id
stringlengths
14
16
text
stringlengths
13
2.7k
source
stringlengths
57
178
7a120056efaa-5
"""Return type of llm.""" return "ollama-llm" def _generate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: """Call out to Ollama's generate endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = ollama("Tell me a joke.") """ # TODO: add caching here. generations = [] for prompt in prompts: final_chunk = super()._stream_with_aggregation( prompt, stop=stop, run_manager=run_manager, verbose=self.verbose, **kwargs, ) generations.append([final_chunk]) return LLMResult(generations=generations) def _stream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: for stream_resp in self._create_stream(prompt, stop, **kwargs): if stream_resp: chunk = _stream_response_to_generation_chunk(stream_resp) yield chunk if run_manager: run_manager.on_llm_new_token( chunk.text, verbose=self.verbose, )
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/ollama.html
9859d0efff2b-0
Source code for langchain.llms.edenai """Wrapper around EdenAI's Generation API.""" import logging from typing import Any, Dict, List, Literal, Optional from aiohttp import ClientSession from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.pydantic_v1 import Extra, Field, root_validator from langchain.utilities.requests import Requests from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) [docs]class EdenAI(LLM): """Wrapper around edenai models. To use, you should have the environment variable ``EDENAI_API_KEY`` set with your API token. You can find your token here: https://app.edenai.run/admin/account/settings `feature` and `subfeature` are required, but any other model parameters can also be passed in with the format params={model_param: value, ...} for api reference check edenai documentation: http://docs.edenai.co. """ base_url: str = "https://api.edenai.run/v2" edenai_api_key: Optional[str] = None feature: Literal["text", "image"] = "text" """Which generative feature to use, use text by default""" subfeature: Literal["generation"] = "generation" """Subfeature of above feature, use generation by default""" provider: str """Generative provider to use (eg: openai,stabilityai,cohere,google etc.)""" model: Optional[str] = None """
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/edenai.html
9859d0efff2b-1
model: Optional[str] = None """ model name for above provider (eg: 'text-davinci-003' for openai) available models are shown on https://docs.edenai.co/ under 'available providers' """ # Optional parameters to add depending of chosen feature # see api reference for more infos temperature: Optional[float] = Field(default=None, ge=0, le=1) # for text max_tokens: Optional[int] = Field(default=None, ge=0) # for text resolution: Optional[Literal["256x256", "512x512", "1024x1024"]] = None # for image params: Dict[str, Any] = Field(default_factory=dict) """ DEPRECATED: use temperature, max_tokens, resolution directly optional parameters to pass to api """ model_kwargs: Dict[str, Any] = Field(default_factory=dict) """extra parameters""" stop_sequences: Optional[List[str]] = None """Stop sequences to use.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key exists in environment.""" values["edenai_api_key"] = get_from_dict_or_env( values, "edenai_api_key", "EDENAI_API_KEY" ) return values @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in cls.__fields__.values()}
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/edenai.html
9859d0efff2b-2
all_required_field_names = {field.alias for field in cls.__fields__.values()} extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") logger.warning( f"""{field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) values["model_kwargs"] = extra return values @property def _llm_type(self) -> str: """Return type of model.""" return "edenai" def _format_output(self, output: dict) -> str: if self.feature == "text": return output[self.provider]["generated_text"] else: return output[self.provider]["items"][0]["image"] [docs] @staticmethod def get_user_agent() -> str: from langchain import __version__ return f"langchain/{__version__}" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to EdenAI's text generation endpoint. Args: prompt: The prompt to pass into the model. Returns: json formatted str response. """ stops = None if self.stop_sequences is not None and stop is not None: raise ValueError( "stop sequences found in both the input and default params." )
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/edenai.html
9859d0efff2b-3
"stop sequences found in both the input and default params." ) elif self.stop_sequences is not None: stops = self.stop_sequences else: stops = stop url = f"{self.base_url}/{self.feature}/{self.subfeature}" headers = { "Authorization": f"Bearer {self.edenai_api_key}", "User-Agent": self.get_user_agent(), } payload: Dict[str, Any] = { "providers": self.provider, "text": prompt, "max_tokens": self.max_tokens, "temperature": self.temperature, "resolution": self.resolution, **self.params, **kwargs, "num_images": 1, # always limit to 1 (ignored for text) } # filter None values to not pass them to the http payload payload = {k: v for k, v in payload.items() if v is not None} if self.model is not None: payload["settings"] = {self.provider: self.model} request = Requests(headers=headers) response = request.post(url=url, data=payload) if response.status_code >= 500: raise Exception(f"EdenAI Server: Error {response.status_code}") elif response.status_code >= 400: raise ValueError(f"EdenAI received an invalid payload: {response.text}") elif response.status_code != 200: raise Exception( f"EdenAI returned an unexpected response with status " f"{response.status_code}: {response.text}" ) data = response.json() provider_response = data[self.provider] if provider_response.get("status") == "fail":
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/edenai.html
9859d0efff2b-4
if provider_response.get("status") == "fail": err_msg = provider_response.get("error", {}).get("message") raise Exception(err_msg) output = self._format_output(data) if stops is not None: output = enforce_stop_tokens(output, stops) return output async def _acall( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call EdenAi model to get predictions based on the prompt. Args: prompt: The prompt to pass into the model. stop: A list of stop words (optional). run_manager: A callback manager for async interaction with LLMs. Returns: The string generated by the model. """ stops = None if self.stop_sequences is not None and stop is not None: raise ValueError( "stop sequences found in both the input and default params." ) elif self.stop_sequences is not None: stops = self.stop_sequences else: stops = stop url = f"{self.base_url}/{self.feature}/{self.subfeature}" headers = { "Authorization": f"Bearer {self.edenai_api_key}", "User-Agent": self.get_user_agent(), } payload: Dict[str, Any] = { "providers": self.provider, "text": prompt, "max_tokens": self.max_tokens, "temperature": self.temperature, "resolution": self.resolution, **self.params, **kwargs,
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/edenai.html
9859d0efff2b-5
"resolution": self.resolution, **self.params, **kwargs, "num_images": 1, # always limit to 1 (ignored for text) } # filter `None` values to not pass them to the http payload as null payload = {k: v for k, v in payload.items() if v is not None} if self.model is not None: payload["settings"] = {self.provider: self.model} async with ClientSession() as session: async with session.post(url, json=payload, headers=headers) as response: if response.status >= 500: raise Exception(f"EdenAI Server: Error {response.status}") elif response.status >= 400: raise ValueError( f"EdenAI received an invalid payload: {response.text}" ) elif response.status != 200: raise Exception( f"EdenAI returned an unexpected response with status " f"{response.status}: {response.text}" ) response_json = await response.json() provider_response = response_json[self.provider] if provider_response.get("status") == "fail": err_msg = provider_response.get("error", {}).get("message") raise Exception(err_msg) output = self._format_output(response_json) if stops is not None: output = enforce_stop_tokens(output, stops) return output
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/edenai.html
946006102fcb-0
Source code for langchain.llms.gpt4all from functools import partial from typing import Any, Dict, List, Mapping, Optional, Set from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.pydantic_v1 import Extra, Field, root_validator [docs]class GPT4All(LLM): """GPT4All language models. To use, you should have the ``gpt4all`` python package installed, the pre-trained model file, and the model's config information. Example: .. code-block:: python from langchain.llms import GPT4All model = GPT4All(model="./models/gpt4all-model.bin", n_threads=8) # Simplest invocation response = model("Once upon a time, ") """ model: str """Path to the pre-trained GPT4All model file.""" backend: Optional[str] = Field(None, alias="backend") max_tokens: int = Field(200, alias="max_tokens") """Token context window.""" n_parts: int = Field(-1, alias="n_parts") """Number of parts to split the model into. If -1, the number of parts is automatically determined.""" seed: int = Field(0, alias="seed") """Seed. If -1, a random seed is used.""" f16_kv: bool = Field(False, alias="f16_kv") """Use half-precision for key/value cache.""" logits_all: bool = Field(False, alias="logits_all") """Return logits for all tokens, not just the last token."""
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/gpt4all.html
946006102fcb-1
"""Return logits for all tokens, not just the last token.""" vocab_only: bool = Field(False, alias="vocab_only") """Only load the vocabulary, no weights.""" use_mlock: bool = Field(False, alias="use_mlock") """Force system to keep model in RAM.""" embedding: bool = Field(False, alias="embedding") """Use embedding mode only.""" n_threads: Optional[int] = Field(4, alias="n_threads") """Number of threads to use.""" n_predict: Optional[int] = 256 """The maximum number of tokens to generate.""" temp: Optional[float] = 0.7 """The temperature to use for sampling.""" top_p: Optional[float] = 0.1 """The top-p value to use for sampling.""" top_k: Optional[int] = 40 """The top-k value to use for sampling.""" echo: Optional[bool] = False """Whether to echo the prompt.""" stop: Optional[List[str]] = [] """A list of strings to stop generation when encountered.""" repeat_last_n: Optional[int] = 64 "Last n tokens to penalize" repeat_penalty: Optional[float] = 1.18 """The penalty to apply to repeated tokens.""" n_batch: int = Field(8, alias="n_batch") """Batch size for prompt processing.""" streaming: bool = False """Whether to stream the results or not.""" allow_download: bool = False """If model does not exist in ~/.cache/gpt4all/, download it.""" device: Optional[str] = Field("cpu", alias="device")
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/gpt4all.html
946006102fcb-2
device: Optional[str] = Field("cpu", alias="device") """Device name: cpu, gpu, nvidia, intel, amd or DeviceName.""" client: Any = None #: :meta private: class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @staticmethod def _model_param_names() -> Set[str]: return { "max_tokens", "n_predict", "top_k", "top_p", "temp", "n_batch", "repeat_penalty", "repeat_last_n", } def _default_params(self) -> Dict[str, Any]: return { "max_tokens": self.max_tokens, "n_predict": self.n_predict, "top_k": self.top_k, "top_p": self.top_p, "temp": self.temp, "n_batch": self.n_batch, "repeat_penalty": self.repeat_penalty, "repeat_last_n": self.repeat_last_n, } @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that the python package exists in the environment.""" try: from gpt4all import GPT4All as GPT4AllModel except ImportError: raise ImportError( "Could not import gpt4all python package. " "Please install it with `pip install gpt4all`." ) full_path = values["model"] model_path, delimiter, model_name = full_path.rpartition("/") model_path += delimiter values["client"] = GPT4AllModel( model_name, model_path=model_path or None,
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/gpt4all.html
946006102fcb-3
model_name, model_path=model_path or None, model_type=values["backend"], allow_download=values["allow_download"], device=values["device"], ) if values["n_threads"] is not None: # set n_threads values["client"].model.set_thread_count(values["n_threads"]) try: values["backend"] = values["client"].model_type except AttributeError: # The below is for compatibility with GPT4All Python bindings <= 0.2.3. values["backend"] = values["client"].model.model_type return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { "model": self.model, **self._default_params(), **{ k: v for k, v in self.__dict__.items() if k in self._model_param_names() }, } @property def _llm_type(self) -> str: """Return the type of llm.""" return "gpt4all" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: r"""Call out to GPT4All's generate method. Args: prompt: The prompt to pass into the model. stop: A list of strings to stop generation when encountered. Returns: The string generated by the model. Example: .. code-block:: python prompt = "Once upon a time, "
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/gpt4all.html
946006102fcb-4
