScale(self.root)
var = x._variable._name
x.destroy()
self.assertRaises(tkinter.TclError, x.tk.globalgetvar, var)
# manually created variable
myvar = tkinter.DoubleVar(self.root)
name = myvar._name
x = ttk.LabeledScale(self.root, variable=myvar)
x.destroy()
if self.wantobjects:
self.assertEqual(x.tk.globalgetvar(name), myvar.get())
else:
self.assertEqual(float(x.tk.globalgetvar(name)), myvar.get())
del myvar
self.assertRaises(tkinter.TclError, x.tk.globalgetvar, name)
# checking that the tracing callback is properly removed
myvar = tkinter.IntVar(self.root)
# LabeledScale will start tracing myvar
x = ttk.LabeledScale(self.root, variable=myvar)
x.destroy()
# Unless the tracing callback was removed, creating a new
# LabeledScale with the same var will cause an error now. This
# happens because the variable will be set to (possibly) a new
# value which causes the tracing callback to be called and then
# it tries calling instance attributes not yet defined.
ttk.LabeledScale(self.root, variable=myvar)
if hasattr(sys, 'last_type'):
self.assertNotEqual(sys.last_type, tkinter.TclError)
def test_initialization_no_master(self):
# no master passing
with swap_attr(tkinter, '_default_root', None), \
swap_attr(tkinter, '_support_default_root', True):
try:
x = ttk.LabeledScale()
self.assertIsNotNone(tkinter._default_root)
self.assertEqual(x.master, tkinter._default_root)
self.assertEqual(x.tk, tkinter._default_root.tk)
x.destroy()
finally:
destroy_default_root()
def test_initialization(self):
# master passing
master = tkinter.Frame(self.root)
x = ttk.LabeledScale(master)
self.assertEqual(x.master, master)
x.destroy()
# variable initialization/passing
passed_expected = (('0', 0), (0, 0), (10, 10),
(-1, -1), (sys.maxsize + 1, sys.maxsize + 1),
(2.5, 2), ('2.5', 2))
for pair in passed_expected:
x = ttk.LabeledScale(self.root, from_=pair[0])
self.assertEqual(x.value, pair[1])
x.destroy()
x = ttk.LabeledScale(self.root, from_=None)
self.assertRaises((ValueError, tkinter.TclError), x._variable.get)
x.destroy()
# variable should have its default value set to the from_ value
myvar = tkinter.DoubleVar(self.root, value=20)
x = ttk.LabeledScale(self.root, variable=myvar)
self.assertEqual(x.value, 0)
x.destroy()
# check that it is really using a DoubleVar
x = ttk.LabeledScale(self.root, variable=myvar, from_=0.5)
self.assertEqual(x.value, 0.5)
self.assertEqual(x._variable._name, myvar._name)
x.destroy()
# widget positionment
def check_positions(scale, scale_pos, label, label_pos):
self.assertEqual(scale.pack_info()['side'], scale_pos)
self.assertEqual(label.place_info()['anchor'], label_pos)
x = ttk.LabeledScale(self.root, compound='top')
check_positions(x.scale, 'bottom', x.label, 'n')
x.destroy()
x = ttk.LabeledScale(self.root, compound='bottom')
check_positions(x.scale, 'top', x.label, 's')
x.destroy()
# invert default positions
x = ttk.LabeledScale(self.root, compound='unknown')
check_positions(x.scale, 'top', x.label, 's')
x.destroy()
x = ttk.LabeledScale(self.root) # take default positions
check_positions(x.scale, 'bottom', x.label, 'n')
x.destroy()
# extra, and invalid, kwargs
self.assertRaises(tkinter.TclError, ttk.LabeledScale, master, a='b')
def test_horizontal_range(self):
lscale = ttk.LabeledScale(self.root, from_=0, to=10)
lscale.pack()
lscale.wait_visibility()
lscale.update()
linfo_1 = lscale.label.place_info()
prev_xcoord = lscale.scale.coords()[0]
self.assertEqual(prev_xcoord, int(linfo_1['x']))
# change range to: from -5 to 5. This should change the x coord of
# the scale widget, since 0 is at the middle of the new
# range.
lscale.scale.configure(from_=-5, to=5)
# The following update is needed since the test doesn't use mainloop,
# at the same time this shouldn't affect test outcome
lscale.update()
curr_xcoord = lscale.scale.coords()[0]
self.assertNotEqual(prev_xcoord, curr_xcoord)
# the label widget should have been repositioned too
linfo_2 = lscale.label.place_info()
self.assertEqual(lscale.label['text'], 0 if self.wantobjects else '0')
self.assertEqual(curr_xcoord, int(linfo_2['x']))
# change the range back
lscale.scale.configure(from_=0, to=10)
self.assertNotEqual(prev_xcoord, curr_xcoord)
self.assertEqual(prev_xcoord, int(linfo_1['x']))
lscale.destroy()
def test_variable_change(self):
x = ttk.LabeledScale(self.root)
x.pack()
x.wait_visibility()
x.update()
curr_xcoord = x.scale.coords()[0]
newval = x.value + 1
x.value = newval
# The following update is needed since the test doesn't use mainloop,
# at the same time this shouldn't affect test outcome
x.update()
self.assertEqual(x.value, newval)
self.assertEqual(x.label['text'],
newval if self.wantobjects else str(newval))
self.assertEqual(float(x.scale.get()), newval)
self.assertGreater(x.scale.coords()[0], curr_xcoord)
self.assertEqual(x.scale.coords()[0],
int(x.label.place_info()['x']))
# value outside range
if self.wantobjects:
conv = lambda x: x
else:
conv = int
x.value = conv(x.scale['to']) + 1 # no changes shouldn't happen
x.update()
self.assertEqual(x.value, newval)
self.assertEqual(conv(x.label['text']), newval)
self.assertEqual(float(x.scale.get()), newval)
self.assertEqual(x.scale.coords()[0],
int(x.label.place_info()['x']))
# non-integer value
x.value = newval = newval + 1.5
x.update()
self.assertEqual(x.value, int(newval))
self.assertEqual(conv(x.label['text']), int(newval))
self.assertEqual(float(x.scale.get()), newval)
x.destroy()
def test_resize(self):
x = ttk.LabeledScale(self.root)
x.pack(expand=True, fill='both')
x.wait_visibility()
x.update()
width, height = x.master.winfo_width(), x.master.winfo_height()
width_new, height_new = width * 2, height * 2
x.value = 3
x.update()
x.master.wm_geometry("%dx%d" % (width_new, height_new))
self.assertEqual(int(x.label.place_info()['x']),
x.scale.coords()[0])
# Reset geometry
x.master.wm_geometry("%dx%d" % (width, height))
x.destroy()
class OptionMenuTest(AbstractTkTest, unittest.TestCase):
def setUp(self):
super().setUp()
self.textvar = tkinter.StringVar(self.root)
def tearDown(self):
del self.textvar
super().tearDown()
def test_widget_destroy(self):
var = tkinter.StringVar(self.root)
optmenu = ttk.OptionMenu(self.root, var)
name = var._name
optmenu.update_idletasks()
optmenu.destroy()
self.assertEqual(optmenu.tk.globalgetvar(name), var.get())
del var
self.assertRaises(tkinter.TclError, optmenu.tk.globalgetvar, name)
def test_initialization(self):
self.assertRaises(tkinter.TclError,
ttk.OptionMenu, self.root, self.textvar, invalid='thing')
optmenu = ttk.OptionMenu(self.root, self.textvar, 'b', 'a', 'b')
self.assertEqual(optmenu._variable.get(), 'b')
self.assertTrue(optmenu['menu'])
self.assertTrue(optmenu['textvariable'])
optmenu.destroy()
def test_menu(self):
items = ('a', 'b', 'c')
default = 'a'
optmenu = ttk.OptionMenu(self.root, self.textvar, default, *items)
found_default = False
for i in range(len(items)):
value = optmenu['menu'].entrycget(i, 'value')
self.assertEqual(value, items[i])
if value == default:
found_default = True
self.assertTrue(found_default)
optmenu.destroy()
# default shouldn't be in menu if it is not part of values
default = 'd'
optmenu = ttk.OptionMenu(self.root, self.textvar, default, *items)
curr = None
i = 0
while True:
last, curr = curr, optmenu['menu'].entryconfigure(i, 'value')
if last == curr:
# no more menu entries
break
self.assertNotEqual(curr, default)
i += 1
self.assertEqual(i, len(items))
# check that variable is updated correctly
optmenu.pack()
optmenu.wait_visibility()
optmenu['menu'].invoke(0)
self.assertEqual(optmenu._variable.get(), items[0])
# changing to an invalid index shouldn't change the variable
self.assertRaises(tkinter.TclError, optmenu['menu'].invoke, -1)
self.assertEqual(optmenu._variable.get(), items[0])
optmenu.destroy()
# specifying a callback
success = []
def cb_test(item):
self.assertEqual(item, items[1])
success.append(True)
optmenu = ttk.OptionMenu(self.root, self.textvar, 'a', command=cb_test,
*items)
optmenu['menu'].invoke(1)
if not success:
self.fail("Menu callback not invoked")
optmenu.destroy()
def test_unique_radiobuttons(self):
# check that radiobuttons are unique across instances (bpo25684)
items = ('a', 'b', 'c')
default = 'a'
optmenu = ttk.OptionMenu(self.root, self.textvar, default, *items)
textvar2 = tkinter.StringVar(self.root)
optmenu2 = ttk.OptionMenu(self.root, textvar2, default, *items)
optmenu.pack()
optmenu.wait_visibility()
optmenu2.pack()
optmenu2.wait_visibility()
optmenu['menu'].invoke(1)
optmenu2['menu'].invoke(2)
optmenu_stringvar_name = optmenu['menu'].entrycget(0, 'variable')
optmenu2_stringvar_name = optmenu2['menu'].entrycget(0, 'variable')
self.assertNotEqual(optmenu_stringvar_name,
optmenu2_stringvar_name)
self.assertEqual(self.root.tk.globalgetvar(optmenu_stringvar_name),
items[1])
self.assertEqual(self.root.tk.globalgetvar(optmenu2_stringvar_name),
items[2])
optmenu.destroy()
optmenu2.destroy()
tests_gui = (LabeledScaleTest, OptionMenuTest)
if __name__ == "__main__":
run_unittest(*tests_gui)
| 11,717 | 324 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/tkinter/test/test_ttk/test_style.py | import unittest
import tkinter
from tkinter import ttk
from test.support import requires, run_unittest
from tkinter.test.support import AbstractTkTest
requires('gui')
class StyleTest(AbstractTkTest, unittest.TestCase):
def setUp(self):
super().setUp()
self.style = ttk.Style(self.root)
def test_configure(self):
style = self.style
style.configure('TButton', background='yellow')
self.assertEqual(style.configure('TButton', 'background'),
'yellow')
self.assertIsInstance(style.configure('TButton'), dict)
def test_map(self):
style = self.style
style.map('TButton', background=[('active', 'background', 'blue')])
self.assertEqual(style.map('TButton', 'background'),
[('active', 'background', 'blue')] if self.wantobjects else
[('active background', 'blue')])
self.assertIsInstance(style.map('TButton'), dict)
def test_lookup(self):
style = self.style
style.configure('TButton', background='yellow')
style.map('TButton', background=[('active', 'background', 'blue')])
self.assertEqual(style.lookup('TButton', 'background'), 'yellow')
self.assertEqual(style.lookup('TButton', 'background',
['active', 'background']), 'blue')
self.assertEqual(style.lookup('TButton', 'optionnotdefined',
default='iknewit'), 'iknewit')
def test_layout(self):
style = self.style
self.assertRaises(tkinter.TclError, style.layout, 'NotALayout')
tv_style = style.layout('Treeview')
# "erase" Treeview layout
style.layout('Treeview', '')
self.assertEqual(style.layout('Treeview'),
[('null', {'sticky': 'nswe'})]
)
# restore layout
style.layout('Treeview', tv_style)
self.assertEqual(style.layout('Treeview'), tv_style)
# should return a list
self.assertIsInstance(style.layout('TButton'), list)
# correct layout, but "option" doesn't exist as option
self.assertRaises(tkinter.TclError, style.layout, 'Treeview',
[('name', {'option': 'inexistent'})])
def test_theme_use(self):
self.assertRaises(tkinter.TclError, self.style.theme_use,
'nonexistingname')
curr_theme = self.style.theme_use()
new_theme = None
for theme in self.style.theme_names():
if theme != curr_theme:
new_theme = theme
self.style.theme_use(theme)
break
else:
# just one theme available, can't go on with tests
return
self.assertFalse(curr_theme == new_theme)
self.assertFalse(new_theme != self.style.theme_use())
self.style.theme_use(curr_theme)
tests_gui = (StyleTest, )
if __name__ == "__main__":
run_unittest(*tests_gui)
| 2,900 | 93 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/tkinter/test/test_ttk/__init__.py | 0 | 1 | jart/cosmopolitan | false |
|
cosmopolitan/third_party/python/Lib/tkinter/test/test_tkinter/test_loadtk.py | import os
import sys
import unittest
import test.support as test_support
from tkinter import Tcl, TclError
test_support.requires('gui')
class TkLoadTest(unittest.TestCase):
@unittest.skipIf('DISPLAY' not in os.environ, 'No $DISPLAY set.')
def testLoadTk(self):
tcl = Tcl()
self.assertRaises(TclError,tcl.winfo_geometry)
tcl.loadtk()
self.assertEqual('1x1+0+0', tcl.winfo_geometry())
tcl.destroy()
def testLoadTkFailure(self):
old_display = None
if sys.platform.startswith(('win', 'darwin', 'cygwin')):
# no failure possible on windows?
# XXX Maybe on tk older than 8.4.13 it would be possible,
# see tkinter.h.
return
with test_support.EnvironmentVarGuard() as env:
if 'DISPLAY' in os.environ:
del env['DISPLAY']
# on some platforms, deleting environment variables
# doesn't actually carry through to the process level
# because they don't support unsetenv
# If that's the case, abort.
with os.popen('echo $DISPLAY') as pipe:
display = pipe.read().strip()
if display:
return
tcl = Tcl()
self.assertRaises(TclError, tcl.winfo_geometry)
self.assertRaises(TclError, tcl.loadtk)
tests_gui = (TkLoadTest, )
if __name__ == "__main__":
test_support.run_unittest(*tests_gui)
| 1,503 | 47 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/tkinter/test/test_tkinter/test_font.py | import unittest
import tkinter
from tkinter import font
from test.support import requires, run_unittest
from tkinter.test.support import AbstractTkTest
requires('gui')
fontname = "TkDefaultFont"
class FontTest(AbstractTkTest, unittest.TestCase):
@classmethod
def setUpClass(cls):
AbstractTkTest.setUpClass.__func__(cls)
try:
cls.font = font.Font(root=cls.root, name=fontname, exists=True)
except tkinter.TclError:
cls.font = font.Font(root=cls.root, name=fontname, exists=False)
def test_configure(self):
options = self.font.configure()
self.assertGreaterEqual(set(options),
{'family', 'size', 'weight', 'slant', 'underline', 'overstrike'})
for key in options:
self.assertEqual(self.font.cget(key), options[key])
self.assertEqual(self.font[key], options[key])
for key in 'family', 'weight', 'slant':
self.assertIsInstance(options[key], str)
self.assertIsInstance(self.font.cget(key), str)
self.assertIsInstance(self.font[key], str)
sizetype = int if self.wantobjects else str
for key in 'size', 'underline', 'overstrike':
self.assertIsInstance(options[key], sizetype)
self.assertIsInstance(self.font.cget(key), sizetype)
self.assertIsInstance(self.font[key], sizetype)
def test_actual(self):
options = self.font.actual()
self.assertGreaterEqual(set(options),
{'family', 'size', 'weight', 'slant', 'underline', 'overstrike'})
for key in options:
self.assertEqual(self.font.actual(key), options[key])
for key in 'family', 'weight', 'slant':
self.assertIsInstance(options[key], str)
self.assertIsInstance(self.font.actual(key), str)
sizetype = int if self.wantobjects else str
for key in 'size', 'underline', 'overstrike':
self.assertIsInstance(options[key], sizetype)
self.assertIsInstance(self.font.actual(key), sizetype)
def test_name(self):
self.assertEqual(self.font.name, fontname)
self.assertEqual(str(self.font), fontname)
def test_eq(self):
font1 = font.Font(root=self.root, name=fontname, exists=True)
font2 = font.Font(root=self.root, name=fontname, exists=True)
self.assertIsNot(font1, font2)
self.assertEqual(font1, font2)
self.assertNotEqual(font1, font1.copy())
self.assertNotEqual(font1, 0)
def test_measure(self):
self.assertIsInstance(self.font.measure('abc'), int)
def test_metrics(self):
metrics = self.font.metrics()
self.assertGreaterEqual(set(metrics),
{'ascent', 'descent', 'linespace', 'fixed'})
for key in metrics:
self.assertEqual(self.font.metrics(key), metrics[key])
self.assertIsInstance(metrics[key], int)
self.assertIsInstance(self.font.metrics(key), int)
def test_families(self):
families = font.families(self.root)
self.assertIsInstance(families, tuple)
self.assertTrue(families)
for family in families:
self.assertIsInstance(family, str)
self.assertTrue(family)
def test_names(self):
names = font.names(self.root)
self.assertIsInstance(names, tuple)
self.assertTrue(names)
for name in names:
self.assertIsInstance(name, str)
self.assertTrue(name)
self.assertIn(fontname, names)
tests_gui = (FontTest, )
if __name__ == "__main__":
run_unittest(*tests_gui)
| 3,633 | 97 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/tkinter/test/test_tkinter/test_images.py | import unittest
import tkinter
from test import support
from tkinter.test.support import AbstractTkTest, requires_tcl
support.requires('gui')
class MiscTest(AbstractTkTest, unittest.TestCase):
def test_image_types(self):
image_types = self.root.image_types()
self.assertIsInstance(image_types, tuple)
self.assertIn('photo', image_types)
self.assertIn('bitmap', image_types)
def test_image_names(self):
image_names = self.root.image_names()
self.assertIsInstance(image_names, tuple)
class BitmapImageTest(AbstractTkTest, unittest.TestCase):
@classmethod
def setUpClass(cls):
AbstractTkTest.setUpClass.__func__(cls)
cls.testfile = support.findfile('python.xbm', subdir='imghdrdata')
def test_create_from_file(self):
image = tkinter.BitmapImage('::img::test', master=self.root,
foreground='yellow', background='blue',
file=self.testfile)
self.assertEqual(str(image), '::img::test')
self.assertEqual(image.type(), 'bitmap')
self.assertEqual(image.width(), 16)
self.assertEqual(image.height(), 16)
self.assertIn('::img::test', self.root.image_names())
del image
self.assertNotIn('::img::test', self.root.image_names())
def test_create_from_data(self):
with open(self.testfile, 'rb') as f:
data = f.read()
image = tkinter.BitmapImage('::img::test', master=self.root,
foreground='yellow', background='blue',
data=data)
self.assertEqual(str(image), '::img::test')
self.assertEqual(image.type(), 'bitmap')
self.assertEqual(image.width(), 16)
self.assertEqual(image.height(), 16)
self.assertIn('::img::test', self.root.image_names())
del image
self.assertNotIn('::img::test', self.root.image_names())
def assertEqualStrList(self, actual, expected):
self.assertIsInstance(actual, str)
self.assertEqual(self.root.splitlist(actual), expected)
def test_configure_data(self):
image = tkinter.BitmapImage('::img::test', master=self.root)
self.assertEqual(image['data'], '-data {} {} {} {}')
with open(self.testfile, 'rb') as f:
data = f.read()
image.configure(data=data)
self.assertEqualStrList(image['data'],
('-data', '', '', '', data.decode('ascii')))
self.assertEqual(image.width(), 16)
self.assertEqual(image.height(), 16)
self.assertEqual(image['maskdata'], '-maskdata {} {} {} {}')
image.configure(maskdata=data)
self.assertEqualStrList(image['maskdata'],
('-maskdata', '', '', '', data.decode('ascii')))
def test_configure_file(self):
image = tkinter.BitmapImage('::img::test', master=self.root)
self.assertEqual(image['file'], '-file {} {} {} {}')
image.configure(file=self.testfile)
self.assertEqualStrList(image['file'],
('-file', '', '', '',self.testfile))
self.assertEqual(image.width(), 16)
self.assertEqual(image.height(), 16)
self.assertEqual(image['maskfile'], '-maskfile {} {} {} {}')
image.configure(maskfile=self.testfile)
self.assertEqualStrList(image['maskfile'],
('-maskfile', '', '', '', self.testfile))
def test_configure_background(self):
image = tkinter.BitmapImage('::img::test', master=self.root)
self.assertEqual(image['background'], '-background {} {} {} {}')
image.configure(background='blue')
self.assertEqual(image['background'], '-background {} {} {} blue')
def test_configure_foreground(self):
image = tkinter.BitmapImage('::img::test', master=self.root)
self.assertEqual(image['foreground'],
'-foreground {} {} #000000 #000000')
image.configure(foreground='yellow')
self.assertEqual(image['foreground'],
'-foreground {} {} #000000 yellow')
class PhotoImageTest(AbstractTkTest, unittest.TestCase):
@classmethod
def setUpClass(cls):
AbstractTkTest.setUpClass.__func__(cls)
cls.testfile = support.findfile('python.gif', subdir='imghdrdata')
def create(self):
return tkinter.PhotoImage('::img::test', master=self.root,
file=self.testfile)
def colorlist(self, *args):
if tkinter.TkVersion >= 8.6 and self.wantobjects:
return args
else:
return tkinter._join(args)
def check_create_from_file(self, ext):
testfile = support.findfile('python.' + ext, subdir='imghdrdata')
image = tkinter.PhotoImage('::img::test', master=self.root,
file=testfile)
self.assertEqual(str(image), '::img::test')
self.assertEqual(image.type(), 'photo')
self.assertEqual(image.width(), 16)
self.assertEqual(image.height(), 16)
self.assertEqual(image['data'], '')
self.assertEqual(image['file'], testfile)
self.assertIn('::img::test', self.root.image_names())
del image
self.assertNotIn('::img::test', self.root.image_names())
def check_create_from_data(self, ext):
testfile = support.findfile('python.' + ext, subdir='imghdrdata')
with open(testfile, 'rb') as f:
data = f.read()
image = tkinter.PhotoImage('::img::test', master=self.root,
data=data)
self.assertEqual(str(image), '::img::test')
self.assertEqual(image.type(), 'photo')
self.assertEqual(image.width(), 16)
self.assertEqual(image.height(), 16)
self.assertEqual(image['data'], data if self.wantobjects
else data.decode('latin1'))
self.assertEqual(image['file'], '')
self.assertIn('::img::test', self.root.image_names())
del image
self.assertNotIn('::img::test', self.root.image_names())
def test_create_from_ppm_file(self):
self.check_create_from_file('ppm')
def test_create_from_ppm_data(self):
self.check_create_from_data('ppm')
def test_create_from_pgm_file(self):
self.check_create_from_file('pgm')
def test_create_from_pgm_data(self):
self.check_create_from_data('pgm')
def test_create_from_gif_file(self):
self.check_create_from_file('gif')
def test_create_from_gif_data(self):
self.check_create_from_data('gif')
@requires_tcl(8, 6)
def test_create_from_png_file(self):
self.check_create_from_file('png')
@requires_tcl(8, 6)
def test_create_from_png_data(self):
self.check_create_from_data('png')
def test_configure_data(self):
image = tkinter.PhotoImage('::img::test', master=self.root)
self.assertEqual(image['data'], '')
with open(self.testfile, 'rb') as f:
data = f.read()
image.configure(data=data)
self.assertEqual(image['data'], data if self.wantobjects
else data.decode('latin1'))
self.assertEqual(image.width(), 16)
self.assertEqual(image.height(), 16)
def test_configure_format(self):
image = tkinter.PhotoImage('::img::test', master=self.root)
self.assertEqual(image['format'], '')
image.configure(file=self.testfile, format='gif')
self.assertEqual(image['format'], ('gif',) if self.wantobjects
else 'gif')
self.assertEqual(image.width(), 16)
self.assertEqual(image.height(), 16)
def test_configure_file(self):
image = tkinter.PhotoImage('::img::test', master=self.root)
self.assertEqual(image['file'], '')
image.configure(file=self.testfile)
self.assertEqual(image['file'], self.testfile)
self.assertEqual(image.width(), 16)
self.assertEqual(image.height(), 16)
def test_configure_gamma(self):
image = tkinter.PhotoImage('::img::test', master=self.root)
self.assertEqual(image['gamma'], '1.0')
image.configure(gamma=2.0)
self.assertEqual(image['gamma'], '2.0')
def test_configure_width_height(self):
image = tkinter.PhotoImage('::img::test', master=self.root)
self.assertEqual(image['width'], '0')
self.assertEqual(image['height'], '0')
image.configure(width=20)
image.configure(height=10)
self.assertEqual(image['width'], '20')
self.assertEqual(image['height'], '10')
self.assertEqual(image.width(), 20)
self.assertEqual(image.height(), 10)
def test_configure_palette(self):
image = tkinter.PhotoImage('::img::test', master=self.root)
self.assertEqual(image['palette'], '')
image.configure(palette=256)
self.assertEqual(image['palette'], '256')
image.configure(palette='3/4/2')
self.assertEqual(image['palette'], '3/4/2')
def test_blank(self):
image = self.create()
image.blank()
self.assertEqual(image.width(), 16)
self.assertEqual(image.height(), 16)
self.assertEqual(image.get(4, 6), self.colorlist(0, 0, 0))
def test_copy(self):
image = self.create()
image2 = image.copy()
self.assertEqual(image2.width(), 16)
self.assertEqual(image2.height(), 16)
self.assertEqual(image.get(4, 6), image.get(4, 6))
def test_subsample(self):
image = self.create()
image2 = image.subsample(2, 3)
self.assertEqual(image2.width(), 8)
self.assertEqual(image2.height(), 6)
self.assertEqual(image2.get(2, 2), image.get(4, 6))
image2 = image.subsample(2)
self.assertEqual(image2.width(), 8)
self.assertEqual(image2.height(), 8)
self.assertEqual(image2.get(2, 3), image.get(4, 6))
def test_zoom(self):
image = self.create()
image2 = image.zoom(2, 3)
self.assertEqual(image2.width(), 32)
self.assertEqual(image2.height(), 48)
self.assertEqual(image2.get(8, 18), image.get(4, 6))
self.assertEqual(image2.get(9, 20), image.get(4, 6))
image2 = image.zoom(2)
self.assertEqual(image2.width(), 32)
self.assertEqual(image2.height(), 32)
self.assertEqual(image2.get(8, 12), image.get(4, 6))
self.assertEqual(image2.get(9, 13), image.get(4, 6))
def test_put(self):
image = self.create()
image.put('{red green} {blue yellow}', to=(4, 6))
self.assertEqual(image.get(4, 6), self.colorlist(255, 0, 0))
self.assertEqual(image.get(5, 6),
self.colorlist(0, 128 if tkinter.TkVersion >= 8.6
else 255, 0))
self.assertEqual(image.get(4, 7), self.colorlist(0, 0, 255))
self.assertEqual(image.get(5, 7), self.colorlist(255, 255, 0))
image.put((('#f00', '#00ff00'), ('#000000fff', '#ffffffff0000')))
self.assertEqual(image.get(0, 0), self.colorlist(255, 0, 0))
self.assertEqual(image.get(1, 0), self.colorlist(0, 255, 0))
self.assertEqual(image.get(0, 1), self.colorlist(0, 0, 255))
self.assertEqual(image.get(1, 1), self.colorlist(255, 255, 0))
def test_get(self):
image = self.create()
self.assertEqual(image.get(4, 6), self.colorlist(62, 116, 162))
self.assertEqual(image.get(0, 0), self.colorlist(0, 0, 0))
self.assertEqual(image.get(15, 15), self.colorlist(0, 0, 0))
self.assertRaises(tkinter.TclError, image.get, -1, 0)
self.assertRaises(tkinter.TclError, image.get, 0, -1)
self.assertRaises(tkinter.TclError, image.get, 16, 15)
self.assertRaises(tkinter.TclError, image.get, 15, 16)
def test_write(self):
image = self.create()
self.addCleanup(support.unlink, support.TESTFN)
image.write(support.TESTFN)
image2 = tkinter.PhotoImage('::img::test2', master=self.root,
format='ppm',
file=support.TESTFN)
self.assertEqual(str(image2), '::img::test2')
self.assertEqual(image2.type(), 'photo')
self.assertEqual(image2.width(), 16)
self.assertEqual(image2.height(), 16)
self.assertEqual(image2.get(0, 0), image.get(0, 0))
self.assertEqual(image2.get(15, 8), image.get(15, 8))
image.write(support.TESTFN, format='gif', from_coords=(4, 6, 6, 9))
image3 = tkinter.PhotoImage('::img::test3', master=self.root,
format='gif',
file=support.TESTFN)
self.assertEqual(str(image3), '::img::test3')
self.assertEqual(image3.type(), 'photo')
self.assertEqual(image3.width(), 2)
self.assertEqual(image3.height(), 3)
self.assertEqual(image3.get(0, 0), image.get(4, 6))
self.assertEqual(image3.get(1, 2), image.get(5, 8))
tests_gui = (MiscTest, BitmapImageTest, PhotoImageTest,)
if __name__ == "__main__":
support.run_unittest(*tests_gui)
| 13,355 | 328 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/tkinter/test/test_tkinter/test_variables.py | import unittest
import gc
from tkinter import (Variable, StringVar, IntVar, DoubleVar, BooleanVar, Tcl,
TclError)
class Var(Variable):
_default = "default"
side_effect = False
def set(self, value):
self.side_effect = True
super().set(value)
class TestBase(unittest.TestCase):
def setUp(self):
self.root = Tcl()
def tearDown(self):
del self.root
class TestVariable(TestBase):
def info_exists(self, *args):
return self.root.getboolean(self.root.call("info", "exists", *args))
def test_default(self):
v = Variable(self.root)
self.assertEqual("", v.get())
self.assertRegex(str(v), r"^PY_VAR(\d+)$")
def test_name_and_value(self):
v = Variable(self.root, "sample string", "varname")
self.assertEqual("sample string", v.get())
self.assertEqual("varname", str(v))
def test___del__(self):
self.assertFalse(self.info_exists("varname"))
v = Variable(self.root, "sample string", "varname")
self.assertTrue(self.info_exists("varname"))
del v
self.assertFalse(self.info_exists("varname"))
def test_dont_unset_not_existing(self):
self.assertFalse(self.info_exists("varname"))
v1 = Variable(self.root, name="name")
v2 = Variable(self.root, name="name")
del v1
self.assertFalse(self.info_exists("name"))
# shouldn't raise exception
del v2
self.assertFalse(self.info_exists("name"))
def test___eq__(self):
# values doesn't matter, only class and name are checked
v1 = Variable(self.root, name="abc")
v2 = Variable(self.root, name="abc")
self.assertEqual(v1, v2)
v3 = Variable(self.root, name="abc")
v4 = StringVar(self.root, name="abc")
self.assertNotEqual(v3, v4)
def test_invalid_name(self):
with self.assertRaises(TypeError):
Variable(self.root, name=123)
def test_null_in_name(self):
with self.assertRaises(ValueError):
Variable(self.root, name='var\x00name')
with self.assertRaises(ValueError):
self.root.globalsetvar('var\x00name', "value")
with self.assertRaises(ValueError):
self.root.globalsetvar(b'var\x00name', "value")
with self.assertRaises(ValueError):
self.root.setvar('var\x00name', "value")
with self.assertRaises(ValueError):
self.root.setvar(b'var\x00name', "value")
def test_initialize(self):
v = Var(self.root)
self.assertFalse(v.side_effect)
v.set("value")
self.assertTrue(v.side_effect)
def test_trace_old(self):
# Old interface
v = Variable(self.root)
vname = str(v)
trace = []
def read_tracer(*args):
trace.append(('read',) + args)
def write_tracer(*args):
trace.append(('write',) + args)
cb1 = v.trace_variable('r', read_tracer)
cb2 = v.trace_variable('wu', write_tracer)
self.assertEqual(sorted(v.trace_vinfo()), [('r', cb1), ('wu', cb2)])
self.assertEqual(trace, [])
v.set('spam')
self.assertEqual(trace, [('write', vname, '', 'w')])
trace = []
v.get()
self.assertEqual(trace, [('read', vname, '', 'r')])
trace = []
info = sorted(v.trace_vinfo())
v.trace_vdelete('w', cb1) # Wrong mode
self.assertEqual(sorted(v.trace_vinfo()), info)
with self.assertRaises(TclError):
v.trace_vdelete('r', 'spam') # Wrong command name
self.assertEqual(sorted(v.trace_vinfo()), info)
v.trace_vdelete('r', (cb1, 43)) # Wrong arguments
self.assertEqual(sorted(v.trace_vinfo()), info)
v.get()
self.assertEqual(trace, [('read', vname, '', 'r')])
trace = []
v.trace_vdelete('r', cb1)
self.assertEqual(v.trace_vinfo(), [('wu', cb2)])
v.get()
self.assertEqual(trace, [])
trace = []
del write_tracer
gc.collect()
v.set('eggs')
self.assertEqual(trace, [('write', vname, '', 'w')])
trace = []
del v
gc.collect()
self.assertEqual(trace, [('write', vname, '', 'u')])
def test_trace(self):
v = Variable(self.root)
vname = str(v)
trace = []
def read_tracer(*args):
trace.append(('read',) + args)
def write_tracer(*args):
trace.append(('write',) + args)
tr1 = v.trace_add('read', read_tracer)
tr2 = v.trace_add(['write', 'unset'], write_tracer)
self.assertEqual(sorted(v.trace_info()), [
(('read',), tr1),
(('write', 'unset'), tr2)])
self.assertEqual(trace, [])
v.set('spam')
self.assertEqual(trace, [('write', vname, '', 'write')])
trace = []
v.get()
self.assertEqual(trace, [('read', vname, '', 'read')])
trace = []
info = sorted(v.trace_info())
v.trace_remove('write', tr1) # Wrong mode
self.assertEqual(sorted(v.trace_info()), info)
with self.assertRaises(TclError):
v.trace_remove('read', 'spam') # Wrong command name
self.assertEqual(sorted(v.trace_info()), info)
v.get()
self.assertEqual(trace, [('read', vname, '', 'read')])
trace = []
v.trace_remove('read', tr1)
self.assertEqual(v.trace_info(), [(('write', 'unset'), tr2)])
v.get()
self.assertEqual(trace, [])
trace = []
del write_tracer
gc.collect()
v.set('eggs')
self.assertEqual(trace, [('write', vname, '', 'write')])
trace = []
del v
gc.collect()
self.assertEqual(trace, [('write', vname, '', 'unset')])
class TestStringVar(TestBase):
def test_default(self):
v = StringVar(self.root)
self.assertEqual("", v.get())
def test_get(self):
v = StringVar(self.root, "abc", "name")
self.assertEqual("abc", v.get())
self.root.globalsetvar("name", "value")
self.assertEqual("value", v.get())
def test_get_null(self):
v = StringVar(self.root, "abc\x00def", "name")
self.assertEqual("abc\x00def", v.get())
self.root.globalsetvar("name", "val\x00ue")
self.assertEqual("val\x00ue", v.get())
class TestIntVar(TestBase):
def test_default(self):
v = IntVar(self.root)
self.assertEqual(0, v.get())
def test_get(self):
v = IntVar(self.root, 123, "name")
self.assertEqual(123, v.get())
self.root.globalsetvar("name", "345")
self.assertEqual(345, v.get())
self.root.globalsetvar("name", "876.5")
self.assertEqual(876, v.get())
def test_invalid_value(self):
v = IntVar(self.root, name="name")
self.root.globalsetvar("name", "value")
with self.assertRaises((ValueError, TclError)):
v.get()
class TestDoubleVar(TestBase):
def test_default(self):
v = DoubleVar(self.root)
self.assertEqual(0.0, v.get())
def test_get(self):
v = DoubleVar(self.root, 1.23, "name")
self.assertAlmostEqual(1.23, v.get())
self.root.globalsetvar("name", "3.45")
self.assertAlmostEqual(3.45, v.get())
def test_get_from_int(self):
v = DoubleVar(self.root, 1.23, "name")
self.assertAlmostEqual(1.23, v.get())
self.root.globalsetvar("name", "3.45")
self.assertAlmostEqual(3.45, v.get())
self.root.globalsetvar("name", "456")
self.assertAlmostEqual(456, v.get())
def test_invalid_value(self):
v = DoubleVar(self.root, name="name")
self.root.globalsetvar("name", "value")
with self.assertRaises((ValueError, TclError)):
v.get()
class TestBooleanVar(TestBase):
def test_default(self):
v = BooleanVar(self.root)
self.assertIs(v.get(), False)
def test_get(self):
v = BooleanVar(self.root, True, "name")
self.assertIs(v.get(), True)
self.root.globalsetvar("name", "0")
self.assertIs(v.get(), False)
self.root.globalsetvar("name", 42 if self.root.wantobjects() else 1)
self.assertIs(v.get(), True)
self.root.globalsetvar("name", 0)
self.assertIs(v.get(), False)
self.root.globalsetvar("name", "on")
self.assertIs(v.get(), True)
def test_set(self):
true = 1 if self.root.wantobjects() else "1"
false = 0 if self.root.wantobjects() else "0"
v = BooleanVar(self.root, name="name")
v.set(True)
self.assertEqual(self.root.globalgetvar("name"), true)
v.set("0")
self.assertEqual(self.root.globalgetvar("name"), false)
v.set(42)
self.assertEqual(self.root.globalgetvar("name"), true)
v.set(0)
self.assertEqual(self.root.globalgetvar("name"), false)
v.set("on")
self.assertEqual(self.root.globalgetvar("name"), true)
def test_invalid_value_domain(self):
false = 0 if self.root.wantobjects() else "0"
v = BooleanVar(self.root, name="name")
with self.assertRaises(TclError):
v.set("value")
self.assertEqual(self.root.globalgetvar("name"), false)
self.root.globalsetvar("name", "value")
with self.assertRaises(ValueError):
v.get()
self.root.globalsetvar("name", "1.0")
with self.assertRaises(ValueError):
v.get()
tests_gui = (TestVariable, TestStringVar, TestIntVar,
TestDoubleVar, TestBooleanVar)
if __name__ == "__main__":
from test.support import run_unittest
run_unittest(*tests_gui)
| 9,821 | 311 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/tkinter/test/test_tkinter/test_text.py | import unittest
import tkinter
from test.support import requires, run_unittest
from tkinter.test.support import AbstractTkTest
requires('gui')
class TextTest(AbstractTkTest, unittest.TestCase):
def setUp(self):
super().setUp()
self.text = tkinter.Text(self.root)
def test_debug(self):
text = self.text
olddebug = text.debug()
try:
text.debug(0)
self.assertEqual(text.debug(), 0)
text.debug(1)
self.assertEqual(text.debug(), 1)
finally:
text.debug(olddebug)
self.assertEqual(text.debug(), olddebug)
def test_search(self):
text = self.text
# pattern and index are obligatory arguments.
self.assertRaises(tkinter.TclError, text.search, None, '1.0')
self.assertRaises(tkinter.TclError, text.search, 'a', None)
self.assertRaises(tkinter.TclError, text.search, None, None)
# Invalid text index.
self.assertRaises(tkinter.TclError, text.search, '', 0)
# Check if we are getting the indices as strings -- you are likely
# to get Tcl_Obj under Tk 8.5 if Tkinter doesn't convert it.
text.insert('1.0', 'hi-test')
self.assertEqual(text.search('-test', '1.0', 'end'), '1.2')
self.assertEqual(text.search('test', '1.0', 'end'), '1.3')
tests_gui = (TextTest, )
if __name__ == "__main__":
run_unittest(*tests_gui)
| 1,442 | 48 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/tkinter/test/test_tkinter/test_widgets.py | import unittest
import tkinter
from tkinter import TclError
import os
import sys
from test.support import requires
from tkinter.test.support import (tcl_version, requires_tcl,
get_tk_patchlevel, widget_eq)
from tkinter.test.widget_tests import (
add_standard_options, noconv, pixels_round,
AbstractWidgetTest, StandardOptionsTests, IntegerSizeTests, PixelSizeTests,
setUpModule)
requires('gui')
def float_round(x):
return float(round(x))
class AbstractToplevelTest(AbstractWidgetTest, PixelSizeTests):
_conv_pad_pixels = noconv
def test_class(self):
widget = self.create()
self.assertEqual(widget['class'],
widget.__class__.__name__.title())
self.checkInvalidParam(widget, 'class', 'Foo',
errmsg="can't modify -class option after widget is created")
widget2 = self.create(class_='Foo')
self.assertEqual(widget2['class'], 'Foo')
def test_colormap(self):
widget = self.create()
self.assertEqual(widget['colormap'], '')
self.checkInvalidParam(widget, 'colormap', 'new',
errmsg="can't modify -colormap option after widget is created")
widget2 = self.create(colormap='new')
self.assertEqual(widget2['colormap'], 'new')
def test_container(self):
widget = self.create()
self.assertEqual(widget['container'], 0 if self.wantobjects else '0')
self.checkInvalidParam(widget, 'container', 1,
errmsg="can't modify -container option after widget is created")
widget2 = self.create(container=True)
self.assertEqual(widget2['container'], 1 if self.wantobjects else '1')
def test_visual(self):
widget = self.create()
self.assertEqual(widget['visual'], '')
self.checkInvalidParam(widget, 'visual', 'default',
errmsg="can't modify -visual option after widget is created")
widget2 = self.create(visual='default')
self.assertEqual(widget2['visual'], 'default')
@add_standard_options(StandardOptionsTests)
class ToplevelTest(AbstractToplevelTest, unittest.TestCase):
OPTIONS = (
'background', 'borderwidth',
'class', 'colormap', 'container', 'cursor', 'height',
'highlightbackground', 'highlightcolor', 'highlightthickness',
'menu', 'padx', 'pady', 'relief', 'screen',
'takefocus', 'use', 'visual', 'width',
)
def create(self, **kwargs):
return tkinter.Toplevel(self.root, **kwargs)
def test_menu(self):
widget = self.create()
menu = tkinter.Menu(self.root)
self.checkParam(widget, 'menu', menu, eq=widget_eq)
self.checkParam(widget, 'menu', '')
def test_screen(self):
widget = self.create()
self.assertEqual(widget['screen'], '')
try:
display = os.environ['DISPLAY']
except KeyError:
self.skipTest('No $DISPLAY set.')
self.checkInvalidParam(widget, 'screen', display,
errmsg="can't modify -screen option after widget is created")
widget2 = self.create(screen=display)
self.assertEqual(widget2['screen'], display)
def test_use(self):
widget = self.create()
self.assertEqual(widget['use'], '')
parent = self.create(container=True)
wid = hex(parent.winfo_id())
with self.subTest(wid=wid):
widget2 = self.create(use=wid)
self.assertEqual(widget2['use'], wid)
@add_standard_options(StandardOptionsTests)
class FrameTest(AbstractToplevelTest, unittest.TestCase):
OPTIONS = (
'background', 'borderwidth',
'class', 'colormap', 'container', 'cursor', 'height',
'highlightbackground', 'highlightcolor', 'highlightthickness',
'padx', 'pady', 'relief', 'takefocus', 'visual', 'width',
)
def create(self, **kwargs):
return tkinter.Frame(self.root, **kwargs)
@add_standard_options(StandardOptionsTests)
class LabelFrameTest(AbstractToplevelTest, unittest.TestCase):
OPTIONS = (
'background', 'borderwidth',
'class', 'colormap', 'container', 'cursor',
'font', 'foreground', 'height',
'highlightbackground', 'highlightcolor', 'highlightthickness',
'labelanchor', 'labelwidget', 'padx', 'pady', 'relief',
'takefocus', 'text', 'visual', 'width',
)
def create(self, **kwargs):
return tkinter.LabelFrame(self.root, **kwargs)
def test_labelanchor(self):
widget = self.create()
self.checkEnumParam(widget, 'labelanchor',
'e', 'en', 'es', 'n', 'ne', 'nw',
's', 'se', 'sw', 'w', 'wn', 'ws')
self.checkInvalidParam(widget, 'labelanchor', 'center')
def test_labelwidget(self):
widget = self.create()
label = tkinter.Label(self.root, text='Mupp', name='foo')
self.checkParam(widget, 'labelwidget', label, expected='.foo')
label.destroy()
class AbstractLabelTest(AbstractWidgetTest, IntegerSizeTests):
_conv_pixels = noconv
def test_highlightthickness(self):
widget = self.create()
self.checkPixelsParam(widget, 'highlightthickness',
0, 1.3, 2.6, 6, -2, '10p')
@add_standard_options(StandardOptionsTests)
class LabelTest(AbstractLabelTest, unittest.TestCase):
OPTIONS = (
'activebackground', 'activeforeground', 'anchor',
'background', 'bitmap', 'borderwidth', 'compound', 'cursor',
'disabledforeground', 'font', 'foreground', 'height',
'highlightbackground', 'highlightcolor', 'highlightthickness',
'image', 'justify', 'padx', 'pady', 'relief', 'state',
'takefocus', 'text', 'textvariable',
'underline', 'width', 'wraplength',
)
def create(self, **kwargs):
return tkinter.Label(self.root, **kwargs)
@add_standard_options(StandardOptionsTests)
class ButtonTest(AbstractLabelTest, unittest.TestCase):
OPTIONS = (
'activebackground', 'activeforeground', 'anchor',
'background', 'bitmap', 'borderwidth',
'command', 'compound', 'cursor', 'default',
'disabledforeground', 'font', 'foreground', 'height',
'highlightbackground', 'highlightcolor', 'highlightthickness',
'image', 'justify', 'overrelief', 'padx', 'pady', 'relief',
'repeatdelay', 'repeatinterval',
'state', 'takefocus', 'text', 'textvariable',
'underline', 'width', 'wraplength')
def create(self, **kwargs):
return tkinter.Button(self.root, **kwargs)
def test_default(self):
widget = self.create()
self.checkEnumParam(widget, 'default', 'active', 'disabled', 'normal')
@add_standard_options(StandardOptionsTests)
class CheckbuttonTest(AbstractLabelTest, unittest.TestCase):
OPTIONS = (
'activebackground', 'activeforeground', 'anchor',
'background', 'bitmap', 'borderwidth',
'command', 'compound', 'cursor',
'disabledforeground', 'font', 'foreground', 'height',
'highlightbackground', 'highlightcolor', 'highlightthickness',
'image', 'indicatoron', 'justify',
'offrelief', 'offvalue', 'onvalue', 'overrelief',
'padx', 'pady', 'relief', 'selectcolor', 'selectimage', 'state',
'takefocus', 'text', 'textvariable',
'tristateimage', 'tristatevalue',
'underline', 'variable', 'width', 'wraplength',
)
def create(self, **kwargs):
return tkinter.Checkbutton(self.root, **kwargs)
def test_offvalue(self):
widget = self.create()
self.checkParams(widget, 'offvalue', 1, 2.3, '', 'any string')
def test_onvalue(self):
widget = self.create()
self.checkParams(widget, 'onvalue', 1, 2.3, '', 'any string')
@add_standard_options(StandardOptionsTests)
class RadiobuttonTest(AbstractLabelTest, unittest.TestCase):
OPTIONS = (
'activebackground', 'activeforeground', 'anchor',
'background', 'bitmap', 'borderwidth',
'command', 'compound', 'cursor',
'disabledforeground', 'font', 'foreground', 'height',
'highlightbackground', 'highlightcolor', 'highlightthickness',
'image', 'indicatoron', 'justify', 'offrelief', 'overrelief',
'padx', 'pady', 'relief', 'selectcolor', 'selectimage', 'state',
'takefocus', 'text', 'textvariable',
'tristateimage', 'tristatevalue',
'underline', 'value', 'variable', 'width', 'wraplength',
)
def create(self, **kwargs):
return tkinter.Radiobutton(self.root, **kwargs)
def test_value(self):
widget = self.create()
self.checkParams(widget, 'value', 1, 2.3, '', 'any string')
@add_standard_options(StandardOptionsTests)
class MenubuttonTest(AbstractLabelTest, unittest.TestCase):
OPTIONS = (
'activebackground', 'activeforeground', 'anchor',
'background', 'bitmap', 'borderwidth',
'compound', 'cursor', 'direction',
'disabledforeground', 'font', 'foreground', 'height',
'highlightbackground', 'highlightcolor', 'highlightthickness',
'image', 'indicatoron', 'justify', 'menu',
'padx', 'pady', 'relief', 'state',
'takefocus', 'text', 'textvariable',
'underline', 'width', 'wraplength',
)
_conv_pixels = staticmethod(pixels_round)
def create(self, **kwargs):
return tkinter.Menubutton(self.root, **kwargs)
def test_direction(self):
widget = self.create()
self.checkEnumParam(widget, 'direction',
'above', 'below', 'flush', 'left', 'right')
def test_height(self):
widget = self.create()
self.checkIntegerParam(widget, 'height', 100, -100, 0, conv=str)
test_highlightthickness = StandardOptionsTests.test_highlightthickness
@unittest.skipIf(sys.platform == 'darwin',
'crashes with Cocoa Tk (issue19733)')
def test_image(self):
widget = self.create()
image = tkinter.PhotoImage(master=self.root, name='image1')
self.checkParam(widget, 'image', image, conv=str)
errmsg = 'image "spam" doesn\'t exist'
with self.assertRaises(tkinter.TclError) as cm:
widget['image'] = 'spam'
if errmsg is not None:
self.assertEqual(str(cm.exception), errmsg)
with self.assertRaises(tkinter.TclError) as cm:
widget.configure({'image': 'spam'})
if errmsg is not None:
self.assertEqual(str(cm.exception), errmsg)
def test_menu(self):
widget = self.create()
menu = tkinter.Menu(widget, name='menu')
self.checkParam(widget, 'menu', menu, eq=widget_eq)
menu.destroy()
def test_padx(self):
widget = self.create()
self.checkPixelsParam(widget, 'padx', 3, 4.4, 5.6, '12m')
self.checkParam(widget, 'padx', -2, expected=0)
def test_pady(self):
widget = self.create()
self.checkPixelsParam(widget, 'pady', 3, 4.4, 5.6, '12m')
self.checkParam(widget, 'pady', -2, expected=0)
def test_width(self):
widget = self.create()
self.checkIntegerParam(widget, 'width', 402, -402, 0, conv=str)
class OptionMenuTest(MenubuttonTest, unittest.TestCase):
def create(self, default='b', values=('a', 'b', 'c'), **kwargs):
return tkinter.OptionMenu(self.root, None, default, *values, **kwargs)
@add_standard_options(IntegerSizeTests, StandardOptionsTests)
class EntryTest(AbstractWidgetTest, unittest.TestCase):
OPTIONS = (
'background', 'borderwidth', 'cursor',
'disabledbackground', 'disabledforeground',
'exportselection', 'font', 'foreground',
'highlightbackground', 'highlightcolor', 'highlightthickness',
'insertbackground', 'insertborderwidth',
'insertofftime', 'insertontime', 'insertwidth',
'invalidcommand', 'justify', 'readonlybackground', 'relief',
'selectbackground', 'selectborderwidth', 'selectforeground',
'show', 'state', 'takefocus', 'textvariable',
'validate', 'validatecommand', 'width', 'xscrollcommand',
)
def create(self, **kwargs):
return tkinter.Entry(self.root, **kwargs)
def test_disabledbackground(self):
widget = self.create()
self.checkColorParam(widget, 'disabledbackground')
def test_insertborderwidth(self):
widget = self.create(insertwidth=100)
self.checkPixelsParam(widget, 'insertborderwidth',
0, 1.3, 2.6, 6, -2, '10p')
# insertborderwidth is bounded above by a half of insertwidth.
self.checkParam(widget, 'insertborderwidth', 60, expected=100//2)
def test_insertwidth(self):
widget = self.create()
self.checkPixelsParam(widget, 'insertwidth', 1.3, 3.6, '10p')
self.checkParam(widget, 'insertwidth', 0.1, expected=2)
self.checkParam(widget, 'insertwidth', -2, expected=2)
if pixels_round(0.9) <= 0:
self.checkParam(widget, 'insertwidth', 0.9, expected=2)
else:
self.checkParam(widget, 'insertwidth', 0.9, expected=1)
def test_invalidcommand(self):
widget = self.create()
self.checkCommandParam(widget, 'invalidcommand')
self.checkCommandParam(widget, 'invcmd')
def test_readonlybackground(self):
widget = self.create()
self.checkColorParam(widget, 'readonlybackground')
def test_show(self):
widget = self.create()
self.checkParam(widget, 'show', '*')
self.checkParam(widget, 'show', '')
self.checkParam(widget, 'show', ' ')
def test_state(self):
widget = self.create()
self.checkEnumParam(widget, 'state',
'disabled', 'normal', 'readonly')
def test_validate(self):
widget = self.create()
self.checkEnumParam(widget, 'validate',
'all', 'key', 'focus', 'focusin', 'focusout', 'none')
def test_validatecommand(self):
widget = self.create()
self.checkCommandParam(widget, 'validatecommand')
self.checkCommandParam(widget, 'vcmd')
@add_standard_options(StandardOptionsTests)
class SpinboxTest(EntryTest, unittest.TestCase):
OPTIONS = (
'activebackground', 'background', 'borderwidth',
'buttonbackground', 'buttoncursor', 'buttondownrelief', 'buttonuprelief',
'command', 'cursor', 'disabledbackground', 'disabledforeground',
'exportselection', 'font', 'foreground', 'format', 'from',
'highlightbackground', 'highlightcolor', 'highlightthickness',
'increment',
'insertbackground', 'insertborderwidth',
'insertofftime', 'insertontime', 'insertwidth',
'invalidcommand', 'justify', 'relief', 'readonlybackground',
'repeatdelay', 'repeatinterval',
'selectbackground', 'selectborderwidth', 'selectforeground',
'state', 'takefocus', 'textvariable', 'to',
'validate', 'validatecommand', 'values',
'width', 'wrap', 'xscrollcommand',
)
def create(self, **kwargs):
return tkinter.Spinbox(self.root, **kwargs)
test_show = None
def test_buttonbackground(self):
widget = self.create()
self.checkColorParam(widget, 'buttonbackground')
def test_buttoncursor(self):
widget = self.create()
self.checkCursorParam(widget, 'buttoncursor')
def test_buttondownrelief(self):
widget = self.create()
self.checkReliefParam(widget, 'buttondownrelief')
def test_buttonuprelief(self):
widget = self.create()
self.checkReliefParam(widget, 'buttonuprelief')
def test_format(self):
widget = self.create()
self.checkParam(widget, 'format', '%2f')
self.checkParam(widget, 'format', '%2.2f')
self.checkParam(widget, 'format', '%.2f')
self.checkParam(widget, 'format', '%2.f')
self.checkInvalidParam(widget, 'format', '%2e-1f')
self.checkInvalidParam(widget, 'format', '2.2')
self.checkInvalidParam(widget, 'format', '%2.-2f')
self.checkParam(widget, 'format', '%-2.02f')
self.checkParam(widget, 'format', '% 2.02f')
self.checkParam(widget, 'format', '% -2.200f')
self.checkParam(widget, 'format', '%09.200f')
self.checkInvalidParam(widget, 'format', '%d')
def test_from(self):
widget = self.create()
self.checkParam(widget, 'to', 100.0)
self.checkFloatParam(widget, 'from', -10, 10.2, 11.7)
self.checkInvalidParam(widget, 'from', 200,
errmsg='-to value must be greater than -from value')
def test_increment(self):
widget = self.create()
self.checkFloatParam(widget, 'increment', -1, 1, 10.2, 12.8, 0)
def test_to(self):
widget = self.create()
self.checkParam(widget, 'from', -100.0)
self.checkFloatParam(widget, 'to', -10, 10.2, 11.7)
self.checkInvalidParam(widget, 'to', -200,
errmsg='-to value must be greater than -from value')
def test_values(self):
# XXX
widget = self.create()
self.assertEqual(widget['values'], '')
self.checkParam(widget, 'values', 'mon tue wed thur')
self.checkParam(widget, 'values', ('mon', 'tue', 'wed', 'thur'),
expected='mon tue wed thur')
self.checkParam(widget, 'values', (42, 3.14, '', 'any string'),
expected='42 3.14 {} {any string}')
self.checkParam(widget, 'values', '')
def test_wrap(self):
widget = self.create()
self.checkBooleanParam(widget, 'wrap')
def test_bbox(self):
widget = self.create()
self.assertIsBoundingBox(widget.bbox(0))
self.assertRaises(tkinter.TclError, widget.bbox, 'noindex')
self.assertRaises(tkinter.TclError, widget.bbox, None)
self.assertRaises(TypeError, widget.bbox)
self.assertRaises(TypeError, widget.bbox, 0, 1)
def test_selection_element(self):
widget = self.create()
self.assertEqual(widget.selection_element(), "none")
widget.selection_element("buttonup")
self.assertEqual(widget.selection_element(), "buttonup")
widget.selection_element("buttondown")
self.assertEqual(widget.selection_element(), "buttondown")
@add_standard_options(StandardOptionsTests)
class TextTest(AbstractWidgetTest, unittest.TestCase):
OPTIONS = (
'autoseparators', 'background', 'blockcursor', 'borderwidth',
'cursor', 'endline', 'exportselection',
'font', 'foreground', 'height',
'highlightbackground', 'highlightcolor', 'highlightthickness',
'inactiveselectbackground', 'insertbackground', 'insertborderwidth',
'insertofftime', 'insertontime', 'insertunfocussed', 'insertwidth',
'maxundo', 'padx', 'pady', 'relief',
'selectbackground', 'selectborderwidth', 'selectforeground',
'setgrid', 'spacing1', 'spacing2', 'spacing3', 'startline', 'state',
'tabs', 'tabstyle', 'takefocus', 'undo', 'width', 'wrap',
'xscrollcommand', 'yscrollcommand',
)
if tcl_version < (8, 5):
_stringify = True
def create(self, **kwargs):
return tkinter.Text(self.root, **kwargs)
def test_autoseparators(self):
widget = self.create()
self.checkBooleanParam(widget, 'autoseparators')
@requires_tcl(8, 5)
def test_blockcursor(self):
widget = self.create()
self.checkBooleanParam(widget, 'blockcursor')
@requires_tcl(8, 5)
def test_endline(self):
widget = self.create()
text = '\n'.join('Line %d' for i in range(100))
widget.insert('end', text)
self.checkParam(widget, 'endline', 200, expected='')
self.checkParam(widget, 'endline', -10, expected='')
self.checkInvalidParam(widget, 'endline', 'spam',
errmsg='expected integer but got "spam"')
self.checkParam(widget, 'endline', 50)
self.checkParam(widget, 'startline', 15)
self.checkInvalidParam(widget, 'endline', 10,
errmsg='-startline must be less than or equal to -endline')
def test_height(self):
widget = self.create()
self.checkPixelsParam(widget, 'height', 100, 101.2, 102.6, '3c')
self.checkParam(widget, 'height', -100, expected=1)
self.checkParam(widget, 'height', 0, expected=1)
def test_maxundo(self):
widget = self.create()
self.checkIntegerParam(widget, 'maxundo', 0, 5, -1)
@requires_tcl(8, 5)
def test_inactiveselectbackground(self):
widget = self.create()
self.checkColorParam(widget, 'inactiveselectbackground')
@requires_tcl(8, 6)
def test_insertunfocussed(self):
widget = self.create()
self.checkEnumParam(widget, 'insertunfocussed',
'hollow', 'none', 'solid')
def test_selectborderwidth(self):
widget = self.create()
self.checkPixelsParam(widget, 'selectborderwidth',
1.3, 2.6, -2, '10p', conv=noconv,
keep_orig=tcl_version >= (8, 5))
def test_spacing1(self):
widget = self.create()
self.checkPixelsParam(widget, 'spacing1', 20, 21.4, 22.6, '0.5c')
self.checkParam(widget, 'spacing1', -5, expected=0)
def test_spacing2(self):
widget = self.create()
self.checkPixelsParam(widget, 'spacing2', 5, 6.4, 7.6, '0.1c')
self.checkParam(widget, 'spacing2', -1, expected=0)
def test_spacing3(self):
widget = self.create()
self.checkPixelsParam(widget, 'spacing3', 20, 21.4, 22.6, '0.5c')
self.checkParam(widget, 'spacing3', -10, expected=0)
@requires_tcl(8, 5)
def test_startline(self):
widget = self.create()
text = '\n'.join('Line %d' for i in range(100))
widget.insert('end', text)
self.checkParam(widget, 'startline', 200, expected='')
self.checkParam(widget, 'startline', -10, expected='')
self.checkInvalidParam(widget, 'startline', 'spam',
errmsg='expected integer but got "spam"')
self.checkParam(widget, 'startline', 10)
self.checkParam(widget, 'endline', 50)
self.checkInvalidParam(widget, 'startline', 70,
errmsg='-startline must be less than or equal to -endline')
def test_state(self):
widget = self.create()
if tcl_version < (8, 5):
self.checkParams(widget, 'state', 'disabled', 'normal')
else:
self.checkEnumParam(widget, 'state', 'disabled', 'normal')
def test_tabs(self):
widget = self.create()
if get_tk_patchlevel() < (8, 5, 11):
self.checkParam(widget, 'tabs', (10.2, 20.7, '1i', '2i'),
expected=('10.2', '20.7', '1i', '2i'))
else:
self.checkParam(widget, 'tabs', (10.2, 20.7, '1i', '2i'))
self.checkParam(widget, 'tabs', '10.2 20.7 1i 2i',
expected=('10.2', '20.7', '1i', '2i'))
self.checkParam(widget, 'tabs', '2c left 4c 6c center',
expected=('2c', 'left', '4c', '6c', 'center'))
self.checkInvalidParam(widget, 'tabs', 'spam',
errmsg='bad screen distance "spam"',
keep_orig=tcl_version >= (8, 5))
@requires_tcl(8, 5)
def test_tabstyle(self):
widget = self.create()
self.checkEnumParam(widget, 'tabstyle', 'tabular', 'wordprocessor')
def test_undo(self):
widget = self.create()
self.checkBooleanParam(widget, 'undo')
def test_width(self):
widget = self.create()
self.checkIntegerParam(widget, 'width', 402)
self.checkParam(widget, 'width', -402, expected=1)
self.checkParam(widget, 'width', 0, expected=1)
def test_wrap(self):
widget = self.create()
if tcl_version < (8, 5):
self.checkParams(widget, 'wrap', 'char', 'none', 'word')
else:
self.checkEnumParam(widget, 'wrap', 'char', 'none', 'word')
def test_bbox(self):
widget = self.create()
self.assertIsBoundingBox(widget.bbox('1.1'))
self.assertIsNone(widget.bbox('end'))
self.assertRaises(tkinter.TclError, widget.bbox, 'noindex')
self.assertRaises(tkinter.TclError, widget.bbox, None)
self.assertRaises(TypeError, widget.bbox)
self.assertRaises(TypeError, widget.bbox, '1.1', 'end')
@add_standard_options(PixelSizeTests, StandardOptionsTests)
class CanvasTest(AbstractWidgetTest, unittest.TestCase):
OPTIONS = (
'background', 'borderwidth',
'closeenough', 'confine', 'cursor', 'height',
'highlightbackground', 'highlightcolor', 'highlightthickness',
'insertbackground', 'insertborderwidth',
'insertofftime', 'insertontime', 'insertwidth',
'offset', 'relief', 'scrollregion',
'selectbackground', 'selectborderwidth', 'selectforeground',
'state', 'takefocus',
'xscrollcommand', 'xscrollincrement',
'yscrollcommand', 'yscrollincrement', 'width',
)
_conv_pixels = round
_stringify = True
def create(self, **kwargs):
return tkinter.Canvas(self.root, **kwargs)
def test_closeenough(self):
widget = self.create()
self.checkFloatParam(widget, 'closeenough', 24, 2.4, 3.6, -3,
conv=float)
def test_confine(self):
widget = self.create()
self.checkBooleanParam(widget, 'confine')
def test_offset(self):
widget = self.create()
self.assertEqual(widget['offset'], '0,0')
self.checkParams(widget, 'offset',
'n', 'ne', 'e', 'se', 's', 'sw', 'w', 'nw', 'center')
self.checkParam(widget, 'offset', '10,20')
self.checkParam(widget, 'offset', '#5,6')
self.checkInvalidParam(widget, 'offset', 'spam')
def test_scrollregion(self):
widget = self.create()
self.checkParam(widget, 'scrollregion', '0 0 200 150')
self.checkParam(widget, 'scrollregion', (0, 0, 200, 150),
expected='0 0 200 150')
self.checkParam(widget, 'scrollregion', '')
self.checkInvalidParam(widget, 'scrollregion', 'spam',
errmsg='bad scrollRegion "spam"')
self.checkInvalidParam(widget, 'scrollregion', (0, 0, 200, 'spam'))
self.checkInvalidParam(widget, 'scrollregion', (0, 0, 200))
self.checkInvalidParam(widget, 'scrollregion', (0, 0, 200, 150, 0))
def test_state(self):
widget = self.create()
self.checkEnumParam(widget, 'state', 'disabled', 'normal',
errmsg='bad state value "{}": must be normal or disabled')
def test_xscrollincrement(self):
widget = self.create()
self.checkPixelsParam(widget, 'xscrollincrement',
40, 0, 41.2, 43.6, -40, '0.5i')
def test_yscrollincrement(self):
widget = self.create()
self.checkPixelsParam(widget, 'yscrollincrement',
10, 0, 11.2, 13.6, -10, '0.1i')
@add_standard_options(IntegerSizeTests, StandardOptionsTests)
class ListboxTest(AbstractWidgetTest, unittest.TestCase):
OPTIONS = (
'activestyle', 'background', 'borderwidth', 'cursor',
'disabledforeground', 'exportselection',
'font', 'foreground', 'height',
'highlightbackground', 'highlightcolor', 'highlightthickness',
'justify', 'listvariable', 'relief',
'selectbackground', 'selectborderwidth', 'selectforeground',
'selectmode', 'setgrid', 'state',
'takefocus', 'width', 'xscrollcommand', 'yscrollcommand',
)
def create(self, **kwargs):
return tkinter.Listbox(self.root, **kwargs)
def test_activestyle(self):
widget = self.create()
self.checkEnumParam(widget, 'activestyle',
'dotbox', 'none', 'underline')
test_justify = requires_tcl(8, 6, 5)(StandardOptionsTests.test_justify)
def test_listvariable(self):
widget = self.create()
var = tkinter.DoubleVar(self.root)
self.checkVariableParam(widget, 'listvariable', var)
def test_selectmode(self):
widget = self.create()
self.checkParam(widget, 'selectmode', 'single')
self.checkParam(widget, 'selectmode', 'browse')
self.checkParam(widget, 'selectmode', 'multiple')
self.checkParam(widget, 'selectmode', 'extended')
def test_state(self):
widget = self.create()
self.checkEnumParam(widget, 'state', 'disabled', 'normal')
def test_itemconfigure(self):
widget = self.create()
with self.assertRaisesRegex(TclError, 'item number "0" out of range'):
widget.itemconfigure(0)
colors = 'red orange yellow green blue white violet'.split()
widget.insert('end', *colors)
for i, color in enumerate(colors):
widget.itemconfigure(i, background=color)
with self.assertRaises(TypeError):
widget.itemconfigure()
with self.assertRaisesRegex(TclError, 'bad listbox index "red"'):
widget.itemconfigure('red')
self.assertEqual(widget.itemconfigure(0, 'background'),
('background', 'background', 'Background', '', 'red'))
self.assertEqual(widget.itemconfigure('end', 'background'),
('background', 'background', 'Background', '', 'violet'))
self.assertEqual(widget.itemconfigure('@0,0', 'background'),
('background', 'background', 'Background', '', 'red'))
d = widget.itemconfigure(0)
self.assertIsInstance(d, dict)
for k, v in d.items():
self.assertIn(len(v), (2, 5))
if len(v) == 5:
self.assertEqual(v, widget.itemconfigure(0, k))
self.assertEqual(v[4], widget.itemcget(0, k))
def check_itemconfigure(self, name, value):
widget = self.create()
widget.insert('end', 'a', 'b', 'c', 'd')
widget.itemconfigure(0, **{name: value})
self.assertEqual(widget.itemconfigure(0, name)[4], value)
self.assertEqual(widget.itemcget(0, name), value)
with self.assertRaisesRegex(TclError, 'unknown color name "spam"'):
widget.itemconfigure(0, **{name: 'spam'})
def test_itemconfigure_background(self):
self.check_itemconfigure('background', '#ff0000')
def test_itemconfigure_bg(self):
self.check_itemconfigure('bg', '#ff0000')
def test_itemconfigure_fg(self):
self.check_itemconfigure('fg', '#110022')
def test_itemconfigure_foreground(self):
self.check_itemconfigure('foreground', '#110022')
def test_itemconfigure_selectbackground(self):
self.check_itemconfigure('selectbackground', '#110022')
def test_itemconfigure_selectforeground(self):
self.check_itemconfigure('selectforeground', '#654321')
def test_box(self):
lb = self.create()
lb.insert(0, *('el%d' % i for i in range(8)))
lb.pack()
self.assertIsBoundingBox(lb.bbox(0))
self.assertIsNone(lb.bbox(-1))
self.assertIsNone(lb.bbox(10))
self.assertRaises(TclError, lb.bbox, 'noindex')
self.assertRaises(TclError, lb.bbox, None)
self.assertRaises(TypeError, lb.bbox)
self.assertRaises(TypeError, lb.bbox, 0, 1)
def test_curselection(self):
lb = self.create()
lb.insert(0, *('el%d' % i for i in range(8)))
lb.selection_clear(0, tkinter.END)
lb.selection_set(2, 4)
lb.selection_set(6)
self.assertEqual(lb.curselection(), (2, 3, 4, 6))
self.assertRaises(TypeError, lb.curselection, 0)
def test_get(self):
lb = self.create()
lb.insert(0, *('el%d' % i for i in range(8)))
self.assertEqual(lb.get(0), 'el0')
self.assertEqual(lb.get(3), 'el3')
self.assertEqual(lb.get('end'), 'el7')
self.assertEqual(lb.get(8), '')
self.assertEqual(lb.get(-1), '')
self.assertEqual(lb.get(3, 5), ('el3', 'el4', 'el5'))
self.assertEqual(lb.get(5, 'end'), ('el5', 'el6', 'el7'))
self.assertEqual(lb.get(5, 0), ())
self.assertEqual(lb.get(0, 0), ('el0',))
self.assertRaises(TclError, lb.get, 'noindex')
self.assertRaises(TclError, lb.get, None)
self.assertRaises(TypeError, lb.get)
self.assertRaises(TclError, lb.get, 'end', 'noindex')
self.assertRaises(TypeError, lb.get, 1, 2, 3)
self.assertRaises(TclError, lb.get, 2.4)
@add_standard_options(PixelSizeTests, StandardOptionsTests)
class ScaleTest(AbstractWidgetTest, unittest.TestCase):
OPTIONS = (
'activebackground', 'background', 'bigincrement', 'borderwidth',
'command', 'cursor', 'digits', 'font', 'foreground', 'from',
'highlightbackground', 'highlightcolor', 'highlightthickness',
'label', 'length', 'orient', 'relief',
'repeatdelay', 'repeatinterval',
'resolution', 'showvalue', 'sliderlength', 'sliderrelief', 'state',
'takefocus', 'tickinterval', 'to', 'troughcolor', 'variable', 'width',
)
default_orient = 'vertical'
def create(self, **kwargs):
return tkinter.Scale(self.root, **kwargs)
def test_bigincrement(self):
widget = self.create()
self.checkFloatParam(widget, 'bigincrement', 12.4, 23.6, -5)
def test_digits(self):
widget = self.create()
self.checkIntegerParam(widget, 'digits', 5, 0)
def test_from(self):
widget = self.create()
self.checkFloatParam(widget, 'from', 100, 14.9, 15.1, conv=float_round)
def test_label(self):
widget = self.create()
self.checkParam(widget, 'label', 'any string')
self.checkParam(widget, 'label', '')
def test_length(self):
widget = self.create()
self.checkPixelsParam(widget, 'length', 130, 131.2, 135.6, '5i')
def test_resolution(self):
widget = self.create()
self.checkFloatParam(widget, 'resolution', 4.2, 0, 6.7, -2)
def test_showvalue(self):
widget = self.create()
self.checkBooleanParam(widget, 'showvalue')
def test_sliderlength(self):
widget = self.create()
self.checkPixelsParam(widget, 'sliderlength',
10, 11.2, 15.6, -3, '3m')
def test_sliderrelief(self):
widget = self.create()
self.checkReliefParam(widget, 'sliderrelief')
def test_tickinterval(self):
widget = self.create()
self.checkFloatParam(widget, 'tickinterval', 1, 4.3, 7.6, 0,
conv=float_round)
self.checkParam(widget, 'tickinterval', -2, expected=2,
conv=float_round)
def test_to(self):
widget = self.create()
self.checkFloatParam(widget, 'to', 300, 14.9, 15.1, -10,
conv=float_round)
@add_standard_options(PixelSizeTests, StandardOptionsTests)
class ScrollbarTest(AbstractWidgetTest, unittest.TestCase):
OPTIONS = (
'activebackground', 'activerelief',
'background', 'borderwidth',
'command', 'cursor', 'elementborderwidth',
'highlightbackground', 'highlightcolor', 'highlightthickness',
'jump', 'orient', 'relief',
'repeatdelay', 'repeatinterval',
'takefocus', 'troughcolor', 'width',
)
_conv_pixels = round
_stringify = True
default_orient = 'vertical'
def create(self, **kwargs):
return tkinter.Scrollbar(self.root, **kwargs)
def test_activerelief(self):
widget = self.create()
self.checkReliefParam(widget, 'activerelief')
def test_elementborderwidth(self):
widget = self.create()
self.checkPixelsParam(widget, 'elementborderwidth', 4.3, 5.6, -2, '1m')
def test_orient(self):
widget = self.create()
self.checkEnumParam(widget, 'orient', 'vertical', 'horizontal',
errmsg='bad orientation "{}": must be vertical or horizontal')
def test_activate(self):
sb = self.create()
for e in ('arrow1', 'slider', 'arrow2'):
sb.activate(e)
self.assertEqual(sb.activate(), e)
sb.activate('')
self.assertIsNone(sb.activate())
self.assertRaises(TypeError, sb.activate, 'arrow1', 'arrow2')
def test_set(self):
sb = self.create()
sb.set(0.2, 0.4)
self.assertEqual(sb.get(), (0.2, 0.4))
self.assertRaises(TclError, sb.set, 'abc', 'def')
self.assertRaises(TclError, sb.set, 0.6, 'def')
self.assertRaises(TclError, sb.set, 0.6, None)
self.assertRaises(TypeError, sb.set, 0.6)
self.assertRaises(TypeError, sb.set, 0.6, 0.7, 0.8)
@add_standard_options(StandardOptionsTests)
class PanedWindowTest(AbstractWidgetTest, unittest.TestCase):
OPTIONS = (
'background', 'borderwidth', 'cursor',
'handlepad', 'handlesize', 'height',
'opaqueresize', 'orient',
'proxybackground', 'proxyborderwidth', 'proxyrelief',
'relief',
'sashcursor', 'sashpad', 'sashrelief', 'sashwidth',
'showhandle', 'width',
)
default_orient = 'horizontal'
def create(self, **kwargs):
return tkinter.PanedWindow(self.root, **kwargs)
def test_handlepad(self):
widget = self.create()
self.checkPixelsParam(widget, 'handlepad', 5, 6.4, 7.6, -3, '1m')
def test_handlesize(self):
widget = self.create()
self.checkPixelsParam(widget, 'handlesize', 8, 9.4, 10.6, -3, '2m',
conv=noconv)
def test_height(self):
widget = self.create()
self.checkPixelsParam(widget, 'height', 100, 101.2, 102.6, -100, 0, '1i',
conv=noconv)
def test_opaqueresize(self):
widget = self.create()
self.checkBooleanParam(widget, 'opaqueresize')
@requires_tcl(8, 6, 5)
def test_proxybackground(self):
widget = self.create()
self.checkColorParam(widget, 'proxybackground')
@requires_tcl(8, 6, 5)
def test_proxyborderwidth(self):
widget = self.create()
self.checkPixelsParam(widget, 'proxyborderwidth',
0, 1.3, 2.9, 6, -2, '10p',
conv=noconv)
@requires_tcl(8, 6, 5)
def test_proxyrelief(self):
widget = self.create()
self.checkReliefParam(widget, 'proxyrelief')
def test_sashcursor(self):
widget = self.create()
self.checkCursorParam(widget, 'sashcursor')
def test_sashpad(self):
widget = self.create()
self.checkPixelsParam(widget, 'sashpad', 8, 1.3, 2.6, -2, '2m')
def test_sashrelief(self):
widget = self.create()
self.checkReliefParam(widget, 'sashrelief')
def test_sashwidth(self):
widget = self.create()
self.checkPixelsParam(widget, 'sashwidth', 10, 11.1, 15.6, -3, '1m',
conv=noconv)
def test_showhandle(self):
widget = self.create()
self.checkBooleanParam(widget, 'showhandle')
def test_width(self):
widget = self.create()
self.checkPixelsParam(widget, 'width', 402, 403.4, 404.6, -402, 0, '5i',
conv=noconv)
def create2(self):
p = self.create()
b = tkinter.Button(p)
c = tkinter.Button(p)
p.add(b)
p.add(c)
return p, b, c
def test_paneconfigure(self):
p, b, c = self.create2()
self.assertRaises(TypeError, p.paneconfigure)
d = p.paneconfigure(b)
self.assertIsInstance(d, dict)
for k, v in d.items():
self.assertEqual(len(v), 5)
self.assertEqual(v, p.paneconfigure(b, k))
self.assertEqual(v[4], p.panecget(b, k))
def check_paneconfigure(self, p, b, name, value, expected, stringify=False):
conv = lambda x: x
if not self.wantobjects or stringify:
expected = str(expected)
if self.wantobjects and stringify:
conv = str
p.paneconfigure(b, **{name: value})
self.assertEqual(conv(p.paneconfigure(b, name)[4]), expected)
self.assertEqual(conv(p.panecget(b, name)), expected)
def check_paneconfigure_bad(self, p, b, name, msg):
with self.assertRaisesRegex(TclError, msg):
p.paneconfigure(b, **{name: 'badValue'})
def test_paneconfigure_after(self):
p, b, c = self.create2()
self.check_paneconfigure(p, b, 'after', c, str(c))
self.check_paneconfigure_bad(p, b, 'after',
'bad window path name "badValue"')
def test_paneconfigure_before(self):
p, b, c = self.create2()
self.check_paneconfigure(p, b, 'before', c, str(c))
self.check_paneconfigure_bad(p, b, 'before',
'bad window path name "badValue"')
def test_paneconfigure_height(self):
p, b, c = self.create2()
self.check_paneconfigure(p, b, 'height', 10, 10,
stringify=get_tk_patchlevel() < (8, 5, 11))
self.check_paneconfigure_bad(p, b, 'height',
'bad screen distance "badValue"')
@requires_tcl(8, 5)
def test_paneconfigure_hide(self):
p, b, c = self.create2()
self.check_paneconfigure(p, b, 'hide', False, 0)
self.check_paneconfigure_bad(p, b, 'hide',
'expected boolean value but got "badValue"')
def test_paneconfigure_minsize(self):
p, b, c = self.create2()
self.check_paneconfigure(p, b, 'minsize', 10, 10)
self.check_paneconfigure_bad(p, b, 'minsize',
'bad screen distance "badValue"')
def test_paneconfigure_padx(self):
p, b, c = self.create2()
self.check_paneconfigure(p, b, 'padx', 1.3, 1)
self.check_paneconfigure_bad(p, b, 'padx',
'bad screen distance "badValue"')
def test_paneconfigure_pady(self):
p, b, c = self.create2()
self.check_paneconfigure(p, b, 'pady', 1.3, 1)
self.check_paneconfigure_bad(p, b, 'pady',
'bad screen distance "badValue"')
def test_paneconfigure_sticky(self):
p, b, c = self.create2()
self.check_paneconfigure(p, b, 'sticky', 'nsew', 'nesw')
self.check_paneconfigure_bad(p, b, 'sticky',
'bad stickyness value "badValue": must '
'be a string containing zero or more of '
'n, e, s, and w')
@requires_tcl(8, 5)
def test_paneconfigure_stretch(self):
p, b, c = self.create2()
self.check_paneconfigure(p, b, 'stretch', 'alw', 'always')
self.check_paneconfigure_bad(p, b, 'stretch',
'bad stretch "badValue": must be '
'always, first, last, middle, or never')
def test_paneconfigure_width(self):
p, b, c = self.create2()
self.check_paneconfigure(p, b, 'width', 10, 10,
stringify=get_tk_patchlevel() < (8, 5, 11))
self.check_paneconfigure_bad(p, b, 'width',
'bad screen distance "badValue"')
@add_standard_options(StandardOptionsTests)
class MenuTest(AbstractWidgetTest, unittest.TestCase):
OPTIONS = (
'activebackground', 'activeborderwidth', 'activeforeground',
'background', 'borderwidth', 'cursor',
'disabledforeground', 'font', 'foreground',
'postcommand', 'relief', 'selectcolor', 'takefocus',
'tearoff', 'tearoffcommand', 'title', 'type',
)
_conv_pixels = noconv
def create(self, **kwargs):
return tkinter.Menu(self.root, **kwargs)
def test_postcommand(self):
widget = self.create()
self.checkCommandParam(widget, 'postcommand')
def test_tearoff(self):
widget = self.create()
self.checkBooleanParam(widget, 'tearoff')
def test_tearoffcommand(self):
widget = self.create()
self.checkCommandParam(widget, 'tearoffcommand')
def test_title(self):
widget = self.create()
self.checkParam(widget, 'title', 'any string')
def test_type(self):
widget = self.create()
self.checkEnumParam(widget, 'type',
'normal', 'tearoff', 'menubar')
def test_entryconfigure(self):
m1 = self.create()
m1.add_command(label='test')
self.assertRaises(TypeError, m1.entryconfigure)
with self.assertRaisesRegex(TclError, 'bad menu entry index "foo"'):
m1.entryconfigure('foo')
d = m1.entryconfigure(1)
self.assertIsInstance(d, dict)
for k, v in d.items():
self.assertIsInstance(k, str)
self.assertIsInstance(v, tuple)
self.assertEqual(len(v), 5)
self.assertEqual(v[0], k)
self.assertEqual(m1.entrycget(1, k), v[4])
m1.destroy()
def test_entryconfigure_label(self):
m1 = self.create()
m1.add_command(label='test')
self.assertEqual(m1.entrycget(1, 'label'), 'test')
m1.entryconfigure(1, label='changed')
self.assertEqual(m1.entrycget(1, 'label'), 'changed')
def test_entryconfigure_variable(self):
m1 = self.create()
v1 = tkinter.BooleanVar(self.root)
v2 = tkinter.BooleanVar(self.root)
m1.add_checkbutton(variable=v1, onvalue=True, offvalue=False,
label='Nonsense')
self.assertEqual(str(m1.entrycget(1, 'variable')), str(v1))
m1.entryconfigure(1, variable=v2)
self.assertEqual(str(m1.entrycget(1, 'variable')), str(v2))
@add_standard_options(PixelSizeTests, StandardOptionsTests)
class MessageTest(AbstractWidgetTest, unittest.TestCase):
OPTIONS = (
'anchor', 'aspect', 'background', 'borderwidth',
'cursor', 'font', 'foreground',
'highlightbackground', 'highlightcolor', 'highlightthickness',
'justify', 'padx', 'pady', 'relief',
'takefocus', 'text', 'textvariable', 'width',
)
_conv_pad_pixels = noconv
def create(self, **kwargs):
return tkinter.Message(self.root, **kwargs)
def test_aspect(self):
widget = self.create()
self.checkIntegerParam(widget, 'aspect', 250, 0, -300)
tests_gui = (
ButtonTest, CanvasTest, CheckbuttonTest, EntryTest,
FrameTest, LabelFrameTest,LabelTest, ListboxTest,
MenubuttonTest, MenuTest, MessageTest, OptionMenuTest,
PanedWindowTest, RadiobuttonTest, ScaleTest, ScrollbarTest,
SpinboxTest, TextTest, ToplevelTest,
)
if __name__ == '__main__':
unittest.main()
| 47,210 | 1,234 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/tkinter/test/test_tkinter/test_misc.py | import unittest
import tkinter
from test import support
from tkinter.test.support import AbstractTkTest
support.requires('gui')
class MiscTest(AbstractTkTest, unittest.TestCase):
def test_repr(self):
t = tkinter.Toplevel(self.root, name='top')
f = tkinter.Frame(t, name='child')
self.assertEqual(repr(f), '<tkinter.Frame object .top.child>')
def test_generated_names(self):
t = tkinter.Toplevel(self.root)
f = tkinter.Frame(t)
f2 = tkinter.Frame(t)
b = tkinter.Button(f2)
for name in str(b).split('.'):
self.assertFalse(name.isidentifier(), msg=repr(name))
def test_tk_setPalette(self):
root = self.root
root.tk_setPalette('black')
self.assertEqual(root['background'], 'black')
root.tk_setPalette('white')
self.assertEqual(root['background'], 'white')
self.assertRaisesRegex(tkinter.TclError,
'^unknown color name "spam"$',
root.tk_setPalette, 'spam')
root.tk_setPalette(background='black')
self.assertEqual(root['background'], 'black')
root.tk_setPalette(background='blue', highlightColor='yellow')
self.assertEqual(root['background'], 'blue')
self.assertEqual(root['highlightcolor'], 'yellow')
root.tk_setPalette(background='yellow', highlightColor='blue')
self.assertEqual(root['background'], 'yellow')
self.assertEqual(root['highlightcolor'], 'blue')
self.assertRaisesRegex(tkinter.TclError,
'^unknown color name "spam"$',
root.tk_setPalette, background='spam')
self.assertRaisesRegex(tkinter.TclError,
'^must specify a background color$',
root.tk_setPalette, spam='white')
self.assertRaisesRegex(tkinter.TclError,
'^must specify a background color$',
root.tk_setPalette, highlightColor='blue')
def test_after(self):
root = self.root
def callback(start=0, step=1):
nonlocal count
count = start + step
# Without function, sleeps for ms.
self.assertIsNone(root.after(1))
# Set up with callback with no args.
count = 0
timer1 = root.after(0, callback)
self.assertIn(timer1, root.tk.call('after', 'info'))
(script, _) = root.tk.splitlist(root.tk.call('after', 'info', timer1))
root.update() # Process all pending events.
self.assertEqual(count, 1)
with self.assertRaises(tkinter.TclError):
root.tk.call(script)
# Set up with callback with args.
count = 0
timer1 = root.after(0, callback, 42, 11)
root.update() # Process all pending events.
self.assertEqual(count, 53)
# Cancel before called.
timer1 = root.after(1000, callback)
self.assertIn(timer1, root.tk.call('after', 'info'))
(script, _) = root.tk.splitlist(root.tk.call('after', 'info', timer1))
root.after_cancel(timer1) # Cancel this event.
self.assertEqual(count, 53)
with self.assertRaises(tkinter.TclError):
root.tk.call(script)
def test_after_idle(self):
root = self.root
def callback(start=0, step=1):
nonlocal count
count = start + step
# Set up with callback with no args.
count = 0
idle1 = root.after_idle(callback)
self.assertIn(idle1, root.tk.call('after', 'info'))
(script, _) = root.tk.splitlist(root.tk.call('after', 'info', idle1))
root.update_idletasks() # Process all pending events.
self.assertEqual(count, 1)
with self.assertRaises(tkinter.TclError):
root.tk.call(script)
# Set up with callback with args.
count = 0
idle1 = root.after_idle(callback, 42, 11)
root.update_idletasks() # Process all pending events.
self.assertEqual(count, 53)
# Cancel before called.
idle1 = root.after_idle(callback)
self.assertIn(idle1, root.tk.call('after', 'info'))
(script, _) = root.tk.splitlist(root.tk.call('after', 'info', idle1))
root.after_cancel(idle1) # Cancel this event.
self.assertEqual(count, 53)
with self.assertRaises(tkinter.TclError):
root.tk.call(script)
def test_after_cancel(self):
root = self.root
def callback():
nonlocal count
count += 1
timer1 = root.after(5000, callback)
idle1 = root.after_idle(callback)
# No value for id raises a ValueError.
with self.assertRaises(ValueError):
root.after_cancel(None)
# Cancel timer event.
count = 0
(script, _) = root.tk.splitlist(root.tk.call('after', 'info', timer1))
root.tk.call(script)
self.assertEqual(count, 1)
root.after_cancel(timer1)
with self.assertRaises(tkinter.TclError):
root.tk.call(script)
self.assertEqual(count, 1)
with self.assertRaises(tkinter.TclError):
root.tk.call('after', 'info', timer1)
# Cancel same event - nothing happens.
root.after_cancel(timer1)
# Cancel idle event.
count = 0
(script, _) = root.tk.splitlist(root.tk.call('after', 'info', idle1))
root.tk.call(script)
self.assertEqual(count, 1)
root.after_cancel(idle1)
with self.assertRaises(tkinter.TclError):
root.tk.call(script)
self.assertEqual(count, 1)
with self.assertRaises(tkinter.TclError):
root.tk.call('after', 'info', idle1)
tests_gui = (MiscTest, )
if __name__ == "__main__":
support.run_unittest(*tests_gui)
| 5,787 | 164 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/tkinter/test/test_tkinter/test_geometry_managers.py | import unittest
import re
import tkinter
from tkinter import TclError
from test.support import requires
from tkinter.test.support import pixels_conv, tcl_version, requires_tcl
from tkinter.test.widget_tests import AbstractWidgetTest
requires('gui')
class PackTest(AbstractWidgetTest, unittest.TestCase):
test_keys = None
def create2(self):
pack = tkinter.Toplevel(self.root, name='pack')
pack.wm_geometry('300x200+0+0')
pack.wm_minsize(1, 1)
a = tkinter.Frame(pack, name='a', width=20, height=40, bg='red')
b = tkinter.Frame(pack, name='b', width=50, height=30, bg='blue')
c = tkinter.Frame(pack, name='c', width=80, height=80, bg='green')
d = tkinter.Frame(pack, name='d', width=40, height=30, bg='yellow')
return pack, a, b, c, d
def test_pack_configure_after(self):
pack, a, b, c, d = self.create2()
with self.assertRaisesRegex(TclError, 'window "%s" isn\'t packed' % b):
a.pack_configure(after=b)
with self.assertRaisesRegex(TclError, 'bad window path name ".foo"'):
a.pack_configure(after='.foo')
a.pack_configure(side='top')
b.pack_configure(side='top')
c.pack_configure(side='top')
d.pack_configure(side='top')
self.assertEqual(pack.pack_slaves(), [a, b, c, d])
a.pack_configure(after=b)
self.assertEqual(pack.pack_slaves(), [b, a, c, d])
a.pack_configure(after=a)
self.assertEqual(pack.pack_slaves(), [b, a, c, d])
def test_pack_configure_anchor(self):
pack, a, b, c, d = self.create2()
def check(anchor, geom):
a.pack_configure(side='top', ipadx=5, padx=10, ipady=15, pady=20,
expand=True, anchor=anchor)
self.root.update()
self.assertEqual(a.winfo_geometry(), geom)
check('n', '30x70+135+20')
check('ne', '30x70+260+20')
check('e', '30x70+260+65')
check('se', '30x70+260+110')
check('s', '30x70+135+110')
check('sw', '30x70+10+110')
check('w', '30x70+10+65')
check('nw', '30x70+10+20')
check('center', '30x70+135+65')
def test_pack_configure_before(self):
pack, a, b, c, d = self.create2()
with self.assertRaisesRegex(TclError, 'window "%s" isn\'t packed' % b):
a.pack_configure(before=b)
with self.assertRaisesRegex(TclError, 'bad window path name ".foo"'):
a.pack_configure(before='.foo')
a.pack_configure(side='top')
b.pack_configure(side='top')
c.pack_configure(side='top')
d.pack_configure(side='top')
self.assertEqual(pack.pack_slaves(), [a, b, c, d])
a.pack_configure(before=d)
self.assertEqual(pack.pack_slaves(), [b, c, a, d])
a.pack_configure(before=a)
self.assertEqual(pack.pack_slaves(), [b, c, a, d])
def test_pack_configure_expand(self):
pack, a, b, c, d = self.create2()
def check(*geoms):
self.root.update()
self.assertEqual(a.winfo_geometry(), geoms[0])
self.assertEqual(b.winfo_geometry(), geoms[1])
self.assertEqual(c.winfo_geometry(), geoms[2])
self.assertEqual(d.winfo_geometry(), geoms[3])
a.pack_configure(side='left')
b.pack_configure(side='top')
c.pack_configure(side='right')
d.pack_configure(side='bottom')
check('20x40+0+80', '50x30+135+0', '80x80+220+75', '40x30+100+170')
a.pack_configure(side='left', expand='yes')
b.pack_configure(side='top', expand='on')
c.pack_configure(side='right', expand=True)
d.pack_configure(side='bottom', expand=1)
check('20x40+40+80', '50x30+175+35', '80x80+180+110', '40x30+100+135')
a.pack_configure(side='left', expand='yes', fill='both')
b.pack_configure(side='top', expand='on', fill='both')
c.pack_configure(side='right', expand=True, fill='both')
d.pack_configure(side='bottom', expand=1, fill='both')
check('100x200+0+0', '200x100+100+0', '160x100+140+100', '40x100+100+100')
def test_pack_configure_in(self):
pack, a, b, c, d = self.create2()
a.pack_configure(side='top')
b.pack_configure(side='top')
c.pack_configure(side='top')
d.pack_configure(side='top')
a.pack_configure(in_=pack)
self.assertEqual(pack.pack_slaves(), [b, c, d, a])
a.pack_configure(in_=c)
self.assertEqual(pack.pack_slaves(), [b, c, d])
self.assertEqual(c.pack_slaves(), [a])
with self.assertRaisesRegex(TclError,
'can\'t pack %s inside itself' % (a,)):
a.pack_configure(in_=a)
with self.assertRaisesRegex(TclError, 'bad window path name ".foo"'):
a.pack_configure(in_='.foo')
def test_pack_configure_padx_ipadx_fill(self):
pack, a, b, c, d = self.create2()
def check(geom1, geom2, **kwargs):
a.pack_forget()
b.pack_forget()
a.pack_configure(**kwargs)
b.pack_configure(expand=True, fill='both')
self.root.update()
self.assertEqual(a.winfo_geometry(), geom1)
self.assertEqual(b.winfo_geometry(), geom2)
check('20x40+260+80', '240x200+0+0', side='right', padx=20)
check('20x40+250+80', '240x200+0+0', side='right', padx=(10, 30))
check('60x40+240+80', '240x200+0+0', side='right', ipadx=20)
check('30x40+260+80', '250x200+0+0', side='right', ipadx=5, padx=10)
check('20x40+260+80', '240x200+0+0', side='right', padx=20, fill='x')
check('20x40+249+80', '240x200+0+0',
side='right', padx=(9, 31), fill='x')
check('60x40+240+80', '240x200+0+0', side='right', ipadx=20, fill='x')
check('30x40+260+80', '250x200+0+0',
side='right', ipadx=5, padx=10, fill='x')
check('30x40+255+80', '250x200+0+0',
side='right', ipadx=5, padx=(5, 15), fill='x')
check('20x40+140+0', '300x160+0+40', side='top', padx=20)
check('20x40+120+0', '300x160+0+40', side='top', padx=(0, 40))
check('60x40+120+0', '300x160+0+40', side='top', ipadx=20)
check('30x40+135+0', '300x160+0+40', side='top', ipadx=5, padx=10)
check('30x40+130+0', '300x160+0+40', side='top', ipadx=5, padx=(5, 15))
check('260x40+20+0', '300x160+0+40', side='top', padx=20, fill='x')
check('260x40+25+0', '300x160+0+40',
side='top', padx=(25, 15), fill='x')
check('300x40+0+0', '300x160+0+40', side='top', ipadx=20, fill='x')
check('280x40+10+0', '300x160+0+40',
side='top', ipadx=5, padx=10, fill='x')
check('280x40+5+0', '300x160+0+40',
side='top', ipadx=5, padx=(5, 15), fill='x')
a.pack_configure(padx='1c')
self.assertEqual(a.pack_info()['padx'],
self._str(pack.winfo_pixels('1c')))
a.pack_configure(ipadx='1c')
self.assertEqual(a.pack_info()['ipadx'],
self._str(pack.winfo_pixels('1c')))
def test_pack_configure_pady_ipady_fill(self):
pack, a, b, c, d = self.create2()
def check(geom1, geom2, **kwargs):
a.pack_forget()
b.pack_forget()
a.pack_configure(**kwargs)
b.pack_configure(expand=True, fill='both')
self.root.update()
self.assertEqual(a.winfo_geometry(), geom1)
self.assertEqual(b.winfo_geometry(), geom2)
check('20x40+280+80', '280x200+0+0', side='right', pady=20)
check('20x40+280+70', '280x200+0+0', side='right', pady=(10, 30))
check('20x80+280+60', '280x200+0+0', side='right', ipady=20)
check('20x50+280+75', '280x200+0+0', side='right', ipady=5, pady=10)
check('20x40+280+80', '280x200+0+0', side='right', pady=20, fill='x')
check('20x40+280+69', '280x200+0+0',
side='right', pady=(9, 31), fill='x')
check('20x80+280+60', '280x200+0+0', side='right', ipady=20, fill='x')
check('20x50+280+75', '280x200+0+0',
side='right', ipady=5, pady=10, fill='x')
check('20x50+280+70', '280x200+0+0',
side='right', ipady=5, pady=(5, 15), fill='x')
check('20x40+140+20', '300x120+0+80', side='top', pady=20)
check('20x40+140+0', '300x120+0+80', side='top', pady=(0, 40))
check('20x80+140+0', '300x120+0+80', side='top', ipady=20)
check('20x50+140+10', '300x130+0+70', side='top', ipady=5, pady=10)
check('20x50+140+5', '300x130+0+70', side='top', ipady=5, pady=(5, 15))
check('300x40+0+20', '300x120+0+80', side='top', pady=20, fill='x')
check('300x40+0+25', '300x120+0+80',
side='top', pady=(25, 15), fill='x')
check('300x80+0+0', '300x120+0+80', side='top', ipady=20, fill='x')
check('300x50+0+10', '300x130+0+70',
side='top', ipady=5, pady=10, fill='x')
check('300x50+0+5', '300x130+0+70',
side='top', ipady=5, pady=(5, 15), fill='x')
a.pack_configure(pady='1c')
self.assertEqual(a.pack_info()['pady'],
self._str(pack.winfo_pixels('1c')))
a.pack_configure(ipady='1c')
self.assertEqual(a.pack_info()['ipady'],
self._str(pack.winfo_pixels('1c')))
def test_pack_configure_side(self):
pack, a, b, c, d = self.create2()
def check(side, geom1, geom2):
a.pack_configure(side=side)
self.assertEqual(a.pack_info()['side'], side)
b.pack_configure(expand=True, fill='both')
self.root.update()
self.assertEqual(a.winfo_geometry(), geom1)
self.assertEqual(b.winfo_geometry(), geom2)
check('top', '20x40+140+0', '300x160+0+40')
check('bottom', '20x40+140+160', '300x160+0+0')
check('left', '20x40+0+80', '280x200+20+0')
check('right', '20x40+280+80', '280x200+0+0')
def test_pack_forget(self):
pack, a, b, c, d = self.create2()
a.pack_configure()
b.pack_configure()
c.pack_configure()
self.assertEqual(pack.pack_slaves(), [a, b, c])
b.pack_forget()
self.assertEqual(pack.pack_slaves(), [a, c])
b.pack_forget()
self.assertEqual(pack.pack_slaves(), [a, c])
d.pack_forget()
def test_pack_info(self):
pack, a, b, c, d = self.create2()
with self.assertRaisesRegex(TclError, 'window "%s" isn\'t packed' % a):
a.pack_info()
a.pack_configure()
b.pack_configure(side='right', in_=a, anchor='s', expand=True, fill='x',
ipadx=5, padx=10, ipady=2, pady=(5, 15))
info = a.pack_info()
self.assertIsInstance(info, dict)
self.assertEqual(info['anchor'], 'center')
self.assertEqual(info['expand'], self._str(0))
self.assertEqual(info['fill'], 'none')
self.assertEqual(info['in'], pack)
self.assertEqual(info['ipadx'], self._str(0))
self.assertEqual(info['ipady'], self._str(0))
self.assertEqual(info['padx'], self._str(0))
self.assertEqual(info['pady'], self._str(0))
self.assertEqual(info['side'], 'top')
info = b.pack_info()
self.assertIsInstance(info, dict)
self.assertEqual(info['anchor'], 's')
self.assertEqual(info['expand'], self._str(1))
self.assertEqual(info['fill'], 'x')
self.assertEqual(info['in'], a)
self.assertEqual(info['ipadx'], self._str(5))
self.assertEqual(info['ipady'], self._str(2))
self.assertEqual(info['padx'], self._str(10))
self.assertEqual(info['pady'], self._str((5, 15)))
self.assertEqual(info['side'], 'right')
def test_pack_propagate(self):
pack, a, b, c, d = self.create2()
pack.configure(width=300, height=200)
a.pack_configure()
pack.pack_propagate(False)
self.root.update()
self.assertEqual(pack.winfo_reqwidth(), 300)
self.assertEqual(pack.winfo_reqheight(), 200)
pack.pack_propagate(True)
self.root.update()
self.assertEqual(pack.winfo_reqwidth(), 20)
self.assertEqual(pack.winfo_reqheight(), 40)
def test_pack_slaves(self):
pack, a, b, c, d = self.create2()
self.assertEqual(pack.pack_slaves(), [])
a.pack_configure()
self.assertEqual(pack.pack_slaves(), [a])
b.pack_configure()
self.assertEqual(pack.pack_slaves(), [a, b])
class PlaceTest(AbstractWidgetTest, unittest.TestCase):
test_keys = None
def create2(self):
t = tkinter.Toplevel(self.root, width=300, height=200, bd=0)
t.wm_geometry('300x200+0+0')
f = tkinter.Frame(t, width=154, height=84, bd=2, relief='raised')
f.place_configure(x=48, y=38)
f2 = tkinter.Frame(t, width=30, height=60, bd=2, relief='raised')
self.root.update()
return t, f, f2
def test_place_configure_in(self):
t, f, f2 = self.create2()
self.assertEqual(f2.winfo_manager(), '')
with self.assertRaisesRegex(TclError, "can't place %s relative to "
"itself" % re.escape(str(f2))):
f2.place_configure(in_=f2)
if tcl_version >= (8, 5):
self.assertEqual(f2.winfo_manager(), '')
with self.assertRaisesRegex(TclError, 'bad window path name'):
f2.place_configure(in_='spam')
f2.place_configure(in_=f)
self.assertEqual(f2.winfo_manager(), 'place')
def test_place_configure_x(self):
t, f, f2 = self.create2()
f2.place_configure(in_=f)
self.assertEqual(f2.place_info()['x'], '0')
self.root.update()
self.assertEqual(f2.winfo_x(), 50)
f2.place_configure(x=100)
self.assertEqual(f2.place_info()['x'], '100')
self.root.update()
self.assertEqual(f2.winfo_x(), 150)
f2.place_configure(x=-10, relx=1)
self.assertEqual(f2.place_info()['x'], '-10')
self.root.update()
self.assertEqual(f2.winfo_x(), 190)
with self.assertRaisesRegex(TclError, 'bad screen distance "spam"'):
f2.place_configure(in_=f, x='spam')
def test_place_configure_y(self):
t, f, f2 = self.create2()
f2.place_configure(in_=f)
self.assertEqual(f2.place_info()['y'], '0')
self.root.update()
self.assertEqual(f2.winfo_y(), 40)
f2.place_configure(y=50)
self.assertEqual(f2.place_info()['y'], '50')
self.root.update()
self.assertEqual(f2.winfo_y(), 90)
f2.place_configure(y=-10, rely=1)
self.assertEqual(f2.place_info()['y'], '-10')
self.root.update()
self.assertEqual(f2.winfo_y(), 110)
with self.assertRaisesRegex(TclError, 'bad screen distance "spam"'):
f2.place_configure(in_=f, y='spam')
def test_place_configure_relx(self):
t, f, f2 = self.create2()
f2.place_configure(in_=f)
self.assertEqual(f2.place_info()['relx'], '0')
self.root.update()
self.assertEqual(f2.winfo_x(), 50)
f2.place_configure(relx=0.5)
self.assertEqual(f2.place_info()['relx'], '0.5')
self.root.update()
self.assertEqual(f2.winfo_x(), 125)
f2.place_configure(relx=1)
self.assertEqual(f2.place_info()['relx'], '1')
self.root.update()
self.assertEqual(f2.winfo_x(), 200)
with self.assertRaisesRegex(TclError, 'expected floating-point number '
'but got "spam"'):
f2.place_configure(in_=f, relx='spam')
def test_place_configure_rely(self):
t, f, f2 = self.create2()
f2.place_configure(in_=f)
self.assertEqual(f2.place_info()['rely'], '0')
self.root.update()
self.assertEqual(f2.winfo_y(), 40)
f2.place_configure(rely=0.5)
self.assertEqual(f2.place_info()['rely'], '0.5')
self.root.update()
self.assertEqual(f2.winfo_y(), 80)
f2.place_configure(rely=1)
self.assertEqual(f2.place_info()['rely'], '1')
self.root.update()
self.assertEqual(f2.winfo_y(), 120)
with self.assertRaisesRegex(TclError, 'expected floating-point number '
'but got "spam"'):
f2.place_configure(in_=f, rely='spam')
def test_place_configure_anchor(self):
f = tkinter.Frame(self.root)
with self.assertRaisesRegex(TclError, 'bad anchor "j"'):
f.place_configure(anchor='j')
with self.assertRaisesRegex(TclError, 'ambiguous anchor ""'):
f.place_configure(anchor='')
for value in 'n', 'ne', 'e', 'se', 's', 'sw', 'w', 'nw', 'center':
f.place_configure(anchor=value)
self.assertEqual(f.place_info()['anchor'], value)
def test_place_configure_width(self):
t, f, f2 = self.create2()
f2.place_configure(in_=f, width=120)
self.root.update()
self.assertEqual(f2.winfo_width(), 120)
f2.place_configure(width='')
self.root.update()
self.assertEqual(f2.winfo_width(), 30)
with self.assertRaisesRegex(TclError, 'bad screen distance "abcd"'):
f2.place_configure(width='abcd')
def test_place_configure_height(self):
t, f, f2 = self.create2()
f2.place_configure(in_=f, height=120)
self.root.update()
self.assertEqual(f2.winfo_height(), 120)
f2.place_configure(height='')
self.root.update()
self.assertEqual(f2.winfo_height(), 60)
with self.assertRaisesRegex(TclError, 'bad screen distance "abcd"'):
f2.place_configure(height='abcd')
def test_place_configure_relwidth(self):
t, f, f2 = self.create2()
f2.place_configure(in_=f, relwidth=0.5)
self.root.update()
self.assertEqual(f2.winfo_width(), 75)
f2.place_configure(relwidth='')
self.root.update()
self.assertEqual(f2.winfo_width(), 30)
with self.assertRaisesRegex(TclError, 'expected floating-point number '
'but got "abcd"'):
f2.place_configure(relwidth='abcd')
def test_place_configure_relheight(self):
t, f, f2 = self.create2()
f2.place_configure(in_=f, relheight=0.5)
self.root.update()
self.assertEqual(f2.winfo_height(), 40)
f2.place_configure(relheight='')
self.root.update()
self.assertEqual(f2.winfo_height(), 60)
with self.assertRaisesRegex(TclError, 'expected floating-point number '
'but got "abcd"'):
f2.place_configure(relheight='abcd')
def test_place_configure_bordermode(self):
f = tkinter.Frame(self.root)
with self.assertRaisesRegex(TclError, 'bad bordermode "j"'):
f.place_configure(bordermode='j')
with self.assertRaisesRegex(TclError, 'ambiguous bordermode ""'):
f.place_configure(bordermode='')
for value in 'inside', 'outside', 'ignore':
f.place_configure(bordermode=value)
self.assertEqual(f.place_info()['bordermode'], value)
def test_place_forget(self):
foo = tkinter.Frame(self.root)
foo.place_configure(width=50, height=50)
self.root.update()
foo.place_forget()
self.root.update()
self.assertFalse(foo.winfo_ismapped())
with self.assertRaises(TypeError):
foo.place_forget(0)
def test_place_info(self):
t, f, f2 = self.create2()
f2.place_configure(in_=f, x=1, y=2, width=3, height=4,
relx=0.1, rely=0.2, relwidth=0.3, relheight=0.4,
anchor='se', bordermode='outside')
info = f2.place_info()
self.assertIsInstance(info, dict)
self.assertEqual(info['x'], '1')
self.assertEqual(info['y'], '2')
self.assertEqual(info['width'], '3')
self.assertEqual(info['height'], '4')
self.assertEqual(info['relx'], '0.1')
self.assertEqual(info['rely'], '0.2')
self.assertEqual(info['relwidth'], '0.3')
self.assertEqual(info['relheight'], '0.4')
self.assertEqual(info['anchor'], 'se')
self.assertEqual(info['bordermode'], 'outside')
self.assertEqual(info['x'], '1')
self.assertEqual(info['x'], '1')
with self.assertRaises(TypeError):
f2.place_info(0)
def test_place_slaves(self):
foo = tkinter.Frame(self.root)
bar = tkinter.Frame(self.root)
self.assertEqual(foo.place_slaves(), [])
bar.place_configure(in_=foo)
self.assertEqual(foo.place_slaves(), [bar])
with self.assertRaises(TypeError):
foo.place_slaves(0)
class GridTest(AbstractWidgetTest, unittest.TestCase):
test_keys = None
def tearDown(self):
cols, rows = self.root.grid_size()
for i in range(cols + 1):
self.root.grid_columnconfigure(i, weight=0, minsize=0, pad=0, uniform='')
for i in range(rows + 1):
self.root.grid_rowconfigure(i, weight=0, minsize=0, pad=0, uniform='')
self.root.grid_propagate(1)
if tcl_version >= (8, 5):
self.root.grid_anchor('nw')
super().tearDown()
def test_grid_configure(self):
b = tkinter.Button(self.root)
self.assertEqual(b.grid_info(), {})
b.grid_configure()
self.assertEqual(b.grid_info()['in'], self.root)
self.assertEqual(b.grid_info()['column'], self._str(0))
self.assertEqual(b.grid_info()['row'], self._str(0))
b.grid_configure({'column': 1}, row=2)
self.assertEqual(b.grid_info()['column'], self._str(1))
self.assertEqual(b.grid_info()['row'], self._str(2))
def test_grid_configure_column(self):
b = tkinter.Button(self.root)
with self.assertRaisesRegex(TclError, 'bad column value "-1": '
'must be a non-negative integer'):
b.grid_configure(column=-1)
b.grid_configure(column=2)
self.assertEqual(b.grid_info()['column'], self._str(2))
def test_grid_configure_columnspan(self):
b = tkinter.Button(self.root)
with self.assertRaisesRegex(TclError, 'bad columnspan value "0": '
'must be a positive integer'):
b.grid_configure(columnspan=0)
b.grid_configure(columnspan=2)
self.assertEqual(b.grid_info()['columnspan'], self._str(2))
def test_grid_configure_in(self):
f = tkinter.Frame(self.root)
b = tkinter.Button(self.root)
self.assertEqual(b.grid_info(), {})
b.grid_configure()
self.assertEqual(b.grid_info()['in'], self.root)
b.grid_configure(in_=f)
self.assertEqual(b.grid_info()['in'], f)
b.grid_configure({'in': self.root})
self.assertEqual(b.grid_info()['in'], self.root)
def test_grid_configure_ipadx(self):
b = tkinter.Button(self.root)
with self.assertRaisesRegex(TclError, 'bad ipadx value "-1": '
'must be positive screen distance'):
b.grid_configure(ipadx=-1)
b.grid_configure(ipadx=1)
self.assertEqual(b.grid_info()['ipadx'], self._str(1))
b.grid_configure(ipadx='.5c')
self.assertEqual(b.grid_info()['ipadx'],
self._str(round(pixels_conv('.5c') * self.scaling)))
def test_grid_configure_ipady(self):
b = tkinter.Button(self.root)
with self.assertRaisesRegex(TclError, 'bad ipady value "-1": '
'must be positive screen distance'):
b.grid_configure(ipady=-1)
b.grid_configure(ipady=1)
self.assertEqual(b.grid_info()['ipady'], self._str(1))
b.grid_configure(ipady='.5c')
self.assertEqual(b.grid_info()['ipady'],
self._str(round(pixels_conv('.5c') * self.scaling)))
def test_grid_configure_padx(self):
b = tkinter.Button(self.root)
with self.assertRaisesRegex(TclError, 'bad pad value "-1": '
'must be positive screen distance'):
b.grid_configure(padx=-1)
b.grid_configure(padx=1)
self.assertEqual(b.grid_info()['padx'], self._str(1))
b.grid_configure(padx=(10, 5))
self.assertEqual(b.grid_info()['padx'], self._str((10, 5)))
b.grid_configure(padx='.5c')
self.assertEqual(b.grid_info()['padx'],
self._str(round(pixels_conv('.5c') * self.scaling)))
def test_grid_configure_pady(self):
b = tkinter.Button(self.root)
with self.assertRaisesRegex(TclError, 'bad pad value "-1": '
'must be positive screen distance'):
b.grid_configure(pady=-1)
b.grid_configure(pady=1)
self.assertEqual(b.grid_info()['pady'], self._str(1))
b.grid_configure(pady=(10, 5))
self.assertEqual(b.grid_info()['pady'], self._str((10, 5)))
b.grid_configure(pady='.5c')
self.assertEqual(b.grid_info()['pady'],
self._str(round(pixels_conv('.5c') * self.scaling)))
def test_grid_configure_row(self):
b = tkinter.Button(self.root)
with self.assertRaisesRegex(TclError, 'bad (row|grid) value "-1": '
'must be a non-negative integer'):
b.grid_configure(row=-1)
b.grid_configure(row=2)
self.assertEqual(b.grid_info()['row'], self._str(2))
def test_grid_configure_rownspan(self):
b = tkinter.Button(self.root)
with self.assertRaisesRegex(TclError, 'bad rowspan value "0": '
'must be a positive integer'):
b.grid_configure(rowspan=0)
b.grid_configure(rowspan=2)
self.assertEqual(b.grid_info()['rowspan'], self._str(2))
def test_grid_configure_sticky(self):
f = tkinter.Frame(self.root, bg='red')
with self.assertRaisesRegex(TclError, 'bad stickyness value "glue"'):
f.grid_configure(sticky='glue')
f.grid_configure(sticky='ne')
self.assertEqual(f.grid_info()['sticky'], 'ne')
f.grid_configure(sticky='n,s,e,w')
self.assertEqual(f.grid_info()['sticky'], 'nesw')
def test_grid_columnconfigure(self):
with self.assertRaises(TypeError):
self.root.grid_columnconfigure()
self.assertEqual(self.root.grid_columnconfigure(0),
{'minsize': 0, 'pad': 0, 'uniform': None, 'weight': 0})
with self.assertRaisesRegex(TclError, 'bad option "-foo"'):
self.root.grid_columnconfigure(0, 'foo')
self.root.grid_columnconfigure((0, 3), weight=2)
with self.assertRaisesRegex(TclError,
'must specify a single element on retrieval'):
self.root.grid_columnconfigure((0, 3))
b = tkinter.Button(self.root)
b.grid_configure(column=0, row=0)
if tcl_version >= (8, 5):
self.root.grid_columnconfigure('all', weight=3)
with self.assertRaisesRegex(TclError, 'expected integer but got "all"'):
self.root.grid_columnconfigure('all')
self.assertEqual(self.root.grid_columnconfigure(0, 'weight'), 3)
self.assertEqual(self.root.grid_columnconfigure(3, 'weight'), 2)
self.assertEqual(self.root.grid_columnconfigure(265, 'weight'), 0)
if tcl_version >= (8, 5):
self.root.grid_columnconfigure(b, weight=4)
self.assertEqual(self.root.grid_columnconfigure(0, 'weight'), 4)
def test_grid_columnconfigure_minsize(self):
with self.assertRaisesRegex(TclError, 'bad screen distance "foo"'):
self.root.grid_columnconfigure(0, minsize='foo')
self.root.grid_columnconfigure(0, minsize=10)
self.assertEqual(self.root.grid_columnconfigure(0, 'minsize'), 10)
self.assertEqual(self.root.grid_columnconfigure(0)['minsize'], 10)
def test_grid_columnconfigure_weight(self):
with self.assertRaisesRegex(TclError, 'expected integer but got "bad"'):
self.root.grid_columnconfigure(0, weight='bad')
with self.assertRaisesRegex(TclError, 'invalid arg "-weight": '
'should be non-negative'):
self.root.grid_columnconfigure(0, weight=-3)
self.root.grid_columnconfigure(0, weight=3)
self.assertEqual(self.root.grid_columnconfigure(0, 'weight'), 3)
self.assertEqual(self.root.grid_columnconfigure(0)['weight'], 3)
def test_grid_columnconfigure_pad(self):
with self.assertRaisesRegex(TclError, 'bad screen distance "foo"'):
self.root.grid_columnconfigure(0, pad='foo')
with self.assertRaisesRegex(TclError, 'invalid arg "-pad": '
'should be non-negative'):
self.root.grid_columnconfigure(0, pad=-3)
self.root.grid_columnconfigure(0, pad=3)
self.assertEqual(self.root.grid_columnconfigure(0, 'pad'), 3)
self.assertEqual(self.root.grid_columnconfigure(0)['pad'], 3)
def test_grid_columnconfigure_uniform(self):
self.root.grid_columnconfigure(0, uniform='foo')
self.assertEqual(self.root.grid_columnconfigure(0, 'uniform'), 'foo')
self.assertEqual(self.root.grid_columnconfigure(0)['uniform'], 'foo')
def test_grid_rowconfigure(self):
with self.assertRaises(TypeError):
self.root.grid_rowconfigure()
self.assertEqual(self.root.grid_rowconfigure(0),
{'minsize': 0, 'pad': 0, 'uniform': None, 'weight': 0})
with self.assertRaisesRegex(TclError, 'bad option "-foo"'):
self.root.grid_rowconfigure(0, 'foo')
self.root.grid_rowconfigure((0, 3), weight=2)
with self.assertRaisesRegex(TclError,
'must specify a single element on retrieval'):
self.root.grid_rowconfigure((0, 3))
b = tkinter.Button(self.root)
b.grid_configure(column=0, row=0)
if tcl_version >= (8, 5):
self.root.grid_rowconfigure('all', weight=3)
with self.assertRaisesRegex(TclError, 'expected integer but got "all"'):
self.root.grid_rowconfigure('all')
self.assertEqual(self.root.grid_rowconfigure(0, 'weight'), 3)
self.assertEqual(self.root.grid_rowconfigure(3, 'weight'), 2)
self.assertEqual(self.root.grid_rowconfigure(265, 'weight'), 0)
if tcl_version >= (8, 5):
self.root.grid_rowconfigure(b, weight=4)
self.assertEqual(self.root.grid_rowconfigure(0, 'weight'), 4)
def test_grid_rowconfigure_minsize(self):
with self.assertRaisesRegex(TclError, 'bad screen distance "foo"'):
self.root.grid_rowconfigure(0, minsize='foo')
self.root.grid_rowconfigure(0, minsize=10)
self.assertEqual(self.root.grid_rowconfigure(0, 'minsize'), 10)
self.assertEqual(self.root.grid_rowconfigure(0)['minsize'], 10)
def test_grid_rowconfigure_weight(self):
with self.assertRaisesRegex(TclError, 'expected integer but got "bad"'):
self.root.grid_rowconfigure(0, weight='bad')
with self.assertRaisesRegex(TclError, 'invalid arg "-weight": '
'should be non-negative'):
self.root.grid_rowconfigure(0, weight=-3)
self.root.grid_rowconfigure(0, weight=3)
self.assertEqual(self.root.grid_rowconfigure(0, 'weight'), 3)
self.assertEqual(self.root.grid_rowconfigure(0)['weight'], 3)
def test_grid_rowconfigure_pad(self):
with self.assertRaisesRegex(TclError, 'bad screen distance "foo"'):
self.root.grid_rowconfigure(0, pad='foo')
with self.assertRaisesRegex(TclError, 'invalid arg "-pad": '
'should be non-negative'):
self.root.grid_rowconfigure(0, pad=-3)
self.root.grid_rowconfigure(0, pad=3)
self.assertEqual(self.root.grid_rowconfigure(0, 'pad'), 3)
self.assertEqual(self.root.grid_rowconfigure(0)['pad'], 3)
def test_grid_rowconfigure_uniform(self):
self.root.grid_rowconfigure(0, uniform='foo')
self.assertEqual(self.root.grid_rowconfigure(0, 'uniform'), 'foo')
self.assertEqual(self.root.grid_rowconfigure(0)['uniform'], 'foo')
def test_grid_forget(self):
b = tkinter.Button(self.root)
c = tkinter.Button(self.root)
b.grid_configure(row=2, column=2, rowspan=2, columnspan=2,
padx=3, pady=4, sticky='ns')
self.assertEqual(self.root.grid_slaves(), [b])
b.grid_forget()
c.grid_forget()
self.assertEqual(self.root.grid_slaves(), [])
self.assertEqual(b.grid_info(), {})
b.grid_configure(row=0, column=0)
info = b.grid_info()
self.assertEqual(info['row'], self._str(0))
self.assertEqual(info['column'], self._str(0))
self.assertEqual(info['rowspan'], self._str(1))
self.assertEqual(info['columnspan'], self._str(1))
self.assertEqual(info['padx'], self._str(0))
self.assertEqual(info['pady'], self._str(0))
self.assertEqual(info['sticky'], '')
def test_grid_remove(self):
b = tkinter.Button(self.root)
c = tkinter.Button(self.root)
b.grid_configure(row=2, column=2, rowspan=2, columnspan=2,
padx=3, pady=4, sticky='ns')
self.assertEqual(self.root.grid_slaves(), [b])
b.grid_remove()
c.grid_remove()
self.assertEqual(self.root.grid_slaves(), [])
self.assertEqual(b.grid_info(), {})
b.grid_configure(row=0, column=0)
info = b.grid_info()
self.assertEqual(info['row'], self._str(0))
self.assertEqual(info['column'], self._str(0))
self.assertEqual(info['rowspan'], self._str(2))
self.assertEqual(info['columnspan'], self._str(2))
self.assertEqual(info['padx'], self._str(3))
self.assertEqual(info['pady'], self._str(4))
self.assertEqual(info['sticky'], 'ns')
def test_grid_info(self):
b = tkinter.Button(self.root)
self.assertEqual(b.grid_info(), {})
b.grid_configure(row=2, column=2, rowspan=2, columnspan=2,
padx=3, pady=4, sticky='ns')
info = b.grid_info()
self.assertIsInstance(info, dict)
self.assertEqual(info['in'], self.root)
self.assertEqual(info['row'], self._str(2))
self.assertEqual(info['column'], self._str(2))
self.assertEqual(info['rowspan'], self._str(2))
self.assertEqual(info['columnspan'], self._str(2))
self.assertEqual(info['padx'], self._str(3))
self.assertEqual(info['pady'], self._str(4))
self.assertEqual(info['sticky'], 'ns')
@requires_tcl(8, 5)
def test_grid_anchor(self):
with self.assertRaisesRegex(TclError, 'bad anchor "x"'):
self.root.grid_anchor('x')
with self.assertRaisesRegex(TclError, 'ambiguous anchor ""'):
self.root.grid_anchor('')
with self.assertRaises(TypeError):
self.root.grid_anchor('se', 'nw')
self.root.grid_anchor('se')
self.assertEqual(self.root.tk.call('grid', 'anchor', self.root), 'se')
def test_grid_bbox(self):
self.assertEqual(self.root.grid_bbox(), (0, 0, 0, 0))
self.assertEqual(self.root.grid_bbox(0, 0), (0, 0, 0, 0))
self.assertEqual(self.root.grid_bbox(0, 0, 1, 1), (0, 0, 0, 0))
with self.assertRaisesRegex(TclError, 'expected integer but got "x"'):
self.root.grid_bbox('x', 0)
with self.assertRaisesRegex(TclError, 'expected integer but got "x"'):
self.root.grid_bbox(0, 'x')
with self.assertRaisesRegex(TclError, 'expected integer but got "x"'):
self.root.grid_bbox(0, 0, 'x', 0)
with self.assertRaisesRegex(TclError, 'expected integer but got "x"'):
self.root.grid_bbox(0, 0, 0, 'x')
with self.assertRaises(TypeError):
self.root.grid_bbox(0, 0, 0, 0, 0)
t = self.root
# de-maximize
t.wm_geometry('1x1+0+0')
t.wm_geometry('')
f1 = tkinter.Frame(t, width=75, height=75, bg='red')
f2 = tkinter.Frame(t, width=90, height=90, bg='blue')
f1.grid_configure(row=0, column=0)
f2.grid_configure(row=1, column=1)
self.root.update()
self.assertEqual(t.grid_bbox(), (0, 0, 165, 165))
self.assertEqual(t.grid_bbox(0, 0), (0, 0, 75, 75))
self.assertEqual(t.grid_bbox(0, 0, 1, 1), (0, 0, 165, 165))
self.assertEqual(t.grid_bbox(1, 1), (75, 75, 90, 90))
self.assertEqual(t.grid_bbox(10, 10, 0, 0), (0, 0, 165, 165))
self.assertEqual(t.grid_bbox(-2, -2, -1, -1), (0, 0, 0, 0))
self.assertEqual(t.grid_bbox(10, 10, 12, 12), (165, 165, 0, 0))
def test_grid_location(self):
with self.assertRaises(TypeError):
self.root.grid_location()
with self.assertRaises(TypeError):
self.root.grid_location(0)
with self.assertRaises(TypeError):
self.root.grid_location(0, 0, 0)
with self.assertRaisesRegex(TclError, 'bad screen distance "x"'):
self.root.grid_location('x', 'y')
with self.assertRaisesRegex(TclError, 'bad screen distance "y"'):
self.root.grid_location('1c', 'y')
t = self.root
# de-maximize
t.wm_geometry('1x1+0+0')
t.wm_geometry('')
f = tkinter.Frame(t, width=200, height=100,
highlightthickness=0, bg='red')
self.assertEqual(f.grid_location(10, 10), (-1, -1))
f.grid_configure()
self.root.update()
self.assertEqual(t.grid_location(-10, -10), (-1, -1))
self.assertEqual(t.grid_location(-10, 0), (-1, 0))
self.assertEqual(t.grid_location(-1, 0), (-1, 0))
self.assertEqual(t.grid_location(0, -10), (0, -1))
self.assertEqual(t.grid_location(0, -1), (0, -1))
self.assertEqual(t.grid_location(0, 0), (0, 0))
self.assertEqual(t.grid_location(200, 0), (0, 0))
self.assertEqual(t.grid_location(201, 0), (1, 0))
self.assertEqual(t.grid_location(0, 100), (0, 0))
self.assertEqual(t.grid_location(0, 101), (0, 1))
self.assertEqual(t.grid_location(201, 101), (1, 1))
def test_grid_propagate(self):
self.assertEqual(self.root.grid_propagate(), True)
with self.assertRaises(TypeError):
self.root.grid_propagate(False, False)
self.root.grid_propagate(False)
self.assertFalse(self.root.grid_propagate())
f = tkinter.Frame(self.root, width=100, height=100, bg='red')
f.grid_configure(row=0, column=0)
self.root.update()
self.assertEqual(f.winfo_width(), 100)
self.assertEqual(f.winfo_height(), 100)
f.grid_propagate(False)
g = tkinter.Frame(self.root, width=75, height=85, bg='green')
g.grid_configure(in_=f, row=0, column=0)
self.root.update()
self.assertEqual(f.winfo_width(), 100)
self.assertEqual(f.winfo_height(), 100)
f.grid_propagate(True)
self.root.update()
self.assertEqual(f.winfo_width(), 75)
self.assertEqual(f.winfo_height(), 85)
def test_grid_size(self):
with self.assertRaises(TypeError):
self.root.grid_size(0)
self.assertEqual(self.root.grid_size(), (0, 0))
f = tkinter.Scale(self.root)
f.grid_configure(row=0, column=0)
self.assertEqual(self.root.grid_size(), (1, 1))
f.grid_configure(row=4, column=5)
self.assertEqual(self.root.grid_size(), (6, 5))
def test_grid_slaves(self):
self.assertEqual(self.root.grid_slaves(), [])
a = tkinter.Label(self.root)
a.grid_configure(row=0, column=1)
b = tkinter.Label(self.root)
b.grid_configure(row=1, column=0)
c = tkinter.Label(self.root)
c.grid_configure(row=1, column=1)
d = tkinter.Label(self.root)
d.grid_configure(row=1, column=1)
self.assertEqual(self.root.grid_slaves(), [d, c, b, a])
self.assertEqual(self.root.grid_slaves(row=0), [a])
self.assertEqual(self.root.grid_slaves(row=1), [d, c, b])
self.assertEqual(self.root.grid_slaves(column=0), [b])
self.assertEqual(self.root.grid_slaves(column=1), [d, c, a])
self.assertEqual(self.root.grid_slaves(row=1, column=1), [d, c])
tests_gui = (
PackTest, PlaceTest, GridTest,
)
if __name__ == '__main__':
unittest.main()
| 41,015 | 907 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/tkinter/test/test_tkinter/__init__.py | 0 | 1 | jart/cosmopolitan | false |
|
cosmopolitan/third_party/python/Lib/logging/handlers.py | # Copyright 2001-2016 by Vinay Sajip. All Rights Reserved.
#
# Permission to use, copy, modify, and distribute this software and its
# documentation for any purpose and without fee is hereby granted,
# provided that the above copyright notice appear in all copies and that
# both that copyright notice and this permission notice appear in
# supporting documentation, and that the name of Vinay Sajip
# not be used in advertising or publicity pertaining to distribution
# of the software without specific, written prior permission.
# VINAY SAJIP DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
# ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
# VINAY SAJIP BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
# ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
# IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
# OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
"""
Additional handlers for the logging package for Python. The core package is
based on PEP 282 and comments thereto in comp.lang.python.
Copyright (C) 2001-2016 Vinay Sajip. All Rights Reserved.
To use, simply 'import logging.handlers' and log away!
"""
import logging, socket, os, pickle, struct, time, re
from _stat import ST_DEV, ST_INO, ST_MTIME
import queue
try:
import threading
except ImportError: #pragma: no cover
threading = None
#
# Some constants...
#
DEFAULT_TCP_LOGGING_PORT = 9020
DEFAULT_UDP_LOGGING_PORT = 9021
DEFAULT_HTTP_LOGGING_PORT = 9022
DEFAULT_SOAP_LOGGING_PORT = 9023
SYSLOG_UDP_PORT = 514
SYSLOG_TCP_PORT = 514
_MIDNIGHT = 24 * 60 * 60 # number of seconds in a day
class BaseRotatingHandler(logging.FileHandler):
"""
Base class for handlers that rotate log files at a certain point.
Not meant to be instantiated directly. Instead, use RotatingFileHandler
or TimedRotatingFileHandler.
"""
def __init__(self, filename, mode, encoding=None, delay=False):
"""
Use the specified filename for streamed logging
"""
logging.FileHandler.__init__(self, filename, mode, encoding, delay)
self.mode = mode
self.encoding = encoding
self.namer = None
self.rotator = None
def emit(self, record):
"""
Emit a record.
Output the record to the file, catering for rollover as described
in doRollover().
"""
try:
if self.shouldRollover(record):
self.doRollover()
logging.FileHandler.emit(self, record)
except Exception:
self.handleError(record)
def rotation_filename(self, default_name):
"""
Modify the filename of a log file when rotating.
This is provided so that a custom filename can be provided.
The default implementation calls the 'namer' attribute of the
handler, if it's callable, passing the default name to
it. If the attribute isn't callable (the default is None), the name
is returned unchanged.
:param default_name: The default name for the log file.
"""
if not callable(self.namer):
result = default_name
else:
result = self.namer(default_name)
return result
def rotate(self, source, dest):
"""
When rotating, rotate the current log.
The default implementation calls the 'rotator' attribute of the
handler, if it's callable, passing the source and dest arguments to
it. If the attribute isn't callable (the default is None), the source
is simply renamed to the destination.
:param source: The source filename. This is normally the base
filename, e.g. 'test.log'
:param dest: The destination filename. This is normally
what the source is rotated to, e.g. 'test.log.1'.
"""
if not callable(self.rotator):
# Issue 18940: A file may not have been created if delay is True.
if os.path.exists(source):
os.rename(source, dest)
else:
self.rotator(source, dest)
class RotatingFileHandler(BaseRotatingHandler):
"""
Handler for logging to a set of files, which switches from one file
to the next when the current file reaches a certain size.
"""
def __init__(self, filename, mode='a', maxBytes=0, backupCount=0, encoding=None, delay=False):
"""
Open the specified file and use it as the stream for logging.
By default, the file grows indefinitely. You can specify particular
values of maxBytes and backupCount to allow the file to rollover at
a predetermined size.
Rollover occurs whenever the current log file is nearly maxBytes in
length. If backupCount is >= 1, the system will successively create
new files with the same pathname as the base file, but with extensions
".1", ".2" etc. appended to it. For example, with a backupCount of 5
and a base file name of "app.log", you would get "app.log",
"app.log.1", "app.log.2", ... through to "app.log.5". The file being
written to is always "app.log" - when it gets filled up, it is closed
and renamed to "app.log.1", and if files "app.log.1", "app.log.2" etc.
exist, then they are renamed to "app.log.2", "app.log.3" etc.
respectively.
If maxBytes is zero, rollover never occurs.
"""
# If rotation/rollover is wanted, it doesn't make sense to use another
# mode. If for example 'w' were specified, then if there were multiple
# runs of the calling application, the logs from previous runs would be
# lost if the 'w' is respected, because the log file would be truncated
# on each run.
if maxBytes > 0:
mode = 'a'
BaseRotatingHandler.__init__(self, filename, mode, encoding, delay)
self.maxBytes = maxBytes
self.backupCount = backupCount
def doRollover(self):
"""
Do a rollover, as described in __init__().
"""
if self.stream:
self.stream.close()
self.stream = None
if self.backupCount > 0:
for i in range(self.backupCount - 1, 0, -1):
sfn = self.rotation_filename("%s.%d" % (self.baseFilename, i))
dfn = self.rotation_filename("%s.%d" % (self.baseFilename,
i + 1))
if os.path.exists(sfn):
if os.path.exists(dfn):
os.remove(dfn)
os.rename(sfn, dfn)
dfn = self.rotation_filename(self.baseFilename + ".1")
if os.path.exists(dfn):
os.remove(dfn)
self.rotate(self.baseFilename, dfn)
if not self.delay:
self.stream = self._open()
def shouldRollover(self, record):
"""
Determine if rollover should occur.
Basically, see if the supplied record would cause the file to exceed
the size limit we have.
"""
if self.stream is None: # delay was set...
self.stream = self._open()
if self.maxBytes > 0: # are we rolling over?
msg = "%s\n" % self.format(record)
self.stream.seek(0, 2) #due to non-posix-compliant Windows feature
if self.stream.tell() + len(msg) >= self.maxBytes:
return 1
return 0
class TimedRotatingFileHandler(BaseRotatingHandler):
"""
Handler for logging to a file, rotating the log file at certain timed
intervals.
If backupCount is > 0, when rollover is done, no more than backupCount
files are kept - the oldest ones are deleted.
"""
def __init__(self, filename, when='h', interval=1, backupCount=0, encoding=None, delay=False, utc=False, atTime=None):
BaseRotatingHandler.__init__(self, filename, 'a', encoding, delay)
self.when = when.upper()
self.backupCount = backupCount
self.utc = utc
self.atTime = atTime
# Calculate the real rollover interval, which is just the number of
# seconds between rollovers. Also set the filename suffix used when
# a rollover occurs. Current 'when' events supported:
# S - Seconds
# M - Minutes
# H - Hours
# D - Days
# midnight - roll over at midnight
# W{0-6} - roll over on a certain day; 0 - Monday
#
# Case of the 'when' specifier is not important; lower or upper case
# will work.
if self.when == 'S':
self.interval = 1 # one second
self.suffix = "%Y-%m-%d_%H-%M-%S"
self.extMatch = r"^\d{4}-\d{2}-\d{2}_\d{2}-\d{2}-\d{2}(\.\w+)?$"
elif self.when == 'M':
self.interval = 60 # one minute
self.suffix = "%Y-%m-%d_%H-%M"
self.extMatch = r"^\d{4}-\d{2}-\d{2}_\d{2}-\d{2}(\.\w+)?$"
elif self.when == 'H':
self.interval = 60 * 60 # one hour
self.suffix = "%Y-%m-%d_%H"
self.extMatch = r"^\d{4}-\d{2}-\d{2}_\d{2}(\.\w+)?$"
elif self.when == 'D' or self.when == 'MIDNIGHT':
self.interval = 60 * 60 * 24 # one day
self.suffix = "%Y-%m-%d"
self.extMatch = r"^\d{4}-\d{2}-\d{2}(\.\w+)?$"
elif self.when.startswith('W'):
self.interval = 60 * 60 * 24 * 7 # one week
if len(self.when) != 2:
raise ValueError("You must specify a day for weekly rollover from 0 to 6 (0 is Monday): %s" % self.when)
if self.when[1] < '0' or self.when[1] > '6':
raise ValueError("Invalid day specified for weekly rollover: %s" % self.when)
self.dayOfWeek = int(self.when[1])
self.suffix = "%Y-%m-%d"
self.extMatch = r"^\d{4}-\d{2}-\d{2}(\.\w+)?$"
else:
raise ValueError("Invalid rollover interval specified: %s" % self.when)
self.extMatch = re.compile(self.extMatch, re.ASCII)
self.interval = self.interval * interval # multiply by units requested
# The following line added because the filename passed in could be a
# path object (see Issue #27493), but self.baseFilename will be a string
filename = self.baseFilename
if os.path.exists(filename):
t = os.stat(filename)[ST_MTIME]
else:
t = int(time.time())
self.rolloverAt = self.computeRollover(t)
def computeRollover(self, currentTime):
"""
Work out the rollover time based on the specified time.
"""
result = currentTime + self.interval
# If we are rolling over at midnight or weekly, then the interval is already known.
# What we need to figure out is WHEN the next interval is. In other words,
# if you are rolling over at midnight, then your base interval is 1 day,
# but you want to start that one day clock at midnight, not now. So, we
# have to fudge the rolloverAt value in order to trigger the first rollover
# at the right time. After that, the regular interval will take care of
# the rest. Note that this code doesn't care about leap seconds. :)
if self.when == 'MIDNIGHT' or self.when.startswith('W'):
# This could be done with less code, but I wanted it to be clear
if self.utc:
t = time.gmtime(currentTime)
else:
t = time.localtime(currentTime)
currentHour = t[3]
currentMinute = t[4]
currentSecond = t[5]
currentDay = t[6]
# r is the number of seconds left between now and the next rotation
if self.atTime is None:
rotate_ts = _MIDNIGHT
else:
rotate_ts = ((self.atTime.hour * 60 + self.atTime.minute)*60 +
self.atTime.second)
r = rotate_ts - ((currentHour * 60 + currentMinute) * 60 +
currentSecond)
if r < 0:
# Rotate time is before the current time (for example when
# self.rotateAt is 13:45 and it now 14:15), rotation is
# tomorrow.
r += _MIDNIGHT
currentDay = (currentDay + 1) % 7
result = currentTime + r
# If we are rolling over on a certain day, add in the number of days until
# the next rollover, but offset by 1 since we just calculated the time
# until the next day starts. There are three cases:
# Case 1) The day to rollover is today; in this case, do nothing
# Case 2) The day to rollover is further in the interval (i.e., today is
# day 2 (Wednesday) and rollover is on day 6 (Sunday). Days to
# next rollover is simply 6 - 2 - 1, or 3.
# Case 3) The day to rollover is behind us in the interval (i.e., today
# is day 5 (Saturday) and rollover is on day 3 (Thursday).
# Days to rollover is 6 - 5 + 3, or 4. In this case, it's the
# number of days left in the current week (1) plus the number
# of days in the next week until the rollover day (3).
# The calculations described in 2) and 3) above need to have a day added.
# This is because the above time calculation takes us to midnight on this
# day, i.e. the start of the next day.
if self.when.startswith('W'):
day = currentDay # 0 is Monday
if day != self.dayOfWeek:
if day < self.dayOfWeek:
daysToWait = self.dayOfWeek - day
else:
daysToWait = 6 - day + self.dayOfWeek + 1
newRolloverAt = result + (daysToWait * (60 * 60 * 24))
if not self.utc:
dstNow = t[-1]
dstAtRollover = time.localtime(newRolloverAt)[-1]
if dstNow != dstAtRollover:
if not dstNow: # DST kicks in before next rollover, so we need to deduct an hour
addend = -3600
else: # DST bows out before next rollover, so we need to add an hour
addend = 3600
newRolloverAt += addend
result = newRolloverAt
return result
def shouldRollover(self, record):
"""
Determine if rollover should occur.
record is not used, as we are just comparing times, but it is needed so
the method signatures are the same
"""
t = int(time.time())
if t >= self.rolloverAt:
return 1
return 0
def getFilesToDelete(self):
"""
Determine the files to delete when rolling over.
More specific than the earlier method, which just used glob.glob().
"""
dirName, baseName = os.path.split(self.baseFilename)
fileNames = os.listdir(dirName)
result = []
prefix = baseName + "."
plen = len(prefix)
for fileName in fileNames:
if fileName[:plen] == prefix:
suffix = fileName[plen:]
if self.extMatch.match(suffix):
result.append(os.path.join(dirName, fileName))
if len(result) < self.backupCount:
result = []
else:
result.sort()
result = result[:len(result) - self.backupCount]
return result
def doRollover(self):
"""
do a rollover; in this case, a date/time stamp is appended to the filename
when the rollover happens. However, you want the file to be named for the
start of the interval, not the current time. If there is a backup count,
then we have to get a list of matching filenames, sort them and remove
the one with the oldest suffix.
"""
if self.stream:
self.stream.close()
self.stream = None
# get the time that this sequence started at and make it a TimeTuple
currentTime = int(time.time())
dstNow = time.localtime(currentTime)[-1]
t = self.rolloverAt - self.interval
if self.utc:
timeTuple = time.gmtime(t)
else:
timeTuple = time.localtime(t)
dstThen = timeTuple[-1]
if dstNow != dstThen:
if dstNow:
addend = 3600
else:
addend = -3600
timeTuple = time.localtime(t + addend)
dfn = self.rotation_filename(self.baseFilename + "." +
time.strftime(self.suffix, timeTuple))
if os.path.exists(dfn):
os.remove(dfn)
self.rotate(self.baseFilename, dfn)
if self.backupCount > 0:
for s in self.getFilesToDelete():
os.remove(s)
if not self.delay:
self.stream = self._open()
newRolloverAt = self.computeRollover(currentTime)
while newRolloverAt <= currentTime:
newRolloverAt = newRolloverAt + self.interval
#If DST changes and midnight or weekly rollover, adjust for this.
if (self.when == 'MIDNIGHT' or self.when.startswith('W')) and not self.utc:
dstAtRollover = time.localtime(newRolloverAt)[-1]
if dstNow != dstAtRollover:
if not dstNow: # DST kicks in before next rollover, so we need to deduct an hour
addend = -3600
else: # DST bows out before next rollover, so we need to add an hour
addend = 3600
newRolloverAt += addend
self.rolloverAt = newRolloverAt
class WatchedFileHandler(logging.FileHandler):
"""
A handler for logging to a file, which watches the file
to see if it has changed while in use. This can happen because of
usage of programs such as newsyslog and logrotate which perform
log file rotation. This handler, intended for use under Unix,
watches the file to see if it has changed since the last emit.
(A file has changed if its device or inode have changed.)
If it has changed, the old file stream is closed, and the file
opened to get a new stream.
This handler is not appropriate for use under Windows, because
under Windows open files cannot be moved or renamed - logging
opens the files with exclusive locks - and so there is no need
for such a handler. Furthermore, ST_INO is not supported under
Windows; stat always returns zero for this value.
This handler is based on a suggestion and patch by Chad J.
Schroeder.
"""
def __init__(self, filename, mode='a', encoding=None, delay=False):
logging.FileHandler.__init__(self, filename, mode, encoding, delay)
self.dev, self.ino = -1, -1
self._statstream()
def _statstream(self):
if self.stream:
sres = os.fstat(self.stream.fileno())
self.dev, self.ino = sres[ST_DEV], sres[ST_INO]
def reopenIfNeeded(self):
"""
Reopen log file if needed.
Checks if the underlying file has changed, and if it
has, close the old stream and reopen the file to get the
current stream.
"""
# Reduce the chance of race conditions by stat'ing by path only
# once and then fstat'ing our new fd if we opened a new log stream.
# See issue #14632: Thanks to John Mulligan for the problem report
# and patch.
try:
# stat the file by path, checking for existence
sres = os.stat(self.baseFilename)
except FileNotFoundError:
sres = None
# compare file system stat with that of our stream file handle
if not sres or sres[ST_DEV] != self.dev or sres[ST_INO] != self.ino:
if self.stream is not None:
# we have an open file handle, clean it up
self.stream.flush()
self.stream.close()
self.stream = None # See Issue #21742: _open () might fail.
# open a new file handle and get new stat info from that fd
self.stream = self._open()
self._statstream()
def emit(self, record):
"""
Emit a record.
If underlying file has changed, reopen the file before emitting the
record to it.
"""
self.reopenIfNeeded()
logging.FileHandler.emit(self, record)
class SocketHandler(logging.Handler):
"""
A handler class which writes logging records, in pickle format, to
a streaming socket. The socket is kept open across logging calls.
If the peer resets it, an attempt is made to reconnect on the next call.
The pickle which is sent is that of the LogRecord's attribute dictionary
(__dict__), so that the receiver does not need to have the logging module
installed in order to process the logging event.
To unpickle the record at the receiving end into a LogRecord, use the
makeLogRecord function.
"""
def __init__(self, host, port):
"""
Initializes the handler with a specific host address and port.
When the attribute *closeOnError* is set to True - if a socket error
occurs, the socket is silently closed and then reopened on the next
logging call.
"""
logging.Handler.__init__(self)
self.host = host
self.port = port
if port is None:
self.address = host
else:
self.address = (host, port)
self.sock = None
self.closeOnError = False
self.retryTime = None
#
# Exponential backoff parameters.
#
self.retryStart = 1.0
self.retryMax = 30.0
self.retryFactor = 2.0
def makeSocket(self, timeout=1):
"""
A factory method which allows subclasses to define the precise
type of socket they want.
"""
if self.port is not None:
result = socket.create_connection(self.address, timeout=timeout)
else:
result = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
result.settimeout(timeout)
try:
result.connect(self.address)
except OSError:
result.close() # Issue 19182
raise
return result
def createSocket(self):
"""
Try to create a socket, using an exponential backoff with
a max retry time. Thanks to Robert Olson for the original patch
(SF #815911) which has been slightly refactored.
"""
now = time.time()
# Either retryTime is None, in which case this
# is the first time back after a disconnect, or
# we've waited long enough.
if self.retryTime is None:
attempt = True
else:
attempt = (now >= self.retryTime)
if attempt:
try:
self.sock = self.makeSocket()
self.retryTime = None # next time, no delay before trying
except OSError:
#Creation failed, so set the retry time and return.
if self.retryTime is None:
self.retryPeriod = self.retryStart
else:
self.retryPeriod = self.retryPeriod * self.retryFactor
if self.retryPeriod > self.retryMax:
self.retryPeriod = self.retryMax
self.retryTime = now + self.retryPeriod
def send(self, s):
"""
Send a pickled string to the socket.
This function allows for partial sends which can happen when the
network is busy.
"""
if self.sock is None:
self.createSocket()
#self.sock can be None either because we haven't reached the retry
#time yet, or because we have reached the retry time and retried,
#but are still unable to connect.
if self.sock:
try:
self.sock.sendall(s)
except OSError: #pragma: no cover
self.sock.close()
self.sock = None # so we can call createSocket next time
def makePickle(self, record):
"""
Pickles the record in binary format with a length prefix, and
returns it ready for transmission across the socket.
"""
ei = record.exc_info
if ei:
# just to get traceback text into record.exc_text ...
dummy = self.format(record)
# See issue #14436: If msg or args are objects, they may not be
# available on the receiving end. So we convert the msg % args
# to a string, save it as msg and zap the args.
d = dict(record.__dict__)
d['msg'] = record.getMessage()
d['args'] = None
d['exc_info'] = None
# Issue #25685: delete 'message' if present: redundant with 'msg'
d.pop('message', None)
s = pickle.dumps(d, 1)
slen = struct.pack(">L", len(s))
return slen + s
def handleError(self, record):
"""
Handle an error during logging.
An error has occurred during logging. Most likely cause -
connection lost. Close the socket so that we can retry on the
next event.
"""
if self.closeOnError and self.sock:
self.sock.close()
self.sock = None #try to reconnect next time
else:
logging.Handler.handleError(self, record)
def emit(self, record):
"""
Emit a record.
Pickles the record and writes it to the socket in binary format.
If there is an error with the socket, silently drop the packet.
If there was a problem with the socket, re-establishes the
socket.
"""
try:
s = self.makePickle(record)
self.send(s)
except Exception:
self.handleError(record)
def close(self):
"""
Closes the socket.
"""
self.acquire()
try:
sock = self.sock
if sock:
self.sock = None
sock.close()
logging.Handler.close(self)
finally:
self.release()
class DatagramHandler(SocketHandler):
"""
A handler class which writes logging records, in pickle format, to
a datagram socket. The pickle which is sent is that of the LogRecord's
attribute dictionary (__dict__), so that the receiver does not need to
have the logging module installed in order to process the logging event.
To unpickle the record at the receiving end into a LogRecord, use the
makeLogRecord function.
"""
def __init__(self, host, port):
"""
Initializes the handler with a specific host address and port.
"""
SocketHandler.__init__(self, host, port)
self.closeOnError = False
def makeSocket(self):
"""
The factory method of SocketHandler is here overridden to create
a UDP socket (SOCK_DGRAM).
"""
if self.port is None:
family = socket.AF_UNIX
else:
family = socket.AF_INET
s = socket.socket(family, socket.SOCK_DGRAM)
return s
def send(self, s):
"""
Send a pickled string to a socket.
This function no longer allows for partial sends which can happen
when the network is busy - UDP does not guarantee delivery and
can deliver packets out of sequence.
"""
if self.sock is None:
self.createSocket()
self.sock.sendto(s, self.address)
class SysLogHandler(logging.Handler):
"""
A handler class which sends formatted logging records to a syslog
server. Based on Sam Rushing's syslog module:
http://www.nightmare.com/squirl/python-ext/misc/syslog.py
Contributed by Nicolas Untz (after which minor refactoring changes
have been made).
"""
# from <linux/sys/syslog.h>:
# ======================================================================
# priorities/facilities are encoded into a single 32-bit quantity, where
# the bottom 3 bits are the priority (0-7) and the top 28 bits are the
# facility (0-big number). Both the priorities and the facilities map
# roughly one-to-one to strings in the syslogd(8) source code. This
# mapping is included in this file.
#
# priorities (these are ordered)
LOG_EMERG = 0 # system is unusable
LOG_ALERT = 1 # action must be taken immediately
LOG_CRIT = 2 # critical conditions
LOG_ERR = 3 # error conditions
LOG_WARNING = 4 # warning conditions
LOG_NOTICE = 5 # normal but significant condition
LOG_INFO = 6 # informational
LOG_DEBUG = 7 # debug-level messages
# facility codes
LOG_KERN = 0 # kernel messages
LOG_USER = 1 # random user-level messages
LOG_MAIL = 2 # mail system
LOG_DAEMON = 3 # system daemons
LOG_AUTH = 4 # security/authorization messages
LOG_SYSLOG = 5 # messages generated internally by syslogd
LOG_LPR = 6 # line printer subsystem
LOG_NEWS = 7 # network news subsystem
LOG_UUCP = 8 # UUCP subsystem
LOG_CRON = 9 # clock daemon
LOG_AUTHPRIV = 10 # security/authorization messages (private)
LOG_FTP = 11 # FTP daemon
# other codes through 15 reserved for system use
LOG_LOCAL0 = 16 # reserved for local use
LOG_LOCAL1 = 17 # reserved for local use
LOG_LOCAL2 = 18 # reserved for local use
LOG_LOCAL3 = 19 # reserved for local use
LOG_LOCAL4 = 20 # reserved for local use
LOG_LOCAL5 = 21 # reserved for local use
LOG_LOCAL6 = 22 # reserved for local use
LOG_LOCAL7 = 23 # reserved for local use
priority_names = {
"alert": LOG_ALERT,
"crit": LOG_CRIT,
"critical": LOG_CRIT,
"debug": LOG_DEBUG,
"emerg": LOG_EMERG,
"err": LOG_ERR,
"error": LOG_ERR, # DEPRECATED
"info": LOG_INFO,
"notice": LOG_NOTICE,
"panic": LOG_EMERG, # DEPRECATED
"warn": LOG_WARNING, # DEPRECATED
"warning": LOG_WARNING,
}
facility_names = {
"auth": LOG_AUTH,
"authpriv": LOG_AUTHPRIV,
"cron": LOG_CRON,
"daemon": LOG_DAEMON,
"ftp": LOG_FTP,
"kern": LOG_KERN,
"lpr": LOG_LPR,
"mail": LOG_MAIL,
"news": LOG_NEWS,
"security": LOG_AUTH, # DEPRECATED
"syslog": LOG_SYSLOG,
"user": LOG_USER,
"uucp": LOG_UUCP,
"local0": LOG_LOCAL0,
"local1": LOG_LOCAL1,
"local2": LOG_LOCAL2,
"local3": LOG_LOCAL3,
"local4": LOG_LOCAL4,
"local5": LOG_LOCAL5,
"local6": LOG_LOCAL6,
"local7": LOG_LOCAL7,
}
#The map below appears to be trivially lowercasing the key. However,
#there's more to it than meets the eye - in some locales, lowercasing
#gives unexpected results. See SF #1524081: in the Turkish locale,
#"INFO".lower() != "info"
priority_map = {
"DEBUG" : "debug",
"INFO" : "info",
"WARNING" : "warning",
"ERROR" : "error",
"CRITICAL" : "critical"
}
def __init__(self, address=('localhost', SYSLOG_UDP_PORT),
facility=LOG_USER, socktype=None):
"""
Initialize a handler.
If address is specified as a string, a UNIX socket is used. To log to a
local syslogd, "SysLogHandler(address="/dev/log")" can be used.
If facility is not specified, LOG_USER is used. If socktype is
specified as socket.SOCK_DGRAM or socket.SOCK_STREAM, that specific
socket type will be used. For Unix sockets, you can also specify a
socktype of None, in which case socket.SOCK_DGRAM will be used, falling
back to socket.SOCK_STREAM.
"""
logging.Handler.__init__(self)
self.address = address
self.facility = facility
self.socktype = socktype
if isinstance(address, str):
self.unixsocket = True
# Syslog server may be unavailable during handler initialisation.
# C's openlog() function also ignores connection errors.
# Moreover, we ignore these errors while logging, so it not worse
# to ignore it also here.
try:
self._connect_unixsocket(address)
except OSError:
pass
else:
self.unixsocket = False
if socktype is None:
socktype = socket.SOCK_DGRAM
host, port = address
ress = socket.getaddrinfo(host, port, 0, socktype)
if not ress:
raise OSError("getaddrinfo returns an empty list")
for res in ress:
af, socktype, proto, _, sa = res
err = sock = None
try:
sock = socket.socket(af, socktype, proto)
if socktype == socket.SOCK_STREAM:
sock.connect(sa)
break
except OSError as exc:
err = exc
if sock is not None:
sock.close()
if err is not None:
raise err
self.socket = sock
self.socktype = socktype
def _connect_unixsocket(self, address):
use_socktype = self.socktype
if use_socktype is None:
use_socktype = socket.SOCK_DGRAM
self.socket = socket.socket(socket.AF_UNIX, use_socktype)
try:
self.socket.connect(address)
# it worked, so set self.socktype to the used type
self.socktype = use_socktype
except OSError:
self.socket.close()
if self.socktype is not None:
# user didn't specify falling back, so fail
raise
use_socktype = socket.SOCK_STREAM
self.socket = socket.socket(socket.AF_UNIX, use_socktype)
try:
self.socket.connect(address)
# it worked, so set self.socktype to the used type
self.socktype = use_socktype
except OSError:
self.socket.close()
raise
def encodePriority(self, facility, priority):
"""
Encode the facility and priority. You can pass in strings or
integers - if strings are passed, the facility_names and
priority_names mapping dictionaries are used to convert them to
integers.
"""
if isinstance(facility, str):
facility = self.facility_names[facility]
if isinstance(priority, str):
priority = self.priority_names[priority]
return (facility << 3) | priority
def close(self):
"""
Closes the socket.
"""
self.acquire()
try:
self.socket.close()
logging.Handler.close(self)
finally:
self.release()
def mapPriority(self, levelName):
"""
Map a logging level name to a key in the priority_names map.
This is useful in two scenarios: when custom levels are being
used, and in the case where you can't do a straightforward
mapping by lowercasing the logging level name because of locale-
specific issues (see SF #1524081).
"""
return self.priority_map.get(levelName, "warning")
ident = '' # prepended to all messages
append_nul = True # some old syslog daemons expect a NUL terminator
def emit(self, record):
"""
Emit a record.
The record is formatted, and then sent to the syslog server. If
exception information is present, it is NOT sent to the server.
"""
try:
msg = self.format(record)
if self.ident:
msg = self.ident + msg
if self.append_nul:
msg += '\000'
# We need to convert record level to lowercase, maybe this will
# change in the future.
prio = '<%d>' % self.encodePriority(self.facility,
self.mapPriority(record.levelname))
prio = prio.encode('utf-8')
# Message is a string. Convert to bytes as required by RFC 5424
msg = msg.encode('utf-8')
msg = prio + msg
if self.unixsocket:
try:
self.socket.send(msg)
except OSError:
self.socket.close()
self._connect_unixsocket(self.address)
self.socket.send(msg)
elif self.socktype == socket.SOCK_DGRAM:
self.socket.sendto(msg, self.address)
else:
self.socket.sendall(msg)
except Exception:
self.handleError(record)
class SMTPHandler(logging.Handler):
"""
A handler class which sends an SMTP email for each logging event.
"""
def __init__(self, mailhost, fromaddr, toaddrs, subject,
credentials=None, secure=None, timeout=5.0):
"""
Initialize the handler.
Initialize the instance with the from and to addresses and subject
line of the email. To specify a non-standard SMTP port, use the
(host, port) tuple format for the mailhost argument. To specify
authentication credentials, supply a (username, password) tuple
for the credentials argument. To specify the use of a secure
protocol (TLS), pass in a tuple for the secure argument. This will
only be used when authentication credentials are supplied. The tuple
will be either an empty tuple, or a single-value tuple with the name
of a keyfile, or a 2-value tuple with the names of the keyfile and
certificate file. (This tuple is passed to the `starttls` method).
A timeout in seconds can be specified for the SMTP connection (the
default is one second).
"""
logging.Handler.__init__(self)
if isinstance(mailhost, (list, tuple)):
self.mailhost, self.mailport = mailhost
else:
self.mailhost, self.mailport = mailhost, None
if isinstance(credentials, (list, tuple)):
self.username, self.password = credentials
else:
self.username = None
self.fromaddr = fromaddr
if isinstance(toaddrs, str):
toaddrs = [toaddrs]
self.toaddrs = toaddrs
self.subject = subject
self.secure = secure
self.timeout = timeout
def getSubject(self, record):
"""
Determine the subject for the email.
If you want to specify a subject line which is record-dependent,
override this method.
"""
return self.subject
def emit(self, record):
"""
Emit a record.
Format the record and send it to the specified addressees.
"""
try:
import smtplib
from email.message import EmailMessage
import email.utils
port = self.mailport
if not port:
port = smtplib.SMTP_PORT
smtp = smtplib.SMTP(self.mailhost, port, timeout=self.timeout)
msg = EmailMessage()
msg['From'] = self.fromaddr
msg['To'] = ','.join(self.toaddrs)
msg['Subject'] = self.getSubject(record)
msg['Date'] = email.utils.localtime()
msg.set_content(self.format(record))
if self.username:
if self.secure is not None:
smtp.ehlo()
smtp.starttls(*self.secure)
smtp.ehlo()
smtp.login(self.username, self.password)
smtp.send_message(msg)
smtp.quit()
except Exception:
self.handleError(record)
class NTEventLogHandler(logging.Handler):
"""
A handler class which sends events to the NT Event Log. Adds a
registry entry for the specified application name. If no dllname is
provided, win32service.pyd (which contains some basic message
placeholders) is used. Note that use of these placeholders will make
your event logs big, as the entire message source is held in the log.
If you want slimmer logs, you have to pass in the name of your own DLL
which contains the message definitions you want to use in the event log.
"""
def __init__(self, appname, dllname=None, logtype="Application"):
logging.Handler.__init__(self)
try:
import win32evtlogutil, win32evtlog
self.appname = appname
self._welu = win32evtlogutil
if not dllname:
dllname = os.path.split(self._welu.__file__)
dllname = os.path.split(dllname[0])
dllname = os.path.join(dllname[0], r'win32service.pyd')
self.dllname = dllname
self.logtype = logtype
self._welu.AddSourceToRegistry(appname, dllname, logtype)
self.deftype = win32evtlog.EVENTLOG_ERROR_TYPE
self.typemap = {
logging.DEBUG : win32evtlog.EVENTLOG_INFORMATION_TYPE,
logging.INFO : win32evtlog.EVENTLOG_INFORMATION_TYPE,
logging.WARNING : win32evtlog.EVENTLOG_WARNING_TYPE,
logging.ERROR : win32evtlog.EVENTLOG_ERROR_TYPE,
logging.CRITICAL: win32evtlog.EVENTLOG_ERROR_TYPE,
}
except ImportError:
print("The Python Win32 extensions for NT (service, event "\
"logging) appear not to be available.")
self._welu = None
def getMessageID(self, record):
"""
Return the message ID for the event record. If you are using your
own messages, you could do this by having the msg passed to the
logger being an ID rather than a formatting string. Then, in here,
you could use a dictionary lookup to get the message ID. This
version returns 1, which is the base message ID in win32service.pyd.
"""
return 1
def getEventCategory(self, record):
"""
Return the event category for the record.
Override this if you want to specify your own categories. This version
returns 0.
"""
return 0
def getEventType(self, record):
"""
Return the event type for the record.
Override this if you want to specify your own types. This version does
a mapping using the handler's typemap attribute, which is set up in
__init__() to a dictionary which contains mappings for DEBUG, INFO,
WARNING, ERROR and CRITICAL. If you are using your own levels you will
either need to override this method or place a suitable dictionary in
the handler's typemap attribute.
"""
return self.typemap.get(record.levelno, self.deftype)
def emit(self, record):
"""
Emit a record.
Determine the message ID, event category and event type. Then
log the message in the NT event log.
"""
if self._welu:
try:
id = self.getMessageID(record)
cat = self.getEventCategory(record)
type = self.getEventType(record)
msg = self.format(record)
self._welu.ReportEvent(self.appname, id, cat, type, [msg])
except Exception:
self.handleError(record)
def close(self):
"""
Clean up this handler.
You can remove the application name from the registry as a
source of event log entries. However, if you do this, you will
not be able to see the events as you intended in the Event Log
Viewer - it needs to be able to access the registry to get the
DLL name.
"""
#self._welu.RemoveSourceFromRegistry(self.appname, self.logtype)
logging.Handler.close(self)
class HTTPHandler(logging.Handler):
"""
A class which sends records to a Web server, using either GET or
POST semantics.
"""
def __init__(self, host, url, method="GET", secure=False, credentials=None,
context=None):
"""
Initialize the instance with the host, the request URL, and the method
("GET" or "POST")
"""
logging.Handler.__init__(self)
method = method.upper()
if method not in ["GET", "POST"]:
raise ValueError("method must be GET or POST")
if not secure and context is not None:
raise ValueError("context parameter only makes sense "
"with secure=True")
self.host = host
self.url = url
self.method = method
self.secure = secure
self.credentials = credentials
self.context = context
def mapLogRecord(self, record):
"""
Default implementation of mapping the log record into a dict
that is sent as the CGI data. Overwrite in your class.
Contributed by Franz Glasner.
"""
return record.__dict__
def emit(self, record):
"""
Emit a record.
Send the record to the Web server as a percent-encoded dictionary
"""
try:
import http.client, urllib.parse
host = self.host
if self.secure:
h = http.client.HTTPSConnection(host, context=self.context)
else:
h = http.client.HTTPConnection(host)
url = self.url
data = urllib.parse.urlencode(self.mapLogRecord(record))
if self.method == "GET":
if (url.find('?') >= 0):
sep = '&'
else:
sep = '?'
url = url + "%c%s" % (sep, data)
h.putrequest(self.method, url)
# support multiple hosts on one IP address...
# need to strip optional :port from host, if present
i = host.find(":")
if i >= 0:
host = host[:i]
# See issue #30904: putrequest call above already adds this header
# on Python 3.x.
# h.putheader("Host", host)
if self.method == "POST":
h.putheader("Content-type",
"application/x-www-form-urlencoded")
h.putheader("Content-length", str(len(data)))
if self.credentials:
import base64
s = ('%s:%s' % self.credentials).encode('utf-8')
s = 'Basic ' + base64.b64encode(s).strip().decode('ascii')
h.putheader('Authorization', s)
h.endheaders()
if self.method == "POST":
h.send(data.encode('utf-8'))
h.getresponse() #can't do anything with the result
except Exception:
self.handleError(record)
class BufferingHandler(logging.Handler):
"""
A handler class which buffers logging records in memory. Whenever each
record is added to the buffer, a check is made to see if the buffer should
be flushed. If it should, then flush() is expected to do what's needed.
"""
def __init__(self, capacity):
"""
Initialize the handler with the buffer size.
"""
logging.Handler.__init__(self)
self.capacity = capacity
self.buffer = []
def shouldFlush(self, record):
"""
Should the handler flush its buffer?
Returns true if the buffer is up to capacity. This method can be
overridden to implement custom flushing strategies.
"""
return (len(self.buffer) >= self.capacity)
def emit(self, record):
"""
Emit a record.
Append the record. If shouldFlush() tells us to, call flush() to process
the buffer.
"""
self.buffer.append(record)
if self.shouldFlush(record):
self.flush()
def flush(self):
"""
Override to implement custom flushing behaviour.
This version just zaps the buffer to empty.
"""
self.acquire()
try:
self.buffer = []
finally:
self.release()
def close(self):
"""
Close the handler.
This version just flushes and chains to the parent class' close().
"""
try:
self.flush()
finally:
logging.Handler.close(self)
class MemoryHandler(BufferingHandler):
"""
A handler class which buffers logging records in memory, periodically
flushing them to a target handler. Flushing occurs whenever the buffer
is full, or when an event of a certain severity or greater is seen.
"""
def __init__(self, capacity, flushLevel=logging.ERROR, target=None,
flushOnClose=True):
"""
Initialize the handler with the buffer size, the level at which
flushing should occur and an optional target.
Note that without a target being set either here or via setTarget(),
a MemoryHandler is no use to anyone!
The ``flushOnClose`` argument is ``True`` for backward compatibility
reasons - the old behaviour is that when the handler is closed, the
buffer is flushed, even if the flush level hasn't been exceeded nor the
capacity exceeded. To prevent this, set ``flushOnClose`` to ``False``.
"""
BufferingHandler.__init__(self, capacity)
self.flushLevel = flushLevel
self.target = target
# See Issue #26559 for why this has been added
self.flushOnClose = flushOnClose
def shouldFlush(self, record):
"""
Check for buffer full or a record at the flushLevel or higher.
"""
return (len(self.buffer) >= self.capacity) or \
(record.levelno >= self.flushLevel)
def setTarget(self, target):
"""
Set the target handler for this handler.
"""
self.target = target
def flush(self):
"""
For a MemoryHandler, flushing means just sending the buffered
records to the target, if there is one. Override if you want
different behaviour.
The record buffer is also cleared by this operation.
"""
self.acquire()
try:
if self.target:
for record in self.buffer:
self.target.handle(record)
self.buffer = []
finally:
self.release()
def close(self):
"""
Flush, if appropriately configured, set the target to None and lose the
buffer.
"""
try:
if self.flushOnClose:
self.flush()
finally:
self.acquire()
try:
self.target = None
BufferingHandler.close(self)
finally:
self.release()
class QueueHandler(logging.Handler):
"""
This handler sends events to a queue. Typically, it would be used together
with a multiprocessing Queue to centralise logging to file in one process
(in a multi-process application), so as to avoid file write contention
between processes.
This code is new in Python 3.2, but this class can be copy pasted into
user code for use with earlier Python versions.
"""
def __init__(self, queue):
"""
Initialise an instance, using the passed queue.
"""
logging.Handler.__init__(self)
self.queue = queue
def enqueue(self, record):
"""
Enqueue a record.
The base implementation uses put_nowait. You may want to override
this method if you want to use blocking, timeouts or custom queue
implementations.
"""
self.queue.put_nowait(record)
def prepare(self, record):
"""
Prepares a record for queuing. The object returned by this method is
enqueued.
The base implementation formats the record to merge the message
and arguments, and removes unpickleable items from the record
in-place.
You might want to override this method if you want to convert
the record to a dict or JSON string, or send a modified copy
of the record while leaving the original intact.
"""
# The format operation gets traceback text into record.exc_text
# (if there's exception data), and also puts the message into
# record.message. We can then use this to replace the original
# msg + args, as these might be unpickleable. We also zap the
# exc_info attribute, as it's no longer needed and, if not None,
# will typically not be pickleable.
self.format(record)
record.msg = record.message
record.args = None
record.exc_info = None
return record
def emit(self, record):
"""
Emit a record.
Writes the LogRecord to the queue, preparing it for pickling first.
"""
try:
self.enqueue(self.prepare(record))
except Exception:
self.handleError(record)
if threading:
class QueueListener(object):
"""
This class implements an internal threaded listener which watches for
LogRecords being added to a queue, removes them and passes them to a
list of handlers for processing.
"""
_sentinel = None
def __init__(self, queue, *handlers, respect_handler_level=False):
"""
Initialise an instance with the specified queue and
handlers.
"""
self.queue = queue
self.handlers = handlers
self._thread = None
self.respect_handler_level = respect_handler_level
def dequeue(self, block):
"""
Dequeue a record and return it, optionally blocking.
The base implementation uses get. You may want to override this method
if you want to use timeouts or work with custom queue implementations.
"""
return self.queue.get(block)
def start(self):
"""
Start the listener.
This starts up a background thread to monitor the queue for
LogRecords to process.
"""
self._thread = t = threading.Thread(target=self._monitor)
t.daemon = True
t.start()
def prepare(self , record):
"""
Prepare a record for handling.
This method just returns the passed-in record. You may want to
override this method if you need to do any custom marshalling or
manipulation of the record before passing it to the handlers.
"""
return record
def handle(self, record):
"""
Handle a record.
This just loops through the handlers offering them the record
to handle.
"""
record = self.prepare(record)
for handler in self.handlers:
if not self.respect_handler_level:
process = True
else:
process = record.levelno >= handler.level
if process:
handler.handle(record)
def _monitor(self):
"""
Monitor the queue for records, and ask the handler
to deal with them.
This method runs on a separate, internal thread.
The thread will terminate if it sees a sentinel object in the queue.
"""
q = self.queue
has_task_done = hasattr(q, 'task_done')
while True:
try:
record = self.dequeue(True)
if record is self._sentinel:
break
self.handle(record)
if has_task_done:
q.task_done()
except queue.Empty:
break
def enqueue_sentinel(self):
"""
This is used to enqueue the sentinel record.
The base implementation uses put_nowait. You may want to override this
method if you want to use timeouts or work with custom queue
implementations.
"""
self.queue.put_nowait(self._sentinel)
def stop(self):
"""
Stop the listener.
This asks the thread to terminate, and then waits for it to do so.
Note that if you don't call this before your application exits, there
may be some records still left on the queue, which won't be processed.
"""
self.enqueue_sentinel()
self._thread.join()
self._thread = None
| 58,054 | 1,506 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/logging/config.py | # Copyright 2001-2014 by Vinay Sajip. All Rights Reserved.
#
# Permission to use, copy, modify, and distribute this software and its
# documentation for any purpose and without fee is hereby granted,
# provided that the above copyright notice appear in all copies and that
# both that copyright notice and this permission notice appear in
# supporting documentation, and that the name of Vinay Sajip
# not be used in advertising or publicity pertaining to distribution
# of the software without specific, written prior permission.
# VINAY SAJIP DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
# ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
# VINAY SAJIP BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
# ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
# IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
# OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
"""
Configuration functions for the logging package for Python. The core package
is based on PEP 282 and comments thereto in comp.lang.python, and influenced
by Apache's log4j system.
Copyright (C) 2001-2014 Vinay Sajip. All Rights Reserved.
To use, simply 'import logging' and log away!
"""
import errno
import io
import logging
import logging.handlers
import re
import struct
import sys
import traceback
try:
import _thread as thread
import threading
except ImportError: #pragma: no cover
thread = None
from socketserver import ThreadingTCPServer, StreamRequestHandler
DEFAULT_LOGGING_CONFIG_PORT = 9030
RESET_ERROR = errno.ECONNRESET
#
# The following code implements a socket listener for on-the-fly
# reconfiguration of logging.
#
# _listener holds the server object doing the listening
_listener = None
def fileConfig(fname, defaults=None, disable_existing_loggers=True):
"""
Read the logging configuration from a ConfigParser-format file.
This can be called several times from an application, allowing an end user
the ability to select from various pre-canned configurations (if the
developer provides a mechanism to present the choices and load the chosen
configuration).
"""
import configparser
if isinstance(fname, configparser.RawConfigParser):
cp = fname
else:
cp = configparser.ConfigParser(defaults)
if hasattr(fname, 'readline'):
cp.read_file(fname)
else:
cp.read(fname)
formatters = _create_formatters(cp)
# critical section
logging._acquireLock()
try:
_clearExistingHandlers()
# Handlers add themselves to logging._handlers
handlers = _install_handlers(cp, formatters)
_install_loggers(cp, handlers, disable_existing_loggers)
finally:
logging._releaseLock()
def _resolve(name):
"""Resolve a dotted name to a global object."""
name = name.split('.')
used = name.pop(0)
found = __import__(used)
for n in name:
used = used + '.' + n
try:
found = getattr(found, n)
except AttributeError:
__import__(used)
found = getattr(found, n)
return found
def _strip_spaces(alist):
return map(lambda x: x.strip(), alist)
def _create_formatters(cp):
"""Create and return formatters"""
flist = cp["formatters"]["keys"]
if not len(flist):
return {}
flist = flist.split(",")
flist = _strip_spaces(flist)
formatters = {}
for form in flist:
sectname = "formatter_%s" % form
fs = cp.get(sectname, "format", raw=True, fallback=None)
dfs = cp.get(sectname, "datefmt", raw=True, fallback=None)
stl = cp.get(sectname, "style", raw=True, fallback='%')
c = logging.Formatter
class_name = cp[sectname].get("class")
if class_name:
c = _resolve(class_name)
f = c(fs, dfs, stl)
formatters[form] = f
return formatters
def _install_handlers(cp, formatters):
"""Install and return handlers"""
hlist = cp["handlers"]["keys"]
if not len(hlist):
return {}
hlist = hlist.split(",")
hlist = _strip_spaces(hlist)
handlers = {}
fixups = [] #for inter-handler references
for hand in hlist:
section = cp["handler_%s" % hand]
klass = section["class"]
fmt = section.get("formatter", "")
try:
klass = eval(klass, vars(logging))
except (AttributeError, NameError):
klass = _resolve(klass)
args = section["args"]
args = eval(args, vars(logging))
h = klass(*args)
if "level" in section:
level = section["level"]
h.setLevel(level)
if len(fmt):
h.setFormatter(formatters[fmt])
if issubclass(klass, logging.handlers.MemoryHandler):
target = section.get("target", "")
if len(target): #the target handler may not be loaded yet, so keep for later...
fixups.append((h, target))
handlers[hand] = h
#now all handlers are loaded, fixup inter-handler references...
for h, t in fixups:
h.setTarget(handlers[t])
return handlers
def _handle_existing_loggers(existing, child_loggers, disable_existing):
"""
When (re)configuring logging, handle loggers which were in the previous
configuration but are not in the new configuration. There's no point
deleting them as other threads may continue to hold references to them;
and by disabling them, you stop them doing any logging.
However, don't disable children of named loggers, as that's probably not
what was intended by the user. Also, allow existing loggers to NOT be
disabled if disable_existing is false.
"""
root = logging.root
for log in existing:
logger = root.manager.loggerDict[log]
if log in child_loggers:
logger.level = logging.NOTSET
logger.handlers = []
logger.propagate = True
else:
logger.disabled = disable_existing
def _install_loggers(cp, handlers, disable_existing):
"""Create and install loggers"""
# configure the root first
llist = cp["loggers"]["keys"]
llist = llist.split(",")
llist = list(map(lambda x: x.strip(), llist))
llist.remove("root")
section = cp["logger_root"]
root = logging.root
log = root
if "level" in section:
level = section["level"]
log.setLevel(level)
for h in root.handlers[:]:
root.removeHandler(h)
hlist = section["handlers"]
if len(hlist):
hlist = hlist.split(",")
hlist = _strip_spaces(hlist)
for hand in hlist:
log.addHandler(handlers[hand])
#and now the others...
#we don't want to lose the existing loggers,
#since other threads may have pointers to them.
#existing is set to contain all existing loggers,
#and as we go through the new configuration we
#remove any which are configured. At the end,
#what's left in existing is the set of loggers
#which were in the previous configuration but
#which are not in the new configuration.
existing = list(root.manager.loggerDict.keys())
#The list needs to be sorted so that we can
#avoid disabling child loggers of explicitly
#named loggers. With a sorted list it is easier
#to find the child loggers.
existing.sort()
#We'll keep the list of existing loggers
#which are children of named loggers here...
child_loggers = []
#now set up the new ones...
for log in llist:
section = cp["logger_%s" % log]
qn = section["qualname"]
propagate = section.getint("propagate", fallback=1)
logger = logging.getLogger(qn)
if qn in existing:
i = existing.index(qn) + 1 # start with the entry after qn
prefixed = qn + "."
pflen = len(prefixed)
num_existing = len(existing)
while i < num_existing:
if existing[i][:pflen] == prefixed:
child_loggers.append(existing[i])
i += 1
existing.remove(qn)
if "level" in section:
level = section["level"]
logger.setLevel(level)
for h in logger.handlers[:]:
logger.removeHandler(h)
logger.propagate = propagate
logger.disabled = 0
hlist = section["handlers"]
if len(hlist):
hlist = hlist.split(",")
hlist = _strip_spaces(hlist)
for hand in hlist:
logger.addHandler(handlers[hand])
#Disable any old loggers. There's no point deleting
#them as other threads may continue to hold references
#and by disabling them, you stop them doing any logging.
#However, don't disable children of named loggers, as that's
#probably not what was intended by the user.
#for log in existing:
# logger = root.manager.loggerDict[log]
# if log in child_loggers:
# logger.level = logging.NOTSET
# logger.handlers = []
# logger.propagate = 1
# elif disable_existing_loggers:
# logger.disabled = 1
_handle_existing_loggers(existing, child_loggers, disable_existing)
def _clearExistingHandlers():
"""Clear and close existing handlers"""
logging._handlers.clear()
logging.shutdown(logging._handlerList[:])
del logging._handlerList[:]
IDENTIFIER = re.compile('^[a-z_][a-z0-9_]*$', re.I)
def valid_ident(s):
m = IDENTIFIER.match(s)
if not m:
raise ValueError('Not a valid Python identifier: %r' % s)
return True
class ConvertingMixin(object):
"""For ConvertingXXX's, this mixin class provides common functions"""
def convert_with_key(self, key, value, replace=True):
result = self.configurator.convert(value)
#If the converted value is different, save for next time
if value is not result:
if replace:
self[key] = result
if type(result) in (ConvertingDict, ConvertingList,
ConvertingTuple):
result.parent = self
result.key = key
return result
def convert(self, value):
result = self.configurator.convert(value)
if value is not result:
if type(result) in (ConvertingDict, ConvertingList,
ConvertingTuple):
result.parent = self
return result
# The ConvertingXXX classes are wrappers around standard Python containers,
# and they serve to convert any suitable values in the container. The
# conversion converts base dicts, lists and tuples to their wrapped
# equivalents, whereas strings which match a conversion format are converted
# appropriately.
#
# Each wrapper should have a configurator attribute holding the actual
# configurator to use for conversion.
class ConvertingDict(dict, ConvertingMixin):
"""A converting dictionary wrapper."""
def __getitem__(self, key):
value = dict.__getitem__(self, key)
return self.convert_with_key(key, value)
def get(self, key, default=None):
value = dict.get(self, key, default)
return self.convert_with_key(key, value)
def pop(self, key, default=None):
value = dict.pop(self, key, default)
return self.convert_with_key(key, value, replace=False)
class ConvertingList(list, ConvertingMixin):
"""A converting list wrapper."""
def __getitem__(self, key):
value = list.__getitem__(self, key)
return self.convert_with_key(key, value)
def pop(self, idx=-1):
value = list.pop(self, idx)
return self.convert(value)
class ConvertingTuple(tuple, ConvertingMixin):
"""A converting tuple wrapper."""
def __getitem__(self, key):
value = tuple.__getitem__(self, key)
# Can't replace a tuple entry.
return self.convert_with_key(key, value, replace=False)
class BaseConfigurator(object):
"""
The configurator base class which defines some useful defaults.
"""
CONVERT_PATTERN = re.compile(r'^(?P<prefix>[a-z]+)://(?P<suffix>.*)$')
WORD_PATTERN = re.compile(r'^\s*(\w+)\s*')
DOT_PATTERN = re.compile(r'^\.\s*(\w+)\s*')
INDEX_PATTERN = re.compile(r'^\[\s*(\w+)\s*\]\s*')
DIGIT_PATTERN = re.compile(r'^\d+$')
value_converters = {
'ext' : 'ext_convert',
'cfg' : 'cfg_convert',
}
# We might want to use a different one, e.g. importlib
importer = staticmethod(__import__)
def __init__(self, config):
self.config = ConvertingDict(config)
self.config.configurator = self
def resolve(self, s):
"""
Resolve strings to objects using standard import and attribute
syntax.
"""
name = s.split('.')
used = name.pop(0)
try:
found = self.importer(used)
for frag in name:
used += '.' + frag
try:
found = getattr(found, frag)
except AttributeError:
self.importer(used)
found = getattr(found, frag)
return found
except ImportError:
e, tb = sys.exc_info()[1:]
v = ValueError('Cannot resolve %r: %s' % (s, e))
v.__cause__, v.__traceback__ = e, tb
raise v
def ext_convert(self, value):
"""Default converter for the ext:// protocol."""
return self.resolve(value)
def cfg_convert(self, value):
"""Default converter for the cfg:// protocol."""
rest = value
m = self.WORD_PATTERN.match(rest)
if m is None:
raise ValueError("Unable to convert %r" % value)
else:
rest = rest[m.end():]
d = self.config[m.groups()[0]]
#print d, rest
while rest:
m = self.DOT_PATTERN.match(rest)
if m:
d = d[m.groups()[0]]
else:
m = self.INDEX_PATTERN.match(rest)
if m:
idx = m.groups()[0]
if not self.DIGIT_PATTERN.match(idx):
d = d[idx]
else:
try:
n = int(idx) # try as number first (most likely)
d = d[n]
except TypeError:
d = d[idx]
if m:
rest = rest[m.end():]
else:
raise ValueError('Unable to convert '
'%r at %r' % (value, rest))
#rest should be empty
return d
def convert(self, value):
"""
Convert values to an appropriate type. dicts, lists and tuples are
replaced by their converting alternatives. Strings are checked to
see if they have a conversion format and are converted if they do.
"""
if not isinstance(value, ConvertingDict) and isinstance(value, dict):
value = ConvertingDict(value)
value.configurator = self
elif not isinstance(value, ConvertingList) and isinstance(value, list):
value = ConvertingList(value)
value.configurator = self
elif not isinstance(value, ConvertingTuple) and\
isinstance(value, tuple):
value = ConvertingTuple(value)
value.configurator = self
elif isinstance(value, str): # str for py3k
m = self.CONVERT_PATTERN.match(value)
if m:
d = m.groupdict()
prefix = d['prefix']
converter = self.value_converters.get(prefix, None)
if converter:
suffix = d['suffix']
converter = getattr(self, converter)
value = converter(suffix)
return value
def configure_custom(self, config):
"""Configure an object with a user-supplied factory."""
c = config.pop('()')
if not callable(c):
c = self.resolve(c)
props = config.pop('.', None)
# Check for valid identifiers
kwargs = dict([(k, config[k]) for k in config if valid_ident(k)])
result = c(**kwargs)
if props:
for name, value in props.items():
setattr(result, name, value)
return result
def as_tuple(self, value):
"""Utility function which converts lists to tuples."""
if isinstance(value, list):
value = tuple(value)
return value
class DictConfigurator(BaseConfigurator):
"""
Configure logging using a dictionary-like object to describe the
configuration.
"""
def configure(self):
"""Do the configuration."""
config = self.config
if 'version' not in config:
raise ValueError("dictionary doesn't specify a version")
if config['version'] != 1:
raise ValueError("Unsupported version: %s" % config['version'])
incremental = config.pop('incremental', False)
EMPTY_DICT = {}
logging._acquireLock()
try:
if incremental:
handlers = config.get('handlers', EMPTY_DICT)
for name in handlers:
if name not in logging._handlers:
raise ValueError('No handler found with '
'name %r' % name)
else:
try:
handler = logging._handlers[name]
handler_config = handlers[name]
level = handler_config.get('level', None)
if level:
handler.setLevel(logging._checkLevel(level))
except Exception as e:
raise ValueError('Unable to configure handler '
'%r: %s' % (name, e))
loggers = config.get('loggers', EMPTY_DICT)
for name in loggers:
try:
self.configure_logger(name, loggers[name], True)
except Exception as e:
raise ValueError('Unable to configure logger '
'%r: %s' % (name, e))
root = config.get('root', None)
if root:
try:
self.configure_root(root, True)
except Exception as e:
raise ValueError('Unable to configure root '
'logger: %s' % e)
else:
disable_existing = config.pop('disable_existing_loggers', True)
_clearExistingHandlers()
# Do formatters first - they don't refer to anything else
formatters = config.get('formatters', EMPTY_DICT)
for name in formatters:
try:
formatters[name] = self.configure_formatter(
formatters[name])
except Exception as e:
raise ValueError('Unable to configure '
'formatter %r: %s' % (name, e))
# Next, do filters - they don't refer to anything else, either
filters = config.get('filters', EMPTY_DICT)
for name in filters:
try:
filters[name] = self.configure_filter(filters[name])
except Exception as e:
raise ValueError('Unable to configure '
'filter %r: %s' % (name, e))
# Next, do handlers - they refer to formatters and filters
# As handlers can refer to other handlers, sort the keys
# to allow a deterministic order of configuration
handlers = config.get('handlers', EMPTY_DICT)
deferred = []
for name in sorted(handlers):
try:
handler = self.configure_handler(handlers[name])
handler.name = name
handlers[name] = handler
except Exception as e:
if 'target not configured yet' in str(e):
deferred.append(name)
else:
raise ValueError('Unable to configure handler '
'%r: %s' % (name, e))
# Now do any that were deferred
for name in deferred:
try:
handler = self.configure_handler(handlers[name])
handler.name = name
handlers[name] = handler
except Exception as e:
raise ValueError('Unable to configure handler '
'%r: %s' % (name, e))
# Next, do loggers - they refer to handlers and filters
#we don't want to lose the existing loggers,
#since other threads may have pointers to them.
#existing is set to contain all existing loggers,
#and as we go through the new configuration we
#remove any which are configured. At the end,
#what's left in existing is the set of loggers
#which were in the previous configuration but
#which are not in the new configuration.
root = logging.root
existing = list(root.manager.loggerDict.keys())
#The list needs to be sorted so that we can
#avoid disabling child loggers of explicitly
#named loggers. With a sorted list it is easier
#to find the child loggers.
existing.sort()
#We'll keep the list of existing loggers
#which are children of named loggers here...
child_loggers = []
#now set up the new ones...
loggers = config.get('loggers', EMPTY_DICT)
for name in loggers:
if name in existing:
i = existing.index(name) + 1 # look after name
prefixed = name + "."
pflen = len(prefixed)
num_existing = len(existing)
while i < num_existing:
if existing[i][:pflen] == prefixed:
child_loggers.append(existing[i])
i += 1
existing.remove(name)
try:
self.configure_logger(name, loggers[name])
except Exception as e:
raise ValueError('Unable to configure logger '
'%r: %s' % (name, e))
#Disable any old loggers. There's no point deleting
#them as other threads may continue to hold references
#and by disabling them, you stop them doing any logging.
#However, don't disable children of named loggers, as that's
#probably not what was intended by the user.
#for log in existing:
# logger = root.manager.loggerDict[log]
# if log in child_loggers:
# logger.level = logging.NOTSET
# logger.handlers = []
# logger.propagate = True
# elif disable_existing:
# logger.disabled = True
_handle_existing_loggers(existing, child_loggers,
disable_existing)
# And finally, do the root logger
root = config.get('root', None)
if root:
try:
self.configure_root(root)
except Exception as e:
raise ValueError('Unable to configure root '
'logger: %s' % e)
finally:
logging._releaseLock()
def configure_formatter(self, config):
"""Configure a formatter from a dictionary."""
if '()' in config:
factory = config['()'] # for use in exception handler
try:
result = self.configure_custom(config)
except TypeError as te:
if "'format'" not in str(te):
raise
#Name of parameter changed from fmt to format.
#Retry with old name.
#This is so that code can be used with older Python versions
#(e.g. by Django)
config['fmt'] = config.pop('format')
config['()'] = factory
result = self.configure_custom(config)
else:
fmt = config.get('format', None)
dfmt = config.get('datefmt', None)
style = config.get('style', '%')
cname = config.get('class', None)
if not cname:
c = logging.Formatter
else:
c = _resolve(cname)
result = c(fmt, dfmt, style)
return result
def configure_filter(self, config):
"""Configure a filter from a dictionary."""
if '()' in config:
result = self.configure_custom(config)
else:
name = config.get('name', '')
result = logging.Filter(name)
return result
def add_filters(self, filterer, filters):
"""Add filters to a filterer from a list of names."""
for f in filters:
try:
filterer.addFilter(self.config['filters'][f])
except Exception as e:
raise ValueError('Unable to add filter %r: %s' % (f, e))
def configure_handler(self, config):
"""Configure a handler from a dictionary."""
config_copy = dict(config) # for restoring in case of error
formatter = config.pop('formatter', None)
if formatter:
try:
formatter = self.config['formatters'][formatter]
except Exception as e:
raise ValueError('Unable to set formatter '
'%r: %s' % (formatter, e))
level = config.pop('level', None)
filters = config.pop('filters', None)
if '()' in config:
c = config.pop('()')
if not callable(c):
c = self.resolve(c)
factory = c
else:
cname = config.pop('class')
klass = self.resolve(cname)
#Special case for handler which refers to another handler
if issubclass(klass, logging.handlers.MemoryHandler) and\
'target' in config:
try:
th = self.config['handlers'][config['target']]
if not isinstance(th, logging.Handler):
config.update(config_copy) # restore for deferred cfg
raise TypeError('target not configured yet')
config['target'] = th
except Exception as e:
raise ValueError('Unable to set target handler '
'%r: %s' % (config['target'], e))
elif issubclass(klass, logging.handlers.SMTPHandler) and\
'mailhost' in config:
config['mailhost'] = self.as_tuple(config['mailhost'])
elif issubclass(klass, logging.handlers.SysLogHandler) and\
'address' in config:
config['address'] = self.as_tuple(config['address'])
factory = klass
props = config.pop('.', None)
kwargs = dict([(k, config[k]) for k in config if valid_ident(k)])
try:
result = factory(**kwargs)
except TypeError as te:
if "'stream'" not in str(te):
raise
#The argument name changed from strm to stream
#Retry with old name.
#This is so that code can be used with older Python versions
#(e.g. by Django)
kwargs['strm'] = kwargs.pop('stream')
result = factory(**kwargs)
if formatter:
result.setFormatter(formatter)
if level is not None:
result.setLevel(logging._checkLevel(level))
if filters:
self.add_filters(result, filters)
if props:
for name, value in props.items():
setattr(result, name, value)
return result
def add_handlers(self, logger, handlers):
"""Add handlers to a logger from a list of names."""
for h in handlers:
try:
logger.addHandler(self.config['handlers'][h])
except Exception as e:
raise ValueError('Unable to add handler %r: %s' % (h, e))
def common_logger_config(self, logger, config, incremental=False):
"""
Perform configuration which is common to root and non-root loggers.
"""
level = config.get('level', None)
if level is not None:
logger.setLevel(logging._checkLevel(level))
if not incremental:
#Remove any existing handlers
for h in logger.handlers[:]:
logger.removeHandler(h)
handlers = config.get('handlers', None)
if handlers:
self.add_handlers(logger, handlers)
filters = config.get('filters', None)
if filters:
self.add_filters(logger, filters)
def configure_logger(self, name, config, incremental=False):
"""Configure a non-root logger from a dictionary."""
logger = logging.getLogger(name)
self.common_logger_config(logger, config, incremental)
propagate = config.get('propagate', None)
if propagate is not None:
logger.propagate = propagate
def configure_root(self, config, incremental=False):
"""Configure a root logger from a dictionary."""
root = logging.getLogger()
self.common_logger_config(root, config, incremental)
dictConfigClass = DictConfigurator
def dictConfig(config):
"""Configure logging using a dictionary."""
dictConfigClass(config).configure()
def listen(port=DEFAULT_LOGGING_CONFIG_PORT, verify=None):
"""
Start up a socket server on the specified port, and listen for new
configurations.
These will be sent as a file suitable for processing by fileConfig().
Returns a Thread object on which you can call start() to start the server,
and which you can join() when appropriate. To stop the server, call
stopListening().
Use the ``verify`` argument to verify any bytes received across the wire
from a client. If specified, it should be a callable which receives a
single argument - the bytes of configuration data received across the
network - and it should return either ``None``, to indicate that the
passed in bytes could not be verified and should be discarded, or a
byte string which is then passed to the configuration machinery as
normal. Note that you can return transformed bytes, e.g. by decrypting
the bytes passed in.
"""
if not thread: #pragma: no cover
raise NotImplementedError("listen() needs threading to work")
class ConfigStreamHandler(StreamRequestHandler):
"""
Handler for a logging configuration request.
It expects a completely new logging configuration and uses fileConfig
to install it.
"""
def handle(self):
"""
Handle a request.
Each request is expected to be a 4-byte length, packed using
struct.pack(">L", n), followed by the config file.
Uses fileConfig() to do the grunt work.
"""
try:
conn = self.connection
chunk = conn.recv(4)
if len(chunk) == 4:
slen = struct.unpack(">L", chunk)[0]
chunk = self.connection.recv(slen)
while len(chunk) < slen:
chunk = chunk + conn.recv(slen - len(chunk))
if self.server.verify is not None:
chunk = self.server.verify(chunk)
if chunk is not None: # verified, can process
chunk = chunk.decode("utf-8")
try:
import json
d =json.loads(chunk)
assert isinstance(d, dict)
dictConfig(d)
except Exception:
#Apply new configuration.
file = io.StringIO(chunk)
try:
fileConfig(file)
except Exception:
traceback.print_exc()
if self.server.ready:
self.server.ready.set()
except OSError as e:
if e.errno != RESET_ERROR:
raise
class ConfigSocketReceiver(ThreadingTCPServer):
"""
A simple TCP socket-based logging config receiver.
"""
allow_reuse_address = 1
def __init__(self, host='localhost', port=DEFAULT_LOGGING_CONFIG_PORT,
handler=None, ready=None, verify=None):
ThreadingTCPServer.__init__(self, (host, port), handler)
logging._acquireLock()
self.abort = 0
logging._releaseLock()
self.timeout = 1
self.ready = ready
self.verify = verify
def serve_until_stopped(self):
import select
abort = 0
while not abort:
rd, wr, ex = select.select([self.socket.fileno()],
[], [],
self.timeout)
if rd:
self.handle_request()
logging._acquireLock()
abort = self.abort
logging._releaseLock()
self.socket.close()
class Server(threading.Thread):
def __init__(self, rcvr, hdlr, port, verify):
super(Server, self).__init__()
self.rcvr = rcvr
self.hdlr = hdlr
self.port = port
self.verify = verify
self.ready = threading.Event()
def run(self):
server = self.rcvr(port=self.port, handler=self.hdlr,
ready=self.ready,
verify=self.verify)
if self.port == 0:
self.port = server.server_address[1]
self.ready.set()
global _listener
logging._acquireLock()
_listener = server
logging._releaseLock()
server.serve_until_stopped()
return Server(ConfigSocketReceiver, ConfigStreamHandler, port, verify)
def stopListening():
"""
Stop the listening server which was created with a call to listen().
"""
global _listener
logging._acquireLock()
try:
if _listener:
_listener.abort = 1
_listener = None
finally:
logging._releaseLock()
| 36,048 | 941 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Lib/logging/__init__.py | # Copyright 2001-2016 by Vinay Sajip. All Rights Reserved.
#
# Permission to use, copy, modify, and distribute this software and its
# documentation for any purpose and without fee is hereby granted,
# provided that the above copyright notice appear in all copies and that
# both that copyright notice and this permission notice appear in
# supporting documentation, and that the name of Vinay Sajip
# not be used in advertising or publicity pertaining to distribution
# of the software without specific, written prior permission.
# VINAY SAJIP DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
# ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
# VINAY SAJIP BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
# ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
# IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
# OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
"""
Logging package for Python. Based on PEP 282 and comments thereto in
comp.lang.python.
Copyright (C) 2001-2016 Vinay Sajip. All Rights Reserved.
To use, simply 'import logging' and log away!
"""
import sys, os, time, io, traceback, warnings, weakref, collections
from string import Template
__all__ = ['BASIC_FORMAT', 'BufferingFormatter', 'CRITICAL', 'DEBUG', 'ERROR',
'FATAL', 'FileHandler', 'Filter', 'Formatter', 'Handler', 'INFO',
'LogRecord', 'Logger', 'LoggerAdapter', 'NOTSET', 'NullHandler',
'StreamHandler', 'WARN', 'WARNING', 'addLevelName', 'basicConfig',
'captureWarnings', 'critical', 'debug', 'disable', 'error',
'exception', 'fatal', 'getLevelName', 'getLogger', 'getLoggerClass',
'info', 'log', 'makeLogRecord', 'setLoggerClass', 'shutdown',
'warn', 'warning', 'getLogRecordFactory', 'setLogRecordFactory',
'lastResort', 'raiseExceptions']
try:
import threading
except ImportError: #pragma: no cover
threading = None
__author__ = "Vinay Sajip <[email protected]>"
__status__ = "production"
# The following module attributes are no longer updated.
__version__ = "0.5.1.2"
__date__ = "07 February 2010"
#---------------------------------------------------------------------------
# Miscellaneous module data
#---------------------------------------------------------------------------
#
#_startTime is used as the base when calculating the relative time of events
#
_startTime = time.time()
#
#raiseExceptions is used to see if exceptions during handling should be
#propagated
#
raiseExceptions = True
#
# If you don't want threading information in the log, set this to zero
#
logThreads = True
#
# If you don't want multiprocessing information in the log, set this to zero
#
logMultiprocessing = True
#
# If you don't want process information in the log, set this to zero
#
logProcesses = True
#---------------------------------------------------------------------------
# Level related stuff
#---------------------------------------------------------------------------
#
# Default levels and level names, these can be replaced with any positive set
# of values having corresponding names. There is a pseudo-level, NOTSET, which
# is only really there as a lower limit for user-defined levels. Handlers and
# loggers are initialized with NOTSET so that they will log all messages, even
# at user-defined levels.
#
CRITICAL = 50
FATAL = CRITICAL
ERROR = 40
WARNING = 30
WARN = WARNING
INFO = 20
DEBUG = 10
NOTSET = 0
_levelToName = {
CRITICAL: 'CRITICAL',
ERROR: 'ERROR',
WARNING: 'WARNING',
INFO: 'INFO',
DEBUG: 'DEBUG',
NOTSET: 'NOTSET',
}
_nameToLevel = {
'CRITICAL': CRITICAL,
'FATAL': FATAL,
'ERROR': ERROR,
'WARN': WARNING,
'WARNING': WARNING,
'INFO': INFO,
'DEBUG': DEBUG,
'NOTSET': NOTSET,
}
def getLevelName(level):
"""
Return the textual representation of logging level 'level'.
If the level is one of the predefined levels (CRITICAL, ERROR, WARNING,
INFO, DEBUG) then you get the corresponding string. If you have
associated levels with names using addLevelName then the name you have
associated with 'level' is returned.
If a numeric value corresponding to one of the defined levels is passed
in, the corresponding string representation is returned.
Otherwise, the string "Level %s" % level is returned.
"""
# See Issues #22386, #27937 and #29220 for why it's this way
result = _levelToName.get(level)
if result is not None:
return result
result = _nameToLevel.get(level)
if result is not None:
return result
return "Level %s" % level
def addLevelName(level, levelName):
"""
Associate 'levelName' with 'level'.
This is used when converting levels to text during message formatting.
"""
_acquireLock()
try: #unlikely to cause an exception, but you never know...
_levelToName[level] = levelName
_nameToLevel[levelName] = level
finally:
_releaseLock()
if hasattr(sys, '_getframe'):
currentframe = lambda: sys._getframe(3)
else: #pragma: no cover
def currentframe():
"""Return the frame object for the caller's stack frame."""
try:
raise Exception
except Exception:
return sys.exc_info()[2].tb_frame.f_back
#
# _srcfile is used when walking the stack to check when we've got the first
# caller stack frame, by skipping frames whose filename is that of this
# module's source. It therefore should contain the filename of this module's
# source file.
#
# Ordinarily we would use __file__ for this, but frozen modules don't always
# have __file__ set, for some reason (see Issue #21736). Thus, we get the
# filename from a handy code object from a function defined in this module.
# (There's no particular reason for picking addLevelName.)
#
_srcfile = os.path.normcase(addLevelName.__code__.co_filename)
# _srcfile is only used in conjunction with sys._getframe().
# To provide compatibility with older versions of Python, set _srcfile
# to None if _getframe() is not available; this value will prevent
# findCaller() from being called. You can also do this if you want to avoid
# the overhead of fetching caller information, even when _getframe() is
# available.
#if not hasattr(sys, '_getframe'):
# _srcfile = None
def _checkLevel(level):
if isinstance(level, int):
rv = level
elif str(level) == level:
if level not in _nameToLevel:
raise ValueError("Unknown level: %r" % level)
rv = _nameToLevel[level]
else:
raise TypeError("Level not an integer or a valid string: %r" % level)
return rv
#---------------------------------------------------------------------------
# Thread-related stuff
#---------------------------------------------------------------------------
#
#_lock is used to serialize access to shared data structures in this module.
#This needs to be an RLock because fileConfig() creates and configures
#Handlers, and so might arbitrary user threads. Since Handler code updates the
#shared dictionary _handlers, it needs to acquire the lock. But if configuring,
#the lock would already have been acquired - so we need an RLock.
#The same argument applies to Loggers and Manager.loggerDict.
#
if threading:
_lock = threading.RLock()
else: #pragma: no cover
_lock = None
def _acquireLock():
"""
Acquire the module-level lock for serializing access to shared data.
This should be released with _releaseLock().
"""
if _lock:
_lock.acquire()
def _releaseLock():
"""
Release the module-level lock acquired by calling _acquireLock().
"""
if _lock:
_lock.release()
#---------------------------------------------------------------------------
# The logging record
#---------------------------------------------------------------------------
class LogRecord(object):
"""
A LogRecord instance represents an event being logged.
LogRecord instances are created every time something is logged. They
contain all the information pertinent to the event being logged. The
main information passed in is in msg and args, which are combined
using str(msg) % args to create the message field of the record. The
record also includes information such as when the record was created,
the source line where the logging call was made, and any exception
information to be logged.
"""
def __init__(self, name, level, pathname, lineno,
msg, args, exc_info, func=None, sinfo=None, **kwargs):
"""
Initialize a logging record with interesting information.
"""
ct = time.time()
self.name = name
self.msg = msg
#
# The following statement allows passing of a dictionary as a sole
# argument, so that you can do something like
# logging.debug("a %(a)d b %(b)s", {'a':1, 'b':2})
# Suggested by Stefan Behnel.
# Note that without the test for args[0], we get a problem because
# during formatting, we test to see if the arg is present using
# 'if self.args:'. If the event being logged is e.g. 'Value is %d'
# and if the passed arg fails 'if self.args:' then no formatting
# is done. For example, logger.warning('Value is %d', 0) would log
# 'Value is %d' instead of 'Value is 0'.
# For the use case of passing a dictionary, this should not be a
# problem.
# Issue #21172: a request was made to relax the isinstance check
# to hasattr(args[0], '__getitem__'). However, the docs on string
# formatting still seem to suggest a mapping object is required.
# Thus, while not removing the isinstance check, it does now look
# for collections.Mapping rather than, as before, dict.
if (args and len(args) == 1 and isinstance(args[0], collections.Mapping)
and args[0]):
args = args[0]
self.args = args
self.levelname = getLevelName(level)
self.levelno = level
self.pathname = pathname
try:
self.filename = os.path.basename(pathname)
self.module = os.path.splitext(self.filename)[0]
except (TypeError, ValueError, AttributeError):
self.filename = pathname
self.module = "Unknown module"
self.exc_info = exc_info
self.exc_text = None # used to cache the traceback text
self.stack_info = sinfo
self.lineno = lineno
self.funcName = func
self.created = ct
self.msecs = (ct - int(ct)) * 1000
self.relativeCreated = (self.created - _startTime) * 1000
if logThreads and threading:
self.thread = threading.get_ident()
self.threadName = threading.current_thread().name
else: # pragma: no cover
self.thread = None
self.threadName = None
if not logMultiprocessing: # pragma: no cover
self.processName = None
else:
self.processName = 'MainProcess'
mp = sys.modules.get('multiprocessing')
if mp is not None:
# Errors may occur if multiprocessing has not finished loading
# yet - e.g. if a custom import hook causes third-party code
# to run when multiprocessing calls import. See issue 8200
# for an example
try:
self.processName = mp.current_process().name
except Exception: #pragma: no cover
pass
if logProcesses and hasattr(os, 'getpid'):
self.process = os.getpid()
else:
self.process = None
def __str__(self):
return '<LogRecord: %s, %s, %s, %s, "%s">'%(self.name, self.levelno,
self.pathname, self.lineno, self.msg)
__repr__ = __str__
def getMessage(self):
"""
Return the message for this LogRecord.
Return the message for this LogRecord after merging any user-supplied
arguments with the message.
"""
msg = str(self.msg)
if self.args:
msg = msg % self.args
return msg
#
# Determine which class to use when instantiating log records.
#
_logRecordFactory = LogRecord
def setLogRecordFactory(factory):
"""
Set the factory to be used when instantiating a log record.
:param factory: A callable which will be called to instantiate
a log record.
"""
global _logRecordFactory
_logRecordFactory = factory
def getLogRecordFactory():
"""
Return the factory to be used when instantiating a log record.
"""
return _logRecordFactory
def makeLogRecord(dict):
"""
Make a LogRecord whose attributes are defined by the specified dictionary,
This function is useful for converting a logging event received over
a socket connection (which is sent as a dictionary) into a LogRecord
instance.
"""
rv = _logRecordFactory(None, None, "", 0, "", (), None, None)
rv.__dict__.update(dict)
return rv
#---------------------------------------------------------------------------
# Formatter classes and functions
#---------------------------------------------------------------------------
class PercentStyle(object):
default_format = '%(message)s'
asctime_format = '%(asctime)s'
asctime_search = '%(asctime)'
def __init__(self, fmt):
self._fmt = fmt or self.default_format
def usesTime(self):
return self._fmt.find(self.asctime_search) >= 0
def format(self, record):
return self._fmt % record.__dict__
class StrFormatStyle(PercentStyle):
default_format = '{message}'
asctime_format = '{asctime}'
asctime_search = '{asctime'
def format(self, record):
return self._fmt.format(**record.__dict__)
class StringTemplateStyle(PercentStyle):
default_format = '${message}'
asctime_format = '${asctime}'
asctime_search = '${asctime}'
def __init__(self, fmt):
self._fmt = fmt or self.default_format
self._tpl = Template(self._fmt)
def usesTime(self):
fmt = self._fmt
return fmt.find('$asctime') >= 0 or fmt.find(self.asctime_format) >= 0
def format(self, record):
return self._tpl.substitute(**record.__dict__)
BASIC_FORMAT = "%(levelname)s:%(name)s:%(message)s"
_STYLES = {
'%': (PercentStyle, BASIC_FORMAT),
'{': (StrFormatStyle, '{levelname}:{name}:{message}'),
'$': (StringTemplateStyle, '${levelname}:${name}:${message}'),
}
class Formatter(object):
"""
Formatter instances are used to convert a LogRecord to text.
Formatters need to know how a LogRecord is constructed. They are
responsible for converting a LogRecord to (usually) a string which can
be interpreted by either a human or an external system. The base Formatter
allows a formatting string to be specified. If none is supplied, the
the style-dependent default value, "%(message)s", "{message}", or
"${message}", is used.
The Formatter can be initialized with a format string which makes use of
knowledge of the LogRecord attributes - e.g. the default value mentioned
above makes use of the fact that the user's message and arguments are pre-
formatted into a LogRecord's message attribute. Currently, the useful
attributes in a LogRecord are described by:
%(name)s Name of the logger (logging channel)
%(levelno)s Numeric logging level for the message (DEBUG, INFO,
WARNING, ERROR, CRITICAL)
%(levelname)s Text logging level for the message ("DEBUG", "INFO",
"WARNING", "ERROR", "CRITICAL")
%(pathname)s Full pathname of the source file where the logging
call was issued (if available)
%(filename)s Filename portion of pathname
%(module)s Module (name portion of filename)
%(lineno)d Source line number where the logging call was issued
(if available)
%(funcName)s Function name
%(created)f Time when the LogRecord was created (time.time()
return value)
%(asctime)s Textual time when the LogRecord was created
%(msecs)d Millisecond portion of the creation time
%(relativeCreated)d Time in milliseconds when the LogRecord was created,
relative to the time the logging module was loaded
(typically at application startup time)
%(thread)d Thread ID (if available)
%(threadName)s Thread name (if available)
%(process)d Process ID (if available)
%(message)s The result of record.getMessage(), computed just as
the record is emitted
"""
converter = time.localtime
def __init__(self, fmt=None, datefmt=None, style='%'):
"""
Initialize the formatter with specified format strings.
Initialize the formatter either with the specified format string, or a
default as described above. Allow for specialized date formatting with
the optional datefmt argument. If datefmt is omitted, you get an
ISO8601-like (or RFC 3339-like) format.
Use a style parameter of '%', '{' or '$' to specify that you want to
use one of %-formatting, :meth:`str.format` (``{}``) formatting or
:class:`string.Template` formatting in your format string.
.. versionchanged:: 3.2
Added the ``style`` parameter.
"""
if style not in _STYLES:
raise ValueError('Style must be one of: %s' % ','.join(
_STYLES.keys()))
self._style = _STYLES[style][0](fmt)
self._fmt = self._style._fmt
self.datefmt = datefmt
default_time_format = '%Y-%m-%d %H:%M:%S'
default_msec_format = '%s,%03d'
def formatTime(self, record, datefmt=None):
"""
Return the creation time of the specified LogRecord as formatted text.
This method should be called from format() by a formatter which
wants to make use of a formatted time. This method can be overridden
in formatters to provide for any specific requirement, but the
basic behaviour is as follows: if datefmt (a string) is specified,
it is used with time.strftime() to format the creation time of the
record. Otherwise, an ISO8601-like (or RFC 3339-like) format is used.
The resulting string is returned. This function uses a user-configurable
function to convert the creation time to a tuple. By default,
time.localtime() is used; to change this for a particular formatter
instance, set the 'converter' attribute to a function with the same
signature as time.localtime() or time.gmtime(). To change it for all
formatters, for example if you want all logging times to be shown in GMT,
set the 'converter' attribute in the Formatter class.
"""
ct = self.converter(record.created)
if datefmt:
s = time.strftime(datefmt, ct)
else:
t = time.strftime(self.default_time_format, ct)
s = self.default_msec_format % (t, record.msecs)
return s
def formatException(self, ei):
"""
Format and return the specified exception information as a string.
This default implementation just uses
traceback.print_exception()
"""
sio = io.StringIO()
tb = ei[2]
# See issues #9427, #1553375. Commented out for now.
#if getattr(self, 'fullstack', False):
# traceback.print_stack(tb.tb_frame.f_back, file=sio)
traceback.print_exception(ei[0], ei[1], tb, None, sio)
s = sio.getvalue()
sio.close()
if s[-1:] == "\n":
s = s[:-1]
return s
def usesTime(self):
"""
Check if the format uses the creation time of the record.
"""
return self._style.usesTime()
def formatMessage(self, record):
return self._style.format(record)
def formatStack(self, stack_info):
"""
This method is provided as an extension point for specialized
formatting of stack information.
The input data is a string as returned from a call to
:func:`traceback.print_stack`, but with the last trailing newline
removed.
The base implementation just returns the value passed in.
"""
return stack_info
def format(self, record):
"""
Format the specified record as text.
The record's attribute dictionary is used as the operand to a
string formatting operation which yields the returned string.
Before formatting the dictionary, a couple of preparatory steps
are carried out. The message attribute of the record is computed
using LogRecord.getMessage(). If the formatting string uses the
time (as determined by a call to usesTime(), formatTime() is
called to format the event time. If there is exception information,
it is formatted using formatException() and appended to the message.
"""
record.message = record.getMessage()
if self.usesTime():
record.asctime = self.formatTime(record, self.datefmt)
s = self.formatMessage(record)
if record.exc_info:
# Cache the traceback text to avoid converting it multiple times
# (it's constant anyway)
if not record.exc_text:
record.exc_text = self.formatException(record.exc_info)
if record.exc_text:
if s[-1:] != "\n":
s = s + "\n"
s = s + record.exc_text
if record.stack_info:
if s[-1:] != "\n":
s = s + "\n"
s = s + self.formatStack(record.stack_info)
return s
#
# The default formatter to use when no other is specified
#
_defaultFormatter = Formatter()
class BufferingFormatter(object):
"""
A formatter suitable for formatting a number of records.
"""
def __init__(self, linefmt=None):
"""
Optionally specify a formatter which will be used to format each
individual record.
"""
if linefmt:
self.linefmt = linefmt
else:
self.linefmt = _defaultFormatter
def formatHeader(self, records):
"""
Return the header string for the specified records.
"""
return ""
def formatFooter(self, records):
"""
Return the footer string for the specified records.
"""
return ""
def format(self, records):
"""
Format the specified records and return the result as a string.
"""
rv = ""
if len(records) > 0:
rv = rv + self.formatHeader(records)
for record in records:
rv = rv + self.linefmt.format(record)
rv = rv + self.formatFooter(records)
return rv
#---------------------------------------------------------------------------
# Filter classes and functions
#---------------------------------------------------------------------------
class Filter(object):
"""
Filter instances are used to perform arbitrary filtering of LogRecords.
Loggers and Handlers can optionally use Filter instances to filter
records as desired. The base filter class only allows events which are
below a certain point in the logger hierarchy. For example, a filter
initialized with "A.B" will allow events logged by loggers "A.B",
"A.B.C", "A.B.C.D", "A.B.D" etc. but not "A.BB", "B.A.B" etc. If
initialized with the empty string, all events are passed.
"""
def __init__(self, name=''):
"""
Initialize a filter.
Initialize with the name of the logger which, together with its
children, will have its events allowed through the filter. If no
name is specified, allow every event.
"""
self.name = name
self.nlen = len(name)
def filter(self, record):
"""
Determine if the specified record is to be logged.
Is the specified record to be logged? Returns 0 for no, nonzero for
yes. If deemed appropriate, the record may be modified in-place.
"""
if self.nlen == 0:
return True
elif self.name == record.name:
return True
elif record.name.find(self.name, 0, self.nlen) != 0:
return False
return (record.name[self.nlen] == ".")
class Filterer(object):
"""
A base class for loggers and handlers which allows them to share
common code.
"""
def __init__(self):
"""
Initialize the list of filters to be an empty list.
"""
self.filters = []
def addFilter(self, filter):
"""
Add the specified filter to this handler.
"""
if not (filter in self.filters):
self.filters.append(filter)
def removeFilter(self, filter):
"""
Remove the specified filter from this handler.
"""
if filter in self.filters:
self.filters.remove(filter)
def filter(self, record):
"""
Determine if a record is loggable by consulting all the filters.
The default is to allow the record to be logged; any filter can veto
this and the record is then dropped. Returns a zero value if a record
is to be dropped, else non-zero.
.. versionchanged:: 3.2
Allow filters to be just callables.
"""
rv = True
for f in self.filters:
if hasattr(f, 'filter'):
result = f.filter(record)
else:
result = f(record) # assume callable - will raise if not
if not result:
rv = False
break
return rv
#---------------------------------------------------------------------------
# Handler classes and functions
#---------------------------------------------------------------------------
_handlers = weakref.WeakValueDictionary() #map of handler names to handlers
_handlerList = [] # added to allow handlers to be removed in reverse of order initialized
def _removeHandlerRef(wr):
"""
Remove a handler reference from the internal cleanup list.
"""
# This function can be called during module teardown, when globals are
# set to None. It can also be called from another thread. So we need to
# pre-emptively grab the necessary globals and check if they're None,
# to prevent race conditions and failures during interpreter shutdown.
acquire, release, handlers = _acquireLock, _releaseLock, _handlerList
if acquire and release and handlers:
acquire()
try:
if wr in handlers:
handlers.remove(wr)
finally:
release()
def _addHandlerRef(handler):
"""
Add a handler to the internal cleanup list using a weak reference.
"""
_acquireLock()
try:
_handlerList.append(weakref.ref(handler, _removeHandlerRef))
finally:
_releaseLock()
class Handler(Filterer):
"""
Handler instances dispatch logging events to specific destinations.
The base handler class. Acts as a placeholder which defines the Handler
interface. Handlers can optionally use Formatter instances to format
records as desired. By default, no formatter is specified; in this case,
the 'raw' message as determined by record.message is logged.
"""
def __init__(self, level=NOTSET):
"""
Initializes the instance - basically setting the formatter to None
and the filter list to empty.
"""
Filterer.__init__(self)
self._name = None
self.level = _checkLevel(level)
self.formatter = None
# Add the handler to the global _handlerList (for cleanup on shutdown)
_addHandlerRef(self)
self.createLock()
def get_name(self):
return self._name
def set_name(self, name):
_acquireLock()
try:
if self._name in _handlers:
del _handlers[self._name]
self._name = name
if name:
_handlers[name] = self
finally:
_releaseLock()
name = property(get_name, set_name)
def createLock(self):
"""
Acquire a thread lock for serializing access to the underlying I/O.
"""
if threading:
self.lock = threading.RLock()
else: #pragma: no cover
self.lock = None
def acquire(self):
"""
Acquire the I/O thread lock.
"""
if self.lock:
self.lock.acquire()
def release(self):
"""
Release the I/O thread lock.
"""
if self.lock:
self.lock.release()
def setLevel(self, level):
"""
Set the logging level of this handler. level must be an int or a str.
"""
self.level = _checkLevel(level)
def format(self, record):
"""
Format the specified record.
If a formatter is set, use it. Otherwise, use the default formatter
for the module.
"""
if self.formatter:
fmt = self.formatter
else:
fmt = _defaultFormatter
return fmt.format(record)
def emit(self, record):
"""
Do whatever it takes to actually log the specified logging record.
This version is intended to be implemented by subclasses and so
raises a NotImplementedError.
"""
raise NotImplementedError('emit must be implemented '
'by Handler subclasses')
def handle(self, record):
"""
Conditionally emit the specified logging record.
Emission depends on filters which may have been added to the handler.
Wrap the actual emission of the record with acquisition/release of
the I/O thread lock. Returns whether the filter passed the record for
emission.
"""
rv = self.filter(record)
if rv:
self.acquire()
try:
self.emit(record)
finally:
self.release()
return rv
def setFormatter(self, fmt):
"""
Set the formatter for this handler.
"""
self.formatter = fmt
def flush(self):
"""
Ensure all logging output has been flushed.
This version does nothing and is intended to be implemented by
subclasses.
"""
pass
def close(self):
"""
Tidy up any resources used by the handler.
This version removes the handler from an internal map of handlers,
_handlers, which is used for handler lookup by name. Subclasses
should ensure that this gets called from overridden close()
methods.
"""
#get the module data lock, as we're updating a shared structure.
_acquireLock()
try: #unlikely to raise an exception, but you never know...
if self._name and self._name in _handlers:
del _handlers[self._name]
finally:
_releaseLock()
def handleError(self, record):
"""
Handle errors which occur during an emit() call.
This method should be called from handlers when an exception is
encountered during an emit() call. If raiseExceptions is false,
exceptions get silently ignored. This is what is mostly wanted
for a logging system - most users will not care about errors in
the logging system, they are more interested in application errors.
You could, however, replace this with a custom handler if you wish.
The record which was being processed is passed in to this method.
"""
if raiseExceptions and sys.stderr: # see issue 13807
t, v, tb = sys.exc_info()
try:
sys.stderr.write('--- Logging error ---\n')
traceback.print_exception(t, v, tb, None, sys.stderr)
sys.stderr.write('Call stack:\n')
# Walk the stack frame up until we're out of logging,
# so as to print the calling context.
frame = tb.tb_frame
while (frame and os.path.dirname(frame.f_code.co_filename) ==
__path__[0]):
frame = frame.f_back
if frame:
traceback.print_stack(frame, file=sys.stderr)
else:
# couldn't find the right stack frame, for some reason
sys.stderr.write('Logged from file %s, line %s\n' % (
record.filename, record.lineno))
# Issue 18671: output logging message and arguments
try:
sys.stderr.write('Message: %r\n'
'Arguments: %s\n' % (record.msg,
record.args))
except Exception:
sys.stderr.write('Unable to print the message and arguments'
' - possible formatting error.\nUse the'
' traceback above to help find the error.\n'
)
except OSError: #pragma: no cover
pass # see issue 5971
finally:
del t, v, tb
def __repr__(self):
level = getLevelName(self.level)
return '<%s (%s)>' % (self.__class__.__name__, level)
class StreamHandler(Handler):
"""
A handler class which writes logging records, appropriately formatted,
to a stream. Note that this class does not close the stream, as
sys.stdout or sys.stderr may be used.
"""
terminator = '\n'
def __init__(self, stream=None):
"""
Initialize the handler.
If stream is not specified, sys.stderr is used.
"""
Handler.__init__(self)
if stream is None:
stream = sys.stderr
self.stream = stream
def flush(self):
"""
Flushes the stream.
"""
self.acquire()
try:
if self.stream and hasattr(self.stream, "flush"):
self.stream.flush()
finally:
self.release()
def emit(self, record):
"""
Emit a record.
If a formatter is specified, it is used to format the record.
The record is then written to the stream with a trailing newline. If
exception information is present, it is formatted using
traceback.print_exception and appended to the stream. If the stream
has an 'encoding' attribute, it is used to determine how to do the
output to the stream.
"""
try:
msg = self.format(record)
stream = self.stream
stream.write(msg)
stream.write(self.terminator)
self.flush()
except Exception:
self.handleError(record)
def __repr__(self):
level = getLevelName(self.level)
name = getattr(self.stream, 'name', '')
if name:
name += ' '
return '<%s %s(%s)>' % (self.__class__.__name__, name, level)
class FileHandler(StreamHandler):
"""
A handler class which writes formatted logging records to disk files.
"""
def __init__(self, filename, mode='a', encoding=None, delay=False):
"""
Open the specified file and use it as the stream for logging.
"""
# Issue #27493: add support for Path objects to be passed in
filename = os.fspath(filename)
#keep the absolute path, otherwise derived classes which use this
#may come a cropper when the current directory changes
self.baseFilename = os.path.abspath(filename)
self.mode = mode
self.encoding = encoding
self.delay = delay
if delay:
#We don't open the stream, but we still need to call the
#Handler constructor to set level, formatter, lock etc.
Handler.__init__(self)
self.stream = None
else:
StreamHandler.__init__(self, self._open())
def close(self):
"""
Closes the stream.
"""
self.acquire()
try:
try:
if self.stream:
try:
self.flush()
finally:
stream = self.stream
self.stream = None
if hasattr(stream, "close"):
stream.close()
finally:
# Issue #19523: call unconditionally to
# prevent a handler leak when delay is set
StreamHandler.close(self)
finally:
self.release()
def _open(self):
"""
Open the current base file with the (original) mode and encoding.
Return the resulting stream.
"""
return open(self.baseFilename, self.mode, encoding=self.encoding)
def emit(self, record):
"""
Emit a record.
If the stream was not opened because 'delay' was specified in the
constructor, open it before calling the superclass's emit.
"""
if self.stream is None:
self.stream = self._open()
StreamHandler.emit(self, record)
def __repr__(self):
level = getLevelName(self.level)
return '<%s %s (%s)>' % (self.__class__.__name__, self.baseFilename, level)
class _StderrHandler(StreamHandler):
"""
This class is like a StreamHandler using sys.stderr, but always uses
whatever sys.stderr is currently set to rather than the value of
sys.stderr at handler construction time.
"""
def __init__(self, level=NOTSET):
"""
Initialize the handler.
"""
Handler.__init__(self, level)
@property
def stream(self):
return sys.stderr
_defaultLastResort = _StderrHandler(WARNING)
lastResort = _defaultLastResort
#---------------------------------------------------------------------------
# Manager classes and functions
#---------------------------------------------------------------------------
class PlaceHolder(object):
"""
PlaceHolder instances are used in the Manager logger hierarchy to take
the place of nodes for which no loggers have been defined. This class is
intended for internal use only and not as part of the public API.
"""
def __init__(self, alogger):
"""
Initialize with the specified logger being a child of this placeholder.
"""
self.loggerMap = { alogger : None }
def append(self, alogger):
"""
Add the specified logger as a child of this placeholder.
"""
if alogger not in self.loggerMap:
self.loggerMap[alogger] = None
#
# Determine which class to use when instantiating loggers.
#
def setLoggerClass(klass):
"""
Set the class to be used when instantiating a logger. The class should
define __init__() such that only a name argument is required, and the
__init__() should call Logger.__init__()
"""
if klass != Logger:
if not issubclass(klass, Logger):
raise TypeError("logger not derived from logging.Logger: "
+ klass.__name__)
global _loggerClass
_loggerClass = klass
def getLoggerClass():
"""
Return the class to be used when instantiating a logger.
"""
return _loggerClass
class Manager(object):
"""
There is [under normal circumstances] just one Manager instance, which
holds the hierarchy of loggers.
"""
def __init__(self, rootnode):
"""
Initialize the manager with the root node of the logger hierarchy.
"""
self.root = rootnode
self.disable = 0
self.emittedNoHandlerWarning = False
self.loggerDict = {}
self.loggerClass = None
self.logRecordFactory = None
def getLogger(self, name):
"""
Get a logger with the specified name (channel name), creating it
if it doesn't yet exist. This name is a dot-separated hierarchical
name, such as "a", "a.b", "a.b.c" or similar.
If a PlaceHolder existed for the specified name [i.e. the logger
didn't exist but a child of it did], replace it with the created
logger and fix up the parent/child references which pointed to the
placeholder to now point to the logger.
"""
rv = None
if not isinstance(name, str):
raise TypeError('A logger name must be a string')
_acquireLock()
try:
if name in self.loggerDict:
rv = self.loggerDict[name]
if isinstance(rv, PlaceHolder):
ph = rv
rv = (self.loggerClass or _loggerClass)(name)
rv.manager = self
self.loggerDict[name] = rv
self._fixupChildren(ph, rv)
self._fixupParents(rv)
else:
rv = (self.loggerClass or _loggerClass)(name)
rv.manager = self
self.loggerDict[name] = rv
self._fixupParents(rv)
finally:
_releaseLock()
return rv
def setLoggerClass(self, klass):
"""
Set the class to be used when instantiating a logger with this Manager.
"""
if klass != Logger:
if not issubclass(klass, Logger):
raise TypeError("logger not derived from logging.Logger: "
+ klass.__name__)
self.loggerClass = klass
def setLogRecordFactory(self, factory):
"""
Set the factory to be used when instantiating a log record with this
Manager.
"""
self.logRecordFactory = factory
def _fixupParents(self, alogger):
"""
Ensure that there are either loggers or placeholders all the way
from the specified logger to the root of the logger hierarchy.
"""
name = alogger.name
i = name.rfind(".")
rv = None
while (i > 0) and not rv:
substr = name[:i]
if substr not in self.loggerDict:
self.loggerDict[substr] = PlaceHolder(alogger)
else:
obj = self.loggerDict[substr]
if isinstance(obj, Logger):
rv = obj
else:
assert isinstance(obj, PlaceHolder)
obj.append(alogger)
i = name.rfind(".", 0, i - 1)
if not rv:
rv = self.root
alogger.parent = rv
def _fixupChildren(self, ph, alogger):
"""
Ensure that children of the placeholder ph are connected to the
specified logger.
"""
name = alogger.name
namelen = len(name)
for c in ph.loggerMap.keys():
#The if means ... if not c.parent.name.startswith(nm)
if c.parent.name[:namelen] != name:
alogger.parent = c.parent
c.parent = alogger
#---------------------------------------------------------------------------
# Logger classes and functions
#---------------------------------------------------------------------------
class Logger(Filterer):
"""
Instances of the Logger class represent a single logging channel. A
"logging channel" indicates an area of an application. Exactly how an
"area" is defined is up to the application developer. Since an
application can have any number of areas, logging channels are identified
by a unique string. Application areas can be nested (e.g. an area
of "input processing" might include sub-areas "read CSV files", "read
XLS files" and "read Gnumeric files"). To cater for this natural nesting,
channel names are organized into a namespace hierarchy where levels are
separated by periods, much like the Java or Python package namespace. So
in the instance given above, channel names might be "input" for the upper
level, and "input.csv", "input.xls" and "input.gnu" for the sub-levels.
There is no arbitrary limit to the depth of nesting.
"""
def __init__(self, name, level=NOTSET):
"""
Initialize the logger with a name and an optional level.
"""
Filterer.__init__(self)
self.name = name
self.level = _checkLevel(level)
self.parent = None
self.propagate = True
self.handlers = []
self.disabled = False
def setLevel(self, level):
"""
Set the logging level of this logger. level must be an int or a str.
"""
self.level = _checkLevel(level)
def debug(self, msg, *args, **kwargs):
"""
Log 'msg % args' with severity 'DEBUG'.
To pass exception information, use the keyword argument exc_info with
a true value, e.g.
logger.debug("Houston, we have a %s", "thorny problem", exc_info=1)
"""
if self.isEnabledFor(DEBUG):
self._log(DEBUG, msg, args, **kwargs)
def info(self, msg, *args, **kwargs):
"""
Log 'msg % args' with severity 'INFO'.
To pass exception information, use the keyword argument exc_info with
a true value, e.g.
logger.info("Houston, we have a %s", "interesting problem", exc_info=1)
"""
if self.isEnabledFor(INFO):
self._log(INFO, msg, args, **kwargs)
def warning(self, msg, *args, **kwargs):
"""
Log 'msg % args' with severity 'WARNING'.
To pass exception information, use the keyword argument exc_info with
a true value, e.g.
logger.warning("Houston, we have a %s", "bit of a problem", exc_info=1)
"""
if self.isEnabledFor(WARNING):
self._log(WARNING, msg, args, **kwargs)
def warn(self, msg, *args, **kwargs):
warnings.warn("The 'warn' method is deprecated, "
"use 'warning' instead", DeprecationWarning, 2)
self.warning(msg, *args, **kwargs)
def error(self, msg, *args, **kwargs):
"""
Log 'msg % args' with severity 'ERROR'.
To pass exception information, use the keyword argument exc_info with
a true value, e.g.
logger.error("Houston, we have a %s", "major problem", exc_info=1)
"""
if self.isEnabledFor(ERROR):
self._log(ERROR, msg, args, **kwargs)
def exception(self, msg, *args, exc_info=True, **kwargs):
"""
Convenience method for logging an ERROR with exception information.
"""
self.error(msg, *args, exc_info=exc_info, **kwargs)
def critical(self, msg, *args, **kwargs):
"""
Log 'msg % args' with severity 'CRITICAL'.
To pass exception information, use the keyword argument exc_info with
a true value, e.g.
logger.critical("Houston, we have a %s", "major disaster", exc_info=1)
"""
if self.isEnabledFor(CRITICAL):
self._log(CRITICAL, msg, args, **kwargs)
fatal = critical
def log(self, level, msg, *args, **kwargs):
"""
Log 'msg % args' with the integer severity 'level'.
To pass exception information, use the keyword argument exc_info with
a true value, e.g.
logger.log(level, "We have a %s", "mysterious problem", exc_info=1)
"""
if not isinstance(level, int):
if raiseExceptions:
raise TypeError("level must be an integer")
else:
return
if self.isEnabledFor(level):
self._log(level, msg, args, **kwargs)
def findCaller(self, stack_info=False):
"""
Find the stack frame of the caller so that we can note the source
file name, line number and function name.
"""
f = currentframe()
#On some versions of IronPython, currentframe() returns None if
#IronPython isn't run with -X:Frames.
if f is not None:
f = f.f_back
rv = "(unknown file)", 0, "(unknown function)", None
while hasattr(f, "f_code"):
co = f.f_code
filename = os.path.normcase(co.co_filename)
if filename == _srcfile:
f = f.f_back
continue
sinfo = None
if stack_info:
sio = io.StringIO()
sio.write('Stack (most recent call last):\n')
traceback.print_stack(f, file=sio)
sinfo = sio.getvalue()
if sinfo[-1] == '\n':
sinfo = sinfo[:-1]
sio.close()
rv = (co.co_filename, f.f_lineno, co.co_name, sinfo)
break
return rv
def makeRecord(self, name, level, fn, lno, msg, args, exc_info,
func=None, extra=None, sinfo=None):
"""
A factory method which can be overridden in subclasses to create
specialized LogRecords.
"""
rv = _logRecordFactory(name, level, fn, lno, msg, args, exc_info, func,
sinfo)
if extra is not None:
for key in extra:
if (key in ["message", "asctime"]) or (key in rv.__dict__):
raise KeyError("Attempt to overwrite %r in LogRecord" % key)
rv.__dict__[key] = extra[key]
return rv
def _log(self, level, msg, args, exc_info=None, extra=None, stack_info=False):
"""
Low-level logging routine which creates a LogRecord and then calls
all the handlers of this logger to handle the record.
"""
sinfo = None
if _srcfile:
#IronPython doesn't track Python frames, so findCaller raises an
#exception on some versions of IronPython. We trap it here so that
#IronPython can use logging.
try:
fn, lno, func, sinfo = self.findCaller(stack_info)
except ValueError: # pragma: no cover
fn, lno, func = "(unknown file)", 0, "(unknown function)"
else: # pragma: no cover
fn, lno, func = "(unknown file)", 0, "(unknown function)"
if exc_info:
if isinstance(exc_info, BaseException):
exc_info = (type(exc_info), exc_info, exc_info.__traceback__)
elif not isinstance(exc_info, tuple):
exc_info = sys.exc_info()
record = self.makeRecord(self.name, level, fn, lno, msg, args,
exc_info, func, extra, sinfo)
self.handle(record)
def handle(self, record):
"""
Call the handlers for the specified record.
This method is used for unpickled records received from a socket, as
well as those created locally. Logger-level filtering is applied.
"""
if (not self.disabled) and self.filter(record):
self.callHandlers(record)
def addHandler(self, hdlr):
"""
Add the specified handler to this logger.
"""
_acquireLock()
try:
if not (hdlr in self.handlers):
self.handlers.append(hdlr)
finally:
_releaseLock()
def removeHandler(self, hdlr):
"""
Remove the specified handler from this logger.
"""
_acquireLock()
try:
if hdlr in self.handlers:
self.handlers.remove(hdlr)
finally:
_releaseLock()
def hasHandlers(self):
"""
See if this logger has any handlers configured.
Loop through all handlers for this logger and its parents in the
logger hierarchy. Return True if a handler was found, else False.
Stop searching up the hierarchy whenever a logger with the "propagate"
attribute set to zero is found - that will be the last logger which
is checked for the existence of handlers.
"""
c = self
rv = False
while c:
if c.handlers:
rv = True
break
if not c.propagate:
break
else:
c = c.parent
return rv
def callHandlers(self, record):
"""
Pass a record to all relevant handlers.
Loop through all handlers for this logger and its parents in the
logger hierarchy. If no handler was found, output a one-off error
message to sys.stderr. Stop searching up the hierarchy whenever a
logger with the "propagate" attribute set to zero is found - that
will be the last logger whose handlers are called.
"""
c = self
found = 0
while c:
for hdlr in c.handlers:
found = found + 1
if record.levelno >= hdlr.level:
hdlr.handle(record)
if not c.propagate:
c = None #break out
else:
c = c.parent
if (found == 0):
if lastResort:
if record.levelno >= lastResort.level:
lastResort.handle(record)
elif raiseExceptions and not self.manager.emittedNoHandlerWarning:
sys.stderr.write("No handlers could be found for logger"
" \"%s\"\n" % self.name)
self.manager.emittedNoHandlerWarning = True
def getEffectiveLevel(self):
"""
Get the effective level for this logger.
Loop through this logger and its parents in the logger hierarchy,
looking for a non-zero logging level. Return the first one found.
"""
logger = self
while logger:
if logger.level:
return logger.level
logger = logger.parent
return NOTSET
def isEnabledFor(self, level):
"""
Is this logger enabled for level 'level'?
"""
if self.manager.disable >= level:
return False
return level >= self.getEffectiveLevel()
def getChild(self, suffix):
"""
Get a logger which is a descendant to this one.
This is a convenience method, such that
logging.getLogger('abc').getChild('def.ghi')
is the same as
logging.getLogger('abc.def.ghi')
It's useful, for example, when the parent logger is named using
__name__ rather than a literal string.
"""
if self.root is not self:
suffix = '.'.join((self.name, suffix))
return self.manager.getLogger(suffix)
def __repr__(self):
level = getLevelName(self.getEffectiveLevel())
return '<%s %s (%s)>' % (self.__class__.__name__, self.name, level)
class RootLogger(Logger):
"""
A root logger is not that different to any other logger, except that
it must have a logging level and there is only one instance of it in
the hierarchy.
"""
def __init__(self, level):
"""
Initialize the logger with the name "root".
"""
Logger.__init__(self, "root", level)
_loggerClass = Logger
class LoggerAdapter(object):
"""
An adapter for loggers which makes it easier to specify contextual
information in logging output.
"""
def __init__(self, logger, extra):
"""
Initialize the adapter with a logger and a dict-like object which
provides contextual information. This constructor signature allows
easy stacking of LoggerAdapters, if so desired.
You can effectively pass keyword arguments as shown in the
following example:
adapter = LoggerAdapter(someLogger, dict(p1=v1, p2="v2"))
"""
self.logger = logger
self.extra = extra
def process(self, msg, kwargs):
"""
Process the logging message and keyword arguments passed in to
a logging call to insert contextual information. You can either
manipulate the message itself, the keyword args or both. Return
the message and kwargs modified (or not) to suit your needs.
Normally, you'll only need to override this one method in a
LoggerAdapter subclass for your specific needs.
"""
kwargs["extra"] = self.extra
return msg, kwargs
#
# Boilerplate convenience methods
#
def debug(self, msg, *args, **kwargs):
"""
Delegate a debug call to the underlying logger.
"""
self.log(DEBUG, msg, *args, **kwargs)
def info(self, msg, *args, **kwargs):
"""
Delegate an info call to the underlying logger.
"""
self.log(INFO, msg, *args, **kwargs)
def warning(self, msg, *args, **kwargs):
"""
Delegate a warning call to the underlying logger.
"""
self.log(WARNING, msg, *args, **kwargs)
def warn(self, msg, *args, **kwargs):
warnings.warn("The 'warn' method is deprecated, "
"use 'warning' instead", DeprecationWarning, 2)
self.warning(msg, *args, **kwargs)
def error(self, msg, *args, **kwargs):
"""
Delegate an error call to the underlying logger.
"""
self.log(ERROR, msg, *args, **kwargs)
def exception(self, msg, *args, exc_info=True, **kwargs):
"""
Delegate an exception call to the underlying logger.
"""
self.log(ERROR, msg, *args, exc_info=exc_info, **kwargs)
def critical(self, msg, *args, **kwargs):
"""
Delegate a critical call to the underlying logger.
"""
self.log(CRITICAL, msg, *args, **kwargs)
def log(self, level, msg, *args, **kwargs):
"""
Delegate a log call to the underlying logger, after adding
contextual information from this adapter instance.
"""
if self.isEnabledFor(level):
msg, kwargs = self.process(msg, kwargs)
self.logger.log(level, msg, *args, **kwargs)
def isEnabledFor(self, level):
"""
Is this logger enabled for level 'level'?
"""
if self.logger.manager.disable >= level:
return False
return level >= self.getEffectiveLevel()
def setLevel(self, level):
"""
Set the specified level on the underlying logger.
"""
self.logger.setLevel(level)
def getEffectiveLevel(self):
"""
Get the effective level for the underlying logger.
"""
return self.logger.getEffectiveLevel()
def hasHandlers(self):
"""
See if the underlying logger has any handlers.
"""
return self.logger.hasHandlers()
def _log(self, level, msg, args, exc_info=None, extra=None, stack_info=False):
"""
Low-level log implementation, proxied to allow nested logger adapters.
"""
return self.logger._log(
level,
msg,
args,
exc_info=exc_info,
extra=extra,
stack_info=stack_info,
)
@property
def manager(self):
return self.logger.manager
@manager.setter
def manager(self, value):
self.logger.manager = value
@property
def name(self):
return self.logger.name
def __repr__(self):
logger = self.logger
level = getLevelName(logger.getEffectiveLevel())
return '<%s %s (%s)>' % (self.__class__.__name__, logger.name, level)
root = RootLogger(WARNING)
Logger.root = root
Logger.manager = Manager(Logger.root)
#---------------------------------------------------------------------------
# Configuration classes and functions
#---------------------------------------------------------------------------
def basicConfig(**kwargs):
"""
Do basic configuration for the logging system.
This function does nothing if the root logger already has handlers
configured. It is a convenience method intended for use by simple scripts
to do one-shot configuration of the logging package.
The default behaviour is to create a StreamHandler which writes to
sys.stderr, set a formatter using the BASIC_FORMAT format string, and
add the handler to the root logger.
A number of optional keyword arguments may be specified, which can alter
the default behaviour.
filename Specifies that a FileHandler be created, using the specified
filename, rather than a StreamHandler.
filemode Specifies the mode to open the file, if filename is specified
(if filemode is unspecified, it defaults to 'a').
format Use the specified format string for the handler.
datefmt Use the specified date/time format.
style If a format string is specified, use this to specify the
type of format string (possible values '%', '{', '$', for
%-formatting, :meth:`str.format` and :class:`string.Template`
- defaults to '%').
level Set the root logger level to the specified level.
stream Use the specified stream to initialize the StreamHandler. Note
that this argument is incompatible with 'filename' - if both
are present, 'stream' is ignored.
handlers If specified, this should be an iterable of already created
handlers, which will be added to the root handler. Any handler
in the list which does not have a formatter assigned will be
assigned the formatter created in this function.
Note that you could specify a stream created using open(filename, mode)
rather than passing the filename and mode in. However, it should be
remembered that StreamHandler does not close its stream (since it may be
using sys.stdout or sys.stderr), whereas FileHandler closes its stream
when the handler is closed.
.. versionchanged:: 3.2
Added the ``style`` parameter.
.. versionchanged:: 3.3
Added the ``handlers`` parameter. A ``ValueError`` is now thrown for
incompatible arguments (e.g. ``handlers`` specified together with
``filename``/``filemode``, or ``filename``/``filemode`` specified
together with ``stream``, or ``handlers`` specified together with
``stream``.
"""
# Add thread safety in case someone mistakenly calls
# basicConfig() from multiple threads
_acquireLock()
try:
if len(root.handlers) == 0:
handlers = kwargs.pop("handlers", None)
if handlers is None:
if "stream" in kwargs and "filename" in kwargs:
raise ValueError("'stream' and 'filename' should not be "
"specified together")
else:
if "stream" in kwargs or "filename" in kwargs:
raise ValueError("'stream' or 'filename' should not be "
"specified together with 'handlers'")
if handlers is None:
filename = kwargs.pop("filename", None)
mode = kwargs.pop("filemode", 'a')
if filename:
h = FileHandler(filename, mode)
else:
stream = kwargs.pop("stream", None)
h = StreamHandler(stream)
handlers = [h]
dfs = kwargs.pop("datefmt", None)
style = kwargs.pop("style", '%')
if style not in _STYLES:
raise ValueError('Style must be one of: %s' % ','.join(
_STYLES.keys()))
fs = kwargs.pop("format", _STYLES[style][1])
fmt = Formatter(fs, dfs, style)
for h in handlers:
if h.formatter is None:
h.setFormatter(fmt)
root.addHandler(h)
level = kwargs.pop("level", None)
if level is not None:
root.setLevel(level)
if kwargs:
keys = ', '.join(kwargs.keys())
raise ValueError('Unrecognised argument(s): %s' % keys)
finally:
_releaseLock()
#---------------------------------------------------------------------------
# Utility functions at module level.
# Basically delegate everything to the root logger.
#---------------------------------------------------------------------------
def getLogger(name=None):
"""
Return a logger with the specified name, creating it if necessary.
If no name is specified, return the root logger.
"""
if name:
return Logger.manager.getLogger(name)
else:
return root
def critical(msg, *args, **kwargs):
"""
Log a message with severity 'CRITICAL' on the root logger. If the logger
has no handlers, call basicConfig() to add a console handler with a
pre-defined format.
"""
if len(root.handlers) == 0:
basicConfig()
root.critical(msg, *args, **kwargs)
fatal = critical
def error(msg, *args, **kwargs):
"""
Log a message with severity 'ERROR' on the root logger. If the logger has
no handlers, call basicConfig() to add a console handler with a pre-defined
format.
"""
if len(root.handlers) == 0:
basicConfig()
root.error(msg, *args, **kwargs)
def exception(msg, *args, exc_info=True, **kwargs):
"""
Log a message with severity 'ERROR' on the root logger, with exception
information. If the logger has no handlers, basicConfig() is called to add
a console handler with a pre-defined format.
"""
error(msg, *args, exc_info=exc_info, **kwargs)
def warning(msg, *args, **kwargs):
"""
Log a message with severity 'WARNING' on the root logger. If the logger has
no handlers, call basicConfig() to add a console handler with a pre-defined
format.
"""
if len(root.handlers) == 0:
basicConfig()
root.warning(msg, *args, **kwargs)
def warn(msg, *args, **kwargs):
warnings.warn("The 'warn' function is deprecated, "
"use 'warning' instead", DeprecationWarning, 2)
warning(msg, *args, **kwargs)
def info(msg, *args, **kwargs):
"""
Log a message with severity 'INFO' on the root logger. If the logger has
no handlers, call basicConfig() to add a console handler with a pre-defined
format.
"""
if len(root.handlers) == 0:
basicConfig()
root.info(msg, *args, **kwargs)
def debug(msg, *args, **kwargs):
"""
Log a message with severity 'DEBUG' on the root logger. If the logger has
no handlers, call basicConfig() to add a console handler with a pre-defined
format.
"""
if len(root.handlers) == 0:
basicConfig()
root.debug(msg, *args, **kwargs)
def log(level, msg, *args, **kwargs):
"""
Log 'msg % args' with the integer severity 'level' on the root logger. If
the logger has no handlers, call basicConfig() to add a console handler
with a pre-defined format.
"""
if len(root.handlers) == 0:
basicConfig()
root.log(level, msg, *args, **kwargs)
def disable(level):
"""
Disable all logging calls of severity 'level' and below.
"""
root.manager.disable = level
def shutdown(handlerList=_handlerList):
"""
Perform any cleanup actions in the logging system (e.g. flushing
buffers).
Should be called at application exit.
"""
for wr in reversed(handlerList[:]):
#errors might occur, for example, if files are locked
#we just ignore them if raiseExceptions is not set
try:
h = wr()
if h:
try:
h.acquire()
h.flush()
h.close()
except (OSError, ValueError):
# Ignore errors which might be caused
# because handlers have been closed but
# references to them are still around at
# application exit.
pass
finally:
h.release()
except: # ignore everything, as we're shutting down
if raiseExceptions:
raise
#else, swallow
#Let's try and shutdown automatically on application exit...
import atexit
atexit.register(shutdown)
# Null handler
class NullHandler(Handler):
"""
This handler does nothing. It's intended to be used to avoid the
"No handlers could be found for logger XXX" one-off warning. This is
important for library code, which may contain code to log events. If a user
of the library does not configure logging, the one-off warning might be
produced; to avoid this, the library developer simply needs to instantiate
a NullHandler and add it to the top-level logger of the library module or
package.
"""
def handle(self, record):
"""Stub."""
def emit(self, record):
"""Stub."""
def createLock(self):
self.lock = None
# Warnings integration
_warnings_showwarning = None
def _showwarning(message, category, filename, lineno, file=None, line=None):
"""
Implementation of showwarnings which redirects to logging, which will first
check to see if the file parameter is None. If a file is specified, it will
delegate to the original warnings implementation of showwarning. Otherwise,
it will call warnings.formatwarning and will log the resulting string to a
warnings logger named "py.warnings" with level logging.WARNING.
"""
if file is not None:
if _warnings_showwarning is not None:
_warnings_showwarning(message, category, filename, lineno, file, line)
else:
s = warnings.formatwarning(message, category, filename, lineno, line)
logger = getLogger("py.warnings")
if not logger.handlers:
logger.addHandler(NullHandler())
logger.warning("%s", s)
def captureWarnings(capture):
"""
If capture is true, redirect all warnings to the logging package.
If capture is False, ensure that warnings are not redirected to logging
but to their original destinations.
"""
global _warnings_showwarning
if capture:
if _warnings_showwarning is None:
_warnings_showwarning = warnings.showwarning
warnings.showwarning = _showwarning
else:
if _warnings_showwarning is not None:
warnings.showwarning = _warnings_showwarning
_warnings_showwarning = None
| 71,269 | 2,022 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/cellobject.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "third_party/python/Include/boolobject.h"
#include "third_party/python/Include/cellobject.h"
#include "third_party/python/Include/descrobject.h"
#include "third_party/python/Include/object.h"
#include "third_party/python/Include/objimpl.h"
/* clang-format off */
PyObject *
PyCell_New(PyObject *obj)
{
PyCellObject *op;
op = (PyCellObject *)PyObject_GC_New(PyCellObject, &PyCell_Type);
if (op == NULL)
return NULL;
op->ob_ref = obj;
Py_XINCREF(obj);
_PyObject_GC_TRACK(op);
return (PyObject *)op;
}
PyObject *
PyCell_Get(PyObject *op)
{
if (!PyCell_Check(op)) {
PyErr_BadInternalCall();
return NULL;
}
Py_XINCREF(((PyCellObject*)op)->ob_ref);
return PyCell_GET(op);
}
int
PyCell_Set(PyObject *op, PyObject *obj)
{
PyObject* oldobj;
if (!PyCell_Check(op)) {
PyErr_BadInternalCall();
return -1;
}
oldobj = PyCell_GET(op);
Py_XINCREF(obj);
PyCell_SET(op, obj);
Py_XDECREF(oldobj);
return 0;
}
static void
cell_dealloc(PyCellObject *op)
{
_PyObject_GC_UNTRACK(op);
Py_XDECREF(op->ob_ref);
PyObject_GC_Del(op);
}
#define TEST_COND(cond) ((cond) ? Py_True : Py_False)
static PyObject *
cell_richcompare(PyObject *a, PyObject *b, int op)
{
int result;
PyObject *v;
/* neither argument should be NULL, unless something's gone wrong */
assert(a != NULL && b != NULL);
/* both arguments should be instances of PyCellObject */
if (!PyCell_Check(a) || !PyCell_Check(b)) {
v = Py_NotImplemented;
Py_INCREF(v);
return v;
}
/* compare cells by contents; empty cells come before anything else */
a = ((PyCellObject *)a)->ob_ref;
b = ((PyCellObject *)b)->ob_ref;
if (a != NULL && b != NULL)
return PyObject_RichCompare(a, b, op);
result = (b == NULL) - (a == NULL);
switch (op) {
case Py_EQ:
v = TEST_COND(result == 0);
break;
case Py_NE:
v = TEST_COND(result != 0);
break;
case Py_LE:
v = TEST_COND(result <= 0);
break;
case Py_GE:
v = TEST_COND(result >= 0);
break;
case Py_LT:
v = TEST_COND(result < 0);
break;
case Py_GT:
v = TEST_COND(result > 0);
break;
default:
PyErr_BadArgument();
return NULL;
}
Py_INCREF(v);
return v;
}
static PyObject *
cell_repr(PyCellObject *op)
{
if (op->ob_ref == NULL)
return PyUnicode_FromFormat("<cell at %p: empty>", op);
return PyUnicode_FromFormat("<cell at %p: %.80s object at %p>",
op, op->ob_ref->ob_type->tp_name,
op->ob_ref);
}
static int
cell_traverse(PyCellObject *op, visitproc visit, void *arg)
{
Py_VISIT(op->ob_ref);
return 0;
}
static int
cell_clear(PyCellObject *op)
{
Py_CLEAR(op->ob_ref);
return 0;
}
static PyObject *
cell_get_contents(PyCellObject *op, void *closure)
{
if (op->ob_ref == NULL)
{
PyErr_SetString(PyExc_ValueError, "Cell is empty");
return NULL;
}
Py_INCREF(op->ob_ref);
return op->ob_ref;
}
static PyGetSetDef cell_getsetlist[] = {
{"cell_contents", (getter)cell_get_contents, NULL},
{NULL} /* sentinel */
};
PyTypeObject PyCell_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"cell",
sizeof(PyCellObject),
0,
(destructor)cell_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)cell_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, /* tp_flags */
0, /* tp_doc */
(traverseproc)cell_traverse, /* tp_traverse */
(inquiry)cell_clear, /* tp_clear */
cell_richcompare, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
0, /* tp_methods */
0, /* tp_members */
cell_getsetlist, /* tp_getset */
};
| 5,920 | 189 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/capsule.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "third_party/python/Include/import.h"
#include "third_party/python/Include/object.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/pycapsule.h"
#include "third_party/python/Include/pyerrors.h"
#include "third_party/python/Include/pymacro.h"
/* clang-format off */
/* Wrap void * pointers to be passed between C modules */
/* Internal structure of PyCapsule */
typedef struct {
PyObject_HEAD
void *pointer;
const char *name;
void *context;
PyCapsule_Destructor destructor;
} PyCapsule;
static int
_is_legal_capsule(PyCapsule *capsule, const char *invalid_capsule)
{
if (!capsule || !PyCapsule_CheckExact(capsule) || capsule->pointer == NULL) {
PyErr_SetString(PyExc_ValueError, invalid_capsule);
return 0;
}
return 1;
}
#define is_legal_capsule(capsule, name) \
(_is_legal_capsule(capsule, \
name " called with invalid PyCapsule object"))
static int
name_matches(const char *name1, const char *name2) {
/* if either is NULL, */
if (!name1 || !name2) {
/* they're only the same if they're both NULL. */
return name1 == name2;
}
return !strcmp(name1, name2);
}
PyObject *
PyCapsule_New(void *pointer, const char *name, PyCapsule_Destructor destructor)
{
PyCapsule *capsule;
if (!pointer) {
PyErr_SetString(PyExc_ValueError, "PyCapsule_New called with null pointer");
return NULL;
}
capsule = PyObject_NEW(PyCapsule, &PyCapsule_Type);
if (capsule == NULL) {
return NULL;
}
capsule->pointer = pointer;
capsule->name = name;
capsule->context = NULL;
capsule->destructor = destructor;
return (PyObject *)capsule;
}
int
PyCapsule_IsValid(PyObject *o, const char *name)
{
PyCapsule *capsule = (PyCapsule *)o;
return (capsule != NULL &&
PyCapsule_CheckExact(capsule) &&
capsule->pointer != NULL &&
name_matches(capsule->name, name));
}
void *
PyCapsule_GetPointer(PyObject *o, const char *name)
{
PyCapsule *capsule = (PyCapsule *)o;
if (!is_legal_capsule(capsule, "PyCapsule_GetPointer")) {
return NULL;
}
if (!name_matches(name, capsule->name)) {
PyErr_SetString(PyExc_ValueError, "PyCapsule_GetPointer called with incorrect name");
return NULL;
}
return capsule->pointer;
}
const char *
PyCapsule_GetName(PyObject *o)
{
PyCapsule *capsule = (PyCapsule *)o;
if (!is_legal_capsule(capsule, "PyCapsule_GetName")) {
return NULL;
}
return capsule->name;
}
PyCapsule_Destructor
PyCapsule_GetDestructor(PyObject *o)
{
PyCapsule *capsule = (PyCapsule *)o;
if (!is_legal_capsule(capsule, "PyCapsule_GetDestructor")) {
return NULL;
}
return capsule->destructor;
}
void *
PyCapsule_GetContext(PyObject *o)
{
PyCapsule *capsule = (PyCapsule *)o;
if (!is_legal_capsule(capsule, "PyCapsule_GetContext")) {
return NULL;
}
return capsule->context;
}
int
PyCapsule_SetPointer(PyObject *o, void *pointer)
{
PyCapsule *capsule = (PyCapsule *)o;
if (!pointer) {
PyErr_SetString(PyExc_ValueError, "PyCapsule_SetPointer called with null pointer");
return -1;
}
if (!is_legal_capsule(capsule, "PyCapsule_SetPointer")) {
return -1;
}
capsule->pointer = pointer;
return 0;
}
int
PyCapsule_SetName(PyObject *o, const char *name)
{
PyCapsule *capsule = (PyCapsule *)o;
if (!is_legal_capsule(capsule, "PyCapsule_SetName")) {
return -1;
}
capsule->name = name;
return 0;
}
int
PyCapsule_SetDestructor(PyObject *o, PyCapsule_Destructor destructor)
{
PyCapsule *capsule = (PyCapsule *)o;
if (!is_legal_capsule(capsule, "PyCapsule_SetDestructor")) {
return -1;
}
capsule->destructor = destructor;
return 0;
}
int
PyCapsule_SetContext(PyObject *o, void *context)
{
PyCapsule *capsule = (PyCapsule *)o;
if (!is_legal_capsule(capsule, "PyCapsule_SetContext")) {
return -1;
}
capsule->context = context;
return 0;
}
void *
PyCapsule_Import(const char *name, int no_block)
{
PyObject *object = NULL;
void *return_value = NULL;
char *trace;
size_t name_length = (strlen(name) + 1) * sizeof(char);
char *name_dup = (char *)PyMem_MALLOC(name_length);
if (!name_dup) {
return PyErr_NoMemory();
}
memcpy(name_dup, name, name_length);
trace = name_dup;
while (trace) {
char *dot = strchr(trace, '.');
if (dot) {
*dot++ = '\0';
}
if (object == NULL) {
if (no_block) {
object = PyImport_ImportModuleNoBlock(trace);
} else {
object = PyImport_ImportModule(trace);
if (!object) {
PyErr_Format(PyExc_ImportError, "PyCapsule_Import could not import module \"%s\"", trace);
}
}
} else {
PyObject *object2 = PyObject_GetAttrString(object, trace);
Py_DECREF(object);
object = object2;
}
if (!object) {
goto EXIT;
}
trace = dot;
}
/* compare attribute name to module.name by hand */
if (PyCapsule_IsValid(object, name)) {
PyCapsule *capsule = (PyCapsule *)object;
return_value = capsule->pointer;
} else {
PyErr_Format(PyExc_AttributeError,
"PyCapsule_Import \"%s\" is not valid",
name);
}
EXIT:
Py_XDECREF(object);
if (name_dup) {
PyMem_FREE(name_dup);
}
return return_value;
}
static void
capsule_dealloc(PyObject *o)
{
PyCapsule *capsule = (PyCapsule *)o;
if (capsule->destructor) {
capsule->destructor(o);
}
PyObject_DEL(o);
}
static PyObject *
capsule_repr(PyObject *o)
{
PyCapsule *capsule = (PyCapsule *)o;
const char *name;
const char *quote;
if (capsule->name) {
quote = "\"";
name = capsule->name;
} else {
quote = "";
name = "NULL";
}
return PyUnicode_FromFormat("<capsule object %s%s%s at %p>",
quote, name, quote, capsule);
}
PyDoc_STRVAR(PyCapsule_Type__doc__,
"Capsule objects let you wrap a C \"void *\" pointer in a Python\n\
object. They're a way of passing data through the Python interpreter\n\
without creating your own custom type.\n\
\n\
Capsules are used for communication between extension modules.\n\
They provide a way for an extension module to export a C interface\n\
to other extension modules, so that extension modules can use the\n\
Python import mechanism to link to one another.\n\
");
PyTypeObject PyCapsule_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"PyCapsule", /*tp_name*/
sizeof(PyCapsule), /*tp_basicsize*/
0, /*tp_itemsize*/
/* methods */
capsule_dealloc, /*tp_dealloc*/
0, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
0, /*tp_reserved*/
capsule_repr, /*tp_repr*/
0, /*tp_as_number*/
0, /*tp_as_sequence*/
0, /*tp_as_mapping*/
0, /*tp_hash*/
0, /*tp_call*/
0, /*tp_str*/
0, /*tp_getattro*/
0, /*tp_setattro*/
0, /*tp_as_buffer*/
0, /*tp_flags*/
PyCapsule_Type__doc__ /*tp_doc*/
};
| 8,541 | 337 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/sliceobject.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/boolobject.h"
#include "third_party/python/Include/ceval.h"
#include "third_party/python/Include/dictobject.h"
#include "third_party/python/Include/longobject.h"
#include "third_party/python/Include/methodobject.h"
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/pyerrors.h"
#include "third_party/python/Include/sliceobject.h"
#include "third_party/python/Include/structmember.h"
#include "third_party/python/Include/tupleobject.h"
#include "third_party/python/Include/unicodeobject.h"
/* clang-format off */
/*
Written by Jim Hugunin and Chris Chase.
This includes both the singular ellipsis object and slice objects.
Guido, feel free to do whatever you want in the way of copyrights
for this file.
*/
/*
Py_Ellipsis encodes the '...' rubber index token. It is similar to
the Py_NoneStruct in that there is no way to create other objects of
this type and there is exactly one in existence.
*/
static PyObject *
ellipsis_new(PyTypeObject *type, PyObject *args, PyObject *kwargs)
{
if (PyTuple_GET_SIZE(args) || (kwargs && PyDict_Size(kwargs))) {
PyErr_SetString(PyExc_TypeError, "EllipsisType takes no arguments");
return NULL;
}
Py_INCREF(Py_Ellipsis);
return Py_Ellipsis;
}
static PyObject *
ellipsis_repr(PyObject *op)
{
return PyUnicode_FromString("Ellipsis");
}
static PyObject *
ellipsis_reduce(PyObject *op)
{
return PyUnicode_FromString("Ellipsis");
}
static PyMethodDef ellipsis_methods[] = {
{"__reduce__", (PyCFunction)ellipsis_reduce, METH_NOARGS, NULL},
{NULL, NULL}
};
PyTypeObject PyEllipsis_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"ellipsis", /* tp_name */
0, /* tp_basicsize */
0, /* tp_itemsize */
0, /*never called*/ /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
ellipsis_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT, /* tp_flags */
0, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
ellipsis_methods, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
ellipsis_new, /* tp_new */
};
PyObject _Py_EllipsisObject = {
_PyObject_EXTRA_INIT
1, &PyEllipsis_Type
};
/* Slice object implementation */
/* Using a cache is very effective since typically only a single slice is
* created and then deleted again
*/
static PySliceObject *slice_cache = NULL;
void PySlice_Fini(void)
{
PySliceObject *obj = slice_cache;
if (obj != NULL) {
slice_cache = NULL;
PyObject_GC_Del(obj);
}
}
/* start, stop, and step are python objects with None indicating no
index is present.
*/
PyObject *
PySlice_New(PyObject *start, PyObject *stop, PyObject *step)
{
PySliceObject *obj;
if (slice_cache != NULL) {
obj = slice_cache;
slice_cache = NULL;
_Py_NewReference((PyObject *)obj);
} else {
obj = PyObject_GC_New(PySliceObject, &PySlice_Type);
if (obj == NULL)
return NULL;
}
if (step == NULL) step = Py_None;
Py_INCREF(step);
if (start == NULL) start = Py_None;
Py_INCREF(start);
if (stop == NULL) stop = Py_None;
Py_INCREF(stop);
obj->step = step;
obj->start = start;
obj->stop = stop;
_PyObject_GC_TRACK(obj);
return (PyObject *) obj;
}
PyObject *
_PySlice_FromIndices(Py_ssize_t istart, Py_ssize_t istop)
{
PyObject *start, *end, *slice;
start = PyLong_FromSsize_t(istart);
if (!start)
return NULL;
end = PyLong_FromSsize_t(istop);
if (!end) {
Py_DECREF(start);
return NULL;
}
slice = PySlice_New(start, end, NULL);
Py_DECREF(start);
Py_DECREF(end);
return slice;
}
int
PySlice_GetIndices(PyObject *_r, Py_ssize_t length,
Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t *step)
{
PySliceObject *r = (PySliceObject*)_r;
/* XXX support long ints */
if (r->step == Py_None) {
*step = 1;
} else {
if (!PyLong_Check(r->step)) return -1;
*step = PyLong_AsSsize_t(r->step);
}
if (r->start == Py_None) {
*start = *step < 0 ? length-1 : 0;
} else {
if (!PyLong_Check(r->start)) return -1;
*start = PyLong_AsSsize_t(r->start);
if (*start < 0) *start += length;
}
if (r->stop == Py_None) {
*stop = *step < 0 ? -1 : length;
} else {
if (!PyLong_Check(r->stop)) return -1;
*stop = PyLong_AsSsize_t(r->stop);
if (*stop < 0) *stop += length;
}
if (*stop > length) return -1;
if (*start >= length) return -1;
if (*step == 0) return -1;
return 0;
}
int
PySlice_Unpack(PyObject *_r,
Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t *step)
{
PySliceObject *r = (PySliceObject*)_r;
/* this is harder to get right than you might think */
Py_BUILD_ASSERT(PY_SSIZE_T_MIN + 1 <= -PY_SSIZE_T_MAX);
if (r->step == Py_None) {
*step = 1;
}
else {
if (!_PyEval_SliceIndex(r->step, step)) return -1;
if (*step == 0) {
PyErr_SetString(PyExc_ValueError,
"slice step cannot be zero");
return -1;
}
/* Here *step might be -PY_SSIZE_T_MAX-1; in this case we replace it
* with -PY_SSIZE_T_MAX. This doesn't affect the semantics, and it
* guards against later undefined behaviour resulting from code that
* does "step = -step" as part of a slice reversal.
*/
if (*step < -PY_SSIZE_T_MAX)
*step = -PY_SSIZE_T_MAX;
}
if (r->start == Py_None) {
*start = *step < 0 ? PY_SSIZE_T_MAX : 0;
}
else {
if (!_PyEval_SliceIndex(r->start, start)) return -1;
}
if (r->stop == Py_None) {
*stop = *step < 0 ? PY_SSIZE_T_MIN : PY_SSIZE_T_MAX;
}
else {
if (!_PyEval_SliceIndex(r->stop, stop)) return -1;
}
return 0;
}
Py_ssize_t
PySlice_AdjustIndices(Py_ssize_t length,
Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t step)
{
/* this is harder to get right than you might think */
assert(step != 0);
assert(step >= -PY_SSIZE_T_MAX);
if (*start < 0) {
*start += length;
if (*start < 0) {
*start = (step < 0) ? -1 : 0;
}
}
else if (*start >= length) {
*start = (step < 0) ? length - 1 : length;
}
if (*stop < 0) {
*stop += length;
if (*stop < 0) {
*stop = (step < 0) ? -1 : 0;
}
}
else if (*stop >= length) {
*stop = (step < 0) ? length - 1 : length;
}
if (step < 0) {
if (*stop < *start) {
return (*start - *stop - 1) / (-step) + 1;
}
}
else {
if (*start < *stop) {
return (*stop - *start - 1) / step + 1;
}
}
return 0;
}
#undef PySlice_GetIndicesEx
int
PySlice_GetIndicesEx(PyObject *_r, Py_ssize_t length,
Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t *step,
Py_ssize_t *slicelength)
{
if (PySlice_Unpack(_r, start, stop, step) < 0)
return -1;
*slicelength = PySlice_AdjustIndices(length, start, stop, *step);
return 0;
}
static PyObject *
slice_new(PyTypeObject *type, PyObject *args, PyObject *kw)
{
PyObject *start, *stop, *step;
start = stop = step = NULL;
if (!_PyArg_NoKeywords("slice()", kw))
return NULL;
if (!PyArg_UnpackTuple(args, "slice", 1, 3, &start, &stop, &step))
return NULL;
/* This swapping of stop and start is to maintain similarity with
range(). */
if (stop == NULL) {
stop = start;
start = NULL;
}
return PySlice_New(start, stop, step);
}
PyDoc_STRVAR(slice_doc,
"slice(stop)\n\
slice(start, stop[, step])\n\
\n\
Create a slice object. This is used for extended slicing (e.g. a[0:10:2]).");
static void
slice_dealloc(PySliceObject *r)
{
_PyObject_GC_UNTRACK(r);
Py_DECREF(r->step);
Py_DECREF(r->start);
Py_DECREF(r->stop);
if (slice_cache == NULL)
slice_cache = r;
else
PyObject_GC_Del(r);
}
static PyObject *
slice_repr(PySliceObject *r)
{
return PyUnicode_FromFormat("slice(%R, %R, %R)", r->start, r->stop, r->step);
}
static PyMemberDef slice_members[] = {
{"start", T_OBJECT, offsetof(PySliceObject, start), READONLY},
{"stop", T_OBJECT, offsetof(PySliceObject, stop), READONLY},
{"step", T_OBJECT, offsetof(PySliceObject, step), READONLY},
{0}
};
/* Helper function to convert a slice argument to a PyLong, and raise TypeError
with a suitable message on failure. */
static PyObject*
evaluate_slice_index(PyObject *v)
{
if (PyIndex_Check(v)) {
return PyNumber_Index(v);
}
else {
PyErr_SetString(PyExc_TypeError,
"slice indices must be integers or "
"None or have an __index__ method");
return NULL;
}
}
/* Compute slice indices given a slice and length. Return -1 on failure. Used
by slice.indices and rangeobject slicing. Assumes that `len` is a
nonnegative instance of PyLong. */
int
_PySlice_GetLongIndices(PySliceObject *self, PyObject *length,
PyObject **start_ptr, PyObject **stop_ptr,
PyObject **step_ptr)
{
PyObject *start=NULL, *stop=NULL, *step=NULL;
PyObject *upper=NULL, *lower=NULL;
int step_is_negative, cmp_result;
/* Convert step to an integer; raise for zero step. */
if (self->step == Py_None) {
step = PyLong_FromLong(1L);
if (step == NULL)
goto error;
step_is_negative = 0;
}
else {
int step_sign;
step = evaluate_slice_index(self->step);
if (step == NULL)
goto error;
step_sign = _PyLong_Sign(step);
if (step_sign == 0) {
PyErr_SetString(PyExc_ValueError,
"slice step cannot be zero");
goto error;
}
step_is_negative = step_sign < 0;
}
/* Find lower and upper bounds for start and stop. */
if (step_is_negative) {
lower = PyLong_FromLong(-1L);
if (lower == NULL)
goto error;
upper = PyNumber_Add(length, lower);
if (upper == NULL)
goto error;
}
else {
lower = PyLong_FromLong(0L);
if (lower == NULL)
goto error;
upper = length;
Py_INCREF(upper);
}
/* Compute start. */
if (self->start == Py_None) {
start = step_is_negative ? upper : lower;
Py_INCREF(start);
}
else {
start = evaluate_slice_index(self->start);
if (start == NULL)
goto error;
if (_PyLong_Sign(start) < 0) {
/* start += length */
PyObject *tmp = PyNumber_Add(start, length);
Py_DECREF(start);
start = tmp;
if (start == NULL)
goto error;
cmp_result = PyObject_RichCompareBool(start, lower, Py_LT);
if (cmp_result < 0)
goto error;
if (cmp_result) {
Py_INCREF(lower);
Py_DECREF(start);
start = lower;
}
}
else {
cmp_result = PyObject_RichCompareBool(start, upper, Py_GT);
if (cmp_result < 0)
goto error;
if (cmp_result) {
Py_INCREF(upper);
Py_DECREF(start);
start = upper;
}
}
}
/* Compute stop. */
if (self->stop == Py_None) {
stop = step_is_negative ? lower : upper;
Py_INCREF(stop);
}
else {
stop = evaluate_slice_index(self->stop);
if (stop == NULL)
goto error;
if (_PyLong_Sign(stop) < 0) {
/* stop += length */
PyObject *tmp = PyNumber_Add(stop, length);
Py_DECREF(stop);
stop = tmp;
if (stop == NULL)
goto error;
cmp_result = PyObject_RichCompareBool(stop, lower, Py_LT);
if (cmp_result < 0)
goto error;
if (cmp_result) {
Py_INCREF(lower);
Py_DECREF(stop);
stop = lower;
}
}
else {
cmp_result = PyObject_RichCompareBool(stop, upper, Py_GT);
if (cmp_result < 0)
goto error;
if (cmp_result) {
Py_INCREF(upper);
Py_DECREF(stop);
stop = upper;
}
}
}
*start_ptr = start;
*stop_ptr = stop;
*step_ptr = step;
Py_DECREF(upper);
Py_DECREF(lower);
return 0;
error:
*start_ptr = *stop_ptr = *step_ptr = NULL;
Py_XDECREF(start);
Py_XDECREF(stop);
Py_XDECREF(step);
Py_XDECREF(upper);
Py_XDECREF(lower);
return -1;
}
/* Implementation of slice.indices. */
static PyObject*
slice_indices(PySliceObject* self, PyObject* len)
{
PyObject *start, *stop, *step;
PyObject *length;
int error;
/* Convert length to an integer if necessary; raise for negative length. */
length = PyNumber_Index(len);
if (length == NULL)
return NULL;
if (_PyLong_Sign(length) < 0) {
PyErr_SetString(PyExc_ValueError,
"length should not be negative");
Py_DECREF(length);
return NULL;
}
error = _PySlice_GetLongIndices(self, length, &start, &stop, &step);
Py_DECREF(length);
if (error == -1)
return NULL;
else
return Py_BuildValue("(NNN)", start, stop, step);
}
PyDoc_STRVAR(slice_indices_doc,
"S.indices(len) -> (start, stop, stride)\n\
\n\
Assuming a sequence of length len, calculate the start and stop\n\
indices, and the stride length of the extended slice described by\n\
S. Out of bounds indices are clipped in a manner consistent with the\n\
handling of normal slices.");
static PyObject *
slice_reduce(PySliceObject* self)
{
return Py_BuildValue("O(OOO)", Py_TYPE(self), self->start, self->stop, self->step);
}
PyDoc_STRVAR(reduce_doc, "Return state information for pickling.");
static PyMethodDef slice_methods[] = {
{"indices", (PyCFunction)slice_indices,
METH_O, slice_indices_doc},
{"__reduce__", (PyCFunction)slice_reduce,
METH_NOARGS, reduce_doc},
{NULL, NULL}
};
static PyObject *
slice_richcompare(PyObject *v, PyObject *w, int op)
{
PyObject *t1;
PyObject *t2;
PyObject *res;
if (!PySlice_Check(v) || !PySlice_Check(w))
Py_RETURN_NOTIMPLEMENTED;
if (v == w) {
/* XXX Do we really need this shortcut?
There's a unit test for it, but is that fair? */
switch (op) {
case Py_EQ:
case Py_LE:
case Py_GE:
res = Py_True;
break;
default:
res = Py_False;
break;
}
Py_INCREF(res);
return res;
}
t1 = PyTuple_New(3);
if (t1 == NULL)
return NULL;
t2 = PyTuple_New(3);
if (t2 == NULL) {
Py_DECREF(t1);
return NULL;
}
PyTuple_SET_ITEM(t1, 0, ((PySliceObject *)v)->start);
PyTuple_SET_ITEM(t1, 1, ((PySliceObject *)v)->stop);
PyTuple_SET_ITEM(t1, 2, ((PySliceObject *)v)->step);
PyTuple_SET_ITEM(t2, 0, ((PySliceObject *)w)->start);
PyTuple_SET_ITEM(t2, 1, ((PySliceObject *)w)->stop);
PyTuple_SET_ITEM(t2, 2, ((PySliceObject *)w)->step);
res = PyObject_RichCompare(t1, t2, op);
PyTuple_SET_ITEM(t1, 0, NULL);
PyTuple_SET_ITEM(t1, 1, NULL);
PyTuple_SET_ITEM(t1, 2, NULL);
PyTuple_SET_ITEM(t2, 0, NULL);
PyTuple_SET_ITEM(t2, 1, NULL);
PyTuple_SET_ITEM(t2, 2, NULL);
Py_DECREF(t1);
Py_DECREF(t2);
return res;
}
static int
slice_traverse(PySliceObject *v, visitproc visit, void *arg)
{
Py_VISIT(v->start);
Py_VISIT(v->stop);
Py_VISIT(v->step);
return 0;
}
PyTypeObject PySlice_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"slice", /* Name of this type */
sizeof(PySliceObject), /* Basic object size */
0, /* Item size for varobject */
(destructor)slice_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)slice_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
PyObject_HashNotImplemented, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, /* tp_flags */
slice_doc, /* tp_doc */
(traverseproc)slice_traverse, /* tp_traverse */
0, /* tp_clear */
slice_richcompare, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
slice_methods, /* tp_methods */
slice_members, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
slice_new, /* tp_new */
};
| 21,135 | 690 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/typeslots.py | #!/usr/bin/python
# Usage: typeslots.py < Include/typeslots.h typeslots.inc
import sys, re
def generate_typeslots(out=sys.stdout):
out.write("/* Generated by typeslots.py */\n")
res = {}
for line in sys.stdin:
m = re.match("#define Py_([a-z_]+) ([0-9]+)", line)
if not m:
continue
member = m.group(1)
if member.startswith("tp_"):
member = "ht_type."+member
elif member.startswith("am_"):
member = "as_async."+member
elif member.startswith("nb_"):
member = "as_number."+member
elif member.startswith("mp_"):
member = "as_mapping."+member
elif member.startswith("sq_"):
member = "as_sequence."+member
elif member.startswith("bf_"):
member = "as_buffer."+member
res[int(m.group(2))] = member
M = max(res.keys())+1
for i in range(1,M):
if i in res:
out.write("offsetof(PyHeapTypeObject, %s),\n" % res[i])
else:
out.write("0,\n")
def main():
if len(sys.argv) == 2:
with open(sys.argv[1], "w") as f:
generate_typeslots(f)
else:
generate_typeslots()
if __name__ == "__main__":
main()
| 1,246 | 44 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/structseq.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/dictobject.h"
#include "third_party/python/Include/longobject.h"
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/structmember.h"
#include "third_party/python/Include/structseq.h"
/* clang-format off */
/* Implementation helper: a struct that looks like a tuple. See timemodule
and posixmodule for example uses. */
static const char visible_length_key[] = "n_sequence_fields";
static const char real_length_key[] = "n_fields";
static const char unnamed_fields_key[] = "n_unnamed_fields";
/* Fields with this name have only a field index, not a field name.
They are only allowed for indices < n_visible_fields. */
char *PyStructSequence_UnnamedField = "unnamed field";
_Py_IDENTIFIER(n_sequence_fields);
_Py_IDENTIFIER(n_fields);
_Py_IDENTIFIER(n_unnamed_fields);
#define VISIBLE_SIZE(op) Py_SIZE(op)
#define VISIBLE_SIZE_TP(tp) PyLong_AsSsize_t( \
_PyDict_GetItemId((tp)->tp_dict, &PyId_n_sequence_fields))
#define REAL_SIZE_TP(tp) PyLong_AsSsize_t( \
_PyDict_GetItemId((tp)->tp_dict, &PyId_n_fields))
#define REAL_SIZE(op) REAL_SIZE_TP(Py_TYPE(op))
#define UNNAMED_FIELDS_TP(tp) PyLong_AsSsize_t( \
_PyDict_GetItemId((tp)->tp_dict, &PyId_n_unnamed_fields))
#define UNNAMED_FIELDS(op) UNNAMED_FIELDS_TP(Py_TYPE(op))
PyObject *
PyStructSequence_New(PyTypeObject *type)
{
PyStructSequence *obj;
Py_ssize_t size = REAL_SIZE_TP(type), i;
obj = PyObject_GC_NewVar(PyStructSequence, type, size);
if (obj == NULL)
return NULL;
/* Hack the size of the variable object, so invisible fields don't appear
to Python code. */
Py_SIZE(obj) = VISIBLE_SIZE_TP(type);
for (i = 0; i < size; i++)
obj->ob_item[i] = NULL;
return (PyObject*)obj;
}
void
PyStructSequence_SetItem(PyObject* op, Py_ssize_t i, PyObject* v)
{
PyStructSequence_SET_ITEM(op, i, v);
}
PyObject*
PyStructSequence_GetItem(PyObject* op, Py_ssize_t i)
{
return PyStructSequence_GET_ITEM(op, i);
}
static void
structseq_dealloc(PyStructSequence *obj)
{
Py_ssize_t i, size;
size = REAL_SIZE(obj);
for (i = 0; i < size; ++i) {
Py_XDECREF(obj->ob_item[i]);
}
PyObject_GC_Del(obj);
}
static PyObject *
structseq_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyObject *arg = NULL;
PyObject *dict = NULL;
PyObject *ob;
PyStructSequence *res = NULL;
Py_ssize_t len, min_len, max_len, i, n_unnamed_fields;
static char *kwlist[] = {"sequence", "dict", 0};
if (!PyArg_ParseTupleAndKeywords(args, kwds, "O|O:structseq",
kwlist, &arg, &dict))
return NULL;
arg = PySequence_Fast(arg, "constructor requires a sequence");
if (!arg) {
return NULL;
}
if (dict && !PyDict_Check(dict)) {
PyErr_Format(PyExc_TypeError,
"%.500s() takes a dict as second arg, if any",
type->tp_name);
Py_DECREF(arg);
return NULL;
}
len = PySequence_Fast_GET_SIZE(arg);
min_len = VISIBLE_SIZE_TP(type);
max_len = REAL_SIZE_TP(type);
n_unnamed_fields = UNNAMED_FIELDS_TP(type);
if (min_len != max_len) {
if (len < min_len) {
PyErr_Format(PyExc_TypeError,
"%.500s() takes an at least %zd-sequence (%zd-sequence given)",
type->tp_name, min_len, len);
Py_DECREF(arg);
return NULL;
}
if (len > max_len) {
PyErr_Format(PyExc_TypeError,
"%.500s() takes an at most %zd-sequence (%zd-sequence given)",
type->tp_name, max_len, len);
Py_DECREF(arg);
return NULL;
}
}
else {
if (len != min_len) {
PyErr_Format(PyExc_TypeError,
"%.500s() takes a %zd-sequence (%zd-sequence given)",
type->tp_name, min_len, len);
Py_DECREF(arg);
return NULL;
}
}
res = (PyStructSequence*) PyStructSequence_New(type);
if (res == NULL) {
Py_DECREF(arg);
return NULL;
}
for (i = 0; i < len; ++i) {
PyObject *v = PySequence_Fast_GET_ITEM(arg, i);
Py_INCREF(v);
res->ob_item[i] = v;
}
for (; i < max_len; ++i) {
if (dict && (ob = PyDict_GetItemString(
dict, type->tp_members[i-n_unnamed_fields].name))) {
}
else {
ob = Py_None;
}
Py_INCREF(ob);
res->ob_item[i] = ob;
}
Py_DECREF(arg);
return (PyObject*) res;
}
static PyObject *
structseq_repr(PyStructSequence *obj)
{
/* buffer and type size were chosen well considered. */
#define REPR_BUFFER_SIZE 512
#define TYPE_MAXSIZE 100
PyTypeObject *typ = Py_TYPE(obj);
Py_ssize_t i;
int removelast = 0;
Py_ssize_t len;
char buf[REPR_BUFFER_SIZE];
char *endofbuf, *pbuf = buf;
/* pointer to end of writeable buffer; safes space for "...)\0" */
endofbuf= &buf[REPR_BUFFER_SIZE-5];
/* "typename(", limited to TYPE_MAXSIZE */
len = strlen(typ->tp_name) > TYPE_MAXSIZE ? TYPE_MAXSIZE :
strlen(typ->tp_name);
strncpy(pbuf, typ->tp_name, len);
pbuf += len;
*pbuf++ = '(';
for (i=0; i < VISIBLE_SIZE(obj); i++) {
PyObject *val, *repr;
char *cname, *crepr;
cname = typ->tp_members[i].name;
if (cname == NULL) {
PyErr_Format(PyExc_SystemError, "In structseq_repr(), member %d name is NULL"
" for type %.500s", i, typ->tp_name);
return NULL;
}
val = PyStructSequence_GET_ITEM(obj, i);
repr = PyObject_Repr(val);
if (repr == NULL)
return NULL;
crepr = PyUnicode_AsUTF8(repr);
if (crepr == NULL) {
Py_DECREF(repr);
return NULL;
}
/* + 3: keep space for "=" and ", " */
len = strlen(cname) + strlen(crepr) + 3;
if ((pbuf+len) <= endofbuf) {
strcpy(pbuf, cname);
pbuf += strlen(cname);
*pbuf++ = '=';
strcpy(pbuf, crepr);
pbuf += strlen(crepr);
*pbuf++ = ',';
*pbuf++ = ' ';
removelast = 1;
Py_DECREF(repr);
}
else {
strcpy(pbuf, "...");
pbuf += 3;
removelast = 0;
Py_DECREF(repr);
break;
}
}
if (removelast) {
/* overwrite last ", " */
pbuf-=2;
}
*pbuf++ = ')';
*pbuf = '\0';
return PyUnicode_FromString(buf);
}
static PyObject *
structseq_reduce(PyStructSequence* self)
{
PyObject* tup = NULL;
PyObject* dict = NULL;
PyObject* result;
Py_ssize_t n_fields, n_visible_fields, n_unnamed_fields, i;
n_fields = REAL_SIZE(self);
n_visible_fields = VISIBLE_SIZE(self);
n_unnamed_fields = UNNAMED_FIELDS(self);
tup = PyTuple_New(n_visible_fields);
if (!tup)
goto error;
dict = PyDict_New();
if (!dict)
goto error;
for (i = 0; i < n_visible_fields; i++) {
Py_INCREF(self->ob_item[i]);
PyTuple_SET_ITEM(tup, i, self->ob_item[i]);
}
for (; i < n_fields; i++) {
char *n = Py_TYPE(self)->tp_members[i-n_unnamed_fields].name;
if (PyDict_SetItemString(dict, n, self->ob_item[i]) < 0)
goto error;
}
result = Py_BuildValue("(O(OO))", Py_TYPE(self), tup, dict);
Py_DECREF(tup);
Py_DECREF(dict);
return result;
error:
Py_XDECREF(tup);
Py_XDECREF(dict);
return NULL;
}
static PyMethodDef structseq_methods[] = {
{"__reduce__", (PyCFunction)structseq_reduce, METH_NOARGS, NULL},
{NULL, NULL}
};
static PyTypeObject _struct_sequence_template = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
NULL, /* tp_name */
sizeof(PyStructSequence) - sizeof(PyObject *), /* tp_basicsize */
sizeof(PyObject *), /* tp_itemsize */
(destructor)structseq_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)structseq_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT, /* tp_flags */
NULL, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
structseq_methods, /* tp_methods */
NULL, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
structseq_new, /* tp_new */
};
int
PyStructSequence_InitType2(PyTypeObject *type, PyStructSequence_Desc *desc)
{
PyObject *dict;
PyMemberDef* members;
Py_ssize_t n_members, n_unnamed_members, i, k;
PyObject *v;
#ifdef Py_TRACE_REFS
/* if the type object was chained, unchain it first
before overwriting its storage */
if (type->ob_base.ob_base._ob_next) {
_Py_ForgetReference((PyObject*)type);
}
#endif
n_unnamed_members = 0;
for (i = 0; desc->fields[i].name != NULL; ++i)
if (desc->fields[i].name == PyStructSequence_UnnamedField)
n_unnamed_members++;
n_members = i;
memcpy(type, &_struct_sequence_template, sizeof(PyTypeObject));
type->tp_base = &PyTuple_Type;
type->tp_name = desc->name;
type->tp_doc = desc->doc;
members = PyMem_NEW(PyMemberDef, n_members-n_unnamed_members+1);
if (members == NULL) {
PyErr_NoMemory();
return -1;
}
for (i = k = 0; i < n_members; ++i) {
if (desc->fields[i].name == PyStructSequence_UnnamedField)
continue;
members[k].name = desc->fields[i].name;
members[k].type = T_OBJECT;
members[k].offset = offsetof(PyStructSequence, ob_item)
+ i * sizeof(PyObject*);
members[k].flags = READONLY;
members[k].doc = desc->fields[i].doc;
k++;
}
members[k].name = NULL;
type->tp_members = members;
if (PyType_Ready(type) < 0)
return -1;
Py_INCREF(type);
dict = type->tp_dict;
#define SET_DICT_FROM_SIZE(key, value) \
do { \
v = PyLong_FromSsize_t(value); \
if (v == NULL) \
return -1; \
if (PyDict_SetItemString(dict, key, v) < 0) { \
Py_DECREF(v); \
return -1; \
} \
Py_DECREF(v); \
} while (0)
SET_DICT_FROM_SIZE(visible_length_key, desc->n_in_sequence);
SET_DICT_FROM_SIZE(real_length_key, n_members);
SET_DICT_FROM_SIZE(unnamed_fields_key, n_unnamed_members);
return 0;
}
void
PyStructSequence_InitType(PyTypeObject *type, PyStructSequence_Desc *desc)
{
(void)PyStructSequence_InitType2(type, desc);
}
PyTypeObject*
PyStructSequence_NewType(PyStructSequence_Desc *desc)
{
PyTypeObject *result;
result = (PyTypeObject*)PyType_GenericAlloc(&PyType_Type, 0);
if (result == NULL)
return NULL;
if (PyStructSequence_InitType2(result, desc) < 0) {
Py_DECREF(result);
return NULL;
}
return result;
}
int _PyStructSequence_Init(void)
{
if (_PyUnicode_FromId(&PyId_n_sequence_fields) == NULL
|| _PyUnicode_FromId(&PyId_n_fields) == NULL
|| _PyUnicode_FromId(&PyId_n_unnamed_fields) == NULL)
return -1;
return 0;
}
| 14,374 | 437 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/funcobject.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "third_party/python/Include/boolobject.h"
#include "third_party/python/Include/cellobject.h"
#include "third_party/python/Include/classobject.h"
#include "third_party/python/Include/code.h"
#include "third_party/python/Include/descrobject.h"
#include "third_party/python/Include/dictobject.h"
#include "third_party/python/Include/eval.h"
#include "third_party/python/Include/funcobject.h"
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/object.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/pymacro.h"
#include "third_party/python/Include/structmember.h"
#include "third_party/python/Include/unicodeobject.h"
/* clang-format off */
PyObject *
PyFunction_NewWithQualName(PyObject *code, PyObject *globals, PyObject *qualname)
{
PyFunctionObject *op;
PyObject *doc, *consts, *module;
static PyObject *__name__ = NULL;
if (__name__ == NULL) {
__name__ = PyUnicode_InternFromString("__name__");
if (__name__ == NULL)
return NULL;
}
op = PyObject_GC_New(PyFunctionObject, &PyFunction_Type);
if (op == NULL)
return NULL;
op->func_weakreflist = NULL;
Py_INCREF(code);
op->func_code = code;
Py_INCREF(globals);
op->func_globals = globals;
op->func_name = ((PyCodeObject *)code)->co_name;
Py_INCREF(op->func_name);
op->func_defaults = NULL; /* No default arguments */
op->func_kwdefaults = NULL; /* No keyword only defaults */
op->func_closure = NULL;
consts = ((PyCodeObject *)code)->co_consts;
if (PyTuple_Size(consts) >= 1) {
doc = PyTuple_GetItem(consts, 0);
if (!PyUnicode_Check(doc))
doc = Py_None;
}
else
doc = Py_None;
Py_INCREF(doc);
op->func_doc = doc;
op->func_dict = NULL;
op->func_module = NULL;
op->func_annotations = NULL;
/* __module__: If module name is in globals, use it.
Otherwise, use None. */
module = PyDict_GetItem(globals, __name__);
if (module) {
Py_INCREF(module);
op->func_module = module;
}
if (qualname)
op->func_qualname = qualname;
else
op->func_qualname = op->func_name;
Py_INCREF(op->func_qualname);
_PyObject_GC_TRACK(op);
return (PyObject *)op;
}
PyObject *
PyFunction_New(PyObject *code, PyObject *globals)
{
return PyFunction_NewWithQualName(code, globals, NULL);
}
PyObject *
PyFunction_GetCode(PyObject *op)
{
if (!PyFunction_Check(op)) {
PyErr_BadInternalCall();
return NULL;
}
return ((PyFunctionObject *) op) -> func_code;
}
PyObject *
PyFunction_GetGlobals(PyObject *op)
{
if (!PyFunction_Check(op)) {
PyErr_BadInternalCall();
return NULL;
}
return ((PyFunctionObject *) op) -> func_globals;
}
PyObject *
PyFunction_GetModule(PyObject *op)
{
if (!PyFunction_Check(op)) {
PyErr_BadInternalCall();
return NULL;
}
return ((PyFunctionObject *) op) -> func_module;
}
PyObject *
PyFunction_GetDefaults(PyObject *op)
{
if (!PyFunction_Check(op)) {
PyErr_BadInternalCall();
return NULL;
}
return ((PyFunctionObject *) op) -> func_defaults;
}
int
PyFunction_SetDefaults(PyObject *op, PyObject *defaults)
{
if (!PyFunction_Check(op)) {
PyErr_BadInternalCall();
return -1;
}
if (defaults == Py_None)
defaults = NULL;
else if (defaults && PyTuple_Check(defaults)) {
Py_INCREF(defaults);
}
else {
PyErr_SetString(PyExc_SystemError, "non-tuple default args");
return -1;
}
Py_XSETREF(((PyFunctionObject *)op)->func_defaults, defaults);
return 0;
}
PyObject *
PyFunction_GetKwDefaults(PyObject *op)
{
if (!PyFunction_Check(op)) {
PyErr_BadInternalCall();
return NULL;
}
return ((PyFunctionObject *) op) -> func_kwdefaults;
}
int
PyFunction_SetKwDefaults(PyObject *op, PyObject *defaults)
{
if (!PyFunction_Check(op)) {
PyErr_BadInternalCall();
return -1;
}
if (defaults == Py_None)
defaults = NULL;
else if (defaults && PyDict_Check(defaults)) {
Py_INCREF(defaults);
}
else {
PyErr_SetString(PyExc_SystemError,
"non-dict keyword only default args");
return -1;
}
Py_XSETREF(((PyFunctionObject *)op)->func_kwdefaults, defaults);
return 0;
}
PyObject *
PyFunction_GetClosure(PyObject *op)
{
if (!PyFunction_Check(op)) {
PyErr_BadInternalCall();
return NULL;
}
return ((PyFunctionObject *) op) -> func_closure;
}
int
PyFunction_SetClosure(PyObject *op, PyObject *closure)
{
if (!PyFunction_Check(op)) {
PyErr_BadInternalCall();
return -1;
}
if (closure == Py_None)
closure = NULL;
else if (PyTuple_Check(closure)) {
Py_INCREF(closure);
}
else {
PyErr_Format(PyExc_SystemError,
"expected tuple for closure, got '%.100s'",
closure->ob_type->tp_name);
return -1;
}
Py_XSETREF(((PyFunctionObject *)op)->func_closure, closure);
return 0;
}
PyObject *
PyFunction_GetAnnotations(PyObject *op)
{
if (!PyFunction_Check(op)) {
PyErr_BadInternalCall();
return NULL;
}
return ((PyFunctionObject *) op) -> func_annotations;
}
int
PyFunction_SetAnnotations(PyObject *op, PyObject *annotations)
{
if (!PyFunction_Check(op)) {
PyErr_BadInternalCall();
return -1;
}
if (annotations == Py_None)
annotations = NULL;
else if (annotations && PyDict_Check(annotations)) {
Py_INCREF(annotations);
}
else {
PyErr_SetString(PyExc_SystemError,
"non-dict annotations");
return -1;
}
Py_XSETREF(((PyFunctionObject *)op)->func_annotations, annotations);
return 0;
}
/* Methods */
#define OFF(x) offsetof(PyFunctionObject, x)
static PyMemberDef func_memberlist[] = {
{"__closure__", T_OBJECT, OFF(func_closure),
RESTRICTED|READONLY},
{"__doc__", T_OBJECT, OFF(func_doc), PY_WRITE_RESTRICTED},
{"__globals__", T_OBJECT, OFF(func_globals),
RESTRICTED|READONLY},
{"__module__", T_OBJECT, OFF(func_module), PY_WRITE_RESTRICTED},
{NULL} /* Sentinel */
};
static PyObject *
func_get_code(PyFunctionObject *op, void *Py_UNUSED(ignored))
{
Py_INCREF(op->func_code);
return op->func_code;
}
static int
func_set_code(PyFunctionObject *op, PyObject *value, void *Py_UNUSED(ignored))
{
Py_ssize_t nfree, nclosure;
/* Not legal to del f.func_code or to set it to anything
* other than a code object. */
if (value == NULL || !PyCode_Check(value)) {
PyErr_SetString(PyExc_TypeError,
"__code__ must be set to a code object");
return -1;
}
nfree = PyCode_GetNumFree((PyCodeObject *)value);
nclosure = (op->func_closure == NULL ? 0 :
PyTuple_GET_SIZE(op->func_closure));
if (nclosure != nfree) {
PyErr_Format(PyExc_ValueError,
"%U() requires a code object with %zd free vars,"
" not %zd",
op->func_name,
nclosure, nfree);
return -1;
}
Py_INCREF(value);
Py_XSETREF(op->func_code, value);
return 0;
}
static PyObject *
func_get_name(PyFunctionObject *op, void *Py_UNUSED(ignored))
{
Py_INCREF(op->func_name);
return op->func_name;
}
static int
func_set_name(PyFunctionObject *op, PyObject *value, void *Py_UNUSED(ignored))
{
/* Not legal to del f.func_name or to set it to anything
* other than a string object. */
if (value == NULL || !PyUnicode_Check(value)) {
PyErr_SetString(PyExc_TypeError,
"__name__ must be set to a string object");
return -1;
}
Py_INCREF(value);
Py_XSETREF(op->func_name, value);
return 0;
}
static PyObject *
func_get_qualname(PyFunctionObject *op, void *Py_UNUSED(ignored))
{
Py_INCREF(op->func_qualname);
return op->func_qualname;
}
static int
func_set_qualname(PyFunctionObject *op, PyObject *value, void *Py_UNUSED(ignored))
{
/* Not legal to del f.__qualname__ or to set it to anything
* other than a string object. */
if (value == NULL || !PyUnicode_Check(value)) {
PyErr_SetString(PyExc_TypeError,
"__qualname__ must be set to a string object");
return -1;
}
Py_INCREF(value);
Py_XSETREF(op->func_qualname, value);
return 0;
}
static PyObject *
func_get_defaults(PyFunctionObject *op, void *Py_UNUSED(ignored))
{
if (op->func_defaults == NULL) {
Py_INCREF(Py_None);
return Py_None;
}
Py_INCREF(op->func_defaults);
return op->func_defaults;
}
static int
func_set_defaults(PyFunctionObject *op, PyObject *value, void *Py_UNUSED(ignored))
{
/* Legal to del f.func_defaults.
* Can only set func_defaults to NULL or a tuple. */
if (value == Py_None)
value = NULL;
if (value != NULL && !PyTuple_Check(value)) {
PyErr_SetString(PyExc_TypeError,
"__defaults__ must be set to a tuple object");
return -1;
}
Py_XINCREF(value);
Py_XSETREF(op->func_defaults, value);
return 0;
}
static PyObject *
func_get_kwdefaults(PyFunctionObject *op, void *Py_UNUSED(ignored))
{
if (op->func_kwdefaults == NULL) {
Py_INCREF(Py_None);
return Py_None;
}
Py_INCREF(op->func_kwdefaults);
return op->func_kwdefaults;
}
static int
func_set_kwdefaults(PyFunctionObject *op, PyObject *value, void *Py_UNUSED(ignored))
{
if (value == Py_None)
value = NULL;
/* Legal to del f.func_kwdefaults.
* Can only set func_kwdefaults to NULL or a dict. */
if (value != NULL && !PyDict_Check(value)) {
PyErr_SetString(PyExc_TypeError,
"__kwdefaults__ must be set to a dict object");
return -1;
}
Py_XINCREF(value);
Py_XSETREF(op->func_kwdefaults, value);
return 0;
}
static PyObject *
func_get_annotations(PyFunctionObject *op, void *Py_UNUSED(ignored))
{
if (op->func_annotations == NULL) {
op->func_annotations = PyDict_New();
if (op->func_annotations == NULL)
return NULL;
}
Py_INCREF(op->func_annotations);
return op->func_annotations;
}
static int
func_set_annotations(PyFunctionObject *op, PyObject *value, void *Py_UNUSED(ignored))
{
if (value == Py_None)
value = NULL;
/* Legal to del f.func_annotations.
* Can only set func_annotations to NULL (through C api)
* or a dict. */
if (value != NULL && !PyDict_Check(value)) {
PyErr_SetString(PyExc_TypeError,
"__annotations__ must be set to a dict object");
return -1;
}
Py_XINCREF(value);
Py_XSETREF(op->func_annotations, value);
return 0;
}
static PyGetSetDef func_getsetlist[] = {
{"__code__", (getter)func_get_code, (setter)func_set_code},
{"__defaults__", (getter)func_get_defaults,
(setter)func_set_defaults},
{"__kwdefaults__", (getter)func_get_kwdefaults,
(setter)func_set_kwdefaults},
{"__annotations__", (getter)func_get_annotations,
(setter)func_set_annotations},
{"__dict__", PyObject_GenericGetDict, PyObject_GenericSetDict},
{"__name__", (getter)func_get_name, (setter)func_set_name},
{"__qualname__", (getter)func_get_qualname, (setter)func_set_qualname},
{NULL} /* Sentinel */
};
PyDoc_STRVAR(func_doc,
"function(code, globals[, name[, argdefs[, closure]]])\n\
\n\
Create a function object from a code object and a dictionary.\n\
The optional name string overrides the name from the code object.\n\
The optional argdefs tuple specifies the default argument values.\n\
The optional closure tuple supplies the bindings for free variables.");
/* func_new() maintains the following invariants for closures. The
closure must correspond to the free variables of the code object.
if len(code.co_freevars) == 0:
closure = NULL
else:
len(closure) == len(code.co_freevars)
for every elt in closure, type(elt) == cell
*/
static PyObject *
func_new(PyTypeObject* type, PyObject* args, PyObject* kw)
{
PyCodeObject *code;
PyObject *globals;
PyObject *name = Py_None;
PyObject *defaults = Py_None;
PyObject *closure = Py_None;
PyFunctionObject *newfunc;
Py_ssize_t nfree, nclosure;
static char *kwlist[] = {"code", "globals", "name",
"argdefs", "closure", 0};
if (!PyArg_ParseTupleAndKeywords(args, kw, "O!O!|OOO:function",
kwlist,
&PyCode_Type, &code,
&PyDict_Type, &globals,
&name, &defaults, &closure))
return NULL;
if (name != Py_None && !PyUnicode_Check(name)) {
PyErr_SetString(PyExc_TypeError,
"arg 3 (name) must be None or string");
return NULL;
}
if (defaults != Py_None && !PyTuple_Check(defaults)) {
PyErr_SetString(PyExc_TypeError,
"arg 4 (defaults) must be None or tuple");
return NULL;
}
nfree = PyTuple_GET_SIZE(code->co_freevars);
if (!PyTuple_Check(closure)) {
if (nfree && closure == Py_None) {
PyErr_SetString(PyExc_TypeError,
"arg 5 (closure) must be tuple");
return NULL;
}
else if (closure != Py_None) {
PyErr_SetString(PyExc_TypeError,
"arg 5 (closure) must be None or tuple");
return NULL;
}
}
/* check that the closure is well-formed */
nclosure = closure == Py_None ? 0 : PyTuple_GET_SIZE(closure);
if (nfree != nclosure)
return PyErr_Format(PyExc_ValueError,
"%U requires closure of length %zd, not %zd",
code->co_name, nfree, nclosure);
if (nclosure) {
Py_ssize_t i;
for (i = 0; i < nclosure; i++) {
PyObject *o = PyTuple_GET_ITEM(closure, i);
if (!PyCell_Check(o)) {
return PyErr_Format(PyExc_TypeError,
"arg 5 (closure) expected cell, found %s",
o->ob_type->tp_name);
}
}
}
newfunc = (PyFunctionObject *)PyFunction_New((PyObject *)code,
globals);
if (newfunc == NULL)
return NULL;
if (name != Py_None) {
Py_INCREF(name);
Py_SETREF(newfunc->func_name, name);
}
if (defaults != Py_None) {
Py_INCREF(defaults);
newfunc->func_defaults = defaults;
}
if (closure != Py_None) {
Py_INCREF(closure);
newfunc->func_closure = closure;
}
return (PyObject *)newfunc;
}
static void
func_dealloc(PyFunctionObject *op)
{
_PyObject_GC_UNTRACK(op);
if (op->func_weakreflist != NULL)
PyObject_ClearWeakRefs((PyObject *) op);
Py_DECREF(op->func_code);
Py_DECREF(op->func_globals);
Py_XDECREF(op->func_module);
Py_DECREF(op->func_name);
Py_XDECREF(op->func_defaults);
Py_XDECREF(op->func_kwdefaults);
Py_XDECREF(op->func_doc);
Py_XDECREF(op->func_dict);
Py_XDECREF(op->func_closure);
Py_XDECREF(op->func_annotations);
Py_XDECREF(op->func_qualname);
PyObject_GC_Del(op);
}
static PyObject*
func_repr(PyFunctionObject *op)
{
return PyUnicode_FromFormat("<function %U at %p>",
op->func_qualname, op);
}
static int
func_traverse(PyFunctionObject *f, visitproc visit, void *arg)
{
Py_VISIT(f->func_code);
Py_VISIT(f->func_globals);
Py_VISIT(f->func_module);
Py_VISIT(f->func_defaults);
Py_VISIT(f->func_kwdefaults);
Py_VISIT(f->func_doc);
Py_VISIT(f->func_name);
Py_VISIT(f->func_dict);
Py_VISIT(f->func_closure);
Py_VISIT(f->func_annotations);
Py_VISIT(f->func_qualname);
return 0;
}
static PyObject *
function_call(PyObject *func, PyObject *arg, PyObject *kw)
{
PyObject *result;
PyObject *argdefs;
PyObject *kwtuple = NULL;
PyObject **d, **k;
Py_ssize_t nk, nd;
argdefs = PyFunction_GET_DEFAULTS(func);
if (argdefs != NULL && PyTuple_Check(argdefs)) {
d = &PyTuple_GET_ITEM((PyTupleObject *)argdefs, 0);
nd = PyTuple_GET_SIZE(argdefs);
}
else {
d = NULL;
nd = 0;
}
if (kw != NULL && PyDict_Check(kw)) {
Py_ssize_t pos, i;
nk = PyDict_Size(kw);
kwtuple = PyTuple_New(2*nk);
if (kwtuple == NULL)
return NULL;
k = &PyTuple_GET_ITEM(kwtuple, 0);
pos = i = 0;
while (PyDict_Next(kw, &pos, &k[i], &k[i+1])) {
Py_INCREF(k[i]);
Py_INCREF(k[i+1]);
i += 2;
}
nk = i/2;
}
else {
k = NULL;
nk = 0;
}
result = PyEval_EvalCodeEx(
PyFunction_GET_CODE(func),
PyFunction_GET_GLOBALS(func), (PyObject *)NULL,
&PyTuple_GET_ITEM(arg, 0), PyTuple_GET_SIZE(arg),
k, nk, d, nd,
PyFunction_GET_KW_DEFAULTS(func),
PyFunction_GET_CLOSURE(func));
Py_XDECREF(kwtuple);
return result;
}
/* Bind a function to an object */
static PyObject *
func_descr_get(PyObject *func, PyObject *obj, PyObject *type)
{
if (obj == Py_None || obj == NULL) {
Py_INCREF(func);
return func;
}
return PyMethod_New(func, obj);
}
PyTypeObject PyFunction_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"function",
sizeof(PyFunctionObject),
0,
(destructor)func_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)func_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
function_call, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
func_doc, /* tp_doc */
(traverseproc)func_traverse, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
offsetof(PyFunctionObject, func_weakreflist), /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
0, /* tp_methods */
func_memberlist, /* tp_members */
func_getsetlist, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
func_descr_get, /* tp_descr_get */
0, /* tp_descr_set */
offsetof(PyFunctionObject, func_dict), /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
func_new, /* tp_new */
};
/* Class method object */
/* A class method receives the class as implicit first argument,
just like an instance method receives the instance.
To declare a class method, use this idiom:
class C:
@classmethod
def f(cls, arg1, arg2, ...):
...
It can be called either on the class (e.g. C.f()) or on an instance
(e.g. C().f()); the instance is ignored except for its class.
If a class method is called for a derived class, the derived class
object is passed as the implied first argument.
Class methods are different than C++ or Java static methods.
If you want those, see static methods below.
*/
typedef struct {
PyObject_HEAD
PyObject *cm_callable;
PyObject *cm_dict;
} classmethod;
static void
cm_dealloc(classmethod *cm)
{
_PyObject_GC_UNTRACK((PyObject *)cm);
Py_XDECREF(cm->cm_callable);
Py_XDECREF(cm->cm_dict);
Py_TYPE(cm)->tp_free((PyObject *)cm);
}
static int
cm_traverse(classmethod *cm, visitproc visit, void *arg)
{
Py_VISIT(cm->cm_callable);
Py_VISIT(cm->cm_dict);
return 0;
}
static int
cm_clear(classmethod *cm)
{
Py_CLEAR(cm->cm_callable);
Py_CLEAR(cm->cm_dict);
return 0;
}
static PyObject *
cm_descr_get(PyObject *self, PyObject *obj, PyObject *type)
{
classmethod *cm = (classmethod *)self;
if (cm->cm_callable == NULL) {
PyErr_SetString(PyExc_RuntimeError,
"uninitialized classmethod object");
return NULL;
}
if (type == NULL)
type = (PyObject *)(Py_TYPE(obj));
return PyMethod_New(cm->cm_callable, type);
}
static int
cm_init(PyObject *self, PyObject *args, PyObject *kwds)
{
classmethod *cm = (classmethod *)self;
PyObject *callable;
if (!PyArg_UnpackTuple(args, "classmethod", 1, 1, &callable))
return -1;
if (!_PyArg_NoKeywords("classmethod", kwds))
return -1;
Py_INCREF(callable);
Py_XSETREF(cm->cm_callable, callable);
return 0;
}
static PyMemberDef cm_memberlist[] = {
{"__func__", T_OBJECT, offsetof(classmethod, cm_callable), READONLY},
{NULL} /* Sentinel */
};
static PyObject *
cm_get___isabstractmethod__(classmethod *cm, void *closure)
{
int res = _PyObject_IsAbstract(cm->cm_callable);
if (res == -1) {
return NULL;
}
else if (res) {
Py_RETURN_TRUE;
}
Py_RETURN_FALSE;
}
static PyGetSetDef cm_getsetlist[] = {
{"__isabstractmethod__",
(getter)cm_get___isabstractmethod__, NULL,
NULL,
NULL},
{"__dict__", PyObject_GenericGetDict, PyObject_GenericSetDict, NULL, NULL},
{NULL} /* Sentinel */
};
PyDoc_STRVAR(classmethod_doc,
"classmethod(function) -> method\n\
\n\
Convert a function to be a class method.\n\
\n\
A class method receives the class as implicit first argument,\n\
just like an instance method receives the instance.\n\
To declare a class method, use this idiom:\n\
\n\
class C:\n\
@classmethod\n\
def f(cls, arg1, arg2, ...):\n\
...\n\
\n\
It can be called either on the class (e.g. C.f()) or on an instance\n\
(e.g. C().f()). The instance is ignored except for its class.\n\
If a class method is called for a derived class, the derived class\n\
object is passed as the implied first argument.\n\
\n\
Class methods are different than C++ or Java static methods.\n\
If you want those, see the staticmethod builtin.");
PyTypeObject PyClassMethod_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"classmethod",
sizeof(classmethod),
0,
(destructor)cm_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,
classmethod_doc, /* tp_doc */
(traverseproc)cm_traverse, /* tp_traverse */
(inquiry)cm_clear, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
0, /* tp_methods */
cm_memberlist, /* tp_members */
cm_getsetlist, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
cm_descr_get, /* tp_descr_get */
0, /* tp_descr_set */
offsetof(classmethod, cm_dict), /* tp_dictoffset */
cm_init, /* tp_init */
PyType_GenericAlloc, /* tp_alloc */
PyType_GenericNew, /* tp_new */
PyObject_GC_Del, /* tp_free */
};
PyObject *
PyClassMethod_New(PyObject *callable)
{
classmethod *cm = (classmethod *)
PyType_GenericAlloc(&PyClassMethod_Type, 0);
if (cm != NULL) {
Py_INCREF(callable);
cm->cm_callable = callable;
}
return (PyObject *)cm;
}
/* Static method object */
/* A static method does not receive an implicit first argument.
To declare a static method, use this idiom:
class C:
@staticmethod
def f(arg1, arg2, ...):
...
It can be called either on the class (e.g. C.f()) or on an instance
(e.g. C().f()); the instance is ignored except for its class.
Static methods in Python are similar to those found in Java or C++.
For a more advanced concept, see class methods above.
*/
typedef struct {
PyObject_HEAD
PyObject *sm_callable;
PyObject *sm_dict;
} staticmethod;
static void
sm_dealloc(staticmethod *sm)
{
_PyObject_GC_UNTRACK((PyObject *)sm);
Py_XDECREF(sm->sm_callable);
Py_XDECREF(sm->sm_dict);
Py_TYPE(sm)->tp_free((PyObject *)sm);
}
static int
sm_traverse(staticmethod *sm, visitproc visit, void *arg)
{
Py_VISIT(sm->sm_callable);
Py_VISIT(sm->sm_dict);
return 0;
}
static int
sm_clear(staticmethod *sm)
{
Py_CLEAR(sm->sm_callable);
Py_CLEAR(sm->sm_dict);
return 0;
}
static PyObject *
sm_descr_get(PyObject *self, PyObject *obj, PyObject *type)
{
staticmethod *sm = (staticmethod *)self;
if (sm->sm_callable == NULL) {
PyErr_SetString(PyExc_RuntimeError,
"uninitialized staticmethod object");
return NULL;
}
Py_INCREF(sm->sm_callable);
return sm->sm_callable;
}
static int
sm_init(PyObject *self, PyObject *args, PyObject *kwds)
{
staticmethod *sm = (staticmethod *)self;
PyObject *callable;
if (!PyArg_UnpackTuple(args, "staticmethod", 1, 1, &callable))
return -1;
if (!_PyArg_NoKeywords("staticmethod", kwds))
return -1;
Py_INCREF(callable);
Py_XSETREF(sm->sm_callable, callable);
return 0;
}
static PyMemberDef sm_memberlist[] = {
{"__func__", T_OBJECT, offsetof(staticmethod, sm_callable), READONLY},
{NULL} /* Sentinel */
};
static PyObject *
sm_get___isabstractmethod__(staticmethod *sm, void *closure)
{
int res = _PyObject_IsAbstract(sm->sm_callable);
if (res == -1) {
return NULL;
}
else if (res) {
Py_RETURN_TRUE;
}
Py_RETURN_FALSE;
}
static PyGetSetDef sm_getsetlist[] = {
{"__isabstractmethod__",
(getter)sm_get___isabstractmethod__, NULL,
NULL,
NULL},
{"__dict__", PyObject_GenericGetDict, PyObject_GenericSetDict, NULL, NULL},
{NULL} /* Sentinel */
};
PyDoc_STRVAR(staticmethod_doc,
"staticmethod(function) -> method\n\
\n\
Convert a function to be a static method.\n\
\n\
A static method does not receive an implicit first argument.\n\
To declare a static method, use this idiom:\n\
\n\
class C:\n\
@staticmethod\n\
def f(arg1, arg2, ...):\n\
...\n\
\n\
It can be called either on the class (e.g. C.f()) or on an instance\n\
(e.g. C().f()). The instance is ignored except for its class.\n\
\n\
Static methods in Python are similar to those found in Java or C++.\n\
For a more advanced concept, see the classmethod builtin.");
PyTypeObject PyStaticMethod_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"staticmethod",
sizeof(staticmethod),
0,
(destructor)sm_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,
staticmethod_doc, /* tp_doc */
(traverseproc)sm_traverse, /* tp_traverse */
(inquiry)sm_clear, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
0, /* tp_methods */
sm_memberlist, /* tp_members */
sm_getsetlist, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
sm_descr_get, /* tp_descr_get */
0, /* tp_descr_set */
offsetof(staticmethod, sm_dict), /* tp_dictoffset */
sm_init, /* tp_init */
PyType_GenericAlloc, /* tp_alloc */
PyType_GenericNew, /* tp_new */
PyObject_GC_Del, /* tp_free */
};
PyObject *
PyStaticMethod_New(PyObject *callable)
{
staticmethod *sm = (staticmethod *)
PyType_GenericAlloc(&PyStaticMethod_Type, 0);
if (sm != NULL) {
Py_INCREF(callable);
sm->sm_callable = callable;
}
return (PyObject *)sm;
}
| 32,589 | 1,047 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/typeobject.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "libc/assert.h"
#include "libc/intrin/likely.h"
#include "libc/fmt/fmt.h"
#include "libc/log/countbranch.h"
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/boolobject.h"
#include "third_party/python/Include/cellobject.h"
#include "third_party/python/Include/ceval.h"
#include "third_party/python/Include/compile.h"
#include "third_party/python/Include/descrobject.h"
#include "third_party/python/Include/dictobject.h"
#include "third_party/python/Include/frameobject.h"
#include "third_party/python/Include/funcobject.h"
#include "third_party/python/Include/import.h"
#include "third_party/python/Include/iterobject.h"
#include "third_party/python/Include/listobject.h"
#include "third_party/python/Include/longobject.h"
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/pyerrors.h"
#include "third_party/python/Include/pyhash.h"
#include "third_party/python/Include/structmember.h"
#include "third_party/python/Include/tupleobject.h"
#include "third_party/python/Include/typeslots.h"
#include "third_party/python/Include/unicodeobject.h"
#include "third_party/python/Include/warnings.h"
#include "third_party/python/Include/weakrefobject.h"
/* clang-format off */
static const short slotoffsets[] = {
-1, /* invalid slot */
#include "third_party/python/Objects/typeslots.inc"
};
/* Type object implementation */
/* Support type attribute cache */
/* The cache can keep references to the names alive for longer than
they normally would. This is why the maximum size is limited to
MCACHE_MAX_ATTR_SIZE, since it might be a problem if very large
strings are used as attribute names. */
#define MCACHE_MAX_ATTR_SIZE 100
#define MCACHE_SIZE_EXP 12
#define MCACHE_HASH(version, name_hash) \
(((unsigned int)(version) ^ (unsigned int)(name_hash)) \
& ((1 << MCACHE_SIZE_EXP) - 1))
#define MCACHE_HASH_METHOD(type, name) \
MCACHE_HASH((type)->tp_version_tag, \
((PyASCIIObject *)(name))->hash)
#define MCACHE_CACHEABLE_NAME(name) \
PyUnicode_CheckExact(name) && \
PyUnicode_READY(name) != -1 && \
PyUnicode_GET_LENGTH(name) <= MCACHE_MAX_ATTR_SIZE
struct method_cache_entry {
unsigned int version;
PyObject *name; /* reference to exactly a str or None */
PyObject *value; /* borrowed */
};
static struct method_cache_entry method_cache[1 << MCACHE_SIZE_EXP];
static unsigned int next_version_tag = 0;
#define MCACHE_STATS 0
#if MCACHE_STATS
static size_t method_cache_hits = 0;
static size_t method_cache_misses = 0;
static size_t method_cache_collisions = 0;
#endif
/* alphabetical order */
_Py_IDENTIFIER(__abstractmethods__);
_Py_IDENTIFIER(__class__);
_Py_IDENTIFIER(__delitem__);
_Py_IDENTIFIER(__dict__);
_Py_IDENTIFIER(__doc__);
_Py_IDENTIFIER(__getattribute__);
_Py_IDENTIFIER(__getitem__);
_Py_IDENTIFIER(__hash__);
_Py_IDENTIFIER(__init_subclass__);
_Py_IDENTIFIER(__len__);
_Py_IDENTIFIER(__module__);
_Py_IDENTIFIER(__name__);
_Py_IDENTIFIER(__new__);
_Py_IDENTIFIER(__set_name__);
_Py_IDENTIFIER(__setitem__);
_Py_IDENTIFIER(builtins);
static PyObject *
slot_tp_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
static void
clear_slotdefs(void);
/*
* finds the beginning of the docstring's introspection signature.
* if present, returns a pointer pointing to the first '('.
* otherwise returns NULL.
*
* doesn't guarantee that the signature is valid, only that it
* has a valid prefix. (the signature must also pass skip_signature.)
*/
static const char *
find_signature(const char *name, const char *doc)
{
const char *dot;
size_t length;
if (!doc)
return NULL;
assert(name != NULL);
/* for dotted names like classes, only use the last component */
dot = strrchr(name, '.');
if (dot)
name = dot + 1;
length = strlen(name);
if (strncmp(doc, name, length))
return NULL;
doc += length;
if (*doc != '(')
return NULL;
return doc;
}
#define SIGNATURE_END_MARKER ")\n--\n\n"
#define SIGNATURE_END_MARKER_LENGTH 6
/*
* skips past the end of the docstring's instrospection signature.
* (assumes doc starts with a valid signature prefix.)
*/
static const char *
skip_signature(const char *doc)
{
while (*doc) {
if ((*doc == *SIGNATURE_END_MARKER) &&
!strncmp(doc, SIGNATURE_END_MARKER, SIGNATURE_END_MARKER_LENGTH))
return doc + SIGNATURE_END_MARKER_LENGTH;
if ((*doc == '\n') && (doc[1] == '\n'))
return NULL;
doc++;
}
return NULL;
}
#ifdef Py_DEBUG
static int
_PyType_CheckConsistency(PyTypeObject *type)
{
if (!(type->tp_flags & Py_TPFLAGS_READY)) {
/* don't check types before PyType_Ready() */
return 1;
}
assert(!(type->tp_flags & Py_TPFLAGS_READYING));
assert(type->tp_mro != NULL && PyTuple_Check(type->tp_mro));
assert(type->tp_dict != NULL);
return 1;
}
#endif
static const char *
_PyType_DocWithoutSignature(const char *name, const char *internal_doc)
{
const char *doc = find_signature(name, internal_doc);
if (doc) {
doc = skip_signature(doc);
if (doc)
return doc;
}
return internal_doc;
}
PyObject *
_PyType_GetDocFromInternalDoc(const char *name, const char *internal_doc)
{
const char *doc = _PyType_DocWithoutSignature(name, internal_doc);
if (!doc || *doc == '\0') {
Py_RETURN_NONE;
}
return PyUnicode_FromString(doc);
}
PyObject *
_PyType_GetTextSignatureFromInternalDoc(const char *name, const char *internal_doc)
{
const char *start = find_signature(name, internal_doc);
const char *end;
if (start)
end = skip_signature(start);
else
end = NULL;
if (!end) {
Py_RETURN_NONE;
}
/* back "end" up until it points just past the final ')' */
end -= SIGNATURE_END_MARKER_LENGTH - 1;
assert((end - start) >= 2); /* should be "()" at least */
assert(end[-1] == ')');
assert(end[0] == '\n');
return PyUnicode_FromStringAndSize(start, end - start);
}
unsigned int
PyType_ClearCache(void)
{
Py_ssize_t i;
unsigned int cur_version_tag = next_version_tag - 1;
#if MCACHE_STATS
size_t total = method_cache_hits + method_cache_collisions + method_cache_misses;
fprintf(stderr, "-- Method cache hits = %zd (%d%%)\n",
method_cache_hits, (int) (100.0 * method_cache_hits / total));
fprintf(stderr, "-- Method cache true misses = %zd (%d%%)\n",
method_cache_misses, (int) (100.0 * method_cache_misses / total));
fprintf(stderr, "-- Method cache collisions = %zd (%d%%)\n",
method_cache_collisions, (int) (100.0 * method_cache_collisions / total));
fprintf(stderr, "-- Method cache size = %zd KB\n",
sizeof(method_cache) / 1024);
#endif
for (i = 0; i < (1 << MCACHE_SIZE_EXP); i++) {
method_cache[i].version = 0;
Py_CLEAR(method_cache[i].name);
method_cache[i].value = NULL;
}
next_version_tag = 0;
/* mark all version tags as invalid */
PyType_Modified(&PyBaseObject_Type);
return cur_version_tag;
}
void
_PyType_Fini(void)
{
PyType_ClearCache();
clear_slotdefs();
}
void
PyType_Modified(PyTypeObject *type)
{
/* Invalidate any cached data for the specified type and all
subclasses. This function is called after the base
classes, mro, or attributes of the type are altered.
Invariants:
- Py_TPFLAGS_VALID_VERSION_TAG is never set if
Py_TPFLAGS_HAVE_VERSION_TAG is not set (e.g. on type
objects coming from non-recompiled extension modules)
- before Py_TPFLAGS_VALID_VERSION_TAG can be set on a type,
it must first be set on all super types.
This function clears the Py_TPFLAGS_VALID_VERSION_TAG of a
type (so it must first clear it on all subclasses). The
tp_version_tag value is meaningless unless this flag is set.
We don't assign new version tags eagerly, but only as
needed.
*/
PyObject *raw, *ref;
Py_ssize_t i;
if (!PyType_HasFeature(type, Py_TPFLAGS_VALID_VERSION_TAG))
return;
raw = type->tp_subclasses;
if (raw != NULL) {
assert(PyDict_CheckExact(raw));
i = 0;
while (PyDict_Next(raw, &i, NULL, &ref)) {
assert(PyWeakref_CheckRef(ref));
ref = PyWeakref_GET_OBJECT(ref);
if (ref != Py_None) {
PyType_Modified((PyTypeObject *)ref);
}
}
}
type->tp_flags &= ~Py_TPFLAGS_VALID_VERSION_TAG;
}
static void
type_mro_modified(PyTypeObject *type, PyObject *bases) {
/*
Check that all base classes or elements of the MRO of type are
able to be cached. This function is called after the base
classes or mro of the type are altered.
Unset HAVE_VERSION_TAG and VALID_VERSION_TAG if the type
has a custom MRO that includes a type which is not officially
super type.
Called from mro_internal, which will subsequently be called on
each subclass when their mro is recursively updated.
*/
Py_ssize_t i, n;
int clear = 0;
if (!PyType_HasFeature(type, Py_TPFLAGS_HAVE_VERSION_TAG))
return;
n = PyTuple_GET_SIZE(bases);
for (i = 0; i < n; i++) {
PyObject *b = PyTuple_GET_ITEM(bases, i);
PyTypeObject *cls;
assert(PyType_Check(b));
cls = (PyTypeObject *)b;
if (!PyType_HasFeature(cls, Py_TPFLAGS_HAVE_VERSION_TAG) ||
!PyType_IsSubtype(type, cls)) {
clear = 1;
break;
}
}
if (clear)
type->tp_flags &= ~(Py_TPFLAGS_HAVE_VERSION_TAG|
Py_TPFLAGS_VALID_VERSION_TAG);
}
static int
assign_version_tag(PyTypeObject *type)
{
/* Ensure that the tp_version_tag is valid and set
Py_TPFLAGS_VALID_VERSION_TAG. To respect the invariant, this
must first be done on all super classes. Return 0 if this
cannot be done, 1 if Py_TPFLAGS_VALID_VERSION_TAG.
*/
Py_ssize_t i, n;
PyObject *bases;
if (PyType_HasFeature(type, Py_TPFLAGS_VALID_VERSION_TAG))
return 1;
if (!PyType_HasFeature(type, Py_TPFLAGS_HAVE_VERSION_TAG))
return 0;
if (!PyType_HasFeature(type, Py_TPFLAGS_READY))
return 0;
type->tp_version_tag = next_version_tag++;
/* for stress-testing: next_version_tag &= 0xFF; */
if (type->tp_version_tag == 0) {
/* wrap-around or just starting Python - clear the whole
cache by filling names with references to Py_None.
