|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""The Touch\u00E923-ValueEval Dataset""" |
|
|
|
import json |
|
import pandas as pd |
|
import os |
|
import sys |
|
import subprocess |
|
|
|
import datasets |
|
|
|
|
|
_DESCRIPTION = """\ |
|
Dataset for Touch\u00E9 / SemEval 2023 Task 4; ValueEval: Identification of Human Values behind Arguments: |
|
https://www.overleaf.com/6679855346wrdckzkdccxg |
|
Based on the original Webis-ArgValues-22 (https://doi.org/10.5281/zenodo.5657249) dataset accompanying the paper |
|
Identifying the Human Values behind Arguments (Kiesel et al. 2022b; https://webis.de/publications.html#kiesel_2022b), |
|
published at ACL'22. |
|
|
|
""" |
|
|
|
_CITATION = """\ |
|
@Article{mirzakhmedova:2023a, |
|
author = {Nailia Mirzakhmedova and Johannes Kiesel and Milad Alshomary and Maximilian Heinrich and Nicolas Handke\ |
|
and Xiaoni Cai and Valentin Barriere and Doratossadat Dastgheib and Omid Ghahroodi and {Mohammad Ali} Sadraei\ |
|
and Ehsaneddin Asgari and Lea Kawaletz and Henning Wachsmuth and Benno Stein}, |
|
doi = {10.48550/arXiv.2301.13771}, |
|
journal = {CoRR}, |
|
month = jan, |
|
publisher = {arXiv}, |
|
title = {{The Touch{\'e}23-ValueEval Dataset for Identifying Human Values behind Arguments}}, |
|
volume = {abs/2301.13771}, |
|
year = 2023 |
|
}""" |
|
|
|
_ARGUMENT_DATASET_DESCRIPTION = """\ |
|
Each row corresponds to an argument consisting of it's unique identifier (Argument ID) and the arguments content being |
|
its Premise, Stance, and Conclusion. |
|
""" |
|
|
|
_LEVEL1_DESCRIPTION = _ARGUMENT_DATASET_DESCRIPTION + """\ |
|
The Labels for each example is an array of 1s (argument resorts to value) and 0s (argument does not resort to value). |
|
The 54 human values from the level 1 of the value taxonomy (Kiesel et al. 2022b) are not used for the 2023 task |
|
(except for the annotation), but are still listed here for some might find them useful for understanding the value |
|
categories. Their order is the same as in the original files. For more details see the 'value-categories' configuration.""" |
|
|
|
_LEVEL2_DESCRIPTION = _ARGUMENT_DATASET_DESCRIPTION + """\ |
|
The Labels for each example is an array of 1s (argument resorts to value) and 0s (argument does not resort to value). |
|
The order of the 20 value categories from the level 2 of the value taxonomy (Kiesel et al. 2022b) |
|
is the same as in the original files. For more details see the 'value-categories' configuration.""" |
|
|
|
_IBM_DESCRIPTION = """\ |
|
The 7368 arguments from the IBM-ArgQ-Rank-30kArgs corpus (Gretz et al., 2020): |
|
https://research.ibm.com/haifa/dept/vst/debating_data.shtml#Argument%20Quality""" |
|
|
|
_IBM_META_DESCRIPTION = """\ |
|
Each entry corresponds to one argument (IDs starting with A) containing the data on argument quality for the respective |
|
argument taken from the IBM-ArgQ-Rank-30kArgs corpus.""" |
|
|
|
_ZHIHU_DESCRIPTION = """\ |
|
Supplementary set of 100 arguments from the recommendation and hotlist section of the Chinese question-answering website Zhihu: |
|
https://www.zhihu.com/explore |
|
which teams can use for training or validating more robust approaches; these have been part of the original\ |
|
Webis-ArgValues-22 dataset.""" |
|
|
|
_ZHIHU_META_DESCRIPTION = """\ |
|
Each entry corresponds to one argument (IDs starting with C) reporting the original chinese conclusion and premise |
|
as well as the link to the original statement the argument was taken from.""" |
