id
stringlengths 14
16
| text
stringlengths 13
2.7k
| source
stringlengths 57
178
|
---|---|---|
81f1a4046e81-1 | param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
async ainvoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.spark_sql.tool.InfoSparkSQLTool.html |
81f1a4046e81-2 | Subclasses should override this method if they can run asynchronously.
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.spark_sql.tool.InfoSparkSQLTool.html |
81f1a4046e81-3 | The jsonpatch ops can be applied in order to construct state.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ | lang/api.python.langchain.com/en/latest/tools/langchain.tools.spark_sql.tool.InfoSparkSQLTool.html |
81f1a4046e81-4 | classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
The tool’s input schema.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.spark_sql.tool.InfoSparkSQLTool.html |
81f1a4046e81-5 | Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
invoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool¶
Is this class serializable? | lang/api.python.langchain.com/en/latest/tools/langchain.tools.spark_sql.tool.InfoSparkSQLTool.html |
81f1a4046e81-6 | classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ | lang/api.python.langchain.com/en/latest/tools/langchain.tools.spark_sql.tool.InfoSparkSQLTool.html |
81f1a4046e81-7 | run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → Any¶
Run the tool.
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.spark_sql.tool.InfoSparkSQLTool.html |
81f1a4046e81-8 | Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up | lang/api.python.langchain.com/en/latest/tools/langchain.tools.spark_sql.tool.InfoSparkSQLTool.html |
81f1a4046e81-9 | between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
property InputType: Type[langchain.schema.runnable.utils.Input]¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[langchain.schema.runnable.utils.Output]¶
The type of output this runnable produces specified as a type annotation.
property args: dict¶
property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[pydantic.main.BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property is_single_input: bool¶
Whether the tool only accepts a single input.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶
The type of output this runnable produces specified as a pydantic model. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.spark_sql.tool.InfoSparkSQLTool.html |
35cf52664175-0 | langchain.tools.amadeus.utils.authenticate¶
langchain.tools.amadeus.utils.authenticate() → Client[source]¶
Authenticate using the Amadeus API | lang/api.python.langchain.com/en/latest/tools/langchain.tools.amadeus.utils.authenticate.html |
bee64c4454ee-0 | langchain.tools.edenai.ocr_identityparser.EdenAiParsingIDTool¶
class langchain.tools.edenai.ocr_identityparser.EdenAiParsingIDTool[source]¶
Bases: EdenaiTool
Tool that queries the Eden AI Identity parsing API.
for api reference check edenai documentation:
https://docs.edenai.co/reference/ocr_identity_parser_create.
To use, you should have
the environment variable EDENAI_API_KEY set with your API token.
You can find your token here: https://app.edenai.run/admin/account/settings
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param args_schema: Optional[Type[BaseModel]] = None¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str = 'A wrapper around edenai Services Identity parsing. Useful for when you have to extract information from an ID Document Input should be the string url of the document to parse.'¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param edenai_api_key: Optional[str] = None¶
param feature: str = 'ocr'¶
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param is_async: bool = False¶
param language: Optional[str] = None¶
language of the text passed to the model.
param metadata: Optional[Dict[str, Any]] = None¶ | lang/api.python.langchain.com/en/latest/tools/langchain.tools.edenai.ocr_identityparser.EdenAiParsingIDTool.html |
bee64c4454ee-1 | param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'edenai_identity_parsing'¶
The unique name of the tool that clearly communicates its purpose.
param providers: List[str] [Required]¶
provider to use for the API call.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param subfeature: str = 'identity_parser'¶
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.edenai.ocr_identityparser.EdenAiParsingIDTool.html |
bee64c4454ee-2 | e.g., if the underlying runnable uses an API which supports a batch mode.
async ainvoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.edenai.ocr_identityparser.EdenAiParsingIDTool.html |
bee64c4454ee-3 | Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.edenai.ocr_identityparser.EdenAiParsingIDTool.html |
bee64c4454ee-4 | Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance | lang/api.python.langchain.com/en/latest/tools/langchain.tools.edenai.ocr_identityparser.EdenAiParsingIDTool.html |
bee64c4454ee-5 | deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
The tool’s input schema.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
static get_user_agent() → str¶
invoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.edenai.ocr_identityparser.EdenAiParsingIDTool.html |
bee64c4454ee-6 | Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶ | lang/api.python.langchain.com/en/latest/tools/langchain.tools.edenai.ocr_identityparser.EdenAiParsingIDTool.html |
bee64c4454ee-7 | classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → Any¶
Run the tool.