Values are also set to NULL for added protection, as they
are borrowed reference */
for (i = 0; i < (1 << MCACHE_SIZE_EXP); i++) {
method_cache[i].value = NULL;
Py_INCREF(Py_None);
Py_XSETREF(method_cache[i].name, Py_None);
}
/* mark all version tags as invalid */
PyType_Modified(&PyBaseObject_Type);
return 1;
}
bases = type->tp_bases;
n = PyTuple_GET_SIZE(bases);
for (i = 0; i < n; i++) {
PyObject *b = PyTuple_GET_ITEM(bases, i);
assert(PyType_Check(b));
if (!assign_version_tag((PyTypeObject *)b))
return 0;
}
type->tp_flags |= Py_TPFLAGS_VALID_VERSION_TAG;
return 1;
}
static PyMemberDef type_members[] = {
{"__basicsize__", T_PYSSIZET, offsetof(PyTypeObject,tp_basicsize),READONLY},
{"__itemsize__", T_PYSSIZET, offsetof(PyTypeObject, tp_itemsize), READONLY},
{"__flags__", T_LONG, offsetof(PyTypeObject, tp_flags), READONLY},
{"__weakrefoffset__", T_LONG,
offsetof(PyTypeObject, tp_weaklistoffset), READONLY},
{"__base__", T_OBJECT, offsetof(PyTypeObject, tp_base), READONLY},
{"__dictoffset__", T_LONG,
offsetof(PyTypeObject, tp_dictoffset), READONLY},
{"__mro__", T_OBJECT, offsetof(PyTypeObject, tp_mro), READONLY},
{0}
};
static int
check_set_special_type_attr(PyTypeObject *type, PyObject *value, const char *name)
{
if (!(type->tp_flags & Py_TPFLAGS_HEAPTYPE)) {
PyErr_Format(PyExc_TypeError,
"can't set %s.%s", type->tp_name, name);
return 0;
}
if (!value) {
PyErr_Format(PyExc_TypeError,
"can't delete %s.%s", type->tp_name, name);
return 0;
}
return 1;
}
static PyObject *
type_name(PyTypeObject *type, void *context)
{
const char *s;
if (type->tp_flags & Py_TPFLAGS_HEAPTYPE) {
PyHeapTypeObject* et = (PyHeapTypeObject*)type;
Py_INCREF(et->ht_name);
return et->ht_name;
}
else {
s = strrchr(type->tp_name, '.');
if (s == NULL)
s = type->tp_name;
else
s++;
return PyUnicode_FromString(s);
}
}
static PyObject *
type_qualname(PyTypeObject *type, void *context)
{
if (type->tp_flags & Py_TPFLAGS_HEAPTYPE) {
PyHeapTypeObject* et = (PyHeapTypeObject*)type;
Py_INCREF(et->ht_qualname);
return et->ht_qualname;
}
else {
return type_name(type, context);
}
}
static int
type_set_name(PyTypeObject *type, PyObject *value, void *context)
{
const char *tp_name;
Py_ssize_t name_size;
if (!check_set_special_type_attr(type, value, "__name__"))
return -1;
if (!PyUnicode_Check(value)) {
PyErr_Format(PyExc_TypeError,
"can only assign string to %s.__name__, not '%s'",
type->tp_name, Py_TYPE(value)->tp_name);
return -1;
}
tp_name = PyUnicode_AsUTF8AndSize(value, &name_size);
if (tp_name == NULL)
return -1;
if (strlen(tp_name) != (size_t)name_size) {
PyErr_SetString(PyExc_ValueError,
"type name must not contain null characters");
return -1;
}
type->tp_name = tp_name;
Py_INCREF(value);
Py_SETREF(((PyHeapTypeObject*)type)->ht_name, value);
return 0;
}
static int
type_set_qualname(PyTypeObject *type, PyObject *value, void *context)
{
PyHeapTypeObject* et;
if (!check_set_special_type_attr(type, value, "__qualname__"))
return -1;
if (!PyUnicode_Check(value)) {
PyErr_Format(PyExc_TypeError,
"can only assign string to %s.__qualname__, not '%s'",
type->tp_name, Py_TYPE(value)->tp_name);
return -1;
}
et = (PyHeapTypeObject*)type;
Py_INCREF(value);
Py_SETREF(et->ht_qualname, value);
return 0;
}
static PyObject *
type_module(PyTypeObject *type, void *context)
{
PyObject *mod;
if (type->tp_flags & Py_TPFLAGS_HEAPTYPE) {
mod = _PyDict_GetItemId(type->tp_dict, &PyId___module__);
if (mod == NULL) {
PyErr_Format(PyExc_AttributeError, "__module__");
return NULL;
}
Py_INCREF(mod);
}
else {
const char *s = strrchr(type->tp_name, '.');
if (s != NULL) {
mod = PyUnicode_FromStringAndSize(
type->tp_name, (Py_ssize_t)(s - type->tp_name));
if (mod != NULL)
PyUnicode_InternInPlace(&mod);
}
else {
mod = _PyUnicode_FromId(&PyId_builtins);
Py_XINCREF(mod);
}
}
return mod;
}
static int
type_set_module(PyTypeObject *type, PyObject *value, void *context)
{
if (!check_set_special_type_attr(type, value, "__module__"))
return -1;
PyType_Modified(type);
return _PyDict_SetItemId(type->tp_dict, &PyId___module__, value);
}
static PyObject *
type_abstractmethods(PyTypeObject *type, void *context)
{
PyObject *mod = NULL;
/* type itself has an __abstractmethods__ descriptor (this). Don't return
that. */
if (type != &PyType_Type)
mod = _PyDict_GetItemId(type->tp_dict, &PyId___abstractmethods__);
if (!mod) {
PyObject *message = _PyUnicode_FromId(&PyId___abstractmethods__);
if (message)
PyErr_SetObject(PyExc_AttributeError, message);
return NULL;
}
Py_INCREF(mod);
return mod;
}
static int
type_set_abstractmethods(PyTypeObject *type, PyObject *value, void *context)
{
/* __abstractmethods__ should only be set once on a type, in
abc.ABCMeta.__new__, so this function doesn't do anything
special to update subclasses.
*/
int abstract, res;
if (value != NULL) {
abstract = PyObject_IsTrue(value);
if (abstract < 0)
return -1;
res = _PyDict_SetItemId(type->tp_dict, &PyId___abstractmethods__, value);
}
else {
abstract = 0;
res = _PyDict_DelItemId(type->tp_dict, &PyId___abstractmethods__);
if (res && PyErr_ExceptionMatches(PyExc_KeyError)) {
PyObject *message = _PyUnicode_FromId(&PyId___abstractmethods__);
if (message)
PyErr_SetObject(PyExc_AttributeError, message);
return -1;
}
}
if (res == 0) {
PyType_Modified(type);
if (abstract)
type->tp_flags |= Py_TPFLAGS_IS_ABSTRACT;
else
type->tp_flags &= ~Py_TPFLAGS_IS_ABSTRACT;
}
return res;
}
static PyObject *
type_get_bases(PyTypeObject *type, void *context)
{
Py_INCREF(type->tp_bases);
return type->tp_bases;
}
static PyTypeObject *best_base(PyObject *);
static int mro_internal(PyTypeObject *, PyObject **);
static int type_is_subtype_base_chain(PyTypeObject *, PyTypeObject *);
static int compatible_for_assignment(PyTypeObject *, PyTypeObject *, const char *);
static int add_subclass(PyTypeObject*, PyTypeObject*);
static int add_all_subclasses(PyTypeObject *type, PyObject *bases);
static void remove_subclass(PyTypeObject *, PyTypeObject *);
static void remove_all_subclasses(PyTypeObject *type, PyObject *bases);
static void update_all_slots(PyTypeObject *);
typedef int (*update_callback)(PyTypeObject *, void *);
static int update_subclasses(PyTypeObject *type, PyObject *name,
update_callback callback, void *data);
static int recurse_down_subclasses(PyTypeObject *type, PyObject *name,
update_callback callback, void *data);
static PyObject *type_subclasses(PyTypeObject *type, PyObject *ignored);
static int
mro_hierarchy(PyTypeObject *type, PyObject *temp)
{
int res;
PyObject *new_mro, *old_mro;
PyObject *tuple;
PyObject *subclasses;
Py_ssize_t i, n;
res = mro_internal(type, &old_mro);
if (res <= 0)
/* error / reentrance */
return res;
new_mro = type->tp_mro;
if (old_mro != NULL)
tuple = PyTuple_Pack(3, type, new_mro, old_mro);
else
tuple = PyTuple_Pack(2, type, new_mro);
if (tuple != NULL)
res = PyList_Append(temp, tuple);
else
res = -1;
Py_XDECREF(tuple);
if (res < 0) {
type->tp_mro = old_mro;
Py_DECREF(new_mro);
return -1;
}
Py_XDECREF(old_mro);
/* Obtain a copy of subclasses list to iterate over.
Otherwise type->tp_subclasses might be altered
in the middle of the loop, for example, through a custom mro(),
by invoking type_set_bases on some subclass of the type
which in turn calls remove_subclass/add_subclass on this type.
Finally, this makes things simple avoiding the need to deal
with dictionary iterators and weak references.
*/
subclasses = type_subclasses(type, NULL);
if (subclasses == NULL)
return -1;
n = PyList_GET_SIZE(subclasses);
for (i = 0; i < n; i++) {
PyTypeObject *subclass;
subclass = (PyTypeObject *)PyList_GET_ITEM(subclasses, i);
res = mro_hierarchy(subclass, temp);
if (res < 0)
break;
}
Py_DECREF(subclasses);
return res;
}
static int
type_set_bases(PyTypeObject *type, PyObject *new_bases, void *context)
{
int res = 0;
PyObject *temp;
PyObject *old_bases;
PyTypeObject *new_base, *old_base;
Py_ssize_t i;
if (!check_set_special_type_attr(type, new_bases, "__bases__"))
return -1;
if (!PyTuple_Check(new_bases)) {
PyErr_Format(PyExc_TypeError,
"can only assign tuple to %s.__bases__, not %s",
type->tp_name, Py_TYPE(new_bases)->tp_name);
return -1;
}
if (PyTuple_GET_SIZE(new_bases) == 0) {
PyErr_Format(PyExc_TypeError,
"can only assign non-empty tuple to %s.__bases__, not ()",
type->tp_name);
return -1;
}
for (i = 0; i < PyTuple_GET_SIZE(new_bases); i++) {
PyObject *ob;
PyTypeObject *base;
ob = PyTuple_GET_ITEM(new_bases, i);
if (!PyType_Check(ob)) {
PyErr_Format(PyExc_TypeError,
"%s.__bases__ must be tuple of classes, not '%s'",
type->tp_name, Py_TYPE(ob)->tp_name);
return -1;
}
base = (PyTypeObject*)ob;
if (PyType_IsSubtype(base, type) ||
/* In case of reentering here again through a custom mro()
the above check is not enough since it relies on
base->tp_mro which would gonna be updated inside
mro_internal only upon returning from the mro().
However, base->tp_base has already been assigned (see
below), which in turn may cause an inheritance cycle
through tp_base chain. And this is definitely
not what you want to ever happen. */
(base->tp_mro != NULL && type_is_subtype_base_chain(base, type))) {
PyErr_SetString(PyExc_TypeError,
"a __bases__ item causes an inheritance cycle");
return -1;
}
}
new_base = best_base(new_bases);
if (new_base == NULL)
return -1;
if (!compatible_for_assignment(type->tp_base, new_base, "__bases__"))
return -1;
Py_INCREF(new_bases);
Py_INCREF(new_base);
old_bases = type->tp_bases;
old_base = type->tp_base;
type->tp_bases = new_bases;
type->tp_base = new_base;
temp = PyList_New(0);
if (temp == NULL)
goto bail;
if (mro_hierarchy(type, temp) < 0)
goto undo;
Py_DECREF(temp);
/* Take no action in case if type->tp_bases has been replaced
through reentrance. */
if (type->tp_bases == new_bases) {
/* any base that was in __bases__ but now isn't, we
need to remove |type| from its tp_subclasses.
conversely, any class now in __bases__ that wasn't
needs to have |type| added to its subclasses. */
/* for now, sod that: just remove from all old_bases,
add to all new_bases */
remove_all_subclasses(type, old_bases);
res = add_all_subclasses(type, new_bases);
update_all_slots(type);
}
Py_DECREF(old_bases);
Py_DECREF(old_base);
assert(_PyType_CheckConsistency(type));
return res;
undo:
for (i = PyList_GET_SIZE(temp) - 1; i >= 0; i--) {
PyTypeObject *cls;
PyObject *new_mro, *old_mro = NULL;
PyArg_UnpackTuple(PyList_GET_ITEM(temp, i),
"", 2, 3, &cls, &new_mro, &old_mro);
/* Do not rollback if cls has a newer version of MRO. */
if (cls->tp_mro == new_mro) {
Py_XINCREF(old_mro);
cls->tp_mro = old_mro;
Py_DECREF(new_mro);
}
}
Py_DECREF(temp);
bail:
if (type->tp_bases == new_bases) {
assert(type->tp_base == new_base);
type->tp_bases = old_bases;
type->tp_base = old_base;
Py_DECREF(new_bases);
Py_DECREF(new_base);
}
else {
Py_DECREF(old_bases);
Py_DECREF(old_base);
}
assert(_PyType_CheckConsistency(type));
return -1;
}
static PyObject *
type_dict(PyTypeObject *type, void *context)
{
if (type->tp_dict == NULL) {
Py_RETURN_NONE;
}
return PyDictProxy_New(type->tp_dict);
}
static PyObject *
type_get_doc(PyTypeObject *type, void *context)
{
PyObject *result;
if (!(type->tp_flags & Py_TPFLAGS_HEAPTYPE) && type->tp_doc != NULL) {
return _PyType_GetDocFromInternalDoc(type->tp_name, type->tp_doc);
}
result = _PyDict_GetItemId(type->tp_dict, &PyId___doc__);
if (result == NULL) {
result = Py_None;
Py_INCREF(result);
}
else if (Py_TYPE(result)->tp_descr_get) {
result = Py_TYPE(result)->tp_descr_get(result, NULL,
(PyObject *)type);
}
else {
Py_INCREF(result);
}
return result;
}
static PyObject *
type_get_text_signature(PyTypeObject *type, void *context)
{
return _PyType_GetTextSignatureFromInternalDoc(type->tp_name, type->tp_doc);
}
static int
type_set_doc(PyTypeObject *type, PyObject *value, void *context)
{
if (!check_set_special_type_attr(type, value, "__doc__"))
return -1;
PyType_Modified(type);
return _PyDict_SetItemId(type->tp_dict, &PyId___doc__, value);
}
static PyObject *
type___instancecheck__(PyObject *type, PyObject *inst)
{
switch (_PyObject_RealIsInstance(inst, type)) {
case -1:
return NULL;
case 0:
Py_RETURN_FALSE;
default:
Py_RETURN_TRUE;
}
}
static PyObject *
type___subclasscheck__(PyObject *type, PyObject *inst)
{
switch (_PyObject_RealIsSubclass(inst, type)) {
case -1:
return NULL;
case 0:
Py_RETURN_FALSE;
default:
Py_RETURN_TRUE;
}
}
static PyGetSetDef type_getsets[] = {
{"__name__", (getter)type_name, (setter)type_set_name, NULL},
{"__qualname__", (getter)type_qualname, (setter)type_set_qualname, NULL},
{"__bases__", (getter)type_get_bases, (setter)type_set_bases, NULL},
{"__module__", (getter)type_module, (setter)type_set_module, NULL},
{"__abstractmethods__", (getter)type_abstractmethods,
(setter)type_set_abstractmethods, NULL},
{"__dict__", (getter)type_dict, NULL, NULL},
{"__doc__", (getter)type_get_doc, (setter)type_set_doc, NULL},
{"__text_signature__", (getter)type_get_text_signature, NULL, NULL},
{0}
};
static PyObject *
type_repr(PyTypeObject *type)
{
PyObject *mod, *name, *rtn;
mod = type_module(type, NULL);
if (mod == NULL)
PyErr_Clear();
else if (!PyUnicode_Check(mod)) {
Py_DECREF(mod);
mod = NULL;
}
name = type_qualname(type, NULL);
if (name == NULL) {
Py_XDECREF(mod);
return NULL;
}
if (mod != NULL && !_PyUnicode_EqualToASCIIId(mod, &PyId_builtins))
rtn = PyUnicode_FromFormat("<class '%U.%U'>", mod, name);
else
rtn = PyUnicode_FromFormat("<class '%s'>", type->tp_name);
Py_XDECREF(mod);
Py_DECREF(name);
return rtn;
}
static PyObject *
type_call(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyObject *obj;
if (type->tp_new == NULL) {
PyErr_Format(PyExc_TypeError,
"cannot create '%.100s' instances",
type->tp_name);
return NULL;
}
#ifdef Py_DEBUG
/* type_call() must not be called with an exception set,
because it can clear it (directly or indirectly) and so the
caller loses its exception */
assert(!PyErr_Occurred());
#endif
obj = type->tp_new(type, args, kwds);
obj = _Py_CheckFunctionResult((PyObject*)type, obj, NULL);
if (obj == NULL)
return NULL;
/* Ugly exception: when the call was type(something),
don't call tp_init on the result. */
if (type == &PyType_Type &&
PyTuple_Check(args) && PyTuple_GET_SIZE(args) == 1 &&
(kwds == NULL ||
(PyDict_Check(kwds) && PyDict_GET_SIZE(kwds) == 0)))
return obj;
/* If the returned object is not an instance of type,
it won't be initialized. */
if (!PyType_IsSubtype(Py_TYPE(obj), type))
return obj;
type = Py_TYPE(obj);
if (type->tp_init != NULL) {
int res = type->tp_init(obj, args, kwds);
if (res < 0) {
assert(PyErr_Occurred());
Py_DECREF(obj);
obj = NULL;
}
else {
assert(!PyErr_Occurred());
}
}
return obj;
}
PyObject *
PyType_GenericAlloc(PyTypeObject *type, Py_ssize_t nitems)
{
PyObject *obj;
const size_t size = _PyObject_VAR_SIZE(type, nitems+1);
/* note that we need to add one, for the sentinel */
if (PyType_IS_GC(type))
obj = _PyObject_GC_Malloc(size);
else
obj = (PyObject *)PyObject_MALLOC(size);
if (obj == NULL)
return PyErr_NoMemory();
bzero(obj, size);
if (type->tp_flags & Py_TPFLAGS_HEAPTYPE)
Py_INCREF(type);
if (type->tp_itemsize == 0)
(void)PyObject_INIT(obj, type);
else
(void) PyObject_INIT_VAR((PyVarObject *)obj, type, nitems);
if (PyType_IS_GC(type))
_PyObject_GC_TRACK(obj);
return obj;
}
PyObject *
PyType_GenericNew(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
return type->tp_alloc(type, 0);
}
/* Helpers for subtyping */
static int
traverse_slots(PyTypeObject *type, PyObject *self, visitproc visit, void *arg)
{
Py_ssize_t i, n;
PyMemberDef *mp;
n = Py_SIZE(type);
mp = PyHeapType_GET_MEMBERS((PyHeapTypeObject *)type);
for (i = 0; i < n; i++, mp++) {
if (mp->type == T_OBJECT_EX) {
char *addr = (char *)self + mp->offset;
PyObject *obj = *(PyObject **)addr;
if (obj != NULL) {
int err = visit(obj, arg);
if (err)
return err;
}
}
}
return 0;
}
static int
subtype_traverse(PyObject *self, visitproc visit, void *arg)
{
PyTypeObject *type, *base;
traverseproc basetraverse;
/* Find the nearest base with a different tp_traverse,
and traverse slots while we're at it */
type = Py_TYPE(self);
base = type;
while ((basetraverse = base->tp_traverse) == subtype_traverse) {
if (Py_SIZE(base)) {
int err = traverse_slots(base, self, visit, arg);
if (err)
return err;
}
base = base->tp_base;
assert(base);
}
if (type->tp_dictoffset != base->tp_dictoffset) {
PyObject **dictptr = _PyObject_GetDictPtr(self);
if (dictptr && *dictptr)
Py_VISIT(*dictptr);
}
if (type->tp_flags & Py_TPFLAGS_HEAPTYPE)
/* For a heaptype, the instances count as references
to the type. Traverse the type so the collector
can find cycles involving this link. */
Py_VISIT(type);
if (basetraverse)
return basetraverse(self, visit, arg);
return 0;
}
static void
clear_slots(PyTypeObject *type, PyObject *self)
{
Py_ssize_t i, n;
PyMemberDef *mp;
n = Py_SIZE(type);
mp = PyHeapType_GET_MEMBERS((PyHeapTypeObject *)type);
for (i = 0; i < n; i++, mp++) {
if (mp->type == T_OBJECT_EX && !(mp->flags & READONLY)) {
char *addr = (char *)self + mp->offset;
PyObject *obj = *(PyObject **)addr;
if (obj != NULL) {
*(PyObject **)addr = NULL;
Py_DECREF(obj);
}
}
}
}
static int
subtype_clear(PyObject *self)
{
PyTypeObject *type, *base;
inquiry baseclear;
/* Find the nearest base with a different tp_clear
and clear slots while we're at it */
type = Py_TYPE(self);
base = type;
while ((baseclear = base->tp_clear) == subtype_clear) {
if (Py_SIZE(base))
clear_slots(base, self);
base = base->tp_base;
assert(base);
}
/* Clear the instance dict (if any), to break cycles involving only
__dict__ slots (as in the case 'self.__dict__ is self'). */
if (type->tp_dictoffset != base->tp_dictoffset) {
PyObject **dictptr = _PyObject_GetDictPtr(self);
if (dictptr && *dictptr)
Py_CLEAR(*dictptr);
}
if (baseclear)
return baseclear(self);
return 0;
}
static void
subtype_dealloc(PyObject *self)
{
PyTypeObject *type, *base;
destructor basedealloc;
PyThreadState *tstate = PyThreadState_GET();
int has_finalizer;
/* Extract the type; we expect it to be a heap type */
type = Py_TYPE(self);
assert(type->tp_flags & Py_TPFLAGS_HEAPTYPE);
/* Test whether the type has GC exactly once */
if (!PyType_IS_GC(type)) {
/* It's really rare to find a dynamic type that doesn't have
GC; it can only happen when deriving from 'object' and not
adding any slots or instance variables. This allows
certain simplifications: there's no need to call
clear_slots(), or DECREF the dict, or clear weakrefs. */
/* Maybe call finalizer; exit early if resurrected */
if (type->tp_finalize) {
if (PyObject_CallFinalizerFromDealloc(self) < 0)
return;
}
if (type->tp_del) {
type->tp_del(self);
if (self->ob_refcnt > 0)
return;
}
/* Find the nearest base with a different tp_dealloc */
base = type;
while ((basedealloc = base->tp_dealloc) == subtype_dealloc) {
assert(Py_SIZE(base) == 0);
base = base->tp_base;
assert(base);
}
/* Extract the type again; tp_del may have changed it */
type = Py_TYPE(self);
/* Call the base tp_dealloc() */
assert(basedealloc);
basedealloc(self);
/* Can't reference self beyond this point */
Py_DECREF(type);
/* Done */
return;
}
/* We get here only if the type has GC */
/* UnTrack and re-Track around the trashcan macro, alas */
/* See explanation at end of function for full disclosure */
PyObject_GC_UnTrack(self);
++_PyTrash_delete_nesting;
++ tstate->trash_delete_nesting;
Py_TRASHCAN_SAFE_BEGIN(self);
--_PyTrash_delete_nesting;
-- tstate->trash_delete_nesting;
/* Find the nearest base with a different tp_dealloc */
base = type;
while ((/*basedealloc =*/ base->tp_dealloc) == subtype_dealloc) {
base = base->tp_base;
assert(base);
}
has_finalizer = type->tp_finalize || type->tp_del;
if (type->tp_finalize) {
_PyObject_GC_TRACK(self);
if (PyObject_CallFinalizerFromDealloc(self) < 0) {
/* Resurrected */
goto endlabel;
}
_PyObject_GC_UNTRACK(self);
}
/*
If we added a weaklist, we clear it. Do this *before* calling tp_del,
clearing slots, or clearing the instance dict.
GC tracking must be off at this point. weakref callbacks (if any, and
whether directly here or indirectly in something we call) may trigger GC,
and if self is tracked at that point, it will look like trash to GC and GC
will try to delete self again.
*/
if (type->tp_weaklistoffset && !base->tp_weaklistoffset)
PyObject_ClearWeakRefs(self);
if (type->tp_del) {
_PyObject_GC_TRACK(self);
type->tp_del(self);
if (self->ob_refcnt > 0) {
/* Resurrected */
goto endlabel;
}
_PyObject_GC_UNTRACK(self);
}
if (has_finalizer) {
/* New weakrefs could be created during the finalizer call.
If this occurs, clear them out without calling their
finalizers since they might rely on part of the object
being finalized that has already been destroyed. */
if (type->tp_weaklistoffset && !base->tp_weaklistoffset) {
/* Modeled after GET_WEAKREFS_LISTPTR() */
PyWeakReference **list = (PyWeakReference **) \
PyObject_GET_WEAKREFS_LISTPTR(self);
while (*list)
_PyWeakref_ClearRef(*list);
}
}
/* Clear slots up to the nearest base with a different tp_dealloc */
base = type;
while ((basedealloc = base->tp_dealloc) == subtype_dealloc) {
if (Py_SIZE(base))
clear_slots(base, self);
base = base->tp_base;
assert(base);
}
/* If we added a dict, DECREF it */
if (type->tp_dictoffset && !base->tp_dictoffset) {
PyObject **dictptr = _PyObject_GetDictPtr(self);
if (dictptr != NULL) {
PyObject *dict = *dictptr;
if (dict != NULL) {
Py_DECREF(dict);
*dictptr = NULL;
}
}
}
/* Extract the type again; tp_del may have changed it */
type = Py_TYPE(self);
/* Call the base tp_dealloc(); first retrack self if
* basedealloc knows about gc.
*/
if (PyType_IS_GC(base))
_PyObject_GC_TRACK(self);
assert(basedealloc);
basedealloc(self);
/* Can't reference self beyond this point. It's possible tp_del switched
our type from a HEAPTYPE to a non-HEAPTYPE, so be careful about
reference counting. */
if (type->tp_flags & Py_TPFLAGS_HEAPTYPE)
Py_DECREF(type);
endlabel:
++_PyTrash_delete_nesting;
++ tstate->trash_delete_nesting;
Py_TRASHCAN_SAFE_END(self);
--_PyTrash_delete_nesting;
-- tstate->trash_delete_nesting;
/* Explanation of the weirdness around the trashcan macros:
Q. What do the trashcan macros do?
A. Read the comment titled "Trashcan mechanism" in object.h.
For one, this explains why there must be a call to GC-untrack
before the trashcan begin macro. Without understanding the
trashcan code, the answers to the following questions don't make
sense.
Q. Why do we GC-untrack before the trashcan and then immediately
GC-track again afterward?
A. In the case that the base class is GC-aware, the base class
probably GC-untracks the object. If it does that using the
UNTRACK macro, this will crash when the object is already
untracked. Because we don't know what the base class does, the
only safe thing is to make sure the object is tracked when we
call the base class dealloc. But... The trashcan begin macro
requires that the object is *untracked* before it is called. So
the dance becomes:
GC untrack
trashcan begin
GC track
Q. Why did the last question say "immediately GC-track again"?
It's nowhere near immediately.
A. Because the code *used* to re-track immediately. Bad Idea.
self has a refcount of 0, and if gc ever gets its hands on it
(which can happen if any weakref callback gets invoked), it
looks like trash to gc too, and gc also tries to delete self
then. But we're already deleting self. Double deallocation is
a subtle disaster.
Q. Why the bizarre (net-zero) manipulation of
_PyTrash_delete_nesting around the trashcan macros?
A. Some base classes (e.g. list) also use the trashcan mechanism.
The following scenario used to be possible:
- suppose the trashcan level is one below the trashcan limit
- subtype_dealloc() is called
- the trashcan limit is not yet reached, so the trashcan level
is incremented and the code between trashcan begin and end is
executed
- this destroys much of the object's contents, including its
slots and __dict__
- basedealloc() is called; this is really list_dealloc(), or
some other type which also uses the trashcan macros
- the trashcan limit is now reached, so the object is put on the
trashcan's to-be-deleted-later list
- basedealloc() returns
- subtype_dealloc() decrefs the object's type
- subtype_dealloc() returns
- later, the trashcan code starts deleting the objects from its
to-be-deleted-later list
- subtype_dealloc() is called *AGAIN* for the same object
- at the very least (if the destroyed slots and __dict__ don't
cause problems) the object's type gets decref'ed a second
time, which is *BAD*!!!
The remedy is to make sure that if the code between trashcan
begin and end in subtype_dealloc() is called, the code between
trashcan begin and end in basedealloc() will also be called.
This is done by decrementing the level after passing into the
trashcan block, and incrementing it just before leaving the
block.
But now it's possible that a chain of objects consisting solely
of objects whose deallocator is subtype_dealloc() will defeat
the trashcan mechanism completely: the decremented level means
that the effective level never reaches the limit. Therefore, we
*increment* the level *before* entering the trashcan block, and
matchingly decrement it after leaving. This means the trashcan
code will trigger a little early, but that's no big deal.
Q. Are there any live examples of code in need of all this
complexity?
A. Yes. See SF bug 668433 for code that crashed (when Python was
compiled in debug mode) before the trashcan level manipulations
were added. For more discussion, see SF patches 581742, 575073
and bug 574207.
*/
}
static PyTypeObject *solid_base(PyTypeObject *type);
/* type test with subclassing support */
static int
type_is_subtype_base_chain(PyTypeObject *a, PyTypeObject *b)
{
do {
if (a == b)
return 1;
a = a->tp_base;
} while (a != NULL);
return (b == &PyBaseObject_Type);
}
int
PyType_IsSubtype(PyTypeObject *a, PyTypeObject *b)
{
PyObject *mro;
mro = a->tp_mro;
if (mro != NULL) {
/* Deal with multiple inheritance without recursion
by walking the MRO tuple */
Py_ssize_t i, n;
assert(PyTuple_Check(mro));
n = PyTuple_GET_SIZE(mro);
for (i = 0; i < n; i++) {
if (PyTuple_GET_ITEM(mro, i) == (PyObject *)b)
return 1;
}
return 0;
}
else
/* a is not completely initilized yet; follow tp_base */
return type_is_subtype_base_chain(a, b);
}
/* Internal routines to do a method lookup in the type
without looking in the instance dictionary
(so we can't use PyObject_GetAttr) but still binding
it to the instance. The arguments are the object,
the method name as a C string, and the address of a
static variable used to cache the interned Python string.
Variants:
- lookup_maybe() returns NULL without raising an exception
when the _PyType_Lookup() call fails;
- lookup_maybe_method() and lookup_method() are similar to
lookup_maybe(), but can return unbound PyFunction
to avoid temporary method object. Pass self as first argument when
unbound == 1.
- _PyObject_LookupSpecial() expose lookup_maybe for the benefit of
other places.
*/
forceinline PyObject *
lookup_maybe(PyObject *self, _Py_Identifier *attrid)
{
PyObject *res;
res = _PyType_LookupId(Py_TYPE(self), attrid);
if (res != NULL) {
descrgetfunc f;
if ((f = Py_TYPE(res)->tp_descr_get) == NULL)
Py_INCREF(res);
else
res = f(res, self, (PyObject *)(Py_TYPE(self)));
}
return res;
}
static PyObject *
lookup_maybe_method(PyObject *self, _Py_Identifier *attrid, int *unbound)
{
PyObject *res = _PyType_LookupId(Py_TYPE(self), attrid);
if (res == NULL) {
return NULL;
}
if (PyFunction_Check(res)) {
/* Avoid temporary PyMethodObject */
*unbound = 1;
Py_INCREF(res);
}
else {
*unbound = 0;
descrgetfunc f = Py_TYPE(res)->tp_descr_get;
if (f == NULL) {
Py_INCREF(res);
}
else {
res = f(res, self, (PyObject *)(Py_TYPE(self)));
}
}
return res;
}
static PyObject *
lookup_method(PyObject *self, _Py_Identifier *attrid, int *unbound)
{
PyObject *res = lookup_maybe_method(self, attrid, unbound);
if (res == NULL && !PyErr_Occurred()) {
PyErr_SetObject(PyExc_AttributeError, attrid->object);
}
return res;
}
PyObject *
_PyObject_LookupSpecial(PyObject *self, _Py_Identifier *attrid)
{
return lookup_maybe(self, attrid);
}
static PyObject*
call_unbound(int unbound, PyObject *func, PyObject *self,
PyObject **args, Py_ssize_t nargs)
{
if (unbound) {
return _PyObject_FastCall_Prepend(func, self, args, nargs);
}
else {
return _PyObject_FastCall(func, args, nargs);
}
}
static PyObject*
call_unbound_noarg(int unbound, PyObject *func, PyObject *self)
{
if (unbound) {
PyObject *args[1] = {self};
return _PyObject_FastCall(func, args, 1);
}
else {
return _PyObject_CallNoArg(func);
}
}
/* A variation of PyObject_CallMethodObjArgs that uses lookup_maybe_method()
instead of PyObject_GetAttrString(). This uses the same convention
as lookup_maybe_method to cache the interned name string object. */
static PyObject *
call_method(PyObject *obj, _Py_Identifier *name,
PyObject **args, Py_ssize_t nargs)
{
int unbound;
PyObject *func, *retval;
func = lookup_maybe_method(obj, name, &unbound);
if (func == NULL) {
if (!PyErr_Occurred())
PyErr_SetObject(PyExc_AttributeError, name->object);
return NULL;
}
retval = call_unbound(unbound, func, obj, args, nargs);
Py_DECREF(func);
return retval;
}
/* Clone of call_method() that returns NotImplemented when the lookup fails. */
static PyObject *
call_maybe(PyObject *obj, _Py_Identifier *name,
PyObject **args, Py_ssize_t nargs)
{
int unbound;
PyObject *func, *retval;
func = lookup_maybe_method(obj, name, &unbound);
if (func == NULL) {
if (!PyErr_Occurred())
Py_RETURN_NOTIMPLEMENTED;
return NULL;
}
retval = call_unbound(unbound, func, obj, args, nargs);
Py_DECREF(func);
return retval;
}
/*
Method resolution order algorithm C3 described in
"A Monotonic Superclass Linearization for Dylan",
by Kim Barrett, Bob Cassel, Paul Haahr,
David A. Moon, Keith Playford, and P. Tucker Withington.
(OOPSLA 1996)
Some notes about the rules implied by C3:
No duplicate bases.
It isn't legal to repeat a class in a list of base classes.
The next three properties are the 3 constraints in "C3".
Local precedence order.
If A precedes B in C's MRO, then A will precede B in the MRO of all
subclasses of C.
Monotonicity.
The MRO of a class must be an extension without reordering of the
MRO of each of its superclasses.
Extended Precedence Graph (EPG).
Linearization is consistent if there is a path in the EPG from
each class to all its successors in the linearization. See
the paper for definition of EPG.
*/
static int
tail_contains(PyObject *list, int whence, PyObject *o) {
Py_ssize_t j, size;
size = PyList_GET_SIZE(list);
for (j = whence+1; j < size; j++) {
if (PyList_GET_ITEM(list, j) == o)
return 1;
}
return 0;
}
static PyObject *
class_name(PyObject *cls)
{
PyObject *name = _PyObject_GetAttrId(cls, &PyId___name__);
if (name == NULL) {
PyErr_Clear();
name = PyObject_Repr(cls);
}
if (name == NULL)
return NULL;
if (!PyUnicode_Check(name)) {
Py_DECREF(name);
return NULL;
}
return name;
}
static int
check_duplicates(PyObject *list)
{
Py_ssize_t i, j, n;
/* Let's use a quadratic time algorithm,
assuming that the bases lists is short.
*/
n = PyList_GET_SIZE(list);
for (i = 0; i < n; i++) {
PyObject *o = PyList_GET_ITEM(list, i);
for (j = i + 1; j < n; j++) {
if (PyList_GET_ITEM(list, j) == o) {
o = class_name(o);
if (o != NULL) {
PyErr_Format(PyExc_TypeError,
"duplicate base class %U",
o);
Py_DECREF(o);
} else {
PyErr_SetString(PyExc_TypeError,
"duplicate base class");
}
return -1;
}
}
}
return 0;
}
/* Raise a TypeError for an MRO order disagreement.
It's hard to produce a good error message. In the absence of better
insight into error reporting, report the classes that were candidates
to be put next into the MRO. There is some conflict between the
order in which they should be put in the MRO, but it's hard to
diagnose what constraint can't be satisfied.
*/
static void
set_mro_error(PyObject *to_merge, int *remain)
{
Py_ssize_t i, n, off, to_merge_size;
char buf[1000];
PyObject *k, *v;
PyObject *set = PyDict_New();
if (!set) return;
to_merge_size = PyList_GET_SIZE(to_merge);
for (i = 0; i < to_merge_size; i++) {
PyObject *L = PyList_GET_ITEM(to_merge, i);
if (remain[i] < PyList_GET_SIZE(L)) {
PyObject *c = PyList_GET_ITEM(L, remain[i]);
if (PyDict_SetItem(set, c, Py_None) < 0) {
Py_DECREF(set);
return;
}
}
}
n = PyDict_GET_SIZE(set);
off = PyOS_snprintf(buf, sizeof(buf), "Cannot create a \
consistent method resolution\norder (MRO) for bases");
i = 0;
while (PyDict_Next(set, &i, &k, &v) && (size_t)off < sizeof(buf)) {
PyObject *name = class_name(k);
const char *name_str;
if (name != NULL) {
name_str = PyUnicode_AsUTF8(name);
if (name_str == NULL)
name_str = "?";
} else
name_str = "?";
off += PyOS_snprintf(buf + off, sizeof(buf) - off, " %s", name_str);
Py_XDECREF(name);
if (--n && (size_t)(off+1) < sizeof(buf)) {
buf[off++] = ',';
buf[off] = '\0';
}
}
PyErr_SetString(PyExc_TypeError, buf);
Py_DECREF(set);
}
static int
pmerge(PyObject *acc, PyObject* to_merge)
{
int res = 0;
Py_ssize_t i, j, to_merge_size, empty_cnt;
int *remain;
to_merge_size = PyList_GET_SIZE(to_merge);
/* remain stores an index into each sublist of to_merge.
remain[i] is the index of the next base in to_merge[i]
that is not included in acc.
*/
remain = (int *)PyMem_MALLOC(SIZEOF_INT*to_merge_size);
if (remain == NULL) {
PyErr_NoMemory();
return -1;
}
for (i = 0; i < to_merge_size; i++)
remain[i] = 0;
again:
empty_cnt = 0;
for (i = 0; i < to_merge_size; i++) {
PyObject *candidate;
PyObject *cur_list = PyList_GET_ITEM(to_merge, i);
if (remain[i] >= PyList_GET_SIZE(cur_list)) {
empty_cnt++;
continue;
}
/* Choose next candidate for MRO.
The input sequences alone can determine the choice.
If not, choose the class which appears in the MRO
of the earliest direct superclass of the new class.
*/
candidate = PyList_GET_ITEM(cur_list, remain[i]);
for (j = 0; j < to_merge_size; j++) {
PyObject *j_lst = PyList_GET_ITEM(to_merge, j);
if (tail_contains(j_lst, remain[j], candidate))
goto skip; /* continue outer loop */
}
res = PyList_Append(acc, candidate);
if (res < 0)
goto out;
for (j = 0; j < to_merge_size; j++) {
PyObject *j_lst = PyList_GET_ITEM(to_merge, j);
if (remain[j] < PyList_GET_SIZE(j_lst) &&
PyList_GET_ITEM(j_lst, remain[j]) == candidate) {
remain[j]++;
}
}
goto again;
skip: ;
}
if (empty_cnt != to_merge_size) {
set_mro_error(to_merge, remain);
res = -1;
}
out:
PyMem_FREE(remain);
return res;
}
static PyObject *
mro_implementation(PyTypeObject *type)
{
PyObject *result = NULL;
PyObject *bases;
PyObject *to_merge, *bases_aslist;
int res;
Py_ssize_t i, n;
if (type->tp_dict == NULL) {
if (PyType_Ready(type) < 0)
return NULL;
}
/* Find a superclass linearization that honors the constraints
of the explicit lists of bases and the constraints implied by
each base class.
to_merge is a list of lists, where each list is a superclass
linearization implied by a base class. The last element of
to_merge is the declared list of bases.
*/
bases = type->tp_bases;
n = PyTuple_GET_SIZE(bases);
to_merge = PyList_New(n+1);
if (to_merge == NULL)
return NULL;
for (i = 0; i < n; i++) {
PyTypeObject *base;
PyObject *base_mro_aslist;
base = (PyTypeObject *)PyTuple_GET_ITEM(bases, i);
if (base->tp_mro == NULL) {
PyErr_Format(PyExc_TypeError,
"Cannot extend an incomplete type '%.100s'",
base->tp_name);
goto out;
}
base_mro_aslist = PySequence_List(base->tp_mro);
if (base_mro_aslist == NULL)
goto out;
PyList_SET_ITEM(to_merge, i, base_mro_aslist);
}
bases_aslist = PySequence_List(bases);
if (bases_aslist == NULL)
goto out;
/* This is just a basic sanity check. */
if (check_duplicates(bases_aslist) < 0) {
Py_DECREF(bases_aslist);
goto out;
}
PyList_SET_ITEM(to_merge, n, bases_aslist);
result = Py_BuildValue("[O]", (PyObject *)type);
if (result == NULL)
goto out;
res = pmerge(result, to_merge);
if (res < 0)
Py_CLEAR(result);
out:
Py_DECREF(to_merge);
return result;
}
static PyObject *
mro_external(PyObject *self)
{
PyTypeObject *type = (PyTypeObject *)self;
return mro_implementation(type);
}
static int
mro_check(PyTypeObject *type, PyObject *mro)
{
PyTypeObject *solid;
Py_ssize_t i, n;
solid = solid_base(type);
n = PyTuple_GET_SIZE(mro);
for (i = 0; i < n; i++) {
PyTypeObject *base;
PyObject *tmp;
tmp = PyTuple_GET_ITEM(mro, i);
if (!PyType_Check(tmp)) {
PyErr_Format(
PyExc_TypeError,
"mro() returned a non-class ('%.500s')",
Py_TYPE(tmp)->tp_name);
return -1;
}
base = (PyTypeObject*)tmp;
if (!PyType_IsSubtype(solid, solid_base(base))) {
PyErr_Format(
PyExc_TypeError,
"mro() returned base with unsuitable layout ('%.500s')",
base->tp_name);
return -1;
}
}
return 0;
}
/* Lookups an mcls.mro method, invokes it and checks the result (if needed,
in case of a custom mro() implementation).
Keep in mind that during execution of this function type->tp_mro
can be replaced due to possible reentrance (for example,
through type_set_bases):
- when looking up the mcls.mro attribute (it could be
a user-provided descriptor);
- from inside a custom mro() itself;
- through a finalizer of the return value of mro().
*/
static PyObject *
mro_invoke(PyTypeObject *type)
{
PyObject *mro_result;
PyObject *new_mro;
int custom = (Py_TYPE(type) != &PyType_Type);
if (custom) {
_Py_IDENTIFIER(mro);
int unbound;
PyObject *mro_meth = lookup_method((PyObject *)type, &PyId_mro,
&unbound);
if (mro_meth == NULL)
return NULL;
mro_result = call_unbound_noarg(unbound, mro_meth, (PyObject *)type);
Py_DECREF(mro_meth);
}
else {
mro_result = mro_implementation(type);
}
if (mro_result == NULL)
return NULL;
new_mro = PySequence_Tuple(mro_result);
Py_DECREF(mro_result);
if (new_mro == NULL)
return NULL;
if (custom && mro_check(type, new_mro) < 0) {
Py_DECREF(new_mro);
return NULL;
}
return new_mro;
}
/* Calculates and assigns a new MRO to type->tp_mro.
Return values and invariants:
- Returns 1 if a new MRO value has been set to type->tp_mro due to
this call of mro_internal (no tricky reentrancy and no errors).
In case if p_old_mro argument is not NULL, a previous value
of type->tp_mro is put there, and the ownership of this
reference is transferred to a caller.
Otherwise, the previous value (if any) is decref'ed.
- Returns 0 in case when type->tp_mro gets changed because of
reentering here through a custom mro() (see a comment to mro_invoke).
In this case, a refcount of an old type->tp_mro is adjusted
somewhere deeper in the call stack (by the innermost mro_internal
or its caller) and may become zero upon returning from here.
This also implies that the whole hierarchy of subclasses of the type
has seen the new value and updated their MRO accordingly.
- Returns -1 in case of an error.
*/
static int
mro_internal(PyTypeObject *type, PyObject **p_old_mro)
{
PyObject *new_mro, *old_mro;
int reent;
/* Keep a reference to be able to do a reentrancy check below.
Don't let old_mro be GC'ed and its address be reused for
another object, like (suddenly!) a new tp_mro. */
old_mro = type->tp_mro;
Py_XINCREF(old_mro);
new_mro = mro_invoke(type); /* might cause reentrance */
reent = (type->tp_mro != old_mro);
Py_XDECREF(old_mro);
if (new_mro == NULL)
return -1;
if (reent) {
Py_DECREF(new_mro);
return 0;
}
type->tp_mro = new_mro;
type_mro_modified(type, type->tp_mro);
/* corner case: the super class might have been hidden
from the custom MRO */
type_mro_modified(type, type->tp_bases);
PyType_Modified(type);
if (p_old_mro != NULL)
*p_old_mro = old_mro; /* transfer the ownership */
else
Py_XDECREF(old_mro);
return 1;
}
/* Calculate the best base amongst multiple base classes.
This is the first one that's on the path to the "solid base". */
static PyTypeObject *
best_base(PyObject *bases)
{
Py_ssize_t i, n;
PyTypeObject *base, *winner, *candidate, *base_i;
PyObject *base_proto;
assert(PyTuple_Check(bases));
n = PyTuple_GET_SIZE(bases);
assert(n > 0);
base = NULL;
winner = NULL;
for (i = 0; i < n; i++) {
base_proto = PyTuple_GET_ITEM(bases, i);
if (!PyType_Check(base_proto)) {
PyErr_SetString(
PyExc_TypeError,
"bases must be types");
return NULL;
}
base_i = (PyTypeObject *)base_proto;
if (base_i->tp_dict == NULL) {
if (PyType_Ready(base_i) < 0)
return NULL;
}
if (!PyType_HasFeature(base_i, Py_TPFLAGS_BASETYPE)) {
PyErr_Format(PyExc_TypeError,
"type '%.100s' is not an acceptable base type",
base_i->tp_name);
return NULL;
}
candidate = solid_base(base_i);
if (winner == NULL) {
winner = candidate;
base = base_i;
}
else if (PyType_IsSubtype(winner, candidate))
;
else if (PyType_IsSubtype(candidate, winner)) {
winner = candidate;
base = base_i;
}
else {
PyErr_SetString(
PyExc_TypeError,
"multiple bases have "
"instance lay-out conflict");
return NULL;
}
}
assert (base != NULL);
return base;
}
static int
extra_ivars(PyTypeObject *type, PyTypeObject *base)
{
size_t t_size = type->tp_basicsize;
size_t b_size = base->tp_basicsize;
assert(t_size >= b_size); /* Else type smaller than base! */
if (type->tp_itemsize || base->tp_itemsize) {
/* If itemsize is involved, stricter rules */
return t_size != b_size ||
type->tp_itemsize != base->tp_itemsize;
}
if (type->tp_weaklistoffset && base->tp_weaklistoffset == 0 &&
type->tp_weaklistoffset + sizeof(PyObject *) == t_size &&
type->tp_flags & Py_TPFLAGS_HEAPTYPE)
t_size -= sizeof(PyObject *);
if (type->tp_dictoffset && base->tp_dictoffset == 0 &&
type->tp_dictoffset + sizeof(PyObject *) == t_size &&
type->tp_flags & Py_TPFLAGS_HEAPTYPE)
t_size -= sizeof(PyObject *);
return t_size != b_size;
}
static PyTypeObject *
solid_base(PyTypeObject *type)
{
PyTypeObject *base;
if (type->tp_base)
base = solid_base(type->tp_base);
else
base = &PyBaseObject_Type;
if (extra_ivars(type, base))
return type;
else
return base;
}
static void object_dealloc(PyObject *);
static int object_init(PyObject *, PyObject *, PyObject *);
static int update_slot(PyTypeObject *, PyObject *);
static void fixup_slot_dispatchers(PyTypeObject *);
static int set_names(PyTypeObject *);
static int init_subclass(PyTypeObject *, PyObject *);
/*
* Helpers for __dict__ descriptor. We don't want to expose the dicts
* inherited from various builtin types. The builtin base usually provides
* its own __dict__ descriptor, so we use that when we can.
*/
static PyTypeObject *
get_builtin_base_with_dict(PyTypeObject *type)
{
while (type->tp_base != NULL) {
if (type->tp_dictoffset != 0 &&
!(type->tp_flags & Py_TPFLAGS_HEAPTYPE))
return type;
type = type->tp_base;
}
return NULL;
}
static PyObject *
get_dict_descriptor(PyTypeObject *type)
{
PyObject *descr;
descr = _PyType_LookupId(type, &PyId___dict__);
if (descr == NULL || !PyDescr_IsData(descr))
return NULL;
return descr;
}
static void
raise_dict_descr_error(PyObject *obj)
{
PyErr_Format(PyExc_TypeError,
"this __dict__ descriptor does not support "
"'%.200s' objects", Py_TYPE(obj)->tp_name);
}
static PyObject *
subtype_dict(PyObject *obj, void *context)
{
PyTypeObject *base;
base = get_builtin_base_with_dict(Py_TYPE(obj));
if (base != NULL) {
descrgetfunc func;
PyObject *descr = get_dict_descriptor(base);
if (descr == NULL) {
raise_dict_descr_error(obj);
return NULL;
}
func = Py_TYPE(descr)->tp_descr_get;
if (func == NULL) {
raise_dict_descr_error(obj);
return NULL;
}
return func(descr, obj, (PyObject *)(Py_TYPE(obj)));
}
return PyObject_GenericGetDict(obj, context);
}
static int
subtype_setdict(PyObject *obj, PyObject *value, void *context)
{
PyObject **dictptr;
PyTypeObject *base;
base = get_builtin_base_with_dict(Py_TYPE(obj));
if (base != NULL) {
descrsetfunc func;
PyObject *descr = get_dict_descriptor(base);
if (descr == NULL) {
raise_dict_descr_error(obj);
return -1;
}
func = Py_TYPE(descr)->tp_descr_set;
if (func == NULL) {
raise_dict_descr_error(obj);
return -1;
}
return func(descr, obj, value);
}
/* Almost like PyObject_GenericSetDict, but allow __dict__ to be deleted. */
dictptr = _PyObject_GetDictPtr(obj);
if (dictptr == NULL) {
PyErr_SetString(PyExc_AttributeError,
"This object has no __dict__");
return -1;
}
if (value != NULL && !PyDict_Check(value)) {
PyErr_Format(PyExc_TypeError,
"__dict__ must be set to a dictionary, "
"not a '%.200s'", Py_TYPE(value)->tp_name);
return -1;
}
Py_XINCREF(value);
Py_XSETREF(*dictptr, value);
return 0;
}
static PyObject *
subtype_getweakref(PyObject *obj, void *context)
{
PyObject **weaklistptr;
PyObject *result;
if (Py_TYPE(obj)->tp_weaklistoffset == 0) {
PyErr_SetString(PyExc_AttributeError,
"This object has no __weakref__");
return NULL;
}
assert(Py_TYPE(obj)->tp_weaklistoffset > 0);
assert(Py_TYPE(obj)->tp_weaklistoffset + sizeof(PyObject *) <=
(size_t)(Py_TYPE(obj)->tp_basicsize));
weaklistptr = (PyObject **)
((char *)obj + Py_TYPE(obj)->tp_weaklistoffset);
if (*weaklistptr == NULL)
result = Py_None;
else
result = *weaklistptr;
Py_INCREF(result);
return result;
}
/* Three variants on the subtype_getsets list. */
static PyGetSetDef subtype_getsets_full[] = {
{"__dict__", subtype_dict, subtype_setdict,
PyDoc_STR("dictionary for instance variables (if defined)")},
{"__weakref__", subtype_getweakref, NULL,
PyDoc_STR("list of weak references to the object (if defined)")},
{0}
};
static PyGetSetDef subtype_getsets_dict_only[] = {
{"__dict__", subtype_dict, subtype_setdict,
PyDoc_STR("dictionary for instance variables (if defined)")},
{0}
};
static PyGetSetDef subtype_getsets_weakref_only[] = {
{"__weakref__", subtype_getweakref, NULL,
PyDoc_STR("list of weak references to the object (if defined)")},
{0}
};
static int
valid_identifier(PyObject *s)
{
if (!PyUnicode_Check(s)) {
PyErr_Format(PyExc_TypeError,
"__slots__ items must be strings, not '%.200s'",
Py_TYPE(s)->tp_name);
return 0;
}
if (!PyUnicode_IsIdentifier(s)) {
PyErr_SetString(PyExc_TypeError,
"__slots__ must be identifiers");
return 0;
}
return 1;
}
/* Forward */
static int
object_init(PyObject *self, PyObject *args, PyObject *kwds);
static int
type_init(PyObject *cls, PyObject *args, PyObject *kwds)
{
int res;
assert(args != NULL && PyTuple_Check(args));
assert(kwds == NULL || PyDict_Check(kwds));
if (kwds != NULL && PyTuple_Check(args) && PyTuple_GET_SIZE(args) == 1 &&
PyDict_Check(kwds) && PyDict_GET_SIZE(kwds) != 0) {
PyErr_SetString(PyExc_TypeError,
"type.__init__() takes no keyword arguments");
return -1;
}
if (args != NULL && PyTuple_Check(args) &&
(PyTuple_GET_SIZE(args) != 1 && PyTuple_GET_SIZE(args) != 3)) {
PyErr_SetString(PyExc_TypeError,
"type.__init__() takes 1 or 3 arguments");
return -1;
}
/* Call object.__init__(self) now. */
/* XXX Could call super(type, cls).__init__() but what's the point? */
args = PyTuple_GetSlice(args, 0, 0);
res = object_init(cls, args, NULL);
Py_DECREF(args);
return res;
}
unsigned long
PyType_GetFlags(PyTypeObject *type)
{
return type->tp_flags;
}
/* Determine the most derived metatype. */
PyTypeObject *
_PyType_CalculateMetaclass(PyTypeObject *metatype, PyObject *bases)
{
Py_ssize_t i, nbases;
PyTypeObject *winner;
PyObject *tmp;
PyTypeObject *tmptype;
/* Determine the proper metatype to deal with this,
and check for metatype conflicts while we're at it.
Note that if some other metatype wins to contract,
it's possible that its instances are not types. */
nbases = PyTuple_GET_SIZE(bases);
winner = metatype;
for (i = 0; i < nbases; i++) {
tmp = PyTuple_GET_ITEM(bases, i);
tmptype = Py_TYPE(tmp);
if (PyType_IsSubtype(winner, tmptype))
continue;
if (PyType_IsSubtype(tmptype, winner)) {
winner = tmptype;
continue;
}
/* else: */
PyErr_SetString(PyExc_TypeError,
"metaclass conflict: "
"the metaclass of a derived class "
"must be a (non-strict) subclass "
"of the metaclasses of all its bases");
return NULL;
}
return winner;
}
static PyObject *
type_new(PyTypeObject *metatype, PyObject *args, PyObject *kwds)
{
PyObject *name, *bases = NULL, *orig_dict, *dict = NULL;
PyObject *qualname, *slots = NULL, *tmp, *newslots, *cell;
PyTypeObject *type = NULL, *base, *tmptype, *winner;
PyHeapTypeObject *et;
PyMemberDef *mp;
Py_ssize_t i, nbases, nslots, slotoffset, name_size;
int j, may_add_dict, may_add_weak, add_dict, add_weak;
_Py_IDENTIFIER(__qualname__);
_Py_IDENTIFIER(__slots__);
_Py_IDENTIFIER(__classcell__);
assert(args != NULL && PyTuple_Check(args));
assert(kwds == NULL || PyDict_Check(kwds));
/* Special case: type(x) should return x->ob_type */
/* We only want type itself to accept the one-argument form (#27157)
Note: We don't call PyType_CheckExact as that also allows subclasses */
if (metatype == &PyType_Type) {
const Py_ssize_t nargs = PyTuple_GET_SIZE(args);
const Py_ssize_t nkwds = kwds == NULL ? 0 : PyDict_GET_SIZE(kwds);
if (nargs == 1 && nkwds == 0) {
PyObject *x = PyTuple_GET_ITEM(args, 0);
Py_INCREF(Py_TYPE(x));
return (PyObject *) Py_TYPE(x);
}
/* SF bug 475327 -- if that didn't trigger, we need 3
arguments. but PyArg_ParseTupleAndKeywords below may give
a msg saying type() needs exactly 3. */
if (nargs != 3) {
PyErr_SetString(PyExc_TypeError,
"type() takes 1 or 3 arguments");
return NULL;
}
}
/* Check arguments: (name, bases, dict) */
if (!PyArg_ParseTuple(args, "UO!O!:type.__new__", &name, &PyTuple_Type,
&bases, &PyDict_Type, &orig_dict))
return NULL;
/* Determine the proper metatype to deal with this: */
winner = _PyType_CalculateMetaclass(metatype, bases);
if (winner == NULL) {
return NULL;
}
if (winner != metatype) {
if (winner->tp_new != type_new) /* Pass it to the winner */
return winner->tp_new(winner, args, kwds);
metatype = winner;
}
/* Adjust for empty tuple bases */
nbases = PyTuple_GET_SIZE(bases);
if (nbases == 0) {
bases = PyTuple_Pack(1, &PyBaseObject_Type);
if (bases == NULL)
goto error;
nbases = 1;
}
else
Py_INCREF(bases);
/* Calculate best base, and check that all bases are type objects */
base = best_base(bases);
if (base == NULL) {
goto error;
}
dict = PyDict_Copy(orig_dict);
if (dict == NULL)
goto error;
/* Check for a __slots__ sequence variable in dict, and count it */
slots = _PyDict_GetItemId(dict, &PyId___slots__);
nslots = 0;
add_dict = 0;
add_weak = 0;
may_add_dict = base->tp_dictoffset == 0;
may_add_weak = base->tp_weaklistoffset == 0 && base->tp_itemsize == 0;
if (slots == NULL) {
if (may_add_dict) {
add_dict++;
}
if (may_add_weak) {
add_weak++;
}
}
else {
/* Have slots */
/* Make it into a tuple */
if (PyUnicode_Check(slots))
slots = PyTuple_Pack(1, slots);
else
slots = PySequence_Tuple(slots);
if (slots == NULL)
goto error;
assert(PyTuple_Check(slots));
/* Are slots allowed? */
nslots = PyTuple_GET_SIZE(slots);
if (nslots > 0 && base->tp_itemsize != 0) {
PyErr_Format(PyExc_TypeError,
"nonempty __slots__ "
"not supported for subtype of '%s'",
base->tp_name);
goto error;
}
/* Check for valid slot names and two special cases */
for (i = 0; i < nslots; i++) {
PyObject *tmp = PyTuple_GET_ITEM(slots, i);
if (!valid_identifier(tmp))
goto error;
assert(PyUnicode_Check(tmp));
if (_PyUnicode_EqualToASCIIId(tmp, &PyId___dict__)) {
if (!may_add_dict || add_dict) {
PyErr_SetString(PyExc_TypeError,
"__dict__ slot disallowed: "
"we already got one");
goto error;
}
add_dict++;
}
if (_PyUnicode_EqualToASCIIString(tmp, "__weakref__")) {
if (!may_add_weak || add_weak) {
PyErr_SetString(PyExc_TypeError,
"__weakref__ slot disallowed: "
"either we already got one, "
"or __itemsize__ != 0");
goto error;
}
add_weak++;
}
}
/* Copy slots into a list, mangle names and sort them.
Sorted names are needed for __class__ assignment.
Convert them back to tuple at the end.
*/
newslots = PyList_New(nslots - add_dict - add_weak);
if (newslots == NULL)
goto error;
for (i = j = 0; i < nslots; i++) {
tmp = PyTuple_GET_ITEM(slots, i);
if ((add_dict &&
_PyUnicode_EqualToASCIIId(tmp, &PyId___dict__)) ||
(add_weak &&
_PyUnicode_EqualToASCIIString(tmp, "__weakref__")))
continue;
tmp =_Py_Mangle(name, tmp);
if (!tmp) {
Py_DECREF(newslots);
goto error;
}
PyList_SET_ITEM(newslots, j, tmp);
if (PyDict_GetItem(dict, tmp)) {
PyErr_Format(PyExc_ValueError,
"%R in __slots__ conflicts with class variable",
tmp);
Py_DECREF(newslots);
goto error;
}
j++;
}
assert(j == nslots - add_dict - add_weak);
nslots = j;
Py_CLEAR(slots);
if (PyList_Sort(newslots) == -1) {
Py_DECREF(newslots);
goto error;
}
slots = PyList_AsTuple(newslots);
Py_DECREF(newslots);
if (slots == NULL)
goto error;
/* Secondary bases may provide weakrefs or dict */
if (nbases > 1 &&
((may_add_dict && !add_dict) ||
(may_add_weak && !add_weak))) {
for (i = 0; i < nbases; i++) {
tmp = PyTuple_GET_ITEM(bases, i);
if (tmp == (PyObject *)base)
continue; /* Skip primary base */
assert(PyType_Check(tmp));
tmptype = (PyTypeObject *)tmp;
if (may_add_dict && !add_dict &&
tmptype->tp_dictoffset != 0)
add_dict++;
if (may_add_weak && !add_weak &&
tmptype->tp_weaklistoffset != 0)
add_weak++;
if (may_add_dict && !add_dict)
continue;
if (may_add_weak && !add_weak)
continue;
/* Nothing more to check */
break;
}
}
}
/* Allocate the type object */
type = (PyTypeObject *)metatype->tp_alloc(metatype, nslots);
if (type == NULL)
goto error;
/* Keep name and slots alive in the extended type object */
et = (PyHeapTypeObject *)type;
Py_INCREF(name);
et->ht_name = name;
et->ht_slots = slots;
slots = NULL;
/* Initialize tp_flags */
type->tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HEAPTYPE |
Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_FINALIZE;
if (base->tp_flags & Py_TPFLAGS_HAVE_GC)
type->tp_flags |= Py_TPFLAGS_HAVE_GC;
/* Initialize essential fields */
type->tp_as_async = &et->as_async;
type->tp_as_number = &et->as_number;
type->tp_as_sequence = &et->as_sequence;
type->tp_as_mapping = &et->as_mapping;
type->tp_as_buffer = &et->as_buffer;
type->tp_name = PyUnicode_AsUTF8AndSize(name, &name_size);
if (!type->tp_name)
goto error;
if (strlen(type->tp_name) != (size_t)name_size) {
PyErr_SetString(PyExc_ValueError,
"type name must not contain null characters");
goto error;
}
/* Set tp_base and tp_bases */
type->tp_bases = bases;
bases = NULL;
Py_INCREF(base);
type->tp_base = base;
/* Initialize tp_dict from passed-in dict */
Py_INCREF(dict);
type->tp_dict = dict;
/* Set __module__ in the dict */
if (_PyDict_GetItemId(dict, &PyId___module__) == NULL) {
tmp = PyEval_GetGlobals();
if (tmp != NULL) {
tmp = _PyDict_GetItemId(tmp, &PyId___name__);
if (tmp != NULL) {
if (_PyDict_SetItemId(dict, &PyId___module__,
tmp) < 0)
goto error;
}
}
}
/* Set ht_qualname to dict['__qualname__'] if available, else to
__name__. The __qualname__ accessor will look for ht_qualname.
*/
qualname = _PyDict_GetItemId(dict, &PyId___qualname__);
if (qualname != NULL) {
if (!PyUnicode_Check(qualname)) {
PyErr_Format(PyExc_TypeError,
"type __qualname__ must be a str, not %s",
Py_TYPE(qualname)->tp_name);
goto error;
}
}
et->ht_qualname = qualname ? qualname : et->ht_name;
Py_INCREF(et->ht_qualname);
if (qualname != NULL && _PyDict_DelItemId(dict, &PyId___qualname__) < 0)
goto error;
/* Set tp_doc to a copy of dict['__doc__'], if the latter is there
and is a string. The __doc__ accessor will first look for tp_doc;
if that fails, it will still look into __dict__.
*/
{
PyObject *doc = _PyDict_GetItemId(dict, &PyId___doc__);
if (doc != NULL && PyUnicode_Check(doc)) {
Py_ssize_t len;
const char *doc_str;
char *tp_doc;
doc_str = PyUnicode_AsUTF8(doc);
if (doc_str == NULL)
goto error;
/* Silently truncate the docstring if it contains null bytes. */
len = strlen(doc_str);
tp_doc = (char *)PyObject_MALLOC(len + 1);
if (tp_doc == NULL) {
PyErr_NoMemory();
goto error;
}
memcpy(tp_doc, doc_str, len + 1);
type->tp_doc = tp_doc;
}
}
/* Special-case __new__: if it's a plain function,
make it a static function */
tmp = _PyDict_GetItemId(dict, &PyId___new__);
if (tmp != NULL && PyFunction_Check(tmp)) {
tmp = PyStaticMethod_New(tmp);
if (tmp == NULL)
goto error;
if (_PyDict_SetItemId(dict, &PyId___new__, tmp) < 0) {
Py_DECREF(tmp);
goto error;
}
Py_DECREF(tmp);
}
/* Special-case __init_subclass__: if it's a plain function,
make it a classmethod */
tmp = _PyDict_GetItemId(dict, &PyId___init_subclass__);
if (tmp != NULL && PyFunction_Check(tmp)) {
tmp = PyClassMethod_New(tmp);
if (tmp == NULL)
goto error;
if (_PyDict_SetItemId(dict, &PyId___init_subclass__, tmp) < 0) {
Py_DECREF(tmp);
goto error;
}
Py_DECREF(tmp);
}
/* Add descriptors for custom slots from __slots__, or for __dict__ */
mp = PyHeapType_GET_MEMBERS(et);
slotoffset = base->tp_basicsize;
if (et->ht_slots != NULL) {
for (i = 0; i < nslots; i++, mp++) {
mp->name = PyUnicode_AsUTF8(
PyTuple_GET_ITEM(et->ht_slots, i));
if (mp->name == NULL)
goto error;
mp->type = T_OBJECT_EX;
mp->offset = slotoffset;
/* __dict__ and __weakref__ are already filtered out */
assert(strcmp(mp->name, "__dict__") != 0);
assert(strcmp(mp->name, "__weakref__") != 0);
slotoffset += sizeof(PyObject *);
}
}
if (add_dict) {
if (base->tp_itemsize)
type->tp_dictoffset = -(long)sizeof(PyObject *);
else
type->tp_dictoffset = slotoffset;
slotoffset += sizeof(PyObject *);
}
if (add_weak) {
assert(!base->tp_itemsize);
type->tp_weaklistoffset = slotoffset;
slotoffset += sizeof(PyObject *);
}
type->tp_basicsize = slotoffset;
type->tp_itemsize = base->tp_itemsize;
type->tp_members = PyHeapType_GET_MEMBERS(et);
if (type->tp_weaklistoffset && type->tp_dictoffset)
type->tp_getset = subtype_getsets_full;
else if (type->tp_weaklistoffset && !type->tp_dictoffset)
type->tp_getset = subtype_getsets_weakref_only;
else if (!type->tp_weaklistoffset && type->tp_dictoffset)
type->tp_getset = subtype_getsets_dict_only;
else
type->tp_getset = NULL;
/* Special case some slots */
if (type->tp_dictoffset != 0 || nslots > 0) {
if (base->tp_getattr == NULL && base->tp_getattro == NULL)
type->tp_getattro = PyObject_GenericGetAttr;
if (base->tp_setattr == NULL && base->tp_setattro == NULL)
type->tp_setattro = PyObject_GenericSetAttr;
}
type->tp_dealloc = subtype_dealloc;
/* Enable GC unless this class is not adding new instance variables and
the base class did not use GC. */
if ((base->tp_flags & Py_TPFLAGS_HAVE_GC) ||
type->tp_basicsize > base->tp_basicsize)
type->tp_flags |= Py_TPFLAGS_HAVE_GC;
/* Always override allocation strategy to use regular heap */
type->tp_alloc = PyType_GenericAlloc;
if (type->tp_flags & Py_TPFLAGS_HAVE_GC) {
type->tp_free = PyObject_GC_Del;
type->tp_traverse = subtype_traverse;
type->tp_clear = subtype_clear;
}
else
type->tp_free = PyObject_Del;
/* store type in class' cell if one is supplied */
cell = _PyDict_GetItemId(dict, &PyId___classcell__);
if (cell != NULL) {
/* At least one method requires a reference to its defining class */
if (!PyCell_Check(cell)) {
PyErr_Format(PyExc_TypeError,
"__classcell__ must be a nonlocal cell, not %.200R",
Py_TYPE(cell));
goto error;
}
PyCell_Set(cell, (PyObject *) type);
_PyDict_DelItemId(dict, &PyId___classcell__);
PyErr_Clear();
}
/* Initialize the rest */
if (PyType_Ready(type) < 0)
goto error;
/* Put the proper slots in place */
fixup_slot_dispatchers(type);
if (type->tp_dictoffset) {
et->ht_cached_keys = _PyDict_NewKeysForClass();
}
if (set_names(type) < 0)
goto error;
if (init_subclass(type, kwds) < 0)
goto error;
Py_DECREF(dict);
return (PyObject *)type;
error:
Py_XDECREF(dict);
Py_XDECREF(bases);
Py_XDECREF(slots);
Py_XDECREF(type);
return NULL;
}
PyObject *
PyType_FromSpecWithBases(PyType_Spec *spec, PyObject *bases)
{
PyHeapTypeObject *res = (PyHeapTypeObject*)PyType_GenericAlloc(&PyType_Type, 0);
PyTypeObject *type, *base;
PyObject *modname;
char *s;
char *res_start = (char*)res;
PyType_Slot *slot;
/* Set the type name and qualname */
s = strrchr(spec->name, '.');
if (s == NULL)
s = (char*)spec->name;
else
s++;
if (res == NULL)
return NULL;
type = &res->ht_type;
/* The flags must be initialized early, before the GC traverses us */
type->tp_flags = spec->flags | Py_TPFLAGS_HEAPTYPE;
res->ht_name = PyUnicode_FromString(s);
if (!res->ht_name)
goto fail;
res->ht_qualname = res->ht_name;
Py_INCREF(res->ht_qualname);
type->tp_name = spec->name;
if (!type->tp_name)
goto fail;
/* Adjust for empty tuple bases */
if (!bases) {
base = &PyBaseObject_Type;
/* See whether Py_tp_base(s) was specified */
for (slot = spec->slots; slot->slot; slot++) {
if (slot->slot == Py_tp_base)
base = slot->pfunc;
else if (slot->slot == Py_tp_bases) {
bases = slot->pfunc;
Py_INCREF(bases);
}
}
if (!bases)
bases = PyTuple_Pack(1, base);
if (!bases)
goto fail;
}
else
Py_INCREF(bases);
/* Calculate best base, and check that all bases are type objects */
base = best_base(bases);
if (base == NULL) {
goto fail;
}
if (!PyType_HasFeature(base, Py_TPFLAGS_BASETYPE)) {
PyErr_Format(PyExc_TypeError,
"type '%.100s' is not an acceptable base type",
base->tp_name);
goto fail;
}
/* Initialize essential fields */
type->tp_as_async = &res->as_async;
type->tp_as_number = &res->as_number;
type->tp_as_sequence = &res->as_sequence;
type->tp_as_mapping = &res->as_mapping;
type->tp_as_buffer = &res->as_buffer;
/* Set tp_base and tp_bases */
type->tp_bases = bases;
bases = NULL;
Py_INCREF(base);
type->tp_base = base;
type->tp_basicsize = spec->basicsize;
type->tp_itemsize = spec->itemsize;
for (slot = spec->slots; slot->slot; slot++) {
if (slot->slot < 0
|| (size_t)slot->slot >= Py_ARRAY_LENGTH(slotoffsets)) {
PyErr_SetString(PyExc_RuntimeError, "invalid slot offset");
goto fail;
}
if (slot->slot == Py_tp_base || slot->slot == Py_tp_bases)
/* Processed above */
continue;
*(void**)(res_start + slotoffsets[slot->slot]) = slot->pfunc;
/* need to make a copy of the docstring slot, which usually
points to a static string literal */
if (slot->slot == Py_tp_doc) {
const char *old_doc = _PyType_DocWithoutSignature(type->tp_name, slot->pfunc);
size_t len = strlen(old_doc)+1;
char *tp_doc = PyObject_MALLOC(len);
if (tp_doc == NULL) {
PyErr_NoMemory();
goto fail;
}
memcpy(tp_doc, old_doc, len);
type->tp_doc = tp_doc;
}
}
if (type->tp_dealloc == NULL) {
/* It's a heap type, so needs the heap types' dealloc.
subtype_dealloc will call the base type's tp_dealloc, if
necessary. */
type->tp_dealloc = subtype_dealloc;
}
if (PyType_Ready(type) < 0)
goto fail;
if (type->tp_dictoffset) {
res->ht_cached_keys = _PyDict_NewKeysForClass();
}
/* Set type.__module__ */
s = strrchr(spec->name, '.');
if (s != NULL) {
int err;
modname = PyUnicode_FromStringAndSize(
spec->name, (Py_ssize_t)(s - spec->name));
if (modname == NULL) {
goto fail;
}
err = _PyDict_SetItemId(type->tp_dict, &PyId___module__, modname);
Py_DECREF(modname);
if (err != 0)
goto fail;
} else {
if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1,
"builtin type %.200s has no __module__ attribute",
spec->name))
goto fail;
}
return (PyObject*)res;
fail:
Py_DECREF(res);
return NULL;
}
PyObject *
PyType_FromSpec(PyType_Spec *spec)
{
return PyType_FromSpecWithBases(spec, NULL);
}
void *
PyType_GetSlot(PyTypeObject *type, int slot)
{
if (!PyType_HasFeature(type, Py_TPFLAGS_HEAPTYPE) || slot < 0) {
PyErr_BadInternalCall();
return NULL;
}
if ((size_t)slot >= Py_ARRAY_LENGTH(slotoffsets)) {
/* Extension module requesting slot from a future version */
return NULL;
}
return *(void**)(((char*)type) + slotoffsets[slot]);
}
/* Internal API to look for a name through the MRO.
This returns a borrowed reference, and doesn't set an exception! */
PyObject *
_PyType_Lookup(PyTypeObject *type, PyObject *name)
{
Py_ssize_t i, n;
PyObject *mro, *res, *base, *dict;
unsigned int h;
if (LIKELY(MCACHE_CACHEABLE_NAME(name)) &&
LIKELY(PyType_HasFeature(type, Py_TPFLAGS_VALID_VERSION_TAG))) {
/* fast path */
h = MCACHE_HASH_METHOD(type, name);
if (LIKELY(method_cache[h].version == type->tp_version_tag) &&
LIKELY(method_cache[h].name == name)) {
#if MCACHE_STATS
method_cache_hits++;
#endif
return method_cache[h].value;
}
}
/* Look in tp_dict of types in MRO */
mro = type->tp_mro;
if (UNLIKELY(mro == NULL)) {
if (UNLIKELY((type->tp_flags & Py_TPFLAGS_READYING) == 0 &&
PyType_Ready(type) < 0)) {
/* It's not ideal to clear the error condition,
but this function is documented as not setting
an exception, and I don't want to change that.
When PyType_Ready() can't proceed, it won't
set the "ready" flag, so future attempts to ready
the same type will call it again -- hopefully
in a context that propagates the exception out.
*/
PyErr_Clear();
return NULL;
}
mro = type->tp_mro;
if (mro == NULL) {
return NULL;
}
}
res = NULL;
/* keep a strong reference to mro because type->tp_mro can be replaced
during PyDict_GetItem(dict, name) */
Py_INCREF(mro);
assert(PyTuple_Check(mro));
n = PyTuple_GET_SIZE(mro);
for (i = 0; i < n; i++) {
base = PyTuple_GET_ITEM(mro, i);
assert(PyType_Check(base));
dict = ((PyTypeObject *)base)->tp_dict;
assert(dict && PyDict_Check(dict));
res = PyDict_GetItem(dict, name);
if (res != NULL)
break;
}
Py_DECREF(mro);
if (MCACHE_CACHEABLE_NAME(name) && assign_version_tag(type)) {
h = MCACHE_HASH_METHOD(type, name);
method_cache[h].version = type->tp_version_tag;
method_cache[h].value = res; /* borrowed */
Py_INCREF(name);
assert(((PyASCIIObject *)(name))->hash != -1);
#if MCACHE_STATS
if (method_cache[h].name != Py_None && method_cache[h].name != name)
method_cache_collisions++;
else
method_cache_misses++;
#endif
Py_SETREF(method_cache[h].name, name);
}
return res;
}
PyObject *
_PyType_LookupId(PyTypeObject *type, struct _Py_Identifier *name)
{
PyObject *oname;
oname = _PyUnicode_FromId(name); /* borrowed */
if (oname == NULL)
return NULL;
return _PyType_Lookup(type, oname);
}
/* This is similar to PyObject_GenericGetAttr(),
but uses _PyType_Lookup() instead of just looking in type->tp_dict. */
static PyObject *
type_getattro(PyTypeObject *type, PyObject *name)
{
PyTypeObject *metatype = Py_TYPE(type);
PyObject *meta_attribute, *attribute;
descrgetfunc meta_get;
if (!PyUnicode_Check(name)) {
PyErr_Format(PyExc_TypeError,
"attribute name must be string, not '%.200s'",
name->ob_type->tp_name);
return NULL;
}
/* Initialize this type (we'll assume the metatype is initialized) */
if (type->tp_dict == NULL) {
if (PyType_Ready(type) < 0)
return NULL;
}
/* No readable descriptor found yet */
meta_get = NULL;
/* Look for the attribute in the metatype */
meta_attribute = _PyType_Lookup(metatype, name);
if (meta_attribute != NULL) {
meta_get = Py_TYPE(meta_attribute)->tp_descr_get;
if (meta_get != NULL && PyDescr_IsData(meta_attribute)) {
/* Data descriptors implement tp_descr_set to intercept
* writes. Assume the attribute is not overridden in
* type's tp_dict (and bases): call the descriptor now.
*/
return meta_get(meta_attribute, (PyObject *)type,
(PyObject *)metatype);
}
Py_INCREF(meta_attribute);
}
/* No data descriptor found on metatype. Look in tp_dict of this
* type and its bases */
attribute = _PyType_Lookup(type, name);
if (attribute != NULL) {
/* Implement descriptor functionality, if any */
descrgetfunc local_get = Py_TYPE(attribute)->tp_descr_get;
Py_XDECREF(meta_attribute);
if (local_get != NULL) {
/* NULL 2nd argument indicates the descriptor was
* found on the target object itself (or a base) */
return local_get(attribute, (PyObject *)NULL,
(PyObject *)type);
}
Py_INCREF(attribute);
return attribute;
}
/* No attribute found in local __dict__ (or bases): use the
* descriptor from the metatype, if any */
if (meta_get != NULL) {
PyObject *res;
res = meta_get(meta_attribute, (PyObject *)type,
(PyObject *)metatype);
Py_DECREF(meta_attribute);
return res;
}
/* If an ordinary attribute was found on the metatype, return it now */
if (meta_attribute != NULL) {
return meta_attribute;
}
/* Give up */
PyErr_Format(PyExc_AttributeError,
"type object '%.50s' has no attribute '%U'",
type->tp_name, name);
return NULL;
}
static int
type_setattro(PyTypeObject *type, PyObject *name, PyObject *value)
{
int res;
if (!(type->tp_flags & Py_TPFLAGS_HEAPTYPE)) {
PyErr_Format(
PyExc_TypeError,
"can't set attributes of built-in/extension type '%s'",
type->tp_name);
return -1;
}
if (PyUnicode_Check(name)) {
if (PyUnicode_CheckExact(name)) {
if (PyUnicode_READY(name) == -1)
return -1;
Py_INCREF(name);
}
else {
name = _PyUnicode_Copy(name);
if (name == NULL)
return -1;
}
PyUnicode_InternInPlace(&name);
if (!PyUnicode_CHECK_INTERNED(name)) {
PyErr_SetString(PyExc_MemoryError,
"Out of memory interning an attribute name");
Py_DECREF(name);
return -1;
}
}
else {
/* Will fail in _PyObject_GenericSetAttrWithDict. */
Py_INCREF(name);
}
res = _PyObject_GenericSetAttrWithDict((PyObject *)type, name, value, NULL);
if (res == 0) {
res = update_slot(type, name);
assert(_PyType_CheckConsistency(type));
}
Py_DECREF(name);
return res;
}
extern void
_PyDictKeys_DecRef(PyDictKeysObject *keys);
static void
type_dealloc(PyTypeObject *type)
{
PyHeapTypeObject *et;
PyObject *tp, *val, *tb;
/* Assert this is a heap-allocated type object */
assert(type->tp_flags & Py_TPFLAGS_HEAPTYPE);
_PyObject_GC_UNTRACK(type);
PyErr_Fetch(&tp, &val, &tb);
remove_all_subclasses(type, type->tp_bases);
PyErr_Restore(tp, val, tb);
PyObject_ClearWeakRefs((PyObject *)type);
et = (PyHeapTypeObject *)type;
Py_XDECREF(type->tp_base);
Py_XDECREF(type->tp_dict);
Py_XDECREF(type->tp_bases);
Py_XDECREF(type->tp_mro);
Py_XDECREF(type->tp_cache);
Py_XDECREF(type->tp_subclasses);
/* A type's tp_doc is heap allocated, unlike the tp_doc slots
* of most other objects. It's okay to cast it to char *.
*/
PyObject_Free((char *)type->tp_doc);
Py_XDECREF(et->ht_name);
Py_XDECREF(et->ht_qualname);
Py_XDECREF(et->ht_slots);
if (et->ht_cached_keys)
_PyDictKeys_DecRef(et->ht_cached_keys);
Py_TYPE(type)->tp_free((PyObject *)type);
}
static PyObject *
type_subclasses(PyTypeObject *type, PyObject *args_ignored)
{
PyObject *list, *raw, *ref;
Py_ssize_t i;
list = PyList_New(0);
if (list == NULL)
return NULL;
raw = type->tp_subclasses;
if (raw == NULL)
return list;
assert(PyDict_CheckExact(raw));
i = 0;
while (PyDict_Next(raw, &i, NULL, &ref)) {
assert(PyWeakref_CheckRef(ref));
ref = PyWeakref_GET_OBJECT(ref);
if (ref != Py_None) {
if (PyList_Append(list, ref) < 0) {
Py_DECREF(list);
return NULL;
}
}
}
return list;
}
static PyObject *
type_prepare(PyObject *self, PyObject **args, Py_ssize_t nargs,
PyObject *kwnames)
{
return PyDict_New();
}
/*
Merge the __dict__ of aclass into dict, and recursively also all
the __dict__s of aclass's base classes. The order of merging isn't
defined, as it's expected that only the final set of dict keys is
interesting.
Return 0 on success, -1 on error.
*/
static int
merge_class_dict(PyObject *dict, PyObject *aclass)
{
PyObject *classdict;
PyObject *bases;
_Py_IDENTIFIER(__bases__);
assert(PyDict_Check(dict));
assert(aclass);
/* Merge in the type's dict (if any). */
classdict = _PyObject_GetAttrId(aclass, &PyId___dict__);
if (classdict == NULL)
PyErr_Clear();
else {
int status = PyDict_Update(dict, classdict);
Py_DECREF(classdict);
if (status < 0)
return -1;
}
/* Recursively merge in the base types' (if any) dicts. */
bases = _PyObject_GetAttrId(aclass, &PyId___bases__);
if (bases == NULL)
PyErr_Clear();
else {
/* We have no guarantee that bases is a real tuple */
Py_ssize_t i, n;
n = PySequence_Size(bases); /* This better be right */
if (n < 0)
PyErr_Clear();
else {
for (i = 0; i < n; i++) {
int status;
PyObject *base = PySequence_GetItem(bases, i);
if (base == NULL) {
Py_DECREF(bases);
return -1;
}
status = merge_class_dict(dict, base);
Py_DECREF(base);
if (status < 0) {
Py_DECREF(bases);
return -1;
}
}
}
Py_DECREF(bases);
}
return 0;
}
/* __dir__ for type objects: returns __dict__ and __bases__.
We deliberately don't suck up its __class__, as methods belonging to the
metaclass would probably be more confusing than helpful.
*/
static PyObject *
type_dir(PyObject *self, PyObject *args)
{
PyObject *result = NULL;
PyObject *dict = PyDict_New();
if (dict != NULL && merge_class_dict(dict, self) == 0)
result = PyDict_Keys(dict);
Py_XDECREF(dict);
return result;
}
static PyObject*
type_sizeof(PyObject *self, PyObject *args_unused)
{
Py_ssize_t size;
PyTypeObject *type = (PyTypeObject*)self;
if (type->tp_flags & Py_TPFLAGS_HEAPTYPE) {
PyHeapTypeObject* et = (PyHeapTypeObject*)type;
size = sizeof(PyHeapTypeObject);
if (et->ht_cached_keys)
size += _PyDict_KeysSize(et->ht_cached_keys);
}
else
size = sizeof(PyTypeObject);
return PyLong_FromSsize_t(size);
}
static PyMethodDef type_methods[] = {
{"mro", (PyCFunction)mro_external, METH_NOARGS,
PyDoc_STR("mro() -> list\nreturn a type's method resolution order")},
{"__subclasses__", (PyCFunction)type_subclasses, METH_NOARGS,
PyDoc_STR("__subclasses__() -> list of immediate subclasses")},
{"__prepare__", (PyCFunction)type_prepare,
METH_FASTCALL | METH_KEYWORDS | METH_CLASS,
PyDoc_STR("__prepare__() -> dict\n"
"used to create the namespace for the class statement")},
{"__instancecheck__", type___instancecheck__, METH_O,
PyDoc_STR("__instancecheck__() -> bool\ncheck if an object is an instance")},
{"__subclasscheck__", type___subclasscheck__, METH_O,
PyDoc_STR("__subclasscheck__() -> bool\ncheck if a class is a subclass")},
{"__dir__", type_dir, METH_NOARGS,
PyDoc_STR("__dir__() -> list\nspecialized __dir__ implementation for types")},
{"__sizeof__", type_sizeof, METH_NOARGS,
"__sizeof__() -> int\nreturn memory consumption of the type object"},
{0}
};
PyDoc_STRVAR(type_doc,
/* this text signature cannot be accurate yet. will fix. --larry */
"type(object_or_name, bases, dict)\n"
"type(object) -> the object's type\n"
"type(name, bases, dict) -> a new type");
static int
type_traverse(PyTypeObject *type, visitproc visit, void *arg)
{
/* Because of type_is_gc(), the collector only calls this
for heaptypes. */
if (!(type->tp_flags & Py_TPFLAGS_HEAPTYPE)) {
char msg[200];
sprintf(msg, "type_traverse() called for non-heap type '%.100s'",
type->tp_name);
Py_FatalError(msg);
}
Py_VISIT(type->tp_dict);
Py_VISIT(type->tp_cache);
Py_VISIT(type->tp_mro);
Py_VISIT(type->tp_bases);
Py_VISIT(type->tp_base);
/* There's no need to visit type->tp_subclasses or
((PyHeapTypeObject *)type)->ht_slots, because they can't be involved
in cycles; tp_subclasses is a list of weak references,
and slots is a tuple of strings. */
return 0;
}
static int
type_clear(PyTypeObject *type)
{
PyDictKeysObject *cached_keys;
/* Because of type_is_gc(), the collector only calls this
for heaptypes. */
assert(type->tp_flags & Py_TPFLAGS_HEAPTYPE);
/* We need to invalidate the method cache carefully before clearing
the dict, so that other objects caught in a reference cycle
don't start calling destroyed methods.
Otherwise, the only field we need to clear is tp_mro, which is
part of a hard cycle (its first element is the class itself) that
won't be broken otherwise (it's a tuple and tuples don't have a
tp_clear handler). None of the other fields need to be
cleared, and here's why:
tp_cache:
Not used; if it were, it would be a dict.
tp_bases, tp_base:
If these are involved in a cycle, there must be at least
one other, mutable object in the cycle, e.g. a base
class's dict; the cycle will be broken that way.
tp_subclasses:
A dict of weak references can't be part of a cycle; and
dicts have their own tp_clear.
slots (in PyHeapTypeObject):
A tuple of strings can't be part of a cycle.
*/
PyType_Modified(type);
cached_keys = ((PyHeapTypeObject *)type)->ht_cached_keys;
if (cached_keys != NULL) {
((PyHeapTypeObject *)type)->ht_cached_keys = NULL;
_PyDictKeys_DecRef(cached_keys);
}
if (type->tp_dict)
PyDict_Clear(type->tp_dict);
Py_CLEAR(type->tp_mro);
return 0;
}
static int
type_is_gc(PyTypeObject *type)
{
return type->tp_flags & Py_TPFLAGS_HEAPTYPE;
}
PyTypeObject PyType_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"type", /* tp_name */
sizeof(PyHeapTypeObject), /* tp_basicsize */
sizeof(PyMemberDef), /* tp_itemsize */
(destructor)type_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)type_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
(ternaryfunc)type_call, /* tp_call */
0, /* tp_str */
(getattrofunc)type_getattro, /* tp_getattro */
(setattrofunc)type_setattro, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC |
Py_TPFLAGS_BASETYPE | Py_TPFLAGS_TYPE_SUBCLASS, /* tp_flags */
type_doc, /* tp_doc */
(traverseproc)type_traverse, /* tp_traverse */
(inquiry)type_clear, /* tp_clear */
0, /* tp_richcompare */
offsetof(PyTypeObject, tp_weaklist), /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
type_methods, /* tp_methods */
type_members, /* tp_members */
type_getsets, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
offsetof(PyTypeObject, tp_dict), /* tp_dictoffset */
type_init, /* tp_init */
0, /* tp_alloc */
type_new, /* tp_new */
PyObject_GC_Del, /* tp_free */
(inquiry)type_is_gc, /* tp_is_gc */
};
/* The base type of all types (eventually)... except itself. */
/* You may wonder why object.__new__() only complains about arguments
when object.__init__() is not overridden, and vice versa.
Consider the use cases:
1. When neither is overridden, we want to hear complaints about
excess (i.e., any) arguments, since their presence could
indicate there's a bug.
2. When defining an Immutable type, we are likely to override only
__new__(), since __init__() is called too late to initialize an
Immutable object. Since __new__() defines the signature for the
type, it would be a pain to have to override __init__() just to
stop it from complaining about excess arguments.
3. When defining a Mutable type, we are likely to override only
__init__(). So here the converse reasoning applies: we don't
want to have to override __new__() just to stop it from
complaining.
4. When __init__() is overridden, and the subclass __init__() calls
object.__init__(), the latter should complain about excess
arguments; ditto for __new__().
Use cases 2 and 3 make it unattractive to unconditionally check for
excess arguments. The best solution that addresses all four use
cases is as follows: __init__() complains about excess arguments
unless __new__() is overridden and __init__() is not overridden
(IOW, if __init__() is overridden or __new__() is not overridden);
symmetrically, __new__() complains about excess arguments unless
__init__() is overridden and __new__() is not overridden
(IOW, if __new__() is overridden or __init__() is not overridden).
However, for backwards compatibility, this breaks too much code.
Therefore, in 2.6, we'll *warn* about excess arguments when both
methods are overridden; for all other cases we'll use the above
rules.
*/
/* Forward */
static PyObject *
object_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
static int
excess_args(PyObject *args, PyObject *kwds)
{
return PyTuple_GET_SIZE(args) ||
(kwds && PyDict_Check(kwds) && PyDict_GET_SIZE(kwds));
}
static int
object_init(PyObject *self, PyObject *args, PyObject *kwds)
{
int err = 0;
PyTypeObject *type = Py_TYPE(self);
if (excess_args(args, kwds) &&
(type->tp_new == object_new || type->tp_init != object_init)) {
PyErr_SetString(PyExc_TypeError, "object.__init__() takes no parameters");
err = -1;
}
return err;
}
static PyObject *
object_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
if (excess_args(args, kwds) &&
(type->tp_init == object_init || type->tp_new != object_new)) {
PyErr_SetString(PyExc_TypeError, "object() takes no parameters");
return NULL;
}
if (type->tp_flags & Py_TPFLAGS_IS_ABSTRACT) {
PyObject *abstract_methods = NULL;
PyObject *builtins;
PyObject *sorted;
PyObject *sorted_methods = NULL;
PyObject *joined = NULL;
PyObject *comma;
_Py_static_string(comma_id, ", ");
_Py_IDENTIFIER(sorted);
/* Compute ", ".join(sorted(type.__abstractmethods__))
into joined. */
abstract_methods = type_abstractmethods(type, NULL);
if (abstract_methods == NULL)
goto error;
builtins = PyEval_GetBuiltins();
if (builtins == NULL)
goto error;
sorted = _PyDict_GetItemId(builtins, &PyId_sorted);
if (sorted == NULL)
goto error;
sorted_methods = PyObject_CallFunctionObjArgs(sorted,
abstract_methods,
NULL);
if (sorted_methods == NULL)
goto error;
comma = _PyUnicode_FromId(&comma_id);
if (comma == NULL)
goto error;
joined = PyUnicode_Join(comma, sorted_methods);
if (joined == NULL)
goto error;
PyErr_Format(PyExc_TypeError,
"Can't instantiate abstract class %s "
"with abstract methods %U",
type->tp_name,
joined);
error:
Py_XDECREF(joined);
Py_XDECREF(sorted_methods);
Py_XDECREF(abstract_methods);
return NULL;
}
return type->tp_alloc(type, 0);
}
static void
object_dealloc(PyObject *self)
{
Py_TYPE(self)->tp_free(self);
}
static PyObject *
object_repr(PyObject *self)
{
PyTypeObject *type;
PyObject *mod, *name, *rtn;
type = Py_TYPE(self);
mod = type_module(type, NULL);
if (mod == NULL)
PyErr_Clear();
else if (!PyUnicode_Check(mod)) {
Py_DECREF(mod);
mod = NULL;
}
name = type_qualname(type, NULL);
if (name == NULL) {
Py_XDECREF(mod);
return NULL;
}
if (mod != NULL && !_PyUnicode_EqualToASCIIId(mod, &PyId_builtins))
rtn = PyUnicode_FromFormat("<%U.%U object at %p>", mod, name, self);
else
rtn = PyUnicode_FromFormat("<%s object at %p>",
type->tp_name, self);
Py_XDECREF(mod);
Py_DECREF(name);
return rtn;
}
static PyObject *
object_str(PyObject *self)
{
unaryfunc f;
f = Py_TYPE(self)->tp_repr;
if (f == NULL)
f = object_repr;
return f(self);
}
static PyObject *
object_richcompare(PyObject *self, PyObject *other, int op)
{
PyObject *res;
switch (op) {
case Py_EQ:
/* Return NotImplemented instead of False, so if two
objects are compared, both get a chance at the
comparison. See issue #1393. */
res = (self == other) ? Py_True : Py_NotImplemented;
Py_INCREF(res);
break;
case Py_NE:
/* By default, __ne__() delegates to __eq__() and inverts the result,
unless the latter returns NotImplemented. */
if (self->ob_type->tp_richcompare == NULL) {
res = Py_NotImplemented;
Py_INCREF(res);
break;
}
res = (*self->ob_type->tp_richcompare)(self, other, Py_EQ);
if (res != NULL && res != Py_NotImplemented) {
int ok = PyObject_IsTrue(res);
Py_DECREF(res);
if (ok < 0)
res = NULL;
else {
if (ok)
res = Py_False;
else
res = Py_True;
Py_INCREF(res);
}
}
break;
default:
res = Py_NotImplemented;
Py_INCREF(res);
break;
}
return res;
}
static PyObject *
object_get_class(PyObject *self, void *closure)
{
Py_INCREF(Py_TYPE(self));
return (PyObject *)(Py_TYPE(self));
}
static int
compatible_with_tp_base(PyTypeObject *child)
{
PyTypeObject *parent = child->tp_base;
return (parent != NULL &&
child->tp_basicsize == parent->tp_basicsize &&
child->tp_itemsize == parent->tp_itemsize &&
child->tp_dictoffset == parent->tp_dictoffset &&
child->tp_weaklistoffset == parent->tp_weaklistoffset &&
((child->tp_flags & Py_TPFLAGS_HAVE_GC) ==
(parent->tp_flags & Py_TPFLAGS_HAVE_GC)) &&
(child->tp_dealloc == subtype_dealloc ||
child->tp_dealloc == parent->tp_dealloc));
}
static int
same_slots_added(PyTypeObject *a, PyTypeObject *b)
{
PyTypeObject *base = a->tp_base;
Py_ssize_t size;
PyObject *slots_a, *slots_b;
assert(base == b->tp_base);
size = base->tp_basicsize;
if (a->tp_dictoffset == size && b->tp_dictoffset == size)
size += sizeof(PyObject *);
if (a->tp_weaklistoffset == size && b->tp_weaklistoffset == size)
size += sizeof(PyObject *);
/* Check slots compliance */
if (!(a->tp_flags & Py_TPFLAGS_HEAPTYPE) ||
!(b->tp_flags & Py_TPFLAGS_HEAPTYPE)) {
return 0;
}
slots_a = ((PyHeapTypeObject *)a)->ht_slots;
slots_b = ((PyHeapTypeObject *)b)->ht_slots;
if (slots_a && slots_b) {
if (PyObject_RichCompareBool(slots_a, slots_b, Py_EQ) != 1)
return 0;
size += sizeof(PyObject *) * PyTuple_GET_SIZE(slots_a);
}
return size == a->tp_basicsize && size == b->tp_basicsize;
}
static int
compatible_for_assignment(PyTypeObject* oldto, PyTypeObject* newto, const char* attr)
{
PyTypeObject *newbase, *oldbase;
if (newto->tp_free != oldto->tp_free) {
PyErr_Format(PyExc_TypeError,
"%s assignment: "
"'%s' deallocator differs from '%s'",
attr,
newto->tp_name,
oldto->tp_name);
return 0;
}
/*
It's tricky to tell if two arbitrary types are sufficiently compatible as
to be interchangeable; e.g., even if they have the same tp_basicsize, they
might have totally different struct fields. It's much easier to tell if a
type and its supertype are compatible; e.g., if they have the same
tp_basicsize, then that means they have identical fields. So to check
whether two arbitrary types are compatible, we first find the highest
supertype that each is compatible with, and then if those supertypes are
compatible then the original types must also be compatible.
*/
newbase = newto;
oldbase = oldto;
while (compatible_with_tp_base(newbase))
newbase = newbase->tp_base;
while (compatible_with_tp_base(oldbase))
oldbase = oldbase->tp_base;
if (newbase != oldbase &&
(newbase->tp_base != oldbase->tp_base ||
!same_slots_added(newbase, oldbase))) {
PyErr_Format(PyExc_TypeError,
"%s assignment: "
"'%s' object layout differs from '%s'",
attr,
newto->tp_name,
oldto->tp_name);
return 0;
}
return 1;
}
static int
object_set_class(PyObject *self, PyObject *value, void *closure)
{
PyTypeObject *oldto = Py_TYPE(self);
PyTypeObject *newto;
if (value == NULL) {
PyErr_SetString(PyExc_TypeError,
"can't delete __class__ attribute");
return -1;
}
if (!PyType_Check(value)) {
PyErr_Format(PyExc_TypeError,
"__class__ must be set to a class, not '%s' object",
Py_TYPE(value)->tp_name);
return -1;
}
newto = (PyTypeObject *)value;
/* In versions of CPython prior to 3.5, the code in
compatible_for_assignment was not set up to correctly check for memory
layout / slot / etc. compatibility for non-HEAPTYPE classes, so we just
disallowed __class__ assignment in any case that wasn't HEAPTYPE ->
HEAPTYPE.
During the 3.5 development cycle, we fixed the code in
compatible_for_assignment to correctly check compatibility between
arbitrary types, and started allowing __class__ assignment in all cases
where the old and new types did in fact have compatible slots and
memory layout (regardless of whether they were implemented as HEAPTYPEs
or not).
Just before 3.5 was released, though, we discovered that this led to
problems with immutable types like int, where the interpreter assumes
they are immutable and interns some values. Formerly this wasn't a
problem, because they really were immutable -- in particular, all the
types where the interpreter applied this interning trick happened to
also be statically allocated, so the old HEAPTYPE rules were
"accidentally" stopping them from allowing __class__ assignment. But
with the changes to __class__ assignment, we started allowing code like
class MyInt(int):
...
# Modifies the type of *all* instances of 1 in the whole program,
# including future instances (!), because the 1 object is interned.
(1).__class__ = MyInt
(see https://bugs.python.org/issue24912).
In theory the proper fix would be to identify which classes rely on
this invariant and somehow disallow __class__ assignment only for them,
perhaps via some mechanism like a new Py_TPFLAGS_IMMUTABLE flag (a
"blacklisting" approach). But in practice, since this problem wasn't
noticed late in the 3.5 RC cycle, we're taking the conservative
approach and reinstating the same HEAPTYPE->HEAPTYPE check that we used
to have, plus a "whitelist". For now, the whitelist consists only of
ModuleType subtypes, since those are the cases that motivated the patch
in the first place -- see https://bugs.python.org/issue22986 -- and
since module objects are mutable we can be sure that they are
definitely not being interned. So now we allow HEAPTYPE->HEAPTYPE *or*
ModuleType subtype -> ModuleType subtype.
So far as we know, all the code beyond the following 'if' statement
will correctly handle non-HEAPTYPE classes, and the HEAPTYPE check is
needed only to protect that subset of non-HEAPTYPE classes for which
the interpreter has baked in the assumption that all instances are
truly immutable.
*/
if (!(PyType_IsSubtype(newto, &PyModule_Type) &&
PyType_IsSubtype(oldto, &PyModule_Type)) &&
(!(newto->tp_flags & Py_TPFLAGS_HEAPTYPE) ||
!(oldto->tp_flags & Py_TPFLAGS_HEAPTYPE))) {
PyErr_Format(PyExc_TypeError,
"__class__ assignment only supported for heap types "
"or ModuleType subclasses");
return -1;
}
if (compatible_for_assignment(oldto, newto, "__class__")) {
if (newto->tp_flags & Py_TPFLAGS_HEAPTYPE)
Py_INCREF(newto);
Py_TYPE(self) = newto;
if (oldto->tp_flags & Py_TPFLAGS_HEAPTYPE)
Py_DECREF(oldto);
return 0;
}
else {
return -1;
}
}
static PyGetSetDef object_getsets[] = {
{"__class__", object_get_class, object_set_class,
PyDoc_STR("the object's class")},
{0}
};
/* Stuff to implement __reduce_ex__ for pickle protocols >= 2.
We fall back to helpers in copyreg for:
- pickle protocols < 2
- calculating the list of slot names (done only once per class)
- the __newobj__ function (which is used as a token but never called)
*/
static PyObject *
import_copyreg(void)
{
PyObject *copyreg_str;
PyObject *copyreg_module;
PyInterpreterState *interp = PyThreadState_GET()->interp;
_Py_IDENTIFIER(copyreg);
copyreg_str = _PyUnicode_FromId(&PyId_copyreg);
if (copyreg_str == NULL) {
return NULL;
}
/* Try to fetch cached copy of copyreg from sys.modules first in an
attempt to avoid the import overhead. Previously this was implemented
by storing a reference to the cached module in a static variable, but
this broke when multiple embedded interpreters were in use (see issue
#17408 and #19088). */
copyreg_module = PyDict_GetItemWithError(interp->modules, copyreg_str);
if (copyreg_module != NULL) {
Py_INCREF(copyreg_module);
return copyreg_module;
}
if (PyErr_Occurred()) {
return NULL;
}
return PyImport_Import(copyreg_str);
}
static PyObject *
_PyType_GetSlotNames(PyTypeObject *cls)
{
PyObject *copyreg;
PyObject *slotnames;
_Py_IDENTIFIER(__slotnames__);
_Py_IDENTIFIER(_slotnames);
assert(PyType_Check(cls));
/* Get the slot names from the cache in the class if possible. */
slotnames = _PyDict_GetItemIdWithError(cls->tp_dict, &PyId___slotnames__);
if (slotnames != NULL) {
if (slotnames != Py_None && !PyList_Check(slotnames)) {
PyErr_Format(PyExc_TypeError,
"%.200s.__slotnames__ should be a list or None, "
"not %.200s",
cls->tp_name, Py_TYPE(slotnames)->tp_name);
return NULL;
}
Py_INCREF(slotnames);
return slotnames;
}
else {
if (PyErr_Occurred()) {
return NULL;
}
/* The class does not have the slot names cached yet. */
}
copyreg = import_copyreg();
if (copyreg == NULL)
return NULL;
/* Use _slotnames function from the copyreg module to find the slots
by this class and its bases. This function will cache the result
in __slotnames__. */
slotnames = _PyObject_CallMethodIdObjArgs(copyreg, &PyId__slotnames,
cls, NULL);
Py_DECREF(copyreg);
if (slotnames == NULL)
return NULL;
if (slotnames != Py_None && !PyList_Check(slotnames)) {
PyErr_SetString(PyExc_TypeError,
"copyreg._slotnames didn't return a list or None");
Py_DECREF(slotnames);
return NULL;
}
return slotnames;
}
static PyObject *
_PyObject_GetState(PyObject *obj, int required)
{
PyObject *state;
PyObject *getstate;
_Py_IDENTIFIER(__getstate__);
getstate = _PyObject_GetAttrId(obj, &PyId___getstate__);
if (getstate == NULL) {
PyObject *slotnames;
if (!PyErr_ExceptionMatches(PyExc_AttributeError)) {
return NULL;
}
PyErr_Clear();
if (required && obj->ob_type->tp_itemsize) {
PyErr_Format(PyExc_TypeError,
"can't pickle %.200s objects",
Py_TYPE(obj)->tp_name);
return NULL;
}
{
PyObject **dict;
dict = _PyObject_GetDictPtr(obj);
/* It is possible that the object's dict is not initialized
yet. In this case, we will return None for the state.
We also return None if the dict is empty to make the behavior
consistent regardless whether the dict was initialized or not.
This make unit testing easier. */
if (dict != NULL && *dict != NULL && PyDict_GET_SIZE(*dict)) {
state = *dict;
}
else {
state = Py_None;
}
Py_INCREF(state);
}
slotnames = _PyType_GetSlotNames(Py_TYPE(obj));
if (slotnames == NULL) {
Py_DECREF(state);
return NULL;
}
assert(slotnames == Py_None || PyList_Check(slotnames));
if (required) {
Py_ssize_t basicsize = PyBaseObject_Type.tp_basicsize;
if (obj->ob_type->tp_dictoffset)
basicsize += sizeof(PyObject *);
if (obj->ob_type->tp_weaklistoffset)
basicsize += sizeof(PyObject *);
if (slotnames != Py_None)
basicsize += sizeof(PyObject *) * Py_SIZE(slotnames);
if (obj->ob_type->tp_basicsize > basicsize) {
Py_DECREF(slotnames);
Py_DECREF(state);
PyErr_Format(PyExc_TypeError,
"can't pickle %.200s objects",
Py_TYPE(obj)->tp_name);
return NULL;
}
}
if (slotnames != Py_None && Py_SIZE(slotnames) > 0) {
PyObject *slots;
Py_ssize_t slotnames_size, i;
slots = PyDict_New();
if (slots == NULL) {
Py_DECREF(slotnames);
Py_DECREF(state);
return NULL;
}
slotnames_size = Py_SIZE(slotnames);
for (i = 0; i < slotnames_size; i++) {
PyObject *name, *value;
name = PyList_GET_ITEM(slotnames, i);
Py_INCREF(name);
value = PyObject_GetAttr(obj, name);
if (value == NULL) {
Py_DECREF(name);
if (!PyErr_ExceptionMatches(PyExc_AttributeError)) {
goto error;
}
/* It is not an error if the attribute is not present. */
PyErr_Clear();
}
else {
int err = PyDict_SetItem(slots, name, value);
Py_DECREF(name);
Py_DECREF(value);
if (err) {
goto error;
}
}
/* The list is stored on the class so it may mutate while we
iterate over it */
if (slotnames_size != Py_SIZE(slotnames)) {
PyErr_Format(PyExc_RuntimeError,
"__slotsname__ changed size during iteration");
goto error;
}
/* We handle errors within the loop here. */
if (0) {
error:
Py_DECREF(slotnames);
Py_DECREF(slots);
Py_DECREF(state);
return NULL;
}
}
/* If we found some slot attributes, pack them in a tuple along
the original attribute dictionary. */
if (PyDict_GET_SIZE(slots) > 0) {
PyObject *state2;
state2 = PyTuple_Pack(2, state, slots);
Py_DECREF(state);
if (state2 == NULL) {
Py_DECREF(slotnames);
Py_DECREF(slots);
return NULL;
}
state = state2;
}
Py_DECREF(slots);
}
Py_DECREF(slotnames);
}
else { /* getstate != NULL */
state = _PyObject_CallNoArg(getstate);
Py_DECREF(getstate);
if (state == NULL)
return NULL;
}
return state;
}
static int
_PyObject_GetNewArguments(PyObject *obj, PyObject **args, PyObject **kwargs)
{
PyObject *getnewargs, *getnewargs_ex;
_Py_IDENTIFIER(__getnewargs_ex__);
_Py_IDENTIFIER(__getnewargs__);
if (args == NULL || kwargs == NULL) {
PyErr_BadInternalCall();
return -1;
}
/* We first attempt to fetch the arguments for __new__ by calling
__getnewargs_ex__ on the object. */
getnewargs_ex = _PyObject_LookupSpecial(obj, &PyId___getnewargs_ex__);
if (getnewargs_ex != NULL) {
PyObject *newargs = _PyObject_CallNoArg(getnewargs_ex);
Py_DECREF(getnewargs_ex);
if (newargs == NULL) {
return -1;
}
if (!PyTuple_Check(newargs)) {
PyErr_Format(PyExc_TypeError,
"__getnewargs_ex__ should return a tuple, "
"not '%.200s'", Py_TYPE(newargs)->tp_name);
Py_DECREF(newargs);
return -1;
}
if (Py_SIZE(newargs) != 2) {
PyErr_Format(PyExc_ValueError,
"__getnewargs_ex__ should return a tuple of "
"length 2, not %zd", Py_SIZE(newargs));
Py_DECREF(newargs);
return -1;
}
*args = PyTuple_GET_ITEM(newargs, 0);
Py_INCREF(*args);
*kwargs = PyTuple_GET_ITEM(newargs, 1);
Py_INCREF(*kwargs);
Py_DECREF(newargs);
/* XXX We should perhaps allow None to be passed here. */
if (!PyTuple_Check(*args)) {
PyErr_Format(PyExc_TypeError,
"first item of the tuple returned by "
"__getnewargs_ex__ must be a tuple, not '%.200s'",
Py_TYPE(*args)->tp_name);
Py_CLEAR(*args);
Py_CLEAR(*kwargs);
return -1;
}
if (!PyDict_Check(*kwargs)) {
PyErr_Format(PyExc_TypeError,
"second item of the tuple returned by "
"__getnewargs_ex__ must be a dict, not '%.200s'",
Py_TYPE(*kwargs)->tp_name);
Py_CLEAR(*args);
Py_CLEAR(*kwargs);
return -1;
}
return 0;
} else if (PyErr_Occurred()) {
return -1;
}
/* The object does not have __getnewargs_ex__ so we fallback on using
__getnewargs__ instead. */
getnewargs = _PyObject_LookupSpecial(obj, &PyId___getnewargs__);
if (getnewargs != NULL) {
*args = _PyObject_CallNoArg(getnewargs);
Py_DECREF(getnewargs);
if (*args == NULL) {
return -1;
}
if (!PyTuple_Check(*args)) {
PyErr_Format(PyExc_TypeError,
"__getnewargs__ should return a tuple, "
"not '%.200s'", Py_TYPE(*args)->tp_name);
Py_CLEAR(*args);
return -1;
}
*kwargs = NULL;
return 0;
} else if (PyErr_Occurred()) {
return -1;
}
/* The object does not have __getnewargs_ex__ and __getnewargs__. This may
mean __new__ does not takes any arguments on this object, or that the
object does not implement the reduce protocol for pickling or
copying. */
*args = NULL;
*kwargs = NULL;
return 0;
}
static int
_PyObject_GetItemsIter(PyObject *obj, PyObject **listitems,
PyObject **dictitems)
{
if (listitems == NULL || dictitems == NULL) {
PyErr_BadInternalCall();
return -1;
}
if (!PyList_Check(obj)) {
*listitems = Py_None;
Py_INCREF(*listitems);
}
else {
*listitems = PyObject_GetIter(obj);
if (*listitems == NULL)
return -1;
}
if (!PyDict_Check(obj)) {
*dictitems = Py_None;
Py_INCREF(*dictitems);
}
else {
PyObject *items;
_Py_IDENTIFIER(items);
items = _PyObject_CallMethodIdObjArgs(obj, &PyId_items, NULL);
if (items == NULL) {
Py_CLEAR(*listitems);
return -1;
}
*dictitems = PyObject_GetIter(items);
Py_DECREF(items);
if (*dictitems == NULL) {
Py_CLEAR(*listitems);
return -1;
}
}
assert(*listitems != NULL && *dictitems != NULL);
return 0;
}
static PyObject *
reduce_newobj(PyObject *obj)
{
PyObject *args = NULL, *kwargs = NULL;
PyObject *copyreg;
PyObject *newobj, *newargs, *state, *listitems, *dictitems;
PyObject *result;
int hasargs;
if (Py_TYPE(obj)->tp_new == NULL) {
PyErr_Format(PyExc_TypeError,
"can't pickle %.200s objects",
Py_TYPE(obj)->tp_name);
return NULL;
}
if (_PyObject_GetNewArguments(obj, &args, &kwargs) < 0)
return NULL;
copyreg = import_copyreg();
if (copyreg == NULL) {
Py_XDECREF(args);
Py_XDECREF(kwargs);
return NULL;
}
hasargs = (args != NULL);
if (kwargs == NULL || PyDict_GET_SIZE(kwargs) == 0) {
_Py_IDENTIFIER(__newobj__);
PyObject *cls;
Py_ssize_t i, n;
Py_XDECREF(kwargs);
newobj = _PyObject_GetAttrId(copyreg, &PyId___newobj__);
Py_DECREF(copyreg);
if (newobj == NULL) {
Py_XDECREF(args);
return NULL;
}
n = args ? PyTuple_GET_SIZE(args) : 0;
newargs = PyTuple_New(n+1);
if (newargs == NULL) {
Py_XDECREF(args);
Py_DECREF(newobj);
return NULL;
}
cls = (PyObject *) Py_TYPE(obj);
Py_INCREF(cls);
PyTuple_SET_ITEM(newargs, 0, cls);
for (i = 0; i < n; i++) {
PyObject *v = PyTuple_GET_ITEM(args, i);
Py_INCREF(v);
PyTuple_SET_ITEM(newargs, i+1, v);
}
Py_XDECREF(args);
}
else if (args != NULL) {
_Py_IDENTIFIER(__newobj_ex__);
newobj = _PyObject_GetAttrId(copyreg, &PyId___newobj_ex__);
Py_DECREF(copyreg);
if (newobj == NULL) {
Py_DECREF(args);
Py_DECREF(kwargs);
return NULL;
}
newargs = PyTuple_Pack(3, Py_TYPE(obj), args, kwargs);
Py_DECREF(args);
Py_DECREF(kwargs);
if (newargs == NULL) {
Py_DECREF(newobj);
return NULL;
}
}
else {
/* args == NULL */
Py_DECREF(kwargs);
PyErr_BadInternalCall();
return NULL;
}
state = _PyObject_GetState(obj,
!hasargs && !PyList_Check(obj) && !PyDict_Check(obj));
if (state == NULL) {
Py_DECREF(newobj);
Py_DECREF(newargs);
return NULL;
}
if (_PyObject_GetItemsIter(obj, &listitems, &dictitems) < 0) {
Py_DECREF(newobj);
Py_DECREF(newargs);
Py_DECREF(state);
return NULL;
}
result = PyTuple_Pack(5, newobj, newargs, state, listitems, dictitems);
Py_DECREF(newobj);
Py_DECREF(newargs);
Py_DECREF(state);
Py_DECREF(listitems);
Py_DECREF(dictitems);
return result;
}
/*
* There were two problems when object.__reduce__ and object.__reduce_ex__
* were implemented in the same function:
* - trying to pickle an object with a custom __reduce__ method that
* fell back to object.__reduce__ in certain circumstances led to
* infinite recursion at Python level and eventual RecursionError.
* - Pickling objects that lied about their type by overwriting the
* __class__ descriptor could lead to infinite recursion at C level
* and eventual segfault.
*
* Because of backwards compatibility, the two methods still have to
* behave in the same way, even if this is not required by the pickle
* protocol. This common functionality was moved to the _common_reduce
* function.
*/
static PyObject *
_common_reduce(PyObject *self, int proto)
{
PyObject *copyreg, *res;
if (proto >= 2)
return reduce_newobj(self);
copyreg = import_copyreg();
if (!copyreg)
return NULL;
res = PyEval_CallMethod(copyreg, "_reduce_ex", "(Oi)", self, proto);
Py_DECREF(copyreg);
return res;
}
static PyObject *
object_reduce(PyObject *self, PyObject *args)
{
int proto = 0;
if (!PyArg_ParseTuple(args, "|i:__reduce__", &proto))
return NULL;
return _common_reduce(self, proto);
}
static PyObject *
object_reduce_ex(PyObject *self, PyObject *args)
{
static PyObject *objreduce;
PyObject *reduce, *res;
int proto = 0;
_Py_IDENTIFIER(__reduce__);
if (!PyArg_ParseTuple(args, "|i:__reduce_ex__", &proto))
return NULL;
if (objreduce == NULL) {
objreduce = _PyDict_GetItemId(PyBaseObject_Type.tp_dict,
&PyId___reduce__);
if (objreduce == NULL)
return NULL;
}
reduce = _PyObject_GetAttrId(self, &PyId___reduce__);
if (reduce == NULL)
PyErr_Clear();
else {
PyObject *cls, *clsreduce;
int override;
cls = (PyObject *) Py_TYPE(self);
clsreduce = _PyObject_GetAttrId(cls, &PyId___reduce__);
if (clsreduce == NULL) {
Py_DECREF(reduce);
return NULL;
}
override = (clsreduce != objreduce);
Py_DECREF(clsreduce);
if (override) {
res = _PyObject_CallNoArg(reduce);
Py_DECREF(reduce);
return res;
}
else
Py_DECREF(reduce);
}
return _common_reduce(self, proto);
}
static PyObject *
object_subclasshook(PyObject *cls, PyObject *args)
{
Py_RETURN_NOTIMPLEMENTED;
}
PyDoc_STRVAR(object_subclasshook_doc,
"Abstract classes can override this to customize issubclass().\n"
"\n"
"This is invoked early on by abc.ABCMeta.__subclasscheck__().\n"
"It should return True, False or NotImplemented. If it returns\n"
"NotImplemented, the normal algorithm is used. Otherwise, it\n"
"overrides the normal algorithm (and the outcome is cached).\n");
static PyObject *
object_init_subclass(PyObject *cls, PyObject *arg)
{
Py_RETURN_NONE;
}
PyDoc_STRVAR(object_init_subclass_doc,
"This method is called when a class is subclassed.\n"
"\n"
"The default implementation does nothing. It may be\n"
"overridden to extend subclasses.\n");
static PyObject *
object_format(PyObject *self, PyObject *args)
{
PyObject *format_spec;
PyObject *self_as_str = NULL;
PyObject *result = NULL;
if (!PyArg_ParseTuple(args, "U:__format__", &format_spec))
return NULL;
/* Issue 7994: If we're converting to a string, we
should reject format specifications */
if (PyUnicode_GET_LENGTH(format_spec) > 0) {
PyErr_Format(PyExc_TypeError,
"unsupported format string passed to %.200s.__format__",
self->ob_type->tp_name);
return NULL;
}
self_as_str = PyObject_Str(self);
if (self_as_str != NULL) {
result = PyObject_Format(self_as_str, format_spec);
Py_DECREF(self_as_str);
}
return result;
}
static PyObject *
object_sizeof(PyObject *self, PyObject *args)
{
Py_ssize_t res, isize;
res = 0;
isize = self->ob_type->tp_itemsize;
if (isize > 0)
res = Py_SIZE(self) * isize;
res += self->ob_type->tp_basicsize;
return PyLong_FromSsize_t(res);
}
/* __dir__ for generic objects: returns __dict__, __class__,
and recursively up the __class__.__bases__ chain.
*/
static PyObject *
object_dir(PyObject *self, PyObject *args)
{
PyObject *result = NULL;
PyObject *dict = NULL;
PyObject *itsclass = NULL;
/* Get __dict__ (which may or may not be a real dict...) */
dict = _PyObject_GetAttrId(self, &PyId___dict__);
if (dict == NULL) {
PyErr_Clear();
dict = PyDict_New();
}
else if (!PyDict_Check(dict)) {
Py_DECREF(dict);
dict = PyDict_New();
}
else {
/* Copy __dict__ to avoid mutating it. */
PyObject *temp = PyDict_Copy(dict);
Py_DECREF(dict);
dict = temp;
}
if (dict == NULL)
goto error;
/* Merge in attrs reachable from its class. */
itsclass = _PyObject_GetAttrId(self, &PyId___class__);
if (itsclass == NULL)
/* XXX(tomer): Perhaps fall back to obj->ob_type if no
__class__ exists? */
PyErr_Clear();
else if (merge_class_dict(dict, itsclass) != 0)
goto error;
result = PyDict_Keys(dict);
/* fall through */
error:
Py_XDECREF(itsclass);
Py_XDECREF(dict);
return result;
}
static PyMethodDef object_methods[] = {
{"__reduce_ex__", object_reduce_ex, METH_VARARGS,
PyDoc_STR("helper for pickle")},
{"__reduce__", object_reduce, METH_VARARGS,
PyDoc_STR("helper for pickle")},
{"__subclasshook__", object_subclasshook, METH_CLASS | METH_VARARGS,
object_subclasshook_doc},
{"__init_subclass__", object_init_subclass, METH_CLASS | METH_NOARGS,
object_init_subclass_doc},
{"__format__", object_format, METH_VARARGS,
PyDoc_STR("default object formatter")},
{"__sizeof__", object_sizeof, METH_NOARGS,
PyDoc_STR("__sizeof__() -> int\nsize of object in memory, in bytes")},
{"__dir__", object_dir, METH_NOARGS,
PyDoc_STR("__dir__() -> list\ndefault dir() implementation")},
{0}
};
PyTypeObject PyBaseObject_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"object", /* tp_name */
sizeof(PyObject), /* tp_basicsize */
0, /* tp_itemsize */
object_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
object_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
(hashfunc)_Py_HashPointer, /* tp_hash */
0, /* tp_call */
object_str, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
PyObject_GenericSetAttr, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
PyDoc_STR("object()\n--\n\nThe most base type"), /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
object_richcompare, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
object_methods, /* tp_methods */
0, /* tp_members */
object_getsets, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
object_init, /* tp_init */
PyType_GenericAlloc, /* tp_alloc */
object_new, /* tp_new */
PyObject_Del, /* tp_free */
};
/* Add the methods from tp_methods to the __dict__ in a type object */
static int
add_methods(PyTypeObject *type, PyMethodDef *meth)
{
PyObject *dict = type->tp_dict;
for (; meth->ml_name != NULL; meth++) {
PyObject *descr;
int err;
int isdescr = 1;
if (PyDict_GetItemString(dict, meth->ml_name) &&
!(meth->ml_flags & METH_COEXIST))
continue;
if (meth->ml_flags & METH_CLASS) {
if (meth->ml_flags & METH_STATIC) {
PyErr_SetString(PyExc_ValueError,
"method cannot be both class and static");
return -1;
}
descr = PyDescr_NewClassMethod(type, meth);
}
else if (meth->ml_flags & METH_STATIC) {
PyObject *cfunc = PyCFunction_NewEx(meth, (PyObject*)type, NULL);
if (cfunc == NULL)
return -1;
descr = PyStaticMethod_New(cfunc);
isdescr = 0; // PyStaticMethod is not PyDescrObject
Py_DECREF(cfunc);
}
else {
descr = PyDescr_NewMethod(type, meth);
}
if (descr == NULL)
return -1;
if (isdescr) {
err = PyDict_SetItem(dict, PyDescr_NAME(descr), descr);
}
else {
err = PyDict_SetItemString(dict, meth->ml_name, descr);
}
Py_DECREF(descr);
if (err < 0)
return -1;
}
return 0;
}
static int
add_members(PyTypeObject *type, PyMemberDef *memb)
{
PyObject *dict = type->tp_dict;
for (; memb->name != NULL; memb++) {
PyObject *descr;
if (PyDict_GetItemString(dict, memb->name))
continue;
descr = PyDescr_NewMember(type, memb);
if (descr == NULL)
return -1;
if (PyDict_SetItem(dict, PyDescr_NAME(descr), descr) < 0) {
Py_DECREF(descr);
return -1;
}
Py_DECREF(descr);
}
return 0;
}
static int
add_getset(PyTypeObject *type, PyGetSetDef *gsp)
{
PyObject *dict = type->tp_dict;
for (; gsp->name != NULL; gsp++) {
PyObject *descr;
if (PyDict_GetItemString(dict, gsp->name))
continue;
descr = PyDescr_NewGetSet(type, gsp);
if (descr == NULL)
return -1;
if (PyDict_SetItem(dict, PyDescr_NAME(descr), descr) < 0) {
Py_DECREF(descr);
return -1;
}
Py_DECREF(descr);
}
return 0;
}
static void
inherit_special(PyTypeObject *type, PyTypeObject *base)
{
/* Copying basicsize is connected to the GC flags */
if (!(type->tp_flags & Py_TPFLAGS_HAVE_GC) &&
(base->tp_flags & Py_TPFLAGS_HAVE_GC) &&
(!type->tp_traverse && !type->tp_clear)) {
type->tp_flags |= Py_TPFLAGS_HAVE_GC;
if (type->tp_traverse == NULL)
type->tp_traverse = base->tp_traverse;
if (type->tp_clear == NULL)
type->tp_clear = base->tp_clear;
}
{
/* The condition below could use some explanation.
It appears that tp_new is not inherited for static types
whose base class is 'object'; this seems to be a precaution
so that old extension types don't suddenly become
callable (object.__new__ wouldn't insure the invariants
that the extension type's own factory function ensures).
Heap types, of course, are under our control, so they do
inherit tp_new; static extension types that specify some
other built-in type as the default also
inherit object.__new__. */
if (base != &PyBaseObject_Type ||
(type->tp_flags & Py_TPFLAGS_HEAPTYPE)) {
if (type->tp_new == NULL)
type->tp_new = base->tp_new;
}
}
if (type->tp_basicsize == 0)
type->tp_basicsize = base->tp_basicsize;
/* Copy other non-function slots */
#undef COPYVAL
#define COPYVAL(SLOT) \
if (type->SLOT == 0) type->SLOT = base->SLOT
COPYVAL(tp_itemsize);
COPYVAL(tp_weaklistoffset);
COPYVAL(tp_dictoffset);
/* Setup fast subclass flags */
if (PyType_IsSubtype(base, (PyTypeObject*)PyExc_BaseException))
type->tp_flags |= Py_TPFLAGS_BASE_EXC_SUBCLASS;
else if (PyType_IsSubtype(base, &PyType_Type))
type->tp_flags |= Py_TPFLAGS_TYPE_SUBCLASS;
else if (PyType_IsSubtype(base, &PyLong_Type))
type->tp_flags |= Py_TPFLAGS_LONG_SUBCLASS;
else if (PyType_IsSubtype(base, &PyBytes_Type))
type->tp_flags |= Py_TPFLAGS_BYTES_SUBCLASS;
else if (PyType_IsSubtype(base, &PyUnicode_Type))
type->tp_flags |= Py_TPFLAGS_UNICODE_SUBCLASS;
else if (PyType_IsSubtype(base, &PyTuple_Type))
type->tp_flags |= Py_TPFLAGS_TUPLE_SUBCLASS;
else if (PyType_IsSubtype(base, &PyList_Type))
type->tp_flags |= Py_TPFLAGS_LIST_SUBCLASS;
else if (PyType_IsSubtype(base, &PyDict_Type))
type->tp_flags |= Py_TPFLAGS_DICT_SUBCLASS;
}
static int
overrides_hash(PyTypeObject *type)
{
PyObject *dict = type->tp_dict;
_Py_IDENTIFIER(__eq__);
assert(dict != NULL);
if (_PyDict_GetItemId(dict, &PyId___eq__) != NULL)
return 1;
if (_PyDict_GetItemId(dict, &PyId___hash__) != NULL)
return 1;
return 0;
}
static void
inherit_slots(PyTypeObject *type, PyTypeObject *base)
{
PyTypeObject *basebase;
#undef SLOTDEFINED
#undef COPYSLOT
#undef COPYNUM
#undef COPYSEQ
#undef COPYMAP
#undef COPYBUF
#define SLOTDEFINED(SLOT) \
(base->SLOT != 0 && \
(basebase == NULL || base->SLOT != basebase->SLOT))
#define COPYSLOT(SLOT) \
if (!type->SLOT && SLOTDEFINED(SLOT)) type->SLOT = base->SLOT
#define COPYASYNC(SLOT) COPYSLOT(tp_as_async->SLOT)
#define COPYNUM(SLOT) COPYSLOT(tp_as_number->SLOT)
#define COPYSEQ(SLOT) COPYSLOT(tp_as_sequence->SLOT)
#define COPYMAP(SLOT) COPYSLOT(tp_as_mapping->SLOT)
#define COPYBUF(SLOT) COPYSLOT(tp_as_buffer->SLOT)
/* This won't inherit indirect slots (from tp_as_number etc.)
if type doesn't provide the space. */
if (type->tp_as_number != NULL && base->tp_as_number != NULL) {
basebase = base->tp_base;
if (basebase->tp_as_number == NULL)
basebase = NULL;
COPYNUM(nb_add);
COPYNUM(nb_subtract);
COPYNUM(nb_multiply);
COPYNUM(nb_remainder);
COPYNUM(nb_divmod);
COPYNUM(nb_power);
COPYNUM(nb_negative);
COPYNUM(nb_positive);
COPYNUM(nb_absolute);
COPYNUM(nb_bool);
COPYNUM(nb_invert);
COPYNUM(nb_lshift);
COPYNUM(nb_rshift);
COPYNUM(nb_and);
COPYNUM(nb_xor);
COPYNUM(nb_or);
COPYNUM(nb_int);
COPYNUM(nb_float);
COPYNUM(nb_inplace_add);
COPYNUM(nb_inplace_subtract);
COPYNUM(nb_inplace_multiply);
COPYNUM(nb_inplace_remainder);
COPYNUM(nb_inplace_power);
COPYNUM(nb_inplace_lshift);
COPYNUM(nb_inplace_rshift);
COPYNUM(nb_inplace_and);
COPYNUM(nb_inplace_xor);
COPYNUM(nb_inplace_or);
COPYNUM(nb_true_divide);
COPYNUM(nb_floor_divide);
COPYNUM(nb_inplace_true_divide);
COPYNUM(nb_inplace_floor_divide);
COPYNUM(nb_index);
COPYNUM(nb_matrix_multiply);
COPYNUM(nb_inplace_matrix_multiply);
}
if (type->tp_as_async != NULL && base->tp_as_async != NULL) {
basebase = base->tp_base;
if (basebase->tp_as_async == NULL)
basebase = NULL;
COPYASYNC(am_await);
COPYASYNC(am_aiter);
COPYASYNC(am_anext);
}
if (type->tp_as_sequence != NULL && base->tp_as_sequence != NULL) {
basebase = base->tp_base;
if (basebase->tp_as_sequence == NULL)
basebase = NULL;
COPYSEQ(sq_length);
COPYSEQ(sq_concat);
COPYSEQ(sq_repeat);
COPYSEQ(sq_item);
COPYSEQ(sq_ass_item);
COPYSEQ(sq_contains);
COPYSEQ(sq_inplace_concat);
COPYSEQ(sq_inplace_repeat);
}
if (type->tp_as_mapping != NULL && base->tp_as_mapping != NULL) {
basebase = base->tp_base;
if (basebase->tp_as_mapping == NULL)
basebase = NULL;
COPYMAP(mp_length);
COPYMAP(mp_subscript);
COPYMAP(mp_ass_subscript);
}
if (type->tp_as_buffer != NULL && base->tp_as_buffer != NULL) {
basebase = base->tp_base;
if (basebase->tp_as_buffer == NULL)
basebase = NULL;
COPYBUF(bf_getbuffer);
COPYBUF(bf_releasebuffer);
}
basebase = base->tp_base;
COPYSLOT(tp_dealloc);
if (type->tp_getattr == NULL && type->tp_getattro == NULL) {
type->tp_getattr = base->tp_getattr;
type->tp_getattro = base->tp_getattro;
}
if (type->tp_setattr == NULL && type->tp_setattro == NULL) {
type->tp_setattr = base->tp_setattr;
type->tp_setattro = base->tp_setattro;
}
/* tp_reserved is ignored */
COPYSLOT(tp_repr);
/* tp_hash see tp_richcompare */
COPYSLOT(tp_call);
COPYSLOT(tp_str);
{
/* Copy comparison-related slots only when
not overriding them anywhere */
if (type->tp_richcompare == NULL &&
type->tp_hash == NULL &&
!overrides_hash(type))
{
type->tp_richcompare = base->tp_richcompare;
type->tp_hash = base->tp_hash;
}
}
{
COPYSLOT(tp_iter);
COPYSLOT(tp_iternext);
}
{
COPYSLOT(tp_descr_get);
COPYSLOT(tp_descr_set);
COPYSLOT(tp_dictoffset);
COPYSLOT(tp_init);
COPYSLOT(tp_alloc);
COPYSLOT(tp_is_gc);
if ((type->tp_flags & Py_TPFLAGS_HAVE_FINALIZE) &&
(base->tp_flags & Py_TPFLAGS_HAVE_FINALIZE)) {
COPYSLOT(tp_finalize);
}
if ((type->tp_flags & Py_TPFLAGS_HAVE_GC) ==
(base->tp_flags & Py_TPFLAGS_HAVE_GC)) {
/* They agree about gc. */
COPYSLOT(tp_free);
}
else if ((type->tp_flags & Py_TPFLAGS_HAVE_GC) &&
type->tp_free == NULL &&
base->tp_free == PyObject_Free) {
/* A bit of magic to plug in the correct default
* tp_free function when a derived class adds gc,
* didn't define tp_free, and the base uses the
* default non-gc tp_free.
*/
type->tp_free = PyObject_GC_Del;
}
/* else they didn't agree about gc, and there isn't something
* obvious to be done -- the type is on its own.
*/
}
}
static int add_operators(PyTypeObject *);
int
PyType_Ready(PyTypeObject *type)
{
PyObject *dict, *bases;
PyTypeObject *base;
Py_ssize_t i, n;
if (type->tp_flags & Py_TPFLAGS_READY) {
assert(_PyType_CheckConsistency(type));
return 0;
}
assert((type->tp_flags & Py_TPFLAGS_READYING) == 0);
type->tp_flags |= Py_TPFLAGS_READYING;
#ifdef Py_TRACE_REFS
/* PyType_Ready is the closest thing we have to a choke point
* for type objects, so is the best place I can think of to try
* to get type objects into the doubly-linked list of all objects.
* Still, not all type objects go thru PyType_Ready.
*/
_Py_AddToAllObjects((PyObject *)type, 0);
#endif
if (type->tp_name == NULL) {
PyErr_Format(PyExc_SystemError,
"Type does not define the tp_name field.");
goto error;
}
/* Initialize tp_base (defaults to BaseObject unless that's us) */
base = type->tp_base;
if (base == NULL && type != &PyBaseObject_Type) {
base = type->tp_base = &PyBaseObject_Type;
Py_INCREF(base);
}
/* Now the only way base can still be NULL is if type is
* &PyBaseObject_Type.
*/
/* Initialize the base class */
if (base != NULL && base->tp_dict == NULL) {
if (PyType_Ready(base) < 0)
goto error;
}
/* Initialize ob_type if NULL. This means extensions that want to be
compilable separately on Windows can call PyType_Ready() instead of
initializing the ob_type field of their type objects. */
/* The test for base != NULL is really unnecessary, since base is only
NULL when type is &PyBaseObject_Type, and we know its ob_type is
not NULL (it's initialized to &PyType_Type). But coverity doesn't
know that. */
if (Py_TYPE(type) == NULL && base != NULL)
Py_TYPE(type) = Py_TYPE(base);
/* Initialize tp_bases */
bases = type->tp_bases;
if (bases == NULL) {
if (base == NULL)
bases = PyTuple_New(0);
else
bases = PyTuple_Pack(1, base);
if (bases == NULL)
goto error;
type->tp_bases = bases;
}
/* Initialize tp_dict */
dict = type->tp_dict;
if (dict == NULL) {
dict = PyDict_New();
if (dict == NULL)
goto error;
type->tp_dict = dict;
}
/* Add type-specific descriptors to tp_dict */
if (add_operators(type) < 0)
goto error;
if (type->tp_methods != NULL) {
if (add_methods(type, type->tp_methods) < 0)
goto error;
}
if (type->tp_members != NULL) {
if (add_members(type, type->tp_members) < 0)
goto error;
}
if (type->tp_getset != NULL) {
if (add_getset(type, type->tp_getset) < 0)
goto error;
}
/* Calculate method resolution order */
if (mro_internal(type, NULL) < 0)
goto error;
/* Inherit special flags from dominant base */
if (type->tp_base != NULL)
inherit_special(type, type->tp_base);
/* Initialize tp_dict properly */
bases = type->tp_mro;
assert(bases != NULL);
assert(PyTuple_Check(bases));
n = PyTuple_GET_SIZE(bases);
for (i = 1; i < n; i++) {
PyObject *b = PyTuple_GET_ITEM(bases, i);
if (PyType_Check(b))
inherit_slots(type, (PyTypeObject *)b);
}
/* All bases of statically allocated type should be statically allocated */
if (!(type->tp_flags & Py_TPFLAGS_HEAPTYPE))
for (i = 0; i < n; i++) {
PyObject *b = PyTuple_GET_ITEM(bases, i);
if (PyType_Check(b) &&
(((PyTypeObject *)b)->tp_flags & Py_TPFLAGS_HEAPTYPE)) {
PyErr_Format(PyExc_TypeError,
"type '%.100s' is not dynamically allocated but "
"its base type '%.100s' is dynamically allocated",
type->tp_name, ((PyTypeObject *)b)->tp_name);
goto error;
}
}
/* Sanity check for tp_free. */
if (PyType_IS_GC(type) && (type->tp_flags & Py_TPFLAGS_BASETYPE) &&
(type->tp_free == NULL || type->tp_free == PyObject_Del)) {
/* This base class needs to call tp_free, but doesn't have
* one, or its tp_free is for non-gc'ed objects.
*/
PyErr_Format(PyExc_TypeError, "type '%.100s' participates in "
"gc and is a base type but has inappropriate "
"tp_free slot",
type->tp_name);
goto error;
}
/* if the type dictionary doesn't contain a __doc__, set it from
the tp_doc slot.
*/
if (_PyDict_GetItemId(type->tp_dict, &PyId___doc__) == NULL) {
if (type->tp_doc != NULL) {
const char *old_doc = _PyType_DocWithoutSignature(type->tp_name,
type->tp_doc);
PyObject *doc = PyUnicode_FromString(old_doc);
if (doc == NULL)
goto error;
if (_PyDict_SetItemId(type->tp_dict, &PyId___doc__, doc) < 0) {
Py_DECREF(doc);
goto error;
}
Py_DECREF(doc);
} else {
if (_PyDict_SetItemId(type->tp_dict,
&PyId___doc__, Py_None) < 0)
goto error;
}
}
/* Hack for tp_hash and __hash__.
If after all that, tp_hash is still NULL, and __hash__ is not in
tp_dict, set tp_hash to PyObject_HashNotImplemented and
tp_dict['__hash__'] equal to None.
This signals that __hash__ is not inherited.
*/
if (type->tp_hash == NULL) {
if (_PyDict_GetItemId(type->tp_dict, &PyId___hash__) == NULL) {
if (_PyDict_SetItemId(type->tp_dict, &PyId___hash__, Py_None) < 0)
goto error;
type->tp_hash = PyObject_HashNotImplemented;
}
}
/* Some more special stuff */
base = type->tp_base;
if (base != NULL) {
if (type->tp_as_async == NULL)
type->tp_as_async = base->tp_as_async;
if (type->tp_as_number == NULL)
type->tp_as_number = base->tp_as_number;
if (type->tp_as_sequence == NULL)
type->tp_as_sequence = base->tp_as_sequence;
if (type->tp_as_mapping == NULL)
type->tp_as_mapping = base->tp_as_mapping;
if (type->tp_as_buffer == NULL)
type->tp_as_buffer = base->tp_as_buffer;
}
/* Link into each base class's list of subclasses */
bases = type->tp_bases;
n = PyTuple_GET_SIZE(bases);
for (i = 0; i < n; i++) {
PyObject *b = PyTuple_GET_ITEM(bases, i);
if (PyType_Check(b) &&
add_subclass((PyTypeObject *)b, type) < 0)
goto error;
}
/* All done -- set the ready flag */
type->tp_flags =
(type->tp_flags & ~Py_TPFLAGS_READYING) | Py_TPFLAGS_READY;
assert(_PyType_CheckConsistency(type));
return 0;
error:
type->tp_flags &= ~Py_TPFLAGS_READYING;
return -1;
}
static int
add_subclass(PyTypeObject *base, PyTypeObject *type)
{
int result = -1;
PyObject *dict, *key, *newobj;
dict = base->tp_subclasses;
if (dict == NULL) {
base->tp_subclasses = dict = PyDict_New();
if (dict == NULL)
return -1;
}
assert(PyDict_CheckExact(dict));
key = PyLong_FromVoidPtr((void *) type);
if (key == NULL)
return -1;
newobj = PyWeakref_NewRef((PyObject *)type, NULL);
if (newobj != NULL) {
result = PyDict_SetItem(dict, key, newobj);
Py_DECREF(newobj);
}
Py_DECREF(key);
return result;
}
static int
add_all_subclasses(PyTypeObject *type, PyObject *bases)
{
int res = 0;
if (bases) {
Py_ssize_t i;
for (i = 0; i < PyTuple_GET_SIZE(bases); i++) {
PyObject *base = PyTuple_GET_ITEM(bases, i);
if (PyType_Check(base) &&
add_subclass((PyTypeObject*)base, type) < 0)
res = -1;
}
}
return res;
}
static void
remove_subclass(PyTypeObject *base, PyTypeObject *type)
{
PyObject *dict, *key;
dict = base->tp_subclasses;
if (dict == NULL) {
return;
}
assert(PyDict_CheckExact(dict));
key = PyLong_FromVoidPtr((void *) type);
if (key == NULL || PyDict_DelItem(dict, key)) {
/* This can happen if the type initialization errored out before
the base subclasses were updated (e.g. a non-str __qualname__
was passed in the type dict). */
PyErr_Clear();
}
Py_XDECREF(key);
}
static void
remove_all_subclasses(PyTypeObject *type, PyObject *bases)
{
if (bases) {
Py_ssize_t i;
for (i = 0; i < PyTuple_GET_SIZE(bases); i++) {
PyObject *base = PyTuple_GET_ITEM(bases, i);
if (PyType_Check(base))
remove_subclass((PyTypeObject*) base, type);
}
}
}
static int
check_num_args(PyObject *ob, int n)
{
if (!PyTuple_CheckExact(ob)) {
PyErr_SetString(PyExc_SystemError,
"PyArg_UnpackTuple() argument list is not a tuple");
return 0;
}
if (n == PyTuple_GET_SIZE(ob))
return 1;
PyErr_Format(
PyExc_TypeError,
"expected %d arguments, got %zd", n, PyTuple_GET_SIZE(ob));
return 0;
}
/* Generic wrappers for overloadable 'operators' such as __getitem__ */
/* There's a wrapper *function* for each distinct function typedef used
for type object slots (e.g. binaryfunc, ternaryfunc, etc.). There's a
wrapper *table* for each distinct operation (e.g. __len__, __add__).
Most tables have only one entry; the tables for binary operators have two
entries, one regular and one with reversed arguments. */
static PyObject *
wrap_lenfunc(PyObject *self, PyObject *args, void *wrapped)
{
lenfunc func = (lenfunc)wrapped;
Py_ssize_t res;
if (!check_num_args(args, 0))
return NULL;
res = (*func)(self);
if (res == -1 && PyErr_Occurred())
return NULL;
return PyLong_FromLong((long)res);
}
static PyObject *
wrap_inquirypred(PyObject *self, PyObject *args, void *wrapped)
{
inquiry func = (inquiry)wrapped;
int res;
if (!check_num_args(args, 0))
return NULL;
res = (*func)(self);
if (res == -1 && PyErr_Occurred())
return NULL;
return PyBool_FromLong((long)res);
}
static PyObject *
wrap_binaryfunc(PyObject *self, PyObject *args, void *wrapped)
{
binaryfunc func = (binaryfunc)wrapped;
PyObject *other;
if (!check_num_args(args, 1))
return NULL;
other = PyTuple_GET_ITEM(args, 0);
return (*func)(self, other);
}
static PyObject *
wrap_binaryfunc_l(PyObject *self, PyObject *args, void *wrapped)
{
binaryfunc func = (binaryfunc)wrapped;
PyObject *other;
if (!check_num_args(args, 1))
return NULL;
other = PyTuple_GET_ITEM(args, 0);
return (*func)(self, other);
}
static PyObject *
wrap_binaryfunc_r(PyObject *self, PyObject *args, void *wrapped)
{
binaryfunc func = (binaryfunc)wrapped;
PyObject *other;
if (!check_num_args(args, 1))
return NULL;
other = PyTuple_GET_ITEM(args, 0);
return (*func)(other, self);
}
static PyObject *
wrap_ternaryfunc(PyObject *self, PyObject *args, void *wrapped)
{
ternaryfunc func = (ternaryfunc)wrapped;
PyObject *other;
PyObject *third = Py_None;
/* Note: This wrapper only works for __pow__() */
if (!PyArg_UnpackTuple(args, "", 1, 2, &other, &third))
return NULL;
return (*func)(self, other, third);
}
static PyObject *
wrap_ternaryfunc_r(PyObject *self, PyObject *args, void *wrapped)
{
ternaryfunc func = (ternaryfunc)wrapped;
PyObject *other;
PyObject *third = Py_None;
/* Note: This wrapper only works for __pow__() */
if (!PyArg_UnpackTuple(args, "", 1, 2, &other, &third))
return NULL;
return (*func)(other, self, third);
}
static PyObject *
wrap_unaryfunc(PyObject *self, PyObject *args, void *wrapped)
{
unaryfunc func = (unaryfunc)wrapped;
if (!check_num_args(args, 0))
return NULL;
return (*func)(self);
}
static PyObject *
wrap_indexargfunc(PyObject *self, PyObject *args, void *wrapped)
{
ssizeargfunc func = (ssizeargfunc)wrapped;
PyObject* o;
Py_ssize_t i;
if (!PyArg_UnpackTuple(args, "", 1, 1, &o))
return NULL;
i = PyNumber_AsSsize_t(o, PyExc_OverflowError);
if (i == -1 && PyErr_Occurred())
return NULL;
return (*func)(self, i);
}
static Py_ssize_t
getindex(PyObject *self, PyObject *arg)
{
Py_ssize_t i;
i = PyNumber_AsSsize_t(arg, PyExc_OverflowError);
if (i == -1 && PyErr_Occurred())
return -1;
if (i < 0) {
PySequenceMethods *sq = Py_TYPE(self)->tp_as_sequence;
if (sq && sq->sq_length) {
Py_ssize_t n = (*sq->sq_length)(self);
if (n < 0)
return -1;
i += n;
}
}
return i;
}
static PyObject *
wrap_sq_item(PyObject *self, PyObject *args, void *wrapped)
{
ssizeargfunc func = (ssizeargfunc)wrapped;
PyObject *arg;
Py_ssize_t i;
if (PyTuple_GET_SIZE(args) == 1) {
arg = PyTuple_GET_ITEM(args, 0);
i = getindex(self, arg);
if (i == -1 && PyErr_Occurred())
return NULL;
return (*func)(self, i);
}
check_num_args(args, 1);
assert(PyErr_Occurred());
return NULL;
}
static PyObject *
wrap_sq_setitem(PyObject *self, PyObject *args, void *wrapped)
{
ssizeobjargproc func = (ssizeobjargproc)wrapped;
Py_ssize_t i;
int res;
PyObject *arg, *value;
if (!PyArg_UnpackTuple(args, "", 2, 2, &arg, &value))
return NULL;
i = getindex(self, arg);
if (i == -1 && PyErr_Occurred())
return NULL;
res = (*func)(self, i, value);
if (res == -1 && PyErr_Occurred())
return NULL;
Py_RETURN_NONE;
}
static PyObject *
wrap_sq_delitem(PyObject *self, PyObject *args, void *wrapped)
{
ssizeobjargproc func = (ssizeobjargproc)wrapped;
Py_ssize_t i;
int res;
PyObject *arg;
if (!check_num_args(args, 1))
return NULL;
arg = PyTuple_GET_ITEM(args, 0);
i = getindex(self, arg);
if (i == -1 && PyErr_Occurred())
return NULL;
res = (*func)(self, i, NULL);
if (res == -1 && PyErr_Occurred())
return NULL;
Py_RETURN_NONE;
}
/* XXX objobjproc is a misnomer; should be objargpred */
static PyObject *
wrap_objobjproc(PyObject *self, PyObject *args, void *wrapped)
{
objobjproc func = (objobjproc)wrapped;
int res;
PyObject *value;
if (!check_num_args(args, 1))
return NULL;
value = PyTuple_GET_ITEM(args, 0);
res = (*func)(self, value);
if (res == -1 && PyErr_Occurred())
return NULL;
else
return PyBool_FromLong(res);
}
static PyObject *
wrap_objobjargproc(PyObject *self, PyObject *args, void *wrapped)
{
objobjargproc func = (objobjargproc)wrapped;
int res;
PyObject *key, *value;
if (!PyArg_UnpackTuple(args, "", 2, 2, &key, &value))
return NULL;
res = (*func)(self, key, value);
if (res == -1 && PyErr_Occurred())
return NULL;
Py_RETURN_NONE;
}
static PyObject *
wrap_delitem(PyObject *self, PyObject *args, void *wrapped)
{
objobjargproc func = (objobjargproc)wrapped;
int res;
PyObject *key;
if (!check_num_args(args, 1))
return NULL;
key = PyTuple_GET_ITEM(args, 0);
res = (*func)(self, key, NULL);
if (res == -1 && PyErr_Occurred())
return NULL;
Py_RETURN_NONE;
}
/* Helper to check for object.__setattr__ or __delattr__ applied to a type.
This is called the Carlo Verre hack after its discoverer. */
static int
hackcheck(PyObject *self, setattrofunc func, const char *what)
{
PyTypeObject *type = Py_TYPE(self);
while (type && type->tp_flags & Py_TPFLAGS_HEAPTYPE)
type = type->tp_base;
/* If type is NULL now, this is a really weird type.
In the spirit of backwards compatibility (?), just shut up. */
if (type && type->tp_setattro != func) {
PyErr_Format(PyExc_TypeError,
"can't apply this %s to %s object",
what,
type->tp_name);
return 0;
}
return 1;
}
static PyObject *
wrap_setattr(PyObject *self, PyObject *args, void *wrapped)
{
setattrofunc func = (setattrofunc)wrapped;
int res;
PyObject *name, *value;
if (!PyArg_UnpackTuple(args, "", 2, 2, &name, &value))
return NULL;
if (!hackcheck(self, func, "__setattr__"))
return NULL;
res = (*func)(self, name, value);
if (res < 0)
return NULL;
Py_RETURN_NONE;
}
static PyObject *
wrap_delattr(PyObject *self, PyObject *args, void *wrapped)
{
setattrofunc func = (setattrofunc)wrapped;
int res;
PyObject *name;
if (!check_num_args(args, 1))
return NULL;
name = PyTuple_GET_ITEM(args, 0);
if (!hackcheck(self, func, "__delattr__"))
return NULL;
res = (*func)(self, name, NULL);
if (res < 0)
return NULL;
Py_RETURN_NONE;
}
static PyObject *
wrap_hashfunc(PyObject *self, PyObject *args, void *wrapped)
{
hashfunc func = (hashfunc)wrapped;
Py_hash_t res;
if (!check_num_args(args, 0))
return NULL;
res = (*func)(self);
if (res == -1 && PyErr_Occurred())
return NULL;
return PyLong_FromSsize_t(res);
}
static PyObject *
wrap_call(PyObject *self, PyObject *args, void *wrapped, PyObject *kwds)
{
ternaryfunc func = (ternaryfunc)wrapped;
return (*func)(self, args, kwds);
}
static PyObject *
wrap_del(PyObject *self, PyObject *args, void *wrapped)
{
destructor func = (destructor)wrapped;
if (!check_num_args(args, 0))
return NULL;
(*func)(self);
Py_RETURN_NONE;
}
static PyObject *
wrap_richcmpfunc(PyObject *self, PyObject *args, void *wrapped, int op)
{
richcmpfunc func = (richcmpfunc)wrapped;
PyObject *other;
if (!check_num_args(args, 1))
return NULL;
other = PyTuple_GET_ITEM(args, 0);
return (*func)(self, other, op);
}
#undef RICHCMP_WRAPPER
#define RICHCMP_WRAPPER(NAME, OP) \
static PyObject * \
richcmp_##NAME(PyObject *self, PyObject *args, void *wrapped) \
{ \
return wrap_richcmpfunc(self, args, wrapped, OP); \
}
RICHCMP_WRAPPER(lt, Py_LT)
RICHCMP_WRAPPER(le, Py_LE)
RICHCMP_WRAPPER(eq, Py_EQ)
RICHCMP_WRAPPER(ne, Py_NE)
RICHCMP_WRAPPER(gt, Py_GT)
RICHCMP_WRAPPER(ge, Py_GE)
static PyObject *
wrap_next(PyObject *self, PyObject *args, void *wrapped)
{
unaryfunc func = (unaryfunc)wrapped;
PyObject *res;
if (!check_num_args(args, 0))
return NULL;
res = (*func)(self);
if (res == NULL && !PyErr_Occurred())
PyErr_SetNone(PyExc_StopIteration);
return res;
}
static PyObject *
wrap_descr_get(PyObject *self, PyObject *args, void *wrapped)
{
descrgetfunc func = (descrgetfunc)wrapped;
PyObject *obj;
PyObject *type = NULL;
if (!PyArg_UnpackTuple(args, "", 1, 2, &obj, &type))
return NULL;
if (obj == Py_None)
obj = NULL;
if (type == Py_None)
type = NULL;
if (type == NULL &&obj == NULL) {
PyErr_SetString(PyExc_TypeError,
"__get__(None, None) is invalid");
return NULL;
}
return (*func)(self, obj, type);
}
static PyObject *
wrap_descr_set(PyObject *self, PyObject *args, void *wrapped)
{
descrsetfunc func = (descrsetfunc)wrapped;
PyObject *obj, *value;
int ret;
if (!PyArg_UnpackTuple(args, "", 2, 2, &obj, &value))
return NULL;
ret = (*func)(self, obj, value);
if (ret < 0)
return NULL;
Py_RETURN_NONE;
}
static PyObject *
wrap_descr_delete(PyObject *self, PyObject *args, void *wrapped)
{
descrsetfunc func = (descrsetfunc)wrapped;
PyObject *obj;
int ret;
if (!check_num_args(args, 1))
return NULL;
obj = PyTuple_GET_ITEM(args, 0);
ret = (*func)(self, obj, NULL);
if (ret < 0)
return NULL;
Py_RETURN_NONE;
}
static PyObject *
wrap_init(PyObject *self, PyObject *args, void *wrapped, PyObject *kwds)
{
initproc func = (initproc)wrapped;
if (func(self, args, kwds) < 0)
return NULL;
Py_RETURN_NONE;
}
static PyObject *
tp_new_wrapper(PyObject *self, PyObject *args, PyObject *kwds)
{
PyTypeObject *type, *subtype, *staticbase;
PyObject *arg0, *res;
if (self == NULL || !PyType_Check(self))
Py_FatalError("__new__() called with non-type 'self'");
type = (PyTypeObject *)self;
if (!PyTuple_Check(args) || PyTuple_GET_SIZE(args) < 1) {
PyErr_Format(PyExc_TypeError,
"%s.__new__(): not enough arguments",
type->tp_name);
return NULL;
}
arg0 = PyTuple_GET_ITEM(args, 0);
if (!PyType_Check(arg0)) {
PyErr_Format(PyExc_TypeError,
"%s.__new__(X): X is not a type object (%s)",
type->tp_name,
Py_TYPE(arg0)->tp_name);
return NULL;
}
subtype = (PyTypeObject *)arg0;
if (!PyType_IsSubtype(subtype, type)) {
PyErr_Format(PyExc_TypeError,
"%s.__new__(%s): %s is not a subtype of %s",
type->tp_name,
subtype->tp_name,
subtype->tp_name,
type->tp_name);
return NULL;
}
/* Check that the use doesn't do something silly and unsafe like
object.__new__(dict). To do this, we check that the
most derived base that's not a heap type is this type. */
staticbase = subtype;
while (staticbase && (staticbase->tp_new == slot_tp_new))
staticbase = staticbase->tp_base;
/* If staticbase is NULL now, it is a really weird type.
In the spirit of backwards compatibility (?), just shut up. */
if (staticbase && staticbase->tp_new != type->tp_new) {
PyErr_Format(PyExc_TypeError,
"%s.__new__(%s) is not safe, use %s.__new__()",
type->tp_name,
subtype->tp_name,
staticbase->tp_name);
return NULL;
}
args = PyTuple_GetSlice(args, 1, PyTuple_GET_SIZE(args));
if (args == NULL)
return NULL;
res = type->tp_new(subtype, args, kwds);
Py_DECREF(args);
return res;
}
static struct PyMethodDef tp_new_methoddef[] = {
{"__new__", (PyCFunction)tp_new_wrapper, METH_VARARGS|METH_KEYWORDS,
PyDoc_STR("__new__($type, *args, **kwargs)\n--\n\n"
"Create and return a new object. "
"See help(type) for accurate signature.")},
{0}
};
static int
add_tp_new_wrapper(PyTypeObject *type)
{
PyObject *func;
if (_PyDict_GetItemId(type->tp_dict, &PyId___new__) != NULL)
return 0;
func = PyCFunction_NewEx(tp_new_methoddef, (PyObject *)type, NULL);
if (func == NULL)
return -1;
if (_PyDict_SetItemId(type->tp_dict, &PyId___new__, func)) {
Py_DECREF(func);
return -1;
}
Py_DECREF(func);
return 0;
}
/* Slot wrappers that call the corresponding __foo__ slot. See comments
below at override_slots() for more explanation. */
#define SLOT0(FUNCNAME, OPSTR) \
static PyObject * \
FUNCNAME(PyObject *self) \
{ \
_Py_static_string(id, OPSTR); \
return call_method(self, &id, NULL, 0); \
}
#define SLOT1(FUNCNAME, OPSTR, ARG1TYPE) \
static PyObject * \
FUNCNAME(PyObject *self, ARG1TYPE arg1) \
{ \
PyObject* stack[1] = {arg1}; \
_Py_static_string(id, OPSTR); \
return call_method(self, &id, stack, 1); \
}
/* Boolean helper for SLOT1BINFULL().
right.__class__ is a nontrivial subclass of left.__class__. */
static int
method_is_overloaded(PyObject *left, PyObject *right, struct _Py_Identifier *name)
{
PyObject *a, *b;
int ok;
b = _PyObject_GetAttrId((PyObject *)(Py_TYPE(right)), name);
if (b == NULL) {
PyErr_Clear();
/* If right doesn't have it, it's not overloaded */
return 0;
}
a = _PyObject_GetAttrId((PyObject *)(Py_TYPE(left)), name);
if (a == NULL) {
PyErr_Clear();
Py_DECREF(b);
/* If right has it but left doesn't, it's overloaded */
return 1;
}
ok = PyObject_RichCompareBool(a, b, Py_NE);
Py_DECREF(a);
Py_DECREF(b);
if (ok < 0) {
PyErr_Clear();
return 0;
}
return ok;
}
#define SLOT1BINFULL(FUNCNAME, TESTFUNC, SLOTNAME, OPSTR, ROPSTR) \
static PyObject * \
FUNCNAME(PyObject *self, PyObject *other) \
{ \
PyObject* stack[1]; \
_Py_static_string(op_id, OPSTR); \
_Py_static_string(rop_id, ROPSTR); \
int do_other = Py_TYPE(self) != Py_TYPE(other) && \
Py_TYPE(other)->tp_as_number != NULL && \
Py_TYPE(other)->tp_as_number->SLOTNAME == TESTFUNC; \
if (Py_TYPE(self)->tp_as_number != NULL && \
Py_TYPE(self)->tp_as_number->SLOTNAME == TESTFUNC) { \
PyObject *r; \
if (do_other && \
PyType_IsSubtype(Py_TYPE(other), Py_TYPE(self)) && \
method_is_overloaded(self, other, &rop_id)) { \
stack[0] = self; \
r = call_maybe(other, &rop_id, stack, 1); \
if (r != Py_NotImplemented) \
return r; \
Py_DECREF(r); \
do_other = 0; \
} \
stack[0] = other; \
r = call_maybe(self, &op_id, stack, 1); \
if (r != Py_NotImplemented || \
Py_TYPE(other) == Py_TYPE(self)) \
return r; \
Py_DECREF(r); \
} \
if (do_other) { \
stack[0] = self; \
return call_maybe(other, &rop_id, stack, 1); \
} \
Py_RETURN_NOTIMPLEMENTED; \
}
#define SLOT1BIN(FUNCNAME, SLOTNAME, OPSTR, ROPSTR) \
SLOT1BINFULL(FUNCNAME, FUNCNAME, SLOTNAME, OPSTR, ROPSTR)
static Py_ssize_t
slot_sq_length(PyObject *self)
{
PyObject *res = call_method(self, &PyId___len__, NULL, 0);
Py_ssize_t len;
if (res == NULL)
return -1;
len = PyNumber_AsSsize_t(res, PyExc_OverflowError);
Py_DECREF(res);
if (len < 0) {
if (!PyErr_Occurred())
PyErr_SetString(PyExc_ValueError,
"__len__() should return >= 0");
return -1;
}
return len;
}
/* Super-optimized version of slot_sq_item.
Other slots could do the same... */
static PyObject *
slot_sq_item(PyObject *self, Py_ssize_t i)
{
PyObject *func, *ival = NULL, *retval = NULL;
descrgetfunc f;
func = _PyType_LookupId(Py_TYPE(self), &PyId___getitem__);
if (func == NULL) {
PyObject *getitem_str = _PyUnicode_FromId(&PyId___getitem__);
PyErr_SetObject(PyExc_AttributeError, getitem_str);
return NULL;
}
f = Py_TYPE(func)->tp_descr_get;
if (f == NULL) {
Py_INCREF(func);
}
else {
func = f(func, self, (PyObject *)(Py_TYPE(self)));
if (func == NULL) {
return NULL;
}
}
ival = PyLong_FromSsize_t(i);
if (ival == NULL) {
goto error;
}
retval = PyObject_CallFunctionObjArgs(func, ival, NULL);
Py_DECREF(func);
Py_DECREF(ival);
return retval;
error:
Py_DECREF(func);
return NULL;
}
static int
slot_sq_ass_item(PyObject *self, Py_ssize_t index, PyObject *value)
{
PyObject *stack[2];
PyObject *res;
PyObject *index_obj;
index_obj = PyLong_FromSsize_t(index);
if (index_obj == NULL) {
return -1;
}
stack[0] = index_obj;
if (value == NULL) {
res = call_method(self, &PyId___delitem__, stack, 1);
}
else {
stack[1] = value;
res = call_method(self, &PyId___setitem__, stack, 2);
}
Py_DECREF(index_obj);
if (res == NULL) {
return -1;
}
Py_DECREF(res);
return 0;
}
static int
slot_sq_contains(PyObject *self, PyObject *value)
{
PyObject *func, *res;
int result = -1, unbound;
_Py_IDENTIFIER(__contains__);
func = lookup_maybe_method(self, &PyId___contains__, &unbound);
if (func == Py_None) {
Py_DECREF(func);
PyErr_Format(PyExc_TypeError,
"'%.200s' object is not a container",
Py_TYPE(self)->tp_name);
return -1;
}
if (func != NULL) {
PyObject *args[1] = {value};
res = call_unbound(unbound, func, self, args, 1);
Py_DECREF(func);
if (res != NULL) {
result = PyObject_IsTrue(res);
Py_DECREF(res);
}
}
else if (! PyErr_Occurred()) {
/* Possible results: -1 and 1 */
result = (int)_PySequence_IterSearch(self, value,
PY_ITERSEARCH_CONTAINS);
}
return result;
}
#define slot_mp_length slot_sq_length
SLOT1(slot_mp_subscript, "__getitem__", PyObject *)
static int
slot_mp_ass_subscript(PyObject *self, PyObject *key, PyObject *value)
{
PyObject *stack[2];
PyObject *res;
stack[0] = key;
if (value == NULL) {
res = call_method(self, &PyId___delitem__, stack, 1);
}
else {
stack[1] = value;
res = call_method(self, &PyId___setitem__, stack, 2);
}
if (res == NULL)
return -1;
Py_DECREF(res);
return 0;
}
SLOT1BIN(slot_nb_add, nb_add, "__add__", "__radd__")
SLOT1BIN(slot_nb_subtract, nb_subtract, "__sub__", "__rsub__")
SLOT1BIN(slot_nb_multiply, nb_multiply, "__mul__", "__rmul__")
SLOT1BIN(slot_nb_matrix_multiply, nb_matrix_multiply, "__matmul__", "__rmatmul__")
SLOT1BIN(slot_nb_remainder, nb_remainder, "__mod__", "__rmod__")
SLOT1BIN(slot_nb_divmod, nb_divmod, "__divmod__", "__rdivmod__")
static PyObject *slot_nb_power(PyObject *, PyObject *, PyObject *);
SLOT1BINFULL(slot_nb_power_binary, slot_nb_power,
nb_power, "__pow__", "__rpow__")
static PyObject *
slot_nb_power(PyObject *self, PyObject *other, PyObject *modulus)
{
_Py_IDENTIFIER(__pow__);
if (modulus == Py_None)
return slot_nb_power_binary(self, other);
/* Three-arg power doesn't use __rpow__. But ternary_op
can call this when the second argument's type uses
slot_nb_power, so check before calling self.__pow__. */
if (Py_TYPE(self)->tp_as_number != NULL &&
Py_TYPE(self)->tp_as_number->nb_power == slot_nb_power) {
PyObject* stack[2] = {other, modulus};
return call_method(self, &PyId___pow__, stack, 2);
}
Py_RETURN_NOTIMPLEMENTED;
}
SLOT0(slot_nb_negative, "__neg__")
SLOT0(slot_nb_positive, "__pos__")
SLOT0(slot_nb_absolute, "__abs__")
static int
slot_nb_bool(PyObject *self)
{
PyObject *func, *value;
int result, unbound;
int using_len = 0;
_Py_IDENTIFIER(__bool__);
func = lookup_maybe_method(self, &PyId___bool__, &unbound);
if (func == NULL) {
if (PyErr_Occurred()) {
return -1;
}
func = lookup_maybe_method(self, &PyId___len__, &unbound);
if (func == NULL) {
if (PyErr_Occurred()) {
return -1;
}
return 1;
}
using_len = 1;
}
value = call_unbound_noarg(unbound, func, self);
if (value == NULL) {
goto error;
}
if (using_len) {
/* bool type enforced by slot_nb_len */
result = PyObject_IsTrue(value);
}
else if (PyBool_Check(value)) {
result = PyObject_IsTrue(value);
}
else {
PyErr_Format(PyExc_TypeError,
"__bool__ should return "
"bool, returned %s",
Py_TYPE(value)->tp_name);
result = -1;
}
Py_DECREF(value);
Py_DECREF(func);
return result;
error:
Py_DECREF(func);
return -1;
}
static PyObject *
slot_nb_index(PyObject *self)
{
_Py_IDENTIFIER(__index__);
return call_method(self, &PyId___index__, NULL, 0);
}
SLOT0(slot_nb_invert, "__invert__")
SLOT1BIN(slot_nb_lshift, nb_lshift, "__lshift__", "__rlshift__")
SLOT1BIN(slot_nb_rshift, nb_rshift, "__rshift__", "__rrshift__")
SLOT1BIN(slot_nb_and, nb_and, "__and__", "__rand__")
SLOT1BIN(slot_nb_xor, nb_xor, "__xor__", "__rxor__")
SLOT1BIN(slot_nb_or, nb_or, "__or__", "__ror__")
SLOT0(slot_nb_int, "__int__")
SLOT0(slot_nb_float, "__float__")
SLOT1(slot_nb_inplace_add, "__iadd__", PyObject *)
SLOT1(slot_nb_inplace_subtract, "__isub__", PyObject *)
SLOT1(slot_nb_inplace_multiply, "__imul__", PyObject *)
SLOT1(slot_nb_inplace_matrix_multiply, "__imatmul__", PyObject *)
SLOT1(slot_nb_inplace_remainder, "__imod__", PyObject *)
/* Can't use SLOT1 here, because nb_inplace_power is ternary */
static PyObject *
slot_nb_inplace_power(PyObject *self, PyObject * arg1, PyObject *arg2)
{
PyObject *stack[1] = {arg1};
_Py_IDENTIFIER(__ipow__);
return call_method(self, &PyId___ipow__, stack, 1);
}
SLOT1(slot_nb_inplace_lshift, "__ilshift__", PyObject *)
SLOT1(slot_nb_inplace_rshift, "__irshift__", PyObject *)
SLOT1(slot_nb_inplace_and, "__iand__", PyObject *)
SLOT1(slot_nb_inplace_xor, "__ixor__", PyObject *)
SLOT1(slot_nb_inplace_or, "__ior__", PyObject *)
SLOT1BIN(slot_nb_floor_divide, nb_floor_divide,
"__floordiv__", "__rfloordiv__")
SLOT1BIN(slot_nb_true_divide, nb_true_divide, "__truediv__", "__rtruediv__")
SLOT1(slot_nb_inplace_floor_divide, "__ifloordiv__", PyObject *)
SLOT1(slot_nb_inplace_true_divide, "__itruediv__", PyObject *)
static PyObject *
slot_tp_repr(PyObject *self)
{
PyObject *func, *res;
_Py_IDENTIFIER(__repr__);
int unbound;
func = lookup_method(self, &PyId___repr__, &unbound);
if (func != NULL) {
res = call_unbound_noarg(unbound, func, self);
Py_DECREF(func);
return res;
}
PyErr_Clear();
return PyUnicode_FromFormat("<%s object at %p>",
Py_TYPE(self)->tp_name, self);
}
SLOT0(slot_tp_str, "__str__")
static Py_hash_t
slot_tp_hash(PyObject *self)
{
PyObject *func, *res;
Py_ssize_t h;
int unbound;
func = lookup_method(self, &PyId___hash__, &unbound);
if (func == Py_None) {
Py_DECREF(func);
func = NULL;
}
if (func == NULL) {
return PyObject_HashNotImplemented(self);
}
res = call_unbound_noarg(unbound, func, self);
Py_DECREF(func);
if (res == NULL)
return -1;
if (!PyLong_Check(res)) {
PyErr_SetString(PyExc_TypeError,
"__hash__ method should return an integer");
return -1;
}
/* Transform the PyLong `res` to a Py_hash_t `h`. For an existing
hashable Python object x, hash(x) will always lie within the range of
Py_hash_t. Therefore our transformation must preserve values that
already lie within this range, to ensure that if x.__hash__() returns
hash(y) then hash(x) == hash(y). */
h = PyLong_AsSsize_t(res);
if (h == -1 && PyErr_Occurred()) {
/* res was not within the range of a Py_hash_t, so we're free to
use any sufficiently bit-mixing transformation;
long.__hash__ will do nicely. */
PyErr_Clear();
h = PyLong_Type.tp_hash(res);
}
/* -1 is reserved for errors. */
if (h == -1)
h = -2;
Py_DECREF(res);
return h;
}
static PyObject *
slot_tp_call(PyObject *self, PyObject *args, PyObject *kwds)
{
_Py_IDENTIFIER(__call__);
int unbound;
PyObject *meth = lookup_method(self, &PyId___call__, &unbound);
PyObject *res;
if (meth == NULL)
return NULL;
if (unbound) {
res = _PyObject_Call_Prepend(meth, self, args, kwds);
}
else {
res = PyObject_Call(meth, args, kwds);
}
Py_DECREF(meth);
return res;
}
/* There are two slot dispatch functions for tp_getattro.
- slot_tp_getattro() is used when __getattribute__ is overridden
but no __getattr__ hook is present;
- slot_tp_getattr_hook() is used when a __getattr__ hook is present.
The code in update_one_slot() always installs slot_tp_getattr_hook(); this
detects the absence of __getattr__ and then installs the simpler slot if
necessary. */
static PyObject *
slot_tp_getattro(PyObject *self, PyObject *name)
{
PyObject *stack[1] = {name};
return call_method(self, &PyId___getattribute__, stack, 1);
}
static PyObject *
call_attribute(PyObject *self, PyObject *attr, PyObject *name)
{
PyObject *res, *descr = NULL;
descrgetfunc f = Py_TYPE(attr)->tp_descr_get;
if (f != NULL) {
descr = f(attr, self, (PyObject *)(Py_TYPE(self)));
if (descr == NULL)
return NULL;
else
attr = descr;
}
res = PyObject_CallFunctionObjArgs(attr, name, NULL);
Py_XDECREF(descr);
return res;
}
static PyObject *
slot_tp_getattr_hook(PyObject *self, PyObject *name)
{
PyTypeObject *tp = Py_TYPE(self);
PyObject *getattr, *getattribute, *res;
_Py_IDENTIFIER(__getattr__);
/* speed hack: we could use lookup_maybe, but that would resolve the
method fully for each attribute lookup for classes with
__getattr__, even when the attribute is present. So we use
_PyType_Lookup and create the method only when needed, with
call_attribute. */
getattr = _PyType_LookupId(tp, &PyId___getattr__);
if (getattr == NULL) {
/* No __getattr__ hook: use a simpler dispatcher */
tp->tp_getattro = slot_tp_getattro;
return slot_tp_getattro(self, name);
}
Py_INCREF(getattr);
/* speed hack: we could use lookup_maybe, but that would resolve the
method fully for each attribute lookup for classes with
__getattr__, even when self has the default __getattribute__
method. So we use _PyType_Lookup and create the method only when
needed, with call_attribute. */
getattribute = _PyType_LookupId(tp, &PyId___getattribute__);
if (getattribute == NULL ||
(Py_TYPE(getattribute) == &PyWrapperDescr_Type &&
((PyWrapperDescrObject *)getattribute)->d_wrapped ==
(void *)PyObject_GenericGetAttr))
res = PyObject_GenericGetAttr(self, name);
else {
Py_INCREF(getattribute);
res = call_attribute(self, getattribute, name);
Py_DECREF(getattribute);
}
if (res == NULL && PyErr_ExceptionMatches(PyExc_AttributeError)) {
PyErr_Clear();
res = call_attribute(self, getattr, name);
}
Py_DECREF(getattr);
return res;
}
static int
slot_tp_setattro(PyObject *self, PyObject *name, PyObject *value)
{
PyObject *stack[2];
PyObject *res;
_Py_IDENTIFIER(__delattr__);
_Py_IDENTIFIER(__setattr__);
stack[0] = name;
if (value == NULL) {
res = call_method(self, &PyId___delattr__, stack, 1);
}
else {
stack[1] = value;
res = call_method(self, &PyId___setattr__, stack, 2);
}
if (res == NULL)
return -1;
Py_DECREF(res);
return 0;
}
static _Py_Identifier name_op[] = {
{0, "__lt__", 0},
{0, "__le__", 0},
{0, "__eq__", 0},
{0, "__ne__", 0},
{0, "__gt__", 0},
{0, "__ge__", 0}
};
static PyObject *
slot_tp_richcompare(PyObject *self, PyObject *other, int op)
{
int unbound;
PyObject *func, *res;
func = lookup_method(self, &name_op[op], &unbound);
if (func == NULL) {
PyErr_Clear();
Py_RETURN_NOTIMPLEMENTED;
}
PyObject *args[1] = {other};
res = call_unbound(unbound, func, self, args, 1);
Py_DECREF(func);
return res;
}
static PyObject *
slot_tp_iter(PyObject *self)
{
int unbound;
PyObject *func, *res;
_Py_IDENTIFIER(__iter__);
func = lookup_method(self, &PyId___iter__, &unbound);
if (func == Py_None) {
Py_DECREF(func);
PyErr_Format(PyExc_TypeError,
"'%.200s' object is not iterable",
Py_TYPE(self)->tp_name);
return NULL;
}
if (func != NULL) {
res = call_unbound_noarg(unbound, func, self);
Py_DECREF(func);
return res;
}
PyErr_Clear();
func = lookup_method(self, &PyId___getitem__, &unbound);
if (func == NULL) {
PyErr_Format(PyExc_TypeError,
"'%.200s' object is not iterable",
Py_TYPE(self)->tp_name);
return NULL;
}
Py_DECREF(func);
return PySeqIter_New(self);
}
static PyObject *
slot_tp_iternext(PyObject *self)
{
_Py_IDENTIFIER(__next__);
return call_method(self, &PyId___next__, NULL, 0);
}
static PyObject *
slot_tp_descr_get(PyObject *self, PyObject *obj, PyObject *type)
{
PyTypeObject *tp = Py_TYPE(self);
PyObject *get;
_Py_IDENTIFIER(__get__);
get = _PyType_LookupId(tp, &PyId___get__);
if (get == NULL) {
/* Avoid further slowdowns */
if (tp->tp_descr_get == slot_tp_descr_get)
tp->tp_descr_get = NULL;
Py_INCREF(self);
return self;
}
if (obj == NULL)
obj = Py_None;
if (type == NULL)
type = Py_None;
return PyObject_CallFunctionObjArgs(get, self, obj, type, NULL);
}
static int
slot_tp_descr_set(PyObject *self, PyObject *target, PyObject *value)
{
PyObject* stack[2];
PyObject *res;
_Py_IDENTIFIER(__delete__);
_Py_IDENTIFIER(__set__);
stack[0] = target;
if (value == NULL) {
res = call_method(self, &PyId___delete__, stack, 1);
}
else {
stack[1] = value;
res = call_method(self, &PyId___set__, stack, 2);
}
if (res == NULL)
return -1;
Py_DECREF(res);
return 0;
}
static int
slot_tp_init(PyObject *self, PyObject *args, PyObject *kwds)
{
_Py_IDENTIFIER(__init__);
int unbound;
PyObject *meth = lookup_method(self, &PyId___init__, &unbound);
PyObject *res;
if (meth == NULL)
return -1;
if (unbound) {
res = _PyObject_Call_Prepend(meth, self, args, kwds);
}
else {
res = PyObject_Call(meth, args, kwds);
}
Py_DECREF(meth);
if (res == NULL)
return -1;
if (res != Py_None) {
PyErr_Format(PyExc_TypeError,
"__init__() should return None, not '%.200s'",
Py_TYPE(res)->tp_name);
Py_DECREF(res);
return -1;
}
Py_DECREF(res);
return 0;
}
static PyObject *
slot_tp_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyObject *func, *result;
func = _PyObject_GetAttrId((PyObject *)type, &PyId___new__);
if (func == NULL) {
return NULL;
}
result = _PyObject_Call_Prepend(func, (PyObject *)type, args, kwds);
Py_DECREF(func);
return result;
}
static void
slot_tp_finalize(PyObject *self)
{
_Py_IDENTIFIER(__del__);
int unbound;
PyObject *del, *res;
PyObject *error_type, *error_value, *error_traceback;
/* Save the current exception, if any. */
PyErr_Fetch(&error_type, &error_value, &error_traceback);
/* Execute __del__ method, if any. */
del = lookup_maybe_method(self, &PyId___del__, &unbound);
if (del != NULL) {
res = call_unbound_noarg(unbound, del, self);
if (res == NULL)
PyErr_WriteUnraisable(del);
else
Py_DECREF(res);
Py_DECREF(del);
}
/* Restore the saved exception. */
PyErr_Restore(error_type, error_value, error_traceback);
}
static PyObject *
slot_am_await(PyObject *self)
{
int unbound;
PyObject *func, *res;
_Py_IDENTIFIER(__await__);
func = lookup_method(self, &PyId___await__, &unbound);
if (func != NULL) {
res = call_unbound_noarg(unbound, func, self);
Py_DECREF(func);
return res;
}
PyErr_Format(PyExc_AttributeError,
"object %.50s does not have __await__ method",
Py_TYPE(self)->tp_name);
return NULL;
}
static PyObject *
slot_am_aiter(PyObject *self)
{
int unbound;
PyObject *func, *res;
_Py_IDENTIFIER(__aiter__);
func = lookup_method(self, &PyId___aiter__, &unbound);
if (func != NULL) {
res = call_unbound_noarg(unbound, func, self);
Py_DECREF(func);
return res;
}
PyErr_Format(PyExc_AttributeError,
"object %.50s does not have __aiter__ method",
Py_TYPE(self)->tp_name);
return NULL;
}
static PyObject *
slot_am_anext(PyObject *self)
{
int unbound;
PyObject *func, *res;
_Py_IDENTIFIER(__anext__);
func = lookup_method(self, &PyId___anext__, &unbound);
if (func != NULL) {
res = call_unbound_noarg(unbound, func, self);
Py_DECREF(func);
return res;
}
PyErr_Format(PyExc_AttributeError,
"object %.50s does not have __anext__ method",
Py_TYPE(self)->tp_name);
return NULL;
}
/*
Table mapping __foo__ names to tp_foo offsets and slot_tp_foo wrapper functions.
The table is ordered by offsets relative to the 'PyHeapTypeObject' structure,
which incorporates the additional structures used for numbers, sequences and
mappings. Note that multiple names may map to the same slot (e.g. __eq__,
__ne__ etc. all map to tp_richcompare) and one name may map to multiple slots
(e.g. __str__ affects tp_str as well as tp_repr). The table is terminated with
an all-zero entry. (This table is further initialized in init_slotdefs().)
*/
typedef struct wrapperbase slotdef;
#undef TPSLOT
#undef FLSLOT
#undef AMSLOT
#undef ETSLOT
#undef SQSLOT
#undef MPSLOT
#undef NBSLOT
#undef UNSLOT
#undef IBSLOT
#undef BINSLOT
#undef RBINSLOT
#define TPSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC) \
{NAME, offsetof(PyTypeObject, SLOT), (void *)(FUNCTION), WRAPPER, \
PyDoc_STR(DOC)}
#define FLSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC, FLAGS) \
{NAME, offsetof(PyTypeObject, SLOT), (void *)(FUNCTION), WRAPPER, \
PyDoc_STR(DOC), FLAGS}
#define ETSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC) \
{NAME, offsetof(PyHeapTypeObject, SLOT), (void *)(FUNCTION), WRAPPER, \
PyDoc_STR(DOC)}
#define AMSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC) \
ETSLOT(NAME, as_async.SLOT, FUNCTION, WRAPPER, DOC)
#define SQSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC) \
ETSLOT(NAME, as_sequence.SLOT, FUNCTION, WRAPPER, DOC)
#define MPSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC) \
ETSLOT(NAME, as_mapping.SLOT, FUNCTION, WRAPPER, DOC)
#define NBSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC) \
ETSLOT(NAME, as_number.SLOT, FUNCTION, WRAPPER, DOC)
#define UNSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC) \
ETSLOT(NAME, as_number.SLOT, FUNCTION, WRAPPER, \
NAME "($self, /)\n--\n\n" DOC)
#define IBSLOT(NAME, SLOT, FUNCTION, WRAPPER, DOC) \
ETSLOT(NAME, as_number.SLOT, FUNCTION, WRAPPER, \
NAME "($self, value, /)\n--\n\nReturn self" DOC "value.")
#define BINSLOT(NAME, SLOT, FUNCTION, DOC) \
ETSLOT(NAME, as_number.SLOT, FUNCTION, wrap_binaryfunc_l, \
NAME "($self, value, /)\n--\n\nReturn self" DOC "value.")
#define RBINSLOT(NAME, SLOT, FUNCTION, DOC) \
ETSLOT(NAME, as_number.SLOT, FUNCTION, wrap_binaryfunc_r, \
NAME "($self, value, /)\n--\n\nReturn value" DOC "self.")
#define BINSLOTNOTINFIX(NAME, SLOT, FUNCTION, DOC) \
ETSLOT(NAME, as_number.SLOT, FUNCTION, wrap_binaryfunc_l, \
NAME "($self, value, /)\n--\n\n" DOC)
#define RBINSLOTNOTINFIX(NAME, SLOT, FUNCTION, DOC) \
ETSLOT(NAME, as_number.SLOT, FUNCTION, wrap_binaryfunc_r, \
NAME "($self, value, /)\n--\n\n" DOC)
static slotdef slotdefs[] = {
TPSLOT("__getattribute__", tp_getattr, NULL, NULL, ""),
TPSLOT("__getattr__", tp_getattr, NULL, NULL, ""),
TPSLOT("__setattr__", tp_setattr, NULL, NULL, ""),
TPSLOT("__delattr__", tp_setattr, NULL, NULL, ""),
TPSLOT("__repr__", tp_repr, slot_tp_repr, wrap_unaryfunc,
"__repr__($self, /)\n--\n\nReturn repr(self)."),
TPSLOT("__hash__", tp_hash, slot_tp_hash, wrap_hashfunc,
"__hash__($self, /)\n--\n\nReturn hash(self)."),
FLSLOT("__call__", tp_call, slot_tp_call, (wrapperfunc)wrap_call,
"__call__($self, /, *args, **kwargs)\n--\n\nCall self as a function.",
PyWrapperFlag_KEYWORDS),
TPSLOT("__str__", tp_str, slot_tp_str, wrap_unaryfunc,
"__str__($self, /)\n--\n\nReturn str(self)."),
TPSLOT("__getattribute__", tp_getattro, slot_tp_getattr_hook,
wrap_binaryfunc,
"__getattribute__($self, name, /)\n--\n\nReturn getattr(self, name)."),
TPSLOT("__getattr__", tp_getattro, slot_tp_getattr_hook, NULL, ""),
TPSLOT("__setattr__", tp_setattro, slot_tp_setattro, wrap_setattr,
"__setattr__($self, name, value, /)\n--\n\nImplement setattr(self, name, value)."),
TPSLOT("__delattr__", tp_setattro, slot_tp_setattro, wrap_delattr,
"__delattr__($self, name, /)\n--\n\nImplement delattr(self, name)."),
TPSLOT("__lt__", tp_richcompare, slot_tp_richcompare, richcmp_lt,
"__lt__($self, value, /)\n--\n\nReturn self<value."),
TPSLOT("__le__", tp_richcompare, slot_tp_richcompare, richcmp_le,
"__le__($self, value, /)\n--\n\nReturn self<=value."),
TPSLOT("__eq__", tp_richcompare, slot_tp_richcompare, richcmp_eq,
"__eq__($self, value, /)\n--\n\nReturn self==value."),
TPSLOT("__ne__", tp_richcompare, slot_tp_richcompare, richcmp_ne,
"__ne__($self, value, /)\n--\n\nReturn self!=value."),
TPSLOT("__gt__", tp_richcompare, slot_tp_richcompare, richcmp_gt,
"__gt__($self, value, /)\n--\n\nReturn self>value."),
TPSLOT("__ge__", tp_richcompare, slot_tp_richcompare, richcmp_ge,
"__ge__($self, value, /)\n--\n\nReturn self>=value."),
TPSLOT("__iter__", tp_iter, slot_tp_iter, wrap_unaryfunc,
"__iter__($self, /)\n--\n\nImplement iter(self)."),
TPSLOT("__next__", tp_iternext, slot_tp_iternext, wrap_next,
"__next__($self, /)\n--\n\nImplement next(self)."),
TPSLOT("__get__", tp_descr_get, slot_tp_descr_get, wrap_descr_get,
"__get__($self, instance, owner, /)\n--\n\nReturn an attribute of instance, which is of type owner."),
TPSLOT("__set__", tp_descr_set, slot_tp_descr_set, wrap_descr_set,
"__set__($self, instance, value, /)\n--\n\nSet an attribute of instance to value."),
TPSLOT("__delete__", tp_descr_set, slot_tp_descr_set,
wrap_descr_delete,
"__delete__($self, instance, /)\n--\n\nDelete an attribute of instance."),
FLSLOT("__init__", tp_init, slot_tp_init, (wrapperfunc)wrap_init,
"__init__($self, /, *args, **kwargs)\n--\n\n"
"Initialize self. See help(type(self)) for accurate signature.",
PyWrapperFlag_KEYWORDS),
TPSLOT("__new__", tp_new, slot_tp_new, NULL,
"__new__(type, /, *args, **kwargs)\n--\n\n"
"Create and return new object. See help(type) for accurate signature."),
TPSLOT("__del__", tp_finalize, slot_tp_finalize, (wrapperfunc)wrap_del, ""),
AMSLOT("__await__", am_await, slot_am_await, wrap_unaryfunc,
"__await__($self, /)\n--\n\nReturn an iterator to be used in await expression."),
AMSLOT("__aiter__", am_aiter, slot_am_aiter, wrap_unaryfunc,
"__aiter__($self, /)\n--\n\nReturn an awaitable, that resolves in asynchronous iterator."),
AMSLOT("__anext__", am_anext, slot_am_anext, wrap_unaryfunc,
"__anext__($self, /)\n--\n\nReturn a value or raise StopAsyncIteration."),
BINSLOT("__add__", nb_add, slot_nb_add,
"+"),
RBINSLOT("__radd__", nb_add, slot_nb_add,
"+"),
BINSLOT("__sub__", nb_subtract, slot_nb_subtract,
"-"),
RBINSLOT("__rsub__", nb_subtract, slot_nb_subtract,
"-"),
BINSLOT("__mul__", nb_multiply, slot_nb_multiply,
"*"),
RBINSLOT("__rmul__", nb_multiply, slot_nb_multiply,
"*"),
BINSLOT("__mod__", nb_remainder, slot_nb_remainder,
"%"),
RBINSLOT("__rmod__", nb_remainder, slot_nb_remainder,
"%"),
BINSLOTNOTINFIX("__divmod__", nb_divmod, slot_nb_divmod,
"Return divmod(self, value)."),
RBINSLOTNOTINFIX("__rdivmod__", nb_divmod, slot_nb_divmod,
"Return divmod(value, self)."),
NBSLOT("__pow__", nb_power, slot_nb_power, wrap_ternaryfunc,
"__pow__($self, value, mod=None, /)\n--\n\nReturn pow(self, value, mod)."),
NBSLOT("__rpow__", nb_power, slot_nb_power, wrap_ternaryfunc_r,
"__rpow__($self, value, mod=None, /)\n--\n\nReturn pow(value, self, mod)."),
UNSLOT("__neg__", nb_negative, slot_nb_negative, wrap_unaryfunc, "-self"),
UNSLOT("__pos__", nb_positive, slot_nb_positive, wrap_unaryfunc, "+self"),
UNSLOT("__abs__", nb_absolute, slot_nb_absolute, wrap_unaryfunc,
"abs(self)"),
UNSLOT("__bool__", nb_bool, slot_nb_bool, wrap_inquirypred,
"self != 0"),
UNSLOT("__invert__", nb_invert, slot_nb_invert, wrap_unaryfunc, "~self"),
BINSLOT("__lshift__", nb_lshift, slot_nb_lshift, "<<"),
RBINSLOT("__rlshift__", nb_lshift, slot_nb_lshift, "<<"),
BINSLOT("__rshift__", nb_rshift, slot_nb_rshift, ">>"),
RBINSLOT("__rrshift__", nb_rshift, slot_nb_rshift, ">>"),
BINSLOT("__and__", nb_and, slot_nb_and, "&"),
RBINSLOT("__rand__", nb_and, slot_nb_and, "&"),
BINSLOT("__xor__", nb_xor, slot_nb_xor, "^"),
RBINSLOT("__rxor__", nb_xor, slot_nb_xor, "^"),
BINSLOT("__or__", nb_or, slot_nb_or, "|"),
RBINSLOT("__ror__", nb_or, slot_nb_or, "|"),
UNSLOT("__int__", nb_int, slot_nb_int, wrap_unaryfunc,
"int(self)"),
UNSLOT("__float__", nb_float, slot_nb_float, wrap_unaryfunc,
"float(self)"),
IBSLOT("__iadd__", nb_inplace_add, slot_nb_inplace_add,
wrap_binaryfunc, "+="),
IBSLOT("__isub__", nb_inplace_subtract, slot_nb_inplace_subtract,
wrap_binaryfunc, "-="),
IBSLOT("__imul__", nb_inplace_multiply, slot_nb_inplace_multiply,
wrap_binaryfunc, "*="),
IBSLOT("__imod__", nb_inplace_remainder, slot_nb_inplace_remainder,
wrap_binaryfunc, "%="),
IBSLOT("__ipow__", nb_inplace_power, slot_nb_inplace_power,
wrap_binaryfunc, "**="),
IBSLOT("__ilshift__", nb_inplace_lshift, slot_nb_inplace_lshift,
wrap_binaryfunc, "<<="),
IBSLOT("__irshift__", nb_inplace_rshift, slot_nb_inplace_rshift,
wrap_binaryfunc, ">>="),
IBSLOT("__iand__", nb_inplace_and, slot_nb_inplace_and,
wrap_binaryfunc, "&="),
IBSLOT("__ixor__", nb_inplace_xor, slot_nb_inplace_xor,
wrap_binaryfunc, "^="),
IBSLOT("__ior__", nb_inplace_or, slot_nb_inplace_or,
wrap_binaryfunc, "|="),
BINSLOT("__floordiv__", nb_floor_divide, slot_nb_floor_divide, "//"),
RBINSLOT("__rfloordiv__", nb_floor_divide, slot_nb_floor_divide, "//"),
BINSLOT("__truediv__", nb_true_divide, slot_nb_true_divide, "/"),
RBINSLOT("__rtruediv__", nb_true_divide, slot_nb_true_divide, "/"),
IBSLOT("__ifloordiv__", nb_inplace_floor_divide,
slot_nb_inplace_floor_divide, wrap_binaryfunc, "//="),
IBSLOT("__itruediv__", nb_inplace_true_divide,
slot_nb_inplace_true_divide, wrap_binaryfunc, "/="),
NBSLOT("__index__", nb_index, slot_nb_index, wrap_unaryfunc,
"__index__($self, /)\n--\n\n"
"Return self converted to an integer, if self is suitable "
"for use as an index into a list."),
BINSLOT("__matmul__", nb_matrix_multiply, slot_nb_matrix_multiply,
"@"),
RBINSLOT("__rmatmul__", nb_matrix_multiply, slot_nb_matrix_multiply,
"@"),
IBSLOT("__imatmul__", nb_inplace_matrix_multiply, slot_nb_inplace_matrix_multiply,
wrap_binaryfunc, "@="),
MPSLOT("__len__", mp_length, slot_mp_length, wrap_lenfunc,
"__len__($self, /)\n--\n\nReturn len(self)."),
MPSLOT("__getitem__", mp_subscript, slot_mp_subscript,
wrap_binaryfunc,
"__getitem__($self, key, /)\n--\n\nReturn self[key]."),
MPSLOT("__setitem__", mp_ass_subscript, slot_mp_ass_subscript,
wrap_objobjargproc,
"__setitem__($self, key, value, /)\n--\n\nSet self[key] to value."),
MPSLOT("__delitem__", mp_ass_subscript, slot_mp_ass_subscript,
wrap_delitem,
"__delitem__($self, key, /)\n--\n\nDelete self[key]."),
SQSLOT("__len__", sq_length, slot_sq_length, wrap_lenfunc,
"__len__($self, /)\n--\n\nReturn len(self)."),
/* Heap types defining __add__/__mul__ have sq_concat/sq_repeat == NULL.
The logic in abstract.c always falls back to nb_add/nb_multiply in
this case. Defining both the nb_* and the sq_* slots to call the
user-defined methods has unexpected side-effects, as shown by
test_descr.notimplemented() */
SQSLOT("__add__", sq_concat, NULL, wrap_binaryfunc,
"__add__($self, value, /)\n--\n\nReturn self+value."),
SQSLOT("__mul__", sq_repeat, NULL, wrap_indexargfunc,
"__mul__($self, value, /)\n--\n\nReturn self*value.n"),
SQSLOT("__rmul__", sq_repeat, NULL, wrap_indexargfunc,
"__rmul__($self, value, /)\n--\n\nReturn self*value."),
SQSLOT("__getitem__", sq_item, slot_sq_item, wrap_sq_item,
"__getitem__($self, key, /)\n--\n\nReturn self[key]."),
SQSLOT("__setitem__", sq_ass_item, slot_sq_ass_item, wrap_sq_setitem,
"__setitem__($self, key, value, /)\n--\n\nSet self[key] to value."),
SQSLOT("__delitem__", sq_ass_item, slot_sq_ass_item, wrap_sq_delitem,
"__delitem__($self, key, /)\n--\n\nDelete self[key]."),
SQSLOT("__contains__", sq_contains, slot_sq_contains, wrap_objobjproc,
"__contains__($self, key, /)\n--\n\nReturn key in self."),
SQSLOT("__iadd__", sq_inplace_concat, NULL,
wrap_binaryfunc,
"__iadd__($self, value, /)\n--\n\nImplement self+=value."),
SQSLOT("__imul__", sq_inplace_repeat, NULL,
wrap_indexargfunc,
"__imul__($self, value, /)\n--\n\nImplement self*=value."),
{NULL}
};
/* Given a type pointer and an offset gotten from a slotdef entry, return a
pointer to the actual slot. This is not quite the same as simply adding
the offset to the type pointer, since it takes care to indirect through the
proper indirection pointer (as_buffer, etc.); it returns NULL if the
indirection pointer is NULL. */
static void **
slotptr(PyTypeObject *type, int ioffset)
{
char *ptr;
long offset = ioffset;
/* Note: this depends on the order of the members of PyHeapTypeObject! */
assert(offset >= 0);
assert((size_t)offset < offsetof(PyHeapTypeObject, as_buffer));
if ((size_t)offset >= offsetof(PyHeapTypeObject, as_sequence)) {
ptr = (char *)type->tp_as_sequence;
offset -= offsetof(PyHeapTypeObject, as_sequence);
}
else if ((size_t)offset >= offsetof(PyHeapTypeObject, as_mapping)) {
ptr = (char *)type->tp_as_mapping;
offset -= offsetof(PyHeapTypeObject, as_mapping);
}
else if ((size_t)offset >= offsetof(PyHeapTypeObject, as_number)) {
ptr = (char *)type->tp_as_number;
offset -= offsetof(PyHeapTypeObject, as_number);
}
else if ((size_t)offset >= offsetof(PyHeapTypeObject, as_async)) {
ptr = (char *)type->tp_as_async;
offset -= offsetof(PyHeapTypeObject, as_async);
}
else {
ptr = (char *)type;
}
if (ptr != NULL)
ptr += offset;
return (void **)ptr;
}
/* Length of array of slotdef pointers used to store slots with the
same __name__. There should be at most MAX_EQUIV-1 slotdef entries with
the same __name__, for any __name__. Since that's a static property, it is
appropriate to declare fixed-size arrays for this. */
#define MAX_EQUIV 10
/* Return a slot pointer for a given name, but ONLY if the attribute has
exactly one slot function. The name must be an interned string. */
static void **
resolve_slotdups(PyTypeObject *type, PyObject *name)
{
/* XXX Maybe this could be optimized more -- but is it worth it? */
/* pname and ptrs act as a little cache */
static PyObject *pname;
static slotdef *ptrs[MAX_EQUIV];
slotdef *p, **pp;
void **res, **ptr;
if (pname != name) {
/* Collect all slotdefs that match name into ptrs. */
pname = name;
pp = ptrs;
for (p = slotdefs; p->name_strobj; p++) {
if (p->name_strobj == name)
*pp++ = p;
}
*pp = NULL;
}
/* Look in all matching slots of the type; if exactly one of these has
a filled-in slot, return its value. Otherwise return NULL. */
res = NULL;
for (pp = ptrs; *pp; pp++) {
ptr = slotptr(type, (*pp)->offset);
if (ptr == NULL || *ptr == NULL)
continue;
if (res != NULL)
return NULL;
res = ptr;
}
return res;
}
/* Common code for update_slots_callback() and fixup_slot_dispatchers(). This
does some incredibly complex thinking and then sticks something into the
slot. (It sees if the adjacent slotdefs for the same slot have conflicting
interests, and then stores a generic wrapper or a specific function into
the slot.) Return a pointer to the next slotdef with a different offset,
because that's convenient for fixup_slot_dispatchers(). */
static slotdef *
update_one_slot(PyTypeObject *type, slotdef *p)
{
PyObject *descr;
PyWrapperDescrObject *d;
void *generic = NULL, *specific = NULL;
int use_generic = 0;
int offset = p->offset;
void **ptr = slotptr(type, offset);
if (ptr == NULL) {
do {
++p;
} while (p->offset == offset);
return p;
}
do {
descr = _PyType_Lookup(type, p->name_strobj);
if (descr == NULL) {
if (ptr == (void**)&type->tp_iternext) {
specific = (void *)_PyObject_NextNotImplemented;
}
continue;
}
if (Py_TYPE(descr) == &PyWrapperDescr_Type &&
((PyWrapperDescrObject *)descr)->d_base->name_strobj == p->name_strobj) {
void **tptr = resolve_slotdups(type, p->name_strobj);
if (tptr == NULL || tptr == ptr)
generic = p->function;
d = (PyWrapperDescrObject *)descr;
if (d->d_base->wrapper == p->wrapper &&
PyType_IsSubtype(type, PyDescr_TYPE(d)))
{
if (specific == NULL ||
specific == d->d_wrapped)
specific = d->d_wrapped;
else
use_generic = 1;
}
}
else if (Py_TYPE(descr) == &PyCFunction_Type &&
PyCFunction_GET_FUNCTION(descr) ==
(PyCFunction)tp_new_wrapper &&
ptr == (void**)&type->tp_new)
{
/* The __new__ wrapper is not a wrapper descriptor,
so must be special-cased differently.
If we don't do this, creating an instance will
always use slot_tp_new which will look up
__new__ in the MRO which will call tp_new_wrapper
which will look through the base classes looking
for a static base and call its tp_new (usually
PyType_GenericNew), after performing various
sanity checks and constructing a new argument
list. Cut all that nonsense short -- this speeds
up instance creation tremendously. */
specific = (void *)type->tp_new;
/* XXX I'm not 100% sure that there isn't a hole
in this reasoning that requires additional
sanity checks. I'll buy the first person to
point out a bug in this reasoning a beer. */
}
else if (descr == Py_None &&
ptr == (void**)&type->tp_hash) {
/* We specifically allow __hash__ to be set to None
to prevent inheritance of the default
implementation from object.__hash__ */
specific = (void *)PyObject_HashNotImplemented;
}
else {
use_generic = 1;
generic = p->function;
}
} while ((++p)->offset == offset);
if (specific && !use_generic)
*ptr = specific;
else
*ptr = generic;
return p;
}
/* In the type, update the slots whose slotdefs are gathered in the pp array.
This is a callback for update_subclasses(). */
static int
update_slots_callback(PyTypeObject *type, void *data)
{
slotdef **pp = (slotdef **)data;
for (; *pp; pp++)
update_one_slot(type, *pp);
return 0;
}
static int slotdefs_initialized = 0;
/* Initialize the slotdefs table by adding interned string objects for the
names. */
static void
init_slotdefs(void)
{
slotdef *p;
if (slotdefs_initialized)
return;
for (p = slotdefs; p->name; p++) {
/* Slots must be ordered by their offset in the PyHeapTypeObject. */
assert(!p[1].name || p->offset <= p[1].offset);
p->name_strobj = PyUnicode_InternFromString(p->name);
if (!p->name_strobj)
Py_FatalError("Out of memory interning slotdef names");
}
slotdefs_initialized = 1;
}
/* Undo init_slotdefs, releasing the interned strings. */
static void clear_slotdefs(void)
{
slotdef *p;
for (p = slotdefs; p->name; p++) {
Py_CLEAR(p->name_strobj);
}
slotdefs_initialized = 0;
}
/* Update the slots after assignment to a class (type) attribute. */
static int
update_slot(PyTypeObject *type, PyObject *name)
{
slotdef *ptrs[MAX_EQUIV];
slotdef *p;
slotdef **pp;
int offset;
/* Clear the VALID_VERSION flag of 'type' and all its
subclasses. This could possibly be unified with the
update_subclasses() recursion below, but carefully:
they each have their own conditions on which to stop
recursing into subclasses. */
PyType_Modified(type);
init_slotdefs();
pp = ptrs;
for (p = slotdefs; p->name; p++) {
/* XXX assume name is interned! */
if (p->name_strobj == name)
*pp++ = p;
}
*pp = NULL;
for (pp = ptrs; *pp; pp++) {
p = *pp;
offset = p->offset;
while (p > slotdefs && (p-1)->offset == offset)
--p;
*pp = p;
}
if (ptrs[0] == NULL)
return 0; /* Not an attribute that affects any slots */
return update_subclasses(type, name,
update_slots_callback, (void *)ptrs);
}
/* Store the proper functions in the slot dispatches at class (type)
definition time, based upon which operations the class overrides in its
dict. */
static void
fixup_slot_dispatchers(PyTypeObject *type)
{
slotdef *p;
init_slotdefs();
for (p = slotdefs; p->name; )
p = update_one_slot(type, p);
}
static void
update_all_slots(PyTypeObject* type)
{
slotdef *p;
init_slotdefs();
for (p = slotdefs; p->name; p++) {
/* update_slot returns int but can't actually fail */
update_slot(type, p->name_strobj);
}
}
/* Call __set_name__ on all descriptors in a newly generated type */
static int
set_names(PyTypeObject *type)
{
PyObject *names_to_set, *key, *value, *set_name, *tmp;
Py_ssize_t i = 0;
names_to_set = PyDict_Copy(type->tp_dict);
if (names_to_set == NULL)
return -1;
while (PyDict_Next(names_to_set, &i, &key, &value)) {
set_name = lookup_maybe(value, &PyId___set_name__);
if (set_name != NULL) {
tmp = PyObject_CallFunctionObjArgs(set_name, type, key, NULL);
Py_DECREF(set_name);
if (tmp == NULL) {
_PyErr_FormatFromCause(PyExc_RuntimeError,
"Error calling __set_name__ on '%.100s' instance %R "
"in '%.100s'",
value->ob_type->tp_name, key, type->tp_name);
Py_DECREF(names_to_set);
return -1;
}
else
Py_DECREF(tmp);
}
else if (PyErr_Occurred()) {
Py_DECREF(names_to_set);
return -1;
}
}
Py_DECREF(names_to_set);
return 0;
}
/* Call __init_subclass__ on the parent of a newly generated type */
static int
init_subclass(PyTypeObject *type, PyObject *kwds)
{
PyObject *super, *func, *result;
PyObject *args[2] = {(PyObject *)type, (PyObject *)type};
super = _PyObject_FastCall((PyObject *)&PySuper_Type, args, 2);
if (super == NULL) {
return -1;
}
func = _PyObject_GetAttrId(super, &PyId___init_subclass__);
Py_DECREF(super);
if (func == NULL) {
return -1;
}
result = _PyObject_FastCallDict(func, NULL, 0, kwds);
Py_DECREF(func);
if (result == NULL) {
return -1;
}
Py_DECREF(result);
return 0;
}
/* recurse_down_subclasses() and update_subclasses() are mutually
recursive functions to call a callback for all subclasses,
but refraining from recursing into subclasses that define 'name'. */
static int
update_subclasses(PyTypeObject *type, PyObject *name,
update_callback callback, void *data)
{
if (callback(type, data) < 0)
return -1;
return recurse_down_subclasses(type, name, callback, data);
}
static int
recurse_down_subclasses(PyTypeObject *type, PyObject *name,
update_callback callback, void *data)
{
PyTypeObject *subclass;
PyObject *ref, *subclasses, *dict;
Py_ssize_t i;
subclasses = type->tp_subclasses;
if (subclasses == NULL)
return 0;
assert(PyDict_CheckExact(subclasses));
i = 0;
while (PyDict_Next(subclasses, &i, NULL, &ref)) {
assert(PyWeakref_CheckRef(ref));
subclass = (PyTypeObject *)PyWeakref_GET_OBJECT(ref);
assert(subclass != NULL);
if ((PyObject *)subclass == Py_None)
continue;
assert(PyType_Check(subclass));
/* Avoid recursing down into unaffected classes */
dict = subclass->tp_dict;
if (dict != NULL && PyDict_Check(dict) &&
PyDict_GetItem(dict, name) != NULL)
continue;
if (update_subclasses(subclass, name, callback, data) < 0)
return -1;
}
return 0;
}
/* This function is called by PyType_Ready() to populate the type's
dictionary with method descriptors for function slots. For each
function slot (like tp_repr) that's defined in the type, one or more
corresponding descriptors are added in the type's tp_dict dictionary
under the appropriate name (like __repr__). Some function slots
cause more than one descriptor to be added (for example, the nb_add
slot adds both __add__ and __radd__ descriptors) and some function
slots compete for the same descriptor (for example both sq_item and
mp_subscript generate a __getitem__ descriptor).
In the latter case, the first slotdef entry encountered wins. Since
slotdef entries are sorted by the offset of the slot in the
PyHeapTypeObject, this gives us some control over disambiguating
between competing slots: the members of PyHeapTypeObject are listed
from most general to least general, so the most general slot is
preferred. In particular, because as_mapping comes before as_sequence,
for a type that defines both mp_subscript and sq_item, mp_subscript
wins.
This only adds new descriptors and doesn't overwrite entries in
tp_dict that were previously defined. The descriptors contain a
reference to the C function they must call, so that it's safe if they
are copied into a subtype's __dict__ and the subtype has a different
C function in its slot -- calling the method defined by the
descriptor will call the C function that was used to create it,
rather than the C function present in the slot when it is called.
(This is important because a subtype may have a C function in the
slot that calls the method from the dictionary, and we want to avoid
infinite recursion here.) */
static int
add_operators(PyTypeObject *type)
{
PyObject *dict = type->tp_dict;
slotdef *p;
PyObject *descr;
void **ptr;
init_slotdefs();
for (p = slotdefs; p->name; p++) {
if (p->wrapper == NULL)
continue;
ptr = slotptr(type, p->offset);
if (!ptr || !*ptr)
continue;
if (PyDict_GetItem(dict, p->name_strobj))
continue;
if (*ptr == (void *)PyObject_HashNotImplemented) {
/* Classes may prevent the inheritance of the tp_hash
slot by storing PyObject_HashNotImplemented in it. Make it
visible as a None value for the __hash__ attribute. */
if (PyDict_SetItem(dict, p->name_strobj, Py_None) < 0)
return -1;
}
else {
descr = PyDescr_NewWrapper(type, p, *ptr);
if (descr == NULL)
return -1;
if (PyDict_SetItem(dict, p->name_strobj, descr) < 0) {
Py_DECREF(descr);
return -1;
}
Py_DECREF(descr);
}
}
if (type->tp_new != NULL) {
if (add_tp_new_wrapper(type) < 0)
return -1;
}
return 0;
}
/* Cooperative 'super' */
typedef struct {
PyObject_HEAD
PyTypeObject *type;
PyObject *obj;
PyTypeObject *obj_type;
} superobject;
static PyMemberDef super_members[] = {
{"__thisclass__", T_OBJECT, offsetof(superobject, type), READONLY,
"the class invoking super()"},
{"__self__", T_OBJECT, offsetof(superobject, obj), READONLY,
"the instance invoking super(); may be None"},
{"__self_class__", T_OBJECT, offsetof(superobject, obj_type), READONLY,
"the type of the instance invoking super(); may be None"},
{0}
};
static void
super_dealloc(PyObject *self)
{
superobject *su = (superobject *)self;
_PyObject_GC_UNTRACK(self);
Py_XDECREF(su->obj);
Py_XDECREF(su->type);
Py_XDECREF(su->obj_type);
Py_TYPE(self)->tp_free(self);
}
static PyObject *
super_repr(PyObject *self)
{
superobject *su = (superobject *)self;
if (su->obj_type)
return PyUnicode_FromFormat(
"<super: <class '%s'>, <%s object>>",
su->type ? su->type->tp_name : "NULL",
su->obj_type->tp_name);
else
return PyUnicode_FromFormat(
"<super: <class '%s'>, NULL>",
su->type ? su->type->tp_name : "NULL");
}
static PyObject *
super_getattro(PyObject *self, PyObject *name)
{
superobject *su = (superobject *)self;
PyTypeObject *starttype;
PyObject *mro;
Py_ssize_t i, n;
starttype = su->obj_type;
if (starttype == NULL)
goto skip;
/* We want __class__ to return the class of the super object
(i.e. super, or a subclass), not the class of su->obj. */
if (PyUnicode_Check(name) &&
PyUnicode_GET_LENGTH(name) == 9 &&
_PyUnicode_EqualToASCIIId(name, &PyId___class__))
goto skip;
mro = starttype->tp_mro;
if (mro == NULL)
goto skip;
assert(PyTuple_Check(mro));
n = PyTuple_GET_SIZE(mro);
/* No need to check the last one: it's gonna be skipped anyway. */
for (i = 0; i+1 < n; i++) {
if ((PyObject *)(su->type) == PyTuple_GET_ITEM(mro, i))
break;
}
i++; /* skip su->type (if any) */
if (i >= n)
goto skip;
/* keep a strong reference to mro because starttype->tp_mro can be
replaced during PyDict_GetItem(dict, name) */
Py_INCREF(mro);
do {
PyObject *res, *tmp, *dict;
descrgetfunc f;
tmp = PyTuple_GET_ITEM(mro, i);
assert(PyType_Check(tmp));
dict = ((PyTypeObject *)tmp)->tp_dict;
assert(dict != NULL && PyDict_Check(dict));
res = PyDict_GetItem(dict, name);
if (res != NULL) {
Py_INCREF(res);
f = Py_TYPE(res)->tp_descr_get;
if (f != NULL) {
tmp = f(res,
/* Only pass 'obj' param if this is instance-mode super
(See SF ID #743627) */
(su->obj == (PyObject *)starttype) ? NULL : su->obj,
(PyObject *)starttype);
Py_DECREF(res);
res = tmp;
}
Py_DECREF(mro);
return res;
}
i++;
} while (i < n);
Py_DECREF(mro);
skip:
return PyObject_GenericGetAttr(self, name);
}
static PyTypeObject *
supercheck(PyTypeObject *type, PyObject *obj)
{
/* Check that a super() call makes sense. Return a type object.
obj can be a class, or an instance of one:
- If it is a class, it must be a subclass of 'type'. This case is
used for class methods; the return value is obj.
- If it is an instance, it must be an instance of 'type'. This is
the normal case; the return value is obj.__class__.
But... when obj is an instance, we want to allow for the case where
Py_TYPE(obj) is not a subclass of type, but obj.__class__ is!
This will allow using super() with a proxy for obj.
*/
/* Check for first bullet above (special case) */
if (PyType_Check(obj) && PyType_IsSubtype((PyTypeObject *)obj, type)) {
Py_INCREF(obj);
return (PyTypeObject *)obj;
}
/* Normal case */
if (PyType_IsSubtype(Py_TYPE(obj), type)) {
Py_INCREF(Py_TYPE(obj));
return Py_TYPE(obj);
}
else {
/* Try the slow way */
PyObject *class_attr;
class_attr = _PyObject_GetAttrId(obj, &PyId___class__);
if (class_attr != NULL &&
PyType_Check(class_attr) &&
(PyTypeObject *)class_attr != Py_TYPE(obj))
{
int ok = PyType_IsSubtype(
(PyTypeObject *)class_attr, type);
if (ok)
return (PyTypeObject *)class_attr;
}
if (class_attr == NULL)
PyErr_Clear();
else
Py_DECREF(class_attr);
}
PyErr_SetString(PyExc_TypeError,
"super(type, obj): "
"obj must be an instance or subtype of type");
return NULL;
}
static PyObject *
super_descr_get(PyObject *self, PyObject *obj, PyObject *type)
{
superobject *su = (superobject *)self;
superobject *newobj;
if (obj == NULL || obj == Py_None || su->obj != NULL) {
/* Not binding to an object, or already bound */
Py_INCREF(self);
return self;
}
if (Py_TYPE(su) != &PySuper_Type)
/* If su is an instance of a (strict) subclass of super,
call its type */
return PyObject_CallFunctionObjArgs((PyObject *)Py_TYPE(su),
su->type, obj, NULL);
else {
/* Inline the common case */
PyTypeObject *obj_type = supercheck(su->type, obj);
if (obj_type == NULL)
return NULL;
newobj = (superobject *)PySuper_Type.tp_new(&PySuper_Type,
NULL, NULL);
if (newobj == NULL)
return NULL;
Py_INCREF(su->type);
Py_INCREF(obj);
newobj->type = su->type;
newobj->obj = obj;
newobj->obj_type = obj_type;
return (PyObject *)newobj;
}
}
static int
super_init(PyObject *self, PyObject *args, PyObject *kwds)
{
superobject *su = (superobject *)self;
PyTypeObject *type = NULL;
PyObject *obj = NULL;
PyTypeObject *obj_type = NULL;
if (!_PyArg_NoKeywords("super", kwds))
return -1;
if (!PyArg_ParseTuple(args, "|O!O:super", &PyType_Type, &type, &obj))
return -1;
if (type == NULL) {
/* Call super(), without args -- fill in from __class__
and first local variable on the stack. */
PyFrameObject *f;
PyCodeObject *co;
Py_ssize_t i, n;
f = PyThreadState_GET()->frame;
if (f == NULL) {
PyErr_SetString(PyExc_RuntimeError,
"super(): no current frame");
return -1;
}
co = f->f_code;
if (co == NULL) {
PyErr_SetString(PyExc_RuntimeError,
"super(): no code object");
return -1;
}
if (co->co_argcount == 0) {
PyErr_SetString(PyExc_RuntimeError,
"super(): no arguments");
return -1;
}
obj = f->f_localsplus[0];
if (obj == NULL && co->co_cell2arg) {
/* The first argument might be a cell. */
n = PyTuple_GET_SIZE(co->co_cellvars);
for (i = 0; i < n; i++) {
if (co->co_cell2arg[i] == 0) {
PyObject *cell = f->f_localsplus[co->co_nlocals + i];
assert(PyCell_Check(cell));
obj = PyCell_GET(cell);
break;
}
}
}
if (obj == NULL) {
PyErr_SetString(PyExc_RuntimeError,
"super(): arg[0] deleted");
return -1;
}
if (co->co_freevars == NULL)
n = 0;
else {
assert(PyTuple_Check(co->co_freevars));
n = PyTuple_GET_SIZE(co->co_freevars);
}
for (i = 0; i < n; i++) {
PyObject *name = PyTuple_GET_ITEM(co->co_freevars, i);
assert(PyUnicode_Check(name));
if (_PyUnicode_EqualToASCIIId(name, &PyId___class__)) {
Py_ssize_t index = co->co_nlocals +
PyTuple_GET_SIZE(co->co_cellvars) + i;
PyObject *cell = f->f_localsplus[index];
if (cell == NULL || !PyCell_Check(cell)) {
PyErr_SetString(PyExc_RuntimeError,
"super(): bad __class__ cell");
return -1;
}
type = (PyTypeObject *) PyCell_GET(cell);
if (type == NULL) {
PyErr_SetString(PyExc_RuntimeError,
"super(): empty __class__ cell");
return -1;
}
if (!PyType_Check(type)) {
PyErr_Format(PyExc_RuntimeError,
"super(): __class__ is not a type (%s)",
Py_TYPE(type)->tp_name);
return -1;
}
break;
}
}
if (type == NULL) {
PyErr_SetString(PyExc_RuntimeError,
"super(): __class__ cell not found");
return -1;
}
}
if (obj == Py_None)
obj = NULL;
if (obj != NULL) {
obj_type = supercheck(type, obj);
if (obj_type == NULL)
return -1;
Py_INCREF(obj);
}
Py_INCREF(type);
Py_XSETREF(su->type, type);
Py_XSETREF(su->obj, obj);
Py_XSETREF(su->obj_type, obj_type);
return 0;
}
PyDoc_STRVAR(super_doc,
"super() -> same as super(__class__, <first argument>)\n"
"super(type) -> unbound super object\n"
"super(type, obj) -> bound super object; requires isinstance(obj, type)\n"
"super(type, type2) -> bound super object; requires issubclass(type2, type)\n"
"Typical use to call a cooperative superclass method:\n"
"class C(B):\n"
" def meth(self, arg):\n"
" super().meth(arg)\n"
"This works for class methods too:\n"
"class C(B):\n"
" @classmethod\n"
" def cmeth(cls, arg):\n"
" super().cmeth(arg)\n");
static int
super_traverse(PyObject *self, visitproc visit, void *arg)
{
superobject *su = (superobject *)self;
Py_VISIT(su->obj);
Py_VISIT(su->type);
Py_VISIT(su->obj_type);
return 0;
}
PyTypeObject PySuper_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"super", /* tp_name */
sizeof(superobject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
super_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
super_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
super_getattro, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC |
Py_TPFLAGS_BASETYPE, /* tp_flags */
super_doc, /* tp_doc */
super_traverse, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
0, /* tp_methods */
super_members, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
super_descr_get, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
super_init, /* tp_init */
PyType_GenericAlloc, /* tp_alloc */
PyType_GenericNew, /* tp_new */
PyObject_GC_Del, /* tp_free */
};
| 242,312 | 7,714 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/typeslots.inc | /* clang-format off */
/* Generated by typeslots.py */
0,
0,
offsetof(PyHeapTypeObject, as_mapping.mp_ass_subscript),
offsetof(PyHeapTypeObject, as_mapping.mp_length),
offsetof(PyHeapTypeObject, as_mapping.mp_subscript),
offsetof(PyHeapTypeObject, as_number.nb_absolute),
offsetof(PyHeapTypeObject, as_number.nb_add),
offsetof(PyHeapTypeObject, as_number.nb_and),
offsetof(PyHeapTypeObject, as_number.nb_bool),
offsetof(PyHeapTypeObject, as_number.nb_divmod),
offsetof(PyHeapTypeObject, as_number.nb_float),
offsetof(PyHeapTypeObject, as_number.nb_floor_divide),
offsetof(PyHeapTypeObject, as_number.nb_index),
offsetof(PyHeapTypeObject, as_number.nb_inplace_add),
offsetof(PyHeapTypeObject, as_number.nb_inplace_and),
offsetof(PyHeapTypeObject, as_number.nb_inplace_floor_divide),
offsetof(PyHeapTypeObject, as_number.nb_inplace_lshift),
offsetof(PyHeapTypeObject, as_number.nb_inplace_multiply),
offsetof(PyHeapTypeObject, as_number.nb_inplace_or),
offsetof(PyHeapTypeObject, as_number.nb_inplace_power),
offsetof(PyHeapTypeObject, as_number.nb_inplace_remainder),
offsetof(PyHeapTypeObject, as_number.nb_inplace_rshift),
offsetof(PyHeapTypeObject, as_number.nb_inplace_subtract),
offsetof(PyHeapTypeObject, as_number.nb_inplace_true_divide),
offsetof(PyHeapTypeObject, as_number.nb_inplace_xor),
offsetof(PyHeapTypeObject, as_number.nb_int),
offsetof(PyHeapTypeObject, as_number.nb_invert),
offsetof(PyHeapTypeObject, as_number.nb_lshift),
offsetof(PyHeapTypeObject, as_number.nb_multiply),
offsetof(PyHeapTypeObject, as_number.nb_negative),
offsetof(PyHeapTypeObject, as_number.nb_or),
offsetof(PyHeapTypeObject, as_number.nb_positive),
offsetof(PyHeapTypeObject, as_number.nb_power),
offsetof(PyHeapTypeObject, as_number.nb_remainder),
offsetof(PyHeapTypeObject, as_number.nb_rshift),
offsetof(PyHeapTypeObject, as_number.nb_subtract),
offsetof(PyHeapTypeObject, as_number.nb_true_divide),
offsetof(PyHeapTypeObject, as_number.nb_xor),
offsetof(PyHeapTypeObject, as_sequence.sq_ass_item),
offsetof(PyHeapTypeObject, as_sequence.sq_concat),
offsetof(PyHeapTypeObject, as_sequence.sq_contains),
offsetof(PyHeapTypeObject, as_sequence.sq_inplace_concat),
offsetof(PyHeapTypeObject, as_sequence.sq_inplace_repeat),
offsetof(PyHeapTypeObject, as_sequence.sq_item),
offsetof(PyHeapTypeObject, as_sequence.sq_length),
offsetof(PyHeapTypeObject, as_sequence.sq_repeat),
offsetof(PyHeapTypeObject, ht_type.tp_alloc),
offsetof(PyHeapTypeObject, ht_type.tp_base),
offsetof(PyHeapTypeObject, ht_type.tp_bases),
offsetof(PyHeapTypeObject, ht_type.tp_call),
offsetof(PyHeapTypeObject, ht_type.tp_clear),
offsetof(PyHeapTypeObject, ht_type.tp_dealloc),
offsetof(PyHeapTypeObject, ht_type.tp_del),
offsetof(PyHeapTypeObject, ht_type.tp_descr_get),
offsetof(PyHeapTypeObject, ht_type.tp_descr_set),
offsetof(PyHeapTypeObject, ht_type.tp_doc),
offsetof(PyHeapTypeObject, ht_type.tp_getattr),
offsetof(PyHeapTypeObject, ht_type.tp_getattro),
offsetof(PyHeapTypeObject, ht_type.tp_hash),
offsetof(PyHeapTypeObject, ht_type.tp_init),
offsetof(PyHeapTypeObject, ht_type.tp_is_gc),
offsetof(PyHeapTypeObject, ht_type.tp_iter),
offsetof(PyHeapTypeObject, ht_type.tp_iternext),
offsetof(PyHeapTypeObject, ht_type.tp_methods),
offsetof(PyHeapTypeObject, ht_type.tp_new),
offsetof(PyHeapTypeObject, ht_type.tp_repr),
offsetof(PyHeapTypeObject, ht_type.tp_richcompare),
offsetof(PyHeapTypeObject, ht_type.tp_setattr),
offsetof(PyHeapTypeObject, ht_type.tp_setattro),
offsetof(PyHeapTypeObject, ht_type.tp_str),
offsetof(PyHeapTypeObject, ht_type.tp_traverse),
offsetof(PyHeapTypeObject, ht_type.tp_members),
offsetof(PyHeapTypeObject, ht_type.tp_getset),
offsetof(PyHeapTypeObject, ht_type.tp_free),
offsetof(PyHeapTypeObject, as_number.nb_matrix_multiply),
offsetof(PyHeapTypeObject, as_number.nb_inplace_matrix_multiply),
offsetof(PyHeapTypeObject, as_async.am_await),
offsetof(PyHeapTypeObject, as_async.am_aiter),
offsetof(PyHeapTypeObject, as_async.am_anext),
offsetof(PyHeapTypeObject, ht_type.tp_finalize),
| 3,991 | 83 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/unicodeobject.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#define PY_SSIZE_T_CLEAN
#include "libc/assert.h"
#include "libc/errno.h"
#include "libc/fmt/fmt.h"
#include "libc/intrin/likely.h"
#include "libc/intrin/weaken.h"
#include "libc/log/countbranch.h"
#include "libc/str/str.h"
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/boolobject.h"
#include "third_party/python/Include/bytearrayobject.h"
#include "third_party/python/Include/bytes_methods.h"
#include "third_party/python/Include/bytesobject.h"
#include "third_party/python/Include/ceval.h"
#include "third_party/python/Include/codecs.h"
#include "third_party/python/Include/complexobject.h"
#include "third_party/python/Include/dictobject.h"
#include "third_party/python/Include/fileobject.h"
#include "third_party/python/Include/fileutils.h"
#include "third_party/python/Include/floatobject.h"
#include "third_party/python/Include/listobject.h"
#include "third_party/python/Include/longobject.h"
#include "third_party/python/Include/memoryobject.h"
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/osmodule.h"
#include "third_party/python/Include/pycapsule.h"
#include "third_party/python/Include/pyctype.h"
#include "third_party/python/Include/pyerrors.h"
#include "third_party/python/Include/pyhash.h"
#include "third_party/python/Include/pymacro.h"
#include "third_party/python/Include/pystrtod.h"
#include "third_party/python/Include/sliceobject.h"
#include "third_party/python/Include/tupleobject.h"
#include "third_party/python/Include/ucnhash.h"
#include "third_party/python/Include/unicodeobject.h"
#include "third_party/python/Include/warnings.h"
#include "third_party/python/Include/yoink.h"
#include "third_party/python/Modules/unicodedata.h"
/* clang-format off */
PYTHON_PROVIDE("_string");
PYTHON_PROVIDE("_string.__doc__");
PYTHON_PROVIDE("_string.__loader__");
PYTHON_PROVIDE("_string.__name__");
PYTHON_PROVIDE("_string.__package__");
PYTHON_PROVIDE("_string.__spec__");
PYTHON_PROVIDE("_string.formatter_field_name_split");
PYTHON_PROVIDE("_string.formatter_parser");
#include "third_party/python/Objects/stringlib/eq.inc"
/**
* @fileoverview Unicode Objects
*
* Since the implementation of PEP 393 in Python 3.3, Unicode objects
* internally use a variety of representations, in order to allow
* handling the complete range of Unicode characters while staying
* memory efficient. There are special cases for strings where all code
* points are below 128, 256, or 65536; otherwise, code points must be
* below 1114112 (which is the full Unicode range).
*
* Py_UNICODE* and UTF-8 representations are created on demand and
* cached in the Unicode object. The Py_UNICODE* representation is
* deprecated and inefficient.
*
* Due to the transition between the old APIs and the new APIs, Unicode
* objects can internally be in two states depending on how they were
* created:
*
* * âcanonicalâ Unicode objects are all objects created by a
* non-deprecated Unicode API. They use the most efficient
* representation allowed by the implementation.
*
* * âlegacyâ Unicode objects have been created through one of the
* deprecated APIs (typically PyUnicode_FromUnicode()) and only bear
* the Py_UNICODE* representation; you will have to call
* PyUnicode_READY() on them before calling any other API.
*
* The âlegacyâ Unicode object will be removed in Python 3.12 with
* deprecated APIs. All Unicode objects will be âcanonicalâ since then.
* See PEP 623 for more information.
*/
/*
Unicode implementation based on original code by Fredrik Lundh,
modified by Marc-Andre Lemburg <[email protected]>.
Major speed upgrades to the method implementations at the Reykjavik
NeedForSpeed sprint, by Fredrik Lundh and Andrew Dalke.
Copyright (c) Corporation for National Research Initiatives.
--------------------------------------------------------------------
The original string type implementation is:
Copyright (c) 1999 by Secret Labs AB
Copyright (c) 1999 by Fredrik Lundh
By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:
Permission to use, copy, modify, and distribute this software and its
associated documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appears in all
copies, and that both that copyright notice and this permission notice
appear in supporting documentation, and that the name of Secret Labs
AB or the author not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.
SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
--------------------------------------------------------------------
*/
/*[clinic input]
class str "PyUnicodeObject *" "&PyUnicode_Type"
[clinic start generated code]*/
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=604e916854800fa8]*/
/* --- Globals ------------------------------------------------------------
NOTE: In the interpreter's initialization phase, some globals are currently
initialized dynamically as needed. In the process Unicode objects may
be created before the Unicode type is ready.
*/
/* Maximum code point of Unicode 6.0: 0x10ffff (1,114,111) */
#define MAX_UNICODE 0x10ffff
#ifdef Py_DEBUG
# define _PyUnicode_CHECK(op) _PyUnicode_CheckConsistency(op, 0)
#else
# define _PyUnicode_CHECK(op) PyUnicode_Check(op)
#endif
#define _PyUnicode_UTF8(op) \
(((PyCompactUnicodeObject*)(op))->utf8)
#define PyUnicode_UTF8(op) \
(assert(_PyUnicode_CHECK(op)), \
assert(PyUnicode_IS_READY(op)), \
PyUnicode_IS_COMPACT_ASCII(op) ? \
((char*)((PyASCIIObject*)(op) + 1)) : \
_PyUnicode_UTF8(op))
#define _PyUnicode_UTF8_LENGTH(op) \
(((PyCompactUnicodeObject*)(op))->utf8_length)
#define PyUnicode_UTF8_LENGTH(op) \
(assert(_PyUnicode_CHECK(op)), \
assert(PyUnicode_IS_READY(op)), \
PyUnicode_IS_COMPACT_ASCII(op) ? \
((PyASCIIObject*)(op))->length : \
_PyUnicode_UTF8_LENGTH(op))
#define _PyUnicode_WSTR(op) \
(((PyASCIIObject*)(op))->wstr)
#define _PyUnicode_WSTR_LENGTH(op) \
(((PyCompactUnicodeObject*)(op))->wstr_length)
#define _PyUnicode_LENGTH(op) \
(((PyASCIIObject *)(op))->length)
#define _PyUnicode_STATE(op) \
(((PyASCIIObject *)(op))->state)
#define _PyUnicode_HASH(op) \
(((PyASCIIObject *)(op))->hash)
#define _PyUnicode_KIND(op) \
(assert(_PyUnicode_CHECK(op)), \
((PyASCIIObject *)(op))->state.kind)
#define _PyUnicode_GET_LENGTH(op) \
(assert(_PyUnicode_CHECK(op)), \
((PyASCIIObject *)(op))->length)
#define _PyUnicode_DATA_ANY(op) \
(((PyUnicodeObject*)(op))->data.any)
#undef PyUnicode_READY
#define PyUnicode_READY(op) \
(assert(_PyUnicode_CHECK(op)), \
(PyUnicode_IS_READY(op) ? \
0 : \
_PyUnicode_Ready(op)))
#define _PyUnicode_SHARE_UTF8(op) \
(assert(_PyUnicode_CHECK(op)), \
assert(!PyUnicode_IS_COMPACT_ASCII(op)), \
(_PyUnicode_UTF8(op) == PyUnicode_DATA(op)))
#define _PyUnicode_SHARE_WSTR(op) \
(assert(_PyUnicode_CHECK(op)), \
(_PyUnicode_WSTR(unicode) == PyUnicode_DATA(op)))
/* true if the Unicode object has an allocated UTF-8 memory block
(not shared with other data) */
#define _PyUnicode_HAS_UTF8_MEMORY(op) \
((!PyUnicode_IS_COMPACT_ASCII(op) \
&& _PyUnicode_UTF8(op) \
&& _PyUnicode_UTF8(op) != PyUnicode_DATA(op)))
/* true if the Unicode object has an allocated wstr memory block
(not shared with other data) */
#define _PyUnicode_HAS_WSTR_MEMORY(op) \
((_PyUnicode_WSTR(op) && \
(!PyUnicode_IS_READY(op) || \
_PyUnicode_WSTR(op) != PyUnicode_DATA(op))))
/* Generic helper macro to convert characters of different types.
from_type and to_type have to be valid type names, begin and end
are pointers to the source characters which should be of type
"from_type *". to is a pointer of type "to_type *" and points to the
buffer where the result characters are written to. */
#define _PyUnicode_CONVERT_BYTES(from_type, to_type, begin, end, to) \
do { \
to_type *_to = (to_type *)(to); \
const from_type *_iter = (from_type *)(begin); \
const from_type *_end = (from_type *)(end); \
Py_ssize_t n = (_end) - (_iter); \
const from_type *_unrolled_end = \
_iter + _Py_SIZE_ROUND_DOWN(n, 4); \
while (_iter < (_unrolled_end)) { \
_to[0] = (to_type) _iter[0]; \
_to[1] = (to_type) _iter[1]; \
_to[2] = (to_type) _iter[2]; \
_to[3] = (to_type) _iter[3]; \
_iter += 4; _to += 4; \
} \
while (_iter < (_end)) \
*_to++ = (to_type) *_iter++; \
} while (0)
#ifdef MS_WINDOWS
/* On Windows, overallocate by 50% is the best factor */
# define OVERALLOCATE_FACTOR 2
#else
/* On Linux, overallocate by 25% is the best factor */
# define OVERALLOCATE_FACTOR 4
#endif
/* This dictionary holds all interned unicode strings. Note that references
to strings in this dictionary are *not* counted in the string's ob_refcnt.
When the interned string reaches a refcnt of 0 the string deallocation
function will delete the reference from this dictionary.
Another way to look at this is that to say that the actual reference
count of a string is: s->ob_refcnt + (s->state ? 2 : 0)
*/
static PyObject *interned = NULL;
/* The empty Unicode object is shared to improve performance. */
static PyObject *unicode_empty = NULL;
#define _Py_INCREF_UNICODE_EMPTY() \
do { \
if (unicode_empty != NULL) \
Py_INCREF(unicode_empty); \
else { \
unicode_empty = PyUnicode_New(0, 0); \
if (unicode_empty != NULL) { \
Py_INCREF(unicode_empty); \
assert(_PyUnicode_CheckConsistency(unicode_empty, 1)); \
} \
} \
} while (0)
#define _Py_RETURN_UNICODE_EMPTY() \
do { \
_Py_INCREF_UNICODE_EMPTY(); \
return unicode_empty; \
} while (0)
#define FILL(kind, data, value, start, length) \
do { \
assert(0 <= start); \
assert(kind != PyUnicode_WCHAR_KIND); \
switch (kind) { \
case PyUnicode_1BYTE_KIND: { \
assert(value <= 0xff); \
Py_UCS1 ch = (unsigned char)value; \
Py_UCS1 *to = (Py_UCS1 *)data + start; \
memset(to, ch, length); \
break; \
} \
case PyUnicode_2BYTE_KIND: { \
assert(value <= 0xffff); \
Py_UCS2 ch = (Py_UCS2)value; \
Py_UCS2 *to = (Py_UCS2 *)data + start; \
const Py_UCS2 *end = to + length; \
for (; to < end; ++to) *to = ch; \
break; \
} \
case PyUnicode_4BYTE_KIND: { \
assert(value <= MAX_UNICODE); \
Py_UCS4 ch = value; \
Py_UCS4 * to = (Py_UCS4 *)data + start; \
const Py_UCS4 *end = to + length; \
for (; to < end; ++to) *to = ch; \
break; \
} \
default: assert(0); \
} \
} while (0)
/* Forward declaration */
static inline int
_PyUnicodeWriter_WriteCharInline(_PyUnicodeWriter *writer, Py_UCS4 ch);
/* List of static strings. */
static _Py_Identifier *static_strings = NULL;
/* Single character Unicode strings in the Latin-1 range are being
shared as well. */
static PyObject *unicode_latin1[256] = {NULL};
/* Fast detection of the most frequent whitespace characters */
const unsigned char _Py_ascii_whitespace[] = {
0, 0, 0, 0, 0, 0, 0, 0,
/* case 0x0009: * CHARACTER TABULATION */
/* case 0x000A: * LINE FEED */
/* case 0x000B: * LINE TABULATION */
/* case 0x000C: * FORM FEED */
/* case 0x000D: * CARRIAGE RETURN */
0, 1, 1, 1, 1, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
/* case 0x001C: * FILE SEPARATOR */
/* case 0x001D: * GROUP SEPARATOR */
/* case 0x001E: * RECORD SEPARATOR */
/* case 0x001F: * UNIT SEPARATOR */
0, 0, 0, 0, 1, 1, 1, 1,
/* case 0x0020: * SPACE */
1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0
};
/* forward */
static PyUnicodeObject *_PyUnicode_New(Py_ssize_t length);
static PyObject* get_latin1_char(unsigned char ch);
static int unicode_modifiable(PyObject *unicode);
static PyObject *
_PyUnicode_FromUCS1(const Py_UCS1 *s, Py_ssize_t size);
static PyObject *
_PyUnicode_FromUCS2(const Py_UCS2 *s, Py_ssize_t size);
static PyObject *
_PyUnicode_FromUCS4(const Py_UCS4 *s, Py_ssize_t size);
static PyObject *
unicode_encode_call_errorhandler(const char *errors,
PyObject **errorHandler,const char *encoding, const char *reason,
PyObject *unicode, PyObject **exceptionObject,
Py_ssize_t startpos, Py_ssize_t endpos, Py_ssize_t *newpos);
static void
raise_encode_exception(PyObject **exceptionObject,
const char *encoding,
PyObject *unicode,
Py_ssize_t startpos, Py_ssize_t endpos,
const char *reason);
/* Same for linebreaks */
static const unsigned char ascii_linebreak[] = {
0, 0, 0, 0, 0, 0, 0, 0,
/* 0x000A, * LINE FEED */
/* 0x000B, * LINE TABULATION */
/* 0x000C, * FORM FEED */
/* 0x000D, * CARRIAGE RETURN */
0, 0, 1, 1, 1, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
/* 0x001C, * FILE SEPARATOR */
/* 0x001D, * GROUP SEPARATOR */
/* 0x001E, * RECORD SEPARATOR */
0, 0, 0, 0, 1, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0
};
#include "third_party/python/Objects/clinic/unicodeobject.inc"
typedef enum {
_Py_ERROR_UNKNOWN=0,
_Py_ERROR_STRICT,
_Py_ERROR_SURROGATEESCAPE,
_Py_ERROR_REPLACE,
_Py_ERROR_IGNORE,
_Py_ERROR_BACKSLASHREPLACE,
_Py_ERROR_SURROGATEPASS,
_Py_ERROR_XMLCHARREFREPLACE,
_Py_ERROR_OTHER
} _Py_error_handler;
static _Py_error_handler
get_error_handler(const char *errors)
{
if (errors == NULL || strcmp(errors, "strict") == 0) {
return _Py_ERROR_STRICT;
}
if (strcmp(errors, "surrogateescape") == 0) {
return _Py_ERROR_SURROGATEESCAPE;
}
if (strcmp(errors, "replace") == 0) {
return _Py_ERROR_REPLACE;
}
if (strcmp(errors, "ignore") == 0) {
return _Py_ERROR_IGNORE;
}
if (strcmp(errors, "backslashreplace") == 0) {
return _Py_ERROR_BACKSLASHREPLACE;
}
if (strcmp(errors, "surrogatepass") == 0) {
return _Py_ERROR_SURROGATEPASS;
}
if (strcmp(errors, "xmlcharrefreplace") == 0) {
return _Py_ERROR_XMLCHARREFREPLACE;
}
return _Py_ERROR_OTHER;
}
#ifdef Py_DEBUG
int
_PyUnicode_CheckConsistency(PyObject *op, int check_content)
{
PyASCIIObject *ascii;
unsigned int kind;
assert(PyUnicode_Check(op));
ascii = (PyASCIIObject *)op;
kind = ascii->state.kind;
if (ascii->state.ascii == 1 && ascii->state.compact == 1) {
assert(kind == PyUnicode_1BYTE_KIND);
assert(ascii->state.ready == 1);
}
else {
PyCompactUnicodeObject *compact = (PyCompactUnicodeObject *)op;
void *data;
if (ascii->state.compact == 1) {
data = compact + 1;
assert(kind == PyUnicode_1BYTE_KIND
|| kind == PyUnicode_2BYTE_KIND
|| kind == PyUnicode_4BYTE_KIND);
assert(ascii->state.ascii == 0);
assert(ascii->state.ready == 1);
assert (compact->utf8 != data);
}
else {
PyUnicodeObject *unicode = (PyUnicodeObject *)op;
data = unicode->data.any;
if (kind == PyUnicode_WCHAR_KIND) {
assert(ascii->length == 0);
assert(ascii->hash == -1);
assert(ascii->state.compact == 0);
assert(ascii->state.ascii == 0);
assert(ascii->state.ready == 0);
assert(ascii->state.interned == SSTATE_NOT_INTERNED);
assert(ascii->wstr != NULL);
assert(data == NULL);
assert(compact->utf8 == NULL);
}
else {
assert(kind == PyUnicode_1BYTE_KIND
|| kind == PyUnicode_2BYTE_KIND
|| kind == PyUnicode_4BYTE_KIND);
assert(ascii->state.compact == 0);
assert(ascii->state.ready == 1);
assert(data != NULL);
if (ascii->state.ascii) {
assert (compact->utf8 == data);
assert (compact->utf8_length == ascii->length);
}
else
assert (compact->utf8 != data);
}
}
if (kind != PyUnicode_WCHAR_KIND) {
if (
#if SIZEOF_WCHAR_T == 2
kind == PyUnicode_2BYTE_KIND
#else
kind == PyUnicode_4BYTE_KIND
#endif
)
{
assert(ascii->wstr == data);
assert(compact->wstr_length == ascii->length);
} else
assert(ascii->wstr != data);
}
if (compact->utf8 == NULL)
assert(compact->utf8_length == 0);
if (ascii->wstr == NULL)
assert(compact->wstr_length == 0);
}
/* check that the best kind is used */
if (check_content && kind != PyUnicode_WCHAR_KIND)
{
Py_ssize_t i;
Py_UCS4 maxchar = 0;
void *data;
Py_UCS4 ch;
data = PyUnicode_DATA(ascii);
for (i=0; i < ascii->length; i++)
{
ch = PyUnicode_READ(kind, data, i);
if (ch > maxchar)
maxchar = ch;
}
if (kind == PyUnicode_1BYTE_KIND) {
if (ascii->state.ascii == 0) {
assert(maxchar >= 128);
assert(maxchar <= 255);
}
else
assert(maxchar < 128);
}
else if (kind == PyUnicode_2BYTE_KIND) {
assert(maxchar >= 0x100);
assert(maxchar <= 0xFFFF);
}
else {
assert(maxchar >= 0x10000);
assert(maxchar <= MAX_UNICODE);
}
assert(PyUnicode_READ(kind, data, ascii->length) == 0);
}
return 1;
}
#endif
static PyObject*
unicode_result_wchar(PyObject *unicode)
{
#ifndef Py_DEBUG
Py_ssize_t len;
len = _PyUnicode_WSTR_LENGTH(unicode);
if (len == 0) {
Py_DECREF(unicode);
_Py_RETURN_UNICODE_EMPTY();
}
if (len == 1) {
wchar_t ch = _PyUnicode_WSTR(unicode)[0];
if ((Py_UCS4)ch < 256) {
PyObject *latin1_char = get_latin1_char((unsigned char)ch);
Py_DECREF(unicode);
return latin1_char;
}
}
if (_PyUnicode_Ready(unicode) < 0) {
Py_DECREF(unicode);
return NULL;
}
#else
assert(Py_REFCNT(unicode) == 1);
/* don't make the result ready in debug mode to ensure that the caller
makes the string ready before using it */
assert(_PyUnicode_CheckConsistency(unicode, 1));
#endif
return unicode;
}
static PyObject*
unicode_result_ready(PyObject *unicode)
{
Py_ssize_t length;
length = PyUnicode_GET_LENGTH(unicode);
if (length == 0) {
if (unicode != unicode_empty) {
Py_DECREF(unicode);
_Py_RETURN_UNICODE_EMPTY();
}
return unicode_empty;
}
if (length == 1) {
void *data = PyUnicode_DATA(unicode);
int kind = PyUnicode_KIND(unicode);
Py_UCS4 ch = PyUnicode_READ(kind, data, 0);
if (ch < 256) {
PyObject *latin1_char = unicode_latin1[ch];
if (latin1_char != NULL) {
if (unicode != latin1_char) {
Py_INCREF(latin1_char);
Py_DECREF(unicode);
}
return latin1_char;
}
else {
assert(_PyUnicode_CheckConsistency(unicode, 1));
Py_INCREF(unicode);
unicode_latin1[ch] = unicode;
return unicode;
}
}
}
assert(_PyUnicode_CheckConsistency(unicode, 1));
return unicode;
}
PyObject*
unicode_result(PyObject *unicode)
{
assert(_PyUnicode_CHECK(unicode));
if (PyUnicode_IS_READY(unicode))
return unicode_result_ready(unicode);
else
return unicode_result_wchar(unicode);
}
static PyObject*
unicode_result_unchanged(PyObject *unicode)
{
if (PyUnicode_CheckExact(unicode)) {
if (PyUnicode_READY(unicode) == -1)
return NULL;
Py_INCREF(unicode);
return unicode;
}
else
/* Subtype -- return genuine unicode string with the same value. */
return _PyUnicode_Copy(unicode);
}
/* Implementation of the "backslashreplace" error handler for 8-bit encodings:
ASCII, Latin1, UTF-8, etc. */
static char*
backslashreplace(_PyBytesWriter *writer, char *str,
PyObject *unicode, Py_ssize_t collstart, Py_ssize_t collend)
{
Py_ssize_t size, i;
Py_UCS4 ch;
enum PyUnicode_Kind kind;
void *data;
assert(PyUnicode_IS_READY(unicode));
kind = PyUnicode_KIND(unicode);
data = PyUnicode_DATA(unicode);
size = 0;
/* determine replacement size */
for (i = collstart; i < collend; ++i) {
Py_ssize_t incr;
ch = PyUnicode_READ(kind, data, i);
if (ch < 0x100)
incr = 2+2;
else if (ch < 0x10000)
incr = 2+4;
else {
assert(ch <= MAX_UNICODE);
incr = 2+8;
}
if (size > PY_SSIZE_T_MAX - incr) {
PyErr_SetString(PyExc_OverflowError,
"encoded result is too long for a Python string");
return NULL;
}
size += incr;
}
str = _PyBytesWriter_Prepare(writer, str, size);
if (str == NULL)
return NULL;
/* generate replacement */
for (i = collstart; i < collend; ++i) {
ch = PyUnicode_READ(kind, data, i);
*str++ = '\\';
if (ch >= 0x00010000) {
*str++ = 'U';
*str++ = Py_hexdigits[(ch>>28)&0xf];
*str++ = Py_hexdigits[(ch>>24)&0xf];
*str++ = Py_hexdigits[(ch>>20)&0xf];
*str++ = Py_hexdigits[(ch>>16)&0xf];
*str++ = Py_hexdigits[(ch>>12)&0xf];
*str++ = Py_hexdigits[(ch>>8)&0xf];
}
else if (ch >= 0x100) {
*str++ = 'u';
*str++ = Py_hexdigits[(ch>>12)&0xf];
*str++ = Py_hexdigits[(ch>>8)&0xf];
}
else
*str++ = 'x';
*str++ = Py_hexdigits[(ch>>4)&0xf];
*str++ = Py_hexdigits[ch&0xf];
}
return str;
}
/* Implementation of the "xmlcharrefreplace" error handler for 8-bit encodings:
ASCII, Latin1, UTF-8, etc. */
static char*
xmlcharrefreplace(_PyBytesWriter *writer, char *str,
PyObject *unicode, Py_ssize_t collstart, Py_ssize_t collend)
{
Py_ssize_t size, i;
Py_UCS4 ch;
enum PyUnicode_Kind kind;
void *data;
assert(PyUnicode_IS_READY(unicode));
kind = PyUnicode_KIND(unicode);
data = PyUnicode_DATA(unicode);
size = 0;
/* determine replacement size */
for (i = collstart; i < collend; ++i) {
Py_ssize_t incr;
ch = PyUnicode_READ(kind, data, i);
if (ch < 10)
incr = 2+1+1;
else if (ch < 100)
incr = 2+2+1;
else if (ch < 1000)
incr = 2+3+1;
else if (ch < 10000)
incr = 2+4+1;
else if (ch < 100000)
incr = 2+5+1;
else if (ch < 1000000)
incr = 2+6+1;
else {
assert(ch <= MAX_UNICODE);
incr = 2+7+1;
}
if (size > PY_SSIZE_T_MAX - incr) {
PyErr_SetString(PyExc_OverflowError,
"encoded result is too long for a Python string");
return NULL;
}
size += incr;
}
str = _PyBytesWriter_Prepare(writer, str, size);
if (str == NULL)
return NULL;
/* generate replacement */
for (i = collstart; i < collend; ++i) {
str += sprintf(str, "&#%d;", PyUnicode_READ(kind, data, i));
}
return str;
}
/* --- Bloom Filters ----------------------------------------------------- */
/* stuff to implement simple "bloom filters" for Unicode characters.
to keep things simple, we use a single bitmask, using the least 5
bits from each unicode characters as the bit index. */
/* the linebreak mask is set up by Unicode_Init below */
#if LONG_BIT >= 128
#define BLOOM_WIDTH 128
#elif LONG_BIT >= 64
#define BLOOM_WIDTH 64
#elif LONG_BIT >= 32
#define BLOOM_WIDTH 32
#else
#error "LONG_BIT is smaller than 32"
#endif
#define BLOOM_MASK unsigned long
static BLOOM_MASK bloom_linebreak = ~(BLOOM_MASK)0;
#define BLOOM(mask, ch) ((mask & (1UL << ((ch) & (BLOOM_WIDTH - 1)))))
#define BLOOM_LINEBREAK(ch) \
((ch) < 128U ? ascii_linebreak[(ch)] : \
(BLOOM(bloom_linebreak, (ch)) && Py_UNICODE_ISLINEBREAK(ch)))
static inline BLOOM_MASK
make_bloom_mask(int kind, void* ptr, Py_ssize_t len)
{
#define BLOOM_UPDATE(TYPE, MASK, PTR, LEN) \
do { \
TYPE *data = (TYPE *)PTR; \
TYPE *end = data + LEN; \
Py_UCS4 ch; \
for (; data != end; data++) { \
ch = *data; \
MASK |= (1UL << (ch & (BLOOM_WIDTH - 1))); \
} \
break; \
} while (0)
/* calculate simple bloom-style bitmask for a given unicode string */
BLOOM_MASK mask;
mask = 0;
switch (kind) {
case PyUnicode_1BYTE_KIND:
BLOOM_UPDATE(Py_UCS1, mask, ptr, len);
break;
case PyUnicode_2BYTE_KIND:
BLOOM_UPDATE(Py_UCS2, mask, ptr, len);
break;
case PyUnicode_4BYTE_KIND:
BLOOM_UPDATE(Py_UCS4, mask, ptr, len);
break;
default:
assert(0);
}
return mask;
#undef BLOOM_UPDATE
}
static int
ensure_unicode(PyObject *obj)
{
if (!PyUnicode_Check(obj)) {
PyErr_Format(PyExc_TypeError,
"must be str, not %.100s",
Py_TYPE(obj)->tp_name);
return -1;
}
return PyUnicode_READY(obj);
}
/* Compilation of templated routines */
#include "third_party/python/Objects/stringlib/asciilib.inc"
#include "third_party/python/Objects/stringlib/fastsearch.inc"
#include "third_party/python/Objects/stringlib/partition.inc"
#include "third_party/python/Objects/stringlib/split.inc"
#include "third_party/python/Objects/stringlib/count.inc"
#include "third_party/python/Objects/stringlib/find.inc"
#include "third_party/python/Objects/stringlib/find_max_char.inc"
#include "third_party/python/Objects/stringlib/undef.inc"
#include "third_party/python/Objects/stringlib/ucs1lib.inc"
#include "third_party/python/Objects/stringlib/fastsearch.inc"
#include "third_party/python/Objects/stringlib/partition.inc"
#include "third_party/python/Objects/stringlib/split.inc"
#include "third_party/python/Objects/stringlib/count.inc"
#include "third_party/python/Objects/stringlib/find.inc"
#include "third_party/python/Objects/stringlib/replace.inc"
#include "third_party/python/Objects/stringlib/find_max_char.inc"
#include "third_party/python/Objects/stringlib/undef.inc"
#include "third_party/python/Objects/stringlib/ucs2lib.inc"
#include "third_party/python/Objects/stringlib/fastsearch.inc"
#include "third_party/python/Objects/stringlib/partition.inc"
#include "third_party/python/Objects/stringlib/split.inc"
#include "third_party/python/Objects/stringlib/count.inc"
#include "third_party/python/Objects/stringlib/find.inc"
#include "third_party/python/Objects/stringlib/replace.inc"
#include "third_party/python/Objects/stringlib/find_max_char.inc"
#include "third_party/python/Objects/stringlib/undef.inc"
#include "third_party/python/Objects/stringlib/ucs4lib.inc"
#include "third_party/python/Objects/stringlib/fastsearch.inc"
#include "third_party/python/Objects/stringlib/partition.inc"
#include "third_party/python/Objects/stringlib/split.inc"
#include "third_party/python/Objects/stringlib/count.inc"
#include "third_party/python/Objects/stringlib/find.inc"
#include "third_party/python/Objects/stringlib/replace.inc"
#include "third_party/python/Objects/stringlib/find_max_char.inc"
#include "third_party/python/Objects/stringlib/undef.inc"
#include "third_party/python/Objects/stringlib/unicodedefs.inc"
#include "third_party/python/Objects/stringlib/fastsearch.inc"
#include "third_party/python/Objects/stringlib/count.inc"
#include "third_party/python/Objects/stringlib/find.inc"
#include "third_party/python/Objects/stringlib/undef.inc"
/* --- Unicode Object ----------------------------------------------------- */
static PyObject *
fixup(PyObject *self, Py_UCS4 (*fixfct)(PyObject *s));
static inline Py_ssize_t
findchar(const void *s, int kind,
Py_ssize_t size, Py_UCS4 ch,
int direction)
{
switch (kind) {
case PyUnicode_1BYTE_KIND:
if ((Py_UCS1) ch != ch)
return -1;
if (direction > 0)
return ucs1lib_find_char((Py_UCS1 *) s, size, (Py_UCS1) ch);
else
return ucs1lib_rfind_char((Py_UCS1 *) s, size, (Py_UCS1) ch);
case PyUnicode_2BYTE_KIND:
if ((Py_UCS2) ch != ch)
return -1;
if (direction > 0)
return ucs2lib_find_char((Py_UCS2 *) s, size, (Py_UCS2) ch);
else
return ucs2lib_rfind_char((Py_UCS2 *) s, size, (Py_UCS2) ch);
case PyUnicode_4BYTE_KIND:
if (direction > 0)
return ucs4lib_find_char((Py_UCS4 *) s, size, ch);
else
return ucs4lib_rfind_char((Py_UCS4 *) s, size, ch);
default:
assert(0);
return -1;
}
}
#ifdef Py_DEBUG
/* Fill the data of a Unicode string with invalid characters to detect bugs
earlier.
_PyUnicode_CheckConsistency(str, 1) detects invalid characters, at least for
ASCII and UCS-4 strings. U+00FF is invalid in ASCII and U+FFFFFFFF is an
invalid character in Unicode 6.0. */
static void
unicode_fill_invalid(PyObject *unicode, Py_ssize_t old_length)
{
int kind = PyUnicode_KIND(unicode);
Py_UCS1 *data = PyUnicode_1BYTE_DATA(unicode);
Py_ssize_t length = _PyUnicode_LENGTH(unicode);
if (length <= old_length)
return;
memset(data + old_length * kind, 0xff, (length - old_length) * kind);
}
#endif
static PyObject*
resize_compact(PyObject *unicode, Py_ssize_t length)
{
Py_ssize_t char_size;
Py_ssize_t struct_size;
Py_ssize_t new_size;
int share_wstr;
PyObject *new_unicode;
#ifdef Py_DEBUG
Py_ssize_t old_length = _PyUnicode_LENGTH(unicode);
#endif
assert(unicode_modifiable(unicode));
assert(PyUnicode_IS_READY(unicode));
assert(PyUnicode_IS_COMPACT(unicode));
char_size = PyUnicode_KIND(unicode);
if (PyUnicode_IS_ASCII(unicode))
struct_size = sizeof(PyASCIIObject);
else
struct_size = sizeof(PyCompactUnicodeObject);
share_wstr = _PyUnicode_SHARE_WSTR(unicode);
if (length > ((PY_SSIZE_T_MAX - struct_size) / char_size - 1)) {
PyErr_NoMemory();
return NULL;
}
new_size = (struct_size + (length + 1) * char_size);
if (_PyUnicode_HAS_UTF8_MEMORY(unicode)) {
PyObject_DEL(_PyUnicode_UTF8(unicode));
_PyUnicode_UTF8(unicode) = NULL;
_PyUnicode_UTF8_LENGTH(unicode) = 0;
}
_Py_DEC_REFTOTAL;
_Py_ForgetReference(unicode);
new_unicode = (PyObject *)PyObject_REALLOC(unicode, new_size);
if (new_unicode == NULL) {
_Py_NewReference(unicode);
PyErr_NoMemory();
return NULL;
}
unicode = new_unicode;
_Py_NewReference(unicode);
_PyUnicode_LENGTH(unicode) = length;
if (share_wstr) {
_PyUnicode_WSTR(unicode) = PyUnicode_DATA(unicode);
if (!PyUnicode_IS_ASCII(unicode))
_PyUnicode_WSTR_LENGTH(unicode) = length;
}
else if (_PyUnicode_HAS_WSTR_MEMORY(unicode)) {
PyObject_DEL(_PyUnicode_WSTR(unicode));
_PyUnicode_WSTR(unicode) = NULL;
if (!PyUnicode_IS_ASCII(unicode))
_PyUnicode_WSTR_LENGTH(unicode) = 0;
}
#ifdef Py_DEBUG
unicode_fill_invalid(unicode, old_length);
#endif
PyUnicode_WRITE(PyUnicode_KIND(unicode), PyUnicode_DATA(unicode),
length, 0);
assert(_PyUnicode_CheckConsistency(unicode, 0));
return unicode;
}
static int
resize_inplace(PyObject *unicode, Py_ssize_t length)
{
wchar_t *wstr;
Py_ssize_t new_size;
assert(!PyUnicode_IS_COMPACT(unicode));
assert(Py_REFCNT(unicode) == 1);
if (PyUnicode_IS_READY(unicode)) {
Py_ssize_t char_size;
int share_wstr, share_utf8;
void *data;
#ifdef Py_DEBUG
Py_ssize_t old_length = _PyUnicode_LENGTH(unicode);
#endif
data = _PyUnicode_DATA_ANY(unicode);
char_size = PyUnicode_KIND(unicode);
share_wstr = _PyUnicode_SHARE_WSTR(unicode);
share_utf8 = _PyUnicode_SHARE_UTF8(unicode);
if (length > (PY_SSIZE_T_MAX / char_size - 1)) {
PyErr_NoMemory();
return -1;
}
new_size = (length + 1) * char_size;
if (!share_utf8 && _PyUnicode_HAS_UTF8_MEMORY(unicode))
{
PyObject_DEL(_PyUnicode_UTF8(unicode));
_PyUnicode_UTF8(unicode) = NULL;
_PyUnicode_UTF8_LENGTH(unicode) = 0;
}
data = (PyObject *)PyObject_REALLOC(data, new_size);
if (data == NULL) {
PyErr_NoMemory();
return -1;
}
_PyUnicode_DATA_ANY(unicode) = data;
if (share_wstr) {
_PyUnicode_WSTR(unicode) = data;
_PyUnicode_WSTR_LENGTH(unicode) = length;
}
if (share_utf8) {
_PyUnicode_UTF8(unicode) = data;
_PyUnicode_UTF8_LENGTH(unicode) = length;
}
_PyUnicode_LENGTH(unicode) = length;
PyUnicode_WRITE(PyUnicode_KIND(unicode), data, length, 0);
#ifdef Py_DEBUG
unicode_fill_invalid(unicode, old_length);
#endif
if (share_wstr || _PyUnicode_WSTR(unicode) == NULL) {
assert(_PyUnicode_CheckConsistency(unicode, 0));
return 0;
}
}
assert(_PyUnicode_WSTR(unicode) != NULL);
/* check for integer overflow */
if (length > PY_SSIZE_T_MAX / (Py_ssize_t)sizeof(wchar_t) - 1) {
PyErr_NoMemory();
return -1;
}
new_size = sizeof(wchar_t) * (length + 1);
wstr = _PyUnicode_WSTR(unicode);
wstr = PyObject_REALLOC(wstr, new_size);
if (!wstr) {
PyErr_NoMemory();
return -1;
}
_PyUnicode_WSTR(unicode) = wstr;
_PyUnicode_WSTR(unicode)[length] = 0;
_PyUnicode_WSTR_LENGTH(unicode) = length;
assert(_PyUnicode_CheckConsistency(unicode, 0));
return 0;
}
static PyObject*
resize_copy(PyObject *unicode, Py_ssize_t length)
{
Py_ssize_t copy_length;
if (_PyUnicode_KIND(unicode) != PyUnicode_WCHAR_KIND) {
PyObject *copy;
if (PyUnicode_READY(unicode) == -1)
return NULL;
copy = PyUnicode_New(length, PyUnicode_MAX_CHAR_VALUE(unicode));
if (copy == NULL)
return NULL;
copy_length = Py_MIN(length, PyUnicode_GET_LENGTH(unicode));
_PyUnicode_FastCopyCharacters(copy, 0, unicode, 0, copy_length);
return copy;
}
else {
PyObject *w;
w = (PyObject*)_PyUnicode_New(length);
if (w == NULL)
return NULL;
copy_length = _PyUnicode_WSTR_LENGTH(unicode);
copy_length = Py_MIN(copy_length, length);
memcpy(_PyUnicode_WSTR(w), _PyUnicode_WSTR(unicode),
copy_length * sizeof(wchar_t));
return w;
}
}
/* We allocate one more byte to make sure the string is
Ux0000 terminated; some code (e.g. new_identifier)
relies on that.
XXX This allocator could further be enhanced by assuring that the
free list never reduces its size below 1.
*/
static PyUnicodeObject *
_PyUnicode_New(Py_ssize_t length)
{
PyUnicodeObject *unicode;
size_t new_size;
/* Optimization for empty strings */
if (length == 0 && unicode_empty != NULL) {
Py_INCREF(unicode_empty);
return (PyUnicodeObject*)unicode_empty;
}
/* Ensure we won't overflow the size. */
if (length > ((PY_SSIZE_T_MAX / (Py_ssize_t)sizeof(Py_UNICODE)) - 1)) {
return (PyUnicodeObject *)PyErr_NoMemory();
}
if (length < 0) {
PyErr_SetString(PyExc_SystemError,
"Negative size passed to _PyUnicode_New");
return NULL;
}
unicode = PyObject_New(PyUnicodeObject, &PyUnicode_Type);
if (unicode == NULL)
return NULL;
new_size = sizeof(Py_UNICODE) * ((size_t)length + 1);
_PyUnicode_WSTR_LENGTH(unicode) = length;
_PyUnicode_HASH(unicode) = -1;
_PyUnicode_STATE(unicode).interned = 0;
_PyUnicode_STATE(unicode).kind = 0;
_PyUnicode_STATE(unicode).compact = 0;
_PyUnicode_STATE(unicode).ready = 0;
_PyUnicode_STATE(unicode).ascii = 0;
_PyUnicode_DATA_ANY(unicode) = NULL;
_PyUnicode_LENGTH(unicode) = 0;
_PyUnicode_UTF8(unicode) = NULL;
_PyUnicode_UTF8_LENGTH(unicode) = 0;
_PyUnicode_WSTR(unicode) = (Py_UNICODE*) PyObject_MALLOC(new_size);
if (!_PyUnicode_WSTR(unicode)) {
Py_DECREF(unicode);
PyErr_NoMemory();
return NULL;
}
/* Initialize the first element to guard against cases where
* the caller fails before initializing str -- unicode_resize()
* reads str[0], and the Keep-Alive optimization can keep memory
* allocated for str alive across a call to unicode_dealloc(unicode).
* We don't want unicode_resize to read uninitialized memory in
* that case.
*/
_PyUnicode_WSTR(unicode)[0] = 0;
_PyUnicode_WSTR(unicode)[length] = 0;
assert(_PyUnicode_CheckConsistency((PyObject *)unicode, 0));
return unicode;
}
static const char*
unicode_kind_name(PyObject *unicode)
{
/* don't check consistency: unicode_kind_name() is called from
_PyUnicode_Dump() */
if (!PyUnicode_IS_COMPACT(unicode))
{
if (!PyUnicode_IS_READY(unicode))
return "wstr";
switch (PyUnicode_KIND(unicode))
{
case PyUnicode_1BYTE_KIND:
if (PyUnicode_IS_ASCII(unicode))
return "legacy ascii";
else
return "legacy latin1";
case PyUnicode_2BYTE_KIND:
return "legacy UCS2";
case PyUnicode_4BYTE_KIND:
return "legacy UCS4";
default:
return "<legacy invalid kind>";
}
}
assert(PyUnicode_IS_READY(unicode));
switch (PyUnicode_KIND(unicode)) {
case PyUnicode_1BYTE_KIND:
if (PyUnicode_IS_ASCII(unicode))
return "ascii";
else
return "latin1";
case PyUnicode_2BYTE_KIND:
return "UCS2";
case PyUnicode_4BYTE_KIND:
return "UCS4";
default:
return "<invalid compact kind>";
}
}
#ifdef Py_DEBUG
/* Functions wrapping macros for use in debugger */
char *_PyUnicode_utf8(void *unicode){
return PyUnicode_UTF8(unicode);
}
void *_PyUnicode_compact_data(void *unicode) {
return _PyUnicode_COMPACT_DATA(unicode);
}
void *_PyUnicode_data(void *unicode){
printf("obj %p\n", unicode);
printf("compact %d\n", PyUnicode_IS_COMPACT(unicode));
printf("compact ascii %d\n", PyUnicode_IS_COMPACT_ASCII(unicode));
printf("ascii op %p\n", ((void*)((PyASCIIObject*)(unicode) + 1)));
printf("compact op %p\n", ((void*)((PyCompactUnicodeObject*)(unicode) + 1)));
printf("compact data %p\n", _PyUnicode_COMPACT_DATA(unicode));
return PyUnicode_DATA(unicode);
}
void
_PyUnicode_Dump(PyObject *op)
{
PyASCIIObject *ascii = (PyASCIIObject *)op;
PyCompactUnicodeObject *compact = (PyCompactUnicodeObject *)op;
PyUnicodeObject *unicode = (PyUnicodeObject *)op;
void *data;
if (ascii->state.compact)
{
if (ascii->state.ascii)
data = (ascii + 1);
else
data = (compact + 1);
}
else
data = unicode->data.any;
printf("%s: len=%" PY_FORMAT_SIZE_T "u, ",
unicode_kind_name(op), ascii->length);
if (ascii->wstr == data)
printf("shared ");
printf("wstr=%p", ascii->wstr);
if (!(ascii->state.ascii == 1 && ascii->state.compact == 1)) {
printf(" (%" PY_FORMAT_SIZE_T "u), ", compact->wstr_length);
if (!ascii->state.compact && compact->utf8 == unicode->data.any)
printf("shared ");
printf("utf8=%p (%" PY_FORMAT_SIZE_T "u)",
compact->utf8, compact->utf8_length);
}
printf(", data=%p\n", data);
}
#endif
PyObject *
PyUnicode_New(Py_ssize_t size, Py_UCS4 maxchar)
{
PyObject *obj;
PyCompactUnicodeObject *unicode;
void *data;
enum PyUnicode_Kind kind;
int is_sharing, is_ascii;
Py_ssize_t char_size;
Py_ssize_t struct_size;
/* Optimization for empty strings */
if (size == 0 && unicode_empty != NULL) {
Py_INCREF(unicode_empty);
return unicode_empty;
}
is_ascii = 0;
is_sharing = 0;
struct_size = sizeof(PyCompactUnicodeObject);
if (maxchar < 128) {
kind = PyUnicode_1BYTE_KIND;
char_size = 1;
is_ascii = 1;
struct_size = sizeof(PyASCIIObject);
}
else if (maxchar < 256) {
kind = PyUnicode_1BYTE_KIND;
char_size = 1;
}
else if (maxchar < 65536) {
kind = PyUnicode_2BYTE_KIND;
char_size = 2;
if (sizeof(wchar_t) == 2)
is_sharing = 1;
}
else {
if (maxchar > MAX_UNICODE) {
PyErr_SetString(PyExc_SystemError,
"invalid maximum character passed to PyUnicode_New");
return NULL;
}
kind = PyUnicode_4BYTE_KIND;
char_size = 4;
if (sizeof(wchar_t) == 4)
is_sharing = 1;
}
/* Ensure we won't overflow the size. */
if (size < 0) {
PyErr_SetString(PyExc_SystemError,
"Negative size passed to PyUnicode_New");
return NULL;
}
if (size > ((PY_SSIZE_T_MAX - struct_size) / char_size - 1))
return PyErr_NoMemory();
/* Duplicated allocation code from _PyObject_New() instead of a call to
* PyObject_New() so we are able to allocate space for the object and
* it's data buffer.
*/
obj = (PyObject *) PyObject_MALLOC(struct_size + (size + 1) * char_size);
if (obj == NULL)
return PyErr_NoMemory();
obj = PyObject_INIT(obj, &PyUnicode_Type);
if (obj == NULL)
return NULL;
unicode = (PyCompactUnicodeObject *)obj;
if (is_ascii)
data = ((PyASCIIObject*)obj) + 1;
else
data = unicode + 1;
_PyUnicode_LENGTH(unicode) = size;
_PyUnicode_HASH(unicode) = -1;
_PyUnicode_STATE(unicode).interned = 0;
_PyUnicode_STATE(unicode).kind = kind;
_PyUnicode_STATE(unicode).compact = 1;
_PyUnicode_STATE(unicode).ready = 1;
_PyUnicode_STATE(unicode).ascii = is_ascii;
if (is_ascii) {
((char*)data)[size] = 0;
_PyUnicode_WSTR(unicode) = NULL;
}
else if (kind == PyUnicode_1BYTE_KIND) {
((char*)data)[size] = 0;
_PyUnicode_WSTR(unicode) = NULL;
_PyUnicode_WSTR_LENGTH(unicode) = 0;
unicode->utf8 = NULL;
unicode->utf8_length = 0;
}
else {
unicode->utf8 = NULL;
unicode->utf8_length = 0;
if (kind == PyUnicode_2BYTE_KIND)
((Py_UCS2*)data)[size] = 0;
else /* kind == PyUnicode_4BYTE_KIND */
((Py_UCS4*)data)[size] = 0;
if (is_sharing) {
_PyUnicode_WSTR_LENGTH(unicode) = size;
_PyUnicode_WSTR(unicode) = (wchar_t *)data;
}
else {
_PyUnicode_WSTR_LENGTH(unicode) = 0;
_PyUnicode_WSTR(unicode) = NULL;
}
}
#ifdef Py_DEBUG
unicode_fill_invalid((PyObject*)unicode, 0);
#endif
assert(_PyUnicode_CheckConsistency((PyObject*)unicode, 0));
return obj;
}
#if SIZEOF_WCHAR_T == 2
/* Helper function to convert a 16-bits wchar_t representation to UCS4, this
will decode surrogate pairs, the other conversions are implemented as macros
for efficiency.
This function assumes that unicode can hold one more code point than wstr
characters for a terminating null character. */
static void
unicode_convert_wchar_to_ucs4(const wchar_t *begin, const wchar_t *end,
PyObject *unicode)
{
const wchar_t *iter;
Py_UCS4 *ucs4_out;
assert(unicode != NULL);
assert(_PyUnicode_CHECK(unicode));
assert(_PyUnicode_KIND(unicode) == PyUnicode_4BYTE_KIND);
ucs4_out = PyUnicode_4BYTE_DATA(unicode);
for (iter = begin; iter < end; ) {
assert(ucs4_out < (PyUnicode_4BYTE_DATA(unicode) +
_PyUnicode_GET_LENGTH(unicode)));
if (Py_UNICODE_IS_HIGH_SURROGATE(iter[0])
&& (iter+1) < end
&& Py_UNICODE_IS_LOW_SURROGATE(iter[1]))
{
*ucs4_out++ = Py_UNICODE_JOIN_SURROGATES(iter[0], iter[1]);
iter += 2;
}
else {
*ucs4_out++ = *iter;
iter++;
}
}
assert(ucs4_out == (PyUnicode_4BYTE_DATA(unicode) +
_PyUnicode_GET_LENGTH(unicode)));
}
#endif
int
unicode_check_modifiable(PyObject *unicode)
{
if (!unicode_modifiable(unicode)) {
PyErr_SetString(PyExc_SystemError,
"Cannot modify a string currently used");
return -1;
}
return 0;
}
static int
_copy_characters(PyObject *to, Py_ssize_t to_start,
PyObject *from, Py_ssize_t from_start,
Py_ssize_t how_many, int check_maxchar)
{
unsigned int from_kind, to_kind;
void *from_data, *to_data;
assert(0 <= how_many);
assert(0 <= from_start);
assert(0 <= to_start);
assert(PyUnicode_Check(from));
assert(PyUnicode_IS_READY(from));
assert(from_start + how_many <= PyUnicode_GET_LENGTH(from));
assert(PyUnicode_Check(to));
assert(PyUnicode_IS_READY(to));
assert(to_start + how_many <= PyUnicode_GET_LENGTH(to));
if (how_many == 0)
return 0;
from_kind = PyUnicode_KIND(from);
from_data = PyUnicode_DATA(from);
to_kind = PyUnicode_KIND(to);
to_data = PyUnicode_DATA(to);
#ifdef Py_DEBUG
if (!check_maxchar
&& PyUnicode_MAX_CHAR_VALUE(from) > PyUnicode_MAX_CHAR_VALUE(to))
{
const Py_UCS4 to_maxchar = PyUnicode_MAX_CHAR_VALUE(to);
Py_UCS4 ch;
Py_ssize_t i;
for (i=0; i < how_many; i++) {
ch = PyUnicode_READ(from_kind, from_data, from_start + i);
assert(ch <= to_maxchar);
}
}
#endif
if (from_kind == to_kind) {
if (check_maxchar
&& !PyUnicode_IS_ASCII(from) && PyUnicode_IS_ASCII(to))
{
/* Writing Latin-1 characters into an ASCII string requires to
check that all written characters are pure ASCII */
Py_UCS4 max_char;
max_char = ucs1lib_find_max_char(from_data,
(Py_UCS1*)from_data + how_many);
if (max_char >= 128)
return -1;
}
memcpy((char*)to_data + to_kind * to_start,
(char*)from_data + from_kind * from_start,
to_kind * how_many);
}
else if (from_kind == PyUnicode_1BYTE_KIND
&& to_kind == PyUnicode_2BYTE_KIND)
{
_PyUnicode_CONVERT_BYTES(
Py_UCS1, Py_UCS2,
PyUnicode_1BYTE_DATA(from) + from_start,
PyUnicode_1BYTE_DATA(from) + from_start + how_many,
PyUnicode_2BYTE_DATA(to) + to_start
);
}
else if (from_kind == PyUnicode_1BYTE_KIND
&& to_kind == PyUnicode_4BYTE_KIND)
{
_PyUnicode_CONVERT_BYTES(
Py_UCS1, Py_UCS4,
PyUnicode_1BYTE_DATA(from) + from_start,
PyUnicode_1BYTE_DATA(from) + from_start + how_many,
PyUnicode_4BYTE_DATA(to) + to_start
);
}
else if (from_kind == PyUnicode_2BYTE_KIND
&& to_kind == PyUnicode_4BYTE_KIND)
{
_PyUnicode_CONVERT_BYTES(
Py_UCS2, Py_UCS4,
PyUnicode_2BYTE_DATA(from) + from_start,
PyUnicode_2BYTE_DATA(from) + from_start + how_many,
PyUnicode_4BYTE_DATA(to) + to_start
);
}
else {
assert (PyUnicode_MAX_CHAR_VALUE(from) > PyUnicode_MAX_CHAR_VALUE(to));
if (!check_maxchar) {
if (from_kind == PyUnicode_2BYTE_KIND
&& to_kind == PyUnicode_1BYTE_KIND)
{
_PyUnicode_CONVERT_BYTES(
Py_UCS2, Py_UCS1,
PyUnicode_2BYTE_DATA(from) + from_start,
PyUnicode_2BYTE_DATA(from) + from_start + how_many,
PyUnicode_1BYTE_DATA(to) + to_start
);
}
else if (from_kind == PyUnicode_4BYTE_KIND
&& to_kind == PyUnicode_1BYTE_KIND)
{
_PyUnicode_CONVERT_BYTES(
Py_UCS4, Py_UCS1,
PyUnicode_4BYTE_DATA(from) + from_start,
PyUnicode_4BYTE_DATA(from) + from_start + how_many,
PyUnicode_1BYTE_DATA(to) + to_start
);
}
else if (from_kind == PyUnicode_4BYTE_KIND
&& to_kind == PyUnicode_2BYTE_KIND)
{
_PyUnicode_CONVERT_BYTES(
Py_UCS4, Py_UCS2,
PyUnicode_4BYTE_DATA(from) + from_start,
PyUnicode_4BYTE_DATA(from) + from_start + how_many,
PyUnicode_2BYTE_DATA(to) + to_start
);
}
else {
assert(0);
return -1;
}
}
else {
const Py_UCS4 to_maxchar = PyUnicode_MAX_CHAR_VALUE(to);
Py_UCS4 ch;
Py_ssize_t i;
for (i=0; i < how_many; i++) {
ch = PyUnicode_READ(from_kind, from_data, from_start + i);
if (ch > to_maxchar)
return -1;
PyUnicode_WRITE(to_kind, to_data, to_start + i, ch);
}
}
}
return 0;
}
void
_PyUnicode_FastCopyCharacters(
PyObject *to, Py_ssize_t to_start,
PyObject *from, Py_ssize_t from_start, Py_ssize_t how_many)
{
(void)_copy_characters(to, to_start, from, from_start, how_many, 0);
}
Py_ssize_t
PyUnicode_CopyCharacters(PyObject *to, Py_ssize_t to_start,
PyObject *from, Py_ssize_t from_start,
Py_ssize_t how_many)
{
int err;
if (!PyUnicode_Check(from) || !PyUnicode_Check(to)) {
PyErr_BadInternalCall();
return -1;
}
if (PyUnicode_READY(from) == -1)
return -1;
if (PyUnicode_READY(to) == -1)
return -1;
if ((size_t)from_start > (size_t)PyUnicode_GET_LENGTH(from)) {
PyErr_SetString(PyExc_IndexError, "string index out of range");
return -1;
}
if ((size_t)to_start > (size_t)PyUnicode_GET_LENGTH(to)) {
PyErr_SetString(PyExc_IndexError, "string index out of range");
return -1;
}
if (how_many < 0) {
PyErr_SetString(PyExc_SystemError, "how_many cannot be negative");
return -1;
}
how_many = Py_MIN(PyUnicode_GET_LENGTH(from)-from_start, how_many);
if (to_start + how_many > PyUnicode_GET_LENGTH(to)) {
PyErr_Format(PyExc_SystemError,
"Cannot write %zi characters at %zi "
"in a string of %zi characters",
how_many, to_start, PyUnicode_GET_LENGTH(to));
return -1;
}
if (how_many == 0)
return 0;
if (unicode_check_modifiable(to))
return -1;
err = _copy_characters(to, to_start, from, from_start, how_many, 1);
if (err) {
PyErr_Format(PyExc_SystemError,
"Cannot copy %s characters "
"into a string of %s characters",
unicode_kind_name(from),
unicode_kind_name(to));
return -1;
}
return how_many;
}
/* Find the maximum code point and count the number of surrogate pairs so a
correct string length can be computed before converting a string to UCS4.
This function counts single surrogates as a character and not as a pair.
Return 0 on success, or -1 on error. */
static int
find_maxchar_surrogates(const wchar_t *begin, const wchar_t *end,
Py_UCS4 *maxchar, Py_ssize_t *num_surrogates)
{
const wchar_t *iter;
Py_UCS4 ch;
assert(num_surrogates != NULL && maxchar != NULL);
*num_surrogates = 0;
*maxchar = 0;
for (iter = begin; iter < end; ) {
#if SIZEOF_WCHAR_T == 2
if (Py_UNICODE_IS_HIGH_SURROGATE(iter[0])
&& (iter+1) < end
&& Py_UNICODE_IS_LOW_SURROGATE(iter[1]))
{
ch = Py_UNICODE_JOIN_SURROGATES(iter[0], iter[1]);
++(*num_surrogates);
iter += 2;
}
else
#endif
{
ch = *iter;
iter++;
}
if (ch > *maxchar) {
*maxchar = ch;
if (*maxchar > MAX_UNICODE) {
PyErr_Format(PyExc_ValueError,
"character U+%x is not in range [U+0000; U+10ffff]",
ch);
return -1;
}
}
}
return 0;
}
int
_PyUnicode_Ready(PyObject *unicode)
{
wchar_t *end;
Py_UCS4 maxchar = 0;
Py_ssize_t num_surrogates;
#if SIZEOF_WCHAR_T == 2
Py_ssize_t length_wo_surrogates;
#endif
/* _PyUnicode_Ready() is only intended for old-style API usage where
strings were created using _PyObject_New() and where no canonical
representation (the str field) has been set yet aka strings
which are not yet ready. */
assert(_PyUnicode_CHECK(unicode));
assert(_PyUnicode_KIND(unicode) == PyUnicode_WCHAR_KIND);
assert(_PyUnicode_WSTR(unicode) != NULL);
assert(_PyUnicode_DATA_ANY(unicode) == NULL);
assert(_PyUnicode_UTF8(unicode) == NULL);
/* Actually, it should neither be interned nor be anything else: */
assert(_PyUnicode_STATE(unicode).interned == SSTATE_NOT_INTERNED);
end = _PyUnicode_WSTR(unicode) + _PyUnicode_WSTR_LENGTH(unicode);
if (find_maxchar_surrogates(_PyUnicode_WSTR(unicode), end,
&maxchar, &num_surrogates) == -1)
return -1;
if (maxchar < 256) {
_PyUnicode_DATA_ANY(unicode) = PyObject_MALLOC(_PyUnicode_WSTR_LENGTH(unicode) + 1);
if (!_PyUnicode_DATA_ANY(unicode)) {
PyErr_NoMemory();
return -1;
}
_PyUnicode_CONVERT_BYTES(wchar_t, unsigned char,
_PyUnicode_WSTR(unicode), end,
PyUnicode_1BYTE_DATA(unicode));
PyUnicode_1BYTE_DATA(unicode)[_PyUnicode_WSTR_LENGTH(unicode)] = '\0';
_PyUnicode_LENGTH(unicode) = _PyUnicode_WSTR_LENGTH(unicode);
_PyUnicode_STATE(unicode).kind = PyUnicode_1BYTE_KIND;
if (maxchar < 128) {
_PyUnicode_STATE(unicode).ascii = 1;
_PyUnicode_UTF8(unicode) = _PyUnicode_DATA_ANY(unicode);
_PyUnicode_UTF8_LENGTH(unicode) = _PyUnicode_WSTR_LENGTH(unicode);
}
else {
_PyUnicode_STATE(unicode).ascii = 0;
_PyUnicode_UTF8(unicode) = NULL;
_PyUnicode_UTF8_LENGTH(unicode) = 0;
}
PyObject_FREE(_PyUnicode_WSTR(unicode));
_PyUnicode_WSTR(unicode) = NULL;
_PyUnicode_WSTR_LENGTH(unicode) = 0;
}
/* In this case we might have to convert down from 4-byte native
wchar_t to 2-byte unicode. */
else if (maxchar < 65536) {
assert(num_surrogates == 0 &&
"FindMaxCharAndNumSurrogatePairs() messed up");
#if SIZEOF_WCHAR_T == 2
/* We can share representations and are done. */
_PyUnicode_DATA_ANY(unicode) = _PyUnicode_WSTR(unicode);
PyUnicode_2BYTE_DATA(unicode)[_PyUnicode_WSTR_LENGTH(unicode)] = '\0';
_PyUnicode_LENGTH(unicode) = _PyUnicode_WSTR_LENGTH(unicode);
_PyUnicode_STATE(unicode).kind = PyUnicode_2BYTE_KIND;
_PyUnicode_UTF8(unicode) = NULL;
_PyUnicode_UTF8_LENGTH(unicode) = 0;
#else
/* sizeof(wchar_t) == 4 */
_PyUnicode_DATA_ANY(unicode) = PyObject_MALLOC(
2 * (_PyUnicode_WSTR_LENGTH(unicode) + 1));
if (!_PyUnicode_DATA_ANY(unicode)) {
PyErr_NoMemory();
return -1;
}
_PyUnicode_CONVERT_BYTES(wchar_t, Py_UCS2,
_PyUnicode_WSTR(unicode), end,
PyUnicode_2BYTE_DATA(unicode));
PyUnicode_2BYTE_DATA(unicode)[_PyUnicode_WSTR_LENGTH(unicode)] = '\0';
_PyUnicode_LENGTH(unicode) = _PyUnicode_WSTR_LENGTH(unicode);
_PyUnicode_STATE(unicode).kind = PyUnicode_2BYTE_KIND;
_PyUnicode_UTF8(unicode) = NULL;
_PyUnicode_UTF8_LENGTH(unicode) = 0;
PyObject_FREE(_PyUnicode_WSTR(unicode));
_PyUnicode_WSTR(unicode) = NULL;
_PyUnicode_WSTR_LENGTH(unicode) = 0;
#endif
}
/* maxchar exeeds 16 bit, wee need 4 bytes for unicode characters */
else {
#if SIZEOF_WCHAR_T == 2
/* in case the native representation is 2-bytes, we need to allocate a
new normalized 4-byte version. */
length_wo_surrogates = _PyUnicode_WSTR_LENGTH(unicode) - num_surrogates;
if (length_wo_surrogates > PY_SSIZE_T_MAX / 4 - 1) {
PyErr_NoMemory();
return -1;
}
_PyUnicode_DATA_ANY(unicode) = PyObject_MALLOC(4 * (length_wo_surrogates + 1));
if (!_PyUnicode_DATA_ANY(unicode)) {
PyErr_NoMemory();
return -1;
}
_PyUnicode_LENGTH(unicode) = length_wo_surrogates;
_PyUnicode_STATE(unicode).kind = PyUnicode_4BYTE_KIND;
_PyUnicode_UTF8(unicode) = NULL;
_PyUnicode_UTF8_LENGTH(unicode) = 0;
/* unicode_convert_wchar_to_ucs4() requires a ready string */
_PyUnicode_STATE(unicode).ready = 1;
unicode_convert_wchar_to_ucs4(_PyUnicode_WSTR(unicode), end, unicode);
PyObject_FREE(_PyUnicode_WSTR(unicode));
_PyUnicode_WSTR(unicode) = NULL;
_PyUnicode_WSTR_LENGTH(unicode) = 0;
#else
assert(num_surrogates == 0);
_PyUnicode_DATA_ANY(unicode) = _PyUnicode_WSTR(unicode);
_PyUnicode_LENGTH(unicode) = _PyUnicode_WSTR_LENGTH(unicode);
_PyUnicode_UTF8(unicode) = NULL;
_PyUnicode_UTF8_LENGTH(unicode) = 0;
_PyUnicode_STATE(unicode).kind = PyUnicode_4BYTE_KIND;
#endif
PyUnicode_4BYTE_DATA(unicode)[_PyUnicode_LENGTH(unicode)] = '\0';
}
_PyUnicode_STATE(unicode).ready = 1;
assert(_PyUnicode_CheckConsistency(unicode, 1));
return 0;
}
static void
unicode_dealloc(PyObject *unicode)
{
switch (PyUnicode_CHECK_INTERNED(unicode)) {
case SSTATE_NOT_INTERNED:
break;
case SSTATE_INTERNED_MORTAL:
/* revive dead object temporarily for DelItem */
Py_REFCNT(unicode) = 3;
if (PyDict_DelItem(interned, unicode) != 0)
Py_FatalError(
"deletion of interned string failed");
break;
case SSTATE_INTERNED_IMMORTAL:
Py_FatalError("Immortal interned string died.");
/* fall through */
default:
Py_FatalError("Inconsistent interned string state.");
}
if (_PyUnicode_HAS_WSTR_MEMORY(unicode))
PyObject_DEL(_PyUnicode_WSTR(unicode));
if (_PyUnicode_HAS_UTF8_MEMORY(unicode))
PyObject_DEL(_PyUnicode_UTF8(unicode));
if (!PyUnicode_IS_COMPACT(unicode) && _PyUnicode_DATA_ANY(unicode))
PyObject_DEL(_PyUnicode_DATA_ANY(unicode));
Py_TYPE(unicode)->tp_free(unicode);
}
#ifdef Py_DEBUG
static int
unicode_is_singleton(PyObject *unicode)
{
PyASCIIObject *ascii = (PyASCIIObject *)unicode;
if (unicode == unicode_empty)
return 1;
if (ascii->state.kind != PyUnicode_WCHAR_KIND && ascii->length == 1)
{
Py_UCS4 ch = PyUnicode_READ_CHAR(unicode, 0);
if (ch < 256 && unicode_latin1[ch] == unicode)
return 1;
}
return 0;
}
#endif
static int
unicode_modifiable(PyObject *unicode)
{
assert(_PyUnicode_CHECK(unicode));
if (Py_REFCNT(unicode) != 1)
return 0;
if (_PyUnicode_HASH(unicode) != -1)
return 0;
if (PyUnicode_CHECK_INTERNED(unicode))
return 0;
if (!PyUnicode_CheckExact(unicode))
return 0;
#ifdef Py_DEBUG
/* singleton refcount is greater than 1 */
assert(!unicode_is_singleton(unicode));
#endif
return 1;
}
static int
unicode_resize(PyObject **p_unicode, Py_ssize_t length)
{
PyObject *unicode;
Py_ssize_t old_length;
assert(p_unicode != NULL);
unicode = *p_unicode;
assert(unicode != NULL);
assert(PyUnicode_Check(unicode));
assert(0 <= length);
if (_PyUnicode_KIND(unicode) == PyUnicode_WCHAR_KIND)
old_length = PyUnicode_WSTR_LENGTH(unicode);
else
old_length = PyUnicode_GET_LENGTH(unicode);
if (old_length == length)
return 0;
if (length == 0) {
_Py_INCREF_UNICODE_EMPTY();
if (!unicode_empty)
return -1;
Py_SETREF(*p_unicode, unicode_empty);
return 0;
}
if (!unicode_modifiable(unicode)) {
PyObject *copy = resize_copy(unicode, length);
if (copy == NULL)
return -1;
Py_SETREF(*p_unicode, copy);
return 0;
}
if (PyUnicode_IS_COMPACT(unicode)) {
PyObject *new_unicode = resize_compact(unicode, length);
if (new_unicode == NULL)
return -1;
*p_unicode = new_unicode;
return 0;
}
return resize_inplace(unicode, length);
}
int
PyUnicode_Resize(PyObject **p_unicode, Py_ssize_t length)
{
PyObject *unicode;
if (p_unicode == NULL) {
PyErr_BadInternalCall();
return -1;
}
unicode = *p_unicode;
if (unicode == NULL || !PyUnicode_Check(unicode) || length < 0)
{
PyErr_BadInternalCall();
return -1;
}
return unicode_resize(p_unicode, length);
}
/* Copy an ASCII or latin1 char* string into a Python Unicode string.
WARNING: The function doesn't copy the terminating null character and
doesn't check the maximum character (may write a latin1 character in an
ASCII string). */
static void
unicode_write_cstr(PyObject *unicode, Py_ssize_t index,
const char *str, Py_ssize_t len)
{
enum PyUnicode_Kind kind = PyUnicode_KIND(unicode);
void *data = PyUnicode_DATA(unicode);
const char *end = str + len;
switch (kind) {
case PyUnicode_1BYTE_KIND: {
assert(index + len <= PyUnicode_GET_LENGTH(unicode));
#ifdef Py_DEBUG
if (PyUnicode_IS_ASCII(unicode)) {
Py_UCS4 maxchar = ucs1lib_find_max_char(
(const Py_UCS1*)str,
(const Py_UCS1*)str + len);
assert(maxchar < 128);
}
#endif
memcpy((char *) data + index, str, len);
break;
}
case PyUnicode_2BYTE_KIND: {
Py_UCS2 *start = (Py_UCS2 *)data + index;
Py_UCS2 *ucs2 = start;
assert(index <= PyUnicode_GET_LENGTH(unicode));
for (; str < end; ++ucs2, ++str)
*ucs2 = (Py_UCS2)*str;
assert((ucs2 - start) <= PyUnicode_GET_LENGTH(unicode));
break;
}
default: {
Py_UCS4 *start = (Py_UCS4 *)data + index;
Py_UCS4 *ucs4 = start;
assert(kind == PyUnicode_4BYTE_KIND);
assert(index <= PyUnicode_GET_LENGTH(unicode));
for (; str < end; ++ucs4, ++str)
*ucs4 = (Py_UCS4)*str;
assert((ucs4 - start) <= PyUnicode_GET_LENGTH(unicode));
}
}
}
static PyObject*
get_latin1_char(unsigned char ch)
{
PyObject *unicode = unicode_latin1[ch];
if (!unicode) {
unicode = PyUnicode_New(1, ch);
if (!unicode)
return NULL;
PyUnicode_1BYTE_DATA(unicode)[0] = ch;
assert(_PyUnicode_CheckConsistency(unicode, 1));
unicode_latin1[ch] = unicode;
}
Py_INCREF(unicode);
return unicode;
}
static PyObject*
unicode_char(Py_UCS4 ch)
{
PyObject *unicode;
assert(ch <= MAX_UNICODE);
if (ch < 256)
return get_latin1_char(ch);
unicode = PyUnicode_New(1, ch);
if (unicode == NULL)
return NULL;
switch (PyUnicode_KIND(unicode)) {
case PyUnicode_1BYTE_KIND:
PyUnicode_1BYTE_DATA(unicode)[0] = (Py_UCS1)ch;
break;
case PyUnicode_2BYTE_KIND:
PyUnicode_2BYTE_DATA(unicode)[0] = (Py_UCS2)ch;
break;
default:
assert(PyUnicode_KIND(unicode) == PyUnicode_4BYTE_KIND);
PyUnicode_4BYTE_DATA(unicode)[0] = ch;
}
assert(_PyUnicode_CheckConsistency(unicode, 1));
return unicode;
}
PyObject *
PyUnicode_FromUnicode(const Py_UNICODE *u, Py_ssize_t size)
{
PyObject *unicode;
Py_UCS4 maxchar = 0;
Py_ssize_t num_surrogates;
if (u == NULL)
return (PyObject*)_PyUnicode_New(size);
/* If the Unicode data is known at construction time, we can apply
some optimizations which share commonly used objects. */
/* Optimization for empty strings */
if (size == 0)
_Py_RETURN_UNICODE_EMPTY();
/* Single character Unicode objects in the Latin-1 range are
shared when using this constructor */
if (size == 1 && (Py_UCS4)*u < 256)
return get_latin1_char((unsigned char)*u);
/* If not empty and not single character, copy the Unicode data
into the new object */
if (find_maxchar_surrogates(u, u + size,
&maxchar, &num_surrogates) == -1)
return NULL;
unicode = PyUnicode_New(size - num_surrogates, maxchar);
if (!unicode)
return NULL;
switch (PyUnicode_KIND(unicode)) {
case PyUnicode_1BYTE_KIND:
_PyUnicode_CONVERT_BYTES(Py_UNICODE, unsigned char,
u, u + size, PyUnicode_1BYTE_DATA(unicode));
break;
case PyUnicode_2BYTE_KIND:
#if Py_UNICODE_SIZE == 2
memcpy(PyUnicode_2BYTE_DATA(unicode), u, size * 2);
#else
_PyUnicode_CONVERT_BYTES(Py_UNICODE, Py_UCS2,
u, u + size, PyUnicode_2BYTE_DATA(unicode));
#endif
break;
case PyUnicode_4BYTE_KIND:
#if SIZEOF_WCHAR_T == 2
/* This is the only case which has to process surrogates, thus
a simple copy loop is not enough and we need a function. */
unicode_convert_wchar_to_ucs4(u, u + size, unicode);
#else
assert(num_surrogates == 0);
memcpy(PyUnicode_4BYTE_DATA(unicode), u, size * 4);
#endif
break;
default:
assert(0 && "Impossible state");
}
return unicode_result(unicode);
}
PyObject *
PyUnicode_FromStringAndSize(const char *u, Py_ssize_t size)
{
if (size < 0) {
PyErr_SetString(PyExc_SystemError,
"Negative size passed to PyUnicode_FromStringAndSize");
return NULL;
}
if (u != NULL)
return PyUnicode_DecodeUTF8Stateful(u, size, NULL, NULL);
else
return (PyObject *)_PyUnicode_New(size);
}
PyObject *
PyUnicode_FromString(const char *u)
{
size_t size = strlen(u);
if (size > PY_SSIZE_T_MAX) {
PyErr_SetString(PyExc_OverflowError, "input too long");
return NULL;
}
return PyUnicode_DecodeUTF8Stateful(u, (Py_ssize_t)size, NULL, NULL);
}
PyObject *
_PyUnicode_FromId(_Py_Identifier *id)
{
if (!id->object) {
id->object = PyUnicode_DecodeUTF8Stateful(id->string,
strlen(id->string),
NULL, NULL);
if (!id->object)
return NULL;
PyUnicode_InternInPlace(&id->object);
assert(!id->next);
id->next = static_strings;
static_strings = id;
}
return id->object;
}
void
_PyUnicode_ClearStaticStrings()
{
_Py_Identifier *tmp, *s = static_strings;
while (s) {
Py_CLEAR(s->object);
tmp = s->next;
s->next = NULL;
s = tmp;
}
static_strings = NULL;
}
/* Internal function, doesn't check maximum character */
PyObject*
_PyUnicode_FromASCII(const char *buffer, Py_ssize_t size)
{
const unsigned char *s = (const unsigned char *)buffer;
PyObject *unicode;
if (size == 1) {
#ifdef Py_DEBUG
assert((unsigned char)s[0] < 128);
#endif
return get_latin1_char(s[0]);
}
unicode = PyUnicode_New(size, 127);
if (!unicode)
return NULL;
memcpy(PyUnicode_1BYTE_DATA(unicode), s, size);
assert(_PyUnicode_CheckConsistency(unicode, 1));
return unicode;
}
static Py_UCS4
kind_maxchar_limit(unsigned int kind)
{
switch (kind) {
case PyUnicode_1BYTE_KIND:
return 0x80;
case PyUnicode_2BYTE_KIND:
return 0x100;
case PyUnicode_4BYTE_KIND:
return 0x10000;
default:
assert(0 && "invalid kind");
return MAX_UNICODE;
}
}
static inline Py_UCS4
align_maxchar(Py_UCS4 maxchar)
{
if (maxchar <= 127)
return 127;
else if (maxchar <= 255)
return 255;
else if (maxchar <= 65535)
return 65535;
else
return MAX_UNICODE;
}
static PyObject*
_PyUnicode_FromUCS1(const Py_UCS1* u, Py_ssize_t size)
{
PyObject *res;
unsigned char max_char;
if (size == 0)
_Py_RETURN_UNICODE_EMPTY();
assert(size > 0);
if (size == 1)
return get_latin1_char(u[0]);
max_char = ucs1lib_find_max_char(u, u + size);
res = PyUnicode_New(size, max_char);
if (!res)
return NULL;
memcpy(PyUnicode_1BYTE_DATA(res), u, size);
assert(_PyUnicode_CheckConsistency(res, 1));
return res;
}
static PyObject*
_PyUnicode_FromUCS2(const Py_UCS2 *u, Py_ssize_t size)
{
PyObject *res;
Py_UCS2 max_char;
if (size == 0)
_Py_RETURN_UNICODE_EMPTY();
assert(size > 0);
if (size == 1)
return unicode_char(u[0]);
max_char = ucs2lib_find_max_char(u, u + size);
res = PyUnicode_New(size, max_char);
if (!res)
return NULL;
if (max_char >= 256)
memcpy(PyUnicode_2BYTE_DATA(res), u, sizeof(Py_UCS2)*size);
else {
_PyUnicode_CONVERT_BYTES(
Py_UCS2, Py_UCS1, u, u + size, PyUnicode_1BYTE_DATA(res));
}
assert(_PyUnicode_CheckConsistency(res, 1));
return res;
}
static PyObject*
_PyUnicode_FromUCS4(const Py_UCS4 *u, Py_ssize_t size)
{
PyObject *res;
Py_UCS4 max_char;
if (size == 0)
_Py_RETURN_UNICODE_EMPTY();
assert(size > 0);
if (size == 1)
return unicode_char(u[0]);
max_char = ucs4lib_find_max_char(u, u + size);
res = PyUnicode_New(size, max_char);
if (!res)
return NULL;
if (max_char < 256)
_PyUnicode_CONVERT_BYTES(Py_UCS4, Py_UCS1, u, u + size,
PyUnicode_1BYTE_DATA(res));
else if (max_char < 0x10000)
_PyUnicode_CONVERT_BYTES(Py_UCS4, Py_UCS2, u, u + size,
PyUnicode_2BYTE_DATA(res));
else
memcpy(PyUnicode_4BYTE_DATA(res), u, sizeof(Py_UCS4)*size);
assert(_PyUnicode_CheckConsistency(res, 1));
return res;
}
PyObject*
PyUnicode_FromKindAndData(int kind, const void *buffer, Py_ssize_t size)
{
if (size < 0) {
PyErr_SetString(PyExc_ValueError, "size must be positive");
return NULL;
}
switch (kind) {
case PyUnicode_1BYTE_KIND:
return _PyUnicode_FromUCS1(buffer, size);
case PyUnicode_2BYTE_KIND:
return _PyUnicode_FromUCS2(buffer, size);
case PyUnicode_4BYTE_KIND:
return _PyUnicode_FromUCS4(buffer, size);
default:
PyErr_SetString(PyExc_SystemError, "invalid kind");
return NULL;
}
}
Py_UCS4
_PyUnicode_FindMaxChar(PyObject *unicode, Py_ssize_t start, Py_ssize_t end)
{
enum PyUnicode_Kind kind;
void *startptr, *endptr;
assert(PyUnicode_IS_READY(unicode));
assert(0 <= start);
assert(end <= PyUnicode_GET_LENGTH(unicode));
assert(start <= end);
if (start == 0 && end == PyUnicode_GET_LENGTH(unicode))
return PyUnicode_MAX_CHAR_VALUE(unicode);
if (start == end)
return 127;
if (PyUnicode_IS_ASCII(unicode))
return 127;
kind = PyUnicode_KIND(unicode);
startptr = PyUnicode_DATA(unicode);
endptr = (char *)startptr + end * kind;
startptr = (char *)startptr + start * kind;
switch(kind) {
case PyUnicode_1BYTE_KIND:
return ucs1lib_find_max_char(startptr, endptr);
case PyUnicode_2BYTE_KIND:
return ucs2lib_find_max_char(startptr, endptr);
case PyUnicode_4BYTE_KIND:
return ucs4lib_find_max_char(startptr, endptr);
default:
assert(0);
return 0;
}
}
/* Ensure that a string uses the most efficient storage, if it is not the
case: create a new string with of the right kind. Write NULL into *p_unicode
on error. */
static void
unicode_adjust_maxchar(PyObject **p_unicode)
{
PyObject *unicode, *copy;
Py_UCS4 max_char;
Py_ssize_t len;
unsigned int kind;
assert(p_unicode != NULL);
unicode = *p_unicode;
assert(PyUnicode_IS_READY(unicode));
if (PyUnicode_IS_ASCII(unicode))
return;
len = PyUnicode_GET_LENGTH(unicode);
kind = PyUnicode_KIND(unicode);
if (kind == PyUnicode_1BYTE_KIND) {
const Py_UCS1 *u = PyUnicode_1BYTE_DATA(unicode);
max_char = ucs1lib_find_max_char(u, u + len);
if (max_char >= 128)
return;
}
else if (kind == PyUnicode_2BYTE_KIND) {
const Py_UCS2 *u = PyUnicode_2BYTE_DATA(unicode);
max_char = ucs2lib_find_max_char(u, u + len);
if (max_char >= 256)
return;
}
else {
const Py_UCS4 *u = PyUnicode_4BYTE_DATA(unicode);
assert(kind == PyUnicode_4BYTE_KIND);
max_char = ucs4lib_find_max_char(u, u + len);
if (max_char >= 0x10000)
return;
}
copy = PyUnicode_New(len, max_char);
if (copy != NULL)
_PyUnicode_FastCopyCharacters(copy, 0, unicode, 0, len);
Py_DECREF(unicode);
*p_unicode = copy;
}
PyObject*
_PyUnicode_Copy(PyObject *unicode)
{
Py_ssize_t length;
PyObject *copy;
if (!PyUnicode_Check(unicode)) {
PyErr_BadInternalCall();
return NULL;
}
if (PyUnicode_READY(unicode) == -1)
return NULL;
length = PyUnicode_GET_LENGTH(unicode);
copy = PyUnicode_New(length, PyUnicode_MAX_CHAR_VALUE(unicode));
if (!copy)
return NULL;
assert(PyUnicode_KIND(copy) == PyUnicode_KIND(unicode));
memcpy(PyUnicode_DATA(copy), PyUnicode_DATA(unicode),
length * PyUnicode_KIND(unicode));
assert(_PyUnicode_CheckConsistency(copy, 1));
return copy;
}
/* Widen Unicode objects to larger buffers. Don't write terminating null
character. Return NULL on error. */
void*
_PyUnicode_AsKind(PyObject *s, unsigned int kind)
{
Py_ssize_t len;
void *result;
unsigned int skind;
if (PyUnicode_READY(s) == -1)
return NULL;
len = PyUnicode_GET_LENGTH(s);
skind = PyUnicode_KIND(s);
if (skind >= kind) {
PyErr_SetString(PyExc_SystemError, "invalid widening attempt");
return NULL;
}
switch (kind) {
case PyUnicode_2BYTE_KIND:
result = PyMem_New(Py_UCS2, len);
if (!result)
return PyErr_NoMemory();
assert(skind == PyUnicode_1BYTE_KIND);
_PyUnicode_CONVERT_BYTES(
Py_UCS1, Py_UCS2,
PyUnicode_1BYTE_DATA(s),
PyUnicode_1BYTE_DATA(s) + len,
result);
return result;
case PyUnicode_4BYTE_KIND:
result = PyMem_New(Py_UCS4, len);
if (!result)
return PyErr_NoMemory();
if (skind == PyUnicode_2BYTE_KIND) {
_PyUnicode_CONVERT_BYTES(
Py_UCS2, Py_UCS4,
PyUnicode_2BYTE_DATA(s),
PyUnicode_2BYTE_DATA(s) + len,
result);
}
else {
assert(skind == PyUnicode_1BYTE_KIND);
_PyUnicode_CONVERT_BYTES(
Py_UCS1, Py_UCS4,
PyUnicode_1BYTE_DATA(s),
PyUnicode_1BYTE_DATA(s) + len,
result);
}
return result;
default:
break;
}
PyErr_SetString(PyExc_SystemError, "invalid kind");
return NULL;
}
static Py_UCS4*
as_ucs4(PyObject *string, Py_UCS4 *target, Py_ssize_t targetsize,
int copy_null)
{
int kind;
void *data;
Py_ssize_t len, targetlen;
if (PyUnicode_READY(string) == -1)
return NULL;
kind = PyUnicode_KIND(string);
data = PyUnicode_DATA(string);
len = PyUnicode_GET_LENGTH(string);
targetlen = len;
if (copy_null)
targetlen++;
if (!target) {
target = PyMem_New(Py_UCS4, targetlen);
if (!target) {
PyErr_NoMemory();
return NULL;
}
}
else {
if (targetsize < targetlen) {
PyErr_Format(PyExc_SystemError,
"string is longer than the buffer");
if (copy_null && 0 < targetsize)
target[0] = 0;
return NULL;
}
}
if (kind == PyUnicode_1BYTE_KIND) {
Py_UCS1 *start = (Py_UCS1 *) data;
_PyUnicode_CONVERT_BYTES(Py_UCS1, Py_UCS4, start, start + len, target);
}
else if (kind == PyUnicode_2BYTE_KIND) {
Py_UCS2 *start = (Py_UCS2 *) data;
_PyUnicode_CONVERT_BYTES(Py_UCS2, Py_UCS4, start, start + len, target);
}
else {
assert(kind == PyUnicode_4BYTE_KIND);
memcpy(target, data, len * sizeof(Py_UCS4));
}
if (copy_null)
target[len] = 0;
return target;
}
Py_UCS4*
PyUnicode_AsUCS4(PyObject *string, Py_UCS4 *target, Py_ssize_t targetsize,
int copy_null)
{
if (target == NULL || targetsize < 0) {
PyErr_BadInternalCall();
return NULL;
}
return as_ucs4(string, target, targetsize, copy_null);
}
Py_UCS4*
PyUnicode_AsUCS4Copy(PyObject *string)
{
return as_ucs4(string, NULL, 0, 1);
}
PyObject *
PyUnicode_FromWideChar(const wchar_t *w, Py_ssize_t size)
{
if (w == NULL) {
if (size == 0)
_Py_RETURN_UNICODE_EMPTY();
PyErr_BadInternalCall();
return NULL;
}
if (size == -1) {
size = wcslen(w);
}
return PyUnicode_FromUnicode(w, size);
}
/* maximum number of characters required for output of %lld or %p.
We need at most ceil(log10(256)*SIZEOF_LONG_LONG) digits,
plus 1 for the sign. 53/22 is an upper bound for log10(256). */
#define MAX_LONG_LONG_CHARS (2 + (SIZEOF_LONG_LONG*53-1) / 22)
static int
unicode_fromformat_write_str(_PyUnicodeWriter *writer, PyObject *str,
Py_ssize_t width, Py_ssize_t precision)
{
Py_ssize_t length, fill, arglen;
Py_UCS4 maxchar;
if (PyUnicode_READY(str) == -1)
return -1;
length = PyUnicode_GET_LENGTH(str);
if ((precision == -1 || precision >= length)
&& width <= length)
return _PyUnicodeWriter_WriteStr(writer, str);
if (precision != -1)
length = Py_MIN(precision, length);
arglen = Py_MAX(length, width);
if (PyUnicode_MAX_CHAR_VALUE(str) > writer->maxchar)
maxchar = _PyUnicode_FindMaxChar(str, 0, length);
else
maxchar = writer->maxchar;
if (_PyUnicodeWriter_Prepare(writer, arglen, maxchar) == -1)
return -1;
if (width > length) {
fill = width - length;
if (PyUnicode_Fill(writer->buffer, writer->pos, fill, ' ') == -1)
return -1;
writer->pos += fill;
}
_PyUnicode_FastCopyCharacters(writer->buffer, writer->pos,
str, 0, length);
writer->pos += length;
return 0;
}
static int
unicode_fromformat_write_cstr(_PyUnicodeWriter *writer, const char *str,
Py_ssize_t width, Py_ssize_t precision)
{
/* UTF-8 */
Py_ssize_t length;
PyObject *unicode;
int res;
length = strlen(str);
if (precision != -1)
length = Py_MIN(length, precision);
unicode = PyUnicode_DecodeUTF8Stateful(str, length, "replace", NULL);
if (unicode == NULL)
return -1;
res = unicode_fromformat_write_str(writer, unicode, width, -1);
Py_DECREF(unicode);
return res;
}
static const char*
unicode_fromformat_arg(_PyUnicodeWriter *writer,
const char *f, va_list *vargs)
{
const char *p;
Py_ssize_t len;
int zeropad;
Py_ssize_t width;
Py_ssize_t precision;
int longflag;
int longlongflag;
int size_tflag;
Py_ssize_t fill;
p = f;
f++;
zeropad = 0;
if (*f == '0') {
zeropad = 1;
f++;
}
/* parse the width.precision part, e.g. "%2.5s" => width=2, precision=5 */
width = -1;
if (Py_ISDIGIT(*f)) {
width = *f - '0';
f++;
while (Py_ISDIGIT(*f)) {
if (width > (PY_SSIZE_T_MAX - ((int)*f - '0')) / 10) {
PyErr_SetString(PyExc_ValueError,
"width too big");
return NULL;
}
width = (width * 10) + (*f - '0');
f++;
}
}
precision = -1;
if (*f == '.') {
f++;
if (Py_ISDIGIT(*f)) {
precision = (*f - '0');
f++;
while (Py_ISDIGIT(*f)) {
if (precision > (PY_SSIZE_T_MAX - ((int)*f - '0')) / 10) {
PyErr_SetString(PyExc_ValueError,
"precision too big");
return NULL;
}
precision = (precision * 10) + (*f - '0');
f++;
}
}
if (*f == '%') {
/* "%.3%s" => f points to "3" */
f--;
}
}
if (*f == '\0') {
/* bogus format "%.123" => go backward, f points to "3" */
f--;
}
/* Handle %ld, %lu, %lld and %llu. */
longflag = 0;
longlongflag = 0;
size_tflag = 0;
if (*f == 'l') {
if (f[1] == 'd' || f[1] == 'u' || f[1] == 'i') {
longflag = 1;
++f;
}
else if (f[1] == 'l' &&
(f[2] == 'd' || f[2] == 'u' || f[2] == 'i')) {
longlongflag = 1;
f += 2;
}
}
/* handle the size_t flag. */
else if (*f == 'z' && (f[1] == 'd' || f[1] == 'u' || f[1] == 'i')) {
size_tflag = 1;
++f;
}
if (f[1] == '\0')
writer->overallocate = 0;
switch (*f) {
case 'c':
{
int ordinal = va_arg(*vargs, int);
if (ordinal < 0 || ordinal > MAX_UNICODE) {
PyErr_SetString(PyExc_OverflowError,
"character argument not in range(0x110000)");
return NULL;
}
if (_PyUnicodeWriter_WriteCharInline(writer, ordinal) < 0)
return NULL;
break;
}
case 'i':
case 'd':
case 'u':
case 'x':
{
/* used by sprintf */
char buffer[MAX_LONG_LONG_CHARS];
Py_ssize_t arglen;
if (*f == 'u') {
if (longflag)
len = sprintf(buffer, "%lu",
va_arg(*vargs, unsigned long));
else if (longlongflag)
len = sprintf(buffer, "%llu",
va_arg(*vargs, unsigned long long));
else if (size_tflag)
len = sprintf(buffer, "%" PY_FORMAT_SIZE_T "u",
va_arg(*vargs, size_t));
else
len = sprintf(buffer, "%u",
va_arg(*vargs, unsigned int));
}
else if (*f == 'x') {
len = sprintf(buffer, "%x", va_arg(*vargs, int));
}
else {
if (longflag)
len = sprintf(buffer, "%li",
va_arg(*vargs, long));
else if (longlongflag)
len = sprintf(buffer, "%lli",
va_arg(*vargs, long long));
else if (size_tflag)
len = sprintf(buffer, "%" PY_FORMAT_SIZE_T "i",
va_arg(*vargs, Py_ssize_t));
else
len = sprintf(buffer, "%i",
va_arg(*vargs, int));
}
assert(len >= 0);
if (precision < len)
precision = len;
arglen = Py_MAX(precision, width);
if (_PyUnicodeWriter_Prepare(writer, arglen, 127) == -1)
return NULL;
if (width > precision) {
Py_UCS4 fillchar;
fill = width - precision;
fillchar = zeropad?'0':' ';
if (PyUnicode_Fill(writer->buffer, writer->pos, fill, fillchar) == -1)
return NULL;
writer->pos += fill;
}
if (precision > len) {
fill = precision - len;
if (PyUnicode_Fill(writer->buffer, writer->pos, fill, '0') == -1)
return NULL;
writer->pos += fill;
}
if (_PyUnicodeWriter_WriteASCIIString(writer, buffer, len) < 0)
return NULL;
break;
}
case 'p':
{
char number[MAX_LONG_LONG_CHARS];
len = sprintf(number, "%p", va_arg(*vargs, void*));
assert(len >= 0);
/* %p is ill-defined: ensure leading 0x. */
if (number[1] == 'X')
number[1] = 'x';
else if (number[1] != 'x') {
memmove(number + 2, number,
strlen(number) + 1);
number[0] = '0';
number[1] = 'x';
len += 2;
}
if (_PyUnicodeWriter_WriteASCIIString(writer, number, len) < 0)
return NULL;
break;
}
case 's':
{
/* UTF-8 */
const char *s = va_arg(*vargs, const char*);
if (unicode_fromformat_write_cstr(writer, s, width, precision) < 0)
return NULL;
break;
}
case 'U':
{
PyObject *obj = va_arg(*vargs, PyObject *);
assert(obj && _PyUnicode_CHECK(obj));
if (unicode_fromformat_write_str(writer, obj, width, precision) == -1)
return NULL;
break;
}
case 'V':
{
PyObject *obj = va_arg(*vargs, PyObject *);
const char *str = va_arg(*vargs, const char *);
if (obj) {
assert(_PyUnicode_CHECK(obj));
if (unicode_fromformat_write_str(writer, obj, width, precision) == -1)
return NULL;
}
else {
assert(str != NULL);
if (unicode_fromformat_write_cstr(writer, str, width, precision) < 0)
return NULL;
}
break;
}
case 'S':
{
PyObject *obj = va_arg(*vargs, PyObject *);
PyObject *str;
assert(obj);
str = PyObject_Str(obj);
if (!str)
return NULL;
if (unicode_fromformat_write_str(writer, str, width, precision) == -1) {
Py_DECREF(str);
return NULL;
}
Py_DECREF(str);
break;
}
case 'R':
{
PyObject *obj = va_arg(*vargs, PyObject *);
PyObject *repr;
assert(obj);
repr = PyObject_Repr(obj);
if (!repr)
return NULL;
if (unicode_fromformat_write_str(writer, repr, width, precision) == -1) {
Py_DECREF(repr);
return NULL;
}
Py_DECREF(repr);
break;
}
case 'A':
{
PyObject *obj = va_arg(*vargs, PyObject *);
PyObject *ascii;
assert(obj);
ascii = PyObject_ASCII(obj);
if (!ascii)
return NULL;
if (unicode_fromformat_write_str(writer, ascii, width, precision) == -1) {
Py_DECREF(ascii);
return NULL;
}
Py_DECREF(ascii);
break;
}
case '%':
if (_PyUnicodeWriter_WriteCharInline(writer, '%') < 0)
return NULL;
break;
default:
/* if we stumble upon an unknown formatting code, copy the rest
of the format string to the output string. (we cannot just
skip the code, since there's no way to know what's in the
argument list) */
len = strlen(p);
if (_PyUnicodeWriter_WriteLatin1String(writer, p, len) == -1)
return NULL;
f = p+len;
return f;
}
f++;
return f;
}
PyObject *
PyUnicode_FromFormatV(const char *format, va_list vargs)
{
va_list vargs2;
const char *f;
_PyUnicodeWriter writer;
_PyUnicodeWriter_Init(&writer);
writer.min_length = strlen(format) + 100;
writer.overallocate = 1;
// Copy varags to be able to pass a reference to a subfunction.
va_copy(vargs2, vargs);
for (f = format; *f; ) {
if (*f == '%') {
f = unicode_fromformat_arg(&writer, f, &vargs2);
if (f == NULL)
goto fail;
}
else {
const char *p;
Py_ssize_t len;
p = f;
do
{
if ((unsigned char)*p > 127) {
PyErr_Format(PyExc_ValueError,
"PyUnicode_FromFormatV() expects an ASCII-encoded format "
"string, got a non-ASCII byte: 0x%02x",
(unsigned char)*p);
goto fail;
}
p++;
}
while (*p != '\0' && *p != '%');
len = p - f;
if (*p == '\0')
writer.overallocate = 0;
if (_PyUnicodeWriter_WriteASCIIString(&writer, f, len) < 0)
goto fail;
f = p;
}
}
va_end(vargs2);
return _PyUnicodeWriter_Finish(&writer);
fail:
va_end(vargs2);
_PyUnicodeWriter_Dealloc(&writer);
return NULL;
}
/**
* Return value: New reference.
*
* Take a C printf()-style format string and a variable number of
* arguments, calculate the size of the resulting Python Unicode string
* and return a string with the values formatted into it. The variable
* arguments must be C types and must correspond exactly to the format
* characters in the format ASCII-encoded string. The following format
* characters are allowed:
*
* Format Type Comment
* %% n/a The literal % character.
* %c int A single character, represented as a C int.
* %d int Equivalent to printf("%d")
* %u unsigned int Equivalent to printf("%u")
* %ld long Equivalent to printf("%ld")
* %li long Equivalent to printf("%li")
* %lu unsigned long Equivalent to printf("%lu")
* %lld long long Equivalent to printf("%lld")
* %lli long long Equivalent to printf("%lli")
* %llu unsigned long long Equivalent to printf("%llu")
* %zd Py_ssize_t Equivalent to printf("%zd")
* %zi Py_ssize_t Equivalent to printf("%zi")
* %zu size_t Equivalent to printf("%zu")
* %i int Equivalent to printf("%i")
* %x int Equivalent to printf("%x")
* %s const char* A null-terminated C character array.
* The hex representation of a C pointer.
* Mostly equivalent to printf("%p")
* %p const void* except that it is guaranteed to start
* with the literal 0x regardless of what
* the platformâs printf yields.
* %A PyObject* The result of calling ascii().
* %U PyObject* A Unicode object.
* A Unicode object (which may be NULL)
* %V PyObject*, const and a null-terminated C character array
* char* as a second parameter (which will be
* used, if the first parameter is NULL).
* %S PyObject* The result of calling PyObject_Str().
* %R PyObject* The result of calling PyObject_Repr().
*
* An unrecognized format character causes all the rest of the format
* string to be copied as-is to the result string, and any extra
* arguments discarded.
*
* Note
*
* The width formatter unit is number of characters rather than bytes.
* The precision formatter unit is number of bytes for "%s" and "%V" (if
* the PyObject* argument is NULL), and a number of characters for "%A",
* "%U", "%S", "%R" and "%V" (if the PyObject* argument is not NULL).
*
* 1(1,2,3,4,5,6,7,8,9,10,11,12,13)
*
* For integer specifiers (d, u, ld, li, lu, lld, lli, llu,
* zd, zi, zu, i, x): the 0-conversion flag has effect even
* when a precision is given.
*
* Changed in version 3.2: Support for "%lld" and "%llu" added.
*
* Changed in version 3.3: Support for "%li", "%lli" and "%zi" added.
*
* Changed in version 3.4: Support width and precision formatter for
* "%s", "%A", "%U", "%V", "%S", "%R" added.
*/
PyObject *
PyUnicode_FromFormat(const char *format, ...)
{
PyObject* ret;
va_list vargs;
#ifdef HAVE_STDARG_PROTOTYPES
va_start(vargs, format);
#else
va_start(vargs);
#endif
ret = PyUnicode_FromFormatV(format, vargs);
va_end(vargs);
return ret;
}
/* Helper function for PyUnicode_AsWideChar() and PyUnicode_AsWideCharString():
convert a Unicode object to a wide character string.
- If w is NULL: return the number of wide characters (including the null
character) required to convert the unicode object. Ignore size argument.
- Otherwise: return the number of wide characters (excluding the null
character) written into w. Write at most size wide characters (including
the null character). */
static Py_ssize_t
unicode_aswidechar(PyObject *unicode,
wchar_t *w,
Py_ssize_t size)
{
Py_ssize_t res;
const wchar_t *wstr;
wstr = PyUnicode_AsUnicodeAndSize(unicode, &res);
if (wstr == NULL)
return -1;
if (w != NULL) {
if (size > res)
size = res + 1;
else
res = size;
memcpy(w, wstr, size * sizeof(wchar_t));
return res;
}
else
return res + 1;
}
Py_ssize_t
PyUnicode_AsWideChar(PyObject *unicode,
wchar_t *w,
Py_ssize_t size)
{
if (unicode == NULL) {
PyErr_BadInternalCall();
return -1;
}
return unicode_aswidechar(unicode, w, size);
}
wchar_t*
PyUnicode_AsWideCharString(PyObject *unicode,
Py_ssize_t *size)
{
wchar_t* buffer;
Py_ssize_t buflen;
if (unicode == NULL) {
PyErr_BadInternalCall();
return NULL;
}
buflen = unicode_aswidechar(unicode, NULL, 0);
if (buflen == -1)
return NULL;
buffer = PyMem_NEW(wchar_t, buflen);
if (buffer == NULL) {
PyErr_NoMemory();
return NULL;
}
buflen = unicode_aswidechar(unicode, buffer, buflen);
if (buflen == -1) {
PyMem_FREE(buffer);
return NULL;
}
if (size != NULL)
*size = buflen;
return buffer;
}
PyObject *
PyUnicode_FromOrdinal(int ordinal)
{
if (ordinal < 0 || ordinal > MAX_UNICODE) {
PyErr_SetString(PyExc_ValueError,
"chr() arg not in range(0x110000)");
return NULL;
}
return unicode_char((Py_UCS4)ordinal);
}
PyObject *
PyUnicode_FromObject(PyObject *obj)
{
/* XXX Perhaps we should make this API an alias of
PyObject_Str() instead ?! */
if (PyUnicode_CheckExact(obj)) {
if (PyUnicode_READY(obj) == -1)
return NULL;
Py_INCREF(obj);
return obj;
}
if (PyUnicode_Check(obj)) {
/* For a Unicode subtype that's not a Unicode object,
return a true Unicode object with the same data. */
return _PyUnicode_Copy(obj);
}
PyErr_Format(PyExc_TypeError,
"Can't convert '%.100s' object to str implicitly",
Py_TYPE(obj)->tp_name);
return NULL;
}
PyObject *
PyUnicode_FromEncodedObject(PyObject *obj,
const char *encoding,
const char *errors)
{
Py_buffer buffer;
PyObject *v;
if (obj == NULL) {
PyErr_BadInternalCall();
return NULL;
}
/* Decoding bytes objects is the most common case and should be fast */
if (PyBytes_Check(obj)) {
if (PyBytes_GET_SIZE(obj) == 0)
_Py_RETURN_UNICODE_EMPTY();
v = PyUnicode_Decode(
PyBytes_AS_STRING(obj), PyBytes_GET_SIZE(obj),
encoding, errors);
return v;
}
if (PyUnicode_Check(obj)) {
PyErr_SetString(PyExc_TypeError,
"decoding str is not supported");
return NULL;
}
/* Retrieve a bytes buffer view through the PEP 3118 buffer interface */
if (PyObject_GetBuffer(obj, &buffer, PyBUF_SIMPLE) < 0) {
PyErr_Format(PyExc_TypeError,
"decoding to str: need a bytes-like object, %.80s found",
Py_TYPE(obj)->tp_name);
return NULL;
}
if (buffer.len == 0) {
PyBuffer_Release(&buffer);
_Py_RETURN_UNICODE_EMPTY();
}
v = PyUnicode_Decode((char*) buffer.buf, buffer.len, encoding, errors);
PyBuffer_Release(&buffer);
return v;
}
/* Normalize an encoding name: similar to encodings.normalize_encoding(), but
also convert to lowercase. Return 1 on success, or 0 on error (encoding is
longer than lower_len-1). */
int
_Py_normalize_encoding(const char *encoding,
char *lower,
size_t lower_len)
{
const char *e;
char *l;
char *l_end;
int punct;
assert(encoding != NULL);
e = encoding;
l = lower;
l_end = &lower[lower_len - 1];
punct = 0;
while (1) {
char c = *e;
if (c == 0) {
break;
}
if (Py_ISALNUM(c) || c == '.') {
if (punct && l != lower) {
if (l == l_end) {
return 0;
}
*l++ = '_';
}
punct = 0;
if (l == l_end) {
return 0;
}
*l++ = Py_TOLOWER(c);
}
else {
punct = 1;
}
e++;
}
*l = '\0';
return 1;
}
PyObject *
PyUnicode_Decode(const char *s,
Py_ssize_t size,
const char *encoding,
const char *errors)
{
PyObject *buffer = NULL, *unicode;
Py_buffer info;
char buflower[11]; /* strlen("iso-8859-1\0") == 11, longest shortcut */
if (UNLIKELY(encoding == NULL)) {
return PyUnicode_DecodeUTF8Stateful(s, size, errors, NULL);
}
/* [jart] faster path based on profiling */
if (encoding[0] == 'l' &&
encoding[1] == 'a' &&
encoding[2] == 't' &&
encoding[3] == 'i' &&
encoding[4] == 'n' &&
(encoding[5] == '1' ||
((encoding[5] == '-' ||
encoding[5] == '_') &&
encoding[6] == '1'))) {
return PyUnicode_DecodeLatin1(s, size, errors);
}
/* Shortcuts for common default encodings */
if (_Py_normalize_encoding(encoding, buflower, sizeof(buflower))) {
char *lower = buflower;
/* Fast paths */
if (lower[0] == 'u' && lower[1] == 't' && lower[2] == 'f') {
lower += 3;
if (*lower == '_') {
/* Match "utf8" and "utf_8" */
lower++;
}
if (lower[0] == '8' && lower[1] == 0) {
return PyUnicode_DecodeUTF8Stateful(s, size, errors, NULL);
}
else if (lower[0] == '1' && lower[1] == '6' && lower[2] == 0) {
return PyUnicode_DecodeUTF16(s, size, errors, 0);
}
else if (lower[0] == '3' && lower[1] == '2' && lower[2] == 0) {
return PyUnicode_DecodeUTF32(s, size, errors, 0);
}
}
else {
if (strcmp(lower, "ascii") == 0
|| strcmp(lower, "us_ascii") == 0) {
return PyUnicode_DecodeASCII(s, size, errors);
}
else if (strcmp(lower, "latin1") == 0
|| strcmp(lower, "latin_1") == 0
|| strcmp(lower, "iso_8859_1") == 0
|| strcmp(lower, "iso8859_1") == 0) {
return PyUnicode_DecodeLatin1(s, size, errors);
}
}
}
/* Decode via the codec registry */
buffer = NULL;
if (PyBuffer_FillInfo(&info, NULL, (void *)s, size, 1, PyBUF_FULL_RO) < 0)
goto onError;
buffer = PyMemoryView_FromBuffer(&info);
if (buffer == NULL)
goto onError;
unicode = _PyCodec_DecodeText(buffer, encoding, errors);
if (unicode == NULL)
goto onError;
if (!PyUnicode_Check(unicode)) {
PyErr_Format(PyExc_TypeError,
"'%.400s' decoder returned '%.400s' instead of 'str'; "
"use codecs.decode() to decode to arbitrary types",
encoding,
Py_TYPE(unicode)->tp_name);
Py_DECREF(unicode);
goto onError;
}
Py_DECREF(buffer);
return unicode_result(unicode);
onError:
Py_XDECREF(buffer);
return NULL;
}
static size_t
wcstombs_errorpos(const wchar_t *wstr)
{
size_t len;
#if SIZEOF_WCHAR_T == 2
wchar_t buf[3];
#else
wchar_t buf[2];
#endif
char outbuf[MB_LEN_MAX];
const wchar_t *start, *previous;
#if SIZEOF_WCHAR_T == 2
buf[2] = 0;
#else
buf[1] = 0;
#endif
start = wstr;
while (*wstr != L'\0')
{
previous = wstr;
#if SIZEOF_WCHAR_T == 2
if (Py_UNICODE_IS_HIGH_SURROGATE(wstr[0])
&& Py_UNICODE_IS_LOW_SURROGATE(wstr[1]))
{
buf[0] = wstr[0];
buf[1] = wstr[1];
wstr += 2;
}
else {
buf[0] = *wstr;
buf[1] = 0;
wstr++;
}
#else
buf[0] = *wstr;
wstr++;
#endif
len = wcstombs(outbuf, buf, sizeof(outbuf));
if (len == (size_t)-1)
return previous - start;
}
/* failed to find the unencodable character */
return 0;
}
static int
locale_error_handler(const char *errors, int *surrogateescape)
{
_Py_error_handler error_handler = get_error_handler(errors);
switch (error_handler)
{
case _Py_ERROR_STRICT:
*surrogateescape = 0;
return 0;
case _Py_ERROR_SURROGATEESCAPE:
*surrogateescape = 1;
return 0;
default:
PyErr_Format(PyExc_ValueError,
"only 'strict' and 'surrogateescape' error handlers "
"are supported, not '%s'",
errors);
return -1;
}
}
static PyObject *
unicode_encode_locale(PyObject *unicode, const char *errors,
int current_locale)
{
Py_ssize_t wlen, wlen2;
wchar_t *wstr;
PyObject *bytes = NULL;
char *errmsg;
PyObject *reason = NULL;
PyObject *exc;
size_t error_pos;
int surrogateescape;
if (locale_error_handler(errors, &surrogateescape) < 0)
return NULL;
wstr = PyUnicode_AsWideCharString(unicode, &wlen);
if (wstr == NULL)
return NULL;
wlen2 = wcslen(wstr);
if (wlen2 != wlen) {
PyMem_Free(wstr);
PyErr_SetString(PyExc_ValueError, "embedded null character");
return NULL;
}
if (surrogateescape) {
/* "surrogateescape" error handler */
char *str;
str = _Py_EncodeLocaleEx(wstr, &error_pos, current_locale);
if (str == NULL) {
if (error_pos == (size_t)-1) {
PyErr_NoMemory();
PyMem_Free(wstr);
return NULL;
}
else {
goto encode_error;
}
}
PyMem_Free(wstr);
bytes = PyBytes_FromString(str);
PyMem_Free(str);
}
else {
/* strict mode */
size_t len, len2;
len = wcstombs(NULL, wstr, 0);
if (len == (size_t)-1) {
error_pos = (size_t)-1;
goto encode_error;
}
bytes = PyBytes_FromStringAndSize(NULL, len);
if (bytes == NULL) {
PyMem_Free(wstr);
return NULL;
}
len2 = wcstombs(PyBytes_AS_STRING(bytes), wstr, len+1);
if (len2 == (size_t)-1 || len2 > len) {
error_pos = (size_t)-1;
goto encode_error;
}
PyMem_Free(wstr);
}
return bytes;
encode_error:
errmsg = strerror(errno);
assert(errmsg != NULL);
if (error_pos == (size_t)-1)
error_pos = wcstombs_errorpos(wstr);
PyMem_Free(wstr);
Py_XDECREF(bytes);
if (errmsg != NULL) {
size_t errlen;
wstr = Py_DecodeLocale(errmsg, &errlen);
if (wstr != NULL) {
reason = PyUnicode_FromWideChar(wstr, errlen);
PyMem_RawFree(wstr);
} else
errmsg = NULL;
}
if (errmsg == NULL)
reason = PyUnicode_FromString(
"wcstombs() encountered an unencodable "
"wide character");
if (reason == NULL)
return NULL;
exc = PyObject_CallFunction(PyExc_UnicodeEncodeError, "sOnnO",
"locale", unicode,
(Py_ssize_t)error_pos,
(Py_ssize_t)(error_pos+1),
reason);
Py_DECREF(reason);
if (exc != NULL) {
PyCodec_StrictErrors(exc);
Py_XDECREF(exc);
}
return NULL;
}
PyObject *
PyUnicode_EncodeLocale(PyObject *unicode, const char *errors)
{
return unicode_encode_locale(unicode, errors, 1);
}
PyObject *
PyUnicode_EncodeFSDefault(PyObject *unicode)
{
#if defined(__APPLE__) || defined(__COSMOPOLITAN__)
return _PyUnicode_AsUTF8String(unicode, Py_FileSystemDefaultEncodeErrors);
#else
PyInterpreterState *interp = PyThreadState_GET()->interp;
/* Bootstrap check: if the filesystem codec is implemented in Python, we
cannot use it to encode and decode filenames before it is loaded. Load
the Python codec requires to encode at least its own filename. Use the C
version of the locale codec until the codec registry is initialized and
the Python codec is loaded.