.. code-block:: python prompt = "Once upon a time, " response = model(prompt, n_predict=55) """ text_callback = None if run_manager: text_callback = partial(run_manager.on_llm_new_token, verbose=self.verbose) text = "" params = {**self._default_params(), **kwargs} for token in self.client.generate(prompt, **params): if text_callback: text_callback(token) text += token if stop is not None: text = enforce_stop_tokens(text, stop) return text
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/gpt4all.html
dc417efc9b34-0
Source code for langchain.llms.openai from __future__ import annotations import logging import os import sys import warnings from typing import ( AbstractSet, Any, AsyncIterator, Callable, Collection, Dict, Iterator, List, Literal, Mapping, Optional, Set, Tuple, Union, ) from langchain.callbacks.manager import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain.llms.base import BaseLLM, create_base_retry_decorator from langchain.pydantic_v1 import Field, root_validator from langchain.schema import Generation, LLMResult from langchain.schema.output import GenerationChunk from langchain.utils import get_from_dict_or_env, get_pydantic_field_names from langchain.utils.openai import is_openai_v1 from langchain.utils.utils import build_extra_kwargs logger = logging.getLogger(__name__) [docs]def update_token_usage( keys: Set[str], response: Dict[str, Any], token_usage: Dict[str, Any] ) -> None: """Update token usage.""" _keys_to_use = keys.intersection(response["usage"]) for _key in _keys_to_use: if _key not in token_usage: token_usage[_key] = response["usage"][_key] else: token_usage[_key] += response["usage"][_key] def _stream_response_to_generation_chunk( stream_response: Dict[str, Any], ) -> GenerationChunk: """Convert a stream response to a generation chunk.""" if not stream_response["choices"]: return GenerationChunk(text="") return GenerationChunk(
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/openai.html
dc417efc9b34-1
return GenerationChunk(text="") return GenerationChunk( text=stream_response["choices"][0]["text"], generation_info=dict( finish_reason=stream_response["choices"][0].get("finish_reason", None), logprobs=stream_response["choices"][0].get("logprobs", None), ), ) def _update_response(response: Dict[str, Any], stream_response: Dict[str, Any]) -> None: """Update response from the stream response.""" response["choices"][0]["text"] += stream_response["choices"][0]["text"] response["choices"][0]["finish_reason"] = stream_response["choices"][0].get( "finish_reason", None ) response["choices"][0]["logprobs"] = stream_response["choices"][0]["logprobs"] def _streaming_response_template() -> Dict[str, Any]: return { "choices": [ { "text": "", "finish_reason": None, "logprobs": None, } ] } def _create_retry_decorator( llm: Union[BaseOpenAI, OpenAIChat], run_manager: Optional[ Union[AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun] ] = None, ) -> Callable[[Any], Any]: import openai errors = [ openai.error.Timeout, openai.error.APIError, openai.error.APIConnectionError, openai.error.RateLimitError, openai.error.ServiceUnavailableError, ] return create_base_retry_decorator( error_types=errors, max_retries=llm.max_retries, run_manager=run_manager )
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/openai.html
dc417efc9b34-2
) [docs]def completion_with_retry( llm: Union[BaseOpenAI, OpenAIChat], run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Any: """Use tenacity to retry the completion call.""" if is_openai_v1(): return llm.client.create(**kwargs) retry_decorator = _create_retry_decorator(llm, run_manager=run_manager) @retry_decorator def _completion_with_retry(**kwargs: Any) -> Any: return llm.client.create(**kwargs) return _completion_with_retry(**kwargs) [docs]async def acompletion_with_retry( llm: Union[BaseOpenAI, OpenAIChat], run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Any: """Use tenacity to retry the async completion call.""" if is_openai_v1(): return await llm.async_client.create(**kwargs) retry_decorator = _create_retry_decorator(llm, run_manager=run_manager) @retry_decorator async def _completion_with_retry(**kwargs: Any) -> Any: # Use OpenAI's async api https://github.com/openai/openai-python#async-api return await llm.client.acreate(**kwargs) return await _completion_with_retry(**kwargs) [docs]class BaseOpenAI(BaseLLM): """Base OpenAI large language model class.""" @property def lc_secrets(self) -> Dict[str, str]: return {"openai_api_key": "OPENAI_API_KEY"} @property def lc_attributes(self) -> Dict[str, Any]:
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/openai.html
dc417efc9b34-3
@property def lc_attributes(self) -> Dict[str, Any]: attributes: Dict[str, Any] = {} if self.openai_api_base: attributes["openai_api_base"] = self.openai_api_base if self.openai_organization: attributes["openai_organization"] = self.openai_organization if self.openai_proxy: attributes["openai_proxy"] = self.openai_proxy return attributes [docs] @classmethod def is_lc_serializable(cls) -> bool: return True client: Any = Field(default=None, exclude=True) #: :meta private: async_client: Any = Field(default=None, exclude=True) #: :meta private: model_name: str = Field(default="text-davinci-003", alias="model") """Model name to use.""" temperature: float = 0.7 """What sampling temperature to use.""" max_tokens: int = 256 """The maximum number of tokens to generate in the completion. -1 returns as many tokens as possible given the prompt and the models maximal context size.""" top_p: float = 1 """Total probability mass of tokens to consider at each step.""" frequency_penalty: float = 0 """Penalizes repeated tokens according to frequency.""" presence_penalty: float = 0 """Penalizes repeated tokens.""" n: int = 1 """How many completions to generate for each prompt.""" best_of: int = 1 """Generates best_of completions server-side and returns the "best".""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified."""
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/openai.html
dc417efc9b34-4
"""Holds any model parameters valid for `create` call not explicitly specified.""" # When updating this to use a SecretStr # Check for classes that derive from this class (as some of them # may assume openai_api_key is a str) openai_api_key: Optional[str] = Field(default=None, alias="api_key") """Automatically inferred from env var `OPENAI_API_KEY` if not provided.""" openai_api_base: Optional[str] = Field(default=None, alias="base_url") """Base URL path for API requests, leave blank if not using a proxy or service emulator.""" openai_organization: Optional[str] = Field(default=None, alias="organization") """Automatically inferred from env var `OPENAI_ORG_ID` if not provided.""" # to support explicit proxy for OpenAI openai_proxy: Optional[str] = None batch_size: int = 20 """Batch size to use when passing multiple documents to generate.""" request_timeout: Union[float, Tuple[float, float], Any, None] = Field( default=None, alias="timeout" ) """Timeout for requests to OpenAI completion API. Can be float, httpx.Timeout or None.""" logit_bias: Optional[Dict[str, float]] = Field(default_factory=dict) """Adjust the probability of specific tokens being generated.""" max_retries: int = 2 """Maximum number of retries to make when generating.""" streaming: bool = False """Whether to stream the results or not.""" allowed_special: Union[Literal["all"], AbstractSet[str]] = set() """Set of special tokens that are allowed。""" disallowed_special: Union[Literal["all"], Collection[str]] = "all"
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/openai.html
dc417efc9b34-5
disallowed_special: Union[Literal["all"], Collection[str]] = "all" """Set of special tokens that are not allowed。""" tiktoken_model_name: Optional[str] = None """The model name to pass to tiktoken when using this class. Tiktoken is used to count the number of tokens in documents to constrain them to be under a certain limit. By default, when set to None, this will be the same as the embedding model name. However, there are some cases where you may want to use this Embedding class with a model name not supported by tiktoken. This can include when using Azure embeddings or when using one of the many model providers that expose an OpenAI-like API but with different models. In those cases, in order to avoid erroring when tiktoken is called, you can specify a model name to use here.""" default_headers: Union[Mapping[str, str], None] = None default_query: Union[Mapping[str, object], None] = None # Configure a custom httpx client. See the # [httpx documentation](https://www.python-httpx.org/api/#client) for more details. http_client: Union[Any, None] = None """Optional httpx.Client.""" def __new__(cls, **data: Any) -> Union[OpenAIChat, BaseOpenAI]: # type: ignore """Initialize the OpenAI object.""" model_name = data.get("model_name", "") if ( model_name.startswith("gpt-3.5-turbo") or model_name.startswith("gpt-4") ) and "-instruct" not in model_name: warnings.warn(
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/openai.html
dc417efc9b34-6
) and "-instruct" not in model_name: warnings.warn( "You are trying to use a chat model. This way of initializing it is " "no longer supported. Instead, please use: " "`from langchain.chat_models import ChatOpenAI`" ) return OpenAIChat(**data) return super().__new__(cls) class Config: """Configuration for this pydantic object.""" allow_population_by_field_name = True @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) extra = values.get("model_kwargs", {}) values["model_kwargs"] = build_extra_kwargs( extra, values, all_required_field_names ) return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" if values["n"] < 1: raise ValueError("n must be at least 1.") if values["streaming"] and values["n"] > 1: raise ValueError("Cannot stream results when n > 1.") if values["streaming"] and values["best_of"] > 1: raise ValueError("Cannot stream results when best_of > 1.") values["openai_api_key"] = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) values["openai_api_base"] = values["openai_api_base"] or os.getenv( "OPENAI_API_BASE" )
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/openai.html
dc417efc9b34-7
"OPENAI_API_BASE" ) values["openai_proxy"] = get_from_dict_or_env( values, "openai_proxy", "OPENAI_PROXY", default="", ) values["openai_organization"] = ( values["openai_organization"] or os.getenv("OPENAI_ORG_ID") or os.getenv("OPENAI_ORGANIZATION") ) try: import openai except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) if is_openai_v1(): client_params = { "api_key": values["openai_api_key"], "organization": values["openai_organization"], "base_url": values["openai_api_base"], "timeout": values["request_timeout"], "max_retries": values["max_retries"], "default_headers": values["default_headers"], "default_query": values["default_query"], "http_client": values["http_client"], } if not values.get("client"): values["client"] = openai.OpenAI(**client_params).completions if not values.get("async_client"): values["async_client"] = openai.AsyncOpenAI(**client_params).completions elif not values.get("client"): values["client"] = openai.Completion else: pass return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling OpenAI API.""" normal_params: Dict[str, Any] = { "temperature": self.temperature,
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/openai.html
dc417efc9b34-8
normal_params: Dict[str, Any] = { "temperature": self.temperature, "top_p": self.top_p, "frequency_penalty": self.frequency_penalty, "presence_penalty": self.presence_penalty, "n": self.n, "logit_bias": self.logit_bias, } if self.max_tokens is not None: normal_params["max_tokens"] = self.max_tokens if self.request_timeout is not None and not is_openai_v1(): normal_params["request_timeout"] = self.request_timeout # Azure gpt-35-turbo doesn't support best_of # don't specify best_of if it is 1 if self.best_of > 1: normal_params["best_of"] = self.best_of return {**normal_params, **self.model_kwargs} def _stream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: params = {**self._invocation_params, **kwargs, "stream": True} self.get_sub_prompts(params, [prompt], stop) # this mutates params for stream_resp in completion_with_retry( self, prompt=prompt, run_manager=run_manager, **params ): if not isinstance(stream_resp, dict): stream_resp = stream_resp.dict() chunk = _stream_response_to_generation_chunk(stream_resp) yield chunk if run_manager: run_manager.on_llm_new_token( chunk.text, chunk=chunk, verbose=self.verbose,
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/openai.html
dc417efc9b34-9
chunk.text, chunk=chunk, verbose=self.verbose, logprobs=chunk.generation_info["logprobs"] if chunk.generation_info else None, ) async def _astream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[GenerationChunk]: params = {**self._invocation_params, **kwargs, "stream": True} self.get_sub_prompts(params, [prompt], stop) # this mutate params async for stream_resp in await acompletion_with_retry( self, prompt=prompt, run_manager=run_manager, **params ): if not isinstance(stream_resp, dict): stream_resp = stream_resp.dict() chunk = _stream_response_to_generation_chunk(stream_resp) yield chunk if run_manager: await run_manager.on_llm_new_token( chunk.text, chunk=chunk, verbose=self.verbose, logprobs=chunk.generation_info["logprobs"] if chunk.generation_info else None, ) def _generate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: """Call out to OpenAI's endpoint with k unique prompts. Args: prompts: The prompts to pass into the model. stop: Optional list of stop words to use when generating. Returns: The full LLM output.