|
|
|
_GROUP_DISCUSSION_IDEAS_DESCRIPTION = """\ |
|
A set of 399 arguments from the Group Discussion Ideas (GD IDEAS) web page: |
|
https://www.groupdiscussionideas.com/""" |
|
|
|
_GROUP_DISCUSSION_IDEAS_META_DESCRIPTION = """\ |
|
Each entry corresponds to one argument (IDs starting with D) reporting the link to the topic the argument was taken from.""" |
|
|
|
_COFE_DESCRIPTION = """\ |
|
A set of 1098 arguments from the Conference on the Future of Europe portal: |
|
https://futureu.europa.eu/ |
|
The arguments were sampled from an existing dataset (Barriere et al., 2022).""" |
|
|
|
_COFE_META_DESCRIPTION = """\ |
|
Each entry corresponds to one argument (IDs starting with E) reporting the link to the comment the argument was taken from.""" |
|
|
|
_NAHJALBALAGHA_DESCRIPTION = """\ |
|
Arguments from and based on the Nahj al-Balagha. |
|
This data was contributed by the language.ml lab (Doratossadat, Omid, Mohammad, Ehsaneddin): |
|
https://language.ml/""" |
|
|
|
_NAHJALBALAGHA_META_DESCRIPTION = """\ |
|
Each entry corresponds to one argument (IDs starting with F) containing information on the 279 arguments in the dataset |
|
(configuration: 'nahjalbalagha') and 1047 additional arguments that were not labeled so far.""" |
|
|
|
_NYT_DESCRIPTION = """\ |
|
Supplementary set of 80 arguments from 12 news articles of The New York Times |
|
https://www.nytimes.com/ |
|
that were published between July 2020 and May 2021 and contain at least one of these keywords: |
|
coronavirus (2019-ncov), vaccination and immunization, and epidemics.""" |
|
|
|
_NYT_META_DESCRIPTION = """\ |
|
Each entry corresponds to one argument (IDs starting with G) reporting the link to the article the argument was taken |
|
from and the timestamp of the article's version in the Internet Archive that was used.""" |
|
|
|
_CATEGORIES_JSON_DESCRIPTION = """\ |
|
The single JSON entry in value-categories describes the 20 value categories (level 2 of the taxonomy) of this task |
|
through examples. Each category maps to a dictionary of its contained level 1 values with a given list of exemplary phrases. |
|
The level 1 values are not used for the 2023 task (except for the annotation), but are still listed here for some might |
|
find them useful for understanding the value categories.""" |
|
|
|
_IBM_CITATION = """\ |
|
@inproceedings{gretz:2020, |
|
author = {Shai Gretz and Roni Friedman and Edo Cohen{-}Karlik and Assaf Toledo and Dan Lahav and Ranit Aharonov and Noam Slonim}, |
|
title = {A Large-Scale Dataset for Argument Quality Ranking: Construction and Analysis}, |
|
booktitle = {34th {AAAI} Conference on Artificial Intelligence ({AAAI} 2020)}, |
|
pages = {7805-7813}, |
|
publisher = {{AAAI} Press}, |
|
year = {2020}, |
|
doi = {10.1609/aaai.v34i05.6285}, |
|
url = {https://aaai.org/ojs/index.php/AAAI/article/view/6285} |
|
}""" |
|
|
|
_COFE_CITATION = """\ |
|
@inproceedings{barriere-etal-2022-cofe, |
|
title = "{C}o{FE}: A New Dataset of Intra-Multilingual Multi-target Stance Classification from an Online {E}uropean Participatory Democracy Platform", |
|
author = "Barriere, Valentin and Jacquet, Guillaume Guillaume and Hemamou, Leo", |
|
booktitle = "Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)", |
|
month = nov, |
|
year = "2022", |
|
address = "Online only", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2022.aacl-short.52", |
|
pages = "418--422" |
|
}""" |
|
|
|
_HOMEPAGE = "https://webis.de/data/touche23-valueeval.html" |