Py_FileSystemDefaultEncoding is shared between all interpreters, we
cannot only rely on it: check also interp->fscodec_initialized for
subinterpreters. */
if (Py_FileSystemDefaultEncoding && interp->fscodec_initialized) {
return PyUnicode_AsEncodedString(unicode,
Py_FileSystemDefaultEncoding,
Py_FileSystemDefaultEncodeErrors);
}
else {
return unicode_encode_locale(unicode,
Py_FileSystemDefaultEncodeErrors, 0);
}
#endif
}
PyObject *
PyUnicode_AsEncodedString(PyObject *unicode,
const char *encoding,
const char *errors)
{
PyObject *v;
char buflower[11]; /* strlen("iso_8859_1\0") == 11, longest shortcut */
if (!PyUnicode_Check(unicode)) {
PyErr_BadArgument();
return NULL;
}
if (encoding == NULL) {
return _PyUnicode_AsUTF8String(unicode, errors);
}
/* Shortcuts for common default encodings */
if (_Py_normalize_encoding(encoding, buflower, sizeof(buflower))) {
char *lower = buflower;
/* Fast paths */
if (lower[0] == 'u' && lower[1] == 't' && lower[2] == 'f') {
lower += 3;
if (*lower == '_') {
/* Match "utf8" and "utf_8" */
lower++;
}
if (lower[0] == '8' && lower[1] == 0) {
return _PyUnicode_AsUTF8String(unicode, errors);
}
else if (lower[0] == '1' && lower[1] == '6' && lower[2] == 0) {
return _PyUnicode_EncodeUTF16(unicode, errors, 0);
}
else if (lower[0] == '3' && lower[1] == '2' && lower[2] == 0) {
return _PyUnicode_EncodeUTF32(unicode, errors, 0);
}
}
else {
if (strcmp(lower, "ascii") == 0
|| strcmp(lower, "us_ascii") == 0) {
return _PyUnicode_AsASCIIString(unicode, errors);
}
#ifdef MS_WINDOWS
else if (strcmp(lower, "mbcs") == 0) {
return PyUnicode_EncodeCodePage(CP_ACP, unicode, errors);
}
#endif
else if (strcmp(lower, "latin1") == 0 ||
strcmp(lower, "latin_1") == 0 ||
strcmp(lower, "iso_8859_1") == 0 ||
strcmp(lower, "iso8859_1") == 0) {
return _PyUnicode_AsLatin1String(unicode, errors);
}
}
}
/* Encode via the codec registry */
v = _PyCodec_EncodeText(unicode, encoding, errors);
if (v == NULL)
return NULL;
/* The normal path */
if (PyBytes_Check(v))
return v;
/* If the codec returns a buffer, raise a warning and convert to bytes */
if (PyByteArray_Check(v)) {
int error;
PyObject *b;
error = PyErr_WarnFormat(PyExc_RuntimeWarning, 1,
"encoder %s returned bytearray instead of bytes; "
"use codecs.encode() to encode to arbitrary types",
encoding);
if (error) {
Py_DECREF(v);
return NULL;
}
b = PyBytes_FromStringAndSize(PyByteArray_AS_STRING(v), Py_SIZE(v));
Py_DECREF(v);
return b;
}
PyErr_Format(PyExc_TypeError,
"'%.400s' encoder returned '%.400s' instead of 'bytes'; "
"use codecs.encode() to encode to arbitrary types",
encoding,
Py_TYPE(v)->tp_name);
Py_DECREF(v);
return NULL;
}
static size_t
mbstowcs_errorpos(const char *str, size_t len)
{
#ifdef HAVE_MBRTOWC
const char *start = str;
mbstate_t mbs;
size_t converted;
wchar_t ch;
bzero(&mbs, sizeof mbs);
while (len)
{
converted = mbrtowc(&ch, str, len, &mbs);
if (converted == 0)
/* Reached end of string */
break;
if (converted == (size_t)-1 || converted == (size_t)-2) {
/* Conversion error or incomplete character */
return str - start;
}
else {
str += converted;
len -= converted;
}
}
/* failed to find the undecodable byte sequence */
return 0;
#endif
return 0;
}
static PyObject*
unicode_decode_locale(const char *str, Py_ssize_t len,
const char *errors, int current_locale)
{
wchar_t smallbuf[256];
size_t smallbuf_len = Py_ARRAY_LENGTH(smallbuf);
wchar_t *wstr;
size_t wlen, wlen2;
PyObject *unicode;
int surrogateescape;
size_t error_pos;
char *errmsg;
PyObject *reason = NULL; /* initialize to prevent gcc warning */
PyObject *exc;
if (locale_error_handler(errors, &surrogateescape) < 0)
return NULL;
if (str[len] != '\0' || (size_t)len != strlen(str)) {
PyErr_SetString(PyExc_ValueError, "embedded null byte");
return NULL;
}
if (surrogateescape) {
/* "surrogateescape" error handler */
wstr = _Py_DecodeLocaleEx(str, &wlen, current_locale);
if (wstr == NULL) {
if (wlen == (size_t)-1)
PyErr_NoMemory();
else
PyErr_SetFromErrno(PyExc_OSError);
return NULL;
}
unicode = PyUnicode_FromWideChar(wstr, wlen);
PyMem_RawFree(wstr);
}
else {
/* strict mode */
#ifndef HAVE_BROKEN_MBSTOWCS
wlen = mbstowcs(NULL, str, 0);
#else
wlen = len;
#endif
if (wlen == (size_t)-1)
goto decode_error;
if (wlen+1 <= smallbuf_len) {
wstr = smallbuf;
}
else {
wstr = PyMem_New(wchar_t, wlen+1);
if (!wstr)
return PyErr_NoMemory();
}
wlen2 = mbstowcs(wstr, str, wlen+1);
if (wlen2 == (size_t)-1) {
if (wstr != smallbuf)
PyMem_Free(wstr);
goto decode_error;
}
#ifdef HAVE_BROKEN_MBSTOWCS
assert(wlen2 == wlen);
#endif
unicode = PyUnicode_FromWideChar(wstr, wlen2);
if (wstr != smallbuf)
PyMem_Free(wstr);
}
return unicode;
decode_error:
reason = NULL;
errmsg = strerror(errno);
assert(errmsg != NULL);
error_pos = mbstowcs_errorpos(str, len);
if (errmsg != NULL) {
size_t errlen;
wstr = Py_DecodeLocale(errmsg, &errlen);
if (wstr != NULL) {
reason = PyUnicode_FromWideChar(wstr, errlen);
PyMem_RawFree(wstr);
}
}
if (reason == NULL)
reason = PyUnicode_FromString(
"mbstowcs() encountered an invalid multibyte sequence");
if (reason == NULL)
return NULL;
exc = PyObject_CallFunction(PyExc_UnicodeDecodeError, "sy#nnO",
"locale", str, len,
(Py_ssize_t)error_pos,
(Py_ssize_t)(error_pos+1),
reason);
Py_DECREF(reason);
if (exc != NULL) {
PyCodec_StrictErrors(exc);
Py_XDECREF(exc);
}
return NULL;
}
PyObject*
PyUnicode_DecodeLocaleAndSize(const char *str, Py_ssize_t size,
const char *errors)
{
return unicode_decode_locale(str, size, errors, 1);
}
PyObject*
PyUnicode_DecodeLocale(const char *str, const char *errors)
{
Py_ssize_t size = (Py_ssize_t)strlen(str);
return unicode_decode_locale(str, size, errors, 1);
}
PyObject*
PyUnicode_DecodeFSDefault(const char *s) {
Py_ssize_t size = (Py_ssize_t)strlen(s);
return PyUnicode_DecodeFSDefaultAndSize(s, size);
}
PyObject*
PyUnicode_DecodeFSDefaultAndSize(const char *s, Py_ssize_t size)
{
#if defined(__APPLE__) || defined(__COSMOPOLITAN__)
return PyUnicode_DecodeUTF8Stateful(s, size, Py_FileSystemDefaultEncodeErrors, NULL);
#else
PyInterpreterState *interp = PyThreadState_GET()->interp;
/* Bootstrap check: if the filesystem codec is implemented in Python, we
cannot use it to encode and decode filenames before it is loaded. Load
the Python codec requires to encode at least its own filename. Use the C
version of the locale codec until the codec registry is initialized and
the Python codec is loaded.
Py_FileSystemDefaultEncoding is shared between all interpreters, we
cannot only rely on it: check also interp->fscodec_initialized for
subinterpreters. */
if (Py_FileSystemDefaultEncoding && interp->fscodec_initialized) {
return PyUnicode_Decode(s, size,
Py_FileSystemDefaultEncoding,
Py_FileSystemDefaultEncodeErrors);
}
else {
return unicode_decode_locale(s, size,
Py_FileSystemDefaultEncodeErrors, 0);
}
#endif
}
int
PyUnicode_FSConverter(PyObject* arg, void* addr)
{
PyObject *path = NULL;
PyObject *output = NULL;
Py_ssize_t size;
void *data;
if (arg == NULL) {
Py_DECREF(*(PyObject**)addr);
*(PyObject**)addr = NULL;
return 1;
}
path = PyOS_FSPath(arg);
if (path == NULL) {
return 0;
}
if (PyBytes_Check(path)) {
output = path;
}
else { // PyOS_FSPath() guarantees its returned value is bytes or str.
output = PyUnicode_EncodeFSDefault(path);
Py_DECREF(path);
if (!output) {
return 0;
}
assert(PyBytes_Check(output));
}
size = PyBytes_GET_SIZE(output);
data = PyBytes_AS_STRING(output);
if ((size_t)size != strlen(data)) {
PyErr_SetString(PyExc_ValueError, "embedded null byte");
Py_DECREF(output);
return 0;
}
*(PyObject**)addr = output;
return Py_CLEANUP_SUPPORTED;
}
int
PyUnicode_FSDecoder(PyObject* arg, void* addr)
{
int is_buffer = 0;
PyObject *path = NULL;
PyObject *output = NULL;
if (arg == NULL) {
Py_DECREF(*(PyObject**)addr);
*(PyObject**)addr = NULL;
return 1;
}
is_buffer = PyObject_CheckBuffer(arg);
if (!is_buffer) {
path = PyOS_FSPath(arg);
if (path == NULL) {
return 0;
}
}
else {
path = arg;
Py_INCREF(arg);
}
if (PyUnicode_Check(path)) {
if (PyUnicode_READY(path) == -1) {
Py_DECREF(path);
return 0;
}
output = path;
}
else if (PyBytes_Check(path) || is_buffer) {
PyObject *path_bytes = NULL;
if (!PyBytes_Check(path) &&
PyErr_WarnFormat(PyExc_DeprecationWarning, 1,
"path should be string, bytes, or os.PathLike, not %.200s",
Py_TYPE(arg)->tp_name)) {
Py_DECREF(path);
return 0;
}
path_bytes = PyBytes_FromObject(path);
Py_DECREF(path);
if (!path_bytes) {
return 0;
}
output = PyUnicode_DecodeFSDefaultAndSize(PyBytes_AS_STRING(path_bytes),
PyBytes_GET_SIZE(path_bytes));
Py_DECREF(path_bytes);
if (!output) {
return 0;
}
}
else {
PyErr_Format(PyExc_TypeError,
"path should be string, bytes, or os.PathLike, not %.200s",
Py_TYPE(arg)->tp_name);
Py_DECREF(path);
return 0;
}
if (PyUnicode_READY(output) == -1) {
Py_DECREF(output);
return 0;
}
if (findchar(PyUnicode_DATA(output), PyUnicode_KIND(output),
PyUnicode_GET_LENGTH(output), 0, 1) >= 0) {
PyErr_SetString(PyExc_ValueError, "embedded null character");
Py_DECREF(output);
return 0;
}
*(PyObject**)addr = output;
return Py_CLEANUP_SUPPORTED;
}
/**
* Returns pointer to the UTF-8 encoding of the Unicode object, and
* store the size of the encoded representation (in bytes) in size. The
* size argument can be NULL; in this case no size will be stored. The
* returned buffer always has an extra null byte appended (not included
* in size), regardless of whether there are any other null code points.
*
* In the case of an error, NULL is returned with an exception set and
* no size is stored.
*
* This caches the UTF-8 representation of the string in the Unicode
* object, and subsequent calls will return a pointer to the same
* buffer. The caller is not responsible for deallocating the buffer.
*/
char *
PyUnicode_AsUTF8AndSize(PyObject *unicode, Py_ssize_t *psize)
{
PyObject *bytes;
if (!PyUnicode_Check(unicode)) {
PyErr_BadArgument();
return NULL;
}
if (PyUnicode_READY(unicode) == -1)
return NULL;
if (PyUnicode_UTF8(unicode) == NULL) {
assert(!PyUnicode_IS_COMPACT_ASCII(unicode));
bytes = _PyUnicode_AsUTF8String(unicode, NULL);
if (bytes == NULL)
return NULL;
_PyUnicode_UTF8(unicode) = PyObject_MALLOC(PyBytes_GET_SIZE(bytes) + 1);
if (_PyUnicode_UTF8(unicode) == NULL) {
PyErr_NoMemory();
Py_DECREF(bytes);
return NULL;
}
_PyUnicode_UTF8_LENGTH(unicode) = PyBytes_GET_SIZE(bytes);
memcpy(_PyUnicode_UTF8(unicode),
PyBytes_AS_STRING(bytes),
_PyUnicode_UTF8_LENGTH(unicode) + 1);
Py_DECREF(bytes);
}
if (psize)
*psize = PyUnicode_UTF8_LENGTH(unicode);
return PyUnicode_UTF8(unicode);
}
char *
PyUnicode_AsUTF8(PyObject *unicode)
{
return PyUnicode_AsUTF8AndSize(unicode, NULL);
}
Py_UNICODE *
PyUnicode_AsUnicodeAndSize(PyObject *unicode, Py_ssize_t *size)
{
const unsigned char *one_byte;
#if SIZEOF_WCHAR_T == 4
const Py_UCS2 *two_bytes;
#else
const Py_UCS4 *four_bytes;
const Py_UCS4 *ucs4_end;
Py_ssize_t num_surrogates;
#endif
wchar_t *w;
wchar_t *wchar_end;
if (!PyUnicode_Check(unicode)) {
PyErr_BadArgument();
return NULL;
}
if (_PyUnicode_WSTR(unicode) == NULL) {
/* Non-ASCII compact unicode object */
assert(_PyUnicode_KIND(unicode) != 0);
assert(PyUnicode_IS_READY(unicode));
if (PyUnicode_KIND(unicode) == PyUnicode_4BYTE_KIND) {
#if SIZEOF_WCHAR_T == 2
four_bytes = PyUnicode_4BYTE_DATA(unicode);
ucs4_end = four_bytes + _PyUnicode_LENGTH(unicode);
num_surrogates = 0;
for (; four_bytes < ucs4_end; ++four_bytes) {
if (*four_bytes > 0xFFFF)
++num_surrogates;
}
_PyUnicode_WSTR(unicode) = (wchar_t *) PyObject_MALLOC(
sizeof(wchar_t) * (_PyUnicode_LENGTH(unicode) + 1 + num_surrogates));
if (!_PyUnicode_WSTR(unicode)) {
PyErr_NoMemory();
return NULL;
}
_PyUnicode_WSTR_LENGTH(unicode) = _PyUnicode_LENGTH(unicode) + num_surrogates;
w = _PyUnicode_WSTR(unicode);
wchar_end = w + _PyUnicode_WSTR_LENGTH(unicode);
four_bytes = PyUnicode_4BYTE_DATA(unicode);
for (; four_bytes < ucs4_end; ++four_bytes, ++w) {
if (*four_bytes > 0xFFFF) {
assert(*four_bytes <= MAX_UNICODE);
/* encode surrogate pair in this case */
*w++ = Py_UNICODE_HIGH_SURROGATE(*four_bytes);
*w = Py_UNICODE_LOW_SURROGATE(*four_bytes);
}
else
*w = *four_bytes;
if (w > wchar_end) {
assert(0 && "Miscalculated string end");
}
}
*w = 0;
#else
/* sizeof(wchar_t) == 4 */
Py_FatalError("Impossible unicode object state, wstr and str "
"should share memory already.");
return NULL;
#endif
}
else {
if ((size_t)_PyUnicode_LENGTH(unicode) >
PY_SSIZE_T_MAX / sizeof(wchar_t) - 1) {
PyErr_NoMemory();
return NULL;
}
_PyUnicode_WSTR(unicode) = (wchar_t *) PyObject_MALLOC(sizeof(wchar_t) *
(_PyUnicode_LENGTH(unicode) + 1));
if (!_PyUnicode_WSTR(unicode)) {
PyErr_NoMemory();
return NULL;
}
if (!PyUnicode_IS_COMPACT_ASCII(unicode))
_PyUnicode_WSTR_LENGTH(unicode) = _PyUnicode_LENGTH(unicode);
w = _PyUnicode_WSTR(unicode);
wchar_end = w + _PyUnicode_LENGTH(unicode);
if (PyUnicode_KIND(unicode) == PyUnicode_1BYTE_KIND) {
one_byte = PyUnicode_1BYTE_DATA(unicode);
for (; w < wchar_end; ++one_byte, ++w)
*w = *one_byte;
/* null-terminate the wstr */
*w = 0;
}
else if (PyUnicode_KIND(unicode) == PyUnicode_2BYTE_KIND) {
#if SIZEOF_WCHAR_T == 4
two_bytes = PyUnicode_2BYTE_DATA(unicode);
for (; w < wchar_end; ++two_bytes, ++w)
*w = *two_bytes;
/* null-terminate the wstr */
*w = 0;
#else
/* sizeof(wchar_t) == 2 */
PyObject_FREE(_PyUnicode_WSTR(unicode));
_PyUnicode_WSTR(unicode) = NULL;
Py_FatalError("Impossible unicode object state, wstr "
"and str should share memory already.");
return NULL;
#endif
}
else {
assert(0 && "This should never happen.");
}
}
}
if (size != NULL)
*size = PyUnicode_WSTR_LENGTH(unicode);
return _PyUnicode_WSTR(unicode);
}
Py_UNICODE *
PyUnicode_AsUnicode(PyObject *unicode)
{
return PyUnicode_AsUnicodeAndSize(unicode, NULL);
}
Py_ssize_t
PyUnicode_GetSize(PyObject *unicode)
{
if (!PyUnicode_Check(unicode)) {
PyErr_BadArgument();
goto onError;
}
return PyUnicode_GET_SIZE(unicode);
onError:
return -1;
}
Py_ssize_t
PyUnicode_GetLength(PyObject *unicode)
{
if (!PyUnicode_Check(unicode)) {
PyErr_BadArgument();
return -1;
}
if (PyUnicode_READY(unicode) == -1)
return -1;
return PyUnicode_GET_LENGTH(unicode);
}
Py_UCS4
PyUnicode_ReadChar(PyObject *unicode, Py_ssize_t index)
{
void *data;
int kind;
if (!PyUnicode_Check(unicode)) {
PyErr_BadArgument();
return (Py_UCS4)-1;
}
if (PyUnicode_READY(unicode) == -1) {
return (Py_UCS4)-1;
}
if (index < 0 || index >= PyUnicode_GET_LENGTH(unicode)) {
PyErr_SetString(PyExc_IndexError, "string index out of range");
return (Py_UCS4)-1;
}
data = PyUnicode_DATA(unicode);
kind = PyUnicode_KIND(unicode);
return PyUnicode_READ(kind, data, index);
}
const char *
PyUnicode_GetDefaultEncoding(void)
{
return "utf-8";
}
/* create or adjust a UnicodeDecodeError */
static void
make_decode_exception(PyObject **exceptionObject,
const char *encoding,
const char *input, Py_ssize_t length,
Py_ssize_t startpos, Py_ssize_t endpos,
const char *reason)
{
if (*exceptionObject == NULL) {
*exceptionObject = PyUnicodeDecodeError_Create(
encoding, input, length, startpos, endpos, reason);
}
else {
if (PyUnicodeDecodeError_SetStart(*exceptionObject, startpos))
goto onError;
if (PyUnicodeDecodeError_SetEnd(*exceptionObject, endpos))
goto onError;
if (PyUnicodeDecodeError_SetReason(*exceptionObject, reason))
goto onError;
}
return;
onError:
Py_CLEAR(*exceptionObject);
}
#ifdef MS_WINDOWS
/* error handling callback helper:
build arguments, call the callback and check the arguments,
if no exception occurred, copy the replacement to the output
and adjust various state variables.
return 0 on success, -1 on error
*/
static int
unicode_decode_call_errorhandler_wchar(
const char *errors, PyObject **errorHandler,
const char *encoding, const char *reason,
const char **input, const char **inend, Py_ssize_t *startinpos,
Py_ssize_t *endinpos, PyObject **exceptionObject, const char **inptr,
PyObject **output, Py_ssize_t *outpos)
{
static const char *argparse = "O!n;decoding error handler must return (str, int) tuple";
PyObject *restuple = NULL;
PyObject *repunicode = NULL;
Py_ssize_t outsize;
Py_ssize_t insize;
Py_ssize_t requiredsize;
Py_ssize_t newpos;
PyObject *inputobj = NULL;
wchar_t *repwstr;
Py_ssize_t repwlen;
assert (_PyUnicode_KIND(*output) == PyUnicode_WCHAR_KIND);
outsize = _PyUnicode_WSTR_LENGTH(*output);
if (*errorHandler == NULL) {
*errorHandler = PyCodec_LookupError(errors);
if (*errorHandler == NULL)
goto onError;
}
make_decode_exception(exceptionObject,
encoding,
*input, *inend - *input,
*startinpos, *endinpos,
reason);
if (*exceptionObject == NULL)
goto onError;
restuple = PyObject_CallFunctionObjArgs(*errorHandler, *exceptionObject, NULL);
if (restuple == NULL)
goto onError;
if (!PyTuple_Check(restuple)) {
PyErr_SetString(PyExc_TypeError, &argparse[4]);
goto onError;
}
if (!PyArg_ParseTuple(restuple, argparse, &PyUnicode_Type, &repunicode, &newpos))
goto onError;
/* Copy back the bytes variables, which might have been modified by the
callback */
inputobj = PyUnicodeDecodeError_GetObject(*exceptionObject);
if (!inputobj)
goto onError;
if (!PyBytes_Check(inputobj)) {
PyErr_Format(PyExc_TypeError, "exception attribute object must be bytes");
}
*input = PyBytes_AS_STRING(inputobj);
insize = PyBytes_GET_SIZE(inputobj);
*inend = *input + insize;
/* we can DECREF safely, as the exception has another reference,
so the object won't go away. */
Py_DECREF(inputobj);
if (newpos<0)
newpos = insize+newpos;
if (newpos<0 || newpos>insize) {
PyErr_Format(PyExc_IndexError, "position %zd from error handler out of bounds", newpos);
goto onError;
}
repwstr = PyUnicode_AsUnicodeAndSize(repunicode, &repwlen);
if (repwstr == NULL)
goto onError;
/* need more space? (at least enough for what we
have+the replacement+the rest of the string (starting
at the new input position), so we won't have to check space
when there are no errors in the rest of the string) */
requiredsize = *outpos;
if (requiredsize > PY_SSIZE_T_MAX - repwlen)
goto overflow;
requiredsize += repwlen;
if (requiredsize > PY_SSIZE_T_MAX - (insize - newpos))
goto overflow;
requiredsize += insize - newpos;
if (requiredsize > outsize) {
if (outsize <= PY_SSIZE_T_MAX/2 && requiredsize < 2*outsize)
requiredsize = 2*outsize;
if (unicode_resize(output, requiredsize) < 0)
goto onError;
}
wcsncpy(_PyUnicode_WSTR(*output) + *outpos, repwstr, repwlen);
*outpos += repwlen;
*endinpos = newpos;
*inptr = *input + newpos;
/* we made it! */
Py_XDECREF(restuple);
return 0;
overflow:
PyErr_SetString(PyExc_OverflowError,
"decoded result is too long for a Python string");
onError:
Py_XDECREF(restuple);
return -1;
}
#endif /* MS_WINDOWS */
static int
unicode_decode_call_errorhandler_writer(
const char *errors, PyObject **errorHandler,
const char *encoding, const char *reason,
const char **input, const char **inend, Py_ssize_t *startinpos,
Py_ssize_t *endinpos, PyObject **exceptionObject, const char **inptr,
_PyUnicodeWriter *writer /* PyObject **output, Py_ssize_t *outpos */)
{
static const char *argparse = "O!n;decoding error handler must return (str, int) tuple";
PyObject *restuple = NULL;
PyObject *repunicode = NULL;
Py_ssize_t insize;
Py_ssize_t newpos;
Py_ssize_t replen;
Py_ssize_t remain;
PyObject *inputobj = NULL;
int need_to_grow = 0;
const char *new_inptr;
if (*errorHandler == NULL) {
*errorHandler = PyCodec_LookupError(errors);
if (*errorHandler == NULL)
goto onError;
}
make_decode_exception(exceptionObject,
encoding,
*input, *inend - *input,
*startinpos, *endinpos,
reason);
if (*exceptionObject == NULL)
goto onError;
restuple = PyObject_CallFunctionObjArgs(*errorHandler, *exceptionObject, NULL);
if (restuple == NULL)
goto onError;
if (!PyTuple_Check(restuple)) {
PyErr_SetString(PyExc_TypeError, &argparse[4]);
goto onError;
}
if (!PyArg_ParseTuple(restuple, argparse, &PyUnicode_Type, &repunicode, &newpos))
goto onError;
/* Copy back the bytes variables, which might have been modified by the
callback */
inputobj = PyUnicodeDecodeError_GetObject(*exceptionObject);
if (!inputobj)
goto onError;
if (!PyBytes_Check(inputobj)) {
PyErr_Format(PyExc_TypeError, "exception attribute object must be bytes");
}
remain = *inend - *input - *endinpos;
*input = PyBytes_AS_STRING(inputobj);
insize = PyBytes_GET_SIZE(inputobj);
*inend = *input + insize;
/* we can DECREF safely, as the exception has another reference,
so the object won't go away. */
Py_DECREF(inputobj);
if (newpos<0)
newpos = insize+newpos;
if (newpos<0 || newpos>insize) {
PyErr_Format(PyExc_IndexError, "position %zd from error handler out of bounds", newpos);
goto onError;
}
if (PyUnicode_READY(repunicode) < 0)
goto onError;
replen = PyUnicode_GET_LENGTH(repunicode);
if (replen > 1) {
writer->min_length += replen - 1;
need_to_grow = 1;
}
new_inptr = *input + newpos;
if (*inend - new_inptr > remain) {
/* We don't know the decoding algorithm here so we make the worst
assumption that one byte decodes to one unicode character.
If unfortunately one byte could decode to more unicode characters,
the decoder may write out-of-bound then. Is it possible for the
algorithms using this function? */
writer->min_length += *inend - new_inptr - remain;
need_to_grow = 1;
}
if (need_to_grow) {
writer->overallocate = 1;
if (_PyUnicodeWriter_Prepare(writer, writer->min_length - writer->pos,
PyUnicode_MAX_CHAR_VALUE(repunicode)) == -1)
goto onError;
}
if (_PyUnicodeWriter_WriteStr(writer, repunicode) == -1)
goto onError;
*endinpos = newpos;
*inptr = new_inptr;
/* we made it! */
Py_XDECREF(restuple);
return 0;
onError:
Py_XDECREF(restuple);
return -1;
}
/* --- UTF-7 Codec -------------------------------------------------------- */
/* See RFC2152 for details. We encode conservatively and decode liberally. */
/* Three simple macros defining base-64. */
/* Is c a base-64 character? */
#define IS_BASE64(c) \
(((c) >= 'A' && (c) <= 'Z') || \
((c) >= 'a' && (c) <= 'z') || \
((c) >= '0' && (c) <= '9') || \
(c) == '+' || (c) == '/')
/* given that c is a base-64 character, what is its base-64 value? */
#define FROM_BASE64(c) \
(((c) >= 'A' && (c) <= 'Z') ? (c) - 'A' : \
((c) >= 'a' && (c) <= 'z') ? (c) - 'a' + 26 : \
((c) >= '0' && (c) <= '9') ? (c) - '0' + 52 : \
(c) == '+' ? 62 : 63)
/* What is the base-64 character of the bottom 6 bits of n? */
#define TO_BASE64(n) \
("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"[(n) & 0x3f])
/* DECODE_DIRECT: this byte encountered in a UTF-7 string should be
* decoded as itself. We are permissive on decoding; the only ASCII
* byte not decoding to itself is the + which begins a base64
* string. */
#define DECODE_DIRECT(c) \
((c) <= 127 && (c) != '+')
/* The UTF-7 encoder treats ASCII characters differently according to
* whether they are Set D, Set O, Whitespace, or special (i.e. none of
* the above). See RFC2152. This array identifies these different
* sets:
* 0 : "Set D"
* alphanumeric and '(),-./:?
* 1 : "Set O"
* !"#$%&*;<=>@[]^_`{|}
* 2 : "whitespace"
* ht nl cr sp
* 3 : special (must be base64 encoded)
* everything else (i.e. +\~ and non-printing codes 0-8 11-12 14-31 127)
*/
static
char utf7_category[128] = {
/* nul soh stx etx eot enq ack bel bs ht nl vt np cr so si */
3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 2, 3, 3,
/* dle dc1 dc2 dc3 dc4 nak syn etb can em sub esc fs gs rs us */
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
/* sp ! " # $ % & ' ( ) * + , - . / */
2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 3, 0, 0, 0, 0,
/* 0 1 2 3 4 5 6 7 8 9 : ; < = > ? */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0,
/* @ A B C D E F G H I J K L M N O */
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* P Q R S T U V W X Y Z [ \ ] ^ _ */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 1, 1, 1,
/* ` a b c d e f g h i j k l m n o */
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* p q r s t u v w x y z { | } ~ del */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 3, 3,
};
/* ENCODE_DIRECT: this character should be encoded as itself. The
* answer depends on whether we are encoding set O as itself, and also
* on whether we are encoding whitespace as itself. RFC2152 makes it
* clear that the answers to these questions vary between
* applications, so this code needs to be flexible. */
#define ENCODE_DIRECT(c, directO, directWS) \
((c) < 128 && (c) > 0 && \
((utf7_category[(c)] == 0) || \
(directWS && (utf7_category[(c)] == 2)) || \
(directO && (utf7_category[(c)] == 1))))
PyObject *
PyUnicode_DecodeUTF7(const char *s,
Py_ssize_t size,
const char *errors)
{
return PyUnicode_DecodeUTF7Stateful(s, size, errors, NULL);
}
/* The decoder. The only state we preserve is our read position,
* i.e. how many characters we have consumed. So if we end in the
* middle of a shift sequence we have to back off the read position
* and the output to the beginning of the sequence, otherwise we lose
* all the shift state (seen bits, number of bits seen, high
* surrogate). */
PyObject *
PyUnicode_DecodeUTF7Stateful(const char *s,
Py_ssize_t size,
const char *errors,
Py_ssize_t *consumed)
{
const char *starts = s;
Py_ssize_t startinpos;
Py_ssize_t endinpos;
const char *e;
_PyUnicodeWriter writer;
const char *errmsg = "";
int inShift = 0;
Py_ssize_t shiftOutStart;
unsigned int base64bits = 0;
unsigned long base64buffer = 0;
Py_UCS4 surrogate = 0;
PyObject *errorHandler = NULL;
PyObject *exc = NULL;
if (size == 0) {
if (consumed)
*consumed = 0;
_Py_RETURN_UNICODE_EMPTY();
}
/* Start off assuming it's all ASCII. Widen later as necessary. */
_PyUnicodeWriter_Init(&writer);
writer.min_length = size;
shiftOutStart = 0;
e = s + size;
while (s < e) {
Py_UCS4 ch;
restart:
ch = (unsigned char) *s;
if (inShift) { /* in a base-64 section */
if (IS_BASE64(ch)) { /* consume a base-64 character */
base64buffer = (base64buffer << 6) | FROM_BASE64(ch);
base64bits += 6;
s++;
if (base64bits >= 16) {
/* we have enough bits for a UTF-16 value */
Py_UCS4 outCh = (Py_UCS4)(base64buffer >> (base64bits-16));
base64bits -= 16;
base64buffer &= (1 << base64bits) - 1; /* clear high bits */
assert(outCh <= 0xffff);
if (surrogate) {
/* expecting a second surrogate */
if (Py_UNICODE_IS_LOW_SURROGATE(outCh)) {
Py_UCS4 ch2 = Py_UNICODE_JOIN_SURROGATES(surrogate, outCh);
if (_PyUnicodeWriter_WriteCharInline(&writer, ch2) < 0)
goto onError;
surrogate = 0;
continue;
}
else {
if (_PyUnicodeWriter_WriteCharInline(&writer, surrogate) < 0)
goto onError;
surrogate = 0;
}
}
if (Py_UNICODE_IS_HIGH_SURROGATE(outCh)) {
/* first surrogate */
surrogate = outCh;
}
else {
if (_PyUnicodeWriter_WriteCharInline(&writer, outCh) < 0)
goto onError;
}
}
}
else { /* now leaving a base-64 section */
inShift = 0;
if (base64bits > 0) { /* left-over bits */
if (base64bits >= 6) {
/* We've seen at least one base-64 character */
s++;
errmsg = "partial character in shift sequence";
goto utf7Error;
}
else {
/* Some bits remain; they should be zero */
if (base64buffer != 0) {
s++;
errmsg = "non-zero padding bits in shift sequence";
goto utf7Error;
}
}
}
if (surrogate && DECODE_DIRECT(ch)) {
if (_PyUnicodeWriter_WriteCharInline(&writer, surrogate) < 0)
goto onError;
}
surrogate = 0;
if (ch == '-') {
/* '-' is absorbed; other terminating
characters are preserved */
s++;
}
}
}
else if ( ch == '+' ) {
startinpos = s-starts;
s++; /* consume '+' */
if (s < e && *s == '-') { /* '+-' encodes '+' */
s++;
if (_PyUnicodeWriter_WriteCharInline(&writer, '+') < 0)
goto onError;
}
else { /* begin base64-encoded section */
inShift = 1;
surrogate = 0;
shiftOutStart = writer.pos;
base64bits = 0;
base64buffer = 0;
}
}
else if (DECODE_DIRECT(ch)) { /* character decodes as itself */
s++;
if (_PyUnicodeWriter_WriteCharInline(&writer, ch) < 0)
goto onError;
}
else {
startinpos = s-starts;
s++;
errmsg = "unexpected special character";
goto utf7Error;
}
continue;
utf7Error:
endinpos = s-starts;
if (unicode_decode_call_errorhandler_writer(
errors, &errorHandler,
"utf7", errmsg,
&starts, &e, &startinpos, &endinpos, &exc, &s,
&writer))
goto onError;
}
/* end of string */
if (inShift && !consumed) { /* in shift sequence, no more to follow */
/* if we're in an inconsistent state, that's an error */
inShift = 0;
if (surrogate ||
(base64bits >= 6) ||
(base64bits > 0 && base64buffer != 0)) {
endinpos = size;
if (unicode_decode_call_errorhandler_writer(
errors, &errorHandler,
"utf7", "unterminated shift sequence",
&starts, &e, &startinpos, &endinpos, &exc, &s,
&writer))
goto onError;
if (s < e)
goto restart;
}
}
/* return state */
if (consumed) {
if (inShift) {
*consumed = startinpos;
if (writer.pos != shiftOutStart && writer.maxchar > 127) {
PyObject *result = PyUnicode_FromKindAndData(
writer.kind, writer.data, shiftOutStart);
Py_XDECREF(errorHandler);
Py_XDECREF(exc);
_PyUnicodeWriter_Dealloc(&writer);
return result;
}
writer.pos = shiftOutStart; /* back off output */
}
else {
*consumed = s-starts;
}
}
Py_XDECREF(errorHandler);
Py_XDECREF(exc);
return _PyUnicodeWriter_Finish(&writer);
onError:
Py_XDECREF(errorHandler);
Py_XDECREF(exc);
_PyUnicodeWriter_Dealloc(&writer);
return NULL;
}
PyObject *
_PyUnicode_EncodeUTF7(PyObject *str,
int base64SetO,
int base64WhiteSpace,
const char *errors)
{
int kind;
void *data;
Py_ssize_t len;
PyObject *v;
int inShift = 0;
Py_ssize_t i;
unsigned int base64bits = 0;
unsigned long base64buffer = 0;
char * out;
char * start;
if (PyUnicode_READY(str) == -1)
return NULL;
kind = PyUnicode_KIND(str);
data = PyUnicode_DATA(str);
len = PyUnicode_GET_LENGTH(str);
if (len == 0)
return PyBytes_FromStringAndSize(NULL, 0);
/* It might be possible to tighten this worst case */
if (len > PY_SSIZE_T_MAX / 8)
return PyErr_NoMemory();
v = PyBytes_FromStringAndSize(NULL, len * 8);
if (v == NULL)
return NULL;
start = out = PyBytes_AS_STRING(v);
for (i = 0; i < len; ++i) {
Py_UCS4 ch = PyUnicode_READ(kind, data, i);
if (inShift) {
if (ENCODE_DIRECT(ch, !base64SetO, !base64WhiteSpace)) {
/* shifting out */
if (base64bits) { /* output remaining bits */
*out++ = TO_BASE64(base64buffer << (6-base64bits));
base64buffer = 0;
base64bits = 0;
}
inShift = 0;
/* Characters not in the BASE64 set implicitly unshift the sequence
so no '-' is required, except if the character is itself a '-' */
if (IS_BASE64(ch) || ch == '-') {
*out++ = '-';
}
*out++ = (char) ch;
}
else {
goto encode_char;
}
}
else { /* not in a shift sequence */
if (ch == '+') {
*out++ = '+';
*out++ = '-';
}
else if (ENCODE_DIRECT(ch, !base64SetO, !base64WhiteSpace)) {
*out++ = (char) ch;
}
else {
*out++ = '+';
inShift = 1;
goto encode_char;
}
}
continue;
encode_char:
if (ch >= 0x10000) {
assert(ch <= MAX_UNICODE);
/* code first surrogate */
base64bits += 16;
base64buffer = (base64buffer << 16) | Py_UNICODE_HIGH_SURROGATE(ch);
while (base64bits >= 6) {
*out++ = TO_BASE64(base64buffer >> (base64bits-6));
base64bits -= 6;
}
/* prepare second surrogate */
ch = Py_UNICODE_LOW_SURROGATE(ch);
}
base64bits += 16;
base64buffer = (base64buffer << 16) | ch;
while (base64bits >= 6) {
*out++ = TO_BASE64(base64buffer >> (base64bits-6));
base64bits -= 6;
}
}
if (base64bits)
*out++= TO_BASE64(base64buffer << (6-base64bits) );
if (inShift)
*out++ = '-';
if (_PyBytes_Resize(&v, out - start) < 0)
return NULL;
return v;
}
PyObject *
PyUnicode_EncodeUTF7(const Py_UNICODE *s,
Py_ssize_t size,
int base64SetO,
int base64WhiteSpace,
const char *errors)
{
PyObject *result;
PyObject *tmp = PyUnicode_FromUnicode(s, size);
if (tmp == NULL)
return NULL;
result = _PyUnicode_EncodeUTF7(tmp, base64SetO,
base64WhiteSpace, errors);
Py_DECREF(tmp);
return result;
}
#undef IS_BASE64
#undef FROM_BASE64
#undef TO_BASE64
#undef DECODE_DIRECT
#undef ENCODE_DIRECT
/* --- UTF-8 Codec -------------------------------------------------------- */
PyObject *
PyUnicode_DecodeUTF8(const char *s,
Py_ssize_t size,
const char *errors)
{
return PyUnicode_DecodeUTF8Stateful(s, size, errors, NULL);
}
#include "third_party/python/Objects/stringlib/asciilib.inc"
#include "third_party/python/Objects/stringlib/codecs.inc"
#include "third_party/python/Objects/stringlib/undef.inc"
#include "third_party/python/Objects/stringlib/ucs1lib.inc"
#include "third_party/python/Objects/stringlib/codecs.inc"
#include "third_party/python/Objects/stringlib/undef.inc"
#include "third_party/python/Objects/stringlib/ucs2lib.inc"
#include "third_party/python/Objects/stringlib/codecs.inc"
#include "third_party/python/Objects/stringlib/undef.inc"
#include "third_party/python/Objects/stringlib/ucs4lib.inc"
#include "third_party/python/Objects/stringlib/codecs.inc"
#include "third_party/python/Objects/stringlib/undef.inc"
/* Mask to quickly check whether a C 'long' contains a
non-ASCII, UTF8-encoded char. */
#if (SIZEOF_LONG == 8)
# define ASCII_CHAR_MASK 0x8080808080808080UL
#elif (SIZEOF_LONG == 4)
# define ASCII_CHAR_MASK 0x80808080UL
#else
# error C 'long' size should be either 4 or 8!
#endif
static optimizespeed Py_ssize_t
ascii_decode(const char *start, const char *end, Py_UCS1 *dest)
{
const char *p = start;
const char *aligned_end = (const char *) _Py_ALIGN_DOWN(end, SIZEOF_LONG);
/*
* Issue #17237: m68k is a bit different from most architectures in
* that objects do not use "natural alignment" - for example, int and
* long are only aligned at 2-byte boundaries. Therefore the assert()
* won't work; also, tests have shown that skipping the "optimised
* version" will even speed up m68k.
*/
while (p < end) {
/* Fast path, see in STRINGLIB(utf8_decode) in stringlib/codecs.h
for an explanation. */
if (_Py_IS_ALIGNED(p, SIZEOF_LONG)) {
/* Help allocation */
const char *_p = p;
while (_p < aligned_end) {
unsigned long value = *(unsigned long *) _p;
if (value & ASCII_CHAR_MASK)
break;
_p += SIZEOF_LONG;
}
p = _p;
if (_p == end)
break;
}
if ((unsigned char)*p & 0x80)
break;
++p;
}
memcpy(dest, start, p - start);
return p - start;
}
PyObject *
PyUnicode_DecodeUTF8Stateful(const char *s,
Py_ssize_t size,
const char *errors,
Py_ssize_t *consumed)
{
_PyUnicodeWriter writer;
const char *starts = s;
const char *end = s + size;
Py_ssize_t startinpos;
Py_ssize_t endinpos;
const char *errmsg = "";
PyObject *error_handler_obj = NULL;
PyObject *exc = NULL;
_Py_error_handler error_handler = _Py_ERROR_UNKNOWN;
if (size == 0) {
if (consumed)
*consumed = 0;
_Py_RETURN_UNICODE_EMPTY();
}
/* ASCII is equivalent to the first 128 ordinals in Unicode. */
if (size == 1 && (unsigned char)s[0] < 128) {
if (consumed)
*consumed = 1;
return get_latin1_char((unsigned char)s[0]);
}
_PyUnicodeWriter_Init(&writer);
writer.min_length = size;
if (_PyUnicodeWriter_Prepare(&writer, writer.min_length, 127) == -1)
goto onError;
writer.pos = ascii_decode(s, end, writer.data);
s += writer.pos;
while (s < end) {
Py_UCS4 ch;
int kind = writer.kind;
if (kind == PyUnicode_1BYTE_KIND) {
if (PyUnicode_IS_ASCII(writer.buffer))
ch = asciilib_utf8_decode(&s, end, writer.data, &writer.pos);
else
ch = ucs1lib_utf8_decode(&s, end, writer.data, &writer.pos);
} else if (kind == PyUnicode_2BYTE_KIND) {
ch = ucs2lib_utf8_decode(&s, end, writer.data, &writer.pos);
} else {
assert(kind == PyUnicode_4BYTE_KIND);
ch = ucs4lib_utf8_decode(&s, end, writer.data, &writer.pos);
}
switch (ch) {
case 0:
if (s == end || consumed)
goto End;
errmsg = "unexpected end of data";
startinpos = s - starts;
endinpos = end - starts;
break;
case 1:
errmsg = "invalid start byte";
startinpos = s - starts;
endinpos = startinpos + 1;
break;
case 2:
case 3:
case 4:
errmsg = "invalid continuation byte";
startinpos = s - starts;
endinpos = startinpos + ch - 1;
break;
default:
if (_PyUnicodeWriter_WriteCharInline(&writer, ch) < 0)
goto onError;
continue;
}
if (error_handler == _Py_ERROR_UNKNOWN)
error_handler = get_error_handler(errors);
switch (error_handler) {
case _Py_ERROR_IGNORE:
s += (endinpos - startinpos);
break;
case _Py_ERROR_REPLACE:
if (_PyUnicodeWriter_WriteCharInline(&writer, 0xfffd) < 0)
goto onError;
s += (endinpos - startinpos);
break;
case _Py_ERROR_SURROGATEESCAPE:
{
Py_ssize_t i;
if (_PyUnicodeWriter_PrepareKind(&writer, PyUnicode_2BYTE_KIND) < 0)
goto onError;
for (i=startinpos; i<endinpos; i++) {
ch = (Py_UCS4)(unsigned char)(starts[i]);
PyUnicode_WRITE(writer.kind, writer.data, writer.pos,
ch + 0xdc00);
writer.pos++;
}
s += (endinpos - startinpos);
break;
}
default:
if (unicode_decode_call_errorhandler_writer(
errors, &error_handler_obj,
"utf-8", errmsg,
&starts, &end, &startinpos, &endinpos, &exc, &s,
&writer))
goto onError;
}
}
End:
if (consumed)
*consumed = s - starts;
Py_XDECREF(error_handler_obj);
Py_XDECREF(exc);
return _PyUnicodeWriter_Finish(&writer);
onError:
Py_XDECREF(error_handler_obj);
Py_XDECREF(exc);
_PyUnicodeWriter_Dealloc(&writer);
return NULL;
}
/* Simplified UTF-8 decoder using surrogateescape error handler,
used to decode the command line arguments on Mac OS X and Android.
Return a pointer to a newly allocated wide character string (use
PyMem_RawFree() to free the memory), or NULL on memory allocation error. */
wchar_t*
_Py_DecodeUTF8_surrogateescape(const char *s, Py_ssize_t size)
{
const char *e;
wchar_t *unicode;
Py_ssize_t outpos;
/* Note: size will always be longer than the resulting Unicode
character count */
if (PY_SSIZE_T_MAX / (Py_ssize_t)sizeof(wchar_t) < (size + 1))
return NULL;
unicode = PyMem_RawMalloc((size + 1) * sizeof(wchar_t));
if (!unicode)
return NULL;
/* Unpack UTF-8 encoded data */
e = s + size;
outpos = 0;
while (s < e) {
Py_UCS4 ch;
#if SIZEOF_WCHAR_T == 4
ch = ucs4lib_utf8_decode(&s, e, (Py_UCS4 *)unicode, &outpos);
#else
ch = ucs2lib_utf8_decode(&s, e, (Py_UCS2 *)unicode, &outpos);
#endif
if (ch > 0xFF) {
#if SIZEOF_WCHAR_T == 4
assert(0);
#else
assert(ch > 0xFFFF && ch <= MAX_UNICODE);
/* compute and append the two surrogates: */
unicode[outpos++] = (wchar_t)Py_UNICODE_HIGH_SURROGATE(ch);
unicode[outpos++] = (wchar_t)Py_UNICODE_LOW_SURROGATE(ch);
#endif
}
else {
if (!ch && s == e)
break;
/* surrogateescape */
unicode[outpos++] = 0xDC00 + (unsigned char)*s++;
}
}
unicode[outpos] = L'\0';
return unicode;
}
/* Primary internal function which creates utf8 encoded bytes objects.
Allocation strategy: if the string is short, convert into a stack buffer
and allocate exactly as much space needed at the end. Else allocate the
maximum possible needed (4 result bytes per Unicode character), and return
the excess memory at the end.
*/
PyObject *
_PyUnicode_AsUTF8String(PyObject *unicode, const char *errors)
{
enum PyUnicode_Kind kind;
void *data;
Py_ssize_t size;
if (!PyUnicode_Check(unicode)) {
PyErr_BadArgument();
return NULL;
}
if (PyUnicode_READY(unicode) == -1)
return NULL;
if (PyUnicode_UTF8(unicode))
return PyBytes_FromStringAndSize(PyUnicode_UTF8(unicode),
PyUnicode_UTF8_LENGTH(unicode));
kind = PyUnicode_KIND(unicode);
data = PyUnicode_DATA(unicode);
size = PyUnicode_GET_LENGTH(unicode);
switch (kind) {
default:
assert(0);
case PyUnicode_1BYTE_KIND:
/* the string cannot be ASCII, or PyUnicode_UTF8() would be set */
assert(!PyUnicode_IS_ASCII(unicode));
return ucs1lib_utf8_encoder(unicode, data, size, errors);
case PyUnicode_2BYTE_KIND:
return ucs2lib_utf8_encoder(unicode, data, size, errors);
case PyUnicode_4BYTE_KIND:
return ucs4lib_utf8_encoder(unicode, data, size, errors);
}
}
PyObject *
PyUnicode_EncodeUTF8(const Py_UNICODE *s,
Py_ssize_t size,
const char *errors)
{
PyObject *v, *unicode;
unicode = PyUnicode_FromUnicode(s, size);
if (unicode == NULL)
return NULL;
v = _PyUnicode_AsUTF8String(unicode, errors);
Py_DECREF(unicode);
return v;
}
/**
* Encodes Unicode object using UTF-8 and return the result as Python
* bytes object. Error handling is âstrictâ. Return NULL if an exception
* was raised by the codec.
*
* @return new reference
*/
PyObject *
PyUnicode_AsUTF8String(PyObject *unicode)
{
return _PyUnicode_AsUTF8String(unicode, NULL);
}
/* --- UTF-32 Codec ------------------------------------------------------- */
PyObject *
PyUnicode_DecodeUTF32(const char *s,
Py_ssize_t size,
const char *errors,
int *byteorder)
{
return PyUnicode_DecodeUTF32Stateful(s, size, errors, byteorder, NULL);
}
PyObject *
PyUnicode_DecodeUTF32Stateful(const char *s,
Py_ssize_t size,
const char *errors,
int *byteorder,
Py_ssize_t *consumed)
{
const char *starts = s;
Py_ssize_t startinpos;
Py_ssize_t endinpos;
_PyUnicodeWriter writer;
const unsigned char *q, *e;
int le, bo = 0; /* assume native ordering by default */
const char *encoding;
const char *errmsg = "";
PyObject *errorHandler = NULL;
PyObject *exc = NULL;
q = (unsigned char *)s;
e = q + size;
if (byteorder)
bo = *byteorder;
/* Check for BOM marks (U+FEFF) in the input and adjust current
byte order setting accordingly. In native mode, the leading BOM
mark is skipped, in all other modes, it is copied to the output
stream as-is (giving a ZWNBSP character). */
if (bo == 0 && size >= 4) {
Py_UCS4 bom = ((unsigned int)q[3] << 24) | (q[2] << 16) | (q[1] << 8) | q[0];
if (bom == 0x0000FEFF) {
bo = -1;
q += 4;
}
else if (bom == 0xFFFE0000) {
bo = 1;
q += 4;
}
if (byteorder)
*byteorder = bo;
}
if (q == e) {
if (consumed)
*consumed = size;
_Py_RETURN_UNICODE_EMPTY();
}
#ifdef WORDS_BIGENDIAN
le = bo < 0;
#else
le = bo <= 0;
#endif
encoding = le ? "utf-32-le" : "utf-32-be";
_PyUnicodeWriter_Init(&writer);
writer.min_length = (e - q + 3) / 4;
if (_PyUnicodeWriter_Prepare(&writer, writer.min_length, 127) == -1)
goto onError;
while (1) {
Py_UCS4 ch = 0;
Py_UCS4 maxch = PyUnicode_MAX_CHAR_VALUE(writer.buffer);
if (e - q >= 4) {
enum PyUnicode_Kind kind = writer.kind;
void *data = writer.data;
const unsigned char *last = e - 4;
Py_ssize_t pos = writer.pos;
if (le) {
do {
ch = ((unsigned int)q[3] << 24) | (q[2] << 16) | (q[1] << 8) | q[0];
if (ch > maxch)
break;
if (kind != PyUnicode_1BYTE_KIND &&
Py_UNICODE_IS_SURROGATE(ch))
break;
PyUnicode_WRITE(kind, data, pos++, ch);
q += 4;
} while (q <= last);
}
else {
do {
ch = ((unsigned int)q[0] << 24) | (q[1] << 16) | (q[2] << 8) | q[3];
if (ch > maxch)
break;
if (kind != PyUnicode_1BYTE_KIND &&
Py_UNICODE_IS_SURROGATE(ch))
break;
PyUnicode_WRITE(kind, data, pos++, ch);
q += 4;
} while (q <= last);
}
writer.pos = pos;
}
if (Py_UNICODE_IS_SURROGATE(ch)) {
errmsg = "code point in surrogate code point range(0xd800, 0xe000)";
startinpos = ((const char *)q) - starts;
endinpos = startinpos + 4;
}
else if (ch <= maxch) {
if (q == e || consumed)
break;
/* remaining bytes at the end? (size should be divisible by 4) */
errmsg = "truncated data";
startinpos = ((const char *)q) - starts;
endinpos = ((const char *)e) - starts;
}
else {
if (ch < 0x110000) {
if (_PyUnicodeWriter_WriteCharInline(&writer, ch) < 0)
goto onError;
q += 4;
continue;
}
errmsg = "code point not in range(0x110000)";
startinpos = ((const char *)q) - starts;
endinpos = startinpos + 4;
}
/* The remaining input chars are ignored if the callback
chooses to skip the input */
if (unicode_decode_call_errorhandler_writer(
errors, &errorHandler,
encoding, errmsg,
&starts, (const char **)&e, &startinpos, &endinpos, &exc, (const char **)&q,
&writer))
goto onError;
}
if (consumed)
*consumed = (const char *)q-starts;
Py_XDECREF(errorHandler);
Py_XDECREF(exc);
return _PyUnicodeWriter_Finish(&writer);
onError:
_PyUnicodeWriter_Dealloc(&writer);
Py_XDECREF(errorHandler);
Py_XDECREF(exc);
return NULL;
}
PyObject *
_PyUnicode_EncodeUTF32(PyObject *str,
const char *errors,
int byteorder)
{
enum PyUnicode_Kind kind;
const void *data;
Py_ssize_t len;
PyObject *v;
uint32_t *out;
#if PY_LITTLE_ENDIAN
int native_ordering = byteorder <= 0;
#else
int native_ordering = byteorder >= 0;
#endif
const char *encoding;
Py_ssize_t nsize, pos;
PyObject *errorHandler = NULL;
PyObject *exc = NULL;
PyObject *rep = NULL;
if (!PyUnicode_Check(str)) {
PyErr_BadArgument();
return NULL;
}
if (PyUnicode_READY(str) == -1)
return NULL;
kind = PyUnicode_KIND(str);
data = PyUnicode_DATA(str);
len = PyUnicode_GET_LENGTH(str);
if (len > PY_SSIZE_T_MAX / 4 - (byteorder == 0))
return PyErr_NoMemory();
nsize = len + (byteorder == 0);
v = PyBytes_FromStringAndSize(NULL, nsize * 4);
if (v == NULL)
return NULL;
/* output buffer is 4-bytes aligned */
assert(_Py_IS_ALIGNED(PyBytes_AS_STRING(v), 4));
out = (uint32_t *)PyBytes_AS_STRING(v);
if (byteorder == 0)
*out++ = 0xFEFF;
if (len == 0)
goto done;
if (byteorder == -1)
encoding = "utf-32-le";
else if (byteorder == 1)
encoding = "utf-32-be";
else
encoding = "utf-32";
if (kind == PyUnicode_1BYTE_KIND) {
ucs1lib_utf32_encode((const Py_UCS1 *)data, len, &out, native_ordering);
goto done;
}
pos = 0;
while (pos < len) {
Py_ssize_t repsize, moreunits;
if (kind == PyUnicode_2BYTE_KIND) {
pos += ucs2lib_utf32_encode((const Py_UCS2 *)data + pos, len - pos,
&out, native_ordering);
}
else {
assert(kind == PyUnicode_4BYTE_KIND);
pos += ucs4lib_utf32_encode((const Py_UCS4 *)data + pos, len - pos,
&out, native_ordering);
}
if (pos == len)
break;
rep = unicode_encode_call_errorhandler(
errors, &errorHandler,
encoding, "surrogates not allowed",
str, &exc, pos, pos + 1, &pos);
if (!rep)
goto error;
if (PyBytes_Check(rep)) {
repsize = PyBytes_GET_SIZE(rep);
if (repsize & 3) {
raise_encode_exception(&exc, encoding,
str, pos - 1, pos,
"surrogates not allowed");
goto error;
}
moreunits = repsize / 4;
}
else {
assert(PyUnicode_Check(rep));
if (PyUnicode_READY(rep) < 0)
goto error;
moreunits = repsize = PyUnicode_GET_LENGTH(rep);
if (!PyUnicode_IS_ASCII(rep)) {
raise_encode_exception(&exc, encoding,
str, pos - 1, pos,
"surrogates not allowed");
goto error;
}
}
/* four bytes are reserved for each surrogate */
if (moreunits > 1) {
Py_ssize_t outpos = out - (uint32_t*) PyBytes_AS_STRING(v);
if (moreunits >= (PY_SSIZE_T_MAX - PyBytes_GET_SIZE(v)) / 4) {
/* integer overflow */
PyErr_NoMemory();
goto error;
}
if (_PyBytes_Resize(&v, PyBytes_GET_SIZE(v) + 4 * (moreunits - 1)) < 0)
goto error;
out = (uint32_t*) PyBytes_AS_STRING(v) + outpos;
}
if (PyBytes_Check(rep)) {
memcpy(out, PyBytes_AS_STRING(rep), repsize);
out += moreunits;
} else /* rep is unicode */ {
assert(PyUnicode_KIND(rep) == PyUnicode_1BYTE_KIND);
ucs1lib_utf32_encode(PyUnicode_1BYTE_DATA(rep), repsize,
&out, native_ordering);
}
Py_CLEAR(rep);
}
/* Cut back to size actually needed. This is necessary for, for example,
encoding of a string containing isolated surrogates and the 'ignore'
handler is used. */
nsize = (unsigned char*) out - (unsigned char*) PyBytes_AS_STRING(v);
if (nsize != PyBytes_GET_SIZE(v))
_PyBytes_Resize(&v, nsize);
Py_XDECREF(errorHandler);
Py_XDECREF(exc);
done:
return v;
error:
Py_XDECREF(rep);
Py_XDECREF(errorHandler);
Py_XDECREF(exc);
Py_XDECREF(v);
return NULL;
}
PyObject *
PyUnicode_EncodeUTF32(const Py_UNICODE *s,
Py_ssize_t size,
const char *errors,
int byteorder)
{
PyObject *result;
PyObject *tmp = PyUnicode_FromUnicode(s, size);
if (tmp == NULL)
return NULL;
result = _PyUnicode_EncodeUTF32(tmp, errors, byteorder);
Py_DECREF(tmp);
return result;
}
PyObject *
PyUnicode_AsUTF32String(PyObject *unicode)
{
return _PyUnicode_EncodeUTF32(unicode, NULL, 0);
}
/* --- UTF-16 Codec ------------------------------------------------------- */
PyObject *
PyUnicode_DecodeUTF16(const char *s,
Py_ssize_t size,
const char *errors,
int *byteorder)
{
return PyUnicode_DecodeUTF16Stateful(s, size, errors, byteorder, NULL);
}
PyObject *
PyUnicode_DecodeUTF16Stateful(const char *s,
Py_ssize_t size,
const char *errors,
int *byteorder,
Py_ssize_t *consumed)
{
const char *starts = s;
Py_ssize_t startinpos;
Py_ssize_t endinpos;
_PyUnicodeWriter writer;
const unsigned char *q, *e;
int bo = 0; /* assume native ordering by default */
int native_ordering;
const char *errmsg = "";
PyObject *errorHandler = NULL;
PyObject *exc = NULL;
const char *encoding;
q = (unsigned char *)s;
e = q + size;
if (byteorder)
bo = *byteorder;
/* Check for BOM marks (U+FEFF) in the input and adjust current
byte order setting accordingly. In native mode, the leading BOM
mark is skipped, in all other modes, it is copied to the output
stream as-is (giving a ZWNBSP character). */
if (bo == 0 && size >= 2) {
const Py_UCS4 bom = (q[1] << 8) | q[0];
if (bom == 0xFEFF) {
q += 2;
bo = -1;
}
else if (bom == 0xFFFE) {
q += 2;
bo = 1;
}
if (byteorder)
*byteorder = bo;
}
if (q == e) {
if (consumed)
*consumed = size;
_Py_RETURN_UNICODE_EMPTY();
}
#if PY_LITTLE_ENDIAN
native_ordering = bo <= 0;
encoding = bo <= 0 ? "utf-16-le" : "utf-16-be";
#else
native_ordering = bo >= 0;
encoding = bo >= 0 ? "utf-16-be" : "utf-16-le";
#endif
/* Note: size will always be longer than the resulting Unicode
character count normally. Error handler will take care of
resizing when needed. */
_PyUnicodeWriter_Init(&writer);
writer.min_length = (e - q + 1) / 2;
if (_PyUnicodeWriter_Prepare(&writer, writer.min_length, 127) == -1)
goto onError;
while (1) {
Py_UCS4 ch = 0;
if (e - q >= 2) {
int kind = writer.kind;
if (kind == PyUnicode_1BYTE_KIND) {
if (PyUnicode_IS_ASCII(writer.buffer))
ch = asciilib_utf16_decode(&q, e,
(Py_UCS1*)writer.data, &writer.pos,
native_ordering);
else
ch = ucs1lib_utf16_decode(&q, e,
(Py_UCS1*)writer.data, &writer.pos,
native_ordering);
} else if (kind == PyUnicode_2BYTE_KIND) {
ch = ucs2lib_utf16_decode(&q, e,
(Py_UCS2*)writer.data, &writer.pos,
native_ordering);
} else {
assert(kind == PyUnicode_4BYTE_KIND);
ch = ucs4lib_utf16_decode(&q, e,
(Py_UCS4*)writer.data, &writer.pos,
native_ordering);
}
}
switch (ch)
{
case 0:
/* remaining byte at the end? (size should be even) */
if (q == e || consumed)
goto End;
errmsg = "truncated data";
startinpos = ((const char *)q) - starts;
endinpos = ((const char *)e) - starts;
break;
/* The remaining input chars are ignored if the callback
chooses to skip the input */
case 1:
q -= 2;
if (consumed)
goto End;
errmsg = "unexpected end of data";
startinpos = ((const char *)q) - starts;
endinpos = ((const char *)e) - starts;
break;
case 2:
errmsg = "illegal encoding";
startinpos = ((const char *)q) - 2 - starts;
endinpos = startinpos + 2;
break;
case 3:
errmsg = "illegal UTF-16 surrogate";
startinpos = ((const char *)q) - 4 - starts;
endinpos = startinpos + 2;
break;
default:
if (_PyUnicodeWriter_WriteCharInline(&writer, ch) < 0)
goto onError;
continue;
}
if (unicode_decode_call_errorhandler_writer(
errors,
&errorHandler,
encoding, errmsg,
&starts,
(const char **)&e,
&startinpos,
&endinpos,
&exc,
(const char **)&q,
&writer))
goto onError;
}
End:
if (consumed)
*consumed = (const char *)q-starts;
Py_XDECREF(errorHandler);
Py_XDECREF(exc);
return _PyUnicodeWriter_Finish(&writer);
onError:
_PyUnicodeWriter_Dealloc(&writer);
Py_XDECREF(errorHandler);
Py_XDECREF(exc);
return NULL;
}
PyObject *
_PyUnicode_EncodeUTF16(PyObject *str,
const char *errors,
int byteorder)
{
enum PyUnicode_Kind kind;
const void *data;
Py_ssize_t len;
PyObject *v;
unsigned short *out;
Py_ssize_t pairs;
#if PY_BIG_ENDIAN
int native_ordering = byteorder >= 0;
#else
int native_ordering = byteorder <= 0;
#endif
const char *encoding;
Py_ssize_t nsize, pos;
PyObject *errorHandler = NULL;
PyObject *exc = NULL;
PyObject *rep = NULL;
if (!PyUnicode_Check(str)) {
PyErr_BadArgument();
return NULL;
}
if (PyUnicode_READY(str) == -1)
return NULL;
kind = PyUnicode_KIND(str);
data = PyUnicode_DATA(str);
len = PyUnicode_GET_LENGTH(str);
pairs = 0;
if (kind == PyUnicode_4BYTE_KIND) {
const Py_UCS4 *in = (const Py_UCS4 *)data;
const Py_UCS4 *end = in + len;
while (in < end) {
if (*in++ >= 0x10000) {
pairs++;
}
}
}
if (len > PY_SSIZE_T_MAX / 2 - pairs - (byteorder == 0)) {
return PyErr_NoMemory();
}
nsize = len + pairs + (byteorder == 0);
v = PyBytes_FromStringAndSize(NULL, nsize * 2);
if (v == NULL) {
return NULL;
}
/* output buffer is 2-bytes aligned */
assert(_Py_IS_ALIGNED(PyBytes_AS_STRING(v), 2));
out = (unsigned short *)PyBytes_AS_STRING(v);
if (byteorder == 0) {
*out++ = 0xFEFF;
}
if (len == 0) {
goto done;
}
if (kind == PyUnicode_1BYTE_KIND) {
ucs1lib_utf16_encode((const Py_UCS1 *)data, len, &out, native_ordering);
goto done;
}
if (byteorder < 0) {
encoding = "utf-16-le";
}
else if (byteorder > 0) {
encoding = "utf-16-be";
}
else {
encoding = "utf-16";
}
pos = 0;
while (pos < len) {
Py_ssize_t repsize, moreunits;
if (kind == PyUnicode_2BYTE_KIND) {
pos += ucs2lib_utf16_encode((const Py_UCS2 *)data + pos, len - pos,
&out, native_ordering);
}
else {
assert(kind == PyUnicode_4BYTE_KIND);
pos += ucs4lib_utf16_encode((const Py_UCS4 *)data + pos, len - pos,
&out, native_ordering);
}
if (pos == len)
break;
rep = unicode_encode_call_errorhandler(
errors, &errorHandler,
encoding, "surrogates not allowed",
str, &exc, pos, pos + 1, &pos);
if (!rep)
goto error;
if (PyBytes_Check(rep)) {
repsize = PyBytes_GET_SIZE(rep);
if (repsize & 1) {
raise_encode_exception(&exc, encoding,
str, pos - 1, pos,
"surrogates not allowed");
goto error;
}
moreunits = repsize / 2;
}
else {
assert(PyUnicode_Check(rep));
if (PyUnicode_READY(rep) < 0)
goto error;
moreunits = repsize = PyUnicode_GET_LENGTH(rep);
if (!PyUnicode_IS_ASCII(rep)) {
raise_encode_exception(&exc, encoding,
str, pos - 1, pos,
"surrogates not allowed");
goto error;
}
}
/* two bytes are reserved for each surrogate */
if (moreunits > 1) {
Py_ssize_t outpos = out - (unsigned short*) PyBytes_AS_STRING(v);
if (moreunits >= (PY_SSIZE_T_MAX - PyBytes_GET_SIZE(v)) / 2) {
/* integer overflow */
PyErr_NoMemory();
goto error;
}
if (_PyBytes_Resize(&v, PyBytes_GET_SIZE(v) + 2 * (moreunits - 1)) < 0)
goto error;
out = (unsigned short*) PyBytes_AS_STRING(v) + outpos;
}
if (PyBytes_Check(rep)) {
memcpy(out, PyBytes_AS_STRING(rep), repsize);
out += moreunits;
} else /* rep is unicode */ {
assert(PyUnicode_KIND(rep) == PyUnicode_1BYTE_KIND);
ucs1lib_utf16_encode(PyUnicode_1BYTE_DATA(rep), repsize,
&out, native_ordering);
}
Py_CLEAR(rep);
}
/* Cut back to size actually needed. This is necessary for, for example,
encoding of a string containing isolated surrogates and the 'ignore' handler
is used. */
nsize = (unsigned char*) out - (unsigned char*) PyBytes_AS_STRING(v);
if (nsize != PyBytes_GET_SIZE(v))
_PyBytes_Resize(&v, nsize);
Py_XDECREF(errorHandler);
Py_XDECREF(exc);
done:
return v;
error:
Py_XDECREF(rep);
Py_XDECREF(errorHandler);
Py_XDECREF(exc);
Py_XDECREF(v);
return NULL;
#undef STORECHAR
}
PyObject *
PyUnicode_EncodeUTF16(const Py_UNICODE *s,
Py_ssize_t size,
const char *errors,
int byteorder)
{
PyObject *result;
PyObject *tmp = PyUnicode_FromUnicode(s, size);
if (tmp == NULL)
return NULL;
result = _PyUnicode_EncodeUTF16(tmp, errors, byteorder);
Py_DECREF(tmp);
return result;
}
PyObject *
PyUnicode_AsUTF16String(PyObject *unicode)
{
return _PyUnicode_EncodeUTF16(unicode, NULL, 0);
}
/* --- Unicode Escape Codec ----------------------------------------------- */
PyObject *
_PyUnicode_DecodeUnicodeEscape(const char *s,
Py_ssize_t size,
const char *errors,
const char **first_invalid_escape)
{
const char *starts = s;
_PyUnicodeWriter writer;
const char *end;
PyObject *errorHandler = NULL;
PyObject *exc = NULL;
// so we can remember if we've seen an invalid escape char or not
*first_invalid_escape = NULL;
if (size == 0) {
_Py_RETURN_UNICODE_EMPTY();
}
/* Escaped strings will always be longer than the resulting
Unicode string, so we start with size here and then reduce the
length after conversion to the true value.
(but if the error callback returns a long replacement string
we'll have to allocate more space) */
_PyUnicodeWriter_Init(&writer);
writer.min_length = size;
if (_PyUnicodeWriter_Prepare(&writer, size, 127) < 0) {
goto onError;
}
end = s + size;
while (s < end) {
unsigned char c = (unsigned char) *s++;
Py_UCS4 ch;
int count;
Py_ssize_t startinpos;
Py_ssize_t endinpos;
const char *message;
#define WRITE_ASCII_CHAR(ch) \
do { \
assert(ch <= 127); \
assert(writer.pos < writer.size); \
PyUnicode_WRITE(writer.kind, writer.data, writer.pos++, ch); \
} while(0)
#define WRITE_CHAR(ch) \
do { \
if (ch <= writer.maxchar) { \
assert(writer.pos < writer.size); \
PyUnicode_WRITE(writer.kind, writer.data, writer.pos++, ch); \
} \
else if (_PyUnicodeWriter_WriteCharInline(&writer, ch) < 0) { \
goto onError; \
} \
} while(0)
/* Non-escape characters are interpreted as Unicode ordinals */
if (c != '\\') {
WRITE_CHAR(c);
continue;
}
startinpos = s - starts - 1;
/* \ - Escapes */
if (s >= end) {
message = "\\ at end of string";
goto error;
}
c = (unsigned char) *s++;
assert(writer.pos < writer.size);
switch (c) {
/* \x escapes */
case '\n': continue;
case '\\': WRITE_ASCII_CHAR('\\'); continue;
case '\'': WRITE_ASCII_CHAR('\''); continue;
case '\"': WRITE_ASCII_CHAR('\"'); continue;
case 'b': WRITE_ASCII_CHAR('\b'); continue;
/* FF */
case 'f': WRITE_ASCII_CHAR('\014'); continue;
case 't': WRITE_ASCII_CHAR('\t'); continue;
case 'n': WRITE_ASCII_CHAR('\n'); continue;
case 'r': WRITE_ASCII_CHAR('\r'); continue;
/* VT */
case 'v': WRITE_ASCII_CHAR('\013'); continue;
/* BEL, not classic C */
case 'a': WRITE_ASCII_CHAR('\007'); continue;
/* [jart] ansi escape */
case 'e': WRITE_ASCII_CHAR('\033'); continue;
/* \OOO (octal) escapes */
case '0': case '1': case '2': case '3':
case '4': case '5': case '6': case '7':
ch = c - '0';
if (s < end && '0' <= *s && *s <= '7') {
ch = (ch<<3) + *s++ - '0';
if (s < end && '0' <= *s && *s <= '7') {
ch = (ch<<3) + *s++ - '0';
}
}
WRITE_CHAR(ch);
continue;
/* hex escapes */
/* \xXX */
case 'x':
count = 2;
message = "truncated \\xXX escape";
goto hexescape;
/* \uXXXX */
case 'u':
count = 4;
message = "truncated \\uXXXX escape";
goto hexescape;
/* \UXXXXXXXX */
case 'U':
count = 8;
message = "truncated \\UXXXXXXXX escape";
hexescape:
for (ch = 0; count && s < end; ++s, --count) {
c = (unsigned char)*s;
ch <<= 4;
if (c >= '0' && c <= '9') {
ch += c - '0';
}
else if (c >= 'a' && c <= 'f') {
ch += c - ('a' - 10);
}
else if (c >= 'A' && c <= 'F') {
ch += c - ('A' - 10);
}
else {
break;
}
}
if (count) {
goto error;
}
/* when we get here, ch is a 32-bit unicode character */
if (ch > MAX_UNICODE) {
message = "illegal Unicode character";
goto error;
}
WRITE_CHAR(ch);
continue;
/* \N{name} */
case 'N':
if (!_weaken(_PyUnicode_GetCode)) {
PyErr_SetString(
PyExc_UnicodeError,
"\\N escapes not supported "
"(you must yoink pyc:unicodedata or _PyUnicode_GetCode)");
goto onError;
}
message = "malformed \\N character escape";
if (s < end && *s == '{') {
const char *start = ++s;
size_t namelen;
/* look for the closing brace */
while (s < end && *s != '}')
s++;
namelen = s - start;
if (namelen && s < end) {
/* found a name. look it up in the unicode database */
s++;
ch = 0xffffffff; /* in case 'getcode' messes up */
if (namelen <= INT_MAX &&
_weaken(_PyUnicode_GetCode)(NULL, start, (int)namelen, &ch, 0)) {
assert(ch <= MAX_UNICODE);
WRITE_CHAR(ch);
continue;
}
message = "unknown Unicode character name";
}
}
goto error;
default:
if (*first_invalid_escape == NULL) {
*first_invalid_escape = s-1; /* Back up one char, since we've
already incremented s. */
}
WRITE_ASCII_CHAR('\\');
WRITE_CHAR(c);
continue;
}
error:
endinpos = s-starts;
writer.min_length = end - s + writer.pos;
if (unicode_decode_call_errorhandler_writer(
errors, &errorHandler,
"unicodeescape", message,
&starts, &end, &startinpos, &endinpos, &exc, &s,
&writer)) {
goto onError;
}
assert(end - s <= writer.size - writer.pos);
#undef WRITE_ASCII_CHAR
#undef WRITE_CHAR
}
Py_XDECREF(errorHandler);
Py_XDECREF(exc);
return _PyUnicodeWriter_Finish(&writer);
onError:
_PyUnicodeWriter_Dealloc(&writer);
Py_XDECREF(errorHandler);
Py_XDECREF(exc);
return NULL;
}
PyObject *
PyUnicode_DecodeUnicodeEscape(const char *s,
Py_ssize_t size,
const char *errors)
{
const char *first_invalid_escape;
PyObject *result = _PyUnicode_DecodeUnicodeEscape(s, size, errors,
&first_invalid_escape);
if (result == NULL)
return NULL;
if (first_invalid_escape != NULL) {
if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1,
"invalid escape sequence '\\%c'",
(unsigned char)*first_invalid_escape) < 0) {
Py_DECREF(result);
return NULL;
}
}
return result;
}
/* Return a Unicode-Escape string version of the Unicode object. */
PyObject *
PyUnicode_AsUnicodeEscapeString(PyObject *unicode)
{
Py_ssize_t i, len;
PyObject *repr;
char *p;
enum PyUnicode_Kind kind;
void *data;
Py_ssize_t expandsize;
/* Initial allocation is based on the longest-possible character
escape.
For UCS1 strings it's '\xxx', 4 bytes per source character.
For UCS2 strings it's '\uxxxx', 6 bytes per source character.
For UCS4 strings it's '\U00xxxxxx', 10 bytes per source character.
*/
if (!PyUnicode_Check(unicode)) {
PyErr_BadArgument();
return NULL;
}
if (PyUnicode_READY(unicode) == -1) {
return NULL;
}
len = PyUnicode_GET_LENGTH(unicode);
if (len == 0) {
return PyBytes_FromStringAndSize(NULL, 0);
}
kind = PyUnicode_KIND(unicode);
data = PyUnicode_DATA(unicode);
/* 4 byte characters can take up 10 bytes, 2 byte characters can take up 6
bytes, and 1 byte characters 4. */
expandsize = kind * 2 + 2;
if (len > PY_SSIZE_T_MAX / expandsize) {
return PyErr_NoMemory();
}
repr = PyBytes_FromStringAndSize(NULL, expandsize * len);
if (repr == NULL) {
return NULL;
}
p = PyBytes_AS_STRING(repr);
for (i = 0; i < len; i++) {
Py_UCS4 ch = PyUnicode_READ(kind, data, i);
/* U+0000-U+00ff range */
if (ch < 0x100) {
if (ch >= ' ' && ch < 127) {
if (ch != '\\') {
/* Copy printable US ASCII as-is */
*p++ = (char) ch;
}
/* Escape backslashes */
else {
*p++ = '\\';
*p++ = '\\';
}
}
/* Map special whitespace to '\t', \n', '\r' */
else if (ch == '\t') {
*p++ = '\\';
*p++ = 't';
}
else if (ch == '\n') {
*p++ = '\\';
*p++ = 'n';
}
else if (ch == '\r') {
*p++ = '\\';
*p++ = 'r';
}
/* Map non-printable US ASCII and 8-bit characters to '\xHH' */
else {
*p++ = '\\';
*p++ = 'x';
*p++ = Py_hexdigits[(ch >> 4) & 0x000F];
*p++ = Py_hexdigits[ch & 0x000F];
}
}
/* U+0100-U+ffff range: Map 16-bit characters to '\uHHHH' */
else if (ch < 0x10000) {
*p++ = '\\';
*p++ = 'u';
*p++ = Py_hexdigits[(ch >> 12) & 0x000F];
*p++ = Py_hexdigits[(ch >> 8) & 0x000F];
*p++ = Py_hexdigits[(ch >> 4) & 0x000F];
*p++ = Py_hexdigits[ch & 0x000F];
}
/* U+010000-U+10ffff range: Map 21-bit characters to '\U00HHHHHH' */
else {
/* Make sure that the first two digits are zero */
assert(ch <= MAX_UNICODE && MAX_UNICODE <= 0x10ffff);
*p++ = '\\';
*p++ = 'U';
*p++ = '0';
*p++ = '0';
*p++ = Py_hexdigits[(ch >> 20) & 0x0000000F];
*p++ = Py_hexdigits[(ch >> 16) & 0x0000000F];
*p++ = Py_hexdigits[(ch >> 12) & 0x0000000F];
*p++ = Py_hexdigits[(ch >> 8) & 0x0000000F];
*p++ = Py_hexdigits[(ch >> 4) & 0x0000000F];
*p++ = Py_hexdigits[ch & 0x0000000F];
}
}
assert(p - PyBytes_AS_STRING(repr) > 0);
if (_PyBytes_Resize(&repr, p - PyBytes_AS_STRING(repr)) < 0) {
return NULL;
}
return repr;
}
PyObject *
PyUnicode_EncodeUnicodeEscape(const Py_UNICODE *s,
Py_ssize_t size)
{
PyObject *result;
PyObject *tmp = PyUnicode_FromUnicode(s, size);
if (tmp == NULL) {
return NULL;
}
result = PyUnicode_AsUnicodeEscapeString(tmp);
Py_DECREF(tmp);
return result;
}
/* --- Raw Unicode Escape Codec ------------------------------------------- */
PyObject *
PyUnicode_DecodeRawUnicodeEscape(const char *s,
Py_ssize_t size,
const char *errors)
{
const char *starts = s;
_PyUnicodeWriter writer;
const char *end;
PyObject *errorHandler = NULL;
PyObject *exc = NULL;
if (size == 0) {
_Py_RETURN_UNICODE_EMPTY();
}
/* Escaped strings will always be longer than the resulting
Unicode string, so we start with size here and then reduce the
length after conversion to the true value. (But decoding error
handler might have to resize the string) */
_PyUnicodeWriter_Init(&writer);
writer.min_length = size;
if (_PyUnicodeWriter_Prepare(&writer, size, 127) < 0) {
goto onError;
}
end = s + size;
while (s < end) {
unsigned char c = (unsigned char) *s++;
Py_UCS4 ch;
int count;
Py_ssize_t startinpos;
Py_ssize_t endinpos;
const char *message;
#define WRITE_CHAR(ch) \
do { \
if (ch <= writer.maxchar) { \
assert(writer.pos < writer.size); \
PyUnicode_WRITE(writer.kind, writer.data, writer.pos++, ch); \
} \
else if (_PyUnicodeWriter_WriteCharInline(&writer, ch) < 0) { \
goto onError; \
} \
} while(0)
/* Non-escape characters are interpreted as Unicode ordinals */
if (c != '\\' || s >= end) {
WRITE_CHAR(c);
continue;
}
c = (unsigned char) *s++;
if (c == 'u') {
count = 4;
message = "truncated \\uXXXX escape";
}
else if (c == 'U') {
count = 8;
message = "truncated \\UXXXXXXXX escape";
}
else {
assert(writer.pos < writer.size);
PyUnicode_WRITE(writer.kind, writer.data, writer.pos++, '\\');
WRITE_CHAR(c);
continue;
}
startinpos = s - starts - 2;
/* \uHHHH with 4 hex digits, \U00HHHHHH with 8 */
for (ch = 0; count && s < end; ++s, --count) {
c = (unsigned char)*s;
ch <<= 4;
if (c >= '0' && c <= '9') {
ch += c - '0';
}
else if (c >= 'a' && c <= 'f') {
ch += c - ('a' - 10);
}
else if (c >= 'A' && c <= 'F') {
ch += c - ('A' - 10);
}
else {
break;
}
}
if (!count) {
if (ch <= MAX_UNICODE) {
WRITE_CHAR(ch);
continue;
}
message = "\\Uxxxxxxxx out of range";
}
endinpos = s-starts;
writer.min_length = end - s + writer.pos;
if (unicode_decode_call_errorhandler_writer(
errors, &errorHandler,
"rawunicodeescape", message,
&starts, &end, &startinpos, &endinpos, &exc, &s,
&writer)) {
goto onError;
}
assert(end - s <= writer.size - writer.pos);
#undef WRITE_CHAR
}
Py_XDECREF(errorHandler);
Py_XDECREF(exc);
return _PyUnicodeWriter_Finish(&writer);
onError:
_PyUnicodeWriter_Dealloc(&writer);
Py_XDECREF(errorHandler);
Py_XDECREF(exc);
return NULL;
}
PyObject *
PyUnicode_AsRawUnicodeEscapeString(PyObject *unicode)
{
PyObject *repr;
char *p;
Py_ssize_t expandsize, pos;
int kind;
void *data;
Py_ssize_t len;
if (!PyUnicode_Check(unicode)) {
PyErr_BadArgument();
return NULL;
}
if (PyUnicode_READY(unicode) == -1) {
return NULL;
}
kind = PyUnicode_KIND(unicode);
data = PyUnicode_DATA(unicode);
len = PyUnicode_GET_LENGTH(unicode);
if (kind == PyUnicode_1BYTE_KIND) {
return PyBytes_FromStringAndSize(data, len);
}
/* 4 byte characters can take up 10 bytes, 2 byte characters can take up 6
bytes, and 1 byte characters 4. */
expandsize = kind * 2 + 2;
if (len > PY_SSIZE_T_MAX / expandsize) {
return PyErr_NoMemory();
}
repr = PyBytes_FromStringAndSize(NULL, expandsize * len);
if (repr == NULL) {
return NULL;
}
if (len == 0) {
return repr;
}
p = PyBytes_AS_STRING(repr);
for (pos = 0; pos < len; pos++) {
Py_UCS4 ch = PyUnicode_READ(kind, data, pos);
/* U+0000-U+00ff range: Copy 8-bit characters as-is */
if (ch < 0x100) {
*p++ = (char) ch;
}
/* U+0000-U+00ff range: Map 16-bit characters to '\uHHHH' */
else if (ch < 0x10000) {
*p++ = '\\';
*p++ = 'u';
*p++ = Py_hexdigits[(ch >> 12) & 0xf];
*p++ = Py_hexdigits[(ch >> 8) & 0xf];
*p++ = Py_hexdigits[(ch >> 4) & 0xf];
*p++ = Py_hexdigits[ch & 15];
}
/* U+010000-U+10ffff range: Map 32-bit characters to '\U00HHHHHH' */
else {
assert(ch <= MAX_UNICODE && MAX_UNICODE <= 0x10ffff);
*p++ = '\\';
*p++ = 'U';
*p++ = '0';
*p++ = '0';
*p++ = Py_hexdigits[(ch >> 20) & 0xf];
*p++ = Py_hexdigits[(ch >> 16) & 0xf];
*p++ = Py_hexdigits[(ch >> 12) & 0xf];
*p++ = Py_hexdigits[(ch >> 8) & 0xf];
*p++ = Py_hexdigits[(ch >> 4) & 0xf];
*p++ = Py_hexdigits[ch & 15];
}
}
assert(p > PyBytes_AS_STRING(repr));
if (_PyBytes_Resize(&repr, p - PyBytes_AS_STRING(repr)) < 0) {
return NULL;
}
return repr;
}
PyObject *
PyUnicode_EncodeRawUnicodeEscape(const Py_UNICODE *s,
Py_ssize_t size)
{
PyObject *result;
PyObject *tmp = PyUnicode_FromUnicode(s, size);
if (tmp == NULL)
return NULL;
result = PyUnicode_AsRawUnicodeEscapeString(tmp);
Py_DECREF(tmp);
return result;
}
/* --- Unicode Internal Codec ------------------------------------------- */
PyObject *
_PyUnicode_DecodeUnicodeInternal(const char *s,
Py_ssize_t size,
const char *errors)
{
const char *starts = s;
Py_ssize_t startinpos;
Py_ssize_t endinpos;
_PyUnicodeWriter writer;
const char *end;
const char *reason;
PyObject *errorHandler = NULL;
PyObject *exc = NULL;
if (PyErr_WarnEx(PyExc_DeprecationWarning,
"unicode_internal codec has been deprecated",
1))
return NULL;
if (size < 0) {
PyErr_BadInternalCall();
return NULL;
}
if (size == 0)
_Py_RETURN_UNICODE_EMPTY();
_PyUnicodeWriter_Init(&writer);
if (size / Py_UNICODE_SIZE > PY_SSIZE_T_MAX - 1) {
PyErr_NoMemory();
goto onError;
}
writer.min_length = (size + (Py_UNICODE_SIZE - 1)) / Py_UNICODE_SIZE;
end = s + size;
while (s < end) {
Py_UNICODE uch;
Py_UCS4 ch;
if (end - s < Py_UNICODE_SIZE) {
endinpos = end-starts;
reason = "truncated input";
goto error;
}
/* We copy the raw representation one byte at a time because the
pointer may be unaligned (see test_codeccallbacks). */
((char *) &uch)[0] = s[0];
((char *) &uch)[1] = s[1];
#ifdef Py_UNICODE_WIDE
((char *) &uch)[2] = s[2];
((char *) &uch)[3] = s[3];
#endif
ch = uch;
#ifdef Py_UNICODE_WIDE
/* We have to sanity check the raw data, otherwise doom looms for
some malformed UCS-4 data. */
if (ch > 0x10ffff) {
endinpos = s - starts + Py_UNICODE_SIZE;
reason = "illegal code point (> 0x10FFFF)";
goto error;
}
#endif
s += Py_UNICODE_SIZE;
#ifndef Py_UNICODE_WIDE
if (Py_UNICODE_IS_HIGH_SURROGATE(ch) && end - s >= Py_UNICODE_SIZE)
{
Py_UNICODE uch2;
((char *) &uch2)[0] = s[0];
((char *) &uch2)[1] = s[1];
if (Py_UNICODE_IS_LOW_SURROGATE(uch2))
{
ch = Py_UNICODE_JOIN_SURROGATES(uch, uch2);
s += Py_UNICODE_SIZE;
}
}
#endif
if (_PyUnicodeWriter_WriteCharInline(&writer, ch) < 0)
goto onError;
continue;
error:
startinpos = s - starts;
if (unicode_decode_call_errorhandler_writer(
errors, &errorHandler,
"unicode_internal", reason,
&starts, &end, &startinpos, &endinpos, &exc, &s,
&writer))
goto onError;
}
Py_XDECREF(errorHandler);
Py_XDECREF(exc);
return _PyUnicodeWriter_Finish(&writer);
onError:
_PyUnicodeWriter_Dealloc(&writer);
Py_XDECREF(errorHandler);
Py_XDECREF(exc);
return NULL;
}
/* --- Latin-1 Codec ------------------------------------------------------ */
PyObject *
PyUnicode_DecodeLatin1(const char *s,
Py_ssize_t size,
const char *errors)
{
/* Latin-1 is equivalent to the first 256 ordinals in Unicode. */
return _PyUnicode_FromUCS1((unsigned char*)s, size);
}
/* create or adjust a UnicodeEncodeError */
static void
make_encode_exception(PyObject **exceptionObject,
const char *encoding,
PyObject *unicode,
Py_ssize_t startpos, Py_ssize_t endpos,
const char *reason)
{
if (*exceptionObject == NULL) {
*exceptionObject = PyObject_CallFunction(
PyExc_UnicodeEncodeError, "sOnns",
encoding, unicode, startpos, endpos, reason);
}
else {
if (PyUnicodeEncodeError_SetStart(*exceptionObject, startpos))
goto onError;
if (PyUnicodeEncodeError_SetEnd(*exceptionObject, endpos))
goto onError;
if (PyUnicodeEncodeError_SetReason(*exceptionObject, reason))
goto onError;
return;
onError:
Py_CLEAR(*exceptionObject);
}
}
/* raises a UnicodeEncodeError */
static void
raise_encode_exception(PyObject **exceptionObject,
const char *encoding,
PyObject *unicode,
Py_ssize_t startpos, Py_ssize_t endpos,
const char *reason)
{
make_encode_exception(exceptionObject,
encoding, unicode, startpos, endpos, reason);
if (*exceptionObject != NULL)
PyCodec_StrictErrors(*exceptionObject);
}
/* error handling callback helper:
build arguments, call the callback and check the arguments,
put the result into newpos and return the replacement string, which
has to be freed by the caller */
static PyObject *
unicode_encode_call_errorhandler(const char *errors,
PyObject **errorHandler,
const char *encoding, const char *reason,
PyObject *unicode, PyObject **exceptionObject,
Py_ssize_t startpos, Py_ssize_t endpos,
Py_ssize_t *newpos)
{
static const char *argparse = "On;encoding error handler must return (str/bytes, int) tuple";
Py_ssize_t len;
PyObject *restuple;
PyObject *resunicode;
if (*errorHandler == NULL) {
*errorHandler = PyCodec_LookupError(errors);
if (*errorHandler == NULL)
return NULL;
}
if (PyUnicode_READY(unicode) == -1)
return NULL;
len = PyUnicode_GET_LENGTH(unicode);
make_encode_exception(exceptionObject,
encoding, unicode, startpos, endpos, reason);
if (*exceptionObject == NULL)
return NULL;
restuple = PyObject_CallFunctionObjArgs(
*errorHandler, *exceptionObject, NULL);
if (restuple == NULL)
return NULL;
if (!PyTuple_Check(restuple)) {
PyErr_SetString(PyExc_TypeError, &argparse[3]);
Py_DECREF(restuple);
return NULL;
}
if (!PyArg_ParseTuple(restuple, argparse,
&resunicode, newpos)) {
Py_DECREF(restuple);
return NULL;
}
if (!PyUnicode_Check(resunicode) && !PyBytes_Check(resunicode)) {
PyErr_SetString(PyExc_TypeError, &argparse[3]);
Py_DECREF(restuple);
return NULL;
}
if (*newpos<0)
*newpos = len + *newpos;
if (*newpos<0 || *newpos>len) {
PyErr_Format(PyExc_IndexError, "position %zd from error handler out of bounds", *newpos);
Py_DECREF(restuple);
return NULL;
}
Py_INCREF(resunicode);
Py_DECREF(restuple);
return resunicode;
}
PyObject *
unicode_encode_ucs1(PyObject *unicode,
const char *errors,
const Py_UCS4 limit)
{
/* input state */
Py_ssize_t pos=0, size;
int kind;
void *data;
/* pointer into the output */
char *str;
const char *encoding = (limit == 256) ? "latin-1" : "ascii";
const char *reason = (limit == 256) ? "ordinal not in range(256)" : "ordinal not in range(128)";
PyObject *error_handler_obj = NULL;
PyObject *exc = NULL;
_Py_error_handler error_handler = _Py_ERROR_UNKNOWN;
PyObject *rep = NULL;
/* output object */
_PyBytesWriter writer;
if (PyUnicode_READY(unicode) == -1)
return NULL;
size = PyUnicode_GET_LENGTH(unicode);
kind = PyUnicode_KIND(unicode);
data = PyUnicode_DATA(unicode);
/* allocate enough for a simple encoding without
replacements, if we need more, we'll resize */
if (size == 0)
return PyBytes_FromStringAndSize(NULL, 0);
_PyBytesWriter_Init(&writer);
str = _PyBytesWriter_Alloc(&writer, size);
if (str == NULL)
return NULL;
while (pos < size) {
Py_UCS4 ch = PyUnicode_READ(kind, data, pos);
/* can we encode this? */
if (ch < limit) {
/* no overflow check, because we know that the space is enough */
*str++ = (char)ch;
++pos;
}
else {
Py_ssize_t newpos, i;
/* startpos for collecting unencodable chars */
Py_ssize_t collstart = pos;
Py_ssize_t collend = collstart + 1;
/* find all unecodable characters */
while ((collend < size) && (PyUnicode_READ(kind, data, collend) >= limit))
++collend;
/* Only overallocate the buffer if it's not the last write */
writer.overallocate = (collend < size);
/* cache callback name lookup (if not done yet, i.e. it's the first error) */
if (error_handler == _Py_ERROR_UNKNOWN)
error_handler = get_error_handler(errors);
switch (error_handler) {
case _Py_ERROR_STRICT:
raise_encode_exception(&exc, encoding, unicode, collstart, collend, reason);
goto onError;
case _Py_ERROR_REPLACE:
memset(str, '?', collend - collstart);
str += (collend - collstart);
/* fall through */
case _Py_ERROR_IGNORE:
pos = collend;
break;
case _Py_ERROR_BACKSLASHREPLACE:
/* subtract preallocated bytes */
writer.min_size -= (collend - collstart);
str = backslashreplace(&writer, str,
unicode, collstart, collend);
if (str == NULL)
goto onError;
pos = collend;
break;
case _Py_ERROR_XMLCHARREFREPLACE:
/* subtract preallocated bytes */
writer.min_size -= (collend - collstart);
str = xmlcharrefreplace(&writer, str,
unicode, collstart, collend);
if (str == NULL)
goto onError;
pos = collend;
break;
case _Py_ERROR_SURROGATEESCAPE:
for (i = collstart; i < collend; ++i) {
ch = PyUnicode_READ(kind, data, i);
if (ch < 0xdc80 || 0xdcff < ch) {
/* Not a UTF-8b surrogate */
break;
}
*str++ = (char)(ch - 0xdc00);
++pos;
}
if (i >= collend)
break;
collstart = pos;
assert(collstart != collend);
/* fall through */
default:
rep = unicode_encode_call_errorhandler(errors, &error_handler_obj,
encoding, reason, unicode, &exc,
collstart, collend, &newpos);
if (rep == NULL)
goto onError;
/* subtract preallocated bytes */
writer.min_size -= 1;
if (PyBytes_Check(rep)) {
/* Directly copy bytes result to output. */
str = _PyBytesWriter_WriteBytes(&writer, str,
PyBytes_AS_STRING(rep),
PyBytes_GET_SIZE(rep));
}
else {
assert(PyUnicode_Check(rep));
if (PyUnicode_READY(rep) < 0)
goto onError;
if (PyUnicode_IS_ASCII(rep)) {
/* Fast path: all characters are smaller than limit */
assert(limit >= 128);
assert(PyUnicode_KIND(rep) == PyUnicode_1BYTE_KIND);
str = _PyBytesWriter_WriteBytes(&writer, str,
PyUnicode_DATA(rep),
PyUnicode_GET_LENGTH(rep));
}
else {
Py_ssize_t repsize = PyUnicode_GET_LENGTH(rep);
str = _PyBytesWriter_Prepare(&writer, str, repsize);
if (str == NULL)
goto onError;
/* check if there is anything unencodable in the
replacement and copy it to the output */
for (i = 0; repsize-->0; ++i, ++str) {
ch = PyUnicode_READ_CHAR(rep, i);
if (ch >= limit) {
raise_encode_exception(&exc, encoding, unicode,
pos, pos+1, reason);
goto onError;
}
*str = (char)ch;
}
}
}
if (str == NULL)
goto onError;
pos = newpos;
Py_CLEAR(rep);
}
/* If overallocation was disabled, ensure that it was the last
write. Otherwise, we missed an optimization */
assert(writer.overallocate || pos == size);
}
}
Py_XDECREF(error_handler_obj);
Py_XDECREF(exc);
return _PyBytesWriter_Finish(&writer, str);
onError:
Py_XDECREF(rep);
_PyBytesWriter_Dealloc(&writer);
Py_XDECREF(error_handler_obj);
Py_XDECREF(exc);
return NULL;
}
PyObject *
_PyUnicode_AsLatin1String(PyObject *unicode, const char *errors)
{
if (!PyUnicode_Check(unicode)) {
PyErr_BadArgument();
return NULL;
}
if (PyUnicode_READY(unicode) == -1)
return NULL;
/* Fast path: if it is a one-byte string, construct
bytes object directly. */
if (PyUnicode_KIND(unicode) == PyUnicode_1BYTE_KIND)
return PyBytes_FromStringAndSize(PyUnicode_DATA(unicode),
PyUnicode_GET_LENGTH(unicode));
/* Non-Latin-1 characters present. Defer to above function to
raise the exception. */
return unicode_encode_ucs1(unicode, errors, 256);
}
PyObject*
PyUnicode_AsLatin1String(PyObject *unicode)
{
return _PyUnicode_AsLatin1String(unicode, NULL);
}
/* --- 7-bit ASCII Codec -------------------------------------------------- */
PyObject *
PyUnicode_DecodeASCII(const char *s,
Py_ssize_t size,
const char *errors)
{
const char *starts = s;
_PyUnicodeWriter writer;
int kind;
void *data;
Py_ssize_t startinpos;
Py_ssize_t endinpos;
Py_ssize_t outpos;
const char *e;
PyObject *error_handler_obj = NULL;
PyObject *exc = NULL;
_Py_error_handler error_handler = _Py_ERROR_UNKNOWN;
if (size == 0)
_Py_RETURN_UNICODE_EMPTY();
/* ASCII is equivalent to the first 128 ordinals in Unicode. */
if (size == 1 && (unsigned char)s[0] < 128)
return get_latin1_char((unsigned char)s[0]);
_PyUnicodeWriter_Init(&writer);
writer.min_length = size;
if (_PyUnicodeWriter_Prepare(&writer, writer.min_length, 127) < 0)
return NULL;
e = s + size;
data = writer.data;
outpos = ascii_decode(s, e, (Py_UCS1 *)data);
writer.pos = outpos;
if (writer.pos == size)
return _PyUnicodeWriter_Finish(&writer);
s += writer.pos;
kind = writer.kind;
while (s < e) {
unsigned char c = (unsigned char)*s;
if (c < 128) {
PyUnicode_WRITE(kind, data, writer.pos, c);
writer.pos++;
++s;
continue;
}
/* byte outsize range 0x00..0x7f: call the error handler */
if (error_handler == _Py_ERROR_UNKNOWN)
error_handler = get_error_handler(errors);
switch (error_handler)
{
case _Py_ERROR_REPLACE:
case _Py_ERROR_SURROGATEESCAPE:
/* Fast-path: the error handler only writes one character,
but we may switch to UCS2 at the first write */
if (_PyUnicodeWriter_PrepareKind(&writer, PyUnicode_2BYTE_KIND) < 0)
goto onError;
kind = writer.kind;
data = writer.data;
if (error_handler == _Py_ERROR_REPLACE)
PyUnicode_WRITE(kind, data, writer.pos, 0xfffd);
else
PyUnicode_WRITE(kind, data, writer.pos, c + 0xdc00);
writer.pos++;
++s;
break;
case _Py_ERROR_IGNORE:
++s;
break;
default:
startinpos = s-starts;
endinpos = startinpos + 1;
if (unicode_decode_call_errorhandler_writer(
errors, &error_handler_obj,
"ascii", "ordinal not in range(128)",
&starts, &e, &startinpos, &endinpos, &exc, &s,
&writer))
goto onError;
kind = writer.kind;
data = writer.data;
}
}
Py_XDECREF(error_handler_obj);
Py_XDECREF(exc);
return _PyUnicodeWriter_Finish(&writer);
onError:
_PyUnicodeWriter_Dealloc(&writer);
Py_XDECREF(error_handler_obj);
Py_XDECREF(exc);
return NULL;
}
PyObject *
_PyUnicode_AsASCIIString(PyObject *unicode, const char *errors)
{
if (!PyUnicode_Check(unicode)) {
PyErr_BadArgument();
return NULL;
}
if (PyUnicode_READY(unicode) == -1)
return NULL;
/* Fast path: if it is an ASCII-only string, construct bytes object
directly. Else defer to above function to raise the exception. */
if (PyUnicode_IS_ASCII(unicode))
return PyBytes_FromStringAndSize(PyUnicode_DATA(unicode),
PyUnicode_GET_LENGTH(unicode));
return unicode_encode_ucs1(unicode, errors, 128);
}
PyObject *
PyUnicode_AsASCIIString(PyObject *unicode)
{
return _PyUnicode_AsASCIIString(unicode, NULL);
}
/* --- Character Mapping Codec -------------------------------------------- */
static int
charmap_decode_string(const char *s,
Py_ssize_t size,
PyObject *mapping,
const char *errors,
_PyUnicodeWriter *writer)
{
const char *starts = s;
const char *e;
Py_ssize_t startinpos, endinpos;
PyObject *errorHandler = NULL, *exc = NULL;
Py_ssize_t maplen;
enum PyUnicode_Kind mapkind;
void *mapdata;
Py_UCS4 x;
unsigned char ch;
if (PyUnicode_READY(mapping) == -1)
return -1;
maplen = PyUnicode_GET_LENGTH(mapping);
mapdata = PyUnicode_DATA(mapping);
mapkind = PyUnicode_KIND(mapping);
e = s + size;
if (mapkind == PyUnicode_1BYTE_KIND && maplen >= 256) {
/* fast-path for cp037, cp500 and iso8859_1 encodings. iso8859_1
* is disabled in encoding aliases, latin1 is preferred because
* its implementation is faster. */
Py_UCS1 *mapdata_ucs1 = (Py_UCS1 *)mapdata;
Py_UCS1 *outdata = (Py_UCS1 *)writer->data;
Py_UCS4 maxchar = writer->maxchar;
assert (writer->kind == PyUnicode_1BYTE_KIND);
while (s < e) {
ch = *s;
x = mapdata_ucs1[ch];
if (x > maxchar) {
if (_PyUnicodeWriter_Prepare(writer, 1, 0xff) == -1)
goto onError;
maxchar = writer->maxchar;
outdata = (Py_UCS1 *)writer->data;
}
outdata[writer->pos] = x;
writer->pos++;
++s;
}
return 0;
}
while (s < e) {
if (mapkind == PyUnicode_2BYTE_KIND && maplen >= 256) {
enum PyUnicode_Kind outkind = writer->kind;
Py_UCS2 *mapdata_ucs2 = (Py_UCS2 *)mapdata;
if (outkind == PyUnicode_1BYTE_KIND) {
Py_UCS1 *outdata = (Py_UCS1 *)writer->data;
Py_UCS4 maxchar = writer->maxchar;
while (s < e) {
ch = *s;
x = mapdata_ucs2[ch];
if (x > maxchar)
goto Error;
outdata[writer->pos] = x;
writer->pos++;
++s;
}
break;
}
else if (outkind == PyUnicode_2BYTE_KIND) {
Py_UCS2 *outdata = (Py_UCS2 *)writer->data;
while (s < e) {
ch = *s;
x = mapdata_ucs2[ch];
if (x == 0xFFFE)
goto Error;
outdata[writer->pos] = x;
writer->pos++;
++s;
}
break;
}
}
ch = *s;
if (ch < maplen)
x = PyUnicode_READ(mapkind, mapdata, ch);
else
x = 0xfffe; /* invalid value */
Error:
if (x == 0xfffe)
{
/* undefined mapping */
startinpos = s-starts;
endinpos = startinpos+1;
if (unicode_decode_call_errorhandler_writer(
errors, &errorHandler,
"charmap", "character maps to <undefined>",
&starts, &e, &startinpos, &endinpos, &exc, &s,
writer)) {
goto onError;
}
continue;
}
if (_PyUnicodeWriter_WriteCharInline(writer, x) < 0)
goto onError;
++s;
}
Py_XDECREF(errorHandler);
Py_XDECREF(exc);
return 0;
onError:
Py_XDECREF(errorHandler);
Py_XDECREF(exc);
return -1;
}
static int
charmap_decode_mapping(const char *s,
Py_ssize_t size,
PyObject *mapping,
const char *errors,
_PyUnicodeWriter *writer)
{
const char *starts = s;
const char *e;
Py_ssize_t startinpos, endinpos;
PyObject *errorHandler = NULL, *exc = NULL;
unsigned char ch;
PyObject *key, *item = NULL;
e = s + size;
while (s < e) {
ch = *s;
/* Get mapping (char ordinal -> integer, Unicode char or None) */
key = PyLong_FromLong((long)ch);
if (key == NULL)
goto onError;
item = PyObject_GetItem(mapping, key);
Py_DECREF(key);
if (item == NULL) {
if (PyErr_ExceptionMatches(PyExc_LookupError)) {
/* No mapping found means: mapping is undefined. */
PyErr_Clear();
goto Undefined;
} else
goto onError;
}
/* Apply mapping */
if (item == Py_None)
goto Undefined;
if (PyLong_Check(item)) {
long value = PyLong_AS_LONG(item);
if (value == 0xFFFE)
goto Undefined;
if (value < 0 || value > MAX_UNICODE) {
PyErr_Format(PyExc_TypeError,
"character mapping must be in range(0x%lx)",
(unsigned long)MAX_UNICODE + 1);
goto onError;
}
if (_PyUnicodeWriter_WriteCharInline(writer, value) < 0)
goto onError;
}
else if (PyUnicode_Check(item)) {
if (PyUnicode_READY(item) == -1)
goto onError;
if (PyUnicode_GET_LENGTH(item) == 1) {
Py_UCS4 value = PyUnicode_READ_CHAR(item, 0);
if (value == 0xFFFE)
goto Undefined;
if (_PyUnicodeWriter_WriteCharInline(writer, value) < 0)
goto onError;
}
else {
writer->overallocate = 1;
if (_PyUnicodeWriter_WriteStr(writer, item) == -1)
goto onError;
}
}
else {
/* wrong return value */
PyErr_SetString(PyExc_TypeError,
"character mapping must return integer, None or str");
goto onError;
}
Py_CLEAR(item);
++s;
continue;
Undefined:
/* undefined mapping */
Py_CLEAR(item);
startinpos = s-starts;
endinpos = startinpos+1;
if (unicode_decode_call_errorhandler_writer(
errors, &errorHandler,
"charmap", "character maps to <undefined>",
&starts, &e, &startinpos, &endinpos, &exc, &s,
writer)) {
goto onError;
}
}
Py_XDECREF(errorHandler);
Py_XDECREF(exc);
return 0;
onError:
Py_XDECREF(item);
Py_XDECREF(errorHandler);
Py_XDECREF(exc);
return -1;
}
PyObject *
PyUnicode_DecodeCharmap(const char *s,
Py_ssize_t size,
PyObject *mapping,
const char *errors)
{
_PyUnicodeWriter writer;
/* Default to Latin-1 */
if (mapping == NULL)
return PyUnicode_DecodeLatin1(s, size, errors);
if (size == 0)
_Py_RETURN_UNICODE_EMPTY();
_PyUnicodeWriter_Init(&writer);
writer.min_length = size;
if (_PyUnicodeWriter_Prepare(&writer, writer.min_length, 127) == -1)
goto onError;
if (PyUnicode_CheckExact(mapping)) {
if (charmap_decode_string(s, size, mapping, errors, &writer) < 0)
goto onError;
}
else {
if (charmap_decode_mapping(s, size, mapping, errors, &writer) < 0)
goto onError;
}
return _PyUnicodeWriter_Finish(&writer);
onError:
_PyUnicodeWriter_Dealloc(&writer);
return NULL;
}
/* Charmap encoding: the lookup table */
struct encoding_map {
PyObject_HEAD
unsigned char level1[32];
int count2, count3;
unsigned char level23[1];
};
static PyObject*
encoding_map_size(PyObject *obj, PyObject* args)
{
struct encoding_map *map = (struct encoding_map*)obj;
return PyLong_FromLong(sizeof(*map) - 1 + 16*map->count2 +
128*map->count3);
}
static PyMethodDef encoding_map_methods[] = {
{"size", encoding_map_size, METH_NOARGS,
PyDoc_STR("Return the size (in bytes) of this object") },
{ 0 }
};
static void
encoding_map_dealloc(PyObject* o)
{
PyObject_FREE(o);
}
static PyTypeObject EncodingMapType = {
PyVarObject_HEAD_INIT(NULL, 0)
"EncodingMap", /*tp_name*/
sizeof(struct encoding_map), /*tp_basicsize*/
0, /*tp_itemsize*/
/* methods */
encoding_map_dealloc, /*tp_dealloc*/
0, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
0, /*tp_reserved*/
0, /*tp_repr*/
0, /*tp_as_number*/
0, /*tp_as_sequence*/
0, /*tp_as_mapping*/
0, /*tp_hash*/
0, /*tp_call*/
0, /*tp_str*/
0, /*tp_getattro*/
0, /*tp_setattro*/
0, /*tp_as_buffer*/
Py_TPFLAGS_DEFAULT, /*tp_flags*/
0, /*tp_doc*/
0, /*tp_traverse*/
0, /*tp_clear*/
0, /*tp_richcompare*/
0, /*tp_weaklistoffset*/
0, /*tp_iter*/
0, /*tp_iternext*/
encoding_map_methods, /*tp_methods*/
0, /*tp_members*/
0, /*tp_getset*/
0, /*tp_base*/
0, /*tp_dict*/
0, /*tp_descr_get*/
0, /*tp_descr_set*/
0, /*tp_dictoffset*/
0, /*tp_init*/
0, /*tp_alloc*/
0, /*tp_new*/
0, /*tp_free*/
0, /*tp_is_gc*/
};
PyObject*
PyUnicode_BuildEncodingMap(PyObject* string)
{
PyObject *result;
struct encoding_map *mresult;
int i;
int need_dict = 0;
unsigned char level1[32];
unsigned char level2[512];
unsigned char *mlevel1, *mlevel2, *mlevel3;
int count2 = 0, count3 = 0;
int kind;
void *data;
Py_ssize_t length;
Py_UCS4 ch;
if (!PyUnicode_Check(string) || !PyUnicode_GET_LENGTH(string)) {
PyErr_BadArgument();
return NULL;
}
kind = PyUnicode_KIND(string);
data = PyUnicode_DATA(string);
length = PyUnicode_GET_LENGTH(string);
length = Py_MIN(length, 256);
memset(level1, 0xFF, sizeof level1);
memset(level2, 0xFF, sizeof level2);
/* If there isn't a one-to-one mapping of NULL to \0,
or if there are non-BMP characters, we need to use
a mapping dictionary. */
if (PyUnicode_READ(kind, data, 0) != 0)
need_dict = 1;
for (i = 1; i < length; i++) {
int l1, l2;
ch = PyUnicode_READ(kind, data, i);
if (ch == 0 || ch > 0xFFFF) {
need_dict = 1;
break;
}
if (ch == 0xFFFE)
/* unmapped character */
continue;
l1 = ch >> 11;
l2 = ch >> 7;
if (level1[l1] == 0xFF)
level1[l1] = count2++;
if (level2[l2] == 0xFF)
level2[l2] = count3++;
}
if (count2 >= 0xFF || count3 >= 0xFF)
need_dict = 1;
if (need_dict) {
PyObject *result = PyDict_New();
PyObject *key, *value;
if (!result)
return NULL;
for (i = 0; i < length; i++) {
key = PyLong_FromLong(PyUnicode_READ(kind, data, i));
value = PyLong_FromLong(i);
if (!key || !value)
goto failed1;
if (PyDict_SetItem(result, key, value) == -1)
goto failed1;
Py_DECREF(key);
Py_DECREF(value);
}
return result;
failed1:
Py_XDECREF(key);
Py_XDECREF(value);
Py_DECREF(result);
return NULL;
}
/* Create a three-level trie */
result = PyObject_MALLOC(sizeof(struct encoding_map) +
16*count2 + 128*count3 - 1);
if (!result)
return PyErr_NoMemory();
PyObject_Init(result, &EncodingMapType);
mresult = (struct encoding_map*)result;
mresult->count2 = count2;
mresult->count3 = count3;
mlevel1 = mresult->level1;
mlevel2 = mresult->level23;
mlevel3 = mresult->level23 + 16*count2;
memcpy(mlevel1, level1, 32);
memset(mlevel2, 0xFF, 16*count2);
bzero(mlevel3, 128*count3);
count3 = 0;
for (i = 1; i < length; i++) {
int o1, o2, o3, i2, i3;
Py_UCS4 ch = PyUnicode_READ(kind, data, i);
if (ch == 0xFFFE)
/* unmapped character */
continue;
o1 = ch>>11;
o2 = (ch>>7) & 0xF;
i2 = 16*mlevel1[o1] + o2;
if (mlevel2[i2] == 0xFF)
mlevel2[i2] = count3++;
o3 = ch & 0x7F;
i3 = 128*mlevel2[i2] + o3;
mlevel3[i3] = i;
}
return result;
}
static int
encoding_map_lookup(Py_UCS4 c, PyObject *mapping)
{
struct encoding_map *map = (struct encoding_map*)mapping;
int l1 = c>>11;
int l2 = (c>>7) & 0xF;
int l3 = c & 0x7F;
int i;
if (c > 0xFFFF)
return -1;
if (c == 0)
return 0;
/* level 1*/
i = map->level1[l1];
if (i == 0xFF) {
return -1;
}
/* level 2*/
i = map->level23[16*i+l2];
if (i == 0xFF) {
return -1;
}
/* level 3 */
i = map->level23[16*map->count2 + 128*i + l3];
if (i == 0) {
return -1;
}
return i;
}
/* Lookup the character ch in the mapping. If the character
can't be found, Py_None is returned (or NULL, if another
error occurred). */
static PyObject *
charmapencode_lookup(Py_UCS4 c, PyObject *mapping)
{
PyObject *w = PyLong_FromLong((long)c);
PyObject *x;
if (w == NULL)
return NULL;
x = PyObject_GetItem(mapping, w);
Py_DECREF(w);
if (x == NULL) {
if (PyErr_ExceptionMatches(PyExc_LookupError)) {
/* No mapping found means: mapping is undefined. */
PyErr_Clear();
x = Py_None;
Py_INCREF(x);
return x;
} else
return NULL;
}
else if (x == Py_None)
return x;
else if (PyLong_Check(x)) {
long value = PyLong_AS_LONG(x);
if (value < 0 || value > 255) {
PyErr_SetString(PyExc_TypeError,
"character mapping must be in range(256)");
Py_DECREF(x);
return NULL;
}
return x;
}
else if (PyBytes_Check(x))
return x;
else {
/* wrong return value */
PyErr_Format(PyExc_TypeError,
"character mapping must return integer, bytes or None, not %.400s",
x->ob_type->tp_name);
Py_DECREF(x);
return NULL;
}
}
static int
charmapencode_resize(PyObject **outobj, Py_ssize_t *outpos, Py_ssize_t requiredsize)
{
Py_ssize_t outsize = PyBytes_GET_SIZE(*outobj);
/* exponentially overallocate to minimize reallocations */
if (requiredsize < 2*outsize)
requiredsize = 2*outsize;
if (_PyBytes_Resize(outobj, requiredsize))
return -1;
return 0;
}
typedef enum charmapencode_result {
enc_SUCCESS, enc_FAILED, enc_EXCEPTION
} charmapencode_result;
/* lookup the character, put the result in the output string and adjust
various state variables. Resize the output bytes object if not enough
space is available. Return a new reference to the object that
was put in the output buffer, or Py_None, if the mapping was undefined
(in which case no character was written) or NULL, if a
reallocation error occurred. The caller must decref the result */
static charmapencode_result
charmapencode_output(Py_UCS4 c, PyObject *mapping,
PyObject **outobj, Py_ssize_t *outpos)
{
PyObject *rep;
char *outstart;
Py_ssize_t outsize = PyBytes_GET_SIZE(*outobj);
if (Py_TYPE(mapping) == &EncodingMapType) {
int res = encoding_map_lookup(c, mapping);
Py_ssize_t requiredsize = *outpos+1;
if (res == -1)
return enc_FAILED;
if (outsize<requiredsize)
if (charmapencode_resize(outobj, outpos, requiredsize))
return enc_EXCEPTION;
outstart = PyBytes_AS_STRING(*outobj);
outstart[(*outpos)++] = (char)res;
return enc_SUCCESS;
}
rep = charmapencode_lookup(c, mapping);
if (rep==NULL)
return enc_EXCEPTION;
else if (rep==Py_None) {
Py_DECREF(rep);
return enc_FAILED;
} else {
if (PyLong_Check(rep)) {
Py_ssize_t requiredsize = *outpos+1;
if (outsize<requiredsize)
if (charmapencode_resize(outobj, outpos, requiredsize)) {
Py_DECREF(rep);
return enc_EXCEPTION;
}
outstart = PyBytes_AS_STRING(*outobj);
outstart[(*outpos)++] = (char)PyLong_AS_LONG(rep);
}
else {
const char *repchars = PyBytes_AS_STRING(rep);
Py_ssize_t repsize = PyBytes_GET_SIZE(rep);
Py_ssize_t requiredsize = *outpos+repsize;
if (outsize<requiredsize)
if (charmapencode_resize(outobj, outpos, requiredsize)) {
Py_DECREF(rep);
return enc_EXCEPTION;
}
outstart = PyBytes_AS_STRING(*outobj);
memcpy(outstart + *outpos, repchars, repsize);
*outpos += repsize;
}
}
Py_DECREF(rep);
return enc_SUCCESS;
}
/* handle an error in PyUnicode_EncodeCharmap
Return 0 on success, -1 on error */
static int
charmap_encoding_error(
PyObject *unicode, Py_ssize_t *inpos, PyObject *mapping,
PyObject **exceptionObject,
_Py_error_handler *error_handler, PyObject **error_handler_obj, const char *errors,
PyObject **res, Py_ssize_t *respos)
{
PyObject *repunicode = NULL; /* initialize to prevent gcc warning */
Py_ssize_t size, repsize;
Py_ssize_t newpos;
enum PyUnicode_Kind kind;
void *data;
Py_ssize_t index;
/* startpos for collecting unencodable chars */
Py_ssize_t collstartpos = *inpos;
Py_ssize_t collendpos = *inpos+1;
Py_ssize_t collpos;
char *encoding = "charmap";
char *reason = "character maps to <undefined>";
charmapencode_result x;
Py_UCS4 ch;
int val;
if (PyUnicode_READY(unicode) == -1)
return -1;
size = PyUnicode_GET_LENGTH(unicode);
/* find all unencodable characters */
while (collendpos < size) {
PyObject *rep;
if (Py_TYPE(mapping) == &EncodingMapType) {
ch = PyUnicode_READ_CHAR(unicode, collendpos);
val = encoding_map_lookup(ch, mapping);
if (val != -1)
break;
++collendpos;
continue;
}
ch = PyUnicode_READ_CHAR(unicode, collendpos);
rep = charmapencode_lookup(ch, mapping);
if (rep==NULL)
return -1;
else if (rep!=Py_None) {
Py_DECREF(rep);
break;
}
Py_DECREF(rep);
++collendpos;
}
/* cache callback name lookup
* (if not done yet, i.e. it's the first error) */
if (*error_handler == _Py_ERROR_UNKNOWN)
*error_handler = get_error_handler(errors);
switch (*error_handler) {
case _Py_ERROR_STRICT:
raise_encode_exception(exceptionObject, encoding, unicode, collstartpos, collendpos, reason);
return -1;
case _Py_ERROR_REPLACE:
for (collpos = collstartpos; collpos<collendpos; ++collpos) {
x = charmapencode_output('?', mapping, res, respos);
if (x==enc_EXCEPTION) {
return -1;
}
else if (x==enc_FAILED) {
raise_encode_exception(exceptionObject, encoding, unicode, collstartpos, collendpos, reason);
return -1;
}
}
/* fall through */
case _Py_ERROR_IGNORE:
*inpos = collendpos;
break;
case _Py_ERROR_XMLCHARREFREPLACE:
/* generate replacement (temporarily (mis)uses p) */
for (collpos = collstartpos; collpos < collendpos; ++collpos) {
char buffer[2+29+1+1];
char *cp;
sprintf(buffer, "&#%d;", (int)PyUnicode_READ_CHAR(unicode, collpos));
for (cp = buffer; *cp; ++cp) {
x = charmapencode_output(*cp, mapping, res, respos);
if (x==enc_EXCEPTION)
return -1;
else if (x==enc_FAILED) {
raise_encode_exception(exceptionObject, encoding, unicode, collstartpos, collendpos, reason);
return -1;
}
}
}
*inpos = collendpos;
break;
default:
repunicode = unicode_encode_call_errorhandler(errors, error_handler_obj,
encoding, reason, unicode, exceptionObject,
collstartpos, collendpos, &newpos);
if (repunicode == NULL)
return -1;
if (PyBytes_Check(repunicode)) {
/* Directly copy bytes result to output. */
Py_ssize_t outsize = PyBytes_Size(*res);
Py_ssize_t requiredsize;
repsize = PyBytes_Size(repunicode);
requiredsize = *respos + repsize;
if (requiredsize > outsize)
/* Make room for all additional bytes. */
if (charmapencode_resize(res, respos, requiredsize)) {
Py_DECREF(repunicode);
return -1;
}
memcpy(PyBytes_AsString(*res) + *respos,
PyBytes_AsString(repunicode), repsize);
*respos += repsize;
*inpos = newpos;
Py_DECREF(repunicode);
break;
}
/* generate replacement */
if (PyUnicode_READY(repunicode) == -1) {
Py_DECREF(repunicode);
return -1;
}
repsize = PyUnicode_GET_LENGTH(repunicode);
data = PyUnicode_DATA(repunicode);
kind = PyUnicode_KIND(repunicode);
for (index = 0; index < repsize; index++) {
Py_UCS4 repch = PyUnicode_READ(kind, data, index);
x = charmapencode_output(repch, mapping, res, respos);
if (x==enc_EXCEPTION) {
Py_DECREF(repunicode);
return -1;
}
else if (x==enc_FAILED) {
Py_DECREF(repunicode);
raise_encode_exception(exceptionObject, encoding, unicode, collstartpos, collendpos, reason);
return -1;
}
}
*inpos = newpos;
Py_DECREF(repunicode);
}
return 0;
}
PyObject *
_PyUnicode_EncodeCharmap(PyObject *unicode,
PyObject *mapping,
const char *errors)
{
/* output object */
PyObject *res = NULL;
/* current input position */
Py_ssize_t inpos = 0;
Py_ssize_t size;
/* current output position */
Py_ssize_t respos = 0;
PyObject *error_handler_obj = NULL;
PyObject *exc = NULL;
_Py_error_handler error_handler = _Py_ERROR_UNKNOWN;
void *data;
int kind;
if (PyUnicode_READY(unicode) == -1)
return NULL;
size = PyUnicode_GET_LENGTH(unicode);
data = PyUnicode_DATA(unicode);
kind = PyUnicode_KIND(unicode);
/* Default to Latin-1 */
if (mapping == NULL)
return unicode_encode_ucs1(unicode, errors, 256);
/* allocate enough for a simple encoding without
replacements, if we need more, we'll resize */
res = PyBytes_FromStringAndSize(NULL, size);
if (res == NULL)
goto onError;
if (size == 0)
return res;
while (inpos<size) {
Py_UCS4 ch = PyUnicode_READ(kind, data, inpos);
/* try to encode it */
charmapencode_result x = charmapencode_output(ch, mapping, &res, &respos);
if (x==enc_EXCEPTION) /* error */
goto onError;
if (x==enc_FAILED) { /* unencodable character */
if (charmap_encoding_error(unicode, &inpos, mapping,
&exc,
&error_handler, &error_handler_obj, errors,
&res, &respos)) {
goto onError;
}
}
else
/* done with this character => adjust input position */
++inpos;
}
/* Resize if we allocated to much */
if (respos<PyBytes_GET_SIZE(res))
if (_PyBytes_Resize(&res, respos) < 0)
goto onError;
Py_XDECREF(exc);
Py_XDECREF(error_handler_obj);
return res;
onError:
Py_XDECREF(res);
Py_XDECREF(exc);
Py_XDECREF(error_handler_obj);
return NULL;
}
PyObject *
PyUnicode_AsCharmapString(PyObject *unicode,
PyObject *mapping)
{
if (!PyUnicode_Check(unicode) || mapping == NULL) {
PyErr_BadArgument();
return NULL;
}
return _PyUnicode_EncodeCharmap(unicode, mapping, NULL);
}
/* create or adjust a UnicodeTranslateError */
static void
make_translate_exception(PyObject **exceptionObject,
PyObject *unicode,
Py_ssize_t startpos, Py_ssize_t endpos,
const char *reason)
{
if (*exceptionObject == NULL) {
*exceptionObject = _PyUnicodeTranslateError_Create(
unicode, startpos, endpos, reason);
}
else {
if (PyUnicodeTranslateError_SetStart(*exceptionObject, startpos))
goto onError;
if (PyUnicodeTranslateError_SetEnd(*exceptionObject, endpos))
goto onError;
if (PyUnicodeTranslateError_SetReason(*exceptionObject, reason))
goto onError;
return;
onError:
Py_CLEAR(*exceptionObject);
}
}
/* error handling callback helper:
build arguments, call the callback and check the arguments,
put the result into newpos and return the replacement string, which
has to be freed by the caller */
static PyObject *
unicode_translate_call_errorhandler(const char *errors,
PyObject **errorHandler,
const char *reason,
PyObject *unicode, PyObject **exceptionObject,
Py_ssize_t startpos, Py_ssize_t endpos,
Py_ssize_t *newpos)
{
static const char *argparse = "O!n;translating error handler must return (str, int) tuple";
Py_ssize_t i_newpos;
PyObject *restuple;
PyObject *resunicode;
if (*errorHandler == NULL) {
*errorHandler = PyCodec_LookupError(errors);
if (*errorHandler == NULL)
return NULL;
}
make_translate_exception(exceptionObject,
unicode, startpos, endpos, reason);
if (*exceptionObject == NULL)
return NULL;
restuple = PyObject_CallFunctionObjArgs(
*errorHandler, *exceptionObject, NULL);
if (restuple == NULL)
return NULL;
if (!PyTuple_Check(restuple)) {
PyErr_SetString(PyExc_TypeError, &argparse[4]);
Py_DECREF(restuple);
return NULL;
}
if (!PyArg_ParseTuple(restuple, argparse, &PyUnicode_Type,
&resunicode, &i_newpos)) {
Py_DECREF(restuple);
return NULL;
}
if (i_newpos<0)
*newpos = PyUnicode_GET_LENGTH(unicode)+i_newpos;
else
*newpos = i_newpos;
if (*newpos<0 || *newpos>PyUnicode_GET_LENGTH(unicode)) {
PyErr_Format(PyExc_IndexError, "position %zd from error handler out of bounds", *newpos);
Py_DECREF(restuple);
return NULL;
}
Py_INCREF(resunicode);
Py_DECREF(restuple);
return resunicode;
}
/* Lookup the character ch in the mapping and put the result in result,
which must be decrefed by the caller.
Return 0 on success, -1 on error */
static int
charmaptranslate_lookup(Py_UCS4 c, PyObject *mapping, PyObject **result)
{
PyObject *w = PyLong_FromLong((long)c);
PyObject *x;
if (w == NULL)
return -1;
x = PyObject_GetItem(mapping, w);
Py_DECREF(w);
if (x == NULL) {
if (PyErr_ExceptionMatches(PyExc_LookupError)) {
/* No mapping found means: use 1:1 mapping. */
PyErr_Clear();
*result = NULL;
return 0;
} else
return -1;
}
else if (x == Py_None) {
*result = x;
return 0;
}
else if (PyLong_Check(x)) {
long value = PyLong_AS_LONG(x);
if (value < 0 || value > MAX_UNICODE) {
PyErr_Format(PyExc_ValueError,
"character mapping must be in range(0x%x)",
MAX_UNICODE+1);
Py_DECREF(x);
return -1;
}
*result = x;
return 0;
}
else if (PyUnicode_Check(x)) {
*result = x;
return 0;
}
else {
/* wrong return value */
PyErr_SetString(PyExc_TypeError,
"character mapping must return integer, None or str");
Py_DECREF(x);
return -1;
}
}
/* lookup the character, write the result into the writer.
Return 1 if the result was written into the writer, return 0 if the mapping
was undefined, raise an exception return -1 on error. */
static int
charmaptranslate_output(Py_UCS4 ch, PyObject *mapping,
_PyUnicodeWriter *writer)
{
PyObject *item;
if (charmaptranslate_lookup(ch, mapping, &item))
return -1;
if (item == NULL) {
/* not found => default to 1:1 mapping */
if (_PyUnicodeWriter_WriteCharInline(writer, ch) < 0) {
return -1;
}
return 1;
}
if (item == Py_None) {
Py_DECREF(item);
return 0;
}
if (PyLong_Check(item)) {
long ch = (Py_UCS4)PyLong_AS_LONG(item);
/* PyLong_AS_LONG() cannot fail, charmaptranslate_lookup() already
used it */
if (_PyUnicodeWriter_WriteCharInline(writer, ch) < 0) {
Py_DECREF(item);
return -1;
}
Py_DECREF(item);
return 1;
}
if (!PyUnicode_Check(item)) {
Py_DECREF(item);
return -1;
}
if (_PyUnicodeWriter_WriteStr(writer, item) < 0) {
Py_DECREF(item);
return -1;
}
Py_DECREF(item);
return 1;
}
static int
unicode_fast_translate_lookup(PyObject *mapping, Py_UCS1 ch,
Py_UCS1 *translate)
{
PyObject *item = NULL;
int ret = 0;
if (charmaptranslate_lookup(ch, mapping, &item)) {
return -1;
}
if (item == Py_None) {
/* deletion */
translate[ch] = 0xfe;
}
else if (item == NULL) {
/* not found => default to 1:1 mapping */
translate[ch] = ch;
return 1;
}
else if (PyLong_Check(item)) {
long replace = PyLong_AS_LONG(item);
/* PyLong_AS_LONG() cannot fail, charmaptranslate_lookup() already
used it */
if (127 < replace) {
/* invalid character or character outside ASCII:
skip the fast translate */
goto exit;
}
translate[ch] = (Py_UCS1)replace;
}
else if (PyUnicode_Check(item)) {
Py_UCS4 replace;
if (PyUnicode_READY(item) == -1) {
Py_DECREF(item);
return -1;
}
if (PyUnicode_GET_LENGTH(item) != 1)
goto exit;
replace = PyUnicode_READ_CHAR(item, 0);
if (replace > 127)
goto exit;
translate[ch] = (Py_UCS1)replace;
}
else {
/* not None, NULL, long or unicode */
goto exit;
}
ret = 1;
exit:
Py_DECREF(item);
return ret;
}
/* Fast path for ascii => ascii translation. Return 1 if the whole string
was translated into writer, return 0 if the input string was partially
translated into writer, raise an exception and return -1 on error. */
static int
unicode_fast_translate(PyObject *input, PyObject *mapping,
_PyUnicodeWriter *writer, int ignore,
Py_ssize_t *input_pos)
{
Py_UCS1 ascii_table[128], ch, ch2;
Py_ssize_t len;
Py_UCS1 *in, *end, *out;
int res = 0;
len = PyUnicode_GET_LENGTH(input);
memset(ascii_table, 0xff, 128);
in = PyUnicode_1BYTE_DATA(input);
end = in + len;
assert(PyUnicode_IS_ASCII(writer->buffer));
assert(PyUnicode_GET_LENGTH(writer->buffer) == len);
out = PyUnicode_1BYTE_DATA(writer->buffer);
for (; in < end; in++) {
ch = *in;
ch2 = ascii_table[ch];
if (ch2 == 0xff) {
int translate = unicode_fast_translate_lookup(mapping, ch,
ascii_table);
if (translate < 0)
return -1;
if (translate == 0)
goto exit;
ch2 = ascii_table[ch];
}
if (ch2 == 0xfe) {
if (ignore)
continue;
goto exit;
}
assert(ch2 < 128);
*out = ch2;
out++;
}
res = 1;
exit:
writer->pos = out - PyUnicode_1BYTE_DATA(writer->buffer);
*input_pos = in - PyUnicode_1BYTE_DATA(input);
return res;
}
PyObject *
_PyUnicode_TranslateCharmap(PyObject *input,
PyObject *mapping,
const char *errors)
{
/* input object */
char *data;
Py_ssize_t size, i;
int kind;
/* output buffer */
_PyUnicodeWriter writer;
/* error handler */
char *reason = "character maps to <undefined>";
PyObject *errorHandler = NULL;
PyObject *exc = NULL;
int ignore;
int res;
if (mapping == NULL) {
PyErr_BadArgument();
return NULL;
}
if (PyUnicode_READY(input) == -1)
return NULL;
data = (char*)PyUnicode_DATA(input);
kind = PyUnicode_KIND(input);
size = PyUnicode_GET_LENGTH(input);
if (size == 0)
return PyUnicode_FromObject(input);
/* allocate enough for a simple 1:1 translation without
replacements, if we need more, we'll resize */
_PyUnicodeWriter_Init(&writer);
if (_PyUnicodeWriter_Prepare(&writer, size, 127) == -1)
goto onError;
ignore = (errors != NULL && strcmp(errors, "ignore") == 0);
if (PyUnicode_READY(input) == -1)
return NULL;
if (PyUnicode_IS_ASCII(input)) {
res = unicode_fast_translate(input, mapping, &writer, ignore, &i);
if (res < 0) {
_PyUnicodeWriter_Dealloc(&writer);
return NULL;
}
if (res == 1)
return _PyUnicodeWriter_Finish(&writer);
}
else {
i = 0;
}
while (i<size) {
/* try to encode it */
int translate;
PyObject *repunicode = NULL; /* initialize to prevent gcc warning */
Py_ssize_t newpos;
/* startpos for collecting untranslatable chars */
Py_ssize_t collstart;
Py_ssize_t collend;
Py_UCS4 ch;
ch = PyUnicode_READ(kind, data, i);
translate = charmaptranslate_output(ch, mapping, &writer);
if (translate < 0)
goto onError;
if (translate != 0) {
/* it worked => adjust input pointer */
++i;
continue;
}
/* untranslatable character */
collstart = i;
collend = i+1;
/* find all untranslatable characters */
while (collend < size) {
PyObject *x;
ch = PyUnicode_READ(kind, data, collend);
if (charmaptranslate_lookup(ch, mapping, &x))
goto onError;
Py_XDECREF(x);
if (x != Py_None)
break;
++collend;
}
if (ignore) {
i = collend;
}
else {
repunicode = unicode_translate_call_errorhandler(errors, &errorHandler,
reason, input, &exc,
collstart, collend, &newpos);
if (repunicode == NULL)
goto onError;
if (_PyUnicodeWriter_WriteStr(&writer, repunicode) < 0) {
Py_DECREF(repunicode);
goto onError;
}
Py_DECREF(repunicode);
i = newpos;
}
}
Py_XDECREF(exc);
Py_XDECREF(errorHandler);
return _PyUnicodeWriter_Finish(&writer);
onError:
_PyUnicodeWriter_Dealloc(&writer);
Py_XDECREF(exc);
Py_XDECREF(errorHandler);
return NULL;
}
PyObject *
PyUnicode_Translate(PyObject *str,
PyObject *mapping,
const char *errors)
{
if (ensure_unicode(str) < 0)
return NULL;
return _PyUnicode_TranslateCharmap(str, mapping, errors);
}
static Py_UCS4
fix_decimal_and_space_to_ascii(PyObject *self)
{
/* No need to call PyUnicode_READY(self) because this function is only
called as a callback from fixup() which does it already. */
const Py_ssize_t len = PyUnicode_GET_LENGTH(self);
const int kind = PyUnicode_KIND(self);
void *data = PyUnicode_DATA(self);
Py_UCS4 maxchar = 127, ch, fixed;
int modified = 0;
Py_ssize_t i;
for (i = 0; i < len; ++i) {
ch = PyUnicode_READ(kind, data, i);
fixed = 0;
if (ch > 127) {
if (Py_UNICODE_ISSPACE(ch))
fixed = ' ';
else {
const int decimal = Py_UNICODE_TODECIMAL(ch);
if (decimal >= 0)
fixed = '0' + decimal;
}
if (fixed != 0) {
modified = 1;
maxchar = Py_MAX(maxchar, fixed);
PyUnicode_WRITE(kind, data, i, fixed);
}
else
maxchar = Py_MAX(maxchar, ch);
}
}
return (modified) ? maxchar : 0;
}
PyObject *
_PyUnicode_TransformDecimalAndSpaceToASCII(PyObject *unicode)
{
if (!PyUnicode_Check(unicode)) {
PyErr_BadInternalCall();
return NULL;
}
if (PyUnicode_READY(unicode) == -1)
return NULL;
if (PyUnicode_MAX_CHAR_VALUE(unicode) <= 127) {
/* If the string is already ASCII, just return the same string */
Py_INCREF(unicode);
return unicode;
}
return fixup(unicode, fix_decimal_and_space_to_ascii);
}
PyObject *
PyUnicode_TransformDecimalToASCII(Py_UNICODE *s,
Py_ssize_t length)
{
PyObject *decimal;
Py_ssize_t i;
Py_UCS4 maxchar;
enum PyUnicode_Kind kind;
void *data;
maxchar = 127;
for (i = 0; i < length; i++) {
Py_UCS4 ch = s[i];
if (ch > 127) {
int decimal = Py_UNICODE_TODECIMAL(ch);
if (decimal >= 0)
ch = '0' + decimal;
maxchar = Py_MAX(maxchar, ch);
}
}
/* Copy to a new string */
decimal = PyUnicode_New(length, maxchar);
if (decimal == NULL)
return decimal;
kind = PyUnicode_KIND(decimal);
data = PyUnicode_DATA(decimal);
/* Iterate over code points */
for (i = 0; i < length; i++) {
Py_UCS4 ch = s[i];
if (ch > 127) {
int decimal = Py_UNICODE_TODECIMAL(ch);
if (decimal >= 0)
ch = '0' + decimal;
}
PyUnicode_WRITE(kind, data, i, ch);
}
return unicode_result(decimal);
}
/* --- Decimal Encoder ---------------------------------------------------- */
int
PyUnicode_EncodeDecimal(Py_UNICODE *s,
Py_ssize_t length,
char *output,
const char *errors)
{
PyObject *unicode;
Py_ssize_t i;
enum PyUnicode_Kind kind;
void *data;
if (output == NULL) {
PyErr_BadArgument();
return -1;
}
unicode = PyUnicode_FromUnicode(s, length);
if (unicode == NULL)
return -1;
if (PyUnicode_READY(unicode) == -1) {
Py_DECREF(unicode);
return -1;
}
kind = PyUnicode_KIND(unicode);
data = PyUnicode_DATA(unicode);
for (i=0; i < length; ) {
PyObject *exc;
Py_UCS4 ch;
int decimal;
Py_ssize_t startpos;
ch = PyUnicode_READ(kind, data, i);
if (Py_UNICODE_ISSPACE(ch)) {
*output++ = ' ';
i++;
continue;
}
decimal = Py_UNICODE_TODECIMAL(ch);
if (decimal >= 0) {
*output++ = '0' + decimal;
i++;
continue;
}
if (0 < ch && ch < 256) {
*output++ = (char)ch;
i++;
continue;
}
startpos = i;
exc = NULL;
raise_encode_exception(&exc, "decimal", unicode,
startpos, startpos+1,
"invalid decimal Unicode string");
Py_XDECREF(exc);
Py_DECREF(unicode);
return -1;
}
/* 0-terminate the output string */
*output++ = '\0';
Py_DECREF(unicode);
return 0;
}
/* --- Helpers ------------------------------------------------------------ */
/* helper macro to fixup start/end slice values */
#define ADJUST_INDICES(start, end, len) \
if (end > len) \
end = len; \
else if (end < 0) { \
end += len; \
if (end < 0) \
end = 0; \
} \
if (start < 0) { \
start += len; \
if (start < 0) \
start = 0; \
}
static Py_ssize_t
any_find_slice(PyObject* s1, PyObject* s2,
Py_ssize_t start,
Py_ssize_t end,
int direction)
{
int kind1, kind2;
void *buf1, *buf2;
Py_ssize_t len1, len2, result;
kind1 = PyUnicode_KIND(s1);
kind2 = PyUnicode_KIND(s2);
if (kind1 < kind2)
return -1;
len1 = PyUnicode_GET_LENGTH(s1);
len2 = PyUnicode_GET_LENGTH(s2);
ADJUST_INDICES(start, end, len1);
if (end - start < len2)
return -1;
buf1 = PyUnicode_DATA(s1);
buf2 = PyUnicode_DATA(s2);
if (len2 == 1) {
Py_UCS4 ch = PyUnicode_READ(kind2, buf2, 0);
result = findchar((const char *)buf1 + kind1*start,
kind1, end - start, ch, direction);
if (result == -1)
return -1;
else
return start + result;
}
if (kind2 != kind1) {
buf2 = _PyUnicode_AsKind(s2, kind1);
if (!buf2)
return -2;
}
if (direction > 0) {
switch (kind1) {
case PyUnicode_1BYTE_KIND:
if (PyUnicode_IS_ASCII(s1) && PyUnicode_IS_ASCII(s2))
result = asciilib_find_slice(buf1, len1, buf2, len2, start, end);
else
result = ucs1lib_find_slice(buf1, len1, buf2, len2, start, end);
break;
case PyUnicode_2BYTE_KIND:
result = ucs2lib_find_slice(buf1, len1, buf2, len2, start, end);
break;
case PyUnicode_4BYTE_KIND:
result = ucs4lib_find_slice(buf1, len1, buf2, len2, start, end);
break;
default:
assert(0); result = -2;
}
}
else {
switch (kind1) {
case PyUnicode_1BYTE_KIND:
if (PyUnicode_IS_ASCII(s1) && PyUnicode_IS_ASCII(s2))
result = asciilib_rfind_slice(buf1, len1, buf2, len2, start, end);
else
result = ucs1lib_rfind_slice(buf1, len1, buf2, len2, start, end);
break;
case PyUnicode_2BYTE_KIND:
result = ucs2lib_rfind_slice(buf1, len1, buf2, len2, start, end);
break;
case PyUnicode_4BYTE_KIND:
result = ucs4lib_rfind_slice(buf1, len1, buf2, len2, start, end);
break;
default:
assert(0); result = -2;
}
}
if (kind2 != kind1)
PyMem_Free(buf2);
return result;
}
/* _PyUnicode_InsertThousandsGrouping() helper functions */
#include "third_party/python/Objects/stringlib/localeutil.inc"
/**
* InsertThousandsGrouping:
* @writer: Unicode writer.
* @n_buffer: Number of characters in @buffer.
* @digits: Digits we're reading from. If count is non-NULL, this is unused.
* @d_pos: Start of digits string.
* @n_digits: The number of digits in the string, in which we want
* to put the grouping chars.
* @min_width: The minimum width of the digits in the output string.
* Output will be zero-padded on the left to fill.
* @grouping: see definition in localeconv().
* @thousands_sep: see definition in localeconv().
*
* There are 2 modes: counting and filling. If @writer is NULL,
* we are in counting mode, else filling mode.
* If counting, the required buffer size is returned.
* If filling, we know the buffer will be large enough, so we don't
* need to pass in the buffer size.
* Inserts thousand grouping characters (as defined by grouping and
* thousands_sep) into @writer.
*
* Return value: -1 on error, number of characters otherwise.
**/
Py_ssize_t
_PyUnicode_InsertThousandsGrouping(
_PyUnicodeWriter *writer,
Py_ssize_t n_buffer,
PyObject *digits,
Py_ssize_t d_pos,
Py_ssize_t n_digits,
Py_ssize_t min_width,
const char *grouping,
PyObject *thousands_sep,
Py_UCS4 *maxchar)
{
min_width = Py_MAX(0, min_width);
if (writer) {
assert(digits != NULL);
assert(maxchar == NULL);
}
else {
assert(digits == NULL);
assert(maxchar != NULL);
}
assert(0 <= d_pos);
assert(0 <= n_digits);
assert(grouping != NULL);
if (digits != NULL) {
if (PyUnicode_READY(digits) == -1) {
return -1;
}
}
if (PyUnicode_READY(thousands_sep) == -1) {
return -1;
}
Py_ssize_t count = 0;
Py_ssize_t n_zeros;
int loop_broken = 0;
int use_separator = 0; /* First time through, don't append the
separator. They only go between
groups. */
Py_ssize_t buffer_pos;
Py_ssize_t digits_pos;
Py_ssize_t len;
Py_ssize_t n_chars;
Py_ssize_t remaining = n_digits; /* Number of chars remaining to
be looked at */
/* A generator that returns all of the grouping widths, until it
returns 0. */
GroupGenerator groupgen;
GroupGenerator_init(&groupgen, grouping);
const Py_ssize_t thousands_sep_len = PyUnicode_GET_LENGTH(thousands_sep);
/* if digits are not grouped, thousands separator
should be an empty string */
assert(!(grouping[0] == CHAR_MAX && thousands_sep_len != 0));
digits_pos = d_pos + n_digits;
if (writer) {
buffer_pos = writer->pos + n_buffer;
assert(buffer_pos <= PyUnicode_GET_LENGTH(writer->buffer));
assert(digits_pos <= PyUnicode_GET_LENGTH(digits));
}
else {
buffer_pos = n_buffer;
}
if (!writer) {
*maxchar = 127;
}
while ((len = GroupGenerator_next(&groupgen)) > 0) {
len = Py_MIN(len, Py_MAX(Py_MAX(remaining, min_width), 1));
n_zeros = Py_MAX(0, len - remaining);
n_chars = Py_MAX(0, Py_MIN(remaining, len));
/* Use n_zero zero's and n_chars chars */
/* Count only, don't do anything. */
count += (use_separator ? thousands_sep_len : 0) + n_zeros + n_chars;
/* Copy into the writer. */
InsertThousandsGrouping_fill(writer, &buffer_pos,
digits, &digits_pos,
n_chars, n_zeros,
use_separator ? thousands_sep : NULL,
thousands_sep_len, maxchar);
/* Use a separator next time. */
use_separator = 1;
remaining -= n_chars;
min_width -= len;
if (remaining <= 0 && min_width <= 0) {
loop_broken = 1;
break;
}
min_width -= thousands_sep_len;
}
if (!loop_broken) {
/* We left the loop without using a break statement. */
len = Py_MAX(Py_MAX(remaining, min_width), 1);
n_zeros = Py_MAX(0, len - remaining);
n_chars = Py_MAX(0, Py_MIN(remaining, len));
/* Use n_zero zero's and n_chars chars */
count += (use_separator ? thousands_sep_len : 0) + n_zeros + n_chars;
/* Copy into the writer. */
InsertThousandsGrouping_fill(writer, &buffer_pos,
digits, &digits_pos,
n_chars, n_zeros,
use_separator ? thousands_sep : NULL,
thousands_sep_len, maxchar);
}
return count;
}
Py_ssize_t
PyUnicode_Count(PyObject *str,
PyObject *substr,
Py_ssize_t start,
Py_ssize_t end)
{
Py_ssize_t result;
int kind1, kind2;
void *buf1 = NULL, *buf2 = NULL;
Py_ssize_t len1, len2;
if (ensure_unicode(str) < 0 || ensure_unicode(substr) < 0)
return -1;
kind1 = PyUnicode_KIND(str);
kind2 = PyUnicode_KIND(substr);
if (kind1 < kind2)
return 0;
len1 = PyUnicode_GET_LENGTH(str);
len2 = PyUnicode_GET_LENGTH(substr);
ADJUST_INDICES(start, end, len1);
if (end - start < len2)
return 0;
buf1 = PyUnicode_DATA(str);
buf2 = PyUnicode_DATA(substr);
if (kind2 != kind1) {
buf2 = _PyUnicode_AsKind(substr, kind1);
if (!buf2)
goto onError;
}
switch (kind1) {
case PyUnicode_1BYTE_KIND:
if (PyUnicode_IS_ASCII(str) && PyUnicode_IS_ASCII(substr))
result = asciilib_count(
((Py_UCS1*)buf1) + start, end - start,
buf2, len2, PY_SSIZE_T_MAX
);
else
result = ucs1lib_count(
((Py_UCS1*)buf1) + start, end - start,
buf2, len2, PY_SSIZE_T_MAX
);
break;
case PyUnicode_2BYTE_KIND:
result = ucs2lib_count(
((Py_UCS2*)buf1) + start, end - start,
buf2, len2, PY_SSIZE_T_MAX
);
break;
case PyUnicode_4BYTE_KIND:
result = ucs4lib_count(
((Py_UCS4*)buf1) + start, end - start,
buf2, len2, PY_SSIZE_T_MAX
);
break;
default:
assert(0); result = 0;
}
if (kind2 != kind1)
PyMem_Free(buf2);
return result;
onError:
if (kind2 != kind1 && buf2)
PyMem_Free(buf2);
return -1;
}
Py_ssize_t
PyUnicode_Find(PyObject *str,
PyObject *substr,
Py_ssize_t start,
Py_ssize_t end,
int direction)
{
if (ensure_unicode(str) < 0 || ensure_unicode(substr) < 0)
return -2;
return any_find_slice(str, substr, start, end, direction);
}
Py_ssize_t
PyUnicode_FindChar(PyObject *str, Py_UCS4 ch,
Py_ssize_t start, Py_ssize_t end,
int direction)
{
int kind;
Py_ssize_t result;
if (PyUnicode_READY(str) == -1)
return -2;
if (start < 0 || end < 0) {
PyErr_SetString(PyExc_IndexError, "string index out of range");
return -2;
}
if (end > PyUnicode_GET_LENGTH(str))
end = PyUnicode_GET_LENGTH(str);
if (start >= end)
return -1;
kind = PyUnicode_KIND(str);
result = findchar(PyUnicode_1BYTE_DATA(str) + kind*start,
kind, end-start, ch, direction);
if (result == -1)
return -1;
else
return start + result;
}
static int
tailmatch(PyObject *self,
PyObject *substring,
Py_ssize_t start,
Py_ssize_t end,
int direction)
{
int kind_self;
int kind_sub;
void *data_self;
void *data_sub;
Py_ssize_t offset;
Py_ssize_t i;
Py_ssize_t end_sub;
if (PyUnicode_READY(self) == -1 ||
PyUnicode_READY(substring) == -1)
return -1;
ADJUST_INDICES(start, end, PyUnicode_GET_LENGTH(self));
end -= PyUnicode_GET_LENGTH(substring);
if (end < start)
return 0;
if (PyUnicode_GET_LENGTH(substring) == 0)
return 1;
kind_self = PyUnicode_KIND(self);
data_self = PyUnicode_DATA(self);
kind_sub = PyUnicode_KIND(substring);
data_sub = PyUnicode_DATA(substring);
end_sub = PyUnicode_GET_LENGTH(substring) - 1;
if (direction > 0)
offset = end;
else
offset = start;
if (PyUnicode_READ(kind_self, data_self, offset) ==
PyUnicode_READ(kind_sub, data_sub, 0) &&
PyUnicode_READ(kind_self, data_self, offset + end_sub) ==
PyUnicode_READ(kind_sub, data_sub, end_sub)) {
/* If both are of the same kind, memcmp is sufficient */
if (kind_self == kind_sub) {
return !bcmp((char *)data_self +
(offset * PyUnicode_KIND(substring)),
data_sub,
PyUnicode_GET_LENGTH(substring) *
PyUnicode_KIND(substring));
}
/* otherwise we have to compare each character by first accessing it */
else {
/* We do not need to compare 0 and len(substring)-1 because
the if statement above ensured already that they are equal
when we end up here. */
for (i = 1; i < end_sub; ++i) {
if (PyUnicode_READ(kind_self, data_self, offset + i) !=
PyUnicode_READ(kind_sub, data_sub, i))
return 0;
}
return 1;
}
}
return 0;
}
Py_ssize_t
PyUnicode_Tailmatch(PyObject *str,
PyObject *substr,
Py_ssize_t start,
Py_ssize_t end,
int direction)
{
if (ensure_unicode(str) < 0 || ensure_unicode(substr) < 0)
return -1;
return tailmatch(str, substr, start, end, direction);
}
/* Apply fixfct filter to the Unicode object self and return a
reference to the modified object */
static PyObject *
fixup(PyObject *self,
Py_UCS4 (*fixfct)(PyObject *s))
{
PyObject *u;
Py_UCS4 maxchar_old, maxchar_new = 0;
PyObject *v;
u = _PyUnicode_Copy(self);
if (u == NULL)
return NULL;
maxchar_old = PyUnicode_MAX_CHAR_VALUE(u);
/* fix functions return the new maximum character in a string,
if the kind of the resulting unicode object does not change,
everything is fine. Otherwise we need to change the string kind
and re-run the fix function. */
maxchar_new = fixfct(u);
if (maxchar_new == 0) {
/* no changes */;
if (PyUnicode_CheckExact(self)) {
Py_DECREF(u);
Py_INCREF(self);
return self;
}
else
return u;
}
maxchar_new = align_maxchar(maxchar_new);
if (maxchar_new == maxchar_old)
return u;
/* In case the maximum character changed, we need to
convert the string to the new category. */
v = PyUnicode_New(PyUnicode_GET_LENGTH(self), maxchar_new);
if (v == NULL) {
Py_DECREF(u);
return NULL;
}
if (maxchar_new > maxchar_old) {
/* If the maxchar increased so that the kind changed, not all
characters are representable anymore and we need to fix the
string again. This only happens in very few cases. */
_PyUnicode_FastCopyCharacters(v, 0,
self, 0, PyUnicode_GET_LENGTH(self));
maxchar_old = fixfct(v);
assert(maxchar_old > 0 && maxchar_old <= maxchar_new);
}
else {
_PyUnicode_FastCopyCharacters(v, 0,
u, 0, PyUnicode_GET_LENGTH(self));
}
Py_DECREF(u);
assert(_PyUnicode_CheckConsistency(v, 1));
return v;
}
static PyObject *
ascii_upper_or_lower(PyObject *self, int lower)
{
Py_ssize_t len = PyUnicode_GET_LENGTH(self);
char *resdata, *data = PyUnicode_DATA(self);
PyObject *res;
res = PyUnicode_New(len, 127);
if (res == NULL)
return NULL;
resdata = PyUnicode_DATA(res);
if (lower)
_Py_bytes_lower(resdata, data, len);
else
_Py_bytes_upper(resdata, data, len);
return res;
}
static Py_UCS4
handle_capital_sigma(int kind, void *data, Py_ssize_t length, Py_ssize_t i)
{
Py_ssize_t j;
int final_sigma;
Py_UCS4 c = 0; /* initialize to prevent gcc warning */
/* U+03A3 is in the Final_Sigma context when, it is found like this:
\p{cased}\p{case-ignorable}*U+03A3!(\p{case-ignorable}*\p{cased})
where ! is a negation and \p{xxx} is a character with property xxx.
*/
for (j = i - 1; j >= 0; j--) {
c = PyUnicode_READ(kind, data, j);
if (!_PyUnicode_IsCaseIgnorable(c))
break;
}
final_sigma = j >= 0 && _PyUnicode_IsCased(c);
if (final_sigma) {
for (j = i + 1; j < length; j++) {
c = PyUnicode_READ(kind, data, j);
if (!_PyUnicode_IsCaseIgnorable(c))
break;
}
final_sigma = j == length || !_PyUnicode_IsCased(c);
}
return (final_sigma) ? 0x3C2 : 0x3C3;
}
static int
lower_ucs4(int kind, void *data, Py_ssize_t length, Py_ssize_t i,
Py_UCS4 c, Py_UCS4 *mapped)
{
/* Obscure special case. */
if (c == 0x3A3) {
mapped[0] = handle_capital_sigma(kind, data, length, i);
return 1;
}
return _PyUnicode_ToLowerFull(c, mapped);
}
static Py_ssize_t
do_capitalize(int kind, void *data, Py_ssize_t length, Py_UCS4 *res, Py_UCS4 *maxchar)
{
Py_ssize_t i, k = 0;
int n_res, j;
Py_UCS4 c, mapped[3];
c = PyUnicode_READ(kind, data, 0);
n_res = _PyUnicode_ToUpperFull(c, mapped);
for (j = 0; j < n_res; j++) {
*maxchar = Py_MAX(*maxchar, mapped[j]);
res[k++] = mapped[j];
}
for (i = 1; i < length; i++) {
c = PyUnicode_READ(kind, data, i);
n_res = lower_ucs4(kind, data, length, i, c, mapped);
for (j = 0; j < n_res; j++) {
*maxchar = Py_MAX(*maxchar, mapped[j]);
res[k++] = mapped[j];
}
}
return k;
}
static Py_ssize_t
do_swapcase(int kind, void *data, Py_ssize_t length, Py_UCS4 *res, Py_UCS4 *maxchar) {
Py_ssize_t i, k = 0;
for (i = 0; i < length; i++) {
Py_UCS4 c = PyUnicode_READ(kind, data, i), mapped[3];
int n_res, j;
if (Py_UNICODE_ISUPPER(c)) {
n_res = lower_ucs4(kind, data, length, i, c, mapped);
}
else if (Py_UNICODE_ISLOWER(c)) {
n_res = _PyUnicode_ToUpperFull(c, mapped);
}
else {
n_res = 1;
mapped[0] = c;
}
for (j = 0; j < n_res; j++) {
*maxchar = Py_MAX(*maxchar, mapped[j]);
res[k++] = mapped[j];
}
}
return k;
}
static Py_ssize_t
do_upper_or_lower(int kind, void *data, Py_ssize_t length, Py_UCS4 *res,
Py_UCS4 *maxchar, int lower)
{
Py_ssize_t i, k = 0;
for (i = 0; i < length; i++) {
Py_UCS4 c = PyUnicode_READ(kind, data, i), mapped[3];
int n_res, j;
if (lower)
n_res = lower_ucs4(kind, data, length, i, c, mapped);
else
n_res = _PyUnicode_ToUpperFull(c, mapped);
for (j = 0; j < n_res; j++) {
*maxchar = Py_MAX(*maxchar, mapped[j]);
res[k++] = mapped[j];
}
}
return k;
}
static Py_ssize_t
do_upper(int kind, void *data, Py_ssize_t length, Py_UCS4 *res, Py_UCS4 *maxchar)
{
return do_upper_or_lower(kind, data, length, res, maxchar, 0);
}
static Py_ssize_t
do_lower(int kind, void *data, Py_ssize_t length, Py_UCS4 *res, Py_UCS4 *maxchar)
{
return do_upper_or_lower(kind, data, length, res, maxchar, 1);
}
static Py_ssize_t
do_casefold(int kind, void *data, Py_ssize_t length, Py_UCS4 *res, Py_UCS4 *maxchar)
{
Py_ssize_t i, k = 0;
for (i = 0; i < length; i++) {
Py_UCS4 c = PyUnicode_READ(kind, data, i);
Py_UCS4 mapped[3];
int j, n_res = _PyUnicode_ToFoldedFull(c, mapped);
for (j = 0; j < n_res; j++) {
*maxchar = Py_MAX(*maxchar, mapped[j]);
res[k++] = mapped[j];
}
}
return k;
}
static Py_ssize_t
do_title(int kind, void *data, Py_ssize_t length, Py_UCS4 *res, Py_UCS4 *maxchar)
{
Py_ssize_t i, k = 0;
int previous_is_cased;
previous_is_cased = 0;
for (i = 0; i < length; i++) {
const Py_UCS4 c = PyUnicode_READ(kind, data, i);
Py_UCS4 mapped[3];
int n_res, j;
if (previous_is_cased)
n_res = lower_ucs4(kind, data, length, i, c, mapped);
else
n_res = _PyUnicode_ToTitleFull(c, mapped);
for (j = 0; j < n_res; j++) {
*maxchar = Py_MAX(*maxchar, mapped[j]);
res[k++] = mapped[j];
}
previous_is_cased = _PyUnicode_IsCased(c);
}
return k;
}
static PyObject *
case_operation(PyObject *self,
Py_ssize_t (*perform)(int, void *, Py_ssize_t, Py_UCS4 *, Py_UCS4 *))
{
PyObject *res = NULL;
Py_ssize_t length, newlength = 0;
int kind, outkind;
void *data, *outdata;
Py_UCS4 maxchar = 0, *tmp, *tmpend;
assert(PyUnicode_IS_READY(self));
kind = PyUnicode_KIND(self);
data = PyUnicode_DATA(self);
length = PyUnicode_GET_LENGTH(self);
if ((size_t) length > PY_SSIZE_T_MAX / (3 * sizeof(Py_UCS4))) {
PyErr_SetString(PyExc_OverflowError, "string is too long");
return NULL;
}
tmp = PyMem_MALLOC(sizeof(Py_UCS4) * 3 * length);
if (tmp == NULL)
return PyErr_NoMemory();
newlength = perform(kind, data, length, tmp, &maxchar);
res = PyUnicode_New(newlength, maxchar);
if (res == NULL)
goto leave;
tmpend = tmp + newlength;
outdata = PyUnicode_DATA(res);
outkind = PyUnicode_KIND(res);
switch (outkind) {
case PyUnicode_1BYTE_KIND:
_PyUnicode_CONVERT_BYTES(Py_UCS4, Py_UCS1, tmp, tmpend, outdata);
break;
case PyUnicode_2BYTE_KIND:
_PyUnicode_CONVERT_BYTES(Py_UCS4, Py_UCS2, tmp, tmpend, outdata);
break;
case PyUnicode_4BYTE_KIND:
memcpy(outdata, tmp, sizeof(Py_UCS4) * newlength);
break;
default:
assert(0);
break;
}
leave:
PyMem_FREE(tmp);
return res;
}
PyObject *
PyUnicode_Join(PyObject *separator, PyObject *seq)
{
PyObject *res;
PyObject *fseq;
Py_ssize_t seqlen;
PyObject **items;
fseq = PySequence_Fast(seq, "can only join an iterable");
if (fseq == NULL) {
return NULL;
}
/* NOTE: the following code can't call back into Python code,
* so we are sure that fseq won't be mutated.
*/
items = PySequence_Fast_ITEMS(fseq);
seqlen = PySequence_Fast_GET_SIZE(fseq);
res = _PyUnicode_JoinArray(separator, items, seqlen);
Py_DECREF(fseq);
return res;
}
PyObject *
_PyUnicode_JoinArray(PyObject *separator, PyObject **items, Py_ssize_t seqlen)
{
PyObject *res = NULL; /* the result */
PyObject *sep = NULL;
Py_ssize_t seplen;
PyObject *item;
Py_ssize_t sz, i, res_offset;
Py_UCS4 maxchar;
Py_UCS4 item_maxchar;
int use_memcpy;
unsigned char *res_data = NULL, *sep_data = NULL;
PyObject *last_obj;
unsigned int kind = 0;
/* If empty sequence, return u"". */
if (seqlen == 0) {
_Py_RETURN_UNICODE_EMPTY();
}
/* If singleton sequence with an exact Unicode, return that. */
last_obj = NULL;
if (seqlen == 1) {
if (PyUnicode_CheckExact(items[0])) {
res = items[0];
Py_INCREF(res);
return res;
}
seplen = 0;
maxchar = 0;
}
else {
/* Set up sep and seplen */
if (separator == NULL) {
/* fall back to a blank space separator */
sep = PyUnicode_FromOrdinal(' ');
if (!sep)
goto onError;
seplen = 1;
maxchar = 32;
}
else {
if (!PyUnicode_Check(separator)) {
PyErr_Format(PyExc_TypeError,
"separator: expected str instance,"
" %.80s found",
Py_TYPE(separator)->tp_name);
goto onError;
}
if (PyUnicode_READY(separator))
goto onError;
sep = separator;
seplen = PyUnicode_GET_LENGTH(separator);
maxchar = PyUnicode_MAX_CHAR_VALUE(separator);
/* inc refcount to keep this code path symmetric with the
above case of a blank separator */
Py_INCREF(sep);
}
last_obj = sep;
}
/* There are at least two things to join, or else we have a subclass
* of str in the sequence.
* Do a pre-pass to figure out the total amount of space we'll
* need (sz), and see whether all argument are strings.
*/
sz = 0;
#ifdef Py_DEBUG
use_memcpy = 0;
#else
use_memcpy = 1;
#endif
for (i = 0; i < seqlen; i++) {
size_t add_sz;
item = items[i];
if (!PyUnicode_Check(item)) {
PyErr_Format(PyExc_TypeError,
"sequence item %zd: expected str instance,"
" %.80s found",
i, Py_TYPE(item)->tp_name);
goto onError;
}
if (PyUnicode_READY(item) == -1)
goto onError;
add_sz = PyUnicode_GET_LENGTH(item);
item_maxchar = PyUnicode_MAX_CHAR_VALUE(item);
maxchar = Py_MAX(maxchar, item_maxchar);
if (i != 0) {
add_sz += seplen;
}
if (add_sz > (size_t)(PY_SSIZE_T_MAX - sz)) {
PyErr_SetString(PyExc_OverflowError,
"join() result is too long for a Python string");
goto onError;
}
sz += add_sz;
if (use_memcpy && last_obj != NULL) {
if (PyUnicode_KIND(last_obj) != PyUnicode_KIND(item))
use_memcpy = 0;
}
last_obj = item;
}
res = PyUnicode_New(sz, maxchar);
if (res == NULL)
goto onError;
/* Catenate everything. */
#ifdef Py_DEBUG
use_memcpy = 0;
#else
if (use_memcpy) {
res_data = PyUnicode_1BYTE_DATA(res);
kind = PyUnicode_KIND(res);
if (seplen != 0)
sep_data = PyUnicode_1BYTE_DATA(sep);
}
#endif
if (use_memcpy) {
for (i = 0; i < seqlen; ++i) {
Py_ssize_t itemlen;
item = items[i];
/* Copy item, and maybe the separator. */
if (i && seplen != 0) {
memcpy(res_data,
sep_data,
kind * seplen);
res_data += kind * seplen;
}
itemlen = PyUnicode_GET_LENGTH(item);
if (itemlen != 0) {
memcpy(res_data,
PyUnicode_DATA(item),
kind * itemlen);
res_data += kind * itemlen;
}
}
assert(res_data == PyUnicode_1BYTE_DATA(res)
+ kind * PyUnicode_GET_LENGTH(res));
}
else {
for (i = 0, res_offset = 0; i < seqlen; ++i) {
Py_ssize_t itemlen;
item = items[i];
/* Copy item, and maybe the separator. */
if (i && seplen != 0) {
_PyUnicode_FastCopyCharacters(res, res_offset, sep, 0, seplen);
res_offset += seplen;
}
itemlen = PyUnicode_GET_LENGTH(item);
if (itemlen != 0) {
_PyUnicode_FastCopyCharacters(res, res_offset, item, 0, itemlen);
res_offset += itemlen;
}
}
assert(res_offset == PyUnicode_GET_LENGTH(res));
}
Py_XDECREF(sep);
assert(_PyUnicode_CheckConsistency(res, 1));
return res;
onError:
Py_XDECREF(sep);
Py_XDECREF(res);
return NULL;
}
void
_PyUnicode_FastFill(PyObject *unicode, Py_ssize_t start, Py_ssize_t length,
Py_UCS4 fill_char)
{
const enum PyUnicode_Kind kind = PyUnicode_KIND(unicode);
void *data = PyUnicode_DATA(unicode);
assert(PyUnicode_IS_READY(unicode));
assert(unicode_modifiable(unicode));
assert(fill_char <= PyUnicode_MAX_CHAR_VALUE(unicode));
assert(start >= 0);
assert(start + length <= PyUnicode_GET_LENGTH(unicode));
FILL(kind, data, fill_char, start, length);
}
Py_ssize_t
PyUnicode_Fill(PyObject *unicode, Py_ssize_t start, Py_ssize_t length,
Py_UCS4 fill_char)
{
Py_ssize_t maxlen;
if (!PyUnicode_Check(unicode)) {
PyErr_BadInternalCall();
return -1;
}
if (PyUnicode_READY(unicode) == -1)
return -1;
if (unicode_check_modifiable(unicode))
return -1;
if (start < 0) {
PyErr_SetString(PyExc_IndexError, "string index out of range");
return -1;
}
if (fill_char > PyUnicode_MAX_CHAR_VALUE(unicode)) {
PyErr_SetString(PyExc_ValueError,
"fill character is bigger than "
"the string maximum character");
return -1;
}
maxlen = PyUnicode_GET_LENGTH(unicode) - start;
length = Py_MIN(maxlen, length);
if (length <= 0)
return 0;
_PyUnicode_FastFill(unicode, start, length, fill_char);
return length;
}
static PyObject *
pad(PyObject *self,
Py_ssize_t left,
Py_ssize_t right,
Py_UCS4 fill)
{
PyObject *u;
Py_UCS4 maxchar;
int kind;
void *data;
if (left < 0)
left = 0;
if (right < 0)
right = 0;
if (left == 0 && right == 0)
return unicode_result_unchanged(self);
if (left > PY_SSIZE_T_MAX - _PyUnicode_LENGTH(self) ||
right > PY_SSIZE_T_MAX - (left + _PyUnicode_LENGTH(self))) {
PyErr_SetString(PyExc_OverflowError, "padded string is too long");
return NULL;
}
maxchar = PyUnicode_MAX_CHAR_VALUE(self);
maxchar = Py_MAX(maxchar, fill);
u = PyUnicode_New(left + _PyUnicode_LENGTH(self) + right, maxchar);
if (!u)
return NULL;
kind = PyUnicode_KIND(u);
data = PyUnicode_DATA(u);
if (left)
FILL(kind, data, fill, 0, left);
if (right)
FILL(kind, data, fill, left + _PyUnicode_LENGTH(self), right);
_PyUnicode_FastCopyCharacters(u, left, self, 0, _PyUnicode_LENGTH(self));
assert(_PyUnicode_CheckConsistency(u, 1));
return u;
}
PyObject *
PyUnicode_Splitlines(PyObject *string, int keepends)
{
PyObject *list;
if (ensure_unicode(string) < 0)
return NULL;
switch (PyUnicode_KIND(string)) {
case PyUnicode_1BYTE_KIND:
if (PyUnicode_IS_ASCII(string))
list = asciilib_splitlines(
string, PyUnicode_1BYTE_DATA(string),
PyUnicode_GET_LENGTH(string), keepends);
else
list = ucs1lib_splitlines(
string, PyUnicode_1BYTE_DATA(string),
PyUnicode_GET_LENGTH(string), keepends);
break;
case PyUnicode_2BYTE_KIND:
list = ucs2lib_splitlines(
string, PyUnicode_2BYTE_DATA(string),
PyUnicode_GET_LENGTH(string), keepends);
break;
case PyUnicode_4BYTE_KIND:
list = ucs4lib_splitlines(
string, PyUnicode_4BYTE_DATA(string),
PyUnicode_GET_LENGTH(string), keepends);
break;
default:
assert(0);
list = 0;
}
return list;
}
static PyObject *
split(PyObject *self,
PyObject *substring,
Py_ssize_t maxcount)
{
int kind1, kind2;
void *buf1, *buf2;
Py_ssize_t len1, len2;
PyObject* out;
if (maxcount < 0)
maxcount = PY_SSIZE_T_MAX;
if (PyUnicode_READY(self) == -1)
return NULL;
if (substring == NULL)
switch (PyUnicode_KIND(self)) {
case PyUnicode_1BYTE_KIND:
if (PyUnicode_IS_ASCII(self))
return asciilib_split_whitespace(
self, PyUnicode_1BYTE_DATA(self),
PyUnicode_GET_LENGTH(self), maxcount
);
else
return ucs1lib_split_whitespace(
self, PyUnicode_1BYTE_DATA(self),
PyUnicode_GET_LENGTH(self), maxcount
);
case PyUnicode_2BYTE_KIND:
return ucs2lib_split_whitespace(
self, PyUnicode_2BYTE_DATA(self),
PyUnicode_GET_LENGTH(self), maxcount
);
case PyUnicode_4BYTE_KIND:
return ucs4lib_split_whitespace(
self, PyUnicode_4BYTE_DATA(self),
PyUnicode_GET_LENGTH(self), maxcount
);
default:
assert(0);
return NULL;
}
if (PyUnicode_READY(substring) == -1)
return NULL;
kind1 = PyUnicode_KIND(self);
kind2 = PyUnicode_KIND(substring);
len1 = PyUnicode_GET_LENGTH(self);
len2 = PyUnicode_GET_LENGTH(substring);
if (kind1 < kind2 || len1 < len2) {
out = PyList_New(1);
if (out == NULL)
return NULL;
Py_INCREF(self);
PyList_SET_ITEM(out, 0, self);
return out;
}
buf1 = PyUnicode_DATA(self);
buf2 = PyUnicode_DATA(substring);
if (kind2 != kind1) {
buf2 = _PyUnicode_AsKind(substring, kind1);
if (!buf2)
return NULL;
}
switch (kind1) {
case PyUnicode_1BYTE_KIND:
if (PyUnicode_IS_ASCII(self) && PyUnicode_IS_ASCII(substring))
out = asciilib_split(
self, buf1, len1, buf2, len2, maxcount);
else
out = ucs1lib_split(
self, buf1, len1, buf2, len2, maxcount);
break;
case PyUnicode_2BYTE_KIND:
out = ucs2lib_split(
self, buf1, len1, buf2, len2, maxcount);
break;
case PyUnicode_4BYTE_KIND:
out = ucs4lib_split(
self, buf1, len1, buf2, len2, maxcount);
break;
default:
out = NULL;
}
if (kind2 != kind1)
PyMem_Free(buf2);
return out;
}
static PyObject *
rsplit(PyObject *self,
PyObject *substring,
Py_ssize_t maxcount)
{
int kind1, kind2;
void *buf1, *buf2;
Py_ssize_t len1, len2;
PyObject* out;
if (maxcount < 0)
maxcount = PY_SSIZE_T_MAX;
if (PyUnicode_READY(self) == -1)
return NULL;
if (substring == NULL)
switch (PyUnicode_KIND(self)) {
case PyUnicode_1BYTE_KIND:
if (PyUnicode_IS_ASCII(self))
return asciilib_rsplit_whitespace(
self, PyUnicode_1BYTE_DATA(self),
PyUnicode_GET_LENGTH(self), maxcount
);
else
return ucs1lib_rsplit_whitespace(
self, PyUnicode_1BYTE_DATA(self),
PyUnicode_GET_LENGTH(self), maxcount
);
case PyUnicode_2BYTE_KIND:
return ucs2lib_rsplit_whitespace(
self, PyUnicode_2BYTE_DATA(self),
PyUnicode_GET_LENGTH(self), maxcount
);
case PyUnicode_4BYTE_KIND:
return ucs4lib_rsplit_whitespace(
self, PyUnicode_4BYTE_DATA(self),
PyUnicode_GET_LENGTH(self), maxcount
);
default:
assert(0);
return NULL;
}
if (PyUnicode_READY(substring) == -1)
return NULL;
kind1 = PyUnicode_KIND(self);
kind2 = PyUnicode_KIND(substring);
len1 = PyUnicode_GET_LENGTH(self);
len2 = PyUnicode_GET_LENGTH(substring);
if (kind1 < kind2 || len1 < len2) {
out = PyList_New(1);
if (out == NULL)
return NULL;
Py_INCREF(self);
PyList_SET_ITEM(out, 0, self);
return out;
}
buf1 = PyUnicode_DATA(self);
buf2 = PyUnicode_DATA(substring);
if (kind2 != kind1) {
buf2 = _PyUnicode_AsKind(substring, kind1);
if (!buf2)
return NULL;
}
switch (kind1) {
case PyUnicode_1BYTE_KIND:
if (PyUnicode_IS_ASCII(self) && PyUnicode_IS_ASCII(substring))
out = asciilib_rsplit(
self, buf1, len1, buf2, len2, maxcount);
else
out = ucs1lib_rsplit(
self, buf1, len1, buf2, len2, maxcount);
break;
case PyUnicode_2BYTE_KIND:
out = ucs2lib_rsplit(
self, buf1, len1, buf2, len2, maxcount);
break;
case PyUnicode_4BYTE_KIND:
out = ucs4lib_rsplit(
self, buf1, len1, buf2, len2, maxcount);
break;
default:
out = NULL;
}
if (kind2 != kind1)
PyMem_Free(buf2);
return out;
}
static Py_ssize_t
anylib_find(int kind, PyObject *str1, void *buf1, Py_ssize_t len1,
PyObject *str2, void *buf2, Py_ssize_t len2, Py_ssize_t offset)
{
switch (kind) {
case PyUnicode_1BYTE_KIND:
if (PyUnicode_IS_ASCII(str1) && PyUnicode_IS_ASCII(str2))
return asciilib_find(buf1, len1, buf2, len2, offset);
else
return ucs1lib_find(buf1, len1, buf2, len2, offset);
case PyUnicode_2BYTE_KIND:
return ucs2lib_find(buf1, len1, buf2, len2, offset);
case PyUnicode_4BYTE_KIND:
return ucs4lib_find(buf1, len1, buf2, len2, offset);
}
assert(0);
return -1;
}
static Py_ssize_t
anylib_count(int kind, PyObject *sstr, void* sbuf, Py_ssize_t slen,
PyObject *str1, void *buf1, Py_ssize_t len1, Py_ssize_t maxcount)
{
switch (kind) {
case PyUnicode_1BYTE_KIND:
if (PyUnicode_IS_ASCII(sstr) && PyUnicode_IS_ASCII(str1))
return asciilib_count(sbuf, slen, buf1, len1, maxcount);
else
return ucs1lib_count(sbuf, slen, buf1, len1, maxcount);
case PyUnicode_2BYTE_KIND:
return ucs2lib_count(sbuf, slen, buf1, len1, maxcount);
case PyUnicode_4BYTE_KIND:
return ucs4lib_count(sbuf, slen, buf1, len1, maxcount);
}
assert(0);
return 0;
}
static void
replace_1char_inplace(PyObject *u, Py_ssize_t pos,
Py_UCS4 u1, Py_UCS4 u2, Py_ssize_t maxcount)
{
int kind = PyUnicode_KIND(u);
void *data = PyUnicode_DATA(u);
Py_ssize_t len = PyUnicode_GET_LENGTH(u);
if (kind == PyUnicode_1BYTE_KIND) {
ucs1lib_replace_1char_inplace((Py_UCS1 *)data + pos,
(Py_UCS1 *)data + len,
u1, u2, maxcount);
}
else if (kind == PyUnicode_2BYTE_KIND) {
ucs2lib_replace_1char_inplace((Py_UCS2 *)data + pos,
(Py_UCS2 *)data + len,
u1, u2, maxcount);
}
else {
assert(kind == PyUnicode_4BYTE_KIND);
ucs4lib_replace_1char_inplace((Py_UCS4 *)data + pos,
(Py_UCS4 *)data + len,
u1, u2, maxcount);
}
}
static PyObject *
replace(PyObject *self, PyObject *str1,
PyObject *str2, Py_ssize_t maxcount)
{
PyObject *u;
char *sbuf = PyUnicode_DATA(self);
char *buf1 = PyUnicode_DATA(str1);
char *buf2 = PyUnicode_DATA(str2);
int srelease = 0, release1 = 0, release2 = 0;
int skind = PyUnicode_KIND(self);
int kind1 = PyUnicode_KIND(str1);
int kind2 = PyUnicode_KIND(str2);
Py_ssize_t slen = PyUnicode_GET_LENGTH(self);
Py_ssize_t len1 = PyUnicode_GET_LENGTH(str1);
Py_ssize_t len2 = PyUnicode_GET_LENGTH(str2);
int mayshrink;
Py_UCS4 maxchar, maxchar_str1, maxchar_str2;
if (maxcount < 0)
maxcount = PY_SSIZE_T_MAX;
else if (maxcount == 0 || slen == 0)
goto nothing;
if (str1 == str2)
goto nothing;
maxchar = PyUnicode_MAX_CHAR_VALUE(self);
maxchar_str1 = PyUnicode_MAX_CHAR_VALUE(str1);
if (maxchar < maxchar_str1)
/* substring too wide to be present */
goto nothing;
maxchar_str2 = PyUnicode_MAX_CHAR_VALUE(str2);
/* Replacing str1 with str2 may cause a maxchar reduction in the
result string. */
mayshrink = (maxchar_str2 < maxchar_str1) && (maxchar == maxchar_str1);
maxchar = Py_MAX(maxchar, maxchar_str2);
if (len1 == len2) {
/* same length */
if (len1 == 0)
goto nothing;
if (len1 == 1) {
/* replace characters */
Py_UCS4 u1, u2;
Py_ssize_t pos;
u1 = PyUnicode_READ(kind1, buf1, 0);
pos = findchar(sbuf, skind, slen, u1, 1);
if (pos < 0)
goto nothing;
u2 = PyUnicode_READ(kind2, buf2, 0);
u = PyUnicode_New(slen, maxchar);
if (!u)
goto error;
_PyUnicode_FastCopyCharacters(u, 0, self, 0, slen);
replace_1char_inplace(u, pos, u1, u2, maxcount);
}
else {
int rkind = skind;
char *res;
Py_ssize_t i;
if (kind1 < rkind) {
/* widen substring */
buf1 = _PyUnicode_AsKind(str1, rkind);
if (!buf1) goto error;
release1 = 1;
}
i = anylib_find(rkind, self, sbuf, slen, str1, buf1, len1, 0);
if (i < 0)
goto nothing;
if (rkind > kind2) {
/* widen replacement */
buf2 = _PyUnicode_AsKind(str2, rkind);
if (!buf2) goto error;
release2 = 1;
}
else if (rkind < kind2) {
/* widen self and buf1 */
rkind = kind2;
if (release1) PyMem_Free(buf1);
release1 = 0;
sbuf = _PyUnicode_AsKind(self, rkind);
if (!sbuf) goto error;
srelease = 1;
buf1 = _PyUnicode_AsKind(str1, rkind);
if (!buf1) goto error;
release1 = 1;
}
u = PyUnicode_New(slen, maxchar);
if (!u)
goto error;
assert(PyUnicode_KIND(u) == rkind);
res = PyUnicode_DATA(u);
memcpy(res, sbuf, rkind * slen);
/* change everything in-place, starting with this one */
memcpy(res + rkind * i,
buf2,
rkind * len2);
i += len1;
while ( --maxcount > 0) {
i = anylib_find(rkind, self,
sbuf+rkind*i, slen-i,
str1, buf1, len1, i);
if (i == -1)
break;
memcpy(res + rkind * i,
buf2,
rkind * len2);
i += len1;
}
}
}
else {
Py_ssize_t n, i, j, ires;
Py_ssize_t new_size;
int rkind = skind;
char *res;
if (kind1 < rkind) {
/* widen substring */
buf1 = _PyUnicode_AsKind(str1, rkind);
if (!buf1) goto error;
release1 = 1;
}
n = anylib_count(rkind, self, sbuf, slen, str1, buf1, len1, maxcount);
if (n == 0)
goto nothing;
if (kind2 < rkind) {
/* widen replacement */
buf2 = _PyUnicode_AsKind(str2, rkind);
if (!buf2) goto error;
release2 = 1;
}
else if (kind2 > rkind) {
/* widen self and buf1 */
rkind = kind2;
sbuf = _PyUnicode_AsKind(self, rkind);
if (!sbuf) goto error;
srelease = 1;
if (release1) PyMem_Free(buf1);
release1 = 0;
buf1 = _PyUnicode_AsKind(str1, rkind);
if (!buf1) goto error;
release1 = 1;
}
/* new_size = PyUnicode_GET_LENGTH(self) + n * (PyUnicode_GET_LENGTH(str2) -
PyUnicode_GET_LENGTH(str1))); */
if (len1 < len2 && len2 - len1 > (PY_SSIZE_T_MAX - slen) / n) {
PyErr_SetString(PyExc_OverflowError,
"replace string is too long");
goto error;
}
new_size = slen + n * (len2 - len1);
if (new_size == 0) {
_Py_INCREF_UNICODE_EMPTY();
if (!unicode_empty)
goto error;
u = unicode_empty;
goto done;
}
if (new_size > (PY_SSIZE_T_MAX / rkind)) {
PyErr_SetString(PyExc_OverflowError,
"replace string is too long");
goto error;
}
u = PyUnicode_New(new_size, maxchar);
if (!u)
goto error;
assert(PyUnicode_KIND(u) == rkind);
res = PyUnicode_DATA(u);
ires = i = 0;
if (len1 > 0) {
while (n-- > 0) {
/* look for next match */
j = anylib_find(rkind, self,
sbuf + rkind * i, slen-i,
str1, buf1, len1, i);
if (j == -1)
break;
else if (j > i) {
/* copy unchanged part [i:j] */
memcpy(res + rkind * ires,
sbuf + rkind * i,
rkind * (j-i));
ires += j - i;
}
/* copy substitution string */
if (len2 > 0) {
memcpy(res + rkind * ires,
buf2,
rkind * len2);
ires += len2;
}
i = j + len1;
}
if (i < slen)
/* copy tail [i:] */
memcpy(res + rkind * ires,
sbuf + rkind * i,
rkind * (slen-i));
}
else {
/* interleave */
while (n > 0) {
memcpy(res + rkind * ires,
buf2,
rkind * len2);
ires += len2;
if (--n <= 0)
break;
memcpy(res + rkind * ires,
sbuf + rkind * i,
rkind);
ires++;
i++;
}
memcpy(res + rkind * ires,
sbuf + rkind * i,
rkind * (slen-i));
}
}
if (mayshrink) {
unicode_adjust_maxchar(&u);
if (u == NULL)
goto error;
}
done:
if (srelease)
PyMem_FREE(sbuf);
if (release1)
PyMem_FREE(buf1);
if (release2)
PyMem_FREE(buf2);
assert(_PyUnicode_CheckConsistency(u, 1));
return u;
nothing:
/* nothing to replace; return original string (when possible) */
if (srelease)
PyMem_FREE(sbuf);
if (release1)
PyMem_FREE(buf1);
if (release2)
PyMem_FREE(buf2);
return unicode_result_unchanged(self);
error:
if (srelease && sbuf)
PyMem_FREE(sbuf);
if (release1 && buf1)
PyMem_FREE(buf1);
if (release2 && buf2)
PyMem_FREE(buf2);
return NULL;
}
/* --- Unicode Object Methods --------------------------------------------- */
PyDoc_STRVAR(title__doc__,
"S.title() -> str\n\
\n\
Return a titlecased version of S, i.e. words start with title case\n\
characters, all remaining cased characters have lower case.");
static PyObject*
unicode_title(PyObject *self)
{
if (PyUnicode_READY(self) == -1)
return NULL;
return case_operation(self, do_title);
}
PyDoc_STRVAR(capitalize__doc__,
"S.capitalize() -> str\n\
\n\
Return a capitalized version of S, i.e. make the first character\n\
have upper case and the rest lower case.");
static PyObject*
unicode_capitalize(PyObject *self)
{
if (PyUnicode_READY(self) == -1)
return NULL;
if (PyUnicode_GET_LENGTH(self) == 0)
return unicode_result_unchanged(self);
return case_operation(self, do_capitalize);
}
PyDoc_STRVAR(casefold__doc__,
"S.casefold() -> str\n\
\n\
Return a version of S suitable for caseless comparisons.");
static PyObject *
unicode_casefold(PyObject *self)
{
if (PyUnicode_READY(self) == -1)
return NULL;
if (PyUnicode_IS_ASCII(self))
return ascii_upper_or_lower(self, 1);
return case_operation(self, do_casefold);
}
/* Argument converter. Accepts a single Unicode character. */
static int
convert_uc(PyObject *obj, void *addr)
{
Py_UCS4 *fillcharloc = (Py_UCS4 *)addr;
if (!PyUnicode_Check(obj)) {
PyErr_Format(PyExc_TypeError,
"The fill character must be a unicode character, "
"not %.100s", Py_TYPE(obj)->tp_name);
return 0;
}
if (PyUnicode_READY(obj) < 0)
return 0;
if (PyUnicode_GET_LENGTH(obj) != 1) {
PyErr_SetString(PyExc_TypeError,
"The fill character must be exactly one character long");
return 0;
}
*fillcharloc = PyUnicode_READ_CHAR(obj, 0);
return 1;
}
PyDoc_STRVAR(center__doc__,
"S.center(width[, fillchar]) -> str\n\
\n\
Return S centered in a string of length width. Padding is\n\
done using the specified fill character (default is a space)");
static PyObject *
unicode_center(PyObject *self, PyObject *args)
{
Py_ssize_t marg, left;
Py_ssize_t width;
Py_UCS4 fillchar = ' ';
if (!PyArg_ParseTuple(args, "n|O&:center", &width, convert_uc, &fillchar))
return NULL;
if (PyUnicode_READY(self) == -1)
return NULL;
if (PyUnicode_GET_LENGTH(self) >= width)
return unicode_result_unchanged(self);
marg = width - PyUnicode_GET_LENGTH(self);
left = marg / 2 + (marg & width & 1);
return pad(self, left, marg - left, fillchar);
}
/* This function assumes that str1 and str2 are readied by the caller. */
static int
unicode_compare(PyObject *str1, PyObject *str2)
{
#define COMPARE(TYPE1, TYPE2) \
do { \
TYPE1* p1 = (TYPE1 *)data1; \
TYPE2* p2 = (TYPE2 *)data2; \
TYPE1* end = p1 + len; \
Py_UCS4 c1, c2; \
for (; p1 != end; p1++, p2++) { \
c1 = *p1; \
c2 = *p2; \
if (c1 != c2) \
return (c1 < c2) ? -1 : 1; \
} \
} \
while (0)
int kind1, kind2;
void *data1, *data2;
Py_ssize_t len1, len2, len;
kind1 = PyUnicode_KIND(str1);
kind2 = PyUnicode_KIND(str2);
data1 = PyUnicode_DATA(str1);
data2 = PyUnicode_DATA(str2);
len1 = PyUnicode_GET_LENGTH(str1);
len2 = PyUnicode_GET_LENGTH(str2);
len = Py_MIN(len1, len2);
switch(kind1) {
case PyUnicode_1BYTE_KIND:
{
switch(kind2) {
case PyUnicode_1BYTE_KIND:
{
int cmp = memcmp(data1, data2, len);
/* normalize result of memcmp() into the range [-1; 1] */
if (cmp < 0)
return -1;
if (cmp > 0)
return 1;
break;
}
case PyUnicode_2BYTE_KIND:
COMPARE(Py_UCS1, Py_UCS2);
break;
case PyUnicode_4BYTE_KIND:
COMPARE(Py_UCS1, Py_UCS4);
break;
default:
assert(0);
}
break;
}
case PyUnicode_2BYTE_KIND:
{
switch(kind2) {
case PyUnicode_1BYTE_KIND:
COMPARE(Py_UCS2, Py_UCS1);
break;
case PyUnicode_2BYTE_KIND:
{
COMPARE(Py_UCS2, Py_UCS2);
break;
}
case PyUnicode_4BYTE_KIND:
COMPARE(Py_UCS2, Py_UCS4);
break;
default:
assert(0);
}
break;
}
case PyUnicode_4BYTE_KIND:
{
switch(kind2) {
case PyUnicode_1BYTE_KIND:
COMPARE(Py_UCS4, Py_UCS1);
break;
case PyUnicode_2BYTE_KIND:
COMPARE(Py_UCS4, Py_UCS2);
break;
case PyUnicode_4BYTE_KIND:
{
#if defined(HAVE_WMEMCMP) && SIZEOF_WCHAR_T == 4
int cmp = wmemcmp((wchar_t *)data1, (wchar_t *)data2, len);
/* normalize result of wmemcmp() into the range [-1; 1] */
if (cmp < 0)
return -1;
if (cmp > 0)
return 1;
#else
COMPARE(Py_UCS4, Py_UCS4);
#endif
break;
}
default:
assert(0);
}
break;
}
default:
assert(0);
}
if (len1 == len2)
return 0;
if (len1 < len2)
return -1;
else
return 1;
#undef COMPARE
}
static inline int
unicode_compare_eq(PyObject *str1, PyObject *str2)
{
int kind;
void *data1, *data2;
Py_ssize_t len;
len = PyUnicode_GET_LENGTH(str1);
if (PyUnicode_GET_LENGTH(str2) != len)
return 0;
kind = PyUnicode_KIND(str1);
if (PyUnicode_KIND(str2) != kind)
return 0;
data1 = PyUnicode_DATA(str1);
data2 = PyUnicode_DATA(str2);
return !bcmp(data1, data2, len * kind);
}
int
PyUnicode_Compare(PyObject *left, PyObject *right)
{
if (PyUnicode_Check(left) && PyUnicode_Check(right)) {
if (PyUnicode_READY(left) == -1 ||
PyUnicode_READY(right) == -1)
return -1;
/* a string is equal to itself */
if (left == right)
return 0;
return unicode_compare(left, right);
}
PyErr_Format(PyExc_TypeError,
"Can't compare %.100s and %.100s",
left->ob_type->tp_name,
right->ob_type->tp_name);
return -1;
}
int
PyUnicode_CompareWithASCIIString(PyObject* uni, const char* str)
{
Py_ssize_t i;
int kind;
Py_UCS4 chr;
const unsigned char *ustr = (const unsigned char *)str;
assert(_PyUnicode_CHECK(uni));
if (!PyUnicode_IS_READY(uni)) {
const wchar_t *ws = _PyUnicode_WSTR(uni);
/* Compare Unicode string and source character set string */
for (i = 0; (chr = ws[i]) && ustr[i]; i++) {
if (chr != ustr[i])
return (chr < ustr[i]) ? -1 : 1;
}
/* This check keeps Python strings that end in '\0' from comparing equal
to C strings identical up to that point. */
if (_PyUnicode_WSTR_LENGTH(uni) != i || chr)
return 1; /* uni is longer */
if (ustr[i])
return -1; /* str is longer */
return 0;
}
kind = PyUnicode_KIND(uni);
if (kind == PyUnicode_1BYTE_KIND) {
const void *data = PyUnicode_1BYTE_DATA(uni);
size_t len1 = (size_t)PyUnicode_GET_LENGTH(uni);
size_t len, len2 = strlen(str);
int cmp;
len = Py_MIN(len1, len2);
cmp = memcmp(data, str, len);
if (cmp != 0) {
if (cmp < 0)
return -1;
else
return 1;
}
if (len1 > len2)
return 1; /* uni is longer */
if (len1 < len2)
return -1; /* str is longer */
return 0;
}
else {
void *data = PyUnicode_DATA(uni);
/* Compare Unicode string and source character set string */
for (i = 0; (chr = PyUnicode_READ(kind, data, i)) && str[i]; i++)
if (chr != (unsigned char)str[i])
return (chr < (unsigned char)(str[i])) ? -1 : 1;
/* This check keeps Python strings that end in '\0' from comparing equal
to C strings identical up to that point. */
if (PyUnicode_GET_LENGTH(uni) != i || chr)
return 1; /* uni is longer */
if (str[i])
return -1; /* str is longer */
return 0;
}
}
static int
non_ready_unicode_equal_to_ascii_string(PyObject *unicode, const char *str)
{
size_t i, len;
const wchar_t *p;
len = (size_t)_PyUnicode_WSTR_LENGTH(unicode);
if (strlen(str) != len)
return 0;
p = _PyUnicode_WSTR(unicode);
assert(p);
for (i = 0; i < len; i++) {
unsigned char c = (unsigned char)str[i];
if (c >= 128 || p[i] != (wchar_t)c)
return 0;
}
return 1;
}
static int
IsPureAscii(const char *p)
{
int c;
while ((c = *p++)) {
if (c & 128) {
return 0;
}
}
return 1;
}
int
_PyUnicode_EqualToASCIIString(PyObject *unicode, const char *str)
{
size_t len;
assert(str);
assert(IsPureAscii(str));
assert(_PyUnicode_CHECK(unicode));
if (PyUnicode_READY(unicode) == -1) {
/* Memory error or bad data */
PyErr_Clear();
return non_ready_unicode_equal_to_ascii_string(unicode, str);
}
if (!PyUnicode_IS_ASCII(unicode))
return 0;
len = (size_t)PyUnicode_GET_LENGTH(unicode);
return strlen(str) == len &&
!bcmp(PyUnicode_1BYTE_DATA(unicode), str, len);
}
int
_PyUnicode_EqualToASCIIId(PyObject *left, _Py_Identifier *right)
{
PyObject *right_uni;
Py_hash_t hash;
assert(_PyUnicode_CHECK(left));
assert(right->string);
assert(IsPureAscii(right->string));
if (PyUnicode_READY(left) == -1) {
/* memory error or bad data */
PyErr_Clear();
return non_ready_unicode_equal_to_ascii_string(left, right->string);
}
if (!PyUnicode_IS_ASCII(left))
return 0;
right_uni = _PyUnicode_FromId(right); /* borrowed */
if (right_uni == NULL) {
/* memory error or bad data */
PyErr_Clear();
return _PyUnicode_EqualToASCIIString(left, right->string);
}
if (left == right_uni)
return 1;
if (PyUnicode_CHECK_INTERNED(left))
return 0;
assert(_PyUnicode_HASH(right_uni) != -1);
hash = _PyUnicode_HASH(left);
if (hash != -1 && hash != _PyUnicode_HASH(right_uni))
return 0;
return unicode_compare_eq(left, right_uni);
}
#define TEST_COND(cond) \
((cond) ? Py_True : Py_False)
PyObject *
PyUnicode_RichCompare(PyObject *left, PyObject *right, int op)
{
int result;
PyObject *v;
if (UNLIKELY(!PyUnicode_Check(left) ||
!PyUnicode_Check(right)))
Py_RETURN_NOTIMPLEMENTED;
if (UNLIKELY(PyUnicode_READY(left) == -1 ||
PyUnicode_READY(right) == -1))
return NULL;
if (left == right) {
switch (op) {
case Py_EQ:
case Py_LE:
case Py_GE:
/* a string is equal to itself */
v = Py_True;
break;
case Py_NE:
case Py_LT:
case Py_GT:
v = Py_False;
break;
default:
PyErr_BadArgument();
return NULL;
}
}
else if (op == Py_EQ || op == Py_NE) {
result = unicode_compare_eq(left, right);
result ^= (op == Py_NE);
v = TEST_COND(result);
}
else {
result = unicode_compare(left, right);
/* Convert the return value to a Boolean */
switch (op) {
case Py_LE:
v = TEST_COND(result <= 0);
break;
case Py_GE:
v = TEST_COND(result >= 0);
break;
case Py_LT:
v = TEST_COND(result == -1);
break;
case Py_GT:
v = TEST_COND(result == 1);
break;
default:
PyErr_BadArgument();
return NULL;
}
}
Py_INCREF(v);
return v;
}
int
_PyUnicode_EQ(PyObject *aa, PyObject *bb)
{
return unicode_eq(aa, bb);
}
int
PyUnicode_Contains(PyObject *str, PyObject *substr)
{
int kind1, kind2;
void *buf1, *buf2;
Py_ssize_t len1, len2;
int result;
if (!PyUnicode_Check(substr)) {
PyErr_Format(PyExc_TypeError,
"'in <string>' requires string as left operand, not %.100s",
Py_TYPE(substr)->tp_name);
return -1;
}
if (PyUnicode_READY(substr) == -1)
return -1;
if (ensure_unicode(str) < 0)
return -1;
kind1 = PyUnicode_KIND(str);
kind2 = PyUnicode_KIND(substr);
if (kind1 < kind2)
return 0;
len1 = PyUnicode_GET_LENGTH(str);
len2 = PyUnicode_GET_LENGTH(substr);
if (len1 < len2)
return 0;
buf1 = PyUnicode_DATA(str);
buf2 = PyUnicode_DATA(substr);
if (len2 == 1) {
Py_UCS4 ch = PyUnicode_READ(kind2, buf2, 0);
result = findchar((const char *)buf1, kind1, len1, ch, 1) != -1;
return result;
}
if (kind2 != kind1) {
buf2 = _PyUnicode_AsKind(substr, kind1);
if (!buf2)
return -1;
}
switch (kind1) {
case PyUnicode_1BYTE_KIND:
result = ucs1lib_find(buf1, len1, buf2, len2, 0) != -1;
break;
case PyUnicode_2BYTE_KIND:
result = ucs2lib_find(buf1, len1, buf2, len2, 0) != -1;
break;
case PyUnicode_4BYTE_KIND:
result = ucs4lib_find(buf1, len1, buf2, len2, 0) != -1;
break;
default:
result = -1;
assert(0);
}
if (kind2 != kind1)
PyMem_Free(buf2);
return result;
}
/* Concat to string or Unicode object giving a new Unicode object. */
PyObject *
PyUnicode_Concat(PyObject *left, PyObject *right)
{
PyObject *result;
Py_UCS4 maxchar, maxchar2;
Py_ssize_t left_len, right_len, new_len;
if (ensure_unicode(left) < 0 || ensure_unicode(right) < 0)
return NULL;
/* Shortcuts */
if (left == unicode_empty)
return PyUnicode_FromObject(right);
if (right == unicode_empty)
return PyUnicode_FromObject(left);
left_len = PyUnicode_GET_LENGTH(left);
right_len = PyUnicode_GET_LENGTH(right);
if (left_len > PY_SSIZE_T_MAX - right_len) {
PyErr_SetString(PyExc_OverflowError,
"strings are too large to concat");
return NULL;
}
new_len = left_len + right_len;
maxchar = PyUnicode_MAX_CHAR_VALUE(left);
maxchar2 = PyUnicode_MAX_CHAR_VALUE(right);
maxchar = Py_MAX(maxchar, maxchar2);
/* Concat the two Unicode strings */
result = PyUnicode_New(new_len, maxchar);
if (result == NULL)
return NULL;
_PyUnicode_FastCopyCharacters(result, 0, left, 0, left_len);
_PyUnicode_FastCopyCharacters(result, left_len, right, 0, right_len);
assert(_PyUnicode_CheckConsistency(result, 1));
return result;
}
void
PyUnicode_Append(PyObject **p_left, PyObject *right)
{
PyObject *left, *res;
Py_UCS4 maxchar, maxchar2;
Py_ssize_t left_len, right_len, new_len;
if (p_left == NULL) {
if (!PyErr_Occurred())
PyErr_BadInternalCall();
return;
}
left = *p_left;
if (right == NULL || left == NULL
|| !PyUnicode_Check(left) || !PyUnicode_Check(right)) {
if (!PyErr_Occurred())
PyErr_BadInternalCall();
goto error;
}
if (PyUnicode_READY(left) == -1)
goto error;
if (PyUnicode_READY(right) == -1)
goto error;
/* Shortcuts */
if (left == unicode_empty) {
Py_DECREF(left);
Py_INCREF(right);
*p_left = right;
return;
}
if (right == unicode_empty)
return;
left_len = PyUnicode_GET_LENGTH(left);
right_len = PyUnicode_GET_LENGTH(right);
if (left_len > PY_SSIZE_T_MAX - right_len) {
PyErr_SetString(PyExc_OverflowError,
"strings are too large to concat");
goto error;
}
new_len = left_len + right_len;
if (unicode_modifiable(left)
&& PyUnicode_CheckExact(right)
&& PyUnicode_KIND(right) <= PyUnicode_KIND(left)
/* Don't resize for ascii += latin1. Convert ascii to latin1 requires
to change the structure size, but characters are stored just after
the structure, and so it requires to move all characters which is
not so different than duplicating the string. */
&& !(PyUnicode_IS_ASCII(left) && !PyUnicode_IS_ASCII(right)))
{
/* append inplace */
if (unicode_resize(p_left, new_len) != 0)
goto error;
/* copy 'right' into the newly allocated area of 'left' */
_PyUnicode_FastCopyCharacters(*p_left, left_len, right, 0, right_len);
}
else {
maxchar = PyUnicode_MAX_CHAR_VALUE(left);
maxchar2 = PyUnicode_MAX_CHAR_VALUE(right);
maxchar = Py_MAX(maxchar, maxchar2);
/* Concat the two Unicode strings */
res = PyUnicode_New(new_len, maxchar);
if (res == NULL)
goto error;
_PyUnicode_FastCopyCharacters(res, 0, left, 0, left_len);
_PyUnicode_FastCopyCharacters(res, left_len, right, 0, right_len);
Py_DECREF(left);
*p_left = res;
}
assert(_PyUnicode_CheckConsistency(*p_left, 1));
return;
error:
Py_CLEAR(*p_left);
}
void
PyUnicode_AppendAndDel(PyObject **pleft, PyObject *right)
{
PyUnicode_Append(pleft, right);
Py_XDECREF(right);
}
/*
Wraps stringlib_parse_args_finds() and additionally ensures that the
first argument is a unicode object.
*/
static inline int
parse_args_finds_unicode(const char * function_name, PyObject *args,
PyObject **substring,
Py_ssize_t *start, Py_ssize_t *end)
{
if(stringlib_parse_args_finds(function_name, args, substring,
start, end)) {
if (ensure_unicode(*substring) < 0)
return 0;
return 1;
}
return 0;
}
PyDoc_STRVAR(count__doc__,
"S.count(sub[, start[, end]]) -> int\n\
\n\
Return the number of non-overlapping occurrences of substring sub in\n\
string S[start:end]. Optional arguments start and end are\n\
interpreted as in slice notation.");
static PyObject *
unicode_count(PyObject *self, PyObject *args)
{
PyObject *substring = NULL; /* initialize to fix a compiler warning */
Py_ssize_t start = 0;
Py_ssize_t end = PY_SSIZE_T_MAX;
PyObject *result;
int kind1, kind2;
void *buf1, *buf2;
Py_ssize_t len1, len2, iresult;
if (!parse_args_finds_unicode("count", args, &substring, &start, &end))
return NULL;
kind1 = PyUnicode_KIND(self);
kind2 = PyUnicode_KIND(substring);
if (kind1 < kind2)
return PyLong_FromLong(0);
len1 = PyUnicode_GET_LENGTH(self);
len2 = PyUnicode_GET_LENGTH(substring);
ADJUST_INDICES(start, end, len1);
if (end - start < len2)
return PyLong_FromLong(0);
buf1 = PyUnicode_DATA(self);
buf2 = PyUnicode_DATA(substring);
if (kind2 != kind1) {
buf2 = _PyUnicode_AsKind(substring, kind1);
if (!buf2)
return NULL;
}
switch (kind1) {
case PyUnicode_1BYTE_KIND:
iresult = ucs1lib_count(
((Py_UCS1*)buf1) + start, end - start,
buf2, len2, PY_SSIZE_T_MAX
);
break;
case PyUnicode_2BYTE_KIND:
iresult = ucs2lib_count(
((Py_UCS2*)buf1) + start, end - start,
buf2, len2, PY_SSIZE_T_MAX
);
break;
case PyUnicode_4BYTE_KIND:
iresult = ucs4lib_count(
((Py_UCS4*)buf1) + start, end - start,
buf2, len2, PY_SSIZE_T_MAX
);
break;
default:
assert(0); iresult = 0;
}
result = PyLong_FromSsize_t(iresult);
if (kind2 != kind1)
PyMem_Free(buf2);
return result;
}
PyDoc_STRVAR(encode__doc__,
"S.encode(encoding='utf-8', errors='strict') -> bytes\n\
\n\
Encode S using the codec registered for encoding. Default encoding\n\
is 'utf-8'. errors may be given to set a different error\n\
handling scheme. Default is 'strict' meaning that encoding errors raise\n\
a UnicodeEncodeError. Other possible values are 'ignore', 'replace' and\n\
'xmlcharrefreplace' as well as any other name registered with\n\
codecs.register_error that can handle UnicodeEncodeErrors.");
static PyObject *
unicode_encode(PyObject *self, PyObject *args, PyObject *kwargs)
{
static char *kwlist[] = {"encoding", "errors", 0};
char *encoding = NULL;
char *errors = NULL;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|ss:encode",
kwlist, &encoding, &errors))
return NULL;
return PyUnicode_AsEncodedString(self, encoding, errors);
}
PyDoc_STRVAR(expandtabs__doc__,
"S.expandtabs(tabsize=8) -> str\n\
\n\
Return a copy of S where all tab characters are expanded using spaces.\n\
If tabsize is not given, a tab size of 8 characters is assumed.");
static PyObject*
unicode_expandtabs(PyObject *self, PyObject *args, PyObject *kwds)
{
Py_ssize_t i, j, line_pos, src_len, incr;
Py_UCS4 ch;
PyObject *u;
void *src_data, *dest_data;
static char *kwlist[] = {"tabsize", 0};
int tabsize = 8;
int kind;
int found;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|i:expandtabs",
kwlist, &tabsize))
return NULL;
if (PyUnicode_READY(self) == -1)
return NULL;
/* First pass: determine size of output string */
src_len = PyUnicode_GET_LENGTH(self);
i = j = line_pos = 0;
kind = PyUnicode_KIND(self);
src_data = PyUnicode_DATA(self);
found = 0;
for (; i < src_len; i++) {
ch = PyUnicode_READ(kind, src_data, i);
if (ch == '\t') {
found = 1;
if (tabsize > 0) {
incr = tabsize - (line_pos % tabsize); /* cannot overflow */
if (j > PY_SSIZE_T_MAX - incr)
goto overflow;
line_pos += incr;
j += incr;
}
}
else {
if (j > PY_SSIZE_T_MAX - 1)
goto overflow;
line_pos++;
j++;
if (ch == '\n' || ch == '\r')
line_pos = 0;
}
}
if (!found)
return unicode_result_unchanged(self);
/* Second pass: create output string and fill it */
u = PyUnicode_New(j, PyUnicode_MAX_CHAR_VALUE(self));
if (!u)
return NULL;
dest_data = PyUnicode_DATA(u);
i = j = line_pos = 0;
for (; i < src_len; i++) {
ch = PyUnicode_READ(kind, src_data, i);
if (ch == '\t') {
if (tabsize > 0) {
incr = tabsize - (line_pos % tabsize);
line_pos += incr;
FILL(kind, dest_data, ' ', j, incr);
j += incr;
}
}
else {
line_pos++;
PyUnicode_WRITE(kind, dest_data, j, ch);
j++;
if (ch == '\n' || ch == '\r')
line_pos = 0;
}
}
assert (j == PyUnicode_GET_LENGTH(u));
return unicode_result(u);
overflow:
PyErr_SetString(PyExc_OverflowError, "new string is too long");
return NULL;
}
PyDoc_STRVAR(find__doc__,
"S.find(sub[, start[, end]]) -> int\n\
\n\
Return the lowest index in S where substring sub is found,\n\
such that sub is contained within S[start:end]. Optional\n\
arguments start and end are interpreted as in slice notation.\n\
\n\
Return -1 on failure.");
static PyObject *
unicode_find(PyObject *self, PyObject *args)
{
/* initialize variables to prevent gcc warning */
PyObject *substring = NULL;
Py_ssize_t start = 0;
Py_ssize_t end = 0;
Py_ssize_t result;
if (!parse_args_finds_unicode("find", args, &substring, &start, &end))
return NULL;
if (PyUnicode_READY(self) == -1)
return NULL;
result = any_find_slice(self, substring, start, end, 1);
if (result == -2)
return NULL;
return PyLong_FromSsize_t(result);
}
static PyObject *
unicode_getitem(PyObject *self, Py_ssize_t index)
{
void *data;
enum PyUnicode_Kind kind;
Py_UCS4 ch;
if (!PyUnicode_Check(self)) {
PyErr_BadArgument();
return NULL;
}
if (PyUnicode_READY(self) == -1) {
return NULL;
}
if (index < 0 || index >= PyUnicode_GET_LENGTH(self)) {
PyErr_SetString(PyExc_IndexError, "string index out of range");
return NULL;
}
kind = PyUnicode_KIND(self);
data = PyUnicode_DATA(self);
ch = PyUnicode_READ(kind, data, index);
return unicode_char(ch);
}
/* Believe it or not, this produces the same value for ASCII strings
as bytes_hash(). */
static Py_hash_t
unicode_hash(PyObject *self)
{
Py_ssize_t len;
Py_uhash_t x; /* Unsigned for defined overflow behavior. */
#ifdef Py_DEBUG
assert(_Py_HashSecret_Initialized);
#endif
if (_PyUnicode_HASH(self) != -1)
return _PyUnicode_HASH(self);
if (PyUnicode_READY(self) == -1)
return -1;
len = PyUnicode_GET_LENGTH(self);
/*
We make the hash of the empty string be 0, rather than using
(prefix ^ suffix), since this slightly obfuscates the hash secret
*/
if (len == 0) {
_PyUnicode_HASH(self) = 0;
return 0;
}
x = _Py_HashBytes(PyUnicode_DATA(self),
PyUnicode_GET_LENGTH(self) * PyUnicode_KIND(self));
_PyUnicode_HASH(self) = x;
return x;
}
PyDoc_STRVAR(index__doc__,
"S.index(sub[, start[, end]]) -> int\n\
\n\
Return the lowest index in S where substring sub is found, \n\
such that sub is contained within S[start:end]. Optional\n\
arguments start and end are interpreted as in slice notation.\n\
\n\
Raises ValueError when the substring is not found.");
static PyObject *
unicode_index(PyObject *self, PyObject *args)
{
/* initialize variables to prevent gcc warning */
Py_ssize_t result;
PyObject *substring = NULL;
Py_ssize_t start = 0;
Py_ssize_t end = 0;
if (!parse_args_finds_unicode("index", args, &substring, &start, &end))
return NULL;
if (PyUnicode_READY(self) == -1)
return NULL;
result = any_find_slice(self, substring, start, end, 1);
if (result == -2)
return NULL;
if (result < 0) {
PyErr_SetString(PyExc_ValueError, "substring not found");
return NULL;
}
return PyLong_FromSsize_t(result);
}
PyDoc_STRVAR(islower__doc__,
"S.islower() -> bool\n\
\n\
Return True if all cased characters in S are lowercase and there is\n\
at least one cased character in S, False otherwise.");
static PyObject*
unicode_islower(PyObject *self)
{
Py_ssize_t i, length;
int kind;
void *data;
int cased;
if (PyUnicode_READY(self) == -1)
return NULL;
length = PyUnicode_GET_LENGTH(self);
kind = PyUnicode_KIND(self);
data = PyUnicode_DATA(self);
/* Shortcut for single character strings */
if (length == 1)
return PyBool_FromLong(
Py_UNICODE_ISLOWER(PyUnicode_READ(kind, data, 0)));
/* Special case for empty strings */
if (length == 0)
return PyBool_FromLong(0);
cased = 0;
for (i = 0; i < length; i++) {
const Py_UCS4 ch = PyUnicode_READ(kind, data, i);
if (Py_UNICODE_ISUPPER(ch) || Py_UNICODE_ISTITLE(ch))
return PyBool_FromLong(0);
else if (!cased && Py_UNICODE_ISLOWER(ch))
cased = 1;
}
return PyBool_FromLong(cased);
}
PyDoc_STRVAR(isupper__doc__,
"S.isupper() -> bool\n\
\n\
Return True if all cased characters in S are uppercase and there is\n\
at least one cased character in S, False otherwise.");
static PyObject*
unicode_isupper(PyObject *self)
{
Py_ssize_t i, length;
int kind;
void *data;
int cased;
if (PyUnicode_READY(self) == -1)
return NULL;
length = PyUnicode_GET_LENGTH(self);
kind = PyUnicode_KIND(self);
data = PyUnicode_DATA(self);
/* Shortcut for single character strings */
if (length == 1)
return PyBool_FromLong(
Py_UNICODE_ISUPPER(PyUnicode_READ(kind, data, 0)) != 0);
/* Special case for empty strings */
if (length == 0)
return PyBool_FromLong(0);
cased = 0;
for (i = 0; i < length; i++) {
const Py_UCS4 ch = PyUnicode_READ(kind, data, i);
if (Py_UNICODE_ISLOWER(ch) || Py_UNICODE_ISTITLE(ch))
return PyBool_FromLong(0);
else if (!cased && Py_UNICODE_ISUPPER(ch))
cased = 1;
}
return PyBool_FromLong(cased);
}
PyDoc_STRVAR(istitle__doc__,
"S.istitle() -> bool\n\
\n\
Return True if S is a titlecased string and there is at least one\n\
character in S, i.e. upper- and titlecase characters may only\n\
follow uncased characters and lowercase characters only cased ones.\n\
Return False otherwise.");
static PyObject*
unicode_istitle(PyObject *self)
{
Py_ssize_t i, length;
int kind;
void *data;
int cased, previous_is_cased;
if (PyUnicode_READY(self) == -1)
return NULL;
length = PyUnicode_GET_LENGTH(self);
kind = PyUnicode_KIND(self);
data = PyUnicode_DATA(self);
/* Shortcut for single character strings */
if (length == 1) {
Py_UCS4 ch = PyUnicode_READ(kind, data, 0);
return PyBool_FromLong((Py_UNICODE_ISTITLE(ch) != 0) ||
(Py_UNICODE_ISUPPER(ch) != 0));
}
/* Special case for empty strings */
if (length == 0)
return PyBool_FromLong(0);
cased = 0;
previous_is_cased = 0;
for (i = 0; i < length; i++) {
const Py_UCS4 ch = PyUnicode_READ(kind, data, i);
if (Py_UNICODE_ISUPPER(ch) || Py_UNICODE_ISTITLE(ch)) {
if (previous_is_cased)
return PyBool_FromLong(0);
previous_is_cased = 1;
cased = 1;
}
else if (Py_UNICODE_ISLOWER(ch)) {
if (!previous_is_cased)
return PyBool_FromLong(0);
previous_is_cased = 1;
cased = 1;
}
else
previous_is_cased = 0;
}
return PyBool_FromLong(cased);
}
PyDoc_STRVAR(isspace__doc__,
"S.isspace() -> bool\n\
\n\
Return True if all characters in S are whitespace\n\
and there is at least one character in S, False otherwise.");
static PyObject*
unicode_isspace(PyObject *self)
{
Py_ssize_t i, length;
int kind;
void *data;
if (PyUnicode_READY(self) == -1)
return NULL;
length = PyUnicode_GET_LENGTH(self);
kind = PyUnicode_KIND(self);
data = PyUnicode_DATA(self);
/* Shortcut for single character strings */
if (length == 1)
return PyBool_FromLong(
Py_UNICODE_ISSPACE(PyUnicode_READ(kind, data, 0)));
/* Special case for empty strings */
if (length == 0)
return PyBool_FromLong(0);
for (i = 0; i < length; i++) {
const Py_UCS4 ch = PyUnicode_READ(kind, data, i);
if (!Py_UNICODE_ISSPACE(ch))
return PyBool_FromLong(0);
}
return PyBool_FromLong(1);
}
PyDoc_STRVAR(isalpha__doc__,
"S.isalpha() -> bool\n\
\n\
Return True if all characters in S are alphabetic\n\
and there is at least one character in S, False otherwise.");
static PyObject*
unicode_isalpha(PyObject *self)
{
Py_ssize_t i, length;
int kind;
void *data;
if (PyUnicode_READY(self) == -1)
return NULL;
length = PyUnicode_GET_LENGTH(self);
kind = PyUnicode_KIND(self);
data = PyUnicode_DATA(self);
/* Shortcut for single character strings */
if (length == 1)
return PyBool_FromLong(
Py_UNICODE_ISALPHA(PyUnicode_READ(kind, data, 0)));
/* Special case for empty strings */
if (length == 0)
return PyBool_FromLong(0);
for (i = 0; i < length; i++) {
if (!Py_UNICODE_ISALPHA(PyUnicode_READ(kind, data, i)))
return PyBool_FromLong(0);
}
return PyBool_FromLong(1);
}
PyDoc_STRVAR(isalnum__doc__,
"S.isalnum() -> bool\n\
\n\
Return True if all characters in S are alphanumeric\n\
and there is at least one character in S, False otherwise.");
static PyObject*
unicode_isalnum(PyObject *self)
{
int kind;
void *data;
Py_ssize_t len, i;
if (PyUnicode_READY(self) == -1)
return NULL;
kind = PyUnicode_KIND(self);
data = PyUnicode_DATA(self);
len = PyUnicode_GET_LENGTH(self);
/* Shortcut for single character strings */
if (len == 1) {
const Py_UCS4 ch = PyUnicode_READ(kind, data, 0);
return PyBool_FromLong(Py_UNICODE_ISALNUM(ch));
}
/* Special case for empty strings */
if (len == 0)
return PyBool_FromLong(0);
for (i = 0; i < len; i++) {
const Py_UCS4 ch = PyUnicode_READ(kind, data, i);
if (!Py_UNICODE_ISALNUM(ch))
return PyBool_FromLong(0);
}
return PyBool_FromLong(1);
}
PyDoc_STRVAR(isdecimal__doc__,
"S.isdecimal() -> bool\n\
\n\
Return True if there are only decimal characters in S,\n\
False otherwise.");
static PyObject*
unicode_isdecimal(PyObject *self)
{
Py_ssize_t i, length;
int kind;
void *data;
if (PyUnicode_READY(self) == -1)
return NULL;
length = PyUnicode_GET_LENGTH(self);
kind = PyUnicode_KIND(self);
data = PyUnicode_DATA(self);
/* Shortcut for single character strings */
if (length == 1)
return PyBool_FromLong(
Py_UNICODE_ISDECIMAL(PyUnicode_READ(kind, data, 0)));
/* Special case for empty strings */
if (length == 0)
return PyBool_FromLong(0);
for (i = 0; i < length; i++) {
if (!Py_UNICODE_ISDECIMAL(PyUnicode_READ(kind, data, i)))
return PyBool_FromLong(0);
}
return PyBool_FromLong(1);
}
PyDoc_STRVAR(isdigit__doc__,
"S.isdigit() -> bool\n\
\n\
Return True if all characters in S are digits\n\
and there is at least one character in S, False otherwise.");
static PyObject*
unicode_isdigit(PyObject *self)
{
Py_ssize_t i, length;
int kind;
void *data;
if (PyUnicode_READY(self) == -1)
return NULL;
length = PyUnicode_GET_LENGTH(self);
kind = PyUnicode_KIND(self);
data = PyUnicode_DATA(self);
/* Shortcut for single character strings */
if (length == 1) {
const Py_UCS4 ch = PyUnicode_READ(kind, data, 0);
return PyBool_FromLong(Py_UNICODE_ISDIGIT(ch));
}
/* Special case for empty strings */
if (length == 0)
return PyBool_FromLong(0);
for (i = 0; i < length; i++) {
if (!Py_UNICODE_ISDIGIT(PyUnicode_READ(kind, data, i)))
return PyBool_FromLong(0);
}
return PyBool_FromLong(1);
}
PyDoc_STRVAR(isnumeric__doc__,
"S.isnumeric() -> bool\n\
\n\
Return True if there are only numeric characters in S,\n\
False otherwise.");
static PyObject*
unicode_isnumeric(PyObject *self)
{
Py_ssize_t i, length;
int kind;
void *data;
if (PyUnicode_READY(self) == -1)
return NULL;
length = PyUnicode_GET_LENGTH(self);
kind = PyUnicode_KIND(self);
data = PyUnicode_DATA(self);
/* Shortcut for single character strings */
if (length == 1)
return PyBool_FromLong(
Py_UNICODE_ISNUMERIC(PyUnicode_READ(kind, data, 0)));
/* Special case for empty strings */
if (length == 0)
return PyBool_FromLong(0);
for (i = 0; i < length; i++) {
if (!Py_UNICODE_ISNUMERIC(PyUnicode_READ(kind, data, i)))
return PyBool_FromLong(0);
}
return PyBool_FromLong(1);
}
int
PyUnicode_IsIdentifier(PyObject *self)
{
int kind;
void *data;
Py_ssize_t i;
Py_UCS4 first;
if (PyUnicode_READY(self) == -1) {
Py_FatalError("identifier not ready");
return 0;
}
/* Special case for empty strings */
if (PyUnicode_GET_LENGTH(self) == 0)
return 0;
kind = PyUnicode_KIND(self);
data = PyUnicode_DATA(self);
/* PEP 3131 says that the first character must be in
XID_Start and subsequent characters in XID_Continue,
and for the ASCII range, the 2.x rules apply (i.e
start with letters and underscore, continue with
letters, digits, underscore). However, given the current
definition of XID_Start and XID_Continue, it is sufficient
to check just for these, except that _ must be allowed
as starting an identifier. */
first = PyUnicode_READ(kind, data, 0);
if (!_PyUnicode_IsXidStart(first) && first != 0x5F /* LOW LINE */)
return 0;
for (i = 1; i < PyUnicode_GET_LENGTH(self); i++)
if (!_PyUnicode_IsXidContinue(PyUnicode_READ(kind, data, i)))
return 0;
return 1;
}
PyDoc_STRVAR(isidentifier__doc__,
"S.isidentifier() -> bool\n\
\n\
Return True if S is a valid identifier according\n\
to the language definition.\n\
\n\
Use keyword.iskeyword() to test for reserved identifiers\n\
such as \"def\" and \"class\".\n");
static PyObject*
unicode_isidentifier(PyObject *self)
{
return PyBool_FromLong(PyUnicode_IsIdentifier(self));
}
PyDoc_STRVAR(isprintable__doc__,
"S.isprintable() -> bool\n\
\n\
Return True if all characters in S are considered\n\
printable in repr() or S is empty, False otherwise.");
static PyObject*
unicode_isprintable(PyObject *self)
{
Py_ssize_t i, length;
int kind;
void *data;
if (PyUnicode_READY(self) == -1)
return NULL;
length = PyUnicode_GET_LENGTH(self);
kind = PyUnicode_KIND(self);
data = PyUnicode_DATA(self);
/* Shortcut for single character strings */
if (length == 1)
return PyBool_FromLong(
Py_UNICODE_ISPRINTABLE(PyUnicode_READ(kind, data, 0)));
for (i = 0; i < length; i++) {
if (!Py_UNICODE_ISPRINTABLE(PyUnicode_READ(kind, data, i))) {
Py_RETURN_FALSE;
}
}
Py_RETURN_TRUE;
}
PyDoc_STRVAR(join__doc__,
"S.join(iterable) -> str\n\
\n\
Return a string which is the concatenation of the strings in the\n\
iterable. The separator between elements is S.");
static PyObject*
unicode_join(PyObject *self, PyObject *data)
{
return PyUnicode_Join(self, data);
}
static Py_ssize_t
unicode_length(PyObject *self)
{
if (PyUnicode_READY(self) == -1)
return -1;
return PyUnicode_GET_LENGTH(self);
}
PyDoc_STRVAR(ljust__doc__,
"S.ljust(width[, fillchar]) -> str\n\
\n\
Return S left-justified in a Unicode string of length width. Padding is\n\
done using the specified fill character (default is a space).");
static PyObject *
unicode_ljust(PyObject *self, PyObject *args)
{
Py_ssize_t width;
Py_UCS4 fillchar = ' ';
if (!PyArg_ParseTuple(args, "n|O&:ljust", &width, convert_uc, &fillchar))
return NULL;
if (PyUnicode_READY(self) == -1)
return NULL;
if (PyUnicode_GET_LENGTH(self) >= width)
return unicode_result_unchanged(self);
return pad(self, 0, width - PyUnicode_GET_LENGTH(self), fillchar);
}
PyDoc_STRVAR(lower__doc__,
"S.lower() -> str\n\
\n\
Return a copy of the string S converted to lowercase.");
static PyObject*
unicode_lower(PyObject *self)
{
if (PyUnicode_READY(self) == -1)
return NULL;
if (PyUnicode_IS_ASCII(self))
return ascii_upper_or_lower(self, 1);
return case_operation(self, do_lower);
}
#define LEFTSTRIP 0
#define RIGHTSTRIP 1
#define BOTHSTRIP 2
/* Arrays indexed by above */
static const char * const stripformat[] = {"|O:lstrip", "|O:rstrip", "|O:strip"};
#define STRIPNAME(i) (stripformat[i]+3)
/* externally visible for str.strip(unicode) */
PyObject *
_PyUnicode_XStrip(PyObject *self, int striptype, PyObject *sepobj)
{
void *data;
int kind;
Py_ssize_t i, j, len;
BLOOM_MASK sepmask;
Py_ssize_t seplen;
if (PyUnicode_READY(self) == -1 || PyUnicode_READY(sepobj) == -1)
return NULL;
kind = PyUnicode_KIND(self);
data = PyUnicode_DATA(self);
len = PyUnicode_GET_LENGTH(self);
seplen = PyUnicode_GET_LENGTH(sepobj);
sepmask = make_bloom_mask(PyUnicode_KIND(sepobj),
PyUnicode_DATA(sepobj),
seplen);
i = 0;
if (striptype != RIGHTSTRIP) {
while (i < len) {
Py_UCS4 ch = PyUnicode_READ(kind, data, i);
if (!BLOOM(sepmask, ch))
break;
if (PyUnicode_FindChar(sepobj, ch, 0, seplen, 1) < 0)
break;
i++;
}
}
j = len;
if (striptype != LEFTSTRIP) {
j--;
while (j >= i) {
Py_UCS4 ch = PyUnicode_READ(kind, data, j);
if (!BLOOM(sepmask, ch))
break;
if (PyUnicode_FindChar(sepobj, ch, 0, seplen, 1) < 0)
break;
j--;
}
j++;
}
return PyUnicode_Substring(self, i, j);
}
PyObject*
PyUnicode_Substring(PyObject *self, Py_ssize_t start, Py_ssize_t end)
{
unsigned char *data;
int kind;
Py_ssize_t length;
if (PyUnicode_READY(self) == -1)
return NULL;
length = PyUnicode_GET_LENGTH(self);
end = Py_MIN(end, length);
if (start == 0 && end == length)
return unicode_result_unchanged(self);
if (start < 0 || end < 0) {
PyErr_SetString(PyExc_IndexError, "string index out of range");
return NULL;
}
if (start >= length || end < start)
_Py_RETURN_UNICODE_EMPTY();
length = end - start;
if (PyUnicode_IS_ASCII(self)) {
data = PyUnicode_1BYTE_DATA(self);
return _PyUnicode_FromASCII((char*)(data + start), length);
}
else {
kind = PyUnicode_KIND(self);
data = PyUnicode_1BYTE_DATA(self);
return PyUnicode_FromKindAndData(kind,
data + kind * start,
length);
}
}
static PyObject *
do_strip(PyObject *self, int striptype)
{
Py_ssize_t len, i, j;
if (PyUnicode_READY(self) == -1)
return NULL;
len = PyUnicode_GET_LENGTH(self);
if (PyUnicode_IS_ASCII(self)) {
Py_UCS1 *data = PyUnicode_1BYTE_DATA(self);
i = 0;
if (striptype != RIGHTSTRIP) {
while (i < len) {
Py_UCS1 ch = data[i];
if (!_Py_ascii_whitespace[ch])
break;
i++;
}
}
j = len;
if (striptype != LEFTSTRIP) {
j--;
while (j >= i) {
Py_UCS1 ch = data[j];
if (!_Py_ascii_whitespace[ch])
break;
j--;
}
j++;
}
}
else {
int kind = PyUnicode_KIND(self);
void *data = PyUnicode_DATA(self);
i = 0;
if (striptype != RIGHTSTRIP) {
while (i < len) {
Py_UCS4 ch = PyUnicode_READ(kind, data, i);
if (!Py_UNICODE_ISSPACE(ch))
break;
i++;
}
}
j = len;
if (striptype != LEFTSTRIP) {
j--;
while (j >= i) {
Py_UCS4 ch = PyUnicode_READ(kind, data, j);
if (!Py_UNICODE_ISSPACE(ch))
break;
j--;
}
j++;
}
}
return PyUnicode_Substring(self, i, j);
}
static PyObject *
do_argstrip(PyObject *self, int striptype, PyObject *args)
{
PyObject *sep = NULL;
if (!PyArg_ParseTuple(args, stripformat[striptype], &sep))
return NULL;
if (sep != NULL && sep != Py_None) {
if (PyUnicode_Check(sep))
return _PyUnicode_XStrip(self, striptype, sep);
else {
PyErr_Format(PyExc_TypeError,
"%s arg must be None or str",
STRIPNAME(striptype));
return NULL;
}
}
return do_strip(self, striptype);
}
PyDoc_STRVAR(strip__doc__,
"S.strip([chars]) -> str\n\
\n\
Return a copy of the string S with leading and trailing\n\
whitespace removed.\n\
If chars is given and not None, remove characters in chars instead.");
static PyObject *
unicode_strip(PyObject *self, PyObject *args)
{
if (PyTuple_GET_SIZE(args) == 0)
return do_strip(self, BOTHSTRIP); /* Common case */
else
return do_argstrip(self, BOTHSTRIP, args);
}
PyDoc_STRVAR(lstrip__doc__,
"S.lstrip([chars]) -> str\n\
\n\
Return a copy of the string S with leading whitespace removed.\n\
If chars is given and not None, remove characters in chars instead.");
static PyObject *
unicode_lstrip(PyObject *self, PyObject *args)
{
if (PyTuple_GET_SIZE(args) == 0)
return do_strip(self, LEFTSTRIP); /* Common case */
else
return do_argstrip(self, LEFTSTRIP, args);
}
PyDoc_STRVAR(rstrip__doc__,
"S.rstrip([chars]) -> str\n\
\n\
Return a copy of the string S with trailing whitespace removed.\n\
If chars is given and not None, remove characters in chars instead.");
static PyObject *
unicode_rstrip(PyObject *self, PyObject *args)
{
if (PyTuple_GET_SIZE(args) == 0)
return do_strip(self, RIGHTSTRIP); /* Common case */
else
return do_argstrip(self, RIGHTSTRIP, args);
}
static PyObject*
unicode_repeat(PyObject *str, Py_ssize_t len)
{
PyObject *u;
Py_ssize_t nchars, n;
if (len < 1)
_Py_RETURN_UNICODE_EMPTY();
/* no repeat, return original string */
if (len == 1)
return unicode_result_unchanged(str);
if (PyUnicode_READY(str) == -1)
return NULL;
if (PyUnicode_GET_LENGTH(str) > PY_SSIZE_T_MAX / len) {
PyErr_SetString(PyExc_OverflowError,
"repeated string is too long");
return NULL;
}
nchars = len * PyUnicode_GET_LENGTH(str);
u = PyUnicode_New(nchars, PyUnicode_MAX_CHAR_VALUE(str));
if (!u)
return NULL;
assert(PyUnicode_KIND(u) == PyUnicode_KIND(str));
if (PyUnicode_GET_LENGTH(str) == 1) {
const int kind = PyUnicode_KIND(str);
const Py_UCS4 fill_char = PyUnicode_READ(kind, PyUnicode_DATA(str), 0);
if (kind == PyUnicode_1BYTE_KIND) {
void *to = PyUnicode_DATA(u);
memset(to, (unsigned char)fill_char, len);
}
else if (kind == PyUnicode_2BYTE_KIND) {
Py_UCS2 *ucs2 = PyUnicode_2BYTE_DATA(u);
for (n = 0; n < len; ++n)
ucs2[n] = fill_char;
} else {
Py_UCS4 *ucs4 = PyUnicode_4BYTE_DATA(u);
assert(kind == PyUnicode_4BYTE_KIND);
for (n = 0; n < len; ++n)
ucs4[n] = fill_char;
}
}
else {
/* number of characters copied this far */
Py_ssize_t done = PyUnicode_GET_LENGTH(str);
const Py_ssize_t char_size = PyUnicode_KIND(str);
char *to = (char *) PyUnicode_DATA(u);
memcpy(to, PyUnicode_DATA(str),
PyUnicode_GET_LENGTH(str) * char_size);
while (done < nchars) {
n = (done <= nchars-done) ? done : nchars-done;
memcpy(to + (done * char_size), to, n * char_size);
done += n;
}
}
assert(_PyUnicode_CheckConsistency(u, 1));
return u;
}
PyObject *
PyUnicode_Replace(PyObject *str,
PyObject *substr,
PyObject *replstr,
Py_ssize_t maxcount)
{
if (ensure_unicode(str) < 0 || ensure_unicode(substr) < 0 ||
ensure_unicode(replstr) < 0)
return NULL;
return replace(str, substr, replstr, maxcount);
}
PyDoc_STRVAR(replace__doc__,
"S.replace(old, new[, count]) -> str\n\
\n\
Return a copy of S with all occurrences of substring\n\
old replaced by new. If the optional argument count is\n\
given, only the first count occurrences are replaced.");
static PyObject*
unicode_replace(PyObject *self, PyObject *args)
{
PyObject *str1;
PyObject *str2;
Py_ssize_t maxcount = -1;
if (!PyArg_ParseTuple(args, "UU|n:replace", &str1, &str2, &maxcount))
return NULL;
if (PyUnicode_READY(self) == -1)
return NULL;
return replace(self, str1, str2, maxcount);
}
static PyObject *
unicode_repr(PyObject *unicode)
{
PyObject *repr;
Py_ssize_t isize;
Py_ssize_t osize, squote, dquote, i, o;
Py_UCS4 max, quote;
int ikind, okind, unchanged;
void *idata, *odata;
if (PyUnicode_READY(unicode) == -1)
return NULL;
isize = PyUnicode_GET_LENGTH(unicode);
idata = PyUnicode_DATA(unicode);
/* Compute length of output, quote characters, and
maximum character */
osize = 0;
max = 127;
squote = dquote = 0;
ikind = PyUnicode_KIND(unicode);
for (i = 0; i < isize; i++) {
Py_UCS4 ch = PyUnicode_READ(ikind, idata, i);
Py_ssize_t incr = 1;
switch (ch) {
case '\'': squote++; break;
case '"': dquote++; break;
case '\\': case '\t': case '\r': case '\n':
incr = 2;
break;
default:
/* Fast-path ASCII */
if (ch < ' ' || ch == 0x7f)
incr = 4; /* \xHH */
else if (ch < 0x7f)
;
else if (Py_UNICODE_ISPRINTABLE(ch))
max = ch > max ? ch : max;
else if (ch < 0x100)
incr = 4; /* \xHH */
else if (ch < 0x10000)
incr = 6; /* \uHHHH */
else
incr = 10; /* \uHHHHHHHH */
}
if (osize > PY_SSIZE_T_MAX - incr) {
PyErr_SetString(PyExc_OverflowError,
"string is too long to generate repr");
return NULL;
}
osize += incr;
}
quote = '\'';
unchanged = (osize == isize);
if (squote) {
unchanged = 0;
if (dquote)
/* Both squote and dquote present. Use squote,
and escape them */
osize += squote;
else
quote = '"';
}
osize += 2; /* quotes */
repr = PyUnicode_New(osize, max);
if (repr == NULL)
return NULL;
okind = PyUnicode_KIND(repr);
odata = PyUnicode_DATA(repr);
PyUnicode_WRITE(okind, odata, 0, quote);
PyUnicode_WRITE(okind, odata, osize-1, quote);
if (unchanged) {
_PyUnicode_FastCopyCharacters(repr, 1,
unicode, 0,
isize);
}
else {
for (i = 0, o = 1; i < isize; i++) {
Py_UCS4 ch = PyUnicode_READ(ikind, idata, i);
/* Escape quotes and backslashes */
if ((ch == quote) || (ch == '\\')) {
PyUnicode_WRITE(okind, odata, o++, '\\');
PyUnicode_WRITE(okind, odata, o++, ch);
continue;
}
/* Map special whitespace to '\t', \n', '\r' */
if (ch == '\t') {
PyUnicode_WRITE(okind, odata, o++, '\\');
PyUnicode_WRITE(okind, odata, o++, 't');
}
else if (ch == '\n') {
PyUnicode_WRITE(okind, odata, o++, '\\');
PyUnicode_WRITE(okind, odata, o++, 'n');
}
else if (ch == '\r') {
PyUnicode_WRITE(okind, odata, o++, '\\');
PyUnicode_WRITE(okind, odata, o++, 'r');
}
/* Map non-printable US ASCII to '\xhh' */
else if (ch < ' ' || ch == 0x7F) {
PyUnicode_WRITE(okind, odata, o++, '\\');
PyUnicode_WRITE(okind, odata, o++, 'x');
PyUnicode_WRITE(okind, odata, o++, Py_hexdigits[(ch >> 4) & 0x000F]);
PyUnicode_WRITE(okind, odata, o++, Py_hexdigits[ch & 0x000F]);
}
/* Copy ASCII characters as-is */
else if (ch < 0x7F) {
PyUnicode_WRITE(okind, odata, o++, ch);
}
/* Non-ASCII characters */
else {
/* Map Unicode whitespace and control characters
(categories Z* and C* except ASCII space)
*/
if (!Py_UNICODE_ISPRINTABLE(ch)) {
PyUnicode_WRITE(okind, odata, o++, '\\');
/* Map 8-bit characters to '\xhh' */
if (ch <= 0xff) {
PyUnicode_WRITE(okind, odata, o++, 'x');
PyUnicode_WRITE(okind, odata, o++, Py_hexdigits[(ch >> 4) & 0x000F]);
PyUnicode_WRITE(okind, odata, o++, Py_hexdigits[ch & 0x000F]);
}
/* Map 16-bit characters to '\uxxxx' */
else if (ch <= 0xffff) {
PyUnicode_WRITE(okind, odata, o++, 'u');
PyUnicode_WRITE(okind, odata, o++, Py_hexdigits[(ch >> 12) & 0xF]);
PyUnicode_WRITE(okind, odata, o++, Py_hexdigits[(ch >> 8) & 0xF]);
PyUnicode_WRITE(okind, odata, o++, Py_hexdigits[(ch >> 4) & 0xF]);
PyUnicode_WRITE(okind, odata, o++, Py_hexdigits[ch & 0xF]);
}
/* Map 21-bit characters to '\U00xxxxxx' */
else {
PyUnicode_WRITE(okind, odata, o++, 'U');
PyUnicode_WRITE(okind, odata, o++, Py_hexdigits[(ch >> 28) & 0xF]);
PyUnicode_WRITE(okind, odata, o++, Py_hexdigits[(ch >> 24) & 0xF]);
PyUnicode_WRITE(okind, odata, o++, Py_hexdigits[(ch >> 20) & 0xF]);
PyUnicode_WRITE(okind, odata, o++, Py_hexdigits[(ch >> 16) & 0xF]);
PyUnicode_WRITE(okind, odata, o++, Py_hexdigits[(ch >> 12) & 0xF]);
PyUnicode_WRITE(okind, odata, o++, Py_hexdigits[(ch >> 8) & 0xF]);
PyUnicode_WRITE(okind, odata, o++, Py_hexdigits[(ch >> 4) & 0xF]);
PyUnicode_WRITE(okind, odata, o++, Py_hexdigits[ch & 0xF]);
}
}
/* Copy characters as-is */
else {
PyUnicode_WRITE(okind, odata, o++, ch);
}
}
}
}
/* Closing quote already added at the beginning */
assert(_PyUnicode_CheckConsistency(repr, 1));
return repr;
}
PyDoc_STRVAR(rfind__doc__,
"S.rfind(sub[, start[, end]]) -> int\n\
\n\
Return the highest index in S where substring sub is found,\n\
such that sub is contained within S[start:end]. Optional\n\
arguments start and end are interpreted as in slice notation.\n\
\n\
Return -1 on failure.");
static PyObject *
unicode_rfind(PyObject *self, PyObject *args)
{
/* initialize variables to prevent gcc warning */
PyObject *substring = NULL;
Py_ssize_t start = 0;
Py_ssize_t end = 0;
Py_ssize_t result;
if (!parse_args_finds_unicode("rfind", args, &substring, &start, &end))
return NULL;
if (PyUnicode_READY(self) == -1)
return NULL;
result = any_find_slice(self, substring, start, end, -1);
if (result == -2)
return NULL;
return PyLong_FromSsize_t(result);
}
PyDoc_STRVAR(rindex__doc__,
"S.rindex(sub[, start[, end]]) -> int\n\
\n\
Return the highest index in S where substring sub is found,\n\
such that sub is contained within S[start:end]. Optional\n\
arguments start and end are interpreted as in slice notation.\n\
\n\
Raises ValueError when the substring is not found.");
static PyObject *
unicode_rindex(PyObject *self, PyObject *args)
{
/* initialize variables to prevent gcc warning */
PyObject *substring = NULL;
Py_ssize_t start = 0;
Py_ssize_t end = 0;
Py_ssize_t result;
if (!parse_args_finds_unicode("rindex", args, &substring, &start, &end))
return NULL;
if (PyUnicode_READY(self) == -1)
return NULL;
result = any_find_slice(self, substring, start, end, -1);
if (result == -2)
return NULL;
if (result < 0) {
PyErr_SetString(PyExc_ValueError, "substring not found");
return NULL;
}
return PyLong_FromSsize_t(result);
}
PyDoc_STRVAR(rjust__doc__,
"S.rjust(width[, fillchar]) -> str\n\
\n\
Return S right-justified in a string of length width. Padding is\n\
done using the specified fill character (default is a space).");
static PyObject *
unicode_rjust(PyObject *self, PyObject *args)
{
Py_ssize_t width;
Py_UCS4 fillchar = ' ';
if (!PyArg_ParseTuple(args, "n|O&:rjust", &width, convert_uc, &fillchar))
return NULL;
if (PyUnicode_READY(self) == -1)
return NULL;
if (PyUnicode_GET_LENGTH(self) >= width)
return unicode_result_unchanged(self);
return pad(self, width - PyUnicode_GET_LENGTH(self), 0, fillchar);
}
PyObject *
PyUnicode_Split(PyObject *s, PyObject *sep, Py_ssize_t maxsplit)
{
if (ensure_unicode(s) < 0 || (sep != NULL && ensure_unicode(sep) < 0))
return NULL;
return split(s, sep, maxsplit);
}
PyDoc_STRVAR(split__doc__,
"S.split(sep=None, maxsplit=-1) -> list of strings\n\
\n\
Return a list of the words in S, using sep as the\n\
delimiter string. If maxsplit is given, at most maxsplit\n\
splits are done. If sep is not specified or is None, any\n\
whitespace string is a separator and empty strings are\n\
removed from the result.");
static PyObject*
unicode_split(PyObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"sep", "maxsplit", 0};
PyObject *substring = Py_None;
Py_ssize_t maxcount = -1;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|On:split",
kwlist, &substring, &maxcount))
return NULL;
if (substring == Py_None)
return split(self, NULL, maxcount);
if (PyUnicode_Check(substring))
return split(self, substring, maxcount);
PyErr_Format(PyExc_TypeError,
"must be str or None, not %.100s",
Py_TYPE(substring)->tp_name);
return NULL;
}
PyObject *
PyUnicode_Partition(PyObject *str_obj, PyObject *sep_obj)
{
PyObject* out;
int kind1, kind2;
void *buf1, *buf2;
Py_ssize_t len1, len2;
if (ensure_unicode(str_obj) < 0 || ensure_unicode(sep_obj) < 0)
return NULL;
kind1 = PyUnicode_KIND(str_obj);
kind2 = PyUnicode_KIND(sep_obj);
len1 = PyUnicode_GET_LENGTH(str_obj);
len2 = PyUnicode_GET_LENGTH(sep_obj);
if (kind1 < kind2 || len1 < len2) {
_Py_INCREF_UNICODE_EMPTY();
if (!unicode_empty)
out = NULL;
else {
out = PyTuple_Pack(3, str_obj, unicode_empty, unicode_empty);
Py_DECREF(unicode_empty);
}
return out;
}
buf1 = PyUnicode_DATA(str_obj);
buf2 = PyUnicode_DATA(sep_obj);
if (kind2 != kind1) {
buf2 = _PyUnicode_AsKind(sep_obj, kind1);
if (!buf2)
return NULL;
}
switch (kind1) {
case PyUnicode_1BYTE_KIND:
if (PyUnicode_IS_ASCII(str_obj) && PyUnicode_IS_ASCII(sep_obj))
out = asciilib_partition(str_obj, buf1, len1, sep_obj, buf2, len2);
else
out = ucs1lib_partition(str_obj, buf1, len1, sep_obj, buf2, len2);
break;
case PyUnicode_2BYTE_KIND:
out = ucs2lib_partition(str_obj, buf1, len1, sep_obj, buf2, len2);
break;
case PyUnicode_4BYTE_KIND:
out = ucs4lib_partition(str_obj, buf1, len1, sep_obj, buf2, len2);
break;
default:
assert(0);
out = 0;
}
if (kind2 != kind1)
PyMem_Free(buf2);
return out;
}
PyObject *
PyUnicode_RPartition(PyObject *str_obj, PyObject *sep_obj)
{
PyObject* out;
int kind1, kind2;
void *buf1, *buf2;
Py_ssize_t len1, len2;
if (ensure_unicode(str_obj) < 0 || ensure_unicode(sep_obj) < 0)
return NULL;
kind1 = PyUnicode_KIND(str_obj);
kind2 = PyUnicode_KIND(sep_obj);
len1 = PyUnicode_GET_LENGTH(str_obj);
len2 = PyUnicode_GET_LENGTH(sep_obj);
if (kind1 < kind2 || len1 < len2) {
_Py_INCREF_UNICODE_EMPTY();
if (!unicode_empty)
out = NULL;
else {
out = PyTuple_Pack(3, unicode_empty, unicode_empty, str_obj);
Py_DECREF(unicode_empty);
}
return out;
}
buf1 = PyUnicode_DATA(str_obj);
buf2 = PyUnicode_DATA(sep_obj);
if (kind2 != kind1) {
buf2 = _PyUnicode_AsKind(sep_obj, kind1);
if (!buf2)
return NULL;
}
switch (kind1) {
case PyUnicode_1BYTE_KIND:
if (PyUnicode_IS_ASCII(str_obj) && PyUnicode_IS_ASCII(sep_obj))
out = asciilib_rpartition(str_obj, buf1, len1, sep_obj, buf2, len2);
else
out = ucs1lib_rpartition(str_obj, buf1, len1, sep_obj, buf2, len2);
break;
case PyUnicode_2BYTE_KIND:
out = ucs2lib_rpartition(str_obj, buf1, len1, sep_obj, buf2, len2);
break;
case PyUnicode_4BYTE_KIND:
out = ucs4lib_rpartition(str_obj, buf1, len1, sep_obj, buf2, len2);
break;
default:
assert(0);
out = 0;
}
if (kind2 != kind1)
PyMem_Free(buf2);
return out;
}
PyDoc_STRVAR(partition__doc__,
"S.partition(sep) -> (head, sep, tail)\n\
\n\
Search for the separator sep in S, and return the part before it,\n\
the separator itself, and the part after it. If the separator is not\n\
found, return S and two empty strings.");
static PyObject*
unicode_partition(PyObject *self, PyObject *separator)
{
return PyUnicode_Partition(self, separator);
}
PyDoc_STRVAR(rpartition__doc__,
"S.rpartition(sep) -> (head, sep, tail)\n\
\n\
Search for the separator sep in S, starting at the end of S, and return\n\
the part before it, the separator itself, and the part after it. If the\n\
separator is not found, return two empty strings and S.");
static PyObject*
unicode_rpartition(PyObject *self, PyObject *separator)
{
return PyUnicode_RPartition(self, separator);
}
PyObject *
PyUnicode_RSplit(PyObject *s, PyObject *sep, Py_ssize_t maxsplit)
{
if (ensure_unicode(s) < 0 || (sep != NULL && ensure_unicode(sep) < 0))
return NULL;
return rsplit(s, sep, maxsplit);
}
PyDoc_STRVAR(rsplit__doc__,
"S.rsplit(sep=None, maxsplit=-1) -> list of strings\n\
\n\
Return a list of the words in S, using sep as the\n\
delimiter string, starting at the end of the string and\n\
working to the front. If maxsplit is given, at most maxsplit\n\
splits are done. If sep is not specified, any whitespace string\n\
is a separator.");
static PyObject*
unicode_rsplit(PyObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"sep", "maxsplit", 0};
PyObject *substring = Py_None;
Py_ssize_t maxcount = -1;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|On:rsplit",
kwlist, &substring, &maxcount))
return NULL;
if (substring == Py_None)
return rsplit(self, NULL, maxcount);
if (PyUnicode_Check(substring))
return rsplit(self, substring, maxcount);
PyErr_Format(PyExc_TypeError,
"must be str or None, not %.100s",
Py_TYPE(substring)->tp_name);
return NULL;
}
PyDoc_STRVAR(splitlines__doc__,
"S.splitlines([keepends]) -> list of strings\n\
\n\
Return a list of the lines in S, breaking at line boundaries.\n\
Line breaks are not included in the resulting list unless keepends\n\
is given and true.");
static PyObject*
unicode_splitlines(PyObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"keepends", 0};
int keepends = 0;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|i:splitlines",
kwlist, &keepends))
return NULL;
return PyUnicode_Splitlines(self, keepends);
}
static
PyObject *unicode_str(PyObject *self)
{
return unicode_result_unchanged(self);
}
PyDoc_STRVAR(swapcase__doc__,
"S.swapcase() -> str\n\
\n\
Return a copy of S with uppercase characters converted to lowercase\n\
and vice versa.");
static PyObject*
unicode_swapcase(PyObject *self)
{
if (PyUnicode_READY(self) == -1)
return NULL;
return case_operation(self, do_swapcase);
}
/*[clinic input]
@staticmethod
str.maketrans as unicode_maketrans
x: object
y: unicode=NULL
z: unicode=NULL
/
Return a translation table usable for str.translate().
If there is only one argument, it must be a dictionary mapping Unicode
ordinals (integers) or characters to Unicode ordinals, strings or None.
Character keys will be then converted to ordinals.
If there are two arguments, they must be strings of equal length, and
in the resulting dictionary, each character in x will be mapped to the
character at the same position in y. If there is a third argument, it
must be a string, whose characters will be mapped to None in the result.
[clinic start generated code]*/
static PyObject *
unicode_maketrans_impl(PyObject *x, PyObject *y, PyObject *z)
/*[clinic end generated code: output=a925c89452bd5881 input=7bfbf529a293c6c5]*/
{
PyObject *new = NULL, *key, *value;
Py_ssize_t i = 0;
int res;
new = PyDict_New();
if (!new)
return NULL;
if (y != NULL) {
int x_kind, y_kind, z_kind;
void *x_data, *y_data, *z_data;
/* x must be a string too, of equal length */
if (!PyUnicode_Check(x)) {
PyErr_SetString(PyExc_TypeError, "first maketrans argument must "
"be a string if there is a second argument");
goto err;
}
if (PyUnicode_GET_LENGTH(x) != PyUnicode_GET_LENGTH(y)) {
PyErr_SetString(PyExc_ValueError, "the first two maketrans "
"arguments must have equal length");
goto err;
}
/* create entries for translating chars in x to those in y */
x_kind = PyUnicode_KIND(x);
y_kind = PyUnicode_KIND(y);
x_data = PyUnicode_DATA(x);
y_data = PyUnicode_DATA(y);
for (i = 0; i < PyUnicode_GET_LENGTH(x); i++) {
key = PyLong_FromLong(PyUnicode_READ(x_kind, x_data, i));
if (!key)
goto err;
value = PyLong_FromLong(PyUnicode_READ(y_kind, y_data, i));
if (!value) {
Py_DECREF(key);
goto err;
}
res = PyDict_SetItem(new, key, value);
Py_DECREF(key);
Py_DECREF(value);
if (res < 0)
goto err;
}
/* create entries for deleting chars in z */
if (z != NULL) {
z_kind = PyUnicode_KIND(z);
z_data = PyUnicode_DATA(z);
for (i = 0; i < PyUnicode_GET_LENGTH(z); i++) {
key = PyLong_FromLong(PyUnicode_READ(z_kind, z_data, i));
if (!key)
goto err;
res = PyDict_SetItem(new, key, Py_None);
Py_DECREF(key);
if (res < 0)
goto err;
}
}
} else {
int kind;
void *data;
/* x must be a dict */
if (!PyDict_CheckExact(x)) {
PyErr_SetString(PyExc_TypeError, "if you give only one argument "
"to maketrans it must be a dict");
goto err;
}
/* copy entries into the new dict, converting string keys to int keys */
while (PyDict_Next(x, &i, &key, &value)) {
if (PyUnicode_Check(key)) {
/* convert string keys to integer keys */
PyObject *newkey;
if (PyUnicode_GET_LENGTH(key) != 1) {
PyErr_SetString(PyExc_ValueError, "string keys in translate "
"table must be of length 1");
goto err;
}
kind = PyUnicode_KIND(key);
data = PyUnicode_DATA(key);
newkey = PyLong_FromLong(PyUnicode_READ(kind, data, 0));
if (!newkey)
goto err;
res = PyDict_SetItem(new, newkey, value);
Py_DECREF(newkey);
if (res < 0)
goto err;
} else if (PyLong_Check(key)) {
/* just keep integer keys */
if (PyDict_SetItem(new, key, value) < 0)
goto err;
} else {
PyErr_SetString(PyExc_TypeError, "keys in translate table must "
"be strings or integers");
goto err;
}
}
}
return new;
err:
Py_DECREF(new);
return NULL;
}
PyDoc_STRVAR(translate__doc__,
"S.translate(table) -> str\n\
\n\
Return a copy of the string S in which each character has been mapped\n\
through the given translation table. The table must implement\n\
lookup/indexing via __getitem__, for instance a dictionary or list,\n\
mapping Unicode ordinals to Unicode ordinals, strings, or None. If\n\
this operation raises LookupError, the character is left untouched.\n\
Characters mapped to None are deleted.");
static PyObject*
unicode_translate(PyObject *self, PyObject *table)
{
return _PyUnicode_TranslateCharmap(self, table, "ignore");
}
PyDoc_STRVAR(upper__doc__,
"S.upper() -> str\n\
\n\
Return a copy of S converted to uppercase.");
static PyObject*
unicode_upper(PyObject *self)
{
if (PyUnicode_READY(self) == -1)
return NULL;
if (PyUnicode_IS_ASCII(self))
return ascii_upper_or_lower(self, 0);
return case_operation(self, do_upper);
}
PyDoc_STRVAR(zfill__doc__,
"S.zfill(width) -> str\n\
\n\
Pad a numeric string S with zeros on the left, to fill a field\n\
of the specified width. The string S is never truncated.");
static PyObject *
unicode_zfill(PyObject *self, PyObject *args)
{
Py_ssize_t fill;
PyObject *u;
Py_ssize_t width;
int kind;
void *data;
Py_UCS4 chr;
if (!PyArg_ParseTuple(args, "n:zfill", &width))
return NULL;
if (PyUnicode_READY(self) == -1)
return NULL;
if (PyUnicode_GET_LENGTH(self) >= width)
return unicode_result_unchanged(self);
fill = width - PyUnicode_GET_LENGTH(self);
u = pad(self, fill, 0, '0');
if (u == NULL)
return NULL;
kind = PyUnicode_KIND(u);
data = PyUnicode_DATA(u);
chr = PyUnicode_READ(kind, data, fill);
if (chr == '+' || chr == '-') {
/* move sign to beginning of string */
PyUnicode_WRITE(kind, data, 0, chr);
PyUnicode_WRITE(kind, data, fill, '0');
}
assert(_PyUnicode_CheckConsistency(u, 1));
return u;
}
#if 0
static PyObject *
unicode__decimal2ascii(PyObject *self)
{
return PyUnicode_TransformDecimalAndSpaceToASCII(self);
}
#endif
PyDoc_STRVAR(startswith__doc__,
"S.startswith(prefix[, start[, end]]) -> bool\n\
\n\
Return True if S starts with the specified prefix, False otherwise.\n\
With optional start, test S beginning at that position.\n\
With optional end, stop comparing S at that position.\n\
prefix can also be a tuple of strings to try.");
static PyObject *
unicode_startswith(PyObject *self,
PyObject *args)
{
PyObject *subobj;
PyObject *substring;
Py_ssize_t start = 0;
Py_ssize_t end = PY_SSIZE_T_MAX;
int result;
if (!stringlib_parse_args_finds("startswith", args, &subobj, &start, &end))
return NULL;
if (PyTuple_Check(subobj)) {
Py_ssize_t i;
for (i = 0; i < PyTuple_GET_SIZE(subobj); i++) {
substring = PyTuple_GET_ITEM(subobj, i);
if (!PyUnicode_Check(substring)) {
PyErr_Format(PyExc_TypeError,
"tuple for startswith must only contain str, "
"not %.100s",
Py_TYPE(substring)->tp_name);
return NULL;
}
result = tailmatch(self, substring, start, end, -1);
if (result == -1)
return NULL;
if (result) {
Py_RETURN_TRUE;
}
}
/* nothing matched */
Py_RETURN_FALSE;
}
if (!PyUnicode_Check(subobj)) {
PyErr_Format(PyExc_TypeError,
"startswith first arg must be str or "
"a tuple of str, not %.100s", Py_TYPE(subobj)->tp_name);
return NULL;
}
result = tailmatch(self, subobj, start, end, -1);
if (result == -1)
return NULL;
return PyBool_FromLong(result);
}
PyDoc_STRVAR(endswith__doc__,
"S.endswith(suffix[, start[, end]]) -> bool\n\
\n\
Return True if S ends with the specified suffix, False otherwise.\n\
With optional start, test S beginning at that position.\n\
With optional end, stop comparing S at that position.\n\
suffix can also be a tuple of strings to try.");
static PyObject *
unicode_endswith(PyObject *self,
PyObject *args)
{
PyObject *subobj;
PyObject *substring;
Py_ssize_t start = 0;
Py_ssize_t end = PY_SSIZE_T_MAX;
int result;
if (!stringlib_parse_args_finds("endswith", args, &subobj, &start, &end))
return NULL;
if (PyTuple_Check(subobj)) {
Py_ssize_t i;
for (i = 0; i < PyTuple_GET_SIZE(subobj); i++) {
substring = PyTuple_GET_ITEM(subobj, i);
if (!PyUnicode_Check(substring)) {
PyErr_Format(PyExc_TypeError,
"tuple for endswith must only contain str, "
"not %.100s",
Py_TYPE(substring)->tp_name);
return NULL;
}
result = tailmatch(self, substring, start, end, +1);
if (result == -1)
return NULL;
if (result) {
Py_RETURN_TRUE;
}
}
Py_RETURN_FALSE;
}
if (!PyUnicode_Check(subobj)) {
PyErr_Format(PyExc_TypeError,
"endswith first arg must be str or "
"a tuple of str, not %.100s", Py_TYPE(subobj)->tp_name);
return NULL;
}
result = tailmatch(self, subobj, start, end, +1);
if (result == -1)
return NULL;
return PyBool_FromLong(result);
}
static inline void
_PyUnicodeWriter_Update(_PyUnicodeWriter *writer)
{
writer->maxchar = PyUnicode_MAX_CHAR_VALUE(writer->buffer);
writer->data = PyUnicode_DATA(writer->buffer);
if (!writer->readonly) {
writer->kind = PyUnicode_KIND(writer->buffer);
writer->size = PyUnicode_GET_LENGTH(writer->buffer);
}
else {
/* use a value smaller than PyUnicode_1BYTE_KIND() so
_PyUnicodeWriter_PrepareKind() will copy the buffer. */
writer->kind = PyUnicode_WCHAR_KIND;
assert(writer->kind <= PyUnicode_1BYTE_KIND);
/* Copy-on-write mode: set buffer size to 0 so
* _PyUnicodeWriter_Prepare() will copy (and enlarge) the buffer on
* next write. */
writer->size = 0;
}
}
void
_PyUnicodeWriter_Init(_PyUnicodeWriter *writer)
{
bzero(writer, sizeof(*writer));
/* ASCII is the bare minimum */
writer->min_char = 127;
/* use a value smaller than PyUnicode_1BYTE_KIND() so
_PyUnicodeWriter_PrepareKind() will copy the buffer. */
writer->kind = PyUnicode_WCHAR_KIND;
assert(writer->kind <= PyUnicode_1BYTE_KIND);
}
int
_PyUnicodeWriter_PrepareInternal(_PyUnicodeWriter *writer,
Py_ssize_t length, Py_UCS4 maxchar)
{
Py_ssize_t newlen;
PyObject *newbuffer;
assert(maxchar <= MAX_UNICODE);
/* ensure that the _PyUnicodeWriter_Prepare macro was used */
assert((maxchar > writer->maxchar && length >= 0)
|| length > 0);
if (length > PY_SSIZE_T_MAX - writer->pos) {
PyErr_NoMemory();
return -1;
}
newlen = writer->pos + length;
maxchar = Py_MAX(maxchar, writer->min_char);
if (writer->buffer == NULL) {
assert(!writer->readonly);
if (writer->overallocate
&& newlen <= (PY_SSIZE_T_MAX - newlen / OVERALLOCATE_FACTOR)) {
/* overallocate to limit the number of realloc() */
newlen += newlen / OVERALLOCATE_FACTOR;
}
if (newlen < writer->min_length)
newlen = writer->min_length;
writer->buffer = PyUnicode_New(newlen, maxchar);
if (writer->buffer == NULL)
return -1;
}
else if (newlen > writer->size) {
if (writer->overallocate
&& newlen <= (PY_SSIZE_T_MAX - newlen / OVERALLOCATE_FACTOR)) {
/* overallocate to limit the number of realloc() */
newlen += newlen / OVERALLOCATE_FACTOR;
}
if (newlen < writer->min_length)
newlen = writer->min_length;
if (maxchar > writer->maxchar || writer->readonly) {
/* resize + widen */
maxchar = Py_MAX(maxchar, writer->maxchar);
newbuffer = PyUnicode_New(newlen, maxchar);
if (newbuffer == NULL)
return -1;
_PyUnicode_FastCopyCharacters(newbuffer, 0,
writer->buffer, 0, writer->pos);
Py_DECREF(writer->buffer);
writer->readonly = 0;
}
else {
newbuffer = resize_compact(writer->buffer, newlen);
if (newbuffer == NULL)
return -1;
}
writer->buffer = newbuffer;
}
else if (maxchar > writer->maxchar) {
assert(!writer->readonly);
newbuffer = PyUnicode_New(writer->size, maxchar);
if (newbuffer == NULL)
return -1;
_PyUnicode_FastCopyCharacters(newbuffer, 0,
writer->buffer, 0, writer->pos);
Py_SETREF(writer->buffer, newbuffer);
}
_PyUnicodeWriter_Update(writer);
return 0;
#undef OVERALLOCATE_FACTOR
}
int
_PyUnicodeWriter_PrepareKindInternal(_PyUnicodeWriter *writer,
enum PyUnicode_Kind kind)
{
Py_UCS4 maxchar;
/* ensure that the _PyUnicodeWriter_PrepareKind macro was used */
assert(writer->kind < kind);
switch (kind)
{
case PyUnicode_1BYTE_KIND: maxchar = 0xff; break;
case PyUnicode_2BYTE_KIND: maxchar = 0xffff; break;
case PyUnicode_4BYTE_KIND: maxchar = 0x10ffff; break;
default:
assert(0 && "invalid kind");
return -1;
}
return _PyUnicodeWriter_PrepareInternal(writer, 0, maxchar);
}
static inline int
_PyUnicodeWriter_WriteCharInline(_PyUnicodeWriter *writer, Py_UCS4 ch)
{
assert(ch <= MAX_UNICODE);
if (_PyUnicodeWriter_Prepare(writer, 1, ch) < 0)
return -1;
PyUnicode_WRITE(writer->kind, writer->data, writer->pos, ch);
writer->pos++;
return 0;
}
int
_PyUnicodeWriter_WriteChar(_PyUnicodeWriter *writer, Py_UCS4 ch)
{
return _PyUnicodeWriter_WriteCharInline(writer, ch);
}
int
_PyUnicodeWriter_WriteStr(_PyUnicodeWriter *writer, PyObject *str)
{
Py_UCS4 maxchar;
Py_ssize_t len;
if (PyUnicode_READY(str) == -1)
return -1;
len = PyUnicode_GET_LENGTH(str);
if (len == 0)
return 0;
maxchar = PyUnicode_MAX_CHAR_VALUE(str);
if (maxchar > writer->maxchar || len > writer->size - writer->pos) {
if (writer->buffer == NULL && !writer->overallocate) {
assert(_PyUnicode_CheckConsistency(str, 1));
writer->readonly = 1;
Py_INCREF(str);
writer->buffer = str;
_PyUnicodeWriter_Update(writer);
writer->pos += len;
return 0;
}
if (_PyUnicodeWriter_PrepareInternal(writer, len, maxchar) == -1)
return -1;
}
_PyUnicode_FastCopyCharacters(writer->buffer, writer->pos,
str, 0, len);
writer->pos += len;
return 0;
}
int
_PyUnicodeWriter_WriteSubstring(_PyUnicodeWriter *writer, PyObject *str,
Py_ssize_t start, Py_ssize_t end)
{
Py_UCS4 maxchar;
Py_ssize_t len;
if (PyUnicode_READY(str) == -1)
return -1;
assert(0 <= start);
assert(end <= PyUnicode_GET_LENGTH(str));
assert(start <= end);
if (end == 0)
return 0;
if (start == 0 && end == PyUnicode_GET_LENGTH(str))
return _PyUnicodeWriter_WriteStr(writer, str);
if (PyUnicode_MAX_CHAR_VALUE(str) > writer->maxchar)
maxchar = _PyUnicode_FindMaxChar(str, start, end);
else
maxchar = writer->maxchar;
len = end - start;
if (_PyUnicodeWriter_Prepare(writer, len, maxchar) < 0)
return -1;
_PyUnicode_FastCopyCharacters(writer->buffer, writer->pos,
str, start, len);
writer->pos += len;
return 0;
}
int
_PyUnicodeWriter_WriteASCIIString(_PyUnicodeWriter *writer,
const char *ascii, Py_ssize_t len)
{
if (len == -1)
len = strlen(ascii);
assert(ucs1lib_find_max_char((Py_UCS1*)ascii, (Py_UCS1*)ascii + len) < 128);
if (writer->buffer == NULL && !writer->overallocate) {
PyObject *str;
str = _PyUnicode_FromASCII(ascii, len);
if (str == NULL)
return -1;
writer->readonly = 1;
writer->buffer = str;
_PyUnicodeWriter_Update(writer);
writer->pos += len;
return 0;
}
if (_PyUnicodeWriter_Prepare(writer, len, 127) == -1)
return -1;
switch (writer->kind)
{
case PyUnicode_1BYTE_KIND:
{
const Py_UCS1 *str = (const Py_UCS1 *)ascii;
Py_UCS1 *data = writer->data;
memcpy(data + writer->pos, str, len);
break;
}
case PyUnicode_2BYTE_KIND:
{
_PyUnicode_CONVERT_BYTES(
Py_UCS1, Py_UCS2,
ascii, ascii + len,
(Py_UCS2 *)writer->data + writer->pos);
break;
}
case PyUnicode_4BYTE_KIND:
{
_PyUnicode_CONVERT_BYTES(
Py_UCS1, Py_UCS4,
ascii, ascii + len,
(Py_UCS4 *)writer->data + writer->pos);
break;
}
default:
assert(0);
}
writer->pos += len;
return 0;
}
int
_PyUnicodeWriter_WriteLatin1String(_PyUnicodeWriter *writer,
const char *str, Py_ssize_t len)
{
Py_UCS4 maxchar;
maxchar = ucs1lib_find_max_char((Py_UCS1*)str, (Py_UCS1*)str + len);
if (_PyUnicodeWriter_Prepare(writer, len, maxchar) == -1)
return -1;
unicode_write_cstr(writer->buffer, writer->pos, str, len);
writer->pos += len;
return 0;
}
PyObject *
_PyUnicodeWriter_Finish(_PyUnicodeWriter *writer)
{
PyObject *str;
if (writer->pos == 0) {
Py_CLEAR(writer->buffer);
_Py_RETURN_UNICODE_EMPTY();
}
str = writer->buffer;
writer->buffer = NULL;
if (writer->readonly) {
assert(PyUnicode_GET_LENGTH(str) == writer->pos);
return str;
}
if (PyUnicode_GET_LENGTH(str) != writer->pos) {
PyObject *str2;
str2 = resize_compact(str, writer->pos);
if (str2 == NULL) {
Py_DECREF(str);
return NULL;
}
str = str2;
}
assert(_PyUnicode_CheckConsistency(str, 1));
return unicode_result_ready(str);
}
void
_PyUnicodeWriter_Dealloc(_PyUnicodeWriter *writer)
{
Py_CLEAR(writer->buffer);
}
#include "third_party/python/Objects/stringlib/unicode_format.inc"
PyDoc_STRVAR(format__doc__,
"S.format(*args, **kwargs) -> str\n\
\n\
Return a formatted version of S, using substitutions from args and kwargs.\n\
The substitutions are identified by braces ('{' and '}').");
PyDoc_STRVAR(format_map__doc__,
"S.format_map(mapping) -> str\n\
\n\
Return a formatted version of S, using substitutions from mapping.\n\
The substitutions are identified by braces ('{' and '}').");
static PyObject *
unicode__format__(PyObject* self, PyObject* args)
{
PyObject *format_spec;
_PyUnicodeWriter writer;
int ret;
if (!PyArg_ParseTuple(args, "U:__format__", &format_spec))
return NULL;
if (PyUnicode_READY(self) == -1)
return NULL;
_PyUnicodeWriter_Init(&writer);
ret = _PyUnicode_FormatAdvancedWriter(&writer,
self, format_spec, 0,
PyUnicode_GET_LENGTH(format_spec));
if (ret == -1) {
_PyUnicodeWriter_Dealloc(&writer);
return NULL;
}
return _PyUnicodeWriter_Finish(&writer);
}
PyDoc_STRVAR(p_format__doc__,
"S.__format__(format_spec) -> str\n\
\n\
Return a formatted version of S as described by format_spec.");
static PyObject *
unicode__sizeof__(PyObject *v)
{
Py_ssize_t size;
/* If it's a compact object, account for base structure +
character data. */
if (PyUnicode_IS_COMPACT_ASCII(v))
size = sizeof(PyASCIIObject) + PyUnicode_GET_LENGTH(v) + 1;
else if (PyUnicode_IS_COMPACT(v))
size = sizeof(PyCompactUnicodeObject) +
(PyUnicode_GET_LENGTH(v) + 1) * PyUnicode_KIND(v);
else {
/* If it is a two-block object, account for base object, and
for character block if present. */
size = sizeof(PyUnicodeObject);
if (_PyUnicode_DATA_ANY(v))
size += (PyUnicode_GET_LENGTH(v) + 1) *
PyUnicode_KIND(v);
}
/* If the wstr pointer is present, account for it unless it is shared
with the data pointer. Check if the data is not shared. */
if (_PyUnicode_HAS_WSTR_MEMORY(v))
size += (PyUnicode_WSTR_LENGTH(v) + 1) * sizeof(wchar_t);
if (_PyUnicode_HAS_UTF8_MEMORY(v))
size += PyUnicode_UTF8_LENGTH(v) + 1;
return PyLong_FromSsize_t(size);
}
PyDoc_STRVAR(sizeof__doc__,
"S.__sizeof__() -> size of S in memory, in bytes");
static PyObject *
unicode_getnewargs(PyObject *v)
{
PyObject *copy = _PyUnicode_Copy(v);
if (!copy)
return NULL;
return Py_BuildValue("(N)", copy);
}
static PyMethodDef unicode_methods[] = {
{"encode", (PyCFunction) unicode_encode, METH_VARARGS | METH_KEYWORDS, encode__doc__},
{"replace", (PyCFunction) unicode_replace, METH_VARARGS, replace__doc__},
{"split", (PyCFunction) unicode_split, METH_VARARGS | METH_KEYWORDS, split__doc__},
{"rsplit", (PyCFunction) unicode_rsplit, METH_VARARGS | METH_KEYWORDS, rsplit__doc__},
{"join", (PyCFunction) unicode_join, METH_O, join__doc__},
{"capitalize", (PyCFunction) unicode_capitalize, METH_NOARGS, capitalize__doc__},
{"casefold", (PyCFunction) unicode_casefold, METH_NOARGS, casefold__doc__},
{"title", (PyCFunction) unicode_title, METH_NOARGS, title__doc__},
{"center", (PyCFunction) unicode_center, METH_VARARGS, center__doc__},
{"count", (PyCFunction) unicode_count, METH_VARARGS, count__doc__},
{"expandtabs", (PyCFunction) unicode_expandtabs,
METH_VARARGS | METH_KEYWORDS, expandtabs__doc__},
{"find", (PyCFunction) unicode_find, METH_VARARGS, find__doc__},
{"partition", (PyCFunction) unicode_partition, METH_O, partition__doc__},
{"index", (PyCFunction) unicode_index, METH_VARARGS, index__doc__},
{"ljust", (PyCFunction) unicode_ljust, METH_VARARGS, ljust__doc__},
{"lower", (PyCFunction) unicode_lower, METH_NOARGS, lower__doc__},
{"lstrip", (PyCFunction) unicode_lstrip, METH_VARARGS, lstrip__doc__},
{"rfind", (PyCFunction) unicode_rfind, METH_VARARGS, rfind__doc__},
{"rindex", (PyCFunction) unicode_rindex, METH_VARARGS, rindex__doc__},
{"rjust", (PyCFunction) unicode_rjust, METH_VARARGS, rjust__doc__},
{"rstrip", (PyCFunction) unicode_rstrip, METH_VARARGS, rstrip__doc__},
{"rpartition", (PyCFunction) unicode_rpartition, METH_O, rpartition__doc__},
{"splitlines", (PyCFunction) unicode_splitlines,
METH_VARARGS | METH_KEYWORDS, splitlines__doc__},
{"strip", (PyCFunction) unicode_strip, METH_VARARGS, strip__doc__},
{"swapcase", (PyCFunction) unicode_swapcase, METH_NOARGS, swapcase__doc__},
{"translate", (PyCFunction) unicode_translate, METH_O, translate__doc__},
{"upper", (PyCFunction) unicode_upper, METH_NOARGS, upper__doc__},
{"startswith", (PyCFunction) unicode_startswith, METH_VARARGS, startswith__doc__},
{"endswith", (PyCFunction) unicode_endswith, METH_VARARGS, endswith__doc__},
{"islower", (PyCFunction) unicode_islower, METH_NOARGS, islower__doc__},
{"isupper", (PyCFunction) unicode_isupper, METH_NOARGS, isupper__doc__},
{"istitle", (PyCFunction) unicode_istitle, METH_NOARGS, istitle__doc__},
{"isspace", (PyCFunction) unicode_isspace, METH_NOARGS, isspace__doc__},
{"isdecimal", (PyCFunction) unicode_isdecimal, METH_NOARGS, isdecimal__doc__},
{"isdigit", (PyCFunction) unicode_isdigit, METH_NOARGS, isdigit__doc__},
{"isnumeric", (PyCFunction) unicode_isnumeric, METH_NOARGS, isnumeric__doc__},
{"isalpha", (PyCFunction) unicode_isalpha, METH_NOARGS, isalpha__doc__},
{"isalnum", (PyCFunction) unicode_isalnum, METH_NOARGS, isalnum__doc__},
{"isidentifier", (PyCFunction) unicode_isidentifier, METH_NOARGS, isidentifier__doc__},
{"isprintable", (PyCFunction) unicode_isprintable, METH_NOARGS, isprintable__doc__},
{"zfill", (PyCFunction) unicode_zfill, METH_VARARGS, zfill__doc__},
{"format", (PyCFunction) do_string_format, METH_VARARGS | METH_KEYWORDS, format__doc__},
{"format_map", (PyCFunction) do_string_format_map, METH_O, format_map__doc__},
{"__format__", (PyCFunction) unicode__format__, METH_VARARGS, p_format__doc__},
UNICODE_MAKETRANS_METHODDEF
{"__sizeof__", (PyCFunction) unicode__sizeof__, METH_NOARGS, sizeof__doc__},
#if 0
/* These methods are just used for debugging the implementation. */
{"_decimal2ascii", (PyCFunction) unicode__decimal2ascii, METH_NOARGS},
#endif
{"__getnewargs__", (PyCFunction)unicode_getnewargs, METH_NOARGS},
{NULL, NULL}
};
static PyObject *
unicode_mod(PyObject *v, PyObject *w)
{
if (!PyUnicode_Check(v))
Py_RETURN_NOTIMPLEMENTED;
return PyUnicode_Format(v, w);
}
static PyNumberMethods unicode_as_number = {
0, /*nb_add*/
0, /*nb_subtract*/
0, /*nb_multiply*/
unicode_mod, /*nb_remainder*/
};
static PySequenceMethods unicode_as_sequence = {
(lenfunc) unicode_length, /* sq_length */
PyUnicode_Concat, /* sq_concat */
(ssizeargfunc) unicode_repeat, /* sq_repeat */
(ssizeargfunc) unicode_getitem, /* sq_item */
0, /* sq_slice */
0, /* sq_ass_item */
0, /* sq_ass_slice */
PyUnicode_Contains, /* sq_contains */
};
static PyObject*
unicode_subscript(PyObject* self, PyObject* item)
{
if (PyUnicode_READY(self) == -1)
return NULL;
if (PyIndex_Check(item)) {
Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError);
if (i == -1 && PyErr_Occurred())
return NULL;
if (i < 0)
i += PyUnicode_GET_LENGTH(self);
return unicode_getitem(self, i);
} else if (PySlice_Check(item)) {
Py_ssize_t start, stop, step, slicelength, cur, i;
PyObject *result;
void *src_data, *dest_data;
int src_kind, dest_kind;
Py_UCS4 ch, max_char, kind_limit;
if (PySlice_Unpack(item, &start, &stop, &step) < 0) {
return NULL;
}
slicelength = PySlice_AdjustIndices(PyUnicode_GET_LENGTH(self),
&start, &stop, step);
if (slicelength <= 0) {
_Py_RETURN_UNICODE_EMPTY();
} else if (start == 0 && step == 1 &&
slicelength == PyUnicode_GET_LENGTH(self)) {
return unicode_result_unchanged(self);
} else if (step == 1) {
return PyUnicode_Substring(self,
start, start + slicelength);
}
/* General case */
src_kind = PyUnicode_KIND(self);
src_data = PyUnicode_DATA(self);
if (!PyUnicode_IS_ASCII(self)) {
kind_limit = kind_maxchar_limit(src_kind);
max_char = 0;
for (cur = start, i = 0; i < slicelength; cur += step, i++) {
ch = PyUnicode_READ(src_kind, src_data, cur);
if (ch > max_char) {
max_char = ch;
if (max_char >= kind_limit)
break;
}
}
}
else
max_char = 127;
result = PyUnicode_New(slicelength, max_char);
if (result == NULL)
return NULL;
dest_kind = PyUnicode_KIND(result);
dest_data = PyUnicode_DATA(result);
for (cur = start, i = 0; i < slicelength; cur += step, i++) {
Py_UCS4 ch = PyUnicode_READ(src_kind, src_data, cur);
PyUnicode_WRITE(dest_kind, dest_data, i, ch);
}
assert(_PyUnicode_CheckConsistency(result, 1));
return result;
} else {
PyErr_SetString(PyExc_TypeError, "string indices must be integers");
return NULL;
}
}
static PyMappingMethods unicode_as_mapping = {
(lenfunc)unicode_length, /* mp_length */
(binaryfunc)unicode_subscript, /* mp_subscript */
(objobjargproc)0, /* mp_ass_subscript */
};
/* Helpers for PyUnicode_Format() */
struct unicode_formatter_t {
PyObject *args;
int args_owned;
Py_ssize_t arglen, argidx;
PyObject *dict;
enum PyUnicode_Kind fmtkind;
Py_ssize_t fmtcnt, fmtpos;
void *fmtdata;
PyObject *fmtstr;
_PyUnicodeWriter writer;
};
struct unicode_format_arg_t {
Py_UCS4 ch;
int flags;
Py_ssize_t width;
int prec;
int sign;
};
static PyObject *
unicode_format_getnextarg(struct unicode_formatter_t *ctx)
{
Py_ssize_t argidx = ctx->argidx;
if (argidx < ctx->arglen) {
ctx->argidx++;
if (ctx->arglen < 0)
return ctx->args;
else
return PyTuple_GetItem(ctx->args, argidx);
}
PyErr_SetString(PyExc_TypeError,
"not enough arguments for format string");
return NULL;
}
/* Returns a new reference to a PyUnicode object, or NULL on failure. */
/* Format a float into the writer if the writer is not NULL, or into *p_output
otherwise.
Return 0 on success, raise an exception and return -1 on error. */
static int
formatfloat(PyObject *v, struct unicode_format_arg_t *arg,
PyObject **p_output,
_PyUnicodeWriter *writer)
{
char *p;
double x;
Py_ssize_t len;
int prec;
int dtoa_flags;
x = PyFloat_AsDouble(v);
if (x == -1.0 && PyErr_Occurred())
return -1;
prec = arg->prec;
if (prec < 0)
prec = 6;
if (arg->flags & F_ALT)
dtoa_flags = Py_DTSF_ALT;
else
dtoa_flags = 0;
p = PyOS_double_to_string(x, arg->ch, prec, dtoa_flags, NULL);
if (p == NULL)
return -1;
len = strlen(p);
if (writer) {
if (_PyUnicodeWriter_WriteASCIIString(writer, p, len) < 0) {
PyMem_Free(p);
return -1;
}
}
else
*p_output = _PyUnicode_FromASCII(p, len);
PyMem_Free(p);
return 0;
}
/* formatlong() emulates the format codes d, u, o, x and X, and
* the F_ALT flag, for Python's long (unbounded) ints. It's not used for
* Python's regular ints.
* Return value: a new PyUnicodeObject*, or NULL if error.
* The output string is of the form
* "-"? ("0x" | "0X")? digit+
* "0x"/"0X" are present only for x and X conversions, with F_ALT
* set in flags. The case of hex digits will be correct,
* There will be at least prec digits, zero-filled on the left if
* necessary to get that many.
* val object to be converted
* flags bitmask of format flags; only F_ALT is looked at
* prec minimum number of digits; 0-fill on left if needed
* type a character in [duoxX]; u acts the same as d
*
* CAUTION: o, x and X conversions on regular ints can never
* produce a '-' sign, but can for Python's unbounded ints.
*/
PyObject *
_PyUnicode_FormatLong(PyObject *val, int alt, int prec, int type)
{
PyObject *result = NULL;
char *buf;
Py_ssize_t i;
int sign; /* 1 if '-', else 0 */
int len; /* number of characters */
Py_ssize_t llen;
int numdigits; /* len == numnondigits + numdigits */
int numnondigits = 0;
/* Avoid exceeding SSIZE_T_MAX */
if (prec > INT_MAX-3) {
PyErr_SetString(PyExc_OverflowError,
"precision too large");
return NULL;
}
assert(PyLong_Check(val));
switch (type) {
default:
assert(!"'type' not in [diuoxX]");
case 'd':
case 'i':
case 'u':
/* int and int subclasses should print numerically when a numeric */
/* format code is used (see issue18780) */
result = PyNumber_ToBase(val, 10);
break;
case 'o':
numnondigits = 2;
result = PyNumber_ToBase(val, 8);
break;
case 'x':
case 'X':
numnondigits = 2;
result = PyNumber_ToBase(val, 16);
break;
}
if (!result)
return NULL;
assert(unicode_modifiable(result));
assert(PyUnicode_IS_READY(result));
assert(PyUnicode_IS_ASCII(result));
/* To modify the string in-place, there can only be one reference. */
if (Py_REFCNT(result) != 1) {
Py_DECREF(result);
PyErr_BadInternalCall();
return NULL;
}
buf = PyUnicode_DATA(result);
llen = PyUnicode_GET_LENGTH(result);
if (llen > INT_MAX) {
Py_DECREF(result);
PyErr_SetString(PyExc_ValueError,
"string too large in _PyUnicode_FormatLong");
return NULL;
}
len = (int)llen;
sign = buf[0] == '-';
numnondigits += sign;
numdigits = len - numnondigits;
assert(numdigits > 0);
/* Get rid of base marker unless F_ALT */
if (((alt) == 0 &&
(type == 'o' || type == 'x' || type == 'X'))) {
assert(buf[sign] == '0');
assert(buf[sign+1] == 'x' || buf[sign+1] == 'X' ||
buf[sign+1] == 'o');
numnondigits -= 2;
buf += 2;
len -= 2;
if (sign)
buf[0] = '-';
assert(len == numnondigits + numdigits);
assert(numdigits > 0);
}
/* Fill with leading zeroes to meet minimum width. */
if (prec > numdigits) {
PyObject *r1 = PyBytes_FromStringAndSize(NULL,
numnondigits + prec);
char *b1;
if (!r1) {
Py_DECREF(result);
return NULL;
}
b1 = PyBytes_AS_STRING(r1);
for (i = 0; i < numnondigits; ++i)
*b1++ = *buf++;
for (i = 0; i < prec - numdigits; i++)
*b1++ = '0';
for (i = 0; i < numdigits; i++)
*b1++ = *buf++;
*b1 = '\0';
Py_DECREF(result);
result = r1;
buf = PyBytes_AS_STRING(result);
len = numnondigits + prec;
}
/* Fix up case for hex conversions. */
if (type == 'X') {
/* Need to convert all lower case letters to upper case.
and need to convert 0x to 0X (and -0x to -0X). */
for (i = 0; i < len; i++)
if (buf[i] >= 'a' && buf[i] <= 'x')
buf[i] -= 'a'-'A';
}
if (!PyUnicode_Check(result)
|| buf != PyUnicode_DATA(result)) {
PyObject *unicode;
unicode = _PyUnicode_FromASCII(buf, len);
Py_DECREF(result);
result = unicode;
}
else if (len != PyUnicode_GET_LENGTH(result)) {
if (PyUnicode_Resize(&result, len) < 0)
Py_CLEAR(result);
}
return result;
}
/* Format an integer or a float as an integer.
* Return 1 if the number has been formatted into the writer,
* 0 if the number has been formatted into *p_output
* -1 and raise an exception on error */
static int
mainformatlong(PyObject *v,
struct unicode_format_arg_t *arg,
PyObject **p_output,
_PyUnicodeWriter *writer)
{
PyObject *iobj, *res;
char type = (char)arg->ch;
if (!PyNumber_Check(v))
goto wrongtype;
/* make sure number is a type of integer for o, x, and X */
if (!PyLong_Check(v)) {
if (type == 'o' || type == 'x' || type == 'X') {
iobj = PyNumber_Index(v);
if (iobj == NULL) {
if (PyErr_ExceptionMatches(PyExc_TypeError))
goto wrongtype;
return -1;
}
}
else {
iobj = PyNumber_Long(v);
if (iobj == NULL ) {
if (PyErr_ExceptionMatches(PyExc_TypeError))
goto wrongtype;
return -1;
}
}
assert(PyLong_Check(iobj));
}
else {
iobj = v;
Py_INCREF(iobj);
}
if (PyLong_CheckExact(v)
&& arg->width == -1 && arg->prec == -1
&& !(arg->flags & (F_SIGN | F_BLANK))
&& type != 'X')
{
/* Fast path */
int alternate = arg->flags & F_ALT;
int base;
switch(type)
{
default:
assert(0 && "'type' not in [diuoxX]");
case 'd':
case 'i':
case 'u':
base = 10;
break;
case 'o':
base = 8;
break;
case 'x':
case 'X':
base = 16;
break;
}
if (_PyLong_FormatWriter(writer, v, base, alternate) == -1) {
Py_DECREF(iobj);
return -1;
}
Py_DECREF(iobj);
return 1;
}
res = _PyUnicode_FormatLong(iobj, arg->flags & F_ALT, arg->prec, type);
Py_DECREF(iobj);
if (res == NULL)
return -1;
*p_output = res;
return 0;
wrongtype:
switch(type)
{
case 'o':
case 'x':
case 'X':
PyErr_Format(PyExc_TypeError,
"%%%c format: an integer is required, "
"not %.200s",
type, Py_TYPE(v)->tp_name);
break;
default:
PyErr_Format(PyExc_TypeError,
"%%%c format: a number is required, "
"not %.200s",
type, Py_TYPE(v)->tp_name);
break;
}
return -1;
}
static Py_UCS4
formatchar(PyObject *v)
{
/* presume that the buffer is at least 3 characters long */
if (PyUnicode_Check(v)) {
if (PyUnicode_GET_LENGTH(v) == 1) {
return PyUnicode_READ_CHAR(v, 0);
}
goto onError;
}
else {
PyObject *iobj;
long x;
/* make sure number is a type of integer */
if (!PyLong_Check(v)) {
iobj = PyNumber_Index(v);
if (iobj == NULL) {
goto onError;
}
x = PyLong_AsLong(iobj);
Py_DECREF(iobj);
}
else {
x = PyLong_AsLong(v);
}
if (x == -1 && PyErr_Occurred())
goto onError;
if (x < 0 || x > MAX_UNICODE) {
PyErr_SetString(PyExc_OverflowError,
"%c arg not in range(0x110000)");
return (Py_UCS4) -1;
}
return (Py_UCS4) x;
}
onError:
PyErr_SetString(PyExc_TypeError,
"%c requires int or char");
return (Py_UCS4) -1;
}
/* Parse options of an argument: flags, width, precision.
Handle also "%(name)" syntax.
Return 0 if the argument has been formatted into arg->str.
Return 1 if the argument has been written into ctx->writer,
Raise an exception and return -1 on error. */
static int
unicode_format_arg_parse(struct unicode_formatter_t *ctx,
struct unicode_format_arg_t *arg)
{
#define FORMAT_READ(ctx) \
PyUnicode_READ((ctx)->fmtkind, (ctx)->fmtdata, (ctx)->fmtpos)
PyObject *v;
if (arg->ch == '(') {
/* Get argument value from a dictionary. Example: "%(name)s". */
Py_ssize_t keystart;
Py_ssize_t keylen;
PyObject *key;
int pcount = 1;
if (ctx->dict == NULL) {
PyErr_SetString(PyExc_TypeError,
"format requires a mapping");
return -1;
}
++ctx->fmtpos;
--ctx->fmtcnt;
keystart = ctx->fmtpos;
/* Skip over balanced parentheses */
while (pcount > 0 && --ctx->fmtcnt >= 0) {
arg->ch = FORMAT_READ(ctx);
if (arg->ch == ')')
--pcount;
else if (arg->ch == '(')
++pcount;
ctx->fmtpos++;
}
keylen = ctx->fmtpos - keystart - 1;
if (ctx->fmtcnt < 0 || pcount > 0) {
PyErr_SetString(PyExc_ValueError,
"incomplete format key");
return -1;
}
key = PyUnicode_Substring(ctx->fmtstr,
keystart, keystart + keylen);
if (key == NULL)
return -1;
if (ctx->args_owned) {
ctx->args_owned = 0;
Py_DECREF(ctx->args);
}
ctx->args = PyObject_GetItem(ctx->dict, key);
Py_DECREF(key);
if (ctx->args == NULL)
return -1;
ctx->args_owned = 1;
ctx->arglen = -1;
ctx->argidx = -2;
}
/* Parse flags. Example: "%+i" => flags=F_SIGN. */
while (--ctx->fmtcnt >= 0) {
arg->ch = FORMAT_READ(ctx);
ctx->fmtpos++;
switch (arg->ch) {
case '-': arg->flags |= F_LJUST; continue;
case '+': arg->flags |= F_SIGN; continue;
case ' ': arg->flags |= F_BLANK; continue;
case '#': arg->flags |= F_ALT; continue;
case '0': arg->flags |= F_ZERO; continue;
}
break;
}
/* Parse width. Example: "%10s" => width=10 */
if (arg->ch == '*') {
v = unicode_format_getnextarg(ctx);
if (v == NULL)
return -1;
if (!PyLong_Check(v)) {
PyErr_SetString(PyExc_TypeError,
"* wants int");
return -1;
}
arg->width = PyLong_AsSsize_t(v);
if (arg->width == -1 && PyErr_Occurred())
return -1;
if (arg->width < 0) {
arg->flags |= F_LJUST;
arg->width = -arg->width;
}
if (--ctx->fmtcnt >= 0) {
arg->ch = FORMAT_READ(ctx);
ctx->fmtpos++;
}
}
else if (arg->ch >= '0' && arg->ch <= '9') {
arg->width = arg->ch - '0';
while (--ctx->fmtcnt >= 0) {
arg->ch = FORMAT_READ(ctx);
ctx->fmtpos++;
if (arg->ch < '0' || arg->ch > '9')
break;
/* Since arg->ch is unsigned, the RHS would end up as unsigned,
mixing signed and unsigned comparison. Since arg->ch is between
'0' and '9', casting to int is safe. */
if (arg->width > (PY_SSIZE_T_MAX - ((int)arg->ch - '0')) / 10) {
PyErr_SetString(PyExc_ValueError,
"width too big");
return -1;
}
arg->width = arg->width*10 + (arg->ch - '0');
}
}
/* Parse precision. Example: "%.3f" => prec=3 */
if (arg->ch == '.') {
arg->prec = 0;
if (--ctx->fmtcnt >= 0) {
arg->ch = FORMAT_READ(ctx);
ctx->fmtpos++;
}
if (arg->ch == '*') {
v = unicode_format_getnextarg(ctx);
if (v == NULL)
return -1;
if (!PyLong_Check(v)) {
PyErr_SetString(PyExc_TypeError,
"* wants int");
return -1;
}
arg->prec = _PyLong_AsInt(v);
if (arg->prec == -1 && PyErr_Occurred())
return -1;
if (arg->prec < 0)
arg->prec = 0;
if (--ctx->fmtcnt >= 0) {
arg->ch = FORMAT_READ(ctx);
ctx->fmtpos++;
}
}
else if (arg->ch >= '0' && arg->ch <= '9') {
arg->prec = arg->ch - '0';
while (--ctx->fmtcnt >= 0) {
arg->ch = FORMAT_READ(ctx);
ctx->fmtpos++;
if (arg->ch < '0' || arg->ch > '9')
break;
if (arg->prec > (INT_MAX - ((int)arg->ch - '0')) / 10) {
PyErr_SetString(PyExc_ValueError,
"precision too big");
return -1;
}
arg->prec = arg->prec*10 + (arg->ch - '0');
}
}
}
/* Ignore "h", "l" and "L" format prefix (ex: "%hi" or "%ls") */
if (ctx->fmtcnt >= 0) {
if (arg->ch == 'h' || arg->ch == 'l' || arg->ch == 'L') {
if (--ctx->fmtcnt >= 0) {
arg->ch = FORMAT_READ(ctx);
ctx->fmtpos++;
}
}
}
if (ctx->fmtcnt < 0) {
PyErr_SetString(PyExc_ValueError,
"incomplete format");
return -1;
}
return 0;
#undef FORMAT_READ
}
/* Format one argument. Supported conversion specifiers:
- "s", "r", "a": any type
- "i", "d", "u": int or float
- "o", "x", "X": int
- "e", "E", "f", "F", "g", "G": float
- "c": int or str (1 character)
When possible, the output is written directly into the Unicode writer
(ctx->writer). A string is created when padding is required.
Return 0 if the argument has been formatted into *p_str,
1 if the argument has been written into ctx->writer,
-1 on error. */
static int
unicode_format_arg_format(struct unicode_formatter_t *ctx,
struct unicode_format_arg_t *arg,
PyObject **p_str)
{
PyObject *v;
_PyUnicodeWriter *writer = &ctx->writer;
if (ctx->fmtcnt == 0)
ctx->writer.overallocate = 0;
if (arg->ch == '%') {
if (_PyUnicodeWriter_WriteCharInline(writer, '%') < 0)
return -1;
return 1;
}
v = unicode_format_getnextarg(ctx);
if (v == NULL)
return -1;
switch (arg->ch) {
case 's':
case 'r':
case 'a':
if (PyLong_CheckExact(v) && arg->width == -1 && arg->prec == -1) {
/* Fast path */
if (_PyLong_FormatWriter(writer, v, 10, arg->flags & F_ALT) == -1)
return -1;
return 1;
}
if (PyUnicode_CheckExact(v) && arg->ch == 's') {
*p_str = v;
Py_INCREF(*p_str);
}
else {
if (arg->ch == 's')
*p_str = PyObject_Str(v);
else if (arg->ch == 'r')
*p_str = PyObject_Repr(v);
else
*p_str = PyObject_ASCII(v);
}
break;
case 'i':
case 'd':
case 'u':
case 'o':
case 'x':
case 'X':
{
int ret = mainformatlong(v, arg, p_str, writer);
if (ret != 0)
return ret;
arg->sign = 1;
break;
}
case 'e':
case 'E':
case 'f':
case 'F':
case 'g':
case 'G':
if (arg->width == -1 && arg->prec == -1
&& !(arg->flags & (F_SIGN | F_BLANK)))
{
/* Fast path */
if (formatfloat(v, arg, NULL, writer) == -1)
return -1;
return 1;
}
arg->sign = 1;
if (formatfloat(v, arg, p_str, NULL) == -1)
return -1;
break;
case 'c':
{
Py_UCS4 ch = formatchar(v);
if (ch == (Py_UCS4) -1)
return -1;
if (arg->width == -1 && arg->prec == -1) {
/* Fast path */
if (_PyUnicodeWriter_WriteCharInline(writer, ch) < 0)
return -1;
return 1;
}
*p_str = PyUnicode_FromOrdinal(ch);
break;
}
default:
PyErr_Format(PyExc_ValueError,
"unsupported format character '%c' (0x%x) "
"at index %zd",
(31<=arg->ch && arg->ch<=126) ? (char)arg->ch : '?',
(int)arg->ch,
ctx->fmtpos - 1);
return -1;
}
if (*p_str == NULL)
return -1;
assert (PyUnicode_Check(*p_str));
return 0;
}
static int
unicode_format_arg_output(struct unicode_formatter_t *ctx,
struct unicode_format_arg_t *arg,
PyObject *str)
{
Py_ssize_t len;
enum PyUnicode_Kind kind;
void *pbuf;
Py_ssize_t pindex;
Py_UCS4 signchar;
Py_ssize_t buflen;
Py_UCS4 maxchar;
Py_ssize_t sublen;
_PyUnicodeWriter *writer = &ctx->writer;
Py_UCS4 fill;
fill = ' ';
if (arg->sign && arg->flags & F_ZERO)
fill = '0';
if (PyUnicode_READY(str) == -1)
return -1;
len = PyUnicode_GET_LENGTH(str);
if ((arg->width == -1 || arg->width <= len)
&& (arg->prec == -1 || arg->prec >= len)
&& !(arg->flags & (F_SIGN | F_BLANK)))
{
/* Fast path */
if (_PyUnicodeWriter_WriteStr(writer, str) == -1)
return -1;
return 0;
}
/* Truncate the string for "s", "r" and "a" formats
if the precision is set */
if (arg->ch == 's' || arg->ch == 'r' || arg->ch == 'a') {
if (arg->prec >= 0 && len > arg->prec)
len = arg->prec;
}
/* Adjust sign and width */
kind = PyUnicode_KIND(str);
pbuf = PyUnicode_DATA(str);
pindex = 0;
signchar = '\0';
if (arg->sign) {
Py_UCS4 ch = PyUnicode_READ(kind, pbuf, pindex);
if (ch == '-' || ch == '+') {
signchar = ch;
len--;
pindex++;
}
else if (arg->flags & F_SIGN)
signchar = '+';
else if (arg->flags & F_BLANK)
signchar = ' ';
else
arg->sign = 0;
}
if (arg->width < len)
arg->width = len;
/* Prepare the writer */
maxchar = writer->maxchar;
if (!(arg->flags & F_LJUST)) {
if (arg->sign) {
if ((arg->width-1) > len)
maxchar = Py_MAX(maxchar, fill);
}
else {
if (arg->width > len)
maxchar = Py_MAX(maxchar, fill);
}
}
if (PyUnicode_MAX_CHAR_VALUE(str) > maxchar) {
Py_UCS4 strmaxchar = _PyUnicode_FindMaxChar(str, 0, pindex+len);
maxchar = Py_MAX(maxchar, strmaxchar);
}
buflen = arg->width;
if (arg->sign && len == arg->width)
buflen++;
if (_PyUnicodeWriter_Prepare(writer, buflen, maxchar) == -1)
return -1;
/* Write the sign if needed */
if (arg->sign) {
if (fill != ' ') {
PyUnicode_WRITE(writer->kind, writer->data, writer->pos, signchar);
writer->pos += 1;
}
if (arg->width > len)
arg->width--;
}
/* Write the numeric prefix for "x", "X" and "o" formats
if the alternate form is used.
For example, write "0x" for the "%#x" format. */
if ((arg->flags & F_ALT) && (arg->ch == 'x' || arg->ch == 'X' || arg->ch == 'o')) {
assert(PyUnicode_READ(kind, pbuf, pindex) == '0');
assert(PyUnicode_READ(kind, pbuf, pindex + 1) == arg->ch);
if (fill != ' ') {
PyUnicode_WRITE(writer->kind, writer->data, writer->pos, '0');
PyUnicode_WRITE(writer->kind, writer->data, writer->pos+1, arg->ch);
writer->pos += 2;
pindex += 2;
}
arg->width -= 2;
if (arg->width < 0)
arg->width = 0;
len -= 2;
}
/* Pad left with the fill character if needed */
if (arg->width > len && !(arg->flags & F_LJUST)) {
sublen = arg->width - len;
FILL(writer->kind, writer->data, fill, writer->pos, sublen);
writer->pos += sublen;
arg->width = len;
}
/* If padding with spaces: write sign if needed and/or numeric prefix if
the alternate form is used */
if (fill == ' ') {
if (arg->sign) {
PyUnicode_WRITE(writer->kind, writer->data, writer->pos, signchar);
writer->pos += 1;
}
if ((arg->flags & F_ALT) && (arg->ch == 'x' || arg->ch == 'X' || arg->ch == 'o')) {
assert(PyUnicode_READ(kind, pbuf, pindex) == '0');
assert(PyUnicode_READ(kind, pbuf, pindex+1) == arg->ch);
PyUnicode_WRITE(writer->kind, writer->data, writer->pos, '0');
PyUnicode_WRITE(writer->kind, writer->data, writer->pos+1, arg->ch);
writer->pos += 2;
pindex += 2;
}
}
/* Write characters */
if (len) {
_PyUnicode_FastCopyCharacters(writer->buffer, writer->pos,
str, pindex, len);
writer->pos += len;
}
/* Pad right with the fill character if needed */
if (arg->width > len) {
sublen = arg->width - len;
FILL(writer->kind, writer->data, ' ', writer->pos, sublen);
writer->pos += sublen;
}
return 0;
}
/* Helper of PyUnicode_Format(): format one arg.
Return 0 on success, raise an exception and return -1 on error. */
static int
unicode_format_arg(struct unicode_formatter_t *ctx)
{
struct unicode_format_arg_t arg;
PyObject *str;
int ret;
arg.ch = PyUnicode_READ(ctx->fmtkind, ctx->fmtdata, ctx->fmtpos);
arg.flags = 0;
arg.width = -1;
arg.prec = -1;
arg.sign = 0;
str = NULL;
ret = unicode_format_arg_parse(ctx, &arg);
if (ret == -1)
return -1;
ret = unicode_format_arg_format(ctx, &arg, &str);
if (ret == -1)
return -1;
if (ret != 1) {
ret = unicode_format_arg_output(ctx, &arg, str);
Py_DECREF(str);
if (ret == -1)
return -1;
}
if (ctx->dict && (ctx->argidx < ctx->arglen) && arg.ch != '%') {
PyErr_SetString(PyExc_TypeError,
"not all arguments converted during string formatting");
return -1;
}
return 0;
}
PyObject *
PyUnicode_Format(PyObject *format, PyObject *args)
{
struct unicode_formatter_t ctx;
if (format == NULL || args == NULL) {
PyErr_BadInternalCall();
return NULL;
}
if (ensure_unicode(format) < 0)
return NULL;
ctx.fmtstr = format;
ctx.fmtdata = PyUnicode_DATA(ctx.fmtstr);
ctx.fmtkind = PyUnicode_KIND(ctx.fmtstr);
ctx.fmtcnt = PyUnicode_GET_LENGTH(ctx.fmtstr);
ctx.fmtpos = 0;
_PyUnicodeWriter_Init(&ctx.writer);
ctx.writer.min_length = ctx.fmtcnt + 100;
ctx.writer.overallocate = 1;
if (PyTuple_Check(args)) {
ctx.arglen = PyTuple_Size(args);
ctx.argidx = 0;
}
else {
ctx.arglen = -1;
ctx.argidx = -2;
}
ctx.args_owned = 0;
if (PyMapping_Check(args) && !PyTuple_Check(args) && !PyUnicode_Check(args))
ctx.dict = args;
else
ctx.dict = NULL;
ctx.args = args;
while (--ctx.fmtcnt >= 0) {
if (PyUnicode_READ(ctx.fmtkind, ctx.fmtdata, ctx.fmtpos) != '%') {
Py_ssize_t nonfmtpos;
nonfmtpos = ctx.fmtpos++;
while (ctx.fmtcnt >= 0 &&
PyUnicode_READ(ctx.fmtkind, ctx.fmtdata, ctx.fmtpos) != '%') {
ctx.fmtpos++;
ctx.fmtcnt--;
}
if (ctx.fmtcnt < 0) {
ctx.fmtpos--;
ctx.writer.overallocate = 0;
}
if (_PyUnicodeWriter_WriteSubstring(&ctx.writer, ctx.fmtstr,
nonfmtpos, ctx.fmtpos) < 0)
goto onError;
}
else {
ctx.fmtpos++;
if (unicode_format_arg(&ctx) == -1)
goto onError;
}
}
if (ctx.argidx < ctx.arglen && !ctx.dict) {
PyErr_SetString(PyExc_TypeError,
"not all arguments converted during string formatting");
goto onError;
}
if (ctx.args_owned) {
Py_DECREF(ctx.args);
}
return _PyUnicodeWriter_Finish(&ctx.writer);
onError:
_PyUnicodeWriter_Dealloc(&ctx.writer);
if (ctx.args_owned) {
Py_DECREF(ctx.args);
}
return NULL;
}
static PyObject *
unicode_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
static PyObject *
unicode_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyObject *x = NULL;
static char *kwlist[] = {"object", "encoding", "errors", 0};
char *encoding = NULL;
char *errors = NULL;
if (type != &PyUnicode_Type)
return unicode_subtype_new(type, args, kwds);
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|Oss:str",
kwlist, &x, &encoding, &errors))
return NULL;
if (x == NULL)
_Py_RETURN_UNICODE_EMPTY();
if (encoding == NULL && errors == NULL)
return PyObject_Str(x);
else
return PyUnicode_FromEncodedObject(x, encoding, errors);
}
static PyObject *
unicode_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyObject *unicode, *self;
Py_ssize_t length, char_size;
int share_wstr, share_utf8;
unsigned int kind;
void *data;
assert(PyType_IsSubtype(type, &PyUnicode_Type));
unicode = unicode_new(&PyUnicode_Type, args, kwds);
if (unicode == NULL)
return NULL;
assert(_PyUnicode_CHECK(unicode));
if (PyUnicode_READY(unicode) == -1) {
Py_DECREF(unicode);
return NULL;
}
self = type->tp_alloc(type, 0);
if (self == NULL) {
Py_DECREF(unicode);
return NULL;
}
kind = PyUnicode_KIND(unicode);
length = PyUnicode_GET_LENGTH(unicode);
_PyUnicode_LENGTH(self) = length;
#ifdef Py_DEBUG
_PyUnicode_HASH(self) = -1;
#else
_PyUnicode_HASH(self) = _PyUnicode_HASH(unicode);
#endif
_PyUnicode_STATE(self).interned = 0;
_PyUnicode_STATE(self).kind = kind;
_PyUnicode_STATE(self).compact = 0;
_PyUnicode_STATE(self).ascii = _PyUnicode_STATE(unicode).ascii;
_PyUnicode_STATE(self).ready = 1;
_PyUnicode_WSTR(self) = NULL;
_PyUnicode_UTF8_LENGTH(self) = 0;
_PyUnicode_UTF8(self) = NULL;
_PyUnicode_WSTR_LENGTH(self) = 0;
_PyUnicode_DATA_ANY(self) = NULL;
share_utf8 = 0;
share_wstr = 0;
if (kind == PyUnicode_1BYTE_KIND) {
char_size = 1;
if (PyUnicode_MAX_CHAR_VALUE(unicode) < 128)
share_utf8 = 1;
}
else if (kind == PyUnicode_2BYTE_KIND) {
char_size = 2;
if (sizeof(wchar_t) == 2)
share_wstr = 1;
}
else {
assert(kind == PyUnicode_4BYTE_KIND);
char_size = 4;
if (sizeof(wchar_t) == 4)
share_wstr = 1;
}
/* Ensure we won't overflow the length. */
if (length > (PY_SSIZE_T_MAX / char_size - 1)) {
PyErr_NoMemory();
goto onError;
}
data = PyObject_MALLOC((length + 1) * char_size);
if (data == NULL) {
PyErr_NoMemory();
goto onError;
}
_PyUnicode_DATA_ANY(self) = data;
if (share_utf8) {
_PyUnicode_UTF8_LENGTH(self) = length;
_PyUnicode_UTF8(self) = data;
}
if (share_wstr) {
_PyUnicode_WSTR_LENGTH(self) = length;
_PyUnicode_WSTR(self) = (wchar_t *)data;
}
memcpy(data, PyUnicode_DATA(unicode),
kind * (length + 1));
assert(_PyUnicode_CheckConsistency(self, 1));
#ifdef Py_DEBUG
_PyUnicode_HASH(self) = _PyUnicode_HASH(unicode);
#endif
Py_DECREF(unicode);
return self;
onError:
Py_DECREF(unicode);
Py_DECREF(self);
return NULL;
}
PyDoc_STRVAR(unicode_doc,
"str(object='') -> str\n\
str(bytes_or_buffer[, encoding[, errors]]) -> str\n\
\n\
Create a new string object from the given object. If encoding or\n\
errors is specified, then the object must expose a data buffer\n\
that will be decoded using the given encoding and error handler.\n\
Otherwise, returns the result of object.__str__() (if defined)\n\
or repr(object).\n\
encoding defaults to sys.getdefaultencoding().\n\
errors defaults to 'strict'.");
static PyObject *unicode_iter(PyObject *seq);
PyTypeObject PyUnicode_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"str", /* tp_name */
sizeof(PyUnicodeObject), /* tp_size */
0, /* tp_itemsize */
/* Slots */
(destructor)unicode_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
unicode_repr, /* tp_repr */
&unicode_as_number, /* tp_as_number */
&unicode_as_sequence, /* tp_as_sequence */
&unicode_as_mapping, /* tp_as_mapping */
(hashfunc) unicode_hash, /* tp_hash*/
0, /* tp_call*/
(reprfunc) unicode_str, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE |
Py_TPFLAGS_UNICODE_SUBCLASS, /* tp_flags */
unicode_doc, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
PyUnicode_RichCompare, /* tp_richcompare */
0, /* tp_weaklistoffset */
unicode_iter, /* tp_iter */
0, /* tp_iternext */
unicode_methods, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
&PyBaseObject_Type, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
unicode_new, /* tp_new */
PyObject_Del, /* tp_free */
};
/* Initialize the Unicode implementation */
int _PyUnicode_Init(void)
{
/* XXX - move this array to unicodectype.c ? */
Py_UCS2 linebreak[] = {
0x000A, /* LINE FEED */
0x000D, /* CARRIAGE RETURN */
0x001C, /* FILE SEPARATOR */
0x001D, /* GROUP SEPARATOR */
0x001E, /* RECORD SEPARATOR */
0x0085, /* NEXT LINE */
0x2028, /* LINE SEPARATOR */
0x2029, /* PARAGRAPH SEPARATOR */
};
/* Init the implementation */
_Py_INCREF_UNICODE_EMPTY();
if (!unicode_empty)
Py_FatalError("Can't create empty string");
Py_DECREF(unicode_empty);
if (PyType_Ready(&PyUnicode_Type) < 0)
Py_FatalError("Can't initialize 'unicode'");
/* initialize the linebreak bloom filter */
bloom_linebreak = make_bloom_mask(
PyUnicode_2BYTE_KIND, linebreak,
Py_ARRAY_LENGTH(linebreak));
if (PyType_Ready(&EncodingMapType) < 0)
Py_FatalError("Can't initialize encoding map type");
if (PyType_Ready(&PyFieldNameIter_Type) < 0)
Py_FatalError("Can't initialize field name iterator type");
if (PyType_Ready(&PyFormatterIter_Type) < 0)
Py_FatalError("Can't initialize formatter iter type");
return 0;
}
/* Finalize the Unicode implementation */
int
PyUnicode_ClearFreeList(void)
{
return 0;
}
void
_PyUnicode_Fini(void)
{
int i;
Py_CLEAR(unicode_empty);
for (i = 0; i < 256; i++)
Py_CLEAR(unicode_latin1[i]);
_PyUnicode_ClearStaticStrings();
(void)PyUnicode_ClearFreeList();
}
void
PyUnicode_InternInPlace(PyObject **p)
{
PyObject *s = *p;
PyObject *t;
#ifdef Py_DEBUG
assert(s != NULL);
assert(_PyUnicode_CHECK(s));
#else
if (s == NULL || !PyUnicode_Check(s))
return;
#endif
/* If it's a subclass, we don't really know what putting
it in the interned dict might do. */
if (!PyUnicode_CheckExact(s))
return;
if (PyUnicode_CHECK_INTERNED(s))
return;
if (interned == NULL) {
interned = PyDict_New();
if (interned == NULL) {
PyErr_Clear(); /* Don't leave an exception */
return;
}
}
Py_ALLOW_RECURSION
t = PyDict_SetDefault(interned, s, s);
Py_END_ALLOW_RECURSION
if (t == NULL) {
PyErr_Clear();
return;
}
if (t != s) {
Py_INCREF(t);
Py_SETREF(*p, t);
return;
}
/* The two references in interned are not counted by refcnt.