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶ | lang/api.python.langchain.com/en/latest/tools/langchain.tools.edenai.ocr_identityparser.EdenAiParsingIDTool.html |
bee64c4454ee-8 | classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters | lang/api.python.langchain.com/en/latest/tools/langchain.tools.edenai.ocr_identityparser.EdenAiParsingIDTool.html |
bee64c4454ee-9 | Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
property InputType: Type[langchain.schema.runnable.utils.Input]¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[langchain.schema.runnable.utils.Output]¶
The type of output this runnable produces specified as a type annotation.
property args: dict¶
property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[pydantic.main.BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property is_single_input: bool¶
Whether the tool only accepts a single input.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶
The type of output this runnable produces specified as a pydantic model.
Examples using EdenAiParsingIDTool¶
Eden AI | lang/api.python.langchain.com/en/latest/tools/langchain.tools.edenai.ocr_identityparser.EdenAiParsingIDTool.html |
e7c8c74eaa29-0 | langchain.tools.sql_database.tool.ListSQLDatabaseTool¶
class langchain.tools.sql_database.tool.ListSQLDatabaseTool[source]¶
Bases: BaseSQLDatabaseTool, BaseTool
Tool for getting tables names.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param args_schema: Optional[Type[BaseModel]] = None¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param db: SQLDatabase [Required]¶
param description: str = 'Input is an empty string, output is a comma separated list of tables in the database.'¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'sql_db_list_tables'¶
The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param tags: Optional[List[str]] = None¶ | lang/api.python.langchain.com/en/latest/tools/langchain.tools.sql_database.tool.ListSQLDatabaseTool.html |
e7c8c74eaa29-1 | param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
async ainvoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.sql_database.tool.ListSQLDatabaseTool.html |
e7c8c74eaa29-2 | Subclasses should override this method if they can run asynchronously.
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.sql_database.tool.ListSQLDatabaseTool.html |
e7c8c74eaa29-3 | The jsonpatch ops can be applied in order to construct state.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ | lang/api.python.langchain.com/en/latest/tools/langchain.tools.sql_database.tool.ListSQLDatabaseTool.html |
e7c8c74eaa29-4 | classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
The tool’s input schema.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.sql_database.tool.ListSQLDatabaseTool.html |
e7c8c74eaa29-5 | Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
invoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool¶
Is this class serializable? | lang/api.python.langchain.com/en/latest/tools/langchain.tools.sql_database.tool.ListSQLDatabaseTool.html |
e7c8c74eaa29-6 | classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ | lang/api.python.langchain.com/en/latest/tools/langchain.tools.sql_database.tool.ListSQLDatabaseTool.html |
e7c8c74eaa29-7 | run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → Any¶
Run the tool.
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.sql_database.tool.ListSQLDatabaseTool.html |
e7c8c74eaa29-8 | Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up | lang/api.python.langchain.com/en/latest/tools/langchain.tools.sql_database.tool.ListSQLDatabaseTool.html |
e7c8c74eaa29-9 | between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
property InputType: Type[langchain.schema.runnable.utils.Input]¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[langchain.schema.runnable.utils.Output]¶
The type of output this runnable produces specified as a type annotation.
property args: dict¶
property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[pydantic.main.BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property is_single_input: bool¶
Whether the tool only accepts a single input.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶
The type of output this runnable produces specified as a pydantic model. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.sql_database.tool.ListSQLDatabaseTool.html |
788f7bbebf7d-0 | langchain.tools.office365.utils.clean_body¶
langchain.tools.office365.utils.clean_body(body: str) → str[source]¶
Clean body of a message or event. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.office365.utils.clean_body.html |
50cd01822d09-0 | langchain.tools.edenai.audio_speech_to_text.EdenAiSpeechToTextTool¶
class langchain.tools.edenai.audio_speech_to_text.EdenAiSpeechToTextTool[source]¶
Bases: EdenaiTool
Tool that queries the Eden AI Speech To Text API.
for api reference check edenai documentation:
https://app.edenai.run/bricks/speech/asynchronous-speech-to-text.
To use, you should have
the environment variable EDENAI_API_KEY set with your API token.