|
|
|
_LICENSE = "https://creativecommons.org/licenses/by/4.0/legalcode" |
|
|
|
|
|
|
|
|
|
|
|
|
|
_SPLIT_META = datasets.Split('meta') |
|
|
|
_CONFIG_NAME_MAIN, _CONFIG_NAME_NAHJALBALAGHA, _CONFIG_NAME_ZHIHU = "main", "nahjalbalagha", "zhihu" |
|
_CONFIG_NAME_MAIN_LEVEL1, _CONFIG_NAME_NAHJALBALAGHA_LEVEL1, _CONFIG_NAME_ZHIHU_LEVEL1 = "main-level1", "nahjalbalagha-level1", "zhihu-level1" |
|
_CONFIG_NAME_NYT, _CONFIG_NAME_NYT_LEVEL1 = "nyt", "nyt-level1" |
|
|
|
_CONFIG_NAME_META_A, _CONFIG_NAME_META_D, _CONFIG_NAME_META_E = "ibm-meta", "gdi-meta", "cofe-meta" |
|
_CONFIG_NAME_META_C, _CONFIG_NAME_META_F, _CONFIG_NAME_META_G = "zhihu-meta", "nahjalbalagha-meta", "nyt-meta" |
|
_CONFIG_NAME_VALUE_CATEGORIES = "value-categories" |
|
|
|
_SPLIT_TYPE_TRAIN, _SPLIT_TYPE_VAL, _SPLIT_TYPE_TEST = "training", "validation", "test" |
|
_SPLIT_TYPE_META = "meta" |
|
_FILE_TYPE_ARGUMENTS, _FILE_TYPE_LABELS = "arguments", "labels" |
|
_FILE_TYPE_META, _FILE_TYPE_JSON = "meta", "json" |
|
|
|
_FILE_TYPE_DOWNLOADER = "downloader" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_ZENODO_LINK = "https://zenodo.org/record/7879430/files/" |
|
_URL = os.environ.get('TIRA_INPUT_DIRECTORY', _ZENODO_LINK) |
|
_NYT_DOWNLOADER_URL = "https://raw.githubusercontent.com/touche-webis-de/touche-code/main/semeval23/human-value-detection/nyt-downloader/" |
|
|
|
_NYT_ARGUMENTS_FILE_LOCAL = "webis_touche23-valueeval_arguments-test-nyt.tsv" |
|
_NYT_ARGUMENTS_FILE_ON_TIRA = "arguments-test-nyt.tsv" |
|
|
|
_URLS = { |
|
_CONFIG_NAME_MAIN: { |
|
_SPLIT_TYPE_TRAIN: { |
|
_FILE_TYPE_ARGUMENTS: _URL + "arguments-training.tsv", |
|
_FILE_TYPE_LABELS: _URL + "labels-training.tsv" |
|
}, |
|
_SPLIT_TYPE_VAL: { |
|
_FILE_TYPE_ARGUMENTS: _URL + "arguments-validation.tsv", |
|
_FILE_TYPE_LABELS: _URL + "labels-validation.tsv" |
|
}, |
|
_SPLIT_TYPE_TEST: { |
|
_FILE_TYPE_ARGUMENTS: _URL + "arguments-test.tsv", |
|
_FILE_TYPE_LABELS: _URL + "labels-test.tsv" |
|
} |
|
}, |
|
_CONFIG_NAME_MAIN_LEVEL1: { |
|
_SPLIT_TYPE_TRAIN: { |
|
_FILE_TYPE_ARGUMENTS: _URL + "arguments-training.tsv", |
|
_FILE_TYPE_LABELS: _URL + "level1-labels-training.tsv" |
|
}, |
|
_SPLIT_TYPE_VAL: { |
|
_FILE_TYPE_ARGUMENTS: _URL + "arguments-validation.tsv", |
|
_FILE_TYPE_LABELS: _URL + "level1-labels-validation.tsv" |
|
}, |
|
_SPLIT_TYPE_TEST: { |
|
_FILE_TYPE_ARGUMENTS: _URL + "arguments-test.tsv", |
|
_FILE_TYPE_LABELS: _URL + "level1-labels-test.tsv" |
|
} |
|
}, |
|
_CONFIG_NAME_NAHJALBALAGHA: { |
|
_SPLIT_TYPE_TEST: { |
|
_FILE_TYPE_ARGUMENTS: _URL + "arguments-test-nahjalbalagha.tsv", |
|
_FILE_TYPE_LABELS: _URL + "labels-test-nahjalbalagha.tsv" |
|
} |
|
}, |
|
_CONFIG_NAME_NAHJALBALAGHA_LEVEL1: { |
|
_SPLIT_TYPE_TEST: { |
|
_FILE_TYPE_ARGUMENTS: _URL + "arguments-test-nahjalbalagha.tsv", |
|
_FILE_TYPE_LABELS: _URL + "level1-labels-test-nahjalbalagha.tsv" |
|
} |
|
}, |
|
_CONFIG_NAME_NYT: { |
|
_SPLIT_TYPE_TEST: { |
|
_FILE_TYPE_LABELS: _URL + "labels-test-nyt.tsv" |
|
} |
|
}, |
|
_CONFIG_NAME_NYT_LEVEL1: { |
|
_SPLIT_TYPE_TEST: { |
|
_FILE_TYPE_LABELS: _URL + "level1-labels-test-nyt.tsv" |
|
} |
|
}, |
|
_CONFIG_NAME_ZHIHU: { |
|
_SPLIT_TYPE_VAL: { |
|
_FILE_TYPE_ARGUMENTS: _URL + "arguments-validation-zhihu.tsv", |
|
_FILE_TYPE_LABELS: _URL + "labels-validation-zhihu.tsv" |
|
} |
|
}, |
|
_CONFIG_NAME_ZHIHU_LEVEL1: { |
|
_SPLIT_TYPE_VAL: { |
|
_FILE_TYPE_ARGUMENTS: _URL + "arguments-validation-zhihu.tsv", |
|
_FILE_TYPE_LABELS: _URL + "level1-labels-validation-zhihu.tsv" |
|