The deallocator will take care of this */
Py_REFCNT(s) -= 2;
_PyUnicode_STATE(s).interned = SSTATE_INTERNED_MORTAL;
}
PyObject *
PyUnicode_InternFromString(const char *cp)
{
PyObject *s = PyUnicode_FromString(cp);
if (s == NULL)
return NULL;
PyUnicode_InternInPlace(&s);
return s;
}
relegated void
_Py_ReleaseInternedUnicodeStrings(void)
{
PyObject *keys;
PyObject *s;
Py_ssize_t i, n;
Py_ssize_t immortal_size = 0, mortal_size = 0;
if (interned == NULL || !PyDict_Check(interned))
return;
keys = PyDict_Keys(interned);
if (keys == NULL || !PyList_Check(keys)) {
PyErr_Clear();
return;
}
/* Since _Py_ReleaseInternedUnicodeStrings() is intended to help a leak
detector, interned unicode strings are not forcibly deallocated;
rather, we give them their stolen references back, and then clear
and DECREF the interned dict. */
n = PyList_GET_SIZE(keys);
fprintf(stderr, "releasing %" PY_FORMAT_SIZE_T "d interned strings\n",
n);
for (i = 0; i < n; i++) {
s = PyList_GET_ITEM(keys, i);
if (PyUnicode_READY(s) == -1) {
assert(0 && "could not ready string");
fprintf(stderr, "could not ready string\n");
}
switch (PyUnicode_CHECK_INTERNED(s)) {
case SSTATE_NOT_INTERNED:
/* XXX Shouldn't happen */
break;
case SSTATE_INTERNED_IMMORTAL:
Py_REFCNT(s) += 1;
immortal_size += PyUnicode_GET_LENGTH(s);
break;
case SSTATE_INTERNED_MORTAL:
Py_REFCNT(s) += 2;
mortal_size += PyUnicode_GET_LENGTH(s);
break;
default:
Py_FatalError("Inconsistent interned string state.");
}
_PyUnicode_STATE(s).interned = SSTATE_NOT_INTERNED;
}
fprintf(stderr, "total size of all interned strings: "
"%" PY_FORMAT_SIZE_T "d/%" PY_FORMAT_SIZE_T "d "
"mortal/immortal\n", mortal_size, immortal_size);
Py_DECREF(keys);
PyDict_Clear(interned);
Py_CLEAR(interned);
}
/********************* Unicode Iterator **************************/
typedef struct {
PyObject_HEAD
Py_ssize_t it_index;
PyObject *it_seq; /* Set to NULL when iterator is exhausted */
} unicodeiterobject;
static void
unicodeiter_dealloc(unicodeiterobject *it)
{
_PyObject_GC_UNTRACK(it);
Py_XDECREF(it->it_seq);
PyObject_GC_Del(it);
}
static int
unicodeiter_traverse(unicodeiterobject *it, visitproc visit, void *arg)
{
Py_VISIT(it->it_seq);
return 0;
}
static PyObject *
unicodeiter_next(unicodeiterobject *it)
{
PyObject *seq, *item;
assert(it != NULL);
seq = it->it_seq;
if (seq == NULL)
return NULL;
assert(_PyUnicode_CHECK(seq));
if (it->it_index < PyUnicode_GET_LENGTH(seq)) {
int kind = PyUnicode_KIND(seq);
void *data = PyUnicode_DATA(seq);
Py_UCS4 chr = PyUnicode_READ(kind, data, it->it_index);
item = PyUnicode_FromOrdinal(chr);
if (item != NULL)
++it->it_index;
return item;
}
it->it_seq = NULL;
Py_DECREF(seq);
return NULL;
}
static PyObject *
unicodeiter_len(unicodeiterobject *it)
{
Py_ssize_t len = 0;
if (it->it_seq)
len = PyUnicode_GET_LENGTH(it->it_seq) - it->it_index;
return PyLong_FromSsize_t(len);
}
PyDoc_STRVAR(length_hint_doc, "Private method returning an estimate of len(list(it)).");
static PyObject *
unicodeiter_reduce(unicodeiterobject *it)
{
if (it->it_seq != NULL) {
return Py_BuildValue("N(O)n", _PyObject_GetBuiltin("iter"),
it->it_seq, it->it_index);
} else {
PyObject *u = PyUnicode_FromUnicode(NULL, 0);
if (u == NULL)
return NULL;
return Py_BuildValue("N(N)", _PyObject_GetBuiltin("iter"), u);
}
}
PyDoc_STRVAR(reduce_doc, "Return state information for pickling.");
static PyObject *
unicodeiter_setstate(unicodeiterobject *it, PyObject *state)
{
Py_ssize_t index = PyLong_AsSsize_t(state);
if (index == -1 && PyErr_Occurred())
return NULL;
if (it->it_seq != NULL) {
if (index < 0)
index = 0;
else if (index > PyUnicode_GET_LENGTH(it->it_seq))
index = PyUnicode_GET_LENGTH(it->it_seq); /* iterator truncated */
it->it_index = index;
}
Py_RETURN_NONE;
}
PyDoc_STRVAR(setstate_doc, "Set state information for unpickling.");
static PyMethodDef unicodeiter_methods[] = {
{"__length_hint__", (PyCFunction)unicodeiter_len, METH_NOARGS,
length_hint_doc},
{"__reduce__", (PyCFunction)unicodeiter_reduce, METH_NOARGS,
reduce_doc},
{"__setstate__", (PyCFunction)unicodeiter_setstate, METH_O,
setstate_doc},
{NULL, NULL} /* sentinel */
};
PyTypeObject PyUnicodeIter_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"str_iterator", /* tp_name */
sizeof(unicodeiterobject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)unicodeiter_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
0, /* tp_doc */
(traverseproc)unicodeiter_traverse, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
PyObject_SelfIter, /* tp_iter */
(iternextfunc)unicodeiter_next, /* tp_iternext */
unicodeiter_methods, /* tp_methods */
0,
};
static PyObject *
unicode_iter(PyObject *seq)
{
unicodeiterobject *it;
if (!PyUnicode_Check(seq)) {
PyErr_BadInternalCall();
return NULL;
}
if (PyUnicode_READY(seq) == -1)
return NULL;
it = PyObject_GC_New(unicodeiterobject, &PyUnicodeIter_Type);
if (it == NULL)
return NULL;
it->it_index = 0;
Py_INCREF(seq);
it->it_seq = seq;
_PyObject_GC_TRACK(it);
return (PyObject *)it;
}
/* A _string module, to export formatter_parser and formatter_field_name_split
to the string.Formatter class implemented in Python. */
static PyMethodDef _string_methods[] = {
{"formatter_field_name_split", (PyCFunction) formatter_field_name_split,
METH_O, PyDoc_STR("split the argument as a field name")},
{"formatter_parser", (PyCFunction) formatter_parser,
METH_O, PyDoc_STR("parse the argument as a format string")},
{NULL, NULL}
};
static struct PyModuleDef _string_module = {
PyModuleDef_HEAD_INIT,
"_string",
PyDoc_STR("string helper module"),
0,
_string_methods,
NULL,
NULL,
NULL,
NULL
};
PyMODINIT_FUNC
PyInit__string(void)
{
return PyModule_Create(&_string_module);
}
| 446,319 | 14,700 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/codeobject.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "libc/math.h"
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/boolobject.h"
#include "third_party/python/Include/bytesobject.h"
#include "third_party/python/Include/code.h"
#include "third_party/python/Include/complexobject.h"
#include "third_party/python/Include/floatobject.h"
#include "third_party/python/Include/longobject.h"
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/pyerrors.h"
#include "third_party/python/Include/pymacro.h"
#include "third_party/python/Include/pymem.h"
#include "third_party/python/Include/pystate.h"
#include "third_party/python/Include/setobject.h"
#include "third_party/python/Include/sliceobject.h"
#include "third_party/python/Include/structmember.h"
#include "third_party/python/Include/tupleobject.h"
#include "third_party/python/Include/unicodeobject.h"
/* clang-format off */
#define NAME_CHARS \
"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz"
/* Holder for co_extra information */
typedef struct {
Py_ssize_t ce_size;
void **ce_extras;
} _PyCodeObjectExtra;
/* all_name_chars(s): true iff all chars in s are valid NAME_CHARS */
static int
all_name_chars(PyObject *o)
{
static char ok_name_char[256];
static const unsigned char *name_chars = (unsigned char *)NAME_CHARS;
const unsigned char *s, *e;
if (!PyUnicode_IS_ASCII(o))
return 0;
if (ok_name_char[*name_chars] == 0) {
const unsigned char *p;
for (p = name_chars; *p; p++)
ok_name_char[*p] = 1;
}
s = PyUnicode_1BYTE_DATA(o);
e = s + PyUnicode_GET_LENGTH(o);
while (s != e) {
if (ok_name_char[*s++] == 0)
return 0;
}
return 1;
}
static void
intern_strings(PyObject *tuple)
{
Py_ssize_t i;
for (i = PyTuple_GET_SIZE(tuple); --i >= 0; ) {
PyObject *v = PyTuple_GET_ITEM(tuple, i);
if (v == NULL || !PyUnicode_CheckExact(v)) {
Py_FatalError("non-string found in code slot");
}
PyUnicode_InternInPlace(&PyTuple_GET_ITEM(tuple, i));
}
}
/* Intern selected string constants */
static int
intern_string_constants(PyObject *tuple)
{
int modified = 0;
Py_ssize_t i;
for (i = PyTuple_GET_SIZE(tuple); --i >= 0; ) {
PyObject *v = PyTuple_GET_ITEM(tuple, i);
if (PyUnicode_CheckExact(v)) {
if (PyUnicode_READY(v) == -1) {
PyErr_Clear();
continue;
}
if (all_name_chars(v)) {
PyObject *w = v;
PyUnicode_InternInPlace(&v);
if (w != v) {
PyTuple_SET_ITEM(tuple, i, v);
modified = 1;
}
}
}
else if (PyTuple_CheckExact(v)) {
intern_string_constants(v);
}
else if (PyFrozenSet_CheckExact(v)) {
PyObject *w = v;
PyObject *tmp = PySequence_Tuple(v);
if (tmp == NULL) {
PyErr_Clear();
continue;
}
if (intern_string_constants(tmp)) {
v = PyFrozenSet_New(tmp);
if (v == NULL) {
PyErr_Clear();
}
else {
PyTuple_SET_ITEM(tuple, i, v);
Py_DECREF(w);
modified = 1;
}
}
Py_DECREF(tmp);
}
}
return modified;
}
PyCodeObject *
PyCode_New(int argcount, int kwonlyargcount,
int nlocals, int stacksize, int flags,
PyObject *code, PyObject *consts, PyObject *names,
PyObject *varnames, PyObject *freevars, PyObject *cellvars,
PyObject *filename, PyObject *name, int firstlineno,
PyObject *lnotab)
{
PyCodeObject *co;
unsigned char *cell2arg = NULL;
Py_ssize_t i, n_cellvars, n_varnames, total_args;
/* Check argument types */
if (argcount < 0 || kwonlyargcount < 0 || nlocals < 0 ||
code == NULL ||
consts == NULL || !PyTuple_Check(consts) ||
names == NULL || !PyTuple_Check(names) ||
varnames == NULL || !PyTuple_Check(varnames) ||
freevars == NULL || !PyTuple_Check(freevars) ||
cellvars == NULL || !PyTuple_Check(cellvars) ||
name == NULL || !PyUnicode_Check(name) ||
filename == NULL || !PyUnicode_Check(filename) ||
lnotab == NULL || !PyBytes_Check(lnotab) ||
!PyObject_CheckReadBuffer(code)) {
PyErr_BadInternalCall();
return NULL;
}
/* Ensure that the filename is a ready Unicode string */
if (PyUnicode_READY(filename) < 0)
return NULL;
intern_strings(names);
intern_strings(varnames);
intern_strings(freevars);
intern_strings(cellvars);
intern_string_constants(consts);
/* Check for any inner or outer closure references */
n_cellvars = PyTuple_GET_SIZE(cellvars);
if (!n_cellvars && !PyTuple_GET_SIZE(freevars)) {
flags |= CO_NOFREE;
} else {
flags &= ~CO_NOFREE;
}
n_varnames = PyTuple_GET_SIZE(varnames);
if (argcount <= n_varnames && kwonlyargcount <= n_varnames) {
/* Never overflows. */
total_args = (Py_ssize_t)argcount + (Py_ssize_t)kwonlyargcount +
((flags & CO_VARARGS) != 0) + ((flags & CO_VARKEYWORDS) != 0);
}
else {
total_args = n_varnames + 1;
}
if (total_args > n_varnames) {
PyErr_SetString(PyExc_ValueError, "code: varnames is too small");
return NULL;
}
/* Create mapping between cells and arguments if needed. */
if (n_cellvars) {
Py_ssize_t alloc_size = sizeof(unsigned char) * n_cellvars;
bool used_cell2arg = false;
cell2arg = PyMem_MALLOC(alloc_size);
if (cell2arg == NULL) {
PyErr_NoMemory();
return NULL;
}
memset(cell2arg, CO_CELL_NOT_AN_ARG, alloc_size);
/* Find cells which are also arguments. */
for (i = 0; i < n_cellvars; i++) {
Py_ssize_t j;
PyObject *cell = PyTuple_GET_ITEM(cellvars, i);
for (j = 0; j < total_args; j++) {
PyObject *arg = PyTuple_GET_ITEM(varnames, j);
int cmp = PyUnicode_Compare(cell, arg);
if (cmp == -1 && PyErr_Occurred()) {
PyMem_FREE(cell2arg);
return NULL;
}
if (cmp == 0) {
cell2arg[i] = j;
used_cell2arg = true;
break;
}
}
}
if (!used_cell2arg) {
PyMem_FREE(cell2arg);
cell2arg = NULL;
}
}
co = PyObject_NEW(PyCodeObject, &PyCode_Type);
if (co == NULL) {
if (cell2arg)
PyMem_FREE(cell2arg);
return NULL;
}
co->co_argcount = argcount;
co->co_kwonlyargcount = kwonlyargcount;
co->co_nlocals = nlocals;
co->co_stacksize = stacksize;
co->co_flags = flags;
Py_INCREF(code);
co->co_code = code;
Py_INCREF(consts);
co->co_consts = consts;
Py_INCREF(names);
co->co_names = names;
Py_INCREF(varnames);
co->co_varnames = varnames;
Py_INCREF(freevars);
co->co_freevars = freevars;
Py_INCREF(cellvars);
co->co_cellvars = cellvars;
co->co_cell2arg = cell2arg;
Py_INCREF(filename);
co->co_filename = filename;
Py_INCREF(name);
co->co_name = name;
co->co_firstlineno = firstlineno;
Py_INCREF(lnotab);
co->co_lnotab = lnotab;
co->co_zombieframe = NULL;
co->co_weakreflist = NULL;
co->co_extra = NULL;
return co;
}
PyCodeObject *
PyCode_NewEmpty(const char *filename, const char *funcname, int firstlineno)
{
static PyObject *emptystring = NULL;
static PyObject *nulltuple = NULL;
PyObject *filename_ob = NULL;
PyObject *funcname_ob = NULL;
PyCodeObject *result = NULL;
if (emptystring == NULL) {
emptystring = PyBytes_FromString("");
if (emptystring == NULL)
goto failed;
}
if (nulltuple == NULL) {
nulltuple = PyTuple_New(0);
if (nulltuple == NULL)
goto failed;
}
funcname_ob = PyUnicode_FromString(funcname);
if (funcname_ob == NULL)
goto failed;
filename_ob = PyUnicode_DecodeFSDefault(filename);
if (filename_ob == NULL)
goto failed;
result = PyCode_New(0, /* argcount */
0, /* kwonlyargcount */
0, /* nlocals */
0, /* stacksize */
0, /* flags */
emptystring, /* code */
nulltuple, /* consts */
nulltuple, /* names */
nulltuple, /* varnames */
nulltuple, /* freevars */
nulltuple, /* cellvars */
filename_ob, /* filename */
funcname_ob, /* name */
firstlineno, /* firstlineno */
emptystring /* lnotab */
);
failed:
Py_XDECREF(funcname_ob);
Py_XDECREF(filename_ob);
return result;
}
#define OFF(x) offsetof(PyCodeObject, x)
static PyMemberDef code_memberlist[] = {
{"co_argcount", T_INT, OFF(co_argcount), READONLY},
{"co_kwonlyargcount", T_INT, OFF(co_kwonlyargcount), READONLY},
{"co_nlocals", T_INT, OFF(co_nlocals), READONLY},
{"co_stacksize",T_INT, OFF(co_stacksize), READONLY},
{"co_flags", T_INT, OFF(co_flags), READONLY},
{"co_code", T_OBJECT, OFF(co_code), READONLY},
{"co_consts", T_OBJECT, OFF(co_consts), READONLY},
{"co_names", T_OBJECT, OFF(co_names), READONLY},
{"co_varnames", T_OBJECT, OFF(co_varnames), READONLY},
{"co_freevars", T_OBJECT, OFF(co_freevars), READONLY},
{"co_cellvars", T_OBJECT, OFF(co_cellvars), READONLY},
{"co_filename", T_OBJECT, OFF(co_filename), READONLY},
{"co_name", T_OBJECT, OFF(co_name), READONLY},
{"co_firstlineno", T_INT, OFF(co_firstlineno), READONLY},
{"co_lnotab", T_OBJECT, OFF(co_lnotab), READONLY},
{NULL} /* Sentinel */
};
/* Helper for code_new: return a shallow copy of a tuple that is
guaranteed to contain exact strings, by converting string subclasses
to exact strings and complaining if a non-string is found. */
static PyObject*
validate_and_copy_tuple(PyObject *tup)
{
PyObject *newtuple;
PyObject *item;
Py_ssize_t i, len;
len = PyTuple_GET_SIZE(tup);
newtuple = PyTuple_New(len);
if (newtuple == NULL)
return NULL;
for (i = 0; i < len; i++) {
item = PyTuple_GET_ITEM(tup, i);
if (PyUnicode_CheckExact(item)) {
Py_INCREF(item);
}
else if (!PyUnicode_Check(item)) {
PyErr_Format(
PyExc_TypeError,
"name tuples must contain only "
"strings, not '%.500s'",
item->ob_type->tp_name);
Py_DECREF(newtuple);
return NULL;
}
else {
item = _PyUnicode_Copy(item);
if (item == NULL) {
Py_DECREF(newtuple);
return NULL;
}
}
PyTuple_SET_ITEM(newtuple, i, item);
}
return newtuple;
}
PyDoc_STRVAR(code_doc,
"code(argcount, kwonlyargcount, nlocals, stacksize, flags, codestring,\n\
constants, names, varnames, filename, name, firstlineno,\n\
lnotab[, freevars[, cellvars]])\n\
\n\
Create a code object. Not for the faint of heart.");
static PyObject *
code_new(PyTypeObject *type, PyObject *args, PyObject *kw)
{
int argcount;
int kwonlyargcount;
int nlocals;
int stacksize;
int flags;
PyObject *co = NULL;
PyObject *code;
PyObject *consts;
PyObject *names, *ournames = NULL;
PyObject *varnames, *ourvarnames = NULL;
PyObject *freevars = NULL, *ourfreevars = NULL;
PyObject *cellvars = NULL, *ourcellvars = NULL;
PyObject *filename;
PyObject *name;
int firstlineno;
PyObject *lnotab;
if (!PyArg_ParseTuple(args, "iiiiiSO!O!O!UUiS|O!O!:code",
&argcount, &kwonlyargcount,
&nlocals, &stacksize, &flags,
&code,
&PyTuple_Type, &consts,
&PyTuple_Type, &names,
&PyTuple_Type, &varnames,
&filename, &name,
&firstlineno, &lnotab,
&PyTuple_Type, &freevars,
&PyTuple_Type, &cellvars))
return NULL;
if (argcount < 0) {
PyErr_SetString(
PyExc_ValueError,
"code: argcount must not be negative");
goto cleanup;
}
if (kwonlyargcount < 0) {
PyErr_SetString(
PyExc_ValueError,
"code: kwonlyargcount must not be negative");
goto cleanup;
}
if (nlocals < 0) {
PyErr_SetString(
PyExc_ValueError,
"code: nlocals must not be negative");
goto cleanup;
}
ournames = validate_and_copy_tuple(names);
if (ournames == NULL)
goto cleanup;
ourvarnames = validate_and_copy_tuple(varnames);
if (ourvarnames == NULL)
goto cleanup;
if (freevars)
ourfreevars = validate_and_copy_tuple(freevars);
else
ourfreevars = PyTuple_New(0);
if (ourfreevars == NULL)
goto cleanup;
if (cellvars)
ourcellvars = validate_and_copy_tuple(cellvars);
else
ourcellvars = PyTuple_New(0);
if (ourcellvars == NULL)
goto cleanup;
co = (PyObject *)PyCode_New(argcount, kwonlyargcount,
nlocals, stacksize, flags,
code, consts, ournames, ourvarnames,
ourfreevars, ourcellvars, filename,
name, firstlineno, lnotab);
cleanup:
Py_XDECREF(ournames);
Py_XDECREF(ourvarnames);
Py_XDECREF(ourfreevars);
Py_XDECREF(ourcellvars);
return co;
}
static void
code_dealloc(PyCodeObject *co)
{
if (co->co_extra != NULL) {
__PyCodeExtraState *state = __PyCodeExtraState_Get();
_PyCodeObjectExtra *co_extra = co->co_extra;
for (Py_ssize_t i = 0; i < co_extra->ce_size; i++) {
freefunc free_extra = state->co_extra_freefuncs[i];
if (free_extra != NULL) {
free_extra(co_extra->ce_extras[i]);
}
}
PyMem_Free(co_extra->ce_extras);
PyMem_Free(co_extra);
}
Py_XDECREF(co->co_code);
Py_XDECREF(co->co_consts);
Py_XDECREF(co->co_names);
Py_XDECREF(co->co_varnames);
Py_XDECREF(co->co_freevars);
Py_XDECREF(co->co_cellvars);
Py_XDECREF(co->co_filename);
Py_XDECREF(co->co_name);
Py_XDECREF(co->co_lnotab);
if (co->co_cell2arg != NULL)
PyMem_FREE(co->co_cell2arg);
if (co->co_zombieframe != NULL)
PyObject_GC_Del(co->co_zombieframe);
if (co->co_weakreflist != NULL)
PyObject_ClearWeakRefs((PyObject*)co);
PyObject_DEL(co);
}
static PyObject *
code_sizeof(PyCodeObject *co, void *unused)
{
Py_ssize_t res = _PyObject_SIZE(Py_TYPE(co));
_PyCodeObjectExtra *co_extra = (_PyCodeObjectExtra*) co->co_extra;
if (co->co_cell2arg != NULL && co->co_cellvars != NULL)
res += PyTuple_GET_SIZE(co->co_cellvars) * sizeof(Py_ssize_t);
if (co_extra != NULL)
res += co_extra->ce_size * sizeof(co_extra->ce_extras[0]);
return PyLong_FromSsize_t(res);
}
static PyObject *
code_repr(PyCodeObject *co)
{
int lineno;
if (co->co_firstlineno != 0)
lineno = co->co_firstlineno;
else
lineno = -1;
if (co->co_filename && PyUnicode_Check(co->co_filename)) {
return PyUnicode_FromFormat(
"<code object %U at %p, file \"%U\", line %d>",
co->co_name, co, co->co_filename, lineno);
} else {
return PyUnicode_FromFormat(
"<code object %U at %p, file ???, line %d>",
co->co_name, co, lineno);
}
}
PyObject*
_PyCode_ConstantKey(PyObject *op)
{
PyObject *key;
/* Py_None and Py_Ellipsis are singleton */
if (op == Py_None || op == Py_Ellipsis
|| PyLong_CheckExact(op)
|| PyBool_Check(op)
|| PyBytes_CheckExact(op)
|| PyUnicode_CheckExact(op)
/* code_richcompare() uses _PyCode_ConstantKey() internally */
|| PyCode_Check(op)) {
key = PyTuple_Pack(2, Py_TYPE(op), op);
}
else if (PyFloat_CheckExact(op)) {
double d = PyFloat_AS_DOUBLE(op);
/* all we need is to make the tuple different in either the 0.0
* or -0.0 case from all others, just to avoid the "coercion".
*/
if (d == 0.0 && copysign(1.0, d) < 0.0)
key = PyTuple_Pack(3, Py_TYPE(op), op, Py_None);
else
key = PyTuple_Pack(2, Py_TYPE(op), op);
}
else if (PyComplex_CheckExact(op)) {
Py_complex z;
int real_negzero, imag_negzero;
/* For the complex case we must make complex(x, 0.)
different from complex(x, -0.) and complex(0., y)
different from complex(-0., y), for any x and y.
All four complex zeros must be distinguished.*/
z = PyComplex_AsCComplex(op);
real_negzero = z.real == 0.0 && copysign(1.0, z.real) < 0.0;
imag_negzero = z.imag == 0.0 && copysign(1.0, z.imag) < 0.0;
/* use True, False and None singleton as tags for the real and imag
* sign, to make tuples different */
if (real_negzero && imag_negzero) {
key = PyTuple_Pack(3, Py_TYPE(op), op, Py_True);
}
else if (imag_negzero) {
key = PyTuple_Pack(3, Py_TYPE(op), op, Py_False);
}
else if (real_negzero) {
key = PyTuple_Pack(3, Py_TYPE(op), op, Py_None);
}
else {
key = PyTuple_Pack(2, Py_TYPE(op), op);
}
}
else if (PyTuple_CheckExact(op)) {
Py_ssize_t i, len;
PyObject *tuple;
len = PyTuple_GET_SIZE(op);
tuple = PyTuple_New(len);
if (tuple == NULL)
return NULL;
for (i=0; i < len; i++) {
PyObject *item, *item_key;
item = PyTuple_GET_ITEM(op, i);
item_key = _PyCode_ConstantKey(item);
if (item_key == NULL) {
Py_DECREF(tuple);
return NULL;
}
PyTuple_SET_ITEM(tuple, i, item_key);
}
key = PyTuple_Pack(2, tuple, op);
Py_DECREF(tuple);
}
else if (PyFrozenSet_CheckExact(op)) {
Py_ssize_t pos = 0;
PyObject *item;
Py_hash_t hash;
Py_ssize_t i, len;
PyObject *tuple, *set;
len = PySet_GET_SIZE(op);
tuple = PyTuple_New(len);
if (tuple == NULL)
return NULL;
i = 0;
while (_PySet_NextEntry(op, &pos, &item, &hash)) {
PyObject *item_key;
item_key = _PyCode_ConstantKey(item);
if (item_key == NULL) {
Py_DECREF(tuple);
return NULL;
}
assert(i < len);
PyTuple_SET_ITEM(tuple, i, item_key);
i++;
}
set = PyFrozenSet_New(tuple);
Py_DECREF(tuple);
if (set == NULL)
return NULL;
key = PyTuple_Pack(2, set, op);
Py_DECREF(set);
return key;
}
else {
/* for other types, use the object identifier as a unique identifier
* to ensure that they are seen as unequal. */
PyObject *obj_id = PyLong_FromVoidPtr(op);
if (obj_id == NULL)
return NULL;
key = PyTuple_Pack(2, obj_id, op);
Py_DECREF(obj_id);
}
return key;
}
static PyObject *
code_richcompare(PyObject *self, PyObject *other, int op)
{
PyCodeObject *co, *cp;
int eq;
PyObject *consts1, *consts2;
PyObject *res;
if ((op != Py_EQ && op != Py_NE) ||
!PyCode_Check(self) ||
!PyCode_Check(other)) {
Py_RETURN_NOTIMPLEMENTED;
}
co = (PyCodeObject *)self;
cp = (PyCodeObject *)other;
eq = PyObject_RichCompareBool(co->co_name, cp->co_name, Py_EQ);
if (eq <= 0) goto unequal;
eq = co->co_argcount == cp->co_argcount;
if (!eq) goto unequal;
eq = co->co_kwonlyargcount == cp->co_kwonlyargcount;
if (!eq) goto unequal;
eq = co->co_nlocals == cp->co_nlocals;
if (!eq) goto unequal;
eq = co->co_flags == cp->co_flags;
if (!eq) goto unequal;
eq = co->co_firstlineno == cp->co_firstlineno;
if (!eq) goto unequal;
eq = PyObject_RichCompareBool(co->co_code, cp->co_code, Py_EQ);
if (eq <= 0) goto unequal;
/* compare constants */
consts1 = _PyCode_ConstantKey(co->co_consts);
if (!consts1)
return NULL;
consts2 = _PyCode_ConstantKey(cp->co_consts);
if (!consts2) {
Py_DECREF(consts1);
return NULL;
}
eq = PyObject_RichCompareBool(consts1, consts2, Py_EQ);
Py_DECREF(consts1);
Py_DECREF(consts2);
if (eq <= 0) goto unequal;
eq = PyObject_RichCompareBool(co->co_names, cp->co_names, Py_EQ);
if (eq <= 0) goto unequal;
eq = PyObject_RichCompareBool(co->co_varnames, cp->co_varnames, Py_EQ);
if (eq <= 0) goto unequal;
eq = PyObject_RichCompareBool(co->co_freevars, cp->co_freevars, Py_EQ);
if (eq <= 0) goto unequal;
eq = PyObject_RichCompareBool(co->co_cellvars, cp->co_cellvars, Py_EQ);
if (eq <= 0) goto unequal;
if (op == Py_EQ)
res = Py_True;
else
res = Py_False;
goto done;
unequal:
if (eq < 0)
return NULL;
if (op == Py_NE)
res = Py_True;
else
res = Py_False;
done:
Py_INCREF(res);
return res;
}
static Py_hash_t
code_hash(PyCodeObject *co)
{
Py_hash_t h, h0, h1, h2, h3, h4, h5, h6;
h0 = PyObject_Hash(co->co_name);
if (h0 == -1) return -1;
h1 = PyObject_Hash(co->co_code);
if (h1 == -1) return -1;
h2 = PyObject_Hash(co->co_consts);
if (h2 == -1) return -1;
h3 = PyObject_Hash(co->co_names);
if (h3 == -1) return -1;
h4 = PyObject_Hash(co->co_varnames);
if (h4 == -1) return -1;
h5 = PyObject_Hash(co->co_freevars);
if (h5 == -1) return -1;
h6 = PyObject_Hash(co->co_cellvars);
if (h6 == -1) return -1;
h = h0 ^ h1 ^ h2 ^ h3 ^ h4 ^ h5 ^ h6 ^
co->co_argcount ^ co->co_kwonlyargcount ^
co->co_nlocals ^ co->co_flags;
if (h == -1) h = -2;
return h;
}
/* XXX code objects need to participate in GC? */
static struct PyMethodDef code_methods[] = {
{"__sizeof__", (PyCFunction)code_sizeof, METH_NOARGS},
{NULL, NULL} /* sentinel */
};
PyTypeObject PyCode_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"code",
sizeof(PyCodeObject),
0,
(destructor)code_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)code_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
(hashfunc)code_hash, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT, /* tp_flags */
code_doc, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
code_richcompare, /* tp_richcompare */
offsetof(PyCodeObject, co_weakreflist), /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
code_methods, /* tp_methods */
code_memberlist, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
code_new, /* tp_new */
};
/* Use co_lnotab to compute the line number from a bytecode index, addrq. See
lnotab_notes.txt for the details of the lnotab representation.
*/
int
PyCode_Addr2Line(PyCodeObject *co, int addrq)
{
Py_ssize_t size = PyBytes_Size(co->co_lnotab) / 2;
unsigned char *p = (unsigned char*)PyBytes_AsString(co->co_lnotab);
int line = co->co_firstlineno;
int addr = 0;
while (--size >= 0) {
addr += *p++;
if (addr > addrq)
break;
line += (signed char)*p;
p++;
}
return line;
}
/* Update *bounds to describe the first and one-past-the-last instructions in
the same line as lasti. Return the number of that line. */
int
_PyCode_CheckLineNumber(PyCodeObject* co, int lasti, PyAddrPair *bounds)
{
Py_ssize_t size;
int addr, line;
unsigned char* p;
p = (unsigned char*)PyBytes_AS_STRING(co->co_lnotab);
size = PyBytes_GET_SIZE(co->co_lnotab) / 2;
addr = 0;
line = co->co_firstlineno;
assert(line > 0);
/* possible optimization: if f->f_lasti == instr_ub
(likely to be a common case) then we already know
instr_lb -- if we stored the matching value of p
somewhere we could skip the first while loop. */
/* See lnotab_notes.txt for the description of
co_lnotab. A point to remember: increments to p
come in (addr, line) pairs. */
bounds->ap_lower = 0;
while (size > 0) {
if (addr + *p > lasti)
break;
addr += *p++;
if ((signed char)*p)
bounds->ap_lower = addr;
line += (signed char)*p;
p++;
--size;
}
if (size > 0) {
while (--size >= 0) {
addr += *p++;
if ((signed char)*p)
break;
p++;
}
bounds->ap_upper = addr;
}
else {
bounds->ap_upper = INT_MAX;
}
return line;
}
int
_PyCode_GetExtra(PyObject *code, Py_ssize_t index, void **extra)
{
if (!PyCode_Check(code)) {
PyErr_BadInternalCall();
return -1;
}
PyCodeObject *o = (PyCodeObject*) code;
_PyCodeObjectExtra *co_extra = (_PyCodeObjectExtra*) o->co_extra;
if (co_extra == NULL || co_extra->ce_size <= index) {
*extra = NULL;
return 0;
}
*extra = co_extra->ce_extras[index];
return 0;
}
int
_PyCode_SetExtra(PyObject *code, Py_ssize_t index, void *extra)
{
__PyCodeExtraState *state = __PyCodeExtraState_Get();
if (!PyCode_Check(code) || index < 0 ||
index >= state->co_extra_user_count) {
PyErr_BadInternalCall();
return -1;
}
PyCodeObject *o = (PyCodeObject*) code;
_PyCodeObjectExtra *co_extra = (_PyCodeObjectExtra *) o->co_extra;
if (co_extra == NULL) {
co_extra = PyMem_Malloc(sizeof(_PyCodeObjectExtra));
if (co_extra == NULL) {
return -1;
}
co_extra->ce_extras = PyMem_Malloc(
state->co_extra_user_count * sizeof(void*));
if (co_extra->ce_extras == NULL) {
PyMem_Free(co_extra);
return -1;
}
co_extra->ce_size = state->co_extra_user_count;
for (Py_ssize_t i = 0; i < co_extra->ce_size; i++) {
co_extra->ce_extras[i] = NULL;
}
o->co_extra = co_extra;
}
else if (co_extra->ce_size <= index) {
void** ce_extras = PyMem_Realloc(
co_extra->ce_extras, state->co_extra_user_count * sizeof(void*));
if (ce_extras == NULL) {
return -1;
}
for (Py_ssize_t i = co_extra->ce_size;
i < state->co_extra_user_count;
i++) {
ce_extras[i] = NULL;
}
co_extra->ce_extras = ce_extras;
co_extra->ce_size = state->co_extra_user_count;
}
if (co_extra->ce_extras[index] != NULL) {
freefunc free = state->co_extra_freefuncs[index];
if (free != NULL) {
free(co_extra->ce_extras[index]);
}
}
co_extra->ce_extras[index] = extra;
return 0;
}
| 30,539 | 962 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/exceptions.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#define PY_SSIZE_T_CLEAN
#include "libc/errno.h"
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/descrobject.h"
#include "third_party/python/Include/dictobject.h"
#include "third_party/python/Include/longobject.h"
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/object.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/osdefs.h"
#include "third_party/python/Include/pyerrors.h"
#include "third_party/python/Include/pymacro.h"
#include "third_party/python/Include/structmember.h"
#include "third_party/python/Include/traceback.h"
#include "third_party/python/Include/tupleobject.h"
/* clang-format off */
/*
* New exceptions.c written in Iceland by Richard Jones and Georg Brandl.
*
* Thanks go to Tim Peters and Michael Hudson for debugging.
*/
/* Compatibility aliases */
PyObject *PyExc_EnvironmentError = NULL;
PyObject *PyExc_IOError = NULL;
#ifdef MS_WINDOWS
PyObject *PyExc_WindowsError = NULL;
#endif
/* The dict map from errno codes to OSError subclasses */
static PyObject *errnomap = NULL;
/* NOTE: If the exception class hierarchy changes, don't forget to update
* Lib/test/exception_hierarchy.txt
*/
/*
* BaseException
*/
static PyObject *
BaseException_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyBaseExceptionObject *self;
self = (PyBaseExceptionObject *)type->tp_alloc(type, 0);
if (!self)
return NULL;
/* the dict is created on the fly in PyObject_GenericSetAttr */
self->dict = NULL;
self->traceback = self->cause = self->context = NULL;
self->suppress_context = 0;
if (args) {
self->args = args;
Py_INCREF(args);
return (PyObject *)self;
}
self->args = PyTuple_New(0);
if (!self->args) {
Py_DECREF(self);
return NULL;
}
return (PyObject *)self;
}
static int
BaseException_init(PyBaseExceptionObject *self, PyObject *args, PyObject *kwds)
{
if (!_PyArg_NoKeywords(Py_TYPE(self)->tp_name, kwds))
return -1;
Py_INCREF(args);
Py_XSETREF(self->args, args);
return 0;
}
static int
BaseException_clear(PyBaseExceptionObject *self)
{
Py_CLEAR(self->dict);
Py_CLEAR(self->args);
Py_CLEAR(self->traceback);
Py_CLEAR(self->cause);
Py_CLEAR(self->context);
return 0;
}
static void
BaseException_dealloc(PyBaseExceptionObject *self)
{
_PyObject_GC_UNTRACK(self);
BaseException_clear(self);
Py_TYPE(self)->tp_free((PyObject *)self);
}
static int
BaseException_traverse(PyBaseExceptionObject *self, visitproc visit, void *arg)
{
Py_VISIT(self->dict);
Py_VISIT(self->args);
Py_VISIT(self->traceback);
Py_VISIT(self->cause);
Py_VISIT(self->context);
return 0;
}
static PyObject *
BaseException_str(PyBaseExceptionObject *self)
{
switch (PyTuple_GET_SIZE(self->args)) {
case 0:
return PyUnicode_FromString("");
case 1:
return PyObject_Str(PyTuple_GET_ITEM(self->args, 0));
default:
return PyObject_Str(self->args);
}
}
static PyObject *
BaseException_repr(PyBaseExceptionObject *self)
{
const char *name;
const char *dot;
name = Py_TYPE(self)->tp_name;
dot = (const char *) strrchr(name, '.');
if (dot != NULL) name = dot+1;
return PyUnicode_FromFormat("%s%R", name, self->args);
}
/* Pickling support */
static PyObject *
BaseException_reduce(PyBaseExceptionObject *self)
{
if (self->args && self->dict)
return PyTuple_Pack(3, Py_TYPE(self), self->args, self->dict);
else
return PyTuple_Pack(2, Py_TYPE(self), self->args);
}
/*
* Needed for backward compatibility, since exceptions used to store
* all their attributes in the __dict__. Code is taken from cPickle's
* load_build function.
*/
static PyObject *
BaseException_setstate(PyObject *self, PyObject *state)
{
PyObject *d_key, *d_value;
Py_ssize_t i = 0;
if (state != Py_None) {
if (!PyDict_Check(state)) {
PyErr_SetString(PyExc_TypeError, "state is not a dictionary");
return NULL;
}
while (PyDict_Next(state, &i, &d_key, &d_value)) {
if (PyObject_SetAttr(self, d_key, d_value) < 0)
return NULL;
}
}
Py_RETURN_NONE;
}
static PyObject *
BaseException_with_traceback(PyObject *self, PyObject *tb) {
if (PyException_SetTraceback(self, tb))
return NULL;
Py_INCREF(self);
return self;
}
PyDoc_STRVAR(with_traceback_doc,
"Exception.with_traceback(tb) --\n\
set self.__traceback__ to tb and return self.");
static PyMethodDef BaseException_methods[] = {
{"__reduce__", (PyCFunction)BaseException_reduce, METH_NOARGS },
{"__setstate__", (PyCFunction)BaseException_setstate, METH_O },
{"with_traceback", (PyCFunction)BaseException_with_traceback, METH_O,
with_traceback_doc},
{NULL, NULL, 0, NULL},
};
static PyObject *
BaseException_get_args(PyBaseExceptionObject *self, void *Py_UNUSED(ignored))
{
if (self->args == NULL) {
Py_INCREF(Py_None);
return Py_None;
}
Py_INCREF(self->args);
return self->args;
}
static int
BaseException_set_args(PyBaseExceptionObject *self, PyObject *val, void *Py_UNUSED(ignored))
{
PyObject *seq;
if (val == NULL) {
PyErr_SetString(PyExc_TypeError, "args may not be deleted");
return -1;
}
seq = PySequence_Tuple(val);
if (!seq)
return -1;
Py_XSETREF(self->args, seq);
return 0;
}
static PyObject *
BaseException_get_tb(PyBaseExceptionObject *self, void *Py_UNUSED(ignored))
{
if (self->traceback == NULL) {
Py_INCREF(Py_None);
return Py_None;
}
Py_INCREF(self->traceback);
return self->traceback;
}
static int
BaseException_set_tb(PyBaseExceptionObject *self, PyObject *tb, void *Py_UNUSED(ignored))
{
if (tb == NULL) {
PyErr_SetString(PyExc_TypeError, "__traceback__ may not be deleted");
return -1;
}
else if (!(tb == Py_None || PyTraceBack_Check(tb))) {
PyErr_SetString(PyExc_TypeError,
"__traceback__ must be a traceback or None");
return -1;
}
Py_INCREF(tb);
Py_XSETREF(self->traceback, tb);
return 0;
}
static PyObject *
BaseException_get_context(PyObject *self, void *Py_UNUSED(ignored))
{
PyObject *res = PyException_GetContext(self);
if (res)
return res; /* new reference already returned above */
Py_RETURN_NONE;
}
static int
BaseException_set_context(PyObject *self, PyObject *arg, void *Py_UNUSED(ignored))
{
if (arg == NULL) {
PyErr_SetString(PyExc_TypeError, "__context__ may not be deleted");
return -1;
} else if (arg == Py_None) {
arg = NULL;
} else if (!PyExceptionInstance_Check(arg)) {
PyErr_SetString(PyExc_TypeError, "exception context must be None "
"or derive from BaseException");
return -1;
} else {
/* PyException_SetContext steals this reference */
Py_INCREF(arg);
}
PyException_SetContext(self, arg);
return 0;
}
static PyObject *
BaseException_get_cause(PyObject *self, void *Py_UNUSED(ignored))
{
PyObject *res = PyException_GetCause(self);
if (res)
return res; /* new reference already returned above */
Py_RETURN_NONE;
}
static int
BaseException_set_cause(PyObject *self, PyObject *arg, void *Py_UNUSED(ignored))
{
if (arg == NULL) {
PyErr_SetString(PyExc_TypeError, "__cause__ may not be deleted");
return -1;
} else if (arg == Py_None) {
arg = NULL;
} else if (!PyExceptionInstance_Check(arg)) {
PyErr_SetString(PyExc_TypeError, "exception cause must be None "
"or derive from BaseException");
return -1;
} else {
/* PyException_SetCause steals this reference */
Py_INCREF(arg);
}
PyException_SetCause(self, arg);
return 0;
}
static PyGetSetDef BaseException_getset[] = {
{"__dict__", PyObject_GenericGetDict, PyObject_GenericSetDict},
{"args", (getter)BaseException_get_args, (setter)BaseException_set_args},
{"__traceback__", (getter)BaseException_get_tb, (setter)BaseException_set_tb},
{"__context__", BaseException_get_context,
BaseException_set_context, PyDoc_STR("exception context")},
{"__cause__", BaseException_get_cause,
BaseException_set_cause, PyDoc_STR("exception cause")},
{NULL},
};
PyObject *
PyException_GetTraceback(PyObject *self) {
PyBaseExceptionObject *base_self = (PyBaseExceptionObject *)self;
Py_XINCREF(base_self->traceback);
return base_self->traceback;
}
int
PyException_SetTraceback(PyObject *self, PyObject *tb) {
return BaseException_set_tb((PyBaseExceptionObject *)self, tb, NULL);
}
PyObject *
PyException_GetCause(PyObject *self) {
PyObject *cause = ((PyBaseExceptionObject *)self)->cause;
Py_XINCREF(cause);
return cause;
}
/* Steals a reference to cause */
void
PyException_SetCause(PyObject *self, PyObject *cause)
{
((PyBaseExceptionObject *)self)->suppress_context = 1;
Py_XSETREF(((PyBaseExceptionObject *)self)->cause, cause);
}
PyObject *
PyException_GetContext(PyObject *self) {
PyObject *context = ((PyBaseExceptionObject *)self)->context;
Py_XINCREF(context);
return context;
}
/* Steals a reference to context */
void
PyException_SetContext(PyObject *self, PyObject *context)
{
Py_XSETREF(((PyBaseExceptionObject *)self)->context, context);
}
static struct PyMemberDef BaseException_members[] = {
{"__suppress_context__", T_BOOL,
offsetof(PyBaseExceptionObject, suppress_context)},
{NULL}
};
static PyTypeObject _PyExc_BaseException = {
PyVarObject_HEAD_INIT(NULL, 0)
"BaseException", /*tp_name*/
sizeof(PyBaseExceptionObject), /*tp_basicsize*/
0, /*tp_itemsize*/
(destructor)BaseException_dealloc, /*tp_dealloc*/
0, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
0, /* tp_reserved; */
(reprfunc)BaseException_repr, /*tp_repr*/
0, /*tp_as_number*/
0, /*tp_as_sequence*/
0, /*tp_as_mapping*/
0, /*tp_hash */
0, /*tp_call*/
(reprfunc)BaseException_str, /*tp_str*/
PyObject_GenericGetAttr, /*tp_getattro*/
PyObject_GenericSetAttr, /*tp_setattro*/
0, /*tp_as_buffer*/
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC |
Py_TPFLAGS_BASE_EXC_SUBCLASS, /*tp_flags*/
PyDoc_STR("Common base class for all exceptions"), /* tp_doc */
(traverseproc)BaseException_traverse, /* tp_traverse */
(inquiry)BaseException_clear, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
BaseException_methods, /* tp_methods */
BaseException_members, /* tp_members */
BaseException_getset, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
offsetof(PyBaseExceptionObject, dict), /* tp_dictoffset */
(initproc)BaseException_init, /* tp_init */
0, /* tp_alloc */
BaseException_new, /* tp_new */
};
/* the CPython API expects exceptions to be (PyObject *) - both a hold-over
from the previous implmentation and also allowing Python objects to be used
in the API */
PyObject *PyExc_BaseException = (PyObject *)&_PyExc_BaseException;
/* note these macros omit the last semicolon so the macro invocation may
* include it and not look strange.
*/
#define SimpleExtendsException(EXCBASE, EXCNAME, EXCDOC) \
static PyTypeObject _PyExc_ ## EXCNAME = { \
PyVarObject_HEAD_INIT(NULL, 0) \
# EXCNAME, \
sizeof(PyBaseExceptionObject), \
0, (destructor)BaseException_dealloc, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, \
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC, \
PyDoc_STR(EXCDOC), (traverseproc)BaseException_traverse, \
(inquiry)BaseException_clear, 0, 0, 0, 0, 0, 0, 0, &_ ## EXCBASE, \
0, 0, 0, offsetof(PyBaseExceptionObject, dict), \
(initproc)BaseException_init, 0, BaseException_new,\
}; \
PyObject *PyExc_ ## EXCNAME = (PyObject *)&_PyExc_ ## EXCNAME
#define MiddlingExtendsException(EXCBASE, EXCNAME, EXCSTORE, EXCDOC) \
static PyTypeObject _PyExc_ ## EXCNAME = { \
PyVarObject_HEAD_INIT(NULL, 0) \
# EXCNAME, \
sizeof(Py ## EXCSTORE ## Object), \
0, (destructor)EXCSTORE ## _dealloc, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, \
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC, \
PyDoc_STR(EXCDOC), (traverseproc)EXCSTORE ## _traverse, \
(inquiry)EXCSTORE ## _clear, 0, 0, 0, 0, 0, 0, 0, &_ ## EXCBASE, \
0, 0, 0, offsetof(Py ## EXCSTORE ## Object, dict), \
(initproc)EXCSTORE ## _init, 0, 0, \
}; \
PyObject *PyExc_ ## EXCNAME = (PyObject *)&_PyExc_ ## EXCNAME
#define ComplexExtendsException(EXCBASE, EXCNAME, EXCSTORE, EXCNEW, \
EXCMETHODS, EXCMEMBERS, EXCGETSET, \
EXCSTR, EXCDOC) \
static PyTypeObject _PyExc_ ## EXCNAME = { \
PyVarObject_HEAD_INIT(NULL, 0) \
# EXCNAME, \
sizeof(Py ## EXCSTORE ## Object), 0, \
(destructor)EXCSTORE ## _dealloc, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
(reprfunc)EXCSTR, 0, 0, 0, \
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC, \
PyDoc_STR(EXCDOC), (traverseproc)EXCSTORE ## _traverse, \
(inquiry)EXCSTORE ## _clear, 0, 0, 0, 0, EXCMETHODS, \
EXCMEMBERS, EXCGETSET, &_ ## EXCBASE, \
0, 0, 0, offsetof(Py ## EXCSTORE ## Object, dict), \
(initproc)EXCSTORE ## _init, 0, EXCNEW,\
}; \
PyObject *PyExc_ ## EXCNAME = (PyObject *)&_PyExc_ ## EXCNAME
/*
* Exception extends BaseException
*/
SimpleExtendsException(PyExc_BaseException, Exception,
"Common base class for all non-exit exceptions.");
/*
* TypeError extends Exception
*/
SimpleExtendsException(PyExc_Exception, TypeError,
"Inappropriate argument type.");
/*
* StopAsyncIteration extends Exception
*/
SimpleExtendsException(PyExc_Exception, StopAsyncIteration,
"Signal the end from iterator.__anext__().");
/*
* StopIteration extends Exception
*/
static PyMemberDef StopIteration_members[] = {
{"value", T_OBJECT, offsetof(PyStopIterationObject, value), 0,
PyDoc_STR("generator return value")},
{NULL} /* Sentinel */
};
static int
StopIteration_init(PyStopIterationObject *self, PyObject *args, PyObject *kwds)
{
Py_ssize_t size = PyTuple_GET_SIZE(args);
PyObject *value;
if (BaseException_init((PyBaseExceptionObject *)self, args, kwds) == -1)
return -1;
Py_CLEAR(self->value);
if (size > 0)
value = PyTuple_GET_ITEM(args, 0);
else
value = Py_None;
Py_INCREF(value);
self->value = value;
return 0;
}
static int
StopIteration_clear(PyStopIterationObject *self)
{
Py_CLEAR(self->value);
return BaseException_clear((PyBaseExceptionObject *)self);
}
static void
StopIteration_dealloc(PyStopIterationObject *self)
{
_PyObject_GC_UNTRACK(self);
StopIteration_clear(self);
Py_TYPE(self)->tp_free((PyObject *)self);
}
static int
StopIteration_traverse(PyStopIterationObject *self, visitproc visit, void *arg)
{
Py_VISIT(self->value);
return BaseException_traverse((PyBaseExceptionObject *)self, visit, arg);
}
ComplexExtendsException(
PyExc_Exception, /* base */
StopIteration, /* name */
StopIteration, /* prefix for *_init, etc */
0, /* new */
0, /* methods */
StopIteration_members, /* members */
0, /* getset */
0, /* str */
"Signal the end from iterator.__next__()."
);
/*
* GeneratorExit extends BaseException
*/
SimpleExtendsException(PyExc_BaseException, GeneratorExit,
"Request that a generator exit.");
/*
* SystemExit extends BaseException
*/
static int
SystemExit_init(PySystemExitObject *self, PyObject *args, PyObject *kwds)
{
Py_ssize_t size = PyTuple_GET_SIZE(args);
if (BaseException_init((PyBaseExceptionObject *)self, args, kwds) == -1)
return -1;
if (size == 0)
return 0;
if (size == 1) {
Py_INCREF(PyTuple_GET_ITEM(args, 0));
Py_XSETREF(self->code, PyTuple_GET_ITEM(args, 0));
}
else { /* size > 1 */
Py_INCREF(args);
Py_XSETREF(self->code, args);
}
return 0;
}
static int
SystemExit_clear(PySystemExitObject *self)
{
Py_CLEAR(self->code);
return BaseException_clear((PyBaseExceptionObject *)self);
}
static void
SystemExit_dealloc(PySystemExitObject *self)
{
_PyObject_GC_UNTRACK(self);
SystemExit_clear(self);
Py_TYPE(self)->tp_free((PyObject *)self);
}
static int
SystemExit_traverse(PySystemExitObject *self, visitproc visit, void *arg)
{
Py_VISIT(self->code);
return BaseException_traverse((PyBaseExceptionObject *)self, visit, arg);
}
static PyMemberDef SystemExit_members[] = {
{"code", T_OBJECT, offsetof(PySystemExitObject, code), 0,
PyDoc_STR("exception code")},
{NULL} /* Sentinel */
};
ComplexExtendsException(PyExc_BaseException, SystemExit, SystemExit,
0, 0, SystemExit_members, 0, 0,
"Request to exit from the interpreter.");
/*
* KeyboardInterrupt extends BaseException
*/
SimpleExtendsException(PyExc_BaseException, KeyboardInterrupt,
"Program interrupted by user.");
/*
* ImportError extends Exception
*/
static int
ImportError_init(PyImportErrorObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"name", "path", 0};
PyObject *empty_tuple;
PyObject *msg = NULL;
PyObject *name = NULL;
PyObject *path = NULL;
if (BaseException_init((PyBaseExceptionObject *)self, args, NULL) == -1)
return -1;
empty_tuple = PyTuple_New(0);
if (!empty_tuple)
return -1;
if (!PyArg_ParseTupleAndKeywords(empty_tuple, kwds, "|$OO:ImportError", kwlist,
&name, &path)) {
Py_DECREF(empty_tuple);
return -1;
}
Py_DECREF(empty_tuple);
if (name) {
Py_INCREF(name);
Py_XSETREF(self->name, name);
}
if (path) {
Py_INCREF(path);
Py_XSETREF(self->path, path);
}
if (PyTuple_GET_SIZE(args) == 1) {
msg = PyTuple_GET_ITEM(args, 0);
Py_INCREF(msg);
Py_XSETREF(self->msg, msg);
}
return 0;
}
static int
ImportError_clear(PyImportErrorObject *self)
{
Py_CLEAR(self->msg);
Py_CLEAR(self->name);
Py_CLEAR(self->path);
return BaseException_clear((PyBaseExceptionObject *)self);
}
static void
ImportError_dealloc(PyImportErrorObject *self)
{
_PyObject_GC_UNTRACK(self);
ImportError_clear(self);
Py_TYPE(self)->tp_free((PyObject *)self);
}
static int
ImportError_traverse(PyImportErrorObject *self, visitproc visit, void *arg)
{
Py_VISIT(self->msg);
Py_VISIT(self->name);
Py_VISIT(self->path);
return BaseException_traverse((PyBaseExceptionObject *)self, visit, arg);
}
static PyObject *
ImportError_str(PyImportErrorObject *self)
{
if (self->msg && PyUnicode_CheckExact(self->msg)) {
Py_INCREF(self->msg);
return self->msg;
}
else {
return BaseException_str((PyBaseExceptionObject *)self);
}
}
static PyObject *
ImportError_getstate(PyImportErrorObject *self)
{
PyObject *dict = ((PyBaseExceptionObject *)self)->dict;
if (self->name || self->path) {
_Py_IDENTIFIER(name);
_Py_IDENTIFIER(path);
dict = dict ? PyDict_Copy(dict) : PyDict_New();
if (dict == NULL)
return NULL;
if (self->name && _PyDict_SetItemId(dict, &PyId_name, self->name) < 0) {
Py_DECREF(dict);
return NULL;
}
if (self->path && _PyDict_SetItemId(dict, &PyId_path, self->path) < 0) {
Py_DECREF(dict);
return NULL;
}
return dict;
}
else if (dict) {
Py_INCREF(dict);
return dict;
}
else {
Py_RETURN_NONE;
}
}
/* Pickling support */
static PyObject *
ImportError_reduce(PyImportErrorObject *self)
{
PyObject *res;
PyObject *args;
PyObject *state = ImportError_getstate(self);
if (state == NULL)
return NULL;
args = ((PyBaseExceptionObject *)self)->args;
if (state == Py_None)
res = PyTuple_Pack(2, Py_TYPE(self), args);
else
res = PyTuple_Pack(3, Py_TYPE(self), args, state);
Py_DECREF(state);
return res;
}
static PyMemberDef ImportError_members[] = {
{"msg", T_OBJECT, offsetof(PyImportErrorObject, msg), 0,
PyDoc_STR("exception message")},
{"name", T_OBJECT, offsetof(PyImportErrorObject, name), 0,
PyDoc_STR("module name")},
{"path", T_OBJECT, offsetof(PyImportErrorObject, path), 0,
PyDoc_STR("module path")},
{NULL} /* Sentinel */
};
static PyMethodDef ImportError_methods[] = {
{"__reduce__", (PyCFunction)ImportError_reduce, METH_NOARGS},
{NULL}
};
ComplexExtendsException(PyExc_Exception, ImportError,
ImportError, 0 /* new */,
ImportError_methods, ImportError_members,
0 /* getset */, ImportError_str,
"Import can't find module, or can't find name in "
"module.");
/*
* ModuleNotFoundError extends ImportError
*/
MiddlingExtendsException(PyExc_ImportError, ModuleNotFoundError, ImportError,
"Module not found.");
/*
* OSError extends Exception
*/
/* Where a function has a single filename, such as open() or some
* of the os module functions, PyErr_SetFromErrnoWithFilename() is
* called, giving a third argument which is the filename. But, so
* that old code using in-place unpacking doesn't break, e.g.:
*
* except OSError, (errno, strerror):
*
* we hack args so that it only contains two items. This also
* means we need our own __str__() which prints out the filename
* when it was supplied.
*
* (If a function has two filenames, such as rename(), symlink(),
* or copy(), PyErr_SetFromErrnoWithFilenameObjects() is called,
* which allows passing in a second filename.)
*/
/* This function doesn't cleanup on error, the caller should */
static int
oserror_parse_args(PyObject **p_args,
PyObject **myerrno, PyObject **strerror,
PyObject **filename, PyObject **filename2
#ifdef MS_WINDOWS
, PyObject **winerror
#endif
)
{
Py_ssize_t nargs;
PyObject *args = *p_args;
#ifndef MS_WINDOWS
/*
* ignored on non-Windows platforms,
* but parsed so OSError has a consistent signature
*/
PyObject *_winerror = NULL;
PyObject **winerror = &_winerror;
#endif /* MS_WINDOWS */
nargs = PyTuple_GET_SIZE(args);
if (nargs >= 2 && nargs <= 5) {
if (!PyArg_UnpackTuple(args, "OSError", 2, 5,
myerrno, strerror,
filename, winerror, filename2))
return -1;
#ifdef MS_WINDOWS
if (*winerror && PyLong_Check(*winerror)) {
long errcode, winerrcode;
PyObject *newargs;
Py_ssize_t i;
winerrcode = PyLong_AsLong(*winerror);
if (winerrcode == -1 && PyErr_Occurred())
return -1;
/* Set errno to the corresponding POSIX errno (overriding
first argument). Windows Socket error codes (>= 10000)
have the same value as their POSIX counterparts.
*/
if (winerrcode < 10000)
errcode = winerror_to_errno(winerrcode);
else
errcode = winerrcode;
*myerrno = PyLong_FromLong(errcode);
if (!*myerrno)
return -1;
newargs = PyTuple_New(nargs);
if (!newargs)
return -1;
PyTuple_SET_ITEM(newargs, 0, *myerrno);
for (i = 1; i < nargs; i++) {
PyObject *val = PyTuple_GET_ITEM(args, i);
Py_INCREF(val);
PyTuple_SET_ITEM(newargs, i, val);
}
Py_DECREF(args);
args = *p_args = newargs;
}
#endif /* MS_WINDOWS */
}
return 0;
}
static int
oserror_init(PyOSErrorObject *self, PyObject **p_args,
PyObject *myerrno, PyObject *strerror,
PyObject *filename, PyObject *filename2
#ifdef MS_WINDOWS
, PyObject *winerror
#endif
)
{
PyObject *args = *p_args;
Py_ssize_t nargs = PyTuple_GET_SIZE(args);
/* self->filename will remain Py_None otherwise */
if (filename && filename != Py_None) {
if (Py_TYPE(self) == (PyTypeObject *) PyExc_BlockingIOError &&
PyNumber_Check(filename)) {
/* BlockingIOError's 3rd argument can be the number of
* characters written.
*/
self->written = PyNumber_AsSsize_t(filename, PyExc_ValueError);
if (self->written == -1 && PyErr_Occurred())
return -1;
}
else {
Py_INCREF(filename);
self->filename = filename;
if (filename2 && filename2 != Py_None) {
Py_INCREF(filename2);
self->filename2 = filename2;
}
if (nargs >= 2 && nargs <= 5) {
/* filename, filename2, and winerror are removed from the args tuple
(for compatibility purposes, see test_exceptions.py) */
PyObject *subslice = PyTuple_GetSlice(args, 0, 2);
if (!subslice)
return -1;
Py_DECREF(args); /* replacing args */
*p_args = args = subslice;
}
}
}
Py_XINCREF(myerrno);
self->myerrno = myerrno;
Py_XINCREF(strerror);
self->strerror = strerror;
#ifdef MS_WINDOWS
Py_XINCREF(winerror);
self->winerror = winerror;
#endif
/* Steals the reference to args */
Py_XSETREF(self->args, args);
*p_args = args = NULL;
return 0;
}
static PyObject *
OSError_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
static int
OSError_init(PyOSErrorObject *self, PyObject *args, PyObject *kwds);
static int
oserror_use_init(PyTypeObject *type)
{
/* When __init__ is defined in an OSError subclass, we want any
extraneous argument to __new__ to be ignored. The only reasonable
solution, given __new__ takes a variable number of arguments,
is to defer arg parsing and initialization to __init__.
But when __new__ is overridden as well, it should call our __new__
with the right arguments.
(see http://bugs.python.org/issue12555#msg148829 )
*/
if (type->tp_init != (initproc) OSError_init &&
type->tp_new == (newfunc) OSError_new) {
assert((PyObject *) type != PyExc_OSError);
return 1;
}
return 0;
}
static PyObject *
OSError_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyOSErrorObject *self = NULL;
PyObject *myerrno = NULL, *strerror = NULL;
PyObject *filename = NULL, *filename2 = NULL;
#ifdef MS_WINDOWS
PyObject *winerror = NULL;
#endif
Py_INCREF(args);
if (!oserror_use_init(type)) {
if (!_PyArg_NoKeywords(type->tp_name, kwds))
goto error;
if (oserror_parse_args(&args, &myerrno, &strerror,
&filename, &filename2
#ifdef MS_WINDOWS
, &winerror
#endif
))
goto error;
if (myerrno && PyLong_Check(myerrno) &&
errnomap && (PyObject *) type == PyExc_OSError) {
PyObject *newtype;
newtype = PyDict_GetItem(errnomap, myerrno);
if (newtype) {
assert(PyType_Check(newtype));
type = (PyTypeObject *) newtype;
}
else if (PyErr_Occurred())
goto error;
}
}
self = (PyOSErrorObject *) type->tp_alloc(type, 0);
if (!self)
goto error;
self->dict = NULL;
self->traceback = self->cause = self->context = NULL;
self->written = -1;
if (!oserror_use_init(type)) {
if (oserror_init(self, &args, myerrno, strerror, filename, filename2
#ifdef MS_WINDOWS
, winerror
#endif
))
goto error;
}
else {
self->args = PyTuple_New(0);
if (self->args == NULL)
goto error;
}
Py_XDECREF(args);
return (PyObject *) self;
error:
Py_XDECREF(args);
Py_XDECREF(self);
return NULL;
}
static int
OSError_init(PyOSErrorObject *self, PyObject *args, PyObject *kwds)
{
PyObject *myerrno = NULL, *strerror = NULL;
PyObject *filename = NULL, *filename2 = NULL;
#ifdef MS_WINDOWS
PyObject *winerror = NULL;
#endif
if (!oserror_use_init(Py_TYPE(self)))
/* Everything already done in OSError_new */
return 0;
if (!_PyArg_NoKeywords(Py_TYPE(self)->tp_name, kwds))
return -1;
Py_INCREF(args);
if (oserror_parse_args(&args, &myerrno, &strerror, &filename, &filename2
#ifdef MS_WINDOWS
, &winerror
#endif
))
goto error;
if (oserror_init(self, &args, myerrno, strerror, filename, filename2
#ifdef MS_WINDOWS
, winerror
#endif
))
goto error;
return 0;
error:
Py_DECREF(args);
return -1;
}
static int
OSError_clear(PyOSErrorObject *self)
{
Py_CLEAR(self->myerrno);
Py_CLEAR(self->strerror);
Py_CLEAR(self->filename);
Py_CLEAR(self->filename2);
#ifdef MS_WINDOWS
Py_CLEAR(self->winerror);
#endif
return BaseException_clear((PyBaseExceptionObject *)self);
}
static void
OSError_dealloc(PyOSErrorObject *self)
{
_PyObject_GC_UNTRACK(self);
OSError_clear(self);
Py_TYPE(self)->tp_free((PyObject *)self);
}
static int
OSError_traverse(PyOSErrorObject *self, visitproc visit,
void *arg)
{
Py_VISIT(self->myerrno);
Py_VISIT(self->strerror);
Py_VISIT(self->filename);
Py_VISIT(self->filename2);
#ifdef MS_WINDOWS
Py_VISIT(self->winerror);
#endif
return BaseException_traverse((PyBaseExceptionObject *)self, visit, arg);
}
static PyObject *
OSError_str(PyOSErrorObject *self)
{
#define OR_NONE(x) ((x)?(x):Py_None)
#ifdef MS_WINDOWS
/* If available, winerror has the priority over myerrno */
if (self->winerror && self->filename) {
if (self->filename2) {
return PyUnicode_FromFormat("[WinError %S] %S: %R -> %R",
OR_NONE(self->winerror),
OR_NONE(self->strerror),
self->filename,
self->filename2);
} else {
return PyUnicode_FromFormat("[WinError %S] %S: %R",
OR_NONE(self->winerror),
OR_NONE(self->strerror),
self->filename);
}
}
if (self->winerror && self->strerror)
return PyUnicode_FromFormat("[WinError %S] %S",
self->winerror ? self->winerror: Py_None,
self->strerror ? self->strerror: Py_None);
#endif
if (self->filename) {
if (self->filename2) {
return PyUnicode_FromFormat("[Errno %S] %S: %R -> %R",
OR_NONE(self->myerrno),
OR_NONE(self->strerror),
self->filename,
self->filename2);
} else {
return PyUnicode_FromFormat("[Errno %S] %S: %R",
OR_NONE(self->myerrno),
OR_NONE(self->strerror),
self->filename);
}
}
if (self->myerrno && self->strerror)
return PyUnicode_FromFormat("[Errno %S] %S",
self->myerrno, self->strerror);
return BaseException_str((PyBaseExceptionObject *)self);
}
static PyObject *
OSError_reduce(PyOSErrorObject *self)
{
PyObject *args = self->args;
PyObject *res = NULL, *tmp;
/* self->args is only the first two real arguments if there was a
* file name given to OSError. */
if (PyTuple_GET_SIZE(args) == 2 && self->filename) {
Py_ssize_t size = self->filename2 ? 5 : 3;
args = PyTuple_New(size);
if (!args)
return NULL;
tmp = PyTuple_GET_ITEM(self->args, 0);
Py_INCREF(tmp);
PyTuple_SET_ITEM(args, 0, tmp);
tmp = PyTuple_GET_ITEM(self->args, 1);
Py_INCREF(tmp);
PyTuple_SET_ITEM(args, 1, tmp);
Py_INCREF(self->filename);
PyTuple_SET_ITEM(args, 2, self->filename);
if (self->filename2) {
/*
* This tuple is essentially used as OSError(*args).
* So, to recreate filename2, we need to pass in
* winerror as well.
*/
Py_INCREF(Py_None);
PyTuple_SET_ITEM(args, 3, Py_None);
/* filename2 */
Py_INCREF(self->filename2);
PyTuple_SET_ITEM(args, 4, self->filename2);
}
} else
Py_INCREF(args);
if (self->dict)
res = PyTuple_Pack(3, Py_TYPE(self), args, self->dict);
else
res = PyTuple_Pack(2, Py_TYPE(self), args);
Py_DECREF(args);
return res;
}
static PyObject *
OSError_written_get(PyOSErrorObject *self, void *context)
{
if (self->written == -1) {
PyErr_SetString(PyExc_AttributeError, "characters_written");
return NULL;
}
return PyLong_FromSsize_t(self->written);
}
static int
OSError_written_set(PyOSErrorObject *self, PyObject *arg, void *context)
{
Py_ssize_t n;
n = PyNumber_AsSsize_t(arg, PyExc_ValueError);
if (n == -1 && PyErr_Occurred())
return -1;
self->written = n;
return 0;
}
static PyMemberDef OSError_members[] = {
{"errno", T_OBJECT, offsetof(PyOSErrorObject, myerrno), 0,
PyDoc_STR("POSIX exception code")},
{"strerror", T_OBJECT, offsetof(PyOSErrorObject, strerror), 0,
PyDoc_STR("exception strerror")},
{"filename", T_OBJECT, offsetof(PyOSErrorObject, filename), 0,
PyDoc_STR("exception filename")},
{"filename2", T_OBJECT, offsetof(PyOSErrorObject, filename2), 0,
PyDoc_STR("second exception filename")},
#ifdef MS_WINDOWS
{"winerror", T_OBJECT, offsetof(PyOSErrorObject, winerror), 0,
PyDoc_STR("Win32 exception code")},
#endif
{NULL} /* Sentinel */
};
static PyMethodDef OSError_methods[] = {
{"__reduce__", (PyCFunction)OSError_reduce, METH_NOARGS},
{NULL}
};
static PyGetSetDef OSError_getset[] = {
{"characters_written", (getter) OSError_written_get,
(setter) OSError_written_set, NULL},
{NULL}
};
ComplexExtendsException(PyExc_Exception, OSError,
OSError, OSError_new,
OSError_methods, OSError_members, OSError_getset,
OSError_str,
"Base class for I/O related errors.");
/*
* Various OSError subclasses
*/
MiddlingExtendsException(PyExc_OSError, BlockingIOError, OSError,
"I/O operation would block.");
MiddlingExtendsException(PyExc_OSError, ConnectionError, OSError,
"Connection error.");
MiddlingExtendsException(PyExc_OSError, ChildProcessError, OSError,
"Child process error.");
MiddlingExtendsException(PyExc_ConnectionError, BrokenPipeError, OSError,
"Broken pipe.");
MiddlingExtendsException(PyExc_ConnectionError, ConnectionAbortedError, OSError,
"Connection aborted.");
MiddlingExtendsException(PyExc_ConnectionError, ConnectionRefusedError, OSError,
"Connection refused.");
MiddlingExtendsException(PyExc_ConnectionError, ConnectionResetError, OSError,
"Connection reset.");
MiddlingExtendsException(PyExc_OSError, FileExistsError, OSError,
"File already exists.");
MiddlingExtendsException(PyExc_OSError, FileNotFoundError, OSError,
"File not found.");
MiddlingExtendsException(PyExc_OSError, IsADirectoryError, OSError,
"Operation doesn't work on directories.");
MiddlingExtendsException(PyExc_OSError, NotADirectoryError, OSError,
"Operation only works on directories.");
MiddlingExtendsException(PyExc_OSError, InterruptedError, OSError,
"Interrupted by signal.");
MiddlingExtendsException(PyExc_OSError, PermissionError, OSError,
"Not enough permissions.");
MiddlingExtendsException(PyExc_OSError, ProcessLookupError, OSError,
"Process not found.");
MiddlingExtendsException(PyExc_OSError, TimeoutError, OSError,
"Timeout expired.");
/*
* EOFError extends Exception
*/
SimpleExtendsException(PyExc_Exception, EOFError,
"Read beyond end of file.");
/*
* RuntimeError extends Exception
*/
SimpleExtendsException(PyExc_Exception, RuntimeError,
"Unspecified run-time error.");
/*
* RecursionError extends RuntimeError
*/
SimpleExtendsException(PyExc_RuntimeError, RecursionError,
"Recursion limit exceeded.");
/*
* NotImplementedError extends RuntimeError
*/
SimpleExtendsException(PyExc_RuntimeError, NotImplementedError,
"Method or function hasn't been implemented yet.");
/*
* NameError extends Exception
*/
SimpleExtendsException(PyExc_Exception, NameError,
"Name not found globally.");
/*
* UnboundLocalError extends NameError
*/
SimpleExtendsException(PyExc_NameError, UnboundLocalError,
"Local name referenced but not bound to a value.");
/*
* AttributeError extends Exception
*/
SimpleExtendsException(PyExc_Exception, AttributeError,
"Attribute not found.");
/*
* SyntaxError extends Exception
*/
/* Helper function to customize error message for some syntax errors */
static int _report_missing_parentheses(PySyntaxErrorObject *self);
static int
SyntaxError_init(PySyntaxErrorObject *self, PyObject *args, PyObject *kwds)
{
PyObject *info = NULL;
Py_ssize_t lenargs = PyTuple_GET_SIZE(args);
if (BaseException_init((PyBaseExceptionObject *)self, args, kwds) == -1)
return -1;
if (lenargs >= 1) {
Py_INCREF(PyTuple_GET_ITEM(args, 0));
Py_XSETREF(self->msg, PyTuple_GET_ITEM(args, 0));
}
if (lenargs == 2) {
info = PyTuple_GET_ITEM(args, 1);
info = PySequence_Tuple(info);
if (!info)
return -1;
if (PyTuple_GET_SIZE(info) != 4) {
/* not a very good error message, but it's what Python 2.4 gives */
PyErr_SetString(PyExc_IndexError, "tuple index out of range");
Py_DECREF(info);
return -1;
}
Py_INCREF(PyTuple_GET_ITEM(info, 0));
Py_XSETREF(self->filename, PyTuple_GET_ITEM(info, 0));
Py_INCREF(PyTuple_GET_ITEM(info, 1));
Py_XSETREF(self->lineno, PyTuple_GET_ITEM(info, 1));
Py_INCREF(PyTuple_GET_ITEM(info, 2));
Py_XSETREF(self->offset, PyTuple_GET_ITEM(info, 2));
Py_INCREF(PyTuple_GET_ITEM(info, 3));
Py_XSETREF(self->text, PyTuple_GET_ITEM(info, 3));
Py_DECREF(info);
/*
* Issue #21669: Custom error for 'print' & 'exec' as statements
*
* Only applies to SyntaxError instances, not to subclasses such
* as TabError or IndentationError (see issue #31161)
*/
if ((PyObject*)Py_TYPE(self) == PyExc_SyntaxError &&
self->text && PyUnicode_Check(self->text) &&
_report_missing_parentheses(self) < 0) {
return -1;
}
}
return 0;
}
static int
SyntaxError_clear(PySyntaxErrorObject *self)
{
Py_CLEAR(self->msg);
Py_CLEAR(self->filename);
Py_CLEAR(self->lineno);
Py_CLEAR(self->offset);
Py_CLEAR(self->text);
Py_CLEAR(self->print_file_and_line);
return BaseException_clear((PyBaseExceptionObject *)self);
}
static void
SyntaxError_dealloc(PySyntaxErrorObject *self)
{
_PyObject_GC_UNTRACK(self);
SyntaxError_clear(self);
Py_TYPE(self)->tp_free((PyObject *)self);
}
static int
SyntaxError_traverse(PySyntaxErrorObject *self, visitproc visit, void *arg)
{
Py_VISIT(self->msg);
Py_VISIT(self->filename);
Py_VISIT(self->lineno);
Py_VISIT(self->offset);
Py_VISIT(self->text);
Py_VISIT(self->print_file_and_line);
return BaseException_traverse((PyBaseExceptionObject *)self, visit, arg);
}
/* This is called "my_basename" instead of just "basename" to avoid name
conflicts with glibc; basename is already prototyped if _GNU_SOURCE is
defined, and Python does define that. */
static PyObject*
my_basename(PyObject *name)
{
Py_ssize_t i, size, offset;
int kind;
void *data;
if (PyUnicode_READY(name))
return NULL;
kind = PyUnicode_KIND(name);
data = PyUnicode_DATA(name);
size = PyUnicode_GET_LENGTH(name);
offset = 0;
for(i=0; i < size; i++) {
if (PyUnicode_READ(kind, data, i) == SEP)
offset = i + 1;
}
if (offset != 0)
return PyUnicode_Substring(name, offset, size);
else {
Py_INCREF(name);
return name;
}
}
static PyObject *
SyntaxError_str(PySyntaxErrorObject *self)
{
int have_lineno = 0;
PyObject *filename;
PyObject *result;
/* Below, we always ignore overflow errors, just printing -1.
Still, we cannot allow an OverflowError to be raised, so
we need to call PyLong_AsLongAndOverflow. */
int overflow;
/* XXX -- do all the additional formatting with filename and
lineno here */
if (self->filename && PyUnicode_Check(self->filename)) {
filename = my_basename(self->filename);
if (filename == NULL)
return NULL;
} else {
filename = NULL;
}
have_lineno = (self->lineno != NULL) && PyLong_CheckExact(self->lineno);
if (!filename && !have_lineno)
return PyObject_Str(self->msg ? self->msg : Py_None);
if (filename && have_lineno)
result = PyUnicode_FromFormat("%S (%U, line %ld)",
self->msg ? self->msg : Py_None,
filename,
PyLong_AsLongAndOverflow(self->lineno, &overflow));
else if (filename)
result = PyUnicode_FromFormat("%S (%U)",
self->msg ? self->msg : Py_None,
filename);
else /* only have_lineno */
result = PyUnicode_FromFormat("%S (line %ld)",
self->msg ? self->msg : Py_None,
PyLong_AsLongAndOverflow(self->lineno, &overflow));
Py_XDECREF(filename);
return result;
}
static PyMemberDef SyntaxError_members[] = {
{"msg", T_OBJECT, offsetof(PySyntaxErrorObject, msg), 0,
PyDoc_STR("exception msg")},
{"filename", T_OBJECT, offsetof(PySyntaxErrorObject, filename), 0,
PyDoc_STR("exception filename")},
{"lineno", T_OBJECT, offsetof(PySyntaxErrorObject, lineno), 0,
PyDoc_STR("exception lineno")},
{"offset", T_OBJECT, offsetof(PySyntaxErrorObject, offset), 0,
PyDoc_STR("exception offset")},
{"text", T_OBJECT, offsetof(PySyntaxErrorObject, text), 0,
PyDoc_STR("exception text")},
{"print_file_and_line", T_OBJECT,
offsetof(PySyntaxErrorObject, print_file_and_line), 0,
PyDoc_STR("exception print_file_and_line")},
{NULL} /* Sentinel */
};
ComplexExtendsException(PyExc_Exception, SyntaxError, SyntaxError,
0, 0, SyntaxError_members, 0,
SyntaxError_str, "Invalid syntax.");
/*
* IndentationError extends SyntaxError
*/
MiddlingExtendsException(PyExc_SyntaxError, IndentationError, SyntaxError,
"Improper indentation.");
/*
* TabError extends IndentationError
*/
MiddlingExtendsException(PyExc_IndentationError, TabError, SyntaxError,
"Improper mixture of spaces and tabs.");
/*
* LookupError extends Exception
*/
SimpleExtendsException(PyExc_Exception, LookupError,
"Base class for lookup errors.");
/*
* IndexError extends LookupError
*/
SimpleExtendsException(PyExc_LookupError, IndexError,
"Sequence index out of range.");
/*
* KeyError extends LookupError
*/
static PyObject *
KeyError_str(PyBaseExceptionObject *self)
{
/* If args is a tuple of exactly one item, apply repr to args[0].
This is done so that e.g. the exception raised by {}[''] prints
KeyError: ''
rather than the confusing
KeyError
alone. The downside is that if KeyError is raised with an explanatory
string, that string will be displayed in quotes. Too bad.
If args is anything else, use the default BaseException__str__().
*/
if (PyTuple_GET_SIZE(self->args) == 1) {
return PyObject_Repr(PyTuple_GET_ITEM(self->args, 0));
}
return BaseException_str(self);
}
ComplexExtendsException(PyExc_LookupError, KeyError, BaseException,
0, 0, 0, 0, KeyError_str, "Mapping key not found.");
/*
* ValueError extends Exception
*/
SimpleExtendsException(PyExc_Exception, ValueError,
"Inappropriate argument value (of correct type).");
/*
* UnicodeError extends ValueError
*/
SimpleExtendsException(PyExc_ValueError, UnicodeError,
"Unicode related error.");
static PyObject *
get_string(PyObject *attr, const char *name)
{
if (!attr) {
PyErr_Format(PyExc_TypeError, "%.200s attribute not set", name);
return NULL;
}
if (!PyBytes_Check(attr)) {
PyErr_Format(PyExc_TypeError, "%.200s attribute must be bytes", name);
return NULL;
}
Py_INCREF(attr);
return attr;
}
static PyObject *
get_unicode(PyObject *attr, const char *name)
{
if (!attr) {
PyErr_Format(PyExc_TypeError, "%.200s attribute not set", name);
return NULL;
}
if (!PyUnicode_Check(attr)) {
PyErr_Format(PyExc_TypeError,
"%.200s attribute must be unicode", name);
return NULL;
}
Py_INCREF(attr);
return attr;
}
static int
set_unicodefromstring(PyObject **attr, const char *value)
{
PyObject *obj = PyUnicode_FromString(value);
if (!obj)
return -1;
Py_XSETREF(*attr, obj);
return 0;
}
PyObject *
PyUnicodeEncodeError_GetEncoding(PyObject *exc)
{
return get_unicode(((PyUnicodeErrorObject *)exc)->encoding, "encoding");
}
PyObject *
PyUnicodeDecodeError_GetEncoding(PyObject *exc)
{
return get_unicode(((PyUnicodeErrorObject *)exc)->encoding, "encoding");
}
PyObject *
PyUnicodeEncodeError_GetObject(PyObject *exc)
{
return get_unicode(((PyUnicodeErrorObject *)exc)->object, "object");
}
PyObject *
PyUnicodeDecodeError_GetObject(PyObject *exc)
{
return get_string(((PyUnicodeErrorObject *)exc)->object, "object");
}
PyObject *
PyUnicodeTranslateError_GetObject(PyObject *exc)
{
return get_unicode(((PyUnicodeErrorObject *)exc)->object, "object");
}
int
PyUnicodeEncodeError_GetStart(PyObject *exc, Py_ssize_t *start)
{
Py_ssize_t size;
PyObject *obj = get_unicode(((PyUnicodeErrorObject *)exc)->object,
"object");
if (!obj)
return -1;
*start = ((PyUnicodeErrorObject *)exc)->start;
size = PyUnicode_GET_LENGTH(obj);
if (*start<0)
*start = 0; /*XXX check for values <0*/
if (*start>=size)
*start = size-1;
Py_DECREF(obj);
return 0;
}
int
PyUnicodeDecodeError_GetStart(PyObject *exc, Py_ssize_t *start)
{
Py_ssize_t size;
PyObject *obj = get_string(((PyUnicodeErrorObject *)exc)->object, "object");
if (!obj)
return -1;
size = PyBytes_GET_SIZE(obj);
*start = ((PyUnicodeErrorObject *)exc)->start;
if (*start<0)
*start = 0;
if (*start>=size)
*start = size-1;
Py_DECREF(obj);
return 0;
}
int
PyUnicodeTranslateError_GetStart(PyObject *exc, Py_ssize_t *start)
{
return PyUnicodeEncodeError_GetStart(exc, start);
}
int
PyUnicodeEncodeError_SetStart(PyObject *exc, Py_ssize_t start)
{
((PyUnicodeErrorObject *)exc)->start = start;
return 0;
}
int
PyUnicodeDecodeError_SetStart(PyObject *exc, Py_ssize_t start)
{
((PyUnicodeErrorObject *)exc)->start = start;
return 0;
}
int
PyUnicodeTranslateError_SetStart(PyObject *exc, Py_ssize_t start)
{
((PyUnicodeErrorObject *)exc)->start = start;
return 0;
}
int
PyUnicodeEncodeError_GetEnd(PyObject *exc, Py_ssize_t *end)
{
Py_ssize_t size;
PyObject *obj = get_unicode(((PyUnicodeErrorObject *)exc)->object,
"object");
if (!obj)
return -1;
*end = ((PyUnicodeErrorObject *)exc)->end;
size = PyUnicode_GET_LENGTH(obj);
if (*end<1)
*end = 1;
if (*end>size)
*end = size;
Py_DECREF(obj);
return 0;
}
int
PyUnicodeDecodeError_GetEnd(PyObject *exc, Py_ssize_t *end)
{
Py_ssize_t size;
PyObject *obj = get_string(((PyUnicodeErrorObject *)exc)->object, "object");
if (!obj)
return -1;
size = PyBytes_GET_SIZE(obj);
*end = ((PyUnicodeErrorObject *)exc)->end;
if (*end<1)
*end = 1;
if (*end>size)
*end = size;
Py_DECREF(obj);
return 0;
}
int
PyUnicodeTranslateError_GetEnd(PyObject *exc, Py_ssize_t *start)
{
return PyUnicodeEncodeError_GetEnd(exc, start);
}
int
PyUnicodeEncodeError_SetEnd(PyObject *exc, Py_ssize_t end)
{
((PyUnicodeErrorObject *)exc)->end = end;
return 0;
}
int
PyUnicodeDecodeError_SetEnd(PyObject *exc, Py_ssize_t end)
{
((PyUnicodeErrorObject *)exc)->end = end;
return 0;
}
int
PyUnicodeTranslateError_SetEnd(PyObject *exc, Py_ssize_t end)
{
((PyUnicodeErrorObject *)exc)->end = end;
return 0;
}
PyObject *
PyUnicodeEncodeError_GetReason(PyObject *exc)
{
return get_unicode(((PyUnicodeErrorObject *)exc)->reason, "reason");
}
PyObject *
PyUnicodeDecodeError_GetReason(PyObject *exc)
{
return get_unicode(((PyUnicodeErrorObject *)exc)->reason, "reason");
}
PyObject *
PyUnicodeTranslateError_GetReason(PyObject *exc)
{
return get_unicode(((PyUnicodeErrorObject *)exc)->reason, "reason");
}
int
PyUnicodeEncodeError_SetReason(PyObject *exc, const char *reason)
{
return set_unicodefromstring(&((PyUnicodeErrorObject *)exc)->reason,
reason);
}
int
PyUnicodeDecodeError_SetReason(PyObject *exc, const char *reason)
{
return set_unicodefromstring(&((PyUnicodeErrorObject *)exc)->reason,
reason);
}
int
PyUnicodeTranslateError_SetReason(PyObject *exc, const char *reason)
{
return set_unicodefromstring(&((PyUnicodeErrorObject *)exc)->reason,
reason);
}
static int
UnicodeError_clear(PyUnicodeErrorObject *self)
{
Py_CLEAR(self->encoding);
Py_CLEAR(self->object);
Py_CLEAR(self->reason);
return BaseException_clear((PyBaseExceptionObject *)self);
}
static void
UnicodeError_dealloc(PyUnicodeErrorObject *self)
{
_PyObject_GC_UNTRACK(self);
UnicodeError_clear(self);
Py_TYPE(self)->tp_free((PyObject *)self);
}
static int
UnicodeError_traverse(PyUnicodeErrorObject *self, visitproc visit, void *arg)
{
Py_VISIT(self->encoding);
Py_VISIT(self->object);
Py_VISIT(self->reason);
return BaseException_traverse((PyBaseExceptionObject *)self, visit, arg);
}
static PyMemberDef UnicodeError_members[] = {
{"encoding", T_OBJECT, offsetof(PyUnicodeErrorObject, encoding), 0,
PyDoc_STR("exception encoding")},
{"object", T_OBJECT, offsetof(PyUnicodeErrorObject, object), 0,
PyDoc_STR("exception object")},
{"start", T_PYSSIZET, offsetof(PyUnicodeErrorObject, start), 0,
PyDoc_STR("exception start")},
{"end", T_PYSSIZET, offsetof(PyUnicodeErrorObject, end), 0,
PyDoc_STR("exception end")},
{"reason", T_OBJECT, offsetof(PyUnicodeErrorObject, reason), 0,
PyDoc_STR("exception reason")},
{NULL} /* Sentinel */
};
/*
* UnicodeEncodeError extends UnicodeError
*/
static int
UnicodeEncodeError_init(PyObject *self, PyObject *args, PyObject *kwds)
{
PyUnicodeErrorObject *err;
if (BaseException_init((PyBaseExceptionObject *)self, args, kwds) == -1)
return -1;
err = (PyUnicodeErrorObject *)self;
Py_CLEAR(err->encoding);
Py_CLEAR(err->object);
Py_CLEAR(err->reason);
if (!PyArg_ParseTuple(args, "O!O!nnO!",
&PyUnicode_Type, &err->encoding,
&PyUnicode_Type, &err->object,
&err->start,
&err->end,
&PyUnicode_Type, &err->reason)) {
err->encoding = err->object = err->reason = NULL;
return -1;
}
if (PyUnicode_READY(err->object) < -1) {
err->encoding = NULL;
return -1;
}
Py_INCREF(err->encoding);
Py_INCREF(err->object);
Py_INCREF(err->reason);
return 0;
}
static PyObject *
UnicodeEncodeError_str(PyObject *self)
{
PyUnicodeErrorObject *uself = (PyUnicodeErrorObject *)self;
PyObject *result = NULL;
PyObject *reason_str = NULL;
PyObject *encoding_str = NULL;
if (!uself->object)
/* Not properly initialized. */
return PyUnicode_FromString("");
/* Get reason and encoding as strings, which they might not be if
they've been modified after we were constructed. */
reason_str = PyObject_Str(uself->reason);
if (reason_str == NULL)
goto done;
encoding_str = PyObject_Str(uself->encoding);
if (encoding_str == NULL)
goto done;
if (uself->start < PyUnicode_GET_LENGTH(uself->object) && uself->end == uself->start+1) {
Py_UCS4 badchar = PyUnicode_ReadChar(uself->object, uself->start);
const char *fmt;
if (badchar <= 0xff)
fmt = "'%U' codec can't encode character '\\x%02x' in position %zd: %U";
else if (badchar <= 0xffff)
fmt = "'%U' codec can't encode character '\\u%04x' in position %zd: %U";
else
fmt = "'%U' codec can't encode character '\\U%08x' in position %zd: %U";
result = PyUnicode_FromFormat(
fmt,
encoding_str,
(int)badchar,
uself->start,
reason_str);
}
else {
result = PyUnicode_FromFormat(
"'%U' codec can't encode characters in position %zd-%zd: %U",
encoding_str,
uself->start,
uself->end-1,
reason_str);
}
done:
Py_XDECREF(reason_str);
Py_XDECREF(encoding_str);
return result;
}
static PyTypeObject _PyExc_UnicodeEncodeError = {
PyVarObject_HEAD_INIT(NULL, 0)
"UnicodeEncodeError",
sizeof(PyUnicodeErrorObject), 0,
(destructor)UnicodeError_dealloc, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
(reprfunc)UnicodeEncodeError_str, 0, 0, 0,
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,
PyDoc_STR("Unicode encoding error."), (traverseproc)UnicodeError_traverse,
(inquiry)UnicodeError_clear, 0, 0, 0, 0, 0, UnicodeError_members,
0, &_PyExc_UnicodeError, 0, 0, 0, offsetof(PyUnicodeErrorObject, dict),
(initproc)UnicodeEncodeError_init, 0, BaseException_new,
};
PyObject *PyExc_UnicodeEncodeError = (PyObject *)&_PyExc_UnicodeEncodeError;
PyObject *
PyUnicodeEncodeError_Create(
const char *encoding, const Py_UNICODE *object, Py_ssize_t length,
Py_ssize_t start, Py_ssize_t end, const char *reason)
{
return PyObject_CallFunction(PyExc_UnicodeEncodeError, "su#nns",
encoding, object, length, start, end, reason);
}
/*
* UnicodeDecodeError extends UnicodeError
*/
static int
UnicodeDecodeError_init(PyObject *self, PyObject *args, PyObject *kwds)
{
PyUnicodeErrorObject *ude;
if (BaseException_init((PyBaseExceptionObject *)self, args, kwds) == -1)
return -1;
ude = (PyUnicodeErrorObject *)self;
Py_CLEAR(ude->encoding);
Py_CLEAR(ude->object);
Py_CLEAR(ude->reason);
if (!PyArg_ParseTuple(args, "O!OnnO!",
&PyUnicode_Type, &ude->encoding,
&ude->object,
&ude->start,
&ude->end,
&PyUnicode_Type, &ude->reason)) {
ude->encoding = ude->object = ude->reason = NULL;
return -1;
}
Py_INCREF(ude->encoding);
Py_INCREF(ude->object);
Py_INCREF(ude->reason);
if (!PyBytes_Check(ude->object)) {
Py_buffer view;
if (PyObject_GetBuffer(ude->object, &view, PyBUF_SIMPLE) != 0)
goto error;
Py_XSETREF(ude->object, PyBytes_FromStringAndSize(view.buf, view.len));
PyBuffer_Release(&view);
if (!ude->object)
goto error;
}
return 0;
error:
Py_CLEAR(ude->encoding);
Py_CLEAR(ude->object);
Py_CLEAR(ude->reason);
return -1;
}
static PyObject *
UnicodeDecodeError_str(PyObject *self)
{
PyUnicodeErrorObject *uself = (PyUnicodeErrorObject *)self;
PyObject *result = NULL;
PyObject *reason_str = NULL;
PyObject *encoding_str = NULL;
if (!uself->object)
/* Not properly initialized. */
return PyUnicode_FromString("");
/* Get reason and encoding as strings, which they might not be if
they've been modified after we were constructed. */
reason_str = PyObject_Str(uself->reason);
if (reason_str == NULL)
goto done;
encoding_str = PyObject_Str(uself->encoding);
if (encoding_str == NULL)
goto done;
if (uself->start < PyBytes_GET_SIZE(uself->object) && uself->end == uself->start+1) {
int byte = (int)(PyBytes_AS_STRING(((PyUnicodeErrorObject *)self)->object)[uself->start]&0xff);
result = PyUnicode_FromFormat(
"'%U' codec can't decode byte 0x%02x in position %zd: %U",
encoding_str,
byte,
uself->start,
reason_str);
}
else {
result = PyUnicode_FromFormat(
"'%U' codec can't decode bytes in position %zd-%zd: %U",
encoding_str,
uself->start,
uself->end-1,
reason_str
);
}
done:
Py_XDECREF(reason_str);
Py_XDECREF(encoding_str);
return result;
}
static PyTypeObject _PyExc_UnicodeDecodeError = {
PyVarObject_HEAD_INIT(NULL, 0)
"UnicodeDecodeError",
sizeof(PyUnicodeErrorObject), 0,
(destructor)UnicodeError_dealloc, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
(reprfunc)UnicodeDecodeError_str, 0, 0, 0,
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,
PyDoc_STR("Unicode decoding error."), (traverseproc)UnicodeError_traverse,
(inquiry)UnicodeError_clear, 0, 0, 0, 0, 0, UnicodeError_members,
0, &_PyExc_UnicodeError, 0, 0, 0, offsetof(PyUnicodeErrorObject, dict),
(initproc)UnicodeDecodeError_init, 0, BaseException_new,
};
PyObject *PyExc_UnicodeDecodeError = (PyObject *)&_PyExc_UnicodeDecodeError;
PyObject *
PyUnicodeDecodeError_Create(
const char *encoding, const char *object, Py_ssize_t length,
Py_ssize_t start, Py_ssize_t end, const char *reason)
{
return PyObject_CallFunction(PyExc_UnicodeDecodeError, "sy#nns",
encoding, object, length, start, end, reason);
}
/*
* UnicodeTranslateError extends UnicodeError
*/
static int
UnicodeTranslateError_init(PyUnicodeErrorObject *self, PyObject *args,
PyObject *kwds)
{
if (BaseException_init((PyBaseExceptionObject *)self, args, kwds) == -1)
return -1;
Py_CLEAR(self->object);
Py_CLEAR(self->reason);
if (!PyArg_ParseTuple(args, "O!nnO!",
&PyUnicode_Type, &self->object,
&self->start,
&self->end,
&PyUnicode_Type, &self->reason)) {
self->object = self->reason = NULL;
return -1;
}
Py_INCREF(self->object);
Py_INCREF(self->reason);
return 0;
}
static PyObject *
UnicodeTranslateError_str(PyObject *self)
{
PyUnicodeErrorObject *uself = (PyUnicodeErrorObject *)self;
PyObject *result = NULL;
PyObject *reason_str = NULL;
if (!uself->object)
/* Not properly initialized. */
return PyUnicode_FromString("");
/* Get reason as a string, which it might not be if it's been
modified after we were constructed. */
reason_str = PyObject_Str(uself->reason);
if (reason_str == NULL)
goto done;
if (uself->start < PyUnicode_GET_LENGTH(uself->object) && uself->end == uself->start+1) {
Py_UCS4 badchar = PyUnicode_ReadChar(uself->object, uself->start);
const char *fmt;
if (badchar <= 0xff)
fmt = "can't translate character '\\x%02x' in position %zd: %U";
else if (badchar <= 0xffff)
fmt = "can't translate character '\\u%04x' in position %zd: %U";
else
fmt = "can't translate character '\\U%08x' in position %zd: %U";
result = PyUnicode_FromFormat(
fmt,
(int)badchar,
uself->start,
reason_str
);
} else {
result = PyUnicode_FromFormat(
"can't translate characters in position %zd-%zd: %U",
uself->start,
uself->end-1,
reason_str
);
}
done:
Py_XDECREF(reason_str);
return result;
}
static PyTypeObject _PyExc_UnicodeTranslateError = {
PyVarObject_HEAD_INIT(NULL, 0)
"UnicodeTranslateError",
sizeof(PyUnicodeErrorObject), 0,
(destructor)UnicodeError_dealloc, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
(reprfunc)UnicodeTranslateError_str, 0, 0, 0,
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,
PyDoc_STR("Unicode translation error."), (traverseproc)UnicodeError_traverse,
(inquiry)UnicodeError_clear, 0, 0, 0, 0, 0, UnicodeError_members,
0, &_PyExc_UnicodeError, 0, 0, 0, offsetof(PyUnicodeErrorObject, dict),
(initproc)UnicodeTranslateError_init, 0, BaseException_new,
};
PyObject *PyExc_UnicodeTranslateError = (PyObject *)&_PyExc_UnicodeTranslateError;
/* Deprecated. */
PyObject *
PyUnicodeTranslateError_Create(
const Py_UNICODE *object, Py_ssize_t length,
Py_ssize_t start, Py_ssize_t end, const char *reason)
{
return PyObject_CallFunction(PyExc_UnicodeTranslateError, "u#nns",
object, length, start, end, reason);
}
PyObject *
_PyUnicodeTranslateError_Create(
PyObject *object,
Py_ssize_t start, Py_ssize_t end, const char *reason)
{
return PyObject_CallFunction(PyExc_UnicodeTranslateError, "Onns",
object, start, end, reason);
}
/*
* AssertionError extends Exception
*/
SimpleExtendsException(PyExc_Exception, AssertionError,
"Assertion failed.");
/*
* ArithmeticError extends Exception
*/
SimpleExtendsException(PyExc_Exception, ArithmeticError,
"Base class for arithmetic errors.");
/*
* FloatingPointError extends ArithmeticError
*/
SimpleExtendsException(PyExc_ArithmeticError, FloatingPointError,
"Floating point operation failed.");
/*
* OverflowError extends ArithmeticError
*/
SimpleExtendsException(PyExc_ArithmeticError, OverflowError,
"Result too large to be represented.");
/*
* ZeroDivisionError extends ArithmeticError
*/
SimpleExtendsException(PyExc_ArithmeticError, ZeroDivisionError,
"Second argument to a division or modulo operation was zero.");
/*
* SystemError extends Exception
*/
SimpleExtendsException(PyExc_Exception, SystemError,
"Internal error in the Python interpreter.\n"
"\n"
"Please report this to the Python maintainer, along with the traceback,\n"
"the Python version, and the hardware/OS platform and version.");
/*
* ReferenceError extends Exception
*/
SimpleExtendsException(PyExc_Exception, ReferenceError,
"Weak ref proxy used after referent went away.");
/*
* MemoryError extends Exception
*/
#define MEMERRORS_SAVE 16
static PyBaseExceptionObject *memerrors_freelist = NULL;
static int memerrors_numfree = 0;
static PyObject *
MemoryError_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyBaseExceptionObject *self;
if (type != (PyTypeObject *) PyExc_MemoryError)
return BaseException_new(type, args, kwds);
if (memerrors_freelist == NULL)
return BaseException_new(type, args, kwds);
/* Fetch object from freelist and revive it */
self = memerrors_freelist;
self->args = PyTuple_New(0);
/* This shouldn't happen since the empty tuple is persistent */
if (self->args == NULL)
return NULL;
memerrors_freelist = (PyBaseExceptionObject *) self->dict;
memerrors_numfree--;
self->dict = NULL;
_Py_NewReference((PyObject *)self);
_PyObject_GC_TRACK(self);
return (PyObject *)self;
}
static void
MemoryError_dealloc(PyBaseExceptionObject *self)
{
_PyObject_GC_UNTRACK(self);
BaseException_clear(self);
if (memerrors_numfree >= MEMERRORS_SAVE)
Py_TYPE(self)->tp_free((PyObject *)self);
else {
self->dict = (PyObject *) memerrors_freelist;
memerrors_freelist = self;
memerrors_numfree++;
}
}
static void
preallocate_memerrors(void)
{
/* We create enough MemoryErrors and then decref them, which will fill
up the freelist. */
int i;
PyObject *errors[MEMERRORS_SAVE];
for (i = 0; i < MEMERRORS_SAVE; i++) {
errors[i] = MemoryError_new((PyTypeObject *) PyExc_MemoryError,
NULL, NULL);
if (!errors[i])
Py_FatalError("Could not preallocate MemoryError object");
}
for (i = 0; i < MEMERRORS_SAVE; i++) {
Py_DECREF(errors[i]);
}
}
static void
free_preallocated_memerrors(void)
{
while (memerrors_freelist != NULL) {
PyObject *self = (PyObject *) memerrors_freelist;
memerrors_freelist = (PyBaseExceptionObject *) memerrors_freelist->dict;
Py_TYPE(self)->tp_free((PyObject *)self);
}
}
static PyTypeObject _PyExc_MemoryError = {
PyVarObject_HEAD_INIT(NULL, 0)
"MemoryError",
sizeof(PyBaseExceptionObject),
0, (destructor)MemoryError_dealloc, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,
PyDoc_STR("Out of memory."), (traverseproc)BaseException_traverse,
(inquiry)BaseException_clear, 0, 0, 0, 0, 0, 0, 0, &_PyExc_Exception,
0, 0, 0, offsetof(PyBaseExceptionObject, dict),
(initproc)BaseException_init, 0, MemoryError_new
};
PyObject *PyExc_MemoryError = (PyObject *) &_PyExc_MemoryError;
/*
* BufferError extends Exception
*/
SimpleExtendsException(PyExc_Exception, BufferError, "Buffer error.");
/* Warning category docstrings */
/*
* Warning extends Exception
*/
SimpleExtendsException(PyExc_Exception, Warning,
"Base class for warning categories.");
/*
* UserWarning extends Warning
*/
SimpleExtendsException(PyExc_Warning, UserWarning,
"Base class for warnings generated by user code.");
/*
* DeprecationWarning extends Warning
*/
SimpleExtendsException(PyExc_Warning, DeprecationWarning,
"Base class for warnings about deprecated features.");
/*
* PendingDeprecationWarning extends Warning
*/
SimpleExtendsException(PyExc_Warning, PendingDeprecationWarning,
"Base class for warnings about features which will be deprecated\n"
"in the future.");
/*
* SyntaxWarning extends Warning
*/
SimpleExtendsException(PyExc_Warning, SyntaxWarning,
"Base class for warnings about dubious syntax.");
/*
* RuntimeWarning extends Warning
*/
SimpleExtendsException(PyExc_Warning, RuntimeWarning,
"Base class for warnings about dubious runtime behavior.");
/*
* FutureWarning extends Warning
*/
SimpleExtendsException(PyExc_Warning, FutureWarning,
"Base class for warnings about constructs that will change semantically\n"
"in the future.");
/*
* ImportWarning extends Warning
*/
SimpleExtendsException(PyExc_Warning, ImportWarning,
"Base class for warnings about probable mistakes in module imports");
/*
* UnicodeWarning extends Warning
*/
SimpleExtendsException(PyExc_Warning, UnicodeWarning,
"Base class for warnings about Unicode related problems, mostly\n"
"related to conversion problems.");
/*
* BytesWarning extends Warning
*/
SimpleExtendsException(PyExc_Warning, BytesWarning,
"Base class for warnings about bytes and buffer related problems, mostly\n"
"related to conversion from str or comparing to str.");
/*
* ResourceWarning extends Warning
*/
SimpleExtendsException(PyExc_Warning, ResourceWarning,
"Base class for warnings about resource usage.");
#define PRE_INIT(TYPE) \
if (!(_PyExc_ ## TYPE.tp_flags & Py_TPFLAGS_READY)) { \
if (PyType_Ready(&_PyExc_ ## TYPE) < 0) \
Py_FatalError("exceptions bootstrapping error."); \
Py_INCREF(PyExc_ ## TYPE); \
}
#define POST_INIT(TYPE) \
if (PyDict_SetItemString(bdict, # TYPE, PyExc_ ## TYPE)) \
Py_FatalError("Module dictionary insertion problem.");
#define INIT_ALIAS(NAME, TYPE) Py_INCREF(PyExc_ ## TYPE); \
Py_XDECREF(PyExc_ ## NAME); \
PyExc_ ## NAME = PyExc_ ## TYPE; \
if (PyDict_SetItemString(bdict, # NAME, PyExc_ ## NAME)) \
Py_FatalError("Module dictionary insertion problem.");
#define ADD_ERRNO(TYPE, CODE) { \
PyObject *_code = PyLong_FromLong(CODE); \
assert(_PyObject_RealIsSubclass(PyExc_ ## TYPE, PyExc_OSError)); \
if (!_code || PyDict_SetItem(errnomap, _code, PyExc_ ## TYPE)) \
Py_FatalError("errmap insertion problem."); \
Py_DECREF(_code); \
}
#ifdef MS_WINDOWS
#include <winsock2.h>
/* The following constants were added to errno.h in VS2010 but have
preferred WSA equivalents. */
#undef EADDRINUSE
#undef EADDRNOTAVAIL
#undef EAFNOSUPPORT
#undef EALREADY
#undef ECONNABORTED
#undef ECONNREFUSED
#undef ECONNRESET
#undef EDESTADDRREQ
#undef EHOSTUNREACH
#undef EINPROGRESS
#undef EISCONN
#undef ELOOP
#undef EMSGSIZE
#undef ENETDOWN
#undef ENETRESET
#undef ENETUNREACH
#undef ENOBUFS
#undef ENOPROTOOPT
#undef ENOTCONN
#undef ENOTSOCK
#undef EOPNOTSUPP
#undef EPROTONOSUPPORT
#undef EPROTOTYPE
#undef ETIMEDOUT
#undef EWOULDBLOCK
#if defined(WSAEALREADY) && !defined(EALREADY)
#define EALREADY WSAEALREADY
#endif
#if defined(WSAECONNABORTED) && !defined(ECONNABORTED)
#define ECONNABORTED WSAECONNABORTED
#endif
#if defined(WSAECONNREFUSED) && !defined(ECONNREFUSED)
#define ECONNREFUSED WSAECONNREFUSED
#endif
#if defined(WSAECONNRESET) && !defined(ECONNRESET)
#define ECONNRESET WSAECONNRESET
#endif
#if defined(WSAEINPROGRESS) && !defined(EINPROGRESS)
#define EINPROGRESS WSAEINPROGRESS
#endif
#if defined(WSAESHUTDOWN) && !defined(ESHUTDOWN)
#define ESHUTDOWN WSAESHUTDOWN
#endif
#if defined(WSAETIMEDOUT) && !defined(ETIMEDOUT)
#define ETIMEDOUT WSAETIMEDOUT
#endif
#if defined(WSAEWOULDBLOCK) && !defined(EWOULDBLOCK)
#define EWOULDBLOCK WSAEWOULDBLOCK
#endif
#endif /* MS_WINDOWS */
void
_PyExc_Init(PyObject *bltinmod)
{
PyObject *bdict;
PRE_INIT(BaseException)
PRE_INIT(Exception)
PRE_INIT(TypeError)
PRE_INIT(StopAsyncIteration)
PRE_INIT(StopIteration)
PRE_INIT(GeneratorExit)
PRE_INIT(SystemExit)
PRE_INIT(KeyboardInterrupt)
PRE_INIT(ImportError)
PRE_INIT(ModuleNotFoundError)
PRE_INIT(OSError)
PRE_INIT(EOFError)
PRE_INIT(RuntimeError)
PRE_INIT(RecursionError)
PRE_INIT(NotImplementedError)
PRE_INIT(NameError)
PRE_INIT(UnboundLocalError)
PRE_INIT(AttributeError)
PRE_INIT(SyntaxError)
PRE_INIT(IndentationError)
PRE_INIT(TabError)
PRE_INIT(LookupError)
PRE_INIT(IndexError)
PRE_INIT(KeyError)
PRE_INIT(ValueError)
PRE_INIT(UnicodeError)
PRE_INIT(UnicodeEncodeError)
PRE_INIT(UnicodeDecodeError)
PRE_INIT(UnicodeTranslateError)
PRE_INIT(AssertionError)
PRE_INIT(ArithmeticError)
PRE_INIT(FloatingPointError)
PRE_INIT(OverflowError)
PRE_INIT(ZeroDivisionError)
PRE_INIT(SystemError)
PRE_INIT(ReferenceError)
PRE_INIT(BufferError)
PRE_INIT(MemoryError)
PRE_INIT(BufferError)
PRE_INIT(Warning)
PRE_INIT(UserWarning)
PRE_INIT(DeprecationWarning)
PRE_INIT(PendingDeprecationWarning)
PRE_INIT(SyntaxWarning)
PRE_INIT(RuntimeWarning)
PRE_INIT(FutureWarning)
PRE_INIT(ImportWarning)
PRE_INIT(UnicodeWarning)
PRE_INIT(BytesWarning)
PRE_INIT(ResourceWarning)
/* OSError subclasses */
PRE_INIT(ConnectionError);
PRE_INIT(BlockingIOError);
PRE_INIT(BrokenPipeError);
PRE_INIT(ChildProcessError);
PRE_INIT(ConnectionAbortedError);
PRE_INIT(ConnectionRefusedError);
PRE_INIT(ConnectionResetError);
PRE_INIT(FileExistsError);
PRE_INIT(FileNotFoundError);
PRE_INIT(IsADirectoryError);
PRE_INIT(NotADirectoryError);
PRE_INIT(InterruptedError);
PRE_INIT(PermissionError);
PRE_INIT(ProcessLookupError);
PRE_INIT(TimeoutError);
bdict = PyModule_GetDict(bltinmod);
if (bdict == NULL)
Py_FatalError("exceptions bootstrapping error.");
POST_INIT(BaseException)
POST_INIT(Exception)
POST_INIT(TypeError)
POST_INIT(StopAsyncIteration)
POST_INIT(StopIteration)
POST_INIT(GeneratorExit)
POST_INIT(SystemExit)
POST_INIT(KeyboardInterrupt)
POST_INIT(ImportError)
POST_INIT(ModuleNotFoundError)
POST_INIT(OSError)
INIT_ALIAS(EnvironmentError, OSError)
INIT_ALIAS(IOError, OSError)
#ifdef MS_WINDOWS
INIT_ALIAS(WindowsError, OSError)
#endif
POST_INIT(EOFError)
POST_INIT(RuntimeError)
POST_INIT(RecursionError)
POST_INIT(NotImplementedError)
POST_INIT(NameError)
POST_INIT(UnboundLocalError)
POST_INIT(AttributeError)
POST_INIT(SyntaxError)
POST_INIT(IndentationError)
POST_INIT(TabError)
POST_INIT(LookupError)
POST_INIT(IndexError)
POST_INIT(KeyError)
POST_INIT(ValueError)
POST_INIT(UnicodeError)
POST_INIT(UnicodeEncodeError)
POST_INIT(UnicodeDecodeError)
POST_INIT(UnicodeTranslateError)
POST_INIT(AssertionError)
POST_INIT(ArithmeticError)
POST_INIT(FloatingPointError)
POST_INIT(OverflowError)
POST_INIT(ZeroDivisionError)
POST_INIT(SystemError)
POST_INIT(ReferenceError)
POST_INIT(BufferError)
POST_INIT(MemoryError)
POST_INIT(BufferError)
POST_INIT(Warning)
POST_INIT(UserWarning)
POST_INIT(DeprecationWarning)
POST_INIT(PendingDeprecationWarning)
POST_INIT(SyntaxWarning)
POST_INIT(RuntimeWarning)
POST_INIT(FutureWarning)
POST_INIT(ImportWarning)
POST_INIT(UnicodeWarning)
POST_INIT(BytesWarning)
POST_INIT(ResourceWarning)
if (!errnomap) {
errnomap = PyDict_New();
if (!errnomap)
Py_FatalError("Cannot allocate map from errnos to OSError subclasses");
}
/* OSError subclasses */
POST_INIT(ConnectionError);
POST_INIT(BlockingIOError);
ADD_ERRNO(BlockingIOError, EAGAIN);
ADD_ERRNO(BlockingIOError, EALREADY);
ADD_ERRNO(BlockingIOError, EINPROGRESS);
ADD_ERRNO(BlockingIOError, EWOULDBLOCK);
POST_INIT(BrokenPipeError);
ADD_ERRNO(BrokenPipeError, EPIPE);
#ifdef ESHUTDOWN
ADD_ERRNO(BrokenPipeError, ESHUTDOWN);
#endif
POST_INIT(ChildProcessError);
ADD_ERRNO(ChildProcessError, ECHILD);
POST_INIT(ConnectionAbortedError);
ADD_ERRNO(ConnectionAbortedError, ECONNABORTED);
POST_INIT(ConnectionRefusedError);
ADD_ERRNO(ConnectionRefusedError, ECONNREFUSED);
POST_INIT(ConnectionResetError);
ADD_ERRNO(ConnectionResetError, ECONNRESET);
POST_INIT(FileExistsError);
ADD_ERRNO(FileExistsError, EEXIST);
POST_INIT(FileNotFoundError);
ADD_ERRNO(FileNotFoundError, ENOENT);
POST_INIT(IsADirectoryError);
ADD_ERRNO(IsADirectoryError, EISDIR);
POST_INIT(NotADirectoryError);
ADD_ERRNO(NotADirectoryError, ENOTDIR);
POST_INIT(InterruptedError);
ADD_ERRNO(InterruptedError, EINTR);
POST_INIT(PermissionError);
ADD_ERRNO(PermissionError, EACCES);
ADD_ERRNO(PermissionError, EPERM);
POST_INIT(ProcessLookupError);
ADD_ERRNO(ProcessLookupError, ESRCH);
POST_INIT(TimeoutError);
ADD_ERRNO(TimeoutError, ETIMEDOUT);
preallocate_memerrors();
}
void
_PyExc_Fini(void)
{
free_preallocated_memerrors();
Py_CLEAR(errnomap);
}
/* Helper to do the equivalent of "raise X from Y" in C, but always using
* the current exception rather than passing one in.
*
* We currently limit this to *only* exceptions that use the BaseException
* tp_init and tp_new methods, since we can be reasonably sure we can wrap
* those correctly without losing data and without losing backwards
* compatibility.
*
* We also aim to rule out *all* exceptions that might be storing additional
* state, whether by having a size difference relative to BaseException,
* additional arguments passed in during construction or by having a
* non-empty instance dict.
*
* We need to be very careful with what we wrap, since changing types to
* a broader exception type would be backwards incompatible for
* existing codecs, and with different init or new method implementations
* may either not support instantiation with PyErr_Format or lose
* information when instantiated that way.
*
* XXX (ncoghlan): This could be made more comprehensive by exploiting the
* fact that exceptions are expected to support pickling. If more builtin
* exceptions (e.g. AttributeError) start to be converted to rich
* exceptions with additional attributes, that's probably a better approach
* to pursue over adding special cases for particular stateful subclasses.
*
* Returns a borrowed reference to the new exception (if any), NULL if the
* existing exception was left in place.
*/
PyObject *
_PyErr_TrySetFromCause(const char *format, ...)
{
PyObject* msg_prefix;
PyObject *exc, *val, *tb;
PyTypeObject *caught_type;
PyObject **dictptr;
PyObject *instance_args;
Py_ssize_t num_args, caught_type_size, base_exc_size;
PyObject *new_exc, *new_val, *new_tb;
va_list vargs;
int same_basic_size;
PyErr_Fetch(&exc, &val, &tb);
caught_type = (PyTypeObject *)exc;
/* Ensure type info indicates no extra state is stored at the C level
* and that the type can be reinstantiated using PyErr_Format
*/
caught_type_size = caught_type->tp_basicsize;
base_exc_size = _PyExc_BaseException.tp_basicsize;
same_basic_size = (
caught_type_size == base_exc_size ||
(PyType_SUPPORTS_WEAKREFS(caught_type) &&
(caught_type_size == base_exc_size + (Py_ssize_t)sizeof(PyObject *))
)
);
if (caught_type->tp_init != (initproc)BaseException_init ||
caught_type->tp_new != BaseException_new ||
!same_basic_size ||
caught_type->tp_itemsize != _PyExc_BaseException.tp_itemsize) {
/* We can't be sure we can wrap this safely, since it may contain
* more state than just the exception type. Accordingly, we just
* leave it alone.
*/
PyErr_Restore(exc, val, tb);
return NULL;
}
/* Check the args are empty or contain a single string */
PyErr_NormalizeException(&exc, &val, &tb);
instance_args = ((PyBaseExceptionObject *)val)->args;
num_args = PyTuple_GET_SIZE(instance_args);
if (num_args > 1 ||
(num_args == 1 &&
!PyUnicode_CheckExact(PyTuple_GET_ITEM(instance_args, 0)))) {
/* More than 1 arg, or the one arg we do have isn't a string
*/
PyErr_Restore(exc, val, tb);
return NULL;
}
/* Ensure the instance dict is also empty */
dictptr = _PyObject_GetDictPtr(val);
if (dictptr != NULL && *dictptr != NULL &&
PyObject_Length(*dictptr) > 0) {
/* While we could potentially copy a non-empty instance dictionary
* to the replacement exception, for now we take the more
* conservative path of leaving exceptions with attributes set
* alone.
*/
PyErr_Restore(exc, val, tb);
return NULL;
}
/* For exceptions that we can wrap safely, we chain the original
* exception to a new one of the exact same type with an
* error message that mentions the additional details and the
* original exception.
*
* It would be nice to wrap OSError and various other exception
* types as well, but that's quite a bit trickier due to the extra
* state potentially stored on OSError instances.
*/
/* Ensure the traceback is set correctly on the existing exception */
if (tb != NULL) {
PyException_SetTraceback(val, tb);
Py_DECREF(tb);
}
#ifdef HAVE_STDARG_PROTOTYPES
va_start(vargs, format);
#else
va_start(vargs);
#endif
msg_prefix = PyUnicode_FromFormatV(format, vargs);
va_end(vargs);
if (msg_prefix == NULL) {
Py_DECREF(exc);
Py_DECREF(val);
return NULL;
}
PyErr_Format(exc, "%U (%s: %S)",
msg_prefix, Py_TYPE(val)->tp_name, val);
Py_DECREF(exc);
Py_DECREF(msg_prefix);
PyErr_Fetch(&new_exc, &new_val, &new_tb);
PyErr_NormalizeException(&new_exc, &new_val, &new_tb);
PyException_SetCause(new_val, val);
PyErr_Restore(new_exc, new_val, new_tb);
return new_val;
}
/* To help with migration from Python 2, SyntaxError.__init__ applies some
* heuristics to try to report a more meaningful exception when print and
* exec are used like statements.
*
* The heuristics are currently expected to detect the following cases:
* - top level statement
* - statement in a nested suite
* - trailing section of a one line complex statement
*
* They're currently known not to trigger:
* - after a semi-colon
*
* The error message can be a bit odd in cases where the "arguments" are
* completely illegal syntactically, but that isn't worth the hassle of
* fixing.
*
* We also can't do anything about cases that are legal Python 3 syntax
* but mean something entirely different from what they did in Python 2
* (omitting the arguments entirely, printing items preceded by a unary plus
* or minus, using the stream redirection syntax).
*/
// Static helper for setting legacy print error message
static int
_set_legacy_print_statement_msg(PySyntaxErrorObject *self, Py_ssize_t start)
{
// PRINT_OFFSET is to remove the `print ` prefix from the data.
const int PRINT_OFFSET = 6;
const int STRIP_BOTH = 2;
Py_ssize_t start_pos = start + PRINT_OFFSET;
Py_ssize_t text_len = PyUnicode_GET_LENGTH(self->text);
Py_UCS4 semicolon = ';';
Py_ssize_t end_pos = PyUnicode_FindChar(self->text, semicolon,
start_pos, text_len, 1);
if (end_pos < -1) {
return -1;
} else if (end_pos == -1) {
end_pos = text_len;
}
PyObject *data = PyUnicode_Substring(self->text, start_pos, end_pos);
if (data == NULL) {
return -1;
}
PyObject *strip_sep_obj = PyUnicode_FromString(" \t\r\n");
if (strip_sep_obj == NULL) {
Py_DECREF(data);
return -1;
}
PyObject *new_data = _PyUnicode_XStrip(data, STRIP_BOTH, strip_sep_obj);
Py_DECREF(data);
Py_DECREF(strip_sep_obj);
if (new_data == NULL) {
return -1;
}
// gets the modified text_len after stripping `print `
text_len = PyUnicode_GET_LENGTH(new_data);
const char *maybe_end_arg = "";
if (text_len > 0 && PyUnicode_READ_CHAR(new_data, text_len-1) == ',') {
maybe_end_arg = " end=\" \"";
}
PyObject *error_msg = PyUnicode_FromFormat(
"Missing parentheses in call to 'print'. Did you mean print(%U%s)?",
new_data, maybe_end_arg
);
Py_DECREF(new_data);
if (error_msg == NULL)
return -1;
Py_XSETREF(self->msg, error_msg);
return 1;
}
static int
_check_for_legacy_statements(PySyntaxErrorObject *self, Py_ssize_t start)
{
/* Return values:
* -1: an error occurred
* 0: nothing happened
* 1: the check triggered & the error message was changed
*/
static PyObject *print_prefix = NULL;
static PyObject *exec_prefix = NULL;
Py_ssize_t text_len = PyUnicode_GET_LENGTH(self->text);
int kind = PyUnicode_KIND(self->text);
void *data = PyUnicode_DATA(self->text);
/* Ignore leading whitespace */
while (start < text_len) {
Py_UCS4 ch = PyUnicode_READ(kind, data, start);
if (!Py_UNICODE_ISSPACE(ch))
break;
start++;
}
/* Checking against an empty or whitespace-only part of the string */
if (start == text_len) {
return 0;
}
/* Check for legacy print statements */
if (print_prefix == NULL) {
print_prefix = PyUnicode_InternFromString("print ");
if (print_prefix == NULL) {
return -1;
}
}
if (PyUnicode_Tailmatch(self->text, print_prefix,
start, text_len, -1)) {
return _set_legacy_print_statement_msg(self, start);
}
/* Check for legacy exec statements */
if (exec_prefix == NULL) {
exec_prefix = PyUnicode_InternFromString("exec ");
if (exec_prefix == NULL) {
return -1;
}
}
if (PyUnicode_Tailmatch(self->text, exec_prefix,
start, text_len, -1)) {
Py_XSETREF(self->msg,
PyUnicode_FromString("Missing parentheses in call to 'exec'"));
return 1;
}
/* Fall back to the default error message */
return 0;
}
static int
_report_missing_parentheses(PySyntaxErrorObject *self)
{
Py_UCS4 left_paren = 40;
Py_ssize_t left_paren_index;
Py_ssize_t text_len = PyUnicode_GET_LENGTH(self->text);
int legacy_check_result = 0;
/* Skip entirely if there is an opening parenthesis */
left_paren_index = PyUnicode_FindChar(self->text, left_paren,
0, text_len, 1);
if (left_paren_index < -1) {
return -1;
}
if (left_paren_index != -1) {
/* Use default error message for any line with an opening paren */
return 0;
}
/* Handle the simple statement case */
legacy_check_result = _check_for_legacy_statements(self, 0);
if (legacy_check_result < 0) {
return -1;
}
if (legacy_check_result == 0) {
/* Handle the one-line complex statement case */
Py_UCS4 colon = 58;
Py_ssize_t colon_index;
colon_index = PyUnicode_FindChar(self->text, colon,
0, text_len, 1);
if (colon_index < -1) {
return -1;
}
if (colon_index >= 0 && colon_index < text_len) {
/* Check again, starting from just after the colon */
if (_check_for_legacy_statements(self, colon_index+1) < 0) {
return -1;
}
}
}
return 0;
}
| 89,536 | 3,026 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/memoryobject.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/boolobject.h"
#include "third_party/python/Include/bytesobject.h"
#include "third_party/python/Include/descrobject.h"
#include "third_party/python/Include/floatobject.h"
#include "third_party/python/Include/import.h"
#include "third_party/python/Include/longobject.h"
#include "third_party/python/Include/memoryobject.h"
#include "third_party/python/Include/methodobject.h"
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/object.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/pyerrors.h"
#include "third_party/python/Include/pyhash.h"
#include "third_party/python/Include/pymacro.h"
#include "third_party/python/Include/pystrhex.h"
#include "third_party/python/Include/sliceobject.h"
#include "third_party/python/Include/yoink.h"
/* clang-format off */
/****************************************************************************/
/* ManagedBuffer Object */
/****************************************************************************/
/*
ManagedBuffer Object:
---------------------
The purpose of this object is to facilitate the handling of chained
memoryviews that have the same underlying exporting object. PEP-3118
allows the underlying object to change while a view is exported. This
could lead to unexpected results when constructing a new memoryview
from an existing memoryview.
Rather than repeatedly redirecting buffer requests to the original base
object, all chained memoryviews use a single buffer snapshot. This
snapshot is generated by the constructor _PyManagedBuffer_FromObject().
Ownership rules:
----------------
The master buffer inside a managed buffer is filled in by the original
base object. shape, strides, suboffsets and format are read-only for
all consumers.
A memoryview's buffer is a private copy of the exporter's buffer. shape,
strides and suboffsets belong to the memoryview and are thus writable.
If a memoryview itself exports several buffers via memory_getbuf(), all
buffer copies share shape, strides and suboffsets. In this case, the
arrays are NOT writable.
Reference count assumptions:
----------------------------
The 'obj' member of a Py_buffer must either be NULL or refer to the
exporting base object. In the Python codebase, all getbufferprocs
return a new reference to view.obj (example: bytes_buffer_getbuffer()).
PyBuffer_Release() decrements view.obj (if non-NULL), so the
releasebufferprocs must NOT decrement view.obj.
*/
#define CHECK_MBUF_RELEASED(mbuf) \
if (((_PyManagedBufferObject *)mbuf)->flags&_Py_MANAGED_BUFFER_RELEASED) { \
PyErr_SetString(PyExc_ValueError, \
"operation forbidden on released memoryview object"); \
return NULL; \
}
static inline _PyManagedBufferObject *
mbuf_alloc(void)
{
_PyManagedBufferObject *mbuf;
mbuf = (_PyManagedBufferObject *)
PyObject_GC_New(_PyManagedBufferObject, &_PyManagedBuffer_Type);
if (mbuf == NULL)
return NULL;
mbuf->flags = 0;
mbuf->exports = 0;
mbuf->master.obj = NULL;
_PyObject_GC_TRACK(mbuf);
return mbuf;
}
static PyObject *
_PyManagedBuffer_FromObject(PyObject *base)
{
_PyManagedBufferObject *mbuf;
mbuf = mbuf_alloc();
if (mbuf == NULL)
return NULL;
if (PyObject_GetBuffer(base, &mbuf->master, PyBUF_FULL_RO) < 0) {
mbuf->master.obj = NULL;
Py_DECREF(mbuf);
return NULL;
}
return (PyObject *)mbuf;
}
static void
mbuf_release(_PyManagedBufferObject *self)
{
if (self->flags&_Py_MANAGED_BUFFER_RELEASED)
return;
/* NOTE: at this point self->exports can still be > 0 if this function
is called from mbuf_clear() to break up a reference cycle. */
self->flags |= _Py_MANAGED_BUFFER_RELEASED;
/* PyBuffer_Release() decrements master->obj and sets it to NULL. */
_PyObject_GC_UNTRACK(self);
PyBuffer_Release(&self->master);
}
static void
mbuf_dealloc(_PyManagedBufferObject *self)
{
assert(self->exports == 0);
mbuf_release(self);
if (self->flags&_Py_MANAGED_BUFFER_FREE_FORMAT)
PyMem_Free(self->master.format);
PyObject_GC_Del(self);
}
static int
mbuf_traverse(_PyManagedBufferObject *self, visitproc visit, void *arg)
{
Py_VISIT(self->master.obj);
return 0;
}
static int
mbuf_clear(_PyManagedBufferObject *self)
{
assert(self->exports >= 0);
mbuf_release(self);
return 0;
}
PyTypeObject _PyManagedBuffer_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"managedbuffer",
sizeof(_PyManagedBufferObject),
0,
(destructor)mbuf_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, /* tp_flags */
0, /* tp_doc */
(traverseproc)mbuf_traverse, /* tp_traverse */
(inquiry)mbuf_clear /* tp_clear */
};
/****************************************************************************/
/* MemoryView Object */
/****************************************************************************/
/* In the process of breaking reference cycles mbuf_release() can be
called before memory_release(). */
#define BASE_INACCESSIBLE(mv) \
(((PyMemoryViewObject *)mv)->flags&_Py_MEMORYVIEW_RELEASED || \
((PyMemoryViewObject *)mv)->mbuf->flags&_Py_MANAGED_BUFFER_RELEASED)
#define CHECK_RELEASED(mv) \
if (BASE_INACCESSIBLE(mv)) { \
PyErr_SetString(PyExc_ValueError, \
"operation forbidden on released memoryview object"); \
return NULL; \
}
#define CHECK_RELEASED_INT(mv) \
if (BASE_INACCESSIBLE(mv)) { \
PyErr_SetString(PyExc_ValueError, \
"operation forbidden on released memoryview object"); \
return -1; \
}
#define CHECK_LIST_OR_TUPLE(v) \
if (!PyList_Check(v) && !PyTuple_Check(v)) { \
PyErr_SetString(PyExc_TypeError, \
#v " must be a list or a tuple"); \
return NULL; \
}
#define VIEW_ADDR(mv) (&((PyMemoryViewObject *)mv)->view)
/* Check for the presence of suboffsets in the first dimension. */
#define HAVE_PTR(suboffsets, dim) (suboffsets && suboffsets[dim] >= 0)
/* Adjust ptr if suboffsets are present. */
#define ADJUST_PTR(ptr, suboffsets, dim) \
(HAVE_PTR(suboffsets, dim) ? *((char**)ptr) + suboffsets[dim] : ptr)
/* Memoryview buffer properties */
#define MV_C_CONTIGUOUS(flags) (flags&(_Py_MEMORYVIEW_SCALAR|_Py_MEMORYVIEW_C))
#define MV_F_CONTIGUOUS(flags) \
(flags&(_Py_MEMORYVIEW_SCALAR|_Py_MEMORYVIEW_FORTRAN))
#define MV_ANY_CONTIGUOUS(flags) \
(flags&(_Py_MEMORYVIEW_SCALAR|_Py_MEMORYVIEW_C|_Py_MEMORYVIEW_FORTRAN))
/* Fast contiguity test. Caller must ensure suboffsets==NULL and ndim==1. */
#define MV_CONTIGUOUS_NDIM1(view) \
((view)->shape[0] == 1 || (view)->strides[0] == (view)->itemsize)
/* getbuffer() requests */
#define REQ_INDIRECT(flags) ((flags&PyBUF_INDIRECT) == PyBUF_INDIRECT)
#define REQ_C_CONTIGUOUS(flags) ((flags&PyBUF_C_CONTIGUOUS) == PyBUF_C_CONTIGUOUS)
#define REQ_F_CONTIGUOUS(flags) ((flags&PyBUF_F_CONTIGUOUS) == PyBUF_F_CONTIGUOUS)
#define REQ_ANY_CONTIGUOUS(flags) ((flags&PyBUF_ANY_CONTIGUOUS) == PyBUF_ANY_CONTIGUOUS)
#define REQ_STRIDES(flags) ((flags&PyBUF_STRIDES) == PyBUF_STRIDES)
#define REQ_SHAPE(flags) ((flags&PyBUF_ND) == PyBUF_ND)
#define REQ_WRITABLE(flags) (flags&PyBUF_WRITABLE)
#define REQ_FORMAT(flags) (flags&PyBUF_FORMAT)
PyDoc_STRVAR(memory_doc,
"memoryview(object)\n--\n\
\n\
Create a new memoryview object which references the given object.");
/**************************************************************************/
/* Copy memoryview buffers */
/**************************************************************************/
/* The functions in this section take a source and a destination buffer
with the same logical structure: format, itemsize, ndim and shape
are identical, with ndim > 0.
NOTE: All buffers are assumed to have PyBUF_FULL information, which
is the case for memoryviews! */
/* Assumptions: ndim >= 1. The macro tests for a corner case that should
perhaps be explicitly forbidden in the PEP. */
#define HAVE_SUBOFFSETS_IN_LAST_DIM(view) \
(view->suboffsets && view->suboffsets[dest->ndim-1] >= 0)
static inline int
last_dim_is_contiguous(const Py_buffer *dest, const Py_buffer *src)
{
assert(dest->ndim > 0 && src->ndim > 0);
return (!HAVE_SUBOFFSETS_IN_LAST_DIM(dest) &&
!HAVE_SUBOFFSETS_IN_LAST_DIM(src) &&
dest->strides[dest->ndim-1] == dest->itemsize &&
src->strides[src->ndim-1] == src->itemsize);
}
/* This is not a general function for determining format equivalence.
It is used in copy_single() and copy_buffer() to weed out non-matching
formats. Skipping the '@' character is specifically used in slice
assignments, where the lvalue is already known to have a single character
format. This is a performance hack that could be rewritten (if properly
benchmarked). */
static inline int
equiv_format(const Py_buffer *dest, const Py_buffer *src)
{
const char *dfmt, *sfmt;
assert(dest->format && src->format);
dfmt = dest->format[0] == '@' ? dest->format+1 : dest->format;
sfmt = src->format[0] == '@' ? src->format+1 : src->format;
if (strcmp(dfmt, sfmt) != 0 ||
dest->itemsize != src->itemsize) {
return 0;
}
return 1;
}
/* Two shapes are equivalent if they are either equal or identical up
to a zero element at the same position. For example, in NumPy arrays
the shapes [1, 0, 5] and [1, 0, 7] are equivalent. */
static inline int
equiv_shape(const Py_buffer *dest, const Py_buffer *src)
{
int i;
if (dest->ndim != src->ndim)
return 0;
for (i = 0; i < dest->ndim; i++) {
if (dest->shape[i] != src->shape[i])
return 0;
if (dest->shape[i] == 0)
break;
}
return 1;
}
/* Check that the logical structure of the destination and source buffers
is identical. */
static int
equiv_structure(const Py_buffer *dest, const Py_buffer *src)
{
if (!equiv_format(dest, src) ||
!equiv_shape(dest, src)) {
PyErr_SetString(PyExc_ValueError,
"memoryview assignment: lvalue and rvalue have different "
"structures");
return 0;
}
return 1;
}
/* Base case for recursive multi-dimensional copying. Contiguous arrays are
copied with very little overhead. Assumptions: ndim == 1, mem == NULL or
sizeof(mem) == shape[0] * itemsize. */
static void
copy_base(const Py_ssize_t *shape, Py_ssize_t itemsize,
char *dptr, const Py_ssize_t *dstrides, const Py_ssize_t *dsuboffsets,
char *sptr, const Py_ssize_t *sstrides, const Py_ssize_t *ssuboffsets,
char *mem)
{
if (mem == NULL) { /* contiguous */
Py_ssize_t size = shape[0] * itemsize;
if (dptr + size < sptr || sptr + size < dptr)
memcpy(dptr, sptr, size); /* no overlapping */
else
memmove(dptr, sptr, size);
}
else {
char *p;
Py_ssize_t i;
for (i=0, p=mem; i < shape[0]; p+=itemsize, sptr+=sstrides[0], i++) {
char *xsptr = ADJUST_PTR(sptr, ssuboffsets, 0);
memcpy(p, xsptr, itemsize);
}
for (i=0, p=mem; i < shape[0]; p+=itemsize, dptr+=dstrides[0], i++) {
char *xdptr = ADJUST_PTR(dptr, dsuboffsets, 0);
memcpy(xdptr, p, itemsize);
}
}
}
/* Recursively copy a source buffer to a destination buffer. The two buffers
have the same ndim, shape and itemsize. */
static void
copy_rec(const Py_ssize_t *shape, Py_ssize_t ndim, Py_ssize_t itemsize,
char *dptr, const Py_ssize_t *dstrides, const Py_ssize_t *dsuboffsets,
char *sptr, const Py_ssize_t *sstrides, const Py_ssize_t *ssuboffsets,
char *mem)
{
Py_ssize_t i;
assert(ndim >= 1);
if (ndim == 1) {
copy_base(shape, itemsize,
dptr, dstrides, dsuboffsets,
sptr, sstrides, ssuboffsets,
mem);
return;
}
for (i = 0; i < shape[0]; dptr+=dstrides[0], sptr+=sstrides[0], i++) {
char *xdptr = ADJUST_PTR(dptr, dsuboffsets, 0);
char *xsptr = ADJUST_PTR(sptr, ssuboffsets, 0);
copy_rec(shape+1, ndim-1, itemsize,
xdptr, dstrides+1, dsuboffsets ? dsuboffsets+1 : NULL,
xsptr, sstrides+1, ssuboffsets ? ssuboffsets+1 : NULL,
mem);
}
}
/* Faster copying of one-dimensional arrays. */
static int
copy_single(Py_buffer *dest, Py_buffer *src)
{
char *mem = NULL;
assert(dest->ndim == 1);
if (!equiv_structure(dest, src))
return -1;
if (!last_dim_is_contiguous(dest, src)) {
mem = PyMem_Malloc(dest->shape[0] * dest->itemsize);
if (mem == NULL) {
PyErr_NoMemory();
return -1;
}
}
copy_base(dest->shape, dest->itemsize,
dest->buf, dest->strides, dest->suboffsets,
src->buf, src->strides, src->suboffsets,
mem);
if (mem)
PyMem_Free(mem);
return 0;
}
/* Recursively copy src to dest. Both buffers must have the same basic
structure. Copying is atomic, the function never fails with a partial
copy. */
static int
copy_buffer(Py_buffer *dest, Py_buffer *src)
{
char *mem = NULL;
assert(dest->ndim > 0);
if (!equiv_structure(dest, src))
return -1;
if (!last_dim_is_contiguous(dest, src)) {
mem = PyMem_Malloc(dest->shape[dest->ndim-1] * dest->itemsize);
if (mem == NULL) {
PyErr_NoMemory();
return -1;
}
}
copy_rec(dest->shape, dest->ndim, dest->itemsize,
dest->buf, dest->strides, dest->suboffsets,
src->buf, src->strides, src->suboffsets,
mem);
if (mem)
PyMem_Free(mem);
return 0;
}
/* Initialize strides for a C-contiguous array. */
static inline void
init_strides_from_shape(Py_buffer *view)
{
Py_ssize_t i;
assert(view->ndim > 0);
view->strides[view->ndim-1] = view->itemsize;
for (i = view->ndim-2; i >= 0; i--)
view->strides[i] = view->strides[i+1] * view->shape[i+1];
}
/* Initialize strides for a Fortran-contiguous array. */
static inline void
init_fortran_strides_from_shape(Py_buffer *view)
{
Py_ssize_t i;
assert(view->ndim > 0);
view->strides[0] = view->itemsize;
for (i = 1; i < view->ndim; i++)
view->strides[i] = view->strides[i-1] * view->shape[i-1];
}
/* Copy src to a contiguous representation. order is one of 'C', 'F' (Fortran)
or 'A' (Any). Assumptions: src has PyBUF_FULL information, src->ndim >= 1,
len(mem) == src->len. */
static int
buffer_to_contiguous(char *mem, Py_buffer *src, char order)
{
Py_buffer dest;
Py_ssize_t *strides;
int ret;
assert(src->ndim >= 1);
assert(src->shape != NULL);
assert(src->strides != NULL);
strides = PyMem_Malloc(src->ndim * (sizeof *src->strides));
if (strides == NULL) {
PyErr_NoMemory();
return -1;
}
/* initialize dest */
dest = *src;
dest.buf = mem;
/* shape is constant and shared: the logical representation of the
array is unaltered. */
/* The physical representation determined by strides (and possibly
suboffsets) may change. */
dest.strides = strides;
if (order == 'C' || order == 'A') {
init_strides_from_shape(&dest);
}
else {
init_fortran_strides_from_shape(&dest);
}
dest.suboffsets = NULL;
ret = copy_buffer(&dest, src);
PyMem_Free(strides);
return ret;
}
/****************************************************************************/
/* Constructors */
/****************************************************************************/
/* Initialize values that are shared with the managed buffer. */
static inline void
init_shared_values(Py_buffer *dest, const Py_buffer *src)
{
dest->obj = src->obj;
dest->buf = src->buf;
dest->len = src->len;
dest->itemsize = src->itemsize;
dest->readonly = src->readonly;
dest->format = src->format ? src->format : "B";
dest->internal = src->internal;
}
/* Copy shape and strides. Reconstruct missing values. */
static void
init_shape_strides(Py_buffer *dest, const Py_buffer *src)
{
Py_ssize_t i;
if (src->ndim == 0) {
dest->shape = NULL;
dest->strides = NULL;
return;
}
if (src->ndim == 1) {
dest->shape[0] = src->shape ? src->shape[0] : src->len / src->itemsize;
dest->strides[0] = src->strides ? src->strides[0] : src->itemsize;
return;
}
for (i = 0; i < src->ndim; i++)
dest->shape[i] = src->shape[i];
if (src->strides) {
for (i = 0; i < src->ndim; i++)
dest->strides[i] = src->strides[i];
}
else {
init_strides_from_shape(dest);
}
}
static inline void
init_suboffsets(Py_buffer *dest, const Py_buffer *src)
{
Py_ssize_t i;
if (src->suboffsets == NULL) {
dest->suboffsets = NULL;
return;
}
for (i = 0; i < src->ndim; i++)
dest->suboffsets[i] = src->suboffsets[i];
}
/* len = product(shape) * itemsize */
static inline void
init_len(Py_buffer *view)
{
Py_ssize_t i, len;
len = 1;
for (i = 0; i < view->ndim; i++)
len *= view->shape[i];
len *= view->itemsize;
view->len = len;
}
/* Initialize memoryview buffer properties. */
static void
init_flags(PyMemoryViewObject *mv)
{
const Py_buffer *view = &mv->view;
int flags = 0;
switch (view->ndim) {
case 0:
flags |= (_Py_MEMORYVIEW_SCALAR|_Py_MEMORYVIEW_C|
_Py_MEMORYVIEW_FORTRAN);
break;
case 1:
if (MV_CONTIGUOUS_NDIM1(view))
flags |= (_Py_MEMORYVIEW_C|_Py_MEMORYVIEW_FORTRAN);
break;
default:
if (PyBuffer_IsContiguous(view, 'C'))
flags |= _Py_MEMORYVIEW_C;
if (PyBuffer_IsContiguous(view, 'F'))
flags |= _Py_MEMORYVIEW_FORTRAN;
break;
}
if (view->suboffsets) {
flags |= _Py_MEMORYVIEW_PIL;
flags &= ~(_Py_MEMORYVIEW_C|_Py_MEMORYVIEW_FORTRAN);
}
mv->flags = flags;
}
/* Allocate a new memoryview and perform basic initialization. New memoryviews
are exclusively created through the mbuf_add functions. */
static inline PyMemoryViewObject *
memory_alloc(int ndim)
{
PyMemoryViewObject *mv;
mv = (PyMemoryViewObject *)
PyObject_GC_NewVar(PyMemoryViewObject, &PyMemoryView_Type, 3*ndim);
if (mv == NULL)
return NULL;
mv->mbuf = NULL;
mv->hash = -1;
mv->flags = 0;
mv->exports = 0;
mv->view.ndim = ndim;
mv->view.shape = mv->ob_array;
mv->view.strides = mv->ob_array + ndim;
mv->view.suboffsets = mv->ob_array + 2 * ndim;
mv->weakreflist = NULL;
_PyObject_GC_TRACK(mv);
return mv;
}
/*
Return a new memoryview that is registered with mbuf. If src is NULL,
use mbuf->master as the underlying buffer. Otherwise, use src.
The new memoryview has full buffer information: shape and strides
are always present, suboffsets as needed. Arrays are copied to
the memoryview's ob_array field.
*/
static PyObject *
mbuf_add_view(_PyManagedBufferObject *mbuf, const Py_buffer *src)
{
PyMemoryViewObject *mv;
Py_buffer *dest;
if (src == NULL)
src = &mbuf->master;
if (src->ndim > PyBUF_MAX_NDIM) {
PyErr_SetString(PyExc_ValueError,
"memoryview: number of dimensions must not exceed "
Py_STRINGIFY(PyBUF_MAX_NDIM));
return NULL;
}
mv = memory_alloc(src->ndim);
if (mv == NULL)
return NULL;
dest = &mv->view;
init_shared_values(dest, src);
init_shape_strides(dest, src);
init_suboffsets(dest, src);
init_flags(mv);
mv->mbuf = mbuf;
Py_INCREF(mbuf);
mbuf->exports++;
return (PyObject *)mv;
}
/* Register an incomplete view: shape, strides, suboffsets and flags still
need to be initialized. Use 'ndim' instead of src->ndim to determine the
size of the memoryview's ob_array.
Assumption: ndim <= PyBUF_MAX_NDIM. */
static PyObject *
mbuf_add_incomplete_view(_PyManagedBufferObject *mbuf, const Py_buffer *src,
int ndim)
{
PyMemoryViewObject *mv;
Py_buffer *dest;
if (src == NULL)
src = &mbuf->master;
assert(ndim <= PyBUF_MAX_NDIM);
mv = memory_alloc(ndim);
if (mv == NULL)
return NULL;
dest = &mv->view;
init_shared_values(dest, src);
mv->mbuf = mbuf;
Py_INCREF(mbuf);
mbuf->exports++;
return (PyObject *)mv;
}
/* Expose a raw memory area as a view of contiguous bytes. flags can be
PyBUF_READ or PyBUF_WRITE. view->format is set to "B" (unsigned bytes).
The memoryview has complete buffer information. */
PyObject *
PyMemoryView_FromMemory(char *mem, Py_ssize_t size, int flags)
{
_PyManagedBufferObject *mbuf;
PyObject *mv;
int readonly;
assert(mem != NULL);
assert(flags == PyBUF_READ || flags == PyBUF_WRITE);
mbuf = mbuf_alloc();
if (mbuf == NULL)
return NULL;
readonly = (flags == PyBUF_WRITE) ? 0 : 1;
(void)PyBuffer_FillInfo(&mbuf->master, NULL, mem, size, readonly,
PyBUF_FULL_RO);
mv = mbuf_add_view(mbuf, NULL);
Py_DECREF(mbuf);
return mv;
}
/* Create a memoryview from a given Py_buffer. For simple byte views,
PyMemoryView_FromMemory() should be used instead.
This function is the only entry point that can create a master buffer
without full information. Because of this fact init_shape_strides()
must be able to reconstruct missing values. */
PyObject *
PyMemoryView_FromBuffer(Py_buffer *info)
{
_PyManagedBufferObject *mbuf;
PyObject *mv;
if (info->buf == NULL) {
PyErr_SetString(PyExc_ValueError,
"PyMemoryView_FromBuffer(): info->buf must not be NULL");
return NULL;
}
mbuf = mbuf_alloc();
if (mbuf == NULL)
return NULL;
/* info->obj is either NULL or a borrowed reference. This reference
should not be decremented in PyBuffer_Release(). */
mbuf->master = *info;
mbuf->master.obj = NULL;
mv = mbuf_add_view(mbuf, NULL);
Py_DECREF(mbuf);
return mv;
}
/* Create a memoryview from an object that implements the buffer protocol.
If the object is a memoryview, the new memoryview must be registered
with the same managed buffer. Otherwise, a new managed buffer is created. */
PyObject *
PyMemoryView_FromObject(PyObject *v)
{
_PyManagedBufferObject *mbuf;
if (PyMemoryView_Check(v)) {
PyMemoryViewObject *mv = (PyMemoryViewObject *)v;
CHECK_RELEASED(mv);
return mbuf_add_view(mv->mbuf, &mv->view);
}
else if (PyObject_CheckBuffer(v)) {
PyObject *ret;
mbuf = (_PyManagedBufferObject *)_PyManagedBuffer_FromObject(v);
if (mbuf == NULL)
return NULL;
ret = mbuf_add_view(mbuf, NULL);
Py_DECREF(mbuf);
return ret;
}
PyErr_Format(PyExc_TypeError,
"memoryview: a bytes-like object is required, not '%.200s'",
Py_TYPE(v)->tp_name);
return NULL;
}
/* Copy the format string from a base object that might vanish. */
static int
mbuf_copy_format(_PyManagedBufferObject *mbuf, const char *fmt)
{
if (fmt != NULL) {
char *cp = PyMem_Malloc(strlen(fmt)+1);
if (cp == NULL) {
PyErr_NoMemory();
return -1;
}
mbuf->master.format = strcpy(cp, fmt);
mbuf->flags |= _Py_MANAGED_BUFFER_FREE_FORMAT;
}
return 0;
}
/*
Return a memoryview that is based on a contiguous copy of src.
Assumptions: src has PyBUF_FULL_RO information, src->ndim > 0.
Ownership rules:
1) As usual, the returned memoryview has a private copy
of src->shape, src->strides and src->suboffsets.
2) src->format is copied to the master buffer and released
in mbuf_dealloc(). The releasebufferproc of the bytes
object is NULL, so it does not matter that mbuf_release()
passes the altered format pointer to PyBuffer_Release().
*/
static PyObject *
memory_from_contiguous_copy(Py_buffer *src, char order)
{
_PyManagedBufferObject *mbuf;
PyMemoryViewObject *mv;
PyObject *bytes;
Py_buffer *dest;
int i;
assert(src->ndim > 0);
assert(src->shape != NULL);
bytes = PyBytes_FromStringAndSize(NULL, src->len);
if (bytes == NULL)
return NULL;
mbuf = (_PyManagedBufferObject *)_PyManagedBuffer_FromObject(bytes);
Py_DECREF(bytes);
if (mbuf == NULL)
return NULL;
if (mbuf_copy_format(mbuf, src->format) < 0) {
Py_DECREF(mbuf);
return NULL;
}
mv = (PyMemoryViewObject *)mbuf_add_incomplete_view(mbuf, NULL, src->ndim);
Py_DECREF(mbuf);
if (mv == NULL)
return NULL;
dest = &mv->view;
/* shared values are initialized correctly except for itemsize */
dest->itemsize = src->itemsize;
/* shape and strides */
for (i = 0; i < src->ndim; i++) {
dest->shape[i] = src->shape[i];
}
if (order == 'C' || order == 'A') {
init_strides_from_shape(dest);
}
else {
init_fortran_strides_from_shape(dest);
}
/* suboffsets */
dest->suboffsets = NULL;
/* flags */
init_flags(mv);
if (copy_buffer(dest, src) < 0) {
Py_DECREF(mv);
return NULL;
}
return (PyObject *)mv;
}
/*
Return a new memoryview object based on a contiguous exporter with
buffertype={PyBUF_READ, PyBUF_WRITE} and order={'C', 'F'ortran, or 'A'ny}.
The logical structure of the input and output buffers is the same
(i.e. tolist(input) == tolist(output)), but the physical layout in
memory can be explicitly chosen.
As usual, if buffertype=PyBUF_WRITE, the exporter's buffer must be writable,
otherwise it may be writable or read-only.
If the exporter is already contiguous with the desired target order,
the memoryview will be directly based on the exporter.
Otherwise, if the buffertype is PyBUF_READ, the memoryview will be
based on a new bytes object. If order={'C', 'A'ny}, use 'C' order,
'F'ortran order otherwise.
*/
PyObject *
PyMemoryView_GetContiguous(PyObject *obj, int buffertype, char order)
{
PyMemoryViewObject *mv;
PyObject *ret;
Py_buffer *view;
assert(buffertype == PyBUF_READ || buffertype == PyBUF_WRITE);
assert(order == 'C' || order == 'F' || order == 'A');
mv = (PyMemoryViewObject *)PyMemoryView_FromObject(obj);
if (mv == NULL)
return NULL;
view = &mv->view;
if (buffertype == PyBUF_WRITE && view->readonly) {
PyErr_SetString(PyExc_BufferError,
"underlying buffer is not writable");
Py_DECREF(mv);
return NULL;
}
if (PyBuffer_IsContiguous(view, order))
return (PyObject *)mv;
if (buffertype == PyBUF_WRITE) {
PyErr_SetString(PyExc_BufferError,
"writable contiguous buffer requested "
"for a non-contiguous object.");
Py_DECREF(mv);
return NULL;
}
ret = memory_from_contiguous_copy(view, order);
Py_DECREF(mv);
return ret;
}
static PyObject *
memory_new(PyTypeObject *subtype, PyObject *args, PyObject *kwds)
{
PyObject *obj;
static char *kwlist[] = {"object", NULL};
if (!PyArg_ParseTupleAndKeywords(args, kwds, "O:memoryview", kwlist,
&obj)) {
return NULL;
}
return PyMemoryView_FromObject(obj);
}
/****************************************************************************/
/* Previously in abstract.c */
/****************************************************************************/
typedef struct {
Py_buffer view;
Py_ssize_t array[1];
} Py_buffer_full;
int
PyBuffer_ToContiguous(void *buf, Py_buffer *src, Py_ssize_t len, char order)
{
Py_buffer_full *fb = NULL;
int ret;
assert(order == 'C' || order == 'F' || order == 'A');
if (len != src->len) {
PyErr_SetString(PyExc_ValueError,
"PyBuffer_ToContiguous: len != view->len");
return -1;
}
if (PyBuffer_IsContiguous(src, order)) {
memcpy((char *)buf, src->buf, len);
return 0;
}
/* buffer_to_contiguous() assumes PyBUF_FULL */
fb = PyMem_Malloc(sizeof *fb + 3 * src->ndim * (sizeof *fb->array));
if (fb == NULL) {
PyErr_NoMemory();
return -1;
}
fb->view.ndim = src->ndim;
fb->view.shape = fb->array;
fb->view.strides = fb->array + src->ndim;
fb->view.suboffsets = fb->array + 2 * src->ndim;
init_shared_values(&fb->view, src);
init_shape_strides(&fb->view, src);
init_suboffsets(&fb->view, src);
src = &fb->view;
ret = buffer_to_contiguous(buf, src, order);
PyMem_Free(fb);
return ret;
}
/****************************************************************************/
/* Release/GC management */
/****************************************************************************/
/* Inform the managed buffer that this particular memoryview will not access
the underlying buffer again. If no other memoryviews are registered with
the managed buffer, the underlying buffer is released instantly and
marked as inaccessible for both the memoryview and the managed buffer.
This function fails if the memoryview itself has exported buffers. */
static int
_memory_release(PyMemoryViewObject *self)
{
if (self->flags & _Py_MEMORYVIEW_RELEASED)
return 0;
if (self->exports == 0) {
self->flags |= _Py_MEMORYVIEW_RELEASED;
assert(self->mbuf->exports > 0);
if (--self->mbuf->exports == 0)
mbuf_release(self->mbuf);
return 0;
}
if (self->exports > 0) {
PyErr_Format(PyExc_BufferError,
"memoryview has %zd exported buffer%s", self->exports,
self->exports==1 ? "" : "s");
return -1;
}
Py_FatalError("_memory_release(): negative export count");
return -1;
}
static PyObject *
memory_release(PyMemoryViewObject *self, PyObject *noargs)
{
if (_memory_release(self) < 0)
return NULL;
Py_RETURN_NONE;
}
static void
memory_dealloc(PyMemoryViewObject *self)
{
assert(self->exports == 0);
_PyObject_GC_UNTRACK(self);
(void)_memory_release(self);
Py_CLEAR(self->mbuf);
if (self->weakreflist != NULL)
PyObject_ClearWeakRefs((PyObject *) self);
PyObject_GC_Del(self);
}
static int
memory_traverse(PyMemoryViewObject *self, visitproc visit, void *arg)
{
Py_VISIT(self->mbuf);
return 0;
}
static int
memory_clear(PyMemoryViewObject *self)
{
(void)_memory_release(self);
Py_CLEAR(self->mbuf);
return 0;
}
static PyObject *
memory_enter(PyObject *self, PyObject *args)
{
CHECK_RELEASED(self);
Py_INCREF(self);
return self;
}
static PyObject *
memory_exit(PyObject *self, PyObject *args)
{
return memory_release((PyMemoryViewObject *)self, NULL);
}
/****************************************************************************/
/* Casting format and shape */
/****************************************************************************/
#define IS_BYTE_FORMAT(f) (f == 'b' || f == 'B' || f == 'c')
static inline Py_ssize_t
get_native_fmtchar(char *result, const char *fmt)
{
Py_ssize_t size = -1;
if (fmt[0] == '@') fmt++;
switch (fmt[0]) {
case 'c': case 'b': case 'B': size = sizeof(char); break;
case 'h': case 'H': size = sizeof(short); break;
case 'i': case 'I': size = sizeof(int); break;
case 'l': case 'L': size = sizeof(long); break;
case 'q': case 'Q': size = sizeof(long long); break;
case 'n': case 'N': size = sizeof(Py_ssize_t); break;
case 'f': size = sizeof(float); break;
case 'd': size = sizeof(double); break;
case '?': size = sizeof(_Bool); break;
case 'P': size = sizeof(void *); break;
}
if (size > 0 && fmt[1] == '\0') {
*result = fmt[0];
return size;
}
return -1;
}
static inline const char *
get_native_fmtstr(const char *fmt)
{
int at = 0;
if (fmt[0] == '@') {
at = 1;
fmt++;
}
if (fmt[0] == '\0' || fmt[1] != '\0') {
return NULL;
}
#define RETURN(s) do { return at ? "@" s : s; } while (0)
switch (fmt[0]) {
case 'c': RETURN("c");
case 'b': RETURN("b");
case 'B': RETURN("B");
case 'h': RETURN("h");
case 'H': RETURN("H");
case 'i': RETURN("i");
case 'I': RETURN("I");
case 'l': RETURN("l");
case 'L': RETURN("L");
case 'q': RETURN("q");
case 'Q': RETURN("Q");
case 'n': RETURN("n");
case 'N': RETURN("N");
case 'f': RETURN("f");
case 'd': RETURN("d");
case '?': RETURN("?");
case 'P': RETURN("P");
}
return NULL;
}
/* Cast a memoryview's data type to 'format'. The input array must be
C-contiguous. At least one of input-format, output-format must have
byte size. The output array is 1-D, with the same byte length as the
input array. Thus, view->len must be a multiple of the new itemsize. */
static int
cast_to_1D(PyMemoryViewObject *mv, PyObject *format)
{
Py_buffer *view = &mv->view;
PyObject *asciifmt;
char srcchar, destchar;
Py_ssize_t itemsize;
int ret = -1;
assert(view->ndim >= 1);
assert(Py_SIZE(mv) == 3*view->ndim);
assert(view->shape == mv->ob_array);
assert(view->strides == mv->ob_array + view->ndim);
assert(view->suboffsets == mv->ob_array + 2*view->ndim);
asciifmt = PyUnicode_AsASCIIString(format);
if (asciifmt == NULL)
return ret;
itemsize = get_native_fmtchar(&destchar, PyBytes_AS_STRING(asciifmt));
if (itemsize < 0) {
PyErr_SetString(PyExc_ValueError,
"memoryview: destination format must be a native single "
"character format prefixed with an optional '@'");
goto out;
}
if ((get_native_fmtchar(&srcchar, view->format) < 0 ||
!IS_BYTE_FORMAT(srcchar)) && !IS_BYTE_FORMAT(destchar)) {
PyErr_SetString(PyExc_TypeError,
"memoryview: cannot cast between two non-byte formats");
goto out;
}
if (view->len % itemsize) {
PyErr_SetString(PyExc_TypeError,
"memoryview: length is not a multiple of itemsize");
goto out;
}
view->format = (char *)get_native_fmtstr(PyBytes_AS_STRING(asciifmt));
if (view->format == NULL) {
/* NOT_REACHED: get_native_fmtchar() already validates the format. */
PyErr_SetString(PyExc_RuntimeError,
"memoryview: internal error");
goto out;
}
view->itemsize = itemsize;
view->ndim = 1;
view->shape[0] = view->len / view->itemsize;
view->strides[0] = view->itemsize;
view->suboffsets = NULL;
init_flags(mv);
ret = 0;
out:
Py_DECREF(asciifmt);
return ret;
}
/* The memoryview must have space for 3*len(seq) elements. */
static Py_ssize_t
copy_shape(Py_ssize_t *shape, const PyObject *seq, Py_ssize_t ndim,
Py_ssize_t itemsize)
{
Py_ssize_t x, i;
Py_ssize_t len = itemsize;
for (i = 0; i < ndim; i++) {
PyObject *tmp = PySequence_Fast_GET_ITEM(seq, i);
if (!PyLong_Check(tmp)) {
PyErr_SetString(PyExc_TypeError,
"memoryview.cast(): elements of shape must be integers");
return -1;
}
x = PyLong_AsSsize_t(tmp);
if (x == -1 && PyErr_Occurred()) {
return -1;
}
if (x <= 0) {
/* In general elements of shape may be 0, but not for casting. */
PyErr_Format(PyExc_ValueError,
"memoryview.cast(): elements of shape must be integers > 0");
return -1;
}
if (x > PY_SSIZE_T_MAX / len) {
PyErr_Format(PyExc_ValueError,
"memoryview.cast(): product(shape) > SSIZE_MAX");
return -1;
}
len *= x;
shape[i] = x;
}
return len;
}
/* Cast a 1-D array to a new shape. The result array will be C-contiguous.
If the result array does not have exactly the same byte length as the
input array, raise ValueError. */
static int
cast_to_ND(PyMemoryViewObject *mv, const PyObject *shape, int ndim)
{
Py_buffer *view = &mv->view;
Py_ssize_t len;
assert(view->ndim == 1); /* ndim from cast_to_1D() */
assert(Py_SIZE(mv) == 3*(ndim==0?1:ndim)); /* ndim of result array */
assert(view->shape == mv->ob_array);
assert(view->strides == mv->ob_array + (ndim==0?1:ndim));
assert(view->suboffsets == NULL);
view->ndim = ndim;
if (view->ndim == 0) {
view->shape = NULL;
view->strides = NULL;
len = view->itemsize;
}
else {
len = copy_shape(view->shape, shape, ndim, view->itemsize);
if (len < 0)
return -1;
init_strides_from_shape(view);
}
if (view->len != len) {
PyErr_SetString(PyExc_TypeError,
"memoryview: product(shape) * itemsize != buffer size");
return -1;
}
init_flags(mv);
return 0;
}
static int
zero_in_shape(PyMemoryViewObject *mv)
{
Py_buffer *view = &mv->view;
Py_ssize_t i;
for (i = 0; i < view->ndim; i++)
if (view->shape[i] == 0)
return 1;
return 0;
}
/*
Cast a copy of 'self' to a different view. The input view must
be C-contiguous. The function always casts the input view to a
1-D output according to 'format'. At least one of input-format,
output-format must have byte size.
If 'shape' is given, the 1-D view from the previous step will
be cast to a C-contiguous view with new shape and strides.
All casts must result in views that will have the exact byte
size of the original input. Otherwise, an error is raised.
*/
static PyObject *
memory_cast(PyMemoryViewObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"format", "shape", NULL};
PyMemoryViewObject *mv = NULL;
PyObject *shape = NULL;
PyObject *format;
Py_ssize_t ndim = 1;
CHECK_RELEASED(self);
if (!PyArg_ParseTupleAndKeywords(args, kwds, "O|O", kwlist,
&format, &shape)) {
return NULL;
}
if (!PyUnicode_Check(format)) {
PyErr_SetString(PyExc_TypeError,
"memoryview: format argument must be a string");
return NULL;
}
if (!MV_C_CONTIGUOUS(self->flags)) {
PyErr_SetString(PyExc_TypeError,
"memoryview: casts are restricted to C-contiguous views");
return NULL;
}
if ((shape || self->view.ndim != 1) && zero_in_shape(self)) {
PyErr_SetString(PyExc_TypeError,
"memoryview: cannot cast view with zeros in shape or strides");
return NULL;
}
if (shape) {
CHECK_LIST_OR_TUPLE(shape)
ndim = PySequence_Fast_GET_SIZE(shape);
if (ndim > PyBUF_MAX_NDIM) {
PyErr_SetString(PyExc_ValueError,
"memoryview: number of dimensions must not exceed "
Py_STRINGIFY(PyBUF_MAX_NDIM));
return NULL;
}
if (self->view.ndim != 1 && ndim != 1) {
PyErr_SetString(PyExc_TypeError,
"memoryview: cast must be 1D -> ND or ND -> 1D");
return NULL;
}
}
mv = (PyMemoryViewObject *)
mbuf_add_incomplete_view(self->mbuf, &self->view, ndim==0 ? 1 : (int)ndim);
if (mv == NULL)
return NULL;
if (cast_to_1D(mv, format) < 0)
goto error;
if (shape && cast_to_ND(mv, shape, (int)ndim) < 0)
goto error;
return (PyObject *)mv;
error:
Py_DECREF(mv);
return NULL;
}
/**************************************************************************/
/* getbuffer */
/**************************************************************************/
static int
memory_getbuf(PyMemoryViewObject *self, Py_buffer *view, int flags)
{
Py_buffer *base = &self->view;
int baseflags = self->flags;
CHECK_RELEASED_INT(self);
/* start with complete information */
*view = *base;
view->obj = NULL;
if (REQ_WRITABLE(flags) && base->readonly) {
PyErr_SetString(PyExc_BufferError,
"memoryview: underlying buffer is not writable");
return -1;
}
if (!REQ_FORMAT(flags)) {
/* NULL indicates that the buffer's data type has been cast to 'B'.
view->itemsize is the _previous_ itemsize. If shape is present,
the equality product(shape) * itemsize = len still holds at this
point. The equality calcsize(format) = itemsize does _not_ hold
from here on! */
view->format = NULL;
}
if (REQ_C_CONTIGUOUS(flags) && !MV_C_CONTIGUOUS(baseflags)) {
PyErr_SetString(PyExc_BufferError,
"memoryview: underlying buffer is not C-contiguous");
return -1;
}
if (REQ_F_CONTIGUOUS(flags) && !MV_F_CONTIGUOUS(baseflags)) {
PyErr_SetString(PyExc_BufferError,
"memoryview: underlying buffer is not Fortran contiguous");
return -1;
}
if (REQ_ANY_CONTIGUOUS(flags) && !MV_ANY_CONTIGUOUS(baseflags)) {
PyErr_SetString(PyExc_BufferError,
"memoryview: underlying buffer is not contiguous");
return -1;
}
if (!REQ_INDIRECT(flags) && (baseflags & _Py_MEMORYVIEW_PIL)) {
PyErr_SetString(PyExc_BufferError,
"memoryview: underlying buffer requires suboffsets");
return -1;
}
if (!REQ_STRIDES(flags)) {
if (!MV_C_CONTIGUOUS(baseflags)) {
PyErr_SetString(PyExc_BufferError,
"memoryview: underlying buffer is not C-contiguous");
return -1;
}
view->strides = NULL;
}
if (!REQ_SHAPE(flags)) {
/* PyBUF_SIMPLE or PyBUF_WRITABLE: at this point buf is C-contiguous,
so base->buf = ndbuf->data. */
if (view->format != NULL) {
/* PyBUF_SIMPLE|PyBUF_FORMAT and PyBUF_WRITABLE|PyBUF_FORMAT do
not make sense. */
PyErr_Format(PyExc_BufferError,
"memoryview: cannot cast to unsigned bytes if the format flag "
"is present");
return -1;
}
/* product(shape) * itemsize = len and calcsize(format) = itemsize
do _not_ hold from here on! */
view->ndim = 1;
view->shape = NULL;
}
view->obj = (PyObject *)self;
Py_INCREF(view->obj);
self->exports++;
return 0;
}
static void
memory_releasebuf(PyMemoryViewObject *self, Py_buffer *view)
{
self->exports--;
return;
/* PyBuffer_Release() decrements view->obj after this function returns. */
}
/* Buffer methods */
static PyBufferProcs memory_as_buffer = {
(getbufferproc)memory_getbuf, /* bf_getbuffer */
(releasebufferproc)memory_releasebuf, /* bf_releasebuffer */
};
/****************************************************************************/
/* Optimized pack/unpack for all native format specifiers */
/****************************************************************************/
/*
Fix exceptions:
1) Include format string in the error message.
2) OverflowError -> ValueError.
3) The error message from PyNumber_Index() is not ideal.
*/
static int
type_error_int(const char *fmt)
{
PyErr_Format(PyExc_TypeError,
"memoryview: invalid type for format '%s'", fmt);
return -1;
}
static int
value_error_int(const char *fmt)
{
PyErr_Format(PyExc_ValueError,
"memoryview: invalid value for format '%s'", fmt);
return -1;
}
static int
fix_error_int(const char *fmt)
{
assert(PyErr_Occurred());
if (PyErr_ExceptionMatches(PyExc_TypeError)) {
PyErr_Clear();
return type_error_int(fmt);
}
else if (PyErr_ExceptionMatches(PyExc_OverflowError) ||
PyErr_ExceptionMatches(PyExc_ValueError)) {
PyErr_Clear();
return value_error_int(fmt);
}
return -1;
}
/* Accept integer objects or objects with an __index__() method. */
static long
pylong_as_ld(PyObject *item)
{
PyObject *tmp;
long ld;
tmp = PyNumber_Index(item);
if (tmp == NULL)
return -1;
ld = PyLong_AsLong(tmp);
Py_DECREF(tmp);
return ld;
}
static unsigned long
pylong_as_lu(PyObject *item)
{
PyObject *tmp;
unsigned long lu;
tmp = PyNumber_Index(item);
if (tmp == NULL)
return (unsigned long)-1;
lu = PyLong_AsUnsignedLong(tmp);
Py_DECREF(tmp);
return lu;
}
static long long
pylong_as_lld(PyObject *item)
{
PyObject *tmp;
long long lld;
tmp = PyNumber_Index(item);
if (tmp == NULL)
return -1;
lld = PyLong_AsLongLong(tmp);
Py_DECREF(tmp);
return lld;
}
static unsigned long long
pylong_as_llu(PyObject *item)
{
PyObject *tmp;
unsigned long long llu;
tmp = PyNumber_Index(item);
if (tmp == NULL)
return (unsigned long long)-1;
llu = PyLong_AsUnsignedLongLong(tmp);
Py_DECREF(tmp);
return llu;
}
static Py_ssize_t
pylong_as_zd(PyObject *item)
{
PyObject *tmp;
Py_ssize_t zd;
tmp = PyNumber_Index(item);
if (tmp == NULL)
return -1;
zd = PyLong_AsSsize_t(tmp);
Py_DECREF(tmp);
return zd;
}
static size_t
pylong_as_zu(PyObject *item)
{
PyObject *tmp;
size_t zu;
tmp = PyNumber_Index(item);
if (tmp == NULL)
return (size_t)-1;
zu = PyLong_AsSize_t(tmp);
Py_DECREF(tmp);
return zu;
}
/* Timings with the ndarray from _testbuffer.c indicate that using the
struct module is around 15x slower than the two functions below. */
#define UNPACK_SINGLE(dest, ptr, type) \
do { \
type x; \
memcpy((char *)&x, ptr, sizeof x); \
dest = x; \
} while (0)
/* Unpack a single item. 'fmt' can be any native format character in struct
module syntax. This function is very sensitive to small changes. With this
layout gcc automatically generates a fast jump table. */
static inline PyObject *
unpack_single(const char *ptr, const char *fmt)
{
unsigned long long llu;
unsigned long lu;
size_t zu;
long long lld;
long ld;
Py_ssize_t zd;
double d;
unsigned char uc;
void *p;
switch (fmt[0]) {
/* signed integers and fast path for 'B' */
case 'B': uc = *((unsigned char *)ptr); goto convert_uc;
case 'b': ld = *((signed char *)ptr); goto convert_ld;
case 'h': UNPACK_SINGLE(ld, ptr, short); goto convert_ld;
case 'i': UNPACK_SINGLE(ld, ptr, int); goto convert_ld;
case 'l': UNPACK_SINGLE(ld, ptr, long); goto convert_ld;
/* boolean */
case '?': UNPACK_SINGLE(ld, ptr, _Bool); goto convert_bool;
/* unsigned integers */
case 'H': UNPACK_SINGLE(lu, ptr, unsigned short); goto convert_lu;
case 'I': UNPACK_SINGLE(lu, ptr, unsigned int); goto convert_lu;
case 'L': UNPACK_SINGLE(lu, ptr, unsigned long); goto convert_lu;
/* native 64-bit */
case 'q': UNPACK_SINGLE(lld, ptr, long long); goto convert_lld;
case 'Q': UNPACK_SINGLE(llu, ptr, unsigned long long); goto convert_llu;
/* ssize_t and size_t */
case 'n': UNPACK_SINGLE(zd, ptr, Py_ssize_t); goto convert_zd;
case 'N': UNPACK_SINGLE(zu, ptr, size_t); goto convert_zu;
/* floats */
case 'f': UNPACK_SINGLE(d, ptr, float); goto convert_double;
case 'd': UNPACK_SINGLE(d, ptr, double); goto convert_double;
/* bytes object */
case 'c': goto convert_bytes;
/* pointer */
case 'P': UNPACK_SINGLE(p, ptr, void *); goto convert_pointer;
/* default */
default: goto err_format;
}
convert_uc:
/* PyLong_FromUnsignedLong() is slower */
return PyLong_FromLong(uc);
convert_ld:
return PyLong_FromLong(ld);
convert_lu:
return PyLong_FromUnsignedLong(lu);
convert_lld:
return PyLong_FromLongLong(lld);
convert_llu:
return PyLong_FromUnsignedLongLong(llu);
convert_zd:
return PyLong_FromSsize_t(zd);
convert_zu:
return PyLong_FromSize_t(zu);
convert_double:
return PyFloat_FromDouble(d);
convert_bool:
return PyBool_FromLong(ld);
convert_bytes:
return PyBytes_FromStringAndSize(ptr, 1);
convert_pointer:
return PyLong_FromVoidPtr(p);
err_format:
PyErr_Format(PyExc_NotImplementedError,
"memoryview: format %s not supported", fmt);
return NULL;
}
#define PACK_SINGLE(ptr, src, type) \
do { \
type x; \
x = (type)src; \
memcpy(ptr, (char *)&x, sizeof x); \
} while (0)
/* Pack a single item. 'fmt' can be any native format character in
struct module syntax. */
static int
pack_single(char *ptr, PyObject *item, const char *fmt)
{
unsigned long long llu;
unsigned long lu;
size_t zu;
long long lld;
long ld;
Py_ssize_t zd;
double d;
void *p;
switch (fmt[0]) {
/* signed integers */
case 'b': case 'h': case 'i': case 'l':
ld = pylong_as_ld(item);
if (ld == -1 && PyErr_Occurred())
goto err_occurred;
switch (fmt[0]) {
case 'b':
if (ld < SCHAR_MIN || ld > SCHAR_MAX) goto err_range;
*((signed char *)ptr) = (signed char)ld; break;
case 'h':
if (ld < SHRT_MIN || ld > SHRT_MAX) goto err_range;
PACK_SINGLE(ptr, ld, short); break;
case 'i':
if (ld < INT_MIN || ld > INT_MAX) goto err_range;
PACK_SINGLE(ptr, ld, int); break;
default: /* 'l' */
PACK_SINGLE(ptr, ld, long); break;
}
break;
/* unsigned integers */
case 'B': case 'H': case 'I': case 'L':
lu = pylong_as_lu(item);
if (lu == (unsigned long)-1 && PyErr_Occurred())
goto err_occurred;
switch (fmt[0]) {
case 'B':
if (lu > UCHAR_MAX) goto err_range;
*((unsigned char *)ptr) = (unsigned char)lu; break;
case 'H':
if (lu > USHRT_MAX) goto err_range;
PACK_SINGLE(ptr, lu, unsigned short); break;
case 'I':
if (lu > UINT_MAX) goto err_range;
PACK_SINGLE(ptr, lu, unsigned int); break;
default: /* 'L' */
PACK_SINGLE(ptr, lu, unsigned long); break;
}
break;
/* native 64-bit */
case 'q':
lld = pylong_as_lld(item);
if (lld == -1 && PyErr_Occurred())
goto err_occurred;
PACK_SINGLE(ptr, lld, long long);
break;
case 'Q':
llu = pylong_as_llu(item);
if (llu == (unsigned long long)-1 && PyErr_Occurred())
goto err_occurred;
PACK_SINGLE(ptr, llu, unsigned long long);
break;
/* ssize_t and size_t */
case 'n':
zd = pylong_as_zd(item);
if (zd == -1 && PyErr_Occurred())
goto err_occurred;
PACK_SINGLE(ptr, zd, Py_ssize_t);
break;
case 'N':
zu = pylong_as_zu(item);
if (zu == (size_t)-1 && PyErr_Occurred())
goto err_occurred;
PACK_SINGLE(ptr, zu, size_t);
break;
/* floats */
case 'f': case 'd':
d = PyFloat_AsDouble(item);
if (d == -1.0 && PyErr_Occurred())
goto err_occurred;
if (fmt[0] == 'f') {
PACK_SINGLE(ptr, d, float);
}
else {
PACK_SINGLE(ptr, d, double);
}
break;
/* bool */
case '?':
ld = PyObject_IsTrue(item);
if (ld < 0)
return -1; /* preserve original error */
PACK_SINGLE(ptr, ld, _Bool);
break;
/* bytes object */
case 'c':
if (!PyBytes_Check(item))
return type_error_int(fmt);
if (PyBytes_GET_SIZE(item) != 1)
return value_error_int(fmt);
*ptr = PyBytes_AS_STRING(item)[0];
break;
/* pointer */
case 'P':
p = PyLong_AsVoidPtr(item);
if (p == NULL && PyErr_Occurred())
goto err_occurred;
PACK_SINGLE(ptr, p, void *);
break;
/* default */
default: goto err_format;
}
return 0;
err_occurred:
return fix_error_int(fmt);
err_range:
return value_error_int(fmt);
err_format:
PyErr_Format(PyExc_NotImplementedError,
"memoryview: format %s not supported", fmt);
return -1;
}
/****************************************************************************/
/* unpack using the struct module */
/****************************************************************************/
/* For reasonable performance it is necessary to cache all objects required
for unpacking. An unpacker can handle the format passed to unpack_from().
Invariant: All pointer fields of the struct should either be NULL or valid
pointers. */
struct unpacker {
PyObject *unpack_from; /* Struct.unpack_from(format) */
PyObject *mview; /* cached memoryview */
char *item; /* buffer for mview */
Py_ssize_t itemsize; /* len(item) */
};
static struct unpacker *
unpacker_new(void)
{
struct unpacker *x = PyMem_Malloc(sizeof *x);
if (x == NULL) {
PyErr_NoMemory();
return NULL;
}
x->unpack_from = NULL;
x->mview = NULL;
x->item = NULL;
x->itemsize = 0;
return x;
}
static void
unpacker_free(struct unpacker *x)
{
if (x) {
Py_XDECREF(x->unpack_from);
Py_XDECREF(x->mview);
PyMem_Free(x->item);
PyMem_Free(x);
}
}
/* Return a new unpacker for the given format. */
static struct unpacker *
struct_get_unpacker(const char *fmt, Py_ssize_t itemsize)
{
PyObject *structmodule; /* XXX cache these two */
PyObject *Struct = NULL; /* XXX in globals? */
PyObject *structobj = NULL;
PyObject *format = NULL;
struct unpacker *x = NULL;
structmodule = PyImport_ImportModule("struct");
if (structmodule == NULL)
return NULL;
Struct = PyObject_GetAttrString(structmodule, "Struct");
Py_DECREF(structmodule);
if (Struct == NULL)
return NULL;
x = unpacker_new();
if (x == NULL)
goto error;
format = PyBytes_FromString(fmt);
if (format == NULL)
goto error;
structobj = PyObject_CallFunctionObjArgs(Struct, format, NULL);
if (structobj == NULL)
goto error;
x->unpack_from = PyObject_GetAttrString(structobj, "unpack_from");
if (x->unpack_from == NULL)
goto error;
x->item = PyMem_Malloc(itemsize);
if (x->item == NULL) {
PyErr_NoMemory();
goto error;
}
x->itemsize = itemsize;
x->mview = PyMemoryView_FromMemory(x->item, itemsize, PyBUF_WRITE);
if (x->mview == NULL)
goto error;
out:
Py_XDECREF(Struct);
Py_XDECREF(format);
Py_XDECREF(structobj);
return x;
error:
unpacker_free(x);
x = NULL;
goto out;
}
/* unpack a single item */
static PyObject *
struct_unpack_single(const char *ptr, struct unpacker *x)
{
PyObject *v;
memcpy(x->item, ptr, x->itemsize);
v = PyObject_CallFunctionObjArgs(x->unpack_from, x->mview, NULL);
if (v == NULL)
return NULL;
if (PyTuple_GET_SIZE(v) == 1) {
PyObject *tmp = PyTuple_GET_ITEM(v, 0);
Py_INCREF(tmp);
Py_DECREF(v);
return tmp;
}
return v;
}
/****************************************************************************/
/* Representations */
/****************************************************************************/
/* allow explicit form of native format */
static inline const char *
adjust_fmt(const Py_buffer *view)
{
const char *fmt;
fmt = (view->format[0] == '@') ? view->format+1 : view->format;
if (fmt[0] && fmt[1] == '\0')
return fmt;
PyErr_Format(PyExc_NotImplementedError,
"memoryview: unsupported format %s", view->format);
return NULL;
}
/* Base case for multi-dimensional unpacking. Assumption: ndim == 1. */
static PyObject *
tolist_base(const char *ptr, const Py_ssize_t *shape,
const Py_ssize_t *strides, const Py_ssize_t *suboffsets,
const char *fmt)
{
PyObject *lst, *item;
Py_ssize_t i;
lst = PyList_New(shape[0]);
if (lst == NULL)
return NULL;
for (i = 0; i < shape[0]; ptr+=strides[0], i++) {
const char *xptr = ADJUST_PTR(ptr, suboffsets, 0);
item = unpack_single(xptr, fmt);
if (item == NULL) {
Py_DECREF(lst);
return NULL;
}
PyList_SET_ITEM(lst, i, item);
}
return lst;
}
/* Unpack a multi-dimensional array into a nested list.
Assumption: ndim >= 1. */
static PyObject *
tolist_rec(const char *ptr, Py_ssize_t ndim, const Py_ssize_t *shape,
const Py_ssize_t *strides, const Py_ssize_t *suboffsets,
const char *fmt)
{
PyObject *lst, *item;
Py_ssize_t i;
assert(ndim >= 1);
assert(shape != NULL);
assert(strides != NULL);
if (ndim == 1)
return tolist_base(ptr, shape, strides, suboffsets, fmt);
lst = PyList_New(shape[0]);
if (lst == NULL)
return NULL;
for (i = 0; i < shape[0]; ptr+=strides[0], i++) {
const char *xptr = ADJUST_PTR(ptr, suboffsets, 0);
item = tolist_rec(xptr, ndim-1, shape+1,
strides+1, suboffsets ? suboffsets+1 : NULL,
fmt);
if (item == NULL) {
Py_DECREF(lst);
return NULL;
}
PyList_SET_ITEM(lst, i, item);
}
return lst;
}
/* Return a list representation of the memoryview. Currently only buffers
with native format strings are supported. */
static PyObject *
memory_tolist(PyMemoryViewObject *mv, PyObject *noargs)
{
const Py_buffer *view = &(mv->view);
const char *fmt;
CHECK_RELEASED(mv);
fmt = adjust_fmt(view);
if (fmt == NULL)
return NULL;
if (view->ndim == 0) {
return unpack_single(view->buf, fmt);
}
else if (view->ndim == 1) {
return tolist_base(view->buf, view->shape,
view->strides, view->suboffsets,
fmt);
}
else {
return tolist_rec(view->buf, view->ndim, view->shape,
view->strides, view->suboffsets,
fmt);
}
}
static PyObject *
memory_tobytes(PyMemoryViewObject *self, PyObject *dummy)
{
Py_buffer *src = VIEW_ADDR(self);
PyObject *bytes = NULL;
CHECK_RELEASED(self);
if (MV_C_CONTIGUOUS(self->flags)) {
return PyBytes_FromStringAndSize(src->buf, src->len);
}
bytes = PyBytes_FromStringAndSize(NULL, src->len);
if (bytes == NULL)
return NULL;
if (buffer_to_contiguous(PyBytes_AS_STRING(bytes), src, 'C') < 0) {
Py_DECREF(bytes);
return NULL;
}
return bytes;
}
static PyObject *
memory_hex(PyMemoryViewObject *self, PyObject *dummy)
{
Py_buffer *src = VIEW_ADDR(self);
PyObject *bytes;
PyObject *ret;
CHECK_RELEASED(self);
if (MV_C_CONTIGUOUS(self->flags)) {
return _Py_strhex(src->buf, src->len);
}
bytes = memory_tobytes(self, dummy);
if (bytes == NULL)
return NULL;
ret = _Py_strhex(PyBytes_AS_STRING(bytes), Py_SIZE(bytes));
Py_DECREF(bytes);
return ret;
}
static PyObject *
memory_repr(PyMemoryViewObject *self)
{
if (self->flags & _Py_MEMORYVIEW_RELEASED)
return PyUnicode_FromFormat("<released memory at %p>", self);
else
return PyUnicode_FromFormat("<memory at %p>", self);
}
/**************************************************************************/
/* Indexing and slicing */
/**************************************************************************/
static char *
lookup_dimension(Py_buffer *view, char *ptr, int dim, Py_ssize_t index)
{
Py_ssize_t nitems; /* items in the given dimension */
assert(view->shape);
assert(view->strides);
nitems = view->shape[dim];
if (index < 0) {
index += nitems;
}
if (index < 0 || index >= nitems) {
PyErr_Format(PyExc_IndexError,
"index out of bounds on dimension %d", dim + 1);
return NULL;
}
ptr += view->strides[dim] * index;
ptr = ADJUST_PTR(ptr, view->suboffsets, dim);
return ptr;
}
/* Get the pointer to the item at index. */
static char *
ptr_from_index(Py_buffer *view, Py_ssize_t index)
{
char *ptr = (char *)view->buf;
return lookup_dimension(view, ptr, 0, index);
}
/* Get the pointer to the item at tuple. */
static char *
ptr_from_tuple(Py_buffer *view, PyObject *tup)
{
char *ptr = (char *)view->buf;
Py_ssize_t dim, nindices = PyTuple_GET_SIZE(tup);
if (nindices > view->ndim) {
PyErr_Format(PyExc_TypeError,
"cannot index %zd-dimension view with %zd-element tuple",
view->ndim, nindices);
return NULL;
}
for (dim = 0; dim < nindices; dim++) {
Py_ssize_t index;
index = PyNumber_AsSsize_t(PyTuple_GET_ITEM(tup, dim),
PyExc_IndexError);
if (index == -1 && PyErr_Occurred())
return NULL;
ptr = lookup_dimension(view, ptr, (int)dim, index);
if (ptr == NULL)
return NULL;
}
return ptr;
}
/* Return the item at index. In a one-dimensional view, this is an object
with the type specified by view->format. Otherwise, the item is a sub-view.
The function is used in memory_subscript() and memory_as_sequence. */
static PyObject *
memory_item(PyMemoryViewObject *self, Py_ssize_t index)
{
Py_buffer *view = &(self->view);
const char *fmt;
CHECK_RELEASED(self);
fmt = adjust_fmt(view);
if (fmt == NULL)
return NULL;
if (view->ndim == 0) {
PyErr_SetString(PyExc_TypeError, "invalid indexing of 0-dim memory");
return NULL;
}
if (view->ndim == 1) {
char *ptr = ptr_from_index(view, index);
if (ptr == NULL)
return NULL;
return unpack_single(ptr, fmt);
}
PyErr_SetString(PyExc_NotImplementedError,
"multi-dimensional sub-views are not implemented");
return NULL;
}
/* Return the item at position *key* (a tuple of indices). */
static PyObject *
memory_item_multi(PyMemoryViewObject *self, PyObject *tup)
{
Py_buffer *view = &(self->view);
const char *fmt;
Py_ssize_t nindices = PyTuple_GET_SIZE(tup);
char *ptr;
CHECK_RELEASED(self);
fmt = adjust_fmt(view);
if (fmt == NULL)
return NULL;
if (nindices < view->ndim) {
PyErr_SetString(PyExc_NotImplementedError,
"sub-views are not implemented");
return NULL;
}
ptr = ptr_from_tuple(view, tup);
if (ptr == NULL)
return NULL;
return unpack_single(ptr, fmt);
}
static inline int
init_slice(Py_buffer *base, PyObject *key, int dim)
{
Py_ssize_t start, stop, step, slicelength;
if (PySlice_Unpack(key, &start, &stop, &step) < 0) {
return -1;
}
slicelength = PySlice_AdjustIndices(base->shape[dim], &start, &stop, step);
if (base->suboffsets == NULL || dim == 0) {
adjust_buf:
base->buf = (char *)base->buf + base->strides[dim] * start;
}
else {
Py_ssize_t n = dim-1;
while (n >= 0 && base->suboffsets[n] < 0)
n--;
if (n < 0)
goto adjust_buf; /* all suboffsets are negative */
base->suboffsets[n] = base->suboffsets[n] + base->strides[dim] * start;
}
base->shape[dim] = slicelength;
base->strides[dim] = base->strides[dim] * step;
return 0;
}
static int
is_multislice(PyObject *key)
{
Py_ssize_t size, i;
if (!PyTuple_Check(key))
return 0;
size = PyTuple_GET_SIZE(key);
if (size == 0)
return 0;
for (i = 0; i < size; i++) {
PyObject *x = PyTuple_GET_ITEM(key, i);
if (!PySlice_Check(x))
return 0;
}
return 1;
}
static Py_ssize_t
is_multiindex(PyObject *key)
{
Py_ssize_t size, i;
if (!PyTuple_Check(key))
return 0;
size = PyTuple_GET_SIZE(key);
for (i = 0; i < size; i++) {
PyObject *x = PyTuple_GET_ITEM(key, i);
if (!PyIndex_Check(x))
return 0;
}
return 1;
}
/* mv[obj] returns an object holding the data for one element if obj
fully indexes the memoryview or another memoryview object if it
does not.
0-d memoryview objects can be referenced using mv[...] or mv[()]
but not with anything else. */
static PyObject *
memory_subscript(PyMemoryViewObject *self, PyObject *key)
{
Py_buffer *view;
view = &(self->view);
CHECK_RELEASED(self);
if (view->ndim == 0) {
if (PyTuple_Check(key) && PyTuple_GET_SIZE(key) == 0) {
const char *fmt = adjust_fmt(view);
if (fmt == NULL)
return NULL;
return unpack_single(view->buf, fmt);
}
else if (key == Py_Ellipsis) {
Py_INCREF(self);
return (PyObject *)self;
}
else {
PyErr_SetString(PyExc_TypeError,
"invalid indexing of 0-dim memory");
return NULL;
}
}
if (PyIndex_Check(key)) {
Py_ssize_t index;
index = PyNumber_AsSsize_t(key, PyExc_IndexError);
if (index == -1 && PyErr_Occurred())
return NULL;
return memory_item(self, index);
}
else if (PySlice_Check(key)) {
PyMemoryViewObject *sliced;
sliced = (PyMemoryViewObject *)mbuf_add_view(self->mbuf, view);
if (sliced == NULL)
return NULL;
if (init_slice(&sliced->view, key, 0) < 0) {
Py_DECREF(sliced);
return NULL;
}
init_len(&sliced->view);
init_flags(sliced);
return (PyObject *)sliced;
}
else if (is_multiindex(key)) {
return memory_item_multi(self, key);
}
else if (is_multislice(key)) {
PyErr_SetString(PyExc_NotImplementedError,
"multi-dimensional slicing is not implemented");
return NULL;
}
PyErr_SetString(PyExc_TypeError, "memoryview: invalid slice key");
return NULL;
}
static int
memory_ass_sub(PyMemoryViewObject *self, PyObject *key, PyObject *value)
{
Py_buffer *view = &(self->view);
Py_buffer src;
const char *fmt;
char *ptr;
CHECK_RELEASED_INT(self);
fmt = adjust_fmt(view);
if (fmt == NULL)
return -1;
if (view->readonly) {
PyErr_SetString(PyExc_TypeError, "cannot modify read-only memory");
return -1;
}
if (value == NULL) {
PyErr_SetString(PyExc_TypeError, "cannot delete memory");
return -1;
}
if (view->ndim == 0) {
if (key == Py_Ellipsis ||
(PyTuple_Check(key) && PyTuple_GET_SIZE(key)==0)) {
ptr = (char *)view->buf;
return pack_single(ptr, value, fmt);
}
else {
PyErr_SetString(PyExc_TypeError,
"invalid indexing of 0-dim memory");
return -1;
}
}
if (PyIndex_Check(key)) {
Py_ssize_t index;
if (1 < view->ndim) {
PyErr_SetString(PyExc_NotImplementedError,
"sub-views are not implemented");
return -1;
}
index = PyNumber_AsSsize_t(key, PyExc_IndexError);
if (index == -1 && PyErr_Occurred())
return -1;
ptr = ptr_from_index(view, index);
if (ptr == NULL)
return -1;
return pack_single(ptr, value, fmt);
}
/* one-dimensional: fast path */
if (PySlice_Check(key) && view->ndim == 1) {
Py_buffer dest; /* sliced view */
Py_ssize_t arrays[3];
int ret = -1;
/* rvalue must be an exporter */
if (PyObject_GetBuffer(value, &src, PyBUF_FULL_RO) < 0)
return ret;
dest = *view;
dest.shape = &arrays[0]; dest.shape[0] = view->shape[0];
dest.strides = &arrays[1]; dest.strides[0] = view->strides[0];
if (view->suboffsets) {
dest.suboffsets = &arrays[2]; dest.suboffsets[0] = view->suboffsets[0];
}
if (init_slice(&dest, key, 0) < 0)
goto end_block;
dest.len = dest.shape[0] * dest.itemsize;
ret = copy_single(&dest, &src);
end_block:
PyBuffer_Release(&src);
return ret;
}
if (is_multiindex(key)) {
char *ptr;
if (PyTuple_GET_SIZE(key) < view->ndim) {
PyErr_SetString(PyExc_NotImplementedError,
"sub-views are not implemented");
return -1;
}
ptr = ptr_from_tuple(view, key);
if (ptr == NULL)
return -1;
return pack_single(ptr, value, fmt);
}
if (PySlice_Check(key) || is_multislice(key)) {
/* Call memory_subscript() to produce a sliced lvalue, then copy
rvalue into lvalue. This is already implemented in _testbuffer.c. */
PyErr_SetString(PyExc_NotImplementedError,
"memoryview slice assignments are currently restricted "
"to ndim = 1");
return -1;
}
PyErr_SetString(PyExc_TypeError, "memoryview: invalid slice key");
return -1;
}
static Py_ssize_t
memory_length(PyMemoryViewObject *self)
{
CHECK_RELEASED_INT(self);
return self->view.ndim == 0 ? 1 : self->view.shape[0];
}
/* As mapping */
static PyMappingMethods memory_as_mapping = {
(lenfunc)memory_length, /* mp_length */
(binaryfunc)memory_subscript, /* mp_subscript */
(objobjargproc)memory_ass_sub, /* mp_ass_subscript */
};
/* As sequence */
static PySequenceMethods memory_as_sequence = {
(lenfunc)memory_length, /* sq_length */
0, /* sq_concat */
0, /* sq_repeat */
(ssizeargfunc)memory_item, /* sq_item */
};
/**************************************************************************/
/* Comparisons */
/**************************************************************************/
#define MV_COMPARE_EX -1 /* exception */
#define MV_COMPARE_NOT_IMPL -2 /* not implemented */
/* Translate a StructError to "not equal". Preserve other exceptions. */
static int
fix_struct_error_int(void)
{
assert(PyErr_Occurred());
/* XXX Cannot get at StructError directly? */
if (PyErr_ExceptionMatches(PyExc_ImportError) ||
PyErr_ExceptionMatches(PyExc_MemoryError)) {
return MV_COMPARE_EX;
}
/* StructError: invalid or unknown format -> not equal */
PyErr_Clear();
return 0;
}
/* Unpack and compare single items of p and q using the struct module. */
static int
struct_unpack_cmp(const char *p, const char *q,
struct unpacker *unpack_p, struct unpacker *unpack_q)
{
PyObject *v, *w;
int ret;
/* At this point any exception from the struct module should not be
StructError, since both formats have been accepted already. */
v = struct_unpack_single(p, unpack_p);
if (v == NULL)
return MV_COMPARE_EX;
w = struct_unpack_single(q, unpack_q);
if (w == NULL) {
Py_DECREF(v);
return MV_COMPARE_EX;
}
/* MV_COMPARE_EX == -1: exceptions are preserved */
ret = PyObject_RichCompareBool(v, w, Py_EQ);
Py_DECREF(v);
Py_DECREF(w);
return ret;
}
/* Unpack and compare single items of p and q. If both p and q have the same
single element native format, the comparison uses a fast path (gcc creates
a jump table and converts memcpy into simple assignments on x86/x64).
Otherwise, the comparison is delegated to the struct module, which is
30-60x slower. */
#define CMP_SINGLE(p, q, type) \
do { \
type x; \
type y; \
memcpy((char *)&x, p, sizeof x); \
memcpy((char *)&y, q, sizeof y); \
equal = (x == y); \
} while (0)
static inline int
unpack_cmp(const char *p, const char *q, char fmt,
struct unpacker *unpack_p, struct unpacker *unpack_q)
{
int equal;
switch (fmt) {
/* signed integers and fast path for 'B' */
case 'B': return *((unsigned char *)p) == *((unsigned char *)q);
case 'b': return *((signed char *)p) == *((signed char *)q);
case 'h': CMP_SINGLE(p, q, short); return equal;
case 'i': CMP_SINGLE(p, q, int); return equal;
case 'l': CMP_SINGLE(p, q, long); return equal;
/* boolean */
case '?': CMP_SINGLE(p, q, _Bool); return equal;
/* unsigned integers */
case 'H': CMP_SINGLE(p, q, unsigned short); return equal;
case 'I': CMP_SINGLE(p, q, unsigned int); return equal;
case 'L': CMP_SINGLE(p, q, unsigned long); return equal;
/* native 64-bit */
case 'q': CMP_SINGLE(p, q, long long); return equal;
case 'Q': CMP_SINGLE(p, q, unsigned long long); return equal;
/* ssize_t and size_t */
case 'n': CMP_SINGLE(p, q, Py_ssize_t); return equal;
case 'N': CMP_SINGLE(p, q, size_t); return equal;
/* floats */
/* XXX DBL_EPSILON? */
case 'f': CMP_SINGLE(p, q, float); return equal;
case 'd': CMP_SINGLE(p, q, double); return equal;
/* bytes object */
case 'c': return *p == *q;
/* pointer */
case 'P': CMP_SINGLE(p, q, void *); return equal;
/* use the struct module */
case '_':
assert(unpack_p);
assert(unpack_q);
return struct_unpack_cmp(p, q, unpack_p, unpack_q);
}
/* NOT REACHED */
PyErr_SetString(PyExc_RuntimeError,
"memoryview: internal error in richcompare");
return MV_COMPARE_EX;
}
/* Base case for recursive array comparisons. Assumption: ndim == 1. */
static int
cmp_base(const char *p, const char *q, const Py_ssize_t *shape,
const Py_ssize_t *pstrides, const Py_ssize_t *psuboffsets,
const Py_ssize_t *qstrides, const Py_ssize_t *qsuboffsets,
char fmt, struct unpacker *unpack_p, struct unpacker *unpack_q)
{
Py_ssize_t i;
int equal;
for (i = 0; i < shape[0]; p+=pstrides[0], q+=qstrides[0], i++) {
const char *xp = ADJUST_PTR(p, psuboffsets, 0);
const char *xq = ADJUST_PTR(q, qsuboffsets, 0);
equal = unpack_cmp(xp, xq, fmt, unpack_p, unpack_q);
if (equal <= 0)
return equal;
}
return 1;
}
/* Recursively compare two multi-dimensional arrays that have the same
logical structure. Assumption: ndim >= 1. */
static int
cmp_rec(const char *p, const char *q,
Py_ssize_t ndim, const Py_ssize_t *shape,
const Py_ssize_t *pstrides, const Py_ssize_t *psuboffsets,
const Py_ssize_t *qstrides, const Py_ssize_t *qsuboffsets,
char fmt, struct unpacker *unpack_p, struct unpacker *unpack_q)
{
Py_ssize_t i;
int equal;
assert(ndim >= 1);
assert(shape != NULL);
assert(pstrides != NULL);
assert(qstrides != NULL);
if (ndim == 1) {
return cmp_base(p, q, shape,
pstrides, psuboffsets,
qstrides, qsuboffsets,
fmt, unpack_p, unpack_q);
}
for (i = 0; i < shape[0]; p+=pstrides[0], q+=qstrides[0], i++) {
const char *xp = ADJUST_PTR(p, psuboffsets, 0);
const char *xq = ADJUST_PTR(q, qsuboffsets, 0);
equal = cmp_rec(xp, xq, ndim-1, shape+1,
pstrides+1, psuboffsets ? psuboffsets+1 : NULL,
qstrides+1, qsuboffsets ? qsuboffsets+1 : NULL,
fmt, unpack_p, unpack_q);
if (equal <= 0)
return equal;
}
return 1;
}
static PyObject *
memory_richcompare(PyObject *v, PyObject *w, int op)
{
PyObject *res;
Py_buffer wbuf, *vv;
Py_buffer *ww = NULL;
struct unpacker *unpack_v = NULL;
struct unpacker *unpack_w = NULL;
char vfmt, wfmt;
int equal = MV_COMPARE_NOT_IMPL;
if (op != Py_EQ && op != Py_NE)
goto result; /* Py_NotImplemented */
assert(PyMemoryView_Check(v));
if (BASE_INACCESSIBLE(v)) {
equal = (v == w);
goto result;
}
vv = VIEW_ADDR(v);
if (PyMemoryView_Check(w)) {
if (BASE_INACCESSIBLE(w)) {
equal = (v == w);
goto result;
}
ww = VIEW_ADDR(w);
}
else {
if (PyObject_GetBuffer(w, &wbuf, PyBUF_FULL_RO) < 0) {
PyErr_Clear();
goto result; /* Py_NotImplemented */
}
ww = &wbuf;
}
if (!equiv_shape(vv, ww)) {
PyErr_Clear();
equal = 0;
goto result;
}
/* Use fast unpacking for identical primitive C type formats. */
if (get_native_fmtchar(&vfmt, vv->format) < 0)
vfmt = '_';
if (get_native_fmtchar(&wfmt, ww->format) < 0)
wfmt = '_';
if (vfmt == '_' || wfmt == '_' || vfmt != wfmt) {
/* Use struct module unpacking. NOTE: Even for equal format strings,
memcmp() cannot be used for item comparison since it would give
incorrect results in the case of NaNs or uninitialized padding
bytes. */
vfmt = '_';
unpack_v = struct_get_unpacker(vv->format, vv->itemsize);
if (unpack_v == NULL) {
equal = fix_struct_error_int();
goto result;
}
unpack_w = struct_get_unpacker(ww->format, ww->itemsize);
if (unpack_w == NULL) {
equal = fix_struct_error_int();
goto result;
}
}
if (vv->ndim == 0) {
equal = unpack_cmp(vv->buf, ww->buf,
vfmt, unpack_v, unpack_w);
}
else if (vv->ndim == 1) {
equal = cmp_base(vv->buf, ww->buf, vv->shape,
vv->strides, vv->suboffsets,
ww->strides, ww->suboffsets,
vfmt, unpack_v, unpack_w);
}
else {
equal = cmp_rec(vv->buf, ww->buf, vv->ndim, vv->shape,
vv->strides, vv->suboffsets,
ww->strides, ww->suboffsets,
vfmt, unpack_v, unpack_w);
}
result:
if (equal < 0) {
if (equal == MV_COMPARE_NOT_IMPL)
res = Py_NotImplemented;
else /* exception */
res = NULL;
}
else if ((equal && op == Py_EQ) || (!equal && op == Py_NE))
res = Py_True;
else
res = Py_False;
if (ww == &wbuf)
PyBuffer_Release(ww);
unpacker_free(unpack_v);
unpacker_free(unpack_w);
Py_XINCREF(res);
return res;
}
/**************************************************************************/
/* Hash */
/**************************************************************************/
static Py_hash_t
memory_hash(PyMemoryViewObject *self)
{
if (self->hash == -1) {
Py_buffer *view = &self->view;
char *mem = view->buf;
Py_ssize_t ret;
char fmt;
CHECK_RELEASED_INT(self);
if (!view->readonly) {
PyErr_SetString(PyExc_ValueError,
"cannot hash writable memoryview object");
return -1;
}
ret = get_native_fmtchar(&fmt, view->format);
if (ret < 0 || !IS_BYTE_FORMAT(fmt)) {
PyErr_SetString(PyExc_ValueError,
"memoryview: hashing is restricted to formats 'B', 'b' or 'c'");
return -1;
}
if (view->obj != NULL && PyObject_Hash(view->obj) == -1) {
/* Keep the original error message */
return -1;
}
if (!MV_C_CONTIGUOUS(self->flags)) {
mem = PyMem_Malloc(view->len);
if (mem == NULL) {
PyErr_NoMemory();
return -1;
}
if (buffer_to_contiguous(mem, view, 'C') < 0) {
PyMem_Free(mem);
return -1;
}
}
/* Can't fail */
self->hash = _Py_HashBytes(mem, view->len);
if (mem != view->buf)
PyMem_Free(mem);
}
return self->hash;
}
/**************************************************************************/
/* getters */
/**************************************************************************/
static PyObject *
_IntTupleFromSsizet(int len, Py_ssize_t *vals)
{
int i;
PyObject *o;
PyObject *intTuple;
if (vals == NULL)
return PyTuple_New(0);
intTuple = PyTuple_New(len);
if (!intTuple)
return NULL;
for (i=0; i<len; i++) {
o = PyLong_FromSsize_t(vals[i]);
if (!o) {
Py_DECREF(intTuple);
return NULL;
}
PyTuple_SET_ITEM(intTuple, i, o);
}
return intTuple;
}
static PyObject *
memory_obj_get(PyMemoryViewObject *self, void *Py_UNUSED(ignored))
{
Py_buffer *view = &self->view;
CHECK_RELEASED(self);
if (view->obj == NULL) {
Py_RETURN_NONE;
}
Py_INCREF(view->obj);
return view->obj;
}
static PyObject *
memory_nbytes_get(PyMemoryViewObject *self, void *Py_UNUSED(ignored))
{
CHECK_RELEASED(self);
return PyLong_FromSsize_t(self->view.len);
}
static PyObject *
memory_format_get(PyMemoryViewObject *self, void *Py_UNUSED(ignored))
{
CHECK_RELEASED(self);
return PyUnicode_FromString(self->view.format);
}
static PyObject *
memory_itemsize_get(PyMemoryViewObject *self, void *Py_UNUSED(ignored))
{
CHECK_RELEASED(self);
return PyLong_FromSsize_t(self->view.itemsize);
}
static PyObject *
memory_shape_get(PyMemoryViewObject *self, void *Py_UNUSED(ignored))
{
CHECK_RELEASED(self);
return _IntTupleFromSsizet(self->view.ndim, self->view.shape);
}
static PyObject *
memory_strides_get(PyMemoryViewObject *self, void *Py_UNUSED(ignored))
{
CHECK_RELEASED(self);
return _IntTupleFromSsizet(self->view.ndim, self->view.strides);
}
static PyObject *
memory_suboffsets_get(PyMemoryViewObject *self, void *Py_UNUSED(ignored))
{
CHECK_RELEASED(self);
return _IntTupleFromSsizet(self->view.ndim, self->view.suboffsets);
}
static PyObject *
memory_readonly_get(PyMemoryViewObject *self, void *Py_UNUSED(ignored))
{
CHECK_RELEASED(self);
return PyBool_FromLong(self->view.readonly);
}
static PyObject *
memory_ndim_get(PyMemoryViewObject *self, void *Py_UNUSED(ignored))
{
CHECK_RELEASED(self);
return PyLong_FromLong(self->view.ndim);
}
static PyObject *
memory_c_contiguous(PyMemoryViewObject *self, PyObject *dummy)
{
CHECK_RELEASED(self);
return PyBool_FromLong(MV_C_CONTIGUOUS(self->flags));
}
static PyObject *
memory_f_contiguous(PyMemoryViewObject *self, PyObject *dummy)
{
CHECK_RELEASED(self);
return PyBool_FromLong(MV_F_CONTIGUOUS(self->flags));
}
static PyObject *
memory_contiguous(PyMemoryViewObject *self, PyObject *dummy)
{
CHECK_RELEASED(self);
return PyBool_FromLong(MV_ANY_CONTIGUOUS(self->flags));
}
PyDoc_STRVAR(memory_obj_doc,
"The underlying object of the memoryview.");
PyDoc_STRVAR(memory_nbytes_doc,
"The amount of space in bytes that the array would use in\n"
" a contiguous representation.");
PyDoc_STRVAR(memory_readonly_doc,
"A bool indicating whether the memory is read only.");
PyDoc_STRVAR(memory_itemsize_doc,
"The size in bytes of each element of the memoryview.");
PyDoc_STRVAR(memory_format_doc,
"A string containing the format (in struct module style)\n"
" for each element in the view.");
PyDoc_STRVAR(memory_ndim_doc,
"An integer indicating how many dimensions of a multi-dimensional\n"
" array the memory represents.");
PyDoc_STRVAR(memory_shape_doc,
"A tuple of ndim integers giving the shape of the memory\n"
" as an N-dimensional array.");
PyDoc_STRVAR(memory_strides_doc,
"A tuple of ndim integers giving the size in bytes to access\n"
" each element for each dimension of the array.");
PyDoc_STRVAR(memory_suboffsets_doc,
"A tuple of integers used internally for PIL-style arrays.");
PyDoc_STRVAR(memory_c_contiguous_doc,
"A bool indicating whether the memory is C contiguous.");
PyDoc_STRVAR(memory_f_contiguous_doc,
"A bool indicating whether the memory is Fortran contiguous.");
PyDoc_STRVAR(memory_contiguous_doc,
"A bool indicating whether the memory is contiguous.");
static PyGetSetDef memory_getsetlist[] = {
{"obj", (getter)memory_obj_get, NULL, memory_obj_doc},
{"nbytes", (getter)memory_nbytes_get, NULL, memory_nbytes_doc},
{"readonly", (getter)memory_readonly_get, NULL, memory_readonly_doc},
{"itemsize", (getter)memory_itemsize_get, NULL, memory_itemsize_doc},
{"format", (getter)memory_format_get, NULL, memory_format_doc},
{"ndim", (getter)memory_ndim_get, NULL, memory_ndim_doc},
{"shape", (getter)memory_shape_get, NULL, memory_shape_doc},
{"strides", (getter)memory_strides_get, NULL, memory_strides_doc},
{"suboffsets", (getter)memory_suboffsets_get, NULL, memory_suboffsets_doc},
{"c_contiguous", (getter)memory_c_contiguous, NULL, memory_c_contiguous_doc},
{"f_contiguous", (getter)memory_f_contiguous, NULL, memory_f_contiguous_doc},
{"contiguous", (getter)memory_contiguous, NULL, memory_contiguous_doc},
{NULL, NULL, NULL, NULL},
};
PyDoc_STRVAR(memory_release_doc,
"release($self, /)\n--\n\
\n\
Release the underlying buffer exposed by the memoryview object.");
PyDoc_STRVAR(memory_tobytes_doc,
"tobytes($self, /)\n--\n\
\n\
Return the data in the buffer as a byte string.");
PyDoc_STRVAR(memory_hex_doc,
"hex($self, /)\n--\n\
\n\
Return the data in the buffer as a string of hexadecimal numbers.");
PyDoc_STRVAR(memory_tolist_doc,
"tolist($self, /)\n--\n\
\n\
Return the data in the buffer as a list of elements.");
PyDoc_STRVAR(memory_cast_doc,
"cast($self, /, format, *, shape)\n--\n\
\n\
Cast a memoryview to a new format or shape.");
static PyMethodDef memory_methods[] = {
{"release", (PyCFunction)memory_release, METH_NOARGS, memory_release_doc},
{"tobytes", (PyCFunction)memory_tobytes, METH_NOARGS, memory_tobytes_doc},
{"hex", (PyCFunction)memory_hex, METH_NOARGS, memory_hex_doc},
{"tolist", (PyCFunction)memory_tolist, METH_NOARGS, memory_tolist_doc},
{"cast", (PyCFunction)memory_cast, METH_VARARGS|METH_KEYWORDS, memory_cast_doc},
{"__enter__", memory_enter, METH_NOARGS, NULL},
{"__exit__", memory_exit, METH_VARARGS, NULL},
{NULL, NULL}
};
PyTypeObject PyMemoryView_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"memoryview", /* tp_name */
offsetof(PyMemoryViewObject, ob_array), /* tp_basicsize */
sizeof(Py_ssize_t), /* tp_itemsize */
(destructor)memory_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)memory_repr, /* tp_repr */
0, /* tp_as_number */
&memory_as_sequence, /* tp_as_sequence */
&memory_as_mapping, /* tp_as_mapping */
(hashfunc)memory_hash, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
&memory_as_buffer, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, /* tp_flags */
memory_doc, /* tp_doc */
(traverseproc)memory_traverse, /* tp_traverse */
(inquiry)memory_clear, /* tp_clear */
memory_richcompare, /* tp_richcompare */
offsetof(PyMemoryViewObject, weakreflist),/* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
memory_methods, /* tp_methods */
0, /* tp_members */
memory_getsetlist, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
memory_new, /* tp_new */
};
| 92,589 | 3,134 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/unicodeobject-deadcode.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#define PY_SSIZE_T_CLEAN
#include "libc/assert.h"
#include "third_party/python/Include/codecs.h"
#include "third_party/python/Include/pyerrors.h"
#include "third_party/python/Include/pymem.h"
#include "third_party/python/Include/unicodeobject.h"
#include "third_party/python/Include/warnings.h"
/* clang-format off */
#define _PyUnicode_STATE(op) \
(((PyASCIIObject *)(op))->state)
int ensure_unicode(PyObject *);
PyObject *unicode_result(PyObject *);
int unicode_check_modifiable(PyObject *);
PyObject *unicode_encode_ucs1(PyObject *, const char *, const Py_UCS4);
PyObject *_PyUnicode_TranslateCharmap(PyObject *, PyObject *, const char *);
/* The max unicode value is always 0x10FFFF while using the PEP-393 API.
This function is kept for backward compatibility with the old API. */
Py_UNICODE
PyUnicode_GetMax(void)
{
#ifdef Py_UNICODE_WIDE
return 0x10FFFF;
#else
/* This is actually an illegal character, so it should
not be passed to unichr. */
return 0xFFFF;
#endif
}
PyObject *
PyUnicode_AsDecodedObject(PyObject *unicode,
const char *encoding,
const char *errors)
{
if (!PyUnicode_Check(unicode)) {
PyErr_BadArgument();
return NULL;
}
if (PyErr_WarnEx(PyExc_DeprecationWarning,
"PyUnicode_AsDecodedObject() is deprecated; "
"use PyCodec_Decode() to decode from str", 1) < 0)
return NULL;
if (encoding == NULL)
encoding = PyUnicode_GetDefaultEncoding();
/* Decode via the codec registry */
return PyCodec_Decode(unicode, encoding, errors);
}
PyObject *
PyUnicode_AsDecodedUnicode(PyObject *unicode,
const char *encoding,
const char *errors)
{
PyObject *v;
if (!PyUnicode_Check(unicode)) {
PyErr_BadArgument();
goto onError;
}
if (PyErr_WarnEx(PyExc_DeprecationWarning,
"PyUnicode_AsDecodedUnicode() is deprecated; "
"use PyCodec_Decode() to decode from str to str", 1) < 0)
return NULL;
if (encoding == NULL)
encoding = PyUnicode_GetDefaultEncoding();
/* Decode via the codec registry */
v = PyCodec_Decode(unicode, encoding, errors);
if (v == NULL)
goto onError;
if (!PyUnicode_Check(v)) {
PyErr_Format(PyExc_TypeError,
"'%.400s' decoder returned '%.400s' instead of 'str'; "
"use codecs.decode() to decode to arbitrary types",
encoding,
Py_TYPE(unicode)->tp_name);
Py_DECREF(v);
goto onError;
}
return unicode_result(v);
onError:
return NULL;
}
PyObject *
PyUnicode_AsEncodedObject(PyObject *unicode,
const char *encoding,
const char *errors)
{
PyObject *v;
if (!PyUnicode_Check(unicode)) {
PyErr_BadArgument();
goto onError;
}
if (PyErr_WarnEx(PyExc_DeprecationWarning,
"PyUnicode_AsEncodedObject() is deprecated; "
"use PyUnicode_AsEncodedString() to encode from str to bytes "
"or PyCodec_Encode() for generic encoding", 1) < 0)
return NULL;
if (encoding == NULL)
encoding = PyUnicode_GetDefaultEncoding();
/* Encode via the codec registry */
v = PyCodec_Encode(unicode, encoding, errors);
if (v == NULL)
goto onError;
return v;
onError:
return NULL;
}
PyObject *
PyUnicode_AsEncodedUnicode(PyObject *unicode,
const char *encoding,
const char *errors)
{
PyObject *v;
if (!PyUnicode_Check(unicode)) {
PyErr_BadArgument();
goto onError;
}
if (PyErr_WarnEx(PyExc_DeprecationWarning,
"PyUnicode_AsEncodedUnicode() is deprecated; "
"use PyCodec_Encode() to encode from str to str", 1) < 0)
return NULL;
if (encoding == NULL)
encoding = PyUnicode_GetDefaultEncoding();
/* Encode via the codec registry */
v = PyCodec_Encode(unicode, encoding, errors);
if (v == NULL)
goto onError;
if (!PyUnicode_Check(v)) {
PyErr_Format(PyExc_TypeError,
"'%.400s' encoder returned '%.400s' instead of 'str'; "
"use codecs.encode() to encode to arbitrary types",
encoding,
Py_TYPE(v)->tp_name);
Py_DECREF(v);
goto onError;
}
return v;
onError:
return NULL;
}
wchar_t *
_PyUnicode_AsWideCharString(PyObject *unicode)
{
const wchar_t *wstr;
wchar_t *buffer;
Py_ssize_t buflen;
if (unicode == NULL) {
PyErr_BadInternalCall();
return NULL;
}
wstr = PyUnicode_AsUnicodeAndSize(unicode, &buflen);
if (wstr == NULL) {
return NULL;
}
if (wcslen(wstr) != (size_t)buflen) {
PyErr_SetString(PyExc_ValueError,
"embedded null character");
return NULL;
}
buffer = PyMem_NEW(wchar_t, buflen + 1);
if (buffer == NULL) {
PyErr_NoMemory();
return NULL;
}
memcpy(buffer, wstr, (buflen + 1) * sizeof(wchar_t));
return buffer;
}
const Py_UNICODE *
_PyUnicode_AsUnicode(PyObject *unicode)
{
Py_ssize_t size;
const Py_UNICODE *wstr;
wstr = PyUnicode_AsUnicodeAndSize(unicode, &size);
if (wstr && wcslen(wstr) != (size_t)size) {
PyErr_SetString(PyExc_ValueError, "embedded null character");
return NULL;
}
return wstr;
}
Py_ssize_t
PyUnicode_GetSize(PyObject *unicode)
{
if (!PyUnicode_Check(unicode)) {
PyErr_BadArgument();
goto onError;
}
return PyUnicode_GET_SIZE(unicode);
onError:
return -1;
}
int
PyUnicode_WriteChar(PyObject *unicode, Py_ssize_t index, Py_UCS4 ch)
{
if (!PyUnicode_Check(unicode) || !PyUnicode_IS_COMPACT(unicode)) {
PyErr_BadArgument();
return -1;
}
assert(PyUnicode_IS_READY(unicode));
if (index < 0 || index >= PyUnicode_GET_LENGTH(unicode)) {
PyErr_SetString(PyExc_IndexError, "string index out of range");
return -1;
}
if (unicode_check_modifiable(unicode))
return -1;
if (ch > PyUnicode_MAX_CHAR_VALUE(unicode)) {
PyErr_SetString(PyExc_ValueError, "character out of range");
return -1;
}
PyUnicode_WRITE(PyUnicode_KIND(unicode), PyUnicode_DATA(unicode),
index, ch);
return 0;
}
/* Deprecated */
PyObject *
PyUnicode_EncodeLatin1(const Py_UNICODE *p,
Py_ssize_t size,
const char *errors)
{
PyObject *result;
PyObject *unicode = PyUnicode_FromUnicode(p, size);
if (unicode == NULL)
return NULL;
result = unicode_encode_ucs1(unicode, errors, 256);
Py_DECREF(unicode);
return result;
}
/* Deprecated */
PyObject *
PyUnicode_EncodeASCII(const Py_UNICODE *p,
Py_ssize_t size,
const char *errors)
{
PyObject *result;
PyObject *unicode = PyUnicode_FromUnicode(p, size);
if (unicode == NULL)
return NULL;
result = unicode_encode_ucs1(unicode, errors, 128);
Py_DECREF(unicode);
return result;
}
PyObject *
PyUnicode_Encode(const Py_UNICODE *s,
Py_ssize_t size,
const char *encoding,
const char *errors)
{
PyObject *v, *unicode;
unicode = PyUnicode_FromUnicode(s, size);
if (unicode == NULL)
return NULL;
v = PyUnicode_AsEncodedString(unicode, encoding, errors);
Py_DECREF(unicode);
return v;
}
/* Deprecated */
PyObject *
PyUnicode_EncodeCharmap(const Py_UNICODE *p,
Py_ssize_t size,
PyObject *mapping,
const char *errors)
{
PyObject *result;
PyObject *unicode = PyUnicode_FromUnicode(p, size);
if (unicode == NULL)
return NULL;
result = _PyUnicode_EncodeCharmap(unicode, mapping, errors);
Py_DECREF(unicode);
return result;
}
/* Deprecated. Use PyUnicode_Translate instead. */
PyObject *
PyUnicode_TranslateCharmap(const Py_UNICODE *p,
Py_ssize_t size,
PyObject *mapping,
const char *errors)
{
PyObject *result;
PyObject *unicode = PyUnicode_FromUnicode(p, size);
if (!unicode)
return NULL;
result = _PyUnicode_TranslateCharmap(unicode, mapping, errors);
Py_DECREF(unicode);
return result;
}
void
PyUnicode_InternImmortal(PyObject **p)
{
PyUnicode_InternInPlace(p);
if (PyUnicode_CHECK_INTERNED(*p) != SSTATE_INTERNED_IMMORTAL) {
_PyUnicode_STATE(*p).interned = SSTATE_INTERNED_IMMORTAL;
Py_INCREF(*p);
}
}
Py_UNICODE*
Py_UNICODE_strcpy(Py_UNICODE *s1, const Py_UNICODE *s2)
{
Py_UNICODE *u = s1;
while ((*u++ = *s2++));
return s1;
}
Py_UNICODE*
Py_UNICODE_strncpy(Py_UNICODE *s1, const Py_UNICODE *s2, size_t n)
{
Py_UNICODE *u = s1;
while ((*u++ = *s2++))
if (n-- == 0)
break;
return s1;
}
Py_UNICODE*
Py_UNICODE_strcat(Py_UNICODE *s1, const Py_UNICODE *s2)
{
Py_UNICODE *u1 = s1;
u1 += Py_UNICODE_strlen(u1);
Py_UNICODE_strcpy(u1, s2);
return s1;
}
int
Py_UNICODE_strcmp(const Py_UNICODE *s1, const Py_UNICODE *s2)
{
while (*s1 && *s2 && *s1 == *s2)
s1++, s2++;
if (*s1 && *s2)
return (*s1 < *s2) ? -1 : +1;
if (*s1)
return 1;
if (*s2)
return -1;
return 0;
}
int
Py_UNICODE_strncmp(const Py_UNICODE *s1, const Py_UNICODE *s2, size_t n)
{
Py_UNICODE u1, u2;
for (; n != 0; n--) {
u1 = *s1;
u2 = *s2;
if (u1 != u2)
return (u1 < u2) ? -1 : +1;
if (u1 == '\0')
return 0;
s1++;
s2++;
}
return 0;
}
Py_UNICODE*
Py_UNICODE_strchr(const Py_UNICODE *s, Py_UNICODE c)
{
const Py_UNICODE *p;
for (p = s; *p; p++)
if (*p == c)
return (Py_UNICODE*)p;
return NULL;
}
Py_UNICODE*
Py_UNICODE_strrchr(const Py_UNICODE *s, Py_UNICODE c)
{
const Py_UNICODE *p;
p = s + Py_UNICODE_strlen(s);
while (p != s) {
p--;
if (*p == c)
return (Py_UNICODE*)p;
}
return NULL;
}
size_t
Py_UNICODE_strlen(const Py_UNICODE *u)
{
int res = 0;
while(*u++)
res++;
return res;
}
Py_UNICODE*
PyUnicode_AsUnicodeCopy(PyObject *unicode)
{
Py_UNICODE *u, *copy;
Py_ssize_t len, size;
if (!PyUnicode_Check(unicode)) {
PyErr_BadArgument();
return NULL;
}
u = PyUnicode_AsUnicodeAndSize(unicode, &len);
if (u == NULL)
return NULL;
/* Ensure we won't overflow the size. */
if (len > ((PY_SSIZE_T_MAX / (Py_ssize_t)sizeof(Py_UNICODE)) - 1)) {
PyErr_NoMemory();
return NULL;
}
size = len + 1; /* copy the null character */
size *= sizeof(Py_UNICODE);
copy = PyMem_Malloc(size);
if (copy == NULL) {
PyErr_NoMemory();
return NULL;
}
memcpy(copy, u, size);
return copy;
}
| 12,073 | 432 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/weakrefobject.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/boolobject.h"
#include "third_party/python/Include/ceval.h"
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/structmember.h"
#include "third_party/python/Include/weakrefobject.h"
#include "third_party/quickjs/quickjs.h"
/* clang-format off */
#define GET_WEAKREFS_LISTPTR(o) \
((PyWeakReference **) PyObject_GET_WEAKREFS_LISTPTR(o))
Py_ssize_t
_PyWeakref_GetWeakrefCount(PyWeakReference *head)
{
Py_ssize_t count = 0;
while (head != NULL) {
++count;
head = head->wr_next;
}
return count;
}
static void
init_weakref(PyWeakReference *self, PyObject *ob, PyObject *callback)
{
self->hash = -1;
self->wr_object = ob;
self->wr_prev = NULL;
self->wr_next = NULL;
Py_XINCREF(callback);
self->wr_callback = callback;
}
static PyWeakReference *
new_weakref(PyObject *ob, PyObject *callback)
{
PyWeakReference *result;
result = PyObject_GC_New(PyWeakReference, &_PyWeakref_RefType);
if (result) {
init_weakref(result, ob, callback);
PyObject_GC_Track(result);
}
return result;
}
/* This function clears the passed-in reference and removes it from the
* list of weak references for the referent. This is the only code that
* removes an item from the doubly-linked list of weak references for an
* object; it is also responsible for clearing the callback slot.
*/
static void
clear_weakref(PyWeakReference *self)
{
PyObject *callback = self->wr_callback;
if (self->wr_object != Py_None) {
PyWeakReference **list = GET_WEAKREFS_LISTPTR(self->wr_object);
if (*list == self)
/* If 'self' is the end of the list (and thus self->wr_next == NULL)
then the weakref list itself (and thus the value of *list) will
end up being set to NULL. */
*list = self->wr_next;
self->wr_object = Py_None;
if (self->wr_prev != NULL)
self->wr_prev->wr_next = self->wr_next;
if (self->wr_next != NULL)
self->wr_next->wr_prev = self->wr_prev;
self->wr_prev = NULL;
self->wr_next = NULL;
}
if (callback != NULL) {
Py_DECREF(callback);
self->wr_callback = NULL;
}
}
/* Cyclic gc uses this to *just* clear the passed-in reference, leaving
* the callback intact and uncalled. It must be possible to call self's
* tp_dealloc() after calling this, so self has to be left in a sane enough
* state for that to work. We expect tp_dealloc to decref the callback
* then. The reason for not letting clear_weakref() decref the callback
* right now is that if the callback goes away, that may in turn trigger
* another callback (if a weak reference to the callback exists) -- running
* arbitrary Python code in the middle of gc is a disaster. The convolution
* here allows gc to delay triggering such callbacks until the world is in
* a sane state again.
*/
void
_PyWeakref_ClearRef(PyWeakReference *self)
{
PyObject *callback;
assert(self != NULL);
assert(PyWeakref_Check(self));
/* Preserve and restore the callback around clear_weakref. */
callback = self->wr_callback;
self->wr_callback = NULL;
clear_weakref(self);
self->wr_callback = callback;
}
static void
weakref_dealloc(PyObject *self)
{
PyObject_GC_UnTrack(self);
clear_weakref((PyWeakReference *) self);
Py_TYPE(self)->tp_free(self);
}
static int
gc_traverse(PyWeakReference *self, visitproc visit, void *arg)
{
Py_VISIT(self->wr_callback);
return 0;
}
static int
gc_clear(PyWeakReference *self)
{
clear_weakref(self);
return 0;
}
static PyObject *
weakref_call(PyWeakReference *self, PyObject *args, PyObject *kw)
{
static char *kwlist[] = {NULL};
if (PyArg_ParseTupleAndKeywords(args, kw, ":__call__", kwlist)) {
PyObject *object = PyWeakref_GET_OBJECT(self);
Py_INCREF(object);
return (object);
}
return NULL;
}
static Py_hash_t
weakref_hash(PyWeakReference *self)
{
if (self->hash != -1)
return self->hash;
if (PyWeakref_GET_OBJECT(self) == Py_None) {
PyErr_SetString(PyExc_TypeError, "weak object has gone away");
return -1;
}
self->hash = PyObject_Hash(PyWeakref_GET_OBJECT(self));
return self->hash;
}
static PyObject *
weakref_repr(PyWeakReference *self)
{
PyObject *name, *repr;
_Py_IDENTIFIER(__name__);
if (PyWeakref_GET_OBJECT(self) == Py_None)
return PyUnicode_FromFormat("<weakref at %p; dead>", self);
name = _PyObject_GetAttrId(PyWeakref_GET_OBJECT(self), &PyId___name__);
if (name == NULL || !PyUnicode_Check(name)) {
if (name == NULL)
PyErr_Clear();
repr = PyUnicode_FromFormat(
"<weakref at %p; to '%s' at %p>",
self,
Py_TYPE(PyWeakref_GET_OBJECT(self))->tp_name,
PyWeakref_GET_OBJECT(self));
}
else {
repr = PyUnicode_FromFormat(
"<weakref at %p; to '%s' at %p (%U)>",
self,
Py_TYPE(PyWeakref_GET_OBJECT(self))->tp_name,
PyWeakref_GET_OBJECT(self),
name);
}
Py_XDECREF(name);
return repr;
}
/* Weak references only support equality, not ordering. Two weak references
are equal if the underlying objects are equal. If the underlying object has
gone away, they are equal if they are identical. */
static PyObject *
weakref_richcompare(PyWeakReference* self, PyWeakReference* other, int op)
{
if ((op != Py_EQ && op != Py_NE) ||
!PyWeakref_Check(self) ||
!PyWeakref_Check(other)) {
Py_RETURN_NOTIMPLEMENTED;
}
if (PyWeakref_GET_OBJECT(self) == Py_None
|| PyWeakref_GET_OBJECT(other) == Py_None) {
int res = (self == other);
if (op == Py_NE)
res = !res;
if (res)
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;
}
return PyObject_RichCompare(PyWeakref_GET_OBJECT(self),
PyWeakref_GET_OBJECT(other), op);
}
/* Given the head of an object's list of weak references, extract the
* two callback-less refs (ref and proxy). Used to determine if the
* shared references exist and to determine the back link for newly
* inserted references.
*/
static void
get_basic_refs(PyWeakReference *head,
PyWeakReference **refp, PyWeakReference **proxyp)
{
*refp = NULL;
*proxyp = NULL;
if (head != NULL && head->wr_callback == NULL) {
/* We need to be careful that the "basic refs" aren't
subclasses of the main types. That complicates this a
little. */
if (PyWeakref_CheckRefExact(head)) {
*refp = head;
head = head->wr_next;
}
if (head != NULL
&& head->wr_callback == NULL
&& PyWeakref_CheckProxy(head)) {
*proxyp = head;
/* head = head->wr_next; */
}
}
}
/* Insert 'newref' in the list after 'prev'. Both must be non-NULL. */
static void
insert_after(PyWeakReference *newref, PyWeakReference *prev)
{
newref->wr_prev = prev;
newref->wr_next = prev->wr_next;
if (prev->wr_next != NULL)
prev->wr_next->wr_prev = newref;
prev->wr_next = newref;
}
/* Insert 'newref' at the head of the list; 'list' points to the variable
* that stores the head.
*/
static void
insert_head(PyWeakReference *newref, PyWeakReference **list)
{
PyWeakReference *next = *list;
newref->wr_prev = NULL;
newref->wr_next = next;
if (next != NULL)
next->wr_prev = newref;
*list = newref;
}
static int
parse_weakref_init_args(const char *funcname, PyObject *args, PyObject *kwargs,
PyObject **obp, PyObject **callbackp)
{
return PyArg_UnpackTuple(args, funcname, 1, 2, obp, callbackp);
}
static PyObject *
weakref___new__(PyTypeObject *type, PyObject *args, PyObject *kwargs)
{
PyWeakReference *self = NULL;
PyObject *ob, *callback = NULL;
if (parse_weakref_init_args("__new__", args, kwargs, &ob, &callback)) {
PyWeakReference *ref, *proxy;
PyWeakReference **list;
if (!PyType_SUPPORTS_WEAKREFS(Py_TYPE(ob))) {
PyErr_Format(PyExc_TypeError,
"cannot create weak reference to '%s' object",
Py_TYPE(ob)->tp_name);
return NULL;
}
if (callback == Py_None)
callback = NULL;
list = GET_WEAKREFS_LISTPTR(ob);
get_basic_refs(*list, &ref, &proxy);
if (callback == NULL && type == &_PyWeakref_RefType) {
if (ref != NULL) {
/* We can re-use an existing reference. */
Py_INCREF(ref);
return (PyObject *)ref;
}
}
/* We have to create a new reference. */
/* Note: the tp_alloc() can trigger cyclic GC, so the weakref
list on ob can be mutated. This means that the ref and
proxy pointers we got back earlier may have been collected,
so we need to compute these values again before we use
them. */
self = (PyWeakReference *) (type->tp_alloc(type, 0));
if (self != NULL) {
init_weakref(self, ob, callback);
if (callback == NULL && type == &_PyWeakref_RefType) {
insert_head(self, list);
}
else {
PyWeakReference *prev;
get_basic_refs(*list, &ref, &proxy);
prev = (proxy == NULL) ? ref : proxy;
if (prev == NULL)
insert_head(self, list);
else
insert_after(self, prev);
}
}
}
return (PyObject *)self;
}
static int
weakref___init__(PyObject *self, PyObject *args, PyObject *kwargs)
{
PyObject *tmp;
if (!_PyArg_NoKeywords("ref()", kwargs))
return -1;
if (parse_weakref_init_args("__init__", args, kwargs, &tmp, &tmp))
return 0;
else
return -1;
}
static PyMemberDef weakref_members[] = {
{"__callback__", T_OBJECT, offsetof(PyWeakReference, wr_callback), READONLY},
{NULL} /* Sentinel */
};
PyTypeObject
_PyWeakref_RefType = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"weakref",
sizeof(PyWeakReference),
0,
weakref_dealloc, /*tp_dealloc*/
0, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
0, /*tp_reserved*/
(reprfunc)weakref_repr, /*tp_repr*/
0, /*tp_as_number*/
0, /*tp_as_sequence*/
0, /*tp_as_mapping*/
(hashfunc)weakref_hash, /*tp_hash*/
(ternaryfunc)weakref_call, /*tp_call*/
0, /*tp_str*/
0, /*tp_getattro*/
0, /*tp_setattro*/
0, /*tp_as_buffer*/
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC
| Py_TPFLAGS_BASETYPE, /*tp_flags*/
0, /*tp_doc*/
(traverseproc)gc_traverse, /*tp_traverse*/
(inquiry)gc_clear, /*tp_clear*/
(richcmpfunc)weakref_richcompare, /*tp_richcompare*/
0, /*tp_weaklistoffset*/
0, /*tp_iter*/
0, /*tp_iternext*/
0, /*tp_methods*/
weakref_members, /*tp_members*/
0, /*tp_getset*/
0, /*tp_base*/
0, /*tp_dict*/
0, /*tp_descr_get*/
0, /*tp_descr_set*/
0, /*tp_dictoffset*/
weakref___init__, /*tp_init*/
PyType_GenericAlloc, /*tp_alloc*/
weakref___new__, /*tp_new*/
PyObject_GC_Del, /*tp_free*/
};
static int
proxy_checkref(PyWeakReference *proxy)
{
if (PyWeakref_GET_OBJECT(proxy) == Py_None) {
PyErr_SetString(PyExc_ReferenceError,
"weakly-referenced object no longer exists");
return 0;
}
return 1;
}
/* If a parameter is a proxy, check that it is still "live" and wrap it,
* replacing the original value with the raw object. Raises ReferenceError
* if the param is a dead proxy.
*/
#define UNWRAP(o) \
if (PyWeakref_CheckProxy(o)) { \
if (!proxy_checkref((PyWeakReference *)o)) \
return NULL; \
o = PyWeakref_GET_OBJECT(o); \
}
#define UNWRAP_I(o) \
if (PyWeakref_CheckProxy(o)) { \
if (!proxy_checkref((PyWeakReference *)o)) \
return -1; \
o = PyWeakref_GET_OBJECT(o); \
}
#define WRAP_UNARY(method, generic) \
static PyObject * \
method(PyObject *proxy) { \
UNWRAP(proxy); \
return generic(proxy); \
}
#define WRAP_BINARY(method, generic) \
static PyObject * \
method(PyObject *x, PyObject *y) { \
UNWRAP(x); \
UNWRAP(y); \
return generic(x, y); \
}
/* Note that the third arg needs to be checked for NULL since the tp_call
* slot can receive NULL for this arg.
*/
#define WRAP_TERNARY(method, generic) \
static PyObject * \
method(PyObject *proxy, PyObject *v, PyObject *w) { \
UNWRAP(proxy); \
UNWRAP(v); \
if (w != NULL) \
UNWRAP(w); \
return generic(proxy, v, w); \
}
#define WRAP_METHOD(method, special) \
static PyObject * \
method(PyObject *proxy) { \
_Py_IDENTIFIER(special); \
UNWRAP(proxy); \
return _PyObject_CallMethodId(proxy, &PyId_##special, NULL); \
}
/* direct slots */
WRAP_BINARY(proxy_getattr, PyObject_GetAttr)
WRAP_UNARY(proxy_str, PyObject_Str)
WRAP_TERNARY(proxy_call, PyEval_CallObjectWithKeywords)
static PyObject *
proxy_repr(PyWeakReference *proxy)
{
return PyUnicode_FromFormat(
"<weakproxy at %p to %s at %p>",
proxy,
Py_TYPE(PyWeakref_GET_OBJECT(proxy))->tp_name,
PyWeakref_GET_OBJECT(proxy));
}
static int
proxy_setattr(PyWeakReference *proxy, PyObject *name, PyObject *value)
{
if (!proxy_checkref(proxy))
return -1;
return PyObject_SetAttr(PyWeakref_GET_OBJECT(proxy), name, value);
}
static PyObject *
proxy_richcompare(PyObject *proxy, PyObject *v, int op)
{
UNWRAP(proxy);
UNWRAP(v);
return PyObject_RichCompare(proxy, v, op);
}
/* number slots */
WRAP_BINARY(proxy_add, PyNumber_Add)
WRAP_BINARY(proxy_sub, PyNumber_Subtract)
WRAP_BINARY(proxy_mul, PyNumber_Multiply)
WRAP_BINARY(proxy_floor_div, PyNumber_FloorDivide)
WRAP_BINARY(proxy_true_div, PyNumber_TrueDivide)
WRAP_BINARY(proxy_mod, PyNumber_Remainder)
WRAP_BINARY(proxy_divmod, PyNumber_Divmod)
WRAP_TERNARY(proxy_pow, PyNumber_Power)
WRAP_UNARY(proxy_neg, PyNumber_Negative)
WRAP_UNARY(proxy_pos, PyNumber_Positive)
WRAP_UNARY(proxy_abs, PyNumber_Absolute)
WRAP_UNARY(proxy_invert, PyNumber_Invert)
WRAP_BINARY(proxy_lshift, PyNumber_Lshift)
WRAP_BINARY(proxy_rshift, PyNumber_Rshift)
WRAP_BINARY(proxy_and, PyNumber_And)
WRAP_BINARY(proxy_xor, PyNumber_Xor)
WRAP_BINARY(proxy_or, PyNumber_Or)
WRAP_UNARY(proxy_int, PyNumber_Long)
WRAP_UNARY(proxy_float, PyNumber_Float)
WRAP_BINARY(proxy_iadd, PyNumber_InPlaceAdd)
WRAP_BINARY(proxy_isub, PyNumber_InPlaceSubtract)
WRAP_BINARY(proxy_imul, PyNumber_InPlaceMultiply)
WRAP_BINARY(proxy_ifloor_div, PyNumber_InPlaceFloorDivide)
WRAP_BINARY(proxy_itrue_div, PyNumber_InPlaceTrueDivide)
WRAP_BINARY(proxy_imod, PyNumber_InPlaceRemainder)
WRAP_TERNARY(proxy_ipow, PyNumber_InPlacePower)
WRAP_BINARY(proxy_ilshift, PyNumber_InPlaceLshift)
WRAP_BINARY(proxy_irshift, PyNumber_InPlaceRshift)
WRAP_BINARY(proxy_iand, PyNumber_InPlaceAnd)
WRAP_BINARY(proxy_ixor, PyNumber_InPlaceXor)
WRAP_BINARY(proxy_ior, PyNumber_InPlaceOr)
WRAP_UNARY(proxy_index, PyNumber_Index)
static int
proxy_bool(PyWeakReference *proxy)
{
PyObject *o = PyWeakref_GET_OBJECT(proxy);
if (!proxy_checkref(proxy))
return -1;
return PyObject_IsTrue(o);
}
static void
proxy_dealloc(PyWeakReference *self)
{
if (self->wr_callback != NULL)
PyObject_GC_UnTrack((PyObject *)self);
clear_weakref(self);
PyObject_GC_Del(self);
}
/* sequence slots */
static int
proxy_contains(PyWeakReference *proxy, PyObject *value)
{
if (!proxy_checkref(proxy))
return -1;
return PySequence_Contains(PyWeakref_GET_OBJECT(proxy), value);
}
/* mapping slots */
static Py_ssize_t
proxy_length(PyWeakReference *proxy)
{
if (!proxy_checkref(proxy))
return -1;
return PyObject_Length(PyWeakref_GET_OBJECT(proxy));
}
WRAP_BINARY(proxy_getitem, PyObject_GetItem)
static int
proxy_setitem(PyWeakReference *proxy, PyObject *key, PyObject *value)
{
if (!proxy_checkref(proxy))
return -1;
if (value == NULL)
return PyObject_DelItem(PyWeakref_GET_OBJECT(proxy), key);
else
return PyObject_SetItem(PyWeakref_GET_OBJECT(proxy), key, value);
}
/* iterator slots */
static PyObject *
proxy_iter(PyWeakReference *proxy)
{
if (!proxy_checkref(proxy))
return NULL;
return PyObject_GetIter(PyWeakref_GET_OBJECT(proxy));
}
static PyObject *
proxy_iternext(PyWeakReference *proxy)
{
if (!proxy_checkref(proxy))
return NULL;
return PyIter_Next(PyWeakref_GET_OBJECT(proxy));
}
WRAP_METHOD(proxy_bytes, __bytes__)
static PyMethodDef proxy_methods[] = {
{"__bytes__", (PyCFunction)proxy_bytes, METH_NOARGS},
{NULL, NULL}
};
static PyNumberMethods proxy_as_number = {
proxy_add, /*nb_add*/
proxy_sub, /*nb_subtract*/
proxy_mul, /*nb_multiply*/
proxy_mod, /*nb_remainder*/
proxy_divmod, /*nb_divmod*/
proxy_pow, /*nb_power*/
proxy_neg, /*nb_negative*/
proxy_pos, /*nb_positive*/
proxy_abs, /*nb_absolute*/
(inquiry)proxy_bool, /*nb_bool*/
proxy_invert, /*nb_invert*/
proxy_lshift, /*nb_lshift*/
proxy_rshift, /*nb_rshift*/
proxy_and, /*nb_and*/
proxy_xor, /*nb_xor*/
proxy_or, /*nb_or*/
proxy_int, /*nb_int*/
0, /*nb_reserved*/
proxy_float, /*nb_float*/
proxy_iadd, /*nb_inplace_add*/
proxy_isub, /*nb_inplace_subtract*/
proxy_imul, /*nb_inplace_multiply*/
proxy_imod, /*nb_inplace_remainder*/
proxy_ipow, /*nb_inplace_power*/
proxy_ilshift, /*nb_inplace_lshift*/
proxy_irshift, /*nb_inplace_rshift*/
proxy_iand, /*nb_inplace_and*/
proxy_ixor, /*nb_inplace_xor*/
proxy_ior, /*nb_inplace_or*/
proxy_floor_div, /*nb_floor_divide*/
proxy_true_div, /*nb_true_divide*/
proxy_ifloor_div, /*nb_inplace_floor_divide*/
proxy_itrue_div, /*nb_inplace_true_divide*/
proxy_index, /*nb_index*/
};
static PySequenceMethods proxy_as_sequence = {
(lenfunc)proxy_length, /*sq_length*/
0, /*sq_concat*/
0, /*sq_repeat*/
0, /*sq_item*/
0, /*sq_slice*/
0, /*sq_ass_item*/
0, /*sq_ass_slice*/
(objobjproc)proxy_contains, /* sq_contains */
};
static PyMappingMethods proxy_as_mapping = {
(lenfunc)proxy_length, /*mp_length*/
proxy_getitem, /*mp_subscript*/
(objobjargproc)proxy_setitem, /*mp_ass_subscript*/
};
PyTypeObject
_PyWeakref_ProxyType = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"weakproxy",
sizeof(PyWeakReference),
0,
/* methods */
(destructor)proxy_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)proxy_repr, /* tp_repr */
&proxy_as_number, /* tp_as_number */
&proxy_as_sequence, /* tp_as_sequence */
&proxy_as_mapping, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
proxy_str, /* tp_str */
proxy_getattr, /* tp_getattro */
(setattrofunc)proxy_setattr, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, /* tp_flags */
0, /* tp_doc */
(traverseproc)gc_traverse, /* tp_traverse */
(inquiry)gc_clear, /* tp_clear */
proxy_richcompare, /* tp_richcompare */
0, /* tp_weaklistoffset */
(getiterfunc)proxy_iter, /* tp_iter */
(iternextfunc)proxy_iternext, /* tp_iternext */
proxy_methods, /* tp_methods */
};
PyTypeObject
_PyWeakref_CallableProxyType = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"weakcallableproxy",
sizeof(PyWeakReference),
0,
/* methods */
(destructor)proxy_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(unaryfunc)proxy_repr, /* tp_repr */
&proxy_as_number, /* tp_as_number */
&proxy_as_sequence, /* tp_as_sequence */
&proxy_as_mapping, /* tp_as_mapping */
0, /* tp_hash */
proxy_call, /* tp_call */
proxy_str, /* tp_str */
proxy_getattr, /* tp_getattro */
(setattrofunc)proxy_setattr, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, /* tp_flags */
0, /* tp_doc */
(traverseproc)gc_traverse, /* tp_traverse */
(inquiry)gc_clear, /* tp_clear */
proxy_richcompare, /* tp_richcompare */
0, /* tp_weaklistoffset */
(getiterfunc)proxy_iter, /* tp_iter */
(iternextfunc)proxy_iternext, /* tp_iternext */
};
PyObject *
PyWeakref_NewRef(PyObject *ob, PyObject *callback)
{
PyWeakReference *result = NULL;
PyWeakReference **list;
PyWeakReference *ref, *proxy;
if (!PyType_SUPPORTS_WEAKREFS(Py_TYPE(ob))) {
PyErr_Format(PyExc_TypeError,
"cannot create weak reference to '%s' object",
Py_TYPE(ob)->tp_name);
return NULL;
}
list = GET_WEAKREFS_LISTPTR(ob);
get_basic_refs(*list, &ref, &proxy);
if (callback == Py_None)
callback = NULL;
if (callback == NULL)
/* return existing weak reference if it exists */
result = ref;
if (result != NULL)
Py_INCREF(result);
else {
/* Note: new_weakref() can trigger cyclic GC, so the weakref
list on ob can be mutated. This means that the ref and
proxy pointers we got back earlier may have been collected,
so we need to compute these values again before we use
them. */
result = new_weakref(ob, callback);
if (result != NULL) {
get_basic_refs(*list, &ref, &proxy);
if (callback == NULL) {
if (ref == NULL)
insert_head(result, list);
else {
/* Someone else added a ref without a callback
during GC. Return that one instead of this one
to avoid violating the invariants of the list
of weakrefs for ob. */
Py_DECREF(result);
Py_INCREF(ref);
result = ref;
}
}
else {
PyWeakReference *prev;
prev = (proxy == NULL) ? ref : proxy;
if (prev == NULL)
insert_head(result, list);
else
insert_after(result, prev);
}
}
}
return (PyObject *) result;
}
PyObject *
PyWeakref_NewProxy(PyObject *ob, PyObject *callback)
{
PyWeakReference *result = NULL;
PyWeakReference **list;
PyWeakReference *ref, *proxy;
if (!PyType_SUPPORTS_WEAKREFS(Py_TYPE(ob))) {
PyErr_Format(PyExc_TypeError,
"cannot create weak reference to '%s' object",
Py_TYPE(ob)->tp_name);
return NULL;
}
list = GET_WEAKREFS_LISTPTR(ob);
get_basic_refs(*list, &ref, &proxy);
if (callback == Py_None)
callback = NULL;
if (callback == NULL)
/* attempt to return an existing weak reference if it exists */
result = proxy;
if (result != NULL)
Py_INCREF(result);
else {
/* Note: new_weakref() can trigger cyclic GC, so the weakref
list on ob can be mutated. This means that the ref and
proxy pointers we got back earlier may have been collected,
so we need to compute these values again before we use
them. */
result = new_weakref(ob, callback);
if (result != NULL) {
PyWeakReference *prev;
if (PyCallable_Check(ob))
Py_TYPE(result) = &_PyWeakref_CallableProxyType;
else
Py_TYPE(result) = &_PyWeakref_ProxyType;
get_basic_refs(*list, &ref, &proxy);
if (callback == NULL) {
if (proxy != NULL) {
/* Someone else added a proxy without a callback
during GC. Return that one instead of this one
to avoid violating the invariants of the list
of weakrefs for ob. */
Py_DECREF(result);
Py_INCREF(result = proxy);
goto skip_insert;
}
prev = ref;
}
else
prev = (proxy == NULL) ? ref : proxy;
if (prev == NULL)
insert_head(result, list);
else
insert_after(result, prev);
skip_insert:
;
}
}
return (PyObject *) result;
}
PyObject *
PyWeakref_GetObject(PyObject *ref)
{
if (ref == NULL || !PyWeakref_Check(ref)) {
PyErr_BadInternalCall();
return NULL;
}
return PyWeakref_GET_OBJECT(ref);
}
/* Note that there's an inlined copy-paste of handle_callback() in gcmodule.c's
* handle_weakrefs().
*/
static void
handle_callback(PyWeakReference *ref, PyObject *callback)
{
PyObject *cbresult = PyObject_CallFunctionObjArgs(callback, ref, NULL);
if (cbresult == NULL)
PyErr_WriteUnraisable(callback);
else
Py_DECREF(cbresult);
}
/* This function is called by the tp_dealloc handler to clear weak references.
*
* This iterates through the weak references for 'object' and calls callbacks
* for those references which have one. It returns when all callbacks have
* been attempted.
*/
void
PyObject_ClearWeakRefs(PyObject *object)
{
PyWeakReference **list;
if (object == NULL
|| !PyType_SUPPORTS_WEAKREFS(Py_TYPE(object))
|| object->ob_refcnt != 0) {
PyErr_BadInternalCall();
return;
}
list = GET_WEAKREFS_LISTPTR(object);
/* Remove the callback-less basic and proxy references */
if (*list != NULL && (*list)->wr_callback == NULL) {
clear_weakref(*list);
if (*list != NULL && (*list)->wr_callback == NULL)
clear_weakref(*list);
}
if (*list != NULL) {
PyWeakReference *current = *list;
Py_ssize_t count = _PyWeakref_GetWeakrefCount(current);
PyObject *err_type, *err_value, *err_tb;
PyErr_Fetch(&err_type, &err_value, &err_tb);
if (count == 1) {
PyObject *callback = current->wr_callback;
current->wr_callback = NULL;
clear_weakref(current);
if (callback != NULL) {
if (((PyObject *)current)->ob_refcnt > 0)
handle_callback(current, callback);
Py_DECREF(callback);
}
}
else {
PyObject *tuple;
Py_ssize_t i = 0;
tuple = PyTuple_New(count * 2);
if (tuple == NULL) {
_PyErr_ChainExceptions(err_type, err_value, err_tb);
return;
}
for (i = 0; i < count; ++i) {
PyWeakReference *next = current->wr_next;
if (((PyObject *)current)->ob_refcnt > 0)
{
Py_INCREF(current);
PyTuple_SET_ITEM(tuple, i * 2, (PyObject *) current);
PyTuple_SET_ITEM(tuple, i * 2 + 1, current->wr_callback);
}
else {
Py_DECREF(current->wr_callback);
}
current->wr_callback = NULL;
clear_weakref(current);
current = next;
}
for (i = 0; i < count; ++i) {
PyObject *callback = PyTuple_GET_ITEM(tuple, i * 2 + 1);
/* The tuple may have slots left to NULL */
if (callback != NULL) {
PyObject *item = PyTuple_GET_ITEM(tuple, i * 2);
handle_callback((PyWeakReference *)item, callback);
}
}
Py_DECREF(tuple);
}
assert(!PyErr_Occurred());
PyErr_Restore(err_type, err_value, err_tb);
}
}
| 31,402 | 974 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/unicodectype.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "third_party/python/Include/unicodeobject.h"
#include "third_party/python/Modules/unicodedata.h"
#include "third_party/python/Modules/unicodedata_unidata.h"
/* clang-format off */
/*
* Unicode character type helpers.
*
* Written by Marc-Andre Lemburg ([email protected]).
* Modified for Python 2.0 by Fredrik Lundh ([email protected])
*
* Copyright (c) Corporation for National Research Initiatives.
*/
#define ALPHA_MASK 0x01
#define DECIMAL_MASK 0x02
#define DIGIT_MASK 0x04
#define LOWER_MASK 0x08
#define LINEBREAK_MASK 0x10
#define SPACE_MASK 0x20
#define TITLE_MASK 0x40
#define UPPER_MASK 0x80
#define XID_START_MASK 0x100
#define XID_CONTINUE_MASK 0x200
#define PRINTABLE_MASK 0x400
#define NUMERIC_MASK 0x800
#define CASE_IGNORABLE_MASK 0x1000
#define CASED_MASK 0x2000
#define EXTENDED_CASE_MASK 0x4000
static const _PyUnicode_TypeRecord *
_PyUnicode_GetTypeRecord(Py_UCS4 c)
{
int i, k;
if (c >= 0x110000) {
i = 0;
} else {
k = _PyUnicode_TypeRecordsShift;
i = _PyUnicode_TypeRecordsIndex1[(c >> k)];
i = _PyUnicode_TypeRecordsIndex2[(i << k) + (c & ((1 << k) - 1))];
}
return &_PyUnicode_TypeRecords[i];
}
/* Returns the titlecase Unicode characters corresponding to ch or just
ch if no titlecase mapping is known. */
Py_UCS4 _PyUnicode_ToTitlecase(Py_UCS4 ch)
{
const _PyUnicode_TypeRecord *ctype = _PyUnicode_GetTypeRecord(ch);
if (ctype->flags & EXTENDED_CASE_MASK)
return _PyUnicode_ExtendedCase[ctype->title & 0xFFFF];
return ch + ctype->title;
}
/* Returns 1 for Unicode characters having the category 'Lt', 0
otherwise. */
int _PyUnicode_IsTitlecase(Py_UCS4 ch)
{
return !!(_PyUnicode_GetTypeRecord(ch)->flags & TITLE_MASK);
}
/* Returns 1 for Unicode characters having the XID_Start property, 0
otherwise. */
int _PyUnicode_IsXidStart(Py_UCS4 ch)
{
return !!(_PyUnicode_GetTypeRecord(ch)->flags & XID_START_MASK);
}
/* Returns 1 for Unicode characters having the XID_Continue property,
0 otherwise. */
int _PyUnicode_IsXidContinue(Py_UCS4 ch)
{
return !!(_PyUnicode_GetTypeRecord(ch)->flags & XID_CONTINUE_MASK);
}
/* Returns the integer decimal (0-9) for Unicode characters having
this property, -1 otherwise. */
int _PyUnicode_ToDecimalDigit(Py_UCS4 ch)
{
const _PyUnicode_TypeRecord *ctype = _PyUnicode_GetTypeRecord(ch);
return (ctype->flags & DECIMAL_MASK) ? ctype->decimal : -1;
}
int _PyUnicode_IsDecimalDigit(Py_UCS4 ch)
{
if (_PyUnicode_ToDecimalDigit(ch) < 0)
return 0;
return 1;
}
/* Returns the integer digit (0-9) for Unicode characters having
this property, -1 otherwise. */
int _PyUnicode_ToDigit(Py_UCS4 ch)
{
const _PyUnicode_TypeRecord *ctype = _PyUnicode_GetTypeRecord(ch);
return (ctype->flags & DIGIT_MASK) ? ctype->digit : -1;
}
int _PyUnicode_IsDigit(Py_UCS4 ch)
{
if (_PyUnicode_ToDigit(ch) < 0)
return 0;
return 1;
}
/* Returns the numeric value as double for Unicode characters having
this property, -1.0 otherwise. */
int _PyUnicode_IsNumeric(Py_UCS4 ch)
{
return !!(_PyUnicode_GetTypeRecord(ch)->flags & NUMERIC_MASK);
}
/* Returns 1 for Unicode characters to be hex-escaped when repr()ed,
0 otherwise.
All characters except those characters defined in the Unicode character
database as following categories are considered printable.
* Cc (Other, Control)
* Cf (Other, Format)
* Cs (Other, Surrogate)
* Co (Other, Private Use)
* Cn (Other, Not Assigned)
* Zl Separator, Line ('\u2028', LINE SEPARATOR)
* Zp Separator, Paragraph ('\u2029', PARAGRAPH SEPARATOR)
* Zs (Separator, Space) other than ASCII space('\x20').
*/
int _PyUnicode_IsPrintable(Py_UCS4 ch)
{
return !!(_PyUnicode_GetTypeRecord(ch)->flags & PRINTABLE_MASK);
}
/* Returns 1 for Unicode characters having the category 'Ll', 0
otherwise. */
int _PyUnicode_IsLowercase(Py_UCS4 ch)
{
return !!(_PyUnicode_GetTypeRecord(ch)->flags & LOWER_MASK);
}
/* Returns 1 for Unicode characters having the category 'Lu', 0
otherwise. */
int _PyUnicode_IsUppercase(Py_UCS4 ch)
{
return !!(_PyUnicode_GetTypeRecord(ch)->flags & UPPER_MASK);
}
/* Returns the uppercase Unicode characters corresponding to ch or just
ch if no uppercase mapping is known. */
Py_UCS4 _PyUnicode_ToUppercase(Py_UCS4 ch)
{
const _PyUnicode_TypeRecord *ctype = _PyUnicode_GetTypeRecord(ch);
if (ctype->flags & EXTENDED_CASE_MASK)
return _PyUnicode_ExtendedCase[ctype->upper & 0xFFFF];
return ch + ctype->upper;
}
/* Returns the lowercase Unicode characters corresponding to ch or just
ch if no lowercase mapping is known. */
Py_UCS4 _PyUnicode_ToLowercase(Py_UCS4 ch)
{
const _PyUnicode_TypeRecord *ctype = _PyUnicode_GetTypeRecord(ch);
if (ctype->flags & EXTENDED_CASE_MASK)
return _PyUnicode_ExtendedCase[ctype->lower & 0xFFFF];
return ch + ctype->lower;
}
int _PyUnicode_ToLowerFull(Py_UCS4 ch, Py_UCS4 *res)
{
const _PyUnicode_TypeRecord *ctype = _PyUnicode_GetTypeRecord(ch);
if (ctype->flags & EXTENDED_CASE_MASK) {
int index = ctype->lower & 0xFFFF;
int n = ctype->lower >> 24;
int i;
for (i = 0; i < n; i++)
res[i] = _PyUnicode_ExtendedCase[index + i];
return n;
}
res[0] = ch + ctype->lower;
return 1;
}
int _PyUnicode_ToTitleFull(Py_UCS4 ch, Py_UCS4 *res)
{
const _PyUnicode_TypeRecord *ctype = _PyUnicode_GetTypeRecord(ch);
if (ctype->flags & EXTENDED_CASE_MASK) {
int index = ctype->title & 0xFFFF;
int n = ctype->title >> 24;
int i;
for (i = 0; i < n; i++)
res[i] = _PyUnicode_ExtendedCase[index + i];
return n;
}
res[0] = ch + ctype->title;
return 1;
}
int _PyUnicode_ToUpperFull(Py_UCS4 ch, Py_UCS4 *res)
{
const _PyUnicode_TypeRecord *ctype = _PyUnicode_GetTypeRecord(ch);
if (ctype->flags & EXTENDED_CASE_MASK) {
int index = ctype->upper & 0xFFFF;
int n = ctype->upper >> 24;
int i;
for (i = 0; i < n; i++)
res[i] = _PyUnicode_ExtendedCase[index + i];
return n;
}
res[0] = ch + ctype->upper;
return 1;
}
int _PyUnicode_ToFoldedFull(Py_UCS4 ch, Py_UCS4 *res)
{
const _PyUnicode_TypeRecord *ctype = _PyUnicode_GetTypeRecord(ch);
if (ctype->flags & EXTENDED_CASE_MASK && (ctype->lower >> 20) & 7) {
int index = (ctype->lower & 0xFFFF) + (ctype->lower >> 24);
int n = (ctype->lower >> 20) & 7;
int i;
for (i = 0; i < n; i++)
res[i] = _PyUnicode_ExtendedCase[index + i];
return n;
}
return _PyUnicode_ToLowerFull(ch, res);
}
int _PyUnicode_IsCased(Py_UCS4 ch)
{
return !!(_PyUnicode_GetTypeRecord(ch)->flags & CASED_MASK);
}
int _PyUnicode_IsCaseIgnorable(Py_UCS4 ch)
{
return !!(_PyUnicode_GetTypeRecord(ch)->flags & CASE_IGNORABLE_MASK);
}
/* Returns 1 for Unicode characters having the category 'Ll', 'Lu', 'Lt',
'Lo' or 'Lm', 0 otherwise. */
int _PyUnicode_IsAlpha(Py_UCS4 ch)
{
return !!(_PyUnicode_GetTypeRecord(ch)->flags & ALPHA_MASK);
}
| 8,062 | 246 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/frameobject.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "libc/intrin/likely.h"
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/cellobject.h"
#include "third_party/python/Include/code.h"
#include "third_party/python/Include/descrobject.h"
#include "third_party/python/Include/dictobject.h"
#include "third_party/python/Include/frameobject.h"
#include "third_party/python/Include/genobject.h"
#include "third_party/python/Include/longobject.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/opcode.h"
#include "third_party/python/Include/pyerrors.h"
#include "third_party/python/Include/pymacro.h"
#include "third_party/python/Include/structmember.h"
#include "third_party/python/Include/tupleobject.h"
/* clang-format off */
#define OFF(x) offsetof(PyFrameObject, x)
static PyMemberDef frame_memberlist[] = {
{"f_back", T_OBJECT, OFF(f_back), READONLY},
{"f_code", T_OBJECT, OFF(f_code), READONLY},
{"f_builtins", T_OBJECT, OFF(f_builtins), READONLY},
{"f_globals", T_OBJECT, OFF(f_globals), READONLY},
{"f_lasti", T_INT, OFF(f_lasti), READONLY},
{NULL} /* Sentinel */
};
static PyObject *
frame_getlocals(PyFrameObject *f, void *closure)
{
if (PyFrame_FastToLocalsWithError(f) < 0)
return NULL;
Py_INCREF(f->f_locals);
return f->f_locals;
}
int
PyFrame_GetLineNumber(PyFrameObject *f)
{
if (f->f_trace)
return f->f_lineno;
else
return PyCode_Addr2Line(f->f_code, f->f_lasti);
}
static PyObject *
frame_getlineno(PyFrameObject *f, void *closure)
{
return PyLong_FromLong(PyFrame_GetLineNumber(f));
}
/* Setter for f_lineno - you can set f_lineno from within a trace function in
* order to jump to a given line of code, subject to some restrictions. Most
* lines are OK to jump to because they don't make any assumptions about the
* state of the stack (obvious because you could remove the line and the code
* would still work without any stack errors), but there are some constructs
* that limit jumping:
*
* o Lines with an 'except' statement on them can't be jumped to, because
* they expect an exception to be on the top of the stack.
* o Lines that live in a 'finally' block can't be jumped from or to, since
* the END_FINALLY expects to clean up the stack after the 'try' block.
* o 'try'/'for'/'while' blocks can't be jumped into because the blockstack
* needs to be set up before their code runs, and for 'for' loops the
* iterator needs to be on the stack.
* o Jumps cannot be made from within a trace function invoked with a
* 'return' or 'exception' event since the eval loop has been exited at
* that time.
*/
static int
frame_setlineno(PyFrameObject *f, PyObject* p_new_lineno, void *Py_UNUSED(ignored))
{
int new_lineno = 0; /* The new value of f_lineno */
long l_new_lineno;
int overflow;
int new_lasti = 0; /* The new value of f_lasti */
int new_iblock = 0; /* The new value of f_iblock */
unsigned char *code = NULL; /* The bytecode for the frame... */
Py_ssize_t code_len = 0; /* ...and its length */
unsigned char *lnotab = NULL; /* Iterating over co_lnotab */
Py_ssize_t lnotab_len = 0; /* (ditto) */
int offset = 0; /* (ditto) */
int line = 0; /* (ditto) */
int addr = 0; /* (ditto) */
int min_addr = 0; /* Scanning the SETUPs and POPs */
int max_addr = 0; /* (ditto) */
int delta_iblock = 0; /* (ditto) */
int min_delta_iblock = 0; /* (ditto) */
int min_iblock = 0; /* (ditto) */
int f_lasti_setup_addr = 0; /* Policing no-jump-into-finally */
int new_lasti_setup_addr = 0; /* (ditto) */
int blockstack[CO_MAXBLOCKS]; /* Walking the 'finally' blocks */
int in_finally[CO_MAXBLOCKS]; /* (ditto) */
int blockstack_top = 0; /* (ditto) */
unsigned char setup_op = 0; /* (ditto) */
/* f_lineno must be an integer. */
if (!PyLong_CheckExact(p_new_lineno)) {
PyErr_SetString(PyExc_ValueError,
"lineno must be an integer");
return -1;
}
/* Upon the 'call' trace event of a new frame, f->f_lasti is -1 and
* f->f_trace is NULL, check first on the first condition.
* Forbidding jumps from the 'call' event of a new frame is a side effect
* of allowing to set f_lineno only from trace functions. */
if (f->f_lasti == -1) {
PyErr_Format(PyExc_ValueError,
"can't jump from the 'call' trace event of a new frame");
return -1;
}
/* You can only do this from within a trace function, not via
* _getframe or similar hackery. */
if (!f->f_trace) {
PyErr_Format(PyExc_ValueError,
"f_lineno can only be set by a trace function");
return -1;
}
/* Forbid jumps upon a 'return' trace event (except after executing a
* YIELD_VALUE or YIELD_FROM opcode, f_stacktop is not NULL in that case)
* and upon an 'exception' trace event.
* Jumps from 'call' trace events have already been forbidden above for new
* frames, so this check does not change anything for 'call' events. */
if (f->f_stacktop == NULL) {
PyErr_SetString(PyExc_ValueError,
"can only jump from a 'line' trace event");
return -1;
}
/* Fail if the line comes before the start of the code block. */
l_new_lineno = PyLong_AsLongAndOverflow(p_new_lineno, &overflow);
if (overflow
#if SIZEOF_LONG > SIZEOF_INT
|| l_new_lineno > INT_MAX
|| l_new_lineno < INT_MIN
#endif
) {
PyErr_SetString(PyExc_ValueError,
"lineno out of range");
return -1;
}
new_lineno = (int)l_new_lineno;
if (new_lineno < f->f_code->co_firstlineno) {
PyErr_Format(PyExc_ValueError,
"line %d comes before the current code block",
new_lineno);
return -1;
}
else if (new_lineno == f->f_code->co_firstlineno) {
new_lasti = 0;
new_lineno = f->f_code->co_firstlineno;
}
else {
/* Find the bytecode offset for the start of the given
* line, or the first code-owning line after it. */
char *tmp;
PyBytes_AsStringAndSize(f->f_code->co_lnotab,
&tmp, &lnotab_len);
lnotab = (unsigned char *) tmp;
addr = 0;
line = f->f_code->co_firstlineno;
new_lasti = -1;
for (offset = 0; offset < lnotab_len; offset += 2) {
addr += lnotab[offset];
line += (signed char)lnotab[offset+1];
if (line >= new_lineno) {
new_lasti = addr;
new_lineno = line;
break;
}
}
}
/* If we didn't reach the requested line, return an error. */
if (new_lasti == -1) {
PyErr_Format(PyExc_ValueError,
"line %d comes after the current code block",
new_lineno);
return -1;
}
/* We're now ready to look at the bytecode. */
PyBytes_AsStringAndSize(f->f_code->co_code, (char **)&code, &code_len);
/* The trace function is called with a 'return' trace event after the
* execution of a yield statement. */
assert(f->f_lasti != -1);
if (code[f->f_lasti] == YIELD_VALUE || code[f->f_lasti] == YIELD_FROM) {
PyErr_SetString(PyExc_ValueError,
"can't jump from a yield statement");
return -1;
}
min_addr = Py_MIN(new_lasti, f->f_lasti);
max_addr = Py_MAX(new_lasti, f->f_lasti);
/* You can't jump onto a line with an 'except' statement on it -
* they expect to have an exception on the top of the stack, which
* won't be true if you jump to them. They always start with code
* that either pops the exception using POP_TOP (plain 'except:'
* lines do this) or duplicates the exception on the stack using
* DUP_TOP (if there's an exception type specified). See compile.c,
* 'com_try_except' for the full details. There aren't any other
* cases (AFAIK) where a line's code can start with DUP_TOP or
* POP_TOP, but if any ever appear, they'll be subject to the same
* restriction (but with a different error message). */
if (code[new_lasti] == DUP_TOP || code[new_lasti] == POP_TOP) {
PyErr_SetString(PyExc_ValueError,
"can't jump to 'except' line as there's no exception");
return -1;
}
/* You can't jump into or out of a 'finally' block because the 'try'
* block leaves something on the stack for the END_FINALLY to clean
* up. So we walk the bytecode, maintaining a simulated blockstack.
* When we reach the old or new address and it's in a 'finally' block
* we note the address of the corresponding SETUP_FINALLY. The jump
* is only legal if neither address is in a 'finally' block or
* they're both in the same one. 'blockstack' is a stack of the
* bytecode addresses of the SETUP_X opcodes, and 'in_finally' tracks
* whether we're in a 'finally' block at each blockstack level. */
f_lasti_setup_addr = -1;
new_lasti_setup_addr = -1;
bzero(blockstack, sizeof(blockstack));
bzero(in_finally, sizeof(in_finally));
blockstack_top = 0;
for (addr = 0; addr < code_len; addr += sizeof(_Py_CODEUNIT)) {
unsigned char op = code[addr];
switch (op) {
case SETUP_LOOP:
case SETUP_EXCEPT:
case SETUP_FINALLY:
case SETUP_WITH:
case SETUP_ASYNC_WITH:
blockstack[blockstack_top++] = addr;
in_finally[blockstack_top-1] = 0;
break;
case POP_BLOCK:
assert(blockstack_top > 0);
setup_op = code[blockstack[blockstack_top-1]];
if (setup_op == SETUP_FINALLY || setup_op == SETUP_WITH
|| setup_op == SETUP_ASYNC_WITH) {
in_finally[blockstack_top-1] = 1;
}
else {
blockstack_top--;
}
break;
case END_FINALLY:
/* Ignore END_FINALLYs for SETUP_EXCEPTs - they exist
* in the bytecode but don't correspond to an actual
* 'finally' block. (If blockstack_top is 0, we must
* be seeing such an END_FINALLY.) */
if (blockstack_top > 0) {
setup_op = code[blockstack[blockstack_top-1]];
if (setup_op == SETUP_FINALLY || setup_op == SETUP_WITH
|| setup_op == SETUP_ASYNC_WITH) {
blockstack_top--;
}
}
break;
}
/* For the addresses we're interested in, see whether they're
* within a 'finally' block and if so, remember the address
* of the SETUP_FINALLY. */
if (addr == new_lasti || addr == f->f_lasti) {
int i = 0;
int setup_addr = -1;
for (i = blockstack_top-1; i >= 0; i--) {
if (in_finally[i]) {
setup_addr = blockstack[i];
break;
}
}
if (setup_addr != -1) {
if (addr == new_lasti) {
new_lasti_setup_addr = setup_addr;
}
if (addr == f->f_lasti) {
f_lasti_setup_addr = setup_addr;
}
}
}
}
/* Verify that the blockstack tracking code didn't get lost. */
assert(blockstack_top == 0);
/* After all that, are we jumping into / out of a 'finally' block? */
if (new_lasti_setup_addr != f_lasti_setup_addr) {
PyErr_SetString(PyExc_ValueError,
"can't jump into or out of a 'finally' block");
return -1;
}
/* Police block-jumping (you can't jump into the middle of a block)
* and ensure that the blockstack finishes up in a sensible state (by
* popping any blocks we're jumping out of). We look at all the
* blockstack operations between the current position and the new
* one, and keep track of how many blocks we drop out of on the way.
* By also keeping track of the lowest blockstack position we see, we
* can tell whether the jump goes into any blocks without coming out
* again - in that case we raise an exception below. */
delta_iblock = 0;
for (addr = min_addr; addr < max_addr; addr += sizeof(_Py_CODEUNIT)) {
unsigned char op = code[addr];
switch (op) {
case SETUP_LOOP:
case SETUP_EXCEPT:
case SETUP_FINALLY:
case SETUP_WITH:
case SETUP_ASYNC_WITH:
delta_iblock++;
break;
case POP_BLOCK:
delta_iblock--;
break;
}
min_delta_iblock = Py_MIN(min_delta_iblock, delta_iblock);
}
/* Derive the absolute iblock values from the deltas. */
min_iblock = f->f_iblock + min_delta_iblock;
if (new_lasti > f->f_lasti) {
/* Forwards jump. */
new_iblock = f->f_iblock + delta_iblock;
}
else {
/* Backwards jump. */
new_iblock = f->f_iblock - delta_iblock;
}
/* Are we jumping into a block? */
if (new_iblock > min_iblock) {
PyErr_SetString(PyExc_ValueError,
"can't jump into the middle of a block");
return -1;
}
/* Pop any blocks that we're jumping out of. */
while (f->f_iblock > new_iblock) {
PyTryBlock *b = &f->f_blockstack[--f->f_iblock];
while ((f->f_stacktop - f->f_valuestack) > b->b_level) {
PyObject *v = (*--f->f_stacktop);
Py_DECREF(v);
}
if (b->b_type == SETUP_FINALLY &&
code[b->b_handler] == WITH_CLEANUP_START)
{
/* Pop the exit function. */
PyObject *v = (*--f->f_stacktop);
Py_DECREF(v);
}
}
/* Finally set the new f_lineno and f_lasti and return OK. */
f->f_lineno = new_lineno;
f->f_lasti = new_lasti;
return 0;
}
static PyObject *
frame_gettrace(PyFrameObject *f, void *closure)
{
PyObject* trace = f->f_trace;
if (trace == NULL)
trace = Py_None;
Py_INCREF(trace);
return trace;
}
static int
frame_settrace(PyFrameObject *f, PyObject* v, void *closure)
{
/* We rely on f_lineno being accurate when f_trace is set. */
f->f_lineno = PyFrame_GetLineNumber(f);
if (v == Py_None)
v = NULL;
Py_XINCREF(v);
Py_XSETREF(f->f_trace, v);
return 0;
}
static PyGetSetDef frame_getsetlist[] = {
{"f_locals", (getter)frame_getlocals, NULL, NULL},
{"f_lineno", (getter)frame_getlineno,
(setter)frame_setlineno, NULL},
{"f_trace", (getter)frame_gettrace, (setter)frame_settrace, NULL},
{0}
};
/* Stack frames are allocated and deallocated at a considerable rate.
In an attempt to improve the speed of function calls, we:
1. Hold a single "zombie" frame on each code object. This retains
the allocated and initialised frame object from an invocation of
the code object. The zombie is reanimated the next time we need a
frame object for that code object. Doing this saves the malloc/
realloc required when using a free_list frame that isn't the
correct size. It also saves some field initialisation.
In zombie mode, no field of PyFrameObject holds a reference, but
the following fields are still valid:
* ob_type, ob_size, f_code, f_valuestack;
* f_locals, f_trace,
f_exc_type, f_exc_value, f_exc_traceback are NULL;
* f_localsplus does not require re-allocation and
the local variables in f_localsplus are NULL.
2. We also maintain a separate free list of stack frames (just like
floats are allocated in a special way -- see floatobject.c). When
a stack frame is on the free list, only the following members have
a meaning:
ob_type == &Frametype
f_back next item on free list, or NULL
f_stacksize size of value stack
ob_size size of localsplus
Note that the value and block stacks are preserved -- this can save
another malloc() call or two (and two free() calls as well!).
Also note that, unlike for integers, each frame object is a
malloc'ed object in its own right -- it is only the actual calls to
malloc() that we are trying to save here, not the administration.
After all, while a typical program may make millions of calls, a
call depth of more than 20 or 30 is probably already exceptional
unless the program contains run-away recursion. I hope.
Later, PyFrame_MAXFREELIST was added to bound the # of frames saved on
free_list. Else programs creating lots of cyclic trash involving
frames could provoke free_list into growing without bound.
*/
static int numfree;
static PyFrameObject *free_list;
#define PyFrame_MAXFREELIST 200
static void _Py_HOT_FUNCTION
frame_dealloc(PyFrameObject *restrict f)
{
PyObject **p, **valuestack;
PyCodeObject *co;
if (_PyObject_GC_IS_TRACKED(f))
_PyObject_GC_UNTRACK(f);
Py_TRASHCAN_SAFE_BEGIN(f)
/* Kill all local variables */
valuestack = f->f_valuestack;
for (p = f->f_localsplus; p < valuestack; p++)
Py_CLEAR(*p);
/* Free stack */
if (UNLIKELY(f->f_stacktop != NULL)) { /* 0% taken */
for (p = valuestack; p < f->f_stacktop; p++)
Py_XDECREF(*p);
}
Py_XDECREF(f->f_back);
Py_DECREF(f->f_builtins);
Py_DECREF(f->f_globals);
Py_CLEAR(f->f_locals);
Py_CLEAR(f->f_trace);
Py_CLEAR(f->f_exc_type);
Py_CLEAR(f->f_exc_value);
Py_CLEAR(f->f_exc_traceback);
co = f->f_code;
if (co->co_zombieframe == NULL)
co->co_zombieframe = f;
else if (numfree < PyFrame_MAXFREELIST) {
++numfree;
f->f_back = free_list;
free_list = f;
}
else
PyObject_GC_Del(f);
Py_DECREF(co);
Py_TRASHCAN_SAFE_END(f)
}
static int
frame_traverse(PyFrameObject *f, visitproc visit, void *arg)
{
PyObject **fastlocals, **p;
Py_ssize_t i, slots;
Py_VISIT(f->f_back);
Py_VISIT(f->f_code);
Py_VISIT(f->f_builtins);
Py_VISIT(f->f_globals);
Py_VISIT(f->f_locals);
Py_VISIT(f->f_trace);
Py_VISIT(f->f_exc_type);
Py_VISIT(f->f_exc_value);
Py_VISIT(f->f_exc_traceback);
/* locals */
slots = f->f_code->co_nlocals + PyTuple_GET_SIZE(f->f_code->co_cellvars) + PyTuple_GET_SIZE(f->f_code->co_freevars);
fastlocals = f->f_localsplus;
for (i = slots; --i >= 0; ++fastlocals)
Py_VISIT(*fastlocals);
/* stack */
if (f->f_stacktop != NULL) {
for (p = f->f_valuestack; p < f->f_stacktop; p++)
Py_VISIT(*p);
}
return 0;
}
static int
frame_tp_clear(PyFrameObject *f)
{
PyObject **fastlocals, **p, **oldtop;
Py_ssize_t i, slots;
/* Before anything else, make sure that this frame is clearly marked
* as being defunct! Else, e.g., a generator reachable from this
* frame may also point to this frame, believe itself to still be
* active, and try cleaning up this frame again.
*/
oldtop = f->f_stacktop;
f->f_stacktop = NULL;
f->f_executing = 0;
Py_CLEAR(f->f_exc_type);
Py_CLEAR(f->f_exc_value);
Py_CLEAR(f->f_exc_traceback);
Py_CLEAR(f->f_trace);
/* locals */
slots = f->f_code->co_nlocals + PyTuple_GET_SIZE(f->f_code->co_cellvars) + PyTuple_GET_SIZE(f->f_code->co_freevars);
fastlocals = f->f_localsplus;
for (i = slots; --i >= 0; ++fastlocals)
Py_CLEAR(*fastlocals);
/* stack */
if (oldtop != NULL) {
for (p = f->f_valuestack; p < oldtop; p++)
Py_CLEAR(*p);
}
return 0;
}
static PyObject *
frame_clear(PyFrameObject *f)
{
if (f->f_executing) {
PyErr_SetString(PyExc_RuntimeError,
"cannot clear an executing frame");
return NULL;
}
if (f->f_gen) {
_PyGen_Finalize(f->f_gen);
assert(f->f_gen == NULL);
}
(void)frame_tp_clear(f);
Py_RETURN_NONE;
}
PyDoc_STRVAR(clear__doc__,
"F.clear(): clear most references held by the frame");
static PyObject *
frame_sizeof(PyFrameObject *f)
{
Py_ssize_t res, extras, ncells, nfrees;
ncells = PyTuple_GET_SIZE(f->f_code->co_cellvars);
nfrees = PyTuple_GET_SIZE(f->f_code->co_freevars);
extras = f->f_code->co_stacksize + f->f_code->co_nlocals +
ncells + nfrees;
/* subtract one as it is already included in PyFrameObject */
res = sizeof(PyFrameObject) + (extras-1) * sizeof(PyObject *);
return PyLong_FromSsize_t(res);
}
PyDoc_STRVAR(sizeof__doc__,
"F.__sizeof__() -> size of F in memory, in bytes");
static PyMethodDef frame_methods[] = {
{"clear", (PyCFunction)frame_clear, METH_NOARGS,
clear__doc__},
{"__sizeof__", (PyCFunction)frame_sizeof, METH_NOARGS,
sizeof__doc__},
{NULL, NULL} /* sentinel */
};
PyTypeObject PyFrame_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"frame",
sizeof(PyFrameObject),
sizeof(PyObject *),
(destructor)frame_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
PyObject_GenericSetAttr, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
0, /* tp_doc */
(traverseproc)frame_traverse, /* tp_traverse */
(inquiry)frame_tp_clear, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
frame_methods, /* tp_methods */
frame_memberlist, /* tp_members */
frame_getsetlist, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
};
_Py_IDENTIFIER(__builtins__);
int _PyFrame_Init()
{
/* Before, PyId___builtins__ was a string created explicitly in
this function. Now there is nothing to initialize anymore, but
the function is kept for backward compatibility. */
return 1;
}
PyFrameObject* _Py_HOT_FUNCTION
_PyFrame_New_NoTrack(PyThreadState *tstate, PyCodeObject *code,
PyObject *globals, PyObject *locals)
{
PyFrameObject *back = tstate->frame;
PyFrameObject *f;
PyObject *builtins;
Py_ssize_t i;
#ifdef Py_DEBUG
if (code == NULL || globals == NULL || !PyDict_Check(globals) ||
(locals != NULL && !PyMapping_Check(locals))) {
PyErr_BadInternalCall();
return NULL;
}
#endif
if (back == NULL || back->f_globals != globals) {
builtins = _PyDict_GetItemId(globals, &PyId___builtins__);
if (builtins) {
if (PyModule_Check(builtins)) {
builtins = PyModule_GetDict(builtins);
assert(builtins != NULL);
}
}
if (builtins == NULL) {
/* No builtins! Make up a minimal one
Give them 'None', at least. */
builtins = PyDict_New();
if (builtins == NULL ||
PyDict_SetItemString(
builtins, "None", Py_None) < 0)
return NULL;
}
else
Py_INCREF(builtins);
}
else {
/* If we share the globals, we share the builtins.
Save a lookup and a call. */
builtins = back->f_builtins;
assert(builtins != NULL);
Py_INCREF(builtins);
}
if (code->co_zombieframe != NULL) {
f = code->co_zombieframe;
code->co_zombieframe = NULL;
_Py_NewReference((PyObject *)f);
assert(f->f_code == code);
}
else {
Py_ssize_t extras, ncells, nfrees;
ncells = PyTuple_GET_SIZE(code->co_cellvars);
nfrees = PyTuple_GET_SIZE(code->co_freevars);
extras = code->co_stacksize + code->co_nlocals + ncells +
nfrees;
if (free_list == NULL) {
f = PyObject_GC_NewVar(PyFrameObject, &PyFrame_Type,
extras);
if (f == NULL) {
Py_DECREF(builtins);
return NULL;
}
}
else {
assert(numfree > 0);
--numfree;
f = free_list;
free_list = free_list->f_back;
if (Py_SIZE(f) < extras) {
PyFrameObject *new_f = PyObject_GC_Resize(PyFrameObject, f, extras);
if (new_f == NULL) {
PyObject_GC_Del(f);
Py_DECREF(builtins);
return NULL;
}
f = new_f;
}
_Py_NewReference((PyObject *)f);
}
f->f_code = code;
extras = code->co_nlocals + ncells + nfrees;
f->f_valuestack = f->f_localsplus + extras;
for (i=0; i<extras; i++)
f->f_localsplus[i] = NULL;
f->f_locals = NULL;
f->f_trace = NULL;
f->f_exc_type = f->f_exc_value = f->f_exc_traceback = NULL;
}
f->f_stacktop = f->f_valuestack;
f->f_builtins = builtins;
Py_XINCREF(back);
f->f_back = back;
Py_INCREF(code);
Py_INCREF(globals);
f->f_globals = globals;
/* Most functions have CO_NEWLOCALS and CO_OPTIMIZED set. */
if ((code->co_flags & (CO_NEWLOCALS | CO_OPTIMIZED)) ==
(CO_NEWLOCALS | CO_OPTIMIZED))
; /* f_locals = NULL; will be set by PyFrame_FastToLocals() */
else if (code->co_flags & CO_NEWLOCALS) {
locals = PyDict_New();
if (locals == NULL) {
Py_DECREF(f);
return NULL;
}
f->f_locals = locals;
}
else {
if (locals == NULL)
locals = globals;
Py_INCREF(locals);
f->f_locals = locals;
}
f->f_lasti = -1;
f->f_lineno = code->co_firstlineno;
f->f_iblock = 0;
f->f_executing = 0;
f->f_gen = NULL;
return f;
}
PyFrameObject*
PyFrame_New(PyThreadState *tstate, PyCodeObject *code,
PyObject *globals, PyObject *locals)
{
PyFrameObject *f = _PyFrame_New_NoTrack(tstate, code, globals, locals);
if (f)
_PyObject_GC_TRACK(f);
return f;
}
/* Block management */
void
PyFrame_BlockSetup(PyFrameObject *f, int type, int handler, int level)
{
PyTryBlock *b;
if (f->f_iblock >= CO_MAXBLOCKS)
Py_FatalError("XXX block stack overflow");
b = &f->f_blockstack[f->f_iblock++];
b->b_type = type;
b->b_level = level;
b->b_handler = handler;
}
PyTryBlock *
PyFrame_BlockPop(PyFrameObject *f)
{
PyTryBlock *b;
if (f->f_iblock <= 0)
Py_FatalError("XXX block stack underflow");
b = &f->f_blockstack[--f->f_iblock];
return b;
}
/* Convert between "fast" version of locals and dictionary version.
map and values are input arguments. map is a tuple of strings.
values is an array of PyObject*. At index i, map[i] is the name of
the variable with value values[i]. The function copies the first
nmap variable from map/values into dict. If values[i] is NULL,
the variable is deleted from dict.
If deref is true, then the values being copied are cell variables
and the value is extracted from the cell variable before being put
in dict.
*/
static int
map_to_dict(PyObject *map, Py_ssize_t nmap, PyObject *dict, PyObject **values,
int deref)
{
Py_ssize_t j;
assert(PyTuple_Check(map));
assert(PyDict_Check(dict));
assert(PyTuple_Size(map) >= nmap);
for (j = nmap; --j >= 0; ) {
PyObject *key = PyTuple_GET_ITEM(map, j);
PyObject *value = values[j];
assert(PyUnicode_Check(key));
if (deref && value != NULL) {
assert(PyCell_Check(value));
value = PyCell_GET(value);
}
if (value == NULL) {
if (PyObject_DelItem(dict, key) != 0) {
if (PyErr_ExceptionMatches(PyExc_KeyError))
PyErr_Clear();
else
return -1;
}
}
else {
if (PyObject_SetItem(dict, key, value) != 0)
return -1;
}
}
return 0;
}
/* Copy values from the "locals" dict into the fast locals.
dict is an input argument containing string keys representing
variables names and arbitrary PyObject* as values.
map and values are input arguments. map is a tuple of strings.
values is an array of PyObject*. At index i, map[i] is the name of
the variable with value values[i]. The function copies the first
nmap variable from map/values into dict. If values[i] is NULL,
the variable is deleted from dict.
If deref is true, then the values being copied are cell variables
and the value is extracted from the cell variable before being put
in dict. If clear is true, then variables in map but not in dict
are set to NULL in map; if clear is false, variables missing in
dict are ignored.
Exceptions raised while modifying the dict are silently ignored,
because there is no good way to report them.
*/
static void
dict_to_map(PyObject *map, Py_ssize_t nmap, PyObject *dict, PyObject **values,
int deref, int clear)
{
Py_ssize_t j;
assert(PyTuple_Check(map));
assert(PyDict_Check(dict));
assert(PyTuple_Size(map) >= nmap);
for (j = nmap; --j >= 0; ) {
PyObject *key = PyTuple_GET_ITEM(map, j);
PyObject *value = PyObject_GetItem(dict, key);
assert(PyUnicode_Check(key));
/* We only care about NULLs if clear is true. */
if (value == NULL) {
PyErr_Clear();
if (!clear)
continue;
}
if (deref) {
assert(PyCell_Check(values[j]));
if (PyCell_GET(values[j]) != value) {
if (PyCell_Set(values[j], value) < 0)
PyErr_Clear();
}
} else if (values[j] != value) {
Py_XINCREF(value);
Py_XSETREF(values[j], value);
}
Py_XDECREF(value);
}
}
int
PyFrame_FastToLocalsWithError(PyFrameObject *f)
{
/* Merge fast locals into f->f_locals */
PyObject *locals, *map;
PyObject **fast;
PyCodeObject *co;
Py_ssize_t j;
Py_ssize_t ncells, nfreevars;
if (f == NULL) {
PyErr_BadInternalCall();
return -1;
}
locals = f->f_locals;
if (locals == NULL) {
locals = f->f_locals = PyDict_New();
if (locals == NULL)
return -1;
}
co = f->f_code;
map = co->co_varnames;
if (!PyTuple_Check(map)) {
PyErr_Format(PyExc_SystemError,
"co_varnames must be a tuple, not %s",
Py_TYPE(map)->tp_name);
return -1;
}
fast = f->f_localsplus;
j = PyTuple_GET_SIZE(map);
if (j > co->co_nlocals)
j = co->co_nlocals;
if (co->co_nlocals) {
if (map_to_dict(map, j, locals, fast, 0) < 0)
return -1;
}
ncells = PyTuple_GET_SIZE(co->co_cellvars);
nfreevars = PyTuple_GET_SIZE(co->co_freevars);
if (ncells || nfreevars) {
if (map_to_dict(co->co_cellvars, ncells,
locals, fast + co->co_nlocals, 1))
return -1;
/* If the namespace is unoptimized, then one of the
following cases applies:
1. It does not contain free variables, because it
uses import * or is a top-level namespace.
2. It is a class namespace.
We don't want to accidentally copy free variables
into the locals dict used by the class.
*/
if (co->co_flags & CO_OPTIMIZED) {
if (map_to_dict(co->co_freevars, nfreevars,
locals, fast + co->co_nlocals + ncells, 1) < 0)
return -1;
}
}
return 0;
}
void
PyFrame_FastToLocals(PyFrameObject *f)
{
int res;
assert(!PyErr_Occurred());
res = PyFrame_FastToLocalsWithError(f);
if (res < 0)
PyErr_Clear();
}
void
PyFrame_LocalsToFast(PyFrameObject *f, int clear)
{
/* Merge f->f_locals into fast locals */
PyObject *locals, *map;
PyObject **fast;
PyObject *error_type, *error_value, *error_traceback;
PyCodeObject *co;
Py_ssize_t j;
Py_ssize_t ncells, nfreevars;
if (f == NULL)
return;
locals = f->f_locals;
co = f->f_code;
map = co->co_varnames;
if (locals == NULL)
return;
if (!PyTuple_Check(map))
return;
PyErr_Fetch(&error_type, &error_value, &error_traceback);
fast = f->f_localsplus;
j = PyTuple_GET_SIZE(map);
if (j > co->co_nlocals)
j = co->co_nlocals;
if (co->co_nlocals)
dict_to_map(co->co_varnames, j, locals, fast, 0, clear);
ncells = PyTuple_GET_SIZE(co->co_cellvars);
nfreevars = PyTuple_GET_SIZE(co->co_freevars);
if (ncells || nfreevars) {
dict_to_map(co->co_cellvars, ncells,
locals, fast + co->co_nlocals, 1, clear);
/* Same test as in PyFrame_FastToLocals() above. */
if (co->co_flags & CO_OPTIMIZED) {
dict_to_map(co->co_freevars, nfreevars,
locals, fast + co->co_nlocals + ncells, 1,
clear);
}
}
PyErr_Restore(error_type, error_value, error_traceback);
}
/* Clear out the free list */
int
PyFrame_ClearFreeList(void)
{
int freelist_size = numfree;
while (free_list != NULL) {
PyFrameObject *f = free_list;
free_list = free_list->f_back;
PyObject_GC_Del(f);
--numfree;
}
assert(numfree == 0);
return freelist_size;
}
void
PyFrame_Fini(void)
{
(void)PyFrame_ClearFreeList();
}
/* Print summary info about the state of the optimized allocator */
void
_PyFrame_DebugMallocStats(FILE *out)
{
_PyDebugAllocatorStats(out,
"free PyFrameObject",
numfree, sizeof(PyFrameObject));
}
| 36,360 | 1,063 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/bytes_methods.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#define PY_SSIZE_T_CLEAN
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/boolobject.h"
#include "third_party/python/Include/bytes_methods.h"
#include "third_party/python/Include/bytesobject.h"
#include "third_party/python/Include/ceval.h"
#include "third_party/python/Include/longobject.h"
#include "third_party/python/Include/pyctype.h"
#include "third_party/python/Include/pyerrors.h"
/* clang-format off */
PyDoc_STRVAR_shared(_Py_isspace__doc__,
"B.isspace() -> bool\n\
\n\
Return True if all characters in B are whitespace\n\
and there is at least one character in B, False otherwise.");
PyObject*
_Py_bytes_isspace(const char *cptr, Py_ssize_t len)
{
const unsigned char *p
= (unsigned char *) cptr;
const unsigned char *e;
/* Shortcut for single character strings */
if (len == 1 && Py_ISSPACE(*p))
Py_RETURN_TRUE;
/* Special case for empty strings */
if (len == 0)
Py_RETURN_FALSE;
e = p + len;
for (; p < e; p++) {
if (!Py_ISSPACE(*p))
Py_RETURN_FALSE;
}
Py_RETURN_TRUE;
}
PyDoc_STRVAR_shared(_Py_isalpha__doc__,
"B.isalpha() -> bool\n\
\n\
Return True if all characters in B are alphabetic\n\
and there is at least one character in B, False otherwise.");
PyObject*
_Py_bytes_isalpha(const char *cptr, Py_ssize_t len)
{
const unsigned char *p
= (unsigned char *) cptr;
const unsigned char *e;
/* Shortcut for single character strings */
if (len == 1 && Py_ISALPHA(*p))
Py_RETURN_TRUE;
/* Special case for empty strings */
if (len == 0)
Py_RETURN_FALSE;
e = p + len;
for (; p < e; p++) {
if (!Py_ISALPHA(*p))
Py_RETURN_FALSE;
}
Py_RETURN_TRUE;
}
PyDoc_STRVAR_shared(_Py_isalnum__doc__,
"B.isalnum() -> bool\n\
\n\
Return True if all characters in B are alphanumeric\n\
and there is at least one character in B, False otherwise.");
PyObject*
_Py_bytes_isalnum(const char *cptr, Py_ssize_t len)
{
const unsigned char *p
= (unsigned char *) cptr;
const unsigned char *e;
/* Shortcut for single character strings */
if (len == 1 && Py_ISALNUM(*p))
Py_RETURN_TRUE;
/* Special case for empty strings */
if (len == 0)
Py_RETURN_FALSE;
e = p + len;
for (; p < e; p++) {
if (!Py_ISALNUM(*p))
Py_RETURN_FALSE;
}
Py_RETURN_TRUE;
}
PyDoc_STRVAR_shared(_Py_isdigit__doc__,
"B.isdigit() -> bool\n\
\n\
Return True if all characters in B are digits\n\
and there is at least one character in B, False otherwise.");
PyObject*
_Py_bytes_isdigit(const char *cptr, Py_ssize_t len)
{
const unsigned char *p
= (unsigned char *) cptr;
const unsigned char *e;
/* Shortcut for single character strings */
if (len == 1 && Py_ISDIGIT(*p))
Py_RETURN_TRUE;
/* Special case for empty strings */
if (len == 0)
Py_RETURN_FALSE;
e = p + len;
for (; p < e; p++) {
if (!Py_ISDIGIT(*p))
Py_RETURN_FALSE;
}
Py_RETURN_TRUE;
}
PyDoc_STRVAR_shared(_Py_islower__doc__,
"B.islower() -> bool\n\
\n\
Return True if all cased characters in B are lowercase and there is\n\
at least one cased character in B, False otherwise.");
PyObject*
_Py_bytes_islower(const char *cptr, Py_ssize_t len)
{
const unsigned char *p
= (unsigned char *) cptr;
const unsigned char *e;
int cased;
/* Shortcut for single character strings */
if (len == 1)
return PyBool_FromLong(Py_ISLOWER(*p));
/* Special case for empty strings */
if (len == 0)
Py_RETURN_FALSE;
e = p + len;
cased = 0;
for (; p < e; p++) {
if (Py_ISUPPER(*p))
Py_RETURN_FALSE;
else if (!cased && Py_ISLOWER(*p))
cased = 1;
}
return PyBool_FromLong(cased);
}
PyDoc_STRVAR_shared(_Py_isupper__doc__,
"B.isupper() -> bool\n\
\n\
Return True if all cased characters in B are uppercase and there is\n\
at least one cased character in B, False otherwise.");
PyObject*
_Py_bytes_isupper(const char *cptr, Py_ssize_t len)
{
const unsigned char *p
= (unsigned char *) cptr;
const unsigned char *e;
int cased;
/* Shortcut for single character strings */
if (len == 1)
return PyBool_FromLong(Py_ISUPPER(*p));
/* Special case for empty strings */
if (len == 0)
Py_RETURN_FALSE;
e = p + len;
cased = 0;
for (; p < e; p++) {
if (Py_ISLOWER(*p))
Py_RETURN_FALSE;
else if (!cased && Py_ISUPPER(*p))
cased = 1;
}
return PyBool_FromLong(cased);
}
PyDoc_STRVAR_shared(_Py_istitle__doc__,
"B.istitle() -> bool\n\
\n\
Return True if B is a titlecased string and there is at least one\n\
character in B, i.e. uppercase characters may only follow uncased\n\
characters and lowercase characters only cased ones. Return False\n\
otherwise.");
PyObject*
_Py_bytes_istitle(const char *cptr, Py_ssize_t len)
{
const unsigned char *p
= (unsigned char *) cptr;
const unsigned char *e;
int cased, previous_is_cased;
/* Shortcut for single character strings */
if (len == 1)
return PyBool_FromLong(Py_ISUPPER(*p));
/* Special case for empty strings */
if (len == 0)
Py_RETURN_FALSE;
e = p + len;
cased = 0;
previous_is_cased = 0;
for (; p < e; p++) {
const unsigned char ch = *p;
if (Py_ISUPPER(ch)) {
if (previous_is_cased)
Py_RETURN_FALSE;
previous_is_cased = 1;
cased = 1;
}
else if (Py_ISLOWER(ch)) {
if (!previous_is_cased)
Py_RETURN_FALSE;
previous_is_cased = 1;
cased = 1;
}
else
previous_is_cased = 0;
}
return PyBool_FromLong(cased);
}
PyDoc_STRVAR_shared(_Py_lower__doc__,
"B.lower() -> copy of B\n\
\n\
Return a copy of B with all ASCII characters converted to lowercase.");
void
_Py_bytes_lower(char *result, const char *cptr, Py_ssize_t len)
{
Py_ssize_t i;
for (i = 0; i < len; i++) {
result[i] = Py_TOLOWER((unsigned char) cptr[i]);
}
}
PyDoc_STRVAR_shared(_Py_upper__doc__,
"B.upper() -> copy of B\n\
\n\
Return a copy of B with all ASCII characters converted to uppercase.");
void
_Py_bytes_upper(char *result, const char *cptr, Py_ssize_t len)
{
Py_ssize_t i;
for (i = 0; i < len; i++) {
result[i] = Py_TOUPPER((unsigned char) cptr[i]);
}
}
PyDoc_STRVAR_shared(_Py_title__doc__,
"B.title() -> copy of B\n\
\n\
Return a titlecased version of B, i.e. ASCII words start with uppercase\n\
characters, all remaining cased characters have lowercase.");
void
_Py_bytes_title(char *result, const char *s, Py_ssize_t len)
{
Py_ssize_t i;
int previous_is_cased = 0;
for (i = 0; i < len; i++) {
int c = Py_CHARMASK(*s++);
if (Py_ISLOWER(c)) {
if (!previous_is_cased)
c = Py_TOUPPER(c);
previous_is_cased = 1;
} else if (Py_ISUPPER(c)) {
if (previous_is_cased)
c = Py_TOLOWER(c);
previous_is_cased = 1;
} else
previous_is_cased = 0;
*result++ = c;
}
}
PyDoc_STRVAR_shared(_Py_capitalize__doc__,
"B.capitalize() -> copy of B\n\
\n\
Return a copy of B with only its first character capitalized (ASCII)\n\
and the rest lower-cased.");
void
_Py_bytes_capitalize(char *result, const char *s, Py_ssize_t len)
{
Py_ssize_t i;
if (0 < len) {
int c = Py_CHARMASK(*s++);
if (Py_ISLOWER(c))
*result = Py_TOUPPER(c);
else
*result = c;
result++;
}
for (i = 1; i < len; i++) {
int c = Py_CHARMASK(*s++);
if (Py_ISUPPER(c))
*result = Py_TOLOWER(c);
else
*result = c;
result++;
}
}
PyDoc_STRVAR_shared(_Py_swapcase__doc__,
"B.swapcase() -> copy of B\n\
\n\
Return a copy of B with uppercase ASCII characters converted\n\
to lowercase ASCII and vice versa.");
void
_Py_bytes_swapcase(char *result, const char *s, Py_ssize_t len)
{
Py_ssize_t i;
for (i = 0; i < len; i++) {
int c = Py_CHARMASK(*s++);
if (Py_ISLOWER(c)) {
*result = Py_TOUPPER(c);
}
else if (Py_ISUPPER(c)) {
*result = Py_TOLOWER(c);
}
else
*result = c;
result++;
}
}
PyDoc_STRVAR_shared(_Py_maketrans__doc__,
"B.maketrans(frm, to) -> translation table\n\
\n\
Return a translation table (a bytes object of length 256) suitable\n\
for use in the bytes or bytearray translate method where each byte\n\
in frm is mapped to the byte at the same position in to.\n\
The bytes objects frm and to must be of the same length.");
PyObject *
_Py_bytes_maketrans(Py_buffer *frm, Py_buffer *to)
{
PyObject *res = NULL;
Py_ssize_t i;
char *p;
if (frm->len != to->len) {
PyErr_Format(PyExc_ValueError,
"maketrans arguments must have same length");
return NULL;
}
res = PyBytes_FromStringAndSize(NULL, 256);
if (!res)
return NULL;
p = PyBytes_AS_STRING(res);
for (i = 0; i < 256; i++)
p[i] = (char) i;
for (i = 0; i < frm->len; i++) {
p[((unsigned char *)frm->buf)[i]] = ((char *)to->buf)[i];
}
return res;
}
#define FASTSEARCH fastsearch
#define STRINGLIB(F) stringlib_##F
#define STRINGLIB_CHAR char
#define STRINGLIB_SIZEOF_CHAR 1
#include "third_party/python/Objects/stringlib/fastsearch.inc"
#include "third_party/python/Objects/stringlib/count.inc"
#include "third_party/python/Objects/stringlib/find.inc"
/*
Wraps stringlib_parse_args_finds() and additionally checks whether the
first argument is an integer in range(0, 256).
If this is the case, writes the integer value to the byte parameter
and sets subobj to NULL. Otherwise, sets the first argument to subobj
and doesn't touch byte. The other parameters are similar to those of
stringlib_parse_args_finds().
*/
Py_LOCAL_INLINE(int)
parse_args_finds_byte(const char *function_name, PyObject *args,
PyObject **subobj, char *byte,
Py_ssize_t *start, Py_ssize_t *end)
{
PyObject *tmp_subobj;
Py_ssize_t ival;
PyObject *err;
if(!stringlib_parse_args_finds(function_name, args, &tmp_subobj,
start, end))
return 0;
if (!PyNumber_Check(tmp_subobj)) {
*subobj = tmp_subobj;
return 1;
}
ival = PyNumber_AsSsize_t(tmp_subobj, PyExc_OverflowError);
if (ival == -1) {
err = PyErr_Occurred();
if (err && !PyErr_GivenExceptionMatches(err, PyExc_OverflowError)) {
PyErr_Clear();
*subobj = tmp_subobj;
return 1;
}
}
if (ival < 0 || ival > 255) {
PyErr_SetString(PyExc_ValueError, "byte must be in range(0, 256)");
return 0;
}
*subobj = NULL;
*byte = (char)ival;
return 1;
}
/* helper macro to fixup start/end slice values */
#define ADJUST_INDICES(start, end, len) \
if (end > len) \
end = len; \
else if (end < 0) { \
end += len; \
if (end < 0) \
end = 0; \
} \
if (start < 0) { \
start += len; \
if (start < 0) \
start = 0; \
}
Py_LOCAL_INLINE(Py_ssize_t)
find_internal(const char *str, Py_ssize_t len,
const char *function_name, PyObject *args, int dir)
{
PyObject *subobj;
char byte;
Py_buffer subbuf;
const char *sub;
Py_ssize_t sub_len;
Py_ssize_t start = 0, end = PY_SSIZE_T_MAX;
Py_ssize_t res;
if (!parse_args_finds_byte(function_name, args,
&subobj, &byte, &start, &end))
return -2;
if (subobj) {
if (PyObject_GetBuffer(subobj, &subbuf, PyBUF_SIMPLE) != 0)
return -2;
sub = subbuf.buf;
sub_len = subbuf.len;
}
else {
sub = &byte;
sub_len = 1;
}
ADJUST_INDICES(start, end, len);
if (end - start < sub_len)
res = -1;
else if (sub_len == 1) {
if (dir > 0)
res = stringlib_find_char(
str + start, end - start,
*sub);
else
res = stringlib_rfind_char(
str + start, end - start,
*sub);
if (res >= 0)
res += start;
}
else {
if (dir > 0)
res = stringlib_find_slice(
str, len,
sub, sub_len, start, end);
else
res = stringlib_rfind_slice(
str, len,
sub, sub_len, start, end);
}
if (subobj)
PyBuffer_Release(&subbuf);
return res;
}
PyDoc_STRVAR_shared(_Py_find__doc__,
"B.find(sub[, start[, end]]) -> int\n\
\n\
Return the lowest index in B where subsection sub is found,\n\
such that sub is contained within B[start,end]. Optional\n\
arguments start and end are interpreted as in slice notation.\n\
\n\
Return -1 on failure.");
PyObject *
_Py_bytes_find(const char *str, Py_ssize_t len, PyObject *args)
{
Py_ssize_t result = find_internal(str, len, "find", args, +1);
if (result == -2)
return NULL;
return PyLong_FromSsize_t(result);
}
PyDoc_STRVAR_shared(_Py_index__doc__,
"B.index(sub[, start[, end]]) -> int\n\
\n\
Return the lowest index in B where subsection sub is found,\n\
such that sub is contained within B[start,end]. Optional\n\
arguments start and end are interpreted as in slice notation.\n\
\n\
Raises ValueError when the subsection is not found.");
PyObject *
_Py_bytes_index(const char *str, Py_ssize_t len, PyObject *args)
{
Py_ssize_t result = find_internal(str, len, "index", args, +1);
if (result == -2)
return NULL;
if (result == -1) {
PyErr_SetString(PyExc_ValueError,
"subsection not found");
return NULL;
}
return PyLong_FromSsize_t(result);
}
PyDoc_STRVAR_shared(_Py_rfind__doc__,
"B.rfind(sub[, start[, end]]) -> int\n\
\n\
Return the highest index in B where subsection sub is found,\n\
such that sub is contained within B[start,end]. Optional\n\
arguments start and end are interpreted as in slice notation.\n\
\n\
Return -1 on failure.");
PyObject *
_Py_bytes_rfind(const char *str, Py_ssize_t len, PyObject *args)
{
Py_ssize_t result = find_internal(str, len, "rfind", args, -1);
if (result == -2)
return NULL;
return PyLong_FromSsize_t(result);
}
PyDoc_STRVAR_shared(_Py_rindex__doc__,
"B.rindex(sub[, start[, end]]) -> int\n\
\n\
Return the highest index in B where subsection sub is found,\n\
such that sub is contained within B[start,end]. Optional\n\
arguments start and end are interpreted as in slice notation.\n\
\n\
Raise ValueError when the subsection is not found.");
PyObject *
_Py_bytes_rindex(const char *str, Py_ssize_t len, PyObject *args)
{
Py_ssize_t result = find_internal(str, len, "rindex", args, -1);
if (result == -2)
return NULL;
if (result == -1) {
PyErr_SetString(PyExc_ValueError,
"subsection not found");
return NULL;
}
return PyLong_FromSsize_t(result);
}
PyDoc_STRVAR_shared(_Py_count__doc__,
"B.count(sub[, start[, end]]) -> int\n\
\n\
Return the number of non-overlapping occurrences of subsection sub in\n\
bytes B[start:end]. Optional arguments start and end are interpreted\n\
as in slice notation.");
PyObject *
_Py_bytes_count(const char *str, Py_ssize_t len, PyObject *args)
{
PyObject *sub_obj;
const char *sub;
Py_ssize_t sub_len;
char byte;
Py_ssize_t start = 0, end = PY_SSIZE_T_MAX;
Py_buffer vsub;
PyObject *count_obj;
if (!parse_args_finds_byte("count", args,
&sub_obj, &byte, &start, &end))
return NULL;
if (sub_obj) {
if (PyObject_GetBuffer(sub_obj, &vsub, PyBUF_SIMPLE) != 0)
return NULL;
sub = vsub.buf;
sub_len = vsub.len;
}
else {
sub = &byte;
sub_len = 1;
}
ADJUST_INDICES(start, end, len);
count_obj = PyLong_FromSsize_t(
stringlib_count(str + start, end - start, sub, sub_len, PY_SSIZE_T_MAX)
);
if (sub_obj)
PyBuffer_Release(&vsub);
return count_obj;
}
int
_Py_bytes_contains(const char *str, Py_ssize_t len, PyObject *arg)
{
Py_ssize_t ival = PyNumber_AsSsize_t(arg, NULL);
if (ival == -1 && PyErr_Occurred()) {
Py_buffer varg;
Py_ssize_t pos;
PyErr_Clear();
if (PyObject_GetBuffer(arg, &varg, PyBUF_SIMPLE) != 0)
return -1;
pos = stringlib_find(str, len,
varg.buf, varg.len, 0);
PyBuffer_Release(&varg);
return pos >= 0;
}
if (ival < 0 || ival >= 256) {
PyErr_SetString(PyExc_ValueError, "byte must be in range(0, 256)");
return -1;
}
return memchr(str, (int) ival, len) != NULL;
}
/* Matches the end (direction >= 0) or start (direction < 0) of the buffer
* against substr, using the start and end arguments. Returns
* -1 on error, 0 if not found and 1 if found.
*/
static int
tailmatch(const char *str, Py_ssize_t len, PyObject *substr,
Py_ssize_t start, Py_ssize_t end, int direction)
{
Py_buffer sub_view = {NULL, NULL};
const char *sub;
Py_ssize_t slen;
if (PyBytes_Check(substr)) {
sub = PyBytes_AS_STRING(substr);
slen = PyBytes_GET_SIZE(substr);
}
else {
if (PyObject_GetBuffer(substr, &sub_view, PyBUF_SIMPLE) != 0)
return -1;
sub = sub_view.buf;
slen = sub_view.len;
}
ADJUST_INDICES(start, end, len);
if (direction < 0) {
/* startswith */
if (start + slen > len)
goto notfound;
} else {
/* endswith */
if (end - start < slen || start > len)
goto notfound;
if (end - slen > start)
start = end - slen;
}
if (end - start < slen)
goto notfound;
if (bcmp(str + start, sub, slen) != 0)
goto notfound;
PyBuffer_Release(&sub_view);
return 1;
notfound:
PyBuffer_Release(&sub_view);
return 0;
}
static PyObject *
_Py_bytes_tailmatch(const char *str, Py_ssize_t len,
const char *function_name, PyObject *args,
int direction)
{
Py_ssize_t start = 0;
Py_ssize_t end = PY_SSIZE_T_MAX;
PyObject *subobj;
int result;
if (!stringlib_parse_args_finds(function_name, args, &subobj, &start, &end))
return NULL;
if (PyTuple_Check(subobj)) {
Py_ssize_t i;
for (i = 0; i < PyTuple_GET_SIZE(subobj); i++) {
result = tailmatch(str, len, PyTuple_GET_ITEM(subobj, i),
start, end, direction);
if (result == -1)
return NULL;
else if (result) {
Py_RETURN_TRUE;
}
}
Py_RETURN_FALSE;
}
result = tailmatch(str, len, subobj, start, end, direction);
if (result == -1) {
if (PyErr_ExceptionMatches(PyExc_TypeError))
PyErr_Format(PyExc_TypeError,
"%s first arg must be bytes or a tuple of bytes, "
"not %s",
function_name, Py_TYPE(subobj)->tp_name);
return NULL;
}
else
return PyBool_FromLong(result);
}
PyDoc_STRVAR_shared(_Py_startswith__doc__,
"B.startswith(prefix[, start[, end]]) -> bool\n\
\n\
Return True if B starts with the specified prefix, False otherwise.\n\
With optional start, test B beginning at that position.\n\
With optional end, stop comparing B at that position.\n\
prefix can also be a tuple of bytes to try.");
PyObject *
_Py_bytes_startswith(const char *str, Py_ssize_t len, PyObject *args)
{
return _Py_bytes_tailmatch(str, len, "startswith", args, -1);
}
PyDoc_STRVAR_shared(_Py_endswith__doc__,
"B.endswith(suffix[, start[, end]]) -> bool\n\
\n\
Return True if B ends with the specified suffix, False otherwise.\n\
With optional start, test B beginning at that position.\n\
With optional end, stop comparing B at that position.\n\
suffix can also be a tuple of bytes to try.");
PyObject *
_Py_bytes_endswith(const char *str, Py_ssize_t len, PyObject *args)
{
return _Py_bytes_tailmatch(str, len, "endswith", args, +1);
}
PyDoc_STRVAR_shared(_Py_expandtabs__doc__,
"B.expandtabs(tabsize=8) -> copy of B\n\
\n\
Return a copy of B where all tab characters are expanded using spaces.\n\
If tabsize is not given, a tab size of 8 characters is assumed.");
PyDoc_STRVAR_shared(_Py_ljust__doc__,
"B.ljust(width[, fillchar]) -> copy of B\n"
"\n"
"Return B left justified in a string of length width. Padding is\n"
"done using the specified fill character (default is a space).");
PyDoc_STRVAR_shared(_Py_rjust__doc__,
"B.rjust(width[, fillchar]) -> copy of B\n"
"\n"
"Return B right justified in a string of length width. Padding is\n"
"done using the specified fill character (default is a space)");
PyDoc_STRVAR_shared(_Py_center__doc__,
"B.center(width[, fillchar]) -> copy of B\n"
"\n"
"Return B centered in a string of length width. Padding is\n"
"done using the specified fill character (default is a space).");
PyDoc_STRVAR_shared(_Py_zfill__doc__,
"B.zfill(width) -> copy of B\n"
"\n"
"Pad a numeric string B with zeros on the left, to fill a field\n"
"of the specified width. B is never truncated.");
| 22,751 | 835 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/README | Source files for various builtin objects
| 41 | 2 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/descrobject.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/boolobject.h"
#include "third_party/python/Include/ceval.h"
#include "third_party/python/Include/descrobject.h"
#include "third_party/python/Include/dictobject.h"
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/object.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/pyhash.h"
#include "third_party/python/Include/pymacro.h"
#include "third_party/python/Include/structmember.h"
#include "third_party/python/Include/tupleobject.h"
#include "third_party/python/Include/unicodeobject.h"
/* clang-format off */
/* Descriptors -- a new, flexible way to describe attributes */
static void
descr_dealloc(PyDescrObject *descr)
{
_PyObject_GC_UNTRACK(descr);
Py_XDECREF(descr->d_type);
Py_XDECREF(descr->d_name);
Py_XDECREF(descr->d_qualname);
PyObject_GC_Del(descr);
}
static PyObject *
descr_name(PyDescrObject *descr)
{
if (descr->d_name != NULL && PyUnicode_Check(descr->d_name))
return descr->d_name;
return NULL;
}
static PyObject *
descr_repr(PyDescrObject *descr, const char *format)
{
PyObject *name = NULL;
if (descr->d_name != NULL && PyUnicode_Check(descr->d_name))
name = descr->d_name;
return PyUnicode_FromFormat(format, name, "?", descr->d_type->tp_name);
}
static PyObject *
method_repr(PyMethodDescrObject *descr)
{
return descr_repr((PyDescrObject *)descr,
"<method '%V' of '%s' objects>");
}
static PyObject *
member_repr(PyMemberDescrObject *descr)
{
return descr_repr((PyDescrObject *)descr,
"<member '%V' of '%s' objects>");
}
static PyObject *
getset_repr(PyGetSetDescrObject *descr)
{
return descr_repr((PyDescrObject *)descr,
"<attribute '%V' of '%s' objects>");
}
static PyObject *
wrapperdescr_repr(PyWrapperDescrObject *descr)
{
return descr_repr((PyDescrObject *)descr,
"<slot wrapper '%V' of '%s' objects>");
}
static int
descr_check(PyDescrObject *descr, PyObject *obj, PyObject **pres)
{
if (obj == NULL) {
Py_INCREF(descr);
*pres = (PyObject *)descr;
return 1;
}
if (!PyObject_TypeCheck(obj, descr->d_type)) {
PyErr_Format(PyExc_TypeError,
"descriptor '%V' for '%s' objects "
"doesn't apply to '%s' object",
descr_name((PyDescrObject *)descr), "?",
descr->d_type->tp_name,
obj->ob_type->tp_name);
*pres = NULL;
return 1;
}
return 0;
}
static PyObject *
classmethod_get(PyMethodDescrObject *descr, PyObject *obj, PyObject *type)
{
/* Ensure a valid type. Class methods ignore obj. */
if (type == NULL) {
if (obj != NULL)
type = (PyObject *)obj->ob_type;
else {
/* Wot - no type?! */
PyErr_Format(PyExc_TypeError,
"descriptor '%V' for type '%s' "
"needs either an object or a type",
descr_name((PyDescrObject *)descr), "?",
PyDescr_TYPE(descr)->tp_name);
return NULL;
}
}
if (!PyType_Check(type)) {
PyErr_Format(PyExc_TypeError,
"descriptor '%V' for type '%s' "
"needs a type, not a '%s' as arg 2",
descr_name((PyDescrObject *)descr), "?",
PyDescr_TYPE(descr)->tp_name,
type->ob_type->tp_name);
return NULL;
}
if (!PyType_IsSubtype((PyTypeObject *)type, PyDescr_TYPE(descr))) {
PyErr_Format(PyExc_TypeError,
"descriptor '%V' for type '%s' "
"doesn't apply to type '%s'",
descr_name((PyDescrObject *)descr), "?",
PyDescr_TYPE(descr)->tp_name,
((PyTypeObject *)type)->tp_name);
return NULL;
}
return PyCFunction_NewEx(descr->d_method, type, NULL);
}
static PyObject *
method_get(PyMethodDescrObject *descr, PyObject *obj, PyObject *type)
{
PyObject *res;
if (descr_check((PyDescrObject *)descr, obj, &res))
return res;
return PyCFunction_NewEx(descr->d_method, obj, NULL);
}
static PyObject *
member_get(PyMemberDescrObject *descr, PyObject *obj, PyObject *type)
{
PyObject *res;
if (descr_check((PyDescrObject *)descr, obj, &res))
return res;
return PyMember_GetOne((char *)obj, descr->d_member);
}
static PyObject *
getset_get(PyGetSetDescrObject *descr, PyObject *obj, PyObject *type)
{
PyObject *res;
if (descr_check((PyDescrObject *)descr, obj, &res))
return res;
if (descr->d_getset->get != NULL)
return descr->d_getset->get(obj, descr->d_getset->closure);
PyErr_Format(PyExc_AttributeError,
"attribute '%V' of '%.100s' objects is not readable",
descr_name((PyDescrObject *)descr), "?",
PyDescr_TYPE(descr)->tp_name);
return NULL;
}
static PyObject *
wrapperdescr_get(PyWrapperDescrObject *descr, PyObject *obj, PyObject *type)
{
PyObject *res;
if (descr_check((PyDescrObject *)descr, obj, &res))
return res;
return PyWrapper_New((PyObject *)descr, obj);
}
static int
descr_setcheck(PyDescrObject *descr, PyObject *obj, PyObject *value,
int *pres)
{
assert(obj != NULL);
if (!PyObject_TypeCheck(obj, descr->d_type)) {
PyErr_Format(PyExc_TypeError,
"descriptor '%V' for '%.100s' objects "
"doesn't apply to '%.100s' object",
descr_name(descr), "?",
descr->d_type->tp_name,
obj->ob_type->tp_name);
*pres = -1;
return 1;
}
return 0;
}
static int
member_set(PyMemberDescrObject *descr, PyObject *obj, PyObject *value)
{
int res;
if (descr_setcheck((PyDescrObject *)descr, obj, value, &res))
return res;
return PyMember_SetOne((char *)obj, descr->d_member, value);
}
static int
getset_set(PyGetSetDescrObject *descr, PyObject *obj, PyObject *value)
{
int res;
if (descr_setcheck((PyDescrObject *)descr, obj, value, &res))
return res;
if (descr->d_getset->set != NULL)
return descr->d_getset->set(obj, value,
descr->d_getset->closure);
PyErr_Format(PyExc_AttributeError,
"attribute '%V' of '%.100s' objects is not writable",
descr_name((PyDescrObject *)descr), "?",
PyDescr_TYPE(descr)->tp_name);
return -1;
}
static PyObject *
methoddescr_call(PyMethodDescrObject *descr, PyObject *args, PyObject *kwargs)
{
Py_ssize_t nargs;
PyObject *self, *result;
/* Make sure that the first argument is acceptable as 'self' */
assert(PyTuple_Check(args));
nargs = PyTuple_GET_SIZE(args);
if (nargs < 1) {
PyErr_Format(PyExc_TypeError,
"descriptor '%V' of '%.100s' "
"object needs an argument",
descr_name((PyDescrObject *)descr), "?",
PyDescr_TYPE(descr)->tp_name);
return NULL;
}
self = PyTuple_GET_ITEM(args, 0);
if (!_PyObject_RealIsSubclass((PyObject *)Py_TYPE(self),
(PyObject *)PyDescr_TYPE(descr))) {
PyErr_Format(PyExc_TypeError,
"descriptor '%V' "
"requires a '%.100s' object "
"but received a '%.100s'",
descr_name((PyDescrObject *)descr), "?",
PyDescr_TYPE(descr)->tp_name,
self->ob_type->tp_name);
return NULL;
}
result = _PyMethodDef_RawFastCallDict(descr->d_method, self,
&PyTuple_GET_ITEM(args, 1), nargs - 1,
kwargs);
result = _Py_CheckFunctionResult((PyObject *)descr, result, NULL);
return result;
}
// same to methoddescr_call(), but use FASTCALL convention.
PyObject *
_PyMethodDescr_FastCallKeywords(PyObject *descrobj,
PyObject *const *args, Py_ssize_t nargs,
PyObject *kwnames)
{
assert(Py_TYPE(descrobj) == &PyMethodDescr_Type);
PyMethodDescrObject *descr = (PyMethodDescrObject *)descrobj;
PyObject *self, *result;
/* Make sure that the first argument is acceptable as 'self' */
if (nargs < 1) {
PyErr_Format(PyExc_TypeError,
"descriptor '%V' of '%.100s' "
"object needs an argument",
descr_name((PyDescrObject *)descr), "?",
PyDescr_TYPE(descr)->tp_name);
return NULL;
}
self = args[0];
if (!_PyObject_RealIsSubclass((PyObject *)Py_TYPE(self),
(PyObject *)PyDescr_TYPE(descr))) {
PyErr_Format(PyExc_TypeError,
"descriptor '%V' "
"requires a '%.100s' object "
"but received a '%.100s'",
descr_name((PyDescrObject *)descr), "?",
PyDescr_TYPE(descr)->tp_name,
self->ob_type->tp_name);
return NULL;
}
result = _PyMethodDef_RawFastCallKeywords(descr->d_method, self,
args+1, nargs-1, kwnames);
result = _Py_CheckFunctionResult((PyObject *)descr, result, NULL);
return result;
}
static PyObject *
classmethoddescr_call(PyMethodDescrObject *descr, PyObject *args,
PyObject *kwds)
{
Py_ssize_t argc;
PyObject *self, *func, *result, **stack;
/* Make sure that the first argument is acceptable as 'self' */
assert(PyTuple_Check(args));
argc = PyTuple_GET_SIZE(args);
if (argc < 1) {
PyErr_Format(PyExc_TypeError,
"descriptor '%V' of '%.100s' "
"object needs an argument",
descr_name((PyDescrObject *)descr), "?",
PyDescr_TYPE(descr)->tp_name);
return NULL;
}
self = PyTuple_GET_ITEM(args, 0);
if (!PyType_Check(self)) {
PyErr_Format(PyExc_TypeError,
"descriptor '%V' requires a type "
"but received a '%.100s'",
descr_name((PyDescrObject *)descr), "?",
PyDescr_TYPE(descr)->tp_name,
self->ob_type->tp_name);
return NULL;
}
if (!PyType_IsSubtype((PyTypeObject *)self, PyDescr_TYPE(descr))) {
PyErr_Format(PyExc_TypeError,
"descriptor '%V' "
"requires a subtype of '%.100s' "
"but received '%.100s",
descr_name((PyDescrObject *)descr), "?",
PyDescr_TYPE(descr)->tp_name,
self->ob_type->tp_name);
return NULL;
}
func = PyCFunction_NewEx(descr->d_method, self, NULL);
if (func == NULL)
return NULL;
stack = &PyTuple_GET_ITEM(args, 1);
result = _PyObject_FastCallDict(func, stack, argc - 1, kwds);
Py_DECREF(func);
return result;
}
static PyObject *
wrapperdescr_call(PyWrapperDescrObject *descr, PyObject *args, PyObject *kwds)
{
Py_ssize_t argc;
PyObject *self, *func, *result, **stack;
/* Make sure that the first argument is acceptable as 'self' */
assert(PyTuple_Check(args));
argc = PyTuple_GET_SIZE(args);
if (argc < 1) {
PyErr_Format(PyExc_TypeError,
"descriptor '%V' of '%.100s' "
"object needs an argument",
descr_name((PyDescrObject *)descr), "?",
PyDescr_TYPE(descr)->tp_name);
return NULL;
}
self = PyTuple_GET_ITEM(args, 0);
if (!_PyObject_RealIsSubclass((PyObject *)Py_TYPE(self),
(PyObject *)PyDescr_TYPE(descr))) {
PyErr_Format(PyExc_TypeError,
"descriptor '%V' "
"requires a '%.100s' object "
"but received a '%.100s'",
descr_name((PyDescrObject *)descr), "?",
PyDescr_TYPE(descr)->tp_name,
self->ob_type->tp_name);
return NULL;
}
func = PyWrapper_New((PyObject *)descr, self);
if (func == NULL)
return NULL;
stack = &PyTuple_GET_ITEM(args, 1);
result = _PyObject_FastCallDict(func, stack, argc - 1, kwds);
Py_DECREF(func);
return result;
}
static PyObject *
method_get_doc(PyMethodDescrObject *descr, void *closure)
{
return _PyType_GetDocFromInternalDoc(descr->d_method->ml_name, descr->d_method->ml_doc);
}
static PyObject *
method_get_text_signature(PyMethodDescrObject *descr, void *closure)
{
return _PyType_GetTextSignatureFromInternalDoc(descr->d_method->ml_name, descr->d_method->ml_doc);
}
static PyObject *
calculate_qualname(PyDescrObject *descr)
{
PyObject *type_qualname, *res;
_Py_IDENTIFIER(__qualname__);
if (descr->d_name == NULL || !PyUnicode_Check(descr->d_name)) {
PyErr_SetString(PyExc_TypeError,
"<descriptor>.__name__ is not a unicode object");
return NULL;
}
type_qualname = _PyObject_GetAttrId((PyObject *)descr->d_type,
&PyId___qualname__);
if (type_qualname == NULL)
return NULL;
if (!PyUnicode_Check(type_qualname)) {
PyErr_SetString(PyExc_TypeError, "<descriptor>.__objclass__."
"__qualname__ is not a unicode object");
Py_XDECREF(type_qualname);
return NULL;
}
res = PyUnicode_FromFormat("%S.%S", type_qualname, descr->d_name);
Py_DECREF(type_qualname);
return res;
}
static PyObject *
descr_get_qualname(PyDescrObject *descr, void *Py_UNUSED(ignored))
{
if (descr->d_qualname == NULL)
descr->d_qualname = calculate_qualname(descr);
Py_XINCREF(descr->d_qualname);
return descr->d_qualname;
}
static PyObject *
descr_reduce(PyDescrObject *descr)
{
_Py_IDENTIFIER(getattr);
return Py_BuildValue("N(OO)", _PyEval_GetBuiltinId(&PyId_getattr),
PyDescr_TYPE(descr), PyDescr_NAME(descr));
}
static PyMethodDef descr_methods[] = {
{"__reduce__", (PyCFunction)descr_reduce, METH_NOARGS, NULL},
{NULL, NULL}
};
static PyMemberDef descr_members[] = {
{"__objclass__", T_OBJECT, offsetof(PyDescrObject, d_type), READONLY},
{"__name__", T_OBJECT, offsetof(PyDescrObject, d_name), READONLY},
{0}
};
static PyGetSetDef method_getset[] = {
{"__doc__", (getter)method_get_doc},
{"__qualname__", (getter)descr_get_qualname},
{"__text_signature__", (getter)method_get_text_signature},
{0}
};
static PyObject *
member_get_doc(PyMemberDescrObject *descr, void *closure)
{
if (descr->d_member->doc == NULL) {
Py_INCREF(Py_None);
return Py_None;
}
return PyUnicode_FromString(descr->d_member->doc);
}
static PyGetSetDef member_getset[] = {
{"__doc__", (getter)member_get_doc},
{"__qualname__", (getter)descr_get_qualname},
{0}
};
static PyObject *
getset_get_doc(PyGetSetDescrObject *descr, void *closure)
{
if (descr->d_getset->doc == NULL) {
Py_INCREF(Py_None);
return Py_None;
}
return PyUnicode_FromString(descr->d_getset->doc);
}
static PyGetSetDef getset_getset[] = {
{"__doc__", (getter)getset_get_doc},
{"__qualname__", (getter)descr_get_qualname},
{0}
};
static PyObject *
wrapperdescr_get_doc(PyWrapperDescrObject *descr, void *closure)
{
return _PyType_GetDocFromInternalDoc(descr->d_base->name, descr->d_base->doc);
}
static PyObject *
wrapperdescr_get_text_signature(PyWrapperDescrObject *descr, void *closure)
{
return _PyType_GetTextSignatureFromInternalDoc(descr->d_base->name, descr->d_base->doc);
}
static PyGetSetDef wrapperdescr_getset[] = {
{"__doc__", (getter)wrapperdescr_get_doc},
{"__qualname__", (getter)descr_get_qualname},
{"__text_signature__", (getter)wrapperdescr_get_text_signature},
{0}
};
static int
descr_traverse(PyObject *self, visitproc visit, void *arg)
{
PyDescrObject *descr = (PyDescrObject *)self;
Py_VISIT(descr->d_type);
return 0;
}
PyTypeObject PyMethodDescr_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"method_descriptor",
sizeof(PyMethodDescrObject),
0,
(destructor)descr_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)method_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
(ternaryfunc)methoddescr_call, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, /* tp_flags */
0, /* tp_doc */
descr_traverse, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
descr_methods, /* tp_methods */
descr_members, /* tp_members */
method_getset, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
(descrgetfunc)method_get, /* tp_descr_get */
0, /* tp_descr_set */
};
/* This is for METH_CLASS in C, not for "f = classmethod(f)" in Python! */
PyTypeObject PyClassMethodDescr_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"classmethod_descriptor",
sizeof(PyMethodDescrObject),
0,
(destructor)descr_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)method_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
(ternaryfunc)classmethoddescr_call, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, /* tp_flags */
0, /* tp_doc */
descr_traverse, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
descr_methods, /* tp_methods */
descr_members, /* tp_members */
method_getset, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
(descrgetfunc)classmethod_get, /* tp_descr_get */
0, /* tp_descr_set */
};
PyTypeObject PyMemberDescr_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"member_descriptor",
sizeof(PyMemberDescrObject),
0,
(destructor)descr_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)member_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, /* tp_flags */
0, /* tp_doc */
descr_traverse, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
descr_methods, /* tp_methods */
descr_members, /* tp_members */
member_getset, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
(descrgetfunc)member_get, /* tp_descr_get */
(descrsetfunc)member_set, /* tp_descr_set */
};
PyTypeObject PyGetSetDescr_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"getset_descriptor",
sizeof(PyGetSetDescrObject),
0,
(destructor)descr_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)getset_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, /* tp_flags */
0, /* tp_doc */
descr_traverse, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
0, /* tp_methods */
descr_members, /* tp_members */
getset_getset, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
(descrgetfunc)getset_get, /* tp_descr_get */
(descrsetfunc)getset_set, /* tp_descr_set */
};
PyTypeObject PyWrapperDescr_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"wrapper_descriptor",
sizeof(PyWrapperDescrObject),
0,
(destructor)descr_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)wrapperdescr_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
(ternaryfunc)wrapperdescr_call, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, /* tp_flags */
0, /* tp_doc */
descr_traverse, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
descr_methods, /* tp_methods */
descr_members, /* tp_members */
wrapperdescr_getset, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
(descrgetfunc)wrapperdescr_get, /* tp_descr_get */
0, /* tp_descr_set */
};
static PyDescrObject *
descr_new(PyTypeObject *descrtype, PyTypeObject *type, const char *name)
{
PyDescrObject *descr;
descr = (PyDescrObject *)PyType_GenericAlloc(descrtype, 0);
if (descr != NULL) {
Py_XINCREF(type);
descr->d_type = type;
descr->d_name = PyUnicode_InternFromString(name);
if (descr->d_name == NULL) {
Py_DECREF(descr);
descr = NULL;
}
else {
descr->d_qualname = NULL;
}
}
return descr;
}
PyObject *
PyDescr_NewMethod(PyTypeObject *type, PyMethodDef *method)
{
PyMethodDescrObject *descr;
descr = (PyMethodDescrObject *)descr_new(&PyMethodDescr_Type,
type, method->ml_name);
if (descr != NULL)
descr->d_method = method;
return (PyObject *)descr;
}
PyObject *
PyDescr_NewClassMethod(PyTypeObject *type, PyMethodDef *method)
{
PyMethodDescrObject *descr;
descr = (PyMethodDescrObject *)descr_new(&PyClassMethodDescr_Type,
type, method->ml_name);
if (descr != NULL)
descr->d_method = method;
return (PyObject *)descr;
}
PyObject *
PyDescr_NewMember(PyTypeObject *type, PyMemberDef *member)
{
PyMemberDescrObject *descr;
descr = (PyMemberDescrObject *)descr_new(&PyMemberDescr_Type,
type, member->name);
if (descr != NULL)
descr->d_member = member;
return (PyObject *)descr;
}
PyObject *
PyDescr_NewGetSet(PyTypeObject *type, PyGetSetDef *getset)
{
PyGetSetDescrObject *descr;
descr = (PyGetSetDescrObject *)descr_new(&PyGetSetDescr_Type,
type, getset->name);
if (descr != NULL)
descr->d_getset = getset;
return (PyObject *)descr;
}
PyObject *
PyDescr_NewWrapper(PyTypeObject *type, struct wrapperbase *base, void *wrapped)
{
PyWrapperDescrObject *descr;
descr = (PyWrapperDescrObject *)descr_new(&PyWrapperDescr_Type,
type, base->name);
if (descr != NULL) {
descr->d_base = base;
descr->d_wrapped = wrapped;
}
return (PyObject *)descr;
}
/* --- mappingproxy: read-only proxy for mappings --- */
/* This has no reason to be in this file except that adding new files is a
bit of a pain */
typedef struct {
PyObject_HEAD
PyObject *mapping;
} mappingproxyobject;
static Py_ssize_t
mappingproxy_len(mappingproxyobject *pp)
{
return PyObject_Size(pp->mapping);
}
static PyObject *
mappingproxy_getitem(mappingproxyobject *pp, PyObject *key)
{
return PyObject_GetItem(pp->mapping, key);
}
static PyMappingMethods mappingproxy_as_mapping = {
(lenfunc)mappingproxy_len, /* mp_length */
(binaryfunc)mappingproxy_getitem, /* mp_subscript */
0, /* mp_ass_subscript */
};
static int
mappingproxy_contains(mappingproxyobject *pp, PyObject *key)
{
if (PyDict_CheckExact(pp->mapping))
return PyDict_Contains(pp->mapping, key);
else
return PySequence_Contains(pp->mapping, key);
}
static PySequenceMethods mappingproxy_as_sequence = {
0, /* sq_length */
0, /* sq_concat */
0, /* sq_repeat */
0, /* sq_item */
0, /* sq_slice */
0, /* sq_ass_item */
0, /* sq_ass_slice */
(objobjproc)mappingproxy_contains, /* sq_contains */
0, /* sq_inplace_concat */
0, /* sq_inplace_repeat */
};
static PyObject *
mappingproxy_get(mappingproxyobject *pp, PyObject *args)
{
PyObject *key, *def = Py_None;
_Py_IDENTIFIER(get);
if (!PyArg_UnpackTuple(args, "get", 1, 2, &key, &def))
return NULL;
return _PyObject_CallMethodId(pp->mapping, &PyId_get, "(OO)", key, def);
}
static PyObject *
mappingproxy_keys(mappingproxyobject *pp)
{
_Py_IDENTIFIER(keys);
return _PyObject_CallMethodId(pp->mapping, &PyId_keys, NULL);
}
static PyObject *
mappingproxy_values(mappingproxyobject *pp)
{
_Py_IDENTIFIER(values);
return _PyObject_CallMethodId(pp->mapping, &PyId_values, NULL);
}
static PyObject *
mappingproxy_items(mappingproxyobject *pp)
{
_Py_IDENTIFIER(items);
return _PyObject_CallMethodId(pp->mapping, &PyId_items, NULL);
}
static PyObject *
mappingproxy_copy(mappingproxyobject *pp)
{
_Py_IDENTIFIER(copy);
return _PyObject_CallMethodId(pp->mapping, &PyId_copy, NULL);
}
/* WARNING: mappingproxy methods must not give access
to the underlying mapping */
static PyMethodDef mappingproxy_methods[] = {
{"get", (PyCFunction)mappingproxy_get, METH_VARARGS,
PyDoc_STR("D.get(k[,d]) -> D[k] if k in D, else d."