You can find your token here: https://app.edenai.run/admin/account/settings
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param args_schema: Optional[Type[BaseModel]] = None¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param custom_vocabulary: Optional[List[str]] = None¶
param description: str = 'A wrapper around edenai Services speech to text Useful for when you have to convert audio to text.Input should be a url to an audio file.'¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param edenai_api_key: Optional[str] = None¶
param feature: str = 'audio'¶
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param is_async: bool = True¶
param language: Optional[str] = 'en'¶ | lang/api.python.langchain.com/en/latest/tools/langchain.tools.edenai.audio_speech_to_text.EdenAiSpeechToTextTool.html |
50cd01822d09-1 | param language: Optional[str] = 'en'¶
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'edenai_speech_to_text'¶
The unique name of the tool that clearly communicates its purpose.
param profanity_filter: bool = False¶
param providers: List[str] [Required]¶
provider to use for the API call.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param speakers: Optional[int] = None¶
param subfeature: str = 'speech_to_text_async'¶
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.edenai.audio_speech_to_text.EdenAiSpeechToTextTool.html |
50cd01822d09-2 | The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
async ainvoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ | lang/api.python.langchain.com/en/latest/tools/langchain.tools.edenai.audio_speech_to_text.EdenAiSpeechToTextTool.html |
50cd01822d09-3 | Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.edenai.audio_speech_to_text.EdenAiSpeechToTextTool.html |
50cd01822d09-4 | Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance | lang/api.python.langchain.com/en/latest/tools/langchain.tools.edenai.audio_speech_to_text.EdenAiSpeechToTextTool.html |
50cd01822d09-5 | deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
The tool’s input schema.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
static get_user_agent() → str¶
invoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.edenai.audio_speech_to_text.EdenAiSpeechToTextTool.html |
50cd01822d09-6 | Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶ | lang/api.python.langchain.com/en/latest/tools/langchain.tools.edenai.audio_speech_to_text.EdenAiSpeechToTextTool.html |
50cd01822d09-7 | classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → Any¶
Run the tool.
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶ | lang/api.python.langchain.com/en/latest/tools/langchain.tools.edenai.audio_speech_to_text.EdenAiSpeechToTextTool.html |
50cd01822d09-8 | classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters | lang/api.python.langchain.com/en/latest/tools/langchain.tools.edenai.audio_speech_to_text.EdenAiSpeechToTextTool.html |
50cd01822d09-9 | Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
property InputType: Type[langchain.schema.runnable.utils.Input]¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[langchain.schema.runnable.utils.Output]¶
The type of output this runnable produces specified as a type annotation.
property args: dict¶
property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[pydantic.main.BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property is_single_input: bool¶
Whether the tool only accepts a single input.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶
The type of output this runnable produces specified as a pydantic model.
Examples using EdenAiSpeechToTextTool¶
Eden AI | lang/api.python.langchain.com/en/latest/tools/langchain.tools.edenai.audio_speech_to_text.EdenAiSpeechToTextTool.html |
7a2dbda310a6-0 | langchain_experimental.tools.python.tool.PythonInputs¶
class langchain_experimental.tools.python.tool.PythonInputs[source]¶
Bases: BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param query: str [Required]¶
code snippet to run
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ | lang/api.python.langchain.com/en/latest/tools/langchain_experimental.tools.python.tool.PythonInputs.html |
7a2dbda310a6-1 | Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶ | lang/api.python.langchain.com/en/latest/tools/langchain_experimental.tools.python.tool.PythonInputs.html |
14be19ab3646-0 | langchain.tools.arxiv.tool.ArxivQueryRun¶
class langchain.tools.arxiv.tool.ArxivQueryRun[source]¶
Bases: BaseTool
Tool that searches the Arxiv API.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param api_wrapper: langchain.utilities.arxiv.ArxivAPIWrapper [Optional]¶
param args_schema: Type[pydantic.main.BaseModel] = <class 'langchain.tools.arxiv.tool.ArxivInput'>¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str = 'A wrapper around Arxiv.org Useful for when you need to answer questions about Physics, Mathematics, Computer Science, Quantitative Biology, Quantitative Finance, Statistics, Electrical Engineering, and Economics from scientific articles on arxiv.org. Input should be a search query.'¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'arxiv'¶
The unique name of the tool that clearly communicates its purpose. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.arxiv.tool.ArxivQueryRun.html |
14be19ab3646-1 | The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
async ainvoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.arxiv.tool.ArxivQueryRun.html |
14be19ab3646-2 | Subclasses should override this method if they can run asynchronously.
