|
--- |
|
license: cc-by-4.0 |
|
task_categories: |
|
- text-classification |
|
- zero-shot-classification |
|
language: |
|
- en |
|
tags: |
|
- Human Values |
|
- Value Detection |
|
- Multi-Label |
|
pretty_name: Human Value Detection Dataset |
|
size_categories: |
|
- 1K<n<10K |
|
--- |
|
|
|
Touché23-ValueEval |
|
================== |
|
[link](https://webis.de/data.html#touche23-valueeval) |
|
|
|
Usage: |
|
``` |
|
from datasets import load_dataset |
|
import ast |
|
|
|
def convert_labels(example): |
|
example["Labels"] = [i for i in ast.literal_eval(example["Labels"])] |
|
return example |
|
|
|
valueeval23 = load_dataset("webis/Touche23-ValueEval") |
|
|
|
training_dataset = valueeval23["training"].map(convert_labels) |
|
``` |
|
|
|
See available dataset parts: |
|
``` |
|
valueeval23 |
|
``` |
|
|
|
The `Labels` for each example is an array of 1s (argument resorts to value) and 0s (argument does not resort to value). The order is the same as in the original files: |
|
``` |
|
labels = ["Self-direction: thought", "Self-direction: action", "Stimulation", "Hedonism", "Achievement", "Power: dominance", "Power: resources", "Face", "Security: personal", "Security: societal", "Tradition", "Conformity: rules", "Conformity: interpersonal", "Humility", "Benevolence: caring", "Benevolence: dependability", "Universalism: concern", "Universalism: nature", "Universalism: tolerance", "Universalism: objectivity"] |
|
``` |