" d defaults to None.")},
{"keys", (PyCFunction)mappingproxy_keys, METH_NOARGS,
PyDoc_STR("D.keys() -> list of D's keys")},
{"values", (PyCFunction)mappingproxy_values, METH_NOARGS,
PyDoc_STR("D.values() -> list of D's values")},
{"items", (PyCFunction)mappingproxy_items, METH_NOARGS,
PyDoc_STR("D.items() -> list of D's (key, value) pairs, as 2-tuples")},
{"copy", (PyCFunction)mappingproxy_copy, METH_NOARGS,
PyDoc_STR("D.copy() -> a shallow copy of D")},
{0}
};
static void
mappingproxy_dealloc(mappingproxyobject *pp)
{
_PyObject_GC_UNTRACK(pp);
Py_DECREF(pp->mapping);
PyObject_GC_Del(pp);
}
static PyObject *
mappingproxy_getiter(mappingproxyobject *pp)
{
return PyObject_GetIter(pp->mapping);
}
static PyObject *
mappingproxy_str(mappingproxyobject *pp)
{
return PyObject_Str(pp->mapping);
}
static PyObject *
mappingproxy_repr(mappingproxyobject *pp)
{
return PyUnicode_FromFormat("mappingproxy(%R)", pp->mapping);
}
static int
mappingproxy_traverse(PyObject *self, visitproc visit, void *arg)
{
mappingproxyobject *pp = (mappingproxyobject *)self;
Py_VISIT(pp->mapping);
return 0;
}
static PyObject *
mappingproxy_richcompare(mappingproxyobject *v, PyObject *w, int op)
{
return PyObject_RichCompare(v->mapping, w, op);
}
static int
mappingproxy_check_mapping(PyObject *mapping)
{
if (!PyMapping_Check(mapping)
|| PyList_Check(mapping)
|| PyTuple_Check(mapping)) {
PyErr_Format(PyExc_TypeError,
"mappingproxy() argument must be a mapping, not %s",
Py_TYPE(mapping)->tp_name);
return -1;
}
return 0;
}
static PyObject*
mappingproxy_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"mapping", NULL};
PyObject *mapping;
mappingproxyobject *mappingproxy;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "O:mappingproxy",
kwlist, &mapping))
return NULL;
if (mappingproxy_check_mapping(mapping) == -1)
return NULL;
mappingproxy = PyObject_GC_New(mappingproxyobject, &PyDictProxy_Type);
if (mappingproxy == NULL)
return NULL;
Py_INCREF(mapping);
mappingproxy->mapping = mapping;
_PyObject_GC_TRACK(mappingproxy);
return (PyObject *)mappingproxy;
}
PyTypeObject PyDictProxy_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"mappingproxy", /* tp_name */
sizeof(mappingproxyobject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)mappingproxy_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)mappingproxy_repr, /* tp_repr */
0, /* tp_as_number */
&mappingproxy_as_sequence, /* tp_as_sequence */
&mappingproxy_as_mapping, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
(reprfunc)mappingproxy_str, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, /* tp_flags */
0, /* tp_doc */
mappingproxy_traverse, /* tp_traverse */
0, /* tp_clear */
(richcmpfunc)mappingproxy_richcompare, /* tp_richcompare */
0, /* tp_weaklistoffset */
(getiterfunc)mappingproxy_getiter, /* tp_iter */
0, /* tp_iternext */
mappingproxy_methods, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
mappingproxy_new, /* tp_new */
};
PyObject *
PyDictProxy_New(PyObject *mapping)
{
mappingproxyobject *pp;
if (mappingproxy_check_mapping(mapping) == -1)
return NULL;
pp = PyObject_GC_New(mappingproxyobject, &PyDictProxy_Type);
if (pp != NULL) {
Py_INCREF(mapping);
pp->mapping = mapping;
_PyObject_GC_TRACK(pp);
}
return (PyObject *)pp;
}
/* --- Wrapper object for "slot" methods --- */
/* This has no reason to be in this file except that adding new files is a
bit of a pain */
typedef struct {
PyObject_HEAD
PyWrapperDescrObject *descr;
PyObject *self;
} wrapperobject;
#define Wrapper_Check(v) (Py_TYPE(v) == &_PyMethodWrapper_Type)
static void
wrapper_dealloc(wrapperobject *wp)
{
PyObject_GC_UnTrack(wp);
Py_TRASHCAN_SAFE_BEGIN(wp)
Py_XDECREF(wp->descr);
Py_XDECREF(wp->self);
PyObject_GC_Del(wp);
Py_TRASHCAN_SAFE_END(wp)
}
#define TEST_COND(cond) ((cond) ? Py_True : Py_False)
static PyObject *
wrapper_richcompare(PyObject *a, PyObject *b, int op)
{
intptr_t result;
PyObject *v;
PyWrapperDescrObject *a_descr, *b_descr;
assert(a != NULL && b != NULL);
/* both arguments should be wrapperobjects */
if (!Wrapper_Check(a) || !Wrapper_Check(b)) {
v = Py_NotImplemented;
Py_INCREF(v);
return v;
}
/* compare by descriptor address; if the descriptors are the same,
compare by the objects they're bound to */
a_descr = ((wrapperobject *)a)->descr;
b_descr = ((wrapperobject *)b)->descr;
if (a_descr == b_descr) {
a = ((wrapperobject *)a)->self;
b = ((wrapperobject *)b)->self;
return PyObject_RichCompare(a, b, op);
}
result = a_descr - b_descr;
switch (op) {
case Py_EQ:
v = TEST_COND(result == 0);
break;
case Py_NE:
v = TEST_COND(result != 0);
break;
case Py_LE:
v = TEST_COND(result <= 0);
break;
case Py_GE:
v = TEST_COND(result >= 0);
break;
case Py_LT:
v = TEST_COND(result < 0);
break;
case Py_GT:
v = TEST_COND(result > 0);
break;
default:
PyErr_BadArgument();
return NULL;
}
Py_INCREF(v);
return v;
}
static Py_hash_t
wrapper_hash(wrapperobject *wp)
{
Py_hash_t x, y;
x = _Py_HashPointer(wp->descr);
if (x == -1)
return -1;
y = PyObject_Hash(wp->self);
if (y == -1)
return -1;
x = x ^ y;
if (x == -1)
x = -2;
return x;
}
static PyObject *
wrapper_repr(wrapperobject *wp)
{
return PyUnicode_FromFormat("<method-wrapper '%s' of %s object at %p>",
wp->descr->d_base->name,
wp->self->ob_type->tp_name,
wp->self);
}
static PyObject *
wrapper_reduce(wrapperobject *wp)
{
_Py_IDENTIFIER(getattr);
return Py_BuildValue("N(OO)", _PyEval_GetBuiltinId(&PyId_getattr),
wp->self, PyDescr_NAME(wp->descr));
}
static PyMethodDef wrapper_methods[] = {
{"__reduce__", (PyCFunction)wrapper_reduce, METH_NOARGS, NULL},
{NULL, NULL}
};
static PyMemberDef wrapper_members[] = {
{"__self__", T_OBJECT, offsetof(wrapperobject, self), READONLY},
{0}
};
static PyObject *
wrapper_objclass(wrapperobject *wp, void *Py_UNUSED(ignored))
{
PyObject *c = (PyObject *)PyDescr_TYPE(wp->descr);
Py_INCREF(c);
return c;
}
static PyObject *
wrapper_name(wrapperobject *wp, void *Py_UNUSED(ignored))
{
const char *s = wp->descr->d_base->name;
return PyUnicode_FromString(s);
}
static PyObject *
wrapper_doc(wrapperobject *wp, void *Py_UNUSED(ignored))
{
return _PyType_GetDocFromInternalDoc(wp->descr->d_base->name, wp->descr->d_base->doc);
}
static PyObject *
wrapper_text_signature(wrapperobject *wp, void *Py_UNUSED(ignored))
{
return _PyType_GetTextSignatureFromInternalDoc(wp->descr->d_base->name, wp->descr->d_base->doc);
}
static PyObject *
wrapper_qualname(wrapperobject *wp, void *Py_UNUSED(ignored))
{
return descr_get_qualname((PyDescrObject *)wp->descr, NULL);
}
static PyGetSetDef wrapper_getsets[] = {
{"__objclass__", (getter)wrapper_objclass},
{"__name__", (getter)wrapper_name},
{"__qualname__", (getter)wrapper_qualname},
{"__doc__", (getter)wrapper_doc},
{"__text_signature__", (getter)wrapper_text_signature},
{0}
};
static PyObject *
wrapper_call(wrapperobject *wp, PyObject *args, PyObject *kwds)
{
wrapperfunc wrapper = wp->descr->d_base->wrapper;
PyObject *self = wp->self;
if (wp->descr->d_base->flags & PyWrapperFlag_KEYWORDS) {
wrapperfunc_kwds wk = (wrapperfunc_kwds)wrapper;
return (*wk)(self, args, wp->descr->d_wrapped, kwds);
}
if (kwds != NULL && (!PyDict_Check(kwds) || PyDict_Size(kwds) != 0)) {
PyErr_Format(PyExc_TypeError,
"wrapper %s doesn't take keyword arguments",
wp->descr->d_base->name);
return NULL;
}
return (*wrapper)(self, args, wp->descr->d_wrapped);
}
static int
wrapper_traverse(PyObject *self, visitproc visit, void *arg)
{
wrapperobject *wp = (wrapperobject *)self;
Py_VISIT(wp->descr);
Py_VISIT(wp->self);
return 0;
}
PyTypeObject _PyMethodWrapper_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"method-wrapper", /* tp_name */
sizeof(wrapperobject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)wrapper_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)wrapper_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
(hashfunc)wrapper_hash, /* tp_hash */
(ternaryfunc)wrapper_call, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, /* tp_flags */
0, /* tp_doc */
wrapper_traverse, /* tp_traverse */
0, /* tp_clear */
wrapper_richcompare, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
wrapper_methods, /* tp_methods */
wrapper_members, /* tp_members */
wrapper_getsets, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
};
PyObject *
PyWrapper_New(PyObject *d, PyObject *self)
{
wrapperobject *wp;
PyWrapperDescrObject *descr;
assert(PyObject_TypeCheck(d, &PyWrapperDescr_Type));
descr = (PyWrapperDescrObject *)d;
assert(_PyObject_RealIsSubclass((PyObject *)Py_TYPE(self),
(PyObject *)PyDescr_TYPE(descr)));
wp = PyObject_GC_New(wrapperobject, &_PyMethodWrapper_Type);
if (wp != NULL) {
Py_INCREF(descr);
wp->descr = descr;
Py_INCREF(self);
wp->self = self;
_PyObject_GC_TRACK(wp);
}
return (PyObject *)wp;
}
/* A built-in 'property' type */
/*
class property(object):
def __init__(self, fget=None, fset=None, fdel=None, doc=None):
if doc is None and fget is not None and hasattr(fget, "__doc__"):
doc = fget.__doc__
self.__get = fget
self.__set = fset
self.__del = fdel
self.__doc__ = doc
def __get__(self, inst, type=None):
if inst is None:
return self
if self.__get is None:
raise AttributeError, "unreadable attribute"
return self.__get(inst)
def __set__(self, inst, value):
if self.__set is None:
raise AttributeError, "can't set attribute"
return self.__set(inst, value)
def __delete__(self, inst):
if self.__del is None:
raise AttributeError, "can't delete attribute"
return self.__del(inst)
*/
typedef struct {
PyObject_HEAD
PyObject *prop_get;
PyObject *prop_set;
PyObject *prop_del;
PyObject *prop_doc;
int getter_doc;
} propertyobject;
static PyObject * property_copy(PyObject *, PyObject *, PyObject *,
PyObject *);
static PyMemberDef property_members[] = {
{"fget", T_OBJECT, offsetof(propertyobject, prop_get), READONLY},
{"fset", T_OBJECT, offsetof(propertyobject, prop_set), READONLY},
{"fdel", T_OBJECT, offsetof(propertyobject, prop_del), READONLY},
{"__doc__", T_OBJECT, offsetof(propertyobject, prop_doc), 0},
{0}
};
PyDoc_STRVAR(getter_doc,
"Descriptor to change the getter on a property.");
static PyObject *
property_getter(PyObject *self, PyObject *getter)
{
return property_copy(self, getter, NULL, NULL);
}
PyDoc_STRVAR(setter_doc,
"Descriptor to change the setter on a property.");
static PyObject *
property_setter(PyObject *self, PyObject *setter)
{
return property_copy(self, NULL, setter, NULL);
}
PyDoc_STRVAR(deleter_doc,
"Descriptor to change the deleter on a property.");
static PyObject *
property_deleter(PyObject *self, PyObject *deleter)
{
return property_copy(self, NULL, NULL, deleter);
}
static PyMethodDef property_methods[] = {
{"getter", property_getter, METH_O, getter_doc},
{"setter", property_setter, METH_O, setter_doc},
{"deleter", property_deleter, METH_O, deleter_doc},
{0}
};
static void
property_dealloc(PyObject *self)
{
propertyobject *gs = (propertyobject *)self;
_PyObject_GC_UNTRACK(self);
Py_XDECREF(gs->prop_get);
Py_XDECREF(gs->prop_set);
Py_XDECREF(gs->prop_del);
Py_XDECREF(gs->prop_doc);
self->ob_type->tp_free(self);
}
static PyObject *
property_descr_get(PyObject *self, PyObject *obj, PyObject *type)
{
static PyObject * volatile cached_args = NULL;
PyObject *args;
PyObject *ret;
propertyobject *gs = (propertyobject *)self;
if (obj == NULL || obj == Py_None) {
Py_INCREF(self);
return self;
}
if (gs->prop_get == NULL) {
PyErr_SetString(PyExc_AttributeError, "unreadable attribute");
return NULL;
}
args = cached_args;
cached_args = NULL;
if (!args) {
args = PyTuple_New(1);
if (!args)
return NULL;
_PyObject_GC_UNTRACK(args);
}
Py_INCREF(obj);
PyTuple_SET_ITEM(args, 0, obj);
ret = PyObject_Call(gs->prop_get, args, NULL);
if (cached_args == NULL && Py_REFCNT(args) == 1) {
assert(Py_SIZE(args) == 1);
assert(PyTuple_GET_ITEM(args, 0) == obj);
cached_args = args;
Py_DECREF(obj);
}
else {
assert(Py_REFCNT(args) >= 1);
_PyObject_GC_TRACK(args);
Py_DECREF(args);
}
return ret;
}
static int
property_descr_set(PyObject *self, PyObject *obj, PyObject *value)
{
propertyobject *gs = (propertyobject *)self;
PyObject *func, *res;
if (value == NULL)
func = gs->prop_del;
else
func = gs->prop_set;
if (func == NULL) {
PyErr_SetString(PyExc_AttributeError,
value == NULL ?
"can't delete attribute" :
"can't set attribute");
return -1;
}
if (value == NULL)
res = PyObject_CallFunctionObjArgs(func, obj, NULL);
else
res = PyObject_CallFunctionObjArgs(func, obj, value, NULL);
if (res == NULL)
return -1;
Py_DECREF(res);
return 0;
}
static PyObject *
property_copy(PyObject *old, PyObject *get, PyObject *set, PyObject *del)
{
propertyobject *pold = (propertyobject *)old;
PyObject *new, *type, *doc;
type = PyObject_Type(old);
if (type == NULL)
return NULL;
if (get == NULL || get == Py_None) {
Py_XDECREF(get);
get = pold->prop_get ? pold->prop_get : Py_None;
}
if (set == NULL || set == Py_None) {
Py_XDECREF(set);
set = pold->prop_set ? pold->prop_set : Py_None;
}
if (del == NULL || del == Py_None) {
Py_XDECREF(del);
del = pold->prop_del ? pold->prop_del : Py_None;
}
if (pold->getter_doc && get != Py_None) {
/* make _init use __doc__ from getter */
doc = Py_None;
}
else {
doc = pold->prop_doc ? pold->prop_doc : Py_None;
}
new = PyObject_CallFunction(type, "OOOO", get, set, del, doc);
Py_DECREF(type);
if (new == NULL)
return NULL;
return new;
}
static int
property_init(PyObject *self, PyObject *args, PyObject *kwds)
{
PyObject *get = NULL, *set = NULL, *del = NULL, *doc = NULL;
static char *kwlist[] = {"fget", "fset", "fdel", "doc", 0};
propertyobject *prop = (propertyobject *)self;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OOOO:property",
kwlist, &get, &set, &del, &doc))
return -1;
if (get == Py_None)
get = NULL;
if (set == Py_None)
set = NULL;
if (del == Py_None)
del = NULL;
Py_XINCREF(get);
Py_XINCREF(set);
Py_XINCREF(del);
Py_XINCREF(doc);
Py_XSETREF(prop->prop_get, get);
Py_XSETREF(prop->prop_set, set);
Py_XSETREF(prop->prop_del, del);
Py_XSETREF(prop->prop_doc, doc);
prop->getter_doc = 0;
/* if no docstring given and the getter has one, use that one */
if ((doc == NULL || doc == Py_None) && get != NULL) {
_Py_IDENTIFIER(__doc__);
PyObject *get_doc = _PyObject_GetAttrId(get, &PyId___doc__);
if (get_doc) {
if (Py_TYPE(self) == &PyProperty_Type) {
Py_XSETREF(prop->prop_doc, get_doc);
}
else {
/* If this is a property subclass, put __doc__
in dict of the subclass instance instead,
otherwise it gets shadowed by __doc__ in the
class's dict. */
int err = _PyObject_SetAttrId(self, &PyId___doc__, get_doc);
Py_DECREF(get_doc);
if (err < 0)
return -1;
}
prop->getter_doc = 1;
}
else if (PyErr_ExceptionMatches(PyExc_Exception)) {
PyErr_Clear();
}
else {
return -1;
}
}
return 0;
}
static PyObject *
property_get___isabstractmethod__(propertyobject *prop, void *closure)
{
int res = _PyObject_IsAbstract(prop->prop_get);
if (res == -1) {
return NULL;
}
else if (res) {
Py_RETURN_TRUE;
}
res = _PyObject_IsAbstract(prop->prop_set);
if (res == -1) {
return NULL;
}
else if (res) {
Py_RETURN_TRUE;
}
res = _PyObject_IsAbstract(prop->prop_del);
if (res == -1) {
return NULL;
}
else if (res) {
Py_RETURN_TRUE;
}
Py_RETURN_FALSE;
}
static PyGetSetDef property_getsetlist[] = {
{"__isabstractmethod__",
(getter)property_get___isabstractmethod__, NULL,
NULL,
NULL},
{NULL} /* Sentinel */
};
PyDoc_STRVAR(property_doc,
"property(fget=None, fset=None, fdel=None, doc=None) -> property attribute\n"
"\n"
"fget is a function to be used for getting an attribute value, and likewise\n"
"fset is a function for setting, and fdel a function for del'ing, an\n"
"attribute. Typical use is to define a managed attribute x:\n\n"
"class C(object):\n"
" def getx(self): return self._x\n"
" def setx(self, value): self._x = value\n"
" def delx(self): del self._x\n"
" x = property(getx, setx, delx, \"I'm the 'x' property.\")\n"
"\n"
"Decorators make defining new properties or modifying existing ones easy:\n\n"
"class C(object):\n"
" @property\n"
" def x(self):\n"
" \"I am the 'x' property.\"\n"
" return self._x\n"
" @x.setter\n"
" def x(self, value):\n"
" self._x = value\n"
" @x.deleter\n"
" def x(self):\n"
" del self._x\n"
);
static int
property_traverse(PyObject *self, visitproc visit, void *arg)
{
propertyobject *pp = (propertyobject *)self;
Py_VISIT(pp->prop_get);
Py_VISIT(pp->prop_set);
Py_VISIT(pp->prop_del);
Py_VISIT(pp->prop_doc);
return 0;
}
static int
property_clear(PyObject *self)
{
propertyobject *pp = (propertyobject *)self;
Py_CLEAR(pp->prop_doc);
return 0;
}
PyTypeObject PyProperty_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"property", /* tp_name */
sizeof(propertyobject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
property_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC |
Py_TPFLAGS_BASETYPE, /* tp_flags */
property_doc, /* tp_doc */
property_traverse, /* tp_traverse */
(inquiry)property_clear, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
property_methods, /* tp_methods */
property_members, /* tp_members */
property_getsetlist, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
property_descr_get, /* tp_descr_get */
property_descr_set, /* tp_descr_set */
0, /* tp_dictoffset */
property_init, /* tp_init */
PyType_GenericAlloc, /* tp_alloc */
PyType_GenericNew, /* tp_new */
PyObject_GC_Del, /* tp_free */
};
| 57,904 | 1,693 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/obmalloc.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "libc/assert.h"
#include "libc/intrin/bits.h"
#include "libc/calls/calls.h"
#include "libc/dce.h"
#include "libc/fmt/fmt.h"
#include "libc/intrin/asan.internal.h"
#include "libc/mem/mem.h"
#include "libc/runtime/runtime.h"
#include "libc/sysv/consts/map.h"
#include "libc/sysv/consts/prot.h"
#include "third_party/dlmalloc/dlmalloc.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/pydebug.h"
#include "third_party/python/Include/pyerrors.h"
#include "third_party/python/Include/pylifecycle.h"
#include "third_party/python/Include/pymacro.h"
#include "third_party/python/Include/pymem.h"
#include "third_party/python/Include/yoink.h"
/* clang-format off */
/* Python's malloc wrappers (see pymem.h) */
#undef uint
#define uint unsigned int /* assuming >= 16 bits */
/* Forward declaration */
#if IsModeDbg()
static void *_PyMem_DebugRawMalloc(void *, size_t);
static void *_PyMem_DebugRawCalloc(void *, size_t, size_t);
static void *_PyMem_DebugRawRealloc(void *, void *, size_t);
static void _PyMem_DebugRawFree(void *, void *);
static void *_PyMem_DebugMalloc(void *, size_t);
static void *_PyMem_DebugCalloc(void *, size_t, size_t);
static void *_PyMem_DebugRealloc(void *, void *, size_t);
static void _PyMem_DebugFree(void *, void *);
#endif
static void _PyObject_DebugDumpAddress(const void *);
static void _PyMem_DebugCheckAddress(char, const void *);
#if defined(__has_feature) /* Clang */
# if __has_feature(address_sanitizer) /* is ASAN enabled? */
# define _Py_NO_ADDRESS_SAFETY_ANALYSIS \
__attribute__((no_address_safety_analysis))
# endif
# if __has_feature(thread_sanitizer) /* is TSAN enabled? */
# define _Py_NO_SANITIZE_THREAD __attribute__((no_sanitize_thread))
# endif
# if __has_feature(memory_sanitizer) /* is MSAN enabled? */
# define _Py_NO_SANITIZE_MEMORY __attribute__((no_sanitize_memory))
# endif
#elif defined(__GNUC__)
# if defined(__SANITIZE_ADDRESS__) /* GCC 4.8+, is ASAN enabled? */
# define _Py_NO_ADDRESS_SAFETY_ANALYSIS \
__attribute__((no_address_safety_analysis))
# endif
// TSAN is supported since GCC 4.8, but __SANITIZE_THREAD__ macro
// is provided only since GCC 7.
# if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
# define _Py_NO_SANITIZE_THREAD __attribute__((no_sanitize_thread))
# endif
#endif
#ifndef _Py_NO_ADDRESS_SAFETY_ANALYSIS
# define _Py_NO_ADDRESS_SAFETY_ANALYSIS
#endif
#ifndef _Py_NO_SANITIZE_THREAD
# define _Py_NO_SANITIZE_THREAD
#endif
#ifndef _Py_NO_SANITIZE_MEMORY
# define _Py_NO_SANITIZE_MEMORY
#endif
#ifdef WITH_PYMALLOC
#define ARENAS_USE_MMAP
/* Forward declaration */
static void* _PyObject_Malloc(void *ctx, size_t size);
static void* _PyObject_Calloc(void *ctx, size_t nelem, size_t elsize);
static void _PyObject_Free(void *ctx, void *p);
static void* _PyObject_Realloc(void *ctx, void *ptr, size_t size);
#else
/* in MODE=asan, no pymalloc, so use macro */
#define _PyObject_Malloc(ctx, size) _PyMem_RawMalloc((ctx), (size))
#define _PyObject_Calloc(ctx, nelem, elsize) _PyMem_RawCalloc((ctx), (nelem), (elsize))
#define _PyObject_Realloc(ctx, ptr, size) _PyMem_RawRealloc((ctx), (ptr), (size))
#define _PyObject_Free(ctx, p) _PyMem_RawFree((ctx), (p))
#endif
static inline void *
_PyMem_RawMalloc(void *ctx, size_t size)
{
#ifdef __COSMOPOLITAN__
#ifdef __SANITIZE_ADDRESS__
return __asan_memalign(16, size);
#else
return dlmalloc(size);
#endif
#else
/* PyMem_RawMalloc(0) means malloc(1). Some systems would return NULL
for malloc(0), which would be treated as an error. Some platforms would
return a pointer with no memory behind it, which would break pymalloc.
To solve these problems, allocate an extra byte. */
if (size == 0)
size = 1;
return malloc(size);
#endif
}
static inline void *
_PyMem_RawCalloc(void *ctx, size_t nelem, size_t elsize)
{
#ifdef __COSMOPOLITAN__
#ifdef __SANITIZE_ADDRESS__
return __asan_calloc(nelem, elsize);
#else
return dlcalloc(nelem, elsize);
#endif
#else
/* PyMem_RawCalloc(0, 0) means calloc(1, 1). Some systems would return NULL
for calloc(0, 0), which would be treated as an error. Some platforms
would return a pointer with no memory behind it, which would break
pymalloc. To solve these problems, allocate an extra byte. */
if (nelem == 0 || elsize == 0) {
nelem = 1;
elsize = 1;
}
return calloc(nelem, elsize);
#endif
}
static inline void *
_PyMem_RawRealloc(void *ctx, void *ptr, size_t size)
{
if (size == 0)
size = 1;
#ifdef __COSMOPOLITAN__
#ifdef __SANITIZE_ADDRESS__
return __asan_realloc(ptr, size);
#else
return dlrealloc(ptr, size);
#endif
#else
return realloc(ptr, size);
#endif
}
static inline void
_PyMem_RawFree(void *ctx, void *ptr)
{
#ifdef __COSMOPOLITAN__
#ifdef __SANITIZE_ADDRESS__
__asan_free(ptr);
#else
dlfree(ptr);
#endif
#else
free(ptr);
#endif
}
#ifdef MS_WINDOWS
static void *
_PyObject_ArenaVirtualAlloc(void *ctx, size_t size)
{
return VirtualAlloc(NULL, size,
MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
}
static void
_PyObject_ArenaVirtualFree(void *ctx, void *ptr, size_t size)
{
VirtualFree(ptr, 0, MEM_RELEASE);
}
#elif defined(ARENAS_USE_MMAP)
static void *
_PyObject_ArenaMmap(void *ctx, size_t size)
{
#ifdef __COSMOPOLITAN__
return _mapanon(size);
#else
void *ptr;
ptr = mmap(NULL, size, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
if (ptr == MAP_FAILED)
return NULL;
assert(ptr != NULL);
return ptr;
#endif
}
static void
_PyObject_ArenaMunmap(void *ctx, void *ptr, size_t size)
{
munmap(ptr, size);
}
#else
static inline void *
_PyObject_ArenaMalloc(void *ctx, size_t size)
{
return malloc(size);
}
static inline void
_PyObject_ArenaFree(void *ctx, void *ptr, size_t size)
{
free(ptr);
}
#endif
#if IsModeDbg()
#define PYRAW_FUNCS _PyMem_RawMalloc, _PyMem_RawCalloc, _PyMem_RawRealloc, _PyMem_RawFree
#ifdef WITH_PYMALLOC
# define PYOBJ_FUNCS _PyObject_Malloc, _PyObject_Calloc, _PyObject_Realloc, _PyObject_Free
#else
# define PYOBJ_FUNCS PYRAW_FUNCS
#endif
#define PYMEM_FUNCS PYOBJ_FUNCS
typedef struct {
/* We tag each block with an API ID in order to tag API violations */
char api_id;
PyMemAllocatorEx alloc;
} debug_alloc_api_t;
static struct {
debug_alloc_api_t raw;
debug_alloc_api_t mem;
debug_alloc_api_t obj;
} _PyMem_Debug = {
{'r', {NULL, PYRAW_FUNCS}},
{'m', {NULL, PYMEM_FUNCS}},
{'o', {NULL, PYOBJ_FUNCS}}
};
#define PYRAWDBG_FUNCS \
_PyMem_DebugRawMalloc, _PyMem_DebugRawCalloc, _PyMem_DebugRawRealloc, _PyMem_DebugRawFree
#define PYDBG_FUNCS \
_PyMem_DebugMalloc, _PyMem_DebugCalloc, _PyMem_DebugRealloc, _PyMem_DebugFree
static PyMemAllocatorEx _PyMem_Raw = {
#ifdef Py_DEBUG
&_PyMem_Debug.raw, PYRAWDBG_FUNCS
#else
NULL, PYRAW_FUNCS
#endif
};
static PyMemAllocatorEx _PyMem = {
#ifdef Py_DEBUG
&_PyMem_Debug.mem, PYDBG_FUNCS
#else
NULL, PYMEM_FUNCS
#endif
};
static PyMemAllocatorEx _PyObject = {
#ifdef Py_DEBUG
&_PyMem_Debug.obj, PYDBG_FUNCS
#else
NULL, PYOBJ_FUNCS
#endif
};
int
_PyMem_SetupAllocators(const char *opt)
{
if (opt == NULL || *opt == '\0') {
/* PYTHONMALLOC is empty or is not set or ignored (-E/-I command line
options): use default allocators */
#ifdef Py_DEBUG
# ifdef WITH_PYMALLOC
opt = "pymalloc_debug";
# else
opt = "malloc_debug";
# endif
#else
/* !Py_DEBUG */
# ifdef WITH_PYMALLOC
opt = "pymalloc";
# else
opt = "malloc";
# endif
#endif
}
if (strcmp(opt, "debug") == 0) {
PyMem_SetupDebugHooks();
}
else if (strcmp(opt, "malloc") == 0 || strcmp(opt, "malloc_debug") == 0)
{
PyMemAllocatorEx alloc = {NULL, PYRAW_FUNCS};
PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &alloc);
PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &alloc);
PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &alloc);
if (strcmp(opt, "malloc_debug") == 0)
PyMem_SetupDebugHooks();
}
#ifdef WITH_PYMALLOC
else if (strcmp(opt, "pymalloc") == 0
|| strcmp(opt, "pymalloc_debug") == 0)
{
PyMemAllocatorEx raw_alloc = {NULL, PYRAW_FUNCS};
PyMemAllocatorEx mem_alloc = {NULL, PYMEM_FUNCS};
PyMemAllocatorEx obj_alloc = {NULL, PYOBJ_FUNCS};
PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &raw_alloc);
PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &mem_alloc);
PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &obj_alloc);
if (strcmp(opt, "pymalloc_debug") == 0)
PyMem_SetupDebugHooks();
}
#endif
else {
/* unknown allocator */
return -1;
}
return 0;
}
#undef PYRAW_FUNCS
#undef PYMEM_FUNCS
#undef PYOBJ_FUNCS
#undef PYRAWDBG_FUNCS
#undef PYDBG_FUNCS
static PyObjectArenaAllocator _PyObject_Arena = {NULL,
#ifdef MS_WINDOWS
_PyObject_ArenaVirtualAlloc, _PyObject_ArenaVirtualFree
#elif defined(ARENAS_USE_MMAP)
_PyObject_ArenaMmap, _PyObject_ArenaMunmap
#else
_PyObject_ArenaMalloc, _PyObject_ArenaFree
#endif
};
#ifdef WITH_PYMALLOC
static int
_PyMem_DebugEnabled(void)
{
return (_PyObject.malloc == _PyMem_DebugMalloc);
}
int
_PyMem_PymallocEnabled(void)
{
if (_PyMem_DebugEnabled()) {
return (_PyMem_Debug.obj.alloc.malloc == _PyObject_Malloc);
}
else {
return (_PyObject.malloc == _PyObject_Malloc);
}
}
#endif
void
PyMem_SetupDebugHooks(void)
{
PyMemAllocatorEx alloc;
alloc.malloc = _PyMem_DebugRawMalloc;
alloc.calloc = _PyMem_DebugRawCalloc;
alloc.realloc = _PyMem_DebugRawRealloc;
alloc.free = _PyMem_DebugRawFree;
if (_PyMem_Raw.malloc != _PyMem_DebugRawMalloc) {
alloc.ctx = &_PyMem_Debug.raw;
PyMem_GetAllocator(PYMEM_DOMAIN_RAW, &_PyMem_Debug.raw.alloc);
PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &alloc);
}
alloc.malloc = _PyMem_DebugMalloc;
alloc.calloc = _PyMem_DebugCalloc;
alloc.realloc = _PyMem_DebugRealloc;
alloc.free = _PyMem_DebugFree;
if (_PyMem.malloc != _PyMem_DebugMalloc) {
alloc.ctx = &_PyMem_Debug.mem;
PyMem_GetAllocator(PYMEM_DOMAIN_MEM, &_PyMem_Debug.mem.alloc);
PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &alloc);
}
if (_PyObject.malloc != _PyMem_DebugMalloc) {
alloc.ctx = &_PyMem_Debug.obj;
PyMem_GetAllocator(PYMEM_DOMAIN_OBJ, &_PyMem_Debug.obj.alloc);
PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &alloc);
}
}
void
PyMem_GetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
{
switch(domain)
{
case PYMEM_DOMAIN_RAW: *allocator = _PyMem_Raw; break;
case PYMEM_DOMAIN_MEM: *allocator = _PyMem; break;
case PYMEM_DOMAIN_OBJ: *allocator = _PyObject; break;
default:
/* unknown domain: set all attributes to NULL */
allocator->ctx = NULL;
allocator->malloc = NULL;
allocator->calloc = NULL;
allocator->realloc = NULL;
allocator->free = NULL;
}
}
void
PyMem_SetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
{
switch(domain)
{
case PYMEM_DOMAIN_RAW: _PyMem_Raw = *allocator; break;
case PYMEM_DOMAIN_MEM: _PyMem = *allocator; break;
case PYMEM_DOMAIN_OBJ: _PyObject = *allocator; break;
/* ignore unknown domain */
}
}
void
PyObject_GetArenaAllocator(PyObjectArenaAllocator *allocator)
{
*allocator = _PyObject_Arena;
}
void
PyObject_SetArenaAllocator(PyObjectArenaAllocator *allocator)
{
_PyObject_Arena = *allocator;
}
#endif
void *
PyMem_RawMalloc(size_t size)
{
/*
* Limit ourselves to PY_SSIZE_T_MAX bytes to prevent security holes.
* Most python internals blindly use a signed Py_ssize_t to track
* things without checking for overflows or negatives.
* As size_t is unsigned, checking for size < 0 is not required.
*/
if (size > (size_t)PY_SSIZE_T_MAX)
return NULL;
#if IsModeDbg()
return _PyMem_Raw.malloc(_PyMem_Raw.ctx, size);
#else
return _PyMem_RawMalloc(NULL, size);
#endif
}
void *
PyMem_RawCalloc(size_t nelem, size_t elsize)
{
/* see PyMem_RawMalloc() */
if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize)
return NULL;
#if IsModeDbg()
return _PyMem_Raw.calloc(_PyMem_Raw.ctx, nelem, elsize);
#else
return _PyMem_RawCalloc(NULL, nelem, elsize);
#endif
}
void*
PyMem_RawRealloc(void *ptr, size_t new_size)
{
/* see PyMem_RawMalloc() */
if (new_size > (size_t)PY_SSIZE_T_MAX)
return NULL;
#if IsModeDbg()
return _PyMem_Raw.realloc(_PyMem_Raw.ctx, ptr, new_size);
#else
return _PyMem_RawRealloc(NULL, ptr, new_size);
#endif
}
void PyMem_RawFree(void *ptr)
{
#if IsModeDbg()
_PyMem_Raw.free(_PyMem_Raw.ctx, ptr);
#else
_PyMem_RawFree(NULL, ptr);
#endif
}
void *
PyMem_Malloc(size_t size)
{
/* see PyMem_RawMalloc() */
if (size > (size_t)PY_SSIZE_T_MAX)
return NULL;
#if IsModeDbg()
return _PyMem.malloc(_PyMem.ctx, size);
#else
return _PyObject_Malloc(NULL, size);
#endif
}
void *
PyMem_Calloc(size_t nelem, size_t elsize)
{
/* see PyMem_RawMalloc() */
if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize)
return NULL;
#if IsModeDbg()
return _PyMem.calloc(_PyMem.ctx, nelem, elsize);
#else
return _PyObject_Calloc(NULL, nelem, elsize);
#endif
}
void *
PyMem_Realloc(void *ptr, size_t new_size)
{
/* see PyMem_RawMalloc() */
if (new_size > (size_t)PY_SSIZE_T_MAX)
return NULL;
#if IsModeDbg()
return _PyMem.realloc(_PyMem.ctx, ptr, new_size);
#else
return _PyObject_Realloc(NULL, ptr, new_size);
#endif
}
void
(PyMem_Free)(void *ptr)
{
#if IsModeDbg()
_PyMem.free(_PyMem.ctx, ptr);
#else
return _PyObject_Free(NULL, ptr);
#endif
}
char *
_PyMem_RawStrdup(const char *str)
{
size_t size;
char *copy;
size = strlen(str) + 1;
copy = PyMem_RawMalloc(size);
if (copy == NULL)
return NULL;
memcpy(copy, str, size);
return copy;
}
char *
_PyMem_Strdup(const char *str)
{
size_t size;
char *copy;
size = strlen(str) + 1;
copy = PyMem_Malloc(size);
if (copy == NULL)
return NULL;
memcpy(copy, str, size);
return copy;
}
void *
(PyObject_Malloc)(size_t size)
{
/* see PyMem_RawMalloc() */
if (size > (size_t)PY_SSIZE_T_MAX)
return NULL;
#if IsModeDbg()
return _PyObject.malloc(_PyObject.ctx, size);
#else
return _PyObject_Malloc(NULL, size);
#endif
}
void *
PyObject_Calloc(size_t nelem, size_t elsize)
{
/* see PyMem_RawMalloc() */
if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize)
return NULL;
#if IsModeDbg()
return _PyObject.calloc(_PyObject.ctx, nelem, elsize);
#else
return _PyObject_Calloc(NULL, nelem, elsize);
#endif
}
void *
PyObject_Realloc(void *ptr, size_t new_size)
{
/* see PyMem_RawMalloc() */
if (new_size > (size_t)PY_SSIZE_T_MAX)
return NULL;
#if IsModeDbg()
return _PyObject.realloc(_PyObject.ctx, ptr, new_size);
#else
return _PyObject_Realloc(NULL, ptr, new_size);
#endif
}
void
PyObject_Free(void *ptr)
{
#if IsModeDbg()
_PyObject.free(_PyObject.ctx, ptr);
#else
return _PyObject_Free(NULL, ptr);
#endif
}
#ifdef WITH_PYMALLOC
#ifdef WITH_VALGRIND
#include <valgrind/valgrind.h>
/* If we're using GCC, use __builtin_expect() to reduce overhead of
the valgrind checks */
#if defined(__GNUC__) && (__GNUC__ > 2) && defined(__OPTIMIZE__)
# define UNLIKELY(value) __builtin_expect((value), 0)
#else
# define UNLIKELY(value) (value)
#endif
/* -1 indicates that we haven't checked that we're running on valgrind yet. */
static int running_on_valgrind = -1;
#endif
/* An object allocator for Python.
Here is an introduction to the layers of the Python memory architecture,
showing where the object allocator is actually used (layer +2), It is
called for every object allocation and deallocation (PyObject_New/Del),
unless the object-specific allocators implement a proprietary allocation
scheme (ex.: ints use a simple free list). This is also the place where
the cyclic garbage collector operates selectively on container objects.
Object-specific allocators
_____ ______ ______ ________
[ int ] [ dict ] [ list ] ... [ string ] Python core |
+3 | <----- Object-specific memory -----> | <-- Non-object memory --> |
_______________________________ | |
[ Python's object allocator ] | |
+2 | ####### Object memory ####### | <------ Internal buffers ------> |
______________________________________________________________ |
[ Python's raw memory allocator (PyMem_ API) ] |
+1 | <----- Python memory (under PyMem manager's control) ------> | |
__________________________________________________________________
[ Underlying general-purpose allocator (ex: C library malloc) ]
0 | <------ Virtual memory allocated for the python process -------> |
=========================================================================
_______________________________________________________________________
[ OS-specific Virtual Memory Manager (VMM) ]
-1 | <--- Kernel dynamic storage allocation & management (page-based) ---> |
__________________________________ __________________________________
[ ] [ ]
-2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> |
*/
/*==========================================================================*/
/* A fast, special-purpose memory allocator for small blocks, to be used
on top of a general-purpose malloc -- heavily based on previous art. */
/* Vladimir Marangozov -- August 2000 */
/*
* "Memory management is where the rubber meets the road -- if we do the wrong
* thing at any level, the results will not be good. And if we don't make the
* levels work well together, we are in serious trouble." (1)
*
* (1) Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles,
* "Dynamic Storage Allocation: A Survey and Critical Review",
* in Proc. 1995 Int'l. Workshop on Memory Management, September 1995.
*/
/* #undef WITH_MEMORY_LIMITS */ /* disable mem limit checks */
/*==========================================================================*/
/*
* Allocation strategy abstract:
*
* For small requests, the allocator sub-allocates <Big> blocks of memory.
* Requests greater than SMALL_REQUEST_THRESHOLD bytes are routed to the
* system's allocator.
*
* Small requests are grouped in size classes spaced 8 bytes apart, due
* to the required valid alignment of the returned address. Requests of
* a particular size are serviced from memory pools of 4K (one VMM page).
* Pools are fragmented on demand and contain free lists of blocks of one
* particular size class. In other words, there is a fixed-size allocator
* for each size class. Free pools are shared by the different allocators
* thus minimizing the space reserved for a particular size class.
*
* This allocation strategy is a variant of what is known as "simple
* segregated storage based on array of free lists". The main drawback of
* simple segregated storage is that we might end up with lot of reserved
* memory for the different free lists, which degenerate in time. To avoid
* this, we partition each free list in pools and we share dynamically the
* reserved space between all free lists. This technique is quite efficient
* for memory intensive programs which allocate mainly small-sized blocks.
*
* For small requests we have the following table:
*
* Request in bytes Size of allocated block Size class idx
* ----------------------------------------------------------------
* 1-8 8 0
* 9-16 16 1
* 17-24 24 2
* 25-32 32 3
* 33-40 40 4
* 41-48 48 5
* 49-56 56 6
* 57-64 64 7
* 65-72 72 8
* ... ... ...
* 497-504 504 62
* 505-512 512 63
*
* 0, SMALL_REQUEST_THRESHOLD + 1 and up: routed to the underlying
* allocator.
*/
/*==========================================================================*/
/*
* -- Main tunable settings section --
*/
/*
* Alignment of addresses returned to the user. 8-bytes alignment works
* on most current architectures (with 32-bit or 64-bit address busses).
* The alignment value is also used for grouping small requests in size
* classes spaced ALIGNMENT bytes apart.
*
* You shouldn't change this unless you know what you are doing.
*/
#define ALIGNMENT 8 /* must be 2^N */
#define ALIGNMENT_SHIFT 3
/* Return the number of bytes in size class I, as a uint. */
#define INDEX2SIZE(I) (((uint)(I) + 1) << ALIGNMENT_SHIFT)
/*
* Max size threshold below which malloc requests are considered to be
* small enough in order to use preallocated memory pools. You can tune
* this value according to your application behaviour and memory needs.
*
* Note: a size threshold of 512 guarantees that newly created dictionaries
* will be allocated from preallocated memory pools on 64-bit.
*
* The following invariants must hold:
* 1) ALIGNMENT <= SMALL_REQUEST_THRESHOLD <= 512
* 2) SMALL_REQUEST_THRESHOLD is evenly divisible by ALIGNMENT
*
* Although not required, for better performance and space efficiency,
* it is recommended that SMALL_REQUEST_THRESHOLD is set to a power of 2.
*/
#define SMALL_REQUEST_THRESHOLD 512
#define NB_SMALL_SIZE_CLASSES (SMALL_REQUEST_THRESHOLD / ALIGNMENT)
/*
* The system's VMM page size can be obtained on most unices with a
* getpagesize() call or deduced from various header files. To make
* things simpler, we assume that it is 4K, which is OK for most systems.
* It is probably better if this is the native page size, but it doesn't
* have to be. In theory, if SYSTEM_PAGE_SIZE is larger than the native page
* size, then `POOL_ADDR(p)->arenaindex' could rarely cause a segmentation
* violation fault. 4K is apparently OK for all the platforms that python
* currently targets.
*/
#define SYSTEM_PAGE_SIZE (4 * 1024)
#define SYSTEM_PAGE_SIZE_MASK (SYSTEM_PAGE_SIZE - 1)
/*
* Maximum amount of memory managed by the allocator for small requests.
*/
#ifdef WITH_MEMORY_LIMITS
#ifndef SMALL_MEMORY_LIMIT
#define SMALL_MEMORY_LIMIT (64 * 1024 * 1024) /* 64 MB -- more? */
#endif
#endif
/*
* The allocator sub-allocates <Big> blocks of memory (called arenas) aligned
* on a page boundary. This is a reserved virtual address space for the
* current process (obtained through a malloc()/mmap() call). In no way this
* means that the memory arenas will be used entirely. A malloc(<Big>) is
* usually an address range reservation for <Big> bytes, unless all pages within
* this space are referenced subsequently. So malloc'ing big blocks and not
* using them does not mean "wasting memory". It's an addressable range
* wastage...
*
* Arenas are allocated with mmap() on systems supporting anonymous memory
* mappings to reduce heap fragmentation.
*/
#define ARENA_SIZE (256 << 10) /* 256KB */
#ifdef WITH_MEMORY_LIMITS
#define MAX_ARENAS (SMALL_MEMORY_LIMIT / ARENA_SIZE)
#endif
/*
* Size of the pools used for small blocks. Should be a power of 2,
* between 1K and SYSTEM_PAGE_SIZE, that is: 1k, 2k, 4k.
*/
#define POOL_SIZE SYSTEM_PAGE_SIZE /* must be 2^N */
#define POOL_SIZE_MASK SYSTEM_PAGE_SIZE_MASK
/*
* -- End of tunable settings section --
*/
/*==========================================================================*/
/*
* Locking
*
* To reduce lock contention, it would probably be better to refine the
* crude function locking with per size class locking. I'm not positive
* however, whether it's worth switching to such locking policy because
* of the performance penalty it might introduce.
*
* The following macros describe the simplest (should also be the fastest)
* lock object on a particular platform and the init/fini/lock/unlock
* operations on it. The locks defined here are not expected to be recursive
* because it is assumed that they will always be called in the order:
* INIT, [LOCK, UNLOCK]*, FINI.
*/
/*
* Python's threads are serialized, so object malloc locking is disabled.
*/
#define SIMPLELOCK_DECL(lock) /* simple lock declaration */
#define SIMPLELOCK_INIT(lock) /* allocate (if needed) and initialize */
#define SIMPLELOCK_FINI(lock) /* free/destroy an existing lock */
#define SIMPLELOCK_LOCK(lock) /* acquire released lock */
#define SIMPLELOCK_UNLOCK(lock) /* release acquired lock */
/* When you say memory, my mind reasons in terms of (pointers to) blocks */
typedef uint8_t block;
/* Pool for small blocks. */
struct pool_header {
union { block *_padding;
uint count; } ref; /* number of allocated blocks */
block *freeblock; /* pool's free list head */
struct pool_header *nextpool; /* next pool of this size class */
struct pool_header *prevpool; /* previous pool "" */
uint arenaindex; /* index into arenas of base adr */
uint szidx; /* block size class index */
uint nextoffset; /* bytes to virgin block */
uint maxnextoffset; /* largest valid nextoffset */
};
typedef struct pool_header *poolp;
/* Record keeping for arenas. */
struct arena_object {
/* The address of the arena, as returned by malloc. Note that 0
* will never be returned by a successful malloc, and is used
* here to mark an arena_object that doesn't correspond to an
* allocated arena.
*/
uintptr_t address;
/* Pool-aligned pointer to the next pool to be carved off. */
block* pool_address;
/* The number of available pools in the arena: free pools + never-
* allocated pools.
*/
uint nfreepools;
/* The total number of pools in the arena, whether or not available. */
uint ntotalpools;
/* Singly-linked list of available pools. */
struct pool_header* freepools;
/* Whenever this arena_object is not associated with an allocated
* arena, the nextarena member is used to link all unassociated
* arena_objects in the singly-linked `unused_arena_objects` list.
* The prevarena member is unused in this case.
*
* When this arena_object is associated with an allocated arena
* with at least one available pool, both members are used in the
* doubly-linked `usable_arenas` list, which is maintained in
* increasing order of `nfreepools` values.
*
* Else this arena_object is associated with an allocated arena
* all of whose pools are in use. `nextarena` and `prevarena`
* are both meaningless in this case.
*/
struct arena_object* nextarena;
struct arena_object* prevarena;
};
#define POOL_OVERHEAD _Py_SIZE_ROUND_UP(sizeof(struct pool_header), ALIGNMENT)
#define DUMMY_SIZE_IDX 0xffff /* size class of newly cached pools */
/* Round pointer P down to the closest pool-aligned address <= P, as a poolp */
#define POOL_ADDR(P) ((poolp)_Py_ALIGN_DOWN((P), POOL_SIZE))
/* Return total number of blocks in pool of size index I, as a uint. */
#define NUMBLOCKS(I) ((uint)(POOL_SIZE - POOL_OVERHEAD) / INDEX2SIZE(I))
/*==========================================================================*/
/*
* This malloc lock
*/
SIMPLELOCK_DECL(_malloc_lock)
#define LOCK() SIMPLELOCK_LOCK(_malloc_lock)
#define UNLOCK() SIMPLELOCK_UNLOCK(_malloc_lock)
#define LOCK_INIT() SIMPLELOCK_INIT(_malloc_lock)
#define LOCK_FINI() SIMPLELOCK_FINI(_malloc_lock)
/*
* Pool table -- headed, circular, doubly-linked lists of partially used pools.
This is involved. For an index i, usedpools[i+i] is the header for a list of
all partially used pools holding small blocks with "size class idx" i. So
usedpools[0] corresponds to blocks of size 8, usedpools[2] to blocks of size
16, and so on: index 2*i <-> blocks of size (i+1)<<ALIGNMENT_SHIFT.
Pools are carved off an arena's highwater mark (an arena_object's pool_address
member) as needed. Once carved off, a pool is in one of three states forever
after:
used == partially used, neither empty nor full
At least one block in the pool is currently allocated, and at least one
block in the pool is not currently allocated (note this implies a pool
has room for at least two blocks).
This is a pool's initial state, as a pool is created only when malloc
needs space.
The pool holds blocks of a fixed size, and is in the circular list headed
at usedpools[i] (see above). It's linked to the other used pools of the
same size class via the pool_header's nextpool and prevpool members.
If all but one block is currently allocated, a malloc can cause a
transition to the full state. If all but one block is not currently
allocated, a free can cause a transition to the empty state.
full == all the pool's blocks are currently allocated
On transition to full, a pool is unlinked from its usedpools[] list.
It's not linked to from anything then anymore, and its nextpool and
prevpool members are meaningless until it transitions back to used.
A free of a block in a full pool puts the pool back in the used state.
Then it's linked in at the front of the appropriate usedpools[] list, so
that the next allocation for its size class will reuse the freed block.
empty == all the pool's blocks are currently available for allocation
On transition to empty, a pool is unlinked from its usedpools[] list,
and linked to the front of its arena_object's singly-linked freepools list,
via its nextpool member. The prevpool member has no meaning in this case.
Empty pools have no inherent size class: the next time a malloc finds
an empty list in usedpools[], it takes the first pool off of freepools.
If the size class needed happens to be the same as the size class the pool
last had, some pool initialization can be skipped.
Block Management
Blocks within pools are again carved out as needed. pool->freeblock points to
the start of a singly-linked list of free blocks within the pool. When a
block is freed, it's inserted at the front of its pool's freeblock list. Note
that the available blocks in a pool are *not* linked all together when a pool
is initialized. Instead only "the first two" (lowest addresses) blocks are
set up, returning the first such block, and setting pool->freeblock to a
one-block list holding the second such block. This is consistent with that
pymalloc strives at all levels (arena, pool, and block) never to touch a piece
of memory until it's actually needed.
So long as a pool is in the used state, we're certain there *is* a block
available for allocating, and pool->freeblock is not NULL. If pool->freeblock
points to the end of the free list before we've carved the entire pool into
blocks, that means we simply haven't yet gotten to one of the higher-address
blocks. The offset from the pool_header to the start of "the next" virgin
block is stored in the pool_header nextoffset member, and the largest value
of nextoffset that makes sense is stored in the maxnextoffset member when a
pool is initialized. All the blocks in a pool have been passed out at least
once when and only when nextoffset > maxnextoffset.
Major obscurity: While the usedpools vector is declared to have poolp
entries, it doesn't really. It really contains two pointers per (conceptual)
poolp entry, the nextpool and prevpool members of a pool_header. The
excruciating initialization code below fools C so that
usedpool[i+i]
"acts like" a genuine poolp, but only so long as you only reference its
nextpool and prevpool members. The "- 2*sizeof(block *)" gibberish is
compensating for that a pool_header's nextpool and prevpool members
immediately follow a pool_header's first two members:
union { block *_padding;
uint count; } ref;
block *freeblock;
each of which consume sizeof(block *) bytes. So what usedpools[i+i] really
contains is a fudged-up pointer p such that *if* C believes it's a poolp
pointer, then p->nextpool and p->prevpool are both p (meaning that the headed
circular list is empty).
It's unclear why the usedpools setup is so convoluted. It could be to
minimize the amount of cache required to hold this heavily-referenced table
(which only *needs* the two interpool pointer members of a pool_header). OTOH,
referencing code has to remember to "double the index" and doing so isn't
free, usedpools[0] isn't a strictly legal pointer, and we're crucially relying
on that C doesn't insert any padding anywhere in a pool_header at or before
the prevpool member.
**************************************************************************** */
#define PTA(x) ((poolp )((uint8_t *)&(usedpools[2*(x)]) - 2*sizeof(block *)))
#define PT(x) PTA(x), PTA(x)
static poolp usedpools[2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8] = {
PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7)
#if NB_SMALL_SIZE_CLASSES > 8
, PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(15)
#if NB_SMALL_SIZE_CLASSES > 16
, PT(16), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22), PT(23)
#if NB_SMALL_SIZE_CLASSES > 24
, PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30), PT(31)
#if NB_SMALL_SIZE_CLASSES > 32
, PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38), PT(39)
#if NB_SMALL_SIZE_CLASSES > 40
, PT(40), PT(41), PT(42), PT(43), PT(44), PT(45), PT(46), PT(47)
#if NB_SMALL_SIZE_CLASSES > 48
, PT(48), PT(49), PT(50), PT(51), PT(52), PT(53), PT(54), PT(55)
#if NB_SMALL_SIZE_CLASSES > 56
, PT(56), PT(57), PT(58), PT(59), PT(60), PT(61), PT(62), PT(63)
#if NB_SMALL_SIZE_CLASSES > 64
#error "NB_SMALL_SIZE_CLASSES should be less than 64"
#endif /* NB_SMALL_SIZE_CLASSES > 64 */
#endif /* NB_SMALL_SIZE_CLASSES > 56 */
#endif /* NB_SMALL_SIZE_CLASSES > 48 */
#endif /* NB_SMALL_SIZE_CLASSES > 40 */
#endif /* NB_SMALL_SIZE_CLASSES > 32 */
#endif /* NB_SMALL_SIZE_CLASSES > 24 */
#endif /* NB_SMALL_SIZE_CLASSES > 16 */
#endif /* NB_SMALL_SIZE_CLASSES > 8 */
};
/*==========================================================================
Arena management.
`arenas` is a vector of arena_objects. It contains maxarenas entries, some of
which may not be currently used (== they're arena_objects that aren't
currently associated with an allocated arena). Note that arenas proper are
separately malloc'ed.
Prior to Python 2.5, arenas were never free()'ed. Starting with Python 2.5,
we do try to free() arenas, and use some mild heuristic strategies to increase
the likelihood that arenas eventually can be freed.
unused_arena_objects
This is a singly-linked list of the arena_objects that are currently not
being used (no arena is associated with them). Objects are taken off the
head of the list in new_arena(), and are pushed on the head of the list in
PyObject_Free() when the arena is empty. Key invariant: an arena_object
is on this list if and only if its .address member is 0.
usable_arenas
This is a doubly-linked list of the arena_objects associated with arenas
that have pools available. These pools are either waiting to be reused,
or have not been used before. The list is sorted to have the most-
allocated arenas first (ascending order based on the nfreepools member).
This means that the next allocation will come from a heavily used arena,
which gives the nearly empty arenas a chance to be returned to the system.
In my unscientific tests this dramatically improved the number of arenas
that could be freed.
Note that an arena_object associated with an arena all of whose pools are
currently in use isn't on either list.
*/
/* Array of objects used to track chunks of memory (arenas). */
static struct arena_object* arenas = NULL;
/* Number of slots currently allocated in the `arenas` vector. */
static uint maxarenas = 0;
/* The head of the singly-linked, NULL-terminated list of available
* arena_objects.
*/
static struct arena_object* unused_arena_objects = NULL;
/* The head of the doubly-linked, NULL-terminated at each end, list of
* arena_objects associated with arenas that have pools available.
*/
static struct arena_object* usable_arenas = NULL;
/* How many arena_objects do we initially allocate?
* 16 = can allocate 16 arenas = 16 * ARENA_SIZE = 4MB before growing the
* `arenas` vector.
*/
#define INITIAL_ARENA_OBJECTS 16
/* Number of arenas allocated that haven't been free()'d. */
static size_t narenas_currently_allocated = 0;
/* Total number of times malloc() called to allocate an arena. */
static size_t ntimes_arena_allocated = 0;
/* High water mark (max value ever seen) for narenas_currently_allocated. */
static size_t narenas_highwater = 0;
static Py_ssize_t _Py_AllocatedBlocks = 0;
Py_ssize_t
_Py_GetAllocatedBlocks(void)
{
return _Py_AllocatedBlocks;
}
/* Allocate a new arena. If we run out of memory, return NULL. Else
* allocate a new arena, and return the address of an arena_object
* describing the new arena. It's expected that the caller will set
* `usable_arenas` to the return value.
*/
static struct arena_object*
new_arena(void)
{
struct arena_object* arenaobj;
uint excess; /* number of bytes above pool alignment */
void *address;
static int debug_stats = -1;
if (debug_stats == -1) {
char *opt = Py_GETENV("PYTHONMALLOCSTATS");
debug_stats = (opt != NULL && *opt != '\0');
}
if (debug_stats)
_PyObject_DebugMallocStats(stderr);
if (unused_arena_objects == NULL) {
uint i;
uint numarenas;
size_t nbytes;
/* Double the number of arena objects on each allocation.
* Note that it's possible for `numarenas` to overflow.
*/
numarenas = maxarenas ? maxarenas << 1 : INITIAL_ARENA_OBJECTS;
if (numarenas <= maxarenas)
return NULL; /* overflow */
#if SIZEOF_SIZE_T <= SIZEOF_INT
if (numarenas > SIZE_MAX / sizeof(*arenas))
return NULL; /* overflow */
#endif
nbytes = numarenas * sizeof(*arenas);
arenaobj = (struct arena_object *)PyMem_RawRealloc(arenas, nbytes);
if (arenaobj == NULL)
return NULL;
arenas = arenaobj;
/* We might need to fix pointers that were copied. However,
* new_arena only gets called when all the pages in the
* previous arenas are full. Thus, there are *no* pointers
* into the old array. Thus, we don't have to worry about
* invalid pointers. Just to be sure, some asserts:
*/
assert(usable_arenas == NULL);
assert(unused_arena_objects == NULL);
/* Put the new arenas on the unused_arena_objects list. */
for (i = maxarenas; i < numarenas; ++i) {
arenas[i].address = 0; /* mark as unassociated */
arenas[i].nextarena = i < numarenas - 1 ?
&arenas[i+1] : NULL;
}
/* Update globals. */
unused_arena_objects = &arenas[maxarenas];
maxarenas = numarenas;
}
/* Take the next available arena object off the head of the list. */
assert(unused_arena_objects != NULL);
arenaobj = unused_arena_objects;
unused_arena_objects = arenaobj->nextarena;
assert(arenaobj->address == 0);
#if IsModeDbg()
address = _PyObject_Arena.alloc(_PyObject_Arena.ctx, ARENA_SIZE);
#else
address = _PyObject_ArenaMmap(NULL, ARENA_SIZE);
#endif
if (address == NULL) {
/* The allocation failed: return NULL after putting the
* arenaobj back.
*/
arenaobj->nextarena = unused_arena_objects;
unused_arena_objects = arenaobj;
return NULL;
}
arenaobj->address = (uintptr_t)address;
++narenas_currently_allocated;
++ntimes_arena_allocated;
if (narenas_currently_allocated > narenas_highwater)
narenas_highwater = narenas_currently_allocated;
arenaobj->freepools = NULL;
/* pool_address <- first pool-aligned address in the arena
nfreepools <- number of whole pools that fit after alignment */
arenaobj->pool_address = (block*)arenaobj->address;
arenaobj->nfreepools = ARENA_SIZE / POOL_SIZE;
assert(POOL_SIZE * arenaobj->nfreepools == ARENA_SIZE);
excess = (uint)(arenaobj->address & POOL_SIZE_MASK);
if (excess != 0) {
--arenaobj->nfreepools;
arenaobj->pool_address += POOL_SIZE - excess;
}
arenaobj->ntotalpools = arenaobj->nfreepools;
return arenaobj;
}
/*
address_in_range(P, POOL)
Return true if and only if P is an address that was allocated by pymalloc.
POOL must be the pool address associated with P, i.e., POOL = POOL_ADDR(P)
(the caller is asked to compute this because the macro expands POOL more than
once, and for efficiency it's best for the caller to assign POOL_ADDR(P) to a
variable and pass the latter to the macro; because address_in_range is
called on every alloc/realloc/free, micro-efficiency is important here).
Tricky: Let B be the arena base address associated with the pool, B =
arenas[(POOL)->arenaindex].address. Then P belongs to the arena if and only if
B <= P < B + ARENA_SIZE
Subtracting B throughout, this is true iff
0 <= P-B < ARENA_SIZE
By using unsigned arithmetic, the "0 <=" half of the test can be skipped.
Obscure: A PyMem "free memory" function can call the pymalloc free or realloc
before the first arena has been allocated. `arenas` is still NULL in that
case. We're relying on that maxarenas is also 0 in that case, so that
(POOL)->arenaindex < maxarenas must be false, saving us from trying to index
into a NULL arenas.
Details: given P and POOL, the arena_object corresponding to P is AO =
arenas[(POOL)->arenaindex]. Suppose obmalloc controls P. Then (barring wild
stores, etc), POOL is the correct address of P's pool, AO.address is the
correct base address of the pool's arena, and P must be within ARENA_SIZE of
AO.address. In addition, AO.address is not 0 (no arena can start at address 0
(NULL)). Therefore address_in_range correctly reports that obmalloc
controls P.
Now suppose obmalloc does not control P (e.g., P was obtained via a direct
call to the system malloc() or realloc()). (POOL)->arenaindex may be anything
in this case -- it may even be uninitialized trash. If the trash arenaindex
is >= maxarenas, the macro correctly concludes at once that obmalloc doesn't
control P.
Else arenaindex is < maxarena, and AO is read up. If AO corresponds to an
allocated arena, obmalloc controls all the memory in slice AO.address :
AO.address+ARENA_SIZE. By case assumption, P is not controlled by obmalloc,
so P doesn't lie in that slice, so the macro correctly reports that P is not
controlled by obmalloc.
Finally, if P is not controlled by obmalloc and AO corresponds to an unused
arena_object (one not currently associated with an allocated arena),
AO.address is 0, and the second test in the macro reduces to:
P < ARENA_SIZE
If P >= ARENA_SIZE (extremely likely), the macro again correctly concludes
that P is not controlled by obmalloc. However, if P < ARENA_SIZE, this part
of the test still passes, and the third clause (AO.address != 0) is necessary
to get the correct result: AO.address is 0 in this case, so the macro
correctly reports that P is not controlled by obmalloc (despite that P lies in
slice AO.address : AO.address + ARENA_SIZE).
Note: The third (AO.address != 0) clause was added in Python 2.5. Before
2.5, arenas were never free()'ed, and an arenaindex < maxarena always
corresponded to a currently-allocated arena, so the "P is not controlled by
obmalloc, AO corresponds to an unused arena_object, and P < ARENA_SIZE" case
was impossible.
Note that the logic is excruciating, and reading up possibly uninitialized
memory when P is not controlled by obmalloc (to get at (POOL)->arenaindex)
creates problems for some memory debuggers. The overwhelming advantage is
that this test determines whether an arbitrary address is controlled by
obmalloc in a small constant time, independent of the number of arenas
obmalloc controls. Since this test is needed at every entry point, it's
extremely desirable that it be this fast.
*/
static inline bool _Py_NO_ADDRESS_SAFETY_ANALYSIS
_Py_NO_SANITIZE_THREAD
_Py_NO_SANITIZE_MEMORY
address_in_range(void *p, poolp pool)
{
#ifdef WITH_THREAD
// Since address_in_range may be reading from memory which was not allocated
// by Python, it is important that pool->arenaindex is read only once, as
// another thread may be concurrently modifying the value without holding
// the GIL. The following dance forces the compiler to read pool->arenaindex
// only once.
uint arenaindex = *((volatile uint *)&pool->arenaindex);
return arenaindex < maxarenas &&
(uintptr_t)p - arenas[arenaindex].address < ARENA_SIZE &&
arenas[arenaindex].address != 0;
#else
return pool->arenaindex < maxarenas &&
(uintptr_t)p - arenas[pool->arenaindex].address < ARENA_SIZE &&
arenas[pool->arenaindex].address != 0;
#endif
}
/*==========================================================================*/
/* malloc. Note that nbytes==0 tries to return a non-NULL pointer, distinct
* from all other currently live pointers. This may not be possible.
*/
/*
* The basic blocks are ordered by decreasing execution frequency,
* which minimizes the number of jumps in the most common cases,
* improves branching prediction and instruction scheduling (small
* block allocations typically result in a couple of instructions).
* Unless the optimizer reorders everything, being too smart...
*/
static void *
_PyObject_Alloc(int use_calloc, void *ctx, size_t nelem, size_t elsize)
{
size_t nbytes;
block *bp;
poolp pool;
poolp next;
uint size;
_Py_AllocatedBlocks++;
assert(elsize == 0 || nelem <= PY_SSIZE_T_MAX / elsize);
nbytes = nelem * elsize;
#ifdef WITH_VALGRIND
if (UNLIKELY(running_on_valgrind == -1))
running_on_valgrind = RUNNING_ON_VALGRIND;
if (UNLIKELY(running_on_valgrind))
goto redirect;
#endif
if (nelem == 0 || elsize == 0)
goto redirect;
if ((nbytes - 1) < SMALL_REQUEST_THRESHOLD) {
LOCK();
/*
* Most frequent paths first
*/
size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT;
pool = usedpools[size + size];
if (pool != pool->nextpool) {
/*
* There is a used pool for this size class.
* Pick up the head block of its free list.
*/
++pool->ref.count;
bp = pool->freeblock;
assert(bp != NULL);
if ((pool->freeblock = *(block **)bp) != NULL) {
UNLOCK();
if (use_calloc)
bzero(bp, nbytes);
return (void *)bp;
}
/*
* Reached the end of the free list, try to extend it.
*/
if (pool->nextoffset <= pool->maxnextoffset) {
/* There is room for another block. */
pool->freeblock = (block*)pool +
pool->nextoffset;
pool->nextoffset += INDEX2SIZE(size);
*(block **)(pool->freeblock) = NULL;
UNLOCK();
if (use_calloc)
bzero(bp, nbytes);
return (void *)bp;
}
/* Pool is full, unlink from used pools. */
next = pool->nextpool;
pool = pool->prevpool;
next->prevpool = pool;
pool->nextpool = next;
UNLOCK();
if (use_calloc)
bzero(bp, nbytes);
return (void *)bp;
}
/* There isn't a pool of the right size class immediately
* available: use a free pool.
*/
if (usable_arenas == NULL) {
/* No arena has a free pool: allocate a new arena. */
#ifdef WITH_MEMORY_LIMITS
if (narenas_currently_allocated >= MAX_ARENAS) {
UNLOCK();
goto redirect;
}
#endif
usable_arenas = new_arena();
if (usable_arenas == NULL) {
UNLOCK();
goto redirect;
}
usable_arenas->nextarena =
usable_arenas->prevarena = NULL;
}
assert(usable_arenas->address != 0);
/* Try to get a cached free pool. */
pool = usable_arenas->freepools;
if (pool != NULL) {
/* Unlink from cached pools. */
usable_arenas->freepools = pool->nextpool;
/* This arena already had the smallest nfreepools
* value, so decreasing nfreepools doesn't change
* that, and we don't need to rearrange the
* usable_arenas list. However, if the arena has
* become wholly allocated, we need to remove its
* arena_object from usable_arenas.
*/
--usable_arenas->nfreepools;
if (usable_arenas->nfreepools == 0) {
/* Wholly allocated: remove. */
assert(usable_arenas->freepools == NULL);
assert(usable_arenas->nextarena == NULL ||
usable_arenas->nextarena->prevarena ==
usable_arenas);
usable_arenas = usable_arenas->nextarena;
if (usable_arenas != NULL) {
usable_arenas->prevarena = NULL;
assert(usable_arenas->address != 0);
}
}
else {
/* nfreepools > 0: it must be that freepools
* isn't NULL, or that we haven't yet carved
* off all the arena's pools for the first
* time.
*/
assert(usable_arenas->freepools != NULL ||
usable_arenas->pool_address <=
(block*)usable_arenas->address +
ARENA_SIZE - POOL_SIZE);
}
init_pool:
/* Frontlink to used pools. */
next = usedpools[size + size]; /* == prev */
pool->nextpool = next;
pool->prevpool = next;
next->nextpool = pool;
next->prevpool = pool;
pool->ref.count = 1;
if (pool->szidx == size) {
/* Luckily, this pool last contained blocks
* of the same size class, so its header
* and free list are already initialized.
*/
bp = pool->freeblock;
assert(bp != NULL);
pool->freeblock = *(block **)bp;
UNLOCK();
if (use_calloc)
bzero(bp, nbytes);
return (void *)bp;
}
/*
* Initialize the pool header, set up the free list to
* contain just the second block, and return the first
* block.
*/
pool->szidx = size;
size = INDEX2SIZE(size);
bp = (block *)pool + POOL_OVERHEAD;
pool->nextoffset = POOL_OVERHEAD + (size << 1);
pool->maxnextoffset = POOL_SIZE - size;
pool->freeblock = bp + size;
*(block **)(pool->freeblock) = NULL;
UNLOCK();
if (use_calloc)
bzero(bp, nbytes);
return (void *)bp;
}
/* Carve off a new pool. */
assert(usable_arenas->nfreepools > 0);
assert(usable_arenas->freepools == NULL);
pool = (poolp)usable_arenas->pool_address;
assert((block*)pool <= (block*)usable_arenas->address +
ARENA_SIZE - POOL_SIZE);
pool->arenaindex = (uint)(usable_arenas - arenas);
assert(&arenas[pool->arenaindex] == usable_arenas);
pool->szidx = DUMMY_SIZE_IDX;
usable_arenas->pool_address += POOL_SIZE;
--usable_arenas->nfreepools;
if (usable_arenas->nfreepools == 0) {
assert(usable_arenas->nextarena == NULL ||
usable_arenas->nextarena->prevarena ==
usable_arenas);
/* Unlink the arena: it is completely allocated. */
usable_arenas = usable_arenas->nextarena;
if (usable_arenas != NULL) {
usable_arenas->prevarena = NULL;
assert(usable_arenas->address != 0);
}
}
goto init_pool;
}
/* The small block allocator ends here. */
redirect:
/* Redirect the original request to the underlying (libc) allocator.
* We jump here on bigger requests, on error in the code above (as a
* last chance to serve the request) or when the max memory limit
* has been reached.
*/
{
void *result;
if (use_calloc)
result = PyMem_RawCalloc(nelem, elsize);
else
result = PyMem_RawMalloc(nbytes);
if (!result)
_Py_AllocatedBlocks--;
return result;
}
}
static inline void *
_PyObject_Malloc(void *ctx, size_t nbytes)
{
return _PyObject_Alloc(0, ctx, 1, nbytes);
}
static inline void *
_PyObject_Calloc(void *ctx, size_t nelem, size_t elsize)
{
return _PyObject_Alloc(1, ctx, nelem, elsize);
}
/* free */
static void
_PyObject_Free(void *ctx, void *p)
{
poolp pool;
block *lastfree;
poolp next, prev;
uint size;
if (p == NULL) /* free(NULL) has no effect */
return;
_Py_AllocatedBlocks--;
#ifdef WITH_VALGRIND
if (UNLIKELY(running_on_valgrind > 0))
goto redirect;
#endif
pool = POOL_ADDR(p);
if (address_in_range(p, pool)) {
/* We allocated this address. */
LOCK();
/* Link p to the start of the pool's freeblock list. Since
* the pool had at least the p block outstanding, the pool
* wasn't empty (so it's already in a usedpools[] list, or
* was full and is in no list -- it's not in the freeblocks
* list in any case).
*/
assert(pool->ref.count > 0); /* else it was empty */
*(block **)p = lastfree = pool->freeblock;
pool->freeblock = (block *)p;
if (lastfree) {
struct arena_object* ao;
uint nf; /* ao->nfreepools */
/* freeblock wasn't NULL, so the pool wasn't full,
* and the pool is in a usedpools[] list.
*/
if (--pool->ref.count != 0) {
/* pool isn't empty: leave it in usedpools */
UNLOCK();
return;
}
/* Pool is now empty: unlink from usedpools, and
* link to the front of freepools. This ensures that
* previously freed pools will be allocated later
* (being not referenced, they are perhaps paged out).
*/
next = pool->nextpool;
prev = pool->prevpool;
next->prevpool = prev;
prev->nextpool = next;
/* Link the pool to freepools. This is a singly-linked
* list, and pool->prevpool isn't used there.
*/
ao = &arenas[pool->arenaindex];
pool->nextpool = ao->freepools;
ao->freepools = pool;
nf = ++ao->nfreepools;
/* All the rest is arena management. We just freed
* a pool, and there are 4 cases for arena mgmt:
* 1. If all the pools are free, return the arena to
* the system free().
* 2. If this is the only free pool in the arena,
* add the arena back to the `usable_arenas` list.
* 3. If the "next" arena has a smaller count of free
* pools, we have to "slide this arena right" to
* restore that usable_arenas is sorted in order of
* nfreepools.
* 4. Else there's nothing more to do.
*/
if (nf == ao->ntotalpools) {
/* Case 1. First unlink ao from usable_arenas.
*/
assert(ao->prevarena == NULL ||
ao->prevarena->address != 0);
assert(ao ->nextarena == NULL ||
ao->nextarena->address != 0);
/* Fix the pointer in the prevarena, or the
* usable_arenas pointer.
*/
if (ao->prevarena == NULL) {
usable_arenas = ao->nextarena;
assert(usable_arenas == NULL ||
usable_arenas->address != 0);
}
else {
assert(ao->prevarena->nextarena == ao);
ao->prevarena->nextarena =
ao->nextarena;
}
/* Fix the pointer in the nextarena. */
if (ao->nextarena != NULL) {
assert(ao->nextarena->prevarena == ao);
ao->nextarena->prevarena =
ao->prevarena;
}
/* Record that this arena_object slot is
* available to be reused.
*/
ao->nextarena = unused_arena_objects;
unused_arena_objects = ao;
/* Free the entire arena. */
#if IsModeDbg()
_PyObject_Arena.free(_PyObject_Arena.ctx,
(void *)ao->address, ARENA_SIZE);
#else
_PyObject_ArenaMunmap(NULL,
(void *)ao->address, ARENA_SIZE);
#endif
ao->address = 0; /* mark unassociated */
--narenas_currently_allocated;
UNLOCK();
return;
}
if (nf == 1) {
/* Case 2. Put ao at the head of
* usable_arenas. Note that because
* ao->nfreepools was 0 before, ao isn't
* currently on the usable_arenas list.
*/
ao->nextarena = usable_arenas;
ao->prevarena = NULL;
if (usable_arenas)
usable_arenas->prevarena = ao;
usable_arenas = ao;
assert(usable_arenas->address != 0);
UNLOCK();
return;
}
/* If this arena is now out of order, we need to keep
* the list sorted. The list is kept sorted so that
* the "most full" arenas are used first, which allows
* the nearly empty arenas to be completely freed. In
* a few un-scientific tests, it seems like this
* approach allowed a lot more memory to be freed.
*/
if (ao->nextarena == NULL ||
nf <= ao->nextarena->nfreepools) {
/* Case 4. Nothing to do. */
UNLOCK();
return;
}
/* Case 3: We have to move the arena towards the end
* of the list, because it has more free pools than
* the arena to its right.
* First unlink ao from usable_arenas.
*/
if (ao->prevarena != NULL) {
/* ao isn't at the head of the list */
assert(ao->prevarena->nextarena == ao);
ao->prevarena->nextarena = ao->nextarena;
}
else {
/* ao is at the head of the list */
assert(usable_arenas == ao);
usable_arenas = ao->nextarena;
}
ao->nextarena->prevarena = ao->prevarena;
/* Locate the new insertion point by iterating over
* the list, using our nextarena pointer.
*/
while (ao->nextarena != NULL &&
nf > ao->nextarena->nfreepools) {
ao->prevarena = ao->nextarena;
ao->nextarena = ao->nextarena->nextarena;
}
/* Insert ao at this point. */
assert(ao->nextarena == NULL ||
ao->prevarena == ao->nextarena->prevarena);
assert(ao->prevarena->nextarena == ao->nextarena);
ao->prevarena->nextarena = ao;
if (ao->nextarena != NULL)
ao->nextarena->prevarena = ao;
/* Verify that the swaps worked. */
assert(ao->nextarena == NULL ||
nf <= ao->nextarena->nfreepools);
assert(ao->prevarena == NULL ||
nf > ao->prevarena->nfreepools);
assert(ao->nextarena == NULL ||
ao->nextarena->prevarena == ao);
assert((usable_arenas == ao &&
ao->prevarena == NULL) ||
ao->prevarena->nextarena == ao);
UNLOCK();
return;
}
/* Pool was full, so doesn't currently live in any list:
* link it to the front of the appropriate usedpools[] list.
* This mimics LRU pool usage for new allocations and
* targets optimal filling when several pools contain
* blocks of the same size class.
*/
--pool->ref.count;
assert(pool->ref.count > 0); /* else the pool is empty */
size = pool->szidx;
next = usedpools[size + size];
prev = next->prevpool;
/* insert pool before next: prev <-> pool <-> next */
pool->nextpool = next;
pool->prevpool = prev;
next->prevpool = pool;
prev->nextpool = pool;
UNLOCK();
return;
}
#ifdef WITH_VALGRIND
redirect:
#endif
/* We didn't allocate this address. */
PyMem_RawFree(p);
}
/* realloc. If p is NULL, this acts like malloc(nbytes). Else if nbytes==0,
* then as the Python docs promise, we do not treat this like free(p), and
* return a non-NULL result.
*/
static void *
_PyObject_Realloc(void *ctx, void *p, size_t nbytes)
{
void *bp;
poolp pool;
size_t size;
if (p == NULL)
return _PyObject_Alloc(0, ctx, 1, nbytes);
#ifdef WITH_VALGRIND
/* Treat running_on_valgrind == -1 the same as 0 */
if (UNLIKELY(running_on_valgrind > 0))
goto redirect;
#endif
pool = POOL_ADDR(p);
if (address_in_range(p, pool)) {
/* We're in charge of this block */
size = INDEX2SIZE(pool->szidx);
if (nbytes <= size) {
/* The block is staying the same or shrinking. If
* it's shrinking, there's a tradeoff: it costs
* cycles to copy the block to a smaller size class,
* but it wastes memory not to copy it. The
* compromise here is to copy on shrink only if at
* least 25% of size can be shaved off.
*/
if (4 * nbytes > 3 * size) {
/* It's the same,
* or shrinking and new/old > 3/4.
*/
return p;
}
size = nbytes;
}
bp = _PyObject_Alloc(0, ctx, 1, nbytes);
if (bp != NULL) {
memcpy(bp, p, size);
_PyObject_Free(ctx, p);
}
return bp;
}
#ifdef WITH_VALGRIND
redirect:
#endif
/* We're not managing this block. If nbytes <=
* SMALL_REQUEST_THRESHOLD, it's tempting to try to take over this
* block. However, if we do, we need to copy the valid data from
* the C-managed block to one of our blocks, and there's no portable
* way to know how much of the memory space starting at p is valid.
* As bug 1185883 pointed out the hard way, it's possible that the
* C-managed block is "at the end" of allocated VM space, so that
* a memory fault can occur if we try to copy nbytes bytes starting
* at p. Instead we punt: let C continue to manage this block.
*/
if (nbytes)
return PyMem_RawRealloc(p, nbytes);
/* C doesn't define the result of realloc(p, 0) (it may or may not
* return NULL then), but Python's docs promise that nbytes==0 never
* returns NULL. We don't pass 0 to realloc(), to avoid that endcase
* to begin with. Even then, we can't be sure that realloc() won't
* return NULL.
*/
bp = PyMem_RawRealloc(p, 1);
return bp ? bp : p;
}
#else /* ! WITH_PYMALLOC */
/*==========================================================================*/
/* pymalloc not enabled: Redirect the entry points to malloc. These will
* only be used by extensions that are compiled with pymalloc enabled. */
Py_ssize_t
_Py_GetAllocatedBlocks(void)
{
return 0;
}
#endif /* WITH_PYMALLOC */
/*==========================================================================*/
/* A x-platform debugging allocator. This doesn't manage memory directly,
* it wraps a real allocator, adding extra debugging info to the memory blocks.
*/
/* Special bytes broadcast into debug memory blocks at appropriate times.
* Strings of these are unlikely to be valid addresses, floats, ints or
* 7-bit ASCII.
*/
#undef CLEANBYTE
#undef DEADBYTE
#undef FORBIDDENBYTE
#define CLEANBYTE 0xCB /* clean (newly allocated) memory */
#define DEADBYTE 0xDB /* dead (newly freed) memory */
#define FORBIDDENBYTE 0xFB /* untouchable bytes at each end of a block */
static size_t serialno = 0; /* incremented on each debug {m,re}alloc */
/* serialno is always incremented via calling this routine. The point is
* to supply a single place to set a breakpoint.
*/
static inline void
bumpserialno(void)
{
++serialno;
}
#define SST SIZEOF_SIZE_T
static inline optimizespeed noasan size_t
read_size_t(const void *p)
{
return READ64BE(p);
}
static inline optimizespeed noasan void
write_size_t(void *p, size_t n)
{
WRITE64BE((char *)p, n);
}
#if IsModeDbg()
/* Let S = sizeof(size_t). The debug malloc asks for 4*S extra bytes and
fills them with useful stuff, here calling the underlying malloc's result p:
p[0: S]
Number of bytes originally asked for. This is a size_t, big-endian (easier
to read in a memory dump).
p[S]
API ID. See PEP 445. This is a character, but seems undocumented.
p[S+1: 2*S]
Copies of FORBIDDENBYTE. Used to catch under- writes and reads.
p[2*S: 2*S+n]
The requested memory, filled with copies of CLEANBYTE.
Used to catch reference to uninitialized memory.
&p[2*S] is returned. Note that this is 8-byte aligned if pymalloc
handled the request itself.
p[2*S+n: 2*S+n+S]
Copies of FORBIDDENBYTE. Used to catch over- writes and reads.
p[2*S+n+S: 2*S+n+2*S]
A serial number, incremented by 1 on each call to _PyMem_DebugMalloc
and _PyMem_DebugRealloc.
This is a big-endian size_t.
If "bad memory" is detected later, the serial number gives an
excellent way to set a breakpoint on the next run, to capture the
instant at which this block was passed out.
*/
static void *
_PyMem_DebugRawAlloc(int use_calloc, void *ctx, size_t nbytes)
{
debug_alloc_api_t *api = (debug_alloc_api_t *)ctx;
uint8_t *p; /* base address of malloc'ed block */
uint8_t *tail; /* p + 2*SST + nbytes == pointer to tail pad bytes */
size_t total; /* nbytes + 4*SST */
bumpserialno();
total = nbytes + 4*SST;
if (nbytes > PY_SSIZE_T_MAX - 4*SST)
/* overflow: can't represent total as a Py_ssize_t */
return NULL;
if (use_calloc)
p = (uint8_t *)api->alloc.calloc(api->alloc.ctx, 1, total);
else
p = (uint8_t *)api->alloc.malloc(api->alloc.ctx, total);
if (p == NULL)
return NULL;
/* at p, write size (SST bytes), id (1 byte), pad (SST-1 bytes) */
write_size_t(p, nbytes);
p[SST] = (uint8_t)api->api_id;
memset(p + SST + 1, FORBIDDENBYTE, SST-1);
if (nbytes > 0 && !use_calloc)
memset(p + 2*SST, CLEANBYTE, nbytes);
/* at tail, write pad (SST bytes) and serialno (SST bytes) */
tail = p + 2*SST + nbytes;
memset(tail, FORBIDDENBYTE, SST);
write_size_t(tail + SST, serialno);
_PyMem_DebugCheckAddress(api->api_id, p+2*SST);
if (IsAsan()) {
__asan_poison((p + SST + 1), SST-1, kAsanHeapUnderrun);
__asan_poison(tail, SST, kAsanHeapOverrun);
}
return p + 2*SST;
}
static void *
_PyMem_DebugRawMalloc(void *ctx, size_t nbytes)
{
return _PyMem_DebugRawAlloc(0, ctx, nbytes);
}
static void *
_PyMem_DebugRawCalloc(void *ctx, size_t nelem, size_t elsize)
{
size_t nbytes;
assert(elsize == 0 || nelem <= PY_SSIZE_T_MAX / elsize);
nbytes = nelem * elsize;
return _PyMem_DebugRawAlloc(1, ctx, nbytes);
}
/* Heuristic checking if the memory has been freed. Rely on the debug hooks on
Python memory allocators which fills the memory with DEADBYTE (0xDB) when
memory is deallocated. */
int
(_PyMem_IsFreed)(void *ptr, size_t size)
{
unsigned char *bytes = ptr;
for (size_t i=0; i < size; i++) {
if (bytes[i] != DEADBYTE) {
return 0;
}
}
return 1;
}
/* The debug free first checks the 2*SST bytes on each end for sanity (in
particular, that the FORBIDDENBYTEs with the api ID are still intact).
Then fills the original bytes with DEADBYTE.
Then calls the underlying free.
*/
static void
_PyMem_DebugRawFree(void *ctx, void *p)
{
debug_alloc_api_t *api;
uint8_t *q;
size_t nbytes;
if (p == NULL)
return;
api = (debug_alloc_api_t *)ctx;
q = (uint8_t *)p - 2*SST; /* address returned from malloc */
_PyMem_DebugCheckAddress(api->api_id, p);
nbytes = read_size_t(q);
nbytes += 4*SST;
if (nbytes > 0) {
if (IsAsan()) {
__asan_unpoison(q, nbytes);
}
memset(q, DEADBYTE, nbytes);
}
api->alloc.free(api->alloc.ctx, q);
}
static noasan void *
_PyMem_DebugRawRealloc(void *ctx, void *p, size_t nbytes)
{
_Static_assert(sizeof(size_t) == 8, "");
debug_alloc_api_t *api = (debug_alloc_api_t *)ctx;
uint8_t *q = (uint8_t *)p;
uint8_t *tail;
size_t total; /* nbytes + 4*SST */
size_t original_nbytes;
size_t w;
int i;
if (p == NULL)
return _PyMem_DebugRawAlloc(0, ctx, nbytes);
_PyMem_DebugCheckAddress(api->api_id, p);
bumpserialno();
original_nbytes = read_size_t(q - 2*SST);
total = nbytes + 4*SST;
if (nbytes > PY_SSIZE_T_MAX - 4*SST)
/* overflow: can't represent total as a Py_ssize_t */
return NULL;
/* Resize and add decorations. */
q = (uint8_t *)api->alloc.realloc(api->alloc.ctx, q - 2*SST, total);
if (q == NULL)
return NULL;
write_size_t(q, nbytes);
assert(q[SST] == (uint8_t)api->api_id);
for (i = 1; i < SST; ++i)
assert(q[SST + i] == FORBIDDENBYTE);
q += 2*SST;
tail = q + nbytes;
w = 0x0101010101010101ull * FORBIDDENBYTE;
WRITE64LE(tail, w);
if (IsAsan()) __asan_poison(tail, SST, kAsanHeapOverrun);
write_size_t(tail + SST, serialno);
if (nbytes > original_nbytes) {
/* growing: mark new extra memory clean */
if (IsAsan()) {
__asan_unpoison((q + original_nbytes),
nbytes - original_nbytes);
}
memset(q + original_nbytes, CLEANBYTE,
nbytes - original_nbytes);
}
return q;
}
static inline void
_PyMem_DebugCheckGIL(void)
{
#ifdef WITH_THREAD
if (!PyGILState_Check())
Py_FatalError("Python memory allocator called "
"without holding the GIL");
#endif
}
static void *
_PyMem_DebugMalloc(void *ctx, size_t nbytes)
{
_PyMem_DebugCheckGIL();
return _PyMem_DebugRawMalloc(ctx, nbytes);
}
static void *
_PyMem_DebugCalloc(void *ctx, size_t nelem, size_t elsize)
{
_PyMem_DebugCheckGIL();
return _PyMem_DebugRawCalloc(ctx, nelem, elsize);
}
static void
_PyMem_DebugFree(void *ctx, void *ptr)
{
_PyMem_DebugCheckGIL();
_PyMem_DebugRawFree(ctx, ptr);
}
static void *
_PyMem_DebugRealloc(void *ctx, void *ptr, size_t nbytes)
{
_PyMem_DebugCheckGIL();
return _PyMem_DebugRawRealloc(ctx, ptr, nbytes);
}
/* Check the forbidden bytes on both ends of the memory allocated for p.
* If anything is wrong, print info to stderr via _PyObject_DebugDumpAddress,
* and call Py_FatalError to kill the program.
* The API id, is also checked.
*/
static noasan void
_PyMem_DebugCheckAddress(char api, const void *p)
{
const uint8_t *q = (const uint8_t *)p;
char msgbuf[64];
char *msg;
size_t nbytes;
const uint8_t *tail;
int i;
char id;
if (p == NULL) {
msg = "didn't expect a NULL pointer";
goto error;
}
/* Check the API id */
id = (char)q[-SST];
if (id != api) {
msg = msgbuf;
snprintf(msg, sizeof(msgbuf), "bad ID: Allocated using API '%c', verified using API '%c'", id, api);
msgbuf[sizeof(msgbuf)-1] = 0;
goto error;
}
/* Check the stuff at the start of p first: if there's underwrite
* corruption, the number-of-bytes field may be nuts, and checking
* the tail could lead to a segfault then.
*/
for (i = SST-1; i >= 1; --i) {
if (*(q-i) != FORBIDDENBYTE) {
msg = "bad leading pad byte";
goto error;
}
}
nbytes = read_size_t(q - 2*SST);
tail = q + nbytes;
for (i = 0; i < SST; ++i) {
if (tail[i] != FORBIDDENBYTE) {
msg = "bad trailing pad byte";
goto error;
}
}
return;
error:
_PyObject_DebugDumpAddress(p);
Py_FatalError(msg);
}
/* Display info to stderr about the memory block at p. */
static noasan void
_PyObject_DebugDumpAddress(const void *p)
{
const uint8_t *q = (const uint8_t *)p;
const uint8_t *tail;
size_t nbytes, serial;
int i;
int ok;
char id;
fprintf(stderr, "Debug memory block at address p=%p:", p);
if (p == NULL) {
fprintf(stderr, "\n");
return;
}
id = (char)q[-SST];
fprintf(stderr, " API '%c'\n", id);
nbytes = read_size_t(q - 2*SST);
fprintf(stderr, " %" PY_FORMAT_SIZE_T "u bytes originally "
"requested\n", nbytes);
/* In case this is nuts, check the leading pad bytes first. */
fprintf(stderr, " The %d pad bytes at p-%d are ", SST-1, SST-1);
ok = 1;
for (i = 1; i <= SST-1; ++i) {
if (*(q-i) != FORBIDDENBYTE) {
ok = 0;
break;
}
}
if (ok)
fputs("FORBIDDENBYTE, as expected.\n", stderr);
else {
fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
FORBIDDENBYTE);
for (i = SST-1; i >= 1; --i) {
const uint8_t byte = *(q-i);
fprintf(stderr, " at p-%d: 0x%02x", i, byte);
if (byte != FORBIDDENBYTE)
fputs(" *** OUCH", stderr);
fputc('\n', stderr);
}
fputs(" Because memory is corrupted at the start, the "
"count of bytes requested\n"
" may be bogus, and checking the trailing pad "
"bytes may segfault.\n", stderr);
}
tail = q + nbytes;
fprintf(stderr, " The %d pad bytes at tail=%p are ", SST, tail);
ok = 1;
for (i = 0; i < SST; ++i) {
if (tail[i] != FORBIDDENBYTE) {
ok = 0;
break;
}
}
if (ok)
fputs("FORBIDDENBYTE, as expected.\n", stderr);
else {
fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
FORBIDDENBYTE);
for (i = 0; i < SST; ++i) {
const uint8_t byte = tail[i];
fprintf(stderr, " at tail+%d: 0x%02x",
i, byte);
if (byte != FORBIDDENBYTE)
fputs(" *** OUCH", stderr);
fputc('\n', stderr);
}
}
serial = read_size_t(tail + SST);
fprintf(stderr, " The block was made by call #%" PY_FORMAT_SIZE_T
"u to debug malloc/realloc.\n", serial);
if (nbytes > 0) {
i = 0;
fputs(" Data at p:", stderr);
/* print up to 8 bytes at the start */
while (q < tail && i < 8) {
fprintf(stderr, " %02x", *q);
++i;
++q;
}
/* and up to 8 at the end */
if (q < tail) {
if (tail - q > 8) {
fputs(" ...", stderr);
q = tail - 8;
}
while (q < tail) {
fprintf(stderr, " %02x", *q);
++q;
}
}
fputc('\n', stderr);
}
fputc('\n', stderr);
fflush(stderr);
#if IsModeDbg()
PYTHON_YOINK("_tracemalloc");
_PyMem_DumpTraceback(fileno(stderr), p);
#endif
}
#endif
static size_t
printone(FILE *out, const char* msg, size_t value)
{
int i, k;
char buf[100];
size_t origvalue = value;
fputs(msg, out);
for (i = (int)strlen(msg); i < 35; ++i)
fputc(' ', out);
fputc('=', out);
/* Write the value with commas. */
i = 22;
buf[i--] = '\0';
buf[i--] = '\n';
k = 3;
do {
size_t nextvalue = value / 10;
unsigned int digit = (unsigned int)(value - nextvalue * 10);
value = nextvalue;
buf[i--] = (char)(digit + '0');
--k;
if (k == 0 && value && i >= 0) {
k = 3;
buf[i--] = ',';
}
} while (value && i >= 0);
while (i >= 0)
buf[i--] = ' ';
fputs(buf, out);
return origvalue;
}
void
_PyDebugAllocatorStats(FILE *out,
const char *block_name, int num_blocks, size_t sizeof_block)
{
char buf1[128];
char buf2[128];
PyOS_snprintf(buf1, sizeof(buf1),
"%d %ss * %" PY_FORMAT_SIZE_T "d bytes each",
num_blocks, block_name, sizeof_block);
PyOS_snprintf(buf2, sizeof(buf2),
"%48s ", buf1);
(void)printone(out, buf2, num_blocks * sizeof_block);
}
#ifdef WITH_PYMALLOC
#ifdef Py_DEBUG
/* Is target in the list? The list is traversed via the nextpool pointers.
* The list may be NULL-terminated, or circular. Return 1 if target is in
* list, else 0.
*/
static int
pool_is_in_list(const poolp target, poolp list)
{
poolp origlist = list;
assert(target != NULL);
if (list == NULL)
return 0;
do {
if (target == list)
return 1;
list = list->nextpool;
} while (list != NULL && list != origlist);
return 0;
}
#endif
/* Print summary info to "out" about the state of pymalloc's structures.
* In Py_DEBUG mode, also perform some expensive internal consistency
* checks.
*/
void
_PyObject_DebugMallocStats(FILE *out)
{
uint i;
const uint numclasses = SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT;
/* # of pools, allocated blocks, and free blocks per class index */
size_t numpools[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
size_t numblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
size_t numfreeblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
/* total # of allocated bytes in used and full pools */
size_t allocated_bytes = 0;
/* total # of available bytes in used pools */
size_t available_bytes = 0;
/* # of free pools + pools not yet carved out of current arena */
uint numfreepools = 0;
/* # of bytes for arena alignment padding */
size_t arena_alignment = 0;
/* # of bytes in used and full pools used for pool_headers */
size_t pool_header_bytes = 0;
/* # of bytes in used and full pools wasted due to quantization,
* i.e. the necessarily leftover space at the ends of used and
* full pools.
*/
size_t quantization = 0;
/* # of arenas actually allocated. */
size_t narenas = 0;
/* running total -- should equal narenas * ARENA_SIZE */
size_t total;
char buf[128];
fprintf(out, "Small block threshold = %d, in %u size classes.\n",
SMALL_REQUEST_THRESHOLD, numclasses);
for (i = 0; i < numclasses; ++i)
numpools[i] = numblocks[i] = numfreeblocks[i] = 0;
/* Because full pools aren't linked to from anything, it's easiest
* to march over all the arenas. If we're lucky, most of the memory
* will be living in full pools -- would be a shame to miss them.
*/
for (i = 0; i < maxarenas; ++i) {
uint j;
uintptr_t base = arenas[i].address;
/* Skip arenas which are not allocated. */
if (arenas[i].address == (uintptr_t)NULL)
continue;
narenas += 1;
numfreepools += arenas[i].nfreepools;
/* round up to pool alignment */
if (base & (uintptr_t)POOL_SIZE_MASK) {
arena_alignment += POOL_SIZE;
base &= ~(uintptr_t)POOL_SIZE_MASK;
base += POOL_SIZE;
}
/* visit every pool in the arena */
assert(base <= (uintptr_t) arenas[i].pool_address);
for (j = 0; base < (uintptr_t) arenas[i].pool_address;
++j, base += POOL_SIZE) {
poolp p = (poolp)base;
const uint sz = p->szidx;
uint freeblocks;
if (p->ref.count == 0) {
/* currently unused */
#ifdef Py_DEBUG
assert(pool_is_in_list(p, arenas[i].freepools));
#endif
continue;
}
++numpools[sz];
numblocks[sz] += p->ref.count;
freeblocks = NUMBLOCKS(sz) - p->ref.count;
numfreeblocks[sz] += freeblocks;
#ifdef Py_DEBUG
if (freeblocks > 0)
assert(pool_is_in_list(p, usedpools[sz + sz]));
#endif
}
}
assert(narenas == narenas_currently_allocated);
fputc('\n', out);
fputs("class size num pools blocks in use avail blocks\n"
"----- ---- --------- ------------- ------------\n",
out);
for (i = 0; i < numclasses; ++i) {
size_t p = numpools[i];
size_t b = numblocks[i];
size_t f = numfreeblocks[i];
uint size = INDEX2SIZE(i);
if (p == 0) {
assert(b == 0 && f == 0);
continue;
}
fprintf(out, "%5u %6u "
"%11" PY_FORMAT_SIZE_T "u "
"%15" PY_FORMAT_SIZE_T "u "
"%13" PY_FORMAT_SIZE_T "u\n",
i, size, p, b, f);
allocated_bytes += b * size;
available_bytes += f * size;
pool_header_bytes += p * POOL_OVERHEAD;
quantization += p * ((POOL_SIZE - POOL_OVERHEAD) % size);
}
fputc('\n', out);
#if IsModeDbg()
if (_PyMem_DebugEnabled())
(void)printone(out, "# times object malloc called", serialno);
#endif
(void)printone(out, "# arenas allocated total", ntimes_arena_allocated);
(void)printone(out, "# arenas reclaimed", ntimes_arena_allocated - narenas);
(void)printone(out, "# arenas highwater mark", narenas_highwater);
(void)printone(out, "# arenas allocated current", narenas);
PyOS_snprintf(buf, sizeof(buf),
"%" PY_FORMAT_SIZE_T "u arenas * %d bytes/arena",
narenas, ARENA_SIZE);
(void)printone(out, buf, narenas * ARENA_SIZE);
fputc('\n', out);
total = printone(out, "# bytes in allocated blocks", allocated_bytes);
total += printone(out, "# bytes in available blocks", available_bytes);
PyOS_snprintf(buf, sizeof(buf),
"%u unused pools * %d bytes", numfreepools, POOL_SIZE);
total += printone(out, buf, (size_t)numfreepools * POOL_SIZE);
total += printone(out, "# bytes lost to pool headers", pool_header_bytes);
total += printone(out, "# bytes lost to quantization", quantization);
total += printone(out, "# bytes lost to arena alignment", arena_alignment);
(void)printone(out, "Total", total);
}
#endif /* #ifdef WITH_PYMALLOC */
| 86,008 | 2,523 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/longobject.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "libc/assert.h"
#include "libc/intrin/popcnt.h"
#include "libc/fmt/conv.h"
#include "libc/limits.h"
#include "libc/log/check.h"
#include "libc/math.h"
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/boolobject.h"
#include "third_party/python/Include/bytearrayobject.h"
#include "third_party/python/Include/descrobject.h"
#include "third_party/python/Include/floatobject.h"
#include "third_party/python/Include/longintrepr.h"
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/pyctype.h"
#include "third_party/python/Include/pyerrors.h"
#include "third_party/python/Include/pyhash.h"
#include "third_party/python/Include/pymacro.h"
#include "third_party/python/Include/pymath.h"
#include "third_party/python/Include/structseq.h"
#include "third_party/python/Include/tupleobject.h"
#include "third_party/python/Include/warnings.h"
/* clang-format off */
/* Long (arbitrary precision) integer object implementation */
/* XXX The functional organization of this file is terrible */
#ifndef NSMALLPOSINTS
#define NSMALLPOSINTS 257L
#endif
#ifndef NSMALLNEGINTS
#define NSMALLNEGINTS 5L
#endif
/* convert a PyLong of size 1, 0 or -1 to an sdigit */
#define MEDIUM_VALUE(x) (assert(-1 <= Py_SIZE(x) && Py_SIZE(x) <= 1), \
Py_SIZE(x) < 0 ? -(sdigit)(x)->ob_digit[0] : \
(Py_SIZE(x) == 0 ? (sdigit)0 : \
(sdigit)(x)->ob_digit[0]))
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
/* Small integers are preallocated in this array so that they
can be shared.
The integers that are preallocated are those in the range
-NSMALLNEGINTS (inclusive) to NSMALLPOSINTS (not inclusive).
*/
static PyLongObject small_ints[NSMALLNEGINTS + NSMALLPOSINTS];
#ifdef COUNT_ALLOCS
Py_ssize_t quick_int_allocs, quick_neg_int_allocs;
#endif
static inline PyObject *
get_small_int(sdigit ival)
{
PyObject *v;
assert(-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS);
v = (PyObject *)&small_ints[ival + NSMALLNEGINTS];
Py_INCREF(v);
#ifdef COUNT_ALLOCS
if (ival >= 0)
quick_int_allocs++;
else
quick_neg_int_allocs++;
#endif
return v;
}
#define CHECK_SMALL_INT(ival) \
do if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS) { \
return get_small_int((sdigit)ival); \
} while(0)
static PyLongObject *
maybe_small_long(PyLongObject *v)
{
if (v && Py_ABS(Py_SIZE(v)) <= 1) {
sdigit ival = MEDIUM_VALUE(v);
if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS) {
Py_DECREF(v);
return (PyLongObject *)get_small_int(ival);
}
}
return v;
}
#else
#define CHECK_SMALL_INT(ival)
#define maybe_small_long(val) (val)
#endif
/* If a freshly-allocated int is already shared, it must
be a small integer, so negating it must go to PyLong_FromLong */
Py_LOCAL_INLINE(void)
_PyLong_Negate(PyLongObject **x_p)
{
PyLongObject *x;
x = (PyLongObject *)*x_p;
if (Py_REFCNT(x) == 1) {
Py_SIZE(x) = -Py_SIZE(x);
return;
}
*x_p = (PyLongObject *)PyLong_FromLong(-MEDIUM_VALUE(x));
Py_DECREF(x);
}
/* For int multiplication, use the O(N**2) school algorithm unless
* both operands contain more than KARATSUBA_CUTOFF digits (this
* being an internal Python int digit, in base BASE).
*/
#define KARATSUBA_CUTOFF 70
#define KARATSUBA_SQUARE_CUTOFF (2 * KARATSUBA_CUTOFF)
/* For exponentiation, use the binary left-to-right algorithm
* unless the exponent contains more than FIVEARY_CUTOFF digits.
* In that case, do 5 bits at a time. The potential drawback is that
* a table of 2**5 intermediate results is computed.
*/
#define FIVEARY_CUTOFF 8
#define SIGCHECK(PyTryBlock) \
do { \
if (PyErr_CheckSignals()) PyTryBlock \
} while(0)
/* Normalize (remove leading zeros from) an int object.
Doesn't attempt to free the storage--in most cases, due to the nature
of the algorithms used, this could save at most be one word anyway. */
static PyLongObject *
long_normalize(PyLongObject *v)
{
Py_ssize_t j = Py_ABS(Py_SIZE(v));
Py_ssize_t i = j;
while (i > 0 && v->ob_digit[i-1] == 0)
--i;
if (i != j)
Py_SIZE(v) = (Py_SIZE(v) < 0) ? -(i) : i;
return v;
}
/* _PyLong_FromNbInt: Convert the given object to a PyLongObject
using the nb_int slot, if available. Raise TypeError if either the
nb_int slot is not available or the result of the call to nb_int
returns something not of type int.
*/
PyLongObject *
_PyLong_FromNbInt(PyObject *integral)
{
PyNumberMethods *nb;
PyObject *result;
/* Fast path for the case that we already have an int. */
if (PyLong_CheckExact(integral)) {
Py_INCREF(integral);
return (PyLongObject *)integral;
}
nb = Py_TYPE(integral)->tp_as_number;
if (nb == NULL || nb->nb_int == NULL) {
PyErr_Format(PyExc_TypeError,
"an integer is required (got type %.200s)",
Py_TYPE(integral)->tp_name);
return NULL;
}
/* Convert using the nb_int slot, which should return something
of exact type int. */
result = nb->nb_int(integral);
if (!result || PyLong_CheckExact(result))
return (PyLongObject *)result;
if (!PyLong_Check(result)) {
PyErr_Format(PyExc_TypeError,
"__int__ returned non-int (type %.200s)",
result->ob_type->tp_name);
Py_DECREF(result);
return NULL;
}
/* Issue #17576: warn if 'result' not of exact type int. */
if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1,
"__int__ returned non-int (type %.200s). "
"The ability to return an instance of a strict subclass of int "
"is deprecated, and may be removed in a future version of Python.",
result->ob_type->tp_name)) {
Py_DECREF(result);
return NULL;
}
return (PyLongObject *)result;
}
/* Allocate a new int object with size digits.
Return NULL and set exception if we run out of memory. */
#define MAX_LONG_DIGITS \
((PY_SSIZE_T_MAX - offsetof(PyLongObject, ob_digit))/sizeof(digit))
PyLongObject *
_PyLong_New(Py_ssize_t size)
{
PyLongObject *result;
/* Number of bytes needed is: offsetof(PyLongObject, ob_digit) +
sizeof(digit)*size. Previous incarnations of this code used
sizeof(PyVarObject) instead of the offsetof, but this risks being
incorrect in the presence of padding between the PyVarObject header
and the digits. */
if (size > (Py_ssize_t)MAX_LONG_DIGITS) {
PyErr_SetString(PyExc_OverflowError,
"too many digits in integer");
return NULL;
}
result = PyObject_MALLOC(offsetof(PyLongObject, ob_digit) +
size*sizeof(digit));
if (!result) {
PyErr_NoMemory();
return NULL;
}
return (PyLongObject*)PyObject_INIT_VAR(result, &PyLong_Type, size);
}
PyObject *
_PyLong_Copy(PyLongObject *src)
{
PyLongObject *result;
Py_ssize_t i;
assert(src != NULL);
i = Py_SIZE(src);
if (i < 0)
i = -(i);
if (i < 2) {
sdigit ival = MEDIUM_VALUE(src);
CHECK_SMALL_INT(ival);
}
result = _PyLong_New(i);
if (result != NULL) {
Py_SIZE(result) = Py_SIZE(src);
while (--i >= 0)
result->ob_digit[i] = src->ob_digit[i];
}
return (PyObject *)result;
}
/* Create a new int object from a C long int */
PyObject *
PyLong_FromLong(long ival)
{
PyLongObject *v;
unsigned long abs_ival;
unsigned long t; /* unsigned so >> doesn't propagate sign bit */
int ndigits = 0;
int sign;
CHECK_SMALL_INT(ival);
if (ival < 0) {
/* negate: can't write this as abs_ival = -ival since that
invokes undefined behaviour when ival is LONG_MIN */
abs_ival = 0U-(unsigned long)ival;
sign = -1;
}
else {
abs_ival = (unsigned long)ival;
sign = ival == 0 ? 0 : 1;
}
/* Fast path for single-digit ints */
if (!(abs_ival >> PyLong_SHIFT)) {
v = _PyLong_New(1);
if (v) {
Py_SIZE(v) = sign;
v->ob_digit[0] = Py_SAFE_DOWNCAST(
abs_ival, unsigned long, digit);
}
return (PyObject*)v;
}
#if PyLong_SHIFT==15
/* 2 digits */
if (!(abs_ival >> 2*PyLong_SHIFT)) {
v = _PyLong_New(2);
if (v) {
Py_SIZE(v) = 2*sign;
v->ob_digit[0] = Py_SAFE_DOWNCAST(
abs_ival & PyLong_MASK, unsigned long, digit);
v->ob_digit[1] = Py_SAFE_DOWNCAST(
abs_ival >> PyLong_SHIFT, unsigned long, digit);
}
return (PyObject*)v;
}
#endif
/* Larger numbers: loop to determine number of digits */
t = abs_ival;
while (t) {
++ndigits;
t >>= PyLong_SHIFT;
}
v = _PyLong_New(ndigits);
if (v != NULL) {
digit *p = v->ob_digit;
Py_SIZE(v) = ndigits*sign;
t = abs_ival;
while (t) {
*p++ = Py_SAFE_DOWNCAST(
t & PyLong_MASK, unsigned long, digit);
t >>= PyLong_SHIFT;
}
}
return (PyObject *)v;
}
/* Create a new int object from a C unsigned long int */
PyObject *
PyLong_FromUnsignedLong(unsigned long ival)
{
PyLongObject *v;
unsigned long t;
int ndigits = 0;
if (ival < PyLong_BASE)
return PyLong_FromLong(ival);
/* Count the number of Python digits. */
t = (unsigned long)ival;
while (t) {
++ndigits;
t >>= PyLong_SHIFT;
}
v = _PyLong_New(ndigits);
if (v != NULL) {
digit *p = v->ob_digit;
Py_SIZE(v) = ndigits;
while (ival) {
*p++ = (digit)(ival & PyLong_MASK);
ival >>= PyLong_SHIFT;
}
}
return (PyObject *)v;
}
/* Create a new int object from a C double */
PyObject *
PyLong_FromDouble(double dval)
{
PyLongObject *v;
double frac;
int i, ndig, expo, neg;
neg = 0;
if (Py_IS_INFINITY(dval)) {
PyErr_SetString(PyExc_OverflowError,
"cannot convert float infinity to integer");
return NULL;
}
if (Py_IS_NAN(dval)) {
PyErr_SetString(PyExc_ValueError,
"cannot convert float NaN to integer");
return NULL;
}
if (dval < 0.0) {
neg = 1;
dval = -dval;
}
frac = frexp(dval, &expo); /* dval = frac*2**expo; 0.0 <= frac < 1.0 */
if (expo <= 0)
return PyLong_FromLong(0L);
ndig = (expo-1) / PyLong_SHIFT + 1; /* Number of 'digits' in result */
v = _PyLong_New(ndig);
if (v == NULL)
return NULL;
frac = ldexp(frac, (expo-1) % PyLong_SHIFT + 1);
for (i = ndig; --i >= 0; ) {
digit bits = (digit)frac;
v->ob_digit[i] = bits;
frac = frac - (double)bits;
frac = ldexp(frac, PyLong_SHIFT);
}
if (neg)
Py_SIZE(v) = -(Py_SIZE(v));
return (PyObject *)v;
}
/* Checking for overflow in PyLong_AsLong is a PITA since C doesn't define
* anything about what happens when a signed integer operation overflows,
* and some compilers think they're doing you a favor by being "clever"
* then. The bit pattern for the largest positive signed long is
* (unsigned long)LONG_MAX, and for the smallest negative signed long
* it is abs(LONG_MIN), which we could write -(unsigned long)LONG_MIN.
* However, some other compilers warn about applying unary minus to an
* unsigned operand. Hence the weird "0-".
*/
#define PY_ABS_LONG_MIN (0-(unsigned long)LONG_MIN)
#define PY_ABS_SSIZE_T_MIN (0-(size_t)PY_SSIZE_T_MIN)
/* Get a C long int from an int object or any object that has an __int__
method.
On overflow, return -1 and set *overflow to 1 or -1 depending on the sign of
the result. Otherwise *overflow is 0.
For other errors (e.g., TypeError), return -1 and set an error condition.
In this case *overflow will be 0.
*/
long
PyLong_AsLongAndOverflow(PyObject *vv, int *overflow)
{
/* This version by Tim Peters */
PyLongObject *v;
unsigned long x, prev;
long res;
Py_ssize_t i;
int sign;
int do_decref = 0; /* if nb_int was called */
*overflow = 0;
if (vv == NULL) {
PyErr_BadInternalCall();
return -1;
}
if (PyLong_Check(vv)) {
v = (PyLongObject *)vv;
}
else {
v = _PyLong_FromNbInt(vv);
if (v == NULL)
return -1;
do_decref = 1;
}
res = -1;
i = Py_SIZE(v);
switch (i) {
case -1:
res = -(sdigit)v->ob_digit[0];
break;
case 0:
res = 0;
break;
case 1:
res = v->ob_digit[0];
break;
default:
sign = 1;
x = 0;
if (i < 0) {
sign = -1;
i = -(i);
}
while (--i >= 0) {
prev = x;
x = (x << PyLong_SHIFT) | v->ob_digit[i];
if ((x >> PyLong_SHIFT) != prev) {
*overflow = sign;
goto exit;
}
}
/* Haven't lost any bits, but casting to long requires extra
* care (see comment above).
*/
if (x <= (unsigned long)LONG_MAX) {
res = (long)x * sign;
}
else if (sign < 0 && x == PY_ABS_LONG_MIN) {
res = LONG_MIN;
}
else {
*overflow = sign;
/* res is already set to -1 */
}
}
exit:
if (do_decref) {
Py_DECREF(v);
}
return res;
}
/* Get a C long int from an int object or any object that has an __int__
method. Return -1 and set an error if overflow occurs. */
long
PyLong_AsLong(PyObject *obj)
{
int overflow;
long result = PyLong_AsLongAndOverflow(obj, &overflow);
if (overflow) {
/* XXX: could be cute and give a different
message for overflow == -1 */
PyErr_SetString(PyExc_OverflowError,
"Python int too large to convert to C long");
}
return result;
}
/* Get a C int from an int object or any object that has an __int__
method. Return -1 and set an error if overflow occurs. */
int
_PyLong_AsInt(PyObject *obj)
{
int overflow;
long result = PyLong_AsLongAndOverflow(obj, &overflow);
if (overflow || result > INT_MAX || result < INT_MIN) {
/* XXX: could be cute and give a different
message for overflow == -1 */
PyErr_SetString(PyExc_OverflowError,
"Python int too large to convert to C int");
return -1;
}
return (int)result;
}
/* Get a Py_ssize_t from an int object.
Returns -1 and sets an error condition if overflow occurs. */
Py_ssize_t
PyLong_AsSsize_t(PyObject *vv) {
PyLongObject *v;
size_t x, prev;
Py_ssize_t i;
int sign;
if (vv == NULL) {
PyErr_BadInternalCall();
return -1;
}
if (!PyLong_Check(vv)) {
PyErr_SetString(PyExc_TypeError, "an integer is required");
return -1;
}
v = (PyLongObject *)vv;
i = Py_SIZE(v);
switch (i) {
case -1: return -(sdigit)v->ob_digit[0];
case 0: return 0;
case 1: return v->ob_digit[0];
}
sign = 1;
x = 0;
if (i < 0) {
sign = -1;
i = -(i);
}
while (--i >= 0) {
prev = x;
x = (x << PyLong_SHIFT) | v->ob_digit[i];
if ((x >> PyLong_SHIFT) != prev)
goto overflow;
}
/* Haven't lost any bits, but casting to a signed type requires
* extra care (see comment above).
*/
if (x <= (size_t)PY_SSIZE_T_MAX) {
return (Py_ssize_t)x * sign;
}
else if (sign < 0 && x == PY_ABS_SSIZE_T_MIN) {
return PY_SSIZE_T_MIN;
}
/* else overflow */
overflow:
PyErr_SetString(PyExc_OverflowError,
"Python int too large to convert to C ssize_t");
return -1;
}
/* Get a C unsigned long int from an int object.
Returns -1 and sets an error condition if overflow occurs. */
unsigned long
PyLong_AsUnsignedLong(PyObject *vv)
{
PyLongObject *v;
unsigned long x, prev;
Py_ssize_t i;
if (vv == NULL) {
PyErr_BadInternalCall();
return (unsigned long)-1;
}
if (!PyLong_Check(vv)) {
PyErr_SetString(PyExc_TypeError, "an integer is required");
return (unsigned long)-1;
}
v = (PyLongObject *)vv;
i = Py_SIZE(v);
x = 0;
if (i < 0) {
PyErr_SetString(PyExc_OverflowError,
"can't convert negative value to unsigned int");
return (unsigned long) -1;
}
switch (i) {
case 0: return 0;
case 1: return v->ob_digit[0];
}
while (--i >= 0) {
prev = x;
x = (x << PyLong_SHIFT) | v->ob_digit[i];
if ((x >> PyLong_SHIFT) != prev) {
PyErr_SetString(PyExc_OverflowError,
"Python int too large to convert "
"to C unsigned long");
return (unsigned long) -1;
}
}
return x;
}
/* Get a C size_t from an int object. Returns (size_t)-1 and sets
an error condition if overflow occurs. */
size_t
PyLong_AsSize_t(PyObject *vv)
{
PyLongObject *v;
size_t x, prev;
Py_ssize_t i;
if (vv == NULL) {
PyErr_BadInternalCall();
return (size_t) -1;
}
if (!PyLong_Check(vv)) {
PyErr_SetString(PyExc_TypeError, "an integer is required");
return (size_t)-1;
}
v = (PyLongObject *)vv;
i = Py_SIZE(v);
x = 0;
if (i < 0) {
PyErr_SetString(PyExc_OverflowError,
"can't convert negative value to size_t");
return (size_t) -1;
}
switch (i) {
case 0: return 0;
case 1: return v->ob_digit[0];
}
while (--i >= 0) {
prev = x;
x = (x << PyLong_SHIFT) | v->ob_digit[i];
if ((x >> PyLong_SHIFT) != prev) {
PyErr_SetString(PyExc_OverflowError,
"Python int too large to convert to C size_t");
return (size_t) -1;
}
}
return x;
}
/* Get a C unsigned long int from an int object, ignoring the high bits.
Returns -1 and sets an error condition if an error occurs. */
static unsigned long
_PyLong_AsUnsignedLongMask(PyObject *vv)
{
PyLongObject *v;
unsigned long x;
Py_ssize_t i;
int sign;
if (vv == NULL || !PyLong_Check(vv)) {
PyErr_BadInternalCall();
return (unsigned long) -1;
}
v = (PyLongObject *)vv;
i = Py_SIZE(v);
switch (i) {
case 0: return 0;
case 1: return v->ob_digit[0];
}
sign = 1;
x = 0;
if (i < 0) {
sign = -1;
i = -i;
}
while (--i >= 0) {
x = (x << PyLong_SHIFT) | v->ob_digit[i];
}
return x * sign;
}
unsigned long
PyLong_AsUnsignedLongMask(PyObject *op)
{
PyLongObject *lo;
unsigned long val;
if (op == NULL) {
PyErr_BadInternalCall();
return (unsigned long)-1;
}
if (PyLong_Check(op)) {
return _PyLong_AsUnsignedLongMask(op);
}
lo = _PyLong_FromNbInt(op);
if (lo == NULL)
return (unsigned long)-1;
val = _PyLong_AsUnsignedLongMask((PyObject *)lo);
Py_DECREF(lo);
return val;
}
int
_PyLong_Sign(PyObject *vv)
{
PyLongObject *v = (PyLongObject *)vv;
assert(v != NULL);
assert(PyLong_Check(v));
return Py_SIZE(v) == 0 ? 0 : (Py_SIZE(v) < 0 ? -1 : 1);
}
/* bits_in_digit(d) returns the unique integer k such that 2**(k-1) <= d <
2**k if d is nonzero, else 0. */
static inline int
bits_in_digit(digit d)
{
#if defined(__GNUC__) && !defined(__STRICT_ANSI__)
/* [jart] faster bit scanning */
if (d) {
_Static_assert(sizeof(digit) <= sizeof(unsigned), "");
return (__builtin_clz(d) ^ (sizeof(unsigned) * CHAR_BIT - 1)) + 1;
} else {
return 0;
}
#else
static const unsigned char BitLengthTable[32] = {
0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
};
int d_bits = 0;
while (d >= 32) {
d_bits += 6;
d >>= 6;
}
d_bits += (int)BitLengthTable[d];
return d_bits;
#endif
}
size_t
_PyLong_NumBits(PyObject *vv)
{
PyLongObject *v = (PyLongObject *)vv;
size_t result = 0;
Py_ssize_t ndigits;
assert(v != NULL);
assert(PyLong_Check(v));
ndigits = Py_ABS(Py_SIZE(v));
assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0);
if (ndigits > 0) {
if ((size_t)(ndigits - 1) > SIZE_MAX / (size_t)PyLong_SHIFT)
goto Overflow;
/* [jart] faster bit scanning */
result = (size_t)(ndigits - 1) * (size_t)PyLong_SHIFT;
result += bits_in_digit(v->ob_digit[ndigits - 1]);
}
return result;
Overflow:
PyErr_SetString(PyExc_OverflowError, "int has too many bits "
"to express in a platform size_t");
return (size_t)-1;
}
PyObject *
_PyLong_FromByteArray(const unsigned char* bytes, size_t n,
int little_endian, int is_signed)
{
const unsigned char* pstartbyte; /* LSB of bytes */
int incr; /* direction to move pstartbyte */
const unsigned char* pendbyte; /* MSB of bytes */
size_t numsignificantbytes; /* number of bytes that matter */
Py_ssize_t ndigits; /* number of Python int digits */
PyLongObject* v; /* result */
Py_ssize_t idigit = 0; /* next free index in v->ob_digit */
if (n == 0)
return PyLong_FromLong(0L);
if (little_endian) {
pstartbyte = bytes;
pendbyte = bytes + n - 1;
incr = 1;
}
else {
pstartbyte = bytes + n - 1;
pendbyte = bytes;
incr = -1;
}
if (is_signed)
is_signed = *pendbyte >= 0x80;
/* Compute numsignificantbytes. This consists of finding the most
significant byte. Leading 0 bytes are insignificant if the number
is positive, and leading 0xff bytes if negative. */
{
size_t i;
const unsigned char* p = pendbyte;
const int pincr = -incr; /* search MSB to LSB */
const unsigned char insignificant = is_signed ? 0xff : 0x00;
for (i = 0; i < n; ++i, p += pincr) {
if (*p != insignificant)
break;
}
numsignificantbytes = n - i;
/* 2's-comp is a bit tricky here, e.g. 0xff00 == -0x0100, so
actually has 2 significant bytes. OTOH, 0xff0001 ==
-0x00ffff, so we wouldn't *need* to bump it there; but we
do for 0xffff = -0x0001. To be safe without bothering to
check every case, bump it regardless. */
if (is_signed && numsignificantbytes < n)
++numsignificantbytes;
}
/* How many Python int digits do we need? We have
8*numsignificantbytes bits, and each Python int digit has
PyLong_SHIFT bits, so it's the ceiling of the quotient. */
/* catch overflow before it happens */
if (numsignificantbytes > (PY_SSIZE_T_MAX - PyLong_SHIFT) / 8) {
PyErr_SetString(PyExc_OverflowError,
"byte array too long to convert to int");
return NULL;
}
ndigits = (numsignificantbytes * 8 + PyLong_SHIFT - 1) / PyLong_SHIFT;
v = _PyLong_New(ndigits);
if (v == NULL)
return NULL;
/* Copy the bits over. The tricky parts are computing 2's-comp on
the fly for signed numbers, and dealing with the mismatch between
8-bit bytes and (probably) 15-bit Python digits.*/
{
size_t i;
twodigits carry = 1; /* for 2's-comp calculation */
twodigits accum = 0; /* sliding register */
unsigned int accumbits = 0; /* number of bits in accum */
const unsigned char* p = pstartbyte;
for (i = 0; i < numsignificantbytes; ++i, p += incr) {
twodigits thisbyte = *p;
/* Compute correction for 2's comp, if needed. */
if (is_signed) {
thisbyte = (0xff ^ thisbyte) + carry;
carry = thisbyte >> 8;
thisbyte &= 0xff;
}
/* Because we're going LSB to MSB, thisbyte is
more significant than what's already in accum,
so needs to be prepended to accum. */
accum |= (twodigits)thisbyte << accumbits;
accumbits += 8;
if (accumbits >= PyLong_SHIFT) {
/* There's enough to fill a Python digit. */
assert(idigit < ndigits);
v->ob_digit[idigit] = (digit)(accum & PyLong_MASK);
++idigit;
accum >>= PyLong_SHIFT;
accumbits -= PyLong_SHIFT;
assert(accumbits < PyLong_SHIFT);
}
}
assert(accumbits < PyLong_SHIFT);
if (accumbits) {
assert(idigit < ndigits);
v->ob_digit[idigit] = (digit)accum;
++idigit;
}
}
Py_SIZE(v) = is_signed ? -idigit : idigit;
return (PyObject *)long_normalize(v);
}
int
_PyLong_AsByteArray(PyLongObject* v,
unsigned char* bytes, size_t n,
int little_endian, int is_signed)
{
Py_ssize_t i; /* index into v->ob_digit */
Py_ssize_t ndigits; /* |v->ob_size| */
twodigits accum; /* sliding register */
unsigned int accumbits; /* # bits in accum */
int do_twos_comp; /* store 2's-comp? is_signed and v < 0 */
digit carry; /* for computing 2's-comp */
size_t j; /* # bytes filled */
unsigned char* p; /* pointer to next byte in bytes */
int pincr; /* direction to move p */
assert(v != NULL && PyLong_Check(v));
if (Py_SIZE(v) < 0) {
ndigits = -(Py_SIZE(v));
if (!is_signed) {
PyErr_SetString(PyExc_OverflowError,
"can't convert negative int to unsigned");
return -1;
}
do_twos_comp = 1;
}
else {
ndigits = Py_SIZE(v);
do_twos_comp = 0;
}
if (little_endian) {
p = bytes;
pincr = 1;
}
else {
p = bytes + n - 1;
pincr = -1;
}
/* Copy over all the Python digits.
It's crucial that every Python digit except for the MSD contribute
exactly PyLong_SHIFT bits to the total, so first assert that the int is
normalized. */
assert(ndigits == 0 || v->ob_digit[ndigits - 1] != 0);
j = 0;
accum = 0;
accumbits = 0;
carry = do_twos_comp ? 1 : 0;
for (i = 0; i < ndigits; ++i) {
digit thisdigit = v->ob_digit[i];
if (do_twos_comp) {
thisdigit = (thisdigit ^ PyLong_MASK) + carry;
carry = thisdigit >> PyLong_SHIFT;
thisdigit &= PyLong_MASK;
}
/* Because we're going LSB to MSB, thisdigit is more
significant than what's already in accum, so needs to be
prepended to accum. */
accum |= (twodigits)thisdigit << accumbits;
/* The most-significant digit may be (probably is) at least
partly empty. */
if (i == ndigits - 1) {
/* Count # of sign bits -- they needn't be stored,
* although for signed conversion we need later to
* make sure at least one sign bit gets stored. */
digit s = do_twos_comp ? thisdigit ^ PyLong_MASK : thisdigit;
while (s != 0) {
s >>= 1;
accumbits++;
}
}
else
accumbits += PyLong_SHIFT;
/* Store as many bytes as possible. */
while (accumbits >= 8) {
if (j >= n)
goto Overflow;
++j;
*p = (unsigned char)(accum & 0xff);
p += pincr;
accumbits -= 8;
accum >>= 8;
}
}
/* Store the straggler (if any). */
assert(accumbits < 8);
assert(carry == 0); /* else do_twos_comp and *every* digit was 0 */
if (accumbits > 0) {
if (j >= n)
goto Overflow;
++j;
if (do_twos_comp) {
/* Fill leading bits of the byte with sign bits
(appropriately pretending that the int had an
infinite supply of sign bits). */
accum |= (~(twodigits)0) << accumbits;
}
*p = (unsigned char)(accum & 0xff);
p += pincr;
}
else if (j == n && n > 0 && is_signed) {
/* The main loop filled the byte array exactly, so the code
just above didn't get to ensure there's a sign bit, and the
loop below wouldn't add one either. Make sure a sign bit
exists. */
unsigned char msb = *(p - pincr);
int sign_bit_set = msb >= 0x80;
assert(accumbits == 0);
if (sign_bit_set == do_twos_comp)
return 0;
else
goto Overflow;
}
/* Fill remaining bytes with copies of the sign bit. */
{
unsigned char signbyte = do_twos_comp ? 0xffU : 0U;
for ( ; j < n; ++j, p += pincr)
*p = signbyte;
}
return 0;
Overflow:
PyErr_SetString(PyExc_OverflowError, "int too big to convert");
return -1;
}
/* Create a new int object from a C pointer */
PyObject *
PyLong_FromVoidPtr(void *p)
{
#if SIZEOF_VOID_P <= SIZEOF_LONG
return PyLong_FromUnsignedLong((unsigned long)(uintptr_t)p);
#else
#if SIZEOF_LONG_LONG < SIZEOF_VOID_P
# error "PyLong_FromVoidPtr: sizeof(long long) < sizeof(void*)"
#endif
return PyLong_FromUnsignedLongLong((unsigned long long)(uintptr_t)p);
#endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
}
/* Get a C pointer from an int object. */
void *
PyLong_AsVoidPtr(PyObject *vv)
{
#if SIZEOF_VOID_P <= SIZEOF_LONG
long x;
if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0)
x = PyLong_AsLong(vv);
else
x = PyLong_AsUnsignedLong(vv);
#else
#if SIZEOF_LONG_LONG < SIZEOF_VOID_P
# error "PyLong_AsVoidPtr: sizeof(long long) < sizeof(void*)"
#endif
long long x;
if (PyLong_Check(vv) && _PyLong_Sign(vv) < 0)
x = PyLong_AsLongLong(vv);
else
x = PyLong_AsUnsignedLongLong(vv);
#endif /* SIZEOF_VOID_P <= SIZEOF_LONG */
if (x == -1 && PyErr_Occurred())
return NULL;
return (void *)x;
}
/* Initial long long support by Chris Herborth ([email protected]), later
* rewritten to use the newer PyLong_{As,From}ByteArray API.
*/
#define PY_ABS_LLONG_MIN (0-(unsigned long long)PY_LLONG_MIN)
/* Create a new int object from a C long long int. */
PyObject *
PyLong_FromLongLong(long long ival)
{
PyLongObject *v;
unsigned long long abs_ival;
unsigned long long t; /* unsigned so >> doesn't propagate sign bit */
int ndigits = 0;
int negative = 0;
CHECK_SMALL_INT(ival);
if (ival < 0) {
/* avoid signed overflow on negation; see comments
in PyLong_FromLong above. */
abs_ival = (unsigned long long)(-1-ival) + 1;
negative = 1;
}
else {
abs_ival = (unsigned long long)ival;
}
/* Count the number of Python digits.
We used to pick 5 ("big enough for anything"), but that's a
waste of time and space given that 5*15 = 75 bits are rarely
needed. */
t = abs_ival;
while (t) {
++ndigits;
t >>= PyLong_SHIFT;
}
v = _PyLong_New(ndigits);
if (v != NULL) {
digit *p = v->ob_digit;
Py_SIZE(v) = negative ? -ndigits : ndigits;
t = abs_ival;
while (t) {
*p++ = (digit)(t & PyLong_MASK);
t >>= PyLong_SHIFT;
}
}
return (PyObject *)v;
}
/* Create a new int object from a C unsigned long long int. */
PyObject *
PyLong_FromUnsignedLongLong(unsigned long long ival)
{
PyLongObject *v;
unsigned long long t;
int ndigits = 0;
if (ival < PyLong_BASE)
return PyLong_FromLong((long)ival);
/* Count the number of Python digits. */
t = (unsigned long long)ival;
while (t) {
++ndigits;
t >>= PyLong_SHIFT;
}
v = _PyLong_New(ndigits);
if (v != NULL) {
digit *p = v->ob_digit;
Py_SIZE(v) = ndigits;
while (ival) {
*p++ = (digit)(ival & PyLong_MASK);
ival >>= PyLong_SHIFT;
}
}
return (PyObject *)v;
}
/* Create a new int object from a C Py_ssize_t. */
PyObject *
PyLong_FromSsize_t(Py_ssize_t ival)
{
PyLongObject *v;
size_t abs_ival;
size_t t; /* unsigned so >> doesn't propagate sign bit */
int ndigits = 0;
int negative = 0;
CHECK_SMALL_INT(ival);
if (ival < 0) {
/* avoid signed overflow when ival = SIZE_T_MIN */
abs_ival = (size_t)(-1-ival)+1;
negative = 1;
}
else {
abs_ival = (size_t)ival;
}
/* Count the number of Python digits. */
t = abs_ival;
while (t) {
++ndigits;
t >>= PyLong_SHIFT;
}
v = _PyLong_New(ndigits);
if (v != NULL) {
digit *p = v->ob_digit;
Py_SIZE(v) = negative ? -ndigits : ndigits;
t = abs_ival;
while (t) {
*p++ = (digit)(t & PyLong_MASK);
t >>= PyLong_SHIFT;
}
}
return (PyObject *)v;
}
/* Create a new int object from a C size_t. */
PyObject *
PyLong_FromSize_t(size_t ival)
{
PyLongObject *v;
size_t t;
int ndigits = 0;
if (ival < PyLong_BASE)
return PyLong_FromLong((long)ival);
/* Count the number of Python digits. */
t = ival;
while (t) {
++ndigits;
t >>= PyLong_SHIFT;
}
v = _PyLong_New(ndigits);
if (v != NULL) {
digit *p = v->ob_digit;
Py_SIZE(v) = ndigits;
while (ival) {
*p++ = (digit)(ival & PyLong_MASK);
ival >>= PyLong_SHIFT;
}
}
return (PyObject *)v;
}
/* Get a C long long int from an int object or any object that has an
__int__ method. Return -1 and set an error if overflow occurs. */
long long
PyLong_AsLongLong(PyObject *vv)
{
PyLongObject *v;
long long bytes;
int res;
int do_decref = 0; /* if nb_int was called */
if (vv == NULL) {
PyErr_BadInternalCall();
return -1;
}
if (PyLong_Check(vv)) {
v = (PyLongObject *)vv;
}
else {
v = _PyLong_FromNbInt(vv);
if (v == NULL)
return -1;
do_decref = 1;
}
res = 0;
switch(Py_SIZE(v)) {
case -1:
bytes = -(sdigit)v->ob_digit[0];
break;
case 0:
bytes = 0;
break;
case 1:
bytes = v->ob_digit[0];
break;
default:
res = _PyLong_AsByteArray((PyLongObject *)v, (unsigned char *)&bytes,
SIZEOF_LONG_LONG, PY_LITTLE_ENDIAN, 1);
}
if (do_decref) {
Py_DECREF(v);
}
/* Plan 9 can't handle long long in ? : expressions */
if (res < 0)
return (long long)-1;
else
return bytes;
}
/* Get a C unsigned long long int from an int object.
Return -1 and set an error if overflow occurs. */
unsigned long long
PyLong_AsUnsignedLongLong(PyObject *vv)
{
PyLongObject *v;
unsigned long long bytes;
int res;
if (vv == NULL) {
PyErr_BadInternalCall();
return (unsigned long long)-1;
}
if (!PyLong_Check(vv)) {
PyErr_SetString(PyExc_TypeError, "an integer is required");
return (unsigned long long)-1;
}
v = (PyLongObject*)vv;
switch(Py_SIZE(v)) {
case 0: return 0;
case 1: return v->ob_digit[0];
}
res = _PyLong_AsByteArray((PyLongObject *)vv, (unsigned char *)&bytes,
SIZEOF_LONG_LONG, PY_LITTLE_ENDIAN, 0);
/* Plan 9 can't handle long long in ? : expressions */
if (res < 0)
return (unsigned long long)res;
else
return bytes;
}
/* Get a C unsigned long int from an int object, ignoring the high bits.
Returns -1 and sets an error condition if an error occurs. */
static unsigned long long
_PyLong_AsUnsignedLongLongMask(PyObject *vv)
{
PyLongObject *v;
unsigned long long x;
Py_ssize_t i;
int sign;
if (vv == NULL || !PyLong_Check(vv)) {
PyErr_BadInternalCall();
return (unsigned long) -1;
}
v = (PyLongObject *)vv;
switch(Py_SIZE(v)) {
case 0: return 0;
case 1: return v->ob_digit[0];
}
i = Py_SIZE(v);
sign = 1;
x = 0;
if (i < 0) {
sign = -1;
i = -i;
}
while (--i >= 0) {
x = (x << PyLong_SHIFT) | v->ob_digit[i];
}
return x * sign;
}
unsigned long long
PyLong_AsUnsignedLongLongMask(PyObject *op)
{
PyLongObject *lo;
unsigned long long val;
if (op == NULL) {
PyErr_BadInternalCall();
return (unsigned long)-1;
}
if (PyLong_Check(op)) {
return _PyLong_AsUnsignedLongLongMask(op);
}
lo = _PyLong_FromNbInt(op);
if (lo == NULL)
return (unsigned long long)-1;
val = _PyLong_AsUnsignedLongLongMask((PyObject *)lo);
Py_DECREF(lo);
return val;
}
/* Get a C long long int from an int object or any object that has an
__int__ method.
On overflow, return -1 and set *overflow to 1 or -1 depending on the sign of
the result. Otherwise *overflow is 0.
For other errors (e.g., TypeError), return -1 and set an error condition.
In this case *overflow will be 0.
*/
long long
PyLong_AsLongLongAndOverflow(PyObject *vv, int *overflow)
{
/* This version by Tim Peters */
PyLongObject *v;
unsigned long long x, prev;
long long res;
Py_ssize_t i;
int sign;
int do_decref = 0; /* if nb_int was called */
*overflow = 0;
if (vv == NULL) {
PyErr_BadInternalCall();
return -1;
}
if (PyLong_Check(vv)) {
v = (PyLongObject *)vv;
}
else {
v = _PyLong_FromNbInt(vv);
if (v == NULL)
return -1;
do_decref = 1;
}
res = -1;
i = Py_SIZE(v);
switch (i) {
case -1:
res = -(sdigit)v->ob_digit[0];
break;
case 0:
res = 0;
break;
case 1:
res = v->ob_digit[0];
break;
default:
sign = 1;
x = 0;
if (i < 0) {
sign = -1;
i = -(i);
}
while (--i >= 0) {
prev = x;
x = (x << PyLong_SHIFT) + v->ob_digit[i];
if ((x >> PyLong_SHIFT) != prev) {
*overflow = sign;
goto exit;
}
}
/* Haven't lost any bits, but casting to long requires extra
* care (see comment above).
*/
if (x <= (unsigned long long)PY_LLONG_MAX) {
res = (long long)x * sign;
}
else if (sign < 0 && x == PY_ABS_LLONG_MIN) {
res = PY_LLONG_MIN;
}
else {
*overflow = sign;
/* res is already set to -1 */
}
}
exit:
if (do_decref) {
Py_DECREF(v);
}
return res;
}
#define CHECK_BINOP(v,w) \
do { \
if (!PyLong_Check(v) || !PyLong_Check(w)) \
Py_RETURN_NOTIMPLEMENTED; \
} while(0)
/* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required. x[0:n]
* is modified in place, by adding y to it. Carries are propagated as far as
* x[m-1], and the remaining carry (0 or 1) is returned.
*/
static digit
v_iadd(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
{
Py_ssize_t i;
digit carry = 0;
assert(m >= n);
for (i = 0; i < n; ++i) {
carry += x[i] + y[i];
x[i] = carry & PyLong_MASK;
carry >>= PyLong_SHIFT;
assert((carry & 1) == carry);
}
for (; carry && i < m; ++i) {
carry += x[i];
x[i] = carry & PyLong_MASK;
carry >>= PyLong_SHIFT;
assert((carry & 1) == carry);
}
return carry;
}
/* x[0:m] and y[0:n] are digit vectors, LSD first, m >= n required. x[0:n]
* is modified in place, by subtracting y from it. Borrows are propagated as
* far as x[m-1], and the remaining borrow (0 or 1) is returned.
*/
static digit
v_isub(digit *x, Py_ssize_t m, digit *y, Py_ssize_t n)
{
Py_ssize_t i;
digit borrow = 0;
assert(m >= n);
for (i = 0; i < n; ++i) {
borrow = x[i] - y[i] - borrow;
x[i] = borrow & PyLong_MASK;
borrow >>= PyLong_SHIFT;
borrow &= 1; /* keep only 1 sign bit */
}
for (; borrow && i < m; ++i) {
borrow = x[i] - borrow;
x[i] = borrow & PyLong_MASK;
borrow >>= PyLong_SHIFT;
borrow &= 1;
}
return borrow;
}
/* Shift digit vector a[0:m] d bits left, with 0 <= d < PyLong_SHIFT. Put
* result in z[0:m], and return the d bits shifted out of the top.
*/
static digit
v_lshift(digit *z, digit *a, Py_ssize_t m, int d)
{
Py_ssize_t i;
digit carry = 0;
assert(0 <= d && d < PyLong_SHIFT);
for (i=0; i < m; i++) {
twodigits acc = (twodigits)a[i] << d | carry;
z[i] = (digit)acc & PyLong_MASK;
carry = (digit)(acc >> PyLong_SHIFT);
}
return carry;
}
/* Shift digit vector a[0:m] d bits right, with 0 <= d < PyLong_SHIFT. Put
* result in z[0:m], and return the d bits shifted out of the bottom.
*/
static digit
v_rshift(digit *z, digit *a, Py_ssize_t m, int d)
{
Py_ssize_t i;
digit carry = 0;
digit mask = ((digit)1 << d) - 1U;
assert(0 <= d && d < PyLong_SHIFT);
for (i=m; i-- > 0;) {
twodigits acc = (twodigits)carry << PyLong_SHIFT | a[i];
carry = (digit)acc & mask;
z[i] = (digit)(acc >> d);
}
return carry;
}
/* Divide long pin, w/ size digits, by non-zero digit n, storing quotient
in pout, and returning the remainder. pin and pout point at the LSD.
It's OK for pin == pout on entry, which saves oodles of mallocs/frees in
_PyLong_Format, but that should be done with great care since ints are
immutable. */
static digit
inplace_divrem1(digit *pout, digit *pin, Py_ssize_t size, digit n)
{
twodigits rem = 0;
assert(n > 0 && n <= PyLong_MASK);
pin += size;
pout += size;
while (--size >= 0) {
digit hi;
rem = (rem << PyLong_SHIFT) | *--pin;
*--pout = hi = (digit)(rem / n);
rem -= (twodigits)hi * n;
}
return (digit)rem;
}
/* Divide an integer by a digit, returning both the quotient
(as function result) and the remainder (through *prem).
The sign of a is ignored; n should not be zero. */
static PyLongObject *
divrem1(PyLongObject *a, digit n, digit *prem)
{
const Py_ssize_t size = Py_ABS(Py_SIZE(a));
PyLongObject *z;
assert(n > 0 && n <= PyLong_MASK);
z = _PyLong_New(size);
if (z == NULL)
return NULL;
*prem = inplace_divrem1(z->ob_digit, a->ob_digit, size, n);
return long_normalize(z);
}
/* Convert an integer to a base 10 string. Returns a new non-shared
string. (Return value is non-shared so that callers can modify the
returned value if necessary.) */
static int
long_to_decimal_string_internal(PyObject *aa,
PyObject **p_output,
_PyUnicodeWriter *writer,
_PyBytesWriter *bytes_writer,
char **bytes_str)
{
PyLongObject *scratch, *a;
PyObject *str = NULL;
Py_ssize_t size, strlen, size_a, i, j;
digit *pout, *pin, rem, tenpow;
int negative;
int d;
enum PyUnicode_Kind kind = 0;
a = (PyLongObject *)aa;
if (a == NULL || !PyLong_Check(a)) {
PyErr_BadInternalCall();
return -1;
}
size_a = Py_ABS(Py_SIZE(a));
negative = Py_SIZE(a) < 0;
/* quick and dirty upper bound for the number of digits
required to express a in base _PyLong_DECIMAL_BASE:
#digits = 1 + floor(log2(a) / log2(_PyLong_DECIMAL_BASE))
But log2(a) < size_a * PyLong_SHIFT, and
log2(_PyLong_DECIMAL_BASE) = log2(10) * _PyLong_DECIMAL_SHIFT
> 3.3 * _PyLong_DECIMAL_SHIFT
size_a * PyLong_SHIFT / (3.3 * _PyLong_DECIMAL_SHIFT) =
size_a + size_a / d < size_a + size_a / floor(d),
where d = (3.3 * _PyLong_DECIMAL_SHIFT) /
(PyLong_SHIFT - 3.3 * _PyLong_DECIMAL_SHIFT)
*/
d = (33 * _PyLong_DECIMAL_SHIFT) /
(10 * PyLong_SHIFT - 33 * _PyLong_DECIMAL_SHIFT);
assert(size_a < PY_SSIZE_T_MAX/2);
size = 1 + size_a + size_a / d;
scratch = _PyLong_New(size);
if (scratch == NULL)
return -1;
/* convert array of base _PyLong_BASE digits in pin to an array of
base _PyLong_DECIMAL_BASE digits in pout, following Knuth (TAOCP,
Volume 2 (3rd edn), section 4.4, Method 1b). */
pin = a->ob_digit;
pout = scratch->ob_digit;
size = 0;
for (i = size_a; --i >= 0; ) {
digit hi = pin[i];
for (j = 0; j < size; j++) {
twodigits z = (twodigits)pout[j] << PyLong_SHIFT | hi;
hi = (digit)(z / _PyLong_DECIMAL_BASE);
pout[j] = (digit)(z - (twodigits)hi * _PyLong_DECIMAL_BASE);
}
while (hi) {
pout[size++] = hi % _PyLong_DECIMAL_BASE;
hi /= _PyLong_DECIMAL_BASE;
}
/* check for keyboard interrupt */
SIGCHECK({
Py_DECREF(scratch);
return -1;
});
}
/* pout should have at least one digit, so that the case when a = 0
works correctly */
if (size == 0)
pout[size++] = 0;
/* calculate exact length of output string, and allocate */
strlen = negative + 1 + (size - 1) * _PyLong_DECIMAL_SHIFT;
tenpow = 10;
rem = pout[size-1];
while (rem >= tenpow) {
tenpow *= 10;
strlen++;
}
if (writer) {
if (_PyUnicodeWriter_Prepare(writer, strlen, '9') == -1) {
Py_DECREF(scratch);
return -1;
}
kind = writer->kind;
}
else if (bytes_writer) {
*bytes_str = _PyBytesWriter_Prepare(bytes_writer, *bytes_str, strlen);
if (*bytes_str == NULL) {
Py_DECREF(scratch);
return -1;
}
}
else {
str = PyUnicode_New(strlen, '9');
if (str == NULL) {
Py_DECREF(scratch);
return -1;
}
kind = PyUnicode_KIND(str);
}
#define WRITE_DIGITS(p) \
do { \
/* pout[0] through pout[size-2] contribute exactly \
_PyLong_DECIMAL_SHIFT digits each */ \
for (i=0; i < size - 1; i++) { \
rem = pout[i]; \
for (j = 0; j < _PyLong_DECIMAL_SHIFT; j++) { \
*--p = '0' + rem % 10; \
rem /= 10; \
} \
} \
/* pout[size-1]: always produce at least one decimal digit */ \
rem = pout[i]; \
do { \
*--p = '0' + rem % 10; \
rem /= 10; \
} while (rem != 0); \
\
/* and sign */ \
if (negative) \
*--p = '-'; \
} while (0)
#define WRITE_UNICODE_DIGITS(TYPE) \
do { \
if (writer) \
p = (TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos + strlen; \
else \
p = (TYPE*)PyUnicode_DATA(str) + strlen; \
\
WRITE_DIGITS(p); \
\
/* check we've counted correctly */ \
if (writer) \
assert(p == ((TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos)); \
else \
assert(p == (TYPE*)PyUnicode_DATA(str)); \
} while (0)
/* fill the string right-to-left */
if (bytes_writer) {
char *p = *bytes_str + strlen;
WRITE_DIGITS(p);
assert(p == *bytes_str);
}
else if (kind == PyUnicode_1BYTE_KIND) {
Py_UCS1 *p;
WRITE_UNICODE_DIGITS(Py_UCS1);
}
else if (kind == PyUnicode_2BYTE_KIND) {
Py_UCS2 *p;
WRITE_UNICODE_DIGITS(Py_UCS2);
}
else {
Py_UCS4 *p;
assert (kind == PyUnicode_4BYTE_KIND);
WRITE_UNICODE_DIGITS(Py_UCS4);
}
#undef WRITE_DIGITS
#undef WRITE_UNICODE_DIGITS
Py_DECREF(scratch);
if (writer) {
writer->pos += strlen;
}
else if (bytes_writer) {
(*bytes_str) += strlen;
}
else {
assert(_PyUnicode_CheckConsistency(str, 1));
*p_output = (PyObject *)str;
}
return 0;
}
static PyObject *
long_to_decimal_string(PyObject *aa)
{
PyObject *v;
if (long_to_decimal_string_internal(aa, &v, NULL, NULL, NULL) == -1)
return NULL;
return v;
}
/* Convert an int object to a string, using a given conversion base,
which should be one of 2, 8 or 16. Return a string object.
If base is 2, 8 or 16, add the proper prefix '0b', '0o' or '0x'
if alternate is nonzero. */
static int
long_format_binary(PyObject *aa, int base, int alternate,
PyObject **p_output, _PyUnicodeWriter *writer,
_PyBytesWriter *bytes_writer, char **bytes_str)
{
PyLongObject *a = (PyLongObject *)aa;
PyObject *v = NULL;
Py_ssize_t sz;
Py_ssize_t size_a;
enum PyUnicode_Kind kind = 0;
int negative;
int bits;
assert(base == 2 || base == 8 || base == 16);
if (a == NULL || !PyLong_Check(a)) {
PyErr_BadInternalCall();
return -1;
}
size_a = Py_ABS(Py_SIZE(a));
negative = Py_SIZE(a) < 0;
/* Compute a rough upper bound for the length of the string */
switch (base) {
case 16:
bits = 4;
break;
case 8:
bits = 3;
break;
case 2:
bits = 1;
break;
default:
assert(0); /* shouldn't ever get here */
bits = 0; /* to silence gcc warning */
}
/* Compute exact length 'sz' of output string. */
if (size_a == 0) {
sz = 1;
}
else {
Py_ssize_t size_a_in_bits;
/* Ensure overflow doesn't occur during computation of sz. */
if (size_a > (PY_SSIZE_T_MAX - 3) / PyLong_SHIFT) {
PyErr_SetString(PyExc_OverflowError,
"int too large to format");
return -1;
}
size_a_in_bits = (size_a - 1) * PyLong_SHIFT +
bits_in_digit(a->ob_digit[size_a - 1]);
/* Allow 1 character for a '-' sign. */
sz = negative + (size_a_in_bits + (bits - 1)) / bits;
}
if (alternate) {
/* 2 characters for prefix */
sz += 2;
}
if (writer) {
if (_PyUnicodeWriter_Prepare(writer, sz, 'x') == -1)
return -1;
kind = writer->kind;
}
else if (bytes_writer) {
*bytes_str = _PyBytesWriter_Prepare(bytes_writer, *bytes_str, sz);
if (*bytes_str == NULL)
return -1;
}
else {
v = PyUnicode_New(sz, 'x');
if (v == NULL)
return -1;
kind = PyUnicode_KIND(v);
}
#define WRITE_DIGITS(p) \
do { \
if (size_a == 0) { \
*--p = '0'; \
} \
else { \
/* JRH: special case for power-of-2 bases */ \
twodigits accum = 0; \
int accumbits = 0; /* # of bits in accum */ \
Py_ssize_t i; \
for (i = 0; i < size_a; ++i) { \
accum |= (twodigits)a->ob_digit[i] << accumbits; \
accumbits += PyLong_SHIFT; \
assert(accumbits >= bits); \
do { \
char cdigit; \
cdigit = (char)(accum & (base - 1)); \
cdigit += (cdigit < 10) ? '0' : 'a'-10; \
*--p = cdigit; \
accumbits -= bits; \
accum >>= bits; \
} while (i < size_a-1 ? accumbits >= bits : accum > 0); \
} \
} \
\
if (alternate) { \
if (base == 16) \
*--p = 'x'; \
else if (base == 8) \
*--p = 'o'; \
else /* (base == 2) */ \
*--p = 'b'; \
*--p = '0'; \
} \
if (negative) \
*--p = '-'; \
} while (0)
#define WRITE_UNICODE_DIGITS(TYPE) \
do { \
if (writer) \
p = (TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos + sz; \
else \
p = (TYPE*)PyUnicode_DATA(v) + sz; \
\
WRITE_DIGITS(p); \
\
if (writer) \
assert(p == ((TYPE*)PyUnicode_DATA(writer->buffer) + writer->pos)); \
else \
assert(p == (TYPE*)PyUnicode_DATA(v)); \
} while (0)
if (bytes_writer) {
char *p = *bytes_str + sz;
WRITE_DIGITS(p);
assert(p == *bytes_str);
}
else if (kind == PyUnicode_1BYTE_KIND) {
Py_UCS1 *p;
WRITE_UNICODE_DIGITS(Py_UCS1);
}
else if (kind == PyUnicode_2BYTE_KIND) {
Py_UCS2 *p;
WRITE_UNICODE_DIGITS(Py_UCS2);
}
else {
Py_UCS4 *p;
assert (kind == PyUnicode_4BYTE_KIND);
WRITE_UNICODE_DIGITS(Py_UCS4);
}
#undef WRITE_DIGITS
#undef WRITE_UNICODE_DIGITS
if (writer) {
writer->pos += sz;
}
else if (bytes_writer) {
(*bytes_str) += sz;
}
else {
assert(_PyUnicode_CheckConsistency(v, 1));
*p_output = v;
}
return 0;
}
PyObject *
_PyLong_Format(PyObject *obj, int base)
{
PyObject *str;
int err;
if (base == 10)
err = long_to_decimal_string_internal(obj, &str, NULL, NULL, NULL);
else
err = long_format_binary(obj, base, 1, &str, NULL, NULL, NULL);
if (err == -1)
return NULL;
return str;
}
int
_PyLong_FormatWriter(_PyUnicodeWriter *writer,
PyObject *obj,
int base, int alternate)
{
if (base == 10)
return long_to_decimal_string_internal(obj, NULL, writer,
NULL, NULL);
else
return long_format_binary(obj, base, alternate, NULL, writer,
NULL, NULL);
}
char*
_PyLong_FormatBytesWriter(_PyBytesWriter *writer, char *str,
PyObject *obj,
int base, int alternate)
{
char *str2;
int res;
str2 = str;
if (base == 10)
res = long_to_decimal_string_internal(obj, NULL, NULL,
writer, &str2);
else
res = long_format_binary(obj, base, alternate, NULL, NULL,
writer, &str2);
if (res < 0)
return NULL;
assert(str2 != NULL);
return str2;
}
/* Table of digit values for 8-bit string -> integer conversion.
* '0' maps to 0, ..., '9' maps to 9.
* 'a' and 'A' map to 10, ..., 'z' and 'Z' map to 35.
* All other indices map to 37.
* Note that when converting a base B string, a char c is a legitimate
* base B digit iff _PyLong_DigitValue[Py_CHARPyLong_MASK(c)] < B.
*/
const unsigned char _PyLong_DigitValue[256] = {
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 37, 37, 37, 37, 37, 37,
37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
37, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 37, 37, 37,
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37,
};
/* *str points to the first digit in a string of base `base` digits. base
* is a power of 2 (2, 4, 8, 16, or 32). *str is set to point to the first
* non-digit (which may be *str!). A normalized int is returned.
* The point to this routine is that it takes time linear in the number of
* string characters.
*
* Return values:
* -1 on syntax error (exception needs to be set, *res is untouched)
* 0 else (exception may be set, in that case *res is set to NULL)
*/
static int
long_from_binary_base(const char **str, int base, PyLongObject **res)
{
const char *p = *str;
const char *start = p;
char prev = 0;
Py_ssize_t digits = 0;
int bits_per_char;
Py_ssize_t n;
PyLongObject *z;
twodigits accum;
int bits_in_accum;
digit *pdigit;
assert(base >= 2 && base <= 32 && (base & (base - 1)) == 0);
n = base;
for (bits_per_char = -1; n; ++bits_per_char) {
n >>= 1;
}
/* count digits and set p to end-of-string */
while (_PyLong_DigitValue[Py_CHARMASK(*p)] < base || *p == '_') {
if (*p == '_') {
if (prev == '_') {
*str = p - 1;
return -1;
}
} else {
++digits;
}
prev = *p;
++p;
}
if (prev == '_') {
/* Trailing underscore not allowed. */
*str = p - 1;
return -1;
}
*str = p;
/* n <- the number of Python digits needed,
= ceiling((digits * bits_per_char) / PyLong_SHIFT). */
if (digits > (PY_SSIZE_T_MAX - (PyLong_SHIFT - 1)) / bits_per_char) {
PyErr_SetString(PyExc_ValueError,
"int string too large to convert");
*res = NULL;
return 0;
}
n = (digits * bits_per_char + PyLong_SHIFT - 1) / PyLong_SHIFT;
z = _PyLong_New(n);
if (z == NULL) {
*res = NULL;
return 0;
}
/* Read string from right, and fill in int from left; i.e.,
* from least to most significant in both.
*/
accum = 0;
bits_in_accum = 0;
pdigit = z->ob_digit;
while (--p >= start) {
int k;
if (*p == '_') {
continue;
}
k = (int)_PyLong_DigitValue[Py_CHARMASK(*p)];
assert(k >= 0 && k < base);
accum |= (twodigits)k << bits_in_accum;
bits_in_accum += bits_per_char;
if (bits_in_accum >= PyLong_SHIFT) {
*pdigit++ = (digit)(accum & PyLong_MASK);
assert(pdigit - z->ob_digit <= n);
accum >>= PyLong_SHIFT;
bits_in_accum -= PyLong_SHIFT;
assert(bits_in_accum < PyLong_SHIFT);
}
}
if (bits_in_accum) {
assert(bits_in_accum <= PyLong_SHIFT);
*pdigit++ = (digit)accum;
assert(pdigit - z->ob_digit <= n);
}
while (pdigit - z->ob_digit < n)
*pdigit++ = 0;
*res = long_normalize(z);
return 0;
}
/* Parses an int from a bytestring. Leading and trailing whitespace will be
* ignored.
*
* If successful, a PyLong object will be returned and 'pend' will be pointing
* to the first unused byte unless it's NULL.
*
* If unsuccessful, NULL will be returned.
*/
PyObject *
PyLong_FromString(const char *str, char **pend, int base)
{
int sign = 1, error_if_nonzero = 0;
const char *start, *orig_str = str;
PyLongObject *z = NULL;
PyObject *strobj;
Py_ssize_t slen;
if ((base != 0 && base < 2) || base > 36) {
PyErr_SetString(PyExc_ValueError,
"int() arg 2 must be >= 2 and <= 36");
return NULL;
}
while (*str != '\0' && Py_ISSPACE(Py_CHARMASK(*str))) {
str++;
}
if (*str == '+') {
++str;
}
else if (*str == '-') {
++str;
sign = -1;
}
if (base == 0) {
if (str[0] != '0') {
base = 10;
}
else if (str[1] == 'x' || str[1] == 'X') {
base = 16;
}
else if (str[1] == 'o' || str[1] == 'O') {
base = 8;
}
else if (str[1] == 'b' || str[1] == 'B') {
base = 2;
}
else {
/* "old" (C-style) octal literal, now invalid.
it might still be zero though */
error_if_nonzero = 1;
base = 10;
}
}
if (str[0] == '0' &&
((base == 16 && (str[1] == 'x' || str[1] == 'X')) ||
(base == 8 && (str[1] == 'o' || str[1] == 'O')) ||
(base == 2 && (str[1] == 'b' || str[1] == 'B')))) {
str += 2;
/* One underscore allowed here. */
if (*str == '_') {
++str;
}
}
if (str[0] == '_') {
/* May not start with underscores. */
goto onError;
}
start = str;
if ((base & (base - 1)) == 0) {
int res = long_from_binary_base(&str, base, &z);
if (res < 0) {
/* Syntax error. */
goto onError;
}
}
else {
/***
Binary bases can be converted in time linear in the number of digits, because
Python's representation base is binary. Other bases (including decimal!) use
the simple quadratic-time algorithm below, complicated by some speed tricks.
First some math: the largest integer that can be expressed in N base-B digits
is B**N-1. Consequently, if we have an N-digit input in base B, the worst-
case number of Python digits needed to hold it is the smallest integer n s.t.
BASE**n-1 >= B**N-1 [or, adding 1 to both sides]
BASE**n >= B**N [taking logs to base BASE]
n >= log(B**N)/log(BASE) = N * log(B)/log(BASE)
The static array log_base_BASE[base] == log(base)/log(BASE) so we can compute
this quickly. A Python int with that much space is reserved near the start,
and the result is computed into it.
The input string is actually treated as being in base base**i (i.e., i digits
are processed at a time), where two more static arrays hold:
convwidth_base[base] = the largest integer i such that base**i <= BASE
convmultmax_base[base] = base ** convwidth_base[base]
The first of these is the largest i such that i consecutive input digits
must fit in a single Python digit. The second is effectively the input
base we're really using.
Viewing the input as a sequence <c0, c1, ..., c_n-1> of digits in base
convmultmax_base[base], the result is "simply"
(((c0*B + c1)*B + c2)*B + c3)*B + ... ))) + c_n-1
where B = convmultmax_base[base].
Error analysis: as above, the number of Python digits `n` needed is worst-
case
n >= N * log(B)/log(BASE)
where `N` is the number of input digits in base `B`. This is computed via
size_z = (Py_ssize_t)((scan - str) * log_base_BASE[base]) + 1;
below. Two numeric concerns are how much space this can waste, and whether
the computed result can be too small. To be concrete, assume BASE = 2**15,
which is the default (and it's unlikely anyone changes that).
Waste isn't a problem: provided the first input digit isn't 0, the difference
between the worst-case input with N digits and the smallest input with N
digits is about a factor of B, but B is small compared to BASE so at most
one allocated Python digit can remain unused on that count. If
N*log(B)/log(BASE) is mathematically an exact integer, then truncating that
and adding 1 returns a result 1 larger than necessary. However, that can't
happen: whenever B is a power of 2, long_from_binary_base() is called
instead, and it's impossible for B**i to be an integer power of 2**15 when
B is not a power of 2 (i.e., it's impossible for N*log(B)/log(BASE) to be
an exact integer when B is not a power of 2, since B**i has a prime factor
other than 2 in that case, but (2**15)**j's only prime factor is 2).
The computed result can be too small if the true value of N*log(B)/log(BASE)
is a little bit larger than an exact integer, but due to roundoff errors (in
computing log(B), log(BASE), their quotient, and/or multiplying that by N)
yields a numeric result a little less than that integer. Unfortunately, "how
close can a transcendental function get to an integer over some range?"
questions are generally theoretically intractable. Computer analysis via
continued fractions is practical: expand log(B)/log(BASE) via continued
fractions, giving a sequence i/j of "the best" rational approximations. Then
j*log(B)/log(BASE) is approximately equal to (the integer) i. This shows that
we can get very close to being in trouble, but very rarely. For example,
76573 is a denominator in one of the continued-fraction approximations to
log(10)/log(2**15), and indeed:
>>> log(10)/log(2**15)*76573
16958.000000654003
is very close to an integer. If we were working with IEEE single-precision,
rounding errors could kill us. Finding worst cases in IEEE double-precision
requires better-than-double-precision log() functions, and Tim didn't bother.
Instead the code checks to see whether the allocated space is enough as each
new Python digit is added, and copies the whole thing to a larger int if not.
This should happen extremely rarely, and in fact I don't have a test case
that triggers it(!). Instead the code was tested by artificially allocating
just 1 digit at the start, so that the copying code was exercised for every
digit beyond the first.
***/
twodigits c; /* current input character */
double fsize_z;
Py_ssize_t size_z;
Py_ssize_t digits = 0;
int i;
int convwidth;
twodigits convmultmax, convmult;
digit *pz, *pzstop;
const char *scan, *lastdigit;
char prev = 0;
static double log_base_BASE[37] = {0.0e0,};
static int convwidth_base[37] = {0,};
static twodigits convmultmax_base[37] = {0,};
if (log_base_BASE[base] == 0.0) {
twodigits convmax = base;
int i = 1;
log_base_BASE[base] = (log((double)base) /
log((double)PyLong_BASE));
for (;;) {
twodigits next = convmax * base;
if (next > PyLong_BASE) {
break;
}
convmax = next;
++i;
}
convmultmax_base[base] = convmax;
assert(i > 0);
convwidth_base[base] = i;
}
/* Find length of the string of numeric characters. */
scan = str;
lastdigit = str;
while (_PyLong_DigitValue[Py_CHARMASK(*scan)] < base || *scan == '_') {
if (*scan == '_') {
if (prev == '_') {
/* Only one underscore allowed. */
str = lastdigit + 1;
goto onError;
}
}
else {
++digits;
lastdigit = scan;
}
prev = *scan;
++scan;
}
if (prev == '_') {
/* Trailing underscore not allowed. */
/* Set error pointer to first underscore. */
str = lastdigit + 1;
goto onError;
}
/* Create an int object that can contain the largest possible
* integer with this base and length. Note that there's no
* need to initialize z->ob_digit -- no slot is read up before
* being stored into.
*/
fsize_z = digits * log_base_BASE[base] + 1;
if (fsize_z > (double)(MAX_LONG_DIGITS/2)) {
/* The same exception as in _PyLong_New(). */
PyErr_SetString(PyExc_OverflowError,
"too many digits in integer");
return NULL;
}
size_z = (Py_ssize_t)fsize_z;
/* Uncomment next line to test exceedingly rare copy code */
/* size_z = 1; */
assert(size_z > 0);
z = _PyLong_New(size_z);
if (z == NULL) {
return NULL;
}
Py_SIZE(z) = 0;
/* `convwidth` consecutive input digits are treated as a single
* digit in base `convmultmax`.
*/
convwidth = convwidth_base[base];
convmultmax = convmultmax_base[base];
/* Work ;-) */
while (str < scan) {
if (*str == '_') {
str++;
continue;
}
/* grab up to convwidth digits from the input string */
c = (digit)_PyLong_DigitValue[Py_CHARMASK(*str++)];
for (i = 1; i < convwidth && str != scan; ++str) {
if (*str == '_') {
continue;
}
i++;
c = (twodigits)(c * base +
(int)_PyLong_DigitValue[Py_CHARMASK(*str)]);
assert(c < PyLong_BASE);
}
convmult = convmultmax;
/* Calculate the shift only if we couldn't get
* convwidth digits.
*/
if (i != convwidth) {
convmult = base;
for ( ; i > 1; --i) {
convmult *= base;
}
}
/* Multiply z by convmult, and add c. */
pz = z->ob_digit;
pzstop = pz + Py_SIZE(z);
for (; pz < pzstop; ++pz) {
c += (twodigits)*pz * convmult;
*pz = (digit)(c & PyLong_MASK);
c >>= PyLong_SHIFT;
}
/* carry off the current end? */
if (c) {
assert(c < PyLong_BASE);
if (Py_SIZE(z) < size_z) {
*pz = (digit)c;
++Py_SIZE(z);
}
else {
PyLongObject *tmp;
/* Extremely rare. Get more space. */
assert(Py_SIZE(z) == size_z);
tmp = _PyLong_New(size_z + 1);
if (tmp == NULL) {
Py_DECREF(z);
return NULL;
}
memcpy(tmp->ob_digit,
z->ob_digit,
sizeof(digit) * size_z);
Py_DECREF(z);
z = tmp;
z->ob_digit[size_z] = (digit)c;
++size_z;
}
}
}
}
if (z == NULL) {
return NULL;
}
if (error_if_nonzero) {
/* reset the base to 0, else the exception message
doesn't make too much sense */
base = 0;
if (Py_SIZE(z) != 0) {
goto onError;
}
/* there might still be other problems, therefore base
remains zero here for the same reason */
}
if (str == start) {
goto onError;
}
if (sign < 0) {
Py_SIZE(z) = -(Py_SIZE(z));
}
while (*str && Py_ISSPACE(Py_CHARMASK(*str))) {
str++;
}
if (*str != '\0') {
goto onError;
}
long_normalize(z);
z = maybe_small_long(z);
if (z == NULL) {
return NULL;
}
if (pend != NULL) {
*pend = (char *)str;
}
return (PyObject *) z;
onError:
if (pend != NULL) {
*pend = (char *)str;
}
Py_XDECREF(z);
slen = strlen(orig_str) < 200 ? strlen(orig_str) : 200;
strobj = PyUnicode_FromStringAndSize(orig_str, slen);
if (strobj == NULL) {
return NULL;
}
PyErr_Format(PyExc_ValueError,
"invalid literal for int() with base %d: %.200R",
base, strobj);
Py_DECREF(strobj);
return NULL;
}
/* Since PyLong_FromString doesn't have a length parameter,
* check here for possible NULs in the string.
*
* Reports an invalid literal as a bytes object.
*/
PyObject *
_PyLong_FromBytes(const char *s, Py_ssize_t len, int base)
{
PyObject *result, *strobj;
char *end = NULL;
result = PyLong_FromString(s, &end, base);
if (end == NULL || (result != NULL && end == s + len))
return result;
Py_XDECREF(result);
strobj = PyBytes_FromStringAndSize(s, Py_MIN(len, 200));
if (strobj != NULL) {
PyErr_Format(PyExc_ValueError,
"invalid literal for int() with base %d: %.200R",
base, strobj);
Py_DECREF(strobj);
}
return NULL;
}
PyObject *
PyLong_FromUnicode(Py_UNICODE *u, Py_ssize_t length, int base)
{
PyObject *v, *unicode = PyUnicode_FromUnicode(u, length);
if (unicode == NULL)
return NULL;
v = PyLong_FromUnicodeObject(unicode, base);
Py_DECREF(unicode);
return v;
}
PyObject *
PyLong_FromUnicodeObject(PyObject *u, int base)
{
PyObject *result, *asciidig;
char *buffer, *end = NULL;
Py_ssize_t buflen;
asciidig = _PyUnicode_TransformDecimalAndSpaceToASCII(u);
if (asciidig == NULL)
return NULL;
buffer = PyUnicode_AsUTF8AndSize(asciidig, &buflen);
if (buffer == NULL) {
Py_DECREF(asciidig);
if (!PyErr_ExceptionMatches(PyExc_UnicodeEncodeError))
return NULL;
}
else {
result = PyLong_FromString(buffer, &end, base);
if (end == NULL || (result != NULL && end == buffer + buflen)) {
Py_DECREF(asciidig);
return result;
}
Py_DECREF(asciidig);
Py_XDECREF(result);
}
PyErr_Format(PyExc_ValueError,
"invalid literal for int() with base %d: %.200R",
base, u);
return NULL;
}
/* forward */
static PyLongObject *x_divrem
(PyLongObject *, PyLongObject *, PyLongObject **);
static PyObject *long_long(PyObject *v);
/* Int division with remainder, top-level routine */
static int
long_divrem(PyLongObject *a, PyLongObject *b,
PyLongObject **pdiv, PyLongObject **prem)
{
Py_ssize_t size_a = Py_ABS(Py_SIZE(a)), size_b = Py_ABS(Py_SIZE(b));
PyLongObject *z;
if (size_b == 0) {
PyErr_SetString(PyExc_ZeroDivisionError,
"integer division or modulo by zero");
return -1;
}
if (size_a < size_b ||
(size_a == size_b &&
a->ob_digit[size_a-1] < b->ob_digit[size_b-1])) {
/* |a| < |b|. */
*pdiv = (PyLongObject*)PyLong_FromLong(0);
if (*pdiv == NULL)
return -1;
*prem = (PyLongObject *)long_long((PyObject *)a);
if (*prem == NULL) {
Py_CLEAR(*pdiv);
return -1;
}
return 0;
}
if (size_b == 1) {
digit rem = 0;
z = divrem1(a, b->ob_digit[0], &rem);
if (z == NULL)
return -1;
*prem = (PyLongObject *) PyLong_FromLong((long)rem);
if (*prem == NULL) {
Py_DECREF(z);
return -1;
}
}
else {
z = x_divrem(a, b, prem);
if (z == NULL)
return -1;
}
/* Set the signs.
The quotient z has the sign of a*b;
the remainder r has the sign of a,
so a = b*z + r. */
if ((Py_SIZE(a) < 0) != (Py_SIZE(b) < 0)) {
_PyLong_Negate(&z);
if (z == NULL) {
Py_CLEAR(*prem);
return -1;
}
}
if (Py_SIZE(a) < 0 && Py_SIZE(*prem) != 0) {
_PyLong_Negate(prem);
if (*prem == NULL) {
Py_DECREF(z);
Py_CLEAR(*prem);
return -1;
}
}
*pdiv = maybe_small_long(z);
return 0;
}
/* Unsigned int division with remainder -- the algorithm. The arguments v1
and w1 should satisfy 2 <= Py_ABS(Py_SIZE(w1)) <= Py_ABS(Py_SIZE(v1)). */
static PyLongObject *
x_divrem(PyLongObject *v1, PyLongObject *w1, PyLongObject **prem)
{
PyLongObject *v, *w, *a;
Py_ssize_t i, k, size_v, size_w;
int d;
digit wm1, wm2, carry, q, r, vtop, *v0, *vk, *w0, *ak;
twodigits vv;
sdigit zhi;
stwodigits z;
/* We follow Knuth [The Art of Computer Programming, Vol. 2 (3rd
edn.), section 4.3.1, Algorithm D], except that we don't explicitly
handle the special case when the initial estimate q for a quotient
digit is >= PyLong_BASE: the max value for q is PyLong_BASE+1, and
that won't overflow a digit. */
/* allocate space; w will also be used to hold the final remainder */
size_v = Py_ABS(Py_SIZE(v1));
size_w = Py_ABS(Py_SIZE(w1));
assert(size_v >= size_w && size_w >= 2); /* Assert checks by div() */
v = _PyLong_New(size_v+1);
if (v == NULL) {
*prem = NULL;
return NULL;
}
w = _PyLong_New(size_w);
if (w == NULL) {
Py_DECREF(v);
*prem = NULL;
return NULL;
}
/* normalize: shift w1 left so that its top digit is >= PyLong_BASE/2.
shift v1 left by the same amount. Results go into w and v. */
d = PyLong_SHIFT - bits_in_digit(w1->ob_digit[size_w-1]);
carry = v_lshift(w->ob_digit, w1->ob_digit, size_w, d);
assert(carry == 0);
carry = v_lshift(v->ob_digit, v1->ob_digit, size_v, d);
if (carry != 0 || v->ob_digit[size_v-1] >= w->ob_digit[size_w-1]) {
v->ob_digit[size_v] = carry;
size_v++;
}
/* Now v->ob_digit[size_v-1] < w->ob_digit[size_w-1], so quotient has
at most (and usually exactly) k = size_v - size_w digits. */
k = size_v - size_w;
assert(k >= 0);
a = _PyLong_New(k);
if (a == NULL) {
Py_DECREF(w);
Py_DECREF(v);
*prem = NULL;
return NULL;
}
v0 = v->ob_digit;
w0 = w->ob_digit;
wm1 = w0[size_w-1];
wm2 = w0[size_w-2];
for (vk = v0+k, ak = a->ob_digit + k; vk-- > v0;) {
/* inner loop: divide vk[0:size_w+1] by w0[0:size_w], giving
single-digit quotient q, remainder in vk[0:size_w]. */
SIGCHECK({
Py_DECREF(a);
Py_DECREF(w);
Py_DECREF(v);
*prem = NULL;
return NULL;
});
/* estimate quotient digit q; may overestimate by 1 (rare) */
vtop = vk[size_w];
assert(vtop <= wm1);
vv = ((twodigits)vtop << PyLong_SHIFT) | vk[size_w-1];
q = (digit)(vv / wm1);
r = (digit)(vv - (twodigits)wm1 * q); /* r = vv % wm1 */
while ((twodigits)wm2 * q > (((twodigits)r << PyLong_SHIFT)
| vk[size_w-2])) {
--q;
r += wm1;
if (r >= PyLong_BASE)
break;
}
assert(q <= PyLong_BASE);
/* subtract q*w0[0:size_w] from vk[0:size_w+1] */
zhi = 0;
for (i = 0; i < size_w; ++i) {
/* invariants: -PyLong_BASE <= -q <= zhi <= 0;
-PyLong_BASE * q <= z < PyLong_BASE */
z = (sdigit)vk[i] + zhi -
(stwodigits)q * (stwodigits)w0[i];
vk[i] = (digit)z & PyLong_MASK;
zhi = (sdigit)Py_ARITHMETIC_RIGHT_SHIFT(stwodigits,
z, PyLong_SHIFT);
}
/* add w back if q was too large (this branch taken rarely) */
assert((sdigit)vtop + zhi == -1 || (sdigit)vtop + zhi == 0);
if ((sdigit)vtop + zhi < 0) {
carry = 0;
for (i = 0; i < size_w; ++i) {
carry += vk[i] + w0[i];
vk[i] = carry & PyLong_MASK;
carry >>= PyLong_SHIFT;
}
--q;
}
/* store quotient digit */
assert(q < PyLong_BASE);
*--ak = q;
}
/* unshift remainder; we reuse w to store the result */
carry = v_rshift(w0, v0, size_w, d);
assert(carry==0);
Py_DECREF(v);
*prem = long_normalize(w);
return long_normalize(a);
}
/* For a nonzero PyLong a, express a in the form x * 2**e, with 0.5 <=
abs(x) < 1.0 and e >= 0; return x and put e in *e. Here x is
rounded to DBL_MANT_DIG significant bits using round-half-to-even.
If a == 0, return 0.0 and set *e = 0. If the resulting exponent
e is larger than PY_SSIZE_T_MAX, raise OverflowError and return
-1.0. */
/* attempt to define 2.0**DBL_MANT_DIG as a compile-time constant */
#if DBL_MANT_DIG == 53
#define EXP2_DBL_MANT_DIG 9007199254740992.0
#else
#define EXP2_DBL_MANT_DIG (ldexp(1.0, DBL_MANT_DIG))
#endif
double
_PyLong_Frexp(PyLongObject *a, Py_ssize_t *e)
{
Py_ssize_t a_size, a_bits, shift_digits, shift_bits, x_size;
/* See below for why x_digits is always large enough. */
digit rem, x_digits[2 + (DBL_MANT_DIG + 1) / PyLong_SHIFT];
double dx;
/* Correction term for round-half-to-even rounding. For a digit x,
"x + half_even_correction[x & 7]" gives x rounded to the nearest
multiple of 4, rounding ties to a multiple of 8. */
static const int half_even_correction[8] = {0, -1, -2, 1, 0, -1, 2, 1};
a_size = Py_ABS(Py_SIZE(a));
if (a_size == 0) {
/* Special case for 0: significand 0.0, exponent 0. */
*e = 0;
return 0.0;
}
a_bits = bits_in_digit(a->ob_digit[a_size-1]);
/* The following is an overflow-free version of the check
"if ((a_size - 1) * PyLong_SHIFT + a_bits > PY_SSIZE_T_MAX) ..." */
if (a_size >= (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 &&
(a_size > (PY_SSIZE_T_MAX - 1) / PyLong_SHIFT + 1 ||
a_bits > (PY_SSIZE_T_MAX - 1) % PyLong_SHIFT + 1))
goto overflow;
a_bits = (a_size - 1) * PyLong_SHIFT + a_bits;
/* Shift the first DBL_MANT_DIG + 2 bits of a into x_digits[0:x_size]
(shifting left if a_bits <= DBL_MANT_DIG + 2).
Number of digits needed for result: write // for floor division.
Then if shifting left, we end up using
1 + a_size + (DBL_MANT_DIG + 2 - a_bits) // PyLong_SHIFT
digits. If shifting right, we use
a_size - (a_bits - DBL_MANT_DIG - 2) // PyLong_SHIFT
digits. Using a_size = 1 + (a_bits - 1) // PyLong_SHIFT along with
the inequalities
m // PyLong_SHIFT + n // PyLong_SHIFT <= (m + n) // PyLong_SHIFT
m // PyLong_SHIFT - n // PyLong_SHIFT <=
1 + (m - n - 1) // PyLong_SHIFT,
valid for any integers m and n, we find that x_size satisfies
x_size <= 2 + (DBL_MANT_DIG + 1) // PyLong_SHIFT
in both cases.
*/
if (a_bits <= DBL_MANT_DIG + 2) {
shift_digits = (DBL_MANT_DIG + 2 - a_bits) / PyLong_SHIFT;
shift_bits = (DBL_MANT_DIG + 2 - a_bits) % PyLong_SHIFT;
x_size = 0;
while (x_size < shift_digits)
x_digits[x_size++] = 0;
rem = v_lshift(x_digits + x_size, a->ob_digit, a_size,
(int)shift_bits);
x_size += a_size;
x_digits[x_size++] = rem;
}
else {
shift_digits = (a_bits - DBL_MANT_DIG - 2) / PyLong_SHIFT;
shift_bits = (a_bits - DBL_MANT_DIG - 2) % PyLong_SHIFT;
rem = v_rshift(x_digits, a->ob_digit + shift_digits,
a_size - shift_digits, (int)shift_bits);
x_size = a_size - shift_digits;
/* For correct rounding below, we need the least significant
bit of x to be 'sticky' for this shift: if any of the bits
shifted out was nonzero, we set the least significant bit
of x. */
if (rem)
x_digits[0] |= 1;
else
while (shift_digits > 0)
if (a->ob_digit[--shift_digits]) {
x_digits[0] |= 1;
break;
}
}
assert(1 <= x_size && x_size <= (Py_ssize_t)Py_ARRAY_LENGTH(x_digits));
/* Round, and convert to double. */
x_digits[0] += half_even_correction[x_digits[0] & 7];
dx = x_digits[--x_size];
while (x_size > 0)
dx = dx * PyLong_BASE + x_digits[--x_size];
/* Rescale; make correction if result is 1.0. */
dx /= 4.0 * EXP2_DBL_MANT_DIG;
if (dx == 1.0) {
if (a_bits == PY_SSIZE_T_MAX)
goto overflow;
dx = 0.5;
a_bits += 1;
}
*e = a_bits;
return Py_SIZE(a) < 0 ? -dx : dx;
overflow:
/* exponent > PY_SSIZE_T_MAX */
PyErr_SetString(PyExc_OverflowError,
"huge integer: number of bits overflows a Py_ssize_t");
*e = 0;
return -1.0;
}
/* Get a C double from an int object. Rounds to the nearest double,
using the round-half-to-even rule in the case of a tie. */
double
PyLong_AsDouble(PyObject *v)
{
Py_ssize_t exponent;
double x;
if (v == NULL) {
PyErr_BadInternalCall();
return -1.0;
}
if (!PyLong_Check(v)) {
PyErr_SetString(PyExc_TypeError, "an integer is required");
return -1.0;
}
if (Py_ABS(Py_SIZE(v)) <= 1) {
/* Fast path; single digit long (31 bits) will cast safely
to double. This improves performance of FP/long operations
by 20%.
*/
return (double)MEDIUM_VALUE((PyLongObject *)v);
}
x = _PyLong_Frexp((PyLongObject *)v, &exponent);
if ((x == -1.0 && PyErr_Occurred()) || exponent > DBL_MAX_EXP) {
PyErr_SetString(PyExc_OverflowError,
"int too large to convert to float");
return -1.0;
}
return ldexp(x, (int)exponent);
}
/* Methods */
static void
long_dealloc(PyObject *v)
{
Py_TYPE(v)->tp_free(v);
}
static int
long_compare(PyLongObject *a, PyLongObject *b)
{
if (Py_SIZE(a) != Py_SIZE(b)) {
Py_ssize_t sign;
sign = Py_SIZE(a) - Py_SIZE(b);
return sign < 0 ? -1 : sign > 0 ? 1 : 0;
}
else {
int sign;
Py_ssize_t i = Py_ABS(Py_SIZE(a));
while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i])
;
if (i < 0)
sign = 0;
else {
sign = (sdigit)a->ob_digit[i] - (sdigit)b->ob_digit[i];
if (Py_SIZE(a) < 0)
sign = -sign;
}
return sign < 0 ? -1 : sign > 0 ? 1 : 0;
}
}
#define TEST_COND(cond) \
((cond) ? Py_True : Py_False)
static PyObject *
long_richcompare(PyObject *self, PyObject *other, int op)
{
int result;
PyObject *v;
CHECK_BINOP(self, other);
if (self == other) {
result = 0;
} else {
result = long_compare((PyLongObject*)self, (PyLongObject*)other);
}
/* Convert the return value to a Boolean */
switch (op) {
case Py_EQ:
v = TEST_COND(result == 0);
break;
case Py_NE:
v = TEST_COND(result != 0);
break;
case Py_LE:
v = TEST_COND(result <= 0);
break;
case Py_GE:
v = TEST_COND(result >= 0);
break;
case Py_LT:
v = TEST_COND(result == -1);
break;
case Py_GT:
v = TEST_COND(result == 1);
break;
default:
PyErr_BadArgument();
return NULL;
}
Py_INCREF(v);
return v;
}
static Py_hash_t
long_hash(PyLongObject *v)
{
Py_uhash_t x;
Py_ssize_t i;
int sign;
i = Py_SIZE(v);
switch(i) {
case -1: return v->ob_digit[0]==1 ? -2 : -(sdigit)v->ob_digit[0];
case 0: return 0;
case 1: return v->ob_digit[0];
}
sign = 1;
x = 0;
if (i < 0) {
sign = -1;
i = -(i);
}
while (--i >= 0) {
/* Here x is a quantity in the range [0, _PyHASH_MODULUS); we
want to compute x * 2**PyLong_SHIFT + v->ob_digit[i] modulo
_PyHASH_MODULUS.
The computation of x * 2**PyLong_SHIFT % _PyHASH_MODULUS
amounts to a rotation of the bits of x. To see this, write
x * 2**PyLong_SHIFT = y * 2**_PyHASH_BITS + z
where y = x >> (_PyHASH_BITS - PyLong_SHIFT) gives the top
PyLong_SHIFT bits of x (those that are shifted out of the
original _PyHASH_BITS bits, and z = (x << PyLong_SHIFT) &
_PyHASH_MODULUS gives the bottom _PyHASH_BITS - PyLong_SHIFT
bits of x, shifted up. Then since 2**_PyHASH_BITS is
congruent to 1 modulo _PyHASH_MODULUS, y*2**_PyHASH_BITS is
congruent to y modulo _PyHASH_MODULUS. So
x * 2**PyLong_SHIFT = y + z (mod _PyHASH_MODULUS).
The right-hand side is just the result of rotating the
_PyHASH_BITS bits of x left by PyLong_SHIFT places; since
not all _PyHASH_BITS bits of x are 1s, the same is true
after rotation, so 0 <= y+z < _PyHASH_MODULUS and y + z is
the reduction of x*2**PyLong_SHIFT modulo
_PyHASH_MODULUS. */
x = ((x << PyLong_SHIFT) & _PyHASH_MODULUS) |
(x >> (_PyHASH_BITS - PyLong_SHIFT));
x += v->ob_digit[i];
if (x >= _PyHASH_MODULUS)
x -= _PyHASH_MODULUS;
}
x = x * sign;
if (x == (Py_uhash_t)-1)
x = (Py_uhash_t)-2;
return (Py_hash_t)x;
}
/* Add the absolute values of two integers. */
static PyLongObject *
x_add(PyLongObject *a, PyLongObject *b)
{
Py_ssize_t size_a = Py_ABS(Py_SIZE(a)), size_b = Py_ABS(Py_SIZE(b));
PyLongObject *z;
Py_ssize_t i;
digit carry = 0;
/* Ensure a is the larger of the two: */
if (size_a < size_b) {
{ PyLongObject *temp = a; a = b; b = temp; }
{ Py_ssize_t size_temp = size_a;
size_a = size_b;
size_b = size_temp; }
}
z = _PyLong_New(size_a+1);
if (z == NULL)
return NULL;
for (i = 0; i < size_b; ++i) {
carry += a->ob_digit[i] + b->ob_digit[i];
z->ob_digit[i] = carry & PyLong_MASK;
carry >>= PyLong_SHIFT;
}
for (; i < size_a; ++i) {
carry += a->ob_digit[i];
z->ob_digit[i] = carry & PyLong_MASK;
carry >>= PyLong_SHIFT;
}
z->ob_digit[i] = carry;
return long_normalize(z);
}
/* Subtract the absolute values of two integers. */
static PyLongObject *
x_sub(PyLongObject *a, PyLongObject *b)
{
Py_ssize_t size_a = Py_ABS(Py_SIZE(a)), size_b = Py_ABS(Py_SIZE(b));
PyLongObject *z;
Py_ssize_t i;
int sign = 1;
digit borrow = 0;
/* Ensure a is the larger of the two: */
if (size_a < size_b) {
sign = -1;
{ PyLongObject *temp = a; a = b; b = temp; }
{ Py_ssize_t size_temp = size_a;
size_a = size_b;
size_b = size_temp; }
}
else if (size_a == size_b) {
/* Find highest digit where a and b differ: */
i = size_a;
while (--i >= 0 && a->ob_digit[i] == b->ob_digit[i])
;
if (i < 0)
return (PyLongObject *)PyLong_FromLong(0);
if (a->ob_digit[i] < b->ob_digit[i]) {
sign = -1;
{ PyLongObject *temp = a; a = b; b = temp; }
}
size_a = size_b = i+1;
}
z = _PyLong_New(size_a);
if (z == NULL)
return NULL;
for (i = 0; i < size_b; ++i) {
/* The following assumes unsigned arithmetic
works module 2**N for some N>PyLong_SHIFT. */
borrow = a->ob_digit[i] - b->ob_digit[i] - borrow;
z->ob_digit[i] = borrow & PyLong_MASK;
borrow >>= PyLong_SHIFT;
borrow &= 1; /* Keep only one sign bit */
}
for (; i < size_a; ++i) {
borrow = a->ob_digit[i] - borrow;
z->ob_digit[i] = borrow & PyLong_MASK;
borrow >>= PyLong_SHIFT;
borrow &= 1; /* Keep only one sign bit */
}
assert(borrow == 0);
if (sign < 0) {
Py_SIZE(z) = -Py_SIZE(z);
}
return long_normalize(z);
}
static PyObject *
long_add(PyLongObject *a, PyLongObject *b)
{
PyLongObject *z;
CHECK_BINOP(a, b);
if (Py_ABS(Py_SIZE(a)) <= 1 && Py_ABS(Py_SIZE(b)) <= 1) {
PyObject *result = PyLong_FromLong(MEDIUM_VALUE(a) +
MEDIUM_VALUE(b));
return result;
}
if (Py_SIZE(a) < 0) {
if (Py_SIZE(b) < 0) {
z = x_add(a, b);
if (z != NULL) {
/* x_add received at least one multiple-digit int,
and thus z must be a multiple-digit int.
That also means z is not an element of
small_ints, so negating it in-place is safe. */
assert(Py_REFCNT(z) == 1);
Py_SIZE(z) = -(Py_SIZE(z));
}
}
else
z = x_sub(b, a);
}
else {
if (Py_SIZE(b) < 0)
z = x_sub(a, b);
else
z = x_add(a, b);
}
return (PyObject *)z;
}
static PyObject *
long_sub(PyLongObject *a, PyLongObject *b)
{
PyLongObject *z;
CHECK_BINOP(a, b);
if (Py_ABS(Py_SIZE(a)) <= 1 && Py_ABS(Py_SIZE(b)) <= 1) {
PyObject* r;
r = PyLong_FromLong(MEDIUM_VALUE(a)-MEDIUM_VALUE(b));
return r;
}
if (Py_SIZE(a) < 0) {
if (Py_SIZE(b) < 0)
z = x_sub(a, b);
else
z = x_add(a, b);
if (z != NULL) {
assert(Py_SIZE(z) == 0 || Py_REFCNT(z) == 1);
Py_SIZE(z) = -(Py_SIZE(z));
}
}
else {
if (Py_SIZE(b) < 0)
z = x_add(a, b);
else
z = x_sub(a, b);
}
return (PyObject *)z;
}
/* Grade school multiplication, ignoring the signs.
* Returns the absolute value of the product, or NULL if error.
*/
static PyLongObject *
x_mul(PyLongObject *a, PyLongObject *b)
{
PyLongObject *z;
Py_ssize_t size_a = Py_ABS(Py_SIZE(a));
Py_ssize_t size_b = Py_ABS(Py_SIZE(b));
Py_ssize_t i;
z = _PyLong_New(size_a + size_b);
if (z == NULL)
return NULL;
bzero(z->ob_digit, Py_SIZE(z) * sizeof(digit));
if (a == b) {
/* Efficient squaring per HAC, Algorithm 14.16:
* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
* Gives slightly less than a 2x speedup when a == b,
* via exploiting that each entry in the multiplication
* pyramid appears twice (except for the size_a squares).
*/
for (i = 0; i < size_a; ++i) {
twodigits carry;
twodigits f = a->ob_digit[i];
digit *pz = z->ob_digit + (i << 1);
digit *pa = a->ob_digit + i + 1;
digit *paend = a->ob_digit + size_a;
SIGCHECK({
Py_DECREF(z);
return NULL;
});
carry = *pz + f * f;
*pz++ = (digit)(carry & PyLong_MASK);
carry >>= PyLong_SHIFT;
assert(carry <= PyLong_MASK);
/* Now f is added in twice in each column of the
* pyramid it appears. Same as adding f<<1 once.
*/
f <<= 1;
while (pa < paend) {
carry += *pz + *pa++ * f;
*pz++ = (digit)(carry & PyLong_MASK);
carry >>= PyLong_SHIFT;
assert(carry <= (PyLong_MASK << 1));
}
if (carry) {
carry += *pz;
*pz++ = (digit)(carry & PyLong_MASK);
carry >>= PyLong_SHIFT;
}
if (carry)
*pz += (digit)(carry & PyLong_MASK);
assert((carry >> PyLong_SHIFT) == 0);
}
}
else { /* a is not the same as b -- gradeschool int mult */
for (i = 0; i < size_a; ++i) {
twodigits carry = 0;
twodigits f = a->ob_digit[i];
digit *pz = z->ob_digit + i;
digit *pb = b->ob_digit;
digit *pbend = b->ob_digit + size_b;
SIGCHECK({
Py_DECREF(z);
return NULL;
});
while (pb < pbend) {
carry += *pz + *pb++ * f;
*pz++ = (digit)(carry & PyLong_MASK);
carry >>= PyLong_SHIFT;
assert(carry <= PyLong_MASK);
}
if (carry)
*pz += (digit)(carry & PyLong_MASK);
assert((carry >> PyLong_SHIFT) == 0);
}
}
return long_normalize(z);
}
/* A helper for Karatsuba multiplication (k_mul).
Takes an int "n" and an integer "size" representing the place to
split, and sets low and high such that abs(n) == (high << size) + low,
viewing the shift as being by digits. The sign bit is ignored, and
the return values are >= 0.
Returns 0 on success, -1 on failure.
*/
static int
kmul_split(PyLongObject *n,
Py_ssize_t size,
PyLongObject **high,
PyLongObject **low)
{
PyLongObject *hi, *lo;
Py_ssize_t size_lo, size_hi;
const Py_ssize_t size_n = Py_ABS(Py_SIZE(n));
size_lo = Py_MIN(size_n, size);
size_hi = size_n - size_lo;
if ((hi = _PyLong_New(size_hi)) == NULL)
return -1;
if ((lo = _PyLong_New(size_lo)) == NULL) {
Py_DECREF(hi);
return -1;
}
memcpy(lo->ob_digit, n->ob_digit, size_lo * sizeof(digit));
memcpy(hi->ob_digit, n->ob_digit + size_lo, size_hi * sizeof(digit));
*high = long_normalize(hi);
*low = long_normalize(lo);
return 0;
}
static PyLongObject *k_lopsided_mul(PyLongObject *a, PyLongObject *b);
/* Karatsuba multiplication. Ignores the input signs, and returns the
* absolute value of the product (or NULL if error).
* See Knuth Vol. 2 Chapter 4.3.3 (Pp. 294-295).
*/
static PyLongObject *
k_mul(PyLongObject *a, PyLongObject *b)
{
Py_ssize_t asize = Py_ABS(Py_SIZE(a));
Py_ssize_t bsize = Py_ABS(Py_SIZE(b));
PyLongObject *ah = NULL;
PyLongObject *al = NULL;
PyLongObject *bh = NULL;
PyLongObject *bl = NULL;
PyLongObject *ret = NULL;
PyLongObject *t1, *t2, *t3;
Py_ssize_t shift; /* the number of digits we split off */
Py_ssize_t i;
/* (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl
* Let k = (ah+al)*(bh+bl) = ah*bl + al*bh + ah*bh + al*bl
* Then the original product is
* ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl
* By picking X to be a power of 2, "*X" is just shifting, and it's
* been reduced to 3 multiplies on numbers half the size.
*/
/* We want to split based on the larger number; fiddle so that b
* is largest.
*/
if (asize > bsize) {
t1 = a;
a = b;
b = t1;
i = asize;
asize = bsize;
bsize = i;
}
/* Use gradeschool math when either number is too small. */
i = a == b ? KARATSUBA_SQUARE_CUTOFF : KARATSUBA_CUTOFF;
if (asize <= i) {
if (asize == 0)
return (PyLongObject *)PyLong_FromLong(0);
else
return x_mul(a, b);
}
/* If a is small compared to b, splitting on b gives a degenerate
* case with ah==0, and Karatsuba may be (even much) less efficient
* than "grade school" then. However, we can still win, by viewing
* b as a string of "big digits", each of width a->ob_size. That
* leads to a sequence of balanced calls to k_mul.
*/
if (2 * asize <= bsize)
return k_lopsided_mul(a, b);
/* Split a & b into hi & lo pieces. */
shift = bsize >> 1;
if (kmul_split(a, shift, &ah, &al) < 0) goto fail;
assert(Py_SIZE(ah) > 0); /* the split isn't degenerate */
if (a == b) {
bh = ah;
bl = al;
Py_INCREF(bh);
Py_INCREF(bl);
}
else if (kmul_split(b, shift, &bh, &bl) < 0) goto fail;
/* The plan:
* 1. Allocate result space (asize + bsize digits: that's always
* enough).
* 2. Compute ah*bh, and copy into result at 2*shift.
* 3. Compute al*bl, and copy into result at 0. Note that this
* can't overlap with #2.
* 4. Subtract al*bl from the result, starting at shift. This may
* underflow (borrow out of the high digit), but we don't care:
* we're effectively doing unsigned arithmetic mod
* BASE**(sizea + sizeb), and so long as the *final* result fits,
* borrows and carries out of the high digit can be ignored.
* 5. Subtract ah*bh from the result, starting at shift.
* 6. Compute (ah+al)*(bh+bl), and add it into the result starting
* at shift.
*/
/* 1. Allocate result space. */
ret = _PyLong_New(asize + bsize);
if (ret == NULL) goto fail;
#ifdef Py_DEBUG
/* Fill with trash, to catch reference to uninitialized digits. */
memset(ret->ob_digit, 0xDF, Py_SIZE(ret) * sizeof(digit));
#endif
/* 2. t1 <- ah*bh, and copy into high digits of result. */
if ((t1 = k_mul(ah, bh)) == NULL) goto fail;
assert(Py_SIZE(t1) >= 0);
assert(2*shift + Py_SIZE(t1) <= Py_SIZE(ret));
memcpy(ret->ob_digit + 2*shift, t1->ob_digit,
Py_SIZE(t1) * sizeof(digit));
/* Zero-out the digits higher than the ah*bh copy. */
i = Py_SIZE(ret) - 2*shift - Py_SIZE(t1);
if (i) bzero(ret->ob_digit + 2*shift + Py_SIZE(t1), i * sizeof(digit));
/* 3. t2 <- al*bl, and copy into the low digits. */
if ((t2 = k_mul(al, bl)) == NULL) {
Py_DECREF(t1);
goto fail;
}
assert(Py_SIZE(t2) >= 0);
assert(Py_SIZE(t2) <= 2*shift); /* no overlap with high digits */
memcpy(ret->ob_digit, t2->ob_digit, Py_SIZE(t2) * sizeof(digit));
/* Zero out remaining digits. */
i = 2*shift - Py_SIZE(t2); /* number of uninitialized digits */
if (i) bzero(ret->ob_digit + Py_SIZE(t2), i * sizeof(digit));
/* 4 & 5. Subtract ah*bh (t1) and al*bl (t2). We do al*bl first
* because it's fresher in cache.
*/
i = Py_SIZE(ret) - shift; /* # digits after shift */
(void)v_isub(ret->ob_digit + shift, i, t2->ob_digit, Py_SIZE(t2));
Py_DECREF(t2);
(void)v_isub(ret->ob_digit + shift, i, t1->ob_digit, Py_SIZE(t1));
Py_DECREF(t1);
/* 6. t3 <- (ah+al)(bh+bl), and add into result. */
if ((t1 = x_add(ah, al)) == NULL) goto fail;
Py_DECREF(ah);
Py_DECREF(al);
ah = al = NULL;
if (a == b) {
t2 = t1;
Py_INCREF(t2);
}
else if ((t2 = x_add(bh, bl)) == NULL) {
Py_DECREF(t1);
goto fail;
}
Py_DECREF(bh);
Py_DECREF(bl);
bh = bl = NULL;
t3 = k_mul(t1, t2);
Py_DECREF(t1);
Py_DECREF(t2);
if (t3 == NULL) goto fail;
assert(Py_SIZE(t3) >= 0);
/* Add t3. It's not obvious why we can't run out of room here.
* See the (*) comment after this function.
*/
(void)v_iadd(ret->ob_digit + shift, i, t3->ob_digit, Py_SIZE(t3));
Py_DECREF(t3);
return long_normalize(ret);
fail:
Py_XDECREF(ret);
Py_XDECREF(ah);
Py_XDECREF(al);
Py_XDECREF(bh);
Py_XDECREF(bl);
return NULL;
}
/* (*) Why adding t3 can't "run out of room" above.
Let f(x) mean the floor of x and c(x) mean the ceiling of x. Some facts
to start with:
1. For any integer i, i = c(i/2) + f(i/2). In particular,
bsize = c(bsize/2) + f(bsize/2).
2. shift = f(bsize/2)
3. asize <= bsize
4. Since we call k_lopsided_mul if asize*2 <= bsize, asize*2 > bsize in this
routine, so asize > bsize/2 >= f(bsize/2) in this routine.
We allocated asize + bsize result digits, and add t3 into them at an offset
of shift. This leaves asize+bsize-shift allocated digit positions for t3
to fit into, = (by #1 and #2) asize + f(bsize/2) + c(bsize/2) - f(bsize/2) =
asize + c(bsize/2) available digit positions.
bh has c(bsize/2) digits, and bl at most f(size/2) digits. So bh+hl has
at most c(bsize/2) digits + 1 bit.
If asize == bsize, ah has c(bsize/2) digits, else ah has at most f(bsize/2)
digits, and al has at most f(bsize/2) digits in any case. So ah+al has at
most (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 1 bit.
The product (ah+al)*(bh+bl) therefore has at most
c(bsize/2) + (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits
and we have asize + c(bsize/2) available digit positions. We need to show
this is always enough. An instance of c(bsize/2) cancels out in both, so
the question reduces to whether asize digits is enough to hold
(asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits. If asize < bsize,
then we're asking whether asize digits >= f(bsize/2) digits + 2 bits. By #4,
asize is at least f(bsize/2)+1 digits, so this in turn reduces to whether 1
digit is enough to hold 2 bits. This is so since PyLong_SHIFT=15 >= 2. If
asize == bsize, then we're asking whether bsize digits is enough to hold
c(bsize/2) digits + 2 bits, or equivalently (by #1) whether f(bsize/2) digits
is enough to hold 2 bits. This is so if bsize >= 2, which holds because
bsize >= KARATSUBA_CUTOFF >= 2.
Note that since there's always enough room for (ah+al)*(bh+bl), and that's
clearly >= each of ah*bh and al*bl, there's always enough room to subtract
ah*bh and al*bl too.
*/
/* b has at least twice the digits of a, and a is big enough that Karatsuba
* would pay off *if* the inputs had balanced sizes. View b as a sequence
* of slices, each with a->ob_size digits, and multiply the slices by a,
* one at a time. This gives k_mul balanced inputs to work with, and is
* also cache-friendly (we compute one double-width slice of the result
* at a time, then move on, never backtracking except for the helpful
* single-width slice overlap between successive partial sums).
*/
static PyLongObject *
k_lopsided_mul(PyLongObject *a, PyLongObject *b)
{
const Py_ssize_t asize = Py_ABS(Py_SIZE(a));
Py_ssize_t bsize = Py_ABS(Py_SIZE(b));
Py_ssize_t nbdone; /* # of b digits already multiplied */
PyLongObject *ret;
PyLongObject *bslice = NULL;
assert(asize > KARATSUBA_CUTOFF);
assert(2 * asize <= bsize);
/* Allocate result space, and zero it out. */
ret = _PyLong_New(asize + bsize);
if (ret == NULL)
return NULL;
bzero(ret->ob_digit, Py_SIZE(ret) * sizeof(digit));
/* Successive slices of b are copied into bslice. */
bslice = _PyLong_New(asize);
if (bslice == NULL)
goto fail;
nbdone = 0;
while (bsize > 0) {
PyLongObject *product;
const Py_ssize_t nbtouse = Py_MIN(bsize, asize);
/* Multiply the next slice of b by a. */
memcpy(bslice->ob_digit, b->ob_digit + nbdone,
nbtouse * sizeof(digit));
Py_SIZE(bslice) = nbtouse;
product = k_mul(a, bslice);
if (product == NULL)
goto fail;
/* Add into result. */
(void)v_iadd(ret->ob_digit + nbdone, Py_SIZE(ret) - nbdone,
product->ob_digit, Py_SIZE(product));
Py_DECREF(product);
bsize -= nbtouse;
nbdone += nbtouse;
}
Py_DECREF(bslice);
return long_normalize(ret);
fail:
Py_DECREF(ret);
Py_XDECREF(bslice);
return NULL;
}
static PyObject *
long_mul(PyLongObject *a, PyLongObject *b)
{
PyLongObject *z;
CHECK_BINOP(a, b);
/* fast path for single-digit multiplication */
if (Py_ABS(Py_SIZE(a)) <= 1 && Py_ABS(Py_SIZE(b)) <= 1) {
stwodigits v = (stwodigits)(MEDIUM_VALUE(a)) * MEDIUM_VALUE(b);
return PyLong_FromLongLong((long long)v);
}
z = k_mul(a, b);
/* Negate if exactly one of the inputs is negative. */
if (((Py_SIZE(a) ^ Py_SIZE(b)) < 0) && z) {
_PyLong_Negate(&z);
if (z == NULL)
return NULL;
}
return (PyObject *)z;
}
/* Fast modulo division for single-digit longs. */
static PyObject *
fast_mod(PyLongObject *a, PyLongObject *b)
{
sdigit left = a->ob_digit[0];
sdigit right = b->ob_digit[0];
sdigit mod;
assert(Py_ABS(Py_SIZE(a)) == 1);
assert(Py_ABS(Py_SIZE(b)) == 1);
if (Py_SIZE(a) == Py_SIZE(b)) {
/* 'a' and 'b' have the same sign. */
mod = left % right;
}
else {
/* Either 'a' or 'b' is negative. */
mod = right - 1 - (left - 1) % right;
}
return PyLong_FromLong(mod * (sdigit)Py_SIZE(b));
}
/* Fast floor division for single-digit longs. */
static PyObject *
fast_floor_div(PyLongObject *a, PyLongObject *b)
{
sdigit left = a->ob_digit[0];
sdigit right = b->ob_digit[0];
sdigit div;
assert(Py_ABS(Py_SIZE(a)) == 1);
assert(Py_ABS(Py_SIZE(b)) == 1);
if (Py_SIZE(a) == Py_SIZE(b)) {
/* 'a' and 'b' have the same sign. */
div = left / right;
}
else {
/* Either 'a' or 'b' is negative. */
div = -1 - (left - 1) / right;
}
return PyLong_FromLong(div);
}
/* The / and % operators are now defined in terms of divmod().
The expression a mod b has the value a - b*floor(a/b).
The long_divrem function gives the remainder after division of
|a| by |b|, with the sign of a. This is also expressed
as a - b*trunc(a/b), if trunc truncates towards zero.
Some examples:
a b a rem b a mod b
13 10 3 3
-13 10 -3 7
13 -10 3 -7
-13 -10 -3 -3
So, to get from rem to mod, we have to add b if a and b
have different signs. We then subtract one from the 'div'
part of the outcome to keep the invariant intact. */
/* Compute
* *pdiv, *pmod = divmod(v, w)
* NULL can be passed for pdiv or pmod, in which case that part of
* the result is simply thrown away. The caller owns a reference to
* each of these it requests (does not pass NULL for).
*/
static int
l_divmod(PyLongObject *v, PyLongObject *w,
PyLongObject **pdiv, PyLongObject **pmod)
{
PyLongObject *div, *mod;
if (Py_ABS(Py_SIZE(v)) == 1 && Py_ABS(Py_SIZE(w)) == 1) {
/* Fast path for single-digit longs */
div = NULL;
if (pdiv != NULL) {
div = (PyLongObject *)fast_floor_div(v, w);
if (div == NULL) {
return -1;
}
}
if (pmod != NULL) {
mod = (PyLongObject *)fast_mod(v, w);
if (mod == NULL) {
Py_XDECREF(div);
return -1;
}
*pmod = mod;
}
if (pdiv != NULL) {
/* We only want to set `*pdiv` when `*pmod` is
set successfully. */
*pdiv = div;
}
return 0;
}
if (long_divrem(v, w, &div, &mod) < 0)
return -1;
if ((Py_SIZE(mod) < 0 && Py_SIZE(w) > 0) ||
(Py_SIZE(mod) > 0 && Py_SIZE(w) < 0)) {
PyLongObject *temp;
PyLongObject *one;
temp = (PyLongObject *) long_add(mod, w);
Py_DECREF(mod);
mod = temp;
if (mod == NULL) {
Py_DECREF(div);
return -1;
}
one = (PyLongObject *) PyLong_FromLong(1L);
if (one == NULL ||
(temp = (PyLongObject *) long_sub(div, one)) == NULL) {
Py_DECREF(mod);
Py_DECREF(div);
Py_XDECREF(one);
return -1;
}
Py_DECREF(one);
Py_DECREF(div);
div = temp;
}
if (pdiv != NULL)
*pdiv = div;
else
Py_DECREF(div);
if (pmod != NULL)
*pmod = mod;
else
Py_DECREF(mod);
return 0;
}
static PyObject *
long_div(PyObject *a, PyObject *b)
{
PyLongObject *div;
CHECK_BINOP(a, b);
if (Py_ABS(Py_SIZE(a)) == 1 && Py_ABS(Py_SIZE(b)) == 1) {
return fast_floor_div((PyLongObject*)a, (PyLongObject*)b);
}
if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, NULL) < 0)
div = NULL;
return (PyObject *)div;
}
/* PyLong/PyLong -> float, with correctly rounded result. */
#define MANT_DIG_DIGITS (DBL_MANT_DIG / PyLong_SHIFT)
#define MANT_DIG_BITS (DBL_MANT_DIG % PyLong_SHIFT)
static PyObject *
long_true_divide(PyObject *v, PyObject *w)
{
PyLongObject *a, *b, *x;
Py_ssize_t a_size, b_size, shift, extra_bits, diff, x_size, x_bits;
digit mask, low;
int inexact, negate, a_is_small, b_is_small;
double dx, result;
CHECK_BINOP(v, w);
a = (PyLongObject *)v;
b = (PyLongObject *)w;
/*
Method in a nutshell:
0. reduce to case a, b > 0; filter out obvious underflow/overflow
1. choose a suitable integer 'shift'
2. use integer arithmetic to compute x = floor(2**-shift*a/b)
3. adjust x for correct rounding
4. convert x to a double dx with the same value
5. return ldexp(dx, shift).
In more detail:
0. For any a, a/0 raises ZeroDivisionError; for nonzero b, 0/b
returns either 0.0 or -0.0, depending on the sign of b. For a and
b both nonzero, ignore signs of a and b, and add the sign back in
at the end. Now write a_bits and b_bits for the bit lengths of a
and b respectively (that is, a_bits = 1 + floor(log_2(a)); likewise
for b). Then
2**(a_bits - b_bits - 1) < a/b < 2**(a_bits - b_bits + 1).
So if a_bits - b_bits > DBL_MAX_EXP then a/b > 2**DBL_MAX_EXP and
so overflows. Similarly, if a_bits - b_bits < DBL_MIN_EXP -
DBL_MANT_DIG - 1 then a/b underflows to 0. With these cases out of
the way, we can assume that
DBL_MIN_EXP - DBL_MANT_DIG - 1 <= a_bits - b_bits <= DBL_MAX_EXP.
1. The integer 'shift' is chosen so that x has the right number of
bits for a double, plus two or three extra bits that will be used
in the rounding decisions. Writing a_bits and b_bits for the
number of significant bits in a and b respectively, a
straightforward formula for shift is:
shift = a_bits - b_bits - DBL_MANT_DIG - 2
This is fine in the usual case, but if a/b is smaller than the
smallest normal float then it can lead to double rounding on an
IEEE 754 platform, giving incorrectly rounded results. So we
adjust the formula slightly. The actual formula used is:
shift = MAX(a_bits - b_bits, DBL_MIN_EXP) - DBL_MANT_DIG - 2
2. The quantity x is computed by first shifting a (left -shift bits
if shift <= 0, right shift bits if shift > 0) and then dividing by
b. For both the shift and the division, we keep track of whether
the result is inexact, in a flag 'inexact'; this information is
needed at the rounding stage.
With the choice of shift above, together with our assumption that
a_bits - b_bits >= DBL_MIN_EXP - DBL_MANT_DIG - 1, it follows
that x >= 1.
3. Now x * 2**shift <= a/b < (x+1) * 2**shift. We want to replace
this with an exactly representable float of the form
round(x/2**extra_bits) * 2**(extra_bits+shift).
For float representability, we need x/2**extra_bits <
2**DBL_MANT_DIG and extra_bits + shift >= DBL_MIN_EXP -
DBL_MANT_DIG. This translates to the condition:
extra_bits >= MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG
To round, we just modify the bottom digit of x in-place; this can
end up giving a digit with value > PyLONG_MASK, but that's not a
problem since digits can hold values up to 2*PyLONG_MASK+1.
With the original choices for shift above, extra_bits will always
be 2 or 3. Then rounding under the round-half-to-even rule, we
round up iff the most significant of the extra bits is 1, and
either: (a) the computation of x in step 2 had an inexact result,
or (b) at least one other of the extra bits is 1, or (c) the least
significant bit of x (above those to be rounded) is 1.
4. Conversion to a double is straightforward; all floating-point
operations involved in the conversion are exact, so there's no
danger of rounding errors.
5. Use ldexp(x, shift) to compute x*2**shift, the final result.
The result will always be exactly representable as a double, except
in the case that it overflows. To avoid dependence on the exact
behaviour of ldexp on overflow, we check for overflow before
applying ldexp. The result of ldexp is adjusted for sign before
returning.
*/
/* Reduce to case where a and b are both positive. */
a_size = Py_ABS(Py_SIZE(a));
b_size = Py_ABS(Py_SIZE(b));
negate = (Py_SIZE(a) < 0) ^ (Py_SIZE(b) < 0);
if (b_size == 0) {
PyErr_SetString(PyExc_ZeroDivisionError,
"division by zero");
goto error;
}
if (a_size == 0)
goto underflow_or_zero;
/* Fast path for a and b small (exactly representable in a double).
Relies on floating-point division being correctly rounded; results
may be subject to double rounding on x86 machines that operate with
the x87 FPU set to 64-bit precision. */
a_is_small = a_size <= MANT_DIG_DIGITS ||
(a_size == MANT_DIG_DIGITS+1 &&
a->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
b_is_small = b_size <= MANT_DIG_DIGITS ||
(b_size == MANT_DIG_DIGITS+1 &&
b->ob_digit[MANT_DIG_DIGITS] >> MANT_DIG_BITS == 0);
if (a_is_small && b_is_small) {
double da, db;
da = a->ob_digit[--a_size];
while (a_size > 0)
da = da * PyLong_BASE + a->ob_digit[--a_size];
db = b->ob_digit[--b_size];
while (b_size > 0)
db = db * PyLong_BASE + b->ob_digit[--b_size];
result = da / db;
goto success;
}
/* Catch obvious cases of underflow and overflow */
diff = a_size - b_size;
if (diff > PY_SSIZE_T_MAX/PyLong_SHIFT - 1)
/* Extreme overflow */
goto overflow;
else if (diff < 1 - PY_SSIZE_T_MAX/PyLong_SHIFT)
/* Extreme underflow */
goto underflow_or_zero;
/* Next line is now safe from overflowing a Py_ssize_t */
diff = diff * PyLong_SHIFT + bits_in_digit(a->ob_digit[a_size - 1]) -
bits_in_digit(b->ob_digit[b_size - 1]);
/* Now diff = a_bits - b_bits. */
if (diff > DBL_MAX_EXP)
goto overflow;
else if (diff < DBL_MIN_EXP - DBL_MANT_DIG - 1)
goto underflow_or_zero;
/* Choose value for shift; see comments for step 1 above. */
shift = Py_MAX(diff, DBL_MIN_EXP) - DBL_MANT_DIG - 2;
inexact = 0;
/* x = abs(a * 2**-shift) */
if (shift <= 0) {
Py_ssize_t i, shift_digits = -shift / PyLong_SHIFT;
digit rem;
/* x = a << -shift */
if (a_size >= PY_SSIZE_T_MAX - 1 - shift_digits) {
/* In practice, it's probably impossible to end up
here. Both a and b would have to be enormous,
using close to SIZE_T_MAX bytes of memory each. */
PyErr_SetString(PyExc_OverflowError,
"intermediate overflow during division");
goto error;
}
x = _PyLong_New(a_size + shift_digits + 1);
if (x == NULL)
goto error;
for (i = 0; i < shift_digits; i++)
x->ob_digit[i] = 0;
rem = v_lshift(x->ob_digit + shift_digits, a->ob_digit,
a_size, -shift % PyLong_SHIFT);
x->ob_digit[a_size + shift_digits] = rem;
}
else {
Py_ssize_t shift_digits = shift / PyLong_SHIFT;
digit rem;
/* x = a >> shift */
assert(a_size >= shift_digits);
x = _PyLong_New(a_size - shift_digits);
if (x == NULL)
goto error;
rem = v_rshift(x->ob_digit, a->ob_digit + shift_digits,
a_size - shift_digits, shift % PyLong_SHIFT);
/* set inexact if any of the bits shifted out is nonzero */
if (rem)
inexact = 1;
while (!inexact && shift_digits > 0)
if (a->ob_digit[--shift_digits])
inexact = 1;
}
long_normalize(x);
x_size = Py_SIZE(x);
/* x //= b. If the remainder is nonzero, set inexact. We own the only
reference to x, so it's safe to modify it in-place. */
if (b_size == 1) {
digit rem = inplace_divrem1(x->ob_digit, x->ob_digit, x_size,
b->ob_digit[0]);
long_normalize(x);
if (rem)
inexact = 1;
}
else {
PyLongObject *div, *rem;
div = x_divrem(x, b, &rem);
Py_DECREF(x);
x = div;
if (x == NULL)
goto error;
if (Py_SIZE(rem))
inexact = 1;
Py_DECREF(rem);
}
x_size = Py_ABS(Py_SIZE(x));
assert(x_size > 0); /* result of division is never zero */
x_bits = (x_size-1)*PyLong_SHIFT+bits_in_digit(x->ob_digit[x_size-1]);
/* The number of extra bits that have to be rounded away. */
extra_bits = Py_MAX(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG;
assert(extra_bits == 2 || extra_bits == 3);
/* Round by directly modifying the low digit of x. */
mask = (digit)1 << (extra_bits - 1);
low = x->ob_digit[0] | inexact;
if ((low & mask) && (low & (3U*mask-1U)))
low += mask;
x->ob_digit[0] = low & ~(2U*mask-1U);
/* Convert x to a double dx; the conversion is exact. */
dx = x->ob_digit[--x_size];
while (x_size > 0)
dx = dx * PyLong_BASE + x->ob_digit[--x_size];
Py_DECREF(x);
/* Check whether ldexp result will overflow a double. */
if (shift + x_bits >= DBL_MAX_EXP &&
(shift + x_bits > DBL_MAX_EXP || dx == ldexp(1.0, (int)x_bits)))
goto overflow;
result = ldexp(dx, (int)shift);
success:
return PyFloat_FromDouble(negate ? -result : result);
underflow_or_zero:
return PyFloat_FromDouble(negate ? -0.0 : 0.0);
overflow:
PyErr_SetString(PyExc_OverflowError,
"integer division result too large for a float");
error:
return NULL;
}
static PyObject *
long_mod(PyObject *a, PyObject *b)
{
PyLongObject *mod;
CHECK_BINOP(a, b);
if (Py_ABS(Py_SIZE(a)) == 1 && Py_ABS(Py_SIZE(b)) == 1) {
return fast_mod((PyLongObject*)a, (PyLongObject*)b);
}
if (l_divmod((PyLongObject*)a, (PyLongObject*)b, NULL, &mod) < 0)
mod = NULL;
return (PyObject *)mod;
}
static PyObject *
long_divmod(PyObject *a, PyObject *b)
{
PyLongObject *div, *mod;
PyObject *z;
CHECK_BINOP(a, b);
if (l_divmod((PyLongObject*)a, (PyLongObject*)b, &div, &mod) < 0) {
return NULL;
}
z = PyTuple_New(2);
if (z != NULL) {
PyTuple_SetItem(z, 0, (PyObject *) div);
PyTuple_SetItem(z, 1, (PyObject *) mod);
}
else {
Py_DECREF(div);
Py_DECREF(mod);
}
return z;
}
/* pow(v, w, x) */
static PyObject *
long_pow(PyObject *v, PyObject *w, PyObject *x)
{
PyLongObject *a, *b, *c; /* a,b,c = v,w,x */
int negativeOutput = 0; /* if x<0 return negative output */
PyLongObject *z = NULL; /* accumulated result */
Py_ssize_t i, j, k; /* counters */
PyLongObject *temp = NULL;
/* 5-ary values. If the exponent is large enough, table is
* precomputed so that table[i] == a**i % c for i in range(32).
*/
PyLongObject *table[32] = {0};
/* a, b, c = v, w, x */
CHECK_BINOP(v, w);
a = (PyLongObject*)v; Py_INCREF(a);
b = (PyLongObject*)w; Py_INCREF(b);
if (PyLong_Check(x)) {
c = (PyLongObject *)x;
Py_INCREF(x);
}
else if (x == Py_None)
c = NULL;
else {
Py_DECREF(a);
Py_DECREF(b);
Py_RETURN_NOTIMPLEMENTED;
}
if (Py_SIZE(b) < 0) { /* if exponent is negative */
if (c) {
PyErr_SetString(PyExc_ValueError, "pow() 2nd argument "
"cannot be negative when 3rd argument specified");
goto Error;
}
else {
/* else return a float. This works because we know
that this calls float_pow() which converts its
arguments to double. */
Py_DECREF(a);
Py_DECREF(b);
return PyFloat_Type.tp_as_number->nb_power(v, w, x);
}
}
if (c) {
/* if modulus == 0:
raise ValueError() */
if (Py_SIZE(c) == 0) {
PyErr_SetString(PyExc_ValueError,
"pow() 3rd argument cannot be 0");
goto Error;
}
/* if modulus < 0:
negativeOutput = True
modulus = -modulus */
if (Py_SIZE(c) < 0) {
negativeOutput = 1;
temp = (PyLongObject *)_PyLong_Copy(c);
if (temp == NULL)
goto Error;
Py_DECREF(c);
c = temp;
temp = NULL;
_PyLong_Negate(&c);
if (c == NULL)
goto Error;
}
/* if modulus == 1:
return 0 */
if ((Py_SIZE(c) == 1) && (c->ob_digit[0] == 1)) {
z = (PyLongObject *)PyLong_FromLong(0L);
goto Done;
}
/* Reduce base by modulus in some cases:
1. If base < 0. Forcing the base non-negative makes things easier.
2. If base is obviously larger than the modulus. The "small
exponent" case later can multiply directly by base repeatedly,
while the "large exponent" case multiplies directly by base 31
times. It can be unboundedly faster to multiply by
base % modulus instead.
We could _always_ do this reduction, but l_divmod() isn't cheap,
so we only do it when it buys something. */
if (Py_SIZE(a) < 0 || Py_SIZE(a) > Py_SIZE(c)) {
if (l_divmod(a, c, NULL, &temp) < 0)
goto Error;
Py_DECREF(a);
a = temp;
temp = NULL;
}
}
/* At this point a, b, and c are guaranteed non-negative UNLESS
c is NULL, in which case a may be negative. */
z = (PyLongObject *)PyLong_FromLong(1L);
if (z == NULL)
goto Error;
/* Perform a modular reduction, X = X % c, but leave X alone if c
* is NULL.
*/
#define REDUCE(X) \
do { \
if (c != NULL) { \
if (l_divmod(X, c, NULL, &temp) < 0) \
goto Error; \
Py_XDECREF(X); \
X = temp; \
temp = NULL; \
} \
} while(0)
/* Multiply two values, then reduce the result:
result = X*Y % c. If c is NULL, skip the mod. */
#define MULT(X, Y, result) \
do { \
temp = (PyLongObject *)long_mul(X, Y); \
if (temp == NULL) \
goto Error; \
Py_XDECREF(result); \
result = temp; \
temp = NULL; \
REDUCE(result); \
} while(0)
if (Py_SIZE(b) <= FIVEARY_CUTOFF) {
/* Left-to-right binary exponentiation (HAC Algorithm 14.79) */
/* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf */
for (i = Py_SIZE(b) - 1; i >= 0; --i) {
digit bi = b->ob_digit[i];
for (j = (digit)1 << (PyLong_SHIFT-1); j != 0; j >>= 1) {
MULT(z, z, z);
if (bi & j)
MULT(z, a, z);
}
}
}
else {
/* Left-to-right 5-ary exponentiation (HAC Algorithm 14.82) */
Py_INCREF(z); /* still holds 1L */
table[0] = z;
for (i = 1; i < 32; ++i)
MULT(table[i-1], a, table[i]);
for (i = Py_SIZE(b) - 1; i >= 0; --i) {
const digit bi = b->ob_digit[i];
for (j = PyLong_SHIFT - 5; j >= 0; j -= 5) {
const int index = (bi >> j) & 0x1f;
for (k = 0; k < 5; ++k)
MULT(z, z, z);
if (index)
MULT(z, table[index], z);
}
}
}
if (negativeOutput && (Py_SIZE(z) != 0)) {
temp = (PyLongObject *)long_sub(z, c);
if (temp == NULL)
goto Error;
Py_DECREF(z);
z = temp;
temp = NULL;
}
goto Done;
Error:
Py_CLEAR(z);
/* fall through */
Done:
if (Py_SIZE(b) > FIVEARY_CUTOFF) {
for (i = 0; i < 32; ++i)
Py_XDECREF(table[i]);
}
Py_DECREF(a);
Py_DECREF(b);
Py_XDECREF(c);
Py_XDECREF(temp);
return (PyObject *)z;
}
static PyObject *
long_invert(PyLongObject *v)
{
/* Implement ~x as -(x+1) */
PyLongObject *x;
PyLongObject *w;
if (Py_ABS(Py_SIZE(v)) <=1)
return PyLong_FromLong(-(MEDIUM_VALUE(v)+1));
w = (PyLongObject *)PyLong_FromLong(1L);
if (w == NULL)
return NULL;
x = (PyLongObject *) long_add(v, w);
Py_DECREF(w);
if (x == NULL)
return NULL;
_PyLong_Negate(&x);
/* No need for maybe_small_long here, since any small
longs will have been caught in the Py_SIZE <= 1 fast path. */
return (PyObject *)x;
}
static PyObject *
long_neg(PyLongObject *v)
{
PyLongObject *z;
if (Py_ABS(Py_SIZE(v)) <= 1)
return PyLong_FromLong(-MEDIUM_VALUE(v));
z = (PyLongObject *)_PyLong_Copy(v);
if (z != NULL)
Py_SIZE(z) = -(Py_SIZE(v));
return (PyObject *)z;
}
static PyObject *
long_abs(PyLongObject *v)
{
if (Py_SIZE(v) < 0)
return long_neg(v);
else
return long_long((PyObject *)v);
}
static int
long_bool(PyLongObject *v)
{
return Py_SIZE(v) != 0;
}
static PyObject *
long_rshift(PyLongObject *a, PyLongObject *b)
{
PyLongObject *z = NULL;
Py_ssize_t shiftby, newsize, wordshift, loshift, hishift, i, j;
digit lomask, himask;
CHECK_BINOP(a, b);
if (Py_SIZE(a) < 0) {
/* Right shifting negative numbers is harder */
PyLongObject *a1, *a2;
a1 = (PyLongObject *) long_invert(a);
if (a1 == NULL)
goto rshift_error;
a2 = (PyLongObject *) long_rshift(a1, b);
Py_DECREF(a1);
if (a2 == NULL)
goto rshift_error;
z = (PyLongObject *) long_invert(a2);
Py_DECREF(a2);
}
else {
shiftby = PyLong_AsSsize_t((PyObject *)b);
if (shiftby == -1L && PyErr_Occurred())
goto rshift_error;
if (shiftby < 0) {
PyErr_SetString(PyExc_ValueError,
"negative shift count");
goto rshift_error;
}
wordshift = shiftby / PyLong_SHIFT;
newsize = Py_ABS(Py_SIZE(a)) - wordshift;
if (newsize <= 0)
return PyLong_FromLong(0);
loshift = shiftby % PyLong_SHIFT;
hishift = PyLong_SHIFT - loshift;
lomask = ((digit)1 << hishift) - 1;
himask = PyLong_MASK ^ lomask;
z = _PyLong_New(newsize);
if (z == NULL)
goto rshift_error;
if (Py_SIZE(a) < 0)
Py_SIZE(z) = -(Py_SIZE(z));
for (i = 0, j = wordshift; i < newsize; i++, j++) {
z->ob_digit[i] = (a->ob_digit[j] >> loshift) & lomask;
if (i+1 < newsize)
z->ob_digit[i] |= (a->ob_digit[j+1] << hishift) & himask;
}
z = long_normalize(z);
}
rshift_error:
return (PyObject *) maybe_small_long(z);
}
static PyObject *
long_lshift(PyObject *v, PyObject *w)
{
/* This version due to Tim Peters */
PyLongObject *a = (PyLongObject*)v;
PyLongObject *b = (PyLongObject*)w;
PyLongObject *z = NULL;
Py_ssize_t shiftby, oldsize, newsize, wordshift, remshift, i, j;
twodigits accum;
CHECK_BINOP(a, b);
shiftby = PyLong_AsSsize_t((PyObject *)b);
if (shiftby == -1L && PyErr_Occurred())
return NULL;
if (shiftby < 0) {
PyErr_SetString(PyExc_ValueError, "negative shift count");
return NULL;
}
if (Py_SIZE(a) == 0) {
return PyLong_FromLong(0);
}
/* wordshift, remshift = divmod(shiftby, PyLong_SHIFT) */
wordshift = shiftby / PyLong_SHIFT;
remshift = shiftby - wordshift * PyLong_SHIFT;
oldsize = Py_ABS(Py_SIZE(a));
newsize = oldsize + wordshift;
if (remshift)
++newsize;
z = _PyLong_New(newsize);
if (z == NULL)
return NULL;
if (Py_SIZE(a) < 0) {
assert(Py_REFCNT(z) == 1);
Py_SIZE(z) = -Py_SIZE(z);
}
for (i = 0; i < wordshift; i++)
z->ob_digit[i] = 0;
accum = 0;
for (i = wordshift, j = 0; j < oldsize; i++, j++) {
accum |= (twodigits)a->ob_digit[j] << remshift;
z->ob_digit[i] = (digit)(accum & PyLong_MASK);
accum >>= PyLong_SHIFT;
}
if (remshift)
z->ob_digit[newsize-1] = (digit)accum;
else
assert(!accum);
z = long_normalize(z);
return (PyObject *) maybe_small_long(z);
}
/* Compute two's complement of digit vector a[0:m], writing result to
z[0:m]. The digit vector a need not be normalized, but should not
be entirely zero. a and z may point to the same digit vector. */
static void
v_complement(digit *z, digit *a, Py_ssize_t m)
{
Py_ssize_t i;
digit carry = 1;
for (i = 0; i < m; ++i) {
carry += a[i] ^ PyLong_MASK;
z[i] = carry & PyLong_MASK;
carry >>= PyLong_SHIFT;
}
assert(carry == 0);
}
/* Bitwise and/xor/or operations */
static PyObject *
long_bitwise(PyLongObject *a,
char op, /* '&', '|', '^' */
PyLongObject *b)
{
int nega, negb, negz;
Py_ssize_t size_a, size_b, size_z, i;
PyLongObject *z;
/* Bitwise operations for negative numbers operate as though
on a two's complement representation. So convert arguments
from sign-magnitude to two's complement, and convert the
result back to sign-magnitude at the end. */
/* If a is negative, replace it by its two's complement. */
size_a = Py_ABS(Py_SIZE(a));
nega = Py_SIZE(a) < 0;
if (nega) {
z = _PyLong_New(size_a);
if (z == NULL)
return NULL;
v_complement(z->ob_digit, a->ob_digit, size_a);
a = z;
}
else
/* Keep reference count consistent. */
Py_INCREF(a);
/* Same for b. */
size_b = Py_ABS(Py_SIZE(b));
negb = Py_SIZE(b) < 0;
if (negb) {
z = _PyLong_New(size_b);
if (z == NULL) {
Py_DECREF(a);
return NULL;
}
v_complement(z->ob_digit, b->ob_digit, size_b);
b = z;
}
else
Py_INCREF(b);
/* Swap a and b if necessary to ensure size_a >= size_b. */
if (size_a < size_b) {
z = a; a = b; b = z;
size_z = size_a; size_a = size_b; size_b = size_z;
negz = nega; nega = negb; negb = negz;
}
/* JRH: The original logic here was to allocate the result value (z)
as the longer of the two operands. However, there are some cases
where the result is guaranteed to be shorter than that: AND of two
positives, OR of two negatives: use the shorter number. AND with
mixed signs: use the positive number. OR with mixed signs: use the
negative number.
*/
switch (op) {
case '^':
negz = nega ^ negb;
size_z = size_a;
break;
case '&':
negz = nega & negb;
size_z = negb ? size_a : size_b;
break;
case '|':
negz = nega | negb;
size_z = negb ? size_b : size_a;
break;
default:
PyErr_BadArgument();
return NULL;
}
/* We allow an extra digit if z is negative, to make sure that
the final two's complement of z doesn't overflow. */
z = _PyLong_New(size_z + negz);
if (z == NULL) {
Py_DECREF(a);
Py_DECREF(b);
return NULL;
}
/* Compute digits for overlap of a and b. */
switch(op) {
case '&':
for (i = 0; i < size_b; ++i)
z->ob_digit[i] = a->ob_digit[i] & b->ob_digit[i];
break;
case '|':
for (i = 0; i < size_b; ++i)
z->ob_digit[i] = a->ob_digit[i] | b->ob_digit[i];
break;
case '^':
for (i = 0; i < size_b; ++i)
z->ob_digit[i] = a->ob_digit[i] ^ b->ob_digit[i];
break;
default:
PyErr_BadArgument();
return NULL;
}
/* Copy any remaining digits of a, inverting if necessary. */
if (op == '^' && negb)
for (; i < size_z; ++i)
z->ob_digit[i] = a->ob_digit[i] ^ PyLong_MASK;
else if (i < size_z)
memcpy(&z->ob_digit[i], &a->ob_digit[i],
(size_z-i)*sizeof(digit));
/* Complement result if negative. */
if (negz) {
Py_SIZE(z) = -(Py_SIZE(z));
z->ob_digit[size_z] = PyLong_MASK;
v_complement(z->ob_digit, z->ob_digit, size_z+1);
}
Py_DECREF(a);
Py_DECREF(b);
return (PyObject *)maybe_small_long(long_normalize(z));
}
static PyObject *
long_and(PyObject *a, PyObject *b)
{
PyObject *c;
CHECK_BINOP(a, b);
c = long_bitwise((PyLongObject*)a, '&', (PyLongObject*)b);
return c;
}
static PyObject *
long_xor(PyObject *a, PyObject *b)
{
PyObject *c;
CHECK_BINOP(a, b);
c = long_bitwise((PyLongObject*)a, '^', (PyLongObject*)b);
return c;
}
static PyObject *
long_or(PyObject *a, PyObject *b)
{
PyObject *c;
CHECK_BINOP(a, b);
c = long_bitwise((PyLongObject*)a, '|', (PyLongObject*)b);
return c;
}
static PyObject *
long_long(PyObject *v)
{
if (PyLong_CheckExact(v))
Py_INCREF(v);
else
v = _PyLong_Copy((PyLongObject *)v);
return v;
}
PyObject *
_PyLong_GCD(PyObject *aarg, PyObject *barg)
{
PyLongObject *a, *b, *c = NULL, *d = NULL, *r;
stwodigits x, y, q, s, t, c_carry, d_carry;
stwodigits A, B, C, D, T;
int nbits, k;
Py_ssize_t size_a, size_b, alloc_a, alloc_b;
digit *a_digit, *b_digit, *c_digit, *d_digit, *a_end, *b_end;
a = (PyLongObject *)aarg;
b = (PyLongObject *)barg;
size_a = Py_SIZE(a);
size_b = Py_SIZE(b);
if (-2 <= size_a && size_a <= 2 && -2 <= size_b && size_b <= 2) {
Py_INCREF(a);
Py_INCREF(b);
goto simple;
}
/* Initial reduction: make sure that 0 <= b <= a. */
a = (PyLongObject *)long_abs(a);
if (a == NULL)
return NULL;
b = (PyLongObject *)long_abs(b);
if (b == NULL) {
Py_DECREF(a);
return NULL;
}
if (long_compare(a, b) < 0) {
r = a;
a = b;
b = r;
}
/* We now own references to a and b */
alloc_a = Py_SIZE(a);
alloc_b = Py_SIZE(b);
/* reduce until a fits into 2 digits */
while ((size_a = Py_SIZE(a)) > 2) {
nbits = bits_in_digit(a->ob_digit[size_a-1]);
/* extract top 2*PyLong_SHIFT bits of a into x, along with
corresponding bits of b into y */
size_b = Py_SIZE(b);
assert(size_b <= size_a);
if (size_b == 0) {
if (size_a < alloc_a) {
r = (PyLongObject *)_PyLong_Copy(a);
Py_DECREF(a);
}
else
r = a;
Py_DECREF(b);
Py_XDECREF(c);
Py_XDECREF(d);
return (PyObject *)r;
}
x = (((twodigits)a->ob_digit[size_a-1] << (2*PyLong_SHIFT-nbits)) |
((twodigits)a->ob_digit[size_a-2] << (PyLong_SHIFT-nbits)) |
(a->ob_digit[size_a-3] >> nbits));
y = ((size_b >= size_a - 2 ? b->ob_digit[size_a-3] >> nbits : 0) |
(size_b >= size_a - 1 ? (twodigits)b->ob_digit[size_a-2] << (PyLong_SHIFT-nbits) : 0) |
(size_b >= size_a ? (twodigits)b->ob_digit[size_a-1] << (2*PyLong_SHIFT-nbits) : 0));
/* inner loop of Lehmer's algorithm; A, B, C, D never grow
larger than PyLong_MASK during the algorithm. */
A = 1; B = 0; C = 0; D = 1;
for (k=0;; k++) {
if (y-C == 0)
break;
q = (x+(A-1))/(y-C);
s = B+q*D;
t = x-q*y;
if (s > t)
break;
x = y; y = t;
t = A+q*C; A = D; B = C; C = s; D = t;
}
if (k == 0) {
/* no progress; do a Euclidean step */
if (l_divmod(a, b, NULL, &r) < 0)
goto error;
Py_DECREF(a);
a = b;
b = r;
alloc_a = alloc_b;
alloc_b = Py_SIZE(b);
continue;
}
/*
a, b = A*b-B*a, D*a-C*b if k is odd
a, b = A*a-B*b, D*b-C*a if k is even
*/
if (k&1) {
T = -A; A = -B; B = T;
T = -C; C = -D; D = T;
}
if (c != NULL)
Py_SIZE(c) = size_a;
else if (Py_REFCNT(a) == 1) {
Py_INCREF(a);
c = a;
}
else {
alloc_a = size_a;
c = _PyLong_New(size_a);
if (c == NULL)
goto error;
}
if (d != NULL)
Py_SIZE(d) = size_a;
else if (Py_REFCNT(b) == 1 && size_a <= alloc_b) {
Py_INCREF(b);
d = b;
Py_SIZE(d) = size_a;
}
else {
alloc_b = size_a;
d = _PyLong_New(size_a);
if (d == NULL)
goto error;
}
a_end = a->ob_digit + size_a;
b_end = b->ob_digit + size_b;
/* compute new a and new b in parallel */
a_digit = a->ob_digit;
b_digit = b->ob_digit;
c_digit = c->ob_digit;
d_digit = d->ob_digit;
c_carry = 0;
d_carry = 0;
while (b_digit < b_end) {
c_carry += (A * *a_digit) - (B * *b_digit);
d_carry += (D * *b_digit++) - (C * *a_digit++);
*c_digit++ = (digit)(c_carry & PyLong_MASK);
*d_digit++ = (digit)(d_carry & PyLong_MASK);
c_carry >>= PyLong_SHIFT;
d_carry >>= PyLong_SHIFT;
}
while (a_digit < a_end) {
c_carry += A * *a_digit;
d_carry -= C * *a_digit++;
*c_digit++ = (digit)(c_carry & PyLong_MASK);
*d_digit++ = (digit)(d_carry & PyLong_MASK);
c_carry >>= PyLong_SHIFT;
d_carry >>= PyLong_SHIFT;
}
assert(c_carry == 0);
assert(d_carry == 0);
Py_INCREF(c);
Py_INCREF(d);
Py_DECREF(a);
Py_DECREF(b);
a = long_normalize(c);
b = long_normalize(d);
}
Py_XDECREF(c);
Py_XDECREF(d);
simple:
assert(Py_REFCNT(a) > 0);
assert(Py_REFCNT(b) > 0);
/* Issue #24999: use two shifts instead of ">> 2*PyLong_SHIFT" to avoid
undefined behaviour when LONG_MAX type is smaller than 60 bits */
#if LONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
/* a fits into a long, so b must too */
x = PyLong_AsLong((PyObject *)a);
y = PyLong_AsLong((PyObject *)b);
#elif PY_LLONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
x = PyLong_AsLongLong((PyObject *)a);
y = PyLong_AsLongLong((PyObject *)b);
#else
# error "_PyLong_GCD"
#endif
x = Py_ABS(x);
y = Py_ABS(y);
Py_DECREF(a);
Py_DECREF(b);
/* usual Euclidean algorithm for longs */
while (y != 0) {
t = y;
y = x % y;
x = t;
}
#if LONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
return PyLong_FromLong(x);
#elif PY_LLONG_MAX >> PyLong_SHIFT >> PyLong_SHIFT
return PyLong_FromLongLong(x);
#else
# error "_PyLong_GCD"
#endif
error:
Py_DECREF(a);
Py_DECREF(b);
Py_XDECREF(c);
Py_XDECREF(d);
return NULL;
}
static PyObject *
long_float(PyObject *v)
{
double result;
result = PyLong_AsDouble(v);
if (result == -1.0 && PyErr_Occurred())
return NULL;
return PyFloat_FromDouble(result);
}
static PyObject *
long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
static PyObject *
long_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyObject *obase = NULL, *x = NULL;
Py_ssize_t base;
static char *kwlist[] = {"x", "base", 0};
if (type != &PyLong_Type)
return long_subtype_new(type, args, kwds); /* Wimp out */
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OO:int", kwlist,
&x, &obase))
return NULL;
if (x == NULL) {
if (obase != NULL) {
PyErr_SetString(PyExc_TypeError,
"int() missing string argument");
return NULL;
}
return PyLong_FromLong(0L);
}
if (obase == NULL)
return PyNumber_Long(x);
base = PyNumber_AsSsize_t(obase, NULL);
if (base == -1 && PyErr_Occurred())
return NULL;
if ((base != 0 && base < 2) || base > 36) {
PyErr_SetString(PyExc_ValueError,
"int() base must be >= 2 and <= 36, or 0");
return NULL;
}
if (PyUnicode_Check(x))
return PyLong_FromUnicodeObject(x, (int)base);
else if (PyByteArray_Check(x) || PyBytes_Check(x)) {
char *string;
if (PyByteArray_Check(x))
string = PyByteArray_AS_STRING(x);
else
string = PyBytes_AS_STRING(x);
return _PyLong_FromBytes(string, Py_SIZE(x), (int)base);
}
else {
PyErr_SetString(PyExc_TypeError,
"int() can't convert non-string with explicit base");
return NULL;
}
}
/* Wimpy, slow approach to tp_new calls for subtypes of int:
first create a regular int from whatever arguments we got,
then allocate a subtype instance and initialize it from
the regular int. The regular int is then thrown away.
*/
static PyObject *
long_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyLongObject *tmp, *newobj;
Py_ssize_t i, n;
assert(PyType_IsSubtype(type, &PyLong_Type));
tmp = (PyLongObject *)long_new(&PyLong_Type, args, kwds);
if (tmp == NULL)
return NULL;
assert(PyLong_Check(tmp));
n = Py_SIZE(tmp);
if (n < 0)
n = -n;
newobj = (PyLongObject *)type->tp_alloc(type, n);
if (newobj == NULL) {
Py_DECREF(tmp);
return NULL;
}
assert(PyLong_Check(newobj));
Py_SIZE(newobj) = Py_SIZE(tmp);
for (i = 0; i < n; i++)
newobj->ob_digit[i] = tmp->ob_digit[i];
Py_DECREF(tmp);
return (PyObject *)newobj;
}
static PyObject *
long_getnewargs(PyLongObject *v)
{
return Py_BuildValue("(N)", _PyLong_Copy(v));
}
static PyObject *
long_get0(PyLongObject *v, void *context) {
return PyLong_FromLong(0L);
}
static PyObject *
long_get1(PyLongObject *v, void *context) {
return PyLong_FromLong(1L);
}
static PyObject *
long__format__(PyObject *self, PyObject **args, Py_ssize_t nargs)
{
PyObject *format_spec;
_PyUnicodeWriter writer;
int ret;
if (!_PyArg_ParseStack(args, nargs, "U:__format__", &format_spec))
return NULL;
_PyUnicodeWriter_Init(&writer);
ret = _PyLong_FormatAdvancedWriter(
&writer,
self,
format_spec, 0, PyUnicode_GET_LENGTH(format_spec));
if (ret == -1) {
_PyUnicodeWriter_Dealloc(&writer);
return NULL;
}
return _PyUnicodeWriter_Finish(&writer);
}
/* Return a pair (q, r) such that a = b * q + r, and
abs(r) <= abs(b)/2, with equality possible only if q is even.
In other words, q == a / b, rounded to the nearest integer using
round-half-to-even. */
PyObject *
_PyLong_DivmodNear(PyObject *a, PyObject *b)
{
PyLongObject *quo = NULL, *rem = NULL;
PyObject *one = NULL, *twice_rem, *result, *temp;
int cmp, quo_is_odd, quo_is_neg;
/* Equivalent Python code:
def divmod_near(a, b):
q, r = divmod(a, b)
# round up if either r / b > 0.5, or r / b == 0.5 and q is odd.
# The expression r / b > 0.5 is equivalent to 2 * r > b if b is
# positive, 2 * r < b if b negative.
greater_than_half = 2*r > b if b > 0 else 2*r < b
exactly_half = 2*r == b
if greater_than_half or exactly_half and q % 2 == 1:
q += 1
r -= b
return q, r
*/
if (!PyLong_Check(a) || !PyLong_Check(b)) {
PyErr_SetString(PyExc_TypeError,
"non-integer arguments in division");
return NULL;
}
/* Do a and b have different signs? If so, quotient is negative. */
quo_is_neg = (Py_SIZE(a) < 0) != (Py_SIZE(b) < 0);
one = PyLong_FromLong(1L);
if (one == NULL)
return NULL;
if (long_divrem((PyLongObject*)a, (PyLongObject*)b, &quo, &rem) < 0)
goto error;
/* compare twice the remainder with the divisor, to see
if we need to adjust the quotient and remainder */
twice_rem = long_lshift((PyObject *)rem, one);
if (twice_rem == NULL)
goto error;
if (quo_is_neg) {
temp = long_neg((PyLongObject*)twice_rem);
Py_DECREF(twice_rem);
twice_rem = temp;
if (twice_rem == NULL)
goto error;
}
cmp = long_compare((PyLongObject *)twice_rem, (PyLongObject *)b);
Py_DECREF(twice_rem);
quo_is_odd = Py_SIZE(quo) != 0 && ((quo->ob_digit[0] & 1) != 0);
if ((Py_SIZE(b) < 0 ? cmp < 0 : cmp > 0) || (cmp == 0 && quo_is_odd)) {
/* fix up quotient */
if (quo_is_neg)
temp = long_sub(quo, (PyLongObject *)one);
else
temp = long_add(quo, (PyLongObject *)one);
Py_DECREF(quo);
quo = (PyLongObject *)temp;
if (quo == NULL)
goto error;
/* and remainder */
if (quo_is_neg)
temp = long_add(rem, (PyLongObject *)b);
else
temp = long_sub(rem, (PyLongObject *)b);
Py_DECREF(rem);
rem = (PyLongObject *)temp;
if (rem == NULL)
goto error;
}
result = PyTuple_New(2);
if (result == NULL)
goto error;
/* PyTuple_SET_ITEM steals references */
PyTuple_SET_ITEM(result, 0, (PyObject *)quo);
PyTuple_SET_ITEM(result, 1, (PyObject *)rem);
Py_DECREF(one);
return result;
error:
Py_XDECREF(quo);
Py_XDECREF(rem);
Py_XDECREF(one);
return NULL;
}
static PyObject *
long_round(PyObject *self, PyObject **args, Py_ssize_t nargs)
{
PyObject *o_ndigits=NULL, *temp, *result, *ndigits;
/* To round an integer m to the nearest 10**n (n positive), we make use of
* the divmod_near operation, defined by:
*
* divmod_near(a, b) = (q, r)
*
* where q is the nearest integer to the quotient a / b (the
* nearest even integer in the case of a tie) and r == a - q * b.
* Hence q * b = a - r is the nearest multiple of b to a,
* preferring even multiples in the case of a tie.
*
* So the nearest multiple of 10**n to m is:
*
* m - divmod_near(m, 10**n)[1].
*/
if (!_PyArg_ParseStack(args, nargs, "|O", &o_ndigits))
return NULL;
if (o_ndigits == NULL)
return long_long(self);
ndigits = PyNumber_Index(o_ndigits);
if (ndigits == NULL)
return NULL;
/* if ndigits >= 0 then no rounding is necessary; return self unchanged */
if (Py_SIZE(ndigits) >= 0) {
Py_DECREF(ndigits);
return long_long(self);
}
/* result = self - divmod_near(self, 10 ** -ndigits)[1] */
temp = long_neg((PyLongObject*)ndigits);
Py_DECREF(ndigits);
ndigits = temp;
if (ndigits == NULL)
return NULL;
result = PyLong_FromLong(10L);
if (result == NULL) {
Py_DECREF(ndigits);
return NULL;
}
temp = long_pow(result, ndigits, Py_None);
Py_DECREF(ndigits);
Py_DECREF(result);
result = temp;
if (result == NULL)
return NULL;
temp = _PyLong_DivmodNear(self, result);
Py_DECREF(result);
result = temp;
if (result == NULL)
return NULL;
temp = long_sub((PyLongObject *)self,
(PyLongObject *)PyTuple_GET_ITEM(result, 1));
Py_DECREF(result);
result = temp;
return result;
}
static PyObject *
long_sizeof(PyLongObject *v)
{
Py_ssize_t res;
res = offsetof(PyLongObject, ob_digit) + Py_ABS(Py_SIZE(v))*sizeof(digit);
return PyLong_FromSsize_t(res);
}
static PyObject *
long_bit_length(PyLongObject *v)
{
PyLongObject *result, *x, *y;
Py_ssize_t ndigits, msd_bits;
assert(v != NULL);
assert(PyLong_Check(v));
ndigits = Py_ABS(Py_SIZE(v));
if (ndigits == 0)
return PyLong_FromLong(0);
/* [jart] faster bit scanning */
msd_bits = bits_in_digit(v->ob_digit[ndigits-1]);
if (ndigits <= PY_SSIZE_T_MAX/PyLong_SHIFT)
return PyLong_FromSsize_t((ndigits-1)*PyLong_SHIFT + msd_bits);
/* expression above may overflow; use Python integers instead */
result = (PyLongObject *)PyLong_FromSsize_t(ndigits - 1);
if (result == NULL)
return NULL;
x = (PyLongObject *)PyLong_FromLong(PyLong_SHIFT);
if (x == NULL)
goto error;
y = (PyLongObject *)long_mul(result, x);
Py_DECREF(x);
if (y == NULL)
goto error;
Py_DECREF(result);
result = y;
x = (PyLongObject *)PyLong_FromLong((long)msd_bits);
if (x == NULL)
goto error;
y = (PyLongObject *)long_add(result, x);
Py_DECREF(x);
if (y == NULL)
goto error;
Py_DECREF(result);
result = y;
return (PyObject *)result;
error:
Py_DECREF(result);
return NULL;
}
PyDoc_STRVAR(long_bit_length_doc,
"int.bit_length() -> int\n\
\n\
Number of bits necessary to represent self in binary.\n\
>>> bin(37)\n\
'0b100101'\n\
>>> (37).bit_length()\n\
6");
/* [jart] the nsa instruction */
static PyObject *
long_bit_count(PyLongObject *v)
{
Py_ssize_t digs;
assert(v != NULL);
assert(PyLong_Check(v));
digs = Py_ABS(Py_SIZE(v));
if (digs > PY_SSIZE_T_MAX/PyLong_SHIFT)
goto Overflow;
return PyLong_FromSize_t(_countbits(v->ob_digit, digs * sizeof(digit)));
Overflow:
PyErr_SetString(PyExc_OverflowError, "size_t too small");
return NULL;
}
PyDoc_STRVAR(long_bit_count_doc,
"int.bit_count() -> int\n\
\n\
Population count of integer.\n\
>>> bin(37)\n\
'0b100101'\n\
>>> (37).bit_count()\n\
3");
#if 0
static PyObject *
long_is_finite(PyObject *v)
{
Py_RETURN_TRUE;
}
#endif
static PyObject *
long_to_bytes(PyLongObject *v, PyObject *args, PyObject *kwds)
{
PyObject *byteorder_str;
PyObject *is_signed_obj = NULL;
Py_ssize_t length;
int little_endian;
int is_signed;
PyObject *bytes;
static char *kwlist[] = {"length", "byteorder", "signed", NULL};
if (!PyArg_ParseTupleAndKeywords(args, kwds, "nU|O:to_bytes", kwlist,
&length, &byteorder_str,
&is_signed_obj))
return NULL;
if (args != NULL && Py_SIZE(args) > 2) {
PyErr_SetString(PyExc_TypeError,
"'signed' is a keyword-only argument");
return NULL;
}
if (_PyUnicode_EqualToASCIIString(byteorder_str, "little"))
little_endian = 1;
else if (_PyUnicode_EqualToASCIIString(byteorder_str, "big"))
little_endian = 0;
else {
PyErr_SetString(PyExc_ValueError,
"byteorder must be either 'little' or 'big'");
return NULL;
}
if (is_signed_obj != NULL) {
int cmp = PyObject_IsTrue(is_signed_obj);
if (cmp < 0)
return NULL;
is_signed = cmp ? 1 : 0;
}
else {
/* If the signed argument was omitted, use False as the
default. */
is_signed = 0;
}
if (length < 0) {
PyErr_SetString(PyExc_ValueError,
"length argument must be non-negative");
return NULL;
}
bytes = PyBytes_FromStringAndSize(NULL, length);
if (bytes == NULL)
return NULL;
if (_PyLong_AsByteArray(v, (unsigned char *)PyBytes_AS_STRING(bytes),
length, little_endian, is_signed) < 0) {
Py_DECREF(bytes);
return NULL;
}
return bytes;
}
PyDoc_STRVAR(long_to_bytes_doc,
"int.to_bytes(length, byteorder, *, signed=False) -> bytes\n\
\n\
Return an array of bytes representing an integer.\n\
\n\
The integer is represented using length bytes. An OverflowError is\n\
raised if the integer is not representable with the given number of\n\
bytes.\n\
\n\
The byteorder argument determines the byte order used to represent the\n\
integer. If byteorder is 'big', the most significant byte is at the\n\
beginning of the byte array. If byteorder is 'little', the most\n\
significant byte is at the end of the byte array. To request the native\n\
byte order of the host system, use `sys.byteorder' as the byte order value.\n\
\n\
The signed keyword-only argument determines whether two's complement is\n\
used to represent the integer. If signed is False and a negative integer\n\
is given, an OverflowError is raised.");
static PyObject *
long_from_bytes(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyObject *byteorder_str;
PyObject *is_signed_obj = NULL;
int little_endian;
int is_signed;
PyObject *obj;
PyObject *bytes;
PyObject *long_obj;
static char *kwlist[] = {"bytes", "byteorder", "signed", NULL};
if (!PyArg_ParseTupleAndKeywords(args, kwds, "OU|O:from_bytes", kwlist,
&obj, &byteorder_str,
&is_signed_obj))
return NULL;
if (args != NULL && Py_SIZE(args) > 2) {
PyErr_SetString(PyExc_TypeError,
"'signed' is a keyword-only argument");
return NULL;
}
if (_PyUnicode_EqualToASCIIString(byteorder_str, "little"))
little_endian = 1;
else if (_PyUnicode_EqualToASCIIString(byteorder_str, "big"))
little_endian = 0;
else {
PyErr_SetString(PyExc_ValueError,
"byteorder must be either 'little' or 'big'");
return NULL;
}
if (is_signed_obj != NULL) {
int cmp = PyObject_IsTrue(is_signed_obj);
if (cmp < 0)
return NULL;
is_signed = cmp ? 1 : 0;
}
else {
/* If the signed argument was omitted, use False as the
default. */
is_signed = 0;
}
bytes = PyObject_Bytes(obj);
if (bytes == NULL)
return NULL;
long_obj = _PyLong_FromByteArray(
(unsigned char *)PyBytes_AS_STRING(bytes), Py_SIZE(bytes),
little_endian, is_signed);
Py_DECREF(bytes);
if (long_obj != NULL && type != &PyLong_Type) {
Py_SETREF(long_obj, PyObject_CallFunctionObjArgs((PyObject *)type,
long_obj, NULL));
}
return long_obj;
}
PyDoc_STRVAR(long_from_bytes_doc,
"int.from_bytes(bytes, byteorder, *, signed=False) -> int\n\
\n\
Return the integer represented by the given array of bytes.\n\
\n\
The bytes argument must be a bytes-like object (e.g. bytes or bytearray).\n\
\n\
The byteorder argument determines the byte order used to represent the\n\
integer. If byteorder is 'big', the most significant byte is at the\n\
beginning of the byte array. If byteorder is 'little', the most\n\
significant byte is at the end of the byte array. To request the native\n\
byte order of the host system, use `sys.byteorder' as the byte order value.\n\
\n\
The signed keyword-only argument indicates whether two's complement is\n\
used to represent the integer.");
static PyMethodDef long_methods[] = {
{"conjugate", (PyCFunction)long_long, METH_NOARGS,
"Returns self, the complex conjugate of any int."},
{"bit_length", (PyCFunction)long_bit_length, METH_NOARGS,
long_bit_length_doc},
{"bit_count", (PyCFunction)long_bit_count, METH_NOARGS,
long_bit_count_doc},
#if 0
{"is_finite", (PyCFunction)long_is_finite, METH_NOARGS,
"Returns always True."},
#endif
{"to_bytes", (PyCFunction)long_to_bytes,
METH_VARARGS|METH_KEYWORDS, long_to_bytes_doc},
{"from_bytes", (PyCFunction)long_from_bytes,
METH_VARARGS|METH_KEYWORDS|METH_CLASS, long_from_bytes_doc},
{"__trunc__", (PyCFunction)long_long, METH_NOARGS,
"Truncating an Integral returns itself."},
{"__floor__", (PyCFunction)long_long, METH_NOARGS,
"Flooring an Integral returns itself."},
{"__ceil__", (PyCFunction)long_long, METH_NOARGS,
"Ceiling of an Integral returns itself."},
{"__round__", (PyCFunction)long_round, METH_FASTCALL,
"Rounding an Integral returns itself.\n"
"Rounding with an ndigits argument also returns an integer."},
{"__getnewargs__", (PyCFunction)long_getnewargs, METH_NOARGS},
{"__format__", (PyCFunction)long__format__, METH_FASTCALL},
{"__sizeof__", (PyCFunction)long_sizeof, METH_NOARGS,
"Returns size in memory, in bytes"},
{NULL, NULL} /* sentinel */
};
static PyGetSetDef long_getset[] = {
{"real",
(getter)long_long, (setter)NULL,
"the real part of a complex number",
NULL},
{"imag",
(getter)long_get0, (setter)NULL,
"the imaginary part of a complex number",
NULL},
{"numerator",
(getter)long_long, (setter)NULL,
"the numerator of a rational number in lowest terms",
NULL},
{"denominator",
(getter)long_get1, (setter)NULL,
"the denominator of a rational number in lowest terms",
NULL},
{NULL} /* Sentinel */
};
PyDoc_STRVAR(long_doc,
"int(x=0) -> integer\n\
int(x, base=10) -> integer\n\
\n\
Convert a number or string to an integer, or return 0 if no arguments\n\
are given. If x is a number, return x.__int__(). For floating point\n\
numbers, this truncates towards zero.\n\
\n\
If x is not a number or if base is given, then x must be a string,\n\
bytes, or bytearray instance representing an integer literal in the\n\
given base. The literal can be preceded by '+' or '-' and be surrounded\n\
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.\n\
Base 0 means to interpret the base from the string as an integer literal.\n\
>>> int('0b100', base=0)\n\
4");
static PyNumberMethods long_as_number = {
(binaryfunc)long_add, /*nb_add*/
(binaryfunc)long_sub, /*nb_subtract*/
(binaryfunc)long_mul, /*nb_multiply*/
long_mod, /*nb_remainder*/
long_divmod, /*nb_divmod*/
long_pow, /*nb_power*/
(unaryfunc)long_neg, /*nb_negative*/
(unaryfunc)long_long, /*tp_positive*/
(unaryfunc)long_abs, /*tp_absolute*/
(inquiry)long_bool, /*tp_bool*/
(unaryfunc)long_invert, /*nb_invert*/
long_lshift, /*nb_lshift*/
(binaryfunc)long_rshift, /*nb_rshift*/
long_and, /*nb_and*/
long_xor, /*nb_xor*/
long_or, /*nb_or*/
long_long, /*nb_int*/
0, /*nb_reserved*/
long_float, /*nb_float*/
0, /* nb_inplace_add */
0, /* nb_inplace_subtract */
0, /* nb_inplace_multiply */
0, /* nb_inplace_remainder */
0, /* nb_inplace_power */
0, /* nb_inplace_lshift */
0, /* nb_inplace_rshift */
0, /* nb_inplace_and */
0, /* nb_inplace_xor */
0, /* nb_inplace_or */
long_div, /* nb_floor_divide */
long_true_divide, /* nb_true_divide */
0, /* nb_inplace_floor_divide */
0, /* nb_inplace_true_divide */
long_long, /* nb_index */
};
PyTypeObject PyLong_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"int", /* tp_name */
offsetof(PyLongObject, ob_digit), /* tp_basicsize */
sizeof(digit), /* tp_itemsize */
long_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
long_to_decimal_string, /* tp_repr */
&long_as_number, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
(hashfunc)long_hash, /* tp_hash */
0, /* tp_call */
long_to_decimal_string, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE |
Py_TPFLAGS_LONG_SUBCLASS, /* tp_flags */
long_doc, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
long_richcompare, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
long_methods, /* tp_methods */
0, /* tp_members */
long_getset, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
long_new, /* tp_new */
PyObject_Del, /* tp_free */
};
static PyTypeObject Int_InfoType;
PyDoc_STRVAR(int_info__doc__,
"sys.int_info\n\
\n\
A struct sequence that holds information about Python's\n\
internal representation of integers. The attributes are read only.");
static PyStructSequence_Field int_info_fields[] = {
{"bits_per_digit", PyDoc_STR("size of a digit in bits")},
{"sizeof_digit", PyDoc_STR("size in bytes of the C type used to represent a digit")},
{NULL, NULL}
};
static PyStructSequence_Desc int_info_desc = {
"sys.int_info", /* name */
int_info__doc__, /* doc */
int_info_fields, /* fields */
2 /* number of fields */
};
PyObject *
PyLong_GetInfo(void)
{
PyObject* int_info;
int field = 0;
int_info = PyStructSequence_New(&Int_InfoType);
if (int_info == NULL)
return NULL;
PyStructSequence_SET_ITEM(int_info, field++,
PyLong_FromLong(PyLong_SHIFT));
PyStructSequence_SET_ITEM(int_info, field++,
PyLong_FromLong(sizeof(digit)));
if (PyErr_Occurred()) {
Py_CLEAR(int_info);
return NULL;
}
return int_info;
}
int
_PyLong_Init(void)
{
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
int ival, size;
PyLongObject *v = small_ints;
for (ival = -NSMALLNEGINTS; ival < NSMALLPOSINTS; ival++, v++) {
size = (ival < 0) ? -1 : ((ival == 0) ? 0 : 1);
if (Py_TYPE(v) == &PyLong_Type) {
/* The element is already initialized, most likely
* the Python interpreter was initialized before.
*/
Py_ssize_t refcnt;
PyObject* op = (PyObject*)v;
refcnt = Py_REFCNT(op) < 0 ? 0 : Py_REFCNT(op);
_Py_NewReference(op);
/* _Py_NewReference sets the ref count to 1 but
* the ref count might be larger. Set the refcnt
* to the original refcnt + 1 */
Py_REFCNT(op) = refcnt + 1;
assert(Py_SIZE(op) == size);
assert(v->ob_digit[0] == (digit)abs(ival));
}
else {
(void)PyObject_INIT(v, &PyLong_Type);
}
Py_SIZE(v) = size;
v->ob_digit[0] = (digit)abs(ival);
}
#endif
/* initialize int_info */
if (Int_InfoType.tp_name == NULL) {
if (PyStructSequence_InitType2(&Int_InfoType, &int_info_desc) < 0)
return 0;
}
return 1;
}
void
PyLong_Fini(void)
{
/* Integers are currently statically allocated. Py_DECREF is not
needed, but Python must forget about the reference or multiple
reinitializations will fail. */
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
int i;
PyLongObject *v = small_ints;
for (i = 0; i < NSMALLNEGINTS + NSMALLPOSINTS; i++, v++) {
_Py_DEC_REFTOTAL;
_Py_ForgetReference((PyObject*)v);
}
#endif
}
| 174,010 | 5,590 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/setobject.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "libc/assert.h"
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/boolobject.h"
#include "third_party/python/Include/dictobject.h"
#include "third_party/python/Include/longobject.h"
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/pyerrors.h"
#include "third_party/python/Include/pymem.h"
#include "third_party/python/Include/pystate.h"
#include "third_party/python/Include/setobject.h"
#include "third_party/python/Include/structmember.h"
#include "third_party/python/Include/unicodeobject.h"
/* clang-format off */
/* set object implementation
Written and maintained by Raymond D. Hettinger <[email protected]>
Derived from Lib/sets.py and Objects/dictobject.c.
The basic lookup function used by all operations.
This is based on Algorithm D from Knuth Vol. 3, Sec. 6.4.
The initial probe index is computed as hash mod the table size.
Subsequent probe indices are computed as explained in Objects/dictobject.c.
To improve cache locality, each probe inspects a series of consecutive
nearby entries before moving on to probes elsewhere in memory. This leaves
us with a hybrid of linear probing and open addressing. The linear probing
reduces the cost of hash collisions because consecutive memory accesses
tend to be much cheaper than scattered probes. After LINEAR_PROBES steps,
we then use open addressing with the upper bits from the hash value. This
helps break-up long chains of collisions.
All arithmetic on hash should ignore overflow.
Unlike the dictionary implementation, the lookkey function can return
NULL if the rich comparison returns an error.
*/
/* Object used as dummy key to fill deleted entries */
static PyObject _dummy_struct;
#define dummy (&_dummy_struct)
/* ======================================================================== */
/* ======= Begin logic for probing the hash table ========================= */
/* Set this to zero to turn-off linear probing */
#ifndef LINEAR_PROBES
#define LINEAR_PROBES 9
#endif
/* This must be >= 1 */
#define PERTURB_SHIFT 5
static setentry *
set_lookkey(PySetObject *so, PyObject *key, Py_hash_t hash)
{
setentry *table;
setentry *entry;
size_t perturb;
size_t mask = so->mask;
size_t i = (size_t)hash & mask; /* Unsigned for defined overflow behavior */
size_t j;
int cmp;
entry = &so->table[i];
if (entry->key == NULL)
return entry;
perturb = hash;
while (1) {
if (entry->hash == hash) {
PyObject *startkey = entry->key;
/* startkey cannot be a dummy because the dummy hash field is -1 */
assert(startkey != dummy);
if (startkey == key)
return entry;
if (PyUnicode_CheckExact(startkey)
&& PyUnicode_CheckExact(key)
&& _PyUnicode_EQ(startkey, key))
return entry;
table = so->table;
Py_INCREF(startkey);
cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
Py_DECREF(startkey);
if (cmp < 0) /* unlikely */
return NULL;
if (table != so->table || entry->key != startkey) /* unlikely */
return set_lookkey(so, key, hash);
if (cmp > 0) /* likely */
return entry;
mask = so->mask; /* help avoid a register spill */
}
if (i + LINEAR_PROBES <= mask) {
for (j = 0 ; j < LINEAR_PROBES ; j++) {
entry++;
if (entry->hash == 0 && entry->key == NULL)
return entry;
if (entry->hash == hash) {
PyObject *startkey = entry->key;
assert(startkey != dummy);
if (startkey == key)
return entry;
if (PyUnicode_CheckExact(startkey)
&& PyUnicode_CheckExact(key)
&& _PyUnicode_EQ(startkey, key))
return entry;
table = so->table;
Py_INCREF(startkey);
cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
Py_DECREF(startkey);
if (cmp < 0)
return NULL;
if (table != so->table || entry->key != startkey)
return set_lookkey(so, key, hash);
if (cmp > 0)
return entry;
mask = so->mask;
}
}
}
perturb >>= PERTURB_SHIFT;
i = (i * 5 + 1 + perturb) & mask;
entry = &so->table[i];
if (entry->key == NULL)
return entry;
}
}
static int set_table_resize(PySetObject *, Py_ssize_t);
static int
set_add_entry(PySetObject *so, PyObject *key, Py_hash_t hash)
{
setentry *table;
setentry *freeslot;
setentry *entry;
size_t perturb;
size_t mask;
size_t i; /* Unsigned for defined overflow behavior */
size_t j;
int cmp;
/* Pre-increment is necessary to prevent arbitrary code in the rich
comparison from deallocating the key just before the insertion. */
Py_INCREF(key);
restart:
mask = so->mask;
i = (size_t)hash & mask;
entry = &so->table[i];
if (entry->key == NULL)
goto found_unused;
freeslot = NULL;
perturb = hash;
while (1) {
if (entry->hash == hash) {
PyObject *startkey = entry->key;
/* startkey cannot be a dummy because the dummy hash field is -1 */
assert(startkey != dummy);
if (startkey == key)
goto found_active;
if (PyUnicode_CheckExact(startkey)
&& PyUnicode_CheckExact(key)
&& _PyUnicode_EQ(startkey, key))
goto found_active;
table = so->table;
Py_INCREF(startkey);
cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
Py_DECREF(startkey);
if (cmp > 0) /* likely */
goto found_active;
if (cmp < 0)
goto comparison_error;
/* Continuing the search from the current entry only makes
sense if the table and entry are unchanged; otherwise,
we have to restart from the beginning */
if (table != so->table || entry->key != startkey)
goto restart;
mask = so->mask; /* help avoid a register spill */
}
else if (entry->hash == -1 && freeslot == NULL)
freeslot = entry;
if (i + LINEAR_PROBES <= mask) {
for (j = 0 ; j < LINEAR_PROBES ; j++) {
entry++;
if (entry->hash == 0 && entry->key == NULL)
goto found_unused_or_dummy;
if (entry->hash == hash) {
PyObject *startkey = entry->key;
assert(startkey != dummy);
if (startkey == key)
goto found_active;
if (PyUnicode_CheckExact(startkey)
&& PyUnicode_CheckExact(key)
&& _PyUnicode_EQ(startkey, key))
goto found_active;
table = so->table;
Py_INCREF(startkey);
cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
Py_DECREF(startkey);
if (cmp > 0)
goto found_active;
if (cmp < 0)
goto comparison_error;
if (table != so->table || entry->key != startkey)
goto restart;
mask = so->mask;
}
else if (entry->hash == -1 && freeslot == NULL)
freeslot = entry;
}
}
perturb >>= PERTURB_SHIFT;
i = (i * 5 + 1 + perturb) & mask;
entry = &so->table[i];
if (entry->key == NULL)
goto found_unused_or_dummy;
}
found_unused_or_dummy:
if (freeslot == NULL)
goto found_unused;
so->used++;
freeslot->key = key;
freeslot->hash = hash;
return 0;
found_unused:
so->fill++;
so->used++;
entry->key = key;
entry->hash = hash;
if ((size_t)so->fill*3 < mask*2)
return 0;
return set_table_resize(so, so->used>50000 ? so->used*2 : so->used*4);
found_active:
Py_DECREF(key);
return 0;
comparison_error:
Py_DECREF(key);
return -1;
}
/*
Internal routine used by set_table_resize() to insert an item which is
known to be absent from the set. This routine also assumes that
the set contains no deleted entries. Besides the performance benefit,
there is also safety benefit since using set_add_entry() risks making
a callback in the middle of a set_table_resize(), see issue 1456209.
The caller is responsible for updating the key's reference count and
the setobject's fill and used fields.
*/
static void
set_insert_clean(setentry *table, size_t mask, PyObject *key, Py_hash_t hash)
{
setentry *entry;
size_t perturb = hash;
size_t i = (size_t)hash & mask;
size_t j;
while (1) {
entry = &table[i];
if (entry->key == NULL)
goto found_null;
if (i + LINEAR_PROBES <= mask) {
for (j = 0; j < LINEAR_PROBES; j++) {
entry++;
if (entry->key == NULL)
goto found_null;
}
}
perturb >>= PERTURB_SHIFT;
i = (i * 5 + 1 + perturb) & mask;
}
found_null:
entry->key = key;
entry->hash = hash;
}
/* ======== End logic for probing the hash table ========================== */
/* ======================================================================== */
/*
Restructure the table by allocating a new table and reinserting all
keys again. When entries have been deleted, the new table may
actually be smaller than the old one.
*/
static int
set_table_resize(PySetObject *so, Py_ssize_t minused)
{
setentry *oldtable, *newtable, *entry;
Py_ssize_t oldfill = so->fill;
Py_ssize_t oldused = so->used;
Py_ssize_t oldmask = so->mask;
size_t newmask;
int is_oldtable_malloced;
setentry small_copy[PySet_MINSIZE];
assert(minused >= 0);
/* Find the smallest table size > minused. */
/* XXX speed-up with intrinsics */
size_t newsize = PySet_MINSIZE;
while (newsize <= (size_t)minused) {
newsize <<= 1; // The largest possible value is PY_SSIZE_T_MAX + 1.
}
/* Get space for a new table. */
oldtable = so->table;
assert(oldtable != NULL);
is_oldtable_malloced = oldtable != so->smalltable;
if (newsize == PySet_MINSIZE) {
/* A large table is shrinking, or we can't get any smaller. */
newtable = so->smalltable;
if (newtable == oldtable) {
if (so->fill == so->used) {
/* No dummies, so no point doing anything. */
return 0;
}
/* We're not going to resize it, but rebuild the
table anyway to purge old dummy entries.
Subtle: This is *necessary* if fill==size,
as set_lookkey needs at least one virgin slot to
terminate failing searches. If fill < size, it's
merely desirable, as dummies slow searches. */
assert(so->fill > so->used);
memcpy(small_copy, oldtable, sizeof(small_copy));
oldtable = small_copy;
}
}
else {
newtable = PyMem_NEW(setentry, newsize);
if (newtable == NULL) {
PyErr_NoMemory();
return -1;
}
}
/* Make the set empty, using the new table. */
assert(newtable != oldtable);
bzero(newtable, sizeof(setentry) * newsize);
so->fill = oldused;
so->used = oldused;
so->mask = newsize - 1;
so->table = newtable;
/* Copy the data over; this is refcount-neutral for active entries;
dummy entries aren't copied over, of course */
newmask = (size_t)so->mask;
if (oldfill == oldused) {
for (entry = oldtable; entry <= oldtable + oldmask; entry++) {
if (entry->key != NULL) {
set_insert_clean(newtable, newmask, entry->key, entry->hash);
}
}
} else {
for (entry = oldtable; entry <= oldtable + oldmask; entry++) {
if (entry->key != NULL && entry->key != dummy) {
set_insert_clean(newtable, newmask, entry->key, entry->hash);
}
}
}
if (is_oldtable_malloced)
PyMem_DEL(oldtable);
return 0;
}
static int
set_contains_entry(PySetObject *so, PyObject *key, Py_hash_t hash)
{
setentry *entry;
entry = set_lookkey(so, key, hash);
if (entry != NULL)
return entry->key != NULL;
return -1;
}
#define DISCARD_NOTFOUND 0
#define DISCARD_FOUND 1
static int
set_discard_entry(PySetObject *so, PyObject *key, Py_hash_t hash)
{
setentry *entry;
PyObject *old_key;
entry = set_lookkey(so, key, hash);
if (entry == NULL)
return -1;
if (entry->key == NULL)
return DISCARD_NOTFOUND;
old_key = entry->key;
entry->key = dummy;
entry->hash = -1;
so->used--;
Py_DECREF(old_key);
return DISCARD_FOUND;
}
static int
set_add_key(PySetObject *so, PyObject *key)
{
Py_hash_t hash;
if (!PyUnicode_CheckExact(key) ||
(hash = ((PyASCIIObject *) key)->hash) == -1) {
hash = PyObject_Hash(key);
if (hash == -1)
return -1;
}
return set_add_entry(so, key, hash);
}
static int
set_contains_key(PySetObject *so, PyObject *key)
{
Py_hash_t hash;
if (!PyUnicode_CheckExact(key) ||
(hash = ((PyASCIIObject *) key)->hash) == -1) {
hash = PyObject_Hash(key);
if (hash == -1)
return -1;
}
return set_contains_entry(so, key, hash);
}
static int
set_discard_key(PySetObject *so, PyObject *key)
{
Py_hash_t hash;
if (!PyUnicode_CheckExact(key) ||
(hash = ((PyASCIIObject *) key)->hash) == -1) {
hash = PyObject_Hash(key);
if (hash == -1)
return -1;
}
return set_discard_entry(so, key, hash);
}
static void
set_empty_to_minsize(PySetObject *so)
{
bzero(so->smalltable, sizeof(so->smalltable));
so->fill = 0;
so->used = 0;
so->mask = PySet_MINSIZE - 1;
so->table = so->smalltable;
so->hash = -1;
}
static int
set_clear_internal(PySetObject *so)
{
setentry *entry;
setentry *table = so->table;
Py_ssize_t fill = so->fill;
Py_ssize_t used = so->used;
int table_is_malloced = table != so->smalltable;
setentry small_copy[PySet_MINSIZE];
assert (PyAnySet_Check(so));
assert(table != NULL);
/* This is delicate. During the process of clearing the set,
* decrefs can cause the set to mutate. To avoid fatal confusion
* (voice of experience), we have to make the set empty before
* clearing the slots, and never refer to anything via so->ref while
* clearing.
*/
if (table_is_malloced)
set_empty_to_minsize(so);
else if (fill > 0) {
/* It's a small table with something that needs to be cleared.
* Afraid the only safe way is to copy the set entries into
* another small table first.
*/
memcpy(small_copy, table, sizeof(small_copy));
table = small_copy;
set_empty_to_minsize(so);
}
/* else it's a small table that's already empty */
/* Now we can finally clear things. If C had refcounts, we could
* assert that the refcount on table is 1 now, i.e. that this function
* has unique access to it, so decref side-effects can't alter it.
*/
for (entry = table; used > 0; entry++) {
if (entry->key && entry->key != dummy) {
used--;
Py_DECREF(entry->key);
}
}
if (table_is_malloced)
PyMem_DEL(table);
return 0;
}
/*
* Iterate over a set table. Use like so:
*
* Py_ssize_t pos;
* setentry *entry;
* pos = 0; # important! pos should not otherwise be changed by you
* while (set_next(yourset, &pos, &entry)) {
* Refer to borrowed reference in entry->key.
* }
*
* CAUTION: In general, it isn't safe to use set_next in a loop that
* mutates the table.
*/
static int
set_next(PySetObject *so, Py_ssize_t *pos_ptr, setentry **entry_ptr)
{
Py_ssize_t i;
Py_ssize_t mask;
setentry *entry;
assert (PyAnySet_Check(so));
i = *pos_ptr;
assert(i >= 0);
mask = so->mask;
entry = &so->table[i];
while (i <= mask && (entry->key == NULL || entry->key == dummy)) {
i++;
entry++;
}
*pos_ptr = i+1;
if (i > mask)
return 0;
assert(entry != NULL);
*entry_ptr = entry;
return 1;
}
static void
set_dealloc(PySetObject *so)
{
setentry *entry;
Py_ssize_t used = so->used;
/* bpo-31095: UnTrack is needed before calling any callbacks */
PyObject_GC_UnTrack(so);
Py_TRASHCAN_SAFE_BEGIN(so)
if (so->weakreflist != NULL)
PyObject_ClearWeakRefs((PyObject *) so);
for (entry = so->table; used > 0; entry++) {
if (entry->key && entry->key != dummy) {
used--;
Py_DECREF(entry->key);
}
}
if (so->table != so->smalltable)
PyMem_DEL(so->table);
Py_TYPE(so)->tp_free(so);
Py_TRASHCAN_SAFE_END(so)
}
static PyObject *
set_repr(PySetObject *so)
{
PyObject *result=NULL, *keys, *listrepr, *tmp;
int status = Py_ReprEnter((PyObject*)so);
if (status != 0) {
if (status < 0)
return NULL;
return PyUnicode_FromFormat("%s(...)", Py_TYPE(so)->tp_name);
}
/* shortcut for the empty set */
if (!so->used) {
Py_ReprLeave((PyObject*)so);
return PyUnicode_FromFormat("%s()", Py_TYPE(so)->tp_name);
}
keys = PySequence_List((PyObject *)so);
if (keys == NULL)
goto done;
/* repr(keys)[1:-1] */
listrepr = PyObject_Repr(keys);
Py_DECREF(keys);
if (listrepr == NULL)
goto done;
tmp = PyUnicode_Substring(listrepr, 1, PyUnicode_GET_LENGTH(listrepr)-1);
Py_DECREF(listrepr);
if (tmp == NULL)
goto done;
listrepr = tmp;
if (Py_TYPE(so) != &PySet_Type)
result = PyUnicode_FromFormat("%s({%U})",
Py_TYPE(so)->tp_name,
listrepr);
else
result = PyUnicode_FromFormat("{%U}", listrepr);
Py_DECREF(listrepr);
done:
Py_ReprLeave((PyObject*)so);
return result;
}
static Py_ssize_t
set_len(PyObject *so)
{
return ((PySetObject *)so)->used;
}
static int
set_merge(PySetObject *so, PyObject *otherset)
{
PySetObject *other;
PyObject *key;
Py_ssize_t i;
setentry *so_entry;
setentry *other_entry;
assert (PyAnySet_Check(so));
assert (PyAnySet_Check(otherset));
other = (PySetObject*)otherset;
if (other == so || other->used == 0)
/* a.update(a) or a.update(set()); nothing to do */
return 0;
/* Do one big resize at the start, rather than
* incrementally resizing as we insert new keys. Expect
* that there will be no (or few) overlapping keys.
*/
if ((so->fill + other->used)*3 >= so->mask*2) {
if (set_table_resize(so, (so->used + other->used)*2) != 0)
return -1;
}
so_entry = so->table;
other_entry = other->table;
/* If our table is empty, and both tables have the same size, and
there are no dummies to eliminate, then just copy the pointers. */
if (so->fill == 0 && so->mask == other->mask && other->fill == other->used) {
for (i = 0; i <= other->mask; i++, so_entry++, other_entry++) {
key = other_entry->key;
if (key != NULL) {
assert(so_entry->key == NULL);
Py_INCREF(key);
so_entry->key = key;
so_entry->hash = other_entry->hash;
}
}
so->fill = other->fill;
so->used = other->used;
return 0;
}
/* If our table is empty, we can use set_insert_clean() */
if (so->fill == 0) {
setentry *newtable = so->table;
size_t newmask = (size_t)so->mask;
so->fill = other->used;
so->used = other->used;
for (i = other->mask + 1; i > 0 ; i--, other_entry++) {
key = other_entry->key;
if (key != NULL && key != dummy) {
Py_INCREF(key);
set_insert_clean(newtable, newmask, key, other_entry->hash);
}
}
return 0;
}
/* We can't assure there are no duplicates, so do normal insertions */
for (i = 0; i <= other->mask; i++) {
other_entry = &other->table[i];
key = other_entry->key;
if (key != NULL && key != dummy) {
if (set_add_entry(so, key, other_entry->hash))
return -1;
}
}
return 0;
}
static PyObject *
set_pop(PySetObject *so)
{
/* Make sure the search finger is in bounds */
Py_ssize_t i = so->finger & so->mask;
setentry *entry;
PyObject *key;
assert (PyAnySet_Check(so));
if (so->used == 0) {
PyErr_SetString(PyExc_KeyError, "pop from an empty set");
return NULL;
}
while ((entry = &so->table[i])->key == NULL || entry->key==dummy) {
i++;
if (i > so->mask)
i = 0;
}
key = entry->key;
entry->key = dummy;
entry->hash = -1;
so->used--;
so->finger = i + 1; /* next place to start */
return key;
}
PyDoc_STRVAR(pop_doc, "Remove and return an arbitrary set element.\n\
Raises KeyError if the set is empty.");
static int
set_traverse(PySetObject *so, visitproc visit, void *arg)
{
Py_ssize_t pos = 0;
setentry *entry;
while (set_next(so, &pos, &entry))
Py_VISIT(entry->key);
return 0;
}
/* Work to increase the bit dispersion for closely spaced hash values.
This is important because some use cases have many combinations of a
small number of elements with nearby hashes so that many distinct
combinations collapse to only a handful of distinct hash values. */
static Py_uhash_t
_shuffle_bits(Py_uhash_t h)
{
return ((h ^ 89869747UL) ^ (h << 16)) * 3644798167UL;
}
/* Most of the constants in this hash algorithm are randomly chosen
large primes with "interesting bit patterns" and that passed tests
for good collision statistics on a variety of problematic datasets
including powersets and graph structures (such as David Eppstein's
graph recipes in Lib/test/test_set.py) */
static Py_hash_t
frozenset_hash(PyObject *self)
{
PySetObject *so = (PySetObject *)self;
Py_uhash_t hash = 0;
setentry *entry;
if (so->hash != -1)
return so->hash;
/* Xor-in shuffled bits from every entry's hash field because xor is
commutative and a frozenset hash should be independent of order.
For speed, include null entries and dummy entries and then
subtract out their effect afterwards so that the final hash
depends only on active entries. This allows the code to be
vectorized by the compiler and it saves the unpredictable
branches that would arise when trying to exclude null and dummy
entries on every iteration. */
for (entry = so->table; entry <= &so->table[so->mask]; entry++)
hash ^= _shuffle_bits(entry->hash);
/* Remove the effect of an odd number of NULL entries */
if ((so->mask + 1 - so->fill) & 1)
hash ^= _shuffle_bits(0);
/* Remove the effect of an odd number of dummy entries */
if ((so->fill - so->used) & 1)
hash ^= _shuffle_bits(-1);
/* Factor in the number of active entries */
hash ^= ((Py_uhash_t)PySet_GET_SIZE(self) + 1) * 1927868237UL;
/* Disperse patterns arising in nested frozensets */
hash ^= (hash >> 11) ^ (hash >> 25);
hash = hash * 69069U + 907133923UL;
/* -1 is reserved as an error code */
if (hash == (Py_uhash_t)-1)
hash = 590923713UL;
so->hash = hash;
return hash;
}
/***** Set iterator type ***********************************************/
typedef struct {
PyObject_HEAD
PySetObject *si_set; /* Set to NULL when iterator is exhausted */
Py_ssize_t si_used;
Py_ssize_t si_pos;
Py_ssize_t len;
} setiterobject;
static void
setiter_dealloc(setiterobject *si)
{
/* bpo-31095: UnTrack is needed before calling any callbacks */
_PyObject_GC_UNTRACK(si);
Py_XDECREF(si->si_set);
PyObject_GC_Del(si);
}
static int
setiter_traverse(setiterobject *si, visitproc visit, void *arg)
{
Py_VISIT(si->si_set);
return 0;
}
static PyObject *
setiter_len(setiterobject *si)
{
Py_ssize_t len = 0;
if (si->si_set != NULL && si->si_used == si->si_set->used)
len = si->len;
return PyLong_FromSsize_t(len);
}
PyDoc_STRVAR(length_hint_doc, "Private method returning an estimate of len(list(it)).");
static PyObject *setiter_iternext(setiterobject *si);
static PyObject *
setiter_reduce(setiterobject *si)
{
PyObject *list;
setiterobject tmp;
list = PyList_New(0);
if (!list)
return NULL;
/* copy the iterator state */
tmp = *si;
Py_XINCREF(tmp.si_set);
/* iterate the temporary into a list */
for(;;) {
PyObject *element = setiter_iternext(&tmp);
if (element) {
if (PyList_Append(list, element)) {
Py_DECREF(element);
Py_DECREF(list);
Py_XDECREF(tmp.si_set);
return NULL;
}
Py_DECREF(element);
} else
break;
}
Py_XDECREF(tmp.si_set);
/* check for error */
if (tmp.si_set != NULL) {
/* we have an error */
Py_DECREF(list);
return NULL;
}
return Py_BuildValue("N(N)", _PyObject_GetBuiltin("iter"), list);
}
PyDoc_STRVAR(reduce_doc, "Return state information for pickling.");
static PyMethodDef setiter_methods[] = {
{"__length_hint__", (PyCFunction)setiter_len, METH_NOARGS, length_hint_doc},
{"__reduce__", (PyCFunction)setiter_reduce, METH_NOARGS, reduce_doc},
{NULL, NULL} /* sentinel */
};
static PyObject *setiter_iternext(setiterobject *si)
{
PyObject *key;
Py_ssize_t i, mask;
setentry *entry;
PySetObject *so = si->si_set;
if (so == NULL)
return NULL;
assert (PyAnySet_Check(so));
if (si->si_used != so->used) {
PyErr_SetString(PyExc_RuntimeError,
"Set changed size during iteration");
si->si_used = -1; /* Make this state sticky */
return NULL;
}
i = si->si_pos;
assert(i>=0);
entry = so->table;
mask = so->mask;
while (i <= mask && (entry[i].key == NULL || entry[i].key == dummy))
i++;
si->si_pos = i+1;
if (i > mask)
goto fail;
si->len--;
key = entry[i].key;
Py_INCREF(key);
return key;
fail:
si->si_set = NULL;
Py_DECREF(so);
return NULL;
}
PyTypeObject PySetIter_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"set_iterator", /* tp_name */
sizeof(setiterobject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)setiter_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, /* tp_flags */
0, /* tp_doc */
(traverseproc)setiter_traverse, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
PyObject_SelfIter, /* tp_iter */
(iternextfunc)setiter_iternext, /* tp_iternext */
setiter_methods, /* tp_methods */
0,
};
static PyObject *
set_iter(PySetObject *so)
{
setiterobject *si = PyObject_GC_New(setiterobject, &PySetIter_Type);
if (si == NULL)
return NULL;
Py_INCREF(so);
si->si_set = so;
si->si_used = so->used;
si->si_pos = 0;
si->len = so->used;
_PyObject_GC_TRACK(si);
return (PyObject *)si;
}
static int
set_update_internal(PySetObject *so, PyObject *other)
{
PyObject *key, *it;
if (PyAnySet_Check(other))
return set_merge(so, other);
if (PyDict_CheckExact(other)) {
PyObject *value;
Py_ssize_t pos = 0;
Py_hash_t hash;
Py_ssize_t dictsize = PyDict_Size(other);
/* Do one big resize at the start, rather than
* incrementally resizing as we insert new keys. Expect
* that there will be no (or few) overlapping keys.
*/
if (dictsize < 0)
return -1;
if ((so->fill + dictsize)*3 >= so->mask*2) {
if (set_table_resize(so, (so->used + dictsize)*2) != 0)
return -1;
}
while (_PyDict_Next(other, &pos, &key, &value, &hash)) {
if (set_add_entry(so, key, hash))
return -1;
}
return 0;
}
it = PyObject_GetIter(other);
if (it == NULL)
return -1;
while ((key = PyIter_Next(it)) != NULL) {
if (set_add_key(so, key)) {
Py_DECREF(it);
Py_DECREF(key);
return -1;
}
Py_DECREF(key);
}
Py_DECREF(it);
if (PyErr_Occurred())
return -1;
return 0;
}
static PyObject *
set_update(PySetObject *so, PyObject *args)
{
Py_ssize_t i;
for (i=0 ; i<PyTuple_GET_SIZE(args) ; i++) {
PyObject *other = PyTuple_GET_ITEM(args, i);
if (set_update_internal(so, other))
return NULL;
}
Py_RETURN_NONE;
}
PyDoc_STRVAR(update_doc,
"Update a set with the union of itself and others.");
/* XXX Todo:
If aligned memory allocations become available, make the
set object 64 byte aligned so that most of the fields
can be retrieved or updated in a single cache line.
*/
static PyObject *
make_new_set(PyTypeObject *type, PyObject *iterable)
{
PySetObject *so;
so = (PySetObject *)type->tp_alloc(type, 0);
if (so == NULL)
return NULL;
so->fill = 0;
so->used = 0;
so->mask = PySet_MINSIZE - 1;
so->table = so->smalltable;
so->hash = -1;
so->finger = 0;
so->weakreflist = NULL;
if (iterable != NULL) {
if (set_update_internal(so, iterable)) {
Py_DECREF(so);
return NULL;
}
}
return (PyObject *)so;
}
static PyObject *
make_new_set_basetype(PyTypeObject *type, PyObject *iterable)
{
if (type != &PySet_Type && type != &PyFrozenSet_Type) {
if (PyType_IsSubtype(type, &PySet_Type))
type = &PySet_Type;
else
type = &PyFrozenSet_Type;
}
return make_new_set(type, iterable);
}
/* The empty frozenset is a singleton */
static PyObject *emptyfrozenset = NULL;
static PyObject *
frozenset_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyObject *iterable = NULL, *result;
if (kwds != NULL && type == &PyFrozenSet_Type
&& !_PyArg_NoKeywords("frozenset()", kwds))
return NULL;
if (!PyArg_UnpackTuple(args, type->tp_name, 0, 1, &iterable))
return NULL;
if (type != &PyFrozenSet_Type)
return make_new_set(type, iterable);
if (iterable != NULL) {
/* frozenset(f) is idempotent */
if (PyFrozenSet_CheckExact(iterable)) {
Py_INCREF(iterable);
return iterable;
}
result = make_new_set(type, iterable);
if (result == NULL || PySet_GET_SIZE(result))
return result;
Py_DECREF(result);
}
/* The empty frozenset is a singleton */
if (emptyfrozenset == NULL)
emptyfrozenset = make_new_set(type, NULL);
Py_XINCREF(emptyfrozenset);
return emptyfrozenset;
}
static PyObject *
set_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
return make_new_set(type, NULL);
}
/* set_swap_bodies() switches the contents of any two sets by moving their
internal data pointers and, if needed, copying the internal smalltables.
Semantically equivalent to:
t=set(a); a.clear(); a.update(b); b.clear(); b.update(t); del t
The function always succeeds and it leaves both objects in a stable state.
Useful for operations that update in-place (by allowing an intermediate
result to be swapped into one of the original inputs).
*/
static void
set_swap_bodies(PySetObject *a, PySetObject *b)
{
Py_ssize_t t;
setentry *u;
setentry tab[PySet_MINSIZE];
Py_hash_t h;
t = a->fill; a->fill = b->fill; b->fill = t;
t = a->used; a->used = b->used; b->used = t;
t = a->mask; a->mask = b->mask; b->mask = t;
u = a->table;
if (a->table == a->smalltable)
u = b->smalltable;
a->table = b->table;
if (b->table == b->smalltable)
a->table = a->smalltable;
b->table = u;
if (a->table == a->smalltable || b->table == b->smalltable) {
memcpy(tab, a->smalltable, sizeof(tab));
memcpy(a->smalltable, b->smalltable, sizeof(tab));
memcpy(b->smalltable, tab, sizeof(tab));
}
if (PyType_IsSubtype(Py_TYPE(a), &PyFrozenSet_Type) &&
PyType_IsSubtype(Py_TYPE(b), &PyFrozenSet_Type)) {
h = a->hash; a->hash = b->hash; b->hash = h;
} else {
a->hash = -1;
b->hash = -1;
}
}
static PyObject *
set_copy(PySetObject *so)
{
return make_new_set_basetype(Py_TYPE(so), (PyObject *)so);
}
static PyObject *
frozenset_copy(PySetObject *so)
{
if (PyFrozenSet_CheckExact(so)) {
Py_INCREF(so);
return (PyObject *)so;
}
return set_copy(so);
}
PyDoc_STRVAR(copy_doc, "Return a shallow copy of a set.");
static PyObject *
set_clear(PySetObject *so)
{
set_clear_internal(so);
Py_RETURN_NONE;
}
PyDoc_STRVAR(clear_doc, "Remove all elements from this set.");
static PyObject *
set_union(PySetObject *so, PyObject *args)
{
PySetObject *result;
PyObject *other;
Py_ssize_t i;
result = (PySetObject *)set_copy(so);
if (result == NULL)
return NULL;
for (i=0 ; i<PyTuple_GET_SIZE(args) ; i++) {
other = PyTuple_GET_ITEM(args, i);
if ((PyObject *)so == other)
continue;
if (set_update_internal(result, other)) {
Py_DECREF(result);
return NULL;
}
}
return (PyObject *)result;
}
PyDoc_STRVAR(union_doc,
"Return the union of sets as a new set.\n\
\n\
(i.e. all elements that are in either set.)");
static PyObject *
set_or(PySetObject *so, PyObject *other)
{
PySetObject *result;
if (!PyAnySet_Check(so) || !PyAnySet_Check(other))
Py_RETURN_NOTIMPLEMENTED;
result = (PySetObject *)set_copy(so);
if (result == NULL)
return NULL;
if ((PyObject *)so == other)
return (PyObject *)result;
if (set_update_internal(result, other)) {
Py_DECREF(result);
return NULL;
}
return (PyObject *)result;
}
static PyObject *
set_ior(PySetObject *so, PyObject *other)
{
if (!PyAnySet_Check(other))
Py_RETURN_NOTIMPLEMENTED;
if (set_update_internal(so, other))
return NULL;
Py_INCREF(so);
return (PyObject *)so;
}
static PyObject *
set_intersection(PySetObject *so, PyObject *other)
{
PySetObject *result;
PyObject *key, *it, *tmp;
Py_hash_t hash;
int rv;
if ((PyObject *)so == other)
return set_copy(so);
result = (PySetObject *)make_new_set_basetype(Py_TYPE(so), NULL);
if (result == NULL)
return NULL;
if (PyAnySet_Check(other)) {
Py_ssize_t pos = 0;
setentry *entry;
if (PySet_GET_SIZE(other) > PySet_GET_SIZE(so)) {
tmp = (PyObject *)so;
so = (PySetObject *)other;
other = tmp;
}
while (set_next((PySetObject *)other, &pos, &entry)) {
key = entry->key;
hash = entry->hash;
rv = set_contains_entry(so, key, hash);
if (rv < 0) {
Py_DECREF(result);
return NULL;
}
if (rv) {
if (set_add_entry(result, key, hash)) {
Py_DECREF(result);
return NULL;
}
}
}
return (PyObject *)result;
}
it = PyObject_GetIter(other);
if (it == NULL) {
Py_DECREF(result);
return NULL;
}
while ((key = PyIter_Next(it)) != NULL) {
hash = PyObject_Hash(key);
if (hash == -1)
goto error;
rv = set_contains_entry(so, key, hash);
if (rv < 0)
goto error;
if (rv) {
if (set_add_entry(result, key, hash))
goto error;
}
Py_DECREF(key);
}
Py_DECREF(it);
if (PyErr_Occurred()) {
Py_DECREF(result);
return NULL;
}
return (PyObject *)result;
error:
Py_DECREF(it);
Py_DECREF(result);
Py_DECREF(key);
return NULL;
}
static PyObject *
set_intersection_multi(PySetObject *so, PyObject *args)
{
Py_ssize_t i;
PyObject *result = (PyObject *)so;
if (PyTuple_GET_SIZE(args) == 0)
return set_copy(so);
Py_INCREF(so);
for (i=0 ; i<PyTuple_GET_SIZE(args) ; i++) {
PyObject *other = PyTuple_GET_ITEM(args, i);
PyObject *newresult = set_intersection((PySetObject *)result, other);
if (newresult == NULL) {
Py_DECREF(result);
return NULL;
}
Py_DECREF(result);
result = newresult;
}
return result;
}
PyDoc_STRVAR(intersection_doc,
"Return the intersection of two sets as a new set.\n\
\n\
(i.e. all elements that are in both sets.)");
static PyObject *
set_intersection_update(PySetObject *so, PyObject *other)
{
PyObject *tmp;
tmp = set_intersection(so, other);
if (tmp == NULL)
return NULL;
set_swap_bodies(so, (PySetObject *)tmp);
Py_DECREF(tmp);
Py_RETURN_NONE;
}
static PyObject *
set_intersection_update_multi(PySetObject *so, PyObject *args)
{
PyObject *tmp;
tmp = set_intersection_multi(so, args);
if (tmp == NULL)
return NULL;
set_swap_bodies(so, (PySetObject *)tmp);
Py_DECREF(tmp);
Py_RETURN_NONE;
}
PyDoc_STRVAR(intersection_update_doc,
"Update a set with the intersection of itself and another.");
static PyObject *
set_and(PySetObject *so, PyObject *other)
{
if (!PyAnySet_Check(so) || !PyAnySet_Check(other))
Py_RETURN_NOTIMPLEMENTED;
return set_intersection(so, other);
}
static PyObject *
set_iand(PySetObject *so, PyObject *other)
{
PyObject *result;
if (!PyAnySet_Check(other))
Py_RETURN_NOTIMPLEMENTED;
result = set_intersection_update(so, other);
if (result == NULL)
return NULL;
Py_DECREF(result);
Py_INCREF(so);
return (PyObject *)so;
}
static PyObject *
set_isdisjoint(PySetObject *so, PyObject *other)
{
PyObject *key, *it, *tmp;
int rv;
if ((PyObject *)so == other) {
if (PySet_GET_SIZE(so) == 0)
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;
}
if (PyAnySet_CheckExact(other)) {
Py_ssize_t pos = 0;
setentry *entry;
if (PySet_GET_SIZE(other) > PySet_GET_SIZE(so)) {
tmp = (PyObject *)so;
so = (PySetObject *)other;
other = tmp;
}
while (set_next((PySetObject *)other, &pos, &entry)) {
rv = set_contains_entry(so, entry->key, entry->hash);
if (rv < 0)
return NULL;
if (rv)
Py_RETURN_FALSE;
}
Py_RETURN_TRUE;
}
it = PyObject_GetIter(other);
if (it == NULL)
return NULL;
while ((key = PyIter_Next(it)) != NULL) {
Py_hash_t hash = PyObject_Hash(key);
if (hash == -1) {
Py_DECREF(key);
Py_DECREF(it);
return NULL;
}
rv = set_contains_entry(so, key, hash);
Py_DECREF(key);
if (rv < 0) {
Py_DECREF(it);
return NULL;
}
if (rv) {
Py_DECREF(it);
Py_RETURN_FALSE;
}
}
Py_DECREF(it);
if (PyErr_Occurred())
return NULL;
Py_RETURN_TRUE;
}
PyDoc_STRVAR(isdisjoint_doc,
"Return True if two sets have a null intersection.");
static int
set_difference_update_internal(PySetObject *so, PyObject *other)
{
if (PySet_GET_SIZE(so) == 0) {
return 0;
}
if ((PyObject *)so == other)
return set_clear_internal(so);
if (PyAnySet_Check(other)) {
setentry *entry;
Py_ssize_t pos = 0;
while (set_next((PySetObject *)other, &pos, &entry))
if (set_discard_entry(so, entry->key, entry->hash) < 0)
return -1;
} else {
PyObject *key, *it;
it = PyObject_GetIter(other);
if (it == NULL)
return -1;
while ((key = PyIter_Next(it)) != NULL) {
if (set_discard_key(so, key) < 0) {
Py_DECREF(it);
Py_DECREF(key);
return -1;
}
Py_DECREF(key);
}
Py_DECREF(it);
if (PyErr_Occurred())
return -1;
}
/* If more than 1/4th are dummies, then resize them away. */
if ((size_t)(so->fill - so->used) <= (size_t)so->mask / 4)
return 0;
return set_table_resize(so, so->used>50000 ? so->used*2 : so->used*4);
}
static PyObject *
set_difference_update(PySetObject *so, PyObject *args)
{
Py_ssize_t i;
for (i=0 ; i<PyTuple_GET_SIZE(args) ; i++) {
PyObject *other = PyTuple_GET_ITEM(args, i);
if (set_difference_update_internal(so, other))
return NULL;
}
Py_RETURN_NONE;
}
PyDoc_STRVAR(difference_update_doc,
"Remove all elements of another set from this set.");
static PyObject *
set_copy_and_difference(PySetObject *so, PyObject *other)
{
PyObject *result;
result = set_copy(so);
if (result == NULL)
return NULL;
if (set_difference_update_internal((PySetObject *) result, other) == 0)
return result;
Py_DECREF(result);
return NULL;
}
static PyObject *
set_difference(PySetObject *so, PyObject *other)
{
PyObject *result;
PyObject *key;
Py_hash_t hash;
setentry *entry;
Py_ssize_t pos = 0, other_size;
int rv;
if (PySet_GET_SIZE(so) == 0) {
return set_copy(so);
}
if (PyAnySet_Check(other)) {
other_size = PySet_GET_SIZE(other);
}
else if (PyDict_CheckExact(other)) {
other_size = PyDict_Size(other);
}
else {
return set_copy_and_difference(so, other);
}
/* If len(so) much more than len(other), it's more efficient to simply copy
* so and then iterate other looking for common elements. */
if ((PySet_GET_SIZE(so) >> 2) > other_size) {
return set_copy_and_difference(so, other);
}
result = make_new_set_basetype(Py_TYPE(so), NULL);
if (result == NULL)
return NULL;
if (PyDict_CheckExact(other)) {
while (set_next(so, &pos, &entry)) {
key = entry->key;
hash = entry->hash;
rv = _PyDict_Contains(other, key, hash);
if (rv < 0) {
Py_DECREF(result);
return NULL;
}
if (!rv) {
if (set_add_entry((PySetObject *)result, key, hash)) {
Py_DECREF(result);
return NULL;
}
}
}
return result;
}
/* Iterate over so, checking for common elements in other. */
while (set_next(so, &pos, &entry)) {
key = entry->key;
hash = entry->hash;
rv = set_contains_entry((PySetObject *)other, key, hash);
if (rv < 0) {
Py_DECREF(result);
return NULL;
}
if (!rv) {
if (set_add_entry((PySetObject *)result, key, hash)) {
Py_DECREF(result);
return NULL;
}
}
}
return result;
}
static PyObject *
set_difference_multi(PySetObject *so, PyObject *args)
{
Py_ssize_t i;
PyObject *result, *other;
if (PyTuple_GET_SIZE(args) == 0)
return set_copy(so);
other = PyTuple_GET_ITEM(args, 0);
result = set_difference(so, other);
if (result == NULL)
return NULL;
for (i=1 ; i<PyTuple_GET_SIZE(args) ; i++) {
other = PyTuple_GET_ITEM(args, i);
if (set_difference_update_internal((PySetObject *)result, other)) {
Py_DECREF(result);
return NULL;
}
}
return result;
}
PyDoc_STRVAR(difference_doc,
"Return the difference of two or more sets as a new set.\n\
\n\
(i.e. all elements that are in this set but not the others.)");
static PyObject *
set_sub(PySetObject *so, PyObject *other)
{
if (!PyAnySet_Check(so) || !PyAnySet_Check(other))
Py_RETURN_NOTIMPLEMENTED;
return set_difference(so, other);
}
static PyObject *
set_isub(PySetObject *so, PyObject *other)
{
if (!PyAnySet_Check(other))
Py_RETURN_NOTIMPLEMENTED;
if (set_difference_update_internal(so, other))
return NULL;
Py_INCREF(so);
return (PyObject *)so;
}
static PyObject *
set_symmetric_difference_update(PySetObject *so, PyObject *other)
{
PySetObject *otherset;
PyObject *key;
Py_ssize_t pos = 0;
Py_hash_t hash;
setentry *entry;
int rv;
if ((PyObject *)so == other)
return set_clear(so);
if (PyDict_CheckExact(other)) {
PyObject *value;
while (_PyDict_Next(other, &pos, &key, &value, &hash)) {
Py_INCREF(key);
rv = set_discard_entry(so, key, hash);
if (rv < 0) {
Py_DECREF(key);
return NULL;
}
if (rv == DISCARD_NOTFOUND) {
if (set_add_entry(so, key, hash)) {
Py_DECREF(key);
return NULL;
}
}
Py_DECREF(key);
}
Py_RETURN_NONE;
}
if (PyAnySet_Check(other)) {
Py_INCREF(other);
otherset = (PySetObject *)other;
} else {
otherset = (PySetObject *)make_new_set_basetype(Py_TYPE(so), other);
if (otherset == NULL)
return NULL;
}
while (set_next(otherset, &pos, &entry)) {
key = entry->key;
hash = entry->hash;
rv = set_discard_entry(so, key, hash);
if (rv < 0) {
Py_DECREF(otherset);
return NULL;
}
if (rv == DISCARD_NOTFOUND) {
if (set_add_entry(so, key, hash)) {
Py_DECREF(otherset);
return NULL;
}
}
}
Py_DECREF(otherset);
Py_RETURN_NONE;
}
PyDoc_STRVAR(symmetric_difference_update_doc,
"Update a set with the symmetric difference of itself and another.");
static PyObject *
set_symmetric_difference(PySetObject *so, PyObject *other)
{
PyObject *rv;
PySetObject *otherset;
otherset = (PySetObject *)make_new_set_basetype(Py_TYPE(so), other);
if (otherset == NULL)
return NULL;
rv = set_symmetric_difference_update(otherset, (PyObject *)so);
if (rv == NULL) {
Py_DECREF(otherset);
return NULL;
}
Py_DECREF(rv);
return (PyObject *)otherset;
}
PyDoc_STRVAR(symmetric_difference_doc,
"Return the symmetric difference of two sets as a new set.\n\
\n\
(i.e. all elements that are in exactly one of the sets.)");
static PyObject *
set_xor(PySetObject *so, PyObject *other)
{
if (!PyAnySet_Check(so) || !PyAnySet_Check(other))
Py_RETURN_NOTIMPLEMENTED;
return set_symmetric_difference(so, other);
}
static PyObject *
set_ixor(PySetObject *so, PyObject *other)
{
PyObject *result;
if (!PyAnySet_Check(other))
Py_RETURN_NOTIMPLEMENTED;
result = set_symmetric_difference_update(so, other);
if (result == NULL)
return NULL;
Py_DECREF(result);
Py_INCREF(so);
return (PyObject *)so;
}
static PyObject *
set_issubset(PySetObject *so, PyObject *other)
{
setentry *entry;
Py_ssize_t pos = 0;
int rv;
if (!PyAnySet_Check(other)) {
PyObject *tmp, *result;
tmp = make_new_set(&PySet_Type, other);
if (tmp == NULL)
return NULL;
result = set_issubset(so, tmp);
Py_DECREF(tmp);
return result;
}
if (PySet_GET_SIZE(so) > PySet_GET_SIZE(other))
Py_RETURN_FALSE;
while (set_next(so, &pos, &entry)) {
rv = set_contains_entry((PySetObject *)other, entry->key, entry->hash);
if (rv < 0)
return NULL;
if (!rv)
Py_RETURN_FALSE;
}
Py_RETURN_TRUE;
}
PyDoc_STRVAR(issubset_doc, "Report whether another set contains this set.");
static PyObject *
set_issuperset(PySetObject *so, PyObject *other)
{
PyObject *tmp, *result;
if (!PyAnySet_Check(other)) {
tmp = make_new_set(&PySet_Type, other);
if (tmp == NULL)
return NULL;
result = set_issuperset(so, tmp);
Py_DECREF(tmp);
return result;
}
return set_issubset((PySetObject *)other, (PyObject *)so);
}
PyDoc_STRVAR(issuperset_doc, "Report whether this set contains another set.");
static PyObject *
set_richcompare(PySetObject *v, PyObject *w, int op)
{
PyObject *r1;
int r2;
if(!PyAnySet_Check(w))
Py_RETURN_NOTIMPLEMENTED;
switch (op) {
case Py_EQ:
if (PySet_GET_SIZE(v) != PySet_GET_SIZE(w))
Py_RETURN_FALSE;
if (v->hash != -1 &&
((PySetObject *)w)->hash != -1 &&
v->hash != ((PySetObject *)w)->hash)
Py_RETURN_FALSE;
return set_issubset(v, w);
case Py_NE:
r1 = set_richcompare(v, w, Py_EQ);
if (r1 == NULL)
return NULL;
r2 = PyObject_IsTrue(r1);
Py_DECREF(r1);
if (r2 < 0)
return NULL;
return PyBool_FromLong(!r2);
case Py_LE:
return set_issubset(v, w);
case Py_GE:
return set_issuperset(v, w);
case Py_LT:
if (PySet_GET_SIZE(v) >= PySet_GET_SIZE(w))
Py_RETURN_FALSE;
return set_issubset(v, w);
case Py_GT:
if (PySet_GET_SIZE(v) <= PySet_GET_SIZE(w))
Py_RETURN_FALSE;
return set_issuperset(v, w);
}
Py_RETURN_NOTIMPLEMENTED;
}
static PyObject *
set_add(PySetObject *so, PyObject *key)
{
if (set_add_key(so, key))
return NULL;
Py_RETURN_NONE;
}
PyDoc_STRVAR(add_doc,
"Add an element to a set.\n\
\n\
This has no effect if the element is already present.");
static int
set_contains(PySetObject *so, PyObject *key)
{
PyObject *tmpkey;
int rv;
rv = set_contains_key(so, key);
if (rv < 0) {
if (!PySet_Check(key) || !PyErr_ExceptionMatches(PyExc_TypeError))
return -1;
PyErr_Clear();
tmpkey = make_new_set(&PyFrozenSet_Type, key);
if (tmpkey == NULL)
return -1;
rv = set_contains_key(so, tmpkey);
Py_DECREF(tmpkey);
}
return rv;
}
static PyObject *
set_direct_contains(PySetObject *so, PyObject *key)
{
long result;
result = set_contains(so, key);
if (result < 0)
return NULL;
return PyBool_FromLong(result);
}
PyDoc_STRVAR(contains_doc, "x.__contains__(y) <==> y in x.");
static PyObject *
set_remove(PySetObject *so, PyObject *key)
{
PyObject *tmpkey;
int rv;
rv = set_discard_key(so, key);
if (rv < 0) {
if (!PySet_Check(key) || !PyErr_ExceptionMatches(PyExc_TypeError))
return NULL;
PyErr_Clear();
tmpkey = make_new_set(&PyFrozenSet_Type, key);
if (tmpkey == NULL)
return NULL;
rv = set_discard_key(so, tmpkey);
Py_DECREF(tmpkey);
if (rv < 0)
return NULL;
}
if (rv == DISCARD_NOTFOUND) {
_PyErr_SetKeyError(key);
return NULL;
}
Py_RETURN_NONE;
}
PyDoc_STRVAR(remove_doc,
"Remove an element from a set; it must be a member.\n\
\n\
If the element is not a member, raise a KeyError.");
static PyObject *
set_discard(PySetObject *so, PyObject *key)
{
PyObject *tmpkey;
int rv;
rv = set_discard_key(so, key);
if (rv < 0) {
if (!PySet_Check(key) || !PyErr_ExceptionMatches(PyExc_TypeError))
return NULL;
PyErr_Clear();
tmpkey = make_new_set(&PyFrozenSet_Type, key);
if (tmpkey == NULL)
return NULL;
rv = set_discard_key(so, tmpkey);
Py_DECREF(tmpkey);
if (rv < 0)
return NULL;
}
Py_RETURN_NONE;
}
PyDoc_STRVAR(discard_doc,
"Remove an element from a set if it is a member.\n\
\n\
If the element is not a member, do nothing.");
static PyObject *
set_reduce(PySetObject *so)
{
PyObject *keys=NULL, *args=NULL, *result=NULL, *dict=NULL;
_Py_IDENTIFIER(__dict__);
keys = PySequence_List((PyObject *)so);
if (keys == NULL)
goto done;
args = PyTuple_Pack(1, keys);
if (args == NULL)
goto done;
dict = _PyObject_GetAttrId((PyObject *)so, &PyId___dict__);
if (dict == NULL) {
PyErr_Clear();
dict = Py_None;
Py_INCREF(dict);
}
result = PyTuple_Pack(3, Py_TYPE(so), args, dict);
done:
Py_XDECREF(args);
Py_XDECREF(keys);
Py_XDECREF(dict);
return result;
}
static PyObject *
set_sizeof(PySetObject *so)
{
Py_ssize_t res;
res = _PyObject_SIZE(Py_TYPE(so));
if (so->table != so->smalltable)
res = res + (so->mask + 1) * sizeof(setentry);
return PyLong_FromSsize_t(res);
}
PyDoc_STRVAR(sizeof_doc, "S.__sizeof__() -> size of S in memory, in bytes");
static int
set_init(PySetObject *self, PyObject *args, PyObject *kwds)
{
PyObject *iterable = NULL;
if (kwds != NULL && !_PyArg_NoKeywords("set()", kwds))
return -1;
if (!PyArg_UnpackTuple(args, Py_TYPE(self)->tp_name, 0, 1, &iterable))
return -1;
if (self->fill)
set_clear_internal(self);
self->hash = -1;
if (iterable == NULL)
return 0;
return set_update_internal(self, iterable);
}
static PySequenceMethods set_as_sequence = {
set_len, /* sq_length */
0, /* sq_concat */
0, /* sq_repeat */
0, /* sq_item */
0, /* sq_slice */
0, /* sq_ass_item */
0, /* sq_ass_slice */
(objobjproc)set_contains, /* sq_contains */
};
/* set object ********************************************************/
#ifdef Py_DEBUG
static PyObject *test_c_api(PySetObject *so);
PyDoc_STRVAR(test_c_api_doc, "Exercises C API. Returns True.\n\
All is well if assertions don't fail.");
#endif
static PyMethodDef set_methods[] = {
{"add", (PyCFunction)set_add, METH_O,
add_doc},
{"clear", (PyCFunction)set_clear, METH_NOARGS,
clear_doc},
{"__contains__",(PyCFunction)set_direct_contains, METH_O | METH_COEXIST,
contains_doc},
{"copy", (PyCFunction)set_copy, METH_NOARGS,
copy_doc},
{"discard", (PyCFunction)set_discard, METH_O,
discard_doc},
{"difference", (PyCFunction)set_difference_multi, METH_VARARGS,
difference_doc},
{"difference_update", (PyCFunction)set_difference_update, METH_VARARGS,
difference_update_doc},
{"intersection",(PyCFunction)set_intersection_multi, METH_VARARGS,
intersection_doc},
{"intersection_update",(PyCFunction)set_intersection_update_multi, METH_VARARGS,
intersection_update_doc},
{"isdisjoint", (PyCFunction)set_isdisjoint, METH_O,
isdisjoint_doc},
{"issubset", (PyCFunction)set_issubset, METH_O,
issubset_doc},
{"issuperset", (PyCFunction)set_issuperset, METH_O,
issuperset_doc},
{"pop", (PyCFunction)set_pop, METH_NOARGS,
pop_doc},
{"__reduce__", (PyCFunction)set_reduce, METH_NOARGS,
reduce_doc},
{"remove", (PyCFunction)set_remove, METH_O,
remove_doc},
{"__sizeof__", (PyCFunction)set_sizeof, METH_NOARGS,
sizeof_doc},
{"symmetric_difference",(PyCFunction)set_symmetric_difference, METH_O,
symmetric_difference_doc},
{"symmetric_difference_update",(PyCFunction)set_symmetric_difference_update, METH_O,
symmetric_difference_update_doc},
#ifdef Py_DEBUG
{"test_c_api", (PyCFunction)test_c_api, METH_NOARGS,
test_c_api_doc},
#endif
{"union", (PyCFunction)set_union, METH_VARARGS,
union_doc},
{"update", (PyCFunction)set_update, METH_VARARGS,
update_doc},
{NULL, NULL} /* sentinel */
};
static PyNumberMethods set_as_number = {
0, /*nb_add*/
(binaryfunc)set_sub, /*nb_subtract*/
0, /*nb_multiply*/
0, /*nb_remainder*/
0, /*nb_divmod*/
0, /*nb_power*/
0, /*nb_negative*/
0, /*nb_positive*/
0, /*nb_absolute*/
0, /*nb_bool*/
0, /*nb_invert*/
0, /*nb_lshift*/
0, /*nb_rshift*/
(binaryfunc)set_and, /*nb_and*/
(binaryfunc)set_xor, /*nb_xor*/
(binaryfunc)set_or, /*nb_or*/
0, /*nb_int*/
0, /*nb_reserved*/
0, /*nb_float*/
0, /*nb_inplace_add*/
(binaryfunc)set_isub, /*nb_inplace_subtract*/
0, /*nb_inplace_multiply*/
0, /*nb_inplace_remainder*/
0, /*nb_inplace_power*/
0, /*nb_inplace_lshift*/
0, /*nb_inplace_rshift*/
(binaryfunc)set_iand, /*nb_inplace_and*/
(binaryfunc)set_ixor, /*nb_inplace_xor*/
(binaryfunc)set_ior, /*nb_inplace_or*/
};
PyDoc_STRVAR(set_doc,
"set() -> new empty set object\n\
set(iterable) -> new set object\n\
\n\
Build an unordered collection of unique elements.");
PyTypeObject PySet_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"set", /* tp_name */
sizeof(PySetObject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)set_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)set_repr, /* tp_repr */
&set_as_number, /* tp_as_number */
&set_as_sequence, /* tp_as_sequence */
0, /* tp_as_mapping */
PyObject_HashNotImplemented, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC |
Py_TPFLAGS_BASETYPE, /* tp_flags */
set_doc, /* tp_doc */
(traverseproc)set_traverse, /* tp_traverse */
(inquiry)set_clear_internal, /* tp_clear */
(richcmpfunc)set_richcompare, /* tp_richcompare */
offsetof(PySetObject, weakreflist), /* tp_weaklistoffset */
(getiterfunc)set_iter, /* tp_iter */
0, /* tp_iternext */
set_methods, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
(initproc)set_init, /* tp_init */
PyType_GenericAlloc, /* tp_alloc */
set_new, /* tp_new */
PyObject_GC_Del, /* tp_free */
};
/* frozenset object ********************************************************/
static PyMethodDef frozenset_methods[] = {
{"__contains__",(PyCFunction)set_direct_contains, METH_O | METH_COEXIST,
contains_doc},
{"copy", (PyCFunction)frozenset_copy, METH_NOARGS,
copy_doc},
{"difference", (PyCFunction)set_difference_multi, METH_VARARGS,
difference_doc},
{"intersection", (PyCFunction)set_intersection_multi, METH_VARARGS,
intersection_doc},
{"isdisjoint", (PyCFunction)set_isdisjoint, METH_O,
isdisjoint_doc},
{"issubset", (PyCFunction)set_issubset, METH_O,
issubset_doc},
{"issuperset", (PyCFunction)set_issuperset, METH_O,
issuperset_doc},
{"__reduce__", (PyCFunction)set_reduce, METH_NOARGS,
reduce_doc},
{"__sizeof__", (PyCFunction)set_sizeof, METH_NOARGS,
sizeof_doc},
{"symmetric_difference",(PyCFunction)set_symmetric_difference, METH_O,
symmetric_difference_doc},
{"union", (PyCFunction)set_union, METH_VARARGS,
union_doc},
{NULL, NULL} /* sentinel */
};
static PyNumberMethods frozenset_as_number = {
0, /*nb_add*/
(binaryfunc)set_sub, /*nb_subtract*/
0, /*nb_multiply*/
0, /*nb_remainder*/
0, /*nb_divmod*/
0, /*nb_power*/
0, /*nb_negative*/
0, /*nb_positive*/
0, /*nb_absolute*/
0, /*nb_bool*/
0, /*nb_invert*/
0, /*nb_lshift*/
0, /*nb_rshift*/
(binaryfunc)set_and, /*nb_and*/
(binaryfunc)set_xor, /*nb_xor*/
(binaryfunc)set_or, /*nb_or*/
};
PyDoc_STRVAR(frozenset_doc,
"frozenset() -> empty frozenset object\n\
frozenset(iterable) -> frozenset object\n\
\n\
Build an immutable unordered collection of unique elements.");
PyTypeObject PyFrozenSet_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"frozenset", /* tp_name */
sizeof(PySetObject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)set_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)set_repr, /* tp_repr */
&frozenset_as_number, /* tp_as_number */
&set_as_sequence, /* tp_as_sequence */
0, /* tp_as_mapping */
frozenset_hash, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC |
Py_TPFLAGS_BASETYPE, /* tp_flags */
frozenset_doc, /* tp_doc */
(traverseproc)set_traverse, /* tp_traverse */
(inquiry)set_clear_internal, /* tp_clear */
(richcmpfunc)set_richcompare, /* tp_richcompare */
offsetof(PySetObject, weakreflist), /* tp_weaklistoffset */
(getiterfunc)set_iter, /* tp_iter */
0, /* tp_iternext */
frozenset_methods, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
PyType_GenericAlloc, /* tp_alloc */
frozenset_new, /* tp_new */
PyObject_GC_Del, /* tp_free */
};
/***** C API functions *************************************************/
PyObject *
PySet_New(PyObject *iterable)
{
return make_new_set(&PySet_Type, iterable);
}
PyObject *
PyFrozenSet_New(PyObject *iterable)
{
return make_new_set(&PyFrozenSet_Type, iterable);
}
Py_ssize_t
PySet_Size(PyObject *anyset)
{
if (!PyAnySet_Check(anyset)) {
PyErr_BadInternalCall();
return -1;
}
return PySet_GET_SIZE(anyset);
}
int
PySet_Clear(PyObject *set)
{
if (!PySet_Check(set)) {
PyErr_BadInternalCall();
return -1;
}
return set_clear_internal((PySetObject *)set);
}
int
PySet_Contains(PyObject *anyset, PyObject *key)
{
if (!PyAnySet_Check(anyset)) {
PyErr_BadInternalCall();
return -1;
}
return set_contains_key((PySetObject *)anyset, key);
}
int
PySet_Discard(PyObject *set, PyObject *key)
{
if (!PySet_Check(set)) {
PyErr_BadInternalCall();
return -1;
}
return set_discard_key((PySetObject *)set, key);
}
int
PySet_Add(PyObject *anyset, PyObject *key)
{
if (!PySet_Check(anyset) &&
(!PyFrozenSet_Check(anyset) || Py_REFCNT(anyset) != 1)) {
PyErr_BadInternalCall();
return -1;
}
return set_add_key((PySetObject *)anyset, key);
}
int
PySet_ClearFreeList(void)
{
return 0;
}
void
PySet_Fini(void)
{
Py_CLEAR(emptyfrozenset);
}
int
_PySet_NextEntry(PyObject *set, Py_ssize_t *pos, PyObject **key, Py_hash_t *hash)
{
setentry *entry;
if (!PyAnySet_Check(set)) {
PyErr_BadInternalCall();
return -1;
}
if (set_next((PySetObject *)set, pos, &entry) == 0)
return 0;
*key = entry->key;
*hash = entry->hash;
return 1;
}
PyObject *
PySet_Pop(PyObject *set)
{
if (!PySet_Check(set)) {
PyErr_BadInternalCall();
return NULL;
}
return set_pop((PySetObject *)set);
}
int
_PySet_Update(PyObject *set, PyObject *iterable)
{
if (!PySet_Check(set)) {
PyErr_BadInternalCall();
return -1;
}
return set_update_internal((PySetObject *)set, iterable);
}
/* Exported for the gdb plugin's benefit. */
PyObject *_PySet_Dummy = dummy;
#ifdef Py_DEBUG
/* Test code to be called with any three element set.