} |
|
}, |
|
_CONFIG_NAME_META_A: { |
|
_SPLIT_TYPE_META: { |
|
_FILE_TYPE_META: _URL + "meta-arguments-a.tsv" |
|
} |
|
}, |
|
_CONFIG_NAME_META_D: { |
|
_SPLIT_TYPE_META: { |
|
_FILE_TYPE_META: _URL + "meta-arguments-d.tsv" |
|
} |
|
}, |
|
_CONFIG_NAME_META_E: { |
|
_SPLIT_TYPE_META: { |
|
_FILE_TYPE_META: _URL + "meta-arguments-e.tsv" |
|
} |
|
}, |
|
_CONFIG_NAME_META_C: { |
|
_SPLIT_TYPE_META: { |
|
_FILE_TYPE_META: _URL + "meta-arguments-c.tsv" |
|
} |
|
}, |
|
_CONFIG_NAME_META_F: { |
|
_SPLIT_TYPE_META: { |
|
_FILE_TYPE_META: _URL + "meta-arguments-f.tsv" |
|
} |
|
}, |
|
_CONFIG_NAME_META_G: { |
|
_SPLIT_TYPE_META: { |
|
_FILE_TYPE_META: _URL + "meta-arguments-g.tsv" |
|
} |
|
}, |
|
_CONFIG_NAME_VALUE_CATEGORIES: { |
|
_SPLIT_TYPE_META: { |
|
_FILE_TYPE_JSON: _URL + "value-categories.json" |
|
} |
|
} |
|
} |
|
|
|
_NYT_DOWNLOADER_FILES = { |
|
"requirements": _NYT_DOWNLOADER_URL + "requirements.txt", |
|
"downloader": _NYT_DOWNLOADER_URL + "nyt-downloader.py", |
|
"input-file": _NYT_DOWNLOADER_URL + "nyt01-spans.tsv", |
|
"checksum": _NYT_DOWNLOADER_URL + "arguments-test-nyt.sha256" |
|
} |
|
if _URL != _ZENODO_LINK: |
|
|
|
_URLS[_CONFIG_NAME_NYT][_SPLIT_TYPE_TEST][_FILE_TYPE_ARGUMENTS] = _URL + _NYT_ARGUMENTS_FILE_ON_TIRA |
|
_URLS[_CONFIG_NAME_NYT_LEVEL1][_SPLIT_TYPE_TEST][_FILE_TYPE_ARGUMENTS] = _URL + _NYT_ARGUMENTS_FILE_ON_TIRA |
|
else: |
|
|
|
_URLS[_CONFIG_NAME_NYT][_SPLIT_TYPE_TEST][_FILE_TYPE_DOWNLOADER] = _NYT_DOWNLOADER_FILES |
|
_URLS[_CONFIG_NAME_NYT_LEVEL1][_SPLIT_TYPE_TEST][_FILE_TYPE_DOWNLOADER] = _NYT_DOWNLOADER_FILES |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_FEATURES_ARGUMENT_SETS = datasets.Features( |
|
{ |
|
"Argument ID": datasets.Value("string"), |
|
"Conclusion": datasets.Value("string"), |
|
"Stance": datasets.Value("string"), |
|
"Premise": datasets.Value("string"), |
|
"Labels": datasets.Sequence(feature=datasets.Value("int32")) |
|
} |
|
) |
|
|
|
_FEATURES_META_SETS = { |
|
_CONFIG_NAME_META_A: datasets.Features( |
|
{ |
|
"Argument ID": datasets.Value("string"), |
|
"WA": datasets.Value("float64"), |
|
"MACE-P": datasets.Value("float64"), |
|
"stance_WA": datasets.Value("int32"), |
|
"stance_WA_conf": datasets.Value("float64") |
|
} |
|
), |
|
_CONFIG_NAME_META_D: datasets.Features( |
|
{ |
|
"Argument ID": datasets.Value("string"), |
|
"URL": datasets.Value("string") |
|
} |
|
), |
|
_CONFIG_NAME_META_E: datasets.Features( |
|
{ |
|
"Argument ID": datasets.Value("string"), |
|
"URL": datasets.Value("string") |
|
} |
|
), |
|
_CONFIG_NAME_META_C: datasets.Features( |
|
{ |
|
"Argument ID": datasets.Value("string"), |
|
"Conclusion Chinese": datasets.Value("string"), |
|
"Premise Chinese": datasets.Value("string"), |
|
"URL": datasets.Value("string") |
|
} |
|
), |
|
_CONFIG_NAME_META_F: datasets.Features( |
|
{ |
|
"Argument ID": datasets.Value("string"), |
|
"Conclusion Farsi": datasets.Value("string"), |
|
"Stance Farsi": datasets.Value("string"), |
|
"Premise Farsi": datasets.Value("string"), |
|
"Conclusion English": datasets.Value("string"), |
|
"Stance English": datasets.Value("string"), |
|
"Premise English": datasets.Value("string"), |
|
"Source": datasets.Value("string"), |
|
"Method": datasets.Value("string") |
|
} |
|
), |
|
_CONFIG_NAME_META_G: datasets.Features( |
|
{ |
|
"Argument ID": datasets.Value("string"), |
|
"URL": datasets.Value("string"), |
|
"Internet Archive timestamp": datasets.Value("string") |
|
} |
|
), |
|
_CONFIG_NAME_VALUE_CATEGORIES: datasets.Features( |