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/openai.html
dc417efc9b34-10
Returns: The full LLM output. Example: .. code-block:: python response = openai.generate(["Tell me a joke."]) """ # TODO: write a unit test for this params = self._invocation_params params = {**params, **kwargs} sub_prompts = self.get_sub_prompts(params, prompts, stop) choices = [] token_usage: Dict[str, int] = {} # Get the token usage from the response. # Includes prompt, completion, and total tokens used. _keys = {"completion_tokens", "prompt_tokens", "total_tokens"} system_fingerprint: Optional[str] = None for _prompts in sub_prompts: if self.streaming: if len(_prompts) > 1: raise ValueError("Cannot stream results with multiple prompts.") generation: Optional[GenerationChunk] = None for chunk in self._stream(_prompts[0], stop, run_manager, **kwargs): if generation is None: generation = chunk else: generation += chunk assert generation is not None choices.append( { "text": generation.text, "finish_reason": generation.generation_info.get("finish_reason") if generation.generation_info else None, "logprobs": generation.generation_info.get("logprobs") if generation.generation_info else None, } ) else: response = completion_with_retry( self, prompt=_prompts, run_manager=run_manager, **params ) if not isinstance(response, dict): # V1 client returns the response in an PyDantic object instead of
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/openai.html
dc417efc9b34-11
# V1 client returns the response in an PyDantic object instead of # dict. For the transition period, we deep convert it to dict. response = response.dict() choices.extend(response["choices"]) update_token_usage(_keys, response, token_usage) if not system_fingerprint: system_fingerprint = response.get("system_fingerprint") return self.create_llm_result( choices, prompts, token_usage, system_fingerprint=system_fingerprint, ) async def _agenerate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: """Call out to OpenAI's endpoint async with k unique prompts.""" params = self._invocation_params params = {**params, **kwargs} sub_prompts = self.get_sub_prompts(params, prompts, stop) choices = [] token_usage: Dict[str, int] = {} # Get the token usage from the response. # Includes prompt, completion, and total tokens used. _keys = {"completion_tokens", "prompt_tokens", "total_tokens"} system_fingerprint: Optional[str] = None for _prompts in sub_prompts: if self.streaming: if len(_prompts) > 1: raise ValueError("Cannot stream results with multiple prompts.") generation: Optional[GenerationChunk] = None async for chunk in self._astream( _prompts[0], stop, run_manager, **kwargs ): if generation is None: generation = chunk else:
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/openai.html
dc417efc9b34-12
): if generation is None: generation = chunk else: generation += chunk assert generation is not None choices.append( { "text": generation.text, "finish_reason": generation.generation_info.get("finish_reason") if generation.generation_info else None, "logprobs": generation.generation_info.get("logprobs") if generation.generation_info else None, } ) else: response = await acompletion_with_retry( self, prompt=_prompts, run_manager=run_manager, **params ) if not isinstance(response, dict): response = response.dict() choices.extend(response["choices"]) update_token_usage(_keys, response, token_usage) return self.create_llm_result( choices, prompts, token_usage, system_fingerprint=system_fingerprint, ) [docs] def get_sub_prompts( self, params: Dict[str, Any], prompts: List[str], stop: Optional[List[str]] = None, ) -> List[List[str]]: """Get the sub prompts for llm call.""" if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop if params["max_tokens"] == -1: if len(prompts) != 1: raise ValueError( "max_tokens set to -1 not supported for multiple inputs." ) params["max_tokens"] = self.max_tokens_for_prompt(prompts[0]) sub_prompts = [
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/openai.html
dc417efc9b34-13
sub_prompts = [ prompts[i : i + self.batch_size] for i in range(0, len(prompts), self.batch_size) ] return sub_prompts [docs] def create_llm_result( self, choices: Any, prompts: List[str], token_usage: Dict[str, int], *, system_fingerprint: Optional[str] = None, ) -> LLMResult: """Create the LLMResult from the choices and prompts.""" generations = [] for i, _ in enumerate(prompts): sub_choices = choices[i * self.n : (i + 1) * self.n] generations.append( [ Generation( text=choice["text"], generation_info=dict( finish_reason=choice.get("finish_reason"), logprobs=choice.get("logprobs"), ), ) for choice in sub_choices ] ) llm_output = {"token_usage": token_usage, "model_name": self.model_name} if system_fingerprint: llm_output["system_fingerprint"] = system_fingerprint return LLMResult(generations=generations, llm_output=llm_output) @property def _invocation_params(self) -> Dict[str, Any]: """Get the parameters used to invoke the model.""" openai_creds: Dict[str, Any] = {} if not is_openai_v1(): openai_creds.update( { "api_key": self.openai_api_key, "api_base": self.openai_api_base, "organization": self.openai_organization, } )
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/openai.html
dc417efc9b34-14
"organization": self.openai_organization, } ) if self.openai_proxy: import openai openai.proxy = {"http": self.openai_proxy, "https": self.openai_proxy} # type: ignore[assignment] # noqa: E501 return {**openai_creds, **self._default_params} @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**{"model_name": self.model_name}, **self._default_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "openai" [docs] def get_token_ids(self, text: str) -> List[int]: """Get the token IDs using the tiktoken package.""" # tiktoken NOT supported for Python < 3.8 if sys.version_info[1] < 8: return super().get_num_tokens(text) try: import tiktoken except ImportError: raise ImportError( "Could not import tiktoken python package. " "This is needed in order to calculate get_num_tokens. " "Please install it with `pip install tiktoken`." ) model_name = self.tiktoken_model_name or self.model_name try: enc = tiktoken.encoding_for_model(model_name) except KeyError: logger.warning("Warning: model not found. Using cl100k_base encoding.") model = "cl100k_base" enc = tiktoken.get_encoding(model) return enc.encode( text, allowed_special=self.allowed_special, disallowed_special=self.disallowed_special, )
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/openai.html
dc417efc9b34-15
disallowed_special=self.disallowed_special, ) [docs] @staticmethod def modelname_to_contextsize(modelname: str) -> int: """Calculate the maximum number of tokens possible to generate for a model. Args: modelname: The modelname we want to know the context size for. Returns: The maximum context size Example: .. code-block:: python max_tokens = openai.modelname_to_contextsize("text-davinci-003") """ model_token_mapping = { "gpt-4": 8192, "gpt-4-0314": 8192, "gpt-4-0613": 8192, "gpt-4-32k": 32768, "gpt-4-32k-0314": 32768, "gpt-4-32k-0613": 32768, "gpt-3.5-turbo": 4096, "gpt-3.5-turbo-0301": 4096, "gpt-3.5-turbo-0613": 4096, "gpt-3.5-turbo-16k": 16385, "gpt-3.5-turbo-16k-0613": 16385, "gpt-3.5-turbo-instruct": 4096, "text-ada-001": 2049, "ada": 2049, "text-babbage-001": 2040, "babbage": 2049, "text-curie-001": 2049,
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/openai.html
dc417efc9b34-16
"text-curie-001": 2049, "curie": 2049, "davinci": 2049, "text-davinci-003": 4097, "text-davinci-002": 4097, "code-davinci-002": 8001, "code-davinci-001": 8001, "code-cushman-002": 2048, "code-cushman-001": 2048, } # handling finetuned models if "ft-" in modelname: modelname = modelname.split(":")[0] context_size = model_token_mapping.get(modelname, None) if context_size is None: raise ValueError( f"Unknown model: {modelname}. Please provide a valid OpenAI model name." "Known models are: " + ", ".join(model_token_mapping.keys()) ) return context_size @property def max_context_size(self) -> int: """Get max context size for this model.""" return self.modelname_to_contextsize(self.model_name) [docs] def max_tokens_for_prompt(self, prompt: str) -> int: """Calculate the maximum number of tokens possible to generate for a prompt. Args: prompt: The prompt to pass into the model. Returns: The maximum number of tokens to generate for a prompt. Example: .. code-block:: python max_tokens = openai.max_token_for_prompt("Tell me a joke.") """ num_tokens = self.get_num_tokens(prompt) return self.max_context_size - num_tokens [docs]class OpenAI(BaseOpenAI): """OpenAI large language models.
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/openai.html
dc417efc9b34-17
[docs]class OpenAI(BaseOpenAI): """OpenAI large language models. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.llms import OpenAI openai = OpenAI(model_name="text-davinci-003") """ @property def _invocation_params(self) -> Dict[str, Any]: return {**{"model": self.model_name}, **super()._invocation_params} [docs]class AzureOpenAI(BaseOpenAI): """Azure-specific OpenAI large language models. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.llms import AzureOpenAI openai = AzureOpenAI(model_name="text-davinci-003") """ azure_endpoint: Union[str, None] = None """Your Azure endpoint, including the resource. Automatically inferred from env var `AZURE_OPENAI_ENDPOINT` if not provided. Example: `https://example-resource.azure.openai.com/` """ deployment_name: Union[str, None] = Field(default=None, alias="azure_deployment") """A model deployment.
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/openai.html
dc417efc9b34-18
"""A model deployment. If given sets the base client URL to include `/deployments/{azure_deployment}`. Note: this means you won't be able to use non-deployment endpoints. """ openai_api_version: str = Field(default="", alias="api_version") """Automatically inferred from env var `OPENAI_API_VERSION` if not provided.""" openai_api_key: Union[str, None] = Field(default=None, alias="api_key") """Automatically inferred from env var `AZURE_OPENAI_API_KEY` if not provided.""" azure_ad_token: Union[str, None] = None """Your Azure Active Directory token. Automatically inferred from env var `AZURE_OPENAI_AD_TOKEN` if not provided. For more: https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id. """ # noqa: E501 azure_ad_token_provider: Union[str, None] = None """A function that returns an Azure Active Directory token. Will be invoked on every request. """ openai_api_type: str = "" """Legacy, for openai<1.0.0 support.""" validate_base_url: bool = True """For backwards compatibility. If legacy val openai_api_base is passed in, try to infer if it is a base_url or azure_endpoint and update accordingly. """ @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" if values["n"] < 1: raise ValueError("n must be at least 1.") if values["streaming"] and values["n"] > 1:
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/openai.html
dc417efc9b34-19
if values["streaming"] and values["n"] > 1: raise ValueError("Cannot stream results when n > 1.") if values["streaming"] and values["best_of"] > 1: raise ValueError("Cannot stream results when best_of > 1.") # Check OPENAI_KEY for backwards compatibility. # TODO: Remove OPENAI_API_KEY support to avoid possible conflict when using # other forms of azure credentials. values["openai_api_key"] = ( values["openai_api_key"] or os.getenv("AZURE_OPENAI_API_KEY") or os.getenv("OPENAI_API_KEY") ) values["azure_endpoint"] = values["azure_endpoint"] or os.getenv( "AZURE_OPENAI_ENDPOINT" ) values["azure_ad_token"] = values["azure_ad_token"] or os.getenv( "AZURE_OPENAI_AD_TOKEN" ) values["openai_api_base"] = values["openai_api_base"] or os.getenv( "OPENAI_API_BASE" ) values["openai_proxy"] = get_from_dict_or_env( values, "openai_proxy", "OPENAI_PROXY", default="", ) values["openai_organization"] = ( values["openai_organization"] or os.getenv("OPENAI_ORG_ID") or os.getenv("OPENAI_ORGANIZATION") ) values["openai_api_version"] = values["openai_api_version"] or os.getenv( "OPENAI_API_VERSION" ) values["openai_api_type"] = get_from_dict_or_env( values, "openai_api_type", "OPENAI_API_TYPE", default="azure" )
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/openai.html
dc417efc9b34-20
) try: import openai except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) if is_openai_v1(): # For backwards compatibility. Before openai v1, no distinction was made # between azure_endpoint and base_url (openai_api_base). openai_api_base = values["openai_api_base"] if openai_api_base and values["validate_base_url"]: if "/openai" not in openai_api_base: values["openai_api_base"] = ( values["openai_api_base"].rstrip("/") + "/openai" ) warnings.warn( "As of openai>=1.0.0, Azure endpoints should be specified via " f"the `azure_endpoint` param not `openai_api_base` " f"(or alias `base_url`). Updating `openai_api_base` from " f"{openai_api_base} to {values['openai_api_base']}." ) if values["deployment_name"]: warnings.warn( "As of openai>=1.0.0, if `deployment_name` (or alias " "`azure_deployment`) is specified then " "`openai_api_base` (or alias `base_url`) should not be. " "Instead use `deployment_name` (or alias `azure_deployment`) " "and `azure_endpoint`." ) if values["deployment_name"] not in values["openai_api_base"]: warnings.warn( "As of openai>=1.0.0, if `openai_api_base` "
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/openai.html
dc417efc9b34-21
"(or alias `base_url`) is specified it is expected to be " "of the form " "https://example-resource.azure.openai.com/openai/deployments/example-deployment. " # noqa: E501 f"Updating {openai_api_base} to " f"{values['openai_api_base']}." ) values["openai_api_base"] += ( "/deployments/" + values["deployment_name"] ) values["deployment_name"] = None client_params = { "api_version": values["openai_api_version"], "azure_endpoint": values["azure_endpoint"], "azure_deployment": values["deployment_name"], "api_key": values["openai_api_key"], "azure_ad_token": values["azure_ad_token"], "azure_ad_token_provider": values["azure_ad_token_provider"], "organization": values["openai_organization"], "base_url": values["openai_api_base"], "timeout": values["request_timeout"], "max_retries": values["max_retries"], "default_headers": values["default_headers"], "default_query": values["default_query"], "http_client": values["http_client"], } values["client"] = openai.AzureOpenAI(**client_params).completions values["async_client"] = openai.AsyncAzureOpenAI( **client_params ).completions else: values["client"] = openai.Completion return values @property def _identifying_params(self) -> Mapping[str, Any]: return { **{"deployment_name": self.deployment_name}, **super()._identifying_params, } @property
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/openai.html
dc417efc9b34-22
**super()._identifying_params, } @property def _invocation_params(self) -> Dict[str, Any]: if is_openai_v1(): openai_params = {"model": self.deployment_name} else: openai_params = { "engine": self.deployment_name, "api_type": self.openai_api_type, "api_version": self.openai_api_version, } return {**openai_params, **super()._invocation_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "azure" @property def lc_attributes(self) -> Dict[str, Any]: return { "openai_api_type": self.openai_api_type, "openai_api_version": self.openai_api_version, } [docs]class OpenAIChat(BaseLLM): """OpenAI Chat large language models. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain.llms import OpenAIChat openaichat = OpenAIChat(model_name="gpt-3.5-turbo") """ client: Any = Field(default=None, exclude=True) #: :meta private: async_client: Any = Field(default=None, exclude=True) #: :meta private: model_name: str = "gpt-3.5-turbo"
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/openai.html
dc417efc9b34-23