Returns True and original set is restored. */
#define assertRaises(call_return_value, exception) \
do { \
assert(call_return_value); \
assert(PyErr_ExceptionMatches(exception)); \
PyErr_Clear(); \
} while(0)
static PyObject *
test_c_api(PySetObject *so)
{
Py_ssize_t count;
char *s;
Py_ssize_t i;
PyObject *elem=NULL, *dup=NULL, *t, *f, *dup2, *x=NULL;
PyObject *ob = (PyObject *)so;
Py_hash_t hash;
PyObject *str;
/* Verify preconditions */
assert(PyAnySet_Check(ob));
assert(PyAnySet_CheckExact(ob));
assert(!PyFrozenSet_CheckExact(ob));
/* so.clear(); so |= set("abc"); */
str = PyUnicode_FromString("abc");
if (str == NULL)
return NULL;
set_clear_internal(so);
if (set_update_internal(so, str)) {
Py_DECREF(str);
return NULL;
}
Py_DECREF(str);
/* Exercise type/size checks */
assert(PySet_Size(ob) == 3);
assert(PySet_GET_SIZE(ob) == 3);
/* Raise TypeError for non-iterable constructor arguments */
assertRaises(PySet_New(Py_None) == NULL, PyExc_TypeError);
assertRaises(PyFrozenSet_New(Py_None) == NULL, PyExc_TypeError);
/* Raise TypeError for unhashable key */
dup = PySet_New(ob);
assertRaises(PySet_Discard(ob, dup) == -1, PyExc_TypeError);
assertRaises(PySet_Contains(ob, dup) == -1, PyExc_TypeError);
assertRaises(PySet_Add(ob, dup) == -1, PyExc_TypeError);
/* Exercise successful pop, contains, add, and discard */
elem = PySet_Pop(ob);
assert(PySet_Contains(ob, elem) == 0);
assert(PySet_GET_SIZE(ob) == 2);
assert(PySet_Add(ob, elem) == 0);
assert(PySet_Contains(ob, elem) == 1);
assert(PySet_GET_SIZE(ob) == 3);
assert(PySet_Discard(ob, elem) == 1);
assert(PySet_GET_SIZE(ob) == 2);
assert(PySet_Discard(ob, elem) == 0);
assert(PySet_GET_SIZE(ob) == 2);
/* Exercise clear */
dup2 = PySet_New(dup);
assert(PySet_Clear(dup2) == 0);
assert(PySet_Size(dup2) == 0);
Py_DECREF(dup2);
/* Raise SystemError on clear or update of frozen set */
f = PyFrozenSet_New(dup);
assertRaises(PySet_Clear(f) == -1, PyExc_SystemError);
assertRaises(_PySet_Update(f, dup) == -1, PyExc_SystemError);
assert(PySet_Add(f, elem) == 0);
Py_INCREF(f);
assertRaises(PySet_Add(f, elem) == -1, PyExc_SystemError);
Py_DECREF(f);
Py_DECREF(f);
/* Exercise direct iteration */
i = 0, count = 0;
while (_PySet_NextEntry((PyObject *)dup, &i, &x, &hash)) {
s = PyUnicode_AsUTF8(x);
assert(s && (s[0] == 'a' || s[0] == 'b' || s[0] == 'c'));
count++;
}
assert(count == 3);
/* Exercise updates */
dup2 = PySet_New(NULL);
assert(_PySet_Update(dup2, dup) == 0);
assert(PySet_Size(dup2) == 3);
assert(_PySet_Update(dup2, dup) == 0);
assert(PySet_Size(dup2) == 3);
Py_DECREF(dup2);
/* Raise SystemError when self argument is not a set or frozenset. */
t = PyTuple_New(0);
assertRaises(PySet_Size(t) == -1, PyExc_SystemError);
assertRaises(PySet_Contains(t, elem) == -1, PyExc_SystemError);
Py_DECREF(t);
/* Raise SystemError when self argument is not a set. */
f = PyFrozenSet_New(dup);
assert(PySet_Size(f) == 3);
assert(PyFrozenSet_CheckExact(f));
assertRaises(PySet_Discard(f, elem) == -1, PyExc_SystemError);
assertRaises(PySet_Pop(f) == NULL, PyExc_SystemError);
Py_DECREF(f);
/* Raise KeyError when popping from an empty set */
assert(PyNumber_InPlaceSubtract(ob, ob) == ob);
Py_DECREF(ob);
assert(PySet_GET_SIZE(ob) == 0);
assertRaises(PySet_Pop(ob) == NULL, PyExc_KeyError);
/* Restore the set from the copy using the PyNumber API */
assert(PyNumber_InPlaceOr(ob, dup) == ob);
Py_DECREF(ob);
/* Verify constructors accept NULL arguments */
f = PySet_New(NULL);
assert(f != NULL);
assert(PySet_GET_SIZE(f) == 0);
Py_DECREF(f);
f = PyFrozenSet_New(NULL);
assert(f != NULL);
assert(PyFrozenSet_CheckExact(f));
assert(PySet_GET_SIZE(f) == 0);
Py_DECREF(f);
Py_DECREF(elem);
Py_DECREF(dup);
Py_RETURN_TRUE;
}
#undef assertRaises
#endif
/***** Dummy Struct *************************************************/
static PyObject *
dummy_repr(PyObject *op)
{
return PyUnicode_FromString("<dummy key>");
}
static void
dummy_dealloc(PyObject* ignore)
{
Py_FatalError("deallocating <dummy key>");
}
static PyTypeObject _PySetDummy_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"<dummy key> type",
0,
0,
dummy_dealloc, /*tp_dealloc*/ /*never called*/
0, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
0, /*tp_reserved*/
dummy_repr, /*tp_repr*/
0, /*tp_as_number*/
0, /*tp_as_sequence*/
0, /*tp_as_mapping*/
0, /*tp_hash */
0, /*tp_call */
0, /*tp_str */
0, /*tp_getattro */
0, /*tp_setattro */
0, /*tp_as_buffer */
Py_TPFLAGS_DEFAULT, /*tp_flags */
};
static PyObject _dummy_struct = {
_PyObject_EXTRA_INIT
2, &_PySetDummy_Type
};
| 76,184 | 2,592 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/enumobject.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "libc/assert.h"
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/enumobject.h"
#include "third_party/python/Include/longobject.h"
#include "third_party/python/Include/methodobject.h"
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/object.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/pyerrors.h"
#include "third_party/python/Include/pymacro.h"
/* clang-format off */
typedef struct {
PyObject_HEAD
Py_ssize_t en_index; /* current index of enumeration */
PyObject* en_sit; /* secondary iterator of enumeration */
PyObject* en_result; /* result tuple */
PyObject* en_longindex; /* index for sequences >= PY_SSIZE_T_MAX */
} enumobject;
static PyObject *
enum_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
enumobject *en;
PyObject *seq = NULL;
PyObject *start = NULL;
static char *kwlist[] = {"iterable", "start", 0};
if (!PyArg_ParseTupleAndKeywords(args, kwds, "O|O:enumerate", kwlist,
&seq, &start))
return NULL;
en = (enumobject *)type->tp_alloc(type, 0);
if (en == NULL)
return NULL;
if (start != NULL) {
start = PyNumber_Index(start);
if (start == NULL) {
Py_DECREF(en);
return NULL;
}
assert(PyLong_Check(start));
en->en_index = PyLong_AsSsize_t(start);
if (en->en_index == -1 && PyErr_Occurred()) {
PyErr_Clear();
en->en_index = PY_SSIZE_T_MAX;
en->en_longindex = start;
} else {
en->en_longindex = NULL;
Py_DECREF(start);
}
} else {
en->en_index = 0;
en->en_longindex = NULL;
}
en->en_sit = PyObject_GetIter(seq);
if (en->en_sit == NULL) {
Py_DECREF(en);
return NULL;
}
en->en_result = PyTuple_Pack(2, Py_None, Py_None);
if (en->en_result == NULL) {
Py_DECREF(en);
return NULL;
}
return (PyObject *)en;
}
static void
enum_dealloc(enumobject *en)
{
PyObject_GC_UnTrack(en);
Py_XDECREF(en->en_sit);
Py_XDECREF(en->en_result);
Py_XDECREF(en->en_longindex);
Py_TYPE(en)->tp_free(en);
}
static int
enum_traverse(enumobject *en, visitproc visit, void *arg)
{
Py_VISIT(en->en_sit);
Py_VISIT(en->en_result);
Py_VISIT(en->en_longindex);
return 0;
}
static PyObject *
enum_next_long(enumobject *en, PyObject* next_item)
{
static PyObject *one = NULL;
PyObject *result = en->en_result;
PyObject *next_index;
PyObject *stepped_up;
if (en->en_longindex == NULL) {
en->en_longindex = PyLong_FromSsize_t(PY_SSIZE_T_MAX);
if (en->en_longindex == NULL) {
Py_DECREF(next_item);
return NULL;
}
}
if (one == NULL) {
one = PyLong_FromLong(1);
if (one == NULL) {
Py_DECREF(next_item);
return NULL;
}
}
next_index = en->en_longindex;
assert(next_index != NULL);
stepped_up = PyNumber_Add(next_index, one);
if (stepped_up == NULL) {
Py_DECREF(next_item);
return NULL;
}
en->en_longindex = stepped_up;
if (result->ob_refcnt == 1) {
Py_INCREF(result);
Py_DECREF(PyTuple_GET_ITEM(result, 0));
Py_DECREF(PyTuple_GET_ITEM(result, 1));
} else {
result = PyTuple_New(2);
if (result == NULL) {
Py_DECREF(next_index);
Py_DECREF(next_item);
return NULL;
}
}
PyTuple_SET_ITEM(result, 0, next_index);
PyTuple_SET_ITEM(result, 1, next_item);
return result;
}
static PyObject *
enum_next(enumobject *en)
{
PyObject *next_index;
PyObject *next_item;
PyObject *result = en->en_result;
PyObject *it = en->en_sit;
next_item = (*Py_TYPE(it)->tp_iternext)(it);
if (next_item == NULL)
return NULL;
if (en->en_index == PY_SSIZE_T_MAX)
return enum_next_long(en, next_item);
next_index = PyLong_FromSsize_t(en->en_index);
if (next_index == NULL) {
Py_DECREF(next_item);
return NULL;
}
en->en_index++;
if (result->ob_refcnt == 1) {
Py_INCREF(result);
Py_DECREF(PyTuple_GET_ITEM(result, 0));
Py_DECREF(PyTuple_GET_ITEM(result, 1));
} else {
result = PyTuple_New(2);
if (result == NULL) {
Py_DECREF(next_index);
Py_DECREF(next_item);
return NULL;
}
}
PyTuple_SET_ITEM(result, 0, next_index);
PyTuple_SET_ITEM(result, 1, next_item);
return result;
}
static PyObject *
enum_reduce(enumobject *en)
{
if (en->en_longindex != NULL)
return Py_BuildValue("O(OO)", Py_TYPE(en), en->en_sit, en->en_longindex);
else
return Py_BuildValue("O(On)", Py_TYPE(en), en->en_sit, en->en_index);
}
PyDoc_STRVAR(reduce_doc, "Return state information for pickling.");
static PyMethodDef enum_methods[] = {
{"__reduce__", (PyCFunction)enum_reduce, METH_NOARGS, reduce_doc},
{NULL, NULL} /* sentinel */
};
PyDoc_STRVAR(enum_doc,
"enumerate(iterable[, start]) -> iterator for index, value of iterable\n"
"\n"
"Return an enumerate object. iterable must be another object that supports\n"
"iteration. The enumerate object yields pairs containing a count (from\n"
"start, which defaults to zero) and a value yielded by the iterable argument.\n"
"enumerate is useful for obtaining an indexed list:\n"
" (0, seq[0]), (1, seq[1]), (2, seq[2]), ...");
PyTypeObject PyEnum_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"enumerate", /* tp_name */
sizeof(enumobject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)enum_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC |
Py_TPFLAGS_BASETYPE, /* tp_flags */
enum_doc, /* tp_doc */
(traverseproc)enum_traverse, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
PyObject_SelfIter, /* tp_iter */
(iternextfunc)enum_next, /* tp_iternext */
enum_methods, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
PyType_GenericAlloc, /* tp_alloc */
enum_new, /* tp_new */
PyObject_GC_Del, /* tp_free */
};
/* Reversed Object ***************************************************************/
typedef struct {
PyObject_HEAD
Py_ssize_t index;
PyObject* seq;
} reversedobject;
static PyObject *
reversed_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
Py_ssize_t n;
PyObject *seq, *reversed_meth;
reversedobject *ro;
_Py_IDENTIFIER(__reversed__);
if (type == &PyReversed_Type && !_PyArg_NoKeywords("reversed()", kwds))
return NULL;
if (!PyArg_UnpackTuple(args, "reversed", 1, 1, &seq) )
return NULL;
reversed_meth = _PyObject_LookupSpecial(seq, &PyId___reversed__);
if (reversed_meth == Py_None) {
Py_DECREF(reversed_meth);
PyErr_Format(PyExc_TypeError,
"'%.200s' object is not reversible",
Py_TYPE(seq)->tp_name);
return NULL;
}
if (reversed_meth != NULL) {
PyObject *res = PyObject_CallFunctionObjArgs(reversed_meth, NULL);
Py_DECREF(reversed_meth);
return res;
}
else if (PyErr_Occurred())
return NULL;
if (!PySequence_Check(seq)) {
PyErr_Format(PyExc_TypeError,
"'%.200s' object is not reversible",
Py_TYPE(seq)->tp_name);
return NULL;
}
n = PySequence_Size(seq);
if (n == -1)
return NULL;
ro = (reversedobject *)type->tp_alloc(type, 0);
if (ro == NULL)
return NULL;
ro->index = n-1;
Py_INCREF(seq);
ro->seq = seq;
return (PyObject *)ro;
}
static void
reversed_dealloc(reversedobject *ro)
{
PyObject_GC_UnTrack(ro);
Py_XDECREF(ro->seq);
Py_TYPE(ro)->tp_free(ro);
}
static int
reversed_traverse(reversedobject *ro, visitproc visit, void *arg)
{
Py_VISIT(ro->seq);
return 0;
}
static PyObject *
reversed_next(reversedobject *ro)
{
PyObject *item;
Py_ssize_t index = ro->index;
if (index >= 0) {
item = PySequence_GetItem(ro->seq, index);
if (item != NULL) {
ro->index--;
return item;
}
if (PyErr_ExceptionMatches(PyExc_IndexError) ||
PyErr_ExceptionMatches(PyExc_StopIteration))
PyErr_Clear();
}
ro->index = -1;
Py_CLEAR(ro->seq);
return NULL;
}
PyDoc_STRVAR(reversed_doc,
"reversed(sequence) -> reverse iterator over values of the sequence\n"
"\n"
"Return a reverse iterator");
static PyObject *
reversed_len(reversedobject *ro)
{
Py_ssize_t position, seqsize;
if (ro->seq == NULL)
return PyLong_FromLong(0);
seqsize = PySequence_Size(ro->seq);
if (seqsize == -1)
return NULL;
position = ro->index + 1;
return PyLong_FromSsize_t((seqsize < position) ? 0 : position);
}
PyDoc_STRVAR(length_hint_doc, "Private method returning an estimate of len(list(it)).");
static PyObject *
reversed_reduce(reversedobject *ro)
{
if (ro->seq)
return Py_BuildValue("O(O)n", Py_TYPE(ro), ro->seq, ro->index);
else
return Py_BuildValue("O(())", Py_TYPE(ro));
}
static PyObject *
reversed_setstate(reversedobject *ro, PyObject *state)
{
Py_ssize_t index = PyLong_AsSsize_t(state);
if (index == -1 && PyErr_Occurred())
return NULL;
if (ro->seq != 0) {
Py_ssize_t n = PySequence_Size(ro->seq);
if (n < 0)
return NULL;
if (index < -1)
index = -1;
else if (index > n-1)
index = n-1;
ro->index = index;
}
Py_RETURN_NONE;
}
PyDoc_STRVAR(setstate_doc, "Set state information for unpickling.");
static PyMethodDef reversediter_methods[] = {
{"__length_hint__", (PyCFunction)reversed_len, METH_NOARGS, length_hint_doc},
{"__reduce__", (PyCFunction)reversed_reduce, METH_NOARGS, reduce_doc},
{"__setstate__", (PyCFunction)reversed_setstate, METH_O, setstate_doc},
{NULL, NULL} /* sentinel */
};
PyTypeObject PyReversed_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"reversed", /* tp_name */
sizeof(reversedobject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)reversed_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC |
Py_TPFLAGS_BASETYPE, /* tp_flags */
reversed_doc, /* tp_doc */
(traverseproc)reversed_traverse,/* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
PyObject_SelfIter, /* tp_iter */
(iternextfunc)reversed_next, /* tp_iternext */
reversediter_methods, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
PyType_GenericAlloc, /* tp_alloc */
reversed_new, /* tp_new */
PyObject_GC_Del, /* tp_free */
};
| 14,698 | 446 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/fromfd.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/import.h"
#include "third_party/python/Include/object.h"
#include "third_party/python/Include/yoink.h"
/* clang-format off */
PYTHON_YOINK("io");
PyObject *
PyFile_FromFd(int fd, const char *name, const char *mode, int buffering,
const char *encoding, const char *errors, const char *newline,
int closefd)
{
PyObject *io, *stream;
_Py_IDENTIFIER(open);
io = PyImport_ImportModule("io");
if (io == NULL)
return NULL;
stream = _PyObject_CallMethodId(io, &PyId_open, "isisssi", fd, mode,
buffering, encoding, errors,
newline, closefd);
Py_DECREF(io);
if (stream == NULL)
return NULL;
/* ignore name attribute because the name attribute of _BufferedIOMixin
and TextIOWrapper is read only */
return stream;
}
| 1,767 | 35 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/namespaceobject.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "libc/assert.h"
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/descrobject.h"
#include "third_party/python/Include/dictobject.h"
#include "third_party/python/Include/listobject.h"
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/namespaceobject.h"
#include "third_party/python/Include/object.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/pyerrors.h"
#include "third_party/python/Include/pymacro.h"
#include "third_party/python/Include/structmember.h"
#include "third_party/python/Include/unicodeobject.h"
/* clang-format off */
typedef struct {
PyObject_HEAD
PyObject *ns_dict;
} _PyNamespaceObject;
static PyMemberDef namespace_members[] = {
{"__dict__", T_OBJECT, offsetof(_PyNamespaceObject, ns_dict), READONLY},
{NULL}
};
// Methods
static PyObject *
namespace_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyObject *self;
assert(type != NULL && type->tp_alloc != NULL);
self = type->tp_alloc(type, 0);
if (self != NULL) {
_PyNamespaceObject *ns = (_PyNamespaceObject *)self;
ns->ns_dict = PyDict_New();
if (ns->ns_dict == NULL) {
Py_DECREF(ns);
return NULL;
}
}
return self;
}
static int
namespace_init(_PyNamespaceObject *ns, PyObject *args, PyObject *kwds)
{
// ignore args if it's NULL or empty
if (args != NULL) {
Py_ssize_t argcount = PyObject_Size(args);
if (argcount < 0)
return -1;
else if (argcount > 0) {
PyErr_Format(PyExc_TypeError, "no positional arguments expected");
return -1;
}
}
if (kwds == NULL) {
return 0;
}
if (!PyArg_ValidateKeywordArguments(kwds)) {
return -1;
}
return PyDict_Update(ns->ns_dict, kwds);
}
static void
namespace_dealloc(_PyNamespaceObject *ns)
{
PyObject_GC_UnTrack(ns);
Py_CLEAR(ns->ns_dict);
Py_TYPE(ns)->tp_free((PyObject *)ns);
}
static PyObject *
namespace_repr(PyObject *ns)
{
int i, loop_error = 0;
PyObject *pairs = NULL, *d = NULL, *keys = NULL, *keys_iter = NULL;
PyObject *key;
PyObject *separator, *pairsrepr, *repr = NULL;
const char * name;
name = (Py_TYPE(ns) == &_PyNamespace_Type) ? "namespace"
: ns->ob_type->tp_name;
i = Py_ReprEnter(ns);
if (i != 0) {
return i > 0 ? PyUnicode_FromFormat("%s(...)", name) : NULL;
}
pairs = PyList_New(0);
if (pairs == NULL)
goto error;
d = ((_PyNamespaceObject *)ns)->ns_dict;
assert(d != NULL);
Py_INCREF(d);
keys = PyDict_Keys(d);
if (keys == NULL)
goto error;
if (PyList_Sort(keys) != 0)
goto error;
keys_iter = PyObject_GetIter(keys);
if (keys_iter == NULL)
goto error;
while ((key = PyIter_Next(keys_iter)) != NULL) {
if (PyUnicode_Check(key) && PyUnicode_GET_LENGTH(key) > 0) {
PyObject *value, *item;
value = PyDict_GetItem(d, key);
if (value != NULL) {
item = PyUnicode_FromFormat("%S=%R", key, value);
if (item == NULL) {
loop_error = 1;
}
else {
loop_error = PyList_Append(pairs, item);
Py_DECREF(item);
}
}
}
Py_DECREF(key);
if (loop_error)
goto error;
}
separator = PyUnicode_FromString(", ");
if (separator == NULL)
goto error;
pairsrepr = PyUnicode_Join(separator, pairs);
Py_DECREF(separator);
if (pairsrepr == NULL)
goto error;
repr = PyUnicode_FromFormat("%s(%S)", name, pairsrepr);
Py_DECREF(pairsrepr);
error:
Py_XDECREF(pairs);
Py_XDECREF(d);
Py_XDECREF(keys);
Py_XDECREF(keys_iter);
Py_ReprLeave(ns);
return repr;
}
static int
namespace_traverse(_PyNamespaceObject *ns, visitproc visit, void *arg)
{
Py_VISIT(ns->ns_dict);
return 0;
}
static int
namespace_clear(_PyNamespaceObject *ns)
{
Py_CLEAR(ns->ns_dict);
return 0;
}
static PyObject *
namespace_richcompare(PyObject *self, PyObject *other, int op)
{
if (PyObject_TypeCheck(self, &_PyNamespace_Type) &&
PyObject_TypeCheck(other, &_PyNamespace_Type))
return PyObject_RichCompare(((_PyNamespaceObject *)self)->ns_dict,
((_PyNamespaceObject *)other)->ns_dict, op);
Py_RETURN_NOTIMPLEMENTED;
}
PyDoc_STRVAR(namespace_reduce__doc__, "Return state information for pickling");
static PyObject *
namespace_reduce(_PyNamespaceObject *ns)
{
PyObject *result, *args = PyTuple_New(0);
if (!args)
return NULL;
result = PyTuple_Pack(3, (PyObject *)Py_TYPE(ns), args, ns->ns_dict);
Py_DECREF(args);
return result;
}
static PyMethodDef namespace_methods[] = {
{"__reduce__", (PyCFunction)namespace_reduce, METH_NOARGS,
namespace_reduce__doc__},
{NULL, NULL} // sentinel
};
PyDoc_STRVAR(namespace_doc,
"A simple attribute-based namespace.\n\
\n\
SimpleNamespace(**kwargs)");
PyTypeObject _PyNamespace_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"types.SimpleNamespace", /* tp_name */
sizeof(_PyNamespaceObject), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)namespace_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)namespace_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
PyObject_GenericSetAttr, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC |
Py_TPFLAGS_BASETYPE, /* tp_flags */
namespace_doc, /* tp_doc */
(traverseproc)namespace_traverse, /* tp_traverse */
(inquiry)namespace_clear, /* tp_clear */
namespace_richcompare, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
namespace_methods, /* tp_methods */
namespace_members, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
offsetof(_PyNamespaceObject, ns_dict), /* tp_dictoffset */
(initproc)namespace_init, /* tp_init */
PyType_GenericAlloc, /* tp_alloc */
(newfunc)namespace_new, /* tp_new */
PyObject_GC_Del, /* tp_free */
};
PyObject *
_PyNamespace_New(PyObject *kwds)
{
PyObject *ns = namespace_new(&_PyNamespace_Type, NULL, NULL);
if (ns == NULL)
return NULL;
if (kwds == NULL)
return ns;
if (PyDict_Update(((_PyNamespaceObject *)ns)->ns_dict, kwds) != 0) {
Py_DECREF(ns);
return NULL;
}
return (PyObject *)ns;
}
| 8,988 | 282 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/rangeobject.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/boolobject.h"
#include "third_party/python/Include/longobject.h"
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/pyerrors.h"
#include "third_party/python/Include/rangeobject.h"
#include "third_party/python/Include/sliceobject.h"
#include "third_party/python/Include/structmember.h"
#include "third_party/python/Include/warnings.h"
/* clang-format off */
/* Support objects whose length is > PY_SSIZE_T_MAX.
This could be sped up for small PyLongs if they fit in a Py_ssize_t.
This only matters on Win64. Though we could use long long which
would presumably help perf.
*/
typedef struct {
PyObject_HEAD
PyObject *start;
PyObject *stop;
PyObject *step;
PyObject *length;
} rangeobject;
/* Helper function for validating step. Always returns a new reference or
NULL on error.
*/
static PyObject *
validate_step(PyObject *step)
{
/* No step specified, use a step of 1. */
if (!step)
return PyLong_FromLong(1);
step = PyNumber_Index(step);
if (step && _PyLong_Sign(step) == 0) {
PyErr_SetString(PyExc_ValueError,
"range() arg 3 must not be zero");
Py_CLEAR(step);
}
return step;
}
static PyObject *
compute_range_length(PyObject *start, PyObject *stop, PyObject *step);
static rangeobject *
make_range_object(PyTypeObject *type, PyObject *start,
PyObject *stop, PyObject *step)
{
rangeobject *obj = NULL;
PyObject *length;
length = compute_range_length(start, stop, step);
if (length == NULL) {
return NULL;
}
obj = PyObject_New(rangeobject, type);
if (obj == NULL) {
Py_DECREF(length);
return NULL;
}
obj->start = start;
obj->stop = stop;
obj->step = step;
obj->length = length;
return obj;
}
/* XXX(nnorwitz): should we error check if the user passes any empty ranges?
range(-10)
range(0, -5)
range(0, 5, -1)
*/
static PyObject *
range_new(PyTypeObject *type, PyObject *args, PyObject *kw)
{
rangeobject *obj;
PyObject *start = NULL, *stop = NULL, *step = NULL;
if (!_PyArg_NoKeywords("range()", kw))
return NULL;
if (PyTuple_Size(args) <= 1) {
if (!PyArg_UnpackTuple(args, "range", 1, 1, &stop))
return NULL;
stop = PyNumber_Index(stop);
if (!stop)
return NULL;
start = PyLong_FromLong(0);
if (!start) {
Py_DECREF(stop);
return NULL;
}
step = PyLong_FromLong(1);
if (!step) {
Py_DECREF(stop);
Py_DECREF(start);
return NULL;
}
}
else {
if (!PyArg_UnpackTuple(args, "range", 2, 3,
&start, &stop, &step))
return NULL;
/* Convert borrowed refs to owned refs */
start = PyNumber_Index(start);
if (!start)
return NULL;
stop = PyNumber_Index(stop);
if (!stop) {
Py_DECREF(start);
return NULL;
}
step = validate_step(step); /* Caution, this can clear exceptions */
if (!step) {
Py_DECREF(start);
Py_DECREF(stop);
return NULL;
}
}
obj = make_range_object(type, start, stop, step);
if (obj != NULL)
return (PyObject *) obj;
/* Failed to create object, release attributes */
Py_DECREF(start);
Py_DECREF(stop);
Py_DECREF(step);
return NULL;
}
PyDoc_STRVAR(range_doc,
"range(stop) -> range object\n\
range(start, stop[, step]) -> range object\n\
\n\
Return an object that produces a sequence of integers from start (inclusive)\n\
to stop (exclusive) by step. range(i, j) produces i, i+1, i+2, ..., j-1.\n\
start defaults to 0, and stop is omitted! range(4) produces 0, 1, 2, 3.\n\
These are exactly the valid indices for a list of 4 elements.\n\
When step is given, it specifies the increment (or decrement).");
static void
range_dealloc(rangeobject *r)
{
Py_DECREF(r->start);
Py_DECREF(r->stop);
Py_DECREF(r->step);
Py_DECREF(r->length);
PyObject_Del(r);
}
/* Return number of items in range (lo, hi, step) as a PyLong object,
* when arguments are PyLong objects. Arguments MUST return 1 with
* PyLong_Check(). Return NULL when there is an error.
*/
static PyObject*
compute_range_length(PyObject *start, PyObject *stop, PyObject *step)
{
/* -------------------------------------------------------------
Algorithm is equal to that of get_len_of_range(), but it operates
on PyObjects (which are assumed to be PyLong objects).
---------------------------------------------------------------*/
int cmp_result;
PyObject *lo, *hi;
PyObject *diff = NULL;
PyObject *one = NULL;
PyObject *tmp1 = NULL, *tmp2 = NULL, *result;
/* holds sub-expression evaluations */
PyObject *zero = PyLong_FromLong(0);
if (zero == NULL)
return NULL;
cmp_result = PyObject_RichCompareBool(step, zero, Py_GT);
Py_DECREF(zero);
if (cmp_result == -1)
return NULL;
if (cmp_result == 1) {
lo = start;
hi = stop;
Py_INCREF(step);
} else {
lo = stop;
hi = start;
step = PyNumber_Negative(step);
if (!step)
return NULL;
}
/* if (lo >= hi), return length of 0. */
cmp_result = PyObject_RichCompareBool(lo, hi, Py_GE);
if (cmp_result != 0) {
Py_DECREF(step);
if (cmp_result < 0)
return NULL;
return PyLong_FromLong(0);
}
if ((one = PyLong_FromLong(1L)) == NULL)
goto Fail;
if ((tmp1 = PyNumber_Subtract(hi, lo)) == NULL)
goto Fail;
if ((diff = PyNumber_Subtract(tmp1, one)) == NULL)
goto Fail;
if ((tmp2 = PyNumber_FloorDivide(diff, step)) == NULL)
goto Fail;
if ((result = PyNumber_Add(tmp2, one)) == NULL)
goto Fail;
Py_DECREF(tmp2);
Py_DECREF(diff);
Py_DECREF(step);
Py_DECREF(tmp1);
Py_DECREF(one);
return result;
Fail:
Py_DECREF(step);
Py_XDECREF(tmp2);
Py_XDECREF(diff);
Py_XDECREF(tmp1);
Py_XDECREF(one);
return NULL;
}
static Py_ssize_t
range_length(rangeobject *r)
{
return PyLong_AsSsize_t(r->length);
}
static PyObject *
compute_item(rangeobject *r, PyObject *i)
{
PyObject *incr, *result;
/* PyLong equivalent to:
* return r->start + (i * r->step)
*/
incr = PyNumber_Multiply(i, r->step);
if (!incr)
return NULL;
result = PyNumber_Add(r->start, incr);
Py_DECREF(incr);
return result;
}
static PyObject *
compute_range_item(rangeobject *r, PyObject *arg)
{
int cmp_result;
PyObject *i, *result;
PyObject *zero = PyLong_FromLong(0);
if (zero == NULL)
return NULL;
/* PyLong equivalent to:
* if (arg < 0) {
* i = r->length + arg
* } else {
* i = arg
* }
*/
cmp_result = PyObject_RichCompareBool(arg, zero, Py_LT);
if (cmp_result == -1) {
Py_DECREF(zero);
return NULL;
}
if (cmp_result == 1) {
i = PyNumber_Add(r->length, arg);
if (!i) {
Py_DECREF(zero);
return NULL;
}
} else {
i = arg;
Py_INCREF(i);
}
/* PyLong equivalent to:
* if (i < 0 || i >= r->length) {
* <report index out of bounds>
* }
*/
cmp_result = PyObject_RichCompareBool(i, zero, Py_LT);
Py_DECREF(zero);
if (cmp_result == 0) {
cmp_result = PyObject_RichCompareBool(i, r->length, Py_GE);
}
if (cmp_result == -1) {
Py_DECREF(i);
return NULL;
}
if (cmp_result == 1) {
Py_DECREF(i);
PyErr_SetString(PyExc_IndexError,
"range object index out of range");
return NULL;
}
result = compute_item(r, i);
Py_DECREF(i);
return result;
}
static PyObject *
range_item(rangeobject *r, Py_ssize_t i)
{
PyObject *res, *arg = PyLong_FromSsize_t(i);
if (!arg) {
return NULL;
}
res = compute_range_item(r, arg);
Py_DECREF(arg);
return res;
}
static PyObject *
compute_slice(rangeobject *r, PyObject *_slice)
{
PySliceObject *slice = (PySliceObject *) _slice;
rangeobject *result;
PyObject *start = NULL, *stop = NULL, *step = NULL;
PyObject *substart = NULL, *substop = NULL, *substep = NULL;
int error;
error = _PySlice_GetLongIndices(slice, r->length, &start, &stop, &step);
if (error == -1)
return NULL;
substep = PyNumber_Multiply(r->step, step);
if (substep == NULL) goto fail;
Py_CLEAR(step);
substart = compute_item(r, start);
if (substart == NULL) goto fail;
Py_CLEAR(start);
substop = compute_item(r, stop);
if (substop == NULL) goto fail;
Py_CLEAR(stop);
result = make_range_object(Py_TYPE(r), substart, substop, substep);
if (result != NULL) {
return (PyObject *) result;
}
fail:
Py_XDECREF(start);
Py_XDECREF(stop);
Py_XDECREF(step);
Py_XDECREF(substart);
Py_XDECREF(substop);
Py_XDECREF(substep);
return NULL;
}
/* Assumes (PyLong_CheckExact(ob) || PyBool_Check(ob)) */
static int
range_contains_long(rangeobject *r, PyObject *ob)
{
int cmp1, cmp2, cmp3;
PyObject *tmp1 = NULL;
PyObject *tmp2 = NULL;
PyObject *zero = NULL;
int result = -1;
zero = PyLong_FromLong(0);
if (zero == NULL) /* MemoryError in int(0) */
goto end;
/* Check if the value can possibly be in the range. */
cmp1 = PyObject_RichCompareBool(r->step, zero, Py_GT);
if (cmp1 == -1)
goto end;
if (cmp1 == 1) { /* positive steps: start <= ob < stop */
cmp2 = PyObject_RichCompareBool(r->start, ob, Py_LE);
cmp3 = PyObject_RichCompareBool(ob, r->stop, Py_LT);
}
else { /* negative steps: stop < ob <= start */
cmp2 = PyObject_RichCompareBool(ob, r->start, Py_LE);
cmp3 = PyObject_RichCompareBool(r->stop, ob, Py_LT);
}
if (cmp2 == -1 || cmp3 == -1) /* TypeError */
goto end;
if (cmp2 == 0 || cmp3 == 0) { /* ob outside of range */
result = 0;
goto end;
}
/* Check that the stride does not invalidate ob's membership. */
tmp1 = PyNumber_Subtract(ob, r->start);
if (tmp1 == NULL)
goto end;
tmp2 = PyNumber_Remainder(tmp1, r->step);
if (tmp2 == NULL)
goto end;
/* result = ((int(ob) - start) % step) == 0 */
result = PyObject_RichCompareBool(tmp2, zero, Py_EQ);
end:
Py_XDECREF(tmp1);
Py_XDECREF(tmp2);
Py_XDECREF(zero);
return result;
}
static int
range_contains(rangeobject *r, PyObject *ob)
{
if (PyLong_CheckExact(ob) || PyBool_Check(ob))
return range_contains_long(r, ob);
return (int)_PySequence_IterSearch((PyObject*)r, ob,
PY_ITERSEARCH_CONTAINS);
}
/* Compare two range objects. Return 1 for equal, 0 for not equal
and -1 on error. The algorithm is roughly the C equivalent of
if r0 is r1:
return True
if len(r0) != len(r1):
return False
if not len(r0):
return True
if r0.start != r1.start:
return False
if len(r0) == 1:
return True
return r0.step == r1.step
*/
static int
range_equals(rangeobject *r0, rangeobject *r1)
{
int cmp_result;
PyObject *one;
if (r0 == r1)
return 1;
cmp_result = PyObject_RichCompareBool(r0->length, r1->length, Py_EQ);
/* Return False or error to the caller. */
if (cmp_result != 1)
return cmp_result;
cmp_result = PyObject_Not(r0->length);
/* Return True or error to the caller. */
if (cmp_result != 0)
return cmp_result;
cmp_result = PyObject_RichCompareBool(r0->start, r1->start, Py_EQ);
/* Return False or error to the caller. */
if (cmp_result != 1)
return cmp_result;
one = PyLong_FromLong(1);
if (!one)
return -1;
cmp_result = PyObject_RichCompareBool(r0->length, one, Py_EQ);
Py_DECREF(one);
/* Return True or error to the caller. */
if (cmp_result != 0)
return cmp_result;
return PyObject_RichCompareBool(r0->step, r1->step, Py_EQ);
}
static PyObject *
range_richcompare(PyObject *self, PyObject *other, int op)
{
int result;
if (!PyRange_Check(other))
Py_RETURN_NOTIMPLEMENTED;
switch (op) {
case Py_NE:
case Py_EQ:
result = range_equals((rangeobject*)self, (rangeobject*)other);
if (result == -1)
return NULL;
if (op == Py_NE)
result = !result;
if (result)
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;
case Py_LE:
case Py_GE:
case Py_LT:
case Py_GT:
Py_RETURN_NOTIMPLEMENTED;
default:
PyErr_BadArgument();
return NULL;
}
}
/* Hash function for range objects. Rough C equivalent of
if not len(r):
return hash((len(r), None, None))
if len(r) == 1:
return hash((len(r), r.start, None))
return hash((len(r), r.start, r.step))
*/
static Py_hash_t
range_hash(rangeobject *r)
{
PyObject *t;
Py_hash_t result = -1;
int cmp_result;
t = PyTuple_New(3);
if (!t)
return -1;
Py_INCREF(r->length);
PyTuple_SET_ITEM(t, 0, r->length);
cmp_result = PyObject_Not(r->length);
if (cmp_result == -1)
goto end;
if (cmp_result == 1) {
Py_INCREF(Py_None);
Py_INCREF(Py_None);
PyTuple_SET_ITEM(t, 1, Py_None);
PyTuple_SET_ITEM(t, 2, Py_None);
}
else {
PyObject *one;
Py_INCREF(r->start);
PyTuple_SET_ITEM(t, 1, r->start);
one = PyLong_FromLong(1);
if (!one)
goto end;
cmp_result = PyObject_RichCompareBool(r->length, one, Py_EQ);
Py_DECREF(one);
if (cmp_result == -1)
goto end;
if (cmp_result == 1) {
Py_INCREF(Py_None);
PyTuple_SET_ITEM(t, 2, Py_None);
}
else {
Py_INCREF(r->step);
PyTuple_SET_ITEM(t, 2, r->step);
}
}
result = PyObject_Hash(t);
end:
Py_DECREF(t);
return result;
}
static PyObject *
range_count(rangeobject *r, PyObject *ob)
{
if (PyLong_CheckExact(ob) || PyBool_Check(ob)) {
int result = range_contains_long(r, ob);
if (result == -1)
return NULL;
else if (result)
return PyLong_FromLong(1);
else
return PyLong_FromLong(0);
} else {
Py_ssize_t count;
count = _PySequence_IterSearch((PyObject*)r, ob, PY_ITERSEARCH_COUNT);
if (count == -1)
return NULL;
return PyLong_FromSsize_t(count);
}
}
static PyObject *
range_index(rangeobject *r, PyObject *ob)
{
int contains;
if (!PyLong_CheckExact(ob) && !PyBool_Check(ob)) {
Py_ssize_t index;
index = _PySequence_IterSearch((PyObject*)r, ob, PY_ITERSEARCH_INDEX);
if (index == -1)
return NULL;
return PyLong_FromSsize_t(index);
}
contains = range_contains_long(r, ob);
if (contains == -1)
return NULL;
if (contains) {
PyObject *idx, *tmp = PyNumber_Subtract(ob, r->start);
if (tmp == NULL)
return NULL;
/* idx = (ob - r.start) // r.step */
idx = PyNumber_FloorDivide(tmp, r->step);
Py_DECREF(tmp);
return idx;
}
/* object is not in the range */
PyErr_Format(PyExc_ValueError, "%R is not in range", ob);
return NULL;
}
static PySequenceMethods range_as_sequence = {
(lenfunc)range_length, /* sq_length */
0, /* sq_concat */
0, /* sq_repeat */
(ssizeargfunc)range_item, /* sq_item */
0, /* sq_slice */
0, /* sq_ass_item */
0, /* sq_ass_slice */
(objobjproc)range_contains, /* sq_contains */
};
static PyObject *
range_repr(rangeobject *r)
{
Py_ssize_t istep;
/* Check for special case values for printing. We don't always
need the step value. We don't care about overflow. */
istep = PyNumber_AsSsize_t(r->step, NULL);
if (istep == -1 && PyErr_Occurred()) {
assert(!PyErr_ExceptionMatches(PyExc_OverflowError));
return NULL;
}
if (istep == 1)
return PyUnicode_FromFormat("range(%R, %R)", r->start, r->stop);
else
return PyUnicode_FromFormat("range(%R, %R, %R)",
r->start, r->stop, r->step);
}
/* Pickling support */
static PyObject *
range_reduce(rangeobject *r, PyObject *args)
{
return Py_BuildValue("(O(OOO))", Py_TYPE(r),
r->start, r->stop, r->step);
}
static PyObject *
range_subscript(rangeobject* self, PyObject* item)
{
if (PyIndex_Check(item)) {
PyObject *i, *result;
i = PyNumber_Index(item);
if (!i)
return NULL;
result = compute_range_item(self, i);
Py_DECREF(i);
return result;
}
if (PySlice_Check(item)) {
return compute_slice(self, item);
}
PyErr_Format(PyExc_TypeError,
"range indices must be integers or slices, not %.200s",
item->ob_type->tp_name);
return NULL;
}
static PyMappingMethods range_as_mapping = {
(lenfunc)range_length, /* mp_length */
(binaryfunc)range_subscript, /* mp_subscript */
(objobjargproc)0, /* mp_ass_subscript */
};
static int
range_bool(rangeobject* self)
{
return PyObject_IsTrue(self->length);
}
static PyNumberMethods range_as_number = {
.nb_bool = (inquiry)range_bool,
};
static PyObject * range_iter(PyObject *seq);
static PyObject * range_reverse(PyObject *seq);
PyDoc_STRVAR(reverse_doc,
"Return a reverse iterator.");
PyDoc_STRVAR(count_doc,
"rangeobject.count(value) -> integer -- return number of occurrences of value");
PyDoc_STRVAR(index_doc,
"rangeobject.index(value, [start, [stop]]) -> integer -- return index of value.\n"
"Raise ValueError if the value is not present.");
static PyMethodDef range_methods[] = {
{"__reversed__", (PyCFunction)range_reverse, METH_NOARGS, reverse_doc},
{"__reduce__", (PyCFunction)range_reduce, METH_VARARGS},
{"count", (PyCFunction)range_count, METH_O, count_doc},
{"index", (PyCFunction)range_index, METH_O, index_doc},
{NULL, NULL} /* sentinel */
};
static PyMemberDef range_members[] = {
{"start", T_OBJECT_EX, offsetof(rangeobject, start), READONLY},
{"stop", T_OBJECT_EX, offsetof(rangeobject, stop), READONLY},
{"step", T_OBJECT_EX, offsetof(rangeobject, step), READONLY},
{0}
};
PyTypeObject PyRange_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"range", /* Name of this type */
sizeof(rangeobject), /* Basic object size */
0, /* Item size for varobject */
(destructor)range_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)range_repr, /* tp_repr */
&range_as_number, /* tp_as_number */
&range_as_sequence, /* tp_as_sequence */
&range_as_mapping, /* tp_as_mapping */
(hashfunc)range_hash, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT, /* tp_flags */
range_doc, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
range_richcompare, /* tp_richcompare */
0, /* tp_weaklistoffset */
range_iter, /* tp_iter */
0, /* tp_iternext */
range_methods, /* tp_methods */
range_members, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
range_new, /* tp_new */
};
/*********************** range Iterator **************************/
/* There are 2 types of iterators, one for C longs, the other for
Python ints (ie, PyObjects). This should make iteration fast
in the normal case, but possible for any numeric value.
*/
typedef struct {
PyObject_HEAD
long index;
long start;
long step;
long len;
} rangeiterobject;
static PyObject *
rangeiter_next(rangeiterobject *r)
{
if (r->index < r->len)
/* cast to unsigned to avoid possible signed overflow
in intermediate calculations. */
return PyLong_FromLong((long)(r->start +
(unsigned long)(r->index++) * r->step));
return NULL;
}
static PyObject *
rangeiter_len(rangeiterobject *r)
{
return PyLong_FromLong(r->len - r->index);
}
PyDoc_STRVAR(length_hint_doc,
"Private method returning an estimate of len(list(it)).");
static PyObject *
rangeiter_reduce(rangeiterobject *r)
{
PyObject *start=NULL, *stop=NULL, *step=NULL;
PyObject *range;
/* create a range object for pickling */
start = PyLong_FromLong(r->start);
if (start == NULL)
goto err;
stop = PyLong_FromLong(r->start + r->len * r->step);
if (stop == NULL)
goto err;
step = PyLong_FromLong(r->step);
if (step == NULL)
goto err;
range = (PyObject*)make_range_object(&PyRange_Type,
start, stop, step);
if (range == NULL)
goto err;
/* return the result */
return Py_BuildValue("N(N)i", _PyObject_GetBuiltin("iter"), range, r->index);
err:
Py_XDECREF(start);
Py_XDECREF(stop);
Py_XDECREF(step);
return NULL;
}
static PyObject *
rangeiter_setstate(rangeiterobject *r, PyObject *state)
{
long index = PyLong_AsLong(state);
if (index == -1 && PyErr_Occurred())
return NULL;
/* silently clip the index value */
if (index < 0)
index = 0;
else if (index > r->len)
index = r->len; /* exhausted iterator */
r->index = index;
Py_RETURN_NONE;
}
PyDoc_STRVAR(reduce_doc, "Return state information for pickling.");
PyDoc_STRVAR(setstate_doc, "Set state information for unpickling.");
static PyMethodDef rangeiter_methods[] = {
{"__length_hint__", (PyCFunction)rangeiter_len, METH_NOARGS,
length_hint_doc},
{"__reduce__", (PyCFunction)rangeiter_reduce, METH_NOARGS,
reduce_doc},
{"__setstate__", (PyCFunction)rangeiter_setstate, METH_O,
setstate_doc},
{NULL, NULL} /* sentinel */
};
static PyObject *rangeiter_new(PyTypeObject *, PyObject *args, PyObject *kw);
PyTypeObject PyRangeIter_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"range_iterator", /* tp_name */
sizeof(rangeiterobject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)PyObject_Del, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT, /* tp_flags */
0, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
PyObject_SelfIter, /* tp_iter */
(iternextfunc)rangeiter_next, /* tp_iternext */
rangeiter_methods, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
rangeiter_new, /* tp_new */
};
/* Return number of items in range (lo, hi, step). step != 0
* required. The result always fits in an unsigned long.
*/
static unsigned long
get_len_of_range(long lo, long hi, long step)
{
/* -------------------------------------------------------------
If step > 0 and lo >= hi, or step < 0 and lo <= hi, the range is empty.
Else for step > 0, if n values are in the range, the last one is
lo + (n-1)*step, which must be <= hi-1. Rearranging,
n <= (hi - lo - 1)/step + 1, so taking the floor of the RHS gives
the proper value. Since lo < hi in this case, hi-lo-1 >= 0, so
the RHS is non-negative and so truncation is the same as the
floor. Letting M be the largest positive long, the worst case
for the RHS numerator is hi=M, lo=-M-1, and then
hi-lo-1 = M-(-M-1)-1 = 2*M. Therefore unsigned long has enough
precision to compute the RHS exactly. The analysis for step < 0
is similar.
---------------------------------------------------------------*/
assert(step != 0);
if (step > 0 && lo < hi)
return 1UL + (hi - 1UL - lo) / step;
else if (step < 0 && lo > hi)
return 1UL + (lo - 1UL - hi) / (0UL - step);
else
return 0UL;
}
/* Initialize a rangeiter object. If the length of the rangeiter object
is not representable as a C long, OverflowError is raised. */
static PyObject *
fast_range_iter(long start, long stop, long step)
{
rangeiterobject *it = PyObject_New(rangeiterobject, &PyRangeIter_Type);
unsigned long ulen;
if (it == NULL)
return NULL;
it->start = start;
it->step = step;
ulen = get_len_of_range(start, stop, step);
if (ulen > (unsigned long)LONG_MAX) {
Py_DECREF(it);
PyErr_SetString(PyExc_OverflowError,
"range too large to represent as a range_iterator");
return NULL;
}
it->len = (long)ulen;
it->index = 0;
return (PyObject *)it;
}
static PyObject *
rangeiter_new(PyTypeObject *type, PyObject *args, PyObject *kw)
{
long start, stop, step;
if (PyErr_WarnEx(PyExc_DeprecationWarning,
"range_iterator(): creating instances of range_iterator "
"by calling range_iterator type is deprecated",
1)) {
return NULL;
}
if (!_PyArg_NoKeywords("range_iterator()", kw)) {
return NULL;
}
if (!PyArg_ParseTuple(args,
"lll;range_iterator() requires 3 int arguments",
&start, &stop, &step)) {
return NULL;
}
if (step == 0) {
PyErr_SetString(PyExc_ValueError,
"range_iterator() arg 3 must not be zero");
return NULL;
}
return fast_range_iter(start, stop, step);
}
typedef struct {
PyObject_HEAD
PyObject *index;
PyObject *start;
PyObject *step;
PyObject *len;
} longrangeiterobject;
static PyObject *
longrangeiter_len(longrangeiterobject *r, PyObject *no_args)
{
return PyNumber_Subtract(r->len, r->index);
}
static PyObject *
longrangeiter_reduce(longrangeiterobject *r)
{
PyObject *product, *stop=NULL;
PyObject *range;
/* create a range object for pickling. Must calculate the "stop" value */
product = PyNumber_Multiply(r->len, r->step);
if (product == NULL)
return NULL;
stop = PyNumber_Add(r->start, product);
Py_DECREF(product);
if (stop == NULL)
return NULL;
Py_INCREF(r->start);
Py_INCREF(r->step);
range = (PyObject*)make_range_object(&PyRange_Type,
r->start, stop, r->step);
if (range == NULL) {
Py_DECREF(r->start);
Py_DECREF(stop);
Py_DECREF(r->step);
return NULL;
}
/* return the result */
return Py_BuildValue("N(N)O", _PyObject_GetBuiltin("iter"), range, r->index);
}
static PyObject *
longrangeiter_setstate(longrangeiterobject *r, PyObject *state)
{
int cmp;
/* clip the value */
PyObject *zero = PyLong_FromLong(0);
if (zero == NULL)
return NULL;
cmp = PyObject_RichCompareBool(state, zero, Py_LT);
if (cmp > 0) {
Py_XSETREF(r->index, zero);
Py_RETURN_NONE;
}
Py_DECREF(zero);
if (cmp < 0)
return NULL;
cmp = PyObject_RichCompareBool(r->len, state, Py_LT);
if (cmp < 0)
return NULL;
if (cmp > 0)
state = r->len;
Py_INCREF(state);
Py_XSETREF(r->index, state);
Py_RETURN_NONE;
}
static PyMethodDef longrangeiter_methods[] = {
{"__length_hint__", (PyCFunction)longrangeiter_len, METH_NOARGS,
length_hint_doc},
{"__reduce__", (PyCFunction)longrangeiter_reduce, METH_NOARGS,
reduce_doc},
{"__setstate__", (PyCFunction)longrangeiter_setstate, METH_O,
setstate_doc},
{NULL, NULL} /* sentinel */
};
static void
longrangeiter_dealloc(longrangeiterobject *r)
{
Py_XDECREF(r->index);
Py_XDECREF(r->start);
Py_XDECREF(r->step);
Py_XDECREF(r->len);
PyObject_Del(r);
}
static PyObject *
longrangeiter_next(longrangeiterobject *r)
{
PyObject *one, *product, *new_index, *result;
if (PyObject_RichCompareBool(r->index, r->len, Py_LT) != 1)
return NULL;
one = PyLong_FromLong(1);
if (!one)
return NULL;
new_index = PyNumber_Add(r->index, one);
Py_DECREF(one);
if (!new_index)
return NULL;
product = PyNumber_Multiply(r->index, r->step);
if (!product) {
Py_DECREF(new_index);
return NULL;
}
result = PyNumber_Add(r->start, product);
Py_DECREF(product);
if (result) {
Py_SETREF(r->index, new_index);
}
else {
Py_DECREF(new_index);
}
return result;
}
PyTypeObject PyLongRangeIter_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"longrange_iterator", /* tp_name */
sizeof(longrangeiterobject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)longrangeiter_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT, /* tp_flags */
0, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
PyObject_SelfIter, /* tp_iter */
(iternextfunc)longrangeiter_next, /* tp_iternext */
longrangeiter_methods, /* tp_methods */
0,
};
static PyObject *
range_iter(PyObject *seq)
{
rangeobject *r = (rangeobject *)seq;
longrangeiterobject *it;
long lstart, lstop, lstep;
PyObject *int_it;
assert(PyRange_Check(seq));
/* If all three fields and the length convert to long, use the int
* version */
lstart = PyLong_AsLong(r->start);
if (lstart == -1 && PyErr_Occurred()) {
PyErr_Clear();
goto long_range;
}
lstop = PyLong_AsLong(r->stop);
if (lstop == -1 && PyErr_Occurred()) {
PyErr_Clear();
goto long_range;
}
lstep = PyLong_AsLong(r->step);
if (lstep == -1 && PyErr_Occurred()) {
PyErr_Clear();
goto long_range;
}
int_it = fast_range_iter(lstart, lstop, lstep);
if (int_it == NULL && PyErr_ExceptionMatches(PyExc_OverflowError)) {
PyErr_Clear();
goto long_range;
}
return (PyObject *)int_it;
long_range:
it = PyObject_New(longrangeiterobject, &PyLongRangeIter_Type);
if (it == NULL)
return NULL;
/* Do all initialization here, so we can DECREF on failure. */
it->start = r->start;
it->step = r->step;
it->len = r->length;
Py_INCREF(it->start);
Py_INCREF(it->step);
Py_INCREF(it->len);
it->index = PyLong_FromLong(0);
if (!it->index)
goto create_failure;
return (PyObject *)it;
create_failure:
Py_DECREF(it);
return NULL;
}
static PyObject *
range_reverse(PyObject *seq)
{
rangeobject *range = (rangeobject*) seq;
longrangeiterobject *it;
PyObject *one, *sum, *diff, *product;
long lstart, lstop, lstep, new_start, new_stop;
unsigned long ulen;
assert(PyRange_Check(seq));
/* reversed(range(start, stop, step)) can be expressed as
range(start+(n-1)*step, start-step, -step), where n is the number of
integers in the range.
If each of start, stop, step, -step, start-step, and the length
of the iterator is representable as a C long, use the int
version. This excludes some cases where the reversed range is
representable as a range_iterator, but it's good enough for
common cases and it makes the checks simple. */
lstart = PyLong_AsLong(range->start);
if (lstart == -1 && PyErr_Occurred()) {
PyErr_Clear();
goto long_range;
}
lstop = PyLong_AsLong(range->stop);
if (lstop == -1 && PyErr_Occurred()) {
PyErr_Clear();
goto long_range;
}
lstep = PyLong_AsLong(range->step);
if (lstep == -1 && PyErr_Occurred()) {
PyErr_Clear();
goto long_range;
}
/* check for possible overflow of -lstep */
if (lstep == LONG_MIN)
goto long_range;
/* check for overflow of lstart - lstep:
for lstep > 0, need only check whether lstart - lstep < LONG_MIN.
for lstep < 0, need only check whether lstart - lstep > LONG_MAX
Rearrange these inequalities as:
lstart - LONG_MIN < lstep (lstep > 0)
LONG_MAX - lstart < -lstep (lstep < 0)
and compute both sides as unsigned longs, to avoid the
possibility of undefined behaviour due to signed overflow. */
if (lstep > 0) {
if ((unsigned long)lstart - LONG_MIN < (unsigned long)lstep)
goto long_range;
}
else {
if (LONG_MAX - (unsigned long)lstart < 0UL - lstep)
goto long_range;
}
ulen = get_len_of_range(lstart, lstop, lstep);
if (ulen > (unsigned long)LONG_MAX)
goto long_range;
new_stop = lstart - lstep;
new_start = (long)(new_stop + ulen * lstep);
return fast_range_iter(new_start, new_stop, -lstep);
long_range:
it = PyObject_New(longrangeiterobject, &PyLongRangeIter_Type);
if (it == NULL)
return NULL;
it->index = it->start = it->step = NULL;
/* start + (len - 1) * step */
it->len = range->length;
Py_INCREF(it->len);
one = PyLong_FromLong(1);
if (!one)
goto create_failure;
diff = PyNumber_Subtract(it->len, one);
Py_DECREF(one);
if (!diff)
goto create_failure;
product = PyNumber_Multiply(diff, range->step);
Py_DECREF(diff);
if (!product)
goto create_failure;
sum = PyNumber_Add(range->start, product);
Py_DECREF(product);
it->start = sum;
if (!it->start)
goto create_failure;
it->step = PyNumber_Negative(range->step);
if (!it->step)
goto create_failure;
it->index = PyLong_FromLong(0);
if (!it->index)
goto create_failure;
return (PyObject *)it;
create_failure:
Py_DECREF(it);
return NULL;
}
| 39,280 | 1,312 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/odictobject.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "libc/assert.h"
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/boolobject.h"
#include "third_party/python/Include/descrobject.h"
#include "third_party/python/Include/longobject.h"
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/odictobject.h"
#include "third_party/python/Include/pyerrors.h"
#include "third_party/python/Include/pymacro.h"
#include "third_party/python/Include/pymem.h"
#include "third_party/python/Include/pystate.h"
#include "third_party/python/Include/structmember.h"
#include "third_party/python/Include/tupleobject.h"
#include "third_party/python/Objects/dict-common.h"
/* clang-format off */
/* Ordered Dictionary object implementation.
This implementation is necessarily explicitly equivalent to the pure Python
OrderedDict class in Lib/collections/__init__.py. The strategy there
involves using a doubly-linked-list to capture the order. We keep to that
strategy, using a lower-level linked-list.
About the Linked-List
=====================
For the linked list we use a basic doubly-linked-list. Using a circularly-
linked-list does have some benefits, but they don't apply so much here
since OrderedDict is focused on the ends of the list (for the most part).
Furthermore, there are some features of generic linked-lists that we simply
don't need for OrderedDict. Thus a simple custom implementation meets our
needs. Alternatives to our simple approach include the QCIRCLE_*
macros from BSD's queue.h, and the linux's list.h.
Getting O(1) Node Lookup
------------------------
One invariant of Python's OrderedDict is that it preserves time complexity
of dict's methods, particularly the O(1) operations. Simply adding a
linked-list on top of dict is not sufficient here; operations for nodes in
the middle of the linked-list implicitly require finding the node first.
With a simple linked-list like we're using, that is an O(n) operation.
Consequently, methods like __delitem__() would change from O(1) to O(n),
which is unacceptable.
In order to preserve O(1) performance for node removal (finding nodes), we
must do better than just looping through the linked-list. Here are options
we've considered:
1. use a second dict to map keys to nodes (a la the pure Python version).
2. keep a simple hash table mirroring the order of dict's, mapping each key
to the corresponding node in the linked-list.
3. use a version of shared keys (split dict) that allows non-unicode keys.
4. have the value stored for each key be a (value, node) pair, and adjust
__getitem__(), get(), etc. accordingly.
The approach with the least performance impact (time and space) is #2,
mirroring the key order of dict's dk_entries with an array of node pointers.
While lookdict() and friends (dk_lookup) don't give us the index into the
array, we make use of pointer arithmetic to get that index. An alternative
would be to refactor lookdict() to provide the index, explicitly exposing
the implementation detail. We could even just use a custom lookup function
for OrderedDict that facilitates our need. However, both approaches are
significantly more complicated than just using pointer arithmetic.
The catch with mirroring the hash table ordering is that we have to keep
the ordering in sync through any dict resizes. However, that order only
matters during node lookup. We can simply defer any potential resizing
until we need to do a lookup.
Linked-List Nodes
-----------------
The current implementation stores a pointer to the associated key only.
One alternative would be to store a pointer to the PyDictKeyEntry instead.
This would save one pointer de-reference per item, which is nice during
calls to values() and items(). However, it adds unnecessary overhead
otherwise, so we stick with just the key.
Linked-List API
---------------
As noted, the linked-list implemented here does not have all the bells and
whistles. However, we recognize that the implementation may need to
change to accommodate performance improvements or extra functionality. To
that end, we use a simple API to interact with the linked-list. Here's a
summary of the methods/macros:
Node info:
* _odictnode_KEY(node)
* _odictnode_VALUE(od, node)
* _odictnode_PREV(node)
* _odictnode_NEXT(node)
Linked-List info:
* _odict_FIRST(od)
* _odict_LAST(od)
* _odict_EMPTY(od)
* _odict_FOREACH(od, node) - used in place of `for (node=...)`
For adding nodes:
* _odict_add_head(od, node)
* _odict_add_tail(od, node)
* _odict_add_new_node(od, key, hash)
For removing nodes:
* _odict_clear_node(od, node, key, hash)
* _odict_clear_nodes(od, clear_each)
Others:
* _odict_find_node_hash(od, key, hash)
* _odict_find_node(od, key)
* _odict_keys_equal(od1, od2)
And here's a look at how the linked-list relates to the OrderedDict API:
============ === === ==== ==== ==== === ==== ===== ==== ==== === ==== === ===
method key val prev next mem 1st last empty iter find add rmv clr keq
============ === === ==== ==== ==== === ==== ===== ==== ==== === ==== === ===
__del__ ~ X
__delitem__ free ~ node
__eq__ ~ X
__iter__ X X
__new__ X X
__reduce__ X ~ X
__repr__ X X X
__reversed__ X X
__setitem__ key
__sizeof__ size X
clear ~ ~ X
copy X X X
items X X X
keys X X
move_to_end X X X ~ h/t key
pop free key
popitem X X free X X node
setdefault ~ ? ~
values X X
============ === === ==== ==== ==== === ==== ===== ==== ==== === ==== === ===
__delitem__ is the only method that directly relies on finding an arbitrary
node in the linked-list. Everything else is iteration or relates to the
ends of the linked-list.
Situation that Endangers Consistency
------------------------------------
Using a raw linked-list for OrderedDict exposes a key situation that can
cause problems. If a node is stored in a variable, there is a chance that
the node may have been deallocated before the variable gets used, thus
potentially leading to a segmentation fault. A key place where this shows
up is during iteration through the linked list (via _odict_FOREACH or
otherwise).
A number of solutions are available to resolve this situation:
* defer looking up the node until as late as possible and certainly after
any code that could possibly result in a deletion;
* if the node is needed both before and after a point where the node might
be removed, do a check before using the node at the "after" location to
see if the node is still valid;
* like the last one, but simply pull the node again to ensure it's right;
* keep the key in the variable instead of the node and then look up the
node using the key at the point where the node is needed (this is what
we do for the iterators).
Another related problem, preserving consistent ordering during iteration,
is described below. That one is not exclusive to using linked-lists.
Challenges from Subclassing dict
================================
OrderedDict subclasses dict, which is an unusual relationship between two
builtin types (other than the base object type). Doing so results in
some complication and deserves further explanation. There are two things
to consider here. First, in what circumstances or with what adjustments
can OrderedDict be used as a drop-in replacement for dict (at the C level)?
Second, how can the OrderedDict implementation leverage the dict
implementation effectively without introducing unnecessary coupling or
inefficiencies?
This second point is reflected here and in the implementation, so the
further focus is on the first point. It is worth noting that for
overridden methods, the dict implementation is deferred to as much as
possible. Furthermore, coupling is limited to as little as is reasonable.
Concrete API Compatibility
--------------------------
Use of the concrete C-API for dict (PyDict_*) with OrderedDict is
problematic. (See http://bugs.python.org/issue10977.) The concrete API
has a number of hard-coded assumptions tied to the dict implementation.
This is, in part, due to performance reasons, which is understandable
given the part dict plays in Python.
Any attempt to replace dict with OrderedDict for any role in the
interpreter (e.g. **kwds) faces a challenge. Such any effort must
recognize that the instances in affected locations currently interact with
the concrete API.
Here are some ways to address this challenge:
1. Change the relevant usage of the concrete API in CPython and add
PyDict_CheckExact() calls to each of the concrete API functions.
2. Adjust the relevant concrete API functions to explicitly accommodate
OrderedDict.
3. As with #1, add the checks, but improve the abstract API with smart fast
paths for dict and OrderedDict, and refactor CPython to use the abstract
API. Improvements to the abstract API would be valuable regardless.
Adding the checks to the concrete API would help make any interpreter
switch to OrderedDict less painful for extension modules. However, this
won't work. The equivalent C API call to `dict.__setitem__(obj, k, v)`
is 'PyDict_SetItem(obj, k, v)`. This illustrates how subclasses in C call
the base class's methods, since there is no equivalent of super() in the
C API. Calling into Python for parent class API would work, but some
extension modules already rely on this feature of the concrete API.
For reference, here is a breakdown of some of the dict concrete API:
========================== ============= =======================
concrete API uses abstract API
========================== ============= =======================
PyDict_Check PyMapping_Check
(PyDict_CheckExact) -
(PyDict_New) -
(PyDictProxy_New) -
PyDict_Clear -
PyDict_Contains PySequence_Contains
PyDict_Copy -
PyDict_SetItem PyObject_SetItem
PyDict_SetItemString PyMapping_SetItemString
PyDict_DelItem PyMapping_DelItem
PyDict_DelItemString PyMapping_DelItemString
PyDict_GetItem -
PyDict_GetItemWithError PyObject_GetItem
_PyDict_GetItemIdWithError -
PyDict_GetItemString PyMapping_GetItemString
PyDict_Items PyMapping_Items
PyDict_Keys PyMapping_Keys
PyDict_Values PyMapping_Values
PyDict_Size PyMapping_Size
PyMapping_Length
PyDict_Next PyIter_Next
_PyDict_Next -
PyDict_Merge -
PyDict_Update -
PyDict_MergeFromSeq2 -
PyDict_ClearFreeList -
- PyMapping_HasKeyString
- PyMapping_HasKey
========================== ============= =======================
The dict Interface Relative to OrderedDict
==========================================
Since OrderedDict subclasses dict, understanding the various methods and
attributes of dict is important for implementing OrderedDict.
Relevant Type Slots
-------------------
================= ================ =================== ================
slot attribute object dict
================= ================ =================== ================
tp_dealloc - object_dealloc dict_dealloc
tp_repr __repr__ object_repr dict_repr
sq_contains __contains__ - dict_contains
mp_length __len__ - dict_length
mp_subscript __getitem__ - dict_subscript
mp_ass_subscript __setitem__ - dict_ass_sub
__delitem__
tp_hash __hash__ _Py_HashPointer ..._HashNotImpl
tp_str __str__ object_str -
tp_getattro __getattribute__ ..._GenericGetAttr (repeated)
__getattr__
tp_setattro __setattr__ ..._GenericSetAttr (disabled)
tp_doc __doc__ (literal) dictionary_doc
tp_traverse - - dict_traverse
tp_clear - - dict_tp_clear
tp_richcompare __eq__ object_richcompare dict_richcompare
__ne__
tp_weaklistoffset (__weakref__) - -
tp_iter __iter__ - dict_iter
tp_dictoffset (__dict__) - -
tp_init __init__ object_init dict_init
tp_alloc - PyType_GenericAlloc (repeated)
tp_new __new__ object_new dict_new
tp_free - PyObject_Del PyObject_GC_Del
================= ================ =================== ================
Relevant Methods
----------------
================ =================== ===============
method object dict
================ =================== ===============
__reduce__ object_reduce -
__sizeof__ object_sizeof dict_sizeof
clear - dict_clear
copy - dict_copy
fromkeys - dict_fromkeys
get - dict_get
items - dictitems_new
keys - dictkeys_new
pop - dict_pop
popitem - dict_popitem
setdefault - dict_setdefault
update - dict_update
values - dictvalues_new
================ =================== ===============
Pure Python OrderedDict
=======================
As already noted, compatibility with the pure Python OrderedDict
implementation is a key goal of this C implementation. To further that
goal, here's a summary of how OrderedDict-specific methods are implemented
in collections/__init__.py. Also provided is an indication of which
methods directly mutate or iterate the object, as well as any relationship
with the underlying linked-list.
============= ============== == ================ === === ====
method impl used ll uses inq mut iter
============= ============== == ================ === === ====
__contains__ dict - - X
__delitem__ OrderedDict Y dict.__delitem__ X
__eq__ OrderedDict N OrderedDict ~
dict.__eq__
__iter__
__getitem__ dict - - X
__iter__ OrderedDict Y - X
__init__ OrderedDict N update
__len__ dict - - X
__ne__ MutableMapping - __eq__ ~
__reduce__ OrderedDict N OrderedDict ~
__iter__
__getitem__
__repr__ OrderedDict N __class__ ~
items
__reversed__ OrderedDict Y - X
__setitem__ OrderedDict Y __contains__ X
dict.__setitem__
__sizeof__ OrderedDict Y __len__ ~
__dict__
clear OrderedDict Y dict.clear X
copy OrderedDict N __class__
__init__
fromkeys OrderedDict N __setitem__
get dict - - ~
items MutableMapping - ItemsView X
keys MutableMapping - KeysView X
move_to_end OrderedDict Y - X
pop OrderedDict N __contains__ X
__getitem__
__delitem__
popitem OrderedDict Y dict.pop X
setdefault OrderedDict N __contains__ ~
__getitem__
__setitem__
update MutableMapping - __setitem__ ~
values MutableMapping - ValuesView X
============= ============== == ================ === === ====
__reversed__ and move_to_end are both exclusive to OrderedDict.
C OrderedDict Implementation
============================
================= ================
slot impl
================= ================
tp_dealloc odict_dealloc
tp_repr odict_repr
mp_ass_subscript odict_ass_sub
tp_doc odict_doc
tp_traverse odict_traverse
tp_clear odict_tp_clear
tp_richcompare odict_richcompare
tp_weaklistoffset (offset)
tp_iter odict_iter
tp_dictoffset (offset)
tp_init odict_init
tp_alloc (repeated)
================= ================
================= ================
method impl
================= ================
__reduce__ odict_reduce
__sizeof__ odict_sizeof
clear odict_clear
copy odict_copy
fromkeys odict_fromkeys
items odictitems_new
keys odictkeys_new
pop odict_pop
popitem odict_popitem
setdefault odict_setdefault
update odict_update
values odictvalues_new
================= ================
Inherited unchanged from object/dict:
================ ==========================
method type field
================ ==========================
- tp_free
__contains__ tp_as_sequence.sq_contains
__getattr__ tp_getattro
__getattribute__ tp_getattro
__getitem__ tp_as_mapping.mp_subscript
__hash__ tp_hash
__len__ tp_as_mapping.mp_length
__setattr__ tp_setattro
__str__ tp_str
get -
================ ==========================
Other Challenges
================
Preserving Ordering During Iteration
------------------------------------
During iteration through an OrderedDict, it is possible that items could
get added, removed, or reordered. For a linked-list implementation, as
with some other implementations, that situation may lead to undefined
behavior. The documentation for dict mentions this in the `iter()` section
of http://docs.python.org/3.4/library/stdtypes.html#dictionary-view-objects.
In this implementation we follow dict's lead (as does the pure Python
implementation) for __iter__(), keys(), values(), and items().
For internal iteration (using _odict_FOREACH or not), there is still the
risk that not all nodes that we expect to be seen in the loop actually get
seen. Thus, we are careful in each of those places to ensure that they
are. This comes, of course, at a small price at each location. The
solutions are much the same as those detailed in the `Situation that
Endangers Consistency` section above.
Potential Optimizations
=======================
* Allocate the nodes as a block via od_fast_nodes instead of individually.
- Set node->key to NULL to indicate the node is not-in-use.
- Add _odict_EXISTS()?
- How to maintain consistency across resizes? Existing node pointers
would be invalidated after a resize, which is particularly problematic
for the iterators.
* Use a more stream-lined implementation of update() and, likely indirectly,
__init__().
*/
/* TODO
sooner:
- reentrancy (make sure everything is at a thread-safe state when calling
into Python). I've already checked this multiple times, but want to
make one more pass.
- add unit tests for reentrancy?
later:
- make the dict views support the full set API (the pure Python impl does)
- implement a fuller MutableMapping API in C?
- move the MutableMapping implementation to abstract.c?
- optimize mutablemapping_update
- use PyObject_MALLOC (small object allocator) for odict nodes?
- support subclasses better (e.g. in odict_richcompare)
*/
typedef struct _odictnode _ODictNode;
/* PyODictObject */
struct _odictobject {
PyDictObject od_dict; /* the underlying dict */
_ODictNode *od_first; /* first node in the linked list, if any */
_ODictNode *od_last; /* last node in the linked list, if any */
/* od_fast_nodes, od_fast_nodes_size and od_resize_sentinel are managed
* by _odict_resize().
* Note that we rely on implementation details of dict for both. */
_ODictNode **od_fast_nodes; /* hash table that mirrors the dict table */
Py_ssize_t od_fast_nodes_size;
void *od_resize_sentinel; /* changes if odict should be resized */
size_t od_state; /* incremented whenever the LL changes */
PyObject *od_inst_dict; /* OrderedDict().__dict__ */
PyObject *od_weakreflist; /* holds weakrefs to the odict */
};
/* ----------------------------------------------
* odict keys (a simple doubly-linked list)
*/
struct _odictnode {
PyObject *key;
Py_hash_t hash;
_ODictNode *next;
_ODictNode *prev;
};
#define _odictnode_KEY(node) \
(node->key)
#define _odictnode_HASH(node) \
(node->hash)
/* borrowed reference */
#define _odictnode_VALUE(node, od) \
PyODict_GetItemWithError((PyObject *)od, _odictnode_KEY(node))
#define _odictnode_PREV(node) (node->prev)
#define _odictnode_NEXT(node) (node->next)
#define _odict_FIRST(od) (((PyODictObject *)od)->od_first)
#define _odict_LAST(od) (((PyODictObject *)od)->od_last)
#define _odict_EMPTY(od) (_odict_FIRST(od) == NULL)
#define _odict_FOREACH(od, node) \
for (node = _odict_FIRST(od); node != NULL; node = _odictnode_NEXT(node))
/* Return the index into the hash table, regardless of a valid node. */
static Py_ssize_t
_odict_get_index_raw(PyODictObject *od, PyObject *key, Py_hash_t hash)
{
PyObject **value_addr = NULL;
PyDictKeysObject *keys = ((PyDictObject *)od)->ma_keys;
Py_ssize_t ix;
ix = (keys->dk_lookup)((PyDictObject *)od, key, hash, &value_addr, NULL);
if (ix == DKIX_EMPTY) {
return keys->dk_nentries; /* index of new entry */
}
if (ix < 0)
return -1;
/* We use pointer arithmetic to get the entry's index into the table. */
return ix;
}
/* Replace od->od_fast_nodes with a new table matching the size of dict's. */
static int
_odict_resize(PyODictObject *od)
{
Py_ssize_t size, i;
_ODictNode **fast_nodes, *node;
/* Initialize a new "fast nodes" table. */
size = ((PyDictObject *)od)->ma_keys->dk_size;
fast_nodes = PyMem_NEW(_ODictNode *, size);
if (fast_nodes == NULL) {
PyErr_NoMemory();
return -1;
}
for (i = 0; i < size; i++)
fast_nodes[i] = NULL;
/* Copy the current nodes into the table. */
_odict_FOREACH(od, node) {
i = _odict_get_index_raw(od, _odictnode_KEY(node),
_odictnode_HASH(node));
if (i < 0) {
PyMem_FREE(fast_nodes);
return -1;
}
fast_nodes[i] = node;
}
/* Replace the old fast nodes table. */
PyMem_FREE(od->od_fast_nodes);
od->od_fast_nodes = fast_nodes;
od->od_fast_nodes_size = size;
od->od_resize_sentinel = ((PyDictObject *)od)->ma_keys;
return 0;
}
/* Return the index into the hash table, regardless of a valid node. */
static Py_ssize_t
_odict_get_index(PyODictObject *od, PyObject *key, Py_hash_t hash)
{
PyDictKeysObject *keys;
assert(key != NULL);
keys = ((PyDictObject *)od)->ma_keys;
/* Ensure od_fast_nodes and dk_entries are in sync. */
if (od->od_resize_sentinel != keys ||
od->od_fast_nodes_size != keys->dk_size) {
int resize_res = _odict_resize(od);
if (resize_res < 0)
return -1;
}
return _odict_get_index_raw(od, key, hash);
}
/* Returns NULL if there was some error or the key was not found. */
static _ODictNode *
_odict_find_node_hash(PyODictObject *od, PyObject *key, Py_hash_t hash)
{
Py_ssize_t index;
if (_odict_EMPTY(od))
return NULL;
index = _odict_get_index(od, key, hash);
if (index < 0)
return NULL;
assert(od->od_fast_nodes != NULL);
return od->od_fast_nodes[index];
}
static _ODictNode *
_odict_find_node(PyODictObject *od, PyObject *key)
{
Py_ssize_t index;
Py_hash_t hash;
if (_odict_EMPTY(od))
return NULL;
hash = PyObject_Hash(key);
if (hash == -1)
return NULL;
index = _odict_get_index(od, key, hash);
if (index < 0)
return NULL;
assert(od->od_fast_nodes != NULL);
return od->od_fast_nodes[index];
}
static void
_odict_add_head(PyODictObject *od, _ODictNode *node)
{
_odictnode_PREV(node) = NULL;
_odictnode_NEXT(node) = _odict_FIRST(od);
if (_odict_FIRST(od) == NULL)
_odict_LAST(od) = node;
else
_odictnode_PREV(_odict_FIRST(od)) = node;
_odict_FIRST(od) = node;
od->od_state++;
}
static void
_odict_add_tail(PyODictObject *od, _ODictNode *node)
{
_odictnode_PREV(node) = _odict_LAST(od);
_odictnode_NEXT(node) = NULL;
if (_odict_LAST(od) == NULL)
_odict_FIRST(od) = node;
else
_odictnode_NEXT(_odict_LAST(od)) = node;
_odict_LAST(od) = node;
od->od_state++;
}
/* adds the node to the end of the list */
static int
_odict_add_new_node(PyODictObject *od, PyObject *key, Py_hash_t hash)
{
Py_ssize_t i;
_ODictNode *node;
Py_INCREF(key);
i = _odict_get_index(od, key, hash);
if (i < 0) {
if (!PyErr_Occurred())
PyErr_SetObject(PyExc_KeyError, key);
Py_DECREF(key);
return -1;
}
assert(od->od_fast_nodes != NULL);
if (od->od_fast_nodes[i] != NULL) {
/* We already have a node for the key so there's no need to add one. */
Py_DECREF(key);
return 0;
}
/* must not be added yet */
node = (_ODictNode *)PyMem_MALLOC(sizeof(_ODictNode));
if (node == NULL) {
Py_DECREF(key);
PyErr_NoMemory();
return -1;
}
_odictnode_KEY(node) = key;
_odictnode_HASH(node) = hash;
_odict_add_tail(od, node);
od->od_fast_nodes[i] = node;
return 0;
}
/* Putting the decref after the free causes problems. */
#define _odictnode_DEALLOC(node) \
do { \
Py_DECREF(_odictnode_KEY(node)); \
PyMem_FREE((void *)node); \
} while (0)
/* Repeated calls on the same node are no-ops. */
static void
_odict_remove_node(PyODictObject *od, _ODictNode *node)
{
if (_odict_FIRST(od) == node)
_odict_FIRST(od) = _odictnode_NEXT(node);
else if (_odictnode_PREV(node) != NULL)
_odictnode_NEXT(_odictnode_PREV(node)) = _odictnode_NEXT(node);
if (_odict_LAST(od) == node)
_odict_LAST(od) = _odictnode_PREV(node);
else if (_odictnode_NEXT(node) != NULL)
_odictnode_PREV(_odictnode_NEXT(node)) = _odictnode_PREV(node);
_odictnode_PREV(node) = NULL;
_odictnode_NEXT(node) = NULL;
od->od_state++;
}
/* If someone calls PyDict_DelItem() directly on an OrderedDict, we'll
get all sorts of problems here. In PyODict_DelItem we make sure to
call _odict_clear_node first.
This matters in the case of colliding keys. Suppose we add 3 keys:
[A, B, C], where the hash of C collides with A and the next possible
index in the hash table is occupied by B. If we remove B then for C
the dict's looknode func will give us the old index of B instead of
the index we got before deleting B. However, the node for C in
od_fast_nodes is still at the old dict index of C. Thus to be sure
things don't get out of sync, we clear the node in od_fast_nodes
*before* calling PyDict_DelItem.
The same must be done for any other OrderedDict operations where
we modify od_fast_nodes.
*/
static int
_odict_clear_node(PyODictObject *od, _ODictNode *node, PyObject *key,
Py_hash_t hash)
{
Py_ssize_t i;
assert(key != NULL);
if (_odict_EMPTY(od)) {
/* Let later code decide if this is a KeyError. */
return 0;
}
i = _odict_get_index(od, key, hash);
if (i < 0)
return PyErr_Occurred() ? -1 : 0;
assert(od->od_fast_nodes != NULL);
if (node == NULL)
node = od->od_fast_nodes[i];
assert(node == od->od_fast_nodes[i]);
if (node == NULL) {
/* Let later code decide if this is a KeyError. */
return 0;
}
// Now clear the node.
od->od_fast_nodes[i] = NULL;
_odict_remove_node(od, node);
_odictnode_DEALLOC(node);
return 0;
}
static void
_odict_clear_nodes(PyODictObject *od)
{
_ODictNode *node, *next;
PyMem_FREE(od->od_fast_nodes);
od->od_fast_nodes = NULL;
od->od_fast_nodes_size = 0;
od->od_resize_sentinel = NULL;
node = _odict_FIRST(od);
_odict_FIRST(od) = NULL;
_odict_LAST(od) = NULL;
while (node != NULL) {
next = _odictnode_NEXT(node);
_odictnode_DEALLOC(node);
node = next;
}
}
/* There isn't any memory management of nodes past this point. */
#undef _odictnode_DEALLOC
static int
_odict_keys_equal(PyODictObject *a, PyODictObject *b)
{
_ODictNode *node_a, *node_b;
node_a = _odict_FIRST(a);
node_b = _odict_FIRST(b);
while (1) {
if (node_a == NULL && node_b == NULL)
/* success: hit the end of each at the same time */
return 1;
else if (node_a == NULL || node_b == NULL)
/* unequal length */
return 0;
else {
int res = PyObject_RichCompareBool(
(PyObject *)_odictnode_KEY(node_a),
(PyObject *)_odictnode_KEY(node_b),
Py_EQ);
if (res < 0)
return res;
else if (res == 0)
return 0;
/* otherwise it must match, so move on to the next one */
node_a = _odictnode_NEXT(node_a);
node_b = _odictnode_NEXT(node_b);
}
}
}
/* ----------------------------------------------
* OrderedDict mapping methods
*/
/* mp_ass_subscript: __setitem__() and __delitem__() */
static int
odict_mp_ass_sub(PyODictObject *od, PyObject *v, PyObject *w)
{
if (w == NULL)
return PyODict_DelItem((PyObject *)od, v);
else
return PyODict_SetItem((PyObject *)od, v, w);
}
/* tp_as_mapping */
static PyMappingMethods odict_as_mapping = {
0, /*mp_length*/
0, /*mp_subscript*/
(objobjargproc)odict_mp_ass_sub, /*mp_ass_subscript*/
};
/* ----------------------------------------------
* OrderedDict methods
*/
/* __delitem__() */
PyDoc_STRVAR(odict_delitem__doc__, "od.__delitem__(y) <==> del od[y]");
/* __eq__() */
PyDoc_STRVAR(odict_eq__doc__,
"od.__eq__(y) <==> od==y. Comparison to another OD is order-sensitive \n\
while comparison to a regular mapping is order-insensitive.\n\
");
/* forward */
static PyObject * odict_richcompare(PyObject *v, PyObject *w, int op);
static PyObject *
odict_eq(PyObject *a, PyObject *b)
{
return odict_richcompare(a, b, Py_EQ);
}
/* __init__() */
PyDoc_STRVAR(odict_init__doc__,
"Initialize an ordered dictionary. The signature is the same as\n\
regular dictionaries. Keyword argument order is preserved.\n\
\n\
");
/* forward */
static int odict_init(PyObject *self, PyObject *args, PyObject *kwds);
/* __iter__() */
PyDoc_STRVAR(odict_iter__doc__, "od.__iter__() <==> iter(od)");
static PyObject * odict_iter(PyODictObject *self); /* forward */
/* __ne__() */
/* Mapping.__ne__() does not have a docstring. */
PyDoc_STRVAR(odict_ne__doc__, "");
static PyObject *
odict_ne(PyObject *a, PyObject *b)
{
return odict_richcompare(a, b, Py_NE);
}
/* __repr__() */
PyDoc_STRVAR(odict_repr__doc__, "od.__repr__() <==> repr(od)");
static PyObject * odict_repr(PyODictObject *self); /* forward */
/* __setitem__() */
PyDoc_STRVAR(odict_setitem__doc__, "od.__setitem__(i, y) <==> od[i]=y");
/* fromkeys() */
PyDoc_STRVAR(odict_fromkeys__doc__,
"OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S.\n\
If not specified, the value defaults to None.\n\
\n\
");
static PyObject *
odict_fromkeys(PyObject *cls, PyObject *args, PyObject *kwargs)
{
static char *kwlist[] = {"iterable", "value", 0};
PyObject *seq;
PyObject *value = Py_None;
/* both borrowed */
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "O|O:fromkeys", kwlist,
&seq, &value)) {
return NULL;
}
return _PyDict_FromKeys(cls, seq, value);
}
/* __sizeof__() */
/* OrderedDict.__sizeof__() does not have a docstring. */
PyDoc_STRVAR(odict_sizeof__doc__, "");
static PyObject *
odict_sizeof(PyODictObject *od)
{
Py_ssize_t res = _PyDict_SizeOf((PyDictObject *)od);
res += sizeof(_ODictNode *) * od->od_fast_nodes_size; /* od_fast_nodes */
if (!_odict_EMPTY(od)) {
res += sizeof(_ODictNode) * PyODict_SIZE(od); /* linked-list */
}
return PyLong_FromSsize_t(res);
}
/* __reduce__() */
PyDoc_STRVAR(odict_reduce__doc__, "Return state information for pickling");
static PyObject *
odict_reduce(register PyODictObject *od)
{
_Py_IDENTIFIER(__dict__);
_Py_IDENTIFIER(items);
PyObject *dict = NULL, *result = NULL;
PyObject *items_iter, *items, *args = NULL;
/* capture any instance state */
dict = _PyObject_GetAttrId((PyObject *)od, &PyId___dict__);
if (dict == NULL)
goto Done;
else {
/* od.__dict__ isn't necessarily a dict... */
Py_ssize_t dict_len = PyObject_Length(dict);
if (dict_len == -1)
goto Done;
if (!dict_len) {
/* nothing to pickle in od.__dict__ */
Py_CLEAR(dict);
}
}
/* build the result */
args = PyTuple_New(0);
if (args == NULL)
goto Done;
items = _PyObject_CallMethodIdObjArgs((PyObject *)od, &PyId_items, NULL);
if (items == NULL)
goto Done;
items_iter = PyObject_GetIter(items);
Py_DECREF(items);
if (items_iter == NULL)
goto Done;
result = PyTuple_Pack(5, Py_TYPE(od), args, dict ? dict : Py_None, Py_None, items_iter);
Py_DECREF(items_iter);
Done:
Py_XDECREF(dict);
Py_XDECREF(args);
return result;
}
/* setdefault() */
PyDoc_STRVAR(odict_setdefault__doc__,
"od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od");
/* Skips __missing__() calls. */
static PyObject *
odict_setdefault(register PyODictObject *od, PyObject *args, PyObject *kwargs)
{
static char *kwlist[] = {"key", "default", 0};
PyObject *key, *result = NULL;
PyObject *failobj = Py_None;
/* both borrowed */
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "O|O:setdefault", kwlist,
&key, &failobj)) {
return NULL;
}
if (PyODict_CheckExact(od)) {
result = PyODict_GetItemWithError(od, key); /* borrowed */
if (result == NULL) {
if (PyErr_Occurred())
return NULL;
assert(_odict_find_node(od, key) == NULL);
if (PyODict_SetItem((PyObject *)od, key, failobj) >= 0) {
result = failobj;
Py_INCREF(failobj);
}
}
else {
Py_INCREF(result);
}
}
else {
int exists = PySequence_Contains((PyObject *)od, key);
if (exists < 0) {
return NULL;
}
else if (exists) {
result = PyObject_GetItem((PyObject *)od, key);
}
else if (PyObject_SetItem((PyObject *)od, key, failobj) >= 0) {
result = failobj;
Py_INCREF(failobj);
}
}
return result;
}
/* pop() */
PyDoc_STRVAR(odict_pop__doc__,
"od.pop(k[,d]) -> v, remove specified key and return the corresponding\n\
value. If key is not found, d is returned if given, otherwise KeyError\n\
is raised.\n\
\n\
");
/* forward */
static PyObject * _odict_popkey(PyObject *, PyObject *, PyObject *);
/* Skips __missing__() calls. */
static PyObject *
odict_pop(PyObject *od, PyObject *args, PyObject *kwargs)
{
static char *kwlist[] = {"key", "default", 0};
PyObject *key, *failobj = NULL;
/* borrowed */
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "O|O:pop", kwlist,
&key, &failobj)) {
return NULL;
}
return _odict_popkey(od, key, failobj);
}
static PyObject *
_odict_popkey_hash(PyObject *od, PyObject *key, PyObject *failobj,
Py_hash_t hash)
{
_ODictNode *node;
PyObject *value = NULL;
/* Pop the node first to avoid a possible dict resize (due to
eval loop reentrancy) and complications due to hash collision
resolution. */
node = _odict_find_node_hash((PyODictObject *)od, key, hash);
if (node == NULL) {
if (PyErr_Occurred())
return NULL;
}
else {
int res = _odict_clear_node((PyODictObject *)od, node, key, hash);
if (res < 0) {
return NULL;
}
}
/* Now delete the value from the dict. */
if (PyODict_CheckExact(od)) {
if (node != NULL) {
value = _PyDict_GetItem_KnownHash(od, key, hash); /* borrowed */
if (value != NULL) {
Py_INCREF(value);
if (_PyDict_DelItem_KnownHash(od, key, hash) < 0) {
Py_DECREF(value);
return NULL;
}
}
}
}
else {
int exists = PySequence_Contains(od, key);
if (exists < 0)
return NULL;
if (exists) {
value = PyObject_GetItem(od, key);
if (value != NULL) {
if (PyObject_DelItem(od, key) == -1) {
Py_CLEAR(value);
}
}
}
}
/* Apply the fallback value, if necessary. */
if (value == NULL && !PyErr_Occurred()) {
if (failobj) {
value = failobj;
Py_INCREF(failobj);
}
else {
PyErr_SetObject(PyExc_KeyError, key);
}
}
return value;
}
static PyObject *
_odict_popkey(PyObject *od, PyObject *key, PyObject *failobj)
{
Py_hash_t hash = PyObject_Hash(key);
if (hash == -1)
return NULL;
return _odict_popkey_hash(od, key, failobj, hash);
}
/* popitem() */
PyDoc_STRVAR(odict_popitem__doc__,
"popitem($self, /, last=True)\n"
"--\n"
"\n"
"Remove and return a (key, value) pair from the dictionary.\n"
"\n"
"Pairs are returned in LIFO order if last is true or FIFO order if false.");
static PyObject *
odict_popitem(PyObject *od, PyObject *args, PyObject *kwargs)
{
static char *kwlist[] = {"last", 0};
PyObject *key, *value, *item = NULL;
_ODictNode *node;
int last = 1;
/* pull the item */
/* borrowed */
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|p:popitem", kwlist,
&last)) {
return NULL;
}
if (_odict_EMPTY(od)) {
PyErr_SetString(PyExc_KeyError, "dictionary is empty");
return NULL;
}
node = last ? _odict_LAST(od) : _odict_FIRST(od);
key = _odictnode_KEY(node);
Py_INCREF(key);
value = _odict_popkey_hash(od, key, NULL, _odictnode_HASH(node));
if (value == NULL)
return NULL;
item = PyTuple_Pack(2, key, value);
Py_DECREF(key);
Py_DECREF(value);
return item;
}
/* keys() */
/* MutableMapping.keys() does not have a docstring. */
PyDoc_STRVAR(odict_keys__doc__, "");
static PyObject * odictkeys_new(PyObject *od); /* forward */
/* values() */
/* MutableMapping.values() does not have a docstring. */
PyDoc_STRVAR(odict_values__doc__, "");
static PyObject * odictvalues_new(PyObject *od); /* forward */
/* items() */
/* MutableMapping.items() does not have a docstring. */
PyDoc_STRVAR(odict_items__doc__, "");
static PyObject * odictitems_new(PyObject *od); /* forward */
/* update() */
/* MutableMapping.update() does not have a docstring. */
PyDoc_STRVAR(odict_update__doc__, "");
/* forward */
static PyObject * mutablemapping_update(PyObject *, PyObject *, PyObject *);
#define odict_update mutablemapping_update
/* clear() */
PyDoc_STRVAR(odict_clear__doc__,
"od.clear() -> None. Remove all items from od.");
static PyObject *
odict_clear(register PyODictObject *od, PyObject *Py_UNUSED(ignored))
{
PyDict_Clear((PyObject *)od);
_odict_clear_nodes(od);
Py_RETURN_NONE;
}
/* copy() */
/* forward */
static int _PyODict_SetItem_KnownHash(PyObject *, PyObject *, PyObject *,
Py_hash_t);
PyDoc_STRVAR(odict_copy__doc__, "od.copy() -> a shallow copy of od");
static PyObject *
odict_copy(register PyODictObject *od)
{
_ODictNode *node;
PyObject *od_copy;
if (PyODict_CheckExact(od))
od_copy = PyODict_New();
else
od_copy = PyObject_CallFunctionObjArgs((PyObject *)Py_TYPE(od), NULL);
if (od_copy == NULL)
return NULL;
if (PyODict_CheckExact(od)) {
_odict_FOREACH(od, node) {
PyObject *key = _odictnode_KEY(node);
PyObject *value = _odictnode_VALUE(node, od);
if (value == NULL) {
if (!PyErr_Occurred())
PyErr_SetObject(PyExc_KeyError, key);
goto fail;
}
if (_PyODict_SetItem_KnownHash((PyObject *)od_copy, key, value,
_odictnode_HASH(node)) != 0)
goto fail;
}
}
else {
_odict_FOREACH(od, node) {
int res;
PyObject *value = PyObject_GetItem((PyObject *)od,
_odictnode_KEY(node));
if (value == NULL)
goto fail;
res = PyObject_SetItem((PyObject *)od_copy,
_odictnode_KEY(node), value);
Py_DECREF(value);
if (res != 0)
goto fail;
}
}
return od_copy;
fail:
Py_DECREF(od_copy);
return NULL;
}
/* __reversed__() */
PyDoc_STRVAR(odict_reversed__doc__, "od.__reversed__() <==> reversed(od)");
#define _odict_ITER_REVERSED 1
#define _odict_ITER_KEYS 2
#define _odict_ITER_VALUES 4
/* forward */
static PyObject * odictiter_new(PyODictObject *, int);
static PyObject *
odict_reversed(PyODictObject *od)
{
return odictiter_new(od, _odict_ITER_KEYS|_odict_ITER_REVERSED);
}
/* move_to_end() */
PyDoc_STRVAR(odict_move_to_end__doc__,
"Move an existing element to the end (or beginning if last==False).\n\
\n\
Raises KeyError if the element does not exist.\n\
When last=True, acts like a fast version of self[key]=self.pop(key).\n\
\n\
");
static PyObject *
odict_move_to_end(PyODictObject *od, PyObject *args, PyObject *kwargs)
{
static char *kwlist[] = {"key", "last", 0};
PyObject *key;
int last = 1;
_ODictNode *node;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "O|p:move_to_end", kwlist,
&key, &last)) {
return NULL;
}
if (_odict_EMPTY(od)) {
PyErr_SetObject(PyExc_KeyError, key);
return NULL;
}
node = last ? _odict_LAST(od) : _odict_FIRST(od);
if (key != _odictnode_KEY(node)) {
node = _odict_find_node(od, key);
if (node == NULL) {
if (!PyErr_Occurred())
PyErr_SetObject(PyExc_KeyError, key);
return NULL;
}
if (last) {
/* Only move if not already the last one. */
if (node != _odict_LAST(od)) {
_odict_remove_node(od, node);
_odict_add_tail(od, node);
}
}
else {
/* Only move if not already the first one. */
if (node != _odict_FIRST(od)) {
_odict_remove_node(od, node);
_odict_add_head(od, node);
}
}
}
Py_RETURN_NONE;
}
/* tp_methods */
static PyMethodDef odict_methods[] = {
/* explicitly defined so we can align docstrings with
* collections.OrderedDict */
{"__delitem__", (PyCFunction)odict_mp_ass_sub, METH_NOARGS,
odict_delitem__doc__},
{"__eq__", (PyCFunction)odict_eq, METH_NOARGS,
odict_eq__doc__},
{"__init__", (PyCFunction)odict_init, METH_NOARGS,
odict_init__doc__},
{"__iter__", (PyCFunction)odict_iter, METH_NOARGS,
odict_iter__doc__},
{"__ne__", (PyCFunction)odict_ne, METH_NOARGS,
odict_ne__doc__},
{"__repr__", (PyCFunction)odict_repr, METH_NOARGS,
odict_repr__doc__},
{"__setitem__", (PyCFunction)odict_mp_ass_sub, METH_NOARGS,
odict_setitem__doc__},
{"fromkeys", (PyCFunction)odict_fromkeys,
METH_VARARGS | METH_KEYWORDS | METH_CLASS, odict_fromkeys__doc__},
/* overridden dict methods */
{"__sizeof__", (PyCFunction)odict_sizeof, METH_NOARGS,
odict_sizeof__doc__},
{"__reduce__", (PyCFunction)odict_reduce, METH_NOARGS,
odict_reduce__doc__},
{"setdefault", (PyCFunction)odict_setdefault,
METH_VARARGS | METH_KEYWORDS, odict_setdefault__doc__},
{"pop", (PyCFunction)odict_pop,
METH_VARARGS | METH_KEYWORDS, odict_pop__doc__},
{"popitem", (PyCFunction)odict_popitem,
METH_VARARGS | METH_KEYWORDS, odict_popitem__doc__},
{"keys", (PyCFunction)odictkeys_new, METH_NOARGS,
odict_keys__doc__},
{"values", (PyCFunction)odictvalues_new, METH_NOARGS,
odict_values__doc__},
{"items", (PyCFunction)odictitems_new, METH_NOARGS,
odict_items__doc__},
{"update", (PyCFunction)odict_update, METH_VARARGS | METH_KEYWORDS,
odict_update__doc__},
{"clear", (PyCFunction)odict_clear, METH_NOARGS,
odict_clear__doc__},
{"copy", (PyCFunction)odict_copy, METH_NOARGS,
odict_copy__doc__},
/* new methods */
{"__reversed__", (PyCFunction)odict_reversed, METH_NOARGS,
odict_reversed__doc__},
{"move_to_end", (PyCFunction)odict_move_to_end,
METH_VARARGS | METH_KEYWORDS, odict_move_to_end__doc__},
{NULL, NULL} /* sentinel */
};
/* ----------------------------------------------
* OrderedDict members
*/
/* tp_getset */
static PyGetSetDef odict_getset[] = {
{"__dict__", PyObject_GenericGetDict, PyObject_GenericSetDict},
{NULL}
};
/* ----------------------------------------------
* OrderedDict type slot methods
*/
/* tp_dealloc */
static void
odict_dealloc(PyODictObject *self)
{
PyThreadState *tstate = PyThreadState_GET();
PyObject_GC_UnTrack(self);
Py_TRASHCAN_SAFE_BEGIN(self)
Py_XDECREF(self->od_inst_dict);
if (self->od_weakreflist != NULL)
PyObject_ClearWeakRefs((PyObject *)self);
_odict_clear_nodes(self);
/* Call the base tp_dealloc(). Since it too uses the trashcan mechanism,
* temporarily decrement trash_delete_nesting to prevent triggering it
* and putting the partially deallocated object on the trashcan's
* to-be-deleted-later list.
*/
--tstate->trash_delete_nesting;
assert(_tstate->trash_delete_nesting < PyTrash_UNWIND_LEVEL);
PyDict_Type.tp_dealloc((PyObject *)self);
++tstate->trash_delete_nesting;
Py_TRASHCAN_SAFE_END(self)
}
/* tp_repr */
static PyObject *
odict_repr(PyODictObject *self)
{
int i;
_Py_IDENTIFIER(items);
PyObject *pieces = NULL, *result = NULL;
const char *classname;
classname = strrchr(Py_TYPE(self)->tp_name, '.');
if (classname == NULL)
classname = Py_TYPE(self)->tp_name;
else
classname++;
if (PyODict_SIZE(self) == 0)
return PyUnicode_FromFormat("%s()", classname);
i = Py_ReprEnter((PyObject *)self);
if (i != 0) {
return i > 0 ? PyUnicode_FromString("...") : NULL;
}
if (PyODict_CheckExact(self)) {
Py_ssize_t count = 0;
_ODictNode *node;
pieces = PyList_New(PyODict_SIZE(self));
if (pieces == NULL)
goto Done;
_odict_FOREACH(self, node) {
PyObject *pair;
PyObject *key = _odictnode_KEY(node);
PyObject *value = _odictnode_VALUE(node, self);
if (value == NULL) {
if (!PyErr_Occurred())
PyErr_SetObject(PyExc_KeyError, key);
goto Done;
}
pair = PyTuple_Pack(2, key, value);
if (pair == NULL)
goto Done;
if (count < PyList_GET_SIZE(pieces))
PyList_SET_ITEM(pieces, count, pair); /* steals reference */
else {
if (PyList_Append(pieces, pair) < 0) {
Py_DECREF(pair);
goto Done;
}
Py_DECREF(pair);
}
count++;
}
if (count < PyList_GET_SIZE(pieces))
PyList_GET_SIZE(pieces) = count;
}
else {
PyObject *items = _PyObject_CallMethodIdObjArgs((PyObject *)self,
&PyId_items, NULL);
if (items == NULL)
goto Done;
pieces = PySequence_List(items);
Py_DECREF(items);
if (pieces == NULL)
goto Done;
}
result = PyUnicode_FromFormat("%s(%R)", classname, pieces);
Done:
Py_XDECREF(pieces);
Py_ReprLeave((PyObject *)self);
return result;
}
/* tp_doc */
PyDoc_STRVAR(odict_doc,
"Dictionary that remembers insertion order");
/* tp_traverse */
static int
odict_traverse(PyODictObject *od, visitproc visit, void *arg)
{
_ODictNode *node;
Py_VISIT(od->od_inst_dict);
Py_VISIT(od->od_weakreflist);
_odict_FOREACH(od, node) {
Py_VISIT(_odictnode_KEY(node));
}
return PyDict_Type.tp_traverse((PyObject *)od, visit, arg);
}
/* tp_clear */
static int
odict_tp_clear(PyODictObject *od)
{
Py_CLEAR(od->od_inst_dict);
Py_CLEAR(od->od_weakreflist);
PyDict_Clear((PyObject *)od);
_odict_clear_nodes(od);
return 0;
}
/* tp_richcompare */
static PyObject *
odict_richcompare(PyObject *v, PyObject *w, int op)
{
if (!PyODict_Check(v) || !PyDict_Check(w)) {
Py_RETURN_NOTIMPLEMENTED;
}
if (op == Py_EQ || op == Py_NE) {
PyObject *res, *cmp;
int eq;
cmp = PyDict_Type.tp_richcompare(v, w, op);
if (cmp == NULL)
return NULL;
if (!PyODict_Check(w))
return cmp;
if (op == Py_EQ && cmp == Py_False)
return cmp;
if (op == Py_NE && cmp == Py_True)
return cmp;
Py_DECREF(cmp);
/* Try comparing odict keys. */
eq = _odict_keys_equal((PyODictObject *)v, (PyODictObject *)w);
if (eq < 0)
return NULL;
res = (eq == (op == Py_EQ)) ? Py_True : Py_False;
Py_INCREF(res);
return res;
} else {
Py_RETURN_NOTIMPLEMENTED;
}
}
/* tp_iter */
static PyObject *
odict_iter(PyODictObject *od)
{
return odictiter_new(od, _odict_ITER_KEYS);
}
/* tp_init */
static int
odict_init(PyObject *self, PyObject *args, PyObject *kwds)
{
PyObject *res;
Py_ssize_t len = PyObject_Length(args);
if (len == -1)
return -1;
if (len > 1) {
char *msg = "expected at most 1 arguments, got %d";
PyErr_Format(PyExc_TypeError, msg, len);
return -1;
}
/* __init__() triggering update() is just the way things are! */
res = odict_update(self, args, kwds);
if (res == NULL) {
return -1;
} else {
Py_DECREF(res);
return 0;
}
}
/* PyODict_Type */
PyTypeObject PyODict_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"collections.OrderedDict", /* tp_name */
sizeof(PyODictObject), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)odict_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)odict_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
&odict_as_mapping, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,/* tp_flags */
odict_doc, /* tp_doc */
(traverseproc)odict_traverse, /* tp_traverse */
(inquiry)odict_tp_clear, /* tp_clear */
(richcmpfunc)odict_richcompare, /* tp_richcompare */
offsetof(PyODictObject, od_weakreflist), /* tp_weaklistoffset */
(getiterfunc)odict_iter, /* tp_iter */
0, /* tp_iternext */
odict_methods, /* tp_methods */
0, /* tp_members */
odict_getset, /* tp_getset */
&PyDict_Type, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
offsetof(PyODictObject, od_inst_dict), /* tp_dictoffset */
(initproc)odict_init, /* tp_init */
PyType_GenericAlloc, /* tp_alloc */
0, /* tp_new */
0, /* tp_free */
};
/* ----------------------------------------------
* the public OrderedDict API
*/
PyObject *
PyODict_New(void)
{
return PyDict_Type.tp_new(&PyODict_Type, NULL, NULL);
}
static int
_PyODict_SetItem_KnownHash(PyObject *od, PyObject *key, PyObject *value,
Py_hash_t hash)
{
int res = _PyDict_SetItem_KnownHash(od, key, value, hash);
if (res == 0) {
res = _odict_add_new_node((PyODictObject *)od, key, hash);
if (res < 0) {
/* Revert setting the value on the dict */
PyObject *exc, *val, *tb;
PyErr_Fetch(&exc, &val, &tb);
(void) _PyDict_DelItem_KnownHash(od, key, hash);
_PyErr_ChainExceptions(exc, val, tb);
}
}
return res;
}
int
PyODict_SetItem(PyObject *od, PyObject *key, PyObject *value)
{
Py_hash_t hash = PyObject_Hash(key);
if (hash == -1)
return -1;
return _PyODict_SetItem_KnownHash(od, key, value, hash);
}
int
PyODict_DelItem(PyObject *od, PyObject *key)
{
int res;
Py_hash_t hash = PyObject_Hash(key);
if (hash == -1)
return -1;
res = _odict_clear_node((PyODictObject *)od, NULL, key, hash);
if (res < 0)
return -1;
return _PyDict_DelItem_KnownHash(od, key, hash);
}
/* -------------------------------------------
* The OrderedDict views (keys/values/items)
*/
typedef struct {
PyObject_HEAD
int kind;
PyODictObject *di_odict;
Py_ssize_t di_size;
size_t di_state;
PyObject *di_current;
PyObject *di_result; /* reusable result tuple for iteritems */
} odictiterobject;
static void
odictiter_dealloc(odictiterobject *di)
{
_PyObject_GC_UNTRACK(di);
Py_XDECREF(di->di_odict);
Py_XDECREF(di->di_current);
if (di->kind & (_odict_ITER_KEYS | _odict_ITER_VALUES)) {
Py_DECREF(di->di_result);
}
PyObject_GC_Del(di);
}
static int
odictiter_traverse(odictiterobject *di, visitproc visit, void *arg)
{
Py_VISIT(di->di_odict);
Py_VISIT(di->di_current); /* A key could be any type, not just str. */
Py_VISIT(di->di_result);
return 0;
}
/* In order to protect against modifications during iteration, we track
* the current key instead of the current node. */
static PyObject *
odictiter_nextkey(odictiterobject *di)
{
PyObject *key = NULL;
_ODictNode *node;
int reversed = di->kind & _odict_ITER_REVERSED;
if (di->di_odict == NULL)
return NULL;
if (di->di_current == NULL)
goto done; /* We're already done. */
/* Check for unsupported changes. */
if (di->di_odict->od_state != di->di_state) {
PyErr_SetString(PyExc_RuntimeError,
"OrderedDict mutated during iteration");
goto done;
}
if (di->di_size != PyODict_SIZE(di->di_odict)) {
PyErr_SetString(PyExc_RuntimeError,
"OrderedDict changed size during iteration");
di->di_size = -1; /* Make this state sticky */
return NULL;
}
/* Get the key. */
node = _odict_find_node(di->di_odict, di->di_current);
if (node == NULL) {
if (!PyErr_Occurred())
PyErr_SetObject(PyExc_KeyError, di->di_current);
/* Must have been deleted. */
Py_CLEAR(di->di_current);
return NULL;
}
key = di->di_current;
/* Advance to the next key. */
node = reversed ? _odictnode_PREV(node) : _odictnode_NEXT(node);
if (node == NULL) {
/* Reached the end. */
di->di_current = NULL;
}
else {
di->di_current = _odictnode_KEY(node);
Py_INCREF(di->di_current);
}
return key;
done:
Py_CLEAR(di->di_odict);
return key;
}
static PyObject *
odictiter_iternext(odictiterobject *di)
{
PyObject *result, *value;
PyObject *key = odictiter_nextkey(di); /* new reference */
if (key == NULL)
return NULL;
/* Handle the keys case. */
if (! (di->kind & _odict_ITER_VALUES)) {
return key;
}
value = PyODict_GetItem((PyObject *)di->di_odict, key); /* borrowed */
if (value == NULL) {
if (!PyErr_Occurred())
PyErr_SetObject(PyExc_KeyError, key);
Py_DECREF(key);
goto done;
}
Py_INCREF(value);
/* Handle the values case. */
if (!(di->kind & _odict_ITER_KEYS)) {
Py_DECREF(key);
return value;
}
/* Handle the items case. */
result = di->di_result;
if (Py_REFCNT(result) == 1) {
/* not in use so we can reuse it
* (the common case during iteration) */
Py_INCREF(result);
Py_DECREF(PyTuple_GET_ITEM(result, 0)); /* borrowed */
Py_DECREF(PyTuple_GET_ITEM(result, 1)); /* borrowed */
}
else {
result = PyTuple_New(2);
if (result == NULL) {
Py_DECREF(key);
Py_DECREF(value);
goto done;
}
}
PyTuple_SET_ITEM(result, 0, key); /* steals reference */
PyTuple_SET_ITEM(result, 1, value); /* steals reference */
return result;
done:
Py_CLEAR(di->di_current);
Py_CLEAR(di->di_odict);
return NULL;
}
/* No need for tp_clear because odictiterobject is not mutable. */
PyDoc_STRVAR(reduce_doc, "Return state information for pickling");
static PyObject *
odictiter_reduce(odictiterobject *di, PyObject *Py_UNUSED(ignored))
{
/* copy the iterator state */
odictiterobject tmp = *di;
Py_XINCREF(tmp.di_odict);
Py_XINCREF(tmp.di_current);
/* iterate the temporary into a list */
PyObject *list = PySequence_List((PyObject*)&tmp);
Py_XDECREF(tmp.di_odict);
Py_XDECREF(tmp.di_current);
if (list == NULL) {
return NULL;
}
return Py_BuildValue("N(N)", _PyObject_GetBuiltin("iter"), list);
}
static PyMethodDef odictiter_methods[] = {
{"__reduce__", (PyCFunction)odictiter_reduce, METH_NOARGS, reduce_doc},
{NULL, NULL} /* sentinel */
};
PyTypeObject PyODictIter_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"odict_iterator", /* tp_name */
sizeof(odictiterobject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)odictiter_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, /* tp_flags */
0, /* tp_doc */
(traverseproc)odictiter_traverse, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
PyObject_SelfIter, /* tp_iter */
(iternextfunc)odictiter_iternext, /* tp_iternext */
odictiter_methods, /* tp_methods */
0,
};
static PyObject *
odictiter_new(PyODictObject *od, int kind)
{
odictiterobject *di;
_ODictNode *node;
int reversed = kind & _odict_ITER_REVERSED;
di = PyObject_GC_New(odictiterobject, &PyODictIter_Type);
if (di == NULL)
return NULL;
if (kind & (_odict_ITER_KEYS | _odict_ITER_VALUES)){
di->di_result = PyTuple_Pack(2, Py_None, Py_None);
if (di->di_result == NULL) {
Py_DECREF(di);
return NULL;
}
}
else
di->di_result = NULL;
di->kind = kind;
node = reversed ? _odict_LAST(od) : _odict_FIRST(od);
di->di_current = node ? _odictnode_KEY(node) : NULL;
Py_XINCREF(di->di_current);
di->di_size = PyODict_SIZE(od);
di->di_state = od->od_state;
di->di_odict = od;
Py_INCREF(od);
_PyObject_GC_TRACK(di);
return (PyObject *)di;
}
/* keys() */
static PyObject *
odictkeys_iter(_PyDictViewObject *dv)
{
if (dv->dv_dict == NULL) {
Py_RETURN_NONE;
}
return odictiter_new((PyODictObject *)dv->dv_dict,
_odict_ITER_KEYS);
}
static PyObject *
odictkeys_reversed(_PyDictViewObject *dv)
{
if (dv->dv_dict == NULL) {
Py_RETURN_NONE;
}
return odictiter_new((PyODictObject *)dv->dv_dict,
_odict_ITER_KEYS|_odict_ITER_REVERSED);
}
static PyMethodDef odictkeys_methods[] = {
{"__reversed__", (PyCFunction)odictkeys_reversed, METH_NOARGS, NULL},
{NULL, NULL} /* sentinel */
};
PyTypeObject PyODictKeys_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"odict_keys", /* tp_name */
0, /* tp_basicsize */
0, /* tp_itemsize */
0, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
0, /* tp_flags */
0, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
(getiterfunc)odictkeys_iter, /* tp_iter */
0, /* tp_iternext */
odictkeys_methods, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
&PyDictKeys_Type, /* tp_base */
};
static PyObject *
odictkeys_new(PyObject *od)
{
return _PyDictView_New(od, &PyODictKeys_Type);
}
/* items() */
static PyObject *
odictitems_iter(_PyDictViewObject *dv)
{
if (dv->dv_dict == NULL) {
Py_RETURN_NONE;
}
return odictiter_new((PyODictObject *)dv->dv_dict,
_odict_ITER_KEYS|_odict_ITER_VALUES);
}
static PyObject *
odictitems_reversed(_PyDictViewObject *dv)
{
if (dv->dv_dict == NULL) {
Py_RETURN_NONE;
}
return odictiter_new((PyODictObject *)dv->dv_dict,
_odict_ITER_KEYS|_odict_ITER_VALUES|_odict_ITER_REVERSED);
}
static PyMethodDef odictitems_methods[] = {
{"__reversed__", (PyCFunction)odictitems_reversed, METH_NOARGS, NULL},
{NULL, NULL} /* sentinel */
};
PyTypeObject PyODictItems_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"odict_items", /* tp_name */
0, /* tp_basicsize */
0, /* tp_itemsize */
0, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
0, /* tp_flags */
0, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
(getiterfunc)odictitems_iter, /* tp_iter */
0, /* tp_iternext */
odictitems_methods, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
&PyDictItems_Type, /* tp_base */
};
static PyObject *
odictitems_new(PyObject *od)
{
return _PyDictView_New(od, &PyODictItems_Type);
}
/* values() */
static PyObject *
odictvalues_iter(_PyDictViewObject *dv)
{
if (dv->dv_dict == NULL) {
Py_RETURN_NONE;
}
return odictiter_new((PyODictObject *)dv->dv_dict,
_odict_ITER_VALUES);
}
static PyObject *
odictvalues_reversed(_PyDictViewObject *dv)
{
if (dv->dv_dict == NULL) {
Py_RETURN_NONE;
}
return odictiter_new((PyODictObject *)dv->dv_dict,
_odict_ITER_VALUES|_odict_ITER_REVERSED);
}
static PyMethodDef odictvalues_methods[] = {
{"__reversed__", (PyCFunction)odictvalues_reversed, METH_NOARGS, NULL},
{NULL, NULL} /* sentinel */
};
PyTypeObject PyODictValues_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"odict_values", /* tp_name */
0, /* tp_basicsize */
0, /* tp_itemsize */
0, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
0, /* tp_flags */
0, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
(getiterfunc)odictvalues_iter, /* tp_iter */
0, /* tp_iternext */
odictvalues_methods, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
&PyDictValues_Type, /* tp_base */
};
static PyObject *
odictvalues_new(PyObject *od)
{
return _PyDictView_New(od, &PyODictValues_Type);
}
/* ----------------------------------------------
MutableMapping implementations
Mapping:
============ ===========
method uses
============ ===========
__contains__ __getitem__
__eq__ items
__getitem__ +
__iter__ +
__len__ +
__ne__ __eq__
get __getitem__
items ItemsView
keys KeysView
values ValuesView
============ ===========
ItemsView uses __len__, __iter__, and __getitem__.
KeysView uses __len__, __iter__, and __contains__.
ValuesView uses __len__, __iter__, and __getitem__.
MutableMapping:
============ ===========
method uses
============ ===========
__delitem__ +
__setitem__ +
clear popitem
pop __getitem__
__delitem__
popitem __iter__
_getitem__
__delitem__
setdefault __getitem__
__setitem__
update __setitem__
============ ===========
*/
static int
mutablemapping_add_pairs(PyObject *self, PyObject *pairs)
{
PyObject *pair, *iterator, *unexpected;
int res = 0;
iterator = PyObject_GetIter(pairs);
if (iterator == NULL)
return -1;
PyErr_Clear();
while ((pair = PyIter_Next(iterator)) != NULL) {
/* could be more efficient (see UNPACK_SEQUENCE in ceval.c) */
PyObject *key = NULL, *value = NULL;
PyObject *pair_iterator = PyObject_GetIter(pair);
if (pair_iterator == NULL)
goto Done;
key = PyIter_Next(pair_iterator);
if (key == NULL) {
if (!PyErr_Occurred())
PyErr_SetString(PyExc_ValueError,
"need more than 0 values to unpack");
goto Done;
}
value = PyIter_Next(pair_iterator);
if (value == NULL) {
if (!PyErr_Occurred())
PyErr_SetString(PyExc_ValueError,
"need more than 1 value to unpack");
goto Done;
}
unexpected = PyIter_Next(pair_iterator);
if (unexpected != NULL) {
Py_DECREF(unexpected);
PyErr_SetString(PyExc_ValueError,
"too many values to unpack (expected 2)");
goto Done;
}
else if (PyErr_Occurred())
goto Done;
res = PyObject_SetItem(self, key, value);
Done:
Py_DECREF(pair);
Py_XDECREF(pair_iterator);
Py_XDECREF(key);
Py_XDECREF(value);
if (PyErr_Occurred())
break;
}
Py_DECREF(iterator);
if (res < 0 || PyErr_Occurred() != NULL)
return -1;
else
return 0;
}
static PyObject *
mutablemapping_update(PyObject *self, PyObject *args, PyObject *kwargs)
{
int res = 0;
Py_ssize_t len;
_Py_IDENTIFIER(items);
_Py_IDENTIFIER(keys);
/* first handle args, if any */
assert(args == NULL || PyTuple_Check(args));
len = (args != NULL) ? PyTuple_GET_SIZE(args) : 0;
if (len > 1) {
char *msg = "update() takes at most 1 positional argument (%d given)";
PyErr_Format(PyExc_TypeError, msg, len);
return NULL;
}
if (len) {
PyObject *other = PyTuple_GET_ITEM(args, 0); /* borrowed reference */
assert(other != NULL);
Py_INCREF(other);
if PyDict_CheckExact(other) {
PyObject *items;
if (PyDict_CheckExact(other))
items = PyDict_Items(other);
else
items = _PyObject_CallMethodId(other, &PyId_items, NULL);
Py_DECREF(other);
if (items == NULL)
return NULL;
res = mutablemapping_add_pairs(self, items);
Py_DECREF(items);
if (res == -1)
return NULL;
}
else if (_PyObject_HasAttrId(other, &PyId_keys)) { /* never fails */
PyObject *keys, *iterator, *key;
keys = _PyObject_CallMethodIdObjArgs(other, &PyId_keys, NULL);
if (keys == NULL) {
Py_DECREF(other);
return NULL;
}
iterator = PyObject_GetIter(keys);
Py_DECREF(keys);
if (iterator == NULL) {
Py_DECREF(other);
return NULL;
}
while (res == 0 && (key = PyIter_Next(iterator))) {
PyObject *value = PyObject_GetItem(other, key);
if (value != NULL) {
res = PyObject_SetItem(self, key, value);
Py_DECREF(value);
}
else {
res = -1;
}
Py_DECREF(key);
}
Py_DECREF(other);
Py_DECREF(iterator);
if (res != 0 || PyErr_Occurred())
return NULL;
}
else if (_PyObject_HasAttrId(other, &PyId_items)) { /* never fails */
PyObject *items;
if (PyDict_CheckExact(other))
items = PyDict_Items(other);
else
items = _PyObject_CallMethodId(other, &PyId_items, NULL);
Py_DECREF(other);
if (items == NULL)
return NULL;
res = mutablemapping_add_pairs(self, items);
Py_DECREF(items);
if (res == -1)
return NULL;
}
else {
res = mutablemapping_add_pairs(self, other);
Py_DECREF(other);
if (res != 0)
return NULL;
}
}
/* now handle kwargs */
assert(kwargs == NULL || PyDict_Check(kwargs));
len = (kwargs != NULL) ? PyDict_Size(kwargs) : 0;
if (len > 0) {
PyObject *items = PyDict_Items(kwargs);
if (items == NULL)
return NULL;
res = mutablemapping_add_pairs(self, items);
Py_DECREF(items);
if (res == -1)
return NULL;
}
Py_RETURN_NONE;
}
| 79,119 | 2,406 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/tupleobject.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/accu.h"
#include "third_party/python/Include/boolobject.h"
#include "third_party/python/Include/ceval.h"
#include "third_party/python/Include/longobject.h"
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/object.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/pyerrors.h"
#include "third_party/python/Include/pyhash.h"
#include "third_party/python/Include/pystate.h"
#include "third_party/python/Include/sliceobject.h"
#include "third_party/python/Include/tupleobject.h"
/* clang-format off */
/* Tuple object implementation */
/* Speed optimization to avoid frequent malloc/free of small tuples */
#ifndef PyTuple_MAXSAVESIZE
#define PyTuple_MAXSAVESIZE 20 /* Largest tuple to save on free list */
#endif
#ifndef PyTuple_MAXFREELIST
#define PyTuple_MAXFREELIST 2000 /* Maximum number of tuples of each size to save */
#endif
#if PyTuple_MAXSAVESIZE > 0
/* Entries 1 up to PyTuple_MAXSAVESIZE are free lists, entry 0 is the empty
tuple () of which at most one instance will be allocated.
*/
static PyTupleObject *free_list[PyTuple_MAXSAVESIZE];
static int numfree[PyTuple_MAXSAVESIZE];
#endif
#ifdef COUNT_ALLOCS
Py_ssize_t fast_tuple_allocs;
Py_ssize_t tuple_zero_allocs;
#endif
/* Debug statistic to count GC tracking of tuples.
Please note that tuples are only untracked when considered by the GC, and
many of them will be dead before. Therefore, a tracking rate close to 100%
does not necessarily prove that the heuristic is inefficient.
*/
#ifdef SHOW_TRACK_COUNT
static Py_ssize_t count_untracked = 0;
static Py_ssize_t count_tracked = 0;
static void
show_track(void)
{
PyObject *xoptions, *value;
_Py_IDENTIFIER(showalloccount);
xoptions = PySys_GetXOptions();
if (xoptions == NULL)
return;
value = _PyDict_GetItemId(xoptions, &PyId_showalloccount);
if (value != Py_True)
return;
fprintf(stderr, "Tuples created: %" PY_FORMAT_SIZE_T "d\n",
count_tracked + count_untracked);
fprintf(stderr, "Tuples tracked by the GC: %" PY_FORMAT_SIZE_T
"d\n", count_tracked);
fprintf(stderr, "%.2f%% tuple tracking rate\n\n",
(100.0*count_tracked/(count_untracked+count_tracked)));
}
#endif
/* Print summary info about the state of the optimized allocator */
void
_PyTuple_DebugMallocStats(FILE *out)
{
#if PyTuple_MAXSAVESIZE > 0
int i;
char buf[128];
for (i = 1; i < PyTuple_MAXSAVESIZE; i++) {
PyOS_snprintf(buf, sizeof(buf),
"free %d-sized PyTupleObject", i);
_PyDebugAllocatorStats(out,
buf,
numfree[i], _PyObject_VAR_SIZE(&PyTuple_Type, i));
}
#endif
}
PyObject *
PyTuple_New(Py_ssize_t size)
{
PyTupleObject *op;
Py_ssize_t i;
if (size < 0) {
PyErr_BadInternalCall();
return NULL;
}
#if PyTuple_MAXSAVESIZE > 0
if (size == 0 && free_list[0]) {
op = free_list[0];
Py_INCREF(op);
#ifdef COUNT_ALLOCS
tuple_zero_allocs++;
#endif
return (PyObject *) op;
}
if (size < PyTuple_MAXSAVESIZE && (op = free_list[size]) != NULL) {
free_list[size] = (PyTupleObject *) op->ob_item[0];
numfree[size]--;
#ifdef COUNT_ALLOCS
fast_tuple_allocs++;
#endif
/* Inline PyObject_InitVar */
#ifdef Py_TRACE_REFS
Py_SIZE(op) = size;
Py_TYPE(op) = &PyTuple_Type;
#endif
_Py_NewReference((PyObject *)op);
}
else
#endif
{
/* Check for overflow */
if ((size_t)size > ((size_t)PY_SSIZE_T_MAX - sizeof(PyTupleObject) -
sizeof(PyObject *)) / sizeof(PyObject *)) {
return PyErr_NoMemory();
}
op = PyObject_GC_NewVar(PyTupleObject, &PyTuple_Type, size);
if (op == NULL)
return NULL;
}
for (i=0; i < size; i++)
op->ob_item[i] = NULL;
#if PyTuple_MAXSAVESIZE > 0
if (size == 0) {
free_list[0] = op;
++numfree[0];
Py_INCREF(op); /* extra INCREF so that this is never freed */
}
#endif
#ifdef SHOW_TRACK_COUNT
count_tracked++;
#endif
_PyObject_GC_TRACK(op);
return (PyObject *) op;
}
Py_ssize_t
PyTuple_Size(PyObject *op)
{
if (!PyTuple_Check(op)) {
PyErr_BadInternalCall();
return -1;
}
else
return Py_SIZE(op);
}
/**
* Returns object at position ð in the tuple pointed to by ð.
*
* @return borrowed reference, or NULL if ð is out of bounds
*/
PyObject *
PyTuple_GetItem(PyObject *p, Py_ssize_t i)
{
if (!PyTuple_Check(p)) {
PyErr_BadInternalCall();
return NULL;
}
if (i < 0 || i >= Py_SIZE(p)) {
PyErr_SetString(PyExc_IndexError, "tuple index out of range");
return NULL;
}
return ((PyTupleObject *)p) -> ob_item[i];
}
int
PyTuple_SetItem(PyObject *op, Py_ssize_t i, PyObject *newitem)
{
PyObject **p;
if (!PyTuple_Check(op) || op->ob_refcnt != 1) {
Py_XDECREF(newitem);
PyErr_BadInternalCall();
return -1;
}
if (i < 0 || i >= Py_SIZE(op)) {
Py_XDECREF(newitem);
PyErr_SetString(PyExc_IndexError,
"tuple assignment index out of range");
return -1;
}
p = ((PyTupleObject *)op) -> ob_item + i;
Py_XSETREF(*p, newitem);
return 0;
}
void
_PyTuple_MaybeUntrack(PyObject *op)
{
PyTupleObject *t;
Py_ssize_t i, n;
if (!PyTuple_CheckExact(op) || !_PyObject_GC_IS_TRACKED(op))
return;
t = (PyTupleObject *) op;
n = Py_SIZE(t);
for (i = 0; i < n; i++) {
PyObject *elt = PyTuple_GET_ITEM(t, i);
/* Tuple with NULL elements aren't
fully constructed, don't untrack
them yet. */
if (!elt ||
_PyObject_GC_MAY_BE_TRACKED(elt))
return;
}
#ifdef SHOW_TRACK_COUNT
count_tracked--;
count_untracked++;
#endif
_PyObject_GC_UNTRACK(op);
}
PyObject *
PyTuple_Pack(Py_ssize_t n, ...)
{
Py_ssize_t i;
PyObject *o;
PyObject *result;
PyObject **items;
va_list vargs;
va_start(vargs, n);
result = PyTuple_New(n);
if (result == NULL) {
va_end(vargs);
return NULL;
}
items = ((PyTupleObject *)result)->ob_item;
for (i = 0; i < n; i++) {
o = va_arg(vargs, PyObject *);
Py_INCREF(o);
items[i] = o;
}
va_end(vargs);
return result;
}
/* Methods */
static void
tupledealloc(PyTupleObject *op)
{
Py_ssize_t i;
Py_ssize_t len = Py_SIZE(op);
PyObject_GC_UnTrack(op);
Py_TRASHCAN_SAFE_BEGIN(op)
if (len > 0) {
i = len;
while (--i >= 0)
Py_XDECREF(op->ob_item[i]);
#if PyTuple_MAXSAVESIZE > 0
if (len < PyTuple_MAXSAVESIZE &&
numfree[len] < PyTuple_MAXFREELIST &&
Py_TYPE(op) == &PyTuple_Type)
{
op->ob_item[0] = (PyObject *) free_list[len];
numfree[len]++;
free_list[len] = op;
goto done; /* return */
}
#endif
}
Py_TYPE(op)->tp_free((PyObject *)op);
done:
Py_TRASHCAN_SAFE_END(op)
}
static PyObject *
tuplerepr(PyTupleObject *v)
{
Py_ssize_t i, n;
_PyUnicodeWriter writer;
n = Py_SIZE(v);
if (n == 0)
return PyUnicode_FromString("()");
/* While not mutable, it is still possible to end up with a cycle in a
tuple through an object that stores itself within a tuple (and thus
infinitely asks for the repr of itself). This should only be
possible within a type. */
i = Py_ReprEnter((PyObject *)v);
if (i != 0) {
return i > 0 ? PyUnicode_FromString("(...)") : NULL;
}
_PyUnicodeWriter_Init(&writer);
writer.overallocate = 1;
if (Py_SIZE(v) > 1) {
/* "(" + "1" + ", 2" * (len - 1) + ")" */
writer.min_length = 1 + 1 + (2 + 1) * (Py_SIZE(v) - 1) + 1;
}
else {
/* "(1,)" */
writer.min_length = 4;
}
if (_PyUnicodeWriter_WriteChar(&writer, '(') < 0)
goto error;
/* Do repr() on each element. */
for (i = 0; i < n; ++i) {
PyObject *s;
if (i > 0) {
if (_PyUnicodeWriter_WriteASCIIString(&writer, ", ", 2) < 0)
goto error;
}
s = PyObject_Repr(v->ob_item[i]);
if (s == NULL)
goto error;
if (_PyUnicodeWriter_WriteStr(&writer, s) < 0) {
Py_DECREF(s);
goto error;
}
Py_DECREF(s);
}
writer.overallocate = 0;
if (n > 1) {
if (_PyUnicodeWriter_WriteChar(&writer, ')') < 0)
goto error;
}
else {
if (_PyUnicodeWriter_WriteASCIIString(&writer, ",)", 2) < 0)
goto error;
}
Py_ReprLeave((PyObject *)v);
return _PyUnicodeWriter_Finish(&writer);
error:
_PyUnicodeWriter_Dealloc(&writer);
Py_ReprLeave((PyObject *)v);
return NULL;
}
/* The addend 82520, was selected from the range(0, 1000000) for
generating the greatest number of prime multipliers for tuples
up to length eight:
1082527, 1165049, 1082531, 1165057, 1247581, 1330103, 1082533,
1330111, 1412633, 1165069, 1247599, 1495177, 1577699
Tests have shown that it's not worth to cache the hash value, see
issue #9685.
*/
static Py_hash_t
tuplehash(PyTupleObject *v)
{
Py_uhash_t x; /* Unsigned for defined overflow behavior. */
Py_hash_t y;
Py_ssize_t len = Py_SIZE(v);
PyObject **p;
Py_uhash_t mult = _PyHASH_MULTIPLIER;
x = 0x345678UL;
p = v->ob_item;
while (--len >= 0) {
y = PyObject_Hash(*p++);
if (y == -1)
return -1;
x = (x ^ y) * mult;
/* the cast might truncate len; that doesn't change hash stability */
mult += (Py_hash_t)(82520UL + len + len);
}
x += 97531UL;
if (x == (Py_uhash_t)-1)
x = -2;
return x;
}
static Py_ssize_t
tuplelength(PyTupleObject *a)
{
return Py_SIZE(a);
}
static int
tuplecontains(PyTupleObject *a, PyObject *el)
{
Py_ssize_t i;
int cmp;
for (i = 0, cmp = 0 ; cmp == 0 && i < Py_SIZE(a); ++i)
cmp = PyObject_RichCompareBool(el, PyTuple_GET_ITEM(a, i),
Py_EQ);
return cmp;
}
static PyObject *
tupleitem(PyTupleObject *a, Py_ssize_t i)
{
if (i < 0 || i >= Py_SIZE(a)) {
PyErr_SetString(PyExc_IndexError, "tuple index out of range");
return NULL;
}
Py_INCREF(a->ob_item[i]);
return a->ob_item[i];
}
static PyObject *
tupleslice(PyTupleObject *a, Py_ssize_t ilow,
Py_ssize_t ihigh)
{
PyTupleObject *np;
PyObject **src, **dest;
Py_ssize_t i;
Py_ssize_t len;
if (ilow < 0)
ilow = 0;
if (ihigh > Py_SIZE(a))
ihigh = Py_SIZE(a);
if (ihigh < ilow)
ihigh = ilow;
if (ilow == 0 && ihigh == Py_SIZE(a) && PyTuple_CheckExact(a)) {
Py_INCREF(a);
return (PyObject *)a;
}
len = ihigh - ilow;
np = (PyTupleObject *)PyTuple_New(len);
if (np == NULL)
return NULL;
src = a->ob_item + ilow;
dest = np->ob_item;
for (i = 0; i < len; i++) {
PyObject *v = src[i];
Py_INCREF(v);
dest[i] = v;
}
return (PyObject *)np;
}
PyObject *
PyTuple_GetSlice(PyObject *op, Py_ssize_t i, Py_ssize_t j)
{
if (op == NULL || !PyTuple_Check(op)) {
PyErr_BadInternalCall();
return NULL;
}
return tupleslice((PyTupleObject *)op, i, j);
}
static PyObject *
tupleconcat(PyTupleObject *a, PyObject *bb)
{
Py_ssize_t size;
Py_ssize_t i;
PyObject **src, **dest;
PyTupleObject *np;
if (!PyTuple_Check(bb)) {
PyErr_Format(PyExc_TypeError,
"can only concatenate tuple (not \"%.200s\") to tuple",
Py_TYPE(bb)->tp_name);
return NULL;
}
#define b ((PyTupleObject *)bb)
if (Py_SIZE(a) > PY_SSIZE_T_MAX - Py_SIZE(b))
return PyErr_NoMemory();
size = Py_SIZE(a) + Py_SIZE(b);
np = (PyTupleObject *) PyTuple_New(size);
if (np == NULL) {
return NULL;
}
src = a->ob_item;
dest = np->ob_item;
for (i = 0; i < Py_SIZE(a); i++) {
PyObject *v = src[i];
Py_INCREF(v);
dest[i] = v;
}
src = b->ob_item;
dest = np->ob_item + Py_SIZE(a);
for (i = 0; i < Py_SIZE(b); i++) {
PyObject *v = src[i];
Py_INCREF(v);
dest[i] = v;
}
return (PyObject *)np;
#undef b
}
static PyObject *
tuplerepeat(PyTupleObject *a, Py_ssize_t n)
{
Py_ssize_t i, j;
Py_ssize_t size;
PyTupleObject *np;
PyObject **p, **items;
if (n < 0)
n = 0;
if (Py_SIZE(a) == 0 || n == 1) {
if (PyTuple_CheckExact(a)) {
/* Since tuples are immutable, we can return a shared
copy in this case */
Py_INCREF(a);
return (PyObject *)a;
}
if (Py_SIZE(a) == 0)
return PyTuple_New(0);
}
if (n > PY_SSIZE_T_MAX / Py_SIZE(a))
return PyErr_NoMemory();
size = Py_SIZE(a) * n;
np = (PyTupleObject *) PyTuple_New(size);
if (np == NULL)
return NULL;
p = np->ob_item;
items = a->ob_item;
for (i = 0; i < n; i++) {
for (j = 0; j < Py_SIZE(a); j++) {
*p = items[j];
Py_INCREF(*p);
p++;
}
}
return (PyObject *) np;
}
static PyObject *
tupleindex(PyTupleObject *self, PyObject *args)
{
Py_ssize_t i, start=0, stop=Py_SIZE(self);
PyObject *v;
if (!PyArg_ParseTuple(args, "O|O&O&:index", &v,
_PyEval_SliceIndexNotNone, &start,
_PyEval_SliceIndexNotNone, &stop))
return NULL;
if (start < 0) {
start += Py_SIZE(self);
if (start < 0)
start = 0;
}
if (stop < 0) {
stop += Py_SIZE(self);
if (stop < 0)
stop = 0;
}
for (i = start; i < stop && i < Py_SIZE(self); i++) {
int cmp = PyObject_RichCompareBool(self->ob_item[i], v, Py_EQ);
if (cmp > 0)
return PyLong_FromSsize_t(i);
else if (cmp < 0)
return NULL;
}
PyErr_SetString(PyExc_ValueError, "tuple.index(x): x not in tuple");
return NULL;
}
static PyObject *
tuplecount(PyTupleObject *self, PyObject *v)
{
Py_ssize_t count = 0;
Py_ssize_t i;
for (i = 0; i < Py_SIZE(self); i++) {
int cmp = PyObject_RichCompareBool(self->ob_item[i], v, Py_EQ);
if (cmp > 0)
count++;
else if (cmp < 0)
return NULL;
}
return PyLong_FromSsize_t(count);
}
static int
tupletraverse(PyTupleObject *o, visitproc visit, void *arg)
{
Py_ssize_t i;
for (i = Py_SIZE(o); --i >= 0; )
Py_VISIT(o->ob_item[i]);
return 0;
}
static PyObject *
tuplerichcompare(PyObject *v, PyObject *w, int op)
{
PyTupleObject *vt, *wt;
Py_ssize_t i;
Py_ssize_t vlen, wlen;
if (!PyTuple_Check(v) || !PyTuple_Check(w))
Py_RETURN_NOTIMPLEMENTED;
vt = (PyTupleObject *)v;
wt = (PyTupleObject *)w;
vlen = Py_SIZE(vt);
wlen = Py_SIZE(wt);
/* Note: the corresponding code for lists has an "early out" test
* here when op is EQ or NE and the lengths differ. That pays there,
* but Tim was unable to find any real code where EQ/NE tuple
* compares don't have the same length, so testing for it here would
* have cost without benefit.
*/
/* Search for the first index where items are different.
* Note that because tuples are immutable, it's safe to reuse
* vlen and wlen across the comparison calls.
*/
for (i = 0; i < vlen && i < wlen; i++) {
int k = PyObject_RichCompareBool(vt->ob_item[i],
wt->ob_item[i], Py_EQ);
if (k < 0)
return NULL;
if (!k)
break;
}
if (i >= vlen || i >= wlen) {
/* No more items to compare -- compare sizes */
int cmp;
PyObject *res;
switch (op) {
case Py_LT: cmp = vlen < wlen; break;
case Py_LE: cmp = vlen <= wlen; break;
case Py_EQ: cmp = vlen == wlen; break;
case Py_NE: cmp = vlen != wlen; break;
case Py_GT: cmp = vlen > wlen; break;
case Py_GE: cmp = vlen >= wlen; break;
default: return NULL; /* cannot happen */
}
if (cmp)
res = Py_True;
else
res = Py_False;
Py_INCREF(res);
return res;
}
/* We have an item that differs -- shortcuts for EQ/NE */
if (op == Py_EQ) {
Py_INCREF(Py_False);
return Py_False;
}
if (op == Py_NE) {
Py_INCREF(Py_True);
return Py_True;
}
/* Compare the final item again using the proper operator */
return PyObject_RichCompare(vt->ob_item[i], wt->ob_item[i], op);
}
static PyObject *
tuple_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
static PyObject *
tuple_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyObject *arg = NULL;
static char *kwlist[] = {"sequence", 0};
if (type != &PyTuple_Type)
return tuple_subtype_new(type, args, kwds);
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|O:tuple", kwlist, &arg))
return NULL;
if (arg == NULL)
return PyTuple_New(0);
else
return PySequence_Tuple(arg);
}
static PyObject *
tuple_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyObject *tmp, *newobj, *item;
Py_ssize_t i, n;
assert(PyType_IsSubtype(type, &PyTuple_Type));
tmp = tuple_new(&PyTuple_Type, args, kwds);
if (tmp == NULL)
return NULL;
assert(PyTuple_Check(tmp));
newobj = type->tp_alloc(type, n = PyTuple_GET_SIZE(tmp));
if (newobj == NULL)
return NULL;
for (i = 0; i < n; i++) {
item = PyTuple_GET_ITEM(tmp, i);
Py_INCREF(item);
PyTuple_SET_ITEM(newobj, i, item);
}
Py_DECREF(tmp);
return newobj;
}
PyDoc_STRVAR(tuple_doc,
"tuple() -> empty tuple\n\
tuple(iterable) -> tuple initialized from iterable's items\n\
\n\
If the argument is a tuple, the return value is the same object.");
static PySequenceMethods tuple_as_sequence = {
(lenfunc)tuplelength, /* sq_length */
(binaryfunc)tupleconcat, /* sq_concat */
(ssizeargfunc)tuplerepeat, /* sq_repeat */
(ssizeargfunc)tupleitem, /* sq_item */
0, /* sq_slice */
0, /* sq_ass_item */
0, /* sq_ass_slice */
(objobjproc)tuplecontains, /* sq_contains */
};
static PyObject*
tuplesubscript(PyTupleObject* self, PyObject* item)
{
if (PyIndex_Check(item)) {
Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError);
if (i == -1 && PyErr_Occurred())
return NULL;
if (i < 0)
i += PyTuple_GET_SIZE(self);
return tupleitem(self, i);
}
else if (PySlice_Check(item)) {
Py_ssize_t start, stop, step, slicelength, cur, i;
PyObject* result;
PyObject* it;
PyObject **src, **dest;
if (PySlice_Unpack(item, &start, &stop, &step) < 0) {
return NULL;
}
slicelength = PySlice_AdjustIndices(PyTuple_GET_SIZE(self), &start,
&stop, step);
if (slicelength <= 0) {
return PyTuple_New(0);
}
else if (start == 0 && step == 1 &&
slicelength == PyTuple_GET_SIZE(self) &&
PyTuple_CheckExact(self)) {
Py_INCREF(self);
return (PyObject *)self;
}
else {
result = PyTuple_New(slicelength);
if (!result) return NULL;
src = self->ob_item;
dest = ((PyTupleObject *)result)->ob_item;
for (cur = start, i = 0; i < slicelength;
cur += step, i++) {
it = src[cur];
Py_INCREF(it);
dest[i] = it;
}
return result;
}
}
else {
PyErr_Format(PyExc_TypeError,
"tuple indices must be integers or slices, not %.200s",
Py_TYPE(item)->tp_name);
return NULL;
}
}
static PyObject *
tuple_getnewargs(PyTupleObject *v)
{
return Py_BuildValue("(N)", tupleslice(v, 0, Py_SIZE(v)));
}
PyDoc_STRVAR(index_doc,
"T.index(value, [start, [stop]]) -> integer -- return first index of value.\n"
"Raises ValueError if the value is not present."
);
PyDoc_STRVAR(count_doc,
"T.count(value) -> integer -- return number of occurrences of value");
static PyMethodDef tuple_methods[] = {
{"__getnewargs__", (PyCFunction)tuple_getnewargs, METH_NOARGS},
{"index", (PyCFunction)tupleindex, METH_VARARGS, index_doc},
{"count", (PyCFunction)tuplecount, METH_O, count_doc},
{NULL, NULL} /* sentinel */
};
static PyMappingMethods tuple_as_mapping = {
(lenfunc)tuplelength,
(binaryfunc)tuplesubscript,
0
};
static PyObject *tuple_iter(PyObject *seq);
PyTypeObject PyTuple_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"tuple",
sizeof(PyTupleObject) - sizeof(PyObject *),
sizeof(PyObject *),
(destructor)tupledealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)tuplerepr, /* tp_repr */
0, /* tp_as_number */
&tuple_as_sequence, /* tp_as_sequence */
&tuple_as_mapping, /* tp_as_mapping */
(hashfunc)tuplehash, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC |
Py_TPFLAGS_BASETYPE | Py_TPFLAGS_TUPLE_SUBCLASS, /* tp_flags */
tuple_doc, /* tp_doc */
(traverseproc)tupletraverse, /* tp_traverse */
0, /* tp_clear */
tuplerichcompare, /* tp_richcompare */
0, /* tp_weaklistoffset */
tuple_iter, /* tp_iter */
0, /* tp_iternext */
tuple_methods, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
tuple_new, /* tp_new */
PyObject_GC_Del, /* tp_free */
};
/* The following function breaks the notion that tuples are immutable:
it changes the size of a tuple. We get away with this only if there
is only one module referencing the object. You can also think of it
as creating a new tuple object and destroying the old one, only more
efficiently. In any case, don't use this if the tuple may already be
known to some other part of the code. */
int
_PyTuple_Resize(PyObject **pv, Py_ssize_t newsize)
{
PyTupleObject *v;
PyTupleObject *sv;
Py_ssize_t i;
Py_ssize_t oldsize;
v = (PyTupleObject *) *pv;
if (v == NULL || Py_TYPE(v) != &PyTuple_Type ||
(Py_SIZE(v) != 0 && Py_REFCNT(v) != 1)) {
*pv = 0;
Py_XDECREF(v);
PyErr_BadInternalCall();
return -1;
}
oldsize = Py_SIZE(v);
if (oldsize == newsize)
return 0;
if (oldsize == 0) {
/* Empty tuples are often shared, so we should never
resize them in-place even if we do own the only
(current) reference */
Py_DECREF(v);
*pv = PyTuple_New(newsize);
return *pv == NULL ? -1 : 0;
}
/* XXX UNREF/NEWREF interface should be more symmetrical */
_Py_DEC_REFTOTAL;
if (_PyObject_GC_IS_TRACKED(v))
_PyObject_GC_UNTRACK(v);
_Py_ForgetReference((PyObject *) v);
/* DECREF items deleted by shrinkage */
for (i = newsize; i < oldsize; i++) {
Py_CLEAR(v->ob_item[i]);
}
sv = PyObject_GC_Resize(PyTupleObject, v, newsize);
if (sv == NULL) {
*pv = NULL;
PyObject_GC_Del(v);
return -1;
}
_Py_NewReference((PyObject *) sv);
/* Zero out items added by growing */
if (newsize > oldsize)
bzero(&sv->ob_item[oldsize],
sizeof(*sv->ob_item) * (newsize - oldsize));
*pv = (PyObject *) sv;
_PyObject_GC_TRACK(sv);
return 0;
}
int
PyTuple_ClearFreeList(void)
{
int freelist_size = 0;
#if PyTuple_MAXSAVESIZE > 0
int i;
for (i = 1; i < PyTuple_MAXSAVESIZE; i++) {
PyTupleObject *p, *q;
p = free_list[i];
freelist_size += numfree[i];
free_list[i] = NULL;
numfree[i] = 0;
while (p) {
q = p;
p = (PyTupleObject *)(p->ob_item[0]);
PyObject_GC_Del(q);
}
}
#endif
return freelist_size;
}
void
PyTuple_Fini(void)
{
#if PyTuple_MAXSAVESIZE > 0
/* empty tuples are used all over the place and applications may
* rely on the fact that an empty tuple is a singleton. */
Py_CLEAR(free_list[0]);
(void)PyTuple_ClearFreeList();
#endif
#ifdef SHOW_TRACK_COUNT
show_track();
#endif
}
/*********************** Tuple Iterator **************************/
typedef struct {
PyObject_HEAD
Py_ssize_t it_index;
PyTupleObject *it_seq; /* Set to NULL when iterator is exhausted */
} tupleiterobject;
static void
tupleiter_dealloc(tupleiterobject *it)
{
_PyObject_GC_UNTRACK(it);
Py_XDECREF(it->it_seq);
PyObject_GC_Del(it);
}
static int
tupleiter_traverse(tupleiterobject *it, visitproc visit, void *arg)
{
Py_VISIT(it->it_seq);
return 0;
}
static PyObject *
tupleiter_next(tupleiterobject *it)
{
PyTupleObject *seq;
PyObject *item;
assert(it != NULL);
seq = it->it_seq;
if (seq == NULL)
return NULL;
assert(PyTuple_Check(seq));
if (it->it_index < PyTuple_GET_SIZE(seq)) {
item = PyTuple_GET_ITEM(seq, it->it_index);
++it->it_index;
Py_INCREF(item);
return item;
}
it->it_seq = NULL;
Py_DECREF(seq);
return NULL;
}
static PyObject *
tupleiter_len(tupleiterobject *it)
{
Py_ssize_t len = 0;
if (it->it_seq)
len = PyTuple_GET_SIZE(it->it_seq) - it->it_index;
return PyLong_FromSsize_t(len);
}
PyDoc_STRVAR(length_hint_doc, "Private method returning an estimate of len(list(it)).");
static PyObject *
tupleiter_reduce(tupleiterobject *it)
{
if (it->it_seq)
return Py_BuildValue("N(O)n", _PyObject_GetBuiltin("iter"),
it->it_seq, it->it_index);
else
return Py_BuildValue("N(())", _PyObject_GetBuiltin("iter"));
}
static PyObject *
tupleiter_setstate(tupleiterobject *it, PyObject *state)
{
Py_ssize_t index = PyLong_AsSsize_t(state);
if (index == -1 && PyErr_Occurred())
return NULL;
if (it->it_seq != NULL) {
if (index < 0)
index = 0;
else if (index > PyTuple_GET_SIZE(it->it_seq))
index = PyTuple_GET_SIZE(it->it_seq); /* exhausted iterator */
it->it_index = index;
}
Py_RETURN_NONE;
}
PyDoc_STRVAR(reduce_doc, "Return state information for pickling.");
PyDoc_STRVAR(setstate_doc, "Set state information for unpickling.");
static PyMethodDef tupleiter_methods[] = {
{"__length_hint__", (PyCFunction)tupleiter_len, METH_NOARGS, length_hint_doc},
{"__reduce__", (PyCFunction)tupleiter_reduce, METH_NOARGS, reduce_doc},
{"__setstate__", (PyCFunction)tupleiter_setstate, METH_O, setstate_doc},
{NULL, NULL} /* sentinel */
};
PyTypeObject PyTupleIter_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"tuple_iterator", /* tp_name */
sizeof(tupleiterobject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)tupleiter_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
0, /* tp_doc */
(traverseproc)tupleiter_traverse, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
PyObject_SelfIter, /* tp_iter */
(iternextfunc)tupleiter_next, /* tp_iternext */
tupleiter_methods, /* tp_methods */
0,
};
static PyObject *
tuple_iter(PyObject *seq)
{
tupleiterobject *it;
if (!PyTuple_Check(seq)) {
PyErr_BadInternalCall();
return NULL;
}
it = PyObject_GC_New(tupleiterobject, &PyTupleIter_Type);
if (it == NULL)
return NULL;
it->it_index = 0;
Py_INCREF(seq);
it->it_seq = (PyTupleObject *)seq;
_PyObject_GC_TRACK(it);
return (PyObject *)it;
}
| 32,165 | 1,096 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/abstract.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "libc/assert.h"
#include "libc/log/log.h"
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/bytearrayobject.h"
#include "third_party/python/Include/ceval.h"
#include "third_party/python/Include/dictobject.h"
#include "third_party/python/Include/floatobject.h"
#include "third_party/python/Include/funcobject.h"
#include "third_party/python/Include/iterobject.h"
#include "third_party/python/Include/listobject.h"
#include "third_party/python/Include/longintrepr.h"
#include "third_party/python/Include/methodobject.h"
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/object.h"
#include "third_party/python/Include/pyerrors.h"
#include "third_party/python/Include/pymacro.h"
#include "third_party/python/Include/pymem.h"
#include "third_party/python/Include/sliceobject.h"
#include "third_party/python/Include/structmember.h"
#include "third_party/python/Include/tupleobject.h"
#include "third_party/python/Include/warnings.h"
/* clang-format off */
/* Abstract Object Interface (many thanks to Jim Fulton) */
/* Shorthands to return certain errors */
static PyObject *
type_error(const char *msg, PyObject *obj)
{
PyErr_Format(PyExc_TypeError, msg, obj->ob_type->tp_name);
return NULL;
}
static PyObject *
null_error(void)
{
if (!PyErr_Occurred())
PyErr_SetString(PyExc_SystemError,
"null argument to internal routine");
return NULL;
}
/* Operations on any object */
PyObject *
PyObject_Type(PyObject *o)
{
PyObject *v;
if (o == NULL) {
return null_error();
}
v = (PyObject *)o->ob_type;
Py_INCREF(v);
return v;
}
Py_ssize_t
PyObject_Size(PyObject *o)
{
PySequenceMethods *m;
if (o == NULL) {
null_error();
return -1;
}
m = o->ob_type->tp_as_sequence;
if (m && m->sq_length)
return m->sq_length(o);
return PyMapping_Size(o);
}
#undef PyObject_Length
Py_ssize_t
PyObject_Length(PyObject *o)
{
return PyObject_Size(o);
}
#define PyObject_Length PyObject_Size
int
_PyObject_HasLen(PyObject *o) {
return (Py_TYPE(o)->tp_as_sequence && Py_TYPE(o)->tp_as_sequence->sq_length) ||
(Py_TYPE(o)->tp_as_mapping && Py_TYPE(o)->tp_as_mapping->mp_length);
}
/* The length hint function returns a non-negative value from o.__len__()
or o.__length_hint__(). If those methods aren't found the defaultvalue is
returned. If one of the calls fails with an exception other than TypeError
this function returns -1.
*/
Py_ssize_t
PyObject_LengthHint(PyObject *o, Py_ssize_t defaultvalue)
{
PyObject *hint, *result;
Py_ssize_t res;
_Py_IDENTIFIER(__length_hint__);
if (_PyObject_HasLen(o)) {
res = PyObject_Length(o);
if (res < 0 && PyErr_Occurred()) {
if (!PyErr_ExceptionMatches(PyExc_TypeError)) {
return -1;
}
PyErr_Clear();
}
else {
return res;
}
}
hint = _PyObject_LookupSpecial(o, &PyId___length_hint__);
if (hint == NULL) {
if (PyErr_Occurred()) {
return -1;
}
return defaultvalue;
}
result = _PyObject_CallNoArg(hint);
Py_DECREF(hint);
if (result == NULL) {
if (PyErr_ExceptionMatches(PyExc_TypeError)) {
PyErr_Clear();
return defaultvalue;
}
return -1;
}
else if (result == Py_NotImplemented) {
Py_DECREF(result);
return defaultvalue;
}
if (!PyLong_Check(result)) {
PyErr_Format(PyExc_TypeError, "__length_hint__ must be an integer, not %.100s",
Py_TYPE(result)->tp_name);
Py_DECREF(result);
return -1;
}
res = PyLong_AsSsize_t(result);
Py_DECREF(result);
if (res < 0 && PyErr_Occurred()) {
return -1;
}
if (res < 0) {
PyErr_Format(PyExc_ValueError, "__length_hint__() should return >= 0");
return -1;
}
return res;
}
PyObject *
PyObject_GetItem(PyObject *o, PyObject *key)
{
PyMappingMethods *m;
if (o == NULL || key == NULL) {
return null_error();
}
m = o->ob_type->tp_as_mapping;
if (m && m->mp_subscript) {
PyObject *item = m->mp_subscript(o, key);
assert((item != NULL) ^ (PyErr_Occurred() != NULL));
return item;
}
if (o->ob_type->tp_as_sequence) {
if (PyIndex_Check(key)) {
Py_ssize_t key_value;
key_value = PyNumber_AsSsize_t(key, PyExc_IndexError);
if (key_value == -1 && PyErr_Occurred())
return NULL;
return PySequence_GetItem(o, key_value);
}
else if (o->ob_type->tp_as_sequence->sq_item)
return type_error("sequence index must "
"be integer, not '%.200s'", key);
}
return type_error("'%.200s' object is not subscriptable", o);
}
int
PyObject_SetItem(PyObject *o, PyObject *key, PyObject *value)
{
PyMappingMethods *m;
if (o == NULL || key == NULL || value == NULL) {
null_error();
return -1;
}
m = o->ob_type->tp_as_mapping;
if (m && m->mp_ass_subscript)
return m->mp_ass_subscript(o, key, value);
if (o->ob_type->tp_as_sequence) {
if (PyIndex_Check(key)) {
Py_ssize_t key_value;
key_value = PyNumber_AsSsize_t(key, PyExc_IndexError);
if (key_value == -1 && PyErr_Occurred())
return -1;
return PySequence_SetItem(o, key_value, value);
}
else if (o->ob_type->tp_as_sequence->sq_ass_item) {
type_error("sequence index must be "
"integer, not '%.200s'", key);
return -1;
}
}
type_error("'%.200s' object does not support item assignment", o);
return -1;
}
int
PyObject_DelItem(PyObject *o, PyObject *key)
{
PyMappingMethods *m;
if (o == NULL || key == NULL) {
null_error();
return -1;
}
m = o->ob_type->tp_as_mapping;
if (m && m->mp_ass_subscript)
return m->mp_ass_subscript(o, key, (PyObject*)NULL);
if (o->ob_type->tp_as_sequence) {
if (PyIndex_Check(key)) {
Py_ssize_t key_value;
key_value = PyNumber_AsSsize_t(key, PyExc_IndexError);
if (key_value == -1 && PyErr_Occurred())
return -1;
return PySequence_DelItem(o, key_value);
}
else if (o->ob_type->tp_as_sequence->sq_ass_item) {
type_error("sequence index must be "
"integer, not '%.200s'", key);
return -1;
}
}
type_error("'%.200s' object does not support item deletion", o);
return -1;
}
int
PyObject_DelItemString(PyObject *o, const char *key)
{
PyObject *okey;
int ret;
if (o == NULL || key == NULL) {
null_error();
return -1;
}
okey = PyUnicode_FromString(key);
if (okey == NULL)
return -1;
ret = PyObject_DelItem(o, okey);
Py_DECREF(okey);
return ret;
}
/* We release the buffer right after use of this function which could
cause issues later on. Don't use these functions in new code.
*/
int
PyObject_CheckReadBuffer(PyObject *obj)
{
PyBufferProcs *pb = obj->ob_type->tp_as_buffer;
Py_buffer view;
if (pb == NULL ||
pb->bf_getbuffer == NULL)
return 0;
if ((*pb->bf_getbuffer)(obj, &view, PyBUF_SIMPLE) == -1) {
PyErr_Clear();
return 0;
}
PyBuffer_Release(&view);
return 1;
}
static int
as_read_buffer(PyObject *obj, const void **buffer, Py_ssize_t *buffer_len)
{
Py_buffer view;
if (obj == NULL || buffer == NULL || buffer_len == NULL) {
null_error();
return -1;
}
if (PyObject_GetBuffer(obj, &view, PyBUF_SIMPLE) != 0)
return -1;
*buffer = view.buf;
*buffer_len = view.len;
PyBuffer_Release(&view);
return 0;
}
int
PyObject_AsCharBuffer(PyObject *obj,
const char **buffer,
Py_ssize_t *buffer_len)
{
return as_read_buffer(obj, (const void **)buffer, buffer_len);
}
int PyObject_AsReadBuffer(PyObject *obj,
const void **buffer,
Py_ssize_t *buffer_len)
{
return as_read_buffer(obj, buffer, buffer_len);
}
int PyObject_AsWriteBuffer(PyObject *obj,
void **buffer,
Py_ssize_t *buffer_len)
{
PyBufferProcs *pb;
Py_buffer view;
if (obj == NULL || buffer == NULL || buffer_len == NULL) {
null_error();
return -1;
}
pb = obj->ob_type->tp_as_buffer;
if (pb == NULL ||
pb->bf_getbuffer == NULL ||
((*pb->bf_getbuffer)(obj, &view, PyBUF_WRITABLE) != 0)) {
PyErr_SetString(PyExc_TypeError,
"expected a writable bytes-like object");
return -1;
}
*buffer = view.buf;
*buffer_len = view.len;
PyBuffer_Release(&view);
return 0;
}
/* Buffer C-API for Python 3.0 */
int
PyObject_GetBuffer(PyObject *obj, Py_buffer *view, int flags)
{
PyBufferProcs *pb = obj->ob_type->tp_as_buffer;
if (pb == NULL || pb->bf_getbuffer == NULL) {
PyErr_Format(PyExc_TypeError,
"a bytes-like object is required, not '%.100s'",
Py_TYPE(obj)->tp_name);
return -1;
}
return (*pb->bf_getbuffer)(obj, view, flags);
}
static int
_IsFortranContiguous(const Py_buffer *view)
{
Py_ssize_t sd, dim;
int i;
/* 1) len = product(shape) * itemsize
2) itemsize > 0
3) len = 0 <==> exists i: shape[i] = 0 */
if (view->len == 0) return 1;
if (view->strides == NULL) { /* C-contiguous by definition */
/* Trivially F-contiguous */
if (view->ndim <= 1) return 1;
/* ndim > 1 implies shape != NULL */
assert(view->shape != NULL);
/* Effectively 1-d */
sd = 0;
for (i=0; i<view->ndim; i++) {
if (view->shape[i] > 1) sd += 1;
}
return sd <= 1;
}
/* strides != NULL implies both of these */
assert(view->ndim > 0);
assert(view->shape != NULL);
sd = view->itemsize;
for (i=0; i<view->ndim; i++) {
dim = view->shape[i];
if (dim > 1 && view->strides[i] != sd) {
return 0;
}
sd *= dim;
}
return 1;
}
static int
_IsCContiguous(const Py_buffer *view)
{
Py_ssize_t sd, dim;
int i;
/* 1) len = product(shape) * itemsize
2) itemsize > 0
3) len = 0 <==> exists i: shape[i] = 0 */
if (view->len == 0) return 1;
if (view->strides == NULL) return 1; /* C-contiguous by definition */
/* strides != NULL implies both of these */
assert(view->ndim > 0);
assert(view->shape != NULL);
sd = view->itemsize;
for (i=view->ndim-1; i>=0; i--) {
dim = view->shape[i];
if (dim > 1 && view->strides[i] != sd) {
return 0;
}
sd *= dim;
}
return 1;
}
int
PyBuffer_IsContiguous(const Py_buffer *view, char order)
{
if (view->suboffsets != NULL) return 0;
if (order == 'C')
return _IsCContiguous(view);
else if (order == 'F')
return _IsFortranContiguous(view);
else if (order == 'A')
return (_IsCContiguous(view) || _IsFortranContiguous(view));
return 0;
}
void*
PyBuffer_GetPointer(Py_buffer *view, Py_ssize_t *indices)
{
char* pointer;
int i;
pointer = (char *)view->buf;
for (i = 0; i < view->ndim; i++) {
pointer += view->strides[i]*indices[i];
if ((view->suboffsets != NULL) && (view->suboffsets[i] >= 0)) {
pointer = *((char**)pointer) + view->suboffsets[i];
}
}
return (void*)pointer;
}
void
_Py_add_one_to_index_F(int nd, Py_ssize_t *index, const Py_ssize_t *shape)
{
int k;
for (k=0; k<nd; k++) {
if (index[k] < shape[k]-1) {
index[k]++;
break;
}
else {
index[k] = 0;
}
}
}
void
_Py_add_one_to_index_C(int nd, Py_ssize_t *index, const Py_ssize_t *shape)
{
int k;
for (k=nd-1; k>=0; k--) {
if (index[k] < shape[k]-1) {
index[k]++;
break;
}
else {
index[k] = 0;
}
}
}
int
PyBuffer_FromContiguous(Py_buffer *view, void *buf, Py_ssize_t len, char fort)
{
int k;
void (*addone)(int, Py_ssize_t *, const Py_ssize_t *);
Py_ssize_t *indices, elements;
char *src, *ptr;
if (len > view->len) {
len = view->len;
}
if (PyBuffer_IsContiguous(view, fort)) {
/* simplest copy is all that is needed */
memcpy(view->buf, buf, len);
return 0;
}
/* Otherwise a more elaborate scheme is needed */
/* view->ndim <= 64 */
indices = (Py_ssize_t *)PyMem_Malloc(sizeof(Py_ssize_t)*(view->ndim));
if (indices == NULL) {
PyErr_NoMemory();
return -1;
}
for (k=0; k<view->ndim;k++) {
indices[k] = 0;
}
if (fort == 'F') {
addone = _Py_add_one_to_index_F;
}
else {
addone = _Py_add_one_to_index_C;
}
src = buf;
/* XXX : This is not going to be the fastest code in the world
several optimizations are possible.
*/
elements = len / view->itemsize;
while (elements--) {
ptr = PyBuffer_GetPointer(view, indices);
memcpy(ptr, src, view->itemsize);
src += view->itemsize;
addone(view->ndim, indices, view->shape);
}
PyMem_Free(indices);
return 0;
}
int PyObject_CopyData(PyObject *dest, PyObject *src)
{
Py_buffer view_dest, view_src;
int k;
Py_ssize_t *indices, elements;
char *dptr, *sptr;
if (!PyObject_CheckBuffer(dest) ||
!PyObject_CheckBuffer(src)) {
PyErr_SetString(PyExc_TypeError,
"both destination and source must be "\
"bytes-like objects");
return -1;
}
if (PyObject_GetBuffer(dest, &view_dest, PyBUF_FULL) != 0) return -1;
if (PyObject_GetBuffer(src, &view_src, PyBUF_FULL_RO) != 0) {
PyBuffer_Release(&view_dest);
return -1;
}
if (view_dest.len < view_src.len) {
PyErr_SetString(PyExc_BufferError,
"destination is too small to receive data from source");
PyBuffer_Release(&view_dest);
PyBuffer_Release(&view_src);
return -1;
}
if ((PyBuffer_IsContiguous(&view_dest, 'C') &&
PyBuffer_IsContiguous(&view_src, 'C')) ||
(PyBuffer_IsContiguous(&view_dest, 'F') &&
PyBuffer_IsContiguous(&view_src, 'F'))) {
/* simplest copy is all that is needed */
memcpy(view_dest.buf, view_src.buf, view_src.len);
PyBuffer_Release(&view_dest);
PyBuffer_Release(&view_src);
return 0;
}
/* Otherwise a more elaborate copy scheme is needed */
/* XXX(nnorwitz): need to check for overflow! */
indices = (Py_ssize_t *)PyMem_Malloc(sizeof(Py_ssize_t)*view_src.ndim);
if (indices == NULL) {
PyErr_NoMemory();
PyBuffer_Release(&view_dest);
PyBuffer_Release(&view_src);
return -1;
}
for (k=0; k<view_src.ndim;k++) {
indices[k] = 0;
}
elements = 1;
for (k=0; k<view_src.ndim; k++) {
/* XXX(nnorwitz): can this overflow? */
elements *= view_src.shape[k];
}
while (elements--) {
_Py_add_one_to_index_C(view_src.ndim, indices, view_src.shape);
dptr = PyBuffer_GetPointer(&view_dest, indices);
sptr = PyBuffer_GetPointer(&view_src, indices);
memcpy(dptr, sptr, view_src.itemsize);
}
PyMem_Free(indices);
PyBuffer_Release(&view_dest);
PyBuffer_Release(&view_src);
return 0;
}
void
PyBuffer_FillContiguousStrides(int nd, Py_ssize_t *shape,
Py_ssize_t *strides, int itemsize,
char fort)
{
int k;
Py_ssize_t sd;
sd = itemsize;
if (fort == 'F') {
for (k=0; k<nd; k++) {
strides[k] = sd;
sd *= shape[k];
}
}
else {
for (k=nd-1; k>=0; k--) {
strides[k] = sd;
sd *= shape[k];
}
}
return;
}
int
PyBuffer_FillInfo(Py_buffer *view, PyObject *obj, void *buf, Py_ssize_t len,
int readonly, int flags)
{
if (view == NULL) {
PyErr_SetString(PyExc_BufferError,
"PyBuffer_FillInfo: view==NULL argument is obsolete");
return -1;
}
if (((flags & PyBUF_WRITABLE) == PyBUF_WRITABLE) &&
(readonly == 1)) {
PyErr_SetString(PyExc_BufferError,
"Object is not writable.");
return -1;
}
view->obj = obj;
if (obj)
Py_INCREF(obj);
view->buf = buf;
view->len = len;
view->readonly = readonly;
view->itemsize = 1;
view->format = NULL;
if ((flags & PyBUF_FORMAT) == PyBUF_FORMAT)
view->format = "B";
view->ndim = 1;
view->shape = NULL;
if ((flags & PyBUF_ND) == PyBUF_ND)
view->shape = &(view->len);
view->strides = NULL;
if ((flags & PyBUF_STRIDES) == PyBUF_STRIDES)
view->strides = &(view->itemsize);
view->suboffsets = NULL;
view->internal = NULL;
return 0;
}
void
PyBuffer_Release(Py_buffer *view)
{
PyObject *obj = view->obj;
PyBufferProcs *pb;
if (obj == NULL)
return;
pb = Py_TYPE(obj)->tp_as_buffer;
if (pb && pb->bf_releasebuffer)
pb->bf_releasebuffer(obj, view);
view->obj = NULL;
Py_DECREF(obj);
}
PyObject *
PyObject_Format(PyObject *obj, PyObject *format_spec)
{
PyObject *meth;
PyObject *empty = NULL;
PyObject *result = NULL;
_Py_IDENTIFIER(__format__);
if (format_spec != NULL && !PyUnicode_Check(format_spec)) {
PyErr_Format(PyExc_SystemError,
"Format specifier must be a string, not %.200s",
Py_TYPE(format_spec)->tp_name);
return NULL;
}
/* Fast path for common types. */
if (format_spec == NULL || PyUnicode_GET_LENGTH(format_spec) == 0) {
if (PyUnicode_CheckExact(obj)) {
Py_INCREF(obj);
return obj;
}
if (PyLong_CheckExact(obj)) {
return PyObject_Str(obj);
}
}
/* If no format_spec is provided, use an empty string */
if (format_spec == NULL) {
empty = PyUnicode_New(0, 0);
format_spec = empty;
}
/* Find the (unbound!) __format__ method */
meth = _PyObject_LookupSpecial(obj, &PyId___format__);
if (meth == NULL) {
if (!PyErr_Occurred())
PyErr_Format(PyExc_TypeError,
"Type %.100s doesn't define __format__",
Py_TYPE(obj)->tp_name);
goto done;
}
/* And call it. */
result = PyObject_CallFunctionObjArgs(meth, format_spec, NULL);
Py_DECREF(meth);
if (result && !PyUnicode_Check(result)) {
PyErr_Format(PyExc_TypeError,
"__format__ must return a str, not %.200s",
Py_TYPE(result)->tp_name);
Py_DECREF(result);
result = NULL;
goto done;
}
done:
Py_XDECREF(empty);
return result;
}
/* Operations on numbers */
int
PyNumber_Check(PyObject *o)
{
return o && o->ob_type->tp_as_number &&
(o->ob_type->tp_as_number->nb_int ||
o->ob_type->tp_as_number->nb_float);
}
/* Binary operators */
#define NB_SLOT(x) offsetof(PyNumberMethods, x)
#define NB_BINOP(nb_methods, slot) \
(*(binaryfunc*)(& ((char*)nb_methods)[slot]))
#define NB_TERNOP(nb_methods, slot) \
(*(ternaryfunc*)(& ((char*)nb_methods)[slot]))
/*
Calling scheme used for binary operations:
Order operations are tried until either a valid result or error:
w.op(v,w)[*], v.op(v,w), w.op(v,w)
[*] only when v->ob_type != w->ob_type && w->ob_type is a subclass of
v->ob_type
*/
static PyObject *
binary_op1(PyObject *v, PyObject *w, const int op_slot)
{
PyObject *x;
binaryfunc slotv = NULL;
binaryfunc slotw = NULL;
if (v->ob_type->tp_as_number != NULL)
slotv = NB_BINOP(v->ob_type->tp_as_number, op_slot);
if (w->ob_type != v->ob_type &&
w->ob_type->tp_as_number != NULL) {
slotw = NB_BINOP(w->ob_type->tp_as_number, op_slot);
if (slotw == slotv)
slotw = NULL;
}
if (slotv) {
if (slotw && PyType_IsSubtype(w->ob_type, v->ob_type)) {
x = slotw(v, w);
if (x != Py_NotImplemented)
return x;
Py_DECREF(x); /* can't do it */
slotw = NULL;
}
x = slotv(v, w);
if (x != Py_NotImplemented)
return x;
Py_DECREF(x); /* can't do it */
}
if (slotw) {
x = slotw(v, w);
if (x != Py_NotImplemented)
return x;
Py_DECREF(x); /* can't do it */
}
Py_RETURN_NOTIMPLEMENTED;
}
static PyObject *
binop_type_error(PyObject *v, PyObject *w, const char *op_name)
{
PyErr_Format(PyExc_TypeError,
"unsupported operand type(s) for %.100s: "
"'%.100s' and '%.100s'",
op_name,
v->ob_type->tp_name,
w->ob_type->tp_name);
return NULL;
}
static PyObject *
binary_op(PyObject *v, PyObject *w, const int op_slot, const char *op_name)
{
PyObject *result = binary_op1(v, w, op_slot);
if (result == Py_NotImplemented) {
Py_DECREF(result);
return binop_type_error(v, w, op_name);
}
return result;
}
/*
Calling scheme used for ternary operations:
Order operations are tried until either a valid result or error:
v.op(v,w,z), w.op(v,w,z), z.op(v,w,z)
*/
static PyObject *
ternary_op(PyObject *v,
PyObject *w,
PyObject *z,
const int op_slot,
const char *op_name)
{
PyNumberMethods *mv, *mw, *mz;
PyObject *x = NULL;
ternaryfunc slotv = NULL;
ternaryfunc slotw = NULL;
ternaryfunc slotz = NULL;
mv = v->ob_type->tp_as_number;
mw = w->ob_type->tp_as_number;
if (mv != NULL)
slotv = NB_TERNOP(mv, op_slot);
if (w->ob_type != v->ob_type &&
mw != NULL) {
slotw = NB_TERNOP(mw, op_slot);
if (slotw == slotv)
slotw = NULL;
}
if (slotv) {
if (slotw && PyType_IsSubtype(w->ob_type, v->ob_type)) {
x = slotw(v, w, z);
if (x != Py_NotImplemented)
return x;
Py_DECREF(x); /* can't do it */
slotw = NULL;
}
x = slotv(v, w, z);
if (x != Py_NotImplemented)
return x;
Py_DECREF(x); /* can't do it */
}
if (slotw) {
x = slotw(v, w, z);
if (x != Py_NotImplemented)
return x;
Py_DECREF(x); /* can't do it */
}
mz = z->ob_type->tp_as_number;
if (mz != NULL) {
slotz = NB_TERNOP(mz, op_slot);
if (slotz == slotv || slotz == slotw)
slotz = NULL;
if (slotz) {
x = slotz(v, w, z);
if (x != Py_NotImplemented)
return x;
Py_DECREF(x); /* can't do it */
}
}
if (z == Py_None)
PyErr_Format(
PyExc_TypeError,
"unsupported operand type(s) for ** or pow(): "
"'%.100s' and '%.100s'",
v->ob_type->tp_name,
w->ob_type->tp_name);
else
PyErr_Format(
PyExc_TypeError,
"unsupported operand type(s) for pow(): "
"'%.100s', '%.100s', '%.100s'",
v->ob_type->tp_name,
w->ob_type->tp_name,
z->ob_type->tp_name);
return NULL;
}
#define BINARY_FUNC(func, op, op_name) \
PyObject * \
func(PyObject *v, PyObject *w) { \
return binary_op(v, w, NB_SLOT(op), op_name); \
}
BINARY_FUNC(PyNumber_Or, nb_or, "|")
BINARY_FUNC(PyNumber_Xor, nb_xor, "^")
BINARY_FUNC(PyNumber_And, nb_and, "&")
BINARY_FUNC(PyNumber_Lshift, nb_lshift, "<<")
BINARY_FUNC(PyNumber_Rshift, nb_rshift, ">>")
BINARY_FUNC(PyNumber_Subtract, nb_subtract, "-")
BINARY_FUNC(PyNumber_Divmod, nb_divmod, "divmod()")
PyObject *
PyNumber_Add(PyObject *v, PyObject *w)
{
PyObject *result = binary_op1(v, w, NB_SLOT(nb_add));
if (result == Py_NotImplemented) {
PySequenceMethods *m = v->ob_type->tp_as_sequence;
Py_DECREF(result);
if (m && m->sq_concat) {
return (*m->sq_concat)(v, w);
}
result = binop_type_error(v, w, "+");
}
return result;
}
static PyObject *
sequence_repeat(ssizeargfunc repeatfunc, PyObject *seq, PyObject *n)
{
Py_ssize_t count;
if (PyIndex_Check(n)) {
count = PyNumber_AsSsize_t(n, PyExc_OverflowError);
if (count == -1 && PyErr_Occurred())
return NULL;
}
else {
return type_error("can't multiply sequence by "
"non-int of type '%.200s'", n);
}
return (*repeatfunc)(seq, count);
}
PyObject *
PyNumber_Multiply(PyObject *v, PyObject *w)
{
PyObject *result = binary_op1(v, w, NB_SLOT(nb_multiply));
if (result == Py_NotImplemented) {
PySequenceMethods *mv = v->ob_type->tp_as_sequence;
PySequenceMethods *mw = w->ob_type->tp_as_sequence;
Py_DECREF(result);
if (mv && mv->sq_repeat) {
return sequence_repeat(mv->sq_repeat, v, w);
}
else if (mw && mw->sq_repeat) {
return sequence_repeat(mw->sq_repeat, w, v);
}
result = binop_type_error(v, w, "*");
}
return result;
}
PyObject *
PyNumber_MatrixMultiply(PyObject *v, PyObject *w)
{
return binary_op(v, w, NB_SLOT(nb_matrix_multiply), "@");
}
PyObject *
PyNumber_FloorDivide(PyObject *v, PyObject *w)
{
return binary_op(v, w, NB_SLOT(nb_floor_divide), "//");
}
PyObject *
PyNumber_TrueDivide(PyObject *v, PyObject *w)
{
return binary_op(v, w, NB_SLOT(nb_true_divide), "/");
}
PyObject *
PyNumber_Remainder(PyObject *v, PyObject *w)
{
return binary_op(v, w, NB_SLOT(nb_remainder), "%");
}
PyObject *
PyNumber_Power(PyObject *v, PyObject *w, PyObject *z)
{
return ternary_op(v, w, z, NB_SLOT(nb_power), "** or pow()");
}
/* Binary in-place operators */
/* The in-place operators are defined to fall back to the 'normal',
non in-place operations, if the in-place methods are not in place.
- If the left hand object has the appropriate struct members, and
they are filled, call the appropriate function and return the
result. No coercion is done on the arguments; the left-hand object
is the one the operation is performed on, and it's up to the
function to deal with the right-hand object.
- Otherwise, in-place modification is not supported. Handle it exactly as
a non in-place operation of the same kind.
*/
static PyObject *
binary_iop1(PyObject *v, PyObject *w, const int iop_slot, const int op_slot)
{
PyNumberMethods *mv = v->ob_type->tp_as_number;
if (mv != NULL) {
binaryfunc slot = NB_BINOP(mv, iop_slot);
if (slot) {
PyObject *x = (slot)(v, w);
if (x != Py_NotImplemented) {
return x;
}
Py_DECREF(x);
}
}
return binary_op1(v, w, op_slot);
}
static PyObject *
binary_iop(PyObject *v, PyObject *w, const int iop_slot, const int op_slot,
const char *op_name)
{
PyObject *result = binary_iop1(v, w, iop_slot, op_slot);
if (result == Py_NotImplemented) {
Py_DECREF(result);
return binop_type_error(v, w, op_name);
}
return result;
}
#define INPLACE_BINOP(func, iop, op, op_name) \
PyObject * \
func(PyObject *v, PyObject *w) { \
return binary_iop(v, w, NB_SLOT(iop), NB_SLOT(op), op_name); \
}
INPLACE_BINOP(PyNumber_InPlaceOr, nb_inplace_or, nb_or, "|=")
INPLACE_BINOP(PyNumber_InPlaceXor, nb_inplace_xor, nb_xor, "^=")
INPLACE_BINOP(PyNumber_InPlaceAnd, nb_inplace_and, nb_and, "&=")
INPLACE_BINOP(PyNumber_InPlaceLshift, nb_inplace_lshift, nb_lshift, "<<=")
INPLACE_BINOP(PyNumber_InPlaceRshift, nb_inplace_rshift, nb_rshift, ">>=")
INPLACE_BINOP(PyNumber_InPlaceSubtract, nb_inplace_subtract, nb_subtract, "-=")
INPLACE_BINOP(PyNumber_InMatrixMultiply, nb_inplace_matrix_multiply, nb_matrix_multiply, "@=")
PyObject *
PyNumber_InPlaceFloorDivide(PyObject *v, PyObject *w)
{
return binary_iop(v, w, NB_SLOT(nb_inplace_floor_divide),
NB_SLOT(nb_floor_divide), "//=");
}
PyObject *
PyNumber_InPlaceTrueDivide(PyObject *v, PyObject *w)
{
return binary_iop(v, w, NB_SLOT(nb_inplace_true_divide),
NB_SLOT(nb_true_divide), "/=");
}
PyObject *
PyNumber_InPlaceAdd(PyObject *v, PyObject *w)
{
PyObject *result = binary_iop1(v, w, NB_SLOT(nb_inplace_add),
NB_SLOT(nb_add));
if (result == Py_NotImplemented) {
PySequenceMethods *m = v->ob_type->tp_as_sequence;
Py_DECREF(result);
if (m != NULL) {
binaryfunc f = NULL;
f = m->sq_inplace_concat;
if (f == NULL)
f = m->sq_concat;
if (f != NULL)
return (*f)(v, w);
}
result = binop_type_error(v, w, "+=");
}
return result;
}
PyObject *
PyNumber_InPlaceMultiply(PyObject *v, PyObject *w)
{
PyObject *result = binary_iop1(v, w, NB_SLOT(nb_inplace_multiply),
NB_SLOT(nb_multiply));
if (result == Py_NotImplemented) {
ssizeargfunc f = NULL;
PySequenceMethods *mv = v->ob_type->tp_as_sequence;
PySequenceMethods *mw = w->ob_type->tp_as_sequence;
Py_DECREF(result);
if (mv != NULL) {
f = mv->sq_inplace_repeat;
if (f == NULL)
f = mv->sq_repeat;
if (f != NULL)
return sequence_repeat(f, v, w);
}
else if (mw != NULL) {
/* Note that the right hand operand should not be
* mutated in this case so sq_inplace_repeat is not
* used. */
if (mw->sq_repeat)
return sequence_repeat(mw->sq_repeat, w, v);
}
result = binop_type_error(v, w, "*=");
}
return result;
}
PyObject *
PyNumber_InPlaceMatrixMultiply(PyObject *v, PyObject *w)
{
return binary_iop(v, w, NB_SLOT(nb_inplace_matrix_multiply),
NB_SLOT(nb_matrix_multiply), "@=");
}
PyObject *
PyNumber_InPlaceRemainder(PyObject *v, PyObject *w)
{
return binary_iop(v, w, NB_SLOT(nb_inplace_remainder),
NB_SLOT(nb_remainder), "%=");
}
PyObject *
PyNumber_InPlacePower(PyObject *v, PyObject *w, PyObject *z)
{
if (v->ob_type->tp_as_number &&
v->ob_type->tp_as_number->nb_inplace_power != NULL) {
return ternary_op(v, w, z, NB_SLOT(nb_inplace_power), "**=");
}
else {
return ternary_op(v, w, z, NB_SLOT(nb_power), "**=");
}
}
/* Unary operators and functions */
PyObject *
PyNumber_Negative(PyObject *o)
{
PyNumberMethods *m;
if (o == NULL) {
return null_error();
}
m = o->ob_type->tp_as_number;
if (m && m->nb_negative)
return (*m->nb_negative)(o);
return type_error("bad operand type for unary -: '%.200s'", o);
}
PyObject *
PyNumber_Positive(PyObject *o)
{
PyNumberMethods *m;
if (o == NULL) {
return null_error();
}
m = o->ob_type->tp_as_number;
if (m && m->nb_positive)
return (*m->nb_positive)(o);
return type_error("bad operand type for unary +: '%.200s'", o);
}
PyObject *
PyNumber_Invert(PyObject *o)
{
PyNumberMethods *m;
if (o == NULL) {
return null_error();
}
m = o->ob_type->tp_as_number;
if (m && m->nb_invert)
return (*m->nb_invert)(o);
return type_error("bad operand type for unary ~: '%.200s'", o);
}
PyObject *
PyNumber_Absolute(PyObject *o)
{
PyNumberMethods *m;
if (o == NULL) {
return null_error();
}
m = o->ob_type->tp_as_number;
if (m && m->nb_absolute)
return m->nb_absolute(o);
return type_error("bad operand type for abs(): '%.200s'", o);
}
/* Return a Python int from the object item.
Raise TypeError if the result is not an int
or if the object cannot be interpreted as an index.
*/
PyObject *
PyNumber_Index(PyObject *item)
{
PyObject *result = NULL;
if (item == NULL) {
return null_error();
}
if (PyLong_Check(item)) {
Py_INCREF(item);
return item;
}
if (!PyIndex_Check(item)) {
PyErr_Format(PyExc_TypeError,
"'%.200s' object cannot be interpreted "
"as an integer", item->ob_type->tp_name);
return NULL;
}
result = item->ob_type->tp_as_number->nb_index(item);
if (!result || PyLong_CheckExact(result))
return result;
if (!PyLong_Check(result)) {
PyErr_Format(PyExc_TypeError,
"__index__ returned non-int (type %.200s)",
result->ob_type->tp_name);
Py_DECREF(result);
return NULL;
}
/* Issue #17576: warn if 'result' not of exact type int. */
if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1,
"__index__ returned non-int (type %.200s). "
"The ability to return an instance of a strict subclass of int "
"is deprecated, and may be removed in a future version of Python.",
result->ob_type->tp_name)) {
Py_DECREF(result);
return NULL;
}
return result;
}
/* Return an error on Overflow only if err is not NULL*/
Py_ssize_t
PyNumber_AsSsize_t(PyObject *item, PyObject *err)
{
Py_ssize_t result;
PyObject *runerr;
PyObject *value = PyNumber_Index(item);
if (value == NULL)
return -1;
/* We're done if PyLong_AsSsize_t() returns without error. */
result = PyLong_AsSsize_t(value);
if (result != -1 || !(runerr = PyErr_Occurred()))
goto finish;
/* Error handling code -- only manage OverflowError differently */
if (!PyErr_GivenExceptionMatches(runerr, PyExc_OverflowError))
goto finish;
PyErr_Clear();
/* If no error-handling desired then the default clipping
is sufficient.
*/
if (!err) {
assert(PyLong_Check(value));
/* Whether or not it is less than or equal to
zero is determined by the sign of ob_size
*/
if (_PyLong_Sign(value) < 0)
result = PY_SSIZE_T_MIN;
else
result = PY_SSIZE_T_MAX;
}
else {
/* Otherwise replace the error with caller's error object. */
PyErr_Format(err,
"cannot fit '%.200s' into an index-sized integer",
item->ob_type->tp_name);
}
finish:
Py_DECREF(value);
return result;
}
PyObject *
PyNumber_Long(PyObject *o)
{
PyObject *result;
PyNumberMethods *m;
PyObject *trunc_func;
Py_buffer view;
_Py_IDENTIFIER(__trunc__);
if (o == NULL) {
return null_error();
}
if (PyLong_CheckExact(o)) {
Py_INCREF(o);
return o;
}
m = o->ob_type->tp_as_number;
if (m && m->nb_int) { /* This should include subclasses of int */
result = (PyObject *)_PyLong_FromNbInt(o);
if (result != NULL && !PyLong_CheckExact(result)) {
Py_SETREF(result, _PyLong_Copy((PyLongObject *)result));
}
return result;
}
trunc_func = _PyObject_LookupSpecial(o, &PyId___trunc__);
if (trunc_func) {
result = PyEval_CallObject(trunc_func, NULL);
Py_DECREF(trunc_func);
if (result == NULL || PyLong_CheckExact(result)) {
return result;
}
if (PyLong_Check(result)) {
Py_SETREF(result, _PyLong_Copy((PyLongObject *)result));
return result;
}
/* __trunc__ is specified to return an Integral type,
but int() needs to return an int. */
m = result->ob_type->tp_as_number;
if (m == NULL || m->nb_int == NULL) {
PyErr_Format(
PyExc_TypeError,
"__trunc__ returned non-Integral (type %.200s)",
result->ob_type->tp_name);
Py_DECREF(result);
return NULL;
}
Py_SETREF(result, (PyObject *)_PyLong_FromNbInt(result));
if (result != NULL && !PyLong_CheckExact(result)) {
Py_SETREF(result, _PyLong_Copy((PyLongObject *)result));
}
return result;
}
if (PyErr_Occurred())
return NULL;
if (PyUnicode_Check(o))
/* The below check is done in PyLong_FromUnicode(). */
return PyLong_FromUnicodeObject(o, 10);
if (PyBytes_Check(o))
/* need to do extra error checking that PyLong_FromString()
* doesn't do. In particular int('9\x005') must raise an
* exception, not truncate at the null.
*/
return _PyLong_FromBytes(PyBytes_AS_STRING(o),
PyBytes_GET_SIZE(o), 10);
if (PyByteArray_Check(o))
return _PyLong_FromBytes(PyByteArray_AS_STRING(o),
PyByteArray_GET_SIZE(o), 10);
if (PyObject_GetBuffer(o, &view, PyBUF_SIMPLE) == 0) {
PyObject *bytes;
/* Copy to NUL-terminated buffer. */
bytes = PyBytes_FromStringAndSize((const char *)view.buf, view.len);
if (bytes == NULL) {
PyBuffer_Release(&view);
return NULL;
}
result = _PyLong_FromBytes(PyBytes_AS_STRING(bytes),
PyBytes_GET_SIZE(bytes), 10);
Py_DECREF(bytes);
PyBuffer_Release(&view);
return result;
}
return type_error("int() argument must be a string, a bytes-like object "
"or a number, not '%.200s'", o);
}
PyObject *
PyNumber_Float(PyObject *o)
{
PyNumberMethods *m;
if (o == NULL) {
return null_error();
}
if (PyFloat_CheckExact(o)) {
Py_INCREF(o);
return o;
}
m = o->ob_type->tp_as_number;
if (m && m->nb_float) { /* This should include subclasses of float */
PyObject *res = m->nb_float(o);
double val;
if (!res || PyFloat_CheckExact(res)) {
return res;
}
if (!PyFloat_Check(res)) {
PyErr_Format(PyExc_TypeError,
"%.50s.__float__ returned non-float (type %.50s)",
o->ob_type->tp_name, res->ob_type->tp_name);
Py_DECREF(res);
return NULL;
}
/* Issue #26983: warn if 'res' not of exact type float. */
if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1,
"%.50s.__float__ returned non-float (type %.50s). "
"The ability to return an instance of a strict subclass of float "
"is deprecated, and may be removed in a future version of Python.",
o->ob_type->tp_name, res->ob_type->tp_name)) {
Py_DECREF(res);
return NULL;
}
val = PyFloat_AS_DOUBLE(res);
Py_DECREF(res);
return PyFloat_FromDouble(val);
}
if (PyFloat_Check(o)) { /* A float subclass with nb_float == NULL */
return PyFloat_FromDouble(PyFloat_AS_DOUBLE(o));
}
return PyFloat_FromString(o);
}
PyObject *
PyNumber_ToBase(PyObject *n, int base)
{
PyObject *res = NULL;
PyObject *index = PyNumber_Index(n);
if (!index)
return NULL;
if (PyLong_Check(index))
res = _PyLong_Format(index, base);
else
/* It should not be possible to get here, as
PyNumber_Index already has a check for the same
condition */
PyErr_SetString(PyExc_ValueError, "PyNumber_ToBase: index not int");
Py_DECREF(index);
return res;
}
/* Operations on sequences */
int
PySequence_Check(PyObject *s)
{
if (PyDict_Check(s))
return 0;
return s != NULL && s->ob_type->tp_as_sequence &&
s->ob_type->tp_as_sequence->sq_item != NULL;
}
Py_ssize_t
PySequence_Size(PyObject *s)
{
PySequenceMethods *m;
if (s == NULL) {
null_error();
return -1;
}
m = s->ob_type->tp_as_sequence;
if (m && m->sq_length)
return m->sq_length(s);
type_error("object of type '%.200s' has no len()", s);
return -1;
}
#undef PySequence_Length
Py_ssize_t
PySequence_Length(PyObject *s)
{
return PySequence_Size(s);
}
#define PySequence_Length PySequence_Size
PyObject *
PySequence_Concat(PyObject *s, PyObject *o)
{
PySequenceMethods *m;
if (s == NULL || o == NULL) {
return null_error();
}
m = s->ob_type->tp_as_sequence;
if (m && m->sq_concat)
return m->sq_concat(s, o);
/* Instances of user classes defining an __add__() method only
have an nb_add slot, not an sq_concat slot. So we fall back
to nb_add if both arguments appear to be sequences. */
if (PySequence_Check(s) && PySequence_Check(o)) {
PyObject *result = binary_op1(s, o, NB_SLOT(nb_add));
if (result != Py_NotImplemented)
return result;
Py_DECREF(result);
}
return type_error("'%.200s' object can't be concatenated", s);
}
PyObject *
PySequence_Repeat(PyObject *o, Py_ssize_t count)
{
PySequenceMethods *m;
if (o == NULL) {
return null_error();
}
m = o->ob_type->tp_as_sequence;
if (m && m->sq_repeat)
return m->sq_repeat(o, count);
/* Instances of user classes defining a __mul__() method only
have an nb_multiply slot, not an sq_repeat slot. so we fall back
to nb_multiply if o appears to be a sequence. */
if (PySequence_Check(o)) {
PyObject *n, *result;
n = PyLong_FromSsize_t(count);
if (n == NULL)
return NULL;
result = binary_op1(o, n, NB_SLOT(nb_multiply));
Py_DECREF(n);
if (result != Py_NotImplemented)
return result;
Py_DECREF(result);
}
return type_error("'%.200s' object can't be repeated", o);
}
PyObject *
PySequence_InPlaceConcat(PyObject *s, PyObject *o)
{
PySequenceMethods *m;
if (s == NULL || o == NULL) {
return null_error();
}
m = s->ob_type->tp_as_sequence;
if (m && m->sq_inplace_concat)
return m->sq_inplace_concat(s, o);
if (m && m->sq_concat)
return m->sq_concat(s, o);
if (PySequence_Check(s) && PySequence_Check(o)) {
PyObject *result = binary_iop1(s, o, NB_SLOT(nb_inplace_add),
NB_SLOT(nb_add));
if (result != Py_NotImplemented)
return result;
Py_DECREF(result);
}
return type_error("'%.200s' object can't be concatenated", s);
}
PyObject *
PySequence_InPlaceRepeat(PyObject *o, Py_ssize_t count)
{
PySequenceMethods *m;
if (o == NULL) {
return null_error();
}
m = o->ob_type->tp_as_sequence;
if (m && m->sq_inplace_repeat)
return m->sq_inplace_repeat(o, count);
if (m && m->sq_repeat)
return m->sq_repeat(o, count);
if (PySequence_Check(o)) {
PyObject *n, *result;
n = PyLong_FromSsize_t(count);
if (n == NULL)
return NULL;
result = binary_iop1(o, n, NB_SLOT(nb_inplace_multiply),
NB_SLOT(nb_multiply));
Py_DECREF(n);
if (result != Py_NotImplemented)
return result;
Py_DECREF(result);
}
return type_error("'%.200s' object can't be repeated", o);
}
PyObject *
PySequence_GetItem(PyObject *s, Py_ssize_t i)
{
PySequenceMethods *m;
if (s == NULL) {
return null_error();
}
m = s->ob_type->tp_as_sequence;
if (m && m->sq_item) {
if (i < 0) {
if (m->sq_length) {
Py_ssize_t l = (*m->sq_length)(s);
if (l < 0) {
assert(PyErr_Occurred());
return NULL;
}
i += l;
}
}
return m->sq_item(s, i);
}
return type_error("'%.200s' object does not support indexing", s);
}
PyObject *
PySequence_GetSlice(PyObject *s, Py_ssize_t i1, Py_ssize_t i2)
{
PyMappingMethods *mp;
if (!s) {
return null_error();
}
mp = s->ob_type->tp_as_mapping;
if (mp && mp->mp_subscript) {
PyObject *res;
PyObject *slice = _PySlice_FromIndices(i1, i2);
if (!slice)
return NULL;
res = mp->mp_subscript(s, slice);
Py_DECREF(slice);
return res;
}
return type_error("'%.200s' object is unsliceable", s);
}
int
PySequence_SetItem(PyObject *s, Py_ssize_t i, PyObject *o)
{
PySequenceMethods *m;
if (s == NULL) {
null_error();
return -1;
}
m = s->ob_type->tp_as_sequence;
if (m && m->sq_ass_item) {
if (i < 0) {
if (m->sq_length) {
Py_ssize_t l = (*m->sq_length)(s);
if (l < 0)
return -1;
i += l;
}
}
return m->sq_ass_item(s, i, o);
}
type_error("'%.200s' object does not support item assignment", s);
return -1;
}
int
PySequence_DelItem(PyObject *s, Py_ssize_t i)
{
PySequenceMethods *m;
if (s == NULL) {
null_error();
return -1;
}
m = s->ob_type->tp_as_sequence;
if (m && m->sq_ass_item) {
if (i < 0) {
if (m->sq_length) {
Py_ssize_t l = (*m->sq_length)(s);
if (l < 0)
return -1;
i += l;
}
}
return m->sq_ass_item(s, i, (PyObject *)NULL);
}
type_error("'%.200s' object doesn't support item deletion", s);
return -1;
}
int
PySequence_SetSlice(PyObject *s, Py_ssize_t i1, Py_ssize_t i2, PyObject *o)
{
PyMappingMethods *mp;
if (s == NULL) {
null_error();
return -1;
}
mp = s->ob_type->tp_as_mapping;
if (mp && mp->mp_ass_subscript) {
int res;
PyObject *slice = _PySlice_FromIndices(i1, i2);
if (!slice)
return -1;
res = mp->mp_ass_subscript(s, slice, o);
Py_DECREF(slice);
return res;
}
type_error("'%.200s' object doesn't support slice assignment", s);
return -1;
}
int
PySequence_DelSlice(PyObject *s, Py_ssize_t i1, Py_ssize_t i2)
{
PyMappingMethods *mp;
if (s == NULL) {
null_error();
return -1;
}
mp = s->ob_type->tp_as_mapping;
if (mp && mp->mp_ass_subscript) {
int res;
PyObject *slice = _PySlice_FromIndices(i1, i2);
if (!slice)
return -1;
res = mp->mp_ass_subscript(s, slice, NULL);
Py_DECREF(slice);
return res;
}
type_error("'%.200s' object doesn't support slice deletion", s);
return -1;
}
PyObject *
PySequence_Tuple(PyObject *v)
{
PyObject *it; /* iter(v) */
Py_ssize_t n; /* guess for result tuple size */
PyObject *result = NULL;
Py_ssize_t j;
if (v == NULL) {
return null_error();
}
/* Special-case the common tuple and list cases, for efficiency. */
if (PyTuple_CheckExact(v)) {
/* Note that we can't know whether it's safe to return
a tuple *subclass* instance as-is, hence the restriction
to exact tuples here. In contrast, lists always make
a copy, so there's no need for exactness below. */
Py_INCREF(v);
return v;
}
if (PyList_CheckExact(v))
return PyList_AsTuple(v);
/* Get iterator. */
it = PyObject_GetIter(v);
if (it == NULL)
return NULL;
/* Guess result size and allocate space. */
n = PyObject_LengthHint(v, 10);
if (n == -1)
goto Fail;
result = PyTuple_New(n);
if (result == NULL)
goto Fail;
/* Fill the tuple. */
for (j = 0; ; ++j) {
PyObject *item = PyIter_Next(it);
if (item == NULL) {
if (PyErr_Occurred())
goto Fail;
break;
}
if (j >= n) {
size_t newn = (size_t)n;
/* The over-allocation strategy can grow a bit faster
than for lists because unlike lists the
over-allocation isn't permanent -- we reclaim
the excess before the end of this routine.
So, grow by ten and then add 25%.
*/
newn += 10u;
newn += newn >> 2;
if (newn > PY_SSIZE_T_MAX) {
/* Check for overflow */
PyErr_NoMemory();
Py_DECREF(item);
goto Fail;
}
n = (Py_ssize_t)newn;
if (_PyTuple_Resize(&result, n) != 0) {
Py_DECREF(item);
goto Fail;
}
}
PyTuple_SET_ITEM(result, j, item);
}
/* Cut tuple back if guess was too large. */
if (j < n &&
_PyTuple_Resize(&result, j) != 0)
goto Fail;
Py_DECREF(it);
return result;
Fail:
Py_XDECREF(result);
Py_DECREF(it);
return NULL;
}
PyObject *
PySequence_List(PyObject *v)
{
PyObject *result; /* result list */
PyObject *rv; /* return value from PyList_Extend */
if (v == NULL) {
return null_error();
}
result = PyList_New(0);
if (result == NULL)
return NULL;
rv = _PyList_Extend((PyListObject *)result, v);
if (rv == NULL) {
Py_DECREF(result);
return NULL;
}
Py_DECREF(rv);
return result;
}
PyObject *
PySequence_Fast(PyObject *v, const char *m)
{
PyObject *it;
if (v == NULL) {
return null_error();
}
if (PyList_CheckExact(v) || PyTuple_CheckExact(v)) {
Py_INCREF(v);
return v;
}
it = PyObject_GetIter(v);
if (it == NULL) {
if (PyErr_ExceptionMatches(PyExc_TypeError))
PyErr_SetString(PyExc_TypeError, m);
return NULL;
}
v = PySequence_List(it);
Py_DECREF(it);
return v;
}
/* Iterate over seq. Result depends on the operation:
PY_ITERSEARCH_COUNT: -1 if error, else # of times obj appears in seq.
PY_ITERSEARCH_INDEX: 0-based index of first occurrence of obj in seq;
set ValueError and return -1 if none found; also return -1 on error.
Py_ITERSEARCH_CONTAINS: return 1 if obj in seq, else 0; -1 on error.
*/
Py_ssize_t
_PySequence_IterSearch(PyObject *seq, PyObject *obj, int operation)
{
Py_ssize_t n;
int wrapped; /* for PY_ITERSEARCH_INDEX, true iff n wrapped around */
PyObject *it; /* iter(seq) */
if (seq == NULL || obj == NULL) {
null_error();
return -1;
}
it = PyObject_GetIter(seq);
if (it == NULL) {
type_error("argument of type '%.200s' is not iterable", seq);
return -1;
}
n = wrapped = 0;
for (;;) {
int cmp;
PyObject *item = PyIter_Next(it);
if (item == NULL) {
if (PyErr_Occurred())
goto Fail;
break;
}
cmp = PyObject_RichCompareBool(obj, item, Py_EQ);
Py_DECREF(item);
if (cmp < 0)
goto Fail;
if (cmp > 0) {
switch (operation) {
case PY_ITERSEARCH_COUNT:
if (n == PY_SSIZE_T_MAX) {
PyErr_SetString(PyExc_OverflowError,
"count exceeds C integer size");
goto Fail;
}
++n;
break;
case PY_ITERSEARCH_INDEX:
if (wrapped) {
PyErr_SetString(PyExc_OverflowError,
"index exceeds C integer size");
goto Fail;
}
goto Done;
case PY_ITERSEARCH_CONTAINS:
n = 1;
goto Done;
default:
assert(!"unknown operation");
}
}
if (operation == PY_ITERSEARCH_INDEX) {
if (n == PY_SSIZE_T_MAX)
wrapped = 1;
++n;
}
}
if (operation != PY_ITERSEARCH_INDEX)
goto Done;
PyErr_SetString(PyExc_ValueError,
"sequence.index(x): x not in sequence");
/* fall into failure code */
Fail:
n = -1;
/* fall through */
Done:
Py_DECREF(it);
return n;
}
/* Return # of times o appears in s. */
Py_ssize_t
PySequence_Count(PyObject *s, PyObject *o)
{
return _PySequence_IterSearch(s, o, PY_ITERSEARCH_COUNT);
}
/* Return -1 if error; 1 if ob in seq; 0 if ob not in seq.
* Use sq_contains if possible, else defer to _PySequence_IterSearch().
*/
int
PySequence_Contains(PyObject *seq, PyObject *ob)
{
Py_ssize_t result;
PySequenceMethods *sqm = seq->ob_type->tp_as_sequence;
if (sqm != NULL && sqm->sq_contains != NULL)
return (*sqm->sq_contains)(seq, ob);
result = _PySequence_IterSearch(seq, ob, PY_ITERSEARCH_CONTAINS);
return Py_SAFE_DOWNCAST(result, Py_ssize_t, int);
}
/* Backwards compatibility */
#undef PySequence_In
int
PySequence_In(PyObject *w, PyObject *v)
{
return PySequence_Contains(w, v);
}
Py_ssize_t
PySequence_Index(PyObject *s, PyObject *o)
{
return _PySequence_IterSearch(s, o, PY_ITERSEARCH_INDEX);
}
/* Operations on mappings */
int
PyMapping_Check(PyObject *o)
{
return o && o->ob_type->tp_as_mapping &&
o->ob_type->tp_as_mapping->mp_subscript;
}
Py_ssize_t
PyMapping_Size(PyObject *o)
{
PyMappingMethods *m;
if (o == NULL) {
null_error();
return -1;
}
m = o->ob_type->tp_as_mapping;
if (m && m->mp_length)
return m->mp_length(o);
type_error("object of type '%.200s' has no len()", o);
return -1;
}
#undef PyMapping_Length
Py_ssize_t
PyMapping_Length(PyObject *o)
{
return PyMapping_Size(o);
}
#define PyMapping_Length PyMapping_Size
PyObject *
PyMapping_GetItemString(PyObject *o, const char *key)
{
PyObject *okey, *r;
if (key == NULL) {
return null_error();
}
okey = PyUnicode_FromString(key);
if (okey == NULL)
return NULL;
r = PyObject_GetItem(o, okey);
Py_DECREF(okey);
return r;
}
int
PyMapping_SetItemString(PyObject *o, const char *key, PyObject *value)
{
PyObject *okey;
int r;
if (key == NULL) {
null_error();
return -1;
}
okey = PyUnicode_FromString(key);
if (okey == NULL)
return -1;
r = PyObject_SetItem(o, okey, value);
Py_DECREF(okey);
return r;
}
int
PyMapping_HasKeyString(PyObject *o, const char *key)
{
PyObject *v;
v = PyMapping_GetItemString(o, key);
if (v) {
Py_DECREF(v);
return 1;
}
PyErr_Clear();
return 0;
}
int
PyMapping_HasKey(PyObject *o, PyObject *key)
{
PyObject *v;
v = PyObject_GetItem(o, key);
if (v) {
Py_DECREF(v);
return 1;
}
PyErr_Clear();
return 0;
}
PyObject *
PyMapping_Keys(PyObject *o)
{
PyObject *keys;
PyObject *fast;
_Py_IDENTIFIER(keys);
if (PyDict_CheckExact(o))
return PyDict_Keys(o);
keys = _PyObject_CallMethodId(o, &PyId_keys, NULL);
if (keys == NULL)
return NULL;
fast = PySequence_Fast(keys, "o.keys() are not iterable");
Py_DECREF(keys);
return fast;
}
PyObject *
PyMapping_Items(PyObject *o)
{
PyObject *items;
PyObject *fast;
_Py_IDENTIFIER(items);
if (PyDict_CheckExact(o))
return PyDict_Items(o);
items = _PyObject_CallMethodId(o, &PyId_items, NULL);
if (items == NULL)
return NULL;
fast = PySequence_Fast(items, "o.items() are not iterable");
Py_DECREF(items);
return fast;
}
PyObject *
PyMapping_Values(PyObject *o)
{
PyObject *values;
PyObject *fast;
_Py_IDENTIFIER(values);
if (PyDict_CheckExact(o))
return PyDict_Values(o);
values = _PyObject_CallMethodId(o, &PyId_values, NULL);
if (values == NULL)
return NULL;
fast = PySequence_Fast(values, "o.values() are not iterable");
Py_DECREF(values);
return fast;
}
/* isinstance(), issubclass() */
/* abstract_get_bases() has logically 4 return states:
*
* 1. getattr(cls, '__bases__') could raise an AttributeError
* 2. getattr(cls, '__bases__') could raise some other exception
* 3. getattr(cls, '__bases__') could return a tuple
* 4. getattr(cls, '__bases__') could return something other than a tuple
*
* Only state #3 is a non-error state and only it returns a non-NULL object
* (it returns the retrieved tuple).
*
* Any raised AttributeErrors are masked by clearing the exception and
* returning NULL. If an object other than a tuple comes out of __bases__,
* then again, the return value is NULL. So yes, these two situations
* produce exactly the same results: NULL is returned and no error is set.
*
* If some exception other than AttributeError is raised, then NULL is also
* returned, but the exception is not cleared. That's because we want the
* exception to be propagated along.
*
* Callers are expected to test for PyErr_Occurred() when the return value
* is NULL to decide whether a valid exception should be propagated or not.
* When there's no exception to propagate, it's customary for the caller to
* set a TypeError.
*/
static PyObject *
abstract_get_bases(PyObject *cls)
{
_Py_IDENTIFIER(__bases__);
PyObject *bases;
Py_ALLOW_RECURSION
bases = _PyObject_GetAttrId(cls, &PyId___bases__);
Py_END_ALLOW_RECURSION
if (bases == NULL) {
if (PyErr_ExceptionMatches(PyExc_AttributeError))
PyErr_Clear();
return NULL;
}
if (!PyTuple_Check(bases)) {
Py_DECREF(bases);
return NULL;
}
return bases;
}
static int
abstract_issubclass(PyObject *derived, PyObject *cls)
{
PyObject *bases = NULL;
Py_ssize_t i, n;
int r = 0;
while (1) {
if (derived == cls)
return 1;
bases = abstract_get_bases(derived);
if (bases == NULL) {
if (PyErr_Occurred())
return -1;
return 0;
}
n = PyTuple_GET_SIZE(bases);
if (n == 0) {
Py_DECREF(bases);
return 0;
}
/* Avoid recursivity in the single inheritance case */
if (n == 1) {
derived = PyTuple_GET_ITEM(bases, 0);
Py_DECREF(bases);
continue;
}
for (i = 0; i < n; i++) {
r = abstract_issubclass(PyTuple_GET_ITEM(bases, i), cls);
if (r != 0)
break;
}
Py_DECREF(bases);
return r;
}
}
static int
check_class(PyObject *cls, const char *error)
{
PyObject *bases = abstract_get_bases(cls);
if (bases == NULL) {
/* Do not mask errors. */
if (!PyErr_Occurred())
PyErr_SetString(PyExc_TypeError, error);
return 0;
}
Py_DECREF(bases);
return -1;
}
static int
recursive_isinstance(PyObject *inst, PyObject *cls)
{
PyObject *icls;
int retval = 0;
_Py_IDENTIFIER(__class__);
if (PyType_Check(cls)) {
retval = PyObject_TypeCheck(inst, (PyTypeObject *)cls);
if (retval == 0) {
PyObject *c = _PyObject_GetAttrId(inst, &PyId___class__);
if (c == NULL) {
if (PyErr_ExceptionMatches(PyExc_AttributeError))
PyErr_Clear();
else
retval = -1;
}
else {
if (c != (PyObject *)(inst->ob_type) &&
PyType_Check(c))
retval = PyType_IsSubtype(
(PyTypeObject *)c,
(PyTypeObject *)cls);
Py_DECREF(c);
}
}
}
else {
if (!check_class(cls,
"isinstance() arg 2 must be a type or tuple of types"))
return -1;
icls = _PyObject_GetAttrId(inst, &PyId___class__);
if (icls == NULL) {
if (PyErr_ExceptionMatches(PyExc_AttributeError))
PyErr_Clear();
else
retval = -1;
}
else {
retval = abstract_issubclass(icls, cls);
Py_DECREF(icls);
}
}
return retval;
}
int
PyObject_IsInstance(PyObject *inst, PyObject *cls)
{
_Py_IDENTIFIER(__instancecheck__);
PyObject *checker;
/* Quick test for an exact match */
if (Py_TYPE(inst) == (PyTypeObject *)cls)
return 1;
/* We know what type's __instancecheck__ does. */
if (PyType_CheckExact(cls)) {
return recursive_isinstance(inst, cls);
}
if (PyTuple_Check(cls)) {
Py_ssize_t i;
Py_ssize_t n;
int r = 0;
if (Py_EnterRecursiveCall(" in __instancecheck__"))
return -1;
n = PyTuple_GET_SIZE(cls);
for (i = 0; i < n; ++i) {
PyObject *item = PyTuple_GET_ITEM(cls, i);
r = PyObject_IsInstance(inst, item);
if (r != 0)
/* either found it, or got an error */
break;
}
Py_LeaveRecursiveCall();
return r;
}
checker = _PyObject_LookupSpecial(cls, &PyId___instancecheck__);
if (checker != NULL) {
PyObject *res;
int ok = -1;
if (Py_EnterRecursiveCall(" in __instancecheck__")) {
Py_DECREF(checker);
return ok;
}
res = PyObject_CallFunctionObjArgs(checker, inst, NULL);
Py_LeaveRecursiveCall();
Py_DECREF(checker);
if (res != NULL) {
ok = PyObject_IsTrue(res);
Py_DECREF(res);
}
return ok;
}
else if (PyErr_Occurred())
return -1;
/* Probably never reached anymore. */
return recursive_isinstance(inst, cls);
}
static int
recursive_issubclass(PyObject *derived, PyObject *cls)
{
if (PyType_Check(cls) && PyType_Check(derived)) {
/* Fast path (non-recursive) */
return PyType_IsSubtype((PyTypeObject *)derived, (PyTypeObject *)cls);
}
if (!check_class(derived,
"issubclass() arg 1 must be a class"))
return -1;
if (!check_class(cls,
"issubclass() arg 2 must be a class"
" or tuple of classes"))
return -1;
return abstract_issubclass(derived, cls);
}
int
PyObject_IsSubclass(PyObject *derived, PyObject *cls)
{
_Py_IDENTIFIER(__subclasscheck__);
PyObject *checker;
/* We know what type's __subclasscheck__ does. */
if (PyType_CheckExact(cls)) {
/* Quick test for an exact match */
if (derived == cls)
return 1;
return recursive_issubclass(derived, cls);
}
if (PyTuple_Check(cls)) {
Py_ssize_t i;
Py_ssize_t n;
int r = 0;
if (Py_EnterRecursiveCall(" in __subclasscheck__"))
return -1;
n = PyTuple_GET_SIZE(cls);
for (i = 0; i < n; ++i) {
PyObject *item = PyTuple_GET_ITEM(cls, i);
r = PyObject_IsSubclass(derived, item);
if (r != 0)
/* either found it, or got an error */
break;
}
Py_LeaveRecursiveCall();
return r;
}
checker = _PyObject_LookupSpecial(cls, &PyId___subclasscheck__);
if (checker != NULL) {
PyObject *res;
int ok = -1;
if (Py_EnterRecursiveCall(" in __subclasscheck__")) {
Py_DECREF(checker);
return ok;
}
res = PyObject_CallFunctionObjArgs(checker, derived, NULL);
Py_LeaveRecursiveCall();
Py_DECREF(checker);
if (res != NULL) {
ok = PyObject_IsTrue(res);
Py_DECREF(res);
}
return ok;
}
else if (PyErr_Occurred())
return -1;
/* Probably never reached anymore. */
return recursive_issubclass(derived, cls);
}
int
_PyObject_RealIsInstance(PyObject *inst, PyObject *cls)
{
return recursive_isinstance(inst, cls);
}
int
_PyObject_RealIsSubclass(PyObject *derived, PyObject *cls)
{
return recursive_issubclass(derived, cls);
}
PyObject *
PyObject_GetIter(PyObject *o)
{
PyTypeObject *t = o->ob_type;
getiterfunc f;
f = t->tp_iter;
if (f == NULL) {
if (PySequence_Check(o))
return PySeqIter_New(o);
return type_error("'%.200s' object is not iterable", o);
}
else {
PyObject *res = (*f)(o);
if (res != NULL && !PyIter_Check(res)) {
PyErr_Format(PyExc_TypeError,
"iter() returned non-iterator "
"of type '%.100s'",
res->ob_type->tp_name);
Py_DECREF(res);
res = NULL;
}
return res;
}
}
/* Return next item.
* If an error occurs, return NULL. PyErr_Occurred() will be true.
* If the iteration terminates normally, return NULL and clear the
* PyExc_StopIteration exception (if it was set). PyErr_Occurred()
* will be false.
* Else return the next object. PyErr_Occurred() will be false.
*/
PyObject *
PyIter_Next(PyObject *iter)
{
PyObject *result;
result = (*iter->ob_type->tp_iternext)(iter);
if (result == NULL &&
PyErr_Occurred() &&
PyErr_ExceptionMatches(PyExc_StopIteration))
PyErr_Clear();
return result;
}
/*
* Flatten a sequence of bytes() objects into a C array of
* NULL terminated string pointers with a NULL char* terminating the array.
* (ie: an argv or env list)
*
* Memory allocated for the returned list is allocated using PyMem_Malloc()
* and MUST be freed by _Py_FreeCharPArray().
*/
char *const *
_PySequence_BytesToCharpArray(PyObject* self)
{
char **array;
Py_ssize_t i, argc;
PyObject *item = NULL;
Py_ssize_t size;
argc = PySequence_Size(self);
if (argc == -1)
return NULL;
assert(argc >= 0);
if ((size_t)argc > (PY_SSIZE_T_MAX-sizeof(char *)) / sizeof(char *)) {
PyErr_NoMemory();
return NULL;
}
array = PyMem_Malloc((argc + 1) * sizeof(char *));
if (array == NULL) {
PyErr_NoMemory();
return NULL;
}
for (i = 0; i < argc; ++i) {
char *data;
item = PySequence_GetItem(self, i);
if (item == NULL) {
/* NULL terminate before freeing. */
array[i] = NULL;
goto fail;
}
data = PyBytes_AsString(item);
if (data == NULL) {
/* NULL terminate before freeing. */
array[i] = NULL;
goto fail;
}
size = PyBytes_GET_SIZE(item) + 1;
array[i] = PyMem_Malloc(size);
if (!array[i]) {
PyErr_NoMemory();
goto fail;
}
memcpy(array[i], data, size);
Py_DECREF(item);
}
array[argc] = NULL;
return array;
fail:
Py_XDECREF(item);
_Py_FreeCharPArray(array);
return NULL;
}
/* Free's a NULL terminated char** array of C strings. */
void
_Py_FreeCharPArray(char *const array[])
{
Py_ssize_t i;
for (i = 0; array[i] != NULL; ++i) {
PyMem_Free(array[i]);
}
PyMem_Free((void*)array);
}
| 68,527 | 2,605 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/dict-common.h | #ifndef Py_DICT_COMMON_H
#define Py_DICT_COMMON_H
#include "third_party/python/Include/dictobject.h"
#include "third_party/python/Include/object.h"
/* clang-format off */
typedef struct {
/* Cached hash code of me_key. */
Py_hash_t me_hash;
PyObject *me_key;
PyObject *me_value; /* This field is only meaningful for combined tables */
} PyDictKeyEntry;
/* dict_lookup_func() returns index of entry which can be used like
* DK_ENTRIES(dk)[index]. -1 when no entry found, -3 when compare raises
* error.
*/
typedef Py_ssize_t (*dict_lookup_func)
(PyDictObject *mp, PyObject *key, Py_hash_t hash, PyObject ***value_addr,
Py_ssize_t *hashpos);
#define DKIX_EMPTY (-1)
#define DKIX_DUMMY (-2) /* Used internally */
#define DKIX_ERROR (-3)
/* See dictobject.c for actual layout of DictKeysObject */
struct _dictkeysobject {
Py_ssize_t dk_refcnt;
/* Size of the hash table (dk_indices). It must be a power of 2. */
Py_ssize_t dk_size;
/* Function to lookup in the hash table (dk_indices):
- lookdict(): general-purpose, and may return DKIX_ERROR if (and
only if) a comparison raises an exception.
- lookdict_unicode(): specialized to Unicode string keys, comparison of
which can never raise an exception; that function can never return
DKIX_ERROR.
- lookdict_unicode_nodummy(): similar to lookdict_unicode() but further
specialized for Unicode string keys that cannot be the <dummy> value.
- lookdict_split(): Version of lookdict() for split tables. */
dict_lookup_func dk_lookup;
/* Number of usable entries in dk_entries. */
Py_ssize_t dk_usable;
/* Number of used entries in dk_entries. */
Py_ssize_t dk_nentries;
/* Actual hash table of dk_size entries. It holds indices in dk_entries,
or DKIX_EMPTY(-1) or DKIX_DUMMY(-2).
Indices must be: 0 <= indice < USABLE_FRACTION(dk_size).
The size in bytes of an indice depends on dk_size:
- 1 byte if dk_size <= 0xff (char*)
- 2 bytes if dk_size <= 0xffff (int16_t*)
- 4 bytes if dk_size <= 0xffffffff (int32_t*)
- 8 bytes otherwise (int64_t*)
Dynamically sized, SIZEOF_VOID_P is minimum. */
char dk_indices[]; /* char is required to avoid strict aliasing. */
/* "PyDictKeyEntry dk_entries[dk_usable];" array follows:
see the DK_ENTRIES() macro */
};
#endif
| 2,413 | 74 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/boolobject.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "third_party/python/Include/boolobject.h"
#include "third_party/python/Include/longintrepr.h"
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/pymacro.h"
/* clang-format off */
/* Boolean type, a subtype of int */
/* We define bool_repr to return "False" or "True" */
static PyObject *false_str = NULL;
static PyObject *true_str = NULL;
static PyObject *
bool_repr(PyObject *self)
{
PyObject *s;
if (self == Py_True)
s = true_str ? true_str :
(true_str = PyUnicode_InternFromString("True"));
else
s = false_str ? false_str :
(false_str = PyUnicode_InternFromString("False"));
Py_XINCREF(s);
return s;
}
/* Function to return a bool from a C long */
PyObject *PyBool_FromLong(long ok)
{
PyObject *result;
if (ok)
result = Py_True;
else
result = Py_False;
Py_INCREF(result);
return result;
}
/* We define bool_new to always return either Py_True or Py_False */
static PyObject *
bool_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"x", 0};
PyObject *x = Py_False;
long ok;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|O:bool", kwlist, &x))
return NULL;
ok = PyObject_IsTrue(x);
if (ok < 0)
return NULL;
return PyBool_FromLong(ok);
}
/* Arithmetic operations redefined to return bool if both args are bool. */
static PyObject *
bool_and(PyObject *a, PyObject *b)
{
if (!PyBool_Check(a) || !PyBool_Check(b))
return PyLong_Type.tp_as_number->nb_and(a, b);
return PyBool_FromLong((a == Py_True) & (b == Py_True));
}
static PyObject *
bool_or(PyObject *a, PyObject *b)
{
if (!PyBool_Check(a) || !PyBool_Check(b))
return PyLong_Type.tp_as_number->nb_or(a, b);
return PyBool_FromLong((a == Py_True) | (b == Py_True));
}
static PyObject *
bool_xor(PyObject *a, PyObject *b)
{
if (!PyBool_Check(a) || !PyBool_Check(b))
return PyLong_Type.tp_as_number->nb_xor(a, b);
return PyBool_FromLong((a == Py_True) ^ (b == Py_True));
}
/* Doc string */
PyDoc_STRVAR(bool_doc,
"bool(x) -> bool\n\
\n\
Returns True when the argument x is true, False otherwise.\n\
The builtins True and False are the only two instances of the class bool.\n\
The class bool is a subclass of the class int, and cannot be subclassed.");
/* Arithmetic methods -- only so we can override &, |, ^. */
static PyNumberMethods bool_as_number = {
0, /* nb_add */
0, /* nb_subtract */
0, /* nb_multiply */
0, /* nb_remainder */
0, /* nb_divmod */
0, /* nb_power */
0, /* nb_negative */
0, /* nb_positive */
0, /* nb_absolute */
0, /* nb_bool */
0, /* nb_invert */
0, /* nb_lshift */
0, /* nb_rshift */
bool_and, /* nb_and */
bool_xor, /* nb_xor */
bool_or, /* nb_or */
0, /* nb_int */
0, /* nb_reserved */
0, /* nb_float */
0, /* nb_inplace_add */
0, /* nb_inplace_subtract */
0, /* nb_inplace_multiply */
0, /* nb_inplace_remainder */
0, /* nb_inplace_power */
0, /* nb_inplace_lshift */
0, /* nb_inplace_rshift */
0, /* nb_inplace_and */
0, /* nb_inplace_xor */
0, /* nb_inplace_or */
0, /* nb_floor_divide */
0, /* nb_true_divide */
0, /* nb_inplace_floor_divide */
0, /* nb_inplace_true_divide */
0, /* nb_index */
};
/* The type object for bool. Note that this cannot be subclassed! */
PyTypeObject PyBool_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"bool",
sizeof(struct _longobject),
0,
0, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
bool_repr, /* tp_repr */
&bool_as_number, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
bool_repr, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT, /* tp_flags */
bool_doc, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
0, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
&PyLong_Type, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
bool_new, /* tp_new */
};
/* The objects representing bool values False and True */
struct _longobject _Py_FalseStruct = {
PyVarObject_HEAD_INIT(&PyBool_Type, 0)
{ 0 }
};
struct _longobject _Py_TrueStruct = {
PyVarObject_HEAD_INIT(&PyBool_Type, 1)
{ 1 }
};
| 7,695 | 194 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/call.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "libc/assert.h"
#include "libc/log/log.h"
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/bytearrayobject.h"
#include "third_party/python/Include/ceval.h"
#include "third_party/python/Include/dictobject.h"
#include "third_party/python/Include/eval.h"
#include "third_party/python/Include/floatobject.h"
#include "third_party/python/Include/frameobject.h"
#include "third_party/python/Include/funcobject.h"
#include "third_party/python/Include/iterobject.h"
#include "third_party/python/Include/listobject.h"
#include "third_party/python/Include/longintrepr.h"
#include "third_party/python/Include/methodobject.h"
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/object.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/pyerrors.h"
#include "third_party/python/Include/pymacro.h"
#include "third_party/python/Include/pymem.h"
#include "third_party/python/Include/sliceobject.h"
#include "third_party/python/Include/structmember.h"
#include "third_party/python/Include/tupleobject.h"
#include "third_party/python/Include/warnings.h"
/* clang-format off */
int
_PyObject_HasFastCall(PyObject *callable)
{
if (PyFunction_Check(callable)) {
return 1;
}
else if (PyCFunction_Check(callable)) {
return !(PyCFunction_GET_FLAGS(callable) & METH_VARARGS);
}
else {
assert (PyCallable_Check(callable));
return 0;
}
}
static PyObject *
null_error(void)
{
if (!PyErr_Occurred())
PyErr_SetString(PyExc_SystemError,
"null argument to internal routine");
return NULL;
}
PyObject*
(_Py_CheckFunctionResult)(PyObject *callable, PyObject *result, const char *where)
{
int err_occurred = (PyErr_Occurred() != NULL);
assert((callable != NULL) ^ (where != NULL));
if (result == NULL) {
if (!err_occurred) {
if (callable)
PyErr_Format(PyExc_SystemError,
"%R returned NULL without setting an error",
callable);
else
PyErr_Format(PyExc_SystemError,
"%s returned NULL without setting an error",
where);
#ifdef Py_DEBUG
/* Ensure that the bug is caught in debug mode */
Py_FatalError("a function returned NULL without setting an error");
#endif
return NULL;
}
}
else {
if (err_occurred) {
Py_DECREF(result);
if (callable) {
_PyErr_FormatFromCause(PyExc_SystemError,
"%R returned a result with an error set",
callable);
}
else {
_PyErr_FormatFromCause(PyExc_SystemError,
"%s returned a result with an error set",
where);
}
#ifdef Py_DEBUG
/* Ensure that the bug is caught in debug mode */
Py_FatalError("a function returned a result with an error set");
#endif
return NULL;
}
}
return result;
}
/* --- Core PyObject call functions ------------------------------- */
PyObject *
_PyObject_FastCallDict(PyObject *callable, PyObject **args, Py_ssize_t nargs,
PyObject *kwargs)
{
/* _PyObject_FastCallDict() must not be called with an exception set,
because it can clear it (directly or indirectly) and so the
caller loses its exception */
assert(!PyErr_Occurred());
assert(callable != NULL);
assert(nargs >= 0);
assert(nargs == 0 || args != NULL);
assert(kwargs == NULL || PyDict_Check(kwargs));
if (PyFunction_Check(callable)) {
return _PyFunction_FastCallDict(callable, args, nargs, kwargs);
}
else if (PyCFunction_Check(callable)) {
return _PyCFunction_FastCallDict(callable, args, nargs, kwargs);
}
else {
PyObject *argstuple, *result;
ternaryfunc call;
/* Slow-path: build a temporary tuple */
call = callable->ob_type->tp_call;
if (call == NULL) {
PyErr_Format(PyExc_TypeError, "'%.200s' object is not callable",
callable->ob_type->tp_name);
return NULL;
}
argstuple = _PyStack_AsTuple(args, nargs);
if (argstuple == NULL) {
return NULL;
}
if (Py_EnterRecursiveCall(" while calling a Python object")) {
Py_DECREF(argstuple);
return NULL;
}
result = (*call)(callable, argstuple, kwargs);
Py_LeaveRecursiveCall();
Py_DECREF(argstuple);
result = _Py_CheckFunctionResult(callable, result, NULL);
return result;
}
}
PyObject *
_PyObject_FastCallKeywords(PyObject *callable, PyObject **stack, Py_ssize_t nargs,
PyObject *kwnames)
{
/* _PyObject_FastCallKeywords() must not be called with an exception set,
because it can clear it (directly or indirectly) and so the
caller loses its exception */
assert(!PyErr_Occurred());
assert(nargs >= 0);
assert(kwnames == NULL || PyTuple_CheckExact(kwnames));
/* kwnames must only contains str strings, no subclass, and all keys must
be unique: these checks are implemented in Python/ceval.c and
_PyArg_ParseStackAndKeywords(). */
if (PyFunction_Check(callable)) {
return _PyFunction_FastCallKeywords(callable, stack, nargs, kwnames);
}
if (PyCFunction_Check(callable)) {
return _PyCFunction_FastCallKeywords(callable, stack, nargs, kwnames);
}
else {
/* Slow-path: build a temporary tuple for positional arguments and a
temporary dictionary for keyword arguments (if any) */
ternaryfunc call;
PyObject *argstuple;
PyObject *kwdict, *result;
Py_ssize_t nkwargs;
nkwargs = (kwnames == NULL) ? 0 : PyTuple_GET_SIZE(kwnames);
assert((nargs == 0 && nkwargs == 0) || stack != NULL);
call = callable->ob_type->tp_call;
if (call == NULL) {
PyErr_Format(PyExc_TypeError, "'%.200s' object is not callable",
callable->ob_type->tp_name);
return NULL;
}
argstuple = _PyStack_AsTuple(stack, nargs);
if (argstuple == NULL) {
return NULL;
}
if (nkwargs > 0) {
kwdict = _PyStack_AsDict(stack + nargs, kwnames);
if (kwdict == NULL) {
Py_DECREF(argstuple);
return NULL;
}
}
else {
kwdict = NULL;
}
if (Py_EnterRecursiveCall(" while calling a Python object")) {
Py_DECREF(argstuple);
Py_XDECREF(kwdict);
return NULL;
}
result = (*call)(callable, argstuple, kwdict);
Py_LeaveRecursiveCall();
Py_DECREF(argstuple);
Py_XDECREF(kwdict);
result = _Py_CheckFunctionResult(callable, result, NULL);
return result;
}
}
PyObject *
PyObject_Call(PyObject *callable, PyObject *args, PyObject *kwargs)
{
ternaryfunc call;
PyObject *result;
/* PyObject_Call() must not be called with an exception set,
because it can clear it (directly or indirectly) and so the
caller loses its exception */
assert(!PyErr_Occurred());
assert(PyTuple_Check(args));
assert(kwargs == NULL || PyDict_Check(kwargs));
if (PyFunction_Check(callable)) {
return _PyFunction_FastCallDict(callable,
&PyTuple_GET_ITEM(args, 0),
PyTuple_GET_SIZE(args),
kwargs);
}
else if (PyCFunction_Check(callable)) {
return PyCFunction_Call(callable, args, kwargs);
}
else {
call = callable->ob_type->tp_call;
if (call == NULL) {
PyErr_Format(PyExc_TypeError, "'%.200s' object is not callable",
callable->ob_type->tp_name);
return NULL;
}
if (Py_EnterRecursiveCall(" while calling a Python object"))
return NULL;
result = (*call)(callable, args, kwargs);
Py_LeaveRecursiveCall();
return _Py_CheckFunctionResult(callable, result, NULL);
}
}
/* --- PyFunction call functions ---------------------------------- */
static PyObject* _Py_HOT_FUNCTION
function_code_fastcall(PyCodeObject *co, PyObject **args, Py_ssize_t nargs,
PyObject *globals)
{
PyFrameObject *f;
PyThreadState *tstate = PyThreadState_GET();
PyObject **fastlocals;
Py_ssize_t i;
PyObject *result;
assert(globals != NULL);
/* XXX Perhaps we should create a specialized
_PyFrame_New_NoTrack() that doesn't take locals, but does
take builtins without sanity checking them.
*/
assert(tstate != NULL);
f = _PyFrame_New_NoTrack(tstate, co, globals, NULL);
if (f == NULL) {
return NULL;
}
fastlocals = f->f_localsplus;
for (i = 0; i < nargs; i++) {
Py_INCREF(*args);
fastlocals[i] = *args++;
}
result = PyEval_EvalFrameEx(f,0);
if (Py_REFCNT(f) > 1) {
Py_DECREF(f);
_PyObject_GC_TRACK(f);
}
else {
++tstate->recursion_depth;
Py_DECREF(f);
--tstate->recursion_depth;
}
return result;
}
PyObject *
_PyFunction_FastCallDict(PyObject *func, PyObject **args, Py_ssize_t nargs,
PyObject *kwargs)
{
PyCodeObject *co = (PyCodeObject *)PyFunction_GET_CODE(func);
PyObject *globals = PyFunction_GET_GLOBALS(func);
PyObject *argdefs = PyFunction_GET_DEFAULTS(func);
PyObject *kwdefs, *closure, *name, *qualname;
PyObject *kwtuple, **k;
PyObject **d;
Py_ssize_t nd, nk;
PyObject *result;
assert(func != NULL);
assert(nargs >= 0);
assert(nargs == 0 || args != NULL);
assert(kwargs == NULL || PyDict_Check(kwargs));
if (co->co_kwonlyargcount == 0 &&
(kwargs == NULL || PyDict_GET_SIZE(kwargs) == 0) &&
co->co_flags == (CO_OPTIMIZED | CO_NEWLOCALS | CO_NOFREE))
{
/* Fast paths */
if (argdefs == NULL && co->co_argcount == nargs) {
return function_code_fastcall(co, args, nargs, globals);
}
else if (nargs == 0 && argdefs != NULL
&& co->co_argcount == Py_SIZE(argdefs)) {
/* function called with no arguments, but all parameters have
a default value: use default values as arguments .*/
args = &PyTuple_GET_ITEM(argdefs, 0);
return function_code_fastcall(co, args, Py_SIZE(argdefs), globals);
}
}
nk = (kwargs != NULL) ? PyDict_GET_SIZE(kwargs) : 0;
if (nk != 0) {
Py_ssize_t pos, i;
/* Issue #29318: Caller and callee functions must not share the
dictionary: kwargs must be copied. */
kwtuple = PyTuple_New(2 * nk);
if (kwtuple == NULL) {
return NULL;
}
k = &PyTuple_GET_ITEM(kwtuple, 0);
pos = i = 0;
while (PyDict_Next(kwargs, &pos, &k[i], &k[i+1])) {
/* We must hold strong references because keyword arguments can be
indirectly modified while the function is called:
see issue #2016 and test_extcall */
Py_INCREF(k[i]);
Py_INCREF(k[i+1]);
i += 2;
}
nk = i / 2;
}
else {
kwtuple = NULL;
k = NULL;
}
kwdefs = PyFunction_GET_KW_DEFAULTS(func);
closure = PyFunction_GET_CLOSURE(func);
name = ((PyFunctionObject *)func) -> func_name;
qualname = ((PyFunctionObject *)func) -> func_qualname;
if (argdefs != NULL) {
d = &PyTuple_GET_ITEM(argdefs, 0);
nd = Py_SIZE(argdefs);
}
else {
d = NULL;
nd = 0;
}
result = _PyEval_EvalCodeWithName((PyObject*)co, globals, (PyObject *)NULL,
args, nargs,
k, k != NULL ? k + 1 : NULL, nk, 2,
d, nd, kwdefs,
closure, name, qualname);
Py_XDECREF(kwtuple);
return result;
}
PyObject *
_PyFunction_FastCallKeywords(PyObject *func, PyObject **stack,
Py_ssize_t nargs, PyObject *kwnames)
{
PyCodeObject *co = (PyCodeObject *)PyFunction_GET_CODE(func);
PyObject *globals = PyFunction_GET_GLOBALS(func);
PyObject *argdefs = PyFunction_GET_DEFAULTS(func);
PyObject *kwdefs, *closure, *name, *qualname;
PyObject **d;
Py_ssize_t nkwargs = (kwnames == NULL) ? 0 : PyTuple_GET_SIZE(kwnames);
Py_ssize_t nd;
assert(PyFunction_Check(func));
assert(nargs >= 0);
assert(kwnames == NULL || PyTuple_CheckExact(kwnames));
assert((nargs == 0 && nkwargs == 0) || stack != NULL);
/* kwnames must only contains str strings, no subclass, and all keys must
be unique */
if (co->co_kwonlyargcount == 0 && nkwargs == 0 &&
co->co_flags == (CO_OPTIMIZED | CO_NEWLOCALS | CO_NOFREE))
{
if (argdefs == NULL && co->co_argcount == nargs) {
return function_code_fastcall(co, stack, nargs, globals);
}
else if (nargs == 0 && argdefs != NULL
&& co->co_argcount == Py_SIZE(argdefs)) {
/* function called with no arguments, but all parameters have
a default value: use default values as arguments .*/
stack = &PyTuple_GET_ITEM(argdefs, 0);
return function_code_fastcall(co, stack, Py_SIZE(argdefs), globals);
}
}
kwdefs = PyFunction_GET_KW_DEFAULTS(func);
closure = PyFunction_GET_CLOSURE(func);
name = ((PyFunctionObject *)func) -> func_name;
qualname = ((PyFunctionObject *)func) -> func_qualname;
if (argdefs != NULL) {
d = &PyTuple_GET_ITEM(argdefs, 0);
nd = Py_SIZE(argdefs);
}
else {
d = NULL;
nd = 0;
}
return _PyEval_EvalCodeWithName((PyObject*)co, globals, (PyObject *)NULL,
stack, nargs,
nkwargs ? &PyTuple_GET_ITEM(kwnames, 0) : NULL,
stack + nargs,
nkwargs, 1,
d, (int)nd, kwdefs,
closure, name, qualname);
}
/* --- PyCFunction call functions --------------------------------- */
PyObject *
_PyMethodDef_RawFastCallDict(PyMethodDef *method, PyObject *self, PyObject **args,
Py_ssize_t nargs, PyObject *kwargs)
{
/* _PyMethodDef_RawFastCallDict() must not be called with an exception set,
because it can clear it (directly or indirectly) and so the
caller loses its exception */
assert(!PyErr_Occurred());
assert(method != NULL);
assert(nargs >= 0);
assert(nargs == 0 || args != NULL);
assert(kwargs == NULL || PyDict_Check(kwargs));
PyCFunction meth = method->ml_meth;
int flags = method->ml_flags & ~(METH_CLASS | METH_STATIC | METH_COEXIST);
PyObject *result = NULL;
if (Py_EnterRecursiveCall(" while calling a Python object")) {
return NULL;
}
switch (flags)
{
case METH_NOARGS:
if (nargs != 0) {
PyErr_Format(PyExc_TypeError,
"%.200s() takes no arguments (%zd given)",
method->ml_name, nargs);
goto exit;
}
if (kwargs != NULL && PyDict_GET_SIZE(kwargs) != 0) {
goto no_keyword_error;
}
result = (*meth) (self, NULL);
break;
case METH_O:
if (nargs != 1) {
PyErr_Format(PyExc_TypeError,
"%.200s() takes exactly one argument (%zd given)",
method->ml_name, nargs);
goto exit;
}
if (kwargs != NULL && PyDict_GET_SIZE(kwargs) != 0) {
goto no_keyword_error;
}
result = (*meth) (self, args[0]);
break;
case METH_VARARGS:
if (!(flags & METH_KEYWORDS)
&& kwargs != NULL && PyDict_GET_SIZE(kwargs) != 0) {
goto no_keyword_error;
}
/* fall through next case */
case METH_VARARGS | METH_KEYWORDS:
{
/* Slow-path: create a temporary tuple for positional arguments */
PyObject *argstuple = _PyStack_AsTuple(args, nargs);
if (argstuple == NULL) {
goto exit;
}
if (flags & METH_KEYWORDS) {
result = (*(PyCFunctionWithKeywords)meth) (self, argstuple, kwargs);
}
else {
result = (*meth) (self, argstuple);
}
Py_DECREF(argstuple);
break;
}
case METH_FASTCALL:
{
if (kwargs != NULL && PyDict_GET_SIZE(kwargs) != 0) {
goto no_keyword_error;
}
result = (*(_PyCFunctionFast)meth) (self, args, nargs);
break;
}
case METH_FASTCALL | METH_KEYWORDS:
{
PyObject **stack;
PyObject *kwnames;
_PyCFunctionFastWithKeywords fastmeth = (_PyCFunctionFastWithKeywords)meth;
if (_PyStack_UnpackDict(args, nargs, kwargs, &stack, &kwnames) < 0) {
goto exit;
}
result = (*fastmeth) (self, stack, nargs, kwnames);
if (stack != args) {
PyMem_Free(stack);
}
Py_XDECREF(kwnames);
break;
}
default:
PyErr_SetString(PyExc_SystemError,
"Bad call flags in _PyMethodDef_RawFastCallDict. "
"METH_OLDARGS is no longer supported!");
goto exit;
}
goto exit;
no_keyword_error:
PyErr_Format(PyExc_TypeError,
"%.200s() takes no keyword arguments",
method->ml_name, nargs);
exit:
Py_LeaveRecursiveCall();
return result;
}
PyObject *
_PyCFunction_FastCallDict(PyObject *func, PyObject **args, Py_ssize_t nargs,
PyObject *kwargs)
{
PyObject *result;
assert(func != NULL);
assert(PyCFunction_Check(func));
result = _PyMethodDef_RawFastCallDict(((PyCFunctionObject*)func)->m_ml,
PyCFunction_GET_SELF(func),
args, nargs, kwargs);
result = _Py_CheckFunctionResult(func, result, NULL);
return result;
}
PyObject *
_PyMethodDef_RawFastCallKeywords(PyMethodDef *method, PyObject *self, PyObject **args,
Py_ssize_t nargs, PyObject *kwnames)
{
/* _PyMethodDef_RawFastCallKeywords() must not be called with an exception set,
because it can clear it (directly or indirectly) and so the
caller loses its exception */
assert(!PyErr_Occurred());
assert(method != NULL);
assert(nargs >= 0);
assert(kwnames == NULL || PyTuple_CheckExact(kwnames));
/* kwnames must only contains str strings, no subclass, and all keys must
be unique */
PyCFunction meth = method->ml_meth;
int flags = method->ml_flags & ~(METH_CLASS | METH_STATIC | METH_COEXIST);
Py_ssize_t nkwargs = kwnames == NULL ? 0 : PyTuple_Size(kwnames);
PyObject *result = NULL;
if (Py_EnterRecursiveCall(" while calling a Python object")) {
return NULL;
}
switch (flags)
{
case METH_NOARGS:
if (nargs != 0) {
PyErr_Format(PyExc_TypeError,
"%.200s() takes no arguments (%zd given)",
method->ml_name, nargs);
goto exit;
}
if (nkwargs) {
goto no_keyword_error;
}
result = (*meth) (self, NULL);
break;
case METH_O:
if (nargs != 1) {
PyErr_Format(PyExc_TypeError,
"%.200s() takes exactly one argument (%zd given)",
method->ml_name, nargs);
goto exit;
}
if (nkwargs) {
goto no_keyword_error;
}
result = (*meth) (self, args[0]);
break;
case METH_FASTCALL:
if (nkwargs) {
goto no_keyword_error;
}
result = ((_PyCFunctionFast)meth) (self, args, nargs);
break;
case METH_FASTCALL | METH_KEYWORDS:
/* Fast-path: avoid temporary dict to pass keyword arguments */
result = ((_PyCFunctionFastWithKeywords)meth) (self, args, nargs, kwnames);
break;
case METH_VARARGS:
if (nkwargs) {
goto no_keyword_error;
}
/* fall through next case */
case METH_VARARGS | METH_KEYWORDS:
{
/* Slow-path: create a temporary tuple for positional arguments
and a temporary dict for keyword arguments */
PyObject *argtuple;
argtuple = _PyStack_AsTuple(args, nargs);
if (argtuple == NULL) {
goto exit;
}
if (flags & METH_KEYWORDS) {
PyObject *kwdict;
if (nkwargs > 0) {
kwdict = _PyStack_AsDict(args + nargs, kwnames);
if (kwdict == NULL) {
Py_DECREF(argtuple);
goto exit;
}
}
else {
kwdict = NULL;
}
result = (*(PyCFunctionWithKeywords)meth) (self, argtuple, kwdict);
Py_XDECREF(kwdict);
}
else {
result = (*meth) (self, argtuple);
}
Py_DECREF(argtuple);
break;
}
default:
PyErr_SetString(PyExc_SystemError,
"Bad call flags in _PyCFunction_FastCallKeywords. "
"METH_OLDARGS is no longer supported!");
goto exit;
}
goto exit;
no_keyword_error:
PyErr_Format(PyExc_TypeError,
"%.200s() takes no keyword arguments",
method->ml_name);
exit:
Py_LeaveRecursiveCall();
return result;
}
PyObject *
_PyCFunction_FastCallKeywords(PyObject *func, PyObject **args,
Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *result;
assert(func != NULL);
assert(PyCFunction_Check(func));
result = _PyMethodDef_RawFastCallKeywords(((PyCFunctionObject*)func)->m_ml,
PyCFunction_GET_SELF(func),
args, nargs, kwnames);
result = _Py_CheckFunctionResult(func, result, NULL);
return result;
}
static PyObject *
cfunction_call_varargs(PyObject *func, PyObject *args, PyObject *kwargs)
{
assert(!PyErr_Occurred());
PyCFunction meth = PyCFunction_GET_FUNCTION(func);
PyObject *self = PyCFunction_GET_SELF(func);
PyObject *result;
if (PyCFunction_GET_FLAGS(func) & METH_KEYWORDS) {
if (Py_EnterRecursiveCall(" while calling a Python object")) {
return NULL;
}
result = (*(PyCFunctionWithKeywords)meth)(self, args, kwargs);
Py_LeaveRecursiveCall();
}
else {
if (kwargs != NULL && PyDict_Size(kwargs) != 0) {
PyErr_Format(PyExc_TypeError, "%.200s() takes no keyword arguments",
((PyCFunctionObject*)func)->m_ml->ml_name);
return NULL;
}
if (Py_EnterRecursiveCall(" while calling a Python object")) {
return NULL;
}
result = (*meth)(self, args);
Py_LeaveRecursiveCall();
}
return _Py_CheckFunctionResult(func, result, NULL);
}
PyObject *
PyCFunction_Call(PyObject *func, PyObject *args, PyObject *kwargs)
{
/* first try METH_VARARGS to pass directly args tuple unchanged.
_PyMethodDef_RawFastCallDict() creates a new temporary tuple
for METH_VARARGS. */
if (PyCFunction_GET_FLAGS(func) & METH_VARARGS) {
return cfunction_call_varargs(func, args, kwargs);
}
else {
return _PyCFunction_FastCallDict(func,
&PyTuple_GET_ITEM(args, 0),
PyTuple_GET_SIZE(args),
kwargs);
}
}
/* --- More complex call functions -------------------------------- */
/* External interface to call any callable object.
The args must be a tuple or NULL. The kwargs must be a dict or NULL. */
PyObject *
PyEval_CallObjectWithKeywords(PyObject *callable,
PyObject *args, PyObject *kwargs)
{
#ifdef Py_DEBUG
/* PyEval_CallObjectWithKeywords() must not be called with an exception
set. It raises a new exception if parameters are invalid or if
PyTuple_New() fails, and so the original exception is lost. */
assert(!PyErr_Occurred());
#endif
if (args == NULL) {
return _PyObject_FastCallDict(callable, NULL, 0, kwargs);
}
if (!PyTuple_Check(args)) {
PyErr_SetString(PyExc_TypeError,
"argument list must be a tuple");
return NULL;
}
if (kwargs != NULL && !PyDict_Check(kwargs)) {
PyErr_SetString(PyExc_TypeError,
"keyword list must be a dictionary");
return NULL;
}
return PyObject_Call(callable, args, kwargs);
}
PyObject *
PyObject_CallObject(PyObject *callable, PyObject *args)
{
return PyEval_CallObjectWithKeywords(callable, args, NULL);
}
/* Positional arguments are obj followed by args:
call callable(obj, *args, **kwargs) */
PyObject *
_PyObject_FastCall_Prepend(PyObject *callable,
PyObject *obj, PyObject **args, Py_ssize_t nargs)
{
PyObject *small_stack[_PY_FASTCALL_SMALL_STACK];
PyObject **args2;
PyObject *result;
nargs++;
if (nargs <= (Py_ssize_t)Py_ARRAY_LENGTH(small_stack)) {
args2 = small_stack;
}
else {
args2 = PyMem_Malloc(nargs * sizeof(PyObject *));
if (args2 == NULL) {
PyErr_NoMemory();
return NULL;
}
}
/* use borrowed references */
args2[0] = obj;
if (nargs > 1)
{
memcpy(&args2[1], args, (nargs - 1) * sizeof(PyObject *));
}
result = _PyObject_FastCall(callable, args2, nargs);
if (args2 != small_stack) {
PyMem_Free(args2);
}
return result;
}
/* Call callable(obj, *args, **kwargs). */
PyObject *
_PyObject_Call_Prepend(PyObject *callable,
PyObject *obj, PyObject *args, PyObject *kwargs)
{
PyObject *small_stack[_PY_FASTCALL_SMALL_STACK];
PyObject **stack;
Py_ssize_t argcount;
PyObject *result;
assert(PyTuple_Check(args));
argcount = PyTuple_GET_SIZE(args);
if (argcount + 1 <= (Py_ssize_t)Py_ARRAY_LENGTH(small_stack)) {
stack = small_stack;
}
else {
stack = PyMem_Malloc((argcount + 1) * sizeof(PyObject *));
if (stack == NULL) {
PyErr_NoMemory();
return NULL;
}
}
/* use borrowed references */
stack[0] = obj;
memcpy(&stack[1],
&PyTuple_GET_ITEM(args, 0),
argcount * sizeof(PyObject *));
result = _PyObject_FastCallDict(callable,
stack, argcount + 1,
kwargs);
if (stack != small_stack) {
PyMem_Free(stack);
}
return result;
}
/* --- Call with a format string ---------------------------------- */
static PyObject *
_PyObject_CallFunctionVa(PyObject *callable, const char *format,
va_list va, int is_size_t)
{
PyObject* small_stack[_PY_FASTCALL_SMALL_STACK];
const Py_ssize_t small_stack_len = Py_ARRAY_LENGTH(small_stack);
PyObject **stack;
Py_ssize_t nargs, i;
PyObject *result;
if (callable == NULL) {
return null_error();
}
if (!format || !*format) {
return _PyObject_CallNoArg(callable);
}
if (is_size_t) {
stack = _Py_VaBuildStack_SizeT(small_stack, small_stack_len,
format, va, &nargs);
}
else {
stack = _Py_VaBuildStack(small_stack, small_stack_len,
format, va, &nargs);
}
if (stack == NULL) {
return NULL;
}
if (nargs == 1 && PyTuple_Check(stack[0])) {
/* Special cases for backward compatibility:
- PyObject_CallFunction(func, "O", tuple) calls func(*tuple)
- PyObject_CallFunction(func, "(OOO)", arg1, arg2, arg3) calls
func(*(arg1, arg2, arg3)): func(arg1, arg2, arg3) */
PyObject *args = stack[0];
result = _PyObject_FastCall(callable,
&PyTuple_GET_ITEM(args, 0),
PyTuple_GET_SIZE(args));
}
else {
result = _PyObject_FastCall(callable, stack, nargs);
}
for (i = 0; i < nargs; ++i) {
Py_DECREF(stack[i]);
}
if (stack != small_stack) {
PyMem_Free(stack);
}
return result;
}
PyObject *
PyObject_CallFunction(PyObject *callable, const char *format, ...)
{
va_list va;
PyObject *result;
va_start(va, format);
result = _PyObject_CallFunctionVa(callable, format, va, 0);
va_end(va);
return result;
}
PyObject *
PyEval_CallFunction(PyObject *callable, const char *format, ...)
{
va_list vargs;
PyObject *args;
PyObject *res;
va_start(vargs, format);
args = Py_VaBuildValue(format, vargs);
va_end(vargs);
if (args == NULL)
return NULL;
res = PyEval_CallObject(callable, args);
Py_DECREF(args);
return res;
}
PyObject *
_PyObject_CallFunction_SizeT(PyObject *callable, const char *format, ...)
{
va_list va;
PyObject *result;
va_start(va, format);
result = _PyObject_CallFunctionVa(callable, format, va, 1);
va_end(va);
return result;
}
static PyObject*
callmethod(PyObject* callable, const char *format, va_list va, int is_size_t)
{
assert(callable != NULL);
if (!PyCallable_Check(callable)) {
PyErr_Format(PyExc_TypeError,
"attribute of type '%.200s' is not callable",
Py_TYPE(callable)->tp_name);
return NULL;
}
return _PyObject_CallFunctionVa(callable, format, va, is_size_t);
}
PyObject *
PyObject_CallMethod(PyObject *obj, const char *name, const char *format, ...)
{
va_list va;
PyObject *callable, *retval;
if (obj == NULL || name == NULL) {
return null_error();
}
callable = PyObject_GetAttrString(obj, name);
if (callable == NULL)
return NULL;
va_start(va, format);
retval = callmethod(callable, format, va, 0);
va_end(va);
Py_DECREF(callable);
return retval;
}
PyObject *
PyEval_CallMethod(PyObject *obj, const char *name, const char *format, ...)
{
va_list vargs;
PyObject *meth;
PyObject *args;
PyObject *res;
meth = PyObject_GetAttrString(obj, name);
if (meth == NULL)
return NULL;
va_start(vargs, format);
args = Py_VaBuildValue(format, vargs);
va_end(vargs);
if (args == NULL) {
Py_DECREF(meth);
return NULL;
}
res = PyEval_CallObject(meth, args);
Py_DECREF(meth);
Py_DECREF(args);
return res;
}
PyObject *
_PyObject_CallMethodId(PyObject *obj, _Py_Identifier *name,
const char *format, ...)
{
va_list va;
PyObject *callable, *retval;
if (obj == NULL || name == NULL) {
return null_error();
}
callable = _PyObject_GetAttrId(obj, name);
if (callable == NULL)
return NULL;
va_start(va, format);
retval = callmethod(callable, format, va, 0);
va_end(va);
Py_DECREF(callable);
return retval;
}
PyObject *
_PyObject_CallMethod_SizeT(PyObject *obj, const char *name,
const char *format, ...)
{
va_list va;
PyObject *callable, *retval;
if (obj == NULL || name == NULL) {
return null_error();
}
callable = PyObject_GetAttrString(obj, name);
if (callable == NULL)
return NULL;
va_start(va, format);
retval = callmethod(callable, format, va, 1);
va_end(va);
Py_DECREF(callable);
return retval;
}
PyObject *
_PyObject_CallMethodId_SizeT(PyObject *obj, _Py_Identifier *name,
const char *format, ...)
{
va_list va;
PyObject *callable, *retval;
if (obj == NULL || name == NULL) {
return null_error();
}
callable = _PyObject_GetAttrId(obj, name);
if (callable == NULL) {
return NULL;
}
va_start(va, format);
retval = callmethod(callable, format, va, 1);
va_end(va);
Py_DECREF(callable);
return retval;
}
/* --- Call with "..." arguments ---------------------------------- */
static PyObject *
object_vacall(PyObject *callable, va_list vargs)
{
PyObject *small_stack[_PY_FASTCALL_SMALL_STACK];
PyObject **stack;
Py_ssize_t nargs;
PyObject *result;
Py_ssize_t i;
va_list countva;
if (callable == NULL) {
return null_error();
}
/* Count the number of arguments */
va_copy(countva, vargs);
nargs = 0;
while (1) {
PyObject *arg = va_arg(countva, PyObject *);
if (arg == NULL) {
break;
}
nargs++;
}
va_end(countva);
/* Copy arguments */
if (nargs <= (Py_ssize_t)Py_ARRAY_LENGTH(small_stack)) {
stack = small_stack;
}
else {
stack = PyMem_Malloc(nargs * sizeof(stack[0]));
if (stack == NULL) {
PyErr_NoMemory();
return NULL;
}
}
for (i = 0; i < nargs; ++i) {
stack[i] = va_arg(vargs, PyObject *);
}
/* Call the function */
result = _PyObject_FastCall(callable, stack, nargs);
if (stack != small_stack) {
PyMem_Free(stack);
}
return result;
}
PyObject *
PyObject_CallMethodObjArgs(PyObject *callable, PyObject *name, ...)
{
va_list vargs;
PyObject *result;
if (callable == NULL || name == NULL) {
return null_error();
}
callable = PyObject_GetAttr(callable, name);
if (callable == NULL) {
return NULL;
}
va_start(vargs, name);
result = object_vacall(callable, vargs);
va_end(vargs);
Py_DECREF(callable);
return result;
}
PyObject *
_PyObject_CallMethodIdObjArgs(PyObject *obj,
struct _Py_Identifier *name, ...)
{
va_list vargs;
PyObject *callable, *result;
if (obj == NULL || name == NULL) {
return null_error();
}
callable = _PyObject_GetAttrId(obj, name);
if (callable == NULL) {
return NULL;
}
va_start(vargs, name);
result = object_vacall(callable, vargs);
va_end(vargs);
Py_DECREF(callable);
return result;
}
PyObject *
PyObject_CallFunctionObjArgs(PyObject *callable, ...)
{
va_list vargs;
PyObject *result;
va_start(vargs, callable);
result = object_vacall(callable, vargs);
va_end(vargs);
return result;
}
/* --- PyStack functions ------------------------------------------ */
/* Issue #29234: Inlining _PyStack_AsTuple() into callers increases their
stack consumption, Disable inlining to optimize the stack consumption. */
PyObject* dontinline
_PyStack_AsTuple(PyObject **stack, Py_ssize_t nargs)
{
PyObject *args;
Py_ssize_t i;
args = PyTuple_New(nargs);
if (args == NULL) {
return NULL;
}
for (i=0; i < nargs; i++) {
PyObject *item = stack[i];
Py_INCREF(item);
PyTuple_SET_ITEM(args, i, item);
}
return args;
}
PyObject*
_PyStack_AsTupleSlice(PyObject **stack, Py_ssize_t nargs,
Py_ssize_t start, Py_ssize_t end)
{
PyObject *args;
Py_ssize_t i;
assert(0 <= start);
assert(end <= nargs);
assert(start <= end);
args = PyTuple_New(end - start);
if (args == NULL) {
return NULL;
}
for (i=start; i < end; i++) {
PyObject *item = stack[i];
Py_INCREF(item);
PyTuple_SET_ITEM(args, i - start, item);
}
return args;
}
PyObject *
_PyStack_AsDict(PyObject **values, PyObject *kwnames)
{
Py_ssize_t nkwargs;
PyObject *kwdict;
Py_ssize_t i;
assert(kwnames != NULL);
nkwargs = PyTuple_GET_SIZE(kwnames);
kwdict = _PyDict_NewPresized(nkwargs);
if (kwdict == NULL) {
return NULL;
}
for (i = 0; i < nkwargs; i++) {
PyObject *key = PyTuple_GET_ITEM(kwnames, i);
PyObject *value = *values++;
/* If key already exists, replace it with the new value */
if (PyDict_SetItem(kwdict, key, value)) {
Py_DECREF(kwdict);
return NULL;
}
}
return kwdict;
}
int
_PyStack_UnpackDict(PyObject **args, Py_ssize_t nargs, PyObject *kwargs,
PyObject ***p_stack, PyObject **p_kwnames)
{
PyObject **stack, **kwstack;
Py_ssize_t nkwargs;
Py_ssize_t pos, i;
PyObject *key, *value;
PyObject *kwnames;
assert(nargs >= 0);
assert(kwargs == NULL || PyDict_CheckExact(kwargs));
if (kwargs == NULL || (nkwargs = PyDict_GET_SIZE(kwargs)) == 0) {
*p_stack = args;
*p_kwnames = NULL;
return 0;
}
if ((size_t)nargs > PY_SSIZE_T_MAX / sizeof(stack[0]) - (size_t)nkwargs) {
PyErr_NoMemory();
return -1;
}
stack = PyMem_Malloc((nargs + nkwargs) * sizeof(stack[0]));
if (stack == NULL) {
PyErr_NoMemory();
return -1;
}
kwnames = PyTuple_New(nkwargs);
if (kwnames == NULL) {
PyMem_Free(stack);
return -1;
}
/* Copy position arguments (borrowed references) */
memcpy(stack, args, nargs * sizeof(stack[0]));
kwstack = stack + nargs;
pos = i = 0;
/* This loop doesn't support lookup function mutating the dictionary
to change its size. It's a deliberate choice for speed, this function is
called in the performance critical hot code. */
while (PyDict_Next(kwargs, &pos, &key, &value)) {
Py_INCREF(key);
PyTuple_SET_ITEM(kwnames, i, key);
/* The stack contains borrowed references */
kwstack[i] = value;
i++;
}
*p_stack = stack;
*p_kwnames = kwnames;
return 0;
}
| 39,381 | 1,432 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/listobject.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "libc/assert.h"
#include "libc/mem/mem.h"
#include "libc/mem/gc.internal.h"
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/accu.h"
#include "third_party/python/Include/boolobject.h"
#include "third_party/python/Include/ceval.h"
#include "third_party/python/Include/listobject.h"
#include "third_party/python/Include/longobject.h"
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/object.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/pyerrors.h"
#include "third_party/python/Include/pymacro.h"
#include "third_party/python/Include/pymem.h"
#include "third_party/python/Include/pystate.h"
#include "third_party/python/Include/sliceobject.h"
/* clang-format off */
/* Ensure ob_item has room for at least newsize elements, and set
* ob_size to newsize. If newsize > ob_size on entry, the content
* of the new slots at exit is undefined heap trash; it's the caller's
* responsibility to overwrite them with sane values.
* The number of allocated elements may grow, shrink, or stay the same.
* Failure is impossible if newsize <= self.allocated on entry, although
* that partly relies on an assumption that the system realloc() never
* fails when passed a number of bytes <= the number of bytes last
* allocated (the C standard doesn't guarantee this, but it's hard to
* imagine a realloc implementation where it wouldn't be true).
* Note that self->ob_item may change, and even if newsize is less
* than ob_size on entry.
*/
static int
list_resize(PyListObject *self, Py_ssize_t newsize)
{
PyObject **items;
size_t new_allocated;
Py_ssize_t allocated = self->allocated;
/* Bypass realloc() when a previous overallocation is large enough
to accommodate the newsize. If the newsize falls lower than half
the allocated size, then proceed with the realloc() to shrink the list.
*/
if (allocated >= newsize && newsize >= (allocated >> 1)) {
assert(self->ob_item != NULL || newsize == 0);
Py_SIZE(self) = newsize;
return 0;
}
/* This over-allocates proportional to the list size, making room
* for additional growth. The over-allocation is mild, but is
* enough to give linear-time amortized behavior over a long
* sequence of appends() in the presence of a poorly-performing
* system realloc().
* The growth pattern is: 0, 4, 8, 16, 25, 35, 46, 58, 72, 88, ...
*/
new_allocated = (newsize >> 3) + (newsize < 9 ? 3 : 6);
/* check for integer overflow */
if (new_allocated > SIZE_MAX - newsize) {
PyErr_NoMemory();
return -1;
} else {
new_allocated += newsize;
}
if (newsize == 0)
new_allocated = 0;
items = self->ob_item;
if (new_allocated <= (SIZE_MAX / sizeof(PyObject *)))
PyMem_RESIZE(items, PyObject *, new_allocated);
else
items = NULL;
if (items == NULL) {
PyErr_NoMemory();
return -1;
}
self->ob_item = items;
Py_SIZE(self) = newsize;
self->allocated = new_allocated;
return 0;
}
/* Debug statistic to compare allocations with reuse through the free list */
#undef SHOW_ALLOC_COUNT
#ifdef SHOW_ALLOC_COUNT
static size_t count_alloc = 0;
static size_t count_reuse = 0;
static void
show_alloc(void)
{
PyObject *xoptions, *value;
_Py_IDENTIFIER(showalloccount);
xoptions = PySys_GetXOptions();
if (xoptions == NULL)
return;
value = _PyDict_GetItemId(xoptions, &PyId_showalloccount);
if (value != Py_True)
return;
fprintf(stderr, "List allocations: %" PY_FORMAT_SIZE_T "d\n",
count_alloc);
fprintf(stderr, "List reuse through freelist: %" PY_FORMAT_SIZE_T
"d\n", count_reuse);
fprintf(stderr, "%.2f%% reuse rate\n\n",
(100.0*count_reuse/(count_alloc+count_reuse)));
}
#endif
/* Empty list reuse scheme to save calls to malloc and free */
#ifndef PyList_MAXFREELIST
#define PyList_MAXFREELIST 80
#endif
static PyListObject *free_list[PyList_MAXFREELIST];
static int numfree = 0;
int
PyList_ClearFreeList(void)
{
PyListObject *op;
int ret = numfree;
while (numfree) {
op = free_list[--numfree];
assert(PyList_CheckExact(op));
PyObject_GC_Del(op);
}
return ret;
}
void
PyList_Fini(void)
{
PyList_ClearFreeList();
}
/* Print summary info about the state of the optimized allocator */
void
_PyList_DebugMallocStats(FILE *out)
{
_PyDebugAllocatorStats(out,
"free PyListObject",
numfree, sizeof(PyListObject));
}
PyObject *
PyList_New(Py_ssize_t size)
{
PyListObject *op;
#ifdef SHOW_ALLOC_COUNT
static int initialized = 0;
if (!initialized) {
Py_AtExit(show_alloc);
initialized = 1;
}
#endif
if (size < 0) {
PyErr_BadInternalCall();
return NULL;
}
if (numfree) {
numfree--;
op = free_list[numfree];
_Py_NewReference((PyObject *)op);
#ifdef SHOW_ALLOC_COUNT
count_reuse++;
#endif
} else {
op = PyObject_GC_New(PyListObject, &PyList_Type);
if (op == NULL)
return NULL;
#ifdef SHOW_ALLOC_COUNT
count_alloc++;
#endif
}
if (size <= 0)
op->ob_item = NULL;
else {
op->ob_item = (PyObject **) PyMem_Calloc(size, sizeof(PyObject *));
if (op->ob_item == NULL) {
Py_DECREF(op);
return PyErr_NoMemory();
}
}
Py_SIZE(op) = size;
op->allocated = size;
_PyObject_GC_TRACK(op);
return (PyObject *) op;
}
Py_ssize_t
PyList_Size(PyObject *op)
{
if (!PyList_Check(op)) {
PyErr_BadInternalCall();
return -1;
}
else
return Py_SIZE(op);
}
static PyObject *indexerr = NULL;
PyObject *
PyList_GetItem(PyObject *op, Py_ssize_t i)
{
if (!PyList_Check(op)) {
PyErr_BadInternalCall();
return NULL;
}
if (i < 0 || i >= Py_SIZE(op)) {
if (indexerr == NULL) {
indexerr = PyUnicode_FromString(
"list index out of range");
if (indexerr == NULL)
return NULL;
}
PyErr_SetObject(PyExc_IndexError, indexerr);
return NULL;
}
return ((PyListObject *)op) -> ob_item[i];
}
int
PyList_SetItem(PyObject *op, Py_ssize_t i,
PyObject *newitem)
{
PyObject **p;
if (!PyList_Check(op)) {
Py_XDECREF(newitem);
PyErr_BadInternalCall();
return -1;
}
if (i < 0 || i >= Py_SIZE(op)) {
Py_XDECREF(newitem);
PyErr_SetString(PyExc_IndexError,
"list assignment index out of range");
return -1;
}
p = ((PyListObject *)op) -> ob_item + i;
Py_XSETREF(*p, newitem);
return 0;
}
static int
ins1(PyListObject *self, Py_ssize_t where, PyObject *v)
{
Py_ssize_t i, n = Py_SIZE(self);
PyObject **items;
if (v == NULL) {
PyErr_BadInternalCall();
return -1;
}
if (n == PY_SSIZE_T_MAX) {
PyErr_SetString(PyExc_OverflowError,
"cannot add more objects to list");
return -1;
}
if (list_resize(self, n+1) < 0)
return -1;
if (where < 0) {
where += n;
if (where < 0)
where = 0;
}
if (where > n)
where = n;
items = self->ob_item;
for (i = n; --i >= where; )
items[i+1] = items[i];
Py_INCREF(v);
items[where] = v;
return 0;
}
int
PyList_Insert(PyObject *op, Py_ssize_t where, PyObject *newitem)
{
if (!PyList_Check(op)) {
PyErr_BadInternalCall();
return -1;
}
return ins1((PyListObject *)op, where, newitem);
}
static int
app1(PyListObject *self, PyObject *v)
{
Py_ssize_t n = PyList_GET_SIZE(self);
assert (v != NULL);
if (n == PY_SSIZE_T_MAX) {
PyErr_SetString(PyExc_OverflowError,
"cannot add more objects to list");
return -1;
}
if (list_resize(self, n+1) < 0)
return -1;
Py_INCREF(v);
PyList_SET_ITEM(self, n, v);
return 0;
}
int
PyList_Append(PyObject *op, PyObject *newitem)
{
if (PyList_Check(op) && (newitem != NULL))
return app1((PyListObject *)op, newitem);
PyErr_BadInternalCall();
return -1;
}
/* Methods */
static void
list_dealloc(PyListObject *op)
{
Py_ssize_t i;
PyObject_GC_UnTrack(op);
Py_TRASHCAN_SAFE_BEGIN(op)
if (op->ob_item != NULL) {
/* Do it backwards, for Christian Tismer.
There's a simple test case where somehow this reduces
thrashing when a *very* large list is created and
immediately deleted. */
i = Py_SIZE(op);
while (--i >= 0) {
Py_XDECREF(op->ob_item[i]);
}
PyMem_FREE(op->ob_item);
}
if (numfree < PyList_MAXFREELIST && PyList_CheckExact(op))
free_list[numfree++] = op;
else
Py_TYPE(op)->tp_free((PyObject *)op);
Py_TRASHCAN_SAFE_END(op)
}
static PyObject *
list_repr(PyListObject *v)
{
Py_ssize_t i;
PyObject *s;
_PyUnicodeWriter writer;
if (Py_SIZE(v) == 0) {
return PyUnicode_FromString("[]");
}
i = Py_ReprEnter((PyObject*)v);
if (i != 0) {
return i > 0 ? PyUnicode_FromString("[...]") : NULL;
}
_PyUnicodeWriter_Init(&writer);
writer.overallocate = 1;
/* "[" + "1" + ", 2" * (len - 1) + "]" */
writer.min_length = 1 + 1 + (2 + 1) * (Py_SIZE(v) - 1) + 1;
if (_PyUnicodeWriter_WriteChar(&writer, '[') < 0)
goto error;
/* Do repr() on each element. Note that this may mutate the list,
so must refetch the list size on each iteration. */
for (i = 0; i < Py_SIZE(v); ++i) {
if (i > 0) {
if (_PyUnicodeWriter_WriteASCIIString(&writer, ", ", 2) < 0)
goto error;
}
s = PyObject_Repr(v->ob_item[i]);
if (s == NULL)
goto error;
if (_PyUnicodeWriter_WriteStr(&writer, s) < 0) {
Py_DECREF(s);
goto error;
}
Py_DECREF(s);
}
writer.overallocate = 0;
if (_PyUnicodeWriter_WriteChar(&writer, ']') < 0)
goto error;
Py_ReprLeave((PyObject *)v);
return _PyUnicodeWriter_Finish(&writer);
error:
_PyUnicodeWriter_Dealloc(&writer);
Py_ReprLeave((PyObject *)v);
return NULL;
}
static Py_ssize_t
list_length(PyListObject *a)
{
return Py_SIZE(a);
}
static int
list_contains(PyListObject *a, PyObject *el)
{
Py_ssize_t i;
int cmp;
for (i = 0, cmp = 0 ; cmp == 0 && i < Py_SIZE(a); ++i)
cmp = PyObject_RichCompareBool(el, PyList_GET_ITEM(a, i), Py_EQ);
return cmp;
}
static PyObject *
list_item(PyListObject *a, Py_ssize_t i)
{
if (i < 0 || i >= Py_SIZE(a)) {
if (indexerr == NULL) {
indexerr = PyUnicode_FromString(
"list index out of range");
if (indexerr == NULL)
return NULL;
}
PyErr_SetObject(PyExc_IndexError, indexerr);
return NULL;
}
Py_INCREF(a->ob_item[i]);
return a->ob_item[i];
}
static PyObject *
list_slice(PyListObject *a, Py_ssize_t ilow, Py_ssize_t ihigh)
{
PyListObject *np;
PyObject **src, **dest;
Py_ssize_t i, len;
if (ilow < 0)
ilow = 0;
else if (ilow > Py_SIZE(a))
ilow = Py_SIZE(a);
if (ihigh < ilow)
ihigh = ilow;
else if (ihigh > Py_SIZE(a))
ihigh = Py_SIZE(a);
len = ihigh - ilow;
np = (PyListObject *) PyList_New(len);
if (np == NULL)
return NULL;
src = a->ob_item + ilow;
dest = np->ob_item;
for (i = 0; i < len; i++) {
PyObject *v = src[i];
Py_INCREF(v);
dest[i] = v;
}
return (PyObject *)np;
}
PyObject *
PyList_GetSlice(PyObject *a, Py_ssize_t ilow, Py_ssize_t ihigh)
{
if (!PyList_Check(a)) {
PyErr_BadInternalCall();
return NULL;
}
return list_slice((PyListObject *)a, ilow, ihigh);
}
static PyObject *
list_concat(PyListObject *a, PyObject *bb)
{
Py_ssize_t size;
Py_ssize_t i;
PyObject **src, **dest;
PyListObject *np;
if (!PyList_Check(bb)) {
PyErr_Format(PyExc_TypeError,
"can only concatenate list (not \"%.200s\") to list",
bb->ob_type->tp_name);
return NULL;
}
#define b ((PyListObject *)bb)
if (Py_SIZE(a) > PY_SSIZE_T_MAX - Py_SIZE(b))
return PyErr_NoMemory();
size = Py_SIZE(a) + Py_SIZE(b);
np = (PyListObject *) PyList_New(size);
if (np == NULL) {
return NULL;
}
src = a->ob_item;
dest = np->ob_item;
for (i = 0; i < Py_SIZE(a); i++) {
PyObject *v = src[i];
Py_INCREF(v);
dest[i] = v;
}
src = b->ob_item;
dest = np->ob_item + Py_SIZE(a);
for (i = 0; i < Py_SIZE(b); i++) {
PyObject *v = src[i];
Py_INCREF(v);
dest[i] = v;
}
return (PyObject *)np;
#undef b
}
static PyObject *
list_repeat(PyListObject *a, Py_ssize_t n)
{
Py_ssize_t i, j;
Py_ssize_t size;
PyListObject *np;
PyObject **p, **items;
PyObject *elem;
if (n < 0)
n = 0;
if (n > 0 && Py_SIZE(a) > PY_SSIZE_T_MAX / n)
return PyErr_NoMemory();
size = Py_SIZE(a) * n;
if (size == 0)
return PyList_New(0);
np = (PyListObject *) PyList_New(size);
if (np == NULL)
return NULL;
items = np->ob_item;
if (Py_SIZE(a) == 1) {
elem = a->ob_item[0];
for (i = 0; i < n; i++) {
items[i] = elem;
Py_INCREF(elem);
}
return (PyObject *) np;
}
p = np->ob_item;
items = a->ob_item;
for (i = 0; i < n; i++) {
for (j = 0; j < Py_SIZE(a); j++) {
*p = items[j];
Py_INCREF(*p);
p++;
}
}
return (PyObject *) np;
}
static int
list_clear(PyListObject *a)
{
Py_ssize_t i;
PyObject **item = a->ob_item;
if (item != NULL) {
/* Because XDECREF can recursively invoke operations on
this list, we make it empty first. */
i = Py_SIZE(a);
Py_SIZE(a) = 0;
a->ob_item = NULL;
a->allocated = 0;
while (--i >= 0) {
Py_XDECREF(item[i]);
}
PyMem_FREE(item);
}
/* Never fails; the return value can be ignored.
Note that there is no guarantee that the list is actually empty
at this point, because XDECREF may have populated it again! */
return 0;
}
/* a[ilow:ihigh] = v if v != NULL.
* del a[ilow:ihigh] if v == NULL.
*
* Special speed gimmick: when v is NULL and ihigh - ilow <= 8, it's
* guaranteed the call cannot fail.
*/
static int
list_ass_slice(PyListObject *a, Py_ssize_t ilow, Py_ssize_t ihigh, PyObject *v)
{
/* Because [X]DECREF can recursively invoke list operations on
this list, we must postpone all [X]DECREF activity until
after the list is back in its canonical shape. Therefore
we must allocate an additional array, 'recycle', into which
we temporarily copy the items that are deleted from the
list. :-( */
PyObject *recycle_on_stack[8];
PyObject **recycle = recycle_on_stack; /* will allocate more if needed */
PyObject **item;
PyObject **vitem = NULL;
PyObject *v_as_SF = NULL; /* PySequence_Fast(v) */
Py_ssize_t n; /* # of elements in replacement list */
Py_ssize_t norig; /* # of elements in list getting replaced */
Py_ssize_t d; /* Change in size */
Py_ssize_t k;
size_t s;
int result = -1; /* guilty until proved innocent */
#define b ((PyListObject *)v)
if (v == NULL)
n = 0;
else {
if (a == b) {
/* Special case "a[i:j] = a" -- copy b first */
v = list_slice(b, 0, Py_SIZE(b));
if (v == NULL)
return result;
result = list_ass_slice(a, ilow, ihigh, v);
Py_DECREF(v);
return result;
}
v_as_SF = PySequence_Fast(v, "can only assign an iterable");
if(v_as_SF == NULL)
goto Error;
n = PySequence_Fast_GET_SIZE(v_as_SF);
vitem = PySequence_Fast_ITEMS(v_as_SF);
}
if (ilow < 0)
ilow = 0;
else if (ilow > Py_SIZE(a))
ilow = Py_SIZE(a);
if (ihigh < ilow)
ihigh = ilow;
else if (ihigh > Py_SIZE(a))
ihigh = Py_SIZE(a);
norig = ihigh - ilow;
assert(norig >= 0);
d = n - norig;
if (Py_SIZE(a) + d == 0) {
Py_XDECREF(v_as_SF);
return list_clear(a);
}
item = a->ob_item;
/* recycle the items that we are about to remove */
s = norig * sizeof(PyObject *);
/* If norig == 0, item might be NULL, in which case we may not memcpy from it. */
if (s) {
if (s > sizeof(recycle_on_stack)) {
recycle = (PyObject **)PyMem_MALLOC(s);
if (recycle == NULL) {
PyErr_NoMemory();
goto Error;
}
}
memcpy(recycle, &item[ilow], s);
}
if (d < 0) { /* Delete -d items */
Py_ssize_t tail;
tail = (Py_SIZE(a) - ihigh) * sizeof(PyObject *);
memmove(&item[ihigh+d], &item[ihigh], tail);
if (list_resize(a, Py_SIZE(a) + d) < 0) {
memmove(&item[ihigh], &item[ihigh+d], tail);
memcpy(&item[ilow], recycle, s);
goto Error;
}
item = a->ob_item;
}
else if (d > 0) { /* Insert d items */
k = Py_SIZE(a);
if (list_resize(a, k+d) < 0)
goto Error;
item = a->ob_item;
memmove(&item[ihigh+d], &item[ihigh],
(k - ihigh)*sizeof(PyObject *));
}
for (k = 0; k < n; k++, ilow++) {
PyObject *w = vitem[k];
Py_XINCREF(w);
item[ilow] = w;
}
for (k = norig - 1; k >= 0; --k)
Py_XDECREF(recycle[k]);
result = 0;
Error:
if (recycle != recycle_on_stack)
PyMem_FREE(recycle);
Py_XDECREF(v_as_SF);
return result;
#undef b
}
int
PyList_SetSlice(PyObject *a, Py_ssize_t ilow, Py_ssize_t ihigh, PyObject *v)
{
if (!PyList_Check(a)) {
PyErr_BadInternalCall();
return -1;
}
return list_ass_slice((PyListObject *)a, ilow, ihigh, v);
}
static PyObject *
list_inplace_repeat(PyListObject *self, Py_ssize_t n)
{
PyObject **items;
Py_ssize_t size, i, j, p;
size = PyList_GET_SIZE(self);
if (size == 0 || n == 1) {
Py_INCREF(self);
return (PyObject *)self;
}
if (n < 1) {
(void)list_clear(self);
Py_INCREF(self);
return (PyObject *)self;
}
if (size > PY_SSIZE_T_MAX / n) {
return PyErr_NoMemory();
}
if (list_resize(self, size*n) < 0)
return NULL;
p = size;
items = self->ob_item;
for (i = 1; i < n; i++) { /* Start counting at 1, not 0 */
for (j = 0; j < size; j++) {
PyObject *o = items[j];
Py_INCREF(o);
items[p++] = o;
}
}
Py_INCREF(self);
return (PyObject *)self;
}
static int
list_ass_item(PyListObject *a, Py_ssize_t i, PyObject *v)
{
if (i < 0 || i >= Py_SIZE(a)) {
PyErr_SetString(PyExc_IndexError,
"list assignment index out of range");
return -1;
}
if (v == NULL)
return list_ass_slice(a, i, i+1, v);
Py_INCREF(v);
Py_SETREF(a->ob_item[i], v);
return 0;
}
static PyObject *
listinsert(PyListObject *self, PyObject **args, Py_ssize_t nargs)
{
Py_ssize_t i;
PyObject *v;
if (!_PyArg_ParseStack(args, nargs, "nO:insert", &i, &v))
return NULL;
if (ins1(self, i, v) == 0)
Py_RETURN_NONE;
return NULL;
}
static PyObject *
listclear(PyListObject *self)
{
list_clear(self);
Py_RETURN_NONE;
}
static PyObject *
listcopy(PyListObject *self)
{
return list_slice(self, 0, Py_SIZE(self));
}
static PyObject *
listappend(PyListObject *self, PyObject *v)
{
if (app1(self, v) == 0)
Py_RETURN_NONE;
return NULL;
}
static PyObject *
listextend(PyListObject *self, PyObject *b)
{
PyObject *it; /* iter(v) */
Py_ssize_t m; /* size of self */
Py_ssize_t n; /* guess for size of b */
Py_ssize_t mn; /* m + n */
Py_ssize_t i;
PyObject *(*iternext)(PyObject *);
/* Special cases:
1) lists and tuples which can use PySequence_Fast ops
2) extending self to self requires making a copy first
*/
if (PyList_CheckExact(b) || PyTuple_CheckExact(b) || (PyObject *)self == b) {
PyObject **src, **dest;
b = PySequence_Fast(b, "argument must be iterable");
if (!b)
return NULL;
n = PySequence_Fast_GET_SIZE(b);
if (n == 0) {
/* short circuit when b is empty */
Py_DECREF(b);
Py_RETURN_NONE;
}
m = Py_SIZE(self);
if (list_resize(self, m + n) < 0) {
Py_DECREF(b);
return NULL;
}
/* note that we may still have self == b here for the
* situation a.extend(a), but the following code works
* in that case too. Just make sure to resize self
* before calling PySequence_Fast_ITEMS.
*/
/* populate the end of self with b's items */
src = PySequence_Fast_ITEMS(b);
dest = self->ob_item + m;
for (i = 0; i < n; i++) {
PyObject *o = src[i];
Py_INCREF(o);
dest[i] = o;
}
Py_DECREF(b);
Py_RETURN_NONE;
}
it = PyObject_GetIter(b);
if (it == NULL)
return NULL;
iternext = *it->ob_type->tp_iternext;
/* Guess a result list size. */
n = PyObject_LengthHint(b, 8);
if (n < 0) {
Py_DECREF(it);
return NULL;
}
m = Py_SIZE(self);
if (m > PY_SSIZE_T_MAX - n) {
/* m + n overflowed; on the chance that n lied, and there really
* is enough room, ignore it. If n was telling the truth, we'll
* eventually run out of memory during the loop.
*/
}
else {
mn = m + n;
/* Make room. */
if (list_resize(self, mn) < 0)
goto error;
/* Make the list sane again. */
Py_SIZE(self) = m;
}
/* Run iterator to exhaustion. */
for (;;) {
PyObject *item = iternext(it);
if (item == NULL) {
if (PyErr_Occurred()) {
if (PyErr_ExceptionMatches(PyExc_StopIteration))
PyErr_Clear();
else
goto error;
}
break;
}
if (Py_SIZE(self) < self->allocated) {
/* steals ref */
PyList_SET_ITEM(self, Py_SIZE(self), item);
++Py_SIZE(self);
}
else {
int status = app1(self, item);
Py_DECREF(item); /* append creates a new ref */
if (status < 0)
goto error;
}
}
/* Cut back result list if initial guess was too large. */
if (Py_SIZE(self) < self->allocated) {
if (list_resize(self, Py_SIZE(self)) < 0)
goto error;
}
Py_DECREF(it);
Py_RETURN_NONE;
error:
Py_DECREF(it);
return NULL;
}
PyObject *
_PyList_Extend(PyListObject *self, PyObject *b)
{
return listextend(self, b);
}
static PyObject *
list_inplace_concat(PyListObject *self, PyObject *other)
{
PyObject *result;
result = listextend(self, other);
if (result == NULL)
return result;
Py_DECREF(result);
Py_INCREF(self);
return (PyObject *)self;
}
static PyObject *
listpop(PyListObject *self, PyObject **args, Py_ssize_t nargs)
{
Py_ssize_t i = -1;
PyObject *v;
int status;
if (!_PyArg_ParseStack(args, nargs, "|n:pop", &i))
return NULL;
if (Py_SIZE(self) == 0) {
/* Special-case most common failure cause */
PyErr_SetString(PyExc_IndexError, "pop from empty list");
return NULL;
}
if (i < 0)
i += Py_SIZE(self);
if (i < 0 || i >= Py_SIZE(self)) {
PyErr_SetString(PyExc_IndexError, "pop index out of range");
return NULL;
}
v = self->ob_item[i];
if (i == Py_SIZE(self) - 1) {
status = list_resize(self, Py_SIZE(self) - 1);
if (status >= 0)
return v; /* and v now owns the reference the list had */
else
return NULL;
}
Py_INCREF(v);
status = list_ass_slice(self, i, i+1, (PyObject *)NULL);
if (status < 0) {
Py_DECREF(v);
return NULL;
}
return v;
}
/* Reverse a slice of a list in place, from lo up to (exclusive) hi. */
static void
reverse_slice(PyObject **lo, PyObject **hi)
{
assert(lo && hi);
--hi;
while (lo < hi) {
PyObject *t = *lo;
*lo = *hi;
*hi = t;
++lo;
--hi;
}
}
/* Lots of code for an adaptive, stable, natural mergesort. There are many
* pieces to this algorithm; read listsort.txt for overviews and details.
*/
/* A sortslice contains a pointer to an array of keys and a pointer to
* an array of corresponding values. In other words, keys[i]
* corresponds with values[i]. If values == NULL, then the keys are
* also the values.
*
* Several convenience routines are provided here, so that keys and
* values are always moved in sync.
*/
typedef struct {
PyObject **keys;
PyObject **values;
} sortslice;
Py_LOCAL_INLINE(void)
sortslice_copy(sortslice *s1, Py_ssize_t i, sortslice *s2, Py_ssize_t j)
{
s1->keys[i] = s2->keys[j];
if (s1->values != NULL)
s1->values[i] = s2->values[j];
}
Py_LOCAL_INLINE(void)
sortslice_copy_incr(sortslice *dst, sortslice *src)
{
*dst->keys++ = *src->keys++;
if (dst->values != NULL)
*dst->values++ = *src->values++;
}
Py_LOCAL_INLINE(void)
sortslice_copy_decr(sortslice *dst, sortslice *src)
{
*dst->keys-- = *src->keys--;
if (dst->values != NULL)
*dst->values-- = *src->values--;
}
Py_LOCAL_INLINE(void)
sortslice_memcpy(sortslice *s1, Py_ssize_t i, sortslice *s2, Py_ssize_t j,
Py_ssize_t n)
{
memcpy(&s1->keys[i], &s2->keys[j], sizeof(PyObject *) * n);
if (s1->values != NULL)
memcpy(&s1->values[i], &s2->values[j], sizeof(PyObject *) * n);
}
Py_LOCAL_INLINE(void)
sortslice_memmove(sortslice *s1, Py_ssize_t i, sortslice *s2, Py_ssize_t j,
Py_ssize_t n)
{
memmove(&s1->keys[i], &s2->keys[j], sizeof(PyObject *) * n);
if (s1->values != NULL)
memmove(&s1->values[i], &s2->values[j], sizeof(PyObject *) * n);
}
Py_LOCAL_INLINE(void)
sortslice_advance(sortslice *slice, Py_ssize_t n)
{
slice->keys += n;
if (slice->values != NULL)
slice->values += n;
}
/* Comparison function: PyObject_RichCompareBool with Py_LT.
* Returns -1 on error, 1 if x < y, 0 if x >= y.
*/
#define ISLT(X, Y) (PyObject_RichCompareBool(X, Y, Py_LT))
/* Compare X to Y via "<". Goto "fail" if the comparison raises an
error. Else "k" is set to true iff X<Y, and an "if (k)" block is
started. It makes more sense in context <wink>. X and Y are PyObject*s.
*/
#define IFLT(X, Y) if ((k = ISLT(X, Y)) < 0) goto fail; \
if (k)
/* binarysort is the best method for sorting small arrays: it does
few compares, but can do data movement quadratic in the number of
elements.
[lo, hi) is a contiguous slice of a list, and is sorted via
binary insertion. This sort is stable.
On entry, must have lo <= start <= hi, and that [lo, start) is already
sorted (pass start == lo if you don't know!).
If islt() complains return -1, else 0.
Even in case of error, the output slice will be some permutation of
the input (nothing is lost or duplicated).
*/
static int
binarysort(sortslice lo, PyObject **hi, PyObject **start)
{
Py_ssize_t k;
PyObject **l, **p, **r;
PyObject *pivot;
assert(lo.keys <= start && start <= hi);
/* assert [lo, start) is sorted */
if (lo.keys == start)
++start;
for (; start < hi; ++start) {
/* set l to where *start belongs */
l = lo.keys;
r = start;
pivot = *r;
/* Invariants:
* pivot >= all in [lo, l).
* pivot < all in [r, start).
* The second is vacuously true at the start.
*/
assert(l < r);
do {
p = l + ((r - l) >> 1);
IFLT(pivot, *p)
r = p;
else
l = p+1;
} while (l < r);
assert(l == r);
/* The invariants still hold, so pivot >= all in [lo, l) and
pivot < all in [l, start), so pivot belongs at l. Note
that if there are elements equal to pivot, l points to the
first slot after them -- that's why this sort is stable.
Slide over to make room.
Caution: using memmove is much slower under MSVC 5;
we're not usually moving many slots. */
for (p = start; p > l; --p)
*p = *(p-1);
*l = pivot;
if (lo.values != NULL) {
Py_ssize_t offset = lo.values - lo.keys;
p = start + offset;
pivot = *p;
l += offset;
for (p = start + offset; p > l; --p)
*p = *(p-1);
*l = pivot;
}
}
return 0;
fail:
return -1;
}
/*
Return the length of the run beginning at lo, in the slice [lo, hi). lo < hi
is required on entry. "A run" is the longest ascending sequence, with
lo[0] <= lo[1] <= lo[2] <= ...
or the longest descending sequence, with
lo[0] > lo[1] > lo[2] > ...
Boolean *descending is set to 0 in the former case, or to 1 in the latter.
For its intended use in a stable mergesort, the strictness of the defn of
"descending" is needed so that the caller can safely reverse a descending
sequence without violating stability (strict > ensures there are no equal
elements to get out of order).
Returns -1 in case of error.
*/
static Py_ssize_t
count_run(PyObject **lo, PyObject **hi, int *descending)
{
Py_ssize_t k;
Py_ssize_t n;
assert(lo < hi);
*descending = 0;
++lo;
if (lo == hi)
return 1;
n = 2;
IFLT(*lo, *(lo-1)) {
*descending = 1;
for (lo = lo+1; lo < hi; ++lo, ++n) {
IFLT(*lo, *(lo-1))
;
else
break;
}
}
else {
for (lo = lo+1; lo < hi; ++lo, ++n) {
IFLT(*lo, *(lo-1))
break;
}
}
return n;
fail:
return -1;
}
/*
Locate the proper position of key in a sorted vector; if the vector contains
an element equal to key, return the position immediately to the left of
the leftmost equal element. [gallop_right() does the same except returns
the position to the right of the rightmost equal element (if any).]
"a" is a sorted vector with n elements, starting at a[0]. n must be > 0.
"hint" is an index at which to begin the search, 0 <= hint < n. The closer
hint is to the final result, the faster this runs.
The return value is the int k in 0..n such that
a[k-1] < key <= a[k]
pretending that *(a-1) is minus infinity and a[n] is plus infinity. IOW,
key belongs at index k; or, IOW, the first k elements of a should precede
key, and the last n-k should follow key.
Returns -1 on error. See listsort.txt for info on the method.
*/
static Py_ssize_t
gallop_left(PyObject *key, PyObject **a, Py_ssize_t n, Py_ssize_t hint)
{
Py_ssize_t ofs;
Py_ssize_t lastofs;
Py_ssize_t k;
assert(key && a && n > 0 && hint >= 0 && hint < n);
a += hint;
lastofs = 0;
ofs = 1;
IFLT(*a, key) {
/* a[hint] < key -- gallop right, until
* a[hint + lastofs] < key <= a[hint + ofs]
*/
const Py_ssize_t maxofs = n - hint; /* &a[n-1] is highest */
while (ofs < maxofs) {
IFLT(a[ofs], key) {
lastofs = ofs;
ofs = (ofs << 1) + 1;
if (ofs <= 0) /* int overflow */
ofs = maxofs;
}
else /* key <= a[hint + ofs] */
break;
}
if (ofs > maxofs)
ofs = maxofs;
/* Translate back to offsets relative to &a[0]. */
lastofs += hint;
ofs += hint;
}
else {
/* key <= a[hint] -- gallop left, until
* a[hint - ofs] < key <= a[hint - lastofs]
*/
const Py_ssize_t maxofs = hint + 1; /* &a[0] is lowest */
while (ofs < maxofs) {
IFLT(*(a-ofs), key)
break;
/* key <= a[hint - ofs] */
lastofs = ofs;
ofs = (ofs << 1) + 1;
if (ofs <= 0) /* int overflow */
ofs = maxofs;
}
if (ofs > maxofs)
ofs = maxofs;
/* Translate back to positive offsets relative to &a[0]. */
k = lastofs;
lastofs = hint - ofs;
ofs = hint - k;
}
a -= hint;
assert(-1 <= lastofs && lastofs < ofs && ofs <= n);
/* Now a[lastofs] < key <= a[ofs], so key belongs somewhere to the
* right of lastofs but no farther right than ofs. Do a binary
* search, with invariant a[lastofs-1] < key <= a[ofs].
*/
++lastofs;
while (lastofs < ofs) {
Py_ssize_t m = lastofs + ((ofs - lastofs) >> 1);
IFLT(a[m], key)
lastofs = m+1; /* a[m] < key */
else
ofs = m; /* key <= a[m] */
}
assert(lastofs == ofs); /* so a[ofs-1] < key <= a[ofs] */
return ofs;
fail:
return -1;
}
/*
Exactly like gallop_left(), except that if key already exists in a[0:n],
finds the position immediately to the right of the rightmost equal value.
The return value is the int k in 0..n such that
a[k-1] <= key < a[k]
or -1 if error.
The code duplication is massive, but this is enough different given that
we're sticking to "<" comparisons that it's much harder to follow if
written as one routine with yet another "left or right?" flag.
*/
static Py_ssize_t
gallop_right(PyObject *key, PyObject **a, Py_ssize_t n, Py_ssize_t hint)
{
Py_ssize_t ofs;
Py_ssize_t lastofs;
Py_ssize_t k;
assert(key && a && n > 0 && hint >= 0 && hint < n);
a += hint;
lastofs = 0;
ofs = 1;
IFLT(key, *a) {
/* key < a[hint] -- gallop left, until
* a[hint - ofs] <= key < a[hint - lastofs]
*/
const Py_ssize_t maxofs = hint + 1; /* &a[0] is lowest */
while (ofs < maxofs) {
IFLT(key, *(a-ofs)) {
lastofs = ofs;
ofs = (ofs << 1) + 1;
if (ofs <= 0) /* int overflow */
ofs = maxofs;
}
else /* a[hint - ofs] <= key */
break;
}
if (ofs > maxofs)
ofs = maxofs;
/* Translate back to positive offsets relative to &a[0]. */
k = lastofs;
lastofs = hint - ofs;
ofs = hint - k;
}
else {
/* a[hint] <= key -- gallop right, until
* a[hint + lastofs] <= key < a[hint + ofs]
*/
const Py_ssize_t maxofs = n - hint; /* &a[n-1] is highest */
while (ofs < maxofs) {
IFLT(key, a[ofs])
break;
/* a[hint + ofs] <= key */
lastofs = ofs;
ofs = (ofs << 1) + 1;
if (ofs <= 0) /* int overflow */
ofs = maxofs;
}
if (ofs > maxofs)
ofs = maxofs;
/* Translate back to offsets relative to &a[0]. */
lastofs += hint;
ofs += hint;
}
a -= hint;
assert(-1 <= lastofs && lastofs < ofs && ofs <= n);
/* Now a[lastofs] <= key < a[ofs], so key belongs somewhere to the
* right of lastofs but no farther right than ofs. Do a binary
* search, with invariant a[lastofs-1] <= key < a[ofs].
*/
++lastofs;
while (lastofs < ofs) {
Py_ssize_t m = lastofs + ((ofs - lastofs) >> 1);
IFLT(key, a[m])
ofs = m; /* key < a[m] */
else
lastofs = m+1; /* a[m] <= key */
}
assert(lastofs == ofs); /* so a[ofs-1] <= key < a[ofs] */
return ofs;
fail:
return -1;
}
/* The maximum number of entries in a MergeState's pending-runs stack.
* This is enough to sort arrays of size up to about
* 32 * phi ** MAX_MERGE_PENDING
* where phi ~= 1.618. 85 is ridiculouslylarge enough, good for an array
* with 2**64 elements.
*/
#define MAX_MERGE_PENDING 85
/* When we get into galloping mode, we stay there until both runs win less
* often than MIN_GALLOP consecutive times. See listsort.txt for more info.
*/
#define MIN_GALLOP 7
/* Avoid malloc for small temp arrays. */
#define MERGESTATE_TEMP_SIZE 256
/* One MergeState exists on the stack per invocation of mergesort. It's just
* a convenient way to pass state around among the helper functions.
*/
struct s_slice {
sortslice base;
Py_ssize_t len;
};
typedef struct s_MergeState {
/* This controls when we get *into* galloping mode. It's initialized
* to MIN_GALLOP. merge_lo and merge_hi tend to nudge it higher for
* random data, and lower for highly structured data.
*/
Py_ssize_t min_gallop;
/* 'a' is temp storage to help with merges. It contains room for
* alloced entries.
*/
sortslice a; /* may point to temparray below */
Py_ssize_t alloced;
/* A stack of n pending runs yet to be merged. Run #i starts at
* address base[i] and extends for len[i] elements. It's always
* true (so long as the indices are in bounds) that
*
* pending[i].base + pending[i].len == pending[i+1].base
*
* so we could cut the storage for this, but it's a minor amount,
* and keeping all the info explicit simplifies the code.
*/
int n;
struct s_slice pending[MAX_MERGE_PENDING];
/* 'a' points to this when possible, rather than muck with malloc. */
PyObject *temparray[MERGESTATE_TEMP_SIZE];
} MergeState;
/* Conceptually a MergeState's constructor. */
static void
merge_init(MergeState *ms, Py_ssize_t list_size, int has_keyfunc)
{
assert(ms != NULL);
if (has_keyfunc) {
/* The temporary space for merging will need at most half the list
* size rounded up. Use the minimum possible space so we can use the
* rest of temparray for other things. In particular, if there is
* enough extra space, listsort() will use it to store the keys.
*/
ms->alloced = (list_size + 1) / 2;
/* ms->alloced describes how many keys will be stored at
ms->temparray, but we also need to store the values. Hence,
ms->alloced is capped at half of MERGESTATE_TEMP_SIZE. */
if (MERGESTATE_TEMP_SIZE / 2 < ms->alloced)
ms->alloced = MERGESTATE_TEMP_SIZE / 2;
ms->a.values = &ms->temparray[ms->alloced];
}
else {
ms->alloced = MERGESTATE_TEMP_SIZE;
ms->a.values = NULL;
}
ms->a.keys = ms->temparray;
ms->n = 0;
ms->min_gallop = MIN_GALLOP;
}
/* Free all the temp memory owned by the MergeState. This must be called
* when you're done with a MergeState, and may be called before then if
* you want to free the temp memory early.
*/
static void
merge_freemem(MergeState *ms)
{
assert(ms != NULL);
if (ms->a.keys != ms->temparray)
PyMem_Free(ms->a.keys);
}
/* Ensure enough temp memory for 'need' array slots is available.
* Returns 0 on success and -1 if the memory can't be gotten.
*/
static int
merge_getmem(MergeState *ms, Py_ssize_t need)
{
int multiplier;
assert(ms != NULL);
if (need <= ms->alloced)
return 0;
multiplier = ms->a.values != NULL ? 2 : 1;
/* Don't realloc! That can cost cycles to copy the old data, but
* we don't care what's in the block.
*/
merge_freemem(ms);
if ((size_t)need > PY_SSIZE_T_MAX / sizeof(PyObject*) / multiplier) {
PyErr_NoMemory();
return -1;
}
ms->a.keys = (PyObject**)PyMem_Malloc(multiplier * need
* sizeof(PyObject *));
if (ms->a.keys != NULL) {
ms->alloced = need;
if (ms->a.values != NULL)
ms->a.values = &ms->a.keys[need];
return 0;
}
PyErr_NoMemory();
return -1;
}
#define MERGE_GETMEM(MS, NEED) ((NEED) <= (MS)->alloced ? 0 : \
merge_getmem(MS, NEED))
/* Merge the na elements starting at ssa with the nb elements starting at
* ssb.keys = ssa.keys + na in a stable way, in-place. na and nb must be > 0.
* Must also have that ssa.keys[na-1] belongs at the end of the merge, and
* should have na <= nb. See listsort.txt for more info. Return 0 if
* successful, -1 if error.
*/
static Py_ssize_t
merge_lo(MergeState *ms, sortslice ssa, Py_ssize_t na,
sortslice ssb, Py_ssize_t nb)
{
Py_ssize_t k;
sortslice dest;
int result = -1; /* guilty until proved innocent */
Py_ssize_t min_gallop;
assert(ms && ssa.keys && ssb.keys && na > 0 && nb > 0);
assert(ssa.keys + na == ssb.keys);
if (MERGE_GETMEM(ms, na) < 0)
return -1;
sortslice_memcpy(&ms->a, 0, &ssa, 0, na);
dest = ssa;
ssa = ms->a;
sortslice_copy_incr(&dest, &ssb);
--nb;
if (nb == 0)
goto Succeed;
if (na == 1)
goto CopyB;
min_gallop = ms->min_gallop;
for (;;) {
Py_ssize_t acount = 0; /* # of times A won in a row */
Py_ssize_t bcount = 0; /* # of times B won in a row */
/* Do the straightforward thing until (if ever) one run
* appears to win consistently.
*/
for (;;) {
assert(na > 1 && nb > 0);
k = ISLT(ssb.keys[0], ssa.keys[0]);
if (k) {
if (k < 0)
goto Fail;
sortslice_copy_incr(&dest, &ssb);
++bcount;
acount = 0;
--nb;
if (nb == 0)
goto Succeed;
if (bcount >= min_gallop)
break;
}
else {
sortslice_copy_incr(&dest, &ssa);
++acount;
bcount = 0;
--na;
if (na == 1)
goto CopyB;
if (acount >= min_gallop)
break;
}
}
/* One run is winning so consistently that galloping may
* be a huge win. So try that, and continue galloping until
* (if ever) neither run appears to be winning consistently
* anymore.
*/
++min_gallop;
do {
assert(na > 1 && nb > 0);
min_gallop -= min_gallop > 1;
ms->min_gallop = min_gallop;
k = gallop_right(ssb.keys[0], ssa.keys, na, 0);
acount = k;
if (k) {
if (k < 0)
goto Fail;
sortslice_memcpy(&dest, 0, &ssa, 0, k);
sortslice_advance(&dest, k);
sortslice_advance(&ssa, k);
na -= k;
if (na == 1)
goto CopyB;
/* na==0 is impossible now if the comparison
* function is consistent, but we can't assume
* that it is.
*/
if (na == 0)
goto Succeed;
}
sortslice_copy_incr(&dest, &ssb);
--nb;
if (nb == 0)
goto Succeed;
k = gallop_left(ssa.keys[0], ssb.keys, nb, 0);
bcount = k;
if (k) {
if (k < 0)
goto Fail;
sortslice_memmove(&dest, 0, &ssb, 0, k);
sortslice_advance(&dest, k);
sortslice_advance(&ssb, k);
nb -= k;
if (nb == 0)
goto Succeed;
}
sortslice_copy_incr(&dest, &ssa);
--na;
if (na == 1)
goto CopyB;
} while (acount >= MIN_GALLOP || bcount >= MIN_GALLOP);
++min_gallop; /* penalize it for leaving galloping mode */
ms->min_gallop = min_gallop;
}
Succeed:
result = 0;
Fail:
if (na)
sortslice_memcpy(&dest, 0, &ssa, 0, na);
return result;
CopyB:
assert(na == 1 && nb > 0);
/* The last element of ssa belongs at the end of the merge. */
sortslice_memmove(&dest, 0, &ssb, 0, nb);
sortslice_copy(&dest, nb, &ssa, 0);
return 0;
}
/* Merge the na elements starting at pa with the nb elements starting at
* ssb.keys = ssa.keys + na in a stable way, in-place. na and nb must be > 0.
* Must also have that ssa.keys[na-1] belongs at the end of the merge, and
* should have na >= nb. See listsort.txt for more info. Return 0 if
* successful, -1 if error.
*/
static Py_ssize_t
merge_hi(MergeState *ms, sortslice ssa, Py_ssize_t na,
sortslice ssb, Py_ssize_t nb)
{
Py_ssize_t k;
sortslice dest, basea, baseb;
int result = -1; /* guilty until proved innocent */
Py_ssize_t min_gallop;
assert(ms && ssa.keys && ssb.keys && na > 0 && nb > 0);
assert(ssa.keys + na == ssb.keys);
if (MERGE_GETMEM(ms, nb) < 0)
return -1;
dest = ssb;
sortslice_advance(&dest, nb-1);
sortslice_memcpy(&ms->a, 0, &ssb, 0, nb);
basea = ssa;
baseb = ms->a;
ssb.keys = ms->a.keys + nb - 1;
if (ssb.values != NULL)
ssb.values = ms->a.values + nb - 1;
sortslice_advance(&ssa, na - 1);
sortslice_copy_decr(&dest, &ssa);
--na;
if (na == 0)
goto Succeed;
if (nb == 1)
goto CopyA;
min_gallop = ms->min_gallop;
for (;;) {
Py_ssize_t acount = 0; /* # of times A won in a row */
Py_ssize_t bcount = 0; /* # of times B won in a row */
/* Do the straightforward thing until (if ever) one run
* appears to win consistently.
*/
for (;;) {
assert(na > 0 && nb > 1);
k = ISLT(ssb.keys[0], ssa.keys[0]);
if (k) {
if (k < 0)
goto Fail;
sortslice_copy_decr(&dest, &ssa);
++acount;
bcount = 0;
--na;
if (na == 0)
goto Succeed;
if (acount >= min_gallop)
break;
}
else {
sortslice_copy_decr(&dest, &ssb);
++bcount;
acount = 0;
--nb;
if (nb == 1)
goto CopyA;
if (bcount >= min_gallop)
break;
}
}
/* One run is winning so consistently that galloping may
* be a huge win. So try that, and continue galloping until
* (if ever) neither run appears to be winning consistently
* anymore.
*/
++min_gallop;
do {
assert(na > 0 && nb > 1);
min_gallop -= min_gallop > 1;
ms->min_gallop = min_gallop;
k = gallop_right(ssb.keys[0], basea.keys, na, na-1);
if (k < 0)
goto Fail;
k = na - k;
acount = k;
if (k) {
sortslice_advance(&dest, -k);
sortslice_advance(&ssa, -k);
sortslice_memmove(&dest, 1, &ssa, 1, k);
na -= k;
if (na == 0)
goto Succeed;
}
sortslice_copy_decr(&dest, &ssb);
--nb;
if (nb == 1)
goto CopyA;
k = gallop_left(ssa.keys[0], baseb.keys, nb, nb-1);
if (k < 0)
goto Fail;
k = nb - k;
bcount = k;
if (k) {
sortslice_advance(&dest, -k);
sortslice_advance(&ssb, -k);
sortslice_memcpy(&dest, 1, &ssb, 1, k);
nb -= k;
if (nb == 1)
goto CopyA;
/* nb==0 is impossible now if the comparison
* function is consistent, but we can't assume
* that it is.
*/
if (nb == 0)
goto Succeed;
}
sortslice_copy_decr(&dest, &ssa);
--na;
if (na == 0)
goto Succeed;
} while (acount >= MIN_GALLOP || bcount >= MIN_GALLOP);
++min_gallop; /* penalize it for leaving galloping mode */
ms->min_gallop = min_gallop;
}
Succeed:
result = 0;
Fail:
if (nb)
sortslice_memcpy(&dest, -(nb-1), &baseb, 0, nb);
return result;
CopyA:
assert(nb == 1 && na > 0);
/* The first element of ssb belongs at the front of the merge. */
sortslice_memmove(&dest, 1-na, &ssa, 1-na, na);
sortslice_advance(&dest, -na);
sortslice_advance(&ssa, -na);
sortslice_copy(&dest, 0, &ssb, 0);
return 0;
}
/* Merge the two runs at stack indices i and i+1.
* Returns 0 on success, -1 on error.
*/
static Py_ssize_t
merge_at(MergeState *ms, Py_ssize_t i)
{
sortslice ssa, ssb;
Py_ssize_t na, nb;
Py_ssize_t k;
assert(ms != NULL);
assert(ms->n >= 2);
assert(i >= 0);
assert(i == ms->n - 2 || i == ms->n - 3);
ssa = ms->pending[i].base;
na = ms->pending[i].len;
ssb = ms->pending[i+1].base;
nb = ms->pending[i+1].len;
assert(na > 0 && nb > 0);
assert(ssa.keys + na == ssb.keys);
/* Record the length of the combined runs; if i is the 3rd-last
* run now, also slide over the last run (which isn't involved
* in this merge). The current run i+1 goes away in any case.
*/
ms->pending[i].len = na + nb;
if (i == ms->n - 3)
ms->pending[i+1] = ms->pending[i+2];
--ms->n;
/* Where does b start in a? Elements in a before that can be
* ignored (already in place).
*/
k = gallop_right(*ssb.keys, ssa.keys, na, 0);
if (k < 0)
return -1;
sortslice_advance(&ssa, k);
na -= k;
if (na == 0)
return 0;
/* Where does a end in b? Elements in b after that can be
* ignored (already in place).
*/
nb = gallop_left(ssa.keys[na-1], ssb.keys, nb, nb-1);
if (nb <= 0)
return nb;
/* Merge what remains of the runs, using a temp array with
* min(na, nb) elements.
*/
if (na <= nb)
return merge_lo(ms, ssa, na, ssb, nb);
else
return merge_hi(ms, ssa, na, ssb, nb);
}
/* Examine the stack of runs waiting to be merged, merging adjacent runs
* until the stack invariants are re-established:
*
* 1. len[-3] > len[-2] + len[-1]
* 2. len[-2] > len[-1]
*
* See listsort.txt for more info.
*
* Returns 0 on success, -1 on error.
*/
static int
merge_collapse(MergeState *ms)
{
struct s_slice *p = ms->pending;
assert(ms);
while (ms->n > 1) {
Py_ssize_t n = ms->n - 2;
if ((n > 0 && p[n-1].len <= p[n].len + p[n+1].len) ||
(n > 1 && p[n-2].len <= p[n-1].len + p[n].len)) {
if (p[n-1].len < p[n+1].len)
--n;
if (merge_at(ms, n) < 0)
return -1;
}
else if (p[n].len <= p[n+1].len) {
if (merge_at(ms, n) < 0)
return -1;
}
else
break;
}
return 0;
}
/* Regardless of invariants, merge all runs on the stack until only one
* remains. This is used at the end of the mergesort.
*
* Returns 0 on success, -1 on error.
*/
static int
merge_force_collapse(MergeState *ms)
{
struct s_slice *p = ms->pending;
assert(ms);
while (ms->n > 1) {
Py_ssize_t n = ms->n - 2;
if (n > 0 && p[n-1].len < p[n+1].len)
--n;
if (merge_at(ms, n) < 0)
return -1;
}
return 0;
}
/* Compute a good value for the minimum run length; natural runs shorter
* than this are boosted artificially via binary insertion.
*
* If n < 64, return n (it's too small to bother with fancy stuff).
* Else if n is an exact power of 2, return 32.
* Else return an int k, 32 <= k <= 64, such that n/k is close to, but
* strictly less than, an exact power of 2.
*
* See listsort.txt for more info.
*/
static Py_ssize_t
merge_compute_minrun(Py_ssize_t n)
{
Py_ssize_t r = 0; /* becomes 1 if any 1 bits are shifted off */
assert(n >= 0);
while (n >= 64) {
r |= n & 1;
n >>= 1;
}
return n + r;
}
static void
reverse_sortslice(sortslice *s, Py_ssize_t n)
{
reverse_slice(s->keys, &s->keys[n]);
if (s->values != NULL)
reverse_slice(s->values, &s->values[n]);
}
/* An adaptive, stable, natural mergesort. See listsort.txt.
* Returns Py_None on success, NULL on error. Even in case of error, the
* list will be some permutation of its input state (nothing is lost or
* duplicated).
*/
static PyObject *
listsort(PyListObject *self, PyObject *args, PyObject *kwds)
{
MergeState *ms;
Py_ssize_t nremaining;
Py_ssize_t minrun;
sortslice lo;
Py_ssize_t saved_ob_size, saved_allocated;
PyObject **saved_ob_item;
PyObject **final_ob_item;
PyObject *result = NULL; /* guilty until proved innocent */
int reverse = 0;
PyObject *keyfunc = NULL;
Py_ssize_t i;
static char *kwlist[] = {"key", "reverse", 0};
PyObject **keys;
ms = gc(malloc(sizeof(MergeState)));
assert(self != NULL);
assert (PyList_Check(self));
if (args != NULL) {
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|Oi:sort",
kwlist, &keyfunc, &reverse))
return NULL;
if (Py_SIZE(args) > 0) {
PyErr_SetString(PyExc_TypeError,
"must use keyword argument for key function");
return NULL;
}
}
if (keyfunc == Py_None)
keyfunc = NULL;
/* The list is temporarily made empty, so that mutations performed
* by comparison functions can't affect the slice of memory we're
* sorting (allowing mutations during sorting is a core-dump
* factory, since ob_item may change).
*/
saved_ob_size = Py_SIZE(self);
saved_ob_item = self->ob_item;
saved_allocated = self->allocated;
Py_SIZE(self) = 0;
self->ob_item = NULL;
self->allocated = -1; /* any operation will reset it to >= 0 */
if (keyfunc == NULL) {
keys = NULL;
lo.keys = saved_ob_item;
lo.values = NULL;
}
else {
if (saved_ob_size < MERGESTATE_TEMP_SIZE/2)
/* Leverage stack space we allocated but won't otherwise use */
keys = &ms->temparray[saved_ob_size+1];
else {
keys = PyMem_MALLOC(sizeof(PyObject *) * saved_ob_size);
if (keys == NULL) {
PyErr_NoMemory();
goto keyfunc_fail;
}
}
for (i = 0; i < saved_ob_size ; i++) {
keys[i] = PyObject_CallFunctionObjArgs(keyfunc, saved_ob_item[i],
NULL);
if (keys[i] == NULL) {
for (i=i-1 ; i>=0 ; i--)
Py_DECREF(keys[i]);
if (saved_ob_size >= MERGESTATE_TEMP_SIZE/2)
PyMem_FREE(keys);
goto keyfunc_fail;
}
}
lo.keys = keys;
lo.values = saved_ob_item;
}
merge_init(ms, saved_ob_size, keys != NULL);
nremaining = saved_ob_size;
if (nremaining < 2)
goto succeed;
/* Reverse sort stability achieved by initially reversing the list,
applying a stable forward sort, then reversing the final result. */
if (reverse) {
if (keys != NULL)
reverse_slice(&keys[0], &keys[saved_ob_size]);
reverse_slice(&saved_ob_item[0], &saved_ob_item[saved_ob_size]);
}
/* March over the array once, left to right, finding natural runs,
* and extending short natural runs to minrun elements.
*/
minrun = merge_compute_minrun(nremaining);
do {
int descending;
Py_ssize_t n;
/* Identify next run. */
n = count_run(lo.keys, lo.keys + nremaining, &descending);
if (n < 0)
goto fail;
if (descending)
reverse_sortslice(&lo, n);
/* If short, extend to min(minrun, nremaining). */
if (n < minrun) {
const Py_ssize_t force = nremaining <= minrun ?
nremaining : minrun;
if (binarysort(lo, lo.keys + force, lo.keys + n) < 0)
goto fail;
n = force;
}
/* Push run onto pending-runs stack, and maybe merge. */
assert(ms->n < MAX_MERGE_PENDING);
ms->pending[ms->n].base = lo;
ms->pending[ms->n].len = n;
++ms->n;
if (merge_collapse(ms) < 0)
goto fail;
/* Advance to find next run. */
sortslice_advance(&lo, n);
nremaining -= n;
} while (nremaining);
if (merge_force_collapse(ms) < 0)
goto fail;
assert(ms->n == 1);
assert(keys == NULL
? ms->pending[0].base.keys == saved_ob_item
: ms->pending[0].base.keys == &keys[0]);
assert(ms->pending[0].len == saved_ob_size);
lo = ms->pending[0].base;
succeed:
result = Py_None;
fail:
if (keys != NULL) {
for (i = 0; i < saved_ob_size; i++)
Py_DECREF(keys[i]);
if (saved_ob_size >= MERGESTATE_TEMP_SIZE/2)
PyMem_FREE(keys);
}
if (self->allocated != -1 && result != NULL) {
/* The user mucked with the list during the sort,
* and we don't already have another error to report.