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.arxiv.tool.ArxivQueryRun.html |
14be19ab3646-3 | The jsonpatch ops can be applied in order to construct state.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ | lang/api.python.langchain.com/en/latest/tools/langchain.tools.arxiv.tool.ArxivQueryRun.html |
14be19ab3646-4 | classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
The tool’s input schema.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.arxiv.tool.ArxivQueryRun.html |
14be19ab3646-5 | Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
invoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool¶
Is this class serializable? | lang/api.python.langchain.com/en/latest/tools/langchain.tools.arxiv.tool.ArxivQueryRun.html |
14be19ab3646-6 | classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ | lang/api.python.langchain.com/en/latest/tools/langchain.tools.arxiv.tool.ArxivQueryRun.html |
14be19ab3646-7 | run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → Any¶
Run the tool.
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.arxiv.tool.ArxivQueryRun.html |
14be19ab3646-8 | Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up | lang/api.python.langchain.com/en/latest/tools/langchain.tools.arxiv.tool.ArxivQueryRun.html |
14be19ab3646-9 | between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
property InputType: Type[langchain.schema.runnable.utils.Input]¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[langchain.schema.runnable.utils.Output]¶
The type of output this runnable produces specified as a type annotation.
property args: dict¶
property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[pydantic.main.BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property is_single_input: bool¶
Whether the tool only accepts a single input.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶
The type of output this runnable produces specified as a pydantic model. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.arxiv.tool.ArxivQueryRun.html |
8bb80cad0ace-0 | langchain.tools.ainetwork.owner.AINOwnerOps¶
class langchain.tools.ainetwork.owner.AINOwnerOps[source]¶
Bases: AINBaseTool
Tool for owner operations.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param args_schema: Type[pydantic.main.BaseModel] = <class 'langchain.tools.ainetwork.owner.RuleSchema'>¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.ainetwork.owner.AINOwnerOps.html |
8bb80cad0ace-1 | param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str = "\nRules for `owner` in AINetwork Blockchain database.\nAn address set as `owner` can modify permissions according to its granted authorities\n\n## Path Rule\n- (/[a-zA-Z_0-9]+)+\n- Permission checks ascend from the most specific (child) path to broader (parent) paths until an `owner` is located.\n\n## Address Rules\n- 0x[0-9a-fA-F]{40}: 40-digit hexadecimal address\n- *: All addresses permitted\n- Defaults to the current session's address\n\n## SET\n- `SET` alters permissions for specific addresses, while other addresses remain unaffected.\n- When removing an address of `owner`, set all authorities for that address to false.\n- message `write_owner permission evaluated false` if fail\n\n### Example\n- type: SET\n- path: /apps/langchain\n- address: [<address 1>, <address 2>]\n- write_owner: True\n- write_rule: True\n- write_function: True\n- branch_owner: True\n\n## GET\n- Provides all addresses with `owner` permissions and their authorities in the path.\n\n### Example\n- type: GET\n- path: /apps/langchain\n"¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param interface: Ain [Optional]¶
The interface object for the AINetwork Blockchain.
param metadata: Optional[Dict[str, Any]] = None¶ | lang/api.python.langchain.com/en/latest/tools/langchain.tools.ainetwork.owner.AINOwnerOps.html |
8bb80cad0ace-2 | param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'AINownerOps'¶
The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
async ainvoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶ | lang/api.python.langchain.com/en/latest/tools/langchain.tools.ainetwork.owner.AINOwnerOps.html |
8bb80cad0ace-3 | Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously.
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.ainetwork.owner.AINOwnerOps.html |
8bb80cad0ace-4 | step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ | lang/api.python.langchain.com/en/latest/tools/langchain.tools.ainetwork.owner.AINOwnerOps.html |
8bb80cad0ace-5 | classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
The tool’s input schema.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.ainetwork.owner.AINOwnerOps.html |
8bb80cad0ace-6 | Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
invoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool¶
Is this class serializable? | lang/api.python.langchain.com/en/latest/tools/langchain.tools.ainetwork.owner.AINOwnerOps.html |
8bb80cad0ace-7 | classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ | lang/api.python.langchain.com/en/latest/tools/langchain.tools.ainetwork.owner.AINOwnerOps.html |
8bb80cad0ace-8 | run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → Any¶
Run the tool.