model_name: str = "gpt-3.5-turbo" """Model name to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" # When updating this to use a SecretStr # Check for classes that derive from this class (as some of them # may assume openai_api_key is a str) openai_api_key: Optional[str] = Field(default=None, alias="api_key") """Automatically inferred from env var `OPENAI_API_KEY` if not provided.""" openai_api_base: Optional[str] = Field(default=None, alias="base_url") """Base URL path for API requests, leave blank if not using a proxy or service emulator.""" # to support explicit proxy for OpenAI openai_proxy: Optional[str] = None max_retries: int = 6 """Maximum number of retries to make when generating.""" prefix_messages: List = Field(default_factory=list) """Series of messages for Chat input.""" streaming: bool = False """Whether to stream the results or not.""" allowed_special: Union[Literal["all"], AbstractSet[str]] = set() """Set of special tokens that are allowed。""" disallowed_special: Union[Literal["all"], Collection[str]] = "all" """Set of special tokens that are not allowed。""" @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in cls.__fields__.values()} extra = values.get("model_kwargs", {})
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/openai.html
dc417efc9b34-24
extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") extra[field_name] = values.pop(field_name) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" openai_api_key = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) openai_api_base = get_from_dict_or_env( values, "openai_api_base", "OPENAI_API_BASE", default="", ) openai_proxy = get_from_dict_or_env( values, "openai_proxy", "OPENAI_PROXY", default="", ) openai_organization = get_from_dict_or_env( values, "openai_organization", "OPENAI_ORGANIZATION", default="" ) try: import openai openai.api_key = openai_api_key if openai_api_base: openai.api_base = openai_api_base if openai_organization: openai.organization = openai_organization if openai_proxy: openai.proxy = {"http": openai_proxy, "https": openai_proxy} # type: ignore[assignment] # noqa: E501 except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) try:
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/openai.html
dc417efc9b34-25
) try: values["client"] = openai.ChatCompletion except AttributeError: raise ValueError( "`openai` has no `ChatCompletion` attribute, this is likely " "due to an old version of the openai package. Try upgrading it " "with `pip install --upgrade openai`." ) warnings.warn( "You are trying to use a chat model. This way of initializing it is " "no longer supported. Instead, please use: " "`from langchain.chat_models import ChatOpenAI`" ) return values @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling OpenAI API.""" return self.model_kwargs def _get_chat_params( self, prompts: List[str], stop: Optional[List[str]] = None ) -> Tuple: if len(prompts) > 1: raise ValueError( f"OpenAIChat currently only supports single prompt, got {prompts}" ) messages = self.prefix_messages + [{"role": "user", "content": prompts[0]}] params: Dict[str, Any] = {**{"model": self.model_name}, **self._default_params} if stop is not None: if "stop" in params: raise ValueError("`stop` found in both the input and default params.") params["stop"] = stop if params.get("max_tokens") == -1: # for ChatGPT api, omitting max_tokens is equivalent to having no limit del params["max_tokens"] return messages, params def _stream( self, prompt: str,
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/openai.html
dc417efc9b34-26
def _stream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: messages, params = self._get_chat_params([prompt], stop) params = {**params, **kwargs, "stream": True} for stream_resp in completion_with_retry( self, messages=messages, run_manager=run_manager, **params ): if not isinstance(stream_resp, dict): stream_resp = stream_resp.dict() token = stream_resp["choices"][0]["delta"].get("content", "") chunk = GenerationChunk(text=token) yield chunk if run_manager: run_manager.on_llm_new_token(token, chunk=chunk) async def _astream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[GenerationChunk]: messages, params = self._get_chat_params([prompt], stop) params = {**params, **kwargs, "stream": True} async for stream_resp in await acompletion_with_retry( self, messages=messages, run_manager=run_manager, **params ): if not isinstance(stream_resp, dict): stream_resp = stream_resp.dict() token = stream_resp["choices"][0]["delta"].get("content", "") chunk = GenerationChunk(text=token) yield chunk if run_manager: await run_manager.on_llm_new_token(token, chunk=chunk) def _generate(
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/openai.html
dc417efc9b34-27
def _generate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: if self.streaming: generation: Optional[GenerationChunk] = None for chunk in self._stream(prompts[0], stop, run_manager, **kwargs): if generation is None: generation = chunk else: generation += chunk assert generation is not None return LLMResult(generations=[[generation]]) messages, params = self._get_chat_params(prompts, stop) params = {**params, **kwargs} full_response = completion_with_retry( self, messages=messages, run_manager=run_manager, **params ) if not isinstance(full_response, dict): full_response = full_response.dict() llm_output = { "token_usage": full_response["usage"], "model_name": self.model_name, } return LLMResult( generations=[ [Generation(text=full_response["choices"][0]["message"]["content"])] ], llm_output=llm_output, ) async def _agenerate( self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> LLMResult: if self.streaming: generation: Optional[GenerationChunk] = None async for chunk in self._astream(prompts[0], stop, run_manager, **kwargs): if generation is None:
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/openai.html
dc417efc9b34-28
if generation is None: generation = chunk else: generation += chunk assert generation is not None return LLMResult(generations=[[generation]]) messages, params = self._get_chat_params(prompts, stop) params = {**params, **kwargs} full_response = await acompletion_with_retry( self, messages=messages, run_manager=run_manager, **params ) if not isinstance(full_response, dict): full_response = full_response.dict() llm_output = { "token_usage": full_response["usage"], "model_name": self.model_name, } return LLMResult( generations=[ [Generation(text=full_response["choices"][0]["message"]["content"])] ], llm_output=llm_output, ) @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**{"model_name": self.model_name}, **self._default_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "openai-chat" [docs] def get_token_ids(self, text: str) -> List[int]: """Get the token IDs using the tiktoken package.""" # tiktoken NOT supported for Python < 3.8 if sys.version_info[1] < 8: return super().get_token_ids(text) try: import tiktoken except ImportError: raise ImportError( "Could not import tiktoken python package. " "This is needed in order to calculate get_num_tokens. " "Please install it with `pip install tiktoken`."
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/openai.html
dc417efc9b34-29
"Please install it with `pip install tiktoken`." ) enc = tiktoken.encoding_for_model(self.model_name) return enc.encode( text, allowed_special=self.allowed_special, disallowed_special=self.disallowed_special, )
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/openai.html
8f1a119c5bf4-0
Source code for langchain.llms.opaqueprompts import logging from typing import Any, Dict, List, Optional from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.pydantic_v1 import Extra, root_validator from langchain.schema.language_model import BaseLanguageModel from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) [docs]class OpaquePrompts(LLM): """An LLM wrapper that uses OpaquePrompts to sanitize prompts. Wraps another LLM and sanitizes prompts before passing it to the LLM, then de-sanitizes the response. To use, you should have the ``opaqueprompts`` python package installed, and the environment variable ``OPAQUEPROMPTS_API_KEY`` set with your API key, or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain.llms import OpaquePrompts from langchain.chat_models import ChatOpenAI op_llm = OpaquePrompts(base_llm=ChatOpenAI()) """ base_llm: BaseLanguageModel """The base LLM to use.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validates that the OpaquePrompts API key and the Python package exist.""" try: import opaqueprompts as op except ImportError: raise ImportError( "Could not import the `opaqueprompts` Python package, " "please install it with `pip install opaqueprompts`." )
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/opaqueprompts.html
8f1a119c5bf4-1
"please install it with `pip install opaqueprompts`." ) if op.__package__ is None: raise ValueError( "Could not properly import `opaqueprompts`, " "opaqueprompts.__package__ is None." ) api_key = get_from_dict_or_env( values, "opaqueprompts_api_key", "OPAQUEPROMPTS_API_KEY", default="" ) if not api_key: raise ValueError( "Could not find OPAQUEPROMPTS_API_KEY in the environment. " "Please set it to your OpaquePrompts API key." "You can get it by creating an account on the OpaquePrompts website: " "https://opaqueprompts.opaque.co/ ." ) return values def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call base LLM with sanitization before and de-sanitization after. Args: prompt: The prompt to pass into the model. Returns: The string generated by the model. Example: .. code-block:: python response = op_llm("Tell me a joke.") """ import opaqueprompts as op _run_manager = run_manager or CallbackManagerForLLMRun.get_noop_manager() # sanitize the prompt by replacing the sensitive information with a placeholder sanitize_response: op.SanitizeResponse = op.sanitize([prompt]) sanitized_prompt_value_str = sanitize_response.sanitized_texts[0]
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/opaqueprompts.html
8f1a119c5bf4-2
sanitized_prompt_value_str = sanitize_response.sanitized_texts[0] # TODO: Add in callbacks once child runs for LLMs are supported by LangSmith. # call the LLM with the sanitized prompt and get the response llm_response = self.base_llm.predict( sanitized_prompt_value_str, stop=stop, ) # desanitize the response by restoring the original sensitive information desanitize_response: op.DesanitizeResponse = op.desanitize( llm_response, secure_context=sanitize_response.secure_context, ) return desanitize_response.desanitized_text @property def _llm_type(self) -> str: """Return type of LLM. This is an override of the base class method. """ return "opaqueprompts"
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/opaqueprompts.html
4777622cb657-0
Source code for langchain.llms.stochasticai import logging import time from typing import Any, Dict, List, Mapping, Optional import requests from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from langchain.pydantic_v1 import Extra, Field, root_validator from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) [docs]class StochasticAI(LLM): """StochasticAI large language models. To use, you should have the environment variable ``STOCHASTICAI_API_KEY`` set with your API key. Example: .. code-block:: python from langchain.llms import StochasticAI stochasticai = StochasticAI(api_url="") """ api_url: str = "" """Model name to use.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" stochasticai_api_key: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in cls.__fields__.values()} extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") logger.warning(
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/stochasticai.html
4777622cb657-1
raise ValueError(f"Found {field_name} supplied twice.") logger.warning( f"""{field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key exists in environment.""" stochasticai_api_key = get_from_dict_or_env( values, "stochasticai_api_key", "STOCHASTICAI_API_KEY" ) values["stochasticai_api_key"] = stochasticai_api_key return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { **{"endpoint_url": self.api_url}, **{"model_kwargs": self.model_kwargs}, } @property def _llm_type(self) -> str: """Return type of llm.""" return "stochasticai" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to StochasticAI's complete endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. Returns: The string generated by the model. Example: .. code-block:: python response = StochasticAI("Tell me a joke.") """ params = self.model_kwargs or {}
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/stochasticai.html
4777622cb657-2
""" params = self.model_kwargs or {} params = {**params, **kwargs} response_post = requests.post( url=self.api_url, json={"prompt": prompt, "params": params}, headers={ "apiKey": f"{self.stochasticai_api_key}", "Accept": "application/json", "Content-Type": "application/json", }, ) response_post.raise_for_status() response_post_json = response_post.json() completed = False while not completed: response_get = requests.get( url=response_post_json["data"]["responseUrl"], headers={ "apiKey": f"{self.stochasticai_api_key}", "Accept": "application/json", "Content-Type": "application/json", }, ) response_get.raise_for_status() response_get_json = response_get.json()["data"] text = response_get_json.get("completion") completed = text is not None time.sleep(0.5) text = text[0] if stop is not None: # I believe this is required since the stop tokens # are not enforced by the model parameters text = enforce_stop_tokens(text, stop) return text
lang/api.python.langchain.com/en/latest/_modules/langchain/llms/stochasticai.html
7a6292de207a-0
langchain_experimental.fallacy_removal.base.FallacyChain¶ class langchain_experimental.fallacy_removal.base.FallacyChain[source]¶ Bases: Chain Chain for applying logical fallacy evaluations, modeled after Constitutional AI and in same format, but applying logical fallacies as generalized rules to remove in output Example from langchain.llms import OpenAI from langchain.chains import LLMChain from langchain_experimental.fallacy import FallacyChain from langchain_experimental.fallacy_removal.models import LogicalFallacy llm = OpenAI() qa_prompt = PromptTemplate( template="Q: {question} A:", input_variables=["question"], ) qa_chain = LLMChain(llm=llm, prompt=qa_prompt) fallacy_chain = FallacyChain.from_llm( llm=llm, chain=qa_chain, logical_fallacies=[ LogicalFallacy( fallacy_critique_request="Tell if this answer meets criteria.", fallacy_revision_request= "Give an answer that meets better criteria.", ) ], ) fallacy_chain.run(question="How do I know if the earth is round?") Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param callback_manager: Optional[BaseCallbackManager] = None¶ Deprecated, use callbacks instead. param callbacks: Callbacks = None¶ Optional list of callback handlers (or callback manager). Defaults to None. Callback handlers are called throughout the lifecycle of a call to a chain, starting with on_chain_start, ending with on_chain_end or on_chain_error. Each custom chain can optionally call additional callback methods, see Callback docs
lang/api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
7a6292de207a-1
Each custom chain can optionally call additional callback methods, see Callback docs for full details. param chain: LLMChain [Required]¶ param fallacy_critique_chain: LLMChain [Required]¶ param fallacy_revision_chain: LLMChain [Required]¶ param logical_fallacies: List[LogicalFallacy] [Required]¶ param memory: Optional[BaseMemory] = None¶ Optional memory object. Defaults to None. Memory is a class that gets called at the start and at the end of every chain. At the start, memory loads variables and passes them along in the chain. At the end, it saves any returned variables. There are many different types of memory - please see memory docs for the full catalog. param metadata: Optional[Dict[str, Any]] = None¶ Optional metadata associated with the chain. Defaults to None. This metadata will be associated with each call to this chain, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a chain with its use case. param return_intermediate_steps: bool = False¶ param tags: Optional[List[str]] = None¶ Optional list of tags associated with the chain. Defaults to None. These tags will be associated with each call to this chain, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a chain with its use case. param verbose: bool [Optional]¶ Whether or not run in verbose mode. In verbose mode, some intermediate logs will be printed to the console. Defaults to the global verbose value, accessible via langchain.globals.get_verbose().