*/
PyErr_SetString(PyExc_ValueError, "list modified during sort");
result = NULL;
}
if (reverse && saved_ob_size > 1)
reverse_slice(saved_ob_item, saved_ob_item + saved_ob_size);
merge_freemem(ms);
keyfunc_fail:
final_ob_item = self->ob_item;
i = Py_SIZE(self);
Py_SIZE(self) = saved_ob_size;
self->ob_item = saved_ob_item;
self->allocated = saved_allocated;
if (final_ob_item != NULL) {
/* we cannot use list_clear() for this because it does not
guarantee that the list is really empty when it returns */
while (--i >= 0) {
Py_XDECREF(final_ob_item[i]);
}
PyMem_FREE(final_ob_item);
}
Py_XINCREF(result);
return result;
}
#undef IFLT
#undef ISLT
int
PyList_Sort(PyObject *v)
{
if (v == NULL || !PyList_Check(v)) {
PyErr_BadInternalCall();
return -1;
}
v = listsort((PyListObject *)v, (PyObject *)NULL, (PyObject *)NULL);
if (v == NULL)
return -1;
Py_DECREF(v);
return 0;
}
static PyObject *
listreverse(PyListObject *self)
{
if (Py_SIZE(self) > 1)
reverse_slice(self->ob_item, self->ob_item + Py_SIZE(self));
Py_RETURN_NONE;
}
int
PyList_Reverse(PyObject *v)
{
PyListObject *self = (PyListObject *)v;
if (v == NULL || !PyList_Check(v)) {
PyErr_BadInternalCall();
return -1;
}
if (Py_SIZE(self) > 1)
reverse_slice(self->ob_item, self->ob_item + Py_SIZE(self));
return 0;
}
PyObject *
PyList_AsTuple(PyObject *v)
{
PyObject *w;
PyObject **p, **q;
Py_ssize_t n;
if (v == NULL || !PyList_Check(v)) {
PyErr_BadInternalCall();
return NULL;
}
n = Py_SIZE(v);
w = PyTuple_New(n);
if (w == NULL)
return NULL;
p = ((PyTupleObject *)w)->ob_item;
q = ((PyListObject *)v)->ob_item;
while (--n >= 0) {
Py_INCREF(*q);
*p = *q;
p++;
q++;
}
return w;
}
static PyObject *
listindex(PyListObject *self, PyObject *args)
{
Py_ssize_t i, start=0, stop=Py_SIZE(self);
PyObject *v;
if (!PyArg_ParseTuple(args, "O|O&O&:index", &v,
_PyEval_SliceIndexNotNone, &start,
_PyEval_SliceIndexNotNone, &stop))
return NULL;
if (start < 0) {
start += Py_SIZE(self);
if (start < 0)
start = 0;
}
if (stop < 0) {
stop += Py_SIZE(self);
if (stop < 0)
stop = 0;
}
for (i = start; i < stop && i < Py_SIZE(self); i++) {
int cmp = PyObject_RichCompareBool(self->ob_item[i], v, Py_EQ);
if (cmp > 0)
return PyLong_FromSsize_t(i);
else if (cmp < 0)
return NULL;
}
PyErr_Format(PyExc_ValueError, "%R is not in list", v);
return NULL;
}
static PyObject *
listcount(PyListObject *self, PyObject *v)
{
Py_ssize_t count = 0;
Py_ssize_t i;
for (i = 0; i < Py_SIZE(self); i++) {
int cmp = PyObject_RichCompareBool(self->ob_item[i], v, Py_EQ);
if (cmp > 0)
count++;
else if (cmp < 0)
return NULL;
}
return PyLong_FromSsize_t(count);
}
static PyObject *
listremove(PyListObject *self, PyObject *v)
{
Py_ssize_t i;
for (i = 0; i < Py_SIZE(self); i++) {
int cmp = PyObject_RichCompareBool(self->ob_item[i], v, Py_EQ);
if (cmp > 0) {
if (list_ass_slice(self, i, i+1,
(PyObject *)NULL) == 0)
Py_RETURN_NONE;
return NULL;
}
else if (cmp < 0)
return NULL;
}
PyErr_SetString(PyExc_ValueError, "list.remove(x): x not in list");
return NULL;
}
static int
list_traverse(PyListObject *o, visitproc visit, void *arg)
{
Py_ssize_t i;
for (i = Py_SIZE(o); --i >= 0; )
Py_VISIT(o->ob_item[i]);
return 0;
}
static PyObject *
list_richcompare(PyObject *v, PyObject *w, int op)
{
PyListObject *vl, *wl;
Py_ssize_t i;
if (!PyList_Check(v) || !PyList_Check(w))
Py_RETURN_NOTIMPLEMENTED;
vl = (PyListObject *)v;
wl = (PyListObject *)w;
if (Py_SIZE(vl) != Py_SIZE(wl) && (op == Py_EQ || op == Py_NE)) {
/* Shortcut: if the lengths differ, the lists differ */
PyObject *res;
if (op == Py_EQ)
res = Py_False;
else
res = Py_True;
Py_INCREF(res);
return res;
}
/* Search for the first index where items are different */
for (i = 0; i < Py_SIZE(vl) && i < Py_SIZE(wl); i++) {
int k = PyObject_RichCompareBool(vl->ob_item[i],
wl->ob_item[i], Py_EQ);
if (k < 0)
return NULL;
if (!k)
break;
}
if (i >= Py_SIZE(vl) || i >= Py_SIZE(wl)) {
/* No more items to compare -- compare sizes */
Py_ssize_t vs = Py_SIZE(vl);
Py_ssize_t ws = Py_SIZE(wl);
int cmp;
PyObject *res;
switch (op) {
case Py_LT: cmp = vs < ws; break;
case Py_LE: cmp = vs <= ws; break;
case Py_EQ: cmp = vs == ws; break;
case Py_NE: cmp = vs != ws; break;
case Py_GT: cmp = vs > ws; break;
case Py_GE: cmp = vs >= ws; break;
default: return NULL; /* cannot happen */
}
if (cmp)
res = Py_True;
else
res = Py_False;
Py_INCREF(res);
return res;
}
/* We have an item that differs -- shortcuts for EQ/NE */
if (op == Py_EQ) {
Py_INCREF(Py_False);
return Py_False;
}
if (op == Py_NE) {
Py_INCREF(Py_True);
return Py_True;
}
/* Compare the final item again using the proper operator */
return PyObject_RichCompare(vl->ob_item[i], wl->ob_item[i], op);
}
static int
list_init(PyListObject *self, PyObject *args, PyObject *kw)
{
PyObject *arg = NULL;
static char *kwlist[] = {"sequence", 0};
if (!PyArg_ParseTupleAndKeywords(args, kw, "|O:list", kwlist, &arg))
return -1;
/* Verify list invariants established by PyType_GenericAlloc() */
assert(0 <= Py_SIZE(self));
assert(Py_SIZE(self) <= self->allocated || self->allocated == -1);
assert(self->ob_item != NULL ||
self->allocated == 0 || self->allocated == -1);
/* Empty previous contents */
if (self->ob_item != NULL) {
(void)list_clear(self);
}
if (arg != NULL) {
PyObject *rv = listextend(self, arg);
if (rv == NULL)
return -1;
Py_DECREF(rv);
}
return 0;
}
static PyObject *
list_sizeof(PyListObject *self)
{
Py_ssize_t res;
res = _PyObject_SIZE(Py_TYPE(self)) + self->allocated * sizeof(void*);
return PyLong_FromSsize_t(res);
}
static PyObject *list_iter(PyObject *seq);
static PyObject *list_reversed(PyListObject* seq, PyObject* unused);
PyDoc_STRVAR(getitem_doc,
"x.__getitem__(y) <==> x[y]");
PyDoc_STRVAR(reversed_doc,
"L.__reversed__() -- return a reverse iterator over the list");
PyDoc_STRVAR(sizeof_doc,
"L.__sizeof__() -- size of L in memory, in bytes");
PyDoc_STRVAR(clear_doc,
"L.clear() -> None -- remove all items from L");
PyDoc_STRVAR(copy_doc,
"L.copy() -> list -- a shallow copy of L");
PyDoc_STRVAR(append_doc,
"L.append(object) -> None -- append object to end");
PyDoc_STRVAR(extend_doc,
"L.extend(iterable) -> None -- extend list by appending elements from the iterable");
PyDoc_STRVAR(insert_doc,
"L.insert(index, object) -- insert object before index");
PyDoc_STRVAR(pop_doc,
"L.pop([index]) -> item -- remove and return item at index (default last).\n"
"Raises IndexError if list is empty or index is out of range.");
PyDoc_STRVAR(remove_doc,
"L.remove(value) -> None -- remove first occurrence of value.\n"
"Raises ValueError if the value is not present.");
PyDoc_STRVAR(index_doc,
"L.index(value, [start, [stop]]) -> integer -- return first index of value.\n"
"Raises ValueError if the value is not present.");
PyDoc_STRVAR(count_doc,
"L.count(value) -> integer -- return number of occurrences of value");
PyDoc_STRVAR(reverse_doc,
"L.reverse() -- reverse *IN PLACE*");
PyDoc_STRVAR(sort_doc,
"L.sort(key=None, reverse=False) -> None -- stable sort *IN PLACE*");
static PyObject *list_subscript(PyListObject*, PyObject*);
static PyMethodDef list_methods[] = {
{"__getitem__", (PyCFunction)list_subscript, METH_O|METH_COEXIST, getitem_doc},
{"__reversed__",(PyCFunction)list_reversed, METH_NOARGS, reversed_doc},
{"__sizeof__", (PyCFunction)list_sizeof, METH_NOARGS, sizeof_doc},
{"clear", (PyCFunction)listclear, METH_NOARGS, clear_doc},
{"copy", (PyCFunction)listcopy, METH_NOARGS, copy_doc},
{"append", (PyCFunction)listappend, METH_O, append_doc},
{"insert", (PyCFunction)listinsert, METH_FASTCALL, insert_doc},
{"extend", (PyCFunction)listextend, METH_O, extend_doc},
{"pop", (PyCFunction)listpop, METH_FASTCALL, pop_doc},
{"remove", (PyCFunction)listremove, METH_O, remove_doc},
{"index", (PyCFunction)listindex, METH_VARARGS, index_doc},
{"count", (PyCFunction)listcount, METH_O, count_doc},
{"reverse", (PyCFunction)listreverse, METH_NOARGS, reverse_doc},
{"sort", (PyCFunction)listsort, METH_VARARGS | METH_KEYWORDS, sort_doc},
{NULL, NULL} /* sentinel */
};
static PySequenceMethods list_as_sequence = {
(lenfunc)list_length, /* sq_length */
(binaryfunc)list_concat, /* sq_concat */
(ssizeargfunc)list_repeat, /* sq_repeat */
(ssizeargfunc)list_item, /* sq_item */
0, /* sq_slice */
(ssizeobjargproc)list_ass_item, /* sq_ass_item */
0, /* sq_ass_slice */
(objobjproc)list_contains, /* sq_contains */
(binaryfunc)list_inplace_concat, /* sq_inplace_concat */
(ssizeargfunc)list_inplace_repeat, /* sq_inplace_repeat */
};
PyDoc_STRVAR(list_doc,
"list() -> new empty list\n"
"list(iterable) -> new list initialized from iterable's items");
static PyObject *
list_subscript(PyListObject* self, PyObject* item)
{
if (PyIndex_Check(item)) {
Py_ssize_t i;
i = PyNumber_AsSsize_t(item, PyExc_IndexError);
if (i == -1 && PyErr_Occurred())
return NULL;
if (i < 0)
i += PyList_GET_SIZE(self);
return list_item(self, i);
}
else if (PySlice_Check(item)) {
Py_ssize_t start, stop, step, slicelength, cur, i;
PyObject* result;
PyObject* it;
PyObject **src, **dest;
if (PySlice_Unpack(item, &start, &stop, &step) < 0) {
return NULL;
}
slicelength = PySlice_AdjustIndices(Py_SIZE(self), &start, &stop,
step);
if (slicelength <= 0) {
return PyList_New(0);
}
else if (step == 1) {
return list_slice(self, start, stop);
}
else {
result = PyList_New(slicelength);
if (!result) return NULL;
src = self->ob_item;
dest = ((PyListObject *)result)->ob_item;
for (cur = start, i = 0; i < slicelength;
cur += (size_t)step, i++) {
it = src[cur];
Py_INCREF(it);
dest[i] = it;
}
return result;
}
}
else {
PyErr_Format(PyExc_TypeError,
"list indices must be integers or slices, not %.200s",
item->ob_type->tp_name);
return NULL;
}
}
static int
list_ass_subscript(PyListObject* self, PyObject* item, PyObject* value)
{
if (PyIndex_Check(item)) {
Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError);
if (i == -1 && PyErr_Occurred())
return -1;
if (i < 0)
i += PyList_GET_SIZE(self);
return list_ass_item(self, i, value);
}
else if (PySlice_Check(item)) {
Py_ssize_t start, stop, step, slicelength;
if (PySlice_Unpack(item, &start, &stop, &step) < 0) {
return -1;
}
slicelength = PySlice_AdjustIndices(Py_SIZE(self), &start, &stop,
step);
if (step == 1)
return list_ass_slice(self, start, stop, value);
/* Make sure s[5:2] = [..] inserts at the right place:
before 5, not before 2. */
if ((step < 0 && start < stop) ||
(step > 0 && start > stop))
stop = start;
if (value == NULL) {
/* delete slice */
PyObject **garbage;
size_t cur;
Py_ssize_t i;
int res;
if (slicelength <= 0)
return 0;
if (step < 0) {
stop = start + 1;
start = stop + step*(slicelength - 1) - 1;
step = -step;
}
garbage = (PyObject**)
PyMem_MALLOC(slicelength*sizeof(PyObject*));
if (!garbage) {
PyErr_NoMemory();
return -1;
}
/* drawing pictures might help understand these for
loops. Basically, we memmove the parts of the
list that are *not* part of the slice: step-1
items for each item that is part of the slice,
and then tail end of the list that was not
covered by the slice */
for (cur = start, i = 0;
cur < (size_t)stop;
cur += step, i++) {
Py_ssize_t lim = step - 1;
garbage[i] = PyList_GET_ITEM(self, cur);
if (cur + step >= (size_t)Py_SIZE(self)) {
lim = Py_SIZE(self) - cur - 1;
}
memmove(self->ob_item + cur - i,
self->ob_item + cur + 1,
lim * sizeof(PyObject *));
}
cur = start + (size_t)slicelength * step;
if (cur < (size_t)Py_SIZE(self)) {
memmove(self->ob_item + cur - slicelength,
self->ob_item + cur,
(Py_SIZE(self) - cur) *
sizeof(PyObject *));
}
Py_SIZE(self) -= slicelength;
res = list_resize(self, Py_SIZE(self));
for (i = 0; i < slicelength; i++) {
Py_DECREF(garbage[i]);
}
PyMem_FREE(garbage);
return res;
}
else {
/* assign slice */
PyObject *ins, *seq;
PyObject **garbage, **seqitems, **selfitems;
Py_ssize_t cur, i;
/* protect against a[::-1] = a */
if (self == (PyListObject*)value) {
seq = list_slice((PyListObject*)value, 0,
PyList_GET_SIZE(value));
}
else {
seq = PySequence_Fast(value,
"must assign iterable "
"to extended slice");
}
if (!seq)
return -1;
if (PySequence_Fast_GET_SIZE(seq) != slicelength) {
PyErr_Format(PyExc_ValueError,
"attempt to assign sequence of "
"size %zd to extended slice of "
"size %zd",
PySequence_Fast_GET_SIZE(seq),
slicelength);
Py_DECREF(seq);
return -1;
}
if (!slicelength) {
Py_DECREF(seq);
return 0;
}
garbage = (PyObject**)
PyMem_MALLOC(slicelength*sizeof(PyObject*));
if (!garbage) {
Py_DECREF(seq);
PyErr_NoMemory();
return -1;
}
selfitems = self->ob_item;
seqitems = PySequence_Fast_ITEMS(seq);
for (cur = start, i = 0; i < slicelength;
cur += (size_t)step, i++) {
garbage[i] = selfitems[cur];
ins = seqitems[i];
Py_INCREF(ins);
selfitems[cur] = ins;
}
for (i = 0; i < slicelength; i++) {
Py_DECREF(garbage[i]);
}
PyMem_FREE(garbage);
Py_DECREF(seq);
return 0;
}
}
else {
PyErr_Format(PyExc_TypeError,
"list indices must be integers or slices, not %.200s",
item->ob_type->tp_name);
return -1;
}
}
static PyMappingMethods list_as_mapping = {
(lenfunc)list_length,
(binaryfunc)list_subscript,
(objobjargproc)list_ass_subscript
};
PyTypeObject PyList_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"list",
sizeof(PyListObject),
0,
(destructor)list_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)list_repr, /* tp_repr */
0, /* tp_as_number */
&list_as_sequence, /* tp_as_sequence */
&list_as_mapping, /* tp_as_mapping */
PyObject_HashNotImplemented, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC |
Py_TPFLAGS_BASETYPE | Py_TPFLAGS_LIST_SUBCLASS, /* tp_flags */
list_doc, /* tp_doc */
(traverseproc)list_traverse, /* tp_traverse */
(inquiry)list_clear, /* tp_clear */
list_richcompare, /* tp_richcompare */
0, /* tp_weaklistoffset */
list_iter, /* tp_iter */
0, /* tp_iternext */
list_methods, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
(initproc)list_init, /* tp_init */
PyType_GenericAlloc, /* tp_alloc */
PyType_GenericNew, /* tp_new */
PyObject_GC_Del, /* tp_free */
};
/*********************** List Iterator **************************/
typedef struct {
PyObject_HEAD
Py_ssize_t it_index;
PyListObject *it_seq; /* Set to NULL when iterator is exhausted */
} listiterobject;
static PyObject *list_iter(PyObject *);
static void listiter_dealloc(listiterobject *);
static int listiter_traverse(listiterobject *, visitproc, void *);
static PyObject *listiter_next(listiterobject *);
static PyObject *listiter_len(listiterobject *);
static PyObject *listiter_reduce_general(void *_it, int forward);
static PyObject *listiter_reduce(listiterobject *);
static PyObject *listiter_setstate(listiterobject *, PyObject *state);
PyDoc_STRVAR(length_hint_doc, "Private method returning an estimate of len(list(it)).");
PyDoc_STRVAR(reduce_doc, "Return state information for pickling.");
PyDoc_STRVAR(setstate_doc, "Set state information for unpickling.");
static PyMethodDef listiter_methods[] = {
{"__length_hint__", (PyCFunction)listiter_len, METH_NOARGS, length_hint_doc},
{"__reduce__", (PyCFunction)listiter_reduce, METH_NOARGS, reduce_doc},
{"__setstate__", (PyCFunction)listiter_setstate, METH_O, setstate_doc},
{NULL, NULL} /* sentinel */
};
PyTypeObject PyListIter_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"list_iterator", /* tp_name */
sizeof(listiterobject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)listiter_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
0, /* tp_doc */
(traverseproc)listiter_traverse, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
PyObject_SelfIter, /* tp_iter */
(iternextfunc)listiter_next, /* tp_iternext */
listiter_methods, /* tp_methods */
0, /* tp_members */
};
static PyObject *
list_iter(PyObject *seq)
{
listiterobject *it;
if (!PyList_Check(seq)) {
PyErr_BadInternalCall();
return NULL;
}
it = PyObject_GC_New(listiterobject, &PyListIter_Type);
if (it == NULL)
return NULL;
it->it_index = 0;
Py_INCREF(seq);
it->it_seq = (PyListObject *)seq;
_PyObject_GC_TRACK(it);
return (PyObject *)it;
}
static void
listiter_dealloc(listiterobject *it)
{
_PyObject_GC_UNTRACK(it);
Py_XDECREF(it->it_seq);
PyObject_GC_Del(it);
}
static int
listiter_traverse(listiterobject *it, visitproc visit, void *arg)
{
Py_VISIT(it->it_seq);
return 0;
}
static PyObject *
listiter_next(listiterobject *it)
{
PyListObject *seq;
PyObject *item;
assert(it != NULL);
seq = it->it_seq;
if (seq == NULL)
return NULL;
assert(PyList_Check(seq));
if (it->it_index < PyList_GET_SIZE(seq)) {
item = PyList_GET_ITEM(seq, it->it_index);
++it->it_index;
Py_INCREF(item);
return item;
}
it->it_seq = NULL;
Py_DECREF(seq);
return NULL;
}
static PyObject *
listiter_len(listiterobject *it)
{
Py_ssize_t len;
if (it->it_seq) {
len = PyList_GET_SIZE(it->it_seq) - it->it_index;
if (len >= 0)
return PyLong_FromSsize_t(len);
}
return PyLong_FromLong(0);
}
static PyObject *
listiter_reduce(listiterobject *it)
{
return listiter_reduce_general(it, 1);
}
static PyObject *
listiter_setstate(listiterobject *it, PyObject *state)
{
Py_ssize_t index = PyLong_AsSsize_t(state);
if (index == -1 && PyErr_Occurred())
return NULL;
if (it->it_seq != NULL) {
if (index < 0)
index = 0;
else if (index > PyList_GET_SIZE(it->it_seq))
index = PyList_GET_SIZE(it->it_seq); /* iterator exhausted */
it->it_index = index;
}
Py_RETURN_NONE;
}
/*********************** List Reverse Iterator **************************/
typedef struct {
PyObject_HEAD
Py_ssize_t it_index;
PyListObject *it_seq; /* Set to NULL when iterator is exhausted */
} listreviterobject;
static PyObject *list_reversed(PyListObject *, PyObject *);
static void listreviter_dealloc(listreviterobject *);
static int listreviter_traverse(listreviterobject *, visitproc, void *);
static PyObject *listreviter_next(listreviterobject *);
static PyObject *listreviter_len(listreviterobject *);
static PyObject *listreviter_reduce(listreviterobject *);
static PyObject *listreviter_setstate(listreviterobject *, PyObject *);
static PyMethodDef listreviter_methods[] = {
{"__length_hint__", (PyCFunction)listreviter_len, METH_NOARGS, length_hint_doc},
{"__reduce__", (PyCFunction)listreviter_reduce, METH_NOARGS, reduce_doc},
{"__setstate__", (PyCFunction)listreviter_setstate, METH_O, setstate_doc},
{NULL, NULL} /* sentinel */
};
PyTypeObject PyListRevIter_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"list_reverseiterator", /* tp_name */
sizeof(listreviterobject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)listreviter_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
0, /* tp_doc */
(traverseproc)listreviter_traverse, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
PyObject_SelfIter, /* tp_iter */
(iternextfunc)listreviter_next, /* tp_iternext */
listreviter_methods, /* tp_methods */
0,
};
static PyObject *
list_reversed(PyListObject *seq, PyObject *unused)
{
listreviterobject *it;
it = PyObject_GC_New(listreviterobject, &PyListRevIter_Type);
if (it == NULL)
return NULL;
assert(PyList_Check(seq));
it->it_index = PyList_GET_SIZE(seq) - 1;
Py_INCREF(seq);
it->it_seq = seq;
PyObject_GC_Track(it);
return (PyObject *)it;
}
static void
listreviter_dealloc(listreviterobject *it)
{
PyObject_GC_UnTrack(it);
Py_XDECREF(it->it_seq);
PyObject_GC_Del(it);
}
static int
listreviter_traverse(listreviterobject *it, visitproc visit, void *arg)
{
Py_VISIT(it->it_seq);
return 0;
}
static PyObject *
listreviter_next(listreviterobject *it)
{
PyObject *item;
Py_ssize_t index;
PyListObject *seq;
assert(it != NULL);
seq = it->it_seq;
if (seq == NULL) {
return NULL;
}
assert(PyList_Check(seq));
index = it->it_index;
if (index>=0 && index < PyList_GET_SIZE(seq)) {
item = PyList_GET_ITEM(seq, index);
it->it_index--;
Py_INCREF(item);
return item;
}
it->it_index = -1;
it->it_seq = NULL;
Py_DECREF(seq);
return NULL;
}
static PyObject *
listreviter_len(listreviterobject *it)
{
Py_ssize_t len = it->it_index + 1;
if (it->it_seq == NULL || PyList_GET_SIZE(it->it_seq) < len)
len = 0;
return PyLong_FromSsize_t(len);
}
static PyObject *
listreviter_reduce(listreviterobject *it)
{
return listiter_reduce_general(it, 0);
}
static PyObject *
listreviter_setstate(listreviterobject *it, PyObject *state)
{
Py_ssize_t index = PyLong_AsSsize_t(state);
if (index == -1 && PyErr_Occurred())
return NULL;
if (it->it_seq != NULL) {
if (index < -1)
index = -1;
else if (index > PyList_GET_SIZE(it->it_seq) - 1)
index = PyList_GET_SIZE(it->it_seq) - 1;
it->it_index = index;
}
Py_RETURN_NONE;
}
/* common pickling support */
static PyObject *
listiter_reduce_general(void *_it, int forward)
{
PyObject *list;
/* the objects are not the same, index is of different types! */
if (forward) {
listiterobject *it = (listiterobject *)_it;
if (it->it_seq)
return Py_BuildValue("N(O)n", _PyObject_GetBuiltin("iter"),
it->it_seq, it->it_index);
} else {
listreviterobject *it = (listreviterobject *)_it;
if (it->it_seq)
return Py_BuildValue("N(O)n", _PyObject_GetBuiltin("reversed"),
it->it_seq, it->it_index);
}
/* empty iterator, create an empty list */
list = PyList_New(0);
if (list == NULL)
return NULL;
return Py_BuildValue("N(N)", _PyObject_GetBuiltin("iter"), list);
}
| 89,586 | 3,005 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/complexobject.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "libc/errno.h"
#include "libc/math.h"
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/boolobject.h"
#include "third_party/python/Include/complexobject.h"
#include "third_party/python/Include/floatobject.h"
#include "third_party/python/Include/longobject.h"
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/pyctype.h"
#include "third_party/python/Include/pyfpe.h"
#include "third_party/python/Include/pyhash.h"
#include "third_party/python/Include/pymacro.h"
#include "third_party/python/Include/pymath.h"
#include "third_party/python/Include/pystrtod.h"
#include "third_party/python/Include/structmember.h"
/* clang-format off */
/* Borrows heavily from floatobject.c */
/* Submitted by Jim Hugunin */
/* elementary operations on complex numbers */
static Py_complex c_1 = {1., 0.};
Py_complex
_Py_c_sum(Py_complex a, Py_complex b)
{
Py_complex r;
r.real = a.real + b.real;
r.imag = a.imag + b.imag;
return r;
}
Py_complex
_Py_c_diff(Py_complex a, Py_complex b)
{
Py_complex r;
r.real = a.real - b.real;
r.imag = a.imag - b.imag;
return r;
}
Py_complex
_Py_c_neg(Py_complex a)
{
Py_complex r;
r.real = -a.real;
r.imag = -a.imag;
return r;
}
Py_complex
_Py_c_prod(Py_complex a, Py_complex b)
{
Py_complex r;
r.real = a.real*b.real - a.imag*b.imag;
r.imag = a.real*b.imag + a.imag*b.real;
return r;
}
Py_complex
_Py_c_quot(Py_complex a, Py_complex b)
{
/******************************************************************
This was the original algorithm. It's grossly prone to spurious
overflow and underflow errors. It also merrily divides by 0 despite
checking for that(!). The code still serves a doc purpose here, as
the algorithm following is a simple by-cases transformation of this
one:
Py_complex r;
double d = b.real*b.real + b.imag*b.imag;
if (d == 0.)
errno = EDOM;
r.real = (a.real*b.real + a.imag*b.imag)/d;
r.imag = (a.imag*b.real - a.real*b.imag)/d;
return r;
******************************************************************/
/* This algorithm is better, and is pretty obvious: first divide the
* numerators and denominator by whichever of {b.real, b.imag} has
* larger magnitude. The earliest reference I found was to CACM
* Algorithm 116 (Complex Division, Robert L. Smith, Stanford
* University). As usual, though, we're still ignoring all IEEE
* endcases.
*/
Py_complex r; /* the result */
const double abs_breal = b.real < 0 ? -b.real : b.real;
const double abs_bimag = b.imag < 0 ? -b.imag : b.imag;
if (abs_breal >= abs_bimag) {
/* divide tops and bottom by b.real */
if (abs_breal == 0.0) {
errno = EDOM;
r.real = r.imag = 0.0;
}
else {
const double ratio = b.imag / b.real;
const double denom = b.real + b.imag * ratio;
r.real = (a.real + a.imag * ratio) / denom;
r.imag = (a.imag - a.real * ratio) / denom;
}
}
else if (abs_bimag >= abs_breal) {
/* divide tops and bottom by b.imag */
const double ratio = b.real / b.imag;
const double denom = b.real * ratio + b.imag;
assert(b.imag != 0.0);
r.real = (a.real * ratio + a.imag) / denom;
r.imag = (a.imag * ratio - a.real) / denom;
}
else {
/* At least one of b.real or b.imag is a NaN */
r.real = r.imag = Py_NAN;
}
return r;
}
Py_complex
_Py_c_pow(Py_complex a, Py_complex b)
{
Py_complex r;
double vabs,len,at,phase;
if (b.real == 0. && b.imag == 0.) {
r.real = 1.;
r.imag = 0.;
}
else if (a.real == 0. && a.imag == 0.) {
if (b.imag != 0. || b.real < 0.)
errno = EDOM;
r.real = 0.;
r.imag = 0.;
}
else {
vabs = hypot(a.real,a.imag);
len = pow(vabs,b.real);
at = atan2(a.imag, a.real);
phase = at*b.real;
if (b.imag != 0.0) {
len /= exp(at*b.imag);
phase += b.imag*log(vabs);
}
r.real = len*cos(phase);
r.imag = len*sin(phase);
}
return r;
}
static Py_complex
c_powu(Py_complex x, long n)
{
Py_complex r, p;
long mask = 1;
r = c_1;
p = x;
while (mask > 0 && n >= mask) {
if (n & mask)
r = _Py_c_prod(r,p);
mask <<= 1;
p = _Py_c_prod(p,p);
}
return r;
}
static Py_complex
c_powi(Py_complex x, long n)
{
Py_complex cn;
if (n > 100 || n < -100) {
cn.real = (double) n;
cn.imag = 0.;
return _Py_c_pow(x,cn);
}
else if (n > 0)
return c_powu(x,n);
else
return _Py_c_quot(c_1, c_powu(x,-n));
}
double
_Py_c_abs(Py_complex z)
{
/* sets errno = ERANGE on overflow; otherwise errno = 0 */
double result;
if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
/* C99 rules: if either the real or the imaginary part is an
infinity, return infinity, even if the other part is a
NaN. */
if (Py_IS_INFINITY(z.real)) {
result = fabs(z.real);
errno = 0;
return result;
}
if (Py_IS_INFINITY(z.imag)) {
result = fabs(z.imag);
errno = 0;
return result;
}
/* either the real or imaginary part is a NaN,
and neither is infinite. Result should be NaN. */
return Py_NAN;
}
result = hypot(z.real, z.imag);
if (!Py_IS_FINITE(result))
errno = ERANGE;
else
errno = 0;
return result;
}
static PyObject *
complex_subtype_from_c_complex(PyTypeObject *type, Py_complex cval)
{
PyObject *op;
op = type->tp_alloc(type, 0);
if (op != NULL)
((PyComplexObject *)op)->cval = cval;
return op;
}
PyObject *
PyComplex_FromCComplex(Py_complex cval)
{
PyComplexObject *op;
/* Inline PyObject_New */
op = (PyComplexObject *) PyObject_MALLOC(sizeof(PyComplexObject));
if (op == NULL)
return PyErr_NoMemory();
(void)PyObject_INIT(op, &PyComplex_Type);
op->cval = cval;
return (PyObject *) op;
}
static PyObject *
complex_subtype_from_doubles(PyTypeObject *type, double real, double imag)
{
Py_complex c;
c.real = real;
c.imag = imag;
return complex_subtype_from_c_complex(type, c);
}
PyObject *
PyComplex_FromDoubles(double real, double imag)
{
Py_complex c;
c.real = real;
c.imag = imag;
return PyComplex_FromCComplex(c);
}
double
PyComplex_RealAsDouble(PyObject *op)
{
if (PyComplex_Check(op)) {
return ((PyComplexObject *)op)->cval.real;
}
else {
return PyFloat_AsDouble(op);
}
}
double
PyComplex_ImagAsDouble(PyObject *op)
{
if (PyComplex_Check(op)) {
return ((PyComplexObject *)op)->cval.imag;
}
else {
return 0.0;
}
}
static PyObject *
try_complex_special_method(PyObject *op) {
PyObject *f;
_Py_IDENTIFIER(__complex__);
f = _PyObject_LookupSpecial(op, &PyId___complex__);
if (f) {
PyObject *res = PyObject_CallFunctionObjArgs(f, NULL);
Py_DECREF(f);
if (res != NULL && !PyComplex_Check(res)) {
PyErr_SetString(PyExc_TypeError,
"__complex__ should return a complex object");
Py_DECREF(res);
return NULL;
}
return res;
}
return NULL;
}
Py_complex
PyComplex_AsCComplex(PyObject *op)
{
Py_complex cv;
PyObject *newop = NULL;
assert(op);
/* If op is already of type PyComplex_Type, return its value */
if (PyComplex_Check(op)) {
return ((PyComplexObject *)op)->cval;
}
/* If not, use op's __complex__ method, if it exists */
/* return -1 on failure */
cv.real = -1.;
cv.imag = 0.;
newop = try_complex_special_method(op);
if (newop) {
cv = ((PyComplexObject *)newop)->cval;
Py_DECREF(newop);
return cv;
}
else if (PyErr_Occurred()) {
return cv;
}
/* If neither of the above works, interpret op as a float giving the
real part of the result, and fill in the imaginary part as 0. */
else {
/* PyFloat_AsDouble will return -1 on failure */
cv.real = PyFloat_AsDouble(op);
return cv;
}
}
static void
complex_dealloc(PyObject *op)
{
op->ob_type->tp_free(op);
}
static PyObject *
complex_repr(PyComplexObject *v)
{
int precision = 0;
char format_code = 'r';
PyObject *result = NULL;
/* If these are non-NULL, they'll need to be freed. */
char *pre = NULL;
char *im = NULL;
/* These do not need to be freed. re is either an alias
for pre or a pointer to a constant. lead and tail
are pointers to constants. */
char *re = NULL;
char *lead = "";
char *tail = "";
if (v->cval.real == 0. && copysign(1.0, v->cval.real)==1.0) {
/* Real part is +0: just output the imaginary part and do not
include parens. */
re = "";
im = PyOS_double_to_string(v->cval.imag, format_code,
precision, 0, NULL);
if (!im) {
PyErr_NoMemory();
goto done;
}
} else {
/* Format imaginary part with sign, real part without. Include
parens in the result. */
pre = PyOS_double_to_string(v->cval.real, format_code,
precision, 0, NULL);
if (!pre) {
PyErr_NoMemory();
goto done;
}
re = pre;
im = PyOS_double_to_string(v->cval.imag, format_code,
precision, Py_DTSF_SIGN, NULL);
if (!im) {
PyErr_NoMemory();
goto done;
}
lead = "(";
tail = ")";
}
result = PyUnicode_FromFormat("%s%s%sj%s", lead, re, im, tail);
done:
PyMem_Free(im);
PyMem_Free(pre);
return result;
}
static Py_hash_t
complex_hash(PyComplexObject *v)
{
Py_uhash_t hashreal, hashimag, combined;
hashreal = (Py_uhash_t)_Py_HashDouble(v->cval.real);
if (hashreal == (Py_uhash_t)-1)
return -1;
hashimag = (Py_uhash_t)_Py_HashDouble(v->cval.imag);
if (hashimag == (Py_uhash_t)-1)
return -1;
/* Note: if the imaginary part is 0, hashimag is 0 now,
* so the following returns hashreal unchanged. This is
* important because numbers of different types that
* compare equal must have the same hash value, so that
* hash(x + 0*j) must equal hash(x).
*/
combined = hashreal + _PyHASH_IMAG * hashimag;
if (combined == (Py_uhash_t)-1)
combined = (Py_uhash_t)-2;
return (Py_hash_t)combined;
}
/* This macro may return! */
#define TO_COMPLEX(obj, c) \
if (PyComplex_Check(obj)) \
c = ((PyComplexObject *)(obj))->cval; \
else if (to_complex(&(obj), &(c)) < 0) \
return (obj)
static int
to_complex(PyObject **pobj, Py_complex *pc)
{
PyObject *obj = *pobj;
pc->real = pc->imag = 0.0;
if (PyLong_Check(obj)) {
pc->real = PyLong_AsDouble(obj);
if (pc->real == -1.0 && PyErr_Occurred()) {
*pobj = NULL;
return -1;
}
return 0;
}
if (PyFloat_Check(obj)) {
pc->real = PyFloat_AsDouble(obj);
return 0;
}
Py_INCREF(Py_NotImplemented);
*pobj = Py_NotImplemented;
return -1;
}
static PyObject *
complex_add(PyObject *v, PyObject *w)
{
Py_complex result;
Py_complex a, b;
TO_COMPLEX(v, a);
TO_COMPLEX(w, b);
PyFPE_START_PROTECT("complex_add", return 0)
result = _Py_c_sum(a, b);
PyFPE_END_PROTECT(result)
return PyComplex_FromCComplex(result);
}
static PyObject *
complex_sub(PyObject *v, PyObject *w)
{
Py_complex result;
Py_complex a, b;
TO_COMPLEX(v, a);
TO_COMPLEX(w, b);
PyFPE_START_PROTECT("complex_sub", return 0)
result = _Py_c_diff(a, b);
PyFPE_END_PROTECT(result)
return PyComplex_FromCComplex(result);
}
static PyObject *
complex_mul(PyObject *v, PyObject *w)
{
Py_complex result;
Py_complex a, b;
TO_COMPLEX(v, a);
TO_COMPLEX(w, b);
PyFPE_START_PROTECT("complex_mul", return 0)
result = _Py_c_prod(a, b);
PyFPE_END_PROTECT(result)
return PyComplex_FromCComplex(result);
}
static PyObject *
complex_div(PyObject *v, PyObject *w)
{
Py_complex quot;
Py_complex a, b;
TO_COMPLEX(v, a);
TO_COMPLEX(w, b);
PyFPE_START_PROTECT("complex_div", return 0)
errno = 0;
quot = _Py_c_quot(a, b);
PyFPE_END_PROTECT(quot)
if (errno == EDOM) {
PyErr_SetString(PyExc_ZeroDivisionError, "complex division by zero");
return NULL;
}
return PyComplex_FromCComplex(quot);
}
static PyObject *
complex_remainder(PyObject *v, PyObject *w)
{
PyErr_SetString(PyExc_TypeError,
"can't mod complex numbers.");
return NULL;
}
static PyObject *
complex_divmod(PyObject *v, PyObject *w)
{
PyErr_SetString(PyExc_TypeError,
"can't take floor or mod of complex number.");
return NULL;
}
static PyObject *
complex_pow(PyObject *v, PyObject *w, PyObject *z)
{
Py_complex p;
Py_complex exponent;
long int_exponent;
Py_complex a, b;
TO_COMPLEX(v, a);
TO_COMPLEX(w, b);
if (z != Py_None) {
PyErr_SetString(PyExc_ValueError, "complex modulo");
return NULL;
}
PyFPE_START_PROTECT("complex_pow", return 0)
errno = 0;
exponent = b;
int_exponent = (long)exponent.real;
if (exponent.imag == 0. && exponent.real == int_exponent)
p = c_powi(a, int_exponent);
else
p = _Py_c_pow(a, exponent);
PyFPE_END_PROTECT(p)
Py_ADJUST_ERANGE2(p.real, p.imag);
if (errno == EDOM) {
PyErr_SetString(PyExc_ZeroDivisionError,
"0.0 to a negative or complex power");
return NULL;
}
else if (errno == ERANGE) {
PyErr_SetString(PyExc_OverflowError,
"complex exponentiation");
return NULL;
}
return PyComplex_FromCComplex(p);
}
static PyObject *
complex_int_div(PyObject *v, PyObject *w)
{
PyErr_SetString(PyExc_TypeError,
"can't take floor of complex number.");
return NULL;
}
static PyObject *
complex_neg(PyComplexObject *v)
{
Py_complex neg;
neg.real = -v->cval.real;
neg.imag = -v->cval.imag;
return PyComplex_FromCComplex(neg);
}
static PyObject *
complex_pos(PyComplexObject *v)
{
if (PyComplex_CheckExact(v)) {
Py_INCREF(v);
return (PyObject *)v;
}
else
return PyComplex_FromCComplex(v->cval);
}
static PyObject *
complex_abs(PyComplexObject *v)
{
double result;
PyFPE_START_PROTECT("complex_abs", return 0)
result = _Py_c_abs(v->cval);
PyFPE_END_PROTECT(result)
if (errno == ERANGE) {
PyErr_SetString(PyExc_OverflowError,
"absolute value too large");
return NULL;
}
return PyFloat_FromDouble(result);
}
static int
complex_bool(PyComplexObject *v)
{
return v->cval.real != 0.0 || v->cval.imag != 0.0;
}
static PyObject *
complex_richcompare(PyObject *v, PyObject *w, int op)
{
PyObject *res;
Py_complex i;
int equal;
if (op != Py_EQ && op != Py_NE) {
goto Unimplemented;
}
assert(PyComplex_Check(v));
TO_COMPLEX(v, i);
if (PyLong_Check(w)) {
/* Check for 0.0 imaginary part first to avoid the rich
* comparison when possible.
*/
if (i.imag == 0.0) {
PyObject *j, *sub_res;
j = PyFloat_FromDouble(i.real);
if (j == NULL)
return NULL;
sub_res = PyObject_RichCompare(j, w, op);
Py_DECREF(j);
return sub_res;
}
else {
equal = 0;
}
}
else if (PyFloat_Check(w)) {
equal = (i.real == PyFloat_AsDouble(w) && i.imag == 0.0);
}
else if (PyComplex_Check(w)) {
Py_complex j;
TO_COMPLEX(w, j);
equal = (i.real == j.real && i.imag == j.imag);
}
else {
goto Unimplemented;
}
if (equal == (op == Py_EQ))
res = Py_True;
else
res = Py_False;
Py_INCREF(res);
return res;
Unimplemented:
Py_RETURN_NOTIMPLEMENTED;
}
static PyObject *
complex_int(PyObject *v)
{
PyErr_SetString(PyExc_TypeError,
"can't convert complex to int");
return NULL;
}
static PyObject *
complex_float(PyObject *v)
{
PyErr_SetString(PyExc_TypeError,
"can't convert complex to float");
return NULL;
}
static PyObject *
complex_conjugate(PyObject *self)
{
Py_complex c;
c = ((PyComplexObject *)self)->cval;
c.imag = -c.imag;
return PyComplex_FromCComplex(c);
}
PyDoc_STRVAR(complex_conjugate_doc,
"complex.conjugate() -> complex\n"
"\n"
"Return the complex conjugate of its argument. (3-4j).conjugate() == 3+4j.");
static PyObject *
complex_getnewargs(PyComplexObject *v)
{
Py_complex c = v->cval;
return Py_BuildValue("(dd)", c.real, c.imag);
}
PyDoc_STRVAR(complex__format__doc,
"complex.__format__() -> str\n"
"\n"
"Convert to a string according to format_spec.");
static PyObject *
complex__format__(PyObject* self, PyObject* args)
{
PyObject *format_spec;
_PyUnicodeWriter writer;
int ret;
if (!PyArg_ParseTuple(args, "U:__format__", &format_spec))
return NULL;
_PyUnicodeWriter_Init(&writer);
ret = _PyComplex_FormatAdvancedWriter(
&writer,
self,
format_spec, 0, PyUnicode_GET_LENGTH(format_spec));
if (ret == -1) {
_PyUnicodeWriter_Dealloc(&writer);
return NULL;
}
return _PyUnicodeWriter_Finish(&writer);
}
#if 0
static PyObject *
complex_is_finite(PyObject *self)
{
Py_complex c;
c = ((PyComplexObject *)self)->cval;
return PyBool_FromLong((long)(Py_IS_FINITE(c.real) &&
Py_IS_FINITE(c.imag)));
}
PyDoc_STRVAR(complex_is_finite_doc,
"complex.is_finite() -> bool\n"
"\n"
"Returns True if the real and the imaginary part is finite.");
#endif
static PyMethodDef complex_methods[] = {
{"conjugate", (PyCFunction)complex_conjugate, METH_NOARGS,
complex_conjugate_doc},
#if 0
{"is_finite", (PyCFunction)complex_is_finite, METH_NOARGS,
complex_is_finite_doc},
#endif
{"__getnewargs__", (PyCFunction)complex_getnewargs, METH_NOARGS},
{"__format__", (PyCFunction)complex__format__,
METH_VARARGS, complex__format__doc},
{NULL, NULL} /* sentinel */
};
static PyMemberDef complex_members[] = {
{"real", T_DOUBLE, offsetof(PyComplexObject, cval.real), READONLY,
"the real part of a complex number"},
{"imag", T_DOUBLE, offsetof(PyComplexObject, cval.imag), READONLY,
"the imaginary part of a complex number"},
{0},
};
static PyObject *
complex_from_string_inner(const char *s, Py_ssize_t len, void *type)
{
double x=0.0, y=0.0, z;
int got_bracket=0;
const char *start;
char *end;
/* position on first nonblank */
start = s;
while (Py_ISSPACE(*s))
s++;
if (*s == '(') {
/* Skip over possible bracket from repr(). */
got_bracket = 1;
s++;
while (Py_ISSPACE(*s))
s++;
}
/* a valid complex string usually takes one of the three forms:
<float> - real part only
<float>j - imaginary part only
<float><signed-float>j - real and imaginary parts
where <float> represents any numeric string that's accepted by the
float constructor (including 'nan', 'inf', 'infinity', etc.), and
<signed-float> is any string of the form <float> whose first
character is '+' or '-'.
For backwards compatibility, the extra forms
<float><sign>j
<sign>j
j
are also accepted, though support for these forms may be removed from
a future version of Python.
*/
/* first look for forms starting with <float> */
z = PyOS_string_to_double(s, &end, NULL);
if (z == -1.0 && PyErr_Occurred()) {
if (PyErr_ExceptionMatches(PyExc_ValueError))
PyErr_Clear();
else
return NULL;
}
if (end != s) {
/* all 4 forms starting with <float> land here */
s = end;
if (*s == '+' || *s == '-') {
/* <float><signed-float>j | <float><sign>j */
x = z;
y = PyOS_string_to_double(s, &end, NULL);
if (y == -1.0 && PyErr_Occurred()) {
if (PyErr_ExceptionMatches(PyExc_ValueError))
PyErr_Clear();
else
return NULL;
}
if (end != s)
/* <float><signed-float>j */
s = end;
else {
/* <float><sign>j */
y = *s == '+' ? 1.0 : -1.0;
s++;
}
if (!(*s == 'j' || *s == 'J'))
goto parse_error;
s++;
}
else if (*s == 'j' || *s == 'J') {
/* <float>j */
s++;
y = z;
}
else
/* <float> */
x = z;
}
else {
/* not starting with <float>; must be <sign>j or j */
if (*s == '+' || *s == '-') {
/* <sign>j */
y = *s == '+' ? 1.0 : -1.0;
s++;
}
else
/* j */
y = 1.0;
if (!(*s == 'j' || *s == 'J'))
goto parse_error;
s++;
}
/* trailing whitespace and closing bracket */
while (Py_ISSPACE(*s))
s++;
if (got_bracket) {
/* if there was an opening parenthesis, then the corresponding
closing parenthesis should be right here */
if (*s != ')')
goto parse_error;
s++;
while (Py_ISSPACE(*s))
s++;
}
/* we should now be at the end of the string */
if (s-start != len)
goto parse_error;
return complex_subtype_from_doubles((PyTypeObject *)type, x, y);
parse_error:
PyErr_SetString(PyExc_ValueError,
"complex() arg is a malformed string");
return NULL;
}
static PyObject *
complex_subtype_from_string(PyTypeObject *type, PyObject *v)
{
const char *s;
PyObject *s_buffer = NULL, *result = NULL;
Py_ssize_t len;
if (PyUnicode_Check(v)) {
s_buffer = _PyUnicode_TransformDecimalAndSpaceToASCII(v);
if (s_buffer == NULL) {
return NULL;
}
s = PyUnicode_AsUTF8AndSize(s_buffer, &len);
if (s == NULL) {
goto exit;
}
}
else {
PyErr_Format(PyExc_TypeError,
"complex() argument must be a string or a number, not '%.200s'",
Py_TYPE(v)->tp_name);
return NULL;
}
result = _Py_string_to_number_with_underscores(s, len, "complex", v, type,
complex_from_string_inner);
exit:
Py_DECREF(s_buffer);
return result;
}
static PyObject *
complex_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyObject *r, *i, *tmp;
PyNumberMethods *nbr, *nbi = NULL;
Py_complex cr, ci;
int own_r = 0;
int cr_is_complex = 0;
int ci_is_complex = 0;
static char *kwlist[] = {"real", "imag", 0};
r = Py_False;
i = NULL;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OO:complex", kwlist,
&r, &i))
return NULL;
/* Special-case for a single argument when type(arg) is complex. */
if (PyComplex_CheckExact(r) && i == NULL &&
type == &PyComplex_Type) {
/* Note that we can't know whether it's safe to return
a complex *subclass* instance as-is, hence the restriction
to exact complexes here. If either the input or the
output is a complex subclass, it will be handled below
as a non-orthogonal vector. */
Py_INCREF(r);
return r;
}
if (PyUnicode_Check(r)) {
if (i != NULL) {
PyErr_SetString(PyExc_TypeError,
"complex() can't take second arg"
" if first is a string");
return NULL;
}
return complex_subtype_from_string(type, r);
}
if (i != NULL && PyUnicode_Check(i)) {
PyErr_SetString(PyExc_TypeError,
"complex() second arg can't be a string");
return NULL;
}
tmp = try_complex_special_method(r);
if (tmp) {
r = tmp;
own_r = 1;
}
else if (PyErr_Occurred()) {
return NULL;
}
nbr = r->ob_type->tp_as_number;
if (nbr == NULL || nbr->nb_float == NULL) {
PyErr_Format(PyExc_TypeError,
"complex() first argument must be a string or a number, "
"not '%.200s'",
Py_TYPE(r)->tp_name);
if (own_r) {
Py_DECREF(r);
}
return NULL;
}
if (i != NULL) {
nbi = i->ob_type->tp_as_number;
if (nbi == NULL || nbi->nb_float == NULL) {
PyErr_Format(PyExc_TypeError,
"complex() second argument must be a number, "
"not '%.200s'",
Py_TYPE(i)->tp_name);
if (own_r) {
Py_DECREF(r);
}
return NULL;
}
}
/* If we get this far, then the "real" and "imag" parts should
both be treated as numbers, and the constructor should return a
complex number equal to (real + imag*1j).
Note that we do NOT assume the input to already be in canonical
form; the "real" and "imag" parts might themselves be complex
numbers, which slightly complicates the code below. */
if (PyComplex_Check(r)) {
/* Note that if r is of a complex subtype, we're only
retaining its real & imag parts here, and the return
value is (properly) of the builtin complex type. */
cr = ((PyComplexObject*)r)->cval;
cr_is_complex = 1;
if (own_r) {
Py_DECREF(r);
}
}
else {
/* The "real" part really is entirely real, and contributes
nothing in the imaginary direction.
Just treat it as a double. */
tmp = PyNumber_Float(r);
if (own_r) {
/* r was a newly created complex number, rather
than the original "real" argument. */
Py_DECREF(r);
}
if (tmp == NULL)
return NULL;
if (!PyFloat_Check(tmp)) {
PyErr_SetString(PyExc_TypeError,
"float(r) didn't return a float");
Py_DECREF(tmp);
return NULL;
}
cr.real = PyFloat_AsDouble(tmp);
cr.imag = 0.0;
Py_DECREF(tmp);
}
if (i == NULL) {
ci.real = cr.imag;
}
else if (PyComplex_Check(i)) {
ci = ((PyComplexObject*)i)->cval;
ci_is_complex = 1;
} else {
/* The "imag" part really is entirely imaginary, and
contributes nothing in the real direction.
Just treat it as a double. */
tmp = (*nbi->nb_float)(i);
if (tmp == NULL)
return NULL;
ci.real = PyFloat_AsDouble(tmp);
Py_DECREF(tmp);
}
/* If the input was in canonical form, then the "real" and "imag"
parts are real numbers, so that ci.imag and cr.imag are zero.
We need this correction in case they were not real numbers. */
if (ci_is_complex) {
cr.real -= ci.imag;
}
if (cr_is_complex && i != NULL) {
ci.real += cr.imag;
}
return complex_subtype_from_doubles(type, cr.real, ci.real);
}
PyDoc_STRVAR(complex_doc,
"complex(real[, imag]) -> complex number\n"
"\n"
"Create a complex number from a real part and an optional imaginary part.\n"
"This is equivalent to (real + imag*1j) where imag defaults to 0.");
static PyNumberMethods complex_as_number = {
(binaryfunc)complex_add, /* nb_add */
(binaryfunc)complex_sub, /* nb_subtract */
(binaryfunc)complex_mul, /* nb_multiply */
(binaryfunc)complex_remainder, /* nb_remainder */
(binaryfunc)complex_divmod, /* nb_divmod */
(ternaryfunc)complex_pow, /* nb_power */
(unaryfunc)complex_neg, /* nb_negative */
(unaryfunc)complex_pos, /* nb_positive */
(unaryfunc)complex_abs, /* nb_absolute */
(inquiry)complex_bool, /* nb_bool */
0, /* nb_invert */
0, /* nb_lshift */
0, /* nb_rshift */
0, /* nb_and */
0, /* nb_xor */
0, /* nb_or */
complex_int, /* nb_int */
0, /* nb_reserved */
complex_float, /* nb_float */
0, /* nb_inplace_add */
0, /* nb_inplace_subtract */
0, /* nb_inplace_multiply*/
0, /* nb_inplace_remainder */
0, /* nb_inplace_power */
0, /* nb_inplace_lshift */
0, /* nb_inplace_rshift */
0, /* nb_inplace_and */
0, /* nb_inplace_xor */
0, /* nb_inplace_or */
(binaryfunc)complex_int_div, /* nb_floor_divide */
(binaryfunc)complex_div, /* nb_true_divide */
0, /* nb_inplace_floor_divide */
0, /* nb_inplace_true_divide */
};
PyTypeObject PyComplex_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"complex",
sizeof(PyComplexObject),
0,
complex_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)complex_repr, /* tp_repr */
&complex_as_number, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
(hashfunc)complex_hash, /* tp_hash */
0, /* tp_call */
(reprfunc)complex_repr, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
complex_doc, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
complex_richcompare, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
complex_methods, /* tp_methods */
complex_members, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
PyType_GenericAlloc, /* tp_alloc */
complex_new, /* tp_new */
PyObject_Del, /* tp_free */
};
| 33,944 | 1,160 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/floatobject.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "libc/errno.h"
#include "libc/fmt/conv.h"
#include "libc/math.h"
#include "libc/runtime/fenv.h"
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/boolobject.h"
#include "third_party/python/Include/bytearrayobject.h"
#include "third_party/python/Include/codecs.h"
#include "third_party/python/Include/complexobject.h"
#include "third_party/python/Include/descrobject.h"
#include "third_party/python/Include/dtoa.h"
#include "third_party/python/Include/floatobject.h"
#include "third_party/python/Include/longobject.h"
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/object.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/pyctype.h"
#include "third_party/python/Include/pyerrors.h"
#include "third_party/python/Include/pyfpe.h"
#include "third_party/python/Include/pyhash.h"
#include "third_party/python/Include/pymacro.h"
#include "third_party/python/Include/pymath.h"
#include "third_party/python/Include/pystrtod.h"
#include "third_party/python/Include/structseq.h"
#include "third_party/python/Include/warnings.h"
/* clang-format off */
/* XXX There should be overflow checks here, but it's hard to check
for any kind of float exception without losing portability. */
/* Special free list
free_list is a singly-linked list of available PyFloatObjects, linked
via abuse of their ob_type members.
*/
#ifndef PyFloat_MAXFREELIST
#define PyFloat_MAXFREELIST 100
#endif
static int numfree = 0;
static PyFloatObject *free_list = NULL;
double
PyFloat_GetMax(void)
{
return DBL_MAX;
}
double
PyFloat_GetMin(void)
{
return DBL_MIN;
}
static PyTypeObject FloatInfoType;
PyDoc_STRVAR(floatinfo__doc__,
"sys.float_info\n\
\n\
A structseq holding information about the float type. It contains low level\n\
information about the precision and internal representation. Please study\n\
your system's :file:`float.h` for more information.");
static PyStructSequence_Field floatinfo_fields[] = {
{"max", PyDoc_STR("DBL_MAX -- maximum representable finite float")},
{"max_exp", PyDoc_STR("DBL_MAX_EXP -- maximum int e such that radix**(e-1) is representable")},
{"max_10_exp", PyDoc_STR("DBL_MAX_10_EXP -- maximum int e such that 10**e is representable")},
{"min", PyDoc_STR("DBL_MIN -- Minimum positive normalized float")},
{"min_exp", PyDoc_STR("DBL_MIN_EXP -- minimum int e such that radix**(e-1) is a normalized float")},
{"min_10_exp", PyDoc_STR("DBL_MIN_10_EXP -- minimum int e such that 10**e is a normalized")},
{"dig", PyDoc_STR("DBL_DIG -- digits")},
{"mant_dig", PyDoc_STR("DBL_MANT_DIG -- mantissa digits")},
{"epsilon", PyDoc_STR("DBL_EPSILON -- Difference between 1 and the next representable float")},
{"radix", PyDoc_STR("FLT_RADIX -- radix of exponent")},
{"rounds", PyDoc_STR("FLT_ROUNDS -- rounding mode")},
{0}
};
static PyStructSequence_Desc floatinfo_desc = {
"sys.float_info", /* name */
floatinfo__doc__, /* doc */
floatinfo_fields, /* fields */
11
};
PyObject *
PyFloat_GetInfo(void)
{
PyObject* floatinfo;
int pos = 0;
floatinfo = PyStructSequence_New(&FloatInfoType);
if (floatinfo == NULL) {
return NULL;
}
#define SetIntFlag(flag) \
PyStructSequence_SET_ITEM(floatinfo, pos++, PyLong_FromLong(flag))
#define SetDblFlag(flag) \
PyStructSequence_SET_ITEM(floatinfo, pos++, PyFloat_FromDouble(flag))
SetDblFlag(DBL_MAX);
SetIntFlag(DBL_MAX_EXP);
SetIntFlag(DBL_MAX_10_EXP);
SetDblFlag(DBL_MIN);
SetIntFlag(DBL_MIN_EXP);
SetIntFlag(DBL_MIN_10_EXP);
SetIntFlag(DBL_DIG);
SetIntFlag(DBL_MANT_DIG);
SetDblFlag(DBL_EPSILON);
SetIntFlag(FLT_RADIX);
SetIntFlag(FLT_ROUNDS);
#undef SetIntFlag
#undef SetDblFlag
if (PyErr_Occurred()) {
Py_CLEAR(floatinfo);
return NULL;
}
return floatinfo;
}
PyObject *
PyFloat_FromDouble(double fval)
{
PyFloatObject *op = free_list;
if (op != NULL) {
free_list = (PyFloatObject *) Py_TYPE(op);
numfree--;
} else {
op = (PyFloatObject*) PyObject_MALLOC(sizeof(PyFloatObject));
if (!op)
return PyErr_NoMemory();
}
/* Inline PyObject_New */
(void)PyObject_INIT(op, &PyFloat_Type);
op->ob_fval = fval;
return (PyObject *) op;
}
static PyObject *
float_from_string_inner(const char *s, Py_ssize_t len, void *obj)
{
double x;
const char *end;
const char *last = s + len;
/* strip space */
while (s < last && Py_ISSPACE(*s)) {
s++;
}
while (s < last - 1 && Py_ISSPACE(last[-1])) {
last--;
}
/* We don't care about overflow or underflow. If the platform
* supports them, infinities and signed zeroes (on underflow) are
* fine. */
x = PyOS_string_to_double(s, (char **)&end, NULL);
if (end != last) {
PyErr_Format(PyExc_ValueError,
"could not convert string to float: "
"%R", obj);
return NULL;
}
else if (x == -1.0 && PyErr_Occurred()) {
return NULL;
}
else {
return PyFloat_FromDouble(x);
}
}
PyObject *
PyFloat_FromString(PyObject *v)
{
const char *s;
PyObject *s_buffer = NULL;
Py_ssize_t len;
Py_buffer view = {NULL, NULL};
PyObject *result = NULL;
if (PyUnicode_Check(v)) {
s_buffer = _PyUnicode_TransformDecimalAndSpaceToASCII(v);
if (s_buffer == NULL)
return NULL;
s = PyUnicode_AsUTF8AndSize(s_buffer, &len);
if (s == NULL) {
Py_DECREF(s_buffer);
return NULL;
}
}
else if (PyBytes_Check(v)) {
s = PyBytes_AS_STRING(v);
len = PyBytes_GET_SIZE(v);
}
else if (PyByteArray_Check(v)) {
s = PyByteArray_AS_STRING(v);
len = PyByteArray_GET_SIZE(v);
}
else if (PyObject_GetBuffer(v, &view, PyBUF_SIMPLE) == 0) {
s = (const char *)view.buf;
len = view.len;
/* Copy to NUL-terminated buffer. */
s_buffer = PyBytes_FromStringAndSize(s, len);
if (s_buffer == NULL) {
PyBuffer_Release(&view);
return NULL;
}
s = PyBytes_AS_STRING(s_buffer);
}
else {
PyErr_Format(PyExc_TypeError,
"float() argument must be a string or a number, not '%.200s'",
Py_TYPE(v)->tp_name);
return NULL;
}
result = _Py_string_to_number_with_underscores(s, len, "float", v, v,
float_from_string_inner);
PyBuffer_Release(&view);
Py_XDECREF(s_buffer);
return result;
}
static void
float_dealloc(PyFloatObject *op)
{
if (PyFloat_CheckExact(op)) {
if (numfree >= PyFloat_MAXFREELIST) {
PyObject_FREE(op);
return;
}
numfree++;
Py_TYPE(op) = (struct _typeobject *)free_list;
free_list = op;
}
else
Py_TYPE(op)->tp_free((PyObject *)op);
}
double
PyFloat_AsDouble(PyObject *op)
{
PyNumberMethods *nb;
PyObject *res;
double val;
if (op == NULL) {
PyErr_BadArgument();
return -1;
}
if (PyFloat_Check(op)) {
return PyFloat_AS_DOUBLE(op);
}
nb = Py_TYPE(op)->tp_as_number;
if (nb == NULL || nb->nb_float == NULL) {
PyErr_Format(PyExc_TypeError, "must be real number, not %.50s",
op->ob_type->tp_name);
return -1;
}
res = (*nb->nb_float) (op);
if (res == NULL) {
return -1;
}
if (!PyFloat_CheckExact(res)) {
if (!PyFloat_Check(res)) {
PyErr_Format(PyExc_TypeError,
"%.50s.__float__ returned non-float (type %.50s)",
op->ob_type->tp_name, res->ob_type->tp_name);
Py_DECREF(res);
return -1;
}
if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1,
"%.50s.__float__ returned non-float (type %.50s). "
"The ability to return an instance of a strict subclass of float "
"is deprecated, and may be removed in a future version of Python.",
op->ob_type->tp_name, res->ob_type->tp_name)) {
Py_DECREF(res);
return -1;
}
}
val = PyFloat_AS_DOUBLE(res);
Py_DECREF(res);
return val;
}
/* Macro and helper that convert PyObject obj to a C double and store
the value in dbl. If conversion to double raises an exception, obj is
set to NULL, and the function invoking this macro returns NULL. If
obj is not of float or int type, Py_NotImplemented is incref'ed,
stored in obj, and returned from the function invoking this macro.
*/
#define CONVERT_TO_DOUBLE(obj, dbl) \
if (PyFloat_Check(obj)) \
dbl = PyFloat_AS_DOUBLE(obj); \
else if (convert_to_double(&(obj), &(dbl)) < 0) \
return obj;
/* Methods */
static int
convert_to_double(PyObject **v, double *dbl)
{
PyObject *obj = *v;
if (PyLong_Check(obj)) {
*dbl = PyLong_AsDouble(obj);
if (*dbl == -1.0 && PyErr_Occurred()) {
*v = NULL;
return -1;
}
}
else {
Py_INCREF(Py_NotImplemented);
*v = Py_NotImplemented;
return -1;
}
return 0;
}
static PyObject *
float_repr(PyFloatObject *v)
{
PyObject *result;
char *buf;
buf = PyOS_double_to_string(PyFloat_AS_DOUBLE(v),
'r', 0,
Py_DTSF_ADD_DOT_0,
NULL);
if (!buf)
return PyErr_NoMemory();
result = _PyUnicode_FromASCII(buf, strlen(buf));
PyMem_Free(buf);
return result;
}
/* Comparison is pretty much a nightmare. When comparing float to float,
* we do it as straightforwardly (and long-windedly) as conceivable, so
* that, e.g., Python x == y delivers the same result as the platform
* C x == y when x and/or y is a NaN.
* When mixing float with an integer type, there's no good *uniform* approach.
* Converting the double to an integer obviously doesn't work, since we
* may lose info from fractional bits. Converting the integer to a double
* also has two failure modes: (1) an int may trigger overflow (too
* large to fit in the dynamic range of a C double); (2) even a C long may have
* more bits than fit in a C double (e.g., on a 64-bit box long may have
* 63 bits of precision, but a C double probably has only 53), and then
* we can falsely claim equality when low-order integer bits are lost by
* coercion to double. So this part is painful too.
*/
static PyObject*
float_richcompare(PyObject *v, PyObject *w, int op)
{
double i, j;
int r = 0;
assert(PyFloat_Check(v));
i = PyFloat_AS_DOUBLE(v);
/* Switch on the type of w. Set i and j to doubles to be compared,
* and op to the richcomp to use.
*/
if (PyFloat_Check(w))
j = PyFloat_AS_DOUBLE(w);
else if (!Py_IS_FINITE(i)) {
if (PyLong_Check(w))
/* If i is an infinity, its magnitude exceeds any
* finite integer, so it doesn't matter which int we
* compare i with. If i is a NaN, similarly.
*/
j = 0.0;
else
goto Unimplemented;
}
else if (PyLong_Check(w)) {
int vsign = i == 0.0 ? 0 : i < 0.0 ? -1 : 1;
int wsign = _PyLong_Sign(w);
size_t nbits;
int exponent;
if (vsign != wsign) {
/* Magnitudes are irrelevant -- the signs alone
* determine the outcome.
*/
i = (double)vsign;
j = (double)wsign;
goto Compare;
}
/* The signs are the same. */
/* Convert w to a double if it fits. In particular, 0 fits. */
nbits = _PyLong_NumBits(w);
if (nbits == (size_t)-1 && PyErr_Occurred()) {
/* This long is so large that size_t isn't big enough
* to hold the # of bits. Replace with little doubles
* that give the same outcome -- w is so large that
* its magnitude must exceed the magnitude of any
* finite float.
*/
PyErr_Clear();
i = (double)vsign;
assert(wsign != 0);
j = wsign * 2.0;
goto Compare;
}
if (nbits <= 48) {
j = PyLong_AsDouble(w);
/* It's impossible that <= 48 bits overflowed. */
assert(j != -1.0 || ! PyErr_Occurred());
goto Compare;
}
assert(wsign != 0); /* else nbits was 0 */
assert(vsign != 0); /* if vsign were 0, then since wsign is
* not 0, we would have taken the
* vsign != wsign branch at the start */
/* We want to work with non-negative numbers. */
if (vsign < 0) {
/* "Multiply both sides" by -1; this also swaps the
* comparator.
*/
i = -i;
op = _Py_SwappedOp[op];
}
assert(i > 0.0);
(void) frexp(i, &exponent);
/* exponent is the # of bits in v before the radix point;
* we know that nbits (the # of bits in w) > 48 at this point
*/
if (exponent < 0 || (size_t)exponent < nbits) {
i = 1.0;
j = 2.0;
goto Compare;
}
if ((size_t)exponent > nbits) {
i = 2.0;
j = 1.0;
goto Compare;
}
/* v and w have the same number of bits before the radix
* point. Construct two ints that have the same comparison
* outcome.
*/
{
double fracpart;
double intpart;
PyObject *result = NULL;
PyObject *one = NULL;
PyObject *vv = NULL;
PyObject *ww = w;
if (wsign < 0) {
ww = PyNumber_Negative(w);
if (ww == NULL)
goto Error;
}
else
Py_INCREF(ww);
fracpart = modf(i, &intpart);
vv = PyLong_FromDouble(intpart);
if (vv == NULL)
goto Error;
if (fracpart != 0.0) {
/* Shift left, and or a 1 bit into vv
* to represent the lost fraction.
*/
PyObject *temp;
one = PyLong_FromLong(1);
if (one == NULL)
goto Error;
temp = PyNumber_Lshift(ww, one);
if (temp == NULL)
goto Error;
Py_DECREF(ww);
ww = temp;
temp = PyNumber_Lshift(vv, one);
if (temp == NULL)
goto Error;
Py_DECREF(vv);
vv = temp;
temp = PyNumber_Or(vv, one);
if (temp == NULL)
goto Error;
Py_DECREF(vv);
vv = temp;
}
r = PyObject_RichCompareBool(vv, ww, op);
if (r < 0)
goto Error;
result = PyBool_FromLong(r);
Error:
Py_XDECREF(vv);
Py_XDECREF(ww);
Py_XDECREF(one);
return result;
}
} /* else if (PyLong_Check(w)) */
else /* w isn't float or int */
goto Unimplemented;
Compare:
PyFPE_START_PROTECT("richcompare", return NULL)
switch (op) {
case Py_EQ:
r = i == j;
break;
case Py_NE:
r = i != j;
break;
case Py_LE:
r = i <= j;
break;
case Py_GE:
r = i >= j;
break;
case Py_LT:
r = i < j;
break;
case Py_GT:
r = i > j;
break;
}
PyFPE_END_PROTECT(r)
return PyBool_FromLong(r);
Unimplemented:
Py_RETURN_NOTIMPLEMENTED;
}
static Py_hash_t
float_hash(PyFloatObject *v)
{
return _Py_HashDouble(v->ob_fval);
}
static PyObject *
float_add(PyObject *v, PyObject *w)
{
double a,b;
CONVERT_TO_DOUBLE(v, a);
CONVERT_TO_DOUBLE(w, b);
PyFPE_START_PROTECT("add", return 0)
a = a + b;
PyFPE_END_PROTECT(a)
return PyFloat_FromDouble(a);
}
static PyObject *
float_sub(PyObject *v, PyObject *w)
{
double a,b;
CONVERT_TO_DOUBLE(v, a);
CONVERT_TO_DOUBLE(w, b);
PyFPE_START_PROTECT("subtract", return 0)
a = a - b;
PyFPE_END_PROTECT(a)
return PyFloat_FromDouble(a);
}
static PyObject *
float_mul(PyObject *v, PyObject *w)
{
double a,b;
CONVERT_TO_DOUBLE(v, a);
CONVERT_TO_DOUBLE(w, b);
PyFPE_START_PROTECT("multiply", return 0)
a = a * b;
PyFPE_END_PROTECT(a)
return PyFloat_FromDouble(a);
}
static PyObject *
float_div(PyObject *v, PyObject *w)
{
double a,b;
CONVERT_TO_DOUBLE(v, a);
CONVERT_TO_DOUBLE(w, b);
if (b == 0.0) {
PyErr_SetString(PyExc_ZeroDivisionError,
"float division by zero");
return NULL;
}
PyFPE_START_PROTECT("divide", return 0)
a = a / b;
PyFPE_END_PROTECT(a)
return PyFloat_FromDouble(a);
}
static PyObject *
float_rem(PyObject *v, PyObject *w)
{
double vx, wx;
double mod;
CONVERT_TO_DOUBLE(v, vx);
CONVERT_TO_DOUBLE(w, wx);
if (wx == 0.0) {
PyErr_SetString(PyExc_ZeroDivisionError,
"float modulo");
return NULL;
}
PyFPE_START_PROTECT("modulo", return 0)
mod = fmod(vx, wx);
if (mod) {
/* ensure the remainder has the same sign as the denominator */
if ((wx < 0) != (mod < 0)) {
mod += wx;
}
}
else {
/* the remainder is zero, and in the presence of signed zeroes
fmod returns different results across platforms; ensure
it has the same sign as the denominator. */
mod = copysign(0.0, wx);
}
PyFPE_END_PROTECT(mod)
return PyFloat_FromDouble(mod);
}
static PyObject *
float_divmod(PyObject *v, PyObject *w)
{
double vx, wx;
double div, mod, floordiv;
CONVERT_TO_DOUBLE(v, vx);
CONVERT_TO_DOUBLE(w, wx);
if (wx == 0.0) {
PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()");
return NULL;
}
PyFPE_START_PROTECT("divmod", return 0)
mod = fmod(vx, wx);
/* fmod is typically exact, so vx-mod is *mathematically* an
exact multiple of wx. But this is fp arithmetic, and fp
vx - mod is an approximation; the result is that div may
not be an exact integral value after the division, although
it will always be very close to one.
*/
div = (vx - mod) / wx;
if (mod) {
/* ensure the remainder has the same sign as the denominator */
if ((wx < 0) != (mod < 0)) {
mod += wx;
div -= 1.0;
}
}
else {
/* the remainder is zero, and in the presence of signed zeroes
fmod returns different results across platforms; ensure
it has the same sign as the denominator. */
mod = copysign(0.0, wx);
}
/* snap quotient to nearest integral value */
if (div) {
floordiv = floor(div);
if (div - floordiv > 0.5)
floordiv += 1.0;
}
else {
/* div is zero - get the same sign as the true quotient */
floordiv = copysign(0.0, vx / wx); /* zero w/ sign of vx/wx */
}
PyFPE_END_PROTECT(floordiv)
return Py_BuildValue("(dd)", floordiv, mod);
}
static PyObject *
float_floor_div(PyObject *v, PyObject *w)
{
PyObject *t, *r;
t = float_divmod(v, w);
if (t == NULL || t == Py_NotImplemented)
return t;
assert(PyTuple_CheckExact(t));
r = PyTuple_GET_ITEM(t, 0);
Py_INCREF(r);
Py_DECREF(t);
return r;
}
/* determine whether x is an odd integer or not; assumes that
x is not an infinity or nan. */
#define DOUBLE_IS_ODD_INTEGER(x) (fmod(fabs(x), 2.0) == 1.0)
static PyObject *
float_pow(PyObject *v, PyObject *w, PyObject *z)
{
double iv, iw, ix;
int negate_result = 0;
if ((PyObject *)z != Py_None) {
PyErr_SetString(PyExc_TypeError, "pow() 3rd argument not "
"allowed unless all arguments are integers");
return NULL;
}
CONVERT_TO_DOUBLE(v, iv);
CONVERT_TO_DOUBLE(w, iw);
/* Sort out special cases here instead of relying on pow() */
if (iw == 0) { /* v**0 is 1, even 0**0 */
return PyFloat_FromDouble(1.0);
}
if (Py_IS_NAN(iv)) { /* nan**w = nan, unless w == 0 */
return PyFloat_FromDouble(iv);
}
if (Py_IS_NAN(iw)) { /* v**nan = nan, unless v == 1; 1**nan = 1 */
return PyFloat_FromDouble(iv == 1.0 ? 1.0 : iw);
}
if (Py_IS_INFINITY(iw)) {
/* v**inf is: 0.0 if abs(v) < 1; 1.0 if abs(v) == 1; inf if
* abs(v) > 1 (including case where v infinite)
*
* v**-inf is: inf if abs(v) < 1; 1.0 if abs(v) == 1; 0.0 if
* abs(v) > 1 (including case where v infinite)
*/
iv = fabs(iv);
if (iv == 1.0)
return PyFloat_FromDouble(1.0);
else if ((iw > 0.0) == (iv > 1.0))
return PyFloat_FromDouble(fabs(iw)); /* return inf */
else
return PyFloat_FromDouble(0.0);
}
if (Py_IS_INFINITY(iv)) {
/* (+-inf)**w is: inf for w positive, 0 for w negative; in
* both cases, we need to add the appropriate sign if w is
* an odd integer.
*/
int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw);
if (iw > 0.0)
return PyFloat_FromDouble(iw_is_odd ? iv : fabs(iv));
else
return PyFloat_FromDouble(iw_is_odd ?
copysign(0.0, iv) : 0.0);
}
if (iv == 0.0) { /* 0**w is: 0 for w positive, 1 for w zero
(already dealt with above), and an error
if w is negative. */
int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw);
if (iw < 0.0) {
PyErr_SetString(PyExc_ZeroDivisionError,
"0.0 cannot be raised to a "
"negative power");
return NULL;
}
/* use correct sign if iw is odd */
return PyFloat_FromDouble(iw_is_odd ? iv : 0.0);
}
if (iv < 0.0) {
/* Whether this is an error is a mess, and bumps into libm
* bugs so we have to figure it out ourselves.
*/
if (iw != floor(iw)) {
/* Negative numbers raised to fractional powers
* become complex.
*/
return PyComplex_Type.tp_as_number->nb_power(v, w, z);
}
/* iw is an exact integer, albeit perhaps a very large
* one. Replace iv by its absolute value and remember
* to negate the pow result if iw is odd.
*/
iv = -iv;
negate_result = DOUBLE_IS_ODD_INTEGER(iw);
}
if (iv == 1.0) { /* 1**w is 1, even 1**inf and 1**nan */
/* (-1) ** large_integer also ends up here. Here's an
* extract from the comments for the previous
* implementation explaining why this special case is
* necessary:
*
* -1 raised to an exact integer should never be exceptional.
* Alas, some libms (chiefly glibc as of early 2003) return
* NaN and set EDOM on pow(-1, large_int) if the int doesn't
* happen to be representable in a *C* integer. That's a
* bug.
*/
return PyFloat_FromDouble(negate_result ? -1.0 : 1.0);
}
/* Now iv and iw are finite, iw is nonzero, and iv is
* positive and not equal to 1.0. We finally allow
* the platform pow to step in and do the rest.
*/
errno = 0;
PyFPE_START_PROTECT("pow", return NULL)
ix = pow(iv, iw);
PyFPE_END_PROTECT(ix)
Py_ADJUST_ERANGE1(ix);
if (negate_result)
ix = -ix;
if (errno != 0) {
/* We don't expect any errno value other than ERANGE, but
* the range of libm bugs appears unbounded.
*/
PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
PyExc_ValueError);
return NULL;
}
return PyFloat_FromDouble(ix);
}
#undef DOUBLE_IS_ODD_INTEGER
static PyObject *
float_neg(PyFloatObject *v)
{
return PyFloat_FromDouble(-v->ob_fval);
}
static PyObject *
float_abs(PyFloatObject *v)
{
return PyFloat_FromDouble(fabs(v->ob_fval));
}
static int
float_bool(PyFloatObject *v)
{
return v->ob_fval != 0.0;
}
static PyObject *
float_is_integer(PyObject *v)
{
double x = PyFloat_AsDouble(v);
PyObject *o;
if (x == -1.0 && PyErr_Occurred())
return NULL;
if (!Py_IS_FINITE(x))
Py_RETURN_FALSE;
errno = 0;
PyFPE_START_PROTECT("is_integer", return NULL)
o = (floor(x) == x) ? Py_True : Py_False;
PyFPE_END_PROTECT(x)
if (errno != 0) {
PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
PyExc_ValueError);
return NULL;
}
Py_INCREF(o);
return o;
}
#if 0
static PyObject *
float_is_inf(PyObject *v)
{
double x = PyFloat_AsDouble(v);
if (x == -1.0 && PyErr_Occurred())
return NULL;
return PyBool_FromLong((long)Py_IS_INFINITY(x));
}
static PyObject *
float_is_nan(PyObject *v)
{
double x = PyFloat_AsDouble(v);
if (x == -1.0 && PyErr_Occurred())
return NULL;
return PyBool_FromLong((long)Py_IS_NAN(x));
}
static PyObject *
float_is_finite(PyObject *v)
{
double x = PyFloat_AsDouble(v);
if (x == -1.0 && PyErr_Occurred())
return NULL;
return PyBool_FromLong((long)Py_IS_FINITE(x));
}
#endif
static PyObject *
float_trunc(PyObject *v)
{
double x = PyFloat_AsDouble(v);
double wholepart; /* integral portion of x, rounded toward 0 */
(void)modf(x, &wholepart);
/* Try to get out cheap if this fits in a Python int. The attempt
* to cast to long must be protected, as C doesn't define what
* happens if the double is too big to fit in a long. Some rare
* systems raise an exception then (RISCOS was mentioned as one,
* and someone using a non-default option on Sun also bumped into
* that). Note that checking for >= and <= LONG_{MIN,MAX} would
* still be vulnerable: if a long has more bits of precision than
* a double, casting MIN/MAX to double may yield an approximation,
* and if that's rounded up, then, e.g., wholepart=LONG_MAX+1 would
* yield true from the C expression wholepart<=LONG_MAX, despite
* that wholepart is actually greater than LONG_MAX.
*/
if (LONG_MIN < wholepart && wholepart < LONG_MAX) {
const long aslong = (long)wholepart;
return PyLong_FromLong(aslong);
}
return PyLong_FromDouble(wholepart);
}
/* double_round: rounds a finite double to the closest multiple of
10**-ndigits; here ndigits is within reasonable bounds (typically, -308 <=
ndigits <= 323). Returns a Python float, or sets a Python error and
returns NULL on failure (OverflowError and memory errors are possible). */
#ifndef PY_NO_SHORT_FLOAT_REPR
/* version of double_round that uses the correctly-rounded string<->double
conversions from Python/dtoa.c */
static PyObject *
double_round(double x, int ndigits) {
double rounded;
Py_ssize_t buflen, mybuflen=100;
char *buf, *buf_end, shortbuf[100], *mybuf=shortbuf;
int decpt, sign;
PyObject *result = NULL;
_Py_SET_53BIT_PRECISION_HEADER;
/* round to a decimal string */
_Py_SET_53BIT_PRECISION_START;
buf = _Py_dg_dtoa(x, 3, ndigits, &decpt, &sign, &buf_end);
_Py_SET_53BIT_PRECISION_END;
if (buf == NULL) {
PyErr_NoMemory();
return NULL;
}
/* Get new buffer if shortbuf is too small. Space needed <= buf_end -
buf + 8: (1 extra for '0', 1 for sign, 5 for exp, 1 for '\0'). */
buflen = buf_end - buf;
if (buflen + 8 > mybuflen) {
mybuflen = buflen+8;
mybuf = (char *)PyMem_Malloc(mybuflen);
if (mybuf == NULL) {
PyErr_NoMemory();
goto exit;
}
}
/* copy buf to mybuf, adding exponent, sign and leading 0 */
PyOS_snprintf(mybuf, mybuflen, "%s0%se%d", (sign ? "-" : ""),
buf, decpt - (int)buflen);
/* and convert the resulting string back to a double */
errno = 0;
_Py_SET_53BIT_PRECISION_START;
rounded = _Py_dg_strtod(mybuf, NULL);
_Py_SET_53BIT_PRECISION_END;
if (errno == ERANGE && fabs(rounded) >= 1.)
PyErr_SetString(PyExc_OverflowError,
"rounded value too large to represent");
else
result = PyFloat_FromDouble(rounded);
/* done computing value; now clean up */
if (mybuf != shortbuf)
PyMem_Free(mybuf);
exit:
_Py_dg_freedtoa(buf);
return result;
}
#else /* PY_NO_SHORT_FLOAT_REPR */
/* fallback version, to be used when correctly rounded binary<->decimal
conversions aren't available */
static PyObject *
double_round(double x, int ndigits) {
double pow1, pow2, y, z;
if (ndigits >= 0) {
if (ndigits > 22) {
/* pow1 and pow2 are each safe from overflow, but
pow1*pow2 ~= pow(10.0, ndigits) might overflow */
pow1 = pow(10.0, (double)(ndigits-22));
pow2 = 1e22;
}
else {
pow1 = pow(10.0, (double)ndigits);
pow2 = 1.0;
}
y = (x*pow1)*pow2;
/* if y overflows, then rounded value is exactly x */
if (!Py_IS_FINITE(y))
return PyFloat_FromDouble(x);
}
else {
pow1 = pow(10.0, (double)-ndigits);
pow2 = 1.0; /* unused; silences a gcc compiler warning */
y = x / pow1;
}
z = round(y);
if (fabs(y-z) == 0.5)
/* halfway between two integers; use round-half-even */
z = 2.0*round(y/2.0);
if (ndigits >= 0)
z = (z / pow2) / pow1;
else
z *= pow1;
/* if computation resulted in overflow, raise OverflowError */
if (!Py_IS_FINITE(z)) {
PyErr_SetString(PyExc_OverflowError,
"overflow occurred during round");
return NULL;
}
return PyFloat_FromDouble(z);
}
#endif /* PY_NO_SHORT_FLOAT_REPR */
/* round a Python float v to the closest multiple of 10**-ndigits */
static PyObject *
float_round(PyObject *v, PyObject **args, Py_ssize_t nargs)
{
double x, rounded;
PyObject *o_ndigits = NULL;
Py_ssize_t ndigits;
x = PyFloat_AsDouble(v);
if (!_PyArg_UnpackStack(args, nargs, "__round__", 0, 1, &o_ndigits))
return NULL;
if (o_ndigits == NULL || o_ndigits == Py_None) {
/* single-argument round or with None ndigits:
* round to nearest integer */
rounded = round(x);
if (fabs(x-rounded) == 0.5)
/* halfway case: round to even */
rounded = 2.0*round(x/2.0);
return PyLong_FromDouble(rounded);
}
/* interpret second argument as a Py_ssize_t; clips on overflow */
ndigits = PyNumber_AsSsize_t(o_ndigits, NULL);
if (ndigits == -1 && PyErr_Occurred())
return NULL;
/* nans and infinities round to themselves */
if (!Py_IS_FINITE(x))
return PyFloat_FromDouble(x);
/* Deal with extreme values for ndigits. For ndigits > NDIGITS_MAX, x
always rounds to itself. For ndigits < NDIGITS_MIN, x always
rounds to +-0.0. Here 0.30103 is an upper bound for log10(2). */
#define NDIGITS_MAX ((int)((DBL_MANT_DIG-DBL_MIN_EXP) * 0.30103))
#define NDIGITS_MIN (-(int)((DBL_MAX_EXP + 1) * 0.30103))
if (ndigits > NDIGITS_MAX)
/* return x */
return PyFloat_FromDouble(x);
else if (ndigits < NDIGITS_MIN)
/* return 0.0, but with sign of x */
return PyFloat_FromDouble(0.0*x);
else
/* finite x, and ndigits is not unreasonably large */
return double_round(x, (int)ndigits);
#undef NDIGITS_MAX
#undef NDIGITS_MIN
}
static PyObject *
float_float(PyObject *v)
{
if (PyFloat_CheckExact(v))
Py_INCREF(v);
else
v = PyFloat_FromDouble(((PyFloatObject *)v)->ob_fval);
return v;
}
/* turn ASCII hex characters into integer values and vice versa */
static char
char_from_hex(int x)
{
assert(0 <= x && x < 16);
return Py_hexdigits[x];
}
static int
hex_from_char(char c) {
int x;
switch(c) {
case '0':
x = 0;
break;
case '1':
x = 1;
break;
case '2':
x = 2;
break;
case '3':
x = 3;
break;
case '4':
x = 4;
break;
case '5':
x = 5;
break;
case '6':
x = 6;
break;
case '7':
x = 7;
break;
case '8':
x = 8;
break;
case '9':
x = 9;
break;
case 'a':
case 'A':
x = 10;
break;
case 'b':
case 'B':
x = 11;
break;
case 'c':
case 'C':
x = 12;
break;
case 'd':
case 'D':
x = 13;
break;
case 'e':
case 'E':
x = 14;
break;
case 'f':
case 'F':
x = 15;
break;
default:
x = -1;
break;
}
return x;
}
/* convert a float to a hexadecimal string */
/* TOHEX_NBITS is DBL_MANT_DIG rounded up to the next integer
of the form 4k+1. */
#define TOHEX_NBITS DBL_MANT_DIG + 3 - (DBL_MANT_DIG+2)%4
static PyObject *
float_hex(PyObject *v)
{
double x, m;
int e, shift, i, si, esign;
/* Space for 1+(TOHEX_NBITS-1)/4 digits, a decimal point, and the
trailing NUL byte. */
char s[(TOHEX_NBITS-1)/4+3];
CONVERT_TO_DOUBLE(v, x);
if (Py_IS_NAN(x) || Py_IS_INFINITY(x))
return float_repr((PyFloatObject *)v);
if (x == 0.0) {
if (copysign(1.0, x) == -1.0)
return PyUnicode_FromString("-0x0.0p+0");
else
return PyUnicode_FromString("0x0.0p+0");
}
m = frexp(fabs(x), &e);
shift = 1 - Py_MAX(DBL_MIN_EXP - e, 0);
m = ldexp(m, shift);
e -= shift;
si = 0;
s[si] = char_from_hex((int)m);
si++;
m -= (int)m;
s[si] = '.';
si++;
for (i=0; i < (TOHEX_NBITS-1)/4; i++) {
m *= 16.0;
s[si] = char_from_hex((int)m);
si++;
m -= (int)m;
}
s[si] = '\0';
if (e < 0) {
esign = (int)'-';
e = -e;
}
else
esign = (int)'+';
if (x < 0.0)
return PyUnicode_FromFormat("-0x%sp%c%d", s, esign, e);
else
return PyUnicode_FromFormat("0x%sp%c%d", s, esign, e);
}
PyDoc_STRVAR(float_hex_doc,
"float.hex() -> string\n\
\n\
Return a hexadecimal representation of a floating-point number.\n\
>>> (-0.1).hex()\n\
'-0x1.999999999999ap-4'\n\
>>> 3.14159.hex()\n\
'0x1.921f9f01b866ep+1'");
/* Convert a hexadecimal string to a float. */
static PyObject *
float_fromhex(PyObject *cls, PyObject *arg)
{
PyObject *result;
double x;
long exp, top_exp, lsb, key_digit;
char *s, *coeff_start, *s_store, *coeff_end, *exp_start, *s_end;
int half_eps, digit, round_up, negate=0;
Py_ssize_t length, ndigits, fdigits, i;
/*
* For the sake of simplicity and correctness, we impose an artificial
* limit on ndigits, the total number of hex digits in the coefficient
* The limit is chosen to ensure that, writing exp for the exponent,
*
* (1) if exp > LONG_MAX/2 then the value of the hex string is
* guaranteed to overflow (provided it's nonzero)
*
* (2) if exp < LONG_MIN/2 then the value of the hex string is
* guaranteed to underflow to 0.
*
* (3) if LONG_MIN/2 <= exp <= LONG_MAX/2 then there's no danger of
* overflow in the calculation of exp and top_exp below.
*
* More specifically, ndigits is assumed to satisfy the following
* inequalities:
*
* 4*ndigits <= DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2
* 4*ndigits <= LONG_MAX/2 + 1 - DBL_MAX_EXP
*
* If either of these inequalities is not satisfied, a ValueError is
* raised. Otherwise, write x for the value of the hex string, and
* assume x is nonzero. Then
*
* 2**(exp-4*ndigits) <= |x| < 2**(exp+4*ndigits).
*
* Now if exp > LONG_MAX/2 then:
*
* exp - 4*ndigits >= LONG_MAX/2 + 1 - (LONG_MAX/2 + 1 - DBL_MAX_EXP)
* = DBL_MAX_EXP
*
* so |x| >= 2**DBL_MAX_EXP, which is too large to be stored in C
* double, so overflows. If exp < LONG_MIN/2, then
*
* exp + 4*ndigits <= LONG_MIN/2 - 1 + (
* DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2)
* = DBL_MIN_EXP - DBL_MANT_DIG - 1
*
* and so |x| < 2**(DBL_MIN_EXP-DBL_MANT_DIG-1), hence underflows to 0
* when converted to a C double.
*
* It's easy to show that if LONG_MIN/2 <= exp <= LONG_MAX/2 then both
* exp+4*ndigits and exp-4*ndigits are within the range of a long.
*/
s = PyUnicode_AsUTF8AndSize(arg, &length);
if (s == NULL)
return NULL;
s_end = s + length;
/********************
* Parse the string *
********************/
/* leading whitespace */
while (Py_ISSPACE(*s))
s++;
/* infinities and nans */
x = _Py_parse_inf_or_nan(s, &coeff_end);
if (coeff_end != s) {
s = coeff_end;
goto finished;
}
/* optional sign */
if (*s == '-') {
s++;
negate = 1;
}
else if (*s == '+')
s++;
/* [0x] */
s_store = s;
if (*s == '0') {
s++;
if (*s == 'x' || *s == 'X')
s++;
else
s = s_store;
}
/* coefficient: <integer> [. <fraction>] */
coeff_start = s;
while (hex_from_char(*s) >= 0)
s++;
s_store = s;
if (*s == '.') {
s++;
while (hex_from_char(*s) >= 0)
s++;
coeff_end = s-1;
}
else
coeff_end = s;
/* ndigits = total # of hex digits; fdigits = # after point */
ndigits = coeff_end - coeff_start;
fdigits = coeff_end - s_store;
if (ndigits == 0)
goto parse_error;
if (ndigits > Py_MIN(DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2,
LONG_MAX/2 + 1 - DBL_MAX_EXP)/4)
goto insane_length_error;
/* [p <exponent>] */
if (*s == 'p' || *s == 'P') {
s++;
exp_start = s;
if (*s == '-' || *s == '+')
s++;
if (!('0' <= *s && *s <= '9'))
goto parse_error;
s++;
while ('0' <= *s && *s <= '9')
s++;
exp = strtol(exp_start, NULL, 10);
}
else
exp = 0;
/* for 0 <= j < ndigits, HEX_DIGIT(j) gives the jth most significant digit */
#define HEX_DIGIT(j) hex_from_char(*((j) < fdigits ? \
coeff_end-(j) : \
coeff_end-1-(j)))
/*******************************************
* Compute rounded value of the hex string *
*******************************************/
/* Discard leading zeros, and catch extreme overflow and underflow */
while (ndigits > 0 && HEX_DIGIT(ndigits-1) == 0)
ndigits--;
if (ndigits == 0 || exp < LONG_MIN/2) {
x = 0.0;
goto finished;
}
if (exp > LONG_MAX/2)
goto overflow_error;
/* Adjust exponent for fractional part. */
exp = exp - 4*((long)fdigits);
/* top_exp = 1 more than exponent of most sig. bit of coefficient */
top_exp = exp + 4*((long)ndigits - 1);
for (digit = HEX_DIGIT(ndigits-1); digit != 0; digit /= 2)
top_exp++;
/* catch almost all nonextreme cases of overflow and underflow here */
if (top_exp < DBL_MIN_EXP - DBL_MANT_DIG) {
x = 0.0;
goto finished;
}
if (top_exp > DBL_MAX_EXP)
goto overflow_error;
/* lsb = exponent of least significant bit of the *rounded* value.
This is top_exp - DBL_MANT_DIG unless result is subnormal. */
lsb = Py_MAX(top_exp, (long)DBL_MIN_EXP) - DBL_MANT_DIG;
x = 0.0;
if (exp >= lsb) {
/* no rounding required */
for (i = ndigits-1; i >= 0; i--)
x = 16.0*x + HEX_DIGIT(i);
x = ldexp(x, (int)(exp));
goto finished;
}
/* rounding required. key_digit is the index of the hex digit
containing the first bit to be rounded away. */
half_eps = 1 << (int)((lsb - exp - 1) % 4);
key_digit = (lsb - exp - 1) / 4;
for (i = ndigits-1; i > key_digit; i--)
x = 16.0*x + HEX_DIGIT(i);
digit = HEX_DIGIT(key_digit);
x = 16.0*x + (double)(digit & (16-2*half_eps));
/* round-half-even: round up if bit lsb-1 is 1 and at least one of
bits lsb, lsb-2, lsb-3, lsb-4, ... is 1. */
if ((digit & half_eps) != 0) {
round_up = 0;
if ((digit & (3*half_eps-1)) != 0 ||
(half_eps == 8 && (HEX_DIGIT(key_digit+1) & 1) != 0))
round_up = 1;
else
for (i = key_digit-1; i >= 0; i--)
if (HEX_DIGIT(i) != 0) {
round_up = 1;
break;
}
if (round_up) {
x += 2*half_eps;
if (top_exp == DBL_MAX_EXP &&
x == ldexp((double)(2*half_eps), DBL_MANT_DIG))
/* overflow corner case: pre-rounded value <
2**DBL_MAX_EXP; rounded=2**DBL_MAX_EXP. */
goto overflow_error;
}
}
x = ldexp(x, (int)(exp+4*key_digit));
finished:
/* optional trailing whitespace leading to the end of the string */
while (Py_ISSPACE(*s))
s++;
if (s != s_end)
goto parse_error;
result = PyFloat_FromDouble(negate ? -x : x);
if (cls != (PyObject *)&PyFloat_Type && result != NULL) {
Py_SETREF(result, PyObject_CallFunctionObjArgs(cls, result, NULL));
}
return result;
overflow_error:
PyErr_SetString(PyExc_OverflowError,
"hexadecimal value too large to represent as a float");
return NULL;
parse_error:
PyErr_SetString(PyExc_ValueError,
"invalid hexadecimal floating-point string");
return NULL;
insane_length_error:
PyErr_SetString(PyExc_ValueError,
"hexadecimal string too long to convert");
return NULL;
}
PyDoc_STRVAR(float_fromhex_doc,
"float.fromhex(string) -> float\n\
\n\
Create a floating-point number from a hexadecimal string.\n\
>>> float.fromhex('0x1.ffffp10')\n\
2047.984375\n\
>>> float.fromhex('-0x1p-1074')\n\
-5e-324");
static PyObject *
float_as_integer_ratio(PyObject *v, PyObject *unused)
{
double self;
double float_part;
int exponent;
int i;
PyObject *py_exponent = NULL;
PyObject *numerator = NULL;
PyObject *denominator = NULL;
PyObject *result_pair = NULL;
PyNumberMethods *long_methods = PyLong_Type.tp_as_number;
CONVERT_TO_DOUBLE(v, self);
if (Py_IS_INFINITY(self)) {
PyErr_SetString(PyExc_OverflowError,
"cannot convert Infinity to integer ratio");
return NULL;
}
if (Py_IS_NAN(self)) {
PyErr_SetString(PyExc_ValueError,
"cannot convert NaN to integer ratio");
return NULL;
}
PyFPE_START_PROTECT("as_integer_ratio", goto error);
float_part = frexp(self, &exponent); /* self == float_part * 2**exponent exactly */
PyFPE_END_PROTECT(float_part);
for (i=0; i<300 && float_part != floor(float_part) ; i++) {
float_part *= 2.0;
exponent--;
}
/* self == float_part * 2**exponent exactly and float_part is integral.
If FLT_RADIX != 2, the 300 steps may leave a tiny fractional part
to be truncated by PyLong_FromDouble(). */
numerator = PyLong_FromDouble(float_part);
if (numerator == NULL)
goto error;
denominator = PyLong_FromLong(1);
if (denominator == NULL)
goto error;
py_exponent = PyLong_FromLong(Py_ABS(exponent));
if (py_exponent == NULL)
goto error;
/* fold in 2**exponent */
if (exponent > 0) {
Py_SETREF(numerator,
long_methods->nb_lshift(numerator, py_exponent));
if (numerator == NULL)
goto error;
}
else {
Py_SETREF(denominator,
long_methods->nb_lshift(denominator, py_exponent));
if (denominator == NULL)
goto error;
}
result_pair = PyTuple_Pack(2, numerator, denominator);
error:
Py_XDECREF(py_exponent);
Py_XDECREF(denominator);
Py_XDECREF(numerator);
return result_pair;
}
PyDoc_STRVAR(float_as_integer_ratio_doc,
"float.as_integer_ratio() -> (int, int)\n"
"\n"
"Return a pair of integers, whose ratio is exactly equal to the original\n"
"float and with a positive denominator.\n"
"Raise OverflowError on infinities and a ValueError on NaNs.\n"
"\n"
">>> (10.0).as_integer_ratio()\n"
"(10, 1)\n"
">>> (0.0).as_integer_ratio()\n"
"(0, 1)\n"
">>> (-.25).as_integer_ratio()\n"
"(-1, 4)");
static PyObject *
float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
static PyObject *
float_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyObject *x = Py_False; /* Integer zero */
static char *kwlist[] = {"x", 0};
if (type != &PyFloat_Type)
return float_subtype_new(type, args, kwds); /* Wimp out */
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|O:float", kwlist, &x))
return NULL;
/* If it's a string, but not a string subclass, use
PyFloat_FromString. */
if (PyUnicode_CheckExact(x))
return PyFloat_FromString(x);
return PyNumber_Float(x);
}
/* Wimpy, slow approach to tp_new calls for subtypes of float:
first create a regular float from whatever arguments we got,
then allocate a subtype instance and initialize its ob_fval
from the regular float. The regular float is then thrown away.
*/
static PyObject *
float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyObject *tmp, *newobj;
assert(PyType_IsSubtype(type, &PyFloat_Type));
tmp = float_new(&PyFloat_Type, args, kwds);
if (tmp == NULL)
return NULL;
assert(PyFloat_Check(tmp));
newobj = type->tp_alloc(type, 0);
if (newobj == NULL) {
Py_DECREF(tmp);
return NULL;
}
((PyFloatObject *)newobj)->ob_fval = ((PyFloatObject *)tmp)->ob_fval;
Py_DECREF(tmp);
return newobj;
}
static PyObject *
float_getnewargs(PyFloatObject *v)
{
return Py_BuildValue("(d)", v->ob_fval);
}
/* this is for the benefit of the pack/unpack routines below */
typedef enum {
unknown_format, ieee_big_endian_format, ieee_little_endian_format
} float_format_type;
static float_format_type double_format, float_format;
static float_format_type detected_double_format, detected_float_format;
static PyObject *
float_getformat(PyTypeObject *v, PyObject* arg)
{
char* s;
float_format_type r;
if (!PyUnicode_Check(arg)) {
PyErr_Format(PyExc_TypeError,
"__getformat__() argument must be string, not %.500s",
Py_TYPE(arg)->tp_name);
return NULL;
}
s = PyUnicode_AsUTF8(arg);
if (s == NULL)
return NULL;
if (strcmp(s, "double") == 0) {
r = double_format;
}
else if (strcmp(s, "float") == 0) {
r = float_format;
}
else {
PyErr_SetString(PyExc_ValueError,
"__getformat__() argument 1 must be "
"'double' or 'float'");
return NULL;
}
switch (r) {
case unknown_format:
return PyUnicode_FromString("unknown");
case ieee_little_endian_format:
return PyUnicode_FromString("IEEE, little-endian");
case ieee_big_endian_format:
return PyUnicode_FromString("IEEE, big-endian");
default:
Py_FatalError("insane float_format or double_format");
return NULL;
}
}
PyDoc_STRVAR(float_getformat_doc,
"float.__getformat__(typestr) -> string\n"
"\n"
"You probably don't want to use this function. It exists mainly to be\n"
"used in Python's test suite.\n"
"\n"
"typestr must be 'double' or 'float'. This function returns whichever of\n"
"'unknown', 'IEEE, big-endian' or 'IEEE, little-endian' best describes the\n"
"format of floating point numbers used by the C type named by typestr.");
static PyObject *
float_setformat(PyTypeObject *v, PyObject* args)
{
char* typestr;
char* format;
float_format_type f;
float_format_type detected;
float_format_type *p;
if (!PyArg_ParseTuple(args, "ss:__setformat__", &typestr, &format))
return NULL;
if (strcmp(typestr, "double") == 0) {
p = &double_format;
detected = detected_double_format;
}
else if (strcmp(typestr, "float") == 0) {
p = &float_format;
detected = detected_float_format;
}
else {
PyErr_SetString(PyExc_ValueError,
"__setformat__() argument 1 must "
"be 'double' or 'float'");
return NULL;
}
if (strcmp(format, "unknown") == 0) {
f = unknown_format;
}
else if (strcmp(format, "IEEE, little-endian") == 0) {
f = ieee_little_endian_format;
}
else if (strcmp(format, "IEEE, big-endian") == 0) {
f = ieee_big_endian_format;
}
else {
PyErr_SetString(PyExc_ValueError,
"__setformat__() argument 2 must be "
"'unknown', 'IEEE, little-endian' or "
"'IEEE, big-endian'");
return NULL;
}
if (f != unknown_format && f != detected) {
PyErr_Format(PyExc_ValueError,
"can only set %s format to 'unknown' or the "
"detected platform value", typestr);
return NULL;
}
*p = f;
Py_RETURN_NONE;
}
PyDoc_STRVAR(float_setformat_doc,
"float.__setformat__(typestr, fmt) -> None\n"
"\n"
"You probably don't want to use this function. It exists mainly to be\n"
"used in Python's test suite.\n"
"\n"
"typestr must be 'double' or 'float'. fmt must be one of 'unknown',\n"
"'IEEE, big-endian' or 'IEEE, little-endian', and in addition can only be\n"
"one of the latter two if it appears to match the underlying C reality.\n"
"\n"
"Override the automatic determination of C-level floating point type.\n"
"This affects how floats are converted to and from binary strings.");
static PyObject *
float_getzero(PyObject *v, void *closure)
{
return PyFloat_FromDouble(0.0);
}
static PyObject *
float__format__(PyObject *self, PyObject **args, Py_ssize_t nargs)
{
PyObject *format_spec;
_PyUnicodeWriter writer;
int ret;
if (!_PyArg_ParseStack(args, nargs, "U:__format__", &format_spec))
return NULL;
_PyUnicodeWriter_Init(&writer);
ret = _PyFloat_FormatAdvancedWriter(
&writer,
self,
format_spec, 0, PyUnicode_GET_LENGTH(format_spec));
if (ret == -1) {
_PyUnicodeWriter_Dealloc(&writer);
return NULL;
}
return _PyUnicodeWriter_Finish(&writer);
}
PyDoc_STRVAR(float__format__doc,
"float.__format__(format_spec) -> string\n"
"\n"
"Formats the float according to format_spec.");
static PyMethodDef float_methods[] = {
{"conjugate", (PyCFunction)float_float, METH_NOARGS,
"Return self, the complex conjugate of any float."},
{"__trunc__", (PyCFunction)float_trunc, METH_NOARGS,
"Return the Integral closest to x between 0 and x."},
{"__round__", (PyCFunction)float_round, METH_FASTCALL,
"Return the Integral closest to x, rounding half toward even.\n"
"When an argument is passed, work like built-in round(x, ndigits)."},
{"as_integer_ratio", (PyCFunction)float_as_integer_ratio, METH_NOARGS,
float_as_integer_ratio_doc},
{"fromhex", (PyCFunction)float_fromhex,
METH_O|METH_CLASS, float_fromhex_doc},
{"hex", (PyCFunction)float_hex,
METH_NOARGS, float_hex_doc},
{"is_integer", (PyCFunction)float_is_integer, METH_NOARGS,
"Return True if the float is an integer."},
#if 0
{"is_inf", (PyCFunction)float_is_inf, METH_NOARGS,
"Return True if the float is positive or negative infinite."},
{"is_finite", (PyCFunction)float_is_finite, METH_NOARGS,
"Return True if the float is finite, neither infinite nor NaN."},
{"is_nan", (PyCFunction)float_is_nan, METH_NOARGS,
"Return True if the float is not a number (NaN)."},
#endif
{"__getnewargs__", (PyCFunction)float_getnewargs, METH_NOARGS},
{"__getformat__", (PyCFunction)float_getformat,
METH_O|METH_CLASS, float_getformat_doc},
{"__setformat__", (PyCFunction)float_setformat,
METH_VARARGS|METH_CLASS, float_setformat_doc},
{"__format__", (PyCFunction)float__format__,
METH_FASTCALL, float__format__doc},
{NULL, NULL} /* sentinel */
};
static PyGetSetDef float_getset[] = {
{"real",
(getter)float_float, (setter)NULL,
"the real part of a complex number",
NULL},
{"imag",
(getter)float_getzero, (setter)NULL,
"the imaginary part of a complex number",
NULL},
{NULL} /* Sentinel */
};
PyDoc_STRVAR(float_doc,
"float(x) -> floating point number\n\
\n\
Convert a string or number to a floating point number, if possible.");
static PyNumberMethods float_as_number = {
float_add, /*nb_add*/
float_sub, /*nb_subtract*/
float_mul, /*nb_multiply*/
float_rem, /*nb_remainder*/
float_divmod, /*nb_divmod*/
float_pow, /*nb_power*/
(unaryfunc)float_neg, /*nb_negative*/
(unaryfunc)float_float, /*nb_positive*/
(unaryfunc)float_abs, /*nb_absolute*/
(inquiry)float_bool, /*nb_bool*/
0, /*nb_invert*/
0, /*nb_lshift*/
0, /*nb_rshift*/
0, /*nb_and*/
0, /*nb_xor*/
0, /*nb_or*/
float_trunc, /*nb_int*/
0, /*nb_reserved*/
float_float, /*nb_float*/
0, /* nb_inplace_add */
0, /* nb_inplace_subtract */
0, /* nb_inplace_multiply */
0, /* nb_inplace_remainder */
0, /* nb_inplace_power */
0, /* nb_inplace_lshift */
0, /* nb_inplace_rshift */
0, /* nb_inplace_and */
0, /* nb_inplace_xor */
0, /* nb_inplace_or */
float_floor_div, /* nb_floor_divide */
float_div, /* nb_true_divide */
0, /* nb_inplace_floor_divide */
0, /* nb_inplace_true_divide */
};
PyTypeObject PyFloat_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"float",
sizeof(PyFloatObject),
0,
(destructor)float_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)float_repr, /* tp_repr */
&float_as_number, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
(hashfunc)float_hash, /* tp_hash */
0, /* tp_call */
(reprfunc)float_repr, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
float_doc, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
float_richcompare, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
float_methods, /* tp_methods */
0, /* tp_members */
float_getset, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
float_new, /* tp_new */
};
int
_PyFloat_Init(void)
{
/* We attempt to determine if this machine is using IEEE
floating point formats by peering at the bits of some
carefully chosen values. If it looks like we are on an
IEEE platform, the float packing/unpacking routines can
just copy bits, if not they resort to arithmetic & shifts
and masks. The shifts & masks approach works on all finite
values, but what happens to infinities, NaNs and signed
zeroes on packing is an accident, and attempting to unpack
a NaN or an infinity will raise an exception.
Note that if we're on some whacked-out platform which uses
IEEE formats but isn't strictly little-endian or big-
endian, we will fall back to the portable shifts & masks
method. */
#if SIZEOF_DOUBLE == 8
{
double x = 9006104071832581.0;
if (bcmp(&x, "\x43\x3f\xff\x01\x02\x03\x04\x05", 8) == 0)
detected_double_format = ieee_big_endian_format;
else if (bcmp(&x, "\x05\x04\x03\x02\x01\xff\x3f\x43", 8) == 0)
detected_double_format = ieee_little_endian_format;
else
detected_double_format = unknown_format;
}
#else
detected_double_format = unknown_format;
#endif
#if SIZEOF_FLOAT == 4
{
float y = 16711938.0;
if (bcmp(&y, "\x4b\x7f\x01\x02", 4) == 0)
detected_float_format = ieee_big_endian_format;
else if (bcmp(&y, "\x02\x01\x7f\x4b", 4) == 0)
detected_float_format = ieee_little_endian_format;
else
detected_float_format = unknown_format;
}
#else
detected_float_format = unknown_format;
#endif
double_format = detected_double_format;
float_format = detected_float_format;
/* Init float info */
if (FloatInfoType.tp_name == NULL) {
if (PyStructSequence_InitType2(&FloatInfoType, &floatinfo_desc) < 0)
return 0;
}
return 1;
}
int
PyFloat_ClearFreeList(void)
{
PyFloatObject *f = free_list, *next;
int i = numfree;
while (f) {
next = (PyFloatObject*) Py_TYPE(f);
PyObject_FREE(f);
f = next;
}
free_list = NULL;
numfree = 0;
return i;
}
void
PyFloat_Fini(void)
{
(void)PyFloat_ClearFreeList();
}
/* Print summary info about the state of the optimized allocator */
void
_PyFloat_DebugMallocStats(FILE *out)
{
_PyDebugAllocatorStats(out,
"free PyFloatObject",
numfree, sizeof(PyFloatObject));
}
/*----------------------------------------------------------------------------
* _PyFloat_{Pack,Unpack}{2,4,8}. See floatobject.h.
* To match the NPY_HALF_ROUND_TIES_TO_EVEN behavior in:
* https://github.com/numpy/numpy/blob/master/numpy/core/src/npymath/halffloat.c
* We use:
* bits = (unsigned short)f; Note the truncation
* if ((f - bits > 0.5) || (f - bits == 0.5 && bits % 2)) {
* bits++;
* }
*/
int
_PyFloat_Pack2(double x, unsigned char *p, int le)
{
unsigned char sign;
int e;
double f;
unsigned short bits;
int incr = 1;
if (x == 0.0) {
sign = (copysign(1.0, x) == -1.0);
e = 0;
bits = 0;
}
else if (Py_IS_INFINITY(x)) {
sign = (x < 0.0);
e = 0x1f;
bits = 0;
}
else if (Py_IS_NAN(x)) {
/* There are 2046 distinct half-precision NaNs (1022 signaling and
1024 quiet), but there are only two quiet NaNs that don't arise by
quieting a signaling NaN; we get those by setting the topmost bit
of the fraction field and clearing all other fraction bits. We
choose the one with the appropriate sign. */
sign = (copysign(1.0, x) == -1.0);
e = 0x1f;
bits = 512;
}
else {
sign = (x < 0.0);
if (sign) {
x = -x;
}
f = frexp(x, &e);
if (f < 0.5 || f >= 1.0) {
PyErr_SetString(PyExc_SystemError,
"frexp() result out of range");
return -1;
}
/* Normalize f to be in the range [1.0, 2.0) */
f *= 2.0;
e--;
if (e >= 16) {
goto Overflow;
}
else if (e < -25) {
/* |x| < 2**-25. Underflow to zero. */
f = 0.0;
e = 0;
}
else if (e < -14) {
/* |x| < 2**-14. Gradual underflow */
f = ldexp(f, 14 + e);
e = 0;
}
else /* if (!(e == 0 && f == 0.0)) */ {
e += 15;
f -= 1.0; /* Get rid of leading 1 */
}
f *= 1024.0; /* 2**10 */
/* Round to even */
bits = (unsigned short)f; /* Note the truncation */
assert(bits < 1024);
assert(e < 31);
if ((f - bits > 0.5) || ((f - bits == 0.5) && (bits % 2 == 1))) {
++bits;
if (bits == 1024) {
/* The carry propagated out of a string of 10 1 bits. */
bits = 0;
++e;
if (e == 31)
goto Overflow;
}
}
}
bits |= (e << 10) | (sign << 15);
/* Write out result. */
if (le) {
p += 1;
incr = -1;
}
/* First byte */
*p = (unsigned char)((bits >> 8) & 0xFF);
p += incr;
/* Second byte */
*p = (unsigned char)(bits & 0xFF);
return 0;
Overflow:
PyErr_SetString(PyExc_OverflowError,
"float too large to pack with e format");
return -1;
}
int
_PyFloat_Pack4(double x, unsigned char *p, int le)
{
if (float_format == unknown_format) {
unsigned char sign;
int e;
double f;
unsigned int fbits;
int incr = 1;
if (le) {
p += 3;
incr = -1;
}
if (x < 0) {
sign = 1;
x = -x;
}
else
sign = 0;
f = frexp(x, &e);
/* Normalize f to be in the range [1.0, 2.0) */
if (0.5 <= f && f < 1.0) {
f *= 2.0;
e--;
}
else if (f == 0.0)
e = 0;
else {
PyErr_SetString(PyExc_SystemError,
"frexp() result out of range");
return -1;
}
if (e >= 128)
goto Overflow;
else if (e < -126) {
/* Gradual underflow */
f = ldexp(f, 126 + e);
e = 0;
}
else if (!(e == 0 && f == 0.0)) {
e += 127;
f -= 1.0; /* Get rid of leading 1 */
}
f *= 8388608.0; /* 2**23 */
fbits = (unsigned int)(f + 0.5); /* Round */
assert(fbits <= 8388608);
if (fbits >> 23) {
/* The carry propagated out of a string of 23 1 bits. */
fbits = 0;
++e;
if (e >= 255)
goto Overflow;
}
/* First byte */
*p = (sign << 7) | (e >> 1);
p += incr;
/* Second byte */
*p = (char) (((e & 1) << 7) | (fbits >> 16));
p += incr;
/* Third byte */
*p = (fbits >> 8) & 0xFF;
p += incr;
/* Fourth byte */
*p = fbits & 0xFF;
/* Done */
return 0;
}
else {
float y = (float)x;
int i, incr = 1;
if (Py_IS_INFINITY(y) && !Py_IS_INFINITY(x))
goto Overflow;
unsigned char s[sizeof(float)];
memcpy(s, &y, sizeof(float));
if ((float_format == ieee_little_endian_format && !le)
|| (float_format == ieee_big_endian_format && le)) {
p += 3;
incr = -1;
}
for (i = 0; i < 4; i++) {
*p = s[i];
p += incr;
}
return 0;
}
Overflow:
PyErr_SetString(PyExc_OverflowError,
"float too large to pack with f format");
return -1;
}
int
_PyFloat_Pack8(double x, unsigned char *p, int le)
{
if (double_format == unknown_format) {
unsigned char sign;
int e;
double f;
unsigned int fhi, flo;
int incr = 1;
if (le) {
p += 7;
incr = -1;
}
if (x < 0) {
sign = 1;
x = -x;
}
else
sign = 0;
f = frexp(x, &e);
/* Normalize f to be in the range [1.0, 2.0) */
if (0.5 <= f && f < 1.0) {
f *= 2.0;
e--;
}
else if (f == 0.0)
e = 0;
else {
PyErr_SetString(PyExc_SystemError,
"frexp() result out of range");
return -1;
}
if (e >= 1024)
goto Overflow;
else if (e < -1022) {
/* Gradual underflow */
f = ldexp(f, 1022 + e);
e = 0;
}
else if (!(e == 0 && f == 0.0)) {
e += 1023;
f -= 1.0; /* Get rid of leading 1 */
}
/* fhi receives the high 28 bits; flo the low 24 bits (== 52 bits) */
f *= 268435456.0; /* 2**28 */
fhi = (unsigned int)f; /* Truncate */
assert(fhi < 268435456);
f -= (double)fhi;
f *= 16777216.0; /* 2**24 */
flo = (unsigned int)(f + 0.5); /* Round */
assert(flo <= 16777216);
if (flo >> 24) {
/* The carry propagated out of a string of 24 1 bits. */
flo = 0;
++fhi;
if (fhi >> 28) {
/* And it also progagated out of the next 28 bits. */
fhi = 0;
++e;
if (e >= 2047)
goto Overflow;
}
}
/* First byte */
*p = (sign << 7) | (e >> 4);
p += incr;
/* Second byte */
*p = (unsigned char) (((e & 0xF) << 4) | (fhi >> 24));
p += incr;
/* Third byte */
*p = (fhi >> 16) & 0xFF;
p += incr;
/* Fourth byte */
*p = (fhi >> 8) & 0xFF;
p += incr;
/* Fifth byte */
*p = fhi & 0xFF;
p += incr;
/* Sixth byte */
*p = (flo >> 16) & 0xFF;
p += incr;
/* Seventh byte */
*p = (flo >> 8) & 0xFF;
p += incr;
/* Eighth byte */
*p = flo & 0xFF;
/* p += incr; */
/* Done */
return 0;
Overflow:
PyErr_SetString(PyExc_OverflowError,
"float too large to pack with d format");
return -1;
}
else {
const unsigned char *s = (unsigned char*)&x;
int i, incr = 1;
if ((double_format == ieee_little_endian_format && !le)
|| (double_format == ieee_big_endian_format && le)) {
p += 7;
incr = -1;
}
for (i = 0; i < 8; i++) {
*p = *s++;
p += incr;
}
return 0;
}
}
double
_PyFloat_Unpack2(const unsigned char *p, int le)
{
unsigned char sign;
int e;
unsigned int f;
double x;
int incr = 1;
if (le) {
p += 1;
incr = -1;
}
/* First byte */
sign = (*p >> 7) & 1;
e = (*p & 0x7C) >> 2;
f = (*p & 0x03) << 8;
p += incr;
/* Second byte */
f |= *p;
if (e == 0x1f) {
#ifdef PY_NO_SHORT_FLOAT_REPR
if (f == 0) {
/* Infinity */
return sign ? -Py_HUGE_VAL : Py_HUGE_VAL;
}
else {
/* NaN */
#ifdef Py_NAN
return sign ? -Py_NAN : Py_NAN;
#else
PyErr_SetString(
PyExc_ValueError,
"can't unpack IEEE 754 NaN "
"on platform that does not support NaNs");
return -1;
#endif /* #ifdef Py_NAN */
}
#else
if (f == 0) {
/* Infinity */
return _Py_dg_infinity(sign);
}
else {
/* NaN */
return _Py_dg_stdnan(sign);
}
#endif /* #ifdef PY_NO_SHORT_FLOAT_REPR */
}
x = (double)f / 1024.0;
if (e == 0) {
e = -14;
}
else {
x += 1.0;
e -= 15;
}
x = ldexp(x, e);
if (sign)
x = -x;
return x;
}
double
_PyFloat_Unpack4(const unsigned char *p, int le)
{
if (float_format == unknown_format) {
unsigned char sign;
int e;
unsigned int f;
double x;
int incr = 1;
if (le) {
p += 3;
incr = -1;
}
/* First byte */
sign = (*p >> 7) & 1;
e = (*p & 0x7F) << 1;
p += incr;
/* Second byte */
e |= (*p >> 7) & 1;
f = (*p & 0x7F) << 16;
p += incr;
if (e == 255) {
PyErr_SetString(
PyExc_ValueError,
"can't unpack IEEE 754 special value "
"on non-IEEE platform");
return -1;
}
/* Third byte */
f |= *p << 8;
p += incr;
/* Fourth byte */
f |= *p;
x = (double)f / 8388608.0;
/* XXX This sadly ignores Inf/NaN issues */
if (e == 0)
e = -126;
else {
x += 1.0;
e -= 127;
}
x = ldexp(x, e);
if (sign)
x = -x;
return x;
}
else {
float x;
if ((float_format == ieee_little_endian_format && !le)
|| (float_format == ieee_big_endian_format && le)) {
char buf[4];
char *d = &buf[3];
int i;
for (i = 0; i < 4; i++) {
*d-- = *p++;
}
memcpy(&x, buf, 4);
}
else {
memcpy(&x, p, 4);
}
return x;
}
}
double
_PyFloat_Unpack8(const unsigned char *p, int le)
{
if (double_format == unknown_format) {
unsigned char sign;
int e;
unsigned int fhi, flo;
double x;
int incr = 1;
if (le) {
p += 7;
incr = -1;
}
/* First byte */
sign = (*p >> 7) & 1;
e = (*p & 0x7F) << 4;
p += incr;
/* Second byte */
e |= (*p >> 4) & 0xF;
fhi = (*p & 0xF) << 24;
p += incr;
if (e == 2047) {
PyErr_SetString(
PyExc_ValueError,
"can't unpack IEEE 754 special value "
"on non-IEEE platform");
return -1.0;
}
/* Third byte */
fhi |= *p << 16;
p += incr;
/* Fourth byte */
fhi |= *p << 8;
p += incr;
/* Fifth byte */
fhi |= *p;
p += incr;
/* Sixth byte */
flo = *p << 16;
p += incr;
/* Seventh byte */
flo |= *p << 8;
p += incr;
/* Eighth byte */
flo |= *p;
x = (double)fhi + (double)flo / 16777216.0; /* 2**24 */
x /= 268435456.0; /* 2**28 */
if (e == 0)
e = -1022;
else {
x += 1.0;
e -= 1023;
}
x = ldexp(x, e);
if (sign)
x = -x;
return x;
}
else {
double x;
if ((double_format == ieee_little_endian_format && !le)
|| (double_format == ieee_big_endian_format && le)) {
char buf[8];
char *d = &buf[7];
int i;
for (i = 0; i < 8; i++) {
*d-- = *p++;
}
memcpy(&x, buf, 8);
}
else {
memcpy(&x, p, 8);
}
return x;
}
}
| 74,329 | 2,603 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/bytearrayobject.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#define PY_SSIZE_T_CLEAN
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/boolobject.h"
#include "third_party/python/Include/bytearrayobject.h"
#include "third_party/python/Include/bytes_methods.h"
#include "third_party/python/Include/bytesobject.h"
#include "third_party/python/Include/ceval.h"
#include "third_party/python/Include/codecs.h"
#include "third_party/python/Include/longobject.h"
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/pyctype.h"
#include "third_party/python/Include/pydebug.h"
#include "third_party/python/Include/pyerrors.h"
#include "third_party/python/Include/pymacro.h"
#include "third_party/python/Include/pystrhex.h"
#include "third_party/python/Include/pythonrun.h"
#include "third_party/python/Include/sliceobject.h"
#include "third_party/python/Include/structmember.h"
#include "third_party/python/Include/warnings.h"
/* clang-format off */
/*[clinic input]
class bytearray "PyByteArrayObject *" "&PyByteArray_Type"
[clinic start generated code]*/
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=5535b77c37a119e0]*/
char _PyByteArray_empty_string[] = "";
void
PyByteArray_Fini(void)
{
}
int
PyByteArray_Init(void)
{
return 1;
}
/* end nullbytes support */
/* Helpers */
static int
_getbytevalue(PyObject* arg, int *value)
{
long face_value;
if (PyLong_Check(arg)) {
face_value = PyLong_AsLong(arg);
} else {
PyObject *index = PyNumber_Index(arg);
if (index == NULL) {
*value = -1;
return 0;
}
face_value = PyLong_AsLong(index);
Py_DECREF(index);
}
if (face_value < 0 || face_value >= 256) {
/* this includes the OverflowError in case the long is too large */
PyErr_SetString(PyExc_ValueError, "byte must be in range(0, 256)");
*value = -1;
return 0;
}
*value = face_value;
return 1;
}
static int
bytearray_getbuffer(PyByteArrayObject *obj, Py_buffer *view, int flags)
{
void *ptr;
if (view == NULL) {
PyErr_SetString(PyExc_BufferError,
"bytearray_getbuffer: view==NULL argument is obsolete");
return -1;
}
ptr = (void *) PyByteArray_AS_STRING(obj);
/* cannot fail if view != NULL and readonly == 0 */
(void)PyBuffer_FillInfo(view, (PyObject*)obj, ptr, Py_SIZE(obj), 0, flags);
obj->ob_exports++;
return 0;
}
static void
bytearray_releasebuffer(PyByteArrayObject *obj, Py_buffer *view)
{
obj->ob_exports--;
}
static int
_canresize(PyByteArrayObject *self)
{
if (self->ob_exports > 0) {
PyErr_SetString(PyExc_BufferError,
"Existing exports of data: object cannot be re-sized");
return 0;
}
return 1;
}
#include "third_party/python/Objects/clinic/bytearrayobject.inc"
/* Direct API functions */
PyObject *
PyByteArray_FromObject(PyObject *input)
{
return PyObject_CallFunctionObjArgs((PyObject *)&PyByteArray_Type,
input, NULL);
}
static PyObject *
_PyByteArray_FromBufferObject(PyObject *obj)
{
PyObject *result;
Py_buffer view;
if (PyObject_GetBuffer(obj, &view, PyBUF_FULL_RO) < 0) {
return NULL;
}
result = PyByteArray_FromStringAndSize(NULL, view.len);
if (result != NULL &&
PyBuffer_ToContiguous(PyByteArray_AS_STRING(result),
&view, view.len, 'C') < 0)
{
Py_CLEAR(result);
}
PyBuffer_Release(&view);
return result;
}
PyObject *
PyByteArray_FromStringAndSize(const char *bytes, Py_ssize_t size)
{
PyByteArrayObject *new;
Py_ssize_t alloc;
if (size < 0) {
PyErr_SetString(PyExc_SystemError,
"Negative size passed to PyByteArray_FromStringAndSize");
return NULL;
}
/* Prevent buffer overflow when setting alloc to size+1. */
if (size == PY_SSIZE_T_MAX) {
return PyErr_NoMemory();
}
new = PyObject_New(PyByteArrayObject, &PyByteArray_Type);
if (new == NULL)
return NULL;
if (size == 0) {
new->ob_bytes = NULL;
alloc = 0;
}
else {
alloc = size + 1;
new->ob_bytes = PyObject_Malloc(alloc);
if (new->ob_bytes == NULL) {
Py_DECREF(new);
return PyErr_NoMemory();
}
if (bytes != NULL && size > 0)
memcpy(new->ob_bytes, bytes, size);
new->ob_bytes[size] = '\0'; /* Trailing null byte */
}
Py_SIZE(new) = size;
new->ob_alloc = alloc;
new->ob_start = new->ob_bytes;
new->ob_exports = 0;
return (PyObject *)new;
}
Py_ssize_t
PyByteArray_Size(PyObject *self)
{
assert(self != NULL);
assert(PyByteArray_Check(self));
return PyByteArray_GET_SIZE(self);
}
char *
PyByteArray_AsString(PyObject *self)
{
assert(self != NULL);
assert(PyByteArray_Check(self));
return PyByteArray_AS_STRING(self);
}
int
PyByteArray_Resize(PyObject *self, Py_ssize_t requested_size)
{
void *sval;
PyByteArrayObject *obj = ((PyByteArrayObject *)self);
/* All computations are done unsigned to avoid integer overflows
(see issue #22335). */
size_t alloc = (size_t) obj->ob_alloc;
size_t logical_offset = (size_t) (obj->ob_start - obj->ob_bytes);
size_t size = (size_t) requested_size;
assert(self != NULL);
assert(PyByteArray_Check(self));
assert(logical_offset <= alloc);
assert(requested_size >= 0);
if (requested_size == Py_SIZE(self)) {
return 0;
}
if (!_canresize(obj)) {
return -1;
}
if (size + logical_offset + 1 <= alloc) {
/* Current buffer is large enough to host the requested size,
decide on a strategy. */
if (size < alloc / 2) {
/* Major downsize; resize down to exact size */
alloc = size + 1;
}
else {
/* Minor downsize; quick exit */
Py_SIZE(self) = size;
PyByteArray_AS_STRING(self)[size] = '\0'; /* Trailing null */
return 0;
}
}
else {
/* Need growing, decide on a strategy */
if (size <= alloc * 1.125) {
/* Moderate upsize; overallocate similar to list_resize() */
alloc = size + (size >> 3) + (size < 9 ? 3 : 6);
}
else {
/* Major upsize; resize up to exact size */
alloc = size + 1;
}
}
if (alloc > PY_SSIZE_T_MAX) {
PyErr_NoMemory();
return -1;
}
if (logical_offset > 0) {
sval = PyObject_Malloc(alloc);
if (sval == NULL) {
PyErr_NoMemory();
return -1;
}
memcpy(sval, PyByteArray_AS_STRING(self),
Py_MIN((size_t)requested_size, (size_t)Py_SIZE(self)));
PyObject_Free(obj->ob_bytes);
}
else {
sval = PyObject_Realloc(obj->ob_bytes, alloc);
if (sval == NULL) {
PyErr_NoMemory();
return -1;
}
}
obj->ob_bytes = obj->ob_start = sval;
Py_SIZE(self) = size;
obj->ob_alloc = alloc;
obj->ob_bytes[size] = '\0'; /* Trailing null byte */
return 0;
}
PyObject *
PyByteArray_Concat(PyObject *a, PyObject *b)
{
Py_buffer va, vb;
PyByteArrayObject *result = NULL;
va.len = -1;
vb.len = -1;
if (PyObject_GetBuffer(a, &va, PyBUF_SIMPLE) != 0 ||
PyObject_GetBuffer(b, &vb, PyBUF_SIMPLE) != 0) {
PyErr_Format(PyExc_TypeError, "can't concat %.100s to %.100s",
Py_TYPE(b)->tp_name, Py_TYPE(a)->tp_name);
goto done;
}
if (va.len > PY_SSIZE_T_MAX - vb.len) {
PyErr_NoMemory();
goto done;
}
result = (PyByteArrayObject *) \
PyByteArray_FromStringAndSize(NULL, va.len + vb.len);
if (result != NULL) {
memcpy(result->ob_bytes, va.buf, va.len);
memcpy(result->ob_bytes + va.len, vb.buf, vb.len);
}
done:
if (va.len != -1)
PyBuffer_Release(&va);
if (vb.len != -1)
PyBuffer_Release(&vb);
return (PyObject *)result;
}
/* Functions stuffed into the type object */
static Py_ssize_t
bytearray_length(PyByteArrayObject *self)
{
return Py_SIZE(self);
}
static PyObject *
bytearray_iconcat(PyByteArrayObject *self, PyObject *other)
{
Py_ssize_t size;
Py_buffer vo;
if (PyObject_GetBuffer(other, &vo, PyBUF_SIMPLE) != 0) {
PyErr_Format(PyExc_TypeError, "can't concat %.100s to %.100s",
Py_TYPE(other)->tp_name, Py_TYPE(self)->tp_name);
return NULL;
}
size = Py_SIZE(self);
if (size > PY_SSIZE_T_MAX - vo.len) {
PyBuffer_Release(&vo);
return PyErr_NoMemory();
}
if (PyByteArray_Resize((PyObject *)self, size + vo.len) < 0) {
PyBuffer_Release(&vo);
return NULL;
}
memcpy(PyByteArray_AS_STRING(self) + size, vo.buf, vo.len);
PyBuffer_Release(&vo);
Py_INCREF(self);
return (PyObject *)self;
}
static PyObject *
bytearray_repeat(PyByteArrayObject *self, Py_ssize_t count)
{
PyByteArrayObject *result;
Py_ssize_t mysize;
Py_ssize_t size;
if (count < 0)
count = 0;
mysize = Py_SIZE(self);
if (count > 0 && mysize > PY_SSIZE_T_MAX / count)
return PyErr_NoMemory();
size = mysize * count;
result = (PyByteArrayObject *)PyByteArray_FromStringAndSize(NULL, size);
if (result != NULL && size != 0) {
if (mysize == 1)
memset(result->ob_bytes, self->ob_bytes[0], size);
else {
Py_ssize_t i;
for (i = 0; i < count; i++)
memcpy(result->ob_bytes + i*mysize, self->ob_bytes, mysize);
}
}
return (PyObject *)result;
}
static PyObject *
bytearray_irepeat(PyByteArrayObject *self, Py_ssize_t count)
{
Py_ssize_t mysize;
Py_ssize_t size;
char *buf;
if (count < 0)
count = 0;
mysize = Py_SIZE(self);
if (count > 0 && mysize > PY_SSIZE_T_MAX / count)
return PyErr_NoMemory();
size = mysize * count;
if (PyByteArray_Resize((PyObject *)self, size) < 0)
return NULL;
buf = PyByteArray_AS_STRING(self);
if (mysize == 1)
memset(buf, buf[0], size);
else {
Py_ssize_t i;
for (i = 1; i < count; i++)
memcpy(buf + i*mysize, buf, mysize);
}
Py_INCREF(self);
return (PyObject *)self;
}
static PyObject *
bytearray_getitem(PyByteArrayObject *self, Py_ssize_t i)
{
if (i < 0)
i += Py_SIZE(self);
if (i < 0 || i >= Py_SIZE(self)) {
PyErr_SetString(PyExc_IndexError, "bytearray index out of range");
return NULL;
}
return PyLong_FromLong((unsigned char)(PyByteArray_AS_STRING(self)[i]));
}
static PyObject *
bytearray_subscript(PyByteArrayObject *self, PyObject *index)
{
if (PyIndex_Check(index)) {
Py_ssize_t i = PyNumber_AsSsize_t(index, PyExc_IndexError);
if (i == -1 && PyErr_Occurred())
return NULL;
if (i < 0)
i += PyByteArray_GET_SIZE(self);
if (i < 0 || i >= Py_SIZE(self)) {
PyErr_SetString(PyExc_IndexError, "bytearray index out of range");
return NULL;
}
return PyLong_FromLong((unsigned char)(PyByteArray_AS_STRING(self)[i]));
}
else if (PySlice_Check(index)) {
Py_ssize_t start, stop, step, slicelength, cur, i;
if (PySlice_Unpack(index, &start, &stop, &step) < 0) {
return NULL;
}
slicelength = PySlice_AdjustIndices(PyByteArray_GET_SIZE(self),
&start, &stop, step);
if (slicelength <= 0)
return PyByteArray_FromStringAndSize("", 0);
else if (step == 1) {
return PyByteArray_FromStringAndSize(
PyByteArray_AS_STRING(self) + start, slicelength);
}
else {
char *source_buf = PyByteArray_AS_STRING(self);
char *result_buf;
PyObject *result;
result = PyByteArray_FromStringAndSize(NULL, slicelength);
if (result == NULL)
return NULL;
result_buf = PyByteArray_AS_STRING(result);
for (cur = start, i = 0; i < slicelength;
cur += step, i++) {
result_buf[i] = source_buf[cur];
}
return result;
}
}
else {
PyErr_Format(PyExc_TypeError,
"bytearray indices must be integers or slices, not %.200s",
Py_TYPE(index)->tp_name);
return NULL;
}
}
static int
bytearray_setslice_linear(PyByteArrayObject *self,
Py_ssize_t lo, Py_ssize_t hi,
char *bytes, Py_ssize_t bytes_len)
{
Py_ssize_t avail = hi - lo;
char *buf = PyByteArray_AS_STRING(self);
Py_ssize_t growth = bytes_len - avail;
int res = 0;
assert(avail >= 0);
if (growth < 0) {
if (!_canresize(self))
return -1;
if (lo == 0) {
/* Shrink the buffer by advancing its logical start */
self->ob_start -= growth;
/*
0 lo hi old_size
| |<----avail----->|<-----tail------>|
| |<-bytes_len->|<-----tail------>|
0 new_lo new_hi new_size
*/
}
else {
/*
0 lo hi old_size
| |<----avail----->|<-----tomove------>|
| |<-bytes_len->|<-----tomove------>|
0 lo new_hi new_size
*/
memmove(buf + lo + bytes_len, buf + hi,
Py_SIZE(self) - hi);
}
if (PyByteArray_Resize((PyObject *)self,
Py_SIZE(self) + growth) < 0) {
/* Issue #19578: Handling the memory allocation failure here is
tricky here because the bytearray object has already been
modified. Depending on growth and lo, the behaviour is
different.
If growth < 0 and lo != 0, the operation is completed, but a
MemoryError is still raised and the memory block is not
shrunk. Otherwise, the bytearray is restored in its previous
state and a MemoryError is raised. */
if (lo == 0) {
self->ob_start += growth;
return -1;
}
/* memmove() removed bytes, the bytearray object cannot be
restored in its previous state. */
Py_SIZE(self) += growth;
res = -1;
}
buf = PyByteArray_AS_STRING(self);
}
else if (growth > 0) {
if (Py_SIZE(self) > (Py_ssize_t)PY_SSIZE_T_MAX - growth) {
PyErr_NoMemory();
return -1;
}
if (PyByteArray_Resize((PyObject *)self,
Py_SIZE(self) + growth) < 0) {
return -1;
}
buf = PyByteArray_AS_STRING(self);
/* Make the place for the additional bytes */
/*
0 lo hi old_size
| |<-avail->|<-----tomove------>|
| |<---bytes_len-->|<-----tomove------>|
0 lo new_hi new_size
*/
memmove(buf + lo + bytes_len, buf + hi,
Py_SIZE(self) - lo - bytes_len);
}
if (bytes_len > 0)
memcpy(buf + lo, bytes, bytes_len);
return res;
}
static int
bytearray_setslice(PyByteArrayObject *self, Py_ssize_t lo, Py_ssize_t hi,
PyObject *values)
{
Py_ssize_t needed;
void *bytes;
Py_buffer vbytes;
int res = 0;
vbytes.len = -1;
if (values == (PyObject *)self) {
/* Make a copy and call this function recursively */
int err;
values = PyByteArray_FromStringAndSize(PyByteArray_AS_STRING(values),
PyByteArray_GET_SIZE(values));
if (values == NULL)
return -1;
err = bytearray_setslice(self, lo, hi, values);
Py_DECREF(values);
return err;
}
if (values == NULL) {
/* del b[lo:hi] */
bytes = NULL;
needed = 0;
}
else {
if (PyObject_GetBuffer(values, &vbytes, PyBUF_SIMPLE) != 0) {
PyErr_Format(PyExc_TypeError,
"can't set bytearray slice from %.100s",
Py_TYPE(values)->tp_name);
return -1;
}
needed = vbytes.len;
bytes = vbytes.buf;
}
if (lo < 0)
lo = 0;
if (hi < lo)
hi = lo;
if (hi > Py_SIZE(self))
hi = Py_SIZE(self);
res = bytearray_setslice_linear(self, lo, hi, bytes, needed);
if (vbytes.len != -1)
PyBuffer_Release(&vbytes);
return res;
}
static int
bytearray_setitem(PyByteArrayObject *self, Py_ssize_t i, PyObject *value)
{
int ival;
if (i < 0)
i += Py_SIZE(self);
if (i < 0 || i >= Py_SIZE(self)) {
PyErr_SetString(PyExc_IndexError, "bytearray index out of range");
return -1;
}
if (value == NULL)
return bytearray_setslice(self, i, i+1, NULL);
if (!_getbytevalue(value, &ival))
return -1;
PyByteArray_AS_STRING(self)[i] = ival;
return 0;
}
static int
bytearray_ass_subscript(PyByteArrayObject *self, PyObject *index, PyObject *values)
{
Py_ssize_t start, stop, step, slicelen, needed;
char *buf, *bytes;
buf = PyByteArray_AS_STRING(self);
if (PyIndex_Check(index)) {
Py_ssize_t i = PyNumber_AsSsize_t(index, PyExc_IndexError);
if (i == -1 && PyErr_Occurred())
return -1;
if (i < 0)
i += PyByteArray_GET_SIZE(self);
if (i < 0 || i >= Py_SIZE(self)) {
PyErr_SetString(PyExc_IndexError, "bytearray index out of range");
return -1;
}
if (values == NULL) {
/* Fall through to slice assignment */
start = i;
stop = i + 1;
step = 1;
slicelen = 1;
}
else {
int ival;
if (!_getbytevalue(values, &ival))
return -1;
buf[i] = (char)ival;
return 0;
}
}
else if (PySlice_Check(index)) {
if (PySlice_Unpack(index, &start, &stop, &step) < 0) {
return -1;
}
slicelen = PySlice_AdjustIndices(PyByteArray_GET_SIZE(self), &start,
&stop, step);
}
else {
PyErr_Format(PyExc_TypeError,
"bytearray indices must be integers or slices, not %.200s",
Py_TYPE(index)->tp_name);
return -1;
}
if (values == NULL) {
bytes = NULL;
needed = 0;
}
else if (values == (PyObject *)self || !PyByteArray_Check(values)) {
int err;
if (PyNumber_Check(values) || PyUnicode_Check(values)) {
PyErr_SetString(PyExc_TypeError,
"can assign only bytes, buffers, or iterables "
"of ints in range(0, 256)");
return -1;
}
/* Make a copy and call this function recursively */
values = PyByteArray_FromObject(values);
if (values == NULL)
return -1;
err = bytearray_ass_subscript(self, index, values);
Py_DECREF(values);
return err;
}
else {
assert(PyByteArray_Check(values));
bytes = PyByteArray_AS_STRING(values);
needed = Py_SIZE(values);
}
/* Make sure b[5:2] = ... inserts before 5, not before 2. */
if ((step < 0 && start < stop) ||
(step > 0 && start > stop))
stop = start;
if (step == 1) {
return bytearray_setslice_linear(self, start, stop, bytes, needed);
}
else {
if (needed == 0) {
/* Delete slice */
size_t cur;
Py_ssize_t i;
if (!_canresize(self))
return -1;
if (slicelen == 0)
/* Nothing to do here. */
return 0;
if (step < 0) {
stop = start + 1;
start = stop + step * (slicelen - 1) - 1;
step = -step;
}
for (cur = start, i = 0;
i < slicelen; cur += step, i++) {
Py_ssize_t lim = step - 1;
if (cur + step >= (size_t)PyByteArray_GET_SIZE(self))
lim = PyByteArray_GET_SIZE(self) - cur - 1;
memmove(buf + cur - i,
buf + cur + 1, lim);
}
/* Move the tail of the bytes, in one chunk */
cur = start + (size_t)slicelen*step;
if (cur < (size_t)PyByteArray_GET_SIZE(self)) {
memmove(buf + cur - slicelen,
buf + cur,
PyByteArray_GET_SIZE(self) - cur);
}
if (PyByteArray_Resize((PyObject *)self,
PyByteArray_GET_SIZE(self) - slicelen) < 0)
return -1;
return 0;
}
else {
/* Assign slice */
Py_ssize_t i;
size_t cur;
if (needed != slicelen) {
PyErr_Format(PyExc_ValueError,
"attempt to assign bytes of size %zd "
"to extended slice of size %zd",
needed, slicelen);
return -1;
}
for (cur = start, i = 0; i < slicelen; cur += step, i++)
buf[cur] = bytes[i];
return 0;
}
}
}
static int
bytearray_init(PyByteArrayObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"source", "encoding", "errors", 0};
PyObject *arg = NULL;
const char *encoding = NULL;
const char *errors = NULL;
Py_ssize_t count;
PyObject *it;
PyObject *(*iternext)(PyObject *);
if (Py_SIZE(self) != 0) {
/* Empty previous contents (yes, do this first of all!) */
if (PyByteArray_Resize((PyObject *)self, 0) < 0)
return -1;
}
/* Parse arguments */
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|Oss:bytearray", kwlist,
&arg, &encoding, &errors))
return -1;
/* Make a quick exit if no first argument */
if (arg == NULL) {
if (encoding != NULL || errors != NULL) {
PyErr_SetString(PyExc_TypeError,
"encoding or errors without sequence argument");
return -1;
}
return 0;
}
if (PyUnicode_Check(arg)) {
/* Encode via the codec registry */
PyObject *encoded, *new;
if (encoding == NULL) {
PyErr_SetString(PyExc_TypeError,
"string argument without an encoding");
return -1;
}
encoded = PyUnicode_AsEncodedString(arg, encoding, errors);
if (encoded == NULL)
return -1;
assert(PyBytes_Check(encoded));
new = bytearray_iconcat(self, encoded);
Py_DECREF(encoded);
if (new == NULL)
return -1;
Py_DECREF(new);
return 0;
}
/* If it's not unicode, there can't be encoding or errors */
if (encoding != NULL || errors != NULL) {
PyErr_SetString(PyExc_TypeError,
"encoding or errors without a string argument");
return -1;
}
/* Is it an int? */
if (PyIndex_Check(arg)) {
count = PyNumber_AsSsize_t(arg, PyExc_OverflowError);
if (count == -1 && PyErr_Occurred()) {
if (!PyErr_ExceptionMatches(PyExc_TypeError))
return -1;
PyErr_Clear(); /* fall through */
}
else {
if (count < 0) {
PyErr_SetString(PyExc_ValueError, "negative count");
return -1;
}
if (count > 0) {
if (PyByteArray_Resize((PyObject *)self, count))
return -1;
bzero(PyByteArray_AS_STRING(self), count);
}
return 0;
}
}
/* Use the buffer API */
if (PyObject_CheckBuffer(arg)) {
Py_ssize_t size;
Py_buffer view;
if (PyObject_GetBuffer(arg, &view, PyBUF_FULL_RO) < 0)
return -1;
size = view.len;
if (PyByteArray_Resize((PyObject *)self, size) < 0) goto fail;
if (PyBuffer_ToContiguous(PyByteArray_AS_STRING(self),
&view, size, 'C') < 0)
goto fail;
PyBuffer_Release(&view);
return 0;
fail:
PyBuffer_Release(&view);
return -1;
}
/* XXX Optimize this if the arguments is a list, tuple */
/* Get the iterator */
it = PyObject_GetIter(arg);
if (it == NULL)
return -1;
iternext = *Py_TYPE(it)->tp_iternext;
/* Run the iterator to exhaustion */
for (;;) {
PyObject *item;
int rc, value;
/* Get the next item */
item = iternext(it);
if (item == NULL) {
if (PyErr_Occurred()) {
if (!PyErr_ExceptionMatches(PyExc_StopIteration))
goto error;
PyErr_Clear();
}
break;
}
/* Interpret it as an int (__index__) */
rc = _getbytevalue(item, &value);
Py_DECREF(item);
if (!rc)
goto error;
/* Append the byte */
if (Py_SIZE(self) + 1 < self->ob_alloc) {
Py_SIZE(self)++;
PyByteArray_AS_STRING(self)[Py_SIZE(self)] = '\0';
}
else if (PyByteArray_Resize((PyObject *)self, Py_SIZE(self)+1) < 0)
goto error;
PyByteArray_AS_STRING(self)[Py_SIZE(self)-1] = value;
}
/* Clean up and return success */
Py_DECREF(it);
return 0;
error:
/* Error handling when it != NULL */
Py_DECREF(it);
return -1;
}
/* Mostly copied from string_repr, but without the
"smart quote" functionality. */
static PyObject *
bytearray_repr(PyByteArrayObject *self)
{
const char *quote_prefix = "bytearray(b";
const char *quote_postfix = ")";
Py_ssize_t length = Py_SIZE(self);
/* 15 == strlen(quote_prefix) + 2 + strlen(quote_postfix) + 1 */
size_t newsize;
PyObject *v;
Py_ssize_t i;
char *bytes;
char c;
char *p;
int quote;
char *test, *start;
char *buffer;
if (length > (PY_SSIZE_T_MAX - 15) / 4) {
PyErr_SetString(PyExc_OverflowError,
"bytearray object is too large to make repr");
return NULL;
}
newsize = 15 + length * 4;
buffer = PyObject_Malloc(newsize);
if (buffer == NULL) {
PyErr_NoMemory();
return NULL;
}
/* Figure out which quote to use; single is preferred */
quote = '\'';
start = PyByteArray_AS_STRING(self);
for (test = start; test < start+length; ++test) {
if (*test == '"') {
quote = '\''; /* back to single */
break;
}
else if (*test == '\'')
quote = '"';
}
p = buffer;
while (*quote_prefix)
*p++ = *quote_prefix++;
*p++ = quote;
bytes = PyByteArray_AS_STRING(self);
for (i = 0; i < length; i++) {
/* There's at least enough room for a hex escape
and a closing quote. */
assert(newsize - (p - buffer) >= 5);
c = bytes[i];
if (c == '\'' || c == '\\')
*p++ = '\\', *p++ = c;
else if (c == '\t')
*p++ = '\\', *p++ = 't';
else if (c == '\n')
*p++ = '\\', *p++ = 'n';
else if (c == '\r')
*p++ = '\\', *p++ = 'r';
else if (c == 0)
*p++ = '\\', *p++ = 'x', *p++ = '0', *p++ = '0';
else if (c < ' ' || c >= 0x7f) {
*p++ = '\\';
*p++ = 'x';
*p++ = Py_hexdigits[(c & 0xf0) >> 4];
*p++ = Py_hexdigits[c & 0xf];
}
else
*p++ = c;
}
assert(newsize - (p - buffer) >= 1);
*p++ = quote;
while (*quote_postfix) {
*p++ = *quote_postfix++;
}
v = PyUnicode_DecodeASCII(buffer, p - buffer, NULL);
PyObject_Free(buffer);
return v;
}
static PyObject *
bytearray_str(PyObject *op)
{
if (Py_BytesWarningFlag) {
if (PyErr_WarnEx(PyExc_BytesWarning,
"str() on a bytearray instance", 1))
return NULL;
}
return bytearray_repr((PyByteArrayObject*)op);
}
static PyObject *
bytearray_richcompare(PyObject *self, PyObject *other, int op)
{
Py_ssize_t self_size, other_size;
Py_buffer self_bytes, other_bytes;
PyObject *res;
Py_ssize_t minsize;
int cmp, rc;
/* Bytes can be compared to anything that supports the (binary)
buffer API. Except that a comparison with Unicode is always an
error, even if the comparison is for equality. */
rc = PyObject_IsInstance(self, (PyObject*)&PyUnicode_Type);
if (!rc)
rc = PyObject_IsInstance(other, (PyObject*)&PyUnicode_Type);
if (rc < 0)
return NULL;
if (rc) {
if (Py_BytesWarningFlag && (op == Py_EQ || op == Py_NE)) {
if (PyErr_WarnEx(PyExc_BytesWarning,
"Comparison between bytearray and string", 1))
return NULL;
}
Py_RETURN_NOTIMPLEMENTED;
}
if (PyObject_GetBuffer(self, &self_bytes, PyBUF_SIMPLE) != 0) {
PyErr_Clear();
Py_RETURN_NOTIMPLEMENTED;
}
self_size = self_bytes.len;
if (PyObject_GetBuffer(other, &other_bytes, PyBUF_SIMPLE) != 0) {
PyErr_Clear();
PyBuffer_Release(&self_bytes);
Py_RETURN_NOTIMPLEMENTED;
}
other_size = other_bytes.len;
if (self_size != other_size && (op == Py_EQ || op == Py_NE)) {
/* Shortcut: if the lengths differ, the objects differ */
cmp = (op == Py_NE);
}
else {
minsize = self_size;
if (other_size < minsize)
minsize = other_size;
cmp = memcmp(self_bytes.buf, other_bytes.buf, minsize);
/* In ISO C, memcmp() guarantees to use unsigned bytes! */
if (cmp == 0) {
if (self_size < other_size)
cmp = -1;
else if (self_size > other_size)
cmp = 1;
}
switch (op) {
case Py_LT: cmp = cmp < 0; break;
case Py_LE: cmp = cmp <= 0; break;
case Py_EQ: cmp = cmp == 0; break;
case Py_NE: cmp = cmp != 0; break;
case Py_GT: cmp = cmp > 0; break;
case Py_GE: cmp = cmp >= 0; break;
}
}
res = cmp ? Py_True : Py_False;
PyBuffer_Release(&self_bytes);
PyBuffer_Release(&other_bytes);
Py_INCREF(res);
return res;
}
static void
bytearray_dealloc(PyByteArrayObject *self)
{
if (self->ob_exports > 0) {
PyErr_SetString(PyExc_SystemError,
"deallocated bytearray object has exported buffers");
PyErr_Print();
}
if (self->ob_bytes != 0) {
PyObject_Free(self->ob_bytes);
}
Py_TYPE(self)->tp_free((PyObject *)self);
}
/* -------------------------------------------------------------------- */
/* Methods */
#define FASTSEARCH fastsearch
#define STRINGLIB(F) stringlib_##F
#define STRINGLIB_CHAR char
#define STRINGLIB_SIZEOF_CHAR 1
#define STRINGLIB_LEN PyByteArray_GET_SIZE
#define STRINGLIB_STR PyByteArray_AS_STRING
#define STRINGLIB_NEW PyByteArray_FromStringAndSize
#define STRINGLIB_ISSPACE Py_ISSPACE
#define STRINGLIB_ISLINEBREAK(x) ((x == '\n') || (x == '\r'))
#define STRINGLIB_CHECK_EXACT PyByteArray_CheckExact
#define STRINGLIB_MUTABLE 1
#include "third_party/python/Objects/stringlib/fastsearch.inc"
#include "third_party/python/Objects/stringlib/count.inc"
#include "third_party/python/Objects/stringlib/find.inc"
#include "third_party/python/Objects/stringlib/join.inc"
#include "third_party/python/Objects/stringlib/partition.inc"
#include "third_party/python/Objects/stringlib/split.inc"
#include "third_party/python/Objects/stringlib/ctype.inc"
#include "third_party/python/Objects/stringlib/transmogrify.inc"
static PyObject *
bytearray_find(PyByteArrayObject *self, PyObject *args)
{
return _Py_bytes_find(PyByteArray_AS_STRING(self), PyByteArray_GET_SIZE(self), args);
}
static PyObject *
bytearray_count(PyByteArrayObject *self, PyObject *args)
{
return _Py_bytes_count(PyByteArray_AS_STRING(self), PyByteArray_GET_SIZE(self), args);
}
/*[clinic input]
bytearray.clear
Remove all items from the bytearray.
[clinic start generated code]*/
static PyObject *
bytearray_clear_impl(PyByteArrayObject *self)
/*[clinic end generated code: output=85c2fe6aede0956c input=ed6edae9de447ac4]*/
{
if (PyByteArray_Resize((PyObject *)self, 0) < 0)
return NULL;
Py_RETURN_NONE;
}
/*[clinic input]
bytearray.copy
Return a copy of B.
[clinic start generated code]*/
static PyObject *
bytearray_copy_impl(PyByteArrayObject *self)
/*[clinic end generated code: output=68cfbcfed484c132 input=6597b0c01bccaa9e]*/
{
return PyByteArray_FromStringAndSize(PyByteArray_AS_STRING((PyObject *)self),
PyByteArray_GET_SIZE(self));
}
static PyObject *
bytearray_index(PyByteArrayObject *self, PyObject *args)
{
return _Py_bytes_index(PyByteArray_AS_STRING(self), PyByteArray_GET_SIZE(self), args);
}
static PyObject *
bytearray_rfind(PyByteArrayObject *self, PyObject *args)
{
return _Py_bytes_rfind(PyByteArray_AS_STRING(self), PyByteArray_GET_SIZE(self), args);
}
static PyObject *
bytearray_rindex(PyByteArrayObject *self, PyObject *args)
{
return _Py_bytes_rindex(PyByteArray_AS_STRING(self), PyByteArray_GET_SIZE(self), args);
}
static int
bytearray_contains(PyObject *self, PyObject *arg)
{
return _Py_bytes_contains(PyByteArray_AS_STRING(self), PyByteArray_GET_SIZE(self), arg);
}
static PyObject *
bytearray_startswith(PyByteArrayObject *self, PyObject *args)
{
return _Py_bytes_startswith(PyByteArray_AS_STRING(self), PyByteArray_GET_SIZE(self), args);
}
static PyObject *
bytearray_endswith(PyByteArrayObject *self, PyObject *args)
{
return _Py_bytes_endswith(PyByteArray_AS_STRING(self), PyByteArray_GET_SIZE(self), args);
}
/*[clinic input]
bytearray.translate
table: object
Translation table, which must be a bytes object of length 256.
/
delete as deletechars: object(c_default="NULL") = b''
Return a copy with each character mapped by the given translation table.
All characters occurring in the optional argument delete are removed.
The remaining characters are mapped through the given translation table.
[clinic start generated code]*/
static PyObject *
bytearray_translate_impl(PyByteArrayObject *self, PyObject *table,
PyObject *deletechars)
/*[clinic end generated code: output=b6a8f01c2a74e446 input=cfff956d4d127a9b]*/
{
char *input, *output;
const char *table_chars;
Py_ssize_t i, c;
PyObject *input_obj = (PyObject*)self;
const char *output_start;
Py_ssize_t inlen;
PyObject *result = NULL;
int trans_table[256];
Py_buffer vtable, vdel;
if (table == Py_None) {
table_chars = NULL;
table = NULL;
} else if (PyObject_GetBuffer(table, &vtable, PyBUF_SIMPLE) != 0) {
return NULL;
} else {
if (vtable.len != 256) {
PyErr_SetString(PyExc_ValueError,
"translation table must be 256 characters long");
PyBuffer_Release(&vtable);
return NULL;
}
table_chars = (const char*)vtable.buf;
}
if (deletechars != NULL) {
if (PyObject_GetBuffer(deletechars, &vdel, PyBUF_SIMPLE) != 0) {
if (table != NULL)
PyBuffer_Release(&vtable);
return NULL;
}
}
else {
vdel.buf = NULL;
vdel.len = 0;
}
inlen = PyByteArray_GET_SIZE(input_obj);
result = PyByteArray_FromStringAndSize((char *)NULL, inlen);
if (result == NULL)
goto done;
output_start = output = PyByteArray_AS_STRING(result);
input = PyByteArray_AS_STRING(input_obj);
if (vdel.len == 0 && table_chars != NULL) {
/* If no deletions are required, use faster code */
for (i = inlen; --i >= 0; ) {
c = Py_CHARMASK(*input++);
*output++ = table_chars[c];
}
goto done;
}
if (table_chars == NULL) {
for (i = 0; i < 256; i++)
trans_table[i] = Py_CHARMASK(i);
} else {
for (i = 0; i < 256; i++)
trans_table[i] = Py_CHARMASK(table_chars[i]);
}
for (i = 0; i < vdel.len; i++)
trans_table[(int) Py_CHARMASK( ((unsigned char*)vdel.buf)[i] )] = -1;
for (i = inlen; --i >= 0; ) {
c = Py_CHARMASK(*input++);
if (trans_table[c] != -1)
*output++ = (char)trans_table[c];
}
/* Fix the size of the resulting string */
if (inlen > 0)
if (PyByteArray_Resize(result, output - output_start) < 0) {
Py_CLEAR(result);
goto done;
}
done:
if (table != NULL)
PyBuffer_Release(&vtable);
if (deletechars != NULL)
PyBuffer_Release(&vdel);
return result;
}
/*[clinic input]
@staticmethod
bytearray.maketrans
frm: Py_buffer
to: Py_buffer
/
Return a translation table useable for the bytes or bytearray translate method.
The returned table will be one where each byte in frm is mapped to the byte at
the same position in to.
The bytes objects frm and to must be of the same length.
[clinic start generated code]*/
static PyObject *
bytearray_maketrans_impl(Py_buffer *frm, Py_buffer *to)
/*[clinic end generated code: output=1df267d99f56b15e input=5925a81d2fbbf151]*/
{
return _Py_bytes_maketrans(frm, to);
}
/*[clinic input]
bytearray.replace
old: Py_buffer
new: Py_buffer
count: Py_ssize_t = -1
Maximum number of occurrences to replace.
-1 (the default value) means replace all occurrences.
/
Return a copy with all occurrences of substring old replaced by new.
If the optional argument count is given, only the first count occurrences are
replaced.
[clinic start generated code]*/
static PyObject *
bytearray_replace_impl(PyByteArrayObject *self, Py_buffer *old,
Py_buffer *new, Py_ssize_t count)
/*[clinic end generated code: output=d39884c4dc59412a input=aa379d988637c7fb]*/
{
return stringlib_replace((PyObject *)self,
(const char *)old->buf, old->len,
(const char *)new->buf, new->len, count);
}
/*[clinic input]
bytearray.split
sep: object = None
The delimiter according which to split the bytearray.
None (the default value) means split on ASCII whitespace characters
(space, tab, return, newline, formfeed, vertical tab).
maxsplit: Py_ssize_t = -1
Maximum number of splits to do.
-1 (the default value) means no limit.
Return a list of the sections in the bytearray, using sep as the delimiter.
[clinic start generated code]*/
static PyObject *
bytearray_split_impl(PyByteArrayObject *self, PyObject *sep,
Py_ssize_t maxsplit)
/*[clinic end generated code: output=833e2cf385d9a04d input=24f82669f41bf523]*/
{
Py_ssize_t len = PyByteArray_GET_SIZE(self), n;
const char *s = PyByteArray_AS_STRING(self), *sub;
PyObject *list;
Py_buffer vsub;
if (maxsplit < 0)
maxsplit = PY_SSIZE_T_MAX;
if (sep == Py_None)
return stringlib_split_whitespace((PyObject*) self, s, len, maxsplit);
if (PyObject_GetBuffer(sep, &vsub, PyBUF_SIMPLE) != 0)
return NULL;
sub = vsub.buf;
n = vsub.len;
list = stringlib_split(
(PyObject*) self, s, len, sub, n, maxsplit
);
PyBuffer_Release(&vsub);
return list;
}
/*[clinic input]
bytearray.partition
sep: object
/
Partition the bytearray into three parts using the given separator.
This will search for the separator sep in the bytearray. If the separator is
found, returns a 3-tuple containing the part before the separator, the
separator itself, and the part after it as new bytearray objects.
If the separator is not found, returns a 3-tuple containing the copy of the
original bytearray object and two empty bytearray objects.
[clinic start generated code]*/
static PyObject *
bytearray_partition(PyByteArrayObject *self, PyObject *sep)
/*[clinic end generated code: output=45d2525ddd35f957 input=8f644749ee4fc83a]*/
{
PyObject *bytesep, *result;
bytesep = _PyByteArray_FromBufferObject(sep);
if (! bytesep)
return NULL;
result = stringlib_partition(
(PyObject*) self,
PyByteArray_AS_STRING(self), PyByteArray_GET_SIZE(self),
bytesep,
PyByteArray_AS_STRING(bytesep), PyByteArray_GET_SIZE(bytesep)
);
Py_DECREF(bytesep);
return result;
}
/*[clinic input]
bytearray.rpartition
sep: object
/
Partition the bytearray into three parts using the given separator.
This will search for the separator sep in the bytearray, starting at the end.
If the separator is found, returns a 3-tuple containing the part before the
separator, the separator itself, and the part after it as new bytearray
objects.
If the separator is not found, returns a 3-tuple containing two empty bytearray
objects and the copy of the original bytearray object.
[clinic start generated code]*/
static PyObject *
bytearray_rpartition(PyByteArrayObject *self, PyObject *sep)
/*[clinic end generated code: output=440de3c9426115e8 input=7e3df3e6cb8fa0ac]*/
{
PyObject *bytesep, *result;
bytesep = _PyByteArray_FromBufferObject(sep);
if (! bytesep)
return NULL;
result = stringlib_rpartition(
(PyObject*) self,
PyByteArray_AS_STRING(self), PyByteArray_GET_SIZE(self),
bytesep,
PyByteArray_AS_STRING(bytesep), PyByteArray_GET_SIZE(bytesep)
);
Py_DECREF(bytesep);
return result;
}
/*[clinic input]
bytearray.rsplit = bytearray.split
Return a list of the sections in the bytearray, using sep as the delimiter.
Splitting is done starting at the end of the bytearray and working to the front.
[clinic start generated code]*/
static PyObject *
bytearray_rsplit_impl(PyByteArrayObject *self, PyObject *sep,
Py_ssize_t maxsplit)
/*[clinic end generated code: output=a55e0b5a03cb6190 input=a68286e4dd692ffe]*/
{
Py_ssize_t len = PyByteArray_GET_SIZE(self), n;
const char *s = PyByteArray_AS_STRING(self), *sub;
PyObject *list;
Py_buffer vsub;
if (maxsplit < 0)
maxsplit = PY_SSIZE_T_MAX;
if (sep == Py_None)
return stringlib_rsplit_whitespace((PyObject*) self, s, len, maxsplit);
if (PyObject_GetBuffer(sep, &vsub, PyBUF_SIMPLE) != 0)
return NULL;
sub = vsub.buf;
n = vsub.len;
list = stringlib_rsplit(
(PyObject*) self, s, len, sub, n, maxsplit
);
PyBuffer_Release(&vsub);
return list;
}
/*[clinic input]
bytearray.reverse
Reverse the order of the values in B in place.
[clinic start generated code]*/
static PyObject *
bytearray_reverse_impl(PyByteArrayObject *self)
/*[clinic end generated code: output=9f7616f29ab309d3 input=543356319fc78557]*/
{
char swap, *head, *tail;
Py_ssize_t i, j, n = Py_SIZE(self);
j = n / 2;
head = PyByteArray_AS_STRING(self);
tail = head + n - 1;
for (i = 0; i < j; i++) {
swap = *head;
*head++ = *tail;
*tail-- = swap;
}
Py_RETURN_NONE;
}
/*[python input]
class bytesvalue_converter(CConverter):
type = 'int'
converter = '_getbytevalue'
[python start generated code]*/
/*[python end generated code: output=da39a3ee5e6b4b0d input=29c2e7c26c212812]*/
/*[clinic input]
bytearray.insert
index: Py_ssize_t
The index where the value is to be inserted.
item: bytesvalue
The item to be inserted.
/
Insert a single item into the bytearray before the given index.
[clinic start generated code]*/
static PyObject *
bytearray_insert_impl(PyByteArrayObject *self, Py_ssize_t index, int item)
/*[clinic end generated code: output=76c775a70e7b07b7 input=b2b5d07e9de6c070]*/
{
Py_ssize_t n = Py_SIZE(self);
char *buf;
if (n == PY_SSIZE_T_MAX) {
PyErr_SetString(PyExc_OverflowError,
"cannot add more objects to bytearray");
return NULL;
}
if (PyByteArray_Resize((PyObject *)self, n + 1) < 0)
return NULL;
buf = PyByteArray_AS_STRING(self);
if (index < 0) {
index += n;
if (index < 0)
index = 0;
}
if (index > n)
index = n;
memmove(buf + index + 1, buf + index, n - index);
buf[index] = item;
Py_RETURN_NONE;
}
/*[clinic input]
bytearray.append
item: bytesvalue
The item to be appended.
/
Append a single item to the end of the bytearray.
[clinic start generated code]*/
static PyObject *
bytearray_append_impl(PyByteArrayObject *self, int item)
/*[clinic end generated code: output=a154e19ed1886cb6 input=20d6bec3d1340593]*/
{
Py_ssize_t n = Py_SIZE(self);
if (n == PY_SSIZE_T_MAX) {
PyErr_SetString(PyExc_OverflowError,
"cannot add more objects to bytearray");
return NULL;
}
if (PyByteArray_Resize((PyObject *)self, n + 1) < 0)
return NULL;
PyByteArray_AS_STRING(self)[n] = item;
Py_RETURN_NONE;
}
/*[clinic input]
bytearray.extend
iterable_of_ints: object
The iterable of items to append.
/
Append all the items from the iterator or sequence to the end of the bytearray.
[clinic start generated code]*/
static PyObject *
bytearray_extend(PyByteArrayObject *self, PyObject *iterable_of_ints)
/*[clinic end generated code: output=98155dbe249170b1 input=c617b3a93249ba28]*/
{
PyObject *it, *item, *bytearray_obj;
Py_ssize_t buf_size = 0, len = 0;
int value;
char *buf;
/* bytearray_setslice code only accepts something supporting PEP 3118. */
if (PyObject_CheckBuffer(iterable_of_ints)) {
if (bytearray_setslice(self, Py_SIZE(self), Py_SIZE(self), iterable_of_ints) == -1)
return NULL;
Py_RETURN_NONE;
}
it = PyObject_GetIter(iterable_of_ints);
if (it == NULL)
return NULL;
/* Try to determine the length of the argument. 32 is arbitrary. */
buf_size = PyObject_LengthHint(iterable_of_ints, 32);
if (buf_size == -1) {
Py_DECREF(it);
return NULL;
}
bytearray_obj = PyByteArray_FromStringAndSize(NULL, buf_size);
if (bytearray_obj == NULL) {
Py_DECREF(it);
return NULL;
}
buf = PyByteArray_AS_STRING(bytearray_obj);
while ((item = PyIter_Next(it)) != NULL) {
if (! _getbytevalue(item, &value)) {
Py_DECREF(item);
Py_DECREF(it);
Py_DECREF(bytearray_obj);
return NULL;
}
buf[len++] = value;
Py_DECREF(item);
if (len >= buf_size) {
Py_ssize_t addition;
if (len == PY_SSIZE_T_MAX) {
Py_DECREF(it);
Py_DECREF(bytearray_obj);
return PyErr_NoMemory();
}
addition = len >> 1;
if (addition > PY_SSIZE_T_MAX - len - 1)
buf_size = PY_SSIZE_T_MAX;
else
buf_size = len + addition + 1;
if (PyByteArray_Resize((PyObject *)bytearray_obj, buf_size) < 0) {
Py_DECREF(it);
Py_DECREF(bytearray_obj);
return NULL;
}
/* Recompute the `buf' pointer, since the resizing operation may
have invalidated it. */
buf = PyByteArray_AS_STRING(bytearray_obj);
}
}
Py_DECREF(it);
/* Resize down to exact size. */
if (PyByteArray_Resize((PyObject *)bytearray_obj, len) < 0) {
Py_DECREF(bytearray_obj);
return NULL;
}
if (bytearray_setslice(self, Py_SIZE(self), Py_SIZE(self), bytearray_obj) == -1) {
Py_DECREF(bytearray_obj);
return NULL;
}
Py_DECREF(bytearray_obj);
Py_RETURN_NONE;
}
/*[clinic input]
bytearray.pop
index: Py_ssize_t = -1
The index from where to remove the item.
-1 (the default value) means remove the last item.
/
Remove and return a single item from B.
If no index argument is given, will pop the last item.
[clinic start generated code]*/
static PyObject *
bytearray_pop_impl(PyByteArrayObject *self, Py_ssize_t index)
/*[clinic end generated code: output=e0ccd401f8021da8 input=3591df2d06c0d237]*/
{
int value;
Py_ssize_t n = Py_SIZE(self);
char *buf;
if (n == 0) {
PyErr_SetString(PyExc_IndexError,
"pop from empty bytearray");
return NULL;
}
if (index < 0)
index += Py_SIZE(self);
if (index < 0 || index >= Py_SIZE(self)) {
PyErr_SetString(PyExc_IndexError, "pop index out of range");
return NULL;
}
if (!_canresize(self))
return NULL;
buf = PyByteArray_AS_STRING(self);
value = buf[index];
memmove(buf + index, buf + index + 1, n - index);
if (PyByteArray_Resize((PyObject *)self, n - 1) < 0)
return NULL;
return PyLong_FromLong((unsigned char)value);
}
/*[clinic input]
bytearray.remove
value: bytesvalue
The value to remove.
/
Remove the first occurrence of a value in the bytearray.
[clinic start generated code]*/
static PyObject *
bytearray_remove_impl(PyByteArrayObject *self, int value)
/*[clinic end generated code: output=d659e37866709c13 input=121831240cd51ddf]*/
{
Py_ssize_t where, n = Py_SIZE(self);
char *buf = PyByteArray_AS_STRING(self);
where = stringlib_find_char(buf, n, value);
if (where < 0) {
PyErr_SetString(PyExc_ValueError, "value not found in bytearray");
return NULL;
}
if (!_canresize(self))
return NULL;
memmove(buf + where, buf + where + 1, n - where);
if (PyByteArray_Resize((PyObject *)self, n - 1) < 0)
return NULL;
Py_RETURN_NONE;
}
/* XXX These two helpers could be optimized if argsize == 1 */
static Py_ssize_t
lstrip_helper(const char *myptr, Py_ssize_t mysize,
const void *argptr, Py_ssize_t argsize)
{
Py_ssize_t i = 0;
while (i < mysize && memchr(argptr, (unsigned char) myptr[i], argsize))
i++;
return i;
}
static Py_ssize_t
rstrip_helper(const char *myptr, Py_ssize_t mysize,
const void *argptr, Py_ssize_t argsize)
{
Py_ssize_t i = mysize - 1;
while (i >= 0 && memchr(argptr, (unsigned char) myptr[i], argsize))
i--;
return i + 1;
}
/*[clinic input]
bytearray.strip
bytes: object = None
/
Strip leading and trailing bytes contained in the argument.
If the argument is omitted or None, strip leading and trailing ASCII whitespace.
[clinic start generated code]*/
static PyObject *
bytearray_strip_impl(PyByteArrayObject *self, PyObject *bytes)
/*[clinic end generated code: output=760412661a34ad5a input=ef7bb59b09c21d62]*/
{
Py_ssize_t left, right, mysize, byteslen;
char *myptr, *bytesptr;
Py_buffer vbytes;
if (bytes == Py_None) {
bytesptr = "\t\n\r\f\v ";
byteslen = 6;
}
else {
if (PyObject_GetBuffer(bytes, &vbytes, PyBUF_SIMPLE) != 0)
return NULL;
bytesptr = (char *) vbytes.buf;
byteslen = vbytes.len;
}
myptr = PyByteArray_AS_STRING(self);
mysize = Py_SIZE(self);
left = lstrip_helper(myptr, mysize, bytesptr, byteslen);
if (left == mysize)
right = left;
else
right = rstrip_helper(myptr, mysize, bytesptr, byteslen);
if (bytes != Py_None)
PyBuffer_Release(&vbytes);
return PyByteArray_FromStringAndSize(myptr + left, right - left);
}
/*[clinic input]
bytearray.lstrip
bytes: object = None
/
Strip leading bytes contained in the argument.
If the argument is omitted or None, strip leading ASCII whitespace.
[clinic start generated code]*/
static PyObject *
bytearray_lstrip_impl(PyByteArrayObject *self, PyObject *bytes)
/*[clinic end generated code: output=d005c9d0ab909e66 input=80843f975dd7c480]*/
{
Py_ssize_t left, right, mysize, byteslen;
char *myptr, *bytesptr;
Py_buffer vbytes;
if (bytes == Py_None) {
bytesptr = "\t\n\r\f\v ";
byteslen = 6;
}
else {
if (PyObject_GetBuffer(bytes, &vbytes, PyBUF_SIMPLE) != 0)
return NULL;
bytesptr = (char *) vbytes.buf;
byteslen = vbytes.len;
}
myptr = PyByteArray_AS_STRING(self);
mysize = Py_SIZE(self);
left = lstrip_helper(myptr, mysize, bytesptr, byteslen);
right = mysize;
if (bytes != Py_None)
PyBuffer_Release(&vbytes);
return PyByteArray_FromStringAndSize(myptr + left, right - left);
}
/*[clinic input]
bytearray.rstrip
bytes: object = None
/
Strip trailing bytes contained in the argument.
If the argument is omitted or None, strip trailing ASCII whitespace.
[clinic start generated code]*/
static PyObject *
bytearray_rstrip_impl(PyByteArrayObject *self, PyObject *bytes)
/*[clinic end generated code: output=030e2fbd2f7276bd input=e728b994954cfd91]*/
{
Py_ssize_t right, mysize, byteslen;
char *myptr, *bytesptr;
Py_buffer vbytes;
if (bytes == Py_None) {
bytesptr = "\t\n\r\f\v ";
byteslen = 6;
}
else {
if (PyObject_GetBuffer(bytes, &vbytes, PyBUF_SIMPLE) != 0)
return NULL;
bytesptr = (char *) vbytes.buf;
byteslen = vbytes.len;
}
myptr = PyByteArray_AS_STRING(self);
mysize = Py_SIZE(self);
right = rstrip_helper(myptr, mysize, bytesptr, byteslen);
if (bytes != Py_None)
PyBuffer_Release(&vbytes);
return PyByteArray_FromStringAndSize(myptr, right);
}
/*[clinic input]
bytearray.decode
encoding: str(c_default="NULL") = 'utf-8'
The encoding with which to decode the bytearray.
errors: str(c_default="NULL") = 'strict'
The error handling scheme to use for the handling of decoding errors.
The default is 'strict' meaning that decoding errors raise a
UnicodeDecodeError. Other possible values are 'ignore' and 'replace'
as well as any other name registered with codecs.register_error that
can handle UnicodeDecodeErrors.
Decode the bytearray using the codec registered for encoding.
[clinic start generated code]*/
static PyObject *
bytearray_decode_impl(PyByteArrayObject *self, const char *encoding,
const char *errors)
/*[clinic end generated code: output=f57d43f4a00b42c5 input=f28d8f903020257b]*/
{
if (encoding == NULL)
encoding = PyUnicode_GetDefaultEncoding();
return PyUnicode_FromEncodedObject((PyObject*)self, encoding, errors);
}
PyDoc_STRVAR(alloc_doc,
"B.__alloc__() -> int\n\
\n\
Return the number of bytes actually allocated.");
static PyObject *
bytearray_alloc(PyByteArrayObject *self)
{
return PyLong_FromSsize_t(self->ob_alloc);
}
/*[clinic input]
bytearray.join
iterable_of_bytes: object
/
Concatenate any number of bytes/bytearray objects.
The bytearray whose method is called is inserted in between each pair.
The result is returned as a new bytearray object.
[clinic start generated code]*/
static PyObject *
bytearray_join(PyByteArrayObject *self, PyObject *iterable_of_bytes)
/*[clinic end generated code: output=a8516370bf68ae08 input=aba6b1f9b30fcb8e]*/
{
return stringlib_bytes_join((PyObject*)self, iterable_of_bytes);
}
/*[clinic input]
bytearray.splitlines
keepends: int(c_default="0") = False
Return a list of the lines in the bytearray, breaking at line boundaries.
Line breaks are not included in the resulting list unless keepends is given and
true.
[clinic start generated code]*/
static PyObject *
bytearray_splitlines_impl(PyByteArrayObject *self, int keepends)
/*[clinic end generated code: output=4223c94b895f6ad9 input=8ccade941e5ea0bd]*/
{
return stringlib_splitlines(
(PyObject*) self, PyByteArray_AS_STRING(self),
PyByteArray_GET_SIZE(self), keepends
);
}
/*[clinic input]
@classmethod
bytearray.fromhex
string: unicode
/
Create a bytearray object from a string of hexadecimal numbers.
Spaces between two numbers are accepted.
Example: bytearray.fromhex('B9 01EF') -> bytearray(b'\\xb9\\x01\\xef')
[clinic start generated code]*/
static PyObject *
bytearray_fromhex_impl(PyTypeObject *type, PyObject *string)
/*[clinic end generated code: output=8f0f0b6d30fb3ba0 input=f033a16d1fb21f48]*/
{
PyObject *result = _PyBytes_FromHex(string, type == &PyByteArray_Type);
if (type != &PyByteArray_Type && result != NULL) {
Py_SETREF(result, PyObject_CallFunctionObjArgs((PyObject *)type,
result, NULL));
}
return result;
}
PyDoc_STRVAR(hex__doc__,
"B.hex() -> string\n\
\n\
Create a string of hexadecimal numbers from a bytearray object.\n\
Example: bytearray([0xb9, 0x01, 0xef]).hex() -> 'b901ef'.");
static PyObject *
bytearray_hex(PyBytesObject *self)
{
char* argbuf = PyByteArray_AS_STRING(self);
Py_ssize_t arglen = PyByteArray_GET_SIZE(self);
return _Py_strhex(argbuf, arglen);
}
static PyObject *
_common_reduce(PyByteArrayObject *self, int proto)
{
PyObject *dict;
_Py_IDENTIFIER(__dict__);
char *buf;
dict = _PyObject_GetAttrId((PyObject *)self, &PyId___dict__);
if (dict == NULL) {
PyErr_Clear();
dict = Py_None;
Py_INCREF(dict);
}
buf = PyByteArray_AS_STRING(self);
if (proto < 3) {
/* use str based reduction for backwards compatibility with Python 2.x */
PyObject *latin1;
if (Py_SIZE(self))
latin1 = PyUnicode_DecodeLatin1(buf, Py_SIZE(self), NULL);
else
latin1 = PyUnicode_FromString("");
return Py_BuildValue("(O(Ns)N)", Py_TYPE(self), latin1, "latin-1", dict);
}
else {
/* use more efficient byte based reduction */
if (Py_SIZE(self)) {
return Py_BuildValue("(O(y#)N)", Py_TYPE(self), buf, Py_SIZE(self), dict);
}
else {
return Py_BuildValue("(O()N)", Py_TYPE(self), dict);
}
}
}
/*[clinic input]
bytearray.__reduce__ as bytearray_reduce
Return state information for pickling.
[clinic start generated code]*/
static PyObject *
bytearray_reduce_impl(PyByteArrayObject *self)
/*[clinic end generated code: output=52bf304086464cab input=44b5737ada62dd3f]*/
{
return _common_reduce(self, 2);
}
/*[clinic input]
bytearray.__reduce_ex__ as bytearray_reduce_ex
proto: int = 0
/
Return state information for pickling.
[clinic start generated code]*/
static PyObject *
bytearray_reduce_ex_impl(PyByteArrayObject *self, int proto)
/*[clinic end generated code: output=52eac33377197520 input=f129bc1a1aa151ee]*/
{
return _common_reduce(self, proto);
}
/*[clinic input]
bytearray.__sizeof__ as bytearray_sizeof
Returns the size of the bytearray object in memory, in bytes.
[clinic start generated code]*/
static PyObject *
bytearray_sizeof_impl(PyByteArrayObject *self)
/*[clinic end generated code: output=738abdd17951c427 input=e27320fd98a4bc5a]*/
{
Py_ssize_t res;
res = _PyObject_SIZE(Py_TYPE(self)) + self->ob_alloc * sizeof(char);
return PyLong_FromSsize_t(res);
}
static PySequenceMethods bytearray_as_sequence = {
(lenfunc)bytearray_length, /* sq_length */
(binaryfunc)PyByteArray_Concat, /* sq_concat */
(ssizeargfunc)bytearray_repeat, /* sq_repeat */
(ssizeargfunc)bytearray_getitem, /* sq_item */
0, /* sq_slice */
(ssizeobjargproc)bytearray_setitem, /* sq_ass_item */
0, /* sq_ass_slice */
(objobjproc)bytearray_contains, /* sq_contains */
(binaryfunc)bytearray_iconcat, /* sq_inplace_concat */
(ssizeargfunc)bytearray_irepeat, /* sq_inplace_repeat */
};
static PyMappingMethods bytearray_as_mapping = {
(lenfunc)bytearray_length,
(binaryfunc)bytearray_subscript,
(objobjargproc)bytearray_ass_subscript,
};
static PyBufferProcs bytearray_as_buffer = {
(getbufferproc)bytearray_getbuffer,
(releasebufferproc)bytearray_releasebuffer,
};
static PyMethodDef
bytearray_methods[] = {
{"__alloc__", (PyCFunction)bytearray_alloc, METH_NOARGS, alloc_doc},
BYTEARRAY_REDUCE_METHODDEF
BYTEARRAY_REDUCE_EX_METHODDEF
BYTEARRAY_SIZEOF_METHODDEF
BYTEARRAY_APPEND_METHODDEF
{"capitalize", (PyCFunction)stringlib_capitalize, METH_NOARGS,
_Py_capitalize__doc__},
{"center", (PyCFunction)stringlib_center, METH_VARARGS, _Py_center__doc__},
BYTEARRAY_CLEAR_METHODDEF
BYTEARRAY_COPY_METHODDEF
{"count", (PyCFunction)bytearray_count, METH_VARARGS,
_Py_count__doc__},
BYTEARRAY_DECODE_METHODDEF
{"endswith", (PyCFunction)bytearray_endswith, METH_VARARGS,
_Py_endswith__doc__},
{"expandtabs", (PyCFunction)stringlib_expandtabs, METH_VARARGS | METH_KEYWORDS,
_Py_expandtabs__doc__},
BYTEARRAY_EXTEND_METHODDEF
{"find", (PyCFunction)bytearray_find, METH_VARARGS,
_Py_find__doc__},
BYTEARRAY_FROMHEX_METHODDEF
{"hex", (PyCFunction)bytearray_hex, METH_NOARGS, hex__doc__},
{"index", (PyCFunction)bytearray_index, METH_VARARGS, _Py_index__doc__},
BYTEARRAY_INSERT_METHODDEF
{"isalnum", (PyCFunction)stringlib_isalnum, METH_NOARGS,
_Py_isalnum__doc__},
{"isalpha", (PyCFunction)stringlib_isalpha, METH_NOARGS,
_Py_isalpha__doc__},
{"isdigit", (PyCFunction)stringlib_isdigit, METH_NOARGS,
_Py_isdigit__doc__},
{"islower", (PyCFunction)stringlib_islower, METH_NOARGS,
_Py_islower__doc__},
{"isspace", (PyCFunction)stringlib_isspace, METH_NOARGS,
_Py_isspace__doc__},
{"istitle", (PyCFunction)stringlib_istitle, METH_NOARGS,
_Py_istitle__doc__},
{"isupper", (PyCFunction)stringlib_isupper, METH_NOARGS,
_Py_isupper__doc__},
BYTEARRAY_JOIN_METHODDEF
{"ljust", (PyCFunction)stringlib_ljust, METH_VARARGS, _Py_ljust__doc__},
{"lower", (PyCFunction)stringlib_lower, METH_NOARGS, _Py_lower__doc__},
BYTEARRAY_LSTRIP_METHODDEF
BYTEARRAY_MAKETRANS_METHODDEF
BYTEARRAY_PARTITION_METHODDEF
BYTEARRAY_POP_METHODDEF
BYTEARRAY_REMOVE_METHODDEF
BYTEARRAY_REPLACE_METHODDEF
BYTEARRAY_REVERSE_METHODDEF
{"rfind", (PyCFunction)bytearray_rfind, METH_VARARGS, _Py_rfind__doc__},
{"rindex", (PyCFunction)bytearray_rindex, METH_VARARGS, _Py_rindex__doc__},
{"rjust", (PyCFunction)stringlib_rjust, METH_VARARGS, _Py_rjust__doc__},
BYTEARRAY_RPARTITION_METHODDEF
BYTEARRAY_RSPLIT_METHODDEF
BYTEARRAY_RSTRIP_METHODDEF
BYTEARRAY_SPLIT_METHODDEF
BYTEARRAY_SPLITLINES_METHODDEF
{"startswith", (PyCFunction)bytearray_startswith, METH_VARARGS ,
_Py_startswith__doc__},
BYTEARRAY_STRIP_METHODDEF
{"swapcase", (PyCFunction)stringlib_swapcase, METH_NOARGS,
_Py_swapcase__doc__},
{"title", (PyCFunction)stringlib_title, METH_NOARGS, _Py_title__doc__},
BYTEARRAY_TRANSLATE_METHODDEF
{"upper", (PyCFunction)stringlib_upper, METH_NOARGS, _Py_upper__doc__},
{"zfill", (PyCFunction)stringlib_zfill, METH_VARARGS, _Py_zfill__doc__},
{NULL}
};
static PyObject *
bytearray_mod(PyObject *v, PyObject *w)
{
if (!PyByteArray_Check(v))
Py_RETURN_NOTIMPLEMENTED;
return _PyBytes_FormatEx(PyByteArray_AS_STRING(v), PyByteArray_GET_SIZE(v), w, 1);
}
static PyNumberMethods bytearray_as_number = {
0, /*nb_add*/
0, /*nb_subtract*/
0, /*nb_multiply*/
bytearray_mod, /*nb_remainder*/
};
PyDoc_STRVAR(bytearray_doc,
"bytearray(iterable_of_ints) -> bytearray\n\
bytearray(string, encoding[, errors]) -> bytearray\n\
bytearray(bytes_or_buffer) -> mutable copy of bytes_or_buffer\n\
bytearray(int) -> bytes array of size given by the parameter initialized with null bytes\n\
bytearray() -> empty bytes array\n\
\n\
Construct a mutable bytearray object from:\n\
- an iterable yielding integers in range(256)\n\
- a text string encoded using the specified encoding\n\
- a bytes or a buffer object\n\
- any object implementing the buffer API.\n\
- an integer");
static PyObject *bytearray_iter(PyObject *seq);
PyTypeObject PyByteArray_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"bytearray",
sizeof(PyByteArrayObject),
0,
(destructor)bytearray_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)bytearray_repr, /* tp_repr */
&bytearray_as_number, /* tp_as_number */
&bytearray_as_sequence, /* tp_as_sequence */
&bytearray_as_mapping, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
bytearray_str, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
&bytearray_as_buffer, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
bytearray_doc, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
(richcmpfunc)bytearray_richcompare, /* tp_richcompare */
0, /* tp_weaklistoffset */
bytearray_iter, /* tp_iter */
0, /* tp_iternext */
bytearray_methods, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
(initproc)bytearray_init, /* tp_init */
PyType_GenericAlloc, /* tp_alloc */
PyType_GenericNew, /* tp_new */
PyObject_Del, /* tp_free */
};
/*********************** Bytes Iterator ****************************/
typedef struct {
PyObject_HEAD
Py_ssize_t it_index;
PyByteArrayObject *it_seq; /* Set to NULL when iterator is exhausted */
} bytesiterobject;
static void
bytearrayiter_dealloc(bytesiterobject *it)
{
_PyObject_GC_UNTRACK(it);
Py_XDECREF(it->it_seq);
PyObject_GC_Del(it);
}
static int
bytearrayiter_traverse(bytesiterobject *it, visitproc visit, void *arg)
{
Py_VISIT(it->it_seq);
return 0;
}
static PyObject *
bytearrayiter_next(bytesiterobject *it)
{
PyByteArrayObject *seq;
PyObject *item;
assert(it != NULL);
seq = it->it_seq;
if (seq == NULL)
return NULL;
assert(PyByteArray_Check(seq));
if (it->it_index < PyByteArray_GET_SIZE(seq)) {
item = PyLong_FromLong(
(unsigned char)PyByteArray_AS_STRING(seq)[it->it_index]);
if (item != NULL)
++it->it_index;
return item;
}
it->it_seq = NULL;
Py_DECREF(seq);
return NULL;
}
static PyObject *
bytearrayiter_length_hint(bytesiterobject *it)
{
Py_ssize_t len = 0;
if (it->it_seq) {
len = PyByteArray_GET_SIZE(it->it_seq) - it->it_index;
if (len < 0) {
len = 0;
}
}
return PyLong_FromSsize_t(len);
}
PyDoc_STRVAR(length_hint_doc,
"Private method returning an estimate of len(list(it)).");
static PyObject *
bytearrayiter_reduce(bytesiterobject *it)
{
if (it->it_seq != NULL) {
return Py_BuildValue("N(O)n", _PyObject_GetBuiltin("iter"),
it->it_seq, it->it_index);
} else {
PyObject *u = PyUnicode_FromUnicode(NULL, 0);
if (u == NULL)
return NULL;
return Py_BuildValue("N(N)", _PyObject_GetBuiltin("iter"), u);
}
}
static PyObject *
bytearrayiter_setstate(bytesiterobject *it, PyObject *state)
{
Py_ssize_t index = PyLong_AsSsize_t(state);
if (index == -1 && PyErr_Occurred())
return NULL;
if (it->it_seq != NULL) {
if (index < 0)
index = 0;
else if (index > PyByteArray_GET_SIZE(it->it_seq))
index = PyByteArray_GET_SIZE(it->it_seq); /* iterator exhausted */
it->it_index = index;
}
Py_RETURN_NONE;
}
PyDoc_STRVAR(setstate_doc, "Set state information for unpickling.");
static PyMethodDef bytearrayiter_methods[] = {
{"__length_hint__", (PyCFunction)bytearrayiter_length_hint, METH_NOARGS,
length_hint_doc},
{"__reduce__", (PyCFunction)bytearrayiter_reduce, METH_NOARGS,
bytearray_reduce__doc__},
{"__setstate__", (PyCFunction)bytearrayiter_setstate, METH_O,
setstate_doc},
{NULL, NULL} /* sentinel */
};
PyTypeObject PyByteArrayIter_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"bytearray_iterator", /* tp_name */
sizeof(bytesiterobject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)bytearrayiter_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, /* tp_flags */
0, /* tp_doc */
(traverseproc)bytearrayiter_traverse, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
PyObject_SelfIter, /* tp_iter */
(iternextfunc)bytearrayiter_next, /* tp_iternext */
bytearrayiter_methods, /* tp_methods */
0,
};
static PyObject *
bytearray_iter(PyObject *seq)
{
bytesiterobject *it;
if (!PyByteArray_Check(seq)) {
PyErr_BadInternalCall();
return NULL;
}
it = PyObject_GC_New(bytesiterobject, &PyByteArrayIter_Type);
if (it == NULL)
return NULL;
it->it_index = 0;
Py_INCREF(seq);
it->it_seq = (PyByteArrayObject *)seq;
_PyObject_GC_TRACK(it);
return (PyObject *)it;
}
| 72,854 | 2,457 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/methodobject.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/boolobject.h"
#include "third_party/python/Include/ceval.h"
#include "third_party/python/Include/descrobject.h"
#include "third_party/python/Include/dictobject.h"
#include "third_party/python/Include/methodobject.h"
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/moduleobject.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/pyhash.h"
#include "third_party/python/Include/structmember.h"
/* clang-format off */
/* Free list for method objects to safe malloc/free overhead
* The m_self element is used to chain the objects.
*/
static PyCFunctionObject *free_list = NULL;
static int numfree = 0;
#ifndef PyCFunction_MAXFREELIST
#define PyCFunction_MAXFREELIST 256
#endif
/* undefine macro trampoline to PyCFunction_NewEx */
#undef PyCFunction_New
PyObject *
PyCFunction_New(PyMethodDef *ml, PyObject *self)
{
return PyCFunction_NewEx(ml, self, NULL);
}
PyObject *
PyCFunction_NewEx(PyMethodDef *ml, PyObject *self, PyObject *module)
{
PyCFunctionObject *op;
op = free_list;
if (op != NULL) {
free_list = (PyCFunctionObject *)(op->m_self);
(void)PyObject_INIT(op, &PyCFunction_Type);
numfree--;
}
else {
op = PyObject_GC_New(PyCFunctionObject, &PyCFunction_Type);
if (op == NULL)
return NULL;
}
op->m_weakreflist = NULL;
op->m_ml = ml;
Py_XINCREF(self);
op->m_self = self;
Py_XINCREF(module);
op->m_module = module;
_PyObject_GC_TRACK(op);
return (PyObject *)op;
}
PyCFunction
PyCFunction_GetFunction(PyObject *op)
{
if (!PyCFunction_Check(op)) {
PyErr_BadInternalCall();
return NULL;
}
return PyCFunction_GET_FUNCTION(op);
}
PyObject *
PyCFunction_GetSelf(PyObject *op)
{
if (!PyCFunction_Check(op)) {
PyErr_BadInternalCall();
return NULL;
}
return PyCFunction_GET_SELF(op);
}
int
PyCFunction_GetFlags(PyObject *op)
{
if (!PyCFunction_Check(op)) {
PyErr_BadInternalCall();
return -1;
}
return PyCFunction_GET_FLAGS(op);
}
/* Methods (the standard built-in methods, that is) */
static void
meth_dealloc(PyCFunctionObject *m)
{
_PyObject_GC_UNTRACK(m);
if (m->m_weakreflist != NULL) {
PyObject_ClearWeakRefs((PyObject*) m);
}
Py_XDECREF(m->m_self);
Py_XDECREF(m->m_module);
if (numfree < PyCFunction_MAXFREELIST) {
m->m_self = (PyObject *)free_list;
free_list = m;
numfree++;
}
else {
PyObject_GC_Del(m);
}
}
static PyObject *
meth_reduce(PyCFunctionObject *m)
{
PyObject *builtins;
PyObject *getattr;
_Py_IDENTIFIER(getattr);
if (m->m_self == NULL || PyModule_Check(m->m_self))
return PyUnicode_FromString(m->m_ml->ml_name);
builtins = PyEval_GetBuiltins();
getattr = _PyDict_GetItemId(builtins, &PyId_getattr);
return Py_BuildValue("O(Os)", getattr, m->m_self, m->m_ml->ml_name);
}
static PyMethodDef meth_methods[] = {
{"__reduce__", (PyCFunction)meth_reduce, METH_NOARGS, NULL},
{NULL, NULL}
};
static PyObject *
meth_get__text_signature__(PyCFunctionObject *m, void *closure)
{
return _PyType_GetTextSignatureFromInternalDoc(m->m_ml->ml_name, m->m_ml->ml_doc);
}
static PyObject *
meth_get__doc__(PyCFunctionObject *m, void *closure)
{
return _PyType_GetDocFromInternalDoc(m->m_ml->ml_name, m->m_ml->ml_doc);
}
static PyObject *
meth_get__name__(PyCFunctionObject *m, void *closure)
{
return PyUnicode_FromString(m->m_ml->ml_name);
}
static PyObject *
meth_get__qualname__(PyCFunctionObject *m, void *closure)
{
/* If __self__ is a module or NULL, return m.__name__
(e.g. len.__qualname__ == 'len')
If __self__ is a type, return m.__self__.__qualname__ + '.' + m.__name__
(e.g. dict.fromkeys.__qualname__ == 'dict.fromkeys')
Otherwise return type(m.__self__).__qualname__ + '.' + m.__name__
(e.g. [].append.__qualname__ == 'list.append') */
PyObject *type, *type_qualname, *res;
_Py_IDENTIFIER(__qualname__);
if (m->m_self == NULL || PyModule_Check(m->m_self))
return PyUnicode_FromString(m->m_ml->ml_name);
type = PyType_Check(m->m_self) ? m->m_self : (PyObject*)Py_TYPE(m->m_self);
type_qualname = _PyObject_GetAttrId(type, &PyId___qualname__);
if (type_qualname == NULL)
return NULL;
if (!PyUnicode_Check(type_qualname)) {
PyErr_SetString(PyExc_TypeError, "<method>.__class__."
"__qualname__ is not a unicode object");
Py_XDECREF(type_qualname);
return NULL;
}
res = PyUnicode_FromFormat("%S.%s", type_qualname, m->m_ml->ml_name);
Py_DECREF(type_qualname);
return res;
}
static int
meth_traverse(PyCFunctionObject *m, visitproc visit, void *arg)
{
Py_VISIT(m->m_self);
Py_VISIT(m->m_module);
return 0;
}
static PyObject *
meth_get__self__(PyCFunctionObject *m, void *closure)
{
PyObject *self;
self = PyCFunction_GET_SELF(m);
if (self == NULL)
self = Py_None;
Py_INCREF(self);
return self;
}
static PyGetSetDef meth_getsets [] = {
{"__doc__", (getter)meth_get__doc__, NULL, NULL},
{"__name__", (getter)meth_get__name__, NULL, NULL},
{"__qualname__", (getter)meth_get__qualname__, NULL, NULL},
{"__self__", (getter)meth_get__self__, NULL, NULL},
{"__text_signature__", (getter)meth_get__text_signature__, NULL, NULL},
{0}
};
#define OFF(x) offsetof(PyCFunctionObject, x)
static PyMemberDef meth_members[] = {
{"__module__", T_OBJECT, OFF(m_module), PY_WRITE_RESTRICTED},
{NULL}
};
static PyObject *
meth_repr(PyCFunctionObject *m)
{
if (m->m_self == NULL || PyModule_Check(m->m_self))
return PyUnicode_FromFormat("<built-in function %s>",
m->m_ml->ml_name);
return PyUnicode_FromFormat("<built-in method %s of %s object at %p>",
m->m_ml->ml_name,
m->m_self->ob_type->tp_name,
m->m_self);
}
static PyObject *
meth_richcompare(PyObject *self, PyObject *other, int op)
{
PyCFunctionObject *a, *b;
PyObject *res;
int eq;
if ((op != Py_EQ && op != Py_NE) ||
!PyCFunction_Check(self) ||
!PyCFunction_Check(other))
{
Py_RETURN_NOTIMPLEMENTED;
}
a = (PyCFunctionObject *)self;
b = (PyCFunctionObject *)other;
eq = a->m_self == b->m_self;
if (eq)
eq = a->m_ml->ml_meth == b->m_ml->ml_meth;
if (op == Py_EQ)
res = eq ? Py_True : Py_False;
else
res = eq ? Py_False : Py_True;
Py_INCREF(res);
return res;
}
static Py_hash_t
meth_hash(PyCFunctionObject *a)
{
Py_hash_t x, y;
if (a->m_self == NULL)
x = 0;
else {
x = PyObject_Hash(a->m_self);
if (x == -1)
return -1;
}
y = _Py_HashPointer((void*)(a->m_ml->ml_meth));
if (y == -1)
return -1;
x ^= y;
if (x == -1)
x = -2;
return x;
}
PyTypeObject PyCFunction_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"builtin_function_or_method",
sizeof(PyCFunctionObject),
0,
(destructor)meth_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)meth_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
(hashfunc)meth_hash, /* tp_hash */
PyCFunction_Call, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
0, /* tp_doc */
(traverseproc)meth_traverse, /* tp_traverse */
0, /* tp_clear */
meth_richcompare, /* tp_richcompare */
offsetof(PyCFunctionObject, m_weakreflist), /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
meth_methods, /* tp_methods */
meth_members, /* tp_members */
meth_getsets, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
};
/* Clear out the free list */
int
PyCFunction_ClearFreeList(void)
{
int freelist_size = numfree;
while (free_list) {
PyCFunctionObject *v = free_list;
free_list = (PyCFunctionObject *)(v->m_self);
PyObject_GC_Del(v);
numfree--;
}
assert(numfree == 0);
return freelist_size;
}
void
PyCFunction_Fini(void)
{
(void)PyCFunction_ClearFreeList();
}
/* Print summary info about the state of the optimized allocator */
void
_PyCFunction_DebugMallocStats(FILE *out)
{
_PyDebugAllocatorStats(out,
"free PyCFunctionObject",
numfree, sizeof(PyCFunctionObject));
}
| 10,616 | 348 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/moduleobject.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/descrobject.h"
#include "third_party/python/Include/dictobject.h"
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/moduleobject.h"
#include "third_party/python/Include/object.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/pgenheaders.h"
#include "third_party/python/Include/pydebug.h"
#include "third_party/python/Include/pystate.h"
#include "third_party/python/Include/structmember.h"
#include "third_party/python/Include/sysmodule.h"
#include "third_party/python/Include/unicodeobject.h"
#include "third_party/python/Include/warnings.h"
/* clang-format off */
static Py_ssize_t max_module_number;
typedef struct {
PyObject_HEAD
PyObject *md_dict;
struct PyModuleDef *md_def;
void *md_state;
PyObject *md_weaklist;
PyObject *md_name; /* for logging purposes after md_dict is cleared */
} PyModuleObject;
static PyMemberDef module_members[] = {
{"__dict__", T_OBJECT, offsetof(PyModuleObject, md_dict), READONLY},
{0}
};
/* Helper for sanity check for traverse not handling m_state == NULL
* Issue #32374 */
#ifdef Py_DEBUG
static int
bad_traverse_test(PyObject *self, void *arg) {
assert(self != NULL);
return 0;
}
#endif
PyTypeObject PyModuleDef_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"moduledef", /* tp_name */
sizeof(struct PyModuleDef), /* tp_basicsize */
0, /* tp_itemsize */
};
PyObject*
PyModuleDef_Init(struct PyModuleDef* def)
{
if (PyType_Ready(&PyModuleDef_Type) < 0)
return NULL;
if (def->m_base.m_index == 0) {
max_module_number++;
Py_REFCNT(def) = 1;
Py_TYPE(def) = &PyModuleDef_Type;
def->m_base.m_index = max_module_number;
}
return (PyObject*)def;
}
static int
module_init_dict(PyModuleObject *mod, PyObject *md_dict,
PyObject *name, PyObject *doc)
{
_Py_IDENTIFIER(__name__);
_Py_IDENTIFIER(__doc__);
_Py_IDENTIFIER(__package__);
_Py_IDENTIFIER(__loader__);
_Py_IDENTIFIER(__spec__);
if (md_dict == NULL)
return -1;
if (doc == NULL)
doc = Py_None;
if (_PyDict_SetItemId(md_dict, &PyId___name__, name) != 0)
return -1;
if (_PyDict_SetItemId(md_dict, &PyId___doc__, doc) != 0)
return -1;
if (_PyDict_SetItemId(md_dict, &PyId___package__, Py_None) != 0)
return -1;
if (_PyDict_SetItemId(md_dict, &PyId___loader__, Py_None) != 0)
return -1;
if (_PyDict_SetItemId(md_dict, &PyId___spec__, Py_None) != 0)
return -1;
if (PyUnicode_CheckExact(name)) {
Py_INCREF(name);
Py_XSETREF(mod->md_name, name);
}
return 0;
}
PyObject *
PyModule_NewObject(PyObject *name)
{
PyModuleObject *m;
m = PyObject_GC_New(PyModuleObject, &PyModule_Type);
if (m == NULL)
return NULL;
m->md_def = NULL;
m->md_state = NULL;
m->md_weaklist = NULL;
m->md_name = NULL;
m->md_dict = PyDict_New();
if (module_init_dict(m, m->md_dict, name, NULL) != 0)
goto fail;
PyObject_GC_Track(m);
return (PyObject *)m;
fail:
Py_DECREF(m);
return NULL;
}
PyObject *
PyModule_New(const char *name)
{
PyObject *nameobj, *module;
nameobj = PyUnicode_FromString(name);
if (nameobj == NULL)
return NULL;
module = PyModule_NewObject(nameobj);
Py_DECREF(nameobj);
return module;
}
/* Check API/ABI version
* Issues a warning on mismatch, which is usually not fatal.
* Returns 0 if an exception is raised.
*/
static int
check_api_version(const char *name, int module_api_version)
{
if (module_api_version != PYTHON_API_VERSION && module_api_version != PYTHON_ABI_VERSION) {
int err;
err = PyErr_WarnFormat(PyExc_RuntimeWarning, 1,
"Python C API version mismatch for module %.100s: "
"This Python has API version %d, module %.100s has version %d.",
name,
PYTHON_API_VERSION, name, module_api_version);
if (err)
return 0;
}
return 1;
}
static int
_add_methods_to_object(PyObject *module, PyObject *name, PyMethodDef *functions)
{
PyObject *func;
PyMethodDef *fdef;
for (fdef = functions; fdef->ml_name != NULL; fdef++) {
if ((fdef->ml_flags & METH_CLASS) ||
(fdef->ml_flags & METH_STATIC)) {
PyErr_SetString(PyExc_ValueError,
"module functions cannot set"
" METH_CLASS or METH_STATIC");
return -1;
}
func = PyCFunction_NewEx(fdef, (PyObject*)module, name);
if (func == NULL) {
return -1;
}
if (PyObject_SetAttrString(module, fdef->ml_name, func) != 0) {
Py_DECREF(func);
return -1;
}
Py_DECREF(func);
}
return 0;
}
PyObject *
PyModule_Create2(struct PyModuleDef* module, int module_api_version)
{
const char* name;
PyModuleObject *m;
PyInterpreterState *interp = PyThreadState_Get()->interp;
if (interp->modules == NULL)
Py_FatalError("Python import machinery not initialized");
if (!PyModuleDef_Init(module))
return NULL;
name = module->m_name;
if (!check_api_version(name, module_api_version)) {
return NULL;
}
if (module->m_slots) {
PyErr_Format(
PyExc_SystemError,
"module %s: PyModule_Create is incompatible with m_slots", name);
return NULL;
}
/* Make sure name is fully qualified.
This is a bit of a hack: when the shared library is loaded,
the module name is "package.module", but the module calls
PyModule_Create*() with just "module" for the name. The shared
library loader squirrels away the true name of the module in
_Py_PackageContext, and PyModule_Create*() will substitute this
(if the name actually matches).
*/
if (_Py_PackageContext != NULL) {
char *p = strrchr(_Py_PackageContext, '.');
if (p != NULL && strcmp(module->m_name, p+1) == 0) {
name = _Py_PackageContext;
_Py_PackageContext = NULL;
}
}
if ((m = (PyModuleObject*)PyModule_New(name)) == NULL)
return NULL;
if (module->m_size > 0) {
m->md_state = PyMem_MALLOC(module->m_size);
if (!m->md_state) {
PyErr_NoMemory();
Py_DECREF(m);
return NULL;
}
bzero(m->md_state, module->m_size);
}
if (module->m_methods != NULL) {
if (PyModule_AddFunctions((PyObject *) m, module->m_methods) != 0) {
Py_DECREF(m);
return NULL;
}
}
if (module->m_doc != NULL) {
if (PyModule_SetDocString((PyObject *) m, module->m_doc) != 0) {
Py_DECREF(m);
return NULL;
}
}
m->md_def = module;
return (PyObject*)m;
}
PyObject *
PyModule_FromDefAndSpec2(struct PyModuleDef* def, PyObject *spec, int module_api_version)
{
PyModuleDef_Slot* cur_slot;
PyObject *(*create)(PyObject *, PyModuleDef*) = NULL;
PyObject *nameobj;
PyObject *m = NULL;
int has_execution_slots = 0;
char *name;
int ret;
PyModuleDef_Init(def);
nameobj = PyObject_GetAttrString(spec, "name");
if (nameobj == NULL) {
return NULL;
}
name = PyUnicode_AsUTF8(nameobj);
if (name == NULL) {
goto error;
}
if (!check_api_version(name, module_api_version)) {
goto error;
}
if (def->m_size < 0) {
PyErr_Format(
PyExc_SystemError,
"module %s: m_size may not be negative for multi-phase initialization",
name);
goto error;
}
for (cur_slot = def->m_slots; cur_slot && cur_slot->slot; cur_slot++) {
if (cur_slot->slot == Py_mod_create) {
if (create) {
PyErr_Format(
PyExc_SystemError,
"module %s has multiple create slots",
name);
goto error;
}
create = cur_slot->value;
} else if (cur_slot->slot < 0 || cur_slot->slot > _Py_mod_LAST_SLOT) {
PyErr_Format(
PyExc_SystemError,
"module %s uses unknown slot ID %i",
name, cur_slot->slot);
goto error;
} else {
has_execution_slots = 1;
}
}
if (create) {
m = create(spec, def);
if (m == NULL) {
if (!PyErr_Occurred()) {
PyErr_Format(
PyExc_SystemError,
"creation of module %s failed without setting an exception",
name);
}
goto error;
} else {
if (PyErr_Occurred()) {
PyErr_Format(PyExc_SystemError,
"creation of module %s raised unreported exception",
name);
goto error;
}
}
} else {
m = PyModule_NewObject(nameobj);
if (m == NULL) {
goto error;
}
}
if (PyModule_Check(m)) {
((PyModuleObject*)m)->md_state = NULL;
((PyModuleObject*)m)->md_def = def;
} else {
if (def->m_size > 0 || def->m_traverse || def->m_clear || def->m_free) {
PyErr_Format(
PyExc_SystemError,
"module %s is not a module object, but requests module state",
name);
goto error;
}
if (has_execution_slots) {
PyErr_Format(
PyExc_SystemError,
"module %s specifies execution slots, but did not create "
"a ModuleType instance",
name);
goto error;
}
}
if (def->m_methods != NULL) {
ret = _add_methods_to_object(m, nameobj, def->m_methods);
if (ret != 0) {
goto error;
}
}
if (def->m_doc != NULL) {
ret = PyModule_SetDocString(m, def->m_doc);
if (ret != 0) {
goto error;
}
}
/* Sanity check for traverse not handling m_state == NULL
* This doesn't catch all possible cases, but in many cases it should
* make many cases of invalid code crash or raise Valgrind issues
* sooner than they would otherwise.
* Issue #32374 */
#ifdef Py_DEBUG
if (def->m_traverse != NULL) {
def->m_traverse(m, bad_traverse_test, NULL);
}
#endif
Py_DECREF(nameobj);
return m;
error:
Py_DECREF(nameobj);
Py_XDECREF(m);
return NULL;
}
int
PyModule_ExecDef(PyObject *module, PyModuleDef *def)
{
PyModuleDef_Slot *cur_slot;
const char *name;
int ret;
name = PyModule_GetName(module);
if (name == NULL) {
return -1;
}
if (def->m_size >= 0) {
PyModuleObject *md = (PyModuleObject*)module;
if (md->md_state == NULL) {
/* Always set a state pointer; this serves as a marker to skip
* multiple initialization (importlib.reload() is no-op) */
md->md_state = PyMem_MALLOC(def->m_size);
if (!md->md_state) {
PyErr_NoMemory();
return -1;
}
bzero(md->md_state, def->m_size);
}
}
if (def->m_slots == NULL) {
return 0;
}
for (cur_slot = def->m_slots; cur_slot && cur_slot->slot; cur_slot++) {
switch (cur_slot->slot) {
case Py_mod_create:
/* handled in PyModule_FromDefAndSpec2 */
break;
case Py_mod_exec:
ret = ((int (*)(PyObject *))cur_slot->value)(module);
if (ret != 0) {
if (!PyErr_Occurred()) {
PyErr_Format(
PyExc_SystemError,
"execution of module %s failed without setting an exception",
name);
}
return -1;
}
if (PyErr_Occurred()) {
PyErr_Format(
PyExc_SystemError,
"execution of module %s raised unreported exception",
name);
return -1;
}
break;
default:
PyErr_Format(
PyExc_SystemError,
"module %s initialized with unknown slot %i",
name, cur_slot->slot);
return -1;
}
}
return 0;
}
int
PyModule_AddFunctions(PyObject *m, PyMethodDef *functions)
{
int res;
PyObject *name = PyModule_GetNameObject(m);
if (name == NULL) {
return -1;
}
res = _add_methods_to_object(m, name, functions);
Py_DECREF(name);
return res;
}
int
PyModule_SetDocString(PyObject *m, const char *doc)
{
PyObject *v;
_Py_IDENTIFIER(__doc__);
v = PyUnicode_FromString(doc);
if (v == NULL || _PyObject_SetAttrId(m, &PyId___doc__, v) != 0) {
Py_XDECREF(v);
return -1;
}
Py_DECREF(v);
return 0;
}
PyObject *
PyModule_GetDict(PyObject *m)
{
PyObject *d;
if (!PyModule_Check(m)) {
PyErr_BadInternalCall();
return NULL;
}
d = ((PyModuleObject *)m) -> md_dict;
assert(d != NULL);
return d;
}
PyObject*
PyModule_GetNameObject(PyObject *m)
{
_Py_IDENTIFIER(__name__);
PyObject *d;
PyObject *name;
if (!PyModule_Check(m)) {
PyErr_BadArgument();
return NULL;
}
d = ((PyModuleObject *)m)->md_dict;
if (d == NULL ||
(name = _PyDict_GetItemId(d, &PyId___name__)) == NULL ||
!PyUnicode_Check(name))
{
PyErr_SetString(PyExc_SystemError, "nameless module");
return NULL;
}
Py_INCREF(name);
return name;
}
const char *
PyModule_GetName(PyObject *m)
{
PyObject *name = PyModule_GetNameObject(m);
if (name == NULL)
return NULL;
Py_DECREF(name); /* module dict has still a reference */
return PyUnicode_AsUTF8(name);
}
PyObject*
PyModule_GetFilenameObject(PyObject *m)
{
_Py_IDENTIFIER(__file__);
PyObject *d;
PyObject *fileobj;
if (!PyModule_Check(m)) {
PyErr_BadArgument();
return NULL;
}
d = ((PyModuleObject *)m)->md_dict;
if (d == NULL ||
(fileobj = _PyDict_GetItemId(d, &PyId___file__)) == NULL ||
!PyUnicode_Check(fileobj))
{
PyErr_SetString(PyExc_SystemError, "module filename missing");
return NULL;
}
Py_INCREF(fileobj);
return fileobj;
}
const char *
PyModule_GetFilename(PyObject *m)
{
PyObject *fileobj;
char *utf8;
fileobj = PyModule_GetFilenameObject(m);
if (fileobj == NULL)
return NULL;
utf8 = PyUnicode_AsUTF8(fileobj);
Py_DECREF(fileobj); /* module dict has still a reference */
return utf8;
}
PyModuleDef*
PyModule_GetDef(PyObject* m)
{
if (!PyModule_Check(m)) {
PyErr_BadArgument();
return NULL;
}
return ((PyModuleObject *)m)->md_def;
}
void*
PyModule_GetState(PyObject* m)
{
if (!PyModule_Check(m)) {
PyErr_BadArgument();
return NULL;
}
return ((PyModuleObject *)m)->md_state;
}
void
_PyModule_Clear(PyObject *m)
{
PyObject *d = ((PyModuleObject *)m)->md_dict;
if (d != NULL)
_PyModule_ClearDict(d);
}
void
_PyModule_ClearDict(PyObject *d)
{
/* To make the execution order of destructors for global
objects a bit more predictable, we first zap all objects
whose name starts with a single underscore, before we clear
the entire dictionary. We zap them by replacing them with
None, rather than deleting them from the dictionary, to
avoid rehashing the dictionary (to some extent). */
Py_ssize_t pos;
PyObject *key, *value;
/* First, clear only names starting with a single underscore */
pos = 0;
while (PyDict_Next(d, &pos, &key, &value)) {
if (value != Py_None && PyUnicode_Check(key)) {
if (PyUnicode_READ_CHAR(key, 0) == '_' &&
PyUnicode_READ_CHAR(key, 1) != '_') {
if (Py_VerboseFlag > 1) {
const char *s = PyUnicode_AsUTF8(key);
if (s != NULL)
PySys_WriteStderr("# clear[1] %s\n", s);
else
PyErr_Clear();
}
if (PyDict_SetItem(d, key, Py_None) != 0)
PyErr_Clear();
}
}
}
/* Next, clear all names except for __builtins__ */
pos = 0;
while (PyDict_Next(d, &pos, &key, &value)) {
if (value != Py_None && PyUnicode_Check(key)) {
if (PyUnicode_READ_CHAR(key, 0) != '_' ||
!_PyUnicode_EqualToASCIIString(key, "__builtins__"))
{
if (Py_VerboseFlag > 1) {
const char *s = PyUnicode_AsUTF8(key);
if (s != NULL)
PySys_WriteStderr("# clear[2] %s\n", s);
else
PyErr_Clear();
}
if (PyDict_SetItem(d, key, Py_None) != 0)
PyErr_Clear();
}
}
}
/* Note: we leave __builtins__ in place, so that destructors
of non-global objects defined in this module can still use
builtins, in particularly 'None'. */
}
/* Methods */
static int
module_init(PyModuleObject *m, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"name", "doc", NULL};
PyObject *dict, *name = Py_None, *doc = Py_None;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "U|O:module.__init__",
kwlist, &name, &doc))
return -1;
dict = m->md_dict;
if (dict == NULL) {
dict = PyDict_New();
if (dict == NULL)
return -1;
m->md_dict = dict;
}
if (module_init_dict(m, dict, name, doc) < 0)
return -1;
return 0;
}
static void
module_dealloc(PyModuleObject *m)
{
PyObject_GC_UnTrack(m);
if (Py_VerboseFlag && m->md_name) {
PySys_FormatStderr("# destroy %S\n", m->md_name);
}
if (m->md_weaklist != NULL)
PyObject_ClearWeakRefs((PyObject *) m);
if (m->md_def && m->md_def->m_free)
m->md_def->m_free(m);
Py_XDECREF(m->md_dict);
Py_XDECREF(m->md_name);
if (m->md_state != NULL)
PyMem_FREE(m->md_state);
Py_TYPE(m)->tp_free((PyObject *)m);
}
static PyObject *
module_repr(PyModuleObject *m)
{
PyThreadState *tstate = PyThreadState_GET();
PyInterpreterState *interp = tstate->interp;
return PyObject_CallMethod(interp->importlib, "_module_repr", "O", m);
}
static PyObject*
module_getattro(PyModuleObject *m, PyObject *name)
{
PyObject *attr, *mod_name;
attr = PyObject_GenericGetAttr((PyObject *)m, name);
if (attr || !PyErr_ExceptionMatches(PyExc_AttributeError))
return attr;
PyErr_Clear();
if (m->md_dict) {
_Py_IDENTIFIER(__name__);
mod_name = _PyDict_GetItemId(m->md_dict, &PyId___name__);
if (mod_name && PyUnicode_Check(mod_name)) {
PyErr_Format(PyExc_AttributeError,
"module '%U' has no attribute '%U'", mod_name, name);
return NULL;
}
}
PyErr_Format(PyExc_AttributeError,
"module has no attribute '%U'", name);
return NULL;
}
static int
module_traverse(PyModuleObject *m, visitproc visit, void *arg)
{
if (m->md_def && m->md_def->m_traverse) {
int res = m->md_def->m_traverse((PyObject*)m, visit, arg);
if (res)
return res;
}
Py_VISIT(m->md_dict);
return 0;
}
static int
module_clear(PyModuleObject *m)
{
if (m->md_def && m->md_def->m_clear) {
int res = m->md_def->m_clear((PyObject*)m);
if (res)
return res;
}
Py_CLEAR(m->md_dict);
return 0;
}
static PyObject *
module_dir(PyObject *self, PyObject *args)
{
_Py_IDENTIFIER(__dict__);
PyObject *result = NULL;
PyObject *dict = _PyObject_GetAttrId(self, &PyId___dict__);
if (dict != NULL) {
if (PyDict_Check(dict))
result = PyDict_Keys(dict);
else {
const char *name = PyModule_GetName(self);
if (name)
PyErr_Format(PyExc_TypeError,
"%.200s.__dict__ is not a dictionary",
name);
}
}
Py_XDECREF(dict);
return result;
}
static PyMethodDef module_methods[] = {
{"__dir__", module_dir, METH_NOARGS,
PyDoc_STR("__dir__() -> list\nspecialized dir() implementation")},
{0}
};
PyDoc_STRVAR(module_doc,
"module(name[, doc])\n\
\n\
Create a module object.\n\
The name must be a string; the optional doc argument can have any type.");
PyTypeObject PyModule_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"module", /* tp_name */
sizeof(PyModuleObject), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)module_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)module_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
(getattrofunc)module_getattro, /* tp_getattro */
PyObject_GenericSetAttr, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC |
Py_TPFLAGS_BASETYPE, /* tp_flags */
module_doc, /* tp_doc */
(traverseproc)module_traverse, /* tp_traverse */
(inquiry)module_clear, /* tp_clear */
0, /* tp_richcompare */
offsetof(PyModuleObject, md_weaklist), /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
module_methods, /* tp_methods */
module_members, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
offsetof(PyModuleObject, md_dict), /* tp_dictoffset */
(initproc)module_init, /* tp_init */
PyType_GenericAlloc, /* tp_alloc */
PyType_GenericNew, /* tp_new */
PyObject_GC_Del, /* tp_free */
};
| 24,584 | 819 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/classobject.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/boolobject.h"
#include "third_party/python/Include/ceval.h"
#include "third_party/python/Include/classobject.h"
#include "third_party/python/Include/descrobject.h"
#include "third_party/python/Include/methodobject.h"
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/object.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/pyerrors.h"
#include "third_party/python/Include/pymacro.h"
#include "third_party/python/Include/structmember.h"
/* clang-format off */
/* Class object implementation (dead now except for methods) */
#define TP_DESCR_GET(t) ((t)->tp_descr_get)
/* Free list for method objects to safe malloc/free overhead
* The im_self element is used to chain the elements.
*/
static PyMethodObject *free_list;
static int numfree = 0;
#ifndef PyMethod_MAXFREELIST
#define PyMethod_MAXFREELIST 256
#endif
_Py_IDENTIFIER(__name__);
_Py_IDENTIFIER(__qualname__);
PyObject *
PyMethod_Function(PyObject *im)
{
if (!PyMethod_Check(im)) {
PyErr_BadInternalCall();
return NULL;
}
return ((PyMethodObject *)im)->im_func;
}
PyObject *
PyMethod_Self(PyObject *im)
{
if (!PyMethod_Check(im)) {
PyErr_BadInternalCall();
return NULL;
}
return ((PyMethodObject *)im)->im_self;
}
/* Method objects are used for bound instance methods returned by
instancename.methodname. ClassName.methodname returns an ordinary
function.
*/
PyObject *
PyMethod_New(PyObject *func, PyObject *self)
{
PyMethodObject *im;
if (self == NULL) {
PyErr_BadInternalCall();
return NULL;
}
im = free_list;
if (im != NULL) {
free_list = (PyMethodObject *)(im->im_self);
(void)PyObject_INIT(im, &PyMethod_Type);
numfree--;
}
else {
im = PyObject_GC_New(PyMethodObject, &PyMethod_Type);
if (im == NULL)
return NULL;
}
im->im_weakreflist = NULL;
Py_INCREF(func);
im->im_func = func;
Py_XINCREF(self);
im->im_self = self;
_PyObject_GC_TRACK(im);
return (PyObject *)im;
}
static PyObject *
method_reduce(PyMethodObject *im)
{
PyObject *self = PyMethod_GET_SELF(im);
PyObject *func = PyMethod_GET_FUNCTION(im);
PyObject *funcname;
_Py_IDENTIFIER(getattr);
funcname = _PyObject_GetAttrId(func, &PyId___name__);
if (funcname == NULL) {
return NULL;
}
return Py_BuildValue("N(ON)", _PyEval_GetBuiltinId(&PyId_getattr),
self, funcname);
}
static PyMethodDef method_methods[] = {
{"__reduce__", (PyCFunction)method_reduce, METH_NOARGS, NULL},
{NULL, NULL}
};
/* Descriptors for PyMethod attributes */
/* im_func and im_self are stored in the PyMethod object */
#define MO_OFF(x) offsetof(PyMethodObject, x)
static PyMemberDef method_memberlist[] = {
{"__func__", T_OBJECT, MO_OFF(im_func), READONLY|RESTRICTED,
"the function (or other callable) implementing a method"},
{"__self__", T_OBJECT, MO_OFF(im_self), READONLY|RESTRICTED,
"the instance to which a method is bound"},
{NULL} /* Sentinel */
};
/* Christian Tismer argued convincingly that method attributes should
(nearly) always override function attributes.
The one exception is __doc__; there's a default __doc__ which
should only be used for the class, not for instances */
static PyObject *
method_get_doc(PyMethodObject *im, void *context)
{
static PyObject *docstr;
if (docstr == NULL) {
docstr= PyUnicode_InternFromString("__doc__");
if (docstr == NULL)
return NULL;
}
return PyObject_GetAttr(im->im_func, docstr);
}
static PyGetSetDef method_getset[] = {
{"__doc__", (getter)method_get_doc, NULL, NULL},
{0}
};
static PyObject *
method_getattro(PyObject *obj, PyObject *name)
{
PyMethodObject *im = (PyMethodObject *)obj;
PyTypeObject *tp = obj->ob_type;
PyObject *descr = NULL;
{
if (tp->tp_dict == NULL) {
if (PyType_Ready(tp) < 0)
return NULL;
}
descr = _PyType_Lookup(tp, name);
}
if (descr != NULL) {
descrgetfunc f = TP_DESCR_GET(descr->ob_type);
if (f != NULL)
return f(descr, obj, (PyObject *)obj->ob_type);
else {
Py_INCREF(descr);
return descr;
}
}
return PyObject_GetAttr(im->im_func, name);
}
PyDoc_STRVAR(method_doc,
"method(function, instance)\n\
\n\
Create a bound instance method object.");
static PyObject *
method_new(PyTypeObject* type, PyObject* args, PyObject *kw)
{
PyObject *func;
PyObject *self;
if (!_PyArg_NoKeywords("method", kw))
return NULL;
if (!PyArg_UnpackTuple(args, "method", 2, 2,
&func, &self))
return NULL;
if (!PyCallable_Check(func)) {
PyErr_SetString(PyExc_TypeError,
"first argument must be callable");
return NULL;
}
if (self == NULL || self == Py_None) {
PyErr_SetString(PyExc_TypeError,
"self must not be None");
return NULL;
}
return PyMethod_New(func, self);
}
static void
method_dealloc(PyMethodObject *im)
{
_PyObject_GC_UNTRACK(im);
if (im->im_weakreflist != NULL)
PyObject_ClearWeakRefs((PyObject *)im);
Py_DECREF(im->im_func);
Py_XDECREF(im->im_self);
if (numfree < PyMethod_MAXFREELIST) {
im->im_self = (PyObject *)free_list;
free_list = im;
numfree++;
}
else {
PyObject_GC_Del(im);
}
}
static PyObject *
method_richcompare(PyObject *self, PyObject *other, int op)
{
PyMethodObject *a, *b;
PyObject *res;
int eq;
if ((op != Py_EQ && op != Py_NE) ||
!PyMethod_Check(self) ||
!PyMethod_Check(other))
{
Py_RETURN_NOTIMPLEMENTED;
}
a = (PyMethodObject *)self;
b = (PyMethodObject *)other;
eq = PyObject_RichCompareBool(a->im_func, b->im_func, Py_EQ);
if (eq == 1) {
if (a->im_self == NULL || b->im_self == NULL)
eq = a->im_self == b->im_self;
else
eq = PyObject_RichCompareBool(a->im_self, b->im_self,
Py_EQ);
}
if (eq < 0)
return NULL;
if (op == Py_EQ)
res = eq ? Py_True : Py_False;
else
res = eq ? Py_False : Py_True;
Py_INCREF(res);
return res;
}
static PyObject *
method_repr(PyMethodObject *a)
{
PyObject *self = a->im_self;
PyObject *func = a->im_func;
PyObject *funcname = NULL, *result = NULL;
const char *defname = "?";
funcname = _PyObject_GetAttrId(func, &PyId___qualname__);
if (funcname == NULL) {
if (!PyErr_ExceptionMatches(PyExc_AttributeError))
return NULL;
PyErr_Clear();
funcname = _PyObject_GetAttrId(func, &PyId___name__);
if (funcname == NULL) {
if (!PyErr_ExceptionMatches(PyExc_AttributeError))
return NULL;
PyErr_Clear();
}
}
if (funcname != NULL && !PyUnicode_Check(funcname)) {
Py_DECREF(funcname);
funcname = NULL;
}
/* XXX Shouldn't use repr()/%R here! */
result = PyUnicode_FromFormat("<bound method %V of %R>",
funcname, defname, self);
Py_XDECREF(funcname);
return result;
}
static Py_hash_t
method_hash(PyMethodObject *a)
{
Py_hash_t x, y;
if (a->im_self == NULL)
x = PyObject_Hash(Py_None);
else
x = PyObject_Hash(a->im_self);
if (x == -1)
return -1;
y = PyObject_Hash(a->im_func);
if (y == -1)
return -1;
x = x ^ y;
if (x == -1)
x = -2;
return x;
}
static int
method_traverse(PyMethodObject *im, visitproc visit, void *arg)
{
Py_VISIT(im->im_func);
Py_VISIT(im->im_self);
return 0;
}
static PyObject *
method_call(PyObject *method, PyObject *args, PyObject *kwargs)
{
PyObject *self, *func;
self = PyMethod_GET_SELF(method);
if (self == NULL) {
PyErr_BadInternalCall();
return NULL;
}
func = PyMethod_GET_FUNCTION(method);
return _PyObject_Call_Prepend(func, self, args, kwargs);
}
static PyObject *
method_descr_get(PyObject *meth, PyObject *obj, PyObject *cls)
{
/* Don't rebind an already bound method of a class that's not a base
class of cls. */
if (PyMethod_GET_SELF(meth) != NULL) {
/* Already bound */
Py_INCREF(meth);
return meth;
}
/* Bind it to obj */
return PyMethod_New(PyMethod_GET_FUNCTION(meth), obj);
}
PyTypeObject PyMethod_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"method",
sizeof(PyMethodObject),
0,
(destructor)method_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)method_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
(hashfunc)method_hash, /* tp_hash */
method_call, /* tp_call */
0, /* tp_str */
method_getattro, /* tp_getattro */
PyObject_GenericSetAttr, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, /* tp_flags */
method_doc, /* tp_doc */
(traverseproc)method_traverse, /* tp_traverse */
0, /* tp_clear */
method_richcompare, /* tp_richcompare */
offsetof(PyMethodObject, im_weakreflist), /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
method_methods, /* tp_methods */
method_memberlist, /* tp_members */
method_getset, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
method_descr_get, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
method_new, /* tp_new */
};
/* Clear out the free list */
int
PyMethod_ClearFreeList(void)
{
int freelist_size = numfree;
while (free_list) {
PyMethodObject *im = free_list;
free_list = (PyMethodObject *)(im->im_self);
PyObject_GC_Del(im);
numfree--;
}
assert(numfree == 0);
return freelist_size;
}
void
PyMethod_Fini(void)
{
(void)PyMethod_ClearFreeList();
}
/* Print summary info about the state of the optimized allocator */
void
_PyMethod_DebugMallocStats(FILE *out)
{
_PyDebugAllocatorStats(out,
"free PyMethodObject",
numfree, sizeof(PyMethodObject));
}
/* ------------------------------------------------------------------------
* instance method
*/
PyObject *
PyInstanceMethod_New(PyObject *func) {
PyInstanceMethodObject *method;
method = PyObject_GC_New(PyInstanceMethodObject,
&PyInstanceMethod_Type);
if (method == NULL) return NULL;
Py_INCREF(func);
method->func = func;
_PyObject_GC_TRACK(method);
return (PyObject *)method;
}
PyObject *
PyInstanceMethod_Function(PyObject *im)
{
if (!PyInstanceMethod_Check(im)) {
PyErr_BadInternalCall();
return NULL;
}
return PyInstanceMethod_GET_FUNCTION(im);
}
#define IMO_OFF(x) offsetof(PyInstanceMethodObject, x)
static PyMemberDef instancemethod_memberlist[] = {
{"__func__", T_OBJECT, IMO_OFF(func), READONLY|RESTRICTED,
"the function (or other callable) implementing a method"},
{NULL} /* Sentinel */
};
static PyObject *
instancemethod_get_doc(PyObject *self, void *context)
{
static PyObject *docstr;
if (docstr == NULL) {
docstr = PyUnicode_InternFromString("__doc__");
if (docstr == NULL)
return NULL;
}
return PyObject_GetAttr(PyInstanceMethod_GET_FUNCTION(self), docstr);
}
static PyGetSetDef instancemethod_getset[] = {
{"__doc__", (getter)instancemethod_get_doc, NULL, NULL},
{0}
};
static PyObject *
instancemethod_getattro(PyObject *self, PyObject *name)
{
PyTypeObject *tp = self->ob_type;
PyObject *descr = NULL;
if (tp->tp_dict == NULL) {
if (PyType_Ready(tp) < 0)
return NULL;
}
descr = _PyType_Lookup(tp, name);
if (descr != NULL) {
descrgetfunc f = TP_DESCR_GET(descr->ob_type);
if (f != NULL)
return f(descr, self, (PyObject *)self->ob_type);
else {
Py_INCREF(descr);
return descr;
}
}
return PyObject_GetAttr(PyInstanceMethod_GET_FUNCTION(self), name);
}
static void
instancemethod_dealloc(PyObject *self) {
_PyObject_GC_UNTRACK(self);
Py_DECREF(PyInstanceMethod_GET_FUNCTION(self));
PyObject_GC_Del(self);
}
static int
instancemethod_traverse(PyObject *self, visitproc visit, void *arg) {
Py_VISIT(PyInstanceMethod_GET_FUNCTION(self));
return 0;
}
static PyObject *
instancemethod_call(PyObject *self, PyObject *arg, PyObject *kw)
{
return PyObject_Call(PyMethod_GET_FUNCTION(self), arg, kw);
}
static PyObject *
instancemethod_descr_get(PyObject *descr, PyObject *obj, PyObject *type) {
PyObject *func = PyInstanceMethod_GET_FUNCTION(descr);
if (obj == NULL) {
Py_INCREF(func);
return func;
}
else
return PyMethod_New(func, obj);
}
static PyObject *
instancemethod_richcompare(PyObject *self, PyObject *other, int op)
{
PyInstanceMethodObject *a, *b;
PyObject *res;
int eq;
if ((op != Py_EQ && op != Py_NE) ||
!PyInstanceMethod_Check(self) ||
!PyInstanceMethod_Check(other))
{
Py_RETURN_NOTIMPLEMENTED;
}
a = (PyInstanceMethodObject *)self;
b = (PyInstanceMethodObject *)other;
eq = PyObject_RichCompareBool(a->func, b->func, Py_EQ);
if (eq < 0)
return NULL;
if (op == Py_EQ)
res = eq ? Py_True : Py_False;
else
res = eq ? Py_False : Py_True;
Py_INCREF(res);
return res;
}
static PyObject *
instancemethod_repr(PyObject *self)
{
PyObject *func = PyInstanceMethod_Function(self);
PyObject *funcname = NULL , *result = NULL;
char *defname = "?";
if (func == NULL) {
PyErr_BadInternalCall();
return NULL;
}
funcname = _PyObject_GetAttrId(func, &PyId___name__);
if (funcname == NULL) {
if (!PyErr_ExceptionMatches(PyExc_AttributeError))
return NULL;
PyErr_Clear();
}
else if (!PyUnicode_Check(funcname)) {
Py_DECREF(funcname);
funcname = NULL;
}
result = PyUnicode_FromFormat("<instancemethod %V at %p>",
funcname, defname, self);
Py_XDECREF(funcname);
return result;
}
/*
static long
instancemethod_hash(PyObject *self)
{
long x, y;
x = (long)self;
y = PyObject_Hash(PyInstanceMethod_GET_FUNCTION(self));
if (y == -1)
return -1;
x = x ^ y;
if (x == -1)
x = -2;
return x;
}
*/
PyDoc_STRVAR(instancemethod_doc,
"instancemethod(function)\n\
\n\
Bind a function to a class.");
static PyObject *
instancemethod_new(PyTypeObject* type, PyObject* args, PyObject *kw)
{
PyObject *func;
if (!_PyArg_NoKeywords("instancemethod", kw))
return NULL;
if (!PyArg_UnpackTuple(args, "instancemethod", 1, 1, &func))
return NULL;
if (!PyCallable_Check(func)) {
PyErr_SetString(PyExc_TypeError,
"first argument must be callable");
return NULL;
}
return PyInstanceMethod_New(func);
}
PyTypeObject PyInstanceMethod_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"instancemethod", /* tp_name */
sizeof(PyInstanceMethodObject), /* tp_basicsize */
0, /* tp_itemsize */
instancemethod_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)instancemethod_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /*(hashfunc)instancemethod_hash, tp_hash */
instancemethod_call, /* tp_call */
0, /* tp_str */
instancemethod_getattro, /* tp_getattro */
PyObject_GenericSetAttr, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT
| Py_TPFLAGS_HAVE_GC, /* tp_flags */
instancemethod_doc, /* tp_doc */
instancemethod_traverse, /* tp_traverse */
0, /* tp_clear */
instancemethod_richcompare, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
0, /* tp_methods */
instancemethod_memberlist, /* tp_members */
instancemethod_getset, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
instancemethod_descr_get, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
instancemethod_new, /* tp_new */
};
| 19,931 | 663 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/genobject.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/bytesobject.h"
#include "third_party/python/Include/ceval.h"
#include "third_party/python/Include/descrobject.h"
#include "third_party/python/Include/frameobject.h"
#include "third_party/python/Include/genobject.h"
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/opcode.h"
#include "third_party/python/Include/pyerrors.h"
#include "third_party/python/Include/pymacro.h"
#include "third_party/python/Include/structmember.h"
#include "third_party/python/Include/traceback.h"
#include "third_party/python/Include/warnings.h"
/* clang-format off */
static PyObject *gen_close(PyGenObject *, PyObject *);
static PyObject *async_gen_asend_new(PyAsyncGenObject *, PyObject *);
static PyObject *async_gen_athrow_new(PyAsyncGenObject *, PyObject *);
static char *NON_INIT_CORO_MSG = "can't send non-None value to a "
"just-started coroutine";
static char *ASYNC_GEN_IGNORED_EXIT_MSG =
"async generator ignored GeneratorExit";
static int
gen_traverse(PyGenObject *gen, visitproc visit, void *arg)
{
Py_VISIT((PyObject *)gen->gi_frame);
Py_VISIT(gen->gi_code);
Py_VISIT(gen->gi_name);
Py_VISIT(gen->gi_qualname);
return 0;
}
void
_PyGen_Finalize(PyObject *self)
{
PyGenObject *gen = (PyGenObject *)self;
PyObject *res = NULL;
PyObject *error_type, *error_value, *error_traceback;
if (gen->gi_frame == NULL || gen->gi_frame->f_stacktop == NULL)
/* Generator isn't paused, so no need to close */
return;
if (PyAsyncGen_CheckExact(self)) {
PyAsyncGenObject *agen = (PyAsyncGenObject*)self;
PyObject *finalizer = agen->ag_finalizer;
if (finalizer && !agen->ag_closed) {
/* Save the current exception, if any. */
PyErr_Fetch(&error_type, &error_value, &error_traceback);
res = PyObject_CallFunctionObjArgs(finalizer, self, NULL);
if (res == NULL) {
PyErr_WriteUnraisable(self);
} else {
Py_DECREF(res);
}
/* Restore the saved exception. */
PyErr_Restore(error_type, error_value, error_traceback);
return;
}
}
/* Save the current exception, if any. */
PyErr_Fetch(&error_type, &error_value, &error_traceback);
/* If `gen` is a coroutine, and if it was never awaited on,
issue a RuntimeWarning. */
if (gen->gi_code != NULL &&
((PyCodeObject *)gen->gi_code)->co_flags & CO_COROUTINE &&
gen->gi_frame->f_lasti == -1) {
if (!error_value) {
PyErr_WarnFormat(PyExc_RuntimeWarning, 1,
"coroutine '%.50S' was never awaited",
gen->gi_qualname);
}
}
else {
res = gen_close(gen, NULL);
}
if (res == NULL) {
if (PyErr_Occurred())
PyErr_WriteUnraisable(self);
}
else {
Py_DECREF(res);
}
/* Restore the saved exception. */
PyErr_Restore(error_type, error_value, error_traceback);
}
static void
gen_dealloc(PyGenObject *gen)
{
PyObject *self = (PyObject *) gen;
_PyObject_GC_UNTRACK(gen);
if (gen->gi_weakreflist != NULL)
PyObject_ClearWeakRefs(self);
_PyObject_GC_TRACK(self);
if (PyObject_CallFinalizerFromDealloc(self))
return; /* resurrected. :( */
_PyObject_GC_UNTRACK(self);
if (PyAsyncGen_CheckExact(gen)) {
/* We have to handle this case for asynchronous generators
right here, because this code has to be between UNTRACK
and GC_Del. */
Py_CLEAR(((PyAsyncGenObject*)gen)->ag_finalizer);
}
if (gen->gi_frame != NULL) {
gen->gi_frame->f_gen = NULL;
Py_CLEAR(gen->gi_frame);
}
Py_CLEAR(gen->gi_code);
Py_CLEAR(gen->gi_name);
Py_CLEAR(gen->gi_qualname);
PyObject_GC_Del(gen);
}
static PyObject *
gen_send_ex(PyGenObject *gen, PyObject *arg, int exc, int closing)
{
PyThreadState *tstate = PyThreadState_GET();
PyFrameObject *f = gen->gi_frame;
PyObject *result;
if (gen->gi_running) {
char *msg = "generator already executing";
if (PyCoro_CheckExact(gen)) {
msg = "coroutine already executing";
}
else if (PyAsyncGen_CheckExact(gen)) {
msg = "async generator already executing";
}
PyErr_SetString(PyExc_ValueError, msg);
return NULL;
}
if (f == NULL || f->f_stacktop == NULL) {
if (PyCoro_CheckExact(gen) && !closing) {
/* `gen` is an exhausted coroutine: raise an error,
except when called from gen_close(), which should
always be a silent method. */
PyErr_SetString(
PyExc_RuntimeError,
"cannot reuse already awaited coroutine");
}
else if (arg && !exc) {
/* `gen` is an exhausted generator:
only set exception if called from send(). */
if (PyAsyncGen_CheckExact(gen)) {
PyErr_SetNone(PyExc_StopAsyncIteration);
}
else {
PyErr_SetNone(PyExc_StopIteration);
}
}
return NULL;
}
if (f->f_lasti == -1) {
if (arg && arg != Py_None) {
char *msg = "can't send non-None value to a "
"just-started generator";
if (PyCoro_CheckExact(gen)) {
msg = NON_INIT_CORO_MSG;
}
else if (PyAsyncGen_CheckExact(gen)) {
msg = "can't send non-None value to a "
"just-started async generator";
}
PyErr_SetString(PyExc_TypeError, msg);
return NULL;
}
} else {
/* Push arg onto the frame's value stack */
result = arg ? arg : Py_None;
Py_INCREF(result);
*(f->f_stacktop++) = result;
}
/* Generators always return to their most recent caller, not
* necessarily their creator. */
Py_XINCREF(tstate->frame);
assert(f->f_back == NULL);
f->f_back = tstate->frame;
gen->gi_running = 1;
result = PyEval_EvalFrameEx(f, exc);
gen->gi_running = 0;
/* Don't keep the reference to f_back any longer than necessary. It
* may keep a chain of frames alive or it could create a reference
* cycle. */
assert(f->f_back == tstate->frame);
Py_CLEAR(f->f_back);
/* If the generator just returned (as opposed to yielding), signal
* that the generator is exhausted. */
if (result && f->f_stacktop == NULL) {
if (result == Py_None) {
/* Delay exception instantiation if we can */
if (PyAsyncGen_CheckExact(gen)) {
PyErr_SetNone(PyExc_StopAsyncIteration);
}
else {
PyErr_SetNone(PyExc_StopIteration);
}
}
else {
/* Async generators cannot return anything but None */
assert(!PyAsyncGen_CheckExact(gen));
_PyGen_SetStopIterationValue(result);
}
Py_CLEAR(result);
}
else if (!result && PyErr_ExceptionMatches(PyExc_StopIteration)) {
/* Check for __future__ generator_stop and conditionally turn
* a leaking StopIteration into RuntimeError (with its cause
* set appropriately). */
const int check_stop_iter_error_flags = CO_FUTURE_GENERATOR_STOP |
CO_COROUTINE |
CO_ITERABLE_COROUTINE |
CO_ASYNC_GENERATOR;
if (gen->gi_code != NULL &&
((PyCodeObject *)gen->gi_code)->co_flags &
check_stop_iter_error_flags)
{
/* `gen` is either:
* a generator with CO_FUTURE_GENERATOR_STOP flag;
* a coroutine;
* a generator with CO_ITERABLE_COROUTINE flag
(decorated with types.coroutine decorator);
* an async generator.
*/
const char *msg = "generator raised StopIteration";
if (PyCoro_CheckExact(gen)) {
msg = "coroutine raised StopIteration";
}
else if PyAsyncGen_CheckExact(gen) {
msg = "async generator raised StopIteration";
}
_PyErr_FormatFromCause(PyExc_RuntimeError, "%s", msg);
}
else {
/* `gen` is an ordinary generator without
CO_FUTURE_GENERATOR_STOP flag.
*/
PyObject *exc, *val, *tb;
/* Pop the exception before issuing a warning. */
PyErr_Fetch(&exc, &val, &tb);
if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1,
"generator '%.50S' raised StopIteration",
gen->gi_qualname)) {
/* Warning was converted to an error. */
Py_XDECREF(exc);
Py_XDECREF(val);
Py_XDECREF(tb);
}
else {
PyErr_Restore(exc, val, tb);
}
}
}
else if (PyAsyncGen_CheckExact(gen) && !result &&
PyErr_ExceptionMatches(PyExc_StopAsyncIteration))
{
/* code in `gen` raised a StopAsyncIteration error:
raise a RuntimeError.
*/
const char *msg = "async generator raised StopAsyncIteration";
_PyErr_FormatFromCause(PyExc_RuntimeError, "%s", msg);
}
if (!result || f->f_stacktop == NULL) {
/* generator can't be rerun, so release the frame */
/* first clean reference cycle through stored exception traceback */
PyObject *t, *v, *tb;
t = f->f_exc_type;
v = f->f_exc_value;
tb = f->f_exc_traceback;
f->f_exc_type = NULL;
f->f_exc_value = NULL;
f->f_exc_traceback = NULL;
Py_XDECREF(t);
Py_XDECREF(v);
Py_XDECREF(tb);
gen->gi_frame->f_gen = NULL;
gen->gi_frame = NULL;
Py_DECREF(f);
}
return result;
}
PyDoc_STRVAR(send_doc,
"send(arg) -> send 'arg' into generator,\n\
return next yielded value or raise StopIteration.");
PyObject *
_PyGen_Send(PyGenObject *gen, PyObject *arg)
{
return gen_send_ex(gen, arg, 0, 0);
}
PyDoc_STRVAR(close_doc,
"close() -> raise GeneratorExit inside generator.");
/*
* This helper function is used by gen_close and gen_throw to
* close a subiterator being delegated to by yield-from.
*/
static int
gen_close_iter(PyObject *yf)
{
PyObject *retval = NULL;
_Py_IDENTIFIER(close);
if (PyGen_CheckExact(yf) || PyCoro_CheckExact(yf)) {
retval = gen_close((PyGenObject *)yf, NULL);
if (retval == NULL)
return -1;
}
else {
PyObject *meth = _PyObject_GetAttrId(yf, &PyId_close);
if (meth == NULL) {
if (!PyErr_ExceptionMatches(PyExc_AttributeError))
PyErr_WriteUnraisable(yf);
PyErr_Clear();
}
else {
retval = _PyObject_CallNoArg(meth);
Py_DECREF(meth);
if (retval == NULL)
return -1;
}
}
Py_XDECREF(retval);
return 0;
}
PyObject *
_PyGen_yf(PyGenObject *gen)
{
PyObject *yf = NULL;
PyFrameObject *f = gen->gi_frame;
if (f && f->f_stacktop) {
PyObject *bytecode = f->f_code->co_code;
unsigned char *code = (unsigned char *)PyBytes_AS_STRING(bytecode);
if (f->f_lasti < 0) {
/* Return immediately if the frame didn't start yet. YIELD_FROM
always come after LOAD_CONST: a code object should not start
with YIELD_FROM */
assert(code[0] != YIELD_FROM);
return NULL;
}
if (code[f->f_lasti + sizeof(_Py_CODEUNIT)] != YIELD_FROM)
return NULL;
yf = f->f_stacktop[-1];
Py_INCREF(yf);
}
return yf;
}
static PyObject *
gen_close(PyGenObject *gen, PyObject *args)
{
PyObject *retval;
PyObject *yf = _PyGen_yf(gen);
int err = 0;
if (yf) {
gen->gi_running = 1;
err = gen_close_iter(yf);
gen->gi_running = 0;
Py_DECREF(yf);
}
if (err == 0)
PyErr_SetNone(PyExc_GeneratorExit);
retval = gen_send_ex(gen, Py_None, 1, 1);
if (retval) {
char *msg = "generator ignored GeneratorExit";
if (PyCoro_CheckExact(gen)) {
msg = "coroutine ignored GeneratorExit";
} else if (PyAsyncGen_CheckExact(gen)) {
msg = ASYNC_GEN_IGNORED_EXIT_MSG;
}
Py_DECREF(retval);
PyErr_SetString(PyExc_RuntimeError, msg);
return NULL;
}
if (PyErr_ExceptionMatches(PyExc_StopIteration)
|| PyErr_ExceptionMatches(PyExc_GeneratorExit)) {
PyErr_Clear(); /* ignore these errors */
Py_INCREF(Py_None);
return Py_None;
}
return NULL;
}
PyDoc_STRVAR(throw_doc,
"throw(typ[,val[,tb]]) -> raise exception in generator,\n\
return next yielded value or raise StopIteration.");
static PyObject *
_gen_throw(PyGenObject *gen, int close_on_genexit,
PyObject *typ, PyObject *val, PyObject *tb)
{
PyObject *yf = _PyGen_yf(gen);
_Py_IDENTIFIER(throw);
if (yf) {
PyObject *ret;
int err;
if (PyErr_GivenExceptionMatches(typ, PyExc_GeneratorExit) &&
close_on_genexit
) {
/* Asynchronous generators *should not* be closed right away.
We have to allow some awaits to work it through, hence the
`close_on_genexit` parameter here.
*/
gen->gi_running = 1;
err = gen_close_iter(yf);
gen->gi_running = 0;
Py_DECREF(yf);
if (err < 0)
return gen_send_ex(gen, Py_None, 1, 0);
goto throw_here;
}
if (PyGen_CheckExact(yf) || PyCoro_CheckExact(yf)) {
/* `yf` is a generator or a coroutine. */
gen->gi_running = 1;
/* Close the generator that we are currently iterating with
'yield from' or awaiting on with 'await'. */
ret = _gen_throw((PyGenObject *)yf, close_on_genexit,
typ, val, tb);
gen->gi_running = 0;
} else {
/* `yf` is an iterator or a coroutine-like object. */
PyObject *meth = _PyObject_GetAttrId(yf, &PyId_throw);
if (meth == NULL) {
if (!PyErr_ExceptionMatches(PyExc_AttributeError)) {
Py_DECREF(yf);
return NULL;
}
PyErr_Clear();
Py_DECREF(yf);
goto throw_here;
}
gen->gi_running = 1;
ret = PyObject_CallFunctionObjArgs(meth, typ, val, tb, NULL);
gen->gi_running = 0;
Py_DECREF(meth);
}
Py_DECREF(yf);
if (!ret) {
PyObject *val;
/* Pop subiterator from stack */
ret = *(--gen->gi_frame->f_stacktop);
assert(ret == yf);
Py_DECREF(ret);
/* Termination repetition of YIELD_FROM */
assert(gen->gi_frame->f_lasti >= 0);
gen->gi_frame->f_lasti += sizeof(_Py_CODEUNIT);
if (_PyGen_FetchStopIterationValue(&val) == 0) {
ret = gen_send_ex(gen, val, 0, 0);
Py_DECREF(val);
} else {
ret = gen_send_ex(gen, Py_None, 1, 0);
}
}
return ret;
}
throw_here:
/* First, check the traceback argument, replacing None with
NULL. */
if (tb == Py_None) {
tb = NULL;
}
else if (tb != NULL && !PyTraceBack_Check(tb)) {
PyErr_SetString(PyExc_TypeError,
"throw() third argument must be a traceback object");
return NULL;
}
Py_INCREF(typ);
Py_XINCREF(val);
Py_XINCREF(tb);
if (PyExceptionClass_Check(typ))
PyErr_NormalizeException(&typ, &val, &tb);
else if (PyExceptionInstance_Check(typ)) {
/* Raising an instance. The value should be a dummy. */
if (val && val != Py_None) {
PyErr_SetString(PyExc_TypeError,
"instance exception may not have a separate value");
goto failed_throw;
}
else {
/* Normalize to raise <class>, <instance> */
Py_XDECREF(val);
val = typ;
typ = PyExceptionInstance_Class(typ);
Py_INCREF(typ);
if (tb == NULL)
/* Returns NULL if there's no traceback */
tb = PyException_GetTraceback(val);
}
}
else {
/* Not something you can raise. throw() fails. */
PyErr_Format(PyExc_TypeError,
"exceptions must be classes or instances "
"deriving from BaseException, not %s",
Py_TYPE(typ)->tp_name);
goto failed_throw;
}
PyErr_Restore(typ, val, tb);
return gen_send_ex(gen, Py_None, 1, 0);
failed_throw:
/* Didn't use our arguments, so restore their original refcounts */
Py_DECREF(typ);
Py_XDECREF(val);
Py_XDECREF(tb);
return NULL;
}
static PyObject *
gen_throw(PyGenObject *gen, PyObject *args)
{
PyObject *typ;
PyObject *tb = NULL;
PyObject *val = NULL;
if (!PyArg_UnpackTuple(args, "throw", 1, 3, &typ, &val, &tb)) {
return NULL;
}
return _gen_throw(gen, 1, typ, val, tb);
}
static PyObject *
gen_iternext(PyGenObject *gen)
{
return gen_send_ex(gen, NULL, 0, 0);
}
/*
* Set StopIteration with specified value. Value can be arbitrary object
* or NULL.
*
* Returns 0 if StopIteration is set and -1 if any other exception is set.
*/
int
_PyGen_SetStopIterationValue(PyObject *value)
{
PyObject *e;
if (value == NULL ||
(!PyTuple_Check(value) && !PyExceptionInstance_Check(value)))
{
/* Delay exception instantiation if we can */
PyErr_SetObject(PyExc_StopIteration, value);
return 0;
}
/* Construct an exception instance manually with
* PyObject_CallFunctionObjArgs and pass it to PyErr_SetObject.
*
* We do this to handle a situation when "value" is a tuple, in which
* case PyErr_SetObject would set the value of StopIteration to
* the first element of the tuple.
*
* (See PyErr_SetObject/_PyErr_CreateException code for details.)
*/
e = PyObject_CallFunctionObjArgs(PyExc_StopIteration, value, NULL);
if (e == NULL) {
return -1;
}
PyErr_SetObject(PyExc_StopIteration, e);
Py_DECREF(e);
return 0;
}
/*
* If StopIteration exception is set, fetches its 'value'
* attribute if any, otherwise sets pvalue to None.
*
* Returns 0 if no exception or StopIteration is set.
* If any other exception is set, returns -1 and leaves
* pvalue unchanged.
*/
int
_PyGen_FetchStopIterationValue(PyObject **pvalue)
{
PyObject *et, *ev, *tb;
PyObject *value = NULL;
if (PyErr_ExceptionMatches(PyExc_StopIteration)) {
PyErr_Fetch(&et, &ev, &tb);
if (ev) {
/* exception will usually be normalised already */
if (PyObject_TypeCheck(ev, (PyTypeObject *) et)) {
value = ((PyStopIterationObject *)ev)->value;
Py_INCREF(value);
Py_DECREF(ev);
} else if (et == PyExc_StopIteration && !PyTuple_Check(ev)) {
/* Avoid normalisation and take ev as value.
*
* Normalization is required if the value is a tuple, in
* that case the value of StopIteration would be set to
* the first element of the tuple.
*
* (See _PyErr_CreateException code for details.)
*/
value = ev;
} else {
/* normalisation required */
PyErr_NormalizeException(&et, &ev, &tb);
if (!PyObject_TypeCheck(ev, (PyTypeObject *)PyExc_StopIteration)) {
PyErr_Restore(et, ev, tb);
return -1;
}
value = ((PyStopIterationObject *)ev)->value;
Py_INCREF(value);
Py_DECREF(ev);
}
}
Py_XDECREF(et);
Py_XDECREF(tb);
} else if (PyErr_Occurred()) {
return -1;
}
if (value == NULL) {
value = Py_None;
Py_INCREF(value);
}
*pvalue = value;
return 0;
}
static PyObject *
gen_repr(PyGenObject *gen)
{
return PyUnicode_FromFormat("<generator object %S at %p>",
gen->gi_qualname, gen);
}
static PyObject *
gen_get_name(PyGenObject *op, void *Py_UNUSED(ignored))
{
Py_INCREF(op->gi_name);
return op->gi_name;
}
static int
gen_set_name(PyGenObject *op, PyObject *value, void *Py_UNUSED(ignored))
{
/* Not legal to del gen.gi_name or to set it to anything
* other than a string object. */
if (value == NULL || !PyUnicode_Check(value)) {
PyErr_SetString(PyExc_TypeError,
"__name__ must be set to a string object");
return -1;
}
Py_INCREF(value);
Py_XSETREF(op->gi_name, value);
return 0;
}
static PyObject *
gen_get_qualname(PyGenObject *op, void *Py_UNUSED(ignored))
{
Py_INCREF(op->gi_qualname);
return op->gi_qualname;
}
static int
gen_set_qualname(PyGenObject *op, PyObject *value, void *Py_UNUSED(ignored))
{
/* Not legal to del gen.__qualname__ or to set it to anything
* other than a string object. */
if (value == NULL || !PyUnicode_Check(value)) {
PyErr_SetString(PyExc_TypeError,
"__qualname__ must be set to a string object");
return -1;
}
Py_INCREF(value);
Py_XSETREF(op->gi_qualname, value);
return 0;
}
static PyObject *
gen_getyieldfrom(PyGenObject *gen, void *Py_UNUSED(ignored))
{
PyObject *yf = _PyGen_yf(gen);
if (yf == NULL)
Py_RETURN_NONE;
return yf;
}
static PyGetSetDef gen_getsetlist[] = {
{"__name__", (getter)gen_get_name, (setter)gen_set_name,
PyDoc_STR("name of the generator")},
{"__qualname__", (getter)gen_get_qualname, (setter)gen_set_qualname,
PyDoc_STR("qualified name of the generator")},
{"gi_yieldfrom", (getter)gen_getyieldfrom, NULL,
PyDoc_STR("object being iterated by yield from, or None")},
{NULL} /* Sentinel */
};
static PyMemberDef gen_memberlist[] = {
{"gi_frame", T_OBJECT, offsetof(PyGenObject, gi_frame), READONLY},
{"gi_running", T_BOOL, offsetof(PyGenObject, gi_running), READONLY},
{"gi_code", T_OBJECT, offsetof(PyGenObject, gi_code), READONLY},
{NULL} /* Sentinel */
};
static PyMethodDef gen_methods[] = {
{"send",(PyCFunction)_PyGen_Send, METH_O, send_doc},
{"throw",(PyCFunction)gen_throw, METH_VARARGS, throw_doc},
{"close",(PyCFunction)gen_close, METH_NOARGS, close_doc},
{NULL, NULL} /* Sentinel */
};
PyTypeObject PyGen_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"generator", /* tp_name */
sizeof(PyGenObject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)gen_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_as_async */
(reprfunc)gen_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC |
Py_TPFLAGS_HAVE_FINALIZE, /* tp_flags */
0, /* tp_doc */
(traverseproc)gen_traverse, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
offsetof(PyGenObject, gi_weakreflist), /* tp_weaklistoffset */
PyObject_SelfIter, /* tp_iter */
(iternextfunc)gen_iternext, /* tp_iternext */
gen_methods, /* tp_methods */
gen_memberlist, /* tp_members */
gen_getsetlist, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
0, /* tp_new */
0, /* tp_free */
0, /* tp_is_gc */
0, /* tp_bases */
0, /* tp_mro */
0, /* tp_cache */
0, /* tp_subclasses */
0, /* tp_weaklist */
0, /* tp_del */
0, /* tp_version_tag */
_PyGen_Finalize, /* tp_finalize */
};
static PyObject *
gen_new_with_qualname(PyTypeObject *type, PyFrameObject *f,
PyObject *name, PyObject *qualname)
{
PyGenObject *gen = PyObject_GC_New(PyGenObject, type);
if (gen == NULL) {
Py_DECREF(f);
return NULL;
}
gen->gi_frame = f;
f->f_gen = (PyObject *) gen;
Py_INCREF(f->f_code);
gen->gi_code = (PyObject *)(f->f_code);
gen->gi_running = 0;
gen->gi_weakreflist = NULL;
if (name != NULL)
gen->gi_name = name;
else
gen->gi_name = ((PyCodeObject *)gen->gi_code)->co_name;
Py_INCREF(gen->gi_name);
if (qualname != NULL)
gen->gi_qualname = qualname;
else
gen->gi_qualname = gen->gi_name;
Py_INCREF(gen->gi_qualname);
_PyObject_GC_TRACK(gen);
return (PyObject *)gen;
}
PyObject *
PyGen_NewWithQualName(PyFrameObject *f, PyObject *name, PyObject *qualname)
{
return gen_new_with_qualname(&PyGen_Type, f, name, qualname);
}
PyObject *
PyGen_New(PyFrameObject *f)
{
return gen_new_with_qualname(&PyGen_Type, f, NULL, NULL);
}
int
PyGen_NeedsFinalizing(PyGenObject *gen)
{
int i;
PyFrameObject *f = gen->gi_frame;
if (f == NULL || f->f_stacktop == NULL)
return 0; /* no frame or empty blockstack == no finalization */
/* Any block type besides a loop requires cleanup. */
for (i = 0; i < f->f_iblock; i++)
if (f->f_blockstack[i].b_type != SETUP_LOOP)
return 1;
/* No blocks except loops, it's safe to skip finalization. */
return 0;
}
/* Coroutine Object */
typedef struct {
PyObject_HEAD
PyCoroObject *cw_coroutine;
} PyCoroWrapper;
static int
gen_is_coroutine(PyObject *o)
{
if (PyGen_CheckExact(o)) {
PyCodeObject *code = (PyCodeObject *)((PyGenObject*)o)->gi_code;
if (code->co_flags & CO_ITERABLE_COROUTINE) {
return 1;
}
}
return 0;
}
/*
* This helper function returns an awaitable for `o`:
* - `o` if `o` is a coroutine-object;
* - `type(o)->tp_as_async->am_await(o)`
*
* Raises a TypeError if it's not possible to return
* an awaitable and returns NULL.
*/
PyObject *
_PyCoro_GetAwaitableIter(PyObject *o)
{
unaryfunc getter = NULL;
PyTypeObject *ot;
if (PyCoro_CheckExact(o) || gen_is_coroutine(o)) {
/* 'o' is a coroutine. */
Py_INCREF(o);
return o;
}
ot = Py_TYPE(o);
if (ot->tp_as_async != NULL) {
getter = ot->tp_as_async->am_await;
}
if (getter != NULL) {
PyObject *res = (*getter)(o);
if (res != NULL) {
if (PyCoro_CheckExact(res) || gen_is_coroutine(res)) {
/* __await__ must return an *iterator*, not
a coroutine or another awaitable (see PEP 492) */
PyErr_SetString(PyExc_TypeError,
"__await__() returned a coroutine");
Py_CLEAR(res);
} else if (!PyIter_Check(res)) {
PyErr_Format(PyExc_TypeError,
"__await__() returned non-iterator "
"of type '%.100s'",
Py_TYPE(res)->tp_name);
Py_CLEAR(res);
}
}
return res;
}
PyErr_Format(PyExc_TypeError,
"object %.100s can't be used in 'await' expression",
ot->tp_name);
return NULL;
}
static PyObject *
coro_repr(PyCoroObject *coro)
{
return PyUnicode_FromFormat("<coroutine object %S at %p>",
coro->cr_qualname, coro);
}
static PyObject *
coro_await(PyCoroObject *coro)
{
PyCoroWrapper *cw = PyObject_GC_New(PyCoroWrapper, &_PyCoroWrapper_Type);
if (cw == NULL) {
return NULL;
}
Py_INCREF(coro);
cw->cw_coroutine = coro;
_PyObject_GC_TRACK(cw);
return (PyObject *)cw;
}
static PyObject *
coro_get_cr_await(PyCoroObject *coro, void *Py_UNUSED(ignored))
{
PyObject *yf = _PyGen_yf((PyGenObject *) coro);
if (yf == NULL)
Py_RETURN_NONE;
return yf;
}
static PyGetSetDef coro_getsetlist[] = {
{"__name__", (getter)gen_get_name, (setter)gen_set_name,
PyDoc_STR("name of the coroutine")},
{"__qualname__", (getter)gen_get_qualname, (setter)gen_set_qualname,
PyDoc_STR("qualified name of the coroutine")},
{"cr_await", (getter)coro_get_cr_await, NULL,
PyDoc_STR("object being awaited on, or None")},
{NULL} /* Sentinel */
};
static PyMemberDef coro_memberlist[] = {
{"cr_frame", T_OBJECT, offsetof(PyCoroObject, cr_frame), READONLY},
{"cr_running", T_BOOL, offsetof(PyCoroObject, cr_running), READONLY},
{"cr_code", T_OBJECT, offsetof(PyCoroObject, cr_code), READONLY},
{NULL} /* Sentinel */
};
PyDoc_STRVAR(coro_send_doc,
"send(arg) -> send 'arg' into coroutine,\n\
return next iterated value or raise StopIteration.");
PyDoc_STRVAR(coro_throw_doc,
"throw(typ[,val[,tb]]) -> raise exception in coroutine,\n\
return next iterated value or raise StopIteration.");
PyDoc_STRVAR(coro_close_doc,
"close() -> raise GeneratorExit inside coroutine.");
static PyMethodDef coro_methods[] = {
{"send",(PyCFunction)_PyGen_Send, METH_O, coro_send_doc},
{"throw",(PyCFunction)gen_throw, METH_VARARGS, coro_throw_doc},
{"close",(PyCFunction)gen_close, METH_NOARGS, coro_close_doc},
{NULL, NULL} /* Sentinel */
};
static PyAsyncMethods coro_as_async = {
(unaryfunc)coro_await, /* am_await */
0, /* am_aiter */
0 /* am_anext */
};
PyTypeObject PyCoro_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"coroutine", /* tp_name */
sizeof(PyCoroObject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)gen_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
&coro_as_async, /* tp_as_async */
(reprfunc)coro_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC |
Py_TPFLAGS_HAVE_FINALIZE, /* tp_flags */
0, /* tp_doc */
(traverseproc)gen_traverse, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
offsetof(PyCoroObject, cr_weakreflist), /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
coro_methods, /* tp_methods */
coro_memberlist, /* tp_members */
coro_getsetlist, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
0, /* tp_new */
0, /* tp_free */
0, /* tp_is_gc */
0, /* tp_bases */
0, /* tp_mro */
0, /* tp_cache */
0, /* tp_subclasses */
0, /* tp_weaklist */
0, /* tp_del */
0, /* tp_version_tag */
_PyGen_Finalize, /* tp_finalize */
};
static void
coro_wrapper_dealloc(PyCoroWrapper *cw)
{
_PyObject_GC_UNTRACK((PyObject *)cw);
Py_CLEAR(cw->cw_coroutine);
PyObject_GC_Del(cw);
}
static PyObject *
coro_wrapper_iternext(PyCoroWrapper *cw)
{
return gen_send_ex((PyGenObject *)cw->cw_coroutine, NULL, 0, 0);
}
static PyObject *
coro_wrapper_send(PyCoroWrapper *cw, PyObject *arg)
{
return gen_send_ex((PyGenObject *)cw->cw_coroutine, arg, 0, 0);
}
static PyObject *
coro_wrapper_throw(PyCoroWrapper *cw, PyObject *args)
{
return gen_throw((PyGenObject *)cw->cw_coroutine, args);
}
static PyObject *
coro_wrapper_close(PyCoroWrapper *cw, PyObject *args)
{
return gen_close((PyGenObject *)cw->cw_coroutine, args);
}
static int
coro_wrapper_traverse(PyCoroWrapper *cw, visitproc visit, void *arg)
{
Py_VISIT((PyObject *)cw->cw_coroutine);
return 0;
}
static PyMethodDef coro_wrapper_methods[] = {
{"send",(PyCFunction)coro_wrapper_send, METH_O, coro_send_doc},
{"throw",(PyCFunction)coro_wrapper_throw, METH_VARARGS, coro_throw_doc},
{"close",(PyCFunction)coro_wrapper_close, METH_NOARGS, coro_close_doc},
{NULL, NULL} /* Sentinel */
};
PyTypeObject _PyCoroWrapper_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"coroutine_wrapper",
sizeof(PyCoroWrapper), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)coro_wrapper_dealloc, /* destructor tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_as_async */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, /* tp_flags */
"A wrapper object implementing __await__ for coroutines.",
(traverseproc)coro_wrapper_traverse, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
PyObject_SelfIter, /* tp_iter */
(iternextfunc)coro_wrapper_iternext, /* tp_iternext */
coro_wrapper_methods, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
0, /* tp_new */
0, /* tp_free */
};
PyObject *
PyCoro_New(PyFrameObject *f, PyObject *name, PyObject *qualname)
{
return gen_new_with_qualname(&PyCoro_Type, f, name, qualname);
}
/* __aiter__ wrapper; see http://bugs.python.org/issue27243 for details. */
typedef struct {
PyObject_HEAD
PyObject *ags_aiter;
} PyAIterWrapper;
static PyObject *
aiter_wrapper_iternext(PyAIterWrapper *aw)
{
_PyGen_SetStopIterationValue(aw->ags_aiter);
return NULL;
}
static int
aiter_wrapper_traverse(PyAIterWrapper *aw, visitproc visit, void *arg)
{
Py_VISIT((PyObject *)aw->ags_aiter);
return 0;
}
static void
aiter_wrapper_dealloc(PyAIterWrapper *aw)
{
_PyObject_GC_UNTRACK((PyObject *)aw);
Py_CLEAR(aw->ags_aiter);
PyObject_GC_Del(aw);
}
static PyAsyncMethods aiter_wrapper_as_async = {
PyObject_SelfIter, /* am_await */
0, /* am_aiter */
0 /* am_anext */
};
PyTypeObject _PyAIterWrapper_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"aiter_wrapper",
sizeof(PyAIterWrapper), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)aiter_wrapper_dealloc, /* destructor tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
&aiter_wrapper_as_async, /* tp_as_async */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, /* tp_flags */
"A wrapper object for __aiter__ bakwards compatibility.",
(traverseproc)aiter_wrapper_traverse, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
PyObject_SelfIter, /* tp_iter */
(iternextfunc)aiter_wrapper_iternext, /* tp_iternext */
0, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
0, /* tp_new */
0, /* tp_free */
};
PyObject *
_PyAIterWrapper_New(PyObject *aiter)
{
PyAIterWrapper *aw = PyObject_GC_New(PyAIterWrapper,
&_PyAIterWrapper_Type);
if (aw == NULL) {
return NULL;
}
Py_INCREF(aiter);
aw->ags_aiter = aiter;
_PyObject_GC_TRACK(aw);
return (PyObject *)aw;
}
/* ========= Asynchronous Generators ========= */
typedef enum {
AWAITABLE_STATE_INIT, /* new awaitable, has not yet been iterated */
AWAITABLE_STATE_ITER, /* being iterated */
AWAITABLE_STATE_CLOSED, /* closed */
} AwaitableState;
typedef struct {
PyObject_HEAD
PyAsyncGenObject *ags_gen;
/* Can be NULL, when in the __anext__() mode
(equivalent of "asend(None)") */
PyObject *ags_sendval;
AwaitableState ags_state;
} PyAsyncGenASend;
typedef struct {
PyObject_HEAD
PyAsyncGenObject *agt_gen;
/* Can be NULL, when in the "aclose()" mode
(equivalent of "athrow(GeneratorExit)") */
PyObject *agt_args;
AwaitableState agt_state;
} PyAsyncGenAThrow;
typedef struct {
PyObject_HEAD
PyObject *agw_val;
} _PyAsyncGenWrappedValue;
#ifndef _PyAsyncGen_MAXFREELIST
#define _PyAsyncGen_MAXFREELIST 80
#endif
/* Freelists boost performance 6-10%; they also reduce memory
fragmentation, as _PyAsyncGenWrappedValue and PyAsyncGenASend
are short-living objects that are instantiated for every
__anext__ call.
*/
static _PyAsyncGenWrappedValue *ag_value_freelist[_PyAsyncGen_MAXFREELIST];
static int ag_value_freelist_free = 0;
static PyAsyncGenASend *ag_asend_freelist[_PyAsyncGen_MAXFREELIST];
static int ag_asend_freelist_free = 0;
#define _PyAsyncGenWrappedValue_CheckExact(o) \
(Py_TYPE(o) == &_PyAsyncGenWrappedValue_Type)
#define PyAsyncGenASend_CheckExact(o) \
(Py_TYPE(o) == &_PyAsyncGenASend_Type)
static int
async_gen_traverse(PyAsyncGenObject *gen, visitproc visit, void *arg)
{
Py_VISIT(gen->ag_finalizer);
return gen_traverse((PyGenObject*)gen, visit, arg);
}
static PyObject *
async_gen_repr(PyAsyncGenObject *o)
{
return PyUnicode_FromFormat("<async_generator object %S at %p>",
o->ag_qualname, o);
}
static int
async_gen_init_hooks(PyAsyncGenObject *o)
{
PyThreadState *tstate;
PyObject *finalizer;
PyObject *firstiter;
if (o->ag_hooks_inited) {
return 0;
}
o->ag_hooks_inited = 1;
tstate = PyThreadState_GET();
finalizer = tstate->async_gen_finalizer;
if (finalizer) {
Py_INCREF(finalizer);
o->ag_finalizer = finalizer;
}
firstiter = tstate->async_gen_firstiter;
if (firstiter) {
PyObject *res;
Py_INCREF(firstiter);
res = PyObject_CallFunction(firstiter, "O", o);
Py_DECREF(firstiter);
if (res == NULL) {
return 1;
}
Py_DECREF(res);
}
return 0;
}
static PyObject *
async_gen_anext(PyAsyncGenObject *o)
{
if (async_gen_init_hooks(o)) {
return NULL;
}
return async_gen_asend_new(o, NULL);
}
static PyObject *
async_gen_asend(PyAsyncGenObject *o, PyObject *arg)
{
if (async_gen_init_hooks(o)) {
return NULL;
}
return async_gen_asend_new(o, arg);
}
static PyObject *
async_gen_aclose(PyAsyncGenObject *o, PyObject *arg)
{
if (async_gen_init_hooks(o)) {
return NULL;
}
return async_gen_athrow_new(o, NULL);
}
static PyObject *
async_gen_athrow(PyAsyncGenObject *o, PyObject *args)
{
if (async_gen_init_hooks(o)) {
return NULL;
}
return async_gen_athrow_new(o, args);
}
static PyGetSetDef async_gen_getsetlist[] = {
{"__name__", (getter)gen_get_name, (setter)gen_set_name,
PyDoc_STR("name of the async generator")},
{"__qualname__", (getter)gen_get_qualname, (setter)gen_set_qualname,
PyDoc_STR("qualified name of the async generator")},
{"ag_await", (getter)coro_get_cr_await, NULL,
PyDoc_STR("object being awaited on, or None")},
{NULL} /* Sentinel */
};
static PyMemberDef async_gen_memberlist[] = {
{"ag_frame", T_OBJECT, offsetof(PyAsyncGenObject, ag_frame), READONLY},
{"ag_running", T_BOOL, offsetof(PyAsyncGenObject, ag_running), READONLY},
{"ag_code", T_OBJECT, offsetof(PyAsyncGenObject, ag_code), READONLY},
{NULL} /* Sentinel */
};
PyDoc_STRVAR(async_aclose_doc,
"aclose() -> raise GeneratorExit inside generator.");
PyDoc_STRVAR(async_asend_doc,
"asend(v) -> send 'v' in generator.");
PyDoc_STRVAR(async_athrow_doc,
"athrow(typ[,val[,tb]]) -> raise exception in generator.");
static PyMethodDef async_gen_methods[] = {
{"asend", (PyCFunction)async_gen_asend, METH_O, async_asend_doc},
{"athrow",(PyCFunction)async_gen_athrow, METH_VARARGS, async_athrow_doc},
{"aclose", (PyCFunction)async_gen_aclose, METH_NOARGS, async_aclose_doc},
{NULL, NULL} /* Sentinel */
};
static PyAsyncMethods async_gen_as_async = {
0, /* am_await */
PyObject_SelfIter, /* am_aiter */
(unaryfunc)async_gen_anext /* am_anext */
};
PyTypeObject PyAsyncGen_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"async_generator", /* tp_name */
sizeof(PyAsyncGenObject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)gen_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
&async_gen_as_async, /* tp_as_async */
(reprfunc)async_gen_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC |
Py_TPFLAGS_HAVE_FINALIZE, /* tp_flags */
0, /* tp_doc */
(traverseproc)async_gen_traverse, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
offsetof(PyAsyncGenObject, ag_weakreflist), /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
async_gen_methods, /* tp_methods */
async_gen_memberlist, /* tp_members */
async_gen_getsetlist, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
0, /* tp_new */
0, /* tp_free */
0, /* tp_is_gc */
0, /* tp_bases */
0, /* tp_mro */
0, /* tp_cache */
0, /* tp_subclasses */
0, /* tp_weaklist */
0, /* tp_del */
0, /* tp_version_tag */
_PyGen_Finalize, /* tp_finalize */
};
PyObject *
PyAsyncGen_New(PyFrameObject *f, PyObject *name, PyObject *qualname)
{
PyAsyncGenObject *o;
o = (PyAsyncGenObject *)gen_new_with_qualname(
&PyAsyncGen_Type, f, name, qualname);
if (o == NULL) {
return NULL;
}
o->ag_finalizer = NULL;
o->ag_closed = 0;
o->ag_hooks_inited = 0;
return (PyObject*)o;
}
int
PyAsyncGen_ClearFreeLists(void)
{
int ret = ag_value_freelist_free + ag_asend_freelist_free;
while (ag_value_freelist_free) {
_PyAsyncGenWrappedValue *o;
o = ag_value_freelist[--ag_value_freelist_free];
assert(_PyAsyncGenWrappedValue_CheckExact(o));
PyObject_GC_Del(o);
}
while (ag_asend_freelist_free) {
PyAsyncGenASend *o;
o = ag_asend_freelist[--ag_asend_freelist_free];
assert(Py_TYPE(o) == &_PyAsyncGenASend_Type);
PyObject_GC_Del(o);
}
return ret;
}
void
PyAsyncGen_Fini(void)
{
PyAsyncGen_ClearFreeLists();
}
static PyObject *
async_gen_unwrap_value(PyAsyncGenObject *gen, PyObject *result)
{
if (result == NULL) {
if (!PyErr_Occurred()) {
PyErr_SetNone(PyExc_StopAsyncIteration);
}
if (PyErr_ExceptionMatches(PyExc_StopAsyncIteration)
|| PyErr_ExceptionMatches(PyExc_GeneratorExit)
) {
gen->ag_closed = 1;
}
return NULL;
}
if (_PyAsyncGenWrappedValue_CheckExact(result)) {
/* async yield */
_PyGen_SetStopIterationValue(((_PyAsyncGenWrappedValue*)result)->agw_val);
Py_DECREF(result);
return NULL;
}
return result;
}
/* ---------- Async Generator ASend Awaitable ------------ */
static void
async_gen_asend_dealloc(PyAsyncGenASend *o)
{
_PyObject_GC_UNTRACK((PyObject *)o);
Py_CLEAR(o->ags_gen);
Py_CLEAR(o->ags_sendval);
if (ag_asend_freelist_free < _PyAsyncGen_MAXFREELIST) {
assert(PyAsyncGenASend_CheckExact(o));
ag_asend_freelist[ag_asend_freelist_free++] = o;
} else {
PyObject_GC_Del(o);
}
}
static int
async_gen_asend_traverse(PyAsyncGenASend *o, visitproc visit, void *arg)
{
Py_VISIT(o->ags_gen);
Py_VISIT(o->ags_sendval);
return 0;
}
static PyObject *
async_gen_asend_send(PyAsyncGenASend *o, PyObject *arg)
{
PyObject *result;
if (o->ags_state == AWAITABLE_STATE_CLOSED) {
PyErr_SetNone(PyExc_StopIteration);
return NULL;
}
if (o->ags_state == AWAITABLE_STATE_INIT) {
if (arg == NULL || arg == Py_None) {
arg = o->ags_sendval;
}
o->ags_state = AWAITABLE_STATE_ITER;
}
result = gen_send_ex((PyGenObject*)o->ags_gen, arg, 0, 0);
result = async_gen_unwrap_value(o->ags_gen, result);
if (result == NULL) {
o->ags_state = AWAITABLE_STATE_CLOSED;
}
return result;
}
static PyObject *
async_gen_asend_iternext(PyAsyncGenASend *o)
{
return async_gen_asend_send(o, NULL);
}
static PyObject *
async_gen_asend_throw(PyAsyncGenASend *o, PyObject *args)
{
PyObject *result;
if (o->ags_state == AWAITABLE_STATE_CLOSED) {
PyErr_SetNone(PyExc_StopIteration);
return NULL;
}
result = gen_throw((PyGenObject*)o->ags_gen, args);
result = async_gen_unwrap_value(o->ags_gen, result);
if (result == NULL) {
o->ags_state = AWAITABLE_STATE_CLOSED;
}
return result;
}
static PyObject *
async_gen_asend_close(PyAsyncGenASend *o, PyObject *args)
{
o->ags_state = AWAITABLE_STATE_CLOSED;
Py_RETURN_NONE;
}
static PyMethodDef async_gen_asend_methods[] = {
{"send", (PyCFunction)async_gen_asend_send, METH_O, send_doc},
{"throw", (PyCFunction)async_gen_asend_throw, METH_VARARGS, throw_doc},
{"close", (PyCFunction)async_gen_asend_close, METH_NOARGS, close_doc},
{NULL, NULL} /* Sentinel */
};
static PyAsyncMethods async_gen_asend_as_async = {
PyObject_SelfIter, /* am_await */
0, /* am_aiter */
0 /* am_anext */
};
PyTypeObject _PyAsyncGenASend_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"async_generator_asend", /* tp_name */
sizeof(PyAsyncGenASend), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)async_gen_asend_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
&async_gen_asend_as_async, /* tp_as_async */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, /* tp_flags */
0, /* tp_doc */
(traverseproc)async_gen_asend_traverse, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
PyObject_SelfIter, /* tp_iter */
(iternextfunc)async_gen_asend_iternext, /* tp_iternext */
async_gen_asend_methods, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
0, /* tp_new */
};
static PyObject *
async_gen_asend_new(PyAsyncGenObject *gen, PyObject *sendval)
{
PyAsyncGenASend *o;
if (ag_asend_freelist_free) {
ag_asend_freelist_free--;
o = ag_asend_freelist[ag_asend_freelist_free];
_Py_NewReference((PyObject *)o);
} else {
o = PyObject_GC_New(PyAsyncGenASend, &_PyAsyncGenASend_Type);
if (o == NULL) {
return NULL;
}
}
Py_INCREF(gen);
o->ags_gen = gen;
Py_XINCREF(sendval);
o->ags_sendval = sendval;
o->ags_state = AWAITABLE_STATE_INIT;
_PyObject_GC_TRACK((PyObject*)o);
return (PyObject*)o;
}
/* ---------- Async Generator Value Wrapper ------------ */
static void
async_gen_wrapped_val_dealloc(_PyAsyncGenWrappedValue *o)
{
_PyObject_GC_UNTRACK((PyObject *)o);
Py_CLEAR(o->agw_val);
if (ag_value_freelist_free < _PyAsyncGen_MAXFREELIST) {
assert(_PyAsyncGenWrappedValue_CheckExact(o));
ag_value_freelist[ag_value_freelist_free++] = o;
} else {
PyObject_GC_Del(o);
}
}
static int
async_gen_wrapped_val_traverse(_PyAsyncGenWrappedValue *o,
visitproc visit, void *arg)
{
Py_VISIT(o->agw_val);
return 0;
}
PyTypeObject _PyAsyncGenWrappedValue_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"async_generator_wrapped_value", /* tp_name */
sizeof(_PyAsyncGenWrappedValue), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)async_gen_wrapped_val_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_as_async */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, /* tp_flags */
0, /* tp_doc */
(traverseproc)async_gen_wrapped_val_traverse, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
0, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
0, /* tp_new */
};
PyObject *
_PyAsyncGenValueWrapperNew(PyObject *val)
{
_PyAsyncGenWrappedValue *o;
assert(val);
if (ag_value_freelist_free) {
ag_value_freelist_free--;
o = ag_value_freelist[ag_value_freelist_free];
assert(_PyAsyncGenWrappedValue_CheckExact(o));
_Py_NewReference((PyObject*)o);
} else {
o = PyObject_GC_New(_PyAsyncGenWrappedValue,
&_PyAsyncGenWrappedValue_Type);
if (o == NULL) {
return NULL;
}
}
o->agw_val = val;
Py_INCREF(val);
_PyObject_GC_TRACK((PyObject*)o);
return (PyObject*)o;
}
/* ---------- Async Generator AThrow awaitable ------------ */
static void
async_gen_athrow_dealloc(PyAsyncGenAThrow *o)
{
_PyObject_GC_UNTRACK((PyObject *)o);
Py_CLEAR(o->agt_gen);
Py_CLEAR(o->agt_args);
PyObject_GC_Del(o);
}
static int
async_gen_athrow_traverse(PyAsyncGenAThrow *o, visitproc visit, void *arg)
{
Py_VISIT(o->agt_gen);
Py_VISIT(o->agt_args);
return 0;
}
static PyObject *
async_gen_athrow_send(PyAsyncGenAThrow *o, PyObject *arg)
{
PyGenObject *gen = (PyGenObject*)o->agt_gen;
PyFrameObject *f = gen->gi_frame;
PyObject *retval;
if (f == NULL || f->f_stacktop == NULL ||
o->agt_state == AWAITABLE_STATE_CLOSED) {
PyErr_SetNone(PyExc_StopIteration);
return NULL;
}
if (o->agt_state == AWAITABLE_STATE_INIT) {
if (o->agt_gen->ag_closed) {
PyErr_SetNone(PyExc_StopIteration);
return NULL;
}
if (arg != Py_None) {
PyErr_SetString(PyExc_RuntimeError, NON_INIT_CORO_MSG);
return NULL;
}
o->agt_state = AWAITABLE_STATE_ITER;
if (o->agt_args == NULL) {
/* aclose() mode */
o->agt_gen->ag_closed = 1;
retval = _gen_throw((PyGenObject *)gen,
0, /* Do not close generator when
PyExc_GeneratorExit is passed */
PyExc_GeneratorExit, NULL, NULL);
if (retval && _PyAsyncGenWrappedValue_CheckExact(retval)) {
Py_DECREF(retval);
goto yield_close;
}
} else {
PyObject *typ;
PyObject *tb = NULL;
PyObject *val = NULL;
if (!PyArg_UnpackTuple(o->agt_args, "athrow", 1, 3,
&typ, &val, &tb)) {
return NULL;
}
retval = _gen_throw((PyGenObject *)gen,
0, /* Do not close generator when
PyExc_GeneratorExit is passed */
typ, val, tb);
retval = async_gen_unwrap_value(o->agt_gen, retval);
}
if (retval == NULL) {
goto check_error;
}
return retval;
}
assert(o->agt_state == AWAITABLE_STATE_ITER);
retval = gen_send_ex((PyGenObject *)gen, arg, 0, 0);
if (o->agt_args) {
return async_gen_unwrap_value(o->agt_gen, retval);
} else {
/* aclose() mode */
if (retval) {
if (_PyAsyncGenWrappedValue_CheckExact(retval)) {
Py_DECREF(retval);
goto yield_close;
}
else {
return retval;
}
}
else {
goto check_error;
}
}
yield_close:
PyErr_SetString(
PyExc_RuntimeError, ASYNC_GEN_IGNORED_EXIT_MSG);
return NULL;
check_error:
if (PyErr_ExceptionMatches(PyExc_StopAsyncIteration) ||
PyErr_ExceptionMatches(PyExc_GeneratorExit))
{
o->agt_state = AWAITABLE_STATE_CLOSED;
if (o->agt_args == NULL) {
/* when aclose() is called we don't want to propagate
StopAsyncIteration or GeneratorExit; just raise
StopIteration, signalling that this 'aclose()' await
is done.
*/
PyErr_Clear();
PyErr_SetNone(PyExc_StopIteration);
}
}
return NULL;
}
static PyObject *
async_gen_athrow_throw(PyAsyncGenAThrow *o, PyObject *args)
{
PyObject *retval;
if (o->agt_state == AWAITABLE_STATE_INIT) {
PyErr_SetString(PyExc_RuntimeError, NON_INIT_CORO_MSG);
return NULL;
}
if (o->agt_state == AWAITABLE_STATE_CLOSED) {
PyErr_SetNone(PyExc_StopIteration);
return NULL;
}
retval = gen_throw((PyGenObject*)o->agt_gen, args);
if (o->agt_args) {
return async_gen_unwrap_value(o->agt_gen, retval);
} else {
/* aclose() mode */
if (retval && _PyAsyncGenWrappedValue_CheckExact(retval)) {
Py_DECREF(retval);
PyErr_SetString(PyExc_RuntimeError, ASYNC_GEN_IGNORED_EXIT_MSG);
return NULL;
}
return retval;
}
}
static PyObject *
async_gen_athrow_iternext(PyAsyncGenAThrow *o)
{
return async_gen_athrow_send(o, Py_None);
}
static PyObject *
async_gen_athrow_close(PyAsyncGenAThrow *o, PyObject *args)
{
o->agt_state = AWAITABLE_STATE_CLOSED;
Py_RETURN_NONE;
}
static PyMethodDef async_gen_athrow_methods[] = {
{"send", (PyCFunction)async_gen_athrow_send, METH_O, send_doc},
{"throw", (PyCFunction)async_gen_athrow_throw, METH_VARARGS, throw_doc},
{"close", (PyCFunction)async_gen_athrow_close, METH_NOARGS, close_doc},
{NULL, NULL} /* Sentinel */
};
static PyAsyncMethods async_gen_athrow_as_async = {
PyObject_SelfIter, /* am_await */
0, /* am_aiter */
0 /* am_anext */
};
PyTypeObject _PyAsyncGenAThrow_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"async_generator_athrow", /* tp_name */
sizeof(PyAsyncGenAThrow), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)async_gen_athrow_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
&async_gen_athrow_as_async, /* tp_as_async */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, /* tp_flags */
0, /* tp_doc */
(traverseproc)async_gen_athrow_traverse, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
PyObject_SelfIter, /* tp_iter */
(iternextfunc)async_gen_athrow_iternext, /* tp_iternext */
async_gen_athrow_methods, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
0, /* tp_new */
};
static PyObject *
async_gen_athrow_new(PyAsyncGenObject *gen, PyObject *args)
{
PyAsyncGenAThrow *o;
o = PyObject_GC_New(PyAsyncGenAThrow, &_PyAsyncGenAThrow_Type);
if (o == NULL) {
return NULL;
}
o->agt_gen = gen;
o->agt_args = args;
o->agt_state = AWAITABLE_STATE_INIT;
Py_INCREF(gen);
Py_XINCREF(args);
_PyObject_GC_TRACK((PyObject*)o);
return (PyObject*)o;
}
| 70,888 | 2,094 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/iterobject.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/iterobject.h"
#include "third_party/python/Include/longobject.h"
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/object.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/pyerrors.h"
#include "third_party/python/Include/pymacro.h"
/* clang-format off */
typedef struct {
PyObject_HEAD
Py_ssize_t it_index;
PyObject *it_seq; /* Set to NULL when iterator is exhausted */
} seqiterobject;
PyObject *
PySeqIter_New(PyObject *seq)
{
seqiterobject *it;
if (!PySequence_Check(seq)) {
PyErr_BadInternalCall();
return NULL;
}
it = PyObject_GC_New(seqiterobject, &PySeqIter_Type);
if (it == NULL)
return NULL;
it->it_index = 0;
Py_INCREF(seq);
it->it_seq = seq;
_PyObject_GC_TRACK(it);
return (PyObject *)it;
}
static void
iter_dealloc(seqiterobject *it)
{
_PyObject_GC_UNTRACK(it);
Py_XDECREF(it->it_seq);
PyObject_GC_Del(it);
}
static int
iter_traverse(seqiterobject *it, visitproc visit, void *arg)
{
Py_VISIT(it->it_seq);
return 0;
}
static PyObject *
iter_iternext(PyObject *iterator)
{
seqiterobject *it;
PyObject *seq;
PyObject *result;
assert(PySeqIter_Check(iterator));
it = (seqiterobject *)iterator;
seq = it->it_seq;
if (seq == NULL)
return NULL;
if (it->it_index == PY_SSIZE_T_MAX) {
PyErr_SetString(PyExc_OverflowError,
"iter index too large");
return NULL;
}
result = PySequence_GetItem(seq, it->it_index);
if (result != NULL) {
it->it_index++;
return result;
}
if (PyErr_ExceptionMatches(PyExc_IndexError) ||
PyErr_ExceptionMatches(PyExc_StopIteration))
{
PyErr_Clear();
it->it_seq = NULL;
Py_DECREF(seq);
}
return NULL;
}
static PyObject *
iter_len(seqiterobject *it)
{
Py_ssize_t seqsize, len;
if (it->it_seq) {
if (_PyObject_HasLen(it->it_seq)) {
seqsize = PySequence_Size(it->it_seq);
if (seqsize == -1)
return NULL;
}
else {
Py_RETURN_NOTIMPLEMENTED;
}
len = seqsize - it->it_index;
if (len >= 0)
return PyLong_FromSsize_t(len);
}
return PyLong_FromLong(0);
}
PyDoc_STRVAR(length_hint_doc, "Private method returning an estimate of len(list(it)).");
static PyObject *
iter_reduce(seqiterobject *it)
{
if (it->it_seq != NULL)
return Py_BuildValue("N(O)n", _PyObject_GetBuiltin("iter"),
it->it_seq, it->it_index);
else
return Py_BuildValue("N(())", _PyObject_GetBuiltin("iter"));
}
PyDoc_STRVAR(reduce_doc, "Return state information for pickling.");
static PyObject *
iter_setstate(seqiterobject *it, PyObject *state)
{
Py_ssize_t index = PyLong_AsSsize_t(state);
if (index == -1 && PyErr_Occurred())
return NULL;
if (it->it_seq != NULL) {
if (index < 0)
index = 0;
it->it_index = index;
}
Py_RETURN_NONE;
}
PyDoc_STRVAR(setstate_doc, "Set state information for unpickling.");
static PyMethodDef seqiter_methods[] = {
{"__length_hint__", (PyCFunction)iter_len, METH_NOARGS, length_hint_doc},
{"__reduce__", (PyCFunction)iter_reduce, METH_NOARGS, reduce_doc},
{"__setstate__", (PyCFunction)iter_setstate, METH_O, setstate_doc},
{NULL, NULL} /* sentinel */
};
PyTypeObject PySeqIter_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"iterator", /* tp_name */
sizeof(seqiterobject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)iter_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
0, /* tp_doc */
(traverseproc)iter_traverse, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
PyObject_SelfIter, /* tp_iter */
iter_iternext, /* tp_iternext */
seqiter_methods, /* tp_methods */
0, /* tp_members */
};
/* -------------------------------------- */
typedef struct {
PyObject_HEAD
PyObject *it_callable; /* Set to NULL when iterator is exhausted */
PyObject *it_sentinel; /* Set to NULL when iterator is exhausted */
} calliterobject;
PyObject *
PyCallIter_New(PyObject *callable, PyObject *sentinel)
{
calliterobject *it;
it = PyObject_GC_New(calliterobject, &PyCallIter_Type);
if (it == NULL)
return NULL;
Py_INCREF(callable);
it->it_callable = callable;
Py_INCREF(sentinel);
it->it_sentinel = sentinel;
_PyObject_GC_TRACK(it);
return (PyObject *)it;
}
static void
calliter_dealloc(calliterobject *it)
{
_PyObject_GC_UNTRACK(it);
Py_XDECREF(it->it_callable);
Py_XDECREF(it->it_sentinel);
PyObject_GC_Del(it);
}
static int
calliter_traverse(calliterobject *it, visitproc visit, void *arg)
{
Py_VISIT(it->it_callable);
Py_VISIT(it->it_sentinel);
return 0;
}
static PyObject *
calliter_iternext(calliterobject *it)
{
PyObject *result;
if (it->it_callable == NULL) {
return NULL;
}
result = _PyObject_CallNoArg(it->it_callable);
if (result != NULL) {
int ok;
ok = PyObject_RichCompareBool(it->it_sentinel, result, Py_EQ);
if (ok == 0) {
return result; /* Common case, fast path */
}
Py_DECREF(result);
if (ok > 0) {
Py_CLEAR(it->it_callable);
Py_CLEAR(it->it_sentinel);
}
}
else if (PyErr_ExceptionMatches(PyExc_StopIteration)) {
PyErr_Clear();
Py_CLEAR(it->it_callable);
Py_CLEAR(it->it_sentinel);
}
return NULL;
}
static PyObject *
calliter_reduce(calliterobject *it)
{
if (it->it_callable != NULL && it->it_sentinel != NULL)
return Py_BuildValue("N(OO)", _PyObject_GetBuiltin("iter"),
it->it_callable, it->it_sentinel);
else
return Py_BuildValue("N(())", _PyObject_GetBuiltin("iter"));
}
static PyMethodDef calliter_methods[] = {
{"__reduce__", (PyCFunction)calliter_reduce, METH_NOARGS, reduce_doc},
{NULL, NULL} /* sentinel */
};
PyTypeObject PyCallIter_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"callable_iterator", /* tp_name */
sizeof(calliterobject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)calliter_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
0, /* tp_doc */
(traverseproc)calliter_traverse, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
PyObject_SelfIter, /* tp_iter */
(iternextfunc)calliter_iternext, /* tp_iternext */
calliter_methods, /* tp_methods */
};
| 10,326 | 300 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/object.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "libc/intrin/likely.h"
#include "libc/log/countbranch.h"
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/boolobject.h"
#include "third_party/python/Include/bytearrayobject.h"
#include "third_party/python/Include/bytesobject.h"
#include "third_party/python/Include/cellobject.h"
#include "third_party/python/Include/ceval.h"
#include "third_party/python/Include/classobject.h"
#include "third_party/python/Include/complexobject.h"
#include "third_party/python/Include/descrobject.h"
#include "third_party/python/Include/dictobject.h"
#include "third_party/python/Include/enumobject.h"
#include "third_party/python/Include/fileobject.h"
#include "third_party/python/Include/floatobject.h"
#include "third_party/python/Include/frameobject.h"
#include "third_party/python/Include/funcobject.h"
#include "third_party/python/Include/genobject.h"
#include "third_party/python/Include/import.h"
#include "third_party/python/Include/iterobject.h"
#include "third_party/python/Include/longobject.h"
#include "third_party/python/Include/memoryobject.h"
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/namespaceobject.h"
#include "third_party/python/Include/object.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/odictobject.h"
#include "third_party/python/Include/pycapsule.h"
#include "third_party/python/Include/pyerrors.h"
#include "third_party/python/Include/rangeobject.h"
#include "third_party/python/Include/setobject.h"
#include "third_party/python/Include/sliceobject.h"
#include "third_party/python/Include/sysmodule.h"
#include "third_party/python/Include/traceback.h"
#include "third_party/python/Include/weakrefobject.h"
/* clang-format off */
_Py_IDENTIFIER(Py_Repr);
_Py_IDENTIFIER(__bytes__);
_Py_IDENTIFIER(__dir__);
_Py_IDENTIFIER(__isabstractmethod__);
_Py_IDENTIFIER(builtins);
#ifdef Py_REF_DEBUG
Py_ssize_t _Py_RefTotal;
Py_ssize_t
_Py_GetRefTotal(void)
{
PyObject *o;
Py_ssize_t total = _Py_RefTotal;
o = _PySet_Dummy;
if (o != NULL)
total -= o->ob_refcnt;
return total;
}
void
_PyDebug_PrintTotalRefs(void) {
PyObject *xoptions, *value;
_Py_IDENTIFIER(showrefcount);
xoptions = PySys_GetXOptions();
if (xoptions == NULL)
return;
value = _PyDict_GetItemId(xoptions, &PyId_showrefcount);
if (value == Py_True)
fprintf(stderr,
"[%" PY_FORMAT_SIZE_T "d refs, "
"%" PY_FORMAT_SIZE_T "d blocks]\n",
_Py_GetRefTotal(), _Py_GetAllocatedBlocks());
}
#endif /* Py_REF_DEBUG */
/* Object allocation routines used by NEWOBJ and NEWVAROBJ macros.
These are used by the individual routines for object creation.
Do not call them otherwise, they do not initialize the object! */
#ifdef Py_TRACE_REFS
/* Head of circular doubly-linked list of all objects. These are linked
* together via the _ob_prev and _ob_next members of a PyObject, which
* exist only in a Py_TRACE_REFS build.
*/
static PyObject refchain = {&refchain, &refchain};
/* Insert op at the front of the list of all objects. If force is true,
* op is added even if _ob_prev and _ob_next are non-NULL already. If
* force is false amd _ob_prev or _ob_next are non-NULL, do nothing.
* force should be true if and only if op points to freshly allocated,
* uninitialized memory, or you've unlinked op from the list and are
* relinking it into the front.
* Note that objects are normally added to the list via _Py_NewReference,
* which is called by PyObject_Init. Not all objects are initialized that
* way, though; exceptions include statically allocated type objects, and
* statically allocated singletons (like Py_True and Py_None).
*/
void
_Py_AddToAllObjects(PyObject *op, int force)
{
#ifdef Py_DEBUG
if (!force) {
/* If it's initialized memory, op must be in or out of
* the list unambiguously.
*/
assert((op->_ob_prev == NULL) == (op->_ob_next == NULL));
}
#endif
if (force || op->_ob_prev == NULL) {
op->_ob_next = refchain._ob_next;
op->_ob_prev = &refchain;
refchain._ob_next->_ob_prev = op;
refchain._ob_next = op;
}
}
#endif /* Py_TRACE_REFS */
#ifdef COUNT_ALLOCS
static PyTypeObject *type_list;
/* All types are added to type_list, at least when
they get one object created. That makes them
immortal, which unfortunately contributes to
garbage itself. If unlist_types_without_objects
is set, they will be removed from the type_list
once the last object is deallocated. */
static int unlist_types_without_objects;
extern Py_ssize_t tuple_zero_allocs, fast_tuple_allocs;
extern Py_ssize_t quick_int_allocs, quick_neg_int_allocs;
extern Py_ssize_t null_strings, one_strings;
void
dump_counts(FILE* f)
{
PyTypeObject *tp;
PyObject *xoptions, *value;
_Py_IDENTIFIER(showalloccount);
xoptions = PySys_GetXOptions();
if (xoptions == NULL)
return;
value = _PyDict_GetItemId(xoptions, &PyId_showalloccount);
if (value != Py_True)
return;
for (tp = type_list; tp; tp = tp->tp_next)
fprintf(f, "%s alloc'd: %" PY_FORMAT_SIZE_T "d, "
"freed: %" PY_FORMAT_SIZE_T "d, "
"max in use: %" PY_FORMAT_SIZE_T "d\n",
tp->tp_name, tp->tp_allocs, tp->tp_frees,
tp->tp_maxalloc);
fprintf(f, "fast tuple allocs: %" PY_FORMAT_SIZE_T "d, "
"empty: %" PY_FORMAT_SIZE_T "d\n",
fast_tuple_allocs, tuple_zero_allocs);
fprintf(f, "fast int allocs: pos: %" PY_FORMAT_SIZE_T "d, "
"neg: %" PY_FORMAT_SIZE_T "d\n",
quick_int_allocs, quick_neg_int_allocs);
fprintf(f, "null strings: %" PY_FORMAT_SIZE_T "d, "
"1-strings: %" PY_FORMAT_SIZE_T "d\n",
null_strings, one_strings);
}
PyObject *
get_counts(void)
{
PyTypeObject *tp;
PyObject *result;
PyObject *v;
result = PyList_New(0);
if (result == NULL)
return NULL;
for (tp = type_list; tp; tp = tp->tp_next) {
v = Py_BuildValue("(snnn)", tp->tp_name, tp->tp_allocs,
tp->tp_frees, tp->tp_maxalloc);
if (v == NULL) {
Py_DECREF(result);
return NULL;
}
if (PyList_Append(result, v) < 0) {
Py_DECREF(v);
Py_DECREF(result);
return NULL;
}
Py_DECREF(v);
}
return result;
}
void
inc_count(PyTypeObject *tp)
{
if (tp->tp_next == NULL && tp->tp_prev == NULL) {
/* first time; insert in linked list */
if (tp->tp_next != NULL) /* sanity check */
Py_FatalError("XXX inc_count sanity check");
if (type_list)
type_list->tp_prev = tp;
tp->tp_next = type_list;
/* Note that as of Python 2.2, heap-allocated type objects
* can go away, but this code requires that they stay alive
* until program exit. That's why we're careful with
* refcounts here. type_list gets a new reference to tp,
* while ownership of the reference type_list used to hold
* (if any) was transferred to tp->tp_next in the line above.
* tp is thus effectively immortal after this.
*/
Py_INCREF(tp);
type_list = tp;
#ifdef Py_TRACE_REFS
/* Also insert in the doubly-linked list of all objects,
* if not already there.
*/
_Py_AddToAllObjects((PyObject *)tp, 0);
#endif
}
tp->tp_allocs++;
if (tp->tp_allocs - tp->tp_frees > tp->tp_maxalloc)
tp->tp_maxalloc = tp->tp_allocs - tp->tp_frees;
}
void dec_count(PyTypeObject *tp)
{
tp->tp_frees++;
if (unlist_types_without_objects &&
tp->tp_allocs == tp->tp_frees) {
/* unlink the type from type_list */
if (tp->tp_prev)
tp->tp_prev->tp_next = tp->tp_next;
else
type_list = tp->tp_next;
if (tp->tp_next)
tp->tp_next->tp_prev = tp->tp_prev;
tp->tp_next = tp->tp_prev = NULL;
Py_DECREF(tp);
}
}
#endif
#ifdef Py_REF_DEBUG
/* Log a fatal error; doesn't return. */
void
_Py_NegativeRefcount(const char *fname, int lineno, PyObject *op)
{
char buf[300];
PyOS_snprintf(buf, sizeof(buf),
"%s:%i object at %p has negative ref count "
"%" PY_FORMAT_SIZE_T "d",
fname, lineno, op, op->ob_refcnt);
Py_FatalError(buf);
}
#endif /* Py_REF_DEBUG */
void
Py_IncRef(PyObject *o)
{
Py_XINCREF(o);
}
void
Py_DecRef(PyObject *o)
{
Py_XDECREF(o);
}
PyObject *
PyObject_Init(PyObject *op, PyTypeObject *tp)
{
if (op == NULL)
return PyErr_NoMemory();
/* Any changes should be reflected in PyObject_INIT (objimpl.h) */
Py_TYPE(op) = tp;
_Py_NewReference(op);
return op;
}
PyVarObject *
PyObject_InitVar(PyVarObject *op, PyTypeObject *tp, Py_ssize_t size)
{
if (op == NULL)
return (PyVarObject *) PyErr_NoMemory();
/* Any changes should be reflected in PyObject_INIT_VAR */
op->ob_size = size;
Py_TYPE(op) = tp;
_Py_NewReference((PyObject *)op);
return op;
}
PyObject *
_PyObject_New(PyTypeObject *tp)
{
PyObject *op;
op = (PyObject *) PyObject_MALLOC(_PyObject_SIZE(tp));
if (op == NULL)
return PyErr_NoMemory();
return PyObject_INIT(op, tp);
}
PyVarObject *
_PyObject_NewVar(PyTypeObject *tp, Py_ssize_t nitems)
{
PyVarObject *op;
const size_t size = _PyObject_VAR_SIZE(tp, nitems);
op = (PyVarObject *) PyObject_MALLOC(size);
if (op == NULL)
return (PyVarObject *)PyErr_NoMemory();
return PyObject_INIT_VAR(op, tp, nitems);
}
void
PyObject_CallFinalizer(PyObject *self)
{
PyTypeObject *tp = Py_TYPE(self);
/* The former could happen on heaptypes created from the C API, e.g.
PyType_FromSpec(). */
if (!PyType_HasFeature(tp, Py_TPFLAGS_HAVE_FINALIZE) ||
tp->tp_finalize == NULL)
return;
/* tp_finalize should only be called once. */
if (PyType_IS_GC(tp) && _PyGC_FINALIZED(self))
return;
tp->tp_finalize(self);
if (PyType_IS_GC(tp))
_PyGC_SET_FINALIZED(self, 1);
}
int
PyObject_CallFinalizerFromDealloc(PyObject *self)
{
Py_ssize_t refcnt;
/* Temporarily resurrect the object. */
if (self->ob_refcnt != 0) {
Py_FatalError("PyObject_CallFinalizerFromDealloc called on "
"object with a non-zero refcount");
}
self->ob_refcnt = 1;
PyObject_CallFinalizer(self);
/* Undo the temporary resurrection; can't use DECREF here, it would
* cause a recursive call.
*/
assert(self->ob_refcnt > 0);
if (--self->ob_refcnt == 0)
return 0; /* this is the normal path out */
/* tp_finalize resurrected it! Make it look like the original Py_DECREF
* never happened.
*/
refcnt = self->ob_refcnt;
_Py_NewReference(self);
self->ob_refcnt = refcnt;
if (PyType_IS_GC(Py_TYPE(self))) {
assert(_PyGC_REFS(self) != _PyGC_REFS_UNTRACKED);
}
/* If Py_REF_DEBUG, _Py_NewReference bumped _Py_RefTotal, so
* we need to undo that. */
_Py_DEC_REFTOTAL;
/* If Py_TRACE_REFS, _Py_NewReference re-added self to the object
* chain, so no more to do there.
* If COUNT_ALLOCS, the original decref bumped tp_frees, and
* _Py_NewReference bumped tp_allocs: both of those need to be
* undone.
*/
#ifdef COUNT_ALLOCS
--Py_TYPE(self)->tp_frees;
--Py_TYPE(self)->tp_allocs;
#endif
return -1;
}
int
PyObject_Print(PyObject *op, FILE *fp, int flags)
{
int ret = 0;
if (PyErr_CheckSignals())
return -1;
#ifdef USE_STACKCHECK
if (PyOS_CheckStack()) {
PyErr_SetString(PyExc_MemoryError, "stack overflow");
return -1;
}
#endif
clearerr(fp); /* Clear any previous error condition */
if (op == NULL) {
Py_BEGIN_ALLOW_THREADS
fprintf(fp, "<nil>");
Py_END_ALLOW_THREADS
}
else {
if (op->ob_refcnt <= 0)
/* XXX(twouters) cast refcount to long until %zd is
universally available */
Py_BEGIN_ALLOW_THREADS
fprintf(fp, "<refcnt %ld at %p>",
(long)op->ob_refcnt, op);
Py_END_ALLOW_THREADS
else {
PyObject *s;
if (flags & Py_PRINT_RAW)
s = PyObject_Str(op);
else
s = PyObject_Repr(op);
if (s == NULL)
ret = -1;
else if (PyBytes_Check(s)) {
fwrite(PyBytes_AS_STRING(s), 1,
PyBytes_GET_SIZE(s), fp);
}
else if (PyUnicode_Check(s)) {
PyObject *t;
t = PyUnicode_AsEncodedString(s, "utf-8", "backslashreplace");
if (t == NULL) {
ret = -1;
}
else {
fwrite(PyBytes_AS_STRING(t), 1,
PyBytes_GET_SIZE(t), fp);
Py_DECREF(t);
}
}
else {
PyErr_Format(PyExc_TypeError,
"str() or repr() returned '%.100s'",
s->ob_type->tp_name);
ret = -1;
}
Py_XDECREF(s);
}
}
if (ret == 0) {
if (ferror(fp)) {
PyErr_SetFromErrno(PyExc_IOError);
clearerr(fp);
ret = -1;
}
}
return ret;
}
/* For debugging convenience. Set a breakpoint here and call it from your DLL */
void
_Py_BreakPoint(void)
{
}
/* Heuristic checking if the object memory has been deallocated.
Rely on the debug hooks on Python memory allocators which fills the memory
with DEADBYTE (0xDB) when memory is deallocated.
The function can be used to prevent segmentation fault on dereferencing
pointers like 0xdbdbdbdbdbdbdbdb. Such pointer is very unlikely to be mapped
in memory. */
int
_PyObject_IsFreed(PyObject *op)
{
uintptr_t ptr = (uintptr_t)op;
if (_PyMem_IsFreed(&ptr, sizeof(ptr))) {
return 1;
}
int freed = _PyMem_IsFreed(&op->ob_type, sizeof(op->ob_type));
/* ignore op->ob_ref: the value can have be modified
by Py_INCREF() and Py_DECREF(). */
#ifdef Py_TRACE_REFS
freed &= _PyMem_IsFreed(&op->_ob_next, sizeof(op->_ob_next));
freed &= _PyMem_IsFreed(&op->_ob_prev, sizeof(op->_ob_prev));
#endif
return freed;
}
/* For debugging convenience. See Misc/gdbinit for some useful gdb hooks */
void
_PyObject_Dump(PyObject* op)
{
if (op == NULL) {
fprintf(stderr, "<NULL object>\n");
fflush(stderr);
return;
}
if (_PyObject_IsFreed(op)) {
/* It seems like the object memory has been freed:
don't access it to prevent a segmentation fault. */
fprintf(stderr, "<freed object>\n");
return;
}
// PyGILState_STATE gil;
PyObject *error_type, *error_value, *error_traceback;
fprintf(stderr, "object : ");
fflush(stderr);
// gil = PyGILState_Ensure();
PyErr_Fetch(&error_type, &error_value, &error_traceback);
(void)PyObject_Print(op, stderr, 0);
fflush(stderr);
PyErr_Restore(error_type, error_value, error_traceback);
// PyGILState_Release(gil);
/* XXX(twouters) cast refcount to long until %zd is
universally available */
fprintf(stderr, "\n"
"type : %s\n"
"refcount: %ld\n"
"address : %p\n",
Py_TYPE(op)==NULL ? "NULL" : Py_TYPE(op)->tp_name,
(long)op->ob_refcnt,
op);
fflush(stderr);
}
PyObject *
PyObject_Repr(PyObject *v)
{
PyObject *res;
if (PyErr_CheckSignals())
return NULL;
#ifdef USE_STACKCHECK
if (PyOS_CheckStack()) {
PyErr_SetString(PyExc_MemoryError, "stack overflow");
return NULL;
}
#endif
if (v == NULL)
return PyUnicode_FromString("<NULL>");
if (Py_TYPE(v)->tp_repr == NULL)
return PyUnicode_FromFormat("<%s object at %p>",
v->ob_type->tp_name, v);
#ifdef Py_DEBUG
/* PyObject_Repr() must not be called with an exception set,
because it may clear it (directly or indirectly) and so the
caller loses its exception */
assert(!PyErr_Occurred());
#endif
/* It is possible for a type to have a tp_repr representation that loops
infinitely. */
if (Py_EnterRecursiveCall(" while getting the repr of an object"))
return NULL;
res = (*v->ob_type->tp_repr)(v);
Py_LeaveRecursiveCall();
if (res == NULL)
return NULL;
if (!PyUnicode_Check(res)) {
PyErr_Format(PyExc_TypeError,
"__repr__ returned non-string (type %.200s)",
res->ob_type->tp_name);
Py_DECREF(res);
return NULL;
}
#ifndef Py_DEBUG
if (PyUnicode_READY(res) < 0)
return NULL;
#endif
return res;
}
PyObject *
PyObject_Str(PyObject *v)
{
PyObject *res;
if (PyErr_CheckSignals())
return NULL;
#ifdef USE_STACKCHECK
if (PyOS_CheckStack()) {
PyErr_SetString(PyExc_MemoryError, "stack overflow");
return NULL;
}
#endif
if (v == NULL)
return PyUnicode_FromString("<NULL>");
if (PyUnicode_CheckExact(v)) {
#ifndef Py_DEBUG
if (PyUnicode_READY(v) < 0)
return NULL;
#endif
Py_INCREF(v);
return v;
}
if (Py_TYPE(v)->tp_str == NULL)
return PyObject_Repr(v);
#ifdef Py_DEBUG
/* PyObject_Str() must not be called with an exception set,
because it may clear it (directly or indirectly) and so the
caller loses its exception */
assert(!PyErr_Occurred());
#endif
/* It is possible for a type to have a tp_str representation that loops
infinitely. */
if (Py_EnterRecursiveCall(" while getting the str of an object"))
return NULL;
res = (*Py_TYPE(v)->tp_str)(v);
Py_LeaveRecursiveCall();
if (res == NULL)
return NULL;
if (!PyUnicode_Check(res)) {
PyErr_Format(PyExc_TypeError,
"__str__ returned non-string (type %.200s)",
Py_TYPE(res)->tp_name);
Py_DECREF(res);
return NULL;
}
#ifndef Py_DEBUG
if (PyUnicode_READY(res) < 0)
return NULL;
#endif
assert(_PyUnicode_CheckConsistency(res, 1));
return res;
}
PyObject *
PyObject_ASCII(PyObject *v)
{
PyObject *repr, *ascii, *res;
repr = PyObject_Repr(v);
if (repr == NULL)
return NULL;
if (PyUnicode_IS_ASCII(repr))
return repr;
/* repr is guaranteed to be a PyUnicode object by PyObject_Repr */
ascii = _PyUnicode_AsASCIIString(repr, "backslashreplace");
Py_DECREF(repr);
if (ascii == NULL)
return NULL;
res = PyUnicode_DecodeASCII(
PyBytes_AS_STRING(ascii),
PyBytes_GET_SIZE(ascii),
NULL);
Py_DECREF(ascii);
return res;
}
PyObject *
PyObject_Bytes(PyObject *v)
{
PyObject *result, *func;
if (v == NULL)
return PyBytes_FromString("<NULL>");
if (PyBytes_CheckExact(v)) {
Py_INCREF(v);
return v;
}
func = _PyObject_LookupSpecial(v, &PyId___bytes__);
if (func != NULL) {
result = PyObject_CallFunctionObjArgs(func, NULL);
Py_DECREF(func);
if (result == NULL)
return NULL;
if (!PyBytes_Check(result)) {
PyErr_Format(PyExc_TypeError,
"__bytes__ returned non-bytes (type %.200s)",
Py_TYPE(result)->tp_name);
Py_DECREF(result);
return NULL;
}
return result;
}
else if (PyErr_Occurred())
return NULL;
return PyBytes_FromObject(v);
}
/* For Python 3.0.1 and later, the old three-way comparison has been
completely removed in favour of rich comparisons. PyObject_Compare() and
PyObject_Cmp() are gone, and the builtin cmp function no longer exists.
The old tp_compare slot has been renamed to tp_reserved, and should no
longer be used. Use tp_richcompare instead.
See (*) below for practical amendments.
tp_richcompare gets called with a first argument of the appropriate type
and a second object of an arbitrary type. We never do any kind of
coercion.
The tp_richcompare slot should return an object, as follows:
NULL if an exception occurred
NotImplemented if the requested comparison is not implemented
any other false value if the requested comparison is false
any other true value if the requested comparison is true
The PyObject_RichCompare[Bool]() wrappers raise TypeError when they get
NotImplemented.
(*) Practical amendments:
- If rich comparison returns NotImplemented, == and != are decided by
comparing the object pointer (i.e. falling back to the base object
implementation).
*/
/* Map rich comparison operators to their swapped version, e.g. LT <--> GT */
int _Py_SwappedOp[] = {Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, Py_LE};
static const char * const opstrings[] = {"<", "<=", "==", "!=", ">", ">="};
/* Perform a rich comparison, raising TypeError when the requested comparison
operator is not supported. */
static PyObject *
do_richcompare(PyObject *v, PyObject *w, int op)
{
richcmpfunc f;
PyObject *res;
int checked_reverse_op = 0;
if (v->ob_type != w->ob_type &&
PyType_IsSubtype(w->ob_type, v->ob_type) &&
(f = w->ob_type->tp_richcompare) != NULL) {
checked_reverse_op = 1;
res = (*f)(w, v, _Py_SwappedOp[op]);
if (res != Py_NotImplemented)
return res;
Py_DECREF(res);
}
if ((f = v->ob_type->tp_richcompare) != NULL) {
res = (*f)(v, w, op);
if (res != Py_NotImplemented)
return res;
Py_DECREF(res);
}
if (!checked_reverse_op && (f = w->ob_type->tp_richcompare) != NULL) {
res = (*f)(w, v, _Py_SwappedOp[op]);
if (res != Py_NotImplemented)
return res;
Py_DECREF(res);
}
/* If neither object implements it, provide a sensible default
for == and !=, but raise an exception for ordering. */
switch (op) {
case Py_EQ:
res = (v == w) ? Py_True : Py_False;
break;
case Py_NE:
res = (v != w) ? Py_True : Py_False;
break;
default:
PyErr_Format(PyExc_TypeError,
"'%s' not supported between instances of '%.100s' and '%.100s'",
opstrings[op],
v->ob_type->tp_name,
w->ob_type->tp_name);
return NULL;
}
Py_INCREF(res);
return res;
}
/* Perform a rich comparison with object result. This wraps do_richcompare()
with a check for NULL arguments and a recursion check. */
PyObject *
PyObject_RichCompare(PyObject *v, PyObject *w, int op)
{
PyObject *res;
assert(Py_LT <= op && op <= Py_GE);
if (v == NULL || w == NULL) {
if (!PyErr_Occurred())
PyErr_BadInternalCall();
return NULL;
}
if (Py_EnterRecursiveCall(" in comparison"))
return NULL;
res = do_richcompare(v, w, op);
Py_LeaveRecursiveCall();
return res;
}
/* Perform a rich comparison with integer result. This wraps
PyObject_RichCompare(), returning -1 for error, 0 for false, 1 for true. */
int
PyObject_RichCompareBool(PyObject *v, PyObject *w, int op)
{
PyObject *res;
int ok;
/* Quick result when objects are the same.
Guarantees that identity implies equality. */
if (v == w) {
if (op == Py_EQ)
return 1;
else if (op == Py_NE)
return 0;
}
res = PyObject_RichCompare(v, w, op);
if (res == NULL)
return -1;
if (PyBool_Check(res))
ok = (res == Py_True);
else
ok = PyObject_IsTrue(res);
Py_DECREF(res);
return ok;
}
Py_hash_t
PyObject_HashNotImplemented(PyObject *v)
{
PyErr_Format(PyExc_TypeError, "unhashable type: '%.200s'",
Py_TYPE(v)->tp_name);
return -1;
}
Py_hash_t
PyObject_Hash(PyObject *v)
{
PyTypeObject *tp = Py_TYPE(v);
if (tp->tp_hash != NULL)
return (*tp->tp_hash)(v);
/* To keep to the general practice that inheriting
* solely from object in C code should work without
* an explicit call to PyType_Ready, we implicitly call
* PyType_Ready here and then check the tp_hash slot again
*/
if (tp->tp_dict == NULL) {
if (PyType_Ready(tp) < 0)
return -1;
if (tp->tp_hash != NULL)
return (*tp->tp_hash)(v);
}
/* Otherwise, the object can't be hashed */
return PyObject_HashNotImplemented(v);
}
PyObject *
PyObject_GetAttrString(PyObject *v, const char *name)
{
PyObject *w, *res;
if (Py_TYPE(v)->tp_getattr != NULL)
return (*Py_TYPE(v)->tp_getattr)(v, (char*)name);
w = PyUnicode_InternFromString(name);
if (w == NULL)
return NULL;
res = PyObject_GetAttr(v, w);
Py_DECREF(w);
return res;
}
int
PyObject_HasAttrString(PyObject *v, const char *name)
{
PyObject *res = PyObject_GetAttrString(v, name);
if (res != NULL) {
Py_DECREF(res);
return 1;
}
PyErr_Clear();
return 0;
}
int
PyObject_SetAttrString(PyObject *v, const char *name, PyObject *w)
{
PyObject *s;
int res;
if (Py_TYPE(v)->tp_setattr != NULL)
return (*Py_TYPE(v)->tp_setattr)(v, (char*)name, w);
s = PyUnicode_InternFromString(name);
if (s == NULL)
return -1;
res = PyObject_SetAttr(v, s, w);
Py_XDECREF(s);
return res;
}
int
_PyObject_IsAbstract(PyObject *obj)
{
int res;
PyObject* isabstract;
if (obj == NULL)
return 0;
isabstract = _PyObject_GetAttrId(obj, &PyId___isabstractmethod__);
if (isabstract == NULL) {
if (PyErr_ExceptionMatches(PyExc_AttributeError)) {
PyErr_Clear();
return 0;
}
return -1;
}
res = PyObject_IsTrue(isabstract);
Py_DECREF(isabstract);
return res;
}
PyObject *
_PyObject_GetAttrId(PyObject *v, _Py_Identifier *name)
{
PyObject *result;
PyObject *oname = _PyUnicode_FromId(name); /* borrowed */
if (!oname)
return NULL;
result = PyObject_GetAttr(v, oname);
return result;
}
int
_PyObject_HasAttrId(PyObject *v, _Py_Identifier *name)
{
int result;
PyObject *oname = _PyUnicode_FromId(name); /* borrowed */
if (!oname)
return -1;
result = PyObject_HasAttr(v, oname);
return result;
}
int
_PyObject_SetAttrId(PyObject *v, _Py_Identifier *name, PyObject *w)
{
int result;
PyObject *oname = _PyUnicode_FromId(name); /* borrowed */
if (!oname)
return -1;
result = PyObject_SetAttr(v, oname, w);
return result;
}
PyObject *
PyObject_GetAttr(PyObject *v, PyObject *name)
{
PyTypeObject *tp = Py_TYPE(v);
if (!PyUnicode_Check(name)) {
PyErr_Format(PyExc_TypeError,
"attribute name must be string, not '%.200s'",
name->ob_type->tp_name);
return NULL;
}
if (tp->tp_getattro != NULL)
return (*tp->tp_getattro)(v, name);
if (tp->tp_getattr != NULL) {
char *name_str = PyUnicode_AsUTF8(name);
if (name_str == NULL)
return NULL;
return (*tp->tp_getattr)(v, name_str);
}
PyErr_Format(PyExc_AttributeError,
"'%.50s' object has no attribute '%U'",
tp->tp_name, name);
return NULL;
}
int
PyObject_HasAttr(PyObject *v, PyObject *name)
{
PyObject *res = PyObject_GetAttr(v, name);
if (res != NULL) {
Py_DECREF(res);
return 1;
}
PyErr_Clear();
return 0;
}
int
PyObject_SetAttr(PyObject *v, PyObject *name, PyObject *value)
{
PyTypeObject *tp = Py_TYPE(v);
int err;
if (!PyUnicode_Check(name)) {
PyErr_Format(PyExc_TypeError,
"attribute name must be string, not '%.200s'",
name->ob_type->tp_name);
return -1;
}
Py_INCREF(name);
PyUnicode_InternInPlace(&name);
if (tp->tp_setattro != NULL) {
err = (*tp->tp_setattro)(v, name, value);
Py_DECREF(name);
return err;
}
if (tp->tp_setattr != NULL) {
char *name_str = PyUnicode_AsUTF8(name);
if (name_str == NULL)
return -1;
err = (*tp->tp_setattr)(v, name_str, value);
Py_DECREF(name);
return err;
}
Py_DECREF(name);
assert(name->ob_refcnt >= 1);
if (tp->tp_getattr == NULL && tp->tp_getattro == NULL)
PyErr_Format(PyExc_TypeError,
"'%.100s' object has no attributes "
"(%s .%U)",
tp->tp_name,
value==NULL ? "del" : "assign to",
name);
else
PyErr_Format(PyExc_TypeError,
"'%.100s' object has only read-only attributes "
"(%s .%U)",
tp->tp_name,
value==NULL ? "del" : "assign to",
name);
return -1;
}
/* Helper to get a pointer to an object's __dict__ slot, if any */
PyObject **
_PyObject_GetDictPtr(PyObject *obj)
{
Py_ssize_t dictoffset;
PyTypeObject *tp = Py_TYPE(obj);
dictoffset = tp->tp_dictoffset;
if (dictoffset == 0)
return NULL;
if (dictoffset < 0) {
Py_ssize_t tsize;
size_t size;
tsize = ((PyVarObject *)obj)->ob_size;
if (tsize < 0)
tsize = -tsize;
size = _PyObject_VAR_SIZE(tp, tsize);
dictoffset += (long)size;
assert(dictoffset > 0);
assert(dictoffset % SIZEOF_VOID_P == 0);
}
return (PyObject **) ((char *)obj + dictoffset);
}
PyObject *
PyObject_SelfIter(PyObject *obj)
{
Py_INCREF(obj);
return obj;
}
/* Convenience function to get a builtin from its name */
PyObject *
_PyObject_GetBuiltin(const char *name)
{
PyObject *mod_name, *mod, *attr;
mod_name = _PyUnicode_FromId(&PyId_builtins); /* borrowed */
if (mod_name == NULL)
return NULL;
mod = PyImport_Import(mod_name);
if (mod == NULL)
return NULL;
attr = PyObject_GetAttrString(mod, name);
Py_DECREF(mod);
return attr;
}
/* Helper used when the __next__ method is removed from a type:
tp_iternext is never NULL and can be safely called without checking
on every iteration.
*/
PyObject *
_PyObject_NextNotImplemented(PyObject *self)
{
PyErr_Format(PyExc_TypeError,
"'%.200s' object is not iterable",
Py_TYPE(self)->tp_name);
return NULL;
}
/* Specialized version of _PyObject_GenericGetAttrWithDict
specifically for the LOAD_METHOD opcode.
Return 1 if a method is found, 0 if it's a regular attribute
from __dict__ or something returned by using a descriptor
protocol.
`method` will point to the resolved attribute or NULL. In the
latter case, an error will be set.
*/
int
_PyObject_GetMethod(PyObject *obj, PyObject *name, PyObject **method)
{
PyTypeObject *tp = Py_TYPE(obj);
PyObject *descr;
descrgetfunc f = NULL;
PyObject **dictptr, *dict;
PyObject *attr;
int meth_found = 0;
assert(*method == NULL);
if (Py_TYPE(obj)->tp_getattro != PyObject_GenericGetAttr
|| !PyUnicode_Check(name)) {
*method = PyObject_GetAttr(obj, name);
return 0;
}
if (tp->tp_dict == NULL && PyType_Ready(tp) < 0)
return 0;
descr = _PyType_Lookup(tp, name);
if (descr != NULL) {
Py_INCREF(descr);
if (PyFunction_Check(descr) ||
(Py_TYPE(descr) == &PyMethodDescr_Type)) {
meth_found = 1;
} else {
f = descr->ob_type->tp_descr_get;
if (f != NULL && PyDescr_IsData(descr)) {
*method = f(descr, obj, (PyObject *)obj->ob_type);
Py_DECREF(descr);
return 0;
}
}
}
dictptr = _PyObject_GetDictPtr(obj);
if (dictptr != NULL && (dict = *dictptr) != NULL) {
Py_INCREF(dict);
attr = PyDict_GetItem(dict, name);
if (attr != NULL) {
Py_INCREF(attr);
*method = attr;
Py_DECREF(dict);
Py_XDECREF(descr);
return 0;
}
Py_DECREF(dict);
}
if (meth_found) {
*method = descr;
return 1;
}
if (f != NULL) {
*method = f(descr, obj, (PyObject *)Py_TYPE(obj));
Py_DECREF(descr);
return 0;
}
if (descr != NULL) {
*method = descr;
return 0;
}
PyErr_Format(PyExc_AttributeError,
"'%.50s' object has no attribute '%U'",
tp->tp_name, name);
return 0;
}
/* Generic GetAttr functions - put these in your tp_[gs]etattro slot */
PyObject *
_PyObject_GenericGetAttrWithDict(PyObject *obj, PyObject *name, PyObject *dict)
{
PyTypeObject *tp = Py_TYPE(obj);
PyObject *descr = NULL;
PyObject *res = NULL;
descrgetfunc f;
Py_ssize_t dictoffset;
PyObject **dictptr;
if (UNLIKELY(!PyUnicode_Check(name))){
PyErr_Format(PyExc_TypeError,
"attribute name must be string, not '%.200s'",
name->ob_type->tp_name);
return NULL;
}
Py_INCREF(name);
if (UNLIKELY(tp->tp_dict == NULL)) {
if (PyType_Ready(tp) < 0)
goto done;
}
descr = _PyType_Lookup(tp, name);
f = NULL;
if (descr != NULL) {
Py_INCREF(descr);
f = descr->ob_type->tp_descr_get;
if (f != NULL && PyDescr_IsData(descr)) {
res = f(descr, obj, (PyObject *)obj->ob_type);
goto done;
}
}
if (LIKELY(dict == NULL)) {
/* Inline _PyObject_GetDictPtr */
dictoffset = tp->tp_dictoffset;
if (dictoffset != 0) {
if (dictoffset < 0) {
Py_ssize_t tsize;
size_t size;
tsize = ((PyVarObject *)obj)->ob_size;
if (tsize < 0)
tsize = -tsize;
size = _PyObject_VAR_SIZE(tp, tsize);
assert(size <= PY_SSIZE_T_MAX);
dictoffset += (Py_ssize_t)size;
assert(dictoffset > 0);
assert(dictoffset % SIZEOF_VOID_P == 0);
}
dictptr = (PyObject **) ((char *)obj + dictoffset);
dict = *dictptr;
}
}
if (dict != NULL) {
Py_INCREF(dict);
res = PyDict_GetItem(dict, name);
if (res != NULL) {
Py_INCREF(res);
Py_DECREF(dict);
goto done;
}
Py_DECREF(dict);
}
if (f != NULL) {
res = f(descr, obj, (PyObject *)Py_TYPE(obj));
goto done;
}
if (descr != NULL) {
res = descr;
descr = NULL;
goto done;
}
PyErr_Format(PyExc_AttributeError,
"'%.50s' object has no attribute '%U'",
tp->tp_name, name);
done:
Py_XDECREF(descr);
Py_DECREF(name);
return res;
}
PyObject *
PyObject_GenericGetAttr(PyObject *obj, PyObject *name)
{
return _PyObject_GenericGetAttrWithDict(obj, name, NULL);
}
int
_PyObject_GenericSetAttrWithDict(PyObject *obj, PyObject *name,
PyObject *value, PyObject *dict)
{
PyTypeObject *tp = Py_TYPE(obj);
PyObject *descr;
descrsetfunc f;
PyObject **dictptr;
int res = -1;
if (!PyUnicode_Check(name)){
PyErr_Format(PyExc_TypeError,
"attribute name must be string, not '%.200s'",
name->ob_type->tp_name);
return -1;
}
if (tp->tp_dict == NULL && PyType_Ready(tp) < 0)
return -1;
Py_INCREF(name);
descr = _PyType_Lookup(tp, name);
if (descr != NULL) {
Py_INCREF(descr);
f = descr->ob_type->tp_descr_set;
if (f != NULL) {
res = f(descr, obj, value);
goto done;
}
}
if (dict == NULL) {
dictptr = _PyObject_GetDictPtr(obj);
if (dictptr == NULL) {
if (descr == NULL) {
PyErr_Format(PyExc_AttributeError,
"'%.100s' object has no attribute '%U'",
tp->tp_name, name);
}
else {
PyErr_Format(PyExc_AttributeError,
"'%.50s' object attribute '%U' is read-only",
tp->tp_name, name);
}
goto done;
}
res = _PyObjectDict_SetItem(tp, dictptr, name, value);
}
else {
Py_INCREF(dict);
if (value == NULL)
res = PyDict_DelItem(dict, name);
else
res = PyDict_SetItem(dict, name, value);
Py_DECREF(dict);
}
if (res < 0 && PyErr_ExceptionMatches(PyExc_KeyError))
PyErr_SetObject(PyExc_AttributeError, name);
done:
Py_XDECREF(descr);
Py_DECREF(name);
return res;
}
int
PyObject_GenericSetAttr(PyObject *obj, PyObject *name, PyObject *value)
{
return _PyObject_GenericSetAttrWithDict(obj, name, value, NULL);
}
int
PyObject_GenericSetDict(PyObject *obj, PyObject *value, void *context)
{
PyObject **dictptr = _PyObject_GetDictPtr(obj);
if (dictptr == NULL) {
PyErr_SetString(PyExc_AttributeError,
"This object has no __dict__");
return -1;
}
if (value == NULL) {
PyErr_SetString(PyExc_TypeError, "cannot delete __dict__");
return -1;
}
if (!PyDict_Check(value)) {
PyErr_Format(PyExc_TypeError,
"__dict__ must be set to a dictionary, "
"not a '%.200s'", Py_TYPE(value)->tp_name);
return -1;
}
Py_INCREF(value);
Py_XSETREF(*dictptr, value);
return 0;
}
/* Test a value used as condition, e.g., in a for or if statement.