|
{ |
|
"Self-direction: thought": { |
|
"Be creative": datasets.Sequence(feature=datasets.Value("string")), |
|
"Be curious": datasets.Sequence(feature=datasets.Value("string")), |
|
"Have freedom of thought": datasets.Sequence(feature=datasets.Value("string")) |
|
}, |
|
"Self-direction: action": { |
|
"Be choosing own goals": datasets.Sequence(feature=datasets.Value("string")), |
|
"Be independent": datasets.Sequence(feature=datasets.Value("string")), |
|
"Have freedom of action": datasets.Sequence(feature=datasets.Value("string")), |
|
"Have privacy": datasets.Sequence(feature=datasets.Value("string")) |
|
}, |
|
"Stimulation": { |
|
"Have an exciting life": datasets.Sequence(feature=datasets.Value("string")), |
|
"Have a varied life": datasets.Sequence(feature=datasets.Value("string")), |
|
"Be daring": datasets.Sequence(feature=datasets.Value("string")) |
|
}, |
|
"Hedonism": { |
|
"Have pleasure": datasets.Sequence(feature=datasets.Value("string")) |
|
}, |
|
"Achievement": { |
|
"Be ambitious": datasets.Sequence(feature=datasets.Value("string")), |
|
"Have success": datasets.Sequence(feature=datasets.Value("string")), |
|
"Be capable": datasets.Sequence(feature=datasets.Value("string")), |
|
"Be intellectual": datasets.Sequence(feature=datasets.Value("string")), |
|
"Be courageous": datasets.Sequence(feature=datasets.Value("string")) |
|
}, |
|
"Power: dominance": { |
|
"Have influence": datasets.Sequence(feature=datasets.Value("string")), |
|
"Have the right to command": datasets.Sequence(feature=datasets.Value("string")) |
|
}, |
|
"Power: resources": { |
|
"Have wealth": datasets.Sequence(feature=datasets.Value("string")) |
|
}, |
|
"Face": { |
|
"Have social recognition": datasets.Sequence(feature=datasets.Value("string")), |
|
"Have a good reputation": datasets.Sequence(feature=datasets.Value("string")) |
|
}, |
|
"Security: personal": { |
|
"Have a sense of belonging": datasets.Sequence(feature=datasets.Value("string")), |
|
"Have good health": datasets.Sequence(feature=datasets.Value("string")), |
|
"Have no debts": datasets.Sequence(feature=datasets.Value("string")), |
|
"Be neat and tidy": datasets.Sequence(feature=datasets.Value("string")), |
|
"Have a comfortable life": datasets.Sequence(feature=datasets.Value("string")) |
|
}, |
|
"Security: societal": { |
|
"Have a safe country": datasets.Sequence(feature=datasets.Value("string")), |
|
"Have a stable society": datasets.Sequence(feature=datasets.Value("string")) |
|
}, |
|
"Tradition": { |
|
"Be respecting traditions": datasets.Sequence(feature=datasets.Value("string")), |
|
"Be holding religious faith": datasets.Sequence(feature=datasets.Value("string")) |
|
}, |
|
"Conformity: rules": { |
|
"Be compliant": datasets.Sequence(feature=datasets.Value("string")), |
|
"Be self-disciplined": datasets.Sequence(feature=datasets.Value("string")), |
|
"Be behaving properly": datasets.Sequence(feature=datasets.Value("string")) |
|
}, |
|
"Conformity: interpersonal": { |
|
"Be polite": datasets.Sequence(feature=datasets.Value("string")), |
|
"Be honoring elders": datasets.Sequence(feature=datasets.Value("string")) |
|
}, |
|
"Humility": { |
|
"Be humble": datasets.Sequence(feature=datasets.Value("string")), |
|
"Have life accepted as is": datasets.Sequence(feature=datasets.Value("string")) |
|
}, |
|
"Benevolence: caring": { |
|
"Be helpful": datasets.Sequence(feature=datasets.Value("string")), |
|
"Be honest": datasets.Sequence(feature=datasets.Value("string")), |