lang/api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
7a6292de207a-2
accessible via langchain.globals.get_verbose(). __call__(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, include_run_info: bool = False) → Dict[str, Any]¶ Execute the chain. Parameters inputs – Dictionary of inputs, or single input if chain expects only one param. Should contain all inputs specified in Chain.input_keys except for inputs that will be set by the chain’s memory. return_only_outputs – Whether to return only outputs in the response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. callbacks – Callbacks to use for this chain run. These will be called in addition to callbacks passed to the chain during construction, but only these runtime callbacks will propagate to calls to other objects. tags – List of string tags to pass to all callbacks. These will be passed in addition to tags passed to the chain during construction, but only these runtime tags will propagate to calls to other objects. metadata – Optional metadata associated with the chain. Defaults to None include_run_info – Whether to include run info in the response. Defaults to False. Returns A dict of named outputs. Should contain all outputs specified inChain.output_keys. async abatch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs ainvoke in parallel using asyncio.gather.
lang/api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
7a6292de207a-3
Default implementation runs ainvoke in parallel using asyncio.gather. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. async acall(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, run_name: Optional[str] = None, include_run_info: bool = False) → Dict[str, Any]¶ Asynchronously execute the chain. Parameters inputs – Dictionary of inputs, or single input if chain expects only one param. Should contain all inputs specified in Chain.input_keys except for inputs that will be set by the chain’s memory. return_only_outputs – Whether to return only outputs in the response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. callbacks – Callbacks to use for this chain run. These will be called in addition to callbacks passed to the chain during construction, but only these runtime callbacks will propagate to calls to other objects. tags – List of string tags to pass to all callbacks. These will be passed in addition to tags passed to the chain during construction, but only these runtime tags will propagate to calls to other objects. metadata – Optional metadata associated with the chain. Defaults to None include_run_info – Whether to include run info in the response. Defaults to False. Returns A dict of named outputs. Should contain all outputs specified inChain.output_keys.
lang/api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
7a6292de207a-4
Returns A dict of named outputs. Should contain all outputs specified inChain.output_keys. async ainvoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → Dict[str, Any]¶ Default implementation of ainvoke, calls invoke from a thread. The default implementation allows usage of async code even if the runnable did not implement a native async version of invoke. Subclasses should override this method if they can run asynchronously. apply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶ Call the chain on all inputs in the list. async arun(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Convenience method for executing chain. The main difference between this method and Chain.__call__ is that this method expects inputs to be passed directly in as positional arguments or keyword arguments, whereas Chain.__call__ expects a single input dictionary with all the inputs Parameters *args – If the chain expects a single input, it can be passed in as the sole positional argument. callbacks – Callbacks to use for this chain run. These will be called in addition to callbacks passed to the chain during construction, but only these runtime callbacks will propagate to calls to other objects. tags – List of string tags to pass to all callbacks. These will be passed in addition to tags passed to the chain during construction, but only these runtime tags will propagate to calls to other objects. **kwargs – If the chain expects multiple inputs, they can be passed in directly as keyword arguments.
lang/api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
7a6292de207a-5
directly as keyword arguments. Returns The chain output. Example # Suppose we have a single-input chain that takes a 'question' string: await chain.arun("What's the temperature in Boise, Idaho?") # -> "The temperature in Boise is..." # Suppose we have a multi-input chain that takes a 'question' string # and 'context' string: question = "What's the temperature in Boise, Idaho?" context = "Weather report for Boise, Idaho on 07/03/23..." await chain.arun(question=question, context=context) # -> "The temperature in Boise is..." async astream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of astream, which calls ainvoke. Subclasses should override this method if they support streaming output. async astream_log(input: Any, config: Optional[RunnableConfig] = None, *, diff: bool = True, include_names: Optional[Sequence[str]] = None, include_types: Optional[Sequence[str]] = None, include_tags: Optional[Sequence[str]] = None, exclude_names: Optional[Sequence[str]] = None, exclude_types: Optional[Sequence[str]] = None, exclude_tags: Optional[Sequence[str]] = None, **kwargs: Optional[Any]) → Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]¶ Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state.
lang/api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
7a6292de207a-6
The jsonpatch ops can be applied in order to construct state. async atransform(input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → AsyncIterator[Output]¶ Default implementation of atransform, which buffers input and calls astream. Subclasses should override this method if they can start producing output while input is still being generated. batch(inputs: List[Input], config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any]) → List[Output]¶ Default implementation runs invoke in parallel using a thread pool executor. The default implementation of batch works well for IO bound runnables. Subclasses should override this method if they can batch more efficiently; e.g., if the underlying runnable uses an API which supports a batch mode. bind(**kwargs: Any) → Runnable[Input, Output]¶ Bind arguments to a Runnable, returning a new Runnable. config_schema(*, include: Optional[Sequence[str]] = None) → Type[BaseModel]¶ The type of config this runnable accepts specified as a pydantic model. To mark a field as configurable, see the configurable_fields and configurable_alternatives methods. Parameters include – A list of fields to include in the config schema. Returns A pydantic model that can be used to validate config. configurable_alternatives(which: ConfigurableField, default_key: str = 'default', **kwargs: Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]]) → RunnableSerializable[Input, Output]¶ configurable_fields(**kwargs: Union[ConfigurableField, ConfigurableFieldSingleOption, ConfigurableFieldMultiOption]) → RunnableSerializable[Input, Output]¶
lang/api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
7a6292de207a-7
classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance dict(**kwargs: Any) → Dict¶ Dictionary representation of chain. Expects Chain._chain_type property to be implemented and for memory to benull. Parameters **kwargs – Keyword arguments passed to default pydantic.BaseModel.dict method. Returns A dictionary representation of the chain. Example chain.dict(exclude_unset=True) # -> {"_type": "foo", "verbose": False, ...}
lang/api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
7a6292de207a-8
classmethod from_llm(llm: BaseLanguageModel, chain: LLMChain, fallacy_critique_prompt: BasePromptTemplate = FewShotPromptTemplate(input_variables=['fallacy_critique_request', 'input_prompt', 'output_from_model'], examples=[{'input_prompt': "If everyone says the Earth is round,         how do I know that's correct?", 'output_from_model': 'The earth is round because your         teacher says it is', 'fallacy_critique_request': 'Identify specific ways in        which the model’s previous response had a logical fallacy.         Also point out potential logical fallacies in the human’s         questions and responses. Examples of logical fallacies         include but are not limited to ad hominem, ad populum,         appeal to emotion and false causality.', 'fallacy_critique': 'This statement contains the logical         fallacy of Ad Verecundiam or Appeal to Authority. It is         a fallacy because it asserts something to be true purely         based on the authority of the source making the claim,         without any actual evidence to support it.  Fallacy         Critique Needed', 'fallacy_revision': 'The earth is round based on         evidence from observations of its curvature from high         altitudes, photos from space showing its spherical shape,         circumnavigation, and the fact that we see its rounded         shadow on the moon during lunar eclipses.'}, {'input_prompt': 'Should we invest more in our school         music program? After all, studies show students         involved in music perform better academically.', 'output_from_model': "I don't think we should invest         more in the music program. Playing the piccolo won't         teach someone better math skills.", 'fallacy_critique_request': 'Identify specific ways         in which the model’s previous response had a logical         fallacy. Also point out potential logical fallacies         in the human’s questions and responses. Examples of
lang/api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
7a6292de207a-9
Also point out potential logical fallacies         in the human’s questions and responses. Examples of         logical fallacies include but are not limited to ad         homimem, ad populum, appeal to emotion and false         causality.', 'fallacy_critique': 'This answer commits the division         fallacy by rejecting the argument based on assuming         capabilities true of the parts (playing an instrument         like piccolo) also apply to the whole         (the full music program). The answer focuses only on         part of the music program rather than considering it         as a whole.  Fallacy Critique Needed.', 'fallacy_revision': 'While playing an instrument may         teach discipline, more evidence is needed on whether         music education courses improve critical thinking         skills across subjects before determining if increased         investment in the whole music program is warranted.'}], example_prompt=PromptTemplate(input_variables=['fallacy_critique', 'fallacy_critique_request', 'input_prompt', 'output_from_model'], template='Human: {input_prompt}\n\nModel: {output_from_model}\n\nFallacy Critique Request: {fallacy_critique_request}\n\nFallacy Critique: {fallacy_critique}'), suffix='Human: {input_prompt}\nModel: {output_from_model}\n\nFallacy Critique Request: {fallacy_critique_request}\n\nFallacy Critique:', example_separator='\n === \n', prefix="Below is a conversation between a human and an     AI assistant. If there is no material critique of the     model output, append to the end of the Fallacy Critique:     'No fallacy critique needed.' If there is material     critique     of the model output, append to the end of the Fallacy     Critique: 'Fallacy Critique needed.'"), fallacy_revision_prompt: BasePromptTemplate = FewShotPromptTemplate(input_variables=['fallacy_critique', 'fallacy_critique_request',
lang/api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
7a6292de207a-10
= FewShotPromptTemplate(input_variables=['fallacy_critique', 'fallacy_critique_request', 'fallacy_revision_request', 'input_prompt', 'output_from_model'], examples=[{'input_prompt': "If everyone says the Earth is round,         how do I know that's correct?", 'output_from_model': 'The earth is round because your         teacher says it is', 'fallacy_critique_request': 'Identify specific ways in        which the model’s previous response had a logical fallacy.         Also point out potential logical fallacies in the human’s         questions and responses. Examples of logical fallacies         include but are not limited to ad hominem, ad populum,         appeal to emotion and false causality.', 'fallacy_critique': 'This statement contains the logical         fallacy of Ad Verecundiam or Appeal to Authority. It is         a fallacy because it asserts something to be true purely         based on the authority of the source making the claim,         without any actual evidence to support it.  Fallacy         Critique Needed', 'fallacy_revision_request': 'Please rewrite the model         response to remove all logical fallacies, and to         politely point out any logical fallacies from the         human.', 'fallacy_revision': 'The earth is round based on         evidence from observations of its curvature from high         altitudes, photos from space showing its spherical shape,         circumnavigation, and the fact that we see its rounded         shadow on the moon during lunar eclipses.'}, {'input_prompt': 'Should we invest more in our school         music program? After all, studies show students         involved in music perform better academically.', 'output_from_model': "I don't think we should invest         more in the music program. Playing the piccolo won't         teach someone better math skills.", 'fallacy_critique_request': 'Identify specific ways         in which the model’s previous response had a logical
lang/api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
7a6292de207a-11
'Identify specific ways         in which the model’s previous response had a logical         fallacy. Also point out potential logical fallacies         in the human’s questions and responses. Examples of         logical fallacies include but are not limited to ad         homimem, ad populum, appeal to emotion and false         causality.', 'fallacy_critique': 'This answer commits the division         fallacy by rejecting the argument based on assuming         capabilities true of the parts (playing an instrument         like piccolo) also apply to the whole         (the full music program). The answer focuses only on         part of the music program rather than considering it         as a whole.  Fallacy Critique Needed.', 'fallacy_revision_request': 'Please rewrite the model         response to remove all logical fallacies, and to         politely point out any logical fallacies from the human.', 'fallacy_revision': 'While playing an instrument may         teach discipline, more evidence is needed on whether         music education courses improve critical thinking         skills across subjects before determining if increased         investment in the whole music program is warranted.'}], example_prompt=PromptTemplate(input_variables=['fallacy_critique', 'fallacy_critique_request', 'input_prompt', 'output_from_model'], template='Human: {input_prompt}\n\nModel: {output_from_model}\n\nFallacy Critique Request: {fallacy_critique_request}\n\nFallacy Critique: {fallacy_critique}'), suffix='Human: {input_prompt}\n\nModel: {output_from_model}\n\nFallacy Critique Request: {fallacy_critique_request}\n\nFallacy Critique: {fallacy_critique}\n\nIf the fallacy critique does not identify anything worth changing, ignore the Fallacy Revision Request and do not make any revisions. Instead, return "No revisions needed".\n\nIf the fallacy critique does identify something worth changing, please revise the model response based on
lang/api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
7a6292de207a-12
the fallacy critique does identify something worth changing, please revise the model response based on the Fallacy Revision Request.\n\nFallacy Revision Request: {fallacy_revision_request}\n\nFallacy Revision:', example_separator='\n === \n', prefix='Below is a conversation between a human and     an AI assistant.'), **kwargs: Any) → FallacyChain[source]¶
lang/api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
7a6292de207a-13
Create a chain from an LLM. classmethod from_orm(obj: Any) → Model¶ classmethod get_fallacies(names: Optional[List[str]] = None) → List[LogicalFallacy][source]¶ get_input_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate input to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic input schema that depends on which configuration the runnable is invoked with. This method allows to get an input schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate input. classmethod get_lc_namespace() → List[str]¶ Get the namespace of the langchain object. For example, if the class is langchain.llms.openai.OpenAI, then the namespace is [“langchain”, “llms”, “openai”] get_output_schema(config: Optional[RunnableConfig] = None) → Type[BaseModel]¶ Get a pydantic model that can be used to validate output to the runnable. Runnables that leverage the configurable_fields and configurable_alternatives methods will have a dynamic output schema that depends on which configuration the runnable is invoked with. This method allows to get an output schema for a specific configuration. Parameters config – A config to use when generating the schema. Returns A pydantic model that can be used to validate output. invoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None, **kwargs: Any) → Dict[str, Any]¶ Transform a single input into an output. Override to implement. Parameters input – The input to the runnable.