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.ainetwork.owner.AINOwnerOps.html |
8bb80cad0ace-9 | Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up | lang/api.python.langchain.com/en/latest/tools/langchain.tools.ainetwork.owner.AINOwnerOps.html |
8bb80cad0ace-10 | between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
property InputType: Type[langchain.schema.runnable.utils.Input]¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[langchain.schema.runnable.utils.Output]¶
The type of output this runnable produces specified as a type annotation.
property args: dict¶
property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[pydantic.main.BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property is_single_input: bool¶
Whether the tool only accepts a single input.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶
The type of output this runnable produces specified as a pydantic model. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.ainetwork.owner.AINOwnerOps.html |
170785a13fd7-0 | langchain.tools.searx_search.tool.SearxSearchResults¶
class langchain.tools.searx_search.tool.SearxSearchResults[source]¶
Bases: BaseTool
Tool that queries a Searx instance and gets back json.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param args_schema: Optional[Type[BaseModel]] = None¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str = 'A meta search engine.Useful for when you need to answer questions about current events.Input should be a search query. Output is a JSON array of the query results'¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param kwargs: dict [Optional]¶
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'Searx-Search-Results'¶
The unique name of the tool that clearly communicates its purpose.
param num_results: int = 4¶
param return_direct: bool = False¶ | lang/api.python.langchain.com/en/latest/tools/langchain.tools.searx_search.tool.SearxSearchResults.html |
170785a13fd7-1 | param num_results: int = 4¶
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
param wrapper: langchain.utilities.searx_search.SearxSearchWrapper [Required]¶
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
async ainvoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.searx_search.tool.SearxSearchResults.html |
170785a13fd7-2 | Subclasses should override this method if they can run asynchronously.
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.searx_search.tool.SearxSearchResults.html |
170785a13fd7-3 | The jsonpatch ops can be applied in order to construct state.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ | lang/api.python.langchain.com/en/latest/tools/langchain.tools.searx_search.tool.SearxSearchResults.html |
170785a13fd7-4 | classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
The tool’s input schema.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.searx_search.tool.SearxSearchResults.html |
170785a13fd7-5 | Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
invoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool¶
Is this class serializable? | lang/api.python.langchain.com/en/latest/tools/langchain.tools.searx_search.tool.SearxSearchResults.html |
170785a13fd7-6 | classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ | lang/api.python.langchain.com/en/latest/tools/langchain.tools.searx_search.tool.SearxSearchResults.html |
170785a13fd7-7 | run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → Any¶
Run the tool.
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.searx_search.tool.SearxSearchResults.html |
170785a13fd7-8 | Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up | lang/api.python.langchain.com/en/latest/tools/langchain.tools.searx_search.tool.SearxSearchResults.html |
170785a13fd7-9 | between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
property InputType: Type[langchain.schema.runnable.utils.Input]¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[langchain.schema.runnable.utils.Output]¶
The type of output this runnable produces specified as a type annotation.
property args: dict¶
property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[pydantic.main.BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property is_single_input: bool¶
Whether the tool only accepts a single input.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶
The type of output this runnable produces specified as a pydantic model.
Examples using SearxSearchResults¶
SearxNG Search API | lang/api.python.langchain.com/en/latest/tools/langchain.tools.searx_search.tool.SearxSearchResults.html |
c50d3955f540-0 | langchain.tools.playwright.extract_hyperlinks.ExtractHyperlinksToolInput¶
class langchain.tools.playwright.extract_hyperlinks.ExtractHyperlinksToolInput[source]¶
Bases: BaseModel
Input for ExtractHyperlinksTool.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param absolute_urls: bool = False¶
Return absolute URLs instead of relative URLs
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance | lang/api.python.langchain.com/en/latest/tools/langchain.tools.playwright.extract_hyperlinks.ExtractHyperlinksToolInput.html |
c50d3955f540-1 | deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ | lang/api.python.langchain.com/en/latest/tools/langchain.tools.playwright.extract_hyperlinks.ExtractHyperlinksToolInput.html |
c50d3955f540-2 | classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶ | lang/api.python.langchain.com/en/latest/tools/langchain.tools.playwright.extract_hyperlinks.ExtractHyperlinksToolInput.html |
1aba1a3bd0f2-0 | langchain.tools.base.BaseTool¶
class langchain.tools.base.BaseTool[source]¶
Bases: RunnableSerializable[Union[str, Dict], Any]
Interface LangChain tools must implement.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param args_schema: Optional[Type[pydantic.main.BaseModel]] = None¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[langchain.schema.callbacks.base.BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Optional[Union[List[langchain.schema.callbacks.base.BaseCallbackHandler], langchain.schema.callbacks.base.BaseCallbackManager]] = None¶
Callbacks to be called during tool execution.