|
"Be forgiving": datasets.Sequence(feature=datasets.Value("string")), |
|
"Have the own family secured": datasets.Sequence(feature=datasets.Value("string")), |
|
"Be loving": datasets.Sequence(feature=datasets.Value("string")) |
|
}, |
|
"Benevolence: dependability": { |
|
"Be responsible": datasets.Sequence(feature=datasets.Value("string")), |
|
"Have loyalty towards friends": datasets.Sequence(feature=datasets.Value("string")) |
|
}, |
|
"Universalism: concern": { |
|
"Have equality": datasets.Sequence(feature=datasets.Value("string")), |
|
"Be just": datasets.Sequence(feature=datasets.Value("string")), |
|
"Have a world at peace": datasets.Sequence(feature=datasets.Value("string")) |
|
}, |
|
"Universalism: nature": { |
|
"Be protecting the environment": datasets.Sequence(feature=datasets.Value("string")), |
|
"Have harmony with nature": datasets.Sequence(feature=datasets.Value("string")), |
|
"Have a world of beauty": datasets.Sequence(feature=datasets.Value("string")) |
|
}, |
|
"Universalism: tolerance": { |
|
"Be broadminded": datasets.Sequence(feature=datasets.Value("string")), |
|
"Have the wisdom to accept others": datasets.Sequence(feature=datasets.Value("string")) |
|
}, |
|
"Universalism: objectivity": { |
|
"Be logical": datasets.Sequence(feature=datasets.Value("string")), |
|
"Have an objective view": datasets.Sequence(feature=datasets.Value("string")) |
|
} |
|
} |
|
) |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
class ToucheValueEvalConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Touch\u00E923-ValueEval.""" |
|
|
|
def __init__(self, features, data_urls, citation=None, **kwargs): |
|
"""BuilderConfig for Touch\u00E923-ValueEval. |
|
|
|
Args: |
|
features: `list[string]`, list of the features that will appear in the |
|
feature dict. |
|
data_urls: `dict[string,dict[string,string]`, urls to download the dataset files from. |
|
citation: `string`, citation for the data set. |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
|
|
|
|
super(ToucheValueEvalConfig, self).__init__(version=datasets.Version("0.0.2"), **kwargs) |
|
self.features = features |
|
self.data_urls = data_urls |
|
self.citation = citation |
|
|
|
|
|
class ToucheValueEval(datasets.GeneratorBasedBuilder): |
|
"""The Touch\u00E923-ValueEval dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
ToucheValueEvalConfig( |
|
name=_CONFIG_NAME_MAIN, |
|
features=_FEATURES_ARGUMENT_SETS, |
|
data_urls=_URLS[_CONFIG_NAME_MAIN], |
|
description=_IBM_DESCRIPTION + '\n' + _COFE_DESCRIPTION + '\n' + _GROUP_DISCUSSION_IDEAS_DESCRIPTION + '\n' + _LEVEL2_DESCRIPTION, |
|
citation=_IBM_CITATION + '\n' + _COFE_CITATION |
|
), |
|
ToucheValueEvalConfig( |
|
name=_CONFIG_NAME_MAIN_LEVEL1, |
|
features=_FEATURES_ARGUMENT_SETS, |
|
data_urls=_URLS[_CONFIG_NAME_MAIN_LEVEL1], |
|
description=_IBM_DESCRIPTION + '\n' + _COFE_DESCRIPTION + '\n' + _GROUP_DISCUSSION_IDEAS_DESCRIPTION + '\n' + _LEVEL1_DESCRIPTION, |
|
citation=_IBM_CITATION + '\n' + _COFE_CITATION |
|
), |
|
ToucheValueEvalConfig( |
|
name=_CONFIG_NAME_NAHJALBALAGHA, |
|
features=_FEATURES_ARGUMENT_SETS, |
|
data_urls=_URLS[_CONFIG_NAME_NAHJALBALAGHA], |
|
description=_NAHJALBALAGHA_DESCRIPTION + '\n' + _LEVEL2_DESCRIPTION |
|
), |
|
ToucheValueEvalConfig( |
|
name=_CONFIG_NAME_NAHJALBALAGHA_LEVEL1, |
|
features=_FEATURES_ARGUMENT_SETS, |
|
data_urls=_URLS[_CONFIG_NAME_NAHJALBALAGHA], |
|
description=_NAHJALBALAGHA_DESCRIPTION + '\n' + _LEVEL1_DESCRIPTION |
|
), |
|