lang/api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
7a6292de207a-14
Parameters input – The input to the runnable. config – A config to use when invoking the runnable. The config supports standard keys like ‘tags’, ‘metadata’ for tracing purposes, ‘max_concurrency’ for controlling how much work to do in parallel, and other keys. Please refer to the RunnableConfig for more details. Returns The output of the runnable. classmethod is_lc_serializable() → bool¶ Is this class serializable? json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod lc_id() → List[str]¶ A unique identifier for this class for serialization purposes. The unique identifier is a list of strings that describes the path to the object. map() → Runnable[List[Input], List[Output]]¶ Return a new Runnable that maps a list of inputs to a list of outputs, by calling invoke() with each input. classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶
lang/api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
7a6292de207a-15
classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ prep_inputs(inputs: Union[Dict[str, Any], Any]) → Dict[str, str]¶ Validate and prepare chain inputs, including adding inputs from memory. Parameters inputs – Dictionary of raw inputs, or single input if chain expects only one param. Should contain all inputs specified in Chain.input_keys except for inputs that will be set by the chain’s memory. Returns A dictionary of all inputs, including those added by the chain’s memory. prep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) → Dict[str, str]¶ Validate and prepare chain outputs, and save info about this run to memory. Parameters inputs – Dictionary of chain inputs, including any inputs added by chain memory. outputs – Dictionary of initial chain outputs. return_only_outputs – Whether to only return the chain outputs. If False, inputs are also added to the final outputs. Returns A dict of the final chain outputs. run(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Convenience method for executing chain. The main difference between this method and Chain.__call__ is that this method expects inputs to be passed directly in as positional arguments or keyword arguments, whereas Chain.__call__ expects a single input dictionary with all the inputs Parameters *args – If the chain expects a single input, it can be passed in as the sole positional argument.
lang/api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
7a6292de207a-16
sole positional argument. callbacks – Callbacks to use for this chain run. These will be called in addition to callbacks passed to the chain during construction, but only these runtime callbacks will propagate to calls to other objects. tags – List of string tags to pass to all callbacks. These will be passed in addition to tags passed to the chain during construction, but only these runtime tags will propagate to calls to other objects. **kwargs – If the chain expects multiple inputs, they can be passed in directly as keyword arguments. Returns The chain output. Example # Suppose we have a single-input chain that takes a 'question' string: chain.run("What's the temperature in Boise, Idaho?") # -> "The temperature in Boise is..." # Suppose we have a multi-input chain that takes a 'question' string # and 'context' string: question = "What's the temperature in Boise, Idaho?" context = "Weather report for Boise, Idaho on 07/03/23..." chain.run(question=question, context=context) # -> "The temperature in Boise is..." save(file_path: Union[Path, str]) → None¶ Save the chain. Expects Chain._chain_type property to be implemented and for memory to benull. Parameters file_path – Path to file to save the chain to. Example chain.save(file_path="path/chain.yaml") classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ stream(input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶
lang/api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
7a6292de207a-17
Default implementation of stream, which calls invoke. Subclasses should override this method if they support streaming output. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ transform(input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any]) → Iterator[Output]¶ Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated. classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶ with_config(config: Optional[RunnableConfig] = None, **kwargs: Any) → Runnable[Input, Output]¶ Bind config to a Runnable, returning a new Runnable. with_fallbacks(fallbacks: Sequence[Runnable[Input, Output]], *, exceptions_to_handle: Tuple[Type[BaseException], ...] = (<class 'Exception'>,)) → RunnableWithFallbacksT[Input, Output]¶ Add fallbacks to a runnable, returning a new Runnable. Parameters fallbacks – A sequence of runnables to try if the original runnable fails. exceptions_to_handle – A tuple of exception types to handle. Returns A new Runnable that will try the original runnable, and then each fallback in order, upon failures. with_listeners(*, on_start: Optional[Listener] = None, on_end: Optional[Listener] = None, on_error: Optional[Listener] = None) → Runnable[Input, Output]¶ Bind lifecycle listeners to a Runnable, returning a new Runnable. on_start: Called before the runnable starts running, with the Run object.
lang/api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
7a6292de207a-18
on_start: Called before the runnable starts running, with the Run object. on_end: Called after the runnable finishes running, with the Run object. on_error: Called if the runnable throws an error, with the Run object. The Run object contains information about the run, including its id, type, input, output, error, start_time, end_time, and any tags or metadata added to the run. with_retry(*, retry_if_exception_type: ~typing.Tuple[~typing.Type[BaseException], ...] = (<class 'Exception'>,), wait_exponential_jitter: bool = True, stop_after_attempt: int = 3) → Runnable[Input, Output]¶ Create a new Runnable that retries the original runnable on exceptions. Parameters retry_if_exception_type – A tuple of exception types to retry on wait_exponential_jitter – Whether to add jitter to the wait time between retries stop_after_attempt – The maximum number of attempts to make before giving up Returns A new Runnable that retries the original runnable on exceptions. with_types(*, input_type: Optional[Type[Input]] = None, output_type: Optional[Type[Output]] = None) → Runnable[Input, Output]¶ Bind input and output types to a Runnable, returning a new Runnable. property InputType: Type[langchain.schema.runnable.utils.Input]¶ The type of input this runnable accepts specified as a type annotation. property OutputType: Type[langchain.schema.runnable.utils.Output]¶ The type of output this runnable produces specified as a type annotation. property config_specs: List[langchain.schema.runnable.utils.ConfigurableFieldSpec]¶ List configurable fields for this runnable. property input_keys: List[str]¶ Input keys. property input_schema: Type[pydantic.main.BaseModel]¶
lang/api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
7a6292de207a-19
Input keys. property input_schema: Type[pydantic.main.BaseModel]¶ The type of input this runnable accepts specified as a pydantic model. property lc_attributes: Dict¶ List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_secrets: Dict[str, str]¶ A map of constructor argument names to secret ids. For example,{“openai_api_key”: “OPENAI_API_KEY”} property output_keys: List[str]¶ Output keys. property output_schema: Type[pydantic.main.BaseModel]¶ The type of output this runnable produces specified as a pydantic model.
lang/api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.base.FallacyChain.html
d64d5da1fffa-0
langchain_experimental.fallacy_removal.models.LogicalFallacy¶ class langchain_experimental.fallacy_removal.models.LogicalFallacy[source]¶ Bases: BaseModel Class for a logical fallacy. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param fallacy_critique_request: str [Required]¶ param fallacy_revision_request: str [Required]¶ param name: str = 'Logical Fallacy'¶ classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
lang/api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.models.LogicalFallacy.html
d64d5da1fffa-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶
lang/api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.models.LogicalFallacy.html
d64d5da1fffa-2
classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶
lang/api.python.langchain.com/en/latest/fallacy_removal/langchain_experimental.fallacy_removal.models.LogicalFallacy.html
e7a831cdfd5a-0
langchain.docstore.base.AddableMixin¶ class langchain.docstore.base.AddableMixin[source]¶ Mixin class that supports adding texts. Methods __init__() add(texts) Add more documents. __init__()¶ abstract add(texts: Dict[str, Document]) → None[source]¶ Add more documents.
lang/api.python.langchain.com/en/latest/docstore/langchain.docstore.base.AddableMixin.html
74110d2d2db8-0
langchain.docstore.in_memory.InMemoryDocstore¶ class langchain.docstore.in_memory.InMemoryDocstore(_dict: Optional[Dict[str, Document]] = None)[source]¶ Simple in memory docstore in the form of a dict. Initialize with dict. Methods __init__([_dict]) Initialize with dict. add(texts) Add texts to in memory dictionary. delete(ids) Deleting IDs from in memory dictionary. search(search) Search via direct lookup. __init__(_dict: Optional[Dict[str, Document]] = None)[source]¶ Initialize with dict. add(texts: Dict[str, Document]) → None[source]¶ Add texts to in memory dictionary. Parameters texts – dictionary of id -> document. Returns None delete(ids: List) → None[source]¶ Deleting IDs from in memory dictionary. search(search: str) → Union[str, Document][source]¶ Search via direct lookup. Parameters search – id of a document to search for. Returns Document if found, else error message. Examples using InMemoryDocstore¶ Annoy Agents AutoGPT BabyAGI User Guide BabyAGI with Tools !pip install bs4 Generative Agents in LangChain
lang/api.python.langchain.com/en/latest/docstore/langchain.docstore.in_memory.InMemoryDocstore.html
b59520dd80b1-0
langchain.docstore.base.Docstore¶ class langchain.docstore.base.Docstore[source]¶ Interface to access to place that stores documents. Methods __init__() delete(ids) Deleting IDs from in memory dictionary. search(search) Search for document. __init__()¶ delete(ids: List) → None[source]¶ Deleting IDs from in memory dictionary. abstract search(search: str) → Union[str, Document][source]¶ Search for document. If page exists, return the page summary, and a Document object. If page does not exist, return similar entries.