param description: str [Required]¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[langchain.tools.base.ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str [Required]¶
The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param tags: Optional[List[str]] = None¶ | lang/api.python.langchain.com/en/latest/tools/langchain.tools.base.BaseTool.html |
1aba1a3bd0f2-1 | param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str[source]¶
Make tool callable.
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
async ainvoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any[source]¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.base.BaseTool.html |
1aba1a3bd0f2-2 | Subclasses should override this method if they can run asynchronously.
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → Any[source]¶
Run the tool asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.base.BaseTool.html |
1aba1a3bd0f2-3 | The jsonpatch ops can be applied in order to construct state.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ | lang/api.python.langchain.com/en/latest/tools/langchain.tools.base.BaseTool.html |
1aba1a3bd0f2-4 | classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel][source]¶
The tool’s input schema.
classmethod get_lc_namespace() → List[str]¶ | lang/api.python.langchain.com/en/latest/tools/langchain.tools.base.BaseTool.html |
1aba1a3bd0f2-5 | The tool’s input schema.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
invoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any[source]¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool¶
Is this class serializable? | lang/api.python.langchain.com/en/latest/tools/langchain.tools.base.BaseTool.html |
1aba1a3bd0f2-6 | classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ | lang/api.python.langchain.com/en/latest/tools/langchain.tools.base.BaseTool.html |
1aba1a3bd0f2-7 | run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → Any[source]¶
Run the tool.
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.base.BaseTool.html |
1aba1a3bd0f2-8 | Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up | lang/api.python.langchain.com/en/latest/tools/langchain.tools.base.BaseTool.html |
1aba1a3bd0f2-9 | between retries
stop_after_attempt – The maximum number of attempts to make before giving up
Returns
A new Runnable that retries the original runnable on exceptions.
with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶
Bind input and output types to a Runnable, returning a new Runnable.
property InputType: Type[langchain.schema.runnable.utils.Input]¶
The type of input this runnable accepts specified as a type annotation.
property OutputType: Type[langchain.schema.runnable.utils.Output]¶
The type of output this runnable produces specified as a type annotation.
property args: dict¶
property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶
List configurable fields for this runnable.
property input_schema: Type[pydantic.main.BaseModel]¶
The type of input this runnable accepts specified as a pydantic model.
property is_single_input: bool¶
Whether the tool only accepts a single input.
property lc_attributes: Dict¶
List of attribute names that should be included in the serialized kwargs.
These attributes must be accepted by the constructor.
property lc_secrets: Dict[str, str]¶
A map of constructor argument names to secret ids.
For example,{“openai_api_key”: “OPENAI_API_KEY”}
property output_schema: Type[pydantic.main.BaseModel]¶
The type of output this runnable produces specified as a pydantic model.
Examples using BaseTool¶
!pip install bs4
Defining Custom Tools
Combine agents and vector stores
Custom functions with OpenAI Functions Agent | lang/api.python.langchain.com/en/latest/tools/langchain.tools.base.BaseTool.html |
5ce66c9a26cf-0 | langchain.tools.base.ToolException¶
class langchain.tools.base.ToolException[source]¶
An optional exception that tool throws when execution error occurs.
When this exception is thrown, the agent will not stop working,
but will handle the exception according to the handle_tool_error
variable of the tool, and the processing result will be returned
to the agent as observation, and printed in red on the console.