ToucheValueEvalConfig( |
|
name=_CONFIG_NAME_NYT, |
|
features=_FEATURES_ARGUMENT_SETS, |
|
data_urls=_URLS[_CONFIG_NAME_NYT], |
|
description=_NYT_DESCRIPTION + '\n' + _LEVEL2_DESCRIPTION |
|
), |
|
ToucheValueEvalConfig( |
|
name=_CONFIG_NAME_NYT_LEVEL1, |
|
features=_FEATURES_ARGUMENT_SETS, |
|
data_urls=_URLS[_CONFIG_NAME_NYT_LEVEL1], |
|
description=_NYT_DESCRIPTION + '\n' + _LEVEL1_DESCRIPTION |
|
), |
|
ToucheValueEvalConfig( |
|
name=_CONFIG_NAME_ZHIHU, |
|
features=_FEATURES_ARGUMENT_SETS, |
|
data_urls=_URLS[_CONFIG_NAME_ZHIHU], |
|
description=_ZHIHU_DESCRIPTION + '\n' + _LEVEL2_DESCRIPTION |
|
), |
|
ToucheValueEvalConfig( |
|
name=_CONFIG_NAME_ZHIHU_LEVEL1, |
|
features=_FEATURES_ARGUMENT_SETS, |
|
data_urls=_URLS[_CONFIG_NAME_ZHIHU_LEVEL1], |
|
description=_ZHIHU_DESCRIPTION + '\n' + _LEVEL1_DESCRIPTION |
|
), |
|
ToucheValueEvalConfig( |
|
name=_CONFIG_NAME_META_A, |
|
features=_FEATURES_META_SETS[_CONFIG_NAME_META_A], |
|
data_urls=_URLS[_CONFIG_NAME_META_A], |
|
description=_IBM_DESCRIPTION + '\n' + _IBM_META_DESCRIPTION, |
|
citation=_IBM_CITATION |
|
), |
|
ToucheValueEvalConfig( |
|
name=_CONFIG_NAME_META_D, |
|
features=_FEATURES_META_SETS[_CONFIG_NAME_META_D], |
|
data_urls=_URLS[_CONFIG_NAME_META_D], |
|
description=_GROUP_DISCUSSION_IDEAS_DESCRIPTION + '\n' + _GROUP_DISCUSSION_IDEAS_META_DESCRIPTION |
|
), |
|
ToucheValueEvalConfig( |
|
name=_CONFIG_NAME_META_E, |
|
features=_FEATURES_META_SETS[_CONFIG_NAME_META_E], |
|
data_urls=_URLS[_CONFIG_NAME_META_E], |
|
description=_COFE_DESCRIPTION + '\n' + _COFE_META_DESCRIPTION, |
|
citation=_COFE_CITATION |
|
), |
|
ToucheValueEvalConfig( |
|
name=_CONFIG_NAME_META_C, |
|
features=_FEATURES_META_SETS[_CONFIG_NAME_META_C], |
|
data_urls=_URLS[_CONFIG_NAME_META_C], |
|
description=_ZHIHU_DESCRIPTION + '\n' + _ZHIHU_META_DESCRIPTION |
|
), |
|
ToucheValueEvalConfig( |
|
name=_CONFIG_NAME_META_F, |
|
features=_FEATURES_META_SETS[_CONFIG_NAME_META_F], |
|
data_urls=_URLS[_CONFIG_NAME_META_F], |
|
description=_NAHJALBALAGHA_DESCRIPTION + '\n' + _NAHJALBALAGHA_META_DESCRIPTION |
|
), |
|
ToucheValueEvalConfig( |
|
name=_CONFIG_NAME_META_G, |
|
features=_FEATURES_META_SETS[_CONFIG_NAME_META_G], |
|
data_urls=_URLS[_CONFIG_NAME_META_G], |
|
description=_NYT_DESCRIPTION + '\n' + _NYT_META_DESCRIPTION |
|
), |
|
ToucheValueEvalConfig( |
|
name=_CONFIG_NAME_VALUE_CATEGORIES, |
|
features=_FEATURES_META_SETS[_CONFIG_NAME_VALUE_CATEGORIES], |
|
data_urls=_URLS[_CONFIG_NAME_VALUE_CATEGORIES], |
|
description=_CATEGORIES_JSON_DESCRIPTION |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = _CONFIG_NAME_MAIN |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION + self.config.description, |
|
features=self.config.features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=(self.config.citation + '\n' if self.config.citation is not None else '') + _CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
urls = self.config.data_urls |
|
file_dict = dl_manager.download_and_extract(urls) |
|
|
|
if self.config.name == _CONFIG_NAME_MAIN or self.config.name == _CONFIG_NAME_MAIN_LEVEL1: |
|
splits = [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepaths": file_dict[_SPLIT_TYPE_TRAIN], |
|
"split": _SPLIT_TYPE_TRAIN |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepaths": file_dict[_SPLIT_TYPE_VAL], |
|
"split": _SPLIT_TYPE_VAL |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepaths": file_dict[_SPLIT_TYPE_TEST], |
|
"split": _SPLIT_TYPE_TEST |
|
}, |
|
), |
|