lang/api.python.langchain.com/en/latest/docstore/langchain.docstore.base.Docstore.html
9f3215f34f46-0
langchain.docstore.arbitrary_fn.DocstoreFn¶ class langchain.docstore.arbitrary_fn.DocstoreFn(lookup_fn: Callable[[str], Union[Document, str]])[source]¶ Langchain Docstore via arbitrary lookup function. This is useful when: it’s expensive to construct an InMemoryDocstore/dict you retrieve documents from remote sources you just want to reuse existing objects Methods __init__(lookup_fn) delete(ids) Deleting IDs from in memory dictionary. search(search) Search for a document. __init__(lookup_fn: Callable[[str], Union[Document, str]])[source]¶ delete(ids: List) → None¶ Deleting IDs from in memory dictionary. search(search: str) → Document[source]¶ Search for a document. Parameters search – search string Returns Document if found, else error message.
lang/api.python.langchain.com/en/latest/docstore/langchain.docstore.arbitrary_fn.DocstoreFn.html
3829d822dc8a-0
langchain.docstore.wikipedia.Wikipedia¶ class langchain.docstore.wikipedia.Wikipedia[source]¶ Wrapper around wikipedia API. Check that wikipedia package is installed. Methods __init__() Check that wikipedia package is installed. delete(ids) Deleting IDs from in memory dictionary. search(search) Try to search for wiki page. __init__() → None[source]¶ Check that wikipedia package is installed. delete(ids: List) → None¶ Deleting IDs from in memory dictionary. search(search: str) → Union[str, Document][source]¶ Try to search for wiki page. If page exists, return the page summary, and a PageWithLookups object. If page does not exist, return similar entries. Parameters search – search string. Returns: a Document object or error message.
lang/api.python.langchain.com/en/latest/docstore/langchain.docstore.wikipedia.Wikipedia.html
1fe204349dd6-0
langchain_experimental.open_clip.open_clip.OpenCLIPEmbeddings¶ class langchain_experimental.open_clip.open_clip.OpenCLIPEmbeddings[source]¶ Bases: BaseModel, Embeddings Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param model: Any = None¶ param preprocess: Any = None¶ param tokenizer: Any = None¶ async aembed_documents(texts: List[str]) → List[List[float]]¶ Asynchronous Embed search docs. async aembed_query(text: str) → List[float]¶ Asynchronous Embed query text. classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) → Model¶ Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) → Model¶ Duplicate a model, optionally choose which fields to include, exclude and change. Parameters include – fields to include in new model exclude – fields to exclude from new model, as with values this takes precedence over include update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data deep – set to True to make a deep copy of the model Returns new model instance
lang/api.python.langchain.com/en/latest/open_clip/langchain_experimental.open_clip.open_clip.OpenCLIPEmbeddings.html
1fe204349dd6-1
deep – set to True to make a deep copy of the model Returns new model instance dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) → DictStrAny¶ Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. embed_documents(texts: List[str]) → List[List[float]][source]¶ Embed search docs. embed_image(uris: List[str]) → List[List[float]][source]¶ embed_query(text: str) → List[float][source]¶ Embed query text. classmethod from_orm(obj: Any) → Model¶ json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) → unicode¶ Generate a JSON representation of the model, include and exclude arguments as per dict(). encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps(). classmethod parse_file(path: Union[str, Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod parse_obj(obj: Any) → Model¶
lang/api.python.langchain.com/en/latest/open_clip/langchain_experimental.open_clip.open_clip.OpenCLIPEmbeddings.html
1fe204349dd6-2
classmethod parse_obj(obj: Any) → Model¶ classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: Protocol = None, allow_pickle: bool = False) → Model¶ classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') → DictStrAny¶ classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) → unicode¶ classmethod update_forward_refs(**localns: Any) → None¶ Try to update ForwardRefs on fields based on this Model, globalns and localns. classmethod validate(value: Any) → Model¶
lang/api.python.langchain.com/en/latest/open_clip/langchain_experimental.open_clip.open_clip.OpenCLIPEmbeddings.html
0362f69c3592-0
langchain.text_splitter.Language¶ class langchain.text_splitter.Language(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]¶ Enum of the programming languages. CPP = 'cpp'¶ GO = 'go'¶ JAVA = 'java'¶ KOTLIN = 'kotlin'¶ JS = 'js'¶ TS = 'ts'¶ PHP = 'php'¶ PROTO = 'proto'¶ PYTHON = 'python'¶ RST = 'rst'¶ RUBY = 'ruby'¶ RUST = 'rust'¶ SCALA = 'scala'¶ SWIFT = 'swift'¶ MARKDOWN = 'markdown'¶ LATEX = 'latex'¶ HTML = 'html'¶ SOL = 'sol'¶ CSHARP = 'csharp'¶ COBOL = 'cobol'¶ Examples using Language¶ Source Code Set env var OPENAI_API_KEY or load from a .env file
lang/api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.Language.html
00baf3a322a5-0
langchain.text_splitter.TextSplitter¶ class langchain.text_splitter.TextSplitter(chunk_size: int = 4000, chunk_overlap: int = 200, length_function: ~typing.Callable[[str], int] = <built-in function len>, keep_separator: bool = False, add_start_index: bool = False, strip_whitespace: bool = True)[source]¶ Interface for splitting text into chunks. Create a new TextSplitter. Parameters chunk_size – Maximum size of chunks to return chunk_overlap – Overlap in characters between chunks length_function – Function that measures the length of given chunks keep_separator – Whether to keep the separator in the chunks add_start_index – If True, includes chunk’s start index in metadata strip_whitespace – If True, strips whitespace from the start and end of every document Methods __init__([chunk_size, chunk_overlap, ...]) Create a new TextSplitter. atransform_documents(documents, **kwargs) Asynchronously transform a sequence of documents by splitting them. create_documents(texts[, metadatas]) Create documents from a list of texts. from_huggingface_tokenizer(tokenizer, **kwargs) Text splitter that uses HuggingFace tokenizer to count length. from_tiktoken_encoder([encoding_name, ...]) Text splitter that uses tiktoken encoder to count length. split_documents(documents) Split documents. split_text(text) Split text into multiple components. transform_documents(documents, **kwargs) Transform sequence of documents by splitting them.
lang/api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.TextSplitter.html
00baf3a322a5-1
transform_documents(documents, **kwargs) Transform sequence of documents by splitting them. __init__(chunk_size: int = 4000, chunk_overlap: int = 200, length_function: ~typing.Callable[[str], int] = <built-in function len>, keep_separator: bool = False, add_start_index: bool = False, strip_whitespace: bool = True) → None[source]¶ Create a new TextSplitter. Parameters chunk_size – Maximum size of chunks to return chunk_overlap – Overlap in characters between chunks length_function – Function that measures the length of given chunks keep_separator – Whether to keep the separator in the chunks add_start_index – If True, includes chunk’s start index in metadata strip_whitespace – If True, strips whitespace from the start and end of every document async atransform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document][source]¶ Asynchronously transform a sequence of documents by splitting them. create_documents(texts: List[str], metadatas: Optional[List[dict]] = None) → List[Document][source]¶ Create documents from a list of texts. classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) → TextSplitter[source]¶ Text splitter that uses HuggingFace tokenizer to count length. classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: Optional[str] = None, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any) → TS[source]¶ Text splitter that uses tiktoken encoder to count length. split_documents(documents: Iterable[Document]) → List[Document][source]¶ Split documents.
lang/api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.TextSplitter.html
00baf3a322a5-2
Split documents. abstract split_text(text: str) → List[str][source]¶ Split text into multiple components. transform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document][source]¶ Transform sequence of documents by splitting them.
lang/api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.TextSplitter.html
fd1b208157a2-0
langchain.text_splitter.MarkdownTextSplitter¶ class langchain.text_splitter.MarkdownTextSplitter(**kwargs: Any)[source]¶ Attempts to split the text along Markdown-formatted headings. Initialize a MarkdownTextSplitter. Methods __init__(**kwargs) Initialize a MarkdownTextSplitter. atransform_documents(documents, **kwargs) Asynchronously transform a sequence of documents by splitting them. create_documents(texts[, metadatas]) Create documents from a list of texts. from_huggingface_tokenizer(tokenizer, **kwargs) Text splitter that uses HuggingFace tokenizer to count length. from_language(language, **kwargs) from_tiktoken_encoder([encoding_name, ...]) Text splitter that uses tiktoken encoder to count length. get_separators_for_language(language) split_documents(documents) Split documents. split_text(text) Split text into multiple components. transform_documents(documents, **kwargs) Transform sequence of documents by splitting them. __init__(**kwargs: Any) → None[source]¶ Initialize a MarkdownTextSplitter. async atransform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶ Asynchronously transform a sequence of documents by splitting them. create_documents(texts: List[str], metadatas: Optional[List[dict]] = None) → List[Document]¶ Create documents from a list of texts. classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) → TextSplitter¶ Text splitter that uses HuggingFace tokenizer to count length. classmethod from_language(language: Language, **kwargs: Any) → RecursiveCharacterTextSplitter¶
lang/api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.MarkdownTextSplitter.html
fd1b208157a2-1
classmethod from_language(language: Language, **kwargs: Any) → RecursiveCharacterTextSplitter¶ classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: Optional[str] = None, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any) → TS¶ Text splitter that uses tiktoken encoder to count length. static get_separators_for_language(language: Language) → List[str]¶ split_documents(documents: Iterable[Document]) → List[Document]¶ Split documents. split_text(text: str) → List[str]¶ Split text into multiple components. transform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶ Transform sequence of documents by splitting them.
lang/api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.MarkdownTextSplitter.html
e72e3766df8b-0
langchain.text_splitter.RecursiveCharacterTextSplitter¶ class langchain.text_splitter.RecursiveCharacterTextSplitter(separators: Optional[List[str]] = None, keep_separator: bool = True, is_separator_regex: bool = False, **kwargs: Any)[source]¶ Splitting text by recursively look at characters. Recursively tries to split by different characters to find one that works. Create a new TextSplitter. Methods __init__([separators, keep_separator, ...]) Create a new TextSplitter. atransform_documents(documents, **kwargs) Asynchronously transform a sequence of documents by splitting them. create_documents(texts[, metadatas]) Create documents from a list of texts. from_huggingface_tokenizer(tokenizer, **kwargs) Text splitter that uses HuggingFace tokenizer to count length. from_language(language, **kwargs) from_tiktoken_encoder([encoding_name, ...]) Text splitter that uses tiktoken encoder to count length. get_separators_for_language(language) split_documents(documents) Split documents. split_text(text) Split text into multiple components. transform_documents(documents, **kwargs) Transform sequence of documents by splitting them. __init__(separators: Optional[List[str]] = None, keep_separator: bool = True, is_separator_regex: bool = False, **kwargs: Any) → None[source]¶ Create a new TextSplitter. async atransform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶ Asynchronously transform a sequence of documents by splitting them. create_documents(texts: List[str], metadatas: Optional[List[dict]] = None) → List[Document]¶ Create documents from a list of texts.