Examples using ToolException¶
Defining Custom Tools | lang/api.python.langchain.com/en/latest/tools/langchain.tools.base.ToolException.html |
27ef739f898c-0 | langchain.tools.amadeus.closest_airport.ClosestAirportSchema¶
class langchain.tools.amadeus.closest_airport.ClosestAirportSchema[source]¶
Bases: BaseModel
Schema for the AmadeusClosestAirport tool.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param location: str [Required]¶
The location for which you would like to find the nearest airport along with optional details such as country, state, region, or province, allowing for easy processing and identification of the closest airport. Examples of the format are the following:
Cali, Colombia
Lincoln, Nebraska, United States
New York, United States
Sydney, New South Wales, Australia
Rome, Lazio, Italy
Toronto, Ontario, Canada
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data | lang/api.python.langchain.com/en/latest/tools/langchain.tools.amadeus.closest_airport.ClosestAirportSchema.html |
27ef739f898c-1 | the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ | lang/api.python.langchain.com/en/latest/tools/langchain.tools.amadeus.closest_airport.ClosestAirportSchema.html |
27ef739f898c-2 | classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶ | lang/api.python.langchain.com/en/latest/tools/langchain.tools.amadeus.closest_airport.ClosestAirportSchema.html |
23d8a5a6e8b1-0 | langchain.tools.office365.create_draft_message.O365CreateDraftMessage¶
class langchain.tools.office365.create_draft_message.O365CreateDraftMessage[source]¶
Bases: O365BaseTool
Tool for creating a draft email in Office 365.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param account: Account [Optional]¶
The account object for the Office 365 account.
param args_schema: Type[langchain.tools.office365.create_draft_message.CreateDraftMessageSchema] = <class 'langchain.tools.office365.create_draft_message.CreateDraftMessageSchema'>¶
Pydantic model class to validate and parse the tool’s input arguments.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated. Please use callbacks instead.
param callbacks: Callbacks = None¶
Callbacks to be called during tool execution.
param description: str = 'Use this tool to create a draft email with the provided message fields.'¶
Used to tell the model how/when/why to use the tool.
You can provide few-shot examples as a part of the description.
param handle_tool_error: Optional[Union[bool, str, Callable[[ToolException], str]]] = False¶
Handle the content of the ToolException thrown.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the tool. Defaults to None
This metadata will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param name: str = 'create_email_draft'¶
The unique name of the tool that clearly communicates its purpose.
param return_direct: bool = False¶ | lang/api.python.langchain.com/en/latest/tools/langchain.tools.office365.create_draft_message.O365CreateDraftMessage.html |
23d8a5a6e8b1-1 | param return_direct: bool = False¶
Whether to return the tool’s output directly. Setting this to True means
that after the tool is called, the AgentExecutor will stop looping.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the tool. Defaults to None
These tags will be associated with each call to this tool,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a tool with its use case.
param verbose: bool = False¶
Whether to log the tool’s progress.
__call__(tool_input: str, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → str¶
Make tool callable.
async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs ainvoke in parallel using asyncio.gather.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
async ainvoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
Default implementation of ainvoke, calls invoke from a thread.
The default implementation allows usage of async code even if
the runnable did not implement a native async version of invoke.
Subclasses should override this method if they can run asynchronously. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.office365.create_draft_message.O365CreateDraftMessage.html |
23d8a5a6e8b1-2 | Subclasses should override this method if they can run asynchronously.
async arun(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → Any¶
Run the tool asynchronously.
async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of astream, which calls ainvoke.
Subclasses should override this method if they support streaming output.
async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶
Stream all output from a runnable, as reported to the callback system.
This includes all inner runs of LLMs, Retrievers, Tools, etc.
Output is streamed as Log objects, which include a list of
jsonpatch ops that describe how the state of the run has changed in each
step, and the final state of the run.
The jsonpatch ops can be applied in order to construct state. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.office365.create_draft_message.O365CreateDraftMessage.html |
23d8a5a6e8b1-3 | The jsonpatch ops can be applied in order to construct state.
async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶
Default implementation of atransform, which buffers input and calls astream.
Subclasses should override this method if they can start producing output while
input is still being generated.
batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶
Default implementation runs invoke in parallel using a thread pool executor.
The default implementation of batch works well for IO bound runnables.
Subclasses should override this method if they can batch more efficiently;
e.g., if the underlying runnable uses an API which supports a batch mode.
bind(**kwargs: Any) → Runnable[Input, Output]¶
Bind arguments to a Runnable, returning a new Runnable.
config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶
The type of config this runnable accepts specified as a pydantic model.
To mark a field as configurable, see the configurable_fields
and configurable_alternatives methods.
Parameters
include – A list of fields to include in the config schema.