] |
|
elif self.config.name in [_CONFIG_NAME_ZHIHU, _CONFIG_NAME_ZHIHU_LEVEL1]: |
|
splits = [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepaths": file_dict[_SPLIT_TYPE_VAL], |
|
"split": _SPLIT_TYPE_VAL |
|
}, |
|
), |
|
] |
|
elif self.config.name in [_CONFIG_NAME_NYT, _CONFIG_NAME_NYT_LEVEL1]: |
|
splits = [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepaths": file_dict[_SPLIT_TYPE_TEST], |
|
"split": _SPLIT_TYPE_TEST |
|
}, |
|
), |
|
] |
|
elif self.config.name in [_CONFIG_NAME_NAHJALBALAGHA, _CONFIG_NAME_NAHJALBALAGHA_LEVEL1]: |
|
splits = [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepaths": file_dict[_SPLIT_TYPE_TEST], |
|
"split": _SPLIT_TYPE_TEST |
|
}, |
|
), |
|
] |
|
else: |
|
splits = [ |
|
datasets.SplitGenerator( |
|
name=_SPLIT_META, |
|
gen_kwargs={ |
|
"filepaths": file_dict[_SPLIT_TYPE_META], |
|
"split": _SPLIT_TYPE_META |
|
}, |
|
), |
|
] |
|
return splits |
|
|
|
|
|
def _generate_examples(self, filepaths, split): |
|
file_types = filepaths.keys() |
|
|
|
if self.config.name in [_CONFIG_NAME_NYT, _CONFIG_NAME_NYT_LEVEL1] and _FILE_TYPE_DOWNLOADER in file_types: |
|
|
|
downloader_paths = filepaths[_FILE_TYPE_DOWNLOADER] |
|
|
|
directory = os.path.dirname(downloader_paths['downloader']) |
|
arguments_file = os.path.join(directory, _NYT_ARGUMENTS_FILE_LOCAL) |
|
if not os.path.exists(arguments_file): |
|
subprocess.check_call(f"pip3 install -r {downloader_paths['requirements']}", shell=True, stdout=sys.stdout, |
|
stderr=subprocess.STDOUT) |
|
subprocess.check_call(f"spacy download en_core_web_sm", shell=True, stdout=sys.stdout, |
|
stderr=subprocess.STDOUT) |
|
subprocess.check_call( |
|
f"python3 {downloader_paths['downloader']} --input-file {downloader_paths['input-file']} --output-file {arguments_file}", |
|
shell=True, stdout=sys.stdout, stderr=subprocess.STDOUT) |
|
|
|
with open(downloader_paths['checksum'], mode='r', encoding='utf-8') as f: |
|
checksum = f.readline().split(' ')[0] |
|
subprocess.check_call(f"echo \"{checksum} {arguments_file}\" | sha256sum --check", shell=True, |
|
stdout=sys.stdout, stderr=subprocess.STDOUT) |
|
|
|
filepaths[_FILE_TYPE_ARGUMENTS] = arguments_file |
|
|
|
if _FILE_TYPE_ARGUMENTS in file_types: |
|
|
|
with open(filepaths[_FILE_TYPE_ARGUMENTS], encoding='utf-8') as f: |
|
dataframe_arguments = pd.read_csv(f, sep='\t', header=0) |
|
|
|
if _FILE_TYPE_LABELS not in file_types: |
|
label_names = [] |
|
else: |
|
with open(filepaths[_FILE_TYPE_LABELS], encoding='utf-8') as f: |
|
dataframe_labels = pd.read_csv(f, sep='\t', header=0) |
|
|
|
label_names = [x for x in dataframe_labels.columns if x != "Argument ID"] |
|
dataframe_arguments = dataframe_arguments.join( |
|
dataframe_labels.set_index('Argument ID'), on='Argument ID', how='inner' |
|
) |
|
|
|
for key, row in dataframe_arguments.iterrows(): |
|
yield key, { |
|
"Argument ID": row["Argument ID"], |
|
"Conclusion": row["Conclusion"], |
|
"Stance": row["Stance"], |
|
"Premise": row["Premise"], |
|
"Labels": [int(row[x]) for x in label_names], |
|
} |
|
elif _FILE_TYPE_META in file_types: |
|
|
|
with open(filepaths[_FILE_TYPE_META], encoding='utf-8') as f: |
|
dataframe_meta = pd.read_csv(f, sep='\t', header=0) |
|
|
|
for key, row in dataframe_meta.iterrows(): |
|
yield key, {str(column): row[str(column)] for column in row.keys()} |
|
else: |
|
|
|
with open(filepaths[_FILE_TYPE_JSON], encoding='utf-8') as f: |
|
value_categories = json.load(f) |
|
|
|
yield 0, value_categories |
|
|