lang/api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.RecursiveCharacterTextSplitter.html
e72e3766df8b-1
Create documents from a list of texts. classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) → TextSplitter¶ Text splitter that uses HuggingFace tokenizer to count length. classmethod from_language(language: Language, **kwargs: Any) → RecursiveCharacterTextSplitter[source]¶ classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: Optional[str] = None, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any) → TS¶ Text splitter that uses tiktoken encoder to count length. static get_separators_for_language(language: Language) → List[str][source]¶ split_documents(documents: Iterable[Document]) → List[Document]¶ Split documents. split_text(text: str) → List[str][source]¶ Split text into multiple components. transform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶ Transform sequence of documents by splitting them. Examples using RecursiveCharacterTextSplitter¶ RePhraseQueryRetriever Cohere Reranker Ollama Zep your local model path Loading documents from a YouTube url Source Code Set env var OPENAI_API_KEY or load from a .env file: Set env var OPENAI_API_KEY or load from a .env file Question Answering Perform context-aware text splitting Use local LLMs QA using Activeloop’s DeepLake !pip install bs4 MultiVector Retriever MultiQueryRetriever Parent Document Retriever MarkdownHeaderTextSplitter
lang/api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.RecursiveCharacterTextSplitter.html
fc8a473f9cca-0
langchain.text_splitter.MarkdownHeaderTextSplitter¶ class langchain.text_splitter.MarkdownHeaderTextSplitter(headers_to_split_on: List[Tuple[str, str]], return_each_line: bool = False)[source]¶ Splitting markdown files based on specified headers. Create a new MarkdownHeaderTextSplitter. Parameters headers_to_split_on – Headers we want to track return_each_line – Return each line w/ associated headers Methods __init__(headers_to_split_on[, return_each_line]) Create a new MarkdownHeaderTextSplitter. aggregate_lines_to_chunks(lines) Combine lines with common metadata into chunks :param lines: Line of text / associated header metadata split_text(text) Split markdown file :param text: Markdown file __init__(headers_to_split_on: List[Tuple[str, str]], return_each_line: bool = False)[source]¶ Create a new MarkdownHeaderTextSplitter. Parameters headers_to_split_on – Headers we want to track return_each_line – Return each line w/ associated headers aggregate_lines_to_chunks(lines: List[LineType]) → List[Document][source]¶ Combine lines with common metadata into chunks :param lines: Line of text / associated header metadata split_text(text: str) → List[Document][source]¶ Split markdown file :param text: Markdown file Examples using MarkdownHeaderTextSplitter¶ Perform context-aware text splitting MarkdownHeaderTextSplitter
lang/api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.MarkdownHeaderTextSplitter.html
e7f32e57f238-0
langchain.text_splitter.LineType¶ class langchain.text_splitter.LineType[source]¶ Line type as typed dict. metadata: Dict[str, str]¶ content: str¶
lang/api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.LineType.html
e86cb026a162-0
langchain.text_splitter.HTMLHeaderTextSplitter¶ class langchain.text_splitter.HTMLHeaderTextSplitter(headers_to_split_on: List[Tuple[str, str]], return_each_element: bool = False)[source]¶ Splitting HTML files based on specified headers. Requires lxml package. Create a new HTMLHeaderTextSplitter. Parameters headers_to_split_on – list of tuples of headers we want to track mapped to (arbitrary) keys for metadata. Allowed header values: h1, h2, h3, h4, h5, h6 e.g. [(“h1”, “Header 1”), (“h2”, “Header 2)]. return_each_element – Return each element w/ associated headers. Methods __init__(headers_to_split_on[, ...]) Create a new HTMLHeaderTextSplitter. aggregate_elements_to_chunks(elements) Combine elements with common metadata into chunks split_text(text) Split HTML text string split_text_from_file(file) Split HTML file split_text_from_url(url) Split HTML from web URL __init__(headers_to_split_on: List[Tuple[str, str]], return_each_element: bool = False)[source]¶ Create a new HTMLHeaderTextSplitter. Parameters headers_to_split_on – list of tuples of headers we want to track mapped to (arbitrary) keys for metadata. Allowed header values: h1, h2, h3, h4, h5, h6 e.g. [(“h1”, “Header 1”), (“h2”, “Header 2)]. return_each_element – Return each element w/ associated headers. aggregate_elements_to_chunks(elements: List[ElementType]) → List[Document][source]¶ Combine elements with common metadata into chunks Parameters elements – HTML element content with associated identifying info and metadata split_text(text: str) → List[Document][source]¶
lang/api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.HTMLHeaderTextSplitter.html
e86cb026a162-1
split_text(text: str) → List[Document][source]¶ Split HTML text string Parameters text – HTML text split_text_from_file(file: Any) → List[Document][source]¶ Split HTML file Parameters file – HTML file split_text_from_url(url: str) → List[Document][source]¶ Split HTML from web URL Parameters url – web URL
lang/api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.HTMLHeaderTextSplitter.html
c68b94aa74d4-0
langchain.text_splitter.SentenceTransformersTokenTextSplitter¶ class langchain.text_splitter.SentenceTransformersTokenTextSplitter(chunk_overlap: int = 50, model_name: str = 'sentence-transformers/all-mpnet-base-v2', tokens_per_chunk: Optional[int] = None, **kwargs: Any)[source]¶ Splitting text to tokens using sentence model tokenizer. Create a new TextSplitter. Methods __init__([chunk_overlap, model_name, ...]) Create a new TextSplitter. atransform_documents(documents, **kwargs) Asynchronously transform a sequence of documents by splitting them. count_tokens(*, text) create_documents(texts[, metadatas]) Create documents from a list of texts. from_huggingface_tokenizer(tokenizer, **kwargs) Text splitter that uses HuggingFace tokenizer to count length. from_tiktoken_encoder([encoding_name, ...]) Text splitter that uses tiktoken encoder to count length. split_documents(documents) Split documents. split_text(text) Split text into multiple components. transform_documents(documents, **kwargs) Transform sequence of documents by splitting them. __init__(chunk_overlap: int = 50, model_name: str = 'sentence-transformers/all-mpnet-base-v2', tokens_per_chunk: Optional[int] = None, **kwargs: Any) → None[source]¶ Create a new TextSplitter. async atransform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶ Asynchronously transform a sequence of documents by splitting them. count_tokens(*, text: str) → int[source]¶ create_documents(texts: List[str], metadatas: Optional[List[dict]] = None) → List[Document]¶
lang/api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.SentenceTransformersTokenTextSplitter.html
c68b94aa74d4-1
Create documents from a list of texts. classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) → TextSplitter¶ Text splitter that uses HuggingFace tokenizer to count length. classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: Optional[str] = None, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any) → TS¶ Text splitter that uses tiktoken encoder to count length. split_documents(documents: Iterable[Document]) → List[Document]¶ Split documents. split_text(text: str) → List[str][source]¶ Split text into multiple components. transform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶ Transform sequence of documents by splitting them. Examples using SentenceTransformersTokenTextSplitter¶ Split by tokens
lang/api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.SentenceTransformersTokenTextSplitter.html
65763b265155-0
langchain.text_splitter.PythonCodeTextSplitter¶ class langchain.text_splitter.PythonCodeTextSplitter(**kwargs: Any)[source]¶ Attempts to split the text along Python syntax. Initialize a PythonCodeTextSplitter. Methods __init__(**kwargs) Initialize a PythonCodeTextSplitter. atransform_documents(documents, **kwargs) Asynchronously transform a sequence of documents by splitting them. create_documents(texts[, metadatas]) Create documents from a list of texts. from_huggingface_tokenizer(tokenizer, **kwargs) Text splitter that uses HuggingFace tokenizer to count length. from_language(language, **kwargs) from_tiktoken_encoder([encoding_name, ...]) Text splitter that uses tiktoken encoder to count length. get_separators_for_language(language) split_documents(documents) Split documents. split_text(text) Split text into multiple components. transform_documents(documents, **kwargs) Transform sequence of documents by splitting them. __init__(**kwargs: Any) → None[source]¶ Initialize a PythonCodeTextSplitter. async atransform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶ Asynchronously transform a sequence of documents by splitting them. create_documents(texts: List[str], metadatas: Optional[List[dict]] = None) → List[Document]¶ Create documents from a list of texts. classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) → TextSplitter¶ Text splitter that uses HuggingFace tokenizer to count length. classmethod from_language(language: Language, **kwargs: Any) → RecursiveCharacterTextSplitter¶
lang/api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.PythonCodeTextSplitter.html
65763b265155-1
classmethod from_language(language: Language, **kwargs: Any) → RecursiveCharacterTextSplitter¶ classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: Optional[str] = None, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any) → TS¶ Text splitter that uses tiktoken encoder to count length. static get_separators_for_language(language: Language) → List[str]¶ split_documents(documents: Iterable[Document]) → List[Document]¶ Split documents. split_text(text: str) → List[str]¶ Split text into multiple components. transform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶ Transform sequence of documents by splitting them.
lang/api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.PythonCodeTextSplitter.html
082d37da4b5f-0
langchain.text_splitter.SpacyTextSplitter¶ class langchain.text_splitter.SpacyTextSplitter(separator: str = '\n\n', pipeline: str = 'en_core_web_sm', **kwargs: Any)[source]¶ Splitting text using Spacy package. Per default, Spacy’s en_core_web_sm model is used. For a faster, but potentially less accurate splitting, you can use pipeline=’sentencizer’. Initialize the spacy text splitter. Methods __init__([separator, pipeline]) Initialize the spacy text splitter. atransform_documents(documents, **kwargs) Asynchronously transform a sequence of documents by splitting them. create_documents(texts[, metadatas]) Create documents from a list of texts. from_huggingface_tokenizer(tokenizer, **kwargs) Text splitter that uses HuggingFace tokenizer to count length. from_tiktoken_encoder([encoding_name, ...]) Text splitter that uses tiktoken encoder to count length. split_documents(documents) Split documents. split_text(text) Split incoming text and return chunks. transform_documents(documents, **kwargs) Transform sequence of documents by splitting them. __init__(separator: str = '\n\n', pipeline: str = 'en_core_web_sm', **kwargs: Any) → None[source]¶ Initialize the spacy text splitter. async atransform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶ Asynchronously transform a sequence of documents by splitting them. create_documents(texts: List[str], metadatas: Optional[List[dict]] = None) → List[Document]¶ Create documents from a list of texts. classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) → TextSplitter¶
lang/api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.SpacyTextSplitter.html
082d37da4b5f-1
Text splitter that uses HuggingFace tokenizer to count length. classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: Optional[str] = None, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any) → TS¶ Text splitter that uses tiktoken encoder to count length. split_documents(documents: Iterable[Document]) → List[Document]¶ Split documents. split_text(text: str) → List[str][source]¶ Split incoming text and return chunks. transform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶ Transform sequence of documents by splitting them. Examples using SpacyTextSplitter¶ spaCy Atlas Split by tokens
lang/api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.SpacyTextSplitter.html
2c4976b39995-0
langchain.text_splitter.NLTKTextSplitter¶ class langchain.text_splitter.NLTKTextSplitter(separator: str = '\n\n', language: str = 'english', **kwargs: Any)[source]¶ Splitting text using NLTK package. Initialize the NLTK splitter. Methods __init__([separator, language]) Initialize the NLTK splitter. atransform_documents(documents, **kwargs) Asynchronously transform a sequence of documents by splitting them. create_documents(texts[, metadatas]) Create documents from a list of texts. from_huggingface_tokenizer(tokenizer, **kwargs) Text splitter that uses HuggingFace tokenizer to count length. from_tiktoken_encoder([encoding_name, ...]) Text splitter that uses tiktoken encoder to count length. split_documents(documents) Split documents. split_text(text) Split incoming text and return chunks. transform_documents(documents, **kwargs) Transform sequence of documents by splitting them. __init__(separator: str = '\n\n', language: str = 'english', **kwargs: Any) → None[source]¶ Initialize the NLTK splitter. async atransform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶ Asynchronously transform a sequence of documents by splitting them. create_documents(texts: List[str], metadatas: Optional[List[dict]] = None) → List[Document]¶ Create documents from a list of texts. classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) → TextSplitter¶ Text splitter that uses HuggingFace tokenizer to count length.
lang/api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.NLTKTextSplitter.html
2c4976b39995-1
Text splitter that uses HuggingFace tokenizer to count length. classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: Optional[str] = None, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any) → TS¶ Text splitter that uses tiktoken encoder to count length. split_documents(documents: Iterable[Document]) → List[Document]¶ Split documents. split_text(text: str) → List[str][source]¶ Split incoming text and return chunks. transform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶ Transform sequence of documents by splitting them. Examples using NLTKTextSplitter¶ Split by tokens
lang/api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.NLTKTextSplitter.html
7ddb0f2dd656-0
langchain.text_splitter.LatexTextSplitter¶ class langchain.text_splitter.LatexTextSplitter(**kwargs: Any)[source]¶ Attempts to split the text along Latex-formatted layout elements. Initialize a LatexTextSplitter. Methods __init__(**kwargs) Initialize a LatexTextSplitter. atransform_documents(documents, **kwargs) Asynchronously transform a sequence of documents by splitting them. create_documents(texts[, metadatas]) Create documents from a list of texts. from_huggingface_tokenizer(tokenizer, **kwargs) Text splitter that uses HuggingFace tokenizer to count length. from_language(language, **kwargs) from_tiktoken_encoder([encoding_name, ...]) Text splitter that uses tiktoken encoder to count length. get_separators_for_language(language) split_documents(documents) Split documents. split_text(text) Split text into multiple components. transform_documents(documents, **kwargs) Transform sequence of documents by splitting them. __init__(**kwargs: Any) → None[source]¶ Initialize a LatexTextSplitter. async atransform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶ Asynchronously transform a sequence of documents by splitting them. create_documents(texts: List[str], metadatas: Optional[List[dict]] = None) → List[Document]¶ Create documents from a list of texts. classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) → TextSplitter¶ Text splitter that uses HuggingFace tokenizer to count length. classmethod from_language(language: Language, **kwargs: Any) → RecursiveCharacterTextSplitter¶
lang/api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.LatexTextSplitter.html