Returns
A pydantic model that can be used to validate config.
configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶
configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶ | lang/api.python.langchain.com/en/latest/tools/langchain.tools.office365.create_draft_message.O365CreateDraftMessage.html |
23d8a5a6e8b1-4 | classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating
the new model: you should trust this data
deep – set to True to make a deep copy of the model
Returns
new model instance
dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
classmethod from_orm(obj: Any) → Model¶
get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
The tool’s input schema.
classmethod get_lc_namespace() → List[str]¶
Get the namespace of the langchain object. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.office365.create_draft_message.O365CreateDraftMessage.html |
23d8a5a6e8b1-5 | Get the namespace of the langchain object.
For example, if the class is langchain.llms.openai.OpenAI, then the
namespace is [“langchain”, “llms”, “openai”]
get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶
Get a pydantic model that can be used to validate output to the runnable.
Runnables that leverage the configurable_fields and configurable_alternatives
methods will have a dynamic output schema that depends on which
configuration the runnable is invoked with.
This method allows to get an output schema for a specific configuration.
Parameters
config – A config to use when generating the schema.
Returns
A pydantic model that can be used to validate output.
invoke(input: Union[str, Dict], config: Optional[RunnableConfig] = None, **kwargs: Any) → Any¶
Transform a single input into an output. Override to implement.
Parameters
input – The input to the runnable.
config – A config to use when invoking the runnable.
The config supports standard keys like ‘tags’, ‘metadata’ for tracing
purposes, ‘max_concurrency’ for controlling how much work to do
in parallel, and other keys. Please refer to the RunnableConfig
for more details.
Returns
The output of the runnable.
classmethod is_lc_serializable() → bool¶
Is this class serializable? | lang/api.python.langchain.com/en/latest/tools/langchain.tools.office365.create_draft_message.O365CreateDraftMessage.html |
23d8a5a6e8b1-6 | classmethod is_lc_serializable() → bool¶
Is this class serializable?
json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
classmethod lc_id() → List[str]¶
A unique identifier for this class for serialization purposes.
The unique identifier is a list of strings that describes the path
to the object.
map() → Runnable[List[Input], List[Output]]¶
Return a new Runnable that maps a list of inputs to a list of outputs,
by calling invoke() with each input.
classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
classmethod parse_obj(obj: Any) → Model¶
classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ | lang/api.python.langchain.com/en/latest/tools/langchain.tools.office365.create_draft_message.O365CreateDraftMessage.html |
23d8a5a6e8b1-7 | run(tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = 'green', color: Optional[str] = 'green', callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, **kwargs: Any) → Any¶
Run the tool.
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶
classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶
stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of stream, which calls invoke.
Subclasses should override this method if they support streaming output.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
Default implementation of transform, which buffers input and then calls stream.
Subclasses should override this method if they can start producing output while
input is still being generated.
classmethod update_forward_refs(**localns: Any) → None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.
classmethod validate(value: Any) → Model¶
with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶
Bind config to a Runnable, returning a new Runnable. | lang/api.python.langchain.com/en/latest/tools/langchain.tools.office365.create_draft_message.O365CreateDraftMessage.html |
23d8a5a6e8b1-8 | Bind config to a Runnable, returning a new Runnable.
with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶
Add fallbacks to a runnable, returning a new Runnable.
Parameters
fallbacks – A sequence of runnables to try if the original runnable fails.
exceptions_to_handle – A tuple of exception types to handle.
Returns
A new Runnable that will try the original runnable, and then each
fallback in order, upon failures.
with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶
Bind lifecycle listeners to a Runnable, returning a new Runnable.
on_start: Called before the runnable starts running, with the Run object.
on_end: Called after the runnable finishes running, with the Run object.
on_error: Called if the runnable throws an error, with the Run object.
The Run object contains information about the run, including its id,
type, input, output, error, start_time, end_time, and any tags or metadata
added to the run.
with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶
Create a new Runnable that retries the original runnable on exceptions.
Parameters
retry_if_exception_type – A tuple of exception types to retry on
wait_exponential_jitter – Whether to add jitter to the wait time
between retries
stop_after_attempt – The maximum number of attempts to make before giving up | lang/api.python.langchain.com/en/latest/tools/langchain.tools.office365.create_draft_message.O365CreateDraftMessage.html |
Subsets and Splits