Return -1 if an error occurred */
int
PyObject_IsTrue(PyObject *v)
{
Py_ssize_t res;
if (v == Py_True)
return 1;
if (v == Py_False)
return 0;
if (v == Py_None)
return 0;
else if (v->ob_type->tp_as_number != NULL &&
v->ob_type->tp_as_number->nb_bool != NULL)
res = (*v->ob_type->tp_as_number->nb_bool)(v);
else if (v->ob_type->tp_as_mapping != NULL &&
v->ob_type->tp_as_mapping->mp_length != NULL)
res = (*v->ob_type->tp_as_mapping->mp_length)(v);
else if (v->ob_type->tp_as_sequence != NULL &&
v->ob_type->tp_as_sequence->sq_length != NULL)
res = (*v->ob_type->tp_as_sequence->sq_length)(v);
else
return 1;
/* if it is negative, it should be either -1 or -2 */
return (res > 0) ? 1 : Py_SAFE_DOWNCAST(res, Py_ssize_t, int);
}
/* equivalent of 'not v'
Return -1 if an error occurred */
int
PyObject_Not(PyObject *v)
{
int res;
res = PyObject_IsTrue(v);
if (res < 0)
return res;
return res == 0;
}
/* Test whether an object can be called */
int
PyCallable_Check(PyObject *x)
{
if (x == NULL)
return 0;
return x->ob_type->tp_call != NULL;
}
/* Helper for PyObject_Dir without arguments: returns the local scope. */
static PyObject *
_dir_locals(void)
{
PyObject *names;
PyObject *locals;
locals = PyEval_GetLocals();
if (locals == NULL)
return NULL;
names = PyMapping_Keys(locals);
if (!names)
return NULL;
if (!PyList_Check(names)) {
PyErr_Format(PyExc_TypeError,
"dir(): expected keys() of locals to be a list, "
"not '%.200s'", Py_TYPE(names)->tp_name);
Py_DECREF(names);
return NULL;
}
if (PyList_Sort(names)) {
Py_DECREF(names);
return NULL;
}
/* the locals don't need to be DECREF'd */
return names;
}
/* Helper for PyObject_Dir: object introspection. */
static PyObject *
_dir_object(PyObject *obj)
{
PyObject *result, *sorted;
PyObject *dirfunc = _PyObject_LookupSpecial(obj, &PyId___dir__);
assert(obj);
if (dirfunc == NULL) {
if (!PyErr_Occurred())
PyErr_SetString(PyExc_TypeError, "object does not provide __dir__");
return NULL;
}
/* use __dir__ */
result = PyObject_CallFunctionObjArgs(dirfunc, NULL);
Py_DECREF(dirfunc);
if (result == NULL)
return NULL;
/* return sorted(result) */
sorted = PySequence_List(result);
Py_DECREF(result);
if (sorted == NULL)
return NULL;
if (PyList_Sort(sorted)) {
Py_DECREF(sorted);
return NULL;
}
return sorted;
}
/* Implementation of dir() -- if obj is NULL, returns the names in the current
(local) scope. Otherwise, performs introspection of the object: returns a
sorted list of attribute names (supposedly) accessible from the object
*/
PyObject *
PyObject_Dir(PyObject *obj)
{
return (obj == NULL) ? _dir_locals() : _dir_object(obj);
}
/*
None is a non-NULL undefined value.
There is (and should be!) no way to create other objects of this type,
so there is exactly one (which is indestructible, by the way).
*/
/* ARGSUSED */
static PyObject *
none_repr(PyObject *op)
{
return PyUnicode_FromString("None");
}
/* ARGUSED */
static void
none_dealloc(PyObject* ignore)
{
/* This should never get called, but we also don't want to SEGV if
* we accidentally decref None out of existence.
*/
Py_FatalError("deallocating None");
}
static PyObject *
none_new(PyTypeObject *type, PyObject *args, PyObject *kwargs)
{
if (PyTuple_GET_SIZE(args) || (kwargs && PyDict_Size(kwargs))) {
PyErr_SetString(PyExc_TypeError, "NoneType takes no arguments");
return NULL;
}
Py_RETURN_NONE;
}
static int
none_bool(PyObject *v)
{
return 0;
}
static PyNumberMethods none_as_number = {
0, /* nb_add */
0, /* nb_subtract */
0, /* nb_multiply */
0, /* nb_remainder */
0, /* nb_divmod */
0, /* nb_power */
0, /* nb_negative */
0, /* nb_positive */
0, /* nb_absolute */
(inquiry)none_bool, /* nb_bool */
0, /* nb_invert */
0, /* nb_lshift */
0, /* nb_rshift */
0, /* nb_and */
0, /* nb_xor */
0, /* nb_or */
0, /* nb_int */
0, /* nb_reserved */
0, /* nb_float */
0, /* nb_inplace_add */
0, /* nb_inplace_subtract */
0, /* nb_inplace_multiply */
0, /* nb_inplace_remainder */
0, /* nb_inplace_power */
0, /* nb_inplace_lshift */
0, /* nb_inplace_rshift */
0, /* nb_inplace_and */
0, /* nb_inplace_xor */
0, /* nb_inplace_or */
0, /* nb_floor_divide */
0, /* nb_true_divide */
0, /* nb_inplace_floor_divide */
0, /* nb_inplace_true_divide */
0, /* nb_index */
};
PyTypeObject _PyNone_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"NoneType",
0,
0,
none_dealloc, /*tp_dealloc*/ /*never called*/
0, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
0, /*tp_reserved*/
none_repr, /*tp_repr*/
&none_as_number, /*tp_as_number*/
0, /*tp_as_sequence*/
0, /*tp_as_mapping*/
0, /*tp_hash */
0, /*tp_call */
0, /*tp_str */
0, /*tp_getattro */
0, /*tp_setattro */
0, /*tp_as_buffer */
Py_TPFLAGS_DEFAULT, /*tp_flags */
0, /*tp_doc */
0, /*tp_traverse */
0, /*tp_clear */
0, /*tp_richcompare */
0, /*tp_weaklistoffset */
0, /*tp_iter */
0, /*tp_iternext */
0, /*tp_methods */
0, /*tp_members */
0, /*tp_getset */
0, /*tp_base */
0, /*tp_dict */
0, /*tp_descr_get */
0, /*tp_descr_set */
0, /*tp_dictoffset */
0, /*tp_init */
0, /*tp_alloc */
none_new, /*tp_new */
};
PyObject _Py_NoneStruct = {
_PyObject_EXTRA_INIT
1, &_PyNone_Type
};
/* NotImplemented is an object that can be used to signal that an
operation is not implemented for the given type combination. */
static PyObject *
NotImplemented_repr(PyObject *op)
{
return PyUnicode_FromString("NotImplemented");
}
static PyObject *
NotImplemented_reduce(PyObject *op)
{
return PyUnicode_FromString("NotImplemented");
}
static PyMethodDef notimplemented_methods[] = {
{"__reduce__", (PyCFunction)NotImplemented_reduce, METH_NOARGS, NULL},
{NULL, NULL}
};
static PyObject *
notimplemented_new(PyTypeObject *type, PyObject *args, PyObject *kwargs)
{
if (PyTuple_GET_SIZE(args) || (kwargs && PyDict_Size(kwargs))) {
PyErr_SetString(PyExc_TypeError, "NotImplementedType takes no arguments");
return NULL;
}
Py_RETURN_NOTIMPLEMENTED;
}
static void
notimplemented_dealloc(PyObject* ignore)
{
/* This should never get called, but we also don't want to SEGV if
* we accidentally decref NotImplemented out of existence.
*/
Py_FatalError("deallocating NotImplemented");
}
PyTypeObject _PyNotImplemented_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"NotImplementedType",
0,
0,
notimplemented_dealloc, /*tp_dealloc*/ /*never called*/
0, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
0, /*tp_reserved*/
NotImplemented_repr, /*tp_repr*/
0, /*tp_as_number*/
0, /*tp_as_sequence*/
0, /*tp_as_mapping*/
0, /*tp_hash */
0, /*tp_call */
0, /*tp_str */
0, /*tp_getattro */
0, /*tp_setattro */
0, /*tp_as_buffer */
Py_TPFLAGS_DEFAULT, /*tp_flags */
0, /*tp_doc */
0, /*tp_traverse */
0, /*tp_clear */
0, /*tp_richcompare */
0, /*tp_weaklistoffset */
0, /*tp_iter */
0, /*tp_iternext */
notimplemented_methods, /*tp_methods */
0, /*tp_members */
0, /*tp_getset */
0, /*tp_base */
0, /*tp_dict */
0, /*tp_descr_get */
0, /*tp_descr_set */
0, /*tp_dictoffset */
0, /*tp_init */
0, /*tp_alloc */
notimplemented_new, /*tp_new */
};
PyObject _Py_NotImplementedStruct = {
_PyObject_EXTRA_INIT
1, &_PyNotImplemented_Type
};
void
_Py_ReadyTypes(void)
{
if (PyType_Ready(&PyBaseObject_Type) < 0)
Py_FatalError("Can't initialize object type");
if (PyType_Ready(&PyType_Type) < 0)
Py_FatalError("Can't initialize type type");
if (PyType_Ready(&_PyWeakref_RefType) < 0)
Py_FatalError("Can't initialize weakref type");
if (PyType_Ready(&_PyWeakref_CallableProxyType) < 0)
Py_FatalError("Can't initialize callable weakref proxy type");
if (PyType_Ready(&_PyWeakref_ProxyType) < 0)
Py_FatalError("Can't initialize weakref proxy type");
if (PyType_Ready(&PyLong_Type) < 0)
Py_FatalError("Can't initialize int type");
if (PyType_Ready(&PyBool_Type) < 0)
Py_FatalError("Can't initialize bool type");
if (PyType_Ready(&PyByteArray_Type) < 0)
Py_FatalError("Can't initialize bytearray type");
if (PyType_Ready(&PyBytes_Type) < 0)
Py_FatalError("Can't initialize 'str'");
if (PyType_Ready(&PyList_Type) < 0)
Py_FatalError("Can't initialize list type");
if (PyType_Ready(&_PyNone_Type) < 0)
Py_FatalError("Can't initialize None type");
if (PyType_Ready(&_PyNotImplemented_Type) < 0)
Py_FatalError("Can't initialize NotImplemented type");
if (PyType_Ready(&PyTraceBack_Type) < 0)
Py_FatalError("Can't initialize traceback type");
if (PyType_Ready(&PySuper_Type) < 0)
Py_FatalError("Can't initialize super type");
if (PyType_Ready(&PyRange_Type) < 0)
Py_FatalError("Can't initialize range type");
if (PyType_Ready(&PyDict_Type) < 0)
Py_FatalError("Can't initialize dict type");
if (PyType_Ready(&PyDictKeys_Type) < 0)
Py_FatalError("Can't initialize dict keys type");
if (PyType_Ready(&PyDictValues_Type) < 0)
Py_FatalError("Can't initialize dict values type");
if (PyType_Ready(&PyDictItems_Type) < 0)
Py_FatalError("Can't initialize dict items type");
if (PyType_Ready(&PyODict_Type) < 0)
Py_FatalError("Can't initialize OrderedDict type");
if (PyType_Ready(&PyODictKeys_Type) < 0)
Py_FatalError("Can't initialize odict_keys type");
if (PyType_Ready(&PyODictItems_Type) < 0)
Py_FatalError("Can't initialize odict_items type");
if (PyType_Ready(&PyODictValues_Type) < 0)
Py_FatalError("Can't initialize odict_values type");
if (PyType_Ready(&PyODictIter_Type) < 0)
Py_FatalError("Can't initialize odict_keyiterator type");
if (PyType_Ready(&PySet_Type) < 0)
Py_FatalError("Can't initialize set type");
if (PyType_Ready(&PyUnicode_Type) < 0)
Py_FatalError("Can't initialize str type");
if (PyType_Ready(&PySlice_Type) < 0)
Py_FatalError("Can't initialize slice type");
if (PyType_Ready(&PyStaticMethod_Type) < 0)
Py_FatalError("Can't initialize static method type");
if (PyType_Ready(&PyComplex_Type) < 0)
Py_FatalError("Can't initialize complex type");
if (PyType_Ready(&PyFloat_Type) < 0)
Py_FatalError("Can't initialize float type");
if (PyType_Ready(&PyFrozenSet_Type) < 0)
Py_FatalError("Can't initialize frozenset type");
if (PyType_Ready(&PyProperty_Type) < 0)
Py_FatalError("Can't initialize property type");
if (PyType_Ready(&_PyManagedBuffer_Type) < 0)
Py_FatalError("Can't initialize managed buffer type");
if (PyType_Ready(&PyMemoryView_Type) < 0)
Py_FatalError("Can't initialize memoryview type");
if (PyType_Ready(&PyTuple_Type) < 0)
Py_FatalError("Can't initialize tuple type");
if (PyType_Ready(&PyEnum_Type) < 0)
Py_FatalError("Can't initialize enumerate type");
if (PyType_Ready(&PyReversed_Type) < 0)
Py_FatalError("Can't initialize reversed type");
if (PyType_Ready(&PyStdPrinter_Type) < 0)
Py_FatalError("Can't initialize StdPrinter");
if (PyType_Ready(&PyCode_Type) < 0)
Py_FatalError("Can't initialize code type");
if (PyType_Ready(&PyFrame_Type) < 0)
Py_FatalError("Can't initialize frame type");
if (PyType_Ready(&PyCFunction_Type) < 0)
Py_FatalError("Can't initialize builtin function type");
if (PyType_Ready(&PyMethod_Type) < 0)
Py_FatalError("Can't initialize method type");
if (PyType_Ready(&PyFunction_Type) < 0)
Py_FatalError("Can't initialize function type");
if (PyType_Ready(&PyDictProxy_Type) < 0)
Py_FatalError("Can't initialize dict proxy type");
if (PyType_Ready(&PyGen_Type) < 0)
Py_FatalError("Can't initialize generator type");
if (PyType_Ready(&PyGetSetDescr_Type) < 0)
Py_FatalError("Can't initialize get-set descriptor type");
if (PyType_Ready(&PyWrapperDescr_Type) < 0)
Py_FatalError("Can't initialize wrapper type");
if (PyType_Ready(&_PyMethodWrapper_Type) < 0)
Py_FatalError("Can't initialize method wrapper type");
if (PyType_Ready(&PyEllipsis_Type) < 0)
Py_FatalError("Can't initialize ellipsis type");
if (PyType_Ready(&PyMemberDescr_Type) < 0)
Py_FatalError("Can't initialize member descriptor type");
if (PyType_Ready(&_PyNamespace_Type) < 0)
Py_FatalError("Can't initialize namespace type");
if (PyType_Ready(&PyCapsule_Type) < 0)
Py_FatalError("Can't initialize capsule type");
if (PyType_Ready(&PyLongRangeIter_Type) < 0)
Py_FatalError("Can't initialize long range iterator type");
if (PyType_Ready(&PyCell_Type) < 0)
Py_FatalError("Can't initialize cell type");
if (PyType_Ready(&PyInstanceMethod_Type) < 0)
Py_FatalError("Can't initialize instance method type");
if (PyType_Ready(&PyClassMethodDescr_Type) < 0)
Py_FatalError("Can't initialize class method descr type");
if (PyType_Ready(&PyMethodDescr_Type) < 0)
Py_FatalError("Can't initialize method descr type");
if (PyType_Ready(&PyCallIter_Type) < 0)
Py_FatalError("Can't initialize call iter type");
if (PyType_Ready(&PySeqIter_Type) < 0)
Py_FatalError("Can't initialize sequence iterator type");
if (PyType_Ready(&PyCoro_Type) < 0)
Py_FatalError("Can't initialize coroutine type");
if (PyType_Ready(&_PyCoroWrapper_Type) < 0)
Py_FatalError("Can't initialize coroutine wrapper type");
}
#ifdef Py_TRACE_REFS
void
_Py_NewReference(PyObject *op)
{
_Py_INC_REFTOTAL;
op->ob_refcnt = 1;
_Py_AddToAllObjects(op, 1);
_Py_INC_TPALLOCS(op);
}
noasan void
_Py_ForgetReference(PyObject *op)
{
#ifdef SLOW_UNREF_CHECK
PyObject *p;
#endif
if (op->ob_refcnt < 0)
Py_FatalError("UNREF negative refcnt");
if (op == &refchain ||
op->_ob_prev->_ob_next != op || op->_ob_next->_ob_prev != op) {
fprintf(stderr, "* ob\n");
_PyObject_Dump(op);
fprintf(stderr, "* op->_ob_prev->_ob_next\n");
_PyObject_Dump(op->_ob_prev->_ob_next);
fprintf(stderr, "* op->_ob_next->_ob_prev\n");
_PyObject_Dump(op->_ob_next->_ob_prev);
Py_FatalError("UNREF invalid object");
}
#ifdef SLOW_UNREF_CHECK
for (p = refchain._ob_next; p != &refchain; p = p->_ob_next) {
if (p == op)
break;
}
if (p == &refchain) /* Not found */
Py_FatalError("UNREF unknown object");
#endif
op->_ob_next->_ob_prev = op->_ob_prev;
op->_ob_prev->_ob_next = op->_ob_next;
op->_ob_next = op->_ob_prev = NULL;
_Py_INC_TPFREES(op);
}
void
_Py_Dealloc(PyObject *op)
{
destructor dealloc = Py_TYPE(op)->tp_dealloc;
_Py_ForgetReference(op);
(*dealloc)(op);
}
/* Print all live objects. Because PyObject_Print is called, the
* interpreter must be in a healthy state.
*/
void
_Py_PrintReferences(FILE *fp)
{
PyObject *op;
fprintf(fp, "Remaining objects:\n");
for (op = refchain._ob_next; op != &refchain; op = op->_ob_next) {
fprintf(fp, "%p [%" PY_FORMAT_SIZE_T "d] ", op, op->ob_refcnt);
if (PyObject_Print(op, fp, 0) != 0)
PyErr_Clear();
putc('\n', fp);
}
}
/* Print the addresses of all live objects. Unlike _Py_PrintReferences, this
* doesn't make any calls to the Python C API, so is always safe to call.
*/
void
_Py_PrintReferenceAddresses(FILE *fp)
{
PyObject *op;
fprintf(fp, "Remaining object addresses:\n");
for (op = refchain._ob_next; op != &refchain; op = op->_ob_next)
fprintf(fp, "%p [%" PY_FORMAT_SIZE_T "d] %s\n", op,
op->ob_refcnt, Py_TYPE(op)->tp_name);
}
PyObject *
_Py_GetObjects(PyObject *self, PyObject *args)
{
int i, n;
PyObject *t = NULL;
PyObject *res, *op;
if (!PyArg_ParseTuple(args, "i|O", &n, &t))
return NULL;
op = refchain._ob_next;
res = PyList_New(0);
if (res == NULL)
return NULL;
for (i = 0; (n == 0 || i < n) && op != &refchain; i++) {
while (op == self || op == args || op == res || op == t ||
(t != NULL && Py_TYPE(op) != (PyTypeObject *) t)) {
op = op->_ob_next;
if (op == &refchain)
return res;
}
if (PyList_Append(res, op) < 0) {
Py_DECREF(res);
return NULL;
}
op = op->_ob_next;
}
return res;
}
#endif
/* Hack to force loading of abstract.o */
Py_ssize_t (*_Py_abstract_hack)(PyObject *) = PyObject_Size;
void
_PyObject_DebugTypeStats(FILE *out)
{
_PyCFunction_DebugMallocStats(out);
_PyDict_DebugMallocStats(out);
_PyFloat_DebugMallocStats(out);
_PyFrame_DebugMallocStats(out);
_PyList_DebugMallocStats(out);
_PyMethod_DebugMallocStats(out);
_PyTuple_DebugMallocStats(out);
}
/* These methods are used to control infinite recursion in repr, str, print,
etc. Container objects that may recursively contain themselves,
e.g. builtin dictionaries and lists, should use Py_ReprEnter() and
Py_ReprLeave() to avoid infinite recursion.
Py_ReprEnter() returns 0 the first time it is called for a particular
object and 1 every time thereafter. It returns -1 if an exception
occurred. Py_ReprLeave() has no return value.
See dictobject.c and listobject.c for examples of use.
*/
int
Py_ReprEnter(PyObject *obj)
{
PyObject *dict;
PyObject *list;
Py_ssize_t i;
dict = PyThreadState_GetDict();
/* Ignore a missing thread-state, so that this function can be called
early on startup. */
if (dict == NULL)
return 0;
list = _PyDict_GetItemId(dict, &PyId_Py_Repr);
if (list == NULL) {
list = PyList_New(0);
if (list == NULL)
return -1;
if (_PyDict_SetItemId(dict, &PyId_Py_Repr, list) < 0)
return -1;
Py_DECREF(list);
}
i = PyList_GET_SIZE(list);
while (--i >= 0) {
if (PyList_GET_ITEM(list, i) == obj)
return 1;
}
if (PyList_Append(list, obj) < 0)
return -1;
return 0;
}
void
Py_ReprLeave(PyObject *obj)
{
PyObject *dict;
PyObject *list;
Py_ssize_t i;
PyObject *error_type, *error_value, *error_traceback;
PyErr_Fetch(&error_type, &error_value, &error_traceback);
dict = PyThreadState_GetDict();
if (dict == NULL)
goto finally;
list = _PyDict_GetItemId(dict, &PyId_Py_Repr);
if (list == NULL || !PyList_Check(list))
goto finally;
i = PyList_GET_SIZE(list);
/* Count backwards because we always expect obj to be list[-1] */
while (--i >= 0) {
if (PyList_GET_ITEM(list, i) == obj) {
PyList_SetSlice(list, i, i + 1, NULL);
break;
}
}
finally:
/* ignore exceptions because there is no way to report them. */
PyErr_Restore(error_type, error_value, error_traceback);
}
/* Trashcan support. */
/* Current call-stack depth of tp_dealloc calls. */
int _PyTrash_delete_nesting = 0;
/* List of objects that still need to be cleaned up, singly linked via their
* gc headers' gc_prev pointers.
*/
PyObject *_PyTrash_delete_later = NULL;
/* Add op to the _PyTrash_delete_later list. Called when the current
* call-stack depth gets large. op must be a currently untracked gc'ed
* object, with refcount 0. Py_DECREF must already have been called on it.
*/
void
_PyTrash_deposit_object(PyObject *op)
{
assert(PyObject_IS_GC(op));
assert(_PyGC_REFS(op) == _PyGC_REFS_UNTRACKED);
assert(op->ob_refcnt == 0);
_Py_AS_GC(op)->gc.gc_prev = (PyGC_Head *)_PyTrash_delete_later;
_PyTrash_delete_later = op;
}
/* The equivalent API, using per-thread state recursion info */
void
_PyTrash_thread_deposit_object(PyObject *op)
{
PyThreadState *tstate = PyThreadState_GET();
assert(PyObject_IS_GC(op));
assert(_PyGC_REFS(op) == _PyGC_REFS_UNTRACKED);
assert(op->ob_refcnt == 0);
_Py_AS_GC(op)->gc.gc_prev = (PyGC_Head *) tstate->trash_delete_later;
tstate->trash_delete_later = op;
}
/* Dealloccate all the objects in the _PyTrash_delete_later list. Called when
* the call-stack unwinds again.
*/
void
_PyTrash_destroy_chain(void)
{
while (_PyTrash_delete_later) {
PyObject *op = _PyTrash_delete_later;
destructor dealloc = Py_TYPE(op)->tp_dealloc;
_PyTrash_delete_later =
(PyObject*) _Py_AS_GC(op)->gc.gc_prev;
/* Call the deallocator directly. This used to try to
* fool Py_DECREF into calling it indirectly, but
* Py_DECREF was already called on this object, and in
* assorted non-release builds calling Py_DECREF again ends
* up distorting allocation statistics.
*/
assert(op->ob_refcnt == 0);
++_PyTrash_delete_nesting;
(*dealloc)(op);
--_PyTrash_delete_nesting;
}
}
/* The equivalent API, using per-thread state recursion info */
void
_PyTrash_thread_destroy_chain(void)
{
PyThreadState *tstate = PyThreadState_GET();
while (tstate->trash_delete_later) {
PyObject *op = tstate->trash_delete_later;
destructor dealloc = Py_TYPE(op)->tp_dealloc;
tstate->trash_delete_later =
(PyObject*) _Py_AS_GC(op)->gc.gc_prev;
/* Call the deallocator directly. This used to try to
* fool Py_DECREF into calling it indirectly, but
* Py_DECREF was already called on this object, and in
* assorted non-release builds calling Py_DECREF again ends
* up distorting allocation statistics.
*/
assert(op->ob_refcnt == 0);
++tstate->trash_delete_nesting;
(*dealloc)(op);
--tstate->trash_delete_nesting;
}
}
#ifndef Py_TRACE_REFS
/* For Py_LIMITED_API, we need an out-of-line version of _Py_Dealloc.
Define this here, so we can undefine the macro. */
#undef _Py_Dealloc
void _Py_Dealloc(PyObject *);
void
_Py_Dealloc(PyObject *op)
{
_Py_INC_TPFREES(op) _Py_COUNT_ALLOCS_COMMA
(*Py_TYPE(op)->tp_dealloc)(op);
}
#endif
| 63,810 | 2,191 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/accu.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "libc/assert.h"
#include "third_party/python/Include/accu.h"
#include "third_party/python/Include/listobject.h"
#include "third_party/python/Include/unicodeobject.h"
/* clang-format off */
static PyObject *
join_list_unicode(PyObject *lst)
{
/* return ''.join(lst) */
PyObject *sep, *ret;
sep = PyUnicode_FromStringAndSize("", 0);
ret = PyUnicode_Join(sep, lst);
Py_DECREF(sep);
return ret;
}
int
_PyAccu_Init(_PyAccu *acc)
{
/* Lazily allocated */
acc->large = NULL;
acc->small = PyList_New(0);
if (acc->small == NULL)
return -1;
return 0;
}
static int
flush_accumulator(_PyAccu *acc)
{
Py_ssize_t nsmall = PyList_GET_SIZE(acc->small);
if (nsmall) {
int ret;
PyObject *joined;
if (acc->large == NULL) {
acc->large = PyList_New(0);
if (acc->large == NULL)
return -1;
}
joined = join_list_unicode(acc->small);
if (joined == NULL)
return -1;
if (PyList_SetSlice(acc->small, 0, nsmall, NULL)) {
Py_DECREF(joined);
return -1;
}
ret = PyList_Append(acc->large, joined);
Py_DECREF(joined);
return ret;
}
return 0;
}
int
_PyAccu_Accumulate(_PyAccu *acc, PyObject *unicode)
{
Py_ssize_t nsmall;
assert(PyUnicode_Check(unicode));
if (PyList_Append(acc->small, unicode))
return -1;
nsmall = PyList_GET_SIZE(acc->small);
/* Each item in a list of unicode objects has an overhead (in 64-bit
* builds) of:
* - 8 bytes for the list slot
* - 56 bytes for the header of the unicode object
* that is, 64 bytes. 100000 such objects waste more than 6MB
* compared to a single concatenated string.
*/
if (nsmall < 100000)
return 0;
return flush_accumulator(acc);
}
PyObject *
_PyAccu_FinishAsList(_PyAccu *acc)
{
int ret;
PyObject *res;
ret = flush_accumulator(acc);
Py_CLEAR(acc->small);
if (ret) {
Py_CLEAR(acc->large);
return NULL;
}
res = acc->large;
acc->large = NULL;
return res;
}
PyObject *
_PyAccu_Finish(_PyAccu *acc)
{
PyObject *list, *res;
if (acc->large == NULL) {
list = acc->small;
acc->small = NULL;
}
else {
list = _PyAccu_FinishAsList(acc);
if (!list)
return NULL;
}
res = join_list_unicode(list);
Py_DECREF(list);
return res;
}
void
_PyAccu_Destroy(_PyAccu *acc)
{
Py_CLEAR(acc->small);
Py_CLEAR(acc->large);
}
| 3,391 | 123 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/bytesobject.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#define PY_SSIZE_T_CLEAN
#include "libc/assert.h"
#include "libc/fmt/fmt.h"
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/boolobject.h"
#include "third_party/python/Include/bytearrayobject.h"
#include "third_party/python/Include/bytes_methods.h"
#include "third_party/python/Include/bytesobject.h"
#include "third_party/python/Include/ceval.h"
#include "third_party/python/Include/codecs.h"
#include "third_party/python/Include/floatobject.h"
#include "third_party/python/Include/longobject.h"
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/pyctype.h"
#include "third_party/python/Include/pydebug.h"
#include "third_party/python/Include/pyerrors.h"
#include "third_party/python/Include/pyhash.h"
#include "third_party/python/Include/pymacro.h"
#include "third_party/python/Include/pyport.h"
#include "third_party/python/Include/pystrhex.h"
#include "third_party/python/Include/pystrtod.h"
#include "third_party/python/Include/sliceobject.h"
#include "third_party/python/Include/warnings.h"
/* clang-format off */
/*[clinic input]
class bytes "PyBytesObject *" "&PyBytes_Type"
[clinic start generated code]*/
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=7a238f965d64892b]*/
#include "third_party/python/Objects/clinic/bytesobject.inc"
#ifdef COUNT_ALLOCS
Py_ssize_t null_strings, one_strings;
#endif
static PyBytesObject *characters[UCHAR_MAX + 1];
static PyBytesObject *nullstring;
/* PyBytesObject_SIZE gives the basic size of a string; any memory allocation
for a string of length n should request PyBytesObject_SIZE + n bytes.
Using PyBytesObject_SIZE instead of sizeof(PyBytesObject) saves
3 bytes per string allocation on a typical system.
*/
#define PyBytesObject_SIZE (offsetof(PyBytesObject, ob_sval) + 1)
/* Forward declaration */
Py_LOCAL_INLINE(Py_ssize_t) _PyBytesWriter_GetSize(_PyBytesWriter *writer,
char *str);
/*
For PyBytes_FromString(), the parameter `str' points to a null-terminated
string containing exactly `size' bytes.
For PyBytes_FromStringAndSize(), the parameter `str' is
either NULL or else points to a string containing at least `size' bytes.
For PyBytes_FromStringAndSize(), the string in the `str' parameter does
not have to be null-terminated. (Therefore it is safe to construct a
substring by calling `PyBytes_FromStringAndSize(origstring, substrlen)'.)
If `str' is NULL then PyBytes_FromStringAndSize() will allocate `size+1'
bytes (setting the last byte to the null terminating character) and you can
fill in the data yourself. If `str' is non-NULL then the resulting
PyBytes object must be treated as immutable and you must not fill in nor
alter the data yourself, since the strings may be shared.
The PyObject member `op->ob_size', which denotes the number of "extra
items" in a variable-size object, will contain the number of bytes
allocated for string data, not counting the null terminating character.
It is therefore equal to the `size' parameter (for
PyBytes_FromStringAndSize()) or the length of the string in the `str'
parameter (for PyBytes_FromString()).
*/
static PyObject *
_PyBytes_FromSize(Py_ssize_t size, int use_calloc)
{
PyBytesObject *op;
assert(size >= 0);
if (size == 0 && (op = nullstring) != NULL) {
#ifdef COUNT_ALLOCS
null_strings++;
#endif
Py_INCREF(op);
return (PyObject *)op;
}
if ((size_t)size > (size_t)PY_SSIZE_T_MAX - PyBytesObject_SIZE) {
PyErr_SetString(PyExc_OverflowError,
"byte string is too large");
return NULL;
}
/* Inline PyObject_NewVar */
if (use_calloc)
op = (PyBytesObject *)PyObject_Calloc(1, PyBytesObject_SIZE + size);
else
op = (PyBytesObject *)PyObject_Malloc(PyBytesObject_SIZE + size);
if (op == NULL)
return PyErr_NoMemory();
(void)PyObject_INIT_VAR(op, &PyBytes_Type, size);
op->ob_shash = -1;
if (!use_calloc)
op->ob_sval[size] = '\0';
/* empty byte string singleton */
if (size == 0) {
nullstring = op;
Py_INCREF(op);
}
return (PyObject *) op;
}
PyObject *
PyBytes_FromStringAndSize(const char *str, Py_ssize_t size)
{
PyBytesObject *op;
if (size < 0) {
PyErr_SetString(PyExc_SystemError,
"Negative size passed to PyBytes_FromStringAndSize");
return NULL;
}
if (size == 1 && str != NULL &&
(op = characters[*str & UCHAR_MAX]) != NULL)
{
#ifdef COUNT_ALLOCS
one_strings++;
#endif
Py_INCREF(op);
return (PyObject *)op;
}
op = (PyBytesObject *)_PyBytes_FromSize(size, 0);
if (op == NULL)
return NULL;
if (str == NULL)
return (PyObject *) op;
memcpy(op->ob_sval, str, size);
/* share short strings */
if (size == 1) {
characters[*str & UCHAR_MAX] = op;
Py_INCREF(op);
}
return (PyObject *) op;
}
PyObject *
PyBytes_FromString(const char *str)
{
size_t size;
PyBytesObject *op;
assert(str != NULL);
size = strlen(str);
if (size > PY_SSIZE_T_MAX - PyBytesObject_SIZE) {
PyErr_SetString(PyExc_OverflowError,
"byte string is too long");
return NULL;
}
if (size == 0 && (op = nullstring) != NULL) {
#ifdef COUNT_ALLOCS
null_strings++;
#endif
Py_INCREF(op);
return (PyObject *)op;
}
if (size == 1 && (op = characters[*str & UCHAR_MAX]) != NULL) {
#ifdef COUNT_ALLOCS
one_strings++;
#endif
Py_INCREF(op);
return (PyObject *)op;
}
/* Inline PyObject_NewVar */
op = (PyBytesObject *)PyObject_MALLOC(PyBytesObject_SIZE + size);
if (op == NULL)
return PyErr_NoMemory();
(void)PyObject_INIT_VAR(op, &PyBytes_Type, size);
op->ob_shash = -1;
memcpy(op->ob_sval, str, size+1);
/* share short strings */
if (size == 0) {
nullstring = op;
Py_INCREF(op);
} else if (size == 1) {
characters[*str & UCHAR_MAX] = op;
Py_INCREF(op);
}
return (PyObject *) op;
}
PyObject *
PyBytes_FromFormatV(const char *format, va_list vargs)
{
char *s;
const char *f;
const char *p;
Py_ssize_t prec;
int longflag;
int size_tflag;
/* Longest 64-bit formatted numbers:
- "18446744073709551615\0" (21 bytes)
- "-9223372036854775808\0" (21 bytes)
Decimal takes the most space (it isn't enough for octal.)
Longest 64-bit pointer representation:
"0xffffffffffffffff\0" (19 bytes). */
char buffer[21];
_PyBytesWriter writer;
_PyBytesWriter_Init(&writer);
s = _PyBytesWriter_Alloc(&writer, strlen(format));
if (s == NULL)
return NULL;
writer.overallocate = 1;
#define WRITE_BYTES(str) \
do { \
s = _PyBytesWriter_WriteBytes(&writer, s, (str), strlen(str)); \
if (s == NULL) \
goto error; \
} while (0)
for (f = format; *f; f++) {
if (*f != '%') {
*s++ = *f;
continue;
}
p = f++;
/* ignore the width (ex: 10 in "%10s") */
while (Py_ISDIGIT(*f))
f++;
/* parse the precision (ex: 10 in "%.10s") */
prec = 0;
if (*f == '.') {
f++;
for (; Py_ISDIGIT(*f); f++) {
prec = (prec * 10) + (*f - '0');
}
}
while (*f && *f != '%' && !Py_ISALPHA(*f))
f++;
/* handle the long flag ('l'), but only for %ld and %lu.
others can be added when necessary. */
longflag = 0;
if (*f == 'l' && (f[1] == 'd' || f[1] == 'u')) {
longflag = 1;
++f;
}
/* handle the size_t flag ('z'). */
size_tflag = 0;
if (*f == 'z' && (f[1] == 'd' || f[1] == 'u')) {
size_tflag = 1;
++f;
}
/* subtract bytes preallocated for the format string
(ex: 2 for "%s") */
writer.min_size -= (f - p + 1);
switch (*f) {
case 'c':
{
int c = va_arg(vargs, int);
if (c < 0 || c > 255) {
PyErr_SetString(PyExc_OverflowError,
"PyBytes_FromFormatV(): %c format "
"expects an integer in range [0; 255]");
goto error;
}
writer.min_size++;
*s++ = (unsigned char)c;
break;
}
case 'd':
if (longflag)
sprintf(buffer, "%ld", va_arg(vargs, long));
else if (size_tflag)
sprintf(buffer, "%" PY_FORMAT_SIZE_T "d",
va_arg(vargs, Py_ssize_t));
else
sprintf(buffer, "%d", va_arg(vargs, int));
assert(strlen(buffer) < sizeof(buffer));
WRITE_BYTES(buffer);
break;
case 'u':
if (longflag)
sprintf(buffer, "%lu",
va_arg(vargs, unsigned long));
else if (size_tflag)
sprintf(buffer, "%" PY_FORMAT_SIZE_T "u",
va_arg(vargs, size_t));
else
sprintf(buffer, "%u",
va_arg(vargs, unsigned int));
assert(strlen(buffer) < sizeof(buffer));
WRITE_BYTES(buffer);
break;
case 'i':
sprintf(buffer, "%i", va_arg(vargs, int));
assert(strlen(buffer) < sizeof(buffer));
WRITE_BYTES(buffer);
break;
case 'x':
sprintf(buffer, "%x", va_arg(vargs, int));
assert(strlen(buffer) < sizeof(buffer));
WRITE_BYTES(buffer);
break;
case 's':
{
Py_ssize_t i;
p = va_arg(vargs, const char*);
i = strlen(p);
if (prec > 0 && i > prec)
i = prec;
s = _PyBytesWriter_WriteBytes(&writer, s, p, i);
if (s == NULL)
goto error;
break;
}
case 'p':
sprintf(buffer, "%p", va_arg(vargs, void*));
assert(strlen(buffer) < sizeof(buffer));
/* %p is ill-defined: ensure leading 0x. */
if (buffer[1] == 'X')
buffer[1] = 'x';
else if (buffer[1] != 'x') {
memmove(buffer+2, buffer, strlen(buffer)+1);
buffer[0] = '0';
buffer[1] = 'x';
}
WRITE_BYTES(buffer);
break;
case '%':
writer.min_size++;
*s++ = '%';
break;
default:
if (*f == 0) {
/* fix min_size if we reached the end of the format string */
writer.min_size++;
}
/* invalid format string: copy unformatted string and exit */
WRITE_BYTES(p);
return _PyBytesWriter_Finish(&writer, s);
}
}
#undef WRITE_BYTES
return _PyBytesWriter_Finish(&writer, s);
error:
_PyBytesWriter_Dealloc(&writer);
return NULL;
}
PyObject *
PyBytes_FromFormat(const char *format, ...)
{
PyObject* ret;
va_list vargs;
#ifdef HAVE_STDARG_PROTOTYPES
va_start(vargs, format);
#else
va_start(vargs);
#endif
ret = PyBytes_FromFormatV(format, vargs);
va_end(vargs);
return ret;
}
/* Helpers for formatstring */
Py_LOCAL_INLINE(PyObject *)
getnextarg(PyObject *args, Py_ssize_t arglen, Py_ssize_t *p_argidx)
{
Py_ssize_t argidx = *p_argidx;
if (argidx < arglen) {
(*p_argidx)++;
if (arglen < 0)
return args;
else
return PyTuple_GetItem(args, argidx);
}
PyErr_SetString(PyExc_TypeError,
"not enough arguments for format string");
return NULL;
}
/* Format codes
* F_LJUST '-'
* F_SIGN '+'
* F_BLANK ' '
* F_ALT '#'
* F_ZERO '0'
*/
#define F_LJUST (1<<0)
#define F_SIGN (1<<1)
#define F_BLANK (1<<2)
#define F_ALT (1<<3)
#define F_ZERO (1<<4)
/* Returns a new reference to a PyBytes object, or NULL on failure. */
static char*
formatfloat(PyObject *v, int flags, int prec, int type,
PyObject **p_result, _PyBytesWriter *writer, char *str)
{
char *p;
PyObject *result;
double x;
size_t len;
x = PyFloat_AsDouble(v);
if (x == -1.0 && PyErr_Occurred()) {
PyErr_Format(PyExc_TypeError, "float argument required, "
"not %.200s", Py_TYPE(v)->tp_name);
return NULL;
}
if (prec < 0)
prec = 6;
p = PyOS_double_to_string(x, type, prec,
(flags & F_ALT) ? Py_DTSF_ALT : 0, NULL);
if (p == NULL)
return NULL;
len = strlen(p);
if (writer != NULL) {
str = _PyBytesWriter_Prepare(writer, str, len);
if (str == NULL)
return NULL;
memcpy(str, p, len);
PyMem_Free(p);
str += len;
return str;
}
result = PyBytes_FromStringAndSize(p, len);
PyMem_Free(p);
*p_result = result;
return result != NULL ? str : NULL;
}
static PyObject *
formatlong(PyObject *v, int flags, int prec, int type)
{
PyObject *result, *iobj;
if (type == 'i')
type = 'd';
if (PyLong_Check(v))
return _PyUnicode_FormatLong(v, flags & F_ALT, prec, type);
if (PyNumber_Check(v)) {
/* make sure number is a type of integer for o, x, and X */
if (type == 'o' || type == 'x' || type == 'X')
iobj = PyNumber_Index(v);
else
iobj = PyNumber_Long(v);
if (iobj == NULL) {
if (!PyErr_ExceptionMatches(PyExc_TypeError))
return NULL;
}
else if (!PyLong_Check(iobj))
Py_CLEAR(iobj);
if (iobj != NULL) {
result = _PyUnicode_FormatLong(iobj, flags & F_ALT, prec, type);
Py_DECREF(iobj);
return result;
}
}
PyErr_Format(PyExc_TypeError,
"%%%c format: %s is required, not %.200s", type,
(type == 'o' || type == 'x' || type == 'X') ? "an integer"
: "a number",
Py_TYPE(v)->tp_name);
return NULL;
}
static int
byte_converter(PyObject *arg, char *p)
{
if (PyBytes_Check(arg) && PyBytes_GET_SIZE(arg) == 1) {
*p = PyBytes_AS_STRING(arg)[0];
return 1;
}
else if (PyByteArray_Check(arg) && PyByteArray_GET_SIZE(arg) == 1) {
*p = PyByteArray_AS_STRING(arg)[0];
return 1;
}
else {
PyObject *iobj;
long ival;
int overflow;
/* make sure number is a type of integer */
if (PyLong_Check(arg)) {
ival = PyLong_AsLongAndOverflow(arg, &overflow);
}
else {
iobj = PyNumber_Index(arg);
if (iobj == NULL) {
if (!PyErr_ExceptionMatches(PyExc_TypeError))
return 0;
goto onError;
}
ival = PyLong_AsLongAndOverflow(iobj, &overflow);
Py_DECREF(iobj);
}
if (!overflow && ival == -1 && PyErr_Occurred())
goto onError;
if (overflow || !(0 <= ival && ival <= 255)) {
PyErr_SetString(PyExc_OverflowError,
"%c arg not in range(256)");
return 0;
}
*p = (char)ival;
return 1;
}
onError:
PyErr_SetString(PyExc_TypeError,
"%c requires an integer in range(256) or a single byte");
return 0;
}
static PyObject *_PyBytes_FromBuffer(PyObject *x);
static PyObject *
format_obj(PyObject *v, const char **pbuf, Py_ssize_t *plen)
{
PyObject *func, *result;
_Py_IDENTIFIER(__bytes__);
/* is it a bytes object? */
if (PyBytes_Check(v)) {
*pbuf = PyBytes_AS_STRING(v);
*plen = PyBytes_GET_SIZE(v);
Py_INCREF(v);
return v;
}
if (PyByteArray_Check(v)) {
*pbuf = PyByteArray_AS_STRING(v);
*plen = PyByteArray_GET_SIZE(v);
Py_INCREF(v);
return v;
}
/* does it support __bytes__? */
func = _PyObject_LookupSpecial(v, &PyId___bytes__);
if (func != NULL) {
result = PyObject_CallFunctionObjArgs(func, NULL);
Py_DECREF(func);
if (result == NULL)
return NULL;
if (!PyBytes_Check(result)) {
PyErr_Format(PyExc_TypeError,
"__bytes__ returned non-bytes (type %.200s)",
Py_TYPE(result)->tp_name);
Py_DECREF(result);
return NULL;
}
*pbuf = PyBytes_AS_STRING(result);
*plen = PyBytes_GET_SIZE(result);
return result;
}
/* does it support buffer protocol? */
if (PyObject_CheckBuffer(v)) {
/* maybe we can avoid making a copy of the buffer object here? */
result = _PyBytes_FromBuffer(v);
if (result == NULL)
return NULL;
*pbuf = PyBytes_AS_STRING(result);
*plen = PyBytes_GET_SIZE(result);
return result;
}
PyErr_Format(PyExc_TypeError,
"%%b requires a bytes-like object, "
"or an object that implements __bytes__, not '%.100s'",
Py_TYPE(v)->tp_name);
return NULL;
}
/* fmt%(v1,v2,...) is roughly equivalent to sprintf(fmt, v1, v2, ...) */
PyObject *
_PyBytes_FormatEx(const char *format, Py_ssize_t format_len,
PyObject *args, int use_bytearray)
{
const char *fmt;
char *res;
Py_ssize_t arglen, argidx;
Py_ssize_t fmtcnt;
int args_owned = 0;
PyObject *dict = NULL;
_PyBytesWriter writer;
if (args == NULL) {
PyErr_BadInternalCall();
return NULL;
}
fmt = format;
fmtcnt = format_len;
_PyBytesWriter_Init(&writer);
writer.use_bytearray = use_bytearray;
res = _PyBytesWriter_Alloc(&writer, fmtcnt);
if (res == NULL)
return NULL;
if (!use_bytearray)
writer.overallocate = 1;
if (PyTuple_Check(args)) {
arglen = PyTuple_GET_SIZE(args);
argidx = 0;
}
else {
arglen = -1;
argidx = -2;
}
if (Py_TYPE(args)->tp_as_mapping && Py_TYPE(args)->tp_as_mapping->mp_subscript &&
!PyTuple_Check(args) && !PyBytes_Check(args) && !PyUnicode_Check(args) &&
!PyByteArray_Check(args)) {
dict = args;
}
while (--fmtcnt >= 0) {
if (*fmt != '%') {
Py_ssize_t len;
char *pos;
pos = (char *)memchr(fmt + 1, '%', fmtcnt);
if (pos != NULL)
len = pos - fmt;
else
len = fmtcnt + 1;
assert(len != 0);
memcpy(res, fmt, len);
res += len;
fmt += len;
fmtcnt -= (len - 1);
}
else {
/* Got a format specifier */
int flags = 0;
Py_ssize_t width = -1;
int prec = -1;
int c = '\0';
int fill;
PyObject *v = NULL;
PyObject *temp = NULL;
const char *pbuf = NULL;
int sign;
Py_ssize_t len = 0;
char onechar; /* For byte_converter() */
Py_ssize_t alloc;
#ifdef Py_DEBUG
char *before;
#endif
fmt++;
if (*fmt == '(') {
const char *keystart;
Py_ssize_t keylen;
PyObject *key;
int pcount = 1;
if (dict == NULL) {
PyErr_SetString(PyExc_TypeError,
"format requires a mapping");
goto error;
}
++fmt;
--fmtcnt;
keystart = fmt;
/* Skip over balanced parentheses */
while (pcount > 0 && --fmtcnt >= 0) {
if (*fmt == ')')
--pcount;
else if (*fmt == '(')
++pcount;
fmt++;
}
keylen = fmt - keystart - 1;
if (fmtcnt < 0 || pcount > 0) {
PyErr_SetString(PyExc_ValueError,
"incomplete format key");
goto error;
}
key = PyBytes_FromStringAndSize(keystart,
keylen);
if (key == NULL)
goto error;
if (args_owned) {
Py_DECREF(args);
args_owned = 0;
}
args = PyObject_GetItem(dict, key);
Py_DECREF(key);
if (args == NULL) {
goto error;
}
args_owned = 1;
arglen = -1;
argidx = -2;
}
/* Parse flags. Example: "%+i" => flags=F_SIGN. */
while (--fmtcnt >= 0) {
switch (c = *fmt++) {
case '-': flags |= F_LJUST; continue;
case '+': flags |= F_SIGN; continue;
case ' ': flags |= F_BLANK; continue;
case '#': flags |= F_ALT; continue;
case '0': flags |= F_ZERO; continue;
}
break;
}
/* Parse width. Example: "%10s" => width=10 */
if (c == '*') {
v = getnextarg(args, arglen, &argidx);
if (v == NULL)
goto error;
if (!PyLong_Check(v)) {
PyErr_SetString(PyExc_TypeError,
"* wants int");
goto error;
}
width = PyLong_AsSsize_t(v);
if (width == -1 && PyErr_Occurred())
goto error;
if (width < 0) {
flags |= F_LJUST;
width = -width;
}
if (--fmtcnt >= 0)
c = *fmt++;
}
else if (c >= 0 && isdigit(c)) {
width = c - '0';
while (--fmtcnt >= 0) {
c = Py_CHARMASK(*fmt++);
if (!isdigit(c))
break;
if (width > (PY_SSIZE_T_MAX - ((int)c - '0')) / 10) {
PyErr_SetString(
PyExc_ValueError,
"width too big");
goto error;
}
width = width*10 + (c - '0');
}
}
/* Parse precision. Example: "%.3f" => prec=3 */
if (c == '.') {
prec = 0;
if (--fmtcnt >= 0)
c = *fmt++;
if (c == '*') {
v = getnextarg(args, arglen, &argidx);
if (v == NULL)
goto error;
if (!PyLong_Check(v)) {
PyErr_SetString(
PyExc_TypeError,
"* wants int");
goto error;
}
prec = _PyLong_AsInt(v);
if (prec == -1 && PyErr_Occurred())
goto error;
if (prec < 0)
prec = 0;
if (--fmtcnt >= 0)
c = *fmt++;
}
else if (c >= 0 && isdigit(c)) {
prec = c - '0';
while (--fmtcnt >= 0) {
c = Py_CHARMASK(*fmt++);
if (!isdigit(c))
break;
if (prec > (INT_MAX - ((int)c - '0')) / 10) {
PyErr_SetString(
PyExc_ValueError,
"prec too big");
goto error;
}
prec = prec*10 + (c - '0');
}
}
} /* prec */
if (fmtcnt >= 0) {
if (c == 'h' || c == 'l' || c == 'L') {
if (--fmtcnt >= 0)
c = *fmt++;
}
}
if (fmtcnt < 0) {
PyErr_SetString(PyExc_ValueError,
"incomplete format");
goto error;
}
if (c != '%') {
v = getnextarg(args, arglen, &argidx);
if (v == NULL)
goto error;
}
if (fmtcnt == 0) {
/* last write: disable writer overallocation */
writer.overallocate = 0;
}
sign = 0;
fill = ' ';
switch (c) {
case '%':
*res++ = '%';
continue;
case 'r':
// %r is only for 2/3 code; 3 only code should use %a
case 'a':
temp = PyObject_ASCII(v);
if (temp == NULL)
goto error;
assert(PyUnicode_IS_ASCII(temp));
pbuf = (const char *)PyUnicode_1BYTE_DATA(temp);
len = PyUnicode_GET_LENGTH(temp);
if (prec >= 0 && len > prec)
len = prec;
break;
case 's':
// %s is only for 2/3 code; 3 only code should use %b
case 'b':
temp = format_obj(v, &pbuf, &len);
if (temp == NULL)
goto error;
if (prec >= 0 && len > prec)
len = prec;
break;
case 'i':
case 'd':
case 'u':
case 'o':
case 'x':
case 'X':
if (PyLong_CheckExact(v)
&& width == -1 && prec == -1
&& !(flags & (F_SIGN | F_BLANK))
&& c != 'X')
{
/* Fast path */
int alternate = flags & F_ALT;
int base;
switch(c)
{
default:
assert(0 && "'type' not in [diuoxX]");
case 'd':
case 'i':
case 'u':
base = 10;
break;
case 'o':
base = 8;
break;
case 'x':
case 'X':
base = 16;
break;
}
/* Fast path */
writer.min_size -= 2; /* size preallocated for "%d" */
res = _PyLong_FormatBytesWriter(&writer, res,
v, base, alternate);
if (res == NULL)
goto error;
continue;
}
temp = formatlong(v, flags, prec, c);
if (!temp)
goto error;
assert(PyUnicode_IS_ASCII(temp));
pbuf = (const char *)PyUnicode_1BYTE_DATA(temp);
len = PyUnicode_GET_LENGTH(temp);
sign = 1;
if (flags & F_ZERO)
fill = '0';
break;
case 'e':
case 'E':
case 'f':
case 'F':
case 'g':
case 'G':
if (width == -1 && prec == -1
&& !(flags & (F_SIGN | F_BLANK)))
{
/* Fast path */
writer.min_size -= 2; /* size preallocated for "%f" */
res = formatfloat(v, flags, prec, c, NULL, &writer, res);
if (res == NULL)
goto error;
continue;
}
if (!formatfloat(v, flags, prec, c, &temp, NULL, res))
goto error;
pbuf = PyBytes_AS_STRING(temp);
len = PyBytes_GET_SIZE(temp);
sign = 1;
if (flags & F_ZERO)
fill = '0';
break;
case 'c':
pbuf = &onechar;
len = byte_converter(v, &onechar);
if (!len)
goto error;
if (width == -1) {
/* Fast path */
*res++ = onechar;
continue;
}
break;
default:
PyErr_Format(PyExc_ValueError,
"unsupported format character '%c' (0x%x) "
"at index %zd",
c, c,
(Py_ssize_t)(fmt - 1 - format));
goto error;
}
if (sign) {
if (*pbuf == '-' || *pbuf == '+') {
sign = *pbuf++;
len--;
}
else if (flags & F_SIGN)
sign = '+';
else if (flags & F_BLANK)
sign = ' ';
else
sign = 0;
}
if (width < len)
width = len;
alloc = width;
if (sign != 0 && len == width)
alloc++;
/* 2: size preallocated for %s */
if (alloc > 2) {
res = _PyBytesWriter_Prepare(&writer, res, alloc - 2);
if (res == NULL)
goto error;
}
#ifdef Py_DEBUG
before = res;
#endif
/* Write the sign if needed */
if (sign) {
if (fill != ' ')
*res++ = sign;
if (width > len)
width--;
}
/* Write the numeric prefix for "x", "X" and "o" formats
if the alternate form is used.
For example, write "0x" for the "%#x" format. */
if ((flags & F_ALT) && (c == 'o' || c == 'x' || c == 'X')) {
assert(pbuf[0] == '0');
assert(pbuf[1] == c);
if (fill != ' ') {
*res++ = *pbuf++;
*res++ = *pbuf++;
}
width -= 2;
if (width < 0)
width = 0;
len -= 2;
}
/* Pad left with the fill character if needed */
if (width > len && !(flags & F_LJUST)) {
memset(res, fill, width - len);
res += (width - len);
width = len;
}
/* If padding with spaces: write sign if needed and/or numeric
prefix if the alternate form is used */
if (fill == ' ') {
if (sign)
*res++ = sign;
if ((flags & F_ALT) && (c == 'o' || c == 'x' || c == 'X')) {
assert(pbuf[0] == '0');
assert(pbuf[1] == c);
*res++ = *pbuf++;
*res++ = *pbuf++;
}
}
/* Copy bytes */
memcpy(res, pbuf, len);
res += len;
/* Pad right with the fill character if needed */
if (width > len) {
memset(res, ' ', width - len);
res += (width - len);
}
if (dict && (argidx < arglen) && c != '%') {
PyErr_SetString(PyExc_TypeError,
"not all arguments converted during bytes formatting");
Py_XDECREF(temp);
goto error;
}
Py_XDECREF(temp);
#ifdef Py_DEBUG
/* check that we computed the exact size for this write */
assert((res - before) == alloc);
#endif
} /* '%' */
/* If overallocation was disabled, ensure that it was the last
write. Otherwise, we missed an optimization */
assert(writer.overallocate || fmtcnt == 0 || use_bytearray);
} /* until end */
if (argidx < arglen && !dict) {
PyErr_SetString(PyExc_TypeError,
"not all arguments converted during bytes formatting");
goto error;
}
if (args_owned) {
Py_DECREF(args);
}
return _PyBytesWriter_Finish(&writer, res);
error:
_PyBytesWriter_Dealloc(&writer);
if (args_owned) {
Py_DECREF(args);
}
return NULL;
}
/* =-= */
static void
bytes_dealloc(PyObject *op)
{
Py_TYPE(op)->tp_free(op);
}
/* Unescape a backslash-escaped string. If unicode is non-zero,
the string is a u-literal. If recode_encoding is non-zero,
the string is UTF-8 encoded and should be re-encoded in the
specified encoding. */
static char *
_PyBytes_DecodeEscapeRecode(const char **s, const char *end,
const char *errors, const char *recode_encoding,
_PyBytesWriter *writer, char *p)
{
PyObject *u, *w;
const char* t;
t = *s;
/* Decode non-ASCII bytes as UTF-8. */
while (t < end && (*t & 0x80))
t++;
u = PyUnicode_DecodeUTF8(*s, t - *s, errors);
if (u == NULL)
return NULL;
/* Recode them in target encoding. */
w = PyUnicode_AsEncodedString(u, recode_encoding, errors);
Py_DECREF(u);
if (w == NULL)
return NULL;
assert(PyBytes_Check(w));
/* Append bytes to output buffer. */
writer->min_size--; /* subtract 1 preallocated byte */
p = _PyBytesWriter_WriteBytes(writer, p,
PyBytes_AS_STRING(w),
PyBytes_GET_SIZE(w));
Py_DECREF(w);
if (p == NULL)
return NULL;
*s = t;
return p;
}
PyObject *_PyBytes_DecodeEscape(const char *s,
Py_ssize_t len,
const char *errors,
Py_ssize_t unicode,
const char *recode_encoding,
const char **first_invalid_escape)
{
int c;
char *p;
const char *end;
_PyBytesWriter writer;
_PyBytesWriter_Init(&writer);
p = _PyBytesWriter_Alloc(&writer, len);
if (p == NULL)
return NULL;
writer.overallocate = 1;
*first_invalid_escape = NULL;
end = s + len;
while (s < end) {
if (*s != '\\') {
non_esc:
if (!(recode_encoding && (*s & 0x80))) {
*p++ = *s++;
}
else {
/* non-ASCII character and need to recode */
p = _PyBytes_DecodeEscapeRecode(&s, end,
errors, recode_encoding,
&writer, p);
if (p == NULL)
goto failed;
}
continue;
}
s++;
if (s == end) {
PyErr_SetString(PyExc_ValueError,
"Trailing \\ in string");
goto failed;
}
switch (*s++) {
/* XXX This assumes ASCII! */
case '\n': break;
case '\\': *p++ = '\\'; break;
case '\'': *p++ = '\''; break;
case '\"': *p++ = '\"'; break;
case 'b': *p++ = '\b'; break;
case 'f': *p++ = '\014'; break; /* FF */
case 't': *p++ = '\t'; break;
case 'n': *p++ = '\n'; break;
case 'r': *p++ = '\r'; break;
case 'v': *p++ = '\013'; break; /* VT */
case 'e': *p++ = '\033'; break; /* [jart] ansi escape */
case 'a': *p++ = '\007'; break; /* BEL, not classic C */
case '0': case '1': case '2': case '3':
case '4': case '5': case '6': case '7':
c = s[-1] - '0';
if (s < end && '0' <= *s && *s <= '7') {
c = (c<<3) + *s++ - '0';
if (s < end && '0' <= *s && *s <= '7')
c = (c<<3) + *s++ - '0';
}
*p++ = c;
break;
case 'x':
if (s+1 < end) {
int digit1, digit2;
digit1 = _PyLong_DigitValue[Py_CHARMASK(s[0])];
digit2 = _PyLong_DigitValue[Py_CHARMASK(s[1])];
if (digit1 < 16 && digit2 < 16) {
*p++ = (unsigned char)((digit1 << 4) + digit2);
s += 2;
break;
}
}
/* invalid hexadecimal digits */
if (!errors || strcmp(errors, "strict") == 0) {
PyErr_Format(PyExc_ValueError,
"invalid \\x escape at position %d",
s - 2 - (end - len));
goto failed;
}
if (strcmp(errors, "replace") == 0) {
*p++ = '?';
} else if (strcmp(errors, "ignore") == 0)
/* do nothing */;
else {
PyErr_Format(PyExc_ValueError,
"decoding error; unknown "
"error handling code: %.400s",
errors);
goto failed;
}
/* skip \x */
if (s < end && Py_ISXDIGIT(s[0]))
s++; /* and a hexdigit */
break;
default:
if (*first_invalid_escape == NULL) {
*first_invalid_escape = s-1; /* Back up one char, since we've
already incremented s. */
}
*p++ = '\\';
s--;
goto non_esc; /* an arbitrary number of unescaped
UTF-8 bytes may follow. */
}
}
return _PyBytesWriter_Finish(&writer, p);
failed:
_PyBytesWriter_Dealloc(&writer);
return NULL;
}
PyObject *PyBytes_DecodeEscape(const char *s,
Py_ssize_t len,
const char *errors,
Py_ssize_t unicode,
const char *recode_encoding)
{
const char* first_invalid_escape;
PyObject *result = _PyBytes_DecodeEscape(s, len, errors, unicode,
recode_encoding,
&first_invalid_escape);
if (result == NULL)
return NULL;
if (first_invalid_escape != NULL) {
if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1,
"invalid escape sequence '\\%c'",
(unsigned char)*first_invalid_escape) < 0) {
Py_DECREF(result);
return NULL;
}
}
return result;
}
/* -------------------------------------------------------------------- */
/* object api */
Py_ssize_t
PyBytes_Size(PyObject *op)
{
if (!PyBytes_Check(op)) {
PyErr_Format(PyExc_TypeError,
"expected bytes, %.200s found", Py_TYPE(op)->tp_name);
return -1;
}
return Py_SIZE(op);
}
char *
PyBytes_AsString(PyObject *op)
{
if (!PyBytes_Check(op)) {
PyErr_Format(PyExc_TypeError,
"expected bytes, %.200s found", Py_TYPE(op)->tp_name);
return NULL;
}
return ((PyBytesObject *)op)->ob_sval;
}
int
PyBytes_AsStringAndSize(PyObject *obj,
char **s,
Py_ssize_t *len)
{
if (s == NULL) {
PyErr_BadInternalCall();
return -1;
}
if (!PyBytes_Check(obj)) {
PyErr_Format(PyExc_TypeError,
"expected bytes, %.200s found", Py_TYPE(obj)->tp_name);
return -1;
}
*s = PyBytes_AS_STRING(obj);
if (len != NULL)
*len = PyBytes_GET_SIZE(obj);
else if (strlen(*s) != (size_t)PyBytes_GET_SIZE(obj)) {
PyErr_SetString(PyExc_ValueError,
"embedded null byte");
return -1;
}
return 0;
}
/* -------------------------------------------------------------------- */
/* Methods */
#include "third_party/python/Objects/stringlib/stringdefs.inc"
#include "third_party/python/Objects/stringlib/fastsearch.inc"
#include "third_party/python/Objects/stringlib/count.inc"
#include "third_party/python/Objects/stringlib/find.inc"
#include "third_party/python/Objects/stringlib/join.inc"
#include "third_party/python/Objects/stringlib/partition.inc"
#include "third_party/python/Objects/stringlib/split.inc"
#include "third_party/python/Objects/stringlib/ctype.inc"
#include "third_party/python/Objects/stringlib/transmogrify.inc"
PyObject *
PyBytes_Repr(PyObject *obj, int smartquotes)
{
PyBytesObject* op = (PyBytesObject*) obj;
Py_ssize_t i, length = Py_SIZE(op);
Py_ssize_t newsize, squotes, dquotes;
PyObject *v;
unsigned char quote, *s, *p;
/* Compute size of output string */
squotes = dquotes = 0;
newsize = 3; /* b'' */
s = (unsigned char*)op->ob_sval;
for (i = 0; i < length; i++) {
Py_ssize_t incr = 1;
switch(s[i]) {
case '\'': squotes++; break;
case '"': dquotes++; break;
case '\\': case '\t': case '\n': case '\r':
incr = 2; break; /* \C */
default:
if (s[i] < ' ' || s[i] >= 0x7f)
incr = 4; /* \xHH */
}
if (newsize > PY_SSIZE_T_MAX - incr)
goto overflow;
newsize += incr;
}
quote = '\'';
if (smartquotes && squotes && !dquotes)
quote = '"';
if (squotes && quote == '\'') {
if (newsize > PY_SSIZE_T_MAX - squotes)
goto overflow;
newsize += squotes;
}
v = PyUnicode_New(newsize, 127);
if (v == NULL) {
return NULL;
}
p = PyUnicode_1BYTE_DATA(v);
*p++ = 'b', *p++ = quote;
for (i = 0; i < length; i++) {
unsigned char c = op->ob_sval[i];
if (c == quote || c == '\\')
*p++ = '\\', *p++ = c;
else if (c == '\t')
*p++ = '\\', *p++ = 't';
else if (c == '\n')
*p++ = '\\', *p++ = 'n';
else if (c == '\r')
*p++ = '\\', *p++ = 'r';
else if (c < ' ' || c >= 0x7f) {
*p++ = '\\';
*p++ = 'x';
*p++ = Py_hexdigits[(c & 0xf0) >> 4];
*p++ = Py_hexdigits[c & 0xf];
}
else
*p++ = c;
}
*p++ = quote;
assert(_PyUnicode_CheckConsistency(v, 1));
return v;
overflow:
PyErr_SetString(PyExc_OverflowError,
"bytes object is too large to make repr");
return NULL;
}
static PyObject *
bytes_repr(PyObject *op)
{
return PyBytes_Repr(op, 1);
}
static PyObject *
bytes_str(PyObject *op)
{
if (Py_BytesWarningFlag) {
if (PyErr_WarnEx(PyExc_BytesWarning,
"str() on a bytes instance", 1))
return NULL;
}
return bytes_repr(op);
}
static Py_ssize_t
bytes_length(PyBytesObject *a)
{
return Py_SIZE(a);
}
/* This is also used by PyBytes_Concat() */
static PyObject *
bytes_concat(PyObject *a, PyObject *b)
{
Py_buffer va, vb;
PyObject *result = NULL;
va.len = -1;
vb.len = -1;
if (PyObject_GetBuffer(a, &va, PyBUF_SIMPLE) != 0 ||
PyObject_GetBuffer(b, &vb, PyBUF_SIMPLE) != 0) {
PyErr_Format(PyExc_TypeError, "can't concat %.100s to %.100s",
Py_TYPE(b)->tp_name, Py_TYPE(a)->tp_name);
goto done;
}
/* Optimize end cases */
if (va.len == 0 && PyBytes_CheckExact(b)) {
result = b;
Py_INCREF(result);
goto done;
}
if (vb.len == 0 && PyBytes_CheckExact(a)) {
result = a;
Py_INCREF(result);
goto done;
}
if (va.len > PY_SSIZE_T_MAX - vb.len) {
PyErr_NoMemory();
goto done;
}
result = PyBytes_FromStringAndSize(NULL, va.len + vb.len);
if (result != NULL) {
memcpy(PyBytes_AS_STRING(result), va.buf, va.len);
memcpy(PyBytes_AS_STRING(result) + va.len, vb.buf, vb.len);
}
done:
if (va.len != -1)
PyBuffer_Release(&va);
if (vb.len != -1)
PyBuffer_Release(&vb);
return result;
}
static PyObject *
bytes_repeat(PyBytesObject *a, Py_ssize_t n)
{
Py_ssize_t i;
Py_ssize_t j;
Py_ssize_t size;
PyBytesObject *op;
size_t nbytes;
if (n < 0)
n = 0;
/* watch out for overflows: the size can overflow int,
* and the # of bytes needed can overflow size_t
*/
if (n > 0 && Py_SIZE(a) > PY_SSIZE_T_MAX / n) {
PyErr_SetString(PyExc_OverflowError,
"repeated bytes are too long");
return NULL;
}
size = Py_SIZE(a) * n;
if (size == Py_SIZE(a) && PyBytes_CheckExact(a)) {
Py_INCREF(a);
return (PyObject *)a;
}
nbytes = (size_t)size;
if (nbytes + PyBytesObject_SIZE <= nbytes) {
PyErr_SetString(PyExc_OverflowError,
"repeated bytes are too long");
return NULL;
}
op = (PyBytesObject *)PyObject_MALLOC(PyBytesObject_SIZE + nbytes);
if (op == NULL)
return PyErr_NoMemory();
(void)PyObject_INIT_VAR(op, &PyBytes_Type, size);
op->ob_shash = -1;
op->ob_sval[size] = '\0';
if (Py_SIZE(a) == 1 && n > 0) {
memset(op->ob_sval, a->ob_sval[0] , n);
return (PyObject *) op;
}
i = 0;
if (i < size) {
memcpy(op->ob_sval, a->ob_sval, Py_SIZE(a));
i = Py_SIZE(a);
}
while (i < size) {
j = (i <= size-i) ? i : size-i;
memcpy(op->ob_sval+i, op->ob_sval, j);
i += j;
}
return (PyObject *) op;
}
static int
bytes_contains(PyObject *self, PyObject *arg)
{
return _Py_bytes_contains(PyBytes_AS_STRING(self), PyBytes_GET_SIZE(self), arg);
}
static PyObject *
bytes_item(PyBytesObject *a, Py_ssize_t i)
{
if (i < 0 || i >= Py_SIZE(a)) {
PyErr_SetString(PyExc_IndexError, "index out of range");
return NULL;
}
return PyLong_FromLong((unsigned char)a->ob_sval[i]);
}
static inline int
bytes_compare_eq(PyBytesObject *a, PyBytesObject *b)
{
Py_ssize_t len;
len = Py_SIZE(a);
if (Py_SIZE(b) != len)
return 0;
return !bcmp(a->ob_sval, b->ob_sval, len);
}
static PyObject*
bytes_richcompare(PyBytesObject *a, PyBytesObject *b, int op)
{
int c;
Py_ssize_t len_a, len_b;
Py_ssize_t min_len;
PyObject *result;
int rc;
/* Make sure both arguments are strings. */
if (!(PyBytes_Check(a) && PyBytes_Check(b))) {
if (Py_BytesWarningFlag && (op == Py_EQ || op == Py_NE)) {
rc = PyObject_IsInstance((PyObject*)a,
(PyObject*)&PyUnicode_Type);
if (!rc)
rc = PyObject_IsInstance((PyObject*)b,
(PyObject*)&PyUnicode_Type);
if (rc < 0)
return NULL;
if (rc) {
if (PyErr_WarnEx(PyExc_BytesWarning,
"Comparison between bytes and string", 1))
return NULL;
}
else {
rc = PyObject_IsInstance((PyObject*)a,
(PyObject*)&PyLong_Type);
if (!rc)
rc = PyObject_IsInstance((PyObject*)b,
(PyObject*)&PyLong_Type);
if (rc < 0)
return NULL;
if (rc) {
if (PyErr_WarnEx(PyExc_BytesWarning,
"Comparison between bytes and int", 1))
return NULL;
}
}
}
result = Py_NotImplemented;
}
else if (a == b) {
switch (op) {
case Py_EQ:
case Py_LE:
case Py_GE:
/* a string is equal to itself */
result = Py_True;
break;
case Py_NE:
case Py_LT:
case Py_GT:
result = Py_False;
break;
default:
PyErr_BadArgument();
return NULL;
}
}
else if (op == Py_EQ || op == Py_NE) {
int eq = bytes_compare_eq(a, b);
eq ^= (op == Py_NE);
result = eq ? Py_True : Py_False;
}
else {
len_a = Py_SIZE(a);
len_b = Py_SIZE(b);
min_len = Py_MIN(len_a, len_b);
if (min_len > 0) {
c = Py_CHARMASK(*a->ob_sval) - Py_CHARMASK(*b->ob_sval);
if (c == 0)
c = memcmp(a->ob_sval, b->ob_sval, min_len);
}
else
c = 0;
if (c == 0)
c = (len_a < len_b) ? -1 : (len_a > len_b) ? 1 : 0;
switch (op) {
case Py_LT: c = c < 0; break;
case Py_LE: c = c <= 0; break;
case Py_GT: c = c > 0; break;
case Py_GE: c = c >= 0; break;
default:
PyErr_BadArgument();
return NULL;
}
result = c ? Py_True : Py_False;
}
Py_INCREF(result);
return result;
}
static Py_hash_t
bytes_hash(PyBytesObject *a)
{
if (a->ob_shash == -1) {
/* Can't fail */
a->ob_shash = _Py_HashBytes(a->ob_sval, Py_SIZE(a));
}
return a->ob_shash;
}
static PyObject*
bytes_subscript(PyBytesObject* self, PyObject* item)
{
if (PyIndex_Check(item)) {
Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError);
if (i == -1 && PyErr_Occurred())
return NULL;
if (i < 0)
i += PyBytes_GET_SIZE(self);
if (i < 0 || i >= PyBytes_GET_SIZE(self)) {
PyErr_SetString(PyExc_IndexError,
"index out of range");
return NULL;
}
return PyLong_FromLong((unsigned char)self->ob_sval[i]);
}
else if (PySlice_Check(item)) {
Py_ssize_t start, stop, step, slicelength, cur, i;
char* source_buf;
char* result_buf;
PyObject* result;
if (PySlice_Unpack(item, &start, &stop, &step) < 0) {
return NULL;
}
slicelength = PySlice_AdjustIndices(PyBytes_GET_SIZE(self), &start,
&stop, step);
if (slicelength <= 0) {
return PyBytes_FromStringAndSize("", 0);
}
else if (start == 0 && step == 1 &&
slicelength == PyBytes_GET_SIZE(self) &&
PyBytes_CheckExact(self)) {
Py_INCREF(self);
return (PyObject *)self;
}
else if (step == 1) {
return PyBytes_FromStringAndSize(
PyBytes_AS_STRING(self) + start,
slicelength);
}
else {
source_buf = PyBytes_AS_STRING(self);
result = PyBytes_FromStringAndSize(NULL, slicelength);
if (result == NULL)
return NULL;
result_buf = PyBytes_AS_STRING(result);
for (cur = start, i = 0; i < slicelength;
cur += step, i++) {
result_buf[i] = source_buf[cur];
}
return result;
}
}
else {
PyErr_Format(PyExc_TypeError,
"byte indices must be integers or slices, not %.200s",
Py_TYPE(item)->tp_name);
return NULL;
}
}
static int
bytes_buffer_getbuffer(PyBytesObject *self, Py_buffer *view, int flags)
{
return PyBuffer_FillInfo(view, (PyObject*)self, (void *)self->ob_sval, Py_SIZE(self),
1, flags);
}
static PySequenceMethods bytes_as_sequence = {
(lenfunc)bytes_length, /*sq_length*/
(binaryfunc)bytes_concat, /*sq_concat*/
(ssizeargfunc)bytes_repeat, /*sq_repeat*/
(ssizeargfunc)bytes_item, /*sq_item*/
0, /*sq_slice*/
0, /*sq_ass_item*/
0, /*sq_ass_slice*/
(objobjproc)bytes_contains /*sq_contains*/
};
static PyMappingMethods bytes_as_mapping = {
(lenfunc)bytes_length,
(binaryfunc)bytes_subscript,
0,
};
static PyBufferProcs bytes_as_buffer = {
(getbufferproc)bytes_buffer_getbuffer,
NULL,
};
#define LEFTSTRIP 0
#define RIGHTSTRIP 1
#define BOTHSTRIP 2
/*[clinic input]
bytes.split
sep: object = None
The delimiter according which to split the bytes.
None (the default value) means split on ASCII whitespace characters
(space, tab, return, newline, formfeed, vertical tab).
maxsplit: Py_ssize_t = -1
Maximum number of splits to do.
-1 (the default value) means no limit.
Return a list of the sections in the bytes, using sep as the delimiter.
[clinic start generated code]*/
static PyObject *
bytes_split_impl(PyBytesObject *self, PyObject *sep, Py_ssize_t maxsplit)
/*[clinic end generated code: output=52126b5844c1d8ef input=8b809b39074abbfa]*/
{
Py_ssize_t len = PyBytes_GET_SIZE(self), n;
const char *s = PyBytes_AS_STRING(self), *sub;
Py_buffer vsub;
PyObject *list;
if (maxsplit < 0)
maxsplit = PY_SSIZE_T_MAX;
if (sep == Py_None)
return stringlib_split_whitespace((PyObject*) self, s, len, maxsplit);
if (PyObject_GetBuffer(sep, &vsub, PyBUF_SIMPLE) != 0)
return NULL;
sub = vsub.buf;
n = vsub.len;
list = stringlib_split((PyObject*) self, s, len, sub, n, maxsplit);
PyBuffer_Release(&vsub);
return list;
}
/*[clinic input]
bytes.partition
sep: Py_buffer
/
Partition the bytes into three parts using the given separator.
This will search for the separator sep in the bytes. If the separator is found,
returns a 3-tuple containing the part before the separator, the separator
itself, and the part after it.
If the separator is not found, returns a 3-tuple containing the original bytes
object and two empty bytes objects.
[clinic start generated code]*/
static PyObject *
bytes_partition_impl(PyBytesObject *self, Py_buffer *sep)
/*[clinic end generated code: output=f532b392a17ff695 input=61cca95519406099]*/
{
return stringlib_partition(
(PyObject*) self,
PyBytes_AS_STRING(self), PyBytes_GET_SIZE(self),
sep->obj, (const char *)sep->buf, sep->len
);
}
/*[clinic input]
bytes.rpartition
sep: Py_buffer
/
Partition the bytes into three parts using the given separator.
This will search for the separator sep in the bytes, starting at the end. If
the separator is found, returns a 3-tuple containing the part before the
separator, the separator itself, and the part after it.
If the separator is not found, returns a 3-tuple containing two empty bytes
objects and the original bytes object.
[clinic start generated code]*/
static PyObject *
bytes_rpartition_impl(PyBytesObject *self, Py_buffer *sep)
/*[clinic end generated code: output=191b114cbb028e50 input=d78db010c8cfdbe1]*/
{
return stringlib_rpartition(
(PyObject*) self,
PyBytes_AS_STRING(self), PyBytes_GET_SIZE(self),
sep->obj, (const char *)sep->buf, sep->len
);
}
/*[clinic input]
bytes.rsplit = bytes.split
Return a list of the sections in the bytes, using sep as the delimiter.
Splitting is done starting at the end of the bytes and working to the front.
[clinic start generated code]*/
static PyObject *
bytes_rsplit_impl(PyBytesObject *self, PyObject *sep, Py_ssize_t maxsplit)
/*[clinic end generated code: output=ba698d9ea01e1c8f input=0f86c9f28f7d7b7b]*/
{
Py_ssize_t len = PyBytes_GET_SIZE(self), n;
const char *s = PyBytes_AS_STRING(self), *sub;
Py_buffer vsub;
PyObject *list;
if (maxsplit < 0)
maxsplit = PY_SSIZE_T_MAX;
if (sep == Py_None)
return stringlib_rsplit_whitespace((PyObject*) self, s, len, maxsplit);
if (PyObject_GetBuffer(sep, &vsub, PyBUF_SIMPLE) != 0)
return NULL;
sub = vsub.buf;
n = vsub.len;
list = stringlib_rsplit((PyObject*) self, s, len, sub, n, maxsplit);
PyBuffer_Release(&vsub);
return list;
}
/*[clinic input]
bytes.join
iterable_of_bytes: object
/
Concatenate any number of bytes objects.
The bytes whose method is called is inserted in between each pair.
The result is returned as a new bytes object.
Example: b'.'.join([b'ab', b'pq', b'rs']) -> b'ab.pq.rs'.
[clinic start generated code]*/
static PyObject *
bytes_join(PyBytesObject *self, PyObject *iterable_of_bytes)
/*[clinic end generated code: output=a046f379f626f6f8 input=7fe377b95bd549d2]*/
{
return stringlib_bytes_join((PyObject*)self, iterable_of_bytes);
}
PyObject *
_PyBytes_Join(PyObject *sep, PyObject *x)
{
assert(sep != NULL && PyBytes_Check(sep));
assert(x != NULL);
return bytes_join((PyBytesObject*)sep, x);
}
static PyObject *
bytes_find(PyBytesObject *self, PyObject *args)
{
return _Py_bytes_find(PyBytes_AS_STRING(self), PyBytes_GET_SIZE(self), args);
}
static PyObject *
bytes_index(PyBytesObject *self, PyObject *args)
{
return _Py_bytes_index(PyBytes_AS_STRING(self), PyBytes_GET_SIZE(self), args);
}
static PyObject *
bytes_rfind(PyBytesObject *self, PyObject *args)
{
return _Py_bytes_rfind(PyBytes_AS_STRING(self), PyBytes_GET_SIZE(self), args);
}
static PyObject *
bytes_rindex(PyBytesObject *self, PyObject *args)
{
return _Py_bytes_rindex(PyBytes_AS_STRING(self), PyBytes_GET_SIZE(self), args);
}
Py_LOCAL_INLINE(PyObject *)
do_xstrip(PyBytesObject *self, int striptype, PyObject *sepobj)
{
Py_buffer vsep;
char *s = PyBytes_AS_STRING(self);
Py_ssize_t len = PyBytes_GET_SIZE(self);
char *sep;
Py_ssize_t seplen;
Py_ssize_t i, j;
if (PyObject_GetBuffer(sepobj, &vsep, PyBUF_SIMPLE) != 0)
return NULL;
sep = vsep.buf;
seplen = vsep.len;
i = 0;
if (striptype != RIGHTSTRIP) {
while (i < len && memchr(sep, Py_CHARMASK(s[i]), seplen)) {
i++;
}
}
j = len;
if (striptype != LEFTSTRIP) {
do {
j--;
} while (j >= i && memchr(sep, Py_CHARMASK(s[j]), seplen));
j++;
}
PyBuffer_Release(&vsep);
if (i == 0 && j == len && PyBytes_CheckExact(self)) {
Py_INCREF(self);
return (PyObject*)self;
}
else
return PyBytes_FromStringAndSize(s+i, j-i);
}
Py_LOCAL_INLINE(PyObject *)
do_strip(PyBytesObject *self, int striptype)
{
char *s = PyBytes_AS_STRING(self);
Py_ssize_t len = PyBytes_GET_SIZE(self), i, j;
i = 0;
if (striptype != RIGHTSTRIP) {
while (i < len && Py_ISSPACE(s[i])) {
i++;
}
}
j = len;
if (striptype != LEFTSTRIP) {
do {
j--;
} while (j >= i && Py_ISSPACE(s[j]));
j++;
}
if (i == 0 && j == len && PyBytes_CheckExact(self)) {
Py_INCREF(self);
return (PyObject*)self;
}
else
return PyBytes_FromStringAndSize(s+i, j-i);
}
Py_LOCAL_INLINE(PyObject *)
do_argstrip(PyBytesObject *self, int striptype, PyObject *bytes)
{
if (bytes != NULL && bytes != Py_None) {
return do_xstrip(self, striptype, bytes);
}
return do_strip(self, striptype);
}
/*[clinic input]
bytes.strip
bytes: object = None
/
Strip leading and trailing bytes contained in the argument.
If the argument is omitted or None, strip leading and trailing ASCII whitespace.
[clinic start generated code]*/
static PyObject *
bytes_strip_impl(PyBytesObject *self, PyObject *bytes)
/*[clinic end generated code: output=c7c228d3bd104a1b input=8a354640e4e0b3ef]*/
{
return do_argstrip(self, BOTHSTRIP, bytes);
}
/*[clinic input]
bytes.lstrip
bytes: object = None
/
Strip leading bytes contained in the argument.
If the argument is omitted or None, strip leading ASCII whitespace.
[clinic start generated code]*/
static PyObject *
bytes_lstrip_impl(PyBytesObject *self, PyObject *bytes)
/*[clinic end generated code: output=28602e586f524e82 input=9baff4398c3f6857]*/
{
return do_argstrip(self, LEFTSTRIP, bytes);
}
/*[clinic input]
bytes.rstrip
bytes: object = None
/
Strip trailing bytes contained in the argument.
If the argument is omitted or None, strip trailing ASCII whitespace.
[clinic start generated code]*/
static PyObject *
bytes_rstrip_impl(PyBytesObject *self, PyObject *bytes)
/*[clinic end generated code: output=547e3815c95447da input=b78af445c727e32b]*/
{
return do_argstrip(self, RIGHTSTRIP, bytes);
}
static PyObject *
bytes_count(PyBytesObject *self, PyObject *args)
{
return _Py_bytes_count(PyBytes_AS_STRING(self), PyBytes_GET_SIZE(self), args);
}
/*[clinic input]
bytes.translate
table: object
Translation table, which must be a bytes object of length 256.
/
delete as deletechars: object(c_default="NULL") = b''
Return a copy with each character mapped by the given translation table.
All characters occurring in the optional argument delete are removed.
The remaining characters are mapped through the given translation table.
[clinic start generated code]*/
static PyObject *
bytes_translate_impl(PyBytesObject *self, PyObject *table,
PyObject *deletechars)
/*[clinic end generated code: output=43be3437f1956211 input=0ecdf159f654233c]*/
{
char *input, *output;
Py_buffer table_view = {NULL, NULL};
Py_buffer del_table_view = {NULL, NULL};
const char *table_chars;
Py_ssize_t i, c, changed = 0;
PyObject *input_obj = (PyObject*)self;
const char *output_start, *del_table_chars=NULL;
Py_ssize_t inlen, tablen, dellen = 0;
PyObject *result;
int trans_table[256];
if (PyBytes_Check(table)) {
table_chars = PyBytes_AS_STRING(table);
tablen = PyBytes_GET_SIZE(table);
}
else if (table == Py_None) {
table_chars = NULL;
tablen = 256;
}
else {
if (PyObject_GetBuffer(table, &table_view, PyBUF_SIMPLE) != 0)
return NULL;
table_chars = table_view.buf;
tablen = table_view.len;
}
if (tablen != 256) {
PyErr_SetString(PyExc_ValueError,
"translation table must be 256 characters long");
PyBuffer_Release(&table_view);
return NULL;
}
if (deletechars != NULL) {
if (PyBytes_Check(deletechars)) {
del_table_chars = PyBytes_AS_STRING(deletechars);
dellen = PyBytes_GET_SIZE(deletechars);
}
else {
if (PyObject_GetBuffer(deletechars, &del_table_view, PyBUF_SIMPLE) != 0) {
PyBuffer_Release(&table_view);
return NULL;
}
del_table_chars = del_table_view.buf;
dellen = del_table_view.len;
}
}
else {
del_table_chars = NULL;
dellen = 0;
}
inlen = PyBytes_GET_SIZE(input_obj);
result = PyBytes_FromStringAndSize((char *)NULL, inlen);
if (result == NULL) {
PyBuffer_Release(&del_table_view);
PyBuffer_Release(&table_view);
return NULL;
}
output_start = output = PyBytes_AS_STRING(result);
input = PyBytes_AS_STRING(input_obj);
if (dellen == 0 && table_chars != NULL) {
/* If no deletions are required, use faster code */
for (i = inlen; --i >= 0; ) {
c = Py_CHARMASK(*input++);
if (Py_CHARMASK((*output++ = table_chars[c])) != c)
changed = 1;
}
if (!changed && PyBytes_CheckExact(input_obj)) {
Py_INCREF(input_obj);
Py_DECREF(result);
result = input_obj;
}
PyBuffer_Release(&del_table_view);
PyBuffer_Release(&table_view);
return result;
}
if (table_chars == NULL) {
for (i = 0; i < 256; i++)
trans_table[i] = Py_CHARMASK(i);
} else {
for (i = 0; i < 256; i++)
trans_table[i] = Py_CHARMASK(table_chars[i]);
}
PyBuffer_Release(&table_view);
for (i = 0; i < dellen; i++)
trans_table[(int) Py_CHARMASK(del_table_chars[i])] = -1;
PyBuffer_Release(&del_table_view);
for (i = inlen; --i >= 0; ) {
c = Py_CHARMASK(*input++);
if (trans_table[c] != -1)
if (Py_CHARMASK(*output++ = (char)trans_table[c]) == c)
continue;
changed = 1;
}
if (!changed && PyBytes_CheckExact(input_obj)) {
Py_DECREF(result);
Py_INCREF(input_obj);
return input_obj;
}
/* Fix the size of the resulting string */
if (inlen > 0)
_PyBytes_Resize(&result, output - output_start);
return result;
}
/*[clinic input]
@staticmethod
bytes.maketrans
frm: Py_buffer
to: Py_buffer
/
Return a translation table useable for the bytes or bytearray translate method.
The returned table will be one where each byte in frm is mapped to the byte at
the same position in to.
The bytes objects frm and to must be of the same length.
[clinic start generated code]*/
static PyObject *
bytes_maketrans_impl(Py_buffer *frm, Py_buffer *to)
/*[clinic end generated code: output=a36f6399d4b77f6f input=de7a8fc5632bb8f1]*/
{
return _Py_bytes_maketrans(frm, to);
}
/*[clinic input]
bytes.replace
old: Py_buffer
new: Py_buffer
count: Py_ssize_t = -1
Maximum number of occurrences to replace.
-1 (the default value) means replace all occurrences.
/
Return a copy with all occurrences of substring old replaced by new.
If the optional argument count is given, only the first count occurrences are
replaced.
[clinic start generated code]*/
static PyObject *
bytes_replace_impl(PyBytesObject *self, Py_buffer *old, Py_buffer *new,
Py_ssize_t count)
/*[clinic end generated code: output=994fa588b6b9c104 input=b2fbbf0bf04de8e5]*/
{
return stringlib_replace((PyObject *)self,
(const char *)old->buf, old->len,
(const char *)new->buf, new->len, count);
}
/** End DALKE **/
static PyObject *
bytes_startswith(PyBytesObject *self, PyObject *args)
{
return _Py_bytes_startswith(PyBytes_AS_STRING(self), PyBytes_GET_SIZE(self), args);
}
static PyObject *
bytes_endswith(PyBytesObject *self, PyObject *args)
{
return _Py_bytes_endswith(PyBytes_AS_STRING(self), PyBytes_GET_SIZE(self), args);
}
/*[clinic input]
bytes.decode
encoding: str(c_default="NULL") = 'utf-8'
The encoding with which to decode the bytes.
errors: str(c_default="NULL") = 'strict'
The error handling scheme to use for the handling of decoding errors.
The default is 'strict' meaning that decoding errors raise a
UnicodeDecodeError. Other possible values are 'ignore' and 'replace'
as well as any other name registered with codecs.register_error that
can handle UnicodeDecodeErrors.
Decode the bytes using the codec registered for encoding.
[clinic start generated code]*/
static PyObject *
bytes_decode_impl(PyBytesObject *self, const char *encoding,
const char *errors)
/*[clinic end generated code: output=5649a53dde27b314 input=958174769d2a40ca]*/
{
return PyUnicode_FromEncodedObject((PyObject*)self, encoding, errors);
}
/*[clinic input]
bytes.splitlines
keepends: int(c_default="0") = False
Return a list of the lines in the bytes, breaking at line boundaries.
Line breaks are not included in the resulting list unless keepends is given and
true.
[clinic start generated code]*/
static PyObject *
bytes_splitlines_impl(PyBytesObject *self, int keepends)
/*[clinic end generated code: output=3484149a5d880ffb input=7f4aac67144f9944]*/
{
return stringlib_splitlines(
(PyObject*) self, PyBytes_AS_STRING(self),
PyBytes_GET_SIZE(self), keepends
);
}
/*[clinic input]
@classmethod
bytes.fromhex
string: unicode
/
Create a bytes object from a string of hexadecimal numbers.
Spaces between two numbers are accepted.
Example: bytes.fromhex('B9 01EF') -> b'\\xb9\\x01\\xef'.
[clinic start generated code]*/
static PyObject *
bytes_fromhex_impl(PyTypeObject *type, PyObject *string)
/*[clinic end generated code: output=0973acc63661bb2e input=bf4d1c361670acd3]*/
{
PyObject *result = _PyBytes_FromHex(string, 0);
if (type != &PyBytes_Type && result != NULL) {
Py_SETREF(result, PyObject_CallFunctionObjArgs((PyObject *)type,
result, NULL));
}
return result;
}
PyObject*
_PyBytes_FromHex(PyObject *string, int use_bytearray)
{
char *buf;
Py_ssize_t hexlen, invalid_char;
unsigned int top, bot;
Py_UCS1 *str, *end;
_PyBytesWriter writer;
_PyBytesWriter_Init(&writer);
writer.use_bytearray = use_bytearray;
assert(PyUnicode_Check(string));
if (PyUnicode_READY(string))
return NULL;
hexlen = PyUnicode_GET_LENGTH(string);
if (!PyUnicode_IS_ASCII(string)) {
void *data = PyUnicode_DATA(string);
unsigned int kind = PyUnicode_KIND(string);
Py_ssize_t i;
/* search for the first non-ASCII character */
for (i = 0; i < hexlen; i++) {
if (PyUnicode_READ(kind, data, i) >= 128)
break;
}
invalid_char = i;
goto error;
}
assert(PyUnicode_KIND(string) == PyUnicode_1BYTE_KIND);
str = PyUnicode_1BYTE_DATA(string);
/* This overestimates if there are spaces */
buf = _PyBytesWriter_Alloc(&writer, hexlen / 2);
if (buf == NULL)
return NULL;
end = str + hexlen;
while (str < end) {
/* skip over spaces in the input */
if (*str == ' ') {
do {
str++;
} while (*str == ' ');
if (str >= end)
break;
}
top = _PyLong_DigitValue[*str];
if (top >= 16) {
invalid_char = str - PyUnicode_1BYTE_DATA(string);
goto error;
}
str++;
bot = _PyLong_DigitValue[*str];
if (bot >= 16) {
invalid_char = str - PyUnicode_1BYTE_DATA(string);
goto error;
}
str++;
*buf++ = (unsigned char)((top << 4) + bot);
}
return _PyBytesWriter_Finish(&writer, buf);
error:
PyErr_Format(PyExc_ValueError,
"non-hexadecimal number found in "
"fromhex() arg at position %zd", invalid_char);
_PyBytesWriter_Dealloc(&writer);
return NULL;
}
PyDoc_STRVAR(hex__doc__,
"B.hex() -> string\n\
\n\
Create a string of hexadecimal numbers from a bytes object.\n\
Example: b'\\xb9\\x01\\xef'.hex() -> 'b901ef'.");
static PyObject *
bytes_hex(PyBytesObject *self)
{
char* argbuf = PyBytes_AS_STRING(self);
Py_ssize_t arglen = PyBytes_GET_SIZE(self);
return _Py_strhex(argbuf, arglen);
}
static PyObject *
bytes_getnewargs(PyBytesObject *v)
{
return Py_BuildValue("(y#)", v->ob_sval, Py_SIZE(v));
}
static PyMethodDef
bytes_methods[] = {
{"__getnewargs__", (PyCFunction)bytes_getnewargs, METH_NOARGS},
{"capitalize", (PyCFunction)stringlib_capitalize, METH_NOARGS,
_Py_capitalize__doc__},
{"center", (PyCFunction)stringlib_center, METH_VARARGS,
_Py_center__doc__},
{"count", (PyCFunction)bytes_count, METH_VARARGS,
_Py_count__doc__},
BYTES_DECODE_METHODDEF
{"endswith", (PyCFunction)bytes_endswith, METH_VARARGS,
_Py_endswith__doc__},
{"expandtabs", (PyCFunction)stringlib_expandtabs, METH_VARARGS | METH_KEYWORDS,
_Py_expandtabs__doc__},
{"find", (PyCFunction)bytes_find, METH_VARARGS,
_Py_find__doc__},
BYTES_FROMHEX_METHODDEF
{"hex", (PyCFunction)bytes_hex, METH_NOARGS, hex__doc__},
{"index", (PyCFunction)bytes_index, METH_VARARGS, _Py_index__doc__},
{"isalnum", (PyCFunction)stringlib_isalnum, METH_NOARGS,
_Py_isalnum__doc__},
{"isalpha", (PyCFunction)stringlib_isalpha, METH_NOARGS,
_Py_isalpha__doc__},
{"isdigit", (PyCFunction)stringlib_isdigit, METH_NOARGS,
_Py_isdigit__doc__},
{"islower", (PyCFunction)stringlib_islower, METH_NOARGS,
_Py_islower__doc__},
{"isspace", (PyCFunction)stringlib_isspace, METH_NOARGS,
_Py_isspace__doc__},
{"istitle", (PyCFunction)stringlib_istitle, METH_NOARGS,
_Py_istitle__doc__},
{"isupper", (PyCFunction)stringlib_isupper, METH_NOARGS,
_Py_isupper__doc__},
BYTES_JOIN_METHODDEF
{"ljust", (PyCFunction)stringlib_ljust, METH_VARARGS, _Py_ljust__doc__},
{"lower", (PyCFunction)stringlib_lower, METH_NOARGS, _Py_lower__doc__},
BYTES_LSTRIP_METHODDEF
BYTES_MAKETRANS_METHODDEF
BYTES_PARTITION_METHODDEF
BYTES_REPLACE_METHODDEF
{"rfind", (PyCFunction)bytes_rfind, METH_VARARGS, _Py_rfind__doc__},
{"rindex", (PyCFunction)bytes_rindex, METH_VARARGS, _Py_rindex__doc__},
{"rjust", (PyCFunction)stringlib_rjust, METH_VARARGS, _Py_rjust__doc__},
BYTES_RPARTITION_METHODDEF
BYTES_RSPLIT_METHODDEF
BYTES_RSTRIP_METHODDEF
BYTES_SPLIT_METHODDEF
BYTES_SPLITLINES_METHODDEF
{"startswith", (PyCFunction)bytes_startswith, METH_VARARGS,
_Py_startswith__doc__},
BYTES_STRIP_METHODDEF
{"swapcase", (PyCFunction)stringlib_swapcase, METH_NOARGS,
_Py_swapcase__doc__},
{"title", (PyCFunction)stringlib_title, METH_NOARGS, _Py_title__doc__},
BYTES_TRANSLATE_METHODDEF
{"upper", (PyCFunction)stringlib_upper, METH_NOARGS, _Py_upper__doc__},
{"zfill", (PyCFunction)stringlib_zfill, METH_VARARGS, _Py_zfill__doc__},
{NULL, NULL} /* sentinel */
};
static PyObject *
bytes_mod(PyObject *self, PyObject *arg)
{
if (!PyBytes_Check(self)) {
Py_RETURN_NOTIMPLEMENTED;
}
return _PyBytes_FormatEx(PyBytes_AS_STRING(self), PyBytes_GET_SIZE(self),
arg, 0);
}
static PyNumberMethods bytes_as_number = {
0, /*nb_add*/
0, /*nb_subtract*/
0, /*nb_multiply*/
bytes_mod, /*nb_remainder*/
};
static PyObject *
bytes_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
static PyObject *
bytes_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyObject *x = NULL;
const char *encoding = NULL;
const char *errors = NULL;
PyObject *new = NULL;
PyObject *func;
Py_ssize_t size;
static char *kwlist[] = {"source", "encoding", "errors", 0};
_Py_IDENTIFIER(__bytes__);
if (type != &PyBytes_Type)
return bytes_subtype_new(type, args, kwds);
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|Oss:bytes", kwlist, &x,
&encoding, &errors))
return NULL;
if (x == NULL) {
if (encoding != NULL || errors != NULL) {
PyErr_SetString(PyExc_TypeError,
"encoding or errors without sequence "
"argument");
return NULL;
}
return PyBytes_FromStringAndSize(NULL, 0);
}
if (encoding != NULL) {
/* Encode via the codec registry */
if (!PyUnicode_Check(x)) {
PyErr_SetString(PyExc_TypeError,
"encoding without a string argument");
return NULL;
}
new = PyUnicode_AsEncodedString(x, encoding, errors);
if (new == NULL)
return NULL;
assert(PyBytes_Check(new));
return new;
}
if (errors != NULL) {
PyErr_SetString(PyExc_TypeError,
PyUnicode_Check(x) ?
"string argument without an encoding" :
"errors without a string argument");
return NULL;
}
/* We'd like to call PyObject_Bytes here, but we need to check for an
integer argument before deferring to PyBytes_FromObject, something
PyObject_Bytes doesn't do. */
func = _PyObject_LookupSpecial(x, &PyId___bytes__);
if (func != NULL) {
new = PyObject_CallFunctionObjArgs(func, NULL);
Py_DECREF(func);
if (new == NULL)
return NULL;
if (!PyBytes_Check(new)) {
PyErr_Format(PyExc_TypeError,
"__bytes__ returned non-bytes (type %.200s)",
Py_TYPE(new)->tp_name);
Py_DECREF(new);
return NULL;
}
return new;
}
else if (PyErr_Occurred())
return NULL;
if (PyUnicode_Check(x)) {
PyErr_SetString(PyExc_TypeError,
"string argument without an encoding");
return NULL;
}
/* Is it an integer? */
if (PyIndex_Check(x)) {
size = PyNumber_AsSsize_t(x, PyExc_OverflowError);
if (size == -1 && PyErr_Occurred()) {
if (!PyErr_ExceptionMatches(PyExc_TypeError))
return NULL;
PyErr_Clear(); /* fall through */
}
else {
if (size < 0) {
PyErr_SetString(PyExc_ValueError, "negative count");
return NULL;
}
new = _PyBytes_FromSize(size, 1);
if (new == NULL)
return NULL;
return new;
}
}
return PyBytes_FromObject(x);
}
static PyObject*
_PyBytes_FromBuffer(PyObject *x)
{
PyObject *new;
Py_buffer view;
if (PyObject_GetBuffer(x, &view, PyBUF_FULL_RO) < 0)
return NULL;
new = PyBytes_FromStringAndSize(NULL, view.len);
if (!new)
goto fail;
if (PyBuffer_ToContiguous(((PyBytesObject *)new)->ob_sval,
&view, view.len, 'C') < 0)
goto fail;
PyBuffer_Release(&view);
return new;
fail:
Py_XDECREF(new);
PyBuffer_Release(&view);
return NULL;
}
static PyObject*
_PyBytes_FromList(PyObject *x)
{
Py_ssize_t i, size = PyList_GET_SIZE(x);
Py_ssize_t value;
char *str;
PyObject *item;
_PyBytesWriter writer;
_PyBytesWriter_Init(&writer);
str = _PyBytesWriter_Alloc(&writer, size);
if (str == NULL)
return NULL;
writer.overallocate = 1;
size = writer.allocated;
for (i = 0; i < PyList_GET_SIZE(x); i++) {
item = PyList_GET_ITEM(x, i);
Py_INCREF(item);
value = PyNumber_AsSsize_t(item, NULL);
Py_DECREF(item);
if (value == -1 && PyErr_Occurred())
goto error;
if (value < 0 || value >= 256) {
PyErr_SetString(PyExc_ValueError,
"bytes must be in range(0, 256)");
goto error;
}
if (i >= size) {
str = _PyBytesWriter_Resize(&writer, str, size+1);
if (str == NULL)
return NULL;
size = writer.allocated;
}
*str++ = (char) value;
}
return _PyBytesWriter_Finish(&writer, str);
error:
_PyBytesWriter_Dealloc(&writer);
return NULL;
}
static PyObject*
_PyBytes_FromTuple(PyObject *x)
{
PyObject *bytes;
Py_ssize_t i, size = PyTuple_GET_SIZE(x);
Py_ssize_t value;
char *str;
PyObject *item;
bytes = PyBytes_FromStringAndSize(NULL, size);
if (bytes == NULL)
return NULL;
str = ((PyBytesObject *)bytes)->ob_sval;
for (i = 0; i < size; i++) {
item = PyTuple_GET_ITEM(x, i);
value = PyNumber_AsSsize_t(item, NULL);
if (value == -1 && PyErr_Occurred())
goto error;
if (value < 0 || value >= 256) {
PyErr_SetString(PyExc_ValueError,
"bytes must be in range(0, 256)");
goto error;
}
*str++ = (char) value;
}
return bytes;
error:
Py_DECREF(bytes);
return NULL;
}
static PyObject *
_PyBytes_FromIterator(PyObject *it, PyObject *x)
{
char *str;
Py_ssize_t i, size;
_PyBytesWriter writer;
/* For iterator version, create a string object and resize as needed */
size = PyObject_LengthHint(x, 64);
if (size == -1 && PyErr_Occurred())
return NULL;
_PyBytesWriter_Init(&writer);
str = _PyBytesWriter_Alloc(&writer, size);
if (str == NULL)
return NULL;
writer.overallocate = 1;
size = writer.allocated;
/* Run the iterator to exhaustion */
for (i = 0; ; i++) {
PyObject *item;
Py_ssize_t value;
/* Get the next item */
item = PyIter_Next(it);
if (item == NULL) {
if (PyErr_Occurred())
goto error;
break;
}
/* Interpret it as an int (__index__) */
value = PyNumber_AsSsize_t(item, NULL);
Py_DECREF(item);
if (value == -1 && PyErr_Occurred())
goto error;
/* Range check */
if (value < 0 || value >= 256) {
PyErr_SetString(PyExc_ValueError,
"bytes must be in range(0, 256)");
goto error;
}
/* Append the byte */
if (i >= size) {
str = _PyBytesWriter_Resize(&writer, str, size+1);
if (str == NULL)
return NULL;
size = writer.allocated;
}
*str++ = (char) value;
}
return _PyBytesWriter_Finish(&writer, str);
error:
_PyBytesWriter_Dealloc(&writer);
return NULL;
}
PyObject *
PyBytes_FromObject(PyObject *x)
{
PyObject *it, *result;
if (x == NULL) {
PyErr_BadInternalCall();
return NULL;
}
if (PyBytes_CheckExact(x)) {
Py_INCREF(x);
return x;
}
/* Use the modern buffer interface */
if (PyObject_CheckBuffer(x))
return _PyBytes_FromBuffer(x);
if (PyList_CheckExact(x))
return _PyBytes_FromList(x);
if (PyTuple_CheckExact(x))
return _PyBytes_FromTuple(x);
if (!PyUnicode_Check(x)) {
it = PyObject_GetIter(x);
if (it != NULL) {
result = _PyBytes_FromIterator(it, x);
Py_DECREF(it);
return result;
}
if (!PyErr_ExceptionMatches(PyExc_TypeError)) {
return NULL;
}
}
PyErr_Format(PyExc_TypeError,
"cannot convert '%.200s' object to bytes",
x->ob_type->tp_name);
return NULL;
}
static PyObject *
bytes_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyObject *tmp, *pnew;
Py_ssize_t n;
assert(PyType_IsSubtype(type, &PyBytes_Type));
tmp = bytes_new(&PyBytes_Type, args, kwds);
if (tmp == NULL)
return NULL;
assert(PyBytes_Check(tmp));
n = PyBytes_GET_SIZE(tmp);
pnew = type->tp_alloc(type, n);
if (pnew != NULL) {
memcpy(PyBytes_AS_STRING(pnew),
PyBytes_AS_STRING(tmp), n+1);
((PyBytesObject *)pnew)->ob_shash =
((PyBytesObject *)tmp)->ob_shash;
}
Py_DECREF(tmp);
return pnew;
}
PyDoc_STRVAR(bytes_doc,
"bytes(iterable_of_ints) -> bytes\n\
bytes(string, encoding[, errors]) -> bytes\n\
bytes(bytes_or_buffer) -> immutable copy of bytes_or_buffer\n\
bytes(int) -> bytes object of size given by the parameter initialized with null bytes\n\
bytes() -> empty bytes object\n\
\n\
Construct an immutable array of bytes from:\n\
- an iterable yielding integers in range(256)\n\
- a text string encoded using the specified encoding\n\
- any object implementing the buffer API.\n\
- an integer");
static PyObject *bytes_iter(PyObject *seq);
PyTypeObject PyBytes_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"bytes",
PyBytesObject_SIZE,
sizeof(char),
bytes_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)bytes_repr, /* tp_repr */
&bytes_as_number, /* tp_as_number */
&bytes_as_sequence, /* tp_as_sequence */
&bytes_as_mapping, /* tp_as_mapping */
(hashfunc)bytes_hash, /* tp_hash */
0, /* tp_call */
bytes_str, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
&bytes_as_buffer, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE |
Py_TPFLAGS_BYTES_SUBCLASS, /* tp_flags */
bytes_doc, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
(richcmpfunc)bytes_richcompare, /* tp_richcompare */
0, /* tp_weaklistoffset */
bytes_iter, /* tp_iter */
0, /* tp_iternext */
bytes_methods, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
&PyBaseObject_Type, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
bytes_new, /* tp_new */
PyObject_Del, /* tp_free */
};
void
PyBytes_Concat(PyObject **pv, PyObject *w)
{
assert(pv != NULL);
if (*pv == NULL)
return;
if (w == NULL) {
Py_CLEAR(*pv);
return;
}
if (Py_REFCNT(*pv) == 1 && PyBytes_CheckExact(*pv)) {
/* Only one reference, so we can resize in place */
Py_ssize_t oldsize;
Py_buffer wb;
wb.len = -1;
if (PyObject_GetBuffer(w, &wb, PyBUF_SIMPLE) != 0) {
PyErr_Format(PyExc_TypeError, "can't concat %.100s to %.100s",
Py_TYPE(w)->tp_name, Py_TYPE(*pv)->tp_name);
Py_CLEAR(*pv);
return;
}
oldsize = PyBytes_GET_SIZE(*pv);
if (oldsize > PY_SSIZE_T_MAX - wb.len) {
PyErr_NoMemory();
goto error;
}
if (_PyBytes_Resize(pv, oldsize + wb.len) < 0)
goto error;
memcpy(PyBytes_AS_STRING(*pv) + oldsize, wb.buf, wb.len);
PyBuffer_Release(&wb);
return;
error:
PyBuffer_Release(&wb);
Py_CLEAR(*pv);
return;
}
else {
/* Multiple references, need to create new object */
PyObject *v;
v = bytes_concat(*pv, w);
Py_SETREF(*pv, v);
}
}
void
PyBytes_ConcatAndDel(PyObject **pv, PyObject *w)
{
PyBytes_Concat(pv, w);
Py_XDECREF(w);
}
/* The following function breaks the notion that bytes are immutable:
it changes the size of a bytes object. We get away with this only if there
is only one module referencing the object. You can also think of it
as creating a new bytes object and destroying the old one, only
more efficiently. In any case, don't use this if the bytes object may
already be known to some other part of the code...
Note that if there's not enough memory to resize the bytes object, the
original bytes object at *pv is deallocated, *pv is set to NULL, an "out of
memory" exception is set, and -1 is returned. Else (on success) 0 is
returned, and the value in *pv may or may not be the same as on input.
As always, an extra byte is allocated for a trailing \0 byte (newsize
does *not* include that), and a trailing \0 byte is stored.
*/
int
_PyBytes_Resize(PyObject **pv, Py_ssize_t newsize)
{
PyObject *v;
PyBytesObject *sv;
v = *pv;
if (!PyBytes_Check(v) || newsize < 0) {
goto error;
}
if (Py_SIZE(v) == newsize) {
/* return early if newsize equals to v->ob_size */
return 0;
}
if (Py_REFCNT(v) != 1) {
goto error;
}
/* XXX UNREF/NEWREF interface should be more symmetrical */
_Py_DEC_REFTOTAL;
_Py_ForgetReference(v);
*pv = (PyObject *)
PyObject_REALLOC(v, PyBytesObject_SIZE + newsize);
if (*pv == NULL) {
PyObject_Del(v);
PyErr_NoMemory();
return -1;
}
_Py_NewReference(*pv);
sv = (PyBytesObject *) *pv;
Py_SIZE(sv) = newsize;
sv->ob_sval[newsize] = '\0';
sv->ob_shash = -1; /* invalidate cached hash value */
return 0;
error:
*pv = 0;
Py_DECREF(v);
PyErr_BadInternalCall();
return -1;
}
void
PyBytes_Fini(void)
{
int i;
for (i = 0; i < UCHAR_MAX + 1; i++)
Py_CLEAR(characters[i]);
Py_CLEAR(nullstring);
}
/*********************** Bytes Iterator ****************************/
typedef struct {
PyObject_HEAD
Py_ssize_t it_index;
PyBytesObject *it_seq; /* Set to NULL when iterator is exhausted */
} striterobject;
static void
striter_dealloc(striterobject *it)
{
_PyObject_GC_UNTRACK(it);
Py_XDECREF(it->it_seq);
PyObject_GC_Del(it);
}
static int
striter_traverse(striterobject *it, visitproc visit, void *arg)
{
Py_VISIT(it->it_seq);
return 0;
}
static PyObject *
striter_next(striterobject *it)
{
PyBytesObject *seq;
PyObject *item;
assert(it != NULL);
seq = it->it_seq;
if (seq == NULL)
return NULL;
assert(PyBytes_Check(seq));
if (it->it_index < PyBytes_GET_SIZE(seq)) {
item = PyLong_FromLong(
(unsigned char)seq->ob_sval[it->it_index]);
if (item != NULL)
++it->it_index;
return item;
}
it->it_seq = NULL;
Py_DECREF(seq);
return NULL;
}
static PyObject *
striter_len(striterobject *it)
{
Py_ssize_t len = 0;
if (it->it_seq)
len = PyBytes_GET_SIZE(it->it_seq) - it->it_index;
return PyLong_FromSsize_t(len);
}
PyDoc_STRVAR(length_hint_doc,
"Private method returning an estimate of len(list(it)).");
static PyObject *
striter_reduce(striterobject *it)
{
if (it->it_seq != NULL) {
return Py_BuildValue("N(O)n", _PyObject_GetBuiltin("iter"),
it->it_seq, it->it_index);
} else {
PyObject *u = PyUnicode_FromUnicode(NULL, 0);
if (u == NULL)
return NULL;
return Py_BuildValue("N(N)", _PyObject_GetBuiltin("iter"), u);
}
}
PyDoc_STRVAR(reduce_doc, "Return state information for pickling.");
static PyObject *
striter_setstate(striterobject *it, PyObject *state)
{
Py_ssize_t index = PyLong_AsSsize_t(state);
if (index == -1 && PyErr_Occurred())
return NULL;
if (it->it_seq != NULL) {
if (index < 0)
index = 0;
else if (index > PyBytes_GET_SIZE(it->it_seq))
index = PyBytes_GET_SIZE(it->it_seq); /* iterator exhausted */
it->it_index = index;
}
Py_RETURN_NONE;
}
PyDoc_STRVAR(setstate_doc, "Set state information for unpickling.");
static PyMethodDef striter_methods[] = {
{"__length_hint__", (PyCFunction)striter_len, METH_NOARGS,
length_hint_doc},
{"__reduce__", (PyCFunction)striter_reduce, METH_NOARGS,
reduce_doc},
{"__setstate__", (PyCFunction)striter_setstate, METH_O,
setstate_doc},
{NULL, NULL} /* sentinel */
};
PyTypeObject PyBytesIter_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"bytes_iterator", /* tp_name */
sizeof(striterobject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)striter_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
0, /* tp_doc */
(traverseproc)striter_traverse, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
PyObject_SelfIter, /* tp_iter */
(iternextfunc)striter_next, /* tp_iternext */
striter_methods, /* tp_methods */
0,
};
static PyObject *
bytes_iter(PyObject *seq)
{
striterobject *it;
if (!PyBytes_Check(seq)) {
PyErr_BadInternalCall();
return NULL;
}
it = PyObject_GC_New(striterobject, &PyBytesIter_Type);
if (it == NULL)
return NULL;
it->it_index = 0;
Py_INCREF(seq);
it->it_seq = (PyBytesObject *)seq;
_PyObject_GC_TRACK(it);
return (PyObject *)it;
}
/* _PyBytesWriter API */
#ifdef MS_WINDOWS
/* On Windows, overallocate by 50% is the best factor */
# define OVERALLOCATE_FACTOR 2
#else
/* On Linux, overallocate by 25% is the best factor */
# define OVERALLOCATE_FACTOR 4
#endif
void
_PyBytesWriter_Init(_PyBytesWriter *writer)
{
/* Set all attributes before small_buffer to 0 */
bzero(writer, offsetof(_PyBytesWriter, small_buffer));
#ifdef Py_DEBUG
memset(writer->small_buffer, 0xCB, sizeof(writer->small_buffer));
#endif
}
void
_PyBytesWriter_Dealloc(_PyBytesWriter *writer)
{
Py_CLEAR(writer->buffer);
}
Py_LOCAL_INLINE(char*)
_PyBytesWriter_AsString(_PyBytesWriter *writer)
{
if (writer->use_small_buffer) {
assert(writer->buffer == NULL);
return writer->small_buffer;
}
else if (writer->use_bytearray) {
assert(writer->buffer != NULL);
return PyByteArray_AS_STRING(writer->buffer);
}
else {
assert(writer->buffer != NULL);
return PyBytes_AS_STRING(writer->buffer);
}
}
Py_LOCAL_INLINE(Py_ssize_t)
_PyBytesWriter_GetSize(_PyBytesWriter *writer, char *str)
{
char *start = _PyBytesWriter_AsString(writer);
assert(str != NULL);
assert(str >= start);
assert(str - start <= writer->allocated);
return str - start;
}
Py_LOCAL_INLINE(void)
_PyBytesWriter_CheckConsistency(_PyBytesWriter *writer, char *str)
{
#ifdef Py_DEBUG
char *start, *end;
if (writer->use_small_buffer) {
assert(writer->buffer == NULL);
}
else {
assert(writer->buffer != NULL);
if (writer->use_bytearray)
assert(PyByteArray_CheckExact(writer->buffer));
else
assert(PyBytes_CheckExact(writer->buffer));
assert(Py_REFCNT(writer->buffer) == 1);
}
if (writer->use_bytearray) {
/* bytearray has its own overallocation algorithm,
writer overallocation must be disabled */
assert(!writer->overallocate);
}
assert(0 <= writer->allocated);
assert(0 <= writer->min_size && writer->min_size <= writer->allocated);
/* the last byte must always be null */
start = _PyBytesWriter_AsString(writer);
assert(start[writer->allocated] == 0);
end = start + writer->allocated;
assert(str != NULL);
assert(start <= str && str <= end);
#endif
}
void*
_PyBytesWriter_Resize(_PyBytesWriter *writer, void *str, Py_ssize_t size)
{
Py_ssize_t allocated, pos;
_PyBytesWriter_CheckConsistency(writer, str);
assert(writer->allocated < size);
allocated = size;
if (writer->overallocate
&& allocated <= (PY_SSIZE_T_MAX - allocated / OVERALLOCATE_FACTOR)) {
/* overallocate to limit the number of realloc() */
allocated += allocated / OVERALLOCATE_FACTOR;
}
pos = _PyBytesWriter_GetSize(writer, str);
if (!writer->use_small_buffer) {
if (writer->use_bytearray) {
if (PyByteArray_Resize(writer->buffer, allocated))
goto error;
/* writer->allocated can be smaller than writer->buffer->ob_alloc,
but we cannot use ob_alloc because bytes may need to be moved
to use the whole buffer. bytearray uses an internal optimization
to avoid moving or copying bytes when bytes are removed at the
beginning (ex: del bytearray[:1]). */
}
else {
if (_PyBytes_Resize(&writer->buffer, allocated))
goto error;
}
}
else {
/* convert from stack buffer to bytes object buffer */
assert(writer->buffer == NULL);
if (writer->use_bytearray)
writer->buffer = PyByteArray_FromStringAndSize(NULL, allocated);
else
writer->buffer = PyBytes_FromStringAndSize(NULL, allocated);
if (writer->buffer == NULL)
goto error;
if (pos != 0) {
char *dest;
if (writer->use_bytearray)
dest = PyByteArray_AS_STRING(writer->buffer);
else
dest = PyBytes_AS_STRING(writer->buffer);
memcpy(dest,
writer->small_buffer,
pos);
}
writer->use_small_buffer = 0;
#ifdef Py_DEBUG
memset(writer->small_buffer, 0xDB, sizeof(writer->small_buffer));
#endif
}
writer->allocated = allocated;
str = _PyBytesWriter_AsString(writer) + pos;
_PyBytesWriter_CheckConsistency(writer, str);
return str;
error:
_PyBytesWriter_Dealloc(writer);
return NULL;
}
void*
_PyBytesWriter_Prepare(_PyBytesWriter *writer, void *str, Py_ssize_t size)
{
Py_ssize_t new_min_size;
_PyBytesWriter_CheckConsistency(writer, str);
assert(size >= 0);
if (size == 0) {
/* nothing to do */
return str;
}
if (writer->min_size > PY_SSIZE_T_MAX - size) {
PyErr_NoMemory();
_PyBytesWriter_Dealloc(writer);
return NULL;
}
new_min_size = writer->min_size + size;
if (new_min_size > writer->allocated)
str = _PyBytesWriter_Resize(writer, str, new_min_size);
writer->min_size = new_min_size;
return str;
}
/* Allocate the buffer to write size bytes.
Return the pointer to the beginning of buffer data.
Raise an exception and return NULL on error. */
void*
_PyBytesWriter_Alloc(_PyBytesWriter *writer, Py_ssize_t size)
{
/* ensure that _PyBytesWriter_Alloc() is only called once */
assert(writer->min_size == 0 && writer->buffer == NULL);
assert(size >= 0);
writer->use_small_buffer = 1;
#ifdef Py_DEBUG
writer->allocated = sizeof(writer->small_buffer) - 1;
/* In debug mode, don't use the full small buffer because it is less
efficient than bytes and bytearray objects to detect buffer underflow
and buffer overflow. Use 10 bytes of the small buffer to test also
code using the smaller buffer in debug mode.
Don't modify the _PyBytesWriter structure (use a shorter small buffer)
in debug mode to also be able to detect stack overflow when running
tests in debug mode. The _PyBytesWriter is large (more than 512 bytes),
if Py_EnterRecursiveCall() is not used in deep C callback, we may hit a
stack overflow. */
writer->allocated = Py_MIN(writer->allocated, 10);
/* _PyBytesWriter_CheckConsistency() requires the last byte to be 0,
to detect buffer overflow */
writer->small_buffer[writer->allocated] = 0;
#else
writer->allocated = sizeof(writer->small_buffer);
#endif
return _PyBytesWriter_Prepare(writer, writer->small_buffer, size);
}
PyObject *
_PyBytesWriter_Finish(_PyBytesWriter *writer, void *str)
{
Py_ssize_t size;
PyObject *result;
_PyBytesWriter_CheckConsistency(writer, str);
size = _PyBytesWriter_GetSize(writer, str);
if (size == 0 && !writer->use_bytearray) {
Py_CLEAR(writer->buffer);
/* Get the empty byte string singleton */
result = PyBytes_FromStringAndSize(NULL, 0);
}
else if (writer->use_small_buffer) {
if (writer->use_bytearray) {
result = PyByteArray_FromStringAndSize(writer->small_buffer, size);
}
else {
result = PyBytes_FromStringAndSize(writer->small_buffer, size);
}
}
else {
result = writer->buffer;
writer->buffer = NULL;
if (size != writer->allocated) {
if (writer->use_bytearray) {
if (PyByteArray_Resize(result, size)) {
Py_DECREF(result);
return NULL;
}
}
else {
if (_PyBytes_Resize(&result, size)) {
assert(result == NULL);
return NULL;
}
}
}
}
return result;
}
void*
_PyBytesWriter_WriteBytes(_PyBytesWriter *writer, void *ptr,
const void *bytes, Py_ssize_t size)
{
char *str = (char *)ptr;
str = _PyBytesWriter_Prepare(writer, str, size);
if (str == NULL)
return NULL;
memcpy(str, bytes, size);
str += size;
return str;
}
| 103,463 | 3,483 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/fileobject.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#define PY_SSIZE_T_CLEAN
#include "libc/calls/calls.h"
#include "libc/errno.h"
#include "libc/stdio/lock.internal.h"
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/boolobject.h"
#include "third_party/python/Include/bytesobject.h"
#include "third_party/python/Include/ceval.h"
#include "third_party/python/Include/descrobject.h"
#include "third_party/python/Include/fileobject.h"
#include "third_party/python/Include/fileutils.h"
#include "third_party/python/Include/import.h"
#include "third_party/python/Include/longobject.h"
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/object.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/pyerrors.h"
#include "third_party/python/Include/tupleobject.h"
#include "third_party/python/Include/unicodeobject.h"
#include "third_party/python/Include/yoink.h"
/* clang-format off */
/* File object implementation (what's left of it -- see io.py) */
#if defined(HAVE_GETC_UNLOCKED) && !defined(_Py_MEMORY_SANITIZER)
/* clang MemorySanitizer doesn't yet understand getc_unlocked. */
#define GETC(f) getc_unlocked(f)
#define FLOCKFILE(f) flockfile(f)
#define FUNLOCKFILE(f) funlockfile(f)
#else
#define GETC(f) getc(f)
#define FLOCKFILE(f)
#define FUNLOCKFILE(f)
#endif
/* Newline flags */
#define NEWLINE_UNKNOWN 0 /* No newline seen, yet */
#define NEWLINE_CR 1 /* \r newline seen */
#define NEWLINE_LF 2 /* \n newline seen */
#define NEWLINE_CRLF 4 /* \r\n newline seen */
/* External C interface */
PyObject *
PyFile_GetLine(PyObject *f, int n)
{
PyObject *result;
if (f == NULL) {
PyErr_BadInternalCall();
return NULL;
}
{
PyObject *reader;
PyObject *args;
_Py_IDENTIFIER(readline);
reader = _PyObject_GetAttrId(f, &PyId_readline);
if (reader == NULL)
return NULL;
if (n <= 0)
args = PyTuple_New(0);
else
args = Py_BuildValue("(i)", n);
if (args == NULL) {
Py_DECREF(reader);
return NULL;
}
result = PyEval_CallObject(reader, args);
Py_DECREF(reader);
Py_DECREF(args);
if (result != NULL && !PyBytes_Check(result) &&
!PyUnicode_Check(result)) {
Py_DECREF(result);
result = NULL;
PyErr_SetString(PyExc_TypeError,
"object.readline() returned non-string");
}
}
if (n < 0 && result != NULL && PyBytes_Check(result)) {
char *s = PyBytes_AS_STRING(result);
Py_ssize_t len = PyBytes_GET_SIZE(result);
if (len == 0) {
Py_DECREF(result);
result = NULL;
PyErr_SetString(PyExc_EOFError,
"EOF when reading a line");
}
else if (s[len-1] == '\n') {
if (result->ob_refcnt == 1)
_PyBytes_Resize(&result, len-1);
else {
PyObject *v;
v = PyBytes_FromStringAndSize(s, len-1);
Py_DECREF(result);
result = v;
}
}
}
if (n < 0 && result != NULL && PyUnicode_Check(result)) {
Py_ssize_t len = PyUnicode_GET_LENGTH(result);
if (len == 0) {
Py_DECREF(result);
result = NULL;
PyErr_SetString(PyExc_EOFError,
"EOF when reading a line");
}
else if (PyUnicode_READ_CHAR(result, len-1) == '\n') {
PyObject *v;
v = PyUnicode_Substring(result, 0, len-1);
Py_DECREF(result);
result = v;
}
}
return result;
}
/* Interfaces to write objects/strings to file-like objects */
int
PyFile_WriteObject(PyObject *v, PyObject *f, int flags)
{
PyObject *writer, *value, *result;
_Py_IDENTIFIER(write);
if (f == NULL) {
PyErr_SetString(PyExc_TypeError, "writeobject with NULL file");
return -1;
}
writer = _PyObject_GetAttrId(f, &PyId_write);
if (writer == NULL)
return -1;
if (flags & Py_PRINT_RAW) {
value = PyObject_Str(v);
}
else
value = PyObject_Repr(v);
if (value == NULL) {
Py_DECREF(writer);
return -1;
}
result = _PyObject_CallArg1(writer, value);
Py_DECREF(value);
Py_DECREF(writer);
if (result == NULL)
return -1;
Py_DECREF(result);
return 0;
}
int
PyFile_WriteString(const char *s, PyObject *f)
{
if (f == NULL) {
/* Should be caused by a pre-existing error */
if (!PyErr_Occurred())
PyErr_SetString(PyExc_SystemError,
"null file for PyFile_WriteString");
return -1;
}
else if (!PyErr_Occurred()) {
PyObject *v = PyUnicode_FromString(s);
int err;
if (v == NULL)
return -1;
err = PyFile_WriteObject(v, f, Py_PRINT_RAW);
Py_DECREF(v);
return err;
}
else
return -1;
}
/* Try to get a file-descriptor from a Python object. If the object
is an integer, its value is returned. If not, the
object's fileno() method is called if it exists; the method must return
an integer, which is returned as the file descriptor value.
-1 is returned on failure.
*/
int
PyObject_AsFileDescriptor(PyObject *o)
{
int fd;
PyObject *meth;
_Py_IDENTIFIER(fileno);
if (PyLong_Check(o)) {
fd = _PyLong_AsInt(o);
}
else if ((meth = _PyObject_GetAttrId(o, &PyId_fileno)) != NULL)
{
PyObject *fno = PyEval_CallObject(meth, NULL);
Py_DECREF(meth);
if (fno == NULL)
return -1;
if (PyLong_Check(fno)) {
fd = _PyLong_AsInt(fno);
Py_DECREF(fno);
}
else {
PyErr_SetString(PyExc_TypeError,
"fileno() returned a non-integer");
Py_DECREF(fno);
return -1;
}
}
else {
PyErr_SetString(PyExc_TypeError,
"argument must be an int, or have a fileno() method.");
return -1;
}
if (fd == -1 && PyErr_Occurred())
return -1;
if (fd < 0) {
PyErr_Format(PyExc_ValueError,
"file descriptor cannot be a negative integer (%i)",
fd);
return -1;
}
return fd;
}
/*
** Py_UniversalNewlineFgets is an fgets variation that understands
** all of \r, \n and \r\n conventions.
** The stream should be opened in binary mode.
** If fobj is NULL the routine always does newline conversion, and
** it may peek one char ahead to gobble the second char in \r\n.
** If fobj is non-NULL it must be a PyFileObject. In this case there
** is no readahead but in stead a flag is used to skip a following
** \n on the next read. Also, if the file is open in binary mode
** the whole conversion is skipped. Finally, the routine keeps track of
** the different types of newlines seen.
** Note that we need no error handling: fgets() treats error and eof
** identically.
*/
char *
Py_UniversalNewlineFgets(char *buf, int n, FILE *stream, PyObject *fobj)
{
char *p = buf;
int c;
int newlinetypes = 0;
int skipnextlf = 0;
if (fobj) {
errno = ENXIO; /* What can you do... */
return NULL;
}
FLOCKFILE(stream);
c = 'x'; /* Shut up gcc warning */
while (--n > 0 && (c = GETC(stream)) != EOF ) {
if (skipnextlf ) {
skipnextlf = 0;
if (c == '\n') {
/* Seeing a \n here with skipnextlf true
** means we saw a \r before.
*/
newlinetypes |= NEWLINE_CRLF;
c = GETC(stream);
if (c == EOF) break;
} else {
/*
** Note that c == EOF also brings us here,
** so we're okay if the last char in the file
** is a CR.
*/
newlinetypes |= NEWLINE_CR;
}
}
if (c == '\r') {
/* A \r is translated into a \n, and we skip
** an adjacent \n, if any. We don't set the
** newlinetypes flag until we've seen the next char.
*/
skipnextlf = 1;
c = '\n';
} else if ( c == '\n') {
newlinetypes |= NEWLINE_LF;
}
*p++ = c;
if (c == '\n') break;
}
/* if ( c == EOF && skipnextlf )
newlinetypes |= NEWLINE_CR; */
FUNLOCKFILE(stream);
*p = '\0';
if ( skipnextlf ) {
/* If we have no file object we cannot save the
** skipnextlf flag. We have to readahead, which
** will cause a pause if we're reading from an
** interactive stream, but that is very unlikely
** unless we're doing something silly like
** exec(open("/dev/tty").read()).
*/
c = GETC(stream);
if ( c != '\n' )
ungetc(c, stream);
}
if (p == buf)
return NULL;
return buf;
}
/* **************************** std printer ****************************
* The stdprinter is used during the boot strapping phase as a preliminary
* file like object for sys.stderr.
*/
typedef struct {
PyObject_HEAD
int fd;
} PyStdPrinter_Object;
static PyObject *
stdprinter_new(PyTypeObject *type, PyObject *args, PyObject *kews)
{
PyStdPrinter_Object *self;
assert(type != NULL && type->tp_alloc != NULL);
self = (PyStdPrinter_Object *) type->tp_alloc(type, 0);
if (self != NULL) {
self->fd = -1;
}
return (PyObject *) self;
}
static int
stdprinter_init(PyObject *self, PyObject *args, PyObject *kwds)
{
PyErr_SetString(PyExc_TypeError,
"cannot create 'stderrprinter' instances");
return -1;
}
PyObject *
PyFile_NewStdPrinter(int fd)
{
PyStdPrinter_Object *self;
if (fd != fileno(stdout) && fd != fileno(stderr)) {
/* not enough infrastructure for PyErr_BadInternalCall() */
return NULL;
}
self = PyObject_New(PyStdPrinter_Object,
&PyStdPrinter_Type);
if (self != NULL) {
self->fd = fd;
}
return (PyObject*)self;
}
static PyObject *
stdprinter_write(PyStdPrinter_Object *self, PyObject **args, Py_ssize_t nargs)
{
PyObject *unicode;
PyObject *bytes = NULL;
char *str;
Py_ssize_t n;
int err;
if (self->fd < 0) {
/* fd might be invalid on Windows
* I can't raise an exception here. It may lead to an
* unlimited recursion in the case stderr is invalid.
*/
Py_RETURN_NONE;
}
if (!_PyArg_UnpackStack(args, nargs, "write", 1, 1, &unicode))
return NULL;
/* encode Unicode to UTF-8 */
str = PyUnicode_AsUTF8AndSize(unicode, &n);
if (str == NULL) {
PyErr_Clear();
bytes = _PyUnicode_AsUTF8String(unicode, "backslashreplace");
if (bytes == NULL)
return NULL;
if (PyBytes_AsStringAndSize(bytes, &str, &n) < 0) {
Py_DECREF(bytes);
return NULL;
}
}
n = _Py_write(self->fd, str, n);
/* save errno, it can be modified indirectly by Py_XDECREF() */
err = errno;
Py_XDECREF(bytes);
if (n == -1) {
if (err == EAGAIN) {
PyErr_Clear();
Py_RETURN_NONE;
}
return NULL;
}
return PyLong_FromSsize_t(n);
}
static PyObject *
stdprinter_fileno(PyStdPrinter_Object *self)
{
return PyLong_FromLong((long) self->fd);
}
static PyObject *
stdprinter_repr(PyStdPrinter_Object *self)
{
return PyUnicode_FromFormat("<stdprinter(fd=%d) object at 0x%x>",
self->fd, self);
}
static PyObject *
stdprinter_noop(PyStdPrinter_Object *self)
{
Py_RETURN_NONE;
}
static PyObject *
stdprinter_isatty(PyStdPrinter_Object *self)
{
long res;
if (self->fd < 0) {
Py_RETURN_FALSE;
}
Py_BEGIN_ALLOW_THREADS
res = isatty(self->fd);
Py_END_ALLOW_THREADS
return PyBool_FromLong(res);
}
static PyMethodDef stdprinter_methods[] = {
{"close", (PyCFunction)stdprinter_noop, METH_NOARGS, ""},
{"flush", (PyCFunction)stdprinter_noop, METH_NOARGS, ""},
{"fileno", (PyCFunction)stdprinter_fileno, METH_NOARGS, ""},
{"isatty", (PyCFunction)stdprinter_isatty, METH_NOARGS, ""},
{"write", (PyCFunction)stdprinter_write, METH_FASTCALL, ""},
{NULL, NULL} /*sentinel */
};
static PyObject *
get_closed(PyStdPrinter_Object *self, void *closure)
{
Py_INCREF(Py_False);
return Py_False;
}
static PyObject *
get_mode(PyStdPrinter_Object *self, void *closure)
{
return PyUnicode_FromString("w");
}
static PyObject *
get_encoding(PyStdPrinter_Object *self, void *closure)
{
Py_RETURN_NONE;
}
static PyGetSetDef stdprinter_getsetlist[] = {
{"closed", (getter)get_closed, NULL, "True if the file is closed"},
{"encoding", (getter)get_encoding, NULL, "Encoding of the file"},
{"mode", (getter)get_mode, NULL, "String giving the file mode"},
{0},
};
PyTypeObject PyStdPrinter_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"stderrprinter", /* tp_name */
sizeof(PyStdPrinter_Object), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
0, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)stdprinter_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT, /* tp_flags */
0, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
stdprinter_methods, /* tp_methods */
0, /* tp_members */
stdprinter_getsetlist, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
stdprinter_init, /* tp_init */
PyType_GenericAlloc, /* tp_alloc */
stdprinter_new, /* tp_new */
PyObject_Del, /* tp_free */
};
| 16,640 | 527 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/dictobject.c | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#include "libc/intrin/likely.h"
#include "libc/calls/calls.h"
#include "libc/log/countbranch.h"
#include "libc/runtime/runtime.h"
#include "libc/sysv/consts/o.h"
#include "third_party/python/Include/abstract.h"
#include "third_party/python/Include/boolobject.h"
#include "third_party/python/Include/longobject.h"
#include "third_party/python/Include/modsupport.h"
#include "third_party/python/Include/objimpl.h"
#include "third_party/python/Include/pymacro.h"
#include "third_party/python/Include/pystate.h"
#include "third_party/python/Include/setobject.h"
#include "third_party/python/Include/unicodeobject.h"
#include "third_party/python/Objects/dict-common.h"
#include "third_party/python/pyconfig.h"
/* clang-format off */
/* Dictionary object implementation using a hash table */
/* The distribution includes a separate file, Objects/dictnotes.txt,
describing explorations into dictionary design and optimization.
It covers typical dictionary use patterns, the parameters for
tuning dictionaries, and several ideas for possible optimizations.
*/
/* PyDictKeysObject
This implements the dictionary's hashtable.
As of Python 3.6, this is compact and ordered. Basic idea is described here.
https://morepypy.blogspot.com/2015/01/faster-more-memory-efficient-and-more.html
layout:
+---------------+
| dk_refcnt |
| dk_size |
| dk_lookup |
| dk_usable |
| dk_nentries |
+---------------+
| dk_indices |
| |
+---------------+
| dk_entries |
| |
+---------------+
dk_indices is actual hashtable. It holds index in entries, or DKIX_EMPTY(-1)
or DKIX_DUMMY(-2).
Size of indices is dk_size. Type of each index in indices is vary on dk_size:
* int8 for dk_size <= 128
* int16 for 256 <= dk_size <= 2**15
* int32 for 2**16 <= dk_size <= 2**31
* int64 for 2**32 <= dk_size
dk_entries is array of PyDictKeyEntry. It's size is USABLE_FRACTION(dk_size).
DK_ENTRIES(dk) can be used to get pointer to entries.
NOTE: Since negative value is used for DKIX_EMPTY and DKIX_DUMMY, type of
dk_indices entry is signed integer and int16 is used for table which
dk_size == 256.
*/
/*
The DictObject can be in one of two forms.
Either:
A combined table:
ma_values == NULL, dk_refcnt == 1.
Values are stored in the me_value field of the PyDictKeysObject.
Or:
A split table:
ma_values != NULL, dk_refcnt >= 1
Values are stored in the ma_values array.
Only string (unicode) keys are allowed.
All dicts sharing same key must have same insertion order.
There are four kinds of slots in the table (slot is index, and
DK_ENTRIES(keys)[index] if index >= 0):
1. Unused. index == DKIX_EMPTY
Does not hold an active (key, value) pair now and never did. Unused can
transition to Active upon key insertion. This is each slot's initial state.
2. Active. index >= 0, me_key != NULL and me_value != NULL
Holds an active (key, value) pair. Active can transition to Dummy or
Pending upon key deletion (for combined and split tables respectively).
This is the only case in which me_value != NULL.
3. Dummy. index == DKIX_DUMMY (combined only)
Previously held an active (key, value) pair, but that was deleted and an
active pair has not yet overwritten the slot. Dummy can transition to
Active upon key insertion. Dummy slots cannot be made Unused again
else the probe sequence in case of collision would have no way to know
they were once active.
4. Pending. index >= 0, key != NULL, and value == NULL (split only)
Not yet inserted in split-table.
*/
/*
Preserving insertion order
It's simple for combined table. Since dk_entries is mostly append only, we can
get insertion order by just iterating dk_entries.
One exception is .popitem(). It removes last item in dk_entries and decrement
dk_nentries to achieve amortized O(1). Since there are DKIX_DUMMY remains in
dk_indices, we can't increment dk_usable even though dk_nentries is
decremented.
In split table, inserting into pending entry is allowed only for dk_entries[ix]
where ix == mp->ma_used. Inserting into other index and deleting item cause
converting the dict to the combined table.
*/
/* PyDict_MINSIZE is the starting size for any new dict.
* 8 allows dicts with no more than 5 active entries; experiments suggested
* this suffices for the majority of dicts (consisting mostly of usually-small
* dicts created to pass keyword arguments).
* Making this 8, rather than 4 reduces the number of resizes for most
* dictionaries, without any significant extra memory use.
*/
#define PyDict_MINSIZE 8
#include "third_party/python/Objects/stringlib/eq.inc"
/*[clinic input]
class dict "PyDictObject *" "&PyDict_Type"
[clinic start generated code]*/
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=f157a5a0ce9589d6]*/
/*
To ensure the lookup algorithm terminates, there must be at least one Unused
slot (NULL key) in the table.
To avoid slowing down lookups on a near-full table, we resize the table when
it's USABLE_FRACTION (currently two-thirds) full.
*/
#define PERTURB_SHIFT 5
/*
Major subtleties ahead: Most hash schemes depend on having a "good" hash
function, in the sense of simulating randomness. Python doesn't: its most
important hash functions (for ints) are very regular in common
cases:
>>>[hash(i) for i in range(4)]
[0, 1, 2, 3]
This isn't necessarily bad! To the contrary, in a table of size 2**i, taking
the low-order i bits as the initial table index is extremely fast, and there
are no collisions at all for dicts indexed by a contiguous range of ints. So
this gives better-than-random behavior in common cases, and that's very
desirable.
OTOH, when collisions occur, the tendency to fill contiguous slices of the
hash table makes a good collision resolution strategy crucial. Taking only
the last i bits of the hash code is also vulnerable: for example, consider
the list [i << 16 for i in range(20000)] as a set of keys. Since ints are
their own hash codes, and this fits in a dict of size 2**15, the last 15 bits
of every hash code are all 0: they *all* map to the same table index.
But catering to unusual cases should not slow the usual ones, so we just take
the last i bits anyway. It's up to collision resolution to do the rest. If
we *usually* find the key we're looking for on the first try (and, it turns
out, we usually do -- the table load factor is kept under 2/3, so the odds
are solidly in our favor), then it makes best sense to keep the initial index
computation dirt cheap.
The first half of collision resolution is to visit table indices via this
recurrence:
j = ((5*j) + 1) mod 2**i
For any initial j in range(2**i), repeating that 2**i times generates each
int in range(2**i) exactly once (see any text on random-number generation for
proof). By itself, this doesn't help much: like linear probing (setting
j += 1, or j -= 1, on each loop trip), it scans the table entries in a fixed
order. This would be bad, except that's not the only thing we do, and it's
actually *good* in the common cases where hash keys are consecutive. In an
example that's really too small to make this entirely clear, for a table of
size 2**3 the order of indices is:
0 -> 1 -> 6 -> 7 -> 4 -> 5 -> 2 -> 3 -> 0 [and here it's repeating]
If two things come in at index 5, the first place we look after is index 2,
not 6, so if another comes in at index 6 the collision at 5 didn't hurt it.
Linear probing is deadly in this case because there the fixed probe order
is the *same* as the order consecutive keys are likely to arrive. But it's
extremely unlikely hash codes will follow a 5*j+1 recurrence by accident,
and certain that consecutive hash codes do not.
The other half of the strategy is to get the other bits of the hash code
into play. This is done by initializing a (unsigned) vrbl "perturb" to the
full hash code, and changing the recurrence to:
perturb >>= PERTURB_SHIFT;
j = (5*j) + 1 + perturb;
use j % 2**i as the next table index;
Now the probe sequence depends (eventually) on every bit in the hash code,
and the pseudo-scrambling property of recurring on 5*j+1 is more valuable,
because it quickly magnifies small differences in the bits that didn't affect
the initial index. Note that because perturb is unsigned, if the recurrence
is executed often enough perturb eventually becomes and remains 0. At that
point (very rarely reached) the recurrence is on (just) 5*j+1 again, and
that's certain to find an empty slot eventually (since it generates every int
in range(2**i), and we make sure there's always at least one empty slot).
Selecting a good value for PERTURB_SHIFT is a balancing act. You want it
small so that the high bits of the hash code continue to affect the probe
sequence across iterations; but you want it large so that in really bad cases
the high-order hash bits have an effect on early iterations. 5 was "the
best" in minimizing total collisions across experiments Tim Peters ran (on
both normal and pathological cases), but 4 and 6 weren't significantly worse.
Historical: Reimer Behrends contributed the idea of using a polynomial-based
approach, using repeated multiplication by x in GF(2**n) where an irreducible
polynomial for each table size was chosen such that x was a primitive root.
Christian Tismer later extended that to use division by x instead, as an
efficient way to get the high bits of the hash code into play. This scheme
also gave excellent collision statistics, but was more expensive: two
if-tests were required inside the loop; computing "the next" index took about
the same number of operations but without as much potential parallelism
(e.g., computing 5*j can go on at the same time as computing 1+perturb in the
above, and then shifting perturb can be done while the table index is being
masked); and the PyDictObject struct required a member to hold the table's
polynomial. In Tim's experiments the current scheme ran faster, produced
equally good collision statistics, needed less code & used less memory.
*/
/* forward declarations */
static Py_ssize_t lookdict(PyDictObject *mp, PyObject *key,
Py_hash_t hash, PyObject ***value_addr,
Py_ssize_t *hashpos);
static Py_ssize_t lookdict_unicode(PyDictObject *mp, PyObject *key,
Py_hash_t hash, PyObject ***value_addr,
Py_ssize_t *hashpos);
static Py_ssize_t
lookdict_unicode_nodummy(PyDictObject *mp, PyObject *key,
Py_hash_t hash, PyObject ***value_addr,
Py_ssize_t *hashpos);
static Py_ssize_t lookdict_split(PyDictObject *mp, PyObject *key,
Py_hash_t hash, PyObject ***value_addr,
Py_ssize_t *hashpos);
static int dictresize(PyDictObject *mp, Py_ssize_t minused);
static PyObject* dict_iter(PyDictObject *dict);
/*Global counter used to set ma_version_tag field of dictionary.
* It is incremented each time that a dictionary is created and each
* time that a dictionary is modified. */
static uint64_t pydict_global_version = 0;
#define DICT_NEXT_VERSION() (++pydict_global_version)
/* Dictionary reuse scheme to save calls to malloc and free */
#ifndef PyDict_MAXFREELIST
#define PyDict_MAXFREELIST 80
#endif
static PyDictObject *free_list[PyDict_MAXFREELIST];
static int numfree = 0;
static PyDictKeysObject *keys_free_list[PyDict_MAXFREELIST];
static int numfreekeys = 0;
#include "third_party/python/Objects/clinic/dictobject.inc"
int
PyDict_ClearFreeList(void)
{
PyDictObject *op;
int ret = numfree + numfreekeys;
while (numfree) {
op = free_list[--numfree];
assert(PyDict_CheckExact(op));
PyObject_GC_Del(op);
}
while (numfreekeys) {
PyObject_FREE(keys_free_list[--numfreekeys]);
}
return ret;
}
/* Print summary info about the state of the optimized allocator */
void
_PyDict_DebugMallocStats(FILE *out)
{
_PyDebugAllocatorStats(out,
"free PyDictObject", numfree, sizeof(PyDictObject));
}
void
PyDict_Fini(void)
{
PyDict_ClearFreeList();
}
#define DK_SIZE(dk) ((dk)->dk_size)
#if SIZEOF_VOID_P > 4
#define DK_IXSIZE(dk) \
(DK_SIZE(dk) <= 0xff ? \
1 : DK_SIZE(dk) <= 0xffff ? \
2 : DK_SIZE(dk) <= 0xffffffff ? \
4 : sizeof(int64_t))
#else
#define DK_IXSIZE(dk) \
(DK_SIZE(dk) <= 0xff ? \
1 : DK_SIZE(dk) <= 0xffff ? \
2 : sizeof(int32_t))
#endif
#define DK_ENTRIES(dk) \
((PyDictKeyEntry*)(&((int8_t*)((dk)->dk_indices))[DK_SIZE(dk) * DK_IXSIZE(dk)]))
#define DK_DEBUG_INCREF _Py_INC_REFTOTAL _Py_REF_DEBUG_COMMA
#define DK_DEBUG_DECREF _Py_DEC_REFTOTAL _Py_REF_DEBUG_COMMA
#define DK_INCREF(dk) (DK_DEBUG_INCREF ++(dk)->dk_refcnt)
#define DK_DECREF(dk) if (DK_DEBUG_DECREF (--(dk)->dk_refcnt) == 0) free_keys_object(dk)
#define DK_MASK(dk) (((dk)->dk_size)-1)
#define IS_POWER_OF_2(x) (((x) & (x-1)) == 0)
/* lookup indices. returns DKIX_EMPTY, DKIX_DUMMY, or ix >=0 */
static inline Py_ssize_t
dk_get_index(PyDictKeysObject *keys, Py_ssize_t i)
{
Py_ssize_t s = DK_SIZE(keys);
Py_ssize_t ix;
if (s <= 0xff) {
int8_t *indices = (int8_t*)(keys->dk_indices);
ix = indices[i];
}
else if (s <= 0xffff) {
int16_t *indices = (int16_t*)(keys->dk_indices);
ix = indices[i];
}
#if SIZEOF_VOID_P > 4
else if (s > 0xffffffff) {
int64_t *indices = (int64_t*)(keys->dk_indices);
ix = indices[i];
}
#endif
else {
int32_t *indices = (int32_t*)(keys->dk_indices);
ix = indices[i];
}
assert(ix >= DKIX_DUMMY);
return ix;
}
/* write to indices. */
static inline void
dk_set_index(PyDictKeysObject *keys, Py_ssize_t i, Py_ssize_t ix)
{
Py_ssize_t s = DK_SIZE(keys);
assert(ix >= DKIX_DUMMY);
if (s <= 0xff) {
int8_t *indices = (int8_t*)(keys->dk_indices);
assert(ix <= 0x7f);
indices[i] = (char)ix;
}
else if (s <= 0xffff) {
int16_t *indices = (int16_t*)(keys->dk_indices);
assert(ix <= 0x7fff);
indices[i] = (int16_t)ix;
}
#if SIZEOF_VOID_P > 4
else if (s > 0xffffffff) {
int64_t *indices = (int64_t*)(keys->dk_indices);
indices[i] = ix;
}
#endif
else {
int32_t *indices = (int32_t*)(keys->dk_indices);
assert(ix <= 0x7fffffff);
indices[i] = (int32_t)ix;
}
}
/* USABLE_FRACTION is the maximum dictionary load.
* Increasing this ratio makes dictionaries more dense resulting in more
* collisions. Decreasing it improves sparseness at the expense of spreading
* indices over more cache lines and at the cost of total memory consumed.
*
* USABLE_FRACTION must obey the following:
* (0 < USABLE_FRACTION(n) < n) for all n >= 2
*
* USABLE_FRACTION should be quick to calculate.
* Fractions around 1/2 to 2/3 seem to work well in practice.
*/
#define USABLE_FRACTION(n) (((n) << 1)/3)
/* ESTIMATE_SIZE is reverse function of USABLE_FRACTION.
* This can be used to reserve enough size to insert n entries without
* resizing.
*/
#define ESTIMATE_SIZE(n) (((n)*3+1) >> 1)
/* Alternative fraction that is otherwise close enough to 2n/3 to make
* little difference. 8 * 2/3 == 8 * 5/8 == 5. 16 * 2/3 == 16 * 5/8 == 10.
* 32 * 2/3 = 21, 32 * 5/8 = 20.
* Its advantage is that it is faster to compute on machines with slow division.
* #define USABLE_FRACTION(n) (((n) >> 1) + ((n) >> 2) - ((n) >> 3))
*/
/* GROWTH_RATE. Growth rate upon hitting maximum load.
* Currently set to used*2 + capacity/2.
* This means that dicts double in size when growing without deletions,
* but have more head room when the number of deletions is on a par with the
* number of insertions.
* Raising this to used*4 doubles memory consumption depending on the size of
* the dictionary, but results in half the number of resizes, less effort to
* resize.
* GROWTH_RATE was set to used*4 up to version 3.2.
* GROWTH_RATE was set to used*2 in version 3.3.0
*/
#define GROWTH_RATE(d) (((d)->ma_used*2)+((d)->ma_keys->dk_size>>1))
#define ENSURE_ALLOWS_DELETIONS(d) \
if ((d)->ma_keys->dk_lookup == lookdict_unicode_nodummy) { \
(d)->ma_keys->dk_lookup = lookdict_unicode; \
}
/* This immutable, empty PyDictKeysObject is used for PyDict_Clear()
* (which cannot fail and thus can do no allocation).
*/
static PyDictKeysObject empty_keys_struct = {
1, /* dk_refcnt */
1, /* dk_size */
lookdict_split, /* dk_lookup */
0, /* dk_usable (immutable) */
0, /* dk_nentries */
{DKIX_EMPTY, DKIX_EMPTY, DKIX_EMPTY, DKIX_EMPTY,
DKIX_EMPTY, DKIX_EMPTY, DKIX_EMPTY, DKIX_EMPTY}, /* dk_indices */
};
static PyObject *empty_values[1] = { NULL };
#define Py_EMPTY_KEYS &empty_keys_struct
/* Uncomment to check the dict content in _PyDict_CheckConsistency() */
/* #define DEBUG_PYDICT */
#ifndef NDEBUG
static int
_PyDict_CheckConsistency(PyDictObject *mp)
{
PyDictKeysObject *keys = mp->ma_keys;
int splitted = _PyDict_HasSplitTable(mp);
Py_ssize_t usable = USABLE_FRACTION(keys->dk_size);
#ifdef DEBUG_PYDICT
PyDictKeyEntry *entries = DK_ENTRIES(keys);
Py_ssize_t i;
#endif
assert(0 <= mp->ma_used && mp->ma_used <= usable);
assert(IS_POWER_OF_2(keys->dk_size));
assert(0 <= keys->dk_usable
&& keys->dk_usable <= usable);
assert(0 <= keys->dk_nentries
&& keys->dk_nentries <= usable);
assert(keys->dk_usable + keys->dk_nentries <= usable);
if (!splitted) {
/* combined table */
assert(keys->dk_refcnt == 1);
}
#ifdef DEBUG_PYDICT
for (i=0; i < keys->dk_size; i++) {
Py_ssize_t ix = dk_get_index(keys, i);
assert(DKIX_DUMMY <= ix && ix <= usable);
}
for (i=0; i < usable; i++) {
PyDictKeyEntry *entry = &entries[i];
PyObject *key = entry->me_key;
if (key != NULL) {
if (PyUnicode_CheckExact(key)) {
Py_hash_t hash = ((PyASCIIObject *)key)->hash;
assert(hash != -1);
assert(entry->me_hash == hash);
}
else {
/* test_dict fails if PyObject_Hash() is called again */
assert(entry->me_hash != -1);
}
if (!splitted) {
assert(entry->me_value != NULL);
}
}
if (splitted) {
assert(entry->me_value == NULL);
}
}
if (splitted) {
/* splitted table */
for (i=0; i < mp->ma_used; i++) {
assert(mp->ma_values[i] != NULL);
}
}
#endif
return 1;
}
#endif
static PyDictKeysObject *new_keys_object(Py_ssize_t size)
{
PyDictKeysObject *dk;
Py_ssize_t es, usable;
assert(size >= PyDict_MINSIZE);
assert(IS_POWER_OF_2(size));
usable = USABLE_FRACTION(size);
if (size <= 0xff) {
es = 1;
}
else if (size <= 0xffff) {
es = 2;
}
#if SIZEOF_VOID_P > 4
else if (size <= 0xffffffff) {
es = 4;
}
#endif
else {
es = sizeof(Py_ssize_t);
}
if (size == PyDict_MINSIZE && numfreekeys > 0) {
dk = keys_free_list[--numfreekeys];
}
else {
dk = PyObject_MALLOC(sizeof(PyDictKeysObject)
+ es * size
+ sizeof(PyDictKeyEntry) * usable);
if (dk == NULL) {
PyErr_NoMemory();
return NULL;
}
}
DK_DEBUG_INCREF dk->dk_refcnt = 1;
dk->dk_size = size;
dk->dk_usable = usable;
dk->dk_lookup = lookdict_unicode_nodummy;
dk->dk_nentries = 0;
memset(&dk->dk_indices[0], 0xff, es * size);
bzero(DK_ENTRIES(dk), sizeof(PyDictKeyEntry) * usable);
return dk;
}
static void
free_keys_object(PyDictKeysObject *keys)
{
PyDictKeyEntry *entries = DK_ENTRIES(keys);
Py_ssize_t i, n;
for (i = 0, n = keys->dk_nentries; i < n; i++) {
Py_XDECREF(entries[i].me_key);
Py_XDECREF(entries[i].me_value);
}
if (keys->dk_size == PyDict_MINSIZE && numfreekeys < PyDict_MAXFREELIST) {
keys_free_list[numfreekeys++] = keys;
return;
}
PyObject_FREE(keys);
}
#define new_values(size) PyMem_NEW(PyObject *, size)
#define free_values(values) PyMem_FREE(values)
/* Consumes a reference to the keys object */
static PyObject *
new_dict(PyDictKeysObject *keys, PyObject **values)
{
PyDictObject *mp;
assert(keys != NULL);
if (numfree) {
mp = free_list[--numfree];
assert (mp != NULL);
assert (Py_TYPE(mp) == &PyDict_Type);
_Py_NewReference((PyObject *)mp);
}
else {
mp = PyObject_GC_New(PyDictObject, &PyDict_Type);
if (mp == NULL) {
DK_DECREF(keys);
free_values(values);
return NULL;
}
}
mp->ma_keys = keys;
mp->ma_values = values;
mp->ma_used = 0;
mp->ma_version_tag = DICT_NEXT_VERSION();
assert(_PyDict_CheckConsistency(mp));
return (PyObject *)mp;
}
/* Consumes a reference to the keys object */
static PyObject *
new_dict_with_shared_keys(PyDictKeysObject *keys)
{
PyObject **values;
Py_ssize_t i, size;
size = USABLE_FRACTION(DK_SIZE(keys));
values = new_values(size);
if (values == NULL) {
DK_DECREF(keys);
return PyErr_NoMemory();
}
for (i = 0; i < size; i++) {
values[i] = NULL;
}
return new_dict(keys, values);
}
static PyObject *
clone_combined_dict(PyDictObject *orig)
{
assert(PyDict_CheckExact(orig));
assert(orig->ma_values == NULL);
assert(orig->ma_keys->dk_refcnt == 1);
Py_ssize_t keys_size = _PyDict_KeysSize(orig->ma_keys);
PyDictKeysObject *keys = PyObject_Malloc(keys_size);
if (keys == NULL) {
PyErr_NoMemory();
return NULL;
}
memcpy(keys, orig->ma_keys, keys_size);
/* After copying key/value pairs, we need to incref all
keys and values and they are about to be co-owned by a
new dict object. */
PyDictKeyEntry *ep0 = DK_ENTRIES(keys);
Py_ssize_t n = keys->dk_nentries;
for (Py_ssize_t i = 0; i < n; i++) {
PyDictKeyEntry *entry = &ep0[i];
PyObject *value = entry->me_value;
if (value != NULL) {
Py_INCREF(value);
Py_INCREF(entry->me_key);
}
}
PyDictObject *new = (PyDictObject *)new_dict(keys, NULL);
if (new == NULL) {
/* In case of an error, `new_dict()` takes care of
cleaning up `keys`. */
return NULL;
}
new->ma_used = orig->ma_used;
assert(_PyDict_CheckConsistency(new));
if (_PyObject_GC_IS_TRACKED(orig)) {
/* Maintain tracking. */
_PyObject_GC_TRACK(new);
}
return (PyObject *)new;
}
PyObject *
PyDict_New(void)
{
PyDictKeysObject *keys = new_keys_object(PyDict_MINSIZE);
if (keys == NULL)
return NULL;
return new_dict(keys, NULL);
}
/* Search index of hash table from offset of entry table */
static Py_ssize_t
lookdict_index(PyDictKeysObject *k, Py_hash_t hash, Py_ssize_t index)
{
size_t i;
size_t mask = DK_MASK(k);
Py_ssize_t ix;
i = (size_t)hash & mask;
ix = dk_get_index(k, i);
if (ix == index) {
return i;
}
if (ix == DKIX_EMPTY) {
return DKIX_EMPTY;
}
for (size_t perturb = hash;;) {
perturb >>= PERTURB_SHIFT;
i = mask & ((i << 2) + i + perturb + 1);
ix = dk_get_index(k, i);
if (ix == index) {
return i;
}
if (ix == DKIX_EMPTY) {
return DKIX_EMPTY;
}
}
unreachable;
}
/*
The basic lookup function used by all operations.
This is based on Algorithm D from Knuth Vol. 3, Sec. 6.4.
Open addressing is preferred over chaining since the link overhead for
chaining would be substantial (100% with typical malloc overhead).
The initial probe index is computed as hash mod the table size. Subsequent
probe indices are computed as explained earlier.
All arithmetic on hash should ignore overflow.
The details in this version are due to Tim Peters, building on many past
contributions by Reimer Behrends, Jyrki Alakuijala, Vladimir Marangozov and
Christian Tismer.
lookdict() is general-purpose, and may return DKIX_ERROR if (and only if) a
comparison raises an exception.
lookdict_unicode() below is specialized to string keys, comparison of which can
never raise an exception; that function can never return DKIX_ERROR when key
is string. Otherwise, it falls back to lookdict().
lookdict_unicode_nodummy is further specialized for string keys that cannot be
the <dummy> value.
For both, when the key isn't found a DKIX_EMPTY is returned. hashpos returns
where the key index should be inserted.
*/
static Py_ssize_t _Py_HOT_FUNCTION
lookdict(PyDictObject *mp, PyObject *key,
Py_hash_t hash, PyObject ***value_addr, Py_ssize_t *hashpos)
{
size_t i, mask;
Py_ssize_t ix, freeslot;
int cmp;
PyDictKeysObject *dk;
PyDictKeyEntry *ep0, *ep;
PyObject *startkey;
top:
dk = mp->ma_keys;
mask = DK_MASK(dk);
ep0 = DK_ENTRIES(dk);
i = (size_t)hash & mask;
ix = dk_get_index(dk, i);
if (ix == DKIX_EMPTY) {
if (hashpos != NULL)
*hashpos = i;
*value_addr = NULL;
return DKIX_EMPTY;
}
if (ix == DKIX_DUMMY) {
freeslot = i;
}
else {
ep = &ep0[ix];
assert(ep->me_key != NULL);
if (ep->me_key == key) {
*value_addr = &ep->me_value;
if (hashpos != NULL)
*hashpos = i;
return ix;
}
if (ep->me_hash == hash) {
startkey = ep->me_key;
Py_INCREF(startkey);
cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
Py_DECREF(startkey);
if (cmp < 0) {
*value_addr = NULL;
return DKIX_ERROR;
}
if (dk == mp->ma_keys && ep->me_key == startkey) {
if (cmp > 0) {
*value_addr = &ep->me_value;
if (hashpos != NULL)
*hashpos = i;
return ix;
}
}
else {
/* The dict was mutated, restart */
goto top;
}
}
freeslot = -1;
}
for (size_t perturb = hash;;) {
perturb >>= PERTURB_SHIFT;
i = ((i << 2) + i + perturb + 1) & mask;
ix = dk_get_index(dk, i);
if (ix == DKIX_EMPTY) {
if (hashpos != NULL) {
*hashpos = (freeslot == -1) ? (Py_ssize_t)i : freeslot;
}
*value_addr = NULL;
return ix;
}
if (ix == DKIX_DUMMY) {
if (freeslot == -1)
freeslot = i;
continue;
}
ep = &ep0[ix];
assert(ep->me_key != NULL);
if (ep->me_key == key) {
if (hashpos != NULL) {
*hashpos = i;
}
*value_addr = &ep->me_value;
return ix;
}
if (ep->me_hash == hash) {
startkey = ep->me_key;
Py_INCREF(startkey);
cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
Py_DECREF(startkey);
if (cmp < 0) {
*value_addr = NULL;
return DKIX_ERROR;
}
if (dk == mp->ma_keys && ep->me_key == startkey) {
if (cmp > 0) {
if (hashpos != NULL) {
*hashpos = i;
}
*value_addr = &ep->me_value;
return ix;
}
}
else {
/* The dict was mutated, restart */
goto top;
}
}
}
unreachable;
}
/* Specialized version for string-only keys */
static Py_ssize_t _Py_HOT_FUNCTION
lookdict_unicode(PyDictObject *mp, PyObject *key,
Py_hash_t hash, PyObject ***value_addr, Py_ssize_t *hashpos)
{
size_t i;
size_t mask = DK_MASK(mp->ma_keys);
Py_ssize_t ix, freeslot;
PyDictKeyEntry *ep, *ep0 = DK_ENTRIES(mp->ma_keys);
assert(mp->ma_values == NULL);
/* Make sure this function doesn't have to handle non-unicode keys,
including subclasses of str; e.g., one reason to subclass
unicodes is to override __eq__, and for speed we don't cater to
that here. */
if (!PyUnicode_CheckExact(key)) {
mp->ma_keys->dk_lookup = lookdict;
return lookdict(mp, key, hash, value_addr, hashpos);
}
i = (size_t)hash & mask;
ix = dk_get_index(mp->ma_keys, i);
if (ix == DKIX_EMPTY) {
if (hashpos != NULL)
*hashpos = i;
*value_addr = NULL;
return DKIX_EMPTY;
}
if (ix == DKIX_DUMMY) {
freeslot = i;
}
else {
ep = &ep0[ix];
assert(ep->me_key != NULL);
if (ep->me_key == key
|| (ep->me_hash == hash && unicode_eq(ep->me_key, key))) {
if (hashpos != NULL)
*hashpos = i;
*value_addr = &ep->me_value;
return ix;
}
freeslot = -1;
}
for (size_t perturb = hash;;) {
perturb >>= PERTURB_SHIFT;
i = mask & ((i << 2) + i + perturb + 1);
ix = dk_get_index(mp->ma_keys, i);
if (ix == DKIX_EMPTY) {
if (hashpos != NULL) {
*hashpos = (freeslot == -1) ? (Py_ssize_t)i : freeslot;
}
*value_addr = NULL;
return DKIX_EMPTY;
}
if (ix == DKIX_DUMMY) {
if (freeslot == -1)
freeslot = i;
continue;
}
ep = &ep0[ix];
assert(ep->me_key != NULL);
if (ep->me_key == key
|| (ep->me_hash == hash && unicode_eq(ep->me_key, key))) {
*value_addr = &ep->me_value;
if (hashpos != NULL) {
*hashpos = i;
}
return ix;
}
}
unreachable;
}
/* Faster version of lookdict_unicode when it is known that no <dummy> keys
* will be present. */
static Py_ssize_t _Py_HOT_FUNCTION
lookdict_unicode_nodummy(PyDictObject *restrict mp, PyObject *restrict key,
Py_hash_t hash, PyObject ***value_addr,
Py_ssize_t *hashpos)
{
size_t i;
size_t mask = DK_MASK(mp->ma_keys);
Py_ssize_t ix;
PyDictKeyEntry *ep, *ep0 = DK_ENTRIES(mp->ma_keys);
assert(mp->ma_values == NULL);
/* Make sure this function doesn't have to handle non-unicode keys,
including subclasses of str; e.g., one reason to subclass
unicodes is to override __eq__, and for speed we don't cater to
that here. */
if (UNLIKELY(!PyUnicode_CheckExact(key)) /* 0.00001% taken */) {
mp->ma_keys->dk_lookup = lookdict;
return lookdict(mp, key, hash, value_addr, hashpos);
}
i = (size_t)hash & mask;
ix = dk_get_index(mp->ma_keys, i);
assert(ix != DKIX_DUMMY);
if (UNLIKELY(ix == DKIX_EMPTY)) { /* 4% taken */
if (hashpos != NULL)
*hashpos = i;
*value_addr = NULL;
return DKIX_EMPTY;
}
ep = &ep0[ix];
assert(ep->me_key);
assert(PyUnicode_CheckExact(ep->me_key));
if (ep->me_key == key || /* 70.671% taken */
(ep->me_hash == hash && unicode_eq(ep->me_key, key))) {
if (hashpos != NULL)
*hashpos = i;
*value_addr = &ep->me_value;
return ix;
}
for (size_t perturb = hash;;) {
perturb >>= PERTURB_SHIFT;
i = mask & ((i << 2) + i + perturb + 1);
ix = dk_get_index(mp->ma_keys, i);
assert(ix != DKIX_DUMMY);
if (UNLIKELY(ix == DKIX_EMPTY)) {
if (hashpos != NULL)
*hashpos = i;
*value_addr = NULL;
return DKIX_EMPTY;
}
ep = &ep0[ix];
assert(ep->me_key);
assert(PyUnicode_CheckExact(ep->me_key));
if (LIKELY(ep->me_key == key) || /* 99.8697% taken (interning?) */
(ep->me_hash == hash && unicode_eq(ep->me_key, key))) {
if (hashpos != NULL)
*hashpos = i;
*value_addr = &ep->me_value;
return ix;
}
}
unreachable;
}
/* Version of lookdict for split tables.
* All split tables and only split tables use this lookup function.
* Split tables only contain unicode keys and no dummy keys,
* so algorithm is the same as lookdict_unicode_nodummy.
*/
static Py_ssize_t _Py_HOT_FUNCTION
lookdict_split(PyDictObject *mp, PyObject *key,
Py_hash_t hash, PyObject ***value_addr, Py_ssize_t *hashpos)
{
size_t i;
size_t mask = DK_MASK(mp->ma_keys);
Py_ssize_t ix;
PyDictKeyEntry *ep, *ep0 = DK_ENTRIES(mp->ma_keys);
/* mp must split table */
assert(mp->ma_values != NULL);
if (!PyUnicode_CheckExact(key)) {
ix = lookdict(mp, key, hash, value_addr, hashpos);
if (ix >= 0) {
*value_addr = &mp->ma_values[ix];
}
return ix;
}
i = (size_t)hash & mask;
ix = dk_get_index(mp->ma_keys, i);
if (ix == DKIX_EMPTY) {
if (hashpos != NULL)
*hashpos = i;
*value_addr = NULL;
return DKIX_EMPTY;
}
assert(ix >= 0);
ep = &ep0[ix];
assert(ep->me_key != NULL && PyUnicode_CheckExact(ep->me_key));
if (ep->me_key == key ||
(ep->me_hash == hash && unicode_eq(ep->me_key, key))) {
if (hashpos != NULL)
*hashpos = i;
*value_addr = &mp->ma_values[ix];
return ix;
}
for (size_t perturb = hash;;) {
perturb >>= PERTURB_SHIFT;
i = mask & ((i << 2) + i + perturb + 1);
ix = dk_get_index(mp->ma_keys, i);
if (ix == DKIX_EMPTY) {
if (hashpos != NULL)
*hashpos = i;
*value_addr = NULL;
return DKIX_EMPTY;
}
assert(ix >= 0);
ep = &ep0[ix];
assert(ep->me_key != NULL && PyUnicode_CheckExact(ep->me_key));
if (ep->me_key == key ||
(ep->me_hash == hash && unicode_eq(ep->me_key, key))) {
if (hashpos != NULL)
*hashpos = i;
*value_addr = &mp->ma_values[ix];
return ix;
}
}
unreachable;
}
int
_PyDict_HasOnlyStringKeys(PyObject *dict)
{
Py_ssize_t pos = 0;
PyObject *key, *value;
assert(PyDict_Check(dict));
/* Shortcut */
if (((PyDictObject *)dict)->ma_keys->dk_lookup != lookdict)
return 1;
while (PyDict_Next(dict, &pos, &key, &value))
if (!PyUnicode_Check(key))
return 0;
return 1;
}
#define MAINTAIN_TRACKING(mp, key, value) \
do { \
if (!_PyObject_GC_IS_TRACKED(mp)) { \
if (_PyObject_GC_MAY_BE_TRACKED(key) || \
_PyObject_GC_MAY_BE_TRACKED(value)) { \
_PyObject_GC_TRACK(mp); \
} \
} \
} while(0)
void
_PyDict_MaybeUntrack(PyObject *op)
{
PyDictObject *mp;
PyObject *value;
Py_ssize_t i, numentries;
PyDictKeyEntry *ep0;
if (!PyDict_CheckExact(op) || !_PyObject_GC_IS_TRACKED(op))
return;
mp = (PyDictObject *) op;
ep0 = DK_ENTRIES(mp->ma_keys);
numentries = mp->ma_keys->dk_nentries;
if (_PyDict_HasSplitTable(mp)) {
for (i = 0; i < numentries; i++) {
if ((value = mp->ma_values[i]) == NULL)
continue;
if (_PyObject_GC_MAY_BE_TRACKED(value)) {
assert(!_PyObject_GC_MAY_BE_TRACKED(ep0[i].me_key));
return;
}
}
}
else {
for (i = 0; i < numentries; i++) {
if ((value = ep0[i].me_value) == NULL)
continue;
if (_PyObject_GC_MAY_BE_TRACKED(value) ||
_PyObject_GC_MAY_BE_TRACKED(ep0[i].me_key))
return;
}
}
_PyObject_GC_UNTRACK(op);
}
/* Internal function to find slot for an item from its hash
when it is known that the key is not present in the dict.
The dict must be combined. */
static void
find_empty_slot(PyDictObject *mp, PyObject *key, Py_hash_t hash,
PyObject ***value_addr, Py_ssize_t *hashpos)
{
size_t i;
size_t mask = DK_MASK(mp->ma_keys);
Py_ssize_t ix;
PyDictKeyEntry *ep, *ep0 = DK_ENTRIES(mp->ma_keys);
assert(!_PyDict_HasSplitTable(mp));
assert(hashpos != NULL);
assert(key != NULL);
if (!PyUnicode_CheckExact(key))
mp->ma_keys->dk_lookup = lookdict;
i = hash & mask;
ix = dk_get_index(mp->ma_keys, i);
for (size_t perturb = hash; ix != DKIX_EMPTY;) {
perturb >>= PERTURB_SHIFT;
i = (i << 2) + i + perturb + 1;
ix = dk_get_index(mp->ma_keys, i & mask);
}
ep = &ep0[mp->ma_keys->dk_nentries];
*hashpos = i & mask;
assert(ep->me_value == NULL);
*value_addr = &ep->me_value;
}
static int
insertion_resize(PyDictObject *mp)
{
return dictresize(mp, GROWTH_RATE(mp));
}
/*
Internal routine to insert a new item into the table.
Used both by the internal resize routine and by the public insert routine.
Returns -1 if an error occurred, or 0 on success.
*/
static int
insertdict(PyDictObject *mp, PyObject *key, Py_hash_t hash, PyObject *value)
{
PyObject *old_value;
PyObject **value_addr;
PyDictKeyEntry *ep, *ep0;
Py_ssize_t hashpos, ix;
Py_INCREF(key);
Py_INCREF(value);
if (mp->ma_values != NULL && !PyUnicode_CheckExact(key)) {
if (insertion_resize(mp) < 0)
goto Fail;
}
ix = mp->ma_keys->dk_lookup(mp, key, hash, &value_addr, &hashpos);
if (ix == DKIX_ERROR)
goto Fail;
assert(PyUnicode_CheckExact(key) || mp->ma_keys->dk_lookup == lookdict);
MAINTAIN_TRACKING(mp, key, value);
/* When insertion order is different from shared key, we can't share
* the key anymore. Convert this instance to combine table.
*/
if (_PyDict_HasSplitTable(mp) &&
((ix >= 0 && *value_addr == NULL && mp->ma_used != ix) ||
(ix == DKIX_EMPTY && mp->ma_used != mp->ma_keys->dk_nentries))) {
if (insertion_resize(mp) < 0)
goto Fail;
find_empty_slot(mp, key, hash, &value_addr, &hashpos);
ix = DKIX_EMPTY;
}
if (ix == DKIX_EMPTY) {
/* Insert into new slot. */
if (mp->ma_keys->dk_usable <= 0) {
/* Need to resize. */
if (insertion_resize(mp) < 0)
goto Fail;
find_empty_slot(mp, key, hash, &value_addr, &hashpos);
}
ep0 = DK_ENTRIES(mp->ma_keys);
ep = &ep0[mp->ma_keys->dk_nentries];
dk_set_index(mp->ma_keys, hashpos, mp->ma_keys->dk_nentries);
ep->me_key = key;
ep->me_hash = hash;
if (mp->ma_values) {
assert (mp->ma_values[mp->ma_keys->dk_nentries] == NULL);
mp->ma_values[mp->ma_keys->dk_nentries] = value;
}
else {
ep->me_value = value;
}
mp->ma_used++;
mp->ma_version_tag = DICT_NEXT_VERSION();
mp->ma_keys->dk_usable--;
mp->ma_keys->dk_nentries++;
assert(mp->ma_keys->dk_usable >= 0);
assert(_PyDict_CheckConsistency(mp));
return 0;
}
assert(value_addr != NULL);
old_value = *value_addr;
if (old_value != NULL) {
*value_addr = value;
mp->ma_version_tag = DICT_NEXT_VERSION();
assert(_PyDict_CheckConsistency(mp));
Py_DECREF(old_value); /* which **CAN** re-enter (see issue #22653) */
Py_DECREF(key);
return 0;
}
/* pending state */
assert(_PyDict_HasSplitTable(mp));
assert(ix == mp->ma_used);
*value_addr = value;
mp->ma_used++;
mp->ma_version_tag = DICT_NEXT_VERSION();
assert(_PyDict_CheckConsistency(mp));
Py_DECREF(key);
return 0;
Fail:
Py_DECREF(value);
Py_DECREF(key);
return -1;
}
/*
Internal routine used by dictresize() to insert an item which is
known to be absent from the dict. This routine also assumes that
the dict contains no deleted entries. Besides the performance benefit,
using insertdict() in dictresize() is dangerous (SF bug #1456209).
Note that no refcounts are changed by this routine; if needed, the caller
is responsible for incref'ing `key` and `value`.
Neither mp->ma_used nor k->dk_usable are modified by this routine; the caller
must set them correctly
*/
static void
insertdict_clean(PyDictObject *mp, PyObject *key, Py_hash_t hash,
PyObject *value)
{
size_t i;
PyDictKeysObject *k = mp->ma_keys;
size_t mask = (size_t)DK_SIZE(k)-1;
PyDictKeyEntry *ep0 = DK_ENTRIES(mp->ma_keys);
PyDictKeyEntry *ep;
assert(k->dk_lookup != NULL);
assert(value != NULL);
assert(key != NULL);
assert(PyUnicode_CheckExact(key) || k->dk_lookup == lookdict);
i = hash & mask;
for (size_t perturb = hash; dk_get_index(k, i) != DKIX_EMPTY;) {
perturb >>= PERTURB_SHIFT;
i = mask & ((i << 2) + i + perturb + 1);
}
ep = &ep0[k->dk_nentries];
assert(ep->me_value == NULL);
dk_set_index(k, i, k->dk_nentries);
k->dk_nentries++;
ep->me_key = key;
ep->me_hash = hash;
ep->me_value = value;
}
/*
Restructure the table by allocating a new table and reinserting all
items again. When entries have been deleted, the new table may
actually be smaller than the old one.
If a table is split (its keys and hashes are shared, its values are not),
then the values are temporarily copied into the table, it is resized as
a combined table, then the me_value slots in the old table are NULLed out.
After resizing a table is always combined,
but can be resplit by make_keys_shared().
*/
static int
dictresize(PyDictObject *mp, Py_ssize_t minsize)
{
Py_ssize_t i, newsize;
PyDictKeysObject *oldkeys;
PyObject **oldvalues;
PyDictKeyEntry *ep0;
/* Find the smallest table size > minused. */
for (newsize = PyDict_MINSIZE;
newsize < minsize && newsize > 0;
newsize <<= 1)
;
if (newsize <= 0) {
PyErr_NoMemory();
return -1;
}
oldkeys = mp->ma_keys;
oldvalues = mp->ma_values;
/* Allocate a new table. */
mp->ma_keys = new_keys_object(newsize);
if (mp->ma_keys == NULL) {
mp->ma_keys = oldkeys;
return -1;
}
// New table must be large enough.
assert(mp->ma_keys->dk_usable >= mp->ma_used);
if (oldkeys->dk_lookup == lookdict)
mp->ma_keys->dk_lookup = lookdict;
mp->ma_values = NULL;
ep0 = DK_ENTRIES(oldkeys);
/* Main loop below assumes we can transfer refcount to new keys
* and that value is stored in me_value.
* Increment ref-counts and copy values here to compensate
* This (resizing a split table) should be relatively rare */
if (oldvalues != NULL) {
for (i = 0; i < oldkeys->dk_nentries; i++) {
if (oldvalues[i] != NULL) {
Py_INCREF(ep0[i].me_key);
ep0[i].me_value = oldvalues[i];
}
}
}
/* Main loop */
for (i = 0; i < oldkeys->dk_nentries; i++) {
PyDictKeyEntry *ep = &ep0[i];
if (ep->me_value != NULL) {
insertdict_clean(mp, ep->me_key, ep->me_hash, ep->me_value);
}
}
mp->ma_keys->dk_usable -= mp->ma_used;
if (oldvalues != NULL) {
/* NULL out me_value slot in oldkeys, in case it was shared */
for (i = 0; i < oldkeys->dk_nentries; i++)
ep0[i].me_value = NULL;
DK_DECREF(oldkeys);
if (oldvalues != empty_values) {
free_values(oldvalues);
}
}
else {
assert(oldkeys->dk_lookup != lookdict_split);
assert(oldkeys->dk_refcnt == 1);
DK_DEBUG_DECREF PyObject_FREE(oldkeys);
}
return 0;
}
/* Returns NULL if unable to split table.
* A NULL return does not necessarily indicate an error */
static PyDictKeysObject *
make_keys_shared(PyObject *op)
{
Py_ssize_t i;
Py_ssize_t size;
PyDictObject *mp = (PyDictObject *)op;
if (!PyDict_CheckExact(op))
return NULL;
if (!_PyDict_HasSplitTable(mp)) {
PyDictKeyEntry *ep0;
PyObject **values;
assert(mp->ma_keys->dk_refcnt == 1);
if (mp->ma_keys->dk_lookup == lookdict) {
return NULL;
}
else if (mp->ma_keys->dk_lookup == lookdict_unicode) {
/* Remove dummy keys */
if (dictresize(mp, DK_SIZE(mp->ma_keys)))
return NULL;
}
assert(mp->ma_keys->dk_lookup == lookdict_unicode_nodummy);
/* Copy values into a new array */
ep0 = DK_ENTRIES(mp->ma_keys);
size = USABLE_FRACTION(DK_SIZE(mp->ma_keys));
values = new_values(size);
if (values == NULL) {
PyErr_SetString(PyExc_MemoryError,
"Not enough memory to allocate new values array");
return NULL;
}
for (i = 0; i < size; i++) {
values[i] = ep0[i].me_value;
ep0[i].me_value = NULL;
}
mp->ma_keys->dk_lookup = lookdict_split;
mp->ma_values = values;
}
DK_INCREF(mp->ma_keys);
return mp->ma_keys;
}
PyObject *
_PyDict_NewPresized(Py_ssize_t minused)
{
const Py_ssize_t max_presize = 128 * 1024;
Py_ssize_t newsize;
PyDictKeysObject *new_keys;
/* There are no strict guarantee that returned dict can contain minused
* items without resize. So we create medium size dict instead of very
* large dict or MemoryError.
*/
if (minused > USABLE_FRACTION(max_presize)) {
newsize = max_presize;
}
else {
Py_ssize_t minsize = ESTIMATE_SIZE(minused);
newsize = PyDict_MINSIZE;
while (newsize < minsize) {
newsize <<= 1;
}
}
assert(IS_POWER_OF_2(newsize));
new_keys = new_keys_object(newsize);
if (new_keys == NULL)
return NULL;
return new_dict(new_keys, NULL);
}
/* Note that, for historical reasons, PyDict_GetItem() suppresses all errors
* that may occur (originally dicts supported only string keys, and exceptions
* weren't possible). So, while the original intent was that a NULL return
* meant the key wasn't present, in reality it can mean that, or that an error
* (suppressed) occurred while computing the key's hash, or that some error
* (suppressed) occurred when comparing keys in the dict's internal probe
* sequence. A nasty example of the latter is when a Python-coded comparison
* function hits a stack-depth error, which can cause this to return NULL
* even if the key is present.
*/
PyObject *
PyDict_GetItem(PyObject *op, PyObject *key)
{
Py_hash_t hash;
Py_ssize_t ix;
PyDictObject *mp = (PyDictObject *)op;
PyThreadState *tstate;
PyObject **value_addr;
if (UNLIKELY(!PyDict_Check(op)))
return NULL;
if (UNLIKELY(!PyUnicode_CheckExact(key)) ||
UNLIKELY((hash = ((PyASCIIObject *) key)->hash) == -1))
{
hash = PyObject_Hash(key);
if (hash == -1) {
PyErr_Clear();
return NULL;
}
}
/* We can arrive here with a NULL tstate during initialization: try
running "python -Wi" for an example related to string interning.
Let's just hope that no exception occurs then... This must be
_PyThreadState_Current and not PyThreadState_GET() because in debug
mode, the latter complains if tstate is NULL. */
tstate = _PyThreadState_UncheckedGet();
if (UNLIKELY(tstate != NULL && tstate->curexc_type != NULL)) {
/* preserve the existing exception */
PyObject *err_type, *err_value, *err_tb;
PyErr_Fetch(&err_type, &err_value, &err_tb);
ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr, NULL);
/* ignore errors */
PyErr_Restore(err_type, err_value, err_tb);
if (ix < 0)
return NULL;
}
else {
ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr, NULL);
if (ix < 0) {
/* [jart] don't clear the error if there is no error */
if (UNLIKELY(ix == DKIX_ERROR))
PyErr_Clear();
return NULL;
}
}
return *value_addr;
}
/* Same as PyDict_GetItemWithError() but with hash supplied by caller.
This returns NULL *with* an exception set if an exception occurred.
It returns NULL *without* an exception set if the key wasn't present.
*/
PyObject *
_PyDict_GetItem_KnownHash(PyObject *op, PyObject *key, Py_hash_t hash)
{
Py_ssize_t ix;
PyDictObject *mp = (PyDictObject *)op;
PyObject **value_addr;
if (!PyDict_Check(op)) {
PyErr_BadInternalCall();
return NULL;
}
ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr, NULL);
if (ix < 0) {
return NULL;
}
return *value_addr;
}
/* Variant of PyDict_GetItem() that doesn't suppress exceptions.
This returns NULL *with* an exception set if an exception occurred.
It returns NULL *without* an exception set if the key wasn't present.
*/
PyObject *
PyDict_GetItemWithError(PyObject *op, PyObject *key)
{
Py_ssize_t ix;
Py_hash_t hash;
PyDictObject*mp = (PyDictObject *)op;
PyObject **value_addr;
if (!PyDict_Check(op)) {
PyErr_BadInternalCall();
return NULL;
}
if (!PyUnicode_CheckExact(key) ||
(hash = ((PyASCIIObject *) key)->hash) == -1)
{
hash = PyObject_Hash(key);
if (hash == -1) {
return NULL;
}
}
ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr, NULL);
if (ix < 0)
return NULL;
return *value_addr;
}
PyObject *
_PyDict_GetItemIdWithError(PyObject *dp, struct _Py_Identifier *key)
{
PyObject *kv;
kv = _PyUnicode_FromId(key); /* borrowed */
if (kv == NULL)
return NULL;
return PyDict_GetItemWithError(dp, kv);
}
/* Fast version of global value lookup (LOAD_GLOBAL).
* Lookup in globals, then builtins.
*
* Raise an exception and return NULL if an error occurred (ex: computing the
* key hash failed, key comparison failed, ...). Return NULL if the key doesn't
* exist. Return the value if the key exists.
*/
PyObject *
_PyDict_LoadGlobal(PyDictObject *globals, PyDictObject *builtins, PyObject *key)
{
Py_ssize_t ix;
Py_hash_t hash;
PyObject **value_addr;
if (UNLIKELY(!PyUnicode_CheckExact(key)) ||
(hash = ((PyASCIIObject *) key)->hash) == -1)
{
hash = PyObject_Hash(key);
if (hash == -1)
return NULL;
}
/* namespace 1: globals */
ix = globals->ma_keys->dk_lookup(globals, key, hash, &value_addr, NULL);
if (UNLIKELY(ix == DKIX_ERROR)) /* 0% taken */
return NULL;
if (LIKELY(ix != DKIX_EMPTY) && /* 90.3814% taken */
LIKELY(*value_addr != NULL)) /* 100% taken */
return *value_addr;
/* namespace 2: builtins */
ix = builtins->ma_keys->dk_lookup(builtins, key, hash, &value_addr, NULL);
if (UNLIKELY(ix < 0)) /* 5.9974e-05% taken */
return NULL;
return *value_addr;
}
/* CAUTION: PyDict_SetItem() must guarantee that it won't resize the
* dictionary if it's merely replacing the value for an existing key.
* This means that it's safe to loop over a dictionary with PyDict_Next()
* and occasionally replace a value -- but you can't insert new keys or
* remove them.
*/
int
PyDict_SetItem(PyObject *op, PyObject *key, PyObject *value)
{
PyDictObject *mp;
Py_hash_t hash;
if (!PyDict_Check(op)) {
PyErr_BadInternalCall();
return -1;
}
assert(key);
assert(value);
mp = (PyDictObject *)op;
if (!PyUnicode_CheckExact(key) ||
(hash = ((PyASCIIObject *) key)->hash) == -1)
{
hash = PyObject_Hash(key);
if (hash == -1)
return -1;
}
/* insertdict() handles any resizing that might be necessary */
return insertdict(mp, key, hash, value);
}
int
_PyDict_SetItem_KnownHash(PyObject *op, PyObject *key, PyObject *value,
Py_hash_t hash)
{
PyDictObject *mp;
if (!PyDict_Check(op)) {
PyErr_BadInternalCall();
return -1;
}
assert(key);
assert(value);
assert(hash != -1);
mp = (PyDictObject *)op;
/* insertdict() handles any resizing that might be necessary */
return insertdict(mp, key, hash, value);
}
static int
delitem_common(PyDictObject *mp, Py_ssize_t hashpos, Py_ssize_t ix,
PyObject **value_addr)
{
PyObject *old_key, *old_value;
PyDictKeyEntry *ep;
old_value = *value_addr;
assert(old_value != NULL);
*value_addr = NULL;
mp->ma_used--;
mp->ma_version_tag = DICT_NEXT_VERSION();
ep = &DK_ENTRIES(mp->ma_keys)[ix];
dk_set_index(mp->ma_keys, hashpos, DKIX_DUMMY);
ENSURE_ALLOWS_DELETIONS(mp);
old_key = ep->me_key;
ep->me_key = NULL;
Py_DECREF(old_key);
Py_DECREF(old_value);
assert(_PyDict_CheckConsistency(mp));
return 0;
}
int
PyDict_DelItem(PyObject *op, PyObject *key)
{
Py_hash_t hash;
assert(key);
if (!PyUnicode_CheckExact(key) ||
(hash = ((PyASCIIObject *) key)->hash) == -1) {
hash = PyObject_Hash(key);
if (hash == -1)
return -1;
}
return _PyDict_DelItem_KnownHash(op, key, hash);
}
int
_PyDict_DelItem_KnownHash(PyObject *op, PyObject *key, Py_hash_t hash)
{
Py_ssize_t hashpos, ix;
PyDictObject *mp;
PyObject **value_addr;
if (!PyDict_Check(op)) {
PyErr_BadInternalCall();
return -1;
}
assert(key);
assert(hash != -1);
mp = (PyDictObject *)op;
ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr, &hashpos);
if (ix == DKIX_ERROR)
return -1;
if (ix == DKIX_EMPTY || *value_addr == NULL) {
_PyErr_SetKeyError(key);
return -1;
}
assert(dk_get_index(mp->ma_keys, hashpos) == ix);
// Split table doesn't allow deletion. Combine it.
if (_PyDict_HasSplitTable(mp)) {
if (dictresize(mp, DK_SIZE(mp->ma_keys))) {
return -1;
}
ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr, &hashpos);
assert(ix >= 0);
}
return delitem_common(mp, hashpos, ix, value_addr);
}
/* This function promises that the predicate -> deletion sequence is atomic
* (i.e. protected by the GIL), assuming the predicate itself doesn't
* release the GIL.
*/
int
_PyDict_DelItemIf(PyObject *op, PyObject *key,
int (*predicate)(PyObject *value))
{
Py_ssize_t hashpos, ix;
PyDictObject *mp;
Py_hash_t hash;
PyObject **value_addr;
int res;
if (!PyDict_Check(op)) {
PyErr_BadInternalCall();
return -1;
}
assert(key);
hash = PyObject_Hash(key);
if (hash == -1)
return -1;
mp = (PyDictObject *)op;
ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr, &hashpos);
if (ix == DKIX_ERROR)
return -1;
if (ix == DKIX_EMPTY || *value_addr == NULL) {
_PyErr_SetKeyError(key);
return -1;
}
assert(dk_get_index(mp->ma_keys, hashpos) == ix);
// Split table doesn't allow deletion. Combine it.
if (_PyDict_HasSplitTable(mp)) {
if (dictresize(mp, DK_SIZE(mp->ma_keys))) {
return -1;
}
ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr, &hashpos);
assert(ix >= 0);
}
res = predicate(*value_addr);
if (res == -1)
return -1;
if (res > 0)
return delitem_common(mp, hashpos, ix, value_addr);
else
return 0;
}
void
PyDict_Clear(PyObject *op)
{
PyDictObject *mp;
PyDictKeysObject *oldkeys;
PyObject **oldvalues;
Py_ssize_t i, n;
if (!PyDict_Check(op))
return;
mp = ((PyDictObject *)op);
oldkeys = mp->ma_keys;
oldvalues = mp->ma_values;
if (oldvalues == empty_values)
return;
/* Empty the dict... */
DK_INCREF(Py_EMPTY_KEYS);
mp->ma_keys = Py_EMPTY_KEYS;
mp->ma_values = empty_values;
mp->ma_used = 0;
mp->ma_version_tag = DICT_NEXT_VERSION();
/* ...then clear the keys and values */
if (oldvalues != NULL) {
n = oldkeys->dk_nentries;
for (i = 0; i < n; i++)
Py_CLEAR(oldvalues[i]);
free_values(oldvalues);
DK_DECREF(oldkeys);
}
else {
assert(oldkeys->dk_refcnt == 1);
DK_DECREF(oldkeys);
}
assert(_PyDict_CheckConsistency(mp));
}
/* Internal version of PyDict_Next that returns a hash value in addition
* to the key and value.
* Return 1 on success, return 0 when the reached the end of the dictionary
* (or if op is not a dictionary)
*/
int
_PyDict_Next(PyObject *op, Py_ssize_t *ppos, PyObject **pkey,
PyObject **pvalue, Py_hash_t *phash)
{
Py_ssize_t i, n;
PyDictObject *mp;
PyDictKeyEntry *entry_ptr;
PyObject *value;
if (!PyDict_Check(op))
return 0;
mp = (PyDictObject *)op;
i = *ppos;
n = mp->ma_keys->dk_nentries;
if ((size_t)i >= (size_t)n)
return 0;
if (mp->ma_values) {
PyObject **value_ptr = &mp->ma_values[i];
while (i < n && *value_ptr == NULL) {
value_ptr++;
i++;
}
if (i >= n)
return 0;
entry_ptr = &DK_ENTRIES(mp->ma_keys)[i];
value = *value_ptr;
}
else {
entry_ptr = &DK_ENTRIES(mp->ma_keys)[i];
while (i < n && entry_ptr->me_value == NULL) {
entry_ptr++;
i++;
}
if (i >= n)
return 0;
value = entry_ptr->me_value;
}
*ppos = i+1;
if (pkey)
*pkey = entry_ptr->me_key;
if (phash)
*phash = entry_ptr->me_hash;
if (pvalue)
*pvalue = value;
return 1;
}
/*
* Iterate over a dict. Use like so:
*
* Py_ssize_t i;
* PyObject *key, *value;
* i = 0; # important! i should not otherwise be changed by you
* while (PyDict_Next(yourdict, &i, &key, &value)) {
* Refer to borrowed references in key and value.
* }
*
* Return 1 on success, return 0 when the reached the end of the dictionary
* (or if op is not a dictionary)
*
* CAUTION: In general, it isn't safe to use PyDict_Next in a loop that
* mutates the dict. One exception: it is safe if the loop merely changes
* the values associated with the keys (but doesn't insert new keys or
* delete keys), via PyDict_SetItem().
*/
int
PyDict_Next(PyObject *op, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue)
{
return _PyDict_Next(op, ppos, pkey, pvalue, NULL);
}
/* Internal version of dict.pop(). */
PyObject *
_PyDict_Pop_KnownHash(PyObject *dict, PyObject *key, Py_hash_t hash, PyObject *deflt)
{
Py_ssize_t ix, hashpos;
PyObject *old_value, *old_key;
PyDictKeyEntry *ep;
PyObject **value_addr;
PyDictObject *mp;
assert(PyDict_Check(dict));
mp = (PyDictObject *)dict;
if (mp->ma_used == 0) {
if (deflt) {
Py_INCREF(deflt);
return deflt;
}
_PyErr_SetKeyError(key);
return NULL;
}
ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr, &hashpos);
if (ix == DKIX_ERROR)
return NULL;
if (ix == DKIX_EMPTY || *value_addr == NULL) {
if (deflt) {
Py_INCREF(deflt);
return deflt;
}
_PyErr_SetKeyError(key);
return NULL;
}
// Split table doesn't allow deletion. Combine it.
if (_PyDict_HasSplitTable(mp)) {
if (dictresize(mp, DK_SIZE(mp->ma_keys))) {
return NULL;
}
ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr, &hashpos);
assert(ix >= 0);
}
old_value = *value_addr;
assert(old_value != NULL);
*value_addr = NULL;
mp->ma_used--;
mp->ma_version_tag = DICT_NEXT_VERSION();
dk_set_index(mp->ma_keys, hashpos, DKIX_DUMMY);
ep = &DK_ENTRIES(mp->ma_keys)[ix];
ENSURE_ALLOWS_DELETIONS(mp);
old_key = ep->me_key;
ep->me_key = NULL;
Py_DECREF(old_key);
assert(_PyDict_CheckConsistency(mp));
return old_value;
}
PyObject *
_PyDict_Pop(PyObject *dict, PyObject *key, PyObject *deflt)
{
Py_hash_t hash;
if (((PyDictObject *)dict)->ma_used == 0) {
if (deflt) {
Py_INCREF(deflt);
return deflt;
}
_PyErr_SetKeyError(key);
return NULL;
}
if (!PyUnicode_CheckExact(key) ||
(hash = ((PyASCIIObject *) key)->hash) == -1) {
hash = PyObject_Hash(key);
if (hash == -1)
return NULL;
}
return _PyDict_Pop_KnownHash(dict, key, hash, deflt);
}
/* Internal version of dict.from_keys(). It is subclass-friendly. */
PyObject *
_PyDict_FromKeys(PyObject *cls, PyObject *iterable, PyObject *value)
{
PyObject *it; /* iter(iterable) */
PyObject *key;
PyObject *d;
int status;
d = PyObject_CallObject(cls, NULL);
if (d == NULL)
return NULL;
if (PyDict_CheckExact(d) && ((PyDictObject *)d)->ma_used == 0) {
if (PyDict_CheckExact(iterable)) {
PyDictObject *mp = (PyDictObject *)d;
PyObject *oldvalue;
Py_ssize_t pos = 0;
PyObject *key;
Py_hash_t hash;
if (dictresize(mp, ESTIMATE_SIZE(((PyDictObject *)iterable)->ma_used))) {
Py_DECREF(d);
return NULL;
}
while (_PyDict_Next(iterable, &pos, &key, &oldvalue, &hash)) {
if (insertdict(mp, key, hash, value)) {
Py_DECREF(d);
return NULL;
}
}
return d;
}
if (PyAnySet_CheckExact(iterable)) {
PyDictObject *mp = (PyDictObject *)d;
Py_ssize_t pos = 0;
PyObject *key;
Py_hash_t hash;
if (dictresize(mp, ESTIMATE_SIZE(PySet_GET_SIZE(iterable)))) {
Py_DECREF(d);
return NULL;
}
while (_PySet_NextEntry(iterable, &pos, &key, &hash)) {
if (insertdict(mp, key, hash, value)) {
Py_DECREF(d);
return NULL;
}
}
return d;
}
}
it = PyObject_GetIter(iterable);
if (it == NULL){
Py_DECREF(d);
return NULL;
}
if (PyDict_CheckExact(d)) {
while ((key = PyIter_Next(it)) != NULL) {
status = PyDict_SetItem(d, key, value);
Py_DECREF(key);
if (status < 0)
goto Fail;
}
} else {
while ((key = PyIter_Next(it)) != NULL) {
status = PyObject_SetItem(d, key, value);
Py_DECREF(key);
if (status < 0)
goto Fail;
}
}
if (PyErr_Occurred())
goto Fail;
Py_DECREF(it);
return d;
Fail:
Py_DECREF(it);
Py_DECREF(d);
return NULL;
}
/* Methods */
static void
dict_dealloc(PyDictObject *mp)
{
PyObject **values = mp->ma_values;
PyDictKeysObject *keys = mp->ma_keys;
Py_ssize_t i, n;
/* bpo-31095: UnTrack is needed before calling any callbacks */
PyObject_GC_UnTrack(mp);
Py_TRASHCAN_SAFE_BEGIN(mp)
if (values != NULL) {
if (values != empty_values) {
for (i = 0, n = mp->ma_keys->dk_nentries; i < n; i++) {
Py_XDECREF(values[i]);
}
free_values(values);
}
DK_DECREF(keys);
}
else if (keys != NULL) {
assert(keys->dk_refcnt == 1);
DK_DECREF(keys);
}
if (numfree < PyDict_MAXFREELIST && Py_TYPE(mp) == &PyDict_Type)
free_list[numfree++] = mp;
else
Py_TYPE(mp)->tp_free((PyObject *)mp);
Py_TRASHCAN_SAFE_END(mp)
}
static PyObject *
dict_repr(PyDictObject *mp)
{
Py_ssize_t i;
PyObject *key = NULL, *value = NULL;
_PyUnicodeWriter writer;
int first;
i = Py_ReprEnter((PyObject *)mp);
if (i != 0) {
return i > 0 ? PyUnicode_FromString("{...}") : NULL;
}
if (mp->ma_used == 0) {
Py_ReprLeave((PyObject *)mp);
return PyUnicode_FromString("{}");
}
_PyUnicodeWriter_Init(&writer);
writer.overallocate = 1;
/* "{" + "1: 2" + ", 3: 4" * (len - 1) + "}" */
writer.min_length = 1 + 4 + (2 + 4) * (mp->ma_used - 1) + 1;
if (_PyUnicodeWriter_WriteChar(&writer, '{') < 0)
goto error;
/* Do repr() on each key+value pair, and insert ": " between them.
Note that repr may mutate the dict. */
i = 0;
first = 1;
while (PyDict_Next((PyObject *)mp, &i, &key, &value)) {
PyObject *s;
int res;
/* Prevent repr from deleting key or value during key format. */
Py_INCREF(key);
Py_INCREF(value);
if (!first) {
if (_PyUnicodeWriter_WriteASCIIString(&writer, ", ", 2) < 0)
goto error;
}
first = 0;
s = PyObject_Repr(key);
if (s == NULL)
goto error;
res = _PyUnicodeWriter_WriteStr(&writer, s);
Py_DECREF(s);
if (res < 0)
goto error;
if (_PyUnicodeWriter_WriteASCIIString(&writer, ": ", 2) < 0)
goto error;
s = PyObject_Repr(value);
if (s == NULL)
goto error;
res = _PyUnicodeWriter_WriteStr(&writer, s);
Py_DECREF(s);
if (res < 0)
goto error;
Py_CLEAR(key);
Py_CLEAR(value);
}
writer.overallocate = 0;
if (_PyUnicodeWriter_WriteChar(&writer, '}') < 0)
goto error;
Py_ReprLeave((PyObject *)mp);
return _PyUnicodeWriter_Finish(&writer);
error:
Py_ReprLeave((PyObject *)mp);
_PyUnicodeWriter_Dealloc(&writer);
Py_XDECREF(key);
Py_XDECREF(value);
return NULL;
}
static Py_ssize_t
dict_length(PyDictObject *mp)
{
return mp->ma_used;
}
static PyObject *
dict_subscript(PyDictObject *mp, PyObject *key)
{
PyObject *v;
Py_ssize_t ix;
Py_hash_t hash;
PyObject **value_addr;
if (!PyUnicode_CheckExact(key) ||
(hash = ((PyASCIIObject *) key)->hash) == -1) {
hash = PyObject_Hash(key);
if (hash == -1)
return NULL;
}
ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr, NULL);
if (ix == DKIX_ERROR)
return NULL;
if (ix == DKIX_EMPTY || *value_addr == NULL) {
if (!PyDict_CheckExact(mp)) {
/* Look up __missing__ method if we're a subclass. */
PyObject *missing, *res;
_Py_IDENTIFIER(__missing__);
missing = _PyObject_LookupSpecial((PyObject *)mp, &PyId___missing__);
if (missing != NULL) {
res = PyObject_CallFunctionObjArgs(missing,
key, NULL);
Py_DECREF(missing);
return res;
}
else if (PyErr_Occurred())
return NULL;
}
_PyErr_SetKeyError(key);
return NULL;
}
v = *value_addr;
Py_INCREF(v);
return v;
}
static int
dict_ass_sub(PyDictObject *mp, PyObject *v, PyObject *w)
{
if (w == NULL)
return PyDict_DelItem((PyObject *)mp, v);
else
return PyDict_SetItem((PyObject *)mp, v, w);
}
static PyMappingMethods dict_as_mapping = {
(lenfunc)dict_length, /*mp_length*/
(binaryfunc)dict_subscript, /*mp_subscript*/
(objobjargproc)dict_ass_sub, /*mp_ass_subscript*/
};
static PyObject *
dict_keys(PyDictObject *mp)
{
PyObject *v;
Py_ssize_t i, j;
PyDictKeyEntry *ep;
Py_ssize_t size, n, offset;
PyObject **value_ptr;
again:
n = mp->ma_used;
v = PyList_New(n);
if (v == NULL)
return NULL;
if (n != mp->ma_used) {
/* Durnit. The allocations caused the dict to resize.
* Just start over, this shouldn't normally happen.
*/
Py_DECREF(v);
goto again;
}
ep = DK_ENTRIES(mp->ma_keys);
size = mp->ma_keys->dk_nentries;
if (mp->ma_values) {
value_ptr = mp->ma_values;
offset = sizeof(PyObject *);
}
else {
value_ptr = &ep[0].me_value;
offset = sizeof(PyDictKeyEntry);
}
for (i = 0, j = 0; i < size; i++) {
if (*value_ptr != NULL) {
PyObject *key = ep[i].me_key;
Py_INCREF(key);
PyList_SET_ITEM(v, j, key);
j++;
}
value_ptr = (PyObject **)(((char *)value_ptr) + offset);
}
assert(j == n);
return v;
}
static PyObject *
dict_values(PyDictObject *mp)
{
PyObject *v;
Py_ssize_t i, j;
PyDictKeyEntry *ep;
Py_ssize_t size, n, offset;
PyObject **value_ptr;
again:
n = mp->ma_used;
v = PyList_New(n);
if (v == NULL)
return NULL;
if (n != mp->ma_used) {
/* Durnit. The allocations caused the dict to resize.
* Just start over, this shouldn't normally happen.
*/
Py_DECREF(v);
goto again;
}
ep = DK_ENTRIES(mp->ma_keys);
size = mp->ma_keys->dk_nentries;
if (mp->ma_values) {
value_ptr = mp->ma_values;
offset = sizeof(PyObject *);
}
else {
value_ptr = &ep[0].me_value;
offset = sizeof(PyDictKeyEntry);
}
for (i = 0, j = 0; i < size; i++) {
PyObject *value = *value_ptr;
value_ptr = (PyObject **)(((char *)value_ptr) + offset);
if (value != NULL) {
Py_INCREF(value);
PyList_SET_ITEM(v, j, value);
j++;
}
}
assert(j == n);
return v;
}
static PyObject *
dict_items(PyDictObject *mp)
{
PyObject *v;
Py_ssize_t i, j, n;
Py_ssize_t size, offset;
PyObject *item, *key;
PyDictKeyEntry *ep;
PyObject **value_ptr;
/* Preallocate the list of tuples, to avoid allocations during
* the loop over the items, which could trigger GC, which
* could resize the dict. :-(
*/
again:
n = mp->ma_used;
v = PyList_New(n);
if (v == NULL)
return NULL;
for (i = 0; i < n; i++) {
item = PyTuple_New(2);
if (item == NULL) {
Py_DECREF(v);
return NULL;
}
PyList_SET_ITEM(v, i, item);
}
if (n != mp->ma_used) {
/* Durnit. The allocations caused the dict to resize.
* Just start over, this shouldn't normally happen.
*/
Py_DECREF(v);
goto again;
}
/* Nothing we do below makes any function calls. */
ep = DK_ENTRIES(mp->ma_keys);
size = mp->ma_keys->dk_nentries;
if (mp->ma_values) {
value_ptr = mp->ma_values;
offset = sizeof(PyObject *);
}
else {
value_ptr = &ep[0].me_value;
offset = sizeof(PyDictKeyEntry);
}
for (i = 0, j = 0; i < size; i++) {
PyObject *value = *value_ptr;
value_ptr = (PyObject **)(((char *)value_ptr) + offset);
if (value != NULL) {
key = ep[i].me_key;
item = PyList_GET_ITEM(v, j);
Py_INCREF(key);
PyTuple_SET_ITEM(item, 0, key);
Py_INCREF(value);
PyTuple_SET_ITEM(item, 1, value);
j++;
}
}
assert(j == n);
return v;
}
/*[clinic input]
@classmethod
dict.fromkeys
iterable: object
value: object=None
/
Returns a new dict with keys from iterable and values equal to value.
[clinic start generated code]*/
static PyObject *
dict_fromkeys_impl(PyTypeObject *type, PyObject *iterable, PyObject *value)
/*[clinic end generated code: output=8fb98e4b10384999 input=b85a667f9bf4669d]*/
{
return _PyDict_FromKeys((PyObject *)type, iterable, value);
}
static int
dict_update_common(PyObject *self, PyObject *args, PyObject *kwds,
const char *methname)
{
PyObject *arg = NULL;
int result = 0;
if (!PyArg_UnpackTuple(args, methname, 0, 1, &arg))
result = -1;
else if (arg != NULL) {
_Py_IDENTIFIER(keys);
if (_PyObject_HasAttrId(arg, &PyId_keys))
result = PyDict_Merge(self, arg, 1);
else
result = PyDict_MergeFromSeq2(self, arg, 1);
}
if (result == 0 && kwds != NULL) {
if (PyArg_ValidateKeywordArguments(kwds))
result = PyDict_Merge(self, kwds, 1);
else
result = -1;
}
return result;
}
static PyObject *
dict_update(PyObject *self, PyObject *args, PyObject *kwds)
{
if (dict_update_common(self, args, kwds, "update") != -1)
Py_RETURN_NONE;
return NULL;
}
/* Update unconditionally replaces existing items.
Merge has a 3rd argument 'override'; if set, it acts like Update,
otherwise it leaves existing items unchanged.
PyDict_{Update,Merge} update/merge from a mapping object.
PyDict_MergeFromSeq2 updates/merges from any iterable object
producing iterable objects of length 2.
*/
int
PyDict_MergeFromSeq2(PyObject *d, PyObject *seq2, int override)
{
PyObject *it; /* iter(seq2) */
Py_ssize_t i; /* index into seq2 of current element */
PyObject *item; /* seq2[i] */
PyObject *fast; /* item as a 2-tuple or 2-list */
assert(d != NULL);
assert(PyDict_Check(d));
assert(seq2 != NULL);
it = PyObject_GetIter(seq2);
if (it == NULL)
return -1;
for (i = 0; ; ++i) {
PyObject *key, *value;
Py_ssize_t n;
fast = NULL;
item = PyIter_Next(it);
if (item == NULL) {
if (PyErr_Occurred())
goto Fail;
break;
}
/* Convert item to sequence, and verify length 2. */
fast = PySequence_Fast(item, "");
if (fast == NULL) {
if (PyErr_ExceptionMatches(PyExc_TypeError))
PyErr_Format(PyExc_TypeError,
"cannot convert dictionary update "
"sequence element #%zd to a sequence",
i);
goto Fail;
}
n = PySequence_Fast_GET_SIZE(fast);
if (n != 2) {
PyErr_Format(PyExc_ValueError,
"dictionary update sequence element #%zd "
"has length %zd; 2 is required",
i, n);
goto Fail;
}
/* Update/merge with this (key, value) pair. */
key = PySequence_Fast_GET_ITEM(fast, 0);
value = PySequence_Fast_GET_ITEM(fast, 1);
Py_INCREF(key);
Py_INCREF(value);
if (override || PyDict_GetItem(d, key) == NULL) {
int status = PyDict_SetItem(d, key, value);
if (status < 0) {
Py_DECREF(key);
Py_DECREF(value);
goto Fail;
}
}
Py_DECREF(key);
Py_DECREF(value);
Py_DECREF(fast);
Py_DECREF(item);
}
i = 0;
assert(_PyDict_CheckConsistency((PyDictObject *)d));
goto Return;
Fail:
Py_XDECREF(item);
Py_XDECREF(fast);
i = -1;
Return:
Py_DECREF(it);
return Py_SAFE_DOWNCAST(i, Py_ssize_t, int);
}
static int
dict_merge(PyObject *a, PyObject *b, int override)
{
PyDictObject *mp, *other;
Py_ssize_t i, n;
PyDictKeyEntry *entry, *ep0;
assert(0 <= override && override <= 2);
/* We accept for the argument either a concrete dictionary object,
* or an abstract "mapping" object. For the former, we can do
* things quite efficiently. For the latter, we only require that
* PyMapping_Keys() and PyObject_GetItem() be supported.
*/
if (a == NULL || !PyDict_Check(a) || b == NULL) {
PyErr_BadInternalCall();
return -1;
}
mp = (PyDictObject*)a;
if (PyDict_Check(b) && (Py_TYPE(b)->tp_iter == (getiterfunc)dict_iter)) {
other = (PyDictObject*)b;
if (other == mp || other->ma_used == 0)
/* a.update(a) or a.update({}); nothing to do */
return 0;
if (mp->ma_used == 0)
/* Since the target dict is empty, PyDict_GetItem()
* always returns NULL. Setting override to 1
* skips the unnecessary test.
*/
override = 1;
/* Do one big resize at the start, rather than
* incrementally resizing as we insert new items. Expect
* that there will be no (or few) overlapping keys.
*/
if (USABLE_FRACTION(mp->ma_keys->dk_size) < other->ma_used) {
if (dictresize(mp, ESTIMATE_SIZE(mp->ma_used + other->ma_used))) {
return -1;
}
}
ep0 = DK_ENTRIES(other->ma_keys);
for (i = 0, n = other->ma_keys->dk_nentries; i < n; i++) {
PyObject *key, *value;
Py_hash_t hash;
entry = &ep0[i];
key = entry->me_key;
hash = entry->me_hash;
if (other->ma_values)
value = other->ma_values[i];
else
value = entry->me_value;
if (value != NULL) {
int err = 0;
Py_INCREF(key);
Py_INCREF(value);
if (override == 1)
err = insertdict(mp, key, hash, value);
else if (_PyDict_GetItem_KnownHash(a, key, hash) == NULL) {
if (PyErr_Occurred()) {
Py_DECREF(value);
Py_DECREF(key);
return -1;
}
err = insertdict(mp, key, hash, value);
}
else if (override != 0) {
_PyErr_SetKeyError(key);
Py_DECREF(value);
Py_DECREF(key);
return -1;
}
Py_DECREF(value);
Py_DECREF(key);
if (err != 0)
return -1;
if (n != other->ma_keys->dk_nentries) {
PyErr_SetString(PyExc_RuntimeError,
"dict mutated during update");
return -1;
}
}
}
}
else {
/* Do it the generic, slower way */
PyObject *keys = PyMapping_Keys(b);
PyObject *iter;
PyObject *key, *value;
int status;
if (keys == NULL)
/* Docstring says this is equivalent to E.keys() so
* if E doesn't have a .keys() method we want
* AttributeError to percolate up. Might as well
* do the same for any other error.
*/
return -1;
iter = PyObject_GetIter(keys);
Py_DECREF(keys);
if (iter == NULL)
return -1;
for (key = PyIter_Next(iter); key; key = PyIter_Next(iter)) {
if (override != 1 && PyDict_GetItem(a, key) != NULL) {
if (override != 0) {
_PyErr_SetKeyError(key);
Py_DECREF(key);
Py_DECREF(iter);
return -1;
}
Py_DECREF(key);
continue;
}
value = PyObject_GetItem(b, key);
if (value == NULL) {
Py_DECREF(iter);
Py_DECREF(key);
return -1;
}
status = PyDict_SetItem(a, key, value);
Py_DECREF(key);
Py_DECREF(value);
if (status < 0) {
Py_DECREF(iter);
return -1;
}
}
Py_DECREF(iter);
if (PyErr_Occurred())
/* Iterator completed, via error */
return -1;
}
assert(_PyDict_CheckConsistency((PyDictObject *)a));
return 0;
}
int
PyDict_Update(PyObject *a, PyObject *b)
{
return dict_merge(a, b, 1);
}
int
PyDict_Merge(PyObject *a, PyObject *b, int override)
{
/* XXX Deprecate override not in (0, 1). */
return dict_merge(a, b, override != 0);
}
int
_PyDict_MergeEx(PyObject *a, PyObject *b, int override)
{
return dict_merge(a, b, override);
}
static PyObject *
dict_copy(PyDictObject *mp)
{
return PyDict_Copy((PyObject*)mp);
}
PyObject *
PyDict_Copy(PyObject *o)
{
PyObject *copy;
PyDictObject *mp;
Py_ssize_t i, n;
if (o == NULL || !PyDict_Check(o)) {
PyErr_BadInternalCall();
return NULL;
}
mp = (PyDictObject *)o;
if (mp->ma_used == 0) {
/* The dict is empty; just return a new dict. */
return PyDict_New();
}
if (_PyDict_HasSplitTable(mp)) {
PyDictObject *split_copy;
Py_ssize_t size = USABLE_FRACTION(DK_SIZE(mp->ma_keys));
PyObject **newvalues;
newvalues = new_values(size);
if (newvalues == NULL)
return PyErr_NoMemory();
split_copy = PyObject_GC_New(PyDictObject, &PyDict_Type);
if (split_copy == NULL) {
free_values(newvalues);
return NULL;
}
split_copy->ma_values = newvalues;
split_copy->ma_keys = mp->ma_keys;
split_copy->ma_used = mp->ma_used;
split_copy->ma_version_tag = DICT_NEXT_VERSION();
DK_INCREF(mp->ma_keys);
for (i = 0, n = size; i < n; i++) {
PyObject *value = mp->ma_values[i];
Py_XINCREF(value);
split_copy->ma_values[i] = value;
}
if (_PyObject_GC_IS_TRACKED(mp))
_PyObject_GC_TRACK(split_copy);
return (PyObject *)split_copy;
}
if (PyDict_CheckExact(mp) && mp->ma_values == NULL &&
(mp->ma_used >= (mp->ma_keys->dk_nentries * 2) / 3))
{
/* Use fast-copy if:
(1) 'mp' is an instance of a subclassed dict; and
(2) 'mp' is not a split-dict; and
(3) if 'mp' is non-compact ('del' operation does not resize dicts),
do fast-copy only if it has at most 1/3 non-used keys.
The last condition (3) is important to guard against a pathalogical
case when a large dict is almost emptied with multiple del/pop
operations and copied after that. In cases like this, we defer to
PyDict_Merge, which produces a compacted copy.
*/
return clone_combined_dict(mp);
}
copy = PyDict_New();
if (copy == NULL)
return NULL;
if (PyDict_Merge(copy, o, 1) == 0)
return copy;
Py_DECREF(copy);
return NULL;
}
Py_ssize_t
PyDict_Size(PyObject *mp)
{
if (mp == NULL || !PyDict_Check(mp)) {
PyErr_BadInternalCall();
return -1;
}
return ((PyDictObject *)mp)->ma_used;
}
PyObject *
PyDict_Keys(PyObject *mp)
{
if (mp == NULL || !PyDict_Check(mp)) {
PyErr_BadInternalCall();
return NULL;
}
return dict_keys((PyDictObject *)mp);
}
PyObject *
PyDict_Values(PyObject *mp)
{
if (mp == NULL || !PyDict_Check(mp)) {
PyErr_BadInternalCall();
return NULL;
}
return dict_values((PyDictObject *)mp);
}
PyObject *
PyDict_Items(PyObject *mp)
{
if (mp == NULL || !PyDict_Check(mp)) {
PyErr_BadInternalCall();
return NULL;
}
return dict_items((PyDictObject *)mp);
}
/* Return 1 if dicts equal, 0 if not, -1 if error.
* Gets out as soon as any difference is detected.
* Uses only Py_EQ comparison.
*/
static int
dict_equal(PyDictObject *a, PyDictObject *b)
{
Py_ssize_t i;
if (a->ma_used != b->ma_used)
/* can't be equal if # of entries differ */
return 0;
/* Same # of entries -- check all of 'em. Exit early on any diff. */
for (i = 0; i < a->ma_keys->dk_nentries; i++) {
PyDictKeyEntry *ep = &DK_ENTRIES(a->ma_keys)[i];
PyObject *aval;
if (a->ma_values)
aval = a->ma_values[i];
else
aval = ep->me_value;
if (aval != NULL) {
int cmp;
PyObject *bval;
PyObject **vaddr;
PyObject *key = ep->me_key;
/* temporarily bump aval's refcount to ensure it stays
alive until we're done with it */
Py_INCREF(aval);
/* ditto for key */
Py_INCREF(key);
/* reuse the known hash value */
if ((b->ma_keys->dk_lookup)(b, key, ep->me_hash, &vaddr, NULL) < 0)
bval = NULL;
else
bval = *vaddr;
if (bval == NULL) {
Py_DECREF(key);
Py_DECREF(aval);
if (PyErr_Occurred())
return -1;
return 0;
}
cmp = PyObject_RichCompareBool(aval, bval, Py_EQ);
Py_DECREF(key);
Py_DECREF(aval);
if (cmp <= 0) /* error or not equal */
return cmp;
}
}
return 1;
}
static PyObject *
dict_richcompare(PyObject *v, PyObject *w, int op)
{
int cmp;
PyObject *res;
if (!PyDict_Check(v) || !PyDict_Check(w)) {
res = Py_NotImplemented;
}
else if (op == Py_EQ || op == Py_NE) {
cmp = dict_equal((PyDictObject *)v, (PyDictObject *)w);
if (cmp < 0)
return NULL;
res = (cmp == (op == Py_EQ)) ? Py_True : Py_False;
}
else
res = Py_NotImplemented;
Py_INCREF(res);
return res;
}
/*[clinic input]
@coexist
dict.__contains__
key: object
/
True if D has a key k, else False.
[clinic start generated code]*/
static PyObject *
dict___contains__(PyDictObject *self, PyObject *key)
/*[clinic end generated code: output=a3d03db709ed6e6b input=b852b2a19b51ab24]*/
{
register PyDictObject *mp = self;
Py_hash_t hash;
Py_ssize_t ix;
PyObject **value_addr;
if (!PyUnicode_CheckExact(key) ||
(hash = ((PyASCIIObject *) key)->hash) == -1) {
hash = PyObject_Hash(key);
if (hash == -1)
return NULL;
}
ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr, NULL);
if (ix == DKIX_ERROR)
return NULL;
if (ix == DKIX_EMPTY || *value_addr == NULL)
Py_RETURN_FALSE;
Py_RETURN_TRUE;
}
static PyObject *
dict_get(PyDictObject *mp, PyObject **args, Py_ssize_t nargs)
{
PyObject *key;
PyObject *failobj = Py_None;
PyObject *val = NULL;
Py_hash_t hash;
Py_ssize_t ix;
PyObject **value_addr;
if (!_PyArg_UnpackStack(args, nargs, "get", 1, 2, &key, &failobj))
return NULL;
if (!PyUnicode_CheckExact(key) ||
(hash = ((PyASCIIObject *) key)->hash) == -1) {
hash = PyObject_Hash(key);
if (hash == -1)
return NULL;
}
ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr, NULL);
if (ix == DKIX_ERROR)
return NULL;
if (ix == DKIX_EMPTY || *value_addr == NULL)
val = failobj;
else
val = *value_addr;
Py_INCREF(val);
return val;
}
PyObject *
PyDict_SetDefault(PyObject *d, PyObject *key, PyObject *defaultobj)
{
PyDictObject *mp = (PyDictObject *)d;
PyObject *value;
Py_hash_t hash;
Py_ssize_t hashpos, ix;
PyObject **value_addr;
if (!PyDict_Check(d)) {
PyErr_BadInternalCall();
return NULL;
}
if (!PyUnicode_CheckExact(key) ||
(hash = ((PyASCIIObject *) key)->hash) == -1) {
hash = PyObject_Hash(key);
if (hash == -1)
return NULL;
}
if (mp->ma_values != NULL && !PyUnicode_CheckExact(key)) {
if (insertion_resize(mp) < 0)
return NULL;
}
ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr, &hashpos);
if (ix == DKIX_ERROR)
return NULL;
if (_PyDict_HasSplitTable(mp) &&
((ix >= 0 && *value_addr == NULL && mp->ma_used != ix) ||
(ix == DKIX_EMPTY && mp->ma_used != mp->ma_keys->dk_nentries))) {
if (insertion_resize(mp) < 0) {
return NULL;
}
find_empty_slot(mp, key, hash, &value_addr, &hashpos);
ix = DKIX_EMPTY;
}
if (ix == DKIX_EMPTY) {
PyDictKeyEntry *ep, *ep0;
value = defaultobj;
if (mp->ma_keys->dk_usable <= 0) {
if (insertion_resize(mp) < 0) {
return NULL;
}
find_empty_slot(mp, key, hash, &value_addr, &hashpos);
}
ep0 = DK_ENTRIES(mp->ma_keys);
ep = &ep0[mp->ma_keys->dk_nentries];
dk_set_index(mp->ma_keys, hashpos, mp->ma_keys->dk_nentries);
Py_INCREF(key);
Py_INCREF(value);
MAINTAIN_TRACKING(mp, key, value);
ep->me_key = key;
ep->me_hash = hash;
if (mp->ma_values) {
assert(mp->ma_values[mp->ma_keys->dk_nentries] == NULL);
mp->ma_values[mp->ma_keys->dk_nentries] = value;
}
else {
ep->me_value = value;
}
mp->ma_used++;
mp->ma_version_tag = DICT_NEXT_VERSION();
mp->ma_keys->dk_usable--;
mp->ma_keys->dk_nentries++;
assert(mp->ma_keys->dk_usable >= 0);
}
else if (*value_addr == NULL) {
value = defaultobj;
assert(_PyDict_HasSplitTable(mp));
assert(ix == mp->ma_used);
Py_INCREF(value);
MAINTAIN_TRACKING(mp, key, value);
*value_addr = value;
mp->ma_used++;
mp->ma_version_tag = DICT_NEXT_VERSION();
}
else {
value = *value_addr;
}
assert(_PyDict_CheckConsistency(mp));
return value;
}
static PyObject *
dict_setdefault(PyDictObject *mp, PyObject **args, Py_ssize_t nargs)
{
PyObject *key, *val;
PyObject *defaultobj = Py_None;
if (!_PyArg_UnpackStack(args, nargs, "setdefault", 1, 2, &key, &defaultobj))
return NULL;
val = PyDict_SetDefault((PyObject *)mp, key, defaultobj);
Py_XINCREF(val);
return val;
}
static PyObject *
dict_clear(PyDictObject *mp)
{
PyDict_Clear((PyObject *)mp);
Py_RETURN_NONE;
}
static PyObject *
dict_pop(PyDictObject *mp, PyObject **args, Py_ssize_t nargs)
{
PyObject *key, *deflt = NULL;
if(!_PyArg_UnpackStack(args, nargs, "pop", 1, 2, &key, &deflt))
return NULL;
return _PyDict_Pop((PyObject*)mp, key, deflt);
}
static PyObject *
dict_popitem(PyDictObject *mp)
{
Py_ssize_t i, j;
PyDictKeyEntry *ep0, *ep;
PyObject *res;
/* Allocate the result tuple before checking the size. Believe it
* or not, this allocation could trigger a garbage collection which
* could empty the dict, so if we checked the size first and that
* happened, the result would be an infinite loop (searching for an
* entry that no longer exists). Note that the usual popitem()
* idiom is "while d: k, v = d.popitem()". so needing to throw the
* tuple away if the dict *is* empty isn't a significant
* inefficiency -- possible, but unlikely in practice.
*/
res = PyTuple_New(2);
if (res == NULL)
return NULL;
if (mp->ma_used == 0) {
Py_DECREF(res);
PyErr_SetString(PyExc_KeyError,
"popitem(): dictionary is empty");
return NULL;
}
/* Convert split table to combined table */
if (mp->ma_keys->dk_lookup == lookdict_split) {
if (dictresize(mp, DK_SIZE(mp->ma_keys))) {
Py_DECREF(res);
return NULL;
}
}
ENSURE_ALLOWS_DELETIONS(mp);
/* Pop last item */
ep0 = DK_ENTRIES(mp->ma_keys);
i = mp->ma_keys->dk_nentries - 1;
while (i >= 0 && ep0[i].me_value == NULL) {
i--;
}
assert(i >= 0);
ep = &ep0[i];
j = lookdict_index(mp->ma_keys, ep->me_hash, i);
assert(j >= 0);
assert(dk_get_index(mp->ma_keys, j) == i);
dk_set_index(mp->ma_keys, j, DKIX_DUMMY);
PyTuple_SET_ITEM(res, 0, ep->me_key);
PyTuple_SET_ITEM(res, 1, ep->me_value);
ep->me_key = NULL;
ep->me_value = NULL;
/* We can't dk_usable++ since there is DKIX_DUMMY in indices */
mp->ma_keys->dk_nentries = i;
mp->ma_used--;
mp->ma_version_tag = DICT_NEXT_VERSION();
assert(_PyDict_CheckConsistency(mp));
return res;
}
static int
dict_traverse(PyObject *op, visitproc visit, void *arg)
{
PyDictObject *mp = (PyDictObject *)op;
PyDictKeysObject *keys = mp->ma_keys;
PyDictKeyEntry *entries = DK_ENTRIES(keys);
Py_ssize_t i, n = keys->dk_nentries;
if (keys->dk_lookup == lookdict) {
for (i = 0; i < n; i++) {
if (entries[i].me_value != NULL) {
Py_VISIT(entries[i].me_value);
Py_VISIT(entries[i].me_key);
}
}
}
else {
if (mp->ma_values != NULL) {
for (i = 0; i < n; i++) {
Py_VISIT(mp->ma_values[i]);
}
}
else {
for (i = 0; i < n; i++) {
Py_VISIT(entries[i].me_value);
}
}
}
return 0;
}
static int
dict_tp_clear(PyObject *op)
{
PyDict_Clear(op);
return 0;
}
static PyObject *dictiter_new(PyDictObject *, PyTypeObject *);
Py_ssize_t
_PyDict_SizeOf(PyDictObject *mp)
{
Py_ssize_t size, usable, res;
size = DK_SIZE(mp->ma_keys);
usable = USABLE_FRACTION(size);
res = _PyObject_SIZE(Py_TYPE(mp));
if (mp->ma_values)
res += usable * sizeof(PyObject*);
/* If the dictionary is split, the keys portion is accounted-for
in the type object. */
if (mp->ma_keys->dk_refcnt == 1)
res += (sizeof(PyDictKeysObject)
+ DK_IXSIZE(mp->ma_keys) * size
+ sizeof(PyDictKeyEntry) * usable);
return res;
}
Py_ssize_t
_PyDict_KeysSize(PyDictKeysObject *keys)
{
return (sizeof(PyDictKeysObject)
+ DK_IXSIZE(keys) * DK_SIZE(keys)
+ USABLE_FRACTION(DK_SIZE(keys)) * sizeof(PyDictKeyEntry));
}
static PyObject *
dict_sizeof(PyDictObject *mp)
{
return PyLong_FromSsize_t(_PyDict_SizeOf(mp));
}
PyDoc_STRVAR(getitem__doc__, "x.__getitem__(y) <==> x[y]");
PyDoc_STRVAR(sizeof__doc__,
"D.__sizeof__() -> size of D in memory, in bytes");
PyDoc_STRVAR(get__doc__,
"D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.");
PyDoc_STRVAR(setdefault_doc__,
"D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D");
PyDoc_STRVAR(pop__doc__,
"D.pop(k[,d]) -> v, remove specified key and return the corresponding value.\n\
If key is not found, d is returned if given, otherwise KeyError is raised");
PyDoc_STRVAR(popitem__doc__,
"D.popitem() -> (k, v), remove and return some (key, value) pair as a\n\
2-tuple; but raise KeyError if D is empty.");
PyDoc_STRVAR(update__doc__,
"D.update([E, ]**F) -> None. Update D from dict/iterable E and F.\n\
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k]\n\
If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v\n\
In either case, this is followed by: for k in F: D[k] = F[k]");
PyDoc_STRVAR(clear__doc__,
"D.clear() -> None. Remove all items from D.");
PyDoc_STRVAR(copy__doc__,
"D.copy() -> a shallow copy of D");
/* Forward */
static PyObject *dictkeys_new(PyObject *);
static PyObject *dictitems_new(PyObject *);
static PyObject *dictvalues_new(PyObject *);
PyDoc_STRVAR(keys__doc__,
"D.keys() -> a set-like object providing a view on D's keys");
PyDoc_STRVAR(items__doc__,
"D.items() -> a set-like object providing a view on D's items");
PyDoc_STRVAR(values__doc__,
"D.values() -> an object providing a view on D's values");
static PyMethodDef mapp_methods[] = {
DICT___CONTAINS___METHODDEF
{"__getitem__", (PyCFunction)dict_subscript, METH_O | METH_COEXIST,
getitem__doc__},
{"__sizeof__", (PyCFunction)dict_sizeof, METH_NOARGS,
sizeof__doc__},
{"get", (PyCFunction)dict_get, METH_FASTCALL,
get__doc__},
{"setdefault", (PyCFunction)dict_setdefault, METH_FASTCALL,
setdefault_doc__},
{"pop", (PyCFunction)dict_pop, METH_FASTCALL,
pop__doc__},
{"popitem", (PyCFunction)dict_popitem, METH_NOARGS,
popitem__doc__},
{"keys", (PyCFunction)dictkeys_new, METH_NOARGS,
keys__doc__},
{"items", (PyCFunction)dictitems_new, METH_NOARGS,
items__doc__},
{"values", (PyCFunction)dictvalues_new, METH_NOARGS,
values__doc__},
{"update", (PyCFunction)dict_update, METH_VARARGS | METH_KEYWORDS,
update__doc__},
DICT_FROMKEYS_METHODDEF
{"clear", (PyCFunction)dict_clear, METH_NOARGS,
clear__doc__},
{"copy", (PyCFunction)dict_copy, METH_NOARGS,
copy__doc__},
{NULL, NULL} /* sentinel */
};
/* Return 1 if `key` is in dict `op`, 0 if not, and -1 on error. */
int
PyDict_Contains(PyObject *op, PyObject *key)
{
Py_hash_t hash;
Py_ssize_t ix;
PyDictObject *mp = (PyDictObject *)op;
PyObject **value_addr;
if (!PyUnicode_CheckExact(key) ||
(hash = ((PyASCIIObject *) key)->hash) == -1) {
hash = PyObject_Hash(key);
if (hash == -1)
return -1;
}
ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr, NULL);
if (ix == DKIX_ERROR)
return -1;
return (ix != DKIX_EMPTY && *value_addr != NULL);
}
/* Internal version of PyDict_Contains used when the hash value is already known */
int
_PyDict_Contains(PyObject *op, PyObject *key, Py_hash_t hash)
{
PyDictObject *mp = (PyDictObject *)op;
PyObject **value_addr;
Py_ssize_t ix;
ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr, NULL);
if (ix == DKIX_ERROR)
return -1;
return (ix != DKIX_EMPTY && *value_addr != NULL);
}
/* Hack to implement "key in dict" */
static PySequenceMethods dict_as_sequence = {
0, /* sq_length */
0, /* sq_concat */
0, /* sq_repeat */
0, /* sq_item */
0, /* sq_slice */
0, /* sq_ass_item */
0, /* sq_ass_slice */
PyDict_Contains, /* sq_contains */
0, /* sq_inplace_concat */
0, /* sq_inplace_repeat */
};
static PyObject *
dict_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyObject *self;
PyDictObject *d;
assert(type != NULL && type->tp_alloc != NULL);
self = type->tp_alloc(type, 0);
if (self == NULL)
return NULL;
d = (PyDictObject *)self;
/* The object has been implicitly tracked by tp_alloc */
if (type == &PyDict_Type)
_PyObject_GC_UNTRACK(d);
d->ma_used = 0;
d->ma_version_tag = DICT_NEXT_VERSION();
d->ma_keys = new_keys_object(PyDict_MINSIZE);
if (d->ma_keys == NULL) {
Py_DECREF(self);
return NULL;
}
assert(_PyDict_CheckConsistency(d));
return self;
}
static int
dict_init(PyObject *self, PyObject *args, PyObject *kwds)
{
return dict_update_common(self, args, kwds, "dict");
}
static PyObject *
dict_iter(PyDictObject *dict)
{
return dictiter_new(dict, &PyDictIterKey_Type);
}
PyDoc_STRVAR(dictionary_doc,
"dict() -> new empty dictionary\n"
"dict(mapping) -> new dictionary initialized from a mapping object's\n"
" (key, value) pairs\n"
"dict(iterable) -> new dictionary initialized as if via:\n"
" d = {}\n"
" for k, v in iterable:\n"
" d[k] = v\n"
"dict(**kwargs) -> new dictionary initialized with the name=value pairs\n"
" in the keyword argument list. For example: dict(one=1, two=2)");
PyTypeObject PyDict_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"dict",
sizeof(PyDictObject),
0,
(destructor)dict_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)dict_repr, /* tp_repr */
0, /* tp_as_number */
&dict_as_sequence, /* tp_as_sequence */
&dict_as_mapping, /* tp_as_mapping */
PyObject_HashNotImplemented, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC |
Py_TPFLAGS_BASETYPE | Py_TPFLAGS_DICT_SUBCLASS, /* tp_flags */
dictionary_doc, /* tp_doc */
dict_traverse, /* tp_traverse */
dict_tp_clear, /* tp_clear */
dict_richcompare, /* tp_richcompare */
0, /* tp_weaklistoffset */
(getiterfunc)dict_iter, /* tp_iter */
0, /* tp_iternext */
mapp_methods, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
dict_init, /* tp_init */
PyType_GenericAlloc, /* tp_alloc */
dict_new, /* tp_new */
PyObject_GC_Del, /* tp_free */
};
PyObject *
_PyDict_GetItemId(PyObject *dp, struct _Py_Identifier *key)
{
PyObject *kv;
kv = _PyUnicode_FromId(key); /* borrowed */
if (kv == NULL) {
PyErr_Clear();
return NULL;
}
return PyDict_GetItem(dp, kv);
}
/* For backward compatibility with old dictionary interface */
PyObject *
PyDict_GetItemString(PyObject *v, const char *key)
{
PyObject *kv, *rv;
kv = PyUnicode_FromString(key);
if (kv == NULL) {
PyErr_Clear();
return NULL;
}
rv = PyDict_GetItem(v, kv);
Py_DECREF(kv);
return rv;
}
int
_PyDict_SetItemId(PyObject *v, struct _Py_Identifier *key, PyObject *item)
{
PyObject *kv;
kv = _PyUnicode_FromId(key); /* borrowed */
if (kv == NULL)
return -1;
return PyDict_SetItem(v, kv, item);
}
int
PyDict_SetItemString(PyObject *v, const char *key, PyObject *item)
{
PyObject *kv;
int err;
kv = PyUnicode_FromString(key);
if (kv == NULL)
return -1;
PyUnicode_InternInPlace(&kv); /* XXX Should we really? */
err = PyDict_SetItem(v, kv, item);
Py_DECREF(kv);
return err;
}
int
_PyDict_DelItemId(PyObject *v, _Py_Identifier *key)
{
PyObject *kv = _PyUnicode_FromId(key); /* borrowed */
if (kv == NULL)
return -1;
return PyDict_DelItem(v, kv);
}
int
PyDict_DelItemString(PyObject *v, const char *key)
{
PyObject *kv;
int err;
kv = PyUnicode_FromString(key);
if (kv == NULL)
return -1;
err = PyDict_DelItem(v, kv);
Py_DECREF(kv);
return err;
}
/* Dictionary iterator types */
typedef struct {
PyObject_HEAD
PyDictObject *di_dict; /* Set to NULL when iterator is exhausted */
Py_ssize_t di_used;
Py_ssize_t di_pos;
PyObject* di_result; /* reusable result tuple for iteritems */
Py_ssize_t len;
} dictiterobject;
static PyObject *
dictiter_new(PyDictObject *dict, PyTypeObject *itertype)
{
dictiterobject *di;
di = PyObject_GC_New(dictiterobject, itertype);
if (di == NULL)
return NULL;
Py_INCREF(dict);
di->di_dict = dict;
di->di_used = dict->ma_used;
di->di_pos = 0;
di->len = dict->ma_used;
if (itertype == &PyDictIterItem_Type) {
di->di_result = PyTuple_Pack(2, Py_None, Py_None);
if (di->di_result == NULL) {
Py_DECREF(di);
return NULL;
}
}
else
di->di_result = NULL;
_PyObject_GC_TRACK(di);
return (PyObject *)di;
}
static void
dictiter_dealloc(dictiterobject *di)
{
/* bpo-31095: UnTrack is needed before calling any callbacks */
_PyObject_GC_UNTRACK(di);
Py_XDECREF(di->di_dict);
Py_XDECREF(di->di_result);
PyObject_GC_Del(di);
}
static int
dictiter_traverse(dictiterobject *di, visitproc visit, void *arg)
{
Py_VISIT(di->di_dict);
Py_VISIT(di->di_result);
return 0;
}
static PyObject *
dictiter_len(dictiterobject *di)
{
Py_ssize_t len = 0;
if (di->di_dict != NULL && di->di_used == di->di_dict->ma_used)
len = di->len;
return PyLong_FromSize_t(len);
}
PyDoc_STRVAR(length_hint_doc,
"Private method returning an estimate of len(list(it)).");
static PyObject *
dictiter_reduce(dictiterobject *di);
PyDoc_STRVAR(reduce_doc, "Return state information for pickling.");
static PyMethodDef dictiter_methods[] = {
{"__length_hint__", (PyCFunction)dictiter_len, METH_NOARGS,
length_hint_doc},
{"__reduce__", (PyCFunction)dictiter_reduce, METH_NOARGS,
reduce_doc},
{NULL, NULL} /* sentinel */
};
static PyObject*
dictiter_iternextkey(dictiterobject *di)
{
PyObject *key;
Py_ssize_t i, n;
PyDictKeysObject *k;
PyDictObject *d = di->di_dict;
if (d == NULL)
return NULL;
assert (PyDict_Check(d));
if (di->di_used != d->ma_used) {
PyErr_SetString(PyExc_RuntimeError,
"dictionary changed size during iteration");
di->di_used = -1; /* Make this state sticky */
return NULL;
}
i = di->di_pos;
k = d->ma_keys;
n = k->dk_nentries;
if (d->ma_values) {
PyObject **value_ptr = &d->ma_values[i];
while (i < n && *value_ptr == NULL) {
value_ptr++;
i++;
}
if (i >= n)
goto fail;
key = DK_ENTRIES(k)[i].me_key;
}
else {
PyDictKeyEntry *entry_ptr = &DK_ENTRIES(k)[i];
while (i < n && entry_ptr->me_value == NULL) {
entry_ptr++;
i++;
}
if (i >= n)
goto fail;
key = entry_ptr->me_key;
}
di->di_pos = i+1;
di->len--;
Py_INCREF(key);
return key;
fail:
di->di_dict = NULL;
Py_DECREF(d);
return NULL;
}
PyTypeObject PyDictIterKey_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"dict_keyiterator", /* tp_name */
sizeof(dictiterobject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)dictiter_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
0, /* tp_doc */
(traverseproc)dictiter_traverse, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
PyObject_SelfIter, /* tp_iter */
(iternextfunc)dictiter_iternextkey, /* tp_iternext */
dictiter_methods, /* tp_methods */
0,
};
static PyObject *
dictiter_iternextvalue(dictiterobject *di)
{
PyObject *value;
Py_ssize_t i, n;
PyDictObject *d = di->di_dict;
if (d == NULL)
return NULL;
assert (PyDict_Check(d));
if (di->di_used != d->ma_used) {
PyErr_SetString(PyExc_RuntimeError,
"dictionary changed size during iteration");
di->di_used = -1; /* Make this state sticky */
return NULL;
}
i = di->di_pos;
n = d->ma_keys->dk_nentries;
if (d->ma_values) {
PyObject **value_ptr = &d->ma_values[i];
while (i < n && *value_ptr == NULL) {
value_ptr++;
i++;
}
if (i >= n)
goto fail;
value = *value_ptr;
}
else {
PyDictKeyEntry *entry_ptr = &DK_ENTRIES(d->ma_keys)[i];
while (i < n && entry_ptr->me_value == NULL) {
entry_ptr++;
i++;
}
if (i >= n)
goto fail;
value = entry_ptr->me_value;
}
di->di_pos = i+1;
di->len--;
Py_INCREF(value);
return value;
fail:
di->di_dict = NULL;
Py_DECREF(d);
return NULL;
}
PyTypeObject PyDictIterValue_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"dict_valueiterator", /* tp_name */
sizeof(dictiterobject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)dictiter_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, /* tp_flags */
0, /* tp_doc */
(traverseproc)dictiter_traverse, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
PyObject_SelfIter, /* tp_iter */
(iternextfunc)dictiter_iternextvalue, /* tp_iternext */
dictiter_methods, /* tp_methods */
0,
};
static PyObject *
dictiter_iternextitem(dictiterobject *di)
{
PyObject *key, *value, *result;
Py_ssize_t i, n;
PyDictObject *d = di->di_dict;
if (d == NULL)
return NULL;
assert (PyDict_Check(d));
if (di->di_used != d->ma_used) {
PyErr_SetString(PyExc_RuntimeError,
"dictionary changed size during iteration");
di->di_used = -1; /* Make this state sticky */
return NULL;
}
i = di->di_pos;
n = d->ma_keys->dk_nentries;
if (d->ma_values) {
PyObject **value_ptr = &d->ma_values[i];
while (i < n && *value_ptr == NULL) {
value_ptr++;
i++;
}
if (i >= n)
goto fail;
key = DK_ENTRIES(d->ma_keys)[i].me_key;
value = *value_ptr;
}
else {
PyDictKeyEntry *entry_ptr = &DK_ENTRIES(d->ma_keys)[i];
while (i < n && entry_ptr->me_value == NULL) {
entry_ptr++;
i++;
}
if (i >= n)
goto fail;
key = entry_ptr->me_key;
value = entry_ptr->me_value;
}
di->di_pos = i+1;
di->len--;
Py_INCREF(key);
Py_INCREF(value);
result = di->di_result;
if (Py_REFCNT(result) == 1) {
PyObject *oldkey = PyTuple_GET_ITEM(result, 0);
PyObject *oldvalue = PyTuple_GET_ITEM(result, 1);
PyTuple_SET_ITEM(result, 0, key); /* steals reference */
PyTuple_SET_ITEM(result, 1, value); /* steals reference */
Py_INCREF(result);
Py_DECREF(oldkey);
Py_DECREF(oldvalue);
}
else {
result = PyTuple_New(2);
if (result == NULL)
return NULL;
PyTuple_SET_ITEM(result, 0, key); /* steals reference */
PyTuple_SET_ITEM(result, 1, value); /* steals reference */
}
return result;
fail:
di->di_dict = NULL;
Py_DECREF(d);
return NULL;
}
PyTypeObject PyDictIterItem_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"dict_itemiterator", /* tp_name */
sizeof(dictiterobject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)dictiter_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
0, /* tp_doc */
(traverseproc)dictiter_traverse, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
PyObject_SelfIter, /* tp_iter */
(iternextfunc)dictiter_iternextitem, /* tp_iternext */
dictiter_methods, /* tp_methods */
0,
};
static PyObject *
dictiter_reduce(dictiterobject *di)
{
PyObject *list;
dictiterobject tmp;
list = PyList_New(0);
if (!list)
return NULL;
/* copy the itertor state */
tmp = *di;
Py_XINCREF(tmp.di_dict);
/* iterate the temporary into a list */
for(;;) {
PyObject *element = 0;
if (Py_TYPE(di) == &PyDictIterItem_Type)
element = dictiter_iternextitem(&tmp);
else if (Py_TYPE(di) == &PyDictIterKey_Type)
element = dictiter_iternextkey(&tmp);
else if (Py_TYPE(di) == &PyDictIterValue_Type)
element = dictiter_iternextvalue(&tmp);
else
assert(0);
if (element) {
if (PyList_Append(list, element)) {
Py_DECREF(element);
Py_DECREF(list);
Py_XDECREF(tmp.di_dict);
return NULL;
}
Py_DECREF(element);
} else
break;
}
Py_XDECREF(tmp.di_dict);
/* check for error */
if (tmp.di_dict != NULL) {
/* we have an error */
Py_DECREF(list);
return NULL;
}
return Py_BuildValue("N(N)", _PyObject_GetBuiltin("iter"), list);
}
/***********************************************/
/* View objects for keys(), items(), values(). */
/***********************************************/
/* The instance lay-out is the same for all three; but the type differs. */
static void
dictview_dealloc(_PyDictViewObject *dv)
{
/* bpo-31095: UnTrack is needed before calling any callbacks */
_PyObject_GC_UNTRACK(dv);
Py_XDECREF(dv->dv_dict);
PyObject_GC_Del(dv);
}
static int
dictview_traverse(_PyDictViewObject *dv, visitproc visit, void *arg)
{
Py_VISIT(dv->dv_dict);
return 0;
}
static Py_ssize_t
dictview_len(_PyDictViewObject *dv)
{
Py_ssize_t len = 0;
if (dv->dv_dict != NULL)
len = dv->dv_dict->ma_used;
return len;
}
PyObject *
_PyDictView_New(PyObject *dict, PyTypeObject *type)
{
_PyDictViewObject *dv;
if (dict == NULL) {
PyErr_BadInternalCall();
return NULL;
}
if (!PyDict_Check(dict)) {
/* XXX Get rid of this restriction later */
PyErr_Format(PyExc_TypeError,
"%s() requires a dict argument, not '%s'",
type->tp_name, dict->ob_type->tp_name);
return NULL;
}
dv = PyObject_GC_New(_PyDictViewObject, type);
if (dv == NULL)
return NULL;
Py_INCREF(dict);
dv->dv_dict = (PyDictObject *)dict;
_PyObject_GC_TRACK(dv);
return (PyObject *)dv;
}
/* TODO(guido): The views objects are not complete:
* support more set operations
* support arbitrary mappings?
- either these should be static or exported in dictobject.h
- if public then they should probably be in builtins
*/
/* Return 1 if self is a subset of other, iterating over self;
0 if not; -1 if an error occurred. */
static int
all_contained_in(PyObject *self, PyObject *other)
{
PyObject *iter = PyObject_GetIter(self);
int ok = 1;
if (iter == NULL)
return -1;
for (;;) {
PyObject *next = PyIter_Next(iter);
if (next == NULL) {
if (PyErr_Occurred())
ok = -1;
break;
}
ok = PySequence_Contains(other, next);
Py_DECREF(next);
if (ok <= 0)
break;
}
Py_DECREF(iter);
return ok;
}
static PyObject *
dictview_richcompare(PyObject *self, PyObject *other, int op)
{
Py_ssize_t len_self, len_other;
int ok;
PyObject *result;
assert(self != NULL);
assert(PyDictViewSet_Check(self));
assert(other != NULL);
if (!PyAnySet_Check(other) && !PyDictViewSet_Check(other))
Py_RETURN_NOTIMPLEMENTED;
len_self = PyObject_Size(self);
if (len_self < 0)
return NULL;
len_other = PyObject_Size(other);
if (len_other < 0)
return NULL;
ok = 0;
switch(op) {
case Py_NE:
case Py_EQ:
if (len_self == len_other)
ok = all_contained_in(self, other);
if (op == Py_NE && ok >= 0)
ok = !ok;
break;
case Py_LT:
if (len_self < len_other)
ok = all_contained_in(self, other);
break;
case Py_LE:
if (len_self <= len_other)
ok = all_contained_in(self, other);
break;
case Py_GT:
if (len_self > len_other)
ok = all_contained_in(other, self);
break;
case Py_GE:
if (len_self >= len_other)
ok = all_contained_in(other, self);
break;
}
if (ok < 0)
return NULL;
result = ok ? Py_True : Py_False;
Py_INCREF(result);
return result;
}
static PyObject *
dictview_repr(_PyDictViewObject *dv)
{
PyObject *seq;
PyObject *result = NULL;
Py_ssize_t rc;
rc = Py_ReprEnter((PyObject *)dv);
if (rc != 0) {
return rc > 0 ? PyUnicode_FromString("...") : NULL;
}
seq = PySequence_List((PyObject *)dv);
if (seq == NULL) {
goto Done;
}
result = PyUnicode_FromFormat("%s(%R)", Py_TYPE(dv)->tp_name, seq);
Py_DECREF(seq);
Done:
Py_ReprLeave((PyObject *)dv);
return result;
}
/*** dict_keys ***/
static PyObject *
dictkeys_iter(_PyDictViewObject *dv)
{
if (dv->dv_dict == NULL) {
Py_RETURN_NONE;
}
return dictiter_new(dv->dv_dict, &PyDictIterKey_Type);
}
static int
dictkeys_contains(_PyDictViewObject *dv, PyObject *obj)
{
if (dv->dv_dict == NULL)
return 0;
return PyDict_Contains((PyObject *)dv->dv_dict, obj);
}
static PySequenceMethods dictkeys_as_sequence = {
(lenfunc)dictview_len, /* sq_length */
0, /* sq_concat */
0, /* sq_repeat */
0, /* sq_item */
0, /* sq_slice */
0, /* sq_ass_item */
0, /* sq_ass_slice */
(objobjproc)dictkeys_contains, /* sq_contains */
};
static PyObject*
dictviews_sub(PyObject* self, PyObject *other)
{
PyObject *result = PySet_New(self);
PyObject *tmp;
_Py_IDENTIFIER(difference_update);
if (result == NULL)
return NULL;
tmp = _PyObject_CallMethodIdObjArgs(result, &PyId_difference_update, other, NULL);
if (tmp == NULL) {
Py_DECREF(result);
return NULL;
}
Py_DECREF(tmp);
return result;
}
PyObject*
_PyDictView_Intersect(PyObject* self, PyObject *other)
{
PyObject *result = PySet_New(self);
PyObject *tmp;
_Py_IDENTIFIER(intersection_update);
if (result == NULL)
return NULL;
tmp = _PyObject_CallMethodIdObjArgs(result, &PyId_intersection_update, other, NULL);
if (tmp == NULL) {
Py_DECREF(result);
return NULL;
}
Py_DECREF(tmp);
return result;
}
static PyObject*
dictviews_or(PyObject* self, PyObject *other)
{
PyObject *result = PySet_New(self);
PyObject *tmp;
_Py_IDENTIFIER(update);
if (result == NULL)
return NULL;
tmp = _PyObject_CallMethodIdObjArgs(result, &PyId_update, other, NULL);
if (tmp == NULL) {
Py_DECREF(result);
return NULL;
}
Py_DECREF(tmp);
return result;
}
static PyObject*
dictviews_xor(PyObject* self, PyObject *other)
{
PyObject *result = PySet_New(self);
PyObject *tmp;
_Py_IDENTIFIER(symmetric_difference_update);
if (result == NULL)
return NULL;
tmp = _PyObject_CallMethodIdObjArgs(result, &PyId_symmetric_difference_update, other, NULL);
if (tmp == NULL) {
Py_DECREF(result);
return NULL;
}
Py_DECREF(tmp);
return result;
}
static PyNumberMethods dictviews_as_number = {
0, /*nb_add*/
(binaryfunc)dictviews_sub, /*nb_subtract*/
0, /*nb_multiply*/
0, /*nb_remainder*/
0, /*nb_divmod*/
0, /*nb_power*/
0, /*nb_negative*/
0, /*nb_positive*/
0, /*nb_absolute*/
0, /*nb_bool*/
0, /*nb_invert*/
0, /*nb_lshift*/
0, /*nb_rshift*/
(binaryfunc)_PyDictView_Intersect, /*nb_and*/
(binaryfunc)dictviews_xor, /*nb_xor*/
(binaryfunc)dictviews_or, /*nb_or*/
};
static PyObject*
dictviews_isdisjoint(PyObject *self, PyObject *other)
{
PyObject *it;
PyObject *item = NULL;
if (self == other) {
if (dictview_len((_PyDictViewObject *)self) == 0)
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;
}
/* Iterate over the shorter object (only if other is a set,
* because PySequence_Contains may be expensive otherwise): */
if (PyAnySet_Check(other) || PyDictViewSet_Check(other)) {
Py_ssize_t len_self = dictview_len((_PyDictViewObject *)self);
Py_ssize_t len_other = PyObject_Size(other);
if (len_other == -1)
return NULL;
if ((len_other > len_self)) {
PyObject *tmp = other;
other = self;
self = tmp;
}
}
it = PyObject_GetIter(other);
if (it == NULL)
return NULL;
while ((item = PyIter_Next(it)) != NULL) {
int contains = PySequence_Contains(self, item);
Py_DECREF(item);
if (contains == -1) {
Py_DECREF(it);
return NULL;
}
if (contains) {
Py_DECREF(it);
Py_RETURN_FALSE;
}
}
Py_DECREF(it);
if (PyErr_Occurred())
return NULL; /* PyIter_Next raised an exception. */
Py_RETURN_TRUE;
}
PyDoc_STRVAR(isdisjoint_doc,
"Return True if the view and the given iterable have a null intersection.");
static PyMethodDef dictkeys_methods[] = {
{"isdisjoint", (PyCFunction)dictviews_isdisjoint, METH_O,
isdisjoint_doc},
{NULL, NULL} /* sentinel */
};
PyTypeObject PyDictKeys_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"dict_keys", /* tp_name */
sizeof(_PyDictViewObject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)dictview_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)dictview_repr, /* tp_repr */
&dictviews_as_number, /* tp_as_number */
&dictkeys_as_sequence, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
0, /* tp_doc */
(traverseproc)dictview_traverse, /* tp_traverse */
0, /* tp_clear */
dictview_richcompare, /* tp_richcompare */
0, /* tp_weaklistoffset */
(getiterfunc)dictkeys_iter, /* tp_iter */
0, /* tp_iternext */
dictkeys_methods, /* tp_methods */
0,
};
static PyObject *
dictkeys_new(PyObject *dict)
{
return _PyDictView_New(dict, &PyDictKeys_Type);
}
/*** dict_items ***/
static PyObject *
dictitems_iter(_PyDictViewObject *dv)
{
if (dv->dv_dict == NULL) {
Py_RETURN_NONE;
}
return dictiter_new(dv->dv_dict, &PyDictIterItem_Type);
}
static int
dictitems_contains(_PyDictViewObject *dv, PyObject *obj)
{
int result;
PyObject *key, *value, *found;
if (dv->dv_dict == NULL)
return 0;
if (!PyTuple_Check(obj) || PyTuple_GET_SIZE(obj) != 2)
return 0;
key = PyTuple_GET_ITEM(obj, 0);
value = PyTuple_GET_ITEM(obj, 1);
found = PyDict_GetItemWithError((PyObject *)dv->dv_dict, key);
if (found == NULL) {
if (PyErr_Occurred())
return -1;
return 0;
}
Py_INCREF(found);
result = PyObject_RichCompareBool(value, found, Py_EQ);
Py_DECREF(found);
return result;
}
static PySequenceMethods dictitems_as_sequence = {
(lenfunc)dictview_len, /* sq_length */
0, /* sq_concat */
0, /* sq_repeat */
0, /* sq_item */
0, /* sq_slice */
0, /* sq_ass_item */
0, /* sq_ass_slice */
(objobjproc)dictitems_contains, /* sq_contains */
};
static PyMethodDef dictitems_methods[] = {
{"isdisjoint", (PyCFunction)dictviews_isdisjoint, METH_O,
isdisjoint_doc},
{NULL, NULL} /* sentinel */
};
PyTypeObject PyDictItems_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"dict_items", /* tp_name */
sizeof(_PyDictViewObject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)dictview_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)dictview_repr, /* tp_repr */
&dictviews_as_number, /* tp_as_number */
&dictitems_as_sequence, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
0, /* tp_doc */
(traverseproc)dictview_traverse, /* tp_traverse */
0, /* tp_clear */
dictview_richcompare, /* tp_richcompare */
0, /* tp_weaklistoffset */
(getiterfunc)dictitems_iter, /* tp_iter */
0, /* tp_iternext */
dictitems_methods, /* tp_methods */
0,
};
static PyObject *
dictitems_new(PyObject *dict)
{
return _PyDictView_New(dict, &PyDictItems_Type);
}
/*** dict_values ***/
static PyObject *
dictvalues_iter(_PyDictViewObject *dv)
{
if (dv->dv_dict == NULL) {
Py_RETURN_NONE;
}
return dictiter_new(dv->dv_dict, &PyDictIterValue_Type);
}
static PySequenceMethods dictvalues_as_sequence = {
(lenfunc)dictview_len, /* sq_length */
0, /* sq_concat */
0, /* sq_repeat */
0, /* sq_item */
0, /* sq_slice */
0, /* sq_ass_item */
0, /* sq_ass_slice */
(objobjproc)0, /* sq_contains */
};
static PyMethodDef dictvalues_methods[] = {
{NULL, NULL} /* sentinel */
};
PyTypeObject PyDictValues_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"dict_values", /* tp_name */
sizeof(_PyDictViewObject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)dictview_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
(reprfunc)dictview_repr, /* tp_repr */
0, /* tp_as_number */
&dictvalues_as_sequence, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
0, /* tp_doc */
(traverseproc)dictview_traverse, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
(getiterfunc)dictvalues_iter, /* tp_iter */
0, /* tp_iternext */
dictvalues_methods, /* tp_methods */
0,
};
static PyObject *
dictvalues_new(PyObject *dict)
{
return _PyDictView_New(dict, &PyDictValues_Type);
}
/* Returns NULL if cannot allocate a new PyDictKeysObject,
but does not set an error */
PyDictKeysObject *
_PyDict_NewKeysForClass(void)
{
PyDictKeysObject *keys = new_keys_object(PyDict_MINSIZE);
if (keys == NULL)
PyErr_Clear();
else
keys->dk_lookup = lookdict_split;
return keys;
}
#define CACHED_KEYS(tp) (((PyHeapTypeObject*)tp)->ht_cached_keys)
PyObject *
PyObject_GenericGetDict(PyObject *obj, void *context)
{
PyObject *dict, **dictptr = _PyObject_GetDictPtr(obj);
if (dictptr == NULL) {
PyErr_SetString(PyExc_AttributeError,
"This object has no __dict__");
return NULL;
}
dict = *dictptr;
if (dict == NULL) {
PyTypeObject *tp = Py_TYPE(obj);
if ((tp->tp_flags & Py_TPFLAGS_HEAPTYPE) && CACHED_KEYS(tp)) {
DK_INCREF(CACHED_KEYS(tp));
*dictptr = dict = new_dict_with_shared_keys(CACHED_KEYS(tp));
}
else {
*dictptr = dict = PyDict_New();
}
}
Py_XINCREF(dict);
return dict;
}
int
_PyObjectDict_SetItem(PyTypeObject *tp, PyObject **dictptr,
PyObject *key, PyObject *value)
{
PyObject *dict;
int res;
PyDictKeysObject *cached;
assert(dictptr != NULL);
if ((tp->tp_flags & Py_TPFLAGS_HEAPTYPE) && (cached = CACHED_KEYS(tp))) {
assert(dictptr != NULL);
dict = *dictptr;
if (dict == NULL) {
DK_INCREF(cached);
dict = new_dict_with_shared_keys(cached);
if (dict == NULL)
return -1;
*dictptr = dict;
}
if (value == NULL) {
res = PyDict_DelItem(dict, key);
// Since key sharing dict doesn't allow deletion, PyDict_DelItem()
// always converts dict to combined form.
if ((cached = CACHED_KEYS(tp)) != NULL) {
CACHED_KEYS(tp) = NULL;
DK_DECREF(cached);
}
}
else {
int was_shared = (cached == ((PyDictObject *)dict)->ma_keys);
res = PyDict_SetItem(dict, key, value);
if (was_shared &&
(cached = CACHED_KEYS(tp)) != NULL &&
cached != ((PyDictObject *)dict)->ma_keys) {
/* PyDict_SetItem() may call dictresize and convert split table
* into combined table. In such case, convert it to split
* table again and update type's shared key only when this is
* the only dict sharing key with the type.
*
* This is to allow using shared key in class like this:
*
* class C:
* def __init__(self):
* # one dict resize happens
* self.a, self.b, self.c = 1, 2, 3
* self.d, self.e, self.f = 4, 5, 6
* a = C()
*/
if (cached->dk_refcnt == 1) {
CACHED_KEYS(tp) = make_keys_shared(dict);
}
else {
CACHED_KEYS(tp) = NULL;
}
DK_DECREF(cached);
if (CACHED_KEYS(tp) == NULL && PyErr_Occurred())
return -1;
}
}
} else {
dict = *dictptr;
if (dict == NULL) {
dict = PyDict_New();
if (dict == NULL)
return -1;
*dictptr = dict;
}
if (value == NULL) {
res = PyDict_DelItem(dict, key);
} else {
res = PyDict_SetItem(dict, key, value);
}
}
return res;
}
void
_PyDictKeys_DecRef(PyDictKeysObject *keys)
{
DK_DECREF(keys);
}
| 139,158 | 4,561 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/clinic/unicodeobject.inc | /* clang-format off */
/*[clinic input]
preserve
[clinic start generated code]*/
PyDoc_STRVAR(unicode_maketrans__doc__,
"maketrans(x, y=None, z=None, /)\n"
"--\n"
"\n"
"Return a translation table usable for str.translate().\n"
"\n"
"If there is only one argument, it must be a dictionary mapping Unicode\n"
"ordinals (integers) or characters to Unicode ordinals, strings or None.\n"
"Character keys will be then converted to ordinals.\n"
"If there are two arguments, they must be strings of equal length, and\n"
"in the resulting dictionary, each character in x will be mapped to the\n"
"character at the same position in y. If there is a third argument, it\n"
"must be a string, whose characters will be mapped to None in the result.");
#define UNICODE_MAKETRANS_METHODDEF \
{"maketrans", (PyCFunction)unicode_maketrans, METH_FASTCALL|METH_STATIC, unicode_maketrans__doc__},
static PyObject *
unicode_maketrans_impl(PyObject *x, PyObject *y, PyObject *z);
static PyObject *
unicode_maketrans(void *null, PyObject **args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
PyObject *x;
PyObject *y = NULL;
PyObject *z = NULL;
if (!_PyArg_ParseStack(args, nargs, "O|UU:maketrans",
&x, &y, &z)) {
goto exit;
}
return_value = unicode_maketrans_impl(x, y, z);
exit:
return return_value;
}
/*[clinic end generated code: output=d1e48260a99031c2 input=a9049054013a1b77]*/
| 1,426 | 44 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/clinic/bytearrayobject.inc | /* clang-format off */
/*[clinic input]
preserve
[clinic start generated code]*/
PyDoc_STRVAR(bytearray_clear__doc__,
"clear($self, /)\n"
"--\n"
"\n"
"Remove all items from the bytearray.");
#define BYTEARRAY_CLEAR_METHODDEF \
{"clear", (PyCFunction)bytearray_clear, METH_NOARGS, bytearray_clear__doc__},
static PyObject *
bytearray_clear_impl(PyByteArrayObject *self);
static PyObject *
bytearray_clear(PyByteArrayObject *self, PyObject *Py_UNUSED(ignored))
{
return bytearray_clear_impl(self);
}
PyDoc_STRVAR(bytearray_copy__doc__,
"copy($self, /)\n"
"--\n"
"\n"
"Return a copy of B.");
#define BYTEARRAY_COPY_METHODDEF \
{"copy", (PyCFunction)bytearray_copy, METH_NOARGS, bytearray_copy__doc__},
static PyObject *
bytearray_copy_impl(PyByteArrayObject *self);
static PyObject *
bytearray_copy(PyByteArrayObject *self, PyObject *Py_UNUSED(ignored))
{
return bytearray_copy_impl(self);
}
PyDoc_STRVAR(bytearray_translate__doc__,
"translate($self, table, /, delete=b\'\')\n"
"--\n"
"\n"
"Return a copy with each character mapped by the given translation table.\n"
"\n"
" table\n"
" Translation table, which must be a bytes object of length 256.\n"
"\n"
"All characters occurring in the optional argument delete are removed.\n"
"The remaining characters are mapped through the given translation table.");
#define BYTEARRAY_TRANSLATE_METHODDEF \
{"translate", (PyCFunction)bytearray_translate, METH_FASTCALL|METH_KEYWORDS, bytearray_translate__doc__},
static PyObject *
bytearray_translate_impl(PyByteArrayObject *self, PyObject *table,
PyObject *deletechars);
static PyObject *
bytearray_translate(PyByteArrayObject *self, PyObject **args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
static const char * const _keywords[] = {"", "delete", NULL};
static _PyArg_Parser _parser = {"O|O:translate", _keywords, 0};
PyObject *table;
PyObject *deletechars = NULL;
if (!_PyArg_ParseStackAndKeywords(args, nargs, kwnames, &_parser,
&table, &deletechars)) {
goto exit;
}
return_value = bytearray_translate_impl(self, table, deletechars);
exit:
return return_value;
}
PyDoc_STRVAR(bytearray_maketrans__doc__,
"maketrans(frm, to, /)\n"
"--\n"
"\n"
"Return a translation table useable for the bytes or bytearray translate method.\n"
"\n"
"The returned table will be one where each byte in frm is mapped to the byte at\n"
"the same position in to.\n"
"\n"
"The bytes objects frm and to must be of the same length.");
#define BYTEARRAY_MAKETRANS_METHODDEF \
{"maketrans", (PyCFunction)bytearray_maketrans, METH_FASTCALL|METH_STATIC, bytearray_maketrans__doc__},
static PyObject *
bytearray_maketrans_impl(Py_buffer *frm, Py_buffer *to);
static PyObject *
bytearray_maketrans(void *null, PyObject **args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
Py_buffer frm = {NULL, NULL};
Py_buffer to = {NULL, NULL};
if (!_PyArg_ParseStack(args, nargs, "y*y*:maketrans",
&frm, &to)) {
goto exit;
}
return_value = bytearray_maketrans_impl(&frm, &to);
exit:
/* Cleanup for frm */
if (frm.obj) {
PyBuffer_Release(&frm);
}
/* Cleanup for to */
if (to.obj) {
PyBuffer_Release(&to);
}
return return_value;
}
PyDoc_STRVAR(bytearray_replace__doc__,
"replace($self, old, new, count=-1, /)\n"
"--\n"
"\n"
"Return a copy with all occurrences of substring old replaced by new.\n"
"\n"
" count\n"
" Maximum number of occurrences to replace.\n"
" -1 (the default value) means replace all occurrences.\n"
"\n"
"If the optional argument count is given, only the first count occurrences are\n"
"replaced.");
#define BYTEARRAY_REPLACE_METHODDEF \
{"replace", (PyCFunction)bytearray_replace, METH_FASTCALL, bytearray_replace__doc__},
static PyObject *
bytearray_replace_impl(PyByteArrayObject *self, Py_buffer *old,
Py_buffer *new, Py_ssize_t count);
static PyObject *
bytearray_replace(PyByteArrayObject *self, PyObject **args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
Py_buffer old = {NULL, NULL};
Py_buffer new = {NULL, NULL};
Py_ssize_t count = -1;
if (!_PyArg_ParseStack(args, nargs, "y*y*|n:replace",
&old, &new, &count)) {
goto exit;
}
return_value = bytearray_replace_impl(self, &old, &new, count);
exit:
/* Cleanup for old */
if (old.obj) {
PyBuffer_Release(&old);
}
/* Cleanup for new */
if (new.obj) {
PyBuffer_Release(&new);
}
return return_value;
}
PyDoc_STRVAR(bytearray_split__doc__,
"split($self, /, sep=None, maxsplit=-1)\n"
"--\n"
"\n"
"Return a list of the sections in the bytearray, using sep as the delimiter.\n"
"\n"
" sep\n"
" The delimiter according which to split the bytearray.\n"
" None (the default value) means split on ASCII whitespace characters\n"
" (space, tab, return, newline, formfeed, vertical tab).\n"
" maxsplit\n"
" Maximum number of splits to do.\n"
" -1 (the default value) means no limit.");
#define BYTEARRAY_SPLIT_METHODDEF \
{"split", (PyCFunction)bytearray_split, METH_FASTCALL|METH_KEYWORDS, bytearray_split__doc__},
static PyObject *
bytearray_split_impl(PyByteArrayObject *self, PyObject *sep,
Py_ssize_t maxsplit);
static PyObject *
bytearray_split(PyByteArrayObject *self, PyObject **args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
static const char * const _keywords[] = {"sep", "maxsplit", NULL};
static _PyArg_Parser _parser = {"|On:split", _keywords, 0};
PyObject *sep = Py_None;
Py_ssize_t maxsplit = -1;
if (!_PyArg_ParseStackAndKeywords(args, nargs, kwnames, &_parser,
&sep, &maxsplit)) {
goto exit;
}
return_value = bytearray_split_impl(self, sep, maxsplit);
exit:
return return_value;
}
PyDoc_STRVAR(bytearray_partition__doc__,
"partition($self, sep, /)\n"
"--\n"
"\n"
"Partition the bytearray into three parts using the given separator.\n"
"\n"
"This will search for the separator sep in the bytearray. If the separator is\n"
"found, returns a 3-tuple containing the part before the separator, the\n"
"separator itself, and the part after it as new bytearray objects.\n"
"\n"
"If the separator is not found, returns a 3-tuple containing the copy of the\n"
"original bytearray object and two empty bytearray objects.");
#define BYTEARRAY_PARTITION_METHODDEF \
{"partition", (PyCFunction)bytearray_partition, METH_O, bytearray_partition__doc__},
PyDoc_STRVAR(bytearray_rpartition__doc__,
"rpartition($self, sep, /)\n"
"--\n"
"\n"
"Partition the bytearray into three parts using the given separator.\n"
"\n"
"This will search for the separator sep in the bytearray, starting at the end.\n"
"If the separator is found, returns a 3-tuple containing the part before the\n"
"separator, the separator itself, and the part after it as new bytearray\n"
"objects.\n"
"\n"
"If the separator is not found, returns a 3-tuple containing two empty bytearray\n"
"objects and the copy of the original bytearray object.");
#define BYTEARRAY_RPARTITION_METHODDEF \
{"rpartition", (PyCFunction)bytearray_rpartition, METH_O, bytearray_rpartition__doc__},
PyDoc_STRVAR(bytearray_rsplit__doc__,
"rsplit($self, /, sep=None, maxsplit=-1)\n"
"--\n"
"\n"
"Return a list of the sections in the bytearray, using sep as the delimiter.\n"
"\n"
" sep\n"
" The delimiter according which to split the bytearray.\n"
" None (the default value) means split on ASCII whitespace characters\n"
" (space, tab, return, newline, formfeed, vertical tab).\n"
" maxsplit\n"
" Maximum number of splits to do.\n"
" -1 (the default value) means no limit.\n"
"\n"
"Splitting is done starting at the end of the bytearray and working to the front.");
#define BYTEARRAY_RSPLIT_METHODDEF \
{"rsplit", (PyCFunction)bytearray_rsplit, METH_FASTCALL|METH_KEYWORDS, bytearray_rsplit__doc__},
static PyObject *
bytearray_rsplit_impl(PyByteArrayObject *self, PyObject *sep,
Py_ssize_t maxsplit);
static PyObject *
bytearray_rsplit(PyByteArrayObject *self, PyObject **args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
static const char * const _keywords[] = {"sep", "maxsplit", NULL};
static _PyArg_Parser _parser = {"|On:rsplit", _keywords, 0};
PyObject *sep = Py_None;
Py_ssize_t maxsplit = -1;
if (!_PyArg_ParseStackAndKeywords(args, nargs, kwnames, &_parser,
&sep, &maxsplit)) {
goto exit;
}
return_value = bytearray_rsplit_impl(self, sep, maxsplit);
exit:
return return_value;
}
PyDoc_STRVAR(bytearray_reverse__doc__,
"reverse($self, /)\n"
"--\n"
"\n"
"Reverse the order of the values in B in place.");
#define BYTEARRAY_REVERSE_METHODDEF \
{"reverse", (PyCFunction)bytearray_reverse, METH_NOARGS, bytearray_reverse__doc__},
static PyObject *
bytearray_reverse_impl(PyByteArrayObject *self);
static PyObject *
bytearray_reverse(PyByteArrayObject *self, PyObject *Py_UNUSED(ignored))
{
return bytearray_reverse_impl(self);
}
PyDoc_STRVAR(bytearray_insert__doc__,
"insert($self, index, item, /)\n"
"--\n"
"\n"
"Insert a single item into the bytearray before the given index.\n"
"\n"
" index\n"
" The index where the value is to be inserted.\n"
" item\n"
" The item to be inserted.");
#define BYTEARRAY_INSERT_METHODDEF \
{"insert", (PyCFunction)bytearray_insert, METH_FASTCALL, bytearray_insert__doc__},
static PyObject *
bytearray_insert_impl(PyByteArrayObject *self, Py_ssize_t index, int item);
static PyObject *
bytearray_insert(PyByteArrayObject *self, PyObject **args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
Py_ssize_t index;
int item;
if (!_PyArg_ParseStack(args, nargs, "nO&:insert",
&index, _getbytevalue, &item)) {
goto exit;
}
return_value = bytearray_insert_impl(self, index, item);
exit:
return return_value;
}
PyDoc_STRVAR(bytearray_append__doc__,
"append($self, item, /)\n"
"--\n"
"\n"
"Append a single item to the end of the bytearray.\n"
"\n"
" item\n"
" The item to be appended.");
#define BYTEARRAY_APPEND_METHODDEF \
{"append", (PyCFunction)bytearray_append, METH_O, bytearray_append__doc__},
static PyObject *
bytearray_append_impl(PyByteArrayObject *self, int item);
static PyObject *
bytearray_append(PyByteArrayObject *self, PyObject *arg)
{
PyObject *return_value = NULL;
int item;
if (!PyArg_Parse(arg, "O&:append", _getbytevalue, &item)) {
goto exit;
}
return_value = bytearray_append_impl(self, item);
exit:
return return_value;
}
PyDoc_STRVAR(bytearray_extend__doc__,
"extend($self, iterable_of_ints, /)\n"
"--\n"
"\n"
"Append all the items from the iterator or sequence to the end of the bytearray.\n"
"\n"
" iterable_of_ints\n"
" The iterable of items to append.");
#define BYTEARRAY_EXTEND_METHODDEF \
{"extend", (PyCFunction)bytearray_extend, METH_O, bytearray_extend__doc__},
PyDoc_STRVAR(bytearray_pop__doc__,
"pop($self, index=-1, /)\n"
"--\n"
"\n"
"Remove and return a single item from B.\n"
"\n"
" index\n"
" The index from where to remove the item.\n"
" -1 (the default value) means remove the last item.\n"
"\n"
"If no index argument is given, will pop the last item.");
#define BYTEARRAY_POP_METHODDEF \
{"pop", (PyCFunction)bytearray_pop, METH_FASTCALL, bytearray_pop__doc__},
static PyObject *
bytearray_pop_impl(PyByteArrayObject *self, Py_ssize_t index);
static PyObject *
bytearray_pop(PyByteArrayObject *self, PyObject **args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
Py_ssize_t index = -1;
if (!_PyArg_ParseStack(args, nargs, "|n:pop",
&index)) {
goto exit;
}
return_value = bytearray_pop_impl(self, index);
exit:
return return_value;
}
PyDoc_STRVAR(bytearray_remove__doc__,
"remove($self, value, /)\n"
"--\n"
"\n"
"Remove the first occurrence of a value in the bytearray.\n"
"\n"
" value\n"
" The value to remove.");
#define BYTEARRAY_REMOVE_METHODDEF \
{"remove", (PyCFunction)bytearray_remove, METH_O, bytearray_remove__doc__},
static PyObject *
bytearray_remove_impl(PyByteArrayObject *self, int value);
static PyObject *
bytearray_remove(PyByteArrayObject *self, PyObject *arg)
{
PyObject *return_value = NULL;
int value;
if (!PyArg_Parse(arg, "O&:remove", _getbytevalue, &value)) {
goto exit;
}
return_value = bytearray_remove_impl(self, value);
exit:
return return_value;
}
PyDoc_STRVAR(bytearray_strip__doc__,
"strip($self, bytes=None, /)\n"
"--\n"
"\n"
"Strip leading and trailing bytes contained in the argument.\n"
"\n"
"If the argument is omitted or None, strip leading and trailing ASCII whitespace.");
#define BYTEARRAY_STRIP_METHODDEF \
{"strip", (PyCFunction)bytearray_strip, METH_FASTCALL, bytearray_strip__doc__},
static PyObject *
bytearray_strip_impl(PyByteArrayObject *self, PyObject *bytes);
static PyObject *
bytearray_strip(PyByteArrayObject *self, PyObject **args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
PyObject *bytes = Py_None;
if (!_PyArg_UnpackStack(args, nargs, "strip",
0, 1,
&bytes)) {
goto exit;
}
return_value = bytearray_strip_impl(self, bytes);
exit:
return return_value;
}
PyDoc_STRVAR(bytearray_lstrip__doc__,
"lstrip($self, bytes=None, /)\n"
"--\n"
"\n"
"Strip leading bytes contained in the argument.\n"
"\n"
"If the argument is omitted or None, strip leading ASCII whitespace.");
#define BYTEARRAY_LSTRIP_METHODDEF \
{"lstrip", (PyCFunction)bytearray_lstrip, METH_FASTCALL, bytearray_lstrip__doc__},
static PyObject *
bytearray_lstrip_impl(PyByteArrayObject *self, PyObject *bytes);
static PyObject *
bytearray_lstrip(PyByteArrayObject *self, PyObject **args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
PyObject *bytes = Py_None;
if (!_PyArg_UnpackStack(args, nargs, "lstrip",
0, 1,
&bytes)) {
goto exit;
}
return_value = bytearray_lstrip_impl(self, bytes);
exit:
return return_value;
}
PyDoc_STRVAR(bytearray_rstrip__doc__,
"rstrip($self, bytes=None, /)\n"
"--\n"
"\n"
"Strip trailing bytes contained in the argument.\n"
"\n"
"If the argument is omitted or None, strip trailing ASCII whitespace.");
#define BYTEARRAY_RSTRIP_METHODDEF \
{"rstrip", (PyCFunction)bytearray_rstrip, METH_FASTCALL, bytearray_rstrip__doc__},
static PyObject *
bytearray_rstrip_impl(PyByteArrayObject *self, PyObject *bytes);
static PyObject *
bytearray_rstrip(PyByteArrayObject *self, PyObject **args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
PyObject *bytes = Py_None;
if (!_PyArg_UnpackStack(args, nargs, "rstrip",
0, 1,
&bytes)) {
goto exit;
}
return_value = bytearray_rstrip_impl(self, bytes);
exit:
return return_value;
}
PyDoc_STRVAR(bytearray_decode__doc__,
"decode($self, /, encoding=\'utf-8\', errors=\'strict\')\n"
"--\n"
"\n"
"Decode the bytearray using the codec registered for encoding.\n"
"\n"
" encoding\n"
" The encoding with which to decode the bytearray.\n"
" errors\n"
" The error handling scheme to use for the handling of decoding errors.\n"
" The default is \'strict\' meaning that decoding errors raise a\n"
" UnicodeDecodeError. Other possible values are \'ignore\' and \'replace\'\n"
" as well as any other name registered with codecs.register_error that\n"
" can handle UnicodeDecodeErrors.");
#define BYTEARRAY_DECODE_METHODDEF \
{"decode", (PyCFunction)bytearray_decode, METH_FASTCALL|METH_KEYWORDS, bytearray_decode__doc__},
static PyObject *
bytearray_decode_impl(PyByteArrayObject *self, const char *encoding,
const char *errors);
static PyObject *
bytearray_decode(PyByteArrayObject *self, PyObject **args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
static const char * const _keywords[] = {"encoding", "errors", NULL};
static _PyArg_Parser _parser = {"|ss:decode", _keywords, 0};
const char *encoding = NULL;
const char *errors = NULL;
if (!_PyArg_ParseStackAndKeywords(args, nargs, kwnames, &_parser,
&encoding, &errors)) {
goto exit;
}
return_value = bytearray_decode_impl(self, encoding, errors);
exit:
return return_value;
}
PyDoc_STRVAR(bytearray_join__doc__,
"join($self, iterable_of_bytes, /)\n"
"--\n"
"\n"
"Concatenate any number of bytes/bytearray objects.\n"
"\n"
"The bytearray whose method is called is inserted in between each pair.\n"
"\n"
"The result is returned as a new bytearray object.");
#define BYTEARRAY_JOIN_METHODDEF \
{"join", (PyCFunction)bytearray_join, METH_O, bytearray_join__doc__},
PyDoc_STRVAR(bytearray_splitlines__doc__,
"splitlines($self, /, keepends=False)\n"
"--\n"
"\n"
"Return a list of the lines in the bytearray, breaking at line boundaries.\n"
"\n"
"Line breaks are not included in the resulting list unless keepends is given and\n"
"true.");
#define BYTEARRAY_SPLITLINES_METHODDEF \
{"splitlines", (PyCFunction)bytearray_splitlines, METH_FASTCALL|METH_KEYWORDS, bytearray_splitlines__doc__},
static PyObject *
bytearray_splitlines_impl(PyByteArrayObject *self, int keepends);
static PyObject *
bytearray_splitlines(PyByteArrayObject *self, PyObject **args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
static const char * const _keywords[] = {"keepends", NULL};
static _PyArg_Parser _parser = {"|i:splitlines", _keywords, 0};
int keepends = 0;
if (!_PyArg_ParseStackAndKeywords(args, nargs, kwnames, &_parser,
&keepends)) {
goto exit;
}
return_value = bytearray_splitlines_impl(self, keepends);
exit:
return return_value;
}
PyDoc_STRVAR(bytearray_fromhex__doc__,
"fromhex($type, string, /)\n"
"--\n"
"\n"
"Create a bytearray object from a string of hexadecimal numbers.\n"
"\n"
"Spaces between two numbers are accepted.\n"
"Example: bytearray.fromhex(\'B9 01EF\') -> bytearray(b\'\\\\xb9\\\\x01\\\\xef\')");
#define BYTEARRAY_FROMHEX_METHODDEF \
{"fromhex", (PyCFunction)bytearray_fromhex, METH_O|METH_CLASS, bytearray_fromhex__doc__},
static PyObject *
bytearray_fromhex_impl(PyTypeObject *type, PyObject *string);
static PyObject *
bytearray_fromhex(PyTypeObject *type, PyObject *arg)
{
PyObject *return_value = NULL;
PyObject *string;
if (!PyArg_Parse(arg, "U:fromhex", &string)) {
goto exit;
}
return_value = bytearray_fromhex_impl(type, string);
exit:
return return_value;
}
PyDoc_STRVAR(bytearray_reduce__doc__,
"__reduce__($self, /)\n"
"--\n"
"\n"
"Return state information for pickling.");
#define BYTEARRAY_REDUCE_METHODDEF \
{"__reduce__", (PyCFunction)bytearray_reduce, METH_NOARGS, bytearray_reduce__doc__},
static PyObject *
bytearray_reduce_impl(PyByteArrayObject *self);
static PyObject *
bytearray_reduce(PyByteArrayObject *self, PyObject *Py_UNUSED(ignored))
{
return bytearray_reduce_impl(self);
}
PyDoc_STRVAR(bytearray_reduce_ex__doc__,
"__reduce_ex__($self, proto=0, /)\n"
"--\n"
"\n"
"Return state information for pickling.");
#define BYTEARRAY_REDUCE_EX_METHODDEF \
{"__reduce_ex__", (PyCFunction)bytearray_reduce_ex, METH_FASTCALL, bytearray_reduce_ex__doc__},
static PyObject *
bytearray_reduce_ex_impl(PyByteArrayObject *self, int proto);
static PyObject *
bytearray_reduce_ex(PyByteArrayObject *self, PyObject **args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
int proto = 0;
if (!_PyArg_ParseStack(args, nargs, "|i:__reduce_ex__",
&proto)) {
goto exit;
}
return_value = bytearray_reduce_ex_impl(self, proto);
exit:
return return_value;
}
PyDoc_STRVAR(bytearray_sizeof__doc__,
"__sizeof__($self, /)\n"
"--\n"
"\n"
"Returns the size of the bytearray object in memory, in bytes.");
#define BYTEARRAY_SIZEOF_METHODDEF \
{"__sizeof__", (PyCFunction)bytearray_sizeof, METH_NOARGS, bytearray_sizeof__doc__},
static PyObject *
bytearray_sizeof_impl(PyByteArrayObject *self);
static PyObject *
bytearray_sizeof(PyByteArrayObject *self, PyObject *Py_UNUSED(ignored))
{
return bytearray_sizeof_impl(self);
}
/*[clinic end generated code: output=c2804d009182328c input=a9049054013a1b77]*/
| 20,430 | 717 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/clinic/bytesobject.inc | /* clang-format off */
/*[clinic input]
preserve
[clinic start generated code]*/
PyDoc_STRVAR(bytes_split__doc__,
"split($self, /, sep=None, maxsplit=-1)\n"
"--\n"
"\n"
"Return a list of the sections in the bytes, using sep as the delimiter.\n"
"\n"
" sep\n"
" The delimiter according which to split the bytes.\n"
" None (the default value) means split on ASCII whitespace characters\n"
" (space, tab, return, newline, formfeed, vertical tab).\n"
" maxsplit\n"
" Maximum number of splits to do.\n"
" -1 (the default value) means no limit.");
#define BYTES_SPLIT_METHODDEF \
{"split", (PyCFunction)bytes_split, METH_FASTCALL|METH_KEYWORDS, bytes_split__doc__},
static PyObject *
bytes_split_impl(PyBytesObject *self, PyObject *sep, Py_ssize_t maxsplit);
static PyObject *
bytes_split(PyBytesObject *self, PyObject **args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
static const char * const _keywords[] = {"sep", "maxsplit", NULL};
static _PyArg_Parser _parser = {"|On:split", _keywords, 0};
PyObject *sep = Py_None;
Py_ssize_t maxsplit = -1;
if (!_PyArg_ParseStackAndKeywords(args, nargs, kwnames, &_parser,
&sep, &maxsplit)) {
goto exit;
}
return_value = bytes_split_impl(self, sep, maxsplit);
exit:
return return_value;
}
PyDoc_STRVAR(bytes_partition__doc__,
"partition($self, sep, /)\n"
"--\n"
"\n"
"Partition the bytes into three parts using the given separator.\n"
"\n"
"This will search for the separator sep in the bytes. If the separator is found,\n"
"returns a 3-tuple containing the part before the separator, the separator\n"
"itself, and the part after it.\n"
"\n"
"If the separator is not found, returns a 3-tuple containing the original bytes\n"
"object and two empty bytes objects.");
#define BYTES_PARTITION_METHODDEF \
{"partition", (PyCFunction)bytes_partition, METH_O, bytes_partition__doc__},
static PyObject *
bytes_partition_impl(PyBytesObject *self, Py_buffer *sep);
static PyObject *
bytes_partition(PyBytesObject *self, PyObject *arg)
{
PyObject *return_value = NULL;
Py_buffer sep = {NULL, NULL};
if (!PyArg_Parse(arg, "y*:partition", &sep)) {
goto exit;
}
return_value = bytes_partition_impl(self, &sep);
exit:
/* Cleanup for sep */
if (sep.obj) {
PyBuffer_Release(&sep);
}
return return_value;
}
PyDoc_STRVAR(bytes_rpartition__doc__,
"rpartition($self, sep, /)\n"
"--\n"
"\n"
"Partition the bytes into three parts using the given separator.\n"
"\n"
"This will search for the separator sep in the bytes, starting at the end. If\n"
"the separator is found, returns a 3-tuple containing the part before the\n"
"separator, the separator itself, and the part after it.\n"
"\n"
"If the separator is not found, returns a 3-tuple containing two empty bytes\n"
"objects and the original bytes object.");
#define BYTES_RPARTITION_METHODDEF \
{"rpartition", (PyCFunction)bytes_rpartition, METH_O, bytes_rpartition__doc__},
static PyObject *
bytes_rpartition_impl(PyBytesObject *self, Py_buffer *sep);
static PyObject *
bytes_rpartition(PyBytesObject *self, PyObject *arg)
{
PyObject *return_value = NULL;
Py_buffer sep = {NULL, NULL};
if (!PyArg_Parse(arg, "y*:rpartition", &sep)) {
goto exit;
}
return_value = bytes_rpartition_impl(self, &sep);
exit:
/* Cleanup for sep */
if (sep.obj) {
PyBuffer_Release(&sep);
}
return return_value;
}
PyDoc_STRVAR(bytes_rsplit__doc__,
"rsplit($self, /, sep=None, maxsplit=-1)\n"
"--\n"
"\n"
"Return a list of the sections in the bytes, using sep as the delimiter.\n"
"\n"
" sep\n"
" The delimiter according which to split the bytes.\n"
" None (the default value) means split on ASCII whitespace characters\n"
" (space, tab, return, newline, formfeed, vertical tab).\n"
" maxsplit\n"
" Maximum number of splits to do.\n"
" -1 (the default value) means no limit.\n"
"\n"
"Splitting is done starting at the end of the bytes and working to the front.");
#define BYTES_RSPLIT_METHODDEF \
{"rsplit", (PyCFunction)bytes_rsplit, METH_FASTCALL|METH_KEYWORDS, bytes_rsplit__doc__},
static PyObject *
bytes_rsplit_impl(PyBytesObject *self, PyObject *sep, Py_ssize_t maxsplit);
static PyObject *
bytes_rsplit(PyBytesObject *self, PyObject **args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
static const char * const _keywords[] = {"sep", "maxsplit", NULL};
static _PyArg_Parser _parser = {"|On:rsplit", _keywords, 0};
PyObject *sep = Py_None;
Py_ssize_t maxsplit = -1;
if (!_PyArg_ParseStackAndKeywords(args, nargs, kwnames, &_parser,
&sep, &maxsplit)) {
goto exit;
}
return_value = bytes_rsplit_impl(self, sep, maxsplit);
exit:
return return_value;
}
PyDoc_STRVAR(bytes_join__doc__,
"join($self, iterable_of_bytes, /)\n"
"--\n"
"\n"
"Concatenate any number of bytes objects.\n"
"\n"
"The bytes whose method is called is inserted in between each pair.\n"
"\n"
"The result is returned as a new bytes object.\n"
"\n"
"Example: b\'.\'.join([b\'ab\', b\'pq\', b\'rs\']) -> b\'ab.pq.rs\'.");
#define BYTES_JOIN_METHODDEF \
{"join", (PyCFunction)bytes_join, METH_O, bytes_join__doc__},
PyDoc_STRVAR(bytes_strip__doc__,
"strip($self, bytes=None, /)\n"
"--\n"
"\n"
"Strip leading and trailing bytes contained in the argument.\n"
"\n"
"If the argument is omitted or None, strip leading and trailing ASCII whitespace.");
#define BYTES_STRIP_METHODDEF \
{"strip", (PyCFunction)bytes_strip, METH_FASTCALL, bytes_strip__doc__},
static PyObject *
bytes_strip_impl(PyBytesObject *self, PyObject *bytes);
static PyObject *
bytes_strip(PyBytesObject *self, PyObject **args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
PyObject *bytes = Py_None;
if (!_PyArg_UnpackStack(args, nargs, "strip",
0, 1,
&bytes)) {
goto exit;
}
return_value = bytes_strip_impl(self, bytes);
exit:
return return_value;
}
PyDoc_STRVAR(bytes_lstrip__doc__,
"lstrip($self, bytes=None, /)\n"
"--\n"
"\n"
"Strip leading bytes contained in the argument.\n"
"\n"
"If the argument is omitted or None, strip leading ASCII whitespace.");
#define BYTES_LSTRIP_METHODDEF \
{"lstrip", (PyCFunction)bytes_lstrip, METH_FASTCALL, bytes_lstrip__doc__},
static PyObject *
bytes_lstrip_impl(PyBytesObject *self, PyObject *bytes);
static PyObject *
bytes_lstrip(PyBytesObject *self, PyObject **args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
PyObject *bytes = Py_None;
if (!_PyArg_UnpackStack(args, nargs, "lstrip",
0, 1,
&bytes)) {
goto exit;
}
return_value = bytes_lstrip_impl(self, bytes);
exit:
return return_value;
}
PyDoc_STRVAR(bytes_rstrip__doc__,
"rstrip($self, bytes=None, /)\n"
"--\n"
"\n"
"Strip trailing bytes contained in the argument.\n"
"\n"
"If the argument is omitted or None, strip trailing ASCII whitespace.");
#define BYTES_RSTRIP_METHODDEF \
{"rstrip", (PyCFunction)bytes_rstrip, METH_FASTCALL, bytes_rstrip__doc__},
static PyObject *
bytes_rstrip_impl(PyBytesObject *self, PyObject *bytes);
static PyObject *
bytes_rstrip(PyBytesObject *self, PyObject **args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
PyObject *bytes = Py_None;
if (!_PyArg_UnpackStack(args, nargs, "rstrip",
0, 1,
&bytes)) {
goto exit;
}
return_value = bytes_rstrip_impl(self, bytes);
exit:
return return_value;
}
PyDoc_STRVAR(bytes_translate__doc__,
"translate($self, table, /, delete=b\'\')\n"
"--\n"
"\n"
"Return a copy with each character mapped by the given translation table.\n"
"\n"
" table\n"
" Translation table, which must be a bytes object of length 256.\n"
"\n"
"All characters occurring in the optional argument delete are removed.\n"
"The remaining characters are mapped through the given translation table.");
#define BYTES_TRANSLATE_METHODDEF \
{"translate", (PyCFunction)bytes_translate, METH_FASTCALL|METH_KEYWORDS, bytes_translate__doc__},
static PyObject *
bytes_translate_impl(PyBytesObject *self, PyObject *table,
PyObject *deletechars);
static PyObject *
bytes_translate(PyBytesObject *self, PyObject **args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
static const char * const _keywords[] = {"", "delete", NULL};
static _PyArg_Parser _parser = {"O|O:translate", _keywords, 0};
PyObject *table;
PyObject *deletechars = NULL;
if (!_PyArg_ParseStackAndKeywords(args, nargs, kwnames, &_parser,
&table, &deletechars)) {
goto exit;
}
return_value = bytes_translate_impl(self, table, deletechars);
exit:
return return_value;
}
PyDoc_STRVAR(bytes_maketrans__doc__,
"maketrans(frm, to, /)\n"
"--\n"
"\n"
"Return a translation table useable for the bytes or bytearray translate method.\n"
"\n"
"The returned table will be one where each byte in frm is mapped to the byte at\n"
"the same position in to.\n"
"\n"
"The bytes objects frm and to must be of the same length.");
#define BYTES_MAKETRANS_METHODDEF \
{"maketrans", (PyCFunction)bytes_maketrans, METH_FASTCALL|METH_STATIC, bytes_maketrans__doc__},
static PyObject *
bytes_maketrans_impl(Py_buffer *frm, Py_buffer *to);
static PyObject *
bytes_maketrans(void *null, PyObject **args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
Py_buffer frm = {NULL, NULL};
Py_buffer to = {NULL, NULL};
if (!_PyArg_ParseStack(args, nargs, "y*y*:maketrans",
&frm, &to)) {
goto exit;
}
return_value = bytes_maketrans_impl(&frm, &to);
exit:
/* Cleanup for frm */
if (frm.obj) {
PyBuffer_Release(&frm);
}
/* Cleanup for to */
if (to.obj) {
PyBuffer_Release(&to);
}
return return_value;
}
PyDoc_STRVAR(bytes_replace__doc__,
"replace($self, old, new, count=-1, /)\n"
"--\n"
"\n"
"Return a copy with all occurrences of substring old replaced by new.\n"
"\n"
" count\n"
" Maximum number of occurrences to replace.\n"
" -1 (the default value) means replace all occurrences.\n"
"\n"
"If the optional argument count is given, only the first count occurrences are\n"
"replaced.");
#define BYTES_REPLACE_METHODDEF \
{"replace", (PyCFunction)bytes_replace, METH_FASTCALL, bytes_replace__doc__},
static PyObject *
bytes_replace_impl(PyBytesObject *self, Py_buffer *old, Py_buffer *new,
Py_ssize_t count);
static PyObject *
bytes_replace(PyBytesObject *self, PyObject **args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
Py_buffer old = {NULL, NULL};
Py_buffer new = {NULL, NULL};
Py_ssize_t count = -1;
if (!_PyArg_ParseStack(args, nargs, "y*y*|n:replace",
&old, &new, &count)) {
goto exit;
}
return_value = bytes_replace_impl(self, &old, &new, count);
exit:
/* Cleanup for old */
if (old.obj) {
PyBuffer_Release(&old);
}
/* Cleanup for new */
if (new.obj) {
PyBuffer_Release(&new);
}
return return_value;
}
PyDoc_STRVAR(bytes_decode__doc__,
"decode($self, /, encoding=\'utf-8\', errors=\'strict\')\n"
"--\n"
"\n"
"Decode the bytes using the codec registered for encoding.\n"
"\n"
" encoding\n"
" The encoding with which to decode the bytes.\n"
" errors\n"
" The error handling scheme to use for the handling of decoding errors.\n"
" The default is \'strict\' meaning that decoding errors raise a\n"
" UnicodeDecodeError. Other possible values are \'ignore\' and \'replace\'\n"
" as well as any other name registered with codecs.register_error that\n"
" can handle UnicodeDecodeErrors.");
#define BYTES_DECODE_METHODDEF \
{"decode", (PyCFunction)bytes_decode, METH_FASTCALL|METH_KEYWORDS, bytes_decode__doc__},
static PyObject *
bytes_decode_impl(PyBytesObject *self, const char *encoding,
const char *errors);
static PyObject *
bytes_decode(PyBytesObject *self, PyObject **args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
static const char * const _keywords[] = {"encoding", "errors", NULL};
static _PyArg_Parser _parser = {"|ss:decode", _keywords, 0};
const char *encoding = NULL;
const char *errors = NULL;
if (!_PyArg_ParseStackAndKeywords(args, nargs, kwnames, &_parser,
&encoding, &errors)) {
goto exit;
}
return_value = bytes_decode_impl(self, encoding, errors);
exit:
return return_value;
}
PyDoc_STRVAR(bytes_splitlines__doc__,
"splitlines($self, /, keepends=False)\n"
"--\n"
"\n"
"Return a list of the lines in the bytes, breaking at line boundaries.\n"
"\n"
"Line breaks are not included in the resulting list unless keepends is given and\n"
"true.");
#define BYTES_SPLITLINES_METHODDEF \
{"splitlines", (PyCFunction)bytes_splitlines, METH_FASTCALL|METH_KEYWORDS, bytes_splitlines__doc__},
static PyObject *
bytes_splitlines_impl(PyBytesObject *self, int keepends);
static PyObject *
bytes_splitlines(PyBytesObject *self, PyObject **args, Py_ssize_t nargs, PyObject *kwnames)
{
PyObject *return_value = NULL;
static const char * const _keywords[] = {"keepends", NULL};
static _PyArg_Parser _parser = {"|i:splitlines", _keywords, 0};
int keepends = 0;
if (!_PyArg_ParseStackAndKeywords(args, nargs, kwnames, &_parser,
&keepends)) {
goto exit;
}
return_value = bytes_splitlines_impl(self, keepends);
exit:
return return_value;
}
PyDoc_STRVAR(bytes_fromhex__doc__,
"fromhex($type, string, /)\n"
"--\n"
"\n"
"Create a bytes object from a string of hexadecimal numbers.\n"
"\n"
"Spaces between two numbers are accepted.\n"
"Example: bytes.fromhex(\'B9 01EF\') -> b\'\\\\xb9\\\\x01\\\\xef\'.");
#define BYTES_FROMHEX_METHODDEF \
{"fromhex", (PyCFunction)bytes_fromhex, METH_O|METH_CLASS, bytes_fromhex__doc__},
static PyObject *
bytes_fromhex_impl(PyTypeObject *type, PyObject *string);
static PyObject *
bytes_fromhex(PyTypeObject *type, PyObject *arg)
{
PyObject *return_value = NULL;
PyObject *string;
if (!PyArg_Parse(arg, "U:fromhex", &string)) {
goto exit;
}
return_value = bytes_fromhex_impl(type, string);
exit:
return return_value;
}
/*[clinic end generated code: output=fc9e02359cc56d36 input=a9049054013a1b77]*/
| 14,390 | 504 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/clinic/dictobject.inc | /* clang-format off */
/*[clinic input]
preserve
[clinic start generated code]*/
PyDoc_STRVAR(dict_fromkeys__doc__,
"fromkeys($type, iterable, value=None, /)\n"
"--\n"
"\n"
"Returns a new dict with keys from iterable and values equal to value.");
#define DICT_FROMKEYS_METHODDEF \
{"fromkeys", (PyCFunction)dict_fromkeys, METH_FASTCALL|METH_CLASS, dict_fromkeys__doc__},
static PyObject *
dict_fromkeys_impl(PyTypeObject *type, PyObject *iterable, PyObject *value);
static PyObject *
dict_fromkeys(PyTypeObject *type, PyObject **args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
PyObject *iterable;
PyObject *value = Py_None;
if (!_PyArg_UnpackStack(args, nargs, "fromkeys",
1, 2,
&iterable, &value)) {
goto exit;
}
return_value = dict_fromkeys_impl(type, iterable, value);
exit:
return return_value;
}
PyDoc_STRVAR(dict___contains____doc__,
"__contains__($self, key, /)\n"
"--\n"
"\n"
"True if D has a key k, else False.");
#define DICT___CONTAINS___METHODDEF \
{"__contains__", (PyCFunction)dict___contains__, METH_O|METH_COEXIST, dict___contains____doc__},
/*[clinic end generated code: output=d6997a57899cf28d input=a9049054013a1b77]*/
| 1,221 | 45 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/stringlib/eq.inc | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
/* clang-format off */
/* Fast unicode equal function optimized for dictobject.c and setobject.c */
/* Return 1 if two unicode objects are equal, 0 if not.
* unicode_eq() is called when the hash of two unicode objects is equal.
*/
Py_LOCAL_INLINE(int)
unicode_eq(PyObject *aa, PyObject *bb)
{
PyUnicodeObject *a = (PyUnicodeObject *)aa;
PyUnicodeObject *b = (PyUnicodeObject *)bb;
if (UNLIKELY(PyUnicode_READY(a) == -1) ||
UNLIKELY(PyUnicode_READY(b) == -1)) {
assert(0 && "unicode_eq ready fail");
return 0;
}
if (UNLIKELY(PyUnicode_GET_LENGTH(a) != PyUnicode_GET_LENGTH(b)))
return 0;
if (UNLIKELY(PyUnicode_GET_LENGTH(a) == 0))
return 1;
if (UNLIKELY(PyUnicode_KIND(a) != PyUnicode_KIND(b)))
return 0;
return bcmp(PyUnicode_1BYTE_DATA(a), PyUnicode_1BYTE_DATA(b),
PyUnicode_GET_LENGTH(a) * PyUnicode_KIND(a)) == 0;
}
| 1,736 | 33 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/stringlib/README.txt | bits shared by the bytesobject and unicodeobject implementations (and
possibly other modules, in a not too distant future).
the stuff in here is included into relevant places; see the individual
source files for details.
--------------------------------------------------------------------
the following defines used by the different modules:
STRINGLIB_CHAR
the type used to hold a character (char or Py_UNICODE)
STRINGLIB_EMPTY
a PyObject representing the empty string, only to be used if
STRINGLIB_MUTABLE is 0
Py_ssize_t STRINGLIB_LEN(PyObject*)
returns the length of the given string object (which must be of the
right type)
PyObject* STRINGLIB_NEW(STRINGLIB_CHAR*, Py_ssize_t)
creates a new string object
STRINGLIB_CHAR* STRINGLIB_STR(PyObject*)
returns the pointer to the character data for the given string
object (which must be of the right type)
int STRINGLIB_CHECK_EXACT(PyObject *)
returns true if the object is an instance of our type, not a subclass
STRINGLIB_MUTABLE
must be 0 or 1 to tell the cpp macros in stringlib code if the object
being operated on is mutable or not
| 1,147 | 41 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/stringlib/undef.inc | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
#undef FASTSEARCH
#undef STRINGLIB
#undef STRINGLIB_SIZEOF_CHAR
#undef STRINGLIB_MAX_CHAR
#undef STRINGLIB_CHAR
#undef STRINGLIB_STR
#undef STRINGLIB_LEN
#undef STRINGLIB_NEW
#undef _Py_InsertThousandsGrouping
#undef STRINGLIB_IS_UNICODE
| 1,055 | 18 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/stringlib/transmogrify.inc | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
/* clang-format off */
#if STRINGLIB_IS_UNICODE
# error "transmogrify.h only compatible with byte-wise strings"
#endif
/* the more complicated methods. parts of these should be pulled out into the
shared code in bytes_methods.c to cut down on duplicate code bloat. */
static inline PyObject *
return_self(PyObject *self)
{
#if !STRINGLIB_MUTABLE
if (STRINGLIB_CHECK_EXACT(self)) {
Py_INCREF(self);
return self;
}
#endif
return STRINGLIB_NEW(STRINGLIB_STR(self), STRINGLIB_LEN(self));
}
static PyObject*
stringlib_expandtabs(PyObject *self, PyObject *args, PyObject *kwds)
{
const char *e, *p;
char *q;
Py_ssize_t i, j;
PyObject *u;
static char *kwlist[] = {"tabsize", 0};
int tabsize = 8;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|i:expandtabs",
kwlist, &tabsize))
return NULL;
/* First pass: determine size of output string */
i = j = 0;
e = STRINGLIB_STR(self) + STRINGLIB_LEN(self);
for (p = STRINGLIB_STR(self); p < e; p++) {
if (*p == '\t') {
if (tabsize > 0) {
Py_ssize_t incr = tabsize - (j % tabsize);
if (j > PY_SSIZE_T_MAX - incr)
goto overflow;
j += incr;
}
}
else {
if (j > PY_SSIZE_T_MAX - 1)
goto overflow;
j++;
if (*p == '\n' || *p == '\r') {
if (i > PY_SSIZE_T_MAX - j)
goto overflow;
i += j;
j = 0;
}
}
}
if (i > PY_SSIZE_T_MAX - j)
goto overflow;
/* Second pass: create output string and fill it */
u = STRINGLIB_NEW(NULL, i + j);
if (!u)
return NULL;
j = 0;
q = STRINGLIB_STR(u);
for (p = STRINGLIB_STR(self); p < e; p++) {
if (*p == '\t') {
if (tabsize > 0) {
i = tabsize - (j % tabsize);
j += i;
while (i--)
*q++ = ' ';
}
}
else {
j++;
*q++ = *p;
if (*p == '\n' || *p == '\r')
j = 0;
}
}
return u;
overflow:
PyErr_SetString(PyExc_OverflowError, "result too long");
return NULL;
}
static inline PyObject *
pad(PyObject *self, Py_ssize_t left, Py_ssize_t right, char fill)
{
PyObject *u;
if (left < 0)
left = 0;
if (right < 0)
right = 0;
if (left == 0 && right == 0) {
return return_self(self);
}
u = STRINGLIB_NEW(NULL, left + STRINGLIB_LEN(self) + right);
if (u) {
if (left)
memset(STRINGLIB_STR(u), fill, left);
memcpy(STRINGLIB_STR(u) + left,
STRINGLIB_STR(self),
STRINGLIB_LEN(self));
if (right)
memset(STRINGLIB_STR(u) + left + STRINGLIB_LEN(self),
fill, right);
}
return u;
}
static PyObject *
stringlib_ljust(PyObject *self, PyObject *args)
{
Py_ssize_t width;
char fillchar = ' ';
if (!PyArg_ParseTuple(args, "n|c:ljust", &width, &fillchar))
return NULL;
if (STRINGLIB_LEN(self) >= width) {
return return_self(self);
}
return pad(self, 0, width - STRINGLIB_LEN(self), fillchar);
}
static PyObject *
stringlib_rjust(PyObject *self, PyObject *args)
{
Py_ssize_t width;
char fillchar = ' ';
if (!PyArg_ParseTuple(args, "n|c:rjust", &width, &fillchar))
return NULL;
if (STRINGLIB_LEN(self) >= width) {
return return_self(self);
}
return pad(self, width - STRINGLIB_LEN(self), 0, fillchar);
}
static PyObject *
stringlib_center(PyObject *self, PyObject *args)
{
Py_ssize_t marg, left;
Py_ssize_t width;
char fillchar = ' ';
if (!PyArg_ParseTuple(args, "n|c:center", &width, &fillchar))
return NULL;
if (STRINGLIB_LEN(self) >= width) {
return return_self(self);
}
marg = width - STRINGLIB_LEN(self);
left = marg / 2 + (marg & width & 1);
return pad(self, left, marg - left, fillchar);
}
static PyObject *
stringlib_zfill(PyObject *self, PyObject *args)
{
Py_ssize_t fill;
PyObject *s;
char *p;
Py_ssize_t width;
if (!PyArg_ParseTuple(args, "n:zfill", &width))
return NULL;
if (STRINGLIB_LEN(self) >= width) {
return return_self(self);
}
fill = width - STRINGLIB_LEN(self);
s = pad(self, fill, 0, '0');
if (s == NULL)
return NULL;
p = STRINGLIB_STR(s);
if (p[fill] == '+' || p[fill] == '-') {
/* move sign to beginning of string */
p[0] = p[fill];
p[fill] = '0';
}
return s;
}
/* find and count characters and substrings */
#define findchar(target, target_len, c) \
((char *)memchr((const void *)(target), c, target_len))
static Py_ssize_t
countchar(const char *target, Py_ssize_t target_len, char c,
Py_ssize_t maxcount)
{
Py_ssize_t count = 0;
const char *start = target;
const char *end = target + target_len;
while ((start = findchar(start, end - start, c)) != NULL) {
count++;
if (count >= maxcount)
break;
start += 1;
}
return count;
}
/* Algorithms for different cases of string replacement */
/* len(self)>=1, from="", len(to)>=1, maxcount>=1 */
static PyObject *
stringlib_replace_interleave(PyObject *self,
const char *to_s, Py_ssize_t to_len,
Py_ssize_t maxcount)
{
const char *self_s;
char *result_s;
Py_ssize_t self_len, result_len;
Py_ssize_t count, i;
PyObject *result;
self_len = STRINGLIB_LEN(self);
/* 1 at the end plus 1 after every character;
count = min(maxcount, self_len + 1) */
if (maxcount <= self_len) {
count = maxcount;
}
else {
/* Can't overflow: self_len + 1 <= maxcount <= PY_SSIZE_T_MAX. */
count = self_len + 1;
}
/* Check for overflow */
/* result_len = count * to_len + self_len; */
assert(count > 0);
if (to_len > (PY_SSIZE_T_MAX - self_len) / count) {
PyErr_SetString(PyExc_OverflowError,
"replace bytes are too long");
return NULL;
}
result_len = count * to_len + self_len;
result = STRINGLIB_NEW(NULL, result_len);
if (result == NULL) {
return NULL;
}
self_s = STRINGLIB_STR(self);
result_s = STRINGLIB_STR(result);
if (to_len > 1) {
/* Lay the first one down (guaranteed this will occur) */
memcpy(result_s, to_s, to_len);
result_s += to_len;
count -= 1;
for (i = 0; i < count; i++) {
*result_s++ = *self_s++;
memcpy(result_s, to_s, to_len);
result_s += to_len;
}
}
else {
result_s[0] = to_s[0];
result_s += to_len;
count -= 1;
for (i = 0; i < count; i++) {
*result_s++ = *self_s++;
result_s[0] = to_s[0];
result_s += to_len;
}
}
/* Copy the rest of the original string */
memcpy(result_s, self_s, self_len - i);
return result;
}
/* Special case for deleting a single character */
/* len(self)>=1, len(from)==1, to="", maxcount>=1 */
static PyObject *
stringlib_replace_delete_single_character(PyObject *self,
char from_c, Py_ssize_t maxcount)
{
const char *self_s, *start, *next, *end;
char *result_s;
Py_ssize_t self_len, result_len;
Py_ssize_t count;
PyObject *result;
self_len = STRINGLIB_LEN(self);
self_s = STRINGLIB_STR(self);
count = countchar(self_s, self_len, from_c, maxcount);
if (count == 0) {
return return_self(self);
}
result_len = self_len - count; /* from_len == 1 */
assert(result_len>=0);
result = STRINGLIB_NEW(NULL, result_len);
if (result == NULL) {
return NULL;
}
result_s = STRINGLIB_STR(result);
start = self_s;
end = self_s + self_len;
while (count-- > 0) {
next = findchar(start, end - start, from_c);
if (next == NULL)
break;
memcpy(result_s, start, next - start);
result_s += (next - start);
start = next + 1;
}
memcpy(result_s, start, end - start);
return result;
}
/* len(self)>=1, len(from)>=2, to="", maxcount>=1 */
static PyObject *
stringlib_replace_delete_substring(PyObject *self,
const char *from_s, Py_ssize_t from_len,
Py_ssize_t maxcount)
{
const char *self_s, *start, *next, *end;
char *result_s;
Py_ssize_t self_len, result_len;
Py_ssize_t count, offset;
PyObject *result;
self_len = STRINGLIB_LEN(self);
self_s = STRINGLIB_STR(self);
count = stringlib_count(self_s, self_len,
from_s, from_len,
maxcount);
if (count == 0) {
/* no matches */
return return_self(self);
}
result_len = self_len - (count * from_len);
assert (result_len>=0);
result = STRINGLIB_NEW(NULL, result_len);
if (result == NULL) {
return NULL;
}
result_s = STRINGLIB_STR(result);
start = self_s;
end = self_s + self_len;
while (count-- > 0) {
offset = stringlib_find(start, end - start,
from_s, from_len,
0);
if (offset == -1)
break;
next = start + offset;
memcpy(result_s, start, next - start);
result_s += (next - start);
start = next + from_len;
}
memcpy(result_s, start, end - start);
return result;
}
/* len(self)>=1, len(from)==len(to)==1, maxcount>=1 */
static PyObject *
stringlib_replace_single_character_in_place(PyObject *self,
char from_c, char to_c,
Py_ssize_t maxcount)
{
const char *self_s, *end;
char *result_s, *start, *next;
Py_ssize_t self_len;
PyObject *result;
/* The result string will be the same size */
self_s = STRINGLIB_STR(self);
self_len = STRINGLIB_LEN(self);
next = findchar(self_s, self_len, from_c);
if (next == NULL) {
/* No matches; return the original bytes */
return return_self(self);
}
/* Need to make a new bytes */
result = STRINGLIB_NEW(NULL, self_len);
if (result == NULL) {
return NULL;
}
result_s = STRINGLIB_STR(result);
memcpy(result_s, self_s, self_len);
/* change everything in-place, starting with this one */
start = result_s + (next - self_s);
*start = to_c;
start++;
end = result_s + self_len;
while (--maxcount > 0) {
next = findchar(start, end - start, from_c);
if (next == NULL)
break;
*next = to_c;
start = next + 1;
}
return result;
}
/* len(self)>=1, len(from)==len(to)>=2, maxcount>=1 */
static PyObject *
stringlib_replace_substring_in_place(PyObject *self,
const char *from_s, Py_ssize_t from_len,
const char *to_s, Py_ssize_t to_len,
Py_ssize_t maxcount)
{
const char *self_s, *end;
char *result_s, *start;
Py_ssize_t self_len, offset;
PyObject *result;
/* The result bytes will be the same size */
self_s = STRINGLIB_STR(self);
self_len = STRINGLIB_LEN(self);
offset = stringlib_find(self_s, self_len,
from_s, from_len,
0);
if (offset == -1) {
/* No matches; return the original bytes */
return return_self(self);
}
/* Need to make a new bytes */
result = STRINGLIB_NEW(NULL, self_len);
if (result == NULL) {
return NULL;
}
result_s = STRINGLIB_STR(result);
memcpy(result_s, self_s, self_len);
/* change everything in-place, starting with this one */
start = result_s + offset;
memcpy(start, to_s, from_len);
start += from_len;
end = result_s + self_len;
while ( --maxcount > 0) {
offset = stringlib_find(start, end - start,
from_s, from_len,
0);
if (offset == -1)
break;
memcpy(start + offset, to_s, from_len);
start += offset + from_len;
}
return result;
}
/* len(self)>=1, len(from)==1, len(to)>=2, maxcount>=1 */
static PyObject *
stringlib_replace_single_character(PyObject *self,
char from_c,
const char *to_s, Py_ssize_t to_len,
Py_ssize_t maxcount)
{
const char *self_s, *start, *next, *end;
char *result_s;
Py_ssize_t self_len, result_len;
Py_ssize_t count;
PyObject *result;
self_s = STRINGLIB_STR(self);
self_len = STRINGLIB_LEN(self);
count = countchar(self_s, self_len, from_c, maxcount);
if (count == 0) {
/* no matches, return unchanged */
return return_self(self);
}
/* use the difference between current and new, hence the "-1" */
/* result_len = self_len + count * (to_len-1) */
assert(count > 0);
if (to_len - 1 > (PY_SSIZE_T_MAX - self_len) / count) {
PyErr_SetString(PyExc_OverflowError, "replace bytes is too long");
return NULL;
}
result_len = self_len + count * (to_len - 1);
result = STRINGLIB_NEW(NULL, result_len);
if (result == NULL) {
return NULL;
}
result_s = STRINGLIB_STR(result);
start = self_s;
end = self_s + self_len;
while (count-- > 0) {
next = findchar(start, end - start, from_c);
if (next == NULL)
break;
if (next == start) {
/* replace with the 'to' */
memcpy(result_s, to_s, to_len);
result_s += to_len;
start += 1;
} else {
/* copy the unchanged old then the 'to' */
memcpy(result_s, start, next - start);
result_s += (next - start);
memcpy(result_s, to_s, to_len);
result_s += to_len;
start = next + 1;
}
}
/* Copy the remainder of the remaining bytes */
memcpy(result_s, start, end - start);
return result;
}
/* len(self)>=1, len(from)>=2, len(to)>=2, maxcount>=1 */
static PyObject *
stringlib_replace_substring(PyObject *self,
const char *from_s, Py_ssize_t from_len,
const char *to_s, Py_ssize_t to_len,
Py_ssize_t maxcount)
{
const char *self_s, *start, *next, *end;
char *result_s;
Py_ssize_t self_len, result_len;
Py_ssize_t count, offset;
PyObject *result;
self_s = STRINGLIB_STR(self);
self_len = STRINGLIB_LEN(self);
count = stringlib_count(self_s, self_len,
from_s, from_len,
maxcount);
if (count == 0) {
/* no matches, return unchanged */
return return_self(self);
}
/* Check for overflow */
/* result_len = self_len + count * (to_len-from_len) */
assert(count > 0);
if (to_len - from_len > (PY_SSIZE_T_MAX - self_len) / count) {
PyErr_SetString(PyExc_OverflowError, "replace bytes is too long");
return NULL;
}
result_len = self_len + count * (to_len - from_len);
result = STRINGLIB_NEW(NULL, result_len);
if (result == NULL) {
return NULL;
}
result_s = STRINGLIB_STR(result);
start = self_s;
end = self_s + self_len;
while (count-- > 0) {
offset = stringlib_find(start, end - start,
from_s, from_len,
0);
if (offset == -1)
break;
next = start + offset;
if (next == start) {
/* replace with the 'to' */
memcpy(result_s, to_s, to_len);
result_s += to_len;
start += from_len;
} else {
/* copy the unchanged old then the 'to' */
memcpy(result_s, start, next - start);
result_s += (next - start);
memcpy(result_s, to_s, to_len);
result_s += to_len;
start = next + from_len;
}
}
/* Copy the remainder of the remaining bytes */
memcpy(result_s, start, end - start);
return result;
}
static PyObject *
stringlib_replace(PyObject *self,
const char *from_s, Py_ssize_t from_len,
const char *to_s, Py_ssize_t to_len,
Py_ssize_t maxcount)
{
if (maxcount < 0) {
maxcount = PY_SSIZE_T_MAX;
} else if (maxcount == 0 || STRINGLIB_LEN(self) == 0) {
/* nothing to do; return the original bytes */
return return_self(self);
}
/* Handle zero-length special cases */
if (from_len == 0) {
if (to_len == 0) {
/* nothing to do; return the original bytes */
return return_self(self);
}
/* insert the 'to' bytes everywhere. */
/* >>> b"Python".replace(b"", b".") */
/* b'.P.y.t.h.o.n.' */
return stringlib_replace_interleave(self, to_s, to_len, maxcount);
}
/* Except for b"".replace(b"", b"A") == b"A" there is no way beyond this */
/* point for an empty self bytes to generate a non-empty bytes */
/* Special case so the remaining code always gets a non-empty bytes */
if (STRINGLIB_LEN(self) == 0) {
return return_self(self);
}
if (to_len == 0) {
/* delete all occurrences of 'from' bytes */
if (from_len == 1) {
return stringlib_replace_delete_single_character(
self, from_s[0], maxcount);
} else {
return stringlib_replace_delete_substring(
self, from_s, from_len, maxcount);
}
}
/* Handle special case where both bytes have the same length */
if (from_len == to_len) {
if (from_len == 1) {
return stringlib_replace_single_character_in_place(
self, from_s[0], to_s[0], maxcount);
} else {
return stringlib_replace_substring_in_place(
self, from_s, from_len, to_s, to_len, maxcount);
}
}
/* Otherwise use the more generic algorithms */
if (from_len == 1) {
return stringlib_replace_single_character(
self, from_s[0], to_s, to_len, maxcount);
} else {
/* len('from')>=2, len('to')>=1 */
return stringlib_replace_substring(
self, from_s, from_len, to_s, to_len, maxcount);
}
}
#undef findchar
| 19,780 | 710 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/stringlib/ctype.inc | /*-*- mode:c;indent-tabs-mode:nil;c-basic-offset:4;tab-width:8;coding:utf-8 -*-â
âvi: set net ft=c ts=4 sts=4 sw=4 fenc=utf-8 :viâ
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¡
â Python 3 â
â https://docs.python.org/3/license.html â
ââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ*/
/* clang-format off */
#if STRINGLIB_IS_UNICODE
# error "ctype.h only compatible with byte-wise strings"
#endif
#include "third_party/python/Include/bytes_methods.h"
static PyObject*
stringlib_isspace(PyObject *self)
{
return _Py_bytes_isspace(STRINGLIB_STR(self), STRINGLIB_LEN(self));
}
static PyObject*
stringlib_isalpha(PyObject *self)
{
return _Py_bytes_isalpha(STRINGLIB_STR(self), STRINGLIB_LEN(self));
}
static PyObject*
stringlib_isalnum(PyObject *self)
{
return _Py_bytes_isalnum(STRINGLIB_STR(self), STRINGLIB_LEN(self));
}
static PyObject*
stringlib_isdigit(PyObject *self)
{
return _Py_bytes_isdigit(STRINGLIB_STR(self), STRINGLIB_LEN(self));
}
static PyObject*
stringlib_islower(PyObject *self)
{
return _Py_bytes_islower(STRINGLIB_STR(self), STRINGLIB_LEN(self));
}
static PyObject*
stringlib_isupper(PyObject *self)
{
return _Py_bytes_isupper(STRINGLIB_STR(self), STRINGLIB_LEN(self));
}
static PyObject*
stringlib_istitle(PyObject *self)
{
return _Py_bytes_istitle(STRINGLIB_STR(self), STRINGLIB_LEN(self));
}
/* functions that return a new object partially translated by ctype funcs: */
static PyObject*
stringlib_lower(PyObject *self)
{
PyObject* newobj;
newobj = STRINGLIB_NEW(NULL, STRINGLIB_LEN(self));
if (!newobj)
return NULL;
_Py_bytes_lower(STRINGLIB_STR(newobj), STRINGLIB_STR(self),
STRINGLIB_LEN(self));
return newobj;
}
static PyObject*
stringlib_upper(PyObject *self)
{
PyObject* newobj;
newobj = STRINGLIB_NEW(NULL, STRINGLIB_LEN(self));
if (!newobj)
return NULL;
_Py_bytes_upper(STRINGLIB_STR(newobj), STRINGLIB_STR(self),
STRINGLIB_LEN(self));
return newobj;
}
static PyObject*
stringlib_title(PyObject *self)
{
PyObject* newobj;
newobj = STRINGLIB_NEW(NULL, STRINGLIB_LEN(self));
if (!newobj)
return NULL;
_Py_bytes_title(STRINGLIB_STR(newobj), STRINGLIB_STR(self),
STRINGLIB_LEN(self));
return newobj;
}
static PyObject*
stringlib_capitalize(PyObject *self)
{
PyObject* newobj;
newobj = STRINGLIB_NEW(NULL, STRINGLIB_LEN(self));
if (!newobj)
return NULL;
_Py_bytes_capitalize(STRINGLIB_STR(newobj), STRINGLIB_STR(self),
STRINGLIB_LEN(self));
return newobj;
}
static PyObject*
stringlib_swapcase(PyObject *self)
{
PyObject* newobj;
newobj = STRINGLIB_NEW(NULL, STRINGLIB_LEN(self));
if (!newobj)
return NULL;
_Py_bytes_swapcase(STRINGLIB_STR(newobj), STRINGLIB_STR(self),
STRINGLIB_LEN(self));
return newobj;
}
| 3,459 | 119 | jart/cosmopolitan | false |
cosmopolitan/third_party/python/Objects/stringlib/unicodedefs.inc | #ifndef STRINGLIB_UNICODEDEFS_H
#define STRINGLIB_UNICODEDEFS_H
/* this is sort of a hack. there's at least one place (formatting
floats) where some stringlib code takes a different path if it's
compiled as unicode. */
#define STRINGLIB_IS_UNICODE 1
#define FASTSEARCH fastsearch
#define STRINGLIB(F) stringlib_##F
#define STRINGLIB_OBJECT PyUnicodeObject
#define STRINGLIB_SIZEOF_CHAR Py_UNICODE_SIZE
#define STRINGLIB_CHAR Py_UNICODE
#define STRINGLIB_TYPE_NAME "unicode"
#define STRINGLIB_PARSE_CODE "U"
#define STRINGLIB_EMPTY unicode_empty
#define STRINGLIB_ISSPACE Py_UNICODE_ISSPACE
#define STRINGLIB_ISLINEBREAK BLOOM_LINEBREAK
#define STRINGLIB_ISDECIMAL Py_UNICODE_ISDECIMAL
#define STRINGLIB_TODECIMAL Py_UNICODE_TODECIMAL
#define STRINGLIB_STR PyUnicode_AS_UNICODE
#define STRINGLIB_LEN PyUnicode_GET_SIZE
#define STRINGLIB_NEW PyUnicode_FromUnicode
#define STRINGLIB_CHECK PyUnicode_Check
#define STRINGLIB_CHECK_EXACT PyUnicode_CheckExact
#define STRINGLIB_TOSTR PyObject_Str
#define STRINGLIB_TOASCII PyObject_ASCII
#define STRINGLIB_WANT_CONTAINS_OBJ 1
#endif /* !STRINGLIB_UNICODEDEFS_H */
| 1,200 | 33 | jart/cosmopolitan | false |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.